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Synthèse

Est-ce que les robots doivent nécessairement localiser les sources sonores afin d’interagir
avec leur environement ?
Cette question a été le fil central de cette thèse. En effet, dans un contexte d’interactions
homme-robot, un robot doté d’un sens de l’ouïe fiable est essentiel. L’information
auditive en robotique est généralement exploitée par des capacités tels que la localisa-
tion de source, la séparation de sources, le traitement de la parole et l’analyse de scène
acoustique, qui définissent le sujet de l’audition robotique. Dans cette thématique,
une attention particulière a été accordée à la localisation de source, principalement
parce qu’elle est la première étape de l’interaction auditive.

Les techniques de localisation de source, en robotique, s’inspirent des capacités
auditives des mammifères et plus particulièrement de celles des humains. L’approche
typique de la localisation de source en robotique consiste à transposer les connais-
sances acquises en psychoacoustique et en physiologie dans un système d’audition
artificiel dont sont extraits des indices sonores. Ces méthodes supposent générale-
ment que les capteurs et les sources d’intérêt sont statiques. Les indices sonores tels
que la différence interaurale en temps et la différence interaurale en amplitude ou
les densités spectrales, fournissent des informations sur la direction d’arrivée du son
dans le plan horizontal et le plan vertical. L’efficacité du processus de localisation
dépend uniquement de la précision des indices sonores extraits.

Cependant, imiter le système auditif humain se trouve être relativement com-
plexe en environnement réel. D’une part, la perception et plus particulièrement les
indices sonores sont influencés par la forme du corps (tête, pavillon auditif, torse ...)
et d’autre part par les conditions acoustiques (acoustique de la salle, bruit, réver-
bération). Ces indices sonores varient d’un individu à un autre et d’un environement
à un autre. Par conséquent, même les systèmes artificiels les plus aboutis ne peuvent
être déployés que dans des environnements contrôlés. En environnement réel, qui im-
plique la présence de réverbération, de bruit et de mouvement, la précision des indices
sonores se dégrade considérablement, ce qui entraîne des erreurs de localisation.

C’est la raison pour laquelle une nouvelle ligne d’approches qui étudie en pro-
fondeur les capacités du système auditif humain émerge : se baser uniquement sur
la pertinence et la précision des indices sonores ne suffit pas pour une localisation
robuste. Plusieurs analyses des capacités de localisation chez l’humain, telles que
celles proposées dans [Pop08] ou [CLH97], montrent une grande variabilité de pré-
cision lorsqu’il s’agit d’estimer la direction d’arrivée du son. Dans ces expériences,
le processus de localisation démontre une bonne précision pour les stimuli sonores
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situés en face du sujet alors que les positions plus latérales entraînent des erreurs
de localisation plus importantes. D’autres études [ALO90, CTS68] ont rapporté
que l’estimation de la distance a tendance à être largement sous-estimée. Néan-
moins, malgré ces imprécisions, des actions telles que tourner la tête en direction
de la source sonore sont exécutées avec précision et sans effort particulier. Ces ré-
sultats tendent à démontrer que la précision des indices sonores n’est pas cruciale
pour les interactions basées sur l’ouïe. Cette hypothèse est également corroborée
par une étude de [HCM83], qui a montré que des sujets souffrant de perte auditive
ont développé des stratégies de localisation basée sur des indices sonores erronés, en
utilisant le mouvement de leur tête et leur sens visuel. Leur système auditif s’est
adapté à l’utilisation d’indices sonores incorrects.

À partir de ces résultats, on peut alors suggérer que les points-clés du système
auditif humain ne sont pas la précision des indices sonores, mais plutôt la capacité
d’adaptation et la flexibilité par rapport aux conditions acoustiques comme le montre
[HVRVO98]. Un système auditif efficace peut être défini comme un mécanisme qui
combine différentes modalités telles que la vision (via des références spatiales), le
mouvement et la mémoire des expériences auditives précédentes. L’espace acoustique
est ensuite appréhendé dynamiquement et les erreurs potentielles des indices sonores
peuvent être compensées par ces modalités. Différentes approches peuvent alors être
considérées comme la localisation combinant l’ouïe et la vision, la localisation par
apprentissage, ou par le biais de mouvement.

Cette thèse se concentre plus particulièrement sur les stratégies de mouvement
liées à la perception auditive, dans un contexte binaural. Ces stratégies ont été ex-
plorées par les méthodes d’audition active. L’audition active consiste à mesurer les
indices sonores en générant un mouvement prédéfini du robot afin d’améliorer leur
précision. L’étape de localisation est effectuée ensuite par la fusion des mesures prises
à partir des différentes positions du robot. Cette approche améliore le processus de
localisation, mais fait face à certaines limites. D’abord, les mouvements prédéfi-
nis peuvent limiter ou modifier l’interaction avec un comportement non-naturel du
robot. Ensuite, les scènes dynamiques, où le robot et/ou la source sont en mouve-
ment nécessitent des modélisations supplémentaires (généralement la dynamique de
la source) et un tracking de sorte que la fusion des mesures reste cohérente. Enfin,
plus important encore, l’audition active repose toujours sur la localisation et la préci-
sion des indices sonores. Sachant que le robot lui-même et les conditions acoustiques
influent sur les indices sonores à chaque position du robot dans la scène, cette ap-
proche est limitée par une bonne modélisation des conditions acoustiques, de façon
similaire aux techniques de localisation en configuration statique.

En réponse à la question initiale sur la nécessité de la localisation, le travail
développé dans cette thèse diffère des approches citées auparavant en définissant
une interaction auditive comme une tâche modélisée par une commande référencée
capteurs. Cette méthode, que nous appelons asservissement sonore, ne localise pas
la source sonore. À la place, on définit une tâche par des conditions de mesures
à satisfaire, qui correspondent généralement à une position particulière du robot.
Par exemple, une tâche en asservissement sonore consiste à positionner le robot
afin de satisfaire des conditions définies par un ensemble de mesures auditives, alors
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qu’une approche basée sur la localisation nécessite d’extraire les angles d’azimut et
d’élévation et la distance par rapport à la source sonore, avant de déplacer le robot
à l’emplacement désiré. Dans l’asservissement sonore, le mouvement du robot est
généré en temps réel, à travers une boucle de commande basée sur des indices sonores
mesurés à la volée. La commande du robot est obtenue en modélisant la relation en-
tre la dynamique des indices sonores et le mouvement des capteurs auditifs. De cette
façon, notre approche repose principalement sur la dynamique des indices sonores
et non sur leur valeur intrinsèque, ce qui permet une meilleure tolérance vis-à-vis
des conditions acoustiques. Avoir des indices sonores précis n’est alors plus requis.
En conséquence, l’étape de localisation est ignorée et la modélisation des conditions
acoustiques ou des perturbations de la tête ne sont pas nécessaires. De la même
facon, il est possible d’effectuer des tâches basées sur des indices sonores erronés du
moment que la dynamique de ces indices reste cohérente. Cette approche appliquée
au domaine de l’audition robotique est la contribution essentielle de cette thèse. Le
manuscrit est donc centré sur la description de cette approche et comprend la descrip-
tion de la commande référencée capteurs, la modélisation des indices sonores pour
la commande et des résultats expérimentaux qui valident la pertinence et l’utilité
de cette méthode en environnement réel. Ces expériences sont réalisées dans des
configurations dynamiques en considérant des micros en champ libre et des micros
intégrés dans des robots humanoïdes.

Dans cette thèse, nous avons introduit plusieurs lois de commandes se basant sur
la variation des indices sonores par rapport aux mouvements du robot :

• une première basée sur la différence interaurale en temps (ITD),

• une deuxième basée sur la différence interaurale en amplitude (ILD),

• ut une dernière utilisant le niveau d’energie du son.

A partir de ces commandes, nous avons expérimenté différentes tâches de position-
nement. Que ce soit avec l’ILD ou avec l’ITD, les tâches qui consistent à orienter le
robot vis-à-vis d’une source sonore ont été effectuées dans des conditions réelles (de
bruit et de réverbération). De plus, les avantages de ces méthodes ont été soulignés
par la résolution des problèmes liés à la perception auditive. Dans le cas de l’ILD,
l’ambiguïté avant/arrière est intrinsèquement résolue par le système de contrôle.
Dans le cas de l’ITD, nous avons démontré la robustesse du système de contrôle que
ce soit en champ lointain ou en champ proche. Finalement, nous avons également
prouvé que le positionnement en distance en utilisant le niveau d’énergie peut être
effectué avec précision dans des conditions réelles. En outre, ces approches sont
adaptées aux scènes dynamiques, qui sont rarement abordées en audition robotique.
L’experience décrite en Figure 1 résume le potentiel de l’asservissement sonore. Dans
celle-ci, le robot est capable de faire face à la source sonore alors que celle-ci est ini-
tialement présente dans le dos du robot. Par la suite, lorsque la source est déplacée,
le robot s’oriente en temps réel vers celle-ci en la maintenant toujours de face. Cette
expérience qui s’est déroulée en environnment réel démontre la robustesse de notre
approche. Outre le fait de souligner la pertinence de l’asservissement sonore en con-
ditions réelles, ces expériences valident également la polyvalence de l’asservissement
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Figure 1: Une expérience illustrant l’asservissement sonore. D’une position quel-
conque le robot est capable de se retourner vers la source sonore et suivre le mou-
vement de celle-ci en utilisant deux micros. L’approche utilisée ici est basée sur la
différence interaurale en amplitude.

sonore. En effet, ce type d’expérience peut être réalisé, de la même manière, sur
des robots humanoïdes où les microphones sont intégrés à la tête. Cette dernière
possibilité est illustrée par la Figure 2 où le robot Romeo oriente sa tête vers la
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source sonore. À notre connaissance, ce travail est l’une des premières tentatives à
générer le mouvement d’un robot par rapport à l’information auditive, via une loi de
commande explicite.
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Figure 2: Romeo oriente sa tête correctement vers la source sonore en utilisant les
indices sonores produits par la différence interaurale en temps.

Si l’on se restreint aux systèmes binauraux, les résultats expérimentaux exposés
tout au long de cette thèse ne sont pas réalisables par l’état de l’art de l’audition robo-
tique. Au-delà de ce travail, nous aimerions envisager cette approche comme un cadre
général qui peut être appliqué à tout type de robots et de conditions acoustiques.
À cette fin, les méthodes présentées dans cette thèse pourraient être améliorées afin
de gérer des sources sonores non continues ou le suivi et l’évaluation du nombre de
sources actives.
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Introduction

Do robots necessarily need to localize sound source(s) in order to engage into inter-
action? This question builds up the central thread of this thesis. Indeed, towards
the dream of autonomous human-robot interactions, a robot endowed with a reliable
sense of hearing is essential. Nowadays, this sense of hearing is generally exploited
through auditory capabilities such as sound localization, along with sound sepa-
ration, speech processing and auditory scene analysis, that build up the topic of
robot audition. In this topic, particular attention has been given to sound source
localization, certainly because it is the first step of auditory-based interaction. The
localization step allows to control robot motions for positioning tasks such as facing
or approaching a speaker in a scene.

Binaural sound source localization techniques are inspired by the way mammals
and more particularly humans sense and perceive sound. Typical approaches for
sound localization consist in transposing knowledge in psychoacoustics and physiol-
ogy into an artificial hearing system that extracts auditory cues. Auditory cues such
as the interaural time difference and the interaural level difference or the spectral
notches, provide information about the direction of arrival of the sound in the hor-
izontal and the vertical plane. As a result the efficiency of the localization process
depends principally on the accuracy of the extracted auditory cues.

However mimicking the human hearing system happens to be complex in realistic
configurations. Perception and more particularly auditory cues are influenced by the
shape of the body (head, pinnae, torso...) along with acoustic conditions (acoustics
of the room, noise, reverberation). The sensitivity to auditory events is variable for
each individual and each location. As a consequence, even the most complex artificial
auditory systems can be deployed in controlled environments only. Real world con-
figurations, that include dynamic scenes, reverberation, noises, degrade drastically
the accuracy of auditory cues and at the same time the localization performance.

Still, new lines of approaches have emerged by studying in depth the capabilities
of the human hearing system: relying only on the relevance and precision of auditory
cues does not provide enough robustness to realistic environments. Actually a typical
analysis of the performance of localization by human listeners as proposed by [Pop08]
or [CLH97] shows variable accuracy among individuals in estimating the direction of
sound arrival. In these experiments the localization process showed good accuracy
for sound stimuli located around the head front sight while eccentric positions of the
source lead to more substantial errors. On top of that, other studies [ALO90, CTS68]
reported inaccurate distance estimations, which tends to be largely underestimated.
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Despite this lack of accuracy, tasks such as head-turn reflex, which consists in turning
the head in the direction of the sound source are performed accurately and effort-
lessly by human listeners. Thus, it could be deduced that accurate auditory cues
may not be essential for auditory-based interactions. This assumption is also corrob-
orated by [HCM83], that showed how subjects suffering from hearing loss developed
localization strategies based on erroneous auditory cues, by using body motion and
visual searching. By contrast, when hearing aids were used in order to recover correct
auditory cues, the test subjects localization performance was immediately degraded.
Their hearing system was adapted to incorrect auditory cues.

In view of these results, it can be suggested that the key points of the human
auditory system are not the accuracy of auditory cues but rather the adaptability
and flexibility to acoustic configurations as shown by [HVRVO98]. Actually an ef-
ficient hearing system can be defined as a mechanism that combines different input
modalities, such as additional visual cues (spatial references), motions and memory
of previous auditory experiences. The acoustic space is then apprehended dynami-
cally and potential auditory cues errors can be compensated by the latter modalities.
Different paradigms can then be considered such as audio-visual localization, local-
ization through learning-based approaches, or through efficient motion strategies.

This thesis focuses more particularly on motion strategies governed by auditory
perception, in a binaural context. Such strategies have been explored in the so-called
active audition paradigm [NOK00b]. This method consists in measuring the audi-
tory cues while generating a predefined robot motion in order to improve auditory
cues accuracy. The localization step is performed afterwards by fusing the mea-
surements taken from different poses of the robot. This approach improves static
sound localization but faces some limitations. Active audition aims to localize sound
sources. Knowing that robots and acoustic conditions influence the auditory cues,
this approach requires a good modeling of the acoustic conditions, similarly to sound
source localization in a static configuration. Furthermore, dynamic scenes (i.e. mov-
ing sensors/ sources) need additional processing such as tracking so that auditory
cues measurements remains consistent.

As an answer to the initial question about the necessity of localization, the work
developed in this thesis differs from the approaches discussed before by defining an
auditory-based interaction as a task modeled in a sensor-based framework. This
framework, that we term aural servo (AS), does not localize sound sources. A task
is characterized by a state of measurements to be satisfied, that generally corre-
sponds to a particular pose of the robot. For instance, in AS, a homing task consists
in positioning the robot so as to satisfy given conditions defined by a set of audi-
tory measurements, while a localization-based approach would require to extract the
bearing angles and the distance to the sound source, before moving the robot to the
desired location. In AS paradigm, robot motion is generated in real time, through a
control loop based on auditory cues measured on the fly. Velocity inputs of the robot
are obtained by modeling the relationship between the variation of given auditory
cues and of the sensors motion. In this way, our approach principally relies on the
variation of these cues instead of their intrinsic values. Consequently the localiza-
tion step is skipped and the modeling of the acoustic conditions or the effect of the
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body/head are not required to be modeled. Hence, it is even possible to complete
tasks with erroneous auditory cues as long as the variation of these cues remains
consistent. Indeed it appears that the variation of auditory cues is more consistent
and less sensitive to acoustic conditions than their intrinsic values. This approach
applied to robot audition field is the key contribution of this thesis.

The manuscript is thus centered on the description of the AS paradigm, that
introduces a sensor-based framework, models auditory cues for the latter framework.
Experimental studies validate this approach in real world and dynamic configura-
tions either on free field microphones or microphones embedded on humanoid robots.
These experiments start from elementary auditory-based tasks such as head-turn mo-
tions, to autonomous navigation tasks.

This manuscript is organized in 6 chapters. Chapter 1 introduces the concept of
robot audition. This chapter provides an historical review of the main contributions
related to the topic of robot audition. Then, the main applications and contributions,
but also the limits of robot audition are summarized.

In Chapter 2, we focus on sound source localization, one of the most prominent
topic in robot audition. As a first step, the localization process is described from the
human sensing perspective, in order to give an insight of all physiological mechanisms
involved in sound localization process. In the following, this chapter gives an overview
of localization techniques, and major achievements and applications in robot audition
field.

From the limitations underlined in the two previous chapters, in Chapter 3 we
introduce the framework that builds up the AS paradigm. Before presenting the
theoretical concepts involved in AS, we stress the potential benefits of using a sensor-
based control through an example comparing an approach based on localization and
an approach based on AS. Thereafter, the essential theoretical aspects used in our
approach are exposed.

Chapters 4 and 5 that are at the core of this thesis, propose a full modeling
and analysis of auditory cues (Interchannel Level Difference, Interchannel Time Dif-
ference, Energy level) applied to the AS paradigm. These approaches are evalu-
ated through simulations that exhibit the benefits and the limitations of such a
paradigm. More importantly, all these approaches are validated experimentally on a
mobile robot, in real world environments for several tasks and under various contexts.
These experiments can be considered as contributions that support the relevance of
our approach.

Eventually Chapter 6 emphasizes an essential key point of our approach: the
versatility of the AS paradigm, that can then be considered as a general framework.
More specifically, in this chapter we apply our approach on humanoid robots despite
a free-field modeling. Once again experimental results corroborate the pertinence of
AS for real world applications.
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Chapter 1

Robot audition

This chapter introduces the context of this thesis. Notably we define the concept
of robot audition and the related state-of-the-art. The chapter is divided into three
main parts.

The first one gives a brief historical review of progress in robotics and more
particularly the developments that conducted to endow robots with auditory capa-
bilities. Following this description, we provide an example of an auditory scene that
highlights the needs and expectations from robots endowed with the sense of hearing.
Eventually, Section 1.1.3 specifies the functionalities and applications ensued from
this sense, shaping the robot audition topic.

The second part of this chapter concerns robot audition challenges in order to be
deployed in realistic environments. First, we focus on the sound propagation and its
properties, which influence the cues extracted from given signals. In a second phase,
robotic context is analyzed through of the additional constraints that it introduces.

Finally, the third part of this chapter in Section 1.3 presents the current level
of development of robot audition through software platforms, research projects and
conferences related to this topic.

1.1 The sense of hearing in robotics

1.1.1 From robotic arms to robot audition

Since the seventies, the definition of and the expectations from robots have drastically
changed. In the beginning of robotics, which coincided with the boom of industry,
robots were considered as efficient tools to expand and develop industrial processes.
This period marks the beginning of fully automated tasks designed in order to replace
human force for exhausting and tedious works. The first robots were mainly used in
controlled environment. Pre-configured robotic arms were programmed for repetitive
and tough tasks, such as pick-and-place tasks, palletizing or welding in assembly
lines. The environment was static and/or strictly controlled in order to avoid any
interruption in working chains and more importantly to avoid accidents in robots
working space.
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(a) (b)

Figure 1.1: Evolution of industrial robots from the last three decades: in (a) Kuka
robots on assembly lines in 19831, in (b) Nowadays an assembly line with the robot
Baxter (courtesy to Rethink Robotics).

Since that period, robots capabilities have been greatly boosted, although robotic
achievements are currently far from the fantasized ideal human-skilled robots. The
trigger of this revolution is probably the use of sensors, that made robot more “intel-
ligent” than automated arms. “Intelligent” underlies the concept of advanced skills of
sensing, learning and adaptation to unknown and uncontrolled environments. These
sensors are from two types and either make robots aware of their internal state or
aware of their environment. The internal state of robots is evaluated by propriocep-
tive sensors that may give measurements about battery level, wheels position, joint
position, etc. Among proprioceptive sensors, one can cite encoders, potentiometers,
gyroscopes or compasses. These sensors are particularly useful in industrial con-
texts in order to detect any defect in robots or breakdown in working chains. On
the other hand, the environment is observed from exteroceptive sensors. Depending
on the context, detecting/analyzing objects or humans and detecting changes in the
environment are the main features offered by this type of sensors. Typical exterocep-
tive sensors include cameras, sonars, lasers, force sensors, microphones, etc. Thus,
it is without saying that exteroceptive sensors are greatly used for tasks involving
interaction, humans or uncontrolled environments.

Globally, sensors widened the field of application of robotics and democratized
the presence of robots in our daily life. In industry, robots tend to be more compliant
and to foster human intervention through synergistic tasks (see Figure 1.1b). Besides,
the use of robots is no more limited to industrial contexts. Indeed robots are more
and more involved in tasks such as exploration, monitoring, surveillance, cleaning,
socialization or used as leisure companions. The two latter use cases underline the
rise of social robots that are autonomously able to interact and to communicate with
humans while being endowed with a social behavior. These robots are particularly
used in assisting context such as with diseased children [AVS15] or with elderly people
[BHR09].

This wide variety of potential applications allowed to diversify robot structures,

1 By Mixabest CC BY-SA 3.0, commons.wikimedia.org/w/index.php?curid=9820288
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that are not restricted to arms anymore. Indeed, in connection with the sensors that
permitted free and autonomous motions, various type of robots emerged: nano/micro
robots, wheeled-robots, legged robots, flying robots or humanoid robots among oth-
ers. In parallel, thanks to a better understanding of the physiological properties of
mammals bodies, senses or behaviors, robots tend to become bio-mimetic platforms.
For this purpose, roboticists particularly focus on human-like robots, that is, robots
endowed with human locomotion capabilities, behavior or sensing skills. The three
main senses investigated in robotics are the senses of vision, touch/range sensing
and hearing. Among these senses, vision is probably the most prominent and one of
oldest subject of study in robotics. Thanks to the astounding progress in electronics,
cameras rapidly became embeddable and affordable and subsequently available for
robots. On top of that, the support of the long expertise and progress in computer
vision field greatly eased knowledge transfer. Robots are nowadays endowed with
techniques of detection, recognition, tracking or localization. The sense of touch
(e.g., proximity, tactile or force sensing) received more and more attention as cohab-
itation between robots and humans increased. The main subjects of study concern
collision prevention and detection for safety purpose, grasping tasks that lead to
interact with objects of various shape and stiffness, or even locomotion tasks.

Eventually the sense of hearing, that is the main thread of this thesis, consists in
endowing the robot with capabilities of analyzing acoustic scenes. Such capabilities
require functions for localizing, separating, identifying or recognizing sound sources.
Robot audition is then an inter-disciplinary field at the confluence of signal process-
ing, acoustics, artificial intelligence and control. Robot audition is a quite “recent”
topic that has been extensively studied during the last two decades. However, the
first trace of auditory capabilities embedded on a robot dates back from 1973 and the
first bipedal robot WABOT-1 [KOK+74] (see Figure 1.2) from Waseda University.
This robot was equipped with artificial “ears” for speech recognition and processing
and was able to understand simple Japanese commands such as "STOP", "BEGIN",
"TURN LEFT". The following series of robots issued from WABOT-1 were also all
equipped with auditory capabilities. Ten years later, WABOT-2 [KOS+87] and in
the continuity WASUBOT, piano-playing robots, were able to converse with a person
with a more evolved speech understanding than WABOT-1, and to play instruments
accordingly to a singing voice from a pitch analysis.

In parallel, the idea of considering robots as validation platforms, especially in
neuro-science, greatly contributed to develop and to democratize the sense of hearing
for robots in early nineties. In [Web93] and [Web95], the author designed a mobile
robot equipped with two microphones to model the behavior of crickets based on
sound localization and recognition. Similarly, in [RWE98] a robot head equipped
with two microphones and a camera was used to acknowledge the owl neural hearing
model proposed by the authors.

As robotics became a research topic of its own, more contributions were cen-
tered on providing robots with auditory capabilities. Auditory capabilities including
sound localization and separation based on three microphones were thus proposed
in [HOS95]. In the middle of the nineties, the authors of [YA95] proposed one of
the first robotic systems endowed with auditory capabilities for a purpose of human-
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(a) (b)

Figure 1.2: The first robots with auditory capabilities developed at Waseda Uni-
versity: (a) WABOT-1 (1973) a bipedal robot equipped with artificial ears that
sustains conversation in Japanese, (b) WABOT-2 (1984) a piano-playing robot that
can accompany a human singer.

robot interaction. The robot Chaser was equipped with a heat sensor, ultrasound
sensors, infrared sensors, touch sensors but also three microphones. By fusing the
measurements of all these sensors, this robot was able to locate and to approach a
speaker and to start a dialogue thanks to a speech processing module. Chaser was
mainly designed in order to validate the concept of active interface proposed by
the authors. In the continuity of this work, the authors of [SII96] developed a pet
robot that is able to localize a speaker from visual and auditory cues by using a
neural network. In the same period, [Iri95] proposed to develop auditory capabilities
of humanoid robots with a sound localization framework based on neural networks,
through the robot COG. This latter work was followed by contributions on social
robots such as Hadaly of [HNK+97] that can localize the speaker as well as recognize
speech with a microphone array. Similarly the robot Jijo-2 introduced in [AHH+97]
could understand a voice command. The auditory capabilities were also extended
to navigation tasks in [HSTO97], where the sound localization coupled with sonar
sensors allowed a mobile robot to approach a sound source while avoiding obstacles.
The so-called cocktail party effect (see Section 1.1.3), which characterizes the phe-
nomenon of being able to focus the auditory attention on a particular aural stimulus
was primarily addressed in [HOS97]. These fundamental researches inspired the birth
of the “robot audition” concept.

Lately, with the recent development of autonomous humanoid robots and com-
panion robots, new challenges (see Section 1.2) related to robot hearing emerged.
These challenges induced by the autonomy of robots (i.e., flexibility to unknown
environments) renewed the interest of robot hearing through the concept of robot
audition, as acknowledged nowadays. In [NOK00b] the authors defined this concept
as robots’ ability to localize, separate, recognize sounds in realistic environments.
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(a) (b)

(c) (d)

Figure 1.3: A wide variety of nowadays applications related to robot audition: (a) A
human-robot dialogue proposed in [TOO14], (b) Asimo leading an orchestra based on
tempo and beat detection2, (c) a hose-shaped robot developed for search-and-rescue
mission in narrow and cluttered environment [BIK+15] and (d) sound localization
endowed on an aerial robot [ONM+14].

This definition gave birth to different research topics oriented towards the design of
artificial auditory systems. These topics focused on the scattering effect of the head
[NMOK03, NOK01] or on the design of artificial auditory systems, such as pinnae.
For instance, the artificial pinna proposed in [KN11] can move and deform its shape
actively in order to improve the sound perception. In the same vein, the authors of
[MAB11], [TR13] or [SD11] studied the best microphones topology to optimize the
auditory capabilities. More specifically in [MAB11], the authors proposed a reconfig-
urable microphone array. Different paradigms of localization were also investigated
such as binaural approaches based on two microphones, array-based approaches or
more recently active audition [NOK00b] that uses motion. These methods will be
detailed in Chapter 2. Furthermore, the diversity of robots widened the field of

2By Vanillase -CC BY-SA 3.0, commons.wikimedia.org/w/index.php?curid=17300496
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application of robot audition. Robot audition is also a topic related to entertaining
robots like dancing robots or music playing robots, as a legacy of the first WABOT
robots. In this context, the authors of [ANK+99] proposed a Theremin-playing
robot that uses the audio-feedback related to the sound pitch to control its arm. In
[OBI+15], the authors presented a robot that can dance synchronously with music
and human dancers from music beats detection. Applications in scenes of disaster
is also a recent field of research of robot audition technologies. In [BSLF12] the au-
thors introduced an Unmanned Aerial Vehicle (UAV) system that is able to localize
emergency whistles.

This wide variety of applications as illustrated in Figure 1.3 let us foresee that
robot audition becomes increasingly important in the field of robotics. However
robot audition is still in a growth and maturation phase. Despite a growing interest
reflected by the increasing number of projects (see Section 1.3), robot audition com-
munity remains modest in size compared to fields like vision. But on the other hand
robot audition offers an exciting context that allows ample space for improvements
and that promotes original contributions. Indeed most of the applications discussed
above are for now limited by the current level of maturity of robot audition: there is
still a long way to go before reaching substantially autonomous robots with auditory
capabilities.

1.1.2 A typical scenario involving robot audition capabilities

To illustrate the auditory capabilities required for robot audition, let us start from
the scene pictured in Figure 1.4. This scene depicts a common everyday life liv-
ing room in which interactions between humans and a robot are occurring. In this
environment the robot should be able to interact and apprehend the surrounding
environment with high flexibility. In particular several sensory stimuli may trigger
an action of the robot. From an acoustic point of view, several sound sources may
be active independently to each other. Domestic noises, such as television, radio,
vacuum cleaner, or simply people are all potential sound sources or disturbances.
More specifically, in the illustrated scene, the robot action is triggered by the boy
asking the robot to retrieve the ball to him. This trivial task would be performed
efficiently and effortlessly by a human. For robots, this task underlines the need of
auditory capabilities. First, an essential question arises: from all the sensory stimuli,
how to focus the attention on relevant signals and discard spurious signals? In our
example, the robot must be able to segregate sound sources from a signal mixture,
and then classify them with respect to their relevance. Furthermore the robot must
localize these sources and identify each of them uniquely: the robot is acoustically
monitoring the scene. From this monitoring stage, the robot can determine the loca-
tion and identity of the boy. The signal content should also be deciphered through
speech recognition process. The output from the speech recognition module is then
interpreted as an action: the robot heads towards the ball. During robot motion the
hearing modules are not disabled. Any new "auditory command" should be inter-
preted immediately, and the sources of interest are likely to move. A continuous and
real-time sound processing module is running on the robot in order to update the
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sounds location/presence or the position of the robot with respect to these sources.
Furthermore, the motion of the robot generates noise, hence each relevant sound
signal monitored is enhanced by denoising and/or dereverberation modules. The
ball is finally reached and taken by the robot. Thereafter, the robot heads towards
the boy using localization and identification information. This complex sequence of

Figure 1.4: A typical acoustic scene to be apprehended autonomously by a robot.
Drawing made from (www.stripgenerator.com)

tasks emphasizes complementary capabilities that are based on hearing skills. En-
dowing a robot with each of these capabilities is a subject of research of its own. The
interest in robot audition being quite recent as stated in the previous section, it goes
without saying that endowing robots with this kind of hearing sense as imagined
in the above scenario, is still an intensive subject of research, that is not achieved
yet. In this perspective, more formally, the robot is required to solve questions such
as: Where are the source(s)? What are the sound source(s) of interest? What are
they saying? Who are the speakers? When are they speaking? These questions could
also be extended to advanced skills that require to solve: Where am I? What is the
shape of the environment? What are the objects? The capabilities of solving these
problems build up the field of robot audition. These sets of questions let us foresee
two types of auditory-based interaction: the first one concerns the analysis of the
sound sources already present in the environment and requires sound localization,
sound separation and classification, speech recognition and can potentially involve
navigation tasks. The second category consists in analyzing the environment from its
acoustic properties and includes methods such as self localization or scene mapping.
These interactions are detailed in the next section.

1.1.3 Hearing skills for robot audition

1.1.3.1 Perception of the sound sources

Where are the source(s)? What are the sound source(s) of interest? What are they
saying? Who are the speakers? When?
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Figure 1.5: Computation auditory scene analysis: the robotic context adds a sup-
plementary element, which is motion

These issues have been addressed under the theme of computational auditory scene
analysis (CASA) in [BC94] or [RO98]. By essence, CASA systems are not specifically
designed for robots, but rather consist in a "machine" understanding of an arbitrary
sound mixture similarly to human listeners. Fundamentally, CASA is inspired by
the psychoacoustic knowledge on the human auditory capabilities. Physiologically,
human abilities for solving these initial questions have been described in 1953 [Che53]
as the cocktail party effect. The cocktail party effect is an imaged reference to the
human ability to selectively focus and recognize a given sound source in a noisy
environment, as it could happen in a cocktail party. The authors of [HC05] modeled
this process with three different neural steps that are

• Analysis. The first step principally consists in segregating the sound sources
with respect to their location. The sound mixture is split so that sounds
emitted from the same location are grouped together.

• Recognition. The second step consists in analyzing the statistical structure
and patterns in each segregated group obtained from the analysis. These pat-
terns allow to identify a signal of interest among the segregated groups.

• Synthesis. The last step consists in extracting and reconstructing the clean
(deconvolved from reverberation) signal of interest from each segregated group.
This step provides the capability of focusing attention on a signal of particular
interest for the listener.

The cocktail party effect discussed above gives a quite generic overview on the
requirements of CASA for a defined system. Globally the neural process involved in
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solving the cocktail party problem does not necessarily have a precise order and the
boundaries between each process is not as neat as it is exposed above. In psychoa-
coustics there is not yet a global consensus about the neural processing of sound:
several studies brought to light experimental evidence supporting different order of
processing [Bre94] or [DH97].

In robotics, CASA frameworks are especially centered on human-robot interac-
tions. As exposed in [OOKN04] or [ON15] the interaction processes are generally
expressed in a bottom-up framework, depicted in Figure 1.5, that is conceptually
easier to develop. In this framework the sound localization is performed first. Then
from the obtained location(s), sound separation and selection can be performed if
required. The last steps consist in sound identification and processing. The CASA
framework emphasizes the prominence of sound source localization that is a prerequi-
site to guarantee the successful completion of interactions. This framework is slightly
modified by robotic context that adds a component to CASA: motion. Indeed, the
localization process can control robot motions to favor the naturalness of interac-
tions. For instance, it is expected that the robot should face, at a given distance,
the speaker whom the interaction is established with. In return, motion can improve
localization with the fusion of measurements from different poses, which corresponds
to active audition principle [NOK00b]. Speech processing may also be improved by
guiding the robot in a pose that optimizes the speech intelligibility. This is applied,
for instance, by the authors of [KFKI10] who propose a motion planning strategy,
based on occupancy grid, in order to maximize the effectiveness of speech recogni-
tion. Nonetheless the motion that can be considered, at first glance, as a valuable
addition to CASA framework raises new challenges related to dynamic perception of
auditory data, that would require real-time and flexible processing as well as robust
tracking (see Section 1.2).

During the last decade, several contributions aimed to apply CASA on robots.
These contributions especially focused on sound localization and separation. This is
the case of [DH12], that learns the relationship between the auditory perception and
the robot pose. CASA has also been applied to given contexts, as the work [NIYO15]
illustrated by Figure 1.6. In this paper, the robot leading a quiz game, is required
to perform sound localization and separation, speech processing and identification
in presence of multiple speakers that are potentially competing. Similarly, a cooking
robot described in [KSN15] is endowed with advanced auditory scene understanding
in order to support cooking recipes. Nonetheless these applications of CASA remains
far from realistic conditions. Indeed they are generally performed in controlled and
static environments. For instance, Figure 1.6 is a relevant illustration of the current
limitations of CASA, as floor markers are used to accurately position the robot with
respect to human players.

Robot audition is not limited to human-robot interactions, and several applica-
tions may be derived from CASA frameworks. The core statement of robot audition
is rather “robots should understand all sounds picked up by their ears, not just voices”.
First, interactions with non-verbal, non-speech sounds might be useful for some par-
ticular applications. In entertainment applications, music playing or dancing robots
require similar robot audition functions. Dancing robots need to track the musi-
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Figure 1.6: Typical CASA application: a robot quiz-master is able to locate, separate
and process sound sources in a controlled environment [NIYO15].

cal beat in order to perform a coherent choreography [YNT+07]. In the case of
[ONT+11], a framework allows a robot to play music in collaboration with a human
performer by analyzing music temporal fluctuation and pitch. These approaches
exhibit the strong link between auditory features (e.g., beat, pitch...) and robot
control. Moreover the sense of hearing is also useful for mobile robotics and brings
new navigation modalities based on sound localization. One of the first navigation
system based on audition is exposed in [HST+99]. This system consists in a finite
state automaton combining the sound localization results to a sonar system for ob-
stacle avoidance, in order to autonomously approach a sound source with a mobile
robot. This kind of approach has also recently emerged in the context of distributed
multi-robot systems. For instance in [BSLF16] a leader-follower scheme is applied to
drones in a navigation task based on the localization of the leader.

1.1.3.2 Perception of the environment

Where am I? What is the shape of the environment? What are the objects?
This second set of questions refers to robot capabilities to sense and analyze their sur-
rounding environment from auditory stimuli. Conversely to source-oriented percep-
tion that aims to directly interact with the sources of interest, this section deals with
a higher-level of auditory scene understanding. Indeed, sound from its properties
(e.g., acoustic, location, type) can provide information describing the environment
structure.

This is the case for mapping and scene reconstruction that can be performed with
acoustic information. Sound mapping consists in building an auditory representation
of the environment, so that zones of interest can be monitored. In the case of mobile
robots, sound mapping is developed as an automated tool for condition monitoring,
for instance in factories that often contain noisy machines. In this type of environ-
ment, any malfunctioning in a machine will be reflected in an acoustic change of the

14



Chapter 1. Robot audition

acoustic map. For instance, in [KMIH13] an acoustic map is created while a robot
is autonomously navigating across an environment by continuously generating audio
scans with a steered response power algorithm (detailed in Chapter 2.3). This kind
of approach has also been extended to 3D cases in [EMK+14a]. In this paper, a map
is created by a mobile platform equipped with a microphone array and laser range
sensors. Similarly, the authors of [EFW+15] proposed a 3D sound mapping using
RGB-D sensor to build clouds of 3D auditory points. Globally, these approaches
can be considered as extensions of sound source localization and separation tech-
niques: the map is build from the locations of the different sound sources. This kind
of sound localization and separation remains complex to perform because these ap-
proaches should cope with an unknown time-varying number of sound sources that
may have different levels. These constraints explain that most of these approaches
concerning mapping are performed in empty scenes. In environments such as like
factories, sounds produced by the machines are loud, constant, still, and do not vary
in number. Contrarily, sound mapping in populated spaces remains extremely com-
plex, notably because of the non-stationarity of speech, the dynamic nature of the
environment and the wide variety of potential sound sources as illustrated in our
previous example in Section 1.1.2. Nevertheless auditory scene mapping is of a high
interest for interactions, since it would provide auditory awareness ability to robots,
that could then focus on or change more easily of interest points. Until now, only
few works are interested in this kind of mapping because of the task complexity.
This problem is addressed in [KGD13] using the cepstral coefficients of the recorded
sounds to classify and define several acoustic regions. This approach is however not
suitable for real-time implementation and is performed offline. One can also cite
the project EARS (see Section 1.3) that targets a demonstration application of a
welcoming robot at the reception desk of hotel lobby in 2017.

Other approaches concern self-localization of robots using auditory perception.
In this context, sound sources can be considered as acoustic landmarks that can ease
robot navigation. One of the first approaches of localization was exposed in [WIA04],
in which an array of 24 microphones embedded in walls was used to localize a robot.
With this system, a robot was able to perform guiding tasks. In connection with
search-and-rescue missions, the authors of [BIK+15] proposed a framework to esti-
mate the pose of a hose-shaped robot carrying at the same time several microphones
and speakers. In the continuity of approaches aiming to localize the robot, acoustic
SLAM (Simultaneous Localization And Mapping) is a recent topic of study. The
work exposed in [HCW+11] proposes an acoustic SLAM framework that computes
the robot path using a particle filter and the bearing information of several sources.
More recently the authors of [EMN16] developed a framework using the acoustic
bearing information on the basis of a probability hypothesis density filter.

In a quite different context, acoustic sensing based on echoes is also a topic of
interest. This approach relies on the acoustic responses of the environment with
respect to an emitted sound. By analyzing these acoustic responses, information
about the surrounding environment can be obtained. This approach can be opposed
to acoustic simulator or real-time auralization techniques that estimate auditory
sensations from rooms’ geometrical properties. Auditory responses carry information
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such as room geometry, material properties, cluttering and potential obstacles. Such
an approach can be related to mammals like bats or dolphins that use sounds and
more particularly echoes, to perceive their surrounding environment. In this topic,
[KKK+15] proposed a hammering sound analysis for infrastructure inspection of
industrial field based on legged robots. Within this project, a robot can attest of
the quality of steel bars from the sound produced by a hammering step. [EMK+14b]
used reflections to detect and avoid objects for instance at intersection of corridors,
in order to prevent collision with unseen objects. In [SUW15] a robot is able to
localize itself in a pre-explored structured environment with odometry measurements
and environment acoustic responses. One can eventually cite [KDV16] proposing an
echoSLAM framework that can reconstruct the shape of a given environment from
wall echoes and potentially retrieve the position of the robot.

1.2 Challenges in robot audition

The tasks evoked in the previous section, remains challenging in unknown environ-
ments. Until now, there is still a gap between actual auditory capabilities of robots
and auditory scenarios such as the one described in Section 1.1.2. For instance, most
of human-robot dialogues require the attendant to wear headset microphones or at
worst to be very close to the robot. In order to characterize the limitations of robot
audition in realistic environments, it is important, first, to understand sound prop-
erties. Sound as a wave is defined by its propagation model and behavior at physical
boundaries. From these properties that influence perception the challenges faced in
robot audition field naturally arise.

1.2.1 Spherical sound propagation

According to the definition provided by the Acoustical Society of America (ASA)
sound can be defined as "(a) Oscillation in pressure, stress, particle displacement,
particle velocity, etc., propagated in a medium with internal forces (e.g., elastic or
viscous), or the superposition of such propagated oscillation. (b) Auditory sensation
evoked by the oscillation described in (a)". The definition proposed by ASA covers
two distinct but complementary ways to analyze an acoustic scene. In this section,
we are more interested in the first definition that considers sound as a physical phe-
nomenon described by wave propagation. Wave propagation does not only describe
sound but also light or fluids like water as illustrated in Figure 1.7. In our context,
acoustic theory describes the propagation from a known sound source through air or
any other medium as formulated in [Str77] and [Str96]. The fundamental results on
sound propagation are derived from what is known as the wave equations, that are
partial differential equations that govern all patterns of wave propagation. To find
a solution to these equations, sound sources are often modeled as vibrating surfaces
which have known surface velocities or pressures. One can notice that in a loose sense
robot audition corresponds to an acoustic inverse problem: the sound field that is
measured by sensors is known while sound sources must be calculated with respect
to their location, type or contents.
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(a) (b)

Figure 1.7: Example of planar radial wave propagation: (a) in the case of a diffracted
laser beam, (b) in the case of water ripples

In an homogeneous and linear medium such as the air, sound propagation is
governed by the following equations

∇2p(x, t)− 1

c2
∂2

∂t2
p(x, t) = 0.

p(x, t0) = g1(x)

lim
x→bi

p(x, t) = g2(x)

(1.1)

where p(x, t) is sound pressure at time t and point x(x, y, z). ∇2 is the Laplacian
expressed in 3D coordinates, and c the constant wave speed inherent to a given
homogeneous medium. The initial conditions p(x, 0) = g1(x) and the boundary con-
ditions limx→bi

p(x, t) = g2(x) with bi as boundaries, are required to obtain a unique
solution. Note that (1.1) can also be expressed in function of the velocity potential
φ(x, t) or in function of particle velocity u(x, t), instead of the sound pressure p(x, t).
In our context we are particularly interested by the solutions implied by a spherical
sound radiation caused by a point source in a free-field (i.e., bi =∞). Point sources
correspond mathematically to points in space that radiate sound equally in all direc-
tions, producing a spherical wave front as illustrated in Figure 1.8. This modeling is
interesting since it eases the modeling of reverberations and reflections (see Section
1.2.2.2). Given a source signal s(t) emitted from a position x0, the wave equation
(1.1) expressed in spherical coordinates [MI68] for the pressure p(x, t) at the time t
is

∇2p(x, t)− 1

c2
∂2

∂t2
p(x, t) = −fx0(`, t). (1.2)

fx0(`, t) is the source function and ` the radial distance between the point source
x0 and the observation point x. Considering point sources, fx0(`, t) characterizes
that the sound source occupies a limited and compact region in the space. At each
instant t, fx0(`, t) corresponds to a Dirac impulse so that

f(`, t) = δ(x− x0)s(t). (1.3)
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Considering the sound pressure p(`, t) at a distance ` of x0 the wave equation
becomes

∇2p(`, t)− 1

c2
∂2

∂t2
p(`, t) = −fx0(`, t). (1.4)

Furthermore, the Laplacian operator is therefore given by

∇2 =
1

`2
∂

∂`
(`2

∂

∂`
), (1.5)

assuming spherical coordinates and isotropic propagation. In the frequency domain,
the Fourier transform of (1.4) corresponds to the Helmoltz equation[MI68] that is

∇2p(`, ω) +
ω2

c2
p(`, ω) = −f(`, ω), (1.6)

where ω is the angular frequency. The solution of such an equation can be obtained
from Green method [Gre28] that transforms (1.6) to

∇2p(`, ω) +
ω2

c2
g(`, ω) = −δ(`), (1.7)

where g(`, ω) is the solution of the equation also called Green’s function when (1.3)
is satisfied. The Green’s function is given by

g(`, ω) = K1
e−i

ω`
c

`
+K2

ei
ω`
c

`
, (1.8)

in which K1 and K2 are constants. The general solution can then be written as a
convolution

p(`, ω) =

∫ ∞
−∞

f(τ, ω)g(`− τ, ω)dτ = S(ω)

(
K1

e−i
ω`
c

`
+K2

ei
ω`
c

`

)
. (1.9)

From (1.9), it can be observed that the Green’s function is a filter that transforms
the input signal s(t) into a radiated spherical wave. However as (1.9) is expressed,
two solutions emerge under free-field assumption: the first one representing a sound
wave radiating from the point source to infinity, and the second one a sound wave
radiating from infinity to the point source. From Sommerfeld radiation conditions
[P+81] that state that all sources lie within a bounded region, thus cannot arrive
from infinity, it can be deduced the initial conditions K1 = 1

4π and K2 = 0. Thus a
unique solution can be obtain from 1.9 that becomes

p(`, ω) = S(ω)
e−i

ω`
c

4π`
. (1.10)

Returning in the temporal domain, the latter equation gives the sound pressure as

p(`, t) =
s(t− `

c)

4π`
. (1.11)

Equation (1.11) states that from a point x located at a distance ` of the source, the
sound is delayed by `

c and attenuated by a factor proportional to `. In Cartesian
coordinates the solution of the spherical wave propagation in (1.2) is then

p(x, t) =
s(t− ‖x−x0‖

c )

4π‖x− x0‖
. (1.12)
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Figure 1.8: The spherical wave propagation in a free-field of a point source x0 gener-
ating a signal s(t) leads to observe a pressure p(x, t) from a point x that is function
of the delayed and attenuated version of the signal s(t).

1.2.2 Environmental constraints

1.2.2.1 Observation distance and plane wave approximation

After describing the spherical sound wave propagation, we can focus on the properties
implied by such a model. First it is interesting to analyze how sound behaves at
different distances of observation. This is characterized by the near-field and far-field
sound radiation. If sound pressure is observed at a great distance, the curvature of
the wave fronts look flat while at a close distance, the curvature of wave fronts is more
pronounced as illustrated in Figure 1.9. The far-field or near-field regions depend on
the observation distance from the point source, the microphone array aperture and
the sound frequency. Sound is observed from the far-field when in (1.12) ‖x0‖ � ‖x‖.
Conversely the near-field corresponds to observation points where ‖x−x0‖ < λ, with
λ = c

f is the wavelength and f the frequency. Note that audible sound has a wide
range of wavelengths from about 20 mm to 17 m, that corresponds to frequencies of
20 KHz and 20 Hz, respectively. In the field of antennas, the boundary between the
far-field (Fraunhofer region) and the near-field (Fresnel region) df defined as

df =
2d2

λ
(1.13)

where d is the inter-microphone distance. This formula is derived from the Rayleigh
distance dr = d2

2λ that characterizes the transition zone from the near-field and the
far-field.

In robot audition, observing the source from a far-field region (i.e., with flat front
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(a) (b)

Figure 1.9: 2D view of the propagation wave with a wavelength λ in (a) the near-field
where waves are curved and in (b) in the far-field where waves are flat

wave) is particularly convenient. Under far-field conditions one can express

‖x− x0‖ = ‖x0‖ − ε(x) (1.14)

where ε(x) s a residual term. When injecting (1.14) in (1.12), the solution to the
wave equation becomes

p(x, t) =
s(t− ‖x0‖

c + φ(x))

4π‖x0‖ − 4πε(x)
(1.15)

where φ(x) = ε(x)
c is the residual phase depending on the observation point. Knowing

that ε(x) is negligible with respect to ‖x0‖ the latter equation can be simplified as

p(x, t) ∝ s(T + φ(x)). (1.16)

where T = t− ‖x0‖
c . Without loss of generality, the proportional gain can be set to

1. From far-field observation properties planar wave fronts have unique directions of
propagation driven by a unit vector n. As a consequence n.x = 0 defines a constant
plane where the phase (or time) shift of the signal is the same. Hence (1.16) can be
rewritten as

p(x, t) = s(T +
n.x

c
). (1.17)

This result states that sound pressure depends only on the direction of propa-
gation n of wave fronts. This property in robot audition is generally assumed and
widely used for sound localization process [NOK01]. In this case the sound source
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direction can directly be obtained from the time shift from two different observations
of the signal as illustrated in Figure 1.10 (see also epipolar geometry in Chapter 2).
However as robots or sources locations are not supposed to be known, far-field con-
ditions cannot be always ensured. As shown in [VMRL03] and in Figure 1.10, the
accuracy of sound localization may drastically decrease as the source get closer to
microphones, since the assumption of planar wave fronts does not hold anymore.
Hence, some signal processing methods are specially designed to cope with near-field
conditions such as localization techniques based on spherical harmonic for MUSIC
or beamformer localization for near-field conditions respectively proposed in [KH16]
and [ADS06], however with a higher computational cost.

(a) (b)

Figure 1.10: Far-field assumption for localization: In (a) the direction α of the
source is directly linked to the time difference of arrival ∆T of sound between the
microphones M1 and M2. Note that the distance between the microphones should
be lower than half of the wavelength to avoid 2π ambiguities. However the results in
(b) from [VMRL03] show that the localization accuracy decreases when the source
get closer to the microphones and the far-field assumption is not ensured anymore.

Thus having a flexible approach that does not rely on any assumption on the
observation field [AD07] and a limited computational cost is a crucial point for robot
audition. Most robot audition solutions consider that the sources are located at more
than 1.5 m (which approximates (1.13) for a 8-kHz sound and inter-microphones
distance of 15 cm) from the microphones so that the far-field condition is ensured.

Nonetheless, the far-field condition is not always satisfactory for robot audition.
Indeed, because of the sound decay characterized by the attenuation in (1.11) sound
localization performance as well as speech recognition performance decreases when
the source is too far from the microphones [Rod10]. This is particularly the case
when considering indoor environments that are subject to reverberation.

1.2.2.2 Sound reflections

Until now, sound propagation has been modeled in a free space. For a more real-
istic modeling in indoor environment, propagation models should be formulated in
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bounded areas. For this purpose, it is required to account for reflective spaces. Rig-
orously speaking, the following results are dedicated to reflection properties of sound
at interfaces between two fluid media. These results to some extent are applicable
to room acoustics, and describe quite well reflections of sound wave by walls. Reflec-
tions of sound on solids is a rather complex study, because of the variety of surfaces
and the existence of several modes of wave propagation in solids. For simplicity, let
us consider a planar scene implying a plane wave propagating in a medium 1 with
a given density ρ1 and where the sound propagates at a speed c1. The sound wave
reaches a boundary that separates the medium 1 from the medium 2 that has a
density ρ2. The sound in the medium 2 has a speed c2. The angles θi, θr and θt
respectively correspond to the incident angles, the reflected and transmitted angles
of the sound wave as depicted in Figure 1.11.

Figure 1.11: A sound reflection at a boundary: the incident sound wave propagating
in a medium with ni direction and an angle θi is reflected at the boundary with an
angle θr, while a part of the wave is transmitted to the second medium with an angle
θ2

Sound reflections are governed by the following equations

sin θi
c1

=
sin θr
c1

=
sin θt
c2

. (1.18)

From this result it can be inferred that θi = θr, which corresponds to the reflection
law derived from Fermat’s principle in optics, stating that the incident angle of a
wave is equal to the reflected angle. Similarly, from (1.18), the Snell-Descartes law
can be obtain with sin θi

c1
= sin θt

c2
. The Snell-Descartes equation explains the well-

known refraction property of sound that is characterized by a change of speed and
orientation at the boundary of two media. Moreover the level of sound reflection
depends on the boundary material. Indeed the coefficients of reflection Rp and
transmission Tp are given by the following equations

Tp =
2ρ2c2 cos θi

ρ1c1θt + ρ2c2θi
(1.19)
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and

Rp =
ρ2c2 cos θi − ρ1c1θt
ρ1c1θt + ρ2c2θi

. (1.20)

These parameters characterize the level of pressure transmitted or reflected at the
boundary of two media. The more similar the two media, the less reflection and
the more transmission. This property is particularly used to adjust the acoustic of
rooms, that is to say control the level of reverberation depending on the materials of
walls. A hard material such as concrete is very dissimilar to the air through which
the sound moves, subsequently, most of the sound wave is reflected by concrete walls,
while fiberglass and acoustic tiles are more similar to air than concrete and thus have
a greater ability to absorb sound. A standard measure of reverberation level in a
room is the RT60 which refers to the time that takes the sound pressure level to
decrease by 60 dB. Typical measurements of RT60 in indoor environments are given
in Table 1.1
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(a) (b)

Figure 1.12: Sound reflections in indoor environment: in (a), the room impulse
response characterizing the three modes of sound perception. In (b) the image source
model [AB79], expressing that a reflection of a source Xs recorded by a microphone
M1 can be represented by a symmetric virtual source X

′
s emitting.

In robot audition as in many other tasks in audio processing, sound reflections
represent a major issue. The issue lies in the fact that incident waves get reflected and
add up to the actual sound wave. A geometrical way to represent reflections is to use
image-source methods [AB79] by modeling the spherical waves generated by virtual
point sources mirrored by an actual source, over each wall (or surface). Hence,
as direct and reflected waves start hitting walls, reflections start adding up until
they fade out due to sound pressure attenuation (see (1.11)) and walls transmission
properties. This phenomenon can be observed in the room impulse response (RIR),
that is, an acoustic observation of a generated impulse sound. RIR characterizes
acoustically a given environment through the direct sound path, early reflections,
and the late reverberation as illustrated in Figure 1.12. Thus after several reflections,
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the sound pressure at the position x is given by

p(x, t) =
s(t− ‖x−x0‖

c )

4π‖x− x0‖
+

∞∑
r=1

s(t− ‖x−xr‖
c )

4π‖x− xr‖
(1.21)

where xr denotes the virtual point sources. The superposition of all these waves has
repercussions on sound perception. Reverberation corresponds to reminiscences of
the actual signal attenuated with a phase shift. The sound waves generated by early
echoes are highly correlated and interfere with the direct path signal. Sound waves
interference greatly modifies the perceived sound with respect to the actual emitted
sound. The observed sound pressure in x might be greater, lower, or with the same
pressure depending on interference phase shifts that condition the way the waves
add up (i.e., constructively or destructively). Late reverberation, on the other hand,
particularly degrades speech intelligibility. Indeed syllables that are crucial for sound
recognition can be completely buried by a long and persistent reverberant field. For
instance in Figure 1.13, it becomes computationally challenging to detect the different
syllables because of the addition of a persistent sound field slowly decaying, smearing
the envelope of the signal.

Location Volume (m3) RT60(s)
Recording studio < 50 0.3

Classroom < 200 0.4 - 0.6

Private Office < 1000 0.6 - 0.8

Open Plan Office < 1000 0.8 – 1.2

Lecture Hall < 5000 1.0 - 1.5

Concert Hall, Opera < 20000 1.4 - 2.0

Church - 2 - 10

Table 1.1: Typical RT60 in indoor environments from low (green) to high (red)
reverberation time. This classification is based on human sensing. In robot audition
0.3 s is already considered as a moderate reverberation time while 0.8 s is high.

Furthermore localizing and separating sound sources become more challenging.
The strong early reflections illustrated in Figure 1.12 are perceived as potential
sources by the localization system. These reflections might even be more perceptible
than the direct sound path, especially, when the robot is far from actual sources.
Moreover interference might also decrease the pressure of actual sources. Similarly,
it becomes more difficult to segregate the sound sources with respect of their location
because of interference and the high correlation of early echoes. This motivated the
topic of dereverberation that is widely used in speech recognition and by extension
could be used in robot audition. The goal of dereverberation is to automatically
remove the effect of reverberation from a recorded signal. Reverberation depends on
the shape of the room but also on the positions of the actual sources, their directivity
and eventually microphone(s) position(s). The solutions considered in signal process-
ing literature are mainly based on this information and generally consist in an inverse
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filtering of room acoustics (see [YSD+12]). For instance [GESS08] and [GNN13] use
RIR in order to reduce late reverberation and enhance speech processing stage. A

Figure 1.13: Reverberation effect on speech: At 3 m from the speaker, in a 4m2 room
with moderate reverberation time, RT60 ≈ 400 ms, the speech signal is completely
smeared by reverberation which makes it computationally challenging to process.

more intuitive solution consists in positioning the robot close to the sound source of
interest. Conceptually, it consists in solving the reverberation problem at the sound
localization stage. However when facing real reverberant environments the accuracy
of localization techniques remains mitigated. Localization under conditions of high
reverberation still remains a challenging task and most of the techniques are very sen-
sitive to variations of acoustic environments. For example, the authors of [VMR07]
proposed to subtract reverberation spectrally similarly to noise spectral suppression
techniques (see Section 1.2.3.2). This approach requires some tuning parameters
that depends on room acoustics. Otherwise, the main path of improvements relies
on enhancing the GCC angular spectrum with spectral weighting function such as
the so-called PHAse Transform (PHAT) [KMOO11, LLY11] that is known (heuris-
tically) to be more robust to reverberation. Other methods try to benefit from the
redundancy of measurements by increasing the number of microphones “physically”
or virtually through the active audition framework [NOK00b].

1.2.3 Challenges raised by robotic context

1.2.3.1 Technical constraints

The first challenges raised by robotic context concern the technical and physical lim-
itations inherent to this type of machines. These limitations are unique compared to
other hearing machine systems. First, robots are machines that meet physical and
geometrical constraints due to their structure. An auditory system should be embed-
dable on a robot considering space restriction. Space limitation and embeddability of
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auditory systems are conflicting with the purpose of robustness and accuracy. Indeed
hearing performance can be improved either by using a maximal number of micro-
phones in order to increase the redundancy of the measurements or by maximizing
the overall array aperture, namely the distance between microphones as stated in
[Tre02]. A maximal distance between the microphones improves the accuracy of the
localization since the estimated source direction resolution gets smaller as the spacing
between the microphones increases. But on the other hand, as the spacing between
the microphones increases, spectral aliasing is more likely to happen for high frequen-
cies and the far-field zone moves away (see (1.13)). The far-field assumption usually
admitted in sound localization becomes more difficult to ensure. From the latter
results, finding the optimum positioning and topology of microphones builds up a
thorough subject of research studied in antenna and microphone array literature.
Some contributions focus on optimizing array configurations in order to increase the
number of detectable source such as the solutions proposed in [PPL90]. In [ZB10],
the authors introduced an optimal array configuration that improves the localization
accuracy by maximizing the mutual information between the actual source location
and the estimated one. These techniques are unfortunately not applicable on real
robots due to the embeddability constraint among others. For instance, on humanoid
robots the space between microphones does not exceed a few tens of centimeters in
general. A tradeoff between performance, accuracy (i.e. far-field assumption) and
embeddability of auditory systems is required: commonly, on robots the number of
microphones is limited to eight, for microphone array systems, while binaural sys-
tems are limited to two microphones. Hence, in this case, robust algorithms should
be developed with very few and close microphones.

Another aspect of the embeddability constraint concerns real-time requirements
that imply restrictions on available computational resources and the maximum pay-
load of sound processing algorithms. As a consequence auditory approaches for
robots should be low demanding on resources, which limits their complexity and
their computational cost. For instance, sound localization estimations must be avail-
able within a short time interval. Typically, up to 150 ms are acceptable for reflex
tasks such as sensor-based control. Inverse methods developed in signal processing
such as inverse boundary-element models [AT00], basically localization techniques
relying on acoustic wave equations described in the previous section, are not suit-
able for robot audition because of their computational cost. Furthermore real-time
processing implies to limit the signal duration from which the localization is per-
formed. The signal duration is generally less than 100 ms for real-time localization.
A short signal duration decreases localization performance as stated in [VVO04]
for humans and in [MMWB15] for machines. Similar real-time constraints hold for
speech processing algorithms in order to guarantee an appropriate social behavior
during interactions. Fortunately, in this case, this constraint is generally fulfilled
thanks to the recent progress and wide application of automatic speech recognition
for machines (e.g., mobile phones) that also requires real-time computations. The
main challenges related to automatic speech recognition in robotics are about the
perturbations caused by the environment, as discussed previously, and ego-noises,
that are discussed in the next section.
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At last, a fundamental difference between robot audition and classic machine
hearing systems, is obviously motion: robots are moving and evolving autonomously
in dynamic environments. Auditory techniques should then be able to perform dy-
namic perception and to cope with acoustic changes in the environment. These
constraints are challenging to solve and until now only few works have tried to tackle
this problem. The main obstacles come from auditory cues that are continuously
changing during data acquisition. Consequently inconsistent cues are likely to be
extracted and may degrade the hearing capabilities of the robot. Generally most
approaches perceive sound in a static way as previously mentioned with CASA ap-
plications in robotics [NIYO15]. When robots are moving, the path taken by many
approaches consists in the “stop-and-perceive” principle that suggests to stop the
robot while acquiring data [NOK00b][TTLJ15]. This kind of approach adds latency
and may prevent robots from receiving new commands. Recently in [TR15], the
authors proposed a method to improve localization cues by compensating the mo-
tion of the robot. However this method assumes anechoic conditions. Some other
approaches address this situation in an opposite way: a fixed auditory system with
a moving sound source, which can be considered conceptually as the same problem.
For localization, [PDA12] introduced a stochastic approach to cope with a moving
sound source, that has been validated in anechoic conditions. Tracking systems
based on particle filters as proposed in [VMR07] or probability hypothesis density
trackers [EMN+15] are also alternative solutions to cope with moving sources. Simi-
larly in [NNIH10] or [NNHT09] the authors proposed a sound source separation and
recognition technique for moving sources based on an adaptive window size. Nev-
ertheless, most of the aforementioned works are performed either in simulation or
in ideal acoustic conditions (i.e., anechoic or prepared room) and with an array of
microphones. The degree of complexity raises to another scale when in addition to
the motion of the robot, the source of interest is moving, as it may occur in realistic
scenarios.

1.2.3.2 Ego-noise

Another challenge consists in dealing with ego-noises, that is to say noises caused
internally by robots. Noises can be caused by several type of perturbations. One
special type of ego-noise, which is observed while robots are performing actions
using their motors, is called ego-motion noise. Indeed joint mechanical frictions,
quite present in humanoid robots, or motors that control robot motions increase the
level of noise in the recorded sound signal. A different type of noise is caused by
the embedded electronic systems, that generally use a cooling system with loud fans
generating noisy perturbation. Eventually noises can be caused by speech uttered by
robots during barge-in situations: humans could freely speak during robots utterance
requiring to "clean" recorded signal.

One can deal with ego-noises at different levels. First, they can be limited at a
mechanical and topological level, which refers to robots design stage. Microphones
can be positioned in such a way that they are far from potential sources of noise
such as joints and cooling systems. Nonetheless, this solution is quite restrictive
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(a) (b)

(c) Sound played (d) Sound recorded

Figure 1.14: An example of ego-noise caused by an unsuitable microphone configu-
ration: the sound played in (c) from a loudspeaker is severely altered by the cooling
system noise as illustrated in (d).

and is limited by the type of robots considered. In this context robot manufacturers
play a major role in robot audition development. Indeed as the interest for audition
appeared quite lately in the timeline of robotics, the mechanical design of robots
regarding the auditory system efficiency was not, until recently, a priority. Thus it
is not surprising that many commercial robots do not embed auditory systems or
that they possess auditory systems located at unsuitable positions (e.g, near fans)
that severely degrade sound quality as illustrated in Figure 1.14. Such noisy signals
may seriously deteriorate localization and speech processing capabilities of robots.
Fortunately, with the higher demand of social robots coupled with the increase of
robot audition projects (see Section 1.3), specific robots designed for or supporting
robot audition are arising. On can refer to the robotized head POPeye [CBL+09] or
the dummy head KEMAR [BDFP16] that are specially designed for robot audition
research. Moreover, recent projects such as EARS, involving robot manufacturers
(i.e., Softbank Robotics) participate in raising the awareness about the importance
of designing consistent microphones topology.

A second solution to deal with ego-noises is to use spectral subtraction algorithms
that are particularly suitable for stationary noise. The denoising filters proposed in
signal processing literature can be integrated in robots hearing process. This is
the case of the well-known Ephraim-Malah filter [EM85] that consists in filtering
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spectrally a noisy signal with respect to an estimate of the signal-to-noise ratio
(SNR). When considering the Short Time Fourier Transform (STFT) X(k, f) of a
noisy input signal x(t), where f and k respectively stand for the frequency and the
short-time frame, the Ephraim-Malah spectral gain G(k, f) is then defined as:

G(k, f) =

√
π

2

√
1

1 + SNRpost(k, f)

SNRprio(k, f)

1 + SNRprio(k, f)

×B

[
(1 + SNRpost(k, f))

SNRprio(k, f)

1 + SNRprio(k, f)

] (1.22)

where the function B is the function

B(x) = e(−x/2) [(1 + x)I0(x/2) + xI1(x/2)] (1.23)

in which I0 and I1 stand for the Bessel functions of zero and first order. Equation
(1.22) depends on SNRprio(k, f) and SNRpost(k, f) that are respectively the a-
posteriori and a-priori SNR. SNRpost(k, f) is given by

SNRpost(k, f) =
|X(k, f)|2

|N(f)|2
− 1 (1.24)

where |N(f)|2 denotes the noise spectrum. |N(f)| can be easily obtained from a sam-
ple of signal that contains only noise or in a more accurate way from the Minima-
Controlled Recursive Average (MCRA) algorithm [CB02]. MCRA algorithm esti-
mates the noise spectrum by averaging past spectral power values with respect to
the speech presence probability. Thence, SNRpost(k, f) is an estimate of the SNR
in the current short-time frame. On the other hand, SNRprio(k, f) is a prediction of
the ratio of clean signal power over noise power, that is recursively estimated from
decision-directed approach [EM85] as

SNRprio(k, f) = (1− αa)P[SNRpost(k, f)] + αa
|G(k − 1, f)X(k − 1, f)|2

|N(f)|2
(1.25)

where P(x) = x if x > 0 and 0 otherwise, and 0 < αa < 1 is a smoothing parameter.
Some other denoising filters exist in literature such as Wiener filters that have been
used in robot audition in [VMR07] or [MP10]. In these papers, the spectral weighting
G(k, f) function is simply defined as

G(k, f) =
SNRprio(k, f)

1 + SNRprio(k, f)
. (1.26)

More recently in [GM15], the authors proposed to improve G(k, f) by considering
(1.26) as a hard mask that is set to 0 or 1 depending on the value of SNRpost(k, f)
with respect to a given threshold. In [GM16], they enhance the noise filter G(k, f)
with a transition function that can cope with abrupt changes in broadband noise level
by relying on the non-stationarity of speech signal compared to noise. Globally such
techniques are particularly efficient to decrease noise caused by fans for instance.
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Still the problem remains open for internal noises caused by robots motors or joint
frictions. Unlike sounds emanating from cooling systems, the noise level emanating
from motors is unpredictable, highly fluctuating and in some cases directional. For in-
stance in UAVs, the sound produced by rotors and propellers is particularly loud and
vary with the motion and speed of the vehicle. This problem has been particularly
addressed in the context of sound source localization which performance is strongly
degraded by noise level. In robot audition literature, a first type of approach pro-
poses to perform sound separation by splitting internal sounds from external sounds.
In [NOK00a] ego-motion noises are measured by an internal pair of microphones in
order to assess the relevance of external auditory measurements. In [ESS+09] the au-
thors use blind sources separation processes to split internal sounds from the external
ones thanks to additional sensors that only measures internal noises. Nevertheless
this kind of approach requires additional internal sensors, which is not always pos-
sible. And more importantly the efficiency of these methods depends on the strong
assumption that the internal sensors measure only internal noises.

The second type of approach considers the mapping between robot motions and
the generated noise. In [INR+09] and [INA+11], the method of mapping is based
on template matching techniques with the idea that motor noises can be predicted,
if the motion has a pattern of a prior known duration. Predicted noises are then
subtracted from the measured signal. Similarly, [IKSM05] introduced an approach
based on neural networks that predicts noise spectrum from angular velocities of
robot joints, while in [NNN+06] ego-motion noises are subtracted using pre-recorded
templates of more or less complex motions. Recently, the authors of [DK15] proposed
to create a dictionary by combining a K-SVD algorithm [AEB06] to sources phase
in order to extract a learned signal from a new input mixture. This approach has
been applied to ego-noise reduction. The noise related to each robot motion could be
learned and extracted afterwards from microphones recordings. These approaches
are limited by the potentially high number of robot joints: for anthropomorphic
robots, the prediction of ego-noises becomes particularly challenging. Generally ego-
motion noise predictions are limited to few motions such as in [NNA+09], that focuses
on noise caused by robot head rotation, or for UAVs as introduced in [FON+13].
The latter paper uses an adaptive estimation method of noise spectrum from motor
control values.

1.3 Robot audition research

1.3.1 Research projects

Globally, the previous sections attested of the main difficulties of robot audition when
evolving in real-world environments. To face these challenges, various projects were
issued from collaborations of several research teams during the last decade. These
fruitful collaborations impulsed the path taken by robot audition community. In this
section, we review these projects through their achievements.
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1.3.1.1 Software and hardware solutions

To begin with, a description of software platforms available in robot audition is
important. Currently there are two major pieces of software for robot audition that
are detailed below.

HARK3: Based on their early contributions on robot audition for humanoid
platform like SIG, the authors of [NMOT04, NOK00b] released an open-sourced
robot audition software HARK (Honda Research Institute Japan Audition for Robots
with Kyoto University). HARK is the result of a 5-year research project Robot
Audition from Computational Auditory Scene Analysis started in 2007. As
outlined by HARK structure, this project focused mainly on the functions to build
up a CASA framework, that is to say, binaural [KMOO11] or array-based [ONOO11]
localization, source separation [HYT+12] and speech processing [SKHO08]. HARK
consists in a set of modules corresponding to the latter functionalities to construct a
robot audition framework independently of microphones configuration or the type of
robot used. Currently the project Multiple Development of Robot Audition
aims to extend HARK features to cope with moving sound sources and/or robots
[NNA+09] and with the development of robot audition on aerial vehicles [OYNN12].
More recently the project Impact, aims to extend applications of robot audition to
the context of search-and-rescue missions. Advanced functionalities are expected to
be implemented in the software. The details of the techniques and performances of
sound source localization, separation or speech recognition are given in [NTO+10] or
more recently in [ON15]. Globally, the aim of HARK is to provide a common platform
for the robot audition community with high usability and real-time performance. The
software is regularly updated and supports several libraries and tools such as ROS
(Robot operating System), OpenCV, or Kinect.

ManyEars4: The second software, ManyEars project is an open GPL software
principally based on the work published in [VMR07]. ManyEars [GLF+13] provides
real-time sound source localization, separation and tracking using an array of eight
microphones. ManyEars is implemented in C as a modular library, with no de-
pendence on external libraries. Attached to this project, the 8SoundUSB hardware
[AC+] provides an interesting sound acquisition system that consists in a dedicated
sound card and eight microphones. This solution can be especially useful for mobile
robots, since only little hardware dedicated to robot audition exists. Commercially
available sound cards and microphones are not designed to be embedded on robots
and may integrate functionalities that are not useful for robot audition (e.g., mixing,
sound effects...). Eventually, similarly to HARK, the software is also compatible with
ROS.

1.3.1.2 Collaborative projects

Research projects concerning robot audition have significantly increased in the last
few years, showing the growing importance of this topic in the scientific community.

3http://www.hark.jp
4https://sourceforge.net/projects/manyears
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Some of them are described in [ON15] and [APB+13]. We review below the main
projects related to robot audition that we are aware of.

POP: POP (Perception on Purpose) was a 3-year scientific project that lasted
from 2006 to 2009. The project concentrated onto the understanding and modeling
of the interactions between an agent and its physical environment. These interactions
were modeled from auditory and visual cues, with a biological and computational
perspective. The main topic concerned the models of cognitive mechanism of atten-
tion, the extraction of auditory and visual cues as well as their integration and the
study of coordination between sensor observations and motor activities. Although
the studies mentioned in the project were not especially designed for a robotic con-
text, a binaural robotized test platform, POPeye [CBL+09], has been developed in
order to validate the theoretical findings of the aforementioned research. From the
robot audition viewpoint, this project developed novel algorithms for real-time local-
ization of sound sources [CMWB09] based on pitch and interaural cues. This project
also thoroughly studied active perception from which one can improve sound local-
ization performance [CLLH07] by turning robots towards source direction, or recover
the distance information [LC08]. Furthermore the database CAVA5(Computational
Audio-Visual Analysis) was released in order to develop and evaluate computational
methods of audio-visual scene analysis. Eventually, POP involved partners that are
Inria Grenoble, more particularly Perception team, University of Sheffield, through
the Speech and hearing group, University of Osnabrück with Institute of Cognitive
Science group, University Hospital Hamburg-Eppendorf Institute of Neurophysiology
and Pathophysiology and the Institute for Systems and Robotics of Coimbra Univer-
sity.

HUMAVIPS: In the continuity of POP, HUMAVIPS (Humanoids with Audi-
tory and Visual Abilities In Populated Spaces) was also a 3-year project started
in 2010. HUMAVIPS was particularly centered on audio-visual perception for Hu-
man–robot interaction and humanoid behavior. The objective of HUMAVIPS was to
endow humanoid robots with audiovisual abilities that is to say exploring populated
spaces, localizing people and possibly engaging interaction with one or two people
with an appropriate behavior. The main idea of this project was to build-up tools in
order to solve the cocktail party problem with the help of the visual sense. This project
led to contributions such as sound event recognition [JAPGH12] or categorization
[APSRH13], source localization and separation through learning methods [DH12] or
methods of sound localization based on geometrical time-delay [APH12]. Similarly to
POP, a database of binaural recordings, CAMIL6 (Computational Audio-Motor In-
tegration through Learning), provides real-word recordings of various type of sources
(speech, music, noise...) and configurations (still or moving recording system). This
project involved Perception and Mitis team of INRIA Grenoble, Aldebaran Robotics
(currently known as Softbank Robotics), the Research Institute for Cognition and
Robotics at Bielefeld University, IDIAP Research Institute and the Center for Ma-
chine Perception at Czech Technical University.

5http://perception.inrialpes.fr/CAVA_Dataset/Site/
6http://perception.inrialpes.fr/~Deleforge/CAMIL_Dataset
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BINAAHR: BINAAHR (Binaural Active Audition for Humanoid Robots) was
established from 2009 to 2013 as a French–Japanese collaboration focused on ac-
tive binaural audition. The project aimed to endow humanoid robots with auditory
capabilities inspired from human skills. This project investigated the relationship
between motion and auditory perception through active audition with contribution
such as [PDA12] or sensorimotor theories for auditory perception in [BPDCG12].
Multi-party communication was also a topic of interest of the project with high
level functions such as speaker identification [YBA+11], speech recognition with au-
diovisual activity detection [YAZ12a], attention mechanisms [YTK+11] [HTOO11],
source separation [NTOO12], ego-noise and reverberation cancellation [TNT+12].
BINAARHR also included software developments with several of the aforementioned
contributions which were incorporated in HARK, and hardware developments with
a design of an artificial binaural sensor based on EAR sensor, a fully programmable
eight-channel data-acquisition board [LMD12]. Finally this collaboration involved
LAAS, ISIR and LPP from French side, while Kyoto University, Tokyo Institute of
Technology (TITECH) and Kumamoto University were involved in Japan.

TWO!EARS7: This project started in 2013 and is ending by 2016. The aim of
this research project is to develop a computational framework for modeling active
human listening that enables the analysis of auditory scenes. The main difference of
this project with respect to usual auditory frameworks lies in the two-way process
of the modeling. A bottom-up framework as described in Figure 1.5 is used for
acoustic scene understanding as well as a top-down process where hypotheses from
the acoustic scene are integrated in order to improve the elementary functions of
sound localization or separation [SWK+14]. Although this project is devoted to the
wide field of machine hearing, several works have been validated on robotic platforms.
This approach is used for instance in [PBDM14] that uses prior independent learning
of interaural transfer functions and environment noise statistics to develop a sound
source localization method. Active audition is also a major topic of this project
with contributions that use motion to improve sound source localization [MMB15]
or use feedback loop [BDFP16] to minimize the localization uncertainty. Learning
methods are also explored with deep neural networks for localization [MBM15] or
speech recognition [MMBB15]. As a result of this project, an auditory framework was
released as a GNU software that includes several stages for modeling active human
listening (localization, separation, speech processing...) coupled with a blackboard
architecture that allows the inclusion of world knowledge, as well as an acoustical
simulation framework for creating binaural signals. TWO!EARS includes several
partners such as LAAS, ISIR, the University of Sheffield, through the Speech and
hearing group, the Institute of Communication Acoustics, Ruhr University Bochum,
the Department of Electrical Engineering-Hearing Systems from Technical University
of Denmark and others.

EARS8: EARS (Embodied Audition for RobotS) that will last until 2017 is
centered on human-robot interaction in adverse environments. A technical solution
should be embedded on a commercial robot (NAO from Softbank robotics). This

7http://twoears.aipa.tu-berlin.de
8https://robot-ears.eu
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solution will be evaluated through a final demonstration in a scenario of a welcoming
robot at a reception desk. For this perspective, EARS focus on designing an effi-
cient and embeddable microphone array [TR14] and sound localization techniques
devoted to this configuration like [EMN14] or [MEN+15]. A part of the project is
also devoted to scene analysis through audio and visual modalities via [GAPFH16]
or [GBEH15]. For robustness and high applicability, EARS project is based on
array-based processing with a particular focus on dynamic scenes that cover local-
ization of moving sound sources [EMN+15] and sound separation of moving sources
[KBGAP+15] or localization while the robot is moving [TR15]. The project involves
an industrial partner (SoftBank Robotics), and scientific partners including Per-
ception from INRIA Grenoble, the Speech and Audio Processing Group of Imperial
College London, the Multimedia Communications and Signal Processing group from
Friedrich-Alexander-University, the Acoustics Lab from Ben-Gurion University and
Adaptive Systems of Humboldt University of Berlin.

1.3.2 Conferences and organized sessions

Since 2000s, the growing interest of thte robotic community in robot audition has also
been reflected in the increasing space given to audition in international conferences.
These conferences are opportunities to raise awareness of robot audition issues and
by the same mean to increase the interest towards such a challenging topic.

First of all, among robotics conferences, IROS (International Conference on In-
telligent Robots and Systems) and ICRA (International Conference on Robotics
and Automation) are probably the biggest roboticists meetings and give a relevant
overview of the current state-of-the-art of robotics in general. The first sessions about
robot audition appeared in IROS 2003. Until 2013, sessions about Robot Audition
were organized at the instigation of K. Nakadai and H. Okuno. Nowadays, since
2014, "Robot Audition" is registered in the keyword list of research topics of RAS
(Robotic and Automation Society), and regular sessions on the topic are organized
at IROS each year. IROS is probably the conference that gathers the most contri-
butions related to robot audition each year. For instance in IROS 2015, 26 papers
with the keyword “Robot Audition” were submitted. In comparison with computer
vision field which account for 78 papers, this number is relatively low but is nev-
ertheless in the head of list of frequent keywords. Among these papers, 14 papers
were accepted and presented at the conference. Moreover special sessions are reg-
ularly organized at IROS in order to synthesize the main progress in the field and
set roadmaps and direction of future research. For IROS 2016, the special session
"New Horizon for Robot Audition Application" organized by K. Nakadai, H. Okuno
and others is centered on applications based on robot audition technologies, and in-
novative technologies towards such applications. Regarding ICRA, 2015 edition saw
the inclusion of the keyword “Robot Audition”, while this keyword was surprisingly
missing for ICRA 2016 edition. Until now, there is no regular session devoted to
robot audition in this conference. As a result, generally few papers concerning robot
audition are submitted to ICRA. For instance in ICRA 2016, only 4 papers related to
robot audition were presented, dispatched in diverse sessions. Robot audition contri-
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butions can also been found in different robotic conferences. One can cite RO-MAN
(International Symposium on Robot and Human Interactive Communication), RO-
BIO (International Conference on Robotics and Biomimetics) or HRI (International
Human-Robot Interaction Conference), where robot audition applications are used
in the context of the latter conferences, that is to say for interactions or as cognitive
processes.

In signal processing, ICASSP (International Conference on Acoustics Speech and
Signal Processing) one of the biggest conference in signal processing sometimes holds
special sessions about robot audition. In the last decade, a handful of robot audition
sessions were organized, such as "Signal Processing Techniques and Algorithms on
Robot Audition" organized by A. Sugiyama and H. Okuno in 2009 or “Audio for
Robots – Robots for Audio” in 2015 organized by E. Vincent and J. Le Roux. How-
ever most of the contributions in ICASSP are generally oriented towards theoretical
aspects of signal processing unlike robotic conferences that encourage applications.
Targeting this conference is also a good way to encourage signal processing com-
munity to consider robotic context for their developments or at least real-world
applications. In parallel other conferences related to signal processing involve the
participation of the robot audition community. For instance EUSIPCO 2015 (Euro-
pean Signal Processing Conference) held a tutorial about EARS project, organized by
H. Löllmann, C. Evers and R. Horaud. One can also cite INTERSPEECH (Confer-
ence of the International Speech Communication Association) or ICA (International
Congress on Acoustics) that are however more centered on computational machine
understanding of auditory perception.

1.4 Conclusion

To sum up this introductory chapter, robot audition represents a promising path
of improvement of robots interaction capabilities. Hearing capabilities complement
vision and touch senses for robots evolving in populated spaces. Thus, endowing
robots with a reliable hearing sense is crucial for scene analysis and would allow
robots to apprehend more comfortably realistic environments. The main needs in
robot audition concern sound localization, sound separation and speech processing.
These functionalities build up most of the applications in robot audition. Robot
audition can be used in a wide variety of applications such as human-robot interac-
tion, navigation, search-and-rescue missions or mapping without restrictions on the
type of robot (humanoids, UAV, mobile robots...). Despite this tremendous poten-
tial, there is little research in robot audition in comparison to the huge amount of
research in robot vision, for instance.

The explanation lies in the fact that robotic audition is extremely complex and
limited, especially in real-world environments. First some limitations come from the
inherent properties of sound waves, that induce interference from echoes or model-
ing constraints on the field of observation of sound. Moreover, environments may
be dynamic and include several types of sound sources and noise, which raise the
degree of complexity of sound processing. Eventually the requirements induced by
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the robotic context, such as real-time constraints end up making robot audition a
very challenging topic. Modeling accurately all potential perturbations and environ-
ment variability turns out to be complicated, and many realistic situations remain
unsolved until now. As a result, most of the models and techniques proposed in robot
audition literature consider static scenes, that are either validated in simulation or
experimentally in controlled conditions such as anechoic rooms.

To tackle robot audition limits, sound source localization, among other auditory
functions, is certainly the subject that receives most attention. The ability to lo-
calize sound sources is a crucial aspect of auditory perception: it creates a sense of
space for listeners, and provides information about the spatial location of objects in
the environment. And more importantly, from a computational perspective, sound
localization is the first stage of auditory perception and undeniably represents one of
the pillar of robot audition. The stage of sound localization generally conditions the
good progress of auditory interactions, since sound separation and speech process-
ing rely or can be improved by the initial localization step. Thus, by strengthening
and ensuring accurate sound localization abilities, the interaction process is greatly
simplified, which increases the robustness of robot audition applications, whether it
be for interaction, navigation or scene mapping. Consequently, solving robot audi-
tion limitations, comes back in a loose sense to solve the problem of sound source
localization in realistic environments.
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Sound source localization for
robotics

This chapter introduces the issues of sound localization in the robotic context. As
underlined by the previous chapter, one of the toughest challenge for machine hearing
consists in finding from where the sound source originates. This task is particularly
complex in realistic environments, inducing interference from echoes and fluctuating
acoustic conditions. The focus on this particular topic is easily explained by the fact
that most of the interactions and studies of human auditory sense, as illustrated by
the cocktail party effect, largely inspired robot audition.

The current chapter reviews, first, human hearing ability in Section 2.1, through
the anatomy of auditory systems and the physiological hypotheses that explain hear-
ing process. More specifically, we focus here on the mechanisms involved in the sound
localization process through computational models and the related auditory cues.

In a second phase, we focus on how the knowledge of sound localization mech-
anisms is transferred to the robotic context. In detail, Section 2.2 introduces the
low-level auditory cues and their processing for machine hearing and by extension
for robot audition.

The last segment of this chapter expounded in Section 2.3 reviews current progress
and limitations of sound source localization in robotics. More precisely, we focus on
the binaural paradigms that are in general inspired by physiological knowledge about
mammals auditory systems.

2.1 Human auditory system as a source of inspiration

2.1.1 Human auditory system

Similarly to many aspects of human sensing skills, human auditory system is a rel-
evant illustration of ability for sound localization and separation. For the past cen-
turies, the human auditory system has been a major topic of research and inspiration
for psycho-acousticians. An initial stage for building an artificial auditory system
generally requires a thorough understanding of the biological structure of hearing
organs and the neural activities associated to auditory sensation.
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As described in Chapter 1.2.1, the sound is a wave propagating in a medium.
This wave when reaching the ears should be interpreted by the auditory system into
exploitable and understandable information. The sensation of sound is caused by
varying pressures in ears. Due to the airborne nature of sound, auditory perception
is a range sensing that played a crucial role during species evolution. Hearing organs
for airborne sounds probably appear around 250 millions years ago [SC09], during the
Triassic era that corresponds to a period of transition from water to land. On land,
hearing organs evolved separately among species and mammals were endowed with
tympanic ears that provided the more “recent” sensing skill. The sense of hearing
stimulated afterwards the rise of communication and languages. Until now, for many
mammal species, sound localization skill is essential for detecting preys or conversely
predators when vision is limited by a restrained field of view, obstacles or obscurity.
Then, it is not surprising that our ancestors developed sensitive tympanic ears and
highly specialized auditory organs capable of processing airborne sounds.

2.1.1.1 Mechanical structure

The auditory system transforms sound waves into neural activity. For this pur-
pose, the auditory system is physically composed of three parts that are respectively
the outer, the middle and the inner ear illustrated in Figure 2.1. The outer hear,
composed of the pinna and the ear canal, principally amplifies sound waves before
transmitting it to the middle ear. The elastic cartilage that builds up pinnae is
involved in the sound localization process with complex spectral filtering patterns
governed by pinnae shape as stated in [Str07] (see Section 2.1.2). The ear canal
that has a resonating conic shape transmits a filtered sound to the tympanic cav-
ity through the tympanic membrane. Due to resonance in the auditory canal the
sound wave pressure is increased before reaching the tympanic cavity [Wie47]. In
the middle ear, the sound pressure is therefore transformed into vibrations by the
eardrum (i.e., tympanic membrane) and transmitted to the auditory ossicles. The
auditory ossicles consist in three small bones that are the malleus, the incus and the
stapes. As sound waves vibrate the eardrum, it in turn moves the nearest ossicle,
the malleus, to which it is attached. The malleus then transmits these vibrations,
via the incus, to the stapes, and ultimately to the membrane of the oval window, on
the outside of the cochlea.

The cochlea that builds up the inner ear is filled with a salty watery liquid, the
perilymph, which moves in response to vibrations coming from the middle ear via the
oval window. The cochlea is sealed by the round window membrane, which vibrates
with opposite phase to vibrations entering to the inner ear. Mechanical amplifica-
tion of sound waves through the ossicles is essential since it allows to improve the
transmission of sound waves from air to liquid medium. It is said that without os-
sicles, only 3% of sound waves would be transmitted to the cochlea [HWA08]. It is
not surprising that damaged or absent ossicles lead to a moderate-to-severe hearing
loss [AGF+99]. Thus, the presence of the ossicles to concentrate vibration intensity
improves the sensitivity to sound. Cochlea exact functioning is still a discussed sub-
ject. A first mechanical model of cochlea was proposed in 1863 by von Helmholtz,
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while the current mechanical model of cochlea is defined in [VBW60] one century
later. Cochlea consists in a coiled tube enclosed in a hard bony shell split into two
canals by the basilar membrane a illustrated in Figure 2.2. These two canals, re-
spectively named vestibular and tympanic canals, compress and dictate the motion
of perilymph thanks to alternate vibrations of the oval and round windows. Basilar
membrane model is equivalent to a set of harmonic oscillators tuned to different
frequencies from 20 Hz at the apex to 20 kHz [MOD89]. Basilar membrane res-
onates accordingly to the signal frequency thanks to different stiffness from its base
to its apex that is more flexible. By combining this property to the inertial effects
of perilymph, that transmits a phase delay of a few cycles to the basilar membrane
oscillation, the cochlea acts as a filterbank which transforms vibrations into a neural
spike train. The spike train has the same phase as sound vibration [Wev49]. Inside
the basilar membrane, the organ of Corti filters sound. Indeed the basilar membrane
motion stimulates hair cells contained in the organ of Corti. The 15000 hair cells
that are contained in the organ of Corti are the hearing receptor cells that are some-
times compared to photo-receptor cells of eye retina. These hair cells are from two
types: outer cells play a role of amplification, while inner cells transform vibration
into electric signals that are transmitted to auditory nerves. The information passed
to the brain is represented as a cochleagram that is equivalent to a spectrogram (see
Section 2.2.2). Yet, the crucial point of the auditory system remains the interpreta-
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Figure 2.1: Anatomy of the human auditory system as represented in [CB05]

tion of this neural activity. Actually, the neural activity travels from cochlea to the
auditory cortex where signals are decoded and interpreted into an auditory sensation
(localization, sound identification...).
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(a)

(b)

Figure 2.2: The cochlea: In (a) Cochlea transverse view [B+16] and (b) basilar
membrane functioning (www.britannica.com)

2.1.1.2 Neuronal path

The brain has to solve the difficult task of transforming acoustic wave inputs into
meaningful auditory sensation. As already depicted in Figure 2.1 the sound sig-
nal travels from the ear to the auditory cortex. The auditory information is then
processed in the midbrain, that is divided into several nuclei. The superior olivary
complex (SOC) is the where station that receives input from both ears through con-
nections with cochleas. The SOC is the very early stage of signal interpretation
since interaural comparisons are processed [TY02], which is an important source of
information to determine the sound location. The SOC is divided into two nuclei
that are respectively the lateral superior olive (LSO) and the medial superior olive
(MSO). The MSO seems dedicated to process the time difference between sound
waves as exposed in [JSY98], while the LSO is more devoted to the difference of level
observed between sound waves [JY95]. As detailed in the next section, these two
types of information are used for localization in the azimuth plane. This information
coupled with the elevation information induced by pinna is afterwards integrated
to the Inferior colliculus (IC) where a 3D spatial representation of source location
can be inferred [CFC02]. The IC is also connected to the superior colliculus and
transmits localization information to an attention mechanism [ZVVO04].

Eventually this information is transferred to the medial geniculate nucleus, before
reaching the corresponding auditory cortex. In the auditory cortex, the spatial layout
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Figure 2.3: Neuronal path of sound from ears to the auditory cortex. Figure adapted
from http://twoears.aipa.tu-berlin.de

of frequencies in the cochlea along the basilar membrane is repeated through what
is called the tonotopic organization [TSM+04].

Globally this neural scheme stresses a central process of sound waves where the
localization step seems to be performed by a spectral interaural comparison. This
interaural comparison coupled with the time-frequency decomposition are the core
ideas behind sound localization in robotics.

2.1.2 Physiological mechanisms of sound localization

2.1.2.1 Binaural cues

Now, one can focus on the localization process that is performed in the SOC. In the
case of sound source localization, interaural cues have been identified as carriers of
spatial information. These assumptions have been formalized through the Duplex
Theory in [Str07] under the assumption of a perfectly spherical head without any
external ears (pinnae). This theory explains many properties of sound localization
process for humans. The identified interaural cues are respectively the interaural
time difference (ITD) and the interaural level difference (ILD) that are respectively
generated by the delay and attenuation of a given sound wave between the two ears
(see Figure 2.4). Both ILDs and ITDs are related to the sound direction of arrival
in the azimuth plane. ITDs and ILDs are complementary cues that are relevant
in different ranges of frequencies, as illustrated in Figure 2.5. Actually, ILDs are
significant for frequencies above approximately 1.5 kHz, that is to say when the head
is large compared to the wavelength λ of an incoming sound. In this case, the head
shadows most of the incoming waves, by the reflection mechanisms discussed in the
previous chapter. Consequently the perceived sound level is drastically attenuated
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Figure 2.4: The ILD is caused by the difference of sound pressure between the two
ears while the ITD reflects the phase difference between the signal perceived by these
ears

for the contralateral microphone compared to the ipsilateral one. Conversely ITDs
are meaningful for low frequencies. ITDs can be interpreted unambiguously only
for frequencies for which the maximum physically-possible ITD is less than half of
the wavelength λ, which corresponds somehow to the Nyquist frequency. Otherwise
ITDs are subject to spatial aliasing related to the phase ambiguity. For a typical
human head size (i.e. ≈ 22 cm between each ear) the maximum ITD value is about
660µs, which sets the frequency limit of meaningful ITDs to around 1.5 kHz. How-
ever, the frequency ranges for which an auditory system is sensitive to ITDs and
ILDs significantly overlap each other, and most useful sound signals are wideband
including low and high frequency components. Auditory systems in most cases com-
bine information from both ITDs and ILDs to extract the location of a sound source
[Bla97].

Several neuro-computational models have been proposed in psychophysics litera-
ture to explain how the brain extracts interaural cues. The time-delay neural network
of the Jeffress architecture [Jef48] is still at the core of current models about how
humans perform binaural localization using ITD cues. This theory characterizes the
MSO neurons functioning as a coincidence mechanism. Specifically, a coincidence
mechanism consists of a number of central neural units that record coincidences in
neural firings from two peripheral auditory-nerve fibers, one from each ear, with the
same frequency. Furthermore, neural signals from the two ears are delayed by given
amounts fixed for each pair of fiber, similarly to the architecture depicted in Figure
2.6. Because of the frequency synchronization, a given binaural coincidence-output
unit at a particular frequency is maximized when the ITD at that frequency is ex-
actly compensated by the internal delay of the fiber pair. As a result, the ITD of a
sound stimulus can be determined from the delay that has the greatest output over
a range of frequencies. The short-term average of a set of coincidence outputs at a
given frequency with respect to their internal delay corresponds to some extent to a
short-time cross-correlation function of the neural signals arriving from the left and
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(a) (b)

Figure 2.5: The ILD cue is consistent at high frequencies (a) since the head shadowing
effect induces significant sound level difference. On the other hand, ITDs suffer from
aliasing since small wavelengths λ induce phase ambiguity. At low frequencies (b),
the aliasing is suppressed but the head shadowing effect is not significant.

right ears. The utilization of such a mechanism has been validated for owls auditory
system in [CK88]. It has been found that MSO neurons of owls are connected in
a very similar way to Jeffress diagram. The neurons communicating signals from
the two ears converge in a orderly way, by increasing the delay in the transmission
length. Furthermore, to account for the influence of ILDs in the latter model, Jef-
fress proposed to complete the neural mechanism with the latency hypothesis which
is based on observations that neural responses to more intense sounds tend to start
more rapidly than responses to less intense sounds. This implies that ILDs are some-
how converted to ITDs. Nevertheless, it has been suggested recently in [MG03] that
mammals auditory systems do not fully comply with the Jeffress model. The authors
of the latter paper exhibit evidence of neural broad sensitivity to just two ranges of
ITDs, that could subsequently describe a continuous space of possible ITD values.
Likewise, a number of researchers have also reported cells that appear to respond to
ILDs at several levels of the brainstem [BT68, CK83]. These researches suggest that
ILDs could be detected by a unit which has an excitatory input from one ear and an
inhibitory input from the other. Despite these new results, the Jeffress model still
remains acknowledged, and several auditory models are inspired from this pioneering
work. This model stresses cross-correlation mechanisms between two neural inputs
that is underlaid by the coincidence principle. In [Che61], the authors proposed a
cross-correlation method directly based on the sound signal input rather than the
neural input, in order to relate the interaural cross-correlation to a sound location.
Since the cross-correlation function is mainly designed to extract ITDs, they con-
sidered an additional mechanism to account for ILDs, through the ratio of energy
of the signals measured from the left and right ears. Some other auditory models
are oriented towards the neural response to the sound signal. This is the case of
[Col73, Col77] in which the author characterizes a binaural localization through a
model comparing auditory-nerve responses. The latter model has also been extended

43



Chapter 2. Sound source localization for robotics

Train of 

neural spikes

Train of 

neural spikes

Coincidence 

detectors

Output

Figure 2.6: The Jeffress neuronal architecture

in [SJC78] to include explicit assumptions concerning time-intensity interactions, a
mechanism for extracting subjective lateral position. In the continuity of these works,
the authors of [Bla80, Bla97, Bod93] proposed more complex binaural hearing models
able to cope with real environments (e.g., cocktail party effect).

Unfortunately, despite this variety of hearing models, even the most complex
neuro-computational one cannot fully explain the performance and accuracy of the
human auditory system. This fact strengthens the idea of interaction between several
cues and mechanisms for sophisticated localization processes. This idea is confirmed
by various experimental studies [WK89, SN36, WAKW93] that stress significant
errors of localization (in static configuration) when a listener is asked to indicate if a
source stimulus is produced from the front or the back side. This is due the so-called
front-back ambiguity that is inherent to binaural cues. Front-back ambiguity may
be considered as the main limitation of interaural cues. This ambiguity implicitly
confirms that there exists multiple source locations that share the same ITD and
ILD cues.

As expounded in [vHW20, Bla97], in their simplest forms, iso-ITD locations
tailor a hyperbolic surface symmetric to the interaural axis. In the far-field (i.e.,
distances greater than 1 m for a typical head), the hyperbolic surface approximates
a cone centered on the interaural axis, that shapes the well-known cone of confusion.
Empirical measurements of the ITD with respect to source direction also confirm
the cone-shaped iso-ITD surface [Mil72]. On the other hand, in the near-field low
frequency ILDs are constant on a sphere centered on the interaural axis [SCSK00],
while these ILDs become perceptually insignificant as the source gets farther from the
head. Consequently, positions that give rise to the same binaural cues (i.e., constant
ITD and ILD contours) in the near-field form a torus that has been described in
[SCSK00] as the torus of confusion. The torus of confusion degenerates into the
cone of confusion for sources in the far-field as the influence of low-frequency ILDs
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Figure 2.7: In the far field, localization based on interaural cues lead to a cone of
confusion. In the near field the cone of confusion degenerates into a torus of confusion
(black donut) principally because of the action of ILDs (i.e. intersection of the cone
and a sphere).

is diminished. This confusion can be solved by the motion of the head [Wal40] (see
Section 2.1.2.3).

2.1.2.2 Monaural cues

As a consequence of the previous results, it can be inferred that interaural cues do
not fully describe the localization process. Some complementary cues are necessary
to disambiguate source positions on the cone of confusion. Actually the localization
process is also described by other dimensions that are the elevation and the dis-
tance. Several circumstantial results tend to relate sound localization to an action
of pinnae. As an illustration, experimental results exhibited in [OP86] showed that
localization performance is substantially degraded when performed from a single ear.
More specifically, most of the azimuth angle were erroneous while elevation angles
remained consistent, showing that some localization ability is somewhat preserved
in the monaural case. After some training azimuth angles could be recovered ( how-
ever without the same accuracy as with a binaural auditory system). This typical
experiment emphasizes mechanisms of localization implied by monaural cues that
concerns elevation.

The following attempt [Bat67] aiming to characterize the effect of pinna filtering
action, revealed that sounds reaching the ears interact with the physical characteris-
tics of the listener, that is to say, head, shoulders and upper torso. The modifications
induced by these interactions can be subsequently used to estimate the directions and
distance to the sound source. All together, these interactions characterize a complex
response function known as the head-related transfer function (HRTF). Analogously,
in the temporal domain, HRTFs corresponds to the head-related impulse response

45



Chapter 2. Sound source localization for robotics

Figure 2.8: The HRIR (top), as well as the HRTF (bottom) captures the relationships
between a signal measurement in a free space and the signal perceived by one of the
ear. HRTFs (respectively HRIRs) depend on the source location and frequency. Data
plotted from the CIPIC database [ADTA01].

(HRIRs) (see Figure 2.8). HRTFs have been proven to subsume sound localization
cues (i.e., ITDs, ILDs) and the sound spectral shape reaching a listener [Har99].
Indeed sound needs to propagate around the head (diffraction) in order to reach
the ears. HRTFs establish the relationships between a sound measurement from a
point in the free-field area and a sound measurement at the ears [WK89, Bla97]. For
instance in [WK89] the authors used probe microphones in ears to measure and de-
scribe the transfer function from sound source to eardrums in anechoic environments.
Hence HRTFs vary significantly between different individuals due to anatomy differ-
ences. Such influence characterizes the individual variability of sound perception as
stated in [Bla97]. An HRTF itself can be decomposed into two separate components:
the common transfer function (CTF), which is common to all sound source locations
[MG90] (i.e. depending on the anatomy of the listener) and the directional transfer
function (DTF), which is related to sound source direction. Explicitly, when a sound
source is situated in the near-field, HRTFs are simultaneously depending on the di-
rection and the distance to this source across all frequencies [BR99]. In the far-field
the dependence of HRTFs on distance vanishes. As a result, the HRTFs to each ear
are then a function of four variables: the sound frequency, the sound source azimuth
and elevation angles and the distance to the source as stated in [ZDD04].

With the use of HRTFs, many of the localization limitations (e.g., cones of confu-
sion) inherent to models based on ITDs and ILDs alone can be overcome. Although
elevation mechanisms have received less attention than localization in the horizon-
tal plane (i.e., through interaural cues), the hypothesis that elevation is recovered
through spectral filtering actions of pinnae is now acknowledged [MOD89, PB93].
This filtering is especially useful to determine the source location in the vertical plane,
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Figure 2.9: The spectral notches in an HRTF, are related to sound source elevation.
Data plotted from the Cipic database [ADTA01]

and the resolution of front-back ambiguities. In the first case, there are substantial
psychoacoustical results to support the hypothesis that pinna spectral notches are im-
portant cues for determining source elevation [MOD89, WHW74, TY03, RDY05]. In
[CP94] it has been shown that the locations of spectral notches near 7 kHz change as
a function of elevation, as illustrated in Figure 2.9. Moreover, the asymmetry of pin-
nae could help to distinguish sources from the back or front side. On the basis of the
reflections of pinnae various ridge and different filtering effects are observed depend-
ing on which side the sound source is located [MG91]. This selective sound shadow
in resolving the front-back ambiguity problem was confirmed in [FF68, PN97b]. How-
ever, because of the high variability of size and shape of pinnae between listeners,
the task of relating the anatomy of pinnae to localization cues they create remains
elusive. As a consequence, it is not yet possible to infer the sound location (azimuth
and elevation angles) from unknown HRTFs.

Eventually distance estimation is processed from monaural cues. Naturally, sound
intensity is used for estimating distances, particularly when the sound stimulus orig-
inates from a well-known source. Indeed as already mentioned in the previous chap-
ter, the typical sound decay certainly provides the most intuitive cue to estimate
distances. Several studies [War68, SG62] showed experimentally the correlation be-
tween the perceived distance and source loudness, that is perceptually related to
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sound intensity. In enclosed rooms, the distance to a sound source can also be es-
timated from reverberation. The ratio of the direct sound over the first reflections,
also known as Direct-to-reverberant ratio (DRR) or the time gap between the di-
rect sound and the first reflections are assumed to be cues for distance estimation
[She82]. The effect of reverberation has also be denoted in [Nie92] where distance
judgments where much more veracious under reverberant conditions than anechoic
conditions. We refer the interested reader to a more exhaustive review provided in
[ZBB05] addressing distance cues.

2.1.2.3 Influence of the motion in the localization process

Chapter 1 emphasized the constraints related to robot motion, that requires to be
able to process sound dynamically and in real-time. However a question arises to
know if the motion is an actual constraint or conversely an advantage in the local-
ization process. Thus in the following, we study evidence related to the influence of
motion on human localization. The individual variability of auditory cues [Bla97] re-
veals that they do not explain solely the performance of the human auditory system.
More importantly, it suggests that other mechanisms are involved in the percep-
tion of sound source. Thus some other modalities must be taken into consideration.
Among them, self-motion plays an important role for the correct sensing of sound
events. Indeed, in daily sound listening, our heads are constantly and unconsciously
moving, which tends to emphasize the potential influence of motion.

From this perspective, almost all studies agreed on the fact that localization
through motion performs better than localization in a static way. In [Wal40], it
has been shown that the sound localization accuracy is improved when listeners
are allowed to move their heads during the sound stimuli. A prior work [Wal39]
also demonstrated that for longer sound duration, head motion cues dominate other
cues. Some other studies like [TMR67] suggest that the sound localization accuracy
is improved by head motions. Compared to static cases, they report an improvement
of 10 to 15%, especially when the sound stimulus is long enough or when the source
is located in eccentric positions.

A first thought could assume that motion multiplies the auditory cues measure-
ments and builds up a spatial representation of the source location by fusing these
measurements. As a consequence localization should be more robust thanks to the
redundant auditory measurements. However it appears from the different experimen-
tal studies exposed below that the variation of auditory cues, more particularly the
variation of interaural cues, plays an important role for the localization performance.

Actually, motion contributes to the disambiguation of the front-back confusion
[WK99] inherent to the interaural cues. Indeed the variation of ILDs or ITDs with
respect to the head motion, characterizes the fact that the sound source is in front
or in the back of the listener. Moreover, the variation of interaural cues also plays
a role for estimating sound source elevation. When the head is rotated, ITDs and
ILDs change differently depending on the sound elevation [PN97a]. More specifi-
cally, the latter study showed that localization within cones of confusion remained
possible despite distorted HRTFs, thanks to head movements. Likewise, head mo-
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tions (translations) induce change in azimuth that is range dependent. For sources
that are very close, a small shift causes a large change in azimuth, while for sources
that are far, the azimuth variation is minimal [ADN95]. In the same way, [LHC90]
suggested that distances could be perceived dynamically through motion. Actually,
when the sound level (loudness) varies with varying distance, the apparent distance
judgments of a listener change accordingly. In anechoic environments, this relation-
ship is characterized by the inverse-square law: sound level falls by more or less 6
dB for each doubling of source distance [Col63]. There are also many other ways
in which motion can help in audition: moving towards a source can increase the
DRR (i.e., increase the speech intelligibility as stated in Chapter 1.2.2.2) while head
rotations can position the target source in the frontal plane where spatial resolution
is at the greatest [CLH97] compared to peripheral locations. The latter property is
often related to the auditory fovea, by reference to visual fovea at the retina center
that is capable of higher resolution that in the periphery.

These studies emphasize the strong link between motion and auditory cues. Sim-
ilarly, a study of [VVGVO04] involving a moving sound source, showed that acoustic
inputs are continuously combined with feedback signals about changes in the head
orientation. The motion is not pre-programmed as it could be assumed but it is
rather dynamically adjusted by the variation of auditory cues. These results support
the theory of a real-time feedback loop between motion and auditory cues. Moreover,
interaural cues variation seems to be less sensitive to listener’s HRTFs as exposed by
[KUKH03]. The authors suggest that the information induced by head motions is
useful for overcoming changes in listener’s HRTFs. Globally, auditory scene analysis
appears to be a dynamic process that is influenced by an active sensing of the envi-
ronment as stated by [KPTK12]. The auditory process can then be considered as a
sensorimotor loop where motion and auditory perception are interwoven.

2.2 Localization cues for binaural robot audition

2.2.1 Modeling the spectral information

The main cues used for machine audition are derived from the knowledge of mam-
mals auditory system. It is not surprising that most contributions in binaural robot
audition are based on interaural cues. A first step before extracting interaural cues
deals with the representation of sound signals. The signal can be naturally exploited
in the time domain, but for more efficiency and flexibility, its spectral decomposition
is preferred. This way to process the sound draws closer to auditory mechanisms in
the ear and cochlea. The simplest way to transform the temporal signal spectrally
is by a Fourier transform. However, since sound signals used in robot audition are
generally broadband and non-stationary, the short-time fourier transform (STFT)
provides more relevant information. Simply, the function to be transformed is mul-
tiplied by a window function which is nonzero for only a short period of time. The
Fourier transform of the resulting signal is taken as the window slid along the time
axis, resulting in a two-dimensional representation of the signal. Considering two
signals x1(t) and x2(t) respectively sensed by two microphones M1 and M2, the
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Figure 2.10: Gammatone filters frequency response based on Lyon’s cochlear model
[Ell09]

STFT Xi(f, T ) at a given frequency f of the signal xi(t) is simply defined as

Xi(f, T ) =

∫ +∞

−∞
xi(t)w(t− T )e−2jπftdt, (2.1)

in which w(t−T ) stands for a window function (e.g., Hamming, Hann, sinusoidal...)
centered on T sliding along the time axis. For discrete-time signals, as generally
processed in machines, we assume that the following indices t = 1, . . . , T and f =
1, . . . , F are respectively the time frame and frequency bin indices. With these
notations, (2.1) becomes

Xi(f, l) =

T∑
t=1

xi(t)w(l − t)e−2jπft/N , (2.2)

where N is the window length, and l = 1, . . . , L characterizes the frame that is pro-
cessed1. The STFT transforms the sound signal into a spectrogram, that represents
all spectral components of the measured sound (see Figure 2.11b). Nevertheless,
methods based on STFTs do not perform a frequency decomposition similar to hu-
man inner ears. Actually as mentioned in the previous section, the signal is broken
up into different frequencies that are naturally selected by the cochlea and hair cells.
A frequency decomposition trying to mimic the effect of the basilar membrane inside
the cochlea can be obtained from a gammatone filterbank [Joh72]. In this case, each
filter is associated to a specific area of the basilar membrane. Gammatone filters are
nowadays widely used to model cochlea filtering action as illustrated in Figure 2.11.
A gammatone filter impulse response comes as the product of a gamma function
and a tone. The output from this filter can be regarded as a measurement of the
basilar membrane displacement. Gammatone filters constitute a good approxima-
tion of human spectral analysis at moderate sound levels [PAG95]. Their bandwidth
increases with frequency (see Figure 2.10), mimicking the human auditory ability to

1For simplicity we use the notation x(t) instead of the x[t] for discrete signals
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discriminate low-frequencies signals [SVN37]. It has also been shown in [PRH+92]
that the impulse responses of gammatone filters fit to human auditory filter shapes,
derived in [PM86].

Time (ms)
0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4

10

20

30

40

50

60

0.5 1 2 2.5
0

8000

F
re

q
u
e
n
c
y
 (

H
z
)

1.5
Time (s)

(a)

0.5 1 2 2.5
0

8000

F
re

q
u
e
n
c
y
 (

H
z
)

1.5
Time (s)

(b)

Figure 2.11: Two different representations of the spectral components of a sound:
in (a) the cochleagram based on gammatone filterbanks and in (b) the spectrogram
obtained by the STFT.

Mathematically, a gammatone filter is defined by its impulse response given by

g(t) = Atn−1e−2πBt cos 2πft+ φ (2.3)

where A is the amplitude, n the order of the filter and B is the bandwidth of the
filter that determines the duration of the impulse response. The filter bandwidth B
is usually set according to an equivalent rectangular bandwidth (ERB) given by:

ERB(f) =

[(
f

Q

)p
+ (Bmin)p

] 1
p

, (2.4)

in which Q is the asymptotic filter quality at high frequencies and Bmin is the
minimum bandwidth for low frequency channels. The parameters of this ERB
are generally adjusted from human auditory data. Hence in literature, there ex-
ists several models such as the Glasberg and Moore cochlea model summarized
in [GM90] (Q = 9.26, Bmin = 24.7, p = 1), the Lyon’s cochlea model given in
[Sla88] (Q = 8, Bmin = 125, p = 2) or the Greenwood model [Gre90] (Q = 7.23,
Bmin = 22.85, p = 1). Eventually the filter bandwidth in (2.3) is approximated as
B = 1.019ERB(f). Hence a discrete-time cochleagram is obtained as

Ci(f, l) =
t=N∑
t=1

xci(t, f)w(l − t) (2.5)

with xci(t, f) defined as the gammatone-filtered signal. With this model, cochlea-
grams can provide better results when extracting auditory cues as demonstrated in
[SM15, YAZ12b].
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2.2.2 HRTFs models

Similarly to human listeners, HRTFs also characterize robotic platforms, that can
shadow, reflect or refract sounds. Modeling HRTFs is a big concern in robot au-
dition since the relationship between the sound direction and the interaural cues is
modified in a non linear way. The induced scattering and sound spectral modifica-
tions particularly affect the localization performance. Indeed the filtering effect of
the robot structure is reflected in the sound level attenuation and delays. This effect
is particularly stressed by anthropomorphic robots that are endowed with a head, a
torso and pinnae mimicking human morphology.

Figure 2.12: Typical material required for HRTF measurements [ZX14]. In this
solution the measurements are performed from two rings of speakers that rotate
according to azimuth and elevation angles.

Hence, the signals x1(t) and x2(t) measured by the microphones M1 and M2 are
defined spectrally by {

X1(f) = H1(f)S(f)
X2(f) = H2(f)S(f),

(2.6)

where Xi(f) corresponds to the Fourier transform of the measured signal, Hi(f)
the corresponding HRTF and S(f) the Fourier transform at a reference point of the
signal s(t). However, it should be specified that HRTFs only account for the action
of the robot structure (or body) on the sound in free-field. Hence, HRTFs do not
model acoustic effect such as reverberation. In reverberant conditions, (2.6) becomes
more exactly {

X1(f) = H1(f)H1room(f)S(f)
X2(f) = H2(f)H2room(f)S(f),

(2.7)
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where Hiroom(f) characterizes the room acoustic effect such as reverberation. In
this case Hi(f)Hiroom(f) is the acoustic transfer function (TF) characterizing the
difference between the sound sensed at a reference point and the sound at each
microphone.

There exists several ways to estimate or measure HRTFs. The straightforward
way consists in obtaining HRTFs from direct acoustic measurements of a given sound
signal at different locations and frequencies. The typical HRTF identification pro-
cedure consists in placing an artificial humanoid head and/or torso on a motor-
ized turntable which can be rotated accurately to any required azimuth. A speaker
mounted on a boom stand enables an accurate positioning of the speaker to any el-
evation with respect to the humanoid. This solution is, however, not so convenient,
since it requires anechoic conditions. Furthermore this specific solution generally re-
quires expensive equipment to cover all the possible location of the sound source (see
Figure 2.12) and a long acquisition time. Fortunately, in literature, several HRTF
databases are available such as the CIPIC [ADTA01] and [WGS11] that are related
to the dummy head KEMAR, or [TAM+02]. This solution provides accurate HRTFs
but requires the same robot, with the same structure (e.g. presence of torso, pinna...)
as the one used for creating the database.

Nonetheless the exact HRTFs of robots are not always accessible, due to their
complex structure or the tedious procedure of HRTFs measurements. As an alterna-
tive to the measurement process, a second solution consists in accurately modeling
body and head effects. When the robot has a simple shape, HRTFs can be expressed
through simple models such as the spherical model proposed in [Bla97]. For more
realistic models, acoustic simulation software might used to estimate HRTFs through
signal processing methods [OI06]. In robot audition, simplified models of the head
have been proposed in the literature. The auditory epipolar geometry (AEG) model
[NOK00b] is the simplest one and is adapted to free-field microphones in a pla-
nar scene. In this model interaural cues are directly related to the sound azimuth
direction since HRTFs are given by{

H1(f, α) = 1

H2(f, α) = e−2jπf
d
c
cosα

(2.8)

in which d is the inter-microphones distance, c the sound celerity and α the sound
azimuth with respect to the interaural axis, in the far-field. With M1 as an arbitrary
reference point, the auditory epipolar geometry states that signal measured by M2,
x2(t + τ) is delayed by τ = d

c cosα, with respect to the reference signal x1(t). This
model is by far the most used in sound source localization because of its simplicity,
and the low computational load that it requires for inferring the sound location.
However this model assumes free-field installations and is generally used for array-
based localization (see Section 2.3).

The revised auditory epipolar (RAEG) [NOK01] is an extension of the AEG
by considering, this time, a disk between the microphones. The disk models the
diffraction induced by the robot head before reaching the microphones. In this
case, HRTFs are characterized by the following set of equations derived from the
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Figure 2.13: Head models characterizing HRTFs: In (a) the auditory epipolar geom-
etry considering free-field microphones, in (b) the revised auditory epipolar geometry
considering a disk between the microphones and in (c) the scattering theory modeling
a sphere between the microphones.

Woodworth-Schlosberg approximation:{
H1(f, α) = 1

H2(f, α) = e−2jπf
F (α)
c

(2.9)

in which the head shadowing effect is modeled by the function:

F (α) =


(α− π

2
)
d

2
+
d

2
cosα when 0 ≤ α ≤ π

2

(α− π

2
)
d

2
− d

2
cosα when

π

2
≤ α ≤ π

(2.10)

Through (2.10), F () characterizes the sound path that follows the circular shape of
the head (i.e., diffraction) in order to reach the microphones as illustrated in Figure
2.13.
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Eventually, the scattering theory (ST) proposed in [NMOK03], models HRTFs
through a sphere diffracting the sound. Hence, the elevation angle is not null unlike
the two aforementioned HRTF models. The scattering theory is based on the expres-
sion of diffraction of sound when considering an ideal rigid spherical head introduced
in [DM98] as

H1(`, β, f) =
`ce−2jπf/c

2jπf(d2)2

∞∑
m=0

(2m+ 1)Pm(cos (−π
2
− α))

hm(2π`f/c)

h′m(dπf/c)

H2(`, β, f) =
`ce−2jπf/c

2jπf(d2)2

∞∑
m=0

(2m+ 1)Pm(cos (
π

2
− α))

hm(2π`f/c)

h′m(dπf/c)

(2.11)

in which ` characterizes the distance between the sound source and the center of
the sphere that is the reference point. α is then the source incident angle on this
point with respect to the interaural axis. Furthermore the function Pm() and hm()
are respectively the Legendre polynomial of degree m, and the spherical Hankel
functions of order m. h′m() simply denotes the derivative of hm().

These different models underline the additional complexity induced by HRTFs,
that should be accurately modeled as well as the environment acoustics, to obtain
exploitable auditory cues for humanoid robots.

2.2.3 Auditory cues

The ratio of HRTFs encodes binaural information through the interaural transfer
function. Indeed HRTFs depend on the direction of the sound that is implicitly
related to the interaural cues. This relationship is not trivial when considering the
actual HRTFs of robots. A typical solution consists in building a look-up table
relating the ratio of HRTFs and direction of the sound source to interaural cues as
exploited in [HLSVL06]. The relationship between the interaural cues and the sound
location can also be obtained through the simplified HRTF models depicted above.
In both AEG and RAEG, the ITD appears as a function of the azimuth angle of
the source. The phase difference between the HRTFs is directly related to the ITD
τ that can be extracted as follows in the AEG configuration

τAEG =
d

c
cosα (2.12)

when in the RAEG, the ITD is defined as

τAEG =
d

2c

(
(α− π

2
) + | cosα|

)
(2.13)

However, these two models are centered on modeling the direct path in AEG and
delayed path in RAEG of the sound source, that is to say the effect of the head model
on the ITD. Consequently they do not provide any meaningful ILD. On the other
hand, the ST strategy is more realistic by accounting for the delay and attenuation
induced by a spherical head. Hence from this model both ITD τ and ILD ρ can be
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inferred from (2.9) as
τST =

arg(H1(`, α, f))− arg(H2(`, α, f))

2πf

ρST (dB) = 20 log10
|(H1(`, β, f))|
|(H2(`, α, f))|

.

(2.14)

From the ST approach, more reliable azimuth directions can be extracted from ITD
and ILD values. This reliability will strongly depend on the capacity to cope with
environment acoustics (e.g. reverberation, noise..), that alters the latter auditory
cues.

Prior to inferring the sound location from HRTF models, ITDs and ILDs should
be estimated from the recorded sound signal. The coincidence mechanism of the
Jeffress auditory model inspired the techniques of interaural cues extractions, com-
monly based on the cross-correlation of the two recorded signals. In the basic form,
the interaural cues can be obtained directly from the temporal signals. Considering
a discrete sampling, the ITD obtained from the standard cross-correlation between
the signals x1(t) and x2(t) is defined as

r1,2(τ) =
T∑
t=1

x1(t)x2(t− τ) (2.15)

Hence the estimated ITD τ̂ is obtained from the peak of the cross-correlation func-
tion:

τ̂ = argmax r1,2(τ) (2.16)

As ILD is concerned, it is simply defined as

ρ =

∑T
t=1 x

2
1(t)∑T

t=1 x
2
2(t)

(2.17)

that can be also expressed in dB as ρdB = 10 log10(ρ).
As outlined by the localization mechanism in mammals auditory system, ITDs

and ILDs are inferred from the spectral representation of the signal. In this con-
text, ITDs are generally estimated in the spectral domain with the Generalized
cross-correlation (GCC) [KC76]. The Cross-Correlation function exposed in (2.15),
becomes

R1,2(τ) =
F∑
f

ψ(f)φx1,x2(f)eϕ(τ). (2.18)

where ϕ corresponds to the phase shift for a defined ITD τ . The cross-spectral power
density φx1,x2 is usually defined by

φx1,x2(f) =
1

L

L∑
l=1

X1(f, l)X
∗
2 (f, l) (2.19)
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X1(f, l) and X∗2 (f, l) are respectively the STFT of x1(t) and the conjugate of the
STFT of x2(t). There exists also other alternative that uses a "max" pooling function
so that

R1,2(τ) = max
l

F∑
f

ψ(f)X1(f, l)X
∗
2 (f, l)eϕ(τ). (2.20)

This solution can perform better for intermittent sound sources since it does not
integrate irrelevant information when the source is inactive [BOV12], as it would be
the case with (2.19). Eventually ψ(f) is a weighting function, that generally aims to
enhance the cross-correlation function. It should also be noted that when ψ(f) = 1,
(2.18) simply corresponds to the standard cross-correlation. In (2.18), the maximum
peak of the cross-correlation function gives an estimation of the actual ITD and can
therefore be written as:

τ̂ = argmax
τ

R1,2(τ) (2.21)

When k sound sources are active, the latter function returns several peaks wherein
the k first peaks are assumed to correspond to the ITD of each sound source.

Depending on the signal of interest, there exists in the literature various weighting
functions ψ(f) that aim to enhance the sharpness of the peaks given by the cross-
correlation function. The most common weighting function used in robot audition is
certainly the PHAse Transform (PHAT). The PHAT filter is a normalization factor
that is also known to be robust towards reverberation as demonstrated in several
studies [Her86, DHD07] by only preserving the information related to the phase.
Mathematically, the filter is thus defined as follows

ψPHAT (f) =
1

|φx1,x2(f)|
. (2.22)

The PHAT weighting is uniformly applied to all frequencies, without differentiating
signal frequencies to noise frequencies. As a result GCC techniques using PHAT
weighting functions are particularly sensitive to noise. Recently, extensions of the
method have been proposed in order to control the degree of whitening and to limit
the amount of degradation from the independent noise with a parametric modifica-
tion. One can cite PHATβ = |φx1,x2 |−β where 0 < β < 1 is the tuning parameter
that control the level of weighting [MP10]. Similarly the Reliability-Weighted Phase
Transform (RWPHAT) integrates a noise weighting function, a Wiener filter gain,
based on the SNR of the signal [VMR06] (see Chapter 1.2.3.2).

Another classic weighting function is the ROTH processor [Rot71]. The weighting
function is expressed as follows.

ψROTH(f) =
1

φx1,x1(f)
(2.23)

The Roth processor has the property of suppressing the frequency regions where
noise is large [KC76].

There is also the Smoothed Coherent Tranform (SCoT) filter given by

ψSCoT (f) =
1√

φx1,x1(f)φx2,x2(f)
(2.24)
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The SCoT method can be considered as a pre-whitening filter followed by a cross-
correlation. It should also be noted that when φx1,x1(f) = φx2,x2(f), the SCoT filter
becomes a ROTH filter.

Eventually, the maximum likelihood (ML) weighting functions derived from [Saa96]
and [BS97] are oriented to increase the accuracy of the estimated ITD by means of at-
tenuating the signals fed into the cross-correlation function in spectral regions where
the SNR is very low. Such a weighting function is defined as

ψML(f) =
φx1,x2(f)

|φn1,n1(f)φx1,x1(f)|+ |φn2,n2(f)φx2,x2(f)|
(2.25)

in which φni,ni(f) corresponds to the power spectral density of the noise Ni(f). This
method is known to be robust to noise, but its performance in real-world applica-
tions is relatively poor, because reverberation is not modeled in its derivation. The
approach proposed in [RF04] integrates the reverberation in the noise calculation so
that the noise spectrum is defined as

φrevni,ni(f) = γφxi,xi(f) + (1− γ)φn1,n1(f) (2.26)

where γ is a gain to tune depending on the reverberation level.
All these approaches can also be applied to gammatone filtered signals, that

better approximate the filtering action of the cochlea. Hence ITDs and the ILDs are
computed from each frequency decomposition given by the gammatone filters.

Eventually one can notice the wide variety of approaches centered on ITDs,
whether for estimating its value or for establishing its relationship with source az-
imuth. Actually ILDs are quite straightforward to estimate but on the other hand,
are challenging to exploit. There is no trivial modeling directly linking the value of
an ILD to an azimuth direction. Hence, the main path of improvement for sound
source localization approaches consists in enhancing ITD estimations from which it
is easier to infer the source azimuth. In the same vein, distance cues and elevation
cues until have rarely been exploited until now since they cannot be related by a
simple model to a spatial location. Most approaches using elevation cues are based
on the spectral notches, and thus the learning of HRTFs based on a specific pinna
[KSK+05, RIJG08, HLSVL06]. As for distance estimation, a review proposed in
[Rod10] based on the signal amplitude, spectral amplitude and the binaural cues,
showed that a coarse approximation of the distance (< 1 m) could be obtained. This
study was, however, performed under controlled and static acoustic conditions. Some
other approaches obtained a coarse estimation of the distance by using the DRR. In
[LC10], the authors proposed a distance estimation from a DRR obtained through
an equalization-cancellation method [Dur63], while the author of [Ves09] proposed a
learning method based on the magnitude-squared coherence of binaural signals.

2.3 Binaural sound source localization

2.3.1 Typical approaches

For practical reasons (embeddability, space, resource consumption... ), as well as for
biomimetic sensing that gives more naturalness to interactions, binaural localization
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remains a major topic of interest in robot audition [NN15]. In this context, local-
ization solutions are based on the short-time cross-correlation of the signals between
two microphones, derived from the Jeffress architecture. The interaural cues, more
specifically ITDs, are at the core of binaural techniques. Nevertheless, the task is
highly challenging due to the low number of sensors. Moreover, in realistic environ-
ments, interaural cues are particularly influenced by the robot morphology through
HRTFs and by the acoustic properties of the robot location (e.g., reverberation,
noise) as mentioned in Section 2.1.2.2 and in Chapter 1.2. Regarding the complexity
of acoustical environments, most early approaches tackled the localization problem
in static scenes through simulations or fully controlled environments such as anechoic
chambers.

Typically, these studies are based on the knowledge of HRTFs, to determine
the azimuth and the elevation of the sound source, in controlled conditions. In
[HLSVL06] or [KND06], localization is performed through the analysis of given
HRTFs in order to link the azimuth and elevation to auditory cues. These latter
works are principally based on ITDs and the spectral notches of the pinna. But
these approaches are limited since they are fully based on HRTFs knowledge: any
change in the acoustic conditions, or in the binaural setup may severely degrade
the localization performance. The simplified head HRTF models provides a flexi-
ble alternative, so that the localization does not depend on accurate measurements
of the HRTFs. For instance, in [HAGK03], experiments of planar localization are
successfully performed using the ST models in environments with moderate rever-
beration. The RAEG has also been used in [NHOK02] or [NOK02] where complete
solutions of localization, source separation and recognition are implemented. Yet, as
expected the accuracy of such methods are decreased compared to HRTF-based lo-
calization techniques. Alternative approaches have also been proposed in [PDAP13]
and [PBDM14] where the authors propose a maximum likelihood estimate based on
the interaural transfer function to infer a sound direction.

With the growing interest for robot audition, a wide variety of approaches have
been proposed in order to cope with realistic conditions. The major problems tack-
led in literature are: the flexibility of the localization performance, the robustness to
acoustic conditions, robot/source motion, multi-source scenes. Such adverse condi-
tions motivate the robot audition community to consider learning-based approaches
instead of modeling all these conditions. In this context, because of the frequency-
dependent patterns of ITDs and ILDs that vary considerably across robot platforms,
azimuth-computation models are generally based on prior training or calibration with
a binaural setup. For more flexibility, the authors of [RVE10] show that the azimuth
can also be estimated by jointly taking into account ITDs and ILDs in a parametric
model relating the azimuth angle to the interaural cues from pre-measured HRTFs.
Unsurprisingly, this approach is less accurate than HRTF-based methods, but is able
to cope with different binaural setups (i.e., unknown HRTFs). However, the latter
approach has been validated only in ideal simulated conditions. In more realistic con-
ditions, the authors of [MvdPK11] introduce a probabilistic model (Gaussian mixture
model) characterizing the complex interaction of ITDs and ILDs by training a model
under various acoustic conditions to gain robustness. This method can cope with
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multiple sources and reverberation, but has also been validated in simulated envi-
ronments. Likewise, in [WW12], from the knowledge of HRTFs, the authors propose
a supervised learning method integrating noise and reverberation to HRTFs to cope
with adverse conditions. For a more practical purpose, in [DHSG15], the auditory
cues are directly mapped to the spatial location of the source through a learning pro-
cess in real world conditions. This learning process characterizes the related transfer
function (RTF), the ratio of the TFs from the left and right microphones, that is
a mixture of HRTFs and acoustic perturbations (see (2.7)). Hence, the method is
limited to static configurations and to dedicated positions in the environment: any
change in the position of the robot or in the experimental conditions may degrade
the localization process. For more flexibility towards changing acoustic conditions,
[YAZ13] proposes a learning approach based on a neural network. However this
method requires a training stage in several and various conditions to obtain accurate
auditory cues in changing acoustic conditions.

Globally, modeling all variability of acoustic environments and/or perception,
that is unique for each robotic setup, remains a complex problem to solve. Hence,
most of the aforementioned methods generally consider static scenes, where the
source and the robot are still and at a favorable distance to each other. Integrating
the robot motion or the source motion in the localization process increases the degree
of complexity of such approaches as already outlined in Chapter 1.2.

2.3.2 Active audition

With the recent progress in understanding of the human auditory system, a renewed
interest in binaural techniques has raised in the robot audition community through
active audition [NOK00b], that exploits robot motion. The idea behind this approach
resides in exploiting robot motion in order to gather additional information for sound
localization. The “naive” approach to active audition simply consists in a triangu-
lation of the measurements from several poses, as performed in [KB08, HST+99].
Obviously, in this context, the source must be static in order to obtain consistent
results. Plethora of studies [LC11, MMWB15, TA06] show that localization is per-
formed more accurately with a motion than in a static way. In [LC11], the authors
compared several motion strategies for localization and concluded that the more
beneficial strategy was obtained with purposeful motions, that consists in moving
towards the given sound source in order to reduce the distance. In [MMWB15], the
comparison of different head motions shows that the best performing head movement
is to rotate the head towards the most likely source direction. These results were
quite expected, since in the first case, reducing the distance to the sound source
increases the DRR level. Consequently, interaural cues accuracy is increased, since
the contribution of reflections is reduced in the recorded signal. In the second case,
turning the head towards the probable sound source increases the spatial resolution
of the localization process compared to eccentric positions.

In realistic environments, spurious measurements are likely to happen and should
be resolved. To cope with measurements uncertainties, the framework proposed
in [KNM15], formulates the active audition as a problem of bearing measurement
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tracking. In this work, the data association problem is solved by coupling a particle
filter to an interaural coherency parameter to detect the direct sound in the recorded
signal spectrum. Subsequently, the source location is inferred from multiple poses
of the robot. In [PDA12], the authors propose to solve these issues by combining
a stochastic probabilistic data association, in order to discard false measurements,
to an unscented Kalman filter. A potentially intermittent moving source can then
be tracked during a motion of the robot. This method has been applied so far
in a pseudo-anechoic environment. A partial experimental validation is proposed in
[PBD+14]. Recently, [NCVC16] extended this approach by integrating an estimation
of the source activity from bearing measurements and a voice activity detection
algorithm. This solution provides promising results able to cope with moderate
reverberation, however the validation is still performed in simulation and consider
an array of microphones.

The aforementioned approaches consider a random motion of robots that may
not be favorable to sound localization. Active audition also covers purposeful motion
strategies aiming to position a robot with respect to the source location. In this
context, the robot motion is set in order to take advantages of the redundancy of the
auditory cues measurements. In general, motion strategies adopted by this kind of
approaches are determined beforehand by the operator through heuristic approaches
or fixed patrolling path. This is illustrated by [MEW09] where an incremental con-
trol strategy coupled with a neural network is used to position a robot closer to one
static sound source. Similarly [TTLJ15] proposes a heuristic approach combining
ITD cues and range cues to home towards a sound source. However this kind of ap-
proaches face some limitations. First defining a strategy of motion beforehand can
lead to unnatural behaviour of the robot for an interaction task. Furthermore, the
heuristic approach requires to model and predict all the possible sensory states of the
robot. In realistic environments that are essentially unpredictable, such approaches
would naturally be limited, while requiring the design of complex state machines.
In a more sophisticated framework, the authors of [BPDCG12] develop a supervised
learning method based on sensorimotor theories, where an agent learns the relation-
ship between the auditory cues and the state of its motors and move accordingly to
the recorded map. The experimental studies associated to this work were performed
in anechoic conditions [BNP+10]. Purposeful motion strategies can also be used
to improve the localization performance. [VSC15] proposes a strategy to find the
minimal motion that could lead to the localization through occupancy grids, while
recently, [BDFP16] developed an information-based feedback-loop in order to mini-
mize the uncertainty of the localization process. Prior to this work, feedback-loops
in robot audition context were introduced in [NMS02] and [KSM+03, KSK+05]. In
the first work, a robot learns the acoustic map (i.e., relation between ILDs, ITDs
and azimuth and elevation) and uses a feedback-error learning scheme to orient the
robot gaze towards a sound source. In the second set of work, the authors present a
control scheme derived from a cost function characterizing the relationship between
the position of a source and the orientation of the robot head. Although the cost
function is empirically computed, a robot was able to turn towards the sound source
without HRTF measurements, in anechoic conditions.
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Active audition compared to static localization, widens the perspective for sound
source localization. From a personal point of view, active audition is a necessary step
towards dynamic, thus natural, sensing in fluctuating environments. This approach
better reflects the auditory sensing of living beings, that is a dynamic process as ex-
pounded in Section 2.1.2.3. However when facing realistic environments, most active
audition approaches still lack of robustness as underlined by the numerous works
performed in simulation or controlled environments. Indeed, the auditory cues are
measured in a static way and still requires a good modeling of the acoustic conditions
and the robot structure. Furthermore, such approaches raise new challenges such as
the fusion of uncertain measurements, the simultaneous motion of the sound source
and the robot, and the motion strategy to adopt with respect to robot purpose.

2.4 Conclusion

Endowing robots with a reliable sense of hearing, and more particularly a sound
localization framework, is a key feature for functional auditory scene analysis. The
challenges raised by the robotic context, such as real time constraints or dynamic
localization (motion of the source and/or the robot), lead the robot audition commu-
nity to take inspiration from the human auditory system. Still, the human auditory
system remains complex, and all the mechanisms involved in the auditory sensations
are not fully understood. Among auditory cues, interaural cues, more particularly
the interaural time difference, have been identified at a very early stage as related to
the spatial location of the sound, and focused most of the studies in psychoacoustics.
However, it is clear that the localization process involves the interaction of several
cues in complex ways, that for now cannot be fully explained.

In addition to interaural cues, frequency-dependent filtering action by the body
also known as HRTF plays a role for localization in the vertical plane and for resolving
front-back ambiguities. The distance is suspected to be inferred from the ratio of
direct sound over reflected paths and from the sound level. Unfortunately, until
now, no simple auditory model can relate these cues to a spatial location of the
source even though their contributions to localization have been acknowledged.

The prominent contributions of sound localization in robotics are based on the
interaural cues in a binaural context. The use of such cues is, however, limited by
the variability of the sound perception, characterized by the HRTFs and acoustic
conditions. Binaural localization requires an accurate modeling of these parameters,
which is a significant challenge. As a result, most of the models and techniques
proposed in the robot audition literature consider static scenes, and are either vali-
dated in simulation or experimentally in anechoic conditions. Learning methods have
also been explored in order to cope with realistic environments. But these methods
generally require large training sets and complex learning procedures. Furthermore
the estimated auditory cues generally correspond to a particular environment, with
a given microphones configuration or robot structure. These methods are hardly
adaptable to unknown environments since estimating all possible combinations of
acoustic configuration is not affordable.
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More recently, the active audition paradigm has been designed to overcome such
limitations by using motion in order to benefit from measurements from different
robot poses. The motion strategy to develop remains a central point of active au-
dition. From different studies it appears that purposeful motions (getting closer or
turning in the direction of the source) increase localization performance. These re-
sults are also corroborated by recent psychoacoustics studies that characterize the
perception as a dynamic process where self-initiated motions are connected to the
varying acoustic cues. However the approaches developed so far do not provide
enough flexibility. Indeed active localization still requires a modeling of perturba-
tions, that may be challenging to obtain in dynamic and realistic environments.

Hence to control robot motions, a different path, proposed in this thesis, consists
in considering a low-level connection between motion and auditory perception, in
order to avoid explicit localization and modeling of the perturbations. The work
depicted here considers a generic approach that couples robot motion to auditory
perception in a closed-loop control. The control loop moves a robot directly from an
auditory feedback, instead of focusing on the preliminary explicit source localization
that is the common path of improvement taken by the methods reviewed above.
In these methods, the task generally consists in locating the sound source first and
move the robot afterwards in an adequate position: the auditory system is com-
pletely independent from the robot control. By contrast, our approach is centered
on the connection between auditory perception and robot control expressed through
a sensor-based control framework detailed in the next chapter.
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Chapter 3

Basics of sensor-based control
framework

This chapter introduces the principles of sensor-based control that builds up the
theoretical aspects of this thesis. The purpose here is to provide an alternative to
sound source localization for robot positioning tasks in realistic environments.

In a first part, we introduce our formulation of robot motion control based on
acoustic cues, that is an approach centered on robot control rather than sound local-
ization. Thence, before a thorough analysis of the theoretical properties of sensor-
based control, the benefits of using such a feedback loop are exposed in Section 3.1.1
through a scenario of a positioning task based on auditory information. In Section
3.1.2, a short review is given about the main usages and applications of sensor-based
control in robotics.

The second segment of this chapter focuses on theoretical aspects of sensor-
based control. The concept of task function leading to the principle of sensor-based
control is first introduced in Section 3.2.1. Following this study, the actual theoretical
framework that builds up aural servo (AS) paradigm is presented in Section 3.2.2,
while accounting for the stability of the controller in 3.2.3 and for the positioning
task to be performed by the robot, as exposed in Section 3.2.4.

3.1 Introduction to sensor-based control

3.1.1 On the interest of sensor-based control for robot audition

What would bring sensor-based control to robot audition?
In this section we try to give a synthetic answer to this question by emphasizing
the properties induced by this paradigm. Those properties greatly motivated the
realization of this thesis. The previous chapter pointed out the limitations of sound
source localization that prevents robot audition applications from evolving in real-
istic environments. Until now, most of the contributions tackled the issues of robot
auditory perception from acoustic, signal processing or physiological perspectives.
Typically, robot audition is addressed in the same way as machine hearing. It is not
uncommon to apply robot audition techniques to other types of machines. This is
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the case of the framework reported in [NSN15] that uses active audition to localize
a sound source in 3D from a tablet device. Likewise, the human-machine interface
proposed in [NMN15] uses the developments of robot audition for a car navigation
system. In this paradigm commonly adopted by robot audition community, robots
are considered as application platforms, since most of the solutions developed are
not exclusive to robots. Only the context of robot audition differs from machine
hearing, since the latter solutions should account for additional constraints such as
ego-noises, real-time processing or limited resources as already mentioned in Chapter
1.2.

Nonetheless, unlike other machines, robots are endowed with motion. Robots
can move in accordance with a given purpose, such as interacting with their sur-
rounding environment. This simple characteristic can make a tremendous difference
in auditory perception. Yet, the previous chapter stressed the benefits of motion
for auditory perception through the active audition framework that can increase the
robustness of sound source localization. However, active audition as well as classic
localization techniques primarily focus on the quality of auditory perception from an
acoustic and signal processing perspective. These techniques are attached to solve
the question “ Where is the sound source ?” that corresponds to a machine hearing
problem in a broad sense. The control of robots and the concept of giving a purpose
to robots are generally neglected.

By contrast in this thesis, we aim to develop a dedicated control framework for
auditory perception, that takes advantage of the characteristics of robots over ma-
chines. Indeed control, as an essential component of robotics, is introduced through
a dedicated control framework for robot audition. The previous questioning about
the source location, that builds up the sound source localization paradigm, becomes
“How to position the robot with respect to the sound source?” The latter way to con-
sider the auditory interaction can only be solved from a robotic perspective, since
it requires a voluntary motion of the robot. In this paradigm, we thus model an
auditory perception as a task to be completed by a robotic system. More explicitly,
our approach consists in defining robot motion with respect to auditory feedback
measured from several microphones. This is the principle of the sensor-based control
approach.

To emphasize the interest of expressing auditory perception in this paradigm, let
us detail a simple example of a positioning task. This task consists in orienting a
robot head towards a given sound source. In this scenario, a robot is endowed with
two microphones, while sound waves emitted by a source reach the microphones with
an angle α as illustrated in Figure 3.1.

In a classic approach, the task would consist in extracting the interaural cues
(e.g., ITD), computing the corresponding orientation α̂ and eventually turning the
robot head by α̂. The accuracy of this task depends on how accurate α̂ is with respect
to α, so that the robot faces correctly the sound source. This constraint implies an
accurate modeling of potential perturbations: reverberation, noises, head shadowing
effect, ego-noises.... Taking into account all these parameters is challenging since
most of them are uncontrollable, unpredictable and highly fluctuating.

In opposition to the latter approach, in a sensor-based control framework, the task
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(a)

(b)

Figure 3.1: A robot perceives a sound source emitting from an angle α. A head-
turn task can be performed from two approaches. (b) Classic localization: After
estimating the sound direction α̂, the head is turned accordingly; (c) Sensor-based
approach: The head is turned until the two signals recorded by the left and right
microphones match, which corresponds to the desired orientation of the robot.

consists in moving the robot in an appropriate direction until the signal recorded from
the left microphone matches the signal recorded from the right microphone. Getting
identical signals from both microphones (e.g. in time or level) logically implies that
the robot is facing the sound source. One immediate advantage of such task modeling
lies in the fact that it is not required to localize sound sources in the scene. The
motion applied to the robot is not controlled by an estimation of the source location
but rather steered by auditory properties implied by the desired pose (i.e., similar
measurements from both sensors) and the sound features variation with respect to
this motion. These two characteristics are essential key points that emphasize the
robustness of sensor-based approaches over sound localization methods for robot
motion control.

First, sound features variation is an element that may be considered robust with
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respect to usual perturbations faced in robot audition. In Figure 3.1b, without
any thorough analysis, while achieving the task, it is expected that the amplitude
of the right signal decreases while the left signal amplitude increases. When the
robot faces the sound source, these two signals should have the same amplitude. A
similar reasoning holds for the signal delay of perception between two microphones.
Analogously, the sound level increases when the sensors moves closer to the given
sound source while it decreases with an opposite motion. An accurate achievement
of a task depends on the consistence of the sound features variation and not on
accurate intrinsic values as it is for sound localization approach.

The second characteristic exploits measured auditory features with respect to
desired auditory features. These desired features build up a reference that should
be reached. They are either experimentally measured or estimated. The system is
thus defined with respect to local measurements rather than global measurements
as it is usually assumed for sound localization. Intrinsically, these desired features
could be erroneous with respect to a global ground truth obtained from a localization
perspective. However, as long as these values can be reached, the control task can
be correctly achieved. When considering more specifically the context of facing
a sound source, signal measurements around this pose are known to be the most
sensitive: the spatial resolution and accuracy of auditory cues are at their finest.
This property has already been discussed for machine hearing in [CLLH07] reporting
that the performance of localization and tracking algorithms can be improved by
turning the head to ensure that the tracked source remains in the region directly in
front of the head. The same evidence holds for human localization performance as
exposed in [CLH97] or [MM90]. Consequently, in this context, the control framework
can reach with a higher accuracy the desired auditory features.

Hence the combination of these two characteristics constitutes the key strength of
formulating the motion control in a sensor-based control approach. Our formulation
of the problem simply relaxes accuracy requirements, which is a critical point for
sound localization approaches. As a consequence perturbations like reverberation
and potential noises that alter the auditory cues estimation, have then a limited
effect. A beneficial effect of this result concerns the well-known subjectivity of au-
ditory perception characterized by HRTFs. This subjectivity highly constrains any
localization systems embedded in robotic heads (as discussed in Chapter 2) and it
generally requires an accurate modeling of perturbations. In the task represented
in Figure 3.1b, the symmetrical property of the robotic structure implies that the
shadowing effect from left and right microphones should be the same when the robot
is facing the sound source. Moreover knowing that auditory cues variation is not
affected by such perturbation, the scattering effect is nullified and the latter task
can be completed without any modeling of HRTFs, as it will be shown in Chapter
6.

Eventually one can highlight the advantages related to the closed-loop control
scheme. The closed-loop control is a highly reactive process that is especially adapted
to dynamic environments, since a new control input is computed at each processing
frame. Hence this method should be able to cope with moving sound sources. Like-
wise, measurements are updated and corrected in real-time, which limits the effect
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of spurious and erroneous estimations that are not consistent with robot motions.
As stated above, robots voluntary motions induce a given variation of the measured
auditory cues that can be anticipated. And, similarly to active audition processing,
several measurements bring additional information that can increase the robustness
of auditory perception.

From all these observations, it appears that AS framework can bring robustness
and flexibility to auditory tasks, which is a principal requisite for robots evolving
in realistic environments. The potential benefits reported at this stage will be sup-
ported all along the development of this manuscript by theoretical and experimental
evidence in Chapters 4, 5 and 6.

3.1.2 Sensor-based control in robotics

One of the most well-known sensor-based application is the so-called visual servoing
(VS) that uses computer vision data to control robots dynamically. VS refers to the
paradigm of closed loop control techniques of actuated systems with visual feedback.
With the high preference of vision over other modalities, VS naturally becomes a
tool for automatic control in unknown, complex and dynamics environments. The
first approaches to sensor-based control using vision were introduced in the late 70s
[Agi77, Agi79] followed by [WSN87, RCE90, FM89] in the 80s. These works pioneered
robot control based on visual information. Indeed despite the limited performance
of the computing architectures in the 80s, these works allowed to exploit visual
information in real-time with reactive behaviors.

Nowadays, regardless of the diversity of vision-based robot control, VS is still
considered as an efficient approach for vision-based robotic tasks such as positioning
and tracking. Based on the nature of visual information, the existing VS approaches
can be classified into two main categories: image-based visual servoing (IBVS) and
position-based visual servoing (PBVS) [WSN87, CH06]. In IBVS techniques, visual
features (e.g., points, lines, moments) in the image plane are used to compute a
control law. In PBVS techniques, visual information is used to extract the pose of
a given target with respect to the controlled robot. A control law is then computed
from the error between the current and desired poses. In AS, this approach would
consist in localizing a given sound source at each iteration of the control loop. How-
ever, because of localization limitations discussed in the two previous chapters, this
approach is not interesting (yet) for AS framework.

In recent decades, VS techniques have been widely applied to different platforms
such as classic robot manipulator [C+96], mobile robots [Cor03], or more recently
to aerial vehicles [MH07]. VS has already been applied to diverse contexts. In
medical robotics the accuracy inherent to VS is used to develop medical assisting
robots. This is illustrated by plethora of contributions such as [KGD+03] proposing
a robotic system that automatically positions surgical instruments during robotized
laparoscopic surgical operations. In [YN01], an automated embryo DNA injection
system controlled within a VS framework is reported while ultrasound images are
used to control an ultrasound probe held by a medical robot in [MKC08]. VS has
also been applied to the field of virtual reality by formulating the problem of camera
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pose estimation as a regulation task achieved in the image plane [MC02, CMPC06].
More recently visual feedback has been used to control the deformation of compliant
objects by robot manipulators [NALRL14] through the visual deformation servo-
ing framework. This wide range of applications classify VS approach as a general
paradigm, that is shaped by different contexts and purposes. Unsurprisingly VS
has been used with different types of visual sensors beside the classic perspective
camera. The utilized sensors could be catadioptric cameras [BMH03], generalized
cameras [CMS11], stereoscopic [HCM94] or RGB-D sensors [TM12] among others.
These sensors could also be exploited while being externally fixed [HDE98].

Nonetheless sensor-based approaches are not limited to visual feedback and have
been applied to a wide range and variety of sensors. In the early 90s, [EMS90]
showed that most sensor-based applications may be treated within a unified con-
trol loop framework. In the latter paper, the authors develop a global approach to
the problem of proximity and force-based control in robotics applications that lead
to the development of proximity servoing. Nowadays a significant number of appli-
cations using sensor-based control are related to touch sensing feedback, whether
human-robot interaction for collaborative tasks, obstacle avoidance, manipulation
or grasping tasks. This can be illustrated by [KJHJ05] in which the authors intro-
duce a framework to control a team of robots, through proximity sensors (e.g., laser)
feedback, that follow walls or terrains at a given distance. The application proposed
in [WS08] explores the use of electric field pre-touch as a feedback signal for closed
loop control for aligning and pre-shaping a robotic hand for grasping tasks. The
paper proposed by [SZS94] showed that sensor-based control could also be used with
tactile images produced by tactile sensors mounted on the fingertips of a robot hand
for object manipulation. This paper gives rise to the well-known tactile servoing.
Tactile feedback can be used nowadays for tactile exploration tasks [LSHR13] or for
more complex tasks, like dexterous prehension as proposed by [OSC00].

Furthermore, the versatility of sensor-based control framework engendered the
topic of multimodal sensor-based robot control. In this context, a task is achieved
by combining data of sensors measuring different physical phenomena in an unique
control framework. Combining information from several sensors in the sensor-based
approach can be interesting to overcome the limitations and flaws inherent of a par-
ticular sense (e.g limited field of view of cameras). This idea is derived from the
concept of hybrid task [EMS90], in which a given task is solved by completing addi-
tional objectives (e.g, trajectory tracking). The paper [HIA98] illustrates the concept
of hybrid task by achieving a contacting task in an unknown environment, while a
robot is visually guided. Sensor-based control has the advantage of achieving a given
task without fusing different sensing modalities or designing complex state machines.
For instance, in [ENSHW14] a gripper is controlled by combining pre-touch sensors
feedback and tactile sensors feedback, for a grasping task. In [DSLSV07], the authors
introduce an approach centered on human-robot cooperation combining vision and
force control, in order to achieve safe human-robot interaction in a given working
space.

This short review of sensor-based control, through the principle of task functions
and its usage in robotics, emphasizes the wide application field of this kind of ap-
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proaches. Such a vast literature cannot obviously be summed up in these two latter
sections. Only the most essential aspects for the understanding of this manuscript
have been introduced. We refer the interested reader to dedicated textbooks address-
ing the sensor-based control in robotics such as [SELB91], [C+96] or [CH08]. At our
end, we concentrate on applying sensor-based control in the field of robot audition,
as detailed in the next section.

3.2 Theoretical framework

3.2.1 General principles of task function

The development of exteroceptive sensors, which are now mostly affordable and em-
beddable, has stimulated their use on robots. Such sensors include cameras, micro-
phones, tactile sensors, lasers and force sensors for instance. In the robotic context,
exteroceptive sensors give a measurement of an interaction with the surrounding en-
vironment. The typical approach consists in regulating this interaction through the
information gathered from the sensors. Flexible and reactive control of the interac-
tion is then aimed as well as precision, speed and low computation cost.

One way to control robots is by open-loop techniques. Environment sensing is
performed in a first step and robot motion is deduced afterwards. As illustrated by
Figure 3.2, the approach is based on an initial measurement s(r0) obtained from the
sensor at a position r0, and a desired pose r∗. Therefore this approach is regulated
by the control input q̇ until the desired pose r(q) = r∗ is reached from the extracted
initial pose r0(q), where q characterizes the configuration of a given robot. This
is typically the approach considered in sound source localization where the azimuth
and elevation angles and/or distance information can be used to position a robot.
However estimating the initial pose r0(q) from a unique sensors measurement is not
always trivial, as illustrated by sound localization limitations, and generally requires
a prior model of the surrounding environment. Moreover when r0(q) is extracted, a
motion planning strategy is then required to reach the desired pose from the current
pose. This action is perform “blindly” or more exactly in a “deaf manner” in our
context, since r(q) is not related to sensor information anymore.

By contrast sensor-based control is designed by a closed-loop control that consists
in a dynamic "sense and move" approach. The control input q̇ to a given robot
is steered by the dynamic feedback of sensor measurements s(r) and generates a
motion until a pose characterized by s(r) = s∗(r∗), is reached. Formally, the goal of
a sensor-based task consists in controlling the system by regulating the error between
the observed and desired values s(r) − s∗(r∗) to 0. By expressing the motion task
at the sensory level, the step of estimating a desired pose is skipped (unless a PBVS
approach is used). Likewise, the motion planning is avoided. Hence this approach
may be less conditioned by the knowledge of the environment, and may provide
better solutions in unpredictable scenarios. The core principle to perform the latter
regulation lies in controlling a robot from a C2-differentiable error function e(q, t),
that has to be regulated during a time interval [0, T ]. This is the principle of the task
function introduced in [SELB91] that depends on the robot configuration q(t) at a
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Internal model of the robot

(a)

(b)

Figure 3.2: Two different approaches to robot control (a) An open-loop approach
consists in deducing the pose of the robot r0(q) with respect to a sensed target from
a unique sensor measurement s(r0) and move the robot accordingly through q̇; (b)
A sensor-based approach links the motion of the robot to the sensor measurement
s(r) in a feedback loop until the robot reaches a desired configuration characterized
by a demanded measurement s∗.

time t. The task function to be regulated can be expressed in terms of a measure f
of the robot state as:

e(q(t), t) = f(q(t), t)− f(q∗(t)) (3.1)

Generally the function f corresponds to a feature s that underlies spatial information
about the robot configuration and that evolves accordingly to the motion applied to
the robot. Since e(q(t), t) is differentiable, the derivative of (3.1) that conditions the
task function regulation is defined as

ė(q(t), t) =
∂e(q(t), t)

∂q(t)
q̇(t) +

∂e(q(t), t)

∂t
. (3.2)

In (3.2), two terms can be distinguished. The first one, involving the task Jacobian
Je = ∂e(q,t)

∂q characterizes the task function variation according to the robot motion.
The second term reflects the variation of the task function e with respect to time.
More exactly, "disturbances" caused by the sensed target from which is inferred the
robot state. From the control perspective, the task function e(q, t) is said to be
admissible, that is to say well-conditioned if it satisfies some specific properties such
as [ECR92]:
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• The regularity condition: Je should not be singular (i.e., it should be invertible)
∀t ∈ [0, T ].

• There exists a unique ideal trajectory qr(t) so that e(qr(t), t) = 0 ∀t ∈ [0, T ]
starting from an initial given condition qr(0) = q0.

In our case we are particularly interested in the configuration when the sensors are
mounted on robots, since we generally consider embedded microphones. Then, sen-
sors’ motions are directly governed by the robot configuration, so that the measured
features s(r, t) can be written as

s(r, t) = s(q(t), t). (3.3)

s(r, t) depends on the configuration of the robot at the current time q(t) but also
on the potential evolution of the sensed target at t. Thus, the task function given in
(3.1) can also be expressed as

e(q(t), t) = C(s(q(t), t)− s∗), (3.4)

where C is a combination matrix that allows to match the dimension of s with the
number of controlled degrees of freedom (DOF), when features are redundant. Thus,
C is used when the dimension of s is greater than the number of controlled DOF
[SAA91]. Nonetheless in the cases developed in this thesis, this configuration does
not occur and C = I. Consider, for simplicity, the case of a regulation task in
which a desired constant value s∗ is specified. This value can be either computed or
experimentally measured by manually moving the robot to a desired configuration.
Omitting the time dependence of the feature s and the robot configuration q, from
(3.4), (3.2) is equivalent to

ṡ =
∂s

∂q
q̇ +

∂s

∂t
, (3.5)

which characterizes the variation of the features s with respect to the applied motion.
In this case the “disturbance” term exhibited in (3.2) corresponds to ∂s

∂t that char-
acterizes the potential motion of the sensed target, independently from the sensors.
The first term of (3.5) Js = ∂s

∂q ∈ Rk×m is the Jacobian feature matrix that can be
decomposed from the chain rule as

∂s

∂q
=
∂s

∂r

∂r

∂q
. (3.6)

The latter equation contains the robot Jacobian Jr = ∂r
∂q that links the sensors’

motion to the robot’s motion. Since we consider embedded sensors, this Jacobian
solely depends on the position of robot sensors and therefore is assumed to be known.
The robot Jacobian is multiplied by the interaction matrix Ls = ∂s

∂r that characterizes
the chosen task through s, by linking the variation of the selected feature to sensors’
motion [CH06]. If we assume a motionless target that does not induce any change
in values to the features s and if no potential disturbances are acting on the system,
the second term of (3.5) becomes ∂s

∂t = 0. Hence, once s is selected, the relation,
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characterized by Ls, between a set of features s and the sensors velocity vs is given
by

ṡ = Lsvs (3.7)

in which Ls ∈ Rk×n=6 is a matrix sized by k the number of measurements and the
dimension of vs (SE(3)). The sensors’ velocity is defined by vs = (vs,ωs) where
vs = (vx, vy, vz) denotes the spatial linear velocity and ωs = (ωx, ωy, ωz) the angular
velocity. By extension, when using (3.4) and (3.7), we obtain the relationship between
the sensors’ velocity and the time variation of the error:

ė = Levs, (3.8)

where Le = Ls. Then, designing a task regulation mainly consists in i) selecting
s, ii) computing or measuring s∗ and iii) modeling the task Jacobian Js (via the
interaction matrix Ls) while ensuring that the admissibility conditions of the task are
not violated. Eventually, under the hypothesis of motionless target, the dynamics of
the task function to be regulated is given by

ė(q, t) = Jsq̇. (3.9)

3.2.2 Control scheme

As reported previously, the sensor-based control can either be designed in order to
consider sensor features or directly sensor pose in the loop. In our context, we are
mainly interested in designing a control scheme directly from auditory features since
sound source localization happens to be extremely complex. From then on, a simple
control scheme can be designed with a purpose of exponential decoupled decrease
of the error [ECR92]. In this case, the time variation of the error for the feedback
system should follow

ė = −λe (3.10)

with λ > 0 a gain that tunes the time to convergence. Then, by combining (3.7) and
(3.10) we obtain

vs = −λL+
s e (3.11)

where L+
s ∈ Rn×k is the Moore-Penrose pseudo-inverse of the interaction matrix.

The pseudo-inverse is used when the inverse is not defined, that is, when n 6= k
or n = k and |Ls| = 0. When k < n and the rank of Ls is k, the Moore-Penrose
pseudo-inverse is defined as

L+
s = L>s (LsL

>
s )−1 (3.12)

while when k > n, and the rank of Ls is n

L+
s = (L>s Ls)

−1L>s . (3.13)

Otherwise, when k = n and |Ls| 6= 0 we simply have L+
s = L−1s . The same reason-

ing can be developed by considering the feature Jacobian Js, when the sensors are
embedded on a robot. Thus, the control input to the robot is given by

q̇ = −λJ+
s e. (3.14)
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In this case since C = I, we have k ≤ m, and only the left pseudo-inverse given by
(3.12) is used. Nonetheless in real configurations, it is impossible to know perfectly
in practice either Ls or L+

s (and by consequence Js and J+
s ). In the first case, the

interaction matrix could depend on a quantity that cannot be directly measured by
using the sensors. A typical example concerns the IBVS interaction matrix that
contains the depth of the image feature relative to the camera frame that cannot be
obtained from the image. Thus generally an approximation L̂s

+ of the inverse of the
interaction matrix is used in the control loop. Consequently the control input to the
system is more exactly defined as:

vs = −λL̂+
s e (3.15)

Several ways exist to compute L̂s and these different strategies affect the behav-
ior of the system and possibly the stability of the control scheme (see Section 3.2.3).
Some of these strategies exposed in [CH06] are thoroughly detailed and studied in a
practical use case in Chapter 5.3.2.2. Such type of regulation task allows the devel-
opment of control methods by directly linking perception to action. To some extent,
sensor-based control can be referred to a simplified modeling of human cognitive pro-
cesses, that constantly update its behavior from the sensory feedback. More precisely
sensor-based control may be considered as a bio-mimicking process for robot control
and may underlie several advantages, as detailed in the previous section, especially
when considering the hearing sense. The works exposed in Chapter 2.1.2 reported
that human auditory system is a dynamic process linking motion and perception.
Until now this process has not been fully exploited in robot audition, while it is
usually adopted with other sensory modalities.

3.2.3 Stability

In this part, we consider the fundamental issues related to controllers stability. The
stability properties ensure that our controller is able to converge towards the con-
figuration for which e = 0. This analysis is based on Lyapunov theories dedicated
to nonlinear control systems such as the feedback loop developed in the previous
section. The Lyapunov stability is an mathematical extension of physical observa-
tion of mechanical systems: the total energy of a mechanical system is continuously
dissipated before eventually reaching an equilibrium state or point [SL+91]. An equi-
librium point is a point where the system can stay forever without moving. Hence,
for a system ẋ = f(x), a state x∗ is an equilibrium state of this system if once x(t)
is equal to x∗, it remains equal to x∗ for all future time. The concept of Lyapunov
stability consists in constructing a Lyapunov candidate function (similarly to the en-
ergy function of a mechanical system) for the system, and to examine the function’s
time variation that should decrease.

First, we introduce the concept of local stability that qualitatively define a system
as locally stable if starting the system somewhere near its desired operating point
implies that it will stay around the point ever after. By defining the close neighbor-
hood by a sphere of radius R, an equilibrium point x∗ = 0 is said to be stable if, for
any R > 0, there exists r > 0, such that if ‖x(0)‖ < r, then ‖x(t)‖ < R ∀t > 0.
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From this definition, the asymptotic stability property can be inferred. The
asymptotic stability means that the equilibrium point is stable, and any state x(t)
started close to x∗ actually converge to x∗ as time t → ∞. Hence, an equilibrium
point x∗ = 0 is asymptotically stable if it is stable, and if there exists r > 0 such
that if ‖x(0)‖ < r then x(t)→ 0 as t→∞

More formally the local asymptotic stability is demonstrated from a stability
criterion that makes use of a Lyapunov function candidate L. This function should
decrease along with the system state trajectories. For a system ẋ = f(x) with an
equilibrium at x∗ = 0, the local asymptotic stability is ensured by the set of following
sufficient conditions: in a sphere of radius R, there exists a scalar function L with
continuous first partial derivatives such that

•L(x) is locally positive definite: L(0) = 0 and L(x) > 0 ∀ x 6= 0

•L̇(x) is locally negative definite: L̇(0) = 0 and L̇(x) < 0 ∀ x 6= 0,
(3.16)

then the equilibrium point x∗ = 0 is locally asymptotically stable. Note that the
local stability is obtained as soon as L̇(x) is locally negative semi-definite.

If the asymptotic stability is valid for any initial states, the equilibrium point x∗ =
0 is said to be globally asymptotically stable. The global asymptotic stability ensures
that the system is attracted by the equilibrium point independently of the starting
pose and is thus not restricted to the neighborhood of the equilibrium point. An
additional condition on the function L is required: L(x) must be radially unbounded
which is shown by

‖x‖ → ∞⇒ L(x)→∞. (3.17)

Assuming that there exist a function L(x) of the state x with continuous first deriva-
tives, the global asymptotic stability is thus defined by the following set of sufficient
conditions

•L(x) is globally positive definite: L(x) > 0 ∀ x 6= 0.

•L̇(x) is globally negative definite: L̇(x) < 0 ∀ x.
•L(x) is radially unbounded: L(x)→∞ if x→∞.

(3.18)

For the specific sensor-based control exposed in this thesis, the system is defined
by (3.8). We then consider the candidate Lyapunov function characterized by the
squared error norm L(e) = 1

2‖e‖
2. This function is inherently globally positive

definite and radially unbounded (3.18). In order to fulfill the condition related to
L̇(e) being globally negative definite, we derive the candidate function as follows:

L̇(e) = e>ė. (3.19)

The latter equation can be detailed by injecting (3.8) and (3.11) in it:

L̇(e) = −λe>LsL̂
+
s e. (3.20)

As a consequence the global asymptotic stability of the closed-loop control system is
ensured as soon as

LsL̂
+
s > 0. (3.21)
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Yet, it is not always possible to ensure this condition, that consists in proving
that the product in (3.21) is positive definite. A thorough analysis of the eigenvalues
of the symmetric part of LsL̂

+
s would probably provide boundaries for the approxi-

mation of the interaction matrix L̂+
s . Such complex demonstration are not required

for the comprehension of this thesis and we refer the interested reader to [MMR10]
that consists in a typical study of the stability issue. Nonetheless, some essential sta-
bility results supporting AS framework are provided for different task configurations
considered in the manuscript. In general, it is assessed that if the number of features
is less or equal to the number of sensor DOF (i.e., k ≤ n), the global asymptotically
stability condition (3.21) is ensured if the approximations involved in L̂+

s are not too
coarse [CH06].

3.2.4 Virtual linkages

Additionally to the stability properties, an important notion used in this thesis con-
cerns the task that is achieved by a robot. Introduced in [SELB91] and applied to
VS in [CRE93], virtual linkages provide a theoretical modeling of the task. A Virtual
linkage representation is a tool for analyzing the sensor-based task directly from the
properties of the interaction matrix. From the interaction matrix, the behavior of a
given robot can be anticipated, that is, the set of allowed poses for the robot to com-
plete a given task. The concept is derived from the definition of mechanical linkages
that characterize a mechanical structure of assembled and connected bodies or links.
The connections between links are modeled as providing movement of pure rotation
or translation. Mechanical linkages are usually designed to transform a given input
force and movement into a desired output force and movement. A simple illustration
of mechanical linkage is materialized by robotic arms, where each link building up
the arm is connected by a joint with a prismatic or rotoid motions.

In our context, a virtual link is defined between a robot and the sensed object
(i.e, the sound source) and governs the admissible robot motion to complete a task.
Let v∗si be a virtual motion of the sensor (or the robot), so that the sensor measure
si remains constant. Thus from (3.7), v∗si is a solution of the equation

Lsiv
∗
si

= 0 (3.22)

and a skew reciprocal to Lsi . The set of motions v∗si that leaves the set of features s
unchanged is then denoted S∗. S∗ is a vector subspace characterizing these motions
that is defined by

S∗ = Ker Ls (3.23)

where each column characterizes a motion of v∗si type. Thus it can be defined that
a set of independent and compatible constraints satisfying s(r) − s∗ = 0 builds up
a virtual linkage between the sensor and the sensed object [SELB91]. It should
be noticed that the vector subspace S∗ allows us to characterize virtual links since
s(r) − s∗ = 0 ∀t implies that ṡ = 0. Considering m as the rank of the interaction
matrix, N the rank of S∗ is equal to n −m. This rank N defines the class of the
virtual link. Consequently, the class of a virtual linkage corresponds to the number
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of DOF, in translation or rotation, that are not constrained to complete the task
since m and N complement each other.

3.3 Conclusion

Sensor-based control has been researched since several decades and from different
perspectives, as illustrated by the vast literature supporting this field. This frame-
work is nowadays widely developed in connection with the emergence of exteroceptive
sensors and allows reactive control of a robot to sensory stimuli at a relatively low
computational cost. The vision and touch senses are the common sensory feedback
used in this framework. The well-known visual servoing paradigm, alone, illustrates
the wide range of applications of sensor-based control. Robots’ physical interactions
(e.g., grasping tasks) also benefit from the sensor-based approach through paradigms
such as proximity servoing or tactile servoing, that are centered on the range and
touch sensing. Such paradigms in these fields have led to impressive developments
and prove their efficiency solving specific problems.

Nonetheless, the sensor-based approach remains surprisingly unused in robot au-
dition, despite the convincing results obtained when using the touch or vision modal-
ity. However, it can be shown that expressing the problem of auditory perception
through a task function can greatly simplify the interactions based on sound. The
task function expresses a voluntary motion of a robot to interact with a given sound
source. The auditory feedback is used to position the robot with respect to one or
several sound sources. The resulting approach, AS, relies principally on the varia-
tion of auditory cues to steer the robot motion. Auditory cues variation appears to
be more robust to realistic environments than their intrinsic values. AS is thus a
dedicated control framework centered on hearing perception for robots, unlike classic
sound localization frameworks that are adapted to machines in a broad sense.

The main tool building up AS is the closed-loop control ensued from the definition
of the task function formalism. The resulting control scheme depends principally on
the modeling of the task Jacobian, that characterizes the relationship between the
robot motion and the variation of auditory features. The task’s Jacobian models
accurately the latter relationship while ensuring some given conditions. The first
condition concerns the task admissibility that is generally ensured as soon as the
task’s Jacobian is invertible, while the second one concerns the stability of the control
system that guarantees the convergence of this system towards the global solution
of a given task. The development of auditory control schemes using this type of
formalism is the main thread of the next two chapters.
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Chapter 4

ILD-based aural servo

The first modeling and applications of the AS framework are introduced in the follow-
ing chapter. More specifically, this chapter concerns the development of sensor-based
control based on ILD. ILDs are analyzed from a binaural perspective, considering a
set of two microphones in a free-field area. In this chapter and the following deal-
ing with ITDs, the head scattering effect between the microphones is voluntarily
omitted. The issues related to the scattering effect of head mounted systems are
introduced later in Chapter 6. The results developed here are validated on a mobile
robot endowed with two free-field microphones.

In the robot audition literature, surprisingly, when considering free-field condi-
tions, the ILD is seldom exploited compared to the prominence of methods based
on ITDs. Only few works such as [BG05] or [CCW06] try to develop localization
systems using this cue. The main challenge about ILD cues comes from the fact that
they cannot be explicitly associated to an exploitable source location, when using
two microphones. Actually, in planar scenes, iso-ILD lies on a circle on which the
source may be located. From this information, explicit source locations or directions
cannot be deduced. As a result, in [BG05], the authors consider four microphones in
order to infer the sound location, while in [CCW06], the authors use the intersection
between ILD and ITD cues to extract the source position. Furthermore, both of
these studies point out the high sensitivity of ILDs to reverberation. As a conse-
quence, most free-field localization approaches are based on ITDs, when considering
binaural sensors. On the contrary, in this chapter, we develop a control scheme,
based on ILD measurements derived from acoustic properties of sound propagation
in free field conditions. This contribution emphasizes the fact that AS paradigm
opens perspectives on the utilization of auditory cues that are hardly exploitable in
localization-based paradigms. To integrate ILDs in AS, the core idea of the method
presented in this chapter consists in linking the variation of ILDs to the robot motion
through an interaction matrix.

For this purpose, a geometrical analysis is performed first, in order to establish
the link between an ILD measurement and a sound source location in Section 4.1.2.
This analysis also draws the limits and constraints related to ILD cues.

From this preliminary analysis, in Section 4.2 the ILD variation is derived with
respect to the motion of a pair of microphones, so that an interaction matrix related
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to this cue can be inferred. Then this result is integrated into a control scheme, which
is analyzed with respect to its stability properties, and the achievable positioning
tasks. The proposed framework is eventually validated through several experiments
on a mobile robots in real world environments.

In the last segment of this chapter in Section 4.3, we also integrate a distance
cue to the control scheme, the absolute sound energy measured by the microphones.
Following the same process as in the previous section, the interaction matrix related
to this cue is computed. The feedback control is finally validated in various situations
and acoustic conditions on a mobile robot.

4.1 ILD modeling

4.1.1 Scene configuration

Figure 4.1: Geometric configuration of the considered problem, that includes a source
Xs emitting a spherical sound wave, and a pair of microphones M1 and M2.

In a first phase, let us consider the ideal case of a motorized pair of microphones
M1 and M2 in an area free of obstacle. The free-field microphones M1 and M2 are
separated by a distance d as illustrated in Figure 4.1. An omni-directional pointwise
sound source Xs is continuously emitting a spherical sound wave a(t). We also
assume that the medium through which the sound travels is uniform and that linear
acoustics hypotheses hold. Furthermore, we consider a frame Fm(M,−→xM ,−→yM ,−→zM )
originating from the midpointM of the pair of microphones. Since we are considering
a planar scene, we have zM = 0. In this frame, the Cartesian coordinates of each
microphone are respectively M1(d2 , 0) and M2(−d

2 , 0). The sound source Xs(xs, ys)
is located at a distance `i from each microphone Mi. Considering the geometric
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model in Figure 4.1, the distances `i are respectively given by{
`1 =

√
(xs − d/2)2 + y2s

`2 =
√

(xs + d/2)2 + y2s
(4.1)

Eventually, let ` be the distance between M and Xs, that is then immediately related
to the source position through:

` =
√
x2s + y2s (4.2)

In this configuration, the microphones are endowed with 3 DOF in the horizontal
plane, that are the translations along −→xM and −→yM axis, and the rotation around −→zM .

4.1.2 Geometrical properties of the ILD

Although ILDs are mainly defined in the high frequencies of the signals measured by
the microphones, one can infer ILDs directly from the acoustic properties of sound
propagation in a similar process as [BG05]. Indeed, let us consider that a(t), the
signal generated by the sound source, is perceived by Mi, for a frame of length w,
under a high signal-to-noise ratio. In this condition, the signal at each microphone
Mi is defined as:

xi(t) ∝
a(t− `i

c )

`i
. (4.3)

where `i
c expresses the sound propagation delay (see spherical sound wave propaga-

tion in Chapter 1.2.1). In the following, without loss of generality of our model we
consider a unitary proportional gain. By integrating (4.3) over the frame of length
w, the energy received by each microphone is defined as follows:

Ei =

∫ w

t=0
|xi(t)|2 dt =

1

`2i

∫ w

t=0
a2
(
t− `i

c

)
dt (4.4)

Equation (4.4) characterizes the inverse-square law property inherent to spherical
and uniform sound propagation as supposed in Section 4.1. The ILD ρ between the
two microphones M1 and M2 is then calculated from the ratio:

ρ =
E1

E2
=
`22
∫ w
t=0a

2
(
t− `1

c

)
dt

`21
∫ w
t=0a

2
(
t− `2

c

)
dt
. (4.5)

Assuming that during w, the perceived sound signal does vary little between the two
microphones, one can deduce that

∫ w
t=0a

2(t − `1
c ) dt ≈

∫ w
t=0a

2(t − `2
c ) dt. Actually,

when the sound source is close to the microphones, we have `i
c � w. And conversely,

when the source is far, `1 ≈ `2 since `i � d. These observations are also consistent
with ITDs that are generally lesser than 1ms for realistic inter-microphones distances.
In comparison, w has a length of few tenths to hundreds ms. Consequently the ILD
ρ can be simplified without significant loss of accuracy as:

ρ =
`22
`21

(4.6)
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Figure 4.2: For a given sound source Xs, the ILD refers geometrically to a circle C ,
for which the front-back ambiguity should be solved.

Hence, from (4.6) and (4.5) the following relationship appears:

E1`
2
1 = E2`

2
2. (4.7)

From these relationships, one can infer the sound location from an ILD measurement.
With this aim in mind, by injecting the expression of each `i with respect to Xs in
(4.7), we obtain

E1

(
x2s − dxs +

d2

4
+ y2s

)
= E2

(
x2s + dxs +

d2

4
+ y2s

)
. (4.8)

This relationship can also be expressed as(
xs −

d

2

E1 + E2

E1− E2

)2

+ y2s +
d2

4
− d2

4

(E1 + E2)2

(E1− E2)2
= 0. (4.9)

Finally (4.9) reduces to the equation of a circle C characterized by

(xs − cx)2 + y2s −
E1E2d

2

(E1 − E2)2
= 0 (4.10)

where cx = d
2
E1+E2
E1−E2

. This result states that the sound source Xs is located "some-
where" on the circle C , illustrated in Figure 4.2, centered on the point (cx, 0) with
a radius of cr = d

∣∣∣ √E1E2

(E1−E2)

∣∣∣. In 3D scenes, the circle is changed into a sphere, gener-
ated by turning around the interaural axis, that induces the torus of confusion when
using both interaural cues (i.e., ILD and ITD), as outlined in Chapter 2.1. More-
over the latter result implies that the circle C exists only if E1 6= E2. Otherwise
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the circle degenerates into a straight line. Actually, when E1 = E2, with a similar
manipulation as before (4.7) reduces to:

2dxs = 0, (4.11)

that corresponds to the bisector of the microphone pair.
At last, the position of the circle with respect to the microphones and interaural

axis can be analyzed. Firstly, the circle C is always on the same lateral side of the
microphones. Indeed |cx| ≥ cr since |cx| − cr = d

2|E1−E2|(
√
E1 −

√
E2)

2 which is a
degree-two polynomial identity. Thus, for all sources Xsi that belong to the same
circle C , sign(xsi) is the same. It can thus be said from ILD measurements if the
source is on the left or right side of the microphones. But on the other hand, one
cannot infer if the sound source is in the front or in the back side of the microphones
since (4.10) imposes the circle C to be centered on a point (cx, cy = 0). This
observation can be related to the well-known front-back ambiguity although no exact
azimuth direction nor distance can be extracted from ILDs.

4.2 A typical ILD-based interaction

4.2.1 ILD interaction matrix

For now on, this section is about linking the robot motion to the ILD variation, so
that an interaction matrix can be extracted. Indeed building the interaction matrix
is one of the foundation of AS. In the configuration and analysis depicted above, one
can relate the ILD variation to the microphones motion. From (4.6), the variation
of an ILD can be obtained from the time variation of ρ that is given by:

ρ̇ =
d

dt

(
`22
`21

)
= 2

`2 ˙̀
2`1 − ˙̀

1`
2
2

`31
, (4.12)

that can be equally written as

ρ̇ = 2

(
`2 ˙̀

2

`21
−

˙̀
1

`1
ρ

)
. (4.13)

Consequently by replacing each `i by its value given in (4.1) one obtain:

ρ̇ =
ẋs(2xs + d) + 2ysẏs

`21
− ẋs(2xs − d) + 2ysẏs

`21
ρ. (4.14)

Equation (4.14) can also be expressed as a matrix relationship:

ρ̇ = LρvM (4.15)

where Lρ is the interaction matrix as introduced in Chapter 3.2.2, and vM =
(vx, vy, vz, ωx, ωy, ωz) the spatial velocity of Fm with respect to the world expressed
in Fm. From the basic kinematic equation [CH06]

Ẋs = −vs − ωs ×Xs ⇔


ẋs = −vx − ωyzs + ωzys
ẏs = −vy − ωzxs + ωxzs
żs = −vz − ωxys + ωyxs

(4.16)
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which relates the velocity of a 3-D point Xs to the sensor spatial velocity vM, (4.14)
becomes

ρ̇ = vx
2xs(ρ− 1)− d(ρ+ 1)

`21
+ vy

2ys(ρ− 1)

`21
+ ωz

ysd(ρ+ 1)

`21
. (4.17)

Eventually referring to (4.15), the interaction matrix related to ρ in the planar scene
that we consider is identified as:

Lρ =
[
2xs(ρ−1)−d(ρ+1)

`21

2ys(ρ−1)
`21

0 0 0 ysd(ρ+1)
`21

]
. (4.18)

In connection with the geometric configuration, we consider only the non-zero terms
of this matrix so that k = 3. In this planar scene, vM is replaced by uM = (vx, vy, ωz)
so that Lρ can be reduced to

Lρ =
[
2xs(ρ−1)−d(ρ+1)

`21

2ys(ρ−1)
`21

ysd(ρ+1)
`21

]
. (4.19)

For more consistence with the scene configuration and the reference frame Fm, the
interaction matrix Lρ is redefined as a function of ` as

Lρ =
[
2xs(ρ−1)−d(ρ+1)

`2+ d2

4
−dxs

2ys(ρ−1)
`2+ d2

4
−dxs

ysd(ρ+1)

`2+ d2

4
−dxs

]
, (4.20)

from (4.1) that implies that `21 = `2 + d2

4 − dxs. This matrix contains terms that
are unknown, namely the source position xs, ys, and ` that is dependent on the two
previous parameters as stated in (4.2). The approximated interaction matrix is then

L̂ρ =
[
2x̂s(ρ−1)−d(ρ+1)̂̀2+ d2

4
−dx̂s

2ŷs(ρ−1)̂̀2+ d2

4
−dx̂s

ŷsd(ρ+1)̂̀2+ d2

4
−dx̂s

]
. (4.21)

However, regarding the interaction matrix, the approximation of these parameters
should be chosen carefully. Indeed, L̂ρ has elements of infinite value as soon aŝ̀2 + d2

4 − dx̂s = 0. Thus ŷs and x̂s should be selected so that ̂̀2 + d2

4 − dx̂s > 0.
Furthermore from (4.10) or (4.11) as soon as x̂s (respectively ŷs) is set, one can
immediately deduce ŷs (respectively x̂s) and then ̂̀=

√
x̂2s + ŷ2s . Nonetheless, the

questioning about fixing the values of these parameters remains open. We address
this issue in Section 4.2.4, by considering the Lyapunov stability of the controller as
the matrix approximation criterion. As stated in the previous chapter, the Lyapunov
global asymptotic stability of the control scheme ensures the convergence of the
controller [CH06].

The latter interaction matrix (4.21) can also be expressed for ILD measured in
dB. Indeed when considering the ILD ρdB defined as

ρdB = 10 log10 ρ, (4.22)

the time variation of the ILD expressed in dB is given by

ρ̇dB =
10ρ̇

ρ ln(10)
. (4.23)
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By injecting (4.15) into the latter equation, the interaction matrix related to ρdB is
therefore defined as

LρdB =
10

ρ ln(10)
Lρ. (4.24)

Eventually the approximated interaction matrix L̂ρdB can be explicitly developed as

L̂ρdB =
10

ln(10)

[
2x̂s(10

ρdB
10 −1)−d(10

ρdB
10 +1)

10
ρdB
10 (̂̀2+ d2

4
−dx̂s)

2ŷs(10
ρdB
10 −1)

10
ρdB
10 (̂̀2+ d2

4
−dx̂s)

ŷsd(10
ρdB
10 +1)

10
ρdB
10 (̂̀2+ d2

4
−dx̂s)

]
.

(4.25)
It should be noticed that the expressions of L̂ρdB in (4.25) and L̂ρ in (4.21) lead to
equivalent control loop. Depending on how ILDs are expressed one might choose the
corresponding interaction matrix. In this thesis, we based our development on L̂ρ
that has a simpler form, and does not require additional calculation.

4.2.2 Control scheme

From the latter interaction matrix, we can then formulate a task which consists in
positioning the robot so that given conditions characterized by the acoustic features
are satisfied. The task is performed by considering a single ILD measurement ρ(t)
extracted from the sound signal and by minimizing the error ‖e(t)‖ in the same
process as described in Chapter 3.2.1. Hence the task is characterized by an error

e(t) = ρ(t)− ρ∗ (4.26)

where ρ∗ denotes the measurements for the desired ILD value. From (4.15) and
with a perfectly known interaction matrix as (4.20), it is possible to design a control
scheme with a purpose of exponential decoupled decrease of the error [SELB91] in
which the error follows

ė = −λe, (4.27)

where λ > 0 is a gain that tunes the time to convergence. As stated in the previous
section the actual matrix Lρ is not fully known since some of its elements depend
on the sound source position. Hence we design a control scheme governed by the
approximation of the interaction matrix L̂ρ in (4.21), in which the velocity of the
microphones is computed from (4.15) [CH06] as

uM = −λL̂+
ρ e. (4.28)

In this latter equation L̂+
ρ ∈ R3×1 is the Moore-Penrose pseudo-inverse of L̂ρ (see

Chapter 3.2.1). Thus the control scheme can be explicitly written as

uM = −λ
̂̀2 + d2

4 − dx̂s
N̂1

2
+ N̂2

2
+ N̂3

2

2x̂s(ρ− 1)− d(ρ+ 1)
2ŷs(ρ− 1)
ŷsd(ρ+ 1)

 (ρ− ρ∗), (4.29)

where 
N̂1 = 2x̂s(ρ− 1)− d(ρ+ 1)

N̂2 = 2ŷs(ρ− 1)

N̂3 = ŷsd(ρ+ 1).

(4.30)
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4.2.3 Task analysis

From the interaction matrix in (4.21), it is then possible to achieve positioning tasks
with the control scheme (4.29). However it is necessary to analyze and understand
what is the task performed through the control scheme developed in the previous
section. As introduced in Chapter 3.2.4, we make use of virtual linkages in order
to exhibit the motions that should be expected from the control scheme. In this
approach, a vector subspace S∗ is defined so that it represents all motions of the
sensors for which the ILD ρ remains constant. To some extent this approach can be
seen as similar to the development produced in Section 4.1.2, in which C characterizes
the motions of the source that give the same ILD measurement. When considering
only one sound source, Lρ given by (4.20) is a rank-one matrix. Consequently S∗ ∈
R3×2 implies a virtual link of class 2:

S∗ = Ker Lρ. (4.31)

Hence the subspace is defined as

S∗ =
[
u∗M1

u∗M2

]
=

vx1 vx2
vy1 vy2
ωz1 ωz2

 . (4.32)

When considering the interaction matrix Lρ given in (4.20), we obtain:

S∗ =

 ysd(1 + ρ) 2ys(ρ− 1)
0 d(ρ+ 1) + 2xs(1− ρ)

d(ρ+ 1) + 2xs(1− ρ) 0

 . (4.33)

Although it is not trivial to infer the geometrical motions that come out from (4.31),
they can be deduced by geometric construction. The first vector v∗M1

refers to a

circular motion of the microphones for which ρ =
`22
`21

remains constant. Thence it
can be immediately deduced that this vector refers to a circular motion around the
source, in which `1 and `2 remain constant as depicted in Figure 4.3. Concretely, from
a given orientation of the microphones with respect to the source, moving around the
sound source by keeping the same relative orientation does not change the ILD value.
Indeed in this configuration the circles C all intersect on the actual source position.
The second vector v∗M2

refers to a translation. The microphones motion corresponds
to a circle that imply a relative motion of Xs on C . By combining these two motions,
we obtain an annulus D characterized by an inner radius r1 = |d2 −

d
√
ρ∗

1+
√
ρ∗
| and an

outer radius r2 = r1 + 2cr, as depicted in Figure 4.4. In the case when ρ∗ = 1 (i.e.,
`1 = `2), we get r1 = 0 and r2 = ∞ which results in an infinite area D around the
source. This particular configuration lead to the same result as for ITD-based tasks.
As a consequence any linear combination of v∗M1

and v∗M2
implies infinite pose for

which ρ = ρ∗, which let us build the following proposition:

Proposition 1 For each position of the microphones M ∈ D , there exists at least
one orientation θM of the microphones so that ρ = ρ∗.
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(a) Rotation motion of the microphones for
a given ρ

(b) Translation motion of the microphones for a
given ρ

Figure 4.3: Motions implied by S∗

Figure 4.4: The admissible poses of the microphones for a given ρ shape an annulus

Hence, a typical task involving ILDs mainly consists in orienting the robot to-
wards a given direction with respect to the source location while being or reaching
D . Interestingly, the task of facing a sound source (i.e., ρ∗ = 1), that is of high
interest in robot audition, can be achieved independently of microphones location
since D =∞. Hence, this typical task mainly consists in orienting the robot towards
a given direction with respect to the source location. This result implies that control-
ling only one DOF, namely the rotation ωz is enough to complete any task involving
ρ∗ = 1. Hence, the task defined by ILDs in AS is consistent with the exploitation
of ILD cues for human listeners, since interaural cues are physiologically related to
an azimuth direction as exposed in Chapter 2.1.2. However as stated in Section
4.1.2, this cue does not explicitly provide an azimuth direction (i.e., circle C ), which
makes it complex to exploit for sound source localization algorithms, while AS can
still benefit from this information.
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4.2.4 Stability analysis

In this part, we study the stability conditions of the closed-loop control system with
respect to the approximated interaction matrix L̂ρ. The stability properties tailor
the approximation of the unknown parameters in the interaction matrix L̂ρ, since
they condition the convergence of the control scheme (see Chapter 3.2.2). Since
L̂ρ ∈ R1×3, the closed-loop control system is globally asymptotically stable when

LρL̂
+
ρ > 0. (4.34)

In a first step, in order to ease the comprehension and the reading of this analysis,
let us redefine the interaction matrix L̂ρ as

L̂ρ =

[
N̂1

(̂̀2+ d2

4
−dx̂s)

N̂2

(̂̀2+ d2

4
−dx̂s)

N̂3

(̂̀2+ d2

4
−dx̂s)

,

]
(4.35)

where N̂1, N̂2, N̂3 are defined from (4.30). Similarly Lρ is defined with N1, N2, N3.
From this convention of writing, (4.34) becomes

LρL̂
+
ρ =

̂̀2 + d2

4 − dx̂s
`2 + d2

4 − dxs
N1N̂1 +N2N̂2 +N3N̂3

N̂1
2

+ N̂2
2

+ N̂3
2 > 0. (4.36)

Knowing that ̂̀12 > 0 or equivalently ̂̀2 + d2

4 − dx̂s > 0, (4.36) is true if and only
if N1N̂1 + N2N̂2 + N3N̂3 is greater than 0. Thus one can rewrite the condition by
developing the latter expression as:

4ysŷs(ρ−1)2+ysŷsd
2(ρ+1)2+(2xs(ρ−1)−d(ρ+1))(2x̂s(ρ−1)−d(ρ+1)) > 0 (4.37)

It is then clear that when E1 = E2 (i.e., xs = 0 and ρ = 1), the stability is guaranteed
as soon as sign(ys) = sign(ŷs). However when ρ 6= 1, some supplementary analysis
is required. To do so, let us rearrange the condition (4.37) to :

(ρ−1)2(4ysŷs+4xsx̂s)+(ρ+1)2d2(1+ysŷs)− (ρ+1)(ρ−1)2d(xs+ x̂s) > 0. (4.38)

By dividing (4.38) by (ρ + 1)2, we obtain a quadratic function f(Z) depending on
the ratio ρ that is

f(Z) = Z2(4ysŷs + 4xsx̂s)− 2Zd(xs + x̂s) + d2(1 + ysŷs) > 0, (4.39)

with Z = ρ−1
ρ+1 and Z ∈ ]−1, 1[. It can be noticed that sign(Z) = sign(xs) from the

geometrical properties outlined in Section 4.1.2. Indeed we have xs > 0 when ρ > 1,
and xs < 0 when ρ < 1. From this result, one can deduce that if x̂s and ŷs are
perfectly known, f(Z) is symmetric with respect to the bisection of the microphones
(y = 0). Indeed, for opposite value of xs(i.e., inverse value of ρ and opposite value of
Z), we obtain f(z) = f(−z). Although x̂s and ŷs are not known, we can still exploit
this symmetry property. Let us consider two opposite values z1 and z2 characterized
by {

f(z1) = z1
2(4ysŷs + 4xsx̂s) + 2dz1(xs + x̂s) + d2(1 + ysŷs)

f(z2) = z2
2(4ysŷs + 4xsx̂s) + 2dz2(xs + x̂s) + d2(1 + ysŷs)

(4.40)
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and z1 = −z2. Actually the symmetric nature of f(Z) (i.e., f(z1) = f(z2)) is
preserved if x̂s and ŷs are selected as constant and with the same sign as xs and
ys, respectively. Under this condition, knowing that f(Z) is a parabola from its
quadratic nature, the vertex of f(Z) is the point at (0, f(0)). As a consequence, to
fulfill the condition (4.39), it is sufficient to demonstrate that (i), f(Z) is a convex
parabola, and (ii), the vertex value f(0), which is a minimum when (i) is ensured,
is greater than 0.

(i). First, it can be demonstrated that f(Z) is convex if

(4ysŷs + 4xsx̂s) > 0. (4.41)

A sufficient condition to fulfill (4.41) consists in setting sign(ŷs) = sign(ys)
and sign(x̂s) = sign(xs), which has already been assumed.

(ii). In this context, the vertex value f(0) is greater than 0 when

d2(1 + ysŷs) > 0. (4.42)

The latter condition is immediately completed when sign(ŷs) = sign(ys).

Consequently the Lyapunov stability condition of L̂ρ expressed through (4.39) is
ensured as soon as sign(ŷs) = sign(ys) and sign(x̂s) = sign(xs). One can underline
that sign(x̂s) = sign(xs) is obtained directly by the measurement of the ILD ρ.
Actually sign(xs) = sign(ρ − 1). However sign(ŷs) = sign(ys) cannot be ensured
from the ILD measurements because of the properties of the circle C depicted in
Section 4.1.2. The latter condition directly refers to the front/back ambiguity that
is unfortunately inherent to the binaural cues. Despite the front/back ambiguity,
these excellent stability conditions confirm that the exact sound source location is
not required for the controller. The stability conditions are not restrictive at all and
let us foresee an infinite convergence domain.

In the context depicted until now, we assumed ideal acoustic conditions in free-
field, that simplify our model but that are unfortunately not realistic. Indeed as dis-
cussed in Chapter 1.2 and in Chapter 2.3, one main issue of robot audition concerns
the consistency and the modeling of auditory features in perturbed environment.
Nevertheless, this study emphasizes the potential robustness of the controller, that
is tolerant to rough approximations of the interaction matrix. This interesting prop-
erty allows us to envisage that the control scheme may also be robust to approximate
acoustic modeling. This hypothesis is verified in the next section, that is articulated
around the experimental validations of our approach in real world conditions.

4.2.5 Experimental validations

4.2.5.1 Preliminaries: robot modeling and control scheme

For the experiments, we consider a non-holonomic unicycle robot Pioneer 3DX en-
dowed with two omnidirectional microphones as illustrated on Figure 4.5. Schemati-
cally, the system consists in a planar robot controlled in the horizontal plane with the
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(a) (b)

Figure 4.5: modeling of the robotic platform

two microphones M1 and M2. In addition to Fm attached to the microphones, we
define the frame Fr(−→xR,−→yR) attached to the robot. Dx denotes the distance between
the center of the robot R and the midpoint M of the microphones. The robot can
be controlled upon two DOF: the control input q̇ is given by (u, ω), respectively the
translation velocity along −→yR and the angular velocity around −→zR.

Consequently the relationship between the variation of the ILD ρ and the control
input q̇ is:

ρ̇ = Jρq̇ (4.43)

where Jρ is the Jacobian feature matrix introduced in Chapter 3.2.1 that is equal

Jρ = LρJr, (4.44)

Jr being the robot Jacobian. From the model given in Figure 4.5, the robot Jacobian
is equal to

Jr =

0 Dx

1 0
0 1

 . (4.45)

Hence, the control scheme of the robot is (see Chapter 3)

q̇ = −λĴ+
ρ (ρ− ρ∗). (4.46)

Furthermore, from the previous task analysis, we demonstrated that a task consid-
ering the ILD ρ mainly specifies a desired orientation of the robot w.r.t the sound
source. Therefore a control input characterized by the angular velocity ω only is suf-
ficient to achieve any task involving one sound source. In the following, we consider
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this particular case when u would always be equal to 0. Hence the Jacobian matrix
Ĵρ reduces to

Ĵρ =
Dx(2x̂s(ρ− 1)− d(ρ+ 1)) + ŷsd(ρ+ 1)̂̀2 + d2

4 − dx̂s
, (4.47)

and the control input is then

q̇ = −λ
̂̀2 + d2

4 − dx̂s
Dx(2x̂s(ρ− 1)− d(ρ+ 1)) + ŷsd(ρ+ 1)

(ρ− ρ∗). (4.48)

4.2.5.2 Experimental results

The sets of experiments conducted in this section and the following are performed in a
room with a reverberation time RT60 ≈ 580 ms. The microphones instrumenting the
robot were connected to a sound card 8SoundsUSB [AC+] that processes the signal in
real time. The sound card operates at a sampling frequency of 48 kHz, and provides
frames of 256 samples. The sound energy is computed from 10 consecutive frames w
(i.e., 50 ms). The parameters given in Table 4.1 were used for all experiments. In a
first step, we do not account for the front-back ambiguity, and thus assume that the
sound source is in the front side of the robot (e.g. ys > 0).

d 0.31 m
Dx 0.3 m
ŷs 1 m
x̂s sign(ρ− 1) ×1 m
λ 0.5

Table 4.1: Experimental settings

The first experiment simply consists in facing the sound source. The desired ILD
is thus set to ρ∗ = 1. The sound source is a loudspeaker emitting a white Gaussian
noise. The SNR at the desired pose is around 20 dB in presence of typical noise
such as computer noise and ventilation in the room. As illustrated in Figure 4.6, the
control scheme allows to face the sound source starting from a random orientation
of the robot. The magnitude of the error follows an exponential decrease behavior
as expected from the control scheme. It should also be noted that our approach is
straightforward: the control input computed from (4.48) simply consists in a scalar
corresponding to the angular velocity of the robot. Furthermore, our approach is
performed without signal enhancement, modeling of the environment nor tracking,
which explains the low computation cost of the control system.

4.2.5.3 Addressing the front-back ambiguity

Although the previous experiment confirmed the validity of our approach, we as-
sumed that the sound source was in the front side of the robot, which can be restric-
tive. The front-back ambiguity remains an issue that cannot be addressed from the
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Figure 4.6: A typical task using the ILD ρ consists in facing the sound source from
a random orientation

binaural cues. The development in Chapter 2.1.2 showed that human listeners dis-
ambiguate the location of the source from monaural cues (i.e., action of the pinnae
through the HRTFs) and from head motion. The first solution, based on monaural
cues, cannot be applied to our context since the robot is endowed with free-field mi-
crophones, that is to say HRTFs depends only on the azimuth angle. Yet, the motion
of the robot can be used in order to dissipate the ambiguity. A simple method would
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Figure 4.7: From left to right a position task that consists to face the sound source
Xs located on the back-side of the robot: because of the front-back ambiguity the
robot turns with respect to the phantom source X

′
s. This behavior naturally allows

to complete successfully the task, since the motion of the robot repositions the actual
source on the front-side

consist in a state-machine inferring the side of the source from the evolution of the
ILD with respect to the motion of the robot. This kind of approach has been applied
in [MMWB15, MMB15] for instance. More sophisticated techniques have also been
proposed in the literature such as stochastic filtering in [PDA12] or [NCVC16] that
respectively use an unscented Kalman filter and mixture of Kalman filter. These two
approaches fuse the motion of the robot to the cues measurements to infer the sound
location without ambiguity.

Our approach is designed for situations when the sound source is in the front side
(i.e., ys > 0) which explains that the interaction matrix is parameterized with ŷs > 0
so that the stability conditions are ensured. Hence, the control scheme may not be
stable when the sound source is located on the back-side since sign(ŷs) 6= sign(ys),
and the robot may not converge towards the desired pose. Under this hypothesis,
the robot moves with respect to a phantom sound source (symmetric to the actual
source) as illustrated in Figure 4.7. The robot moves towards an opposite direction
to the one required to the completion of the task which increases the magnitude
of the error e = ρ − ρ∗. This characteristic that could be seen as a limitation of
the control scheme, turns out to be actually an advantage. Indeed, the stability
conditions induce that a sufficient way to complete a given task is obtained when
sign(ŷs) = sign(ys), that is, the source located in the front side since we fixed ŷs > 0.
For ILD-based task that consists in turning the robot towards a given direction with
respect to the source until the condition e = ρ − ρ∗ = 0 is met, it can be inferred
that the latter condition cannot be fulfilled when the source is located in the back
since the magnitude of the error increases. Consequently, the rotation motion will
necessarily lead to ys > 0. Concretely the magnitude of the error increases in a first
phase, then decreases towards zero as soon as ys > 0 which enables the completion of
the task. Thus, the robot always reaches a pose that corresponds to a configuration
ys > 0, in which the task can be completed similarly to the previous experiment.
The front-back ambiguity is then inherently solved by our control scheme: without
any assumption about the source location, it is possible to complete positioning tasks
based on ILD measurements.
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This result has been confirmed by experiments in which we observe the predicted
behavior discussed above. The experiment illustrated by Figure 4.8, shows a first
phase where the error of the task increases until ys > 0. Subsequently, from this
configuration, an exponential decrease of the error magnitude can be observed until
the robot faces the sound source.

4.2.5.4 Addressing the case of a moving sound source

Eventually, we can tackle the problem related to a moving sound source. Considering
robot audition state-of-the-art, dealing with moving sources is a bottleneck of sound
source localization, since it requires a tracking and a model of source motions. By
contrast, AS is a closed-loop control, that naturally induces flexibility and reactivity
to any modification of the acoustic perception, thanks to the real-time feedback.
Hence, any motion of the sound source will have an impact on the control input.
Indeed when the source moves laterally, the magnitude of the error e = ρ − ρ∗

increases, which immediately generates a motion in order to reduce the error. Hence,
this type of control scheme is particularly suitable for tracking a moving source. The
experiment carried in Figure 4.9 sums up all the potential of AS. Initially, the source
is in the back of the robot. This issue is correctly solved by the control scheme,
and the robot is able to face the sound source. Afterwards, the sound source is
moved laterally and arbitrarily while being accurately tracked by the robot in real
time. The motion of the robot maintains the source in the auditory fovea. However,
fast motions of the sound source may entail some delay in the control scheme to
compensate the error. Nevertheless this error could be reduced by advanced control
techniques. If we recall the principle of task function given in Chapter 3.2.1, the
time derivative of ρ is exactly defined as

ρ̇ = ė = LevM +
∂e

∂t
, (4.49)

in which ∂e
∂t characterizes the time variation of e due to the unknown source motion.

Until now, to derive the control scheme from the ILD variation, we assumed a mo-
tionless source, considering ∂e

∂t = 0. Thus, in order to avoid this tracking error, ∂e
∂t

should be integrated in the control scheme. With a purpose of exponential decoupled
decrease of the error (ė = −λe), the velocity of the microphones is therefore defined
as

vM = −λL̂+
e e− L̂+

e
∂̂e

∂t
, (4.50)

in which ∂̂e
∂t is an estimation of the time variation of e due to the source motion.

Eventually the variation of the error is obtained by injecting (4.50) into (4.49) as:

ė = −λLeL̂
+
e e− LeL̂

+
e
∂̂e

∂t
+
∂e

∂t
. (4.51)

From the latter equation it can be seen that the tracking error due to the motion of
the source can be compensated under the condition that

LeL̂
+
e
∂̂e

∂t
=
∂e

∂t
. (4.52)
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Figure 4.8: The front-back ambiguity is inherently solved by the control scheme: In a
first step the absolute value of the error increases until the configuration corresponds
to a model when ys > 0. In a second phase the robot converges towards a correct
pose with an exponential decrease of the magnitude of the error.

Several methods have been developed in control literature in order to estimate ∂̂e
∂t .

To name a few of them, a Kalman filter is proposed in [CG93], while a predictive
control scheme is used in [GdM02] and an integrator in [CH08].
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Figure 4.9: An experiment summing up all configurations (reading from left to right,
top to bottom): first the front-back ambiguity is solved, in a second phase, the robot
converges towards a satisfying pose, and finally the speaker is moved randomly while
being accurately tracked by the robot.
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4.2.6 Evaluation and limitations of the ILD-based task

In order to evaluate the performance of the ILD-based task, we tested the method
through simulations that could guarantee repeatability and ground truth references
to assess of the accuracy of the task. The simulation environment is based on Room-
simove [BOV12], a room acoustics simulator, that allows to parametrize the room
size, reverberation, and the location of the source and microphones. From this tool,
we designed a room of 8 m×6 m in which a sound source Xs is located. Similarly to
the first experiment presented in this section, the simulated tasks consisted in facing
the sound source from several poses of the robot as depicted in Figure 4.10. The
task was repeated for several initial poses that are varied by 20◦ around the sound
source for a given distance ` within the range [0◦, 180◦]. This decomposition yielded
to 10 initial poses. It should be noted that the initial orientation is fixed, and only
the initial positions are varied. We principally evaluated the orientation error of the
final pose of the robot with respect to the desired task (facing the source). Such
evaluation was repeated for several distance ` ∈ {0.5, 1, 2, 3} and several reverbera-
tion times RT60 ∈ {0, 50, 100, 200} ms. The results are summarized in Figure 4.10,
where the mean absolute error, in degree, is reported.

` (m)
RT60 (s)

0.5 1 2 3

0 < 1 < 1 2.7 6.4

0.05 < 1 3.6 5.6 7.6

0.1 < 1 5.1 7.0 8.4

0.2 < 1 8.8 10.4 21.4

Figure 4.10: A simulated task that consists in orienting the robot in the direction of the
sound source, from different poses in a 8 m ×6 m room. The final absolute mean error, in
degree, is calculated for several reverberation times (RT60) and distances to the source.

The principal information that can be drawn from these simulations assesses
that an ILD-based positioning task is accurate only in the close neighborhood of the
sound source. This constraint can be explained by two distinct properties of ILDs
that can be interpreted from the results. First the simulations confirm that increasing
the distance between the microphones and the source degrades the task accuracy.
This is confirmed by the results in anechoic conditions, from which a decrease of
accuracy can be observed as soon as the microphones get further from the source.
This is caused by the limitations inherent to ILD definition ρ =

`22
`21
. From the scene

configuration described in Figure 4.1, the relationship between `1 and `2 is given by

`22 = `21 + 2dxs (4.53)

while `21 = `2 + d2

4 − dxs and `22 = `2 + d2

4 + dxs. When the robot is far from
the sound source, ` (respectively each `i) becomes large in comparison with d, the

97



Chapter 4. ILD-based aural servo

inter-microphone distance. As a result, it comes out that `21 → `22 and ρ → 1.
Thus the energy difference between the two microphones becomes too small and
the variation of the ILD ρ is not significant anymore: large robot motions induced
a small variation of ILD which explains the results in anechoic conditions. This
result also confirms that ILD measurements in free-field conditions are more relevant
for a wide inter-microphones distance, which is unfortunately not compatible with
the robotic context. By contrast, head-mounted systems are less affected by this
limitation (see Chapter 6 ), because of the additional sound attenuation of the head
(at high frequencies).

Furthermore, as already stated in [BG05] or [CCW06], the results exposed in
Figure 4.10 confirm that ILD measurements are highly sensitive to reverberation.
Systematic bias corrupts ρ when the microphones are far from the sound source,
especially for positions close to walls. Indeed, with reverberation each microphone
Mi perceive actually an energy defined by

Ei = Eisrc + Eirev (4.54)

where Eisrc is the source contribution while Eirev is produced by the virtual sound
sources generated by echoes. These virtual sound sources interfere with the signal
received from the actual sound source, with a constructive or destructive additional
contribution. The measured ILD is modified as follow:

ρ =
E1src + E1rev

E2src + E2rev

. (4.55)

This kind of erroneous measurement can have some influence on the accuracy of the
task since the error e is then equal to

e =
E1src + E1rev

E2src + E2rev

− ρ∗. (4.56)

Therefore if Eirev is significant enough with respect to Eisrc , the error e in the control
loop is biased. One can deduce that a sufficient condition to obtain accurate ILD
measurements (resp. accurate error e) is a high Direct-to-Reverberant Ratio (DRR)
that limits the impact of Eirev over Eisrc .

Hence under realistic conditions, that is to say in presence of reverberation, and
if the robot is far from a given source, the performance of ILD-based positioning task
may be drastically decreased. To overcome this limitation, we introduce the sound
energy EM as an additional feature corresponding to a distance cue. The variation of
this cue can be integrated in the control scheme in order to regulate the distance to
the sound source by setting a desired energy level. In this way, a positioning task can
be performed accurately from an initial configuration relatively far from the source.

4.3 Integrating the absolute level of energy as a distance
cue

The distance of observation for accurate ILDs is in the near-field as demonstrated
above. However the near-field assumption cannot be guaranteed in uncontrolled
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environments. In this ultimate section of the chapter, we introduce a distance cue
that can bring the robot to the near-field zone. Namely, this cue is the absolute
level of sound energy. The sound level is naturally a measure of distance. As stated
in Chapter 2.2, it is complex to deduce a metric value of distance from this cue.
Indeed the sound level depends on the intrinsic level of the emitting sources and
is also dependent of the room acoustic that may add destructive or constructive
interferences. The distance cues are not often used in robot audition because of
these limitations although some studies showed that coarse approximations could
be obtained by combining binaural cues to signal amplitude information [Rod10] or
by estimating the DRR [LC10]. In contrast to approaches based on localization,
AS allows us to exploit distance cues such as the absolute level of energy. In this
paradigm, we are not attached to extract a given metric measurement related to the
sound level but rather to use the variation of the sound energy, related to the sound
decay, so as to position a robot at a given distance to the sound source.

4.3.1 Energy estimation

For a first step, let us analyze the consistency of sound energy with respect to the
reverberation issue, through AS framework. Reverberation as denoted in the previ-
ous section drastically decreases the performance of the ILD-based positioning task
from far-field. It is then necessary to prove that the absolute energy level is less
affected by reverberation and thus can overcome this limitation. For more versatil-
ity and flexibility, we consider measurements of the absolute energy in between the
microphones, that is to say at the position M. From (4.4), the sound energy EM

received by the point M is given by

EM =
1

`2

∫ w

t=0
a2(t− `

c
) dt. (4.57)

In order to prove that reverberation has a minor effect on the sound energy, let us
consider the reflective perturbations discussed above for the ILD. Assuming that the
reference value E∗M is experimentally measured beforehand, both EM(t) and E∗M
include the effect of reverberation Erev caused by echoes. Therefore the energy level
error in the control loop is equal to

eM = EMsrc + EMrev − (EM∗src + EM∗rev). (4.58)

If E∗M is measured so that the sensors are in the near-field (i.e., high DRR), as it
is targeted in order to overcome ILD limitations, one can deduce that EM∗src �
EM∗rev . In the far-field it is expected that the level of sound energy is lower than in
the near-field because of the sound decay phenomenon detailed in Chapter 1.2. It
can then be written that EM < EM∗src . Thus while approaching the desired pose
E∗M, we can simplify (4.58) by using (4.57) as:

eM =
s→s∗

(
1

`2
− 1

`∗2

)∫ w

t=0
a2(t− `∗

c
) dt. (4.59)
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Hence reverberation has a minor effect on the energy level cue, in the configuration
in which the robot has to reach or stay in the near-field zone. From then on, since
the energy level in M is not directly available, we just approximate EM as the mean
value of the energy received by each microphones:

EM ≈
E1 + E2

2
. (4.60)

4.3.2 Energy level modeling

In a similar process as the one developed in Section 4.2 for modeling Lρ, the in-
teraction matrix related to the absolute sound energy LEM

can be inferred. Let us
start from (4.2), specifying the distance to the source as ` =

√
x2s + y2s . The time

variation of this distance is defined by:

˙̀ =
xsẋs + ysẏs

`
. (4.61)

By injecting the kinematic equation (4.16) in (4.61), the interaction matrix related
to ` is easily obtained as

L` =
[
−xs

` −ys
` 0

]
. (4.62)

With the assumption that the source emits a constant signal during the time frame
w, from (4.57) the time variation of EM is

˙EM = −2EM

˙̀

`
. (4.63)

Therefore the interaction matrix LEM
related to the sound energy perceived in M is

given by

LEM
= −2

EM

`
L` = EM

[
2xs
`2

2ys
`2

0
]
. (4.64)

Once again, an approximation of the latter interaction matrix is necessary since the
sound source location is unknown:

L̂EM
= EM

[
2x̂ŝ̀2 2ŷŝ̀2 0

]
. (4.65)

It can be noticed that the sufficient stability conditions of a task based on L̂EM

are the same as the ILD described in Section 4.2.4. Indeed

LEM
L̂+
EM

=
̂̀2
`2
xsx̂s + ysŷs
x̂2s + ŷ2s

, (4.66)

is positive as soon as sign(x̂s) = sign(xs) and sign(ŷs) = sign(ys). Hence x̂s, ŷs
and ̂̀ can be estimated with the same parameters as these used in L̂ρ.
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4.3.3 Control scheme and task analysis

For the rank-one interaction matrix LEM
of the energy level, the subspace S∗ ∈ R3×2

implying a virtual link of class 2 is:

S∗ =

0 −ys
0 xs
1 0

 . (4.67)

The first motion implied by S∗ is a pure rotation. Indeed the distance ` between
M and the source is invariant with respect to the orientation of the microphones.
The second column illustrates all translations for which the distance ` to the sound
source is unchanged. Namely, it refers to a circular motion around the sound source.
Consequently by combining these two types of motion, S∗ describes a circle of radius
` around the sound source with unconstrained orientation of the microphones, what
is illustrated by Figure 4.11. This result emphasizes that the ILD and the energy
level are complementary features. Indeed, in contrast with energy level, ILD mea-
surements control microphones orientation while the distance is constrained by the
energy level.

Figure 4.11: Admissible poses of the microphones considering the sound energy level as
acoustic features

Then one can define an interaction matrix L̂ρE combining the ILD ρ to the energy
level EM by simply stacking L̂ρ and L̂EM

as follows:

L̂ρE =

2x̂s(ρ−1)−d(ρ+1)̂̀2+ d2

4
−dx̂s

2ŷs(ρ−1)̂̀2+ d2

4
−dx̂s

ŷsd(ρ+1)̂̀2+ d2

4
−dx̂s

2EMx̂ŝ̀2 2EMŷŝ̀2 0

 . (4.68)

From the latter interaction matrix, the control scheme related to the velocity of the
microphones is defined as

uM = −λL̂ρE
+
e (4.69)

where the error vector is defined as e = [ρ−ρ∗, EM−E∗M]>. For this control scheme
integrating the energy level, the vector subspace S∗ ∈ R3×1 implying a virtual link
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of class 1, is defined as:

S∗ =

 ys
−xs

1

 . (4.70)

In this case, the motion described by this subspace refers to a circular motion around
the sound source at a distance ` maintaining the same orientation of the microphones
with respect to the source (see Figure 4.12). Consequently with a good selection of

Figure 4.12: Admissible poses of the microphones considering the sound energy level and
the ILD as acoustic features

the desired features values, it is possible to reach a pose around the sound source
by only considering the measurement of the energy and the ILD. Such a task can
be referred to a coarse-to-fine approach. When the robot is far from the sound
source, the ILD measurement gives a rough approximation of the actual direction
of the source. However as the robot is moving closer to the sound source, the ILD
measurement is refined, and the robot motion becomes more accurate. Hence, from
rough and approximated feature measurements, a virtuous cycle is created from
the closed-loop control, that allows to achieve difficult tasks (see Section 4.3.4).
Eventually, it should be emphasized that until now, no additional signal processing,
nor filtering has been employed for the control scheme. Additionally, the feature
measurements and the control scheme are independent from any additional tracking
method, as long as the sound source of interest is predominant in the environment.
The computation cost of this AS framework is drastically decreased, when compared
to classic localization methods in adverse conditions. Actually, the most complex
calculation of the framework consists in computing the pseudo-inverse of L̂EM

∈
R2×3.
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4.3.4 Experimental validations

4.3.4.1 Preliminaries: control scheme and experimental setup

Once again, we consider the 2-DOF robot modeled in Section 4.2.5.1. The control
input to this robot is given by

q̇ = −λĴ−1ρEe (4.71)

with

ĴρE =

 2ŷs(ρ−1)̂̀2+ d2

4
−dx̂s

Dx(2x̂s(ρ−1)−d(ρ+1))+ŷsd(ρ+1)̂̀2+ d2

4
−dx̂s

2EMŷŝ̀2 2DxEMx̂ŝ̀2
 . (4.72)

Apart from the degenerate cases (̂̀2 + d2

4 − dx̂s = 0 and ̂̀2 = 0), singularities of
the interaction matrix could appear as soon as ŷs = Dx or ŷs = 0. In these particular
situations, the determinant of this Jacobian matrix given by

|ĴρE| =
2EMŷsd(Dx − ŷs)(1 + ρ)̂̀2(̂̀2 + d2

4 − dx̂s)
. (4.73)

would be equal to 0, and the interaction matrix would not be invertible. Hopefully,
in practice the sound source position is approximated so that ŷs > Dx.

The experiments were conducted on the Pioneer 3DX with the same configuration
given in Section 4.2.5.1 and illustrated in Figure 4.5. The global processing time of
one iteration was also negligible (< 10 ms). The acoustic conditions are detailed in
the sections devoted to each experiment. The parameters given in Table 4.2 were
used for all experiments. An adaptive gain λ(x) in which x refers to the norm of the
error e is used to smooth and speed up the robot motion.

d 0.31 m
Dx 0.3 m
ŷs 1 m
x̂s sign(ρ− 1) ×1 m
λ 0.45e(−1.5x)

Table 4.2: Experimental settings

4.3.4.2 Typical positioning tasks

The first tests were conducted in a room characterized by a reverberation time
RT60 ≈ 580 ms. The sound source is a loudspeaker emitting a white Gaussian
noise. The desired energy level is learned by placing the robot at 80 cm in front of
the loudspeaker, while the desired ILD is set so that ρ∗ = 1. The SNR at the desired
pose is around 20 dB. The loudspeaker being directional, the admissible poses of the
microphones were not in a circular configuration as stated in Figure 3.2, but they
were shaped by the directivity properties of the speaker.
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(a) Starting pose 1 (b) Final pose 1 (c) Starting pose 2 (d) Final pose 2
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Figure 4.13: Typical positioning tasks from two different starting poses

First we showed the validity of our approach with a static sound source, by
starting the robot from different poses. As illustrated in Figure 4.13, the control
scheme allows to reach a pose satisfying the desired features from various initial
poses. Actually, as long as the difference of energy between the microphones is
perceptible at the initial pose, the control scheme is able to position the robot in a
desired configuration. A fine tuning of λ or w can also improve the sensitivity of the
control scheme to small differences in the energy level. By increasing the size of w,
the difference of energy recorded by the pair of microphones is more significant. And
λ tunes the time to convergence.

In the second part of the experiment, we considered a moving sound source. As
shown in Figure 4.14, the robot is able to follow a sound source, with exactly the
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same control scheme as before. As expected, when the robot is far from the sound
source, it can be observed on Figure 4.14e that the ILD is not always accurate.
Indeed we can notice some abrupt changes in the ILD error curve. But as soon as
the robot gets closer to the sound source, the ILD value is correct, and the task can
be correctly completed.
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Figure 4.14: Following a moving sound source

4.3.4.3 Robustness and flexibility in long range navigation

In a second experiment, we conducted a long range navigation test. Starting from
the previous room, we moved the source through different environments of the labo-
ratory with the robot pursuing the sound source in real time. Thus several acoustic
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conditions were encountered during the navigation as described in Figure 4.15.
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Figure 4.15: Odometry data from the navigation task in indoor environment.The acoustic
conditions for each location are respectively:
a○ RT60 ≈ 580ms SNR≈ 20dB, b○ RT60 ≈ 620ms SNR≈ 20dB, c○ RT60 ≈ 680ms SNR≈

16dB, d○ RT60 ≈ 880ms SNR≈ 13dB, e○ RT60 ≈ 700ms SNR≈ 18dB, f○ RT60 ≈ 620ms
SNR≈ 17dB.

The SNR varied from 20 dB to 13 dB while the reverberation rate changed from
580 ms to 880 ms depending on the location. The ambient noise was mainly caused
by the ventilation systems and a server room in d○. Nonetheless the robot never lost
the track of the sound source despite dynamic and challenging conditions. Indeed the
rooms and corridors crossed by the robot have different shapes, and are built with
different materials and clutter. For instance the corridor e○ is narrow and produces
strong first order echoes. Besides the echoes are not necessarily symmetric, because
of the office doors that were open. In f○ different surrounding materials (glass door,
metallic door of the elevator, walls...) were producing several types of echoes that
could disturb the control scheme.

Consequently, from this experiment it can be emphasized that the proposed con-
trol scheme is robust and flexible enough to deal with indoor real world environment.
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Indeed, since our method does not rely on any tracking or filtering of the signal, there
is no tuning nor parameter dependent on the acoustic environment. Thus our ap-
proach is robust to environment changes.

4.3.4.4 Cooperative application

The framework has also been tested in a cooperative task involving two robots. This
time, instead of using a loudspeaker to generate the sound, we used the propellers of
an unmanned aerial vehicle (UAV) as the sound source. Indeed most UAVs are known
to be noisy. However, in a conventional sound localization scheme, this sound is
considered more as a disturbance than a feature to exploit [BSFL14][FON+13], while
our approach takes advantage of this noise. In this experiment an UAV (mikrokopter
MK-Quadro), remotely controlled, led the unicycle ground robot just by the sound
naturally emitted from the propellers. Nonetheless it should be noted that the sound
emitted by the UAV was not stationary nor omnidirectional. Indeed the UAV was
oscillating during the flight and the sound was produced by the four propellers of
the UAV. Nevertheless, despite these unfavourable conditions, the ground robot was
able to follow the UAV (see Figure 4.16), even if the motion of the robot was less
smooth than in the previous experiments. This basic experimental scenario confirmed
that our approach is relevant and suitable for cooperative tasks involving several
robots. Furthermore, the control scheme based on only two microphones and the
low computation cost of the framework make us believe that this kind of control
scheme can be embedded on different types of robots. More evolved and complex
tasks could then be achieved involving cooperation between aerial and ground robots
or formation control of swarm robots.
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(a) (b) (c)

(d) (e) (f)

Figure 4.16: An example of cooperative application where an aerial robot (circled in
red) is leading a ground robot with the sound emitted by its propellers

4.3.5 Numerical evaluation

Eventually, the control scheme was tested through simulations. The simulated envi-
ronments and conditions are strictly identical to the evaluation performed in Section
4.2.6. This time, the task consists in approaching, at a given distance, the sound
source in order to face it. Hence ρ∗ is set to 1, while E∗M is measured experimentally
in anechoic conditions as the energy measurement when ρ = 1 and ` = 0.5 m. It
should be emphasized that E∗M has been measured only once, and the same value
of E∗M is used for all acoustic conditions. The results are summarized in Table
4.3, where the mean absolute error of orientation, in degree, and the mean absolute
error of the range positioning, in cm, are reported. These results show impressive
improvements compared to the task of only facing the sound source. For all starting
poses, even in the far-field and with reverberation, the robot is always able to face
to the sound source accurately as the errors reported are all lesser than 1◦. It can be
also noted that as expected and demonstrated in Section 4.3.1, the energy level as a
range cue is little affected by reverberation, with negligible errors varying from 1 to
4 cm under moderate reverberation. Furthermore, interestingly, the energy level is
consistent over changing conditions. Despite an initial measurement E∗M performed
under anechoic conditions, the range error remains lower than 5 cm for a reverbera-
tion level RT60 = 0.2 s. Of course, more accurate results could be obtained if E∗M was
measured in the same acoustic conditions as the task environment. These excellent
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` (m)
RT60 (s)

0.5 1 2 3

0 < 1 (1.47) < 1 (1.47) < 1 (1.48) < 1 (1.47)

0.05 < 1 (1.77) < 1 (1.77) < 1 (1.78) < 1 (1.8)

0.1 < 1 (1.94) < 1 (2.05) < 1 (1.95) < 1 (1.96)

0.2 < 1 (3.90) < 1 (3.90) < 1 (3.96) < 1 (3.98)

Table 4.3: A simulated task that consists in approaching and facing of the sound
source (ρ∗ = 1, E∗M ≡ `∗ = 0.5 m), from different poses in a 8×6 m2 room. The final
absolute mean error, in degree, and the final range error (bracketed values), in cm,
are calculated for several reverberation times (RT60) and distances to the source.

properties substantially explain the good results obtained in experiments, in which
our approach is robust and flexible to changing and real world environments.

4.4 Conclusion

This chapter globally emphasizes several benefits of the AS paradigm. First, the
two solutions presented are based on features (ILD, energy as distance cue), that are
challenging to exploit under binaural localization paradigm. For instance most work
exploiting ILDs conjointly estimates ITDs, in order to map them with an azimuth
direction from a learning process [MvdPK11]. However, these cues can be fully
exploited with a control scheme based on their variation.

To do so, we evaluated geometrically the information gathered by ILD measure-
ments. From ILD measurements, the sound source location is expressed through a
circle depending on the ratio of energy. This circle is subject to the front-back ambi-
guity, since the ILD circle is centered somewhere on the extension of the microphones
interaural axis. As a second part, we focused on the controller of the sensor-based
scheme, more exactly on the relationship between the ILD variation with respect
to the robot motion. As a result, an approximated interaction matrix could be ex-
tracted from an ILD cue. From the design of a sensor-based control scheme, the task
analysis confirmed that ILD information could be exploited to orient the robot with
respect to a sound source direction. Eventually the stability analysis showed that
the source location is not required for this positioning task. Actually, there exists
an infinite number of solutions that guarantee the convergence of the controller to
complete such tasks.

The second interesting benefit of AS comes from its ability to deal with real
world conditions thanks to the flexibility and the robustness of the approach. The
framework described above has been validated experimentally in real conditions de-
spite an initial model based on ideal conditions. In our experiments conducted on a
mobile robot, we showed that from our approach a robot is able to face accurately a
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sound source, to track a moving sound source, and more impressively to cope with
the front-back ambiguity, without any information about the source location.

In the second part of this chapter, we integrated a distance cue to our model to
overcome the limitation inherent to ILDs: accuracy decreases for a distant source.
This distance cue is the energy level measured by the microphones. ILDs allow orient-
ing the robot towards the sound source while the signal energy controls the distance
between the robot and the sound source. By combining these two features the robot
is able to follow a moving sound source, despite erroneous ILD measurements, as
confirmed in several experiments.

Furthermore, this framework is directly performed on raw measurements without
tracking, filtering or signal enhancement. As a result, the computational cost of the
control scheme is small, less than 10 ms in our experiments. The different exper-
iments described in this chapter emphasized the robustness of the control scheme
towards reverberation and variability of the environment. The different use cases
showed the applicability of the method in various topic that could take advantage of
the auditory sense:

• A mobile robot navigated by pursuing a sound source through indoor environ-
ment while facing different level of reverberation and noise. This kind of tasks
has potential applicability to a wide a range of field such as security patrolling
or delivery services.

• An aerial robot has been able to guide a ground robot only with the sound of its
propellers. In this case, applications in the field of multi-robot and cooperative
tasks, or search-and-rescue mission can be targeted.

Globally the ILD-based control framework presented in this chapter could help
fulfilling the requirements for robots endowed with hearing sense that are: embed-
dability, real time processing, flexibility to broad environments, robustness to noise
and reverberation. But on the other hand, one constraint of this framework is the use
of a continuous and slowly varying sound signal. Hence, this control framework is not
particularly adapted to non-stationary, intermittent sources such as speech. Further-
more, until now we assumed a single source in the acoustic scene. For acoustic scenes
considering speech or multiple sources, ITDs are more relevant cues. These cues are
the subject of the next chapter that introduces an ITD-based control framework.
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ITD-based aural servo

In the continuity of the previous chapter centered on ILDs, we introduce in this
chapter the modeling of a sensor-based control framework using ITD measurements.
ITDs are certainly the most studied auditory cues for localization in machine hear-
ing. With a wide variety of techniques [PDA12, NMOK03] and microphones topology
[VMRL03, KND06], the estimation of this cue concentrated a lot of effort from the
robot audition community. However the results remain contrasted when facing dy-
namic realistic environments. Generally each method for estimating ITDs is tuned
for a particular environment and context. By contrast, this chapter demonstrates
that in the AS paradigm, ITD cues can still be exploited despite changing environ-
ment or rough approximations in acoustic scene modeling. The control framework
is based on a relatively common ITD estimation algorithm: GCC-PHAT.

In a binaural configuration characterized by a pair of microphones in a free-field
area, a geometrical analysis is performed in Section 5.1 in order to establish the link
between an ITD measurement and a sound source location.

In Section 5.2, from this analysis, two interaction matrices are extracted from
the variation of ITDs with respect to the microphones motions. These matrices are
respectively extracted from a rigorous geometrical model of ITDs and an approxi-
mation obtained from the far-field assumption commonly adopted in sound source
localization. The control scheme and the positioning task are then analyzed from
these interaction matrices. Thereafter, the stability properties, in the Lyapunov
sense, are studied to demonstrate the feasibility of such an approach. Eventually ex-
perimental results and numerical evaluations support the robustness and flexibility
properties of the proposed AS framework.

In the last segment of this chapter, we focus in Section 5.3 on the context of
multi-sources configurations. Control schemes considering two, three or more sound
sources are given. Experimental results and numerical evaluations are provided as
well.
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Figure 5.1: Geometric configuration of the considered system, that includes a source
Xs emitting a spherical sound wave, and a pair of microphones M1 and M2.

5.1 ITD modeling

5.1.1 Scene configuration

In a first phase, let us start from the configuration used for ILD-based control. We
then recall the scene configuration that assumes a motorized pair of microphones M1

and M2 in an area free of obstacle and separated by a distance d illustrated in Figure
5.1. An omni-directional sound source Xs is continuously emitting and we assume
that linear acoustics hypotheses hold. In the following, Xs is shaped as a point
that generates a sound wave uniformly in all directions. A frame Fm(M,−→xM ,−→yM )
originating from the midpoint M of the pair of microphones. Considering a planar
scene (i.e., zM = 0), the Cartesian coordinates of each microphone are respectively
M1(d2 , 0) and M2(−d

2 , 0). The sound source Xs(xs, ys) is located at a distance `i
from each microphone Mi. These distances `i are respectively given by `1 =

√
(xs − d/2)2 + y2s

`2 =
√

(xs + d/2)2 + y2s .
(5.1)

Moreover, let ` be the distance betweenM andXs, while α is the incident angle of the
sound source with respect to the microphones axis. α is also known as the direction
of arrival (DOA) of the source. The sound source position is thus characterized by
the following relationships: xs = ` cosα

ys = ` sinα
or

{
α = atan2 (ys, xs)

` =
√
x2s + y2s .

(5.2)
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This configuration is then endowed with 3 DOF in the horizontal plane, that are the
translations along −→xM and −→yM axis, and the rotation around −→zM .

5.1.2 Geometrical properties of the ITD

The first part of this chapter is dedicated to the study of an ITD τ , that corresponds
to the time difference in sound arrival between two microphones. Let us focus first
on the properties of this cue in the geometric configuration described above. From
the Figure 5.1, the sound wave emitted by Xs reaches each microphone Mi at a time
ti given by

ti =
`i
c
, (5.3)

in which c is the sound celerity. As a result the ITD τ between the pair of microphones
is given by

τ = t2 − t1 =
`2
c
− `1

c
(5.4)

From the measurement of τ and the knowledge of the latter relationship, one can
deduce the sound location. For this purpose, by injecting (5.1) in (5.4) we obtain:

τ =

√
(xs + d

2)2 + y2s −
√

(xs − d
2)2 + y2s

c
. (5.5)

The latter equation develops as√
(xs + d

2)2 + y2s

cτ
=
cτ +

√
(xs − d

2)2 + y2s

cτ
, (5.6)

that is equivalent to

(xs + d
2)2 − (xs − d

2)2

(cτ)2
− 2

√
(xs − d

2)2 + y2s
(cτ)2

= 1. (5.7)

After simplification we obtain

4

(
x2s(d

2 − (cτ)2)

(cτ)2
− y2s

)
= d2 − (cτ)2. (5.8)

Finally the equation is reduced to

x2s
(cτ)2

4

− y2s
d2−(cτ)2

4

= 1. (5.9)

This equation corresponds to an hyperbola H. Hence there are infinite solutions to
characterize a potential location of the source as depicted in Figure 5.2. It should also
be mentioned that the same reasoning can be developed for 3D scenes (see [APH14]),
in which H becomes an hyperboloid.
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Figure 5.2: For a given sound source Xs, the ITD geometrically refers to an hy-
perbola H, for which front/back and left/right ambiguity should be solved. The
asymptotes values (dotted line) of the hyperbola can serve as an approximation
(far-field assumption) of the sound direction.

Several properties result from (5.9) in the planar case. First this hyperbola exists
only if

− d

c
< τ <

d

c
and τ 6= 0. (5.10)

As a result when τ = 0, the hyperbola H degenerates to a straight line that cor-
responds to the bisector of the microphone pair (i.e. xs = 0). This geometrical
representation states that the sound source is "somewhere" on the hyperbola H, or
on the bisector of the microphones when τ = 0. The position of the sound source
can be refined by resolving the ambiguities related to H. First, there is an ambiguity
about determining on which branch of the hyperbola the sound source is located, for
a given ITD. Fortunately, this ambiguity can be solved from the sign of the ITD τ .
Indeed from (5.1), (5.7) can be rewritten

2xsd

(cτ)2
− 2`1
cτ

= 1. (5.11)

With some rearrangements, (5.11) becomes

xs =
cτ(cτ + 2`1)

2d
. (5.12)

Knowing from (5.4) that cτ = `2− `1, the sound source lateral location with respect
to the microphones frame is determined by

xs =
cτ(`1 + `2)

2d
. (5.13)
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In plain, if τ < 0 (i.e. the source is closer to M2 than M1), then the source is
located on the left branch, else the source is on the right branch. As for the front or
back position of the sound source with respect with the microphones axis, it can be
related to the sign of the hyperbola H asymptotes given by

y = ±
√
d2 − (cτ)2

cτ
x (5.14)

However, the asymptotes’ sign is independent from the sign of the ITD and hence
cannot be determined. This indeterminacy draws the already discussed concept
of front-back ambiguity. By extension, in 3D scenes, this ambiguity related to an
hyperboloid leads to the so-called cone of confusion inherent to mammals sound
localization as discussed in Chapter 2.1.2.

Eventually, one can also emphasize that for distant sound sources, that is, for a
source located at a pose where the hyperbola H has reached its asymptotic value
(see Figure 5.2), (5.14) can be written as

tanα = ±
√
d2 − (cτ)2

cτ
, (5.15)

in which α is the DOA (see Figure 5.1). From trigonometry properties, one can
develop (5.15) as

1− cos2 α

cos2 α
=
d2 − (cτ)2

(cτ)2
, (5.16)

that can be simplified as
(cτ)2 = d2 cosα2. (5.17)

Finally one obtains
τ = A cosα (5.18)

where A = d/c. Equation (5.18) corresponds to the definition of ITDs with respect
to DOAs under the far-field assumption. Thus it is possible to geometrically differen-
tiate the near-field from the far-field by comparing how close the hyperbola is from
its asymptotes, by using a distance criterion. Additionally, this geometrical mod-
eling stresses the limitation of the far-field assumption that is commonly assumed
in sound source localization (e.g. planar wavefront) [VMRL03, NOK01]. Indeed,
assuming the far-field condition, the accuracy of the DOAs obtained from ITDs de-
crease as the source gets closer to the microphones. Hence, rigorously our modeling
should be based on (5.4), as it will be seen in Section 5.2.2, in order to control
the robot accurately, independently of the distance to the sound source. Nonethe-
less, in the following, we also derive a model based on the ITD under the far-field
approximation in (5.18).

Although the far-field assumption cannot always be guaranteed in the scene, this
kind of model may highlight one of the key points of the sensor-based control scheme:
these two models are equivalent from a control point of view. This property will be
discussed exhaustively in Section 5.2.6.1.
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5.2 An ITD-based interaction with a single source

5.2.1 ITD interaction matrix under the far-field assumption

For now on, this section is concerned about linking the motions of the robot to ITDs
variation. Indeed building the interaction matrix is the foundation of the sensor-
based framework. In the configuration discussed above, one can draw a model from
the DOA α that is connected to the ITD τ through (5.18). The angle α can be
expressed with respect to Xs(xs, ys) as :

α = atan2 (ys, xs) . (5.19)

Thus the time derivative of α can be expressed as

α̇ =
ẏsxs − ẋsys

`2
. (5.20)

Equation (5.20) can also be expressed as a matrix relationship:

α̇ = LαvM (5.21)

where Lα is the interaction matrix related to α and vM = (vx, vy, vz, ωx, ωy, ωz) the
spatial velocity of the microphones pair. Once again we define uM = (vx, vy, ωz) that
corresponds to the controlled DOF of the robot as described in Figure 5.1. In this
equation, we can notice that vz = 0, ωx = 0, ωy = 0, which limits the motion induced
by the interaction matrix in the azimuth plane. From the kinematic equation

Ẋs = −vs − ωs ×Xs ⇔


ẋs = −vx − ωyzs + ωzys

ẏs = −vy − ωzxs + ωxzs

żs = −vz − ωxys + ωyxs

(5.22)

we obtain

α̇ =
−vyxs + vxys − ωz(y2s + x2s)

x2s + y2s
. (5.23)

Eventually referring to (5.21), the interaction matrix related to α is identified as:

Lα =
[
ys
`2
−xs
`2
−1
]

(5.24)

in order to be consistent with uM (only the non-zero terms are considered). There-
after, since the sound source position Xs(xs, ys) is unknown, one can reshape the
interaction matrix by using (5.2) so that Lα becomes

Lα =
[
sinα
` − cosα

` −1
]
. (5.25)

This result can subsequently be exploited to obtain the interaction matrix related to
τ . Under the far-field assumption, the time derivative of (5.18) is:

τ̇ = −A sinα α̇. (5.26)
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Considering that α ∈ [0;π] (i.e. sinα > 0), the interaction matrix Lτf under the
far-field assumption is then given by

Lτf = −A sinαLα =
[
−A sin2 α

`
A sinα cosα

` A sinα
]
. (5.27)

From (5.18) and the application of the trigonometric properties, the interaction ma-
trix Lτf is eventually reduced to

Lτf =
[
− ν2

A`
τν
A` ν

]
(5.28)

where ν =
√
A2 − τ2. Similarly to binaural localization, the distance ` that appears

in Lα and Lτf is unknown. The actual interaction matrices related to τ or α are
approximated as follows:

L̂α =
[
sinα̂̀ − cosα̂̀ −1

]
and L̂τf =

[
− ν2

Ầ τν

Ầ ν
]
. (5.29)

This kind of approximation is comparable to image-based visual servoing where the
depth of a point, which is unknown, appears in the interaction matrix of an image
point. An overview on these two matrices highlights the non-admissible values for
approximating their parameters. Indeed, for both matrices ̂̀ 6= 0 is a necessary
condition to avoid elements of infinite values in the interaction matrix. Infinite values
would nullify the control input. In the same way, the relation |τ | < A related to the
existence of the hyperbola H appears in the interaction matrix of τ as a condition
of non-singularity (i.e uM =∞).

5.2.2 ITD interaction matrix without assumption

An interaction matrix Lτr can also be obtained from the exact modeling of τ given
by (5.4). That is to say Lτr is computed without any assumption about the sound
source being in the far-field or near-field. In this case the time derivative of τ is

τ̇ =
1

c
( ˙̀

2 − ˙̀
1) (5.30)

By injecting (5.1) in (5.30), the derivative of τ develops as

τ̇ =
1

c

(
2ẋsxs + 2ẏsys + dẋs

2`2
− 2ẋsxs + 2ẏsys − dẋs

2`1

)
. (5.31)

By using the kinematic equation given in (5.22), the latter equation becomes

τ̇ = vx
xsτ − A

2 (`1 + `2)

`1`2
+ vy

ysτ

`1`2
+ ωz

A
2 (`1 + `2)ys

`1`2
. (5.32)

Finally Lτr can be extracted from (5.32):

Lτr =
[
xsτ−A2 (`1+`2)

`1`2
ysτ
`1`2

A
2
(`1+`2)ys
`1`2

]
. (5.33)
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Similarly to (5.29), unknown parameters depending on ` (xs, ys and `i are all function
of ` and α) and thus related to the sound source location, appears in Lτr . The
approximated feature interaction matrix is then

L̂τr =
[
x̂sτ−A2 (̂̀1+̂̀

2)̂̀
1
̂̀
2

ŷsτ̂̀
1
̂̀
2

A
2
(̂̀1+̂̀

2)ŷŝ̀
1
̂̀
2

]
. (5.34)

For this type of interaction matrix, any approximation should respect the condition̂̀
i 6= 0 in order to avoid elements of infinite values.

It should also be noticed that this interaction matrix (5.33) can easily be linked to
the interaction matrix under the far-field assumption (5.28). Under the far-field as-
sumption, the following hypothesis `1 ≈ `2 ≈ ` holds. Hence (5.33) can be rewritten
as

Lτr '
[
xsτ−A`

`2
ysτ
`2

ysA`
`2

]
. (5.35)

Afterwards, by replacing τ , xs and ys in (5.35) using (5.18) and (5.2), the interaction
matrix becomes

Lτr '
[
−A sin2 α

`
A sinα cosα

` A sinα
]

= Lτf (5.36)

that corresponds to (5.27), the interaction matrix with a far-field assumption.

5.2.3 Control scheme

These interaction matrices can then be used to design a control scheme that consists
in positioning the robot so that a given condition characterized by τ = τ∗ is satis-
fied. A positioning task is performed by considering a single ITD measurement τ(t)
extracted from the sound signal and by minimizing the error ‖e(t)‖. Hence this task
is characterized by an error

e(t) = τ(t)− τ∗ (5.37)

where τ∗ denotes the measurements for the desired ITD value. Similarly to the ILD
case, we design a control scheme governed by the approximation of the interaction
matrix L̂τj , j ∈ {r, f} in (5.29) or (5.34), in which the velocity of the microphones
is computed from (5.21) as (see Chapter 3)

uM = −λL̂+
τje. (5.38)

We recall that λ > 0 is the gain that tunes the time to convergence. In the latter
equation L̂+

τj ∈ R3×1 is the Moore-Penrose pseudo-inverse of L̂τj (see Chapter 3.2.1).
Thus, when considering the far-field assumption, the control scheme can be explicitly
written as

uM = −λ A2 ̂̀2
ν2 + τ2ν2 +A2 ̂̀2ν2


− ν2

Ầ
τν

Ầ
ν

 (τ − τ∗). (5.39)
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Otherwise, when considering the more general interaction matrix given in (5.34), the
control scheme becomes

uM =
−λ ̂̀1 ̂̀2

(ŷsτ)2 + (A2 (̂̀1 + ̂̀2)ŷs)2 + (x̂sτ − A
2 (̂̀1 + ̂̀2))2


x̂sτ − A

2 (̂̀1 + ̂̀2)
ŷsτ

A
2 (̂̀1 + ̂̀2)ŷs

(τ − τ∗).

(5.40)

5.2.4 Task analysis

We analyze, here, the ITD-based positioning from (5.25), that offers more flexibility
and is easier to interpret. From this interaction matrix it is possible to achieve
positioning tasks so that α reaches a particular desired value α∗. By using only
one feature from a single sound source, it can be intuitively expected that several
sensor poses exist so that α = α∗, that is a direct consequence of ITDs properties
detailed previously. Actually only one DOF can be controlled by using one sound
source. However, it is possible to extend the approach to control more DOF by
simply increasing the number of sound sources as it will be performed for Section
5.3. Here we are attached to describe this task geometrically from virtual linkages
approach given in Chapter 3.

This analysis is based on the vector subspace S∗, where each column characterizes
a motion for which α stays constant. When considering only one sound source, Lα
given by (5.25) is a rank-one matrix. Consequently S∗ ∈ R3×2 implies a virtual link
of class 2:

S∗ = Ker Lα. (5.41)

Hence, this subspace is defined as

S∗ =
[
u∗M1

u∗M2

]
=


vx1 vx2

vy1 vy2

ωz1 ωz2

 . (5.42)

which corresponds analytically to

S∗ =


cosα ` sinα

sinα −` cosα

0 1

 . (5.43)

The first column of S∗ induces a translation motion along the sound source direction,
that is along

−−−→
MXs. The second column describes a rotation around−→zM axis combined

with a translation. This last motion can be geometrically represented by a circle
of radius ` centered on Xs. Hence, similarly to the ILD case, such task consists
principally in orienting the robot with respect to the source location.

Thus, any linear combination of these two motions implies infinite poses to com-
plete a task α = α∗ (see Figure 5.3), from which we set up a first proposition.
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Figure 5.3: With one sound source several poses exists for a given positioning task
expressed by α = α∗. These poses lie on circles of radius ` centered on the sound
source location.

Proposition 2 For each position of the microphones defined by M, there exists one
orientation θM of the microphones such that α = α∗ .

5.2.5 Stability analysis

In this part, we analyze the stability properties of our sensor-based control through
the interaction matrix modeled in (5.34) and (5.29). The stability properties tailor
the approximation of the unknown parameters in the feature Jacobian matrix. With
the same reasoning developed for ILD context, in the previous chapter, the Lyapunov
global asymptotic stability condition is obtained when

Lτ L̂
+
τ > 0, (5.44)

knowing that L̂τ ∈ R1×3. In order to determine the stability conditions, let us focus
first on the Jacobian matrix related to the DOA α. In this case, the stability is
obtained when

LαL̂
+
α > 0. (5.45)

From (5.28) and (5.29), we have

LαL̂
+
α =

[
sinα
` − cosα

` −1
]

̂̀sinα
1+̂̀2
− ̂̀cosα

1+̂̀2
− ̂̀2

1+̂̀2

 . (5.46)

Equation (5.46) can be simplified to

LαL̂
+
α =

̂̀+ `̂̀2
`(1 + ̂̀2) . (5.47)

120



Chapter 5. ITD-based aural servo

Thus, it appears that for ensuring the stability condition LαL̂
+
α > 0, it is sufficient

to set ̂̀> 0. However, this demonstration is valid under the condition that the DOA
injected in L̂α is not too coarse. Indeed if we consider an approximation α̂ estimated
from τ , (5.47) is more exactly written as

LαL̂
+
α =

̂̀sinα sin α̂+ ̂̀cosα cos α̂+ `̂̀2
`(1 + ̂̀2) . (5.48)

Considering that ` > 0 and ̂̀> 0, the stability is ensured as soon as sign(cos α̂) =
sign(cosα) and sign(sin α̂) = sign(sinα). This interesting result confirms that even
with rough approximation of α, the controller should be able to converge towards
the desired configuration. Generally, any technique of ITD estimation (referenced in
Chapter 2.2), and by extension DOA estimation, provides sufficiently accurate results
so that sign(cos α̂) = sign(cosα). The second condition sign(sin α̂) = sign(sinα) is
as expected related to the front-back ambiguity inherent to ITDs. As a consequence,
under the far-field assumption, the stability of the controller based on L̂τr in (5.29)
is ensured as soon as ̂̀> 0, the DOA α and then the ITD τ is not too coarse (see
(5.18) and Figure 5.2) and the front-back ambiguity is solved.

For generalized stability properties (i.e., valid in the near-field), the Lyapunov
stability should also be evaluated on (5.34). First, to ease the comprehension and
the reading of the analysis, let us denote the interaction matrix L̂τ as

L̂τr =
[
N̂1̂̀
1
̂̀
2

N̂2̂̀
1
̂̀
2

N̂3̂̀
1
̂̀
2

]
(5.49)

where N̂1 = x̂sτ − A
2 (̂̀1 + ̂̀2), N̂2 = ŷsτ and N̂3 = A

2 (̂̀1 + ̂̀2)ŷs. Similarly Lτ can be
defined with N1, N2, N3, `1 and `2. From this convention of writing, (5.44) becomes

Lτr L̂
+
τr =

̂̀
1
̂̀
2

`1`2

N1N̂1 +N2N̂2 +N3N̂3

N̂1
2

+ N̂2
2

+ N̂3
2 . (5.50)

Considering of course `i > 0 and ̂̀i > 0, the Lyapunov stability is ensured as soon
as

N1N̂1 +N2N̂2 +N3N̂3 > 0. (5.51)

The latter equation can be developed as:

ysŷsτ
2 +

A2

4
ysŷs(̂̀1 + ̂̀2)(`1 + `2)+(xsτ −

A

2
(`1 + `2))(x̂sτ −

A

2
(̂̀1 + ̂̀2)) > 0. (5.52)

Hence, it can be deduced that a sufficient condition of stability is obtained with
sign(x̂s) = sign(xs) and sign(ŷs) = sign(ys). Indeed (5.52) is always positive for
these conditions, since (x̂sτ − A

2 (̂̀1 + ̂̀2)) < 0 and (xsτ − A
2 (`1 + `2)) < 0 owing to

`1+`2
2 ≥ xs and |τ | < A (see (5.10)).
In the end, the stability conditions of the controller, assuming the far-field ap-

proximation or the proper modeling of the ITD are exactly the same. Indeed, from
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(5.2) the conditions sign(x̂s) = sign(xs) and sign(ŷs) = sign(ys) can be rewritten
as: {

sign(̂̀cos α̂) = sign(` cosα)

sign(̂̀sin α̂) = sign(` sinα)
(5.53)

which amounts to ̂̀> 0, sign(cos α̂) = sign(cosα) and sign(sin α̂) = sign(sinα), the
conditions described for the control scheme based on the far-field assumption. Both
ITDs models stress that sufficient stability conditions are obtained when the source
location is disambiguated on the hyperbola H. The conditions sign(x̂s) = sign(xs)
and sign(ŷs) = sign(ys) are sufficient. The first condition is easily fulfilled from
the sign of τ as discussed above in (5.13). However, the second condition related to
the front-back ambiguity cannot be ensured from ITD measurements. Nonetheless,
experimentally, it may be possible to reach a pose where all the above conditions
are completed, as already demonstrated in Chapter 4.2.5. Eventually, the conditions
resulting from the current study underline infinite solutions ensuring global asymp-
totic stability, for both cases of ITD modeling. From these results, one can notice
the strong similarity between the stability properties for ITDs and ILDs. For both
cues, a task mainly consists in orienting a robot towards a given azimuth direction.
Hence, as soon as the actual source orthant is known (i.e. sign(x̂s) = sign(xs)
and sign(ŷs) = sign(ys)), an adequate robot motion can be found so that the error
converges towards 0.

5.2.6 Experimental results

5.2.6.1 Distance of observation evaluation

Before experimenting the proposed control scheme, it is essential to evaluate the
difference between the interaction matrix based on the far-field assumption L̂τf and
L̂τr extracted from the actual geometry of the ITD. We then tested these two mod-
els through simulations. The simulation environment designed from Roomsimove
[BOV12] consists in an anechoic room in which a positioning task is performed with
respect to a speech sound Xs. We considered anechoic conditions, since these sim-
ulations aim principally to evaluate the accuracy of these two models with respect
to the distance of sound observation. The positions of Xs are defined so that α
varied by 18◦ at given distance ` within the range [18◦, 162◦] as depicted in Figure
5.4. When considering one sound source, since the task mainly consists in orienting
the robot towards a given direction, we controlled only the rotational velocity, which
lead to

ωzf = −λν(τ − τ∗), (5.54)

where ωzf is the control based on the far-field assumption. Similarly the control
ensued from the rigorous geometrical definition of ITDs ωzf is defined as:

ωzr = −λ
A
2 (̂̀1 + ̂̀2)ŷŝ̀

1
̂̀
2

(τ − τ∗). (5.55)
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In (5.54), the parameters to be estimated are set to x̂s = −1× sign(τ) and ŷs = 1.̂̀
1 and ̂̀2 can afterwards be deduced by using (5.1). The task consists in facing the
sound source, which imply that τ∗ = 0. The ITDs τi are estimated in real-time,
for both configurations, by using GCC-PHAT algorithm (see Chapter 2.2.3). The
orienting task was repeated from far-field and near-field distances. More explicitly `
was set respectively at 0.5 m of the microphones in the near-field and 2 m for the far-
field with d = 0.3 m. In the results illustrated in Table 5.1, we also compared these
models to an open loop localization approach, in which the accuracy of the azimuth is
evaluated from the AEG model (see Chapter 2.2.2). The absolute orientation errors
(azimuth errors in the localization case) in degree is reported.

Figure 5.4: A simulated task that consists in facing a sound source (τ∗ = 0) in an
anechoic room. The sound source positions are varied so that α ∈ [18◦, 162◦] by step
of 18◦ and ` ∈ {0.5, 2} m for a near-field and far-field observation distance.

The simulations show that both control schemes ωzr and ωzf give excellent results.
This result could be expected from the stability conditions that are exactly the same
for the two approaches. From the stability perspective, the actual interaction matrix
related to the far-field assumption Lτf is just an approximation of Lτr so that it can
be written

Lτf = L̂τr . (5.56)

The values ` (and τ) are directly reflected in L̂τr through x̂s, ŷs and ̂̀i. Hence,
without violating the stability conditions of Lτr , it is ensured that a control scheme
based on Lτf will converge under near-field conditions. This outcome is also valid for
L̂τf under satisfying stability conditions. Consequently the ITD-based positioning
task can be performed accurately under a far-field assumption in the near-field.
Eventually, the results exhibited by our approach can also be compared to a more
conventional positioning task based on localization. Conversely to our method, in
the near-field, the localization accuracy is particularly degraded, because of the far-
field assumption. This result corroborates the geometrical modeling of ITDs detailed
in Section 5.1.2, in which the hyperbola H does not fit with its asymptotes in the
near-field. Although the simulation results of localization remains acceptable in the
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α (degrees)

18 36 54 72 90 108 126 144 162

uf < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1

ur < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1Near-field

loc 7.1 8.2 6.3 3.9 0 3.9 6.8 8.2 7.1

uf < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1

ur < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1Far-field

loc < 1 1.1 < 1 < 1 < 1 < 1 < 1 1.1 < 1

Table 5.1: Absolute error of the orientation task described in Figure 5.4 consider-
ing a control scheme using a far-field assumption ωzf or a control scheme without
assumption ωzr . These two methods are compared to a baseline approach based on
localization loc.

near-field (in anechoic conditions), when facing real environments the errors may be
accentuated by reverberation, noises or other perturbations.

As a direct consequence of these results, we can already emphasize the potential
robustness of our control scheme towards approximations or inaccurate estimations.
In the following, all the experiments and analysis are based on L̂τf , that has a more
convenient form. For more simplicity, we rename Lτf as Lτ .

5.2.6.2 Preliminaries: robot modeling and control scheme

To apply the proposed framework, the same system as in Chapter 4.2.5 is modeled:
a non-holonomic unicycle robot endowed with two microphones M1 and M2 as
illustrated on Figure 5.5. In this context, we aim to control the two DOFs of the
robot characterized by the control input q̇ given by (u, ω), respectively the translation
and rotation velocities. In addition to Fm related to the microphones, the frame
Fr(−→xR,−→yR) is attached to the robot. Dx denotes the distance between the center of
the robot R and the midpoint M of the microphones.

From this modeling, the control input q̇ can be computed from the following
relationship:

τ̇ = Jτ q̇ (5.57)

where Jτ is the Jacobian feature matrix introduced in Chapter 3.2.1 that is equal to

Jτ = LτJr. (5.58)

Jr is the robot Jacobian obtained from Figure 5.5 as

Jr =

0 Dx

1 0
0 1

 . (5.59)
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Figure 5.5: modeling of the robotic platform

Hence, the control scheme of the robot is

q̇ = −λĴ+
τ (τ − τ∗). (5.60)

As mentioned in the task analysis, a control input characterized by the angular
velocity ω only is sufficient to achieve any task involving one sound source. In that
particular case where u is always equal to 0 and the Jacobian matrix reduces to

Ĵτ =
Ầν −Dxν

2

Ầ . (5.61)

The control input becomes

q̇ = −λ 1

ν
(

1− Dx
Ầν

)(τ − τ∗) (5.62)

Excluding the degenerate case where α = 0 or α = 180 (i.e., ν = 0), singularities of
the interaction matrix could in principle occur if ̂̀< Dx. Hopefully, this is impossible
in practice. Indeed, knowing that 0 ≤ ν ≤ A, the denominator of (5.62) can never
vanish as soon as ̂̀> Dx. In the same way, the global asymptotic stability of the
system is satisfied as soon as ` > Dx and ̂̀> Dx.

When the two DOF of the robot (u, ω) are controlled, the Jacobian matrix is
given by

Ĵτ =
[
τν

Ầ Ầν−Dxν2
Ầ

]
(5.63)

and the control input is obtained as:

q̇ = −λτ
2 + (νDx −Ầ)2

A2 ̂̀2
[ τν

A

−ν(νDxA − ̂̀)
]

(τ − τ∗) (5.64)

125



Chapter 5. ITD-based aural servo

The interaction matrix is not singular as soon as ̂̀> 0, which corresponds to the
Lyapunov stability condition already demonstrated previously.

5.2.6.3 ITD estimation and tracking

Prior to the experimental validations, it is essential to characterize the sound pro-
cessing and more particularly ITDs estimation. Indeed unlike ILDs that can be
computed uniquely by integrating the sound signal over a particular time window,
ITDs are estimated from a more complex process. Recalling the methods of ITDs
estimation detailed in Chapter 2.2.3, from GCC-PHAT [KC76], the ITD τ can be
obtained by comparing the temporal signals x1(t) from the microphoneM1 and x2(t)
from M2 in the spectral domain with:

R1,2(τ) = max
l

F∑
f

ψ(f)X1(f, l)X
∗
2 (f, l)eϕ(τ). (5.65)

X1(f, l) andX∗2 (f, l) are respectively the Fourier transform of x1(t) and the conjugate
of the Fourier transform of x2(t). The maximum peak of the GCC-PHAT function
gives an estimation of the actual ITD and can therefore be written as:

τ̂ = argmax
τ

R1,2(τ) (5.66)

with τ ∈ [−A,A] corresponding to a sound direction of arrival α from 0◦ to 180◦. In
ideal conditions, the maximum peak of the latter function should correspond to the
ITD of the sound source as exposed in Figure 5.6a.

-100

 0

 100

 200

 300

 400

 500

 600

 0  20  40  60  80  100  120  140  160  180

Azimuth (degrees)

(a)

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 0  20  40  60  80  100  120  140  160  180

Azimuth (degrees)

(b)

Figure 5.6: Output of the GCC-PHAT function under anechoic conditions (a) and
reverberant conditions (b).

In real world conditions, the result of the GCC-PHAT function is more contrasted.
Instead of having one dominating peak, which makes immediate the estimation of
the actual ITD, several plausible but spurious peaks appear because of reverberation
and noise (see Figure 5.6b). These conditions may also alter the actual peak related
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to the source that would be less sharp and accurate. Fortunately, this problem can
be handled by our control framework that is robust to approximate ITDs.

Therefore, under these conditions, p peaks (p > 1) may be considered among
which the correct peak should be found. Furthermore, when considering specific
signals such as speech, it is very likely to record sparse data (temporally and spec-
trally). Not all the frames processed contain relevant information, since speech is a
non-stationary and intermittent signal.

This emphasizes the need of a tracking algorithm to detect correct ITDs. In-
dependently of the intrinsic values of the features, AS, as many other sensor-based
approaches, is built upon a correct tracking of the input features. Tracking ITDs
corresponding to an actual source among a set of observations may be an issue for the
correct achievement of a desired task. If ITDs that do not correspond to the source
are tracked the positioning task would certainly fail. In robot audition literature,
the problem of tracking ITDs is quite new, with the recent interest in active audition
and moving source/robot as stated in Chapter 1.2. The common approach consists
in probabilistic techniques such as the particle filter used in [VMR07] and [MP10].
These two approaches are complemented with a speech activity detection to account
for periods of silence. In [EMN+15] a probability hypothesis density tracker is pro-
posed in order to skip the activity detection. The aforementioned approaches are
relying on array-based approach for more robustness. In binaural context [PDA12]
and [NCVC16] are based on a mixture of Kalman filters. However these methods
have only been partially validated in real environments [PBD+14]. Being able to
accurately track dynamic ITDs is still a challenging task in robot audition.

Yet, AS can provide added value to this tracking problem. One of the benefit
of coupling motion and perception, as in AS, lies in the prediction that limits the
scope of erroneous measurements. More specifically, the Jacobian matrix Jτ can be
used to infer the evolution of the tracked ITDs in the next time frame. Given τ as
the state x and the velocity q̇ applied to the robot, a local prediction model based
on the Jacobian matrix (5.58) is simply given as follows:{

ẋ(k) = Ĵτ q̇
x(k + 1) = x(k) + Teẋ(k)

(5.67)

in which Te refers to the sampling time of the control loop. Nonetheless the predicted
τ is not as accurate as the genuine ITD, because of the approximation Ĵτ used in
(5.60) in which `i = ̂̀

i. Several methods such as state space observer [DLORG08]
could be used to obtain a better estimation of ̂̀i, but the closed-loop control scheme
is sufficiently robust to cope with a rough approximation of `i. Despite this rough
approximation, the prediction step gives useful information that can also be used
when the source is not active. If no ITD measurement "fit" with the predicted value,
it is very likely that the source is inactive. Hence, the unavailable ITD could be
replaced by this prediction. Without complex tracking methods, it should then be
possible to track the correct ITDs in realistic environments.

In our application, the tracking procedure is divided into two steps. In the first
step, the goal is to find the correct ITDs with respect to the number of active sound
sources defined beforehand. This step assumes that the microphones and the sound
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source(s) are not moving. Then the set of peaks obtained from a GCC function is
observed during a given number of time frames. A history pooling algorithm based
on the Euclidean distance between ITDs is then applied to detect the frequency of
appearance of a given ITD τi. By combining this frequency to the average appearance
rank of each τi, the most probable ITD is then selected. This method is applied to
the initial pose to retrieve τ(t0) but could also be applied to retrieve each τ∗ when
the desired pose is not characterized by an obvious ITD. For some simple cases, each
τ∗ is defined manually, for instance for a task that consists in orienting the robot
towards the sound source (e.g., τ∗ = 0). The second step is used during the robot
motion, and consists in finding the genuine ITDs among the set of observations given
by the GCC-PHAT function. Knowing the ITDs previous value, we simply select
the closest peak in the current frame, by taking into account our predicted ITDs.

It is clear that this tracking method is not optimal. More evolved solutions
could complement our approach with the methods available in the literature (par-
ticle filtering, probabilistic data association...). They would, however, increase the
computational cost of the control scheme. We have preferred the simple and efficient
solution exposed above in order to stress the added value of our approach, and more
particularly the robustness of the control scheme to inaccuracies and/or punctual
errors.

5.2.6.4 Experimental setup

In order to further validate the effectiveness of our approach we conducted exper-
iments on the Pioneer 3DX robot. Two microphones connected to a sound card
8SoundsUSB [AC+] were used. The sound card operates at a frequency of 48 kHz,
and provides windows frames of 256 samples. The ITD is computed from 10 con-
secutive windows frames (e.g 50 ms), that are sub-sampled at 16 kHz. Processing
the sound signal at a frequency of 16 kHz gives two advantages: better results are
obtained from uttered speech that is less sparse at low frequencies and the processing
time is reduced with less samples to analyze. Consequently, each control loop is pro-
cessed at an average frequency of 12 Hz. The tests were conducted in a room with a
reverberation time RT60 ≈ 580 ms. Moreover, the measured SNR is around 20 dB

d 0.31 m

c 343 m.s−1̂̀ 1 m

A 0, 00090379 s

λ(x) 5e(−4000x)

Table 5.2: Experimental settings

in presence of typical noise such as computer noise and ventilation in the room. The
parameters used for the experiments are given in Table 5.2. An adaptive gain λ(x)
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in which x refers to the norm of the error e is used to smooth the robot motion.

5.2.6.5 Typical ITD-based positioning task

In this experiment we considered one sound source that corresponds to a female
voice recording of 10 s played in loop. The task to be performed is to face the sound
source, τ∗ is set to 0. The two DOF are controlled from the control input given by
(5.64). The experiment can be divided into two steps.

In the first step the robot is randomly oriented with respect to the loudspeaker.
Nonetheless this orientation is set so that the source stays in the front-side of the
robot. In this part of the experiment the robot correctly positioned itself in the
direction of the static sound source, as illustrated by the Figure 5.7.

(a) (b) (c)

Figure 5.7: First phase of the experiment: the robot accurately orients towards the
sound source

Subsequently the sound source was moved from one side in the environment and
at different distances. As a result, the robot constantly moved in the direction of
the source (see Figure 5.8). The robot accurate behavior is supported by the data
exposed in Figure 5.9, that are extracted from the experiment. During the first
5 s, the error follows an exponential decrease pattern as modeled in the control
scheme. In the following, when the source moves, the error is compensated by the
robot motion. As already mentioned in the previous chapter, in the ILD case, there
is still a small tracking error, that is illustrated by the error curve that do not
stay at 0. Nonetheless, the task is correctly achieved since the lag between the
robot orientation and the desired one did not exceed 10◦ despite the low dynamic
response of the mobile robot. Knowing that no specific information about the source
motion is used in the control scheme, the behavior of the robot remains satisfactory.
Furthermore, this experiment acknowledges the relevance of the tracking method.
We can notice in Figure 5.9c several false measurements represented by the green
dots while the actual ITD is accurately tracked. These spurious measurements may
be caused by reverberation, or simply noise. This noise can also be noticed by the
aligned green dots at α = 90◦ during all the frames of the task. This diffuse noise
is certainly caused by the ventilation system in the room. It can be noted that
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no particular signal enhancement has been used for this experiment. Unlike the
experiments proposed in the previous chapter, we are not attached here to address
the front-back ambiguity. The singularities related to ITD hyperbola (i.e., τ ± A or
α = 0◦, α = 180◦) would make the control scheme unstable.

(a) (b) (c)

(d) (e) (f)

Figure 5.8: Second phase of the experiment: the robot is accurately tracking the
sound source that is moving
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Figure 5.9: Experimental result of the ITD-based task illustrated in Figures 5.7 and
5.8

5.2.7 Numerical evaluation

The proposed framework has also been evaluated in a numerical simulation. An
acoustic room of 5 by 5 m2 is simulated, in which (a sound source corresponding
to the same female speech as in the previous experiments) is played in loop. Each
ITD is extracted from a frame of 100 ms. This frame size was chosen for real-time
purpose. The experiment is repeated several times with 12 source locations so that
the azimuth angle at the starting pose of the microphones varies between 30◦ and
150◦ with a resolution of 10◦ (the azimuth angle 90◦ is not considered). The goal of
this task is to orient a robot towards a given sound source (i.e τ∗ = 0 or α = 90◦).
The correct achievement of the tasks as well as the erroneous and missing ITD are
evaluated. A measurement is considered erroneous if the error between the actual
ITD and the estimated ITD leads to an error of 5◦ or more in the corresponding
DOA α. A task is said to be completed when τ = τ∗ at the end of the servo.
Robustness to noise and reverberation
Table 5.3 sums up the results of the simulation. As expected the performance is
decreased in presence of a high level of noise coupled with reverberation. Under 20 dB
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RT60 (s)
SNR(dB)

0 0.05 0.1 0.2
Total

30 1 1 1 1 1

25 1 1 1 1 1

20 1 0, 916 0, 667 0 0, 646

15 1 0, 667 0, 416 0, 083 0, 541

10 0, 667 0, 167 0 0 0, 208

Total 0, 944 0, 625 0, 514 0, 347

Table 5.3: Rate of achieved tasks considering several reverberation and noise condi-
tions

of SNR, the task is affected by reverberation. However, most of the time, the robot
did not reach the correct pose because of a wrong initialization of ITD measurements
(e.g α(t = 0) = 90◦). These failures stress the importance of being able to track
the correct ITDs and more importantly to initialize correctly the tracking algorithm.
Hence, a more elaborated initialization step could improve the rate of completion of
the task for low SNR. Globally, we notice that this approach is more sensitive to a
high level of noise than to reverberation. This result fits with the method chosen
for the ITD calculation (GCC-PHAT), known to be less robust to noise. The PHAT
processor whitens the signal for all frequencies without any selectivity of frames
containing noise or speech. Approaches such as RWPHAT (see Chapter 2.2.3) would
undeniably improve these results. On the other hand, in a context suitable for GCC-
PHAT, that is to say with a high SNR, the positioning task is accurately performed.
Robustness to erroneous measurements
A more thorough study of the previous results confirms that the control scheme is
able to cope with erroneous/missing measurements. Among the achieved tasks, we
focus now on the rate of erroneous/missing ITDs. The Figure 5.10 illustrates this
rate for a noise level of 30 and 25 dB. Lower SNR are not considered in this figure
since the different number of achieved tasks would bias the global analysis. Although
these tasks were all achieved correctly, several erroneous or missing measurements are
faced by the control scheme mainly because of speech pauses. As expected, this rate
of erroneous ITDs increases logically with higher level of noise and reverberation. But
the control scheme is still able to complete the task by using the prediction derived
from the interaction matrix, even for cases where nearly 20% of the measurements
are missing or erroneous. This result shows the effectiveness of our method to cope
with punctual erroneous measurements.
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Figure 5.10: Average rate of missing/erroneous ITD considered for correctly achieved tasks
for 30 and 25 dB of SNR

5.3 Multi-source tasks

In the second part of this chapter, we address scenarios where several sound sources
are active in the scene. Here, the idea is to define a positioning task with respect
to the ITDs extracted from each sound source. Under the far-field assumption that
relates each ITD τi to the DOA αi such positioning tasks can be referred to the
field of beaconing or bearing-only homing/navigation. This kind of approach is bio-
inspired and such process can be observed in nature through the localization system
of bees [CC87]. One of the first applications about bearing-based robot control can
be found in [LDW91] where the navigation of a mobile robot is governed by the bea-
con extracted by an array of sonar transducers. In the field of vision-based control
several works also exploit beacons. For instance, [Cor03] proposes a planar visual
servoing navigation system based on these features. This work inspired more recently
[LPCS10] that develops a homing system based only on bearing measurements, with-
out knowledge of the distance to the visual landmarks. This context is also exploited
nowadays by the field of multi-robot localization [MPS05] or formation control of
ground robots [FM02] or aerial vehicles [FMG+12] that is essentially based on bear-
ing measurements. Such aforementioned tasks could also be performed by exploiting
sound.

5.3.1 Case of two sound sources

5.3.1.1 Control scheme and task analysis

We consider now the configuration where two sound sources Xs1 and Xs2 are present
in the acoustic scene. In this configuration the interaction matrix is obtained by
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merely stacking (5.25) for each sound source:

Lα =

[
sinα1
`1

− cosα1
`1

−1
sinα2
`2

− cosα2
`2

−1

]
, (5.68)

which is equivalent to

Lτ =

[
− ν21
A`1

τ1ν1
A`1

ν1

− ν22
A`2

τ2ν2
A`2

ν2

]
(5.69)

with the ITDs τ1 and τ2 respectively related to Xs1 and Xs2 , and νi =
√
A2 − τ2i .

Similarly to the single-source task, we consider a control scheme based on the ap-
proximation of the latter interaction matrix L̂τ .

Once again, the task related to the use of such a control scheme can be charac-
terized from the virtual linkage approach applied on (5.68). This time S∗ ∈ R3×1

implies a class 1 virtual link:

S∗ =

`1 cosα2 − `2 cosα1

`1 sinα2 − `2 sinα1

sin(α1 − α2)

 . (5.70)

Geometrically S2
∗ refers to the circumscribed arc of circle characterized by Xs1 , Xs2

andM, as it can be proved by the inscribed angle theorem. Let δ be ∠Xs1M
∗Xs2 (i.e

δ = α∗2−α∗1) from a specified pose as it appears in Figure 5.11a. This theorem exposes
that given Xs1Xs2 , the set of points M in the plane for which the angle ∠Xs1MXs2

is equal to δ is an arc belonging to the circumscribed circle of M∗Xs1Xs2 . Then by
considering any point M on this arc, from Proposition 2, it is guaranteed to find an
orientation θM such that α1 = α∗1 (or α2 = α∗2). Knowing that δ stays constant,
α2 = α∗2 (or α1 = α∗1) is obtained from δ = α∗2 − α∗1 This result sets up the following
proposition:

Proposition 3 For any position M on the arc of the circumscribed circle defined
by Xs1 , Xs2 and M∗, there exists one orientation θM of the microphones so that
α1 = α∗1 and α2 = α∗2.

This proposition is valid for any source configuration but the situation where M∗,
Xs1 and Xs2 are aligned. In this particular case where α∗1 = α∗2 we get:

S2
∗ =

[
cosα1 sinα1 0

]>
. (5.71)

As expected, we obtain a trajectory similar to the translation motion described for
the case of a single source in (5.43), since only one angular data is available (see
Figure 5.11b). For the stability, the condition Lτ L̂

+
τ > 0 is of course ensured when̂̀

i = `i since we have Lτ L̂+
τ = I2 in that case. Since `i is not available, a conventional

method to approximate each ̂̀i is to use the distances `∗i to the sound source at a
desired pose. In this case, it is well known that the system is locally asymptotically
stable in the neighborhood of the desired pose [CH08]. In our case, with an infinite
set of desired poses, a simple choice is to fix ̂̀1 = ̂̀

2 = k, where k is an approximation
of the distance to the sources at the desired pose.
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(a) (b)

Figure 5.11: With two sound sources (a) several poses exist for given τ∗1 and τ∗2
on the circumscribed circle defined by the sound sources and the position of the
microphones. When the sources are aligned with M (b), the circle becomes a line
directed by the sources locations.

5.3.1.2 Experimental results

From the robot configuration given in Figure 5.5, the control scheme used in this
experiment is based on the Jacobian feature matrix extracted from (5.69) as

Ĵτ =

 τ1ν1A ̂̀
1

A ̂̀
1ν1−Dxν21
A ̂̀

1

τ2ν2
A ̂̀

2

A ̂̀
2ν2−Dxν22
A ̂̀

2

 . (5.72)

The control input q̇ = (u, ω) is then computed from

q̇ = −λĴ+
τ (τ − τ ∗), (5.73)

in which τ = [τ1, τ2]
> and τ ∗ = [τ∗1 , τ

∗
2 ]>. The settings are exactly the same as the

case of a single source task and are given in Table 5.2. The approximated distances
are ̂̀1 = ̂̀

2 = 1 m. Furthermore the tracking routine described in Section 5.2.6.3
is used. Additionally to this tracking, a labelling of the retrieved ITDs is necessary
when there are two sound sources. The goal is to associate each τi to the desired τ∗i
so that the task can be correctly completed. The labelling problem is trivial to solve
in this configuration. If we consider the working space as the half plane in front of
the microphones, the ordinality of τi(t) and τ∗i is the same. Namely if τ∗1 < τ∗2 then
τ1(t) should be lesser than τ2(t). As shown in Figure 5.11a, it is obvious that each
pose of the microphones in the environment can be characterized by a circumscribed
circle on which the corresponding angles α1 and α2 have always the same ordinality.

Hence, in this experiment, besides the female speech we added a second sound
source corresponding to a burst of white Gaussian noise of 25 ms followed by 25 ms
of silence played in loop. This time, the objective is to reach a pose where τ∗1 = −τ∗2
with α1 = 50◦. From a pose fulfilling that condition, the system extracted τ∗1 and
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τ∗2 in the first step. Afterwards, starting from a pose around 3 meters away from the
sources, the system automatically initialized and labelled τ1(t0) and τ2(t0).

(a) (b) (c)

(d) (e) (f)

Figure 5.12: With two sound source, the robot heads towards a pose satisfying the
given bearing conditions.

Figure 5.12 shows the completion of the task. Data from this experiment (see
Figure 5.13) shows corrupted ITD estimations occurring during the robot motion
which were coped with with the tracking routine. More precisely spurious ITDs
were caused by echoes following the same variation as the actual ITDs. This could
be expected since the echoes appear as virtual sound sources. Moreover the noise
effect is still present with observation of peaks for α = 90◦ during most of the
frames. Despite these poor observations, the error of the measured ITDs successfully
converged to zero while the robot follows a straight and smooth trajectory towards
the circular set of solutions to be reached, with a correct orientation.

However, compared to ITD-based tasks using a single source, this type of task is
less robust. The robustness decreases notably because of the issue of tracking each
source ITD. When considering intermittent sound sources, the tracking algorithm
does not account for the number of active sources at the current frame. Hence,
some plausible ITDs issued from the echoes of the active source could be associated
to the ITD of the inactive sound source. For this kind of configuration, it is then
necessary to have a more reliable tracking that takes into consideration the number
of active sound sources. Otherwise, when considering continuous sound sources, the
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performance of the positioning task is similar to the single source task.
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Figure 5.13: Experimental result of the ITD-based task with two sound sources
illustrated in Figure 5.12.

5.3.2 Case of three sound sources and more

5.3.2.1 Control scheme and task analysis

It is also possible to consider more sound sources. When considering three sound
sources Xs1 , Xs2 and Xs3 the interaction matrix is generally full rank 3:

Lα =


sinα1
`1

− cosα1
`1

−1
sinα2
`2

− cosα2
`2

−1
sinα3
`3

− cosα3
`3

−1

 (5.74)

For the ITDs τ1, τ2 and τ3, related to each sound source, this interaction matrix
becomes

Lτ =


− ν21
A`1

τ1ν1
A`1

ν1

− ν22
A`2

τ2ν2
A`2

ν2

− ν23
A`3

τ3ν3
A`3

ν3

 . (5.75)
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In most cases, this configuration implies that there exists only one pose where
s = s∗. However, depending on the specified desired position or the sound sources
configuration, a set of contiguous poses for which s = s∗ may exist. Indeed, inspired
by the case of two sound sources, a set can be expected if Xs1Xs2Xs3 and M design
a concyclic quadrilateral. Wherever M belongs to the corresponding circumscribed
circle, an orientation θM exists such that s = s∗ (see Figure 5.14b) and S∗ is de-
signed by (5.70). This result can be demonstrated analytically by computing the
determinant of the interaction matrix Lα:

|Lα| =
sin(α1 − α2)

`1`2
+

sin(α2 − α3)

`2`3
+

sin(α3 − α1)

`1`3
. (5.76)

Besides, from the inscribed angle theorem and the sinus law, it is possible to say
that:

‖Xs3Xs1‖
sin(α3 − α1)

=
‖Xs3Xs2‖

sin(α3 − α2)
=
‖Xs2Xs1‖

sin(α2 − α1)
. (5.77)

From now on, the determinant of the interaction matrix is equal to:

|Lα| =
sin(α3 − α1)(`2 −

‖Xs2Xs1‖
‖Xs3Xs1‖

`3 −
‖Xs3Xs2‖
‖Xs3Xs1‖

`1)

`1`2`3
. (5.78)

Furthermore, an other property of the cyclic quadrilateral is that the product of the
diagonals equals to the sum of the products of opposite sides:

`2‖Xs3Xs1‖ = `1‖Xs3Xs2‖+ `3‖Xs2Xs1‖ (5.79)

By combining equation (5.78) and (5.79), it appears that |Lα| = 0. As a result,
there is a rank loss of the interaction matrix, and this system is similar to the case
of two sound sources. There exists other configurations also leading to a rank loss of
the matrix. By analyzing (5.76), |Lα| is null when:

• α1 = α2 = α3. In that configuration, the sound sources are aligned in the
microphones axis as

−−−−→
MXs1 = k1

−−−−→
MXs2 = k2

−−−−→
MXs3 , which corresponds to the

configuration described by (5.71). But we can also notice that an infinitesimal
motion defined by vx, vy or ωz different from sound direction will cancel this
singularity.

• α1 = α2, then we have |Lα| = sinα12 cosα3−cosα12 sinα3
`2`3

+ cosα12 sinα3−sinα12 cosα3
`1`3

.
As soon as `1 = `2, the determinant is equal to zero. Concretely, if at least two
out of the three sources are juxtaposed, we are in the similar case of only two
sound sources.

Apart from the aforementioned configurations, there is a unique solution for
a task based on three sound sources (see Fig.5.14a). Geometrically, this result is
obtained by considering the three circumscribed arcs of circle defined by Xs1Xs2M,
Xs2Xs3M and Xs1Xs3M. According to Proposition 3, M must belong to these
three arcs to ensure α1 = α∗1, α2 = α∗2 and α3 = α∗3. As shown in Figure 5.14b, these
arcs intersect in only one position when considering a nominal configuration. From
this result the following proposition can be set:
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Proposition 4 In presence of three sound sources in a non-concyclic or non-degenerate
configuration with M∗, there exists only one pose M of the microphones so that
α1 = α∗1, α2 = α∗2 and α3 = α∗3.

(a) (b)

Figure 5.14: With three sound sources (a) a unique pose generally satisfies the
conditions given by τ∗1 , τ∗2 and τ∗3 . When the sources and the microphones position
M design a concyclic quadrilateral (b), there is set of solution equivalent to the
configuration with two sound sources

Eventually, the circumscribed circle built by the sound sources is then a zone
where the interaction matrix is singular and thus the controller is not stable. Indeed
independently of the approximation L̂τ , the condition Lτ L̂

−1
τ > 0 cannot be ensured

since at this position |Lτ | = 0. We denote this zone as a singularity circle. A parallel
can be emphasized with IBVS region of instability, where the circumscribed circle is
the planar equivalent of the singular cylinder [MR+93].

5.3.2.2 Using more than three sound sources

Using more than three sound sources can be beneficial by giving more robustness
to the control law. The demonstration developed for three sound sources remains
applicable and a single pose exists such that s = s∗. Redundant data may ensure the
stability of the control scheme when crossing the singularity circle that does not exist
anymore. Indeed the singularity of the interaction matrix is cancelled by a fourth
sound source positioned in a non-concyclic configuration with the three first ones.
On the other hand, only the local asymptotic stability is verified under the condition
L̂+
τ Lτ > 0 (see Chapter 3.2.3), which is ensured when ̂̀i = `i since L̂+

τ Lτ = I3.
Thence with three sound sources in a non-singular configuration or with at least
four sources in any other case, all the three robot DOF are constrained. A homing
task can be performed without an exact knowledge of the position of the sound
sources (an approximation ̂̀i is sufficient). The realization of such task corresponds
to bearing-only homing system.
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Nonetheless, from an acoustic point of view, achieving such task remains ex-
tremely challenging when considering wideband and intermittent signal such as
speech. In indoor environment, reverberation, sources (in)activity complicate the
tracking and the identification of each ITD. Moreover, only few techniques are able
to detect robustly such a number of sound sources. The survey conducted in [BOV12]
shows that GCC-PHAT has, at best, a recall rate of 0.7 for 3 sound sources. From
this result, it can be inferred that it is likely that all the sources will not be detected
in the sound mixture. For all these reasons, we think that such a method should be
particularly suitable for narrowband acoustic landmarks, that simplify the aforemen-
tioned problems. Each landmark is then detected on a limited and disjoint frequency
range, which eases the detection and identification of the ITD. For instance under
this hypothesis, in [BSLF16] the authors propose a follower-leader control scheme
based on bearing measurements recorded by 4 microphones. In this configuration,
the ITD-based positioning task could be fully exploited for multi-robot systems nav-
igation or formation control.

5.3.2.3 Numerical evaluation

The developed method was tested through simulations in Roomsimove [BOV12].
We designed a room of 4.55 m ×3.55 m ×2.5 m in which three sound sources Xs1 ,
Xs2 and Xs3 were positioned as they appear in Figure 5.15. Here, we simulated a
holonomic robot that is controlled by the 3 DOF of the azimuth plane vx, vy and
ωz. First, each of the sound sources emitted in succession so that they could be
identified uniquely. Thereafter, the ITDs τi are estimated from the sound mixtures
generated by the three sound sources. In the first two simulations described above
we considered the real interaction matrix so that L̂−1τ = L−1τ assuming that each
distance `i is known. The effect of approximating the interaction matrix is discussed
afterwards. The control scheme of the task is given by

uM = −λL−1τ (τ − τ ∗), (5.80)

where Lτ is defined by (5.75).
We simulated first a homing task with an initial pose defined by M(2, 0.75) and

θM = −5◦ and a home pose defined by M∗(3.1, 1.75) and θM∗ = 10◦. That home
pose corresponds to α∗=(31◦, 85◦, 118◦) and was located outside of the circumscribed
circle. In addition, a moderate reverberation was added with a reverberation rate
RT60 ≈ 75 ms and with background white noise that guarantees an SNR of 25 dB.
The result of this simulation is shown on Figure 5.15. Despite the uncertainties
on the ITD measurements caused by noise and reverberation, the system converged
successfully to the home pose with an exponential decrease of the error. Moreover,
since the singularity circle was not crossed during the task, the stability of the control
law was ensured. As for simulation data, despite the jittery behavior in the velocities
curves caused by ITDs estimation, the trajectory remains smooth.

A second scenario was conducted including 99 trials on different reverberation
times and uniformly distributed starting poses. With the front-back ambiguity im-
plied by the use of only two microphones, θM was chosen so that the sound sources
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Figure 5.15: A typical homing task with moderate reverberation RT60 ≈ 75 ms

were on the same side of the microphones at the initial pose. Thus the orientation
θM varied from −30◦ to 30◦ depending on the starting pose. With a home pose at
M(2.25, 1) and θM∗ = −5◦, the results summed up in Figure 5.16 show that with
no reverberation the system always converges to that pose. This result confirms the
relevance and the suitability of the auditory modeling. However, we distinguished
two failure areas in presence of reverberation. The first one was located on the
alignment of Xs2 and Xs3 and mainly occurs when the reverberation increases. In
this area, the main difficulty is to identify each measurement. With variation in the
estimation and outlier (sound echoes) values, a wrong ITD could be associated to a
sound source. Likewise, a feature loss was observed on the right extremity of the test
area since one of the ITDs was not correctly estimated. Consequently the system
could fail to converge in those two areas especially with high reverberation.
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Figure 5.16: Homing task success in function of reverberation and initial pose:
success(O) and failure (X) with from top-left to bottom-right with reverberation
rate RT60 = {0, 0.02, 0.05, 0.075}.
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5.3.2.4 Approximation of the interaction matrix

Several ways exist to approximate Lτ by L̂τ and these different strategies affect the
behavior and the stability of the system as shown in [MMR10]. Since the distances
`i are unknown in practice, a first strategy consists in using `∗i , the distances at the
desired pose, instead. As illustrated by Figure 5.17, L̂τ = Lτ (τ ,`∗) gives a straighter
and shorter trajectory. In addition, the desired measurements τ∗ can be used in the
interaction matrix. In that case L̂τ = Lτ (τ∗,`∗) leads to a longer and unexpected
trajectory but still converges to the home pose. These two solutions solve the problem
of the unknown distance to the sound source. Moreover L̂τ = Lτ (τ∗,`∗) is constant
and needs to be computed only once. A last strategy considers the combination of the
real and the constant interaction matrix leading to L̂τ = (Lτ (τ ,`)+Lτ (τ∗,`∗))/2. The
corresponding trajectory is improved compared to the constant interaction matrix,
with the influence of Lτ (τ ,`).

Figure 5.17: Homing trajectories with different interaction matrix approximations

5.4 Conclusion

In this chapter, we proposed control schemes based on either a single ITD or several
ITDs in the configuration of multiple sound sources. These rely on the geometrical
representation of ITDs. A given ITD expresses the sound source location through an
hyperbola function. This hyperbola leads to two types of ambiguities that are the left-
right ambiguity and the front-back ambiguity. The first ambiguity is solved from the
sign of the measured ITD, but the front-back ambiguity remains unsolved, similarly to
most binaural sound localization algorithms. Under far-field conditions, the ITD is
directly related to the sound source direction, which is a common assumption in robot
audition. This assumption corresponds geometrically to the branch of the hyperbola
reaching its asymptotic value. However as the sound source is getting closer to
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microphones, namely in the near-field, this assumption does not hold anymore, since
the hyperbola and its asymptotes are not merged. This result explains that most
of the localization techniques based on ITD only consider far-field configuration for
accuracy purpose.

In a second phase, we focused more particularly on positioning tasks based on a
single sound source. We then defined two interaction matrices that link the varia-
tion of a given ITD to the microphones motion. From the virtual linkage approach,
the positioning task was specified as orienting the robot with respect to the source
direction. Controllers based on these matrices were then designed while respecting
the stability conditions related to the approximations used. Similar conditions of
stability were extracted from both ITD interaction matrices. These conditions are
related to the left-right ambiguity (solved by the measurement of the ITD), and the
front-back ambiguity. As expected from Chapter 3.1.1, the sound source localiza-
tion is not required. The stability conditions are not constraining for both of these
controllers. There exists an infinite number of solutions and the stability can easily
be ensured by setting a positive source distance in the first matrix or by ensuring
that the ambiguities expressed above are solved, in the case of the second matrix.
Thus, by ensuring these conditions, experimental results validated the robustness of
our approach. First, we demonstrated by analyzing the two interaction matrices,
that our approach is not influenced by the distance to the given sound source. More
explicitly, the positioning task can be performed in the near-field or far-field without
restriction, despite rough approximations of the interaction matrices. This result is a
clear advantage in comparison to binaural localization techniques that are generally
devoted to only one type of configuration. Furthermore, experiments conducted on
a mobile robot in a real environment emphasized the robustness of the controllers.
The robot is able to face and track an intermittent sound source that is moving.
For this purpose, a basic tracking process was introduced. The tracking exploits the
knowledge of the interaction matrix in order to predict the evolution of the tracked
ITD. A more exhaustive evaluation also confirmed that, thanks to this tracking, the
control framework could be robust to real-world conditions since the controller can
cope with false and missing measurements. Punctual errors and approximations in
ITD tracking do not compromise the achievement of the positioning task.

In the last segment, we extended the latter control scheme to the case of multi-
ple sound sources, that are used as acoustic landmarks for robot navigation. When
considering several sound sources our approach is related to bearing-only navigation.
Several positioning tasks can be achieved controlling up to three DOF in the azimuth
plane. In a real-world experiment with two sound sources, we have been able to cor-
rectly position a robot with respect to these sources. The robot successfully reached
a pose that belongs to a circumscribed circle shaped by the sound sources. This
circle characterizes the desired bearing conditions. A single pose of the microphones
can be ensured with at least three sound sources as validated by simulations results.
However, multi-source configurations require dedicated tracking algorithm in order
to cope with adverse situations where competing and intermittent sound sources are
present. This tracking is certainly the most critical aspect of this control framework.
The main issue concerns the tracking and identification of the ITDs associated to
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the actual source(s) rather than obtaining accurate intrinsic values.
Globally, the results exhibited in this chapter show robustness to inaccurate ITDs

measurements. This property is confirmed in the next chapter, that demonstrates
that the ILD framework and the current ITD framework could be freely applied
on humanoid robots where the head scattering effect (i.e., HRTFs) substantially
modifies these cues.
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Chapter 6

Application to humanoid robots

The last chapter of this thesis is about the context of humanoid robots. Until now,
AS paradigm has been applied in a free-field context. Free-field context greatly
eases auditory perception although real-world conditions are considered in this work.
Nonetheless, all along the thread of this thesis several evidence showed the flexibility
of AS. First the exact sound location is not needed to perform positioning tasks. The
interaction matrices governing robots motions are actually using rough approximated
parameters while preserving stability properties. Furthermore, approximations of
acoustic models are also well tolerated. From a far-field model, positioning tasks in
the near-field can be performed with the same accuracy as with a correct modeling.
Eventually, positioning tasks can be performed from cues (ILDs) that cannot be
directly related to a precise source location.

Thus, evidence converges towards the idea that accurate interaural cues (with
respect to a ground truth source location) are not crucial to control robots motions.
This idea let us foresee a potential applicability of AS on humanoid robots. The
main difficulty arising when considering humanoid robots comes from the required
accurate modeling of HRTFs, and acoustic conditions, in order to relate interaural
cues to a sound location. However, since our approach is not attached to localize
sound sources, thanks to the robustness of the control scheme, intuitively it can
be envisaged that HRTFs modeling is not required for AS. This chapter aims to
validate the latter idea. No new theoretical concepts are introduced here. We are
rather interested in the application of the framework detailed in the previous chapters
to the context of humanoid robots.

This chapter is then simply divided into two sections. In the first section, we
briefly recall the context and challenges related to binaural hearing for humanoid
robots. Following this review we give a comprehensive study on how the framework
developed in Chapters 4 and 5 could be applied to humanoid robots. Thereafter, in
the second section, experimental studies on two types of humanoid robots validate
the versatility of the AS paradigm. All these experiments are achieved with a free-
field modeling in a real world environment.
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6.1 Versatility of aural servo paradigm

Binaural localization on humanoid robots is the closest configuration to biological
auditory systems, but at the same time probably the most challenging configuration
for robot audition. As explained in Chapter 2, in this configuration the combina-
tion of acoustic perturbations (reverberation, noise) and scattering effects induced
by the head creates challenging conditions to be resolved for sound localization. Very
few works, in view of the size of robot audition community, tried to address sound
localization in this context. So far, the approaches considered to address this config-
uration are threefold. The first set of solutions are based on the knowledge of HRTFs.
Pre-measured HRTFs are used to infer the sound location. This kind of approaches is
generally performed under anechoic/controlled conditions since the influence of room
acoustics substantially modifies measurements. A second path consists in modeling
the scattering effects. For unknown robot HRTFs, the scattering theory, assuming
a spherical rigid head is by far the most used model in robot audition. However
this model does not account for acoustic conditions similarly to HRTF-based meth-
ods. Hence, these approaches suffer from the same limitations. The last type of
approaches, based on learning methods, provides until now the best performances
in realistic environment. But these methods are room/robot-specific. The learn-
ing process cannot be generalized to every kind of robots or acoustic configurations.
Learning all kinds of acoustic environments is not affordable due to the high vari-
ability and dynamic nature of acoustic conditions. Currently, among the current
projects related to robot audition only TWO!EARS (see Chapter 1.3) is addressing
this challenging configuration.

From an AS perspective, in a first part, we focus on the question on how such
approach could be adapted on humanoid robots. As stated in the scenario developed
in Chapter 3, the core advantage of AS is certainly the fact that our approach is
mainly based on the variation of auditory features. As long as the variation of the
selected features is consistent with robot motion, the desired task can be correctly
achieved. This characteristic has been exemplified in Chapter 5 where we showed that
the control scheme could be applied independently in the near-field or far-field despite
approximate acoustic models. Similarly in Chapter 4 we demonstrated that a robot
could face a sound source despite ILD estimations that could not be interpreted as
an azimuth angle. Until now, in robot audition and more specifically in sound source
localization, this kind of approach relying on the variation of low-level features has
not been fully exploited. As illustrated in the experiments performed all along this
thesis, exploiting such characteristic increases the robustness to acoustic conditions.
The variation of auditory cues could also be robust to the individual variability of
sound cues perception.

In order to assess the latter statement, we conducted a set of experiments based
on ILD features. The experiments consist in observing the variation of a given ILD
with respect to the source motions from different robots. Let us first introduce the
robots used in this experiment, that are respectively Romeo and Pepper from Soft-
bank Robotics (see Figure 6.1). Romeo is a 1.4 m tall robot, equipped with four
microphones and two pinnae. These microphones are embedded inside the robot
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head as represented in Figure 6.2. Pepper is a wheeled holonomic robot that is 1.2
m tall, also equipped with four microphones on the top of its head. However, unlike
Romeo, this robot does not have pinnae. The HRTFs of both robots are unknown
and are certainly quite different to each other due to their dissimilar structure and
microphones topology. For both robots, we considered only two microphones M1

Figure 6.1: The two robots Romeo (right) and Pepper (left) used for measuring the
dynamics of ILD cues

and M2 separated by a distance d, as depicted in Figure 6.2. The inter-microphones
distances are respectively dPepper ≈ 0.07 m and dRomeo ≈ 0.12 m. For the exper-
iments, a white Gaussian noise is continuously emitted from a loudspeaker. This
loudspeaker is moved in a circular motion around robots head (i.e., constant dis-
tance `) so that the DOA α varies from 0◦ to 180◦. The ILD ρ computed from the
measurements of the microphones M1 and M2 is measured all along the motion of
the loudspeaker.

Figure 6.2: Auditory system of Romeo and Pepper

These experiments are conducted in a highly reverberant environment with RT60 >
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1 s. Furthermore, the same task is conducted in simulation, however, in anechoic
free-field conditions, with microphones separated by df = 0.3 m. The latter simula-
tion serves as a baseline, for comparison with ideal conditions. The results are given
in Figure 6.3 where the absolute value of ρdB = 20 log10(ρ) is plotted in order to
facilitate the analysis.

First, it can be noticed that all configurations share the same "V" shape that
reflects the symmetry of ILDs for sources at opposite locations with respect to in-
teraural axis midpoint. An ILD value is maximal for eccentric positions of a given
source, while its minimum value (≈ 0 dB) is reached when this source is in the front.
This property, shared by all configurations, is certainly the most interesting result
for our approach. Despite different robot structures and acoustic conditions, the ILD
variation is preserved. In contrast, the intrinsic values of ρdB are drastically changed
depending on the auditory setup considered. Any approach based on localization
would need to model or learn the influence of HRTFs on interaural cues. Hence,
this kind of experiment confirms that independently of the chosen robot platform,
the variation of such acoustic feature remains consistent. The adverse experimental
conditions (RT60 > 1 s), in the case of Romeo and Pepper, do not influence this
property. The shape is the same for anechoic conditions and for both robots, despite
a high level of reverberation. As a result, one can emphasize the robustness of our
approach for real world conditions and more specifically to reverberation.
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Figure 6.3: |ρdb| measurements for a source at ` = 0.8 m, for Romeo, Pepper obtained
in a real environment and for free-field microphones through simulation in anechoic
conditions.

The details of the plotting in Figure 6.3 reveal some additional aspects of sound
perception. Among the three configurations tested, the "V" shape is more pro-
nounced on Romeo. For this robot, ILD variation is abrupt, while in free-field condi-
tions this variation is more gradual. The head shadowing effect increases the variation
of ILDs as detailed in Chapter 2. The results of Pepper are in-between, but far more
pronounced than for free-field conditions. The difference between Romeo and Pep-
per can be explained by the different microphones topologies. The inter-microphone
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distance is wider for Romeo and the microphones are located on the lateral position
of the head. The sound attenuation is then more pronounced compared to Pepper
which is endowed with microphones on the top of its head. From these results it can
be inferred the following conclusion: head-mounted systems are better configurations
than free-field systems for our approach. The head shadowing effect enhances ILD
variation and any minimal variation of ILD (source motion) would be more "per-
ceptible". As a consequence, the far-field limitations of ILD-based positioning tasks,
described in Chapter 4, should be attenuated on humanoid robots. Furthermore,
with enhanced ILDs, the effect of reverberation is reduced, especially for far-field
conditions. This outcome is opposed with the commonly acknowledged idea in robot
audition which states that free-field configurations are easier to process.

Hence, from this simple evaluation, we deduce that the experiments performed
in Chapter 4 can be performed on humanoid robots, with at least the same accuracy
and without any additional modeling. Tasks consisting in facing a sound source could
be performed on humanoid robots with a free-field model. It should also be noted
that the same kind of results can be obtained when considering ITD cues. In this
case, the minimum absolute ITD value should be obtained when facing the sound
source, while eccentric positions leads to higher absolute ITD value. Therefore, the
experiments depicted in Chapter 5 are also applicable on Romeo and Pepper. The
experimental results in the following sections support these conjectures.

6.2 Experimental validation

6.2.1 Gaze control: facing a sound source

As a first case of study, this set of experiments consists in orienting the head of a robot
towards a sound source. Despite using humanoid robots, the following experiments
are based on free-field assumptions. More exactly we consider the modeling expressed
in Chapter 4.1 on page 80 for the ILD case and in Chapter 5.1 on page 112 for the
ITD case. The control inputs are given by

q̇itd = −λ 1√(
d
c

)2 − τ2 (τ − τ∗) (6.1)

when controlling the robot through the ITD τ . From the ILD ρ the control input is
given by

q̇ild = −λ
`2 + d2

4 − dx̂s
ŷsd(ρ+ 1)

(ρ− ρ∗). (6.2)

In these two control schemes, only the angular velocity ω, that sets the orientation
of the robot head, is controlled.

The experimental setup consists in a loudspeaker continuously emitting a white
Gaussian noise. The room acoustics corresponds to the conditions described in the
previous section. The room has a high reverberation rate RT60 > 1 s and typical
diffuse noises, related to the ventilation or computer fans, are present in the scene.
We consider beforehand ILD-based positioning task with the control input given by

151



Chapter 6. Application to humanoid robots

(6.2). For this task, we set ρ∗ = 1. Furthermore, the approximated parameters
appearing in the control scheme are set to x̂s = 1 × sign(ρ − 1) and ŷs = 1. The
first experiment is carried on Romeo, with the use of two microphones M1 and M2

as depicted in Figure 6.2. No knowledge of HRTFs nor modeling of the scattering
effect of the robot, are considered in the following results presented in Figure 6.4.
As predicted in Section 6.1, the head turning task is correctly achieved despite a
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Figure 6.4: Head turning task from initial pose in (a) to final pose in (d) using ILD
cues on Romeo.

model based on free-field conditions. The error curve follows an exponential decrease
pattern while the robot accurately faces the sound source. This experiment has
also been performed on Pepper in Figure 6.5. The same control scheme was used.
Although the curves are jittery for both experiments when reaching the desired pose,
the task is correctly achieved in both cases. Filtering strategies could also be applied
on the measurements in order to smooth robots motions. These experiments confirm
the versatility of AS that can be applied to different humanoid robots without any
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Figure 6.5: Head turning task from initial pose in (a) to final pose in (d) using ILD
cues on Pepper.

additional modeling.
A second set of experiments was conducted, by using ITD measurements as in-

put features for the positioning task. In this case, the control scheme for controlling
robot motion is given by (6.1). This experiment was performed on Romeo with a
loudspeaker emitting a continuous speech signal. Two external microphones were
used instead of the embedded ones, because of the high level of internal noise in
this robot. GCC-PHAT algorithm is not particularly suitable for such level of noise.
Despite the use of external microphones, the head scattering effect and the high level
of reverberation in the scene are still influencing ITD measurements. Once again,
the task is correctly achieved (see Figure 6.6) while using a non-stationary signal.
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Figure 6.6: Head turning task from initial pose in (a) to final pose in (d) using ITD
cues on Romeo.

The control scheme is based on the AEG model where the azimuth angles are di-
rectly related to ITDs. For head-mounted systems, this model is obviously erroneous
when considering localization approaches, however, it is correct when considering the
variation of ITDs. Hence, AS greatly simplifies auditory perception models, since
AEG models can be used for various robotic platforms, for near-field and far-field
distances, without any particular tuning.
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6.2.2 Tracking a moving sound source

The control scheme is also able to track a moving sound source. In the experiment
depicted in Figure 6.7, the loudspeaker is continuously emitting a speech signal. The
task consists in maintaining a sound source in front of Romeo head. ITD cues are
used in this experiment with (6.1), but the same kind of results can be obtained with
ILDs.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 6.7: Tracking a continuously moving sound source from (a) to a final pose in
(d) using ITD cues on Romeo.

However, for ITD-based tasks, the loudspeaker is moved more slowly than for
ILD-based tasks. The tracking step of ITDs estimation limits the loudspeaker motion
speed. On the other hand, since ILD-based tasks do not require any tracking, the
robot is able to deal with faster motions of the sound source.

This property is confirmed by the second set of experiment conducted on Pepper.
In this case the robot has to deal with rapid changes of the source position. This ex-
periment corresponds somehow to achieve a sequence of positioning tasks as depicted
in Figure 6.8. Hence the task error follows a sequence of exponentially decreasing
patterns.

These two experiments were correctly achieved but we particularly noticed the
sound source directivity effect. This effect is more visible when considering ILD-based
control. As already outlined in Chapter 4, the sound source directivity modifies
admissible poses for completing a given task. More precisely, since sound waves
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Figure 6.8: Experiment with rapidly changing source positions using ILDs that is
solved as a sequence of conventional positioning tasks.
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are not emitted uniformly in all directions, the task does not strictly aim to face
the sound source. The task rather consists in facing the sound beam emitted by
the loudspeaker (see Figure 6.9). The controller correctly converges towards an
appropriate configuration but perceptually the robot pose seems inaccurate.

Sound Beam

Figure 6.9: The effect of sound directivity: Pepper is facing the sound beam instead
of the speaker

All along this manuscript, we mainly considered point sources uniformly emit-
ting spherical waves, which is a commonly-admitted assumption in robot audition. In
practice this assumption does not hold. All the sources emitting in realistic environ-
ment follow more complex radiation patterns governed by their intrinsic directivity
property. A more thorough study is certainly required to include this notion in the
control modeling.

6.2.3 Controlling Pepper with ILD and the energy level

For this last set of experiments, we aimed to apply the framework developed in
Chapter 4.3, that considers ILDs and the energy level as input features. Here we
are not attached to position the head of Pepper, but rather its holonomic base, that
can be controlled with uM = (vx, vy, ωz). In this case, the interaction matrix L̂ρE
combining the ILD ρ to the energy level EM can be directly used to control the
robot. L̂ρE is given as:

L̂ρE =

2x̂s(ρ−1)−d(ρ+1)̂̀2+ d2

4
−dx̂s

2ŷs(ρ−1)̂̀2+ d2

4
−dx̂s

ŷsd(ρ+1)̂̀2+ d2

4
−dx̂s

2EMx̂ŝ̀2 2EMŷŝ̀2 0

 , (6.3)

while the control scheme related to the microphones velocity is given by

uM = −λL̂ρE
+
e, (6.4)

with e = [ρ − ρ∗, EM − E∗M]>. In these experiments, the loudspeaker is emitting
a white Gaussian noise. The task consists in approaching the loudspeaker from a
random pose of the robot. For this purpose the desired ILD is set to ρ∗ = 1. E∗M
is measured experimentally when the robot is at ` ≈ 0.3 m from the sound source.
The results are exposed in Figure 6.10. The robot is able to reach a pose satisfying
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Figure 6.10: Pepper approaches the sound source and reaches a pose satisfying ρ = ρ∗

and EM = E∗M.

the given auditory conditions. The behavior of the robot is, nonetheless, not very
natural. The control scheme generates lateral motions that would be unsuitable
for more realistic scenarios involving human-robot interaction for instance. Rotation
motion would certainly give more naturalness to the approaching task. This behavior
is due to the control that is uniquely applied to Pepper base. Thus, it should be
interesting to control at the same time the head (rotation) and the base of Pepper
to get a more natural and smooth motion. Despite this, from the latter application,
the robot can also follow a moving sound source as illustrated in Figure 6.11.
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Figure 6.11: Pepper follows the sound source

6.3 Conclusion

This chapter confirmed the versatility of AS paradigm. This paradigm is mainly
based on the variation of the selected auditory features. This property is robust and
flexible to changes of acoustic conditions and of binaural configurations. To demon-
strate such property, we showed, in a first phase, that the same variation governs
ILD measurements for free-field anechoic conditions, and for head mounted systems
in highly reverberant conditions. The same ILD shape could then be observed on two
humanoid robots Pepper, Romeo and in simulated environments. From this result,
it could be inferred that the frameworks developed in Chapters 4 and 5 considering
free-field conditions can be applied on head mounted systems without any additional
modeling.

Hence, in a second phase, we validated experimentally these frameworks on
Romeo and Pepper. Despite the free-field modeling, convincing results could be
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obtained on humanoid robots, in realistic environments. A first set of experiments
were about controlling robots gaze from ILD and ITD cues. The head scattering
effect did not affect the task accuracy independently of the selected feature. There-
after, a full motion control based on ILD and energy features was demonstrated to
work accurately on Pepper. In this experiment, the translation and rotation veloci-
ties were controlled to approach a sound source. For all these experiments, the case
of a moving sound source was also successfully addressed.

As the final chapter of this thesis, the experimental results depicted above sum
up all the potential benefits of applying AS for real world applications. AS can
be defined as a straightforward and simple paradigm that allows to control robots
despite approximations in the auditory scene modeling and/or robot structure, and
adverse acoustic conditions. Of course only basic scenarios and tasks have been
addressed in this chapter, but these results unveil solid foundations for more complex
and realistic scenarios.
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Conclusions

As a recent field of research, robot audition encompasses all topics related to the
understanding of and interaction with an acoustic scene. Sound source localization
among others concentrated most of the efforts of the robot audition community. Lo-
calization paradigms initiate most of the applications based on the sense of hearing.
More specifically robot motion and behavior control are mainly based on localization
outputs. However, unlike many other fields related to perception (vision, touch/range
sensing), applications in real-world context remains rare. The main bottleneck lies
in controlling robots from unreliable, inaccurate features or even sometimes from
features that cannot be related to an accurate sound location. These features are
highly fluctuating and depend principally on environment acoustics and robot struc-
ture. Several parameters may change the sound perception. Reverberation, in indoor
environment, and noise substantially alter auditory features for localization. More-
over acoustic waves heading towards microphones are modeled differently in the
far-field or in the near-field. In the far-field it is easier to model auditory features
but on the other hand the effect of reverberation is more important. Alterations may
also be generated by robots structure. The scattering effect induced by heads, when
considering anthropomorphic robots, and ego-noises are parameters to be included in
the "equation" of sound localization. Eventually, when considering dynamic scenes,
where robots and/or the sound source of interest move, the degree of complexity of
the localization process greatly increases. In view of all these parameters, motion
control from sound localization in realistic and dynamic environments is a task that
has not been achieved yet when considering binaural configurations as exposed in
this thesis.

Hence, this thesis investigated the use of a sensor-based approach in order to
control the motions of a robot. Sensor-based control corresponds to a feedback
loop directly relating robot motion to low-level auditory features. Unlike positioning
methods based on localization, here, the sensorimotor loop is closed and voluntary
motions of the robot are driven by auditory measurements. The resulting paradigm,
that we termed aural servo, allows positioning a robot with respect to given con-
ditions related to measured auditory features. More interestingly this approach is
performed without source localization. This latter characteristic certainly represents
a key advantage of aural servo. Instead of focusing on the localization problem that is
extremely complex to solve in realistic environments, our approach focuses primarily
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on the variation of the measured auditory features. By discarding the localization
concept to the positioning problem, aural servo is more robust to parameters related
environments or robots structure.

In this thesis, we introduced more specifically control models based on the ITD,
the ILD and the absolute level of energy. From these models built upon the varia-
tion of these features with respect to robot motion, various positioning tasks were
performed. With both ILDs and ITDs, tasks that consist in controlling the orien-
tation of a robot and/or approaching a sound source are performed under realistic
conditions. More impressively, the benefits of these frameworks have been empha-
sized by solving issues related to the auditory perception. When considering ILDs,
the front-back ambiguity is inherently solved by the control scheme. For ITDs, we
demonstrated the robustness of the control scheme towards approximations in the
distance of observation. Eventually, we proved that a range positioning using the
absolute level of energy could be performed accurately under reverberant conditions.
Furthermore these approaches are suitable for dynamic scenes. This problem is sel-
dom addressed in robot audition. In this manuscript, from these approaches, we
demonstrated the ability of our approach to control in real-time the orientation of
a robot in order to face a moving sound source. It has also been demonstrated
that a robot could accurately track a moving sound source under various changing
acoustic conditions. More importantly, most of the concepts developed in this work
are experimented on robots, in realistic acoustic environments. Besides stressing the
suitability of aural servo for real environments, these experiments validate the ver-
satility of the paradigm. The experiments have been carried, in the same way, on
mobile robots equipped with free-field microphones or on humanoid robots in which
microphones are integrated inside the head.

To the best of our knowledge, this work is one of the first attempt to characterize
the motion of a robot with respect to auditory information, in an explicit control
framework. This manuscript is also supported by a large set of experiments in real
world conditions, which is a core contribution of this thesis. Beyond this work, we
would like to envision this approach as a general framework that can be applied to
any type of robots or acoustic conditions. However, as a pioneering work, we are
aware that this work only scratches the potential benefits of sensor-based control in
robot audition. The methods presented in this thesis could be enhanced in order
to interact, navigate, and understand a given acoustic scene. In pursuance of this
goal, this work should be complemented by the wide variety of methods developed
for sound source localization, in order to handle intermittent sound sources, tracking
and evaluating the number of active sources. Indeed, the path taken by this thesis
is oriented towards the simplest and the most straightforward configurations that
allows to control robot motion from auditory feedback in real world conditions. As
a result, this choice certainly emphasizes the actual benefits of using aural servo but
on the other hand the solutions proposed in this manuscript might not be optimal
and should be polished for more adverse and challenging scenarios.
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Perspectives

Redefinition of the sound localization problem
More than an alternative approach to sound localization for robot motion control,
we think that our approach presages a redefinition of interactions based on auditory
perception. Until now, the common approach consists in making the interaural cues
robust, considering realistic environments and a particular auditory system. The
localization process and the motion control stemmed from it solely depend on the
accuracy of the extracted cues. This thesis showed that from inaccurate auditory
cues, positioning tasks could be performed independently of the auditory system
used. Hence, by adding aural servo in the mechanism of auditory interaction, the
part devoted to localization is relaxed from accuracy constraints, since aural servo
can cope with inaccurate measurements. Such mechanism resembles to human au-
ditory system. As already explained in the introduction of this thesis, when using
only interaural cues, humans are not so accurate in localizing sound compared to
other species. However, by using head motions, visual cues or memory of previous
auditory experiences, human auditory system reveals all its potential and is then
fully exploited.

Similarly, here, we could imagine a global framework where auditory cues are ex-
tracted, tracked, identified and fed to an aural servo mechanism in order to interact
with a given sound source. In this way, addressing the cocktail-party problem could
be performed by combining aural servo with a source activity detection algorithm,
methods for inferring the number of sound sources, robust tracking and an atten-
tion mechanism. These methods have already been studied and developed in signal
processing/robot audition literature in the context of sound localization. Most of
these methods could be used in synergy with the ILD-based or ITD-based position-
ing tasks.
A unified framework
In this work, ILDs and ITDs have been processed separately. As a logic extension,
combining ILDs and ITDs in an unified framework can be envisaged. As explained
in the first chapter, human auditory system combines several auditory features in
order to localize potential sound sources. In our context, although ILD-based meth-
ods and ITD-based methods are redundant with respect to the positioning task,
these methods exhibit complementary characteristics. ILD-based methods are par-
ticularly adapted to single source tasks, and do not require any tracking. On the
other hand, ITD-based methods can handle multi-source configurations and non
stationary/intermittent signals such as speech. Nonetheless, when using ITDs, the
bottleneck concerns the sound source identification and tracking. Combining these
two features could then overcome the limitations of both methods. Multi-modal
control and hybrid sensor-based control are certainly paths to explore in order to de-
velop such a framework. By extension, we can then imagine using all auditory cues
involved in sound localization, in a control scheme positioning a robot with respect
to the azimuth, elevation and range information.
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Integration with other modalities
Aural servo could also be extended by using other sensory modalities such as vision.
Interactions as performed by humans generally combine several senses. The sense
of hearing can complement a limited field of view, while vision is useful to identify
brief and/or intermittent sound sources. This could be exploited for robots. In this
thesis, we considered sound signals long enough to allow converging towards a desired
pose. This assumption it is not always realistic. A thorough study should then be
conducted in order to define the optimal time to convergence of such approaches in
comparison to the mean duration of a sound signal. In this case, features prediction
or techniques such as visual servoing (when the source is visually identifiable) could
be used if the controller has not converged at the end of the sound signal.
Extension to other auditory cues
One of the benefit of our approach lies in the fact that we do not need to localize
sound sources. This interesting property opens perspective about using auditory cues
that are for now neglected since they cannot easily be linked to a source location. For
instance, the direct-to-reverberant ratio could be exploited in this manner to position
the robot at a desired range to a given source. Spectral notches, related to HRTFs
and sound elevation could be also exploited in the same manner, so that the control
scheme is not limited to the azimuth plane. In the same vein, dense methods could
be developed to directly interpret sound signals and skip the stage of auditory cues
estimation. This approach could be really useful in the case of ITDs by allowing to
skip any tracking or identification step. An explicit method consists in deriving the
robot motion directly from the cross-correlation function, so that these tracking and
identification steps are avoided. Such approach has already been used with vision
through mutual information [DM11] or photometric moments [BCM13].

During this thesis several paths and ideas of applications have been explored.
Among them, a navigation system based on echoes was an interesting application
that could not be fully developed, principally for a lack of time. In this configuration,
echoes are used as input features of a sensor-based control framework. From these
echoes used as a range sensing, a robot is able to position itself with respect to walls
similarly to bats.
Extension of the field of applications
As underlined in the multi-sources simulations in Chapter 5, bearing-only naviga-
tion can be performed with sound and more particularly ITDs. Unfortunately, this
method could not be fully experimented during this thesis. Applications of this
method in the field of multi-robot control or autonomous navigation could be par-
ticularly interesting to expand the field of robot audition. We do believe that this
kind of approaches could be implemented without a lot of effort. Moreover, these
approaches allow connecting robot audition to fields with a wider exposure. This
connectivity could be beneficial for robot audition by increasing the awareness of the
robotic community about hearing sense and the ensued problematic.

Furthermore aural servo is not limited to binaural configurations. Array-based
configurations could also be considered in a dedicated control framework. Such
application could be a consistent alternative to usual localization techniques that
are principally based on the fusion of information. This fusion step does not appear
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in aural servo paradigm. Hence, better processing time should be obtained with
similar flexibility and robustness as the tasks described in this manuscript.

However, on the path of extending our approach, more evaluations are required.
The development of appropriate simulation tools is essential. Currently most acoustic
simulated environments are designed for punctual and static situations. These tools
are particularly slow when simulating high levels of reverberation. As a result, most
of the simulations conducted in this manuscript are based on moderate reverberation,
since a higher level of reverberation was not affordable in term of processing time. A
real-time simulation tool would be mandatory to process deeper analysis of control
frameworks.
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Resume

Cette thèse s’intéresse au développement de lois de commande basées sur la per-
ception auditive. Dans le domaine de l’audition robotique, le contrôle du robot à
partir d’informations auditives est généralement basé sur des approches de locali-
sation de source sonore. Cependant, la localisation de source en conditions réelles
est une tâche complexe à résoudre. En environnement intérieur, les perturbations
causées par le bruit, la réverbération ou même la structure du robot peuvent altérer
le processus de localisation. Cette tâche de localisation devient encore plus com-
plexe si la source et/ou le robot sont en mouvement. Aujourd’hui, en se restreignant
aux systèmes binauraux, la localisation sonore en environnement réel n’est pas en-
core réalisable de manière robuste. À l’opposé, nous développons dans cette thèse
une commande référencée capteurs, l’asservissement sonore, qui ne nécessite pas de
localiser la source. Le mouvement du robot est directement relié à la perception
auditive : une tâche de positionnement est réalisée par une boucle de commande, où
le mouvement du robot est régi par la variation d’indices sonores de bas niveau. Les
résultats expérimentaux dans différentes conditions acoustiques et sur différentes
plates-formes robotiques confirment la pertinence de cette approche en conditions
réelles.
Mots-clés: Robotique, Traitement du son, Asservissement sonore, Commande réfé-
rencée capteur, Audition robotique, Différences interaurales.

Abstract

This thesis concerns the development of a control framework based on auditory per-
ception. In general, in robot audition, the motion control of a robot using the sense
of hearing is based on sound source localization approaches. However, sound source
localization under realistic conditions is a significant challenge to solve. In indoor en-
vironment perturbations caused by noise, reverberation or even the structure of the
robot may alter the localization process. When considering dynamic scenes where
the robot and/or the sound source might move, the degree of complexity of source
localization raises to a higher level. As a result, sound source localization consid-
ering binaural setup is not achievable yet in real-world environments. By contrast,
we develop in this thesis a sensor-based control approach, aural servo, that does not
require to localize sound sources. The robot motion is straightly connected to the
auditory perception: a positioning task is performed through a feedback loop where
the motion of a robot is governed by the variation of low-level auditory features.
Experimental results in various acoustic conditions and robotic platforms confirm
the relevance of this approach for real-world environments.
Keywords: Robotics, Audio signal processing, Aural servo, Sensor-based control,
Robot audition, Interaural differences.
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