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Titre : Points de Stark-Heegner et fonctions L p-adiques 

Résumé :  

 
Soit K|Q un corps de nombres et soit ζK(s) sa fonction L complexe associée. La 
formule analytique du nombre de classes fournit un lien entre les valeurs spéciales de 
ζK(s) et les invariants du corps K. Elle admet une version Galois-équivariante. 

On a un schema similaire pour les courbes elliptiques. Soit E/Q une courbe elliptique 
et soit L(E/Q, s) sa fonction L complexe associée. La conjecture de Birch et 
Swinnerton-Dyer prédit un lien entre le comportement de L(E/Q, s) au point s = 1 et la 
structure des solutions rationnelles de l’équation definie par E. Comme la formule 
analytique du nombre de classes, la conjecture de Birch et Swinnerton-Dyer admet une 
version équivariante. 

La conjecture de Stark elliptique formulée par H. Darmon, A. Lauder et V. Rotger 
propose un analogue p-adique de la conjecture de Birch et Swinnerton-Dyer 
équivariante, qui nécessite certaines hypothèses. Dans leur article, les auteurs 
formulent la conjecture et donnent une démonstration dans certains cas où E a bonne 
réduction en p. Pour cela, ils utilisent la méthode de Garrett-Hida qui conduit à une 
factorisation de fonctions L p-adiques. Dans cette thèse on se concentre sur la 
conjecture de Stark elliptique et l’on montre comme il est possible d’étendre le résultat 
de Darmon, Lauder et Rotger. 

Dans le cas où E a bonne réduction en p on peut étendre le résultat en utilisant la 
méthode de Hida- Rankin. Cette méthode nous donne un contrôle meilleur sur les 
constantes apparaissant dans les formules et nous amène à une formule explicite 
contenant les invariants de la courbe elliptique. Pour obtenir le résultat on adapte la 
preuve du théorème principal de Darmon, Lauder et Rotger à notre cas et on utilise une 
formule p-adique de Gross et Zagier qui relie les valeurs spéciales de la fonction L p-
adique de Bertolini-Darmon-Prasanna et les points de Heegner. 
 

Ensuite on voit comment étendre notre résultat et celui de Darmon-Lauder-Rotger au 
cas où E a réduction multiplicative en p. Dans ce cadre, on ne peut pas utiliser la 
fonction L p-adique de Bertolini-Darmon-Prasanna en raison de problèmes techniques. 
Pour éliminer cette difficulté on consid`ere la fonction L p-adique de Castellà. On 
utilise aussi la méthode de Garrett-Hida ainsi que la méthode d’Hida-Rankin et l’on 
obtient des résultats similaires aux cas de bonne réduction. 

Mots clés :  
courbes elliptiques, fonctions L p-adiques, interpolation p-adique, valeurs spéciales, 
points de Heegner, unités de Stark, unités elliptiques, intégrales p-adiques iterées, 
familles d’Hida 

 



Title : Stark-Heegner points and p-adic L-functions 

Abstract :  
Let K|Q be a number field and let ζK(s) be its associated complex L-function. The 
analytic class number formula relates special values of ζK(s) with algebraic invariants 
of the field K itself. It admits a Galois equivariant refinement known as Stark 
conjectures. 

We have a very similar picture in the case of elliptic curves. Let E/Q be an elliptic 
curve and let L(E/Q, s) be its associated complex L-function. The conjecture of Birch 
and Swinnerton-Dyer relates the behaviour of L(E/Q, s) at s = 1 to the structure of 
rational solutions of the equation defined by E. The equivariant Birch and Swinnerton-
Dyer conjecture is obtained including in the picture the action of Galois groups. 

The elliptic Stark conjecture formulated by H. Darmon, A. Lauder and V. Rotger 
purposes a p-adic analogue of the equivariant Birch and Swinnerton-Dyer conjecture, 
under several assumption. In their paper, the authors formulate the conjecture and 
prove it in some cases of good reduction of E at p using Garrett-Hida method and 
performing a factorization of p-adic L-functions. In this dissertation we focus on the 
elliptic Stark conjecture and we show how it is possible to extend the result of 
Darmon, Lauder and Rotger. 

In the case of good reduction of E at p we can slightly extend the result using Hida-
Rankin method. This method also gives us a better control of the constants appearing 
in the result, thus yielding an explicit formula which contains invariants associated 
with the elliptic curve. To achieve the proof we mimic the main result of Darmon, 
Lauder and Rotger in our setting and we make use of a p-adic Gross-Zagier formula 
which relates special values of the Bertolini-Darmon-Prasanna p-adic L-function to 
Heegner points. 

In a second moment we extend both our result and Darmon-Lauder-Rotger result to 
the case of multi- plicative reduction of E at p. In this setting we cannot use Bertolini-
Darmon-Prasanna p-adic L-function due to some technical reasons. In order to avoid 
the problem we consider Castellà’s two variables p-adic L-function. We use both 
Garrett-Hida method and Hida-Rankin method. In the two cases we obtain formulae 
which are similar to those of the good reduction setting. 

Keywords :  
Elliptic curves, p-adic L-functions, p-adic interpolation, special values, Heegner 
points, Stark units, elliptic units, p-adic iterated integrals, Hida families 
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Introduction

The theory of L-functions plays a key role in modern number theory. After Iwasawa’s new insight on
this theory, p-adic L-functions became an interesting alternative to classical ones.

A central feature of the theory of L-functions (classical or p-adic) is the study of their special values:
this is where the analytic and the algebraic data meet.

Let us describe the most basic example. Let K be a number field of discriminant DK and denote by
OK its ring of integers. The seminal example is the Dedekind zeta function of the field K, denoted by
ζK(s). It is defined for <(s) > 1 as an Euler product indexed by all prime ideals in OK as follows:

ζK(s) =
∏

℘⊂OK

1
1−NK

Q (℘)s
.

As was first proved by Hecke, this function admits a meromorphic continuation, and satisfies a functional
equation of the form:

|DK |
s
2 · ζK,∞(s) · ζK(s) = |DK |

1−s
2 · ζK,∞(1− s) · ζK(1− s)

where ζK,∞(s) is an adequate product of Gamma factors. The integral point s = 0 lies outside the domain
of definition and mathematicians were interested in understanding the nature of this value.

Let us recall Dirichlet’s unit theorem: the group of units O×K is a finitely generated abelian group,
whose free part has rank r1 + r2 − 1, where r1 is the number of real embeddings K ↪→ R and r2 is the
number of complex embeddings K ↪→ C up to conjugation, so that r1 + 2r2 = [K : Q].

The behaviour of ζK(s) at s = 0 is the content of the so-called analytic class number formula, which
we state here as follows:

Theorem 0.1 (Class number formula). The following are true:

CNF0 The zeta function ζK(s) admits an analytic continuation and a functional equation relating values at
s and 1− s;

CNF1 The order of vanishing of ζK(s) at s = 0 equals the rank of O×K , i.e. ords=0ζK(s) = r (analytic rank
= algebraic rank);

CNF2 The following formula holds true:

lim
s→0

s−rζK(s) = −hKRK
ωK

.

where:

– hK is the class number of K;

xi
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– ωK is the number of roots of unity of OK ;

– RK is the complex regulator involving the logarithm of units of OK .

One generally refers to the analytic class number formula when speaking about the following result:

Ress=1ζK(s) =
2r1(2π)r2hKRK
ωK
√
|DK |

which can be easily proven to be equivalent to CFN1 and CFN2 together.
In the 1970’s Stark developed in [Stark] an equivariant conjectural refinement of the above formula,

now known as Stark’s conjectures. More precisely, for any field extension H | K, the Artin formalism
allows one to decompose the zeta function ζH(s) as a product of L-functions over K twisted by irreducible
Artin representations ρ of Gal (H|K). The Stark conjectures aim to describe vanishing properties and
special values of these twists at s = 0 in terms of invariants linked to the objects involved in a Gal (H|K)-
equivariant way.

Not surprisingly, one can formulate a similar conjecture for elliptic curves, which will be the main
motivation for the present thesis. More precisely, we consider:

• an elliptic curve E defined over K. We denote by V (E) the compatible system of Galois representa-
tions induced by its Tate module;

• an Artin representation ρ : Gal (H|K) → GLn(L), where L ⊂ C is the field of coefficients of ρ. We
associate to it a compatible system of Galois representations V (ρ).

Our main object of interest is the Hasse-Weil-Artin L-function of E twisted by ρ:

L(E, ρ, s) := L(V (E)⊗ V (ρ), s),

This function is defined as an Euler product similar to that of ζK(s), which converges for <(s) > 3/2.
When ρ = 1K , the twisted L-function L(E, ρ, s) is equal to the original one L(E/K, s).

According to the Mordell-Weil theorem, E(K) is a finitely generated abelian group. The rank of its
free part is called the algebraic rang of E over K, that we denote by r = r(E/K). In the early 60’s, Birch
and Swinnerton-Dyer formulated in [BSD] the following:

Conjecture 0.2 (Birch and Swinnerton-Dyer). The following are true:

BSD0 The zeta function L(E/K, s) admits an analytic continuation and a functional equation relating
values at s and 2− s;

BSD1 The order of vanishing at s = 1 equals the rank E over K, i.e. ords=1L(E/K, s) = r (analytic rank
= algebraic rank);

BSD2 The following formula holds true:

lim
s→1

s−rL(E/K, s) = ΩE/K ·
( ∏
℘⊂OK

c℘
)#ShaE/K

#T 2
·
RE/K√
|DK |

where:

– ΩE/K is the complex period attached to E over K;

– c℘ is the Tamagawa number of E at ℘;
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– ShaE/K is the Shafarevich-Tate group;

– RE/K is the complex regulator involving Néron-Tate heights of a basis of the free part of the
Mordell-Weil group.

It is remarkable how theorem 0.1 and conjecture 0.2 share many similarities. Moreover there are
equivariant refinements of the BSD conjecture, too. This sets up the basis for a vast generalization known
as the equivariant Tamagawa number conjecture (ETNC) which includes, as special cases, both the Stark
conjectures and the equivariant Birch and Swinnerton-Dyer conjecture.

In this dissertation we are mainly motivated by the equivariant BSD conjecture as an elliptic curve
analogue of the Stark conjecture for number fields.

Let E/K be an elliptic curve and let ρ : Gal (H|K) → GLn(L) and consider the twisted L-function
L(E, ρ, s). Assuming the BSD0 we can define the analytic rank associated with E twisted by ρ as:

ran(E, ρ) := ords=1L(E, ρ, s).

On the algebraic side we consider the vector space Vρ underlying the representation and the set of Galois
equivariant homomorphisms ψ : Vρ → E(H)L, where E(H)L := E(H)⊗L. In other words, we consider the
possible ways to embed the representation Vρ inside the Mordell-Weil group. In particular, the algebraic
rank measures how many times the representation Vρ occurs in E(H)L:

ralg(E, ρ) := dimL HomGK (Vρ, E(H)L).

We also define the ρ-isotypical component of the Mordell-Weil group as follows:

E(H)ρ :=
∑
{ψ}

ψ(Vρ).

where {ψ} denotes a basis of HomGK (Vρ, E(H)L). The rank part of the equivariant BSD conjecture
predicts that the analytic rank and the algebraic rank are equal, so that:

ran(E, ρ) ?= ralg(E, ρ).

The equality has been established in few cases only: there are results when the base field is Q, ran(E, ρ) ≤ 1
and ρ has dimension at most 2, under some additional specific hypothesis. The common feature of these
results is the use of Euler systems.

In order to overcome the rank part of the problem and give a unified vision of the Euler systems,
Darmon, Lauder and Rotgers formulated in [DLR15] a p-adic analogue of the equivariant BSD conjecture
which they call the elliptic Stark conjecture. We now briefly describe the result of their article. Consider
a self-dual representation ρ : Gal (H|Q)→ SL4(L) which is the tensor product of two odd representations
ρ1 and ρ2 of dimension 2. By the modularity results of Khare and Winterberger (see [KW09]) we know
that such representations arise from modular forms of weight one, so that ρ1 = ρg, ρ2 = ρh and ρ = ρgh =
ρg ⊗ ρh, where:

g ∈M1(Ng, χ) and h ∈M1(Nh, χ).

In this sense we can write L(E, ρgh, s) = L(f ⊗ g ⊗ h, s), so that the L-function can be viewed as the
Garrett’s triple product L-function. In order to describe the elliptic Stark conjecture in detail, we first
need to discuss the hypothesis under which it is formulated.

Hypotheses A and B of [DLR15] say that the L-function L(E, ρ, s) vanishes to order at least two at
s = 1 and that the order of vanishing is even. In particular it is assumed that the local signs of the
functional equation of L(E, ρ, s) are all positive.
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Hypotheses C and C’ of loc.cit. are important for the very definition of p-adic iterated integrals that
we now describe. Given a module M on which the good Hecke operators Tn act and a common eigenform
φ, we define M [φ] to be the subspace of M composed by vectors which have the same eigenvalues for all
of the Tn’s. For a test vector

(γ̆, f̆ , h̆) ∈M1(Np, χ)∨L[gα]× S2(Np,1)L[f ]×M1(Np, χ)L[h]

the associated p-adic iterated integral is defined as follows:∫
γ̆

f̆ · h̆ := γ̆
(
eg∗αeord(F̆ · h̆)

)
(1)

where F̆ is the overconvergent primitive of f̆ , egα∗ is the projector onto the g∗α-isotypical component and
eord is Hida’s ordinary projector. Hypothesis C and C’ ensure us that the definition is meaningful by
declaring that the g∗α-isotypical component of the space of overconvergent modular forms in weight one is
made solely of classical forms, so that, in particular, eg∗αeord(F̆ · h̆) is classical, too. Then we have the:

Conjecture 0.3 (Elliptic Stark conjecture). Let p - NgNh be a prime at which E has ordinary reduction,
let Nf be the tame part of NE and N = lcm(Nf , Ng, Nh). Assume hypothesis A, B, and C,C’ of [DLR15].
Then:

• if ran(E, ρ) = 2 for i = 1, 2, then there exists a test vector:

(γ̆, f̆ , h̆) ∈M1(Np, χ)∨L[gα]× S2(Np,1)L[f ]×M1(Np, χ)L[h]

for which: ∫
γ̆

f̆ · h̆ =
Rp(E, ρ)gα
logp(ugα)

is nonzero, where:

– ugα is the Gross-Stark unit associated with the adjoint representation associated with gα;

– Rp(E, ρ)gα is a p-adic ρ-equivariant regulator which is defined as the determinant of a 2 by 2
matrix involving elliptic logarithm of points in E(H)ρL.

• if ran(E, ρ) > 2, then
∫
γ̆
f̆ · h̆ = 0 for every possible choice of test vector (γ̆, f̆ , h̆).

Let us point out the presence of gα: this is a choice of a p-stabilization of g which is needed to formulate
the conjecture—this will be discussed later.

The proposition 2.6 of loc.cit. motivates the terminology of “elliptic Stark conjecture”. More precisely,
the p-adic iterated integral can be interpreted as the special value of the Garrett-Hida p-adic L-function,
which is a p-adic avatar of L(E, ρ, s), and the conjecture contains information about both the order of
vanishing of this L-function and its leading term.

In [DLR15] the authors provide several heuristics in support of the conjecture, and they prove it in
some special cases. More precisely, they consider the case in which g and h are theta series associated
with Galois characters of a quadratic imaginary field K = Q(

√
−D) and (f,K) satisfies the Heegner

hypothesis. In this setting, the Heegner hypothesis ensures us that hypothesis A and B are satisfied and
also, in most cases, that theta series satisfy hypothesis C and C’ (see the discussion of section 4.2). Then
the representation ρ splits as the direct sum of two representations ρ1 and ρ2 (not necessarily irreducible),
and the availability of Heegner points and elliptic units allows the construction, respectively, of canonical
elements Pi ∈ E(H)ρiL which satisfy the already existent p-adic Gross-Zagier formula studied in [BDP12],
and of global units ugα ∈ (O×H)Ad(gα)

L satisfying the Katz-Kronecker limit formula. Using those tools the
authors achieve the following:
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Theorem 0.4 (Darmon, Lauder, Rotger). Assume that N = lcm(NE , Ng, Nh) is square-free and that
p - 2N . Assume also that hypothesis C and C’ hold. Then:

• if ran(E, ρi) = 1, then there exists a test vector:

(γ̆, f̆ , h̆) ∈M1(Np, χ)∨L[gα]× S2(Np,1)L[f ]×M1(Np, χ)L[h]

and a scalar λ ∈ L× for which: ∫
γ̆

f̆ · h̆ = λ ·
logE,p(P1) logE,p(P2)

logp(ugα)

• if ran(E, ρi) > 1 for i = 1 or i = 2, then
∫
γ̆
f̆ · h̆ = 0 for any choice of test vector (γ̆, f̆ , h̆).

Dimostrazione. This is achieved using the Garrett-Hida method, by p-adically interpolating the triple
product L-function and comparing it with other p-adic L-functions (cf. [DLR15, §3]).

Let us point out that this formula is qualitative: no computation is made to make λ explicit. It would
be interesting to see what happens to the constant λ if one makes a specific choice for the test vector
(γ̆, f̆ , h̆). In particular, it is worth to make here the following:

Remark 0.5. The quantity on the left depends on f (in fact f̆) while the quantity on the right contains the
elliptic logarithm, which is usually taken in the literature to be the logarithm associated with the Néron
differential ωE . In particular, the Néron differential is pulled back to a multiple of ωf := 2πif(τ)dτ , via
the modular parametrization π : X0(NE) → E, i.e. π∗(ωE) = CE · ωf . The constant CE would be a
product of the Manin constant and the degree of the isogeny from the elliptic curve Ef , associated with f
via Eichler-Shimura construction, and our elliptic curve E.

We use the result [BDP12, Theorem 3.12] and we want to avoid the constant CE . For this reason, we
consider the logarithm associated with the differential ω on E defined by:

π∗(ω) = ωf .

This is a non-canonical choice but the results that we obtain can be easily translated in terms of the usual
logarithm by adding the constant CE . For a qualitative result this fact does not matter, but for a precise
computation of λ it is important.

In [DLR15, remark 3.4], assuming that N = D is square-free, that p - N and that g = h = E1,χK ∈
M1(D,χK) is the Eisenstein series associated with the quadratic character χK attached to the extension
K|Q, the authors verified experimentally that:∫

γ

f · h =
#E(Fp)2

p(p− 1)hK
·

logE,p(PK)2

logp(u℘)
,

where hK is the class number of K, (u℘) = ℘hK and PK ∈ E(K) = E(H)1KL . In this specific case the
condition N = D ensures us that the choice (γ, f, h) is canonical, where γ is the dual of g.

This raises two main questions:

(i) are we able to uncover some nice arithmetical meaning of the scalar λ, possibly after making some
canonical choice of test vector (γ̆, f̆ , h̆)?

(ii) can we establish the conjecture in other cases?
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The first question was answered using the Rankin method instead of the Garrett method, but restricting
to the case in which h = E1,χK . In this case ρ1 = ρ2 = ρg, so that ρ = ρ2

g and we have a factorization of
L-functions:

L(E, ρ, s) = L(E, ρg, s)2

The function L(E, ρg, s) = L(f ⊗ g, s) can be interpolated p-adically with Hida-Rankin’s method and
its special value can also be interpreted as a p-adic iterated integral. Since g has CM by χK , it can be
seen as the theta series associated with a finite order Hecke character ψ : GK → C×. In this setting,
P1 = P2 = Pψ̄, ugα = uψ̄2 and the main result of [CR1] is the following:

Theorem 0.6 (C.-Rotger). Assume that (NE , Ng/D) = 1 and take N = lcm(NE , Ng) and a prime p - 2N .
Assume also that hypothesis C and C’ hold and that ran(E, ρg) = 1. Let us call h = E1,χK and let us choose
the test vector:

(γ̆, f̆ , h̆) ∈M1(Np, χ)∨L[gα]× S2(Np,1)L[f ]×M1(Np, χ)L[h]

as follows: f̆ and ğ are normalized eigenforms for all the Hecke operators, γ̆ is the dual of ğ and h̆ = E1,χ
N

as defined in equation (1.10). Then there exists an explicit non-zero complex number λ(f̆ , ğ) ∈ Qψ(f̆) for
which ∫

γ̆

f̆ · h̆ = λ(f̆ , ğ) ·
logE,p(Pψ̄)2

logp(uψ̄2)
.

In particular, in the case NE = Ng = Nh = D the following formula holds true for f̆ = f , ğ = g:

λ(f, g) =
(p− ap(f)ψ(℘̄) + ψ2(℘̄))2

p(p− 1)
· λ0

hKgK
,

λ0 =

{
1 if ψ2 = 1, that is to say, if g is Eisenstein

12(p−1)
p−(p+1)ψ−2(℘̄)+ψ−4(℘̄) if ψ2 6= 1, that is to say, if g is cuspidal.

Note that in the first part of this result we do not assume that N is square-free. In fact, the choice of
h forces Ng/D to be a non-trivial square, unless Ng = D. In this sense the use of Hida-Rankin’s method,
although restrictive for the choice of h, also proves new cases of the elliptic Stark conjecture in a more
explicit way than it is done by Garrett’s method, answering both questions (i) and (ii).

The above theorem, together with theorem 0.4, furnishes good theoretical evidence for the elliptic Stark
conjecture, but it is far from proving it in general. This leaves spaces for the examination of other cases.
The first and natural idea is to see what happens in the case of bad reduction for E at p. For this reason,
we decided to prove the case of multiplicative reduction for E, i.e. when p||NE . Define Nf = NE/p, then
we have the following:

Theorem 0.7. The results of theorem 0.4 and 0.6 hold still if we assume that p||NE, p - NgNh. The
explicit formula of theorem 0.6 is true replacing NE by Nf .

Although this result is very similar to the previous theorems, we need to substitute the Bertolini-
Darmon-Prasanna p-adic L-function with a two variables extension due to Castellà in order to overcome
some technical problem.

Let us review briefly the contents of this thesis.
In the first chapter we introduce some background material about modular forms, p-adic modular forms

and various operators acting on these spaces. We introduce Coleman’s classicality result: overconvergent
modular forms of small slope are classical. We also discuss complex multiplication points and elliptic units
in a way that fulfills our needs.
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The second chapter is dedicated to the basics of complex L-functions. We introduce the L-function
associated with a compatible system of Galois representations, then we treat several special L-functions of
this kind. In particular, we introduce the notation and some results which will be used in the subsequent
chapters.

Chapter three is the central part: it contains background material on all the p-adic L-functions that we
need. In particular, for each of them we introduce the region of interpolation, the relation with the complex
L-function and the results on special values. Most results discussed in this section are already present in
the literature but we slightly generalize a few of them and we adapt the notation for our treatment.

The fourth chapter contains the proof of theorems 0.6 and 0.7 that are discussed in the introduction.
We start by explaining the elliptic Stark conjecture in the cases we treat and we list the hypotheses for the
comfort of the reader. We also discuss in more detail hypothesis C and C’ which are needed to formulate
the result. These results are the content of the articles [CR1] and [CR2].
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Introdution (français)

La théorie des fonctions L p-adiques joue un rôle clé dans la théorie des nombres moderne. Depuis les
travaux d’Iwasawa, les fonctions L p-adiques sont devenues systématiquement une alternative intéressante
aux fonctions L classiques. Un thème central de la théorie de fonctions L (classiques et p-adiques) est
l’étude des valeurs spéciales : c’est la que les informations analytiques et algébriques se rencontrent.

Décrivons l’exemple le plus simple. Soit K un corps de nombres de discriminant DK et soit OK son
anneau des entiers. La fonction zêta de Dedekind associée au corps K, qu’on dénote par ζK(s), est définie
pour tout s tel que <(s) > 1 par le produit d’Euler indexé par les idéaux premiers de OK :

ζK(s) =
∏

℘⊂OK

1
1−NK

Q (℘)s
.

Un résultat classique de Hecke nous dit que cette fonction admet un plongement méromorphe et satisfait
une équation fonctionnelle de la forme :

|DK |
s
2 · ζK,∞(s) · ζK(s) = |DK |

1−s
2 · ζK,∞(1− s) · ζK(1− s),

où ζK,∞(s) est un produit de facteurs Gamma que nous ne spécifions pas. Le point entier s = 0 se trouve
en dehors du domaine de définition et les mathématiciens voulaient comprendre la nature de la valeur de
la fonction zêta en ce point.

Rappelons le théorème des unités de Dirichlet : le groupe des unités O×K est un groupe abélien de type
fini et de rang r1 + r2 − 1, où r1 représente le nombre de plongements réelles K ↪→ R et r2 le nombre des
immersions complexes K ↪→ C, à conjugation près, tels que r1 + 2r2 = [K : Q].

Le comportement de ζK(s) au point s = 0 est décrit par la formule analytique du nombre de classes,
que nous décrivons de la façon suivante :

Théorème 0.8 (Formule du nombre de classes). Les affirmations suivantes sont vraies :

FNC0 La fonction zêta ζK(s) admet un prolongement méromorphe et une équation fonctionnelle qui relie
les valeurs en s et 1− s ;

FNC1 L’ordre du zéro de ζK(s) au point s = 0 est égal au rang de O×K , c.-à-d. ords=0ζK(s) = r (rang
analytique = rang algébrique) ;

FNC2 La formule suivante est vraie :
lim
s→0

s−rζK(s) = −hKRK
ωK

.

où :

– hK est le nombre de classes de K ;

xix
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– ωK est le nombre de racines de l’unité de OK ;

– RK est le régulateur complexe, qui contient le logarithme des unités de OK .

Ce qu’on appelle souvent « formule analytique du nombre de classes » est le résultat suivant:

Ress=1ζK(s) =
2r1(2π)r2hKRK
ωK
√
|DK |

qui est évidemment équivalent à FNC1 plus FNC2.
Dans les années 70, Stark a formulé dans [Stark] des raffinements conjecturaux de ce théorème, qui

sont aujourd’hui appelé « conjectures de Stark ». Plus précisément, pour toute extension de corps H |K,
le formalisme d’Artin nous permet de décomposer la fonction ζH(s) comme produit de fonctions L sur K
tordues par des représentations d’Artin irréductibles de Gal (H|K). Les conjectures de Stark décrivent les
propriétés d’annulation et des valeurs spéciales de ces fonctions au point s = 0 à partir des invariants des
objets considérés d’une façons Gal (H|K)-équivariante.

Ce n’est pas surprenant que l’on puisse formuler une telle conjecture dans le cadre des courbes
elliptiques. En particulier, dans notre travail nous considérons :

• une courbe elliptique E définie sur K. On dénote par V (E) le système compatible de représentations
galoisiennes induites par le module de Tate;

• une représentation d’Artin ρ : Gal (H|K)→ GLn(L), où L ⊂ C est le corps de coefficients de ρ. On
lui associe le système compatible de représentations galoisiennes V (ρ).

Le théorème de Mordell-Weil nous garantit que E(K) est un groupe abélien de type fini. Le rang de ce
groupe est appelé rang de E sur K et noté par r = r(E/K). Dans les années 60, Birch et Swinnerton-Dyer
eut formulé dans [BSD] l’énoncé suivante :

Conjecture 0.9 (Birch et Swinnerton-Dyer). Les affirmations suivantes sont vraies :

BSD0 La fonction L(E/K, s) admet un prolongement méromorphe et une équation fonctionnelle qui relie
les valeurs en s et 2− s ;

BSD1 L’ordre du zéro de L(E/K, s) au point s = 1 est egal au rang de E sur K, c.-à-d. ords=1L(E/K, s) =
r (rang analytique = rang algébrique) ;

BSD2 La formule suivante est vraie :

lim
s→1

s−rL(E/K, s) = ΩE/K ·
( ∏
℘⊂OK

c℘
)#ShaE/K

#T 2
·
RE/K√
|DK |

où:

– ΩE/K est la période complexe attachée à E sur K ;

– c℘ est le nombre de Tamagawa de E en ℘ ;

– ShaE/K est le groupe de Shafarevich-Tate ;

– RE/K est le régulateur complexe donné par la hauteur de Néron-Tate d’une base de points du
groupe de Mordell-Weil.
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Les similarités entre 0.8 et 0.9 sont surprenantes, mais bien connues aujourd’hui. Il y a aussi des versions
équivariantes de BSD, qui constituent une base pour une vaste généralisation connue comme conjecture
équivariante des nombres de Tamagawa (ETNC), qui décrit bien en même temps les conjectures de Stark
et la conjecture de Birch et Swinnerton-Dyer.

Ce travail est motivé principalement par la conjecture de BSD équivariante vue comme un analogue
de la conjecture de Stark pour des corps de nombres.

Soit E/K une courbe elliptique, soit ρ : Gal (H|K)→ GLn(L) une représentation d’Artin et considérons
la fonction tordue L(E, ρ, s). En supposant que BSD0 soit vraie, on peut définir le rang analytique de E
tordue par ρ de cette manière :

ran(E, ρ) := ords=1L(E, ρ, s)

Du coté algébrique, on considère l’espace vectoriel Vρ associé à la représentation ρ et l’ensemble des
homomorphismes Galois-équivariants ψ : Vρ → E(H)L, où E(H)L := E(H)⊗L. C’est-à-dire, on considère
les façons distinctes de plonger Vρ dans le groupe de Mordell-Weil. En particulier, le rang algébrique mesure
combien de fois la représentation Vρ apparaît dans E(H)L :

ralg(E, ρ) := dimL HomGK (Vρ, E(H)L).

On définit aussi la composante ρ-isotypique du groupe de Mordell-Weil comme :

E(H)ρ :=
∑
{ψ}

ψ(Vρ),

où {ψ} est une base de HomGK (Vρ, E(H)L). La partie du rang de la conjecture de BSD équivariante prédît
l’égalité du rang analytique et rang algébrique, à savoir :

ran(E, ρ) ?= ralg(E, ρ).

L’égalité est établie dans très peu de cas: il y a des résultats quand le corps de base est Q, ran(E, ρ) ≤ 1
et ρ est de dimension non supérieure à 2, plus autres hypothèses. Les outils utilisés pour obtenir ces types
de résultats sont les systèmes d’Euler.

Pour pouvoir dépasser le problème du rang et donner une vision unifiée de certains systèmes d’Euler,
Darmon, Lauder et Rotger ont crée dans [DLR15] une variante p-adique de la conjecture de BSD qui est
appelée conjecture de Stark elliptique. Considérons une représentation auto-duale ρ : Gal (H|Q)→ SL4(L)
qui est le produit tensoriel de deux représentations ρ1 et ρ2 de dimension 2. Grace aux résultats de
modularité de Khare et Winterberger (voir [KW09]) nous savons que ces représentations sont associées à
des formes modulaires de poids 1 de telle sorte que ρ1 = ρg, ρ1 = ρh et ρ = ρgh = ρg ⊗ ρh, où :

g ∈M1(Ng, χ) et h ∈M1(Nh, χ).

Nous pouvons donc écrire L(E, ρgh, s) = L(f ⊗ g ⊗ h, s), ce qui décrit la fonction L comme triple produit
de Garrett. Afin de décrire la conjecture de Stark elliptique en détails, nous allons parler des hypothèses
nécessaires à sa formulation.

Les hypothèses A et B de [DLR15] disent qu’au point s = 1 la fonction L(E, ρ, s) a un zéro d’ordre
pair et supérieur ou égal à 2. En particulier, on suppose que les signes locaux de l’équation fonctionnelle
pour L(E, ρ, s) sont tous +1.

Les hypothèses C et C’ de loc.cit. sont très importantes pour la définition des intégrales p-adiques
itérées que nous allons décrire. Soit M un module sur lequel les opérateurs de Hecke Tn agissent et soit φ
une forme propre pour tout les opérateurs de Hecke. On définit M [φ] comme le sous-espace vectoriel de
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M qui contient les vecteurs ayant les mêmes valeurs propres que φ pour tout Tn. Considérons un vecteur
test :

(γ̆, f̆ , h̆) ∈M1(Np, χ)∨L[gα]× S2(Np,1)L[f ]×M1(Np, χ)L[h].

L’intégrale p-adique itérée associée est définie de la manière suivante :∫
γ̆

f̆ · h̆ := γ̆
(
eg∗αeord(F̆ · h̆)

)
(2)

où F̆ est la primitive surconvergente de f̆ , eg∗α est le projecteur sur la composante g∗α-isotypique et eord

est le projecteur de Hida ordinaire. Les hypothèses C et C’ assurent que la formule est bien définie en
déclarant que la composante g∗α-isotipique de l’espace de formes modulaires de poids un ne contient que
des formes modulaires classiques. De cette façon eg∗αeord(F̆ · h̆) est aussi une forme modulaire classique.
On peut alors énoncer la :

Conjecture 0.10 (Conjecture de Stark elliptique). Soit p - NgNh un nombre premier de réduction ordi-
naire pour E, soit Nf la partie modérée de NE et N := ppcm(Nf , Ng, Nh). Sous les hypothèses A, B, et
C,C’ de [DLR15] on a :

• si ran(E, ρ) = 2 pour i = 1, 2, alors il existe un vecteur test :

(γ̆, f̆ , h̆) ∈M1(Np, χ)∨L[gα]× S2(Np,1)L[f ]×M1(Np, χ)L[h]

tel que : ∫
γ̆

f̆ · h̆ =
Rp(E, ρ)gα
logp(ugα)

est différent de zéro, où :

– ugα est l’unité de Gross-Stark associée à la représentation adjointe de gα ;

– Rp(E, ρ)gα est un régulateur p-adique ρ-équivariante défini par le déterminant d’une matrice de
dimension 2 contenant des logarithmes elliptiques de points de E(H)ρL.

• si ran(E, ρ) > 2, alors
∫
γ̆
f̆ · h̆ = 0 pour tout choix possible de (γ̆, f̆ , h̆).

Il faut remarquer la présence de gα : il s’agit du choix d’une p-stabilisation de g qui est nécessaire à la
formulation de la conjecture, et dont nous allons discuter tout à l’heure.

La proposition 2.6 de loc.cit. explique l’utilisation de la terminologie « conjecture de Stark elliptique ».
Plus précisément, l’intégrale p-adique itérée peut être interprétée comme la valeur spéciale de la fonction
L p-adique de Garrett-Hida, qui est un analogue p-adique de L(E, ρ, s) et la conjecture contient des
informations sur l’ordre du zéro de cette fonction et sur son terme dominant.

Dans [DLR15], les auteurs donnent de nombreuse exemples numérique pour soutenir leur conjecture et
dans certains cas ils donnent aussi une démonstration. Plus précisément, ils considèrent le cas où g et h
sont des séries thêta associées à un caractère de Galois d’un corps quadratique imaginaire K = Q(

√
−D)

et (f,K) satisfait à l’hypothèse de Heegner. Dans ce cadre, l’hypothèse de Heegner assure la validité des
hypothèses A et B et, dans la plupart de cas, les séries thêta satisfont aux hypothèses C et C’ (voir la
discussion dans la section 4.2). La représentation ρ se réduit donc à une somme de deux représentations
ρ1 et ρ2 (pas forcément irréductibles) et la présence des points de Heegner et des unités elliptiques permet
de construire, respectivement, des éléments canoniques Pi ∈ E(H)ρiL qui satisfont la formule p-adique de
Gross-Zagier étudiée dans [BDP12], et des unités globales ugα ∈ (O×H)Ad(gα)

L qui satisfont la formule de la
limite de Katz-Kronecker. Avec ces outils les auteurs obtiennent le résultat suivant :
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Théorème 0.11 (Darmon, Lauder, Rotger). Supposons que N = lcm(NE , Ng, Nh) soit sans facteur carré
et que p - 2N . Supposons aussi que les hypothèses C et C’ soient satisfaites. Alors :

• si ran(E, ρi) = 1 pour i = 1, 2, alors il existe un vecteur test:

(γ̆, f̆ , h̆) ∈M1(Np, χ)∨L[gα]× S2(Np,1)L[f ]×M1(Np, χ)L[h]

et un nombre λ ∈ L× tel que : ∫
γ̆

f̆ · h̆ = λ ·
logE,p(P1) logE,p(P2)

logp(ugα)

• si ran(E, ρi) > 1 pour i = 1 or i = 2, alors
∫
γ̆
f̆ · h̆ = 0 pour tout choix du vecteur test (γ̆, f̆ , h̆).

Idée de démonstration. Le résultat est obtenu en utilisant la méthode de Garrett-Hida, en faisant une
interpolation p-adique de la fonction L triple produit et en mettant cela en relation avec autres fonctions
L p-adiques (cf. [DLR15, §3]).

Il faut noter que la formule est qualitative: il ne s’agit pas d’un calcul totalement explicite et λ n’est
pas décrit par le théorème Il est intéressant de mieux comprendre la forme de ce facteur, après spécification
du vecteur test (γ̆, f̆ , h̆).

Remark 0.12. La quantité à gauche dépend seulement de f (en fait f̆) mais la quantité à droite contient le
logarithme elliptique, qui est généralement normalisé de façon à être associé au différentiel de Néron ωE .
En particulier, le pull-back du différentiel de Néron est un multiple du différentiel ωf := 2πif(τ)dτ , via la
paramétrisation modulaire π : X0(NE) → E, c.-à-d. π∗(ωE) = CE · ωf . Le facteur CE est le produit de
la constante de Manin et du degré de l’isogénie qui existe entre la courbe elliptique Ef associée à f par la
construction d’Eichler-Shimura et notre courbe elliptique E.

Nous utilisons le résultat [BDP12, Théorème 3.12], et pour éviter les constantes CE nous considérons
le logarithme associé à la différentielle ω sur E, définie par :

π∗(ω) = ωf .

Ceci n’est pas un choix canonique, mais le résultat qu’on obtient peut être traduit plus simplement en
termes du logarithme usuel en rajoutant la constante CE . Pour un résultat qualitative ce fait n’est pas
important, mais pour un calcul précis du facteur λ il est essentiel.

Dans [DLR15, remarque 3.4], sous les hypothèses que N = D soit nombre premier, que p - N et que
g = h = E1,χK ∈M1(D,χK) soit la série d’Eisenstein associée au caractère quadratique χK de l’extension
K|Q, les auteurs ont vérifié avec de calculs numériques la formule suivante :∫

γ

f · h =
#E(Fp)2

p(p− 1)hK
·

logE,p(PK)2

logp(u℘)
,

où hK est le nombre de classes de K, (u℘) = ℘hK et PK ∈ E(K) = E(H)1KL . Dans ce cas spécifique,
la condition N = D garantit que le choix du vecteur (γ, f, h) soit canonique, où γ est le dual de g.

Ce résultat ouvre la discussion avec deux questions principales :

(i) pouvons nous donner un sens arithmétique à λ, si possible d’après un choix intelligent (canonique)
du vecteur test (γ̆, f̆ , h̆)?

(ii) Pouvons nous établir la conjecture dans d’autres cas?
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La première question a une solution : on utilise la méthode de Rankin à la place de la méthode de
Garrett, sous l’hypothèse supplémentaire que h = E1,χK . Dans ce cas la, ρ1 = ρ2 = ρg, donc ρ = ρ2

g, et on
a la factorisation suivante:

L(E, ρ, s) = L(E, ρg, s)2.

La fonction L(E, ρg, s) = L(f ⊗ g, s) peut être interpolée p-adiquement avec la méthode de Hida-Rankin
et ses valeurs spéciales peuvent être interprétées comme intégrales p-adiques itérées. Le fait que la série g
a multiplication complexe par χK nous assure qu’elle soit la série thêta d’un caractère de Hecke d’ordre
fini ψ : GK → C×. Dans ce cadre, P1 = P2 = Pψ̄, ugα = uψ̄2 et le résultat principal de l’article [CR1]
affirme que :

Théorème 0.13 (C.-Rotger). Supposons que (NE , Ng/D) = 1 et prenons N = ppcm(NE , Ng) et un
nombre premier p - 2N . Supposons aussi que les hypothèses C et C’ soient satisfaites et que ran(E, ρg) = 1.
Appelons h = E1,χK et choisissons un vecteur test :

(γ̆, f̆ , h̆) ∈M1(Np, χ)∨L[gα]× S2(Np,1)L[f ]×M1(Np, χ)L[h]

de la façon suivante : f̆ et ğ sont des formes propres pour tous les opérateurs de Hecke, γ̆ est le dual
de ğ et h̆ = E1,χ

N
comme dans l’équation (1.10). Alors il existe un nombre explicite et différent de zéro

λ(f̆ , ğ) ∈ Qψ(f̆) tel que ∫
γ̆

f̆ · h̆ = λ(f̆ , ğ) ·
logE,p(Pψ̄)2

logp(uψ̄2)
.

En particulier, dans le cas où NE = Ng = Nh = D la formule suivante est vraie pour f̆ = f , ğ = g :

λ(f, g) =
(p− ap(f)ψ(℘̄) + ψ2(℘̄))2

p(p− 1)
· λ0

hKgK
,

λ0 =

{
1 si ψ2 = 1, c’est-à-dire, si g est Eisenstein

12(p−1)
p−(p+1)ψ−2(℘̄)+ψ−4(℘̄) si ψ2 6= 1, c’est-à-dire, si g est parabolique.

Pour la première partie du théorème nous n’avons pas pris N sans facteur carré. En fait notre choix
de h implique que Ng/D soit un carré non trivial, sauf si Ng = D. Utiliser la méthode de Hida-Rankin
implique de restrictions, mais cela nous permet aussi de donner de nouveaux cas de la conjecture de Stark
elliptique et fournit des calculs plus explicites, répondant aux questions (i) et (ii).

Le théorème que nous venons de discuter et le théorème 0.11 sont un premier pas vers la conjecture
de Stark elliptique, mais ils sont loin de fournir une preuve générale. Pour cette raison nous avons essayé
d’étendre le résultat : le premier cas qu’on a voulu regarder c’est le cas où p est un premier de mauvaise
réduction pour E. En particulier, on considère la réduction multiplicative, c.-à-d. le cas où p||NE .
Définissons Nf := NE/p, alors nous avons le résultat suivant :

Théorème 0.14. Les résultats de 0.11 et de 0.13 continuent à être vrais si p||NE , p - NgNh. La formule
explicite de 0.13 reste vraie si l’on remplace NE par Nf .

Le résultat apparaît très similaire aux théorèmes précédents, mais nous sommes obligés de remplacer
la fonction L p-adique de Bertolini-Darmon-Prasanna par une extension à deux variables étudiée par Ca-
stellà, pour pouvoir dépasser des difficultés techniques.

Pour conclure nous faisons un petit résumé du contenu de chaque chapitre.
Dans le premiér chapitre nous introduisons le matériel et le langage de base sur le formes modulaires, les

formes modulaires p-adiques et les opérateurs qui agissent sur ces espaces. Nous introduisons le théorème



xxv

de classicité de Coleman : les formes modulaires surconvergentes de petite pente sont classiques. Nous
allons parler aussi des points à multiplication complexe et des unités elliptiques autant qu’il nous sera
nécessaire pour la suite.

Le deuxième chapitre contient les bases des fonctions L complexes. Nous décrivons les fonctions L
associées aux systèmes compatibles de représentations galoisiennes, puis nous traitons de nombreuse cas
spéciaux de fonctions L de ce type. Nous introduisons en particulier de nombreuse résultats et notation
qui seront utiles pour la suite.

Le chapitre trois est le coeur de cette thèse : il contient tout le matériel nécessaire sur les fonctions L
p-adiques, avec une attention particulière donnée aux éléments fondamentaux tels que la région d’interpo-
lation, la relation avec la fonction L complexe associéa et les résultats sur les valeurs spéciales. La plupart
des résultats présentés ici se trouvent déjà dans la littérature, mais nous allons généraliser quelque peu
certains d’entre eux et nous les adaptons à nos objectifs.

Le quatrième chapitre contient les démonstrations des théorèmes 0.13 et 0.14 qu’on vient d’énoncer.
Nous commençons par expliquer la conjecture de Stark elliptique dans les cas que nous traitons et nous
décrivons en détails les hypothèses, afin de simplifier la lecture. Nous allons discuter avec une attention
particulière les hypothèses C et C’, qui sont nécessaires à la formulation de cette même conjecture. Les
résultats de ce chapitre sont contenus extraits des articles [CR1] et [CR2].



xxvi INTRODUTION (FRANÇAIS)



Capitolo 1

Background material

1.1 Modular forms for Γ1(N)

Consider the Poincaré upper half plane:

H := {z ∈ C | =(z) > 0}

and the space of real analytic functions C∞(H,C). For any integer k ∈ Z we define the weight-k-action of
GL2(Q)+ on f : H → C as follows:

f |kγ(z) := det(γ)k−1(cz + d)−kf(γz). (1.1)

We say that f is:

(i) slowly increasing (or that f has moderate growth) at infinity if for any γ ∈ SL2(Z), there exist positive
numbers c, e such that |f |kγ| ≤ c(1 + y−e) as y →∞.

(ii) rapidly decreasing (or that f has rapid decay) at infinity if for any e ∈ R and γ ∈ SL2(Z), there exists
a positive c such that |f |kγ| ≤ c(1 + ye) as y →∞;

Let Γ ⊂ SL2(Z) be a finite index subgroup. The set of real analytic modular forms Man
k (Γ) (resp. cusp

forms San
k (Γ)) of weight k and level Γ is the subset of real analytic functions f ∈ C∞(H,C) having moderate

growth (resp. rapid decay) at infinity such that f |kγ = f for all γ ∈ Γ.
For a couple (f, g) ∈Man

k (Γ)×San
k (Γ), the product f(z)g(z)yk is both Γ-invariant and rapidly decreasing

at infinity. Since y−2dxdy is also Γ-invariant, we can define the Petersson scalar product on the space
San
k (Γ)×Man

k (Γ) as follows:

〈f, g〉N :=
∫

Γ\H
f(z)g(z)yk−2dxdy. (1.2)

Let N ≥ 1 be an integer and consider the standard congruence subgroups:

Γ1(N) :=
{
γ =

(
a b

c d

)
∈ SL2(Z) | a− 1 ≡ c ≡ d− 1 ≡ 0 (mod N)

}
,

Γ0(N) :=
{
γ =

(
a b

c d

)
∈ SL2(Z) | c ≡ 0 (mod N)

}
.

We are mainly interested in modular forms for Γ = Γ1(N), hence we will write Man
k (N) := Man

k (Γ1(N)),
San
k (N) := San

k (Γ1(N)).

1
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Definition 1.1. The set of modular formsMk(N) (resp. cusp forms Sk(N)) of weight k and level N is the
finite dimensional sub-vector space consisting of the holomorphic functions in Man

k (N) (resp. San
k (N)).

Let f ∈Mk(N). Since (
1 1
0 1

)
∈ Γ1(N),

we have f(z + 1) = f(z) and we can consider the Fourier expansion of f at infinity, which is given by:

f(q) =
∑
n≥0

an(f)qn, q = e2πiz,

where an(f) ∈ C, because a modular form has moderate growth at infinity. In particular:

• f ∈ Sk(N) if and only if a0(f |kγ) = 0 for all γ ∈ SL2(Z) (in particular, a0(f) = 0);

• we say that f ∈Mk(N) is normalized if a1(f) = 1;

• we define the modular forms with coefficients in some subring A of C, as the set of modular forms
whose q-expansion has coefficients in A, and we write Mk(N)A and Sk(N)A for those sets;

• we can define an action of Aut(C) on the q-expansion.

Since a modular form is determined by its q-expansion, we will often define a modular form and work with
it using its Fourier coefficients an(f). This will be very important in the rest of the dissertation.

On the space of real analytic modular forms we define the Shimura-Maass derivative operator as

δk :=
1

2πi

(
d

dz
+

k

2iy

)
: Man

k (N) −→Man
k+2(N) (1.3)

and we also consider its iterate δtk := δk+2t · · · · · δk : Man
k (N) −→ Man

k+2t(N) (impose δ0
k := 1). The

Shimura-Maass operator does not respect the spaces of modular forms: given f ∈ Mk(N), δkf does not
belong to Mk(N) in general, although it is still a real analytic modular form. For an integer 0 ≤ t ≤ k/2
we define the spaces of nearly holomorphic modular forms and cuspforms as follows:

Mnh
k (N) :=

t⊕
j=0

δjk−2jMk−2j(N), Snh
k (N) :=

t⊕
j=0

δjk−2jSk−2j(N).

This is not the most general definition, but it will suit our needs. In particular, we can define the
holomorphic projection as the map:

Πhol : Mnh
k (N)→Mk(N)

induced by the above decomposition. It clearly respects the subspace of cuspforms and, as shown in
[Hid93, §10.1], it is both SL2(Z)-equivariant under the weight-k-action and Aut(C)-equivariant for the
action defined on q-expansions.

Proposition 1.2. Suppose that f ∈ Sk(N) and g ∈Mnh
k (N). Then:

〈f, g〉N = 〈f,Πhol(g)〉N

Dimostrazione. See [Hid93, Theorem 10.2].
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1.2 Nebentype decomposition and Hecke operators

We have a short exact sequence:

1→ Γ1(N)→ Γ0(N)→ (Z/NZ)× → 1(
a b

c d

)
7→ d

which defines the action of (Z/NZ)× on Man
k (N) via the weight-k-action. For d ∈ (Z/NZ)× we call this

operator the Diamond operator and we denote it by 〈d〉. This operator induces a decomposition of the
various spaces of modular forms in χ-component, for every Dirichlet character χ : (Z/NZ)× → C×. If
denote by Man

k (N,χ) the set of elements of Man
k (N) on which 〈d〉 acts as χ(d), then we can write:

Man
k (N) =

⊕
χ

Man
k (N,χ)

When χ = 1 we recover Man
k (Γ0(N)). If f ∈ Man

k (N,χ), we say that f has nebentype character χ. The
nebentype decomposition respects:

• the subspace of real analytic cusp forms;

• the subspaces of modular forms and cusp forms;

• the subspaces of nearly holomorphic modular forms;

We can summarize the situation in the following diagram of inclusions:

Sk(N,χ) ⊂ Snh
k (N,χ) ⊂ San

K (N,χ)
∩ ∩ ∩

Mk(N,χ) ⊂ Mnh
k (N,χ) ⊂ Man

K (N,χ).
(1.4)

Given a modular form f ∈ Mk(N,χ)A we can consider the modular form f∗ obtained by applying the
complex conjugation to the coefficients, i.e.:

f∗ =
∑
n≥0

an(f)qn.

We observe that f∗ ∈Mk(N,χ)A.
If we take (f, g) ∈Man

k (N,χ)× San
k (N,χ), then f(z)g(z)yk and y−2dxdy are not only Γ1(N)-invariant

but also Γ0(N)-invariant. For this reason we consider the following normalization of the Petersson scalar
product:

〈f, g〉N :=
∫

Γ0(N)\H
f(z)g(z)yk−2dxdy. (1.5)

Notice that if N |M , then 〈f, g〉M = [Γ0(N) : Γ0(M)] · 〈f, g, 〉N . Define =(N) := [SL2(Z) : Γ0(N)], then:

〈f, g〉M =
=(M)
=(N)

〈f, g〉N . (1.6)

We now present a short exposition of the Hecke operators and we refer to [DS05, §5] and [Hid93, §5.3]
for more details. Given a prime number p we consider the double coset operator:

Γ1(N)
(

1 0
0 p

)
Γ1(N) =

{
γ

(
1 0
0 p

)
γ′ | γ, γ′ ∈ Γ1(N)

}
.
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This double coset can be written as a disjoint union:

Γ1(N)
(

1 0
0 p

)
Γ1(N) =

p−1∑
i=0

Γ1(N)
(

1 0
i p

)
∪ Γ1(N)

(
p 0
0 1

)
if p - N

Γ1(N)
(

1 0
0 p

)
Γ1(N) =

p−1∑
i=0

Γ1(N)
(

1 0
i p

)
, if p | N.

This decomposition allows us to define the Hecke operators as the double coset operator acting on the
space of modular forms via the weight k action defined in equation 1.1. We denote them by Tp when p - N
and Up when p | N and we call them, respectively, good and bad Hecke operators. For f ∈ Mk(N,χ) we
have:

an(Tp(f)) = anp(f) + χ(p)pk−1an/p(f).

where an/p(f) = 0 whenever p - n. In particular, if f is normalized we have:

a1(Tp(f)) = ap(f)

The Hecke operators commute with each other and with the Diamond operator. This allows us to define
operators Tn for all n which satisfy a1(Tn(f)) = an(f).

For a vector space V on which Tn are acting, we write h(V ) for the subset of End(V ) generated by
the Hecke operators and h(V )N for the subset generated by good Hecke operators. We use the notation
hk(A) := h(Sk(N)A) and hk(A)N , since this does not create ambiguities on the level. We have the following:

Theorem 1.3. For every subring A ⊂ C we have a perfect pairing:

hk(A)× Sk(N)A → A

( T , f ) 7→ a1(T (f))

Dimostrazione. See [Hid93, §5.3, Theorem 1].

We say that f ∈ Mk(N,χ) is a normalized eigenform if it is normalized (a1(f) = 1) and it is an
eigenform for all the Hecke operators, i.e. for hk (or, if specified, for all good Hecke operators, i.e. for
hk,N ). Normalized eigenforms have algebraic integer coefficients and we can define:

Q(f) := Q(an(f) | n ≥ 0).

This field is called the field of rationality of f . It is known to be a number field. Using theorem 1.3 we see
that every normalized eigenform f arises as a morphism of A-algebras λf : hk(A)→ A, hence it defines a
prime ideal If ⊂ hk,N (A) as follows:

If := ker(λf ) = 〈Tn − an(f) | ∀n ∈ Z≥1, (n,N) = 1〉

If f ∈ Mk(N,χ) is a normalized eigenform for all good Hecke operators, we define the f -isotypical
component of Mk(N,χ) as:

Mk(N,χ)[f ] := {g ∈Mk(N,χ) | Tpg = ap(f)g,∀p - N}.

Then Mk(N,χ)[f ] = ker If and it is the set of eigenforms g ∈ Mk(N,χ) which have the same system of
eigenvalues as f for all good Hecke operators.



1.3. OLDFORMS, NEWFORMS AND BASIS 5

1.3 Oldforms, newforms and basis

For each integer d | N and each modular form f ∈ Sk(N/d) we can consider the map:

f(q) 7→ f(qd) ∈ Sk(N)

This gives rise to a dichotomy: in Sk(N) some modular forms are linear combination of modular forms of
lower level and some others are not. To be more precise, we consider the map:

ιd : Sk(N/d)2 → Sk(N)

given by (f, g) 7→ f(q) + g(qd). Then we define:

Sk(N)old :=
∑
p|N

ιp(Sk(N/p)2)

and we denote by Sk(N)new the orthogonal complement of Sk(N)old with respect to the Petersson scalar
product. Since those spaces are stable under the action of the Hecke operators we have that:

Theorem 1.4. The spaces Sk(N)old admits an orthogonal basis of eigenforms for hk,N . The space
Sk(N)new admits an orthogonal basis of eigenforms for hk.

In particular we can fix a basis {f} of normalized eigenforms for the set Sk(N,χ)new and we have the
following decomposition:

Sk(N,χ)new =
⊕
f∈{f}

Sk(N,χ)[f ],

which is a decomposition in one-dimensional spaces, i.e. Sk(N,χ)[f ] = C · f .
For the space of oldforms we have a different situation. In fact if f is new in level M | N we have that

the space Sk(N,χ)[f ] admits a basis of normalized eigenforms. In order to describe it, we consider the
Hecke polynomial of f at a prime p defined as follows:

T 2 − ap(f)T + χ(p)pk−1.

This polynomial admits two roots that we will call αp(f) and βp(f). It is easy to check that

f(q)− βp(f)f(qp) ∈Mk(Mp,χ)

is a normalized eigenform which admits αp(f) as eigenvalue for Up. Consider a choice µ := {µp(f)}p|N/M ∈
{αp(f), βp(f)}p|N/M . Then a basis of Sk(N,χ)[f ] is determined by the set of elements of the form

fµ(q) := f(q)−
∑
p|N/M

µp(f) · f(qp), (1.7)

for all possible choices of µ. In particular, the space Mk(N,χ)[f ] has dimension 2#{p|N/M}. Given an
element g ∈Mk(N,χ)[f ], we say that f is the associated primitive newform and that M is the conductor
of g.
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1.4 Eisenstein series

Let χ : (Z/NχZ)× → C be a Dirichlet character of conductor Nχ and let Qχ denote the finite extension
of Q generated by the values of χ. Let

τ(χ) =
Nχ∑
a=1

χ(a)e
2πia
Nχ

be the Gauss sum associated with the Dirichlet character χ.
Consider an integer k such that χ(−1) = (−1)k. If either k > 2 or k ≥ 1 and χ is non-trivial, then we

define the holomorphic Eisenstein series Ẽk,χ of weight k and nebentype character χ to be the modular
form defined by:

Ẽk,χ(z) =
∑

(m,n)∈Z2\{0}

χ−1(n)
(mNz + n)k

∈Mk(Nχ, χ).

It admits a Fourier expansion, but in this form it is not normalized (a1 6= 1). We define the normalized
holomorphic Eisenstein series Ek,χ(z) of weight k and nebentype character χ as:

Ek,χ(z) =
Nk
χ(k − 1)!

2(−2πi)kτ(χ−1)
· Ẽk,χ(z). (1.8)

Proposition 1.5. Let σk−1,χ denote the function on the positive integers defined by σk−1,χ(n) :=
∑
d|n χ(d)dk−1.

Then Ek,χ is a newform of level Nχ and its q-expansion is

Ek,χ(z) :=
L(χ, 1− k)

2
+
∑
n≥1

σk−1,χ(n)qn ∈Mk(Nχ, χ)

Dimostrazione. It is a classical result, see for instance [Hid93, Prop. 5.1], [Shi76, (3.4)], or [Mia76]

Consider a multiple N of Nχ and let χ
N

denote the character mod N induced by χ. For every k ≥ 1
such that χ(−1) = (−1)k, we define the non-holomorphic Eisenstein series of weight k and level N attached
to the character χ

N
as the function on H× C given by the rule

Ẽk,χ
N

(z, s) =
∑

(m,n)∈Z2\{(0,0)}

χ
N
−1(n)

(mNz + n)k
· ys

|mNz + n|2s
. (1.9)

This series only converges for <(s) > 1− k/2, but we have the following result:

Theorem 1.6. The Eisenstein series Ẽk,χN (z, s) admits a continuation to a meromorphic function of the
variable s and satisfies a functional equation relating values at s and at 1− k − s.

Dimostrazione. See [Hid93, §9.3, Theorem 1] or [Mia76, §7.2].

For any fixed s in the region of convergence, Ẽk,χ
N

(z, s) is a real analytic modular form. For k > 2, or
k ≥ 1 but χ 6= 1, the series arising by setting s = 0 is holomorphic in z and gives rise to a modular form

Ẽk,χ
N

(z) := Ẽk,χ
N

(z, 0) ∈Mk(N,χ).

In a way similar to that of equation (1.8) we can define the normalization of Ẽk,χ
N

as follows:

Ek,χ
N

(z) :=
Nk(k − 1)!

2(2πi)kτ(χ−1)
· Ẽk,χ

N
(s) (1.10)
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Proposition 1.7. The Eisenstein series Ek,χ
N

(z) and Ek,χ(z) have the same eigenvalues for all the good
Hecke operators Tn, n - N .

Dimostrazione. It can be easily seen from [Shi76, (3.3)] that Ek,χ
N

(z) is a linear combination of Ek,χ(dz)
for d | N/Nχ, hence the result follows. This can also be seen by specializing the formula of [Mia76, Theorem
7.1.3] in our case. Notice that with respect to the latter reference, the normalization we adopt here is
non-canonical. In fact a1(Ek,χN ) 6= 1 in general, but it always lies in Qχ.

We can explicitly describe the action of the Shimura-Maass derivative operator on the Eisenstein series
with the following:

Proposition 1.8. For t < k/2 we have that Ẽk,χ
N

(z,−t) ∈Mnh
k (N,χ). In particular:

Ẽk,χ
N

(z,−t) =
(k − 2t− 1)!
(k − t− 1)!

(−4π)tδtk−2tẼk−2t,χ
N

(z). (1.11)

Dimostrazione. For any value of s, the series Ẽk,χ
N

(z, s) belongs to Man
k (N,χ) and one verifies that:

δkẼk,χ
N

(z, s) = −s+ k

4π
Ẽk+2,χ

N
(z, s− 1).

Continue by induction on t and put s = 0 to get the result.

1.5 Algebraic modular forms

For this section we follow the approach of [Kat73] as explained in [BDP13]. Let R be a ring in which
N is invertible and let A be an elliptic curve over R.

We say that a couple (A, t) is an elliptic curve with Γ1(N)-level structure if t is a closed immersion
of the scheme Z/NZ in A defined over R. This immersion gives rise to a section s : Spec(R) → A of
order N which is the image of the section 1 of Z/NZ. We write E(N) for the set of isomorphism classes
of elliptic curves with Γ1(N)-level structure, where we consider isomorphisms of elliptic curves preserving
the Γ1(N)-level structure.

We say that a triple (A/R, t, ω) is a marked elliptic curve if (A, t) is an elliptic curve with Γ1(N)-level
structure and ω is a global section of the sheaf or relative differentials Ω1

A/R over R. We write Ẽ(N) for
the set of isomorphism classes of marked elliptic curves, where the isomorphism is given by the pullback
at the level of differentials.

Define the Tate elliptic curve Tate(q) := Gm/q
Z over Z[[q]] equipped with some level structure t defined

over Q((q1/d)), for some d | N , and the canonical differential ωcan := du/u. Then the triple (Tate(q), t, ωcan)
is defined over Q((q1/d)).

Definition 1.9. An algebraic modular form of weight k and level N defined over a field F is a rule
which associates to every marked elliptic curve (A, t, ω) ∈ Ẽ(N)R defined over an F -algebra R an element
f(A, t, ω) ∈ R such that:

(1) (base change compatibility) For all F -algebra homomorphisms φ : R → R′, f((A, t, ω) ⊗ R′) =
φ(f(A, t, ω));

(2) (weight k condition) for all λ ∈ R×, f(A, t, λω) = λ−kf(A, t, ω);

(3) (q-expansion) f(Tate(q), t, ωcan) ∈ F [[q1/d]].



8 CAPITOLO 1. BACKGROUND MATERIAL

We say that f is a cusp form if f(Tate(q), t, ωcan) ∈ q1/dF [[q1/d]].

Consider now the open modular curve Y1(N) classifying the elliptic curves with Γ1(N)-level structure
and its compactification X1(N) obtained by adding the cusps. For N ≥ 3, Γ1(N) is torsion free, hence
Y1(N) is a fine moduli scheme admitting a smooth proper model over Z[1/N ], representing the functor
R 7→ E(N)R, whose set of C-points can be identified with the quotient H/Γ1(N). An algebraic modular
form defines a modular form in the classical sense by mean of the following rule: for each τ ∈ H,

f(τ) := f(C/〈1, τ〉, 1/N, 2πidz),

where z is the standard coordinate of H.
Let π : E → Y1(N) be the universal elliptic curve with level N structure over Y1(N) and ω :=

π∗ΩE/Y1(N). An algebraic modular form f gives rise to an element of H0(Y1(N), ωk) via the following
map:

ωf (A, t) := f(A, t, ω)ωk,

where (A, t) ∈ Y1(N) and ω is any generator for Ω1
E/R. Assuming that N ≥ 5, the cusps of X1(N) are

regular in the sense of [DS05, §3.2], hence the line bundle ω admits an extension to X0(N) characterized
by the property that H0(X0(N)F , ωk) = Mk(N)F .

1.6 Overconvergent modular forms and Coleman classicality re-
sult

Fix a prime number p - N and continue writing X1(N) for the rigid analytic space associated with the
curve X1(N)Qp . Take the Eisenstein series Ep−1 as a lift of the Hasse invariant and consider the ordinary
locus:

X1(N)ord := {x ∈ X1(N)(Cp) | ordpEp−1(x) = 0}

and also, for ε > 0:
X1(N)<ε := {x ∈ X1(N)(Cp) | ordpEp−1(x) < ε}.

Then for any complete subfield K ⊂ Cp we can define:

M
(p)
k (N)K := H0(X1(N)ord

K , ωk), Moc
k (N)K := lim−→

ε>0

H0(X1(N)<εK , ωk).

In particular, Moc
k (N)K ⊂ M

(p)
k (N)K . On these spaces we have an action of the Hecke operators and

Diamond operators and we can consider the bad Hecke operator U = Up and the V operator, acting on
q-expansions by the rules:

Uf(q) :=
∑
n≥0

apnq
n, V f(q) :=

∑
n≥0

anq
pn.

We also define the Serre derivative operator as follows:

d := q
d

dq
: Moc

k (N)K →Moc
k+2(N)K .

Finally, we define the p-depletion of f :

f [p] := (1− V U)f(q) =
∑
p-n

anq
n.
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that we can see as the derivative of the modular form F defined by:

F (q) :=
∑
p-n

an(f)
n

qn,

more precisely:
dF = f [p].

We call such a F the overconvergent primitive of f , it can be defined as d−1f := limt→−1 d
tf .

The operator U is completely continuous on Moc
k (N)K and it induces a slope decomposition. If f is

an eigenform, U(f) = ap(f) · f and its slope is the p-order of its eigenvalue, i.e. ordp(ap(f)). We say that
f has slope j if ordp(ap(f)) = j and that f is ordinary if ordp(ap(f)) = 0, i.e. if ap(f) is a p-adic unit.
Hida’s ordinary projector is defined as the following operator:

eord := lim
n→∞

Un!. (1.12)

This defines a Hecke equivariant projection from Moc
k (N)K to its ordinary subspace

Moc,ord
k (N)K := eordM

oc
k (N)K .

Consider now the roots α and β of the Hecke polynomial of f at p. We can order them in such a way that
ordp(α) ≤ ordp(β). We can define two p-stabilizations of f as follows:

fα(q) := f(q)− βf(qp) and fβ(q) := f(q)− αf(qp),

in particular we have that Ufα = αfα and Ufβ = βfβ . If f is ordinary, then ordp(α) = 0 and we call fα
the ordinary p-stabilization of f . For an ordinary modular form we always have an ordinary p-stabilization.
In weight k = 1 we might have 2 distinct ordinary p-stabilizations.

Theorem 1.10. For every k ≥ 2, all overconvergent modular forms of slope strictly less than k − 1 are
classical. In particular, for every f ∈ Moc,ord

k (N) there exists a modular form g ∈ Mk(N) such that f is
the ordinary p-stabilization of g.

Dimostrazione. See [Col95].

From this theorem we can identify Moc,ord
k (N) with the space Mk(Γ1(N) ∩ Γ0(p)). For a Dirichlet

character χ modulo N , the above results can be summarized in the following diagram:

Sk(Np, χ)Cp ⊂ Soc
k (N,χ) ⊂ S

(p)
k (N,χ)

∩ ∩ ∩
Mk(Np, χ)Cp ⊂ Moc

k (N,χ) ⊂ M
(p)
k (N,χ).

(1.13)

1.7 CM points and elliptic units

Let K = Q(
√
−D) be a quadratic imaginary field with ring of integers OK . For every c ∈ Z≥1 we

denote the unique order of conductor c in K by:

Oc := Z + cOK .

In particular, O1 = OK . We say that an elliptic curve A/C has complex multiplication by Oc if End(A) =
Oc. Consider the Picard group Pic(Oc) of rank one projective Oc-modules up to isomorphisms, then to
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every element a ∈ Pic(Oc) we can associate the elliptic curve C/a, which has complex multiplication by
Oc. Let us write ECM(Oc) for the set of elliptic curves having CM by Oc up to isomorphism and let:

ECM := ∪c≥1ECM(Oc).

Every elliptic curve with complex multiplication by Oc can be seen as a point j(a) := j(Aa) ∈ X(1) via the
j-invariant, hence ECM ⊂ X(1). We may write X(1)CM for the set of CM points on X(1) and, similarly,
X0(N)CM and X1(N)CM for the fiber of X(1)CM via the obvious projection maps.

We have an action of Pic(Oc) on the set ECM(Oc) defined as follows: a ∗A = A/A[a], for a ∈ Pic(Oc).
Since the action is simply transitive, if we fix A to be the elliptic curve with complex multiplication:

A := C/Oc, (1.14)

we can obtain all the other ones via the action of the Picard group, hence we can define Aa = a∗A = C/a−1.
If H is the ring class field of K of conductor c we know that Pic(Oc) ' Gal (H|K) via the reciprocity map
of global class field theory, arithmetically normalized, i.e. a prime ideal ℘ maps to the Frobenius element
σ℘. The Shimura reciprocity law tells us that:

j(Aa) = σaj(A).

Assumption 1.11. There exists a cyclic ideal N of OK of norm N i.e. such that OK/N ' Z/NZ. We
also assume that N is coprime to c

This is usually called Heegner hypothesis. The Shimura reciprocity law and the Heegner hypothesis
ensure that A is defined over H, hence j(Aa) ∈ X(1)(H) and that the fibers in X1(N) and X0(N) are
defined over H, too.

CM points on X1(N): let us consider the map X1(N)→ X(1). We can consider the fiber of j(a) in
X1(N). It is the set of couples x(a) = (Aa, ta) where ta is a Γ1(N)-level structure induced by the choice
of a section ta : Spec(H)→ A[N].

Remark 1.12. The choice of the Γ1(N)-structure ta is not unique, then the map a 7→ x(a) is not well
defined since we might have several choices for the level structure. For this reason we introduce here a
choice that will be useful in what follows. Consider x := x(Oc) = (A, t) where t is a choice of Γ1(N)-
structure. Then we have a natural map A 7→ Aa which induces a Γ1(N)-structure on Aa: this determines
a point x(a) ∈ X1(N) uniquely. The set of points:

x(a) ∈ X1(N)(H)

defined in this way is in a single orbit for the action of Pic(Oc).
CM points and marked elliptic curves: it is useful to point out another choice that will be

considered later on. Starting from a CM point x = x(Oc) ∈ X1(N) we can define a marked elliptic curve
x̃(Oc) := (A, t, ωA) by fixing a nonzero ωA ∈ Ω1

A/H . Once such a choice is made, we can define in a
coherent way x̃(a) := (Aa, ta, ωa) such that (Aa, ta) = x(a) and ωa is chosen such that ω is its pullback via
the map A→ Aa, so that x̃(a) are in a single orbit for the action of Pic(Oc).

CM points on X0(N): In a similar way to that of X1(N), we can consider X0(N) → X(1) and the
fiber of j(a) in X0(N). It is a collection of points x(a) ∈ X0(N)(H) consisting in couples (Aa, Aa[N]).
All of possible CM points of conductor c on X0(N) are obtained from x with the action of Galois group
Gal (H|K) and the Atkin-Lehner involutions as explained for instance in [Gro84]. Such a point is often
called in the literature a Heegner point. We use here the same notation as for X1(N) since in what follows
it will not create ambiguities.
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Elliptic units: As explained in [DD06, §1], we fix a choice of a modular unit U ∈ O×Y0(N), that is,
a holomorphic and nowhere vanishing function on Y0(N) which extends to a meromorphic function on
X0(N). Then the evaluation of U at CM points is an algebraic number. More precisely, if we consider
x ∈ X0(N), then the element u := U(x) satisfies the following properties:

u ∈ OH [1/N ]×

(σ − 1)(u) ∈ O×H , for all σ ∈ Gal (H|K);

In a similar way we can define u(a) and all of these units are in the same orbit via the action of Pic(Oc).
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Capitolo 2

Complex L-functions

In this chapter we introduce one of the main tools that we are going to use in our dissertation: the
L-functions.

Their story started from the Riemman zeta function, the Dirichlet L-functions and the subsequent
generalizations: zeta function of number fields, Hecke L-functions, etc. The theory of motives is a unifying
framework which allows to undercover what an L-function should be in great generality.

The general philosophy is roughly the following: to a “motive” M we can associate an L-function
L(M, s) of a complex variable s which is defined as an Euler product for each prime p. For a prime ` 6= p

one considers the `-adic realization M` of the motive and defines:

Lp(M,T ) =
(

det(1− Tσp|M
Ip
` )
)

where σp is the Frobenius element at p in GQ, and Ip is the inertia subgroup at p. The L-function associated
to M is then:

L(M, s) :=
∏
p

Lp(M,p−s)−1.

This L-function (conjecturally) admits a meromorphic continuation and a functional equation. The study
of the special values of L(M, s) outside the region of definition contains key information on the motive M
and leads to a better understanding of its properties.

We have seen in the introduction the prototypical examples which are the analytic class number formula
(where the motive is a number field) and the Birch and Swinnerton-Dyer conjecture (where the motive is
an elliptic curve defined over a number field). Our main motivation in this dissertation is the Birch and
Swinnerton-Dyer conjecture and its equivariant refinement (see Chap. 4). All these are special cases of
the (much) more general equivariant Tamagawa number conjecture (ETNC) for motives.

Although the theory of motives and motivic L-functions is a very active and deep field of study,
it will be sufficient for our purposes to introduce L-functions in terms of compatible systems of λ-adic
representations. Nevertheless, the compatible systems we are going to treat arise from motives (of an
elliptic curve, of a modular form, excetera). For this reason we will sometimes talk about the associated
motive as the object from which the compatible system that we are treating arise, without any further
explaination about the nature of motives.

Given a compatible system of λ-adic representations V , its L-function is defined as:

L(V, s) =
∏
p

Φp(p−s)

13
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where Φp(p−s) are the Euler factors of L(V, s). They are quite simple polynomials evaluated at p−s.
This L-function is a product indexed by the finite places but we can complete it with a factor at infinity
L∞(V, s), a product of gamma functions which is strictly dependent on the object M that generates the
compatible system V .

In particular we will need the L-functions associated with modular forms, Hecke characters and Artin
Representations. The other L-functions will arise from those three cases by tensoring the associated
compatible systems of λ-adic representations. Most important to our discussion will be the Rankin double
product L-function and the Garrett triple product L-function.

2.1 Compatible systems of λ-adic representations

Let G be a profinite group and let E be a topological field. A representation of G of dimension n with
coefficients in E is a continuous group homomorphism:

ρ : G→ GLn(E).

It is equivalent to ask for an n-dimensional vector space V over E on which G acts continuously and
linearly.

Given two representations ρ and ρ′ of G whose underlying vector spaces are V and V ′, and given a
group extension G ⊂ G̃, we can define new representations using linear algebra operations, for example:

• the dual representation (or contragradient representation) ρ∨ whose underlying vector space is V ∨ =
HomE(V,E);

• the direct sum representation ρ⊕ ρ′, whose underlying vector space is V ⊕ V ′;

• the tensor product representation ρ⊗ ρ′, whose underlying vector space is V ⊗ V ′;

• the induced representation from G to G̃ Ind
eG
G(ρ), associated with the vector space V ⊗E[G] E[G̃];

• the symmetric square representation Sym2(ρ) which is the subrepresentation of V ⊗V invariant under
the map (v, w) 7→ (w, v);

• the adjoint representation Ad(ρ), whose underlying vector space is the space of trace zero endomor-
phisms of V , End0(V );

• the determinant representation det ρ, whose underlying vector space is ∧nV .

We will deal with Galois representations which are representations of the absolute Galois group GK =
Gal (Ksep|K) of some field K. A Galois representation is said to be a global representation if K is a global
field and a local representation if K is a local field. A representation is said to be an Artin representation
if E ⊂ C. It is said to be an `-adic representation if E ⊂ Q`. Sometimes we call it λ-adic, if λ is the finite
place above ` induced by the inclusion.

Let now K | Qp be a finite extension and ρ : GK → GLn(E). Let I ⊂ GK be the inertia subgroup and
define:

V I = {v ∈ V | vσ = v,∀σ ∈ I}.

This is a sub vector space of V and it defines a representation ρI . We say that ρ is unramified if ρ = ρI

(i.e. if ρ(I) = {1}), otherwise we say that ρ is ramified. Denote by σp the arithmetic Frobenius of GK , i.e.
a lift of the Frobenius morphism which acts on the residue fields as x 7→ x#OK/mK .
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We define the characteristic polynomial of ρ as:

Φ(ρ)(T ) := det(1− Tρ(σ)|V I ) ∈ E[T ]

We say that ρ is integral if φ(ρ)(T ) ∈ OE [T ].
If K is a number field, we say that ρ : GK → GLn(E) is unramified at ℘ ⊂ OK if ρ|GK℘ is unramified

and that it is ramified at ℘ otherwise. We define the characteristic polynomial of the Frobenius at ℘ as:

Φ℘(ρ) := Φ(ρ|GK℘ ) ∈ E[T ]

For unramified primes, the degree of the characteristic polynomial equals the dimension of the representa-
tion while for ramified primes it does not exceed it. Assume that E is a number field and λ is a finite place
of E whose norm is ` = Nλ. A family of λ-adic representations is a collection V = {ρλ : GK → GLn(Eλ)}
indexed by the finite places λ of E (to ease the notation we drop the index).

Definition 2.1. A compatible system of λ-adic representations of K is a family of λ-adic representations
V = {ρλ} such that:

(1) there exists a finite set S of places of K, independent on `, such that each representation ρλ is
unramified outside S ∪ {L | `};

(2) the characteristic polynomials Φ℘(ρλ) are in E[T ]. Moreover they do not depend on λ, if ℘ - `.

The minimal set S for which this holds is the exceptional set of V and the primes ℘ ∈ S (resp. ℘ /∈ S) are
called bad primes (resp. good primes) of V .

Since a compatible system of λ-adic representations is essentially a collection of vector spaces, we can
consider all of the fundamental operations that we can do with vector spaces, as seen above. In particular
we can take the dual, the direct sum, the tensor product, the induced, the symmetric square, the adjoint,
etc.

Up to an extension of the scalars in E, there is an obvious notion of isomorphism of representations. It
is important to remark that the characteristic polynomials are invariant under isomorphism so that we can
consider an isomorphism class of compatible systems of λ-adic representations and we still denote them
by V .

Let V be an isomorphism class of compatible systems of λ-adic Galois representations of K, with
exceptional set S and characteristic polynomials Φ℘(T ). Then we can associate to V an L-function L(V, s)
defined as an Euler product as follows:

L(V, s) :=
∏
℘

Φ℘((N℘)−s)−1.

We will refer to the factors Φ℘((N℘−s)) as the good Euler factors of L(V, s) if ℘ /∈ S and as the bad Euler
factors of L(V, s) if ℘ ∈ S. For this L-function we have the following properties as for the Artin formalism:

L(V1 ⊕ V2, s) = L(V1, s)L(V2, s), L(IndLK V, s) = L(V, s)

In general the L-function associated with a compatible system V is only defined for <(s) � 0, but
in all of the cases of interest for us it will admit a meromorphic continuation to the complex plane. In
order to describe the functional equation one needs to consider the completed L-function which involves
the presence of the Gamma factors:

ΓR(s) :=
Γ(s/2)
πs/2

, ΓC(s) :=
2Γ(s)
(2π)s

. (2.1)
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We define the completed L-function as:

∗(V, s) = L∞(V, s)L(V, s),

where L∞(V, s) is an appropriate product of the above gamma factors. In the cases we consider, the
L-function admits a functional equation which is of the following form:

Λ(V, s) = ε(V )Λ(V ∨, w − s).

where ε(V ) is a complex number of norm one and Λ(V, s) = A(V )s/2L∗(V, s), for a well defined positive
integer A(V ). We do not describe here the general recipe for L∞(V, s) nor we will say more about ε(V )
or A(V ). Instead we will give the explicit recipe of these objects in the specific cases we will treat. Notice
that neither the functional equation nor the meromorphic continuation are known to hold in general! The
proof of these properties is often obtained from an explicit integral representation of the L-function and
this integral representation is not known to exist in general.

We now briefly discuss the main sources of examples that will appear during the rest of our dissertation.

1) The compatible system arising from an Artin representation ρ : GK → GLn(C). Since ρ has finite
image, it takes value in a number field. Hence, by localization, it gives rise to a collection of λ-adic
representations for every λ. This obviously defines a compatible system V (ρ) and we have:

L(V (ρ), s) = L(ρ, s). (2.2)

2) The compatible system arising from a character of the ideal class group of a quadratic imaginary
number field K (a finite order Hecke character for K). Such a character:

ψ : ClK → C× (2.3)

can be seen as a Galois character of GK via the reciprocity law of class field theory, which sends a
prime ideal ℘ to the arithmetic Frobenius σ℘. By abuse of notation, we still call ψ the associated
Galois character so that ψ(℘) = ψ(σ℘). In this way ψ is an Artin representation, hence it induces a
compatible system V (ψ) and:

L(V (ψ), s) = L(ψ, s) :=
∏
℘

(
1− ψ(℘)

N℘s

)−1

The exceptional set S consists of the primes dividing DK . In this case L∞(ψ, s) = ΓC(s). We will
see the more general case of the Hecke characters of quadratic imaginary field in the next section.

3) The compatible system arising from a modular form f ∈ Sk(Nf , χf ), for k ≥ 1. Recall that a
representation is said to be odd if the image of the complex conjugations of GQ has determinant
−1. The results of Shimura, Deligne and Serre-Deligne associate to any cuspidal modular form f an
irreducible, odd and 2-dimensional `-adic Galois representation of GQ such that for all primes p - N`
the characteristic polynomial at p is given by:

Φp(ρ)(T ) = T 2 − ap(f)T + χ(p)pk−1

These representations actually define a compatible system of representations V = {ρf,`} for which:

L(V (f), s) = L(f, s) (2.4)

The exceptional set S is composed by the primes dividing the level Nf . In this case, L∞(f, s) = ΓC(s)
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In the discussions which follow it is going to be important to distinguish very similar L-functions.
For this reason we introduce more notation. We will call an L-function primitive if it is the L-function
associated with a compatible system of Galois representations V . We will denote it by L(V, s). We will
call an L-function imprimitive if it is defined by the same Euler product of L(V, s) for almost all primes.
In particular if we remove the Euler factor corresponding to the set of primes above N , we will denote the
corresponding L-function by LN (V, s). Sometimes imprimitive L-functions are a little bit trickier and they
are obtained by substituting the standard bad Euler factors with some other term. Altought we will not
use in general the standard notation, it is worth to remind that those imprimitive L-functions are often
denoted by DS(V, s) (or simply D(V, s) when there is no ambiguity arising from the choice of the bad
Euler factors). In particular we can write:

LN (V, s) = EulN (V, s)L(V, s), and DS(V, s) = EulS(V, s)L(V, s)

where EulN (V, s) =
∏
℘∈M Φ℘((N℘)−s) and EulS(V, s) is an adequate elementary product of bad Euler

factor depending on the choice of DS(V, s).

2.2 Hecke characters and L-functions

Let K/Q be a number field and denote by ΣK = Hom(K, Q̄) the set of infinite places of K (remember
that we see Q̄ ⊂ C via our fixed embedding). We say that Z[ΣK ] is the set of infinity types. Any element
γ ∈ Z[ΣK ] can be written as:

γ =
∑
σ∈ΣK

κσσ.

Let c ⊂ OK be an integral ideal. Let Ic denote the group of fractional ideals of K that are coprime to c

and Jc := {(α) | α� 0, α− 1 ∈ c}, where α� 0 means that σ(α) > 0 for every real embedding σ ∈ ΣK).

Definition 2.2. A Hecke character of infinity type γ ∈ Z[ΣK ] for K is a homomorphism

ψ : Ic −→ C×, such that ψ((α)) = αγ =
∏
σ

σ(α)κσ , ∀α ∈ Jc.

The largest ideal cψ for which ψ is a Hecke character modulo cψ is called conductor of ψ.

Consider the norm characters of Q and K defned by:

N((a)) = |a|, NK = N ◦NK
Q

and the trivial character 1K for any number field K. Their infinity types are, respectively, 1,
∑
σ σ and 0.

They all have trivial conductor and their image lies in the positive real numbers.
If γ = 0 we say that ψ is a finite order character. Such a character factors through Ic/Pc, where Pc

is the set of principal ideals coprime with c. For this reason, it can be seen as a character of GK via the
reciprocity map as explained in the previous section.

Given two Hecke characters ψ1, ψ2 : Ic → C of infinity type γ, their quotient ψ = ψ1/ψ2 is an Hecke
character of infinity type 0. Hence, given an Hecke character of infinity type γ, all the other characters
with the same infinity type can be recovered multiplying by a finite order Hecke character.

Definition 2.3. Consider an ideal c ⊂ cψ. We define the L-function associated with the Hecke character
ψ to be defined by the Dirichlet series:

Lc(ψ, s) =
∑

a⊂OK
(a,c)=1

ψ(a)
NK(a)s

=
∏

(℘,c)=1

(
1− ψ(℘)

NK(℘)s
)−1

.
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In particular, L(ψ, s) := Lcψ (ψ, s) is the primitive L-function associated with ψ.

It is a classical result due to Hecke that the L-function Lc(ψ, s) associated with the Hecke character ψ
admits a meromorphic continuation to C and a functional equation relating values at s and 1 − s. This
result can be found in [Lan70, XIII and XIV] proved both in the classical way and by means of Tate’s
argument (see also Tate’s thesis, [CF67, XV]). From the definitions it is easy to verify that for any k ∈ Z
we have

L(ψ, s) = L(ψNk
K , s+ k). (2.5)

There exists a number w(ψ) called weight of ψ such that κσ + κσ̄ = w(ψ), for all σ. We define the
central character of ψ, denoted by εψ, to be an Hecke character of Q (which can be seen as a Dirichlet
character) such that:

ψ|Q = εψN
w(ψ)
K .

We now restrict our attention to the case where K = Q(
√
−D) is an imaginary quadratic field of

discriminant −D. For this, we fix an embedding σ : K → C so that the only other complex embedding
is given by σ̄. In this way, we simply write α instead of σ(α). In particular, a Hecke character ψ of K of
infinity type κ1σ + κ2σ̄ is given on Jc by ψ((α)) = ακ1 ᾱκ1 . Thanks to our choice of σ : K → C we will
write (κ1, κ2) for the infinity type of such a character.

For any Hecke character ψ of infinity type (κ1, κ2) define ψ′(a) = ψ(a), where x denotes complex
conjugation. We say that ψ is self-dual (or anticyclotomic) if ψ = ψ′. This forces κ2 = −κ1 so that an
anticyclotomic character has infinity type (κ,−κ).

The following lemma is well known.

Lemma 2.4. Let ψ be a finite order Hecke character of conductor c. The following are equivalent:

1. ψ is self-dual;

2. The central character of ψ is trivial;

3. ψ is a ring class character of Gal (Hc|K), where Hc is the ring class field associated with the order
Oc and c is a positive generator of cψ.

Dimostrazione. It is a representation-theoretical restatement of [Cox89, Theorem 9.18].

Given a Hecke character of K of infinity type (κ − 1, 0) (or (0, κ − 1), we can associate to it a theta
series as follows: define the quantities

an(ψ) =
∑

a∈Incψ

ψ(a),

where Incψ is the set of the invertible ideals in Icψ with norm n. Define also a0(1) = hK/wK and a0(ψ) = 0
otherwise. As shown in [Zag08] or [Kan12], the q-expansion

θψ :=
∑
n≥0

an(ψ)qn =
∑
n≥0

an(θψ)qn ∈Mκ(DKN
K
Q (cψ), χKεψ) (2.6)

defines a normalized newform of weight κ, levelDKN
K
Q (cψ) and nebentype χKεψ. Moreover θψ is Eisenstein

if and only if ψ = ψ′; otherwise θψ is a cusp form.
Since θψ is a modular form we can associate to it the L-function

L(θψ, s) :=
∑
n≥1

an(θψ)
ns

.
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From the definitions it is easy to see that L(θψ, s) = L(ψ, s). In fact the compatible systems IndQ
K(ψ)

and V (θψ) are the same. We will consider the completed L-function L∗(ψ, s) = L∞(ψ, s)L(ψ, s), where
L∞(ψ, s) = ΓC(s).

2.3 Double product L-function and Rankin’s method

2.3.1 Classical Rankin’s L-function

Let ` > k > 0 and consider

g =
∑
n≥1

an(g)qn ∈ S`(N,χg) and f =
∑
n≥1

an(f)qn ∈Mk(N,χf )

We do not assume g and f to be newforms, but we do assume them to be eigenforms for all good and bad
Hecke operators. Set χ := (χgχf )−1 and let g∗ =

∑
n≥1 ān(g)qn ∈ S`(N,χ−1

g ) denote the modular form
whose Fourier coefficients are the complex conjugates of those of g. We have that ap(g∗) = ap(g ⊗ χg) for
almost all p.

For a rational prime q we let (αq(g`), βq(g`)) denote the pair of roots of the Hecke polynomial:

T 2 − aq(g)T + χg,N (q)q`−1

that we label in such a way that ordq(αq(g)) ≤ ordq(βq(g)). Note that (αq(g), βq(g)) = (aq(g), 0) when
q | N . If the weight is ` = 1 and q - N then both αq(g) and βq(g) are q-units. In that case we just choose
an arbitrary ordering of this pair. Adopt similar notations for f .

The Rankin L-function of the convolution of g and f is defined as the Euler product

L(g ⊗ f, s) =
∏
q

L(q)(g ⊗ f, s), (2.7)

where q ranges over all prime numbers and

L(q)(g ⊗ f, s) =(1− αq(g)αq(f)q−s)−1(1− αq(g)βq(f)q−s)−1

× (1− βq(g)αq(f)q−s)−1(1− βq(g)βq(f)q−s)−1.

Recall that our normalization of the Petersson scalar product on the space of real-analytic modular
forms San

` (N,χ)×Man
` (N,χ) is given by equation (1.5):

〈φ1, φ2〉`,N :=
∫

Γ0(N)\H
φ1(z)φ2(z)y`

dxdy

y2
. (2.8)

Proposition 2.5 (Shimura). For all s ∈ C with <(s) >> 0 we have:

L(g ⊗ f, s) =
1
2

(4π)s

Γ(s)
〈g∗(z), Ẽ`−k,χ

N
(z, s− `+ 1) · f(z)〉`,N (2.9)

Dimostrazione. See for instance [Hid93, p. 317, (1)] or [Shi76, (2.4)].

This proposition and the functional equation for the Eisenstein series (theorem 1.6) yield the analytic
continuation and the functional equation for the L(f ⊗ g, s).

Now we want to replace Ẽk−`,χN with a rational modular form having coefficients in Qχ. To do this
we essentially follow the computation of [BDR15]. Choose integers m, t such that

` = k +m+ 2t and set j = (`+ k +m− 2)/2 = `− t− 1.
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For m ≥ 1 and t ≥ 0, evaluating equation (2.9) at s = j and using equations (1.11) and (1.10) one finds
that

fRan(`, k,m) · L(g ⊗ f, j) = 〈g∗(z), δtmEm,χN (z) · f(z)〉`,N , (2.10)

where

fRan(`, k,m) =
(−1)t(m+ t− 1)!(j − 1)!(iN)m

2`−1(2π)`+m−1 · τ(χ−1)
. (2.11)

One could consider the completed L-function L∗(f ⊗ g, s) = L∞(f ⊗ g, s)L(f ⊗ g, s), where:

L∞(f ⊗ g, s) = ΓC(s)ΓC(s− k + 1).

Since
L∞(f ⊗ g, j) =

4(m+ t− 1)!(j − 1)!
(2π)`+m−1

,

we could restate equation (2.10) in the following manner:

(−1)t(iN)m

2`+1τ(χ−1)
L∗(f ⊗ g, j) = 〈g∗(z), δtmEm,χN (z) · f(z)〉`,N . (2.12)

Remark 2.6. The L-function above is actually very close to the L-function associated with the compatible
system of Galois representations given by:

V (f, g) := V (f)⊗ V (g).

Since the eigenvalues of the Frobenius at p are exactly

{αp(f)αp(g), αp(f)βp(g), βp(f)αp(g), βp(f)βp(g) },

the good Euler factors of L(V (f, g), s) coincide to those of L(f⊗g, s). Then L(f⊗g, s) is an imprimitive L-
function associated to V (f, g). This means that the behaviors of L(f⊗g, s) and L(V (f, g), s) are essentially
the same, but there might be a discrepancy of bad Euler factors, so that:

L(f ⊗ g, s) = EulN (f, g, s)L(Vp(f, g), s)

where EulN (f, g, s) is a finite product of Euler factors. The Euler factor can be trivial, for instance in the
case when g is a theta series defined by an Hecke character of an imaginary quadratic field.

2.3.2 The Gross-Zagier formula

For more details we suggest to have a look at [Dar04]. Let us now consider an elliptic curve E defined
over Q of conductor N and a quadratic imaginary field K = Q(

√
−D). Consider the following Heegner

hypothesis:

Assumption 2.7 (HH). There exists a cyclic ideal N ∈ Oc of order N , i.e. Oc/N ' Z/NZ.

As we have seen in section 1.7, this implies the existence of a point x ∈ X0(N) arising from an elliptic
curve with complex multiplication by Oc. We fix once and for all a choice of this point.

The theorem of modularity ensures a parametrization π : X0(N) → E defined over Q as well as the
existence of a modular form f ∈ S2(N,1) such that:

L(f, s) = L(E, s).
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Take a finite order anticyclotomic Hecke character ψ. By theorem 2.4 it is a character of Gal (H|K) for
H ring class field of conductor c associated with the order Oc of conductor c ∈ Z≥1. Write E(H)C :=
E(H)⊗ C, define P := π(x) and consider the point:

Pψ :=
∑

σ∈Gal (H|K)

ψ−1(σ)Pσ ∈ E(H)ψC , (2.13)

where:
E(H)ψC := {P ∈ E(H)C | Pσ = ψ(σ)P}.

Consider also the L-function:
L(E/K,ψ, s) := L(V (f)⊗ V (ψ), s),

which coincides with L(f ⊗ θψ, s) under our assumption (HH). The Rankin method gives the analytic
continuation and the functional equation. The Heegner hypothesis forces the L-function to have odd order
at s = 1 and the theorem of Gross-Zagier guarantees that:

L′(E/K,ψ, 1) .= 〈Pψ, Pψ〉NT,

where the dotted equal implies the presence of an unspecified non-zero constant and 〈−,−〉NT is the
Néron-Tate height pairing.

Theorem 2.8. If ords=1L(E,ψ, s) = 1, then dimC E(H)ψC = 1 and Pψ is a generator.

Dimostrazione. See the main theorem of [BD90].

2.4 Petersson product and L-functions: comparison of various
formulae

A classical result due to Petersson (see [Pet49, Satz 6]) relates the special value of L-functions to the
Petersson inner product. We have already seen such a result in proposition 2.9. Following the article
[Shi76] we want to derive a formula for the Petersson product in the specific case of theta series associated
with Hecke characters ψ of imaginary quadratic fields and integer conductor c. More specifically, if ψ has
infinity type (`− 1, 0) (or (0, `− 1)), we have:

〈θψ, θψ〉
.= L(ψ2, `),

where the dotted equal means that we hide a constant. In this section we want to explicitly write down
the constant in terms of the fundamental invariants of the quadratic order Oc = Z + cOK . This result can
be derived directly from [Hid81, Theorem 5.1], but we prefer to give a direct argument here which only
relies on the result of Petersson.

For this, given two elements f ∈ Sk(N,χf ) and g ∈ M`(N,χg) we can consider their convolution
L-function D(g, f, s) defined by:

D(f, g, s) :=
∑
n≥1

an(f)an(g)
ns

whose Euler product is given by factors of the form:

D(p)(f, g, s) =
(

1− αp(f)αp(g)βp(f)βp(g)
p2s

)
(2.14)

×
(

1− αp(f)αp(g)
ps

)−1(
1− βp(f)αp(g)

ps

)−1(
1− αp(f)βp(g)

ps

)−1(
1− βp(f)βp(g)

ps

)−1

.
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With our notation χ = (χgχf )−1 it is easy to check that:

L(f ⊗ g, s) = LN (χ−1, 2s− k − `+ 2) ·D(f, g, s),

where LN (χ, s) indicates the Dirichlet L-functions with factors at p | N removed. We have already seen in
proposition 2.9 that we have a relation between L-functions and Petersson product of real analytic modular
forms. The equation (2.5) of [Shi76] can be derived from the above result by computing the residue at
k = ` and it states that:

Ress=kD(f, g, s) =
3

π=(N)
(4π)`

(`− 1)!
〈f∗, g〉,

where =(N) = [SL2(Z) : Γ0(N)] is the index of Γ0(N) inside SL2(Z). The factor 3/(π=(N)) is not present
in Shimura’s paper because he adopts a different convention for the normalization of the Petersson product.
If we take f = g∗ =

∑
an(g)qn to be the modular form obtained via the complex conjugation of the Fourier

coefficients of g, then we find:

Ress=kD(g∗, g, s) =
3

π=(N)
(4π)`

(`− 1)!
〈g, g〉. (2.15)

Notice that in [Shi76, (2.5)] the complex conjugation doesn’t appear. That is a misprint, since the formula
is derived from [Shi76, (2.3)], and it was already noticed by Hida in [Hid81, §5].

We introduce the symmetric square L-function associated with the modular form g. We define it by
the following Euler product:

L(Sym2(g), s) =
∏
p

(
1− αp(g)2

ps

)−1(
1− αp(g)βp(g)

ps

)−1(
1− βp(g)2

ps

)−1

. (2.16)

The result in [Hid81, §5] is expressed in terms of L(Sym2(g) ⊗ χ−1
g , s) which can also be seen as an

imprimitive adjoint L-function.

Lemma 2.9. If g = g∗ we have that:

〈g, g〉 =
=(N)π

3
· (`− 1)!

(4π)`
· LN (χ, 1)
LN (χ2, 2)

· Ress=`L(Sym2(g), s)

Dimostrazione. Starting from equation (2.14), if we put f = g we find:

D(g, g, s) =
(

1− αp(g)2βp(g)2

p2s

)(
1− αp(g)2

ps

)−1(
1− αp(f)βp(g)

ps

)−2(
1− βp(g)2

ps

)−1

. (2.17)

Using the fact that αp(g)βp(g) = χ(p)p`−1 and working on the Euler products one can easily derive the
following decomposition of L-function:

LN (χ2, 2s− 2`+ 2)×D(g, g, s) = L(Sym2(g), s)× LN (χ
N
, s− `+ 1). (2.18)

We conclude by taking residues and using formula (2.15).

We now specialize the discussion to the case of a theta series of an imaginary quadratic field associated
with an Hecke character of integral conductor c and infinity type (`− 1, 0).

Lemma 2.10. Consider g = θψ ∈ S`(Dc2, χK), where ψ is a Hecke character of an imaginary quadratic
field K = Q(

√
−D) of conductor c ∈ Z and infinity type (`− 1, 0), for ` > 1. Then we have the following

decomposition of L-functions:

L(Sym2(g), s) = L(ψ2, s) · ζDc2(s− `+ 1)
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Dimostrazione. Remember that αp(g)βp(g) = χK(p)p`−1. To prove the decomposition, we rearrange the
Euler factors in four categories and we write:

• p = ℘2, for those primes which ramifies, p | D and do not divide the conductor c. For these primes,
ψ(p) = ψ2(℘) = αp(g)2 = p`−1 (see [Hid81, (5.10a)];

• p = ℘℘̄, for those primes which split in K and do not divide c;

• p = ℘ for those primes which are inert in K and do not divide c. For these primes we have
αp(g)2 = βp(g)2 = p`−1 and ψ(p) = p`−1;

• p | c for the primes dividing the conductor of ψ, for which αp(g) = βp(g) = 0.

Then we have:

L(Sym2(g), s) =
∏
p=℘2

(
1− αp(g)2

ps

)−1

×
∏
p=℘℘̄

(
1− αp(g)2

ps

)−1(
1− βp(g)2

ps

)−1(
1− p`−1

ps

)−1

×
∏
p=℘

(
1− p`−1

ps

)−2(
1 +

p`−1

ps

)−1

and

L(ψ2, s) =
∏
p=℘2

(
1− ψ2(p)

ps

)−1

×
∏
p=℘℘̄

(
1− ψ2(℘)

ps

)−1(
1− ψ2(℘̄)

ps

)−1

×
∏
p=℘

(
1− p`−1

ps

)−1(
1 +

p`−1

ps

)−1

.

An easy comparison of the factors shows that the discrepancy is exactly:∏
p-Dc2

(1− p`−1−s) = ζDc2(s− `+ 1).

Theorem 2.11. Consider the theta series θψ ∈ Sk(Dc2, χK) as in the previous lemma and assume that
(D, c) = 1. Then we have:

〈θψ, θψ〉 = aPet(`) · fPet(`) · L(ψ2, `), (2.19)

where:

aPet(`) =
(`− 1)!
π`

and fPet(`) =
hc
√
Dc2

ωc
· 22−2`.

Here hc = #Pic(Oc) and ωc is the number of roots of unity of Oc = Z + cOK .
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Dimostrazione. Thanks to lemma 2.10 we have that:

Ress=`L(Sym2(g), s) = L(ψ2, `)
∏
p|Dc2

(
1− 1

p

)
. (2.20)

Since θψ has complex multiplication by χK , i.e. ap(g) = ap(g ⊗ χK) for all p - Dc2, we have that g = g∗.
Hence we can apply lemma 2.9 that, with equation (2.20), gives us:

〈θψ, θψ〉 =
=(Dc2)π

3
· (`− 1)!

(4π)`
· LDc

2(χK , 1)
ζDc2(2)

∏
p|Dc2

(
1− 1

p

)
L(ψ2, k).

Combining the Dirichlet class number formula with the classical formula:

hc =
ωc
ωK

hkc
∏
p|c

(
1− χK(p)

p

)

we can deduce that LN (χK , 1) = 2πhc/ωc
√
Dc2. Since moreover ζN (2) = π2

6

∏
p|Dc2(1− 1/p2) we find:

〈θψ, θψ〉 =
=(Dc2)π

3
· (`− 1)!

(4π)`
· 12πhc

√
Dc2

ωcπ2Dc2
∏
p|Dc2

(
1 + 1

p

)L(ψ2, `).

We get the result noticing that =(N) = N
∏
p|N (1 + 1/p).

The argument given above is in fact slightly different to that of [Hid81, §5]. Hida uses the L-function
L(Sym2(g)⊗ χK , s) so that the same result reads as follows:

〈θψ, θψ〉 =
(`− 1)!
22`−2π`

· hc
√
Dc2

ωc
· D

φ(D)
· L(ψ2χK , `), (2.21)

where φ is the Euler function. Since D/φ(D) =
∏
p|D(1 − 1/p)−1, it coincides with the bad factors of

L(ψ2, `) hence it is equivalent to our result.
For a general theta function one can also find a closed formula, but it involves special values of Dirichlet

L-function that do not enjoy a straightforward interpretation in terms of the above invariants. Hence, for
a more general theta series we can always write:

〈θψ, θψ〉 = aPet(`) · fPet(`) · L(ψ2χg, `), (2.22)

where aPet(`) = (`−1)!
π`

and fPet(`) = Aψ · 22−2`, for a factor Aψ which is independent on `.
We want to conclude the section by recalling the theorem of Hida that holds for any modular form:

Theorem 2.12. Let g ∈ S`(N,χ) be a normalized newform, then:

L(Sym2(g)⊗ χ, `) =
22`π`+1

(`− 1)!
·Ag · 〈g, g〉

where Ag = (φ(N))/(NχN · φ(N/Nχ)) (here φ is the Euler phi).

Dimostrazione. See [Hid81, Theorem 5.1]. Pay attention to the different normalization of the Petersson
product.
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We might aswell restate the above theorems using the completed L-function instead. It is obtained by
adding L∞(Sym2(g), s) = ΓR(s− `+ 1)ΓC(s) and L∞(ψ2, s) = ΓC(s), so that:

L∗(Sym2(g)⊗ χ, `) = 2`+1Ag〈g, g〉 (2.23)

L∗(ψ2, `) =
2`−1ωc

hc
√
Dc2
〈θψ, θψ〉. (2.24)

Sometimes in the literature, the result of Hida is described using the adjoint L-function associated with
g. In particular, since:

Ad(g) ' Sym2(g)⊗ χχ1−`
cyc

we have that:
L(Ad(g), s) = L(Sym2(g)⊗ χ, s+ `− 1),

hence the formula can be written as:

L∗(Ad(g), 1) = 2`+1Ag〈g, g〉. (2.25)

2.5 Triple product L-function and Garrett’s method

Let us consider three normalized and primitive cuspidal eigenforms

f =
∑
n≥1

an(f)qn ∈ Sk(N,χf ), g =
∑
n≥1

an(g)qn ∈ S`(N,χg) and h =
∑
n≥1

an(h)qn ∈ Sm(Nh, χh)

of weights k, `,m ≥ 2 such that χgχfχh = 1. Let N := lcm(Nf , Ng, Nh) and let Qfgh := QfQgQh be the
field generated by the Fourier coefficients of the three modular forms.

We can consider the compatible system of Galois representations associated with the tensor product of
the three representations of f , g and h, i.e.:

Vp(f, g, h) = Vp(f)⊗ Vp(g)⊗ Vp(h).

Definition 2.13 (Garrett-Rankin triple product). We define the Garrett-Rankin triple product L-function
to be the L-function associated with the compatible system of Galois representations Vp(f, g, h) and we
denote it by L(f ⊗ g ⊗ h, s).

Remark 2.14. Notice that we consider here the primitive L-function associated with V (f, g, h). In parti-
cular, the Euler factors at q - N are given by the degree-8 polynomial:

L(q)(g ⊗ f, s) =(1− αq(g)αq(f)αq(h)T )−1(1− αq(g)βq(f)αq(h)T )−1

× (1− βq(g)αq(f)αq(h)T )−1(1− βq(g)βq(f)αq(h)T )−1

× (1− αq(g)αq(f)βq(h)T )−1(1− αq(g)βq(f)βq(h)T )−1

× (1− βq(g)αq(f)βq(h)T )−1(1− βq(g)βq(f)βq(h)T )−1

evaluated at T = q−s. On the contrary, if q | N the naive Euler factors at q defined by the above formula
do not need to coincide with those of the L-function we are considering. For a precise recipe of the bad
Euler factors, see [PSR87].
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The result of Garrett (see [PSR87]) ensures that the L-function L(f ⊗ g ⊗ h, s), completed with the
adequate factor at infinity L∞(f ⊗ g ⊗ h), admits a holomorphic continuation and functional equation of
the following type:

Λ(f ⊗ g ⊗ h, s) = ε(f, g, h) · Λ(f ⊗ g ⊗ h, k + `+m− 2− s)

The study of the global sign ε(f, g, h) of the functional equation is always an important part in the
study of the L-function and its properties. In our specific case it gives us information about the vanishing
of the function L(f ⊗ g ⊗ h, s) at the central point:

c =
k + `+m− 2

2
.

The global sign for the functional equation of L(f ⊗ g ⊗ h, s) can be decomposed as a product of local
signs:

ε(f, g, h) =
∏
q|N∞

εq(f, g, h).

The triple (k, `,m) is said to be unbalanced if there is a dominant weight, i.e. if k ≥ `+m (resp. ` ≥ k+m,
resp. m ≥ k + `). In the case when none of the weights is dominant, we say that the triple (k, `,m) is
balanced. In [Pra90] it is proven that

ε∞(f, g, h) =

{
−1, if (k, `,m) is balanced;

+1, if (k, `,m) is unbalanced.

From now on we will assume that the local signs εv(f, g, h) are all equal to +1. In particular we shall
assume that the triple of weights (k, `,m) is unbalanced and that the dominant weight is `, so that:

L∞(f ⊗ g ⊗ h, s) = ΓC(s)ΓC(s− k + 1)ΓC(s−m+ 1)ΓC(s+ 2− k −m).

This implies of course that the global sign is +1 so that the order of vanishing at s = c must be even
thanks to the functional equation.

Notice that the condition χfχgχh = 1 implies that k + `+m must be even, hence we can write:

` = k +m+ 2t, t ≥ 0.

We define the trilinear period associated to the triple (f̆ , ğ, h̆) ∈Mk(N,χf )[f ]×M`(N,χg)[g]×Mm(N,χh)[h]
as follows:

I(f̆ , ğ, h̆) := 〈ğ∗, δtkf̆ · h̆〉N ,

The main results of Ichino , Watson and Woodbury says that there exists a choice of test vector (f̆ , ğ, h̆)
such that:

|I(f̆ , ğ, h̆)|2

〈f, f〉〈g, g〉〈h, h〉
= C(f, g, h) · L∗(f ⊗ g ⊗ h, c)

L∗(Ad(f), 1)L∗(Ad(g), 1)L∗(Ad(h), 1)
(2.26)

where:
C(f, g, h) = CPet ·

∏
v|N∞

Cv(f̆ , ğ, h̆) ∈ Q×.

In fact the result of Ichino (cf. [Ich08]) guarantees the above equality for all of the possible choices of test
vectors while the refinements of Watson and Woodbury (see [Wat02] and [Woo1]) assure the rationality
and non-triviality of the local factor involved in the product. Here CPet is an absolute constant only
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depending on the choice of the normalization of the Petersson product while the Cv(f̆ , ğ, h̆) are encoding
data on the admissible representations of GL2(Qv) and on the local components at v of f̆ , ğ and h̆. In
particular, the constant is independent on the weights.

From this discussion we can derive the following:

Theorem 2.15 (Harris-Kudla, Ichino, Watson). For an unbalanced triple of modular forms (f, g, h) such
that ` = k +m+ 2t, t ≥ 0, there exists a triple of modular forms:

(f̆ , ğ, h̆) ∈Mk(N,χf )[f ]×M`(N,χg)[g]×Mm(N,χh)[h]

such that
fGar(k, `,m) · L(f ⊗ g ⊗ h, c) = |I(f̆ , ğ, h̆)|2

where
fGar(k, `,m) = (c− 1)!(c− k)!(c−m)!(c− k −m+ 1)!π−2` · 21−3`−k−mCGar

and with CGar = C(f̆ , ğ, h̆)/(AfAgAh) which is independent on the triple of weights (k, `,m);

Dimostrazione. Starting from equation (2.26), substitute the adjoint L-function using equation (2.25) and
make explicit the factor at infinity of L∗(f ⊗ g ⊗ h, c).
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Capitolo 3

p-adic interpolation of classical
L-functions

The basic setting for the p-adic interpolation of a complex L-function L(M, s) is the following:

(1) one considers a set of special values for s ∈ U ⊂ C, which is large enough, and can see U as a subspace
of a p-adically complete space Û ,

(2) the complex values L(V, s) for s ∈ U can be naturally seen as values in a p-adic Banach algebra A,

(3) those values enjoy good p-adic properties of continuity (or analyticity),

then one can create a p-adic L-function Lp(M) : Û → A via interpolation. This function satisfies an
interpolation and defining property of the form:

Lp(M)(s) = c(M, s) · L(M, s), ∀s ∈ U (3.1)

where c(M, s) is a fudge factor that we discuss in more detail below. This new L-function is supposed to
encode data about the motive M which is the object of our study, even though it is not defined directly
in terms of M . In particular, evaluating the function Lp(M) at a special point outside the region of
interpolation U , the resulting value does not correspond anymore to a complex counterpart and might
reveal new information about M . It is important to stress that in some cases Lp(M) strongly depends on
the region of interpolation that one choses. Therefore, different choices for U could lead to the construction
of very different p-adic L-functions arising from the same complex L-function.

There is another way to interpret this interpolation by p-adically varying the motive M , instead of the
variable s. More precisely:

(1’) fix a variable s, for instance s = 0, and p-adically deform the motive i.e. consider a family M :=
{Mk}k indexed by a p-adically continuous weight variable k ∈ W such that Mk0 = M for some
k0 ∈ W,

(2’) prove that there exists a dense subset Wcl ⊂ W containing k0 such that the family of complex
L-values L(Mk, 0) lie in a p-adic Banach algebra A,

(3’) show that those values enjoy good p-adic interpolation properties.

29
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The result of this process is a p-adic L-function Lp(M) : W → A which interpolates the motive in the
following sense:

Lp(M)(k) = c(Mk) · L(Mk, 0), ∀k ∈ Wcl. (3.2)

In particular, Lp(M)(k0) = c(M) ·L(M, 0). This kind of L-functions can be interpreted as a sort of p-adic
analogous of the derivative of the classical L-function.

In the formulae (3.1) and (3.2) we did not explain in detail the fudge factors which are fundamental for
the creation of the p-adic L-function. Some of those might come from the fact that one uses the completed
or the uncompleted classical L-function, some might arise from a non-standard normalization of the L-
function and some other are needed to actually make the p-adic interpolation possible. The latter are the
most important in order to be able to realize the points (2), (2’) and (3), (3’) of the above discussion. In
particular:

(2),(2’) In order to perform a p-adic interpolation in an algebraic way one needs to remove the transcenden-
tal part of the complex L-function, without removing too much information with it. The periods
are the canonical transcendental numbers generating an algebraic value out of the (a priori trans-
cendental) special value L(Mk, 0) in such a way that the resulting function still contains interesting
data (we might pick the function itself as period, but the resulting p-adic analogue would not be so
interesting...).

Deligne defines a critical motive M as a motive such that L(M, 0) is a critical value, i.e. such that
the factor at infinity L∞(M, 0) is a non-zero number. For a critical motive, Deligne conjectures that
the motivic period Per(M) is the good candidate to canonically algebrize the special value L(M, 0),
so that:

Per(M) · L(M, 0) ∈ Q̄.

(3),(3’) The Euler-like factors arise because in the Euler product definition of L there is Φp(p−s), the Euler
factor at p. Since the function k 7→ pk does not interpolate p-adically, we need to remove it in order
to ensure continuity and perform the p-adic interpolation.

Putting everything together, the general (imprecise) form of a p-adic interpolation formula is the
following:

Lp(M)(k) = e(Mk) · a(k) · f(k) · Per(Mk) · L(Mk, 0), ∀k ∈ Wcl (3.3)

and this formula uniquely determines the p-adic L-function Lp(M). Here

• e(Mk) denotes the Euler factors at p that we remove to perform the interpolation. Sometimes we
will simply write e(k) to lighten the notation, when no confusion is created.

• a(k) are the terms which do not behave nicely p-adically arising from the usage of the complete
L-function. In particular it will contain powers of π and factorials depending on the weight variable;

• f(k) are factors which contain the information about the normalization taken and they behave nicely
p-adically (possibly after a wise choice of p);

Apart from the general philosophy, in practice one first needs to construct those p-adic L-functions and
then prove the interpolation property. In this sense, a p-adic L-function is a power series in Zp[[T ]], which
can be seen as the Amice transform of a bounded p-adic measure. It is not always an easy goal to achieve
the construction and we will not enter in the details of these constructions, although we might give some
brief explanations. In this chapter we want to introduce the p-adic L-functions that we need, explaining
in details the domain, the region of interpolation and stressing the importance of the constants that we
did not show here, expecially the periods. The outcome will be a list of p-adic L-function determined by
their respective interpolation properties.
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3.1 Complex multiplication and p-adic L-functions

Let us fix a quadratic imaginary field K = Q(
√
−D). In this section we will introduce:

• Katz two variable p-adic L-function;

• Bertolini-Darmon-Prasanna p-adic L-function (BDP p-adic L-function from now on).

They interpolate special values of complex L-functions along an appropriate subspace of ΣK , the set of
Hecke characters of K. In order to make the p-adic interpolation meaningful we need to endow the space
ΣK with a p-adic topology that we describe briefly.

We first recall the adelic interpretation of the Hecke characters. A Hecke character ψ : Ic → C× of
infinity type (κ1, κ2) can be seen as a character ψA : A×K → C× on the idèle group of K, which is trivial
on K×. The action of the character is described by:

ψA(λ · xf · x∞) := ψA(xf ) · x−κ1
∞ x−κ2

∞ , ∀(λ, xf , x∞) ∈ K× × K̂ ×K×∞

where K∞ = K⊗R and K̂× are the finite idèle. In particular, the data of ψA is equivalent to the collection
of local characters {ψA,v}v, for all places v of K. For ψ ∈ ΣK , the correspondence ψ 7→ ψA is determined
on ideals a coprime to the conductor c by the following formula:

ψ(a) =
∏
v|a

ψA,v(πv)v(a),

where we denote by v both the place and the corresponding prime ideal by abuse of notation. In particular,
since ψA(α) = 1 for every α ∈ Jc (in fact for every α ∈ K×), we recover that ψ((α)) = ακ1ακ2 .

From now on we will denote by ψ both the classical Hecke character and its idèlic interpretation. Let
us assume that ψ ∈ ΣK . From our definitions it follows that:

• the image of ψ is an algebraic number;

• on the set A(p)
K of idèles prime to p, the image of the character lies in Zp.

This implies that we can embed ΣK inside the set of continuous functions C(A(p)
K ,Zp). The latter is natu-

rally endowed with the compact open topology which is equivalent to the topology of uniform convergence
on Zp. Then we denote by Σ̂K the completion of ΣK with respect to this topology.

In the definition of both Katz and BDP p-adic L-functions, the space of interpolation is some set
Σ0 ⊂ ΣK of characters whose image is bounded, i.e. there exists a finite extension F of Qp, with ring of
integers O, such that the image of any ψ ∈ Σ0 lies in O.

3.1.1 Periods and complex multiplication

Periods need some more explanations than the other constants described in equation (3.3). Hence we
devote this subsection to the introduction of:

• the complex period Ω(A) and the p-adic period Ωp(A) associated to an elliptic curve A with complex
multiplication by OK ;

• the complex period Ω(ψ) and the p-adic period Ωp(ψ) associated to an Hecke character ψ of infinity
type (κ1, κ2).
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Since the theory of complex multiplication ensures us that every CM elliptic curve defines an Hecke
character of infinity type (1, 0), it is not surprising that we have some relations among those periods.

The Ω(ψ) are the motivic periods associated to an Hecke character ψ of a quadratic imaginary field.
While we do not treat the definition here, which is essentially due to Deligne and it can be found in [Sch88],
we focus on their properties. In particular, the following proposition uncovers their importance:

Proposition 3.1. If ψ is a Hecke character of K of infinity type (κ1, κ2), κ1 > κ2 and m critical for
L(ψ−1, s). Then the ratio:

L(ψ−1,m)
(2πi)mΩ(ψ′)

lies in the field Qψ and the assignement ψ 7→ L(ψ−1,m)
(2πi)mΩ(ψ′) is GK-equivariant.

Dimostrazione. See [GS81] and [Bla86].

In other terms, the motivic periods Ω(ψ) describe in the best way the transcendental part of the Hecke
L-function. The reason for which we introduce at the same time the periods associated with A is the
following proposition which explains the link between them:

Proposition 3.2. If ψ is a Hecke character of K of infinity type (κ1, κ2), then the ratio:

Ω(ψ′)
(2πi)κ2Ω(A)κ1−κ2

is algebraic.

Dimostrazione. See [Sch88, II.1.8].

Moreover since we define

Ωp(ψ′) := Ωp(A)κ1−κ2
Ω(ψ′)

(2πi)κ2Ω(A)κ1−κ2
,

the quotient Ωp(ψ′)/Ωp(A) is also algebraic. Since we are only concerned with algebraicity properties, this
allows us to only define the periods Ω(A) and Ωp(A) in order to proceed in the discussion.

We fix now the elliptic curve A := C/OK , which has complex multiplication by OK , and define the
complex period Ω(A). The theory of complex multiplication implies that A is defined over H, the Hilbert
class field of K. We chose a regular differential ωA ∈ Ω1(A/H) and we define the complex period Ω(A) as
follows:

ωA = Ω(A) · 2πidz,

where z denotes the standard coordinate on C/OK . Notice that a different choice of ωA has the effect of
multiplying the period by a scalar in H×, so that Ω(A) is only well defined in C×/H×. In particular, the
transcendental part is independent on this choice.

To define the p-adic period Ωp(A) we consider the base change of A to Cp via our fixed embedding
F ⊂ Cp. If we assume that A has good reduction at the maximal ideal of OCp , then we can extend ACp
to a smooth and proper model AOCp

and we can complete along the special fiber to get the formal scheme
ÂOCp

. We have a non-canonical isomorphism of formal schemes:

ιp : Â→ Ĝm.
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The canonical regular differential on Ĝm is defined as du/u, where u is the standard coordinate Ĝm. We
can define the p-adic period Ωp(A) as follows:

ωA = Ωp(A) · ι∗p(du/u).

Having fixed ωA, the choice ιp only affects the period Ωp(A) by a quantity in Zp×. Both the complex and
the p-adic period depend H-linearly on the choice of the regular differential ωA. Since they depend upon
it in the same way, their ratio is independent on this choice.

3.1.2 Katz p-adic L-function

Assume that D ≥ 7 and let c ⊆ OK be an integral ideal. Fix a prime p, coprime with c, that splits in
K as p = ℘℘̄ (we chose ℘ as the prime defining the embedding K ⊂ Qp).

Denote by ΣK(c) the set of Hecke characters of K of conductor dividing c. We say that a character
ψ ∈ Σ(c) is a critical character if L(ψ−1, 0) is critical in the sense of Deligne, i.e. L∞(ψ−1, s) has no zeroes
nor poles at s = 0 (see also the discussion at the beginning of the chapter). We define Σcrit(c) to be the
set of critical characters. This set is naturally the disjoint union of the two subsets

Σ(1)
crit(c) = {ψ ∈ Σcrit(c) of infinity type (κ1, κ2), κ1 ≤ 0, κ2 ≥ 1},

Σ(2)
crit(c) = {ψ ∈ Σcrit(c) of infinity type (κ1, κ2), κ1 ≥ 1, κ2 ≤ 0}.

These sets are conjugates with respect to the involution ψ 7→ ψ′ if and only if c = c. We denote by Σ̂crit(c)
the completion of Σcrit(c) with respect to the compact open topology discussed at the beginning of the
section. Since characters in Σ(1)

crit(c) can be p-adically approximated by characters in Σ(2)
crit(c) and viceversa,

we have that:
Σ̂crit(c) = Σ̂(2)

crit(c) = Σ̂(1)
crit(c)

Katz constructs in [Kat76] a p-adic L-function by interpolating the suitably normalized values L(ψ−1, 0)
as ψ ranges over Σ(2)

K . More precisely, there exists a p-adic analytic function

Lp(K) : Σ̂crit(c) −→ Cp

which is uniquely characterized by the following interpolation property:

Lp(K)(ψ)
Ωp(A)κ1−κ2

= eK(ψ) · aK(ψ) · fK(ψ) · Lc(ψ−1, 0)
Ω(A)κ1−κ2

, (3.4)

for all ψ ∈ Σ(2)
crit(c) of infinity type (κ1, κ2), where

eK(ψ) = (1− ψ(℘)
p

)(1− ψ−1(℘̄));

aK(ψ) =
(κ1 − 1)!
πκ2

;

fK(ψ) =
ωK
2
·
(√D

2

)κ2

.

This p-adic L-function satisfies the functional equation:

Lp(K)(ψ) = Lp(K)((ψ′)−1NK) (3.5)
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as shown in [Gro80, pp. 90-91].
The set Σ̂crit(c) also contains finite order anticyclotomic characters of conductor c dividing c, hence one

can approximate them using characters within the region of interpolation. Recall the choice of an elliptic
unit u done in section 1.7 and the Hilbert class field H of conductor c. Define:

uψ :=

{∑
σ∈GH|K ψ

−1(σ)uσ ∈ (O×H)Qψ , if ψ 6= 1

any p-unit u℘ ∈ OH [ 1
p ]× s.t. (u℘) = ℘hK , if ψ = 1

(3.6)

The following result is commonly known as Katz’s Kronecker p-adic limit formula. It is an explicit
formula for the value of Lp(K) at a finite order character ψ of GK (cf. [Kat76, §10.4, 10.5], [Gro80, p. 90],
[deS87, Ch. II, §5.2]):

Lp(K)(ψ) = fp(ψ) · logp(uψ̄), (3.7)

where

fp(ψ) =

{
1
2 ( 1
p − 1) if ψ = 1

−1
24c (1− ψ(℘̄))(1− ψ(℘̄)

p ) if ψ 6= 1.
(3.8)

Here c > 0 is the smallest positive integer in the conductor ideal of ψ.

3.1.3 Bertolini-Darmon-Prasanna p-adic L-function

Let f ∈ Sk(Nf , χf ) be an eigenform and letK be an imaginary quadratic field of discriminant −D ≤ −7
fulfilling the Heegner hypothesis relative to f , so that there exists a cyclic ideal N ⊂ OK of order NE .

For any Hecke character ψ of infinity type (κ1, κ2), let L(f, ψ, s) denote the L-function associated to the
compatible system of Galois representations afforded by the tensor product %f |GK ⊗ ψ of the (restriction
to GK of) the Galois representations attached to f and the character ψ.

As usual, L(f, ψ, s) =
∏
q L

(q)(q−s) is defined as a product of Euler factors ranging over the set of
prime numbers. The Euler factors at the primes q such that q - N are exactly the same as that of the
Rankin L-series L(θψ ⊗ f, s) introduced above, but may differ at the primes q such that q | N (details can
be found in [Gro84] for f modular form of weight 2).

The L-factor at infinity is given, for an hecke character of type (κ1, κ2), by the following formula:

L∞(f, ψ, s) = ΓC(s)ΓC(s−min(k − 1,m)− κ0)

where m = |κ1 − κ2| and κ0 := min(κ1, κ2). Following our notation, the completed L-function Λ(f, χ, s)
satisfies a functional equation of the form:

Λ(f, ψ, s) = ε(f, χ, s)Λ(f∗, ψ, k + κ1 + κ2 − s)

For our convenience we now switch the convention and deal with the L-function L(f, ψ−1, s) rather
than L(f, ψ, s). In particular we say that a Hecke character ψ is critical if s = 0 is a critical point for
L(f, ψ−1, s). Critical values for this Rankin L-function were predicted by Deligne and proved by Shimura
in [Shi76]. An appropriate discussion of those results which serves our purposes is carried out in [BDP13,
§4.1]. The discussion in loc. cit. states that the set of critical character Σf,K in the sense of Deligne can
be naturally seen as the disjoint union of the three subsets:

Σ(1)
f,K = {ψ ∈ Σf,K such that 1 ≤ κ1, κ2 ≤ k − 1},

Σ(2)
f,K = {ψ ∈ Σf,K such that κ1 ≥ k, κ2 ≤ 0},
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Σ(2′)
f,K = {ψ ∈ Σf,K such that κ2 ≥ k, κ1 ≤ 0}.

The regions Σ(2)
f,K and Σ(2′)

f,K are interchanged by the involution ψ 7→ ψ′ and the associated complex period

is a power of the CM period Ω(A). On the region Σ(1)
f,K the period is the Petersson inner product 〈f, f〉.

The so called Bertolini-Darmon-Prasanna p-adic L-function is obtained by an adequate interpolation of
the special values of L(f, ψ−1, s) for an appropriate subset of characters in Σ(2)

f,K .
In particular, we say that a character ψ ∈ Σf,K is central critical if κ1 + κ2 = k and εψ = χf . In

this way the point s = 0 is critical for L(f, ψ−1, s) and we write Σ(i)
cc for the characters in Σ(i)

f,K which are
central critical. In particular we can express them as follows:

Σ(1)
cc = {ψ ∈ Σf,K of infinity type (k + j,−j), where 1− k ≤ λ ≤ −1},

Σ(2)
cc = {ψ ∈ Σf,K of infinity type (k + j,−j), λ ≥ 0},

Σ(2′)
cc = {ψ ∈ Σf,K of infinity type (−j, k + j), λ ≥ 0}.

Let c ∈ Z≥1 be an integer such that (c,NfDp) = 1. We define the set of characters Σcc(c,N, χf ) to
be the subset of central critical Hecke character ψ of finite type (c,N, χf ), i.e. such that cψ | cN and
εv(f, ψ−1) = +1 for all finite places v. This set is naturally the disjoint union of two subsets:

Σ(1)
cc (c,N, χf ) = {ψ ∈ Σcc(c,N, χf ) of infinity type (k + j,−j), where 1− k ≤ −j ≤ −1},

Σ(2)
cc (c,N, χf ) = {ψ ∈ Σcc(c,N, χf ) of infinity type (k + j,−j), j ≥ 0}.

If we take the completion of Σcc(c,N, χf ) with respect to the compact open topology, the resulting space
Σ̂cc(c,N, χf ) contains Σ(2)

cc (c,N, χf ) as a dense subset. On the set Σ(2)
cc (c,N, χf ) the local sign ε∞(f, ψ.−1)

is +1. Thus the global sign is also positive, hence the central critical value is non-zero most of the times.
The Bertolini-Darmon-Prasanna p-adic (Rankin) L-function attached to the pair (f,K) is the function:

Lp(f/K) : Σ̂cc(c,N, χf )→ Cp

defined by the following interpolation formula:

Lp(f/K)(ψ) = eBDP(ψ) · aBDP(ψ) · fBDP(ψ) · Ωp(A)2k+4j

Ω(A)2k+4j
· L(f, ψ−1, 0), (3.9)

for all characters Ψ ∈ Σ(2)
f,K of type (k + j,−j), for j ≥ 0, where:

• eBDP(ψ) = (1− αp(f)ψ−1(℘̄))(1− βp(f)ψ−1(℘̄)),

• aBDP(ψ) = j!(k + j − 1)!πk+2j−1

• fBDP(ψ) =
(

2
c
√
DK

)k+2j−1

· 2]q|(DK ,NE) ·
∏
q|c

q−χK(q)
q−1 · ω(f, ψ)−1.

The factor ω(f, ψ) is defined in [BDP13, (5.1.11)], but we recall here its construction. For ψ of infinity
type (k + j,−j), we define ψj := ψNj

K . Because of our hypothesis, N = NN̄ in Oc. We can choose an
integral Oc-ideal b and a nonzero element b ∈ Oc such that:

(b, Nc) = 1, bN = (b). (3.10)

If we call ωf the generalized eigenvalue of the Atkin-Lehner operator WN (see [BDP13, Lemma 5.2] for
more details), then:

ω(f, ψ) := ωf · χf (NK
Q (b))−1 · ψj(b)(−N)k/2+jb−k−2j . (3.11)

It is a root of unity in the field Qψ(f,
√
−N) and it does not depend on the choice (b, b) made above (see

[BDP13, lemma 5.3]).
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Remark 3.3. We would like to remark that the period appearing here is not the same used for the con-
struction of the p-adic L-function in [BDP13, (5.1.15)], where an auxiliary elliptic curve A0 having complex
multiplication by Oc is used. Nevertheless, thanks to the theory of complex multiplication and proposition
3.2 both the complex and the p-adic periods arising from A and A0 are compatible in the sense that

Ωp(A)
Ω(A)

=
Ωp(A0)
Ω(A0)

,

hence the above formula holds. In particular one may chose an isomorphism Â0 → Ĝm such that the
associated canonical differential ωcan on Â0 is compatible with that of Â .

Remark 3.4. We do not go into the details of the construction, but it is interesting to remark how the
values of the interpolation property are extended to a p-adic L-function. We have that:

aBDP(ψ) · fBDP(ψ) · ω(f, ψ)−1 · L(f, ψ−1, 0)/Ω(A)2k+4j =

 ∑
a∈Pic(Oc)

ψ−1
j (a) · δjkf(x̃(a))

2

, (3.12)

where x̃(a) is defined in section 1.7. On the p-adic side we have the following formula:

Lp(f/K)(ψ) =

 ∑
a∈Pic(Oc)

ψ−1(a)NK(a)−jdjf [p](x̃p(a))

2

(3.13)

where x̃p := (x, ωcan), x̃p(a) = (x(a), ωcan,a), with ωcan,a is the pullback of ωcan via the map A → Aa.
The two results are, respectively, theorems 5.4 with theorem 5.5 and theorem 5.9 of [BDP13]. The second
equation is obtained from the first with a comparison of the Shimura-Maass derivative and the Serre
derivative of f at CM points, i.e.

δkf(x̃(a)) = df(x̃(a)).

which is essentially the content of [BDP13, Proposition 1.12 (3)].

If ψ is a finite order anticyclotomic character of conductor c | c, then ψNK lies outside the region of
interpolation but it can be approximated using characters of Σcc(c,N, χf ). The main theorem of [BDP12]
asserts that

Lp(f,K)(ψ−1NK) = fp(f, ψ)× logE,p(Pψ)2 (3.14)

where fp(f, ψ) = (1− ψ(℘̄)p−1ap(f) + ψ2(℘̄)p−1)2.

3.2 Hida’s work and p-adic L-functions

We now want to detail what we informally described in the introduction of the chapter as deformation
of a motive. Roughly speaking, given a motive M we expect to find a collection M = {Mk}k of motives
indexed by a p-adic variable which gives a deformation of M , i.e. there exists k0 such that Mk0 = M and
two motives Mk and Mk′ are in some sense close enough whenever k and k′ are close enough p-adically.

We treat here a very specific instance of this: Hida families. Informally, a Hida family is a collection
of modular forms {fk}k such that the induced residual representations are all equal. In particular we have
congruences between two members of the family which tell us that fk and fk′ are p-adically close whenever
k and k′ are p-adically close. In this case, the concept of being close for two modular forms can be made
precise by working on the coefficients of the q-expansions.
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In order to describe Hida’s result and explain its usefulness for the creation of p-adic L-functions we
first need to discuss the setW in which the weight variable k lives and define precisely what an Hida family
is for us. We closely follow the definitions given in [DR14, §2.6], but it might be useful for the reader to
also have a look to [Hid93], [Wil88], [How07, §2], [Ca1, §2.1] and [Was80].

3.2.1 Iwasawa algebras and the weight space

We fix a rational prime p and we assume for simplicity that p ≥ 3. We will use the notation ∆N =
(Z/NZ)×. Let O be the ring of integers of a finite extension F | Qp and fix a uniformizer π ∈ O. Write
q for the residual characteristic of O/πO. A basic structure result, which can be found for instance in
[Neu91, II, prop. 5.7], tells us that:

O× ' µq−1 × (1 + πO),

so that we also have F× = πZ × O. The second component 1 + πO can be further decomposed into
µqa ×WF , where WF = Zp[F :Qp] is the Zp-free part. In the case of O = Zp we have:

Zp× ' µp−1 × Γ, where Γ := 1 + pZp.

The projection ω : Zp× � µp−1 induces a Dirichlet character modulo p that we denote by the same
letter ω : ∆p ' µp−1 (notice that µp−1 ⊂ Q̄, hence it can be seen both as complex and p-adic number via
our fixed embeddings). The latter is called the Teichmuller character. It associates to each class d ∈ ∆p

the unique root of unity of Zp congruent to d modulo p− 1. This allows us to identify Zp× ' ∆p×Γ. The
second projection 〈−〉 : Z×p � Γ is none other then 〈x〉 = ω−1(x) · x.

The Iwasawa logarithm induces the isomorphism logp : Γ ' pZp which implies that Γ is a free Zp-
module of rank one. Remember that logp is the unique morphism defined by the usual power series on Γ
and it is zero outside Γ, i.e. logp p = 0 = logp ζ, for every ζ root of unity.

We fix now a topological generator u for Γ once and for all. This choice induces an isomorphism that
we will denote as the base u-logarithm:

logu : Γ ' Zp (3.15)

x 7→ logu(x)

where logu(x) = logp(x)/logp(u). In contrast to the Iwasawa logarithm, this is a non-canonical isomorphi-
sm, since it depends on the choice of u. The inverse is given by z 7→ uz := exp(z log(u)), which gives a
parametrization of Γ.

Recall that if we consider a profinite group G = lim←−iGi, then we define the Iwasawa algebra associated
to G as ΛG := O[[G]] := lim←−iO[G/Gi]. Given d ∈ G we write [d] for the corresponding element in Λ̃G. Fix
a positive integer N coprime to p and define the three Iwasawa algebras:

Λ = O[[Γ]], Λ̃N := O[∆N ][[Zp×]] ' O[∆Np][[Γ]] and Λ̃ = Λ̃1 = O[[Zp×]].

It is well-known that Λ ' O[[T ]] via the non-canonical isomorphism u 7→ T + 1.
For χ ∈ ∆̂Np, consider the projectors:

eχ :=
1

|∆Np|
∑

d∈b∆Np

χ−1(d)[d] ∈ Λ̃N ,

using the fact that eχΛ̃N = Λeχ ' Λ, we obtain the decomposition:

Λ̃N =
⊕

χ∈b∆Np

eχΛ̃N '
⊕

χ∈b∆Np

Λ (3.16)
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so that we can identify every element γ ∈ Λ̃N with a collection of power series gχ(T ) ∈ O[[T ]] indexed by
χ ∈ ∆̂Np (see [Was80, p. 243]).

Lemma 3.5. For every d ∈ ∆Np we have: eχ[d] = χ(d)eχ.

Remark 3.6. When considering Λ̃ (N = 1), every character χ ∈ ∆̂p is a power of the Teichmüller character,
so that χ = ωi for some i ∈ Z/(p− 1)Z and we can write ei := eχ.

Since Λ̃N is a topological O-algebra endowed with the p-adic topology defined by the ideal (π, [u]− 1),
we can consider the formal scheme:

W̃N := Spf(Λ̃N ) = HomO−cont(Λ̃N ,−) ' Hom(Γ,Gm(−)).

Similarly we define W := Spf(Λ) and W̃ := Spf(Λ̃). For any topological O-algebra B, the B-points of the
above scheme are:

W̃N (B) := HomO−cont(Λ̃N , B) = Homcont(∆Np × Γ, B×) ' Hom(∆Np, B
×)×Homcont(Γ, B×).

This determines a decomposition:
W̃N (B) '

∐
χ∈b∆Np

Hom(Λ, B),

hence we have a decomposition of formal schemes:

W̃N =
⊕

χ∈b∆Np

Wχ, (3.17)

where Wχ ' W, for all χ. Explicitly, for any O-algebra B an element ν ∈ Wχ(B) is characterized by the
fact that if d ∈ ∆Np, then ν([d]) = χ(d) so that, in particular, ν(eχ) = 1 and ν(eψ) = 0 for ψ 6= χ.

We embed Z into the set of O-points of W as follows:

Z ↪→W(O) = HomO−cont(Λ,O) (3.18)

k 7→ {νk : [u] 7→ uk}

We write Wcl for the set Z≥2 inside W(O) via the map defined in equation (3.18). We call Wcl the set
of classical points or arithmetic primes of Λ. The evaluation map νk ∈ W(O) corresponds to the unique
prime ideal Pk = ([u]− uk) ⊂ Λ such that νk : Λ � Λ/Pk ↪→ O. The map νk can be represented on O[[T ]]
under the isomorphism defined by T 7→ [u]− 1 and it is given by νk(T ) = uk − 1 i.e. the prime ideal Pk is
the one generated by (T + 1)− uk.

We explicitly translate the action of the evaluation map for the χ-component of W̃N , i.e. we write the
corresponding embeddings Z ↪→ W̃N (O) under the decomposition (3.17) which is given, for each k ∈ Z,
by:

νχk : (δ, ξ) 7→ χ(δ)ξk, ∀(δ, ξ) ∈ ∆Np × Γ.

It can be useful to think ∆Np × Γ as ∆N × Zp× under the correspondence (δ, ξ) 7→ (d, x). In this sense,
since any character of ∆p is a power of the Teichmuller character for i ∈ {0, . . . p− 2} and since p - N , we
can write χ = χtω

i, where χt is the tame character. In this way, νχk acts on (d, x) as follows:

νχk (d, x) = χt(d) · ωi−k(x) · xk

Thanks to the rigid GAGA theory we can see W̃N , W̃ and W as rigid analytic spaces. Under the same
morphism of equation (3.18) we can see Zp as a rigid analytic subspace of the weight space W(O). In this
sense, elements of the Iwasawa algebra Λ can be interpreted as analytic functions on W while passing to
the fraction field we deal with analytic meromorphic functions.
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3.2.2 Λ-adic modular forms and Hida main result

The first attempts made by Serre to define p-adic modular forms led him to the study of congruen-
ces between modular forms via the study of congruences between the Fourier coefficients. These con-
gruences give rise to the following naive definition of compatible family of modular forms as a collection
{fk =

∑
an(k)qn}k, for almost all positive integers k (i.e. all but finitely many), such that the following

congruence relation is respected:

k ≡ k′ (mod φ(pα)) =⇒ an(k) ≡ an(k′) (mod pα). (3.19)

where φ is the Euler totient function. In particular, k and k′ lie in the same residue class modulo p − 1.
Let us recall that by the work of Deligne we can associate to each fk a compatible system of λ-adic
representations Vk. These congruences imply that if we reduce modulo p, the residual representations of
each member of the family are equal. This is the basic concept behind the theory of p-adic deformation of
Galois representations.

In a sense that we now make precise, the Iwasawa algebra gives a better description of those congruences
and the concept of p-adic family of modular forms, allowing them to enjoy a geometric interpretation. Let
us consider at first an element a ∈ Λ, which can be thought of as a power series in O[[T ]]. It is easy to
check that:

k ≡ k′ (mod φ(pα)) =⇒ νk(a) ≡ νk′(a) (mod pα). (3.20)

This is quite natural if we consider a ∈ Λ being a rigid analytic function onW(O). Hence, given ν ∈ W(O),
we also denote ν(a) by a(ν) or aν . In particular, the function νk(a) must behave nicely for the p-adic
topology, so that it is an analytic function of the variable k. Being an element in the Iwasawa algebra we
refer to it as an Iwasawa function, as does the literature, too (cf. [Was80, §12.2]).

If Λf | Λ is a finite flat extension, then we have a natural map Wf → W, called weight map, and we
can define Wcl

f ⊂ Wf (O) as the pull-back of Wcl along this map. The set Wcl
f is called set of arithmetic

primes of Λf . We say that a point ν ∈ Wcl
f has weight k ∈ Z≥2 if ν |Λ= νk. In terms of prime ideals, ν

and νk correspond to P ⊂ Λf and Pk ⊂ Λ and the weight map is just P 7→ Pk := P ∩ Λ.
If we consider a formal power series f =

∑
n≥1 anqn ∈ Λf [[q]] it is natural to define the action of

ν ∈ W(Cp) on f as follows:
ν(f) =

∑
n≥1

ν(a)qn ∈ Cp[[q]].

In light of the above discussion we know that if two classical points have weights congruent modulo φ(pα)
then the q-expansions of the corresponding specializations of f are congruent modulo pα. In other terms,
a formal q-expansion as above is a p-adic analytic family of q-expansions in Cp[[q]]. To mimic the naive
definition of p-adic family of modular form, we need to impose that the realizations ν(f) for ν ∈ Wcl

f are
classical modular forms.

Remark 3.7. In order to lighten the notation we will often write fν to mean ν(f).

To properly define the concept of compatible family of modular forms, that we call Λ-adic modular
forms, we fix now a component of the weight space Wχ ' W of W̃N and the decomposition χ = χfω

i into
tame and wild character. Recall that a modular form f is called p-ordinary (or ordinary at p) if its p-th
Fourier coefficient is a p-adic unit, i.e. |ap(f)|p = 1.

Definition 3.8. A Λ-adic modular form (resp. cusp form) of tame level N and tame character χf is a
quadruple (Λf ,Uf ,Ucl

f , f) where:

(i) Λf is a complete, finitely generated and flat extension of Λ;
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(ii) Uf is a non-empty open subset of Wf (Cp) and Ucl
f ⊂ Wcl

f is dense in Uf ;

(iii) f ∈ Λf [[q]] is a formal q-expansion such that, for all ν ∈ Ucl
f of weight k, fν ∈ Cp[[q]] is the q-expansion

of a classical ordinary modular form form in Mk(Np, χfωi−k)Cp (resp. Sk(Np, χfωi−k)Cp).

We denote M(N,χf )Λf (reap. S(N,χf )Λf ) the space of Λ-adic modular forms (resp. cusp forms) of tame
level N and tame character χf having coefficients in Λf .

On the spaces of Λ-adic modular forms M(N,χf )Λf and S(N,χf )Λf we have the Λ-adic analogue of
the usual Hecke operators Tn. They are compatible with the weight k specializations, i.e. given a Λ-adic
modular form f and a classical weight k point ν ∈ Ucl

f , we have that:

Tn(f)ν = Tn(fν).

This property can be used to define the Hecke operators on Λ-adic modular forms (see [Hid93, §7.3] for
more details). In this sense, the multiplication by [d] ∈ Λ̃N , whose specialization in weight k is given by
χf (d)ωi−k(d)dk, is the Λ-adic version of the Diamond operator.

Remark 3.9. In the literature people often refer to classical weights (or arithmetic primes) in a more
general way. They are points of the form νk,ε : [u] 7→ ε(u)uk, for a finite order character ε on Γ. Since
we only restrict to the case in which ε is trivial, we shall often (but not always!) denote without creating
ambiguity:

fν = fk

for a weight-k classical point ν. Moreover, since the set of integers k ∈ Z≥2 such that k ≡ i (mod p − 1)
is p-adically dense in Zp, in what follows we will often shrink Ucl

f to classical points of such weight. With
this convention, definition 3.8(iii) will simply becomes:

fk ∈ Sk(Np, χf )

for all k ∈ Ucl
f .

Consider now an ordinary eigenform f . Since |ap(f)|p = 1, the two roots αp(f) and βp(f) can be
ordered in such a way that αp(f) is a p-adic unit. We define the ordinary p-stabilization of f to be:

fα(q) := f(q)− βp(f)f(qp).

The modular form fα is the only normalized eigenform of level Np such that:

T`(fα) = a`(f)fα, ∀` 6= p and Up(fα) = αp(f)fα

A form that satisfies these properties is said to be ordinary and p-stabilized. If βp(f) = 0, then f = fα is
already stabilized.

Definition 3.10. A Hida family of tame level N and tame character χf is a Λ-adic modular form
(Λf ,Uf ,Ucl

f , f), such that Λf is finite flat over Λ and for all ν ∈ Wcl
f of weight k, fν is an ordinary

p-stabilized N -new modular form, i.e. there exists fk of new level N or Np such that fν = fk,α.

Theorem 3.11 (Hida, 1986). Let fα ∈ Sk(Nfp, χfωi) be an ordinary newform of tame level Nf and
tame character χf (not necessarily new at p). Consider F := Qp[fα], let O be its ring of integers and
Λ := O[[Γ]]. Then there exists a unique Hida family (Λf ,Uf ,Ucl

f , f) of tame level Nf and tame character
χf such that fν = fα for a unique point ν ∈ Wcl

f of weight k.
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Dimostrazione. See [Hid86].

From now on, we will denote a Hida family by f , its specializations by fν and the modular form whose
p-stabilization equals fν will be denoted by fν (in the simplified settings in which we will identify ν with
its weight k, we will write respectively fk and fk). A priori it is unclear wether the weight k specialization
of an Hida family f is always old at p or not. The following lemma clarifies this situation:

Lemma 3.12. Given a Hida family (Λf ,Uf ,Ucl
f , f), and a weight k > 2 classical point ν ∈ Ucl

f , the
specialization fν of the Hida family at ν is always old at p (i.e. fν 6= fk). On the contrary, we may have
f2 = f2.

Dimostrazione. See [How07, Lemma 2.1.1] for k > 2. The fact that f2 = f2 consider, for instance, the
modular form associated with an elliptic curve over Q having multiplicative reduction at p).

The theorem of Hida is a machine to create Λ-adic modular form. Since we now know they exist,
we can combine them to create more. Given Λ-adic modular forms (Λg,Ug,Ucl

g ,g), (Λf ,Uf ,Ucl
f , f) and

(Λh,Uh,Ucl
h ,h) it is possible to construct new ones, in particular:

• given N such that Ng | N and an extension Λ′g | Λg, we can consider for each d | N/Ng an Iwasawa
function λd ∈ Λ′g and define:

ğ :=
∑

d|N/Ng

λd · g(qd) ∈M(N,χg)Λ′g
.

For a weight ` specialization map ν ∈ Ucl
g we have that:

ğν
∑

d|N/Ng

ν(λd) · gν(qd) ∈M`(N,χg)

is a oldform in weight ` and level N . When we consider such a ğ we write ğ ∈M(N,χg)Λ′g [g].

• the expression g∗ ∈ Λg is the Λ-adic modular form determined on ν ∈ Ucl
g by:

(g∗)ν = g∗ν

• the ordinary product of Λ-adic modular forms eord(f × h) ∈ Λfh := Λf ⊗O Λh, which is uniquely
determined on (ν, µ) ∈ Ucl

f × Ucl
h by:

(eord(f × h))ν,µ = eord(fν × hµ) = eord(fν,α × hµ,α).

The Λ-algebra structure on Λfh is given by the diagonal embedding on group-like elements so that
if ν has weight k and µ has weight m, (ν, µ) has weight k +m;

• by [DR14, Prop. 2.18], the expression of the form eord(d•f [p] × h) ∈ Λ′fh := Λ⊗Λf ⊗Λh is a Λ-adic
modular form, uniquely determined on (t, ν, µ) ∈ Wcl × Ucl

f × Ucl
h by:

νt,ν,µ(eord(d•f [p] × h)) = eord(dtf [p]
ν × hµ) = eord(dtf [p]

ν,α × hµ,α). (3.21)

The Λ-algebra structure on Λ′fh is given by the embedding [u] 7→ [u]2 ⊗ [u] ⊗ [u], so that if ν has
weight k and µ has weight m, then (t, ν, µ) has weight 2t+ k+m (here we are using on purpose the
letter t both for the specialization and for the weight).



42 CAPITOLO 3. P -ADIC INTERPOLATION OF CLASSICAL L-FUNCTIONS

3.2.3 Castellà’s p-adic L-function

We now present a two variables extension of BDP’s p-adic L-function Lp(f/K) by allowing the variation
of f in Hida family. The resulting two variables p-adic L-function is a slight variation of the one first studied
by Castellà in [Ca1]. We propose here a very down to earth construction which better serves our scopes
and also provide a slight extension of Castellà’s p-adic L-function.

Let us consider a Hida family f ∈ S(Nf ,1) and let assume that Ucl
f is fibered over a single residue

class modulo p− 1 for simplicity. Fix for now a weight k specialization ν ∈ Ucl
f and we identify it with its

weight since it shall mean no harm. Denote by fk the specialization of the Hida family at ν and by fk the
associated newform. Take a quadratic imaginary field K = Q(

√
−D) where p = ℘℘̄ splits and satisfying

the Heegner hypothesis. Consider the choice of the ideal N above Nf from this assumption. We write Kp

for the completion of K at ℘.
As seen in section 3.1.3, BDP p-adic L-function satisfies the equation (3.13) which we restate here for

a classical weight k specialization of an Hida family f as follows: for any character ψ in Σcc(c,N,1) of
infinity type (k + j,−j) (with j ≥ 0) and conductor c we have that:

Lp(f/K)(ψ) =

 ∑
a∈Pic(Oc)

ψ−1(a)NK(a)−jdjf [p]
k (x̃p(a))

2

(3.22)

where x̃p(a) = a ∗ (A, t, ωcan) as seen in remark 3.4. To ease the exposition we restrict to a single residue
class modulo p− 1 for j, too.

The idea is to let those characters appearing in equation (3.22) vary in p-adic family, i.e. define some
Λ-adic characters which interpolate them. Let us consider a p-adic Hecke character λ of infinity type (0, 1)
and conductor ℘̄, having image in O×, where O is the ring of integer of a F |Kp finite extension containing
the values of λ. We can consider the character 〈λ〉 whose image is in the torsion free subgroup of O×.
Define the character:

ψ∞ := 〈λ〉−k−2jNk+j
K .

Since both ψ∞ and ψ are of infinity type (k + j,−j) there exists a finite order character ψb of conductor
c such that:

ψ = ψbψ∞.

We call ψb the branch character associated with ψ and ψ∞ the infinity part.
We consider now the two variables Iwasawa algebra R := Λf⊗OO[[Γ̃]] where we write Γ̃ = Γ in order to

distinguish the variable to which we are referring. We also write d 7→ [̃d] for the second variable embedding.
We can define the R-adic version of ψ∞ as follows:

Ψ∞ :=
[
NK

〈λ〉

]
·
[̃
NK

〈λ〉2

]
.

This R-adic character satisfy the following interpolation property:

Ψ∞(k, j) = 〈λ〉−k−2jNk+j
K .

Similarly Ψ := ψbΨ∞ so that Ψ(k, j) = ψ. In this way, for every fixed a ∈ Pic(Oc), Ψ(a) ∈ R is an element
in Λf [[Γ̃]].

In [Ca1] the author constructs a Λf -adic measure µ associated to f [p] and a ∈ Pic(Oc) such that the
weight-k-specialization is given by:∫

Zp
zjdµa,k :=

(∫
Zp
zjdµa

)
(k) = djf [p]

k (x(a)).
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We can then define, in a similar way to that of [Ca1], a p-adic L-function in the following way:

Lp(f/K)(ψb) :=
∑

a∈Pic(Oc)

Ψ(a)−1 ˜[NK(a)]
−1(∫

Zp
[̃z]dµa

)
such that the specialization in weights k and j is given by:

Lp(f/K)(ψb, k, j) : =
∑

a∈Pic(Oc)

Ψ(a)(k, j)−1 · ˜[NK(a)]
−1

(j) ·
(∫

Zp
[̃z]dµa

)
(k, j) =

=
∑

a∈Pic(Oc)

ψb(a)〈λ(a)〉k+2jNK(a)−k
∫

Zp
zjdµa,k =

=
∑

a∈Pic(Oc)

(〈λ(a)〉−k−2jNK(a)k+j)−1 ·NK(a)j · djf [p]
k (x(a)) =

=
∑

a∈Pic(Oc)

ψ(a)−1NK(a)j · djf [p]
k (x(a)).

Hence, by equation (3.22) we have that:

Lp(f/K)(ψb, k, j)2 = Lp(f/K)(Ψ(k, j)). (3.23)

Remark 3.13. In our notation it seems that we have thee variables, but the branch character is not an
actual p-adic variable since it does not vary with continuity. That is the reason for which we fix a choice
and two different choices may produce totally different p-adic L-functions.

Remember that Ψ(k, j) = ψ, Ψ(2,−1) = ψbNK . Thanks to formula (3.23), the interpolation formula
for this p-adic L-function reads exactly as the formula for BDP p-adic L-function:

Lp(f/K)(ψb, k, j)2 = eBDP(ψ) · aBDP(ψ) · fBDP(ψ) · Ωp(A)2k+4j

Ω(A)2k+4j
· L(f, ψ−1, 0), (3.24)

for all characters ψ ∈ Σ(2)
f,K of type (k + j,−j), for k ≥ 0 and j ≥ 0, where:

• eBDP(ψ) = (1− αp(f)ψ−1(℘̄))(1− βp(f)ψ−1(℘̄)),

• aBDP(ψ) = j!(k + j − 1)!πk+2j−1

• fBDP(ψ) =
(

2
c
√
DK

)k+2j−1

· 2]q|(DK ,NE) ·
∏
q|c

q−χK(q)
q−1 · ω(f, ψ)−1

with ω(f, ψ) as defined in section 3.1.3.
If ψb is a finite order anticyclotomic character of conductor dividing c, then Ψ(2,−1) = ψbNK lies

outside the region of interpolation but it can be approximated by letting (k, j) 7→ (2,−1). The main
theorem of [BDP12] asserts that

Lp(f/K)(ψb, 2,−1) = fp(f, ψb)× logωE (Pψb) (3.25)

where fp(f, ψb) = (1− αp(f)ψb(℘̄)p−1)(1− βp(f)ψb(℘̄)p−1).
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3.2.4 p-adic interpolation of trilinear periods

Let now f, g, h be three modular forms of weights k, `,m such that ` ≥ k +m and let

(ğ, f̆ , h̆) ∈M`(N,χg)[g]×Mk(N,χf )[f ]×Mm(N,χh)[h]

be a test vector. In sections 2.3.1 and 2.5 we have seen that trilinear periods of the form:

Ig(ğ, f̆ , h̆) = 〈ğ∗, δtf̆ × h̆〉

play a crucial role because they create a link between a complex L-function and a Petersson product, which
provides an integral representation of the function. The problem is that, in general, those periods are far
from being algebraic numbers. Luckily we have the following:

Lemma 3.14. Given an eigenform g ∈ S`(N,χg)K , for all ğ ∈ S`(N)K [g] and φ ∈ Sk(N)K we have that
the product 〈ğ, φ〉 is a K-rational multiple of the period 〈g, g〉.

Dimostrazione. See [DR14, Lemma 2.12].

Hence if we want to interpolate p-adically those values we have to consider the complex period 〈g, g〉.
We define:

Jg(ğ, f̆ , h̆) =
〈ğ∗, δtf̆ × h̆〉
〈g∗, g∗〉

If we can interpolate those periods p-adically we can use the results of sections 2.3.1 and 2.5 to interpolate
p-adically the Rankin and the Garrett L-functions.

The idea can be simplified in this way: consider a number field K, a modular form g ∈ S`(Ng, χg)K
(i.e. assume that Qχg ⊂ K) and two modular forms ğ ∈ S`(N,χg)K [g], φ ∈ S`(N)K . Then the expression
of the form

Jg(ğ, φ) :=
〈ğ, φ〉
〈g, g〉

is algebraic in light of the above lemma. Hence we want to interpolate p-adically this kind of expression,
which is to say that we want to give a meaning to an expression of the form:

Jgp (ğ,φ) :=′′
〈ğ,φ〉
〈g,g〉

′′

for Λ-adic modular forms (Λg,Ug,Ucl
g ,g), (Λğ,Uğ,Ucl

ğ , ğ) and (Λφ,Uφ,Ucl
φ ,φ) such that ğ ∈ S(N)Λg [g]. For

this we have the following:

Proposition 3.15. Let Kg be the fraction field of Λg. For all ğ ∈ S(N)Λg [g] and all φ ∈ S(N)Λφ there
exists an element Jg(ğ,φ) ∈ Kg ⊗Λ Λφ such that for all classical points (ν, µ) ∈ Ucl

g ×Wcl Ucl
φ we have:

Jgp (ğ,φ)ν,µ =
〈ğν , egνφµ〉
〈gν ,gν〉

=
〈ğν , egνφµ〉
〈gν , gν〉

Dimostrazione. It is [DR14, Lemma 2.19].

Notice that having (ν, µ) ∈ Ucl
g ×Wcl Ucl

φ implies that the weights of ν and µ are the same, so that the
Petersson product is well defined. The projection egν appears because although φµ is an ordinary p-adic
modular form, there is no need for it to be classical, hence the Petersson product might be not well defined.
Theorem 1.10 implies that its projection onto the gν-isotypical subspace is a classical modular form.
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3.2.5 Hida-Rankin p-adic L-function

In [Hid93, §7.4] Hida constructed a three-variable p-adic L-function interpolating central critical values
of the Rankin L-function associated to the convolution of two Hida families of modular forms. We describe
here this p-adic L-function following the notations and normalizations adopted in [BDR15].

Consider two Hida families of tame level N :

g ∈ S(N,χg) and f ∈ S(N,χf ).

As seen in the previous section, g and f are parametrized by the rigid analytic covers Ug and Uf of the
weight space W. It will be harmless for our purposes to assume that they are fibered over a single residue
class modulo p− 1 and to identify the classical specializations with their weights. With this in mind, for
each (`, k) ∈ Ucl

g × Ucl
f we can consider the newforms g` ∈ S`(N,χg) and fk ∈ Sk(N,χf ) whose ordinary

p-stabilizations are g` and fk. We associate to them the Rankin product L-function L(g` ⊗ fk, s) that we
have studied in §2.3.1. Assume from now on that ` ≥ k + 1. By results of Deligne and Shimura we know
that the integer j is critical for L(g` ⊗ fk, s) if and only if j ∈ [k, `− 1], but we shall restrict to integers in
the range

j ∈
[`+ k − 1

2
, `− 1

]
. (3.26)

For a given such j we set
t := `− j − 1 and m := `− k − 2t. (3.27)

We define the range of interpolation as the set

Ucl
HR := {(`, k, j) ∈ Z3

≥2 | ` ≥ k + 1 and j ∈ [(`+ k − 1)/2, `− 1]}

From equation (2.10) we can derive that for all (`, k, j) ∈ Ucl
HR we have

fRan(`, k, j) · L(g` ⊗ fk, j) = 〈g∗` (z), δtmEm,χN (z) · fk(z)〉`,N . (3.28)

Define the algebraic part of L(gl ⊗ fk, j) as in [BDR15, (9)]:

Lalg(g` ⊗ fk, j) := fRan(`, k, j)
L(g` ⊗ fk, j)
〈g∗` , g∗` 〉`,N

=
〈g∗` (z), δtmEm,χN (z) · fk(z)〉`,N

〈g∗` , g∗` 〉l,N
. (3.29)

The notation Lalg is justified since the ratio of Petersson products, the one of the right hand side of
the equation (3.29), is an algebraic number by lemma 3.14. More precisely, it represents the coefficient of
the holomorphic projection of δtmEm,χN (z) · fk(z), as shown for instance [DR14, Lemma 2.12]). Since g`
and fk are specializations of a Hida family, we expect to p-adically interpolate those values as (`, k) varies.

In order to interpolate the expression on the right-hand side of (3.29), we use the theorem 3.15. Define
the Λ-adic modular form Eχ

N
such that for m ∈ Ucl

E we have:

Eχ,ξ = (Em,χ)α.

By the theorem 3.15 we know that there exists an Iwasawa function Jg(g, eord(d•E[p]
χ × f)) such that:

Jg(g, eord(d•E[p]
χ × f))(`,k,m,t) =

〈g∗` , eord(dtE[p]
χ,m × fk)〉

〈g∗` ,g∗` 〉

for every quadruple of (`, k,m, t) ∈ Ucl
g ×Wcl (Ucl

f × Ucl
E ×W).
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Remark 3.16. The fact that (`, k,m, t) ∈ Ucl
g ×Wcl (Ucl

f ×Ucl
E ×W) implies that ` = k+m+2t. In this way,

the choice of m determines t and, according to equations (3.26) and (3.27) we know that it is equivalent
to choose m or to chose the central critical value j. In particular, we have that:

m ∈ [1, `− k].

For this reason, we will use the variable j as third variable instead of the variable m and remember the
definitions of m and t in equations (3.26) and (3.27).

Definition 3.17. We define the Hida-Rankin (three variables) p-adic L-function as the element:

Lp
g(g, f) := Jgp (g, eord(d•E[p]

χ × f)) ∈ Kg ⊗Λ (Λf ⊗ ΛE ⊗ Λ)

When evaluating the p-adic L-function at a classical point (`, k, j) ∈ Ucl
HR we get:

Lp
g(g, f)(`, k, j) =

〈g∗` , eord(dtE[p]
m,χ × fk)〉

〈g∗` ,g∗` 〉
(3.30)

Define
eHR(g`, fk, j) :=

E(g`, fk, j)
E1(g`)E0(g`)

(3.31)

where:

E(g`, fk, j) = (1− βp(g`)αp(fk)pt−`+1)(1− βp(g`)βp(fk)pt−`+1)

× (1− βp(g`)αp(fk)χ(p)pt−`+1)(1− βp(g`)βp(fk)χ(p)pt−`+1),

E1(g`) = 1− βp(g`)2p−`,

E0(g`) = 1− βp(g`)2p1−`.

The result of [DR14, Theorem 4.7] implies that we have:

Lp
g(g, f)(`, k, j) = eHR(g`, fk, j) ·

〈g∗` (z), δtmEm,χN (z) · fk(z)〉`,N
〈g∗` , g∗` 〉l,N

,

so that we can find the interpolation formula which describes the three variable Hida-Rankin p-adic L-
function using equation (3.29):

Lp
g(g, f)(`, k, j) = eHR(g`, fk, j) · Lalg(g` ⊗ fk, j) =

= eHR(g`, fk, j) · aHR(`, k, j) · fHR(`, k, j)
L(g` ⊗ fk, j)
〈g∗` , g∗` 〉`,N

. (3.32)

for all (`, k, j) ∈ Ucl
HR, where:

• eHR(g`, fk, j) as in equation 3.31;

• aHR(`, k,m) = (m+ t− 1)!(j − 1)!π1−`−m

• fHR(`, k,m) = (−1)t(iN)m

22`+m−2·τ(χ−1)
.

Notice that the point (1, 2, 1) is not in the region of interpolation Ucl
HR. The following result provides a

formula for the value of Lp
g(g, f)(1, 2, 1). Recall the p-adic iterated integrals from equation (2) of the

introduction.

Proposition 3.18. Suppose that g1 is a classical modular form. Then Lp
g(g, f) has no pole at (1, 2, 1)

and
Lp(g, f)(1, 2, 1) =

∫
γg1

f2 · E1,χ
N
. (3.33)

Dimostrazione. See [CR1, prop. 3.2]
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3.2.6 Garrett-Hida p-adic L-function

We now want to interpolate the triple product L-function. We essentially follow [DR14] and the
computations are totally similar to what we have done in the previous section. In particular, in virtue of
theorem 2.15 we are reduced to the interpolation of the trilinear periods

Ig(ğ, f̆ , h̆) = 〈ğ∗, δtf̆ × h̆〉

for a choice of test vector (f̆ , ğ, h̆) ∈ Sk(N,χf )[f ] ×M`(N,χg)[g] ×Mm(N,χh)[h]. Let us recall that we
consider an unbalanced triple of weights (`, k,m) with dominant weight ` and t = (`− k −m)/2. Hence:

Ucl
GH := {(`, k,m) ∈ Z3

≥2 | ` ≥ k +m}

By the lemma 3.14 the quantity:

Jg(f̆ , ğ, h̆) :=
〈ğ, δtf̆ × h̆〉
〈g, g〉

is an algebraic number, so that we can define the algebraic part of the triple product L-function as:

Lalg(f ⊗ g ⊗ h, c) := Jg(f̆ , ğ, h̆)2 (3.34)

In order to perform a p-adic interpolation in a similar way as we did for the Hida-Rankin p-adic L-
function, we consider three Hida families f ,g,h of tame levels Nf , Ng, Nh and describe the associated
Λ-adic test vector f̆ , ğ, h̆.

Definition 3.19. We define the Garrett-Hida (three variables) p-adic L-function to be:

Lp
g(ğ, f̆ , h̆) := Jgp (g, eord(d•f [p]

χ × h)) ∈ Kg ⊗Λ (Λf ⊗ Λh ⊗ Λ) (3.35)

In this way we have that:

Lp
g(ğ, f̆ , h̆)(`, k,m) =

〈ğ∗` , eğ`eord(dtf̆ [p]
k × h̆m)〉

〈g∗` ,g∗` 〉

Define
eGH(g`, fk, hm) :=

E(g`, fk, hm)
E1(g`)E0(g`)

(3.36)

where:

E(g`, fk, hm) = (1− βp(g`)αp(fk)αp(hm)p−c)(1− βp(g`)βp(fk)αp(hm)p−c)

× (1− βp(g`)αp(fk)βp(hm)p−c)(1− βp(g`)βp(fk)βp(hm)p−c),

E1(g`) = 1− βp(g`)2p−`,

E0(g`) = 1− βp(g`)2p1−`.

A simple computation shows that eGH(g`, fk, hm) equals eHR(g`, fk, j) as defined in (3.31) when hm =
Em,χ. Because of [DR14, Theorem 4.7] we have that:

Lp
g(ğ, f̆ , h̆)(`, k,m) = eGH(g`, fk, hm) · I(ğ`, f̆k, h̆m)

〈g∗` , g∗` 〉
.

Since
|I(f̆ , ğ, h̆)|2 = I(f̆ , ğ, h̆) · I(f̆ , ğ, h̆) = I(f̆ , ğ, h̆) · I(f̆∗, ğ∗, h̆∗) and 〈g`, g`〉 = 〈g∗` , g∗` 〉
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using theorem 2.15 we find the interpolation formula which relates the p-adic L-function to the values
L(ğ` ⊗ f̆k ⊗ h̆m, c), where c = (k + `+m− 2)/2, for all (`, k,m) ∈ Ucl

GH. It is given by:

Lp
g(ğ, f̆ , h̆)(`, k,m)Lp

g(ğ∗, f̆∗, h̆∗)(`, k,m) = eGH(g`, fk, hm)2 · fGar(k, `,m) · L(f̆k ⊗ ğ` ⊗ h̆m, c)
〈g∗` , g∗` 〉2

. (3.37)

Being both Lp
g(ğ, f̆ , h̆) and Lp

g(ğ∗, f̆∗, h̆∗) Iwasawa meromorphic functions, we have that their quotient:

ω(`, k,m) :=
Lp

g(ğ, f̆ , h̆)(k, `,m)

Lp
g(ğ∗, f̆∗, h̆∗)(k, `,m)

(3.38)

is a meromorphic Iwasawa function, too. Hence we can rewrite the interpolation formula (3.37) as follows:

Lp
g(ğ, f̆ , h̆)(`, k,m)2 = eGH(g`, fk, hm)2 · aGH(k, `,m) · fGH(k, `,m) · L(f̆ ⊗ ğ ⊗ h̆, c)

〈g∗` , g∗` 〉2
(3.39)

where:

• eGH(g`, fk, hm) as in equation (3.36);

• aGH(k, `,m) = (c− 1)!(c− k)!(c−m)!(c− k −m+ 1)!π−2`;

• fGH(k, `,m) = CRan · ω(`, k,m) · 21−3`−k−m.

The point (k, `,m) = (1, 2, 1) lies outside the region of interpolation, hence its special value is no more
related with its complex counterpart. Proposition 2.6 of [DLR15] describes it as a p-adic iterated integral
in the following way:

Lp
g(ğ, f̆ , h̆)(1, 2, 1) =

∫
γ̆gα

f̆ · h̆. (3.40)



Capitolo 4

Proof of the main results

In this chapter, we describe and proof theorem 0.6 and theorem 0.7, which constitute the main results
of [CR1] and [CR2]. We begin by describing the general setting of the elliptic Stark conjectures, with
special emphasis on our case, then we move to the proofs of the theorems.

4.1 Elliptic Stark conjecture and p-adic Gross-Zagier formula

Let E/Q be an elliptic curve of conductor NE and let f ∈ S2(NE ,1) be the modular form associated to
E by modularity. Fix once and for all a quadratic imaginary field K = Q(

√
−D) and denote its associated

quadratic Dirichlet character by χK . Consider the two finite order Hecke characters

ψg, ψh : GK → C×

of conductors cg and ch which define theta series:

g = θψg ∈M1(DNK(cg), χ), and h := θψh ∈M1(DNK(ch), χ).

Consider the associated representations Vg := IndQ
K(ψg) and Vh := IndQ

K(ψh). We define the four dimen-
sional representation ρ := ρg⊗ρh : GQ → SL4(L) whose underlying vector space is Vgh := Vg⊗Vh. If we let
ψ1 := ψgψh and ψ2 := ψgψ

′
h, the representation Vgh splits as the direct sum V1⊕V2, where Vi := IndQ

K(ψi).
This automatically implies a decomposition of L-functions:

L(E, ρ, s) = L(E/K,ψ1, s)L(E/K,ψ2, s). (4.1)

Notice that the characters ψ1 and ψ2 are ring class character of conductors c1 and c2 because of lemma
2.4, since they have trivial central character. Let us define c := lcm(c1, c2). Let p be a prime number such
that ordp(NE) ≤ 1 and define Nf to be the tame part of NE , i.e. Nf = NE if p - NE and Nf = NE/p if
p||NE .

Assumption 4.1. We will assume from now on the following hypothesis:

(AR) the analytic rank hypotesis: ran(E, ρ, s) = 2;

(HH) The Heegner hypothesis: there exists an ideal N ⊂ OK such that OK/N ' Z/NfZ. Fix such an ideal
N once and for all and assume also that (c,NfD) = 1;

(PP) the prime p splits in K as pOK = ℘℘̄, where ℘ = mCp ∩K.

49
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The field H cut by ρ is the ring class field Hc where c = lcm(c1, c2). Following the discussion of sections
1.7 and 2.3.2, we now fix a Heegner point P ∈ E(H) and an elliptic unit u ∈ O×H and define Pψ as in
equation (2.13) and uψ as in equation (3.6). Assumption (HH), in particular, implies that the order of
vanishing of L(E/K,ψi, s) and L(E/K, ψ̄i, 2) is odd at s = 1. Since we also assume (AR), we have that

ords=1L(E/K,ψi, s) = 1, ords=1L(E/K, ψ̄i, s) = 1

which implies, by theorem 2.8, that dimLE(H)ψiL = 1 = dimLE(H)ψ̄iL and that Pψi and Pψ̄i are generators
of these spaces.

Assumptions (HH) and (PP) ensure us that there is a cyclic ideal above the number NE also when
p||NE and it is N℘.

Consider now assumption (PP). The choice of the ideal ℘ determines a Frobenius element σp ∈
Gal (Hc|K) and we set the eigenvalues of σp acting on Vψg as follows:

α := ψg(σp), β := ψ′g(σp) = α−1.

Since we are going to use the cuspidal Hida family passing through g explicitly, we recall here the
construction which is described in [Hid93, p.235] with a little modification. Recall the Λ-adic character
[〈λ〉] that we defined in section 3.2.3. We define g as follows:

g(q) :=
∑

a∈Ic℘̄

ψg(a)〈λ(a)〉−1[〈λ(a)〉]qN
K
Q (a) ∈ S(Ng, χ) (4.2)

and consider Ug fibered over the residue class of 1 modulo p− 1. Then, following the notation introduced
in equation (2.6), we have that:

g`(q) =
∑

a∈Ic℘̄

ψg(a)λ(a)`−1qN
K
Q (a) =

∑
n≥1

an(ψg〈λ〉`−1)qn ∈M`(Ngp, χ), ∀` ∈ Ucl
g .

It is then natural to define, for all ` ∈ Ucl
g , the Hecke character ψ`−1 as follows:

ψ`−1(a) = ψg(a)〈λ(a)〉`−1, if ℘̄ - a; (4.3)

ψ`−1(℘̄) =
χ(p) · p`−1

ψ`−1(℘)
, (4.4)

so that if we define the theta series g` := θψ`−1 ∈ M1(Ng, χ) and if m is a prime that spits in OK as
mOK = mm̄, then we have that:

αm(g`) = ψ`−1(m), βm(g`) = ψ`−1(m̄) (4.5)

In particular g` = g`,α and for ` = 1 we have that ψ0 = ψg (hence g1 = g), so that also the weight one
specialization is a classical modular form.

We end this section with the following technical:

Definition 4.2. Let L be a number field. A function

f : Ucl
g → Q

is L-admissible if it extends to a meromorphic Iwasawa function on Ug having no pole at 1 and satisfying
f(1) ∈ L×.

Similarly, a two variables function
f : Ucl

fg → Q

is L-admissible if it extends to a meromorphic Iwasawa function on Ufg having no pole at (2, 1) and
satisfying f(2, 1) ∈ L×.
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4.2 Discussion on hypothesis C and C’

Theorem 1.10 is very important but it only works for k ≥ 2. This is the reason for which we need
hypothesis C and C’ (see the discussion in the introduction). In the case k = 1 it might happen that
Sord
k (Np, χ) ( Soc,ord

k (N,χ) and the p-adic iterated integrals might lead to more exotic results. The
elliptic Stark conjecture in this setting is discussed in [DLR2] and it involves significant new features.

For this reason we need to have some control on the space of overconvergent modular forms of weight
one. More precisely, let g ∈M1(Ng, χg) be a normalized eigenform of weight one. We say that g is regular
at p if αp(f) 6= βp(f), otherwise we say that g is irregular at p. Take gα to be a p-stabilization and consider
the generalized eigenspace:

Soc
1 (N,χg)[[g∗α]] :=

⋃
n≥1

ker(Ing∗α).

Then we consider the following:

Assumption 4.3 (Hypothesis C). The generalized eigenspace Soc
1 (N,χg)[[g∗α]] is non-trivial and it only

consists in classical modular forms.

Assumption 4.4 (Hypothesis C’). The following holds:

• if g is a cusp form then it is regular at p and is not the theta series of a character of a real quadratic
field in which p splits;

• if g is an Eisenstein series then it is irregular at p.

The following proposition explains the relations between the two items in hypothesis C’ and hypothesis
C:

Proposition 4.5. (1) If g is a cusp form and it is regular at p, then the natural inclusion:

S1(Np, χg)Cp [gα] ⊂ Soc,ord
1 (N,χg)[[g∗α]]

is an isomorphism if and only if g is not induced from a character of a real quadratic field in which
p splits.

(2) If g is an Eisenstein series then the space Soc,ord
1 (N,χg)[[g∗α]] is non-trivial if and only if g is irregular.

Dimostrazione. This is proven in [DLR15, prop. 1.1, prop. 1.2] building on the results of [BeDi16].

As explained in [DLR15, §1], while hypothesis C and C’ are equivalent when g is a cusp form, hypothesis
C’ could be weaker than hypothesis C when g is Eisenstein.

In the special case of theta series induced by ring class characters of an imaginary quadratic field K,
hypothesis C’ for Eisenstein series is automatic, since g = θψ is an Eisenstein series if and only if ψ2 = 1,
hence αp(g) = βp(g). When g = θψ is a cusp forms, the regularity assumption is sufficient for hypothesis
C’ (hence hypothesis C) to hold, because ρg = IndQ

K(ψ) and if ρg = IndQ
F (ξ) for a character ξ of a real

quadratic field F , then Gal (H|K) = C4 and F is the single real quadratic subfield of F . In this setting, p
cannot split in F .
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4.3 Proof of theorem 0.6

In this section we will treat the proof of theorem 0.6. Its hypothesis are slightly more restrictive than
the ones from the general setting. More precisely:

Assumption 4.6. The following are assumed through all this section:

(ES) ψh = 1 is the trivial character, so that h = E1,χK . We write ψ := ψg.

(GR) the prime p in assumption 4.1(PP) is such that p - N := lcm(NE , Dc2)

Assumption (GR) implies that all the modular forms involved have good reduction at p. Under as-
sumption (ES) and the self-duality condition for ρ we have some consequences that we list for the comfort
of the reader:

• ψ is a ring class character cutting H = Hc, the ring class field of K of conductor c ∈ Z≥1;

• V := V1 = V2 = IndQ
K(ψ);

• L(E, ρ, s) = L(E/K,ψ, s)2.

We want to apply Rankin’s method as described in section 2.3.1 to L(E/K,ψ, s) = L(f ⊗ g, s). In order
to do this, we chose

f̆ ∈ S2(N)[f ], and ğ ∈M1(N,χK)[g]

two normalized eigenform for all Hecke operators. To be explicit, we can write:

ğ(q) = g(q)−
∑

d|N/Ng

µd(g)g(qd).

as explained in section 1.3 and we define the Λ-adic modular form ğ as follows:

ğ(q) := g(q)−
∑

d|N/Ng

µd(g)g(qd),

Lemma 4.7. There exists a meromorphic function EulN (f̆ , ğ, s) such that:

L(ğ ⊗ f̆ , s) = EulN (f̆ , ğ, s) · L(f, ψ, s)

and EulN (f̆ , ğ, 1) ∈ Qψ(f̆)×.

Dimostrazione. Comparing the naive Euler factors of L(f̆ ⊗ ğ, s) with those of L(f, ψ, s) using [Gro84,
equation (20.2)], we find that:

EulN (f̆ , ğ, s) :=
L(f̆ ⊗ ğ, s)
L(f, ψ, s)

=

∏
q||NE ,q-D(1− aq(f)q−s)2

∏
q|D,q-NE (1− aq(f)aq(g)q−s + q1−2s)∏

q|N/(NE ,D)(1− aq(f̆)aq(ğ)q−s)
,

which is of course a meromorphic function whose values at integes lie in Qψ(f̆). An easy verification of
the factors shows that EulN (f̆ , ğ, 1) is well defined and nonzero.

Lemma 4.8. For every ` ∈ Ucl
g ∪ {1} we define the Hecke character Ψ` of conductor c as follows:

Ψ` := ψ−1
`−1N

`+1
2
K , of infinity type

(
2 +

`− 3
2

,−`− 3
2

)
.
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Then there exists a number EulHR
N (ğ`, f̆) ∈ Qψ(f̆) such that we have the following equality of critical

L-values:
L(ğ` ⊗ f̆ , (`+ 1)/2) = EulHR

N (ğ`, f̆) · L(f,Ψ−1
` , 0)

and EulHR
N ((ğ1, f̆) 6= 0.

Dimostrazione. The Euler factors defining L(ğ` ⊗ f̆ , s) and L(f, ψ−1
`−1, s) at good primes coincide, so that

the only discrepancies arise for primes q | N . Those factors arise from Hecke polynomials with coefficients
in Qψ(f̆) and lemma 4.7 guarantees that EulHR

N (ğ1, f̆) 6= 0.

Lemma 4.9. Consider the factor ω(f,Ψ`) appearing in BDP interpolation formula 3.9. Then:

ω(f,Ψ`) = (−1)
`−1

2
ψ`−1(N)

N
`−1

2
E

and ω(f,Ψ1) = ψ(N).

Dimostrazione. For simplicity call Ψ := Ψ` the Hecke character of infinity type (κ+ λ,−λ), where κ = 2
and λ = (`− 3)/2. Define

Ψλ := ΨNλ
K .

Following the definition of equation (3.11), choose an ideal b ⊂ Oc relatively prime to pcNE and an element
bN ∈ Oc such that bN = (bN ). Since in our case ωf = 1 and εf = 1, equation (3.11) gives

ω(f,Ψ) = Ψλ(b) · (−1)κ/2+λN
κ/2+λ
E b−κ−2λ

N . (4.6)

Since
Ψλ(b)Ψλ(N) = Ψλ((bN )) = bκ+2λ

N .

We can substitute into (4.6) and find:

ω(f,Ψ) = (−1)κ/2+λN
κ/2+λ
E

Ψλ(N)
= (−1)κ/2+λ N

κ/2
E

Ψ(N)
.

Using now the definition of Ψ and the fact that κ+ 2λ = `− 1 and κ = 2, we find

ω(f,Ψ) = (−1)
`−1

2 · ψ`−1(N)Nf

N
`+1

2
E

= (−1)
`−1

2 · ψ`−1(N)

N
`−1

2
E

,

as claimed.

Lemma 4.10. For every ` ∈ Ucl
g ∪ {1} we define the Hecke character Φ` of conductor c as follows:

Φ` := ψ−2
`−1N

`
K , of infinity type (`, 2− `).

Then there exists a non-zero number EulPet
N (ğ`) ∈ Q×ψ such that we have the following equality:

〈ğ`, ğ`〉N =
=(Dc2)
=(N)

· EulPet
N (ğ`) · aPet(`) · fPet(`) · L(Φ−1

` , 0).

where aPet(`) and fPet(`) are as defined in theorem 2.11.
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Dimostrazione. By proposition 3.15 we know that the function:

EulPet
N (ğ`) :=

〈ğ`, ğ`〉N
〈g`, g`〉N

(4.7)

interpolates well p-adically and we may compute it explicitly using equation (2.15). We get the result
using theorem 2.11.

Lemma 4.11. The following formulae hold true:

Φ`(℘) =
βp(g`)2

p`−2
, Φ`(℘̄) =

p`

βp(g`)2
, Ψ`(℘̄) =

p
`+1

2

βp(g`)
.

Dimostrazione. It is a straightforward computation using equation (4.5).

We now define:

EulN (`) :=
EulHR

N (ğ`, f̆)
EulPet

N (ğ`)

f∞(`) :=
fHR(`) · fK(Φ`)

fBDP(Ψ`) · fPet(`)

consider the function:
f : Ucl

g → Cp, f(`) := EulN (`) · f∞(`).

From section 3.2.5 we can restrict Hida-Rankin p-adic L-function to the line (`, k, j) = (`, 2, (` + 1)/2) ∈
UHR. In particular, (`, 2, (`+ 1)/2) ∈ Ucl

HR for every ` ∈ Ucl
g and the interpolation formula (3.32) reads as

follows

Lp
g(ğ, f̆)(`) = eHR(`) · aHR(`) · fHR(`) · L(ğ` ⊗ f̆ , (`+ 1)/2)

〈ğ∗` , ğ∗` 〉N
, (4.8)

where we write Lp
g(ğ, f̆)(`) := Lp

g(ğ, f̆)(`, 2, (`+ 1)/2), eHR(`) = eHR(g`, f, (`+ 1)/2) and similarly for
the other terms. Before the main theorem we need a last:

Lemma 4.12. The following equalities are true:

eK(Φ`) · eHR(`) = eBDP(Ψ`),

aK(Φ`) · aHR(`) = aBDP(Ψ`) · aPet(`).

Dimostrazione. The first part follows from lemma 4.11, the second part is a straightforward comparison.

Then we have the following:

Theorem 4.13. The function f is Qψ(f̆)-admissible in the sense of definition 4.2, i.e. it interpolates
to a meromorphic Iwasawa function on Ug and f(1) ∈ Qψ(f̆)×. For all ` ∈ Ug we have the following
factorization of p-adic L-functions:

Lp
g(ğ, f̆)(`) ·Lp(K)(Φ`) = f(`) ·Lp(f/K)(Ψ`).

Dimostrazione. First of all notice that for ` ∈ Ucl
g ∩ Z≥3, we have that:

• (`, 2, (`+ 1)/2) ∈ Ucl
HR, following section 3.2.5,
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• Ψ` ∈ Σ(2)
cc (c,N,1), following section 3.1.3,

• Φ` ∈ Σ(2)
crit(c), following section 3.1.2,

hence it is meaningful to compare the values of the three L-functions. Using Lemmas 4.8 and 4.10 we can
restate formula (4.8) as follows:

Lp
g(ğ, f̆)(`) = EulN (`) · eHR(`) · aHR(`) · fHR(`)

fPet(`)
·
L(f,Ψ−1

` , 0)
L(Φ−1

` , 0)
.

Substituting Katz interpolation formula (3.4) and BDP interpolation formula (3.9), the complex and the
p-adic periods defined in section 3.1.1 are simplified and we find that:

Lp
g(ğ, f̆)(`) = EulN (`) · eHR(`)eK(Φ`)

eBDP(Ψ`)
· aHR(`) · aK(Φ`)
aBDP(Ψ`) · aPet(`)

· fHR(`) · fK(Φ`)
fBDP(Ψ`) · fPet(`)

· Lp(f/K)(Ψ`)
Lp(K)(Φ`)

.

Using lemma 4.12 we find that for all ` ∈ Ucl
g ∩ Z≥3

Lp
g(ğ, f̆)(`) ·Lp(K)(Φ`) = f(`) ·Lp(f/K)(Ψ`).

It remains to prove that f∞(`) extends to an analytic function. Using the explicit expressions for the
various factors involved and lemma 4.4, we derive that:

f∞(`) = −=(Dc2)
=(N)

·
∏
q|c

q − χK(q)
q − 1

· N · 2
−q|(NE ,D)

hc ·D
· ψ`−1(N)

c3−`N
`−1

2
E

. (4.9)

Since p - N , the factor f∞(`) extends to an meromorphic Iwasawa function on Ug. The value at 1 is
non-zero and the same holds for EulN (1) as seen in lemmas 4.8 and 4.10. This proves the result.

Since we have a factorization of p-adic L-functions on the whole space Ug, which is fibered over 1
modulo p−1, we may ask ourselves what happens at ` = 1. In particular, because of lemmas 4.8 and 4.10,
the number Eul(1) is well-defined and non-zero. Using the explicit equation (4.9) we find:

f∞(1) = −=(Dc2)
=(N)

·
∏
q|c

q − χK(q)
q − 1

· N · 2
−q|(NE ,D)

hc ·Dc2
· ψ(N) 6= 0

hence f∞(1) 6= 0 and f(`) is Qψ(f̆)-admissible. With the help of Katz functional equation (3.5) we find:

Lp
g(ğ, f̆)(1) ·Lp(K)(ψ−2) = f(1) ·Lp(f/K)(ψ−1NK).

The formulae for the special values of BDP and Katz p-adic L-functions (equations (3.7) and (3.14)) allow
us to conclude that:

Lp
g(ğ, f̆)(1) = EulN (1) · f∞(1)fp(f, ψ)

fp(ψ)
·

logE,p(Pψ)2

logp(ugα)

The proof of theorem 0.6 then follows from proposition 3.18. To be specific, the factor λ(f̆ , ğ) appearing
in theorem 0.6 is given by:

λ(f̆ , ğ) = EulN (1) · f∞(1)fp(f, ψ)
fp(ψ)

.
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4.4 Proof of theorem 0.7 and elliptic Stark conjecture when p||NE

Remember assumption (PP) and consider now the setting in which p||NE , i.e. we have multiplicative
reduction at p. We denote by Nf the tame level of f , by which we mean that Nf = NE/p, so that
f ∈ S2(pNf ), and p does not divide cNfD.

In a setting of bad reduction for f , the omega factor contained in BDP’s interpolation formula and the
local factors Cv of Garrett-Hida p-adic L-function are difficult to analyze in family. Moreover, to get the
explicit formula for the constant appearing in the elliptic Stark conjecture in the good reduction case, we
needed to assume that the levels were all equal. In order to avoid these problems we let f vary in Hida
family, too. In this way, the higher weight specializations are the p-stabilizations of modular forms of level
Nf not divisible by p. In this way all of the constants are easy to treat. For this reason we need to consider
Castellà’s extension of BDP’s p-adic L-function.

Let f be a cuspidal Hida familiy passing through f and let g be the Hida family described in equation
(4.2) passing through gα. In particular we have that

f2 = f and g1 = gα.

Recall the three ring class characters ψ1, ψ2 defined in section 4.1 and set ψ0 := ψg/ψ
′
g. We define the

following families of characters:

Ψgh(k, `) := (ψg,`−1ψh)−1N
k+`−1

2
K , s.t. Ψgh(2, 1) = ψ′1NK (4.10)

Ψgh′(k, `) := (ψg,`−1ψ
′
h)−1N

k+`−1
2

K , s.t. Ψgh(2, 1) = ψ′2NK , (4.11)

Φg(`) := (ψ2
g,`−1χ)−1N`

K , s.t. Φg(1) = ψ′0NK . (4.12)

Then, we consider the space of classical interpolation Ucl
gf as the set:

Ucl
gf := {(`, k) ∈ Z2 | k > 2, ` ≥ k + 1}

and notice that, for (`, k) ∈ Ucl
fg, the following holds:

• (`, k, 1) ∈ Ucl
GH, following section 3.2.6,

• Ψgh(k, `),Ψgh′(k, `) ∈ Σ(2)
cc (c,N,1), following section 3.1.3, since they have infinity type (κ+ λ,−λ),

where κ = k and λ = (`− k− 1)/2 ≥ 0. Moreover, following the notation of section 3.2.3, they have
branch characters ψ1 and ψ2 respectively.

• Φg(`) ∈ Σ(2)
crit(c), following section 3.1.2, since it has infinity type (κ1, κ2) = (`, 2− `).

Since we restrict to the plane Ugf ⊂ UHR via the above map, we shall denote

Lp
g(ğ, f̆ , h̆)(`, k) := Lp

g(ğ, f̆ , h̆)(`, k, 1), eGH(k, `) := eGH(g`, fk, h)

and use a similar notation for all the other constants appearing in the various interpolation formulae.

Lemma 4.14. The following formulae hold true:

Φg(`)(℘) =
β2
g`
χ(p)

p`−2
, Φg(`)(℘̄) =

p`

β2
g`
χ(p)

,

Ψgh(k, `)(℘̄) =
p
`+k−1

2

βg`βh
, Ψgh′(k, `)(℘̄) =

p
`+k−1

2

βg`αh
.
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Dimostrazione. This is similar to lemma 4.11 and is obtained using equation (4.5).

Lemma 4.15. The following equalities hold true:

eK(Φg(`))2 · eGH(k, `)2 = eBDP(k,Ψgh(k, `))2eBDP(k,Ψgh′(k, `))2,

aGH(k, `) · aK(Φg(`))2 = aBDP(Ψgh(k, `)) · aBDP(Ψgh′(k, `)) · aPet(`)2.

Dimostrazione. This again follows from a straight-forward computation using Lemma 4.14 for the first
equality.

Lemma 4.16. The following identities hold true:

ω(f,Ψgh(k, `)) = (−1)
`−1

2
ψg,`−1(N)ψh(N)

N
`−1

2
f

, ω(f,Ψgh(k, `)) = (−1)
`−1

2
ψg,`−1(N)ψ′h(N)

N
`−1

2
f

.

In particular we have

ω(f,Ψgh(2, 1)) = ψ1(N) and ω(f,Ψgh(2, 1)) = ψ2(N).

Dimostrazione. The proof is the same as for lemma with NE substituted with Nf .

Let
L0 = K(ψg, ψh, τ(χ),

√
Ng,

√
Nh)

denote the extension of Q generated by the values of the Hecke characters ψg and ψh, the Gauss sum
associated to the Dirichlet character χ and the square-roots of Ng and Nh. Fix test vectors f̆ , ğ and h̆ as
in §3.2.6, giving rise to the p-adic L-function Lp

g(f̆ , ğ, h̆).

Theorem 4.17. There exists a quadratic extension L/L0 and a L-admissible function f on Ufg (in the
sense of definition 4.2) such that the following factorization of two-variable p-adic L-functions holds:

Lp
g(f̆ , ğ, h̆)(k, `) ·Lp(K)(Φg(`)) =

f(k, l) ·Lp(f/K)(ψ1, k, `) · Lp(f/K)(ψ2, k, `).

Dimostrazione. We have a decomposition of classical L-functions given by

L
(
fk ⊗ g` ⊗ h,

k + `− 1
2

)
= EulN (k, `) · L(fk,Ψgh(k, `)−1, 0) · L(fk,Ψgh′(k, `)−1, 0). (4.13)

Since p - N , the Euler factor in EulN (k, `) interpolates p-adically and gives rise to an L0-admissible
function. Combine theorem 2.11 and equation (4.13) with the interpolation formula (3.39). Then use
equations (3.9) and (3.4) to replace the classical L-functions with their respective p-adic avatar. An easy
check shows that the periods simplify.

Thanks to Lemma 4.15 one obtains the following equality, true for every (k, `) ∈ Ucl
fg:

Lp
g(f̆ , ğ, h̆)(k, l)2 ·Lp(K)(Φg(`))2 = (4.14)

f0(k, `) ·Lp(f/K)(ψ1, k, `)2 ·Lp(f/K)(ψ2, k, `)2

where

f0(k, `) =
EulN (k, `)
fPet(`)2

· fGH(`, k, 1) · fK(Φg(`))2

fBDP(Ψgh(k, `)) · fBDP(Ψgh′(k, `))
·
∏
v|N∞Wv

ω(k, `)
.



58 CAPITOLO 4. PROOF OF THE MAIN RESULTS

Let us show that f0 is L0-admissible. Notice that the L0-admissibility of almost all terms appearing in
the numerator and denominator of f0(k, `) follows directly from the definitions. Lemma 4.16 determines
the L0-admissibility of ω(fk,Ψgh)ω(fk,Ψgh′), since p - Nf , and the constant CRan appearing in fGH(`, k, 1)
is independent on the weights k and `.

The L0-admissibility of the function ω(k, `) appearing in fGH(`, k, 1) follows by the same argument as
in the last part of the proof of [DLR15, Theorem 3.9]. Hence we have proved that f0 is L0-admissible and
the theorem follows after taking the square-roots on both sides of (4.14).

We now make in force the assumption 4.6(ES), i.e. ψ = ψg is a ring class character of conductor
c ∈ Z≥1 and ψh = 1 is the trivial character. In this setting the characters defined in equations (4.10) and
(4.11) coincide, i.e. Ψgh = Ψgh′ , thus we simply denote this character by Ψg, which have branch character
ψ = ψg.

Assumption 4.18. (BR) the prime p of assumption 4.1(PP) is such that p - N := lcm(Nf , Dc2).

Theorem 4.19. There exists a two-variable L-admissible function f(k, `) such that the following factori-
zation of p-adic L-functions holds:

Lp
g(f ,g)(k, `) ·Lp(K)(Φg(`)) = f(k, `) ·Lp(f/K)(ψg, k, `)2.

Dimostrazione. After setting Ψ := Ψg(k, `), it is easy to verify that

L(ğ` ⊗ f̆k, (`+ k − 1)/2) = EulN (k, `) · L(fk,Ψ−1, 0)

where EulN (k, `) stands for a product of Euler factors at primes dividing N . The function EulN (k, `) gives
rise to an admissible function as shown in lemma 4.7. From this, the proof proceeds along similar lines as
in the proof of Theorem 4.13, replacing the BDP p-adic L-function with Castellà’s two variable extension
described in §3.2.3.

The explicit expression for the admissible function appearing in the above statement is very similar to
that of the case p - NE , namely

f(k, `) = EulN (k, `) · (−1)
k
2
=(DKc

2)
=(N)

N · 2−q|(DK ,Nf )

hc ·DK

ψ`−1(N)

c3−`N
`−1

2
f

. (4.15)

Theorem 0.7 relative to the extension of theorem 0.4 and 0.6 in the case of bad reduction is then achieved
by evaluating the factorizations of theorems 4.17 and 4.19 at the point (k, `) = (2, 1) and applying the
various formulae for the special values (3.40), (3.18), (3.25) and (3.7)
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