
HAL Id: tel-01426915
https://theses.hal.science/tel-01426915v1
Submitted on 5 Jan 2017 (v1), last revised 28 Aug 2017 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Transforming TLP into DLP with the Dynamic
Inter-Thread Vectorization Architecture

Sajith Kalathingal

To cite this version:
Sajith Kalathingal. Transforming TLP into DLP with the Dynamic Inter-Thread Vectorization Ar-
chitecture. Hardware Architecture [cs.AR]. Université Rennes 1, 2016. English. �NNT : �. �tel-
01426915v1�

https://theses.hal.science/tel-01426915v1
https://hal.archives-ouvertes.fr

ANNÉE 2016

	

THÈSE / UNIVERSITÉ DE RENNES 1
sous le sceau de l’Université Bretagne Loire

pour le grade de
DOCTEUR DE L’UNIVERSITÉ DE RENNES 1

Mention : Informatique
École doctorale Matisse

présentée par

Sajith KALATHINGAL

préparée à l’unité de recherche INRIA
Institut National de Recherche en Informatique et

Automatique Université de Rennes 1

Transforming TLP
into DLP with the
Dynamic Inter-
Thread Vectoriza-
tion Architecture

Thèse soutenue à Rennes
le 13 Décembre 2016
devant le jury composé de :

Bernard GOOSSENS
Professeur à l’Université de Perpignan Via Domitia /
Rapporteur

Smail NIAR
Professeur à l’Université de Valenciennes /
Rapporteur

Laure GONNORD
Maître de conférences à l’Université Lyon 1 /
Examinatrice

Cédric TEDESCHI
Maître de conférences à l’Université Rennes 1 /
Examinateur

André SEZNEC
Directeur de recherches Inria / Directeur de thése
Sylvain COLLANGE
Chargé de recherche INRIA / Co-directeur de thése

Acknowledgement

I would like to express my sincere gratitude to my thesis advisors, André SEZNEC
and Sylvain COLLANGE. I would like to thank you for encouraging me and
providing guidance during the course of work. Your advice on research have been
priceless.

I would like to thank the jury members Bernard GOOSSENS, Smail NIAR,
Laure GONNORD and Cédric TEDESCHI for providing the opportunity to de-
fend the thesis.

I would like to thank my parents for supporting me throughout my life. Thank
you for all of the sacrifices that you have made for me. Without your support I
would not have reached so far.

I would like to thank the members of ALF team for their help and support
and also for making my stay at Rennes really enjoyable.

I would like to thank my wonderful wife Amrutha Muralidharan for the moral
support she has given me from thousands of kilometers away, in India. Thank
you motivating me and for having the patience.

Contents

Table of Contents 1

Résumé en Français 5

Introduction 9

1 Background 15

1.1 Instruction-level parallelism . 18

1.1.1 Instruction pipelining . 20

1.1.2 Superscalar execution . 21

1.1.3 Out-of-order execution . 22

1.1.4 Clustering for ILP . 23

1.2 Data-level parallelism . 23

1.2.1 Single Instruction Multiple Data 24

1.2.2 Single Instruction Multiple Threads (SIMT) 27

1.3 Thread-level parallelism . 30

1.3.1 Coarse-grained multi-threading 31

1.3.2 Fine grained multi-threading 31

1.3.3 Simultaneous multi-threading (SMT) 32

1.3.4 Clustered multi-threading (CMT) 33

1

2 Contents

1.4 TLP vs DLP . 35

1.5 Chip multiprocessor . 36

1.6 Conclusion . 36

2 Exploiting inter-thread similarity in microprocessors 39

2.1 Inter-thread similarities in SPMD applications 39

2.1.1 Source of inter-thread similarities 40

2.1.2 Vectorization efficiency in an SMT 42

2.1.3 Dynamic Vectorization . 43

2.2 Thread reconvergence for SPMD applications 44

2.2.1 Stack-based explicit reconvergence 45

2.2.2 SIMT extensions for stack-based implicit reconvergence . . 45

2.2.3 Stack-less explicit reconvergence 46

2.2.4 Stack-less implicit reconvergence 47

2.3 Vectorization of instructions across threads 49

2.4 General purpose architectures exploiting inter-thread redundancy 50

2.5 GPU architectures to exploit inter-thread redundancies 51

2.6 Conclusion . 52

3 Dynamic Inter-Thread Vectorization Architecture 55

3.1 Warps in DITVA . 56

3.2 Overview of the Dynamic Inter-Thread Vectorization Architecture 58

3.3 Pipeline architecture . 60

3.3.1 Front-end . 60

3.3.2 In-order issue enforcement and dependency check 63

3.3.3 Execution: register file and functional units 66

3.3.4 Leveraging explicit SIMD instructions 68

3.3.5 Handling misprediction, exception or divergence 69

Contents 3

3.4 Data memory accesses . 70

3.5 Maintaining lockstep execution 71

3.6 Clustered Multi-threading in DITVA 72

3.7 Conclusion . 73

4 Evaluation 77

4.1 Experimental Framework . 77

4.1.1 DITVA-SIM . 77

4.1.2 Evaluations using DITVA-SIM 79

4.2 Performance evaluation . 81

4.2.1 Throughput . 81

4.2.2 Divergence and mispredictions 82

4.2.3 Impact of split data TLB 83

4.2.4 L1 cache bank conflict reduction 83

4.2.5 Impact of memory bandwidth on memory intensive appli-
cations . 84

4.2.6 Impact of Warp size . 86

4.2.7 Impact of banked DV-SIMD register banking 86

4.3 Hardware Overhead, Power and Energy 87

4.3.1 Qualitative evaluation . 87

4.3.2 Quantitative evaluation . 89

4.4 Conclusion . 90

5 Future work 93

5.1 Out-of-order execution . 93

5.1.1 Register renaming . 94

5.1.2 Reservation station / Issue queue 95

5.1.3 Reorder buffer . 95

4 Contents

5.1.4 Branch misprediction . 95

5.2 Out-of-order extension for DITVA architecture 96

5.2.1 Register management . 97

5.2.1.1 Register allocation 98

5.2.1.2 Register deallocation 99

5.2.1.3 Handling divergence and reconvergence 99

5.2.2 Handling branch misprediction 100

5.3 Conclusion . 100

Bibliography 119

List of figures 121

Résumé en Français

Dans cette thèse, nous proposons l’architecture Dynamic Inter-Thread Vector-
ization (DITVA), une technique pour améliorer les performances des applica-
tions multi-thread SPMD dans un microprocesseur généraliste. Les threads
d’applications SPMD exécutent souvent les mêmes instructions sur des données
différentes. Pour tirer parti de la redondance de contrôle dans les applications
SPMD, DITVA assemble dynamiquement des instructions identiques de plusieurs
threads en cours d’exécution en une seule instruction vectorielle au moment de
l’exécution. La vectorisation réduit le nombre d’opérations dans le pipeline, car
l’instruction vectorisée factorise le contrôle entre les threads en travaillant sur des
données différentes. DITVA étend un processeur SMT disposant d’instructions
SIMD avec un mode d’exécution de vectorisation inter-threads. Dans ce mode,
DITVA exploite les unités vectorielles existantes, améliorant ainsi l’utilisation
des capacités vectorielles des microprocesseurs existants. DITVA maintient la
compatibilité binaire avec les architectures CPU existantes. Grâce à l’utilisation
des unités vectorielles et à la réduction des opérations de pipeline, DITVA vise
à améliorer le débit d’exécution d’une puce microprocesseur x86_64 tout en ré-
duisant sa consommation globale d’énergie.

Limitations au niveau transistor d’un microprocesseur La technologie
des microprocesseurs a beaucoup évolué depuis l’introduction du premier micro-
processeur Intel 4004 en 1971 par Intel. L’Intel 4004 était réalisé avec une finesse
de gravure de 10 m avec seulement 2300 transistors. Le processeur Intel Skylake,
mis sur le marché en 2015, emploie un process de 14nm avec près de 1,9 milliards
de transistors. Gordon E. Moore a observé que le nombre de transistors dans un
circuit intégré double chaque année. [M+98]

Robert H. Dennard a observé qu’avec la réduction de taille des transistors,

5

6 Résumé en Français

la puissance totale requise reste constante [DRBL74]. La loi de Moore associée
au passage à l’échelle de Dennard se traduit par une croissance exponentielle de
la performance par watt. La loi de Dennard a pris fin avec l’augmentation de la
finesse de gravure. Les courants de fuite et la dissipation de chaleur ont com-
mencé à devenir un réel problème pour le passage à l’échelle de la performance au
travers le l’augmentation des fréquences d’horloge. Par conséquent, les fréquences
d’horloge ont commencé à se stabiliser après le milieu des années 2000, malgré
l’adoption de différentes technologies de transistors.

Techniques micro-architecturales pour améliorer la performance Alors
que l’augmentation des fréquences d’horloge est une façon d’améliorer les per-
formances des microprocesseurs, la micro-architecture elle-même joue un rôle
important dans l’optimisation des microprocesseurs pour le débit, la latence
et l’efficacité énergétique. Suivant ces exigences, les fabricants de processeurs
doivent souvent assurer des compromis lors de la conception d’un processeur à
usage généraliste. Par exemple, un processeur mobile, qui utilise des petits curs
est optimisé pour l’énergie aux dépens du débit, tandis qu’un GPU est optimisé
pour le débit au détriment de la latence.

Avec l’évolutivité limitée des fréquences d’horloge, le multiprocesseur sur puce
(CMP), c’est-à-dire un multi-cur [ONH+96], a été largement adopté au cours des
dix dernières années. Au lieu d’un grand cur monolithique, un CMP se com-
pose de plusieurs curs dans une seule puce qui partagent certaines des ressources
matérielles telles que des caches. Une application mono-thread est exécutée dans
un cur unique du CMP tandis qu’une application parallèle peut utiliser plusieurs
curs grâce à un faible coût de communication entre les processeurs. Les pro-
cesseurs multi-core hétérogènes [KTJR05] sont également de plus en plus répan-
dus. Pour conserver un meilleur compromis entre consommation d’énergie et
performance, une puce peut être constituée de plusieurs curs grands et petits
pouvant être allumés et éteints, la charge de travail pouvant être migrée en fonc-
tion des exigences de l’application [PG13].

Les grands curs utilisent des techniques telles que l’exécution spéculative,
l’exécution superscalaire, l’exécution dans le désordre, etc., pour améliorer la
performance d’un thread unique. La performance mono-thread est limitée
par le parallélisme d’instructions (ILP) d’une application. Les caractéristiques
micro-architecturales peuvent améliorer l’ILP mais sont encore limitées par les
propriétés inhérentes de l’application. Avec un ILP limité, l’utilisation des

Résumé en Français 7

ressources d’un cur diminue. Le multi-threading a été mis en uvre pour améliorer
l’utilisation des ressources d’un cur avec un impact minimal sur la latence mono-
thread [TEL95, Upt, SBB+07, BEKK00]. Les petits curs évitent la plupart de
ces optimisations pour améliorer l’efficacité énergétique.

Microarchitecture pour application extrêmement parallèle Il existe
de nombreuses catégories d’applications extrêmement parallèles, orientées sur le
débit et tolérantes à la latence. Les GPU, introduits en 1999, sont plus efficaces
dans l’exécution de ces applications [NBGS08, KWm12, LNOM08, ND10a]. Avec
un grand nombre d’applications de jeu et multimédia, les GPU sont devenus pop-
ulaires dans les années 2000. L’architecture Tesla de NVIDIA a été introduite
en 2006 et permet notamment l’exécution d’applications de calcul parallèle haute
performance écrites en langage C à l’aide de l’architecture CUDA pour le calcul
généraliste sur GPU. Les GPU ne sont pas des dispositifs de calcul autonomes.
Ils sont conçus pour compléter le CPU existant pour améliorer l’efficacité de
l’exécution d’application hautement parallèles. Le CPU se décharge de ce travail
vers un GPU. D’autre part, un GPU ne peut pas exécuter les processus critiques
nécessaires pour exécuter un système d’exploitation. Les CPU et GPU ont dif-
férentes philosophies de conception architecturale, le problème qu’ils essaient de
résoudre étant différent. Ils mettent en uvre différents jeux d’instructions (ISA).

DITVA - une optimisation pour les architectures SMT généralistes
Dans cette thèse, nous proposons l’architecture de vectorisation dynamique inter-
thread (DITVA), un point de conception intermédiaire entre un CPU et un
GPU. DITVA est une optimisation pour les applications parallèles s’exécutant
sur un CPU tout en maintenant la performance mono-thread. DITVA optimise
les threads d’application en vectorisant dynamiquement les instructions entre
threads. DITVA est basé sur l’architecture x86_64 et supporte les applications
régulières exécutées dans un CPU. DITVA peut être réalisé comme un cur spécial
dans une puce CMP (multi-core) hybride pour optimiser l’exécution des appli-
cations parallèles. DITVA n’a pas besoin de modifications dans l’ISA x86_64
existante. Les binaires existants peuvent être exécutés dans un cur DITVA, sans
nécessiter pas de recompilation. DITVA améliore le débit des curs existants tout
en consommant moins d’énergie.

8 Résumé en Français

Introduction

In this thesis, we propose Dynamic Inter-Thread Vectorization Architecture
(DITVA), a technique to improve the performance of multi-threaded Single-
Program Multiple-Data (SPMD) applications in a general purpose microproces-
sor. Threads of SPMD applications often execute the same instructions on dif-
ferent data. To take advantage of the control redundancy in SPMD applications,
DITVA dynamically aggregates identical instructions of several threads running
in lockstep into a single vector instruction at runtime. Vectorization reduces the
number of pipeline operations as a vectorized instruction shares the control across
threads while operating on multiple data. DITVA extends a vector enabled in-
order SMT processor with an inter-thread vectorization execution mode. In this
mode, DITVA leverages existing SIMD units, thus improving the utilization of
the vector capabilities of the existing microprocessors. DITVA maintains binary
compatibility with existing CPU architectures. With the improved utilization
of SIMD units and the reduction of pipeline operations, DITVA intends to im-
prove the throughput of an x86_64 microprocessor chip while reducing the overall
energy consumption.

Limitations at the transistor-level of a microprocessor Microprocessor
technology has evolved a lot since the introduction of the first microprocessor
Intel 4004 in 1971 by Intel Corp. Intel 4004 was a 10 µm process with just 2,300
transistors. Skylake processors, released by Intel in 2015, has a 14nm process
with almost 1.9 billion transistors. Gordon E. Moore observed that the number
of transistors in an integrated circuit doubles every year [M+98]. The projection
of process technology shrinkage remained accurate for several decades, but it is
predicted that this will not be true in the near future [Moo].

Robert H. Dennard observed that with the scaling down of transistor size, the

9

10 Introduction

required power stays constant [DRBL74]. Moore’s Law coupled with Dennard
scaling translates to exponential growth of performance-per-watt. Dennard’s law
began to fail when the transistors started to become too small. Current leakage
and heat dissipation began to become a real issue for performance scaling by
increasing clock rates. Hence, the clock rates started to plateau after the mid-
2000s even after adopting different transistor designs.

Microarchitectural techniques to improve performance While increasing
the clock rates is one way to improve the performance of the microprocessor,
microarchitecture itself plays a significant role in optimizing microprocessors for
throughput, latency and energy efficiency. Depending on the requirements, the
processor manufacturers often have to balance the trade-offs when designing a
general purpose processor. For example, a mobile processor, which uses small
cores is optimized for energy at the cost of throughput, while a GPU is optimized
for throughput at the expense of latency 1.

With the limited scalability concerning clock rates, Chip Multi-
Processor(CMP), i.e., multi-core processors [ONH+96] are widely adopted in the
past decade as an alternative design direction. Instead of a large monolithic core,
a CMP consists of multiple cores in a single chip. The cores in a CMP shares
some of the hardware resources such as caches. A single threaded application is
executed on a single core of the CMP, and a parallel application can utilize multi-
ple cores thanks to low inter-processor communication overhead. Heterogeneous
multi-core processors [KTJR05] are also becoming popular. To maintain a better
performance-energy profile, a chip may consist of multiple large and small cores
that may be turned on and off or the workload can be migrated depending on
the application requirements [PG13].

Large cores use techniques such as instruction pipelining, speculative execu-
tion, superscalar execution, out-of-order execution, etc., to improve the single
thread performance. Single thread performance is bounded by the Instruction-
level parallelism (ILP) of an application. Microarchitectural features can improve
the ILP but are still limited by the inherent properties of the application. With

1Throughput is the number of instructions completed in a cycle and latency is the number
of cycles taken to complete an instruction. In a single threaded microprocessor, latency is
inversely proportional to throughput. However, in a multi-threaded processor, even though
there are more instructions completed in a cycle, a thread could still slow down since it is
sharing the resources with other threads

Introduction 11

limited ILP, the resource utilization of a core goes down. As an afterthought
multi-threading [TEL95, Upt, SBB+07, BEKK00] was implemented to improve
the resource utilization of a core with a slight impact on single thread latency.
Small cores avoid many of these optimizations to improve energy profile.

Microarchitecture for embarrassingly parallel applications There are
broad classes of embarrassingly parallel, throughput oriented, latency-tolerant
applications. GPUs, introduced in 1999, are more efficient in executing these
applications [NBGS08, KWm12, LNOM08, ND10a]. With a large number of
gaming and multimedia applications, GPUs became popular in 2000’s. NVIDIA’s
Tesla architecture was introduced in 2006 to extend GPUs to enable the execution
of high-performance parallel computing application written in C language using
the Compute Unified Device Architecture(CUDA) for general purpose computing
on GPUs. GPUs are not stand-alone computational devices. They are designed
to compliment the existing CPU to improve the efficiency of executing high-
performance, embarrassingly parallel applications. CPU’s offload such workload
to a GPU. On the other hand, GPUs cannot run critical processes required to
run an operating system. CPU and GPU have different architectural design
philosophies as the problem they are trying to solve is different. They implement
different Instruction Set Architecture(ISA).

DITVA - an optimization for general purpose SMT architectures
SMT [TEL95] is a common implementation of multi-threading in modern mi-

croprocessors. In SMT, multiple thread context co-exists in a single core of a
microprocessor. The threads in an SMT are scheduled simultaneously so that
when one of the thread is blocked, some other thread can execute the instruc-
tions. SMT processors, unlike GPUs, are designed to execute both single threaded
as well as multi-threaded applications. While SMT processors are beneficial for
both single and multi-threaded applications, however, they fail to benefit from
the unique property of embarrassingly parallel applications i.e., the instructions
across the threads are mostly identical although they work with different data.
DITVA architecture is designed to exploit this property that exists in parallel
applications. By doing so, DITVA improves the throughput of the existing cores
while consuming significantly less energy.

In this thesis, we propose Dynamic Inter-Thread Vectorization Architecture
(DITVA), an intermediate design point between a CPU and a GPU. DITVA is

12 Introduction

a hardware optimization for parallel applications running on a CPU while main-
taining the single thread performance. DITVA optimizes the application threads
by dynamically vectorizing instructions across threads. We evaluate DITVA on
a x86_64 architecture and show that it supports the regular applications exe-
cuted in a CPU. DITVA may be implemented as special cores in a hybrid CMP
(multi-core) chip to optimize the execution of parallel applications. DITVA does
not need any modifications in the existing x86_64 ISA. Existing binaries can be
executed in a DITVA core as it does not require recompilation of the program
with compiler hints.

Contributions

We developed a microarchitectural model, DITVA, to leverage the implicit data-
level parallelism in SPMD applications by assembling dynamic vector instructions
at runtime. DITVA extends an SIMD-enabled in-order SMT processor with an
inter-thread vectorization execution mode. In this mode, multiple scalar threads
running in lockstep share a single instruction stream and their respective in-
struction instances are aggregated into SIMD instructions. To balance thread
and data-level parallelism, threads are statically grouped into fixed-size indepen-
dently scheduled warps. DITVA leverages existing SIMD units and maintains
binary compatibility with existing CPU architectures.

We also developed an in-house, trace based simulator to simulate SMT and
DITVA architectures. Our evaluation on the SPMD applications from the PAR-
SEC and Rodinia OpenMP benchmarks shows that a 4-warp × 4-lane 4-issue
DITVA architecture with a realistic bank-interleaved cache achieves 1.55× higher
performance than a 4-thread 4-issue SMT architecture with AVX instructions
while fetching and issuing 51% fewer instructions, achieving an overall 24% en-
ergy reduction.

Organization

The thesis is organized as follows: Chapter 1 provides background for microar-
chitectural techniques used to exploit parallelism in a program. In chapter 2,
we discuss inter-thread similarities and the techniques used to exploit them. We

Introduction 13

also discuss various thread reconvergence techniques that enables dynamic vec-
torization of instruction across threads. In chapter 3, we present the Dynamic
Inter-Thread Architecture (DITVA). We discuss the implementation details and
the design aspects of DITVA. In chapter 4, we demonstrate the energy/perfor-
mance benefits of DITVA over an SMT architecture. We show that DITVA is able
to achieve this without significant hardware overhead. In chapter 5, we provide
some insights for an out-of-order version of DITVA (OOO-DITVA). Materials
from chapter 3 and chapter 4 were presented at SBAC-PAD 2016 [KCSS16].

14 Introduction

Chapter 1

Background

Figure 1.1: Source of parallelism in a program

In this chapter, we will discuss different kinds of parallelism that exist in a
program, i.e., Instruction-level parallelism (ILP, section 1.1), Data-level paral-
lelism (DLP, section 1.2) and Thread-level parallelism (TLP, section 1.3) and
provides the background for the transformation of TLP to DLP using DITVA.
We will also discuss different methods utilized by the current microarchitectures
to exploit these parallelisms. Amdahl’s law [Amd67] identifies the serial section
of a program as the limiting factor in the speedup of a workload. The implicit and
explicit parallelism in a program is exposed at the program level, compiler level or
microarchitectural level. The source of TLP and DLP in a conventional program
execution is shown in figure 1.1. DLP is used to form vector instructions, and TLP
is used to create program threads. At the program level, vector instructions and
parallel threads expose parallelism using programming intrinsics and algorithms
that use programming models based on the data decomposition [Fos95]. At the

15

16 Background

compiler level, automatic vectorization and automatic parallelization expose par-
allelism of the program. At the microarchitectural level, execution models based
on Flynn’s taxonomy [Fly66, Fly72] are used to exploit parallelism. Based on
the instruction control and the number of data it is working with, Flynn’s taxon-
omy [Fly66, Fly72] classifies the execution model of computer architecture into
SISD (Single instruction stream, single data stream), MISD (Multiple instruc-
tion stream, single data stream), SIMD (Single instruction stream, multiple data
stream) and MIMD (Multiple instruction stream, multiple data stream).

(a) SISD (b) SIMD

(c) MISD (d) MIMD

Figure 1.2: Flynn’s taxonomy and MISD model

Figure 1.3: Classification of architectures based in thread count

Diagrams representing Flynn’s taxonomy is shown in figure 1.2. Multi-

Background 17

threaded architectures add another dimension to Flynn’s taxonomy. For the sake
of clarity, we can define the stream as a sequence of instructions that is mapped to
a thread at the program level.1 Some example architectures based on the number
of streams in shown in figure 1.3. Traditional scalar uniprocessor architectures
were SISD. A single threaded superscalar processor 1.1.2 is also classified as an
SISD. SISD with more than one thread is a multi-threaded architecture. SIMD
machines exploit data parallelism by using a single instruction stream to work on
multiple data elements. Vector processors used for high-performance computing
are SIMD architectures. Vector architectures are based on explicit vector in-
structions. MIMD consists of multiple processors that may be executing different
instruction streams that are working with different data streams. A multi-core
processor is primarily an MIMD architecture but many modern x86_64 architec-
tures is a combination of different models, they support the execution of scalar
instructions (SISD) and with SSE and AVX instruction sets they support the
execution of vector instructions (SIMD). In addition to threads and vector in-
structions, microarchitecture techniques also exploit ILP from within the same
thread.

SIMD architectures such as vector processors, GPUs, and CPUs with SIMD
extensions, use vector instructions generated either by compiler or programmer.
A large number of applications that are executed in x86_64 architectures does
not efficiently utilize SIMD extensions even though the programs have data-
parallelism (see section 2.5). The inefficiency is due to the existence of dynamic
properties such as branches in the instruction flow. Such programs are often writ-
ten using threads running the same code. Many multi-threaded programs have
implicit data-parallelism.

In the following sections, we will discuss implicit and explicit techniques
that are used to exploit parallelism in a program. The parallelism in SISD is
the instruction-level parallelism, data-level parallelism is exploited by the SIMD
model and MIMD is exposed by the thread-level parallelism. In this thesis, we
will only consider single process model and hence we will not consider parallel
programming with multiple processes.

1In section 3.2, we will redefine the notion of instruction stream as a sequence of instructions
that is mapped to one or more threads at the program level, to adapt it for DITVA.

18 Background

Listing 1.1: Array addition
1

2 void add () {
3 f o r (i n t i = 0 ; i < N; i++){
4 c_array [i] = a_array [i] + b_array [i] ;
5 f_array [i] = d_array [i] + e_array [i] ;
6 }
7 }

1.1 Instruction-level parallelism

Compiler techniques and programming constructions are used to exploit implicit
parallelism between instructions of a sequential program. Several microarchitec-
tural features efficiently utilize this parallelism and often enhance it at runtime.
Hazards are factors limiting parallelism. Two of the most common hazards are
Control hazard and Data hazard.

Control hazards occur with branches. A branch is an instruction which alters
the sequence of execution based on a condition. Branches are often resolved at
runtime and hence the instruction fetch should not be stalled until branch res-
olution. Modern branch predictors such as TAGE [Sez11] are highly accurate.
Microprocessors use branch predictors to continue fetching from one of the pre-
dicted branches. In the case of a misprediction, the instructions that are already
in the pipeline are flushed.

Data hazards occur when an instruction with data dependency changes the
order of read/write operation. Data hazards can be classified as follows

1. Read after write (RAW)

2. Write after read (WAR)

3. Write after write (WAW)

RAW is a true dependency and cannot be circumvented as the instruction
which is reading the value should wait until the previous instruction produces
the result. WAR and WAW are false dependencies and can be prevented using
microarchitectural techniques.

Instruction-level parallelism 19

Listing 1.2: Array addition (ASM)
1 100000 f15 : l e a 0xe4(%r i p) ,% rax # 100001000 <_N>
2 100000 f 1 c : cmpl $0x0 ,(% rax)
3 100000 f 1 f : j l e 100000 f 6 f <_add+0x5f>
4 100000 f21 : movslq (%rax) ,% rax
5 100000 f24 : xor %edx ,%edx
6 100000 f26 : l e a 0xe3(%r i p) ,% r8

100001010 <_a_array>
7 100000 f2d : l e a 0x10c(%r i p) ,% r9

100001040 <_b_array>
8 100000 f34 : l e a 0x135(%r i p) ,% r10

100001070 <_c_array>
9 100000 f3b : l e a 0x15e(%r i p) ,% r11

1000010 a0 <_d_array>
10 100000 f42 : l e a 0x187(%r i p) ,% rcx

1000010d0 <_e_array>
11 100000 f49 : l e a 0x1b0(%r i p) ,% r s i

100001100 <_f_array>
12 100000 f50 : mov (%r9 ,%rdx ,4) ,% ed i
13 100000 f54 : mov (%rcx ,%rdx ,4) ,% ebx
14 100000 f57 : add (%r8 ,%rdx ,4) ,% ed i
15 100000 f5b : add (%r11 ,%rdx ,4) ,% ebx
16 100000 f 5 f : mov %edi ,(% r10 ,%rdx , 4)
17 100000 f63 : mov %ebx ,(% r s i ,%rdx , 4)
18 100000 f66 : l e a 0x1(%rdx) ,%rdx
19 100000 f6a : cmp %rax ,%rdx
20 100000 f6d : j l 100000 f50 <_add+0x40>

20 Background

Consider the pseudocode in list 1.1 for array addition and its corresponding
assembly code in list 1.2 produced after compilation. When the compiled code is
executed in a scalar microprocessor with a single execution unit, the instructions
are sequentially executed as shown in the figure. However, in practice, a program
in execution have a large amount of implicit parallelisms called Instruction-Level
Parallelism (ILP). In listing 1.1, the statements in line 4 and line 5 are indepen-
dent. Hence, the instructions corresponding to these statements can be executed
in parallel. In listing 1.2, we find that the instructions from line 6 to line 11 are
parallel. Similarly, inside the loop statements, instructions in line (12, 14, 16)
and (13, 15, 17) can be executed in parallel.

Microarchitectural techniques such as instruction pipelining, speculative exe-
cution, superscalar execution, and out-of-order execution are used to exploit the
ILP. Our DITVA proposal supports these microarchitectural techniques except
out-of-order execution 2.

Figure 1.4: Instruction pipelining

1.1.1 Instruction pipelining

Instruction pipelining is a process an instruction technique in which the instruc-
tion processing is done in multiple stages and rather than waiting for the entire
instruction processing to complete, subsequent instructions are processed concur-
rently. Figure 1.4 shows a simple 5 stage pipeline execution of instruction I1,
I2, and I3. In the example, each stage has a single cycle latency. Instruction I2
starts fetch at cycle 2 as soon as instruction I1 completes the fetch stage. Simi-
larly, I3 starts fetch at cycle 3. A non-pipelined execution would have taken 15

2DITVA can be extended to support out-of-order execution. We provide some insights for
an out-of-order implementation in Chapter 5

Instruction-level parallelism 21

(3 × 5) cycles to complete the execution of 3 instructions, with pipelining, the
total latency reduces to 7 cycles.

Figure 1.5: Superscalar execution (degree 2)

1.1.2 Superscalar execution

In superscalar processors, more than one instructions are processed at the same
clock cycle. In Flynn’s taxonomy, superscalar processors are classified as SISD.
A superscalar processor has replicated pipelined resources that allow multiple
fetches, decodes, executions and writebacks per cycle. Superscalar execution of
degree 2 is shown in figure 1.5. A superscalar processor improves the execution
throughput by issuing independent instructions in the replicated functional units.
An in-order processor issues the instructions in the order of fetch. Hence, the adja-
cency of the independent instructions becomes the limiting factor in the scalability
of a superscalar processor. To illustrate this limitation, let us consider listing 1.3,
which is hypothetical reordered instruction sequence of listing 1.1. In listing 1.2
the instructions corresponding to c_array[i] = a_array[i] + b_array[i]; and
f_array[i] = d_array[i] + e_array[i]; are interleaved to increase ILP. In list-
ing 1.3, the interleaving is removed. And consequently, line 14 and 15 are the
only instructions inside the loop which can be executed in parallel in an in-order
machine. Even though modern compilers are smart enough to reorder the instruc-
tions to improve the ILP, the parallelism is limited by the program behavior. The
added hardware remains idle when a superscalar machine executes a program with
limited ILP. Considering the high cost of replicating the pipeline units, increase
in hardware have diminishing returns in terms of performance [PJS97, KHL99].

22 Background

Listing 1.3: Array addition (ASM) - Reordered
1 100000 f15 : l e a 0xe4(%r i p) ,% rax # 100001000 <_N>
2 100000 f 1 c : cmpl $0x0 ,(% rax)
3 100000 f 1 f : j l e 100000 f 6 f <_add+0x5f>
4 100000 f21 : movslq (%rax) ,% rax
5 100000 f24 : xor %edx ,%edx
6 100000 f26 : l e a 0xe3(%r i p) ,% r8

100001010 <_a_array>
7 100000 f2d : l e a 0x10c(%r i p) ,% r9

100001040 <_b_array>
8 100000 f34 : l e a 0x135(%r i p) ,% r10

100001070 <_c_array>
9 100000 f3b : l e a 0x15e(%r i p) ,% r11

1000010 a0 <_d_array>
10 100000 f42 : l e a 0x187(%r i p) ,% rcx

1000010d0 <_e_array>
11 100000 f49 : l e a 0x1b0(%r i p) ,% r s i

100001100 <_f_array>
12 100000 f50 : mov (%r9 ,%rdx ,4) ,% ed i
13 100000 f54 : add (%r8 ,%rdx ,4) ,% ed i
14 100000 f58 : mov %edi ,(% r10 ,%rdx , 4)
15 100000 f 5 c : mov (%rcx ,%rdx ,4) ,% ebx
16 100000 f60 : add (%r11 ,%rdx ,4) ,% ebx
17 100000 f64 : mov %ebx ,(% r s i ,%rdx , 4)
18 100000 f68 : l e a 0x1(%rdx) ,%rdx
19 100000 f 6 c : cmp %rax ,%rdx
20 100000 f70 : j l 100000 f50 <_add+0x40>

1.1.3 Out-of-order execution

Out-of-order processors improve the execution throughput by not strictly issuing
the instructions in the order of fetch. For example, in listing 1.3, instructions
in line 13 and line 16 can be issued in parallel as they are no longer required
to strictly conform to the order. Out-of-order processors use techniques such as
scoreboarding [BRI+90] to resolve the dependencies. In out-of-order processors
instruction-level parallelism (ILP) is often limited by data hazards. As men-

Data-level parallelism 23

tioned earlier, false dependencies can be avoided. False dependencies occur be-
cause of the limited number of registers provided by the ISA. This limitation
forces the compiler to reuse registers in an instruction sequence that often result
in producing false dependencies. Out-of-order processors uses register renam-
ing [Tom67, Kes99, MPV93] to prevent false dependencies.

1.1.4 Clustering for ILP

Clustering allows the implementation of wide superscalar processors without com-
promising much on the clock rate. Essentially, clustering partitions a wide su-
perscalar processor into multiple windows of smaller width. This reduces the
delays in the critical path at various stages of the pipeline. Clustering can
be done at different stages of the pipeline. [PJS97] study the complexity
and delay characteristics of increasing the width of the superscalar processor.
[CPG00, BM00, AF01, BDA03] discuss various techniques for clustering in su-
perscalar processors. [Kes99] is one of the earliest implementation of a single
threaded clustered micro-architecture that clusters the functional units.

1.2 Data-level parallelism

When a task operates on different pieces of data Data-level parallelism (DLP)
arises. Data parallel algorithms perform independent operations on a large set of
data and share the control flow. Many scientific applications, as well as multime-
dia applications, have DLP. DLP is exploited with the SIMD model of Flynn’s
taxonomy. Vectorization exposes DLP and SIMD/vector architectures are used
to exploit them. Auto-vectorization [Nai04, NZ06, gcc, icc, MLN07] is done by
many modern compilers for high-level programming languages such as C, C++,
Fortran etc. Auto-vectorization compilers try to identify the Data parallel regions
in the program code and vectorize them. Alternatively, the programmer rely on
intrinsics [int] for vectorization efficiency. Intrinsics are often difficult to write
and affects the portability. A relatively easier approach is SPMD-based program-
ming environments such as CUDA, OpenCL, and OpenMP [KDT+12, DM98].
ISPC [PM12] is a compiler specifically aiming to exploit data parallelism in CPU.

24 Background

1.2.1 Single Instruction Multiple Data

Microarchitectures such as vector processors and Graphics Processor Units
(GPUs) exploit vectorization by using vector instructions. SIMD architectures
optimize microprocessors for power efficiency by reducing the number of instruc-
tion operations at the front-end of the pipeline. x86 architectures implement
SIMD exposed through MMX, SSE, and AVX [FBJ+08] instruction sets. In
the Intel’s implementation of SIMD, in addition to the supported instructions,
MMX, SSE and AVX support varying data paths. MMX implementation reused
the existing floating point registers for the 64-bit SIMD instructions. SSE im-
plementation uses xmm registers with 128-bit wide data path [SKR00]. AVX
instructions further widened the data path from 128-bit to 256-bit ymm regis-
ters (AVX-512 [R13], with zmm registers, supports 512-bit datapath) 3. SIMD
instructions may support different data types. For instance, SSE2 supports two
64-bit double-precision floating point numbers or two 64-bit integers or four 32-bit
integers or eight 16-bit short integers or sixteen 8-bit characters.

Listing 1.4: Array addition (ASM) - SIMD
1 100000db4 : l e a 0x245(%r i p) ,% rax

100001000 <_N>
2 100000dbb : movslq (%rax) ,% r9
3 100000dbe : t e s t %r9 ,%r9
4 100000 dc1 : j l e 100000 e9a <_add+0xea>
5 100000 dc7 : xor %eax ,%eax
6 100000 dc9 : t e s t %r9d ,%r9d
7 100000 dcc : j e 100000 e50 <_add+0xa0>
8 100000dd2 : xor %eax ,%eax
9 100000dd4 : mov %r9 ,%r8

10 100000dd7 : and $ 0 x f f f f f f f f f f f f f f f e ,%r8
11 100000ddb : j e 100000 e4a <_add+0x9a>
12 100000ddd : mov %r9 ,%r10
13 100000 de0 : and $ 0 x f f f f f f f f f f f f f f f e ,%r10
14 100000 de4 : l e a 0x225(%r i p) ,% r11

100001010 <_a_array>

3Note that scalar double precision instructions in x86_64 architecture use half of the register
width of xmm registers and 1/4 width of ymm registers [R14]. Similarly, SSE instructions are
implemented using half of the register width of ymm registers.

Data-level parallelism 25

15 100000deb : l e a 0x26e(%r i p) ,% rd i
100001060 <_b_array>

16 100000 df2 : l e a 0x2b7(%r i p) ,% rcx
1000010b0 <_c_array>

17 100000 df9 : l e a 0x300(%r i p) ,% rax
100001100 <_d_array>

18 100000 e00 : l e a 0x349(%r i p) ,%rdx
100001150 <_e_array>

19 100000 e07 : l e a 0x392(%r i p) ,% r s i
1000011 a0 <_f_array>

20 100000 e0e : xchg %ax,%ax
21 100000 e10 : vmovdqa (%rd i) ,%xmm0
22 100000 e14 : vpaddq (%r11) ,%xmm0,%xmm0
23 100000 e19 : vmovdqa %xmm0,(% rcx)
24 100000 e1d : vmovdqa (%rdx) ,%xmm0
25 100000 e21 : vpaddq (%rax) ,%xmm0,%xmm0
26 100000 e25 : vmovdqa %xmm0,(% r s i)
27 100000 e29 : add $0x10 ,%r11
28 100000 e2d : add $0x10 ,% rd i
29 100000 e31 : add $0x10 ,%rcx
30 100000 e35 : add $0x10 ,%rax
31 100000 e39 : add $0x10 ,%rdx
32 100000 e3d : add $0x10 ,% r s i
33 100000 e41 : add $ 0 x f f f f f f f f f f f f f f f e ,%r10
34 100000 e45 : jne 100000 e10 <_add+0x60>
35 100000 e47 : mov %r8 ,%rax
36 100000 e4a : cmp %rax ,%r9
37 100000 e4d : j e 100000 e9a <_add+0xea>
38 100000 e4 f : nop
39 100000 e50 : l e a 0x1b9(%r i p) ,% rcx

100001010 <_a_array>
40 100000 e57 : l e a 0x202(%r i p) ,%rdx

100001060 <_b_array>
41 100000 e5e : mov (%rdx ,%rax ,8) ,% rdx
42 100000 e62 : add (%rcx ,%rax ,8) ,% rdx
43 100000 e66 : l e a 0x243(%r i p) ,% rcx

1000010b0 <_c_array>

26 Background

44 100000 e6d : mov %rdx ,(% rcx ,%rax , 8)
45 100000 e71 : l e a 0x288(%r i p) ,% rcx

100001100 <_d_array>
46 100000 e78 : l e a 0x2d1(%r i p) ,%rdx

100001150 <_e_array>
47 100000 e7 f : mov (%rdx ,%rax ,8) ,% rdx
48 100000 e83 : add (%rcx ,%rax ,8) ,% rdx
49 100000 e87 : l e a 0x312(%r i p) ,% rcx

1000011 a0 <_f_array>
50 100000 e8e : mov %rdx ,(% rcx ,%rax , 8)
51 100000 e92 : inc %rax
52 100000 e95 : cmp %r9 ,%rax
53 100000 e98 : j l 100000 e50 <_add+0xa0>

Listing 1.4 is the assembly for the array addition when compiled for SSE
architecture. In comparison to listing 1.2, the difference here is that the integer
array elements (each element is 4-bytes) are grouped into 4 and are executed
as SIMD instructions using 128-bit xmm registers. In listing 1.4, the block of
instructions between line 21 and line 37 are the SIMD implementation of the
array addition. However, as the array elements are grouped into 4, some of the
last elements might not be vectorizable, these array elements are executed by the
non-SIMD code block between line 39 and line 53.

SIMD instructions reduce pressure in the front end of a pipeline as there are
fewer instructions to be fetched (and consequently fewer instructions in other
frontend pipeline stages). For example, the number of loop iterations (and hence
the number of fetched instructions) in listing 1.4 is approximately reduced by 4
times. At the backend, for performance reasons, a common implementation of
SIMD functional units is by banked register file/wide registers [RDK+00]. How-
ever, SIMD is not equivalent to a wide superscalar processor. Figure 1.6 shows
the execution of 32-bit integer array of size 4 in a 4-wide superscalar and a SSE
unit. SIMD implementation partitions the register and data-path resources into
multiple lanes. The reduced design complexity of the pipeline backend improves
the scalability. The cost of implementation of SIMD architecture is much lower
than a wide superscalar processor [PJS97].

Data-level parallelism 27

(a) 4-wide superscalar (b) SSE

Figure 1.6: 32-bit integer execution in 4-wide superscalar processor and a SSE
unit

1.2.2 Single Instruction Multiple Threads (SIMT)

Single Instruction Multiple Threads (SIMT) [LNOM08] is a parallel execution
model that is used to capture implicit DLP from SPMD code. NVIDIA introduced
SIMT in their Tesla GPU architecture. SIMT eased programmability of NVIDIA
GPU’s with the use of Compute Unified Device Architecture (CUDA) [Nvi07]
programming libraries. NVIDIA later continued to use SIMT in their Fermi,
Kepler, and Maxwell architectures. SIMT is generally combined with multi-
threading and multi-core. SIMT relies on a large number of threads to keep the
execution resources busy. SIMT works well for throughput oriented applications
with large amount of implicit DLP. Hence, the program in execution may consist
of a large number of threads. A simplified overview of array execution is shown
in figure 1.7. Streaming Multiprocessors(SM) consists of many CUDA cores. An
SM executes the SIMD instructions. Threads in CUDA is grouped into thread
blocks. Using CUDA, the programmer specifies the number of threads per block
and the number of thread blocks. CUDA maps multiple thread blocks to an SM.
Hence, many warps are always active in an SM. A thread block is sub-divided

28 Background

into groups of 32 threads (in our example this number is 4) called warps4. In
SIMT, the threads in the warp form the lanes of the vectorized instructions.

Figure 1.7: SIMT

Figure 1.8: SIMT

Figure 1.8 shows a simplified overview of subdivision of a program with diver-
gence into multiple thread blocks, their assignment to an SM and the execution
of warps. A thread in SIMT is bound to a lane in SIMD. Threads in a warp

4Thread block is sub-divided into groups of 32 threads because there are 32 lanes (CUDA
cores).

Data-level parallelism 29

that are executing the same instructions form an SIMD instruction. When the
threads are not executing the same PC, they are on a divergent path. SIMT uses
an active bit mask to identify the participant threads in a vectorized instruction.
Figure 1.9 illustrates the masks in SIMT, corresponding to the active threads,
when there is a divergence. There is 1 bit corresponding to each thread in an
SIMT. A set bit (i.e., 1) indicates that the thread is active and an unset bit (i.e.,
0) corresponds to an inactive thread. SIMT can be considered as SIMD instruc-
tions with hardware assisted divergence management. Branches in a data-parallel
application cause the execution to follow divergent paths. Divergence adversely
affects the efficiency of SIMD execution. The divergent paths merge at the recon-
vergence point. In figure 1.9, block D is a reconvergence point. SIMT requires
compiler hints to identify the reconvergence points after the divergence. NVIDIA
GPUs uses a stack-based divergence management. Stack-based reconvergence is
discussed in section 2.2.1.

Figure 1.9: SIMT divergence

As we have seen in figure 1.8, a thread block consists of multiple warps. SIMT
hides the execution latency by switching between warps.

30 Background

1.3 Thread-level parallelism

Thread-level parallelism (TLP) arises when independent threads work on different
data. Even though the thread/process works with own data, some of the data
might be shared. Synchronization techniques such as locks, mutex, semaphores,
etc., are used to prevent race conditions in those cases. TLP is exploited by using
threads. Single Program Multiple Data (SPMD) is a sub-class of MIMD that
consist of multiple threads and processes that execute nearly the same instruction
but with its own data. In comparison with DLP, a program written to exploit
TLP tends to work better when there is a possibility of multiple divergent paths
of execution. DLP and TLP are often interchangeable, especially in a SPMD
application in which the threads are on a convergent path. However, when there
is a divergence, the execution path can only be determined at the runtime. Hence,
SPMD applications often have implicit DLP that are often unexploited. Hardware
optimizations to exploit MIMD is explained in section 1.3.

High-level programming languages such as C/C++, Java, Python, etc. pro-
vide abstractions to implement multi-threading with the support of operating
system. Programmers use the libraries offered by the high-level languages to im-
plement multi-threading in programs. POSIX threads [C+95], often referred to
as PThreads, is an application programming interface for C and C++ languages.

Figure 1.10: Thread execution without multi-threading

Explicit TLP Hardware multi-threading supports multiple thread contexts at
the same time on the same processor core. Processes or threads are mapped to

Thread-level parallelism 31

each of the hardware threads. In general, software threads and process scheduling
is done by the operating system. However, at a much finer granularity, the micro-
processor schedules the hardware threads to maximize the resource utilization.
Figure 1.10 shows the execution of two threads without hardware multi-threading.
Hardware multi-thread allows both the context to execute at the same time. De-
pending on the scheduling technique, hardware multi-threading can be classified
into

• Coarse grained multi-threading

• Fine grained multi-threading

• Simultaneous multi-threading

Figure 1.11: Coarse grained multi-threading (After cycle 1 T1 is scheduled as
there is a long latency operation, T0 is rescheduled only when there is a long
latency operation for T1)

1.3.1 Coarse-grained multi-threading

In coarse-grained multi-threading [ALKK90, SBCVE90, TE94] the processor
switches the context when there is a very high latency operation such as a cache
miss. Figure 1.11 illustrates how threads context switch when there is a long
latency operation. Context switching could cost a few cycles to flush the pipeline.
For coarse-grained muti-threading to be effective, the pipeline refill time should
be much less than the stall time. IBM AS/400 [EJK+96] and Intel Itanium2
Montecito [MB05] cores implement coarse-grained multi-threading.

1.3.2 Fine grained multi-threading

In fine-grained multi-threading [Smi82] the thread interleaved execution between
pipeline stages. However, only one thread is scheduled at a time in a given pipeline

32 Background

Figure 1.12: Fine grained multi-threading (Rescheduling T0 do not wait until
there is a very long latency operation for T1)

stage. The context switch happens without any cost. Figure 1.12 illustrates fine-
grained multi-threading. In comparison with coarse-grained multi-threading, fine-
grained multi-threading improves the throughput by hiding both short and long
stalls. The disadvantage of fine-grained multi-threading is that it slows down the
individual threads when there are no stalls [PH13]. Fine-grained multi-threading
works well for the in-order processors with narrow issue width. Sun Microsystems
Niagara [KAO05] uses fine-grained multi-threading.

Figure 1.13: Simultaneous multi-threading

1.3.3 Simultaneous multi-threading (SMT)

SMT improves the throughput of a superscalar core by enabling independent
threads to share CPU resources dynamically. Resource sharing policies have
[TEE+96a, CRVF04, LFMS01, EA03, EE07] huge impact on execution through-
put. Many studies have focused on optimizing the instruction fetch policy and
leaving the instruction core unchanged while other studies have pointed out the
ability to benefit from memory level parallelism through resource sharing poli-
cies. Fairness among threads has been recognized as an important property that
should be also tackled by resource sharing policies [LGF01]. However, these re-
source sharing heuristics essentially address multi-program workloads.

SMT architectures [TEL95] were introduced to exploit thread-level and/or
multi-program level parallelism to optimize the throughput of a superscalar core.

Thread-level parallelism 33

Typically, on an SMT processor, instructions from the different hardware threads
progress concurrently in all stages of the pipeline. Depending on the precise
implementation, some pipeline stages only treat instructions from a single thread
at a given cycle. For instance, the instruction fetch pipeline stage [SFKS02],
while some other pipeline stages like the execution stage, mix instructions from
all threads.

SMT architectures aim at delivering throughput for any mix of threads with-
out differentiating threads of a single parallel application from threads of a multi-
program workload. Therefore, when threads from an SPMD application exhibit
very similar control flows, SMT architectures only benefit from these similarities
by side-effects of sharing structures such as caches or branch predictors [HS96].

SMT architectures have often been targeting both high single-thread perfor-
mance and high parallel or multi-program performance. As a consequence, most
commercial designs have been implemented with out-of-order execution. How-
ever, in the context of parallel applications, out-of-order execution may not be
cost effective. An in-order 4-thread SMT 4-issue processor has been shown to
reach 85 % of the performance of an out-of-order 4-thread SMT 4-issue proces-
sor [HS99]. Therefore, in-order SMT appears as a good architecture tradeoff for
implementing the cores of an SPMD oriented throughput processor.

In a conventional single-threaded processor low ILP phases leave unused re-
sources. SMT processors can leverage higher issue width with the use of multiple
threads. [PJS97] identifies the various source of complexity for implementing a
wider superscalar microprocessor. With higher complexity, various delays at dif-
ferent pipeline stages increase, forcing the architecture to scale down the clock cy-
cle rates at which the processor runs. Intel’s implementation of SMT is called Hy-
perthreading [Upt], which appeared in 2002 and is still in use. [TT03, ECX+11]
reports the performance improvement over a non-SMT architecture as around
20% in the older processors and 30% in the modern Intel processors.

1.3.4 Clustered multi-threading (CMT)

Clustering is also implemented in multi-threaded architectures. [KT98] proposed
a clustered SMT architecture, which partitioned an aggressive, dynamic super-
scalar core into several independent clusters that do not share the resources. This
architecture is analogous to a multi-core SMT. [CT04, DS02] proposed combining

34 Background

SMT architectures with clustering to have higher IPC while maintaining higher
clock rates. CASH [DS02] proposed a hybrid of SMT and CMP architectures,
in which certain hardware is shared between the threads and use split resources
for hardware whose implementation complexity is high. [CT04] explored the im-
pact of clustering on instruction window wakeup and functional unit bypass logic,
register renaming logic, fetch unit and integer register file on an SMT. AMD’s
Bulldozer [BBSG11] implements clustering in the multi-threaded processor.

SIMT is intended to run applications that are throughput oriented. SIMT
does not support interrupts. Hence, it does not support operating system process.
SIMT amortizes the control overhead. Unlike CMT, the pipeline operations are
greatly reduced by sharing of instruction fetch and memory accesses. SIMT also
needs specialized ISA for thread divergence management.

To improve the single thread performance CMT uses techniques such as su-
perscalar execution, branch prediction, cache hierarchy, out-of-order execution,
register renaming, speculative execution, etc. SIMT, on the other hand, is used
in architectures aggressively optimized for throughput. SIMT supports a large
number of cores. However, they are simple. They do not implement microarchi-
tectural techniques to improve the single thread performance. Instead, it tries to
improve the resource utilization with a large number of threads. More threads
hide high latency operations. SIMT architectures have the benefits of cluster-
ing because of the independence of its participant threads. However, this can
have adverse effects when there is less instruction occupancy or lots of thread
divergence 5.

Multi-threading in DITVA DITVA is implemented over an SMT architec-
ture. Whenever possible the instructions across SMT threads are vectorized.
When vectorization is not feasible, the threads in DITVA executes as regular
SMT. Like SIMT, DITVA groups the SMT threads into warps. Each thread in
the warp occupies a lane. Consequently, DITVA also benefits from clustering, as
the threads within the warp utilize independent resources.

5There are techniques such as Dynamic warp formation [FSYA07] and Dynamic warp sub-
division [MTS10a] to have a higher tolerance for branch divergence

TLP vs DLP 35

1.4 TLP vs DLP

As mentioned in section 1.3, TLP arises when independent task works on different
data. In the code segment given in listing 1.1, exploiting TLP is straightforward.

Listing 1.5: Array addition with multi-threading
1

2 void add (i n t threadid , i n t num_threads) {
3 i n t N_per_thread = N/num_threads ;
4 f o r (i n t i=thread id ∗N_per_thread ; i<N_per_thread ; i++){
5 c_array [i] = a_array [i] + b_array [i] ;
6 f_array [i] = d_array [i] + e_array [i] ;
7 }
8 }

A simple multi-threaded implementation of the code segment is shown in
listing 1.5. All the threads execute the add function. In the given example, each
thread adds a slice of the array. Parallel execution of the slices hides the long
latency operations. Transformation of an algorithm with DLP to TLP is simple.
However, vice versa is not straightforward. To illustrate this, consider listing 1.6,
with ’condition’ variable which is known at the run-time. Even though there is
data independence, the control flow of the program becomes dependent on the
outcome of the conditional variable that is independent between iterations. The
code segment in listing 1.6 still has inherent TLP. To exploit DLP in this example,
the programmer has to rely on software based SPMD vectorization languages
such as OpenCL [Mun09, SGS10] and ISPC [PM12], or hardware based SPMD
techniques such as Single Instruction Multiple threads (SIMT).

Listing 1.6: Array addition with branch
1

2 void add () {
3 f o r (i n t i = 0 ; i < N; i++){
4 i f (c ond i t i on [i]) {
5 c_array [i] = a_array [i] + b_array [i] ;
6 f_array [i] = d_array [i] + e_array [i] ;
7 }
8 }
9 }

36 Background

1.5 Chip multiprocessor

In section 1.1.4 and section 1.3.4 we have seen that clustering reduces the hard-
ware complexity that allows the microprocessors to run at a higher clock rate.
SMT architectures are introduced to improve resource sharing, but this increases
the complexity. On the other hand, simultaneous multiprocessors (SMP) are
computing elements that share nothing at all. However, on an SMP, the inter-
processor communication is expensive. Moreover, the process or the threads run-
ning on different processors may share data. Caches, which reduce the latency
of expensive memory operations when there is data reuse, are not shared on an
SMP.

Chip multiprocessors (CMP) consist of multiple computing elements (cores)
on a single chip. The cores may have a separate L1 cache but may share caches
at other levels. It has to be noted that the each core in a CMP may still support
SMT. CMP aims to improve the scalability by clustering less critical hardware
resources. A typical desktop computer may consist of a microprocessor having
up to 8 cores (Intel Core i7 Extreme Edition 5960X [ci7]) and microprocessors
designed for high performance may have even more cores.

An alternative CMP design consists of clustering resource by type. A CMP
with different types of cores is called heterogeneous CMP. A heterogeneous CMP
may consist of some specialized cores. For instance, Cell processors [PAB+05]
consists of 1 Power Processing Element (PPE) for general purpose computing
and 8 Synergistic Processor Elements(SPE) optimized for SIMD execution. AMD
Fusion architecture [BFS12] consists of CPU and GPU in a single chip,
big.LITTLE [Gre11] from ARM reduce energy consumption by coupling powerful
large cores(e.g. Cortex-A15) with smaller cores (e.g. Cortex-A7) for energy
savings.

1.6 Conclusion

In this chapter, we saw different techniques to exploit parallelism in a program.
These techniques are not mutually exclusive. Depending on the program be-
havior (e.g., threadable vs non-threadable) and user requirement (e.g., latency
vs throughput) an application can be programmed. Many general purpose mi-
croprocessors incorporate all these techniques to exploit parallelism. Scalability

Conclusion 37

and effective resource utilization still remain an issue in these microprocessors.
For example, SMT processors do not scale well beyond eight threads. Also, a
program compiled with inefficient static vectorization does not use the SIMD ex-
ecution units very well. There are inter-thread similarities (chapter 2) that allows
threads to share the control flow. DITVA removes these inefficiencies of modern
general purpose microprocessors. DITVA improves the throughput and overall
energy consumption of the cores while maintaining the latency of the threads.
DITVA is designed keeping in mind a heterogeneous CMP that may consist of
regular cores coupled with DITVA cores optimized for SPMD applications.

DITVA does mask based vectorization of instruction like SIMT. Unlike SIMT,
which uses a stack based divergence management, DITVA is heuristic based and
hence it does not require the support of any specific ISA for divergence man-
agement. Moreover, the use of intrinsics and compiler hints for reconvergence
makes SIMT comparable to a predicate based static vectorization. DITVA, on
the other hand, is entirely dynamic and even support speculative execution of
branches with the help of a branch predictor. SIMT relies on fine-grained multi-
threading (section 1.3.2) to maximize resource utilization while DITVA relies on
simultaneous multi-threading technique (section 1.3.3).

Inter-thread similarity forms the basis of dynamic vectorization in DITVA.
dynamic vectorization enables sharing of control flow when the threads are do-
ing similar instruction operations. Dynamic vectorization results in reduction
in pipeline operations in the microprocessor, thus reducing energy consumption
and improving the utilization of existing SIMD units. In chapter 2, we discuss
inter-thread similarities and the ways to exploit it to dynamically vectorize in-
structions.

38 Background

Chapter 2

Exploiting inter-thread similarity in
microprocessors

In this chapter, we will discuss the presence of inter-thread instruction simi-
larities that cause redundancy while running SPMD application in an in-order
SMT [TEE+96a] architecture. Dynamic Inter-Thread Vectorization Architec-
ture (DITVA) avoids this redundancy by dynamically vectorizing the instruc-
tions across threads. The efficiency of DITVA relies on convergent execution
for dynamic vectorization. Hence, early reconvergence of threads after following
divergent paths is of utmost importance. In this chapter, we discuss various recon-
vergence techniques and our preferred reconvergence heuristics for DITVA. We
will also discuss related microarchitectural techniques that exploit inter-thread
redundancies.

2.1 Inter-thread similarities in SPMD applica-
tions

SPMD provides an easy-to-program model for exploiting data-level parallelism.
A programmer may use programming libraries such OpenMP or Pthread to write
SPMD application. SPMD is a higher level abstraction that uses of multiple
instruction streams (threads or processes) that operate on a different subset of
the data. The instruction streams would be loaded from the same executable.

39

40 Exploiting inter-thread similarity in microprocessors

And hence, each instruction streams often execute the same instructions. The
instruction streams may also be on a divergent path. In this case, the instruc-
tions streams may not share the instruction flow. The instruction streams are not
required to execute the same instruction at every time step and hence, instruc-
tion stream has its own program counter that is updated independently. SPMD
applications may share the same program memory. The instruction streams are
executed simultaneously. When an instruction stream is blocked for a long la-
tency operation, an SMT processor may find another instruction stream that is
not blocked.

SPMD assumes that the parallel instruction streams execute identical instruc-
tions. In a single core SMT processor, SPMD applications benefits from shared
instruction caches as the instruction streams share most of the instructions. The
instruction streams may also share some data in the data caches. However, the
flow of instructions in the pipeline front-end is redundant [KJT04], resulting in
resource wastage and high energy consumption.

2.1.1 Source of inter-thread similarities

In SPMD applications, threads usually execute very similar flows of instructions.
They exhibit some control flow divergence due to branches, but generally, a rapid
reconvergence of the control flows occur. To illustrate this convergence/divergence
scenario among the parallel sections, we display a control flow diagram from the
Blackscholes workload [BKSL08] in figure 2.1.

All the threads execute the convergent blocks while only some threads execute
the divergent blocks. Moreover, more than one thread often executes each diver-
gent block. Threads that are in the convergent path fetch the same instructions.
This results in instruction redundancy. The redundancy in SPMD applications
could be instruction redundancy or data/value redundancy. With instruction
redundancy, operations at the pipeline front end are repeated for each of the in-
struction across threads. With data redundancy, instructions execute with the
same data.

Since the threads are inherently independent, they are not guaranteed to
execute in lockstep i.e., some threads may be ahead of the others in the execution
flow. SPMD applications typically resort to explicit synchronization barriers at
certain execution points to enforce dependencies between tasks. Such barriers are

Inter-thread similarities in SPMD applications 41

Figure 2.1: Control flow graph of blackscholes benchmark

natural control flow reconvergence points.

On a multi-threaded machine, e.g. an SMT processor, threads execute inde-
pendently between barriers without any instruction level synchronization favoring
latency hiding and avoiding starvation. On an SMT processor, each thread man-
ages its control flow. In the example illustrated above, for each convergent block,
instructions are fetched, decoded, etc. by each of the thread without any mu-
tualization of this redundant effort. The same applies to the divergent blocks
that are executed by more than one thread. This appears as a large waste of
resources. Indeed, a prior study on the PARSEC benchmarks have shown that
the instruction fetch of 10 threads out of 16 on average could be mutualized if
the threads were synchronized to progress in lockstep [MCP+14].

42 Exploiting inter-thread similarity in microprocessors

(a) Thread execution in SMT (b) Lockstep execution and formation of vec-
torized instruction

Figure 2.2: Overview of dynamic vectorization

0%	
20%	
40%	
60%	
80%	

100%	

barnes	

blackscholes	

FFT	
fluidanimate	

fmm	
ocean	cp	

ocean	ncp	

radix	
swap@ons	

volrend	

b+tree	

hotspot	

kmeans	

pathfinder	

srad	
streamcluster	

1	Thread	 2	Threads	 3	Threads	 4	Threads	

Figure 2.3: Breakdown of average vectorizable instructions for 4-way SMT

2.1.2 Vectorization efficiency in an SMT

Figure 2.3 illustrates the functional unit occupancy with a breakdown of vector-
izable instruction count per for a 4-way SMT1 with MinSP-PC-Roundrobin fetch

1The programs shown in the figure are executed with 16 threads. The 16 threads are grouped
into warps of 4 threads. Warps are defined in section 3.2

Inter-thread similarities in SPMD applications 43

heuristic2. Functional unit occupancy is the occupancy of active threads in an
instruction. This is equivalent to the active threads represented by the set bits of
a mask in an SIMT (see section 1.2.2). The k thread bar represents the average
number of active threads in vectorized instructions throughout the execution of
a program. For example, in blackscholes, around 30% of the instructions are non
vectorizable, since they have occupancy one. Efficiency increases with the occu-
pancy. Hence, the best case here are the instructions with occupancy 4 since they
are perfectly vectorized. This figure represents the DLP that could be extracted
from the SPMD program. Radix and FFT have vast amounts of DLP. Hence,
most of their instructions are perfectly combined to form vectorized instructions.
On the other hand, the threads of benchmarks that have low exploitable DLP
like Fluidanimate tend to diverge. Only 23% of vectorized instructions contain
more than one instruction on Fluidanimate.

2.1.3 Dynamic Vectorization

Dynamic vectorization leverages the instruction redundancy to mutualize the
front-end pipeline of an in-order SMT processor, as a resource-efficient way to
improve throughput on SPMD applications.

Figure 2.2a shows the execution of a code block by threads in SMT. In this
example, we assume that all the threads are executing the same code block. How-
ever, the threads may still fetch different PC at a given time. Figure 2.2b shows
the dynamic vectorization across threads in an SMT processor. The vectorization
involves two steps

1. Maximize lockstep execution

2. Vectorize instructions across threads that are running in lockstep

Maximize lockstep execution Threads run in lockstep when they fetch the
same PC at the same time. Lockstep execution is only possible among the threads
that are in the convergent path. Lockstep execution is achieved by using special
heuristics that prioritizes the slow running thread to catch-up with the faster
running thread. When the threads are in the divergent path, the threads are

2We will discuss MinSP-PC heuristic in section 2.2.4

44 Exploiting inter-thread similarity in microprocessors

prioritized for early reconvergence. In section 2.2, we discuss some of the recon-
vergence techniques and our motivation to use a hybrid MinSP-PC-Roundrobin
heuristics in DITVA to maximize the convergent execution.

2.2 Thread reconvergence for SPMD applications

Similarity exploitation in SPMD applications requires the threads to execute sim-
ilar instructions at around the same time. Thread synchronization is not difficult
to achieve in a regular application when the threads are on a convergent path.
With divergence, threads start to follow different execution paths. Divergence
is the source of performance degradation in SIMD and SIMT architectures. An
optimal solution to maximize thread synchronization should support early recon-
vergence. It should perfectly identify the best reconvergence point. For certain
programs, identifying reconvergence point is difficult. An example of such a
progam is shown in listing 2.1. When the program is executed, the threads may
execute either function A() or function B(). After the divergence, it is difficult
to know the point at which the threads will reconverge.

Listing 2.1: A program with divergence
1 f o r (i = 0 to n)
2 i f ((i+t i d) %c))
3 A() ;
4 e l s e
5 B() ;

Thread reconvergence is a challenging task because of its dynamic nature. In
general, there are two classes of reconvergence mechanisms. The first one is
stack-based and the second one is stack-less. A bulk of SIMT architectures uses
an explicit reconvergence mechanism based on explicit annotations from ISA and
a hardware stack. A stack-based approach uses a stack to keep track of diver-
gences within a thread group (warp). There are several proposals for implicit
reconvergence in SIMT architectures that are still stack-based. DITVA uses a
stack-less implicit mechanism, which prioritizes threads, to maximize convergent
execution of an SPMD application. In this section, we will discuss some of the
methods used for thread synchronization.

Thread reconvergence for SPMD applications 45

2.2.1 Stack-based explicit reconvergence

Levinthal [LP84] proposed a stack-based approach that uses ISA support for the
Chap SIMD graphics processor. The processor uses a run flag register (predication
mask) and two mask stacks to determine the active SIMD lanes, with each bit of
the stack and run flag register corresponding to an SIMD lane. The stacks and
the run flags are updated at the beginning and end of a basic block 3. Essentially,
an entry is created in the stack for each divergent path and it is removed after
it completes execution. This mechanism supports nested branch and looping
statements. NVIDIA GPU uses a stack-based approach, with additionally storing
the address of reconvergent point generated at compile time.

Keryell and Paris [KP93] used Activity counters to replace stack of masks by
counters to track the lane activity. Activity counter is the nesting level of a thread
when it was last active. The thread is active when the activity counter is equal
to the current nesting level. The assumption here is that, when a thread becomes
inactive at a certain nesting level, it will only be active again upon reaching the
same nesting level.

2.2.2 SIMT extensions for stack-based implicit reconver-
gence

With the stack-based approach, a warp may have multiple instruction streams
(IS) when there is a divergence. Each of these warps may be further sub-divided
when there are divergences with those warps. This approach hurts the lane utiliza-
tion for several applications which may have a significant number of divergences.
Fung et al [FSYA07] proposed Dynamic Warp Formation, which merges threads
from different warps when they are fetching the same PC. At reconvergence, the
stacks are updated. Dynamic warp formation considers several scheduling policies
to enhance early reconvergence of threads. Fung et al. observe that reconvergence
at the immediate post-dominator is nearly optimal with respect to oracle imple-
mentation. A basic block A post dominates another block B if all the paths from
B to the exit node passes through A. There may be multiple paths between A and
B. An immediate post-dominator is a block which does not strictly post-dominate

3A basic block is a section of a program that has a single entry and exit point. The threads
may be executed without divergence within a basic block

46 Exploiting inter-thread similarity in microprocessors

any other post-dominator.

A drawback of Dynamic warp formation is that it does not support execution
from parallel branches. They hide the latency with deep multi-threading. Deep
multi-threading increase the cost of register file implementation. Dynamic warp
subdivision [MTS10b] proposes intra-warp latency hiding by parallel execution
of divergent branches and subdivision of warps on memory divergences by in-
struction streams (warp-split). Instruction streams introduce a problem of the
reconvergence point. Some instruction streams may reconverge late if they are
allowed to run ahead. On the other hand, trying to enforce an early reconver-
gence may defeat the purpose of instruction streams as the warp running ahead
has to wait until the others catch up. Dynamic warp subdivision explores several
opportunistic reconvergence heuristics.

2.2.3 Stack-less explicit reconvergence

Lorie-Strong [LSJ84] used a stack-less implementation that uses PC and logical
block ordering performed by the compiler. A block with at the lowest order gets
the priority for execution. At a potential reconvergence point, the block numbers
are compared, and the blocks are merged when there is a match.

Thread frontiers [DKW+11] uses a similar approach where a compiler assign
a priority to basic blocks. The scheduling order of the basic blocks is used to
determine the thread frontiers statically at the compile time and it is used to insert
divergent and reconvergent instructions. The thread frontiers are the set of basic
blocks which the divergent threads may be executing which is a possible point
for reconvergence, i.e., a thread frontier of a warp executing in a basic block has
all the divergent threads of that warp. Thread frontiers acts as synchronization
points for the divergent threads while preventing deadlock situations. Hardware
implementation uses the compiler hints for thread reconvergence. In an Intel
GPU implementation per-thread PCs are used to selectively enable or disable
the threads in a warp by comparing the thread PCs to the warp context PC.
On a branch, the priority is given to the highest priority block in the thread
frontiers. A native implementation uses a sorted predicate stack to dynamically
assign priority for thread frontiers.

Thread reconvergence for SPMD applications 47

2.2.4 Stack-less implicit reconvergence

Takahashi [Tak97] proposed thread scheduling based on a branching mechanism
for reconvergence without compiler hints. The mechanism prioritizes a basic block
with the lowest value of PC upon a divergence in order not to pass a potential
reconvergence point. A set activity flag in the lane indicates that the instruction
in that lane is executed The activity flag is set when a lane is active in the current
basic block. The mechanism realizes barrier synchronization and skipping of then
block in an if-else condition, when no lane is active in the then block. However,
it cannot skip the else block. The author suggests insertion of an instruction as
a workaround for the problem.

MinPC [QHJ88] is a simple stack-less heuristics that prioritizes the threads
based on textually earliest program point in the source code. Reconvergence hap-
pens when the threads share the same PC. It builds on the idea that compilers
typically lay out basic blocks in memory in a way that preserves dominance rela-
tions: reconvergence points have a higher address than the matching divergence
points. This heuristics will fail if the compiler heavily re-orders the basic blocks.
MinPC heuristic may not work well with function calls. In comparison with taka-
hashi, MinPC need not execute both the if-else blocks if the threads dont execute
in that path. As MinPC heuristic is PC value based, it does not require compiler
hints.

MinSP-PC [Col11] heuristic improved MinPC by giving priority to the block
with minimum relative stack pointer(SP) value. On a match, the priority is given
for MinPC. The underlying assumption is that the stack size increases with the
function call, resulting in a lower value of stack pointer in a downward growing
stack. Therefore, the threads with highest call depth are given top priority.

Let us consider threads T0 and T1 executing the code blocks shown in fig-
ure 2.4. In the example, T0 and T1 starts at Func_a and diverges at the end
of the function call. T0 proceeds to execute Func_b and Func_d. Later T0
start the execution of Func_e. Similarly, after divergence, T1 executes Func_c
and later execute Func_e. Figure 2.5 shows the growth of stack with MinSP-PC
heuristics. Initially, both threads start at Func_a, and a stack entry is created
as shown in 2.5a. T0 and T1 share the same stack offset and hence the heuris-
tic uses MinPC policy, which keeps them in lockstep mode until the end of the
function call. After divergence, an entry for Func_b and Func_c is created in
the stack of T0 and T1 respectively. After divergence, the threads are prioritized

48 Exploiting inter-thread similarity in microprocessors

Figure 2.4: Control flow

(a) Initial call at
func_a()

(b) Divergence - T0 takes
Func_b() and Func_c()
path

(c) T0 calls Func_d() (d) T0 and T1 calls
Func_e()

Figure 2.5: Growth of stack in time for threads T0 and T1

with MinSP-PC policy. Assuming that T0 had the highest priority, T0 will start
the execution of Func_d. After the execution of Func_b, Func_d and Func_c
by T0 and T1 the stack entries are popped out. The next synchronization point

Vectorization of instructions across threads 49

for T0 and T1 is at the beginning of the function call Func_e, where both the
threads have same SP offset and MinPC policy will ensure lockstep execution
in Func_e. A drawback of the heuristic is its inability to synchronize the same
functions arrived through a different path. Figure 2.6 shows a control flow of
a program with synchronization point at Func_d. Since T0 and T1 were in a
divergent path after Func_a, MinSP-PC heuristic will miss the synchronization
point at Func_d and will synchronize on Func_e instead.

Figure 2.6: Control flow with synchronization point at Func_d

2.3 Vectorization of instructions across threads

Instructions across threads are vectorized when they run in lockstep. Each thread
occupies a fixed lane of the vector instruction. A dynamically vectorized instruc-
tion may be partially occupied when some of the threads are in divergent paths.
In this case, the threads in each divergent path form partially occupied vector
instruction.

50 Exploiting inter-thread similarity in microprocessors

2.4 General purpose architectures exploiting
inter-thread redundancy

In the past, several attempts were made to leverage this redundancy to opti-
mize the performance of SPMD applications. Most of the previous work focus
instruction redundancy. Some works propose to re-use the result from a previous
execution of instruction with identical data to eliminate data/value redundancy.

Kumar et al [KJT04] proposed Fetch combining for their Conjoined-core Chip
Multiprocessing. A Conjoined-core shares resources between adjacent cores.
Fetch combining improves the fetch bandwidth when two threads running on
conjoined-core pair have the same PC. In this case, a fetch is consumed by both
the cores.

Thread Fusion [GCC+08], fused instructions across threads in a 2-way SMT
when both the threads are executing identical instructions. A fused instruction
only has one instance in the pipeline front-end. At the back-end pipeline, the
fused instruction is treated as two separate instructions. The instructions are
executed parallelly if there are free resources; otherwise, they are pipelined. For
thread fusion both the threads should be executed in lock-step mode (i.e. Threads
execute the same instruction at the same time). When the threads are not in
lock-step, they are executed in Normal mode. Thread fusion switches to Fused
mode with the help of synchronization points inserted by the compiler. [GCC+08]
defines synchronization point as the first PC (Program Counter) of an instruction
that is frequently visited by the threads executing a parallel section. Thread
fusion is an optimization technique focused on reducing the energy consumption
(It does not focus on improving the performance).

Minimal Multi-threading [LFB+10] improves it further by achieving this with-
out the compiler support. MMT does this by using a Fetch History Buffer(FHB),
which keeps track of the fetch history(PC) at a branch for each thread. For a
branch instruction, it also checks if a PC is found in other thread’s history then
the thread will be transitioning to the CATCHUP mode, and it is given higher
priority until it is re-synchronized. MMT tries to favor thread synchronization
in the front-end (instruction fetch and decode) of an SMT core. It further tries
to eliminate redundant computation on the threads. However, MMT assumes
a conventional out-of-order execution superscalar core and does not attempt to
synchronize instructions within the backend.

GPU architectures to exploit inter-thread redundancies 51

Multi-threaded Instruction Sharing(MIS) [DFR10] uses the instruction sim-
ilarity and retires the identical instructions without executing them. MIS uses
a match table, which holds the results of a previous instruction. MIS performs
match test on other threads in parallel. If there is a hit in the match table, the
instruction from the current thread is retired without execution.

Execution Drafting [MBW14] focuses on the energy efficiency of an in-order
core processor (OpenSPARC T1 [PWH+08]) by drafting duplicate instructions.
Drafting is a technique in which subsequent duplicate instructions follow the first
instruction in the pipeline. Execution drafting support instructions from multiple
programs as well, unlike other techniques which mostly focus on a multi-threaded
program. A duplicate instruction can be either partial or full duplicate. A partial
duplicate instruction is one which has the same opcode but has different machine
code. Execution drafting uses a Hybrid Thread Synchronization Method(HTSM)
which is a combination of MinPC [QHJ88] and random thread synchronization
method. The use of heuristics may result in increased latency. Execution draft-
ing primarily focuses on applications in data centres, which are often multiple
instances of the same program or the applications that have latency tolerance.
Execution Drafting [MBW14] seeks to synchronize threads running the same code
and shares the instruction control logic to improve energy efficiency. It targets
both multi-thread and multi-process applications by allowing lockstep execution
at arbitrary addresses.

Both MMT and Execution Drafting attempt to run all threads together in
lockstep as much as possible. However, full lockstep execution is not always
desirable as it defeats the latency tolerance purpose of SMT. The threads running
in lockstep will all stall at the same time upon encountering a pipeline hazard
like a cache miss, causing inefficient resource utilization.

2.5 GPU architectures to exploit inter-thread re-
dundancies

SIMT architectures can vectorize the execution of multi-threaded applications
at warp granularity, but they require a specific instruction set to convey branch
divergence and reconvergence information to the hardware. GPU compilers have
to emit explicit instructions to mark reconvergence points in the binary program.

52 Exploiting inter-thread similarity in microprocessors

These mechanisms are designed to handle user-level code with a limited range of
control-flow constructs. The stack-based divergence tracking mechanism does not
support exceptions or interruptions, which prevents its use with a general-purpose
system software stack. Various works extend the SIMT model to support more
generic code [DKW+11, MDKS12] or more flexible execution [FSYA09, BCD12,
LKB14]. However, they all target applications specifically written for GPUs,
rather than general-purpose parallel applications.

2.6 Conclusion

SMT is an efficient architectural model that improves the CPU resource utiliza-
tion when the program in execution have long latency operations. SMT works
well when multiple programs are in execution in a single processor core. However,
when we execute the threads from the same SPMD application in an SMT, they
often execute the same instructions. In this chapter, we discussed the source of
instruction redundancy and the use of dynamic vectorization to eliminate the
redundancies. We observe that almost 80% of the instructions are dynamically
vectorizable.

Dynamic vectorization requires lockstep execution which can only be assured
with good thread reconvergence techniques. Thread reconvergence techniques
could be broadly classified into stack-based and stack-less. GPUs rely on stack-
based reconvergence technique, which requires ISA support. Stack-based tech-
niques are hardware assisted software-based technique. Hardware assisted tech-
niques rely on hard explicit reconvergence points and do not have the support for
legacy applications. DITVA is a hardware only dynamic vectorization architec-
ture and hence, DITVA relies on stack-less heuristics for reconvergence.

DITVA exploits data-level parallelism in SPMD applications by extending an
in-order SMT processor. Therefore, DITVA is strongly related to the three do-
mains, SIMD/vector architecture (section 1.2.1), SIMT (section 1.2.2) also known
as GPU architectures and SMT architectures (section 1.3.3). Static DLP, detected
in the source code, has been exploited by hardware and compilers for decades.
SIMD and/or vector execution have been considered as early as the 1970s till
the 1990s in vector supercomputers [Rus78]. Performance on these systems was
highly dependent on the ability of application programmers to express computa-
tions as operations on contiguous, strided or scatter/gather vectors and on the

Conclusion 53

ability of compilers to detect and use these vectors [PW86]. In the mid-1990s,
SIMD instructions were introduced in the microprocessor ISAs, first to deal with
multimedia applications [Lee97] e.g. VIS for the SPARC ISA or MMX for x86.
More recently ISAs have been augmented with SIMD instructions addressing sci-
entific computing, e.g. SSE and AVX for x86_64.

However, SIMD instructions are not always the practical vehicle to express
and exploit possible DLP in all programs. In many cases, compilers fail to vector-
ize loop nests with independent loop iterations that have potential control flow
divergence or irregular memory accesses. One experimental study [MGG+11]
shows that only 45-71% of the vectorizable code in Test Suite for Vectorizing
Compilers (TSVC) and 18-30% in Petascale Application Collaboration Teams
(PACT) and Media Bench II was vectorized by auto-vectorization of ICC, GCC,
and XLC compilers because of inaccurate analysis and transformations.

Also, the effective parallelism exploited through SIMD instructions is limited
to the width (in number of data words) in the SIMD instruction. A change in the
vector length of SIMD instructions requires recompiling or even rewriting pro-
grams. In contrast, SPMD applications typically spawn a runtime-configurable
number of worker threads and can scale on different platforms without recompi-
lation. An SMT core can exploit this parallelism as TLP. Our DITVA proposal
further dynamically transforms this TLP into dynamic DLP.

We discussed several CPU based techniques to avoid the resource wastage.
Most of them focus on energy efficiency by optimizing pipeline frontend. DITVA
not only aims to provide energy efficiency, but also improve the speedup by utiliz-
ing the unused SIMD resources. DITVA aims to do this with minimal overhead.

GPUs have different design goals. Their stack-based reconvergence technique
and is ideal for embarrassingly parallel applications specifically programmed for
the architecture. They have high latency tolerance and are not ideal for latency
oriented process like an operating system process. They support a large number
of threads. To support large number of threads GPU consists of large number
of slow registers. DITVA is an intermediate between CPU and a GPU. DITVA
supports more threads than a CPU but much less threads in comparison with
a GPU. It also supports latency oriented applications. GPUs extract DLP from
SPMD workloads by assembling vector instructions across fine-grained threads.
GPUs are programmed with SPMD applications, written in low-level languages
like CUDA or OpenCL, or compiled from higher-level languages like OpenACC.

54 Exploiting inter-thread similarity in microprocessors

The SIMT execution model used on NVIDIA GPUs groups threads statically
into warps, currently made of 32 threads. All threads in a warp run in lockstep,
executing identical instructions. SIMD units execute these warp instructions,
each execution lane being dedicated to one thread of the warp. To allow threads
to take different control flow paths through program branches, a combination
of hardware and software enables differentiated execution based on per-thread
predication. On NVIDIA GPU architectures, a stack-based hardware mecha-
nism keeps track of the paths that have diverged from the currently executing
path. It follows explicit divergence and reconvergence instructions inserted by
the compiler [ND10b].

Putting together chapter 1 and chapter 2, we discussed the scope of DITVA ar-
chitecture and the methods adopted by DITVA to reduce inter-thread similarities.
In the next chapter, we describe the detailed architecture of our implementation
of dynamic vectorization.

Chapter 3

Dynamic Inter-Thread
Vectorization Architecture

Modern microprocessors have support for SIMD instruction execution. SIMD
instructions are formed by exploiting DLP in a program. A program compiled
for SIMD is often power efficient since it avoids the redundancy in the front-
end pipeline operations. SPMD applications have implicit DLP that are often
not exploited due to inefficiency in the program or compiler optimizations. The
transformation from TLP to DLP often require recompilation and hence the ac-
cess to the source code of the applications.

DITVA extracts DLP from TLP in microarchitecture without recompilation
of programs and hence, DITVA supports legacy applications. DITVA dynami-
cally vectorize instruction across threads. Dynamic vectorization in DITVA is the
ability of the processor to vectorize instructions at the runtime at the microar-
chitecture without any human or compiler intervention. It exploits the missed
vectorization opportunities by the programmer and compiler in SPMD applica-
tions. The instructions executed by the threads could be of varying data width.
For example, 8-bit char, 32-bit int, 64-bit float, 128 bit SSE, 256-bit AVX etc.
DITVA is capable of vectorizing instructions of different data width. Therefore,
DITVA does not impact the performance of SPMD applications with SIMD in-
structions. In addition to this, dynamic vectorization allows efficient utilization
of large SIMD units when the actual program is compiled for a target architecture
with smaller SIMD units.

55

56 Dynamic Inter-Thread Vectorization Architecture

(a) Dynamically vectorized instruction 100000dc1
and 100000dc9 occupying Warp 0 and Warp 1 re-
spectively

(b) Warp 0 and Warp 1 with some of the threads
in divergent path

Figure 3.1: Overview of DV-instruction formation in DITVA

3.1 Warps in DITVA

In section 1.3.3 we discussed SMT architecture, which supports multiple threads
to hide the long latency operations. With dynamic vectorization, the control flow
of SMT threads is shared by multiple threads that are on a convergent path.
When all the threads are in the convergent path, the control flow is equivalent
to a single thread processor. Perfect lockstep execution reduces the efficiency
of dynamic vectorization since it cannot hide the long latency operations very
well. With perfect lockstep execution, an entire stream of instruction, which may
consist of multiple scalar threads, may be blocked when there is a data cache
miss, even for one of the thread. To overcome this issue, DITVA groups multiple
threads into a statically formed warp. A warp in DITVA is similar to SIMT
execution model used on NVIDIA GPUs. In DITVA, the thread count could
be modelled based on the SIMD execution units supported by the architecture.
A DITVA processor supports more than one such warp. Having multiple warps
provides the benefit of allowing instructions from other warps to be scheduled
when the threads of a warp are blocked due to long latency operation. In this
thesis, we evaluate several DITVA configurations based on the thread count in
the warp as well as the number of warps.

Warps in DITVA 57

Figure 3.1a shows threads T0 to T3 grouped into warp0 and T4 to T7 grouped
into warp1. Each thread is strictly associated with a single warp and it occupies
a fixed lane in the warp. For instance, T0 is always associated with lane0 of
warp0. There may be divergent control flow within a warp. In this case, the
dynamically vectorized instructions are partially occupied as shown in figure 3.1b.
For simplicity, only one divergent path is shown in the figure. In the given
example, T0 of warp 0 forms another vectorized instruction (with single thread
occupancy) and in warp 1, T4 and T5 forms 1 (with two thread occupancy) or 2
(with single thread occupancy) vectorized instruction.

0	

0.5	

1	

1.5	

2	

2.5	

3	

Barnes	
Blackscholes	

FFT	
Fluidanimate	

Fmm	
Ocean	CP	

Ocean	NCP	

Radix	
SwapCons	

Volrend	

G-Mean	

Single	warp	 4-Warps	

Figure 3.2: Speed up of single warp of 16 threads and 16 threads grouped into 4
warps with dynamic vectorization using DITVA

Our experiments on SPMD applications from the PARSEC and SPLASH
benchmarks [BKSL08, Uni06] show that the number of instructions fetched and
decoded can be reduced, on average, by 40% on a 4-warp × 4-thread DITVA
architecture compared with a 4-thread SMT. Coupled with a realistic memory
hierarchy, this translates into a speedup of 1.44× over 4-thread in-order SMT, a
very significant performance gain. Figure 3.2 shows the speedup of 16 threads,
single warp DITVA 1 and 16 threads, grouped into 4 warps, over a 4-way SMT.
4-warp DITVA has an average speedup of around 50% that clearly shows the

1Please note that 16 thread, single warp DITVA is difficult to build as it would need very
large vector units

58 Dynamic Inter-Thread Vectorization Architecture

benefits of having multiple warps to hide high latency operations. Compared to
16 threads, single warp DITVA, 4-warp DITVA, that has the same number of
threads achieves around 25% speedup. We will discuss the application behavior
in section 4.

DITVA provides these benefits at a limited hardware complexity in terms of
the silicon area since it relies essentially on the same control hardware as the
SMT processor and the replication of the functional units by using SIMD units
in place of scalar units. Since DITVA can leverage preexisting SIMD execution
units, this benefit is achieved with 22% average energy reduction. Therefore,
DITVA appears as a very energy-effective design to execute SPMD applications.

3.2 Overview of the Dynamic Inter-Thread Vec-
torization Architecture

In this section, we present Dynamic Inter-Thread Vectorization Architecture
(DITVA).

Transposed in modern terms, an instruction stream is generally assumed to
be a hardware thread. However, such strict 1-to-1 mapping between threads
and instruction streams is not necessary, and we can decouple the notion of an
instruction stream from the notion of a thread. In particular, multiple threads
can share a single instruction stream, as long as they have the same program
counter (PC) and belong to the same process.

Figure 3.3: Logical organization of hardware threads on 2-warp× 4-thread
DITVA. Scalar threads are grouped into 2 warps of 4 threads. Scalar threads
sharing the same PC within a warp form an Instruction Stream (IS).

Overview of the Dynamic Inter-Thread Vectorization Architecture 59

Logical thread organization DITVA supports a number of hardware thread
contexts, that we will refer to as (scalar) threads. Scalar threads are partitioned
statically into n warps of m threads each, borrowing NVIDIA GPU terminology.
In Figure 3.3, scalar threads T0 through T3 form Warp 0, while T4 to T7 form
Warp 1.

Inside each warp, threads that have the same PC and process identifier share
an Instruction Stream (IS). While thread-to-warp assignment is static, the thread-
to-IS assignment is dynamic: the number of IS per warp may vary from 1 to m
during execution, as does the number of threads per IS. In Figure 3.3, scalar
threads T0, T2 and T3 in Warp 0 have the same PC PC0 and share Instruction
Stream 0.0, while thread T1 with PC PC1 follow IS 0.1.

The state of one Instruction Stream consists of one process identifier, one PC
and an m-bit inclusion mask that tracks which threads of the warp belong to the
IS. Bit i of the inclusion mask is set when thread i within the warp is part of the
IS. Also, each IS has data used by the fetch steering policy, such as the call-return
nesting level (Section 3.5).

Figure 3.4: Thread mapping to the physical organization.

Mapping to physical resources DITVA consists in a front-end that processes
Instruction Streams and a SIMD back-end (Figure 3.4).

An instruction is fetched only once for all the threads of a given IS, and a single
copy of the instruction flows through the pipeline. That is, decode, dependency
check, issue and validation are executed only once.

60 Dynamic Inter-Thread Vectorization Architecture

Each of the m lanes of the back-end replicates the register file and the func-
tional units. A given thread is assigned to a fixed lane, e.g. T5 executes on Lane
1 in our example. Execution, including operand read, operation execution and
register result write-back is performed in parallel on the m lanes. A notable ex-
ception are instructions that already operate on vectors, such as SSE and AVX,
that are executed in multiple waves over the whole SIMD width.

Notations We use the notation nW ×mT to represent a DITVA configuration
with n Warps and m Threads per warp. An nW × 1T DITVA has 1 thread and
1 IS per warp, and is equivalent to an n-thread SMT. At the other end of the
spectrum, a 1W ×mT DITVA has all threads share a single pool of IS without
restriction.

A vector of instruction instances from different threads of the same IS is
referred to as a DV-instruction. We will refer to the group of registers Ri from
the set of hardware contexts in a DITVA warp as the DV-register DRi, and the
group of a replicated functional unit as a DV functional unit.

In the remainder of the section, we first describe the modifications required in
the pipeline of an in-order SMT processor to implement DITVA and particularly
in the front-end engine to group instructions of the same IS. Then we address
the specific issue of data memory accesses. Finally, as maintaining/acquiring
lockstep execution mode is the key enabler to DITVA efficiency, we describe the
fetch policies that could favor such acquisition after a control flow divergence.

3.3 Pipeline architecture

We describe the stages of the DITVA pipeline, as illustrated in Figure 3.5.

3.3.1 Front-end

The DITVA front-end is essentially similar to an SMT front-end, except it oper-
ates at the granularity of Instruction Streams rather than scalar threads.

Pipeline architecture 61

Figure 3.5: Overview of a 2W × 2T , 4-issue DITVA pipeline. Main changes from
SMT are highlighted.

62 Dynamic Inter-Thread Vectorization Architecture

Fetch Commit

Convergence

Divergence

Instruction flow

T2

T0,1,3

0

1

2

3

DVIQ
a

b

c

d

Figure 3.6: Instruction stream tracking in DITVA. Instruction Streams (a, b, c, d)
are illustrated as trains, DVIQs as tracks, DV-instructions as train cars, and
scalar instructions as passengers.

Branch prediction and reconvergence detection Within the front-end,
both the PC and inclusion mask of each IS are speculative. An instruction address
generator initially produces a PC prediction for one IS based on the branch history
of the first active scalar thread of the IS. After instruction address generation,
the PC and process identifier of the predicted ISi, are compared with the ones of
the other ISs of the same warp. A match between ISi and ISj indicates they have
reached a point of convergence and may be merged. In such case, the mask of ISi

is updated to the logical OR of its former mask and the mask of ISj, while ISj is
aborted. Figure 3.6 illustrates convergence happening between threads 0 and 1
in IS b with thread 3 in IS a. IS b contains threads 0, 1 and 3 after convergence,
so its inclusion mask is now 1101. IS a is aborted. Earlier in time, convergence
did also happen between threads 0 and 2 in IS c and thread 1 in IS b. All the
threads of an IS share the same instruction address generation, by speculating
that they will all follow the same branch direction. Unlike convergence, thread
divergence within an IS is handled at instruction retirement time by leveraging
branch misprediction mechanisms, and will be described in Section 3.3.5.

Fetch and decode Reflecting the two-level organization in warps and ISs,
instruction fetch obeys a mixed fetch steering policy. First, a warp is selected
following a similar policy as in SMT [TEL95, EE07]. Then, an intra-warp instruc-
tion fetch steering policy selects one IS within the selected warp. The specific
policy will be described in Section 3.5. From the selected IS PC, a block of

Pipeline architecture 63

instructions is fetched.

Instructions are decoded and turned into DV-instructions by assigning them
an m-bit speculative mask. The DV-instruction then progresses in the pipeline as
a single unit. The DV-instruction mask indicates which threads are expected to
execute the instruction. Initially, the mask is set to the IS mask. However, as the
DV-instruction flows through the pipeline, its mask can be narrowed by having
some bits set to zero whenever an older branch is mispredicted or an exception
is encountered for one of its active threads.

Instruction Queue After the decode stage, the DV-instructions are pushed
in a DV-instruction queue (DVIQ) associated with the IS. In a conventional
SMT, instruction queues are typically associated with individual threads. DITVA
applies this approach at the IS granularity: each DVIQ tail is associated with one
IS. Hence, for a nW ×mT DITVA, there could be a maximum of n ×m active
DVIQ’s and each warp may have upto m DVIQ’s associated with it.

Unlike in SMT, instructions that are further ahead in the DVIQ may not
necessarily belong to the IS currently associated with the DVIQ, due to potential
IS divergence and convergence. For instance in Figure 3.6, DVIQ 2 contains
instructions of threads T0 and T2, while IS 2 has no active threads. The DV-
instruction mask avoids this ambiguity.

3.3.2 In-order issue enforcement and dependency check

On a 4-issue superscalar SMT processor, up to 4 instructions are picked from the
head of the instruction queues on each cycle. In each queue, the instructions are
picked in-order. In a conventional in-order superscalar microprocessor, the issue
queue ensures that the instructions are issued in-order. In DITVA, instructions
from a given thread T may exist in one or more DVIQs.

Figure 3.7 illustrates this scenario with an example. Consider the program
flow with divergence and reconvergence shown in figure 3.7a. In this example,
threads T1 and T2 takes a divergent path after instruction 0x100000dcc and
forms IS 1. The instructions following the divergence are inserted into DVIQ
1. T1 and T2 later reconverges at instruction 0x100000e50. DV-instructions
after reconvergence are inserted in DVIQ 0. In the given example, instruction
0x100000dcc must be issued before instruction 0x100000dd2. Similarly, all the

64 Dynamic Inter-Thread Vectorization Architecture

(a) Program flow with divergence and reconver-
gence

(b) DVIQ state

Figure 3.7: Illustration of instructions from a scalar thread occupying multiple
DVIQ’s

instructions in the divergent path must be issued before instruction 0x100000e50

Pipeline architecture 65

. To ensure in-order issue in DITVA, we maintain a sequence number for each
thread. Sequence numbers track the progress of each thread. On each instruc-
tion fetch, the sequence numbers of the affected threads are incremented. Each
DV-instruction is assigned an m-wide vector of sequence numbers upon fetch,
that corresponds to the progress of each thread fetching the instruction. The
instruction issue logic checks that sequence numbers are consecutive for succes-
sively issued instructions of the same warp. As DVIQs maintain the order, there
will always be one such instruction at the head of one queue for each warp.

Figure 3.8: Instruction issue with sequence number

Figure 3.8 shows instruction issue with the use of sequence number. DVIQ 0
and DVIQ 1 belongs to the same warp and the instructions in both the queues
are candidates for issue. The processor keeps track of the expected issue sequence
number. At the current state, the expected issue sequence number is {4,4,4,4}.
DV-instruction 0x100000dc7 has all the four sequence number matching and
hence it is the next instruction to be issued. After the issue of 0x100000dc7, the
expected sequence number if incremented to {5,5,5,5}. After issuing 0x100000dcc,
the threads takes divergent paths. At this stage, the expected sequence num-
ber of the processor is {7,7,7,7}. However, both instructions 0x100000e4a and
0x100000dd2 in the divergent paths are candidates for instruction to be issued.

66 Dynamic Inter-Thread Vectorization Architecture

Hence, the instructions in the divergent paths can be issued in parallel irre-
spective of the order of instruction fetch. Similarly, at the reconvergence point,
instruction 0x100000e50 cannot be issued until the expected sequence number is
{18,24,24,18}.

The length of sequence numbers should be dimensioned in such a way that
there is no possible ambiguity in comparing two sequence numbers. The ambi-
guity is avoided by using more sequence numbers than the maximum number
of instructions belonging to a given thread in all DVIQs, which are bounded
by the total number of DVIQ entries assigned to a warp. For instance, if the
size of DVIQs is 16 and m = 4, 6-bit sequence numbers are sufficient, and each
DV-instruction receives a 24-bit sequence vector.

A DV-instruction cannot be launched before all its operands are available. A
scoreboard tracks instruction dependencies. In an SMT having n threads with
r architectural registers each, the scoreboard consists of a nr data dependency
table with 8 ports indexed by the source register IDs of the 4 pre-issued 2-input
instructions. In DITVA, unlike in SMT, an operand may be produced by sev-
eral DV-instructions from different ISs, if the consumer instruction lies after a
convergence point. Therefore, the DITVA scoreboard mechanism must take into
account all older in-flight DV-instructions of the warp to ensure operand avail-
ability, including instructions from other DVIQs. As sequence numbers ensure
that each thread issues at most 4 instructions per cycle, the scoreboard can be
partitioned between threads as m tables of nr entries with 8 ports.

3.3.3 Execution: register file and functional units

On an in-order SMT processor, the register file features n instances of each archi-
tectural register, one per thread. The functional units are not strictly associated
with a particular group of registers and an instruction can read its operands or
write its result to a single monolithic register file.

In contrast, DITVA implements a partitioned register file; each of the m sub-
files implements a register context for one thread of each warp. DITVA also
replicates the scalar functional units m times and leverages the existing SIMD
units of a superscalar processor for the execution of statically vectorized SIMD
instructions.

Figure 3.9a shows the execution of a scalar DV-instruction (i.e. dynamically

Pipeline architecture 67

(a) Scalar ALU instruction (b) Scalar SSE (floating-point) with
mask 1111

(c) Packed 128-bit SSE with mask 1011 (d) Packed 256-bit AVX with mask 1011
Figure 3.9: Operand collection on 4W ×4T DITVA depending on DV-instruction
type and execution mask. ’w’ represents a 64-bit word

vectorized instruction from multi-thread scalar code) in a 4W×4T DITVA. A
scalar DV-instruction reads different thread instances of the same registers in
each of the the m register files. It executes on m similar functional units and
writes the m results to the same register in the m register files, in a typical SIMD

68 Dynamic Inter-Thread Vectorization Architecture

fashion. All these actions are conditioned by the mask of the DV-instruction.
Thus, the DITVA back-end is equivalent to an SIMD processor with per-lane
predication.

3.3.4 Leveraging explicit SIMD instructions

Instruction sets with SIMD extensions often support operations with different
vector lengths on the same registers. Taking the x86_64 instruction set as an
example, AVX instructions operate on 256-wide registers, while packed SSE in-
structions support 128-bit operations on the lower halves of AVX architectural
registers. Scalar floating-point operations are performed on the low-order 64 or
32 bits of SSE/AVX registers. We assume AVX registers may be split into four
64-bit slices.

Whenever possible, DITVA keeps explicit vector instructions as contiguous
vectors when executing them on SIMD units. This maintains the contiguous
memory access patterns of vector loads and stores. In order to support both
explicit SIMD instructions and dynamically vectorized DV-instructions on the
same units without cross-lane communication, the vector register file of DITVA
is banked using a hash function. Rather than making each execution lane respon-
sible for a fixed slice of vectors, slices are distributed across lanes in a different
order for each thread. For a given thread i, the lane j is responsible for the slice
i ⊕ j, ⊕ being the exclusive or operator. All registers within a given lane of a
given thread are allocated on the same bank, so the bank index does not depend
on the register index.

This essentially free banking enables contiguous execution of full 256-bit AVX
instructions, as well as partial dynamic vectorization of 128-bit vector and 64-
bit scalar SSE instructions to fill the 256-bit datapath. Figure 3.9b shows the
execution of a scalar floating-point DV-instruction operating on the low-order
64-bit of AVX registers. The DV-instruction can be issued to all lanes in parallel,
each lane reading a different instance of the vector register low-order bits. For a
128-bit SSE DV-instruction, lanes 0,2 or 1,3 can be executed in the same cycle.
Figure 3.9c shows the pipelined execution of a SSE DV-instruction with mask
1011 in a 4W×4T DITVA. In figure 3.9c, T0 and T2 are issued in the first
cycle and T1 is issued in the subsequent cycle. Finally, the full-width AVX
instructions within a DV-instructions are issued in up to m successive waves to
the pipelined functional units. Time-compaction skips over SIMD instructions of

Pipeline architecture 69

inactive threads, as in vector processors. Figure 3.9d shows the execution of a
AVX DV-instruction with mask 1101 in a 4W × 4T DITVA.

3.3.5 Handling misprediction, exception or divergence

Branch mispredictions or exceptions require repairing the pipeline. On an in-
order SMT architecture, the pipeline can be repaired through simply flushing the
subsequent thread instructions from the pipeline and resetting the speculative
PC to the effective PC.

In DITVA, we generalize branch divergence, misprediction and exception han-
dling through a unified mechanism.

Branch divergence is detected at branch resolution time, when some threads
of the current IS, ISi, actually follow a different control flow direction than the
direction the front-end predicted. ISi is split into two instruction streams: ISi

continues with the scalar threads that were correctly predicted, and a new stream
ISj is spawned in the front-end for the scalar threads that do not follow the
predicted path. The inclusion masks of both IS are adjusted accordingly: bits
corresponding to non-following threads are cleared in ISi mask and set in ISj

mask. For instance, in Figure 3.6, ISc with threads T0 and T2 is split to form
the new ISd with thread T2. Instructions of thread T2 are invalidated within the
older DV-instructions of ISc as well as ISb. Handling a scalar exception would
be similar to handling a divergence. The bits corresponding to the mispredicted
scalar threads are also cleared in all the masks of the DV-instructions in progress
in the pipeline and in the DVIQs. In Figure 3.6, they correspond to disabling
thread T2 in the DV-instructions from IS2 and IS1.

Evolution of the IS and DVIQ states upon thread divergence and re-
convergence Figure 3.10, illustrates the evolution of the IS and DVIQ states
upon thread divergence and reconvergence.

Divergence Figure 3.10b shows the state of the pipeline when the instruc-
tion PC-11d of thread T5 illustrated in figure 3.10a triggers a branch mispre-
diction. In the given example, a new IS is spawned for thread T5, which starts
fetching from the other branch after misprediction.

70 Dynamic Inter-Thread Vectorization Architecture

In addition, some bookkeeping is needed. In the case of a partial misprediction
in a warp, the mask corresponding to the lane of all the DV-instructions in the
pipeline corresponding to that warp should be updated. In the case of a true
branch misprediction, the masks of some DV-instructions become null, i.e. no
valid thread remains in IS1. These DV-instructions have to be flushed out from
the pipeline to avoid consuming bandwidth at execution time. This bookkeeping
is kept simple as null DV-instructions are at the head of the DVIQ. Likewise, an
IS with an empty mask is aborted.

As DITVA provisions m IS slots and DVIQs per warp, and the masks of
ISs do not overlap, resources are always available to spawn the new ISs upon a
misprediction. The only case when all ISs slots are occupied is when each IS has
only one thread. In that case, a misprediction can only be a full misprediction,
and the new IS can be spawned in the slot left by the former one.

True branch mispredictions in DITVA have the same performance impact as a
misprediction in SMT, i.e. the overall pipeline must be flushed for the considered
DV-warp. On the other hand, simple divergence has no significant performance
impact as it does not involve any “wrong path”: both branch paths are eventually
taken.

Reconvergence Figure 3.10 also illustrates reconvergence for T2 (IS2).The
PC of each of the IS is compared. At the reconvergence point, IS0 and IS1 have
the same PC. One or more of the IS having the same PC is merged with the
other IS and the resultant mask is updated and is used while decoding the DV-
instruction. In figure 3.10b, IS2 is merged with IS0 and the DV-instruction with
PC-142 is decoded with mask 1110.

3.4 Data memory accesses

A data access operation in a DV-instruction may have to access up to m data
words in the cache. These m words may belong to m distinct cache lines and/or to
m distinct virtual pages. Servicing these m data accesses on the same cycle would
require a fully multiported data cache and a fully multiported data TLB. The
hardware cost of a multiported cache is prohibitively high. Truly shared data
demands implementing multiple effective ports, rather than simply replicating

Maintaining lockstep execution 71

the data cache. Instead, DITVA relies on a banked data cache. Banking is
performed at cache line granularity. The load data path supports concurrent
access to different banks, as well as the special case of several threads accessing
the same element, for both regular and atomic memory operations. In case of
conflicts, the execution of a DV-load or a DV-store stays atomic and spans over
several cycles, thus stalling the pipeline for all its participating threads.

We use a fully hashed set index to reduce bank conflicts, assuming a virtually
indexed L1 data cache. Our experiments in Section 4 illustrate the reduction in
the number of data access conflicts due to the alignment of the bottom of thread
stacks on page boundaries.

Maintaining equal contents for the m copies of the TLB is not as important
as it is for the data cache: there are no write operations on the TLB. Hence, the
data TLB could be implemented just as m copies of a single-ported data TLB.
However, all threads do not systematically use the same data pages. That is, a
given thread only references the pages it directly accesses in its own data TLB.
Our simulations in Section 4 show that this optimization significantly decreases
the total number of TLB misses or allows to use smaller TLBs.

A DV-load (resp. DV-store) of a full 256-bit AVX DV-instruction is pipelined.
Each data access request corresponding to the participant thread is serviced in
the successive cycles. For a 128-bit SSE DV-instruction, data access operation
from lane 0,2 or 1,3 are serviced in the same cycle. Any other combination of two
or more threads are pipelined. For example, a DV-load with threads 0,1 or 0,1,2
would be serviced in 2 cycles.

DITVA executes DV-instructions in-order. Hence, a cache miss on one of the
active threads in a DV-load stalls the instruction issue of all the threads in the
DV instruction.

3.5 Maintaining lockstep execution

DITVA has the potential to provide high execution bandwidth on SPMD appli-
cations when the threads execute very similar control flows on different data sets.
Unfortunately, threads lose synchronization as soon as their control flow diverges.
Apart from the synchronization points inserted by the application developer or
the compiler, the instruction fetch policy and the execution priority policy are

72 Dynamic Inter-Thread Vectorization Architecture

two possible vehicles to restore lockstep execution.

Conventional instruction fetch policies such as Icount [TEE+96b] focus on
fairness and efficient resource utilization. These policies try to optimize execution
throughput or fairness in the context of conventional SMT. They are not adapted
to the context of DITVA. On DITVA, and if the threads belong to the same
process, one should try to reinitiate lockstep execution whenever possible.

In DITVA, we use a hybrid Round-Robin/MinSP-PC instruction fetch policy.
Round-Robin/MinSP-PC is a stack-less implicit reconvergence heuristics. The
MinSP-PC policy helps restore lockstep execution and Round-Robin guarantees
forward progress for each thread. To guarantee that any thread T will get the
instruction fetch priority periodically2, the RR/MinSP-PC policy acts as follows.
Among all the ISs with free DVIQ slots, if any IS has not got the instruction
fetch priority for (m + 1) × n cycles, then it gets the priority. Otherwise, the
MinSP-PC IS is scheduled.

This hybrid fetch policy is biased toward the IS with minimum stack pointer
or minimum PC to favor thread synchronization, but still guarantees that each
thread will make progress. When two or more threads are executed in lockstep
mode, this advantage is increased and is expected to favor re-synchronization. In
particular, when all threads within a warp are divergent, the MinSP-PC thread
will be scheduled twice every m + 1 scheduling cycles for the warp, while each
other thread will be scheduled once every m+ 1 cycles.

Since warps are static, convergent execution does not depend on the prior-
itization heuristics of the warps. The warp selection is done with round robin
priority to ensure fairness for each of the independent thread groups.

3.6 Clustered Multi-threading in DITVA

The introduction of more threads to an SMT processor introduce the challenge of
reducing the complexity of implementation. In general, sharing resources increase
the complexity. For example, the issue width of a superscalar processor is limited
by the cost of its implementation. With the lanes in warps, DITVA logically

2RR/MinSP-PC is not completely fair among independent threads, e.g. multiple program
workloads as it may favor some threads. However, fairness on this type of workloads is out of
the scope of this paper.

Conclusion 73

partitions the resources across threads, that would result in smaller hardware
structures without the need for crossbars. The threads from different warps may
still share the resources, however, they are time interleaved. DITVA partitions
TLB, DVIQ, issue logic and execution units (ALU as well as SIMD lanes).

3.7 Conclusion

In this chapter, we discussed the implementation details of the Dynamic Inter-
Thread Vectorization Architecture (DITVA). Some of the most important design
aspects of DITVA are

1. Instruction streams: Dynamic formation of instruction stream allows
DITVA to share the instruction flow control across threads.

2. Warps: The best case scenario for DITVA is perfect lockstep. However,
it completely defeats the purpose of SMT, as any one thread blocked on a
long latency operation will block the entire pipeline. The use of multiple
warps that consists of statically assigned threads keeps the pipeline busy
even when some of the warps are blocked.

3. Masks: Masks determine the lane activity of warps. This ensures correct-
ness of the program execution. Also, reduced lane activity (eg: register
reads) will reduce the energy requirements of DITVA.

4. DVIQ: Dynamic steering of vectorized instruction enables the parallel ex-
ecution of independent execution paths with the help of stackless reconver-
gent heuristics.

5. Banked registers: Smart banking of registers allows efficient utilization
of SIMD units of execution.

6. Banked memory: Hashing algorithm used for bank assignment reduces
the bank conflict. Bank conflict in DITVA is an important issue since the
data may be used by the threads in a vectorized instruction may be read
from non-contiguous memory location, unlike static vectorization.

74 Dynamic Inter-Thread Vectorization Architecture

In chapter 4, we demonstrate that DITVA indeed provides, performance and
energy benefits in comparison an SMT architecture. We also show that DITVA
is able to achieve this without significant hardware overhead.

Conclusion 75

(a) Initial state

(b) After reconvergence in Warp 0 and misprediction in Warp 1

Figure 3.10: Evolution of the IS and DVIQ states upon thread divergence and
reconvergence

76 Dynamic Inter-Thread Vectorization Architecture

Chapter 4

Evaluation

In chapter 3, we discussed DITVA and its implementation. In this chapter, we
discuss DITVA-SIM, an in-house cycle accurate simulator to simulate DITVA and
SMT to evaluate its performance and design tradeoffs. We also simulate the cost
of implementation and the energy profiles of DITVA in comparison with SMT,
using CACTI [TMAJ08] and McPAT [LAS+09].

4.1 Experimental Framework

Simulating DITVA involves a few technical challenges. First, we need to com-
pare application performance for different thread counts. Second, the efficiency
of DITVA is crucially dependent on the relative execution order of threads. Con-
sequently, instructions per cycle cannot be used as a proxy for performance, and
common sampling techniques are inapplicable. Instead, we simulate full applica-
tion kernels, which demands a fast simulator.

4.1.1 DITVA-SIM

We model DITVA using an in-house trace-driven x86_64 simulator, DITVA-
SIM. DITVA-SIM consists of two components. A trace generator and DITVA
simulator. DITVA-SIM can simulate both SMT as well as DITVA. An mW × 1T
corresponds to an m-way SMT. The trace generator uses Intel Pin [BCC+10,

77

78 Evaluation

LCM+05] to record one execution trace per thread of one SPMD application.

Intel Pin Pin allows inserting arbitrary code in the executable while it is run-
ning. Pin works like a j̈ust in time(̈JIT) compiler that has an executable as the
input. Using the instruction sequence from the running program, the pin gen-
erates a new executable core. The generated code sequence may contain user
injected code. For the execution of user injected code, pin branches out the ex-
ecution to the user injected code and it regains the control after the completion
of its execution.

Pin comprises of two components, instrumentation and analysis code, which is
defined in an executable plugin called pintool. Pintool registers instrumentation
callback routine, it inspects static properties to decide where and what analysis
code is inserted. Analysis code gathers application data. Pintool can also register
callback routines for events such as thread creation. For our study, DITVA-SIM
records traces at the time of thread creation. DITV-SIM stores the pre-decoded
instructions in a file. The index of the executed instruction in the pre-decoded
instruction file is stored in an execution trace file. Decoded information are static
and hence storing the index to the decoded instructions prevent the creation
of large trace files and to reduce the memory requirements. Along with these,
DITVA-SIM records other dynamic information such as data memory access,
branch information etc.

DITVA Simulator DITV-SIM is a cycle-accurate simulator. The trace-driven
DITVA simulator consumes the traces of all threads concurrently, scheduling their
instructions in the order dictated by the fetch steering and resource arbitration
policies. Since DITV-SIM is a trace-based simulator, it cannot simulate the wrong
path after a branch instruction. To simulate branch prediction, TAGE [Sez11]
predicts the taken or not taken direction when a branch instruction is encoun-
tered. This is compared against the against the actual direction taken by the
execution path. When there is a misprediction, the mispredicted threads are
blocked until the branch is resolved.

Thread synchronization primitives such as locks need a special handling in this
multi-thread trace-driven approach since they affect thread scheduling. When a
barrier is encountered, the threads wait until all other threads hit the barrier.
We record all calls to synchronization primitives and enforce their behavior in

Experimental Framework 79

Table 4.1: Simulator parameters

L1 data cache 32 KB, 16 ways LRU, 16 banks, 2 cycles
L2 cache 4MB, 16 ways LRU, 15 cycles
L2 miss latency 215 cycles
Branch predictor 64-Kbit TAGE [Sez11]
DVIQs n×m 16-entry queues
IS select MinSP-PC + RR every n(m+ 1) cycles
Fetch and decode 4 instructions per cycle
Issue width 4 DV-instructions per cycle
Functional units
(SMT)

4 64-bit ALUs, 2 256-bit AVX/FPUs,
1 mul/div, 1 256-bit load/store, 1 branch

Functional units
(DITVA)

2 m×64-bit ALUs, 2 256-bit AVX/FPUs,
1 m×64-bit mul/div, 1 256-bit load/store

the simulator to guarantee that the order in which traces are replayed results in
a valid scheduling. In other words, the simulation of synchronization instructions
is execution-driven, while it is trace-driven for all other instructions.

4.1.2 Evaluations using DITVA-SIM

Just like SMT, DITVA can be used as a building block in a multi-core processor.
However, to prevent multi-core scalability issues from affecting the analysis, we
focus on the micro-architecture comparison of a single core in this study. To
account for memory bandwidth contention effects in a multi-core environment,
we simulate a throughput-limited memory with 2 GB/s of DRAM bandwidth per
core. This corresponds to a compute/bandwidth ratio of 32 Flops per byte in
the 4W × 4T DITVA configuration, which is representative of current multi-core
architectures. We compare two DITVA core configurations against a baseline
SMT processor core with AVX units. Table 4.1 lists the simulation parameters
of both micro-architectures. DITVA leverages the 256-bit AVX/FPU unit to
execute scalar DV-instructions in addition to the two m×64-bit ALUs, achieving
the equivalent of four m× 64-bit ALUs.

We evaluate DITVA on SPMD benchmarks from the PARSEC [BKSL08] and
Rodinia [CBM+09] suites. We use PARSEC benchmark applications that have
been parallelized with pthread library. We considered the OpenMP version of the

80 Evaluation

Table 4.2: Rodinia Applications

Application Problem size
B+tree 1 million keys
Hotspot 4096× 4096 data points
Kmeans 10000 datapoints, 34 features

Pathfinder 100000 width, 100 steps
SRAD 2048× 2048 datapoints

Streamcluster 4096 points, 32 dimensions

Rodinia benchmarks. All are compiled with AVX vectorization enabled. We simu-
late the following benchmarks: Barnes, Blackscholes, Fluidanimate, FFT, Fmm,
Swaptions, Radix, Volrend, Ocean CP, Ocean NCP, B+tree, Hotspot, Kmeans,
Pathfinder, Srad and Streamcluster. PARSEC benchmarks use the simsmall in-
put dataset. The simulation parameters for Rodinia benchmarks are shown in
Table 4.2.

0	
1	
2	
3	
4	
5	
6	
7	

barnes	

blackscholes	

FFT	
fluidanimate	

fmm	
ocean	cp	

ocean	ncp	

radix	
swapAons	

volrend	

b+tree	

hotspot	

kmeans	

pathfinder	

srad	
streamcluster	

Sp
ee
d	
up

	

4-Way	SMT	 8-Way	SMT	 16-Way	SMT	

Figure 4.1: Speedup with thread count in the baseline SMT configuration, nor-
malized to single-thread performance

Figure 4.1 shows the speedup of SMT configurations with 4, 8 and 16 threads
over single threaded applications. Applications exhibit diverse scaling behavior
with thread count. FFT, Ocean, Radix, B+tree and and Srad tend to be bound by
memory bandwidth, and their performance plateaus or decreases after 8 threads.
Volrend and Fluidanimate also have a notable parallelization overhead due to

Performance evaluation 81

thread state management and synchronization. In the rest of the evaluation,
we will consider the 4-thread SMT configuration (4W × 1T) with AVX as our
baseline. We will consider 4W × 2T DITVA, i.e., 4-way SMT with two dynamic
vector lanes, 2W × 8T DITVA, i.e., 2-way SMT with eight dynamic vector lanes
and 4W × 4T DITVA, i.e., 4-way SMT with 4 lanes.

4.2 Performance evaluation

4.2.1 Throughput

0	
0.5	
1	

1.5	
2	

2.5	
3	

barnes	

blackscholes	

FFT	
fluidanimate	

fmm	
ocean	cp	

ocean	ncp	

radix	
swap?ons	

volrend	

b+tree	

hotspot	

kmeans	

pathfinder	

srad	
streamcluster	

g-mean	

Sp
ee
d-
up

	

8W-1T	 4W-2T	 16W-1T	 4W-4T	 2W-8T	

Figure 4.2: Speedup over 4-thread SMT as a function of warp size

Figure 4.2 shows the speedup achieved for 4W ×2T DITVA, 4W ×4T DITVA
and 2W × 8T DITVA over 4-thread SMT with AVX instructions. For reference,
we illustrate the performance of SMT configurations with the same scalar thread
count (16W×1T and 8W×1T). On average, 4W×2T DITVA achieves 37% higher
performance than 4-thread SMT and 4W ×4T DITVA achieves 55% performance
improvement. The 4W × 4T DITVA also achieves 34% speedup over 16-thread
SMT. The 2W × 8T DITVA achieves 46% speedup over 4-thread SMT. Widened
datapaths and efficient utilization of AVX units to execute dynamically vectorized
instructions enable these performance improvements. Although 2W ×8T DITVA
has twice the SIMD width of 4W × 4T DITVA, it has half as many independent
warps. We find that the best performance-cost tradeoffs are obtained by balancing
homogeneous DLP and heterogeneous TLP.

82 Evaluation

Due to memory hierarchy related factors, the actual speedup is not propor-
tional to DV-instruction occupancy. For instance, the performance of Radix drops
with higher thread counts due to reduced cache locality. The speedup of DITVA
over SMT just compensates this performance loss. The scaling of Hotspot and
Srad is likewise limited by the memory related factors. The performance of
DITVA on applications with low DLP, like Fluidanimate, is on par with 16-
thread SMT. Fluidanimate, Ocean CP, Ocean NCP and Volrend show sub-linear
parallel scaling: the total instruction count increases with thread count, due to
extra initialization, bookkeeping and control logic. Still, DITVA enables extra
performance gains for a given thread count.

4.2.2 Divergence and mispredictions

0	
1	
2	
3	
4	
5	
6	
7	
8	

barnes	

blackscholes	

FFT	
fluidanimate	

fmm	
ocean	cp	

ocean	ncp	

radix	
swapBons	

volrend	

b+tree	

hotspot	

kmeans	

pathfinder	

srad	
streamcluster	

M
is
pr
ed

ic
Bo

n	
&
	d
iv
er
ge
nc
e	

pe
r	k

ilo
	in
st
ru
cB
on

s	

Mpred	4W	x	1T	 Mpred	4W	x	2T	 Mpred	4W	x	4T	 Diverg	4W	x	2T	 Diverg	4W	x	4T	

Figure 4.3: Divergence and mispredictions per thousand instructions

Figure 4.3 illustrates the divergence and misprediction rates for respectively
single-lane (i.e. SMT), two-lane and four-lane DITVA configurations. Mispredic-
tions in DITVA have the same performance impact as mispredictions in SMT. Di-
vergences can impact time to reconvergence, but have no significant performance
impact as both branch paths are eventually taken. As expected, we observe the
highest misprediction rate on divergent applications. Indeed, we found that most
mispredictions happen within the IS that are less populated, typically with one
or two threads only.

Performance evaluation 83

4.2.3 Impact of split data TLB

0	
10	
20	
30	
40	
50	
60	

barnes	

blackscholes	

FFT	
fluidanimate	

fmm	
ocean	cp	

ocean	ncp	

radix	
swap@ons	

volrend	

b+tree	

hotspot	

kmeans	

pathfinder	

srad	
streamcluster	

TL
B	
m
is
se
s	p

er
	k
ilo

	
in
st
ru
c@
on

s	

32-split	 128-unified	 64-split	 256-unified	 64-unified-SMT	

Figure 4.4: TLB misses per thousand instructions for split or unified TLBs on
4W × 4T DITVA

As pointed out in Section 3.4, there is no need to maintain equal contents for
the TLBs of the distinct lanes. Assuming a 4KB page size, Figure 4.4 illustrates
the TLB miss rates for different configurations: 4-lanes DITVA, i.e., a total of 16
threads, with 128-entry unified TLB, 256-entry unified TLB and 64-entry split
TLB, and a 64-entry TLB for the SMT configuration.

On our set of benchmarks, the miss rate of the 64-entry split TLB for four
lanes DITVA is in the same range as the one of the 64-entry for SMT. If the TLB
is unified, 256-entry is needed to reach the same level of performance. Thus, using
split TLBs appears as a sensible option to avoid the implementation complexity
of a unified TLB.

4.2.4 L1 cache bank conflict reduction

Straightforward bank interleaving using the low order bits on the L1 data cache
leads to mild to severe bank conflicts, as illustrated in Figure 4.5. We find that
many conflicts are caused by concurrent accesses to the call stacks of different
threads. When the stack base addresses are aligned on page boundaries, concur-
rent accesses at the same offset in different stacks result in bank conflicts. Our
observation confirms the findings of prior studies [MS09, MCP+14].

84 Evaluation

0	
100	
200	
300	
400	
500	

barnes	

blackscholes	

FFT	
fluidanimate	

fmm	
ocean	cp	

ocean	ncp	

radix	
swap?ons	

volrend	

b+tree	

hotspot	

kmeans	

pathfinder	

srad	
streamcluster	

Ba
nk

	c
on

fli
ct
s	p

er
	k
ilo

	
in
st
ru
c?
on

s	

Lower	bits	 Hashed	bits	

Figure 4.5: Bank conflicts for 4W × 4T DITVA

To reduce such bank conflicts for DV-loads and DV-stores, we use a hashed
set index as introduced in Section 3.4. For a 16-bank cache interleaved at 32-
bit word granularity, we use lower bits from 12 to 15 and higher bits from 24
to 27 and hash them for banking. Figure 4.5 illustrates that such a hashing
mechanism is effective in reducing bank conflicts on applications where threads
make independent sequential memory accesses, such as Blackscholes and FFT.
Most other applications also benefit from hashing. Bank conflicts increase with
hashing on B+tree and Kmeans. However, these applications have few conflicts
in either configuration. In the remainder of the evaluation section, this hashed
set index is used.

4.2.5 Impact of memory bandwidth on memory intensive
applications

In the multi-core era, memory bandwidth is a bottleneck for the overall core
performance. Our simulations assume 2 GB/s DRAM bandwidth per core. To
analyze the impact of DRAM bandwidth on memory intensive applications run-
ning on DITVA, we simulate configurations with 16 GB/s DRAM bandwidth
per core which is a feasible alternative using high-end memory technologies like
HBM [OC14]. The performance scaling of 16 GB/s relative to 4-thread SMT
with 2 GB/s DRAM bandwidth is illustrated in Figure 4.6.

For many benchmarks, 2 GB/s bandwidth is sufficient. However, as discussed
in Section 4.1, the performance of Srad, Hotspot, Ocean, Radix and FFT is bound

Performance evaluation 85

0	

1	

2	

3	

4	

barnes	

blackscholes	

FFT	
fluidanimate	

fmm	
ocean	cp	

ocean	ncp	

radix	
swap>ons	

volrend	

b+tree	

hotspot	

kmeans	

pathfinder	

srad	
streamcluster	

Sp
ee
d-
up

	

4W-1T-16GB/s	 4W-4T-2GB/s	 4W-4T-16	GB/s	

Figure 4.6: Performance scaling with memory bandwidth, relative to 4-thread
SMT with 2 GB/s DRAM bandwidth

by memory throughput. DITVA enables these applications to benefit from the
extra memory bandwidth to scale further, widening the gap with the baseline
SMT configuration.

0	
0.5	
1	

1.5	
2	

2.5	
3	

Barnes	
Blackscholes	

FFT	
Fluidanimate	

Fmm	
Ocean	CP	

Ocean	NCP	

Radix	
SwapCons	

Volrend	

G-Mean	

Sp
ee
d-
up

	

16W-1T	 8W-2T	 4W-4T	 2W-8T	 1W-16T	

Figure 4.7: Impact of warp size

86 Evaluation

4.2.6 Impact of Warp size

Figure 4.7 illustrated the impact of warp sizes on a 16-thread DITVA. For Barnes
and Fmm we observe an increase in speedup with the warp sizes. FFT, on the
other hand, shows a decreasing trend with increasing warp sizes even with near
perfect vectorization. This slow down is because any stall in the pipeline will
affect the entire warp. Blackscholes and Swaptions shows a slightly different
behavior. The speedup tend to increase up until 2W × 8T , but they slow down
with 16 thread warp. The reason is similar to what we observe in FFT, but with
lesser efficiency in vectorization (as compared to FFT), multiple DV-threads in
a warp compensates for the DV-thread stalls. Even though, Radix also has good
vectorization, we do not observe this behavior in Radix because the memory
bandwidth is already a bottleneck in smaller warp sizes. For the same reason we
do not observe large variations in Ocean benchmarks.

4.2.7 Impact of banked DV-SIMD register banking

0	

0.5	

1	

1.5	

2	

2.5	

Barnes	
Blackscholes	

FFT	
Fluidanimate	

Fmm	
Ocean	CP	

Ocean	NCP	

Radix	
SwapBons	

Volrend	

G-Mean	

4W-4T	 4W-4T	w/o	banked	reg	

Figure 4.8: Impact of register banking

Register banking enables efficient utilization of 256-bit datapath with contigu-
ous execution of banked lanes. Figure 4.8 shows the speedup of applications in a

Hardware Overhead, Power and Energy 87

4W × 4T DITVA without banked registers. All the SSE and AVX instructions
are serialized at the backend for execution.

We observe a slowdown for almost all the applications. On an average, we
observe a 20% slowdown for a 4W × 4T DITVA without register banking with
with a maximum slowdown of 55% for Blackscholes.

4.3 Hardware Overhead, Power and Energy

DITVA induces extra hardware complexity and area as well as extra power supply
demand over an in-order SMT core. On the other hand, DITVA achieves higher
performance on SPMD code. This can lead to reduced total energy consumption
on such code.

We analyze qualitatively and quantitatively the sources of hardware com-
plexity, power demand and energy consumption throughout the DITVA pipeline
compared with the ones of the corresponding in-order SMT core.

4.3.1 Qualitative evaluation

Pipeline Front End The modifications in the pipeline front-end induce essen-
tially extra logic, e.g. comparators and logic to detect IS convergence, the logic to
select the IS within the warp, and the DVIQ mask unsetting logic for managing
branch mispredictions and exceptions. The extra complexity and power con-
sumption should remain relatively limited. The most power hungry logic piece
introduced by the DITVA architecture is the scoreboard that must track the de-
pendencies among registers of up to m ISs per warp. However, this scoreboard is
also banked since there are no inter-thread register dependencies.

On the other hand, DITVA significantly cuts down dynamic energy consump-
tion in the front-end. Our experiments show a reduction of 51% of instruction
fetches for 4W × 4T DITVA.

Memory unit The DITVA memory unit requires extra hardware. First, bank
conflict handling logic is needed, as we consider an interleaved cache. Then,
replicated data TLBs add an overhead in area and static energy. Moreover as

88 Evaluation

DITVA executes more threads in parallel than an SMT core, the overall capacity
of the TLB must be increased to support these threads. However, as TLB contents
do not have to be maintained equal, we have shown that lane TLBs with the
same number of entries as a conventional 4-way SMT core would be performance
effective. Therefore, on DITVA, the TLB silicon area as well as its static energy
consumption is proportional to the number of lanes.

Register file An in-order n-thread SMT core features n×NbISA scalar registers
of width B bits while a nW × mT DITVA features n × NbISA DV-registers of
width m × B bits. Estimations using CACTI [TMAJ08] and McPAT [LAS+09]
for 45nm technology indicate that the access time and the dynamic energy per
accessed word are in the same range for DITVA and the SMT. The register file
silicon area is nearly proportional to m, the number of lanes, and so is its static
leakage.

Execution units The widening of the two scalar functional units into DV-units
constitutes the most significant hardware area overhead. The SIMD DV-units
have a higher leakage and require higher instantaneous power supply than their
scalar counterparts. However, DITVA also leverages the existing AVX SIMD
units by reusing them as DV-units. Additionally, since DV-units are activated
through the DV-instruction mask, the number of dynamic activations of each
functional type is about the same for DITVA and the in-order SMT core on a
given workload, and so is the dynamic energy.

Non-SPMD workloads DITVA only benefits shared memory SPMD applica-
tions that have intrinsic DLP. On single-threaded workloads or highly divergent
SPMD workloads, DITVA performs on par with the baseline 4-way in-order SMT
processor. Workloads that do not benefit from DITVA will mostly suffer from the
static power overhead of unused units. Moreover, on single-thread workloads or
on multiprogrammed workloads, a smart runtime system could be used to power
down the extra execution lanes thus bringing the energy consumption close to
the one of the baseline SMT processor.

Non-SPMD multi-threaded workloads may suffer scheduling unbalance (un-
fairness) due to the RR/MinSP-PC fetch policy. However, this unbalance is
limited by the hybrid fetch policy design. When all threads run independently,

Hardware Overhead, Power and Energy 89

a single thread will get a priority boost and progress twice as fast as each of the
other threads. e.g. with 4 threads, the MinSP-PC thread gets 2/5th of the fetch
bandwidth, each other thread gets 1/5th.

4.3.2 Quantitative evaluation

0	
0.2	
0.4	
0.6	
0.8	
1	

1.2	

barnes	

blackscholes	

FFT	
fluidanimate	

fmm	
ocean	cp	

ocean	ncp	

radix	
swap@ons	

volrend	

b+tree	

hotspot	

kmeans	

pathfinder	

srad	
streamcluster	

g-mean	Re
la
@v

e	
DV

-in
st
ru
c@
on

	
co
un

t	

4W-2T	 4W-4T	

Figure 4.9: DV-instruction count reduction over 4-thread SMT as a function of
warp size

Dynamic vectorization reduces the number of DV-instructions over original
instructions. Figure 4.9 shows the ratio of the DV-instruction count over the
individual instruction count for 4W×2T DITVA and 4W×4T DITVA. In average
on our benchmark set, this ratio is 69% (31% reduction) for 4W × 2T DITVA
and 49% (51% reduction) for 4W × 4T DITVA. DV-instruction count is low for
applications Radix, FFT, Hotspot, Srad and Streamcluster, which have nearly
perfect dynamic vectorization. However, the DV-instruction count reduction in
Volrend, Fluidanimate and Ocean is compensated by the parallelization overhead
caused by the thread count increase.

We modeled a baseline SMT processor and DITVA within McPAT [LAS+09].
It assumes a 2 GHz clock in 45nm technology with power gating. We modeled
two alternative designs. The first one is the configuration depicted on Table 4.1,
except the cache that was modeled as 64 KB 8-way as we could not model the
banked 32 KB 16-way configuration in McPAT. The dynamic energy consumption
modeling is illustrated on Figure 4.10 while modeled silicon area and static energy
are reported in Table 4.3. As in Section 4, we assume that DITVA is built on

90 Evaluation

top of an SMT processor with 256-bit wide AVX SIMD execution units and that
these SIMD execution units are reused in DITVA.

0	
0.2	
0.4	
0.6	
0.8	
1	

1.2	

blackscholes	

FFT	
fluidanimate	

fmm	
ocean	cp	

ocean	ncp	

radix	
swap@ons	

volrend	

barnes	

b+tree	

hotspot	

kmeans	

pathfinder	

srad	
streamcluster	

SMT4-st	 SMT4-dyn	 4W-2T-st	 4W-2T-dyn	 4W-4T-st	 4W-4T-dyn	

Figure 4.10: Relative energy consumption over 4-thread SMT. -dyn and -st are
dynamic and static energy, respectively.

Note that McPAT models execution units as independent ALUs and FPUs,
rather than as SIMD blocks as implemented on current architectures. Also, esti-
mations may tend to underestimate front-end energy [XJB+15]. Thus, the front-
end energy savings are conservative, while the overhead of the back-end is a
worst-case estimate. Despite these conservative assumptions, Figure 4.10 and
Table 4.3 show that DITVA appears as an energy-effective solution for SPMD
applications with average energy reduction of 22% and 24% for 4W × 2T and
4W × 4T DITVA respectively.

The energy reduction is the result of both a decrease in run-time (Figure 4.2)
and a reduction in the number of fetched instructions, mitigated by an increase
in static power from the wider execution units.

4.4 Conclusion

SMT implementations have limited issue width scalability due to increase in hard-
ware complexity. We use clustering In DITVA to decrease the complexity of

Conclusion 91

Table 4.3: Area and static power McPAT estimates.

Component 4T SMT 4W×2T DITVA 4W×4T DITVA
Area
(mm2)

Static
P.
(W)

Area
(mm2)

Static
P.
(W)

Area
(mm2)

Static
P.
(W)

Front-end 3.46 0.140 3.63 0.149 4.14 0.175
LSU 1.32 0.050 2.21 0.041 2.33 0.054
MMU 0.22 0.009 0.32 0.012 0.50 0.018
Execute 20.98 0.842 21.51 0.868 22.40 0.920
Core total 35.50 1.815 37.30 1.868 39.09 2.001

hardware. In this chapter, we have seen that with a 4-issue SMT, the thread
count does not have good scalability beyond 8 threads. With an increase in
area of around 12% have shown that 4W × 4TDITVA is a scalable solution that
improves the speedup by 55% on average. We also showed the trade-off for vary-
ing warp sizes. Memory intensitive applications tends to suffer with larger warp
sizes and lesser warp count. 4W × 4T DITVA reduces the overall energy con-
sumption by 24%. We also showed that DITVA memory accesses suffer due to
memory bank conflicts. We provided a solution that decreases the bank conflicts.
For memory intensive applications, increasing in memory bandwidth to 16 GB/s
immensely the performance of DITVA in comparison with 16 GB/s SMT. We
showed that branch predictions work well with DITVA. However, other perfor-
mance optimization techniques such as prefetching and value predictions have
not been evaluated.

For applications with good vectorization ratio, DITVA have lower dynamic
energy. However, the overall static energy increase due to the increase in physical
resources. Hence, DITVA is less effective in terms of overall energy consumption
in the case of applications that has bad vectorization ratio.

92 Evaluation

Chapter 5

Future work

In this thesis, we have seen Dynamic Inter-Thread Vectorization Architecture for
an in-order SMT processor. Modern microprocessors incorporate out-of-order is-
sue to improve the processor throughput. Out-of-order processor fetches and com-
mits the instruction in-order. However, independent instructions may be sched-
uled out-of-order for execution even if previous instructions have not been issued.
Out-of-order processors may improve the single thread performance. DITVA is
capable of out-of-order issue of the dynamically vectorized instructions. We have
seen in figure 4.1 that the throughput of the processor saturates when there are
enough threads to keep the resources busy. On the other hand, out-of-order pro-
cessors starts to saturate at a lower thread count [HS99]. Hence, OOO-DITVA
is expected to have better single thread performance in comparison with in-order
DITVA. In this chapter, we will discuss an out-of-order issue extension for the
DITVA architecture.

5.1 Out-of-order execution

A conventional in-order processor design maintains the order of instructions at
every stage of the pipeline. The instructions are fetched from the memory in
the order of the program flow (often speculated by the branch predictor). After
moving through the intermediate pipeline stages, the instructions are checked
for the availability of input operands. If all the input operands are available,
the instruction is dispatched to the appropriate functional unit. On the other

93

94 Future work

hand, if one or more operands is not available, the instruction stream is stalled
until they are available. At the end of the pipeline, the state of the processor is
updated. Throughout these stages, the instructions maintain a strict sequential
order as defined by the order of instructions in the program. This technique is
called static scheduling as the instruction scheduling is based on the instruction
flow produced by the compiler.

In-order processor design works with the disadvantage that would block the
instruction fetch when there are too many long latency instruction operations
in the pipeline. And the subsequent instructions, even if they do not cause any
hazards, are still not scheduled for execution thus inhibiting achievement of peak
performance.

Out-of-order processor attempts to execute the independent instructions with
dynamic scheduling. The out-of-order processor enables dynamic scheduling with
the help of a reservation station (or issue queue). In an out-of-order processor,
the instructions, after decoding, waits in the reservation station until all its in-
put operands are available. An independent instruction may have its operand
ready even before an earlier instruction. Hence, in an out-of-order processor, the
instruction scheduling may not follow the program order. In the following sec-
tions, we will discuss the required changes in the pipeline to enable out-of-order
execution of instructions.

5.1.1 Register renaming

Out-of-order processors improve the peak performance of a microprocessor by dy-
namically scheduling independent instructions out-of-order. For dynamic schedul-
ing, the consumer instruction of a data has to be linked with its producer and
at the same time should avoid any possible data hazards 1.1. In out-of-order
processors, these dependencies are handled by register renaming.

Register renaming replaces the architectural register names with a new name
(tag) for each output operand from a free list. This would eliminate output and
anti-dependencies and will be left with only true dependencies. With register
renaming, at any given time, the pipeline may have an architectural register re-
named more than once. The state of the processor is updated when an instruction
is committed in-order. The renamed register of the committed instruction may
be still in use until a new version of the register is committed. Hence, at commit,

Out-of-order execution 95

a previous version of the renamed register is released.

5.1.2 Reservation station / Issue queue

A Reservation station is an instruction buffer where the renamed instructions wait
until all its input operands are available. When a value is produced, the tags are
broadcasted. The instructions waiting in the reservation station, which has its
input operands renamed to source tags compares them against the broadcast
tags. When there is a match, the source operand is marked as ready. When all
the source operands are available, the instruction is woken up and is dispatched
to the available functional units.

5.1.3 Reorder buffer

Re-order buffer (ROB) allows instructions to be committed in-order, thus updat-
ing the system state in the program order. Commit state updates the registers
and the memory. Until the instruction commit, the write result may be stored in
the re-order buffer. In addition to the write result, the re-order buffer may have a
valid bit, destination address as well as the instruction type. ROB enables precise
exceptions. When there is a misprediction the instructions prior to the mispre-
dicted instruction in the ROB are flushed, reservation stations are re-initialized
and register files are recovered. ROB ensures that the speculated instructions are
not committed.

5.1.4 Branch misprediction

Branch misprediction penalties limit the performance of a deeply pipelined mi-
croprocessor. Execution of the branch instruction determines the outcome of a
branch. Handling branch misprediction in an in-order microprocessor is fairly
straight forward. All the instruction following the branch is removed from the
pipeline. In an out-of-order processor, instructions after the branch may complete
the execution even before branch resolution. Moreover, after the misprediction,
the architectural state including rename table and the register values of the pro-
cess, has to be restored to the valid state.

96 Future work

Out-of-order processors use a Retirement Register File (RRF) that holds the
committed state of the process which cannot be rolled back. Out-of-order pro-
cessors may have multiple unresolved branches in the ROB. Hence, out-of-order
processors use checkpointing for RAT recovery on branch misprediction. A copy
of RAT is created at each branch instruction. A checkpoint is released as soon as
a branch is resolved. On misprediction, the instructions are flushed, checkpoints
are deallocated and the RAT is recovered to a valid checkpoint. Subsequent
renaming is valid as the RAT is a snapshot of the state just before the last mis-
predicted branch. Similarly, as the instructions after the mispredicted branch are
not committed, RRF also remain valid.

5.2 Out-of-order extension for DITVA architec-
ture

In this section, we will discuss OOO-DITVA, an extension for DITVA to sup-
port out-of-order issue. OOO-DITVA requires changes in the pipeline to support
register management and instruction wake up as the registers are renamed and
independent instructions might be ready to issue out-of-order when their source
operands are available. Per-lane register renaming is expensive as the rename unit
has to be replicated for each lane. For an nW×mT OOO-DITVA, there will be
m rename units and the number of rename operations are increased by (m-1)×.
Similarly, with traditional out-of-order SMT design, during convergent execu-
tion, the complexity of instruction wake-up increases as a single DV-instruction
of an nW×mT OOO-DITVA could have up to m× operands, that will be ready
at the same time. Thus to use the traditional out-of-order SMT design, ROB
would require several additional ports. In order to avoid these complexities, our
OOO-DITVA proposes a single rename for the threads in an instruction stream.

In addition to the pipeline architecture changes, OOO-DITVA uses a Merge
instruction for register compaction and reconvergence. In the following sub-
sections, we will discuss various pipeline architecture changes in OOO-DITVA.

Out-of-order extension for DITVA architecture 97

5.2.1 Register management

We have seen in section 5.1.1 register renaming is one of the techniques that
enables out-of-order execution.

Figure 5.1: OOO-DITVA RAT & RRAT

Figure 5.2: Program control flow for threads T0,T1,T2 and T3. <- represents
write to a register.

Figure 5.1 shows the state of Register Alias Table (RAT) for an nW×4T
DITVA with control flow shown in figure 5.2. In addition to architectural to
physical register mapping, OOO-DITVA keeps the mask information (D-Mask)

98 Future work

in the RAT. Each mask in D-Mask represents a divergent path. The physical
register corresponding to a mask is given in P-reg column. OOO-DITVA has
partitioned RAT, with n partitions, each corresponding to a warp. The logical
representation of the physical register file with data from threads T0, T1, T2 and
T3 occupying lanes L0, L1, L2 and L3 respectively, are shown in figure 5.3. In
OOO-DITVA, the physical register free list is shared by all the warps.

Figure 5.3: Physical register file in OOO-DITVA

5.2.1.1 Register allocation

When renaming encounters a destination register, a new physical register is al-
located from the free list (and subsequently removed from the free list) and the
speculative mask corresponding to the fetched DV-instruction is inserted in the
RAT. When there is a branch misprediction, these speculative masks are updated
to correspond the divergent paths of the instruction streams after the execution of
branch instruction. Since each mask in D-Mask represents a divergent path, there
are no overlapping set bits in any of the masks in the D-Mask of an architectural
register and there will be exactly one set bit corresponding to each lane, across
the D-Masks. In the subsequent instructions, the source registers referring to the

Out-of-order extension for DITVA architecture 99

same architectural registers are renamed to a valid physical register allocated by
previous destination register reference. The source registers are renamed by an
’AND’ operation of DV-instruction mask with each mask in D-Mask. There will
exactly one non-zero value for the ’AND’ operation. P-reg corresponding to the
mask is assigned as the renamed register for the source architectural register.

5.2.1.2 Register deallocation

As we have seen in section 5.1.1, physical registers are deallocated when there is
a new version of the destination register. The current version of the committed
architectural register is maintained in Retirement Register Alias Table (RRAT).
RRAT in OOO-DITVA is similar to RAT, with architectural to physical register
mapping and non-speculative D-Mask. When there is a new destination register
corresponding to an architectural register, a ’NAND’ operation in done on DV-
instruction mask with each mask in D-Mask and the resulting mask is updated
in the corresponding D-Mask. If the result of ’NAND’ operation is zero then the
older version of P-reg corresponding to the mask is deallocated and moved to the
physical register free list. Subsequently, RRAT is updated with the mask and
physical register of the committing DV-instruction.

5.2.1.3 Handling divergence and reconvergence

OOO-DITVA does a single architectural to physical register rename for a DV-
instruction. With divergence and reconvergence, two issue arises. Firstly, with
divergence, a previous result may be consumed by multiple threads in divergent
paths. For instance, in figure 5.2, r1 produced in block A may be consumed
by r2<-r1+1 in block B and block C. At the rename stage no special care has
to be taken for divergence because DV-instruction consuming the result will be
marked ready-to-issue only after the instruction producing the result completes
its execution. However, at commit stage, when the divergent path is committing a
new version of the architectural register, the older version cannot be deallocated
immediately. To deallocate the older version of the register, all the divergent
paths should have a new version. This case is covered by the ’NAND’ operation
at the commit stage, which will produce a zero only when all the paths have a
new version.

The second case to consider is the reconvergence point. In this case, a DV-

100 Future work

instruction after reconvergence may consume the results produced by more than
one divergent paths. For instance, in figure 5.2, r4<-r3+1 in block F consumes r3
from block B, block D and block F. To avoid this issue, OOO-DITVA inserts one
or more (one for each reconvergent path) merge instructions at the reconvergence
point. A merge instruction merges multiple registers. The merge instructions
are generated by the microarchitecture whenever there is a reconvergence. Intel
has a similar implementation for merging registers [B14] (this may be further
optimized). When a Merge {r3} instruction is applied to the execution state
shown in figure 5.1, the RAT is updated with a newly allocated p8 physical
register and all the physical registers merges with p8<-{p3,p5,p6}. Subsequent
consumers of r3 will have the source register renamed to p8. At the commit of
the merge instruction, p3,p5,and p6 registers are deallocated.

5.2.2 Handling branch misprediction

After a branch instruction, all the threads in the current path takes the specu-
lative path determined by the branch predictor. A subset of the threads in the
speculative path may be mispredicted resulting in a partial misprediction. A full
misprediction occurs when all the threads in the speculative path are mispre-
dicted.

OOO-DITVA uses a checkpointed RAT for its recovery in the case of a branch
misprediction. When a full misprediction is encountered, instructions in ROB
that are fetched after the mispredicted branch are flushed, the RAT checkpoints
after the branch is deallocated and the RAT is recovered to a valid checkpoint.

5.3 Conclusion

Out-of-order execution is an architectural technique that is common in a modern
day microprocessor. It is very effective to provide high single thread performance
at a moderate hardware cost. With DITVA, we modelled an architecture with
an in-order core model because of its simplicity and low implementation cost. In
this section, we provided some insights for out-of-order implementation of DITVA.
OOO-DITVA could help to achieve high single thread performance. OOO-DITVA
may achieve high performance with lesser number of warps. This section discussed
some of the implementation issues of OOO-DITVA, most importantly register

Conclusion 101

renaming and result broadcast. We leave the performance evaluation, including
the speedup analysis, hardware costs and implication on energy due to register
merges and discarded register reads for mispredicted paths, as a future work.

102 Future work

Conclusion

Many parallel applications are developed using the SPMD programming model.
On those applications, the parallel sections are executed by parallel threads exe-
cuting the same code. In-order SMT cores represent a cost-effective design point
to achieve high throughput on the parallel sections. The parallel threads often
exhibit very similar control flows, i.e., execute essentially the same instruction
sequences, but on different data inputs: they offer implicit data-level parallelism.
GPUs can exploit these characteristics to maximize the throughput of massively
parallel SPMD kernels, but demand extensive application re-writing.

DITVA provides a range of design tradeoffs between an in-order SMT core and
a SIMT GPU core. It adopts the dynamic vectorization capabilities of GPUs while
retaining the general-purpose capabilities and low latency of conventional CPUs.
Design parameters of DITVA may be configured to achieve different tradeoffs
between SMT and SIMT. Warp size and warp count are the natural vehicle to
adjust the tradeoff between throughput on regular kernels and latency on irregular
workloads.

Compared to an in-order SMT core architecture, DITVA achieves high
throughput on the parallel sections of the SPMD applications by extracting dy-
namic data-level parallelism at runtime. DITVA has been designed to execute
the same instruction from different threads running in lockstep mode whenever
possible. It mutualizes the pipeline front-end for the threads. To enable parallel
execution in lockstep mode, the register file of a superscalar processor and its
functional units are replicated.

Unlike SIMT GPUs, DITVA can run general-purpose parallel applications
written in the ubiquitous SPMD style. Applications require no source modifica-
tion nor re-compilation. While GPUs are heavily optimized for throughput at the
expense of latency, DITVA seeks a more balanced tradeoff, and its latency stays

103

104 Conclusion

competitive with an equivalent SMT CPU. To achieve its latency target, DITVA
uses branch prediction and speculative predicated execution. By relying on a
simple thread scheduling policy favoring reconvergence and by handling branch
divergence at the execute stage as a partial branch misprediction, we avoid most
of the complexity associated with tracking and predicting thread divergence and
reconvergence.

SPMD applications written for multi-core processors often exhibit less inter-
thread memory locality than GPU workloads, due to coarser-grain threading and
avoidance of false sharing. Design of the DITVA memory access unit requires
special care to prevent memory accesses from becoming a bottleneck. SPMD
applications are sharing data, therefore the data cache is not replicated. As
a fully multi-ported cache would be too complex, DITVA implements a bank-
interleaved cache and its execution is stalled on bank conflicts. DITVA leverages
the possibility to use TLBs with different contents for the different threads. It
uses replicated but smaller TLBs than the one of an in-order SMT core.

Replicated functional units and replicated data TLBs are the main hardware
overhead of DITVA over an in-order SMT core. However, thanks to masked
execution, on a given SPMD workload, the dynamic energy consumption of the
pipeline back-end is not increased, and even decreased since DITVA uses smaller
data TLBs than an in-order SMT core.

DITVA group threads statically into fixed-size warps. SPMD threads from a
warp are dynamically vectorized at instruction fetch time. The instructions from
the different threads are grouped together to share an instruction stream when-
ever their PC are equal. Then the group of instructions (the DV-instruction)
progresses in the pipeline as a unit. This allows to mutualize the instruction
front-end as well as the overall instruction control. The instructions from the
different threads in a DV-instruction are executed on replicated execution lanes.
DITVA maintains competitive single-thread and divergent multi-thread perfor-
mance by using branch prediction and speculative predicated execution. By re-
lying on a simple thread scheduling policy favoring convergence and by handling
branch divergence at the execute stage as a partial branch misprediction, most
of the complexity associated with tracking and predicting thread divergence and
convergence can be avoided. To support concurrent memory accesses, DITVA
implements a bank-interleaved cache with a fully hashed set index to mitigate
bank conflicts. DITVA leverages the possibility to use TLBs with different con-
tents for the different threads. It uses a split TLB much smaller than the TLB

Conclusion 105

of an in-order SMT core

Our simulation shows that 4W × 2T and 4W × 4T DITVA processors are
cost-effective design points. For instance, a 4W×4T DITVA architecture reduces
instruction count by 51% and improving performance by 55% over a 4-thread 4-
way issue SMT on the SPMD applications from PARSEC and OpenMP Rodinia.
While a DITVA architecture induces some silicon area and static energy over-
heads over an in-order SMT, by leveraging the preexisting SIMD execution units
to execute the DV-instructions, DITVA can be very energy effective to execute
SPMD code. Therefore, DITVA appears as a cost-effective design for achieving
very high single-core performance on SPMD parallel sections. A DITVA-based
multi-core or many-core would achieve very high parallel performance.

As DITVA shares some of its key features with the SIMT execution model,
many micro-architecture improvements proposed for SIMT could also apply to
DITVA. For instance, more flexibility could be obtained using Dynamic Warp
Formation [FSYA09] or Simultaneous Branch Interweaving [BCD12], Dynamic
Warp Subdivision [MTS10b] could improve latency tolerance by allowing threads
to diverge on partial cache misses, and Dynamic Scalarization [CDZ09] could
further unify redundant data-flow across threads.

106 Conclusion

Bibliography

[AF01] Aneesh Aggarwal and Manoj Franklin. An empirical study of the
scalability aspects of instruction distribution algorithms for clustered
processors. In Performance Analysis of Systems and Software, 2001.
ISPASS. 2001 IEEE International Symposium on, pages 172–179.
IEEE, 2001.

[ALKK90] Anant Agarwal, Beng-Hong Lim, David Kranz, and John Kubiatow-
icz. April: a processor architecture for multiprocessing. In Computer
Architecture, 1990. Proceedings., 17th Annual International Sympo-
sium on, pages 104–114. IEEE, 1990.

[Amd67] Gene M Amdahl. Validity of the single processor approach to achiev-
ing large scale computing capabilities. In Proceedings of the April
18-20, 1967, spring joint computer conference, pages 483–485. ACM,
1967.

[B14] Tamar B. Migrating from sse2 vector operations to avx2 vector op-
erations, 2014.

[BBSG11] Michael Butler, Leslie Barnes, Debjit Das Sarma, and Bob Geli-
nas. Bulldozer: An approach to multithreaded compute performance.
IEEE Micro, (2):6–15, 2011.

[BCC+10] Moshe Bach, Mark Charney, Robert Cohn, Elena Demikhovsky, Tevi
Devor, Kim Hazelwood, Aamer Jaleel, Chi-Keung Luk, Gail Lyons,
Harish Patil, et al. Analyzing parallel programs with pin. Computer,
43(3):34–41, 2010.

[BCD12] Nicolas Brunie, Sylvain Collange, and Gregory Diamos. Simultaneous
branch and warp interweaving for sustained GPU performance. In

107

108 Bibliography

ACM SIGARCH Computer Architecture News, volume 40, pages 49–
60. IEEE Computer Society, 2012.

[BDA03] Rajeev Balasubramonian, Sandhya Dwarkadas, and David H Al-
bonesi. Dynamically managing the communication-parallelism trade-
off in future clustered processors. ACM SIGARCH Computer Archi-
tecture News, 31(2):275–287, 2003.

[BEKK00] John M Borkenhagen, Richard J Eickemeyer, Ronald N Kalla, and
Steven R Kunkel. A multithreaded powerpc processor for commercial
servers. IBM Journal of Research and Development, 44(6):885–898,
2000.

[BFS12] Alexander Branover, Denis Foley, and Maurice Steinman. Amd fusion
apu: Llano. Ieee Micro, (2):28–37, 2012.

[BKSL08] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li.
The parsec benchmark suite: Characterization and architectural im-
plications. In Proceedings of the 17th international conference on
Parallel architectures and compilation techniques, pages 72–81. ACM,
2008.

[BM00] Amirali Baniasadi and Andreas Moshovos. Instruction distribution
heuristics for quad-cluster, dynamically-scheduled, superscalar pro-
cessors. In Microarchitecture, 2000. MICRO-33. Proceedings. 33rd
Annual IEEE/ACM International Symposium on, pages 337–347.
IEEE, 2000.

[BRI+90] David Budde, Robert Riches, Michael T Imel, Glen Myers, and Kon-
rad Lai. Register scorboarding on a microprocessor chip, January 2
1990. US Patent 4,891,753.

[C+95] IEEE Portable Applications Standards Committee et al. Ieee std
1003.1 c-1995, threads extensions, 1995.

[CBM+09] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W
Sheaffer, Sang-Ha Lee, and Kevin Skadron. Rodinia: A benchmark
suite for heterogeneous computing. In Workload Characterization,
2009. IISWC 2009. IEEE International Symposium on, pages 44–54.
IEEE, 2009.

Bibliography 109

[CDZ09] Sylvain Collange, David Defour, and Yao Zhang. Dynamic detection
of uniform and affine vectors in gpgpu computations. In European
Conference on Parallel Processing, pages 46–55. Springer, 2009.

[ci7] Intelĺ coreł i7-5960x processor extreme edition. http://ark.intel.
com/products/82930. Accessed: 2016-02-22.

[Col11] Sylvain Collange. Stack-less simt reconvergence at low cost. Technical
report, Technical Report HAL-00622654, INRIA, 2011.

[CPG00] Ramon Canal, Joan Manuel Parcerisa, and Antonio González. Dy-
namic cluster assignment mechanisms. In High-Performance Com-
puter Architecture, 2000. HPCA-6. Proceedings. Sixth International
Symposium on, pages 133–142. IEEE, 2000.

[CRVF04] Francisco J. Cazorla, Alex Ramírez, Mateo Valero, and Enrique Fer-
nández. Dynamically controlled resource allocation in SMT proces-
sors. In 37th Annual International Symposium on Microarchitecture
(MICRO-37 2004), 4-8 December 2004, Portland, OR, USA, pages
171–182, 2004.

[CT04] Jamison D Collins and Dean M Tullsen. Clustered multithreaded
architectures-pursuing both ipc and cycle time. In Parallel and
Distributed Processing Symposium, 2004. Proceedings. 18th Interna-
tional, page 76. IEEE, 2004.

[DFR10] Mark Dechene, Elliott Forbes, and Eric Rotenberg. Multithreaded
instruction sharing. Department of Electrical and Computer Engi-
neering, North Carolina State University, Tech. Rep, 2010.

[DKW+11] Gregory Diamos, Andrew Kerr, Haicheng Wu, Sudhakar Yalaman-
chili, Benjamin Ashbaugh, and Subramaniam Maiyuran. SIMD re-
convergence at thread frontiers. In MICRO 44: Proceedings of the
44th annual IEEE/ACM International Symposium on Microarchitec-
ture, December 2011.

[DM98] Leonardo Dagum and Ramesh Menon. Openmp: an industry stan-
dard api for shared-memory programming. IEEE computational sci-
ence and engineering, 5(1):46–55, 1998.

110 Bibliography

[DRBL74] Robert H Dennard, VL Rideout, E Bassous, and AR Leblanc. Design
of ion-implanted mosfet’s with very small physical dimensions. Solid-
State Circuits, IEEE Journal of, 9(5):256–268, 1974.

[DS02] Romain Dolbeau and André Seznec. Cash: Revisiting hardware shar-
ing in single-chip parallel processor. 2002.

[EA03] Ali El-Moursy and David H. Albonesi. Front-end policies for im-
proved issue efficiency in SMT processors. In Proceedings of the Ninth
International Symposium on High-Performance Computer Architec-
ture (HPCA’03), Anaheim, California, USA, February 8-12, 2003,
pages 31–40, 2003.

[ECX+11] Hadi Esmaeilzadeh, Ting Cao, Yang Xi, Stephen M Blackburn, and
Kathryn S McKinley. Looking back on the language and hardware
revolutions: measured power, performance, and scaling. In ACM
SIGARCH Computer Architecture News, volume 39, pages 319–332.
ACM, 2011.

[EE07] Stijn Eyerman and Lieven Eeckhout. A memory-level parallelism
aware fetch policy for SMT processors. In 13st International Confer-
ence on High-Performance Computer Architecture (HPCA-13 2007),
10-14 February 2007, Phoenix, Arizona, USA, pages 240–249, 2007.

[EJK+96] Richard J Eickemeyer, Ross E Johnson, Steven R Kunkel, Mark S
Squillante, and Shiafun Liu. Evaluation of multithreaded uniproces-
sors for commercial application environments. In ACM SIGARCH
Computer Architecture News, volume 24, pages 203–212. ACM, 1996.

[FBJ+08] Nadeem Firasta, Mark Buxton, Paula Jinbo, Kaveh Nasri, and Shi-
hjong Kuo. Intel avx: New frontiers in performance improvements
and energy efficiency. Intel white paper, 2008.

[Fly66] Michael J Flynn. Very high-speed computing systems. Proceedings
of the IEEE, 54(12):1901–1909, 1966.

[Fly72] Michael J Flynn. Some computer organizations and their effective-
ness. Computers, IEEE Transactions on, 100(9):948–960, 1972.

[Fos95] Ian Foster. Designing and building parallel programs, 1995.

Bibliography 111

[FSYA07] Wilson WL Fung, Ivan Sham, George Yuan, and Tor M Aamodt. Dy-
namic warp formation and scheduling for efficient gpu control flow.
In Proceedings of the 40th Annual IEEE/ACM International Sympo-
sium on Microarchitecture, pages 407–420. IEEE Computer Society,
2007.

[FSYA09] Wilson W. L. Fung, Ivan Sham, George Yuan, and Tor M. Aamodt.
Dynamic warp formation: Efficient MIMD control flow on SIMD
graphics hardware. ACM Trans. Archit. Code Optim., 6:7:1–7:37,
July 2009.

[gcc] Auto-vectorization in gcc. https://gcc.gnu.org/projects/tree-
ssa/vectorization.html. Accessed: 2016-01-13.

[GCC+08] José González, Qiong Cai, Pedro Chaparro, Grigorios Magklis, Ryan
Rakvic, and Antonio González. Thread fusion. In Proceedings of the
2008 international symposium on Low Power Electronics & Design,
pages 363–368. ACM, 2008.

[Gre11] Peter Greenhalgh. Big. little processing with arm cortex-a15 &
cortex-a7. ARM White paper, pages 1–8, 2011.

[HS96] Sébastien Hily and André Seznec. Branch prediction and simul-
taneous multithreading. In Proceedings of the Fifth International
Conference on Parallel Architectures and Compilation Techniques,
PACT’96, Boston, MA, USA, October 20-23, 1996, pages 169–173,
1996.

[HS99] Sébastien Hily and André Seznec. Out-of-order execution may not
be cost-effective on processors featuring simultaneous multithread-
ing. In Proceedings of the Fifth International Symposium on High-
Performance Computer Architecture, Orlando, FL, USA, January
9-12, 1999, pages 64–67, 1999.

[icc] A guide to vectorization with intelĺ c++ compilers.
https://software.intel.com/sites/default/files/8c/a9/CompilerAutovectorizationGuide.pdf.
Accessed: 2016-01-13.

[int] Intelĺ intrinsics guide. https://software.intel.com/sites/landingpage/IntrinsicsGuide/.
Accessed: 2016-01-13.

112 Bibliography

[KAO05] Poonacha Kongetira, Kathirgamar Aingaran, and Kunle Olukotun.
Niagara: A 32-way multithreaded sparc processor. Micro, IEEE,
25(2):21–29, 2005.

[KCSS16] Sajith Kalathingal, Sylvain Collange, Bharath Narasimha Swamy,
and André Seznec. Dynamic inter-thread vectorization architecture:
extracting dlp from tlp. In International Symposium on Computer
Architecture and High-Performance Computing (SBAC-PAD), 2016.

[KDT+12] Michael Klemm, Alejandro Duran, Xinmin Tian, Hideki Saito, Diego
Caballero, and Xavier Martorell. Extending openmp* with vector
constructs for modern multicore simd architectures. In International
Workshop on OpenMP, pages 59–72. Springer, 2012.

[Kes99] Richard E Kessler. The alpha 21264 microprocessor. Micro, IEEE,
19(2):24–36, 1999.

[KHL99] Bradley C Kuszmaul, Dana S Henry, and Gabriel H Loh. A compar-
ison of scalable superscalar processors. In Proceedings of the eleventh
annual ACM symposium on Parallel algorithms and architectures,
pages 126–137. ACM, 1999.

[KJT04] Rakesh Kumar, Norman P Jouppi, and Dean M Tullsen. Conjoined-
core chip multiprocessing. In Proceedings of the 37th annual
IEEE/ACM International Symposium on Microarchitecture, pages
195–206. IEEE Computer Society, 2004.

[KP93] Ronun Keryell and Nicolas Paris. Activity counter: New optimization
for the dynamic scheduling of simd control flow. In Parallel Process-
ing, 1993. ICPP 1993. International Conference on, volume 2, pages
184–187. IEEE, 1993.

[KT98] Venkata Krishnan and Josep Torrellas. A clustered approach to mul-
tithreaded processors. In Parallel Processing Symposium, 1998. IPP-
S/SPDP 1998. Proceedings of the First Merged International... and
Symposium on Parallel and Distributed Processing 1998, pages 627–
634. IEEE, 1998.

[KTJR05] Rakesh Kumar, Dean M Tullsen, Norman P Jouppi, and
Parthasarathy Ranganathan. Heterogeneous chip multiprocessors.
Computer, (11):32–38, 2005.

Bibliography 113

[KWm12] David B Kirk and W Hwu Wen-mei. Programming massively parallel
processors: a hands-on approach. Newnes, 2012.

[LAS+09] Sheng Li, Jung Ho Ahn, Richard D Strong, Jay B Brockman, Dean M
Tullsen, and Norman P Jouppi. Mcpat: an integrated power, area,
and timing modeling framework for multicore and manycore archi-
tectures. In 42nd Annual IEEE/ACM International Symposium on
Microarchitecture, 2009. MICRO-42., pages 469–480. IEEE, 2009.

[LCM+05] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur
Klauser, Geoff Lowney, Steven Wallace, Vijay Janapa Reddi, and
Kim Hazelwood. Pin: building customized program analysis tools
with dynamic instrumentation. ACM Sigplan Notices, 40(6):190–200,
2005.

[Lee97] Ruby Lee. Multimedia extensions for general-purpose processors.
In Proc. IEEE Workshop on Signal Processing Systems, pages 9–23,
1997.

[LFB+10] Guoping Long, Diana Franklin, Susmit Biswas, Pablo Ortiz, Ja-
son Oberg, Dongrui Fan, and Frederic T Chong. Minimal multi-
threading: Finding and removing redundant instructions in multi-
threaded processors. In Proceedings of the 2010 43rd Annual
IEEE/ACM International Symposium on Microarchitecture, pages
337–348. IEEE Computer Society, 2010.

[LFMS01] Kun Luo, Manoj Franklin, Shubhendu S. Mukherjee, and André
Seznec. Boosting SMT performance by speculation control. In Pro-
ceedings of the 15th International Parallel & Distributed Process-
ing Symposium (IPDPS-01), San Francisco, CA, April 23-27, 2001,
page 2, 2001.

[LGF01] Kun Luo, Jayanth Gummaraju, and Manoj Franklin. Balancing
thoughput and fairness in SMT processors. In 2001 IEEE Interna-
tional Symposium on Performance Analysis of Systems and Software,
November 4 - 6,2001, Tucson, Arizona, USA, Proceedings, pages 164–
171, 2001.

114 Bibliography

[LKB14] Ahmad Lashgar, Ahmad Khonsari, and Amirali Baniasadi. HARP:
Harnessing inactive threads in many-core processors. ACM Transac-
tions on Embedded Computing Systems (TECS), 13(3s):114, 2014.

[LNOM08] Erik Lindholm, John Nickolls, Stuart Oberman, and John Montrym.
Nvidia tesla: A unified graphics and computing architecture. IEEE
micro, (2):39–55, 2008.

[LP84] Adam Levinthal and Thomas Porter. Chap-a simd graphics pro-
cessor. In ACM SIGGRAPH Computer Graphics, volume 18, pages
77–82. ACM, 1984.

[LSJ84] Raymond A Lorie and Hovey R Strong Jr. Method for conditional
branch execution in simd vector processors, March 6 1984. US Patent
4,435,758.

[M+98] Gordon E Moore et al. Cramming more components onto integrated
circuits. Proceedings of the IEEE, 86(1):82–85, 1998.

[MB05] Cameron McNairy and Rohit Bhatia. Montecito: A dual-core, dual-
thread itanium processor. IEEE micro, (2):10–20, 2005.

[MBW14] Michael Mckeown, Jonathan Balkind, and David Wentzlaff. Execu-
tion drafting: Energy efficiency through computation deduplication.
In Proceedings of the 47th Annual IEEE/ACM International Sympo-
sium on Microarchitecture, pages 432–444. IEEE Computer Society,
2014.

[MCP+14] Teo Milanez, Sylvain Collange, Fernando Magno Quintão Pereira,
Wagner Meira, and Renato Ferreira. Thread scheduling and memory
coalescing for dynamic vectorization of SPMD workloads. Parallel
Computing, 40(9):548–558, 2014.

[MDKS12] Jaikrishnan Menon, Marc De Kruijf, and Karthikeyan Sankar-
alingam. iGPU: exception support and speculative execution on
GPUs. In ACM SIGARCH Computer Architecture News, volume 40,
pages 72–83. IEEE Computer Society, 2012.

Bibliography 115

[MGG+11] Saeed Maleki, Yaoqing Gao, María Jesús Garzaran, Tommy Wong,
and David A Padua. An evaluation of vectorizing compilers. In Par-
allel Architectures and Compilation Techniques (PACT), 2011 Inter-
national Conference on, pages 372–382. IEEE, 2011.

[MLN07] Douglas Miles, Brent Leback, and David Norton. Optimizing applica-
tion performance on x64 processor-based systems with pgi compilers
and tools. Technical report, Technical report, The Portland Group,
2008.[cited at p. 33], 2007.

[Moo] Gordon moore: The man whose name means progress.
http://spectrum.ieee.org/computing/hardware/
gordon-moore-the-man-whose-name-means-progress. Accessed:
2016-02-23.

[MPV93] Mayan Moudgill, Keshav Pingali, and Stamatis Vassiliadis. Regis-
ter renaming and dynamic speculation: an alternative approach. In
Proceedings of the 26th annual international symposium on Microar-
chitecture, pages 202–213. IEEE Computer Society Press, 1993.

[MS09] Jiayuan Meng and Kevin Skadron. Avoiding cache thrashing due to
private data placement in last-level cache for manycore scaling. In
IEEE International Conference on Computer Design (ICCD) 2009,
pages 282–288. IEEE, 2009.

[MTS10a] Jiayuan Meng, David Tarjan, and Kevin Skadron. Dynamic warp
subdivision for integrated branch and memory divergence tolerance.
In ACM SIGARCH Computer Architecture News, volume 38, pages
235–246. ACM, 2010.

[MTS10b] Jiayuan Meng, David Tarjan, and Kevin Skadron. Dynamic warp
subdivision for integrated branch and memory divergence tolerance.
SIGARCH Comput. Archit. News, 38(3):235–246, 2010.

[Mun09] Aaftab Munshi. The opencl specification. In 2009 IEEE Hot Chips
21 Symposium (HCS), pages 1–314. IEEE, 2009.

[Nai04] Dorit Naishlos. Autovectorization in gcc. In Proceedings of the 2004
GCC Developers Summit, pages 105–118, 2004.

116 Bibliography

[NBGS08] John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. Scal-
able parallel programming with cuda. Queue, 6(2):40–53, 2008.

[ND10a] John Nickolls and William J Dally. The gpu computing era. IEEE
micro, (2):56–69, 2010.

[ND10b] John Nickolls and William J. Dally. The GPU computing era. IEEE
Micro, 30:56–69, March 2010.

[Nvi07] CUDA Nvidia. Compute unified device architecture programming
guide. 2007.

[NZ06] Dorit Nuzman and Ayal Zaks. Autovectorization in gcc–two years
later. In Proceedings of the 2006 GCC Developers Summit, pages
145–158. Citeseer, 2006.

[ONH+96] Kunle Olukotun, Basem A Nayfeh, Lance Hammond, Ken Wilson,
and Kunyung Chang. The case for a single-chip multiprocessor. ACM
Sigplan Notices, 31(9):2–11, 1996.

[OC14] Mike OConnor. Highlights of the high-bandwidth memory (hbm)
standard. In Memory Forum Workshop, 2014.

[PAB+05] D Pham, S Asano, M Bolliger, MN Day, HP Hofstee, C Johns,
J Kahle, A Kameyama, J Keaty, Y Masubuchi, et al. The design
and implementation of a first-generation cell processor-a multi-core
soc. In Integrated Circuit Design and Technology, 2005. ICICDT
2005. 2005 International Conference on, pages 49–52. IEEE, 2005.

[PG13] ARM Peter Greenhalgh. Big. little processing with arm cortex-a15
& cortex-a7, 2013.

[PH13] David A Patterson and John L Hennessy. Computer organization and
design: the hardware/software interface. Newnes, 2013.

[PJS97] Subbarao Palacharla, Norman P Jouppi, and James E Smith.
Complexity-effective superscalar processors, volume 25. ACM, 1997.

[PM12] Matt Pharr and William R Mark. ispc: A spmd compiler for high-
performance cpu programming. In Innovative Parallel Computing
(InPar), 2012, pages 1–13. IEEE, 2012.

Bibliography 117

[PW86] David A. Padua and Michael J. Wolfe. Advanced compiler opti-
mizations for supercomputers. Commun. ACM, 29(12):1184–1201,
December 1986.

[PWH+08] Ishwar Parulkar, Alan Wood, James C Hoe, Babak Falsafi, Sarita V
Adve, Josep Torrellas, and Subhasish Mitra. Opensparc: An open
platform for hardware reliability experimentation. In Fourth Work-
shop on Silicon Errors in Logic-System Effects (SELSE). Citeseer,
2008.

[QHJ88] Michael J Quinn, Philip J Hatcher, and Karen C Jourdenais. Compil-
ing c* programs for a hypercube multicomputer. In ACM SIGPLAN
Notices, volume 23, pages 57–65. ACM, 1988.

[R13] James R. Intelĺ avx-512 instructions, 2013.

[R14] James R. Additional intelĺ avx-512 instructions, 2014.

[RDK+00] Scott Rixner, William J Dally, Brucek Khailany, Peter Mattson, Uj-
val J Kapasi, and John D Owens. Register organization for me-
dia processing. In High-Performance Computer Architecture, 2000.
HPCA-6. Proceedings. Sixth International Symposium on, pages 375–
386. IEEE, 2000.

[Rus78] Richard M. Russell. The cray-1 computer system. Commun. ACM,
21(1):63–72, January 1978.

[SBB+07] Manish Shah, J Barren, Jeff Brooks, Robert Golla, Gregory Grohoski,
Nils Gura, Rick Hetherington, Paul Jordan, Mark Luttrell, Christo-
pher Olson, et al. Ultrasparc t2: A highly-treaded, power-efficient,
sparc soc. In Solid-State Circuits Conference, 2007. ASSCC’07. IEEE
Asian, pages 22–25. IEEE, 2007.

[SBCVE90] Rafael Saavedra-Barrera, D Culler, and Thorsten Von Eicken. Anal-
ysis of multithreaded architectures for parallel computing. In Pro-
ceedings of the second annual ACM symposium on Parallel algorithms
and architectures, pages 169–178. ACM, 1990.

[Sez11] André Seznec. A new case for the TAGE branch predictor. In Pro-
ceedings of the 44th Annual IEEE/ACM International Symposium on
Microarchitecture, pages 117–127. ACM, 2011.

118 Bibliography

[SFKS02] André Seznec, Stephen Felix, Venkata Krishnan, and Yiannakis
Sazeides. Design tradeoffs for the alpha EV8 conditional branch pre-
dictor. In 29th International Symposium on Computer Architecture
(ISCA 2002), 25-29 May 2002, Anchorage, AK, USA, pages 295–306,
2002.

[SGS10] John E Stone, David Gohara, and Guochun Shi. Opencl: A parallel
programming standard for heterogeneous computing systems. Com-
puting in science & engineering, 12(1-3):66–73, 2010.

[SKR00] Jagannath Keshava Srinivas K. Raman, Vladimir Pentkovski. Imple-
menting streaming simd extensions on thethepentium iii processor.
2000.

[Smi82] Burton J Smith. Architecture and applications of the hep multipro-
cessor computer system. In 25th Annual Technical Symposium, pages
241–248. International Society for Optics and Photonics, 1982.

[Tak97] Yoshizo Takahashi. A mechanism for simd execution of spmd pro-
grams. In High Performance Computing on the Information Super-
highway, 1997. HPC Asia’97, pages 529–534. IEEE, 1997.

[TE94] Radhika Thekkath and Susan J Eggers. The effectiveness of multiple
hardware contexts. In ACM SIGPLAN Notices, volume 29, pages
328–337. ACM, 1994.

[TEE+96a] Dean M. Tullsen, Susan J. Eggers, Joel S. Emer, Henry M. Levy,
Jack L. Lo, and Rebecca L. Stamm. Exploiting choice: Instruction
fetch and issue on an implementable simultaneous multithreading
processor. In Proceedings of the 23rd Annual International Sympo-
sium on Computer Architecture, Philadelphia, PA, USA, May 22-24,
1996, pages 191–202, 1996.

[TEE+96b] Dean M Tullsen, Susan J Eggers, Joel S Emer, Henry M Levy, Jack L
Lo, and Rebecca L Stamm. Exploiting choice: Instruction fetch and
issue on an implementable simultaneous multithreading processor.
In ACM SIGARCH Computer Architecture News, volume 24, pages
191–202. ACM, 1996.

Bibliography 119

[TEL95] Dean M Tullsen, Susan J Eggers, and Henry M Levy. Simultaneous
multithreading: Maximizing on-chip parallelism. In ACM SIGARCH
Computer Architecture News, volume 23, pages 392–403. ACM, 1995.

[TMAJ08] Shyamkumar Thoziyoor, Naveen Muralimanohar, Jung Ho Ahn, and
Norman P Jouppi. Cacti 5.1. Technical report, HP Laboratories,
2008.

[Tom67] Robert M Tomasulo. An efficient algorithm for exploiting multi-
ple arithmetic units. IBM Journal of research and Development,
11(1):25–33, 1967.

[TT03] Nathan Tuck and Dean M Tullsen. Initial observations of the simulta-
neous multithreading pentium 4 processor. In Parallel Architectures
and Compilation Techniques, 2003. PACT 2003. Proceedings. 12th
International Conference on, pages 26–34. IEEE, 2003.

[Uni06] University of Washington. Splash-2, 2006. Benchmark package.

[Upt] Michael Upton. Hyper-threading technology architecture and mi-
croarchitecture. Intel Technology Journal Q, 1:2002.

[XJB+15] Sam Likun Xi, Hans M. Jacobson, Pradip Bose, Gu-Yeon Wei, and
David M. Brooks. Quantifying sources of error in mcpat and potential
impacts on architectural studies. In 21st IEEE International Sym-
posium on High Performance Computer Architecture, HPCA 2015,
Burlingame, CA, USA, February 7-11, 2015, pages 577–589, 2015.

120 Bibliography

List of Figures

1.1 Source of parallelism in a program 15

1.2 Flynn’s taxonomy and MISD model 16

1.3 Classification of architectures based in thread count 16

1.4 Instruction pipelining . 20

1.5 Superscalar execution (degree 2) 21

1.6 32-bit integer execution in 4-wide superscalar processor and a SSE
unit . 27

1.7 SIMT . 28

1.8 SIMT . 28

1.9 SIMT divergence . 29

1.10 Thread execution without multi-threading 30

1.11 Coarse grained multi-threading (After cycle 1 T1 is scheduled as
there is a long latency operation, T0 is rescheduled only when there
is a long latency operation for T1) 31

1.12 Fine grained multi-threading (Rescheduling T0 do not wait until
there is a very long latency operation for T1) 32

1.13 Simultaneous multi-threading . 32

2.1 Control flow graph of blackscholes benchmark 41

2.2 Overview of dynamic vectorization 42

2.3 Breakdown of average vectorizable instructions for 4-way SMT . . 42

121

122 List of Figures

2.4 Control flow . 48

2.5 Growth of stack in time for threads T0 and T1 48

2.6 Control flow with synchronization point at Func_d 49

3.1 Overview of DV-instruction formation in DITVA 56

3.2 Speed up of single warp of 16 threads and 16 threads grouped into
4 warps with dynamic vectorization using DITVA 57

3.3 Logical organization of hardware threads on 2-warp× 4-thread
DITVA. Scalar threads are grouped into 2 warps of 4 threads.
Scalar threads sharing the same PC within a warp form an In-
struction Stream (IS). 58

3.4 Thread mapping to the physical organization. 59

3.5 Overview of a 2W × 2T , 4-issue DITVA pipeline. Main changes
from SMT are highlighted. 61

3.6 Instruction stream tracking in DITVA. Instruction Streams
(a, b, c, d) are illustrated as trains, DVIQs as tracks, DV-
instructions as train cars, and scalar instructions as passengers. . 62

3.7 Illustration of instructions from a scalar thread occupying multiple
DVIQ’s . 64

3.8 Instruction issue with sequence number 65

3.9 Operand collection on 4W × 4T DITVA depending on DV-
instruction type and execution mask. ’w’ represents a 64-bit word 67

3.10 Evolution of the IS and DVIQ states upon thread divergence and
reconvergence . 75

4.1 Speedup with thread count in the baseline SMT configuration, nor-
malized to single-thread performance 80

4.2 Speedup over 4-thread SMT as a function of warp size 81

4.3 Divergence and mispredictions per thousand instructions 82

4.4 TLB misses per thousand instructions for split or unified TLBs on
4W × 4T DITVA . 83

List of Figures 123

4.5 Bank conflicts for 4W × 4T DITVA 84

4.6 Performance scaling with memory bandwidth, relative to 4-thread
SMT with 2 GB/s DRAM bandwidth 85

4.7 Impact of warp size . 85

4.8 Impact of register banking . 86

4.9 DV-instruction count reduction over 4-thread SMT as a function
of warp size . 89

4.10 Relative energy consumption over 4-thread SMT. -dyn and -st are
dynamic and static energy, respectively. 90

5.1 OOO-DITVA RAT & RRAT . 97

5.2 Program control flow for threads T0,T1,T2 and T3. <- represents
write to a register. 97

5.3 Physical register file in OOO-DITVA 98

Rsum

Abstract

Many modern microprocessors implement Simultaneous Multi-Threading(SMT)
to improve the overall efficiency of superscalar CPU. SMT hides long latency
operations by executing instructions from multiple threads simultaneously. SMT
may execute threads of different processes, threads of the same processes or any
combination of them. When the threads are from the same process, they often
execute the same instructions with different data most of the time, especially in
the case of Single-Program Multiple Data (SPMD) applications.

Traditional SMT architecture exploit thread-level parallelism and with the
use of SIMD execution units, they also support explicit data-level parallelism.
SIMD execution is power efficient as the total number of instructions required to
execute a complete program is significantly reduced. This instruction reduction
is a factor of the width of SIMD execution units and the vectorization efficiency.
Static vectorization efficiency depends on the programmer skill and the compiler.
Often, the programs are not optimized for vectorization and hence it results in
inefficient static vectorization by the compiler.

In this thesis, we propose the Dynamic Inter-Thread vectorization Architec-
ture (DITVA) to leverage the implicit data-level parallelism in SPMD applica-
tions by assembling dynamic vector instructions at runtime. DITVA optimizes
an SIMD-enabled in-order SMT processor with inter-thread vectorization execu-
tion mode. When the threads are running in lockstep, similar instructions across
threads are dynamically vectorized to form a SIMD instruction. The threads in
the convergent paths share an instruction stream. When all the threads are in
the convergent path, there is only a single stream of instructions. To optimize the
performance in such cases, DITVA statically groups threads into fixed-size inde-
pendently scheduled warps. DITVA leverages existing SIMD units and maintains
binary compatibility with existing CPU architectures.

