
HAL Id: tel-01427187
https://theses.hal.science/tel-01427187v2

Submitted on 23 Aug 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Leveraging software product lines engineering in the
construction of domain specific languages

David Fernando Méndez Acuña

To cite this version:
David Fernando Méndez Acuña. Leveraging software product lines engineering in the construction of
domain specific languages. Software Engineering [cs.SE]. Université de Rennes, 2016. English. �NNT :
2016REN1S136�. �tel-01427187v2�

https://theses.hal.science/tel-01427187v2
https://hal.archives-ouvertes.fr

ANNÉE 2016

THÈSE / UNIVERSITÉ DE RENNES 1
sous le sceau de l’Université Bretagne Loire

pour le grade de

DOCTEUR DE L’UNIVERSITÉ DE RENNES 1

Mention : Informatique

Ecole doctorale Matisse

présentée par
David Fernando MÉNDEZ ACUÑA

Préparée à l’unité de recherche INRIA
Institut National de Recherche en Informatique et en Automatique

 Rennes, Bretagne Atlantique

Leveraging Software
Product Lines
Engineering in the
Construction of
Domain Specific
Languages

Thèse soutenue à Rennes
le 16 décembre 2016

devant le jury composé de :

Isabelle BORNE
Professeur à l’Université de Bretagne Sud /
examinatrice

Jean-Michel BRUEL
Professeur à l’Université de Toulouse /
rapporteur
Reda BENDRAOU
Professeur à l’Université de Paris Ouest /
rapporteur
Benoît BAUDRY
Chargé de recherche. INRIA Rennes /
directeur de thèse

!

!

Contents

Contents iii

Introduction en français vii

Contexte scientifique . vii

Problématique . vii

Contributions . ix

Contexte d’application . xi

1 Introduction 1

1.1 Research Context . 1

1.2 Problem Statement . 1

1.3 Contributions . 3

1.4 Thesis’ Realization Context . 5

1.5 Outline . 5

I Preliminaries 7

2 Background 9

2.1 Domain-Specific Languages (DSLs) . 9

2.1.1 Implementation Concerns for DSLs 9

2.1.2 Technological Spaces for the Implementation of DSLs 9

2.1.3 External versus Internal DSLs . 11

2.1.4 Language Workbenches . 12

2.2 Software Product Lines Engineering (SPLE) 12

2.3 Summary . 13

3 State of the Art: A Literature Review on Language Product Lines 15

iii

CONTENTS

3.1 Related Surveys and Literature Reviews 16

3.2 Research Method . 17

3.3 Results . 19

3.3.1 The Life-Cycle of a Language Product Line 20

3.3.2 Current Support for the Language Product Lines’ Life-Cycle 27

3.3.3 Mapping Approaches and Technological Spaces 39

3.4 Open Issues in Language Product Line Engineering 42

3.4.1 Open Issues in Top-Down Language Product Lines 42

3.4.2 Open Issues in Bottom-Up Language Product Lines 46

3.5 Threats to Validity . 47

3.6 Summary . 49

II Contributions 51

4 Foreword to the Contributions 53

4.1 Scientific Scope: Addressed Open Issues 53

4.2 Technological Scope: Supported Technological Space 55

5 Facilities to Support Top-Down Language Product Lines 57

5.1 Meta-language Facilities for Language Product Lines 57

5.1.1 Supporting Languages Modularization 57

5.1.2 Supporting Languages Variability Management 66

5.2 Methodologies for Top-Down Language Product Lines 71

5.2.1 Abstract Syntax Engineering . 72

5.2.2 Semantics Engineering . 82

5.3 Summary . 84

6 Reverse Engineering for Bottom-Up Language Product Lines 85

6.1 Approach Overview . 87

6.2 Recovering a Language Modular Design 87

6.3 Synthesizing Language Variability Models 92

6.4 Summary . 93

III Implementation and Validation 95

7 Implementation: The Puzzle Toolkit 97

7.1 Using EMF, K3, and Mélange to Specify DSLs 97

7.2 Capabilities of Puzzle . 99

7.2.1 Capabilities to Support Top-Down Language Product Lines 100

7.2.2 Capabilities to Support Bottom-Up Language Product Lines 105

7.3 Architecture . 108

iv

Contents

7.4 Summary . 109

8 Validation: Case Studies 111

8.1 Revisiting the Modular Design of UML 112

8.1.1 Problem: UML is a Composition of Several “Language Units” . . . 112

8.1.2 Solution: Language Interfaces . 112

8.2 Logo for Progressive Programming Learning 115

8.2.1 Problem’s Description: Learning Sequences and DSL Variants . . . 116

8.2.2 Solution: A Top-Down Language Product Line 116

8.3 Reverse-Engineering a Language Product Line for FSMs 120

8.3.1 Problem Description: Several Formalisms for FSMs 120

8.3.2 Solution: Reverse-Engineering a Language Product Line 126

8.4 Summary . 128

IV Closure 129

9 Conclusion and Perspectives 131

9.1 Conclusion . 131

9.2 Perspectives . 132

9.2.1 Broadening the Spectrum of our Contributions 132

9.2.2 Testing and Evolution of Language Product Lines 133

V Appendixes 135

A Extending EMOF to Support Language Interfaces 137

A.1 Introducing Virtualization in EMOF . 137

A.2 Introducing Module Visibility in EMOF 138

B Hierarchical Domain Analysis 141

C Empirical Data on Specification Cloning in DSLs 143

List of Tables 145

List of Figures 146

List of Publications 149

Bibliography 151

Abstract 167

v

Introduction en français

Contexte scientifique

La complexité croissante des systèmes logiciels modernes a motivé la nécessité d’élever

le niveau d’abstraction dans leur conception et mise en œuvre [1]. L’usage des langages

dédiés a émergé pour répondre à cette nécessité. Un langage dédié permet de spécifier

un système logiciel à travers des concepts relatifs au domaine d’application [2]. Cette

approche a plusieurs avantages tels que la séparation des préoccupations et la capitalisa-

tion de l’expertise acquise dans un domaine particulier [3]. De nombreux langages dédiés

sont apparus pour divers buts, par exemple : la construction d’interfaces graphiques [4], la

spécification de politiques de sécurité [5] ou le prototypage d’applications mobiles [6].

La figure 1.1 présente un aperçu du processus de développement logiciel basé sur des

langages dédiés [7]. Dans ce cadre, il y a trois types d’acteurs : concepteurs des langages,

ingénieurs des systèmes, et utilisateurs finaux [3]. Les concepteurs des langages sont des in-

formaticiens qui possèdent des compétences techniques pour la mise en œuvre de langages

dédiés [8]. À travers un processus d’analyse du domaine et conception de langages, ils trans-

forment les connaissances du domaine en forme de concepts de langage. Les ingénieurs

des systèmes sont des développeurs de logiciels et du matériel qu’utilisent des langages

dédiés pour construire un système concret. Finalement, les utilisateurs finaux sont ceux

que profitent des fonctionalitées funis par les systèmes.

La notion de “systèmes logiciels” n’est pas limitée aux applications purement logicielles.

Dans le cadre de cette thèse, nous adoptons une vision plus large de l’ingénierie de systémes

qui inclut aussi des systèmes cyber-physiques tels que les avions ou les trains.

Problématique

Malgré les avantages fournis par l’usage des langages dédiés, cette approche présente des in-

convénients qui remettent en question sa pertinence dans des projets réels de développement

vii

INTRODUCTION EN FRANÇAIS

Figure 1: Aperçu du processus de développent logiciel basé sur des langages dédiés

logiciel [9]. L’un de ces inconvénients est le coût de la construction des langages dédiés. La

définition et l’outillage de ces langages est une tâche complexe qui prend du temps et qui re-

quiert des compétences techniques spécialisées [3]. Les concepteurs des langages doivent

maı̂triser plusieurs outils et passer beaucoup de temps à définir des artefacts comme la

grammaire, interpreters ou les compilateurs. Cela vaut-il la peine de construire un langage

dédié ? Il s’agit d’une question laquelle il n’est pas toujours facile de répondre [9].

Le processus de développement des langages dédiés devient encore plus complexe lorsque

nous prenons en compte le fait que les langages dédiés peuvent avoir plusieurs dialectes. Un

dialecte est une variante d’un langage qui introduit des différences au niveau de la syntaxe

et/ou de la sémantique [10]. Ce type de variantes apparaı̂t dans deux situations. La première

situation est celle dans laquelle un même formalisme est utilisé pour la modélisation de

plusieurs domaines. Par exemple, les machines à état ont été utilisées comme formal-

isme de modélisation dans une grande variété de langages dédiés conçus pour des objectifs

différents tels que la définition de règles de navigation dans des interfaces graphiques [4] et

la construction des jeux vidéo [11]. Ces langages utilisent les concepts classiques liés aux

viii

Contributions

machines à état comme État ou Transition. Cependant, chaque langage adapte ces concepts

pour ses besoins particuliers.

La deuxième situation qui favorise l’apparition des variantes des langages dédiés est

associée aux domaines complexes comprenant plusieurs aspects divergents. Dans ce cas,

l’outillage qui supporte le domaine est un ensemble de langages dédiés différents (un lan-

gage pour chaque aspect) qui partagent quelques concepts. Par exemple, à cause de sa

complexité, le domaine de gestion des lignes de trains requiert plusieurs langages dédiés

comme : (1) celui présenté par James et al. [12] que permet la spécification et la vérification

de plannings des systèmes de trains, et (2) celui présenté par Iliasov et al. [13] qui facilite

la spécification et la validation de la capacité et la sécurité du système. Ces langages dédiés

partagent quelques concepts comme la notion de train et du rail. Cependant, chaque lan-

gage fournit d’autres concepts liés à son objectif particulier ainsi comme une sémantique

spécialisée.

Le phénomène des variantes dans les langages dédiés montre le pouvoir d’abstraction

fourni par des formalismes tels que les machines à état ou des réseaux de Petri qui, avec

quelques adaptations, peuvent être utiles dans plusieurs domaines. En outre, ce phénomène

met en évidence la façon dont l’usage des langages dédiés peut proportionner la séparation

des préoccupations dans un domaine, à travers de la définition des langages différents pour

traiter chaque aspect du domaine. Néanmoins, la construction d’un ensemble de variantes

de langages (a.k.a. une famille de langages) implique deux défis. Le premier défi est

la réutilisation des parties communes entre les variantes : les concepteurs des langages

doivent réutiliser autant de définitions que possible afin de réduir au maximum la mise en

ouvre en partant de zéro dans la construction des variantes [14]. Le deuxième défi est la

gestion des differences de chaque variante : les concepteurs des langages doivent garantir

que chaque variante fournisse les particularités propres à son contexte d’application.

Dans cette thèse, nous proposons une réponse à la question de recherche suivante :

Question de recherche: Comment augmenter la réutilisation et

gérer la variabilité durant la construction de familles de langages

dédiés ?

Contributions

Afin de répondre à la question de recherche précédemment énoncée, la communauté de

recherche autour de l’ingénierie des langages a proposé l’usage des lignes de produits. En

conséquence, la notion de lignes de langages a récemment émergé. Une ligne de langages

est une ligne de produits où les produits sont des langages [14, 15]. Le principal but dans les

lignes de langages est la définition indépendente de morceaux de langage. Ces morceaux

peuvent être combinées de manières différentes pour configurer des langages adaptés aux

situations spécifiques.

ix

INTRODUCTION EN FRANÇAIS

Figure 2: Deux approches différentes pour fare face à l’ingénierie des lignes des langages

D’une manière similaire aux lignes de produits, les lignes de langages peuvent être con-

struites à partir de deux approches différentes: top-down et bottom-up comme illustré par

la figure 2 . Dans l’approche top-down, les lignes de langages sont conçues et mis en œu-

vre au travers d’un processus d’analyse du domaine où les connaissances du domaine sont

utilisées pour définir un ensemble de modules de langage qui réalisent les caractéristiques

de la ligne de langages. En outre, les connaissances du domaine sont aussi utilisées pour

représenter la variabilité de la ligne de langages à travers des modèles bien structurés qui, en

plus, servent à configurer des langages particuliers. Dans l’approche bottom-up, les lignes

des langages sont construites à partir d’un ensemble de variantes des langages existant au

travers de techniques d’ingénierie inverse. Ces techniques doivent fournir des mécanismes

pour : (1) récupérer un design et une implémentation modulaire qui comprenne tous les con-

cepts de langage existants dans les variantes, et (2) synthétiser les modèles de variabilité

qui capturent les différences entre les variantes.

À partir des approches précédemment énoncées, nous proposons deux contributions :

(1) Des facilités pour supporter l’approche top-down. Comme première contribution,

nous proposons un ensemble de facilités pour supporter la construction de lignes

de langages à travers de l’approche top-down. En particulier, nous proposons une

approche de modularisation des langages qui permet la décomposition des langages

dédiés comme modules de langages interdépendants. En plus, nous introduisons une

x

Contexte d’application

stratégie de modélisation pour représenter la variabilité dans une ligne de langages.

Ces facilités sont accompagnées d’un ensemble d’outils méthodologiques pour guider

le processus de développement.

(2) Des techniques d’ingénierie inverse pour supporter l’approche bottom-up. Comme

deuxième contribution, nous proposons une technique d’ingénierie inverse pour con-

struire, de manière automatique, une ligne de langages à partir d’un ensemble de

variantes de langages existantes. La technique proposée inclut : (1) un mécanisme

pour récupérer un design et une implémentation modulaire pour la ligne de produit á

partir des concepts de langages existants dans les variantes, et (2) une approche pour

synthétiser un modèle de variabilité qui représente les contraintes dont les modules

des langages peuvent être combinés.

Contexte d’application

Cette thèse a été rendu possible grâce à plusieurs partenariats. Les besoins de ces parte-

nariats ont guidé les contributions de la thèse. En outre, ces besoins ont été utiles pour la

validation des idées proposées.

Le premier partenariat c’est le projet VaryMDE1, qui est une collaboration industrielle

entre l’INRIA et Thales. Le but du projet est de concevoir des mécanismes pour gérer la

variabilité qui émerge pendant le processus d’ingénierie logicielle chez Thales. En parti-

culier, le project étude la variabilité au niveau des modèles utilisés pendant le processus

de développement logiciel, ainsi comme la variabilité au niveau des langages utilisés pour

écrire les modèles. Tandis que la thèse de Ferreira [16] propose une solution pour le premier

type de variabilité, dans cette thèse nous proposons une solution pour le deuxième.

Le deuxième partenariat c’est le projet GEMOC2. Le but du project est de fournir un

ensemble d’outils pour supporter la coordination entre les différents langages utilisés dans

la construction d’un même système. Notre interaction avec le projet GEMOC nous a permit

de partager des idées avec des experts dans le domaine de l’ingénierie des langages.

Finalement, le troisième partenariat c’est le projet RELATE3. RELATE est un projet

Marie Curie et son but c’est de former des docteurs au tour des technologies d’informatique

dans les nouages. La contribution la plus importante de ce partenariat c’était sa plat-

forme pédagogique qui nous a fourni un environnement assez riche à travers de plusieurs

séminaires dans des universités européens différentes.

1Website of the VaryMDE project: http://varymde.gforge.inria.fr/
2Website of the GEMOC initiative: http://gemoc.org/ins/
3Website of the RELATE project: http://www.relate-itn.eu/

xi

http://varymde.gforge.inria.fr/
http://gemoc.org/ins/
http://www.relate-itn.eu/

Chapter 1

Introduction

1.1 Research Context

The increasing complexity of modern software-intensive systems has motivated the need of

raising the level of abstraction at which software is designed and implemented [1]. The use

of domain-specific languages (DSLs) has emerged in response to this need as an alternative

to express software solutions in relevant domain concepts, thus favoring separation of con-

cerns, and capitalising the knowledge adquired in a particular domain [3]. The adoption of

this language-oriented vision has motivated the construction of DSLs for a large variety of

purposes such as construction of user interfaces [4], specification of security policies [5],

or mobile applications’ prototyping [6].

Fig. 1.1 presents an overview of language oriented development [7], which includes three

types of stakeholders: language designers, systems engineers, and final users [3]. Language

designers are computer scientists who own the technical skills needed in the construction

of DSLs. They know the techniques and tools available to conduct language development

processes. Through a domain analysis process, language designers materialize the domain

knowledge in the form of language constructs [8]. Systems engineers are software and

hardware developers who use DSLs to build a particular system. Final users are those who

thake advantage of the functionalities provided by the systems.

Note that the notion of “system” is larger than just software applications. In this the-

sis, we adopt a systems engineering perspective where DSLs are used not only to specify

software, but also the behavior of cyber physical systems such as aircrafts or trains.

1.2 Problem Statement

Despite the advantages furnished by DSLs in terms of abstraction, separation of concerns,

and improvement of productivity, the language-oriented development approach has impor-

tant drawbacks that put into question its benefits [9]. One of those drawbacks is associated

1

1. INTRODUCTION

Figure 1.1: Overview of the language-oriented development approach

to the elevated costs of the language development process. The construction of DSLs is

a time consuming activity that requires specialized background [3]. Language designers

must own solid modeling skills and technical knowledge to conduct the definition of com-

plex artifacts such as metamodels, grammars, interpreters, or compilers [3]. Is it worth the

effort to build a DSL? That question is not always easy to answer [9].

The development of DSLs becomes even more complex when we consider that DSLs of-

ten have different dialects. A language dialect is a variation of a given DSL that introduces

certain differences in terms of syntax and/or semantics [10]. This type of variations appear

under two situations. The first situation is the use of well-known formalisms through differ-

ent domains. Consider the case of finite state machines (FSMs), which have been used in

a the construction of DSLs for a large spectrum of domains such as definition of graphical

user interfaces [4] or games prototyping [11]. Those DSLs share typical state machine con-

structs such as states or transitions. However, each DSL adapt those abstractions to address

the particularities of its domain.

The second situation that favors the existence of DSL variants is when the complexity

2

1.3. Contributions

of a given domain motivates the construction of several DSLs to develop separately the

various system concerns. In such a case, the tooling that supports the domain is composed

of several DSL variants that share certain domain abstractions. For instance, suppose two

DSLs: the former is a DSL for specification and verification of railway scheme plans [12];

the latter is a DSL for modeling and reasoning on railway systems’ capacity and security

[13]. These DSL share certain domain abstractions i.e., railway management. However,

they both require different semantics and specialized constructs to achieve their purposes.

The phenomenon of DSL variants reflects the abstraction power of certain well-known

formalisms –such as state machines or petri nets– that, with proper adaptations, can fit vari-

ous domains. Besides, it shows how different concerns in a same domain can be addressed

by different and complementary DSLs. However, the construction of a set of DSL variants

(a.k.a., a language family) implies two challenges. The first challenge corresponds to the

reuse of the commonalities existing among the variants: language designers should reuse,

as much as possible, formerly defined language constructs to minimize implementation

from scratch [14]. The second challenge corresponds to the management of the differences

of each variant: language designers should guarantee that each variant provides the particu-

larities related to their application context.

In this thesis, we aim to answer the following research question:

Research Question: How to increase reuse and manage the

variability during the construction of families of DSLs?

1.3 Contributions

The research community on software language engineering has proposed the use of Soft-

ware Product Lines Engineering (SPLE) to deal with the phenomenon of DSL variants [17].

This led to the notion of Language Product Lines (LPL), i.e., a software product line where

the products are languages [14, 15]. The main principle behind language product lines is

to implement DSLs through language features. A language feature encapsulates a segment

of a language specification that represents certain functionality [18]. Those features can be

combined in different manners to produce different DSL variants.

Similarly to software product lines, language product lines can be built through two

different approaches: top-down and bottom-up [19] (see Fig. 1.2). In the top-down ap-

proach, a language product line is designed and implemented through a domain analysis

process where the knowledge owned by experts and final users is used to define a set of

language modules that implement the language features of the product line. Also, the do-

main knowledge is used to specify variability models capturing the rules that define the

way in which the language features can be combined to produce valid DSL variants. In

the bottom-up approach, the language product line is built up from a set of existing DSL

variants through reverse-engineering techniques. Those techniques should provide mecha-

3

1. INTRODUCTION

Figure 1.2: Two different approaches for Language Product Line Engineering

nisms for: (1) recovering of a language modular design and implementation including all

the language constructs existing in the DSL variants; and (2) synthesis of the corresponding

variability models.

Based on these different approaches for the construction of language product lines, we

propose two contributions briefly explained below:

(1) Facilities to support top-down language product lines. As a first contribution, we

introduce a set of facilities to support the development of top-down language product

lines. Concretely, we provide a language modularization approach that permits the

decomposition of DSLs into interdependent language features. We also introduce a

modeling strategy to represent the variability of a language product line.

These facilities are accompanied with a set of methodological insights to guide lan-

guage designers during the development process.

(2) Reverse-engineering algorithms to support bottom-up language product lines.

As a second contribution, we introduce a reverse-engineering process to automati-

cally build up a language product line from a set of existing DSL variants. This

process encompasses: (1) the recovering of a language modular design and imple-

mentation that defines the features of the language product line; and (2) the synthesis

of variability models that represent the corresponding variability.

4

1.4. Thesis’ Realization Context

1.4 Thesis’ Realization Context

The development of this thesis involved the participation of several partnerships. Moreover,

the needs of our partnerships have guided the contribution of the thesis and were useful

during the corresponding validation.

The first partnership was the VaryMDE project1, which is an industrial collaboration

between INRIA and Thales. This project seeks to provide mechanisms to deal with the

variability emerging during the systems engineering processes in Thales. Concretely, the

project studies the variability at the level of the models used to represent the systems un-

der construction, and at the level of the modeling languages used to build those models.

Whereas the thesis of Ferreira [16] provides an answer to the first level, this thesis provides

an answer to the second one.

The second partnership of this thesis was the GEMOC initiative2. In GEMOC, the

participants work to provide a set of tools and methodologies to coordinate the use of

several modeling languages in complex application contexts. Our interaction with GEMOC

allowed us sharing ideas with experts in the field of software language engineers that are

currently seeking solutions to similar problems.

The third partnership of this thesis was the RELATE project3. It is a Marie Curie project

that aims to train doctors on cloud technologies. The stronger contribution of this partner-

ship was its pedagogical infrastructure. RELATE provided a rich scientific environment

through different workshops and internships in several universities in Europe that facili-

tate the exchange of ideas with other PhD students, experienced professors, and industrial

stakeholders.

1.5 Outline

The content of this thesis is structured in four parts.

The first part, entitled Preliminaries, is dedicated to explain the present of language

product line engineering through two chapters. Chapter 2 introduces background knowl-

edge in terms of software product line engineering and domain specific languages. The

purpose of his chapter is to introduce the vocabulary that we will use all along the docu-

ment. Chapter 3 presents a study of the state of the art on the applicability of software

product line engineering in the construction of domain specific languages. This chapter is

structured in the form of a systematic literature review and closes with a set of open issues

that we identified in the area of language product line engineering.

The second part of this thesis is entitled Contributions. It starts with a brief foreword,

presented in Chapter 4, that highlights the subset of the open issues in the state of the art

1Website of the VaryMDE project: http://varymde.gforge.inria.fr/
2Website of the GEMOC initiative: http://gemoc.org/ins/
3Website of the RELATE project: http://www.relate-itn.eu/

5

http://varymde.gforge.inria.fr/
http://gemoc.org/ins/
http://www.relate-itn.eu/

1. INTRODUCTION

that we will address in this thesis. Then, we introduce our contributions structured in two

chapters. The first one, Chapter 5, presents a set of facilities for the construction of top-

down language product lines. The second one, Chapter 6, presents a reverse-engineering

strategy to support bottom-up language product lines.

The third part of this thesis is entitled Implementation and Validation. This part starts

by describing the concrete tooling in which we implement our approach. In particular, in

Chapter 7 we present Puzzle, an IDE built on top of the Eclipse Modeling Framework

where we implemented the ideas introduced in this thesis. Then, in Chapter 8 we introduce

three case studies that we use as validation.

Finally, the fourth part of this thesis, entitled Closure closes this document by presenting

our conclusions and perspectives in Chapter 9.

6

Part I

Preliminaries

7

Chapter 2

Background

In this section, we introduce a unified vocabulary to facilitate the comprehension of the

ideas presented in the rest of this document. In particular, we present a brief background in

domain-specific languages and software product line engineering.

2.1 Domain-Specific Languages (DSLs)

In recent years, growing interest in domain-specific languages has led to the proliferation

of formalisms, tools, and methods for software language engineering [2]. Hence, numerous

techniques for implementing DSLs have emerged.

2.1.1 Implementation Concerns for DSLs

Just as traditional general purpose languages, domain specific languages are typically de-

fined through three implementation concerns: abstract syntax, concrete syntax, and seman-

tics [20]. The abstract syntax of a DSL specifies the set of language constructs that are

relevant to its domain and the relationships among them. The concrete syntax of a DSL

maps its language constructs to a set of symbols (either graphical or textual) that the users

manipulate to crea te models and programs conforming to its abstract syntax. These rep-

resentations are usually supported by editors that enable users to write programs using

the symbols defined by the concrete syntax acting as the graphical user interface of the

DSL. Finally, the semantics of a DSL assigns a precise meaning to each of its language

constructs. More precisely, static semantics constrains the sets of valid programs while

dynamic semantics specifies how they are evaluated at runtime.

2.1.2 Technological Spaces for the Implementation of DSLs

There are different technological spaces available for the realization of each of these con-

cerns. The abstract syntax of a DSL can be expressed using grammars or metamodels. This

9

2. BACKGROUND

decision often depends on the culture of language designers. Grammars will most likely

be favored by language designers with a strong background in language theory, parsers

and compilers, while metamodels will most likely be favored by language designers with a

strong background in object-oriented programming and model-driven engineering.

Regarding concrete syntax, DSLs can have either textual or graphical representations (or

a mix of both). This decision is usually motivated by the requirements of final users, and

the scenarios where the DSL will be used [21]. The implementation of a concrete syntax

may for instance rely on the definition of a parser, or a projectional editor [22]. Since

concrete syntax and semantics are usually defined as a mapping from the abstract syntax,

the choice of the abstract syntax formalism strongly impact the choice of concrete syntax

and semantics specification. In particular, the use of grammars to express abstract syntax

implies that the DSL have a textual concrete syntax.

Regarding the specification of static semantics, there are not many design decisions to

make beyond the constraints language to use. Usually, this selection is based on technolog-

ical compatibilities with the formalism in which the abstract syntax is defined.

In turn, there are different methods for the definition of dynamic semantics: operational

semantics, denotational semantics, and axiomatic semantics [23]. Operational semantics ex-

presses the meaning of the language constructs of a DSL through the computational steps

that will be performed during the execution of a program [23]. The definition of the opera-

tional semantics thus consists in an endogenous transformation that changes the execution

state of conforming programs. Typically, the implementation of operational semantics cor-

responds to the definition of an interpreter.

Denotational semantics expresses the meaning of a DSLs through functions that map

its constructs to a target formal language where the semantics is well-defined [24, 25].

When the target language is not a formal one (e.g another programming language with its

own semantics), the term translational semantics is favored. The implementation of the

translational semantics typically takes the form of a compiler.

Axiomatic semantics offers a mechanism for checking if the programs written in a DSL

own certain properties. Examples of such properties are equivalence between programs or

functional correctness (e.g. checking if the program is correct with respect to its specifica-

tion in terms of pre- and post-conditions) [26].

The different methods for implementing the semantics of software languages are not

mutually exclusive. There are authors [27, 26] that suggest that a DSL might own more

than one type of semantics according to the needs of the final users.

Figure 2.1 sums up the discussed taxonomy in the form of a feature model [28]. Each

feature represents a choice in terms of the technological space of a DSL. The relationships

between features represent constraints on the combination of those choices. This taxonomy

is consistent with the state of the art of language workbenches presented in [29]. Never-

theless, our taxonomy is more focused on the characteristics of the languages themselves

rather than on the characteristics of the language workbenches. Our taxonomy is also con-

10

2.1. Domain-Specific Languages (DSLs)

Figure 2.1: Technological spaces for domain-specific languages

sistent with the classification of DSLs introduced in [30].

2.1.3 External versus Internal DSLs

Another important decision when designing a DSL concerns the shape of the resulting lan-

guage and the way to develop it. Language designers can choose to build either an external

or an internal DSL1. The construction of an external DSL can be viewed as the creation

of a new language [2] with its own dedicated infrastructure: editors, compilers and/or in-

terpreters, tools, etc. In such a case, language designers must write a complete specifica-

tion of their language using dedicated formalisms that offer the suitable expressiveness for

defining each implementation concern. Since those formalisms are languages intended to

specify languages, they are usually known as meta-languages and vary depending on the

technological space chosen for the construction of the DSL.

In the case of internal DSLs, the principle is to take advantage of the infrastructure al-

ready provided by a host language [2]. The high-level domain concepts of the DSLs are

implemented using the language constructs offered by the host language. Editors, parsers,

or compilers of the host language can be reused as is, thus lowering the development costs

compared to external DSLs. However, following this approach also implies that the capa-

bilities of an internal DSL are restricted to the capabilities of the host language. The DSL

must work with the programming paradigm, the type system, and the tooling provided by

the host language. Besides, it is diffucult to forbit the use of the constructs of the host

language, as well as providing feedback to the developers in terms of domain specific con-

cepts. Because of all these reasons, an appropriate selection of the host language is of vital

importance [32].

1Although the terms “internal” and “embedded” are sometimes used interchangeably, we use the term

internal DSL to avoid the confusions sometimes associated with embedding as composition operator [31].

11

2. BACKGROUND

2.1.4 Language Workbenches

The notion of language workbench originates from the seminal work of Martin Fowler

[33]. The main intent of language workbenches is to provide a unified environment to

assist both the language designers in creating new DSLs. Modern language workbenches

typically offer a set of meta-languages that the language designers use to express each of

the implementation concerns of a DSL [34], along with tools and methods for composing

and analyzing their specifications.

2.2 Software Product Lines Engineering (SPLE)

While traditional approaches to software development are intended to build individual soft-

ware products, the SPLE approach proposes the construction of families of software prod-

ucts through a production lines’ perspective [35]. A software product line is an infrastruc-

ture that enables to assembly several software products that share some commonalities with

well-defined variations [35].

The central principle of the SPLE approach relies on the notion of feature. A feature

encapsulates a characteristic that might be included in a software product. In that sense, a

software product line can be viewed as a set of features available for the construction of a

family of software products. Figure 2.2 shows the life-cycle of a software product line; it

is divided into two phases: domain engineering and application engineering [35].

During the domain engineering phase, the objective is to build the product line itself (i.e.,

the infrastructure). This process includes the design and implementation of a set of common

assets, as well as the explicit representation of the possible variations. The common assets

of a software product line correspond to the software artifacts that implement the features.

In turn, the possible variations of a software product line correspond to the combination of

features that produce valid software products [36].

Since the notion of feature is intrinsically associated with encapsulation of functionality

(i.e., characteristics), the implementation of the common assets requires a modular design

of software artifacts that allows the definition of interdependent and interchangeable soft-

ware modules. Those modules should be linked to the features they implement. In turn, the

explicit representation of the variations requires a formalism to express the rules defining

which are the valid combinations of features. Typically, those rules encode dependencies

and/or conflicts between features. Feature models (FMs) [37] became the “de facto” stan-

dard to express these rules [38].

During the application engineering phase, the objective is to derivate software prod-

ucts according to the needs of specific customer segments [35]. Such derivation process

comprises the selection of the features that should be included in the product, i.e., product

configuration, as well as the assembly of the corresponding software modules, i.e., modules

composition.

It is worth mentioning that both, the domain engineering and the application engineering

12

2.3. Summary

Figure 2.2: Phases of the SPLE’s life cycle

phases are intended to be complete software development process. Hence, these phases

require the typical steps towards the construction of software: requirements analysis, solu-

tion design, implementation, and testing [35]. Besides, software product lines are not static

in time. The market needs evolve, and software product lines should support changes and

adaptations to new business needs [39].

2.3 Summary

In this chapter, we introduced a unified vocabulary on the software engineering areas related

to this thesis. We started by defining the notion of domain specific languages in terms of

the implementation concerns and the diverse technological spaces available to conduct the

language development process. We also discussed the relationship between languages and

language workbenches. Afterwards, we introduced some vocabulary on software product

lines engineering. We explained the domain engineering and the application engineering

processes and the challenges to overcome during each of them.

13

Chapter 3

State of the Art: A Literature Review on
Language Product Lines

As aforementioned, there is synergy between software product line engineering and the

construction of DSLs [15]. It is possible to use the ideas provided the SPLE approach for

systematic management of software variants to build DSL variants [17]. To this end, the

life-cycle of software product lines should be adapted to the particularities of the language

development process. Besides, language workbenches should provide the facilities that

allow language designers to adopt those ideas [3].

Nowadays, we can find a number of approaches that directly or indirectly support this

vision. Each approach provides certain facilities that can be used during the construction of

a language product line. However, it is yet difficult for language designers to realize how

those approaches can be used in a concrete language development project. This difficulty

has two dimensions.

The first dimension is the partial coverage of the language product lines life-cycle. Not

all the approaches address all the steps of such a life-cycle. Rather, they are often focused

on a particular step (such as language modular design) without discussing the other ones.

This can be explained by the fact that the approaches that result useful in language prod-

uct line engineering were not necessarily conceived to this end. For example, not all the

approaches in languages modular design are intended to support variability; many of them

are motivated by other factors such as domain evolution and maintenance [40].

The second dimension is the potential misalignment between the technological space

supported by each approach and the technological constraints of a particular language de-

velopment project. Approaches in software language engineering are often conceived for a

specific technological space which not always matches the requirements of a specific DSL

development project. For example, an approach conceived for grammars-based DSLs with

operational semantics may be difficult (or even impossible) to apply in a project where

DSLs are meant to be metamodels-based with denotational semantics.

15

3. STATE OF THE ART: A LITERATURE REVIEW ON LANGUAGE PRODUCT LINES

This chapter reports on an effort for organizing the literature on language product line

engineering through a systematic literature review. The contributions of the chapter are two-

fold. On one hand, we propose a definition to the life-cycle of a language product lines; we

use it to analyze how current approaches support such a life-cycle. On the other hand, we

establish a mapping between each approach and the technological space it supports.

In this sense, this chapter targets both researchers and practitioners. Researchers will

find a comprehensive analysis of the life-cycle of language product lines, as well as a deep

study of the strategies used in the state of the art to address such a life-cycle. In turn,

practitioners will find in this chapter as a practical guide that they can use to find out the

most convenient approach for a particular language development project according to the

technological space used in a particular language development process.

Scope. In this thesis, we are concerned to the study of the variability in external DSLs.

Hence, the study presented in this chapter is restricted to approaches supporting this type

of DSLs.

3.1 Related Surveys and Literature Reviews

There are other literature studies in the field of software language engineering. Perhaps

the most notable one is presented by Mernik et. al. [2] which provides a comprehensive

analysis of the different development phases in the construction of DSLs: analysis, design,

and implementation. Besides, the study introduces insights to identify the situations in

which the development of a DSL is a correct decision, and discusses the capabilities of

some of the language workbenches available in 2005.

Some years later, Kosar et al., [41] published a new research work in the form of a

systematic mapping study which analyzes the trends of the research in DSLs from 2006 to

2012. The conclusions of the study permit to identify the issues that require more attention

in the research of DSLs. For example, the authors clearly identify a lack of research on

domain analysis and maintenance of DSLs.

A similar study is presented by Marques et al. [42]. In this case, the objective is to

provide a systematic mapping study that allows to identify the tools and techniques used

in the construction of DSLs. For example, the authors provide a comprehensive list of

the host languages used in the development of internal DSLs. Besides, this work permit

to understand in which domains the DSLs are being used. One of the conclusions in this

regard is that the most popular domain for DSLs is the construction of Web-based systems.

Other popular domains are embedded systems and networks.

Another relevant study on the literature of software language engineering is the one

presented by Erdweg et al. [29]. More than studying research trends and techniques, this

work focus on the analysis of language workbenches. The authors identify a comprehensive

16

3.2. Research Method

set of features provided by the current language workbenches. Then, these features are used

to compare the language workbenches among them. The technological spaces are viewed

as features of the language workbenches.

Positioning. All the studies presented so far are intended to provide a general vision on

the field of software language engineering. They analyze a large amount of approaches and

offer offer different perspectives on the past, the present, and the future of the research in

software languages. The literature review that we present in this chapter is intended to be

more specific. Instead of global perspectives, we propose a detailed study in a localized

issue: the use of software product lines techniques to increase reuse in the construction of

DSL variants. In that sense, our survey can be compared with other surveys addressing

localized issues. For example, the work presented by Ober et. al. [43] surveys different

techniques to deal with interoperability between DSLs, and the work presented by Kusel et.

al. [44] studies the approaches to leverage reuse in model-to-model transformations.

3.2 Research Method

In this section we provide the details about the methodology that we followed during the

conduction of this systematic literature review. Concretely, we describe the search protocol

that we used to find and select the articles included in the discussion. The search protocol

is illustrated in Fig. 3.1. It was inspired on the guidelines for systematic literature reviews

presented by Kitchenham et al [45].

Perform

automatic

search

1018

articles

829

articles

236

articles

Remove

duplications

Apply

discarding

criteria

Apply

selection

criteria

38

articles

Figure 3.1: Protocol used to chose the articles included in the discussion.

Perform automatic search. The first phase of the protocol corresponds to an automatic

search that collects a preliminary set of articles potentially interesting for the discussion.

It was performed on four digital libraries: ACM-DL, IEEEXplore, SpringerLink, and Sci-

enceDirect. These digital libraries where selected because they are used to publish the

articles accepted in the conferences and journals typically targeted by the community of

software language engineering. We decided to discard other sources such as GoogleScholar

that do not guarantee that the indexed documents have been validated through peer-reviewing

processes.

The automatic search was based on the following boolean expression: (A OR B OR C)

AND (D OR E OR F) AND (G) where the corresponding strings are presented in the Tab

17

3. STATE OF THE ART: A LITERATURE REVIEW ON LANGUAGE PRODUCT LINES

3.1. There might be several variants of these strings. For example, we can consider plurals

and acronyms. However, this current setting retrieve all the all the works that we knew

before conducting this literature review, which we consider as a good insight to believe that

the automatic search is appropriated. This first phase resulted in 1.018 articles.

Research Area Challenge Scope

A: language engineering D: variability G: domain–specific languages

B: languages implementation E: modularity -

C: languages definition F: composition -

Table 3.1: Strings for the automatic search of the systematic literature review

Remove duplications. There are some cases in which an article is indexed by more than

one digital library. As a consequence, some of the entries resulting from the first phase

corresponded to the same article. Then, the second phase of our protocol was dedicated to

remove those repetitions by checking the title of the paper as well as the target (conference

or journal) in which it was published. This phase ends up with a set of 829 unique articles.

Apply discarding criteria. The keywords-based automatic search retrieved many arti-

cles. However, not all of them where relevant to the scope of the literature review. There-

fore, we conducted a discarding process based on a two-fold discarding criteria presented

below. Those criteria were applied on titles, abstracts and conclusions. At the end of this

phase we obtained 236 articles.

• Discard the articles which do not deal with design and/or implementation of DSLs.

• Discard the articles which do not target any of the issues that we have identified

as relevant languages product line engineering i.e., modularity, composition, and

variability management.

Apply selection criteria. After applying the discarding criteria, we applied a second

filter intended to select the articles will be definitely part of the discussion. To this end,

we defined a two-fold selection criteria that we applied on the article’s introductions. This

phase resulted in 38 articles.

• Select the articles that have a clear contribution to one or several issues which are

relevant on language product line engineering for external DSLs.

• Select the articles that present case studies if and only if they offer clear insights to

address at least one issue of language product line engineering.

Final result. Fig. 3.2 presents the selected articles classified by year and type of publica-

tion. Of the 38 articles, 9 were published in journals, 17 in conferences, 11 in workshops.

The figure shows an increasing interest on the subject represented in an increasing number

of publications. The list of articles selected and discarded and in each step of the search

protocol is available on-line1.

1Survey’s website: http://spltosle-survey.weebly.com/

18

http://spltosle-survey.weebly.com/

3.3. Results

1999-2003 2004-2007 2008-2011 2012-2015

Workshops 0 0 5 6

Conferences 1 3 6 7

Journal 2 2 3 3

0

2

4

6

8

10

12

14

16

18

N
u

m
b

er
 o

f
a

rt
ic

le
s

Figure 3.2: Number of articles per year and type of publication

Validation of the searching protocol. Despite the rigorous process that we followed

to identify relevant articles, we wanted to reduce the risk of omitting some relevant article

during the automatic search. So, we use a three-fold strategy to validate the automatic

search.

First, before conducting this literature review, we established a set of articles that we

knew in advance and that are relevant in this study. Then, we checked if those papers were

included by the automatic search. The results were positive, all the papers in the predefined

set were included in the automatic search.

Second, we collected the papers cited by the 38 articles finally included in the literature

review. We select the references that we considered as relevant and we checked that they

were also included in the automatic search. The results in this second validation strategy

were positive as well; all these relevant articles were included in the automatic search.

Finally, we ask a variety of researchers to check our corpus and see if it has some missing

works. We obtained several answers pointing out that the main works were considered.

3.3 Results

In this section, we present the results of our analysis of the articles obtained through the

systematic process described above. Each article was read and analyzed according to the

vocabulary presented in Section 2.

19

3. STATE OF THE ART: A LITERATURE REVIEW ON LANGUAGE PRODUCT LINES

3.3.1 The Life-Cycle of a Language Product Line

Fig. 3.3 presents the life-cycle of a language product line. It addresses the same issues

addressed by the life-cycle of a software product line introduced in section 2.2. However,

there are certain particularities that should be considered. Those particularities come out

from the specificities of the DSLs development process, and are discussed in several of the

articles we selected during the survey protocol.

Figure 3.3: Phases of the life cycle of a language product line

Language Modular Design

Language modular desing supposes the intersection of two bodies of knowledge: software

modularization and software language engineering as shown in Fig. 3.4. Hence, language

modularization approaches inherit a combined complexity. On one hand, they have to

support the modularization scenarios identified in the literature of software language engi-

neering (i.e., extension, restriction, aggregation, unification, and extension composition).

On the other hand, they are supposed to preserve basic principles behind software modular-

ization (e.g., independent development, information hiding, and substitutability).

Languages modularization scenarios. A modularization scenario describes a situation

where two language modules interact each other according to the nature of the dependencies

existing between their language constructs. Those scenarios have been largely discussed in

the literature [46, 22, 47] under different names. A unified vocabulary is presented in Table

3.3.1 and in the following we provide a brief description of each of them.

The modularization scenarios called self-extension and referencing, are out of the scope

of the paper. The first one, because it is only applicable to the case of internal DSLs that

will not be discussed in this paper. The second one because it refers more to the problem

of languages integration and coordination than languages modularization.

• Extension: Extension is a modularization scenario where a base language module

is enhanced with new capabilities provided by an extension language module. Such

new capabilities can be either new language constructs or additional behaviors on top

of the existing constructs [48].

20

3.3. Results

Figure 3.4: The relationship between software modularization and software language engineering

This article Erdweg Vöelter Haber

[46] [22] [47]

Extension Extension Extension Inheritance

Restriction Restriction Restriction -

Aggregation - Combination Embedding

Unification Unification - -

*Self-Extension Self-Extension Embedding -

*Referencing - Referencing Aggregation

Extension Composition Extension Composition - -

Table 3.2: Language modularization scenarios in the literature. (*) Out of the scope

For instance, a language for expressing finite state machines can be extended to sup-

port hierarchical state machines by introducing the notion of composite state [49]. In

such a case, the extension module introduces a new construct (i.e., CompositeState)

completing the specification at the level of the abstract syntax, the concrete syntax,

and semantics. The same language can be also extended with a pretty printing opera-

tion that returns a string representation of the entire state machine.

• Restriction: Unlike extension, restriction refers to the modularization scenario where

capabilities of a base language module are reduced by a restriction language module.

In other words, some of the constructs offered by the base language are disabled so

they cannot longer be used. In [50] the author introduces an illustrative example for

restriction where a base language for controlling a robot is restricted by removing

some of the movement commands initially provided.

Restriction is commonly identified as a particular case of extension [46, 22]. A lan-

guage construct can be disabled by either overriding an existing language construct,

21

3. STATE OF THE ART: A LITERATURE REVIEW ON LANGUAGE PRODUCT LINES

or introducing additional constraints that, in the validation phase, avoid the accep-

tance of models/programs which include the restricted construct. In this article, we

consider extension and restriction as different modularization scenarios – they have

not only different but also opposite purposes – that can be addressed by means of

similar modularization techniques.

• Aggregation: Aggregation refers to the modularization scenario where a requiring

language module uses (and incorporates) some language constructs provided by a

providing language module. Consider for example the case where a language for

modeling finite state machines uses the functionality provided by a constraint lan-

guage for expressing guards in the transitions.

• Referencing: Similarly than aggregation, in referencing a requiring language mod-

ule uses some constructs provided by a providing language modules. However, in

this case the requiring language constructs are not incorporated by the requiring mod-

ule but just referenced. Consider for example, the case in which a UML sequence

diagram references the entities defined in a UML class diagram.

Although this modularization scenario has been discussed in the literature of soft-

ware language engineering, we did not found evidence that demonstrates its rele-

vance in the language product lines life-cycle. This is because the objective of a

language product line is to provide mechanisms to compose complete variants of a

DSLs specification and, in this case, composition has a different meaning being more

related to orchestration of models/programs.

• Unification: Unification refers to the modularization scenario where two indepen-

dent languages, initially conceived for different purposes, are composed to produce

a language with more powerful functionality. The main difference with respect to

the other modularization scenarios introduced so far is that in this case there is not

dependency between the involved languages. Rather, they are independent one from

the other, and some glue code is needed for the composition. Note that in this case,

the interface between the involved language modules is specified as a third language

module containing the glue code.

As an example of unification consider the research presented in [4] where a lan-

guage for state machines is unified with the CSS (Cascading Style Sheets) language.

The purpose is to facilitate the definition web interfaces. The work is based on the

idea that a state machine can be used to represent user interactions whereas CSS can

be used for expressing web pages’ style.

The modularization scenarios presented so far can be applied in complex situations in-

volving more than two language modules. This case is known as extension composition.

Consider the case presented in Fig. 3.5 where the web styling language CSS is unified with

language for expressing state machines that, in turn, uses the functionality of a constraints

language (i.e., aggregation) and that is extended by the notion of composite states.

22

3.3. Results

Finite State

Machines

Composite

States

Constraints

Language

Extension Aggregation Unification

CSS

Key:

Figure 3.5: Example of extension composition

Principles from software modularization. The literature on software modularization

is quite diverse. Many approaches and discussions have been proposed on modular design

and implementation of software systems. However, there are three principles which have

received special importance in the literature:

• Independent development. Independent development has been recognized as one

of the advantages software modularization [51]. Software modules can be developed

independently of each other even if they have dependencies with other modules [51].

However, this capability is not given for free. To support independent development,

a modularization approach should provide a mechanism to express a set of assump-

tions a module under construction can consider as given. These assumptions are sup-

posed to be fulfilled by other module. Software modules composition is the activity

where the assumptions made a certain module are materialized in real functionality

providing by another software module.

• Information hiding. Information hiding refers to the capability of explicitly select-

ing the information that a module exposes to other modules. Ideally, the exposed

information should represent the functionality provided by the software component.

The hidden information should correspond to the implementation details [52]. The

importance of this principle relies on reducing the impact of module’s evolution [53].

A module exposes the information which is supposed to be stable along the time (i.e.,

its functional specification) and hides the information which is more likely to change

(i.e., its implementation) [52].

• Substitutability. Substitutability refers to the capability of interchange modules that

provide the same functionality even if they are implemented differently. For example,

there exists substitutability in a software system that can use different modules for

LDAP authentication. As long as the modules provide the same functionality, a

components model should permit to use any of them according to the needs in a

23

3. STATE OF THE ART: A LITERATURE REVIEW ON LANGUAGE PRODUCT LINES

specific situation. The importance of substitutability is to reduce coupling between

modules and to increase their potential reuse.

Language Modules Composition

One of the particularities of the DSLs implementation is that the tooling associated to a DSL

(e.g., parsers or validators) is rarely built by language designers. Rather, such a tooling

is automatically generated from the DSLs specification by language workbenches. For

example, the parsers of the DSLs are often generated from a BNF-like grammar; those

parsers might include capabilities such as syntax coloring or auto-completion.

As a consequence of this particularity, language modules composition can be performed

either at the level of the specification [46, 50] or at the level of the tooling [54]. In the first

case, the principle is to compose the specifications of each language module thus producing

one joint specification that is used to automatically generate the tooling of the entire DSL.

In doing so, the composition phase should compose the implementation artifacts containing

the language modules specifications while clearly defining the semantics of the composition

so the language constructs can correctly interact among them. In the second case, the

principle is to first generate the tooling corresponding to each language module, and enable

mechanisms to support the interaction between those “tooling modules”.

Multi-Dimensional Variability Modeling

The variability existing between DSLs should be explicitly represented in order to identify

the combinations of language modules that, once assembled, will produce valid DSLs. The

fact that a DSL is specified in different implementation concerns implies different dimen-

sions of variability [55, 56]. Let us summarize each of these dimensions.

• Abstract syntax variability. One of the motivations for the construction of lan-

guage product lines is to offer customized languages that provide only the constructs

required by a certain type of users. The hypothesis is that it will be easier for the

user to adopt a language if the DSL only offers the constructs he/she needs. If there

are additional concepts, the complexity of the DSL (and the associated tooling) need-

lessly increases and “the users are forced to rely on abstractions that might not be

naturally part of the abstraction level at which they are working” [14].

Abstract syntax variability refers to the capability of selecting the desired language

constructs for a particular type of user. In many cases, constructs are grouped in

language features to facilitate the selection. Such grouping is motivated by the fact

that selecting constructs can be difficult because a DSL usually has many constructs,

so a coarser level of granularity is required.

• Concrete syntax variability. Depending on the type of user, the use of certain types

of concrete syntax may be more appropriate than an other one. Consider, for exam-

ple, the dichotomy between textual or graphical notations. Empirical studies such as

24

3.3. Results

the one presented in [57] show that, for a specific case, graphical notations are more

appropriate than textual notations whereas other evaluation approaches argue that tex-

tual notations have advantages in cases where models become large [58]. Concrete

syntax variability refers to the capability of supporting different representations for

the same language construct.

• Semantic variability. Another problem that has gained attention in the literature

of software language engineering is the semantic variation points existing in DSLs.

A semantic variation point appears where the same construct can have several inter-

pretations. Consider, for example, the semantic differences that exist between state

machines languages explored in [59]. In that case, a state machine can either comply

with the run-to-completion policy or accept simultaneous events. In the first case,

events are processed sequentially (one after the other and one at a time) even if two

events arrive at the same time. In the second case, simultaneous events can be at-

tended at the same time. Semantic variability refers to the capability of supporting

different interpretations for the same language construct.

These dimensions of variability are not mutually exclusive. There are cases in which

several types of variability appear at the same time in the same language product line. In

such cases, an approach for multi dimensional variability modeling [60] is required; it

should take into account the fact that decisions taken in the resolution of the abstract syntax

variability may affect decisions taken in the both concrete syntax and semantics variability.

Fig. 3.6 illustrates multi dimensional variability in the case of state machines. Each

dimension of variability is expressed as a sub-tree. In the case of abstract syntax variability,

a DSL for state machines is a mandatory feature that requires of an expression language.

Timed transitions can be optionally selected as an extension of the DSL for state machines.

The semantic variability dimension represents the decisions with respect to the behavior

of the state machine. In this example, semantic choices regard to the perfect synchrony

hypothesis (an event takes zero time for being executed) and events concurrency. Finally,

the concrete syntax variability dimension presents the choice between graphical or textual

DSLs for state machines.

Multi-staged Language Configuration

Once the variability of the language product line is correctly specified, and as long as

the language features are correctly mapped to language modules, language designers are

able to configure and derive DSLs. There are two issues to consider. First, the multi di-

mensional nature of the variability in language product lines, supposes the existence of a

configuration process supporting dependencies between the decisions of different dimen-

sions of variability. For example, decisions in the abstract syntax variability may impact

decisions in semantic variability. Second, language product lines often require multi staged

languages configuration. That is, the possibility of configuring a language in several stages

and by different stakeholders.

25

3. STATE OF THE ART: A LITERATURE REVIEW ON LANGUAGE PRODUCT LINES

Figure 3.6: Example for multi-dimensional variability in language product lines

Figure 3.7: Example for multi-staged configuration in language product lines

Multi-staged configuration was introduced by Czarnecki et al. [61] for the general case

of software product lines, and discussed by Dinkelaker et al. [62] for the particular case of

DSLs. The main motivation to support such functionality is to transfer certain configuration

decisions to the final user so he/she can adapt the language to exactly fits his/her needs [62].

In that case, the configuration process is as follows: the language designer provides an

initial configuration. Then, the configuration is continued by the final user that can use the

DSL as long as the configuration is complete. In doing so, it is important to decide what

decisions correspond to each stakeholder.

As an example, suppose the multi staged configuration scenario presented in Figure 3.7.

In that scenario, the language designer configures the abstract and the concrete syntax of a

26

3.3. Results

DSL for finite state machines. Using those decisions, the language designer can produce a

parser and an editor for the DSL. However, the semantics of the DSL remains open so the

final user can configure it according to his/her modeling needs. Under the literature, this

capability is known as late semantic adaptation [62]. It is important to mention, however,

that this configuration scenario is just an example that illustrates the complexity of the

configuration process associated to a multi dimensional variability modeling approach.

The Flow of the Life-Cycle: Top-down vs. Bottom-up

So far, we have presented the stages that compose the life-cycle of a language product

line. We reviewed the main challenges that language designers have to overcome in terms

of languages modularization and variability management through the domain engineering

and the application engineering phases. Now, we will discuss the order in which those

challenges are addressed during the development process, for which there are two different

perspectives: top-down and bottom-up [19] as shown in Fig. 3.3.

In the top-down perspective, the domain engineering phase is performed first. Then, the

produced artifacts are used to conduct the application engineering phase. Language engi-

neers use domain analysis to design and implement a set of language modules and variabil-

ity models from some domain knowledge owned by experts and final users. Those artifacts

can be later used to configure and compose particular DSLs. This top-down approach is

appropriated when language designers know in advance that they will have to build many

variants of a DSL, and they have some clues indicating that the effort of building a language

product line will be rewarded.

Differently, in the bottom-up perspective, the application engineering phase is performed

before the domain engineering phase. Language designers start by building different DSLs

that address different needs of final users. Then, when language designers realize that there

is potential enough to build up a language product line from a set of existing DSLs, these

DSLs are analyzed to extract that commonalities and variability that, with appropriated

mechanisms, can be used to reverse engineer language modules and variability models.

3.3.2 Current Support for the Language Product Lines’ Life-Cycle

After reading the articles obtained from the survey protocol, we identified a set of ap-

proaches supporting (partially or completely) the language product line’s life-cycle. Those

approaches are listed in table 3.3. In this section, we analyze how the aforementioned

approaches support each step of the language product line’s life-cycle.

There is a clarification to point out in this table. There are two approaches i.e., Nev-

erlang+AiDE and ASF+SDF+FeatureHouse that are more than single approaches are the

combination of several approaches. Whereas Neverlang and ASF+SDF are approaches for

the construction of DSLs, AiDE and FeatureHouse are tools for variability management.

In this literature review, we group those approaches since they have been used together

27

3. STATE OF THE ART: A LITERATURE REVIEW ON LANGUAGE PRODUCT LINES

Name Articles

LISA [63, 64, 65, 66, 50]

Melange [67, 68, 69]

Keywords-based modularization [70]

Meta Programming System, MPS [71, 22]

Modularization on top of ATL [72]

Modularization on top of MetaDepth [73, 74]

Gromp [75]

Domain-concepts based modularization [76, 77]

Interfaces-based modularization [78]

Components-based LR parsing [54]

Roles-based modularization [79, 80]

MontiCore [81, 82, 31, 55]

Neverlang+AiDE [83, 40, 84, 85, 86]

ASF+SDF+FeatureHouse [87, 88, 89, 18]

Table 3.3: Current approaches supporting language product lines

to support language product line engineering. This decision facilitates the study of the

approaches.

Support for Languages Modular Design

Languages modularization has been largely discussed in the literature. Indeed, the most

part of the approaches we survey in this literature review aim to support languages modu-

larization. As a result of the analysis of those approaches, we have identified two modular-

ization techniques intended to support modular languages design. Those techniques vary

with respect to the way in which bindings between language modules are expressed; they

are explained below:

• Endogenous modularity. In endogenous modularity, bindings between language

modules are defined as part of the modules themselves. Usually those bindings are

direct references between language modules such as the import clause. One impor-

tant characteristic of endogenous modularity is that, because the modules are linked

each other, the importing module has direct access to all the definitions provided by

the imported one. As a result, the importing module can easily extend or use these

definitions.

This approach results quite useful from the language designer’s point of view be-

cause it is straightforward, and it enables IDE facilities such as auto-completion.

Contrariwise, the disadvantage of endogenous modularity is that it does not favor

language modules substitutability because dependent modules are strongly linked

each other. Replacing one language module for another one requires some refactor-

ing to change the direct reference and, in many cases, adapt to the definitions of the

28

3.3. Results

new imported module. This form of modularization favors high coupling between

modules.

• Exogenous modularity. In exogenous modularity, bindings between language mod-

ules are defined externally. Usually, approaches based on exogenous modularity pro-

vide mechanisms (for example composition scripting languages) to describe those

bindings in third-party artifacts that are the input of the composition process. In this

case, language modules do not know the language modules they will be composed

with. Hence, they cannot directly use foreign language constructs. To deal with

this problem, language modules declare a set of requirements that are intended to

be fulfilled in the composition phase. Those requirements are indirect references to

language constructs that are defined in another module.

Note that this approach favors language modules substitutability. Since there are

not direct references between language modules, the bindings can be changed in the

external artifact without modifying the modules themselves. Besides, because the

dependencies between language modules are expressed as declarations, modules can

be interchanged by any module that provide language constructs compatible with the

declarations. The disadvantage of this approach is that it introduces additional com-

plexity in the development process. Language designers need to consider not only

the construction of the modules, but also the binding artifacts and manage indirect

references.

The importance of these modularization techniques relies in two issues. First, they influ-

ence the way in which the approaches support language modularization scenarios and its

subsequent composition. Second, they constraint the way in which the approaches address

software modularization principles.

Modularization techniques vs. modularization scenarios. In the following we discuss

how the modularization scenarios are addressed through the modularization techniques.

Afterwards, we analyze the composition strategies required in each case. Note that e do not

include the modularization scenario called referencing in our analysis because, as we said

earlier, we did not find evidence of its relevance in the language product lines life-cycle.

• Endogenous modularity to support extension and restriction. Endogenous mod-

ularity is useful to support extension and restriction of language modules via the

import clause. Base modules are imported by extension modules; then extension

modules can access and enhance the definitions of the base modules while introduc-

ing new constructs, behavior or constraints.

• Exogenous modularity to support extension and restriction. There are approaches

based on exogenous modularization to support extension and restriction of language

modules. In this case, the extension modules do not import a specific base module.

Rather, the binding between the extension and the base module is specified eternally,

so extension modules have not direct access to the constructs of the base module.

29

3. STATE OF THE ART: A LITERATURE REVIEW ON LANGUAGE PRODUCT LINES

In the composition phase, both base and extension modules are composed thus

introducing to the base module the constructs, behavior, or constraints defined in the

extension module. Following this strategy, the base module can be easily substituted

by another one as long as it provides the constructs used as extension points.

• Endogenous modularity to support aggregation. Endogenous modularity is also

useful to support aggregation of language modules. As we said before, in aggregation

of language modules we have a requiring language module that uses the language

constructs provided in a providing language module. In the case of endogenous

modularity, the requiring language module imports the providing language modules

thus having access to all its language constructs.

• Exogenous modularity to support aggregation. Aggregation can be supported via

exogenous modularity. In this case, the requiring module declares a set of language

constructs that are supposed to be implemented in a providing language module.

One might think that there is not difference between endogenous and exogenous

aggregation. However, the fact that the requiring language module does not reference

directly the providing language module results quite useful for facilitating modules

substitutability. Note that the providing language can be replaced for any other lan-

guage that implements the construct Expression. To do so, language developers need

just to change the binding and execute the composition. As a matter of fact, we can

find approaches in which the substitutability is even more favored by introducing

some mechanisms that permit to declare those requirements in a more abstract way.

• Endogenous modularity to support unification and extension composition. En-

dogenous modularity is also useful to support unification of two language modules

(a.k.a., left/right modules). As aforementioned, ideally these language modules should

not be modified during the unification process, so the most common solution is to cre-

ate a third language module (a.k.a., integration module) containing the glue code that

specifies the semantics of the integration. In the case of endogenous modularity, the

integration module directly imports the left/right modules and uses (or extends) their

language constructs to define a unified language.

• Exogenous modularity to support unification and extension composition. Exoge-

nous modularity is also useful to support unification of language modules. In this

case, the relationship between the third module and the other two is not direct import-

ing but indirect and specified in a composition artifact.

Support for Language Modules Composition

As aforementioned, language modules composition can be performed either at the level of

the specification (i.e., specification composition) or at the level of the tooling (i.e., tooling

composition). The first strategy is most common; in most of the approaches reviewed in

this article language modules composition produces a unified specification from a set of

30

3.3. Results

language modules. Differently, tooling composition is rarely mentioned in the literature of

software language engineering. Indeed, we found only one approach using tooling compo-

sition [54].

The solution strategy to implement tooling composition can be compared with the classi-

cal mechanisms to achieve software composition. After all, parsers, interpreters, or compil-

ers are software tools that can use classical composition strategies such as interfaces. The

article presented by Wu et al., [54] introduces a new parsing algorithm that supports modu-

lar parsing. In this approach, the parser of a DSL can be defined as a set of interdependent

parser modules, and the complete parsing process is supported by the parsing algorithm

that can “visit” several parser modules. In the case of specification composition, we found

two different techniques used for the composition techniques:

• Direct linking to compose endogenous modules. In endogenous modularization,

implementation artifacts are physically related via direct linking realized through

the import clause. Direct linking corresponds to include all the content of the

referenced artifact at the beginning of the referencing one.

• Artifacts merging to compose exogenous modules. In exogenous modularization,

implementation artifacts are completely independent so the have no direct links be-

tween them. Hence, their content should be unified during the composition phase,

thus producing a unique artifact containing a joint specification.

Many of the approaches studied in this literature review propose composition strategies

based on direct linking exclusively. Indeed, despite the limitation of direct linking with

respect to the substitutability principle, it has demonstrated to be useful to support the mod-

ularization scenarios presented in Section 3.3.1. This is because the importing language

module can access all the language constricts of the imported one, and establish any type

of relationship among them. However, there are other approaches whose composition strat-

egy is based on some composition operators, which formally define the semantics of the

composition. Such operators are optional in the case of direct linking, but mandatory in the

case of artifacts merging. In the following we explain the composition operators that we

found during the conduction of this survey.

• Inheritance. Inheritance is a mechanism to exploit reuse coming from object ori-

ented programming. It has demonstrated to be useful as composition operator for

language modules [50]. Generally, approaches that use inheritance as composition

operator are based on endogenous modularity. This can be explained by the nature

of the inheritance relationship, which is intended to reuse the specification provided

in a concrete implementation artifacts for which direct linking results quite useful.

In inheritance, the composition rules are based on the notions of extending and

overriding, which are useful to compose the interfaces of the modularization

scenarios introduced in section 3.3.1. In the case of extension, the extension point

is a language construct in the base language that is extended by some language

31

3. STATE OF THE ART: A LITERATURE REVIEW ON LANGUAGE PRODUCT LINES

construct in the extension module. In restriction, the restriction point is a language

construct in the base language that is overridden by some language construct in

the restriction module. In aggregation, the provided module accesses the requiring

module through an inheritance relationship. Indeed, if the requiring module inherits

the providing one, then it will be permitted to access (and use) all their constructs. In

the cases of unification and extension composition, the glue code can be implemented

by a language module that inherits all the modules involved in the composition. Nat-

urally, multiple inheritance is needed to support this scenario.

• Merge. Merging can be defined as the combination of two artifacts where “the

common elements are included only once, and the other ones are preserved” [90].

In the case of language modules composition, merging is an additive operator that

sums the constructs provided by the language modules involved in the composition

while avoiding repetition. Due to the capability of merging to integrate independent

artifacts, it is generally used by approaches based on exogenous modularization.

When using the merge operation, the “common elements” become quite important.

They represent the interfaces between the language modules, and can be used to

address all the modularization presented in section 3.3.1. In the case of extension, the

extension module declares language constructs corresponding to the extension point

as part of their definitions. In the composition phase, the declaration of the extension

point provided by the extension module is merged with the implementation of those

constructs provided by the base module. A similar approach is used in the case of

aggregation. The requiring language module declares the language constructs that

it uses, and in the composition phase these declarations are merged with the actual

implementation of the constructs provided by the providing language module. This

idea can be generalized for the composition of more than two language modules to

support both unification and extension composition.

• Superimposition. Superimposition is a particular case of merging. Indeed, the su-

perimposition operator is defined as the merge of two implementation artifacts. As

a result, its applicability for language modules composition is quite similar than the

one for merging. The difference between merge and superimposition is that, in the

later, the implementation artifacts are intended to be modeled in a tree-based struc-

ture. This is because the superimposition operator is recursive, and their semantics

are formalized as composition of trees. Similarly than in the case of merging, super-

imposition is used in approaches based on exogenous modularization.

• Weaving. Weaving is another operator has been used in the literature to support lan-

guages modularization. It supposes the existence of a base module and an aspect [90].

The base module is enhanced by the features introduced by the aspect. Language de-

signers must define the exact point (i.e., the join cut) in which those features will be

injected. The definition of weaving let it open to be applicable in both endogenous

and exogenous modularization. That means that the binding between the aspect and

32

3.3. Results

the base module can be defined either in the aspect itself or in an external artifact.

The nature of the weaving operator makes it appropriate to support languages ex-

tension and restriction. In that case, the extension point is the point cut which is

enhanced with the functionality implemented in the advice. During the conduction

of this literature review we did not find any evidence that indicates that weaving can

be used to support the other modularization scenarios.

Modularization techniques vs. software modularization principles. The modular-

ization technique used by an approach also impacts its capability to address the software

modularization scenario. We observed that the support for software modularization princi-

ples is deeply associated with the shape of the interfaces between language modules, which

differ in the case of endogenous and exogenous modularization. When the approach uses

endogenous modularity, this interface is a direct link between the module and the software

modularization principles are hardly addressed. Differently, when the approach uses exoge-

nous modularity, it must provide a mechanism to define the dependencies between language

modules in a way that favor software modularization principles.

• Endogenous modularization and independent development. The use of endoge-

nous modularization constitutes a barrier for addressing independent development.

This is because, by definition, direct linking between two language modules implies

the existence and accessibility of the imported module. A module A can import a

module B if and only if the module B is already implemented and it can be accessed.

Hence, the development of module A depends on the development and release of

module B so it is not true that the module A can be developed independently.

• Exogenous modularization and independent development. Unlike endogenous

modularization, exogenous modularization favors independent development. When

there is not a direct references between language modules, the modularization ap-

proach must provide a mechanism (for example a required interface) to allow lan-

guage designers the expression of the needs of a language module with other mod-

ules. This mechanism permits the development of language modules independently

from their needs while assuming that those needs will be eventually fulfilled.

• Endogenous modularization and information hiding. The use of endogenous mod-

ularization is a potential barrier for addressing independent development. This is

because direct linking between language modules often permits to access to all the

information of the providing module. To avoid this capability, the modularization ap-

proach should provide a mechanism to protect specification elements in the imported

module. The protected clause used by Java is an example of such a mechanism.

• Exogenous modularization and information hiding. The use of exogenous modu-

larization is neither a barrier to the information hiding principle nor a guaranty of its

support. At a first view, the fact that the language modules are not directly referenced

between them protects in somehow their specification elements since the interaction

33

3. STATE OF THE ART: A LITERATURE REVIEW ON LANGUAGE PRODUCT LINES

between the modules is expressed through explicit interfaces that define the needs

that one module has from others. However, those needs are not necessarily con-

strained. Hence, a language module could access forbidden information from other

modules. To guarantee the information hiding principle, a modularization approach

should offer a mechanism (e.g., provided interfaces) to filter out the information that

can be accessed by other language modules.

• Endogenous modularization and substitutability. To support substitutability, an

approach should provide two capabilities. First, the binding between the needs of

a requiring module and the functionality offered by the providing one should be

expressed in such a way that it can be easily re-directed. In this sense, the use of

endogenous modularization is a barrier for addressing substitutability. Replacing

one language module for another one requires some refactoring to change the direct

reference and, in many cases, adapt to the definitions of the new imported module.

• Exogenous modularization and substitutability. It is easier to address substitutabil-

ity when the approach uses exogenous modularization. The bindings are defined

externally and they can be re-directed without modifying the language modules them-

selves. Ideally, an approach to language modularization that aims to address substi-

tutability should provide a mechanism that permits to compose two language mod-

ules even if the requiring and providing constructs are implemented differently.

Mapping current approaches with language modularization capabilities. Table 3.4

shows how current approaches support languages modularization. For each approach, the

figure indicates the modularization scenarios it supports and the software modularization

principle it addresses. Besides, the table shows the modularization techniques and the

corresponding composition operator.

Note that endogenous and exogenous modularization are not mutually exclusive. Indeed,

in the cases of Modularization on top of MetaDepth, the approaches use endogenous mod-

ularization to support language modules extension and restriction and exogenous modular-

ization to support language modules aggregation. In both cases, independent development

and substitutability are partially addressed in the sense that they are possible for the case

of aggregation but not for the case of extension neither for restriction. Those approaches

does not provide any mechanism to express provided interfaces so they do not guarantee

the information hiding principle.

Support for Multi-Dimensional Variability Modeling

In contrast to the large amount of articles on languages modularization, we found very

few articles addressing languages variability management. In the following we discuss the

current advances in this regard.

Support for multi dimensional variability modeling. All of the current approaches

supporting languages variability modeling are based on feature models. However, they dif-

34

3.3. Results

LI
S

A

M
él

a
n

g
e

K
ey

w
o

rd
s-

b
a

se
d

 m
o

d
u

la
ri

za
ti

o
n

M
et

a
 P

ro
g

ra
m

m
in

g
 S

ys
te

m
, M

P
S

M
o

d
u

la
ri

za
ti

o
n

 o
n

 t
o

p
 o

f
A

T
L

M
o

d
u

la
ri

za
ti

o
n

 o
n

 t
o

p
 o

f
M

et
a

D
ep

th

G
ro

m
p

D
o

m
a

in
 c

o
n

ce
p

ts
-b

a
se

d
 m

o
d

u
la

ri
za

ti
o

n

In
te

rf
a

ce
s-

b
a

se
d

 m
o

d
u

la
ri

za
ti

o
n

C
o

m
p

o
n

en
ts

-b
a

se
d

 L
R

 p
a

rs
in

g

R
o

le
s-

b
a

se
d

 m
o

d
u

la
ri

za
ti

o
n

M
o

n
ti

C
o

re

N
ev

er
la

n
g

+
A

iD
E

A
S

F
+

S
D

F
+

F
ea

tu
re

H
o

u
se

Modularization capabilities

 Modularization scenarios

 Extension ! ! - ! - ! ! ! - ! - ! ! !

 Restriction ! ! - ! - ! ! ! - ! - ! ! !

 Aggregation ! ! ! ! ! ! - ! ! ! ! ! ! !

 Unification ! ! ! ! ! ! ! ! ! ! ! ! ! !

 Extension composition ! ! ! ! ! ! ! ! ! ! ! ! ! !

 Software modularization principle

 Independent development - ! ! - - " ! - ! " ! " ! !

 Information hiding - - - - - - - - ! ! ! - - -

 Substitutability - ! ! - - " " - " " " " " "

Modularization mechanisms

 Modularization technique

 Endogenous modularization ! - - ! ! ! - ! - ! - ! - -

 Exogenous modularization - ! ! - - ! ! - ! - ! ! ! !

 Composition strategy

 Specification composition ! ! ! ! ! ! ! ! ! - ! ! ! !

 Tool composition - - - - - - - - - ! - - - -

 Composition operator

 Inheritance ! - - - - - - - - - - ! - -

 Merge - ! ! - - - ! - ! - ! ! ! -

 Superimposition - - - - - - - - - - - - - !

 Weaving - ! - - - - - - - - - - - -

Key: ! YES - NO " PARTIALLY

Table 3.4: Mapping current approaches and language modularization capabilities

fer in the modeling approach they use to represent the variability. We found three different

modeling approaches explained below:

• Feature models supporting abstract syntax variability. Wende et al. [79] use

feature models as a documentation artifact to present a catalog of language features

that can be combined each other to produce DSL variants. This modeling approach

is illustrated in Figure 3.8. Each feature is associated to a language module that is

completely specified in terms of abstract syntax, concrete syntax, and semantics.

This approach is useful in language product lines with abstract syntax variability.

35

3. STATE OF THE ART: A LITERATURE REVIEW ON LANGUAGE PRODUCT LINES

Each language feature can be viewed as a fully specified set of language constructs

that will be selected or not according to the needs of the final user. However, support

for concrete syntax variability and semantic variability is limited. For example, if a

language designer needs to represent semantic variability, he/she will have to define

two language modules with the same abstract and concrete syntax but with different

semantics. In doing so, language designers would introduce specification clones (re-

peated segments of specification) all along the language product line, thus increasing

maintenance costs.

Figure 3.8: Boolean feature models for representing abstract syntax variability

• Multi-dimensional variability with concern-specific features. The approach pre-

sented in [91] proposes to deal with variability management on top of Neverlang

using the COMMON VARIABILITY LANGUAGE. This approach considers not only

abstract syntax variability, but also concrete syntax and semantic variability. To this

end, the approach proposes to use feature models by following the modeling strategy

illustrated in Figure 3.9 where abstract features are used to represent a segment of

abstract syntax that may vary in terms of concrete syntax or semantics. The children

features represent the possible variations.

Consider, for example, the feature called “Feature 1” that represents a language

feature with a variation point in the concrete syntax. The “Feature 1” is mapped to a

language module that encapsulates the corresponding abstract syntax and semantics

(that do not vary). Besides, there are two children that indicate the different represen-

tations of the feature. Each of these children is mapped to a language module that

implements the corresponding concrete syntax.

• Multi-dimensional variability with concern-specific subtrees. The approach to

support variability management is based on feature models to represent multi dimen-

sional variability [55]. In other words, this approach supports not only abstract syntax

variability, but also concrete syntax and semantic variability. To support multi dimen-

36

3.3. Results

Figure 3.9: Boolean feature models for representing syntactic and semantic variability

sional variability, the authors propose an approach in which the variability model has

(at the first level) one child feature of the root for each dimension of variability. Fig-

ure 3.10 illustrates this modeling approach. In that example, the sub-tree concrete

syntax has two language features (i.e., feature 1 and feature 2) that represent two dif-

ferent representations of a particular construct (or set of constructs). Each feature is

implemented in a language module that implements the corresponding functionality

in the corresponding implementation concern. 3.10.

Figure 3.10: Boolean feature models for representing multi-dimensional variability

On the other hand, the approach presented in [18] proposes the use of FEATURE-

HOUSE to deal with languages variability management on top of ASD+SDF. It sup-

ports abstract syntax variability, syntactic, and semantic variability. The modeling

strategy is the same than the one used by MontiCore (Figure 3.10), and provides

facilities to configure and derivate languages from the feature model.

37

3. STATE OF THE ART: A LITERATURE REVIEW ON LANGUAGE PRODUCT LINES

Note that multi-dimensional variability supposes that the modularization approach sup-

ports the definition of each implementation concern (i.e., abstract syntax, concrete syntax,

and semantics) in a different language module. In the cases where this separation is not

provided, multi dimensional variability is not possible.

There are some approaches that go further in the study of variability management in

language product lines by proposing to automatically infer the variability models. The

approach presented in [92] proposes a search-based technique to find a features model

that represents the variability existing in a set of language modules while optimizing an

objective function. This approach uses an ontology that describes the domain concepts

of the language product line. The second approach (presented in [15]) refines the former

by removing the ontology. This improvement is motivated by the difficulty behind the

construction of such ontology. Then, the authors propose to annotate the BNF-like grammar

with certain information that is used to create a variability model.

Is worth highlighting that these approaches support not only abstract syntax variability

but also concrete syntax and semantic variability. In the first case, since the ontology repre-

sents the domain from both the syntax and semantic point of view, then it is possible to use

it to identify all the existing variation points. In the second case, the annotations provide

the expressiveness enough to address all these dimensions of the variability.

Support for Multi-Staged Language Configuration

The use of feature modeling to represent the variability of language product lines entails

some support for languages configuration. Indeed, the most part of the tools for feature

modeling, provide capabilities to create different configurations from a given variability

model. Once the variability of a language product line is modeled in a tool-supported

feature model, language designers have some facilities to produce configurations that can be

used in to select the corresponding language components and start the composition process.

Once language designers have a tool for configuration of feature models, they should

define a multi staged configuration process involving final users if needed. As the reader

might imagine, multi staged configuration is more an organizational capability that defines

the configuration decisions each stakeholder should make and basic configuration tool sup-

port can be used to this end. There are, however, some approaches that enable certain tool

features to ease this process. In particular, the approach presented in [55] proposes to ex-

press configurations of a feature models configuration files. Each file is a refinement of of

the configuration decisions then providing certain traceability and more clear assignation

of the configuration decisions. This is relevant when feature models become bigger.

Mapping current approaches and capabilities on variability management. Table 3.5

shows how current approaches support languages variability management. In particular,

the figure presents a table that, for each approach, indicates the capabilities it provides in

terms of multi-dimensional variability modeling and multi staged languages configuration.

38

3.3. Results

LI
S

A

M
él

a
n

g
e

K
ey

w
o

rd
s-

b
a

se
d

 m
o

d
u

la
ri

za
ti

o
n

M
et

a
 P

ro
g

ra
m

m
in

g
 S

ys
te

m
, M

P
S

M
o

d
u

la
ri

za
ti

o
n

 o
n

 t
o

p
 o

f
A

T
L

M
o

d
u

la
ri

za
ti

o
n

 o
n

 t
o

p
 o

f
M

et
a

D
ep

th

G
ro

m
p

D
o

m
a

in
 c

o
n

ce
p

ts
-b

a
se

d
 m

o
d

u
la

ri
za

ti
o

n

In
te

rf
a

ce
s-

b
a

se
d

 m
o

d
u

la
ri

za
ti

o
n

C
o

m
p

o
n

en
ts

-b
a

se
d

 L
R

 p
a

rs
in

g

R
o

le
s-

b
a

se
d

 m
o

d
u

la
ri

za
ti

o
n

M
o

n
ti

C
o

re

N
ev

er
la

n
g

+
A

iD
E

A
S

F
+

S
D

F
+

F
ea

tu
re

H
o

u
se

 Variability modeling

 Functional variability - - - - - - - - - - ! ! ! !

 Multi-dimensional variability - - - - - - - - - - - ! ! !

 Languages configuration

 Features selection - - - - - - - - - - - ! ! !

 Multi-staged configuration - - - - - - - - - - - ! ! !

Table 3.5: Mapping current approaches and variability management capabilities

3.3.3 Mapping Approaches and Technological Spaces

In the following, we describe the technological space supported by each of the approaches

studied in this survey.

• LISA. LISA supports the construction of textual DSLs where the abstract syntax,

concrete syntax, and semantics are specified through attribute grammars (which is

usually associated to a form of denotational semantics [93]). LISA supports modular

language design and language modules composition. To this end, this approach uses

ideas from object-oriented programming. In particular, it introduces the notion of

inheritance in attribute grammars. In LISA, language modules are defined as attribute

grammars that can have inheritance relationships among them.

• Mélange + Kermeta. Mélange supports the construction of DSLs where the ab-

stract syntax is specified in metamodels, static semantics are defined as class invari-

ants, and the dynamic semantics is defined operationally as aspects in the Kermeta

meta-language [68, 69]. Melange supports modular languages design and language

modules composition.

• Keywords-based modularization. Keywords-based modularization supports the

construction of textual DSLs where the abstract syntax is defined in an object-oriented

model (a sort of metamodel) and the semantics is defined denotationally through

transformations. Keywords based modularization supports modular languages de-

sign and language modules composition. To this end, this approach introduces the

notion of keyword. A keyword is a language module that contains an object-oriented

39

3. STATE OF THE ART: A LITERATURE REVIEW ON LANGUAGE PRODUCT LINES

model to express abstract syntax, a regular expression to express concrete syntax,

and a localized transformation to express semantics.

• Meta Programming System (MPS). MPS supports the construction of graphical

and textual DSLs whose abstract syntax is defined in metamodels, the concrete syn-

tax is defined through projectional editors, and the semantics is defined operationally

in Java programs. This approach supports modular languages design and language

modules composition. To this end, MPS enables modularization of the metamod-

els and provides mechanisms to propagate such modularization at the level of the

concrete syntax and semantics.

• Modularization on top of ATL. Modularization on top of ATL supports the construc-

tion of DSLs where the abstract syntax is defined in metamodels and the semantics

is defined denotationally through transformations. The approach supports modular

language design and language modules composition by introducing modularization

on top of the ATL transformation language [94].

• Modularization of top of MetaDepth. MetaDepth supports the construction of tex-

tual DSLs where the abstract syntax is defined in metamodels, static semantics is

defined in constraints, and dynamic semantics is defined denotationally through trans-

formations. MetaDepth supports modular languages design and language modules

composition. To this end, this approach is based on metamodels extensions, and

structural concepts.

• Gromp. Gromp supports the construction of graphical DSLs whose abstract syntax

is defined in metamodels, and the concrete syntax is defined in PICTURE (a platform

for the definition of graphical DSLs built on top of EMF). Gromp supports modular

languages design and language modules composition. To this end, this approach

provides a composition language that allows language designers to manually describe

the composition of several language modules.

• Domain-concepts based modularization. Domain-concepts based modularization

supports the construction of graphical DSLs whose abstract syntax is defined in meta-

models and dynamic semantics is defined denotationally through transformations.

This approach supports modular design and language modules composition. To this

end, the approach provides a pool of composition operators that can be used for

expressing the composition of language modules (which are referred to as domain-

concepts). This approach is applied to a case study that is presented in [77].

• Interfaces-based modularization. Interfaces-based modularization supports the

construction of metamodels based DSLs. Neither concrete syntax nor semantics

are addressed in this case. This approach supports modular languages design and

language modules composition. To this end, the approach follows a principle based

40

3.3. Results

on language interfaces. The authors define metamodel interfaces to metamodel frag-

ments that can be later composed according to some predefined operators.

• Components-based LR parsing. Components-based LR parsing is an approach

that supports the modular definition of parsers defined through grammars. From all

the articles reviewed in this literature review, this is the only one that uses tooling

composition as composition strategy. The authors justify their decision by arguing

that it favors low coupling in language modular design. Semantics are not addressed

by the approach.

• Roles-based modularization. Roles-based modularization supports the construction

of textual DSLs where the abstract syntax is defined in metamodels, the concrete syn-

tax in BNF-like grammars, and semantics is specified operationally in Java programs.

The ideas proposed in this approach are implemented in the LanGems workbench

[80]. This approach supports modular languages design and language modules com-

position. Additionally, the authors propose a first step towards variability modeling.

Languages configuration and derivation is not addressed.

• MontiCore. MontiCore supports the construction of textual DSLs where the abstract

and concrete syntax are defined in BNF-like grammars, and semantics is defined de-

notationally. MontiCore provides an extended format for grammars that enhances the

classical context-free grammar notation with some mechanisms offered by metamod-

els (e.g., data types, inheritance, interfaces, and associations). This approach sup-

ports modular languages design and language modules composition. Additionally,

we found an approach to address variability modeling and languages configuration

on top of MontiCore [55].

• Neverlang+AiDE. Neverlang supports the construction of textual DSLs where the

abstract and concrete syntax are specified in BNF-like grammars, static semantics

is specified as validation programs, and dynamic semantics is defined operationally

in Java programs. This approach provides support for modular languages design

and languages composition. Additionally, we found several approaches that support

variability management on top of Neverlang.

• ASF+SDF+FeatureHouse. ASF+SDF+FeatureHouse supports the construction of

textual DSLs where the abstract and concrete syntax are specified in BNF-like gram-

mars, and semantics is specified denotationally through transformations. This ap-

proach is a tool chain composed of ASF, SDF, and FEATUREHOUSE. ASF+SDF

provides support for modular languages design and languages composition [87, 88,

89]. In turn, the approach presented in [18] proposes the use of FEATUREHOUSE as

a languages variability management framework on top of ASD+SDF.

Table 3.6 introduces a summary of the discussion presented in this section.

41

3. STATE OF THE ART: A LITERATURE REVIEW ON LANGUAGE PRODUCT LINES

LI
S

A

M
él

a
n

g
e

K
ey

w
o

rd
s-

b
a

se
d

 m
o

d
u

la
ri

za
ti

o
n

M
et

a
 P

ro
g

ra
m

m
in

g
 S

ys
te

m
, M

P
S

M
o

d
u

la
ri

za
ti

o
n

 o
n

 t
o

p
 o

f
A

T
L

M
o

d
u

la
ri

za
ti

o
n

 o
n

 t
o

p
 o

f
M

et
a

D
ep

th

G
ro

m
p

D
o

m
a

in
 c

o
n

ce
p

ts
-b

a
se

d
 m

o
d

u
la

ri
za

ti
o

n

In
te

rf
a

ce
s-

b
a

se
d

 m
o

d
u

la
ri

za
ti

o
n

C
o

m
p

o
n

en
ts

-b
a

se
d

 L
R

 p
a

rs
in

g

R
o

le
s-

b
a

se
d

 m
o

d
u

la
ri

za
ti

o
n

M
o

n
ti

C
o

re

N
ev

er
la

n
g

+
A

iD
E

A
S

F
+

S
D

F
+

F
ea

tu
re

H
o

u
se

 Abstract syntax

 Grammars-based ! - - - - - - - - ! - ! ! !

 Metamodels-based - ! ! ! ! ! ! ! ! - ! - - -

 Concrete syntax

 Textual ! - ! ! - ! - - - ! ! ! ! !

 Graphical - - - ! - - ! - - - - - - -

 Semantics

 Static ! ! - ! - ! - - - - - ! ! !

 Operational - ! - ! - - - - - - ! - ! -

 Denotational ! - ! - ! ! - ! - - - ! - !

 Axiomatic - - - - - - - - - - - - - -

Table 3.6: Mapping current approaches and technological spaces

3.4 Open Issues in Language Product Line Engineering

During the conduction of this literature review, we found an important amount of ap-

proaches to support the implementation of language product lines. We provide evidences

to state that, with the current meta-languages, it is possible to build a language product

line in several technological spaces. Concretely, we analyzed a considerable amount of ap-

proaches for languages modularization, and we show that the definition of language mod-

ules is possible as well as the use of feature models to represent variability in DSLs. We

also presented approaches to automatically generate a first version of those feature models.

Despite all these advances, there are still some open issues on both top-down and bottom-

up language product line engineering. Fig. 3.11 shows a mind-map that summarizes those

open issues, which are explained in the reminder of this section.

3.4.1 Open Issues in Top-Down Language Product Lines

Most of the approaches that we found during the conduction of this literature review are

focused in the construction of top-down language product lines. They provide facilities in

terms of language modularization and variability management that, in most of the cases,

are supported by language workbenches. Using those approaches, a language designer can

define a language modular design, as well as represent the corresponding variability.

42

3.4. Open Issues in Language Product Line Engineering

Open Issues

Top-Down

Language Product Lines

Bottom-Up

Language Product Lines

Meta-language

facilities
Methodologies

Reverse-Engineering

Algorithms

Recovering Language Modular

Designs

Synthesis of Multi-Dimensional

Variability Models

Analysis

Design

Testing

Evolution

Modularization

principles

?

Figure 3.11: Open issues in language product line engineering

However, current approaches in language product lines engineering have certain limi-

tations that can be classified in two categories: limitations from the point of view of the

meta-language facilities themselves, and limitations from the point of view of the method-

ology needed to build a language product line.

Limitations From the Point of View of Meta-Language Facilities

We observed that there are still some limitations in terms of meta-languages supporting

language product lines, particularly in context of languages modularization. Despite the

community on software language engineering has put many attention on modularization

issues and that current approaches support very well languages modularization scenarios;

very few approaches are successful on addressing software modularization principles (i.e.,

independent development, information hiding, and substitutability).

This is due to the fact that not all the language modularization approach propose ap-

propriate interface mechanisms that preserve these principles. We claim that the notion

of language interfaces should be better developed to achieve languages modularization ap-

proaches that effectively address software modularization principles.

43

3. STATE OF THE ART: A LITERATURE REVIEW ON LANGUAGE PRODUCT LINES

Limitations From the Point of View of the Methodology

In terms of methodology, there is a long path to follow. The methodological aspects of the

construction of a language product line are rarely mentioned. The analysis, design, testing,

evaluation, and evolution of language product lines are open issues that should be addressed

to provide appropriate support to language designers. In the reminder of this section, we

discuss the open issues and questions that should be addressed to facilitate the construction

of language product lines.

Analysis in language product line engineering. In the development of software product

lines, the requirements analysis phase is dedicated to the identification and documentation

of the common and variable requirements of the product line’s final users [35]. Naturally,

this analysis is quite important in the case of language product lines as well. Language

designers must clearly identify and classify the final users of the products of the DSLs that

will be produced by the product line, and define their common and variable requirements.

An example of this requirements analysis phase in the context of language engineering is

presented by Cazzola and Olivares [95]. They identify common and variable requirements

for programming languages in the context of education in computer science. In this case,

the final users are the students that are classified according to their level in a programming

course. The language product line permits to incrementally introduce language features to

the students according to their evolution in the learning process.

The analysis phase in language product lines has certain particularities that should be

better investigated, however. For example, the notion of requirements in DSLs should be

better defined because there is no consensus about what it means. According to the exam-

ple mentioned above, a requirement in language engineering is associated to the language

constructs. Contrariwise, Kolovos et al. [96] associate DSLs requirements to properties

such as supportability, orthogonality, or simplicity. A definition of requirements in DSLs

development should be accompanied with methodologies to identify them, as well to docu-

mentation well practices.

Design in language product line engineering. In the development of software product

lines, the design phase is dedicated to the definition of a modular design that establishes

the set of software modules provided by the product line and the interfaces between them.

Besides, in this phase software engineers perform the construction of variability models that

capture the variations required by the product line [35]. To address this activity, software

engineers often use design patterns and modularization properties (such as low coupling

and high cohesion) [97] to define an appropriate modular design that support the product

line’s variability while favoring quality attributes such as extensibility and maintainability.

In the case of language product lines, however, the definition of an appropriate modular

design is rarely discussed. As a matter of fact, current approaches are mostly focused on

providing the tooling (i.e., language workbenches) to define and compose language mod-

ules, and the design itself has been put aside. As a result, language engineers still have

44

3.4. Open Issues in Language Product Line Engineering

problems at the moment of breaking down a language into interdependent language mod-

ules to support variability. More concretely, some of the questions that language designers

must face are: What is the current level of granularity at which language modules should be

defined? How to modularize a language to support the three different types of variability?

Is it possible to define design patterns and modularization principles to facilitate modular

languages design? Are the properties of low-coupling and high-cohesion relevant in the de-

velopment of DSLs? If so, how to realize and measure those properties in a given language

product line?

Testing in language product line engineering. In the development of software prod-

uct lines, the testing phase is dedicated to the validation of the implementation artifacts

that compose the product line’s infrastructure [35]. To achieve such validation, software

engineers must test both the software modules and the variability models.

On one hand, testing interdependent software modules is usually performed in three

phases: unit testing, integration testing, and system testing [98]. In unit testing, each lan-

guage module is validated independently to guarantee that the functionality it provides is

correctly implemented. In integration testing, the interaction between modules is validated

to guarantee that the contracts between modules are respected. In system testing, the sys-

tem as a whole is validated. Naturally, these basic testing steps should be adapted to the

fact that language modules are pieces of abstract syntax enhanced with concrete syntax and

semantics.

On the other hand, testing the variability models correspond to verify that the configu-

rations that can be obtained from the feature models produce valid products. To this end,

software engineers must design an appropriate set of test scenarios and execute them on the

possible configurations. This process can be extremely expensive when variability models

become bigger, and prioritization strategies might be required [99].

All the issues mentioned above are still open in language product lines. Language design-

ers usually face questions such as: How a language module can be tested independently to

verify its localized functionality? How to perform integration tests to validate the interac-

tion between several language modules? How to test entire DSLs produced as a composi-

tion of language modules? The difficulty of answering those questions relies on the fact that

current approaches in languages testing (such as [100], or [101]) are intended to test com-

pletely specified languages. When a language is partially identified – a language module is

a partial language – it cannot be compiled/interpreted and current testing approaches fail.

Some research is needed to find out mechanisms that permit to express the requirements

that a language module has with its environment (i.e., the required interface) and artificially

simulate these requirements as done by mock objects in object oriented programming. It

is worth mentioning that in doing so, researchers should into consideration the different

implementation concerns of DSLs; not only the abstract syntax but also concrete syntax

and semantics [29].

45

3. STATE OF THE ART: A LITERATURE REVIEW ON LANGUAGE PRODUCT LINES

Evolution in language product line engineering. Because of the dynamism of business

needs, requirements in software products are constantly changing, and evolution is a recur-

rent concern in software development. The situation is not different in software product line

engineering. When the requirements of the stakeholders of a product line change, there is

an impact on the product line’s infrastructure, and some adaptations might be needed [102].

Evolution in software product lines supposes several challenges and depending on the na-

ture of the evolution in the requirements the infrastructure might change differently [103].

Those changes can be relatively simple to manage (such as the introduction of a new feature

without impacting existing ones), or quite painful (such as split or combination of existing

features, which supposes adaptations in the variability model re-modularization of the com-

mon assets). Besides, requirements evolution might impact not only the implementation

artifacts but also documentation and tests.

Evolution is also a recurrent issue in the development of DSLs due to the domain evolu-

tion problem. Changes in the domain rules, or simply improving the domain understanding

might an impact on DSLs specifications [104]. As a result, the problem of evolution in

language product lines is also a concern that language designers must address. Some of

the questions to deal with are: How to re-modularize a components-based DSL? How to

capture changes in the domain as evolution in variability models?

3.4.2 Open Issues in Bottom-Up Language Product Lines

Differently to the case of top-down language product lines, the bottom-up perspective has

received little attention. Few works have proposed strategies and algorithms to address

such a perspective, most of them are focused on the synthesis of the variability models. We

can identify two main limitations of current approaches.

Limitations while Recovering Language Modular Designs

As largely discussed so far, the very first step towards the construction of a language product

line is to achieve a appropriate language modular design. This is not different in the case

of bottom-up language product lines. The first challenge of a re-engineering process is

to recover the definition of a set of language modules that capture the commonalities and

variability existing between the DSLs under study. Indeed, recovering modular designs is

one of the main subjects of study when reverse engineering software product lines from

software products.

This particular issue has not received proper attention in the literature. Indeed, the only

approach that has proposed something in this direction is the one presented by Kuhn et al.,

[15]. In that work, each language construct is defined as a language module. That means

that the reverse engineering process will result in a language product line containing as

many features as language constructs exist in the input DSLs.

Note that this approach permits to exploit the variability in the language product line in

46

3.5. Threats to Validity

the sense that the level of granularity is quite high. Hence, language designers can make

decisions with an important level of detail. However, the complexity of the product line

might increase unnecessarily. From the point of view of language users, there are clusters

of language constructs that always go together thus separation is not needed. For example,

in our illustrative scenario on state machines, the concepts of StateMachine, State,

and Transition, go always together since they correspond to a commonality of all the

input DSLs. Separating these constructs in different features is not necessary in this case

and this increases the complexity of the variability models. This can be a real issue if

language designers decide to apply automatic analysis operations on those models.

Limitations on Synthesis of Multi Dimensional Variability Models

The synthesis of variability models has been largely studied in the literature. Some of

those approaches have been adapted for the particular case of variability in the context of

language product lines engineering. We mentioned those works along this literature review.

There is, however, an important limitation in those approaches. Although at the mod-

eling level, feature models have shown their capabilities to represent multi dimensional

variability and it has been validated for language product lines, there is not support for

effectively reverse-engineering such multi dimensional variability in the language product

lines. Indeed, the solution provided by current approaches is to synthesize variability mod-

els where each feature capture both the abstract syntax of the language constructs and their

semantics. Using this strategy, a language construct that has different semantics interpreta-

tions is represented as two language features. Those features have the same abstract syntax

(a repeated definition of the specification) and their corresponding semantics.

The problem with this strategy is that it couples abstract syntax variability with seman-

tics variability, which limits multi-staged configuration. The scenario in which language

designers configure only the abstract syntax, and final users configure their semantics is

not supported since the configuration of the semantics depends also to configure a segment

of the abstract syntax. We claim that, in order to support multi staged configuration, the

abstract syntax variability should be defined separately from the semantic variability.

3.5 Threats to Validity

In this section, we discuss the possible threats to validity of the literature review introduced

in this chapter. Concretely, we discuss three of the different types of validity proposed by

Wohlin et al. [105]: construct validity, internal validity, and external validity.

Construct validity. Construct validity evaluates the quality of the methodology fol-

lowed to obtain the income of the study. In the case of this literature review, this process

corresponds to the research method we used to obtain the set of articles included in the dis-

cussion (described in Section 3.2). Does our study include all the relevant articles existing

in the literature on language product line engineering?

47

3. STATE OF THE ART: A LITERATURE REVIEW ON LANGUAGE PRODUCT LINES

To answer this question, we used a three-fold strategy intended to validate our research

method. Such strategy was explained at the end of Section 3.2; it includes the participation

of experienced researchers in the area. Despite such a rigorous process, our methodology

could miss some relevant articles. This limitation comes up from four aspects. First, the

automatic search phase of our process is based on arbitrary strings. Those strings were care-

fully selected through a criteria; however there is still a risk of missing some papers that do

not fit in the search expression. Second, we performed the automatic search in a set of four

digital libraries while excluding other potential sources such as Google Scholar. This deci-

sion is also well argued in Section 3.2; however those sources might also contain relevant

articles that we are missing in this study. Third, both selection and discarding processes

were performed by only one of the authors of this article. Hence, potential errors might

appear at the moment of applying the selection/discarding criteria specially due to the large

amount of articles provided by the automatic search. Finally, the discarding and selection

process where conducted by reading only titles, abstract, introductions, and conclusion sec-

tions. This decision permitted us to deal with the large amount of articles resulting from

the automatic search; however, we might be missing some details in the body of the articles

that contribute to the discussion.

Internal validity. Internal validity concerns the process used to extract the results from a

given income. In the case of this literature review, evaluating internal validity corresponds

to evaluate whether our results are consistent with respect to the actual content of the arti-

cles included in the discussion.

The most important risk in terms of internal validity for this study is the low level of

agreement in terms of vocabulary used in the articles. The same word is often used in

different articles to refer to different concepts. To deal with this issue, we introduced a

background section intended to unify the vocabulary that we used in this paper. Besides,

we provide equivalences of vocabulary when needed to clarify the concepts (such as the

one presented in Table 3.3.1). Still, the vocabulary that we are using might be conflictive

with respect to pre-conceived ideas of some of our readers.

External validity. External validity evaluates whether the results obtained in the study

can be generalized to closely related areas of endeavor. In the case of this literature review,

the evaluation of the external validity corresponds to verify whether our methodology and

results can be generalized to other areas of application of Software Product Lines Engi-

neering. For example, we might ask us if the life-cycle of Language Product Lines can be

generalized to describe the life-cycle of other product lines such as Games Product Lines

[106] or Embedded Systems Product Lines [107].

The study provided in this article is based on an abstraction of the generalities of Soft-

ware Product Lines Engineering. In section 2.2, we introduced a general life-cycle for

software product lines while doing abstraction of the type of products. This permitted to

map such a life-cycle to the case in which those products are DSLs. However, while doing

such a mapping, we realized that there are certain particularities to consider coming from

48

3.6. Summary

the specificities of DSLs with respect to other types of software produces. In that sense, we

claim that, even if some coarse grained phases of the life-cycle of a software product line

can be generalized, there are still some important details to take into consideration coming

up from the particularities of each type of software product.

3.6 Summary

This chapter reports on an effort for organizing the literature on language product line

engineering. It provides a detailed study that shows how the ideas on software product

lines have been adapted to support the emerging notion of language product lines. To this

end, we conducted a literature review, which permitted to select an important amount of

articles, that we analyze in a systematic way.

49

Part II

Contributions

51

Chapter 4

Foreword to the Contributions

In the last chapter, we presented a literature review on language product lines engineering.

It closes with a discussion on the open issues that we found as part of the analysis of the

results. In this chapter, we use the definitions and open issues introduced in the literature

review to clearly point out the scope of the thesis. Such scope is presented at two levels.

On one hand, we present the scientific scope, which corresponds to a subset of open issues

that we address. On the other hand, we present the technological scope, which corresponds

to the technological space in which our ideas can be applied.

4.1 Scientific Scope: Addressed Open Issues

This thesis aims to contribute to the field of language product lines engineering by address-

ing a subset of the open issues identified before. This subset of open issues are shown in

Fig. 4.1. Our selection of the open issues is guided by two considerations. First, we aim to

contribute in both top-down and bottom-up language product lines. This decision allows us

to cover a larger spectrum of development scenarios. Second, we focus on the open issues

regarding the design and implementation phases. Evolution and testing are quite complex

problems that require a deep reflection. We consider that all those problems are hard to

address in a single thesis at the same time. The reminder of this section is dedicated to give

a brief summary of how we deal with those open issues.

Contributions on top-down language product lines. Chapter 5 presents our contribu-

tions in top-down language product lines. In this context, we are focused on extending

current meta-languages in order to improve the capabilities in terms of languages modular-

ization. In particular, we aim to provide a modularization approach which not only supports

all the language modularization scenarios (i.e., extension, restriction, aggregation, unifica-

tion, and extension composition), but also addresses the software modularization principles

(i.e., independent development, information hiding, and substitutability). The inclusion of

these software modularization principles represents our delta with respect to the state of the

53

4. FOREWORD TO THE CONTRIBUTIONS

Open Issues

Top-Down

Language Product Lines

Bottom-Up

Language Product Lines

Meta-language

facilities
Methodologies

Reverse-Engineering

Algorithms

Recovering Language Modular

Designs

Synthesis of Multi-Dimensional

Variability Models

Analysis

Design

Testing

Evolution

Modularization

principles

Out of the scope Within the scope Key:

Figure 4.1: Scientific scope of the thesis: Addressed open issues

art. We also present an approach to manage languages variability. It proposes the combi-

nation of two formalisms –i.e., feature modeling and orthogonal variability modeling– to

facilitate variability modeling as well as multi-staged configuration.

We close our contributions in top-down language product lines with a set of methodolog-

ical insights to facilitate the phases of analysis and design of language product lines. These

insights can be used in the planning of the daily activities of a team of language designers.

Contributions on bottom-up language product lines. Chapter 6 presents our contribu-

tions on bottom-up language product lines. In particular, we introduce a reverse engineering

technique to automatically build up a language product line from a set of existing DSL vari-

ants. Our technique consists of an algorithm to recover a language modular design and a

mechanism to synthesize language variability models that enable configuration and deriva-

tion of concrete DSLs. These variability models include both abstract syntax and semantic

variability. Those models are generated in a separate way, thus answering the claim we

introduced before in this regard.

54

4.2. Technological Scope: Supported Technological Space

Figure 4.2: A simple DSL for finite state machines

4.2 Technological Scope: Supported Technological Space

Technological spaces to build DSLs are quite diverse. This diversity is evidenced not only

in terms of the amount of existing technological spaces, but also in the differences among

them. Although the purpose of all those technological spaces is the construction of DSLs,

the concepts and definitions they use is quite different; for instance, the definition of a

grammar-based DSL whose semantics is specified denotationally by means of attribute

grammars, is quite different from the definition of a metamodel-based DSLs where the se-

mantics are specified in a model-to-model transformation using the ideas of Model-Driven

Engineering. This diversity makes it difficult to generalize the ideas of software language

engineering to all the technological spaces. As a result, we need to clearly specify the scope

of this thesis by indicating the technological space we address.

All the ideas that we will present in the remainder of this thesis are scoped to exe-

cutable domain-specific modeling languages (xDSMLs) where the abstract syntax is spec-

ified through metamodels, and the dynamic semantics is specified operationally as a set

of domain-specific actions [108]. Domain-specific actions are java-like methods that intro-

duce behavior in the meta-classes of a given metamodel. Such injection is performed via

weaving as the same as in aspect oriented programming [69]. Concrete syntax, and hence

concrete syntax variability, are out of the scope of this thesis.

Fig. 4.2 illustrates this type of DSLs through a simple example on finite states machines.

In that case, the metamodel that implements the abstract syntax contains three metaclasses:

StateMachine, State, and Transition. There are some references among those metaclasses

representing the relationships existing among the corresponding language constructs. The

domain-specific actions at the right of the Figure 4.2 introduce the operational semantics to

55

4. FOREWORD TO THE CONTRIBUTIONS

the DSL. In this example, there is one domain-specific action for each metaclass. The inter-

actions among domain-specific actions can be internally specified in their implementation

by means of the interpreter pattern, or externalized in a model of computation [108].

56

Chapter 5

Facilities to Support Top-Down
Language Product Lines

The objective in top-down language product line engineering is to transform the domain

knowledge owned by domain experts into a language product line that permits to easily

prototype diverse DSL variants. Each variant is intended to address the needs of a group

of final users. In this chapter we present some extensions to the existing meta-languages

to facilitate the construction of language product lines. Concretely, those facilities support

language modularization and variability management. Besides, we introduce some method-

ological insights that guide language designers through the development process.

5.1 Meta-language Facilities for Language Product Lines

5.1.1 Supporting Languages Modularization

As aforementioned, current approaches on languages modularization focus on supporting

languages modularization scenarios for different technological spaces. However, they fail

in satisfying three main principles largely discussed in the literature on software modular-

ization, namely: information hiding, independent development, and substitutability. In this

section we revisit modularization of DSLs by proposing an approach that overcomes this

limitation. Our approach covers both abstract syntax and semantics.

Supporting the Software Modularization Principles

In order to support software modularization principles in languages modularization, we

propose the definition of certain language interfaces. In particular, we adapt the classical

notions of required vs. provided interfaces to the construction of DSLs. As shown in

Fig. 5.1, each of the elements of the approach is intended to support one of the software

modularization principles.

57

5. FACILITIES TO SUPPORT TOP-DOWN LANGUAGE PRODUCT LINES

Requiring

Language Module

Providing

Language Module

Provided

Interface
Required

Interface

Binding

 - Compatibility checking
 - Safe composition

Information

hiding

Independent

development

Substitutability

Figure 5.1: Interfaces for languages modularization

Required interfaces to support independent development. The purpose of a required

interface is to support independent development of language modules. In that sense, a re-

quired interface is a mechanism that allows language designers to declare the needs that a

language module has towards other modules while assuming that their needs will be even-

tually fulfilled. Suppose for example the development of a language module for finite state

machines. This language module needs some additional abstractions such as constraints to

express guards in the transitions. Using a required interface, language designers can declare

those needs as a set of required constructs (e.g., Constraint) and focus on the definition of

the constructs which are proper to finite state machines (e.g., State, Transition, Triggers).

The needs of a language module can be materialized in the form of required constructs.

In assuming so, a module’s specification would be composed of a set of actual constructs,

which are being implemented by the module; and a set of required constructs, which rep-

resent needs to other modules. This approach results useful to support the modularization

scenario called aggregation where the needs of language modules are entire constructs im-

plemented in foreign modules. However, a finer level of granularity might be necessary to

support other modularization scenarios such as extension where the needs are not necessar-

ily entire constructs but finer elements such as properties or operations.

Based on this reasoning, we propose a mechanism to enable the capability to distinguish

whether a given language specification element (i.e., meta-class, property, operation, param-

eter, enumeration, etc) corresponds to an actual implementation or a required declaration.

The proposed mechanism is an extension to the EMOF meta-language that introduces the

notion of virtualization (see appendix A, section A.1 for further details). Using this ex-

tension, language designers can define virtual specification elements expressing needs of

the module. Non-virtual specification elements are actual implementations of the language

module. The required interface of a language module is the set of virtual elements it con-

tains within its specification.

58

5.1. Meta-language Facilities for Language Product Lines

Figure 5.2: Example of the use of required interfaces

Fig. 5.2 illustrates the use of required interfaces through the example introduced before

regarding a language module for finite state machines that requires a constraint language.

In that example, the constructs proper the state machines are non-virtual elements since

they correspond to actual implementation of such abstractions. In turn, the constraints to

express the guards in the transitions are expressed as a virtual construct called Constraint

that provides a virtual operation action called eval() which is used in the specification of

the semantics of the meta-class Transition.

Provided interfaces to support information hiding. The purpose of provided inter-

faces is to enable information hiding in modular development of DSLs. That is, to dis-

tinguish between the information that specifies the functionality offered by the language

module from the information corresponding to the implementation details behind such

functionality. Consider a language module that offers the capability to express and eval-

uate constraints. Using a provided interface, language designers can express the essential

functionality of the module i.e., expression and evaluation of constraints; and hide the im-

plementation details and auxiliary concepts needed to achieve such functionality.

To support the definition of provided interfaces, we propose to extend EMOF with the

notion of module visibility (see appendix A, section A.2 for further details). This extension

allows to classify a certain specification element as either public or private according to

its nature. For example, a language designer can classify a metaclass as public meaning

that it represents essential functionality of the module so can be used by external modules

59

5. FACILITIES TO SUPPORT TOP-DOWN LANGUAGE PRODUCT LINES

Figure 5.3: Example of the use of provided interfaces

and it belongs to the provided interface. Naturally, if the meta-class is classified as private

it cannot be used by external modules and it cannot be considered as part of the provided

interface. Note that the notion of module visibility is different from the notion of visibility

already defined in EMOF. The later is associated to certain access constraints of model

elements with respect to the package in which they are implemented.

Fig. 5.3 illustrates the use of provided interfaces through the example introduced before

regarding the constraints module. Since the main functionality of the module is to define

and evaluate constraints, the meta-classes included in the provided interface (so those one

defined as public in terms of module visibility) are: Program and Constraint including the

operations that implement their semantics. Note that the references from the metaclass

Constraint to other metaclasses (i.e., Constraint.body and Constraint.context) should be

defined as public if and only if they represent exposed functionality. In such a case, the

target metaclasses should be also defined as public. In our example, those references are

not exposed so they remain private as well as their target metaclasses.

Interfaces binding to support substitutability. Now we need to establish the way in

which those interfaces interact each other at the moment of the composition. In doing so,

it is important to conciliate two different (and potentially conflicting) issues. Firstly, safe

composition should be guaranteed; we need to check the compatibility between a providing

and a requiring language module by verifying that the functionality offered by the former

actually fulfills the needs of later. Secondly, there must be some place for substitutability;

the compatibility checking mechanism should offer certain flexibility that permits to per-

form composition despite some differences in their definitions. This is important because

when language modules are development independently of each other, their interfaces and

60

5.1. Meta-language Facilities for Language Product Lines

implementations not always match [51].

To deal with the aforementioned issues, we propose an approach for compatibility check-

ing which is strict enough to guarantee safe composition, and at the same time, it is flexible

enough to permit substitutability under certain conditions. To this end, we propose to ex-

tract both required and provided interfaces in the form of model types [109]. The model

type corresponding to the required interface contains the virtual specification elements of

a language module, and the model type corresponding to the provided interface the model

type contains its public specification elements. The relationship between a model type and

a language module is called implements and it is introduced by Degueule et al. [67].

To perform compatibility checking, we use the sub-typing relationship between the model

types corresponding to the provided and the required interfaces [110]. This relationship im-

poses certain constraints that guarantee safe composition while permitting some freedom

degrees thus introducing some flexibility. In particular, under this definition of sub-typing

the most obvious manner to guarantee safe composition is to check two conditions: (1)

all the needs expressed in the requiring model type are furnished in the providing model

type (total sub-typing); and (2) the two model types have exactly the same shape (isomor-

phic sub-typing). However, this definition of sub-typing also provides two dimensions of

flexibility: partial sub-typing and non-isomorphic sub-typing.

The main principle behind partial sub-typing is that not all the needs expressed in the

required model type must be provided by the provided one. In that case, compatibility

checking corresponds to verify that the sub-set of elements that match in the model types

are compatible. Then, the result of the composition is a third language module with a

resulting required interface that contains those needs that have not been satisfied by the

providing language module.

As an example suppose a language module for finite state machines that needs not only

constraints for expressing guards in the transitions, but also action scripting constructs to

express the behavior of the states. In such a case, a constraint module will fulfill the first

need but not the second one. Thanks to partial sub-typing, we can perform compatibility

checking only on the constructs associated to the constraints and, if they are compatible,

then compose those language modules. The result will be a language module having the

constructs for state machines and constraints but that still needs action scripting constructs

defined in its required interface.

The principle behind isomorphic sub-typing is that the needs in the requiring interface

are not always expressed exactly as the functionality offered by the providing module is

expressed in the providing interface. For example, model type in Fig. 5.2 expresses the

needs in terms of constraints of state machines through a class Constraint with an operation

eval(). If we want to use OCL to satisfy these needs, then we will find that there is not a

class constraint but OclExpr. Besides, the operational semantics might be implemented

differently. In this case, we need an adapter that permit to find the correspondences among

the elements of the model types.

61

5. FACILITIES TO SUPPORT TOP-DOWN LANGUAGE PRODUCT LINES

Figure 5.4: Running example: A modular DSL for finite state machines

At the implementation level, in the current state of our approach we support partial sub-

typing and some particular cases of non-isomorphic sub-typing. We still need some re-

search to fully support non-isomorphic sub-typing.

Supporting the Language Modularization Scenarios

Let us now to explain how our approach addresses the language modularization scenarios.

To this end, we will use as running example the language for finite state machines that we

have used so far. Fig. 5.4 summarizes such example; it is composed of several language

modules with some dependencies among them. Each of those dependencies exemplifies a

certain modularization scenario.

Extension. There are several ways to extend language modules. Our approach supports

two of them: sub-classing and open-classes [111]. They are explained in the following.

Extension through sub-classing. In this case, the extension module introduces one or

more sub-classes which specialize the metaclasses defined in the base module. Consider

a language module called TimedStateMachines that extends a base module called FiniteS-

tateMachines with time counters on the transitions. The TimedStateMachines module in-

troduces a new metaclass called TimedTransition which is a sub-class of the Transition

metaclass. This new sub-class implements the structural features (i.e., properties) and be-

havior (i.e., operations) needed to support the time counters’ functionality. To implement

this particular case of extension by using our approach, a language designer should:

(1) Add the Transition metaclass to the provided interface of the FiniteStateMachines

–i.e., define its module visibility as public–, thus indicating that it can be extended

62

5.1. Meta-language Facilities for Language Product Lines

by foreign modules. The provided interface should also include all the properties and

operations of the Transition metaclass that represent its functionality.

(2) Add the Transition metaclass to the required interface of the TimedStateMachines

module –i.e., define it as a virtual metaclass–, thus indicating that it corresponds

to a requirement that should be eventually fulfilled by a certain base module. This

declaration should include not only the metaclass itself, but also the properties and

operations needed to implement the extension. For example, if the TimedTransition

metaclass is intended to override the fire() operation, then it should be declared in

the required interface.

(3) Define the TimedTransition metaclass as a subclass of the Transition metaclass de-

fined in the required interface. Then, implement all the functionality corresponding

to times counters.

Extension through the open-class pattern. In the case of extension through the open-class

pattern [111], the idea is to enhance a meta-class of the base module by directly injecting

new properties and/or operations without adding a new sub-class. The base class is ac-

tually re-opened and modified according to the needs of the requiring module. Suppose

for example a language module called HierarchicalStateMachines that extends the FiniteS-

tateMachines module to support hierarchical states –i.e., states that contain other states–.

In that case, a new containing reference should be added to the State meta-class indicating

that it can have sub-states. In addition, the operation eval() should be re-defined in order

to include the new behavior. To implement this particular case of extension by using our

approach, a language designer should:

(1) Add the State meta-class to the provided interface of the FiniteStateMachines mod-

ule. Include the properties/operations that represent its functionality.

(2) Declare the State meta-class in the required interface of the HierarchicalStateMa-

chines module. This declaration should include not only the meta-class itself, but

also the properties and operations needed to implement the extension. In particular,

because the behavior of the meta-class State should be re-defined, the eval() opera-

tion should be included in the required interface.

(3) Complete the virtual meta-class called State with the new functionality correspond-

ing to hierarchical states. The language designer should add a non-virtual containing

reference to the State meta-class representing the sub-states. Besides, the the eval()

operation should be overridden with the enhanced behavior. As we will explain later

in this paper, in our approach we provide a mechanism based on annotations to over-

ride operations defined in the required interface.

Note that extending a language module through the open-class pattern results in virtual

meta-classes containing non-virtual elements. After composition, the resulting meta-class

will be a unique State meta-class that contains all the properties already defined by the base

module as well as the elements injected in the extension one.

63

5. FACILITIES TO SUPPORT TOP-DOWN LANGUAGE PRODUCT LINES

Restriction. Language modules restriction can be achieved in several ways. For exam-

ple, language designers might abuse of the open-class pattern to access an existing meta-

class of the base module and then remove some of its elements1. The problem with this

approach is that safe composition is not longer guaranteed; deletion of specification ele-

ments can introduce some conflicts when composing more than two modules.

Suppose for example that the we want to compose the FiniteStateMachines module with

HierarchicalStateMachines and the RestrictedFSM –the later is a restriction to the FiniteS-

tateMachines intended to remove the Fork and Join pseudostates–. In that scenario, after

the composition of the modules we will have a compilation error in the implementation of

the HierarchicalStateMachines if it uses the Fork and Join pseudostates; those pseudostates

will not longer exist. As a matter of fact, another problem of allowing deletions of specifi-

cation elements in a given module is that the results of the composition might be different

depending on the order in which the composition is performed.

Based on this reasoning and inspired by the work of Vacchi et al [86], we decide to

use additive extensions to support restriction of language modules. We propose to support

restriction by enhancing the invariant of the metaclasses thus enforcing the validation phase

of the language in such a way that all the programs that use the disabled constructs will be

rejected. In our example about disabling pseudostates, all the state machines containing

Fork and Join will be rejected in the validation phase. Note that in this case there will

be no conflicts at the moment of the composition because the psedostates still existing in

the definition of the modules. To implement this particular case of restriction by using our

approach, a language designer should:

(1) Add the StateMachine meta-class to the provided interface of the FiniteStateMachine

module. All the elements relative to the pseudostates we want to remove should be

also included: the corresponding enumeration or meta-classes.

(2) Add the StateMachine metaaclass to the required interface of the RestrictedFSM

module.

(3) Enhance the invariant of the StateMachine meta-class by adding a new constraint

that states that there cannot exist pseudostates of type Fork or Join. In doing so, we

are using the open-class pattern in an additive way to implement a restriction of the

FiniteStateMachines module.

Aggregation. As aforementioned, aggregation is the modularization scenario where a

requiring language module uses some elements specified in a providing one. As an ex-

ample of aggregation, we can retake the situation explained in section 5.1.1 when explain-

ing the notions of required and provided interfaces. There is a language module called

FiniteStateMachines that implements basic functionality to express finite state machines,

and which depends on two other modules: a first one providing constraint language and a

1We use the expression “abuse of the open-class pattern” because such pattern is typically used to add new

elements in the open-class; removals are often forbidden.

64

5.1. Meta-language Facilities for Language Product Lines

second one for action scripting. There are two modules i.e., Constraints and ActionScript-

ing that provide each of those functionalities but that, in turn, depend on an Expressions

module that provides the basic functionality for specify arithmetic and relational expres-

sions as well as to declare variables. To implement this particular case of aggregation by

using our approach, a language designer should:

(1) Add the Constraint meta-class to the provided interface of the Constraints module.

(2) Add the Program meta-class to the provided interface of the ActionScripting module.

(3) Declare the meta-classes Constraint and Program in the required interface of the

FiniteStateMachine module. This declaration should include not only the meta-

classes themselves, but also the required properties and operations. In particular,

in this case we need not only the meta-classes, but also their operational semantics

implemented in the eval() operation of each of them.

(4) Implement the FiniteMachinesModule with the abstractions needed to support the

definition of state machines by referencing the meta-classes Constraints and Program

when needed.

Unification. Language modules unification is often achieved through the creation of

glue modules that implement the behavior of the composition of two initially independent

language modules. In order to address the example for unification regarding the integration

of finite state machines to CSS to specify final user interfaces, a language designer should:

(1) Create a glue-code module (we called it FSM-CSS).

(2) Add the meta-classes StateMachine and State from the FiniteStateMachine module

to the required interface of FSM-CSS.

(3) Add the meta-class StyleSheet from the CSS module to the required interface of

FSM-CSS.

(4) Create a meta-class called StyledStateMachines in the module FSM-CSS as sub-

class of StateMachine. A styled state machine implements the navigation of a web-

site.

(4) Create a meta-class called StyledState in the module FSM-CSS that as a sub-class

of State. Then, create a containment reference from StyledState to StyleSheet to

indicate that each state of the state machine represents one page in the web-site, and

that the corresponding style sheet implements the page’s style.

Extension composition. To support extension composition, we need to provide a mech-

anism to specify a set language modules in terms of their implementation artifacts and

interfaces. Doing the parallel with software architecture, what we need to support exten-

sion composition is an Architecture Description Language (ADL) [112]. In our approach,

we use Melange [67] to this end. Melange is a tool-supported meta-language that can be

65

5. FACILITIES TO SUPPORT TOP-DOWN LANGUAGE PRODUCT LINES

used to model the relationships in the large of a set of artifacts associated to the construc-

tion of software languages. The details of the use of Melange to this end will be introduced

later in this document when we explain the implementation details of our approach.

Language modules composition

So far, we have explained the way in which language designers can define a set of inter-

dependent language modules. we explained the way in which these dependencies can be

expressed to support language modularization scenarios and respecting certain software

modularization principles. Now, we explain the composition that permits to unify a set of

language modules to produce a unique DSL specification.

Language modules composition starts with a preliminary phase of compatibility check-

ing, which guarantees safe composition. It is based in checking the sub-typing relation

between the model types representing required and provided interfaces of the involved lan-

guage modules. Once the compatibility is correctly checked, the next step is to compose

the language modules to integrate their functionality i.e., the needs of the requiring module

are fulfilled with the services offered by the provided one.

In our approach, this composition is performed in two phases. First, there is a matching

process that identifies one-to-one matches between virtual and public elements from the

required and provided interface respectively. This match can be identified automatically by

comparing names and types of the elements (where applicable). However, the match can

be also specified manually in the case of non-isomorphism. Once the match is correctly es-

tablished, the composition process continues with a merging algorithm that replaces virtual

elements with public ones. That means also to replace all the possible references existing

to the virtual element to point out to the corresponding public element.

Once the process is finished, we re-calculate both provided and required interfaces. The

provided interface of the composition is re-calculated as the sum of the public elements of

the two modules under composition. In turn, the required interface of the composition is

re-calculated as the difference of the required interface of the required module minus the

provided interface of the providing module.

5.1.2 Supporting Languages Variability Management

As we said earlier, the challenge towards representing the variability existing in a language

product line is that such variability is multi dimensional. Because the specification of a DSL

involves several implementation concerns, then there are several dimensions of variability

that we must manage: abstract syntax variability, concrete syntax variability, and semantic

variability [55, 56]. As the same as our approach to language modularization, our approach

to variability management is scoped to abstract syntax and semantics; concrete syntax –and

hence, concrete syntax variability– is not being considered in the solution.

66

5.1. Meta-language Facilities for Language Product Lines

Modeling multi-dimensional variability

A solution to represent abstract syntax variability and semantic variability should consider

two main issues. Firstly, the definition of the semantics has a strong dependency to the

definition of the abstract syntax –the domain-specific actions that implement the semantics

of a DSL are weaved in the meta-classes defined in the abstract syntax–. Hence, these

dimensions of variability are not isolated each other. Rather, the decisions made in the

configuration of the abstract syntax variability impact the decisions that can be made in the

configuration of the semantic variability.

The second issue to consider at the moment of dealing with language variability man-

agement is that a semantic variation point might be transversal to several meta-classes.

Moreover, if the involve meta-classes are introduced by different language modules in the

abstract syntax, then the semantic variation point depends of two features. As a result, the

relationship between a feature in the abstract syntax and a semantic variation point is not

necessarily one-to-one.

Currently, we can find several approaches to support multi dimensional variability (e.g.,

[60]). Moreover, in chapter 3 we show how those approaches have been applied concretely

to language product lines. The most common practice is to use feature models to represent

all the dimensions of variability. Each dimension is specified in a different tree and depen-

dencies among decisions in those dimensions are expressed as cross-tree constraints. In this

thesis, we propose a different approach based on the combination of feature models with

orthogonal variability models. Feature models are used to model abstract syntax variability

and orthogonal variability models are used to model semantic variability.

Fig. 5.5 illustrates our approach. At the top of the figure, there is a feature model

in which each feature represents a language module. As aforementioned, each language

module is composed of a metamodel and a set of domain specific actions. Hence, such a

feature model is enough for language product lines where there is not semantic variability

i.e., each language module has only one set of domain specific actions. Differently, when

there are one or more language modules containing several sets of domain specific actions,

then we have semantic variability that must be represented in the variability model. To

represent such a variability, we include an orthogonal variability model as illustrated at

the bottom of Fig. 5.5 which contains a variation point for each feature that represents a

language module with more than one set of domain specific actions.

Why orthogonal variability models? An inevitable question that we need to answer at

this point is: why we use orthogonal variability models instead of using feature models as

proposed by current approaches? The answer to this questions is three-fold:

(1) The structure of orthogonal variability models is more appropriated. As explained

by Roos-Frantz et al. [113], feature models and orthogonal variability models are similar.

However, they have some structural differences. One of those differences is that whereas a

feature model is a tree that can have many levels, an orthogonal variability model is a set of

67

5. FACILITIES TO SUPPORT TOP-DOWN LANGUAGE PRODUCT LINES

Figure 5.5: Approach to represent multi-dimensional variability in language product lines

trees each of which has two levels. Each tree represent one variability point and its children

represent variants to that variation point.

Semantic variation points are decisions with respect to a particular segment of the se-

mantics of a language. Although those decisions can have some dependencies among them,

they can hardly be organized in a hierarchy. Indeed, we conducted an experiment where

we use feature models to represent semantic variation points, and we always obtained two-

level trees: the first level corresponds to the name of the variation point and its children

represent the possible decisions. This fact suggests that orthogonal variability models are

more appropriated than feature models to represent semantic variability.

(2) The meaning of orthogonal variability models is more appropriated. According to

[18], a language feature is a characteristic provided by the language which is visible to the

final user. This definition can be associated abstract syntax variability and the use of feature

models can be appropriated to represented it. All the approaches on language product line

engineering use feature models to this end showing that it is possible and appropriated.

The case of the semantic variability is different. A semantic decision is not a character-

istic of a language that we can select or discard. The semantic of a DSL should be always

specified if the DSLs is intended to be executable. Rather, a semantic decision is more a

variation point that can have different interpretations captured as variants. This vocabulary

68

5.1. Meta-language Facilities for Language Product Lines

fits better in the definitions provided by orthogonal variability models. More than features,

we have variation points and variants, which also suggest that the use orthogonal variability

models is more appropriate to represent semantic variability.

Multi-staged Language Configuration

There are two issues to consider to support configuration of DSL variants in language prod-

uct line engineering. First, the multi-dimensional nature of the variability in language prod-

uct lines, supposes the existence of a configuration process supporting dependencies be-

tween the decisions of different dimensions of variability. For example, decisions in the

abstract syntax variability may impact decisions in semantic variability. Second, language

product lines often require multi-staged languages configuration. That is, the possibility of

configuring a language in several stages and by different stakeholders.

Multi-staged configuration was introduced by Czarnecki et al. [61] for the general case

of software product lines, and discussed by Dinkelaker et al. [62] for the particular case of

DSLs. The main motivation to support such functionality is to transfer certain configuration

decisions to the final user so he/she can adapt the language to exactly fits his/her needs [62].

In that case, the configuration process is as follows: the language designer provides an

initial configuration. Then, the configuration is continued by the final user that can use the

DSL as long as the configuration is complete. In doing so, it is important to decide what

decisions correspond to each stakeholder.

Suppose the scenario introduced in Fig. 5.6 where the language designer is responsible

to configure the abstract syntax variability whereas the language user is responsible to con-

figure the semantics. When the language designer finishes its configuration process, the

orthogonal variability models will be available so the final user can perform the configu-

ration of the semantics. This orthogonal variability model will only include the variation

points that are relevant to the features included in the configuration of the abstract syntax.

Moreover, because each of the semantic variation points are represented separately in a dif-

ferent tree, then we can imagine a scenario where the language designer is able to configure

not only the abstract syntax but also some semantic variation points, and then delegate to

the final user only the decisions that he/she can take according to its knowledge.

Running example

Let us now to illustrate our approach in language variability management with the example

of the state machines. Fig. 5.7 summarizes the situation. In that case, we have a language

product line for state machines that offers a well-defined set of language features in for the

abstract syntax, and two semantic variation points. For the case of the abstract syntax, there

is a mandatory feature called Core that contains the main constructs needed to express fi-

nite state machines i.e.., StateMachine, State, Transition, Region, Trigger, and so on. Then

there is a set of features representing the pseudosates. The initial pseudo state is manda-

tory, all the others are optional and should be included or not according to the level of the

69

5. FACILITIES TO SUPPORT TOP-DOWN LANGUAGE PRODUCT LINES

Figure 5.6: Approach to support multi-staged configuration of language product lines

expressiveness required for the DSL. We have also a feature called TimedTransitions that

introduces the notion of time counters in the transitions. Finally, there is a feature called

HierarchicalStateMachine that introduces support for composite states.

In addition of the abstract syntax variability, the language product line in our example

also contains some semantic variability. In particular, there are two semantic variation

points both of them deeply explained by Crane et al. [59]. The first one introduces two

different ways of attending simultaneous events in a state machine. It is possible to actually

support this simultaneous events in such a way that in a same step the state machine is

reacting to two or more different triggers. The other possibility is to prohibit this behavior

and comply the run-to-completion policy that states that only one event can be attended in

one step. So, it does not matter if two events arrive at the same time to the state machine,

there will be always a sequential reaction.

The second semantic variation point emerges as a result of selecting the feature called

HierarchicalStateMachines. In such a case, it is possible to have conflicting transitions

since, in the same step, many hierarchical states are activated. All the transitions which are

outgoing the hierarchical states and that are associated to the same trigger are considered

as conflicting. The first possibility to solve these conflicts is to fire the transition outgoing

the state at the top of the hierarchy. The second possibility is to fire the transitions outgoing

the state at the bottom of the hierarchy.

70

5.2. Methodologies for Top-Down Language Product Lines

State Machines

Pseudostates TimedTransitions Core

Initial

HierarchicalStates

A
b

st
ra

ct
 S

yn
ta

x
V

ar
ia

b
ili

ty

(f
ea

tu
re

s
m

o
d

el
)

S
em

an
ti

c
V

ar
ia

b
ili

ty

(o
rt

h
o

g
o

n
al

 v
ar

ia
b

ili
ty

 m
o

d
el

)

VP

V V

VP

V V

Fork Join

History

Deep Shallow

Condition

Junction

Events
attending

policy

Simultaneous
events

Run to
completion

Conflicting
transitions
treatment

Higher
Transition

Lower
Transition

Figure 5.7: An example of multi-dimensional variability in language product lines

5.2 Methodologies for Top-Down Language Product Lines

As aforementioned, for the particular case of top-down LPLE, the development process

begins with the domain engineering phase. Once it is completed, and the language product

line is implemented, then the process moves on to the application engineering phase. As the

reader might imagine, the domain engineering phase in LPLE is a complex development

activity. Like during domain analysis in classical development of DSLs [114], the success

of this phase depends on the expertise and the experience of domain experts and language

designers. Whereas domain experts must own a deep understanding of the domain and solid

communication skills, language designers should be able to filter relevant information from

the domain and transform it into an appropriate design for the language product line.

Typically, the complexity of software development activities is addressed by means of

well-defined methodologies that guide software developers through a process which is

clearly defined in terms of key activities, inputs and outputs. The objective is to system-

atize the development activities in such a way that they can be monitored, evaluated, and

continuously improved. The success of those methodologies relies on an equilibrium be-

tween rigor, which enables systematic development [115], and flexibility, which permits

adaptation of the methodology to the particularities of each development process and its

participants [116].

This section provides a methodological toolkit to support the domain engineering phase

in top-down LPLE. It is meant to be rigorous enough to enable systematical development

during domain engineering, and (at the same time) flexible enough to be easily adapted

71

5. FACILITIES TO SUPPORT TOP-DOWN LANGUAGE PRODUCT LINES

Figure 5.8: Staged process for domain engineering of language product lines

to the particularities of specific language development projects. In this methodological

toolkit, we propose a set of key activities that guide language designers during the domain

engineering phase. Each activity is specified in terms of input and outputs and provides

some insights that help language designers during the process.

Our process, which is illustrated in Figure 5.8, is composed of two coarse-grained phases

each of which is focused on engineering one implementation concern. The process starts

with the engineering of the abstract syntax, then it goes through the engineering of the se-

mantics. It should be noted that the proposed process is not monolithic. Rather, it proposes

an iterative fashion to perform the activities thus favoring incremental implementation and

continuous improvement. Besides, language designers can come back from the semantics

engineering to the abstract syntax engineering (and vice-versa) if during the formulation of

the semantics they realize that there are some missing elements in the abstract syntax. The

reminder of this section is dedicated to deeply explain the process.

5.2.1 Abstract Syntax Engineering

The first activity of the domain engineering process is dedicated to the abstract syntax of

the language product line. The input of this activity is the domain knowledge owned from

domain experts and captured in existing DSLs targeting similar domains. The output of

the activity is the definition of all the common assets of the language product line that are

related to the abstract syntax. Hence, the main challenge during this phase is to transform

domain knowledge (usually unstructured and vaguely described) into well-defined models

conforming to some technological space appropriated to describe abstract syntax. To do

so, language designers must complete a set of activities –described below– focused on

structuring and formalizing the domain knowledge, identifying functional variability, and

specifying language modules and variability models for abstract syntax.

72

5.2. Methodologies for Top-Down Language Product Lines

Structure Domain Knowledge

The first step in abstract syntax engineering is to extract and structure the domain knowl-

edge. At this point, language designers should interview domain experts and to explore

potentially related DSLs in order to identify the concepts that are relevant for the domain

targeted by language product line under construction. The relationships existing among the

domain concepts should be also identified. Usually, this process is termed domain analysis

[114, 117] which produces a domain model that will be the backbone of the rest of the

domain engineering phase [118].

There are two important aspects to consider while building a domain model. On one

hand, the domain model will constitute a communication bridge between domain experts

and language designers. Then, it should be expressed in a formalism simple enough so it

can be understood by domain experts –which in most of cases have no computer science

background– and formal enough so it does not leave place for ambiguities.

On the other hand, the definition of the domain model should be as most precise as

possible. That means that the vocabulary used to name the concepts must clearly reflect

the elements of the domain they refer to. Besides, the relationships between the concepts

should be correctly named and fully specified in terms of multiplicity and direction.

Using class diagrams to structure domain knowledge. There are very few modeling

languages which are simple and formal at the same time. However, class diagrams are

becoming a usual choice to this end; several methodologies for domain analysis use class

diagrams as modeling formalism (e.g., [119, 120]).

In the case of language product lines, the use of class diagrams presents interesting ad-

vantages to express the abstract syntax. They can be easily mapped to metamodels, and

with some effort, they can be also mapped in BNF-like grammars. Hence, we propose to

use class diagrams as modeling languages for structuring domain knowledge. If the do-

main experts are reluctant to use class diagrams, ontologies can be used to communicate

with domain experts, and lated transformed to class diagrams as proposed by Tairas et al.

[117].

Consider for example the construction of a language product line of DSLs for finite state

machines. The objective of the product line is to provide diverse DSLs for state machines

that can be configured according to the needs of a particular system. To build this language

product line, language designers interview the systems engineers and capture the needs they

have with respect the state machines. In addition, there are several specification of state

machines languages in the literature (e.g., UML state diagrams [121], Rhapsody [122], and

Harel’s state charts [123]) that can be used to enhance the domain knowledge.

Figure 5.9 proposes a domain model for state machines. It includes concepts typically as-

sociated to state machines (e.g., states, transitions, triggers) and some additional constructs

that, although not directly related in the domain, result quite important for completely ex-

pressing a state machine. For example, there is the notion of Constraint needed to express

guards in the transition, and the some action scripting instructions to express actions in

73

5. FACILITIES TO SUPPORT TOP-DOWN LANGUAGE PRODUCT LINES

Figure 5.9: A domain model for finite state machines

the states. The purpose of this domain model is to illustrate our methodology. We will

reference it in the rest of the chapter.

Identify Functional Variability

The second activity in abstract syntax engineering is to identify the functional variability

supported by the language product line. The input of this activity is the domain model

whereas the output is a second version of the domain model where each of the concepts

are marked as mandatory or optional. The challenge of this phase, is to identify what are

those concepts that must appear in all the DSLs as well to identify those concepts that are

optional. Note that the mandatory concepts correspond to the commonality of the language

product line whereas the optional concepts correspond to its variability.

74

5.2. Methodologies for Top-Down Language Product Lines

Using the notion of “completeness” to identify functional variability. An effective

way to define whether a concept is mandatory or not is by clearly establishing the complete-

ness of a model i.e., to identify the minimum set of concepts needed to build model that

can be used in the context in which the language product line will serve. In the case of the

state machines, for example, the completeness criterion could be that the state machines

are executable. Hence, a DSL for state machines is complete if and only if it provides the

minimum elements to create state machines that can be executed. Intuitively, we can state

that those elements are: (1) entry points (i.e., initial pseudostates) that indicate the initial

point of the execution of the state machine; (2) exit points (i.e., final states) that indicate the

end of the execution of a state machine; (3) triggers that allow the state machine to react to

events in its environment; and (4) actions in the states to express the executability of each

state at runtime. Note that if the state machines are meant to be used only as modeling

artifacts describing some behavior with no real execution expected, then the completeness

criterion for the DSLs would change and the analysis of functional variability would be

different.

Figure 5.10 shows the analysis of functional variability for the example of the state ma-

chines. In that figure, optional concepts are marked with the (?) symbol. From the analysis

above we can state that, to be executable, a state machine needs core concepts such as

StateMachine, Region, AbstractState, State, Transition, Trigger, and PseudoStates. In ad-

dition, the concepts InitialState and FinalState are mandatory since they represent entry

and exit points respectively. In addition, all the concepts associated to action scripting (i.e.,

Statement, Block, Loop, Literal, etc) are needed to permit the expression of actions on the

states. Contrariwise, the different types of triggers (i.e., AndTrigger, NotTrigger, and Or-

Trigger) have not necessarily to be available for expressing an executable state machine.

They can be viewed as facilities that enhance a given functionality. A similar situation

occurs for the different types of pseudostates which enhance the expressiveness of a state

machine, but are not fundamental for the executability of a state machine. Note also that the

completeness criterion does not demand the existence of guards in the transitions. A state

machine can be executable even if the transitions are always lunched automatically without

checking the state of the environment. As a result, we will define constraints as optional

even if we suspect that it is a functionality that will be always desired by final users.

Identify Concept Clusters

The next activity in the abstract syntax engineering process is to design a first version of

the modular design for the language product line. Concretely, during this activity language

designers should identify clusters of language concepts each of which will constitute the

abstract syntax of a language module in the modular design. Those concept clusters will

be enhanced with semantics during the semantics engineering process thus becoming fully

specified language modules. The identification of concept clusters is not a trivial task,

however. This process should take into account at least three considerations:

75

5. FACILITIES TO SUPPORT TOP-DOWN LANGUAGE PRODUCT LINES

Figure 5.10: A domain model with optional/mandatory concepts for finite state machines

• Alignment with the domain knowledge. Because concept clusters will constitute

the abstract syntax of language modules, and those modules implement language

features, the identification of concept clusters will be visible in the feature models.

In other words, the identification of concept clusters is not only a first step in the

definition of the modular design, but also a first step to the identification of language

features of the feature model. In turn, in software product lines engineering feature

models are intended to capture domain knowledge [37]. Hence, the identification of

concept clusters should consider the domain knowledge. Language designers should

be sure that concepts grouped in the same cluster have certain relationship among

them so they can be conceived as part of the same atomic feature with a well-defined

objective.

• Alignment with components-based design principles. Besides being aligned with

76

5.2. Methodologies for Top-Down Language Product Lines

the domain knowledge, the modular design of a language product line must own

certain quality degree that guarantees its effectiveness to address the needs of final

users under real conditions. Concretely, the modular design should be easy to main-

tain, reuse, and evolve so it can be easily adapted to dynamic domains. As a result,

concept clusters should be defined while respecting well-known design principles

(such as high-cohesion and low-coupling) that maximize the modular design’ quality

[124, 125].

• Alignment with the functional variability. Finally, concept clusters should reflect

the functional variability previously identified. For example, concepts marked as

mandatory should be separated from concepts marked as optional to guarantees that,

at configuration time, there are no modules that must be selected because they include

a mandatory concept and that includes an optional concept that, in that case, must be

always selected so it is not actually optional.

Using hierarchical domain analysis to identify concept clusters. So far, we have

discussed some considerations that should be taken into account during concept clusters

identification. Let us now discuss some insights that language designers can use to conduct

this activity. In particular, there is an observation that results quite useful to this end: the

domains associated to a DSL are not necessarily isolated and completely independent [126,

22]. Contrariwise, the domain of a DSL is typically composed of several interdependent

and self-contained sub-domains.

Consider for example the domain model for the case of the state machines previously in-

troduced in Figure 5.9. Certainly, all the concepts appearing in the model are relevant in the

domain of finite state machines. However, one can identify certain sub-domains that can

be analyzed independently. For instance, concepts such as Expression, ArithmeticExpres-

sion, Literal, Integer, Boolean, or String are useful for expressing finite state machines but

they can be grouped in a the sub-domain of the arithmetic expressions which is a complete

domain itself. A similar situation occurs for the domain concepts Constraint and Context.

Those concepts belong to the domain of the constraints but are also relevant for the domain

of state machines since they permit to express guards in the transitions.

This observation about sub-domains has been previously exploited in software engineer-

ing. Indeed, we can find some research works (e.g., [127, 128]) that analyze the hierarchy

of the domain associated to a software system to solve problems such as the recovery of

software architectures from legacy systems [127] or the construction of software compo-

nent libraries [128]. The main idea is to define a relatedness metric to quantify the degree

at which two domain elements are related each other. Then, this metric is used to group

the domain elements in hierarchical clusters that are viewed as sub-domains which provide

useful information about the system under study.

We propose the use hierarchical domain analysis for the identification of concept clus-

ters. If we are able to build a domains hierarchy from the concepts provided in the domain

model, then we can identify some atomic sub-domains that can be defined as clusters whose

77

5. FACILITIES TO SUPPORT TOP-DOWN LANGUAGE PRODUCT LINES

•  Pseudostate
•  InitialState
•  Fork
•  Join
•  DeepHistory
•  ShallowHistory
•  Junction
•  Condition

•  Trigger

•  NotTrigger

•  AndTrigger

•  OrTrigger

•  StateMachine

•  Region

•  AbstractState

•  State

•  Transition

•  FinalState

•  Constraint
•  Context

•  Literal
•  Integer
•  Boolean
•  Real
•  String
•  VarRef

•  VarDecl

•  Expression
•  RelationalExpression

•  ArithmeticExpression

•  Statement
•  Block
•  Loop
•  Conditional
•  Assignation

Figure 5.11: Venn diagram for the hierarchical domain analysis for state machines

concepts will be highly related. We propose to use cohesion as relatedness metric between

language concepts. This makes sense since the notion of cohesion is associated to the

“degree to which the elements of a module belong together” [124]. When the software un-

der study is a domain-specific language, cohesion refers to the relatedness of the language

constructs composing a language module.

The result of the hierarchical domain analysis is a Venn diagram such as the shown

in Fig. 5.11 for the example of the state machines. Note that it results quite useful to

understand the degree of relatedness among the language constructs. Indeed, using this

result we can propose a concrete set of language modules. Concretely, we can identify two

main sub-domains: the one at the right of Figure 5.11 including all the concepts related

to the expression of state machines themselves, and the one at the left of the same figure

including all the concepts related to the expression of action scripts. Furthermore, the sub-

domain of the state machines can be, in turn, decomposed in several sub-domains. For

example, we can see that the pseudostates from a sub-domain as well as the triggers. The

constraints are also part of a sub-domain whereas the core concepts of state machines i.e.,

StateMachine, Region, State, Transition, AbstractState, and FinalState, form another sub-

domain. A similar situation occurs for the sub-domain of action scripting. We can identify

three sub-domains: literals, expressions, and control structures.

The details of how to apply hierarchical domain analysis in languages modularization

are deeply explained in Appendix B.

78

5.2. Methodologies for Top-Down Language Product Lines

Build Variability Model

The third step in the abstract syntax engineering is to build a variability model capturing

the functional variability of the language product line. As explained before, we use feature

models to this end. Hence, the output of this step is a feature model supporting the func-

tional variability identified in section 5.2.1, and which is aligned with the concept clusters

identified in section 5.2.1. It is worth nothing that, besides supporting functional variability

and being aligned with concept clusters, feature models should own quality attributes such

as analyzability, changeability, and understandability [129].

To achieve those quality attributes, there must exist a design process where the knowl-

edge and experience of software engineers (language designers in this case) is of vital

importance. Although it is difficult to define a precise methodology or algorithm to build

feature models achieving all those quality attributes, we can use hierarchical domain anal-

ysis to provide a first version of the feature model that can be later improved/refined by

software engineers according to the specific needs. The hypothesis is that if we use the

a hierarchical analysis of the domain knowledge, then the hierarchy of the features in the

feature models will correspond to a real domain hierarchy, and feature models will be easy

to read for the engineers who will configure the DSLs. To this end, we propose to follow

the steps below:

(1) Create a root. We need to start the construction of the variability model by creating

a root. To this end, we propose to create an artificial root implemented as an abstract

feature that will have the name of the language product line. In our case, we will call

it State Machines.

(2) Translate the hierarchical domain analysis into a tree-like structure. The chal-

lenge now is to use the information provided by the hierarchical domain analysis to

build the a feature model capturing the functional variability of the language prod-

uct line. To this end, we propose to produce a simple variability model where each

concept cluster is represented in one and only one language feature. The idea is to

analyze those clusters according to their position on the Venn diagram in figure 5.11,

and use that information to find a good position in the hierarchy for the corresponding

feature.

Figure 5.12 shows an example of a feature model created from the hierarchical do-

main analysis. Note that, in the general case, the fact that a sub-domain is contained

by another sub-domain is reflected by a parent-children relationship in the hierarchy

of the feature model. However, we decide to pull up the feature Constraints to the

second level of the tree since it seems to be a DSL at the same level of state machines

and action scripting.

Note also that we include some abstract features abstract features i.e., Pseudostates

and Triggers to improve the readability of the model.

(3) Obtain the dependencies graph and add the implies constraints. To finish the

79

5. FACILITIES TO SUPPORT TOP-DOWN LANGUAGE PRODUCT LINES

Figure 5.12: Features model for a language product line of finite state machines

construction of the variability model, we need to be sure that it encodes all the depen-

dencies among the concept clusters. To do so, we need to obtain the dependencies

graph from the concept clusters of the language modular design.

In this graph, each vertex represents a concept cluster and each arc represents a de-

pendency between two concept clusters. Then, we need to check (one by one) if

each dependency is encoded by the hierarchy of the feature model –note that a child

feature can be selected if and only if its parent feature is selected so hierarchy is a

mechanism to encode dependencies–. If there are non-encoded dependencies, they

should be included in the model in the form of implies dependencies.

Evaluate

Once we have a first version of the language product line, we need to evaluate it in order to

guarantee their quality and envision possible improvements. As the reader might imagine,

such evaluation is as complex as the evaluation of software product lines. It should take

into account not only functional aspects of the reusable assets but also quality attributes

such as usability, maintainability, and so on.

In the case of domain specific languages, both functional testing and quality attributes

evaluation are still emergent subjects of research. Although there are some advances in

the literature for unit testing [100, 130], and debugging [131], the definition of a com-

plete evaluation framework covering all the aspects of testing of DSLs implemented in the

technological space used in this work is still an open issue. Naturally, this fact limits the

evaluation of language product lines.

For the scope of this work, however, we propose a simple evaluation of language product

80

5.2. Methodologies for Top-Down Language Product Lines

lines based on the structural soundness of its modular design. The structural soundness of

a modular design is evaluated in terms of the principles of high-cohesion and low-coupling.

These principles have demonstrated benefits in terms of understandability, maintainability,

and reuse in object oriented software systems [124, 125]. If we admit that there is some

synergy between object oriented programming and language engineering (specially when

using metamodeling techniques) we may assume that those benefits are also appearing

within the development of domain-specific languages. We envision an empirical study to

find out evidence that support such statement as part of the future work of this thesis.

To evaluate cohesion and coupling in a modular design, it is important to define met-

rics that indicate the level at which each principle is achieved. In such a way, language

designers can objectively evaluate their clusters with respect to cohesion and coupling, and

then improve their designs. In this work, we propose to measure cohesion and coupling as

follows:

• Measuring cluster cohesion: A first approach to measure cohesion was introduced

in section 5.2.1 for hierarchical domains analysis. That metric, however, is a pair-

wise measure that computes the cohesion of two language concepts with respect to

the domain model they belong to. For the case of modular design’ evaluation, we

need to measure the cohesion at the level of the concept clusters. That is, we need

to find a measure of cohesion of each cluster in terms of the relationships existing

among their concepts. To this end, we define a new metric termed cluster cohesion.

Using the notion of inter-connectivity provided by Mancoridis et al. [132], we pro-

pose to compute cohesion the cluster Cli as follows:

Definition The cohesion of a cluster Cli is computed as the quotient between the

amount of relationships (references + inheritances) among the concepts of the cluster

and the square of the number of concepts of the cluster. �

• Measuring inter cluster coupling: The notion of coupling is associated to how

strong is the dependency between two software modules [125]. When the software

under study is a domain-specific language, we propose to measure coupling in terms

of the amount of cross-cutting relationships existing between two language clusters.

To this end, we adopt the inter-connectivity measure introduced by Mancoridis et

al. [132]. Concretely, for each a pair of language clusters (Cli, Clj) we compute

coupling as follows:

Definition The coupling between two clusters Cli and Clj is computed as the quo-

tient between the number of cross-cutting relationships and two times the factor be-

tween the amount of concepts in the involved clusters. �

Figure 5.13 illustrates structural soundness for modular design in terms of coupling and

cohesion. An optimal design is one in which the average coupling of its clusters is minimal

whereas the average cohesion of its clusters is maximal. During the development process,

language designers could refine the design thus improving the metrics and hence optimizing

81

5. FACILITIES TO SUPPORT TOP-DOWN LANGUAGE PRODUCT LINES

Coupling

Cohesion
Current

Value

Current

Value

Potential

Improvement

Potential

Improvement
Optimal

Design

Figure 5.13: Clusters for a DSL for finite state machines

the structural soundness of the modular design. To this end, they can re-define the concept

clusters by increasing/decreasing the granularity level in which the hierarchical domain

analysis is used. For example, whereas in the current design we decided to define the

clusters Literals, Expressions, and ControlStructures separately, we could also define one

single cluster called ActionScripting (note that Figure 5.11 shows that these three clusters

conform one sub-domain themselves). This decision will reduce the number of modules,

and certainly modify the values for cohesion and coupling. This decision, however, will

have an impact on the definition of the variability models so they should be co-evolved

with the new version of the concept clusters.

5.2.2 Semantics Engineering

The second activity of the domain engineering process is dedicated to the implementation

of the semantics of the language product line. The input of this activity is the domain model

annotated with variability, as well as the first version of the language modular design and

variability models produced in the abstract syntax engineering. The output of this activity

is the language product line enhanced with semantics. The steps we propose to address this

activity are roughly presented in Fig. 5.8. In the reminder of this section we explain them

in detail.

Formulate Semantics

The first step in the semantics engineering phase is to formulate the semantics of each

language module identified in the abstract syntax engineering phase. This task should

be performed by language designers in junction with the domain experts, which are the

stakeholders owning a deep understanding of the domain. The work of language designers

82

5.2. Methodologies for Top-Down Language Product Lines

is to fully understand those semantics and formulate them in some concrete artifacts –as

most formal as possible– that reduce misunderstandings.

Because of the technological space we are addressing of this thesis, this step of seman-

tics formulation phase can be inspired from object oriented technologies. Indeed, there

are many synergies between executable meta-modeling and object-oriented programming;

each language construct is represented by a meta-class and the operational semantics of the

DSL is implemented in the form of java-like methods in those meta-classes (a.k.a., domain-

specific actions). We propose to take advantage of these synergies and use strategies such

as design by contracts in the formulation of the semantics for the language modules.

Since design by contracts has been largely discussed in the literature, we are not going

to go further in the explanation of such approach. Rather, in the following we will use it

to specify the semantics of one language module of our example of state machines as an

illustrative exercise.

Design by contracts for the CoreFSM module. Let us use design by contracts to formu-

late the semantics of the CoreFSM module. This module contains the main functionality

of a state machine: evaluating a set of input events by activating and deactivating states

that are linked each other by transitions. The idea of this exercise is to take this simple

functionality and described it in terms of domain-specific actions and contracts.

Identify Semantic Variability

As part of the process of semantics formulation, language designers and domain experts

might conclude that there are several interpretations for the semantics of certain constructs.

Indeed, in many cases semantics variability is the main motivation to implement a language

product line. There are several examples of this; consider the UML specification which is

full of what they call ”semantic variation points” that refer to different possible ways to

understand the same concept.

The challenge in this phase is to identify those possible variation points and select those

that are potentially interesting for the final users. Once those variability points are identified,

language designers need to specify the different versions of the methods and their contracts.

Language Modules Implementation

Once the contracts of the domain-specific actions are well-defined, the next step is to im-

plement them by writing the corresponding code of the body of the methods. Although this

task might be considered as straigforward after the definition of the methods, the truth is

that is in the coding phase where language designers actually understand the deep details of

the semantics. As a result, during this phase might appear more semantic variation points.

83

5. FACILITIES TO SUPPORT TOP-DOWN LANGUAGE PRODUCT LINES

Update the Variability Model

Once the semantics is implemented and all the variation points are more or less stable, the

next step is to update the variability model by enhancing it with the semantic variability. To

this end, language designers should build the orthogonal variability model and link it with

the corresponding language features corresponding to the modules they depend.

5.3 Summary

In this section we introduced a strategy to specify a language product line. Our strategy

takes into account languages modularization and languages variability management. For

the case of languages modularization, we propose a definition for required and provided

interfaces that non only supports the modularization scenarios identified in the literature

of software language engineering but also addresses some classical principles identified in

the literature of software modularization. In the case of languages variability management,

our strategy is based on the combination of feature models with orthogonal variability mod-

els. It results most convenient in terms of structure and meaning and favors multi-staged

configuration. All these ideas are applicable for metamodels-based DSL whose dynamic

semantics is specified through domain-specific actions.

84

Chapter 6

Reverse Engineering for Bottom-Up
Language Product Lines

So far, we have introduced facilities supporting the construction of top-down language

product lines. Besides, we proposed a methodology aimed to guide the domain engineering

process. These facilities are useful when the scope of the development project is clear and

language designers can justify the effort behind the construction of a language product line.

Nonetheless, the construction of a language product line is not always a purpose itself at the

beginning of a language development project. Rather, language designers are often asked

to build an initial DSL with in a well-defined domain and for a specific purpose, and with

the evolution of the project, some variants of the DSLs are needed in order to address new

requirements. In such a case, language designers have to create a new development branch

and perform the corresponding modifications. This process is repeated or each new variant

of the DSL. At some point, it becomes impractical and the challenge is to perform a re-

engineering process where the different variants of the DSLs are used to build a language

product line from a bottom-up perspective.

The clone-and-own approach. We aim to contribute with a strategy to reverse engi-

neering language product lines from sets of existing DSL variants which have been built

through the clone-and-own approach. Under this approach, the DSL variants are created by

cloning existing versions of a DSL and performing the corresponding adaptations. While

several research works have shown that such a practice is quite common in software devel-

opment projects [133, 134], in a recent work [135] we provided some empirical evidence

showing that it is also a common practice in language development. We performed an anal-

ysis of a large pool of DSLs obtained from GitHub, and we detected a relevant amount of

specification clones among them. The details of this study are presented in Appendix C.

A running example. Suppose a team of language designers working on the construction

of the DSL for finite state machines. To this end, language designers follow the UML

specification [121] thus defining language constructs such as states, regions, transitions,

85

6. REVERSE ENGINEERING FOR BOTTOM-UP LANGUAGE PRODUCT LINES

Figure 6.1: Example of clone-and-own pattern

triggers, and so on. Those language constructs are specified in terms of their syntax and

semantics. So, at the end of the language development process, they release an executable

DSL which behavior complies the UML specification.

Once this first DSL is released, the language designers are asked to build a new variant,

which must comply the Rhapsody specification [122] (i.e., another formalism to finite state

machines). This new variant shares many commonalities with UML state machines, but

introduces differences at both syntax and semantics levels [59]. At this point, language

designers face the problem of reusing as much as possible the constructs defined in the first

DSL during the construction of this new variant.

One of the possibilities that language designers have is to use the clone-and-own ap-

proach by copy-pasting the specification of the first DSL in a new project (or cloning the

repository), and then performing the needed adaptations as shown in Fig. 6.1. This ap-

proach permits a fast prototyping of the new DSL variant. After this process, language

designers obtain two different DSLs implementing different formalisms of state machines.

Those DSLs have some commonalities among them –those commonalities are materialized

in terms of specification clones–. And at the same time, the DSL have some particularities

that make them unique.

Suppose now that the final users need support for other formalisms for state machines.

Hence, the team of language designers is asked to implement two more DSL variants: the

first one complying the Stateflow specification [136], and the second one complying clas-

sical Harel state machines [123]. If the language designers use, again, the clone-and-own

approach, then they will obtain set of four DSL variants. Those variants share specification

clones, and own certain particularities.

The problem that language designers face at this point is two fold. First, they will have to

produce a new variant for each FSM formalism. This becomes specially challenging when

final users need to combine some specifications to define hybrid formalisms. Language

designers will have to produce a new version of each DSL for each desired combination,

and the clone-and-own approach becomes impractical. Second, the existence of specifica-

tion clones increases the maintenance costs of the involved DSLs. If language designers

detect bugs in one of the specifications; they will have to check all the DSL variants. While

several approaches have been proposed to exploit the notion of code clones to produce soft-

ware product lines from existing product variants [137, 138, 139], in this chapter we exploit

86

6.1. Approach Overview

Figure 6.2: A reverse-engineering strategy to bottom-up language product lines

the notion of language specification clones to reverse engineering language product lines

from existing DSL variants.

6.1 Approach Overview

In this section, we present our reverse engineering technique to support the construction of

bottom-up language product lines. As shown in Fig. 6.2, the proposed technique is com-

posed of four steps. During the first step, we automatically recover a language modular

design for the language product line. Such a modular design is composed of a set of lan-

guage modules and a set of dependencies among them. During the second step, language

modules’ dependencies are used to synthesize a variability model that can be used, during

the third step, to configure concrete DSL variants. Finally, during the forth step the DSL

variant is assembled by composing the involved language modules.

In the following, we explain the way in which we perform the first and second steps

(i.e., recovering language modular design and synthesis of variability models). Since the

resulting language product line is specified in terms of the meta-languages introduced in

Chapter 5, the third and fourth steps (i.e., configuration and composition) can be performed

as explained in sections 5.1.2 and 5.1.1, and will not be discussed in this section.

6.2 Recovering a Language Modular Design

Let us start the description of our reverse engineering technique by explaining the way

in which we identify the set of language modules and dependencies that constitute the

language modular design of the product line. Roughly speaking, we propose to take all

87

6. REVERSE ENGINEERING FOR BOTTOM-UP LANGUAGE PRODUCT LINES

the given DSL variants and unify them in a unique DSL. Then, the unified DSL is broken

down into several interdependent language modules. This process results in a factorization

of the specification clones existing in the DSL variants. The purpose of this strategy is to

remove as many specification clones as possible, thus reducing the maintenance costs. Our

factorization strategy is based on four principles explained in the following:

Principle 1: DSL specifications are comparable. Hence, specification clones can be de-

tected automatically. To detect the specification clones in a given set of DSL variants, we

need to compare those specification clones and find out the repeated specification elements.

For the technological space discussed in this thesis, specification elements for the abstract

syntax correspond to metaclasses whereas specification elements for the semantics corre-

spond to domain specific actions. Hence, comparison of DSL specifications corresponds to

compare metaclasses and domain specific actions.

Comparison of metaclasses. To compare metaclasses, we need to take into account that

a metaclass is specified by a name, a set of attributes, and a set of references to other

metaclasses. Two metaclasses are considered as equal (and so, they are clones) if all those

elements match. Formally, comparison of metaclasses is defined by the operator +.

+ : MC × MC → bool (6.1)

MCA + MCB = true =⇒

MCA.name = MCB.name ∧

∀a1 ∈ MCA.attr | (∃a2 ∈ MCB.attr | a1 = a2) ∧

∀r1 ∈ MCA.re f s | (∃r2 ∈ MCB.re f s | r1 = r2) ∧

|MCA.attr| = |MCB.attr| ∧

|MCA.re f s| = |MCB.re f s|

(6.2)

Comparison of domain specific actions. To compare domain specific actions, we need

to consider that –similarly to methods in Java– domain specific actions have a signature

that specifies its contract (i.e., return type, visibility, parameters, name, and so on), and a

body where the behavior is implemented. Two domain specific actions are equal if their

signatures and bodies are equivalent.

Whereas comparison of signatures can be performed by syntactic comparison of the

signature elements, comparison of bodies can be arbitrary difficult. If we try to compare

the behavior of the domain-specific actions, then we will have to address the semantic

equivalence problem, which is known to be undecidable [140]. To address this issue, we

conceive bodies comparison in terms of its abstract syntax tree as proposed by Biegel et al.

[141]. In other words, to compare two bodies, we first parse them to extract their abstract

syntax tree, and then we compare those trees. Note that this decision makes sense because

88

6.2. Recovering a Language Modular Design

we are detecting specification clones more than equivalent behavior. Formally, comparison

of domain-specific actions (DSAs) is defined by the operator ;.

; : DSA × DSA → bool (6.3)

DSAA ; DSAB = true =⇒

DSAA.name = DSAB.name ∧

DSAA.returnType = DSAB.returnType ∧

DSAA.visibility = DSAB.visibility ∧

∀p1 ∈ DSAA.params | (∃p2 ∈ DSAB.params | p1 = p2) ∧

|DSAA.params| = |DSAB.params| ∧

DSAA.AST = DSAB.AST

(6.4)

Principle 2: Specification clones can be viewed as sets’ intersections, which is useful

to factorization. A DSL specification can be seen as a set of metaclasses and a set of do-

main specific actions. In doing so, specification clones correspond to intersections among

those sets. Those intersection elements can be specified once and reused in several DSL

variants [142, p. 60-61]. Hence, we can factorize specification clones by breaking down

the intersections existing among DSL specifications.

Fig. 6.3 illustrates this observation through the running example on finite state machines.

We show two Venn diagrams to represent both syntax and semantic intersections. The Venn

diagram corresponding to the abstract syntax shows that the classical constructs for state

machines such as StateMachine, State, and Transition are in the intersection of the three

given DSL variants i.e., UML state machines, Rhapsody, and Harel’s state machines. In

turn, there are certain particularities for each DSL. For example, the concept AndTrigger is

owned by UML and Harel state machines but not for Rhapsody. Concepts such as OrTrig-

ger and NotTrigger are only provided by Harel state machines since the concept of Choice

is exclusive of UML state machines.

For the case of semantic variability, the 3-sets intersection is empty meaning that there is

not a common semantic for the three DSL variants. Rather, UML state machines and Rhap-

sody share the domain specific actions corresponding to the constructs of State Machine,

State, and Transition. The implementation of Harel state machines is different.

Note that this way to conceive DSL specifications is useful to factorize specification

clones as illustrated in Fig. 6.4. Each different intersection is separated in a separate subset

that, as we will explain later, is encapsulated in a language module.

Principle 3: Abstract syntax first, semantics afterwards. The abstract syntax is the back-

bone of the DSL specification; it specifies its structure in terms of metaclasses and relation-

ships among them whereas the domain-specific actions add executability to the metaclasses.

Hence, the process of breaking down intersections should be performed for the abstract syn-

89

6. REVERSE ENGINEERING FOR BOTTOM-UP LANGUAGE PRODUCT LINES

Figure 6.3: Syntactic and semantic intersections in a set of DSL variants

Figure 6.4: Breaking down intersections to factorize specification clones

tax first, thus identifying the way in which metaclasses should be grouped into the different

language modules. Afterwards, we can do the proper for the semantics. In doing so, we

need to take into consideration the phenomenon of semantic variability. That is, two cloned

metaclasses might have different domain-specific actions. That occurs when two DSLs

share some syntax specification but differ in their semantics.

Principle 4: Breaking down a metamodel is a graph partitioning problem. A metamodel

can be seen as a directed graph G =< V, A > where:

• V: is the set of vertices each of which represents a metaclass.

• A: is the set of arcs each of which represents a relationship between two metaclasses

i.e., references, containments, and inheritances.

This observation is useful for breaking down metamodels, which can be viewed as a

graph partitioning problem where the result is a finite set of subgraphs. Each subgraph

represents the metamodel of a language module.

The principles in action. Fig. 6.5 shows the way in which we recover a language modu-

lar design through the principles explained above. It is composed of two steps: unification

and breaking down.

90

6.2. Recovering a Language Modular Design

Figure 6.5: Unifying and breaking down for recovering a language modular design

Unification: match and merge. The objective of this step is to unify all the DSL variants

in a unique specification. To this end, we first produce a graph G for the metamodel of

each DSL variant according to the principle 4. Second, we use the comparison operators

defined in the principle 1 to match the vertices representing the metaclasses repeated in two

or more DSL variants. Third, we create the syntactic intersections defined in principle 2

by merging the matched vertices. In doing so, we remove cloned metaclasses. After this

process, we have a unified graph (which is not necessarily a connected graph) including all

the metaclasses provided in the DSL variants.

To identify semantic intersections, we check whether the domain specific actions of the

matched metaclasses are equal. If so, they can be considered as semantic specification

clones, and they are also merged. If not all the domain specific actions associated to the

matched metaclasses are equal, different clusters of domain specific actions are created,

thus establishing semantic variation points.

Breaking down: cut and encapsulate. Once intersections among the DSL variants have

been identified, we factorize the specification clones. To this end, we break down the uni-

fied graph using a graph partitioning algorithm. Our algorithm returns a set of clusters of

vertices: one cluster for each intersection of the Venn diagram. Arcs defined between ver-

tices in different clusters can be considered as cross-cutting dependencies between clusters.

Finally, we encapsulate each vertex cluster in the form of a language module.

Note that the dependencies between language modules can be viewed through the inter-

faces introduced in chapter 5. Those interfaces are reverse-engineering from each module.

91

6. REVERSE ENGINEERING FOR BOTTOM-UP LANGUAGE PRODUCT LINES

Required interfaces are generating by creating a virtual element for those elements that are

required by the module but that are not part of its definition. The provided interface is gen-

erated by defining all the specification elements of the language module as public. If there

are specification elements that should be hidden, then the language designer should modify

the generated definition.

6.3 Synthesizing Language Variability Models

we define an algorithm to synthesize variability models from a given language modular de-

sign. This algorithm produces not only a feature model with the abstract syntax variability,

but also an orthogonal variability model representing the semantic variability. An overview

of the approach is presented in Fig. 6.6.

Figure 6.6: Reverse-engineering variability models for language product lines

Synthesizing abstract syntax variability. The first step to represent the variability of

a language product line is to extract the feature model that represents the abstract syntax

variability. To this end, we need an algorithm that receives the dependencies graph be-

tween the language modules, and produces a feature model which includes a set of features

representing the given language modules as well as a set of constraints representing the

dependencies among those modules. The produced feature model must guarantee that all

the valid configurations (i.e., those that respect the constraints) produce correct DSLs.

In the literature, there are several approaches for reverse engineering feature modules

from dependencies graphs (consider for example the approach presented by Assunçao et

al. [143], or the one presented by She et al., [144]). In our case, we opt for an algorithm

92

6.4. Summary

that produces a simple feature model where each language module is represented in a con-

crete feature, and where the dependencies between language modules are encoded either

by parent-child relationships or by the classical implies relationship. Our algorithm was in-

spired from the approach presented by Vacchi et al. [91] which fulfills the aforementioned

requirements. Besides, it has been applied for the particular case of languages variability.

The tooling that supports our algorithms is flexible enough to permit the use of other

approaches for synthesis of feature model. To this end, we provide an extension point

that language designers can use to add new synthesis algorithms. In addition to the one

proposed by Vacchi et al. [91], we have integrated our approach with the one provided by

Assunçao et al., [143].

Synthesizing semantic variability. Once the feature model encoding abstract syntax

variability is produced, we proceed to do the proper with the orthogonal variability model

encoding semantic variability. To this end, we need to analyze the results of the process

for extracting the language modules. As explained in Section 6.2, according to the result

of the comparison of the semantics, a language module might have more than one cluster

of domain specific actions. This occurs when the two DSLs share constructs that are equal

in terms of the abstract syntax, but differ in their semantics. Since this is the definition of

semantic variation point, we materialize those clusters in semantic variation points of an

orthogonal variability model.

To do this, we scan all the language modules. For each one, we verify if it has more than

one cluster of domain specific actions. If so, we create a semantic variation point where

each variation references one cluster. Finally, the semantic variation point is associated

with the feature that represents the language module owning the clusters.

6.4 Summary

In this section we presented a reverse-engineering process that allows to automatically pro-

duce a language product line from a set of existing DSLs. Our reverse-engineering process

starts by breaking down the DSLs into a set of reusable language modules. Then, the pro-

cess goes through the synthesis of the models that capture the variability existing among

the extracted language modules. Since we use the meta-languages introduced in chapter 5,

the generated artifacts can be used to configure and assembly new DSLs.

93

Part III

Implementation and Validation

95

Chapter 7

Implementation: The Puzzle Toolkit

In this chapter, we present Puzzle: a toolkit that implements the ideas introduced in the

contributions of this thesis. It is implemented on top of the Eclipse Modeling Framework

(EMF)1, and it is based on K32 and Mélange3. Used together, EMF, K3, and Mélange

constitute a language workbench to support the definition of executable DSLs where the ab-

stract syntax is specified through metamodels, and the semantics is specified operationally

through domain-specific actions. From a high-level perspective, Puzzle can be viewed as a

set of extensions to support the construction of language product lines.

7.1 Using EMF, K3, and Mélange to Specify DSLs

EMF is a framework provided by Eclipse that offers a set of capabilities focused on facil-

itate modeling intensive tasks. Probably, the most visible feature provided by EMF –and

the one in which we are more interested for the context of this thesis– is the Ecore meta-

language. Such meta-language is intended to facilitate the definition of the abstract syntax

of the DSL by means of metamodels.

Once we have a mechanism to express metamodels, we need one for the expression of

operational semantics. To this end we use K3, which introduces the notion of aspect [69]

to facilitate the injection of domain-specific actions to a given metamodel.

The role of Mélange in this context is to facilitate the integration of metamodels with

domain specific actions. To do so, Mélange provides meta-language to enable the descrip-

tion in-the-large of the specification artifacts of a given DSL. Hence, in a Mélange script,

a language designer can reference a metamodel, inject it some aspects, and perform the

weaving process to obtain a complete and executable DSL. In the remainder of this section,

we explain how to use those elements though a set of simple examples.

1EMF website: https://eclipse.org/modeling/emf/
2K3 website: https://github.com/diverse-project/k3
3Mélange website: http://melange-lang.org/

97

https://eclipse.org/modeling/emf/
https://github.com/diverse-project/k3
http://melange-lang.org/

7. IMPLEMENTATION: THE PUZZLE TOOLKIT

Defining aspects in K3. The very first consideration to keep in mind about K3 is that it

is the evolution of Kermeta. Kermeta is a language workbench that provide the notion of

aspect for specifying operational semantics, and an action language for implementing those

semantics. The difference of K3 with respect to the last versions of Kermeta is that K3 does

not provide an action language. Rather, it uses Xtend4 for the definition of semantics, and

provides the functionality needed to encapsulate Xtend methods in aspects that can be later

weaved in metamodels.

Consider the metamodel introduced at the top of Figure 7.1. It contains two classes X,

and Y; The class X contains elements of type Y by means of the containment relation yes.

In turn, the code snippet at the bottom of Figure 7.1 introduces some operational semantics

to this metamodel by using K3. Note that the main feature of K3 is the notion of aspect

that permits to weave the operational semantics defined in a Xtend class to a metamodel

defined in Ecore.

Abstract syntax

Semantics

X Y

0..*

yes

@Aspect(className=X)

class XAspect{

 def void eval(){

 println(“Evaluating X”)

 _self.yes.forEach[y|y.eval()]

 }

}

@Aspect(className=Y)

class YAspect{

 def void eval(){

 println(“Evaluating Y”) }

}

Figure 7.1: Simple example of aspects in K3

In our example, the metaclass X is enriched with the operation eval() that contains a

loop that sequentially invokes the operation defined for the class Y. This operation is also

defined by using one aspect; in this case extending the metaclass Y. Note that the language

designer is free to name the aspects as he/she considers correct. In this example, we use the

convention <<metaclass.name>>+Aspect.

Because K3 is implemented on the top of the EMF, it is possible to use it in junction

with tools such as xText [145] or Sirius [146] for generating textual or graphical editors.

4Xtend website: https://eclipse.org/xtend/

98

https://eclipse.org/xtend/

7.2. Capabilities of Puzzle

As a result, we can completely construct DSLs by using this framework: abstract syntax

with metamodels in Ecore, semantics with K3, and concrete syntax with editors genera-

tors. However, as we mentioned in the definition of the scientific scope of this thesis, our

approach for modularization and variability management does not cover this dimension of

the specification of a DSL.

Integrating abstract syntax and semantics with Mélange. Let us now to illustrate

the integration of a metamodel written in Ecore with the aspects specified in K3. We use

Mélange with that purpose as illustrated in Listing. 7.1. To do so, we first define the lan-

guage itself through the keyword language. In the example, we define a language called

“Example” for which the abstract syntax is defined in a metamodel called example.ecore

through the keyword syntax, line 4. Then, we enhance that metamodel with the two

aspects defined in K3 in Fig. 7.1 through the keyword with, lines 6 and 7.

Note also that Mélange provides the expressiveness to execute a model conforming to the

defined language. To this end, Mélange provides the keyword transformation; lines

10-14 exemplify its use on our simple example. The transformation loads a model located

in the file toy.example, locates the head element (that should by an instance of X since it is

the root of the containment tree of the metamodel) and calls the method eval() defined

in the XAspect.

Listing 7.1: Example for the use of Melange to integrate metamodels and aspects

1 package SimpleExample

2

3 language Example{

4 syntax "platform:/resource/example/models/example.ecore"

5

6 with fr.inria.diverse.examples.XAspect

7 with fr.inria.diverse.examples.YAspect

8 }

9

10 transformation executeExample{

11 var m = SimpleExample.load("toy.example")

12 var rootX = m.head as X

13 rootX.eval()

14 }

7.2 Capabilities of Puzzle

In this section, we describe the capabilities provided by Puzzle to support language product

lines engineering, and show how those capabilities can be used in concrete scenarios. As the

same as our contributions, those capabilities can be classified into two different types. First,

those supporting top-down language product lines engineering; second, those supporting

bottom-up language product lines engineering.

99

7. IMPLEMENTATION: THE PUZZLE TOOLKIT

7.2.1 Capabilities to Support Top-Down Language Product Lines

Let us start our description of the capabilities of Puzzle by introducing the support that

it provides for the construction of top-down language product lines. Puzzle supports the

meta-language extensions introduced in Section 5.1, Chapter 5 for the definition of modular

DSLs and the expression of variability models for both abstract syntax and semantics.

Modular Specification of DSLs

The first aim of Puzzle is to provide a language modularization approach that supports all

the language modularization scenarios while addressing three well known software modu-

larization principles i.e., independent development, information hiding, and substitutability.

To do so, we need to enable the definition of language modules with required and provided

interfaces. Besides, we need to provide a mechanism to enable the binding between two

language modules in order to perform compatibility checking and composition.

Support for required interfaces in Puzzle. As deeply explained in Section 5.1.1, the

definition of a required interface corresponds to the definition of virtual elements within

a language module. To support such definitions, Puzzle introduces some modularization

annotations on Ecore metamodels. For the concrete case of required interface, we introduce

the annotation @Required. By default, a specification is non-virtual –the flag “virtual”

is set in false–; a specification element annotated with @Required becomes virtual –the

flag “virtual” is set to true– and the element is included to the required interface.

Fig. 7.2 illustrates the use of the @Required annotation through the example on state

machines (see Fig. 5.2). The example is composed of an Ecore file (at the top of the figure)

and a semantics specification (at the bottom of the figure). In the metamodel, the meta-

class Constraint is virtual so it is annotated with @Required as well as the eval()

operation. It means that the required interface includes not only abstract syntax elements,

but also semantic ones. The definition of the eval() operation in the required interface

permits its use in the definition of the semantics of the state machines language.

Support for provided interfaces in Puzzle. The definition of provided interfaces corre-

sponds to explicitly indicate if the specification elements of a language module are either

public or private. To support such a capability, we introduce the @Private annotation.

By default, all the specification elements are defined as public so they belong the provided

interface. If a specification element is annotated with @Private, then its visibility is set

to private and it is removed from the provided interface.

Fig. 7.3 shows the definition in Puzzle for the language module to express constraints. In

that case, we decided to hide all the specification elements of the module except Program

and Constraint because, as explained before, one might consider that they represent

the functionality of the language module. All the other specification elements are annotated

with @Private and they will not appear in the provided interface of the language module.

100

7.2. Capabilities of Puzzle

Figure 7.2: Example of required interfaces in Puzzle

101

7. IMPLEMENTATION: THE PUZZLE TOOLKIT

Figure 7.3: Example of provided interfaces in Puzzle

102

7.2. Capabilities of Puzzle

Expressing bindings between language modules. So far, we used required and pro-

vided interfaces in the definition of two language modules i.e., one for state machines and

another one for constraints. Those modules have a dependency between them: the module

for state machines uses some constraints to express guards in the transitions. But... how to

define the binding between those modules and perform the corresponding composition?

Note that the binding between two language modules is not defined at the level the mod-

ules themselves but at the level of their interfaces. In other words, we do not bind a re-

quiring language module with a providing one, but a required interface to with provided

one. We also need to consider that those interfaces should be expressed in terms of model

types; currently they are just expressed as annotations in the metamodel. Hence, as a first

step we extract the required/provided interfaces from the meta-models by analyzing the an-

notations; Puzzle provides a service that is able to do this automatically, thus creating the

corresponding model types by extracting the elements annotated with @Required and

@Private respectively. Once we have the model types corresponding to each interface of

language modules, we can proceed to use Mélange to index all these specification artifacts

as shown in Listing 7.2.

Listing 7.2: Example for the use of Melange to integrate metamodels and aspects

1 package SimpleFSM

2

3 language CoreFSM requires RequiredFSM{

4 syntax "platform:/resource/fsm/models/fsm.ecore"

5

6 with fr.inria.diverse.fsm.StateMachineAspect

7 with fr.inria.diverse.fsm.StateAspect

8 with fr.inria.diverse.fsm.TransitionAspect

9 ...

10 }

11

12 modeltype RequiredFSM{

13 syntax "platform:/resource/fsm/models/fsm-req.ecore"

14 }

15

16 language Constraints implements ProvidedConstraints{

17 syntax "platform:/resource/constraints/models/const.ecore"

18

19 with fr.inria.diverse.constraints.ConstraintAspect

20 with fr.inria.diverse.constraints.StmtBlockAspect

21 with fr.inria.diverse.constraints.BooleanExpressionAspect

22 ...

23 }

24

25 modeltype ProvidedConstraints{

26 syntax "platform:/resource/constraints/models/const-prov.ecore"

27 }

103

7. IMPLEMENTATION: THE PUZZLE TOOLKIT

In this Mélange script, each interface is defined by the keyword modeltype that refer-

ences an Ecore file that contains its definition. Besides, the requiring module –in this case,

the CoreFSM module defined in lines 3-10– references its required interface through the

keyword requires. In turn, the providing module –in this case the Constraints module

defined in lines 16-23– references its provided interface through the keyword implements.

The binding between those interfaces is the verification of the subtyping relationship among

them. If such a relationship is respected, then the modules are compatible i.e., the services

of the provided interface fulfill (at least partially) the needs of the required one, and the

composition can be performed.

Expression of Language Variability Models and Configuration

The expression of the variability existing in a language product line is performed via a

dedicated metamodel that offers the expressiveness enough to define not only the feature

models representing the abstract syntax variability, but also the orthogonal variability model

to represent semantic variability and the mapping among these dimensions.

Fig. 7.4 shows how the editor looks like for the example of the state machines. One of the

most important characteristics of this editor is that it allows the configuration of a particular

DSL. Each feature and variability point can be selected or deselected in the model. Once

the configuration is finished, then language designers can use the a menu option to launch a

generation process that will produce a Melange script describing the involved module and

the corresponding aspects. Then, this script can be used to perform the composition and

obtain the DSL.

Figure 7.4: Variability management in Puzzle

104

7.2. Capabilities of Puzzle

7.2.2 Capabilities to Support Bottom-Up Language Product Lines

In this section, we present the capabilities provided by Puzzle to support bottom-up lan-

guage product lines. Concretely, Puzzle offers a set of facilities for the analysis of a set of

existing DSL variants and the subsequent reverse-engineering process that permit to extract

a language product line from the commonalities and particularities existing among them.

The very first activity we need to perform in the analysis of a given set of DSLs is the

identification of their commonalities. As explained in Chapter ??, our definition of com-

monalities is based on the notion of specification clones. Then, we need to start by detecting

the specification clones in a set of DSL variants. Once those clones are detected, Puzzle

provides a mechanism to visualize and quantify those clones. The idea is to provide a set of

metrics that allow language designers deciding if there is potential reuse enough to justify

a reverse-engineering process. If so, Puzzle offers an automatic process to extract the speci-

fication clones in the form of reusable language modules. Besides, both commonalities and

particularities are captured by synthesizing variability models. The reminder of this section

is dedicated to illustrate each of the aforementioned capabilities.

Detection of Specification Clones

In order to enable detection of specification clones, Puzzle provides a set of comparison

operators. These operators take into account not only the names of the constructs, but also

the inter-constructs relationships and their semantics. The objective of those operators, is

to find out all these segments in the specification that have been introduced through the

copy&paste practice. The definition of the composition operators is deeply explained in

Section 6.2. However, at implementation level, Puzzle is flexible enough to permit the defi-

nition of new comparison operators. Hence, the detection strategy can be easily improved

or adapted to particular contexts.

Once those clones are detected, Puzzle permits to visualize them in the form of a Venn

diagram. Using these diagrams, language designers can have an idea about the existing

commonalities among the involved DSLs. Fig. 7.5 shows the Venn diagrams generated

by Puzzle for the case of the example of state machines. It detects specification clones

between UML state machines, Rhapsody, and Harel’s state machines and at the level of

abstract syntax and semantics. The reader can also see a video5 that shows the process.

Quantification of Potential Reuse

Visualizing specification clones in terms of Venn diagrams can be useful to get a prelimi-

nary idea on the potential reuse existing among a set of DSL variants. However, language

designers might need further information to decide if such a potential reuse is enough to

justify a reverse-engineering process. To address this issue, Puzzle comes out with a set of

5Video: Detection of specification clones: https://www.youtube.com/watch?v=uN0tb9TYuyQ

105

https://www.youtube.com/watch?v=uN0tb9TYuyQ

7. IMPLEMENTATION: THE PUZZLE TOOLKIT

Figure 7.5: Venn diagrams provided by Puzzle for visualizing specification clones

metrics (illustrated in Fig. 7.6 and inspired in [147]) to quantify the potential reuse emerg-

ing from the existing specification clones. Those metrics are briefly described below. The

objective is to provide a mechanism that allows language designers to estimate (in an objec-

tive fashion) the benefit of a reverse engineering process intended to remove specification

clones in a given set of DSL variants.

Note that all the metrics are presented in the form of charts implemented as HTML

reports that can be easily shared and published.

(1) Size of Commonality (SoC): The SoC metric measures the amount of specification

elements that are common to all the given DSLs. These specification elements are

also known as the core of the involved DSLs in the sense that, if we synthesize a

language product line, these concepts will be present in all the configurations.

(2) Product-Related Reusability (PRRi): The PRRi metric measures the percentage

of common elements of each DSL with respect the core. It provides an idea on how

similar is the DSL with respect to the core of the DSLs.

106

7.2. Capabilities of Puzzle

Size of Commonality
(SoC)

Product Related Reusability
(PRRi)

Individualization Ratio
(IRi)

Pair-wise Relationship Ratio
(PWRR(I,j))

i

j

i i

Figure 7.6: Metrics for quantification of potential reuse

(3) Individualization Ratio (IRi): The IRi metric measures the percentage of speci-

fication clones of each DSL with respect the rest of the DSLs. In other words, it

shows for each product the amount of constructs/methods that are included in at least

another DSL.

(4) Pairwise Relationship Ratio (PWRR(i,j)): The PWRR(i,j) metric measures the per-

centage of common elements of each DSL with each of the other DSLs. Concretely,

it shows, for each DSL, the amount of constructs/methods that are included each of

the other DSL.

We provide a video6 that shows the manner in which Puzzle computes and deploys the

results of the quantification process described above.

The Reverse-Engineering Process

Once the specification clones existing in a set of DSLs are detected and quantified, then

we can proceed to the reverse engineering process that ends up in a language product line.

As deeply explained in Section 6.1, this process starts with the recovering of a language

modular design, and finishes with the synthesis of the corresponding variability models.

The support that Puzzle provides to this reverse engineering process is illustrated in

video7. At the end of this process, the language designer will have a result as the one

presented in the screen-shot introduced in Fig. 7.7. On one hand, the Puzzle creates a

visual diagram representing the extracted language modules. Besides, the languages are

actually broken down in several projects that can be viewed in the Project Explorer view.

The corresponding variability models are generated as part of the process as well.

6Video: Quantification of spec. clones: https://www.youtube.com/watch?v=yfkwrxk uF8
7Video: Extraction of language modules: https://www.youtube.com/watch?v=sqF2NQMbGxY

107

https://www.youtube.com/watch?v=yfkwrxk_uF8
https://www.youtube.com/watch?v=sqF2NQMbGxY

7. IMPLEMENTATION: THE PUZZLE TOOLKIT

Figure 7.7: Metrics for quantification of potential reuse

7.3 Architecture

Let us close this implementation chapter with a brief description of the architecture we

designed for Puzzle. It is composed of two parts illustrated in Fig. 7.8: the infrastructure

and the superstructure. The infrastructure is a set of plug-ins that enable the specification

of DSLs according to the technological space that we target in this thesis. Notably, the

Puzzle’s infrastructure is composed of EMF, Xtend, K3, and Melange. In turn, the super-

structure is a set of plug-ins that provides analysis and reverse-engineering techniques on

the DSLs specified on top of the infrastructure.

The plug-ins of the Puzzle’s superstructure can be divided into seven categories accord-

ing to their functionalities: core, composition, language architecture, language variabil-

ity, comparison, metrics, and reverse-engineering. Each of those categories are briefly

explained below:

(1) Ui. The plug-ins in this category implement the menu options and editor facilities

provided by Puzzle to facilitate the interaction with language designers.

(2) Composition. These plug-ins implement the composition functionality for language

modules. This functionality includes the different strategies for matching and merg-

ing of both abstract syntax and semantics.

(3) Language architecture. These plug-ins implement the metamodel and correspond-

ing editors for the description of a set of language modules and the dependencies

among them.

108

7.4. Summary

Eclipse Modeling Framework (EMF)

Jccd

Xtend

K3

Melange

Puzzle

Infrastructure Superstructure

U
i

C
o

m
p

o
si

ti
o

n

A
rc

h
it

ec
tu

re

La
n

g
u

ag
e

V
ar

ia
b

ili
ty

La

n
g

u
ag

e

C
o

m
p

ar
is

o
n

M
et

ri
cs

R
ev

er
se

-
E

n
g

in
ee

ri
n

g

Figure 7.8: Software architecture of Puzzle

(4) Language variability. These plug-ins implement the metamodel and corresponding

editors for the description of language variability models i.e., feature models for

abstract syntax variability and orthogonal variability models for semantic variability.

(5) Comparison. Comparison plug-ins implement the comparison operators needed to

detect specification clones at the level of abstract syntax and semantics (for the case

of comparison of semantics, Puzzle uses JCCD [141].

(6) Metrics. The metrics plug-ins compute a set of metrics for the detected specification

clones and present the results as a set of HTML reports that display those metrics in

the form of charts.

(7) Reverse-engineering. The reverse-engineering plug-ins implement the algorithms

that extract reusable language modules from the detected specification clones.

7.4 Summary

This chapter presented Puzzle, a tool that implements all the ideas introduced in the con-

tribution of this thesis. Along the chapter, we introduced K3 and Mélange, which used

together constitute a language workbench for specification of executable DSLs. Then, we

show how we extended this language workbench to support language product lines engi-

neering.

109

Chapter 8

Validation: Case Studies

In this chapter, we present the validation of this thesis. To this end, we introduce three case

studies that show the applicability of our ideas in concrete scenarios. Fig. 8.1 shows an

overview of these case studies with respect to the contributions of the thesis; there are two

case studies intended to validate our contributions on top-down language product lines, and

one case study doing the proper for our contributions on bottom-up language product lines.

Figure 8.1: Modules for the UML case study

111

8. VALIDATION: CASE STUDIES

To validate our contributions on top-down language product lines, we start by validating

our languages modularization approach since we consider that it is the backbone of the

contribution. This validation is based on revisiting the modularization of UML. In other

words, we will show that our language modularization approach is expressive enough to

support the modular design used in the specification of UML. Afterwards, we present a case

study that focus not only in modularization but also in variability management. This case

study corresponds to a language product line for different versions of a basic programming

language that can be used for teaching purposes.

To validate our contributions on bottom-up language product lines, we use the case study

of the state machines that we have used all along this thesis as illustrative example. As a

matter of fact, this case study comes from an industrial context. It is one of the motivations

of the VaryMDE project, a bilateral collaboration between Thales and INRIA.

8.1 Revisiting the Modular Design of UML

8.1.1 Problem: UML is a Composition of Several “Language Units”

The objective of this first case study is to show the applicability of our language modular-

ization approach in a complex scenario. To this end, we revisit the case of UML, which

specification is a divided into different language modules (they use the term language units).

Each module contains the specification of a type of diagram (e.g., use cases, classes, and

deployments). Indeed, the UML specification starts with the following statement:

“The modeling concepts of UML are grouped into language units. A language unit

consists of a collection of tightly- coupled modeling concepts that provide users with the

power to represent aspects of the system under study according to a particular paradigm

or formalism. For example, the State Machines language unit enables modelers to specify

discrete event-driven behavior using a variant of the well-known statecharts formalism,

while the Activities language unit provides for modeling behavior based on a

workflow-like paradigm.”

To validate our approach, we implement the UML specification while respecting its mod-

ular design. We want to check whether the complex dependencies among the different types

of UML diagrams can be expressed through our approach.

8.1.2 Solution: Language Interfaces

Fig. 8.2 introduces a diagram that shows the language modules of UML and the depen-

dencies among them. To implement the case study, the each module has been specified in

an Ecore model and the dependencies among them are expressed through the required and

provided interfaces defined by our approach. The remainder of this section is dedicated to

report on the results that we obtained. However, explaining the entire case study be too long.

112

8.1. Revisiting the Modular Design of UML

Hence, we chose two language modules i.e., Classes and Deplyments that we consider as

representative and we explain them in detail.

Figure 8.2: Modules for the UML case study

Classes vs. Deployments. Fig. 8.3 shows the abstract syntax specification for two

language modules UML: Classes and Deployments. The first one offers the functionality to

express class diagrams whereas the second one does the proper for deployment components.

Note that the Classes module provides a number of abstractions that result useful for other

modules including the Deployments one that uses and extends several of those abstractions.

For example, The meta-class called Artifact uses the meta-classes Operation and Property

113

8. VALIDATION: CASE STUDIES

Figure 8.3: Modules for the UML case study

as part of its specification. Besides, the Artifact meta-class is a sub-class of the Classifier

and NamedElement meta-classes.

This is probably one of the most important learned lessons that we got from this case

study. We can find more than one modularization scenario in the interaction of two lan-

guage modules: the meta-class Artifact uses (by aggregation) the meta-classes Operation

and Property and, at the same time, extends the meta-classes Classifier and NamedElement.

Another interesting situation is the case of the meta-class called Property which is ex-

tended through a new super-class. That means that in languages modularization, the open-

class approach should permit not only the injection of new properties and operations but

also new super-types. Thanks to the composition algorithm we use and the notion of re-

114

8.2. Logo for Progressive Programming Learning

quired interface that permits to have non virtual specification elements within virtual meta-

classes, we can support such requirement.

The most challenging issue that we addressed during the implementation of the case

study corresponds to the definition of the provided interfaces for the language modules. It is

difficult to realize what are the specification elements that represent the core functionality of

a language module versus the ones that correspond to implementation details. Indeed, one

of the problems we faced to this definition is that the requirements of the language modules

are already defined. Hence, we are afraid that the definition of the provided interface is

biased. More than the elements that represent core functionality of each language module,

we tended to include those that are used by other modules.

We claim that, as the same as in the general case of software architecture, there is still

room to the definition of correct methodologies that provide insights to guide the design

of both provided and required interfaces. For the case of provided interfaces, we need to

establish what is the meaning of ”representing functionality” and evaluating the risk of

evolution of each of the specification elements. For the case of the required interfaces, we

need to have mechanisms that allow us to identify the more general abstractions required

by a certain language module in order to increase the number of language modules that can

fulfill those abstractions.

The source code of this case study can be found on GitHub1.

8.2 Logo for Progressive Programming Learning

The objective of this case study is to show the applicability of our contributions on top-

down language product lines in a specific domain with well-defined needs. To this end, we

chose a case study on education in computer science, which has been inspired by previous

works in the literature [95, 10]. It focuses on the definition of several DSL variants to

facilitate progressive learning of programming skills.

The main principle is to define a set of incremental learning levels for a group of students,

and support each level with a dedicated language variant, which contains only the constructs

that the students will learn during the level. Once the students master all the constructs in

a given level, they can upgrade to the next one. It will be supported by a new language

variant including the new constructs that constitute the next learning challenge.

Note that the notion of progressive learning is not necessary restricted to the existence of

different DSL variants. Contrariwise, it can be achieved by using only one version of the

programming language containing all the constructs that the students will learn along the

entire learning process. In such a case, each learning level is dedicated to explain a subset

of those constructs and students are asked to omit the other ones.

The problem with this approach is that students are exposed to many constructs at the

1https://github.com/damende/puzzle/tree/master/examples/uml

115

https://github.com/damende/puzzle/tree/master/examples/uml

8. VALIDATION: CASE STUDIES

same time in the programming tooling (i.e., editors) even if they are learning just a subset

of those constructs. This increases the cognitive load for the students making more difficult

the learning process [95]. Ideally, each level should be supported with a dedicated tool

containing only the constructs for each level [95].

8.2.1 Problem’s Description: Learning Sequences and DSL Variants

A learning sequence is an ”ordering of the learning space’s concepts into linear sequences

in which those concepts could be learned” [148]. In the context of programming learning,

a learning sequence can be concertized as an ordered set of learning levels, each of which

contains a well-defined set of programming skills. Once the student achieve the program-

ming skills defined in a given level, then he/she is permitted to advance to the next one.

The design of a learning sequence is responsibility of the teacher and it might vary and/or

evolve depending of different factors such as the profile of the students [149].

As aforementioned, the notion of DSL variants can be used to support the design and

implementation of learning sequences of programming skills [10]. Each learning level

introduces a subset of language constructs that the student should learn, so each level can

be supported by a specific DSL variant including those concepts. However, this idea might

restrict the flexibility of the teachers to modify their learning sequences. The evolution of

the learning sequence might imply the construction of new DSL variants supporting the

changes in the levels. For example, if a teacher decides to move a topic from one level to

another, then the DSL variant should be modified to remove the constructs that should be

added to the DSL variant of the next level.

There work presented by Cazzola et al. [95] proposes a definition to this problem. In

particular, the authors provide a language product line that supports the construction of

the tool support for the learning sequences. The language variant supporting each learning

level is produced by configuring and assembling a product in the language product line.

Fig. 8.4 illustrates this idea. In the figure, there are three incremental learning levels; each

level is supported by the DSL variant resulting of a given configuration. Note that the

configurations are incremental; level 2 includes more language features than level 1, and

level 3 introduces more language features than level 2.

When using language product lines for supporting the design and implementation of

learning sequences, teachers have more flexibility to define and modify the learning levels

since the tool support can be easily prototyped.

8.2.2 Solution: A Top-Down Language Product Line

Once we have explained the motivation of the case study, we proceed to explain how to ap-

ply our approach on top-down language product line to solve the problem. In particular, we

will use the meta-language facilitates introduced in Section 5.1 in junction with the method-

ology proposed in Section 5.2 to build a language product line that supports incremental

116

8.2. Logo for Progressive Programming Learning

Figure 8.4: Learning Sequences and DSL Variants

Figure 8.5: Domain model for the Logo case study

programming learning. In this case study, we will use Logo as programming language.

This language has been largely used during the last decades to teach programming skills to

high-school students.

Structuring the domain knowledge. According to our methodology for the construc-

tion of top-down language product lines, the first step is to structure the domain knowledge.

In this case, we want to represent all the language constructs that the students will have to

learn along the entire learning process. To this end, we use a class diagram which is intro-

duced in Fig. 8.5. This class diagram corresponds to a complete Logo language including

not only the typical movement primitives (i.e., forward, back, left), but also imperative

programming concepts such as variables, procedures, control structures, and binary expres-

sions. At the end of the learning process, students are intended to master not only the

basic primitives, but also these imperative programming constructs that will facilitate the

comprehension of more sophisticated programming languages such as Java or C++.

Identifying syntax variability. Once we have structure the domain knowledge in a

class diagram, we need to understand what are the optional and mandatory concepts of the

117

8. VALIDATION: CASE STUDIES

language. This allows us to identify the minimal set of constructs that a DSL variant for

Logo must own in order to be fully executable. In the particular case of this case study, this

minimal set of constructs can be considered as the constructs introduced in the very first

level of the learning sequence.

In Logo, the minimal set of constructs corresponds to the basic movement primitives and

literals. Using those constructs, students will be able to draw simple geometric forms. All

the other constructs (marked with (?) in the Fig. 8.5) are optional and the order in which

they will be learned by the students will depend on the definition of the learning sequence

proposed by the teacher.

Identifying language modules. Let us now to find out a good modular design for the

language product line. That means, to find an accurate way of grouping the language

constructs of Logo that facilitates the definition of learning sequences.

In order to achieve this modular design, we have the cluster analysis provided in Section

5.2. That means that we can use a hierarchical domain analysis based on the cohesion of

the constructs to identify clusters of language constructs that can go well together in the

same module. In doing so, our hypothesis is that the hierarchical domain analysis based

on cohesion will suggest clusters of language constructs that we can easily teach to the

students in the same level.

Fig. 8.6 presents the results of applying hierarchical domain analysis on the domain

model for the Logo language introduced in Fig. 8.5. These results are quite promising;

we can identify certain subsets that, intuitively, can be learned together in a programming

course. For example, we have the a first cluster grouping all the basic movement primitives.

Similarly, we can see that literals appear to be located in another module as well as control

structures and procedures. Indeed, we realize that this grouping fits many of the classical

learning sequences that we can find in programming courses. The course starts with simple

concepts such as console printing instructions, then the introduction of procedures, and

then some control structures.

Build variability models. The resulting variability model after applying our algorithm

is presented in Fig. 8.7. Such a model contains one feature by each module identified in the

last step. There is a mandatory feature including the basic movement primitives. Similarly,

there is a mandatory feature representing literals. This is the minimum set of constructs

that should be included to obtain a fully executable logo language. The other features are

optional. The selection of those features will respond to a configuration process associated

to the design of the learning sequence. For example, a possible learning sequence might

include the notion of procedures before including control structures. Because this case

study does not include semantic variability, there is no orthogonal variability model.

The source code of this case study can be found on GitHub2.

2https://github.com/damende/puzzle/tree/master/examples/logo

118

https://github.com/damende/puzzle/tree/master/examples/logo

8.2. Logo for Progressive Programming Learning

•  Integer

•  Literal

•  Void

•  Double

•  String

•  Boolean

•  Forward

•  Primitive

•  Left

•  BinaryExpr

•  Expression

•  Back

•  Right

•  ArithmeticExpr

•  BooleanExpr

•  While

•  Block

•  If

•  ControlStructure

•  ProcedureCall
•  Procedure

•  Instruction

•  LogoProgram

•  Assignation

•  VarReference

•  VarDecl

Figure 8.6: Venn diagram for the hierarchical domain analysis for logo

Figure 8.7: Features model for the variability of the Logo case study

119

8. VALIDATION: CASE STUDIES

8.3 Reverse-Engineering a Language Product Line for FSMs

The objective of our third case study is to show the applicability of our contributions on

bottom-up language product lines in a set of DSL variants. To this end, we use as case

study the set of DSL variants for finite state machines. Although we already use this case

study as running example to illustrate the ideas of this thesis. It is quite complex and rich so

we decided to re-use it in the validation of this thesis. In addition, it is inspired from a real

industrial problem that we obtain from ou collaboration to Thales Research & Technology

along the VaryMDE project.

This case study is inspired from the analysis of variability on languages for finite state

machines provided by Crane et al. [59], and it is composed of three different DSLs: UML

state diagrams, Rhapsody, and Harel’s state charts. As aforementioned, these DSLs have

some commonalities since they are intended to express the same formalism. According to

the development scenario we address in this thesis –i.e., bottom-up language product lines

where the DSL variants were built through the clone-and-own approach–, these commonal-

ities will be materialized as clones in the DSL specifications. In this section, we summarize

both commonalities and differences existing in the case study. Then, we apply our approach

and we present the obtained results.

8.3.1 Problem Description: Several Formalisms for FSMs

Generally speaking, state machines are graphs where nodes represent states and arcs rep-

resent transitions between the states [150]. The execution of a state machine is performed

in a sequence of steps each of which receives a set of events that the state machine should

react to. The reaction of a machine to set of events can be understood as a passage from

an initial configuration (ti) to a final configuration (t f). A configuration is the set of active

states in the machine.

The relationship between the state machine and the arriving events is materialized at the

level of the transitions. Each transition is associated to one or more events (also called

triggers). When an event arrives, the state machine fires the transitions outgoing from the

states in the current configuration whose trigger matches with the event. As a result, the

source state of each fired transition is deactivated whereas the corresponding target state is

activated. Optionally, guards might be defined on the transitions. A transition is fired if and

only if the evaluation of the guard returns true at the moment of the trigger arrival.

The initial configuration of the state machine is given by a set of initial pseudostates.

Transitions outgoing from initial pseudosates are fired automatically when the state ma-

chine is initialized. In turn, the execution of a state machine continues until the current

configuration is composed only by final states (an special type of states without outgoing

transitions).

Figure 8.8 illustrates the aforementioned behavior with a simple state machine. It is

composed of the states S1, S2, and S3. The state S1 is the entry point of the state machine.

120

8.3. Reverse-Engineering a Language Product Line for FSMs

Figure 8.8: Example of a simple state machine and its execution

This is expressed by means of the initial pseudosate (the filled circle) containing a transition

towards S1.When the event e1 arrives, the state machine evaluates the guard g1 and, if the

evaluation returns true, the transition T12 is fired. Then, the state S1 is deactivated and the

state S2 is activated. In the second step, event e2 arrives and the final state S3 is activated

after firing the transition T23.

Regions. All of the DSLs for expressing state machines that conform our family support

the notion of region. A state machine might be divided in several regions that are executed

concurrently. Each region might have its own initial and final (pseudo)states. Figure 8.9

illustrates a state machine with two regions. Note that each region of the state machine

contains its proper initial pseudostate.

Actions. Note that a state machine has some additional capabilities with respect to the

ones introduced so far. States can define entry/do/exit actions. Similarly, transitions can

have some effects. States’ actions and transitions’ effects are intended to interact with the

environment of the state machine. The environment is a mapping that associates variables

with values.

121

8. VALIDATION: CASE STUDIES

Figure 8.9: Example of a simple state machine with two regions

Abstract Syntax Variability

Let us introduce the syntactic variation points present in the family of DSLs for state ma-

chines. These semantic variation points are presented by showing the constructs available

in the language and their availability in each of the involved DSLs

Triggers: disjunction, conjunction, and negation. The first syntactic variation point of

this case study refers to the relationship between triggers and transitions. As we said earlier,

a transition T is associated to certain event e. T is fired when e is dispatched. This relation

can be more complex, however. The transition T can be associated to the negation of an

event i.e., not e. As a result, it will be fired in every step where its target state belongs to the

current configuration and the associated event does not arrive. Moreover, DSLs for state

machine languages often offer the capability of associating multiple events to a transition

combined through classical logical operators such as OR and AND.

In terms of triggers combination, Rhapsody is the more restrictive DSL where transition

can be only associated to one event. Conversely, in UML a transition can be triggered by

several events associated to the AND logical operator. In Harel’s state charts are even more

expressive and allow conjunction and negation of events.

Pseudostates: Pseudo-states are special types of states that allow the expression of com-

pound transitions. For example, as illustrated in Fig. ?? the pseudo-state Fork enables the

bifurcation of a transition so different states can be executed in parallel. Similarly, the pseu-

dostate Join enables the unification of two transitions outgoing from concurrent states.

There are other types of pseudostates such as the history ones that stores a reference to the

last sub-state executed in a composite state. Conditional pseudostates are also available en-

abling different execution paths for the state machine according to the value of the variables

in the environment.

Formalisms configuration: There are certain differences in the DSLs regarding the pseu-

dostates they support. All the tree DSLs offer the initial pseudo-states, as well as fork, join,

junction and deep history. Shallow history is only supported by UML and Harel’s state

122

8.3. Reverse-Engineering a Language Product Line for FSMs

!

!

Language

vs.

Construct S
ta

te
M

a
ch

in
e

R
eg

io
n

A
b

st
ra

ct
S

ta
te

S
ta

te

T
ra

n
si

ti
o

n

T
ri

g
g

er

N
o

tT
ri

g
g

er

A
n

d
T

ri
g

g
er

O
rT

ri
g

g
er

P
se

u
d

o
st

a
te

In
it

ia
lS

ta
te

F
o

rk

Jo
in

D
ee

p
H

is
to

ry

S
h

a
ll

o
w

H
is

to
ry

Ju
n

ct
io

n

C
o

n
d

it
io

n
a

l

C
h

o
ic

e

F
in

a
lS

ta
te

C
o

n
st

ra
in

t

S
ta

te
m

en
t

P
ro

g
ra

m

N
a

m
ed

E
le

m
en

t

T
o

ta
l

UML ! ! ! ! ! ! - ! - ! ! ! ! ! ! ! - ! ! ! ! ! ! 20

Rhapsody ! ! ! ! ! ! - - - ! ! ! ! - ! ! ! - ! ! ! ! ! 18

Harel ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! - ! ! ! ! ! 22

!

! Figure 8.10: Diversity of constructs provided by the DSLs for state machines

machines. A particular pseudo-state for representing dynamic choice is offered by UML.

Static choice is supported by Rhapsody and Harel’s state charts.

Summay. Figure 8.10 summarizes the discussion presented above by indicating the

language constructs provided by each DSL.

Semantic Variability

The reminder of this section presents the semantic variation points existing in our family of

DSLs for state machines.

Events dispatching policy: The first semantic difference in the semantics of state ma-

chines refers to the way in which events are consumed by the state machine. In a first

interpretation, simultaneous events are supported whereas in a second interpretation the

state machine follows the principle of run to completion. Let us discuss each scenario.

• Simultaneous events: There are DSLs for state machines that support this capability

so a step consumes a subset of the events where the size of the subset can be greater

than one and attends all of them at the same time. For example, consider the state

machine presented in Fig. 8.11. In that case, the events e1 e3 arrive at the same time

in the step 1 and they are attended simultaneously. As a result, the configuration of

the machine after that step is S2, S5.

• Run-to-completion: A different interpretation of this variation point is to comply

to the run to completion policy. That means that the state machine is able only of

supporting one event by time and it cannot consume another one until de execution

of the current event is completed. For example, consider the state machine presented

in Fig. 8.11. Differently from the later case, in this one the events e1 e3 that arrive

at the same time in the step 1 are attended one by one. As a result, the configuration

of the machine after that step is S2, S4 and an automatic additional step is dispatched

then. After that second step, the configuration of the machine is S2, S5.

Note that in the example we presented for the sequential events interpretation, we show

that the state machine executes the events in a given order that corresponds to the order

in which the events are listed. However, it is important to clarify that it is not always like

that. In fact, there is no notion of order in the consumption of events that arrive in the same

123

8. VALIDATION: CASE STUDIES

Figure 8.11: Difference between simultaneous events and run to completion

step. This fact has been identified as a potential semantic variation point for state machines.

However, it is out of the scope of this document.

DSLs configuration: The semantics of UML and Rhapsody fit the run to completion

policy for events dispatching whereas Harel’s statecharts support simultaneous events.

Execution order of transitions’ effects: It is possible to define actions on the transitions

that will affect the execution environment where transitions are fired. These actions are

usually known as transitions effects. All the DSLs for state machines support the expression

of such effects. However, there are certain differences regarding their execution.

• Effects executed sequentially: The first and most common way of executing the

effects of a transition is by following the order in which they are defined. This is

due to the fact that transitions effects are usually defined by means of imperative

action script languages where the order of the instructions is intrinsic. Under this

interpretation, once the event e0 is dispatched, the state machine in Fig. 8.12 moves

from state S1 to the state S3. This is because the value of the variable y depends on

the value of x that has been previously modified in a precedent instruction.

• Effects executed in parallel: The second interpretation to the execution of transi-

tions’ effect is to execute them in parallel. In other words, the effects are defined as

a set of instructions that will be executed at the same time so no assumptions should

be made with respect to the execution order. Under this interpretation, once the event

e0 is dispatched, the state machine in Fig. 8.12 moves from the state S1 to the state

S2 Although the value of y depends on the value of x, the instructions are executed

124

8.3. Reverse-Engineering a Language Product Line for FSMs

Figure 8.12: Example of a state machine with effects in the transitions

simultaneously.

DSLs configuration: UML, Rhapsody, and Stateflow execute the transition effects in

parallel. Harel’s statecharts execute transition effects simultaneously.

Priorities in the transitions: Because several transitions can be associated to the same

event, there are cases in which more than one transitions are intended to be fired in the

same step. In general, all the DSLs for state machines agree in the fact that all the activated

transitions should be fired. However, this is not always possible because conflicts might

appear. Consider for example the state machine presented in Fig 8.13. The transitions TD

and TE are conflictive because they are activated by the same event i.e., e2, they exit the

same state, and they go to different target states. Then, the final configuration of the state

machine will be different according to the selected transition.

In order to tackle such situations, it is necessary to establish policies that permit to solve

such conflicts. Specifically, we need to define a mechanism for prioritizing conflicting

transitions so the interpreter is able to easily select a transition from a group of conflicting

transitions. One of the best known semantic differences among DSLs for state machines

is related with these policies. In particular, there are two different mechanisms for solving

this kind of conflicts:

• Priority for deepest transitions: A first mechanism for solving conflicting transi-

tion is to select the transition with the lower scope. That means, the transition that

is deeper in the hierarchy of the state machine. In the example presented in Fig 8.13

the dispatched transition according to this policy would be the transition TE so the

state machine would move to the state S5.

• Priority for higher transitions: The second mechanism for solving conflicts in the

transition is to select the transition with the higher scope. That is, the transition in

the higher level of the hierarchy of the state machine. In the example presented in

Fig 8.13 the dispatched transition according to this policy is the transition TD so the

state machine will move to the state S4.

DSLs configuration: The semantics of UML and Rhapsody fits on the first interpreta-

tion i.e., deepest transition priority whereas the semantics of Harel’s statecharts fits on the

second interpretation i.e., highest transitions priority.

125

8. VALIDATION: CASE STUDIES

Figure 8.13: Example of a state machine with conflicting priorities

8.3.2 Solution: Reverse-Engineering a Language Product Line

The starting point of the applicability of our approach in the case study is a set of DSLs

implementing each of the specifications explained above. Hence, at the beginning we have

three different DSLs for state machines that can be accessed in a GitHub repository3.

Using these specifications as input, we proceed to apply our approach.

The results are summarized in Fig. 8.14. At the left of the figure we present the set of lan-

guage modules we obtained as well as the language interfaces existing among them. Those

modules group the language constructs according to the heuristic introduced in Section 6.2

on breaking down intersections. At the right of the figure we show the corresponding vari-

ability models. Each feature of the feature models is associated to a given language module.

In turn, the semantic variability points in the orthogonal model are associated to clusters of

domain specific actions.

Analysis of the results. Let us now discuss the results of the case study. As expected,

we obtained a language product product line from a set of DSL variants for finite state ma-

chines. But... Does this product line identify all the variation points and commonalities

existing in the DSL variants? Are those variation points properly specified in the language

modular design and variability models? Since we know these variation points and common-

alities, we can check whether they are appear in the produced language product line. The

results of this verification are presented in Table 8.1.

The results are promising in the case of abstract syntax variability. According to the

Table 8.10, the DSL variants share 17 constructs in common. Those constructs are properly

factorized in a language module that we named StateMachine. This module is correctly

identified during the recovering of the language modular design, and it is properly specified

3GitHub repository for the case study: https://github.com/damende/puzzle/tree/master/examples/

state-machines

126

https://github.com/damende/puzzle/tree/master/examples/state-machines
https://github.com/damende/puzzle/tree/master/examples/state-machines

8.3. Reverse-Engineering a Language Product Line for FSMs

Figure 8.14: Language product line produced for the case study of the finite state machines.

Oracle

Result

Properly

identified?

Properly

specified?

Abstract Syntax Variability

Module: [StateMachine, Region,

AbstractState, State, Transition,

Trigger, Pseudostate, InitialState, Fork,

Join, ShallowHistory, Junction,

FinalState, Constraint, Statement,

Program, NamedElement]

! !

Module: [NotTrigger, OrTrigger] ! !

Module: [AndTrigger] ! !

Module: [Choice] ! !

Module: [Conditional] ! !

Semantic Variability

Events dispatching policy ! "

Execution order of transitions’ effects ! "

Priorities of conflictive transitions ! "

!

Table 8.1: Analysis of the results of the case study

as a language module in terms of a metamodel enhance with domain specific actions and

offering a provided interface. Besides, the particularities of the DSL variants are also well

factorized. There is a module that contains the constructs NotTrigger and OrTrigger that

belong only to the variant complying the Harel’ statecharts specification. Besides, there are

three additional modules that contain the constructs AndTrigger, Choice, and Conditional

respectively. Using this modular design, we can re-compose any of the three initial DSL

variants.

The situation is different for the case of semantic variability. Although our reverse-

engineering strategy is able to identify that the domain specific actions are different in

the three DSL variants, the level of granularity at which those variation points are detected

is coarser than one might expect. At the beginning of this section, we described three

semantic variation points and their possible interpretations i.e., events dispatching policy,

127

8. VALIDATION: CASE STUDIES

execution order of transitions’ effects, and priorities of conflicting transitions. Using the

proposed technique, we can identify just one semantic variation point indicating that the

language module called StateMachines contains three different clusters of domain specific

actions, which is reflected in the orthogonal variability model.

This threat to validity of our technique can be explained by the fact that the analysis of

commonalities and variability is conducted by means of static analysis. We can analyze

the structure of the metamodels and the domain specific actions, but not their behavior at

runtime. Hence, we cannot see how these differences impact the execution of the models.

For example, we cannot infer that the differences among the domain specific actions in the

StateMachine module impact the way in which conflicting priorities are managed. A next

step in this research could be to use also dynamic analysis in the domain specific actions to

better specify semantic variation points.

The source code of this case study can be found on GitHub4.

8.4 Summary

This chapter was dedicated to the validation of our contributions. To this end, we presented

three case studies. In the first one, we show that our approach for languages modularization

is complete enough to support the modular design existing behind the specification of UML.

The second case study is intended to validate our contributions on top-down language prod-

uct lines engineering. This case study focuses on the construction of a language product

line for facilitating different variants of a DSL used for gradual teaching of programming

skills. Finally, the third case study is intended to validate our contributions in bottom-up

language product lines. This case study corresponds to the implementation of the example

on the different variants for state machines that we have used along this thesis to illustrate

our ideas. We implemented each of those variants using the clone-and-own approach; then

we use our approach to reverse-engineering the corresponding language product line.

4https://github.com/damende/puzzle/tree/master/examples/state-machines

128

https://github.com/damende/puzzle/tree/master/examples/state-machines

Part IV

Closure

129

Chapter 9

Conclusion and Perspectives

9.1 Conclusion

A domain-specific language provides a set of abstractions that belong to specific area of en-

deavor (i.e., the domain) and that serve to a concrete purpose. When the same abstractions

are used in different domains, or when the complexity of a certain domain demands various

DSLs addressing different purposes, we obtain DSL dialects. As the same as in the case of

natural languages, DSL dialects are variants of a given DSL that introduce some changes

in terms of syntax and semantics.

The phenomenon described above supposes an important challenge for language design-

ers. This is specially true in large technology companies that use the language-oriented de-

velopment approach, and which business is based on providing numerous systems through

diverse domains. The construction of a DSL is a complex activity, and it is even more chal-

lenging when language designers have to deal not only with DSLs, but also with different

variants of the same DSL.

The community in software language engineering is currently seeking manners to ease-

off the construction of DSL variants. The purpose is to increase reuse during the construc-

tion of such variants DSL by exploiting the abstractions and definitions they share among

them. In that context, the notion of language product lines have recently appeared. Several

state-of-the art woks have shown how to use the ideas on software product lines engineering

in the construction of DSL variants.

In this thesis, we provided a deep analysis of current approaches supporting language

product lines engineering. Our study was conducted in the form of a systematic literature

review where we included a large spectrum of approaches published during the last 16 years.

The main result of this study was a description of the life-cycle of language product lines

based on the discussions provided in the research works included in the literature review.

We used such a life-cycle to evaluate current approaches and to identify a set of open issues

in the field of language product lines engineering.

131

9. CONCLUSION AND PERSPECTIVES

These open issues can be divided into two categories according to the flow in which the

activities of the life-cycle of a language product lines are addressed: top-down and bottom-

up. We deeply explained each of those categories and we listed a specific set of limitations

of current approaches. Afterwards, we prioritized those limitations and we selected a subset

of them to address along these years of research. The contribution of this thesis can be

summarized in two points:

First, we provided facilities for the construction of top-down language product lines. The

facilities are a modularization approach which favors three classical software modulariza-

tion principles i.e., independent development, substitutability, and information hiding. This

approach is accompanied with an strategy to model the variability of a language product

line, as well as a set of methodological insights that facilitate the daily basis of language

designers.

As a second contribution of this thesis, we presented a reverse-engineering algorithm to

support the construction of bottom-up language product lines. Our approach assumes the

existence of a set of DSL variants that have been built through the clone-and-own approach.

Based on that, we used static analysis to identify commonalities that we extract as a set

of reusable language modules. Then, we provide an algorithm to synthesize the variability

models of the language product line.

The validation of our ideas was conducted through a set of three case studies. In the

first one, we revisit the design of UML as modeling language and we replicate its modu-

lar design using our modularization approach. This exercise allowed us showing that our

approach is complete enough to support the definition of complex and large modeling lan-

guages. In the second case study, we provided a case study composing of several DSL

variants for incrementally teaching programming skills. This case study allowed us illus-

trating the construction of language product line using a top-down approach. Finally, in the

third case study, we use three different variants of a DSL to express finite state machines to

reverse-engineer a language product line by using the bottom-up perspective.

9.2 Perspectives

In this section, we present different directions in which the work presented in this thesis

can be pursued. We start by providing a discussion on how to broaden the spectrum of

our contributions to more diverse development scenarios and in other technological spaces.

Then, we discuss the open issues that we find during the conduction of the state of the art,

and which were not covered in the scope of this thesis i.e., testing and evolution of language

product lines.

9.2.1 Broadening the Spectrum of our Contributions

Thinking outside executable metamodeling. All along this thesis, we have insisted in the

fact that all our ideas are applicable when the DSLs under study are developed by means

132

9.2. Perspectives

of metamodels enhanced with operational semantics. We have described the particularities

of such a technological space, and we provided the tooling enough to support our approach

in that context. However, what if during language development the DSL variants are im-

plemented through a different technological space? At which point our approach can be

re-used?

We need to start by admitting that all the implementation part of our approach –i.e., the

tooling encapsulated in the Puzzle toolkit–, can be hardly extended to other technologi-

cal spaces. This is due to the fact, that Puzzle was built on top of a language workbench

which is exclusively dedicated to metamodel-based DSLs which semantics is expressed

operationally through domain-specific actions. However, many of the ideas that we have

developed during this thesis can be reused in other language workbenches dedicated to

other technological spaces. We consider that the answer of this question represents a rele-

vant direction for future work.

Thinking outside the copy-and-own approach. An important constraint of our ap-

proach for bottom-up language product lines is that it is scoped to DSLs that have been

built through the clone-and-own approach. This fact permit to assume the existence of

specification clones which is the backbone of our strategy for reverse engineering language

modules. But... what if we have DSLs that are not necessarily built in those conditions?

Suppose for example that we have as input a set of DSLs that share certain commonalities

but that have been developed in different development teams. In that case, the probability of

finding specification scenarios is quite reduced, and our approach will not be useful. How

our strategies can be extended to deal with such a scenario?

According to our experience during the development of this thesis, we think that the an-

swer to that question relies on the definition of more complex comparison operators. As

we deeply explain in Section 6.1, the very first step of our reverse engineering strategy is to

perform a static analysis of the given DSLs and apply two comparison in order to specify

specification clones. If what we want is to find commonalities that are not necessarily ma-

terialized in specification clones but in ”equivalent functionality”, then we need to enhance

the comparison operators in order to detect such as equivalences.

Note the complexity behind the notion of ”equivalent functionality”. In the case of ab-

stract syntax, two meta-classes might provide equivalent functionality by defining different

language constructs e.g., using different names for the specification elements and even

different relationships among them. In the case of the semantics, two different domain spe-

cific actions might provide equivalent functionality through different programs. We claim

that further research is needed to establish this notion of equivalence thus supporting more

diverse development scenarios.

9.2.2 Testing and Evolution of Language Product Lines

Two of the open issues that we identified during our study of the state of the art are testing

and evolution of language product lines. In Section 3.4, we explained the importance of

133

9. CONCLUSION AND PERSPECTIVES

this phases of the life-cycle of a language product line. However, those issues are out of the

scope of this thesis. Their complexity demands a deep analysis, which can be the subject

of study of future work.

In addressing these issues, researchers will have to consider some of the aspects we

included in this thesis. For example, a testing approach for DSLs might be also quite

dependent of the technological space in which the DSLs are specified. For example, the

challenges towards testing the operational semantics of a DSL can be different from the

ones behind testing denotational semantics. Whereas in the first case, testing corresponds to

test imperative programs that describes the execution steps of a given model, in the second

case the testing phase corresponds to test declarative rules. Testing declarative programs

have different challenges w.r.t testing imperative ones [151].

134

Part V

Appendixes

135

Appendix A

Extending EMOF to Support Language
Interfaces

In this appendix, we present a mechanism to support the notion of languages interfaces,

which is the backbone of approach for modularization of DSLs. This mechanism is based

on an extension to EMOF; it introduces the notion of virtualization to support the definition

of required interface, as well as the notion of module visibility to support the definition of

provided interface.

A.1 Introducing Virtualization in EMOF

Fig. A.1 shows our extension to EMOF to introduce the notion of virtualization. We

create a new meta-class called VirtualizableElement which is aimed to identify

the specification elements that can be defined as virtual in a language module. We consider

the following specification elements as virtualizable: (meta-)classes, properties, operations,

parameters, enumerations, and enumeration literals.

Note that this extension requires some well-formedness rules riles to avoid inconsistent

metamodels. For example, if an operation is defined as virtual, then all their parameters

should be defined as virtual as well. Otherwise, we will face a situation that is conceptually

wrong. These well-formedness rules are specified in the form of OCL constraints at the

bottom of Fig. A.1, and they are explained in the following.

(1) All meta-classes containing virtual properties and/or operations must be virtual

as well. The existence of a virtual property and/or operation implies that there is an

actual property/operation that implements the desired functionality. However, prop-

erties and operations are always defined within a certain meta-class. Hence, there

is also a virtual vs. actual relationship between the involved meta-classes. As a re-

sult, the meta-class containing a virtual property/operation must be virtual so this

relationship can be established.

137

A. EXTENDING EMOF TO SUPPORT LANGUAGE INTERFACES

(2) Non-primitive types of virtual property must be virtual as well. Defining a virtual

property in a language module A implies that there is a language module B which im-

plements the desired functionality; thus introducing a dependency from the module

A to the module B. If the type of the virtual property is not primitive (so it is either a

meta-class or an enumeration) and it is defined as non-virtual in the module A, then

this type should be defined as virtual in the module B. This implies that there is a

second dependency from the module B to the module A thus creating a dependencies

loop. As we will discuss later in this chapter, dependencies loops are not supported

in our approach. Then, to be well formed a required interface must guarantee that all

the types of virtual references are virtual as well.

(3) All parameters of a virtual operations must be virtual as well. Defining a virtual

operation in a module A implies that there is a language module B that implements

defines an actual operation with the desired functionality. The only way to implement

the same functionality is to respect the signature of the virtual operation. If one of the

parameters of the a virtual operation are defined as non-virtual then that the definition

of the virtual operation will be incomplete in the required interface and the signatures

will not match.

(4) The owning operation of a virtual parameter must be virtual as well. The exis-

tence of a virtual parameter implies that there is an actual parameter that implements

the desired functionality. However, parameters are always defined within a certain

operation. Hence, there is also a virtual vs. actual relationship between the involved

operations. As a result, the operation containing a virtual parameter must be virtual

so this relationship can be established.

(5) The owning enumeration of a virtual enumeration literal must be virtual as well.

Similarly than in the case of classes and properties, enumeration literals defined as

virtual must be always defined in virtual enumerations so the needs they represent

can be fulfilled by an actual enumeration in an external language module.

A.2 Introducing Module Visibility in EMOF

Fig. A.2 shows our extension to EMOF to support module visibility. We create a new

meta-class called ModuleVisibilityElement that allows two levels of visibility (i.e.,

public and private) for the specification elements of a language module. We consider

the following specification elements as module visibility elements: (meta-)classes, proper-

ties, operations, parameters, enumerations, and enumeration literals.

Similarly than in the case of virtualization, we need to establish certain well-formedness

rules to guarantee the consistency of a provided interface that is extracted from the public

elements within a language module. Those rules are formalized at the bottom of Fig. A.2

and deeply explained in the following.

138

A.2. Introducing Module Visibility in EMOF

Classifier

 + isAbstract : Boolean = false

Class Property

 + aggregation: AggregationKind
 + default : String
 + isComposite : Boolean
 + isDerived : Boolean = false

StructuralFeature

 + isReadOnly : Boolean = false

Operation

 + isOrdered : Boolean = false
 + isUnique : Boolean = true
 + lower : Integer = 1
 + upper : UnlimitedNatural = 1

Parameter
 + direction : ParameterDirectionKind

MultiplicityElement

 + isOrdered : Boolean = false
 + isUnique : Boolean = true
 + lower : Integer = 1
 + upper : UnlimitedNatural = 1

DataType

Type

PackageableElement

TypedElement

NamedElement

 + name : String
 + qualifiedName: String
 + visibility : VisibilityKind

Element

EnumerationLiteral
 + name : String
 + literal : String
 + value : Integer = 0

ownedProperty

0..* class

0..1

ownedOperation

0..*

class
0..1

PrimitiveType Enumeration

enumeration

ownedLiteral 0..*

superClass

0..*

class
0..*

Package

 + URI : String

ownedType

0..* package
0..1

nestingPackage

0..1

nestedPackage

0..*

packagedElement

0..*

owningPackage
0..1

 + visibility : VisibilityKind = public

type

0..1

ownedParam

0..* operation

0..1

VirtualizableElement

context Class inv : (self.ownedProperties.exists(p | p.virtual) or self.ownedOperation.exists(o | o.virtual) implies self.virtual

context Property inv : self.virtual implies self.type.virtual

context Operation inv : self.virtual implies self.ownedParam.forAll(p | p.virtual)

context Param inv : self.virtual implies self.operation.virtual

context EnumerationLiteral inv : self.virtual implies self.enumeration.virtual

 + isVirtual : Boolean = false

Figure A.1: Extension to the EMOF to support virtualization

(1) All meta-classes containing public properties and/or operations must be public

as well. As aforementioned, properties and operations are defined within specific

meta-classes. Moreover, the only way to access or call a given property/operation

is through its containing meta-class. A public property/operation which is defined

in a private meta-class cannot be actually accessed. Hence, a first consistency rule

for providing interface is that all the meta-classes containing public properties or

operations must be public as well.

(2) Non-primitive types of public properties must be public as well. Defining a prop-

erty as public implies that the language module under construction provides naviga-

bility towards the instances of a given meta-class. If such meta-class is not public,

then the navigability cannot be actually performed and we will face an inconsistency.

(3) All the parameters of public operations must be public as well. When defining

an operation as public, a language designers is exposing its functionality –notably

its signature– to external modules. Naturally, to be consistent all the parameters of a

139

A. EXTENDING EMOF TO SUPPORT LANGUAGE INTERFACES

public operation should be public as well so they can be also accessed.

(4) Public parameters always belong to public operations. Because parameters can

only be accessed through its owning operation, it makes no sense to specify public

parameters in private operations. They will never be actually accessed.

(5) Every enumeration containing at least one public enumeration literal must be

public as well. Because enumeration literals can only be accessed through its own-

ing enumeration, it makes no sense to specify public enumeration literals in private

enumerations. They will never be actually accessed. The inverse situation is different.

A public enumeration might contain private enumeration literals.

Classifier

 + isAbstract : Boolean = false

Class Property

 + aggregation: AggregationKind
 + default : String
 + isComposite : Boolean
 + isDerived : Boolean = false

StructuralFeature

 + isReadOnly : Boolean = false

Operation

 + isOrdered : Boolean = false
 + isUnique : Boolean = true
 + lower : Integer = 1
 + upper : UnlimitedNatural = 1

Parameter
 + direction : ParameterDirectionKind

MultiplicityElement

 + isOrdered : Boolean = false
 + isUnique : Boolean = true
 + lower : Integer = 1
 + upper : UnlimitedNatural = 1

DataType

Type

PackageableElement

TypedElement

NamedElement

 + name : String
 + qualifiedName: String
 + visibility : VisibilityKind

Element

EnumerationLiteral
 + name : String
 + literal : String
 + value : Integer = 0

ownedProperty

0..* class

0..1

ownedOperation

0..*

class
0..1

PrimitiveType Enumeration

enumeration

ownedLiteral 0..*

superClass

0..*

class
0..*

Package

 + URI : String

ownedType

0..* package
0..1

nestingPackage

0..1

nestedPackage

0..*

packagedElement

0..*

owningPackage
0..1

 + visibility : VisibilityKind = public

type

0..1

ownedParam

0..* operation

0..1

ModuleVisibilityElement

 + visibility : ModuleVisibilityKind

ModuleVisibilityKind

 - public = 0
 - private = 1

context Class inv : (self.ownedProperties.exists(p | p.public) or self.ownedOperation.exists(o | o.public) implies self.public

context Property inv : self.public implies self.type.public

context Operation inv : self.public implies self.ownedParam.forAll(p | p.public)

context Param inv : self.public implies self.operation.public

context EnumerationLiteral inv : self.public implies self.enumeration.public

Figure A.2: Extension to the EMOF to support module visibility

140

Appendix B

Hierarchical Domain Analysis

In this appendix, we explain how to use hierarchical domain analysis to identify concept

clusters during the design phase of the construction of language product lines. The input

of this process is a domain model representing relevant concepts and relationships among

them. In turn, the output of this process is a Venn diagram (such as the one introduced in

Fig. 5.11) that guides language designers in the definition of concept clusters that will be

later encapsulated as language modules.

A B C D

Figure B.1: Example

What is hierarchical domain analysis? Hierarchical domain

analysis is a method that allows the extraction of a hierarchy from

a given set of elements. Such a hierarchy represents a degree of relat-

edness between the given elements. The higher level of relatedness

the closer relation in the hierarchy. Consider the example introduced

in Fig. B.1. In that figure, the fact that A and B are siblings means

that they are strongly related. In turn, A and B are also related with

C but this relationship is weaker. Similarly, the set composed of A,

B, and C is related to D but this relation is even weaker.

Using cohesion as a measure of relatedness. Since in our case

the main objective of the hierarchical domain analysis is to orga-

nize the language concepts of a domain model in a hierarchy that shows the existing sub-

domains, we propose to base the analysis in terms of the degree of cohesion among lan-

guage concepts. The more degree of cohesion between two language concepts, the bigger

probability that they are part of the same sub-domain.

But, how to measure cohesion between language concepts? Inspired on the notion of

intra-connectivity introduced by Mancoridis et al. [132], we propose to measure pair-wise

cohesion as the quotient between the amount relationships existing between the language

constructs and the total of relationships existing in the domain model. Figure B.2 illustrates

this idea through an example. Particularly, Figure B.2a shows a domain model including

five concepts: A, B, C, D, and E. In turn, Figure B.2b shows the corresponding pair-wise

cohesion values. Note that the total number of relationships in the domain model is 9 (in-

141

B. HIERARCHICAL DOMAIN ANALYSIS

cluding not only references between classes but also inheritances relationships). Hence,

the cohesion between the concepts B, and C (which have 4 relationships among them cor-

responding to 2 bidirectional references) is 4/9 = 0.44. Note that this metric for cohesion

provides a number between 0 and 1 being 0 less cohesive than 1.

a. Domain model b. Pair-wise cohesion matrix

 A B C D E

A - 0.11 0.11 0 0

B - - 0.44 0 0

C - - - 0.11 0

D - - - - 0.22

E - - - - -

Figure B.2: An example of pair-wise cohesion in domain models

Once we have defined the cohesion as relatedness metric, we can perform the hierarchi-

cal domain analysis. To this end, we use the algorithm introduced by Li et al. [152] on the

cohesion matrix. Figure B.3 shows an example of the results for the domain model intro-

duced above including the concepts A, B, C, D, and E. Note that the result of the analysis is

a cohesion tree that shows the hierarchies among language concepts shown in Figure B.3a

that, in turn, can be viewed as a Venn diagram as shown in Figure B.3b. In this case, the

concepts B and C are quite cohesive among them so they form a sub-domain. A similar

case occurs for the concepts D and E. Moreover, we can see that A, B, and C form another

sub-domain since they are more related each other than with the concepts D and E.

0.0137
0.0275

0.44

B C A D E

B

C

D

E

a. Cohesion tree b. Domains hierarchy

A

0.22

Figure B.3: Example of hierarchical domains

142

Appendix C

Empirical Data on Specification Cloning
in DSLs

Although our experience indicates that the clone-and-own approach is a real practice in

language development processes so it is normal to find specification clones, we still need to

verify that it is a phenomenon that appears in other development teams, and industrial con-

texts. To answer that question, we explored public GitHub repositories in search of DSLs

that are built on the same technological space that we used in our approach. The intention

is to confirm the existence of specification clones among those DSLs. The results are pre-

sented in this section, and all the data and tooling needed to replicate these experiments are

available on-line 1.

Data. We conducted an automatic search on GitHub repositories to find Ecore metamod-

els enriched with operational semantics written as Kermeta aspects in Xtend. As a result

of this search, we obtained a data set composed 2423 metamodels. Nevertheless, because

Kermeta 3 and its implementation in Xtend is a quite recent idea, we found very few data

for the semantics part. Besides, all of them have been developed in our research team. We

decided to conduct the analysis only in the metamodels since we consider that detection of

specification clones at the level of the abstract syntax can give us a good insight about the

existence of clone-and-own in DSLs development processes.

Experiment. To identify specification clones in the metamodels from our data set, we

performed a pair-wise comparison among all the metamodels (w.r.t. the + operator intro-

duced in section 6.2). Then, we compute the matrix O(i, j) where each cell (i, j) contains

the number of cloned metaclasses between the metamodels i and j. O(i, j) = 0 means that

there is no cloned metaclasses between the metamodels i and j. We are interested in the

cells (i, j) such that O(i, j) 6= 0 and i 6= j. Those cells correspond to a pair of metamodels

with some specification clones. Then, we analyze the matrix with two questions in mind:

(1) how many metamodels have some specification clones among them?; and (2) how many

1Website for experiment 2: http://empiricalpuzzle.weebly.com/

143

C. EMPIRICAL DATA ON SPECIFICATION CLONING IN DSLS

(1.053,272) (995, 717.7)

(994, 631.3)
(993, 589.0)

(996, 526.0)

(1.928, 99.4)

Figure C.1: Results for the evaluation of overlapping in GitHub metamodels

classes are cloned from one metamodel to the other?.

Results. Figure C.1 shows two charts with the results to the experiment. The chart at

the left is intended to answer the first question. In this chart, each entry x of the horizontal

axis represents one metamodel of the data set. In turn, the vertical axis i.e., y(x) shows the

amount of metamodels with some specification clones for x. Formally, y(x) = (+k| 0 ≥
k ≥ 2423 ∧ O(x, k) > 0 : 1). For example, the metamodel with ID 1.053 has some

specification clones with 272 metamodels. Note that each point located up the zero line of

the vertical axis represents a metamodel with some specification clones with one or more

metamodels, thus suggesting that specification clones is a real phenomenon.

The chart at the right of the Figure C.1 is intended to answer the second question. In

this chart, each entry x of the vertical axis represents one metamodel of the data set. The

vertical axis i.e., z(x) shows the average amount of cloned classes for x. Formally, z(x) =
1/y(x) ∗ (+k| 0 ≥ k ≥ 2423 : O(x, k)) For example, the metamodel 1.928 shares, in

average, 99.4 metaclasses with other metamodels. Note that there is an important amount

of metamodels whose average overlapping size is between 0 and 100 metaclasses. Note also

that there are four metamodels that share about 600 metaclasses. This case corresponds to

a set of different versions of a metamodel for UML.

144

List of Tables

3.1 Strings for the automatic search of the systematic literature review 18

3.2 Language modularization scenarios in the literature. (*) Out of the scope . . . 21

3.3 Current approaches supporting language product lines 28

3.4 Mapping current approaches and language modularization capabilities 35

3.5 Mapping current approaches and variability management capabilities 39

3.6 Mapping current approaches and technological spaces 42

8.1 Analysis of the results of the case study . 127

145

List of Figures

1 Aperçu du processus de développent logiciel basé sur des langages dédiés . . . viii

2 Deux approches différentes pour fare face à l’ingénierie des lignes des langages x

1.1 Overview of the language-oriented development approach 2

1.2 Two different approaches for Language Product Line Engineering 4

2.1 Technological spaces for domain-specific languages 11

2.2 Phases of the SPLE’s life cycle . 13

3.1 Protocol used to chose the articles included in the discussion. 17

3.2 Number of articles per year and type of publication 19

3.3 Phases of the life cycle of a language product line 20

3.4 The relationship between software modularization and software language engi-

neering . 21

3.5 Example of extension composition . 23

3.6 Example for multi-dimensional variability in language product lines 26

3.7 Example for multi-staged configuration in language product lines 26

3.8 Boolean feature models for representing abstract syntax variability 36

3.9 Boolean feature models for representing syntactic and semantic variability . . . 37

3.10 Boolean feature models for representing multi-dimensional variability 37

3.11 Open issues in language product line engineering 43

4.1 Scientific scope of the thesis: Addressed open issues 54

4.2 A simple DSL for finite state machines . 55

5.1 Interfaces for languages modularization . 58

5.2 Example of the use of required interfaces . 59

5.3 Example of the use of provided interfaces . 60

5.4 Running example: A modular DSL for finite state machines 62

146

List of Figures

5.5 Approach to represent multi-dimensional variability in language product lines . 68

5.6 Approach to support multi-staged configuration of language product lines . . . 70

5.7 An example of multi-dimensional variability in language product lines 71

5.8 Staged process for domain engineering of language product lines 72

5.9 A domain model for finite state machines . 74

5.10 A domain model with optional/mandatory concepts for finite state machines . . 76

5.11 Venn diagram for the hierarchical domain analysis for state machines 78

5.12 Features model for a language product line of finite state machines 80

5.13 Clusters for a DSL for finite state machines 82

6.1 Example of clone-and-own pattern . 86

6.2 A reverse-engineering strategy to bottom-up language product lines 87

6.3 Syntactic and semantic intersections in a set of DSL variants 90

6.4 Breaking down intersections to factorize specification clones 90

6.5 Unifying and breaking down for recovering a language modular design 91

6.6 Reverse-engineering variability models for language product lines 92

7.1 Simple example of aspects in K3 . 98

7.2 Example of required interfaces in Puzzle . 101

7.3 Example of provided interfaces in Puzzle . 102

7.4 Variability management in Puzzle . 104

7.5 Venn diagrams provided by Puzzle for visualizing specification clones 106

7.6 Metrics for quantification of potential reuse 107

7.7 Metrics for quantification of potential reuse 108

7.8 Software architecture of Puzzle . 109

8.1 Modules for the UML case study . 111

8.2 Modules for the UML case study . 113

8.3 Modules for the UML case study . 114

8.4 Learning Sequences and DSL Variants . 117

8.5 Domain model for the Logo case study . 117

8.6 Venn diagram for the hierarchical domain analysis for logo 119

8.7 Features model for the variability of the Logo case study 119

8.8 Example of a simple state machine and its execution 121

8.9 Example of a simple state machine with two regions 122

8.10 Diversity of constructs provided by the DSLs for state machines 123

8.11 Difference between simultaneous events and run to completion 124

8.12 Example of a state machine with effects in the transitions 125

8.13 Example of a state machine with conflicting priorities 126

8.14 Language product line produced for the case study of the finite state machines. 127

A.1 Extension to the EMOF to support virtualization 139

A.2 Extension to the EMOF to support module visibility 140

147

LIST OF FIGURES

B.1 Example . 141

B.2 An example of pair-wise cohesion in domain models 142

B.3 Example of hierarchical domains . 142

C.1 Results for the evaluation of overlapping in GitHub metamodels 144

148

List of Publications

Accepted Publications

(1) (Journal Article) David Méndez-Acuña, José A. Galindo, Thomas Degueule,

Benoı̂t Combemale, and Benoı̂t Baudry. Leveraging Software Product Lines

Engineering in the Construction of Domain-Specific Languages: A Systematic

Literature Review. In Computer Languages, Systems & Structures. 2016.

(2) (Conference Paper) David Méndez-Acuña, José A. Galindo, Benoı̂t Combe-

male, Arnaud Blouin, Benoı̂t Baudry, and Gurvan Le Guernic. Reverse Engi-

neering Reusable Language Modules from Legacy DSLs. In Proceedings of the

15th International Conference on Software Reuse. Limassol, Cyprus. 2016.

(3) (Tool Demo Paper) David Méndez-Acuña, José A. Galindo, Benoı̂t Combe-

male, Arnaud Blouin, and Benoı̂t Baudry. Puzzle: A tool for analyzing and ex-

tracting specification clones in DSLs. In Proceedings of the 15th International

Conference on Software Reuse. Limassol, Cyprus. 2016.

(4) (Keynote Paper) Jean-Marc Jézéquel, David Méndez-Acuña, Thomas Degueule,

Benoı̂t Combemale, and Olivier Barais. When Systems Engineering Meets Lan-

guage Engineering. In Complex Systems Design & Management (CSD&M’14).

Paris, France. 2014.

(5) (Doctoral Symposium Paper) David Méndez-Acuña. Variability Management

in Domain-Specific Languages. In Proceedings of the Doctoral Symposium

of the 17th International Conference on Model-Driven Engineering Languages

and Systems. Valencia, Spain. 2014.

(6) (Poster) David Méndez-Acuña, Benoı̂t Combemale, and Benoı̂t Baudry. Vari-

ability Management in Domain Specific Languages. Presented during the Inter-

149

LIST OF PUBLICATIONS

national School on Model-Driven Development for Distributed Realtime Em-

bedded Systems (MDD4DRES’14). Aber Whrac’h, France. 2014.

Publications Under Review

(1) (Journal Article) David Méndez-Acuña, José A. Galindo, Benoı̂t Combemale,

Arnaud Blouin, and Benoı̂t Baudry. Reverse Engineering Language Product

Lines from Existing DSL Variants. Submitted to the Journal of Systems and

Software. Submission date: 3rd October 2016.

150

Bibliography

[1] Marsha Chechik, Arie Gurfinkel, Sebastian Uchitel, and Shoham Ben-David. Rais-

ing level of abstraction with partial models: A vision. In Proceedings of Internaional

Workshop on Usable Verification, NSF/MSR 2010. Redmond, Washington, 2010.

[2] Marjan Mernik, Jan Heering, and Anthony M. Sloane. When and how to develop

domain-specific languages. ACM Computing Surveys, 37(4), 2005.

[3] Jean-Marc Jézéquel, David Méndez-Acuña, Thomas Degueule, Benoit Combemale,

and Olivier Barais. When systems engineering meets software language engineering.

In Proceedings of International Conference on Complex Systems Design & Manage-

ment, CSD&M 2014. Springer, Paris, France, 2014.

[4] Stephen Oney, Brad Myers, and Joel Brandt. Constraintjs: Programming interactive

behaviors for the web by integrating constraints and states. In Proceedings of the

Annual ACM Symposium on User Interface Software and Technology, UIST 2012,

pages 229–238, New York, NY, USA, 2012. ACM.

[5] Torsten Lodderstedt, David Basin, and Jürgen Doser. Secureuml: A uml-based mod-

eling language for model-driven security. In Proceedings of the International Confer-

ence on the Unified Modeling Language, UML 2002. Springer, London, UK, 2002.

[6] André Ribeiro and Alberto Rodrigues da Silva. Xis-mobile: A dsl for mobile ap-

plications. In Proceedings of the Annual ACM Symposium on Applied Computing,

SAC 2014, New York, NY, USA, 2014. ACM.

[7] M. P. Ward. Language oriented programming. Software—Concepts and Tools, 15(1),

1995.

151

BIBLIOGRAPHY

[8] Benoit Combemale, Robert France, Jean-Marc Jézéquel, Bernhard Rumpe, Jim R.H.

Steel, and Didier Vojtisek. Engineering Modeling Languages. Chapman and Hal-

l/CRC, 2016.

[9] Jeff Gray, Kathleen Fisher, Charles Consel, Gabor Karsai, Marjan Mernik, and Juha-

Pekka Tolvanen. Dsls: The good, the bad, and the ugly. In Companion to the

ACM SIGPLAN Conference on Object-oriented Programming Systems Languages

and Applications, OOPSLA Companion 2008, Nashville, TN, USA, 2008. ACM.

[10] Michael Homer, Timothy Jones, James Noble, Kim B. Bruce, and Andrew P. Black.

Graceful Dialects. ECOOP 2014. Springer Berlin Heidelberg, Uppsala, Sweden,

2014.

[11] Mathias Funk and Matthias Rauterberg. PULP Scription: A DSL for Mobile HTML5

Game Applications. ICEC 2012. Springer, Bremen, Germany, 2012.

[12] Phillip James and Markus Roggenbach. Encapsulating formal methods within do-

main specific languages: A solution for verifying railway scheme plans. Mathemat-

ics in Computer Science, 8(1), 2014.

[13] Alexei Iliasov, Ilya Lopatkin, and Alexander Romanovsky. The SafeCap Platform

for Modelling Railway Safety and Capacity. SAFECOMP 2013. Springer, Toulouse,

France, 2013.

[14] Steffen Zschaler, Pablo Sánchez, João Santos, Mauricio Alférez, Awais Rashid,

Lidia Fuentes, Ana Moreira, João Araújo, and Uirá Kulesza. VML* – a family of lan-

guages for variability management in software product lines. In Proceedings of the

International Conference on Software Language Engineering, SLE 2010. Springer,

2010.

[15] Thomas Kühn, Walter Cazzola, and Diego Mathias Olivares. Choosy and picky:

Configuration of language product lines. In Proceedings of the International Confer-

ence on Software Product Lines, SPLC ’15, Nashville, Tennessee, 2015. ACM.

[16] João Bosco Ferreira Filho. Leveraging model-based product lines for systems engi-

neering. Theses, Université Rennes 1, 2014.

[17] J. White, J. H. Hill, J. Gray, S. Tambe, A. S. Gokhale, and D. C. Schmidt. Improv-

ing domain-specific language reuse with software product line techniques. IEEE

Software, 26(4):47–53, 2009.

[18] Jörg Liebig, Rolf Daniel, and Sven Apel. Feature-oriented language families: A

case study. In Proceedings of the International Workshop on Variability Modelling

of Software-intensive Systems, VaMoS 2013, Pisa, Italy, 2013. ACM.

152

Bibliography

[19] Thomas Kühn and Walter Cazzola. Apples and oranges: Comparing top-down and

bottom-up language product lines. In Proceedings of the International Conference

on Software Product Lines, SPLC 2016, Beijing, China, 2016. ACM.

[20] David Harel and Bernhard Rumpe. Meaningful modeling: what’s the semantics of

“semantics”? Computer, 37(10), 2004.

[21] Bran Selic. The theory and practice of modeling language design for model-based

software engineering—a personal perspective. In Proceedings of the International

Summers School on Generative and Transformational Techniques in Software Engi-

neering III, volume 6491 of GTTSE 2011. Springer, Braga, Portugal, 2011.

[22] Markus Vöelter. Language and ide modularization and composition with MPS. In

Proceedings of the International Summer School on Generative and Transforma-

tional Techniques in Software Engineering IV, GTTSE 2011. Springer, Braga, Portu-

gal, 2011.

[23] Peter D. Mosses. The varieties of programming language semantics and their uses. In

International Conference on Perspectives of System Informatics, PSI 2001. Springer,

Novosibirsk, Russia, 2001.

[24] Philipp W. Kutter, Daniel Schweizer, and Lothar Thiele. Integrating domain specific

language design in the software life cycle. In Internaional Conference on Applied

Formal Methods, FM 1998. Springer, Berlin, Germany, 1998.

[25] Raphael Mannadiar and Hans Vangheluwe. Debugging in domain-specific mod-

elling. In International Conference on Software Language Engineering, SLE 2010.

Springer, Eindhoven, Netherlands, 2010.

[26] David A. Schmidt. Denotational Semantics: A Methodology for Language Develop-

ment. William C. Brown Publishers, Dubuque, IA, USA, 1986.

[27] Gopal Gupta and Enrico Pontelli. Specification, implementation, and verification

of domain specific languages: A logic programming-based approach. In Computa-

tional: Logic Programming and Beyond, volume 2407 of Lecture Notes in Computer

Science. Springer Berlin Heidelberg, 2002.

[28] Pierre-Yves Schobbens, Patrick Heymans, Jean-Christophe Trigaux, and Yves Bon-

temps. Generic semantics of feature diagrams. Computer Networks, 51(2):456 –

479, 2007.

[29] Sebastian Erdweg, Tijs van der Storm, Markus Völter, Laurence Tratt, Remi Bosman,

William R Cook, Albert Gerritsen, Angelo Hulshout, Steven Kelly, Alex Loh, et al.

Evaluating and comparing language workbenches: Existing results and benchmarks

for the future. Computer Languages, Systems & Structures, 44:24–47, 2015.

153

BIBLIOGRAPHY

[30] Benoit Langlois, Consuela Elena Jitia, and Eric Jouenne. Dsl classification. In Pro-

ceedings of the International Workshop on Domain-Specific Modeling, DSM 2007,

2007.

[31] Holger Krahn, Bernhard Rumpe, and Steven Völkel. Monticore: a framework for

compositional development of domain specific languages. International Journal on

Software Tools for Technology Transfer, 12(5):353–372, 2010.

[32] Lukas Renggli and Tudor Gı̂rba. Why smalltalk wins the host languages shootout. In

Proceedings of the International Workshop on Smalltalk Technologies, IWST 2009,

Brest, France, 2009. ACM.

[33] Martin Fowler. Language workbenches: The killer-app for domain specific lan-

guages. 2005.

[34] Eelco Visser, Guido Wachsmuth, Andrew Tolmach, Pierre Neron, Vlad Vergu, Au-

gusto Passalaqua, and Gabrieël Konat. A language designer’s workbench: A one-

stop-shop for implementation and verification of language designs. In Proceedings

of the ACM International Symposium on New Ideas, New Paradigms, and Reflections

on Programming & Software, Onward! 2014, New York, NY, USA, 2014. ACM.

[35] Frank J. van der Linden, Klaus Schmid, and Eelco Rommes. Software Product

Lines in Action: The Best Industrial Practice in Product Line Engineering. Springer-

Verlag, Secaucus, NJ, USA, 2007.

[36] Klaus Pohl, Günter Böckle, and Frank J. van der Linden. Software Product Line

Engineering: Foundations, Principles and Techniques. Springer-Verlag, Secaucus,

NJ, USA, 2005.

[37] Kyo C Kang, Sholom G Cohen, James A Hess, William E Novak, and A Spencer

Peterson. Feature-oriented domain analysis (foda) feasibility study. Technical report,

DTIC Document, 1990.

[38] David Benavides, Sergio Segura, and Antonio Ruiz-Cortés. Automated analysis of

feature models 20 years later: a literature review. Information Systems, 35(6), 2010.

[39] R.R. Macala, Jr. Stuckey, L.D., and D.C. Gross. Managing domain-specific, product-

line development. Software, IEEE, 13(3), 1996.

[40] Walter Cazzola and Davide Poletti. DSL evolution through composition. In Proceed-

ings of the Workshop on Reflection, AOP, and Meta-Data for Software Evolution,

RAM-SE 2010, Maribor, Slovenia, 2010. ACM.

[41] Tomaz Kosar, Sudev Bohra, and Marjan Mernik. Domain-specific languages: A

systematic mapping study. Information and Software Technology, 71, 2016.

154

Bibliography

[42] Leandro Marques do Nascimento, Daniel Leite Viana, Paulo Silveira Neto, Dhiego

Martins, Vinicius Cardoso Garcia, and Silvio Meira. A systematic mapping study

on domain-specific languages. In Proceedings of the International Conference on

Software Engineering Advances, ICSEA 2012. Lisbon, Portugal, 2012.

[43] Ileana Ober, Louis Féraud, and Christian Percebois. Dealing with variability within

a family of domain-specific languages: comparative analysis of different techniques.

Innovations in Systems and Software Engineering, 6(1), 2010.

[44] A. Kusel, J. Schönböck, M. Wimmer, G. Kappel, W. Retschitzegger, and

W. Schwinger. Reuse in model-to-model transformation languages: are we there

yet? Software & Systems Modeling, 14(2), 2013.

[45] Barbara Kitchenham, Rialette Pretorius, David Budgen, O. Pearl Brereton, Mark

Turner, Mahmood Niazi, and Stephen Linkman. Systematic literature reviews in

software engineering - a tertiary study. Inf. Softw. Technol., 52(8), 2010.

[46] Sebastian Erdweg, Paolo G. Giarrusso, and Tillmann Rendel. Language composition

untangled. In Proceedings of the International Workshop on Language Descriptions,

Tools, and Applications, LDTA 2012, Tallinn, Estonia, 2012. ACM.

[47] Arne Haber, Markus Look, Antonio Navarro Perez, Pedram Mir Seyed Nazari, Bern-

hard Rumpe, Steven Volkel, and Andreas Wortmann. Integration of heterogeneous

modeling languages via extensible and composable language components. In Pro-

ceedings of the International Conference on Model-Driven Engineering and Soft-

ware Development, MODELSWARD 2015, Angers, France, 2015. Scitepress.

[48] Mads Torgersen. The expression problem revisited. In Proceedings of the Euro-

pean Conference in Object-Oriented Programming, ECOOP 2004. Springer, Oslo,

Norway, 2004.

[49] Michael Keating. Hierarchical state machines. In The Simple Art of SoC Design,

pages 47–54. Springer, New York, NY, USA, 2011.

[50] Marjan Mernik. An object-oriented approach to language compositions for software

language engineering. Journal of Systems and Software, 86(9), 2013.

[51] Thomas Gschwind. Automated Adaptation of Component Interfaces with Type Based

Adaptation. Springer, London, UK, 2012.

[52] Klaus Ostermann, Paolo G. Giarrusso, Christian Kästner, and Tillmann Rendel. Re-

visiting information hiding: Reflections on classical and nonclassical modularity. In

Proceedings of the European Conference on Object-oriented Programming, ECOOP

2011, Lancaster, UK, 2011. Springer.

155

BIBLIOGRAPHY

[53] D. L. Parnas. On the criteria to be used in decomposing systems into modules.

Commun. ACM, 15(12), 1972.

[54] Xiaoqing Wu, Barrett R. Bryant, Jeff Gray, and Marjan Mernik. Component-based

LR parsing. Computer Languages, Systems & Structures, 36(1), 2010.

[55] Marı́a Victoria Cengarle, Hans Grönniger, and Bernhard Rumpe. Variability within

modeling language definitions. In Proceedings of the International Conference on

Model Driven Engineering Languages and Systems, MODELS 2009. Springer, Den-

ver, CO, USA, 2009.

[56] Hans Grönniger and Bernhard Rumpe. Modeling language variability. In Proceed-

ings of the Workshop on Foundations of Computer Software. Modeling, Development,

and Verification of Adaptive Systems, volume 6662 of Monterey Workshops 2010.

Springer, Redmond, WA, USA, 2010.

[57] Beatriz Mora, Félix Garcı́a, Francisco Ruiz, and Mario Piattini. Graphical versus tex-

tual software measurement modelling: an empirical study. Software Quality Journal,

19(1), 2011.

[58] Holger Eichelberger and Klaus Schmid. A systematic analysis of textual variability

modeling languages. In Proceedings of the 17th International Software Product Line

Conference, SPLC ’13, pages 12–21, New York, NY, USA, 2013. ACM.

[59] Michelle L. Crane and Juergen Dingel. UML vs. Classical vs. Rhapsody statecharts:

Not all models are created equal. Software & Systems Modeling, 6(4), 2007.

[60] Marko Rosenmüller, Norbert Siegmund, Thomas Thüm, and Gunter Saake. Multi-

dimensional variability modeling. In Proceedings of the International Workshop on

Variability Modeling of Software-Intensive Systems, VaMoS 2011, Namur, Belgium,

2011. ACM.

[61] Krzysztof Czarnecki, Simon Helsen, and Ulrich Eisenecker. Staged configuration

using feature models. In International Conference in Software Product Lines, SPLC

2004. Springer Berlin Heidelberg, Boston, MA, USA, 2004.

[62] Tom Dinkelaker, Martin Monperrus, and Mira Mezini. Supporting variability with

late semantic adaptations of domain-specific modeling languages. In Proceedings

of the International Workshop on Composition and Variability, Composition & Vari-

ability 2010, 2010.

[63] Marjan Mernik, Viljem Žumer, Mitja Lenič, and Enis Avdičaušević. Implementa-

tion of Multiple Attribute Grammar Inheritance in the Tool LISA. SIGPLAN, 34(6),

1999.

156

Bibliography

[64] Marjan Mernik and Viljem Žumer. Incremental programming language development.

Computer Languages, Systems & Structures, 31(1), 2005.

[65] Damijan Rebernak, Marjan Mernik, Pedro Rangel Henriques, and Maria Jo ao

Varanda Pereira. AspectLISA: An Aspect-oriented Compiler Construction System

Based on Attribute Grammars. Electronic Notes in Theoretical Computer Science,

164(2), 2006.

[66] Jaroslav Porubän, Miroslav Sabo, Ján Kollár, and Marjan Mernik. Abstract syntax

driven language development: Defining language semantics through aspects. In Pro-

ceedings of the International Workshop on Formalization of Modeling Languages,

FML 2010, Maribor, Slovenia, 2010. ACM.

[67] Thomas Degueule, Benoit Combemale, Arnaud Blouin, Olivier Barais, and Jean-

Marc Jézéquel. Melange: A meta-language for modular and reusable development

of DSLs. In Proceedings of the International Conference on Software Language

Engineering, SLE 2015, Pittsburgh, PA, USA, 2015. ACM.

[68] Pierre-Alain Muller, Franck Fleurey, and Jean-Marc Jézéquel. Weaving executability

into object-oriented meta-languages. In Proceedings of the International Conference

on Model Driven Engineering Languages and Systems, MODELS 2005. Springer,

2005.

[69] Jean-Marc Jézéquel, Benoit Combemale, Olivier Barais, Martin Monperrus, and

François Fouquet. Mashup of metalanguages and its implementation in the kermeta

language workbench. Software & Systems Modeling, 14(2), 2015.

[70] Thomas Cleenewerck. Component-based DSL development. In International Con-

ference on Generative Programming and Component Engineering, GPCE 2003.

Springer, 2003.

[71] Daniel Ratiu, Markus Vöelter, Zaur Molotnikov, and Bernhard Schaetz. Implement-

ing modular domain specific languages and analyses. In Proceedings of the Interna-

tional Workshop on Model-Driven Engineering, Verification and Validation, MoD-

eVVa 2012, Innsbruck, Austria, 2012. ACM.

[72] Thomas Cleenewerck and Ivan Kurtev. Separation of Concerns in Translational Se-

mantics for DSLs in Model Engineering. In Proceedings of the ACM Symposium on

Applied Computing, SAC 2007, Seoul, Korea, 2007. ACM.

[73] Juan de Lara and Esther Guerra. Deep meta-modelling with metadepth. In Objects,

Models, Components, Patterns, volume 6141 of Lecture Notes in Computer Science.

Springer, 2010.

157

BIBLIOGRAPHY

[74] Bart Meyers, Antonio Cicchetti, Esther Guerra, and Juan de Lara. Composing textual

modelling languages in practice. In Proceedings of the International Workshop on

Multi-Paradigm Modeling, MPM 2012, Innsbruck, Austria, 2012. ACM.

[75] Iván Melo, Mario Sánchez, and Jorge Villalobos. Composing graphical languages.

In Proceedings of the Workshop on the Globalization of Domain Specific Languages,

GlobalDSL 2013, Montpellier, France, 2013. ACM.

[76] Luis Pedro, Matteo Risoldi, Didier Buchs, Bruno Barroca, and Vasco Amaral. Com-

posing visual syntax for domain specific languages. In Human-Computer Interac-

tion. Novel Interaction Methods and Techniques, volume 5611 of Lecture Notes in

Computer Science. Springer, 2009.

[77] Luis Pedro, Matteo Risoldi, Didier Buchs, and Vasco Amaral. Developing domain-

specific modeling languages by metamodel semantic enrichment and composition:

A case study. In Proceedings of the Workshop on Domain-Specific Modeling, DSM

2010, Reno, Nevada, 2010. ACM.

[78] Srdan Ẑivković and Dimitris Karagiannis. Towards metamodelling-in-the-large:

Interface-based composition for modular metamodel development. In Enterprise,

Business-Process and Information Systems Modeling, volume 214 of Lecture Notes

in Business Information Processing. Springer, 2015.

[79] Christian Wende, Nils Thieme, and Steffen Zschaler. A role-based approach towards

modular language engineering. In Proceedings of the International Conference on

Software Language Engineering, SLE 2010. Springer, 2010.

[80] Tom Dinkelaker, Christian Wende, and Henrik Lochmann. Implementing and Com-

posing MDSD-Typical DSLs. Technical Report TUD-CS-2009-0156, Technische

Universität Darmstadt, 2009.

[81] Holger Krahn, Bernhard Rumpe, and Steven Völkel. Integrated definition of ab-

stract and concrete syntax for textual languages. In Proceedings of the International

Conference on Model Driven Engineering Languages and Systems, MODELS 2007.

Springer, 2007.

[82] Holger Krahn, Bernhard Rumpe, and Steven Völkel. Monticore: Modular devel-

opment of textual domain specific languages. In Proceedings of the International

Conference TOOLS EUROPE, TOOLS 2008. Springer, 2008.

[83] Walter Cazzola and Ivan Speziale. Sectional domain specific languages. In Proceed-

ings of the Domain Specific Aspect-Oriented Languages, DSAL 2009. ACM, 2009.

158

Bibliography

[84] Walter Cazzola. Domain-specific languages in few steps: The neverlang approach.

In Proceedings of International Conference on Software Composition. Springer,

2012.

[85] Walter Cazzola and Edoardo Vacchi. Neverlang 2 − componentised language devel-

opment for the JVM. In Software Composition, volume 8088 of Lecture Notes in

Computer Science. Springer, 2013.

[86] Edoardo Vacchi and Walter Cazzola. Neverlang: A framework for feature-oriented

language development. Computer Languages, Systems & Structures, 43, 2015.

[87] Paul Klint. A meta-environment for generating programming environments. ACM

Transations of Software Engineering Methodologies, 2(2), 1993.

[88] Mark G. J. van den Brand, J. Heering, P. Klint, and P. A. Olivier. Compiling language

definitions: The asf+sdf compiler. ACM Transactions Programming Languages Sys-

tems, 24(4), 2002.

[89] Martin Bravenboer, Karl Trygve Kalleberg, Rob Vermaas, and Eelco Visser. Strat-

ego/XT 0.17. A language and toolset for program transformation. Science of Com-

puter Programming, 72(1), 2008.

[90] Jonathan Y. Marchand, Benoit Combemale, and Benoit Baudry. A categorical model

of model merging and weaving. In Proceedings of the International Workshop on

Modeling in Software Engineering, MiSE 2012, Piscataway, NJ, USA, 2012. IEEE

Press.

[91] Edoardo Vacchi, Walter Cazzola, Suresh Pillay, and Benoit Combemale. Variability

support in domain-specific language development. In International Conference on

Software Language Engineering, SLE 2013. Springer, Indianapolis, IN, USA, 2013.

[92] Edoardo Vacchi, Walter Cazzola, Benoit Combemale, and Mathieu Acher. Automat-

ing Variability Model Inference for Component-Based Language Implementations.

In Proceedings of the International Conference on Software Product Lines, SPLC

2014, Florence, Italie, 2014. ACM.

[93] Brian Mayoh. Attribute grammars and mathematical semantics. SIAM Journal on

Computing, 10(3), 1981.

[94] Frédéric Jouault and Ivan Kurtev. Transforming models with ATL. In Satellite

Events at the MoDELS 2005 Conference, volume 3844 of Lecture Notes in Computer

Science. Springer, 2006.

159

BIBLIOGRAPHY

[95] W. Cazzola and D.M. Olivares. Gradually learning programming supported by a

growable programming language. IEEE Transactions on Emerging Topics in Com-

puting, PP(99), 2015.

[96] Dimitrios Kolovos, Richard F. Paige, Tim Kelly, and Fiona A. C. Polack. Require-

ments for domain-specific languages. In Proceedings of 1st ECOOP Workshop on

Domain-Specific Program Development, DSPD 2006. July 2006.

[97] Leonardo P. Tizzei, Marcelo Dias, Cecı́lia M.F. Rubira, Alessandro Garcia, and Jae-

joon Lee. Components meet aspects: Assessing design stability of a software prod-

uct line. Information and Software Technology, 53(2):121 – 136, 2011.

[98] Auri Marcelo Rizzo Vincenzi, José Carlos Maldonado, Márcio Eduardo Delamaro,

Edmundo Sérgio Spoto, and W. Eric Wong. Component-Based Software Quality:

Methods and Techniques, chapter Component-Based Software: An Overview of Test-

ing, pages 99–127. Springer Berlin Heidelberg, Berlin, Heidelberg, 2003.

[99] José A. Galindo, Hamilton Turner, David Benavides, and Jules White. Testing

variability-intensive systems using automated analysis: an application to android.

Software Quality Journal, pages 1–41, 2014.

[100] Hui Wu, Jeff Gray, and Marjan Mernik. Unit testing for domain-specific languages.

In Proceedings on the 2nd Working Conference on Domain-Specific Languages, DSL

2009, pages 125–147, Oxford, UK, 2009. Springer Berlin Heidelberg.

[101] Oszkár Semeráth, Ágnes Barta, Ákos Horváth, Zoltán Szatmári, and Dániel Varró.

Formal validation of domain-specific languages with derived features and well-

formedness constraints. Software & Systems Modeling, pages 1–36, 2015.

[102] Mari Inoki and Yoshiaki Fukazawa. Software product line evolution method based

on kaizen approach. In Proceedings of the 2007 ACM Symposium on Applied Com-

puting, SAC ’07, pages 1207–1214, New York, NY, USA, 2007. ACM.

[103] Mikael Svahnberg and Jan Bosch. Evolution in software product lines: Two cases.

Journal of Software Maintenance, 11(6):391–422, November 1999.

[104] Paul Laird and Stephen Barrett. Towards dynamic evolution of domain specific

languages. In Proceedings of 2nd International Conference on Software Language

Engineering: Second International Conference, SLE 2009, pages 144–153. Springer

Berlin Heidelberg, Denver, CO, USA, October 2010.

[105] Claes Wohlin, Per Runeson, Martin Höst, Magnus C. Ohlsson, Björn Regnell, and

Anders Wesslén. Planning, pages 89–116. Springer Berlin Heidelberg, Berlin, Hei-

delberg, 2012.

160

Bibliography

[106] Vander Alves, Pedro Matos, Leonardo Cole, Paulo Borba, and Geber Ramalho. Ex-

tracting and Evolving Mobile Games Product Lines, pages 70–81. Springer Berlin

Heidelberg, Berlin, Heidelberg, 2005.

[107] Haeng-Kon Kim. Applying Product Line to the Embedded Systems, pages 163–171.

Springer Berlin Heidelberg, Berlin, Heidelberg, 2006.

[108] Benoı̂t Combemale, Cécile Hardebolle, Christophe Jacquet, Frédéric Boulanger, and

Benoit Baudry. Bridging the chasm between executable metamodeling and models

of computation. In Proceedings of the International Conference on Software Lan-

guage Engineering, SLE 2012, pages 184–203, Dresden, Germany, 2013. Springer.

[109] Jim Steel and Jean-Marc Jézéquel. On model typing. Software & Systems Modeling,

6(4):401–413, 2007.

[110] Clément Guy, Benoı̂t Combemale, Steven Derrien, Jim R. H. Steel, and Jean-Marc

Jézéquel. On model subtyping. In Proceedings of the 8th European Conference on

Modelling Foundations and Applications, ECMFA 2012, pages 400–415, Lyngby,

Denmark, 2012. Springer Berlin Heidelberg.

[111] Curtis Clifton, Gary T. Leavens, Craig Chambers, and Todd Millstein. Multijava:

Modular open classes and symmetric multiple dispatch for java. In Proceedings

of the 15th ACM SIGPLAN Conference on Object-oriented Programming, Systems,

Languages, and Applications, OOPSLA ’00, pages 130–145, New York, NY, USA,

2000. ACM.

[112] Paul C. Clements. A survey of architecture description languages. In Proceedings of

the 8th International Workshop on Software Specification and Design, IWSSD ’96,

pages 16–, Washington, DC, USA, 1996. IEEE Computer Society.

[113] Fabricia Roos-Frantz, David Benavides, Antonio Ruiz-Cortés, André Heuer, and

Kim Lauenroth. Quality-aware analysis in product line engineering with the orthog-

onal variability model. Software Quality Journal, 20(3):519–565, 2012.

[114] Eduardo Santana de Almeida, Jorge Cláudio Cordeiro Pires Mascena, Ana Paula Car-

valho Cavalcanti, Alexandre Alvaro, Vinicius Cardoso Garcia, Silvio Romero

de Lemos Meira, and Daniel Lucrédio. The domain analysis concept revisited: A

practical approach. In Proceedings of the 9th International Conference on Reuse

of Off-the-Shelf Components, ICSR’06, pages 43–57, Turin, Italy, 2006. Springer-

Verlag.

[115] Cesar Gonzalez-Perez, Tom McBride, and Brian Henderson-Sellers. A metamodel

for assessable software development methodologies. Software Quality Journal,

13(2):195–214, 2005.

161

BIBLIOGRAPHY

[116] Jerzy Nawrocki, Lukasz Olek, Michal Jasinski, Bartosz Paliświat, Bartosz Walter,

Błażej Pietrzak, and Piotr Godek. Balancing agility and discipline with xprince.

In Second International Workshop on Rapid Integration of Software Engineering

Techniques, RISE 2005, pages 266–277, Heraklion, Crete, Greece, 2006. Springer

Berlin Heidelberg.

[117] Robert Tairas, Marjan Mernik, and Jeff Gray. Models in software engineering. chap-

ter Using Ontologies in the Domain Analysis of Domain-Specific Languages, pages

332–342. Springer-Verlag, Berlin, Heidelberg, 2009.

[118] Ednaldo Dilorenzo Souza Filho, Ricardo Oliveira Cavalcanti, Danuza F. Neiva,

Thiago H. Oliveira, Liana Barachisio Lisboa, Eduardo Santana Almeida, and Sil-

vio Romero Lemos Meira. Evaluating domain design approaches using systematic

review. In Proceedings of the 2Nd European Conference on Software Architecture,

ECSA ’08, pages 50–65, Berlin, Heidelberg, 2008. Springer-Verlag.

[119] John Cheesman and John Daniels. UML Components: A Simple Process for Spec-

ifying Component-based Software. Addison-Wesley Longman Publishing Co., Inc.,

Boston, MA, USA, 2000.

[120] Inaya Lahoud, Davy Monticolo, Vincent Hilaire, and Samuel Gomes. A metamod-

eling and transformation approach for knowledge extraction. In Proceedings of 4th

International Conference on Networked Digital Technologies, NDT 2012, pages 54–

68, Dubai, UAE, 2012. Springer Berlin Heidelberg.

[121] Object Management Group (OMG). Uml 2.4.1 superstructure specification, 2011.

[122] David Harel and Hillel Kugler. The rhapsody semantics of statecharts (or, on the

executable core of the uml). In Integration of Software Specification Techniques for

Applications in Engineering, volume 3147 of Lecture Notes in Computer Science,

pages 325–354. Springer Berlin Heidelberg, 2004.

[123] David Harel and Amnon Naamad. The statemate semantics of statecharts. ACM

Trans. Softw. Eng. Methodol., 5(4):293–333, October 1996.

[124] Lionel C. Briand, John W. Daly, and Jürgen Wüst. A unified framework for cohesion

measurement in object-oriented systems. Empirical Software Engineering, 3(1):65–

117, 1998.

[125] Lionel C. Briand, John W. Daly, and Jürgen K. Wüst. A unified framework for cou-

pling measurement in object-oriented systems. IEEE Trans. Softw. Eng., 25(1):91–

121, January 1999.

162

Bibliography

[126] Daniel Lucrédio, Renata P. M. Fortes, Eduardo S. Almeida, and Silvio Lemos Meira.

Performing domain analysis for model-driven software reuse. In Proceedings of the

10th International Conference on Software Reuse: High Confidence Software Reuse

in Large Systems, ICSR ’08, pages 200–211, Berlin, Heidelberg, 2008. Springer-

Verlag.

[127] Onaiza Maqbool and Haroon Babri. Hierarchical clustering for software architecture

recovery. IEEE Transactions on Software Engineering, 33(11):759–780, Nov 2007.

[128] Jun Jang Jeng and Betty H. C. Cheng. Using formal methods to construct a software

component library. In Proceedings of 4th European Software Engineering Confer-

ence, ESEC ’93, pages 397–417, Garmisch-Partenkirchen, Germany, 1993. Springer

Berlin Heidelberg.

[129] Ebrahim Bagheri and Dragan Gasevic. Assessing the maintainability of software

product line feature models using structural metrics. Software Quality Journal,

19(3):579–612, 2011.

[130] Lennart C.L. Kats, Rob Vermaas, and Eelco Visser. Testing domain-specific lan-

guages. In Proceedings of the ACM International Conference Companion on Object

Oriented Programming Systems Languages and Applications Companion, OOPSLA

’11, pages 25–26, New York, NY, USA, 2011. ACM.

[131] Erwan Bousse, Jonathan Corley, Benoit Combemale, Jeff Gray, and Benoit Baudry.

Supporting efficient and advanced omniscient debugging for xdsmls. In Proceed-

ings of the 2015 ACM SIGPLAN International Conference on Software Language

Engineering, SLE 2015, pages 137–148, New York, NY, USA, 2015. ACM.

[132] S. Mancoridis, B. S. Mitchell, C. Rorres, Y. Chen, and E. R. Gansner. Using au-

tomatic clustering to produce high-level system organizations of source code. In

Proceedings of the 6th International Workshop on Program Comprehension, IWPC

’98, pages 45–, Washington, DC, USA, 1998. IEEE Computer Society.

[133] J. Mayrand, C. Leblanc, and E. M. Merlo. Experiment on the automatic detection of

function clones in a software system using metrics. In Software Maintenance 1996,

Proceedings., International Conference on, pages 244–253, Nov 1996.

[134] Julia Rubin, Krzysztof Czarnecki, and Marsha Chechik. Cloned product variants:

from ad-hoc to managed software product lines. International Journal on Software

Tools for Technology Transfer, 17(5):627–646, 2015.

[135] David Méndez-Acuña, José A. Galindo, Benoit Combemale, Arnaud Blouin, and

Benoit Baudry. Reverse-engineering reusable language modules from legacy

163

BIBLIOGRAPHY

domain-specific languages. In Proceedings of the International Conference on Soft-

ware Reuse, ICSR 2016. Springer, Limassol, Cyprus, 2016.

[136] Nadia Martaj and Mohand Mokhtari. Stateflow. In MATLAB R2009, SIMULINK

et STATEFLOW pour Ingénieurs, Chercheurs et Étudiants, pages 513–586. Springer

Berlin Heidelberg, 2010.

[137] Roberto E. Lopez-Herrejon, Lukas Linsbauer, José A. Galindo, José A. Parejo,

David Benavides, Sergio Segura, and Alexander Egyed. An assessment of search-

based techniques for reverse engineering feature models. Journal of Systems and

Software, 103:353 – 369, 2015.

[138] Jabier Martinez, Tewfik Ziadi, Tegawendé F. Bissyandé, Jacques Klein, and Yves Le

Traon. Bottom-up adoption of software product lines: a generic and extensible ap-

proach. In Proceedings of the 19th International Conference on Software Product

Line, SPLC 2015, Nashville, TN, USA, July 20-24, 2015, pages 101–110, 2015.

[139] J. Martinez, T. Ziadi, T. F. Bissyandé, J. Klein, and Y. l. Traon. Automating the

extraction of model-based software product lines from model variants (t). In Auto-

mated Software Engineering (ASE), 2015 30th IEEE/ACM International Conference

on, pages 396–406, Nov 2015.

[140] Dorel Lucanu and Vlad Rusu. Program equivalence by circular reasoning. In Pro-

ceedings of the International Conference on Integrated Formal Methods, IFM 2013,

pages 362–377, Turku, Finland, 2013. Springer.

[141] Benjamin Biegel and Stephan Diehl. Jccd: A flexible and extensible api for im-

plementing custom code clone detectors. In Proceedings of the International Con-

ference on Automated Software Engineering, ASE 2010, pages 167–168, Antwerp,

Belgium, 2010. ACM.

[142] Markus Völter, Sebastian Benz, Christian Dietrich, Birgit Engelmann, Mats He-

lander, Lennart C. L. Kats, Eelco Visser, and Guido Wachsmuth. DSL Engineer-

ing - Designing, Implementing and Using Domain-Specific Languages. dslbook.org,

2013.

[143] Wesley K.G. Assunção, Roberto E. Lopez-Herrejon, Lukas Linsbauer, Silvia R.

Vergilio, and Alexander Egyed. Extracting variability-safe feature models from

source code dependencies in system variants. In Proceedings of the 2015 Annual

Conference on Genetic and Evolutionary Computation, GECCO ’15, pages 1303–

1310, New York, NY, USA, 2015. ACM.

[144] Steven She, Uwe Ryssel, Nele Andersen, Andrzej Wasowski, and Krzysztof Czar-

necki. Efficient synthesis of feature models. Information and Software Technology,

164

Bibliography

56(9):1122 – 1143, 2014. Special Sections from “Asia-Pacific Software Engineer-

ing Conference (APSEC), 2012” and “ Software Product Line conference (SPLC),

2012”.

[145] Eclipse, xText. Accessed: 2016-08-16. http://www.eclipse.org/Xtext/.

[146] Eclipse, Sirius. Accessed: 2016-08-16. https://eclipse.org/sirius/overview.html.

[147] Christian Berger, Holger Rendel, Bernhard Rumpe, Carsten Busse, Thorsten Jablon-

ski, and Fabian Wolf. Product line metrics for legacy software in practice. In Work-

shop Proceedings of the International Software Product Lines Conference, SPLC

2010, pages 247–250, Jeju Island, South Korea, 2010. Springer.

[148] David Eppstein. Learning Sequences: An Efficient Data Structure for Learning

Spaces, pages 287–304. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.

[149] Carla Limongelli, Filippo Sciarrone, Marco Temperini, and Giulia Vaste. Lecomps5:

A Framework for the Automatic Building of Personalized Learning Sequences, pages

296–303. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.

[150] David Harel. Statecharts: a visual formalism for complex systems. Science of Com-

puter Programming, 8(3):231 – 274, 1987.

[151] Sebastian Fischer and Herbert Kuchen. Data-flow testing of declarative programs.

SIGPLAN Not., 43(9):201–212, September 2008.

[152] Simon Li. A matrix-based clustering approach for the decomposition of design prob-

lems. Research in Engineering Design, 22(4):263–278, 2011.

165

http://www.eclipse.org/Xtext/
https://eclipse.org/sirius/overview.html

Abstract

The use of domain-specific languages (DSLs) has become a successful technique in the de-

velopment of complex systems because it furnishes benefits such as abstraction, separation

of concerns, and improvement of productivity. Nowadays, we can find a large variety of

DSLs providing support in various domains. However, the construction of these languages

is an expensive task. Language designers are intended to invest an important amount of time

and effort in the definition of formal specifications and tooling for the DSLs that tackle the

requirements of their companies.

The construction of DSLs becomes even more challenging in multi-domain companies

that provide several products. In this context, DSLs should be often adapted to diverse

application scenarios, so language development projects address the construction of several

variants of the same DSL. At this point, language designers face the challenge of building

all the required variants by reusing, as much as possible, the commonalities existing among

them. The objective is to leverage previous engineering efforts to minimize implementation

from scratch.

As an alternative to deal with such a challenge, recent research in software language

engineering has proposed the use of product line engineering techniques to facilitate the

construction of DSL variants. This led the notion of language product lines i.e., software

product lines where the products are languages. Similarly to software product lines, lan-

guage product lines can be built through two different approaches: top-down and bottom-up.

In the top-down approach, a language product line is designed and implemented through a

domain analysis process. In the bottom-up approach, the language product line is built up

from a set of existing DSL variants through reverse-engineering techniques.

In this thesis, we provide support for the construction of language product lines accord-

ing to the two approaches mentioned before. On one hand, we propose facilities in terms

of language modularization and variability management to support the top-down approach.

Those facilities are accompanied with methodological insights intended to guide the do-

main analysis process. On the other hand, we introduce a reverse-engineering technique

167

ABSTRACT

to support the bottom-up approach. This technique includes a mechanism to automatically

recover a language modular design for the language product line as we as a strategy to

synthesize a variability model that can be later used to configure concrete DSL variants.

The ideas presented in this thesis are implemented in a well-engineered language work-

bench. This implementation facilitates the validation of our contributions in three case

studies. The first case study is dedicated to validate our languages modularization approach

that, as we will explain later in this document, is the backbone of any approach supporting

language product lines. The second and third case studies are intended to validate our

contributions on top-down and bottom-up language product lines respectively.

168

	Contents
	Introduction en français
	Contexte scientifique
	Problématique
	Contributions
	Contexte d'application

	Introduction
	Research Context
	Problem Statement
	Contributions
	Thesis' Realization Context
	Outline

	Preliminaries
	Background
	Domain-Specific Languages (DSLs)
	Implementation Concerns for DSLs
	Technological Spaces for the Implementation of DSLs
	External versus Internal DSLs
	Language Workbenches

	Software Product Lines Engineering (SPLE)
	Summary

	State of the Art: A Literature Review on Language Product Lines
	Related Surveys and Literature Reviews
	Research Method
	Results
	The Life-Cycle of a Language Product Line
	Current Support for the Language Product Lines' Life-Cycle
	Mapping Approaches and Technological Spaces

	Open Issues in Language Product Line Engineering
	Open Issues in Top-Down Language Product Lines
	Open Issues in Bottom-Up Language Product Lines

	Threats to Validity
	Summary

	Contributions
	Foreword to the Contributions
	Scientific Scope: Addressed Open Issues
	Technological Scope: Supported Technological Space

	Facilities to Support Top-Down Language Product Lines
	Meta-language Facilities for Language Product Lines
	Supporting Languages Modularization
	Supporting Languages Variability Management

	Methodologies for Top-Down Language Product Lines
	Abstract Syntax Engineering
	Semantics Engineering

	Summary

	Reverse Engineering for Bottom-Up Language Product Lines
	Approach Overview
	Recovering a Language Modular Design
	Synthesizing Language Variability Models
	Summary

	Implementation and Validation
	Implementation: The Puzzle Toolkit
	Using EMF, K3, and Mélange to Specify DSLs
	Capabilities of Puzzle
	Capabilities to Support Top-Down Language Product Lines
	Capabilities to Support Bottom-Up Language Product Lines

	Architecture
	Summary

	Validation: Case Studies
	Revisiting the Modular Design of UML
	Problem: UML is a Composition of Several ``Language Units"
	Solution: Language Interfaces

	Logo for Progressive Programming Learning
	Problem's Description: Learning Sequences and DSL Variants
	Solution: A Top-Down Language Product Line

	Reverse-Engineering a Language Product Line for FSMs
	Problem Description: Several Formalisms for FSMs
	Solution: Reverse-Engineering a Language Product Line

	Summary

	Closure
	Conclusion and Perspectives
	Conclusion
	Perspectives
	Broadening the Spectrum of our Contributions
	Testing and Evolution of Language Product Lines

	Appendixes
	Extending EMOF to Support Language Interfaces
	Introducing Virtualization in EMOF
	Introducing Module Visibility in EMOF

	Hierarchical Domain Analysis
	Empirical Data on Specification Cloning in DSLs
	List of Tables
	List of Figures
	List of Publications
	Bibliography
	Abstract

