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Introduction

This thesis is devoted to studying the large time behavidh@kolutions to the Cauchy problem of the
dissipative Schrodinger equations

{ igu(t,r) = Hu(t,r), v € R", £t >0 (1.1)

u(0, ) = ug(x),

whereH = —A + V(x) is the linear Schrddinger operator. Here we always assuat&’th;) is a complex
potential satisfying the short-range condition

V()| = O({z)~"), (1.2)

for somep, > 2 and the dissipative conditiosV’ (z) < 0.

This chapter is organized as follows. In Section 1.1, wegrean introduction and some classical
results about Schrodinger operators. The main goal of bi@si$ will be given in Section 1.2. In Section
1.3, we will state the main results of this thesis and thee e sketch of the proof.

1.1 Presentation

In quantum mechanics, the Schrodinger equation is a pditiatential equation that describes how the
guantum state of some physical system changes with timeadtfarmulated in late 1925, and published
in 1926, by the Austrian physicist Erwin Schrédinger. Inssiaal mechanics, the equation of motion is
Newton’s second law and which replaces Newton’s law in qumanmechanics is Schrodinger’s equation.
It is not a simple algebraic equation, but a linear partiffedential equation in general. This differential
equation describes the wave function of the system whiclsesaalled the quantum state.

Let Hu = —Au+V (z)u. Hereu is the wave function representing the positief\u = — Z}Ll 8§ju IS
the kinetic energy antl’ is the potential energy. In [58], it is indicated that thdreee general mathematical
problems arisen in quantum mechanical model : (1). Selftatijess ; (2). Spectral analysis ; (3). Scattering
theory. Our main risk is to try to answer these problems ferrttodel [(1.1L) ifi/(x) is a complex potential
with a non-positive imaginary part. The self-adjoinnessitie Schodinger operator is usually easy to obtain
as long as the potential is a real function and satisfies soaie sondition at infinity, especially assumption
(@.2). So (2) and (3) are more important.

If V(z) is real function satisfyind (112), thefi is selfadjoint onZ? with domainD(H) = H*(R") and
the results about its spectral analysis and scatteringyttage very classic and complete. The low-energy
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8 CHAPITRE 1. INTRODUCTION

analysis has been discussed by lots of mathematiciansasudh, [6], [7], [8], [9], [17], [1€], [23], [25],
[27], [31], [32], [33], [37], [35], [46], [49], [51], [75], I76], [81], [84] and the references therein. The main
difficulty is to analyze the threshold eigenvalue and resoaan some weighted Sobolev spatés called

an eigenvalue if there exists functionu such thatHu = 0 and called a resonance if there exists a
functionu satisfyingHu = 0 for someu € L*({z)*dz) \ L*(dz), s > 1. The one-dimensional and two-
dimensional cases are discussed.in [7], |8], [9]! [35] aredrdferences therein. The three-dimensional and
four dimensional cases have been studied in [31] and [3Bevely. For dimension larger than four it
has been discussed in [32]. Based on the delicate analysesolivent on low energies and the limiting
absorption, the large-time behavior of the unitary greu” can be obtained in weighted Sobolev space.
On the other hand, the classical dispersive estimates erediudied in [17]/ 18], [25], [63]..[84] and the
references therein.

If V(z) is complex, thenH is non-selfadjoint. Suppose théat is dissipative. The limiting absorption
principle on the positive axis from the upper complex plames wstablished in [60] by using the Mourré’s
commutator method. In[77], it was proved tlais regular point and the eigenvaluesifcan not accu-
mulate to the real axis neér Furthermore, if3V (z) is sufficiently small, the discrete spectrumidfis a
perturbation of the eigenvalues and the resonandefbf Based on the spectral analysis, the expansion of
e~ can be obtained in weighted Sobolev spacé in [78]. Besidesethn[[57] J. Rauch proved the decay
in time of the semigroup i/ (z) has a exponential decay at infinity and in![26], M. Goldbergved a
dispersive estimate for some non-selfadjoint Schrédingerator.

The scattering theory for the short-range self-adjointr8dimger operators is complete. There are lots
of classical methods to treat it, such as Cook’s method, Ensthod([56],|58]) and so on. The quantum
scattering for non-selfadjoint operators appears in mdygipal situations such as optical models of nu-
clear scatteringl([19]). Its Hilbert space theory is stddie[40], [5C] and [13],[14],[[15],[[66]. See alsbl[3],
[4], [38]. In particular, one can construct the scatteripgmator for a pair of operato(d7, H,) whereH,
is selfadjoint andd is maximally dissipative, if the perturbation is of shaaage in Enss’ sense. Several
equivalent conditions for the asymptotic completenessigdipative quantum scattering are discussed in
[14].

1.2 Goal of this thesis

In this thesis, we consider the dissipative Schrédingeraipes, a class of non-selfadjoint operators.
Let A be a closed operator with the domdniA) which is dense in some Hilbert spakg If for each
x € D(A),
S(Az, x) <0,

then A is called a dissipative operator. Moreover if there is nqopralissipative extension of, then A is
said to be maximal dissipative. By Hille-Yosida Theoreng can prove thatiA can generate a contraction
semi-group or.

In this thesis, we always assume thdtr) = Vi (x) —icVy () satisfyingV; (x), Va(z) are real functions
andV,(xz) > 0 andVz(x) > 0 on some open set. Then under assumpfiod (#H2},)(we emphasize that
H depends or) is maximally dissipative. Therefore, the solution of thauchy problem[(1]1) can be
represented by the semi-group’. Thus the main goal of this thesis is to study the behaviaréf?
whent tends to infinity. Here > 0 is a sufficiently small constant such that we can treat thginzay part
of H(e) as a perturbation of the real pdit = —A + Vi (z).

An important problem is the completeness of the scattenpeyator for the paifH, —A). In [14], E.B.
Davies proved the existence of the wave operators and sngttgerator, and some equivalent conditions
for the completeness for the dissipative scattering. Hewewg our knowledge, there is still no result on the
asymptotic completeness itself in this framework. One efghirposes in our work is to give a result on the
asymptotic completeness of dissipative quantum scatfedare we assume thais a regular point of{,
which means thal is neither a resonance nor an eigenvaluélof
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Second, we will discuss the large-time behavior of the sevnige—"*7©) in some weighted Sobolev
space. Actually, it is a direct corollary of the low-energtimate of the resolvent. Here we mainly focus
on two cases respectively : zero is only an eigenvalue buamesonance off; in dimension three; zero
is only a resonance but not an eigenvaluefgfin dimension four. Furthermore we can show that the
global estimate of the resolvent we need in the proof of thepieteness of the scattering still holds. But
unfortunately this estimate can not hold in the selfadjoade. So we can’t prove the completeness of the
scattering.

1.3 Completeness of the scattering fofH (¢), —A)

The quantum scattering for non-selfadjoint operators afgi@ many physical situations such as optical
models of nuclear scattering ([19]). The first purpose aof thiesis is to give a result on the asymptotic
completeness of dissipative quantum scattering.

DenoteH, = —A andH; = —A + V4. The wave operators

W_(H,Hy) = S-tlélinooe”He_itHO (1.3)
W, (Hy, H) = S-tLigrnooe”HOe_“H (1.4)

exist onL?*(R") and onH,,., respectively, whereé{,. is the closure of the subspace
M(H) ={f € L*3C; st / [(e™™ £, ) dt < Cyllg|? Vg € L*}.
0

See [14] 66]. It is known that RaW_(H, Hy) C H,. (See Lemma 2 of [14]). The dissipative scattering
operatorS(H, Hy) for the pair(H, Hy) is then defined as

S(H, Hy) = W (Hy, HYW_(H, Hy). (1.5)

W, (Hy, H) should be compared with the adjoint of the outgoing waveatpein selfadjoint cases, because
for the pair of selfadjoint operato(g/;, Hy), the scattering operatdf( H,, H,) is defined as

S(Hl, H(]) - W+<H17HO)*W7<H17HO)-

A fundamental question for quantum scattering for a paietfasljoint operators is to study the asymp-
totic completeness of wave operators which implies thatsttagtering operator is unitary. In dissipative
quantum scattering, the scattering oper&tof/, H,) is a contraction {|S(H, Hy)|| < 1. The completeness
of dissipative scattering can be interpreted as the bijegtof S(H, Hy). The equivalence of the following
two conditions is due to E. B. Davies (Theorem(7,[14]) :

1. Therange ofV_(H, H,) is closed ;
2. The scattering operatéi( H, Hy) is bijective onL?,

In fact, E.B. Davies proves more general results in an atistedting which can be applied to our case under
the assumptior (11.2) with, > 1.
Denote
W_(e) =W_(H(e), Hy) andS(e) = S(H (e), Hyp)

the wave and scattering operators defined as aboveAvithH (¢). Denote

Rz) = (H—2)"
Ri(z) = (H;—=2)"", forj=0,1
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and the working spaces
H™(R") = {u e S'(R) : (2)*(1 — A)su € L2(R™)}
Let L(r, s; 7', s') be the bounded operators fraffi>*(R") to H™*' (R™).

Theorem 1.3.1.Assume the condition(1.2) with > 2 andn > 3. Suppose thdt is neither an eigenvalue
nor a resonance off;. Then one has for somg > 0

RanW_(¢e) = Ranll'(e), 0 < e < &, (1.6)
wherell'(¢) = 1 — II(¢) andIl(e) is the Riesz projection associated with discrete spectriufi(e).

Since one can prove thHt <) is of finite rank, thus Rafl/_ (¢) is closed and the scattering is complete.
The proof of Theorem 2.1.1 is based on a uniformly globaltimgiabsorption principle for the resolvent
of H(e) on the range ofl'(¢)

Theorem 1.3.2.Under the assumptions of Theorem 2.1.1, one has the unifiotmalgesolvent estimate
[(z) 5T () R(X\ + 0, &)IT'(e) () ~*|| < C,(N)"V2E N e R (1.7)

uniformly ine, whereR(A+10,¢) = lim,,_,o, R(A+iu,e)in £(0,s;0,—s),s > 1. Herell'(e) = 1 —TII(¢),
II(e) = >_, 1;(¢) being the Riesz projection &f () associated t@qis.(H (<)).

By the technique of selfadjoint dilation for dissipativesoators([55]), this gives a uniform Kato smooth-
ness estimate for the semigroup(). The condition thab is neither an eigenvalue nor a resonance of
H, is necessary for such uniform estimates. We identify thgea1V/_(¢) for ¢ > 0 small, making use of
the asymptotic completeness of the wave operators for tfeelgent pair (H,, Hy).

1.4 Asymptotic expansion in time ofe—#(€)

Secondly, we consider the Cauchy problem of the followirsgigiative Schrédinger equation

{ iOpu(t,v) = H(e)u(t,x), t >0, z € R", n >3, (1.8)

u(0,z) = up(x),

The main task in the second part is to get the asymptotic esipafe () in some weighted.?
space as tends to infinity.

So far there have been many works on the low-energy spec@glsas for the self-adjoint Schrodinger
operator and time-decay of the resulting unitary group[df.[7], [8], [3], [31], [32], [33], [35], [46], [49],
[51], [75], [7€], [81], [84] and the references therein). Ang these works, the low-energy analysis can be
done in the operator spae¥0, s; 0, —s) for somes > 1. It is well known that the large-time expansion
of the unitary groug/,(¢t) = e *H1in L£(—1,s;1, —s) is closely related to the behavior of the resolvent
Ri(z) = (H, — z)~! for z near0. The main difficulty in studying the behavior & (») near0 comes from
the existence of the zero eigenvalue and the zero resorlzgtc®! = {¢ € H"~*: H ¢ = 0, for anys >
1} be the null space off; in H*~* and thenM N L? is called the eigenspace &f; at zero. If M\ L?
is nontrivial, 0 is called a resonance Bf and¢ € M \ L? is called a zero resonant state #f. Under
the assumptiori(1.2) fas, > 2, it is known thatdim(M /(M N L?)) < 1 in dimension three (seé [31])
and dimension four (see[B3]), and c L? in dimensionn > 5 (see[32]). The one-dimensional and two-
dimensional cases are discussedin [7], [8], [9]! [35] armdr#ierences therein. In these worksjs treated
as a perturbation off,. In [75] and [76], there permits a decaying of critical ordﬁ(r#) as|zr| — o
on Vi(z). It is clear that this kind of potential can not be seen as tugmation of H, in the low-energy
analysis. It must be treated together wily and the zero resonance can appear in any dimensional case.
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In this paper, we focus on two cases : zero is only an eigeavalti not a resonance éf,, i.e. M C L?

in dimension three ; zero is only a resonance but not an e@gjee\ofH,, i.e. M N L? = () in dimension
four. Actually, the first case can be extendedto 4 if zero is only an eigenvalue dff;. Since forn > 5,

0 can be only an eigenvalue @f,, the result is complete for > 5. On the other hand, this method we
use in the eigenvalue case can be applied in the four-dimeaisiesonance case but it is invalid for the
three-dimensional resonance case. This will be explaime@iail below.

Similar to the selfadjoint case, the large-time behaviothef semigroup generated by the dissipative
Schrodinger operator also depends on the low-energy spectalysis. There are some works about the
non-selfadjoint case such as[26] ahd/[57]. In our case, uh@eassumption (11.2) ardsmall enough, the
crucial point is also to get the asymptotic behavior of trewheentR(z, ) = (H(g) — 2)~ ! for z near 0. In
[77], it is proved thab is a regular point and

R(A£1i0,1) = lim R(\=*ix,1)
K—04
existinL(—1,s;1,—s) fors > 1 on[—¢, ] for somecd > 0 under the assumptioh (1.2) fpg > 2. On
the other hand, if [60], we know th&(X + 0, 1) € C*(]0, oo[; £(0, s;0 — s)) for somep, > 2 ands > 3.
Then by the formula proved in [78]

(Ut,1)f,g) = L /(R()x—l—z’o, 1) f,g)dX, t >0 (1.9)
2mi Jg
for f,g € L** for s > 1, the author gave an expansion of the semigrdiyp 1) for the large time in
L(0, s; 0, —s) under some additional conditions on the derivativeg ef 1; — iV,. Meanwhile, the author
constructed a dissipative example such that there exigisiiye resonance anél(A — 0, 1) does not exist
at this point.
For later use, we denotd H (¢)) (04is.(H (¢)) ando.ss(H (¢))) by the spectrum (the discrete and essen-
tial spectrum) off (¢) respectively. By Weyl's essential spectrum theorem, orswha(H (c)) = R, £
[0, 00[andogs.(H(e)) € C_ = {z € C: Sz < 0} which is a set of the eigenvalues with finite multiplicity.
In this thesis, forr > 0 sufficiently small and somg, > 2 in (1.2), we can obtain the existence of
R(\ £ i0, ¢) by Grushin method for the low energies and by the method atigeation for\ € [\g, oo[in
L(0,s;0,—s) for somes > 1 and some fixed positive,. Thus we can use the relation

+00
e HHENT (e) = zim / (R(A+1i0,¢) — R(A —i0,¢))e” " d\, t > 0 (1.10)
0

in £(0,s;0,—s) for somes > 1 and any fixece > 0 sufficiently small.[(1.10) will be checked in Section
4. Herell(¢) is the Riesz projection associated with the discrete specof H (¢) andIl’(¢) = 1 — I1(e).
The distribution of the discrete spectrum i c) for « sufficiently small has been discussedlin/[77]. It is
different from the self-adjoint case in which the singulaf R, (X +i0) in £(0,s;0,—s), s > % only
occurs at\ = 0 such as in[[31],[[35],[32],.[33],[76]. Here the eigenvalwés{ (=) are all located on the
lower complex plane. But the accurate position of thesenei@ees can not be obtained. So the expansion
of the resolvent near these eigenvalues may not be compuesdlyl Fortunately, it is proved in [77] that
the distance from these eigenvalues to the positive reallaas a positive lower bound dependentzon
Thus based on this fact, we can deduce the expansion for levgies of R(z, <) outside some discs on
the lower plane which contain the eigenvalues and the rdditoch depend ore. Since H(¢) is non-
selfadjoint, there maybe exists some Jordan block streietieach eigenvalue éf (¢). From [77], one can
see that the number of the eigenvaluedfdt) counted according to their algebraic multiplicities egual
to the number of eigenvalues &f, which is finite. ThusU (¢, ¢)II(¢) is of finite rank. Furthermore since
ousc(H(g)) € C_, thenU(t,e)II(e) has exponential decay rate dependent o8ome properties of the
Riesz projectioril(¢) will be discussed in Section 3.3 for three-dimensional case

In this chapter, we will first consider the 3-dimensionalecasder the assumption trais an eigenvalue
but not a resonance 6f;.
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Theorem 1.4.1.Letn = 3 and N > 3 be a positive integer. Suppose that assumpfion (1.2) hotdsoime
po > 2N + 1 and that0 is only an eigenvalue but not a resonancerif Then fors €|N + %, oo and
« €]0,min{1, s — N — 1}, there exists, > 0 small enough such that far€]0, ], the expansion of the
semigroup generated by the dissipative Schrodinger operatc) takes the form

. t_j_i o (e
efth(e)H/<€> _ ting(g)‘i‘ Z ' 7}(8)+87%t7%711/<t7€) (111)

Jj=2

in £(0,s;0,—s). Here T} (¢) is a uniformly bounded operator anin £(—1, s;; 1, —s;) for s; > 2j — 1,
j=1,.... [ and L(t, ¢) is uniformly bounded om, ¢ in £(0, s; 0, —s). Moreover eachl(¢) is of finite
rank.

Remark 1.4.2. One can compare Theordm 1}4.1 with the selfadjoint caselihdBd the dissipative case
in [78]. Firstif 0 is an eigenvalue but not a resonancefhf, then forp, > 5 ands > 3, the expansions of
Ri(z) andU, (t) = e~ have the form

Ri(2) = —2'Py— iz 2B_, + O(z 217),
in £(—1,s;1, —s) wherez = |z|ze?™2= with arg = €]0, 2], |2| — 0 and
Ur(),e = —(mit) " 2B_; + Ot 27°), (1.12)

in £(0,s;0,—s) ast — oo, whereF, is the eigenprojection with respect toand I1,. is the orthogonal
projection onto the absolutely continuous spacéief Here,o > 0 is a positive constant dependent an
Moreover,B_; is at most of rank 3.

Second in([78], the author discussed thalimensional dissipative Schrédinger operator. There the
imaginary part of the dissipative operator is not necedgasmall. Then one can obtain the expansion of
the semigroup inC(0, s; 0, —s) for py > n ands > [§] + 2 described as follows

Uty =t"2Cy+ Ot 279,

where( is of rank one. Here it needs some additional conditions endérivatives ol (z) = V;(z) —

In the selfadjoint case, the unitary group acting on the ogbnal complement space of the eigenspace
of H, has a decay of rate 2 in L(0,s1;0,—s1) for s; > % This destroys the decay-rate% although the
eigenspace has been excluded. It is different from theadise case in whicl/ (¢, €)IT'(¢) also decays with
rate O(¢~2). On the other hand, since the imaginary part of each eigemvaf/ (¢) is equal to—ce + o(¢)
for somec > 0, thenU(t,¢)II(e) decays with an exponential rate. One can see from Remarfl that
the principal term{’ (¢) is of rank one, which coincides with the resultin[78]. In geular in [78], since
in the formula[[1.P) applied to get the expansion the authtemdithe limit of the resolvent from the upper
plane, the effect of the eigenvalues can not be observedddado [(1.10), we can obtain the expansion
in the complete subspace of the eigenspace, which can beacetnio the absolutely continuous spectral
subspace off;.

In the expansiori(1.11), there exists singularitiessolt is because the existence of the eigenvalues of
H (e) near0. The singularities come from the distance between theseeadpes and the positive axis which
is the essential spectrum éf(¢). In particular, one can see that the expansipn (1L.12) forgéKadjoint
case cannot be seen as a limitlof (1.11) wheands ta).

Remark 1.4.3. We note that the expansidn (1.11) holds for any 0 and the singularity of each term an
has been described explicitly.
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Remark 1.4.4. It is interesting that the principal term is 2 T} (¢) = t~2O(1) which is uniformly bounded
one. If ¢ tends to0, then the limit of the principal term exists ifi(—1,s;1, —s;) for s; > 2 and it is
nontrivial. In particular, the limit73(0) is dependent of; and its explicit representation can be obtained

in Section 3.4.
Then we state the theorem for the 4-dimensional resonarsee ca

Theorem 1.4.5.Letn = 4 and N > 3 be a positive integer. Suppose that assumpfion (1.2) hoids f
po > 4N + 2 and that0 is only a resonance but not an eigenvalue/hf Then fors €|2V + 1, 2] and

o €]0,min{1,$ — N — 1}, there existg, > 0 small enough such that far €]0, ], the expansion in
L(0, s;0,—s) of the semigroup generated by the dissipative Schrodingerador H (¢) takes the form

N j—1
e MO (e) =Y "(et) Y IF T (e) + (et) VLt €), (1.13)
j=1 k=0
WhereTf(g) is uniformly bounded operator onin £(—1,s;;1,—s;), s; > 2j+1forj =1,..., N,

k=0,1,...,7—1andL(t, ) is a uniformly bounded operator ane in £(0, s; 0, —s). Furthermore, each
TF(e) is of finite rank.

Remark 1.4.6. Similar to the three-dimensional case, we can also comparegesult with the selfadjoint

case in [33] and the dissipative case [n [78]. In [33],(fis a resonance but not an eigenvaluerf, then
one has the expansion 10, s; 0, —s) for s > 6 andp, > 12

Ul(tﬂ_[ac = (I)(t><'a ¢>¢ + O(fl)a

ast — oo, where

o(1) / R

= — = n
0 AT+ (a—1In\)?

for some real constant dependent of¥;(z). In the dissipative case, one can see that the principal term

has decay rate of 2. In particular, we can compute that the principal tefffi(¢) is an operator of rank

one (see Remalk 3.5.5). This coincides with the result ih [78

Remark 1.4.7. The main part of the proof is to obtain the expansion of thelkent near) and the key
point is the observation that the eigenvaluegfit) near0 has distances + o(<) in the eigenvalue case
in three dimensional case and|Ine|™! + o(e|Ine|™!) for the resonance case in four dimensional case
from the real axis. Here > 0 is some generic constant. We note that in the eigenvaluefoag@nension
n > 4 the distance between the eigenvaluegi/¢f) near( and the real axis is alses + o(¢)(See [77]).
So the methods we apply here can be also used in the eigersadador dimension > 4. Since there
exists no O-resonance far> 5, thus the results are complete for> 3 except the resonance case in three
dimensional case. Actually, the method that we apply camtzaused in the case thats both a resonance
and an eigenvalue dff; for the dimensiom = 4.

We note that in[[7[7], Prof. Wang proved the number of the eigkres ofH (¢) near zero for dimension
n > 3 under some additional condition (1.8) for the case th& only a resonance but not an eigenvalue
of H,(See Theorem 1.2(b)). Here the case 4 which we consider coincides with the cage= 1 in [77].
But we can prove the same conclusion without the conditid@) (& [77].

The proof of these two theorems are based on the low-eneedysas In particular, we will also discuss
some properties of the Riesz projectionfdfs) associated with the eigenvalues near
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1.5 Notations

Vo(z) = Vi(z) —ieVa(z), Vi, Vo real e > 0 sufficiently smalj
H(e) = —A+V.(e);

0o=—A, H = Hy+ Vi;
R(z,e) = (H(e) — 2)7", Rj(2) = z)

H(e) = —A+Vi(z) — 16‘/2(93), R( )=(H -z}
H"(R") = {f € S'(R") : (x)*(—i~ V>’“f e L*(R")};

Le Lk sk, s): H*R") — H**(R") linear bounded.

E

(H] _17 ]20717



On the wave operator for dissipative potentials
with small imaginary part

2.1 Main results

The quantum scattering for non-selfadjoint operators afgi@ many physical situations such as optical
models of nuclear scattering ([19]). Its Hilbert space tiges studied in[[40, 50] and [13, 14, 15,/66]. See
also [3/4/38]. In particular, one can construct the sdatieperator for a pair of operatofél/, H,) where
H, is selfadjoint andH is maximally dissipative, if the perturbation is of shaaage in Enss’ sense. Sev-
eral equivalent conditions for the asymptotic completsrdglissipative quantum scattering are discussed
in [14]. However, to our knowledge, there is still no resutt the asymptotic completeness itself in this
framework. The purpose of this chapter is to give a resulthenasymptotic completeness of dissipative
guantum scattering under some conditions.

In this chapter, we study the dissipative quantum scatjentder the assumption that the imaginary part
of the potential is small. The main result is described asv.

Theorem 2.1.1.Assume the condition (1.2) with > 2 andn > 3. Suppose thdi is neither an eigenvalue
nor a resonance off;. Then one has for somg > 0

RanW_(¢) = RanIl'(), 0<e <&y, (2.1)
wherell'(¢) = 1 — II(¢) andIl(e) is the Riesz projection associated with discrete spectriufi(e).

Theoreni 2.1]1 can be compared with the asymptotic compssenf wave operators in the selfadjoint
case which says that
RanW.(H,, Hy) = Ranll,,

wherell,. is the projection onto the absolutely continuous spectbsgace off{;. Under the condition
po > 2, I(e) is of finite rank and Rafl’(¢) = KerTII(¢) is closed. As a consequence of Theofem 2.1.1
and Theorem 7 of [14], the scattering opera®@¢) is bijective fore > 0 small enough. The asymptotic
completeness of dissipative quantum scaterring has th@mMolg consequence on the dynamics of the
semigroup of contractions. For arfye L?, one can decompose it #s= f; + f, with f; € RanII(¢) and
f> € RanlI'(¢). SinceH (¢) has a finite number of eigenvalues, all with negative imagipart,e =" f,
decreases exponentially &s+» +occo. The existence of the scattering operatds) implies that there exists
f~ € L? such that

lim e ®HE) f, —e7itHof || =0 (2.2)

t—+00

15
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and the asymptotic completeness of the wave opelatde) ensures thaf,, # 0if f; # 0. Theoreni 2.1]1
shows that eithejje =7 () f|| decreases exponentially (wh¢nc Ranll(¢)) or it tends to some non-zero
limit ast goes to the infinity (wherf ¢ RanIl(¢)).

The proof of Theorern 2.1.1 is based on a uniform global Imgitabsorption principle for the resolvent
of H(e) on the range ofl’(¢) which is proved in Section 2.3. By the technique of selfadjdilation for
dissipative operators$([55]), this gives a uniform Kato sthmess estimate for the semigraup”(©). The
condition that0 is neither an eigenvalue nor a resonancé{efis necessary for such uniform estimates.
Then, we identify the range d¥/_(¢) for ¢ > 0 small, making use of the asymptotic completeness of the
wave operators for the selfadjoint péfi,, Hy).

2.2 Some preliminaries

In this section, we will first introduce some basic properaibout the dissipative operator (¢f. [13][14],
[15],[41],[58]), and the scattering theory for the seliadt case in[[56]. Let# be a Hilbert space equipped
with the inner product:, -), and first we give the definition of dissipative operator.

Definition 2.2.1. Let A be a closed operator with the domain(A) which is dense ir{. If for each
x € D(A),
S(Az, x) <0,

then A is called a dissipative operator.
Immediately, we can get a property for the dissipative dperm@nly using the definition.

Proposition 2.2.2.Let A be a dissipative operator 6H. Then we have the estimate
1
VA€ Cpa e D(A), [lo < g5 I (A= Vel (2.3)

Démonstration.Vz € D(A), A = a+ i € C,, wherea € Randg > 0, then

I(A =Nzl = (A=, (A= Nz)
= (A= a)z|* + B*z]* — 2R((A — )z, iBz)
= [I(A—a)z||* + B*||z]|* — 283(Az, z)
> Bl

O

Remark 2.2.3. Furthermore, it is easy to see thaRin(A — \) is dense irH, thenC, = {z € C | 3z >
0} C p(A). In fact, ifRan(A — \) is dense irH, then for eachr € #, there existr, C Ran(A — \) for
A € C* such thatr,, — z. Sety,, € D(A) satisfying(A — \)y,, = z,,. Then by proposition 1.2, we have

that
1

ol < 55

Therefore, there exists@asuch thaty, — vy in 7. Becaused is a closed operator, then = (A — \)y. So
A — Misinvertible and fovz € H, one has

|n]|-

_ 1
(4= 3] < el

Definition 2.2.4. Let A be a dissipative operator . Moreover if there is no dissipative extension/pf
then A is said to be maximal dissipative.
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There are some equivalent conditions to the maximal dissgaperator :

Proposition 2.2.5.Let A be a closed dissipative operator #. Then the following assertions are equiva-
lent :

(1).3IN e p(A)NCy;

(2).C, C p(A);

(3). A is a maximal dissipative operator.

Démonstration.We will complete this proposition by proving that (2) and && both equivalent to (1).
"(1) <= (2)". Itis obvious that2) includes(1), and so we only to prove thét) implies(2). We claim
that if A € p(4) N Cy, thenD(X, ) C p(A). In fact, if there exists) € D(X, 3}) butn ¢ p(A). Then

Ran (A — n) is not dense if{. So there exists a € Ran(A — 1) N D(A*), and for eachy € #,
(A" =), 9) = (¢, (A—n)p) = 0.

Thus,p € ker(A* — 7). On the other hand, by the invertibility of — A, there exists) € D(A) such that
¢ = (A — \)v, and then one has

0= ((A" =, 1) = (A" = N, ) + (A = n){p,¥) = ol + (A = n){p, (A= X)),

Hence

el = (n—N){p, (A=X)"1p)
< = Al (A =Xl
< A Lgpe
= e
1 2
= el

Itis a contradiction. S®(\, 22) C p(A) and then by this one can obtain tHgte C, : Ry = R\ or Sy =
A} C p(A). Consequently, one can obtain C p(A).

"(1) <= (3)" Ifthere exists & € C,.Np(A) and a dissipative extensidnof A4, i.e.D(A) C D(B)and
Blpa) = A.ForVy € D(B), setp = (A—X)"(B—X)p € D(A). Then(B—X)¢p = (A—X)¢ = (B—N)p.
SinceB — ) is a bijection fromD(B) toH, ¢ = ¢ € D(A). SOD(A) = D(B). ThusA = B. It means that
A'is a maximal dissipative operator.

On the other hand, assume thhts a maximal dissipative operator.(If) is not true, i.e. there exists a
A € C, but) ¢ p(A). Then there exists@a € ker(A* — \) \ {0}. One has

Ay, v) = (, A¥) = (SN [¢]* > 0.
Thus,y) ¢ D(A). We define an operatds with domainD(B) = D(A) @ {¢} asBy = Ay, if ¢ € D(A)
and By = M. Then for eachy = ¢ + uyp with ¢ € D(A) andp € C,, one has

(Bo,d) = (Ap,0) = Mul, ) + idep, A) + Al [l ]]*
= (Ap, ) = Mt @) — Mo, ) + Alul*[[0]]*
= (Ap, 0) = Ry, ¢)) + Alpl*l[|*

Therefore
3(Bo, ) = I(Ap, @) — (SN)|ul?[[L]* < 0.
So B is a nontrivial dissipative extension df. This is in contradiction witl{3).
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Remark 2.2.6. From proposition 2.2.2 and 2.2.5, We know that for a maxinedigative operator, (2.3)
actually gives us a resolvent estimate

VA€ Cy Cp(A) (A =N < 55 (2.4)

Then we come back to the schroédinger operator we considert®conditionV; > 0, this kind of the
schrodinger operator is obviously dissipative. In facts ia maximal dissipative operator, and for this we
only need to check the following lemma.

Lemma 2.2.7.3\ € p(H)NC,.

Démonstration.Due to [1.2),V; are bothA-bounded with relative bound 0, i.e.
Ve > 0,3C(e) > 0,s.t. [[Viol| < el|Ad]| + C(e)llell, Vo € L2 (2.5)

We set: = 1/2in (2.8) and let\ = i) € iR, and then

1
Va(Hy +i0) 7 < SIHL(Hy +i0) 7| + C|(Hy +i0) 77|

1 1. C
< = Z =
< 2(1+5)+5
o0+142C

20

Setd > 2C + 1. Then||Va(H; + i) ! || is strictly less than 1 and the same is true[foH; — i6)~'14||. So
by Neumann’s serie,— i(H; — i5) "'V, has a bounded inverse. Therefore,

H —i6 = (Hy —i6)(1 — i(H, —i6)"'V5)
also has a bounded inverse. It completes the proof. O

Thus by Hille-Yoshida Theorem in [58}::H generates a contraction semigroupt},~,. Then we
consider the notions of the wave operators and the scajteperator for the paifH, Hy).
Denote the wave operators

W_(H,Hy) =s— tEeroo et gitHo (2.6)
W, (Hy,H) = s — tLiEIlOO e!tHo =it (2.7)

Then we consider the abstract version tias a closed operator with domain(H,) on . There is an
important condition called Enss condition in the study @ftegring operator.

Definition 2.2.8. Let R > 0 and F'(|z| > R) be a characteristic function oR™ \ D(0, R). Denote

h(R) = ||V (Ho — i) " F(|lz] > R)|.

/ h(R)dR < oo, andh(0) < oo,
0
then we callV satisfies Enss condition.
With the help of the Enss condition, The following theoreropdes the existence of the wave operators.

Theorem 2.2.9(Theorem 9.3 in[[66]) Let V be a closed operator af? with :
1. |Vl < al|Hoo| + b]|¢|, for somen < 1;
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2. ${p, Vo) <0, forall ¢ € D(Hy);
3. The Enss condition holds fof.
LetH = Hy+ V. Then
1. W_ defined by (1.3) exists ai? ;
2. W, defined by (1.4) exists dt;-, whereH, = {p € L? : Hp = \p with A\ € R};
3. The only possible limit point of real eigenvaluefbis 0 and any non-zero real eigenvalue has finite
multiplicity.

For the dissipative Schrodinger operator we discuss, we oeeéd to prove the following proposition
which provides us the existence of the wave operators.

Proposition 2.2.10(Proposition 4.1[[56]) The complex potentidl = 1V, — iV; with the assumptior?(?)
satisfies Enss condition.

Démonstration.Choosing a cutoff functiory(z) € C*(R™) with x(z) = 1if |z| > 1, x(z) = 0if |z]| <
and|Vx| < C. Letxgr(z) = x(z/R). Then

h(R) IV (Hy — i) F(|lz| > R)||

IF(lz| > R)(Ho + 1)~ V*||

Ixr(Ho + 1)~ 'V*||

I(Ho + )" x&V*|| + [l[xr, (Ho +4) "]V
(1) +(2)

1> 1A IA

And for (1),
(1) < I(Ho + ) "llxrV*||o < R, for R > 0 large enough

On the other hand,

[Xr, (Ho+1)""] = —(Ho+ i) '[xar (Ho+4)](Ho+14)""
—(Ho +14)7'(2V - (Vxr') — Axgr)(Ho +14)7"

By [|[Vxzr| < CR7L, ||Axg| < CR™?and|(Hy +i)"'V|| < C, then

(2) < 2(Ho+ i) IIVXR(Ho + 17V I+ 1(Ho + ) | Axr(Ho + )7V

<
< C(R™' + RP)F(l2] > R/2)(Ho +14) "' V7.

Hencei(R) is an integrable function plus some terms with orftet near the infinite, and then by putting

this estimate back to the above formula, we lgeR) is integrable. O
Denote
M(H) = { € L*(R"); 3C; > 0, S-t-/ (e, o) "dt < Cyll61*, Vo € L*(R™)}, (2.8)
0

andH,..(H) = M(H). Then we have the following propositions :

Proposition 2.2.11([T4]). 1. Ha.(H) C Hi ;
2. W_mapsL? to H,.(H). SoH..(H) is an invariant space ofi’_(H, Hy).
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Démonstration.(1). First, we claim that for each satisfyingH ¢ = \¢ with A € R we havel,¢ = 0 and
then H*¢p = \¢. In fact,

Mol]> = (Ho, ¢) = (Hi¢,¢) — i(Vaih, ),

so (Vag, ¢) = 0. SinceV, > 0 it follows thatVy¢ = 0. V¢ € M(H), andy € Hi-, by the definition of
M(H), then

_ itH
0 = lim [(¢6,p)
o itH*
= lim [(6,¢" )|
_ zt)\
= lim_[(6,¢")]
-

= (.9

It follows that M (H) C Hi-. ThusH,.(H) = M(H) C H-.
(2).Vyp € M(H,), Let¢ = W_¢p. And for Ve € 2,

/ (e )Pt = / (e T, ) Pt
0 0
_ / (W_e o, ) 2dt

/ (=it g V) 2t
0

Wy

Ll

since|[W*|| = ||[W_|| < 1. On the other hand, we will check thatt(H,) = L*(R"). Let H..(Hy)

be the absolutely continuous spectral spacefgf Due to theorem 1.3 i [56], there exist a dense set
K(Hy) = { € Haoe(Hp) : dc’g’ € L™ and supg,, is compac} where i, of H..(Hp) is the spectral
measure associated foand 5)1\# is Randon-Nikodym derivative. Moreover, also by this tlegorand for

any Hilbert-Schmidt operator and € (H,), we have

IA A

/ | Ac= o 2dt < ALl

where|| A||5 is the Hilbert-Schmidt norm ofl. By takingA = (-, p) ¢, thenkC(Hy) C M(H,) and it follows
thatH,.(Hy) € M(H,). In light of H,.(H,) = L? we have that\ (H,) is dense inl.?. So this proves the
proposition.. 0]

Remark 2.2.12.In our problem, it is known that there is no real eigenvalutthe dissipative Schrédinger
operator and they are all on the lower-half complex pland(ZT]).

So by the above, we define the dissipative scattering opdtthe pair(H, Hy) as
S(H, Ho) = Wi (Ho, H)W_(H, Hy). (2.9)

An importance problem is the asymptotic completeness ofnee operator. In the self-adjoint case,
the definition of the asymptotic completeness in the sglfiaticase is given by

RanW. (H,, Hy) = RanW_(H,, Hy) = Hac(H,). (2.10)

where?,.(H) is the absolutely continuous spectral spacé/pf We have seen that Enss condition plays
an important role in the existence of the wave operatorsjrafatt, it is also sufficient to the completeness
in the self-adjoint case.
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Theorem 2.2.13([56]). Let H, = —A and let H; be the self-adjoint operatof;, = Hy, + V whereV
satisfies the Enss condition. Then

1. H, has empty singular continuous spectum;

2. The wave operatdi/y. (H,, Hy) are complete;

3. Eigenvalues off; can accumulate only at 0 and nonzero eigenvalues have fiuitgpiicity.

Due to the assumptioh (1.2) bf and similar to Proposition 2.2.10; satisfies Enss condition and then

by Theorem 2.2.13 the wave operatorstif are complete. So we can define the the scattering operator in
the self-adjoint case for the pdiff;, Hy) as

S(Hy, Hy) = W, (Hy, Ho)*W_(Hy, Hy). (2.11)

For the dissipative Schrodinger operator, an importanblera is the invertibility of the dissipative scat-
tering operatorS(H, Hy) on L?. The relation between the invertibility &f(H, H,) and the asymptotic
completeness df_(H, Hy) is described by the next theorem.

Theorem 2.2.14Theorem 7[[14]) Assume that there exists a €2tlense in?(R") such that
/ |V et p||dt < oo (2.12)
0

for all ¢ € D. The following conditions are equivalent :
1. The range ofV_(H, H,) is a closed subspace ;
2. The scattering operatd¥(H, Hy) = W, (Hy, H)W_(H, Hy) is invertible onL?.

Lemma 2.2.15([66]). If V satisfies Enss conditions, thén (2.12) holdslfor

Démonstration.DenoteD = {¢p € H*(R") N C*> : spt ¢ C R"\ {0} is compact}. It is easy to check
thatD is dense inL*(R"). For eachy € D, there exists a constaat> 0 such thaspt ¢ C R™ \ D(0,a).
For eacht € R, , andx € D(0, at),

(€0 (Hy — i)o) (z) = 1 ] /n ¢80 R F((Hy — i)p)de

_ _Z/emmfwm_wm&
2 Jgrn

Since|z + 2t&| > 2t|¢| — |z| > 2at — at = at, then using the stationary phase method, one has

ot =)@ = g [ e A = e o) dras

(2)3

1 & —ir?
zr——r/ F((Hy — i)0) (r, 0)r"2de 5 db)
2 27T 2 t gesn 1 a

= / / 675 O (F((Hy — 1))(r, 9)r"’2)drd9\.
2(2m)2t Joesn—1 Ja

Repeating several times by the same way, one has

(@10 (Hy — i)g) ()] < —©

(1+t)ntt
for someC > 0 depending orp. Consequently,

1F (2] < at) (™™ (Hy — i))(z)] <
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and then .
/ |F (x| < at)(e™™ (Hy —i)p)(z)||dt < .
0

So

[ vermgta = [T v -0 e < o) + (el 2 e - ol
0 0

< |[V(Ho —i)1||/ 1F (|| < at)e™™ (Hy — i)l dt
0

+/ooo IV (Ho —4) " F(|lz| > at)||||(Ho — 7)el|dt

< C,.
Here the second term is dominated by Enss condition. O

Therefore, by Proposition 2.2.10 and Lemma 2.2[15, {2.dR)shfor V. So we only need to prove that
RanW_(H, H,) is closed and then the invertibility of the scattering opar& (H, H,) is achieved. Below
we will prove that the Riesz projection of all the eigenvalu® of finite rank, and then we hope that the
conclusion which is similar td (2.10) fa#_ (H,, Hy) in the self-adjoint case is also true.

Below we consider that the imaginary Bfis small enough. That meatis = H () = —A+ V) —ieVs,
wheres > 0 is small enough. And the resolveRtz) is replaced byR(z, ¢).

2.3 Proof of Theorem 2. 1.1

In this section, we consider a simple case that O is a regwiat pf H;, which means that 0 is nei-
ther eigenvalue nor resonance i#f. Here we call O is a resonance if the equatidn = 0 has a solu-
tionu € H»~*\ L? for s > 1. Then by the assumptior?) and Weyl's theorem, one has,,(H;) =
oess(Hp) = [0, 00) and there may be some eigenvaluegipfon (—oo, 0). In particular, there is no positive
eigenvalue(cf.[[58]). Ifpy > 2 in (0.1), then eigenvalues df; can not accumulate to O(cf. [68]). And in
[77] the author confirmed this conclusion fAr. Throughout this work, we count the eigenvalues according
to their algebraic multiplicity.

So there exists a constat> 0 such that/; has a finite number of eigenvalugs < Ay < --- < \; <
—co. Let Ny = Z;Zl n;j, wheren; is the multiplicity of \;. Let1I; be the projection of{; associated with
the \;.Then we have the following lemma that the eigenvalues @f) are the perturbation to those &f.
Below, we consider the eigenvaluesiéfs) without multiplicity, which means that ik is an eigenvalue of
H with multiplicity m, then we call these are eigenvalues off.

Lemma 2.3.1.For ¢ > 0 small enoughN(¢) denote the number of eigenvaluegdf:), Then there exists
somesy; > 0 such that fol0 < ¢ < ¢,
N(€) = Nl.

More precisely, for each;, there aren; eigenvalues in
Fi2{2€C:—ce <82 < —C¢, Rz — \j| < Ce}, (2.13)
for somec, C' > 0. Let F £ (J._, F;. One has
IR(z, )| < Cie™ (2.14)

for someC; > 0andz ¢ F with Rz < —c,.
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Démonstration.: We only need to consider the spectralfbfe) near);. LetIl; = 1 —1II;. ThenL?(R") =
Ranll; & Ranll}. We define

Ey(z) = (I HIT — 2) 7' = I (10 HA O — 2) 7'

Since thatH, is a self-adjoint operator, fge — A;| > 0 small enough, there exists a positive constant
depending orz — ;| such that
1E:(2)] < €.

Let E(z,e) = (II;H (e)IT;, — z)~'IT;, Then

E(z,e) — Ey(z) = II((I1,H ()1 — 2)7t — (I, Hy 11, — z)—l)H;
= el (I Hy 1T — 2) 0 Va () I0 (I H (2)IT) — 2) 7T
= icEi(2)Va(z)E(z,€).

Thus
E(z,e) = (1 —ieVa(x)EL(2)) ' Ei(2)

So fore > 0 and|z — \;| small enoughF(z, ) is holomorphic and uniformly bounded &Y Z?).
Let{<p,(j) >, be abasis of Rafi;. We define the mapping, : L*>(R") — C" andR_ : C" — Ranll;
by

T

Rip={< o, go >}, Vo € L*(RY); Roa= Zakgolij), Va = {a;};", € C".
k=1

Then they satisfy thak, R_ = Idc~; andR_R, = II;. We can construct the Grushin problem :

P(z,e) = (H%): : Eé) : L2(R™) x C — L*(R™) x C™.

Thus we can find a approximate inverse matrix :

Qz,¢) = <ng) R(H(S— Z)R+) '

Then
P(2.6)0z2) = ((H(e)—z)g(z,aHHj H;(H([il)cn—j z)R)
_ <UY@)—2O§L%6)—IE f%UY@é—zﬂR_>F<é ?>
(D6
Here

A = (H(e) — ) (I H (e)IT; — ) 7' — 1T
(I, H (e)IT; — 2) (I} H (e)IT; — 2) "' + I1;(H (e) — 2) (I, H ()11} — 2) 11} — 1
= T0;(H(e) — 2)(IH ()T} — 2)7'IT;
S0 A? = 0. By Neumann series?(z, ) Q(z, ) is invertible, and the inverse matrix is

(P(2,6)Q(z,8)) " = (1 . A -B + AB)
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That means
1 _ (E(z¢) R_ 1-A —B+AB
P l(z,e) = < R, R_(H(e)— z)m) ( 0 1 )
_ < E(z,¢) —E(z,e)B+ R_ )
-\ Ry (1-4) R+AB Ry(H(s)— 2)R
_ < (2 6) R_ — E(z,¢)(H(s) — 2)R_ )
R, — —2)E(z,¢) Ri((H(e) = 2)E(z,6)(H(e) — 2) — (H(e) — 2)) R
A < ( z,e))
—+(2,¢)

By P(z,6)P~!(z,e) = 1 andP~1(z,6)P(z,e) = 1, if EZ1(z,¢) exists, then we obtain the following
expression of the resolvent

R(z,e) = E(z,6) — Ey(2,e)E_} (z,6) E_(2,¢), (2.15)

andE, (z,¢) andE_(z,¢) are holomorphic and uniformly bounded4{Z?) for 0 < £ < £ and|z — )|
small enough. We can deduce that the eigenvalug$(ef in a small neighborhood fak; coincide with
the zeros of'(z,¢) = det E_,(z, ). Itis easy to check that

E_(ze) = Ri(z—N+icVo+ (N —z—ieVa)E(z,e)(\; — 2z —icVa))R_
(z = A\j)deny +ieR Va(z)R- — 2Ry Vo E(z,6)VaR_
Denote
zZ — )‘j

E°, = (2= \)ldcns +ieR Va(z)R- = ig( —

Idens + Ry Va(x)R-),

and
FO(z,e) = det E°  (z,¢).

On the other handR_ V>(x)R_ is a positive definite matrix il©"s, due to the assumptions &} (). Let
T a%j € R, be the eigenvalues @t V;(z)R_, thenFy(z, <) hasn, zeros

zi =\ — ieui, wherek =1,...,n;.
Let\; — is,ui be one of the zeros dfy(z, €) with orderp,. For a appropriate;, C; andCs > 0,
|Fo(z,e)| > C1e™, |F(z,e) — Fy(z,€)| < Coe™ ™

for |z — \; + z’s,uﬂ = aie. Fore small enough, then we apply Rouché’s theorem to concludettbee are
alsop, zeros ofF(z,¢) in B(\; — iepl, are) C C_ 2 {z € C: Iz < 0}. SOF(z,¢) at least has; zeros
21,y 2ny INFG With [z, — Ag| < cpe for ¢, > 0. Conversely, let, is a zero ofF'(z, ¢) with multiplicity
pin C_. Then it is easy to check thatMe < &zg < 0 for someM > 0 depending orl;. By the same
method, we can also get that there exigeros ofFy(z, ¢). This shows that’'(z, ¢) hasn; zeros inC_.

From the proof, we know that far > 0 small enough, there exists a constaht- ¢ > 0 such that the
zeros ofF (2, ¢) are all inF; defined by (2.3.17). On the other hand, fof F;, one hasz — z]| > ¢, for
somec; > 0 and the inverse of" , by

whereP/ is the eigenprojection af° . associated tg]. So

Eoi(z) = B (1 - (B, Ry VaE(z, ) VaR.) = B, (14 O(e)).
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for z ¢ F;. Then in light of Neumann’s series, one can obtain that
B4 (z,6) = (E,) 7 +0(1),

and
IE=1 (z,¢)| <

o[ Q

, (2.16)

for z ¢ F; and some” > 0.
It follows || R(z,¢)|| < €, for z ¢ F with Rz < . O

Using the property of eigenvalues, we can get the limitingoaption principle for the dissipative
Schrddinger operator, which is a perturbation to the sdjifiat case.

Lemma 2.3.2.Setll(c) £ > 1;(e) andIl'(e) £ 1 —I(e), wherell;(¢) is the Riesz projection associ-
ated to the eigenvalues which are). Then

()] < C,
for someC' > 0 ande > 0 small enough. 1f) is neither an eigenvalue nor a resonancefyf then

R\ +1i0,¢) = lim (H(e) — (A +ip)) ™"

p—=0+
exists in£(0, s; 0, —s) for s > 1 with the estimate
() I () R(A + 0, )IT () (2) || < C5(\) "2, A€ R (2.17)
uniformly ine. Here for\ €] — oo, —¢g], R(A +i0,2) = R(\, €).

Démonstration.Fixed ad > 0, there existg, > 0 small enough such th&&, C {z : |z — \;| < d} for
e €]0, o). Then the Riesz projection associatec\taan be represented by

1
Il;(e) = — . 2.1
;i(e) 5 7{2—/\j5 R(z,e)dz (2.18)
By lemma 2.3.1 and the perturbation method, we can dedute tha
[R(z,e)ll = [[R1(2)(1 +iVa(x) R(z,€))]l

< R+ el Val e[| B(2, €)]])

C C
< —(14e=
< 5( +5€)
< C(1+0C)
- )
é C/(Sfl

for z € {# : |z — \;| = 0}. Therefore, together with (2.1.8), we hae;(¢)|| < C; for a constant’; > 0.
Thus,II(¢) is a bounded operator dif (R™).

Case\ > —qy.

For the selfadjoint Schrodinger operator, fix a small camsta> 0 small enough and then for > ¢, it
is proved in[[60] that

[(@) 7RO+ 0, ) () || < Cos V)5, 2 > 5. (2.19)

For A € (—¢,c), due to [76] and the assumption that O is a regular poirf gfthere is a constart > 0
independent on such that

@) Ri(A +i0) (@) < O3, B >
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where
Ri(A+1i0) = lim (H; — (A +ip)) "

p—04

For\ € (—co, —], itis easy to check that
()= Ry (A +i0) )| < @) [ zoo | Ry (A + 0) [} ) [l < Co(A) 2.
Therefore by the formula
() RN+ 10, e){z)~* = (1 —ig{x) *Ry(\ +i0){x) *(x)*Va(x)) " (z) *Ri(\ +i0)(z)*

we have

[{x) °*R(A +10,¢){x) % < C()\)’%, A € (—co, ), % > s, (2.20)

for e > 0 small enough. Consequently, together with (2.3.23)ar1Z2), we have that fok > —c,
(@) RO+ i0,2) (@) < O3 B > s (2.21)

On the other hand, fox > —c¢,

2mi =8

1 R(A+10,e) — R(z,¢) &
N 271 |z—A;|=6 zZ—A

1 R
- I (Z’ 6)dz
21 Jonj=s 2 — A

R(A+10,¢e)ll;(e) =

Note that if A > —c¢,
SO

z — A| has a positive lower bound fot — \;| = ¢, which is independent omande,

1RO+ 0, £)TL,(2)]| < i% I1B(= )l

< , dz SC% s dz| < .
2mi Jioon = |2 = Al 42 2= A |=5 42

Since
II'(e)R(A +i0,2)IT'(e) = R(A +i0,e) — R(A + 10, e)II(e)

and together with (2.3.23), (2.3.21) is true for> —c¢y.
Case) < —qy.
First,
L) -1, = —5 R(z.¢) ~ Ri(2)d
e i = 5 s Z,€ 1(z)dz
1 .
= 5= |z—)\-|:6Z8R(z’€)V2R1<Z)dZ
J
3

= o s R(z,e)VaRy(2)dz
J

Letll,. = 1-> 7", II; be the projection of the absolutely continuous spectruidofS;(¢) £ e (IL(e) -
I1;) andS(e) = 37, Sj(e). ThenS(e) = —e~(II'(¢) — I,.) € L(L?) is uniformly bounded and

1 _
155 ()] < 2—% IR(z, ) lIVallz [ Ra(2)ll|d2] < C71, s > 1
T J|z=)jl=5
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SinceH, is a self-adjoint operator and the spectraFhfon I1,.L?*(R™) is [0, +o0ol, then
IR (M aell < (A7 A < —co.
Due to the identity
R\ e)ll'(e) = —eR(\,€)S(e) + (1 + ieR(\, £)Va) R1 (M),
then for\ < —¢y, we have
[) T (€) R(A, €)1 () (=) " 1<)~ [l lle RN, ) S () x) ™[ e
[1{2) ™[ oo (1 + [le R(A, €)[[[[ V2l oo ) [| By (M) Tae | (2) | o
Cs(\) 1.
fors > 1. O

IN 4+ INA

For our main theorem, we need a Kato’s smoothness estim§d@{xfor the semigroup of contractions
about non-selfadjoint operators. LAt be a Hilbert space, and is a maximally dissipative operator on
H. —iH is generator of a semigroup of contractisitt) = e~ “#, ¢+ > 0. According to the theory of
Foias-Sz.Nagy(cf[[22]), there is a Hilbert spae # and a unitary group/ (t) = e~**“ on g such that

U (t)|3 = S(t),t >0,
wherell is the projection frong; to H. Then( is called a selfadjoint dilation off .
Lemma 2.3.3. Assume that there exits € £(?) continuous such that
sup [|A(H — (A +10)) A" < 9,

AER,6€]0,1]
then -
/0 (IAS@)fII” + JAS@)* fIIP)dt < CL|IfI% Vf € H.

Démonstration.Let (G, G) be a selfadjoint dilation of H, #), then

(H—2)"'= / e S(t)dt = / e TIU ()| dt = TG — 2) ™Y,
0 0
for &z > 0. By duality, we also have
(H=2)7' =1(G - 2)"'|u

Therefore
I(AIL)(G — 2)~ 1 (AI)*|| <,

for z € {A: 0 < |3z < 1}. By classical Kato's smoothness estimate for the selfatijmperators(cf.
Lemma 3.6 and Theorem 5.1 in ]40]),

AwmAmUQMWﬁscww%vgeg
with
C2 sup [(AI(G - =) — (G — 2 YAID| < 2y

0<32<1

Forg = f € H, we have
| 1as@ s <2117
0

Using the same method, one can considéf* and then will obtain

A 1AS ()" Fl12dt < 24111
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In fact, using the high energy estimate in (2.2.21) and Psibiom 2.2 of [78], one can obtain a slightly
better smoothness estimates: > 1, 3 C, such that

/ [(2)=* (Do) /2T ()™ O f|* dt < G| fI?, Vf € L7, (2.22)
0
uniformly in 0 < e < ¢. Since0 is a regular point of{;, an estimate similar to (2.3.26) also holds fér :

/ @) TLoue= 0 F2 dt < |l fI% ¥f € 25> 1. (2.23)

[e.e]

Theorem 2.3.4.Assume that O is neither an eigenvalue nor a resonanég pf, > 2 andn > 3. Then for
¢ > 0 small enough,
RanW_(H (e), Hy) = RanlII'(¢),

FurthermoreRanW_(H (¢), Hy) is closed and then by Theorem 2.2.14, the dissipative stajteperator
S(H (e), Hy) is bijective.

Démonstration.Firstly, we claim that RaW/_(H (¢), Hy) C RanlIl’(¢). Assume thad is an eigenvalue of
H(e) with A < 0 andIl,(e) is the Riesz projection associatedtoThen there exists € N such that
(H(g) — M\)*II\(g) = 0. Thus forp, ¢ € D(H,), one has

e E) - . 0)

k-1
(My(e)e O, 9) = ™y
§=0

Hence,

[(I\(e)W_(H, Ho)p, )] = lim [(TTy(e)ee" 0, ¢)]

t—-+o0

N Y .
< m&WZHEWMWWMWH

This means Raf_(H(¢), Hy) C RanlI'(¢), and then
W_(H(e), Hy) =1T'(e)W_(H(e), Hy) = I'(e)W_(H(e), H)W_(Hy, Hy).
By Theorem XllIl in [58], it is known thatV_(H;, Hy) is complete, i.e.
RanW_(H,, Hy) = Ranll,.
So
W_(H(e), Hy) = '(e)W_(H (e), H))1,.W_(Hy, Hy),
wherell,. is the eigenprojection of the absolutely continuous spectof /. On the other hand,

d ~ - d, —
%<H/(€)€—th(6)€th1Hacu’ U> _ E<€ZtH1Hacua eth (5)H/(€)*U>

— <iH1€itH1Hacu, eitH*(e)H/(g)*v>
+ (e T u, iH* (e) ™™ OTT (€)*v)
il (e)e O (Hy — H(e))e MM T u, v)
—e(I1' (e)e M EV, M I T u, v)
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for Vu,v € S. Therefore
(IT' (e)e O] 4y v) = (IT'(e)peu, v) — € /t(H’(s)e_“HVQe“Hlﬂacu, v)ds.
0
Since for > s > 1 and by taking4, = (z)~*Il,. andA. = (z)~°II'(¢) in Lemma 2.3.3,
| /;(H'(a)e“HY/Qe“HlHacu, vyds| = | /Ot(eitH(e)H’(a)VQHace“Hlu, v)dt|

t
= | TR T e O

< of / V=TT ety |2t}
I o
0
< Cllullflvll,

then by taking — oo, one has
'(e)W_(H(e), H) ), = IT' ()11, — eK (),

where . .
K(E) é / €7itH(€)H/(8>‘/2€itHl Hacdt — / 7ZtH( H/< )%Haceltl‘h dt (224)
0 0

satisfying
[(K(e)u, v)| < Cfull[Jv]
uniformly ine > 0 small enough. This means th&t <) is uniformly bounded inC(L?(R™)). Then one can
check that
IT'(e)I,. — eK(¢) : Ranll,. — RanII'(¢)

is bijective fore > 0 small enough. In fact, we have

' (e)ac(Hy) — eK(e) = I (e){1+&(S(e) — K(e))} = {1 — &(S(e) + K(e)) Hlae(H1).

Fore > 0 small enough,l + ¢(S(e) — K(¢)) and1 — &(S(e) + K(¢)) are invertible inL?*(R™). For
g € Ranll,. such that(Il'(¢)II,. — eK(g))g = 0, then{l — &(S(¢) + K(¢))}¢g = 0. Thusg = 0. So
II'(e)I1,. — e K () is an injection for= > 0 small enough. On the other hand, foe Ranll’(¢), set

g=f+) (—ll'()(S(e) = K()*f.

wherell,(H,) = 1 — II,.. Fore > 0 small enough the series is convergent and one(hias)I1,.
eK(e))g = f. Thusll’(e)Il,. — eK(e) is a surjection. So it is a bijection from R&h,. to Ranll’(¢).
Then because of RaW_(H;, Hy) = Ranll,., one obtain that Ral’(¢) C RanW_(H(¢e), Hy). So we
can deduce that RaW_(H (¢), Hy) = RanlIl'(e).

By Lemma 2.2.145(H (¢), Hy) is bijective if and only if RaiV_(H (¢), Hy) is closed. In our case,
RanTl(e) is of finite dimension andI(¢) is bounded or.>(R"), so there exists a set of functio@gaj}N1

such thafll(e) f = Z ¢i(f)g;, for f € L*(R™), wherec; is a bounded operator ai¥(R"). So we can
find a dual basuétgbj}J 1 such thafll(e) = Ej:1< ,¢j)p;. It follows thatIl'(¢) = 1 — Zj:1< . ¢j)p; and

then RanlT'(¢) is closed. S&(H (¢), Hy) is bijective onL?(R™) for ¢ > 0 small enough.
U






Asymptotic Expansion in Time of the Solutions
to Dissipative Schrodinger Equations

3.1 Main results

In this chapter, we consider the solution to the followingi€lay problem of the dissipative Schrédinger
equation
{ iOwu(t,x) = H(e)u(t,x), t >0, x € R*, n > 3, (3.1)

u(0, ) = up(x).

By the assumptioi(l.2), we know thdt <) is maximally dissipative with domaif(H (¢)) = H?*(R").

In this caseC, = {z € C : 3z > 0} is included in the resolvent set H(c)) and H(¢) generates a
contraction semigroup/(t,s) = e~*#© on L2, Thus the solution of(3l1) can be expressed:by z) =
U(t, )uo(x). The main task in this chapter is to get the asymptotic exparef U (¢, <) in vL(0, s; 0, —s),

s > 1 large enough astends to infinity, i.e. Theorem 1.4.1, TheoreEm 1.4.5 and Tém@®?.

This chapter is organized as follows. In Section 3.2, we vatlall some known results of the free
resolvent and the distribution of the eigenvalue$igt) which can be found i [77]. We first state the low
spectral analysis off (¢) for the 3-dimensional case in Section 3.3 and then discedatpe-time expansion
of the semigroup in Section 3.4. In particular, we will disstsome properties of the Riesz projection of
H (¢) associated with the eigenvalues néam Section 3.3. At last, we will discuss the case that 0 is @nly
resonance but not an eigenvaluerf for the dimensiom = 4 in Section 3.5 and the case that 0 is both a
resonance and an eigenvalueftf for the dimensiom = 4 in Section 3.6.

3.2 Preliminaries

In this section, we first recall some properties about the fesolvent?,(z) = (—A — z)~! which will
be used later. It is well-known thdt(z) is a convolution operator fron/ ~*(R™) to H~*(R"), s > 1.
Let2? = |z|7e”®¢% andln 2z = In |z| + i arg z with arg z €]0, 27| for v €]0, oo[. The convolution kernel is

1
1 eizi\x\
K3<SL’; Z) = E |.T|

31
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if n =3 and )
122

87| x|

Ky(w;2) = ——H}"(27]a])

if n = 4, WhereHl(l)(f) is the first Hankel function. Then without proof, we presdmg following two
lemmas about the expansions of the 3-dimensional and thedndional free resolvents near zero. Let
B(zp,0) = {z € C: |z — 2| < d}. If no confusion is possible, we dendte || the norm of functions or.?

or the matrix norm ori? or the operator norm oh?.

Lemma3.2.1.Lets > N + 5 for N € Nanda €]0, min{1, s — N — 3 }[. Then there exists > 0 such that
for z € B(0,0) \ R, we have the expansion of the 3-dimensional free resolwefit+1, s; 1, —s)

N
Ro(2) = Y 22G; + Gyial2),

J=0

where eacls; is a Hilbert-Schmidt convolution operator ifi(—1, s;; 1, —s;), s; > max{1,j + 3} with
kernel% andGy . .(z) isaC" operator-value function of from B(0,6)\R, to £L(—1, s; 1, —s). More
precisely,G; is a finite-rank operator forj odd. Moreover, we have the estimates dor=|0, min{1, s —
N =31
k
. d L N
(@) =" T Cxral2) (@) < O]

Lemma 3.2.2.Lets > 2N + 1 for N € Nanda €]0,min{l,{ — N — 1}[. Then there exist§ > 0
such that forz € B(0,6) \ R, we have the asymptotic expansion of the 4-dimensionarésmsvent in
L(—1,s;1,—5)

2*F k=0,1,...,N.

1 N
Ro(z) = Go + Zlnk z szGf + Gnial(2),

k=0 j=1

whereGy € L(—1,s¢; 1, —5s0) and aIIG? € L(—1,s;;1,—s;) are Hilbert-Schmidt convolution operators
fors; > 25+ 1 andGy.(z) is aC?N operator-value function of from B(0,4) \ R, to £(—1,s; 1, —s).
In particular, eachG] is of finite rank forj = 1,..., N. Moreover, one has the estimates

-5 dk —s a—
1)~ T Gntal(2) @) Il < Ol 75, k= 0,1, 2N,

These results can be found in lots of works (see [31],[33],[76],[84]). From these two lemmas, it is
easy to check that

1
M={¢pec H"5:(1+GyV;)¢p =0, foranys > 5} (3.2)
both for the 3-dimensional case and the 4-dimensional case.

Definition 3.2.3. If dim M = 0, then we call that zero is a regular point &f,. Otherwise, zero is an
exceptional point off,. Furthermore, ifM; # () and M, = (), zero is said to be an exceptional point of
the first kind. IfM; = () and M, # (), then zero is said to be an exceptional point of the secordl Kind

if M, # () and M, # (), then zero is said to be an exceptional point of the third kind

And then we list some properties of the functions\ih
Lemma 3.2.4.(a). If n=3, then for anyp € M and¢,, ¢, € M N L?, we have

| S
GVio = (Vi 1) { RN (3.3)

(G2Vidr, Viga) = (01, ¢2). (3.4)
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(b). If n=4, then for any € M, we have

1 0, ifepeclL?
@ 20 e s
Then we apply the Grushin method to analyze the discretdrspeof H (¢) near0 which is valid for

all dimensiom > 3 (see|[77]). Becaus&,V; is compact in(1, —s; 1, —s) for py > 2 ands €]1, py — 1],
M is a finite dimensional space and we denate- dim M < co. Moreover, it can be check that the form

GiVig = (3.5)

M XM (¢,90) = (o, Vi),

is positive definite. Then by the Gram-Schmidt process, amecboose a bas{®;}7., of M such that

i == { 4 I @9

Let (Q be the projection fron#/ >~ to M such that fowy € H>~%,

Z ~Vig;)¢

and letQ’ = 1 — Q. In [76], the author gave a proposition of the projectipias follows.

Proposition 3.2.5.(1). For s > 1, one has the decomposition
HY"* = M@ Ran(1 + Gol)).

Q is the projection fromf/ 1~ onto M with Ker Q = Ran(1 + Go1}).
(2). Q' (1 + GoV1)Q' is invertible on the range a’ and (Q'(1 + GoV4)Q')*Q’ € L(1,—s; 1, —s) for
s> 1.

Let R(z,e) = (H(e) — z)~ ', for 2 ¢ o(H(¢)). Because of
R(z,e) = (1 + Ro(2)(Vi — ieVa)) " Ry(2), (3.7)

we have that the eigenvaluesf <) coincide with the poles of — W (z,e)™! = (1+ Ro(2)(V1 —ieVy)) ™!
in £(1,—s;1,—s), s > 1. By an argument of perturbation and Proposifion 3.2.5, @meprove that fop
ande sufficiently small,(Q'W (z,2)Q") '@’ exists onH'~* for = € B(0,4) \ R,. One can construct the
Grushin problem as follows.

Fors > 1, let

W(Z,E) _ <W(§75) ,-g) :Hl,fs % (Cm N Hl,fs % (Cm’

whereT : C™ —- M andS : H>~% — C™ are defined as

m

Tc:chngj, c=(c1,...,cpn) €C™,

J=1

Sgb = (<¢7 _‘/1¢1>7 LRI <¢7 _‘/Y1¢m>), Qb € Hl’_s.

It is easy to check that
TS =@Q, ST =1d ¢cm.

Moreover the inverse ofV(z, ¢) is given by

B E(z,e) Ei(z¢)
E(z,e) =Wl (z,e) = (E_(Zi) E—++(27€€)) ;
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where
E(Z,S) = (Q,W(Z,S)Q,)_lQ,’
E (z,e) = T —E(2,e)W(z,¢)T, (3.8)
E_(z,e) = S—5SW(z,¢e)E(z,¢), (3.9)
E_(z,e) = =SW(z,e)T + SW(z,e)E(z,e)W(z,e)T.

Thus it is easy to verify that
W(Z, 6)71 = E(Z, g) o EJr(zv g)E*+(z7 8)71E,(27 g) (310)

on H%~*. Moreover,E(z,¢) and E3(z, ¢) are holomorphic and uniformly bounded fore B(0,4) \ R,
ande > 0 small enough, wherg is one of—, + and—+. In particular,E_, (z, ) is anm x m matrix with
the representation

(E_+(Z, 5))kj = <(_W(Z> 5) + W(Zv €)E(2, €)W(Z, 5))¢ja _Vl¢k> (311)

Thus by [3.10), to get the expansion of the resolvent near, zers sufficient to discuss the inverse of
E_,(z,¢). Let F(z,e) = det E_,(z,¢). Thenz, is a pole ofil¥ (z, &)~ ! if and only if F'(zy,¢) = 0.

In [[77], the distribution of the eigenvalues &f(s) under assumption (1.2) has been proved:for 0
sufficiently small. First sincg, > 2, there are only finite number of eigenvaluedffon] — oo, 0] denoted
by iy < ... < < 0 (see Theorem XII1.6 in [58]). Let; be of the multiplicityn; for j = 1,... 1. It
was proved in[[77] that for > 0 small enough/ (¢) hasn; eigenvalues located in the domdin € C :
|z — p;| < Ce,—Ce < Iz < —ce} for somed < ¢ < C. On the other hand, i is an exceptional point
which means thdlt is an eigenvalue or a resonancefff, the distribution of the eigenvalues n@asf H (¢)
was provided by the following proposition.

Proposition 3.2.6(Theorem 3.2. in[7]7]) Suppose, > 4.

(a). If zero is an eigenvalue of multiplicity, but not a resonance df, then there exisi, o > 0 such that
for 0 < e < ¢, H(c) hasm eigenvalues ilB_(0,0) = B(0,5) UC_.

(b). If n = 4 and zero is a resonance, but not an eigenvalué/gfthen there exist, ¢ > 0 such that for
0 < € < &g, H(¢e) has one eigenvalue iB_(0, ).

This theorem covers the first two cases we consider and fahtieecase we will give a proof of the
distribution of the eigenvalues &f (<) in Section 6.

It is permitted in [77] that the real part of potential furstihas a critical decay rate(|z|~?) for ||
sufficiently large and it includes the cases we consider. lieieproved that each eigenvaluesiéfs) has
negative imaginary partce + o(¢) for somec > 0 if 0 is only an eigenvalue but not a resonancéief But
if zero is a resonance df, it can only include the 4-dimensional case but it is invétid3-dimensional
case.

Due to [3.10), we dividé(z, ¢) into two parts as follows

Ri(z,e) = ?(z,e)Ro(z),

R[[(Z, 6) = E(Z, €)R0(Z),

whereE(z,¢) = —E,(z,e)E_,(z,¢)"'E_(z,¢). As we presented below, far > 0 ande €]0,e,] small
enough,R;(z, €) is uniformly bounded analytic operator §d = B(0,24) \ R, and R;;(z, <) is of finite
rank inL£(—1,s;1, —s) for s > 1 and any fixedt € QN p(H (¢)).
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3.3 Analysis of the resolvent in dimension three

In this section, we will discuss the asymptotic behaviohefttesolvent near = 0 under the assumption
thatn = 3 and that) is only an eigenvalue but not a resonancéiof
Firstly, we consider the expansion Bf(z, ¢) for z € Q. Under the assumption of Theorém 114.1, the

expansion ofV (z,¢) in L(1, —s; 1, —s) for s €]N + 1, 2] has the form

W (z,¢) = (1+ GoVy) — ieGoVa + Z 22G(Vi — V) + Gy 2) (Vi — igVa), (3.12)

7j=1

for z € €. On the other hand,

E(Z,€) - (Q,W(Z’,éj)Q/)_lQ,
= (Q(1+GoVi —ieGoVa+ N(2,6)Q) '@
= (1 —i€E( )GoV2Q' + E(0)N(2,6)Q") E(0)

— ) + Z DT (—ie B(0)GoVa + E(0)N(z,¢)) E(0)
= FE0)+ ENl( )+ Nao(z,¢€) (3.13)
whereE(0) = (Q'(1 + GoV1)Q')'Q’, Ni(e) = 12, e HE(0)GoV2) E(0) and
N(z,e) = O(|2]2), Na(z,€) = 22 EX(e) 4 2 E*(e) + 22 E*(¢) + O(|2]%)
are analytic inD(0, §) \ R, . Thusl with the help of an argument of perturbation,fpt, small enough and

s €]N + 1, 2], we have that

N
E(z,¢e) = Zz%EJ + Enta(z,€), 2 € Q, € €]0, ], (3.14)
7=0

where

Eo(e) = (Q(1+GoVi —ieGol)Q) Q" = (Q'(1+ GoV1)Q)'Q" + O(e),

E1(€) = —Eo(éf)Gl(Vi — i€‘/2)E0(€),
and other terms can be also computed explicitl£{d, —s; 1, —s). In fact, £;(¢) is a uniformly bounded
operator ore in £(1, —s;; 1, —s;) for sp > 1 ands; > j + %,j = 1,..., N. Furthermore, the remainder
Enia(z,€) is a uniformly bounded operator anc0, o] andz € Q in L(1, —s; 1, —s) satisfying that
—s dk s N+a
(@)~ Exsalz )] < CLa ™78, k= 0,1, N,

In particular, one can see that (<) is of finite rank forj odd.

Lemma 3.3.1.Under the assumption of Theorém 114.1, faf €2, then we have the following expansion
Zlej + Ri ntal(2,€),

where R, ; = Y4 o En(e)Gi_y € L(—1,s5;1,—s;) for sy > lands; > j+ 1, j = 1,...,N. The
remainderR; yi. € L(—1, s;1, —s) satisfies that

dk N+o
[{z)~* e —— Ry Nyal2,8)(2) || < Clz )

...,N.

- Y

FurthermoreR, ;(e) is of finite rank for oddj.



36 CHAPITRE 3. ASYMPTOTIC EXPANSION OF THE SEMIGROUP

Suppose that, ando are small enough such that the expansion of free resolvdrgrimmal3.2.1l and
the assumptions of Propositibn 312.6 (a) are valid. Then alie(t; £ B(0,26) \ (B(0,cie) U R,) the
intermediate energy part arfeh, £ B(0,2¢¢) \ Ry the small energy part. Herg defined below is a
constant such that all the eigenvalues rieare located iff),. In the next two parts of this section, we will
discuss the expansion & (z, ) in the intermediate and the small energy parts.

3.3.1 Intermediate energy part

This part would not determine the expansion of the semigraug it yields a term with any decay
rate in the expansion of the semigroup folarge enough. Throughout this subsection, we suppose that
e €]0,e¢], z € 2, and that the assumption of Theorem 11.4.1 is valid.[By (3. b&)laammd 3.2}4, we have
that forz €

<W(zv‘€)¢j7 Vl(bk>
= ie(Vagj, o) + 2(¢;, or) — icz(G2Vad;, Vi)

N .
+Y 23(G (Vi — ieVa)oy, Vidw) + (Gnial2) (Vi — iVh) s, Vid).
j=3

Here we use the relatioris (8.4), (3.3) ahdl(3.4). Them byllj3amd [(3.14) we have

E_i(ze) = F_yo(z,6)+e2E_y g+ E_,1(¢) +ezE_y 5(c)

2N
+Y 22E_4(e) + By ntal2,6), (3.15)
j=3
where
(B o)j(z,e) = ie(Vagy, dn) + 2(¢5, ),
(E_yokj(e) = —(VaEo(e)GoVadj, dr),
(B 1)ii(e) = —((VaE1(e)GoVa + VaEy(e)G1Va) by, Ok,
(E7+,2>k] (e) —i<G2‘/2<Z5j7 Vigr) + ((iGo(Vi — ieVa) Eo(e)GoVa + eGoVa Ea(e)Go Va
+Z'G0V2Eo(€)G2(V1 - iSVQ) + 5G0V2E1(5)G1V2)¢j7 ‘/1¢k>7
(B—ra)ij(e) = (Ga(Vi —icVa)ey, Vidw) + e((iGs(Va — ieVa) By () GV
+€G0‘/2E3(8)G0‘/2 + ZGQ‘/QE()(E)Gg(‘/l — ZE‘/Q)
+iGo(Vi —ieVo) E1(e)GoVa + iGo Vo Ey (e)Go (Vi — ieVsh)
+eGoVaFEa(e)G1Va + iGa (Vi — ieVa) Ey(e)G1Va2)9j, Vigr),
and other terms can be calculated directly. In particBlar (<) andE_, ;(), 5 = 0, ..., N are uniformly

bounded matrices onandE_; n..(z, ) satisfies that

dk N+«
B ez ) < O

* k=0,1,...,N.
It is obvious that/ = ((¢;, k) )1<jk<m @aNdV = ((Va¢;, ¢x) )1<jk<m are positive definite, because of the
assumption orvz(z). It follows that there existn zeros{ —ie\;}7., of Fy(z,¢) = det E_, o(2,¢), where

0< A <...<\,.Moreover, we have

E_o(z,e) = ieA (A7) WA~ + i)A,
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wherel/ = A* A andA is an invertible matrix. LeP; be the eigenprojection ¢f4*)~'V.A~! corresponding
to A\;. Then one has

m —-1p. *\—1
E7+,0(Za€)71 = Z —A PJ(A )

= + e
In [77], using the Rouche’s Theorem, the author proved thetetaren zeros{z;(¢)}7., of F(z,¢) =
det F_, (z,¢) satisfying that
|z;(e) +ie )| < cet,
for somec > 0. Sete; = 2, and then forz € ; we have

1 1
|z +ieh] 2 2] —ed; > Slal, e < — 2.
&1

It follows thatE_, o(z,e)~! = O(|z|!). By these observations, we can prove the following lemma.
Lemma 3.3.2.For py > 2N + 1, s €N + 1, 2], z € Q; ande €]0,20], we have the expansions of
E_.(z,¢)7! and its derivatives as follows

Fooo S A A
_ — (— | _—
deE7+(Z75> E,+ O(Z E) +Ak(z78> ( 1) kz (Z‘|‘Z.€)\l)k+1

dzk _'_Ak(zug)a

=1

(3.16)
whereA,(z, €) is a matrix with|| Ay (z, €)|| = O(|z| %),k =0,..., N.
Démonstration.Let £'(z,¢) = E_, (z,6) — E_; o(z,¢€). Forz € Q,, we have
E_i(2,6) = B_yo(2,6)(1 + E_y o(2,6) ' E'(2,€)) = E_; o(2,)(1+ O([2]2)),

and by Neumann'’s series one can check thad fands, small enough¥_, (z,¢)~! exists with

|E_i(2.8) 7| < ool E—so(z,2) 7| < O(l2 7).
Then we can obtain that

E_i(z6)" = (14+ E_ro(z2) ' E(2,0) " E_yolz,e)!
= E_o(z,e)7' + Ao(z,¢),

where

Ag(z,8) = —E_yo(2,8) ' E'(2,6)E_1(2,6)7".
It is easy to check thatdy(z, )| = O(|z|~2). On the other hand, it can be also checked that

m

&’ A1 P(AF
—E_yo(z,6) = (=1) IZ ((A)”

dzi (2 4 eN)itL’
dj
dzi
for j > 1. Therefore noting that

dk dk
—E_(2,6) ' =1+ E_1o(z,6) 'E'(2,8))" WE—JrO(ZﬂS)*l

(Bt o(2,6) B (2,€)) = O(|2| 773,

) |
e -
20 D (g, [T+ Bz ) B (20)) (B o(2,0) B (2,9))
J=1 jit..tjp=j q=1
Jq=1l,g=1,...,p

dr=

(1 + E*+,0(z7 8)71El(27 E))*lek_j E*Jr,o(zv 6)717

we can obtain(3.16). O
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Lemma 3.3.3.For py > 2N + 1, s €]N +
and its derivatives as follows

%, 2],z € O ande €]0, &), we have the expansionsﬁ(z,g)

k m -1 *)—1 "
d—E(z g) = (—l)ka!Z TAZAA)S + Fi(z,¢),

dz* 1 (Z + i€>\l)k+1

whereEy(z, ) € L(1, —s; 1, —s) with [|(z) = Ej,(z,)(z)?|| = O(|2| *~2).
Démonstration.In light of (3.8) and[(3.D), it is easy to check forc () that,

Ei(2,6) = (1+eB o(e) +227E,q(e) +zz2Eﬂ )+ By vra(z, )T,

(3.17)
E_(z,e) = S(1+€E,70(€)+5z%E —i—ZzME e)+ E_nialz€)),
(3.18)
where
E+70(€) iEo(éf)Go‘/g,
E+71(€) = ZE()(E)G1‘/2 + ’lEl( )Go‘/g,
E,s(e) = —Eoy(e)Go(Vi —icVa) +icEy(e)GoVa + ic By ()G Va,
E+73(€) = —E0(€)G3(‘/1 — Z€‘/2) + Z€E3(€)GQ‘/2 — E1(€)G2(‘/1 — Z€‘/2)
+ie By ()G Vs,
and
E,70(€) iGo%Eo(S),
E,J(E) = ZGO‘/QEl (8),
E_72(€) = i€G0‘/2E2(€) — GQ(‘/l — i€‘/2)E0(€),
E,73(€) = iEGo%Eg(E) — Gg(‘/l — ZE‘/Q)E()(S) — GQ(‘/I — ZE‘/Q)El(E)
By the same wayl’, ;(¢) andE_ () ,j =4, ..., N can be calculated directly and the remainders satisfy

dk «@
||{(x)~* o — Ex nialz,8)(2)%]| < C\z|NT+*k, kE=0,1,...,N.

Actually, one can check that, ;(¢), E_ ;(¢) € L(1,—s;;1,—s;) are uniformly bounded operators for
so > lands; > j+ 1,7 =1,...,N, and the remainderB, y.(z,¢) and E_ y..(z,¢) are uniformly
bounded inC(1, —s; 1, —s). Sinces < O(|z]) for z € 4, one has

E.(z,e) = (1+0(z])T:C™— H"*,

E_(z,6) = S(1+0(z]): H"* = C™,
and the properties of their derivatives

. dF il
o) By s < O,

d* . et
IS B )@l < O(1274),

for k = 1,..., N. Consequently, noting thdf(z,e) = —E, (z,e)E_,(z,¢)E_(z,¢), we can complete the
proof of lemma. O
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By R;i(z,e) = E(z,¢)Ro(z), we have the following lemma.

Lemma 3.3.4.For py > 2N +1,s €|N + 1, 2], z € Q; ande €]0, ¢o], we have the expansionsBf; (z, )
and its derivatives as follows

d* (_1V+%ﬂ§i7344fu/vy4sao

—R11(278> = (Z+i€)\l)k+1 +O(|Z‘7k7§)u

dzk
=1

in £(—1,s;1, —s).

3.3.2 Small energy part

Since the zeros ofy(z,¢) are {—ic);}7,;, one can choose a constant > 0 such thatz;(e) €
B(—ie\;,coe) € C_ and B(—ie)j, coe) N B(—icAg, coe) = O for \; # M, j,k = 1,...,m. In this
part, we want to discuss the expansionRyf(z,) in Q, £ O, \ (UJL, B(—ie)j, cae)). Throughout this
subsection, we always assume that 2, ande €]0, ¢0]. Note that the expansions (3114),(3.17).(8.18),
3.12), (3.15) ofE(z,¢), E+(z,¢), W(z,e) and E_,(z,¢) respectively are valid for € Q, C Q. The
object of this subsection is to prove the following lemmartkermore, some expressions of the terms will
be given in the proof (se€ (3.123) and (3.23)).

Lemma 3.3.5.Suppose that < N € N, py > 2N + 1 ands €N + 3, 2], & €]0,min{l,s — N — 1}],
z € (), £ €]0, g9]. Then we have the following expansion

N J
~ 1 z2
E(Z, E) = EWO(E) + ZWl(E) + Zz @W](é‘)
]:
1
+WWLN+O¢(27 €) + N_THWQ,N—H)(Z’ €),
g 2 2 £ 2
(3.19)
whereWy(g) = iTV™'S + O(e) € L(1,—s0;1,—50), Wj(e) € L(1,—s;;1, —s;) are uniformly bounded
one forsy, > lands; > j + %,j =1,...,N,andW, yia(z,€), [ = 1,2 are uniformly bounded operators

one, zin L(1,—s; 1, —s). In particular W; (), Wi n+a (2, €) are of finite rank for any fixed € (2, and the
remainders satisfy

—s dk s N+a

@)~ = W saa (2 )| < CJf™

andWyia2(A+10,¢) = Wiya2(X —i0,¢e) for A € [0, 2¢,€]. Furthermore, it follows that for € €

+* k=0,1,...,N, 1=1,2,

N J
1 1 22
R[[(Z,€) = ER2’0(€) + ZéRQ’l(g) + Z @RQJ(&Z)
7j=2
1
+mR2,l,N+a(27 €) + LTR2,2,N+O{(Z7 £),
ez T2 g 2 +1
(3.20)
where Ryo(e) = TV 1SGy + O(e) € L(—1,s0;1,—50), Raj(e) € L(—1,s4;1,—s;) are uniformly
bounded ore for sy > 1 ands; > j + %,j =1,...,N, and Ry n1alz,€), I = 1,2 are uniformly

bounded operators on z in £(—1, s; 1, —s). In particular Ry ;(¢), R n+a(z, ) are of finite rank for any
fixedz € Q25 and the remainders satisfy that

—s dk —s N+a
2y > Rag vl €){2) ] < Clel ™

+* k=0,1,....N,1=1,2,

and R2,2,N+a(>\ + ZO, 5) = R2,2,N+a()\ — ZO, 5) for \ € [0, 2015[.
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Let E_, (z,¢) = E_,(z,¢) + e2E_, o(¢). To get the expansion df(z, ), we divide the proof of
Lemmd3.3.b into some steps.

Lemma 3.3.6.Under the assumptions of Lemma 3.3.5, one has that

- | ¥+
E_,o(z¢) :—BO +Z J+1 5[ HQB[%]H(Z’E)v

where )
By(e) = (1 —ieVE_, o(e)) ' (iV) ™ = =iVt + O(e),
Bj(e),j = 1,...,[5] are uniformly bounded on and B[%]H(z, e) is a uniformly bounded matrix og ¢
satisfying that fork € N
d* .
|55 By (=)l < OE™).

Démonstration.Since

AP (A
(1eV + 2U)~ Z z+lls>\l) = 0(e™),

for z € ),, we have that B
E_Lo(z,e) = (ieV+2U)(1 + O(e)).

Thus by Neumann'’s series, one obtains thatfer (2, andd, ¢ small enoughE,H)(z, e)~! exists with

E_o(z,e)™ = (1+&2(ieV + 2U) " E_y o(e))  (ieV + 2U) . (3.21)
Thus we have
(5] om . _
: o 7 (=1/A R(A) !
(Z€V + ZZ/{) - citl (Z (i)\l)j+1 )
=0 =1
B+ ™ (1 [%]+1A—1P A*)-1
+Z : Z (=1) 1(A)

B2 (i) E(2 4 i)
Consequently, taking this intb (3]21), we can obtain thectmion. Furthermore,
Bo(e) = (1-— z’sV*E,ho(a))*l(iV)*l

= —iV '+ 0(e).
O
Lemma 3.3.7.Under the assumption of Lemina 313.5, one can obtain theafisitpexpansion
1 1 N Z%
E_(z,e)" = gBo(g) — 22 By(e) E_+,1(e)Bo(e) + jz; g[%ﬁCJ(S)
1
+m01,N+a(Z, g) + LTHCQ,N+CM(Z7 €),
g 2 2 £ 2
(3.22)
whereC(¢), j = 2, ..., N are uniformly bounded matrices ad n.(z, €), | = 1,2 satisfy that
dk
HdkClN"’a(Z g)]| < J1,...,N, 1 =1,2.

Furthermore,Cs yio(A + 00, €) = Co n1a(A —i0,¢) for X € [0, 2¢¢].



3.3. ANALYSIS OF THE RESOLVENT IN DIMENSION THREE 41

Démonstration.Note that
E_(z,e) = E,Jr o(z:8) 1+ E_y o(z,6) W22 F_y 1(€) + e2F_, 5(¢)

+ZZ2E_+] ) + E_1 N+al2,€))).

It is easy to check that
E*Jr(z? 8) = E*+70<z78)(1 + O<€§))7

for z € Q. SOE_,(2,¢)7! exists forey > 0 small enough. Then one can deduce (B8.22). Actually, noting
that

E_(\e) = (1+(52)\E£+(8)+8A2E3+(8)+i)\jEj+(s)
FEN DB () . ().
we have that
E_y(Ne)t = EY . (\e) {1+ (PAEL (e) + eNE%_ (e) + i NE (¢)
+EYE(A, 6))E0 (A\e) )™ |
= E° (\e) 1{2 EINEL () + eN2E2 () + iAJEL(s)
+EN+“(A E))EO (A e)™) + (=D)Y((PAEL (e) + eN*E2 ()

+ Z NET (€) + BN\ e)E®, (A &) )N (1 + (2AE"_ (¢)
FENE? (e) + ZAJEJ )+ ENF O e)EC (A e) )T
Firstly, due to Lemm&3.21, we check that fgreven

N
(2B, (¢) + eN*E%_ (e) + Z NE, (e) + ENF(\ ) E®, (M &)™

N
= (2ABL,(e) + eNER (e) + ZAJEJ )+ ENFE (N, 2)) )+ Z S5 E)
)\N+2
5B (V)
£2

= 5>\E1 L(e)B%e) + N*E? () B%(e)

+Z{A” ' Li(e)B( +Z€l ]HEZJ H(e)B(e))

1
+>\2[( E2 Bl 1 +Z l j+1 2] Bl J( ))}
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j=1
N+2

+£+2 (2AE () + eN*E% (e) + Z NE! (e) + ENF(N\£))B2 () )

and for N odd

(E2NEL () + eN*E? , (e) + Z NE () 4+ ENFo(\ ) E° (A, )7}

o )\23
(E2AEL, (¢) + eN2E% () + Z NET, (e) + ENF*(\ ¢) Z B
)\N+1 No1
+5¥+2B = (X))

5>\E1 ( )B°(e )+A2Ei+(e)B°(e)

1
21 2 - 1 2 l
A B2 (e)B +ZHH] e)B'(e))}
N+1
1 N1 - 1 2j—1 N+l s
HMW (5B ()BT () + Y —m—E¥ (e)B™> 7(¢))
£ 2 2 € 2 J
N-1
AV (= B2 (e)B7F () + Y ——EY, (e)B % (e))}
N4l N-1
: 1 27—1 — 21 : 1 2] l
+OY 0y e Jadt (e)B () + A Y b (e)BT}
l ] l— 1 j:l—N2_1
a A2 ANHL
+ENF () €) +ZﬁB] E¥HB = 1)\ €))
N+l 2y 1 2 122 J N+a No1ig
+€¥+2 (E2NEL (g) + X2 B2 (¢) +Z>\ E_ () + BN\, e))B7Z 1)\ ¢)

In the expansiori(3.22), the singularities of the termgjfor 3 odd are determined by
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—22E_ o(z,e) ' E_, 3(e)E_, o(z,¢)"" and the ones foj > 2 even are dependent di_ (z,¢)".
Therefore, the singularities anfor j odd and even are different. On the other hand, also due t@khis
servation, there would appear two kinds of remainders. TeekindC; (%, €) is dependent on the odd

power of 2 and E_. nia(z,€), and the second on@; v, (2, <) is dependent on the even power :0f.
Furthermore(s y14(z, ) is analytic onz € €. O

Proof of Lemma 3.3]%rom (3.10),[(3.17)[(3.18) and (3122), one can get the
expansion[(3.19) of/(z, ). In particular,

Wo(e) = —TBy(e)S —e(E4o(e)TBy(e)S +TBy(e)SE_y(€))
—e?E, o(e)TBo(e)SE_ ()
= iTV7'S+0(e),
Wile) = —E 1(e)TBo(e)S(1+cE_y(e)) — (1 +eELo(e))TBo(e)SE_1(e)
(1 + 2B o)) TBo(e) Bt () Bofe)S(1 + 2E_o()),

and the other terms can be also computed directly. Constgueyn (3.7) and Lemma3.2.1, it is easy to
get (3.20) and

R270(€) = W0(€)G0
= TV 'SGy+ O(e),
1
RQJ(E) = EWQ(S)Gl‘i‘Wl(E)GQ

= —TB()(€)SE_7Q(€)G1
—(E11(e)TBo(€)S + T'Bo(e)SE-, ( ) = T'Bo(e) E—11(€) Bo(€)5)Go + Ofe),

Roj(e) = eF'Wo(e)Gy + W (e 1+Zs” IW(e)Gp, j=2,...,N.

Here we use the relatiofiG; = 0 for R, (), and the properties of the remainderdlin (8.19) and (3.20) ca
be easily checked. We omit the details here.
O

Together with Lemma3.3.[,3.3.4 dnd 313.5, we can get thandiolg theorem about the resolvent(in

Theorem 3.3.8.Suppose thalV > 3, py > 2N + 1, ¢ €]0,¢0] ands €]N + 1, 2]. Then forz € 4, one
has the expansions &f(z, ) and its derivatives as follows

d* “TA'P(A*)7LSGy )
—R = (=1 O(|z|F2 3.23
Ak (Z 5) ( ) lzl (Z+i€>\l)k+1 (‘Z| 2)7 ( )
in £(—1,s;1, —s). For z € Qy, we have the following expansion Bfz, )
1
R(z,e) = Rlo(s)+—Ro(5)+z%Rl(5)
+Z ©)+ e RO (2:6) + ey B, (210)
]+1 J EN+§+1 N+a\™ €N+;+2 N+a\~>»~ /)
for somex E]O, min{l, s—N—= [ HereRl( ) Rl,l(g) +R271(€) ande(s) = 8[%}+1R17j(€) —|—R27j(8),

N+o¢+1

j=2,...,NandR{ (z,6) =" 27 Rynta(2,6) + Rotnia(2,6), RO, o (2,6) = Roanialz: ).
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Remark 3.3.9. It can be calculated directly that

Rl (E) = Rl,l(g) + RQJ(E)
= (1—i(l+eE;0(e))TBo(e)SGoVa)(Eo(e)G1 + Ev(€)Go)
(1 — Z‘/QTB()(éf)S(l + €E_,0(€))GQ).

Furthermore, noting thatEy(¢) Gy + E1(e)Go) = Eo(e)G1(1 — (Vi —ieVa) Ey(e)G) is of rank one R, (¢)
is a uniformly bounded operator of rank one at mostif+1, s1; 1, —s;) for s; > % On the other hand,
we can compute the limit

lim Ri(e) = (1—TV 'SGoVa)(Ey(0)G1 + E1(0)Go)(1 — VaTV 1SG)

e—04

= (1 =TV 'SGoVa)Ex(0)G1(1 = ViEy(0)Go)(1 — VaTV1SGy)

is a nontrival bounded operator of rank one fl{—1, s;;1, —s;) for s; > % SoR;(¢) is of rank one for
e €]0,€o).

3.3.3 Properties of the Riesz projection

At the end of this section, we shall analyze the Riesz prmgjp@ssociated with the eigenvalues near
Without loss of generality, we suppose that);, j = 1,...,m are all simple roots of{(z,s) = 0. For
z € 2y, we have

|z +ieX;| > o, 2] < 2¢qe.

SinceFE(z, ¢) is uniformly bounded on for =z € Q,, one has for €
Wi(ze) ™t = -TE_ | o(z,e)'S + Wi(z,¢)

in £(1,—s; 1, —s), where||(z) *W,(z,£)(z)*|| = O(¢~2). Consider the Riesz projection associated with

i(€)
II;(e) = ! R(z,¢e)dz.

211 OB(—ie)j,c2¢)

Therefore, by[(3]7), one has

1 )
() = —=— —TE_, o(2,6) 'SGy+ O(c™2)d=

271 OB(—ie)j,c2¢)

1 «— TA'P;j(A*)7!
— _27{ AT P(AY) SGOdz+O(5
j=1 OB(—ie)j,c2¢)

NI

)

271 Z+ iE)\j
= TA'Pj(A*)'SGy + O(e?). (3.24)

One can see thal; = TA ' P;(A*)"'SG, is a mapping fromL** to M C L2. Furthermore, it can be
extended to a projection from? to M. Formally, we have fop ¢ L?

¢ = TA™ P (A") ™ ({6, du) Fity).
So letS = {{-, ox) }i_, be a mapping froni.? to C™. It is easy to see thaf = 7*. We can verify that
II; = TA'P;(A*)~'T* is an orthogonal projection frorh? to M. In fact,

HjHj — TAflpj(A*>71T*TA71PJ(A*)71T*
= TA'Pj(A) UA ' P{(A) T
= TAT'RP(A)T =11,
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and ~ -

Il = (TA™'Pj(A") 7' T*)* =11,
If no confusion is possible, we also dendigethe eigen-projection of/; = —A + V;(x) on L?. Then one
has that

d oI = AT = TU T
7j=1
is the orthogonal eigenprojectiai, of H, associated with 0. On the other hand, by (B8.24) we have the
estimate fors > 1
1L (e) = Il -1.51,-5) = O(e2),
which implies
lim II;(e) =11, in £(—1,s;1,—s).

e—04

More precisely, we can also get the estimate of the projectsoan operator oh?.

Proposition 3.3.10.Suppose, > 7 ande €]0, £5] small enough. Then it holds that
ITL;(e) — TI|| z2y 2 < O(e2), j=1,....m. (3.25)

Démonstration.Let 10 (g) = > i1 11;(¢) be the Riesz projection associated with the eigenvaluésef
near zero and theR, = I1(?(0) be the orthogonal projection onto the eigenfunction spadé @ssociated

with 0. DenoteF; = 1 — F,. Itis known that
1

(19212 + |(R2)-[?)>
C

1
2

[Ri(2)]| <

9

)™ PoRa(2) P () | <

Y

2|

for - € C\ Ry ands > I, where(Rz)_ = min{0, Rz}. First, we consider the inverse 8f(H (c) — 2) F;
on L,. DenoteEy(z) = (Py(H, — z)P))~' B} and we have

1
(152 + [(Re)_ )3

[Eo(2)]| <

J

and
C

212

[{z) ™" Eo(2)(x) "l <

Let{p;}7, C L? be an orthogonal basis of the eigenfunction sp'atdt is known that the eigenvalues
of H(e) are aII iNB(—ic)j, coe) forj =1,...,m, where);, j = 1,...,m are the zeros of

Fo(A) = det(AM — ((Vays, o) )1<)k,<m) = det(M@s, ox) — ((Vady, dx) ) 1<k, <m),

where{gb]} » | is the basis satisfying(3.6). L&t = B(0,Cye) \ {B(0,Cye) U {z € C : |3z| < ¢e}} for
somec’ > 0 andC; > C; > 0 satisfying thatJ7L, B(—ie)\;, coe) C B(0, Cye). Formally, We note that

(P)(H(e) — 2)P) ' P} = Eo(z) + Z (ie) ' Eo(2)\/ Va(/ VaEo(2)/Va) /Va Eo(2)

and forz € Q,

IV/VaEo(z,€)v/Va|| < O(73).
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S0E(z,¢) = (Py(H(g) — z)P;)~! P} exists and we have the estimates

£z, )l
[{z) ™" E(z, )(x)~"]]

for z € Q ands > 7. We define the mapping_ : L? — C™ andR, : C™ — RanPF, by

<
<

R_p = {{p, )}, foro e L%

Ria= Zajqﬁj, fora = {ax}jL, € C™.

J=1

Then they satisfy thak_R, = Idcw andR, R = F,. Following a linear transformation frof;}7, to
{#;}7L,, we can obtain thall; = R, P;R_. By the Grushin method, one can deduce that

R(z,e) = E(z,6) — B (2,6)E_(2,e) ' E_(z,¢),
where

Eo(ze) = (1-E(ze)(H(e) - 2)Rs,
R_(1— (H(e) - 2)E(.¢)).
Ei(26) = R_((H(e)— 2)E(ze)(H(e) - 2) - (H(e) - 2))R-.

N
—~
o

™
~—
I

Therefore, it can be checked that foe Q,

|E (2. 0)lmre = O(),
|E-(z,&)l2m2 = O(1).

On the other hand, it can be calculated that
(E_i)jk(z,€) = 261 + ie(Var, ) — eX(VaE(z, €)Vapr, ¢5).

Let E_,(z,e) = zl,, + icV" whereV), = (Vay, ¢;). So we have that
E_((ze) ' =E" (z,6)7 ' + O(s_%).

Here E? (z,e)! = Z;.”:l Zﬁ—é% and P; is the eigenprojection of® associated with the eigenvalue,

which is the same projection dif* defined before. Thus we have that

m

R(z,e) = E(z,¢) — Z

R+P?»R, n 1
— ztie);

O(e2).

Consequently, we have the following expansion of the RiesigeBtionll,;(¢)

1
ILi(e) = —=— R(z,e)dz
211 OB(—ie)j,c26)

1 R.PR_
T 2mi f I 4 O(e3)
2mi j=1 OB(—ie);,c26) z+ Z€>\j

Here we use the analyticity d#(z, ¢) in . So we have the estimafe (3.25). O
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Second, similar to the case considered i [79] where it ipss@d thad is neither a resonance nor an
eigenvalue off{,, we can deduce the global estimate in the following propmsit

Proposition 3.3.11.For py > 7, s > % ande > 0 small enough, then the global estimate
|{(x)"*TI"(e) R(\ £ 40, &)IT'(e) {x) ~°|| < Coc™2, AER (3.26)

holds for some&”, > 0.

Démonstration.Let ¢ be the constant defined as before. ThenXor> 4, it is the same to the regular case
in [79]. On the other hand, we note that fer> 0 small enough such that + ix € Q, and dist(A +
ik, 0B(—ic)j, coe)) > de forsomed > 0andj =1,...,m,

1
R\ tik,e)llj(e) = —=—— R(Atir,e)R(z,¢e)dz

211 OB(—ie)j,c2¢)

1 R(z,e) — R(A L ik, ¢)
= —5_ - z
2mi OB(—ie);,c26) Z = <)‘ + ZH)

1
o R .
27 OB(—ie)j,c2¢) &= ()‘ + Zl{)
| TAP (A7) 1SG,
A ik +iel;

+0(72),

in £(—1, s;1, —s). Consequently, we have f\(—1, s; 1, —s)

T 1P * 1 1 1
R\ +ir,e)(1 —TT(e)) = R\ £ ik, €) +Z AAim“i MSGO +0(e72) = 0(e72).

LetIT¥ () = TI(e) — I1¥(¢) be the Riesz projection associated with the eigenvalués(ef which are
near the negative eigenvaluesiof (seel[77]). As shown ir [79], one can see that

IR\ =+ ik, )T (e)|| < Cs.
So letx tends ta) and [3.26) can be obtained fpoY| < 4. O

Remark 3.3.12. For the selfadjoint case satisfying th@is only an eigenvalue off; andp, > 7,s > I,
one has the estimate )
[{2) " Iae Ry (A £ i0)Hac () || < Col A2,

for A € R\ {0}, wherell,. is the eigenprojection onto the absolutely continuous edé/, . Furthermore,
in [31], it was indicated that the singularity is due 1V, G5V; F,. If this term can be canceled, then one
can also deduce the global estimate

() " Tloe Ry (X £ i0) e {2) %) < Co.

Thus applying the selfadjoint dilation (see [6C], [22], [[J8one can establish Kato’s smoothness estimate
(see [40]) both forH,; and H (). Then by the same method of perturbation as_in [79], the asyticp
completeness of the scattering operator for the pai(<c), H,) can be proved. Actually in [31], the authors
gave an example in which (x) is the spherical square well potential defined as follows

- _%7 |'T‘ < 7o,
Vilw) = { 0, x| > 1o

for somel, > 0 andry > 0. And then one can choose some suitdgjeand r, such that0 is only an
eigenvalue but not a resonanceféf and £,V G5V, Py = 0.
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3.4 Proof of Theorem 1.4.11

First, we state the existence Bf\ + i0, ¢) and their derivatives in some weightéd space for\ > 6.

Lemma 3.4.1. Under assumptiod (1.2) fof, > J + 1 ands > J + 3, one has thatc%R()\ + 140, ¢),
A€ [0,00[,j=0,...,JexistinL(0, s; 0, —s) for any fixedd > 0 ande 6]0 o] Wheregy = £(d) small
enough. Moreover, the estimates

&’ 41

|| {x)~ KR()\iZO ) @)% £ CsolN) "2, Ae[d,00[, j=0,...,J (3.27)

hold.

Démonstration.Under assumptiori (1.2) fgr, > j + 1 onV;, ands > j + 1
L£(0, s; 0, —s) satisfying the estimate

1 L " Ry(\ + i0) exists in

&’ _ i+l
(@)~ 5 R (h £ 10) (o) | < CoaN)TF, A28,

for anyd > 0. One can see this from Theorem 9.2[in|[31]. With help of Neumsaseries, one can obtain
that
(@) ~*(1 — ie Ry (A £ i0)Va) " {x)*|| < C,

for A > § ande €]0, eg) wheresy = £4(4) > 0 small enough. Noting that
R\ £10,¢) = (1 —ieRy (A £140)V5) 'Ry (A £ 40),

and

d . . o d :
ﬁR(Aizo g) = (1 —ieRy (N £1i0)V5) 1531@120)
d

+ie(1 —ieRy(\ & iO)l@)*laRl(A +i0)Va(1 — ie Ry (A £40)Va) 'Ry () £ i0),
by induction we have that for > j + % R(\ £i0,¢) exists inL£(0, s;0, —s) for A € [0,00[,j =0,...,J
with the estimate(3.27). O
Before we prove Theorem 1.4.1, we check the formula{1.1€)erfollowing lemma.

Lemma 3.4.2. Under assumption(1.2) fos, > 3 ands > 2, the formula [I.I0) holds fot > 0 in
L£(0,s;0,—s).

Démonstration.Sincep, > 3 ands > 2, Lemma3.41 holds fo¥ = 2. Then from Theorem 2.1 in 78],
we have that foe €]0, €] small enough

1 |
Ute) = 35— /R R(\ +10,¢)e ™ d\ (3.28)

holds fort > 0in £(0, s;0, —s). ChooseL > 0 sufficiently large such thaty,.(H(s)) C F = {z € C :
|Rz| < L, L3 < Q2 < 0}. Then applying Cauchy’s integral formula, we have that

ol

L
Ult,e)Il'(e) = { / e TN — / R(—L —ip,e)e L= qy,
0

L

L L3
+/ R(p —iL,e)eW=Bqy, + / R(L —ip, e)e”"E=mqy,
- 0
A

L 00
- / R(\ —i0,¢)e” " d\ + / R(\+1i0,¢)e ™ dA}. (3.29)
0 0
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Because the integration in_(3]28) is convergent, the first ia (3.29) will tends td) as — oo. Noting
that for L large enough,

(@) Ry(£L — i) () %] = O(L~3)
andR(+L —ip,e) = (1 —ieRy(+L — ip)Va) 'Ry (L — ip), one has that

[(2) " R(£L — ip, €){x)~*| = O(L"z).

Therefore, we have that the second and fourth terms equ{£os). On the other hand, it is easy to see
that the third term in(3.29) has exponential decay.oonsequently, lef tend to the infinity, we can get

(1.10).
O

To get the expansion of the semigroup far 0 large, we need to divide the integration term[in (1.10)
into three parts : the small energy part, the intermediageggnpart and the high energy part. Legt(\),
Jj=1,2,3beC> ([0, ], [0, 1]) cutoff functions satisfying that

— ) () + xa(A) = 1, for A € [0, o],

— suppyx: C [0, 2¢;¢], suppys Cleig, 26[ and suppys C|o, oo,

- x1(A) =1L A€ [0,c1¢]; xa(A), A € [2018 8] xa(\) = 1, A € [26, 0],

— Fork € N, |d,\kX1( )| < Cke ks ‘d)\kXQ( )| < Cre*, for X € [cie, 2¢1€] and|%xg()\)\ < Cpék,

for X € [6,20]; | Lexs(N)| < Cpo*.
Denote the integration i (1.1L0) byt). Let

Ii(t) = /O+OO e "N R(A+10,e) — R(A —1i0,2))x;(A)dA,

and thus/ (¢) = I1(t) + Ix(t) + I3(t).
Proof of Theorer 141 Applying the stationary method and interpolation, we abtaat

for pp > 2N +1, s €]N + 1, 2] ande =]0, min{1, s — N — 1}[. Here we use the estimatés (3.2B), (8.27)

20 2
and the properties of the cutoff functions.

In light of Lemma 10.2 in[[31], one has that forc| N + 1, 2] anda =]0, min{1,s — N — 3}|,

N;a_l).

) / M RD.. (A, £)e ™ dAz) || = Ot
On the other hand, note that
/ X1 (A)(A + i0)2 e\
0

= / (A +i0)2e " dA + / (x1(A) = DA+ i0) 2~ dN
0 0

I'+11.

lI>

Due to the Fourier transform of the homogeneous distributio(\) for s ¢ N (See [24]), we have that

kr_ k
I =—2sin—T(=+ 1)tz
sin — (2 +1)
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For the second term, with help of integration by parts angtioperties ofy, it follows that
II =020t
for anyl € N. Since(A 4 i0)2 = (—1)¥(A — i0)? andRﬁ)M()\ +10,¢) = Rﬁ)m()\ — 140, ¢), we have that

N+1
(A5 241

2
I(t) =it 3Ry (2) + Z 02]-_17}%2]-_1(5) FO(e 2 e,

Jj=2

wherec, = —4sin ET(% + 1). Then let

Coj—1 . N+1
TJ(‘QJ) = 2j7m» R2jfl(€)7 J=1... [T]v
and then the expansion (1111) in Theorlem1.4.1 can be obtaByeLemmd3.3]1 and 3.3.5;(¢), j =
1,...,[%51] are finite-rank operators. In particular, by Remark3.3rf oan obtain thaf (¢) is of rank
one. -

3.5 The four-dimensional case

In this section, we will prove Theorem 1.4.5. We consider ¢hee that: = 4 and that0 is only a
resonance but not an eigenvalue/f.

3.5.1 Resolvent analysis

As inthe 3-dimensional eigenvalue case, we will first disthe behavior of the resolvent near zero. Itis
known thatdim M = 1 (See[[38]). LeD # ¢ € M be aresonant state éf; at0 satisfying(¢, —V1¢) = 1

and(Vi¢, 1) # 0 by (3.3).
By (3.2.2), it is easy to check that

N
Wi(z,e) = 14+ GoVi —icGoVsy+ lnzz FG5(Vy — ieVh)
=1
N
+3 AV —ieVy) + 02N, (3.30)

j=1

Thus, by Neumann'’s series foys, > 0 sufficiently small, we have the expansion
N
E(z,e) = Z Z 2 n* 2E% () + O (2N 1), (3.31)

for z € Q ande €0, o], where eactE’ (¢) is uniformly bounded inC(1, —s;; 1, —s;) for s; > 25 + 1 and
fork > 1, E]’?(g) is of finite rank. More precisely, it can be computed that

Eg(e) = (Q'(1+GoVi—icGola)Q) '@
= (Q(1+GoV1)Q) Q" + O(e),

E(e) = —Ej(e)Gi(Vi —ieVa) Eg(e),

Ei(e) = —Ej(e)Gi(Vi —ieVa) Ey(e).

Thus we have the following lemma abaif(z, <) in Q = B(0,20) \ R,.
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Lemma 3.5.1.Under assumption of Theorém 1J4.5, we have the asymptg@msion inC(—1, s; 1, —s)
J .
Ri(z,€) = Z 2 In* Zle,j (e) + Rintal(z,€), (3.32)

for z € ), where
RYy(e) = Ej(e)Go,
Ri,(e) = Ei(e)Go+ Ej(e)Gh,
Ry (e) = EY(e)Go+ Ej(e)GY,

j—k j—k+1
Ri(e) = EN(@e)Go+ ) EF (e)G)+ ) EVNe)G] € L(-1,551,—s)),
=1 =0

fork < jands; > 25 + 1. Furthermore,R’fvj for £ > 1 is of finite rank and the r-th derivative of the
remainderR; y..(2,€) € L(—1,s;1,—s) has orderO(zNT=") forr = 1,2,...,2N.

Below, we will state the expansion &f;;(z,¢) in £(—1,s;1,—s), s > 4N + 2 for z € Q. By a direct
calculation, we can compute that

N
Ei(ze) = (L+eEY(e)+ Y > 2" 2EX () + O(=")T, (3.33)
j=1 k=0
N
E_(ze) = S(L+eE’ () + Y > # " 2EF j(e) + O(z"")), (3.34)
j=1 k=0
where
Efo(e) = iEg(e)GoVa,
BY () = ieB)(e)GoVe — Ej(e)GY(Vi —ieVa) = —Ey()GY(Vi — ieVa)(1 + B y(e)),
Eyq(e) = ieEi(e)GoVa — Eg(e)Gi(Vi — ieVa) = —Ey(e)Gy(Vi — ieVa)(1 + e EY 4 (¢)),
and

E0y(e) = iGoVaEl(e),
B \(e) = iGoVaEle) — GY(Vi — ieVB)EQ(e) = —(1+ £E° () GU(Vi — ie Vo) EQ(e),
B \(e) = iGoVaEl(e) — GL(Vi — ieVB)EQ(e) = —(1 + £ () GA(Vi — ieV3) EQ (e),

and other terms can be computed explicitly. Then[by (3.38)@81), we have the expansion of the scalar
functionE__ (z, ¢) that

N
E_i(ze) = eE% y(e)+ Z Z " 2B () + O(zVT),

j=1 k=0
where
E% o = i(Vag,¢) — e(VaFy(e)GoVag, ¢) = i(Vag, §) + Ole),
El | = —S(Gi(Vi —ieVa) +ieGoVa B (e)Gi (Vi — i)
+ieG1 (Vi — ieVa) Ey () GoVa + e2GoVa EL (€)Go Vo) T
= =S +eE?y(e)G1(Vi —ieVa)(1 + eEY o(e)T

_ (v, 1P
= —W + O(é‘),
B2, = (GY(Vi —ieVo)9, Vig) + ie(GY (Vi — ieVa) By () GoVad, Vig)

+ie(GVaE(e)GY (Vi — ieVa)p, Vi) — e*(VaE} () GoVad, §)
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and other terms can be also calculated.

DenoteF(z, ) = %(isa—zln z) wherea = %%Vﬁ";@ > 0. Consider the equatiafy(z, £) = 0.

One can check that there exists a unique solutjon) = ry(c)e’®© in B_(0, §). Furthermorey,(s) — 0.,

andfy(e) — 37+ ase — 0,. On the other hand, we have that~'e < ry(e)|Inry(e)| < Me for some
positive constand/ > 0. ThusC~'¢|Ine|™! < ry(e) < Ce|Ine|~! for some positive constant. Then we
can choose some constant 0 such that for: € 9B (2y(¢), ce| Ine| 1),

|Fo(z,€)| > are, |[E_4(2,6) — Fo(z,e)| = O(e? + ezlnz + 2) < age|Ing|™?,

for some positive constants, a, > 0. By the analyticity onz of Fy(z,¢) and E_, (z,¢) and using the
Rouché’s Theorem as in [78], it can be prove that there exist- 0 small enough and > 0 such
that E_, (z,¢) has one and only one zerg(¢) in disc By = B(z(e),ce|Ine|™!) and dist(By, R,) >
cie|Ine|~t for somec; > 0 ande €]0, g9]. Below, we will prove thatt_, (z, €) is invertible in B(0, 26) \
{ByUR. } by the argument of perturbation. This , (z, ) has exactly one zero near 0, located on the lower
half complex plane. Furthermore, we can compare this witkofém 1.2(b) in[[7[7]. There, it needs some
additional condition (1.8). Actually, this condition islgmeeded in the casg = 5. And foru; €)1, 1], in
(3.30) in the proof of Theorem 1.2 in [77], the term of ordey, can be treated as a high-order term as we
discuss here.

Denote); = B(0,28) \ {B(0, c2e| Ine|™) UR, } andQy = B(0, 2co¢| Ine| ™) \ {By UR, }. Herec,
is chosen such that In z| > 2|2(¢) In 2(¢)| for z € Q.

Suppose € ; and then we have

C’l_1|z|| Inz| < |Fo(z,e)| < Chlz||1In 2|,
for someC; > 0. Thus by

E_i(z,6) = Fy(ze)(1+0(mz™)),

we have
E_ (z,e) ' =0(]zlnz|™).
Noting that
& | O(lnz), j=1,
P9 ={ o, J33
and z
d7 B L dI*x
BT = Y CuBi(ze) T [ B (50)),
Jitti=3 k=1
Je>1k=1,..,1
one can obtain that .
7 .
@E,Jr(z, &) '=0(:z7"n12). (3.35)
By Lemmd3.2.R the following estimates
K2)™ 5 Br(z,e)lecmr2@y = § Ollnz), =1,
O(z77*), 2<j<2N,
||@E_(Z,5)<$>8||L2(]R4)*>12((C) = O(hl Z), ] = 17
O(z77%h), 2<j < 2N,

hold. Consequently, we can get the following lemma.
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Lemma 3.5.2.Under assumption of Thordm 1.4.5 and foe €2;, we have the estimate

L . . i
(@)™ Rur(z,2) ) I = O I 2| ), j=0,...,2N.

On the other hand, suppose that (2, and we can deduce that

Cylellne|™ < |Fy(z,¢)] < Coellne| ™,

|z| < cie|lne| ™, |zInz| < de,

for someCy, ¢, > 0. Let Fy(z,¢) = E°, o(z,€) + zInzE! | | = Fy(z,e) + O(e* + ezIn z). Thus one can
prove thatF~0(z, e) is invertible in{2, and the inverse has the expansion

~ _ A;(e) - Ansa(z€)
Fo(z,e)t = Z 5;“ (zInz)? + %,
=0

where - ‘
— J
A(e) = — ( 7+,01(6))0 =
(i(Vad, ¢) — e(Va B (e)GoVag, ¢) )7+
are uniformly bounded functions efand
e(=EBL,,(e)™

Anii(z,e) = — = O((zln 2)V*h).
e (1(Vad, @) — e(VaLg(e) GYVag, ¢)) N1 Fy (2, €) (=)

Therefore, using Neumann'’s series, we can get the expaokibn, (z, ) for z € ), as follows

0,....N

C3(e) | = Che) O(="*)
-1 _ 0 J k
E,Jr(Z,E) = c +j21§ €k+1 ZJ 111 Z"—m,
where
Cole) = Aole),
Cile) = —Ao(e)E2, (o),
Cile) = Aile) = —Ao(e)’EL,,(e),
and the otheC]’?(g),j =2,...,N, k=0,...,jareuniformly bounded onand can be calculated directly.

Furthermore the j-th derivative of the remainder is of or@égﬁl%) forj = 0,1,...,2N. Thus using
(3.33) and[(3.34), we have the expansion

N o J k
. A Wi(e) O(N*e
E(z,e) = ZZZ] In* ~ Eifl) + (")

eN+a+l )
7=0 k=0

in £(1, —s; 1, —s),where

Wo(e) = —Ao(e)(1+eE] o(e)Q(L+2E o (e)),

Wi(e) = —Ao(e)((1+eES (e))QEL y(e) + EY 1 (e)Q(1 + e E2 4(e)))
—CY(1+eES o(e))Q(1 +eE2 o (e)),

Wie) = —edo(e)((1+eET o(e)QEL () + E4 1 ()Q(1 +eE2 ()
—Ci(1+eE] o(e))Q(L +eE2 o (e))

and we omit the expressions of other terms. Here]0, min{1, £ — N — 1}[. Then by Lemm&3.212, one
has the expansion fare .
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Lemma 3.5.3.Under assumption of Theorém 1J4.5, we have the expansioHm, s; 1, —s)

L Rt () R
RU(Z,{;‘) = szlnkz 2,]( )_'_ 2,N+Q(Z,€)

ghk+1 €N+a+1 ’

for z € Q),, where
R o(e) = Wi(e)Go,
Ry (e) = Wi (e)GY + WP (e)Go,
Ry(e) = eWi(e)Gy+Wi(e)Gy,

and the other terms are uniformly boundedsoin £(—1, s;;1, —s;) for s; > 2j + 1. Furthermore, the j-th
derivative of the remaindeR; . . (z, €) is of O(zN =) in L(~1,s;1,—s) forj =0,...,2N.

By Lemmd3.5.1, 3,512 ad 3.5.3, we have the expansion otwvent neat = 0.

Theorem 3.5.4.Suppose thaV > 3, py > 4N + 2 ande €]0,¢¢]. Then forz € Oy, one has the expansions
of R(z,e) and its derivatives as follows

d—j,R(z, g) =0z Inz|™) (3.36)

in £(—1,s;;1,—s;),s; >2j+1,7=0,...,2N. For z € Q, we have the following expansionBfz, )
in £(—1,s;1,—s)

N k
. RY(e Ryio
R(Z,S) _ Zzzjlnkz ]()_'_ N+ (278)’

8k+1 8N+a+1
fors €]2N +1, 2] anda €]0, min{1, § — N — 3 }[. HereR¥(¢) = e""'R} ;(¢) + RS () and Ry 4o (2, €) =
5N+Q+1R1,N+a(za €) + Ranta(z,€).
Remark 3.5.5. We can compute that
Ri(e) = &’Ry;(e) + Ry(e)
= (eEg(e) — Ao(e)K(e))Gi{e — (Vi — icVa)(eEq(e) — Ao(e) K (€))Go},

whereK (¢) = (14 ¢EY 4(¢))Q(1+eE? y(¢)). SinceGy is of rank one, the rank ak} , () + ¢ *Rj,(¢) is
at most one. Actually, as— 0., we have

| o _ vie, P
Jim Bi(e) = lim Roi(€) = pommes o

Therefore,R}(¢) is of rank one fok, sufficiently small.

3.5.2 Expansion of the semigroup

Consequently, similar to the 3-dimensional case we carirotita large-time expansion éf(¢, ¢) fol-
lowing Theoreni_3.5]4. First we state the following Fouri@ansform in the sense of distribution. For the
proof, one can see Section 2.4 of Chapter ILin [24].

Lemma 3.5.6.For v € R andk € N, we have that
0 . k 1y, s dk_l i Y
/o (z 4 10)" In*(z + i0)e " dx = Z e(”?)mC}CW{eZTF(V + 1)}l e,
=0

fort > 0.
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Proof of Theorern 1.4.5Choose the cutoff functiong;(\), j = 1, 2, 3 satisfying that
= xj(A) € C*([0,00[3[0,1]),j = 0, 1,2,3,
= x1(A) + x2(A) + x3(A) = 1, for A € [0, 00,
— suppy: C [0,2cie| Ine| 7!, suppxs Cleie|Ine| ™, 28] and suppys CJd, oo,
—x1i(\) =1L, A€ [0,cie|Ine|™Y; xa(A\), A € [2c1e]Ine| ™1, 8] 5 x3(A) = 1, X € [2§, o0,
— Fork € N, ‘%Xl()\)‘ < Cre ¥ Inelk; \%)@(Aﬂ < Cre *Inelk, for X € [cie]| Ine| ™, 2¢1e| Ing| 1]
and| Loy, (A)| < Crd*, for A € [5,20]; | L2 vz (V)] < Cro*,
Denote the integration i (1.1L0) byt). Let

+oo
L(t) = / e NR(A+10,2) — R(A — i0,))x;(A\)dA, j = 1,2,3,
0

and thusl (t) = 1,(t) + La(t) + I5(t).
For I3(t), similar to the 3-dimensional case, one has that forsamy; + %,j >2andpy > j + 1,

[(2) = Is(¢)(z) =" < O(t™).

For I5(t), by using the stationary phase method and the interpolatiertan get that
—S —S Et
[[{z) = La(2) () || < O((

|Ine|
following (3.38) wherex €]0, min{1, ==2¥=1}],
For I,(t), we first note that fon > 0

)TN )

9

DTS = MIn* A — N(In\ + 27i)*
k—1
= —X)) CL@2mi)*In' .

Thus in light of Lemma_3.5]6, it follows that the followingtegral holds in the sense of distribution

2 n* 2

/OO(()\ +40)7 In® (A + i0) — (A — i0)7 In* (A — i0))e =" dA

k-1 o
— _ch(zm)’f—l / M Inf Ae 7\

- —ch i) ZZ L (T gt

= t’jflch’hlnht,
wherec” = — Y77 CL(2mi) et DO L5 {7 T (y + 1)}],—;. Therefore, together with Theorem
3.5.4, we have that

L(t) = iz k+1/ (14 x1(A) = D)((X +i0)’ In* (X + i0)
1 k=1
]—()\—20)] In" (A—w)) TAARY(e) + (e] Ineg| )TN0 N )
= Zt I 12 k+1chlln tRN (e +i j |1n€€|k2]NQO(tN1°‘)

=1 k=1
( \ln5| 1) N—-1— aO(t N—-1— a)

— QMZs =51 ﬂZln tT(e) + (e|Ine| )N N1,
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whereT!(e) = 237 . 77" 'RE(e) € £(0,55;0,—s;), for s; > 2j + 1. Furthermore, by Lemma
B.5.2 and3.5]3, itis easy to see that e@gls of finite rank. Thus[(1.13) can be obtained. In particuiar,

Remark3.5577(¢) is of rank one.
O
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Large-time Behavior of the Solutions to Dissipative Schrod

Résumeé

Cette these est consacrée a I'étude de I'équation de
Schrédinger dissipative dépendant du temps, surtout
a I'évolution a long terme des solutions du probleme
de Cauchy. Soit H = —A + V(x) I'opérateur de
Schrddinger dissipatif, i.e. SV (z) < 0. De plus, on
suppose que la partie imaginaire de V(x) est assez
petite de sorte qu’elle peuve étre considérée comme
une perturbation de la partie autoadjointe de
I'opérateur.

D’abord, nous étudions la complétude asymptotique
de I'opérateur de la diffusion pour la paire (—A, H),
sous condition que 0 soit un point régulier de la partie
autoadjointe de H, désignée par H;. Cela signifie que
0 n’est ni une valeur propre, ni une résonance de H; .
La preuve est basee sur une estimation globale de la
résolvante qui est uniforme par rapport a la taille de la
partie imaginaire du potentiel et sur la completude
asymptotique de la diffusion quantique pour la paire
d’opérateurs autoadjoints (—A, Hy).

Ensuite, pour mieux comprendre les comportements
en grands temps de la dynamique quantique, nous
étudions le développement asymptotique du
semigroup e~ lorsque t tend vers l'infini. Nous
considérons les deux cas suivants : (1). 0 est
seulement une valeur propre, mais pas une résonance
de H, en dimension trois; (2). 0 est seulement une
résonance, mais pas une valeur propre de H; en
dimension quatre. Loutil principal est 'analyse
spectrale en basses énergies.
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Operateur de Schrodinger dissipatif,
développement asymptotique de la résolvante,
comportement en grand temps, valeurs propres
complexes, résonance au seulil, diffusion
guantique dissipatif, complétude asymptotique
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Abstract

This thesis is devoted to studying the large time
behavior of the solutions to the Cauchy problem of the
dissipative Schrodinger equations. Let

H = —A + V() be the Schrédinger operator. We
consider that H is dissipative, i.e. IV < 0. More
precisely, in this thesis, we assume that the imaginary
part of V(z) is sufficiently small such that it can be
seen as a perturbation of the real part of H. Thus the
main method in this thesis is the argument of
perturbation.

First, we will study the asymptotic completeness of the
scattering pair (—A, H), under the assumption that 0
is a regular point of the real part of H, denoted by H;.
It means that 0 is neither an eigenvalue nor a
resonance of H;. The proof is based on a global
resolvent estimate which is uniform to the size of the
imaginary part of the potential function and on the
asymptotic completeness of the quantum scattering
pair of the selfadjoint operators (—A, Hy).

Second, we will discuss the expansion in time of
e~ Here we will consider two cases: (1). 0 is only
an eigenvalue but not a resonance of H; in dimension
three; (2). 0 is only a resonance but not an eigenvalue
of H; in dimension four. Main tool is the low-energy
analysis.

Key Words

Dissipative Schrodinger operators, resolvent
expansion, large time behavior, complex
eigenvalues, threshold resonance, dissipative
guantum scattering, asymptotic completeness.
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