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Résumé Français

Introduction

Dans toutes les disciplines scientifiques, la modélisation est le processus de simplifi-
cation des aspects pertinents d’un système. En informatique, plus particulièrement dans
l’ingénierie et le développement logiciel, les modèles sont utilisés sur une grande étendue
pour décrire un système. Ces modèles peuvent représenter d’une manière précise sa struc-
ture, sa logique ou/et son comportement. C’est grâce aux langages de modélisation que
les modèles sont décrits d’une façon structurée et qui respecte un ensemble de règles bien
définies. Le langage UML (Unified Modelling Language) 1 en est un exemple répandu.

L’ingénierie Dirigée par les Modèles (IDM) est l’approche qui favorise l’utilisation
des modèles pour améliorer l’ingénierie des systèmes et leurs applications. Au cours de
la dernière décennie, les technologies IDM ont offert une pratique pour accompagner le
développement logiciel tout au long de son cycle de vie, étape par étape. Son but principal
est de passer de la spécification d’un système à son exécutabilité. Ceci est concédé par les
concepts de base de l’IDM qui sont la centralité des modèles (logiciel, données et système)
et leurs traitements automatisés dans toutes les phases du cycle de vie de l’ingénierie
logiciel. La transformation et la persistance efficace de ces modèles sont des opérations
clés pour permettre cette automatisation.

La transformation de modèles (TM) est le processus de traduction d’un ou de plusieurs
modèles source à un ou plusieurs modèles cible. Il existe différents langages de transforma-
tion de modèles conçus dans la perspective d’aider les utilisateurs à décrire des opérations
de manipulation de modèles d’une manière intuitive. Ils fournissent des concepts adéquats
pour définir des transformations modulaires et réutilisables. Les transformations de mod-
èles peuvent être utilisées pour différentes intentions, par exemple, la semi-automatisation
des configurations, la vérification et la génération de code. Finalement, les modèles sont
stockés et interchangés entre les différents outils de modélisation au travers d’une couche
de persistance.

Description de la problématique

Grâce à sa promesse de réduire les efforts de développement et de la maintenance des
logiciels, l’IDM attire de plus en plus d’acteurs industriels. En effet, elle a été adoptée
avec succès dans plusieurs domaines tels que le génie civil, l’industrie automobile et la
modernisation de logiciels. Toutefois, la taille croissante des modèles utilisés nécessite de

1. http://www.omg.org/spec/UML/
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concevoir des solutions passant à l’échelle afin de les traiter (transformer) et de les stocker
(persister) de manière efficace.

Dans le cadre de cette thèse, nous nous concentrons principalement sur les problèmes
de la mise à l’échelle des techniques de transformation des modèles et de leur persistance :

Mise à l’échelle de l’exécution des transformations de modèles — Il est possible
d’implémenter des transformations de modèles distribuées à l’aide des langages de pro-
grammation à usage général et un des modèles de programmation distribuée, tels que
MapReduce ou Pregel. Cependant, un tel processus n’est pas trivial. D’autant plus que, la
programmation distribuée nécessite de se familiariser avec la théorie de la concurrence
et de la distribution. Ceci n’est pas très commun chez les développeurs d’applications
IDM. En outre, ce paradigme introduit toute une nouvelle classe d’erreurs, soit liée à la
synchronisation des tâches ou bien à l’accès aux données partagées. Enfin, la program-
mation distribuée implique une analyse complexe pour l’optimisation des performances
comme par exemple l’équilibrage de la charge de calcul et la maximisation de la localité
des données.

Mise à l’échelle de la persistance des modèles — Bien qu’il existe plusieurs solutions
pour persister les modèles, la plupart ne sont toujours pas à l’écoute des exigences du
marché industriel. D’une part, les solutions utilisant la représentation XML pour stocker
des modèles ne permettent pas de partiellement charger ou décharger un modèle. Par
conséquent, la taille des modèles qu’ils peuvent gérer est limitée par la capacité mémoire
de la machine utilisée. D’autre part, les solutions reposant sur des bases de données
SQL ou NoSQL ne sont pas appropriées pour supporter des scénarios de modélisation
spécifiques, en particulier, la transformation distribuée des modèles. Nous argumentons
que ces solutions n’offrent pas une bonne flexibilité permettant l’équilibrage de charge et
le partitionnement de données.

Contributions

Une façon de pallier cette problématique est d’utiliser les systèmes et les bases de
données répartis. D’une part, les paradigmes de programmation distribuée tels que MapRe-
duce et Pregel peuvent simplifier la distribution de transformations des modèles. Et d’autre
part, l’avènement des bases de données NoSQL permet le stockage efficace des modèles
d’une manière distribuée.

Dans cette thèse, nous apportons les contributions suivantes :

1. Un framework réparti pour la transformation des modèles dans le Cloud — Nous
proposons une approche pour la distribution automatique de l’exécution des transfor-
mations de modèles écrites dans un langage déclaratif de transformation de modèle,
ATL, en dessus d’un modèle de programmation distribuée, MapReduce. Nous
montrons que, grâce au haut niveau d’abstraction de ces langages déclaratifs, leur sé-
mantique d’exécution peut être alignée avec le paradigme MapReduce afin de livrer
un moteur distribué de transformations de modèles. La distribution est implicite et
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Figure 1 – Aperçu global de notre framework de transformations distribuées

la syntaxe du langage n’est pas modifiée (aucune primitive de parallélisation n’est
ajoutée).

2. Une approche efficace de partitionnement de modèles pour les transformations

distribuées — Nous formalisons le problème de partitionnement des modèles pour
les transformations distribuées en programmation linéaire binaire et proposons un
algorithme inspiré des résultats récents sur le partitionnement équilibré des graphes-
continus. Le processus commence par l’analyse statique des règles de transformation
afin d’extraire des informations sur les patterns d’accès aux modèles. Une fois cette
information extraite, elle permet à l’algorithme de décider instantanément à quelle
partition un élément de modèle doit être assigné. Pour valider notre approche, nous
l’appliquons à notre moteur distribué de transformation de modèles.

3. Un framework décentralisé de persistance de modèles – Nous étendons une solution
existante pour la persistance des modèles, NeoEMF. Nous exploitons les capabilités
des bases de données NoSQL, afin d’équiper NEOEMF avec la capacité de manipuler
et de stocker les modèles d’une manière décentralisée. NeoEMF est aussi livré
avec un ensemble de stratégies pour améliorer les performances, notamment, le
chargement paresseux des éléments de modèles. En outre, Nous analysons la
sémantique d’ATL, en particulier, les opérations atomiques de manipulation de
modèles afin d’exposer l’ensemble minimal de propriétés ACID garantissant la
cohérence et la consistance des modèles cible. Finalement, nous montrons comment
NEOEMF supporte ces propriétés.

Framework de transformation distribuée dans le Cloud

Nous proposons une approche de parallélisation des transformations de modèles selon
un schéma de distribution de données. Ce schéma nous semble le plus approprié comme
les calculs de graphes sont souvent pilotés par les données et dictés par la structure du
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graphe. La Figure 1 illustre un aperçu global de notre framework de distribution par le
moyen d’un simple exemple. La transformation est composée d’une règle unique qui
modifie la forme des noeuds (de Carré en Hexagone), mais conserve leur identité ainsi que
la topologie du graphe.

Le framework est constitué de deux briques essentielles, un moteur distribué de
transformation et un framework de persistance décentralisée. Le cluster est composé d’un
noeud maître (master), de nœuds de données (data nodes) et de noeuds de calcul (task
nodes). Le master est responsable de partitionner le modèle et de l’envoyer aux noeuds
de calcul. Ces derniers effectuent la transformation en deux phases. La première phase
correspond à la transformation locale des éléments assignés (la phase map), tandis que la
deuxième est responsable de composer les résultats de l’étape précédente (sous la forme
de sous-ensemble du modèle cible). C’est grâce aux nœuds de données que les noeuds de
calcul sont capables de communiquer et de stocker leur résultat.

Phase de distribution — Au début de cette phase, le noeud master analyse le code
de la transformation afin de partitionner le modèle source d’une manière équitable et
efficace. Chacun de ces splits contient un sous-ensemble du modèle source pour traitement.
Ce processus repose sur un algorithme qui, en se basant sur l’analyse de code de la
transformation, décide instantanément à quelle noeud de calcul il est préférable qu’un
élément soit assigné.

Phase map — Bien que, chaque noeud de calcul transforme seulement le sous-ensemble
assigné, il dispose d’une vue complète sur les modèles en entrée, au cas où il ait besoin
d’éléments supplémentaires pour effectuer le calcul. Dans cette phase, chaque noeud
charge la transformation, puis reçoit l’ensemble des éléments source lui sont attribués, un
par un. Pour chaque élément, il vérifie s’il satisfait la garde de l’une des règles et génère
les éléments cible correspondants à cette règle. Par la suite, l’algorithme instancie les
liaisons entre les éléments cible qu’il a généré localement. En ce qui concerne les éléments
non locaux, l’algorithme génère plutôt des liens vers les éléments source. Ce lien va être
substitué par les éléments cible auxquels il correspond à la phase de composition.

Phase reduce — A la fin de la phase précédente, tous les éléments cible sont créés, les
liaisons locales sont faites et les liaisons non-locales font référence aux éléments source
afin d’être résolues. Le noeud master distribue les liaisons non résolues, et chaque noeud
de calcul se charge de résoudre l’ensemble des liaisons lui sont affectées. L’algorithme
parcourt toutes les liaisons non-locales, lis les éléments source et les remplace par les
éléments cible correspondants. A la fin de cette phase, tous les sous-ensembles du modèle
cible sont composés et le modèle global est généré.

Outils et Résultats

Nous validons notre approche en implémentant un moteur distribué des transformations
de modèles en ATL sur MapReduce (ATL-MR). Notre moteur est basé d’un côté, sur
Hadoop, l’implémentation open source de MapReduce et fourni par Apache, et d’un autre
côté, sur EMFTVM [125], une machine virtuelle ATL.
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Dans la machine virtuelle standard, le moteur de transformation parcourt l’ensemble
des règles et recherche les éléments correspondants à sa condition d’application (garde).
Dans notre implémentation, la machine virtuelle itère les différents éléments du modèle
d’entrée, et pour chaque élément elle vérifie s’il est apparié par une règle existante.

Nous étendons la machine virtuelle avec un ensemble de méthodes permettant l’exécution
en deux modes différents, local ou distribué. Notre implémentation adopte des bonnes
pratiques de conception pour le traitement de graphes dans MapReduce, à savoir les
patrons InMapperCombiner et Shimmy proposés par Lin et al. [88].

Nous fournissons notre moteur avec NEOEMF/COLUMN, une couche de persistance
distribuée au-dessus de HBase. ATL-MR exploite les fonctionnalités mises en œuvre dans
NEOEMF/COLUMN pour distribuer le stockage des modèles et permettre la lecture et
l’écriture simultanée des modèles.

Nous démontrons la mise à l’échelle de notre outil en l’évaluant dans différentes études
de cas bien connues. Nous montrons que ATL-MR est jusqu’à 6X plus rapide que la
VM standard quand exécuté sur un cluster de 8 machines. De plus, nous démontrons
qu’en utilisant notre algorithme de distribution de modèles, nous améliorons la localité des
données jusqu’à 16%. Nos outils sont open-source et disponibles en ligne 2 3. Finalement,
un cluster Docker est mis à la disposition des utilisateurs, non seulement pour utiliser,
tester et découvrir notre framework, mais aussi pour reproduire nos experiences 4. Les
instructions pour déployer notre cluster sont aussi disponibles en ligne 5.

2. ATL-MR: https://github.com/atlanmod/ATL_MR/
3. NEOEMF: https://www.neoemf.com
4. Images Docker: https://hub.docker.com/u/amineben/
5. Builds:https://github.com/atlanmod/hadoop-cluster-docker

https://github.com/atlanmod/ATL_MR/
https://www.neoemf.com
https://hub.docker.com/u/amineben/
https://github.com/atlanmod/hadoop-cluster-docker




1
Context

1.1 Introduction

In all scientific disciplines, modeling is the simplification of relevant aspects of a
situation in the real world for its systematic study. It is recognized to fulfill many purposes
w.r.t. a particular intention (e.g. descriptivity, simulation, etc.) by means of abstraction. In
computer science, especially software engineering and development, models are widely
used to describe different aspects of a system under development. Models can represent
the structure, logic, and behavior of a system. Thanks to modeling languages, models
are consistently expressed in a structure respecting a set of well-defined rules. A typical
example is the Unified Modeling Language (UML) 1 suite.

Model-Driven Engineering (MDE) is the approach that promotes the use of models to
enhance systems and applications engineering. Over the past decade, MDE technologies
have been offering a systematic way to walk software through its whole development
cycle, step by step. Its main intent is to cross over from the specification of a system to
its executability. This is granted by the core concepts of MDE which are the centrality
of models (software, data, and system) and their automated processing in all phases of a
software engineering lifecycle. Models represent abstract views of the system. They are
designed for a specific purpose (e.g. interoperability) in order to answer to a specific class
of questions. Figure 1.1 shows some of the activities performed in MDE.

The MDE has been successfully embraced in several domains for automating software
development and manufacturing maintainable solutions while decreasing cost and effort. A
proof is the plethora of tools and prototypes built around the Eclipse Modeling Framework
(EMF) ecosystem, and the significant number of groups that are working on MDE. For
instance, recent work have shown benefits of MDE in applications for the construction in-
dustry [137] (for communication of building information and interoperation with different
tools and actors), modernization of legacy systems [27] (for aiding the migration of large

1. http://www.omg.org/spec/UML/
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Figure 1.1 – Overview of MDE: activities and requirements

legacy codebases into novel versions meeting particular requirements), learning and big
data analytics [46] (for reducing the expertise necessary to implement probabilistic models
for machine learning, and speed up development). AUTomotive Open System ARchitec-
ture (AUTOSAR) used in the development of automotive software systems, and Building
Information Modeling (BIM) are two successful standards involving MDE development
principles in their software life-cycle for more than ten years and twenty years respectively.
Model Query and Transformation (MQT) are key operations to guarantee these benefits.

A model transformation operation is the process of translating one model to another. A
complex transformation written in one of the General-Purpose Languages (GPLs), such as
Java, can be extremely large and unmaintainable. Fortunately, MQT languages come to
the rescue, having been designed to help users in specifying and executing model-graph
manipulation operations efficiently. They provide adequate constructs and facilities to
specify modular and reusable transformations with less effort. Model transformations can
be subject to design, implementation, reuse, and evolution. For instance, in AUTOSAR,
model transformations are used for different intents: to name a few, semi-automatization
of configurations, verification & validation, and code generation. Finally, models in MDE
are stored and interchanged between MDE-based modeling tools by means of persistence
mediums.

1.2 Problem Statement

Despite all the promises, the MDE approach is not able yet to attract large-scale
industrial systems. This is due to the serious scalability issues that the current generation
of MDE tools is facing [11, 81, 62]. Indeed, according to existing empirical assessment
from industrial companies adopting MDE [11, 51], the lack of tools and technologies
supporting collaboration and scalability are the substantial disadvantages in MDE. Such
large systems are witnessing a growing complexity in design, as well as a large amount of
data. For example, BIM [137] contains a rich set of concepts (more than eight hundred)
for modeling different aspects of physical facilities and infrastructures. A building model
in BIM is typically made of several gigabytes of densely interconnected graph nodes.



1.2. PROBLEM STATEMENT 15

Moreover, Laasko et al. in their review [86] of the history of the IFC standard, have shown
how the language was evolving in time when integrating different aspects and stakeholders.
Likewise for AUTOSAR [47, 48]. Unluckily, such enrichment comes at a price. Therefore,
there is a calling need to develop a new generation of tools capable of coping with these
issues.

Modeling tools are built around the so-called modeling frameworks that provide ba-
sic model-management functionalities and interoperability to the modeling ecosystem.
Among the frameworks currently available, EMF has become the de facto standard for
building modeling tools, In particular, tools built around EMF count in more than 350 2,
and more than 50 are in effect mature, stable, and official Eclipse projects. In particular,
Query/View/Transformation (QVT)-d 3 and AtlanMod Transformation Language (ATL) 4

are the most widespread examples of MT languages and engines in Eclipse. The relational
paradigm is the most popular among MT languages, based on the declarative definition
of rules relating input and output model elements. Relational model transformations use
tracing mechanisms to instate these relations. However, being based on graph match-
ing and traversing techniques, MTs are facing serious scalability issues as graphs grow
in scale and complexity. And accordingly, graph processing problems can exceed the
resources (memory and CPU) of a single machine.

In this thesis, we mainly focus on enabling scalability in model transformation and
persistence:

Model transformation scalability — Distributed model transformations may be imple-
mented by using a GPL and one of the popular distributed programming models such as
MapReduce [44] or Pregel [91]. However such development is not trivial, especially since
distributed programming requires familiarity with concurrency and distribution theory
that is not common among MDE application developers, in particular when the set of
possible execution paths can be large, and transformation result can be non-deterministic.
Distributed programing also introduces a completely new class of errors w.r.t. sequential
programming linked to task synchronization and shared data access. Finally it entails
complex analysis for performance optimization, for instance, balancing computation load,
and maximizing data locality.

Model persistence scalability — While several solutions to persisting EMF models ex-
ist, most of them are still not lined up with nowadays requirements of industrial companies.
On the one hand, solutions using XML-like representation to store models do not allow
partial model load and unload. Hence, the size of the models they can handle is limited by
the memory size. On the other hand, solutions relying on SQL or NoSQL stores are not
appropriate for handling particular modeling scenarios. For instance, relational databases
perform badly when queries involve multiple joins. In modeling scenarios, this translates
to executing a complex traversal. A particular scenario of interest to us is distributed com-
putation, in particular distributed model transformation. We argue that existing solutions
do not offer a good flexibility to achieve common practices and requirements in distributed

2. According to the Eclipse market place https://marketplace.eclipse.org
3. https://git.eclipse.org/r/mmt/org.eclipse.qvtd
4. http://eclipse.org/atl/

https://marketplace.eclipse.org
https://git.eclipse.org/r/mmt/org.eclipse.qvtd
http://eclipse.org/atl/
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computing such as load balancing and data partitioning. In this thesis, we emphasize on
this particular scenario.

To summarize, in this thesis, we argue that the growth in data and complexity that is
being experienced by the industry, is ahead of the current generation of model transfor-
mation and persistence tools. This hampers the adoption of MDE in industrial contexts.
Therefore a new generation of MQT engines and model persistence frameworks should be
provided.

Our overall objectives are:

1. To develop an MT language and engine enabling MDE developers to specify and

execute distributed model transformation in an efficient and reliable manner

(a) The syntax of the MT language should not be modified, no primitives for
distribution should be added and distribution should be implicit. Moreover, the
transformation engine should hide all the complexities related to distributed
systems. Finally, the transformation engine should transparently support the
integration with existing tools in the EMF ecosystem

(b) The transformation engine should efficiently distribute the workload across the
cluster nodes in a way to improve the performance and maximize data locality

2. To develop a model persistence framework that enables the efficient persistence

of Very Large Models (VLMs). The framework should support the loading and
unloading of very large models. It also should be suitable for different modeling ac-
tivities, especially, distributed model transformations. Finally, it should transparently
support the integration with existing tools in the EMF ecosystem

1.3 Approach

One way to overcome the scalability issues associated with model transformations, is
exploiting the recent emergence of systems and programming paradigms for parallelizing
model transformation operations and persistence. This is made convenient by the recent
wide availability of distributed clusters in the Cloud, as well as the broad variety of
distributed programming models. Such frameworks are provided with the complete
package for developing distributed applications. MapReduce is one of the well-known
programming models. It is designed to simplify data processing on Large Clusters. It
comes with a bunch of libraries designated to ensure a good level of reliability, and
fault-tolerance.

Relational languages like ATL, thanks to their level of abstraction, can be provided with
semantics for implicit distributed execution. By relying on the well-defined computational
model of such frameworks, their semantics can be aligned with the to the execution
semantics of the transformation language. The task of managing all the complexities
related to synchronization and coordination between different workers will then be handed
to the underlying programming model.

On the other hand, to cope with the scalability issues related to model persistence,
we propose a multi-backend model persistence framework that couples state-of-the-art
NoSQL stores. Each store is suitable for a specific modeling scenario. In this thesis we
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focus on distributed applications, in particular, distributed relational model transformations.
Moreover, we rely on some techniques such as caching and lazy-loading to break down
the complexity of VLMs.

1.4 Contributions

This thesis provides the following contributions:

1. A distributed framework for model transformation in the Cloud — We propose an
approach to automatically distribute the execution of model transformations written
in a popular MT language, ATL, on top of a well-known distributed programming
model, MapReduce. We show how the execution semantics of ATL can be aligned
with the MapReduce computation model. We describe the extensions to the ATL
transformation engine to enable distribution, and we experimentally demonstrate the
scalability of this solution in a reverse-engineering scenario. We demonstrate the
effectiveness of the approach by making an implementation of our solution publicly
available and using it to experimentally measure the speed-up of the transformation
system while scaling to larger models and clusters. ATL-MR is open source and
available online 5.

2. An efficient data partitioning approach for distributed model transformations — We
propose a data distribution algorithm for declarative model transformation based on
static analysis of relational transformation rules. We adapt existing formalization of
uniform graph partitioning to the case of distributed MTs by means of binary linear
programming. The process starts by extracting footprints from transformation rules.
Driven by the extracted footprints, we then propose a fast data distribution algorithm.
This algorithm is inspired by recent results on balanced partitioning of streaming
graphs. To validate our approach, we apply it to our distributed MT engine. We
implement our heuristic as a custom split algorithm for ATL on MapReduce and we
evaluate its impact on remote access to the underlying backend.

3. A persistence framework for storing and accessing VLMs in distributed environments

— We extend an existing multi-persistence backend for manipulating and storing
EMF-based models in NoSQL databases, NEOEMF. This solution is implemented
in three different backends, each, well-suitable for a specific modeling scenario.
NEOEMF comes with a set of caching strategies to enhance its performance. The
proposed implementation is highly extensible and adaptable and MDE developers
can extend it with additional caching strategies and even backends on a need basis.
NEOEMF is open source and available online 6.

1.5 Outline of thesis

The Map of thesis with chapters and relations among them is shown in Figure 1.2.

Chapter 2 gives an overview of the main concepts used in this thesis. It starts by
introducing MDE as a software development paradigm, and briefly describes some of its

5. https://github.com/atlanmod/ATL_MR/
6. http://www.neoemf.com/

https://github.com/atlanmod/ATL_MR/
http://www.neoemf.com/
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core concepts. Later, it introduces parallel programming models, more specifically implicit
and explicit parallelism. It also presents NoSQL databases as an alternative to store data.
It gives an overview of different categories, then details the two categories we use in our
thesis.

Chapter 3 presents our conceptual framework and identifies the essential bricks to
accomplish distributed model transformations. Afterwards, it introduces our contribution
for distributing model transformations on MapReduce. Finally, it examines the execution
semantics of ATL against the Reflective MOF specification in order to extract the minimal
set of Atomicity, Consistency, Isolation, Durability (ACID) properties guaranteeing a
consistent output. This chapter is an enhancement of our work in [17].

Chapter 4 extends our approach with efficient data model partitioning. It first motivates
the need for efficient partitioning algorithms. Later, it presents the formalization of our
problem using Integer Linear Programming. Then it introduces our two algorithms for
footprints extraction and data partitioning algorithm. This chapter is based on our work
in [19].

Chapter 5 presents our solutions to store VLMs in EMF. It starts by showing a global
overview of our solution, later it describes different data mappings to the underlying
backends. Finally, it details the techniques and optimization used in NEOEMF. This
chapter is an enhancement of our work in [15, 58].

Chapter 6 validates our contributions by introducing the implementation of our solution
as a framework for efficient distribution of model transformation in MapReduce. It also de-
scribes the integration process with NEOEMF to enable distributing model transformations
in MapReduce. This chapter is an enhancement of our work in [16, 58].

Chapter 7 shows the scalability of our solutions by applying them to various well-
known case studies. The results depicted in this chapter come from our work in [15, 17, 19].

Chapter 8 concludes this manuscript, draws the main contributions, and finally de-
scribes some future work.
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2
Basic concepts & background

This chapter gives an overview of the main concepts used in this thesis. In a first
part, we introduce the notion of Model Driven Engineering, and we briefly describe one
application domain among others. Furthermore, we introduce the concepts of models,
metamodels, and model transformation languages. We focus on relational model transfor-
mation, which we exemplify by the means of the ATL language. Second, we introduce the
concepts of Parallel Programming Models. Specifically, we present the two main existing
approaches, (i) implicit parallelism, and (ii) explicit parallelism. Finally,we present NoSQL
databases as an alternative to store data in other forms than relational databases. We give
an overview of different categories of NoSQL databases, then we depict in more details
the two categories that will be exploited in course of this thesis, namely, column stores
and graph stores.

2.1 Basic concepts in MDE

2.1.1 Model-Driven Engineering

MDE is a software development paradigm favouring the use of models to assist and
drive the development and maintenance of software. MDE came to the surface as a
generalization of the MDA (Model Driven Architecture) paradigm, an OMG standard.
After that, Kent et al. [78] extended it with the notions of software development process
and modeling space for organizing models. MDE inherits most of MDA concepts, e.g.
metamodels, models, and transformations.

MDE has been successfully applied to several domains. A typical example is the
model-based modernization of legacy systems (exemplified in Figure 2.1). A software
modernization process follows a systematic approach that starts by building high-level ab-
straction models from source code (injection). Thanks to these models, engineers are
able to understand, evaluate, and refactor legacy enterprise architectures. Us-
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Figure 2.1 – Modernization process of legacy applications

ing these intermediate models, engineers are able to partially generate modernized code for
a specific platform (code generation). Shifting models from one domain to another,
generating code from them, or exploring and understanding them is achieved by means of
model-graph queries and transformations (MQTs). Specific languages and transformation
engines have been designed to help users define and execute these operations.

Hereafter, we define the main concepts of MDE, namely, models, metamodels, and
model transformations. Later, we introduce the ATL Transformation Language, a relational
(rule-based) model-to-model transformation language by means of a running example, the
ControlFlow2Dataflow transformation.

Models, Metamodels, and Model Transformations

Models. They are an abstracted representation of a system under design. Usually, models
are built for a specific goal and intent using a precise denotation defined by a formal or
semi-formal language, called modeling language (e.g. UML). Models are used in various
disciplines such as civil engineering, mechanical engineering, and computer science. One
of the main characteristics of a model is its level of abstraction. Serving a particular goal,
a model can represent some characteristics of a system but not others. Nonetheless, this
representation should preserve some intended characteristics of the system, in order to
allow acquiring knowledge about these characteristics through the model [85].

Metamodels. Metamodeling is the process of studying or providing a well-defined
modeling technique (facility). A metamodel define concepts, relationships, and semantics
for exchange of user models between different modeling tools. It is a model representing
the structural representation of a set of models. It consists of a set of concepts, and rules
regulating how models can be denoted in a particular language. A model conforms to

its metamodel, when it satisfies these rules.

Models are organized in abstraction in spans of multiple levels related by the con-
formance relationship. This organization is also referred to as the metamodeling stack.
In MDE, this stack is limited to three levels, with a self-reflective metamodel level on
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FlowInstr
txt : String

MethodSimpleStmt

dfNext *

localStmts
*

(a) DataFlow metamodel excerpt

m1: Method

txt = ”int fact(int a)”

s1: SimpleStmt

txt = ”while (a>0);”

s2: SimpleStmt

txt = ”int r = 1;”

s3: SimpleStmt

txt = ”r *= a--;”

s4: SimpleStmt

txt = ”return r;”

(b) Sample DataFlow model

Figure 2.2 – DataFlow metamodels excerpt and a sample model

top, called meta-metamodel level. The MetaObject Facility 1 (MOF) is the standard
meta-modeling architecture proposed by the OMG. In its second version, MOF-2, is built
around other OMG standards, namely Object Constraint Language (OCL) [105] for speci-
fying constraints on MOF-based models, and XML Metadata Interchange (XMI) [107] for
storing and interchanging MOF-based models in XML.

Figure 2.2 shows an excerpt of a DataFlow metamodel together with a sample model
that conformsTo to it. In a dataflow diagram (Fig. 2.2a), a FlowInstruction(FlowInstr)
has a field txt containing the textual code of the instruction. A method may contain a set of
simple statements localStmts. A FlowInstruction points to the potential set of instructions
to whom data may be propagated (dfNext). Method signatures and SimpleStatements

(SimpleStmt) are kinds of FlowInstruction. Figure 2.2b depicts a dataflow model of
a factorial method (Fig. 2.6a). The method fact contains a set of local statements
(connected to it by diamond arrows) and has the method signature as txt attribute value.
Local statement on their turn, contain the text of the statement they represent. Finally,
statements are connected by simple arrows to show the flow of data between them.

Model Transformations. Model transformation is defined as the operation of automati-
cally generating one or more output models from one or more input models according to a
transformation specification. This specification can be implemented using any GPL. How-
ever, in the MDE community, it is more common to use Domain Specific Languages (DSLs)
to specify these operations. This family of DSLs is also referred to as Model Transforma-
tion Languages. The OMG issued a Query/View/Transformation [106] (QVT) request for
proposal, which lead to a plethora of model transformation languages [80, 75, 94, 38].

1. http://www.omg.org/mof/

http://www.omg.org/mof/
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Figure 2.3 – Simplified excerpt of “Instances Model” metamodel in MOF

Model transformation languages can either be declarative, imperative, or
hybrid. In the declarative style, only relationships between source and target model
elements are specified, and no explicit execution order is given. The declarative style relies
on rules to specify these relationships. In contrast, the imperative style explicitly specifies
the execution steps. Finally, the hybrid style extends the declarative rules with optional
imperative bodies. QVT is defined as an ensemble of three languages Relations, Core,
and Operational. They differ in their programming style and their abstraction level.
Relations and Core languages are declarative but lay in two different levels of abstraction.
Whilst, Operational mappings is an imperative language that extends Relations and Core
languages.

Another paradigm of model transformation languages is graph-based [38, 122, 104, 12].
Based on a graph rewriting style, these languages apply transformation rules recursively
until no more matches can be found. In a pure graph-rewriting system, the order on
which rule applications are executed is not deterministic, and relies heavily upon the
causal dependency of rules. Nonetheless, some of these languages are provided with
advanced control mechanisms to handle complex transformations. In this thesis we focus
on relational model transformation languages.

In what follows, we give a brief description of the MOF metamodel, then we introduce
ATL, a QVT/Relations-like language.

2.1.2 The Meta Object Facility (MOF)

We start by giving a brief description of the instances model metamodel in MOF,
which depicts the relationship between data models and their conforming metamodel. Later,
we show the MOF Reflection API. This API enables the discovery and the manipulation
of objects and data conform to the MOF specification.

The MOF instances model

A simplified metamodel of “model instances” in MOF is depicted in Figure 2.3.
MOF extends the (UML::)InstanceSpecification class to specialize two types
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MOF::Reflection::Object

+get(property : Property) : Object
+equals (element : Element)
+set(property : Property, value Object)
+isSet(property : Property) : Boolean
+unset(property : Property)
invoke(op : Operation, args : Argumet[0..*]) : Object [0..*]

MOF::Reflection::Element
+getMetaClass() : Class
+container() : Element
+isInstanceOfTypr(type : Class, includesSubTypes : Boolean) : Boolean

MOF::Common::ReflectiveSequence

+get(index : Integer) : Object
+add (index : Integer, object : Object)
+remove(index : Inetegr) : Object
+clear()
+size()
+set(index : Integer, object : Object) : Object
+addAll(objects : ReflectiveCollection) : Boolean

Figure 2.4 – Reflection Element in MOF (extracted from [110])

of instances, associations (AssociationInstance) and classes (ClassInstance).
An InstanceSpecification represents data modeled in a system according to
its specification. Each instance refers to its corresponding classifier, which is
either a Class or an Association. An (UML::)Slot specifies features’ values for class
(StructuralSlot) or association (LinkSlot) instances.

An (UML::)Property is either owned by an Association or a Class. When a property
relates to an Association, then it represents a memberEnd. Otherwise, it represents a class
attribute. A property is derived (isDerived = true) when its value can be computed
based on existing values. Derived attributes may not be persisted.

Properties of associations can be of two aggregation kinds composite or none. The
composite kind is used to represent a context in which a model element can group other
elements of the model (isComposite 2). A model element can only have one container,
and does not support cyclic containments. Hence, MOF models have a tree-like structure.
Elements with no containers are called root elements.

Values are specified using ValueSpecification. A value specification can either
be of kind DataValue (a.k.a. LiteralSpecification) in case of attributes, or
InstanceValue in case of association ends. Six different kinds of literals are supported
in MOF, Strings, Integers, UnlimitedNatural, Real, Boolean, and
finally Null. The latter is used to explicitly model the lack of a value.

MOF Reflection API

Figure 2.4 shows the MOF Reflection API. This API enables the discovery and the
manipulation of objects and data conform to the MOF specification. Object was in-
troduced in order to have an element that represents both model elements and data. An
object can get the value of any of its properties (get(property: Property)). If the property
is multi-valued, it returns a reflective collection containing the values of the property.
Otherwise it returns the value of the property.

An object can also modify its properties through the method (set(property: Property,

object : Object)). The concrete kind of the method’s parameter object depends on the
property’s multiplicity. If the property is multi-valued, the object has to be of type
ReflectiveCollection. If not, it is directly replaced by the property value within

2. aggregation = composite
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parameter. The method unset sets the value of the single-valued property to its default
value for data-types and null for objects. If the property is multi-valued, then the collection
is cleared. Finally, the method isSet returns if the value of the property is equal to its
default value in case the property is single-valued, or if it is empty otherwise.

The class Element is the superclass of all classes defined in MOF, and they inherit
all of its reflective capabilities. Each element can access its metaclass (getMetaClass())
in order to get its reflective description. It can also access its container (container()),
if any. The class ReflectiveSequence is used for manipulating ordered multi-
valued properties. It is basically a subtype of ReflectivCollection (not shown in
Figure 2.4, however all its operations are depicted in the class ReflectiveSequence).
It has the capacity to add or remove an element at a given position, clear a collection, or
return its size.

Properties can define bidirectional associations. In this case, performing a modification
on one side, triggers automatically the appropriate modification at the opposite side.
Specifically, modifying the value of a bidirectional association entails the following
sequence of operations. (i) The object is first removed from the opposite end of the
property. (ii) If the new value’s opposite property is of multiplicity upper bound equals
to 1, its old value is removed. (iii) Then, this object is added to the new value’s opposite
property. (iv) Finally, the new value is added to this property. A containment (even if not
bidirectional) triggers similar side-effects.

2.1.3 The ATL Transformation Language

Throughout this manuscript we refer to a couple of case studies to elucidate our
contributions. However, in order to introduce the ATL transformation language, we choose
as a case study, the analysis of data-flows in Java programs. The case study is well-
known in the MDE community, being proposed by the Transformation Tool Contest (TTC)
2013 [61] as a benchmark for MT engines. We focus on one phase of the scenario, the
transformation of the control-flow diagram (Figure 2.5) of a Java program into a dataflow
diagram (Figure 2.2). Such task would be typically found in real-world model-driven
applications on program analysis and modernization of legacy code.

In a control-flow diagram, a FlowInstruction (FlowInstr) has a field txt containing
the textual code of the instruction, a set of variables it defines or writes (def ), and a
set of variables it reads (use). A method may contain a set of simple statements local-

Stmts. A FlowInstruction points to the potential set of instructions that may be executed
after it (cfNext). Method signatures and SimpleStatements (SimpleStmt) are kinds of
FlowInstruction. A Parameter is a kind of Variable that is defined in method signatures.

For every flow instruction n, a cfNext link has to be created from all nearest control-flow
predecessors m that define a variable which is used by n. Formally [61]:

m→dfNext n⇐⇒ def (m) ∩ use(n) 6= ∅ ∧ ∃ Path m =

n0 →cfNext . . .→cfNext nk = n :

(def (m) ∩ use(n))\
(

⋃

0<i<k

def (ni)
)

6= ∅
(2.1)
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FlowInstr
txt : String

Var
name : String

Method ParamSimpleStmt

cfNext * use
**

def

localStmts
*

Figure 2.5 – Control-Flow metamodel excerpt

Figure 2.6 – ControlFlow2DataFlow transformation example

Figure 2.6 shows an example of models for each metamodel, derived from a small
program calculating a number factorial. For readability reasons, and in order not to con-
gest our graphs, containment references are omitted. As it can be seen in the figure, the
transformation changes the topology of the model graph, the number of nodes and their
content, and therefore can be regarded as a representative example of general transfor-
mations. In this section we refer to an ATL implementation of the transformation named
ControlFlow2DataFlow that is available online.

Model transformations in ATL are unidirectional. They are applied to read-only source
models and produce write-only target models. ATL developers are encouraged to use
declarative rules to visualize and implement transformations. Declarative rules abstract
the relationship between source and target elements while hiding the semantics dealing
with rule triggering, ordering, traceability management and so on. However, rules can be
augmented with imperative sections to simplify the expression of complex algorithms. In
this thesis, we focus on declarative-only ATL.

Languages like ATL are structured in a set of transformation rules encapsulated in a
transformation unit. These transformation units are called modules (Listing 2.1, line 1).
The query language used in ATL is the OMG’s OCL [105]. A significant subset of OCL
data types and operations is supported in ATL. Listing 2.1 shows a subset of the rules in
the ControlFlow2DataFlow transformation and Listing 2.2 an excerpt of its OCL
queries (helpers).
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Listing 2.1 – ControlFlow2DataFlow - ATL transformation rules (excerpt)
1 module ControlFlow2DataFlow ;
2 c r e a t e OUT : DataFlow from IN : ControlFlow ;
3 r u l e Method {
4 from

5 s : ControlFlow !Method
6 to

7 t : DataFlow !Method (
8 txt <− s .txt ,
9 localStmts <− s .localStmts ,
10 dfNext <− s .computeNextDataFlows ( )
11 )
12 }
13

14 r u l e SimpleStmt {
15 from

16 s : ControlFlow !SimpleStmt (not (s . def−> isEmpty ( ) and s .use−>isEmpty ( ) ) )
17 to

18 t : DataFlow !SimpleStmt (
19 txt <− s .txt ,
20 dfNext <− s .computeNextDataFlows ( )
21 )
22 }

ATL matched rules are composed of a source pattern and a target pattern. Both of
source and target patterns might contain one or many pattern elements. Input patterns
are fired automatically when an instance of the source pattern (a match) is identified, and
produce an instance of the corresponding target pattern in the output model. Implicitly,
transient tracing information is built to associate input elements to their correspondences
in the target model.

Source patterns are defined as OCL guards over a set of typed elements, i.e. only
combinations of input elements satisfying that guard are matched. In ATL, a source pattern
lays within the body of the clause ’from’ (Listing 2.1, line 15). For instance, in the rule
SimpleStmt, the source pattern (Listing 2.1, line 16) matches an element of type SimpleStmt

in which at least one variable is defined or used. Output patterns, delimited by the clause
’to’ (Listing 2.1, line 18) describe how to compute the model elements to produce when
the rule is fired, starting from the values of the matched elements.

E.g., the SimpleStmt rule produces a single element of type SimpleStmt. A set of
OCL bindings specify how to fill each of the features (attributes and references)
of the produced elements. The binding at line 19 copies the textual representation of
the instruction, the binding at line 20 fills the dfNext link with values computed by
the computeNextDataFlows OCL helper. The rule for transforming methods is
analogous (Listing 2.1, lines 3-12).

OCL helpers enable the definition of reusable OCL expressions. An OCL helper must
be attached to a context, that can be a type or global context. Since target models are
not navigable, only source types are allowed. Listing 2.2 shows our implementation of
the computeNextDataFlows helper derived by the direct translation in OCL of the
data-flow definition we gave in Equation 2.1. It has as context FlowInstr and returns a
sequence of same type (Listing 2.2, line 1).

ATL matched rules are executed in two phases, a match phase (Algorithm 1 lines 1–6)
and an apply phase (Algorithm 1 lines 7–14). In the first phase, the rules are applied
over source models’ elements satisfying their guards. Each single match, corresponds to
the creation of an explicit traceability link. This link connects three items: the rule that
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Listing 2.2 – ControlFlow2DataFlow - OCL helpers (excerpt)
1 h e l p e r Context ControlFlow !FlowInstr def :computeNextDataFLows ( ) : Sequence (

→֒ControlFlow !FlowInstr ) =
2 self . def −>collect (d | self .users (d )
3 −>reject (fi | i f fi = self then not fi .isInALoop e l s e false e n d i f )
4 −>select (fi | thisModule .isDefinedBy (fi , Sequence {fi} ,self , Sequence {} , self .

→֒definers (d )−>excluding ( self ) ) ) )
5 −>flatten ( ) ; ( a )
6

7 h e l p e r def : isDefinedBy (start : ControlFlow !FlowInstr , input : Sequence (ControlFlow !
→֒FlowInstr ) , end : ControlFlow !FlowInstr , visited : Sequence (ControlFlow !
→֒FlowInstr ) , forbidden : Sequence (ControlFlow !FlowInstr ) ) : Boolean =

8 i f input−>exists (i | i = end ) then true

9 e l s e l e t newInput : Sequence (ControlFlow !FlowInstr ) = input −>collect (i | i .
→֒cfPrev ) −>flatten ( ) −>reject (i | visited −>exists (v | v = i ) or

→֒forbidden −>exists (f | f = i ) ) in

10 i f newInput −>isEmpty ( ) then false

11 e l s e thisModule .isDefinedBy (start , newInput , end , visited−>union (newInput )
→֒−>asSet ( ) −>asSequence ( ) , forbidden )

12 e n d i f

13 e n d i f ;

triggered the application, the match, and the newly created output elements (according to
the target pattern). At this stage, only output pattern elements type is considered, bindings
evaluation is left to the next phase.

The apply phase deals with the initialization of output elements’ features. Every feature
is associated to a binding in an output pattern element of a given rule application. Indeed,
a rule application corresponds to a trace link. Features initialization is performed in two
steps, first the corresponding binding expression is computed. Resulting in a collection of
elements, it is then passed to a resolution algorithm (called resolve) for final update
into the output model.

The resolve algorithm behaves differently according to the type of each element. If
the type is primitive (in the case of attributes) or target, then it is directly assigned to the
feature. Otherwise, if it is a source element type, it is first resolved to its respective target
element – using the tracing information – before being assigned to the feature. Thanks to
this algorithm we are able to initialize the target features without needing to navigate the
target models.

2.2 Parallel programming models

Parallel computing refers to the use of a set of commodity resources (processors
or machine), jointly, to solve a single computationally expensive problem. Interest on
parallel computing kept on growing since the late 50’s. This era is acknowledged by
the advancements on supercomputers manufacturing for the following decades. In the
early 90’s, a new topology broke out to replace supercomputers, and dominate in many
applications development: computer clusters. This new trend took up interest as an
instrument for low-cost and effective parallel processing environments.

Implementing parallel application has always been a challenging procedure. How-
ever, parallel computing evolved thanks to the parallel progress in software develop-
ment [32]. Traditionally, a problem is decomposed into smaller sub-problems (tasks) that
are run in parallel, in one or more steps. These sub-problems are then subject to join
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Algorithm 1: ATL algorithm
input :Rules transfomationRules, Map elementsByType

// STARTS THE MATCH PHASE

1 foreach rule ∈ transfortmationRules do

2 foreach type ∈ getApplicableTypes(rule) do

3 foreach element ∈ getAllInstancesOfType(elementsByType, type)
do

4 if isMatched(element, rule) then

5 link ← createLink(element, rule);
6 addLink(linkSet, link);

// STARTS THE APPLY PHASE

7 foreach link ∈ linkSet do

8 foreach binding ∈ getBindings(link) do

9 if isAttribute(binding) then

10 applyAttribute(binding);

11 else

12 foreach element ∈ computeBindingExp(binding, link) do

13 resolvedElement← resolveTarget(element);
14 applyReference(resolvedElement, binding);

up (synchronization) at a certain point to maintain consistency and exchange in-
formation (communication and coordination). This programming style requires
familiarity and knowledge on parallel software development, which average programmers
do not own.

In order to make developing parallel software approachable for regular software
developers, a plethora of models, languages, and frameworks for parallel development
emerged. Models for parallel software development appear at different levels of abstraction.
The highest one is the programming model. It expresses, from a programmer’s view,
how an algorithm can be specified. Each parallel programming model supports a set
of operations/patterns to help to implement parallel software, namely parallel loops and
independent groups of tasks (pools).

Programming models are distinguished by different criteria. But most importantly,
they are identified by their ability to either implicitly or explicitly specify the parallelism.
In the next section, we introduce the explicit and implicit representation styles, and we
identify their pros and cons.

2.2.1 Explicit vs. implicit parallelism

There exist two main approaches for parallel programming, implicit and explicit
representations. Both approaches differ in the parallelization’s automation level, as well
as the efficiency guaranteed. While implicit approaches rely on parallel languages and
frameworks to ease the development by hiding internal complexities related to parallelism,
the explicit approaches assume that the programmer is the best judge to decompose tasks
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and co-ordinate between them. Although they are hard to use, explicit approaches usually
offer more flexibility, which sometimes leads to better performance and efficiency [116].

Explicit parallelism requires the programmer to be responsible for decomposing the
problem and designing the communication structure between tasks. This comes in different
forms, explicit communication and synchronization, explicit assignment to processors, and
explicit distribution.

In the explicit communication and synchronization class, the programmer has to
imperatively define all the required communication and synchronization between tasks to
control the parallel execution of the application. Message-passing models, e.g. MPI, and
thread-based models (e.g. Pthread [118]) are two famous example belonging to this class.

The explicit assignment to processors class identifies the family of parallel program-
ming models that require to specify task partitioning and assignment to processors but
hide the communication details. The best known examples are co-ordination languages,
in particular, Linda [142]. It substitutes inter-processor communication by using tuple
spaces, a pool of data that can be accessed concurrently.

In contrast to the previous class, the explicit distribution class implicitly maps tasks to
processors. However, the decomposition into tasks as well as the parallelism should be
explicitly specified. A very known example is the Bulk Synchronous Parallel (BSP [134])
programming model.

Implicit parallelism allows the programmer to care only about application develop-
ment as in sequential execution, without specifying any parallelism primitives. Implicit
parallelism is commonly achieved by restricting the semantics and data structures (e.g.
graphs, maps, vectors, etc.) of the operations of the language. They can be also provided
with built-in communication and coordination constructs at either the language or the
framework levels. Such constructs enable automatic data and task management.

In literature, two main classes of implicit parallelism exist: parallelizing compilers,
parallel languages, in particular functional programming languages. However, with the
emergence of Cloud computing, various programming models provided with implicit
parallelism have come out, namely, MapReduce [44] and Pregel [91], just to name a few.
These models have been implemented in various GPLs (e.g. Java). In this section we focus
on the MapReduce model.

A parallelizing compiler aims at automatically generating an efficient parallel program
out of a sequential one (automatic parallelization). It starts by performing a dependency
analysis of the operations to be executed. Afterwards, it assigns computations to processors
in a way that guarantees a good load-balancing and optimal amount of inter-processors
communication. However, sometimes, it is impractical to achieve a good dependency
analysis. In particular, functions call and loops with unknown bound are difficult to predict
at compile time, which sometimes results in an unacceptable runtime behaviour.

Functional languages are an attractive solution to implement parallel software. They
are provided with efficient abstraction techniques that can be used for both computation
and coordination [89], e.g. function composition and higher-order functions. Moreover, the
absence of side-effects simplifies the process of identifying possible parallelism, and thus
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Figure 2.7 – MapReduce programming model overview

eliminate unnecessary dependencies. Indeed, functional languages enabled and inspired
the development of various distribution frameworks.

One of the most popular and new emerging distributed programming models is
Google’s MapReduce. It enables general-purpose programming through user-defined
functions, map and reduce. The semantics of these high-order functions enable implicit
data parallelism, which eases parallel software development of data intensive application.
However, when dealing with complex programs it becomes necessary to add new prim-
itives. In this sense many projects such as Spark [141] have extended the MapReduce
model with rich data-flow APIs and support for non-trivial data and control flow.

2.2.2 MapReduce

MapReduce is a programming model and software framework developed at Google
in 2004 [44]. It allows easy and transparent distributed processing of big data sets while
concealing the complex distribution details a developer might cross. MapReduce is
inspired by the map and reduce primitives of functional languages. Both Map and Reduce

invocations are distributed across cluster nodes, thanks to the Master that orchestrates jobs
assignment.

Input data is partitioned into a set of chunks called Splits as illustrated in Figure 2.7.
The partitioning might be controlled by the user throughout a set of parameters. If not,
splits are automatically and evenly partitioned. Every split comprises a set of logical
Records, each containing a pair of 〈key, value〉.

Given the number of Splits and idle nodes, the Master node decides the number of
workers (slave machines) for the assignment of Map jobs. Each Map worker reads one
or many Splits, iterates over the Records, processes the 〈key, value〉 pairs and stores
locally the intermediate 〈key, value〉 pairs. In the meanwhile, the Master receives peri-
odically the location of these pairs. When Map workers finish, the Master forwards
these locations to the Reduce workers that sort them so that all occurrences of the
same key are grouped together. The mapper then passes the key and list of values to the
user-defined reduce function. Following the reduce tasks achievement, an output result is
generated per reduce task. Output results do not need to be always combined, especially if
they will subsequently be processed by other distributed applications.
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Let’s take a closer look at the MapReduce programming model by means of a simple
example, depicted in Figure 2.7. Assume we have set of log entries coming from a git
repository. Each entry contains information about actions performed over a particular file
(creation→ +, deletion→ X , or modification→ ∗ ). We want to know how many times
each action was performed, using MapReduce. The master evenly splits the entries among
workers. For every record (log entry), the map worker extracts the action type and creates
a 〈key,value〉 pair with a key the action itself and value ’1’. In the reduce phase, pairs with
the same key are grouped together. In our example, the modification and deletion go to
the first reducer, while the creation goes to the second one. For each group, the reducer
combines the pairs, and creates a 〈key,value〉 pair, but this time with the total of the values
with the same key. This value refers to how many times the action occurred in the logs.

A useful optimization feature shipped with MapReduce is the Combiner. It is an
optional class taking place right after the map phase, and before the shuffle phase. It
operates on pairs originating from the mapper running on the same node. For each set of
pairs sharing the same key, values are aggregated in order to combine them into a single
pair according to the Combiner class definition. As you can notice, the main benefit
using combiners is to reduce the volume of data sent between the Map and Reduce

phases, and therefore the time taken to shuffle different pairs across the cluster.

It is thanks to the Distributed File System (DFS) that MapReduce framework owes
its ability to scale to hundreds of machines in a cluster. The master node in MapReduce
tends to assign workloads to servers where data to be processed is stored to maximize data
locality. The interest of MapReduce is due to its fault-tolerant processing. The Master
keeps track of the evolution of every worker execution. If after a certain amount of time a
worker does not react, it is considered as idle and the job is re-assigned to another worker.
DFS data is divided into blocks, and copies of these blocks are stored in different nodes in
the cluster to achieve a good availability in case nodes fail.

Hadoop [7] and Hadoop Distributed File System (HDFS) [8] are the most well-known
and widely used open source implementations of MapReduce and Google-DFS respec-
tively.

2.3 NoSQL databases

Relational schema (SQL) was the most adopted model for storing data in the past
decades. With the growing volume of data, and its variating structure, this model is coming
up against scalability issues in data representation and query. In particular, the relational
model fails to represent some forms of data (e.g. temporal, unstructured, etc.). Also, it
lacks an explicit representation of relationships. Moreover, query execution times increase
as the size of tables and the number of joins grow. In response to these challenges, many
non-relational database models have been proposed, under the umbrella of NoSQL (Not
only SQL) [121] databases. Despite they generally do not respect the classical (ACID)
properties, these databases are able to manage large-scale data on highly distributed
environments.

Although NoSQL databases vary widely in data models, data types, and use cases, they
can be grouped into four categories, Key-Value, Document, Graph, and Column. Key-value
stores are used for storing and managing associative arrays. Document stores group data in
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documents that can be thought of as a family of key-value pairs. Graph databases consist
of networks of records (vertices) connected by explicit relationships (edges). They are
suitable for storing and querying densely inter-connected data. Finally, column databases
group data by column in contrast to relational databases that store rows instead. This
representation is more suitable for querying large sets of values of a specific attribute. As
in this thesis we use only column stores and graph stores, in what follows, we introduce
their basic concepts and data models.

2.3.1 Column store

Also known as wide-column store, it is one of the four general types of NoSQL
database. It is quite similar to Key-Value store but it mixes some characteristics of
relational databases. Column stores are designed for storing data as of columns of data
rather than rows of data (as in Key-Value stores). Bigtable [34] is one of the early
implementation that has proven a good scalability. Built by Google, Bigtable is used to
store data in many MapReduce-based projects at Google. Apache HBase [124] is the
Hadoop [7] database, provided as a distributed, scalable, versioned, and non-relational
big data store. It is considered the reference open-source implementation of Google’s
Bigtable.

Bigtable data model. In BigTable, data is stored in tables, which are sparse, distributed,
persistent multi-dimensional sorted maps. A map is indexed by a row key, a column key,
and a timestamp. Each value in the map is an uninterpreted array of bytes.

BigTable is built on top of the following concepts [79]:

Table — Tables have a name, and are the top-level organization unit for data in BigTable.

Row — Within a table, data is stored in rows. Rows are uniquely identified by their row
key.

Column Family — Data within a row is grouped by column family. Column fami-
lies are defined at table creation and are not easily modified. Every row in a table
has the same column families, although a row does not need to store data in all its
families.

Column Qualifier — Data within a column family is addressed via its column quali-
fier. Column qualifiers do not need to be specified in advance and do not need to
be consistent between rows.

Cell — A combination of row key, column family, and column qualifier

uniquely identifies a cell. The data stored in a cell is referred to as that cell’s value.
Values do not have a data type and are always treated as a byte[].

Timestamp — Values within a cell are versioned. Versions are identified by their version
number, which by default is the timestamp of when the cell was written. If the
timestamp is not specified for a read, the latest version is returned. The number of
cell value versions retained by BigTable is configured for each column family (the
default number of cell versions is three).

Figure 2.8 (extracted from [34]) shows an excerpt of an example table that stores Web
pages. The row name is a reversed URL. The contents column family holds the page
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contents, and the anchor column family holds the text of any anchors that reference
the page. CNN’s home page is referenced by both the Sports Illustrated and
the MY-look home pages, so the row has columns named anchor:cnnsi.com and
anchor:my.look.ca. Each anchor cell has one version; the contents column has
three versions, at timestamps t3, t5, and t6.

2.3.2 Graph stores

Among the different data models used in NoSQL database, graph databases look
particularly suitable to store models. The graph data model uses graph structures with
nodes, edges, and properties to store data and provides index-free adjacency. Although this
data model is not new—the research on graph databases was popular back in the 1990s—it
became again a topic of interest due to the large amounts of graph data introduced by
social networks and the web in general.

Graph database management systems expose the graph data model through CRUD
operations. It is usually used for transactional systems (OLTP). Several graph database
technology vendors exist in the today’s market. They differ in two main properties, the
underlying storage and the processing engine. A graph database that
depends on a non-native (e.g. using relational or general-purpose stores) graph storage has
relationships that will need to be inferred at runtime.

Graph data model. Graph databases consider not only vertices, but also relationships
as first class citizen. This representation fits well with the way we visually conceptualize
domains using shapes and relationships between them. Hence, a labelled property graph
model is a convenient way to represent data.

A labelled property graph model consists in vertices, edges, properties,
and labels. Figure 2.9 shows an excerpt of the graph metamodel. Vertices and edges
are identified by their ids. They contain valued (value) and named (name) properties.
They also can be tagged with labels. Finally, edges connect a source. Vertex to a
target vertex with a named relationship. Edges can also have properties. This feature is
useful when implementing graph algorithms. Fig 2.10 shows a sample network of three
Twitter users. Each vertex has an id (e.g. user1..3). Users point to each other by directed
relationships showing their role in the network (FOLLOWS).

Graph traversals. One of the success keys in graph databases is graph traversals.
A graph traversal is an efficient operation to query data from graph databases. It refers to
the operation of visiting graph nodes, and checking, updating, or returning them. A graph
traversal is identified by a start node and a traversal specification. A traversal specification
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Figure 2.8 – Example of a table in HBase/BigTable (extracted from [34])
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Figure 2.9 – Labeled property graph metamodel

is a directed path that guides the graph visitor through the graph exploration. A graph
specification might contain filters on properties or labels to restrict the exploration space.

Most of existing graph databases support vertex-centric and/or relationship-centric
indexes. In some cases when it is required to pick up some particular nodes, this feature
comes into play. It ensures a fast lookup of graph elements by their ID, and thus improves
the performance of graph queries. For example, a node index can be useful in identifying
the start node for a particular graph traversal.

Conclusion

In this section we introduced the basic concepts and background that will be needed
to better grasp our contributions and make the document self-contained. In the first part,
we presented some basic concepts of the MDE approach. Especially, we focused on
model transformations languages and engines. Then we moved to a specific type of model
transformation languages, relational ones. We chose the ATL language to exemplify this
family of languages. The second part gave a brief introduction to parallel programming
and its different types of models. In particular, we focused on explicit and implicit parallel
programming models, and we exhibited the pros and cons of each of them. We concluded
this part by giving a closer look at the MapReduce model, one of the well-known implicit
distributed programming models. The last part focalized on distributed data storage
solutions, particularly, NoSQL databases. We briefly described the different kinds of
existing stores, then we targeted two of them, graph stores, and column stores. For each
store, we presented the corresponding data model alongside with some of its existing
features.
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Figure 2.10 – Twitter’s data represented by a graph (extracted from [117])
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We believe that MDE, especially transformation languages and engines, would benefit
from the Cloud to improve the scalability of model-based software development. Next, we
outline some potential leads towards improving the scalability of model transformation
engines:

Effective and implicit distribution of relational model transformation. The IO/CPU
limitations facing complex transformations written in relational languages can be overtaken
by distributing computation across a cluster of commodity machines. Following a data-
distribution scheme, this process would entail partitioning the input model into chunks, and
sending each one to a different machine. The transformation language should however keep
its declarative nature, and no additional distribution primitive should be added. Chapter 3
investigates this lead by aligning the semantics of relational model transformation engines
to existing distributed programming models. Chapter 4 extends the previous chapter, and
investigates model transformation workload balancing.

Adequate model persistence for distributed model transformations. Existing model
persistence frameworks are also facing scalability issues when dealing with VLMs. In
particular, they are neither memory-friendly nor well-suitable for distributed and concurrent
processing. Chapters 5 and 6 investigates the use of NoSQL databases to cope with these
limitations.





3
Distributed model transformations

Many approaches aiming at improving the performance of queries and transformations
over models have emerged. Whereas some promote incrementality and laziness, others
foster parallelization/distribution. Yet, most of these approaches – as we will show in the
next section – do not tackle efficiently scalability issues, especially when the model under
concern does not fit in a memory of a single machine. One way to respond to this issue
is exploiting systems for parallelizing model manipulation (processing) operations over
computer clusters. This is made convenient by the recent wide availability of distributed
clusters in the Cloud.

MDE developers may already build distributed model transformations by using a GPL
and one of the popular distributed programming models such as MapReduce or Pregel.
However such development is not trivial. First of all, the transformation logic should be
aligned with the execution semantics of the distributed programming model. Moreover,
model transformation code written in a GPL is less readable, contains redundancies
or verbose expressions [53]. This makes the transformation neither modularizable nor
reusable. It may as well introduce a completely new class of errors w.r.t. sequential
programming. Finally, it entails complex analysis for performance optimization.

In our contribution, we show that ATL, thanks to its specific level of abstraction, can
be provided with semantics for implicit distributed execution. As a rule-
based language, declarative-ATL allows the declarative definition of correspondences and
data flows between elements in the source and target model. By our proposed semantics,
these correspondence rules can be efficiently run on a distributed cluster. The distribution is
implicit, i.e. the syntax of the MT language is not modified and no primitive for distribution
is added. Hence developers are not required to have any acquaintance with distributed
programming.

The semantics we propose is aligned with the MapReduce computation model, thus
showing that rule-based MT fits in the class of problems that can be efficiently handled by
the MapReduce abstraction. We demonstrate the effectiveness of the approach by making

39
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an implementation of our solution publicly available 1 and by using it to experimentally
measure the speed-up of the transformation system while scaling to larger models and
clusters. We identify specific properties of the ATL language that make the alignment
possible and the resulting solution efficient. We also define the minimal set of ACID
properties that model access has to guarantee for a consistent and correct model transfor-
mation. We achieve this by cross-analyzing the execution semantics of ATL, especially
atomic model manipulation operations (as coming from the MOF specification), against
the MOF Reflection API. The main principles of our approach can be generalized to other
MT languages (e.g. QVT [106] and Epsilon Transformation Language (ETL) [80]), and
we plan in future work to investigate this generalization in detail.

This chapter is organized as follows. In Section 3.1 we introduce some related work
and identify their limitations. Section 3.2 presents an overview of our framework for
distributing model transformation. Section 3.3 details our ATL to MapReduce alignment.
Section 3.4 identifies the ACID properties to be preserved at the MOF Reflection API
level for sound distributed model transformations in ATL. We close up this chapter by a
discussion in Section 3.5.

3.1 Related Work

Parallel and distributed graph transformation is a well-studied problem, and well-
defined fundamentals have been proposed in several works. In parallel and distributed
graph transformations, rule applications are structured in both temporal and spatial dimen-
sions. Graphs are split into sub-graphs for local transformations, then joined again to form
a global graph [49]. Two families of approaches have been proposed, shared memory and
message passing. In what follows, we introduce related work attempting to improve graph
and model processing performance, namely, parallel and distributed model/graph trans-
formation approaches. We also investigate other alternatives that are implicitly providing
MQT engines with advanced execution semantics. Note that related work on persistence
solutions for VLMs, as well as task scheduling and graph-data partitioning approaches are
to come in the next chapters.

Distribution for graph processing languages

Among distributed graph transformation proposals, a recent one is Mezei et al. [95].
It is composed of a transformation-level parallelization and a rule-level parallelization
with four different matching algorithms to address different distribution types. In [72],
Izso et al. present a tool called IncQuery-D for incremental query in the Cloud. This
approach is based on a distributed model management middleware and a stateful pattern
matcher framework using the RETE algorithm. The approach has shown its efficiency, but
it addresses only distributed model queries while we focus on declarative transformation
rules.

Some approaches mapping a high-level graph transformation language to the Pregel
programming model [132, 84] exist. Krause et al. [84] proposed a mapping of a graph
transformation language and tool, Henshin, to the "BSP model transformation framework"

1. https://github.com/atlanmod/ATL_MR/

https://github.com/atlanmod/ATL_MR/
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on top of the BSP model. The approach is based on a code generator that translates the
graph transformation rules and transformation units into a Pregel program. The matching
phase is split into a serie of local steps. A local step checks if a local constraint is satisfied
and generates, extends, or merges a set of partial matches. A search plan generation
algorithm is responsible for local steps generation.

In a similar approach, Tung et al. [132] implemented their own DSL for the speci-
fication of graph transformations. This DSL is also compiled to a Pregel program and
executed over a distributed cluster. The DSL inherits most its constructs from UnCAL,
a query language and algebra for semistructured data based on structural recursion. The
semantics of UnCAL was improved to support the basic Pregel skeletons. In contrast to the
previous approach, this one supports successive applications of queries/transformations.
Both approaches implement the framework in Giraph, an open-source implementation of
the Pregel model.

The only other proposal addressing relational MT distribution is Lintra, by Burgueño
et al. [31], based on the Linda coordination language. Lintra uses the master-slave design
pattern for their execution, where slaves are in charge of applying the transformation in
parallel to sub-models of the input model. The same authors propose a minimal set of
primitives to specify distributed model transformations, LintraP [29]. With respect to our
approach, Lintra requires to explicitly use distribution primitives, but it can be used in
principle to distribute any transformation language by compilation.

Shared-memory parallelization for graph processing languages

Shared-memory parallelization is a closely related problem to distribution. For model
transformation, Tisi et al. [128] present a systematic two-steps approach to parallelize
ATL transformations. The authors provided a multi-threaded implementation of the ATL
engine, where every rule is executed in a separate thread for both steps. The parallel ATL
compiler and virtual machine have been adapted to enable a parallel execution and reduce
synchronization overhead.

A similar approach for parallel graph transformations in multicore systems [63] in-
troduces a two-phase algorithm (matching and modifier) similar to ours. Bergmann et al.
propose an approach to parallelizing graph transformations based on incremental pattern
matching [23]. This approach uses a message passing mechanism to notify model changes.
The incremental pattern matcher is split into different containers, each one is responsible
for a set of patterns. The lack of distributed memory concerns makes these solutions diffi-
cult to adapt to the distributed computing scenario. Moreover in these cases the authors
investigate task distribution, while we focus on data distribution, especially for handling
VLMs.

Alternative execution semantics for scalable transformations

The idea of overloading the execution semantics of model transformation languages
in order to improve scalability is not new. In particular several work introduced lazy and
incremental computation semantics.
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Incremental computing is a software feature aiming at saving the program recompu-
tation time every time a piece of data changes. It identifies the outputs which depend
on the changed data, then updates their value. EMF-IncQuery [21, 133] is a declarative
model query framework of EMF models using the graph pattern formalism as a query
specification language. It aims at bringing the benefits of graph pattern-based queries
and incremental pattern matching to the EMF ecosystem. EMF-IncQuery uses the RETE
algorithm to achieve incrementality.

Rath et al. [115] investigated the use of derived EMF features in EMF-based models
and proposes the use of incremental model queries to define operations over these kinds of
features. This approach uses EMF-IncQuery as query engine, which keeps derived features
instantly up to date using a change notification and incremental evaluation. Bergmann et
al. [20] proposed an approach to integrate incremental pattern matching into existing legacy
systems built over RDBs. It translates graph patterns/rules into SQL triggers. Additional
tables are added to store cached relationships.

Giese et al. [55] proposed an approach to automatically induce incremental synchro-
nization using Triple Graph Grammar (TGG). The incremental algorithm relies mostly
on the correspondence graph (which can also be considered as trace links), and corre-
spondence nodes are thus being used to decrease the matching cost. In [54], Giese et al.
presented an algorithm for the synchronization (Change propagation) between different
related models. As far as [55], this approach gained from the declarativity of TGG to limit
the number of visited elements after a change notification.

Hawk [13] is a model indexing framework that enables efficient global model-element-
level queries on collections of models stored in file-based version control systems (VCS).
It can operate with different file-based VCSs while providing a query API that can be
used by model management tools. Hawk is shipped with features enabling its robustness.
Namely, incremental model updates, derived attributes indexed attributes, and scoped
queries. Hawk is integrated with the Epsilon Object Language (EOL) query engine. EOL
is used to transparently query models in Hawk by using indexes whenever possible. It is
also used to define derived attributes.

Jouault et al. [76] introduced an approach for incremental transformations in ATL.
This approach relies on two runtime mechanisms, (i) Tracking dependencies of OCL
expressions, and (ii) Controlling individual rule execution. Neither of ATL’s syntax nor its
semantics sustained any change, except for some minimal changes to the compiler.

Another technique for improving the execution of model transformations is the lazy
evaluation. It is a strategy which delays the evaluation of an expression until its value is
needed. Tisi et al. [130] introduced a lazy execution approach of model transformations
in ATL. It enables the generation of target model elements only if accessed (needed).
The ATL engine has been extended with an algorithm computing the appropriate binding
responsible for generating the accessed feature.

High-level languages for distributed data-parallel computing

Many high-level languages for data parallel computing targeting distributed program-
ming models have been proposed. However, these languages are not suitable for performing
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distributed model transformations. They are designed for specific applications such as data
warehousing, querying, etc.. Moreover they perform on unstructured and flat data.

Microsoft SCOPE [33], Pig Latin [108], and HiveQL [126] are high level SQL-like
scripting languages targeting massive data analysis on top of MapReduce. Pig Latin and
SCOPE are hybrid languages combining both forces of an SQL-like declarative style
and a procedural programming style using MapReduce primitives. They provide an
extensive support for user defined functions. Hive is a data warehousing solution built
on top of Hadoop. It comes with an SQL-like language, HiveQL, which supports data
definition statements to create tables with specific serialization formats, and partitioning
and bucketing columns.

DryadLING is a language designed to target the Dryad [71] engine, a general-purpose
distributed execution engine for coarse-grain data-parallel applications. Unlike PigLatin
or SCOPE, which introduce new domain specific languages, DryadLINQ is embedded as
constructs within existing programming languages. A program written in DryadLINQ is
a sequential program composed of expressions specified in LINQ, the .NET Language
Integrated Query. The expressions perform arbitrary side-effect-free operations on datasets,
and can be debugged using standard .NET development tools.

Summary

In this section we presented existing approaches aiming at optimizing graph processing,
with a particular focus on graph transformation operations. Whilst most approaches in
graph/model transformation focus on the parallelization/distribution of graph transforma-
tions, only [31, 129] focus on relational model transformation. Moreover, the approach
in [129] is still limited to the resources of one machine. The second approach [31]
instead, translates the transformation rules together with in(out)put metamodels to a
Linda-supported format. Unfortunately, this solution does not integrate well with existing
EMF-based solutions. Furthermore, it is not clear how the approach handles concurrent
write to the underlying backend. We notice that most existing approaches exhibit either
one or more of the following limitations:

1. Except for LinTra, most of the existing approaches apply to graph-transformation
languages

2. Some of the existing approaches are still limited by the resources of a single machine

3. Existing transformation engines do not transparently handle and manipulate EMF
models, which hampers the integration with existing EMF-based tools

4. Visibly, none of the existing approaches support concurrent write on target models

5. No clear support for complex transformation rules (e.g. rules involving multiple
input patterns)

Table 3.1 groups these limitations.

In what follows, we present our solution for distributing model transformations. To
elucidate the discussion of our approach, we refer throughout this chapter to the Con-
trolFlow2DataFlow case study (see Section 2.1.3).
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Table 3.1 – Current limitations in MTs approaches

PARADIGM EXEC.MODE CONCURRENCY EMF INTEG.
Graph Rel. Shared Dist. Mem. Disk

[95, 132,
84, 63]

[31, 129] [129, 63,
31]

[95, 31,
132, 84]

[129, 31,
63]

[72] [129, 72]

3.2 Conceptual Framework

3.2.1 Global overview

In a previous work, Clasen et al. [37] draw the first lines towards a conceptual frame-
work for handling the transformation of VLMs in the Cloud. Their proposal focuses
essentially on two bricks, model access and persistence, and model transformation ex-
ecution in the Cloud. While this work investigated different possible alternatives to
transforming VLMs models in the Cloud, in our proposal, we opt for parallel execution of
model transformation following a data-distribution scheme. We argue that, this approach
is the most suitable one as graph computations is often data-driven and dictated by the
structure of the graph. Moreover, thanks to the properties of the ATL language (below),
interactions among rules is reduced. . This solution offers more flexibility to the transfor-
mation engine as most operations on graphs are data-driven [90]. More details are to come
throughout this chapter.

Figure 3.1 shows a global overview of our distributed transformation framework by
means of a simple example. The transformation is composed of a simple rule that changes
the shape of nodes (from Square to Hexagon), but keeps the same ID as well as graph
topology. Our distributed cluster is composed of a single master node, data nodes, and
task nodes. Data nodes and task nodes communicate with each other through a distributed
MOF-compliant model access and persistence API. While task nodes are responsible for
transforming the input model or composing the output one, data nodes are responsible
for hosting the partial input/output models. Although in our illustration we differentiate
between data nodes and task nodes, in real world clusters, data can be processed in the
same node it resides in.

Our distributed model transformation is divided in three steps, (i) data distribution, (ii)
parallel local transformation, and (iii) parallel composition. The coordination phase plays
the role of a barrier in which task nodes share their output data between each other for a
global model composition.

In the first phase, the master node is responsible for assigning source model elements to
task nodes (data distribution) for computation. Each task node is responsible for executing
the rule application triggered by the assigned elements. These subsets (a.k.a. chunks, splits,
or partitions) are designed to avoid any redundant computation in two separate nodes.
Moreover, as the master node is limited by its memory, we consider a lightweight and
memory-friendly assignment mechanism of source model elements. In our example, the
master node assigns {a, b, c, d} to the upper node, and the remaining to the second one (as
shown in Figure 3.1).

The data distribution step is crucial for the execution performance and workload
balancing (See Chapter 4). The transformation workload assigned to every machine
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Figure 3.1 – A conceptual framework for distributed model transformation

depends heavily on how data is distributed over the task nodes. As a result of a naive data
distribution, machines with lighter workload have to wait for other machines to complete.
At other times, machines with heavy workload can crash when hitting their memory limit.
Therefore, the master node supports an efficient data distribution strategy, which in one
hand, assigns partitions with an even workload, and on the other hand, does not overload
the task nodes.

After assigning source model elements to task nodes, they start processing the transfor-
mation in parallel. However, due to the complexity of the pattern matching phase, a task
node may have to load additional elements in order for its local transformation to complete
(parallel transformation). For instance, in our example, each square needs to traverse the
set of its direct neighboring nodes to reproduce the graph topology. In particular, the upper
task node needs the elements "g" while the second node "d". The set of additional elements
is known only at runtime, hence, our persistence framework transparently provides task
nodes with any input element, at any point in time during the transformation.

At the end of the parallel transformation phase, each task node will result in a local
output sub-model together with a set of tracing information that has a twofold role. This
information does not only contain information about computation already performed, but
also about the one that needs to be performed in order to compose local output sub-models
into a global output model.

The coordination phase plays the role of a synchronization barrier, where, once all
task nodes finish their parallel transformation, they exchange trace information about the
missing links in order to compose the global model. To avoid network congestion, target
sub-models are stored in the backend, and only a lightweight serialization of tracelinks is
passed through the network.
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In the final phase (parallel composition), missing tracelinks are evenly split to task
nodes, and relationships are established between the output sub-models to compose the
final output model. The persistence framework enables task nodes to concurrently establish
links between any given model elements. Thus, the persistence framework enables task
nodes to store any output element at any point in time; during the transformation execution.

In what follows we exhibit the framework’s capabilities in the form of requirements,
then we organize them by components (distributed engine, and distributed persistence
framework). The aim of this process is to highlight the main properties of our distributed
transformation system, then propose a formalization of our system.

3.2.2 Distributed transformation engine

According to the description of our framework (above), the distributed model transfor-
mation component guarantees the following points:

1. the assigned subsets must be carefully partitioned in a way that prevents from running
the transformation of the same elements more than once, on different machines

2. the transformation engine must support an efficient data partitioning algorithm

3. the union of output elements must result in the same amount of model elements as if
the transformation were run sequentially at the end of the parallel transformation
phase

In typical relational MT engines (e.g., the standard ATL and ETL engines), the trans-
formation execution starts by loading the input model. Then the engine applies the
transformation by selecting each rule, looking for matches corresponding to the input
pattern, and finally generating the appropriate output elements [59]. Each execution of a
matched input pattern is called a rule application.

From now on, we denote by E a set of model elements, andM a set of commodity
machines in a distributed system S .

Definition 1 LetR be a set of model transformation rules. A rule application is defined

by the tuple (e, rule, de), where:

— e ∈ E , is the element triggering the execution of the rule application

— rule ∈ R, is the rule whose input pattern is matching the element e

— de ⊆ E , the subset of model elements needed to execute the rule application triggered

by e

Given Definition 1, we consider a MT execution job as the union of elementary rule
application execution jobs, where each job is responsible for transforming a single model
element. In the case of rules with n-ary input pattern (matching a sub-graph), we consider
the job of applying the rule to be primarily triggered by one input pattern element (e in
Definition 1). A rule application as defined in Definition 1 may occur more than once, since
a model element might be triggering more than one rule application, either of the same
rule or a different one. Selecting a primary triggering element for each rule application
ensures that, after distributing the source model, a rule application occurs on only one
machine, i.e. the one responsible for transforming the triggering element.
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The distribution of a transformation based on a data-parallel distribution approach over
m machines (m = |M|), consists of dividing the input model into m splits, and assigning
disjoint sub-models of the input model to different machines. Each machine will be then
responsible for transforming the assigned subset. In what follows we refer to this set of
elements assigned to a machine i by Ai. Given a system S of m machines, the set of
assigned elements has the following property:

Property 1 Each element e ∈ Ai is assigned to one and only one set (∀i, j ∈ M, i 6=
j → Ai ∩ Aj = ∅ )

We also define as Di, i.e. dependencies of Ai, the set of source elements that need to
be accessed to compute the transformation of Ai. This set is determined as the union of
the subsets of model elements needed to execute the rule applications triggered by every
element e assigned to machine i:

Di =
⋃

e∈Ai

de

The presence ofDi is mandatory for the transformation of the assigned model elements
Ai. Consequently, every machine i needs to load all the elements Li belonging to Ai ∪Di.

This is similar to a well-known problem on graphs community by Graph-Based Data

Clustering with Overlaps [50]. This problem allows clusters overlapping by duplicating
(to a particular extent) graph vertices or edges. In our system, the overlapping elements
w.r.t. to i are Oi = Li \ Ai (Property 1).

3.2.3 Distributed model persistence

Storing models in the Cloud is a good solution to break down the complexity in
handling VLMs. However, the distributed persistence framework should be compliant
with existing modeling tools. Moreover, distribution-derived features, such as the hosting
data node location, and network communication should be hidden behind the persistence
component.

Additional requirements that must be guaranteed (according to our framework’s de-
scription) by a well-suitable distributed model persistence component are:

— Lightweight serialization/de-serialization mechanisms of data communicated across

the network. Exchanging a large amount of data across the network could be a
bottleneck. One way of overcoming this could be adopting a compact representation
of exchanged data, which is in our case, input model elements and intermediate
tracelinks. This point could also be handled by the transformation engine.

— Concurrent read/write from/to the underlying backend. Every task node should be
able to fetch, on demand, any model element from the underlying backend. Same
for concurrent writes to the underlying storage. Nonetheless, the framework should
preserve ACID properties for a consistent and sound resulting model.

This leads us to define the following properties:

Property 2 on-demand loading to ensure that only needed elements are loaded,

especially when the model is too big to fit in memory
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Property 3 concurrent read/write to permit different machines accessing and

writing into the persistence backend simultaneously

In order to improve the performance of our framework by decreasing the amount of
communication between data nodes and task nodes, we extend our framework by the
following property:

Property 4 fast look-up of already loaded elements, this can be made

possible using caching and/or indexing mechanisms

3.3 Model Transformation on MapReduce

3.3.1 Distribution of Relational Model Transformation

Distributed model-to-model transformation inherits most of the well-known challenges
of efficient parallel graph processing, such as poor data locality and unbalanced computa-
tional workloads. In particular, implicit data distribution is not trivial for transformation
languages where rules applied to different parts of the model can interact in complex ways
with each other. The higher is the number of these interactions, the bigger is the volume of
data communicated across the network, both at inter and intra-phase levels. In MapReduce,
this turns into, more data to serialize, de-serialize, and less network throughput due to
congestion.

As result of ATL’s execution semantics, especially, four specific properties of the
language (below), we argue that inter-rule communication is made discernible, and the
odds of running into race conditions are minimized. More precisely, interaction among
ATL transformation rules are reduced to bindings resolution, where a target element’s
feature needs to reference to other target elements created by other rules:

Property 5 Locality: Each ATL rule is the only one responsible for the computation

of the elements it creates, i.e., the rule that creates the element is also responsible for

initializing its features. In the case of bidirectional references, responsibility is shared

among the rules that create the source and the target ends of the reference.

Note that if a transformation language does not satisfy this property, a way to lower
the data communication cost would be by making sure that different rules sharing update
task reside on the same machine.

Property 6 Single assignment on target properties: The assignment

of a single-valued property in a target model element happens only once in the transforma-

tion execution. Multi-valued properties can be updated only for adding values, but never

deleting them.

If a language does not guarantee this property, one way of communicating less data is
by locally aggregating 〈key,value〉 pairs responsible for updating a single-valued feature
of an element. Let’s take for instance the example of a rule that, for every rule application
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int fact(int a)

int r = 1;

while (a>0)

r *= a--;

return r;
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Figure 3.2 – ControlFlow2DataFlow example on MapReduce

increments a variable, instead of sending a bunch of pairs, it would be recommended to
aggregate these pairs and send only a single one having as a value the sum of the increment
operations.

Property 7 Non-recursive rule application: Model elements that are pro-

duced by ATL rules are not subject to further matches. As a consequence, new model

elements can not be created as intermediate data to support the computation.

This differentiates ATL from typically recursive graph-transformation languages. The
property should not be confused with recursion in OCL helpers, that are responsible for
intermediate computations over the source models, not target ones.

Property 8 Forbidden target navigation: Rules are not allowed to navigate

the part of the target model that has already been produced, to avoid assumptions on the

rule execution order.

This property is possible thanks to the resolve algorithm. A way to workaround the
non-satisfaction of this property, is by making sure that the target elements creation and
update happen in two different phases.

These properties strongly reduce the possible kinds of interaction among ATL rules,
and allow us to decouple rule applications and execute them in independent execution
units.

3.3.2 ATL and MapReduce Alignment

Mostly, distributed (iterative) graph processing algorithms are data-driven, where
computations occur at every node of the graph as a function of local graph structure and its
intermediate states. The transformation algorithm in ATL could be regarded as an iterative
graph processing algorithm with two phases (match and apply described in Section 2.1.3)
and one intermediate state (matched). Each node of the cluster that is computing in parallel
takes charge of transforming a part of the input model.



50 CHAPTER 3. DISTRIBUTED MODEL TRANSFORMATIONS

int fact(int a)

while (a>0)

r *= a--;

int fact(int a)

while (a>0)

r *= a--;

Map 1

Map 2

Input Model

(a) results of dfNext binding for {int fact (int a)}

int fact(int a)

while (a>0)

r *= a--;

int fact(int a)

while (a>0)

r *= a--;

Map 1

Map 2

Input Model

(b) Resolving the results of dfNext binding for {int fact (int
a)}

Figure 3.3 – Local resolve of dfNext for {int fact (int a)}

In our approach we propose a mapping that aims at reducing cross-machines com-
munication cost. That is by adopting some good practices for scalable graph processing
in MapReduce. This is made possible, thanks to the alignment of the ATL distributed
execution semantics with MapReduce described below.

As an example, Figure 3.2 shows how the ATL transformation of our running example
could be executed on top of a MapReduce architecture comprising three nodes, two maps
and one reduce workers. The input model is equally split according to the number of map
workers (in this case each map node takes as input half of the input model elements). In
the map phase, each worker runs independently the full transformation code but applies it
only to the transformation of the assigned subset of the input model. We call this phase
Local match-apply. Afterwards each map worker communicates the set of model elements
it created to the reduce phase, together with trace information. These trace links (grey
arrows in Figure 3.2) encode the additional information that will be needed to resolve
the binding, i.e. identify the exact target element that has to be referenced based on the
tracing information. The reduce worker is responsible for gathering partial models and
trace links from the map workers, and updating properties value of unresolved bindings.
We call this phase Global resolve.

In the following (i) we describe the distributed execution algorithm we propose for
ATL decomposing it in the Local match-apply (parallel trasformation phase in Section 3.2)
phase assigned to mappers and the Global resolve (model composition phase in Section 3.2)
phase assigned to reducers; (ii) we define the trace information that needs to be passed
between mappers and reducers to allow the re-composition of the global model after
distribution.
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Algorithm 2: Map function
input :Long key, ModelElement element

1 foreach rule ∈ getApplicableRules(element) do

2 if isMatched(element, rule) then

3 link ← createLink(element, rule);
4 addLink(linkSet, link);
5 foreach binding ∈ getBindings(link) do

6 if isAttribute(binding) then

7 applyAttribute (binding);

8 else

9 foreach computedElement ∈ computeBindingExp(binding) do

10 if isLocal(computedElement) then

11 resolvedElement← resolveTarget(computedElement);
12 applyReference(resolvedElement, binding);

13 else

14 addElementToTrace(computedElement, binding);

15 storeLink(generatedKey, link);
// generatedKey to decide to which reducer this link

will be assigned

Local Match-Apply

At the beginning of the phase, input splits are assigned to map workers. Each of these
splits contains a subset of the input model for processing. Although, each worker has a
full view of the input models in case it needs additional data for bindings computation.
This is due to data-locality, which particularly occurs when links between vertices can be
irregular. Note that while intelligent assignment strategies could improve the algorithm
efficiency by increasing data locality, by default we perform a random assignment. Intelli-
gent assignment strategies for model elements, especially based on static analysis of the
transformation code and data access patterns are investigated in the next chapter. In our
example, the elements {’int fact(int a)’,’int r = 1;’,’while (a>0)’,’a’,}
are assigned to machine 1, while the rest is sent to machine 2.

The pseudo-code for the processing in this phase is given in Algorithm 2. For every
model element in the split, the map function verifies if a rule guard matches and in this case
instantiates the corresponding target elements (line 3), same as in the regular execution
semantics (Section 2.1.3). In the case of rules that match multiple elements, the map
function would consider the element of the split as the first element 2 of the matched
pattern, and look for combinations of other elements satisfying the guard. For instance, in
Figure 2.6 the Method and FlowInstr rules instantiate the method signature and the
instructions that define or use variables (all the instructions of the example). Variables
(a and r) are not instantiated since no rule matches their type. For each instantiated
output element, a trace link is created connecting source and target elements of the applied
rule. For example, executing the binding dfNext over the method fact(int a), results in
{while(a)>0, r*=a--;} (dashed grey arrows in Figure 3.3 (a)).

2. The first input pattern element as specified in the ATL transformation rule
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Subsequently, the algorithm starts processing the list of property bindings for the
instantiated target elements. We extended the behaviour of the resolve algorithm

to enable handling elements transformed in other nodes, we call this algorithm local

resolve. In the case of attribute bindings, the same standard behaviour is preserved, the
OCL expression is computed and the corresponding feature is updated accordingly (lines 6-
7). While bindings related to references connecting elements transformed by different rule
applications, potentially on different nodes, the resolution is performed in two steps: (i)
the OCL expression of the binding computes to a set of elements in the source

model and ATL connects the bound feature to these source elements using trace links;
(ii) the source-models elements are resolved, i.e. substituted with the corresponding target
element according to the rule application trace links. If source and target elements of the
reference are both being transformed in the same node, both steps happen locally (lines 10-
12), otherwise trace links are stored and communicated to the reducer, postponing the
resolution step to the Global resolve phase (lines 11). Going back to our example in
Figure 3.3, the result of executing the binding dfNext was {while(a)>0, r*=a--;}. Since
while(a) and fact(int a) reside in the same node, a dfNext reference between them is created
in the target model. On the contrary, a trace property is created between fact(int a) and
r*=a--; because they belong to different nodes (Figure 3.3(b)).

Global Resolve

At the beginning of the reduce phase, all the target elements are created, the local
bindings are populated, and the unresolved bindings are referring to the source elements
to be resolved. This information is kept consistent in the tracing information formerly
computed and communicated by the mappers. Then each reducer is responsible for
resolving the set of assigned bindings. This proceeds by iterating over the trace links and
simply refer to the corresponding target model elements, as depicted in Algorithm 3. For
each trace link, the reducer iterates over the unresolved elements of its property traces
(line 4), resolves their corresponding element in the output model (line 5), and updates the
target element with the final references (line 6). In the right-hand side of Figure 2.6 all the
trace properties have been substituted with final references to the output model elements.

Algorithm 3: Reduce function
input :String key, Set<TraceLink> links

1 foreach link ∈ links do

2 foreach property ∈ getTraceProperties(link) do // unresolved

properties

3

4 foreach elmt ∈ getSourceElements(property) do

5 resolvedElement← resolveTarget(elmt);
6 updateUnresolvedElement(property, resolvedElement);

// equivalent to applyReference (element, binding)

in map function
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Figure 3.4 – Extended Trace metamodel

Trace Metamodel

MT languages like ATL need to keep track during execution of the mapping between
source and target elements [140]. We define a metamodel for transformation trace infor-
mation in a distributed setting (see Figure 3.4).

As in standard ATL, traces are stored in a TracelinkSet and organized by rules. Each
TracedRule is identified by its name, and may contain a collection of trace links. A link
maps a set of source pattern elements to a set of target pattern elements. Both source
and target pattern elements are identified by a unique name within a trace link (same
one in the rule). Likewise, source elements and target elements refer to a runtime object
respectively from input model or output model. This layered decomposition breaks down
the complexity of traversing/querying the trace links.

This trace information (source elements, rule name, and target elements) is not suf-
ficient for the distributed semantics, that requires transmitting to the reducer trace infor-
mation connecting each unresolved binding to the source elements to resolve. Thus, we
extended the ATL trace metamodel with the TraceProperty data structure. Trace properties
are identified by their name that refers to the corresponding feature name. They are
contained in a trace link, and associated to the source elements to be resolved along with
the target element to be updated.

3.4 Model Consistency in distributed MT with ATL

Distributed computation models like MapReduce are often associated with persistence
layers for accessing distributed data. In solutions for Big Data, where scalability is the
main requirement, persistence layers sacrifice ACID properties in order to achieve better
global performance. In networked shared-data systems, this is also known as Consistency,

Availability and Partitioning tolerance (CAP) theorem [26]. Such properties need to be
implemented by the application layer on a need basis.

The CAP stands for: Consistent, all replicas of the same data will be the same value
across a distributed system; Available, all live nodes in a distributed system can process
operations and respond to queries; Partition Tolerant, the system is designed to operate in
the face of unplanned network connectivity loss between replicas. The theorem considers
the three properties as continuous. While availability scales from 0% to 100%, consistency
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and partitioning come in the form of nuances. A typical definition says that you cannot
have strong consistency and 100% availability in the presence of partition tolerance. This
theorem constrains a system designer to tune the properties he needs to preserve against
the ones he wants to sacrifice.

Hereafter, we reason about the execution semantics of ATL, especially, atomic model
manipulation operations (as coming from the MOF specification). Our objective is to
exhibit the minimal set of ACID properties to be guaranteed for a consistent output model.
This reasoning is conducted while taking into consideration the model access modes and
the possible interactions between model manipulation operations.

As no definition for a transaction has been carried in the formal MOF specification, in
our study, we consider that each model manipulation operation on a single element runs in

a separate transaction. This definition is similar to the one adopted by the CAP theory. In
our analysis we rely on the semantics of the MOF reflection API, especially the methods
used by the ATL engine. A brief description of the MOF’s Reflection API can be found in
Section 2.1.2.

3.4.1 Consistency in distributed atomic model manipulation opera-

tions in ATL

Table 3.2 – Access modes in ATL transformations

MATCH APPLY

Input READ-ONLY

Output WRITE-ONLY

Trace WRITE-ONLY READ-ONLY

In model-to-model transformations with ATL, models are never accessed in read-write
mode but only in read-only mode or write-only mode. Precisely, while source models are
always read-only and target models are always write-only, trace models are, depending
on the phase, either read-only (apply phase) or write-only (match phase). Table 3.2
summarizes different access modes per model- kind\phase.

Moreover, in our distributed transformation framework, we identify two different
scopes of computation, depending on the phase. The computation can run either in a local
scope (Local match/apply), or a global scope (Global resolve). In the local scope, all the
write operations happen in local. Data is always created and manipulated by the same
task node. As a result, model manipulation operations on the same model element never
run concurrently. On the other hand, concurrency may take place in the global scope, and
different machines can modify the same element at the same time.

Regardless of the computation scope, models that are accessed in read-only mode are
subject only to side-effect free queries 3. Likewise, during the local scope, trace models are
always consistent because they are considered as local intermediate data. In the remaining
of this section, we are interested only in the global scope, in particular, the output models.

Output models undergo a building process creating a model that grows monotonically
(Property 6 and 7). However, during the global computation, there exist some specific

3. The accessed data is always consistent since no write operation occurs
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cases that may lead to inconsistency. In particular, (i) when having operation invoking
a change in more than one element (e.g. containment and bidirectional references), or
(ii) updating multi-valued references, for instance, when moving objects from the root
element of the resource 4 (when newly created) to its new container (when setting up links).
On these terms, and despite Property 8, the object should be first removed from the root,
then added to the new container. Similarly, in the case of updating a containment or a
bidirectional reference. These operations need to either entirely fail or succeed.

Table 3.3 depicts the set of operations in the MOF Reflection API as well as the
maximum read/write operation count. Note that, operations on full objects such as
elements creation are not considered. Finally, the table depicts the ACID properties that
need to be fulfilled when the operation is performed during model transformation, in order
to guarantee the correctness of the output model. The properties between parenthesis can
be relaxed 5, while the others should be strongly preserved.

ACID properties do not behave completely orthogonally with each other. More
importantly, Atomicity plays an important role by rolling back in case of a system failure or
a consistency rule violation. Furthermore, since output models are accessed in write-only
mode, the consistency property can be checked only at the end of the transformation,
instead of at every atomic operation. Durability is also an important property to be
preserved, but is strongly coupled to the database.

Following our discussion in Section 3.3.1, we showed how ATL, thanks to its prop-
erties, reduces inter-rules interactions. Beyond lowering data communication over the
network, the interest of these properties extends to reducing the chances of running into
concurrent modifications, and thus the Isolation property can be relaxed for some oper-
ations. Especially, thanks to Property 6, updates on single-valued properties occur only
once in the transformation lifetime. In the case of updates on multi-valued properties,
the chances of having concurrent updates are definitely considerable. Nevertheless, in
ATL only add or remove operations might run into concurrent updates. The distributed
persistence framework should make sure that two concurrent add or remove operations
will leave the system in a consistent state 6.

As noticed in the Properties column, Durability and Consistency are two
mandatory properties to be preserved. The correctness of the output results is tied to
guaranteeing these properties in every single method. Supposing that the underlying
backend guarantees ACID properties at the finest-grained level (single CRUD operation),
methods involving updates in more than one element (two-phased commits) need to be
atomic, while update operations on multi-valued properties (add and remove) need to
be isolated. These methods should execute in two steps, first the latest value is looked-up,
then the property’s value is updated according to the method behaviour. However, thanks
to the monotonical building process of models in ATL, even if a two phased commit
does not happen in the same transaction, the model will eventually be consistent (i.e. we
will end up having the same output model). Relaxable properties are depicted between
parenthesis. In case one of these methods fails, the system should rollback.

4. A resource can be considered as an index for root elements
5. Supported only in specific scenarios
6. It is worth mentioning that in MOF, only type, cardinality, and default properties are natively checked

for Consistency. Model constraints, described as OCL invariants, are validated only when invoked.
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Table 3.3 – Summary of accesses counts of MOF Reflection operations

METHODS MAX COUNT* PROPERTIES

READ WRITE

OPERATIONS ON PROPERTIES

get* 1 0 _C_D
set* 2 2 AC_D

isSet* 1 0 _C_D
unset* 0 1 _C_D

OPERATIONS ON MULTI-VALUED PROPERTIES

add 2 2 AC(I)D
remove 2 2 AC(I)D
clear 0 1 _C_D
size 1 0 _C_D

* Note that only max access count is taken under consideration

3.5 Conclusion

In this chapter we presented our conceptual framework for distributed model transfor-
mations with the relational transformation language ATL. We identified the essential bricks
for achieving distributed model transformation. Then, we determined the system’s require-
ments that should be guaranteed in order to have a consistent output model. Moreover, we
showed that model transformation with rule-based languages like ATL is a problem that
fits in the MapReduce execution model.

While frameworks such as MapReduce and Pregel lack a high-level transformation
language, several high-level query languages have been proposed. Their software stack is
usually composed of a standalone distributed system, an execution engine, and a language
that targeting the execution engine. In our approach we used a similar stack, being a persis-
tence layer on top of a standalone distributed system, a distributed model transformation
engine, and finally, a declarative model transformation language. Hence, the declarative
MT paradigm can be thought of as a high level abstraction for data transformation on
MapReduce.

We exhibited specific properties of the ATL language that make the alignment possible
and the resulting solution efficient, then we introduced a semantics for ATL’s distributed
execution on MapReduce. The proposed solution hides completely the internal complexi-
ties related to parallelism. The syntax of the MT language is not extended with distribution
primitives. Finally, we examined the execution semantics of ATL against the Reflective
MOF specification in order to extract the minimal set of ACID properties guaranteeing
a consistent output. Our analysis was based on the semantic of MOF operations and
their possible interaction inside the ATL engine. Our approach is validated through the
implementation and evaluation of a distributed engine, ATL-MR.

Our proposed engine is inherently integrable with the EMF-modeling ecosystem.
Moreover, thanks to our data distribution scheme, we are able to support complex model
transformation with multiple input pattern elements. At last, we have shown the require-
ments for supporting minimal set of ACID properties on model transformations in ATL in
order to handle concurrent read/write on output models efficiently. As a result of these
features, our solution responds to the limitations exhibited by related work. Implemen-
tation details as well as a concise evaluation are to be found in Chapter 6 and Chapter 7
respectively.
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In Section 3.2 we identified the two essential components for efficient distributed
model transformations. In the next chapters, we introduce our solution for efficient
data partitioning which aims at balancing the machines workload and increasing data
locality. We also present a distributed persistence backend suitable for distributed model
transformations in ATL. This brick enables concurrent read/write on in(out)put models.

Partitioning VLMs for distributed transformations. With a naive data-distribution
scheme, the execution time can be monopolized by the wait time for model elements
lookup. With an unbalanced distribution, machines with light workload have to wait for
other machines to complete. Other times, machines with heavy workload can crash when
hitting their memory limit. Such challenges are not only limited to model transformations,
but extend to several distributed graph processing tasks [90]. An algorithm should be
defined to overcome these limits and assist the partitioning process. In Chapter 4 we
propose an algorithm based on static analysis of relational transformations.

Accessing and persisting VLMs for distributed transformations. Data distribution
can be considered a crucial phase in the distribution of a model transformation, in particular,
the parallel transformation phase. Models are usually densely interconnected, and MTs
may contain rules with very different complexity. Moreover, having XMI as its default
serialization format, QVT-like engines, in particular ATL, are facing several scalability
issues when handling VLMs. This is due to this file-based representation XMI adopts. In
Chapter 5, we propose our solution to store model-data in (distributed) NoSQL databases,
and we show how we support the mandatory ACID properties to be preserved.





4
Efficient data partitioning for

distributed MTs

As we showed in the previous chapter, popular distributed programming models like
MapReduce [45] may simplify the development of distributed model transformation.
However, some characteristics of MT make efficient parallelization challenging. For
instance, typical MapReduce applications work on flat data structures (e.g. log entries)
where input entries can be processed independently and with a similar cost. Hence, a simple
data distribution scheme can perform efficiently. Conversely, models are usually densely
interconnected, and MTs may contain rules with very different complexity. Moreover,
most of the computational complexity of MT rules lies in the pattern matching step, i.e.
the exploration of the graph structure.

Because of this, model transformations witness higher ratio of data access to computa-
tion w.r.t. typical scientific computing applications. With a naive data-distribution scheme,
the execution time can be monopolized by the wait time for model elements lookup. With
an unbalanced distribution, machines with light workload have to wait for other machines
to complete. At other times, machines with heavy workload can crash when hitting their
memory limit. Such challenges are not only limited to model transformations, but extend
to several distributed graph processing tasks [90].

Several task-parallel [35] and data-parallel [120] distribution techniques have been
proposed, but none of them addresses the specific case of relational model transformation.
In this chapter, we argue that when a MT is defined in a relational language, an efficient
data-distribution 1 scheme can be derived by statically analysing the structure of the
transformation rules.

From static analysis, we derive information on how the input model is accessed by
the transformation application, and we encode it in a set of so-called transformation

footprints. Footprints allow us to compute an approximation of the transformation (task-

1. a.k.a. data partitioning
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data) dependency graph 2. We exploit this graph in a data distribution strategy, minimizing
the access to the underlying persistence backend, and hence, improving the performance
of our model transformation execution and memory footprint.

We adapt existing formalization of uniform graph partitioning to distributed MTs using
binary linear programming. The formalization takes into account task-data overlapping
maximization based on the dependency graph. Given a cluster of commodity machines,
the objective is to minimize the amount of loaded elements in each of these machines.
Then, we propose an algorithm for the extraction of transformation footprints based on
the static analysis of the transformation specification. Finally, we propose a fast greedy
data-distribution algorithm, which partitions an input model over a cluster, based on the
extracted footprints.

The rest of the chapter is structured as follows. Section 4.1 describes related work.
Section 4.2 motivates the need of efficient partitioning strategies for distributed MTs by
the means of a running example. Section 4.3 formalizes our problem using Integer Linear
Programming. Section 4.4 introduces our footprints extraction algorithm, and our greedy
algorithm for data distribution. Section 4.5 concludes the chapter.

4.1 Related work

Performance improvement in distributed systems is a well-studied problem. Impulsed
by different and yet sound motivations, different families of approaches emerge. As in
our distributed transformation framework we focused on the MapReduce programming
model, in what follows we introduce generic related work on makespan 3 minimization in
MapReduce. Later, we describe existing approaches to improve model transformation and
query in the MDE field (from Section 3.1) by using built-in indexers. Finally, we describe
other applications of static analysis of model transformation for different purposes.

Task-driven scheduling approaches

Observing that the order on which tasks are executed influences the overall completion
time, some works [143, 139, 36] proposed scheduling heuristics to improve the system
makespan, especially on MapReduce. Each of these heuristics considers one or more
specific factors such as the cost matrix, task dependency, and machines heterogeneity.

Assuming that map tasks are usually parallelizable but not reduce tasks, Zhu et al. [143]
introduce an offline and bi-objective scheduler to minimize makespan and total completion
time of reduce tasks. Algorithms for both of preemptive and non-preemptive have been
developed proving a performant worst ratio in accordance with the number of machines in
the system.

HaSTE [139] is a Hadoop YARN scheduling algorithm aiming at reducing the MR
jobs’ makespan based on task dependency and resource demand. The scheduler consists of

2. dependency graph is a directed graph representing the computation dependency of every objects
towards the nodes needed to perform the transformation execution

3. Makespan is the workload execution time, which is the difference between the earliest time of
submission of any workload task and the latest time of completion of any of its tasks
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two components, an initial task assignment and a real time task assignment. The first one
is intended to assign the first batch of tasks for execution while the rest remains pending.
A greedy algorithm using dynamic programming is used for this regard. The real time
task assignment component is triggered with resource capacity update. The scheduler then
decides with tasks of the remaining ones to assign considering two metrics, the resource
availability and the dependency between tasks.

In another work, Chen et al. [36] propose a task scheduler that joins all three phases
of MR process. The problem assumes that tasks are already assigned to the machines.
Though it only deals with tasks execution ordering. A precedence graph among tasks is
used to represent tasks that should start after others finish. The model system is formulated
in linear programming and solved with column generation.

Data-driven partitioning approaches

Stanton and Kliot [120] compared a set of lightweight algorithms for Streaming Graph
Partitioning for Large Distributed Graphs and compare their performance to some well-
known offline algorithms. They run their benchmark on large collections of datasets, and
showed up considerable gain in average.

Charalampos et al., introduce a framework for graph partitioning, FENNEL [131]. The
framework uses a formulation that relaxes the hard constraint on edge cuts, and replaces
it by two separate costs, the edges cut and the cluster size. The formulation enables the
accommodation of already existing heuristics. The framework was also integrated to
Apache Giraph, an open-source implementation of Pregel, a distributed graph processing
framework.

Kyrola et al. describes GraphChi, large-scale graph computation system that runs on
a single machine by developing a method called Parallel Sliding Windows. It processes
a graph from disk, with only a limited number of non-sequential disk accesses, while
supporting the asynchronous model of computation. The approach uses graph partitioning
to maximize data locality and minimize disk access counts.

Distributed model indexing

In [72], Izso et al. present an incremental query engine in the Cloud, called IncQuery-D.
This approach is based on a distributed model management middleware and a stateful
pattern matcher framework using the RETE algorithm. The approach has shown its
efficiency, but it addresses only distributed model queries while we focus on declarative
model transformations.

Hawk [13] is a model indexing framework that enables efficient global model-element-
level queries on collections of models stored in file-based version control systems (VCS).
It can operate with different file-based VCSs while providing a query API that can be
used by model management tools. Hawk is shipped with features enabling its robustness.
Namely, incremental model updates, derived attributes indexed attributes, and scoped
queries.

While both approaches focus on performance improvement of model querying, our
solution is designed for improving distributed model transformations specified in relation
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MT languages. Moreover, both tools use built-in indexers to improve the query execution
performance. Instead, in our approach we rely on efficient data partition to improve the
performance of transformation execution.

Static analysis of model transformations

Static analysis is the analysis of programs code without actually executing them. It
is generally used to find anomalies or ensure conformance to coding guidelines. Static
analysis has been also applied to model transformations. In our approach, we use static
analysis to extract transformation footprints in order to guide our partitioning algorithm.
There also exist other known usage such as proving properties of model transformations
like the absence of rule conflicts [49], to detect errors [39] or to compute and visualize
tracing information [60] to enhance maintainability.

Meta-model footprints are computed using the information gathered via static analysis.
In [73] a technique to estimate the model footprint of an operation is presented. Essentially,
a given model is just filtered based on the computed static meta-model footprint. In our
case, the model footprint is streamed as the original model is traversed. In [101] the type
information available in the abstract syntax tree of Kermeta programs is used to generate
test models. [30] compute footprints of ATL rules in order to determine which rules are
involved in the violation of a transformation contract.

Summary

In this section, we introduced existing related work. We started by describing some
work on MapReduce task scheduling and data partitioning heuristics. Task-driven ap-
proaches support a very coarse-grained definition of tasks (map reduce tasks). Moreover,
they do not consider data locality and complex data dependencies. These approaches
are not suitable for distributed model transformations due to the variating complexity of
rule applications. As these approaches are generic, we believe that our approach can be
coupled with them. On the other hand, existing graph partitioning approaches reason only
on the adjacency of nodes. In our approach, not only adjacent nodes should reside in the
same split, but all dependent nodes. Other existing approaches focus on the improvement
of query frameworks by relying on the built-in indexers. To our knowledge, our work is
the first to handle efficient data partitioning in relational model transformation. Finally, we
illustrated other application to static analysis of model transformations. In our case, we use
transformation footprints to compute an approximation of the transformation dependency
graph.

4.2 Motivating example

In order to show other application domains to MDE, we choose to motivate the need for
intelligent data partitioning using a different case study. Throughout this chapter, we use
the Class2Relational transformation, a de-facto standard benchmark for MT. Given a class
diagram, this transformation generates the corresponding relational model. Listing 4.1
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Package

name : String

Class
name : String

DataType

name : String

Attribute
name : String
isMulti : Boolean

Association
name : String
isMulti : Boolean

classes
*

assoc
* type

1

types *

attr *
type

1

(a) Class metamodel excerpt

Schema
name : String

Table
name : String

Type

name : String
Column

name : String

tables
*

types *

col
*

type 1

keys *

(b) Relational metamodel excerpt

Figure 4.1 – Simplified Class and Relational metamodels

shows a subset of the transformation rules and Listing 4.2 an excerpt of its OCL queries
(helpers). The full transformation code can be found on the tool’s website 4.

Figure 4.1 refers to the source and target metamodels of the transformation respectively.
A Package (see Figure 4.1a) contains classes and types. A Class in its turn, contains
attributes and associations. An Attribute has a type, and can be of cardinality multi-valued.
Same for Associations. In the Relational metamodel (see Figure 4.1b) a Schema contains
tables and types. A Table contains columns, and has keys. Finally, a Column has a type.

The rule Package2Schema is responsible for transforming packages to schemas (List-
ing 4.1). All non abstract classes along with multivalued associations are transformed into
tables, and package types are transcribed into Relational’s corresponding types. Target
patterns defined as OCL bindings depict this mapping. The Class2Table shows how tables
are produced out of classes. The rule produces two elements. The first one represents the
Table, while the second one represents its key. A set of OCL bindings specify how to fill
each of the features (attributes and references) of the produced elements. The binding at
line 18 copies the name of the Class, the binding at line 19 computes its corresponding
columns.

Listing 4.2 shows a simple helper example, getObjectIdType. It has as context the
transformation module itself and returns DataType (line 7). The helper getMultiValuedAs-

socs instead has as context a Package and returns a list of all multi-valued associations
belonging to the package’s classes (line 1).

Figure 4.2 illustrates a source model that conforms to the Class metamodel. We refer
to containment references using the dashed arrows, and type references by continuous

4. https://github.com/atlanmod/ATL_MR/

https://github.com/atlanmod/ATL_MR/
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Listing 4.1 – Class2Relational - ATL transformation rules (excerpt)
1 module Class2Relational ;
2 c r e a t e OUT : Relational from IN : Class ;
3 r u l e Package2Schema {
4 from

5 p : Class !Package
6 to

7 s : Relational !Schema (
8 tables <− p .classes−>reject (c | c .isAbstract )
9 −>union (p .getMultiValuedAssocs ) ,
10 types <− p .types
11 )
12 }
13 r u l e Class2Table {
14 from

15 c : Class !Class (not c .isAbstract )
16 to

17 out : Relational !Table (
18 name <− c .name ,
19 col <− Sequence {key}
20 −>union (c .attr−>select (e | not e .multi−valued ) )
21 −>union (c .assoc−>select (e | not e .multi−valued ) ) ,
22 keys <− Sequence {key}
23 −>union (c .assoc−>select (e | not e .multi−valued ) )
24 ) ,
25 key : Relational !Column (
26 name <− c .name+’objectId’ ,
27 type <− thisModule .getObjectIdType
28 )

Listing 4.2 – Class2Relational - OCL helpers (excerpt)
1 h e l p e r c o n t e x t Class !Package def :
2 getMultiValuedAssocs : Sequence (Class !Association ) =
3 self .classes −>reject (c | c .isAbstract )
4 −>collect (cc | cc .assoc−>select (a | a .multi−valued ) )
5 −>flatten ( ) ;
6

7 h e l p e r def : getObjectIdType : Class !DataType =
8 Class !DataType .allInstances ( )
9 −>select (e | e .name = ’Integer’ )−>first ( ) ;

Table 4.1 – Model elements dependencies

MODEL ELMT. DEPENDENCIES

p1 {p1,c1,a1,c2,t1}
c1 {c1, a1, att1, t1}
a1 {a1,c2}
att1 {att1,t1}
c2 {c2, att2, att3, t1}
att2 {att2,t1}
att3 {att3,t1}
t1 {t1}

arrows. The model is composed of a package (p1) containing two classes (c1 and c2).
Table 4.1 lists, for each source element, the set of elements that the ATL engine will need
to read in order to perform its transformation (Dependencies). We denote by d(j) the set
of dependencies of j, as referred by the column Dependencies in Table 4.1. For instance,
d(a1) = {a1, c2}.
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p1 : Package

c1 : Classt1 : DataTypec2 : Class

att1 : Attributea1 : Association

att2 : Attributeatt3 : Attribute

Figure 4.2 – Sample Class model

Considering a system S of 2 machines (m1 and m2) computing in parallel a model
transformation. A set of input model elements is assigned to each machine. We argue
that, by using an advanced data distribution strategy to the cluster nodes, it is possible
to optimize the number of loaded elements, and hence, improve the performance of the
model transformation execution.

Let’s consider a random uniform distribution scenario 5 of our sample model over S.
We can assume that this model is stored in distributed persistence backend, permitting the
loading of model elements on-demand. We randomly assign elements {p1,att1,c2,t1} to
m1, and the remaining to m2. The splits assigned to m1 and m2 are denoted by A1 and
A2 respectively. We identify the weight of a split assigned to a machine i (Wi), as the
number of elements to be loaded in order to perform its transformation. Assuming that
every machine has a caching mechanism that keeps in memory elements that have already
been looked-up, loading model elements is considered only once.

Therefore,W(A1) = |∪e∈Ai
de| = |{p1, c1, a1, att1, c2, att2, att3 ,t1}| = 8. Likewise,

W(A2) = |{c1, a1, att1, c2, att2, att3, t1}| = 7. As noticed, both machines need almost all
the model to perform the transformation of the split assigned to them, resulting in a overall
remote access to the underlying persistence backend of 15 (=8+7) elements. However,
this naive distribution scenario is not optimal. As the elements {p1,c1,a1,att1} share a
heavy dependency between each other, it makes more sense to assign them to the same
machine (e.g. m1). The rest are hence assigned to m2. This scenario results in better
weights. Precisely,W(A1) = 6 andW(A2) = 4, with an overall remote access of 10 (6+4).

Computing such efficient split becomes especially challenging when we consider
model graphs with million of nodes. Without a fast heuristic, the cost of traversing these
large graphs to compute the splits may exceed any possible benefit of data distribution.

4.3 Problem formalization

In this section we show how an efficient distribution of a model transformation in a
distributed system could be realized to improve the performance of a model transformation
execution. We rely on our system’s description introduced in Chapter 3.2 to propose a
formalization of our system in linear programming.

For the sake of simplicity, we introduce hereafter a brief summary of the main defini-
tions and properties introduced previously.

5. Note that the order in which model elements are transformed does not affect the execution results of
the transformation.
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— de is the subset of model elements needed to execute a rule application triggered by
a model element e

— Ai is the set of model elements assigned to a machine i

— Di is dependencies of Ai, the set of source elements that need to be accessed to
compute the transformation of Ai: Di =

⋃

e∈Ai

de

Balanced partitioning formalization

As discussed in our conceptual framework, the set of elements to be loaded (Ai ∪ Di)
by a machine i is controlled by the elements to be assigned to i for transformation. The
number of loaded elements is determined by the cardinality of |Ai ∪ Di|. Intuitively
we want elements that share most dependencies to be assigned to the same split. This
implies minimizing model elements being loaded in different machines, and perform it
only once in a single machine (Property 2). Hence, by assigning elements to machines in
an intelligent manner, it is possible to reduce the amount of elements to be loaded by each
machine. On the other side, it is also important to balance the load across the cluster in
order to enable a good scalability of the transformation application. In other words, our
objective is to balance the charge of loaded elements while maximizing the overlapping of
dependencies.

Balanced graph partitioning is a problem that consists in splitting the graph into
partitions of about equal weight, while minimizing the number of cross-partitions edges.
In our approach, we define this weight as the cardinality of the set of elements fetched
from the persistence backend, and needed to transform the assigned subset. This set is
computed using the transformation dependency graph, which is a directed
graph representing the rule application dependency between model elements. Each element
e, has outgoing edges towards all the elements belonging to his set of needed elements
de. These edges are nothing more but the result of the traversal represented by the pattern
matching of a rule application.

Finally, we determine the weight associated to an element e and a machine i, respec-
tively as:

W(e) = |e ∪ (de)|

W(Ai) = |Li| = |Ai ∪ Di|
(4.1)

Balanced model partitioning for distributed model transformation

As discussed previously, our objective is to assign model elements in a way to re-
duce (minimize) the number of elements loaded in each machine. As rule applications
share transformation dependency to model elements, one way to achieve this objective
is by minimizing the number of loaded elements while maximizing the overlapping of
transformation dependencies.

Consider the transformation of a model of size n (n = |E|) over a system S of m
machines. Our problem can be defined in linear programming as follows:
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Figure 4.3 – Execution overview of our proposed solution

minimize f(X) = max
i∈M

{

n
∑

j=1

(
∨

j∈E

(Xi,j ×Dj))
}

(4.2)

where,

Xi,j =

{

0 if j is not assigned to the machine i ,

1 otherwise
(4.3)

and,

Dj,k =







0
if j does not need element k
for its transformation,

1 otherwise
(4.4)

subject to:

∀j ∈ E ,
∑

i∈M

Xi,j = 1, (4.5)

⌊
n

m
⌋ ≤

n
∑

j=1

(Xi,j), (4.6)

and

∀i ∈ E , ⌊
n

m
⌋+ 1 ≥

n
∑

j=1

(Xi,j) (4.7)

In this formulation, we denote the transformation dependency graph

by a matrix (n × n), where Dj,k equals to 1 if j needs k, and 0 otherwise. As to Dj ,
it is a boolean vector representing the projection of this matrix on a single element j
(Equation 4.4). The operation

∨

plays the role of an inclusive-or over the resulting vector,
and returns 1 if the element is needed at least once, and 0 otherwise. This insures that the
loading of a given element is considered only once (as stated in Property 4). Finally, The
constraint (4.5) is responsible for making sure that a model element is assigned to one
and only one machine. Whilst constraints (4.6) and (4.7) restrict the search space of the
elements assigned to each machine Xi to even number of elements over all the machines.
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4.4 Data partitioning for distributed MT

Although such a problem can be solved by building a full dependency graph and
using existing linear programming solvers, their computational cost is not suitable to our
scenario. In case of very large graphs, the global execution time would be dominated by
(i) the construction of the full dependency graph and (ii) the data distribution algorithm.
In this section, we propose a greedy algorithm instead that can efficiently provide a good
approximation of the ideal split.

We rely on static analysis of the transformation language to compute an approximated
dependency graph. The building process of this graph relies on the transformation foot-
prints. These footprints represent an abstract view of the navigation performed by a given
rule application. Footprints are a simplification of the actual computation, and they origi-
nate a dependency graph that is a super-graph approximation of the actual one. We then
apply a greedy data-distribution algorithm from recent related work to the approximated
dependency graph.

The execution overview of our proposed solution is depicted in Figure 4.3. The
framework starts by passing the transformation to the static analyser in the master node
for footprints extraction. These footprints are fed to the splitting algorithm to assist its
assignment decision making. As the model stream arrives, the master decides to which
split a model element should be assigned. Once the stream is over, the slave nodes proceed
with the transformation execution.

4.4.1 Static analysis of MT: footprint extraction

We analyse rule guards and bindings to extract their footprints. Since we are only
interested in navigating the source model, we consider mainly NavigationCallExp. The
extraction is achieved by traversing the tree representation of the OCL expression sym-
bolizing either the guard or the binding. For instance, Figure 4.4 shows a simplified AST
representation of the getMultivaluedAssocs() helper, which is illustrated in Listing 4.2.
Notice that the AST traversal follows a left-to-right depth-first order traversal.

Table 4.2 – Footprints of Class2Relational transformation

RULES FOOTPRINTS

Package2Schema Package.classes.assoc
Package.types

Class2Table Class.assoc
Class.attr
DataType.allInstances

Attribute2Column Attribute.type
MVAttribute2Column Attribute.type

Attribute.owner
Association2Column DataType.allInstances
MVAssociation2Column Association.type

DataType.allInstances
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Algorithm 4: Footprint extraction algorithm
Input :ATLModule module

Output :Set〈 Set〈 FootPrint〉 〉 perRuleFps

1 foreach rule ∈ getRules(module) do

2 foreach guard ∈ getGuards(rule) do

3 perRuleFps[rule] ∪ {extractFootprint(guard)}

4 foreach binding ∈ getBindings(rule) do

5 perRuleFps[rule] ∪ {extractFootprint(binding)}

6 Function extractFootprint (OCLExp exp)

7 if isInstanceOf(exp, LiteralExp) then

8 if hasSource(exp) then

9 fps := extractFootprint(exp.source)
10 else

11 fps := ∅

12 if isInstanceOf(exp,NavigationOrAttributeCallExp) then

13 if isAttributeCall (exp) then

14 fps := ∅

15 else if isHelperCall(exp) then

16 helper := getHelperByName(exp.name) fps :=
extractFootprint(exp.source)⊗ extractFootprint(helper)

17 else //isNavigationCall
18 fps := extractFootprint(exp.source) ⊳ exp.refferedProperty

19 if isInstanceOf(exp,OperatorCallExp) then

20 fps := extractFootprint(exp.firstOperand) if

isBinaryOperator(exp) then

21 fps := fps⊕ extractFootprint(exp.secondOperand)

22 if isInstanceOf(exp,OperationCallExp) then

23 fps := extractFootprint(exp.source)

24 if isInstanceOf(exp, V ariableExp) then

25 if hasContainer(exp) then

26 fps := getType(exp)
27 else

28 fps := ∅

29 if isInstanceOf(exp, IteratorExp) then

30 fps := extractFootprint(exp.source)⊗ extractFootprint(exp.body)

31 if isInstanceOf(exp, IfExp) then

32 if hasElseClause(exp) then

33 fps := extractFootprint(exp.cond)⊗
(extractFootprint(exp.then)⊕ extractFootprint(exp.else))

34 else

35 fps :=
extractFootprint(exp.cond)⊗ extractFootprint(exp.then)



70 CHAPTER 4. EFFICIENT DATA PARTITIONING FOR DISTRIBUTED MTS

:OpCallExp 
(flatten)

:IteratorExp 
(collect)

:IteratorExp 
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FP= { Package.classes.attr }
 

FP= { Package.classes}
 

FP= { Class.attr }
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FP= { Package.classes}
 

FP= { Package(p) }
 

FP= { Class(c) }
 

FP= { Class(cc) }
 

FP= { Attribute(a) }
 

FP= { Class.attr}
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Ⓧ
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package.classes -> reject (c | c.isAbstract) 
-> collect (cc | cc.assoc -> select (a | a.multiValued)) -> flatten();

Figure 4.4 – Simplified AST representation of the helper ’getMultivaluedAssocs’ aug-
mented with footprint values. For simplicity sake, we add the helper’s definition at the
top.

Our footprints extraction process is described in Algorithm 4. It proceeds by traversing
all the rules of an ATL module (line 1), and computing the footprint of each rule for
both guards and bindings (lines 2..5). For each rule, guard footprints and bindings
footprints are aggregated. The function extractRuleFootprint (line 6) is the one responsible
for computing the footprint of an OCL expression. It recursively traverses the AST
representation of an OCL expression and returns the corresponding footprint according
the node type. Figure 4.4 shows an example resulting from traversing the AST tree of the
getMultivaluedAssocs helper.

We use three different symbols to represent different operations in our algorithm. The
operator ⊳ is used to denote navigation call chaining. It is used to chain the source of a
NavigationCallExp with its corresponding referred type. For example, the footprint of the
NavigationCallExp ’classes’ (in Figure 4.4) is, Package ⊳ classes. In our representation,
the ⊳ is denoted by ’.’, as in OCL (see Table 4.2). Whilst, the operation ⊕ is used to
decouple the expression to two separate footprints, one corresponding to the LHS of the
operator, and the second to its RHS. This operator is mainly used in ’ConditionalExps’, and
’BinaryOperators’. The ⊗ operator instead, behaves like ⊳ operator when the chaining
is possible, otherwise it behaves as a ⊕ operator. A chaining is feasible when the type
of the OCL expression in the LHS, corresponds to the initiating type in the RHS. For
instance, the operator ⊗ footprint of the IteratorCallExp collect behaves like ⊳. This
happens because the type of the collection of the footprint ’Package.classes’ (in LHS),
coincides with the initiating type of the footprint ’Class.attr’ (in RHS). As noticed, the
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algorithm does not cover all the set of OCLExpressions. Operations on collection types
such as flatten(), first(), or last(), are omitted as they don’t affect the computation of the
transformation footprints.

The set of footprints resulting after using our algorithm in the Class2Relational trans-
formation is summarized in Table 4.2. This set is organized by rules. We represent
footprints as a series of NavigationCallExpression starting from a particular Type. They
take the form of [source.type][.’(’?[propertyName][’)’?∗]?]+. For instance, the binding
’tables’ in rule Package2Schema contains a multi-level navigation ’{Package.classes.attr}’.
A chunk of the footprint can take part in a recursive call. We use ’∗’ to denote it. We argue
that multi-step navigation calls provide a better approximation of the dependency graph.
The same argument holds for recursive navigation calls.

4.4.2 A greedy model-partitioning algorithm for distributed trans-

formations

Although the footprints of the transformation help us approximate a transformation
dependency graph, data distribution necessitates traversing the model according to these
footprints. This traversal process can be expensive as it may possibly visit model elements
more than once. In our approach, we propose a greedy partitioning algorithm which visits
every model element only once. For each element, we only visit the first degree neighbours
as stated by the footprints with initiating type. Thanks to this algorithm, it is possible to
instantly decide to which machine a model element should be assigned.

We first decompose all existing multi-level navigation footprints into single-navigation
footprints in order to visit only first degree neighbours. Then, we order them according to
the navigation call chain in the original footprint. Single-level footprints have by default
an order equals to 1. For example , the footprint {Package.classes.attr} decomposes to
two single-level footprints with the corresponding order, FP1 = {{Package.classes,1},
{Class.attr,2}}. Later, we show how the order of footprints is used to enable visiting only
first degree neighbours.

The initiating type of the resulting footprints is inferred from the navigation call
referring type. The order of the decomposed footprints is important, it enables processing
the right single footprint, and discard the succeeding ones. Moreover, it allows keeping
track of the next footprint to be taken into consideration during the partitioning process.
Later, we show how, by using these footprints, we monotonically build our transformation
dependency graph.

It is theoretically impossible to have a good streaming graph partitioning algorithm
regardless of the streaming order. The ordering on which model elements arrive, may
sometimes cause it to perform poorly. Moreover, sometimes, it can be discouraged to
decide to which partition a model element should be assigned. Hence, the use of a buffer
to store these model elements for a future processing is favoured. The buffer should have
a capacity that, once is reached (hopefully, after the master has enough information to
decide to which machine these elements should be assigned), it gets cleared, and belonging
elements should be processed.

To alleviate this process, we distinguish between high-priority and low-priority el-
ements [120]. High-priority elements are elements that can participate in building the
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Algorithm 5: Data distribution algorithm
Input :Stream<Vertex> stream, int avgSize, int bufCap, int m

1 assignElementToMachine (stream.first(), 1)
2 while stream.hasNext() do

3 element := stream.next()
4 if isHighPriorityElement(element) then

5 machineId := ComputeMachineId(element)
6 storeElement-MachineDeps(element, clusterId)
7 assignElementToMachine(element, clusterId)

8 else

9 addToBuffer(element)

10 if |buffer| == bufCap then

11 processBuffer()

12 processBuffer()

13 Function ComputeMachineId (element)
Output : int index

14 index := max
i∈m

(

|dependentElementsInMachine(element, i)|∗

(1− currentSize(i)
avgSize

)
)

15 Function storeElement-MachineDeps (element, clusterId)

16 foreach fp ∈ getFirstOrderFPsForType(element.type) do

17 dependent_elements := getPropertyElements(element, fp.property)→
reject(alreadyAssigned)

18 addDependencies(clusterId, dependent_elements)

19 foreach fp ∈ getFPsFromDeps(element, clusterId) do

20 dependent_elements := getPropertyElements(element, fp.property)→
reject(alreadyAssigned)

21 addDependencies(clusterId, dependent_elements)

22 Function processBuffer ()

23 while buffer.hasNext() do

24 element := buffer.next()
25 clusterId := ComputeMachineId(element)
26 storeElement-MachineDeps(element, clusterId)
27 assignElementToMachine(element, clusterId)
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transformation dependency graph. These elements are immediately processed and as-
signed to a split. Whilst, low-priority elements do not directly participate in building
the transformation dependency graph. For example, the elements of a type that does not
figure in the LHS of any footprints may be considered low-priority element. Low-priority
elements are stored in a buffer for later processing.

Algorithm 5 describes our greedy data distribution approach. It takes as input the graph
stream, the average machine size ’avgSize’, the buffer capacity ’bufCap’, and finally the
number of commodity machines ’m’. The algorithm starts by assigning the first element to
the first machine. Next, for each streamed element, if the element is high-priority (need
to be assigned immediately), then it computes the index of the appropriate machine to
be assigned to (line 5). Later, it stores its dependencies (line 6). Finally, the element is
assigned to the given machine (line 7). If the element is low-priority, it is directly stored in
the buffer (line 9).

In order to monotonically build our transformation dependency graph, the dependencies
of each element are stored after its assignment. A dependency has the following structure,
{element_id, next_footprint, split_id}. This reads like, the element with ’ID’ element_id,
along with the elements referred to by next_footprint, are needed in the split with ’ID’
split_id. The dependencies storage process happens in two phases (line 15). It starts by
recovering all footprints with initiating type as the element type and order equals to 1
(line 16). For each footprint, we check if it has any successor. If so, the dependency is
stored together with the next footprint to be resolved if the dependent element is assigned to
the same machine. In case the footprint is originally single, we only store the dependency
of the element to the machine. Dependencies referring to elements that have been already
assigned are not created (line 16).

For example, after assigning the element ’p1’, supposedly to split m1, we collect its
corresponding footprints, which are, {Package.classes, Package.types}. For the footprint
’Package.classes’, we generate the following dependencies: {c1, Class.assoc, m1} and
{c2, Class.assoc, m1}. The elements c1 and c2 are resulted from visiting ’classes’ property.
As for the footprint Package.types, only one dependency is generated, which is, {c1, null,

m1}. The value of next_footprint is null, as Package.types is originally single-level.

In the second step, we collect all the dependencies corresponding to the current element
and the assigned split, with a non-null value of next_footprint (line 19). If any, additional
dependencies are created, similarly to the previous step. This step enables building
the dependecy graph while visiting only first degree neighbours. For example, if the
element ’c1’ was assigned to m1, then, we recover the dependency {c1, Class.attr, m1},
and we generate the additional dependencies. After the dependencies creation, existing
dependencies referring to the current element are deleted.

The function ComputeMachineId (line 13) is responsible for deciding the appropriate
machine. It assigns a model element to the machine with the highest number of elements
depending on it, and adds it to the list of already visited (assigned) elements, thanks to
the dependencies generated at every model assignment. The amount of dependencies
to an element e in a particular machine m refers to, the number of dependencies with
element_id equals to e , and split_id equals to m. This value is weighted by a penalty
function based on the average size a machine can take, and penalizing larger partitions. If
the splits have similar score, then the element is assigned to the split with the lowest index.
While different penalty functions can be used, we go for a linear weighted function, as it
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has experimentally shown good performance results [120]. This forces our distribution to
be uniform. Experimenting our algorithm with different penalty functions is left for future
work.

4.5 Conclusion

In this chapter, we argued that distributed model transformations in relational languages
can be improved by using efficient distribution strategies. To cope with this, we first showed
that our problem can be related to the problem of uniform graph partitioning. Later, we
adapted existing formalization to our system. Then, we proposed a greedy data distribution
algorithm for declarative model transformations, based on static analysis of transformation
rules. We introduced an algorithm to extract the knowledge on how the input model is
accessed by the transformation application. Finally, we use this knowledge to help out the
algorithm deciding the appropriate assignment.

With respect to existing approaches, we defined tasks at a very fine-grained level,
allowing us to have more precise reasoning on data distribution for distributed model
transformations. Moreover, while existing data-driven approaches analyze graph-data itself
to ensure a better data locality, in our approach, we rely on an approximate dependency
graph. This graph is computed thanks to the transformation footprints, which is used
to help our data distribution algorithm decide to which split a model element should be
assigned.

Chapter 6 validates our approach by introducing an open-source implementation of
our solution. We apply it to our distributed MT engine, ATL-MR [17] (see Chapter 3)
coupled with a distributed persistence backend, NEOEMF/COLUMN. We build our
footprints extraction algorithm on top of anATLyzer [39], a static analysis tool for model
transformation in ATL. Finally, we implement our heuristic as a custom split algorithm for
Hadoop/HBase applications. Chapter 7 reports on our evaluation results and shows that
thanks to our greedy algorithm, we improved the access to our distributed backend by up
to 16%. In the next chapter, we introduce our solution for storing and manipulating VLMs
on top of NoSQL databases.



5
Scalable model persistence

With large-scale software engineering becoming a compelling necessity in several
industrial contexts, companies need tools that are capable of scaling efficiently. Some of
these companies embracing the main concepts of MDE are witnessing an increasingly
growing size and complexity of their model-data. For instance, the modernization of
very complex legacy systems results in models with several millions of elements. These
models need to be stored, manipulated, even sometimes transformed to modernize a legacy
application. Model manipulations part of such tools are mainly based on reading from
and/or writing to a model.

In practice, modeling tools are built around modeling frameworks, which provide basic
model-management functionalities and interoperability to the modeling ecosystem. The
EMF framework is the most popular one. This is testified by the amount (counting more
than two hundred) of tools coming from both industry and academia. Such frameworks
offer a common base for implementing tools for different application domains, e.g. reverse
engineering [27], model transformation [106, 75], and code generation [24, 103]. EMF
adopts XMI (XML Metadata Interchange) as its default serialization format. This file-
based representation faces several issues related to scalability when handling VLMs.
Systematically, tools built around EMF show similar limitations as well.

While several solutions to access and store EMF-based models exist, they are still
limited for the several reasons – as we will see in the next section. As a result of these
limitations, NEOEMF was proposed, a multi-persistence backend for manipulating and
storing EMF-based models in NoSQL databases. Currently, NEOEMF is implemented in
three different backends, each, is well-suitable for specific modeling scenario. NEOEMF
is highly extensible and advanced EMF developers can easily adapt it to specific scenarios.
NEOEMF is open source and available online 1.

This chapter is structured as follows. In Section 5.1 we investigate the limitations of
state of the art tools. Later in Section 5.2, we present a global overview of our solution,

1. http://www.neoemf.com/
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and we describe its common features. Section 5.3 describes the model-data mapping to the
underlying backends. Finally, Section 5.4 details our implementation, while Section 5.5
concludes the chapter.

5.1 Related Work

The interest on scalable model persistence has grown significantly in recent years.
Nonetheless, existing approaches are still not suitable to manage this kind of artefacts both
in terms of processing and performance.

XMI-based approaches. Models stored in XMI need to be fully loaded in memory for
persistence. The lack of support for lazy or partial loading of models hampers handling
VLMs not fitting in a memory of a single machine. Moreover, this persistence format
is not adapted to developing distributed MDE-based tools. Hereafter, we investigate the
state-of-the-art tools and frameworks for persisting EMF-based models and draw down
their limitations.

One way to tackle scalability issues while sticking to the XMI representation, is by
decomposing the model into fragments, and thus, alleviating its complexity. Amálio et
al. [4] proposed a mathematical ground that tackles the scalability issues of models in
MDE by breaking them down into smaller chunks. This theory is based on the ideas of
modularity and separation of concerns.

EMF fragments [93] is a hybrid persistence layer for EMF models aimed at achiev-
ing fast storage of new data and fast navigation of persisted one. EMF-Fragments uses
annotations to decompose a model into smaller documents. A similar approach is EMF
Splitter [52], it borrows the modularity structure used in Eclipse for Java projects organiza-
tion to decompose the models. Both approaches rely on the proxy resolution mechanism
used by EMF for inter-document relationships. EMF Fragment support MongoDB, Apache
HBase and regular files, while EMF Splitter supports only XMI files. The backends assume
to split the model into balanced chunks. This may not be suitable to distributed processing,
where the optimization of computation distribution may require uneven data distribution.
Moreover, model’s distribution is not transparent, so queries and transformations need to
explicitly take into account that they are running on a part of the model and not the whole
model.

Relational-based approaches. CDO is the de facto standard solution to handle large
models in EMF by storing them in a relational database. It was initially envisioned as a
framework to manage large models in a collaborative environment with a low memory
footprint. However, different experiences have shown that CDO does not scale well to
very large models [119, 111, 112]. CDO implements a client-server architecture with
transactional and notification facilities where model elements are loaded on demand. CDO
servers (usually called repositories) are built on top of different data storage solutions.
However, in practice, only relational databases are commonly used. Furthermore, the
client-server architecture constitutes a bottleneck and does not exploit a possible alignment
between data distribution and computation distribution.
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NoSQL-based approaches. Barmpis and Kolovos [14] suggest that NoSQL databases
would provide better scalability and performance than relational databases due to the
interconnected nature of models. Morsa [111] was one of the first approaches to provide
persistence of large scale EMF models using NoSQL databases. Morsa is based on a
NoSQL database. Specifically, Morsa uses MongoDB [100], a document-oriented database,
as its persistence backend. Morsa can be used seamlessly to persist large models using the
standard EMF mechanisms. As CDO, it was built using a client-server architecture. Morsa
provides on-demand loading capabilities together with incremental updates to maintain
a low workload. The performance of the storage backend and their own query language
(MorsaQL) has been reported in [111] and [112].

Mongo EMF [28] is another alternative to storing EMF models in MongoDB. Mongo
EMF provides the same standard API as previous approaches. However, according to the
documentation, the storage mechanism behaves slightly different than the standard persis-
tence backend (for example, when persisting collections of objects or saving bidirectional
cross-document containment references). For this reason, Mongo EMF cannot be used
without performing any modification to replace another backend in an existing system.

Summary. In this section, we presented state-of-the-art tools for the persistence of
VLMs. These approaches vary in techniques used as well as persistence backends. We
observed that, while most of existing approaches scale in some scenarios, they however
expose one or more of the following limitations:

1. Existing solutions based on XMI still require a good fragmentation from the user.
Moreover, the lazy-loading is supported at only the chunck level. As a consequence,
complex queries may lead to loading the whole model even though some elements
are not accessed (e.g. EMF Fragments and EMF Splitter).

2. Existing solutions are not well-suitable to specific modeling scenarios. Some
works [14, 59] have shown that graph database and relational databases are not
well-suitable to repetitive atomic operations performed on models, while graph
databases perform better in the case of complex queries.

3. Existing solutions are not transparent with regard to model distribution. Queries and
transformations need to explicitly take into account that they are running on a part
of the model and not the whole model (e.g. EMF fragments and EMF Splitter).

4. Existing solutions are not suitable for distributed processing. The backend assumes
to split the model in balanced chunks (e.g. EMF Fragments). This may not be
suitable to distributed processing, where the optimization of computation distribution
may require uneven data distribution.

5. Existing solutions using a client-server architecture use a single access point. Even
when model elements are stored in different nodes, access to model elements is
centralized, since elements are requested from and provided by a central server (e.g.
CDO over a distributed database). This constitutes a bottleneck and does not exploit
a possible alignment between data distribution and computation distribution. With a
growing size of clients, single access point can rapidly turn into a limitation.
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Type Requirements

Interoperability
- Compliance with the modeling ecosystem
- Extensible caching facilities
- Replaceable backend engine

Performance
- Memory-friendly
- Fast response

Table 5.1 – Requirements of persistence backends in modeling ecosystem

5.2 NEOEMF: Global Overview

Gómez et al. identified five requirements for designing a solution to persisting VLMs.
These requirements care to improve model persistence solutions for a scalable execu-
tion time and memory occupancy. But more importantly, to ensure that the persistence
solution is compatible with existing tools in the modeling ecosystem, for different ap-
plication domains and different scenarios. Requirements are grouped in two categories
interoperability and performance requirements as depicted in Table 5.1. Next
we introduce NEOEMF, our solution for scalable persistence of model-data in NoSQL
databases. Then, we show how it responds to these requirements thanks to its characteris-
tics and features.

Figure 5.1 shows a high-level overview of the proposed architecture, implemented
on top of the EMF framework. EMF-based tools would not be aware of the NEOEMF
framework, as communications between the tool and NEOEMF are always passing through
the EMF layer (compliance). The persistence manager communicates in its turn with
the underlying backend by means of a specific driver for serializing and deserializing
data. Each driver is responsible for mapping/translating EMF API operations to backend
API calls of one of the supported persistence backends. In particular, NEOEMF supports
three different NoSQL persistence backends, the NEOEMF/GRAPH [15], NEOEMF/-
COLUMN [58], and NEOEMF/MAP [59] (Replaceable backend engine). In
this chapter, we only cover NEOEMF/GRAPH and NEOEMF/COLUMN in details.

NEOEMF fulfills the performance requirements through the support for lazy loading

to fetch only needed element and save if needed mechanisms to reflect only new
updates to the persistence backend. While the first mechanism reduces memory footprint
and allows programs to load and query large models in systems with limited memory, the
second mechanism avoids making a full traversal in order to store small model changes.
This is handled through two techniques. The first technique is direct-write. It
propagates the model changes directly to the underlying backend after each EMF API
call involving a write operation. The second technique, auto-commit, caches the write
operations, and persists them (in one shot) when the buffer size limit is reached. This
technique relies on transactions (if supported by the underlying backend) to commit the
change operations. The maximum number of operations per transaction 2 is costumizable.
The changes can also be persisted if the save operation is invoked by the application.

2. Buffer size limit
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Figure 5.1 – NEOEMF: a general view and architecture

NEOEMF is shipped with a set of caching strategies plugged to the drivers. Each
cache offers a specific optimization to improve one of performance requirements depicted
in Table 5.1. Features-cache is responsible for storing loaded objects by their accessed
feature. The isSet-cache keeps the result of isSet calls to avoid multiple accesses on the
database. The size-cache keeps the result of size calls on multi-valued features to avoid
multiple accesses on the database. Finally, the record-cache maintains a list of backend
records each representing a model element to limit costly serializations/deserializations.

As modeling scenarios may variate from one application domain to another (e.g.
querying pattern, multiple-client access, etc.), it is required to implement solutions that
can be adapted to each one of these scenarios. One way to answer to this issue, is relying
on the characteristics and capabilities of different existing NoSQL stores. NEOEMF offers
three different implementations, each, targeting a specific scenario.

NEOEMF/GRAPH uses GraphDB to persist model-data in its natural form. The data
model mapping is straight forward, except for model elements type. It is represented
through a relationship of type INSTANCE_OF towards a vertex representing the type.
Graph databases have shown great performance results for manipulating connected data,
which makes it more suitable for performing complex graph traversals.

NEOEMF/COLUMN is designed to enable the development of distributed MDE-based
applications by relying on a distributed column-based datastore. In contrast to the two
other implementations, NEOEMF/COLUMN offers concurrent read/write capabilities and
guarantees ACID properties at the model element level. It exploits the wide availability of
distributed clusters in order to distribute intensive read/write workloads across a cluster’s
data-nodes.

NEOEMF/MAP relies on a map-based data model to store model elements. Based
on the hashtable data structure, model elements and their properties are represented as a
collection of 〈key, value〉. The main advantage of this representation lies in its powerful
capacity to access records in a constant time. Thanks to this feature, NEOEMF/MAP is
designed for performing model queries as a set of atomic operations such as accessing a
single element/attribute, and navigating a single reference.
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5.3 Model-data-mapping

Data in MDE is represented in its essential form by Directed Typed Attributed Graphs.
Different ways have been proposed to represent these graphs for different intentions,
both in-memory or on-disk. Each of these representations was designed for a particular
purpose, depending on the kind of computation the graph data is involved in and the
available resources. For instance, one would leverage data memory/disk occupancy over
the execution time of a particular operation, or vice-versa.

In this section we focus on the on-disk representation of these graphs 3, and the mapping
to the data model of the underlying persistence technology. In particular, we introduce
our mapping proposal to Graph stores and Column stores. A data model should be able
of mapping every model element and its properties, except for derived ones, they can
be inferred at runtime. Other information that can be inferred at runtime is the type of
attributes. Instead, information about the concrete type of model elements should be stored.
Finally, the mapping should differentiate between properties and attributes by means of
their qualified names.

In order to meet the performance requirements presented in Table 5.1, we design
the underlying data model to minimize the response time of each method of the MOF
Reflection API when possible (see Section 3.4). Hence, we identify the following design
principles as key features for improved performance:

— Indexing of root elements: root elements help recontructing the tree-like
representation of models. In particular, root elements are used in model traversal (tree
iterator). In order to speed up these operations, our mapping takes into consideration
the indexing of root elements.

— Using Universal Unique IDentifiers: for databases with indexing or
fast look-up capabilitites it would be recommended to index model elements. We
use UUIDs to track these objects and be able to fetch them from the underlying
storage immediately.

— Conformance relationship: graphs in MDE are typed, and being able to
know element’s type is a requirement. We design our mapping to store metaclass
information as well.

— Representing the containment references: another relationship that
might be represented to improve the response time of some methods of the Reflection

API is the containment one. Although this information is already represented by
simple references, representing it separately speeds up the response time.

Hereafter, we show our data model mapping to Column-stores and Graph-stores. In
order to exemplify our data model, we refer to the DataFlow metamodel presented in
Figure 2.2a along with its model instance, as depicted in Figure 2.2b.

The de facto implementation of the MOF standard is EMF. It has its own metamodel
called ECore. This metamodel is slightly different than the MOF’s one (see Section 2.1),
and reduces the number of model elements. Mainly, EMF simplifies its metamodel by re-
ferring to Class properties as Attributes and Association properties as References.

3. we suppose that the in-memory representation of model instances in MOF should be handled by the
modeling framework.
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Figure 5.2 – Representation of the sample instance in Figure 2.2b model in Graph-store.
For readability reasons, only the localStmts reference is represented.

References in Ecore are owned by the first member of the association and has for type
the second member. The metaclass Association does not exist in Ecore. Henceforth,
we use the EMF nomenclature.

5.3.1 Graph-based Store Mapping: NEOEMF/GRAPH

Models in MDE can naturally be mapped to concepts in Graph-stores. This natural
mapping is the main motivation that leads us to choose a native graph database. Another
motivation is the promising performance graph stores have shown for connected data
operations. However, graph stores are not natively typed, hence, information about
metaclasses should be explicitly represented.

The metaclass information in NEOEMF/GRAPH is represented using NODES. Meta-
class nodes have two attributes, name and nsURI. Model elements refer to their corre-
sponding metaclass using an outgoing relationship of type INSTANCE_OF. The node
with ID m1 refers to the node M as its metaclass as shown in Figure 5.2. Likewise, s1, s2,
s3 and s4 are instances of the metaclass SimpleStmt .

MODEL ELEMENTS are also represented as NODES. Nodes (in Figure 5.2) m1, s1,
s2, s3 and s4 are examples of this, and correspond to the elements m, s1, s2, s3 and s4
shown in Figure 2.2b. Element attributes are represented as node properties contained in
the corresponding node. Most of existing graph-stores have native support for primitive
types. The value of the attribute txt of the element m is equal to ’int fact(int

a)’.

ROOT ELEMENTS are referred to by the relationship IS_ROOT, outgoing from the
node ROOT. Thanks to the built-in node indexer that the ROOT node is pointed at, and
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simply traversed to return the set of root elements 4. The node m1 is a root element as it
has an incoming relationship of type IS_ROOT as depicted in Figure 5.2.

REFERENCES are represented as RELATIONSHIPS. To avoid naming conflicts in RE-
LATIONSHIPS, we use the following convention for assigning names: CLASS_NAME_
_REFERENCE_NAME. Arrows labelled METHOD_LOCALSTMT in Figure 5.2 are ex-
amples of references. Bidirectional references would be represented with two separate
directed graph relationships. In the case of multi-valued references, we use labels
to guarantee that model elements are returned in the same order as expected. Finally,
containment information is also represented as a relationship between the container and
the contained nodes. The relationship is called CONTAINER. It has a property feature,
which refers to the containing feature. The elements s1, s2, s3, and s4 are contained
in the element m1 as illustrated in Figure 5.2. The name of the containing feature is
localStmt. Note that for readability and simplicity reasons, the representation of the
dfNext reference is omitted.

5.3.2 Column-based store mapping: NEOEMF/COLUMN

One of the common ways of representing graphs is by using adjacency lists. For each
node in the graph, a list of vertices adjacent to it is stored. This representation has a low
storage cost on disk, and the time to access the list of adjacent nodes is constant. According
to existing work [59], such a representation has shown promising results for applications
with massive reads. Moreover Google’s original use case for BigTable was the storage
and processing of web graph information represented as sparse tables. Our design takes
advantage of the use of UUIDs design principle to flatten the graph structure into a set of
key-value mappings.

NEOEMF/COLUMN uses a single table with three column families to store the infor-
mation of the models: (i) a property column family, that keeps all objects’ data
stored together; (ii) a type column family, that tracks how objects interact with
the meta-level (such as the INSTANCE_OF relationships); and (iii) a containment
column family, that defines the model’s structure in terms of containment references.
Table 5.2 5 shows how the sample instance in Figure 2.2b is represented using this data-
model. Row keys are the object unique identifier. The property column

family stores the object’s actual data. This column family contains all the existing
structural features in the metamodel (attributes and properties). As it can be seen, not all
rows are populated. Thanks to sparsity property in column-stores that the storage cost is
very cheap, only populated properties are stored. Features with the same name but residing
in different namespaces will still be stored in the same column. This solution causes no
conflict since each stored element is uniquely identified regardless of the feature type.
All data is stored as byte literals and NEOEMF/COLUMN is responsible for parsing the
resulting value to its appropriate type.

The way how data is stored depends on the property type and cardinality
(i.e., upper bound). For example, values for single-valued attributes (like the txt, which
stored in the txt column) are directly saved as a single literal value; while values for
many-valued attributes are saved as an array of single literal values (Figure 2.2b does not

4. The node indexer is also used to fetch model elements with a cheap cost
5. Actual rows have been split for improved readability
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Table 5.2 – Example instance stored as a sparse table in Column-store

PROPERTY

KEY ECONTENTS TXT DFNEXT LOCALSTMTS

’ROOT’ ’m1’

’m1’ ’int fact(int a)’ { ’s2’, ’s3’ } { ’s1’, ’s2’, ’s3’, ’s4’ }

’s1’ ’int r = 1;’ { ’s3’, ’s4’ }

’s2’ ’while (a>0);’

’s3’ ’r *= a-;’ { ’s3’}

’s4’ ’return r;’

CONTAINMENT TYPE

KEY CONTAINER FEATURE NSURI ECLASS

’ROOT’ ’http://dataflow’ ’RootEObject’

’m1’ ’ROOT’ ’eContents’ ’http://dataflow’ ’Method’

’s1’ ’m1’ ’localStmts’ ’http://dataflow’ ’SimpleStmt’

’s2’ ’m1’ ’localStmts’ ’http://dataflow’ ’SimpleStmt’

’s3’ ’m1’ ’localStmts’ ’http://dataflow’ ’SimpleStmt’

’s4’ ’m1’ ’localStmts’ ’http://dataflow’ ’SimpleStmt’

contain an example of this). Values for single-valued references are stored as a single
literal value (corresponding to the identifier of the referenced object). Finally, multi-valued
references are stored as an array containing the literal identifiers of the referenced objects.
An example of this is the localStmts containment reference. The element m1 stores
{’s1’, ’s2’, ’s3’, ’s4’} in the cell identified by 〈c1, localStmts〉.

The containment column family maintains a record of the container of every
persisted object. The container column records the identifier of the container object,
while the feature column records the name of the property that relates the container
object with the child object (i.e., the object to which the row corresponds). Table 5.2 shows
that, for example, the container of the m1 is ROOT through the eContents property
(i.e., it is a root object and is not contained by any other object). The next depicts the
SimpleStmt s1 is contained in the m1 through the localStmt PROPERTY.

The type column family groups the type information by means of the nsURI
and EClass columns. For example, the table specifies the element m1 as an instance
of method Method class of the Dataflow metamodel (that is identified by the nsURI
http://dataflow).

5.4 Implementation

NEOEMF is implemented as a set of open source Eclipse plugins on top of the EMF
Framework 6. In its common API, NEOEMF receives CRUD operations from the EMF
API, and delegates them to the appropriate persistence manager. This component is
then in charge of the serialization/deserialization of model elements. NEOEMF is easily
parameterizable, and users are free to use any of the available stores, according to their
modeling scenario. An underlying backend can have more than one store, each with a
particular behaviour. As follows, we show some examples of the available stores.

6. www.neoemf.com

www.neoemf.com
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Another feature that assists the scalability in NEOEMF is the lazy-loading mechanism.
Other model persistence solutions such as MongoEMF [28] and CDO [1] support this
mechanism as well. Lazy-loading works by loading objects in memory only when they
are accessed, in contrast to XMI’s approach that parses the whole model in memory in
one shot. Lazy-loading is implemented as a common feature in NEOEMF. It consists of a
wrapper delegating all its method calls to an embedded EStore, which directly manipulates
elements at the store level. Caching Strategies come into play to reinforce the lazy-loading
mechanism by maintaining only a few number of elements in memory (the ones that have
not been saved), and thus, reducing the memory consumption of modeling applications.

NEOEMF’s compliance with the EMF API comes at a low price, and EMF’s features
such as code generation, and the use of dynamic & reflexive APIs are still supported.
Besides that, NEOEMF is delivered with a model importer, which enables an optimized
model serialization from XMI to a dedicated database, alongside with a model exporter for
the opposite operation. These two features are designed to enhance NEOEMF’s integration
in existing environment, while maintaining a low memory footprint.

NEOEMF has been released as part of the MONDO [82] European project and has
proved an effortless and transparent integration with existing EMF-based tools coming
from the industrial partners. This transparent integration is provided thanks to the special-
ization of the EMF classes. Finally, NEOEMF is well documented and experienced EMF
users can safely extend it with their own caching strategies, stores, or even underlying
backends.

NEOEMF/GRAPH relies on Blueprints [127], an API designed to access and manipu-
late property graph data models. It was intended to unify graph databases under a common
API. Indeed, it has been implemented by the world’s leading graph databases, such as Neo4j
and TitanDB[10]. In this perspective, users can integrate NEOEMF/GRAPH with any
graph databases of their choice, as long as it implements the Blueprints API. In particular,
NEOEMF/GRAPH is provided with a convenience wrapper for Neo4j. NEOEMF/GRAPH

is shipped with two stores, Auto-commit and Dirty-saving [83].

The Auto-commit store is suitable for backends having restrictions on size (e.g. size
of transactions). It has a limit of write operations that can be stored in memory. Once
this limit is reached the store commits all the changes to the underlying backend. Instead,
the behaviour of Dirty-saving [83] is slightly different. Once the limit is reached, it
saves model elements to the underlying storage, but tags them as dirty, and finally unloads
them. If later on, the save method is triggered, then the tags are removed and data is
cleaned. Otherwise, if the resource shuts down without triggering the save method, then
data is simply removed from the database. Both of these stores are designed to enable the
efficient manipulation of VLMs in limited resources.

Graph databases are not well-suitable to compute atomic accesses of single reference
or attribute, which are typical queries computed by graphical model editors. Mogwaï [41],
a querying framework for NEOEMF/GRAPH, exploits the capabilities of advanced query
and traversal provided by graph databases to improve the response time and memory
footprints of complex queries. The framework maps OCL expression to graph navigation
traversals, which returns the set of requested elements.
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NEOEMF/COLUMN is built on top of Apache HBase [124]. NEOEMF/COLUMN

hides the model distribution from client’s applications. Model access to remote model
elements in NEOEMF/COLUMN is decentralized, which avoids the bottleneck of a single
access point, and alleviates the alignment between data distribution and computation
distribution.

NEOEMF/COLUMN is delivered with two stores, the first one is Direct-write and
the second one is Read-only. The Direct-write store uses a different strategy for
optimizing memory usage by reflecting model changes directly to the underlying backend.
And thus, make the new changes available to other clients. Inconveniently, all clients have
to fetch properties values from the underlying backend due to recurrent model edits by
other clients. In future work, we plan to supply NEOEMF/COLUMN with a distributed
notification mechanism to alert clients of changes in model elements.

NEOEMF/COLUMN is well-suitable to distributed modeling applications with massive
reads, typically, in model-to-model transformations. We provide Read-only store
to avoid multiple fetching of data values in read-only scenarios. In contrast to the
Direct-write store, this one relies on a caching mechanism. NEOEMF/COLUMN

is integrated with ATL-MR [16]. It exploits the lazy-loading mechanism to allow each
client to load only the part of the model needed. It also enables the cluster’s nodes to share
read/write rights on the same set of input/output models.

Integrating NEOEMF/COLUMN in modeling applications takes more efforts than
NEOEMF/GRAPH and NEOEMF/MAP. Users need to adapt their applications to the
distributed programming logic of NEOEMF/COLUMN. In particular, users need to consider
that ACID properties are only supported at the object level, which relies completely on
HBase. A thorough description of ACID properties support is provided in Section 6.1.

NEOEMF/MAP is built around the key-value store MapDB, which provides Maps, Sets,
Lists, Queues and other collections backed by off-heap or on-disk storage. MapDB de-
scribes itself as hybrid between Java Collections and an embedded database

engine [92]. It provides advanced features such as ACID transactions, snapshots, and
incremental backups. NEOEMF/MAP relies on the set of Maps provided by MapDB and
uses them as a key-value store. NEOEMF/MAP comes also with two stores, Auto-commit
and Direct-write.

5.5 Conclusion

In this chapter we proposed NEOEMF, a persistence solution for VLMs in EMF.
NEOEMF overcomes the limitations of existing EMF persistence frameworks by providing
different backends, each one suitable for a particular modeling scenario. Especially,
NEOEMF/MAP was designed for modeling applications that undergo repetitive, yet atomic
operations performed on models. For scenarios with more complex and elaborate query
patterns, NEOEMF/GRAPH comes to the rescue. It relies on advanced traversal capabilities
of graph databases to query models efficiently while maintaining a low memory-footprint.
In contrast to NEOEMF/MAP and NEOEMF/GRAPH, the NEOEMF/COLUMN backend
offers concurrent read/write capabilities and guarantees ACID properties at the model
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element level. It also offers a transparent and flexible model distribution by virtue of a
decentralized architecture.

Moreover, we showed how NEOEMF can achieve good scalability results in terms of
memory occupancy and response time by relying on its advanced features such as, lazy-
loading, pluggable caching, and other features. NEOEMF can be transparently integrated
with any EMF-based legacy application at a cheap price, except for the NEOEMF/COL-
UMN implementation. It needs the application’s business logic to be aligned with its
distributed programming logic. Indeed, NEOEMF/COLUMN is integrated with ATL-MR
to enable concurrent read on the input models and concurrent writes to the output ones.
Chapter 6 details the integration specificities.



6
ATL-MR: distributed MTs with ATL

on MapReduce

In the previous chapters, we introduced our approach for distributing model trans-
formations on MapReduce. We also presented our solution to efficiently partition input
models based on static analysis of model transformations and by applying a state-of-the-art
algorithm for the partitioning of graph streams. In this chapter, we validate our solution by
building a prototype MT engine for the distribution of ATL transformations on MapReduce.
Our engine is implemented on top of Hadoop, the Apache’s open-source implementation
of MapReduce. We provide our solution with a distributed persistence backend based on
our model persistence framework NEOEMF/COLUMN. Section 6.1 gives an overview of
our distributed engine. It details our implementation, then introduces our data distribution
and access modalities. Finally, it depicts how the framework reacts to failures. Section 6.2
describes how we guarantee the consistency of persisted models in distributed model
transformations while relying on ACID properties as provided by HBase, an open-source
implementaiton of BigTable.

6.1 ATL on MapReduce (ATL-MR): a global overview

6.1.1 Global overview

Figure 6.1 shows the high-level architecture of our distributed engine on top of the
EMF. ATL-MR runs on an Apache Hadoop [7] cluster. Hadoop is the leading open-source
implementation of MapReduce. The Master node is responsible for distributing the input
model, monitoring the ATL-MR Slaves, and finally returning the output results. Each node
in the Hadoop cluster transparently communicates with the underlying backend through an

87
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EMF model management interface. And hence, making our distributed framework unaware
of the persistence backend type. Indeed, besides supporting the de-facto serialization
format, XMI [107], ATL-MR is also coupled with a multi-database model persistence
framework, NEOEMF [40]. ATL-MR relies on the HDFS to distribute all of its input and
output models, together with the transformation specification.

HDFS is the primary distributed storage used by Hadoop applications as it is designed
to optimize distributed processing of multi-structured data. It is well suited to distributed
storage and distributed processing using commodity hardware. It is fault tolerant, scalable,
and extremely simple to exceed. In our framework, XMI files are duplicated and stored
in different data nodes for a better data locality and high availability. However, HDFS
is optimized for delivering a high throughput of data, and this may be at the expense
of latency, which makes it neither suitable nor optimized for atomic model operations.
Moreover, HDFS resources cannot be written concurrently by multiple writers without
locking, which results in locking delays. Also writes are always made at the end of the file.
Thus, writing in the middle of a file (e.g. changing a value of a feature) involves rewriting
the whole file, leading to more significant delays.

ATL-MR exploits the capabilities of NEOEMF/COLUMN, implemented on top of
HBase to distribute the storage of EMF models and enable concurrent R/W. HBase is
a better choice for low-latency access. HBase allows fast random reads and writes.
HBase is row-level atomic, i.e. inter-row operations are not atomic, which might lead to
a dirty read depending on the data model used. Additionally, HBase only provides five
basic data operations (namely, Get, Put, Delete, Scan, and Increment), meaning
that complex operations are delegated to the client application, which in its turn, must
implement them as a combination of these simple operations.

Each node in the system executes its own instance of the ATL VM but performs
either only the local match-apply or the global resolve phase. Configuration information
is sent together with the tasks to the different workers, so that they can be able to run
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Figure 6.1 – ATL-LR: a general view and architecture
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Table 6.1 – API extension

CLASS NAME OPERATION DESCRIPTION

ExecEnvironment matchSingle(EObject) Matching a single object
localApplySingle(TraceLink) Applying if possible
globalResolve() Resolving unresolved bindings

and assignements in the global
scope

TraceLinkSet mergeTrace(TraceLink) Add traceLink if does not exist and
resolve input and output cross ref-
erences

their local VMs independently of each other. This information includes the paths of the
transformation, the models, and the metamodels in the distributed file system.

Depending on the execution phase, the master node takes care of assigning either a set
of input model elements (map phase) or intermediate traces (reduce phase) for processing.
However, during the map phase, all the nodes share read rights over the input model in case
other elements are needed to execute a rule application. In the reduce phase instead, it’s the
tracing information that is shared, as it holds information about not only rule application,
but also associated input and output model elements. ATL-MR supports two input data
distribution modes, greedy and random.

6.1.2 Implementation

We implemented our approach as a distributed ATL engine. The engine is built
on top of the ATL Virtual Machine (EMFTVM [125]). In the standard ATL VM, the
transformation engine iterates the set of matched rules, and looks for the elements
that match its application condition (guard). Instead, our VM iterates over each in-
put model element, and checks if it is matched by an existing rule. In this perspec-
tive, we extended the ATL VM with a minimal set of functions (see Table 6.1) al-
lowing the VM to run either in standalone or distributed mode. In particular, the dis-
tributed VM is required to factorize and expose methods for launching independently
small parts of the execution algorithms. For instance the distributed VM exposes meth-
ods to perform the transformation of single model elements. Typically the methods
matchSingle(EObject) and localApplySingle(TraceLinkl) called in the
map phase, and globalResolve() called in the reduce phase.

Our implementation adopts some of the existing good practices and design patterns
for scalable graph processing in MapReduce, namely the InMapperCombiner and the
Shimmy patterns proposed by Lin et al. [88].

Like normal Combiners, the inMapperCombiner pattern aims at reducing the number
of pairs emitted by each mapper. Apart from that, this pattern runs within the mapper
instead of running as a separate step. In this case, the emission of 〈key,value〉 pairs is held
until the processing ends, then invokes the inMapperCombiner, and hence reducing the
amount of data passed to the shuffle phase. This prevents the framework from unnecessary
creation and destruction of intermediate objects.
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The second pattern relates to mappers-to-reducers dataflows. It discourages diffusing
the graph structure in the network. Instead, it recommends passing only the metadata of the
graph elements’ state, which are mostly less densely inter-connected. In our implementa-
tion, target elements are persisted while tracelinks are passed along to reducers. Hadoop’s
Map and Reduce Classes are provided with two API hooks, being Initialize and
Close hooks. While the initialize hook is used to set-up the transformation envi-
ronment, according to running phase (Local Match-Apply or Global Resolve),
the close hook is used to execute the InMapperCombiner pattern. That is by iterating the
local tracelinks (intermediate pairs), and invoking the method localApplySingle()
for each tracelink. This resolves the local properties and thus reduce the amount of data
communicated to reducers.

6.1.3 Model-data distribution and access

Distributing input model. Data locality is one of the aspects to optimize in distributed
computing for avoiding bottlenecks. In Hadoop, it is encouraged to run map tasks with
input data residing in HDFS since Hadoop will try to assign tasks to nodes where data to
be processed is stored.

Each mapper is assigned a subset of model elements by the splitting process. In
the case of XMI models, we start first by flattening the structure of our model, which
consists in producing a file containing model elements URIs as plain strings, one per line.
Hadoop then takes care of shredding input data. With NEOEMF/COLUMN, this step is not
necessary since models are already stored in table-like topology.

Hadoop provides several input format classes with specific splitting behaviour. Accord-
ingly, we use different splitters depending on the persistence format of our input models.
For XMI models, we use an NLineInputFormat on the flattened file, it takes as argument a
text file and allows to specify the exact number of lines per split. Finally, the default record
reader in Hadoop creates one record for each line of the input file. As a consequence, every
map function in ATL-MR will be executing on a single model element. When running our
distributed transformation on top of models stored in HBase, we use TableInputFormat.
By default, this format divides at region boundaries based on a scan instance that filters
only the desired cells. In our, we use a KeyOnlyfilter. This filter accesses just the keys
of each row, while omitting the actual data. These keys are used later to access model
elements stored in NEOEMF/COLUMN.

For an efficient distribution of the input model, ATL-MR is shipped with two data
execution modes, a greedy mode and a random mode. While the random distribution is
applicable to both of XMI and NeoEMF/Hbase persistence formats, the greedy mode is
only applicable to NEOEMF/COLUMN. Note that the greedy algorithm improves only
data access time, but since in XMI the whole model should be loaded, the greedy mode is
not applicable. The greedy algorithm comes with default parameters (buffer size, variance,
etc.), however, they can be set to the desirable values.

The greedy algorithm is implemented on top of a Hadoop TableInpuFormat class.
We override its default behaviour and enable the use of our custom splitting solution. The
implementation relies on the HBase storage scheme, where, 〈key, value〉 pairs are grouped
by family and stored in increasing lexicographical order. Table splits are defined by a start
key and end key. In our solution, we associate to each split an ID. Later on, we use this id
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to salting the row keys belonging to the same splits. We applied our splitting approach
to the LocalResolve phase of ATL-MR algorithm. The Global resolve uses a random
assignment approach.

In order to perform the automated footprint extraction operation preceding our greedy
assignment strategy, we rely on a static analysis tool of ATL transformations, anAT-
Lyzer [39]. Although, it was initially implemented to automate errors detection and
verification in ATL transformations, in our solution, we use anATLyzer internals, espe-
cially, typing information inference of OCL expressions, in order to construct the footprints
of ATL rules.

Accessing input models. Due to the file-based representation of XMI, models stored
using this representation need to be fully loaded in memory, even though in practice, all
the nodes need only a subset of these model elements. This prevents the framework from
transforming VLMs. NEOEMF/COLUMN in the other hand, overcomes this limitation by
providing a lazy loading mechanism, which enables the ATL-MR slaves to transparently
load only the set of needed elements. However, because of the distributed nature of
NEOEMF/COLUMN, it is mandatory to guarantee the consistency of the local values
and the remote ones. For this, every time a client needs to read a value of a property,
NEOEMF/COLUMN fetches it from the underlying backend. To our convenience, we
take advantage of the fact that input models are read-only 1, and we use the read-only

store. This store has the capacity to cache model elements after and properties values, after
fetching them for the first time.

6.1.4 Failure management

One of the two fundamental bricks of Hadoop is Yarn. It is responsible for managing
resources in a Hadoop cluster. Figure 6.2 shows the Yarn’s architecture. The resource man-
ager (master) and the node managers (slaves) altogether form the computation nodes. Node
managers are in charge of launching containers. The application master is a per-application
is tasked with negotiating resources and communicating with resource managers. The ap-
plication startup processes as follows. First a client submits an application to the Resource
Manager, then the Resource Manager allocates a container and contacts the related Node
Manager. Later the Node Manager launches the container which executes the Application
Master. Finally, the Application Master takes care of negotiating appropriate resources
and monitoring them.

In distributed applications on MapReduce, four different kinds of failure may occur,
namely, task, Application Master, Node Manager, and Resource Manager failures. Failures
can take place for many reasons, e.g. downtime 2, runtime exceptions, etc..

Task failure happens when the JVM reports a runtime exception during either a map or
reduce task. This exception is sent back to the application master, which marks the task
attempt as failed, then frees the container to make the resource available for another task.
Another scenario is when having hanging tasks. Here as well, tasks are marked as failed

1. We assume that input models are also not subject to changes during the transformation’s execution
2. time during which a machine, especially a computer, is out of action or unavailable for use
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Figure 6.2 – Hadoop Yarn architecture

when the application master stops receiving heartbeats after some period of time. The
timeout period is set to 10 minutes by default. When a job fails after a specific number of
times, the whole Job is aborted. By default, the maximum attempts are four.

Application master failure happens when the resource manager stops receiving appli-
cation’s heartbeats. Such as tasks, application masters has also a maximum number of
attempts that is set to two in the default configuration.

Node manager failure happens when the node crashes or runs slowly. In this case it
fails to send heartbeats periodically. The timeout period is also set to 10 minutes and all
the tasks running in this node are abborted and re-executed.

Resource manager failure is the most serious kind. It constitutes a single point of
failure. If a resource manager crashes the whole job fails and no data can be recovered. To
avoid running in such a scenario, it is necessary to run a pair of resources managers in the
same cluster.

In ATL-MR, in case a task solely fails (for any of the reasons above) during the map
phase, then the local output model together with the intermediate traces are cleaned, and
the task is relaunched. Otherwise, if a reduce task fails, then updates on the global output
model are left intact, and they get overridden when the reduce task is run for the next time.
In case the whole job fails, the master node cleans all the data, and the transformation is
re-executed from the beginning.

6.2 Distributed Persistence for MTs in ATL

As mentioned in section 5.3, NEOEMF/COLUMN is a persistence layer maintaining
the same semantics as the standard EMF. Modifications in models stored using NEOEM-
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F/COLUMN are directly propagated to the underlying storage, making changes visible
to all possible readers. Moreover, in Section 3.4, we showed how and when updates on
model elements may occur concurrently. More importantly, we reasoned on the set of
ACID properties that should be guaranteed for every MOF::Reflection method call so that
the output models are consistent.

In what follows, we introduce the architecture of HBase and the characteristics of its
client API. Soon after, we show how, while relying on these characteristics, we relax ACID
properties to provide our transformation engine with a distributed persistence backend
preserving the consistency of the output results.

6.2.1 HBase Architecture

Figure 6.3 shows how HBase is combined with other Apache technologies to store
and lookup data. Whilst HBase leans on HDFS to store different kinds of configurable
size files, ZooKeeper [123] is used for coordination. Two kinds of nodes can be found in
an HBase setup, the so-called HMaster and the HRegionServer. The HMaster is
the responsible for assigning the regions (HRegions) to each HRegionServer when
HBase is starting. Each HRegion stores a set of rows separated in multiple column
families, and each column family is hosted in an HStore. In HBase, row modifications
are tracked by two different kinds of resources, the HLog and the Stores.

The HLog is a store for the write-ahead log (WAL), and is persisted into the dis-
tributed file system. The WAL records all changes to data in HBase, and in the case of
a HRegionServer crash ensures that the changes to the data can be replayed. Stores
in a region contain an in-memory data store (MemStore) and a persistent data stores
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Table 6.2 – Summary of accesses counts to the underlying column-based storage system

METHODS MAX COUNT* ROWS PROPERTIES

GET() PUT()** ATL NEOEMF
OPERATIONS ON PROPERTIES

get* 1 0 1 _C_D ACID
set* 3 2 2 AC_D AC(I)D

isSet* 1 0 1 _C_D ACID
unset* 0 1 1 _C_D ACID

OPERATIONS ON MULTI-VALUED PROPERTIES

add 3 2 2 AC(I)D AC(I)D
remove 3 2 2 AC(I)D AC(I)D
clear 0 1 1 _C_D ACID
size 0 1 1 _C_D ACID

* Note that only max access count is taken under consideration, likewise for rows
** Updating two cells in the same row counts for one single Put

(HFiles, that are persisted into the distributed file system) HFiles are local to each
region, and used for actual data storage.

6.2.2 Model Consistency in Distributed Model transformations with

ATL-MR

HBase is not a strongly ACID-compliant database, it only provides ACID semantics
on a per-row basis. It is up to users to employ this semantics to adapt ACID properties
according to their applications behaviour. Notably, HBase is shipped with the following
warranties:

— Any Put operation on a given row either entirely succeeds or fails to its previous
state. This holds even across multiple column families. Same for the Append
operation

— The CheckAndPut is atomic and updates are executed only if the condition is met,
similar to the Compare And Set (CAS) mechanism

— Any Get or Scan operation returns a complete row existing at the same point in
the table’s history

— Get operations do not require any locks. All reads while a write in progress will be
seeing the previous state

Table 6.2 extends Table 3.3 with the ACID properties that are guaranteed by NEOEM-
F/COLUMN, and the number of rows involved in each update. This time, the properties
between parenthesis, in the column NEOEMF/COLUMN, refer to the properties partially
supported by NEOEMF/COLUMN.

Hereafter, we describe how we guarantee the set of properties needed by ATL:

Atomicity — Modifications on a single object’s properties are atomic. Modifications
involving changes in more than one object, are not. One way to provide atomicity in
this case is by manually implementing a rollback operation that undoes the changes
affected by this commit. Since commits can be composed by at most 2 Put calls,
the cost of rolling-back is low and changes can be tracked within the methods. In
case the first Put succeeds but not the second, then there is only one Put to undo.
Otherwise no rollback is needed.
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WRITE_P(c1, a)

WRITE_P(c2, a)

WRITE_P-1(c2,a)

WRITE_P-1(c1,a)

c1.set(pbi,a)

c2.set(pbi,a)

time

Figure 6.4 – Fail scenario of two concurrent calls on a 1-to-1 bidirectional reference. After
both updates finish, they leave the system in an inconsistent state where, c1 −→

p
∅, c2 −→

p
a,

and a −→
p

c1

Consistency — Non-concurrent modifications on object’s properties are always consis-
tent. For that, we rely on EMF, which validates some consistency rules before a
commit happens. The validation of rules issued from OCL invariants is not supported
by EMF, likewise for NEOEMF/COLUMN. Failures in single-valued properties are
handled by HBase, while multi-valued are handled by the framework (See Atomicity
and Isolation).

Isolation — There is particular cases where isolation is not guaranteed in NEOEMF/COL-
UMN for the set, add, and remove methods (as shown in Table. 3.3). Figure 6.4
shows a fail scenario of two concurrent calls on a 1-to-1 bidirectional reference.
Such a concurrent scenario would not occur in ATL. In fact, concurrent operations
occur only on multi-valued properties in order to perform a monotonic update, either
by adding or removing an element at a specific index. In order not to have inconsis-
tent result in absence of write-write synchronization, concurrent writes should be
provided with isolation. To do so, two possible solutions exist. The first one
is using row locking on every write operation. This solution is not encouraged in
HBase 3, and the API allowing row-locking has been removed in the latest versions
of HBase. The seconcd one (what we use instead) is the CAS mechanism. In HBase,
CheckAndPut operations is executed only when matching a specified condition
on a property value. In NEOEMF/COLUMN, we use it for removing elements from
multi-valued properties. The operation first reads an object it plans to later update,
and commits the changes only if the value is still as current. All of this, in one
atomic isolated operation. To add elements to properties we use Append operation,
which is also atomic and isolated. For add operations at a specific index, we infer
the append offset from the index itself, since all objects’ UID have the same length.
It can be noted that all the case scenarios where isolation is needed in ATL are
supported by NEOEMF/COLUMN.

Durability — Modifications on a given object are always reflected in the underlying stor-
age, even in the case of a Data Node failure, thanks to the replication capabilities
provided by HBase.

3. https://issues.apache.org/jira/browse/HBASE-7315

https://issues.apache.org/jira/browse/HBASE-7315
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6.3 Conclusion

In this chapter, we presented our prototype engine for distributed model transformations
with ATL on MapReduce. ATL-MR is coupled with a decentralized model persistence
framework, NEOEMF/COLUMN. It is also supplied with two input data partitioning
modes for memory efficient transformations, a random mode and a greedy mode. ATL-MR
transparently integrates with EMF-Applications.

In the next chapter, we evaluate the scalability of our proposed engine by comparing
how the transformation of our running examples performs in different test environments.
The transformation covers a sufficient set of declarative ATL constructs enabling the
specification of a large group of MTs.

Thanks to our publicly available execution engine, in a form a Docker 4 cluster, users
may exploit the availability of MapReduce clusters on the Cloud to run model transforma-
tions in a scalable and fault-tolerant way.

4. https://www.docker.com/what-docker



7
Evaluation

In this chapter we evaluate the scalability of our solutions by running them against
some existing benchmarks. These benchmarks are issued from our initiative for building an
openset benchmark for scalable query and transformation engines [18] (can also be found
in the appendix section). The experiments are run on different setups and environments.
Input data used in the experiments come from real-world use cases as well as our random
generator available online 1. The wiki contains instructions about how to use our generator.
These evaluations are presented in detail in our previous work [15, 17, 19].

In the first section, we show how ATL-MR scales up in a complex transformation
example with quadratic complexity. We run two experiments with two different setups
and environments. The experiments are complementary and use the Control2DataFlow

transformation. The second section evaluates the performance of our proposed solution for
data partitioning while running it on a well known model transformation, Class2Relational.
It also validates our integration with the NEOEMF/COLUMN framework. Finally, we
evaluate the scalability of the access time of NEOEMF/GRAPH in increasingly large
scenarios, and we compare it against CDO and XMI. This last experiment uses models
reverse engineered from Java Projects using MoDisco [27].

7.1 Distributed model transformation

Description

In this experiment we show how ATL-MR scales up in a complex transformation exam-
ple with quadratic complexity. We evaluate the scalability of our proposal by comparing
how the Control2DataFlow (see Section 2.1.3) transformation performs in two different
test environments. In order to be able to compare our distributed VM to the standard one,

1. https://github.com/atlanmod/neoEMF-Instantiator
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we opt for a complex transformation with quadratic time complexity over XMI models
that can fit in memory.

We use as input different models of diverse sizes. The original case study [61] already
includes a set of input models for the benchmark. These models are reverse-engineered
from a set of automatically generated Java programs, with sizes up to 12 000 lines of
code. For our benchmark we used the same generation process but to stress scalability we
produced larger models with sizes up to 105 000 lines of code. We consider models of
these sizes sufficient for benchmarking scalability in our use case. In our experimentation,
processing in a single machine the largest of these models takes more than four hours. All
the models we generated and the experimentation results are available at the tool’s website.

In what follows we demonstrate the scalability of our approach through two different
but complementary experimentations. The first one shows a quasi-linear speed-up 2 w.r.t.
the cluster size for input models with similar size, while the second one illustrates that the
speed-up grows with increasing model size.

7.1.1 ATL-MR on XMI: Speed-Up curve

Input data

For this experiment we have used a set of 5 automatically generated Java programs
with random structure but similar size and complexity. The source Java files range from
1 442 to 1 533 lines of code. We used a simple M2T to generate these java files. The
execution time of their sequential transformation ranges from 620s to 778s.

Environment setup

The experiments were run on a set of identical Elastic MapReduce clusters provided
by Amazon Web Services. All the clusters were composed by 10 EC2 instances of type
m1.large (i.e. 2 vCPU, 7.5GB of RAM memory and 2 magnetic Hard Drives). Each
execution of the transformation was launched in one of those clusters with a fixed number
of nodes – from 1 to 8 – depending on the experiment. Each experiment has been executed
10 times for each model and number of nodes. In total 400 experiments have been
executed summing up a total of 280 hours of computation (1 120 normalized instance
hours[3]). For each execution we calculate the distribution speed-up with respect to the
same transformation on standard ATL running in a single node of the cluster.

Results

Figure 7.1 summarizes the speed-up results. The approach shows good performance
for this transformation with an average speed-up between 2.5 and 3 on 8 nodes. More
importantly, as it can be seen on the upper side, the average speed-up shows a very similar
curve for all models under transformation, with a quasi linear speed-up indicating good
scalability w.r.t. cluster size. We naturally expect the speed-up curve to become sub-

2. an increase in speed in machine’s rate of working
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linear for larger cluster sizes and very unbalanced models. The variance among the 400
executions is limited as shown by the box-plots in the lower side.
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Figure 7.1 – Speed-up obtained in Experiment I
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Table 7.1 – Execution times and speed-up (between parentheses) per model

STD. Distributed VM using x nodes (time and speed-up)
# SIZE ELTS VM 1 2 3 4 5 6 7 8
1 ∼4MB 20 706 244s 319s

(×0.8)
165s

(×1.5)
128s

(×1.9)
107s

(×2.3)
94s (×2.6) 84s (×2.9) 79s (×3.1) 75s (×3.3)

2 ∼8MB 41 406 1 005s 1 219s
(×0.8)

596s
(×1.7)

465s
(×2.2)

350s
(×2.9)

302s
(×3.3)

259s
(×3.9)

229s
(×4.4)

199s
(×5.1)

3 ∼16MB 82 806 4 241s 4 864s
(×0.9)

2 318s
(×1.8)

1 701s
(×2.5)

1 332s
(×3.2)

1 149s
(×3.7)

945s
(×4.5)

862s
(×4.9)

717s
(×5.9)

4 ∼32MB 161 006 14 705s 17 998s
(×0.8)

8 712s
(×1.7)

6 389s
(×2.3)

5 016s
(×2.9)

4 048s
(×3.6)

3 564s
(×4.1)

3 050s
(×4.8)

2 642s
(×5.6)
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7.1.2 ATL-MR on XMI: Size/Speed-Up correlation

Input data

To investigate the correlation between model size and speed-up, we execute the trans-
formation over 4 artificially generated Java programs with identical structure but different
size (from 13 500 to 105 000 lines of code). Specifically, these Java programs are built by
replicating the same imperative code pattern and they produce a balanced execution of the
model transformation in the nodes of the cluster. This way, we abstract from possible load
unbalance that would hamper the correlation assessment.

Environment setup

This time the experiments have been executed in a virtual cluster composed by 12
instances (8 slaves, and 4 additional instances for orchestrating Hadoop and HDFS services)
built on top of OpenVZ containers running Hadoop 2.5.1. The hardware hosting the virtual
cluster is a Dell PowerEdge R710 server, with two Intelr Xeonr X5570 processors at
2.93GHz (allowing up to 16 execution threads), 72 GB of RAM memory (1 066MHz), and
two hard disks (at 15K rpm) configured in a hardware-controlled RAID 1.

Results

As shown in Figure 7.4 and Table 7.1, the curves produced by Experiment II are
consistent to the results obtained from Experiment I, despite the different model sizes and
cluster architectures. Moreover, as expected, larger models produce higher speed-ups:
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for longer transformations the parallelization benefits of longer map tasks overtakes the
overhead of the MapReduce framework.

Discussion

Being based on the EMF, ATL uses its de-facto serialization format, XMI [107]. This
file-based representation faces many issues related to scalability. In particular, models
stored in XMI need to be fully loaded in memory, but more importantly, XMI does not
support concurrent read/write. This hampers distributed model transformations on ATL at
two levels, first, all the nodes should load the whole model even though they only need
a subset of it. This prevents us from transforming very big models that would not fit in
memory. The second one concerns the reduce phase parallelization, and this is due to the
fact that only one reducer can write to the output XMI file at once. In order to overcome this
issue, we use NEOEMF/COLUMN to enable concurrent read/write. In our next experiment,
we report our results while integrating ATL-MR with NEOEMF/COLUMN.

Choosing the right number of splits has a significant impact on the global performance.
Having many splits means that the time that is taken to process each split will be small
compared to the time to process the whole input. On the other hand, if splits are too small,
then the overhead of managing the splits and creating map tasks for each one of them
may dominate the total job execution time. In our case we observed better results where
the number of splits matches the number of available workers. In other words, while
configuring Distributed ATL, the number of lines per split should be set to model size

available nodes
.

Finally, one should be careful with Hadoop (Yarn) configuration options. In the case of
memory or time consuming model transformations it is required to set up correctly these
options in order to avoid the system’s failure. Table 7.2 depicts some of these options.
Note that Node Manager resources are shared among all the containers running under it.
The number of containers is configurable as well (see Table 7.2).

1 2 3 4 5 6 7 8

102

103

104

Number of splits/nodes

s Execution time

1 2 3 4 5 6 7 8

0

2

4

6

Number of splits/nodes

× faster Speed-up

Model 1 (∼4MB) Model 2 (∼8MB) Model 3 (∼16MB) Model 4 (∼32MB)

Figure 7.2 – Execution times and speed-up on Experiment II
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Table 7.2 – Yarn Options

OPTION DESCRIPTION

yarn.nodemanager.resource.memory-mb Amount of physical memory for all con-
tainers

yarn.nodemanager.container-
monitor.interval-ms

How often to monitor containers

yarn.nodemanager.resource.cpu-vcores Number of CPU cores that can be allocated
for containers

yarn.nodemanager.disk-health-
checker.max-disk-utilization-per-disk-
percentage

The maximum percentage of disk before
failure

7.2 Optimized data partitioning

7.2.1 Description

This experiment evaluates the performance of our greedy data partitioning algorithm
against the random approach. The Hadoop framework comes with tools to help analyzing
data being processed. This feature gathers statistics about the job, for different purposes
like quality control or application level statistics. Each counter is maintained by a mapper
or reducer, and periodically sent to the application master so it can be globally aggregated.
Counter values are definitive only once a job has successfully completed. Hadoop allows
user code to define user-defined counters, which are then incremented as desired in the
mapper or reducer. We defined a Hadoop counter for globally reporting metrics about data
access and update. This counter was integrated with our distributed persistence backend,
NEOEMF/COLUMN. It globally reports remote access count, local access count at the end
of every successful job. We believe that such metrics are relevant as they can be decoupled
of the internal complexities of both the transformation and persistence engines.

Algorithm 6 describes how we proceed with our experimentation. For each model size,
we generate three random models. Each execution of the transformation on the generated
model, is launched with a fixed number of nodes (2..8).

Algorithm 6: Data distribution algorithm
Input :Stream<Vertex> stream, int avgSize, int bufCap, int m

1 foreach size ∈ sizes do

2 foreach pass ∈ 1..3 do

3 input← generateInputModel(size) foreach map ∈ 2..8 do

4 transformUsingRandomDist(input,map)
5 transformUsingGreedyDist(input,map)
6 cleanRound()

7 deleteInputModel()
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Input data

We evaluate the performance of our proposed solution while running it on a well known
model transformation, Class2Relational (See Section 4.2). We use as input randomly
generated models with diverse sizes (we provide generation seeds to make the generation
reproducible). The generator is highly configurable. The default configuration takes in
input, the model size, the density of references, and the variation. The variation applies
to both the model size, and the number of references to be generated per property. In our
experiment, we used a density of 8, and a variation of 10%.

Environment setup

This experiment has been executed on a virtualized cluster composed of 12 instances.
This time we use Docker 3 to build and deploy our machines on top of an AWS instance
of type r3.4xlarge. This instance type allows up to 8 execution threads and has a 61Gb
of RAM, and an Intelr Xeonr E5-2670 v2 (Ivy Bridge) Processor at 2.50 GHz. The
Docker images 4 to reproduce the experiment along with the instructions on how to build
and deploy them are availble online 5.

Results

Table 7.3 summarizes the average improvement results by number of access counts
to the underlying backend. Each access either fetches an element or its properties. Our
distributed solution shows an average improvement up to 16.7%. However, in some cases,
the random distribution performed better than our greedy algorithm, mostly for the set of
models with sizes 5000 and 10000. For the smallest set of models, it did not bring any
improvement in average for 5 and 6 splits respectively.

Figure 7.3 shows the performance’s distribution of our algorithm per number of splits.
For the ’Class2Relational’ transformation and models with sizes ranging between 5000
and 20000, partitioning the model into 2 to 5 splits, guarantees better performance, where
it reached up to more than 26%.

Discussion

A success key to our algorithm is the approximation quality of our dependency graph.
The graph structure grows gradually as model elements arrive. Each element may or may
not participate in the construction process of the graph (i.e. the element has dependencies
or not). The sooner (during our partitioning process) we have a good quality approximation
of our dependency graph, the better splitting we can achieve.

Our partitioning algorithm is subject to various internal as well as external factors that
may impact its performance. Inconveniently, these factors are completely orthogonal to
each other. More importantly, the order in which elements arrive impacts the quality of the

3. https://www.docker.com/what-docker
4. https://hub.docker.com/u/amineben/
5. https://github.com/atlanmod/hadoop-cluster-docker
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Figure 7.3 – improvement obtained in the experiment (Table 7.3)

dependency graph approximation, and hence, the performance of our algorithm. Hereafter,
we elaborate on the repercussions of these factors.

The choice of the appropriate parameters is crucial. On teh one hand, both of the
average size (which implicates the number of splits) and the buffer capacity depend on
the memory capacity of a single commodity machine 6. On the other hand, the size of the
buffer plays an important role in delaying the assignment of some model elements – low-
priority ones. This delay is beneficial when the dependency matrix evolves from the time
a model element was buffered until it is cleared from the buffer. With big enough buffer
capacity, the master node can improve the decision making of the assignment to a split
after having a better approximation of the dependency graph. However, the performance
of the algorithm can be compromised when receiving a stream of low-priority elements in
a row, until the buffer reaches its limit. In this case, the quality of the dependency graph
does not improve.

Furthermore, in the default behaviour of our algorithm, we define a high-priority
model element as any element that participates in the construction of the approximated
dependency graph. Still, participating elements can have a different priority. The priority
order can be quantified by the amount of contribution to the construction of the graph
approximation. Elements with a bigger amount of dependency elements contribute more.
In some cases, where the model transformation and the possible topology can be known in
advance, this definition can be customized to improve the performance of our algorithm.
In our running example, elements of type Package and Class can have high-priority as they
are the more likely to have a big number of dependencies. Nonetheless, we showed in our
experiments that the default behaviour can bring a considerable improvement in any case.

Finally, the performance of our approach may be reduced when (i) having elements
with big amounts of dependencies (sometimes exceeding the average size of the split),
(ii) having approximate graph containing false positive dependencies, and (iii) having an
unfavourable order of streamed elements. The first limitation is typically encountered
when having complex OCL expressions starting with the operation allInstances() or when
having recursive helpers. The second limitation happens when having OCL expressions
involving several occurrences of filtering operations (select() or reject()) followed by a

6. Assuming that the cluster is homogeneous
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collect. While the collect() operation operates only on the filtered model elements, in our
approach, non-filtered elements are also traversed. In case the number of filtered elements
is considerable, our algorithm reports elements as false positive. This may lead to grouping
non-dependent elements in the same split.
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Table 7.3 – Remote access count (per properties) : Random Vs. Greedy

DIST. MODES SIZES SPLITS

2 3 4 5 6 7 8
5000 10655 10089 8968 8087 8085 8320 8377

Random 10000 19871 19286 17198 18529 16390 17342 16386
15000 31402 28582 26937 25214 24785 24617 24520
20000 35060 35053 38325 42405 38109 35045 35045
5000 9853 (7.5%) 8698 (13.7%) 8146 (9.17%) 8088 (-0%) 8086(-0%) 8493 (-2.0%) 8083 (3.5%)

Greedy 10000 17211 (13.3%) 16396(14.9%) 16493(4.1%) 16395(11.5%) 16673(-1.7%) 17227(0.0%) 16949(-3.4%)
15000 27863(11.2%) 23912(16.3%) 24850(7.7%) 23908(5.1%) 23905(3.5%) 23904(2.9%) 23900(2.5%)
20000 32855(6.29%) 32691(6.74%) 36207(5.53%) 38688(8.77%) 35232(7.55%) 32362(7.67%) 32361(7.66%)



108 CHAPTER 7. EVALUATION

7.3 Scalable persistence

Description

Thanks to the extensibility of NEOEMF, it was provided with three different backends,
each one of them is suitable for a specific scenario. While we showed in the previous
section the performance of NEOEMF/COLUMN in a distributed scenario, in this section we
evaluate how the access time of NEOEMF/GRAPH scales in increasingly large scenarios.
NEOEMF/GRAPH and NEOEMF/MAP come with embedded databases, which is suitable
for local model-based applications. We compare the performance of NEOEMF/COL-
UMN against CDO (with H2 as relational database backend) and XMI. The performance
evaluation of NEOEMF/MAP is reported in another work [58].

We run two different experiments:

Experiment I : Model traversal. In a first experimentation we execute a model visitor
that starting from the root of the model traverses the full containment tree in a
depth-first order. At each step of the traversal the visitor loads the element content
from the backend, and modifies the element (changing its name). Only the standard
EMF interface methods are used by the visitor, that is hence agnostic of which
backend he is running on. During the traversal we measure the execution times for
covering 0.1%, 1%, 10% 50% and 100% of the model.

Experiment II : Java reverse engineering. In a second experimentation we execute a
set of three simple queries on the Java metamodel that originate from the domain
of reverse-engineering Java code. While the first of these queries is a well-known
scenario in academic literature, the other two have been selected to mimic typical
model access patterns in reverse engineering, according to the experience of our
industrial partner.
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1. Grabats (GB): it returns the set of classes that holds static method declarations
having as return type the holding class (e.g., Singleton) [75].

2. Unused Method Declarations (UnM): it returns the set of method declarations
that are private and not internally called.

3. Class-Attribute Map (CA-M): it returns a map associating each Class declara-
tion to the set of its attribute declarations.

All these queries start their computation by accessing the list of all the instances
of a particular element type, then apply a filtering to this list to select the starting
points for navigating the model. In the experience of our industrial partner this
pattern covers the quasi-totality of computational-demanding queries in the reverse-
engineering domain. For this reason we added a method getAllInstances to the EMF
API and we implemented it in all the three back-ends. In CDO we implemented this
method by a native SQL query, achieved through the union of the tables containing
elements of the given type and its subtypes. In NEOEMF the same result is achieved
by a native Neo4j query traversing the graph nodes via the relationship INSTANCE_
OF, for the given type and all of its subtypes. The user-code of each of the three
queries uses this method to start the computation in all implementation, hence
remaining backend-agnostic.

Execution environment

Experiments are executed in a laptop computer running Windows 7 Enterprise 64. The
most significative hardware elements are: an Intel Core i7 processor 3740QM (2.70GHz),
16 GB of DDR3 SDRAM (800MHz), and a Samsung SM841 SATA3 SSD Hard Disk
(6GB/s). Experiments are executed on Eclipse version 4.3.1 running Java SE Runtime
Environment version 1.7 (specifically, build 1.7.0_40-b43).

Input data

These experiments are performed over 3 EMF models that conform to the Java Meta-
model proposed in MoDisco [27] and reverse-engineered from existing code using the
MoDisco Java Discoverer. As starting code we used 3 sets of Eclipse plugins, of increasing
size. Table 7.4 details how the experiments vary in size and thus in the number of elements.
In order to compare the three technologies, we generate three different EMF access APIs,
starting from the Java MoDisco Metamodel respectively with 1) EMF standard parameters,
2) CDO parameters, and 3) NEOEMF generator. We import the 3 experimental models,
originally in XMI format to CDO and NEOEMF/GRAPH, and we verify that all the
imported models contain the same data.

Table 7.4 – Overview of the experimental sets

# Plugin Size Number of ele-
ments

1 org.eclipse.emf.ecore 24.2MB 121.295
2 org.eclipse.jdt.core 420.6MB 1.557.007
3 org.eclipse.jdt.* 984.7MB 3.609.454
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Figure 7.4 – Results for model traversal on test models 2 and 3.

Results

Figure 7.4 shows the results of the first experimentation over the two largest test models
(org.eclipse.jdt.core and org.eclipse.jdt.*). Markers in the graph curves refer respectively to
percentages previously mentionned. The results from Figure 7.5 show that both NEOEMF
and CDO outperform XMI. The test also confirms the previous result, showing execution
times from CDO consistently lower than NEOEMF.

The results of the two experimentations are consistent with each other. Figure 7.4
shows that while in XMI the access time to each model element is negligible with respect
to the initial model-loading time (since the whole model is loaded in memory), the two
backends with on-demand loading mechanisms have a constant access time (giving linear
complexity to the query). This shows that the backends can scale well for even larger sizes.
In both experiments in Figure 7.4 the backends with on-demand loading mechanisms
outperform XMI when the part of the model that needs to be accessed is lower than a
certain ratio of the full model. The graphs show that this ratio is approximately constant,
independently of the size of the model and it amounts to 14.12% and 12.46% for NEOEMF
and 29.54% and 27.84% for CDO. The CDO backend performs better than NEOEMF, by
an approximately constant factor that in the two experiments is respectively of 1.38 and
2.6.

Discussion

Summarizing, while resulting in a better solution than XMI for the use case under
study, the current version of NEOEMF does not exhibit the performance optimizations
prefetching of more mature solutions like CDO. CDO supports partial collection loading
that gives the possibility to manage the number of elements to be loaded when an elements
is fetched for the first time. Likewise, CDO provides a mechanism to decide how and
when fetching the target objects asynchronously. In recent work [42], NEOEMF/GRAPH

was integrated with a framework for the prefetching and caching of EMF models.
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We also remark that the acceptable performances of XMI may be misleading in a
real-world scenario: the amount of memory we used allowed to load the whole models in
memory, avoiding any swapping in secondary memory that would have made the XMI
solution completely unusable for the scenario. Moreover the use of an SSD hard disk
significantly improved the loading & saving times from file. On-demand loading allows to
use only the necessary amount of primary memory, extending the applicability of MDE
tools to these large scenarios.

We did not measure significant differences in memory occupation between CDO
and NEOEMF, but we noticed several problems in importing large models in CDO. For
instance CDO failed to import the test model 3 from its initial XMI serialization on a 8Go
machine, as a TimeOutException was raised.

Finally, the comparison with relational databases backend should also take into ac-
count several other features, besides execution time and memory in a single processor
configuration. NEOEMF allows existing MDE tools to make use from now of the charac-
teristics of graph databases like Neo4j, including clustering, online backups and advanced
monitoring.

Conclusion

In this chapter we demonstrated the scalability of our approaches while running them
against some well-known case studies.

In the first experience we proved the scalability of our solution by running it on a
complex transformation over XMI models fitting in a memory of single machines in the
cluster. We run two complementary experiments. The first one shows a quasi-linear
speed-up w.r.t. the cluster size for input models with similar size, while the second one
illustrates that the speed-up grows with increasing model size. ATL-MR runs up to ∼6×
faster compared to the regular VM while distributing it over 8 machines. An experience in
Hadoop cluster administration is still required to properly configure Hadoop options in
order not to run into a system failure.
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In the second experiment, we evaluated the performance of our greedy algorithm. We
tested our solution against random partitioning, and showed a consistent benefit in access
times up to 16%. However, the performance of our approach may be reduced when having
elements with big amounts of dependencies, or an approximate graph containing false
positive dependencies, or an unfavourable order of streamed elements.

In the last experiment, we assessed the scalability of the access times of NEOEMF/-
GRAPH in increasingly large scenarios, and we compared it against CDO and XMI. The
experiments showed a considerable improvement when in NEOEMF/GRAPH in CDO
when the part of the model that needs to be accessed is lower than a certain ratio of the
full model. The experiment also shows that CDO outperforms NEOEMF/GRAPH with
constant factor that in the two experiments is respectively 1.38 and 2.6. This finding
joins our earlier claim that is graph databases are not well-suitable for queries performed
using EMF API calls (atomic operations). Related work [41] show that NEOEMF/GRAPH

has better performance when having complex queries when built-in traversals. Another
work [59] shows that NEOEMF/MAP is a better fit when performing querying using the
EMF API. Indeed, NEOEMF/MAP is up to ∼9× faster than CDO.

Many reasons hampered us from providing a thorough evaluation while comparing
our solution to existing MT engines. Existing solutions either run the transformation
completely in memory [31], or do not rely on the same modeling framework [84, 132] for
accessing and persisting model-data. In future work, we intend to conduct a benchmark
involving various model transformations for different intents and with different complexi-
ties. Our objective will be to decide on precisely, on which circumstances using ATL-MR
becomes beneficial.



8
Conclusion: distributing MTs with

ATL-MR & beyond

8.1 Introduction

Model transformation is one of the main concepts in MDE as it provides means to
manipulate and understand models. Relational model transformation languages, thanks
to their declarative nature, ease the specification of such operation in a compact and
concise way. Besides, relational model transformations take implicitly care of the internal
complexities of model transformation execution.

Recent application in model-based software industry, are characterized by big amounts
of data that may be represented by VLMs (e.g. models with millions of elements). Against
models of such size, current execution engines for MT languages easily hit the limit
of the resources (IO/CPU) of the underlying machine. Moreover, existing persistence
frameworks are not suitable for handling models alike.

On the other hand, the availability of large data processing and storage in the Cloud is
becoming a key resource for part of today’s industry, within and outside of IT. It offers a
good alternative for companies to process, analyze, and discover new data insights, yet
in a cost-efficient manner. Thanks to existing Cloud computing companies, this facility
is extensively available for rent. This ready-to-use IT infrastructure is equipped with a
wide range of distributed processing frameworks, for companies that have to occasionally
process large amounts of data.

In this thesis, we exploited the recent emergence of systems and programming models
for distributed and parallel processing to leverage the distributed transformation and
persistence of VLMs. In particular, we relied on a well-known distributed programming
model, MapReduce, in order to enable the distributed execution of model transformation in
a reliable and fault-tolerant manner. We also adopted NoSQL databases as a new solution
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for persisting VLMs. We coupled our solution with different kinds of NoSQL stores,
where each store is suitable for a specific modeling scenario.

8.2 Objectives revisited

We proposed a solution for distributing relational MTs based on the MapReduce
paradigm. In our solution we opted for a data-driven scheme as most existing graph
processing algorithms reason on data. We identified three key ingredients for efficient and
consistent distributed model transformations, and we identified the requirements to be
guaranteed by each one of these components.

Distributed model transformation engine– We showed that relational model transfor-
mations thanks to their execution semantics, can be run in parallel in two steps. In
the first step, each mapper is assigned a subset of model elements using a splitting
process on which it runs the transformation locally. Every machine has a global view
of the input model for resolving other dependencies than the elements in the chunk.
For each model element, if it matches the input pattern of an existing rule, then a
target element is created together with tracing information, and target properties
corresponding to locally assigned elements are resolved. Information about non-
local elements is stored in traces and sent to the reduce phase for a global resolve.
This step is responsible for composing the sub-models resulting from the previous
phase into a single global output model. The syntax of the MT language is still the
same and no distribution primitives are added. However, an expertise in Hadoop
cluster management is still required to tune the cluster’s performance and avoid
system failure in case of very complex model transformations. Moreover, although
in our approach we do not support ATL’s imperative blocks, most of MTs in MDE
can be implemented using only the declarative part. Finally, we demonstrated the
scalability of our approach in a complex transformation example with quadratic
complexity. Instructions on how to use our prototype together with a ready-to-use
Docker cluster are available in the tool’s website 1.

Efficient data partitioner for distributed model transformation– We presented our so-
lution for efficient partitioning of distributed MTs as a greedy algorithm. Based on
the observation that the transformation’s footprints can provide us with basic knowl-
edge about the dependencies of a model element, we relied on the static analysis of
model transformations to extract this knowledge. First, we showed that our problem
can be related to the problem of uniform graph partitioning. Later, we adapted
existing formalization to our system. Then, we proposed a greedy data distribution
algorithm for declarative model transformations. However, the performance of our
approach may be reduced when having elements with big dependencies or receiving
model elements in an disadvantageous order. This solution was integrated with our
distributed MT engine, ATL-MR.

Efficient model persistence framework– Finally, we introduced our solution for effi-
cient distributed storage and access of models in EMF, NEOEMF/COLUMN. We
examined the execution semantics of atomic model manipulation operations in ATL
and exhibited the minimal set of ACID properties to preserve the consistency of the
output model. NEOEMF/COLUMN is part of NEOEMF, a framework for efficient

1. https://github.com/atlanmod/ATL_MR/

https://github.com/atlanmod/ATL_MR/
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persistence of models in EMF. NEOEMF implements three different backends, each
of them is well-suitable for a specific modeling scenario. NEOEMF comes with
a set of caching strategies and a lightweight loading and saving mechanisms to
boost its performance. NEOEMF/COLUMN was integrated with ATL-MR to enable
concurrent read/write.

8.3 Future work

In this section, we gather some directions we already briefly mentioned throughout
this thesis to improve our solutions. We briefly them, then we investigate other lines of
future work.

8.3.1 Improving the efficiency of our distributed transformation en-

gine

We intend to improve the efficiency of our distributed transformation engine by explor-
ing the following lines:

— Reducing the number of 〈key,value〉 pairs transmitted between the Local Match-

Apply and the Global Resolve phases can improve the time to perform the shuffling

phase. In future work, we want to cut down the amount of transmitted elements
based on the static analysis of the bindings of the transformation rules as well as
inter-rules dependency. An example of tracing information that can be omitted, are
the ones involving model elements that will not be resolved by any other target
element.

— A similar line is improving the distribution of, not only the input model of the trans-
formation, but also its intermediate transformation data (tracing information). This
can be achieved by assigning to the same machine elements sharing the resolution
operation of the same set of model elements.

— Given the high density of models implicated in MDE, we plan to extend our work on
efficient model partitioning to balanced edge partitioning, and conduct a thorough
study on the impact of the model density and the use of different penalty functions
in the partitioning strategy.

— In the current version of ATL-MR, the fault-tolerance relies completely in failure-
management as provided by Yarn. Since in ATL-MR, output models are directly
written to the persistence store, we can extend ATL-MR with a centralized tracking
system that helps the transformation engine recovering from the previous state and
carry on with the transformation.

— In model transformation-based applications where data access patterns are known
beforehand, it is possible to group dependent elements on the same datanode in order
to simplify their processing. We plan to extend the NEOEMF/COLUMN framework
with the ability to decide, at model-element creation time, which machine should
host which element. We can exploit our static analysis technique for this matter.

— In our solution for efficient data partitioning, we focused more on minimizing data
access to the persistence backend as well as the number of elements loaded in each
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machine. In some scenarios where IO is not a concern, another aspect that can be
improved is the computation cost. In this case, the objective function turns into
balancing the computational complexity in every machine. In this perspective, we
also plan to adapt our formalization to extend NEOEMF/COLUMN with additional
metadata (e.g. collection size) storage to help better predicting binding execution
time and complexity.

8.3.2 Application to other relational transformation languages

Some relational MT languages like ETL and QVT/Relations share most of their
properties with ATL. For instance, ETL and QVT also rely on tracing information for
resolving target elements. The ETL also runs in two step as in ATL. First, the ETL engine
allocates target model elements for source model elements that have been matched. Then,
each allocated target element is initialized by executing the associated bindings. QVT
instead has a different execution semantics where for every rule application, target elements
together with their properties are initialized. However, by analysing the transformation
rules it is possible to determine the number of map phases needed to run the transformation
based on the causality dependency of the transformation rules. In future work we intend to
generalize our approach to this family of languages.

8.3.3 A fully distributed OCL engine

OCL is a central component in model transformation languages. It is used to specify
guards, query models, target sets, etc.. Collection operations are the most computationally
expensive operations in OCL. One way to break down their complexity is by providing
parallelism at collection operations level.

Existing frameworks such as Spark and FlumeJava built on top of MapReduce, may
simplify this as they are provided with a higher level of abstraction at a collection (dataset)
level. FlumeJava presents parallel collections and their operations. FlumeJava compiles
parallel operations over these collections to a dataflow-like execution plan that is later
optimized on appropriate MapReduce primitives. However, OCL does not fit in the class
of application that can be efficiently handled as acyclic dataflows. For instance, it is not
possible to handle recursive calls or closure operation using a fixed acyclic dataflow.

Spark instead, introduces Resilient Distributed Datasets (RDD) as an abstraction of
MapReduce. An RDD is a read-only collection of objects partitioned across a set of
machines that can be reproduced in case a partition is lost. Spark is more suitable for
iterative jobs and interactive processing such as in querying consoles. Moreover, Spark
comes with an Accumulator operator that can be aligned with the OCL closure operation.

We believe that providing a distributed OCL engine can alleviate the development of
not only distributed MT, but also other model-based solution, such as distributed query
engines. We also believe that it would answer to some open challenges in the MDE
community such as Streaming model transformations and Pipelining and scheduling

distributed model transformations.
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8.3.4 On the application of our work outside MDE

Hereafter, we look at our work from a different angle. We introduce another distributed
programming model, Pregel, then we highlight its difference with MapReduce and its
application to graph transformation. Then we shortly give a possible extent to our work
outside the MDE community.

Other implicit distribution programming models

Despite our focus on the MapReduce model, there are other distribution frameworks,
even specifically for graph processing. Most of the graph processing models are inspired
by the BSP (Bulk Synchronous Processing) model. The computational model consists of
a sequence of computations (called supersteps). In each step, a user-defined function is
executed for each vertex. The function consumes messages from the previous superstep
and produces messages to be sent to all vertices for the next superstep. A vertex deactivates
itself when it has no further work to do, and it reactivates when receiving a new message.
When all vertices are inactive, the computation terminates.

Pregel-like systems are well-suited to iterative algorithms where the number of itera-
tions is not known on beforehand. In contrast to MapReduce, algorithms implemented
in Pregel do not necessarily have a fixed number of supersteps. n MapReduce instead,
the number of rounds is dictated by the number of map or reduce jobs being pipelined.
However, in Pregel-like systems the supersteps can be identified by their number, which
increments after every step. This feature can be used to branch on different operations
when implementing the algorithm logic, and all vertices can vote to halt after a fixed
number of iterations.

Our choice for MapReduce was motivated by the intuition that the MapReduce pro-
gramming model could be efficiently aligned with the particular structure of relational
(non-recursive) transformation languages. Its API hooks and the wide range of input/output
format it supports could also reduce cross-machines communication cost. On the other
hand, Pregel-like systems have been a good fit for alignment with graph transformation
semantics [132, 84] with recursive rule applications.

ATL as high-level language for data transformation on MapReduce

The interest of this work extends also outside the MDE community, as we perform
the first steps for proposing the rule-based MT paradigm as a high level abstraction for
data transformation on MapReduce. High-level languages have already been proposed for
data querying (as opposed to data transformation) on MapReduce [126, 108, 33]. In the
MapReduce context, they allow for independent representation of queries w.r.t. the program
logic, automatic query optimization and maximization of query reuse [87]. While all these
query languages compile down to execution plans in the form of series of MapReduce jobs,
in our approach each node executes its own instance of the transformation VM, reusing
the standard engine. However our approach computes single transformations in only two
MapReduce rounds, while these languages may compile in multi-round MapReduce chains.
We also manipulate EMF model elements instead of tool-specific data representations,
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hence leaning on a standardized way to represent the data structure. We want to extend
this approach, aiming at obtaining similar benefits in data transformation scenarios.
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I
Model query and transformation

benchmark repository

With the growing size and complexity of systems under design, industry needs a
generation of Model-Driven Engineering (MDE) tools, especially model query and trans-
formation, with the proven capability to handle large-scale scenarios. While researchers
are proposing several technical solutions in this sense, the community lacks a set of shared
scalability benchmarks, that would simplify quantitative assessment of advancements
and enable cross-evaluation of different proposals. Benchmarks in previous work have
been synthesized to stress specific features of model management, lacking both generality
and industrial validity. In the context of the MONDO project, we initiate an effort to
define a set of shared benchmarks, gathering queries and transformations from real-world
MDE case studies, contributed to by academic in industrial partners. We make these case
available to community evaluation via a public MDE benchmark repository.

In this chapter we present a set of benchmarks for model transformation and query
engines. Our proposal is to select a set of transformations/queries from real-world cases
and to make them available to the large public. Two of the four benchmarks included, deal
with model transformations, while the other two deal with model queries. Models that
feed each one of the benchmarks are of increasing size, also different kinds/extensions.
They are either concrete, coming from real projects (i. e., reverse engineered Java project
models) or generated using deterministic model instantiators. These instantiators can be
easily customized to be able to generate models that suit the benchmarking of a specific
feature.

These benchmarks are part of the results of the Scalable Modeling and Model Manage-
ment on the Cloud (MONDO) 1research project, that aims at advancing MDE’s state of
the art to tackle very large models. We plan to involve the community in order to build
a larger set of case studies covering additional properties/domains (i.e., verification and
simulation of critical systems).

1. http://www.mondo-project.org/
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The rest of the Chaper is organized as follows. In Section I.1 we describe benchmarks
from the state-of-the-art. In Section I.2 we outline the four different sets of benchmarks
provided in the scope of the MONDO project. Finally, Section I.3 describes usage and
contribution modalities for the repository.

I.1 Related work

A few works in literature [135, 136, 75, 22] proposed benchmarks to assist develop-
ers in selecting the most suitable query/transformation technology for their application
scenarios. However only one of the existing case studies is explicitly dedicated to the
manipulation of very large models ([75]) and none is based on benchmarks queries and
transformations based on real-world applications. In this section we give a short overview
of the related works, while in the next section we introduce the real-world benchmarks we
proposed.

One of the widely used benchmarks in MDE is Grabats’09 Reverse Engineering [75],
where Jouault et al. proposed a case study that consists of the definition of program com-
prehension operators (i.e., queries over source code) using a graph or model transformation
tool. One of the main challenges in the definition of program comprehension operators as
transformations is scalability with respect to input size. This case study is divided into two
independent tasks (i) a simple filtering query that selects a sub-graph of its input according
to a given condition, and (ii) a complex query that computes a control flow graph and a
program dependence graph. These queries are performed over the JDTAST metamodel,
the Java metamodel used in early versions of MoDisco [27] to discover Java projects.
This benchmark comes with 5 different sets of increasing size ranging from 7× 105 up to
5× 109.

The experiment in [135] compares the performance of three model transformation
engines: ATL, QVT-R, and QVT-O. This comparison is based on two different transfor-
mation examples, targeting meta-models with different structural representations: linear
representation and tree-like representation. The benchmarking set involves randomly gen-
erated input models of increasing numbers of elements (up to hundreds of thousands). Like
the previous work [136], the benchmark sets are also tuned according to a particular feature
such as the size of input models, their complexity (complex interconnection structure)
and transformation strategies. In order to study the impact of different implementation
strategies in ATL, the Class2RDBMS transformation was implemented in different pro-
gramming styles. The first one promotes expressing input models navigation in the in the
right-hand side of the bindings, the second use ATL attribute helpers, and third uses the
imperative part of ATL.

The work [136] is considered one of the early systematic MDE benchmarks dedicated
to Graph Transformations (GT). It proposes a methodology for quantitative benchmarking
in order to assess the performance of GT tools. The overall aim is to uniformly measure
the performance of a system under a deterministic, parametric, and especially reproducible
environment. Four tools participated in the experimentation: AGG, PROGRES, FUJABA
and DB. Every benchmarking set is tuned according to some features related on one side
to the graph transformation paradigms, and on the other side to the surveyed tools. Thus,
a benchmarking set is characterized by turning on/off these features. Bergmann et al.
extended this benchmark with incrementality. Two kinds of benchmarks kind were carried
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Table I.1 – Summary of the MONDO WP3 benchmarks

Benchmark Type Computational

complexity

Train benchmark query high
Open-BIM query/transformation low
ITM Factory transformation high
Transformation zoo transformation low

out, simulation and synchronization, for which, a benchmark-specific generators has been
provided. The benchmarks were run over different implementations of pattern matchers,
VIATRA/LS (Local Search), VIATRA/RETE, and GEN.NET with the distributed mutual
exclusion algorithm.

I.2 Benchmark set

The benchmark set has the purpose to evaluate and validate a proposed query and
transformation engine. This set of benchmarks is made public, with the intention to also
help both research groups and companies to assess their solutions.

In this section we describe the source, context and properties of the benchmarks. The
set of benchmarks is designed to cover the main use cases for queries and transformations in
model-driven applications. Table I.1 summarizes the characteristics of the four benchmarks
in terms of type of computation (query/transformation) and computational complexity
(high/low). More information about the train benchmark can be found in the link below 2.

Each one of the benchmarks either includes concrete source models, or a model
generator that can be used to produce models of different sizes in a deterministic manner.
In the latter case, models of different sizes can be generated, but seeds are provided to
drive the deterministic generators in producing the same models for each user.

Each benchmark in the set is given a reference implementation that has to be con-
sidered as a specification of the case semantics. Languages and technologies used for
each reference implementation may vary, including MDE-specific and general-purpose
technologies.

Finally, while each benchmark defines the source/target relation for each query or
transformation, other aspects of the transformation runtime semantics are left open. For
instance high-complexity benchmarks can be run in batch or incremental mode, to test
different execution properties of the tool under study.

2. http://trainbenchmark.inf.mit.bme.hu/
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I.2.1 Open-BIM

Context and objectives

This benchmark includes a model validation and a model transformation in the con-
text of construction models. The construction industry has traditionally communicated
building construction information (sites, buildings, floors, spaces, and equipment and
their attributes) through drawings with notes and specifications. BIM (Building Informa-
tion Model), a CAD (Computer Aided Design) method, came to automate that process
and enhance its operability according to different tools, actors, etc. within the AECO
(Architecture, Engineering, Construction, and Operations) industry. A BIM model is
a multi-disciplinary data specific model instance which describes all the information
pertinent to a building and its components.

A BIM model is described using the IFC (Industry Foundation Classes) specification, a
freely available format to describe, exchange, and share information typically used within
the building and facility management industry sector. Intrinsically, IFC is expressed using
the EXPRESS data definition language, defined as ISO10303-11 by the ISO TC184/SC4
committee. EXPRESS representations are known to be compact and well suited to include
data validation rules within the data specification.

Models and metamodel

The repository contains 8 real-world IFC data files with size ranging from 40MB to
1GB. All the files represent real construction projects and were used in production context.
They contain a precise and detailed information about actors, approvals, buildings etc. The
data files, in EXPRESS format, are translated into EMF models so that they can be used
by EMF-based query and transformation tools.

Queries and transformations

The Open-BIM use case includes a query benchmark and a transformation benchmark:

IFC well-formedness rules The IFC format describes, using the EXPRESS language,
the set of well-formed IFC models. The EXPRESS notation includes, in a single spec-
ification, 1) the set of element types and properties allowed in the data file, 2) the set
of well-formedness constraints that have to be globally satisfied. When representing
an IFC model in an EMF format these two parts of the specification translate to 1) an
Ecore metamodel defining element and property types, 2) a set of constraints encoding the
well-formedness rules.

This benchmark involves validating the set of well-formedness rules (2) over a given
model, model that conforms to the IFC Ecore metamodel (1). An Ecore metamodel is
provided, coming from the open-source BIMServer 3 project. The well-formedness rules
are given in EXPRESS format and are meant to be translated to the query technology
under evaluation.

3. https://github.com/opensourceBIM/BIMserver
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IFC2BIMXML BIMXML 4 is an XML format describing building data in a simplified
spatial building model. The BIMXML XML Schema was developed as an alternative to
full scale IFC models to simplify data exchanges between various AEC applications and to
connect Building Information Models through Web Services. It is currently used by several
primary actors in the CAD construction domain, including Onuma System (Onuma, Inc.),
DDS Viewer (Data Design System), vROC, Tokmo, BIM Connect, and various plugins for
CAD Applications (Revit, SketchUp, ArchiCAD). The BIMXML specification includes
an XML Schema 5 and documents the translation rules from the full IFC specification.

This benchmark involves performing the translation of a full IFC model into the
BIMXML format. Ecore metamodels for the source and target models are provided.

I.2.2 ITM Factory

Context and objectives

This benchmark contains two transformations and a set of queries, each addressing
a different phase in a model-driven reverse engineering process. The use case for this
benchmark is taken from the Eclipse MoDisco project.

MoDisco (Model Discovery) is the open-source Model Driven Reverse Engineering
project lead by the company Soft-Maint. It uses a two steps approach with a model

discovery followed by model understanding. The initial step consists in obtaining
a model representation of a specific view on the legacy system, whereas, the second
involves extracting useful information from the discovered model. MoDisco requires high
efficiency in handling large models, especially these involved in reverse engineering of
legacy systems.

Models and metamodel

Thanks to the MoDisco Java discoverer, we are able to extract Java models up to 1.3GB,
that conform to the Java metamodel [96] defined in MoDisco (refinement of the JDTAST
metamodel). Those models are the input of the Java2KDM and Java code quality transfor-
mations, while, KDM output models are inputs for the KDM2UML transformation. It is
also possible to retrieve directly KDM models using MoDisco. Because of confidentiality
agreements, Soft-Maint is not able to publish instance models derived from their commer-
cial projects. For this reason we choose to derive instance models from the source code of
open-source projects, specifically from the Eclipse JDT plugins (org.eclipse.jdt.*). This
does not affect the relevance of the benchmark, as these plugins are written by experienced
developers with a quality standard that is comparable to commercial projects.

Table I.2 depicts the different models recovered against the discovered plugins.

4. http://bimxml.org/
5. http://www.bimxml.org/xsd/001/bimxml-001.xsd
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Set1 org.eclipse.jdt.apt.pluggable.core
Set2 Set1 + org.eclipse.jdt.apt.pluggable.core
Set3 Set2 + org.eclipse.jdt.core+org.eclipse.jdt.compiler + org.eclipse.jdt.apt.core

Set4
Set3 + org.eclipse.jdt.core.manipulation +
org.eclipse.jdt.launching + org.eclipse.jdt.ui + org.eclipse.jdt.debug

Set5 org.eclipse.jdt.* (all jdt plugins)

Table I.2 – Discovered plugins per set

Queries and transformations

Java2KDM This transformation takes place at beginning of almost every modernization
process of a Java legacy system, it comes just after the discovery of the Java model
from Java projects (plugins) using the MoDisco Java Discoverer. This transformation
generates a KDM [109] (Knowledge Discovery Metamodel) model that defines common
metadata required for deep semantic integration of application life-cycle management tools.
Java2KDM transformation is useful when the only available information on a Java source
code is contained in a Java model, even without the source code it is then possible to get a
KDM representation. This intermediate model provides useful and precise information
that can be used to produce additional types of models.

KDM2UML Based on the previously generated model, this transformation generates a
UML diagram in order to allow integrating KDM-compliant tools (i.e., discoverers) with
UML-compliant tools (e.g. modelers, model transformation tools, code generators, etc.).

Java code quality This set of code quality transformations identify well-known anti-
patterns in Java source code and fix the corresponding issues by a model transformation.
The input format of the transformations is a model conforming to the Java metamodel. For
a specification for the transformations we refer the reader to the implementations of these
fixes in well-known code-analysis tools like CheckStyle and PMD. Table 3 summarizes
the references to the documentation for each code fix considered in this benchmark.

I.2.3 ATL Transformation Zoo

Context and objectives

The ATL project maintains a repository of ATL transformations produced in industrial
and academic contexts (ATL Transformation Zoo [70]). These transformations are repre-
sentative of the use of model transformations for low-complexity tasks (i.e., low number
of transformation rules, lack of recursion, etc. . . ).

In this benchmark we select a subset of the transformations in the ATL Transformation
Zoo based on their quality level and usage in real-world applications. We specifically
include only transformations that may be used in production environments. We automatize
the sequential execution of this subset and the generation of performance analysis data.



I.2. BENCHMARK SET 127

Models and metamodels

For the aforementioned transformations, we do not have large enough models that
conform to the respective metamodels, and as such we make use of a probabilistic model
instantiator. This instantiator takes as parameter a generation configuration specified
by the user. A generation configuration holds information such as 1) meta-classes that
should (not) be involved in the generation, 2) probability distributions to establish how
many instances should be generated for each metaclass, and which values should be
assigned to structural features. We provide a default generation configuration, using
uniform probability distributions for each meta-class and structural feature. For some
transformations we provide ad-hoc probability distributions, exploiting domain knowledge
over the instances of the corresponding metamodel.

A generation configuration may come also with a seed that makes the generation
deterministic and reproducible. For each one of the built-in generation configurations we
provide a seed, producing the exact set of models we used during our experimentation.

Queries and transformations

Ant to Maven Ant [5] is an open source build tool (a tool dedicated to the assembly of
the different pieces of a program) from the Apache Software Foundation. Ant is the most
commonly used build tool for Java programs. Maven [6] is another build tool created by
the Apache Software Foundation. It is an extension of Ant because ant Tasks can be used
in Maven. The difference from Ant is that a project can be reusable. This transformation
[64] generates a file for the build tool Maven starting from a file corresponding to the build
tool Ant.

CPL2SPL CPL (Call Processing Language) is a standard scripting language for the SIP
(Session Initiation Protocol) protocol. It offers a limited set of language constructs. CPL
is supposed to be simple enough so that it is safe to execute untrusted scripts on public
servers [74]. SPL programs are used to control telephony agents (e.g. clients, proxies)
implementing the SIP (Session Initiation Protocol) protocol. Whereas, the CPL has an
XML-based syntax, the CPL2SPL transformation [66], provides an implementation of
CPL semantics by translating CPL concepts into their SPL equivalent concepts.

Graphcet2PetriNet This transformation[67] establishes a link between grafcet [43],
and petri nets [102]. It provides an overview of the whole transformation sequence that
enables to produce an XML petri net representation from a textual definition of a grafcet
in a PNML format, and the other way around.

IEEE1471 to MoDAF This transformation example [2] realizes the transformation be-
tween IEEE1471-2000 [77] and MoDAF-AV [25]. The IEEE1471 committee prescribes a
recommended practice for the design and the analysis of Architecture of Software Inten-
sive Systems. It fixes a terminology for System, Architecture, Architectural Description,
Stakeholder, Concerns, View ,and Viewpoints concepts. MoDAF (Ministry of Defense
Architecture Framework) is based on the DoDAF (Department of Defense Architecture
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Framework). DoDAF is a framework to design C4ISR systems. MoDAF-AV (Architecture
View) used several concepts defined in the IEEE1471.

Make2Ant Make (the most common build tool) is based on a particular shell or com-
mand interface and is therefore limited to the type of operating systems that use that shell.
Ant uses Java classes rather than shell-based commands. Developers use XML to describe
the modules in their program build. This benchmark [68] describes a transformation from
a Makefile to an Ant file.

MOF2UML The MOF (Meta Object Facility)[110] is an OMG standard enabling the
definition of metamodels through common semantics. The UML (Unified Modeling
Language) Core standard is the OMG common modeling language. Although, MOF is
primarily designed for metamodel definitions and UML Core for the design of models,
the two standards define very close notions. This example [69] describes a transformation
enabling to pass from the MOF to the UML semantics. The transformation is based on the
UML Profile for MOF OMG specification.

OCL2R2ML The OCL to R2ML transformation scenario [98] describes a transforma-
tion from OCL (Object Constraint Language) [105] metamodel (with EMOF metamodel)
into a R2ML (REWERSE I1 Rule Markup Language) metamodel. The Object Constraint
Language (OCL) is a language that enables one to describe expressions and constraints
on object-oriented (UML and MOF) models and other object modeling artifacts. An
expression is an indication or specification of a value. A constraint is a restriction on
one or more values of (part of) an object-oriented model or system. REWERSE I1 Rule
Markup Language (R2ML) is a general web rule markup language, which can represent
different rule types: integrity, reaction, derivation and production. It is used as pivotal
metamodel to enable sharing rules between different rule languages, in this case with the
OCL.

UML2OWL This scenario [99] presents an implementation of the OMG’s ODM specifi-
cation. This transformation is used to produce an OWL ontology, and its OWL Individuals

from an UML Model, and its UML Instances.

BibTeXML to DocBook The BibTeXML to DocBook example [65] describes a
transformation of a BibTeXML [113] model to a DocBook [138] composed document.
BibTeXML is an XML-based format for the BibTeX bibliographic tool. DocBook, as for
it, is an XML-based format for document composition.

DSL to EMF This example [9] provides a complete overview of a transformation chain
example between two technical spaces: Microsoft DSL Tools [97] and EMF. The aim of
this example is to demonstrate the possibility to exchange models defined under different
technologies. In particular, the described bridges demonstrate that it should be possible
to define metamodels and models using both Microsoft DSL Tools and Eclipse EMF
technologies. The bridge between MS/DSL and EMF spans two levels: the metamodel and
model levels. At the level of metamodels, it allows to transform MS/DSL domain models
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to EMF metamodels. At the level of models, the bridge allows transforming MS/DSL
models conforming to domain models to EMF models conforming to EMF metamodels. At
both levels, the bridge operates in both directions. A chain of ATL-based transformations
is used to implement the bridge at these two levels. The benefit of using such a bridge is
the ability to transpose MS/DSL work in EMF platform, and inversely.

I.3 The MDE benchmark repository

The MDE Benchmark repository is the central storage area where the artifacts
of the benchmarks are archived for public access. These artifacts, mainly text files,
comprise large models and metamodels – typically represented in their XMI serialization
– and model transformations. To increase the visibility of these files we have chosen to
make them publicly available through the OpenSourceProjects.eu (OSP) platform. The
OSP platform is a software forge dedicated to hosting Open Source projects created within
EU research projects.

The OSP platform provides, among other tools, a Git revision control system (RCS).
Git repositories hosted in the OSP platform can be easily navigated by a Web interface.

I.3.1 Benchmark structure

The MDE Benchmark repository is located at [114]. Inside this repository
every top level resource corresponds to a git submodule, each, representing a different
case study held in a separate git repository.

Related resources for benchmarking a specific feature of a transformation engine are
grouped in projects. A project is a self-contained entity, and can be considered as
the basic benchmarking unit.

Projects share a common internal structure that includes a short case description
and a set of (optional) folders:

Short case description — A mandatory human-readable file describes the details of the
test case, the file and directory structure, and any other important information (e.g.,
test cases can evolve and additional information not considered at the point of
writing this document may be needed for executing the benchmark).

Documentation — This directory stores the documentation about the test case. The
documentation of a test case may include, among other information, a detailed
description of the test case, the foundations of the feature under testing, the building
and execution instructions, etc.

Queries and Transformations — This directory stores the queries and transformations,
in source code form, that stress the feature under testing.

Models — This directory contains the model and metamodel descriptions involved in the
test transformation(s).

Input data — This directory contains the input data to be used by the test case(s).

Expected data — In this directory we store the files that contain the expected values
that must be returned by the transformation. The expected data are compared with
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the actual output of the transformation to determine if the test execution has been
successful or not.

Source code — In some situations, test cases may require additional code (such as Java
code) to be executed. For example, test cases may be automatically launched with
the help of third party libraries (such as JUnit), or test cases may execute external
code following a black-box scheme. In this situations the additional code should be
placed inside the /src directory.

Libraries — This directory is used to store any additional third party library (usually a
binary file) required by the test case.

Scripts — Build and execution scripts should be placed under the /build directory.
Examples of such scripts are Ant files [5], Maven files [6], Makefiles [57], bash
shell scripts [56].

I.3.2 Submission guidelines

In order to increase the quality and soundness of the test cases available in the MDE
Benchmark repository, we plan to keep it open to further submissions from the
MDE community.

We have defined a simple set of guidelines that must be followed when contributing a
new case study to guarantee that the quality of the repository is maintained. Specifically:

— New contributions must include a comprehensive description of the case study. A
rationale for its inclusion must be provided, specially focusing on the differential
aspects of the proposed case study, compared to the already included benchmarks.

— The sources, models, documentation and utility scripts must be organized as de-
scribed in Section I.3.1.

— Contributions must be sent to the address mondo_team@opengroup.org for
their evaluation and approval.

mailto:mondo_team@opengroup.org
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Table 3: List of Java code quality fixes
Rule Documentation

ConstantName http://checkstyle.sourceforge.net/config_naming.html#ConstantName
LocalFinalVariableName http://checkstyle.sourceforge.net/config_naming.html#LocalFinalVariableName
LocalVariableName http://checkstyle.sourceforge.net/config_naming.html#LocalVariableName
MemberName http://checkstyle.sourceforge.net/config_naming.html#MemberName
MethodName http://checkstyle.sourceforge.net/config_naming.html#MethodName
PackageName http://checkstyle.sourceforge.net/config_naming.html#PackageName
ParameterName http://checkstyle.sourceforge.net/config_naming.html#ParameterName
StaticVariableName http://checkstyle.sourceforge.net/config_naming.html#StaticVariableName
TypeName http://checkstyle.sourceforge.net/config_naming.html#TypeName
AvoidStarImport http://checkstyle.sourceforge.net/config_imports.html#AvoidStarImport
UnusedImports http://checkstyle.sourceforge.net/config_imports.html#UnusedImports
RedundantImport http://checkstyle.sourceforge.net/config_imports.html#RedundantImport
ParameterNumber http://checkstyle.sourceforge.net/config_sizes.html#ParameterNumber
ModifierOrder http://checkstyle.sourceforge.net/config_modifier.html#ModifierOrder
RedundantModifier http://checkstyle.sourceforge.net/config_modifier.html#RedundantModifier
AvoidInlineConditionals http://checkstyle.sourceforge.net/config_coding.html#AvoidInlineConditionals
EqualsHashCode http://checkstyle.sourceforge.net/config_coding.html#EqualsHashCode
HiddenField http://checkstyle.sourceforge.net/config_coding.html#HiddenField
MissingSwitchDefault http://checkstyle.sourceforge.net/config_coding.html#MissingSwitchDefault
RedundantThrows http://checkstyle.sourceforge.net/config_coding.html#RedundantThrows
SimplifyBooleanExpression http://checkstyle.sourceforge.net/config_coding.html#SimplifyBooleanExpression
SimplifyBooleanReturn http://checkstyle.sourceforge.net/config_coding.html#SimplifyBooleanReturn
FinalClass http://checkstyle.sourceforge.net/config_design.html#FinalClass
InterfaceIsType http://checkstyle.sourceforge.net/config_design.html#InterfaceIsType
VisibilityModifier http://checkstyle.sourceforge.net/config_design.html#VisibilityModifier
FinalParameters http://checkstyle.sourceforge.net/config_misc.html#FinalParameters
LooseCoupling http://pmd.sourceforge.net/pmd-5.1.0/rules/java/typeresolution.html#LooseCoupling
SignatureDeclareThrowsException http://pmd.sourceforge.net/pmd-5.1.0/rules/java/typeresolution.html#SignatureDeclareThrowsException
DefaultLabelNotLastInSwitchStmt http://pmd.sourceforge.net/pmd-5.1.0/rules/java/design.html#DefaultLabelNotLastInSwitchStmt
EqualsNull http://pmd.sourceforge.net/pmd-5.1.0/rules/java/design.html#EqualsNull
CompareObjectsWithEquals http://pmd.sourceforge.net/pmd-5.1.0/rules/java/design.html#CompareObjectsWithEquals
PositionLiteralsFirstInComparisons http://pmd.sourceforge.net/pmd-5.1.0/rules/java/design.html#PositionLiteralsFirstInComparisons
UseEqualsToCompareStrings http://pmd.sourceforge.net/pmd-5.1.0/rules/java/strings.html#UseEqualsToCompareStrings
IntegerInstantiation http://pmd.sourceforge.net/pmd-5.1.0/rules/java/migrating.html#IntegerInstantiation
ByteInstantiation http://pmd.sourceforge.net/pmd-5.1.0/rules/java/migrating.html#ByteInstantiation
ShortInstantiation http://pmd.sourceforge.net/pmd-5.1.0/rules/java/migrating.html#ShortInstantiation
LongInstantiation http://pmd.sourceforge.net/pmd-5.1.0/rules/java/migrating.html#LongInstantiation
BooleanInstantiation http://pmd.sourceforge.net/pmd-5.1.0/rules/java/migrating.html#BooleanInstantiation
SimplifyStartsWith http://pmd.sourceforge.net/pmd-5.1.0/rules/java/optimizations.html#SimplifyStartsWith
UnnecessaryReturn http://pmd.sourceforge.net/pmd-5.1.0/rules/java/unnecessary.html#UnnecessaryReturn
UnconditionalIfStatement http://pmd.sourceforge.net/pmd-5.1.0/rules/java/basic.html#UnconditionalIfStatement
UnnecessaryFinalModifier http://pmd.sourceforge.net/pmd-5.1.0/rules/java/unnecessary.html#UnnecessaryFinalModifier
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Transformation de modèles sur plates-formes réparties
Persistance décentralisée et traitement distribué

Model transformation on distributed platforms
decentralized persistence and distributed processing

Résumé
Grâce à sa promesse de réduire les efforts de développement et
maintenance du logiciel, l’Ingénierie Dirigée par les Modèles (IDM)
attire de plus en plus les acteurs industriels. En effet, elle a été
adoptée avec succès dans plusieurs domaines tels que le génie
civil, l’industrie automobile et la modernisation de logiciels.
Toutefois, la taille croissante des modèles utilisés nécessite de
concevoir des solutions passant à l’échelle afin de les traiter
(transformer), et stocker (persister) de manière efficace. Une façon
de pallier cette problématique est d’utiliser les systèmes et les
bases de données répartis. D’une part, les paradigmes de
programmation distribuée tels que MapReduce et Pregel peuvent
simplifier la distribution de transformations des modèles (TM). Et
d’autre part, l’avènement des base de données NoSQL permet le
stockage efficace des modèles d’une manière distribuée. Dans le
cadre de cette thèse, nous proposons une approche pour la
transformation ainsi que pour la persistance de grands modèles.
Nous nous basons d’un côté, sur le haut niveau d’abstraction fourni
par les langages déclaratifs (relationnels) de transformation et d’un
autre côté, sur la sémantique bien définie des paradigmes existants
de programmation distribués, afin de livrer un moteur distribué de
TM. La distribution est implicite et la syntaxe du langage n’est pas
modifiée (aucune primitive de parallélisation n’est ajoutée). Nous
étendons cette solution avec un algorithme efficace de distribution
de modèles qui se base sur l’analyse statique des transformations
et sur résultats récents sur le partitionnement équilibré des graphes.
Nous avons appliqué notre approche à ATL, un langage relationnel
de TM et MapReduce, un paradigme de programmation distribué.
Finalement, nous proposons une solution pour stocker des modèles
à l’aide de bases de données NoSQL, en particulier au travers d’un
cadre d’applications de persistance répartie.

Abstract
Model-Driven Engineering (MDE) is gaining ground in industrial
environments, thanks to its promise of lowering software
development and maintenance effort. It has been adopted with
success in producing software for several domains like civil
engineering, car manufacturing and modernization of legacy
software systems. As the models that need to be handled in
model-driven engineering grow in scale, it became necessary to
design scalable algorithms for model transformation (MT) as well as
well-suitable persistence frameworks. One way to cope with these
issues is to exploit the wide availability of distributed clusters in the
Cloud for the distributed execution of model transformations and
their persistence. On one hand, programming models such as
MapReduce and Pregel may simplify the development of distributed
model transformations. On the other hand, the availability of
different categories of NoSQL databases may help to store
efficiently the models. However, because of the dense
interconnectivity of models and the complexity of transformation
logics, scalability in distributed model processing is challenging. In
this thesis, we propose our approach for scalable model
transformation and persistence. We exploit the high-level of
abstraction of relational MT languages and the well-defined
semantics of existing distributed programming models to provide a
relational model transformation engine with implicit distributed
execution. The syntax of the MT language is not modified and no
primitive for distribution is added. Hence developers are not
required to have any acquaintance with distributed programming.
We extend this approach with an efficient model distribution
algorithm, based on the analysis of relational model transformation
and recent results on balanced partitioning of streaming graphs. We
applied our approach to a popular MT language, ATL, on top of a
well-known distributed programming model, MapReduce. Finally, we
propose a multi-persistence backend for manipulating and storing
models in NoSQL databases according to the modeling scenario.
Especially, we focus on decentralized model persistence for
distributed model transformations.

Mots clés
Ingénierie Dirigée par les Modèles, Transformation & Persistance de
modèles, Distribution, ATL, MapReduce

Key Words
Model Driven Engineering, Model Transformation & Persistence,
Distribution, ATL, MapReduce
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