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We have another chance to navigate, perhaps in a slightly different

way than we did yesterday. We cannot go back. But we can learn.

Jeffrey R. Anderson,
The Nature of Things -
Navigating Everyday
Life with Grace.






Synthése en Francais

A navigation est un probleme fondamental en robotique mobile. Un robot devient
autonome lorsqu’il est capable de se déplacer dans son environnement. Dans cette
optique, les capteurs de vision sont cruciaux car ils permettent d’obtenir des infor-

mations détaillées sur I’environnement qui ne peuvent pas étre obtenues par la combinaison
d’autres types de capteurs. On observe par ailleurs un développement de I’usage des cap-
teurs optiques en robotique grace a la réduction des cofits de fabrication d’une part et d’autre
part grice a ’augmentation des capacités de calcul des ordinateurs ces dernieres années.
La réduction de la consommation électrique facilite également ces usages dans le domaine
de ’embarqué. Couplés avec les rapides progres obtenus dans le domaine de la vision par
ordinateur, du contrdle et de la robotique, la navigation autonome a franchi un palier im-
portant. Bien que les progres dans le domaine des systemes de navigation basés vision sont
significatifs, il reste cependant encore beaucoup de problemes a résoudre avant d’obtenir
concretement des systemes autonomes. Dans ce manuscrit, le chapitre 2 sera consacré aux
théories fondamentales et aux diverses applications dans le domaine de la vision et de la
robotique. L’état de I’art concernant la navigation en intérieur pour les robots mobiles sera

présenté dans le chapitre 3.

Les approches classiques en navigation autonome sont basées sur une cartographie de 1’en-
vironnement, la définition d’une trajectoire a réaliser, la localisation du robot et la minimi-
sation de I’erreur entre la position courante et la trajectoire a suivre. Ce type de navigation
basée vision repose sur la géométrie de I’environnement ainsi que sur d’autres informations
dans I’espace métrique telles que I’estimation de la pose 3D par exemple. Les systemes de
navigation visuelle basés sur des approches différentes n’utilisent pas quant a eux une re-
présentation explicite de I’environnement mais se consacrent plutot & minimiser les erreurs
de caractéristiques visuelles présentes dans 1’image avec une relation directe avec la com-
mande envoyée aux actionneurs. Cette approche basée image permet de réduire les temps
de calcul, élimine la nécessité d’interpréter la structure de I’image et réduit également les
erreurs induites par la modélisation de la caméra et des parametres de calibration [ ].



Par conséquent, 1I’approche que 1’on souhaite développer dans cette thése repose sur une
représentation topologique de I’environnement, exprimée par un ensemble d’images clés
que le robot devra successivement percevoir. Nous voulons démontrer qu’une cartographie
et une localisation précise ne sont pas nécessaires pour la navigation visuelle. Des résultats
utilisant ce paradigme ont été obtenus précédemment sur des robots mobiles terrestres évo-
luant dans des environnements urbains [ , ]. Nous souhaitons maintenant
utiliser la méme approche mais pour de la navigation en intérieur. Cette these cible donc
en particulier une procédure de navigation basée seulement sur de 1’information 2D dans
I’image, ce qui permet une navigation lorsqu’aucune information 3D n’est disponible ou
lorsqu’une reconstruction 3D n’est pas possible. Notre méthode peut ainsi étre vu comme

une alternative a la navigation basée SLAM.

L’ objectif de cette these est donc de développer une approche de la navigation visuelle pour
un robot mobile basée sur une mémoire visuelle. Comme I’on s’intéresse seulement a des
robots mobiles destinés a un usage en intérieur, nos objectifs sont : a) de déterminer quelles
caractéristiques visuelles sont approprié€es pour la navigation en intérieur ; b) de développer
une méthode compléte regroupant la cartographie, la localisation et le contrdle du robot, ap-
plicable aux environnements en intérieur, prenant en compte les contraintes cinématiques ;
et ¢) des expérimentations s’ appuyant sur des scénarios intérieurs réels. Nous nous sommes
essentiellement préoccupés de la navigation ciblée et dirigée, ol le robot connait son envi-
ronnement pour naviguer a 1’avance. La navigation sans cartographie de 1’environnement

au préalable est hors de la portée de cette these.

Apercu Général de la Méthode Proposée

L’approche présentée ici reprend celle présentée dans [ ], mais pour un environne-
ment en intérieur avec différentes caractéristiques visuelles utilisant uniquement I’informa-
tion 2D dans I’'image, c’est-a-dire : - I’ Information Mutuelle (MI) (Chapitre 5), les segments
de droite (Chapitre 6) et la combinaison des caractéristiques points + droites (Chapitre 7).
La méthode de navigation proposée est basée sur la mémorisation des images. Par consé-
quent, cet ensemble d’images doit étre construit au préalable. Le processus général est
divisé en 2 étapes : a) la cartographie et 1I’apprentissage effectués hors-ligne et b) la navi-

gation en ligne.

Etape pour la Cartographie (Apprentissage)

Durant I’apprentissage, le robot est déplacé dans 1’environnement de navigation sous la
supervision d’un opérateur pour capturer les différentes images. De cette séquence d’ap-
prentissage, un sous-ensemble d’images est prélevé, qui constitue ce que I’on appelle la
mémoire d’images. Cette mémoire d’images se compose d’images clés/références repré-

sentant I’environnement considéré. Les images clés/références sélectionnées sont organi-
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sées dans un graphe d’adjacence, qui donne la représentation topologique de 1’environne-
ment. La premiere image de la séquence d’apprentissage est toujours choisie comme image
clé/référence. Les autres images clés sont automatiquement sélectionnées de facon a étre
suffisamment différentes des autres images adjacentes. Cette mesure de différence est dé-
terminée a partir d’un calcul de similitude, qui dépend de la caractéristique visuelle choisie.
Dans le cas de caractéristiques géométriques locales, cette mesure de similarité est obtenue
a partir de I’appariement et du suivi des caractéristiques visuelles. En revanche, il est néces-
saire de recaler les parties communes dans 1’image dans le cas des caractéristiques globales
avant le calcul des mesures de similarité d’images. La derniere image de la séquence d’ap-
prentissage est également stockée dans la base de données, ce qui permet de déterminer
quand le robot doit s’arréter a la fin de la navigation. Le schéma général de la phase de
cartographie (apprentissage) est indiqué sur la Fig. 1. Les détails concernant la sélection
d’images clés a ’aide de I’information mutuelle (MI) sont présentés dans la Sect. 5.2.2, a
I’aide des segments de droite dans la section Sect. 6.2.2 et enfin a partir des caractéristiques

points + droites dans la Sect. 7.2.1.

=
o
Feature -
Matching/ Reference v
Tracking |:> (Key) |:> -
or Images -
‘ ' Image Selection l
Mobile Robot Learning Sequence Registration Adjacency Graph

Figure 1 — Etape pour la cartographie (apprentissage).

Etape de Navigation

Apres la phase d’apprentissage, le robot est prét a naviguer de facon autonome dans I’en-
vironnement cartographié. La tiche de navigation est alors divisée en deux sous-taches : a)
la localisation dans la carte des images et b) le contrdle du déplacement du robot. La vue
d’ensemble du schéma général de la méthode de navigation proposée est représentée sur la
Fig 2.

a) Localisation Qualitative dans la Carte des Images

Dans notre cas, la localisation dans la carte des images est qualitative plutdt que quantita-
tive. Cela signifie que notre objectif est de trouver des images clés adjacentes qui corres-
pondent le mieux avec la vue courante. Dans la Fig. 3, I, représente la vue a la position

courante du robot. La position de I, dans la carte des images est située entre les images
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Figure 2 — Etape de navigation.

clés Ip et Iy. Les meilleures correspondances sont obtenues soit a partir d’appariement de
caractéristiques locales, soit a partir du recalage des images. Pour de la navigation auto-
nome, deux types de localisation doivent étre réalisés : a) la localisation initiale (premiere
localisation) b) les localisations suivantes. Les détails de la localisation qualitative dans la
carte des images a 1’aide de la méthode MI sont présentés dans la Sect. 5.2.3.1, a partir
des segments de droite dans la Sect. 6.2.3.1 et a ’aide des caractéristiques points + droites
dans la Sect. 7.2.2.1.

IN I)’,\'

I

Figure 3 — Localisation dans la carte des images.

i) Localisation Initiale On appelle localisation initiale ou premiere localisation le pro-
cessus de localisation du robot globalement dans la carte, ol la vue actuelle est comparée
avec I’ensemble des images situées dans la base de données en mémoire pour trouver les
meilleures images clés adjacentes. La navigation commence par la localisation initiale, ce
qui permet de démarrer le robot dans n’importe quelle position a I’intérieur de la carte des
images. La localisation initiale peut également étre appliquée pour récupérer le robot s’il
est temporairement perdu. Si I’on définit f(...) comme la mesure de similarité, la position

initiale de I, peut étre obtenue avec :

I, = argrnlf'x{f(laalkl)7f(lavlk2)7 """ 7f(1“’1kn)} (1
ij = argrn[;ilx{f(laalkm)7f(la71ki+1)} 2)

Ip = ij and Iy =1, ifi>j 3)

Ip=1I,andly =1, ifi<j
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ii) Localisations suivantes Apres la localisation initiale, les localisations suivantes peuvent
étre effectuées en comparant seulement quelques images clés adjacentes au voisinage de la
position courante. Cette localisation va de pair avec le controle du déplacement du robot,
ce qui permet de sélectionner les images clés appropriées pendant le contrdle de la na-
vigation. Dans notre méthode, lors des localisations suivantes, I’image courante (I,) est
comparée avec les trois images clés : ’image clé précédente (Ip), I'image clé suivante (Iy)
et la deuxieme image clé suivante (Iyy). Le basculement des images clés se produit quand
Iy précede I,. Dans ce cas, Iy devient le nouveau Ip et Iyy devient le nouvel Iy. Si F(...)
désigne le critére de similarité a partir de trois-vues et f(...) désigne le critere de similarité

a partir de deux vues, le basculement des images clés est effectué lorsque :

SLasInInn) > S(Ip, 1o, Iy) or §(Lu, Inn) > F(1a,In). “4)

Le critere a partir de deux vues est nécessaire pour éviter d’étre perdu lorsqu’il n’est pas

possible de calculer le critere a partir de trois vues.

b) Commande du Robot

Pour la tache de navigation, le robot ne doit pas nécessairement atteindre avec précision
chaque image clé de la trajectoire ou suivre avec précision la trajectoire apprise. Dans la
pratique, le mouvement exact du robot doit étre contrdlé par un module d’évitement d’obs-
tacle [ ]. Par conséquent, la vitesse en translation est maintenue constante et réduite a
une valeur inférieure lors d’un virage. Ces virages sont automatiquement détectés en ana-
lysant la commande en vitesse en rotation. La vitesse en rotation est dérivée a 1’aide des
images clés et a I’aide de 1’image courante a partir d’une loi de commande IBVS [ 1.
L’erreur & minimiser dans la méthode IBVS est obtenue a partir de la différence des posi-
tions des caractéristiques dans I’image ou a partir du gradient des caractéristiques globales.
La navigation est qualitative parce que le robot suit approximativement la trajectoire ap-
prise et ne converge pas vers toutes les images clés intermédiaires. Dans de nombreux cas
au cours de la navigation, le basculement des images clés se produit avant convergence.
Notre objectif est de faire en sorte que le robot suive approximativement le chemin appris,

la méthode IBVS étant capable de garder I’erreur en-deca d’une valeur désirée.

On définit un vecteur de caractéristiques visuelles courantes s et désiré s*, la vitesse linéaire
du robot est notée v,, la vitesse en rotation notée @, (Fig. 4) et les jacobiennes associées J,
et J, respectivement. Si I’on se réfere au calcul de dérivation présenté dans la Sect. 4, @,

peut étre calculé selon la loi de commande IBVS :

= _Jg(ﬂ‘(s_S*)—i—Jer)’ )



Figure 4 — Robot mobile vu de haut (orange) et équipé d’une caméra perspective (bleue) avec 1’axe
optique perpendiculaire a I’axe de rotation du robot (figure de gauche) ; photo de la plate-forme
expérimentale (figure de droite).

ol A est un gain positif et JJ, est la Pseudo-inverse de J,. Les calcul de J, et J, pour
la méthode MI est présenté en Sect. 5.2.3.2, a partir des segments de droite dans la Sect.

6.2.3.2 et a partir des caractéristiques points+droites dans la Sect. 7.2.2.2.

Résultats et Discussions

Les contraintes dans notre méthode de navigation sont présentées dans la Sect. 4 et la pré-
sentation de la configuration utilisée lors des tests expérimentaux dans la Sect. 4. La carto-
graphie a été réalisée hors ligne, alors que I’expérimentation de la méthode de navigation a
été effectuée en ligne. v, est maintenue constante et réduite au cours des virages, tandis que
o, est contrdlé par (5.23) pour la méthode MI, (6.13) pour des segments de droite et (7.10)
pour les caractéristiques points+droites. Les résultats expérimentaux sont présentés dans la
Sect. 5.3 pour la méthode MI, Sect. 6.3 pour des segments de droite et Sect. 7.3 pour les
caractéristiques points + droites.

Les résultats présentés montrent la viabilité de notre approche dans différents scénarios et
suivant différentes contraintes. Le robot a été en mesure de suivre de maniére autonome
la trajectoire apprise a partir de la position de départ. La méthode IBVS a été en mesure
de maintenir I’erreur sous une certaine limite. Le robot n’a pas exactement suivi le chemin
appris en 1’absence de 1’utilisation des informations 3D et en 1’absence de I’estimation du
mouvement 3D. Ceci s’explique par le fait que 1’on ne souhaite pas une navigation totale-
ment précise, mais efficace et robuste. L’autre raison s’explique par I’approximation de la
trajectoire par des lignes droites. Néanmoins, en se basant uniquement sur de I’information
2D, une navigation en intérieur est possible dans les couloirs et a I’intérieur de salles grace a

I’asservissement visuel qui permet de gérer de facon robuste ces différents types d’erreurs.
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Conclusions et Travaux Futurs

Nous avons présenté une méthode compléte de navigation et de cartographie qualitative en
intérieur basée sur I’apparence. Notre méthode de navigation est exclusivement basée sur
des mesures dans I’image 2D et sans s’ appuyer sur une quelconque méthode de reconstruc-
tion 3D comme c’est le cas dans la plupart des publications existantes. Cela est possible
grice a une représentation topologique de I’environnement et a I’utilisation de la méthode
IBVS pour le controle du robot. L'utilisation simultanée de la vision et du contrdle du ro-
bot en boucle fermée via la méthode IBVS permet au robot de suivre la trajectoire apprise
tout en gardant une erreur en de¢a d’une certaine limite définie et cela méme en 1’absence

d’informations 3D.

Les résultats de cette these, bien qu’encourageants, montrent également un certain nombre
de limitations qui affectent notre approche. La premiére est liée a la détection de caracté-
ristiques visuelles et a leur appariement. Ce probleme peut étre atténué en combinant plu-
sieurs types de caractéristiques visuelles. La deuxieme est liée a I’évitement d’obstacles.
Cependant, nous pouvons facilement intégrer dans notre méthode un module d’évitement
d’obstacles utilisant des lasers comme cela est proposé par [ ]. La derniére limita-
tion est liée a des incertitudes dans la navigation lorsque la scéne est faiblement texturée
ou lorsqu’elle présente des textures répétitives. Ce probleme peut étre résolu en utilisant la

cinématique du robot et I’ utilisation de filtres probabilistes pour filtrer la vitesse en rotation.

Les détails des conclusions et des perspectives sont discutés au Chapitre 8.
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Notations

General notation conventions
Throughout this thesis, the following notation conventions will be used:

e Scalar quantities are represented by lowercase symbols such as a, b and so on.

e Vector quantities and matrices are represented by bold symbols such as a, b and so

on.

e The notation (a, b) or Z indicates a vertical concatenation of elements (scalars,
vectors or matrices) and [ab] or [a|b] for horizontal concatenations.

e [, denotes the identity matrix of order n X n.

e [t]« denotes skew-symmetric matrix of 3D vector ¢.

e [a].b denotes cross product a X b.

e det(M) denotes determinant of M.

e M~! denotes inverse of matrix M if M is a square matrix and det(M)# 0.

e M" is pseudo-inverse of M i.e. M™ = (M” M)~'M" if M has all linearly independent
columns M.

e M7 denotes transpose of matrix M.

e If w denotes some matrix/vector in first view, then w' and w” denotes the same but

for second and third view respectively.

e (m.n) represents equation number (m is chapter number, 7 is serial number of equa-

tion in the chapter m).

xiii



Acronyms and abbreviations

2D 2 Dimensional.
3D 3 Dimensional.
arg argument.

BRISK Binary Invariant Scalable Keypoints.

CC Cross-Correlation.

DOF Degree of Freedom.

ED Edge Drawing.

EKF Extended Kalman Filter.

FAST Features from Accelerated Segment Test, a corner detector.
Fig. Figure.

FOV Field of View.

IBVS Image-Based Visual Servoing.

ICRA International Conference in Robotics and Automation.
LBD Line Band Descriptor.

LSD Line Segment Detector.

MI Mutual Information.

KLT Kanade-Lucas-Tomasi feature tracker.

max Maximize.

PBVS Pose-Based Visual Servoing.

RANSAC RANdom Sample Consensus.

Ref./ref.  Refer or Reference.

Sect. Section.

StM Structure from Motion.

SLAM Simultaneous Localization and Mapping.

X1V



SSD

SIFT

SURF

SVD

V-SLAM

VO

VS

W.I.t

ZNCC

Sum of Squared Difference.

Scale Invariant Feature Transformation.
Speeded-Up Robust Features.

Singular Value Decomposition.

Vision based SLAM.

Visual Odometry.

Visual Servoing.

with respect to.

Zero Mean-normalized Cross-Correlation.

XV






CHAPTER ].

Introduction

1.1 Background

Navigation is a fundamental problem in mobile robotics. For robot to be autonomous, it
should be able to navigate in the environments on its own. Vision is one of the most pow-
erful and important sensor in this aspect as it provides the detailed information about the
environment which may not be available using combinations of other types of sensors. Vi-
sion sensors are developing and becoming cheaper in one hand and processing power of
computers have increased significantly in the recent years and that too with lesser power
consumption in other hand. Together with them, the rapid progress and tremendous re-
search in the field of computer vision, control, and robotics, make it possible to have auton-
omy to a greater extent. The achievements in the area of vision-based navigation systems

are significant; however, there is still a long way to go and this is still an open problem.

1.2 Motivation

Classical approaches for navigation are based on a mapping of the environment, the spec-
ification of a trajectory to follow, the localization of the robot, and the regulation of the
error between this localization and the specified trajectory. Such type of the visual naviga-
tion system relies on the geometry of the environment and on other information in metric
space such as 3D pose estimation. Alternative visual navigation systems use no explicit
representation of the environment, where an error signal measured directly in the image
is mapped to actuator commands. Using image-based visual servoing approach reduces
computational delay, eliminates the necessity for image interpretation, and errors due to
camera modeling and calibration [ ]. Therefore, the approach we want to develop in
the thesis is based on a topological representation of the environment, expressed as a set
of key images that the robot will have to successively perceive. We want to demonstrate

that accurate mapping and localization are not necessary for visual navigation. Previous



results have been obtained using this paradigm on ground mobile robot evolving in urban
environments [ , ]. Now, we want to use same approach for the indoor
environment. Hence, this thesis aims in a navigation process based on 2D image informa-
tion without using any 3D information, which particularly makes navigation possible when
there is no 3D information available or when 3D reconstruction is not possible. Therefore,

our method can be seen as alternative to SLAM-based navigation.

1.3 Objectives and Goals/ Scope of the Thesis

The goal of the thesis is to develop a visual navigation approach for a mobile robot based

on a visual memory. As for an indoor mobile robot, our objective is

e to determine what are the good visual features for navigating indoors.

e to develop complete methods for mapping, localization and control, applicable to

indoor environments, taking kinematics constraints in account.

e to experiment in real indoor scenarios.

We are basically concerned with goal directed navigation where robot have knowledge of
the environment to navigate in advance. The navigation outside the mapped environment

is out of the scope of this thesis.

1.4 Structure of the Thesis

This thesis is structured into three parts: The first part deals with the introduction and review
of some basic theory, practices and literature concerned with the mobile robot navigation.
The second part consists of our contribution. The final part deals with conclusions and
future perspectives. In the following, we propose a brief summary of the content of each

part.

Outline of Part I

Part I deals with the introduction, basic fundamental theories and the state of the art for

indoor mobile robot navigation.

Chapter 2 deals with some preliminaries related to Computer Vision and Robotics and how
they can be incorporated together by Visual Servoing. We start by summarizing the basic
model of image formation, camera calibration, features detection and correspondences, the
geometrical relationships between images of the same scene taken from different camera
points of view, Structure from motion, Visual SLAM and Visual Odometry. The chapter
continues by presenting the standard techniques used for modeling the kinematics of a robot

2



1. Introduction

and for controlling its motion. Finally, we focus on different Visual Servoing schemes that

are applicable for vision-based control.

Chapter 3 deals with some state of the art techniques, paradigm and works for visual
navigation of mobile robots. We first review in different aspects like operating environ-
ment (indoor or outdoor), knowledge of environment (map and mapless), model of en-
vironment (appearance-based or model-based), and different mapping paradigms (metric
maps and topological maps). Finally, we present and discuss some state of the art methods
on appearance-based navigation for indoor mobile robots on the basis of different types of

features used.

Outline of Part 11

The second part of this thesis focuses on our contributions. The content in this part are the

subjects of our publications [ , ] and article under review [ ].

In Chapter 4, we give an overview of the proposed framework for mapping, localization

and control, our constraints and our experimental setup.

In Chapter 5, Mutual information-based navigation is presented, extending the work of
[ ] with automatic key images selection, initial localization in the map, switching of

key images and use of multiple key images for control.

In Chapter 6, we present feature-based navigation using 2D line segments. The entire

navigation framework depends upon 2D matching of general line segments.

In Chapter 7, we extend the work of previous chapter by combining line segments with

feature points, where we show that combination increases the robustness of navigation.

Outline of Part II1

The final part of this thesis deals with the conclusions and references.

In Chapter 8, we give conclusions of our contributions and discuss about future perspec-

tives and open issues.
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CHAPTER 2

Fundamentals of Computer Vision
and Raobotics

HIS chapter presents some essential theory and concepts related to computer vision
and robotics necessary for visual navigation of mobile robots. We begin this chap-
ter with basics of computer vision. First, we talk about image formation, camera

parameters, and camera calibration in Sect. 2.1.1. Then we discuss some popular features
extraction and matching techniques in Sect. 2.1.2, which is indeed basis of our work. Next,
we present two view and three view projective geometry in Sect. 2.1.3, which is used in
our work for the verification of feature correspondences. After that, we talk basics of esti-
mating camera motion and 3D reconstruction of scene in Sect. 2.1.4, Visual SLAM in Sect.
2.1.5 and Visual Odometry in Sect. 2.1.6. After computer vision, we move our focus to
mobile robots modeling and motion control applicable for non-holonomic wheeled robots
navigation in Sect. 2.2. Finally, we conclude this chapter with visual servoing framework
that puts together computer vision and robotics in Sect. 2.3. In particular, we concentrate
on Image Based Visual Servoing (IBVS) techniques, which is the backbone of the motion

control in our work.

2.1 Computer Vision

2.1.1 Cameras and Image Formation
2.1.1.1 Vision Sensor (Camera) Model

A camera model is a function which maps a 3-dimensional world onto a 2-dimensional
plane, called the image plane. Generally, this function is designed to model the real world
physical camera that should take perspective into account. Perspective is the property that
objects far away from us appear smaller than objects closer to us, which is the case with

human vision, and with most photometric cameras in the real world. Photometric cameras
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using an optical lens can be modeled as a pin-hole camera. A pinhole camera is a light-
tight box or chamber with a black interior and a tiny hole in the center of one end which
creates an image of the outside space on the opposite end of the box by the principle of

rectilinear propagation of light. The most common model for the general camera is the

pin-hole camera with the perspective projection [ , ] as shown in the Fig. 2.1.
mN
X
F
I N -
c [-/' 7 -G z

b |

M

Y

Figure 2.1 — Pin-hole camera with perspective projection.

If (X,Y,Z) represents a three-dimensional camera coordinate system, and (x,y) represents
image plane, this relationship for the projection of 3D feature of the object onto image

plane is given by

X f 0 0 X
Alyl=]0f0 Y |, 2.1
1 00 1 z

where f is the focal length of the lens and A = Z is a homogeneous scaling factor. The range
information is lost in this projection, but the angle or orientation of the object point can be
obtained if the focal length is known and the lens does not cause distortion/or distortion is

corrected.

2.1.1.2 Perspective Camera Parameters and Calibration

a) Intrinsic Parameters [ , ] Most of the current imaging systems define the
origin of the pixel coordinate system at the top-left pixel of the image as shown in Figs.
2.2-2.3. However, it was previously assumed in (2.1) that the origin of the pixel coordinate
system corresponds to the principal point (cy,cy), located at the center of the image. A
conversion of coordinate systems is thus necessary. Also, in (2.1), it was implicitly assumed
that the pixels of the image sensor are square and pixels are not skewed. However, both
assumptions may not always be valid. Hence, these imperfections of the imaging system
(Fig. 2.3) should be taken into account in the camera model. If s, and s, represent the
effective size of pixels in horizontal and vertical directions respectively and y represents
the skew, the projection mapping can be now written as:

8



2. Fundamentals of Computer Vision and Robotics

u Scene Point Pc
(X.Y,Z

optical axis /
L

Center of
Projection

Figure 2.2 — Image formation with perspective projection. The 3D coordinate system has origin at
C (Center of Projection of camera).
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where f, = £ and f, = % represents the effective focal length along height and width of

the image. For ideal pinhole camera f; = f,. In most of modern days cameras, skew can

10) v,
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Figure 2.3 — Camera and Image coordinate systems (Left), Non Square Pixels (Middle), and Skew

of Pixels. These factors also should be taken into account while modeling the image formation by
the camera.

y

Image Plane

be safely assumed to be zero. These parameters f;, fy, ¥, cx, and ¢, are known as Intrin-
sic Parameters, which are internal and fixed to a particular camera/digitization setup and
allow a mapping between camera coordinates and pixel coordinates in the image frame.

These parameters represent focal length, image sensor format, and principal point. These
parameters can be represented in a 3 X 3 intrinsic parameter matrix K as



i vV
K=]| 0 oo |- (2.3)
0 0 1

These intrinsic parameters can be easily obtained from camera calibration.

b) Distortion Parameters [ , 1 Up to this point, we assumed that a point
in 3D space, its corresponding point in image and the camera’s optical center are collinear.
This linear projective equation is sometimes not sufficient, especially for low-end cameras

(such as web-cams) or wide-angle cameras; lens distortion has to be considered. They are

a b ¢ d

Figure 2.4 — a. Ideal Image Points, b. Barrel Distortion c. Pincushion Distortion, and d. Decentering
Distortion.

mainly caused either due to imperfect lens shape or improper lens assembly. Radial distor-
tion (Fig 2.4b,c) is symmetric in which caused an inward (also known as barrel distortion,
Fig 2.4b) or outward (also known as pincushion distortion, (Fig 2.4c) displacement in ra-
dial direction of a given image point from its ideal location (Fig. (Fig 2.4a). This type of
distortion is mainly caused due to faulty radial curvature of lens. Decentering distortion
(Fig 2.4d) is non-symmetric in which the ideal image points are distorted in both radial
and tangential directions. This type of distortion is caused due to the misalignment of the
lens elements when the camera is assembled, where optical centers of lens elements are not

strictly collinear. Such distortion can be corrected by following:

¥ =x+x(kir? +hort +kar® . + 2p1y+ pa(rP 4+ 263)]) (1 + p3r? 4.,

(2.4)
Y =y+ytkarr +hkort +ksr® +..) + 2pox+ pi(rF + 20| (1+ p3ri +...),

where (x',y’) is the corrected position of input image at (x,y), r = 1/x2 +y? is the radial
distance, ks are the coefficients of radial distortion, and p's are the coefficients of the
tangential distortion. These distortion parameters can be easily obtained from the camera
calibration. In practice, first few coefficients ki, k>, k3, p1, and, p, are used for the distor-

tion correction.

¢) Extrinsic Parameters [ , 1 1If pis 2 x 1 vector representing 2D projected
image pixel and P, is 3 x 1 vector that represents the corresponding 3D point in the camera
coordinate system, (2.2) can be written as
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A[”
1

where it is assumed that the world coordinate system and the camera coordinate system are

=KP,, (2.5)

same. However, in practice it may not be always true as it is preferred to use the world
coordinate system to locate 3D points. Some transformation between world coordinate
frame and camera coordinate frame is necessary. This can be done by introducing two

extra parameter sets, rotation and translation as shown in Fig. 2.5.

Scene Point

Figure 2.5 — World coordinate system and Camera coordinate system.

If Py is 3 x 1 vector representing 3D points in world coordinate system, R is a 3 x 3
rotational matrix and T is a 3 x 1 translational vector that represents the position of the
origin of the world coordinate system expressed in coordinates of the camera coordinate

system, the relationship between P, and Py can be written as

P.=RPy +T. (2.6)

From (2.27) and (2.6), we have

A [ ’1’ ] — K(RPw +T). @.7)
This equation can be rewritten as

P
Y1=p , 2.8)

p|_
/1[ ] ]_K[Rm 1

where P is 3 x 4 perspective projection matrix, which is also known as camera matrix that
is used to transform the point in a world coordinate to the point in the image . The position

of C expressed in world coordinates is obtained from

C=-R'T=-R'T. (2.9)
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Therefore, R and T can sufficiently define the location and orientation of the camera with
respect to the world frame. These three 3D rotational angles and a 3D translation vector
are also known as Extrinsic Parameters, which are external to the camera and may change

with respect to the world frame.

From 2.8-2.9, we have

P=K[R|T|=K[R|-R'C]. (2.10)

If this matrix P is known, one can easily back project 2D image point into 3D. For 2D
image point p, there exists a collection of 3D points that are mapped and projected onto
the same point p. This collection of 3D points constitutes a ray connecting the camera
center C and p. With two or more cameras, the unique 3D position can be estimated, which
will be described in later sections. Hence, the accurate estimation of P is essential for 3D

estimation. For this accurate camera calibration is necessary.

d) Camera Calibration Primarily, camera calibration is finding the quantities internal
to the camera that affect the imaging process. These quantities are intrinsic parameters
and distortion parameters. Various camera calibration techniques exist in the literature
[ , , ]. The most simpler, flexible, accurate and widely used is the one
proposed by [ ]. Various toolboxes for this method exit in ViSP [ ], OpenCV
[ ] and Matlab [ ] that uses known pattern like black-white chessboard, symmetrical
and asymmetrical circle pattern. The overall process of calibration can be summarized into
following steps: [ ]

1. Print a pattern and attach it to a planar surface;

2. Take a few images of the model plane under different orientations by moving either

the plane or the camera;
3. Detect the feature points in the images;
4. Estimate the intrinsic parameters and all the extrinsic parameters;

5. Refine all parameters, including lens distortion parameters using non-linear iterative

estimation methods.
In all of our work, we will consider that camera is calibrated.

2.1.2 Features and Correspondences

Feature detection, description and matching are essential components of many computer
vision applications [ ]. Several feature detectors and descriptors have been proposed
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in the literature with a variety of definitions for what kind of regions in an image is po-
tentially interesting (i.e., a distinctive attribute). On the basis of them, various matching

methods are available to find the corresponding interest regions.

2.1.2.1 Global and Local Features

In computer vision tasks, we need to represent the image by features extracted from them.
There are generally two methods to represent images: global features and local features
[ ]. In the global feature representation, the image is represented by a single multi-
dimensional feature vector using the information from all pixels of images such as intensity,
color, texture, histograms, gradients, some types of transformation in image like integral
image and Fourier descriptors, specific descriptor extracted from some filters applied to the
image like GIST descriptor [ ] and so on. These single vectors, one from each im-
age can be used to compare the two images. Sometimes, one extra vector using combined
features from both images like joint histograms are also used in addition to the feature vec-
tors from single image. Global features are compact, much faster to compute and require
small amount of memory. However, they are not invariant to significant transformations and
sensitive to clutter and occlusions. On the other hand, in the local feature representation,
the image is represented by more than one multidimensional feature vectors (also known
as local feature descriptors) based on their local structures and textures from a set of salient
regions in the images like keypoints, corners, keylines while remaining invariant to some

sort of viewpoint and illumination changes. Local features have following characteristics:

[ ]

1. They are robust to occlusion and cluttering as they are local.

2. They can differentiate a large database of objects efficiently because local structures

are more distinctive and stable than other structures in smooth regions.
3. They may be in hundreds or thousands in a single image.
4. Real-time performance can be achievable.

5. They exploit different types of features in different situations.

However, they usually require a significant amount of memory because the image may have
hundreds of local features. Nevertheless, the method exits to aggregate these descriptors
into compact representation and reducing dimension of the feature descriptors.

2.1.2.2 Feature Detection

The feature extraction/detection process should be repeatable, accurate, and distinctive so
that the same features are extracted on two images showing the same object and different

13



image structures can be told apart from each other. Besides that, it is desired to have
features robust to the geometric transformations (translation, scaling, rotation and shifting),

photometric changes (brightness and exposure), compression artifacts, and noise.

a) Points and blob detectors

Point features can be used to find a sparse set of corresponding locations in different images.
Various types of point features have been proposed in the literature to detect salient points in
the images, also known as keypoints. Such keypoints permit matching even in the presence
of occlusion, and large scale and orientation changes. In other hand, edges and general
curves are suitable for describing the contours of natural objects and straight lines for the

man-made world.

Corner detectors like Moravec’s Detector [Mor77], Harris Detector [HS88], SUSAN (Small-
est Univalue Segment Assimilating Nucleus) Detector [SB97], and FAST (Features from
Accelerated Segment Test) Detector [RPD10], and blob detector like Hessian Detector
[MTS05] are single-scale point detectors, which perform poorly when there is change

of scale.

Moravec’s Detector [Mlor77] is one of the earliest corner detector that uses sum of squared
differences (SSD) between the centered patch and the neighboring image patches to deter-
mine the point low self-similarity, which he defined as corners. The main disadvantage is
that detector is not isotropic that leads to detect some edges as corners and not rotational

invariance.

Harris Corner Detector [HS88] improves Moravec’s corner detector by considering the
differential of the corner score with respect to direction directly, instead of using shifted
patches. Since corners are the intersection of two edges, it represents a point in which the
directions of these two edges change. Hence, the gradient of the image (in both directions)
have a high variation as shown in Fig. 2.6(left), which has been exploited in Harris Corner
detection method.

2 I, Y
M = .’Ev'm(nt.y) [ 1.,"1!/ ‘12’ ] Corner . — |

R>0
Riis large 16102

w(z, y) is the window at position (z, y)
I(z,y) is the intensity at (z,y) A1 and A, are large

I, is gardient of image at x direction
I, is gardient of image at y direction

A1 and Ag are eigen values of M

Flat Region

R = det(M) - atrace(M)?
= M —a(d+ )
AL

Figure 2.6 — Harris Corner Detection [HS88] (left) and FAST Corner Detection [RPD 10] (right).

[SBY7] introduced a generic low-level image processing technique called SUSAN instead
of using image derivatives to compute corners. The center pixel is referred to as the nu-

cleus. Pixels having almost the same brightness as the nucleus are grouped together and the
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resulting area is termed USAN (Univalue Segment Assimilating Nucleus). This method is
fast, and invariant to translation and rotation. But, it requires fixed global threshold making

it unsuitable for general applications.

Hessian Detector [ ] is based upon second order derivatives that have good per-
formance in computation time and accuracy. However, using second order derivatives in

the detector is sensitive to noise.

FAST corner detector | ] uses a circle of 16 pixels to classify whether a candidate
point p is actually a corner. Each pixel in the circle is labeled from integer number 1 to
16 clockwise as shown in Fig. 2.6(right). If a set of n contiguous pixels in the circle are
all brighter than the intensity of candidate pixel plus a threshold value or all darker than
the intensity of candidate pixel minus threshold value, then p is classified as corner. The
main advantage of this corner detector is its computational efficiency in terms of time and
resources. Moreover, when machine learning techniques are applied, superior performance
can be realized, which makes it faster than many other well-known feature extraction meth-

ods. However, it is not invariant to scale changes and not robust to noise.

In all of above methods, the problem of detecting multiple interest points in adjacent lo-
cations is overcame by using non-maximal suppression. Using Gaussian scale pyramids,

scale invariance can be achieved.

In Laplacian of Gaussian (LoG) [ ], the scale space representation of the image is
obtained by convolving the image by a variable scale Gaussian kernel. The interest point
is obtained by searching for 3D (location + scale) extrema of the LoG function. Also,
LoG is circular symmetric, which means it is naturally rotational invariant. However, the

computation of LoG is expensive.

To overcome the expensive computation problem of LoG, Lowe [ ] approximate LoG
with Difference of Gaussian (DoG) for Scale-Invariant Feature Transform (SIFT) al-

gorithm.

Harris-Laplace [ ] detector combines Harris corner detector and a Gaussian scale
space representation to detect scale-invariant corners. The points are highly repeatable that
are invariant to scale changes, rotation, illumination, and addition of noise. However, the
Harris-Laplace detector returns a much smaller number of points compared to the LoG or

DoG detectors and it fails in the case of affine transformations.

Hessian-Laplace is similar to Harris-Laplace, but it uses Hessian blob-detector instead of
Harris corner. In comparison to Harris-Laplace, this detector extracts large number of fea-
tures that cover the whole image at a slightly lower repeatability. In Speeded-Up Robust
Features (SURF) [ ], Bayes uses Fast Hessian detector by approximating LoG
by box filters and the Hessian by integral images.

In Oriented FAST and Rotated BRIEF (ORB) | ] feature detector, FAST-9 (cir-
cular radius of 9) with a scale pyramid of the image has been used. FAST features at each
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level in the pyramid are filtered by using Harris corner at each level. Finally, using the
moment of image patch, the orientation of the interest point is calculated to obtain Oriented
FAST. Binary Robust Invariant Scalable Keypoints (BRISK) [ ] also use Gaus-
sian scale pyramid with FAST features filtered with FAST score to generate scale invariant
keypoints.

In[ ] Gabor wavelets are used to generate high accuracy interest points that can adapt

to various geometric transformations.

The keypoint extracted above assumes that localization and scale is not affected by affine
transformation of image structures. They can handle the problem of affine invariance up-to
some extent only because most of the methods fail in presence of significant affine trans-
formation. Various affine invariant detectors have been proposed on the basis of affine
normalization or affine shape adaptation to the methods described above. Several state-
of-the-art affine detectors [ ] have been analyzed in [ ]. Besides, there are
some region detectors like Maximally Stable Extremal Regions (MSER) proposed by
[ ], which is affine invariant. MSER is a blob detector, which extracts a number
of co-variant regions from an image based on connected component of some gray-level
sets of the image, known as extremal regions. Such extremal regions detect structures in
multi-scale, and are affine invariant and it doesn’t matter if the image is warped or skewed.
However, they are sensitive to natural lighting effects as change of day light or moving

shadows.

As a compromise between speed and performance regarding to tracking and matching, we
will use FAST Corners and SURF points in Chapter 7.

b) Line detectors

Another important local feature especially in man-made environment are line segments.
Line segments in the image can be detected classically from edge maps, typically by
Canny Edge detector by using Hough Transformation. Hough Transformation [ ]
is based upon voting and global search to obtain line segments. However, this method is
slow, sensitive to parameters like sampling step, thresholding, and detects many false lines.
There are many variants of Hough transform like Randomized Hough transform [ 1,
Probabilistic Hough transform [ , ], Elliptical Gaussian kernel-based Hough
transform [ Jand [ 1, [ ] etc., each trying to remedy different shortcom-
ings of the standard Hough transform. [ ] extract line segments from the edge map
by detecting chain of pixels followed by walk over the chain. However, these methods
still require manual parameter tuning for generating edge maps and also detect many false

positives.

[ , ] use the pixels’ gradient orientations rather than edge maps. Although, this
idea laid the foundation of some of recent line detectors, these methods detect too many
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false positive. [ ] proposed a parameterless line detector that controls the number of
false positives on the base of this idea. To remove the false positive, they count the number
of aligned pixels in a certain orientation and accept the set of pixels as a line segment if
the observed structure is perceptually meaningful. This line validation method is known as
Helmholtz principle [ ]. Although this method does not detect false positive, it is

too slow and it does not detect many valid lines which are short.

By extending work of [ ] for line segment generation and combining it with line val-
idation method using Helmholtz principle [ 11 ] proposed a parameterless
line detection algorithm, called the Line Segment Detector (LSD), that produces accurate
line segments, and also controls the number of false detections. Although LSD produces
good results for most types of images in real time, it fails especially in images where the

background contains some white noise.

In [ ], authors propose a fast, parameterless line segment detector known as Edge
Drawing (ED) Lines, which produces robust and accurate results, and runs around 10
times faster than LSD. In this method, line segments are detected in three steps: a) Using
Edge drawing algorithm [ ] to produce a set of clean, contiguous chains of pixels,
known as edge segments, b) Extraction of line segments from the edge segments using
Least Squares Line Fitting, and (c) validation of lines using Helmholtz principle [ Jto
eliminate false line segment detections. We will use ED line detector to detect lines for our

work as explained in Chapters 6 and 7.

2.1.2.3 Feature Description

Once a set of interest regions has been extracted from an image, their location, scale, orien-
tation, and their content information need to be encoded in a descriptor that is suitable for
discriminative matching. There are various descriptors in the literature for defining interest

points and lines. Here, we will discuss only few that have been used widely.

a) Keypoint Descriptors

SIFT descriptor [ ] is a vector of histograms of image gradients. The region around
the interest point is divided into a 4 x 4 square grid at the appropriate scale and orientation.
Each cell yields a histogram with 8 orientation bins that are arranged in 128-dimensional
vector. This vector is then normalized to unit length in order to enhance invariance to
affine changes in illumination. A threshold of 0.2 is applied so as to reduce the effects
of non-linear illumination and the vector is again normalized. SIFT feature descriptor is
invariant to translation, rotation, uniform scaling, orientation, and partially invariant to

affine distortion and illumination changes.
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Figure 2.7 — SIFT descriptor [ ](left) and SURF descriptor [ ](right).

Gradient Location-Orientation Histogram (GLOH) [ ] is similar to SIFT, but
uses log-polar grid instead of Cartesian grid. It uses 16 orientation bins for each of 17
spatial bins. The spatial bins are of radius 6, 11, and 15. Except the central bin, other two
bins are further divided into eight angular bins. The 272-dimensional histogram is then
projected onto a 128-dimensional descriptor using Principal Component Analysis (PCA).
Based on the experimental evaluation conducted in [ 1, GLOH outperforms SIFT

descriptors by small margin.

SUREF descriptor [ ] uses Haar wavelet. A neighborhood of size 20s x 20s is
taken around the key-point, where s is the scale. It is then divided into 4 x 4 subregions. For
each subregion, horizontal and vertical wavelet responses are taken and a 4 element vector
is formed. Hence, the SURF descriptor is a 64-dimensional vector. The main advantage
of the SURF descriptor compared to SIFT is the processing speed keeping its performance
comparable to SIFT. SURF is good at handling images with blurring and rotation, but not
good at handling viewpoint change and illumination change. To improve the distinctive-
ness, it can be easily extended to 128-dimension version without adding much computation

complexity.

Binary Descriptors have lower computational complexity. Hence, they are faster than
SUREF. Binary Robust Independent Elementary Feature (BRIEF) | ]is a general-
purpose feature point descriptor which relies on a relatively small number of intensity dif-
ference tests to represent an image patch as a binary string. It provides a shortcut and fastest
way to find the binary strings directly without finding descriptors. The main advantage of
it is the speed and memory requirement. To obtain very good matching results, [ ]
shows that 128 or 256 bits are normally enough. The standard BRIEF descriptor is 32-
dimensional vector. Unfortunately, it is not rotational invariant. In ORB [ ] the
orientation of keypoint have been used to orient BRIEF along the keypoint direction to give
steered BRIEF, which is rotational invariant and resistant to noise. In BRISK [ ], ori-
entation of keypoint and pair-wise brightness comparison tests are used to generate 512-bit
string that represents 64-dimensional vector. Fast REtinA Keypoint (FREAK) [ ]
is inspired by the human visual system. A retinal sampling pattern is applied around the
keypoint, and a 512-bit binary string is computed by comparing the pixel intensities over
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the sampling pattern using a sequence of DoG.

In our work, we have used SURF descriptor to describe the point features. To improve the
speed without compromising that much of performance, we have not consider rotational

invariance of SURF descriptor.

b) Line Descriptors

In [WWHO09], SIFT like descriptors for line segments known as Mean Standard Devi-
ation Line Descriptor (MSLD) is proposed. In this method, the pixel support region
(PSR) is defined for each line segment and then the PSR is divided into non-overlapped
sub-region. Line Gradient Description Matrix (GDM) is calculated for each sub-region.
Mean and Standard deviation of columns of GDM gives MSLD. Finally, vectors are nor-
malized to unit norm in order to cope with illumination changes. 9 sub-regions each with a
size of 5 x 5, results 72-dimensional descriptor. MSLD descriptor is highly distinctive for
matching under rotation, illumination change, image blur, viewpoint change, noise, JPEG
compression and partial occlusion. However, the computation cost for MSLD is high.
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Figure 2.8 — PSR for MSLD [WWHO09](left) and LSR for LBD [ZK 13] (right).

[BEVGO5] describes line segments by color histogram obtained from two stripes parallel
to the segment, one on either side with 3 pixels distance between the stripes. Color his-
togram is created with 18 bins for Hue, 3 for Saturation, 3 for Value, and additional four
grey levels including black and white. However, this method heavy relies on color rather
than on texture, which makes this method not useful where color feature is not distinctive,
such as in gray images or remote sensing images. [WNY09] uses line signatures to de-
scribe the lines. With multi-scale line extraction strategy, the repeatability of line signatures
is improved However, this method is quite computationally expensive. MSLD [WWH09]
and color histograms [BFVG05] can achieve scale invariance by the method proposed by
[VTVG14].

Line Band Descriptors (LBD), the faster version of MSLD, is used by [ZK13] to describe
candidate line. In this method, LBD is computed from the line support region (LSR), which
is a local rectangular region centered at the line. This LSR is divided into a set of bands
parallel with the line. From the projected gradient of pixels in each band in the line direction
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and orthogonal direction, Band Description Matrix (BDM) is computed. The mean and
standard deviation of columns of BDM gives LBD. Furthermore, to reduce the influence
of non-linear illumination changes, the value of each dimension of LBD is restrained such
that it is smaller than a threshold (0.4 is empirically found to be a good value). Finally, the
restrained vector is normalized to get a unit LBD. LSR with 9 bands each of 7 pixels width
results in a 72-dimensional descriptor. The scale invariance is archived though detection of

keylines in scale rather than making descriptor scale-invariant unlike [ ].

In our work, we have used LBD to describe lines because of its superior performance

compromising the speed and accuracy in matching.

2.1.2.4 Feature Correspondences

Feature correspondence aims in ascertaining which features (points, lines, regions) of one
image correspond to which features of another image. There are two main approaches to
finding features and their correspondences. The first is to find features in one image that
can be accurately tracked using a local search technique such as correlation or least squares
or using optical flow. The second is to independently detect features in all the images un-
der consideration and then match features based on their local appearance. The former
approach is more suitable when images are taken from nearby viewpoints or in rapid se-
quences, while the latter is more suitable when a large amount of motion or appearance
change is expected. Since an image consists of large number of features, it is necessary
to have some metrics to rank the potential features. This is normally done by calculat-
ing distance between two feature vectors. The common one is Euclidean distance (L.-2
norm) for non-binary features. The other distances that can be used are city block distance
(L-1 norm), Mahalanobis distance, Minkowski distance [ ] etc. For binary features,
hamming distance is used. The best candidate match for each feature can be found by iden-
tifying feature which has minimum distance. Such feature is known as the nearest neighbor.
However, many features from an image may not have any correct match because of back-
ground clutter or not detected in other image. In order to discard features that do not have
any good match to the database, the simplest idea is to set a global threshold (maximum dis-
tance) and to return all matches from other images within this threshold. However, setting
the threshold too high results in too many incorrect matches being returned (false positive)
whereas setting the threshold too low results in too many correct matches being missed
(false negatives). Hence more effective measure is obtained by comparing the distance of
the closest neighbor to that of the second-closest neighbor (nearest neighbor distance ratio).
Rejecting the matches that have ratio greater than certain threshold will reject many false
matches [ ]. Additionally, cross test can be employed to remove false candidate. To
perform the quick matching of high dimensional in presence of huge features, two algo-
rithms have been found to be the most efficient [ ]: Randomized k-d Tree Algorithm
and The Priority Search K-Means Tree Algorithm. Both of these algorithm are available
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as the Fast Library for Approximate Nearest Neighbors (FLANN) [ ]. Similarly, the
algorithms like Locality Sensitive Hashing (LSH) and parallel searching of randomized

hierarchical trees are available for quick matching with binary features [ ].

The alternative way of establishing correspondences in the image sequence is via track-
ing that exploits local image properties and kinematics constraints. Tracking is essentially
useful and faster way to establish correspondences when the motion between the images
are small. The feature point tracking problem is basically a motion correspondence prob-
lem under the general assumptions of: indistinguishable points, smooth motion, limited
speeds and short occlusions [ ]. Local motion estimations are based on optical flow
or patch matching, which is based on local brightness constancy assumption. Most of the
optical flow methods available in the literature are derivatives or improved version of pio-
neer works of [ ] and [ ]. The state of art methods in optical flow is available
in Middlebury website !. Patch matching are basically based on registering small image

patches by minimizing SSD or SAD, or maximizing NCC or ML

[ , ] have presented tracking of line segments based on tracking of each line
primitives like orientation of the line segment, its length, the distance of the origin to the line
segment and the distance along the line from the perpendicular intersection to the midpoint
of the segment using Kalman Filters. [ ] has used hierarchical Lukas-Kanade optical
flow technique to predict the line segments in next frame and line direction attribute defined
from the average of all edge directions in a line segment to discriminate closely spaced line
segments. Then, local matching is done by a similarity function based on distance from
middle line and overlapping ratio. [ ] have used Extended Kalman Filter (EKF) to
track lines. [ ] have used Nearby Line Tracking to track lines. All of these trackers are
prone to errors (depends upon the edge extraction) and not efficient when there are large

numbers of lines.

In the line matching side, the method proposed by [ ] requires known epipolar ge-
ometry that can be computed easily from point correspondences [ ]. For short range
motion, the matching score is computed based on average cross-correlation of the points
common to both lines in two views taken into consideration with the help of epipolar ge-
ometry. For long range motion, the correlation path is corrected by a projective warping
using a homography computed from the fundamental matrix before calculating the score.
However, this method is slow for real time requirements. [ ] uses point correspon-
dences for the line matching. Line matching is done through line-point invariant: affine
invariant from 2-points and 1-line correspondences or projective invariant from 4-points
and 1-line correspondences. The method is fast and works even with some mismatches in
point correspondences. Fast matching requires only tentative point correspondences in the

neighborhood of the line. This similarity is based on the geometry configuration between

Ihttp://vision.middlebury.edu/flow/
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lines and points, thus it is robust to many changes in image, including scale, rotation,
brightness, viewpoint changes and occlusion. However, the performance of this method
heavily depends upon point correspondences that limits its applicability in wide range of
environment. [ ] presented fast line matching scheme using local appearance and ge-
ometric constraints. The local appearance matching is done by using LBD to get candidate
matches. Then, relational graph is built for candidate matches using geometric attributes:
intersection ratios, projection ratios, and angle between candidate matches from line gradi-
ents. Finally, graph matching is done to get matched lines. This method is fast and works

well for low textured scene but the matching process is not affine invariant.

In our work, we have used matching of SURF points with FLANN algorithm with L-2
norm as distance metrics. Further, we have used cross check and nearest neighbor distance
ratio test to remove outliers. For tracking of FAST corners, we have used modified version
of KLT tracker with isotropic scaling and contrast correction as mentioned in [ 1.
For line matching, we have used the method provided by [ ], which is based on ED
Lines and LBD.

Still, the matched feature sets contain outliers that can be filtered by statistically robust
methods like RANSAC (RANdom SAmple Consensus) while estimating the geometric

transformation or homography, fundamental/essential matrix or tensors [ ].

2.1.3 Geometry of Multiple Views

Multiple view geometry is the projective geometry between two or more views. It is inde-
pendent of scene structure, and only depends on the intrinsic parameters and relative pose
of the cameras. If w denotes some matrix/vector in first view, then w’ and w” denotes the

same but for second and third view respectively.

2.1.3.1 The Epipolar Constraint

The epipolar geometry gives the fundamental geometric relationship between two views.
This relationship is encapsulated in a unique 3 x 3, rank 2 homogeneous matrix called
Fundamental Matrix. If 3D point X has image correspondences x and x’ in two views
(x <+ x’) and F is the fundamental matrix, then the image points satisfy the following

relationship

XTFx=0. (2.11)

F has seven degrees of freedom because the common scaling of homogeneous matrix is
not significant and determinant of F is zero (rank 2). Fundamental matrix maps point to
line between the views. As shown in Fig. 2.9, a point in the first image x defines a line in
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X
epipolar plane .
C C' ~ epipol ¢
epipolar
(a) lines for x
Figure 2.9 — Epipolar geometry between two views. Taken from [ 1.

the second I’ = Fx, which is the epipolar line of x. If I and I’ are corresponding epipolar
lines, then any point x on [ is mapped to the same line I’. The point of intersection of the
line joining the optical centers with the image plane is known as epipole. The epipole is
the image of the optical center of the other camera. For any point x, except e, the epipolar
line I’ = Fx contains the epipole e’. The epipole in the left image is e, which is the right
null-space of F i.e. Fe =0. Similarly, €’ is epipole in the right image, which is the left
null-space of F ie. ¢ F = 0.

If the intrinsic parameters of the cameras (K and K') are known, the image points can be
expressed in normalized coordinates as
=K 'xandx =K'x. (2.12)

The Essential matrix E defines the the geometric relationship between X <+ x' as

2 Ez=o0. (2.13)

E has five degrees of freedom (three for rotation and two for the direction of translation
— the magnitude of translation cannot be recovered due to the depth/speed ambiguity) and
has two constraints: (1) its determinant is zero, and (2) its two non-zero singular values are

equal. From (2.11-2.13), we have following relationship between E and F.

E=KTFK. (2.14)

If R and t are relative rotation and translation between two cameras, the camera matrices P

and P’ can be written as

P=K][I|0] and P/ :K’[R\t].
The Essential matrix can be written as
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E =[t].R=R[R"1],. (2.15)

This epipolar geometry is used later in our work in Chapter 7 for geometric verification of

matched/tracked points to remove outliers with RANSAC.

2.1.3.2 The Homography Constraint

Figure 2.10 — Homography. Taken from [ 1.

Homography defines the relations between any two images of same planar surface 7 in the
space as shown in Fig. 2.10. If n is the normal of the plane and d is the perpendicular
distance of plane from first camera center, the 3 x 3 homography matrix H is given by the

following relation [ ]

tn”
R
d

The direct mapping between the corresponding points x <> x’ by homography is given as

H=K( )KL, (2.16)

x ~ Hx. 2.17)

This relations hold true only up-to a scale. A line in 3-space is defined by intersection
of two planes, which lies on a pencil of planes as shown in Fig. 2.10(right). This pencil
of planes induces a pencil of homographies between the two images, any member of this
family will map the corresponding lines to each other. If I <> I’ are corresponding lines,
then their relation defined by homography is given as

I'~HTIL (2.18)

2.1.3.3 The Trifocal Constraint

The trifocal geometry gives the fundamental geometric relationship between three views
like fundamental matrix for two views. It is basically 3 x 3 x 3 matrix with 18 degrees
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Figure 2.11 — Trifocal Tensor. Picture taken from [ ].

of freedom. Let set of three matrices {T, Ty, T3} constitute the trifocal tensor, where
each matrix is 3 x 3. Then trifocal tensor can be represented by [T,T»,T3], or more
briefly by [T;] [ ]. If x &> ¥’ < x” are point correspondences and I <+ I’ <+ I”” are
line correspondences in three views as shown in Fig. 2.11, then there is following trifocal

constraint [ ]

[xl]x (gxiTi)[x”]x = 033. (2.19)
(T[T, T». T3)l")[1)x =07 or [Ty, T2, T3)I” = 1. '

Trifocal tensor unlike epipolar geometry gives the geometric relations between lines but in
three views. This property is used later in our work for geometric verification of matched
lines to remove outliers with RANSAC in Chapters 6 and 7. Trifocal tensor can be com-
puted from at least 6 point correspondences [ ] or 9 line correspondences [ ]
in 3 views. From trifocal tensor, we can easily extract fundamental matrix between two
views and camera matrices. Let €’ and e” be the epipoles and u; and v; be the left and
right null-vectors respectively of T';, i.e. ul-TT,- = OT, and T;v; = 0. Then, the epipoles can
obtained from the null space of following 3 x 3 matrices inside |[..] : €'[uy,us,u3] =0 and

”T[

e’" [vi,vy,v3] = 0. Now, the fundamental matrices between first and second (F»;), and first

and third (F'31) views can be obtained as

Fy =[€]«[T1,T2,T3]e” and F3; = [¢][T],T3,T3]e.

With e’ and e” normalized to unit norm, the camera matrices P, P’ and P” can be obtained

as

P=[1|0],P =[[T,T,,T3le”|€],and P' = [(e”e” —I)[T,T»,T;]e |e”].

2.1.3.4 Robust Estimation by RANSAC

RANSAC is an iterative method for robust fitting of models to data that can contain outliers.
The basic algorithm for RANSAC is given as [ ]

25



1. Randomly select m (minimum number of data required to estimate the parameters)

data samples and estimate the parameters of the given model.

2. Find how many data items fit the model with parameters within a user given toler-

ance.

3. If number of inliers is big enough, re-estimate the model will all inliers and exit with

success.
4. Repeat steps 1-4, for N number of times.

5. After N trials, the largest consensus set is selected and the model is re-estimated

using all the points in that subset if possible.

If p (usually set to 0.99) is the probability that at least one of the sets of random samples
does not include an outlier and w is the probability that any selected data point is an inlier,
then K can be calculated as

_ log(1-p)

= Tog (1w’ (2.20)

From (2.20) it is clear that if m is small, less number of iterations are required to get desired
consensus set. In order to remove outliers (incorrect matches), we can use epipolar geome-
try for two views and trifocal geometry for three views can be used as model. The output of
the process (if succeed) is a set of correct matches or inliers. Using correct matches is es-

sentially important when we estimate 3D structure and pose from image correspondences.

a) Geometrical Verification of Point Correspondences in two views with Epipolar
Geometry + RANSAC

In two views, epipolar geometry provides strong constraint for the point correspondences.
Hence, to verify the point correspondences, we use epipolar constraint as a model to Fun-
damental matrix (F) / Essential matrix (E). The process of estimating F or E from point
correspondences is described in Sect. 2.1.4.1. The error measure that can be used is geo-
metric error, which is simply a re-projection error. In practice, the first order approximation

of geometric error, also known as Sampson distance, is used [ ], which is given below

o — Z (x;TFi)z
~ (Fx;)} + (Fx;)3 + (F'x))2 + (F"x))3’

where(F. x)% is the square of the j —rh entry of the vector Fx.
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b) Geometrical Verification of Line Correspondences in three views with Trifocal
Geometry + RANSAC

For two views, the line segments do not provide strong geometric constraints as opposite to
points. The trifocal tensor provides a strong geometric constraint for lines, but it requires
line correspondences in three views. From trifocal constraint I'7 [T |, T, T3]I”)[1],. = 07,

we can obtain linear equation in the entries of Trifocal Tensor T () as

Ll e"™ T, =0, (2.21)
or At = 0. (2.22)

where the subscripts denotes the individual element of line vector or tensor matrix and

eP™is given as

0 if p, 1, w are not distinct
€M™ = ¢ +1 if piw is an odd permutation of 123 .

—1 if piw is an even permutation of 123

(2.21) gives 3 set of equations. However, only 2 are linearly independent. So, we need at
least 13 line correspondences to compute trifocal tensor. The solution of equation At =0
gives trifocal tensor. The endpoints of lines are normalized as described in [ ] before
computing line vectors. The error function for minimizing geometric error for RANSAC is

approximated as [ ]
e= ZeiT(JiJiT)‘le,-,
i

where €; = A;t is an algebraic error corresponding to a single 3-view correspondence and
J is the matrix of partial derivatives of €.

2.1.4 Structure from Motion (SfM)

Structure from Motion is the process of reconstructing 3D scene and estimating 6DOF
pose from unordered sets. With no constraints on the camera calibration matrix or on
the scene, we get a projective reconstruction. Hence, we need additional information to
upgrade the reconstruction to Metric or Euclidean. The process generally involves finding
the correspondences (points) between the scene and use multi-view geometry to recover 3D
scene and pose. Additional bundle adjustment [ ] steps are employed for refining

SfM by minimizing re-projection error.
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2.1.4.1 SfM for Two Views

For uncalibrated two views, at least 7 points are required for SfM. For calibrated case, five
points are sufficient. For the calibrated case, the simplest process involves estimation of
essential matrix, decomposition of E into R and ¢, triangulation of 2D points to get 3D

scene.

I) Estimation of Essential Matrix

a) Normalized 8 Point Algorithm: This is the classical method for computing Funda-
mental matrix/ Essential matrix [ ]. Since the fundamental matrix F is 3 X 3 matrix
determined up to an arbitrary scale factor, 8 equations are required to obtain a unique so-
lution. The simplest way to compute the fundamental matrix consists of using epipolar

constraint

XTFx=0 (2.23)

where (x,x’) are corresponding points of two views. This equation can be rewritten under

the following form

[ yx' X xy’ yy' Y xy 1]JF =0 (2.24)

where F = [F|| Fi2 Fi3 Fo1 B>y F>3 F31 F3 F33]" a vector containing the elements of the funda-
mental matrix F. By stacking eight of these equations in a matrix A the following equation

is obtained:

AF =0. (2.25)

The solution in this case is given by the right singular vector of A associated with the
smallest singular value. In practice, the Fundamental matrix obtained does not satisfy the
constraint det(F) = 0. So, we have to find the best rank two matrix from F. It is done
by Singular Value Decomposition of F (= U DVT) and forcing smallest singular value to
be zero. Then the required fundamental matrix is obtained by (UD'VT). The points are
normalized before calculating fundamental matrix and finally transformed back to original

coordinate system as described by Hartley [ 1.

After computing the fundamental matrix, the essential matrix can be calculated by
E—=K'FK. (2.26)

Instead, we can use normalized image points to calculate essential matrix directly from
(2.23-2.25). In this case, the smallest singular value of obtained E is forced to zero and the

remaining two singular values are set to 1 to satisfy the property of Essential matrix.
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b) Nister’s 5 point Algorithm

This is used to estimate relative pose of two fully-calibrated cameras from five image point
correspondences (minimal case). The 5-point method is essentially unaffected by the planar
degeneracy and still works. It also works well for sideways motion also[ ]. Consider
a camera, with constant intrinsic matrix K, observing a static scene. Two corresponding
image points x and x’ are then related by Essential matrix E by

XEx=0 (2.27)

Besides, E also satisfies determinant zero constraint

det(E) =0 (2.28)

and cubic constraints due to equal singular values which is also known as trace constraint.

1
EE'E - 5tmce(}«:ET)E =0 (2.29)

Overview of 5-point Algorithm

1. Writing down the epipolar equation 2.27 for the five points, we can get a null-space
representation E = aE | +bEy+cE3+wE4,where, E;,i=0,1,2,3 are the null-space
bases. Using the fact that E is homogeneous, without loss of generality it can be set

w=1.

2. Using the nine equations of equation 2.29, a 10 x 20 coefficient matrix corresponding

to a monomial vector can be obtained as

[a®,b°,a°b,ab” d*c,a® b*c,b*,abc,ab,ac?,ac,a,bc? be,b, ¢ ¢, c, ).

3. Then Grobner basis is computed, which is similar to performing a Gauss-Jordan
elimination on the 10 x 20 matrix. After that 10 x 10 action matrix for multiplication
by one of the unknowns is computed. This is as simple as extracting the correct
elements from the eliminated 10 x 20 matrix and organizing them to form the action
matrix. (The details are available in [ D.

4. The left eigenvectors of the action matrix are computed. The real values for the three
unknowns at all of the solution points are read off and back-substituted to obtain the

solutions for the essential matrix.

In our work, we have used 5-point algorithm to estimate Essential matrix for removing

outliers in point using RANSAC.
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IT) Recovering Structure and Motion from Essential Matrix

Now, matrix E can be easily decomposed to obtain R and ¢. In general, four solutions are

possible. The correct one is obtained by imposing cheirality constraint (reconstructed point

should lie infront of the camera). After that we can easily obtain projection matrices for

both cameras. With projection matrices and 2D image correspondences, we can easily ob-

tain 3D location via triangulation. These methods can be easily found in standard computer

vision textbooks [ , ].

Given the Rotation and Translation [R;|#;] of the camera w.r.t. first camera at [I|0], the

vector denoting the camera position in a world coordinate frame (c;) can be calculated as

(= —Rthl'.

(2.30)

The actual position in the world coordinate frame can only be calculated if the scale factor

is known. This scale factor can be determined if the knowledge of robot movement is

known like odometry information or in case of stereo vision.

2.1.4.2 SfM for Multiple Views

In previous subsections, we can see how structure and motion can be estimated from two

Xj Reconstructed 3D point

LEE

In ideal case, red and blue dots

coincide. However, practically it does
not happen. Bundle adjustment aims
in minimizing this reprojection error.

point

Figure 2.12 — Multiple view SfM.

views of same scene. What if we have more views. They can be used for verification. If

camera calibration is known, the pair of stereo can be used incrementally to obtain 3D struc-

ture and motion. With no constraints on the camera calibration matrix or on the scene, we

get a projective reconstruction. We need additional information to upgrade the reconstruc-

tion to affine, similarity, metric or Euclidean [

error for refining structure and motion, the techniques like bundle adjustment [

]. In order to minimize re-projection

]is

used. There also exists various techniques which first perform camera self-calibration (re-

covery which camera motion and intrinsic parameters) using rigidity of the scene and then

readily calculates structure from the scene from minimum 3 views [
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2.1.5 Visual SLAM

Visual SLAM [ ] can be seen as a special case of SfM. It refers to process of
constructing or updating a map of an unknown environment while simultaneously keeping
track of a location within it using vision. SLAM [ , ] consists of multiple
parts: landmark extraction or feature detection, data association or feature matching, state
estimation or 3D pose estimation, state update or update to global pose and pose correction,
and landmark update or incorporation of new features in the map. SLAM is hard, because
a map is needed for localization and a good pose estimate is needed for mapping. Hence,
SLAM is a chicken-or-egg problem. The SLAM problem in robotics is basically to find

map of features and path of the robot from robot’s controls and relative observations.

In SLAM, errors in map and pose estimates are correlated. So, they need to be corrected
so that global consistency of the trajectory and the map can be obtained. This global con-
sistency can be generally obtained using optimizations like Bundle Adjustment [ ]
or Pose-Graph Optimization [ ]. Loop constraints are very valuable constraints
for such optimizations, which can be obtained by evaluating visual similarity between the
current camera images and past camera images. This visual similarity can be obtained via
feature matching. This already known information can be used to refine map and pose.
This process of re-recognizing already mapped area or previously visited location is known
as Loop Closure. The work of [ ] performs SLAM by direct method without feature
detection and matching. Although metric SLAM is the dominant in the state of art, re-
cent works like [ , , , ] performs SLAM upon appearance

in which loop closing is generally performed in the topological space.

2.1.6 Visual Odometry

Visual Odomety (VO) is a particular case of SfM that focuses on estimating the 3D motion
of the camera sequentially (as a new frame arrives) and in real time [ , ]. So, VO
only aims to the local consistency of the trajectory unlike SLAM that aims to the global
consistency of the trajectory and of the map. Hence, VO is SLAM before closing the loop.
VO trades off consistency for real-time performance, without the need to keep track of all
the previous history of the camera. In practice only few last poses are used to refine pose

via local bundle adjustment or local pose graph optimization.

2.2 Mobile Robots

Mobile robots are the robots having locomotion capability. The locomotion may be man-
ual remote or tele-operated, semi-autonomous and autonomous. The locomotion may be
legged as in humanoid robots, wheeled as in autonomous ground vehicles, free-floating as
in marine robots or crawling locomotion as in snake robots. There are also the robots that
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can fly, known as aerial robots. For the autonomous robots, it must require some mecha-
nism to sense the environment. Vision sensors are one of the most widely used sensors to
perceive the environment. However, other sensors like sonars, ultrasounds, tactile, Light
Detection And Ranging (LIDAR) etc. exists to sense the environment. Throughout the
thesis unless otherwise stated, we basically consider wheeled autonomous mobile robots

using camera as only sensing device.

2.2.1 Navigation of Mobile robots

Navigation is a fundamental problem in mobile robotics. For the robot to navigate au-
tonomously, it has to answer three questions [ ]: 1) Where am 1?, ii) Where am I
going?, and iii) How do I get there? These questions can be restated as localization, map-
ping or determining the goal, and path planning problems respectively. Localization is the
process of estimating the current position of the robot relatively to some model of the en-
vironment using sensor measurements. Such estimation normally involves measurement,
correlation and triangulation. The mapping problem exists when the robot does not have
a map of its environment. Maps can be built in advance or incrementally build one as
robot navigates (like in SLAM). Sometimes, navigation can be done recognizing special
landmarks of the environment (e.g. vanishing point of corridor guidelines as in [ D
without using the map. Path planning involves finding the optimum path from the current
position to its goal considering the obstacles. The cost of planning is proportional to the
size and complexity of the environment. Path planning can be either local that uses only
needed information of the environment near the robot, or global that use full information

of the environment.

2.2.2 Mobile Robots Modeling and Control

Robots consists of a mechanical structures in which a set of rigid bodies, called links, are
connected by joints, and actuated by motors in some or all of the joints. These motors
(actuators) make the mechanical structure move. Position sensors are possibly connected
to the joints to measure the motion of joints. To control a robot, we need to represent the
robot’s state with some quantifiable variables. If we know the state description, we can
model the motion of the robot with differential equations, which is known as kinematics.
Once we have the kinematics equations, we can develop a control law that bring a robot to
a desired location. In particular, we will concentrate in the mobile robot with differential
drive, whose motion is defined through rolling and sliding constraints taking effect at the
wheel-ground contact points.
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2.2.2.1 Robot Kinematics

Mobile robot kinematics is the dynamic model of how a mobile robot behaves. Mobile
robots can move unbound with respect to their environment. It means that there is no
direct way to measure the position. Position must be integrated over time, which leads to
inaccuracies in the estimation of position and motion. Each wheel contributes to the robot’s
motion and imposes constraints on the motion. These constraints must be expressed w.r.t.

the reference frame (robot frame or local coordinate frame).

The robot reference frame (F g) is three dimensional including position on the plane and

o)

Figure 2.13 — The global reference frame and the robot local reference frame [ ].

the orientation as shown in Fig. 2.13, where axes{Xg,Yz} define such reference frame
relative to point P on the robot chassis and the axes {X;,Y;} define inertial global reference
frame (f ;) with origin O. If the position of P in f ; is specified by coordinates x and y and
the angular difference between f; and [ is 0, the pose and the velocity of the robot can
be defined as a vector with these three elements. Let & be the position and 51 be the motion

of robot in F; . Then we have,

X X
G=|y |ad&=|y |, (2.31)
0 0

where %, y, and 6 represent velocity of x, y and @ respectively in f ;. The orthogonal
rotation matrix (R(0)) is used to map position and motion in £ to that in the F g, which is

given as

cos@ sinf6 O
R(6)=| —sin@ cos® 0 |. (2.32)
0 0 1
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If &g is the position and éR is the motion of robot in F g , then we can write

xcos 6 +ysin @ Xcos @ +ysin@
Er=R(0)é = | —ysin®-+xcos® | and Eg =R(0)E = | —ysin@ +icosO
0 6
(2.33)

From (2.33), it is clear that the robot will rotate with the same speed with respect to f g as

F ;. However, the linear velocities are a combination of the velocities with respect to F ;.

The differential drive robot has two wheels, each with diameter d. The contribution of
motion of both wheels can be simply added to find the motion of the robot. Let P be in
between two wheels so that each wheel is at distance / from P. If ¢; and ¢, are spinning
speed of each wheel, we have

(1 +¢2) d(¢1 + ¢2)

F= Ty = 0,and = S0 (2.34)

Hence, if r, [ ,0, q) and (152 are known, we can estimate the motion in £ ; as

éI:R(e)il 0 :f(l7r>9a¢.la¢.2): y 5 (2.35)
r(¢1+¢>) [a]
21

where R(6) " is inverse of R(8). In order to determine the space of possible motions for
each robot chassis design, we should consider constraints on robot motion imposed by each
wheel. From (2.35), we can find the motion of a robot given its component wheel speeds.
This type of kinematic modeling is known as Forward Kinematics. Standard conventions,
such as the Denavit-Hartenberg parametrization, exist to evaluate the direct kinematics

[ I

Forward Kinematics provides transformation from joint space to physical space. But it

requires accurate measurement of the wheel velocities over time.

Inverse Kinematics provides transformation from physical space to joint space. It helps to
estimate the control parameters (wheel velocities) that will make the robot move to a new
pose from its current pose. So, it is required for motion control.

Fixed wheels impose non-holonomic constraints i.e. differential equations are not inte-
grable to the final position. Therefore, in order to calculate the final position of the robot,
we need to know how this movement was executed as a function of time in addition to
the measure of the traveled distance of each wheel. Therefore, we deal with differential

kinematics i.e. transformation between velocities instead of positions.
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[\(v.w) [ Non-holonomic |(z,y,0)
|/ Robot

Control Law

Figure 2.14 — Non-holonomic Robots [ ].

2.2.2.2 Robot Motion Control

Robot motion control is the process of controlling the wheel velocities so that the robot
moves from current position to desired position. Basically, there are following two strate-

gies of motion control:

a) Open loop control (Trajectory-Following):  In this scheme, measured robot position
is not fed back for velocity or position control. The path to be followed is divided in motion
segments of clearly defined shape straight lines and arcs of a circle. The control problem
is thus to pre-compute this trajectory that drives the robot from the initial position to the
final position. The scheme looks simple but it has many disadvantages [ ]. First,
pre-computing a feasible trajectory is not an easy task if the limitations and constraints
of the robot velocities and accelerations are considered. Second, the robot does not adapt
or correct the trajectory if dynamic changes in the environment occur. Last, the resulting
trajectories are usually not smooth because the transitions from one trajectory segment to

another are not smooth.

b) Closed loop control (Feedback Control) In this scheme, measured robot position is
taken as feedback for velocity or position control. So, the goal of the motion controller is to
estimate the robot velocities so that it minimizes the pose error. If v is the forward velocity
and @ be the rotational velocity of the robot as shown in Fig. 2.15, clearly from (2.35), we

have

X cos® O

— | —sin6 0 [V ] (2.36)
R (0]
0 0 1

If p is the distance between center of the axle of the wheels P and the final position G, o
is the angle between the Xp and 133 and B is the angle between the angle between the X
and f% as shown in Fig. 2.15, from [ ] we have
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X=X,

Figure 2.15 — Robot kinematics and its frames of interests [ ].
p —cosax O p cosaa O
. Vv . 1%
a | = % -1 [ ] forlland | & | = —% 1 [ ] for 12,
R . 0] . . w
sin & Sin o
B sna i na g

where I1 is the case in which a € (—%, %] and 12 is the case in which o € (-7, — 3 |U (%, 7].

(2.37) is undefined at p = 0. Let us define a linear control law as v =k, p and ® = kg0 +
kg B, from (2.37) we obtain

P —kpp cosa p kpp cosa
o kpsinot —kqot —kgB | forIland | &« | = | —kpsina+kqa+kgB | forI2.
B —kp sino B kp sino

(2.38)

The system has a unique equilibrium point at (p,a,) = (0,0,0). Thus, it will drive the
robot to this point, which is the goal position. In the following sections, we will discuss
how vision is used for closed-loop control.
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2.2.2.3 Non-holonomic Robot with Perspective Camera

Zg
1\l
/L )
Y¢
5 o
w YR X R

Figure 2.16 — Non-holonomic Robot equipped with perspective camera.

Fig. 2.16 shows the mobile robot equipped with the camera. The measurements obtained
using images are on the camera frame F ¢. If R.. is the rotation and ¢/, is the position vector
of origin of the camera frame w.r.t. the robot frame f g, the coordinate transformation

between /¢ and [ g is given by 4 x 4 homogeneous transformation matrix H. as

H =

c

2.39
0 1 (2.39)

R. tZ]

If H? is the transformation between F g and f ;, the transformation between f g and £,

H?, can be easily obtained as

H!=H/H.. (2.40)
Similarly, the relationship between camera velocity and robot velocity is given as [ ]
o _ . -
0 Vey
vl [ R LR e | o
0 03><3 Rc D¢y
® Ocy
0 Oz

where vy, ¢y and v, are the linear velocities and @,,®., and @, are the rotational veloc-

ities of camera in camera frame.

For the camera configuration as shown in Fig. 2.16 (right) i.e. the camera optical axis is
orthogonal to the axis of robot rotation (i.e. tilt angle is 0) and the camera center and the
robot center of rotation are separated by distance 0. If @ is the pan angle of the camera, the

transformation of velocity from robot frame to camera frame is given as:
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[ Vex | [ sing —d&cos@ |
Vey 0 0
Ve: | _ | coso dsin@ vl (2.42)
[ 0 0 [0}
ey 0 —1
(o) 0 0
With pan angle O i.e. ¢ =0, (2.42) reduces to
[ Vex | [0 -6 |
Vey 0 O
1 0
N Y (2.43)
Wy 0 O w
ey 0 -1
Wy, 0 O
2.3 Visual Servoing (VS)
According to the definition given in [ ], the term Visual Servoing (VS), or visual servo

control, refers to the use of computer vision data (extracted from camera images) to control
the robot motion in a closed loop. As per this definition, visual servo control relies on
techniques from image processing, computer vision, and control theory. The pioneer work
is generally considered to be that of [ ] who describe how a visual feedback loop can
be used to correct the position of a robot to increase task accuracy where visual sensing
and control are combined in an open-loop fashion. In real visual servoing systems, the
control feedback loop is closed around real-time image processing and measurements. The
term visual servoing was first used in works of [ , ] at SRI International. A
large variety of different visual control schemes have been proposed in the literature. The
complete overview is presented in classical papers by [ , ], or in more recent
ones by [ , ]. VS is more a general paradigm rather than a specific collection of
techniques. Different types of cameras: perspective, catadioptric or generalized cameras,
monocular or stereoscopic, or RGB-D, ultrasound probes etc. have been used. Cameras
can be mounted either on the robot end-effector (eye-in-hand) or on an external fixed base
(eye-to-hand).

The aim of all vision-based control schemes is to minimize an error e(t), which is typically
defined by: [ ]

e(t) =s(t) —s*, (2.44)
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where s(t) is the vector of current features, which may be image coordinates of interest
points, current camera poses, etc. The vector s* contains the desired values of the features.
Once s is selected, the design of the control scheme can be done by designing a velocity
controller. To do this, we require the relationship between the time variation of s i.e. $
and the camera velocity u.. The camera velocity can be represented by ue = (v, @),
where v, is the instantaneous linear velocity of the origin of the camera frame and @, is
the instantaneous angular velocity of the camera frame. In spatial frame, u, is a 6 element
vector which has 3 components of v, each representing translational velocity under X, Y
and Z axes, and 3 components of @, each representing rotational velocity around X, Y and

Z axes. The relationship between $ and ug is given as: [ ]

$ = Lgu, (2.45)

where Lg € R¥*6 is known as feature Jacobian or interaction matrix related to s and k > 6.
The relationship between u, and time variation of the error € can be obtained from (2.44)
and (2.45) as

é =Lgu,. (2.46)

In order to try to ensure an exponential decoupled decrease of the error (i.e. € = —Ae), we

control u, such that from (2.46) we obtain

u. = —1ALJe, (2.47)

where L is chosen as the Moore-Penrose pseudo-inverse of Lg. In real system, it is not
always possible to know perfectly in practice either Lg or L. So, an approximation or
an estimation of one of these two matrices must be realized. If Ly represents the pseudo-

inverse of such estimation or approximation, the control law given by (2.47) becomes

u = —ALge. (2.48)

This is the basic design implemented by most visual servo controllers. We should select
adequate s for a given task such that the rank of Lg = m, where m < 6 is the number of
controlled camera degrees of freedom and k > m. Depending upon the nature of features
selected, VS can follow one of the approaches discussed below.

2.3.1 Pose-Based Visual Servoing (PBVS)

In PBVS [ ] systems, features are extracted from an image, and subsequently used
to estimate 3-D parameters like pose of the camera w.r.t some reference frame. It is then
typical to define s in terms of the parameterization used to represent the camera pose.
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After that an error is computed in the metric/Euclidean task space, which is used in visual
control. Thus, in PBVS if the pose estimation problem, which is a classical computer vision
problem of 3D-localization, is solved, then the control problem is just the classical robotics
problem of tracking a trajectory in geometric space. PBVS provides better response to large
translational and rotational camera motions. If pose estimation is perfect, then it guarantees
global asymptotic stability [ ]. It is free of image singularities, local minima, and
camera-retreat problems. However, PBVS is more sensitive to image noise, camera and

object model errors and camera calibration errors.

2.3.2 Image-Based Visual Servoing (IBVS)

In an IBVS [ ] system the pose estimation is solved implicitly unlike PBVS i.e. the
object is in desired relative pose if the current view of the object matches the desired view.
The information extracted from the camera (e.g. the position of some key points, or con-
tours) is directly used as feature. The goal configuration is described in terms of the value
that the features assume when camera is in the desired pose. Another approach is to directly
use intensity information without any feature extraction, where IBVS problem is seen as a
case of image registration problem to maximize or minimize some similarity measurement
[ ]. The advantage of IBVS is that it does not require full pose estimation and hence
is computationally more economical than PBVS. The positioning accuracy and closed-loop
stability of IBVS is less sensitive to camera-calibration errors and image noise than PBVS.
However, IBVS may lead to image singularities that might cause control instabilities. An-
other issue with IBVS is the camera-retreat problem [ ] i.e. for the commanded pure
rotations around the optical axis, the camera often moves away from the target in a normal
direction and then returns. Moreover, when all 6 dof are considered, the convergence and
stability of IBVS is ensured only in a small neighborhood of the desired camera pose. The
domain of this neighborhood is analytically impossible to determine. Determining the do-
main of this neighborhood is still an open issue, even if this neighborhood is surprisingly
quite large in practice [ 1.

Now, we present how interaction matrix can be calculated for the point features. Let us
consider a 3D point X = [X ¥ Z] in the camera frame which projects in the image as a 2D
point with coordinates x = [x y]”. (x,y) can be obtained directly from pixel coordinates by
normalizing with matrix K (of (2.3)). Then, we have

X Y
Taking the time derivative of (2.49), we obtain
X —xZ Y —vZ
i=2 T andy =12 (2.50)
Z Z
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The relation between velocity of X and v, is given as X = —v. — @, x X, which yields

X=-v—0Z+0Y,
Y=-vw-0X+oZ and @.51)
Z=-v.— Y +0Z.

From (2.50) and (2.51) we obtain

i=—%+% o, — (1+x%)o,+yo, and

(2.52)
y=—2+2 4+ (1+y") o —xyo, —x0.,
which can be written as X = Lyu,, where the interaction matrix Ly related to x is
1 X 2
- 0 Z —(14+x
L= 7 7 Y (1) (2.53)
-7 7 14y —Xxy —x

To compute L,, we need to know or approximate Z. To control 6 DOF, at least 3 points are
necessary (k > 6). Let it be xq, X, and x3. Then we have s = [XT Xg Xg] The interaction
matrix can now be obtained as Ls = [Ly, Ly, LX3]T. Since, there are some configurations for
which Ly is singular and four distinct camera poses where global minima exists, more than
three points are usually considered in practice. If Z is known, we can use I/} =LJ. The
other popular approach is to use I/} = L., where L is value of Ly at desired position. In
this case i} is constant, and only the desired depth of each point has to be set, which means
no varying 3-D parameters have to be estimated during the visual servo. The calculation
for interaction matrix using other features and in other coordinate system can be easily find

in literature like [ R R , ].

2.3.3 Hybrid Visual Servoing (HVS)

The advantages of both PBVS and IBVS are combined in hybrid approaches to visual
servoing [ ]. Among hybrid approaches, 2-1/2D visual servoing [ ] is well
established from an analytical point of view. In 2-1/2D visual servoing, the control of
camera rotational and translational degrees of freedom are decoupled i.e. control input is
expressed in part in 3D metric/Euclidean space and in part in 2D image space. IBVS is
used to control the camera translational degrees of freedom while PBVS is used to control
rational degree of freedom. This approach provides several advantages. First, since camera
rotation and translation controls are decoupled, the problem of camera retreat is solved.
Second, 2-1/2D HVS is free of image singularities and local minima. Third, this method
does not require full pose estimation, and rotation can be estimated without complete 3D
estimation. Fourth, geometric camera motion and image plane trajectory can be controlled
simultaneously. Finally, this method can accommodate large translational and rotational
camera motions. However, there are a few problems associated with 2-1/2D HVS. One of
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the problems is the possibility of features leaving image boundaries. Next, it is still sensi-
tive to noise and camera calibration errors. Finally, the selection of reference feature point
affects the performance of 2-1/2D HVS.

In our work, we used motion control based on IBVS, which is discussed in Sect. 4.
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CHAPTER 3

Vision-based Navigation of Mobile
Robots

ISUAL information has already been widely used for mobile robot navigation. The
increase in processing power, decreasing price of vision sensors, and ability to
provide large amount of information from the scene with less power consump-

tion have directly contributed to vision to become mainstream for the applications like
mapping, localization, autonomous navigation, path following, etc. Traditionally, vision-
based navigation solutions have mostly been devised for autonomous ground robots, but
recently, visual navigation is gaining more and more popularity among researchers for fly-
ing robots or aerial robots and also for underwater robots. In this chapter, we present
an overview of works in visual navigation especially for mobile robots. We begin the
chapter with different types of navigation techniques based on the operating environment
(Sect. 3.1), how robot knows the navigating environment (Sect. 3.2), and model of en-
vironment (Sect. 3.3). Then we talk about some mapping paradigms existing in liter-
ature in Sect. 3.4. Finally, we present and discuss some state of the art methods on
appearance-based navigation for indoor mobile robots with particular focus on type of fea-
tures used in Sect. 3.5. An exhaustive survey of Vision-based Navigation is available in

[ b b b ]‘

3.1 Indoor and Outdoor Navigation

Depending upon the environment, the navigation can be divided into indoor and outdoor
navigation.
3.1.1 Indoor Navigation

Indoor environments are mostly structural and human made. The indoor navigation can be

mainly divided into: a) navigation in room, and b) navigation in corridors. For the former
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part, it is more likely to have abundant distinctive local features and global features whereas
for the later part, surface may have similar texture or limited texture, reflections and repe-
titions, which make standard feature detection, matching/tracking to perform poorly. Also,
robot has to cope with change in illumination as it travels between rooms and corridors.
Despite these difficulties, mobile robots have been successfully navigated in indoor envi-
ronment [ , ]. However, there still lacks generic framework that works in

most of indoor environments.

3.1.2 Outdoor Navigation

Outdoor navigation is also divided into two types a) Navigation in Structured Environ-
ments, and b) Navigation in Unstructured Environments. In former case, there are regular
structures and features that can be tracked. The navigation is like some sort of road fol-
lowing [ ]. This type of research is one of the hot topic in today’s world especially
for the self-driving cars or for providing driving assistant, where vision plays important
role [ s , ]. In unstructured environment, there are no regular
properties that can be tracked for navigation. In such cases, the robot randomly explores
the vicinity or executes a mission with a goal position. One of such examples is Mars
micro-rover [ ]. A common problem in all outdoor navigation systems is caused
by variations in the illuminations resulting difference in contrast and textures of same scene
taken at different times of day, different times of year, different weather conditions like fog,
snow, sunshine, rain etc., which impose serious limitations on the performance. Some of

the recent methods to cope this problems include [ , , 1.

3.2 Map and Mapless Navigation

Depending upon navigation techniques, the overall navigation can be divided into a) Map-
based Navigation, b) Map building-based Navigation, and ¢) Mapless navigation [ ,
1.

3.2.1 Map-Based Navigation

In map-based navigation, the environment in which robot has to navigate is known. In other
words, the sequence of landmarks expected to find during the navigation is known and the
task of vision system is to search and match the landmarks found in the on-line image with
expected and known landmarks. When the landmarks are recognized, robot can use map
to localize itself. This process is known as self-localization. However, for this type of
navigation, the map should be built in advance. The main steps involved during navigation

are as follows: [ ]

— Acquire Image.
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— Detect landmarks (edges, corners, lines, blobs, colors, objects etc.).
— Match observed landmarks with expected ones that are stored in the map.
— Update the current position, i.e. localize in the map based on result of matching.

The localization in the map is further divided into a) Absolute localization or global lo-
calization, where the initial position of the robot is unknown at the beginning of the nav-
igation, and b) Successive Localization or incremental localization, where the position of
the robot is known or absolutely known at the beginning of the navigation. Depending
upon the representation of the environment, navigation may be based on global coordi-
nate system using metric maps [ , ] or in nodes based system using topo-
logical maps [ , , , ] or mixture of two using hybrid maps

[ , I

3.2.2 Map building-based Navigation

In many real-world applications it is impossible to provide a map of the environment a-
priori. In this map-building type of navigation, the robot can explore the environment and
build its map by itself. One the earliest example was carried out by the Stanford CART
robot [ ]. The most common methodologies based on this technique is Simultane-
ous Localization and Mapping (SLAM ) or Concurrent Mapping and localization (CML)
[ , , , , , , ], which essentially perform
three simultaneous tasks: navigation, mapping and localization. Although metric SLAM is
the dominant theme in the literature, there also exists SLAM that does not use metric space
and based upon appearance [ , , , ] in which loop closing

is performed in the topological space.

3.2.3 Mapless Navigation

This category includes all the navigation approaches that do not need and use any prior
description of the environment. In the approaches discussed in this section, no maps are
ever created. The robot navigates in the environment by detecting and extracting relevant
information of observed elements of the environment like walls, doorways, desks, etc. The
navigation decision is based on what robot perceives the environment. Such approaches
mimic the navigation techniques used by animals especially insects. Some of the prominent

approaches in this technique are presented below:

Navigation Using Optical Flow: These solutions estimate the motion of features within the
sequence using optical flow. One of such examples is to calculate time-to-contact to avoid
an obstacle [ ], which is calculated on the basis of optical flow. In [ ], robot
localizes itself using difference between the velocity of the image seen from the stereo pair.

The robot will move so as to minimize the difference in the velocities.
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Navigation based on Feature detection and/or Feature Tracking: These solutions use fea-
ture detection and/or matching/tracking to detect specific characteristics of the environment
for the navigation. [ , , ] performed vision-based corridor naviga-
tion using the vanishing point extracted from corridor guidelines for the Nao humanoid
robot and a wheelchair respectively. [ ] uses two pairs of corresponding corner fea-

tures to compute ground plane homography to determine the rotational motion of the robot.

3.3 Model-based and Appearance-based Navigation

The robotic system needs a representation of its environment to perform the navigation
task from the initial point to a desired one. In order to perform this task autonomously, the
environment should provide enough information for localizing initial and desired positions,
defining path the robot has to follow between these two points, and controlling motion
during navigation. The environment can be represented either in sensor space or in the
3D geometric space. There are generally two approaches that are widely used, which are
briefly described below.

3.3.1 Model-based Approach

The first approach relies on the knowledge of an accurate and consistent 3D model of
the navigation space, and the representation is geometric and environment centered. The
landmark information is stored explicitly, and expressed in the coordinates of geometric
frame [ , , ]. The navigation is then performed by matching the
global model with a local model deduced from sensor data. Such a model can be computed
from different features like lines, planes, or points [ ], or estimated from a learning
step. Most of the simultaneous localization and mapping (SLAM) methods [ ,

, ] fall in this category, but in this case autonomous motions are performed
for discovering new areas rather than reaching desired position. The extensive review of
SLAM is presented in [ ]. In the model-based approach, the environment is

normally represented by metric maps, which will be discussed in Sect. 3.4.

3.3.2 Appearance-based Approach

The second approach, also known as appearance-based approach, does not require a 3D
model of the environment, but it has instead the advantage of working directly in the sensor
space. To simplify the process of appearance-based navigation, the navigation environment
is generally represented by a graph [ , , , 1. The nodes
of the graph give characteristic features or zones of the environment (locations) obtained us-
ing the sensor data, which are mainly reference/key images, and arcs define the possibility
for the robot to move between the two associated positions. Such maps are built in a prior
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offline mapping phase. Navigation is then usually performed by computing a similarity
score between the view acquired by the camera and the different images of the database, or
by using the features extracted from previous images via tracking and generating associated

control command. This similarity can be based on global descriptors, like considering the

whole image [ , ], color histograms [ ], or image gradient [ ]; or
by using local descriptors, like photometric invariants [ ] or local feature points
like corners, SIFT/SURF points or MSER [ , , , ] or bag
of words [ ]. Recently, [ , s s ] also performed SLAM

using appearance only, which mainly focuses on building map and exploring unknown en-

vironment. More details of this approach are discussed in Sect. 3.5.

3.4 Metric Map-based Navigation and Topological Map-based

Navigation

For mapped-based navigation, map has to be built in prior. Regarding robotic map building,
metric, topological, and hybrid mappings are the paradigms that are generally accepted.
Metric maps represent the environment in the geometric space, whereas topological maps
describe the environment by help of connected graphs.

3.4.1 Metric Maps

Metric maps represent world as accurate as possible maintaining geometric details like dis-
tance, size etc. They are usually referenced according to a global coordinate system, which
is most appropriate for localization, path planning, and obstacle avoidance. The recogni-
tion of places is based on geometry that is non-ambiguous and view point-independent.
However, they are more difficult to make and maintain; they are space consuming and
may result in inefficient planning as resolution does not depend upon the complexity of
the environment; and they require accurate determination of the pose [ ]. An early
representative of metric maps is occupancy grid mapping algorithm [ , ], which
represents maps by fine-grained grids that model the occupied and free space of the envi-
ronment. The other approach is landmark-based maps [ , ], which identify and
keep the 3D location of certain salient features in the environment. The representation of
space through isolated landmarks reduces computational cost and memory requirements.
However, these types of maps are not ideal for obstacle avoidance because lack of a land-
mark in a place does not imply that the space is free. Nevertheless, these representations
are the most suitable when the determination of the pose is more important than the map.
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3.4.2 Topological Maps

Topological maps [ , , , ] are the graphical representation of
the environment in which nodes give characteristic feature or zone of the environment (lo-
cation) and arcs give adjacency relations between locations. The key advantage over metric
maps is their compactness, which permit fast planning, require less space, and provide
natural interface to human such as go to kitchen etc. The resolution of topological maps
corresponds directly to the complexity of the environment. They do not require exact de-
termination of the geometric pose, which make them often better recover from drift and
slippage that need to be constantly monitored and compensated in grid-based approach.
The other advantage is that they are easily scalable. However, it is difficult to construct and
maintain in large-scale environments if sensor information is ambiguous, and recognition

of places is often difficult as they are sensitive to the point of view.

3.4.3 Hybrid Maps

Hybrid maps [ , , , ] combine both such that they try to max-
imize the advantage and minimize the problems in metric and topological mapping tech-
niques. Metric maps are generally finer grained than topological ones. So, in hybrid ap-
proach local metric maps are connected by global topological maps. In other words, the
global environment is represented topologically, whereas the local environment is repre-

sented geometrically.

3.5 Appearance-based Navigation for Mobile Robots

In this section, we are going to discuss in detail about the appearance-based navigation
approach, which is used in our work. As the appearance-based navigation is based on the

pixel information of the image, following issues have to be taken into consideration:

e appropriate way of representing the environment;
e whether to use global features like color, histogram or local features like points;

e on-line similarity measurement which defines how the features are matched or (and)

tracked between reference image and acquired image; and

e recording of images in the training phases as well as in subsequent image matching

or (and) tracking process and how the reference images are selected.

To simplify the process of appearance-based navigation, the navigation environment is gen-
erally represented as topological rather than geometric. The selection of feature depends

upon the environment conditions in which robot has to navigate. The similarity measure
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3. Vision-based Navigation of Mobile Robots

and selection of reference image depend upon feature selected. First, we discuss top level
approach for appearance-based navigation based on key/reference images used to represent
the environment. Then, we discuss state of the art methods especially focused on feature
selection. Finally, we talk about navigation using visual memory and our approach for

coming chapters.

3.5.1 Overview

Before navigation, the map of the environment has to be created. Navigation path is defined
by series of key/reference images organized in an adjacency graph. The block diagram of
general appearance-based navigation is shown in Fig. 3.1. (Note: This is not applicable to

appearance-based SLAM methods and those that do not use topological graphs.)

Feature Extraction/ Topological Maps

Image Acquisition Matching (tracking) and
Key Frame Selection j

f Localization \
Compare
C> A Previous location
Estimation |[<—— .
(current key image)
Features
| Present Location in map|j

\ Current Image  Feature Extraction/tracking

(" Control )
: - . . Features

W Motion Estimation Mext key Images

\_ J

Figure 3.1 — Appearance-based Topological Navigation.

During the learning (mapping) phase, the features of the representative images (key/ref-
erence images) are captured from the environment and associated with the corresponding
locations (nodes of graph). This set of selected key/reference images is termed as image
memory or image database in the later sections. For navigation, robot first has to localize
in the map. Localization in this case is to find two adjacent nodes of graph which match
best with the current view. In the very first localization phase, the features of input image
are compared with that of the reference images in the database. The location where the ref-
erence image best matches the input image gives the initial location of input image in the
map. Therefore, the main goal is to find the images in the database that are similar in ap-
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pearance to the input query image. After initial localization, the adjacency relation between
nodes makes it possible to compare the features of the current image only with the images
taken at currently believed locations and its immediate neighbor. This limits the number
of the reference images used for examining, which generally results fast comparison pro-
cess. For comparison of features, we can use either matching process or the knowledge
from the previous image via feature tracking or both (if possible). The initial localization
is purely based on a feature matching process whereas the later navigation process is gen-
erally based on feature tracking for efficiency. The pure matching process is employed in
navigation in such cases whenever tracking of features are neither possible nor sufficient.
Based on the previous location and current comparison result, the present location can be
estimated. Based upon this present location and target location, the control command can
be generated for visual navigation.

3.5.2 Methods Based on Global Descriptors

Global descriptors use entire image to describe it. They are normally fast to compute and
economic to store in terms of memory requirements. Following are the navigation methods
that uses global descriptors for appearance based topological navigation. [ ] uses
Principal Component Analysis to describe images in eigenspace. [ ] uses six one-
dimensional color histograms: three extracted from the HLS color space and other three
extracted from the RGB color space with Jeffrey divergence used as a distance measure be-
tween two histograms, where they obtain accuracy of 87.5% in indoors. Three-dimensional
histograms in RGB space (appearance) combined with odometric information and Bayes
Filters have been used by [ ]. In [ ], Omni-Gist has been used in a semantic
labeling process for building indoor topological maps. This place classification module is
integrated with a Hidden Markov Model to ensure the temporal consistency. In [ 1,
the image is represented by the first 15 Fourier coefficients (15 lowest frequency compo-
nents), known as Fourier signatures. To overcome the perceptual aliasing problem, they
fuse this image representation with a particle filter. In [ ] omnidirectional images
have been compared using the Manhattan distance function to determine both the trans-
lation and rotation angle for the visual homing. All of the above navigation system used
omnidirectional camera. The work of [ ] uses gradient orientation histograms as
image descriptor and Euclidean distance to match histograms, and Learning Vector Quan-
tization to find reference images. Multidimensional histograms are used to describe the
global appearance features of an image such as colors, edge density, gradient magnitude,
and textures by [ ], where they achieved 83% accuracy in indoors. Whole Image
SURF has been used by [ ] for outdoor localization. [ ] presented a loop
closure detection method in which images are smoothed using a Gaussian kernel, and then
resized to a small patch. The patch is then binarized to produce a binary code of a few

hundred bits. The mutual information for the image pair is used as a similarity measure.
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3. Vision-based Navigation of Mobile Robots

They are able to detect loop closures in a map of 20 million key locations. [ ] have
used Mutual Information for appearance-based visual path following which is somehow
robust to illumination variations and seasonal change in outdoor. [ ] use color seg-
mentation for their hybrid SLAM, known as RatSLAM, which mimics the hippocampal
complex in rodents. [ ] combine RatSLAM with Fab-Map in order to address the

challenging problem of producing coherent maps across several times of the day.

Global descriptions work well for capturing the general structure of the scene, but they are
not able to cope well with several visual problems like partial occlusions or camera rotation.

Besides that, they have poor discriminating power and high perceptual aliasing effect.

3.5.3 Method Based on Local Descriptors

Local features are usually more robust to occlusions and changes in scale, rotation, trans-
lation and illumination. The recovery of relative poses between images, which can be used
for confirming if two images come from the same scene, can be performed easily. However,
the storage requirements and the computational cost are higher than for global descriptors.
[ ] use SIFT features and performed a global localization process based on a simple
voting scheme. To cope with dynamic changes in the environment, they incorporate ad-
ditional knowledge about neighborhood relationships between individual locations using
a Hidden Markov Model. In [ ], they presented a feature selection strategy in or-
der to reduce the number of keypoints per location by measuring the discriminability of
the individual features to describe each topological location. In order to handle both strong
perceptual aliasing and dynamic changes of places efficiently, [ ] has used Position-
Invariant Robust Features (PIRFs) for the incremental appearance based SLAM. PIRFs are
generated by averaging the SIFTs features, which appear to be slow-moving relative to
the change in camera positions. These slow-moving features are identified using simple
feature matching. A local feature that appears repeatedly in many sequential images is re-
garded as a slow-moving local feature. [ ] use Kanade-Lucas-Tomasi (KLT) tracker
for matching persistent features in a sequence of omnidirectional images and constructed
a topological map incrementally. [ ] has used omnidirectional vision system (hy-
perbolic mirror + ordinary camera) and SIFT features for the appearance-based topological
navigation. The heading estimation has been done by epipolar geometry assuming that the
robot moves in a planar surface. [ , ] have demonstrated hybrid model for
topological navigation based on a visual memory. Local 3D reconstruction has been used
for verifying the key-point matches and automatic key frame selection using SIFT, Multi
Scale Harris, and MSER features. The centroid of the features is used for motion control.
This method is partially robust to occlusion and lighting variation and has been tested in
real time in outdoor environment. MSER, SIFT and GLOH are used to create a signature
of place by [ ] for localization purposes. They showed that these combinations in-
crease notably the performance compared with the use of one descriptor alone. [ ]
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has developed omnidirectional vision and 2D laser range finder-based navigation system

based on the Feature Stability Histogram and the textured-vertical edges.

3.5.4 Methods Based on Bag of Words (BoW)

Bag of Words are obtained by quantizing local features according to a set of feature models
called visual dictionary, visual vocabulary, or codebook and then representing images as
histograms of occurrences of each word in the image. BoW methods can efficiently index
a huge amount of images incorporating a hierarchical scheme and an inverted index struc-
ture. However, the effect of perceptual aliasing worsens due to the quantization process,
and there are no spatial relations between the words. [ , ] present a global
localization system based on BoW, where Harris Corners are described using the SIFT al-
gorithm. An epipolar geometry step is incorporated in order to verify the loop candidate.
[ ] apply hierarchical dictionary to the visual navigation problem, presenting a highly
scalable vision-based localization and mapping method using image collections. Geomet-
ric verification with RANSAC is employed to determine if the image closes a loop or if a
new place has to be added to the map. They use local geometric information to navigate
within the generated topological map. Fast Appearance-Based Mapping (FAB-MAP) ap-
proach proposed by [ , ] under the assumption that modeling the probabilities
that the visual words appear simultaneously can help in the localization process. [ ]
incorporates the spatial arrangement of the visual words to improve localization accuracy.
Local features are quantized in both feature and image space and a set of statistics regarding
their co-occurrence at different times of the day are calculated in [ ] for appearance-
based localization throughout the day. [ ] proposes a place recognition system using
MSLD to describe lines. A hierarchical visual dictionary was trained using these vectors,
which was employed in combination with a Bayes filter for detecting loop closures in in-

door environments.

3.5.5 Methods based on Combined Descriptors

There also exist various solutions for appearance-based navigation using different image
descriptors in order to take benefits of each approach. A common approach is to use a
global descriptor to perform a fast selection of searching candidate images and then use a
more accurate process such as matching local features in order to confirm this association.
[ ] has used rotation reduced and color enhanced SIFT (descriptors not invariant
to rotation) and Invariant Column Segments (10 element vector) formed by 3 color in-
variants and 7 intensity invariants from Discrete Cosine Transformation of the gradient of
the vertical lines as local feature and color as global feature for the omnidirectional vision-
based topological navigation. [ ] has used the global descriptors computed by cubic
interpolation of a triangular mesh and patch correlation (ZNCC) around Harris corners for
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3. Vision-based Navigation of Mobile Robots

visual memory-based navigation using generic camera model. [ ] proposes a three-
step hierarchical localization method for omnidirectional images: set of candidate images
selection using a global color descriptor, selection of correct reference images by match-
ing line features described by their line support regions, and metric localization by 1D
radial trifocal tensor. In [ ], their previous work is expanded to incorporate SURF
features. [ ] uses Orientation Adjacency Coherence Histograms for coarse localiza-
tion and Harris Corners described by the SIFT descriptor verified by RANSAC + epipolar
geometry for fine localization. [ ] uses similarities computed using two global
descriptors: Weighted Gradient Oriented Histogram and Weighted Grid Integral Invariant
to update the weights of a particle filter for outdoor localization. SIFT is used as an alter-
native to compute the position of the robot in those cases where it cannot be inferred using
the combined global descriptors method. A location recognition system which combined

edges, local features and color histograms has been proposed by [ 1.

3.5.6 Navigation using Visual Memory

The visual memory approach has been introduced in [ ] for conventional cameras
and extended in [ ] for omnidirectional cameras. In [ ], the vanishing point
is used for the heading control whereas an appearance-based process is used to monitor the
robot position along the path. A set of reference images are acquired manually at relevant
positions along the path which correspond either to areas in the workspace where some
special action can be undertaken (e.g. doors, elevators, corners, etc.) or viewpoints where
very distinctive images can be acquired. During navigation, these reference images are
compared with current images using the Sum of Squared Differences (SSD) metric. The
position-based schemes relying on the visual memory approach have been proposed with
3D reconstruction using an EKF-based SLAM by [ ], or SftM by [ ]. The
work in [ ] has demonstrated indoor navigation of a mobile robot using a visual
memory for both perspective and omni directional cameras. The robot is controlled by vi-
sual servoing based upon the regulation of successive homographies. The visual memory
is selected from the tracking of points based on particle filter. [ ] have presented

outdoor navigation based on decomposition of Essential matrix for generic cameras. In

[ ], a qualitative visual navigation scheme based on some heuristic rules is presented.
[ ] have used a time independent varying reference to cope with discontinuity in rota-
tional velocities when key images are switched. In [ s ], the authors have

demonstrated a hybrid model for topological navigation based on a visual memory in an
outdoor environment. Local 3D reconstruction has been used for verifying the key-point
matches and automatic key-frame selection using SIFT, Multi Scale Harris, and MSER
features. Lucas-Kanade Differential Tracking with Isotropic Scaling and Contrast Com-
pensation has been used for feature tracking over the views instead of matching. Baseline
feature matching has been done only when tracking is not possible. However, the mo-
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tion control was still based upon 2D features, in particular, the centroid of matched points.
They also show that it is not necessary to converge towards each intermediate position (key
frames) as long as it is possible to reach the final position. An image-based control scheme
for driving wheeled mobile robots along visual paths has been proposed by [ 1,
where the feedback of information given by geometric constraints: the epipolar geome-
try or the trifocal tensor without decomposing them into rotation and translation. Hence,
the use of qualitative servoing [ ] eliminates the necessity of a database accurate
enough to get satisfying trajectories regarding the initial and desired positions, contrary
to [ ] where the robot converges to the intermediary positions using visual servo-
ing by minimizing the error between the current and successive desired positions of visual

landmarks.

From the above literature, one can then conclude that accurate mapping and localization
are not mandatory for visual navigation. In this respect, the goal of this thesis is to adopt
this approach for indoor navigation. We propose a complete framework for selection of
key/reference images to build a map, localization in the map, and motion control so that
robot follows the visual route represented by its visual memory using entire image and
local features. To our knowledge, the closest works to ours that use image memory are
[ , , 1, which, however, still use 3D information for navigation.
The approach proposed in this thesis is instead different from the available literature as
our method only exploits 2D information from the image without need of any 3D. First
the mutual information is exploited for the navigation using entire image. Then, we use
the same approach for indoor navigation based entirely on the line segments detected in
the image. Finally, we combine line features with classical point features for more robust

navigation in wide range of indoor scenarios.
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Our Contribution
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CHAPTER 4

Overview of the proposed method

HIS chapter gives the general overview of our method for mapping and naviga-
tion without considering collision avoidance. The presented approach follows the
same proposed by [ ], but for indoor environment with different features

using 2D image information only. The proposed method of navigation is based on an image
memory. Therefore, the image memory needs to be constructed in a prior. Hence, the over-
all process is divided into: a) off-line mapping (learning) phase, and b) on-line navigation
phase.

Constraints

We consider a non-holonomic mobile robot of unicycle type equipped with a fixed per-
spective camera as the only sensing modality. The intrinsic parameters of the camera are
constant and coarsely known. The presented framework (also in Chapters 5-7) is con-
cerned only with a goal-directed behavior without considering obstacle avoidance. Thus,
in the navigation experiments we assume that other moving objects will adopt collision-
free trajectories, while a human supervisor is responsible for handling the emergency stop
button. The devised control scheme exhibits a qualitative path following behavior, since the
learned path in general is not tracked precisely. It is therefore suitable to prefer the center
of the free space during the acquisition of the learning sequence. During navigation, it is
assumed that the robot is initially inside the mapped environment. The localization outside

the mapped location is out of scope of this work.

1) Mapping (Learning) Phase

During learning, the robot is moved in the navigation environment under the supervision
of an operator capturing the images of the environment. From this learning sequence, a

small subset of images is selected, which is known as image memory. This image mem-

57



ory consists of key/reference images that represent particular location of the environment.
The selected key/reference images are organized in an adjacency graph, which gives the
topological representation of the environment. The first image of the learning sequence is
always selected as key/reference image. The other key images are automatically selected
such that they are sufficiently different from the adjacent key frame. Such differences are
determined from a similarity metrics, which depends upon the feature(s) selected. For the
case of local geometric features, this similarity metrics is obtained from feature matching/-
tracking. In other hand, for the global features before calculating similarity metrics, it is
necessary to align the common portion of images (register images). The last image of the
learning sequence is also stored in the database, which helps in determining when the robot
has to stop at the end of the navigation. The general block diagram of mapping (learn-
ing) phase is shown in Fig. 4.1. The details of the selection of key images using different

features are explained in their respective chapters.

—
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Figure 4.1 — Mapping (Learning) Phase.

2) Navigation Phase

After the learning phase, the robot is ready to navigate autonomously in the mapped loca-
tion. The navigation task is further divided into two subtasks: a) qualitative localization
in the map and b) motion control. The overview of the proposed navigation framework is

shown in Fig. 4.2.

Feature matching
or

Key Images Switching based Localization in
on similarity metrics the graph

Image Registration

— aL AL -
Current View =>= e [ .
— ~~ § 3~
Image Based Common Features =1 i(
potor <: Visual Servoing o . Reference (Key) Images in
Control (1BVS) Image Similarity to be optimized the neighborhood l
with succeeding key images

Figure 4.2 — Navigation Phase.
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4. Overview of the proposed method

a) Qualitative Localization in the map

In our case, localization in the map is qualitative rather than quantitative. The objective is
to find the adjacent key images that matches the best with the current view. In Fig. 4.3, I,
is the current view of the robot. The position of /, in the map is between key images Ip and

Iy. The best matches are obtained either from feature matching or image registration.

For autonomous navigation, two types of localization have to be performed: a) initial lo-

calization, and b) successive localization.

I Inx

Ie

Figure 4.3 — Localization in map.

i) Initial Localization

Initial localization refers to localize the robot globally in the map, where the current view
is compared with entire image memory to find the best adjacent key images. Navigation
begins with the initial localization, which enables to start the robot from any position within
the map. Initial localization can be also equally applicable to recover the robot if it is tem-

porarily lost. If f(...) is the similarity metrics, the initial position of I, can be obtained from

Ik,- = argmlgx{f(laylh)vf(lavlk2)7 """ ’f(lmlkn)} 4.1)
ij = argrnlf'x{f(lmlki—l)7f(11171k1+1)} 4.2)

IP:ij andIN:Ikl. ifi>j

) 4.3)
Ip=1I,and Iy =1; ifi<j

ii) Successive Localization

After initial localization, further localizations can be performed by comparing only few
adjacent key images in the neighborhood. This successive localization goes along with
the motion control, which helps to select the appropriate key images during navigation for
control. In our method, during successive localization, Current Image (1) is compared with
three key images: Previous Key Image (Ip), Next Key Image (Iy), and Second Next Key
Image (Iyy). Key Image switching occurs when Iy precedes I,. In this case, Iy becomes
new Ip and Iyy becomes new Iy. If §(...) denotes three-view based similarity criterion and

f(...) denotes two-view based similarity criterion, key image switching is done when
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SUa,In,Inn) > §(Ip,1a,Iy) or §(1a,Inn) > F(1a, Iy). 4.4)

The two view criterion is necessary to prevent from being lost when three view criterion is

not possible to compute.

b) Motion Control

For navigation, the robot is not required to accurately reach each key image of the path,
or to accurately follow the learned path. In practice, the exact motion of the robot should
be controlled by an obstacle avoidance module [CC13]. Therefore, translational velocity is
kept constant and reduced to a smaller value when turning. Such turnings are automatically
detected by looking at the commanded rotational velocity. The rotational velocity is derived
using key images and current image within an IBVS control law [CHO6]. The error to be
reduced in IBVS is obtained from the difference of feature positions or gradient of the
global feature. The navigation is qualitative because the robot approximately follows the
learned path and does not converge to all intermediate key frames. In many cases during
navigation, the key image switching occurs before convergence. Our objective is to make
the robot approximately follow the learned path. IBVS is able to keep the error under
certain bounds.

Figure 4.4 — Top view of robot (orange) equipped with a perspective camera (blue) with its optical
axis perpendicular to axis of robot rotation (left) and experimental platform (right).

Let us define a vector of visual features as s, the camera velocity expressed in camera frame
as Ue = (Vex, Vey, Vez, Ocx, ey, @c;) and the robot velocity as u = (v, ®,) , where v is the
linear velocity and o is the rotational velocity around the given axes. The velocity of s can

be related via an interaction matrix Js [CHO6] to u. as

§ = Jsue. (4.5)

For the considered unicycle-like robot (Fig. 4.4 (left)), u. can be expressed in terms of
(vr, ) as
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4. Overview of the proposed method

Ue = (_50)"7 0, v, 0, —w, O)a (4.6)

where 0 is the distance between the camera center and the robot center of rotation. From
(4.5) and (4.6), we obtain

s$=Jwrt+tJoo, 4.7)

where J, and J, are the Jacobian associated with v, and @, respectively. In order to drive

s to its desired value s*, we set the error e as

e=s—s". (4.8)

The relationship between robot velocity and time variation of the error é can be obtained
from (4.8) and (4.7) as

e=Jv +Joo. (4.9)

In order to ensure an exponential decoupled decrease of the error i.e. € = —Ae, we control
o, such that from (4.8) and (4.9) we obtain

o, = —JE(A(s—s*) +Jov,), (4.10)

where A is a positive gain, and J;; is the pseudo-inverse of J. The calculations of J,, and

J o for different features are explained in their respective chapters.

Experimental Setup

The experiments were performed with a Pioneer 3DX equipped with an AVT Pike 032C
camera module as shown in Fig. 4.4. All computations, except for the low-level control,
were performed on a laptop with 3-GHz Intel Core i7-3540M CPU. The image resolution
in the experiments was 640x480. The mapping was done offline, whereas the navigation
experiment was performed online in real-time. The acquisition of images and the high-
level motion control for the Pioneer were done through the interface provided by ViSP
[ ]. The image coordinates have been normalized by the camera intrinsic parameters
before deriving the rotational velocity. The experiments have been performed in an indoor
environment, i.e., inside a room and a corridor. Even though simple navigation path with
linear and curved trajectories have been used in the experiments, the method can be eas-
ily extended for graphs with intersections and multiple paths. The trajectories have been
obtained from the odometry of the Pioneer. Since our navigation is qualitative rather than
quantitative, the odometry obtained from Pioneer 3-DX is highly accurate enough to serve

our purpose.
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CHAPTER 5

Mutual Information based
Navigation

HIS chapter presents a complete framework for image-based navigation from an
image memory that exploits mutual information and does not need any feature
extraction, matching or any 3D information. As explained before, the path to be

followed is represented by a set of automatically selected key images. The shared infor-
mation (entropy) between the current acquired image and nearby key images is exploited
to switch key images during navigation. Based on the key images and the current image
following Sect. 4, the control law proposed by [ ] is used to compute the rotational
velocity of a mobile robot during its qualitative visual navigation. Using our approach,
real-time navigation has been performed inside a corridor and inside a room with a Pioneer
3DX equipped with an on-board perspective camera without the need of accurate mapping

and localization.

The work described in this chapter is presented in [ 1.

5.1 Navigation using Entire Image

Robust extraction and matching/tracking of the features over a large environment is still a

bottleneck for visual navigation schemes. However, another possibility is to directly exploit

a comparison between the full key images and current image, using Fourier space [ 1,
cross-correlation [ , ], image intensity [ s ], or mutual informa-
tion [ ].In[ ], Sum of Squared Difference (SSD) have been used for changing

key images but the control law is based on the vanishing point of the corridor and the key
images selection was not automatic. The work of [ ] shows visual path following
using mutual information in outdoor environment but it lacks an appropriate selection and
switching of the key images. Also, the robot should be near to the starting point in the learn-
ing. Compared to intensity-based similarity metrics, like SSD or cross-correlation, mutual
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information is robust to illumination variations and to large occlusions [ ]. Addition-
ally, mutual information is a classic similarity measure especially for multi-modal regis-
tration techniques in medical imaging and remote sensing [ , , ].
Therefore, in this work we choose to use mutual information for navigation of a mobile

robot in an indoor environment.

Our Contribution

In our work, we propose a complete method for the indoor navigation (mapping, localiza-
tion in the topological graph and motion control) based on image memory using mutual
information. We have extended the work of [ ] with automatic key images selection,
initial localization in the map, key images switching for successive localization and use of
multiple key images for control. Indeed in [ ], all the images of the sequence acquired
during the learning step were used, and the synchronization between the current image and
the corresponding image in the sequence learned was a real challenge as adequate switch-
ing of key frames are not employed. The use of few key images, initial localization and
automatic switching of key images removes the problem of synchronization and enables
the robot to use different forward velocities than those used for the learning phase. The
initial localization makes it possible for the robot to start from any position within the map.
Without the need of any accurate mapping and localization, 3D information, and feature
extraction and matching, our method is able to perform navigation in indoor environment

using mutual information.

5.2 Our Method

5.2.1 Mutual Information

In our case, mutual information is the information shared by two images. For two images /

and I, mutual information is given by the following equation [ ]
MI(L, L) = H(I)+ H (L) — H(I, 1), (5.1)

where H () denotes the entropy of the image I, i.e., its variability. H(I,I;) denotes the joint
entropy of the images I and I, i.e., the joint variability of two images. By subtracting the
joint variability from the variabilities, as in (5.1), we obtain the shared information of the
two images, which is defined as mutual information. The entropy of the image can be easily
obtained from its probability distribution, i.e., the normalized histogram of the image. Let
n be the total number of gray levels and p; (i) be the probability of the particular gray level
i. The entropy of the image [ is then defined as

n—1

Hm:—gmmmmmy (5.2)

1=
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5. Mutual Information based Navigation

Similarly, the joint entropy between I and [; can be obtained from joint probability distri-

bution, i.e., normalized joint histogram between two images

n—1ln—1

H(LL) ==Y Y pu(i, j)log(pu (i, j)), (5.3)
i=0 j=0

where py; (i, j) is the joint probability between gray level i in I and gray level j in I;.

Equations (5.1-5.3) give the following expression for the mutual information

pllk (l7 .])
MI(I Ik p1] i ] 10g <> . (54)
,z;‘ ‘ pr(j)pi(j)
The analytical functions for the probabilities are given by [ ]
Z(p i—1(x)) and (5.5)
i (i J) Z¢ i—1(x))¢(j — (%)), (5.6)

where N, is the total number of pixels in the image and ¢ (x) is a function used to fill the
histogram such that ¢(£) = 1 if £ = 0 and 0 otherwise.

For gray images, n = 256. If larger number of gray level are used for the construction of the
histogram, there will be more empty bins. Moreover, the histograms with larger number of
bins are expensive to construct in terms of memory as well as time. So, in practice, smaller
value of n (like 8, 16) are used. The other advantage of having smaller number of bins is
that the cost function is smoother with a larger convergence domain [ ]. For n = N,

bins, the scaled image I(T) is given as

755 5.7

which has no longer integer values of intensities. Thus, function ¢ in (5.5-5.6) has to
be modified to use real values. The solution for this is to use a B-spline function (that
corresponds to B-spline interpolation) [ 1.

The similarity measure given by mutual information is meaningful if the shared portions
of the images are aligned while calculating the joint probability. Therefore, to measure the
similarity between two images, the images are registered with each other such that mutual

information between them is maximized. The maximization problem is given as
p =argmaxMI(I(p),I), (5.8)
P

where p is the spatial transformation that maximizes mutual information. The mutual in-

formation in the optimal transformation p is given as
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In our approach, mutual information is calculated from (5.8-5.9) using the second order
optimization of mutual information proposed by [ ] with 8 histogram bins. Multi-
scale registration [ ] has been performed instead of single scale, which enables to
have fast and more accurate registration. Only 2D translation has been used as the trans-
formation function during the registration in our experiments. In other words, the output of
equation (5.8) is a 2D translation between the images. The choice of this transformation is
reasonable as we are just controlling the vertical rotational velocity that defines the heading
angle of the robot.

5.2.2 Mapping (Key Images Selection)

Get First Image
Save as key image [

v
Calculate MIy, = MI(I, I}) |.
as a hormalizing scalar

!

‘ Get Next Image I,

Save I. Save I, as
as last ke new key
image I, image Iy
No i
Calculate :
p° = argmaxMI(I,, 1.(p))
P
My, = MI(I, 1:(p"))
<€
No 1 5 Yes

or
llp7ll > €

Figure 5.1 — Key Images selection using mutual information.

As already explained, in the proposed method, the environment is represented by a few
number of key images that are selected automatically, unlike [ ]. The key images
selection procedure is sketched in Fig. 5.1. Let /. be the most recently acquired image and
I, be the most recent key image. The new key image is selected if the mutual information
metrics is smaller than a certain threshold, or the transformation is too large. The first
criterion ensures that newly selected key frame is sufficiently different from the previous
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5. Mutual Information based Navigation

key frame, whereas the second criterion is essentially required to get a sufficient number of

key images while turning.

5.2.3 Navigation in the Map
5.2.3.1 Qualitative Localization

Initial Localization in the map The navigation starts with the initial localization where
the first acquired image (/,) is compared with all the key images based upon the maxi-
mization of the mutual information (5.8-5.9). The key image that has maximum mutual
information with I, is selected. Let it be I;. Then the adjacent key image with second

maximum value of mutual information is also selected. This image can be either /i, or

i+1
Iy, . If the robot is assumed to move along the same direction as the images arranged in the
database, I, is between I, , and I, or I; and I, . For simplicity, we denote the previous
key image as Ip and the next key image as Iy. If MI (...) denotes the mutual informa-

tion between images at optimal transformation, the initial localization can be expressed as

—~

I, = argmlax{A//I\I(Ia,Ikl),A/d\l(la,lkz), ...... MI(L, I )}
k

ij = argrnlax{]/w\l(la7lki—] )7]‘2\1(16171/(,41 )}
k

Ip=I and Iy=1Iifi> ]
Ip:Ikl. and IN:ijifi<j

Successive Localization (Key Images Switching) After the initial localization in the
map, further localizations can be done by just comparing the current image with few adja-
cent key images. The next key image Iy and the second next key image Iyy are compared
with the current image I,. Then switching of key images is done when at least one of the

following criteria is fulfilled for consecutive acquired images

MI(I,,Iyy) > MI(I,,1y) or
MI(I,, Iyy) gg MIUaly)
MI(I,,1,) MI(I,.1,)

where € is a small constant (say 0.15). The denominator in the second criteria is a normal-

<&,

ization that helps to select € for a given environment. The second criterion is essentially
useful when the registration error is large or the robot is lost, which may sometimes occur
with regions with no significant texture. If the error is still large in such case after switch-
ing, it is better to go back to initial localization. After switching the images, Iy becomes Ip,
Iyn becomes Iy, and next key image from Iy becomes Iyy. Then the process repeats. When
the end of the database is reached, Iyy will not be available and Iy will be the last image
acquired during the mapping. Therefore, the navigation needs to be stopped. Otherwise,
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the robot will be moving out of the mapped environment. The coarse registration (with
few iterations) using (5.8-5.9) is found to be sufficient for key images switching from our

experiments.

5.2.3.2 Motion Control

During visual navigation, the robot moves so as to maximize mutual information with the
current reference image. Comparing with classical visual servoing, the gradient of mutual
information (L) gives the error term whereas the Hessian of mutual information (Hyy)
gives the interaction matrix Js. The derivatives of mutual information can be calculated by

following [ ]

P,

1 1
= Llo Lo, (o = 7c)
+Hpy, (1 +log (pnk )) '

If N, is the number of pixels considered in the images and ¢ is a twice differentiable B-

Lyit = ¥ Loy, <1+log <p”k)>, (5.10)
k

(5.11)

spline function, the derivatives of the joint probability using Nc (< 255) grey levels are as

follows
pir (i, j) Z¢ i—1(x))9(j — L(x)), (5.12)
Ly, (i:J) ZL 9/ —Tk(x)), (5.13)
Hyy, (i, ) ZH 9/ —Tk(x)), (5.14)
where,
99
Loi-10) = —; (VILy), (5.15)
% - - ¢ - _
Hyi1x) = 32 (VILx)" (VILy) — 5 (L{ V’ILy + VIHy), (5.16)
where V [ v,I ] are the image gradients,
o [ Vel VI
ViI= - _ | are the gradients of image gradient, Ly is the interaction matrix of
Vil VI

a point that links its displacement in the image plane to the camera velocity (refer (2.53)),
and Hy is the Hessian of the point w.r.t. the camera velocity. The complete expression for
Hy for six degrees of freedom is given in [ 1.

In order to maximize mutual information, we set v, as constant and control @,. From (4.10),

we get
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5. Mutual Information based Navigation

o, = —J5(A(s—s*) +Jv,), (5.17)

where A is a positive gain, J;; is the pseudo-inverse of J, and (s —s*) is the error term. J,
and J, are the Hessian of mutual information w.r.t v, and @, respectively whereas (s —s™*)

is the gradient of the mutual information. Since we are controlling only @, in (5.17),

JL
(s=5") =Lmiw, Jv= "3 =Hyp,

dL,
and Jo = 73%1“’ = Huio,

(5.18)

where Ly 1s the Jacobian of mutual information w.r.t. @,, and Hyy, and Hy are the
Hessian of the mutual information w.r.t. v, and @, respectively. They can be derived as

follows:
Using (4.6), and the interaction matrix of point given in (2.53), we obtain

Lo —(§+1+x2) =)
xuw — —
—Xy —Xy

for 6 < Z, (5.19)

where Ly, is the interaction matrix of the point that links its displacement in the image
plane to @,, and § can be safely neglected with respect to Z (depth of point from image
plane). Hence, from (5.10-5.15) using (5.19) for Ly, we can obtain Ly, which is a scalar.
Differentiating (5.19) w.r.t. v, and @,, we obtain Hy,y and Hy,q, which are the Hessian
matrix of the point that links its displacement in the image plane to v, and @, respectively.

Therefore, we obtain

2x(1 +22) —2 0
Hypp = and Hyyy = Z |~ 5.20

since x> and xy can be safely neglected w.r.t. Z, where (x,y) is the normalized point in the
image plane. From (5.10-5.16) using (5.19-5.20) for Ly and Hy respectively in (5.15-5.16),

we obtain Hy;, and Hyjq, which are scalar. As Hyy, >~ 0, (5.18) becomes
(S—S*> :LMIa)szlJO’ ande:Hle. (521)
Since visual servoing is known to be robust against modeling errors [ ], such approx-

imations in (5.19-5.21) are reasonable. Thus, from (5.17) and (5.21), the final expression

for w, is obtained as

ALmio
" Huyio
which is similar to the control scheme proposed in [ ]. In order to smooth the rapid

steering actions when switching between frames, a feed-forward command is also added
to w,. The final expression for the rotational velocity is calculated by using Iy and Iyy as

follows:

L L
0, = _2 <l’l1 MIo(I,,Iy) T+ hy MIo (I, Ivy) > 7 (523)
Hy1o(1,.1) Hy1o(1,.1v)
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where hy and h; are positive weights such that hy +hy = 1, Lyje (1, 1v) @0d Hyre(, 1y) are
derivatives of mutual information between I, and Iy, and Ly (1, 1yy) a0d Hyo(1,.1vy) ar€

derivatives of mutual information between I, and Iyy.

Thus, our complete framework uses only the information directly obtained from the images
without any feature extraction or 3D information. From this information, we derive the
required rotational velocity using /BVS, which makes the robot to follow the learned path

successfully without any need for accurate mapping or localization.

5.3 Results and Discussions

The image resolution in the experiments was 640x480. Eight histogram bins and fourth
order B-spline functions have been used for experiments. The experiments have been per-
formed in an indoor environment, i.e., inside a room and a corridor with A = 1.0, h; =
0.7, and i, = 0.3 in (5.23). Even though the proposed method has been validated via a
simple navigation path with linear and curved trajectories, the method can be easily ex-
tended for graphs with intersections and multiple paths. The trajectories presented below
are obtained from the odometry of the Pioneer Robot. The videos of the experiments are

available in .

5.3.1 Mapping

1278 images have been acquired as learning sequence inside a robotics room. 10 images
shown in Fig. 5.2 have been selected automatically from the mapping procedure described
in Sect. 5.2.2 as key frames. Similarly, 36 images as shown in Fig. 5.3 have been selected
as key images from 3881 images acquired for the 20m path consisting of the robotics room
and a corridor. The trajectories obtained from the odometry are shown by a red curve
in Figs. 5.4-5.7, where the red symbol * represents the location of the key images. The
obtained key images are able to represent the learned path. There are more key images over
a small distance in case of turnings and of locations where the surface does not have good

textures.

5.3.2 Navigation

The robot was placed inside the mapped environment with the camera facing towards the
mapped direction (Initial position shown by green dot in Figs. 5.4-5.7). The forward veloc-
ity was set to 0.08m/s and reduced to 0.05m/s when turning, whereas the rotational velocity
was controlled by the navigation algorithm. During navigation, the robot has been able to
follow the learned trajectory as shown by the blue curve in Figs. 5.4-5.7, with automatic
switching of the key images.

Uhttp://www.irisa.fr/lagadic/team/Suman. Bista.html#videos.
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Figure 5.3 — Key images of the room and corridor.

5.3.2.1 Navigation inside a robotics room

Here we performed two experiments: the first one to validate our approach and the second
one to show the robustness of our method in case of changes in illumination. In both
cases, navigation has been performed with some changes in environment, like the table that
is shown in the last key image in Fig. 5.2, was moved during the navigation. Fig. 5.4
shows the navigation of the Pioneer in the map without any change in illumination. The
navigation in presence of change of illumination is depicted in Fig. 5.5, where all lights
have been made dimmer. In both cases, our framework has been able to select the initial

key frames and follow the learned path..
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Figure 5.4 — Initial localization and navigation inside the robotics room.
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Figure 5.5 — Navigation inside the robotics room with change in illumination.

5.3.2.2 Navigation in a room and a corridor

Fig. 5.6 shows the navigation in the room and a corridor where the path consists of multiple
turns. The robot moved from inside the room to the corridor. The robot followed the
learned path with turning whenever it was required despite presence of moving people
during navigation. Right angle turning is a challenging task especially in the corridors with
similar/low texture. However, the key images obtained from the mapping part were still
able to handle such situations. The lateral drift was within 7 cm from the mapped position.
Indeed, our objective was just to perform a successful navigation without any accurate pose

correction with the learned path.
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Figure 5.6 — Navigation between the room and the corridor.

5.3.2.3 Navigation in a corridor with peoples passing by

In this case, we performed the navigation in two corridors of length 30m and 31m. They
are represented by 136 and 96 key images respectively as shown in Figs. 5.8 and 5.9,
which were selected from the learning sequence of 6046 and 7507 images respectively.
The second corridor consists of large windows that allow seeing outdoor so that robot
undergoes change in illumination as it enters inside. Even in presence of moving people

and change in illumination (Fig. 5.7), the robot was able to follow the learned trajectory.
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Figure 5.7 — Navigation in the corridors.
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Figure 5.8 — Key images representing indoor corridor.
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Figure 5.9 — Key images representing corridor with outdoor views.

5.3.3 Discussion

The presented results show the viability of our approach in different scenarios and con-
straints. The robot has been able to follow autonomously the learned path from the start
position. Our navigation framework is based upon the maximization of the mutual infor-
mation, where the robot performs the navigation task to maximize the mutual information
with the nearest key images with one degree of freedom. Based on this, the key images are
switched automatically and the appropriate rotational velocity is set for allowing the robot
to follow the learned path. IBVS has been able to keep the error within small bounds. How-
ever, there are still lateral deviations from the learned path. The possible reasons are: first,
we do not perform any pose correction; second the path is approximated by straight lines;
and last, the maximization of mutual information does not always guarantees global opti-
mization. Still, successful navigation has been performed, which is our primary objective.
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Our initial localization is based upon the fact that the nearby key images share more en-
tropy than the farther ones. The bar graphs in the Figs. 5.4 and 5.6 confirm this idea. Initial
localization is key for successful navigation. Therefore, the images are registered at finer
level before calculating mutual information. This process is time consuming. However,
use of multiple pyramids (3 have been used in our experiments) and the use of transla-
tion transformation allow speeding up the process. After initial localization, the successive

navigation has been done in real time at SHz.

Comparing with feature based methods, our method performs better where reliable point/-
lines based features cannot be detected, resulting in failure in tracking/matching because
the mutual information uses the entire image information and does not require feature de-
tection. Besides that, mutual information is also able to handle changes in lightning con-
ditions. However, our framework also has some limitations that are mainly due to poor
conditioning of the mutual information especially in cases with few or no texture at all.
Nevertheless, most of these problems can be greatly avoided by selecting a proper trajec-
tory during the mapping. The other problem is that it is difficult to discriminate the two

images when there is large occlusion and texture is too low or almost same.

5.4 Conclusions

We have presented a complete method for indoor qualitative mapping and navigation based
on image memory using mutual information. Our navigation is exclusively based on image
information (entropy) without relying on any 3D reconstruction, feature extraction, match-
ing or tracking process. Using the information from the entire image makes navigation pos-
sible despite some level of occlusions (like people moving), blurs in the image, and changes
in lighting conditions. Difficult situations include featureless areas like smooth/texture-less
walls and rapid turnings. Besides that, it is very hard to discriminate between two places
from mutual information which have similar histograms. Using whole image has advan-
tage of not requiring feature extraction. But the feature-based methods are insensitive to
changes outside of the tracked pattern, which we show in coming chapters. Using the en-
tire image as input appears to reduce the robustness of the resulting system compared to
feature/based methods. The rotational velocity was fed to the robot without any post pro-
cessing and filtering, which sometimes resulted in non-smooth motion. More precise robot
control strategies like filtering the velocity can address these issues.
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CHAPTER 6

Appearance-based Indoor

Navigation using Line Segments

HIS chapter presents a method for image-based navigation from an image mem-
ory using line segments as landmarks. The entire navigation process is based on
2D line segments without using any 3D information at all. The reference images

are selected automatically in a prior learning phase based on line segments matching. The
switching of reference images during the navigation is done exploiting also line segment
matching between the current acquired image and nearby reference images. Three view
matching result is used to compute the rotational velocity of a mobile robot during its nav-
igation by IBVS. As previously, real-time navigation has been validated inside a corridor
and inside a room with a Pioneer 3DX equipped with an on-board camera. The obtained
results confirm the viability of our approach, and verify that accurate mapping and local-
ization are not necessary for a useful indoor navigation as well as that line segments are
better features in structured indoor environment w.r.t. feature points [ ] and Mutual

Information (Chapter 5).

The work described in this chapter has been published in [ ] and presented at
ICRA-2016.

6.1 Line Segments as Feature for Indoor Navigation

Mutual information-based navigation only works better in environments that have good
textures. So, they have poor discriminating power and high perceptual aliasing effect. Like
other global features, MI-based navigation does not cope with large occlusions. However,
with local features like points ([ , 1), these problems are mitigated. Robots
are able to navigate in urban environments and in all places where local point based features
are abundant. Because of windows, wiry structures, reflections and repetitions, as well as

limited texture in indoor scenarios, most of the techniques employed in outdoor environ-
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ments typically result in a significant performance drop when applied to indoor scenarios,
which causes standard procedures based on image descriptors to poorly perform indoors

[MW15]. A typical navigation task in an indoor environment can be divided into two parts:
a) Navigation through corridors and

b) Navigation inside rooms.

it

Figure 6.1 — Points and line segments detection in indoor environment

For the latter case, it is more likely to have abundant distinctive local features and global
features whereas, for the former case, the perceived surface may not give enough fea-
tures points for navigation. Moreover, similar texture or lack of texture may result in false
matching. However, in indoor environments, line segments are abundant. In addition to
this, line segments are more robust to partial occlusions and more resilient to motion blur
[ZK11, DYOO5]. Also, line segments in the image can be detected accurately in real time
by line algorithms like LSD [GJMR 10] and ED Lines[AT'11]. Because of all these reasons,
this chapter explores the use of line segments as visual landmarks.

Tracking/matching of multiple line segments is still an open problem in computer vi-
sion. This is due to inaccurate locations of line endpoints, fragmentation of lines, lack
of strongly disambiguating geometric constraints for an image pair, and lack of distinc-
tive appearance in low-texture scenes [SZ00, FWHI10, ZK13]. Despite these problems,
[GMCO6, ZK 11, SRD06] have demonstrated line segments-based navigation, but using a
3D model-based approach. In [GMCO06], a model-based SLAM using 3D lines as land-
marks has been presented, where unscented Kalman Filters are used to initialize new line
segments and generate a 3D wire-frame model of the scene that can be tracked with a robust
model-based tracking algorithm. The authors of [SRD06] have extended the monocular
SLAM using points [DRMS07] to line segments, where Kalman Filters are used to track
the lines. Both methods rely on control points (a set of sample points placed along the line)
for tracking, which, however, is not suitable when line segments are close to each other
because of failure in tracking. Recently [ZK11] has used Nearby Line Tracking to track
lines and an EKF is used to predict and update the state of the camera and line landmarks.

In [FOPV13, PKB14, VSSV00], a vision-based corridor navigation algorithm has been
proposed that uses the vanishing point extracted from corridor guidelines for the Nao hu-
manoid robot, a wheelchair and a mobile robot respectively. The first two works are map-
less methods. In [VSSV00], the vanishing point is used for the heading control whereas an
appearance-based process is used to monitor the robot position along the path. A set of ref-
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erence images are acquired manually at relevant positions along the path which correspond
either to areas in the workspace where some special action can be undertaken (e.g. doors,
elevators, corners, etc.) or viewpoints where very distinctive images can be acquired. Dur-
ing navigation, these reference images are compared with current images using the SSD
metric. The solution in [ ] not only uses two pairs of natural line and point, but also

the odometer data (to determine the height of the landmarks) for the visual localization.

Our Contribution

Our main contribution is a complete method for indoor navigation (automatic construction
of a navigation route, initial localization that enables the robot to start from any position
within the map, successive localization and a control law for choosing the rotational ve-
locity) that coarsely follows the learned path by just using the information provided by the
2D line segments detected in the image without need of accurate mapping, localization and
robot odometry. Our method does not depend upon any specific types of lines (e.g. vertical
lines or corridor lines). Indeed, we show that the information obtained from the 2D line seg-
ment matching between the current acquired image and nearby reference images is enough

for automatic switching of key images and for robot control without 3D reconstruction.

6.2 Our Navigation Framework

6.2.1 Line Segments Detection and Matching

In our work, EDLines detector [ ] has been used to detect lines and the algorithm pro-
posed by [ ] has been used to generate pairwise line correspondences. These methods

have been selected because of their high accuracy and computational speed.

For two views, the line segments do not provide strong geometric constraints as opposite
to points (epipolar geometry). The trifocal tensor provides instead a strong geometric con-
straint for lines, but it requires line correspondences in three views (Ref. Sect. 2.1.3.3).
The estimation of the trifocal tensor with RANSAC [ ] can be used to verify the line
segment correspondences in three views. However, the cost function associated with the
trifocal tensor is computationally more expensive than in the fundamental matrix case when
used with RANSAC. In addition, at least 13 line correspondences are required to compute
the trifocal tensor (instead of only 6 point correspondences) for three views. Nevertheless,
the number of outliers in three views matching is quite low compared to two views only,
which makes it possible for the RANSAC-based estimation to converge in few iterations.

The process is discussed in Sect. 2.1.3.4.

In our method, two view matches are used in initial localization, switching of key images
and generating three view correspondences. Three view matches are used in mapping,

switching of key images and motion control. For three view matching, the current key
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image and the two most recently acquired images are used during the mapping, whereas,
the two key images and the currently acquired image are used during the navigation. When
obtaining the three view correspondences, only the matched lines between the first two
images are used to match with the third image in order to reduce the cost of matching (see
Fig. 6.2).

6.2.2 Mapping from Line Segments

Get First Image
Save as new Key Image I,

'

Get NextImage I._4

!

Match Line Segments between
I, and I._, to get matched set
of lines {My.,}

rYy

Set {M;.} !
Get Next Image I
as {My,} 4’| ge ‘e e
ave I._q
as new Key
Image I,
and I, as
new l.—1

Match Line Segments between
I, and I, to get matched set of
lines {M;.}

!

Three view correspondences
from {M,.,} and {M,.}

i

Verify matches by Trifocal
Tensor + RANSAC

hot enough matches or
low inlier/total matches

Figure 6.2 — Building the map from line segments.

The key image selection procedure is sketched in Fig. 6.2. Let I._; and I. be the two
most recently acquired images and /; be the most recent key image. For the case just after
the new key image is set, /._; and I, are the two images acquired successively after I;.
The detected line segments of [; are matched with /._; to get the first set of matched lines
{Micp}. The lines in I present in {Mj,,} are matched with the detected line segments in
I. to get the second set of matched lines {M;.}. The common line segments in { M, }
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and {M,.} give three view correspondences. If there are not sufficient number of lines (for
example less than 20) after three view matching, or a low ratio (for example less than 0.5)
of inlier to total number of matches after trifocal tensor estimation with RANSAC, I._q is
saved in the database as a recent key image I, and I. becomes the new I._;. Otherwise,
{M.} becomes { M., } and the line segments of next acquired image /. and I are matched
to get a new set of {M.}. This idea is similar for tracking the line segments of the key
image in successive frames. Three view matching is always done between the current key
image I, and the two most recently acquired images /. and I.. Hence, the output of the
mapping process is a set of key images that represents the arc the robot has to follow during
the navigation. The neighboring key images share some common line segments as shown
in Fig. 6.3, which makes it possible to consider multiple key images in a neighborhood for
defining the heading angle of the robot.

Previous-Previous Previous Next Second Next
Key Image Key Image Key Image Key Image

| \\_‘

Current Image

Figure 6.3 — The map consists of key images and line segments. Adjacent key images share some
line segments with the current image. These corresponding line segments with the current acquired
image are used for motion control with the aim of following the arc defined in the map.

6.2.3 Navigation in the Map
6.2.3.1 Qualitative Localization

Initial Localization The navigation starts with the initial localization where the first im-
age acquired (I,) is compared with all the images in the database based upon line segment
matching. The key image with the maximum number of matches is selected. Let it be I,.
Then the adjacent key image with second maximum matches is also selected. This image
can be either I, , or I, ,. If the robot is assumed to be moving along the same direction as
the images arranged in the database, I, is between Iy, , and I, or [ and Iy, , . For simplicity,
we denote the previous key image as Ip and the next key image as Iy. If n(...) is the number
of lines matched between the images, the initial localization process can be expressed as:
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I, = argmlax{n(la,lkl )on(LyIiy),s ... (L, I, }
k

Iy = argmax{n(le, Iy, ):n(la; Iy ) }
k

Ip = ij and Iy = Ikiifi > j

Ip = Iki and Iy= Ikllfl <J

Successive Localization After initial localization in the map, further localizations can be
done by just comparing with few adjacent images in the database. The previous key image
Ip, the next key image Iy and the second next key image Iyy are compared with the current
acquired image I,. Let n(...) be the number of lines matched between the images. Then
switching of key images is done when at least one of the following criteria is fulfilled for

two consecutive acquired images I, and 1,4 1:

n(ly, Iy, Inn) > n(Ip,1y,1Iy) or

n(Ia,INN) > n(Ia,IN) && n(Ia,INN) > n(lp,la).

The first criterion is based on the result of three view matching between the images inside
the brackets, whereas the second criterion is based on two view matching of images. The
second criterion is essentially useful when there are no three view matches or very few
number of three view correspondences. Such a condition may sometimes occur with sharp
turns in corridors having no texture at all. After switching the images, Iy becomes Ip, Iyy
becomes Iy, and next key image from Iy becomes Iyy. Then the process repeats. When
the end of the database is reached, Iyy will not be available and Iy will be the last image
acquired during the mapping. So, the navigation needs to be stopped. Otherwise, the robot

will be moving out of the mapped environment.

6.2.3.2 Motion Control

For navigation, we control rotational velocity to define the heading angle of the robot.
Basically, we follow the same approach as explained in Sect. 4. The rotational velocity is
derived from the matched lines between 1,, Iy and Iyy, whereas the translational velocity
is kept constant and reduced to smaller constant value when turning. Such turnings are

automatically detected by looking at the commanded rotational velocity.

In order to drive current featuress to desired ones s*, we control @, as [ ]
o, = —J5(A(s—s*) +Jv,), (6.1)

where A is a positive gain, J, and J, are the Jacobian associated with v, and ®, respectively

and J :5 is the pseudo-inverse of J,. The expression of J, and J, can be obtained as follows.

In 3D, a straight line can be represented by the intersection of two planes:
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6. Appearance-based Indoor Navigation using Line Segments

aix+biy+ciz+d;=0,i=1,2. (6.2)

Except for the degenerate cases (d; = d, = 0), a 3D line in a scene projects onto the im-
age plane as a 2D line. As in [ ], we choose to parameterize line segments with

parameters (p, ) as

/"
0 !

O X=pcos6 x

Figure 6.4 — Top view of robot (orange) equipped with a perspective camera (blue) with its optical
axis perpendicular to axis of robot rotation, (Left) and Representation of line in polar form (Right).

Xcos@+Ysin —p =0. (6.3)

The interaction matrix related to p and 6 is given by [ ]

Ly= [Apcos® A,sin® —App (1+p?)sin®@ —(1+p?)cos® 0]

. . (6.4)
Lo = [AgcosO Agsin® —Agp  —pcosO —psin 6 —1],

where A, = (a;jp cos 0 +b;p sin6 +¢;) /d; and
19 = (a,- sin @ — bi Ccos 9)/(,1,

From (4.6) and (6.4), we can obtain following expression w.r.t robot velocity (v,, ®,) as

p| | —App —(1+p?)cosd—5A,cos vy ©65)
0| —Agp —psin® — dAg cos O o | '

Since we only control ®,, only one feature derived from all line segments is sufficient. We
have chosen the abscissa of the centroid of the points of intersection of the matched lines
and their respective normal from the origin. For a given line as shown in Fig. 6.4 (right),
X = pcos O gives the abscissa of such a point.

For a set of n matched lines between 1, Iy and Iyy, we define:

Xoi = Puai COS 9ai> Xo= Xai;

31—
1=

Xni = pnicos By;, Xy = Xni, (6.6)

M: HS

1
Xnni = pynicos Oyni, and Xyy = 5 ) Xnni-

Il
R

Hence, our visual feature is s = X, and the desired feature is s* = Xy. We then have
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1 n
s=X,= - Zpaicos 6,i.
i=1

Taking derivative w.r.t. time , we obtain
n

. 1 . . ;
s=X,= . Z(pm- €08 O,; — Pgi Sin 6,:0,;). (6.7)
i=1

From (6.5), we can deduce (6.7) as

§= % ;‘:1 ((Agaipgi $in 0,; — ApaiPai €08 04i) v+ ((1+ pi-) cos® 0, — p(fi sin® 0,

- (6.8)
+8 (A04iPai SIN B4; COS B4i — Apai COS* 0y) ) 03y ).
On simplification,
§= 157 (Pai(AoaiPaiSin Oui — Apai cOS O4i)v,+ 69)
0 €08 04 (A94ifai SN By — Apai €08 6,) ) ;). '
From (4.7) and (6.9), we obtain
Jy = %Z(leaipfi $in 0; — ApaiPai €08 B4;).
- (6.10)

((cos2 0, + pfl- 0820, + 0 08 0, (AgqiPai Sin 04 — Apai c0s 0,:)) ;).

-

1
JCO:E

i=1

Neglecting & with respect to d; (distance of line from image plane), and assuming the
camera optical axis is orthogonal to the axis of robot rotation and that the centroid stays

near the image plane center , (6.10) can be approximated as

1 n
Jy=0and Jp =~ — Y (cos® 04 — p2icos(264) = Ja, § < di, pai < dis pay < di. (6.11)
i=1
Since visual servoing is known to be robust against modeling errors [ ], such ap-
proximations are reasonable. Thus, from (6.1) and (6.11) we finally obtain the following

expression for the rotational velocity:
A

= — (X, — Xy), 6.12
co JaiS( N) (6.12)

where € is a small constant to prevent possible division by zero. In order to smooth the
rapid steering actions when switching between frames, a feed-forward command is also
added to w,. The calculation of the feed-forward term is based on the difference of the
centroids between the shared lines of I, with Iy and Iyy. The final equation is given as
follows

A
o = _JaTg(hl(Xa_XN)+h2(X“_XNN))’ (6.13)

where h| and h, are positive weights such that iy + 7y = 1.
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6. Appearance-based Indoor Navigation using Line Segments

Thus, our complete framework uses only the 2D information obtained from line segments
matching, without requiring any 3D information, which was not the case in previous works.
From this 2D information, we derive the required rotational velocity using /BVS, which
makes the robot to follow the learned path successfully without the need of any accurate

mapping or localization.

6.3 Results and Discussions

The mapping was done offline, whereas the navigation experiment was performed online at
6 Hz. For line segments detection and matching, the implementation provided by the MIP
group ', University of Kiel, has been used with some modifications as per our requirements.
The qualitative results of mapping and navigation using different trajectories in corridor and
inside the room are presented below. The videos of the experiments are available in >

6.3.1 Experiment I: Inside a room
6.3.1.1 Mapping

617 images have been acquired as the learning sequence. 18 images shown in Fig. 6.5 have
been selected automatically from the mapping algorithm described in Sect. 5.2.2 as key
frames. The trajectory obtained from the odometry is shown by a red curve in Figs. 6.6
and 6.7, where the red symbol * represents the location of the key images. The obtained
key images are able to represent the learned path. There are more key images over a small
distance in case of quick displacements of features like in turnings or when line segments

cannot be successively matched over the sequence due to changes in illumination.

.

Figure 6.5 — Key images of the robotics room.

6.3.1.2 Navigation

The robot was placed inside the mapped environment with the camera facing towards the

mapped direction (initial position shown by green dot). The forward velocity was set to 0.2

http://www.mip.informatik.uni-kiel.de/tiki-download_file.php?fileld=1965 [Accessed: August 24,2015].
Zhttp://www.irisa.fr/lagadic/team/Suman. Bista. html#videos.
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m/s. During navigation, the robot was able to follow the learned trajectory as shown by the
blue curve in Figs. 6.6 and 6.7, with automatic switching of the reference images. Figure
6.6 shows the navigation of the Pioneer in the map without any change in environment from
the time of mapping. The navigation in presence of obstacles is shown in Fig. 6.7 (left).
Even during a continuously obstructed view by walking in front of the camera (as shown
in Fig. 6.8 (left)), the robot was still able to follow the desired path. Fig. 6.7 (middle)
shows the navigation with some changes in the room as shown in Fig. 6.8 (third column),
where the table was moved from the end to the middle of the room and replaced by a
chair and the stool was pushed further from the time of mapping. Fig. 6.7 (right) shows
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Figure 6.6 — Initial localization and navigation inside the robotics room.
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Figure 6.7 — Navigation inside the robotics room in presence of people (left) and changes in mapped
scene (middle and right).

navigation in the room performed 6 months later than the mapping stage with many changes
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6. Appearance-based Indoor Navigation using Line Segments

Figure 6.8 — Obstruction in view (left), mapped scene (second column) and changes in scene (third
column, right).

and dynamic objects in the scene like a table, chairs, boxes, etc (Fig. 6.8 (right)). The
successful navigation in these latter cases was possible due to the presence of sufficiently
large number of line matches from the static objects like ceilings, floor tiles, posters, and

pillars. In all cases, the drift was within 3cm from mapped position.

6.3.2 Experiment 2: In a Corridor
6.3.2.1 Mapping

Out of 1208 images acquired in the corridor, 45 have been selected automatically as the
key images (Fig. 6.9). Similarly, 53 key images have been obtained from 1083 images of
the same corridor taken from a reverse direction (Fig. 6.10). The mapping has been done
with all doors closed except one. This was meant to ensure that illumination from the room
and outside windows has negligible effects. The obtained key images represent a path of
length 32 meters. The distribution of key images concentrated at the turnings and when

line segments of key images cannot be successively matched over the sequence.

6.3.2.2 Navigation

Figures 6.11 and 6.12 show navigation in the corridor. The robot was placed inside the
mapped location (initial position shown by green dot). The forward velocity was set to
0.15m/s and reduced to 0.075m/s when turning, whereas the rotational velocity was con-
trolled by the navigation algorithm. Even with the open doors, people walking in the cor-
ridor and blur in some images as shown in Fig. 6.13, the robot was still able to navigate
successfully with turning whenever it was required. Right angle turning is a challenging
task, in the sense that there are few lines with fast changes. However, the key images ob-
tained from the mapping part were still able to handle such situations. The lateral drift when
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Figure 6.10 — Key images of the corridor from reverse direction.

navigating through 32 meters in the corridor is within 5 cm from the mapped position, thus
confirming the accuracy of the visual servoing control law.
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Figure 6.12 — Navigation in the corridor in reverse direction.

6.3.3 Experiment 3: Navigation in room and corridor

Two experiments have been performed in which the robot moves between a corridor and a
room. Some key images of the learned paths are shown in Fig. 6.15. In the first experiment,
the robot navigated a 40m path from corridor to inside the room. Out of 7745 images ac-
quired during mapping, 105 images have been automatically selected as reference images.
In the second experiment, the robot navigated inside the room and then into the corridor in
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Figure 6.13 — Changes in the navigation environment from the mapped one: people passing by,
opening of the doors, change in the local illumination due to a dead bulb and blur in the image.

a 22m path. Out of 4291 images acquired, 90 images were selected as reference images.

The navigation path consists of straight line and multiple turns as shown in Figs. 6.15-6.16.

Fig. 6.14 presents the navigation of the robot. The robot successfully followed the learned

paths with turning whenever required. There are more deviations in turnings especially in

case of turning in large angle (semi-circular turnings) because of approximation of the arcs

as straight lines and few lines detected with fast changes between the frames. Even though

a large drift is present while doing circular turn in the second experiment, the navigation

was still successful.
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Figure 6.15 — Key images of 40m navigation path.

6.3.4 Discussions

The presented results show the viability of our approach in many different scenarios and
constraints. The robot has been able to navigate autonomously in the learned path from the
start position. Our framework does not depend upon any particular type of line segment,
and the key images selected by our approach proved to be good enough for the navigation.
Our navigation algorithm is based on the idea that the key images around the immediate
neighborhood of the robot have more matches than others. The bar graphs in Figs. 6.6,
6.11 and 6.12 confirm this idea. The adjacent key images that have maximum common
lines give the initial location in the map. Based upon line matching results, the key im-
ages are switched automatically and the appropriate rotational velocity is set that allows
the robot to follow the learned path. IBVS has been able to keep the error within small
bounds. The robot did not exactly follow the learned path because neither 3D information
nor any 3D motion estimation to correct the pose was used, as this is not our objective
of the navigation to be accurate, but to be successful and robust. The other reason is also
due to approximation of the path by straight lines. However, neglecting 3D information
also results in some limitations like more lateral deviation especially after sharp turnings.
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Figure 6.16 — Key images of 22m navigation path.

Nevertheless, based on 2D information only, a useful navigation could be performed in the

corridors and inside the room as visual servoing is robust enough to handle such errors.

Comparing with point based method [DSRC 11, SRDC09], our method performs better es-
pecially in low textured environment as in turnings of corridor and in-presence of motion
blur due to rapid camera motion as shown in Fig. 6.17, where reliable point based features
cannot be detected, resulting in failure in tracking and 3D reconstruction (without using
external informational from sensors like IMU). Especially in indoor environment, it is very
difficult to track feature points reliably over a longer sequence. This method based on line
segments also performs better in the environments like those in Figs. 6.13 and 6.17 in
comparison to MI-based navigation (Chapter 5) because line segments are abundant in the
structured indoor environment and are also more resilient to motion blur and partial occlu-
sions, whereas MI-based navigation is sensitive to changes in the scene due to new objects
and occlusions and performs poorly when there is less or similar texture especially in turn-
ings of the corridor. However, our framework also has some limitations that are mainly due
to the line matching algorithm, which is not still a mature field in computer vision unlike
points, especially in the cases where there are very few line segments detected in the im-
ages. Initial localization might produce false results when there are few matches (say less
than 10) by using just two view matching. In such cases, 3 view matching can be used for
verification to select the two nodes in the map. However, most of these problems can be
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6. Appearance-based Indoor Navigation using Line Segments

greatly avoided by selecting proper trajectory during the mapping. The other problem that
might be encountered in our framework is a singularity of J, (of (5.23)). During all our
experiments, singularity condition never occurred. The smallest value of J, encountered
during our all experiments was —0.0018. In most cases, the value of J, is always greater
than 1.

Figure 6.17 — Some cases where point based methods [DSRC 11, SRDC09] failed and our approach

succeeds.

6.4 Conclusions

We have presented a method for indoor qualitative mapping and navigation based on a
topological representation of the environment using only line segments extracted from a
perspective camera. Our navigation is exclusively based on 2D image measurement without
relying on any 3D reconstruction process as in most existing literature. This is possible
due to a topological representation of the environment and the use of image based visual
servoing for motion control. Using line segments as features makes navigation possible
despite some level of occlusions and blur in the image. Unlike previous method using MI
that uses entire image, our method is insensitive to changes outside of the tracked/matched
lines. Besides that, it is very hard to discriminate between two places from MI, which have
similar histograms. Such cases are better handled by this method because of the robustness
of line matching algorithm. Unlike point features, line segments are better tracked/ matched
over the longer sequences especially in the indoor environment. The experiments showed
that the method is able to handle moderate changes in lighting conditions and new objects
in the environment. Difficult situations include featureless areas like smooth/texture-less
walls (especially for sharp turnings), photometric variations like strong shadows, rapid and
sharp turnings. More elaborate image processing like preprocessing the image and and/or

robot control strategies like filtering rotational velocity can address these issues.
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CHAPTER 7

Combining Line Segments and
Points for Appearance-Based
Indoor Navigation

HIS chapter presents image-based navigation from an image memory using a com-
bination of line segments and feature points. The method presented here is the
extension of the work of Chapter 6. Based upon line segments matching and

tracking of points, an image memory is built in off-line mapping phase. During naviga-
tion, the common line segments and feature points between the current acquired image and
the nearby key images is exploited to switch the key images and to derive a control law
for computing the rotational velocity. Using our approach, real-time navigation has been
performed in real indoor environment with a Pioneer 3-DX equipped with an on-board per-
spective camera. We show that the combination of points and lines increases the number
of features that helps in robust and successful navigation especially in those regions where

few points or lines can be detected and tracked/matched.

The work of this chapter has been submitted to ICRA-2017 [ ] for review.

7.1 Advantages of Combining Multiple Features

Most of the techniques employed in outdoor environments typically results in a significant
performance drop when applied to indoor scenarios because of windows, wiry structures,
reflections and repetitions, as well as limited texture in indoor scenarios, which causes stan-
dard procedures based on image descriptors to poorly perform indoors [ ]. However,
in our previous chapter we showed that line segments are actually good features for indoor
navigation. Still, there are some limitations mainly due to the line matching/tracking algo-
rithms, which are still not a mature field in computer vision unlike points, especially when

very few line segments can be detected in the images. Therefore, in this chapter we ex-
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tend the navigation framework proposed in Chapter 6 to combine line segments with point
features for increasing robustness in terms of its application to the wide range of indoor

scenarios with smooth motion.

Our Contribution

Our main contribution is a complete method for indoor navigation like in previous chap-
ters. Up-to our knowledge, combining general line segments with features points for the
navigation has never been done before in the literature. This combination is particularly
effective in those cases where there are few lines detected and matched, especially during
sharp turnings and changes in the illumination conditions. Using points with lines will in-
crease the number of features at those region, and eventually help in better motion control

and hence more robust navigation.

7.2 QOur Method

Edge Drawing Lines (EDLines) detector [ ] and the line matching method proposed
by [ ] have been used to detect and to match the line segments, respectively. SURF
points [ ] and the corners detected by FAST corner detector [ ] have been
considered as point features. Wide baseline matching of the points is performed only dur-
ing the initial localization. During the navigation, the points (only FAST corners have
been used for successive localization) from the key images are tracked using modified KLT
(Kanade-Lucas-Tomasi Feature Tracker) algorithm as presented in [ ]. Trifocal
tensor with RANSAC (ref. Sect. 2.1.3.4) has been used to remove outliers for the line
segments matching similar to the process described in our previous chapter. The outliers of
point matching/tracking are removed by using 5 point algorithm with RANSAC [ 1.

As in Chapter 6, two view correspondences are used in initial localization, switching of
key images and generating three view correspondences. Three view correspondences are
used in mapping, switching of key images and motion control. For generating three view
correspondences, the current key image and the two most recently acquired images are
used during the mapping, whereas, the two key images and the currently acquired image
are used during the navigation. When obtaining the three view correspondences with line
segments, only the correspondences between the first two images are used to match with
the third image in order to reduce the cost of matching. In our method, we have used
only those line segments and points that are geometrically consistent (2 view geometry for
points and 3 view geometry for lines) and pass inlier test using RANSAC. Therefore, we
have confidence over the lines and points that have been used that allows to use number of

correspondences as weighting metrics.
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7. Combining Line Segments and Points for Appearance-Based Indoor Navigation

7.2.1 Key Images Selection

Let I. be the most recently acquired image and [; be the most recent key image. The line
segments and corners detected in [; are tracked over /.. For tracking of lines, we have
used the method proposed in previous chapter. For tracking of points, the approach used
in [ ] has been used. If ny(Ix,I.—1,1.) and np(Iy,1.) denotes the numbers of lines
and points tracked after outliers rejection and € is a positive integer, the new key image is

selected when

nL(Ik,IC,1 ,IC) + I’lp([k,lc) < E.

In this case I._; will be new I;. The neighboring key images share some common line

segments and feature points as shown in Fig. 7.1, which makes it possible to consider
multiple key images in a neighborhood for defining the heading angle of the robot.

Previous-Previous Previous Next Second Next
Key Image Key Image Key Image Key Image

<] B

Current Image

Figure 7.1 — The map consists of key images. Adjacent key images share some line segments and
feature points with the current image. These corresponding features with the current acquired image
are used for switching of key images and motion control.

7.2.2 Navigation in the Map
7.2.2.1 Qualitative Localization

Initial Localization in the map The navigation starts with the initial localization which
allows determining the initial position of the robot in the map. The first image acquired
(I,) is compared with all the images in the database based upon line segment and points
matching. If ; denotes key image, n(...) is the total number of lines and points matched
between the images, Ip is previous key image and Iy is next key image, Ip and Iy are

selected as:

I, = argmlalx{n(la,lk1 Vsn(ladiy)yeeeeees (L, Iy, ) }
k

ij = argmlax{n(lavlki—l )vn(la’lkf+| )}
k

Ip=1Iand Iy=Iifi> j
Ip=Iyand Iy=Iifi<j
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Successive Localization (Key Images Switching) After initial localization in the map,
further localizations can be done exploiting the topological relationship between the key
images. This can be done by comparing with only few adjacent images in the database.
The previous key image Ip, the next key image Iy and the second next key image Iyy
are compared with the current acquired image I,. Let nz(...) be the total number of lines
matched and np(...) be total number of points tracked between the images. Then switch-
ing of key images is done when at least one of the following criteria is fulfilled for two

consecutive acquired images I, and I,

(nL(IaalelNN) +nP(Ia7[N71NN)) > (f’lL(IP,Ia,IN) +I’lP(IP,Ia,IN)> or
(np(La, Inn) +np(La, Inn)) > (np(La, In) +np(1,Iv)) and
(np(a, Inn) +np (Lo, Inn)) > (np(Ip,1a) +np(1y,14)).

The first criterion is based on the result of three view matching between the images inside
the brackets, whereas the second criterion is based on two view matching of images. The
second criterion is essentially useful when there are no three view matches or very few

number of three view correspondences that may occur in the rapid turnings.

7.2.2.2 Motion Control

As per the previous methods proposed in this thesis, for navigation, the robot is not required
to accurately reach each key image of the path, or to accurately follow the learned path. We

follow the same strategy as before with s (ref. (4.10)) a combination of lines and points.

For line segments, we use the abscissa of the centroid of the points of intersection of the
n matched lines and their respective normal from the origin (Fig. 6.4 (right)) as in our
previous chapter. For the points, we have used x-coordinate of the centroid of the m tracked

points as in [ ].

The interaction matrix for line segments has been derived in the previous chapter and it

takes the expression
n

1
Jyp~0and Jy ~ — Z’(cos2 6; — p? cos(26;)), (7.1)
iz

where (p;, 6;) are the line parameters (as shown in Fig. 6.4 (right)) of the matched lines

in I,, and J,; and Jg; are the Jacobians for translational velocity and rotational velocity

respectively.

From [ ] and (4.6), the interaction matrix (Lx) of point (x, y) that links its displace-

ment w.r.t. to robot velocity (v,, @,) is

Li=[3 - (3+1+2) |, (7.2)
where x and y are normalized image coordinates and Z is the depth of the point.
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Using the x-coordinate of the centroid of m tracked points as feature, the Jacobians for

translational velocity (J,p) and rotational velocity (J,p) are given as

m
_ 1 Xj
= Ak (4),
J=1
m

Ja)P: %Z} <%+l+x§>.
]j=

(7.3)

Neglecting & w.r.t. Z (depth of the point), Z w.r.t x i.e. Z>> x, and assuming the camera
optical axis is orthogonal to the axis of robot rotation and that the centroid stays near the

image plane center, we obtain
m

Y (). 6 <z (7.4)

j=1

Jop >~ 0 and Ja,pzl—i-l
m
Since we only control @,, only one feature derived from all line segments and points is
sufficient. Therefore, instead of using points and lines as separate features to derive the
rotational velocity, we combine them such that lines and points are treated equally, and we
can take advantage of all the lines and points matched/tracked. We can combine them either

taking weighted average or using linear least square.

Using Weighted Average

We recall that let X,,, Xy and Xy be the abscissa of the centroid of n matched lines of 1, Iy
and Iyy respectively, h; and h; be positive weights such that ~; +hy = 1, A be the positive
gain, and € be a small value to prevent division by 0. The expression for the rotational

velocity using line segments only (@,;) is can be obtained from (6.13) as

: (h1(Xa —Xn) +ho(Xa — Xnn)). (7.5)

Let x,, x, and x,, be the x-coordinate of the centroid of tracked points of 1,, Iy and Iyy
respectively, Ap be a positive gain, and g and g, positive weights such that gy +g> = 1. The
expression for the rotational velocity using only point features can be computed similarly

to the case of lines as

A
0p = —ﬁ(& (% —xN) + 82(Xa — Xxw))- (7.6)

The final expression for the rotational velocity (®,) is then obtained by taking the weighted
average of (7.5) and (7.6) as

. ny, +maoyp

ntm (7.7)

-

If points cannot be tracked which may occur in practice, (7.7) considers only line segments,
and vice versa. This approach is also modular and can be easily used to combine different
geometric feature based methods.
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Using Linear Least Squares

Let X,,, X and Xy be the abscissa of the centroid of the points of intersection of n matched
lines and their respective normal from the origin of I, Iy and Iyy respectively. Then, the

error term for the case of line segments is X, — Xy.

Let x,, x, and x,, be the x-coordinate of the centroid of tracked points of I,, Iy and Iyy

respectively. Then, the error term for the case of points is x,; — x;,.

Combining lines and points together, the expression for the rotational velocity can be com-

puted from (5.17), (6.11) and (7.4) as
Joo | J
o= "] (2 +1 7 ). (7.8)
Jop Jvp

Since J,;, and J,p are close to zero (from (6.11) and (7.4)), after simplification, (7.8) be-

(Xa _XN)

(Xa — Xn)

comes

A (Ja)L<Xa —XN) +Ja)P(xa _xn)) )

W, =—
' T2 +T2p

(7.9)

In order to smooth the rapid steering actions when switching between frames, a feed-
forward command is also added to @,. The calculation of the feed-forward term is based
on the difference of the centroids between the shared lines and points of I, with Iy and Iyy.

The final expression for the rotational velocity can be computed as

A (Ja)L(gl (Xa _XN) +g2(Xa _XNN)) +«]a)P(g1 (xa _xn) +g2(xa _xnn)))
Tor+Top

W = — , (7.10)
where g; and g, are positive weights such that g; + g» = 1. This is more general approach
than the previous one. With this approach, we can combine geometric feature based meth-

ods and non geometric feature based methods (like mutual information) also.

Thus, our complete framework uses only 2D information obtained from line segments and
feature points. From this information, we derive the required rotational velocity using a
IBVS control law, which makes the robot to follow the learned path successfully without
any need of 3D or accurate mapping and localization. The comparison between (7.7) and
(7.10) is discussed in Sect. 7.3.3.

7.3 Results and Discussions

The mapping was performed off-line, whereas the navigation experiment was performed
on-line at 5 Hz. In all our experiments, we have used h; = g; = 0.7, h, = go = 0.3, and
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AL =Ap=A = 1. As usual, the trajectories presented below are obtained from the odometry

of the Pioneer Robot. The videos of the experiments are available in '

7.3.1 Mapping

The number of images acquired and selected key images in different experiments are pre-
sented in Table 7.1, where n(Acq.) represents the total number of acquired images and

n(Ref.) represents the total number of key images selected. The trajectory obtained from

’ ‘ Experiment ‘ n(Acq.) ‘ n(Ref.) ‘
I Inside Robotics room 1260 19
II | Room-Corridor-Robotics room 4555 105
11T Robotics Room-Corridor 4100 52
v Corridor Out-In 10297 132
\% Corridor Inl 7021 140
VI Corridor In2 6530 122

Table 7.1 — Table Showing the number of acquired images and selected key images in the different
experimental scenarios.

the odometry is shown by a red curve in Figs. 7.2, 7.4, 7.5, and 7.6, where the red symbol
represents the location of the key images. There are more key images over a small distance
in case of quick displacements of features like during turnings or when line segments and
points cannot be successively matched/tracked over the sequence because of, e.g., changes

in the illumination.

7.3.2 Navigation

The robot was placed inside the mapped environment with the camera facing towards the
mapped direction (Initial position shown by green dot). The forward velocity was set to
0.15 m/s and reduced to 0.08m/s when turning, whereas the rotational velocity was con-
trolled by the navigation algorithm using (7.10). Such turnings are automatically detected
by observing the commanded rotational velocity. During navigation, the robot has been
able to follow the learned trajectory as shown by the blue curve in Fig. 7.2, and Figs.
5.6-7.7, with the automatic switching of the key images.

7.3.2.1 Navigation inside the robotics room

The navigation has been performed with some changes in environment, for instance the
chair and table have been added to the environment after the mapping phase. Besides,
the chair was moving from one point to another and a person was walking during the

navigation. These changes can be clearly seen in Fig. 7.2 (middle and right). Fig. 7.2

Uhttp://www.irisa.fr/lagadic/team/Suman. Bista.html#videos.
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(left) shows the successful navigation of the Pioneer in the environment despite the various
changes. After turning, the majority of lines detected and matched belongs to the floor only.
But thanks to the points, the robot was able to obtain features from the walls and from other
objects. With more and better distribution of obtained features from points and lines, the
motion was smoother especially after turning, which was not the case using line segments

only (refer Fig 7.3).
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Figure 7.2 — Navigation inside the robotics room (left), some key images (middle), and some
changes in environment during navigation (right).
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Figure 7.3 — Rotational velocity input with line segments only in the same environment as in Fig.
7.2

7.3.2.2 Navigation from a room to another room via a corridor

Fig. 7.4 shows the navigation between rooms via a corridor. The robot followed the learned
path of 22m with turnings whenever it was required. Right angle turning, especially the sec-
ond one (in the corridor), was a challenging task. This turning was very difficult using line
segments only because of few lines matched and illumination conditions, which were not
always sufficient to get a large enough rotational velocity for this sharp turning. However,
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together with the points, the number of features in this region increased significantly, which
allowed the system to be successful during the sharp turning. The lateral drift was within 5

cm from the mapped position, thus confirming the accuracy of the visual servoing control

law.
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Figure 7.4 — Navigation between the rooms via corridor (left), some key images (middle), and some
images during navigation (right).

7.3.2.3 Navigation from a room to the corridor

In this case, we performed the navigation in the 23m path that starts from the robotics room
and navigates into the corridor. The path consists of multiple turns and different levels of
illumination as shown in Fig. 7.5. Even in presence of moving people and objects, the robot
was able to follow the learned trajectory. With the addition of point features, the motion
was relatively smooth because of the increased number and better distribution of features

to compute the rotational velocity.

7.3.2.4 Navigation in a corridor (Out-In)

In this case, we performed the navigation of 47m in a corridor (mapped length is 51m).
The beginning of the navigation zone consists of large windows that allow seeing outdoor.
So, the robot undergoes large changes in the illumination in the mapped path as we enter
inside the corridor. Also, there are two small inclined planes in the path. Even in presence
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Figure 7.5 — Navigation in between the room and the corridor (left), some key images (middle), and
some images during navigation (right).

of changing lightning condition (cloudy when mapped and sunny during navigation) and
walking people, the robot was able to follow the learned trajectory as shown in Fig. 7.6.
Especially due to illumination change, the number of lines matched decreased. However,
the addition of point features allowed for a smooth navigation. For this experiment we
started the robot 4m from the initial point of the mapped location. The robot successfully
navigated the remaining path by automatically selecting the initial key images, thanks to

the initial localization.

7.3.2.5 Navigation in indoor corridor (Inl, In2)

Here, we performed navigation in two corridors that are completely indoor. The corridors
have shiny floor and walls are mostly white. The illumination in first corridor (Inl, length
32m) totally depends upon the bulbs on the top of the ceilings where as in second corridor
(In2, length 34m) there is also light from outside. Navigation in both cases were difficult
using line segments only because of the type of surface of walls very few line segments
can only be detected and matched in some regions and in turnings. With lines only as
in previous chapter or points only as in [DSRC11], navigation was not successful. Using
points in addition to lines, more number of features are present which makes it possible for
successful navigation as shown in Fig. 7.7.
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Figure 7.6 — Navigation in the corridor Out-In (left), some key images (middle), and some images
during navigation (right).
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7.3.3 Discussion

The presented results show the viability of our approach in different scenarios and con-
straints. The robot has been able to follow autonomously the learned path from the start
position. Our framework does not depend upon any particular type of line segment or points
but it is just based on generic lines or points that are detected and matched/tracked from
key images. The key images selected by our approach proved to be good enough for the
navigation. Based upon the line matching and tracking of the points from neighboring key
frames, the key images are switched automatically and an appropriate rotational velocity
can be computed for allowing the robot to follow the learned path. The IBVS law has been
able to keep the error within small bounds. The deviation from the learned path is within
the range of 5 cm. The rotational velocities obtained from combining points and lines with
weighted average and least square are almost same. One of such instance is presented in
Fig. 7.8, where the blue curve is with weighted average and green one with linear least

square.

Our framework takes advantages from both lines and points. Line segments are abundant in
a structured indoor environment, and they are also more resilient to motion blur and partial
occlusions. Even if the performance of point features can degrade in the indoor environ-
ments, they can still be tracked locally to some extent, which is sufficient to supplement
the line segments. This then helps in better switching the key images and in computing the
rotational velocity. The robust sharp turning, smooth motion of the robots, and successful
navigation in wide range of environment are the consequences of using multiple features.

Besides that, the point tracking and the line matching can be operated in parallel without
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Figure 7.7 — Navigation in the corridor : Inl (up) and In2 (down).

any significant increase in the computational time. We still manage to operate at SHz with
the improved performance as in the case of line segments only.

However, our framework has also some limitations that are mainly due to the line match-
ing and the point tracking algorithm especially in the cases where very few line segments
are detected in the images and the tracking of points does not perform well. During all
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Figure 7.8 — Rotational Velocities using two approaches.

our experiments, singularities in Jgy (in (5.23)) never occurred. Initial localization might
produce false results when there are few matches that make the geometrical verification
of matched points/lines not possible. However, most of above problems can be greatly
avoided by selecting a proper trajectory during the mapping. Initial localization might
produce false results when there are few matches that make the geometrical verification
of matched points/lines not possible. However, most of above problems can be greatly

avoided by selecting a proper trajectory during the mapping.

7.4 Conclusions

We have presented, in this chapter, a method for indoor qualitative mapping and navigation
based on image memory using a combination of line segments and points, by expanding
our previous work as per the other strategies presented in this thesis. Our navigation is
exclusively based on 2D image information without relying on any 3D reconstruction or
pose estimation, and also without accurately tracking the trajectory used in the learning
phase. Combination of points and line features increases the number of features in the im-
age which results in a more robust navigation and smoother control. Increased number of
features plays an important role especially during sharp turnings where less features can
be detected, which changes rapidly also. We showed a successful navigation in different
indoor scenarios while being robust to some level of occlusions and blur in the image,
moderate changes in lighting conditions and presence of new objects in the environment.
Difficult situations include featureless areas like smooth/texture-less walls. Apart for the
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initial localization, we have used only the corners detected by FAST algorithm for the
navigation. However, we can easily incorporate other interest point detectors like SIFT/-
SURF/BRISK in our framework so as to increase its robustness. Unlike the method using
Mutual Information that uses entire image, this method is insensitive to changes outside of
the tracked/matched lines and points. Hence, this method handles occlusions and changes
in the environment better than using entire image too. Besides, more precise image process-
ing like preprocessing images and/or robot control strategies, like using vehicle kinematics

and filtering the velocity, could be incorporated to overcome uncertainties in the navigation.
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Summary
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CHAPTER 8

Conclusions and Future Work

8.1 Summary and Contributions

We have presented a complete method for indoor qualitative mapping and navigation based
on appearance. Our navigation is exclusively based on 2D image measurement without
relying on any 3D reconstruction process as in most existing literature. This is possible due
to a topological representation of the environment and the use of IBVS for motion control.
Topological representation avoids the need of accurate metric maps which are not easy to
create (and sometimes not possible to create due to lack of sufficient feature to obtain the
desired accuracy) and are computationally expensive. The map is as simple as just a set
of reference images that represents the learned path. Using IBVS reduces computational
delay, eliminates the necessity for image interpretation, and errors due to camera modeling
and calibration. The use of vision and control in closed loop via IBVS makes it possible
for the robot to follow the learned path keeping error under the certain bounds from the
mapped location even without 3D information. Our navigation method includes mapping,
localization and motion control. Mapping process is done offline, where the operator drives
the robot manually in the environment where it has to navigate capturing the images of the
path. From this learning sequence, image memory is created by automatically selecting
the reference/key images. Navigation process is online, where first robot initially localizes
itself in the map. Then, it continuously performs successive localizations to select the ap-
propriate reference images and use multiple reference images for control so that robot fol-
lows the learned path. Our method is applicable to both local and global features. First, we
have used entire image without any feature extraction and matching, where shared entropy
between the current view and near images is exploited for the mutual information-based
navigation. This method works well even for changes in the illumination but it performs
poorly when there are significant occlusions and the environment lacks sufficient texture or
same texture. Using local features avoids this problem to a greater extent. We have used

first line segments alone, which are present in the numerous amount in structured indoor
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environment. Using line segments alone makes it possible for mobile robots like Pioneer to
navigate just relying upon the information from 2D lines, unlike in [ , 1,
where point based features are used along with local 3D reconstruction for outdoor nav-
igation. The navigation works well for the scenarios where line segments are present in
sufficient number. During some turnings and in some corridors there are few line segments
matches that are either due to presence of few lines or poor performance of line matching
algorithms due to illumination conditions and similar textures, where our method based
on line segments performs poorly. In other to improve the performance, we combined
lines segments with points. This combination increases the number of features, which ul-
timately increases its robustness and range of environment for its application despite the
performance of points and its tracker decreases significantly in indoor scenarios. The com-
bination of general line segments and points for indoor navigation has rarely been done in
the literature. Our combination scheme of multiple features is equally applicable to other

types of features which we show in following sections.

8.2 Open Issues and Future Perspectives

The results of this thesis, although encouraging, also show a number of limitations that af-
fect our approach. First one is related to feature detection and matching. The performance
of our method depends upon the performance of feature matcher/tracker. If few points
and/or lines are detected, our local feature based method performs badly. In other hand,
with less-textured surface and similar textured surface, mutual information based naviga-
tion performs badly or fails. Also, mutual information-based method is poor in handling
occlusions especially for switching of reference images. However, most of above problems
can be avoided to some extent by selecting a proper trajectory during the mapping. The
other solution is to make use of multiple features, which can be easily combined similar
to (7.7) and (7.8). In (7.7), instead of using weighted average on the number of instances
(number of instances is not applicable for mutual information), confidence value can be
used to weight these contributions from local and global features. In (7.8), the combination
can be achieved simply by stacking Jacobians and errors in their respective places. The
contributions from different features can be performed in parallel without compromising

the performance.

Second, the presented method is concerned only with a goal-directed behavior without con-
sidering obstacle avoidance. Thus, in the navigation experiments we assume that other
moving objects will adopt collision-free trajectories. However, the obstacle avoidance
framework can easily be incorporated in our method using laser similar to [ ]. We
can use obstacle avoidance module to control forward velocity (v) and to maintain the vis-
ibility of features while avoiding obstacles, camera pan angle (¢) also has to be controlled
as shown in Fig. 2.16(right). Hence, in this case our visual task is
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§=Jv+Jo0+Jp0, (8.1)

where o is the rotation velocity and J,, J, and J¢ are the Jacobians related to v, @ and
¢ respectively. In our previous methods, from (5.21), (6.11), (7.1) and (7.4) we can safely

assume

J, ~0. (8.2)

Let w, be the rotational velocity obtained from our previous method as in (5.23), (6.13),
(7.7), and (7.10). Then we can control (v, @, ) using (8.1), considering different scenarios

as follows:

In safe Context (No obstacle)
vV =v;. vy s safe translational velocity.
O =0+ A J5Tp0. Ay is a gain.
O =—Ap0. This reduces pan angle to zero.
In unsafe Context (Obstacle Very Near)
v=0.
0=Ac. o is calculated from obstacle distance of the safest path. A is a gain.
o=J ;{J w(0—Aa). This maintains feature visibility.
Intermediate Situations

If H is the risk function of best tentacle i.e. the curvature robot has to follow to avoid

obstacle (see Fig. 8.1), then we have

Dangerous Safe

Dangerous

Figure 8.1 — Tentacles for obstacle avoidance.

v=(1—H)vs. H = 0 means no obstacle or obstacle is far away.
o= (1-H)(o+AJJp0)+HAa. H =1 means obstacle is very close.
¢ =HJ[J,(0,—Aa)— (1—H)Ae@. H =[0,1] means obstacle is in the range to be considered.
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The details about tentacles and collision avoidance are presented in [ ].

Finally, the robot control strategies like probabilistic filters such as Kalman Filter or Parti-
cle Filter can be used to estimate the control input from the obtained rotational velocity so
to overcome uncertainties in the navigation due to poor performance of feature matcher/-

tracker or ill conditioning cases occurred due to few textures in the scene.

With the incorporation of the above mentioned perspectives, we could have a generalized

framework for the image-based indoor navigation of Pioneer like robots.
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Résume

ETTE these présente une méthode de navigation par asservissement visuel a 1’aide
d’une mémoire d’images. Le processus de navigation est issu d’informations
d’images 2D sans utiliser aucune connaissance 3D. L’environnement est repré-

senté par un ensemble d’images de référence avec chevauchements, qui sont automatique-
ment sélectionnés au cours d’une phase d’apprentissage préalable. Ces images de référence
définissent le chemin a suivre au cours de la navigation. La commutation des images de ré-
férence au cours de la navigation est faite en comparant I’image acquise avec les images de
référence a proximité. Basé sur les images actuelles et deux images de référence suivantes,
la vitesse de rotation d’un robot mobile est calculée en vertu d’une loi du commandé par
asservissement visuel basé image. Tout d’abord, nous avons utilisé I’'image entiere comme
caractéristique, ou I’information mutuelle entre les images de référence et la vue actuelle est
exploitée. Ensuite, nous avons utilisé des segments de droite pour la navigation en intérieur,
ou nous avons montré que ces segments sont de meilleurs caractéristiques en environne-
ment intérieur structuré. Enfin, nous avons combiné les segments de droite avec des points
pour augmenter 1’application de la méthode a une large gamme de scénarios d’intérieur
pour des mouvements sans heurt. La navigation en temps réel avec un robot mobile équipé
d’une caméra perspective embarquée a été réalisée. Les résultats obtenus confirment la via-
bilité de notre approche et vérifiernt qu’une cartographie et une localisation précise ne sont

pas nécessaire pour une navigation intérieure utile.
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Abstract

HIS thesis presents a method for appearance-based navigation from an image mem-
ory by Image-Based Visual Servoing. The entire navigation process is based on
2D image information without using any 3D information at all. The environment

is represented by a set of reference images with overlapping landmarks, which are selected
automatically during a prior learning phase. These reference images define the path to fol-
low during the navigation. The switching of reference images during navigation is done by
comparing the current acquired image with nearby reference images. Based on the current
images and two succeeding key images, the rotational velocity of a mobile robot is com-
puted under image-based visual servoing control law. First, we have used entire image as
feature, where mutual information between reference images and current view is exploited.
Then, we have used line segments for the indoor navigation, where we have shown that line
segments are better features for structured indoor environment. Finally, we combined line
segments with point-based features for increasing the application of the method to a wide
range of indoor scenarios with smooth motion. Real-time navigation with a Pioneer 3DX
equipped with an on-board perspective camera has been performed in indoor environment.
The obtained results confirm the viability of our approach, and verify that accurate mapping

and localization are not mandatory for a useful indoor navigation.

Keywords Vision-based navigation, Visual Servoing.
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