Christophe Guyeux

Raphaël Couturier

Karine Deschinkel

Stephane Domas

Giersch Arnaud

Mourad Hakem

Ali Idrees

Ahmed Al-Badri

David Laiyamani

Yousra Ahmed Fadil

Abdallah Makhoul

Roxane Mallouhy

Ahmed Mostefaoui

My gratitude and my thanks go to the

I would also like express my strongly thanks to the crew of super-computer facilities (Mesocentre) for their generous advices and help in launching the calculations using supercomputer capabilities by installing the modules, creation the site Internet that make dreams come true. Therefore, thanks to Laurent Philippe, Kamel Mazouzi, Guillaume v vi Laville, and Cédric Clerget. I would also like express my thanks to my friends in bioinformatics team of Christophe for their kindly friendship, Thanks, Huda AL-NAYYEF, Bashar Al-Nauimi, Panisa Treepong. Before closing, I want to thank my dear friends including Lilia Ziane Khodja, Abbas Abdulhameed, Hamida Bouaziz, Hana M'Hemdi, Lemia Louail, Kitsiri Kizzyy Chochiang, who shared my hopes and studies, which made me comfort in the difficult moments and with whom I shared unforgettable moments of events.

Consequently, exploring the evolutionary history of chloroplasts is of great interest, and we propose to investigate it by the mean of ancestral genomes reconstruction. This reconstruction will be achieved in order to discover how the molecules have evolved over time, at which rate, and to determine whether evidences of their cyanobacteria origin can be presented by this way. This long-term objective necessitates numerous intermediate research advances. Among other things, it supposes to be able to apply the ancestral reconstruction on a well-supported phylogenetic tree of a representative collection of chloroplastic genomes. Indeed, sister relationship of two species must be clearly established before trying to reconstruct their ancestor. Additionally, it implies to be able to detect content evolution (modification of genomes like gene loss and gain) along this accurate tree. In other words, gene content evolution on the one hand, and accurate phylogenetic inference on the other hand, must be carefully regarded in the specific case of chloroplast sequences, as the two main prerequisites in our quest of the last universal common ancestor of these chloroplasts.

In detail, given a collection of genomes, it is possible to define their core genes as the common genes that are shared among all the species, while pan genome is all the genes that are present at least once (all the species have each core gene, while a pan gene is in at least one genome). The key idea behind identifying core and pan genes is to understand the evolutionary process among a given set of species: the common part (that is, the core genome) can be used when inferring the phylogenetic relationship, while accessory genes of pan genome explain to some extent each species specificity. In the case of chloroplasts, an important category of genome modification is indeed the loss of functional genes, either because they become ineffective or due to a transfer to the nucleus. Thereby a small number of gene loss among species may indicate that these species are close to each other and belong to a similar lineage, while a large loss means ix x distant lineages.

More precisely, a key idea concerning phylogenetic classification is that a given DNA mutation shared by at least two taxa has a larger probability to be inherited from a common ancestor than to have occurred independently. Thus shared changes in genomes allow to build relationships between species. In that case, homologous genes are genes derived from a single ancestral one. They are divided in two types, namely paralogous and orthologous genes. Paralogy arises from ancestral gene duplication while the orthologous genes are products of speciation. Being able to understand the way that paralogous and orthologous genes evolve over time should clarify certain aspects of both the chloroplast evolution and origin.

We thus wonder, given a large set of complete chloroplastic genomes, how to find their genes and to determine how they have been acquired or lost during Evolution. Such a knowledge will lead to the ability to reconstruct the ancestral sequences of two sister species, using an algorithm to develop. Applying such an algorithm on a well supported tree will help us to reach the last common universal ancestor of all existing chloroplasts, and finally to study how these genomes have evolved over time.

CHAPTER 1 Introduction

1.1/ GENERAL PRESENTATION

Chloroplasts are one of the main organelles in plant cell. They are considered to have originated from cyanobacteria through endosymbiosis, when an eukaryotic cell engulfed a photosynthesizing cyanobacterium, which remained and became a permanent resident in the cell. The term of chloroplast comes from the combination of plastid and chloro, meaning that it is an organelle found in plant cells that contains the chlorophyll. Chloroplast has the ability to convert water, light energy, and carbon dioxide (CO 2) in chemical energy by using carbon-fixation cycle [1] (also called Calvin Cycle, the whole process being called photosynthesis). This key role explains why chloroplasts are at the basis of most trophic chains and are thus responsible for evolution and speciation. Moreover, as photosynthetic organisms release atmospheric oxygen when converting light energy in chemical one, and simultaneously produce organic molecules from carbon dioxide, they originated the breathable air and represent a mid to long term carbon storage medium.

Consequently, exploring the evolutionary history of chloroplasts is of great interest, and we propose to investigate it by the mean of ancestral genomes reconstruction. This reconstruction will be achieved in order to discover how the molecules have evolved over time, at which rate, and to determine whether evidences of their cyanobacteria origin can be presented by this way. This long-term objective necessitates numerous intermediate research advances. Among other things, it supposes to be able to apply the ancestral reconstruction on a well-supported phylogenetic tree of a representative collection of chloroplastic genomes. Indeed, sister relationship of two species must be clearly established before trying to reconstruct their ancestor. Additionally, it implies to be able to detect content evolution (modification of genomes like gene loss and gain) along this accurate tree. In other words, gene content evolution on the one hand, and accurate phylogenetic inference on the other hand, must be carefully regarded in the specific case of chloroplast sequences, as the two main prerequisites in our quest of the last universal common ancestor of these chloroplasts.

In detail, given a collection of genomes, it is possible to define their core genes as the common genes that are shared among all the species, while pan genome is all the genes that are present at least once (all the species have each core gene, while a pan gene is in at least one genome). The key idea behind identifying core and pan genes is to understand the evolutionary process among a given set of species: the common part (that is, the core genome) can be used when inferring the phylogenetic relationship, while accessory genes of pan genome explain to some extent each species specificity. In the case of chloroplasts, an important category of genome modification is indeed the loss of functional genes, either because they become ineffective or due to a transfer to the nucleus. Thereby a small number of gene loss among species may indicate that these species are close to each other and belong to a similar lineage, while a large loss means distant lineages.

More precisely, a key idea concerning phylogenetic classification is that a given DNA mutation shared by at least two taxa has a larger probability to be inherited from a common ancestor than to have occurred independently. Thus shared changes in genomes allow to build relationships between species. In that case, homologous genes are genes derived from a single ancestral one. They are divided in two types, namely paralogous and orthologous genes. Paralogy arises from ancestral gene duplication while the orthologous genes are products of speciation. Being able to understand the way that paralogous and orthologous genes evolve over time should clarify certain aspects of both the chloroplast evolution and origin.

We thus wonder, given a large set of complete chloroplastic genomes, how to find their genes and to determine how they have been acquired or lost during Evolution. Such a knowledge will lead to the ability to reconstruct the ancestral sequences of two sister species, using an algorithm to develop. Applying such an algorithm on a well supported tree will help us to reach the last common universal ancestor of all existing chloroplasts, and finally to study how these genomes have evolved over time.

1.2/ PRESENTATION OF THE PROBLEMS

Understanding the evolution of DNA molecules is an open and complex problem.

Algorithms have been proposed to tackle this problem, but either they are limited to the evolution of one given character (for instance, a specific nucleotide), or conversely they theoretically focus on large scale nuclear genomes (several billions of nucleotides) facing multiple recombination events. One-character methods cannot be extended to large scale genomic evolution, while it is well known that the problem is NP hard when considering the set of all possible recombination on large genomes. So no concrete solution exists at present regarding the evolution of large DNA sequences. However, in this thesis, we focus on genomes that have a reasonable size and who faced a reasonable number of recombination. This is why we argue that the problem may be tractable in the chloroplast case -but it requires the design of ad hoc solutions, and various difficulties still remain to circumvent when dealing with such a specificity.

First, the evolution history of chloroplasts can only be inferred on shared coding sequences, which are difficult to extract. Indeed, no tool is available to find the core genes, and so bioinformatics investigations using sequence annotation and comparison tools are required to be able to determine the core of chloroplast genomes for a given set of photosynthetic organisms. Additionally, the amount of completely sequenced chloroplast genomes increases rapidly, leading to the possibility to build large-scale phylogenies that represent well the plant diversity. But the size of the core genome is dramatically reduced when we consider very divergent plant species, which explain why these phylogenies are usually done using a small number of chloroplastic genes. In that case, we can wonder if we deal with a gene tree or a species one, and the obtained phylogeny is probably not accurate enough to deploy an ancestral reconstruction on it.

It is true that, if we are able to automatically consider various subsets of close plants defined according to their chloroplasts, some phylogenetic trees may be inferred on larger sets of core genes. But these trees are not necessarily well supported, due to the possible occurrence of homoplasic genes that may blur phylogenetic signals: a trustworthy phylogenetic tree can still be obtained only if the number of homoplasic genes is low, the problem becoming to determine the largest subset of core genes that produces the most supported tree. Furthermore, the way to merge such a forest of phylogenetic trees into only one supertree is not obvious.

Finally, given an accurate phylogenetic tree whose leaves contain well annotated genomes, the way to reconstruct node by node each ancestor until the last common one still remains unclear.

1.3/ THESIS OBJECTIVE

The objective of this thesis is to explore the possibility to reconstruct the last universal common ancestor (LUCA) of all available chloroplastic genomes, and to compare it with the ancestor of current cyanobacterial genomes. It is not demanded to give a definitive answer to this ambitious question, but to investigate scientific and technical obstacles that may potentially appear when trying to reach such a difficult goal.

In other words, considering available a black box receiving as input a large set of complete chloroplast genomes, and which produces LUCA as output, the thesis objective is to detail the general functioning of such a magic box. We must not only emphasize all difficulties that can possibly occur when trying to reach such an objective, but also be able to provide intermediate scientific stages. Having such a knowledge or feeling that particular points may raise difficulties, first elements of response to such putative difficulties should be provided.

This ancestral reconstruction can be achieved in 3 stages. Firstly, after having obtained a large collection of complete chloroplastic genomes, we must be able to extract their coding sequences. Using the genes shared in common by these species, a well-supported phylogenetic tree must be obtained. In case where the core genome of the whole species is too much small, a strategy grouping subsets of sequences according to their similarity, inferring their phylogenies, and then merging all the forest of trees, must be investigated. Secondly, algorithms that study the evolution of gene content and ordering among the supertree must be provided, and it must be validated with naked eye on well chosen plant families. Finally, ancestral nucleotide sequence of each gene must be obtained, and intergenic regions must be filled using either state of the art or novel algorithms. Again, it is not demanded to give a final response to this very ambitious question, but to emphasize scientific and technical problems, and to provide first proposals to solve them.

1.4/ CONTRIBUTIONS

As stated previously, the main subject of this thesis is to investigate the evolution dynamics of DNA sequences contained in chloroplastic organelles (plant cells), using the state of the art or new bioinformatics intelligent algorithms that must be developed.

We have investigated in particular the problem of chloroplast annotations and of core gene extraction. Given a large set of common genes, the way to find a core subset as large as possible leading to a phylogenetic tree as supported as possible has been investigated too, using genetic algorithm and particle swarm optimization. Effects of gene selection on topology and supports has been regarded too by the mean of up to date statistical tests.

These algorithms can be applied in a distributed pipeline that automatically extracts a subset of 10 up to 20 close genomes from a collection of approximately 500 chloroplasts, annotates them with accuracy, and produces a well supported tree using the largest possible subset of core genes. The way to merge such a forest in a supertree has been regarded too, but this problem is not currently fully resolved. Finally, a first gene content and order ancestral reconstruction has been proposed and compared with manual reconstruction on various families of plants.

1.5/ PUBLICATIONS

Our contributions has led to various communications in both conferences and journals, which are listed thereafter. 1.5 phylogenetic tree inferences for a core genome of size n. (X 1 , X 2 , . . . , X n)

Positions of n particles vectors.

(V 1 , V 2 , ..., V n)
particles associated velocities, which are N-dimensional vectors of real numbers between 0 and 1.

1.8/ ORGANIZATION OF THE THESIS MANUSCRIPT

The current chapter is devoted to a general introduction of the thesis, providing the problematics and a brief description of thesis subject and objectives. Then the thesis manuscript is organized in three parts.

In the state of the art, Part I, three chapters detail a small overview of main background aspects in bioinformatics domain employed in this manuscript, like sequence alignments and phylogenetic analysis, etc. Some available tools are provided too. Part II starts with an introduction that explains the importance of discovering core and pan genes (Chapter 5). The way to distinguish the rooted and sub-rooted ancestor genomes, and to understand their impact on the genomic recombination in Eukaryotes is detailed too. Secondly, three pipelines for the discovery of core and pan genes of chloroplast sequences are presented in Chapter 6. The next chapter 7 details the use of an artificial intelligence algorithm for phylogenetic tree reconstruction. It is based on genetic algorithm while, in Chapter 8, a new pipeline for constructing phylogenetic trees with best subsets of core genes is presented. It uses a particle swarm optimization approach that is developed in both linear and parallel fashions, in order to reconstruct the phylogenetic tree. Then, in the following chapter, a comparison between genetic algorithm and particle swarm optimization is outlined in parallel version, by focusing on 12 groups of chloroplasts. In Chapter 9, a predefined ad-hoc algorithm for generating ancestor genomes is finally detailed, depending on all provided information obtained with previously detailed tools.

This manuscript ends with Part III, which contains a conclusion and some perspectives.

I STATE OF THE ART

CHAPTER 2 A short history regarding core and pan genome extraction

Let us start by presenting some examples of core and pan gene extraction that can be found in the state of the art. Note that we oddly have found only a few articles dealing with such a problem, during our review of the literature.

An early study about finding the common genes in chloroplasts has been realized by Stoebe et al. in 1998 [2]. They established the distribution of 190 identified genes and 66 hypothetical protein-coding genes (ysf) in all nine photosynthetic algal plastid genomes available (excluding non-photosynthetic Astasia tonga) from the last update of plastid genes nomenclature and distribution. The distribution reveals a set of approximately 50 core protein-coding genes retained in all taxa. In 2003, Grzebyk et al. [3] have studied the core genes among 24 chloroplastic sequences extracted from public databases, 10 of them being algae plastid genomes. They broadly clustered the 50 genes from Stoebe et al. into three major functional domains: (1) genes encoded for ATP synthesis (atp genes); (2) genes encoded for photosynthetic processes (psa and psb genes); and (3) housekeeping genes that include the plastid ribosomal proteins (rpl and rps genes). The study shows that all plastid genomes were rich in housekeeping genes with one rbcLg gene involved in photosynthesis.

Another example of the extraction of core genome can be found in 2009 by Sharon [4], where he focused on photosynthetic productivity in Synechococcus and Prochlorococcus (Cyanobacteria) to extract the core genome. He successfully identified the core genes of photosystem II in Cyanophage as functional genes for photosynthesis process; then he increased the viral fitness by supplementing the host production of a specific type of proteins. The study also proposed an evidence of the presence of photosystem I genes in the genomes of viruses that affect Cyanobacteria.

In 2014, De Chiara et al. [5] aligned a collection of 97 sequenced genomes to a reference, the complete genome of the Haemophilus influenza strain 86-028NP, using the Nucmer alignment program [6]. They generated a list of polymorphic sites with these alignments. This list was then filtered to include only the polymorphic sites in the core genome of NTHi, i.e., the regions of the reference strain that could be aligned against all other strains, yielding a set of 149,214 SNPs. A clustering algorithm has been finally used on these SNPs to achieve the core genes extraction.

12CHAPTER 2. A SHORT HISTORY REGARDING CORE AND PAN GENOME EXTRACTION Many studies have then realized the extraction of core and pan genomes for bacteria (such as Cyanobacteria) using NCBI annotations, which are mainly based on generic annotation tools like Glimmer, MuMmer, RATT, or RAST (see [7]). Then, NTHi strains selected for genome sequencing (dataset S1) were obtained from a collection of isolates archived in Oxford.

In all of these studies, considered genomes have been annotated with various different annotation algorithms, mixing human curated and automatic coding sequence prediction tools that are not specific to chloroplastic genes. This large variety of manners to detect coding sequences and their functionality leads to large variability in gene boundaries (start and stop codons), which obviously severely biases the core and pan genomes determination.

Let us now present, in the next chapter, various methods for aligning biological sequences by using local and global alignment techniques (the last chapter of this part will focus on phylogenetic reconstruction).

CHAPTER 3

Technical Aspects of Sequence Alignments I n this chapter, we will introduce different sequence alignment algorithms. We will adopt an evolutionary perspective in our description of how amino-acids (or nucleotides) in two sequences can be aligned and compared. We will then describe various local and global alignment algorithms and programs for single and multiple alignment manners.

3.1/ INTRODUCTION

In bioinformatics, sequence alignment (or Pairwise Sequence Alignment (PSA)) is an important stage for aligning and comparing DNA sequences. It can be seen as the fundamental procedure that can be implicitly or explicitly applied in any biological research that compares two or more sequences (DNA, RNA, or protein). It is the procedure by which one attempts to infer which positions (sites) within sequences are homologous, that is, which sites share a common evolutionary history [8].

We need first to give some definitions for some important keywords such as: homology, similarity, and identity. We recall the definition of these keywords from [9,[START_REF] Pevsner | Bioinformatics and functional genomics[END_REF]:

Definition 1: Homology

Two sequences are said to have a homologous relation, if they share a common evolutionary ancestor.

It is clear to say that there are no degree of homology, sequences are either homologous or not. Homologous protein sequences can be Orthologus: homologous sequences in different species that arose from a common ancestral gene during speciation. Orthologous genes have similar biological functions [START_REF] Pevsner | Bioinformatics and functional genomics[END_REF].

Definition 2: Similarity

Two sequences are said to be similar, if it is possible to transform the first one in the second one by using only a small number of edit operations (insertion, deletion, and substitution).

Definition 3: Sequence identity

Sequence identity between two different sequences is the amount of characters that match exactly when comparing them pairwise. This is a percentage.

It is important to notice that sequence identity is not transitive, in the meaning that sequences S A and S B on the one hand, S B and S C on the other hand, can have a high identity while it is not the case between S A and S C . For example:

Example 1: Sequence identity vs transitivity

Let S A = AAGCCTT, S B = AAGCC, and S C = AAGCCTA respectively, and S I be the function that produces the identity score between two sequences. This identity is computed by counting the number of matching characters between two sequences divided on the minimum length of given sequences, multiplied by 100:

S I (S A , S B) = 5 min(7, 5) × 100 = 100% S I (S B , S C) = 5 min(5, 7) × 100 = 100% S I (S A , S C) = 6 min(7, 7) × 100 = 85.7%
In a computer science perspective, PSA is simply a pattern matching problem. The goal is to find the minimum edit distance between two given strings. Some algorithms applied for this task achieved to align strings in non-linear time and/or memory consuming, specially for large strings. In 1973, for instance, Peter Weiner [START_REF] Weiner | Linear pattern matching algorithms[END_REF] proposed a linear algorithm to find the maximum pattern matching score between two strings in linear time. However he did not success to write a powerful matching algorithm running in less than O(n 2) and some string operations (such as, insertion, deletion, etc.) were not taken into account. This is why, in 1985, Esko Ukkonen [START_REF] Ukkonen | Algorithms for approximate string matching[END_REF] presented a string matching algorithm by considering three string operations:

1. Deletion: remove symbol a ∈ from position i, where is a given alphabet.

2.

Insertion: insert a symbol b ∈ in position i.

3.

Substitution: replace a symbol a in position i by a symbol b ∈ in the same position.

The alphabet in above edit operations is constituted by strings (including alphabets, numbers, and/or special characters). But, in bioinformatics, it is composed by four nitrogenous base characters when considering DNA, that is:

= {A, T , C, G}. So the pattern matching algorithms developed for strings cannot directly be applied to DNA sequences, as both symbols and positions has biological meaning. Thus specific algorithms need to be developed by taking into account the particularity of DNA "edit operations". For instance, deleting a part of the molecule should have approximately the same cost for small or large part, as it corresponds to only one chemical operation. Considering edit distances in the case of DNA sequences leads to two kinds of alignment algorithms: either globally align two DNA sequences as shown in Figure 3 Gaps in both figures indicate the non-matching sites due to an insertion or deletion of k elements. The most accurate matching algorithms are those that consider an "opening gap" penalty in its scoring function, and all these alignment algorithms need to evaluate the cost of a substitution, either for nucleotides (A, T, C, G alphabet) in DNA alignment, or for amino acids (20 letters) in the protein case. This need to attribute a cost to a substitution leads to the introduction of the standard substitution matrices of both nucleotides and amino acids.

3.2/ STANDARD SUBSTITUTION MATRICES

3.2.1/ NUCLEOTIDE SUBSTITUTION MATRICES

Codons are not uniformly distributed in the genome. Over time, mutations have introduced some variations in their frequency of apparition. It can be attractive to study the genetic patterns (blocs of more than one nucleotide: dinucleotides, trinucleotides...) that appear and disappear depending on mutation parameters. Mathematical models allow the prediction of such an evolution, in such a way that statistical values observed in current genomes can be recovered from hypotheses on past DNA sequences. A first model for genome evolution was proposed in 1969 by Thomas Jukes and Charles Cantor [START_REF] Allan | A molecular time scale for human evolution[END_REF]. This first model is very simple, as it supposes that each nucleotide A, C, G, T has the probability m to mutate to any other nucleotide, as described in the following mutation This model was refined by Kimura in 1981 (three constant parameters, to make a distinction between natural A ←→ T , C ←→ G and unnatural transversions), Joseph Felsenstein, Masami Hasegawa, Hirohisa Kishino, Taka-Aki Yano [START_REF] Hasegawa | Dating of the human-ape splitting by a molecular clock of mitochondrial dna[END_REF], and so on. Up to date mutation models encompass the General Time Reversible (GTR, [START_REF] Fjloj Rodriguez | The general stochastic model of nucleotide substitution[END_REF], 1990), Tamura-Nei (TrN) in 1993 [START_REF] Tamura | Estimation of the number of nucleotide substitutions in the control region of mitochondrial dna in humans and chimpanzees[END_REF], or any model that describes rate variation among sites in a sequence such as gamma distribution (G) and proportion of invariable sites (I). For more information on the types of substitution matrices, reader is referred to [START_REF] Jacques M Bahi | Predicting the evolution of two genes in the yeast saccharomyces cerevisiae[END_REF].

In the next section, we will focus on amino acid substitution matrices: PAM and BLOSUM.

3.2.2/ POINT ACCEPTED MUTATION (PAM) MATRIX

In pairwise alignment, the Point Accepted Mutation (PAM, sometimes called Percent Accepted Mutation) matrices are series of scoring matrices for amino acid1 substitution costs, each reflecting a certain level of divergence between the acids. In 1978, The researches of Margaret Dayhoff have led to the constitution of such a matrix, by just observing the differences based on global alignment of closely related protein sequences with the identity score greater than 85% (see [START_REF] Margaret | A model of evolutionary change in proteins[END_REF][START_REF] Abascal | Prottest: selection of best-fit models of protein evolution[END_REF]). The first version of this matrix is called PAM 1 . This latter estimates of how much the rate of character substitution would be if only 1% of amino acids residue had exchanged to another amino acid type. Dayhoff starts by calculating the relative probability ratio (m j) for each amino-acid according to the following formula:

m j = number of changes of j number of occurrences of j (3.1)
The mutation probability matrix can be determined based on the following formulas:

• For diagonal elements:

M j j = 1 -λm j
where λ is a proportionality constant, and m j is the relative mutability ratio of j th amino acid computed using Equation 3.1.

• For non-diagonal elements:

M i j = λm j A i j i A i j
where A i j is a constant of accepted point mutation whose value can be found in [START_REF] Margaret | A model of evolutionary change in proteins[END_REF], λ is a proportionality constant, and m j is the relative mutability ratio of j th amino acid computed using Equation 3.1

In further investigations, Dayhoff computed the Relatedness Odd matrix (R i j) per amino acid as:

R i j = M i j f i (3.2)
where, M i j is the probability element of changing residue j to residue i in mutation probability matrix, and f i represents the frequency of residue i that may occur by chance:

f i = k b q (b) j N (b)
where, the sum is taken over all alignment blocks b. q (b) j is the observed frequency of amino acid j in block b, N (b) is the number of substitutions in a tree built for b and the coefficient k is chosen to ensure that the sum of the frequencies f j = 1.

The PAM 1 matrix, shown in Figure 3.3(a), is at the basis of all the other PAM models like the log-odds matrix 2 . Matrices such as PAM 100 and PAM 250 are generated to reflect the different types of amino-acid substitutions that may occurred in distantly proteins, based on the hypothesis that some repeated mutations would following the similar model conserved in PAM 1 matrix, and multiple substitutions may occur in the related site. However, other PAM matrices such as PAM 30 and PAM 70 are still used. An example of PAM 250 matrix is given in Figure 3.3(b). For more information on this matrix, we recommend to read [START_REF] Margaret | A model of evolutionary change in proteins[END_REF][START_REF] Abascal | Prottest: selection of best-fit models of protein evolution[END_REF][START_REF] Comet | Programmation dynamique et comparaison de séquences biologiques[END_REF].

3.2.3/ BLOCKS SUBSTITUTION MATRIX (BLOSUM)

PAM matrices, introduced in the previous section, are obtained with the comparisons of closely related protein sequences, and so more divergent sequences cannot work with PAM. This is why, in 1992, Henikoff and Henikoff [START_REF] Henikoff | Amino acid substitution matrices from protein blocks[END_REF] introduced a new amino acid substitution matrix named BLOcks SUbstitution Matrix (BLOSUM). This latter is used to align protein sequences by scoring different alignments among evolutionary diverging sequences. To construct this model, a local alignment algorithm is applied on given protein sequences, then a database is scanned for highly similar block regions of protein families (sequence alignment without gaps), in order to obtain the relevant frequencies of conserved amino acids with their substitution probabilities. After the exploration of aminoacids frequencies and their substitution probabilities, a computation of log-odds scores for each of the 210 possible substitution pairs of the 20 standard amino acids is applied. All BLOSUM matrices are based on observed alignments.

According to [START_REF] Henikoff | Amino acid substitution matrices from protein blocks[END_REF], BLOSUM matrices are obtained by using blocks of similar protein sequences as input data, then various statistical approaches are applied on the data to infer similarity scores. We recalled the following pipeline steps:

• Procuring Frequency Table : In this step, a local alignment algorithm is applied on the raw data of protein sequences to infer the set of conserved blocks of families, using an automatic tool named PROTOMAT [START_REF] Henikoff | Blocks+: a nonredundant database of protein alignment blocks derived from multiple compilations[END_REF], to acquire a set of scored blocks. The latter lead to construct a database of blocks. Conserved blocks are then clustered under a specific threshold to generate a set of clusters that contain a set of blocks based on identity score. In the same manner, if we want to add new sequence, then a set of matching/mismatching pairs of sequence compared with blocks should be computed. If we have a block of width w amino acids and a block depth of s sequences, it provides ws(s-1)

2 amino acid pairs. The result from this counting is a frequency table, the latter listing the number of times each of different amino acid pairs occurs among the blocks. A table is used to calculate a matrix representing the odds ratio between these observed frequencies and those expected by chance.

• Generate a Logarithm of Odds (Lod) Matrix: In this step, let the frequency table of total pairs of amino-acids be denoted by a function (f i j). So, the function for observed probability of each given pair is:

q i j = f i j 20 i=1 i j=1 f i j . (3.3)
We estimate the expected probability of occurrence for each i, j pair based on i t h amino-acids by the following formula:

p i = q ii + j i q i j 2 .
The expected probability of occurrence e i j for each i, j pair is:

e i j =        p i p j = p 2 i if i = j, p i p j + p j p i = 2 × p i p j if i j. (3.4)
The odds ratio matrix is then calculated where each entry is q i j /e i j . A lod ratio is then calculated in bit units as:

s i j = log 2 (q i j /e i j)
where e i j is computed from Equation 3.4, and q i j is computed from Equation 3.3. Lod ratios are finally multiplied by a scaling factor of 2 and then rounded to the nearest integer value to produce the BLOSUM matrix in half-bit units, as shown in Figure 3.4. For more information on different types of BLOSUM matrix, see, e.g., [START_REF] Henikoff | Amino acid substitution matrices from protein blocks[END_REF][START_REF] Henikoff | Blocks+: a nonredundant database of protein alignment blocks derived from multiple compilations[END_REF]. Having the way to attribute a cost to a substitution in either DNA or protein sequences, we can now explain more deeply the alignment algorithms.

3.3/ LOCAL ALIGNMENT ALGORITHMS

In comparative biology, when we have a partial sequence of DNA and we need to provide some information about it, the first idea is to compare this sub-sequence (pattern) with a database of already identified sequences, seeking for relatively conserved subsequences [START_REF] Stephen F Altschul | Basic local alignment search tool[END_REF] using local alignment algorithms (LSA). This process will find the conserved regions of this partial sequence in the database, providing thus information thanks to the reference sequence.

There are many algorithms developed for this kind of alignment. In next sub-sections, we will summarize some of the most popular ones.

3.3.1/ BASIC LOCAL ALIGNMENT SEARCH TOOL (BLAST)

In 1985, David J. Lipman and William R. Pearson [START_REF] David | Rapid and sensitive protein similarity searches[END_REF] have developed a software package for protein-protein sequence similarity search called FASTP for proteins and FASTN for nucleotides. These software have been popularized under the name of FASTA, which is an abbreviation of "FAST-All". This tool combines the ability to do DNA-DNA and translated protein-DNA searches.The FASTA file format is now widely used by other sequence database search tools, such as BLAST Altschul [START_REF] Stephen F Altschul | Basic local alignment search tool[END_REF], and sequence alignment programs like ClustalW [START_REF] Thompson | Multiple sequence alignment using clustalw and clustalx[END_REF], MUSCLE [START_REF] Robert | Muscle: multiple sequence alignment with high accuracy and high throughput[END_REF], T-COFFEE [START_REF] Notredame | T-coffee: A novel method for fast and accurate multiple sequence alignment[END_REF], etc.

In 1990, a more time-efficient algorithm than FASTA, called Basic local alignment search tool (BLAST), was developed by Altschul [START_REF] Stephen F Altschul | Basic local alignment search tool[END_REF]. BLAST is a heuristic algorithm that gives a comparison approximation of the best local alignment between biological amino-acid sequences of protein, or nitrogen base sequences. It enables bioinformatic researchers to compare a desired query sequence with a library of sequence databases, in order to identify the target sequences that are the most similar with the desired query (given a certain threshold). Having the same sensitivity than FASTA, BLAST is more reliable as it only searches the most significant patterns in the sequence database. Note that various versions of BLAST have been developed by the National Center of Biotechnology Information NCBI.

There are various software versions of BLAST depending on the type of the queried sequence:

• BLASTN: Program that searches in nucleotide databases using a nucleotide query.

• BLASTP: Program that investigates protein databases using a protein query.

• BLASTX : Search in protein databases using a translated nucleotide query (e.g., protein query).

• TBLASTN: Search in translated nucleotide databases using a protein query.

• TBLASTX : Search in translated nucleotide databases using a translated nucleotide query.

3.3.2/ SMITH-WATERMAN ALGORITHM

The Smith-Waterman is an algorithm based on dynamic programming developed by Smith in 1981. Its main purpose is to align locally two biological sequences in order to discover in minimal cost the optimal alignment path [START_REF] Temple | Identification of common molecular subsequences[END_REF]. It is independent of any distance function (such as Euclidean, Manhattan, or Levenshtein that will be detailed in Section 3.5). The algorithm calculates the alignment that minimizes the costs provided by a certain distance function. It aims to align two sequences in a way that similar subsequences are aligned together. Local alignment is very useful when we want to align a partial portion of a sequence with a database of biological sequences. It can be applied in computer science in many applications, especially with those that need database search (such as data mining, information retrieval, pattern matching, image processing, etc.).

In this algorithm, a two dimensional scoring matrix T of size (m + 1) × (n + 1) is formed from the two provided biological sequences3 of length n and m. One extra column and one row containing zeros are added to the matrix, for score computation. The score in each cell is computed based on the scoring function presented in Equation 3.5.

Remark 2: Zero state in SW matrix

If the scoring numbers generated from the first three rules in Equation 3.5 are negative, then zero must be inserted in the cell T (i, j) to ensure to have no negative value in the matrix.

T (i, j) = max                    T (i -1, j -1) + σ(a i , b j),
T (i, j -1) -gap penalty, T (i -1, j) -gap penalty, 0.

(

where T (i, j) is the value at line i and column j of the scoring matrix of a i and b j . The value σ(a i , b j) is provided by a standard substitution matrix, like those detailed in Section 3.2 Note that some parameters can be optionally specified for the match, mismatch, and gap penalties in the scoring matrix. For more details on Smith-Waterman algorithm, see [START_REF] Temple | Identification of common molecular subsequences[END_REF] or [START_REF] Gotoh | An improved algorithm for matching biological sequences[END_REF] for an improved version. This algorithm is constituted by the following steps:

• Setting up the matrix: let A = a 1 a 2 a 3 . . . • Scoring the Matrix: In Needleman-Wunsch algorithm, we fill the matrix T in the same manner than in Smith-Waterman, as shown in Figure 3.7(b): The main differences between Needleman-Wunsch and Smith-Waterman algorithms are:

T (i, j) = max              T (i -1, j -1) + σ(a i , b j) T (i -1, j) -gap penalty T (i, j -
-The zero condition: in SW algorithm, we insert a 0 in the cell i, j if T i, j is negative, which is not the case in the NW one.

-Sequences in scoring matrix are ordered in an opposite direction.

A computation example of scoring matrix is given in Figure 3.7. • Identify the optimal path: In Figure 3.8, the tracing back process starts from the lowest right position in the scoring matrix, following the maximum scores until reaching the upper left position. The path drawn by this matrix is considered as the optimal alignment path given for aligning the two sequences.

3.5/ EDIT DISTANCES

In computer science and information retrieval, edit distance is a way of clarifying how different two strings are. This latter can be achieved by counting the minimum number of events that are required to convert one word into another one. Edit distances are used in various application domains, for example in natural language processing where the automatic spell corrections are determined according to the closest word in a given dictionary. In bioinformatics, such distances are used to evaluate the similarity of DNA or amino acid strings.

Needleman-Wunsch alignment algorithm can be used to provide an edit distance with gaps, as the lowest right column of the scoring matrix contains the scoring cost. If the distinction between gap opening and extension is not required, and if we only need to consider insertion, deletion, and substitution of characters, then the Levenshtein edit distance can be used. This latter corresponds to usual spelling errors like in gene names, while the former is more adequate when considering usual chemical modifications of biomolecules (this fact will be used in our first contribution). Let us bring more details about the Levenshtein distance.

The string metric proposed by Vladimir Levenshtein in 1965 [START_REF] Iosifovich | Binary codes with correction for deletions and insertions of the symbol 1[END_REF][START_REF] Yujian | Pattern Analysis and Machine Intelligence[END_REF], is defined formally as the minimum number of insertion, deletion, or substitution operations required to change one word into the other one. Mathematically speaking, the Levenshtein distance between A, a string of length n, and B, another string of length m, can be computed using the same dynamic programing canvas than in Needleman-Wunch, except that T matrix is filled as follows:

T (i, j) =                    max (i,j) if min (i,j) = 0, min              T (i -1, j) + 1 T (i, j -1) + 1 T (i -1, j -1) + 1 (a i b j)
Otherwise.

where 1 (a i b j) is 1 if and only if a i b j and 0 otherwise.

3.6/ MULTIPLE SEQUENCE ALIGNMENT (MSA)

Dynamic programming as described by Needleman-Wunsch for pairwise alignment is guaranteed to identify the optimal global alignment. Exact methods for multiple sequence alignment employ dynamic programming too.

The goal here is to maximize the summed alignment score of each pair of sequences. Exact methods generate optimal alignments but are not feasible in time or space for more than a few sequences. MSA are easy to generate for a group of very closely related protein (or DNA) sequences, as shown in Figure 3.9, as soon as the sequences exhibit some divergence, the problem of multiple alignment becomes extraordinary difficult to solve. The Multiple Sequence Alignment (MSA), is a collection of three or more nucleic acid (or protein) sequences that are partially or completely aligned. Homologous residues are aligned in columns across the length of the sequences. These aligned residues are homologous in a structural sense or even in an evolutionary sense: they are presumably derived from a common ancestor.

PSP xy = i j f x i f y j S i j
where PSP xy is a sequence-weighted sum of substitution matrix scores for each pair of latters. S i j is the log expectation S i j = log(p i j /p i p j). MUSCLE applies two PAM matrices and new log-expectation score for its PSP function:

LE xy = (1 -f x G)(1 -f y G)log i j f x i f y j p i j p i p j
where the factor (1f G) is the occupancy of a column. For more information, see [START_REF] Robert | Muscle: multiple sequence alignment with high accuracy and high throughput[END_REF].

3.7/ CONCLUSION

In this chapter, we recall various algorithms of sequence alignments based on computing the edit distance. Computing the edit distance means that we considered the minimum edit operations that change one sequence into other one. In bioinformatics, sequence alignment algorithms lie in two types: local and global alignment algorithms.

In local alignment algorithms, a query sequence is aligned with a database of well-known protein or nucleotide sequences, where there are some regions with highest similarity score. Well-known algorithms for Local alignment are BLAST and Smith-Waterman. For global alignment, two sequences are aligned based on the computation of optimal alignment path. This latter is computed from a scoring function by tracing back the scoring matrix from the lower right cell following the maximum scores until reaching the upper left cell. Distance measures such as Levenshtein, Euclidean, and Manhattan distances are also detailed. Levenshtein measure is not an alignment algorithm, but it takes into account some edit operations such as insertion and deletion.

Finally, we detailed MUSCLE algorithm of multiple sequence alignment tools. We explained that this algorithm use the sum-of-pairs (PSP) profile with two PAM matrices and novel log-expectation formula.

CHAPTER 4

Concept of Phylogenetic Tree Construction I n computational and molecular biology, phylogenetic tree reconstruction is an attempt to focus on the ancestral relationship among a set of biological sequences. It involves the construction of a tree, where the nodes indicate separate evolutionary paths, and the lengths of the branches give an approximation of how distantly related the sequences represented by those branches are. This chapter gives a brief knowledge on how a phylogenetic tree can be generate from a set of DNA sequences, and how we can evaluate the predicted one. Finally, some concepts regarding phylogenetic analysis will be defined, and algorithms used for phylogenetic reconstruction will be detailed.

4.1/ VARIOUS TYPES OF PHYLOGENETIC TREES

A phylogenetic tree is a graph composed of edges (or branches) and nodes as shown in Figure 4.1(a). In this figure, edges connect exactly two nodes. A node can be either an internal (an ancestry node) or a terminal one (a leaf). Terminal nodes are sometimes called taxonomic units (TU) or simply taxa (plurial of taxon). These taxa can be organisms, coding sequences, proteins, genes, etc. Internal nodes in the tree represents the ancestor of the given TUs. A phylogenetic tree can be either rooted or not. Finally, the edge that connects one leaf with an internal node is called an external branch, while an edge between two internal nodes is called an internal branch or an inner one.

Branches define how nodes are connected in the tree, or in other words its topology. The latter highlights the relationship among TUs and their ancestors. Each branch has a value (or weight) which is called branch length. This value represents, for example, the number of changes (in amino-acids or nucleotide) that have possibly occurred between sequences in this branch. More precisely, depending on the existence of branch lengths, the tree can be either a cladogram or a phylogram.

In cladograms, branch lengths are not meaningful in the tree, which means that they are not related to the number of changes that have occurred between sequences. This tree is useful to align large TUs and to infer the time scale if a date of divergence is assumed precisely. An example of cladogram tree is shown in As stated previously, a phylogenetic tree can be either rooted or unrooted. Let us now detail these two tree structures (for further information on phylogenetic tree construction, see, e.g., [START_REF] Rouchka | Review of phylogenetic tree construction[END_REF]).

• Unrooted Phylogenetic Trees: This type of trees specifies the relationships among the given TUs. However, they did not provide any information to infer completely the evolution from the last common ancestors. The number of possible unrooted trees can be inferred according to the number of TUs (c.f. Cavalli-Sforza and Edwards [START_REF] Edwards | Phylogenetic analysis. models and estimation procedures[END_REF]). It is indeed well-known that the number of trees increases rapidly with the number of TUs. More precisely, the number T U of possible unrooted trees can be computed according to the following formula:

T U = (2m -5)! [2 m-3 (m -3)!] ,
where m ≥ 3 is the number of TUs.

Example 2: Number of unrooted trees with 6 species

Suppose that m = 6, then the number of generable unrooted trees is:

T U = (2 × 6 -5)! [2 6-3 (6 -3)!] = 7! [8 × 3!] = 5040 48 = 105.
An example of unrooted tree is provided in Figure 4.2. For further information regarding unrooted trees, the reader is referred to [START_REF] Edwards | Phylogenetic analysis. models and estimation procedures[END_REF][START_REF] Rouchka | Review of phylogenetic tree construction[END_REF]. • Rooted Phylogenetic Trees: This type of phylogenetic trees includes a root that represents the last common ancestor of all TUs in the tree. In Figure 4.3 for instance, the internal nodes, represented by yellow circles, have an ancestor depicted in red. The main way to root a tree is to specify an outgroup, which is a TU known to be outside the group of TUs under consideration. This latter can be a species known to have diverged before the divergence of the considered TUs. For instance, if the leaves correspond to chloroplast genomes, then an outgroup node could be a Cyanobacteria, which is probably the bacteria at the origin of the chloroplasts. We have represented an outgroup (the node F) in Figure 4.3.

The number of rooted trees can also be computed, see Cavalli-Sforza and Edwards for instance [START_REF] Edwards | Phylogenetic analysis. models and estimation procedures[END_REF]. This number T R of possible bifurcating rooted trees for m TUs is:

T R = (2m -3)! [2 n-2 (n -2)!]
where m ≥ 2.

Example 3: Number of rooted trees with 6 leaves

Suppose that m = 6, then the number of rooted trees is equal to:

T R = (2 × 6 -3)! [2 6-2 (6 -2)!] = (12 -3)! [(2 4) × 4!] = 362880 384 = 945
T R (m) is too the size of the searching space when inferring a rooted phylogenetic tree with m TUs.

The dotted lines in Figure 4.3 represent the delay between two bifurcations, while the red circle represents the last common ancestor of given TUs. So the time of evolution can be computed from each sub-ancestor to the last common one when either the date of divergence or the divergence rate are known. Until now, however, this problem is still a challenging task. For further information, see, e.g., [START_REF] Soltis | Angiosperm phylogeny inferred from multiple genes as a tool for comparative biology[END_REF][START_REF] Pevsner | Bioinformatics and functional genomics[END_REF][START_REF] Deren | Inferring phylogeny and introgression using radseq data: an example from flowering plants (pedicularis: Orobanchaceae)[END_REF]

4.2/ METHODS FOR PHYLOGENETIC CONSTRUCTION 4.2.1/ INTRODUCTION

There is a lot of methods for constructing a phylogenetic tree, which can be roughly separated in two categories: the distance-based and the character-based methods.

In distance-based methods, a multiple alignment algorithm is applied on given sequences and pairwise distances are computed on each couple of aligned sequences. This computation leads to a two-dimensional distance matrix, on which a distance-based algorithm is applied to infer the desired phylogenetic tree. These algorithms encompass UPGMA and Neighbor-Joining, this latter being detailed below.

In character-based methods, an outgroup is compared to a set of sequences. A multiple alignment algorithm is then launched to align all sequences of characters against the outgroup. The multiple character-based alignment is then exploited using Maximum Likelihood, Maximum Parsimony, or Bayesian methods, in order to find the best tree according to the characters. For the sake of illustrations, we will detail the maximum likelihood method in what follows.

4.2.2/ A DISTANCE-BASED METHOD: THE NEIGHBOR-JOINING ALGORITHM

Neighbor-joining consists of building unrooted phylogenetic trees using distance methods [START_REF] Saitou | The neighbor-joining method: a new method for reconstructing phylogenetic trees[END_REF]. It produces both topology and branch lengths by defining iteratively (based on a distance matrix) a neighbor as a pair of TUs that are connected in a single internal node X in an unrooted bifurcating tree. Depending on the distance matrix previously computed, the method steps are:

1. Generate a full tree with all TUs in a starlike structure with no hierarchy, see Fig-

2.

A pairwise comparison using the distance matrix is done, in order to recognize the two most related sequences (TUs). To check the selection, the sum of the branch lengths of selected TUs should be smaller than all the other ones.

3.

The identified TUs are connected to an internal node X, and they are treated now as one TU, see Figure 4.4(b).

4.

Select the base pair that has the smallest sum-of-branch-lengths.

5.

The process continues until the topology of the tree is completed.

The neighbor-joining method produces an unrooted tree. According to [START_REF] Saitou | The neighbor-joining method: a new method for reconstructing phylogenetic trees[END_REF], The sum of the branch lengths of N TUs in the tree 4.4(a) is computed as follows:

Let us define D i j and L ab as the distance between TUs i and j and the branch length between nodes a and b respectively. The sum of branch lengths of the tree is defined based on the following formula:

S = N i=1 L iX = 1 N -1 i< j D i j
where D i j is equal to the distance between TUs i and j. Note that in Figure 4.4, we suppose that a means TU number 1, b is TU number 2, and so on. Furthermore, to compute the distance between nodes X and Y, we proceed as follows:

L XY = 1 2(N -2)         N k=3 (D 1k + D 2k) -(N -2)(L 1X + L 2X) -2 N i=3 L iY        
In this equation, the term inside the brackets is the sum of all distances including L XY , and the outer term 1 2(N-2) is to exclude irrelevant branch lengths. For more details, see [START_REF] Saitou | The neighbor-joining method: a new method for reconstructing phylogenetic trees[END_REF][START_REF] William | Weighted neighbor joining: a likelihood-based approach to distance-based phylogeny reconstruction[END_REF]. William et al. have presented in 2002 an improved version of neighbor-joining method called weighted neighbor joining, or simply Weighbor [START_REF] William | Weighted neighbor joining: a likelihood-based approach to distance-based phylogeny reconstruction[END_REF]. The Weighbor criteria for determining a pair of TUs measures the errors in the distance which can be exponentially large for higher distances. The former includes a likelihood function for computing the distances, while the latter are modeled as correlated Gaussian random variables with various means and variances, estimated under a probabilistic model for sequence evolution.

In this model, the cost function is:

S (i, j) = gAdd(i, j) + Pos(i, j)
where g is used to address that the tree may not be at all starlike by correcting for potential correlations among different terms in Add(i, j). Add(i, j) is defined as: This equation can be translated as weighted least-squares χ2 function. σ 2 noadd is called a "no addition" and computed as follows:

Add(i, j) = 1 2 k {i, j} [d ik -d jk -(d iP -d jP)] 2 σ 2 noadd (d iP , d Pk) + σ 2 noadd (d jP , d Pk) (
σ 2 noadd (d iP , d Pk) = σ 2 (d ik -σ 2 (d iP) -σ 2 (d Pk)),
where d iP and d Pk are simple estimation values. Finally, the "evaluating positively function" Pos(i, j) is computed as [START_REF] William | Weighted neighbor joining: a likelihood-based approach to distance-based phylogeny reconstruction[END_REF]:

Pos(i, j) = -ln        1 2 erfc        -d PQ √ 2σ PQ               .

4.3/ CHARACTER-BASED METHODS

We will give in what follows brief details on the three most known character-based methods, namely the maximum likelihood, the maximum parsimony, and the Bayesian inference method. We will then explain how to launch a RAxML maximum likelihood analysis on a given multifasta.

4.3.1/ MAXIMUM PARSIMONY

In a maximum parsimony MP method, the best tree is defined as the tree with the lowest branch lengths. More precisely, for given sequences, a multiple alignment algorithm is used to align the sequences, and to identify the informative 1 and non-informative 2 sites. The next step is to count the number of changes and assign this cost to each generated phylogenetic tree. The method then computes the total length L for each tree and selects the minimum one. The L value is calculated according to the following formula:

L = C j=1 w j l j
where l j is the sum of the lengths of a full tree, C is the total number of characters, and w i is the assigned weight for each character, which is set to 1 in most cases. For further information about maximum parsimony model, see [START_REF] Tateno | Relative efficiencies of the maximum-likelihood, neighbor-joining, and maximum-parsimony methods when substitution rate varies with site[END_REF].

4.3.2/ BAYESIAN METHOD

For the sake of completeness, we evoke here the well-known and frequently used Bayesian methods, which estimate the phylogeny by calculating the conditional probability given the model, based on the following formula:

Pr[Tree|Data] = Pr[Data|Tree] × Pr[Tree] Pr[Data]
where Pr[Tree|Data] is called a posterior probability distribution 3 .

Being not familiar with probability and statistics, and due to the fact that we do not have used such methods during our thesis, we will not enter more deeply in Bayesian inference.

For more information about this method, see [START_REF] John P Huelsenbeck | Bayesian inference of phylogeny and its impact on evolutionary biology[END_REF].

4.3.3/ MAXIMUM LIKELIHOOD

4.3.3.1/ GENERAL PRESENTATION

The maximum likelihood ML method is commonly used for determining the topology and branch lengths that have the greatest likelihood to produce the aligned data, providing the substitution model and the tree.

Given a set of sequences on which a multiple alignment procedure has been applied, the phylogenetic tree that optimizes the above likelihood must be found. To do so, the search space (the set of all rooted trees having the good number of leaves) is visited until reaching the tree that optimizes the likelihood score (this is an optimization problem in which any optimization technique can be used). To compute this score, we must first have chosen a substitution model (see Section 3.2). Then the likelihood to have the residue (column) of the alignment, given the model and the visited tree, is computed, and all per site likelihoods are finally summed.

4.3.3.2/ BOOTSTRAP VALUES

Additionally to branch length values, a rooted tree can have another value attached with internal nodes, which is called a bootstrap value. This value is mainly used to evaluate the robustness of a given phylogenetic tree topology. This robustness evaluation can be achieved in the following way.

After obtaining the phylogenetic tree with branch lengths values, a bootstrap analysis is then involved by creating a simulated dataset of the similar size as the original one.

The process starts by randomly picking columns from the multiple sequence alignment sequences; this is usually performed with replacement, where any individual column may appear multiple times or not at all. Novel trees are generated by considering a large number of bootstrap replicates (from 50 to 1000). The trees generated from bootstrap replications are then compared with the original inferred one, and the proportion of trees that present the same branch is set as bootstrap value on the associated node in the best tree. By doing so, we can observe the frequency of each clade topology in the original one.

4.4/ STAGES FOR PHYLOGENETIC ANALYSIS

In what follows, we summarize the four stages required to construct a phylogenetic tree with bootstraps using maximum likelihood method.

Acquiring Gene Sequences:

In this stage, corresponding sequences of each given core gene are collected from both the outgroup and the genomes under consideration (methods for acquiring gene sequences are presented in Chapter 6). The gene file, having the form depicted in Figure 4.5 in fasta format, is generated for each core gene. Such multifasta files will be the input of next stages aiming at constructing the phylogenetic tree.

Multiple Sequence Alignment and Concatenation Stage:

A multiple sequence alignment tool, as previously explained, receives the generated fasta file. It aligns globally all including sequences of given gene as shown in Figure 4.6. Various multiple sequence alignment algorithms, like MUSCLE [START_REF] Robert | Muscle: multiple sequence alignment with high accuracy and high throughput[END_REF] or T-COFFEE [START_REF] Notredame | T-coffee: A novel method for fast and accurate multiple sequence alignment[END_REF], can be used for aligning separated fasta gene files.

• MUSCLE (briefly detailed in Chapter 3) on the one hand, has been used during this thesis with its default parameters. It accepts the fasta file described above, for each gene, as an input. So it produces a multiple alignment file as output. MUSCLE is a fast and semi-accurate alignment tool working with either small or large amount of sequences, while its accuracy decreases accordingly to the increasing of sequence lengths. [START_REF] Chuong B Do | Probcons: Probabilistic consistency-based multiple sequence alignment[END_REF], dialignT [START_REF] Amarendran R Subramanian | Dialign-t: an improved algorithm for segment-based multiple sequence alignment[END_REF], mafft [START_REF] Katoh | Multiple alignment of dna sequences with mafft[END_REF], clustalw [START_REF] Thompson | Multiple sequence alignment using clustalw and clustalx[END_REF], PCMA [START_REF] Pei | Pcma: fast and accurate multiple sequence alignment based on profile consistency[END_REF] and T-COFFEE [START_REF] Notredame | T-coffee: A novel method for fast and accurate multiple sequence alignment[END_REF]). T-COFFEE will generate two files: .aln and .dnd. The former is the multiple alignment file of input sequences, while the latter is the guided newick format tree.

A concatenation is required to have one sequence per TU. The result of this assembly is provided as an input file for the phylogenetic tree reconstruction stage.

Tree Building Stage:

This stage is concerned with the construction of phylogenetic tree. In this stage, we consider to use RAxML as a default phylogenetic tree reconstruction toolkit. If you are more interested in RAxML, we adviced you to see [START_REF] Stamatakis | Raxml-iii: a fast program for maximum likelihood-based inference of large phylogenetic trees[END_REF]. In this stage, the procedure of building phylogenetic tree by RAxML is divided into the following steps:

• Generating RAxML input file: As shown in Figure 4.6, the generated files from sequence alignment stage are used to formulate the desired RAxML file.

Based on binary pattern of given individual, gene sequences of presented genes in the binary pattern are assembled (e.g., concatenating) together for each given genome. The predicted fasta file is then saved, with the amount of given genomes and the length of assembled sequences at the top of the file.

• Generating random tree: In this step, a random tree of target taxa genomes is created based on the following RAxML command:

raxmlHPC -d -f o -p 12345 -m GTRGAMMA -q Resultats/'+texte+'/modele.txt -n '+texte+'1 -o '+outgroup+' -s Resultats/'+texte+'/alignementsRAxML.fasta.
The description of the used RAxML options are presented in Table 4.1. The GAMMA substitution model is used on the input sequence alignment file in -s symbol. The assignment of models to the alignment partitions are stored in modele.txt file. Note that, in this step neither branch lengths, nor bootstraps values are computed yet.

• This assembly file will be used in the phylogenetic construction stage using RAxML.

• Applying bootstrap analysis: In this step, depending on the given trees from previous steps, the bootstrap analysis is employed by generating a bipartition file of different tree topologies based on various bootstrap replications as stated in the following command: raxmlHPC -f o -m GTRGAMMA -q Resultats/'+texte+'/modele.txt -n '+texte+'3 -o '+outgroup+' -f b -t RAxML_best-Tree.'+texte+'1 -z RAxML_bootstrap.'+texte+'2'. The most supported tree is then generated into a newick file format.

Tree Verification:

To verify the given trees, all generated .newick phylogenetic trees from given analysis are verified based on two factors: lowest bootstrap value and the amount of genes in given tree. A bootstrap function is applied on each tree generated from the last RAxML command in previous subsection. -NautoMRE is used to specify the number of alternative runs on distinct starting tree. Using -N with -b, this will invoke a multiple bootstrap analysis. Bootstrap information are drawn using -f b option over the best selected bootstrap tree specified by -t option.

Symbol Description -b 0123 Specify the random bootstrap number seed that will be consistent across runs.

-d Used to start maximum likelihood optimization from random starting tree.

-f o Slower rapid hill climbing algorithm without the heuristic cutoff but this algorithm typically get slightly better likelihood scores.

-f b Draw bipartition information on a best knowing Bootstrapping tree provided with -t, based on multiple bootstrap trees in a file specified by -z.

-m GTRGAMMA Specify the substitution DNA model where the ALPHA values estimated.

-n Specify the name of output file.

-N autoMRE Specifies the number of alternative runs on distinct starting trees, with -b this will invoke a multiple bootstrap analysis. -o Specify the name of single outgroup genome. -p 12345 Specify a random number seed for the parsimony inferences.

-q Specify the file name which contains the assignment of models to alignment partitions for multiple models of substitution. -s Specify the name of the alignment data file in PHYLIP or FASTA format.

-z Specify the file name of a file containing multiple trees e.g. from a bootstrap that shall be used to draw bipartition values onto a tree provided with -t.

Table 4.1: Optional parameters of RAxML commands.

The number of genes (or gene rate) in the other hand indicates how many gene are conserved to generate the target phylogenetic tree. The largely presented genes are the highly stable tree.

4.5/ CONCLUSION

In this chapter, we gave a small background on phylogenetic tree reconstruction from biological sequences. The types of the phylogenetic tree presented as rooted and unrooted trees, and we showed how unrooted tree can represent the natural relations among applied Taxonomy units (TUs). The unrooted tree based on some related works can be inferred based on the number of TUs. Indeed, this latter did not provide useful information. On the contrary, rooted trees provide more useful information on how the given tree are growth over time. We also showed how many rooted trees can be infer based on the number of TUs.

Various models can be applied for constructing the phylogenetic tree of desired sequences. Two branches have been realized in this domain: distance-based and character-based methods. In distance-based methods, a phylogenetic tree can be constructed by calculating the distances between desired sequences for a distance matrix. Two models are available in this kind of models: UPGMA and Neighbor-joining methods.

The two algorithms are closed in their techniques so that we focused on neighbor-joining algorithm as the fast, reliable, and most know algorithm for constructing phylogenetic tree based on distance matrix.

In character-based methods, three methods are available for the construction of tree depending on providing a reference sequence (outgroup): maximum likelihood, maximum parsimony, and Bayesian methods. Each of these algorithms has its own technique. In this manuscript, we only focus on the maximum likelihood as the main method for constructing phylogenetic trees. A bootstrap analysis is applied with each generated tree to compute the fitness value. We conclude that producing phylogenetic trees supported by bootstrap values can give to us a confident tree, so that, different TUs laying in the same clade are biologically related.

CHAPTER 5 General Introduction

We now enter in the main contribution part of this manuscript.

The first chapter of this part, Chapter 6, investigates the problem to find the core and pan genomes of a given set of chloroplastic sequences. Various approaches are evaluated, based either on NCBI database or on DOGMA annotation tool.

We describe in chapter 7 an optimization pipeline using the genetic algorithm that can efficiently optimize the searching space for well supported phylogenetic inference. In other words, we deal with discovering homoplasy in phylogenetic reconstruction. This is considered as a difficult computational problem, because the number of situations to investigate dramatically increases with the number of core genes and taxa.

More precisely, the objective is to obtain a well-supported phylogenetic tree by using the largest possible subset of core genes obtained previously. Indeed, if a well-supported tree cannot be reached by taking all core genes, the first thing to investigate is to test whether one or two particular genes are not responsible for this problem (by blurring the phylogenetic signals). In order to find such a supported tree that uses the largest possible subset of core genes, a genetic algorithm coupled with a lasso test is applied to identify (and remove) blurring genes This work is then extended in chapter 8 by integrating a discrete particle swarm optimization method to provide the largest subset of sequences in order to obtain the most supported species tree.

Our proposed pipeline has been applied to various families of plant species. More than 65% of phylogenetic trees produced by this pipeline have presented bootstrap values larger than 95.

Finally, the last chapter 9 of this part proposes a first ancestral reconstruction algorithm. It receives a well supported phylogenetic tree based on a large set of core genes, and it puts gene contents at its leaves. Then all internal nodes until the root receive their (ancestral) gene contents.

CHAPTER 6

Core-Genes Prediction Approaches D ue to the recent evolution of sequencing techniques, the number of available genomes are rising steadily, leading to the possibility to make a large-scale genomic comparison between sets of close species. An interesting question to answer is: what is the common functionality genes of a collection of species. Or, conversely, to determine what is specific to a given species when compared to other ones belonging to the same genus or family. Investigating such problem means to find both core and pan genomes of a collection of species, i.e., genes in common to all the species versus the set of all genes in all species under consideration. This chapter presents some general and heuristic methods for inferring such core and pan genomes, it summarizes three articles published in international conferences [START_REF] Alkindy | Finding the core-genes of chloroplasts[END_REF][START_REF] Alkindy | Gene similarity-based approaches for determining core-genes of chloroplasts[END_REF][START_REF] Alkindy | Improved core genes prediction for constructing well-supported phylogenetic trees in large sets of plant species[END_REF].

6.1/ INTRODUCTION

In bioinformatics, identifying core genes may be of importance, for instance to understand the shared functionality and specificity of a given set of species, or to construct their phylogeny using curated sequences. Therefore, in this chapter we present methods to determine both core and pan genomes of a large set of DNA sequences. However, obtaining trustworthy core and pan genomes is not an easy task, leading to a significant amount of computation, and requiring a rigorous methodology. This chapter is the basis of our work, which is progressively presented in the next chapters.

More precisely, we provide three distinct methods in order to obtain the set of desire core genome. A general overview of the entire proposed pipeline for core and pan genomes production and exploitation is presented in Figure 6.1, which consists of three principle stages: Genomes Annotation, Core Extraction, and Features Visualization.

As a starting point, the pipeline uses a DNA sequence database like NCBI's Gen-Bank [START_REF] Sayers | Database resources of the national center for biotechnology information[END_REF], the European EMBL database [START_REF] Kulikova | Embl nucleotide sequence database in 2006[END_REF], or the Japanese DDBJ one [START_REF] Sugawara | Ddbj with new system and face[END_REF] for acquiring target genomes. It is possible to obtain annotated genomes (DNA coding sequences with gene names and locations) by interacting with these databases, either by directly downloading annotated genomes delivered by these web sites, or by launching an annotation tool on complete downloaded genomes. Obviously, this annotation stage must be of Figure 6.1: A general overview of the annotation-based approach quality if we want to obtain acceptable core and pan genomes. Various cost-effective annotation tools [START_REF] Bakke | Evaluation of three automated genome annotations for halorhabdus utahensis[END_REF] that produce genomic annotations have been designed recently, some reputed ones being: DOGMA [START_REF] Wyman | Automatic annotation of organellar genomes with dogma[END_REF], CpBase [START_REF] De | Comparative analysis of chloroplast genomes: functional annotation, genome-based phylogeny, and deduced evolutionary patterns[END_REF], CpGAVAS [START_REF] Liu | Cpgavas, an integrated web server for the annotation, visualization, analysis, and genbank submission of completely sequenced chloroplast genome sequences[END_REF], and CEGMA [START_REF] Parra | Cegma: a pipeline to accurately annotate core genes in eukaryotic genomes[END_REF]. Such tools usually use one out of the three following methods for finding gene locations in large DNA sequences: alignment-based, composition-based, or a combination of both [START_REF] Parra | Cegma: a pipeline to accurately annotate core genes in eukaryotic genomes[END_REF]. An alignment-based method is used when trying to predict a protein coding sequence by aligning a genomic DNA sequence with a cDNA sequence coding an already known homologous protein [START_REF] Parra | Cegma: a pipeline to accurately annotate core genes in eukaryotic genomes[END_REF]. This approach is applied, for instance, in GeneWise [START_REF] Birney | Genewise and genomewise[END_REF]. The alternative method, the composition-based one (also known as ab initio) is based on probabilistic models of gene structure [START_REF] Parra | Geneid in drosophila[END_REF]. These tools will be used in our pipeline in order do find, in a second stage, the genes that are commonly shared through the considered set of annotated genomes. Then, a final step is to take advantage of the information produced during this core and pan genome search. The feature visualization stage encompasses phylogenetic tree construction using core genes, genes content evolution illustrated by core trees, functionality investigations, and so on.

At the end of this chapter, a running example is proposed to demonstrate the relevance of the suggested approaches.

6.2/ CORE GENOME EXTRACTION APPROACHES

We will detail three general approaches, published in various international conferences [START_REF] Alkindy | Finding the core-genes of chloroplasts[END_REF][START_REF] Alkindy | Gene similarity-based approaches for determining core-genes of chloroplasts[END_REF][START_REF] Alkindy | Improved core genes prediction for constructing well-supported phylogenetic trees in large sets of plant species[END_REF], for eliciting core genome, which serve as the second stage of the offered pipeline. The first approach uses similarities computed on predicted coding sequences, while the second one uses all the information provided during the annotation stage. The third method takes the advantages from the first two methods by considering gene names and sequences in order to find the target core genome. Indeed, such annotations can be used in various manners (based on gene names, gene sequences, and protein sequences) to extract the core and pan genomes.

6.2.1/ SIMILARITY-BASED APPROACH

The first method, described below, considers a distance-based similarity measure on gene' coding sequences. Such an approach requires annotated genomes, like the ones provided by the NCBI website.

6.2.1.1/ THEORETICAL PRESENTATION

We start with the following preliminary definition:

Definition 4: Similarity Matrix

Let A = {A, T , C, G} be the nucleotides alphabet, and A * be the set of finite words on A (i.e., of DNA sequences). Let d : N = A * × A * → [0, 1] be a function called similarity measure on A * . Consider a given value T ∈ [0, 1] called a threshold. For all x, y ∈ A * , we will say that x ∼ d,T y if d(x, y) T .

Let be given a similarity threshold T and a similarity measure d. The method begins by building an undirected graph between all the DNA sequences g of the set of genomes as follows: there is an edge between g i and g j if g i ∼ d,T g j is established. In other words, vertices are DNA sequences and two sequences are connected with an edge if their similarity is larger than a predefined threshold.

Remark 4: Graph connection limitation

This graph is not connected for sufficiently large threshold values.

An example of such a graph denoted as the "similarity" graph, is shown in Figure 6.2(a). We thus say that two coding sequences g i , g j are equivalent with respect to the relation R if both g i and g j belong to the same Connected Component (CC) of this similarity graph, i.e., if there is a path between g i and g j in the graph. To say this in another way, if there is a finite sequence s 1 , ..., s k of vertices (DNA sequences) such that g i is similar to s 1 , which is similar to s 2 , etc., and s k is similar to g j (as shown in Figure 6.2(b)).

It is not hard to see that this relation is an equivalence relation whereas ∼ is not. Any class for this relation is called a "gene" in this chapter, where its representatives (DNA sequences) are the "alleles" of this gene, such abuse of language being proposed to set our ideas down. Thus this first method produces for each genome G, which is a set g G 1 , ..., g G m G of m G DNA coding sequences, the projection of each sequence according to π, where π maps each sequence into its gene (class) according to R. In other words, a genome G is mapped into π(g G 1), ..., π(g G m G) . Note that a projected genome has no duplicated gene since it is a set.

Consequently, the core genome (resp., the pan-genome) of two genomes G 1 and G 2 is defined as the intersection (resp., as the union) of their projected genomes. We finally consider the intersection of all the projected genomes, which is the set of all the genes ẋ such that each genome has at least one allele in ẋ. This set will constitute the core genome of the whole species under consideration. The pan-genome is computed similarly as the union of all the projected genomes.

Remark 5: Major issue of gene prediction method

This first method requires the computation of all similarities among all allele sequences in all species under consideration. According to the number of organisms and even with a focus on a specific family or function, this is a computationally heavy operation.

6.2.1.2/ A FIRST CASE STUDY

For illustration purposes, we have considered in this chapter 99 genomes of chloroplasts downloaded from GenBank database [START_REF] Sayers | Database resources of the national center for biotechnology information[END_REF] as shown in Table 6.1. These genomes lie in the eleven type of chloroplast families as shown in Figure 6.3. Two kinds of annotations has been used, namely the ones provided by NCBI on the one hand, and the ones by DOGMA on the other hand. DOGMA1 , which stands for Dual Organellar GenoMe Annotator, has already been evoked in this chapter. The choice of DOGMA is natural, as this Each genome is thus transformed in a list of coding sequences, which depends on the chosen annotation tool. We have firstly evaluated the similarity score between each couple of sequences by using a Needleman-Wunch global alignment. The number of genes in the core genome and the pan-genome has then been computed according to the graph method detailed in the previous section. Obtained results with various threshold values are represented in Table 6.2.

Remark 6: Threshold status

When the threshold is large, we obtain more connected components, but with smaller sizes: a large number of genes, with a few numbers of alleles for each of them. In other words, when the threshold is high, the pan-genome is large too whereas the core-genome becomes either small or empty. No matter the chosen annotation tool, this first approach suffers from producing too small core genomes, for any chosen similarity threshold, compared to what is usually expected by biologists. For NCBI, it is certainly due to a wrong determination of start and stop codons in some annotated genomes. Indeed, due to the large variety of annotation tools used during genomes submission on the NCBI server, some of them being old or deficient, some genes may be truncated. And such truncated genes will not produce a significant similarity score with their orthologuous genes found in other genomes. The case of DOGMA, for its part, is more difficult to explain as. According to our experiments and the state of the art, this gene prediction tool produces normally good results in average.

The best explanation of such an under-performance is that a few genomes are very specific and far from the remaining ones, in terms of gene contents, which leads to a small number of genes in the global core genome. However, this first approach cannot help us to determine which genomes we must remove from our data. To do so, we need to introduce a second approach based on gene names: from the problematic gene names, we will be able to trace back to the problematic genomes. Instead of using the sequences predicted by annotation tools, we can try to use the names associated with these sequences, when available. The basic idea is thus to annotate all the sequences using a given software, and to consider as a core gene each sequence whose name can be found in all the genomes.

It is true that the NCBI annotations are of varying qualities, and sometimes such annotations are totally erroneous. However this database contains human-curated annotations of very good quality, and we wonder in this chapter if it is possible to detect and only use such well-annotated and curated genes. To summarize the approach detailed in this section: automatic DOGMA annotations are useful due to the automatic mechanism used for identifying genes and associating names without mistakes, while NCBI contains very good human-based annotations (together with errors). Our idea here is then to try to take the best of both automatic and humanly curated approaches. Let us finally remark that DOGMA also predicts locations of ribosomal RNA (rRNA), while they are not in the gene features file downloaded from NCBI.

We now investigate core and pan genome discovery using each of the two tools separately, which will constitute the second approach detailed in this chapter. From now on we will only consider annotated genomes: either "gene features" downloaded from the NCBI or the result of DOGMA.

6.2.2.2/ NAMES PROCESSING

As DOGMA is a deterministic annotation tool, when a given gene is detected twice in two genomes, the same name will be attached to the two coding sequences: DOGMA spells exactly in the same manner the two gene names. So each genome is replaced by a list of gene names, and finding the common core genes between two genomes simply consists in intersecting the two lists of genes. The sole problem we have detected using DOGMA on our chloroplasts is the case of the RPS12 gene: some genomes contain RPS12_3end or RPS12_5end in DOGMA result. We have manually considered that all these representatives belong to the same gene, namely to RPS12.

Dealing with NCBI names is more complicated, as various automatic annotation tools have been used together with human annotations, and because there is no spelling rule for gene names. For instance, NAD6 mitochondrial gene is sometimes written as ND6 while we can find RPOC1, RPOC1A, and RPOC1B in our chloroplasts. So if we simply consider NCBI data without treatment, intersecting two genomes provided as a list of gene names often leads to duplication of misspelled genes. Automatic names homogenization is thus required on NCBI annotations, the question being where to draw the line on correcting errors in the spelling of genes? In this second approach, we propose to automate only obvious modifications like putting all names in capital letters and removing useless symbols as "_", "(", and ")". Remark that such simple renaming process cannot tackle with the situations of NAD6 or RPOC1 evoked above. To go further in automatic corrections requires using edit distances like Levenshtein. However, such use will raise false positives (different genes with close names will be homogenized). The use of edit distances on gene names, together with a DNA sequence validation stage, will be investigated in a second methodology chapter.

In this section, we now consider that each genome is mapped to a list of gene names, where names have been homogenized in the NCBI case.

6.2.2.3/ CORE GENES EXTRACTION

To extract core genes, we iteratively collect the maximum number of common genes among genomes. Therefore, during this stage, an Intersection Core Matrix (ICM) is built. ICM is a two-dimensional symmetric matrix where each row and each column corresponds to one genome. Hence, an element of the matrix stores the Intersection Score (IS): the cardinality of the core genes obtained by intersecting the two genomes. Mathematically speaking, if we have n genomes in local database, the ICM is a n × n matrix whose each element score i j satisfies:

score i j = |g i ∩ g j | (6.1)
where 1 ≤ i ≤ n, 1 ≤ j ≤ n, and g i , g j are genomes. The generation of a new core genome obviously depends on the value of the intersection scores score i j . More precisely, the idea is to consider a pair of genomes such that their score is the largest element in the ICM. These two genomes are then removed from the matrix and the resulting new core genome is added for the next iteration. The ICM is then updated to take into account the new core genome: new IS values are computed for it. This process is repeated until no new core genome can be obtained. Figure 6.5 demonstrates the construction of ICM matrix. We can observe that the ICM is relatively large due to the amount of species. As a consequence, the computation of the intersection scores is both time and memory consuming. However, since ICM is obviously a symmetric matrix we can reduce the computation overhead by considering only its upper triangular part. The time complexity for this process is: O(n.(n-1) 2), where n is the number of genes. Algorithm 1 illustrates the construction of the ICM matrix and the extraction of the core genomes, where GenomesDB represents the database storing all genome data. At each iteration, this algorithm computes the maximum core genome from a set of genomes.

Algorithm 1: Retrieve Maximum Intersection Score

Require: L ← GenomesDB Ensure: Scores ← Max Core genome for i ← 1 : len(L) -1 do G i ← genome L i score ← 0 core 1 ← gene set of G i for j ← i + 1 : len(L) do G j ← genome L j core 2 ← gene set of G j core ← core 1 ∩ core 2 if |core| > score then score ← |core| G best ← G j end if end for Scores[score] ← (G i , G best) end for return max(Scores)

6.2.3/ QUALITY TEST APPROACH

Let us now present the last approach. We start by the following definition: Definition 5: Quality genome Let G i be a set of n gene names in genome i annotated by NCBI, and G i be a set of m gene names in genome i annotated by DOGMA. A core gene g from the set of core genes contains the sequences of generated quality genes from c i .

c i = G i ∩ G i ,
In Definition 5, we propose to take the best from NCBI and DOGMA annotations. This latter is done by integrate a similarity distance on gene names in the pipeline (see Figure 6.6). Each similarity is computed between a name from DOGMA and a name from NCBI, as shown in the Gene column in Figure 6.7.

The proposed distance is the Levenshtein one, which is close to the Needleman-Wunsch, except that gap opening and extension penalties are equal. The same name is then set to sequences whose NCBI names are close according to this edit distance. The risk is now to merge genes that are different but whose names are similar (for instance, ND4 and ND4L are two different mitochondrial genes, but with similar names). To fix such a flaw, the sequence similarity of intersected genes in a genome is also compared in a second stage, using a Needleman-Wunsch global alignment algorithm. The genes correspondence is simply ignored if this similarity is below a predefined threshold. We call this operation, which will result in a set of quality genes, a "quality test". A result from this quality test process is a set of quality genes. These genes will then constitute the quality genomes as given in Definition 5. A list of generated quality genomes based on a specific threshold will construct the intersection core matrix to generate the core genes, core tree, and the phylogenetic tree after choosing an appropriate outgroup.

It is important to note that DNA sequence annotation raises a problem in the case of DOGMA: contrary to what happens with gene features in NCBI, genes predicted by DOGMA annotation might be fragmented in several parts. Such genes are stored in the gene-vision file format produced by DOGMA, as each fragment is in this file with the same gene name. A gene whose name is present at least twice in the file is either a duplicated gene or a fragmented one. Obviously, fragmented genes must be defragmented before the DNA similarity computation stage (remark that such a defragmentation has been already realized on NCBI website). The defragmentation consists in concatenating all possible permutations (in the case of duplication), and keeping only the permutation with the best similarity score in comparison with other sequences having the same gene name, if this score is larger than the given threshold.

6.2.3.1/ CONSTRUCTION OF QUALITY GENOMES

The first step in producing annotated genomes is to find the set of common genes, that is, genes sharing similar names and sequences, by using various annotation tools and following the method described previously. Figure 6.9(a) presents the original amount of genes based on NCBI and DOGMA annotations. Two quality test routines then take place to produce "quality genomes" as shown in Figure 6.8 by: (1) selecting all common genes based on gene names (see Figure 6.8(a)) and (2) checking the similarity of sequences (see Figure 6.8(b)), which must be larger than or equal to a predefined threshold (see Figure 6.9(a)).

Remark 7: Threshold usage

The predefined threshold is not used to determine the orthologuous genes, but to to ensure that core genes from NCBI and DOGMA annotations are identical.

6.2.3.2/ CORE AND PAN GENOMES

To produce core genomes based on quality control approach2 , we need to know what are the common genes that share almost the same name and sequence from different annotation tools. tools. We also calculate the correlation coefficient (r) by applying the usual formula:

r xy = n-1 i=0 (x i -x)(y i -ȳ) n-1 i=0 (x i -x) 2 n-1 i=0 (y i -ȳ) 2 (6.2)
where x, y are sample data (nb. of genes from two annotation algorithms), x, ȳ are the sample mean for x, y, and n is the number of genomes. We found that the correlation value based on the number of genes produced by the two annotation algorithms is r = 0.57 (see Figure 6.10(a)), which means that the two ways to obtain annotations are really different.

Two steps quality test routines have then been launched to produce "quality genomes" and to enlarge the correlation: (1) select all common genes based on gene names, (check the similarity of sequences, which must be larger than a predefined threshold. Table 6.3 summarize the results of annotating 98 chloroplast genomes. In this table, X and Y represents the number of genes obtained from NCBI and DOGMA annotations from a given genome. X ∩ Y specifies the number of common genes (quality genes) between genome X i and genome Y i . The last two columns give the covering percentage of common genes to the current ones.

Based on the values in Table 6.3, Figure 6.11(b) presents the genes coverage percentage between NCBI and DOGMA. The correlation value based on the number of genes between the produced quality genomes and NCBI genomes is r = 0.6731 (see Figure 6.10(b)), and r = 0.9664 between produced quality genomes and DOGMA ones (see Figure 6.10(c)). Such correlation coefficients illustrate the large variability in the quality of NCBI annotations, and the average stability in the DOGMA ones. Obviously, these differences between the annotation tools can affect the final core genome.

Remark 8: Possible origins of differences between NCBI and DOGMA

The number of tRNAs and rRNAs genes is very large in the case of DOGMA while they are very low in the NCBI case. Additionally, unnamed or misspelled genes are frequent in the NCBI annotations. species. In this figure, two methods are used and compared using the same sample of genomes: in the first one, the gene prediction approach presented previously in Section 6.2.1 and published in [START_REF] Alkindy | Finding the core-genes of chloroplasts[END_REF][START_REF] Alkindy | Gene similarity-based approaches for determining core-genes of chloroplasts[END_REF] has been used on genomes annotated by NCBI and DOGMA, while on the other one the quality test approach also published in [START_REF] Alkindy | Gene similarity-based approaches for determining core-genes of chloroplasts[END_REF] is applied on genomes annotated by DOGMA. Different thresholds have been examined for both approaches. The amount of final core genes within the two approaches is low, as the species considered here are highly divergent. However even in that particular situation, it is obvious that the quality test approach outperforms the other one for each tested threshold.

As stated previously, the main goal is to find the largest number of core genes compatible with biological background related to chloroplasts. In the quality test approach case, one genome (Micromonas pusilla, with accession number NC_012568.1) has been discarded from the sample, as we observed that this genome always has the lowest number of common genes in our selected data set. This latter can be explained by two reasons:

(1) either one or more genomes consists of non-functional genes, or (2) the diversity is too large. With quality approach, an absence of genes in rooted core genome means The former outperforms the latter, as almost all genes in NCBI genomes have been covered with common genes, while most of the DOGMA genes are ignored. However, correlation of them with NCBI (after quality test) is 0.6731, while it is 0.9664 with DOGMA, this latter being thus more accurate than NCBI.

that we have two or more subtrees of organisms completely divergent among each other.

Unfortunately, for the first approach with NCBI annotation, the generated cores did not provide a good biological distribution of targeted genomes. More precisely, Micromonas pusilla evoked previously is the only genome that totally destroys the final core genome with NCBI annotations 3 , for both gene features and gene quality methods. Conversely, in the case of DOGMA annotation, the distribution of genomes is biologically relevant.

6.2.3.3/ EXECUTION TIME AND MEMORY USAGE

In computational biology, time and memory consumptions are two important factors due to high throughput operations among gene sequences. Figure 6.12 shows the amount of time and memory needed to extract core genes using the two approaches: in the first one, building the connected components depends on the construction of a distance matrix by considering the similarity scores from the global alignment tool, which takes a long time in the case of NCBI and DOGMA genomes.

Computation time is different for DOGMA and NCBI due to the size of genomes and the amount of gene sequences that need to be compared: NCBI genomes have 8,992 genes, instead of 11,242 in DOGMA genomes. Figure 6.12(a) presents the execution time needed for each method with respect to thresholds in range [50 -100]. The DOGMA one requires more computational time (in minutes) for sequence comparisons, while gene quality method needs a low execution time to compare quality genes. Let us notice that once the "quality genomes" have been constructed, this method takes only 1.29 minutes to extract core genes on a personal computer running Ubuntu 12.04 32 bits with 6 Giga bytes of memory, and a quad-core Intel Core i5 processor with an operating frequency of 2.5 GHz. The second important factor is the amount of memory used by each methodology, this one is highlighted in Figure 6.12(b). The low values show that the gene quality method based on gene sequence comparisons presents the most reasonable memory usage (when constructing quality genomes). It also depends on the size of genomes. Determining which method to choose depends on the user preferences: if we search for a fast and semi-accurate method, then the second approach should be chosen. Otherwise, if an accurate but relatively slow approach is desired, then the first method with DOGMA annotations should be preferred.

6.3/ FEATURES VISUALIZATION 6.3.1/ THE CORE TREE

The last stage of the proposed pipeline is to take advantage of the produced core and pan genomes for biological studies. As this key stage is not directly related to the methodology for core and pan genomes discovery, we will only outline few tasks that can be done using the produced data. Obtained results may be visualized by building a core genomes evolutionary tree, simply called core tree or a dendrogram in some literature. Each node in this tree represents a chloroplast genome of a predicted core, as depicted in Figure 6.13. In this figure, nodes labels are of the form (Genes number:Family name_Scientific name_Accession number), while an edge is labeled with the number of gene loss when compared to its parents (a leaf genome or an intermediate core genome). Such numbers can answer questions like: how many genes are different between two species? Which functionality has been lost between an ancestor and its children? For complete core trees based either on NCBI names or DOGMA ones, see Footnote 2.

A second application of such data is obviously to build accurate phylogenetic trees, using tools like PHYML [START_REF] Guindon | Phyml online-a web server for fast maximum likelihood-based phylogenetic inference[END_REF] or RAxML [START_REF] Stamatakis | The raxml 7.0. 4 manual[END_REF]. Consider, given a set of species, the least common core genome in a core tree that contains all shared common genes among these species. To infer a phylogenetic tree, these core genes can be multi-aligned to serve as an input to any phylogenetic tool mentioned above. Using core genomes here guarantee to build the phylogenetic tree on the largest possible common coding sequences of the considered species. An example of such a phylogenetic tree is provided in Figure 6.14, it is investigated more deeply in the next subsection.

6.3.2/ A FIRST PHYLOGENETIC STUDY

Having a common set of DNA sequences shared by all the chloroplasts thanks to our quality core genes approach, we can now focus on the first objective of our thesis, namely to infer their phylogeny based on their core genome. At this point, we do not consider all available chloroplastic genomes, but we still focus on the 5 core genes of the 98 plant species used during our core and pan genome investigations.

To obtain such a tree, the RAxML [START_REF] Stamatakis | Raxml version 8: A tool for phylogenetic analysis and postanalysis of large phylogenies[END_REF] program has been employed to compute the phylogenetic maximum-likelihood (ML) function with the following setup: the General Time Reversible model of nucleotide substitution with the Γ model of rate heterogeneity and the hill-climbing optimization method, while the Prochlorococcus marinus (NC_009091.1) cyanobacteria species is chosen as outgroup due to the supposed cyanobacteria origin of chloroplasts. The tree representation is obtained with Geneious [START_REF] Kearse | Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data[END_REF] based on the RAxML information. We first wonder whether the way to order the core genes in the alignment file may impact the inferred phylogeny. Thus, in order to find a well supported phylogenetic tree from all core genes, we have achieved the computation of 120 bootstrapped trees by considering all possible permutations, using itertools package, of the 5 core genes (remark that having a core genome larger than 7 genes leads to a searching space whose size explodes, see Figure 6.15). Among all these trees, we have then selected the one with the largest value of its lowest bootstrap b, this latter being denoted as the most accurate tree (MAT) in what follows, after having verified that gene order has no effect on the supports.

The obtained MAT has a lowest bootstrap equal to b = 32, which is very low. To improve this value, we have investigated in a second stage of experiments whether some core genes impact the robustness of the tree, for instance because they are homoplasic ones (see Table 6.4). In fact, when the core is large enough, it is possible to remove a few of them that obviously break the supports according to the maximum likelihood inference. After having systematically removing 1, 2, 3, and 4 genes, the best phylogenetic tree, having its lowest bootstrap value equal to 35, was obtained with one gene loss.

The low improvement previously observed when removing some core genes suggests that their number is not sufficient to produce a well-supported phylogenetic tree. Therefore we decided for the second experiment to split the set of species in two and to work with the core genome of the largest subset: 52 genomes lead to a core genome of 16 genes4 (Core_81 in the core tree available online). As expected, working with this large core genome allows to really improve the lowest bootstrap value 5 , since by removing randomly 1, 2, 3, and 4 genes the resulting MAT has 55 for its lowest bootstrap value. Figure 6.16 presents this best tree obtained after removing one gene (atpI). Let us notice that, for large core genomes such a systematic approach is intractable in practice, due to the dramatic number of core genes combinations to calculate (next chapters will investigate more deeply this scaling problem). Finally, the support of the best phylogenetic tree can be improved again by using the whole knowledge inherited by all the constructed trees, that is, by merging all trees computed when removing genes. SuperTripletes [START_REF] Ranwez | Supertriplets: a triplet-based supertree approach to phylogenomics[END_REF] is one of the methods that can infer a supertree from a collection of bootstrapping phylogenetic trees. This tool6 receives a file that stores all bootstrap values. In this last experiment, phylogenetic trees with 1, 2, 3, and 4 random gene loss have been concatenated in one file and transmitted to Super-Tripletes. The obtained supertree with all taxa is provided in Figure 6.17. It can be seen that the minimum bootstrap has been further improved to 64.

Figure 6.17: Supertree for Core_81 from 248 bootstrap phylogenetic trees after removing 1, 2, 3, or 4 genes randomly.

6.4/ DISCUSSION AND BIOLOGICAL EVALUATION

It is well known that the first plants' endosymbiosis ended in a glorious diversification of lineages comprising Red Algae, Green Algae, and Land Plants (terrestrial). Several second endosymbioses occurred then: two involving a Red Algae and other heterotrophic eucaryotes and giving birth to both Brown Algae and Dinoflagellates lineages; another involving a Green Algae and a heterotrophic eucaryote and giving birth to Euglens [START_REF] Geoffrey | Primary and secondary endosymbiosis and the origin of plastids[END_REF].

The interesting point with the produced core trees (especially the one obtained with DOGMA, see 2) is that the organisms resulting from the first endosymbiosis are distributed in each of the lineages found in the chloroplast genome structure evolution. More precisely, all Red Algae chloroplasts are grouped together in one lineage, while Green Algae and Land Plant chloroplasts are all in a second lineage. Furthermore, organisms resulting from the secondary endosymbioses are well localized in the tree: both the chloroplasts of Brown Algae and Dinoflagellates representatives are found exclusively in the lineage also comprising the Red Algae chloroplasts from which they evolved, while the Euglens is related to Green Algae from which they evolved. This latter makes sense in terms of biology, history of lineages, and theories of chloroplasts origins (and so photosynthetic ability) in different Eucaryotic lineages [START_REF] Geoffrey | Primary and secondary endosymbiosis and the origin of plastids[END_REF].

Interestingly, the sole organisms under consideration that possess a chloroplast (and so a chloroplastic genome) but that have lost the photosynthetic ability (being parasitic plants) are found on the basis of the tree, and not together with their phylogenetically related species. This latter means that functional chloroplast genes are evolutionary constrained when used in the photosynthetic process, but lose their efficiency rapidly when not used, as recently observed for a species of Angiosperms [START_REF] Li | Complete chloroplast genome sequence of holoparasite Cistanche deserticola (orobanchaceae) reveals gene loss and horizontal gene transfer from its host Haloxylon ammodendron(chenopodiaceae)[END_REF]. These species are Cuscuta gronovii, an Angiosperm (flowering plant) at the base of the DOGMA Angiosperm-Conifers branch, and Epifagus virginiana, also an Angiosperm, at the complete basis of the DOGMA core tree.

Another interesting result is that Land Plants that represent a single sub-lineage originating from the large and diverse lineage of Green Algae in Eucaryotes history are present in two different branches of the DOGMA tree, both associated with Green Algae: one branch comprising the basal grade of Land Plants (mosses and ferns) and the second one containing the most internal lineages of Land Plants (conifers and flowering plants). Independently of their split in two distinct branches of the DOGMA tree, the Land Plants always show a larger number of functional genes in their chloroplasts than the Green Algae from which they emerged, probably meaning that the terrestrial way of life necessitates more functional genes for an optimal photosynthesis than the marine one. However, a more detailed analysis of selected genes is necessary to understand better the reasons why such a distribution has been obtained.

Remark 9: Biological relevance of the results

All biologically interesting results are apparent only in the core tree based on DOGMA, while they are not obvious in the NCBI one.

6.5/ CONCLUSION

In this chapter, we studied three methodologies for extracting core genes from a large set of chloroplast genomes, and we developed python programs to evaluate them.

We firstly considered extracting core genomes by the way of comparisons (global alignment) of DNA sequences downloaded from NCBI database. However, this method failed to produce biologically relevant core genomes, no matter the chosen similarity threshold, probably due to annotation errors. We then considered to use the DOGMA annotation tool to enhance the gene prediction process.

The second method consisted in extracting gene names either from NCBI gene features or from DOGMA results. At the beginning an "intersection core matrix (ICM)" is built. In this matrix, each coefficient store the intersection cardinality of the two genomes placed at the extremities of its row and column. New ICMs are then successively constructed by selecting the maximum intersection score (IS) in this matrix, removing each time the two genomes having this score and adding the corresponding core genome in the next ICM construction.

Finally, we have employed a third method named "quality test approach" to extract core genes from a large set of chloroplastic genomes, and we compared it with the gene prediction approach developed at the beginning of this chapter. A two stage similarity measure, on names and sequences, has thus been proposed for clustering DNA sequences in genes, which merges the best results provided by NCBI and DOGMA. Results obtained with this quality control test have finally been deeply compared with our previously obtained results.

Core trees have been generated for each method, to investigate the distribution of chloroplasts and core genomes. The tree from second method, based on DOGMA, has revealed the best distribution of chloroplasts regarding their evolutionary history. In particular, it appears that each endosymbiosis event is well branched in the DOGMA core tree. Phylogenetic trees have finally been generated to investigate the distribution of chloroplasts and core genomes. We performed intensive computations on the mésocentre supercomputing facilities to produce the highest bootstrap valued tree by generating all the trees resulting from different gene orders and random removing of genes in the core genome. A supertree is then generated, leading to a quite accurate phylogenetic tree for a large amount of plant species.

In next chapter, we will study the gene content of each given core genome, and phylogenetic relations between all these species will be investigated too.

CHAPTER 7

Inferring Phylogenetic Trees using Genetic Algorithm W e now consider that, given a set of complete chloroplastic genomes, we are able to annotate them well and to extract their core genes. The next problem, in the quest of the last universal common ancestor, is to use them to obtain a well-supported phylogenetic tree.

The contribution of this chapter can be summarized as follows. We focus on situations where a large number of genes are shared by a set of species so that, in theory, enough data are available to produce a well-supported phylogenetic tree. However, a few genes tell a different evolutionary scenario than the majority of sequences, leading to phylogenetic noise blurring the phylogeny reconstruction. In this chapter, we propose a pipeline that attempts to solve such an issue by computing all phylogenetic trees that can be obtained by removing at most one core gene. In the case where such a preliminary systematic approach does not solve the phylogeny, new investigation stages are added to the pipeline, namely a Monte-Carlo based random approach and two invocations of a genetic algorithm, separated by a Lasso test. The pipeline is finally tested on various sets of chloroplast genomes. Note that this contribution has been presented and published in [START_REF] Alkindy | Hybrid genetic algorithm and lasso test approach for inferring well supported phylogenetic trees based on subsets of chloroplastic core genes[END_REF], the international conference Algorithms for Computational Biology (AlCoB 2015).

7.1/ GENERAL PRESENTATION

The multiplication of complete chloroplast genomes should normally lead to the ability to infer trustworthy phylogenetic trees for plant species. Indeed, the existence of trustworthy coding sequence prediction and annotation softwares specific to chloroplasts (like DOGMA), with the right control of sequence alignment, and maximum likelihood or Bayesian inference phylogenetic reconstruction techniques, should imply the capability to determine accurately the sister relationship between species. More precisely, given a set of close species, their core genome (the set of genes in common) can be as large and accurately detected as possible to finally obtain a well-supported phylogenetic tree. However, all genes of the core genome are not necessarily constrained in a similar way: some genes have a larger ability to evolve than other ones due to their lower importance. Such minority genes tell their story instead of the species one, blurring so the phylogenetic information.

To obtain a phylogenetic tree with high support values, the deletion of these problematic genes (which may result from homoplasy, stochastic errors, undetected paralogy, incomplete lineage sorting, horizontal gene transfers, or even hybridization) is an answer. To do so, we propose to construct the phylogenetic trees that correspond to all the combinations of core genes and to finally consider the tree that is as supported as possible while considering as many genes as possible.

The major drawback of this solution is its prohibitive computational cost, since testing all the possible combinations is totally intractable in practice (2 n phylogenetic tree reconstructions with n ≈ 100 core genes of plants belonging to the same order). Therefore, we propose to remove the problematic genes without exhaustively testing all the combinations of genes. More precisely, our proposal is to combine various approaches to extract promising subsets of core genes, encompassing systematic deletion of genes, random selection of large subsets, statistical evaluation of gene effects, and genetic algorithms (GAs) [START_REF] Bhandari | Genetic algorithm with elitist model and its convergence[END_REF][START_REF] Booker | Classifier systems and genetic algorithms[END_REF]. These latters are efficient, robust, and adaptive search techniques designed for solving optimization problems, which have the ability to produce suboptimal solutions [START_REF] Tate | A parallel hybrid genetic algorithm for multiple protein sequence alignment[END_REF][START_REF] Gupta | A novel genetic algorithm based approach for optimization of distance matrix for phylogenetic tree construction[END_REF][START_REF] Matsuda | Construction of phylogenetic trees from amino acid sequences using a genetic algorithm[END_REF].

7.2/ PRESENTATION OF THE PROBLEM

Let us consider a set of chloroplast genomes that have been annotated using DOGMA. We have then access to the core genome (genes present everywhere) of these species, whose size is about one hundred genes when the species are close enough. For further information on how we found the core genome, see Chapter 6. Sequences are then further aligned with MUSCLE [START_REF] Robert | Muscle: multiple sequence alignment with high accuracy and high throughput[END_REF] and the RAxML [START_REF] Stamatakis | Raxml-iii: a fast program for maximum likelihood-based inference of large phylogenetic trees[END_REF] tool infers the corresponding phylogenetic tree. If this resulting tree is well-supported, then the process is stopped without further investigations. Indeed, if all bootstrap values are larger than 95, then we can reasonably consider that the phylogeny of these species is resolved, as the largest possible number of genes has led to a very well supported tree.

In the case where some branches are not well-supported, we can wonder whether a few genes can be incriminated in this lack of support. If so, we face an optimization problem: find the most supported tree using the largest subset of core genes. Obviously, a brute force approach investigating all possible combinations of genes is intractable, as it leads to 2 n phylogenetic tree inferences for a core genome of size n. To solve this optimization problem, we propose a hybrid approach mixing a genetic algorithm with the use of some statistical tests for discovering problematic genes. The initial population for the genetic algorithm is built by both systematic and random pre-GA investigations. These considerations led to the pipeline detailed in Figure 7.1, whose stages will be developed thereafter.

7.3/ GENERATION OF THE INITIAL POPULATION

The objective is to obtain a phylogenetic tree with high-supporting values (applying bootstrap analysis) by using the largest possible subset of genes. If this goal cannot be reached by taking all core genes, the first thing to investigate is to check whether one particular gene is responsible for this problem. Therefore we apply two preliminary stages The systematic stage consists to systematically compute all the trees we can obtain by removing exactly one gene from the core genome, leading to n new phylogenetic trees, where n is the core size (see Figure 7.2(a)). If, during this systematic approach, one well-supported tree is obtained, then it is returned as the phylogeny of the species under consideration. Conversely, if all obtained trees have at least one problematic branch, then deeper investigations are required. However the systematic approach has reached its limits.

Another preliminary stage to GA, called random stage, is then launched by investigating two directions: 1. Investigate deeply generated phylogenetic trees from systematic stage that have high-supporting values from bootstrap analysis. In other words, when the loss of one specific gene has led to a good tree, we try to improve it again by removing another gene (n-2 possibilities for each specific gene).

2.

Generate numerous phylogenetic trees that can be obtained by removing randomly between 2 and 10 genes among the core genome.

In more details, the second direction of the random stage consists of a chosen number of iterations (for instance 200), where for each iteration an integer k between 2 and 10 is randomly picked. This random number defines the number of genes which are then randomly removed, and a phylogeny is inferred using the remaining genes. If during these iterations, by chance, a very well supported tree is obtained, a stop signal is sent to the master process and the obtained tree is returned.

However the number of cases explodes and we can only reasonably hope to investigate a slight proportion of all possibilities: it is illusory to hope to investigate all reachable trees by discarding 10% of a core genome having 100 genes. This explains why the genetic algorithm has been proposed. This latter supposes first to have an initial population of subset of core genes, which must be improved step by step.

And we now have enough data to build a good initial population for the genetic algorithm. More precisely, using the n + 1 computed trees from the systematic mode to initialize the population of the genetic algorithm results in a population which remains too small and too homogeneous. Indeed, all these trees have been computed in the same way, each inference being produced using 99% of the core genome (in systematic stage, we have removed at most 1 gene in a core genome having approximately 100 genes). Thus, the objective of the random stage is not really to find a well supported tree, but to increase the diversity of the initial population (see Figure 7.2(b)).

Let us now explain the main part of the pipeline, that is, the genetic algorithm.

7.4/ GENETIC ALGORITHM

A genetic algorithm (GA) is a well-known metaheuristic algorithm which has been described by a rich body of literature since its introduction [START_REF] Holland | Adaptation in Natural and Artificial Systems[END_REF][START_REF] Holland | Adaptation in Natural and Artificial Systems -Second edition[END_REF]. In the following, we will only discuss the choices we made regarding operators and parameters. For further information and applications regarding the genetic algorithm, see for example [START_REF] Bhandari | Genetic algorithm with elitist model and its convergence[END_REF][START_REF] Booker | Classifier systems and genetic algorithms[END_REF][START_REF] Krevice | The genetic algorithm in computer science[END_REF][START_REF] Goldberg | Genetic algorithms in search, optimization and machine learning[END_REF].

7.4.1/ GENOTYPE AND FITNESS VALUE

Genes of the core genome are supposed to be lexicographically ordered. At each subset s of the core genome corresponds thus a unique binary word w of length n: for each i lower or equal to n (i ∈ {1, . . . , n}), w i is 1 if the i-th core gene is in s , else w i is equal to 0. At each binary word w of length n, we can associate its percentage p of 1's and the lowest bootstrap b of the phylogenetic tree we obtain when considering the subset of genes associated to w. At each word w we can thus associate as fitness value the score b + p, which must be as large as possible.

Remark 10: parameters values in scoring function

We currently consider that the lowest bootstrap value b and the percentage of genes p have the same importance in the scoring function. However, changing the weight of each parameter may be interesting in deeper investigations.

7.4.2/ GENETIC PROCESS

Until now, binary words (genotypes) of length n that have been investigated are:

1. the word having only 1's (systematic mode);

2. all words having exactly one 0 (systematic mode);

3. at least 2001 words having between 2 and 10 0's randomly located (random mode).

To each of these words is attached its score b + p. This latter is used to select the 50 best words, or fittest individuals, in order to build the initial population (see the upper part of Figure 7.3). After that, the genetic algorithm loops during 200 iterations or until discovering a word such that its score is larger than 190 (corresponding approximately to a case where at least 95% of core genes are used, which produces a tree whose bootstraps are larger than 95).

During an iteration the algorithm applies the following steps to produce a new population P given a population P (see Figure 7.4): • Repeat five times a random pickup of a couple of words and mix them using a crossover approach. The obtained words are added to the population P, as described in Section 7.4.3, resulting in population P c .

• Mutate 5 words of the population P c , the mutated words being added too to P c , as detailed in Section 7.4.4, leading to population P m . • Add 5 new random binary words having less than 10% of 0's (see Section 7.4.5) to P m producing population P r .

• Select the 50 best words in population P r to form the new population P .

Let us now explain with more details each step of this genetic algorithm.

7.4.3/ CROSSOVER STEP

Given two words w 1 and w 2 , the idea of the crossover operation is to mix them, hoping by doing so to generate a new word w having a better score (see Figure 7.5(a)). For instance, if we consider a one-point crossover located at the middle of the words, for i < n 2 , w i = w 1 i , while for i n 2 , w i = w 2 i : in that case, for the first core genes, the choice (to take them or not for phylogenetic construction) in w is the same than in w 1 , while the subset of considered genes in w corresponds to the one of w 2 for the last 50% of core genes.

More precisely, at each crossover step, we first pick randomly an integer N crossover = k where k < n 2 , and randomly again k different integers i 1 , . . . i k such that 1 < i 1 < i 2 < . . . < i k < n. Then w 1 and w 2 are randomly selected from the population P, and a new word w is computed as follows:

• w i = w 1 i for i = 1, ..., i 1 , • w i = w 2 i for i = i 1 + 1, ..., i 2 ,
• w i = w 3 i for i = i 2 + 1, ..., i 3 ,

• etc.

Then the phylogenetic tree based on the subset of core genes labeled by w is computed, the score S of w is deduced, and w is added to the population with the fitness value of S attached to it. Note that, as a parametric option, one word instead of two is generated from this step.

7.4.4/ MUTATION STEP

In this step, we ask how small changes in a given subset of genes (removing and/or adding few genes) may by chance improve the support of the associated tree. Similarly speaking, we try here to improve the score of a given word by replacing a few 0's by 1 and/or a few 1's by 0 as shown in Figure 7.5(b).

In practice, an integer N mutation = k where k n 4 corresponding to the number of changes, or "mutations", is randomly picked. Then k different integers i 1 , . . . , i k lower or equal to n are randomly chosen and a word w is randomly extracted from the current population. A new word w is then constructed as follows: for each i = 1, ..., n,

• if i in {i 1 , . . . , i k }, then w i = (w i + 1) mod 2 (the gene is mutated),

• else w i = w i (no modification).

Again, the phylogenetic tree corresponding to the subset of core genes associated with w is computed, and w is added to the population together with its score.

7.4.5/ RANDOM STEP

In this step, new words having a large amount of 1's are added to the population. Each new word is obtained by starting from the word having n 1s, followed by k random selection of 1s which are changed to 0, where k is an integer randomly chosen between 1 and 10. The new word is added to the population after having computed its score thanks to a phylogenetic tree inference.

7.5/ TARGETING PROBLEMATIC GENES USING STATISTICAL TESTS

7.5.1/ THE LASSO TEST

The Least Absolute Shrinkage and Selection Operator (LASSO) test [START_REF] Tibshirani | Regression shrinkage and selection via the lasso[END_REF] is an estimator that takes place in the category of least-squares regression analysis. Like all the algorithms in this group, it estimates a linear model which minimizes a residual sum with respect to a variable λ. Let us explain how this variable can be used to order genes with respect to their ability to modify the bootstrap support.

Definition 6: Configuration Matrix

Let X be a m × p matrix where each line X i = (X i1 , . . . , X i j , . . . X ip), 1 ≤ i ≤ m, is a configuration where X i j is 1 if gene number j is present inside the configuration i and X i j is 0 otherwise. For each X i , let Y i be the real positive support value for each problematic bootstrap b per topology and per gene.

According to [START_REF] Tibshirani | Regression shrinkage and selection via the lasso[END_REF], the Lasso test β = (β 1 , . . . , β i , . . . , β p) is defined by

β = argmin          m i=1          Y i - p j=1 β j X i j          2 + λ p j=1 |β j |          . (7.1)
Note that, when λ has high value, beta is null vector. It is thus sufficient to decrease the value of λ to observe that some components β j of vector beta are no more null. Moreover, the sign of β j is positive (resp. negative) if the bootstrap support increases (resp. decreases) with respect to j.

After having carried out 200 iterations of the genetic algorithm detailed above, it may occur that no well-supported tree has been produced. Various reasons may explain this failure, like a lazy convergence speed, a large number of problematic genes (e.g., homoplasic ones, or due to stochastic errors, undetected paralogy, incomplete lineage sorting, horizontal gene transfers, or hybridization), or close divergence species leading to very small branch lengths between two internal nodes. However, we now have computed enough word scores to determine the effects of each gene in topologies and bootstraps, which allows to remove the few genes that break supports.

The idea is to investigate each topology that appeared enough times among previous computations. In this study, we only consider topologies having a frequency of occurrence larger than 10%. Remark that this percentage value is convenient for the given case study, but it depends in fact on the number of obtained topologies. Then for each best word of these best topologies, and for each problematic bootstrap in its associated tree, we apply a Lasso test.

7.5.2/ SECOND STAGE OF GENETIC ALGORITHM

Targeting problematic genes using Lasso approach can solve the issue of badly supported values in some cases, especially when only one support is lower than the predefined threshold. In cases where at least two branches are not well supported, removing genes that break the first support may or may not have an effect on the second problematic support. In other words, each of the two problematic supports can be separately solved using Lasso investigations, but not necessarily both together.

However, the population has been improved, receiving very interesting words for each problematic branch. Therefore, a last genetic algorithm phase is launched on the updated population, in order to mix these promising words by crossover operations, hoping by doing so to solve in parallel all of the badly supported values. This last stage runs until either the resolution of all problematic bootstraps or the number of GA iterations reaches a fixed value (set to 1000 in our simulations).

7.6/ CASE STUDIES

7.6.1/ PIPELINE EVALUATION BY VARIOUS GROUPS OF PLANT SPECIES

In this section, the proposed pipeline is tested on various sets of close plant species. An example of approximately 50 subgroups (including on average from 12 to 15 chloroplasts species) encompassing 356 plant species are presented in Table 7.1.

In this table, the column Occ represents the amount of generated phylogenetic trees from the corresponding searching space for each group. The column c represents the number of core genes included within each group. The # taxa column is the amount of species corresponding to the considered group. b is the lowest value from bootstrap analysis. The Terminus column contains the termination stage for each subgroup, namely: the systematic (1), random (2), or optimization (3) stage using genetic algorithm and/or Lasso test. Finally, the Likelihood column store the likelihood value of the best phylogenetic tree (i.e., according to the lowest bootstrap value b). A large occurrence value in this table means that the associated p-value and/or subgroup has its computation terminated in either penultimate or last pipeline stage. An occurrence of 31 is frequent due to the fact that 32 MPI threads (one master plus 31 slaves) have been launched on our supercomputer facilities. Notice that the groups in • groups of species stopped in systematic stage with weak bootstrap values (which is due to the fact that an upper time limit has been set for each group and/or subgroups, while each computed tree in these remarkable groups needed a lot of times for computations),

• subgroups terminated during systematic stage with desired bootstrap value,

• groups or subgroups terminated in random stage with desired bootstrap value,

• finally, groups or subgroups terminated with optimization stages.

The majority of subgroups has its phylogeny satisfactorily resolved, as can be seen on all obtained trees which are downloadable at http://meso.univ-fcomte.fr/peg/phylo.

In what follows, an example of one problematic group, namely the Apiales, is more deeply investigated as a case study.

7.6.2/ INVESTIGATING Apiales ORDER

In our study, Apiales choroplasts consist of two sets, as detailed in Table 7.2: two species belong to the Apiaceae family set (namely Daucus carota and Anthriscus cerefolium), while the remaining seven species are in the Araliaceae family set. These latter are: Panax ginseng, Eleutherococcus senticosus, Aralia undulata, Brassaiopsis hainla, Metapanax delavayi, Schefflera delavayi, and Kalopanax septemlobus. Chloroplasts of Apiales are characterized by having highly conserved gene content and order [START_REF] Jeffrey | Plastid chromosomes: structure and evolution[END_REF].

7.6.2.1/ METHOD TO SELECT BEST TOPOLOGIES

We define T = [t 0 , t 1 , ..., t m] as a list of m = 9053 obtained trees from multiple execution of given pipeline, starting one time from systematic stage, and multiple times from random stage. By comparing each tree t i in T with the other trees in T , a set of topologies is then numbered and defined as W = {w 0 , w 1 , w 2 , ..., w n }, where w i is the topology of number i. Let f (x) be a function on W which represents the number of trees having x for their topology. We say that a given topology w i is selected as the best topology if and only if f (w i) ≥ lb where lb is the lower bound threshold computed by the following formula

lb = m * γ 100
γ is a constant value in [1,[START_REF] Pevsner | Bioinformatics and functional genomics[END_REF] and m is the size of T . Then w i is stored as a best topology.

7.6.2.2/ TOPOLOGICAL ANALYSIS

In our case, γ = 8, which means that we exclude as noise the topologies representing less than 8% from the given trees. By doing so, among the 43 topologies which were obtained three of them can be considered as "best topologies" as their number of occurrences f (x) were larger than lb = 724, see Table 7.3. In this table, p is the count of 1's in each word, while p is the percentage of gene contents. |c| is the cardinality of the set of core genes (the size of the core genome), and b is the lowest bootstrap value. Topologies 0 and 1 are delivered from optimization stages when the desired bootstrap value is set to 96, while topology 2 is obtained from the systematic stage when we increase the desired bootstrap to 100. Note that Min.Bootstrap b in the table is larger than Avg(b), as the former represents the lowest bootstrap value of the best tree in the given topology, while Avg.Bootstrap (Avg(b)) consists of the average lowest bootstrap in all trees having this topology. LGI is the lowest number of omitted genes and MGI is the maximum number of omitted genes within given topology. The best obtained phylogenetic trees from selected topologies are provided in Figure 7.7.

As it can be noted, only 3 of the 43 obtained topologies contain trees whose lowest bootstrap is larger than 87, namely the topologies number 0, 1, and 2. It is not so easy to make the decision, since all selected trees are very close to each other with small differences. The only notable difference between topologies 0 and 1 is the taxa position of Kalo_septemlobus and Meta_delavayi. In the same way, there is only one difference between topologies 0 and 1 with 2: grouping the same two taxa of Kalo_septemlobus and Meta_delavayi. Different comparisons on trees provided with selected topologies are summarized in Figure 7.8. A new question needs to be answered: which genes are responsible for changing the tree from topology 0 to topology 1 , or to topology 2 ? Deep investigations are still needed in future work to discover the subset of genes in group A , group B , and group C that change one tree topology to another one (see Figure 7.7).

7.7/ CONCLUSION

In this chapter, five essential pipeline stages have been applied for inferring trustworthy phylogenetic trees from various plant groups. We have verified that inferring a phylogenetic tree based on either the full set or some subsets of common core genes does not always lead to sufficient supports in phylogenetic reconstruction. In both systematic and random stages, many trees have been generated based on omitting some genes. When the desired score is not reachable, a genetic algorithm is then applied inside two specific stages using previously generated trees, to find new optimized solutions after performing crossover and mutation operations. Furthermore, we applied a statistical lasso test for identifying and removing systematically blurring genes, discarding so those which have the worst impact on supports.

We have tested this pipeline on 322 different plant groups, where 63 of them are real families while the remaining ones are random species, these latter playing the role of skeletons when reconstructing the supertree. A case study regarding Apiales order has been analyzed, and three "best" topologies stand out from the 43 obtained ones. In the next chapter, in order to reconstruct the phylogenetic tree for chloroplasts and to apply ancestral investigation on it, we plan to deepen our analysis by investigating another artificial intelligence approach instead of genetic algorithms, namely the particle swarm optimization.

CHAPTER 8

Inferring Phylogenetic Trees using DPSO I n the previous chapter, we shown how to extract the largest subset of core sequences in order to obtain the most supported species tree. Due to computational complexity of such a task, we have proposed a pipeline based on genetic algorithm. We now propose, for the sake of comparison, a distributed Binary Particle Swarm Optimization (DPSO). This work is dedicated to the core genes of Rosales order, but it can be applied to any other species. This chapter was accepted and presented in the 12 th international conference on Computational Intelligence methods for Bioinformatics and Biostatistics (CIBB 2015, [START_REF] Alsrraj | Well-supported phylogenies using largest subsets of core-genes by discrete particle swarm optimization[END_REF]).

8.1/ DISCRETE PARTICLE SWARM OPTIMIZATION

Particle Swarm Optimization (PSO) is a stochastic optimization technique developed by Eberhart and Kennedy in 1995 [START_REF] Kenndy | Particle swarm optimization[END_REF]. The most recent update of this study was realized by Kennedy in 2010 [START_REF] Kennedy | Particle swarm optimization[END_REF]. PSOs have been successfully applied in function optimization, artificial neural network training, and fuzzy system control. Basically, each particle follows a very simple behavior which consists in learning from the success of neighboring particles, which are also called individuals. An emergent behavior enables individual swarm members to take benefit from the discoveries or from previous experiences of the other members that have obtained more accurate solutions. PSO is thus a stochastic optimization method that relies on an iterative evolution of a set (the swarm) of candidate solutions in the shape of individuals. Particles move in the solution space and follow the current optimal individual. In the case of the standard binary PSO model [START_REF] Teshnehlab | Novel binary particle swarm optimization[END_REF], the particle position is a vector of N parameters that can be set as "yes" or "no", "true" or "false", "include" or "not include", etc. (binary values). A function associates to such kind of vector a real number score according to the optimization problem. The objective is then to define a way to move the particles in the N dimensional binary search space so that they produce the optimal binary vector w.r.t. the scoring function. In details, each particle i is thus represented by a binary vector X i (its position). Its length N corresponds to the dimension of the search space, that is, the number of binary parameters to investigate. An 1 in coordinate j in this vector means that the associ-CHAPTER 8. INFERRING PHYLOGENETIC TREES USING DPSO ated j-th parameter is selected. A swarm of n particles is then a list of n vectors of positions (X 1 , X 2 , . . . , X n) together with their associated velocities (V 1 , V 2 , ..., V n), which are N-dimensional vectors of real numbers between 0 and 1. These latter are initially set randomly. At each iteration, the new velocity is computed as follows:

V i (t + 1) = u.V i (t) + φ 1 (P best i -X i) + φ 2 (P best g -X i) (8.1)
where u, φ 1 , and φ 2 are weighted parameters setting the level of each 3 trends for the particle, which are respectively to continue in its adventurous direction, to move in the direction of its own best position P best i , or to follow the gregarious instinct to the global best known solution P best g . Both P best i and P best g are obtained according to the scoring function.

The new position of the particle is then obtained using the equation below:

X i j (t + 1) =        1, if r i j ≤ Sig(V i j (t + 1)), 0, otherwise, (8.2)
where r i j is a chosen threshold that depends on both the particle i and the parameter j, while the Sig function which operates as selection criterion is the sigmoid one in [START_REF] Teshnehlab | Novel binary particle swarm optimization[END_REF], that is:

Sig(V i j (t + 1)) = 1 1 + e -V i j (t+1) . (8.3)

8.2/ APPLICATION TO PHYLOGENY

Let us consider, for illustration purpose, a set of chloroplast genomes of Rosales, which has already been analyzed in the previous chapter using an hybrid genetic algorithm and Lasso test approaches [START_REF] Alkindy | Hybrid genetic algorithm and lasso test approach for inferring well supported phylogenetic trees based on subsets of chloroplastic core genes[END_REF]. We sampled 9 ingroup species and 1 outgroup of (Mollissima), see Table 8.1 for details, which have been annotated using DOGMA. We can then compute the core genome (genes present everywhere), whose size is equal to 82 genes, by using for instance the methods described in Chapter 6. After having aligned them using MUSCLE, we can infer a phylogenetic tree using RAxML [START_REF] Stamatakis | Raxml version 8: A tool for phylogenetic analysis and postanalysis of large phylogenies[END_REF], as described in Chapter 4. If all bootstrap values are larger than 95, then we can reasonably consider that the Rosales phylogeny is resolved, as the largest possible number of genes has led to a very well supported tree.

In case where some branches are not well supported, we can wonder whether a few genes can be incriminated in this lack of support, for a large variety of reasons already listed in previous chapter, which encompass homoplasy, stochastic errors, undetected paralogy, incomplete lineage sorting, horizontal gene transfers, or even hybridization. As previously stated, trying to find these blurring genes lead to an optimization problem, which is to find the largest subset of core genes that lead to the tree of largest support values. Obviously, a brute force approach investigating all possible combinations of core genes is practically intractable (2 N phylogenetic trees for N core genes, with N = 82 for Rosales).

As previously, genes of the core genome are supposed to be lexicographically ordered. Each subset s of the core genome is thus associated with a unique binary word w of length n: for each i, 1 ≤ i ≤ n, w i is 1 if the i-th core gene is in s and 0 otherwise (see Figure 8.1). Back in the DPSO context, the search space is then {0, 1} N . Each node of this N-cube is associated with the set of following data: its subset of core genes s , the deduced phylogenetic tree, its lowest bootstrap b and the percentage p of considered core genes, In this one, φ 1 = c 1 .r 1 and φ 2 = c 2 .r 2 , where we have set c 1 = 1 and c 2 = 1. r 1 , r 2 are random numbers between 0.1 and 0.5, and u is the inertia weight whose initial value is determined by Equation (8.5) , as presented in [START_REF] Premalatha | Hybrid pso and ga for global maximization[END_REF]. In this equation, u max and u min are the boundaries for u, which are set to 0.9 and 0.4 respectively. I max is set to 10, and I cur is equal to iter values. This latter determines the contribution rate of a particle's previous velocity to its velocity at the current time step.

To increase the number of included components in a particle, we reduced the interval of Equation (8.1) to [0.1, 0.5]. For instance, if the velocity V i of an element is equal to 0.511545 and r = 0.83, then Sig(0.51) = 0.62. So r > Sig(V i) and this will lead to 0 in the vector elements of the particle. By minimizing the interval we increase the probability of having r < Sig(V i), and this will lead to more 1s, which means more included elements in the particle. A large inertia weight facilitates a global search while a small inertia weight tends more to a local investigation [START_REF] Blackwell | Particle swarm optimization[END_REF].

Remark 12: Inertia Weight

On the one hand, a larger value of u allows a deep exploration of areas, on the other hand a small one promotes exploitation of areas. This is why Eberhart and Shi suggested to decrease u over time, typically from 0.9 to 0.4, thereby gradually changing from exploration to exploitation.

Finally, each particle position is updated according to Equation (8.2) , see Algorithm 2 for further details. In this algorithm, the particle is defined by its position (a binary word) in the cube together with its velocity (a real vector).

8.3/ EXPERIMENTAL RESULTS AND DISCUSSION

8.3.1/ EXPERIMENTAL PROTOCOL AND RESULTS

We have implemented the proposed DPSO algorithm on the Mésocentre de calculs supercomputer facilities of the University of Franche-Comté. Investigated Rosales species are listed in Table 8.1. 10 swarms having a variable number of particles have been launched 10 times, with c 1 = 1, c 2 = 1, and u linearly decreasing from 0.9 to 0.4. The obtained results are summarized in Table 8.2 that contains, for each 10 runs of each 10 swarms, the number of removed genes and the minimum bootstrap of the best tree.

Removed

Remark 13: Bootstrap value vs removing genes Some bootstraps are not so far from the intended ones (larger than 95), whereas the number of removed genes are in average larger than what we desired.

We computed the sum of the number of occurrences in

8.3.2/ SELECTING BEST PHYLOGENETIC TREE USING PER-SITE ANALYSIS

To further validate this choice, Consel [START_REF] Shimodaira | Consel: for assessing the confidence of phylogenetic tree selection[END_REF] software has been used on per site likelihoods of each best tree obtained using RAxML [START_REF] Stamatakis | Raxml version 8: A tool for phylogenetic analysis and postanalysis of large phylogenies[END_REF]. Consel ranks the trees after having computed the p-values of various well-known statistical tests. In Table 8 8.5 has thus been proposed to minimize the execution time as much as possible. The general idea of Algorithm 3 is simple: a processor is employed for each particle in order to compute its fitness function, while a last processor called the master centralizes the obtained results. In other words, if we have a swarm of ten particles, we use ten processors as workers and one processor as master (or supervisor).

The master initiates the particles of the swarm, and it distributes the information of the particles to the worker processors. Each worker receives the information of one particle, it computes the fitness function. When one worker finishes its job, it sends a "terminate" signal with the fitness value to the master node. This latter waits that all the workers have finished their jobs. Then, it determines the position of the particle that has the best fitness value as the global best position. This mechanism is repeated until a particle achieves to have a fitness value larger than or equal to 95% with a large set of included genes.

Let us now explain why some calls need to be blocked. In the hierarchical approach of Algorithm 3, a point to point communication has been chosen. There are several types of point to point communication models, but we preferred to work with the standard model to get the most confidential results. In both sending and receiving modes, the buffer is used to cover the message that can be frequently used resources. The problems arise when

8.4.2/ DISTRIBUTED BPSO WITH MPI

Traditional PSO algorithms are time consuming in sequential mode. The distributed version shown in Figure 8.5 has thus been proposed to minimize the execution time as much as possible. The general idea of the proposed algorithm is simple: a processor core is employed for each particle in order to compute its fitness value, while a last core called the master centralizes the obtained results. In other words, if we have a swarm of ten particles, we use ten cores as workers and one core as master (or supervisor).

More precisely, the master initializes the particles of the swarm and distributes them to the workers. When one worker finishes its job, it sends a "terminate" signal with the fitness value to the master. This latter waits until all the workers have finished their jobs. Then, it determines the position of the particle that has the best fitness value as the global best position and sends this information to the workers that update their respective particle velocity and position. This mechanism is repeated until a particle achieves a fitness value larger than or equal to 95 with a large set of included genes. In the following, two distributed versions of the BPSO described previously are considered: in version I the equation used to update the velocity is slightly changed as shown below, and in version II we use the equations of Section 8.1.

8.4.2.1/ DISTRIBUTED BPSO ALGORITHM: VERSION I

In this version Equation (8.1), which is used to update the velocity vector, is replaced by:

V i (t + 1) = x • [V i (t) + C 1 (P best i -X i) + C 2 (P best g -X i)] (8.6)
where x, C 1 , and C 2 are weighted parameters setting the level of each three trends for the particle. The default values of these parameters are

C 1 = c 1 • r 1 = 2.05, C 2 = c 2 • r 2 = 2.
05, while x which represents the constriction coefficient is computed according to formula [START_REF] Sedighizadeh | Particle swarm optimization methods, taxonomy and applications[END_REF][START_REF] Clerc | The swarm and the queen: towards a deterministic and adaptive particle swarm optimization[END_REF]:

x = 2 × k |2 -C -(√ C × (C -4))| , (8.7)
where k is a random value between [0,1] and C = C 1 + C 2 , where C ≥ 4. According to Clerc [START_REF] Clerc | The swarm and the queen: towards a deterministic and adaptive particle swarm optimization[END_REF], using a constriction coefficient results in particle convergence over time.

8.4.2.2/ DISTRIBUTED BPSO ALGORITHM: VERSION II

This version is a distributed approach of the sequential PSO algorithm presented previously in Section 8.1.

8.4.3/ GENETIC ALGORITHM VS PARTICLE SWARM ALGORITHM

In order to test our method, two versions of PSO have been compared on several plant datasets. We compared too these swarm methods with the GA one presented previously in Chapter 7.

12 groups from the 49 ones contained in Table 7.1 of Chapter 7 have been considered in order to compare the two algorithms. We have tested 5, 10, and 15 particles in the initial population of the swarm approach. As can be seen in Tables 8.5 and 8.6, we do not obtained the same kind of results between 5 particles and 10-15 ones. On the one hand, seven difficult groups1 are selected whose terminus passed the third stage in GA method. Some groups of light groups2 are also selected which were passed from the first stage in GA.

From In Table 8.5 and Table 8.6, Topo. is the number of topologies and NbTrees is the total number of obtained trees from 10 times of executions (10 swarms). b is the minimum bootstrap value of selected w, 100p is the number of missing genes in w (note that, p is not in percentage), and Occ. is the number of occurrences of the best obtained topology from 10 swarms. More comparison results between GA and both versions of PSOs are provided in Figure 8.6. According to this figure, we can conclude that the two approaches lead to quite equivalent bootstrap values in most data sets, while on particular subgroups obtained results are complementary. In particular, PSO often produces better bootstraps that GA (see Magnoliidae or on Bambusoideae), but with a larger number of removed genes. Finally, using 15 particles instead of 10 does not improve so much the obtained results (see Figure 8.

8.5/ CONCLUSION

In this chapter, a discrete particle swarm optimization algorithm has been proposed, which focuses on the problem of finding the largest subset of core sequences having the most supported phylogenetic tree. This heuristic approach has then been applied to the Rosales order of 82 core genes. Like in the previous chapter, the scoring function is based on two parameters: the lowest bootstrap value b and the percentage of gene p. These two parameters have the same importance in the scoring function, any modification on any one leading us to deeply investigations.

A per site analysis by Consel is applied after the phylogenetic discovery stage, where a special topological process analysis all trees generated from swarms and classifying them based on its topology. Few topologies of high scores are then selected from from all available topologies using a threshold of lower bound formula. If there is only one nominated tree, then its done, else we use per site analysis to choose the relevant one.

Two parallel versions of discrete particle swarm optimization algorithm was developed in order to reduce the time and memory. 12 groups of plant genomes are applied on two swarm versions. In one hand, we used a swarm of 10 particles with the two versions of algorithms, while in other hand, we employ a swarm of 15 particles with the two algorithm versions. We used the Mésocentre de calcul facilities for the computation of all versions. Various results of hard and light groups are obtained and compared with genetic algorithm one.

CHAPTER 9

Ancestral Reconstruction A ncestral genome reconstruction has already been investigated several times in the literature [START_REF] Blanchette | Computational reconstruction of ancestral dna sequences[END_REF][START_REF] Lopez Rascol | Ancestral animal genomes reconstruction[END_REF], but usually it deals with permutations of integers. In other words, tools like Badger [START_REF] Larget | A bayesian analysis of metazoan mitochondrial genome arrangements[END_REF] or MLGO [START_REF] Hu | MLGO: phylogeny reconstruction and ancestral inference from gene-order data[END_REF] do not support genomes of various length and with repeated/missing genes. Our problem applied to chloroplasts may appear as more difficult, as we relax the permutation hypothesis. However, in the classical Multiple Genome Rearrangement Problem [START_REF] Hannenhalli | Genome sequence comparison and scenarios for gene rearrangements: A test case[END_REF], targeted genomes are bacterial or nucleus ones, which have much more genes than a chloroplast. Furthermore, gene order and content do not evolve so much when considering related plant species. Such observations explain why state-of-the-art algorithms cannot be applied to our particular problem even if this latter should be solvable. In this chapter, we applied a pipeline of two suggested methods to compute the ancestral genomes in all presented internal nodes using a well-supported phylogenetic tree of Apiales species.

9.1/ GENERAL PRESENTATION OF THE PROBLEM

Given a set of n genomes and a well-supported phylogenetic tree T , the problem consists in finding the genomes at each of the internal nodes, as described in Figure 9.2. Doing so will provide the evolution of genomes from the root until the leaves.

Any rooted phylogenetic tree as shown in Figure 9.1 is composed by the subtrees provided in Figure 9.2. In the α-tree illustrated in Figure 9.2(a), only one ancestor genome reconstruction is required. The two other main subtrees, shown in Figures 9.2(b) and 9.2(c), have one or two additional taxa compared with the α-tree (they are indeed aggregations of α-trees). More precisely, at each time a new taxon is added to the tree, a new internal (ancestor) node is created in the tree, and its ancestor is then computed. The reconstruction operation must be as parsimonious as possible, according to the recombination operations already listed in this manuscript. At this point, we need to keep in mind the following remark.

• Composite tree with two-α-trees: two α-trees are included in this type of trees, leading to a hard computational problem due to the number of distance calculations.

To determine the ancestor genome β 1 , we need first to deduce the ancestors α 1 and α 2 from taxonomy units (A, B, C, and D) by the following formula:

β(α 1 , α 2)        α 1 ∩ α 2 if d(α 1 , α 2) = 0, α 1i ∩ α 2i or ? i if d(α 1 , α 2) 0. (9.4)
where α 1 and α 2 are computed using Equation 9.3. To calculate α 1 -genome, we consider that X has the minimum genome distance from α 2 (C, D), and vice-versa.

Taking into consideration all subtree cases, we can conclude the ancestor genomes in most phylogenetic trees. Note that inversions, sometimes located among taxonomy units, are excluded from this first approach: they must be considered, but in more sophisticated ancestor reconstruction algorithms.

9.2/ ANCESTRAL RECONSTRUCTION PIPELINE

In this section, our new pipeline for ancestral reconstruction problem is explained with more details, in the particular case of chloroplast genomes, see Figure 9.3. It is fundamentally based on the gestalt pattern matching algorithm [START_REF] Ratcliff | Pattern matching: The gestalt approach[END_REF], via the use of naked eye investigation and matching results with the SequenceMatcher of the Python difflib module. In this pipeline:

1. The first stage consists of handling the input data: the phylogenetic tree and the ordered lists of genes. We then need to decide whether duplicated genes must be considered or not. In case where they are under consideration, this first stage provides too some information regarding them.

2.

The second step deals with genome comparisons of sister species, from leaves until the root. Desired operations are performed such as gene matching, deletion, or insertion within one of both genomes. The obtaining results are essential in order to build ancestor genomes.

3.

The final stage provides statistical information and all ancestral genomes, for each internal node until reaching the root.

9.2.1/ DATA PREPARATION

Let us consider a set of complete chloroplastic genomes for close plant species, like the Apiales order as shown in Table 9.1.

We assume first that:

1. Each genome has been annotated with Dogma [START_REF] Wyman | Automatic annotation of organellar genomes with dogma[END_REF], already presented in this manuscript. By doing so, the same gene prediction and naming process has been applied to the same average quality of annotation. In particular, when a gene appears twice in the considered set of genomes, it receives twice the same name

2.

The sequences in the core genome (genes present everywhere in the considered set of species) have been multi-aligned using MUSCLE, and a well-supported phylogenetic tree has been obtained based on this alignment as shown in Figure 9.4 for Apiales order. This stage may necessitate the deletion of a few core genes that possibly blur the phylogenetic signal (for various reasons encompassing homoplasy, incomplete lineage sorting, horizontal gene transfers, etc.), for instance by using methods detailed in [START_REF] Alsrraj | Well-supported phylogenies using largest subsets of core-genes by discrete particle swarm optimization[END_REF][START_REF] Alkindy | Hybrid genetic algorithm and lasso test approach for inferring well supported phylogenetic trees based on subsets of chloroplastic core genes[END_REF][START_REF] Alkindy | Using genetic algorithm for optimizing phylogenetic tree inference in plant species[END_REF].

For all three steps of reconstruction, a set of authorized operations are provided, which are:

• Insertion, deletion, duplication, or inversion of one or a block of genes, at gene lists level.

• Operations commonly considered in the Needleman-Wunsch edit distance [START_REF] Needleman | A general method applicable to the search for similarities in the amino acid sequence of two proteins[END_REF] (insertion, modification, or deletion of a nucleotide, together with opening and enlarging a gap), at DNA sequence levels. In what follows, two general algorithms for ancestral reconstruction of chloroplastic genomes are proposed. In the first one we do not tackle with gene duplication, while they are considered in the second algorithm. In both cases, inversions are not considered too.

9.2.2/ ANCESTRAL ANALYSIS METHODS

We now present the two methods we have used in order to predict the set of ancestral genomes, provided a set of chloroplast genomes and a well-supported phylogenetic tree. The first one is manual, while the second one is an algorithm. Note that they only represent our first basic approaches in the problem of ancestral reconstruction of chloroplasts.

More precisely, the first method is based on finding the ancestor genes (e.g., core genes) using naked eye investigation between close genomes, and to identify the set of rearrangement operations (gene duplication is considered). In the second method, we start by removing gene duplication based on a renaming duplicated gene names process. We use sequence comparisons with reference genome as a preliminary step, then we follow the same remaining stages than in the first method.

9.2.2.1/ ANCESTOR PREDICTION BASED ON GENE CONTENTS

This method encompasses the following general steps:

• Step 1: Preliminary stage: In this step, all internal nodes from leaf nodes to the root are named following an alphabetical order. Each letter in internal node represents an ancestor genome. This latter can be the ancestor of two leaves, an internal ancestor and a leaf node, or two internal ancestors. The result of this step is shown in Figure 9.5. In this tree, we applied a bottom-up procedure for predicting the ancestor genome at each internal node. More precisely, starting from leaves nodes, the given tree can be divided according to the subtrees presented in Figure 9.2 where the node C could be interpreted as a composite tree of two α-trees A and B. However, predicting the ancestor from bottom to top levels will lead to the last common ancestor (I) at the root level. • Step 2: Genome Selection: Figure 9.5 presents the best topology for Apiales order obtained in a previous chapter. We then start by selecting two close genomes at leaf level (e.g., Meta_Delavayi (J) and kalo_septemlobus (H) for ancestor genome (A), and Eleu_senticosus (M) and Bras_hainla (L) for ancestor genome (B)) as organized in the phylogenetic tree. Selected genomes are aligned graphically as shown in Figure 9.6. We then identify, by using naked eyes investigation and our mind, the most parsimonious scenario applied on a deduced ancestor, which can lead to these two children using the lowest number of edit operations (such as inserted and deleted genes). Figure 9.6(a) shows this matching process applied on Meta_Delavayi and kalo_septemlobus, which have a core genome of 169 genes (only the 23 first genes are depicted). Note that, in this example, Meta_-Delavayi (J) and kalo_septemlobus (H) match completely, so the ancestor A is very easy to obtain (A = H ∩ J has 169 genes).

• Step 3: Genes Investigation: In the easiest situation presented above, all couple of genes match completely between the two sister species (which thus have the same length). In this case, whose frequency of occurrences depends on the considered family, the ancestor is easily deduced as being the same than its children.

If we have at least one problematic situation between the selected genomes (that is, if we have at least one deleted, duplicated, or inserted gene in one genome), like between Eleu_senticosus and Bras_hainla (renamed U 1 and U 2 respectively), then a deeper investigation is initiated using one or more cousin genome(s). For instance, in our example, Meta_Delavayi and kalo_septemlobus will be considered as cousin genomes to take the final decision in the treatment of such problematic situations.

Mathematically speaking, for all genes in U 1 ∪ U 2 , if gene g i in U 1 matches properly in name, position, and orientation with g i in U 2 , then adds it in the ancestor genome γ at position i. Else, consider the position i in cousin genome: if g i or g i equal to g i in cousin genome, then add the most frequent gene to the ancestor genome γ in position i; otherwise, this gene is considered as Insertion.

Figure 9.7 gives a simulation example of the considered procedure. In this figure, suppose that A, B, C, D, and E in the leaves are genes, and we want to predict the ancestor α 1 . Remark that genes A, B, and D match in positions. The problematic C gene between these two genomes needs a cousin genome to determine its presence in α 1 ancestor genome or not. One or both genomes in α 2 subtree are considered to be cousin(s) to treat the problem of gene C. The two cousin genomes have one copy of gene C in their gene lists. According to our voting system, gene C will be in α 1 ancestor and one delete operation is recorded (that is, AB_D). An insert state is also marked in α 2 subtree, where gene E did not appear neither in cousin genomes of α 1 tree, nor in its brother. With our tree, the graphical presentation of delete operation of gene number 112 is illustrated in • Step 4: Save Ancestor: After defining all operations between given genomes in gene investigation step, the gene list of ancestral genome is determined. We need to keep this list for further investigation with other leaves or sub-ancestral from other internal nodes until reaching the root node (R). A python pickle file is used to save each predicted internal ancestor with its correspondent node letter.

• Step 5: Repeat step 2 until the prediction of root ancestor.

Note that all matching genes are directly assigned to the ancestor. For non-matching genes, the process consists in the selection of a third genome, among the cousins according to the provided tree. The selected cousin is the closest one to the two considered genomes, according to the chosen distance. It is then compared to the two sister species for each non-matching gene: if the cousin agrees with one sister, then the considered gene is added to the ancestor. Figure 9.8 simulates the entire process of ancestral reconstruction between two genomes. The results from this algorithm is shown in Figure 9.9. In this figure, the gene list of the ancestor genome in internal nodes are well predicted by considering sometimes multiple cousin genomes for selecting the most frequent gene for problematic position. To understand the evolution of Apiales order, we use the concept of top-down tree tracing. More precisely, we regards the ancestor of top root node and then we trace down the branches connected to it. The number of inserted and deleted genes are then written on an arc directed from top to bottom. This method can generally provide the ancestor gene list in each internal node in order fashion, but it also has some limitations: for example, the matching criteria depends on finding the shared genes between closed genomes based on gene name, while sequences are not taken into account. To tackle this problem and to provide more accurate gene lists for internal node ancestors, deeper investigations should be considered.

9.2.2.2/ ANCESTOR PREDICTION BASED ON SEQUENCE COMPARISON

In this section, we consider the same stages than in previous method, except that we add an initialization renaming stage preliminary to Step 1. We consider two datasets, according to genome names set in the previous method. Duplicated genes in each genome are then renamed, depending on the Needleman-Wunsch algorithm [START_REF] Güyer | Measuring disorientation based on the needleman-wunsch algorithm[END_REF] sequence similarity distance, by adding an index number to the end of the working gene name.

For illustration purpose, let us consider Figure 9.10. We have three copies of gene C in genome A, and two copies of the same gene in genome B. We need first to rename all duplicated genes in genome A to be a reference genome. Suppose that we want to rename all duplicated genes in B according to A (which operates here as a reference). Duplication in gene names of genome A are firstly renamed according to their position, Note that, the first copy of duplicated genes is labeled starting from zero label (ex., A 0). All genes of zero label are represented as the same gene name.

Each copy of gene C in genome B is secondly compared to each copy of the same gene in genome A using global sequence alignment distance. It then receives the same index that the gene in A having the best similarity score, based on the Equation 9.5: The results from this stage are duplication free gene lists for genome A and genome B. If we applied a cousin genome, then we will have a duplication free gene list for the cousin genome. We applied the same next steps from the previous method.

C idx =                    0
This method has been applied on Apiales order. Figure 9.11(b) presents the graphical matching relations among the genes between Meta_Delavayi and kalo_septemlobus considering this method, which can be compared with Figure 9.11(a) that illustrates our previous method. The tree of Apiales, with ancestors generated from this improved method, is shown in Figure 9.12. In this tree, inserted or deleted genes are maybe more accurate now, as we considered sequence comparisons using Needleman-Wunsch algorithm.

Note that a gene is indexed by 99 when it has revealed a low similarity score (lower than 60%) with all associated gene sequences on the reference genome. This particular gene should be further investigated, to identify where it has been inserted during the chloroplast evolution.

Figure 9.12: Ancestral results from sequence comparison method.

9.2.3/ ANCESTRAL INFORMATION

We now present information regarding different ancestor node in target phylogenetic trees. These information are stored for statistical computations or for future ancestral computation. Table 9.2 presents the amount of duplicated genes inside the ancestors.

An annotation-based approach has been performed in a pipeline for core genomes by two genomes using NCBI and DOGMA annotation tools. The implicit evolutionary model considered for the ideal method occurs when comparing two genomes (containing the same set of genes, but with different number of copies) developed from a common ancestor: in such case, each genome contains exactly the same copy of each gene, through a series of independent gene duplications and reversals. As demonstrated previously in Figure 9.8.

The central idea of this approach is to keep members of each gene family (from two genomes), its actual prototype, which best reflect the original position of the gene in the ancestor genome. This process proceeds in a bottom-up fashion: it starts from the most recent ancestors of two leaves in the tree and finishes at the root of the tree.

The genomes of the extant species are recorded. The file is in an FASTA format, where, instead of the gene sequence, we list the gene name, ID, with plus (+) or minus (-) signs representing orientations. In this study, we have described another method for ancestral genome reconstruction for chloroplasts. We selected Apiales species. We suggest for all Figure 9.11: Graphical representations between Meta_Delavayi and kalo_septemlobus from gene content method and gene renaming method.

two selected genomes, then we depend on the cousin genome by regarding the position of the same gene name to make our final decision. In some cases more than one cousin is chosen if one cousin can not perfectly guide the decision.

The evolutionary tree presented in Figure 9.9 shows the basic evolutionary scenario based on two rearrangement operations: insert and delete. It also illustrates the amount of core genes in each internal ancestor. For both brothers genomes, E. senticosus and B. hainla, the best cousin genome is K. septemlobus. The results from similarity matching process declares that there is only one insertion and one deletion operations difference in gene duplication (for example, the gene ycf1 is presented twice in E. senticosus, while it is presented in three copies in B. hainla). In the same way, the gene Ycf68 is presented in four copies in B. hainla and in six copies in E. senticosus. The results from the matching process will built the ancestor genome B. Both brother genomes A. undulata and P. ginseng are similar in all genes; the result is assigned to ancestor genome E. However, genomes such as A. undulata and p. ginseng, M. delavayi and k. septemlobus, S.delavayi and M. delavayi, k. septemlobus and E. sentucosus are sharing the same genes names, positions, and number of copies of gene duplication, which means a perfect matching.

This process is repeated until the prediction of the ancestor genome of the root node. Figure 9.9 shows the results of Apiales order. In this figure, edit operations (such as insertions and deletions) are recoded in the tree. One delete and one insert gene in internal node (C), The gene psbG was presented in all genomes except in (C), while there is an inserted gene of tRNG-GCC in (C). The remaining genes are matching perfectly in names and positions.

9.3/ CONCLUSION

In this chapter, we suggested a pipeline of three stages to evaluate how the accuracy of ancestral genomes reconstruction depends on species sampling and quality of the phylogenetic tree. Two methods were applied in ancestral analysis stage: ancestor prediction based on gene contents and ancestor prediction based on sequence comparisons. These two methods are sharing almost the same implementation stages. There is a preliminary stage for sequence comparisons method called gene renaming, where each copy of duplicated gene are compared with all copies of the same gene in reference genome.

The pipeline provides in the last stage some graphical and non-graphical images to highlight the possible rearrangement operations (e.g., insertion, deletion, replace, inversion) on the given tree.

This chapter is a step forward in developing approximation algorithms and investigating the properties of building an accurate phylogenetic tree and reconstructing the ancestral genomes. Finally, this work continues to handle all other species in the domain of Eukaryotic, such as (Ericales, Solanales, Gentianales, and Lamiales_Oleaceae). Many questions still need some deep investigations to completely understand the evolution process in Eukaryotic domains by including more gene features and gene sequences. Furthermore, other edit distance operations (such as the role of inversions, transposition, replacement, etc.) need to be taken into consideration in future studies.

CHAPTER 10 Conclusion

10.1/ CONCLUSION

During our thesis, we have investigated some scientific and technical problems that may arise when trying to reconstruct the last universal common ancestor (LUCA) of a large set of all available complete chloroplastic sequences. The problems of genome annotation, core extraction, phylogenetic inference, and ancestral reconstruction have specifically been regarded as key elements in that LUCA quest.

Concerning the automatic annotation problem of complete chloroplastic sequences, we have tested various solutions and decided that an updated version of DOGMA was the best compromise. The problem in this context was that, except DOGMA, most coding sequence prediction or annotation tools were not specific to chloroplasts and so their accuracies were perfectible, as it has been verified on well humanly curated genomes. Conversely, annotations on databases like the NCBI one were of too much varying quality, some genomes being annotated and curated well while other ones embedded obvious annotation errors. The objective at this level was to take the best from both systematic annotations from DOGMA and humanly curated ones from NCBI, by using name and sequence similarities. We have shown that such an approach may introduce other kind of artifacts, and that finally DOGMA alone provides annotations of sufficiently accurate level.

Given a set of close annotated chloroplastic genomes, we then have investigated, how to extract the largest subset of core genes that lead to the most supported phylogenetic tree.

We have proposed two artificial intelligence ways to reach this goal, namely by the mean of genetic algorithms or particle swarm optimization. A second stage encompassing both LASSO test and dummy binary logistic regression has been added to the algorithm, in order to describe the effect of each gene on topology selection and on support evolution. These algorithms have been deployed on the Mésocentre de Calculs de Franche-Comté thanks to a distributed master/slave approach.

On such trees, we have proposed a first ancestral reconstruction of gene content and order. This algorithm is based on SequenceMatcher tool, and obtained results have been verified to what can be deduced by naked eye on well defined families. Ways to merge the forest of phylogenetic trees in a supertree have been regarded too, and the way gene content evolves through a tree of core genomes has finally been presented.

10.2/ FUTURE INVESTIGATIVE DIRECTIONS

In future work, our main objective will be to complete what has been initiated during our thesis, until being able to reconstruct the last universal common ancestor of chloroplasts.

The current annotation process using DOGMA seems reliable and convenient, but we need to investigate more deeply the case of fragmented genes. Testing all possible combinations of fragments is a very costly task, and choosing the combination that has the higher similarity score with a gene database we have constructed may, in some cases, provide artifacts or chimeras. This is why we believe that the fragmented genes must be deeply regarded, by considering two times a list of such genes, and checking if the automatically obtained defragmented genes are coherent with what can be manually inferred.

The way to separate the large set of inputted genomes is currently based on taxonomy information according to the NCBI database. However this latter is not completely reliable, and new sequencing capability makes that the whole taxonomy is currently evolving. The risk in this case is to consider by error a divergent species in a subset of coherent species -this latter being then misplaced after the supertree reconstruction, leading to errors in all its ancestral nodes. A way to reinforce confidence put in the subset selection is to compare gene content and sequence similarity too, to be sure that we put together only close species.

Other artificial intelligence approaches like simulated annealing should be compared to our genetic algorithm and our particle swarm optimization, when we attempt to extract the largest subset of core genes that produces the most supported tree, and hybrid approaches must be investigated too. They must be compared to a brute force approach on a small family, to see if the optimum produced by our algorithm is really the "best tree". Investigating the per site likelihood level instead of the gene one may be more relevant, and thus it must be regarded. However the number of observed characters dramatically explodes, so it is likely that such an approach is impossible in practice. Statistical results concerning the gene effects on topology and supports must be explained biologically, among other things by investigating the gene functionality, or by regarding whether gene transfer may explain it. Finally, the trees we produce must be compared with gene trees, and similarities or differences must be explained.

We currently reconstruct the supertree by hand, and we have not yet proposed an algorithm to achieve this goal. No solution can be found in the literature, as supertree reconstruction currently supposes that the same genes are shared among the trees to merge, or other restrictive hypotheses of that kind, which are incompatible with our supertree problem.

Concerning ancestral reconstruction of gene order and content, the first solution we proposed is perfectible. In particular, we do not obtain exactly the same ancestor that what we have reconstructed manually. Divergences must be understood and our algorithm must be updated and simplified. Sequence level must be added too to the algorithm.

Finally, the whole pipeline must be finalized, deployed on the Mésocentre or on DARI resources, and it should be launched on all currently available chloroplastic genomes, and obtained results must be carefully regarded. In particular, the last universal common ancestor must be compared to cyanobacterial genomes, to see if a cyanobacterial origin of chloroplasts can be assessed by the mean of ancestral reconstruction. Gene content and recombination events must be investigated too in the supertree, to see if some branches in the tree can be related to hot spots of evolution. Endosymbiosis events among the supertree must be searched too, while possible gene transfer to the nucleus genome must finally be studied.

 .1(a), or find the best local alignment as depicted in Figure 3.1(b).

 (a) Global alignment matching. (b) Local alignment matching.

Figure 3 . 1 :

 31 Figure 3.1: demonstration of sequence alignment approaches. (a) The process of global alignment. (b) The process of local alignment.

Figure 3 . 2 :

 32 Figure 3.2:The standared genetic code for codon to amino acids translation. See[START_REF] Godfrey | Biological information[END_REF]

 (a) PAM 1 matrix, all its values are scaled by 10000. (b) A PAM 250 matrix. The column summation adjusted to 100.

Figure 3 . 3 :

 33 Figure 3.3: Examples of PAM 1 and PAM 250 matrices presented in [20].

Figure 3 . 4 :

 34 Figure 3.4:The standared BLOSUM62 matrix. See[START_REF] Henikoff | Amino acid substitution matrices from protein blocks[END_REF]

 Let us now consider that we have two nucleotide sequences A and B of different sizes, where A = a 1 a 2 a 3 ...a n and B = b 1 b 2 b 3 ...b m , and let us explain how to compute the scoring matrix T . Figure3.5(a) shows that SW uses an individual pairwise comparisons between characters to fill the scoring matrix. In this figure, to compute the value of T (i, j), we need to take into consideration all the four scoring options and select the maximum one. When the matrix T is all computed, a new process starts by tracing back the matrix by selecting the position of maximum score. Then, from that position, we go up following the maximum score until reaching the first diagonal position. The selected positions in trace back process is considered as the optimal alignment path, as shown in Figure3.5(b).

 (a) Calculate the scoring values. (b) Tracing back alignments.

Figure 3 . 5 :

 35 Figure 3.5: Example of Smith-Waterman local alignment algorithm of two given sequences (A, B), A = a 1 a 2 a 3 ...a n and B = b 1 b 2 b 3 ...b m . (a) Calculate a new matching score depending heuristically on the previous around values. (b) Tracing back the alignment by starting from the maximum score in the generated matrix, then follow the maximum score on each step up.

 a n and B = b 1 b 2 b 3 . . . b m be two sequences of different sizes that we want to compare. A two-dimensional matrix T should be computed. In this matrix, the row vector represents sequence A while the column one corresponds to sequence B. A perfect correspondence or a mismatch alignment between these two sequences is represented by a diagonal line as shown in Figure 3.6(a). A gap in the first sequence leads to a horizontal line (Figure 3.6(b)), while a gap in the second sequence is drawn as a vertical line, as shown in Figure 3.6(c).

 Gaps in horizontal lines. (c) Gaps in vertical lines.

Figure 3 . 6 :

 36 Figure 3.6: Example of Needleman Wunsch global alignment algorithm of two given sequences A = a 1 a 2 a 3 ...a n and B = b 1 b 2 b 3 ...b m . (a) A diagonal line is when the two characters are equal, or when there is a substitution of characters. (b) Gaps in the first sequence are expressed from horizontal line. (c) Gaps in the second sequence correspond to vertical lines.

1)

 1

 (a) Matrix initialization. (b) Computing the scoring values.

Figure 3 . 7 :

 37 Figure 3.7: Example of Needleman-Wunsch global alignment algorithm of two given sequences A = a 1 a 2 a 3 ...a n and B = b 1 b 2 b 3 ...b m . (a) The initialization of the scoring matrix. (b) How to calculate the next score: (+1) for matching, (-2) for mismatching, and (-2) for gap penalty.

Figure 3 . 8 :

 38 Figure 3.8: Tracing back the alignment by starting from the lowest right corner and following the maximum score on each step up.

Figure 3 . 9 :

 39 Figure 3.9: Multiple sequence alignment editing of different sequences of Apiales order.

 Figure 4.1(b). Conversely, in phylograms, branch lengths are scaled in the tree: they depend on the number of CHAPTER 4. CONCEPT OF PHYLOGENETIC TREE CONSTRUCTION changes between sequences. An example of such trees is depicted in Figure 4.1(c). (a) An overview of phylogenetic tree structure. (b) An overview of cladogram tree. (c) An overview of phylogram trees.

Figure 4 . 1 :

 41 Figure 4.1: Types of phylogenetic trees. (a) An overview of phylogenetic tree structure. (b) Example of cladogram tree. (c) Example of phylogram trees.

Figure 4 . 2 :

 42 Figure 4.2: An overview of unrooted tree.

Figure 4 . 3 :

 43 Figure 4.3: An overview on rooted phylogenetic tree.

 ure 4.4(a).

 a) A starlike tree. (b) The identification of lowest sum of branch lengths TUs.

Figure 4 . 4 :

 44 Figure 4.4: Simulation of Neighbor-Joining method. (a) All TUs are organized in starlike tree. (b) Two nodes are connected to internal node if they have lowest sum of branch lengths value.

Figure 4 . 5 :

 45 Figure 4.5: Generating individual sequence gene files. Each gene in the core genome is treated by acquiring its sequences from outgroup and given genomes.

 Invoking bootstrap analysis: The parameters for initializing the bipartition analysis are given based on the following RAxML command: raxmlHPC -d -f o -p 12345 -m GTRGAMMA -n '+texte+'2 -o '+outgroup+r' -b 0123 -N autoMRE -s Resultats/'+texte+'/alignementsRAxML.fasta. In this command, -b 0123 and -N auto MRE are two new options for invoking the multiple bootstrapping analysis. According to Table4.1, -b 0123 is the random bootstrap seed that will be considered across runs, while -N auto MRE specifies the number of alternative runs on given starting trees. Branch length values are estimated in this step and added into generated best tree.

Figure 4 . 6 :

 46 Figure 4.6: Multiple sequence alignment of genes files. In this figure, gene files with correspondent gene sequences are inputted during the multiple alignment stage. In concatenation stage, all gene sequences are concatenated based on given genomes with the outgroup. This assembly file will be used in the phylogenetic construction stage using RAxML.

 (a) Complete (fully connected) graph for given coding sequences for T = 1. (b) Amounts of generated connected components when T = 0.5. (c) No connected components when T = 0.

Figure 6 . 2 :

 62 Figure 6.2: Example of similarity-based approach of two given genomes (G 1 , G 2), G 1 has five coding sequences ({x 1 , x 2 , x 3 , x 5 , x 6 }) and G 2 has six coding sequences ({y 1 , y 2 , y 4 , y 6 , y 9 , y 10 }). (a) The similarity graph. On each connected edge, there is a similarity score between g i and g j . (b) Connected components obtained when T = 0.5. (c) No connected components when T = 0.

Figure 6 . 3 :

 63 Figure 6.3: Distribution of 99 chloroplast genomes.

 (a) Results based on NCBI annotation. (b) Results based on DOGMA annotation.

Figure 6 . 4 :

 64 Figure 6.4: Results obtained from genomes annotated based on (a) NCBI and (b) DOGMA

 (a) Initialization. (b) Remove lower triangle. (c) Select max IS in each row. (d) Max IS selected. (e) Remove G 1 and G 2 . (f) Add C 0 = G 1 ∩ G 2 and start new iteration. (g) Select max IS. (h) Remove G 3 and G 4 , replace them with C 1 .(i) Select max IS.

Figure 6 . 5 :

 65 Figure 6.5: Evolution of the Intersection core matrix.

Figure 6 . 6 :

 66 Figure 6.6: An overview of the pipeline.

 .

Figure 6 . 7 :

 67 Figure 6.7: Part of the implementation of the third method, sequence comparison of the common genes from NCBI and DOGMA. In this figure, each record have information of selected common gene such as gene name, sequence length from NCBI and DOGMA annotations, start and stop codons for both annotations, and the sequence matching score value. Note that the gene column comes from producing common genes process (see Figure 6.8(a))

 (a) Producing sharing genes based on gene names. (b) Producing quality genomes.

Figure 6 . 8 :

 68 Figure 6.8: demonstration of quality test approach pipeline. (a) The process of extracting quality genes based on gene features (e.g., gene names). (b) The process of predicting the quality genomes based on quality genes from previous step.

Figure 6 .

 6 11(a) shows the original amount of genes based on two annotation (a) Amount of genes based on NCBI and DOGMA w.r.t quality common genes. DOGMA gives the larger number of genes.(b) Core genomes sizes w.r.t. threshold. A maximal number of core genes does not mean a good core genomes: we are looking for genes meeting biological requirements.

Figure 6 . 9 :

 69 Figure 6.9: (a) Genes coverage for a threshold of 60% and (b) core genomes sizes.

 (a) Correlation coefficient between predicted NCBI and DOGMA genes. (b) Correlation coefficient between predicted NCBI and common genes.(c) Correlation coefficient between predicted DOGMA and common genes.

Figure 6 . 10 :

 610 Figure 6.10: Correlation coefficient between predicted NCBI and DOGMA annotations and predicted common genes

Figure 6 .

 6 Figure 6.9(b) represents the amount of genes in the computed core genome of 98

 (a) Sizes of genomes based on NCBI and DOGMA annotations. (b) Percentage of genes coverage between NCBI and DOGMA.

Figure 6 . 11 :

 611 Figure 6.11: Original and coverage sizes between NCBI and DOGMA genomes based on a threshold of 60%. (a) The number of genes with DOGMA is larger than the ones with NCBI, because the former generates more tRNAs and rRNAs genes than NCBI. (b)The former outperforms the latter, as almost all genes in NCBI genomes have been covered with common genes, while most of the DOGMA genes are ignored. However, correlation of them with NCBI (after quality test) is 0.6731, while it is 0.9664 with DOGMA, this latter being thus more accurate than NCBI.

 (a) Time needed to execute each method. (b) Memory usage (MB unit) (sizes usually available on personal computers).

Figure 6 . 12 :

 612 Figure 6.12: Execution time and memory usage w.r.t. threshold.

Figure 6 . 13 :

 613 Figure 6.13: Part of a core genomes evolutionary tree (NCBI gene names)

Figure 6 . 14 :

 614 Figure 6.14: Phylogenetic tree based on DOGMA annotation.

Figure 6 . 15 :

 615 Figure 6.15: Amount of permutations w.r.t the number of core genes.

Figure 6 . 16 :

 616 Figure 6.16: Core_81 phylogenetic tree with 15 core genes (1 gene removed randomly).

Figure 7 . 1 :

 71 Figure 7.1: Overview of the proposed pipeline for phylogenies based on chloroplasts.

 (a) Systematic mapping. (b) Random mapping.

Figure 7 . 2 :

 72 Figure 7.2: Binary mapping operation overview. (a) Initial individuals obtained in systematic mode stage. Two kinds of individuals are generated. First, by considering all genes in the core genome. Second, by omitting one gene sequentially depending on the core length. (b) Initial individuals are generated randomly in random mode stage by omitting 2-10 genes randomly.

Figure 7 . 3 :

 73 Figure 7.3: Random pair selections from given population.

Figure 7 . 4 :

 74 Figure 7.4: Outline of the genetic algorithm.

 (a) Crossover operation. (b) Mutation operation.

Figure 7 . 5 :

 75 Figure 7.5: (a) Two individuals were selected from given population. The first portion from determined crossover position in the first individual is switched with the first portion of the second individual. The number of crossover positions is determined by N crossover . (b) Random mutations are applied depending on the value of N mutation , changing randomly gene state from 1 to 0 or vice versa.

 (a) Cupressales group. (b) Pooideae group. (c) Chlorophyceae group. (d) Rhodophyta group. (e) Alveolata group. (f) Prasinophytes group. (g) Fagales group. (h) Gentianales group. (i) Haptophyceae group. (j) Lycopodiidae group. (k) Cryptophyta group. (l) Cucurbitales group.

Figure 7 . 6 :

 76 Figure 7.6: Some phylogenetic trees obtained for different chloroplast groups.

Figure 7 . 7 :

 77 Figure 7.7: Best trees of topologies 0, 1, and 2.

3 :

 3 Information regarding obtained topologies where |c| = 116, and lb = 724.

Figure 7 . 8 :

 78 Figure 7.8: Different comparisons of the topologies w.r.t the amount of removed genes: the number of disregarded genes in these figures is specified by n 3 where n is the number of core genes. (a) Number of trees per topology, (b) number of trees whose lowest bootstrap is larger than or equal to 80, (c) lowest bootstrap in best trees, and (d) the average of lowest bootstraps.

Figure 8 . 1 :

 81 Figure 8.1: Core genes in lexicographical order. Each gene has two possible binary states: either present (1) or absent (0).

Figure 8 . 2 :

 82 Figure 8.2: Binary words w where the state of each gene in w is randomly selected.

 These three topologies are almost well supported, except in a few branches. According to Figure8.2, the differences in these topologies are based on the sister relationship of two species named Fragaria vesca and Fragaria bracteata, and on the relation between Pentactina rupicola and Pyrus pyrifolia. Due to its larger score and number of occurrences, we tend to select T opology 0 as the best representative of the Rosale phylogeny.

Figure 8 . 3 : 4 (c) T opology 2 Figure 8 . 4 :

 834284 Figure 8.3: Average fitness of Rosales order

Figure 8 . 5 :

 85 Figure 8.5: The parallel structure of PSO algorithm.

Figure 8 . 6 :

 86 Figure 8.6: PSO with 10 and 15 particles vs. GA.

Figure 9 . 3 :

 93 Figure 9.3: General overview of the proposed pipeline. In this pipeline, you can see some arrows are in both sides because we need to prepare the chosen new cousin, or to acquire new information.

Figure 9 . 4 :

 94 Figure 9.4: High supported phylogenetic tree of Apiales order.

Figure 9 . 5 :

 95 Figure 9.5: Phylogenetic tree of Apiales order.

Figure 9 . 6 :

 96 Figure 9.6: Graphical presentation of genes alignment between two genomes.

 Figure 9.7 gives a simulation example of the considered procedure. In this figure, suppose that A, B, C, D, and E in the leaves are genes, and we want to predict the ancestor α 1 . Remark that genes A, B, and D match in positions. The problematic C gene between these two genomes needs a cousin genome to determine its presence in α 1 ancestor genome or not. One or both genomes in α 2 subtree are considered to be cousin(s) to treat the problem of gene C. The two cousin genomes have one copy of gene C in their gene lists. According to our voting system, gene C will be in α 1 ancestor and one delete operation is recorded (that is, AB_D). An insert state is also marked in α 2 subtree, where gene E did not appear neither in cousin genomes of α 1 tree, nor in its brother. With our tree, the graphical presentation of delete operation of gene number 112 is illustrated in Figures 9.6(b) and 9.6(c) comparing with two cousin genomes.

Figure 9 . 7 :

 97 Figure 9.7: Simulation of gene investigation step between two genomes

Figure 9 . 8 :

 98 Figure 9.8: Simulation of ancestral reconstruction process between two genomes

Figure 9 . 9 :

 99 Figure 9.9: Ancestral results from gene contents method.

Figure 9 . 10 :Example 4 :

 9104 Figure 9.10: General process of renaming genes based on sequence comparisons.

 if min(d(S c , S 0), d(S c , S 1), d(S c , S 2)) = d(S c , S 0), 1 if min(d(S c , S 0), d(S c , S 1), d(S c , S 2)) = d(S c , S 1), 2 if min(d(S c , S 0), d(S c , S 1), d(S c , S 2)) = d(S c , S 2), 99 else. (9.5) where S c represents the coding sequence of target gene C in genome B, d(S c , S 0) represents the similarity score from global sequence alignment comparisons, and S 0 , S 1 , and S 2 represent the reference coding sequences of gene C in genome A.

1. ICBBS'2014 Bassam

 .1/ ACTS OF SELECTIVE INTERNATIONAL CONFERENCES Bassam Alkindy, Christophe Guyeux, Jean-François Couchot, Michel Salomon, and Jacques Bahi. Gene Similarity-based Approaches for Determining Core-Genes of Chloroplasts. IEEE International Conference on Bioinformatics and Biomedicine, pages 71-74, Belfast, United Kingdom, November 2014. Hybrid Genetic Algorithm and Lasso Test Approach for Inferring Well Supported Phylogenetic Trees based on Subsets of Chloroplastic Core Genes. 2 nd International Conference on Algorithms for Computational Biology, volume 9199 of LNCS/LNBI, Mexico City, Mexico, August 2015. Springer. Note: To appear in the LNCS/LNBI series. 5. CIBB'2015 Reem Alsrraj, Bassam AlKindy, Christophe Guyeux, Laurent Philippe, and Jean-François Couchot. Well-supported phylogenies using largest subsets of core-genes by discrete particle swarm optimization. Preceedings of 12 th International meeting on Computational Intelligence methods for Bioinformatics and Biostatistics (CIBB), Naples, Italy, vol. 2, p. 1-6, September 2015.

	1.6/ LIST OF ABBREVIATIONS
	Abbreviation	Description
	BLAST	Basic Local Alignment Search Tool.
	BP	Bootstrap Probability.
	CC	Connected Component.
	1.5.2/ PUBLICATIONS IN NATIONAL SEMINARS AND WORKSHOPS CEGMA Core Eukaryotic Genes Mapping Approach.
	CpBase	The Chloroplast Genome Database.
	CpGAVAS	Chloroplast Genome Annotation, Visualization, Analysis and GenBank Submission Tool.
	DDBJ	DNA Data Bank of Japan.
	DNA	Deoxyribonucleic Acid.
	DOGMA	Dual Organellar GenoMe Annotator.
	DBLT	Dummy Binary Logit Test.
	DPSO	distributed Particle Swarm Optimization.
	EMBL	European Molecular Biology Laboratory.
	FPE	False Positive Error.
	FNE	False Negative Error.
	GA	Genetic Algorithm.
	GSA	Global Sequence Alignment.
	ICM	Intersection Core Matrix.
	IS	Intersection Score.
	LASSO	Least Absolute Shrinkage and Selection Operator Test.
	LGI	Lowest Number of Ignored Genes.
	LSA	Local Sequence Alignment.
	MGI	Maximum Number of Ignored Genes.
	MSA	Multiple Sequence Alignment.
	MUSCLE	MUltiple Sequence Comparison by Log-Expectation.
	ML	Maximum Likelihood.
	NCBI	National Center of Biotechnology Information.
	NW	Needle-man Wunsch Alignment.
	Occ.	Number of Tree Occurences.
	PSA	Pairwise Sequence Alignment.
	PSO	Particle Swarm Optimization.
	RAxML	Randomized Axelerated Maximum Likelihood.
	RNA 3. IWBBIO'2015 Bassam Alkindy, Huda Al-Nayyef, Christophe Guyeux, Jean-François Ribonucleic acid. SH Shimodaira-Hasegawa Algorithm. Couchot, Michel Salomon, and Jacques Bahi. Improved Core Genes Prediction SW Smith-Waterman Alignment. for Constructing well-supported Phylogenetic Trees in large sets of Plant Species. rRNA ribosomal RNA. 3 rd Int. Work-Conference on Bioinformatics and Biomedical Engineering, Springer, Multiple sequence alignment that provides a dramatic im-volume 9043 of LNCS, Granada, Spain, pages 379-390, April 2015 T-COFFEE provement in accuracy with a modest sacrifice in speed as
		compared to the most commonly used alternatives.
	Topo.	Topology Number.
	tRNA	Transfer RNA.
	WSH	Weighted Shimodaira-Hasegawa Algorithm.

Alkindy, Jean-François Couchot, Christophe Guyeux, Arnaud Mouly, Michel Salomon, and Jacques Bahi. Finding the Core-Genes of Chloroplasts. 3rd Int. Conf. on Bioinformatics and Biomedical Science, number 4(5) of IJBBB, Journal of Bioscience, Biochemistery, and Bioinformatics, Copenhagen, Denmark, pages 357-364, June 2014. 2. BIBM'2014 4. AlCoB'2015 Bassam Alkindy, Christophe Guyeux, Jean-François Couchot, Michel Salomon, Christian Parisod, and Jacques Bahi.

 → [0, 1] A function of similarity measure on A * .

	1.7/ MATHEMATICAL NOTATIONS
	Symbol	Description
	A	is the nucleotide alphabet.
	A *	the set of finite words on A.
	R	equivalent relation.
	s 1 , ..., s k	finite sequence of vertices (DNA sequences).
	w	the binary word.
	w i	new word generated after specific event (ex., mutation).
	s	subset of core genome.
	b	bootstrap value.
	p	percentage of gene presents.
	p	the number of 1's in w.
	p val	p-value.
	P	set of population.
	P	New population generated from P.
	P c	Population generated from crossover stage.
	P m	Population generated from mutation stage.
	P r	populaton having lessthan 10% of 0's.
	T	is the list of phylogenetic trees.
	W	the set of topologies.
	lb	the lower bound threshold.
	c	the set of core genes.
	|c|	the length of core genome.
	m	is the size of T .
	N mutation	amount of mutations.
	N crossover	amount of crossover.
	2 n	

d : N = A * × A *

•

 On the other hand, T-COFFEE is slower than MUSCLE but more robust and accurate. It generates more accurate alignments than MUSCLE, and it works with large amount of DNA sequences. This advantage gives an extra point to use T-COFFEE instead of MUSCLE. T-COFFEE is also considered in special cases under mcoffee mode.Wallace et al. (2006) have developed a meta version of T-COFFEE called M-Coffee. This latter makes it possible to combine the output of at least eight packages (MUSCLE, probcons

 Gingko bilobawhere lineages F1, F2, F3, F4, F5, and F6 are Red Algae, Bryophytes, Dinoflagellates, Euglena, Haptophytes, and

	F. #	Acc. No	Scientific Name	F. #	Acc. No	Scientific Name
			NC_001713.1 Odontella sinensis			NC_007898.3 Solanum lyopersicum
			NC_008588.1 Phaeodactylum tricornutum			NC_001568.1 Epifagus virginiana
			NC_010772.1 Heterosigma akashiwo			NC_001666.2 Zea Mays
	Brown Algae	11	NC_011600.1 Vaucheria litorea NC_012903.1 Aureoumbra lagunensis NC_014808.1 Thalassiosira oceanica NC_015403.1 Fistulifera sp NC_016731.1 Synedra acus			NC_005086.1 Amborella trichopoda NC_006050.1 Nymphaea alba NC_006290.1 Panax ginseng NC_007578.1 Lactuca sativa NC_007957.1 Vitis vinifera
			NC_016735.1 Fucus vesiculosus			NC_007977.1 Helianthus annuus
			NC_018523.1 Saccharina japonica			NC_008325.1 Daucus carota
			NC_020014.1 Nannochloropsis gadtina			NC_008336.1 Nandina domestica
			NC_000925.1 Porphyra purpurea			NC_008359.1 Morus indica
	F1	3	NC_001840.1 Cyanidium caldarium			NC_008407.1 Jasminum nudiflorum
			NC_006137.1 Gracilaria tenuistipitata			NC_008456.1 Drimys granadensis
			NC_000927.1 Nephroselmis olivacea			NC_008457.1 Piper cenocladum
			NC_002186.1 Mesotigma viride			NC_009601.1 Dioscorea elephantipes
			NC_005353.1 Chlamydomonas reinhardtii			NC_009765.1 Cuscuta gronovii
			NC_008097.1 Chara vulgaris			NC_009808.1 Ipomea purpurea
			NC_008099.1 Oltmannsiellopsis viridis			NC_010361.1 Oenothera biennis
			NC_008114.1 Pseudoclonium akinetum			NC_010433.1 Manihot esculenta
	Green Algae	17	NC_008289.1 Ostreococcus tauri NC_008372.1 Stigeoclonium helveticum NC_008822.1 Chlorokybus atmophyticus NC_011031.1 Oedogonium cardiacum NC_012097.1 Pycnococcus provaseolii	Angiosperms	45	NC_010442.1 Trachelium caeruleum NC_013707.2 Olea europea NC_013823.1 Typha latifolia NC_014570.1 Eucalyptus NC_014674.1 Castanea mollissima
			NC_012099.1 Pyramimonas parkeae			NC_014676.2 Theobroma cacao
			NC_012568.1 Micromonas pusilla			NC_015830.1 Bambusa emeiensis
			NC_014346.1 Floydiella terrestris			NC_015899.1 Wolffia australiana
			NC_015645.1 Schizomeris leibleinii			NC_016433.2 Sesamum indicum
			NC_016732.1 Dunaliella salina			NC_016468.1 Boea hygrometrica
			NC_016733.1 Pedinomonas minor			NC_016670.1 Gossypium darwinii
			NC_001319.1 Marchantia polymorpha			NC_016727.1 Silene vulgaris
	F2	3	NC_004543.1 Anthoceros formosae			NC_016734.1 Brassica napus
			NC_005087.1 Physcomitrella patens			NC_016736.1 Ricinus communis
	F3	2	NC_014267.1 Kryptoperidinium foliaceum NC_014287.1 Durinskia baltica			NC_016753.1 Colocasia esculenta NC_017609.1 Phalaenopsis equestris
	F4	2	NC_001603.2 Euglena gracilis NC_020018.1 Monomorphina aenigmatica			NC_018357.1 Magnolia denudata NC_019601.1 Fragaria chiloensis
			NC_003386.1 Psilotum nudum			NC_008796.1 Ranunculus macranthus
	Ferns F5 F6	5 1 NC_007288.1 Emiliana huxleyi NC_008829.1 Angiopteris evecta NC_014348.1 Pteridium aquilinum NC_014699.1 Equisetum arvense NC_017006.1 Mankyua chejuensis 2 NC_014675.1 Isoetes flaccida NC_006861.1 Huperzia lucidula NC_016986.1 Lycophytes respectively. NC_013991.2 Phoenix dactylifera NC_016068.1 Nicotiana undulata NC_009618.1 Cycas taitungensis 7 NC_011942.1 Gnetum parvifolium NC_016058.1 Larix decidua NC_016063.1 Cephalotaxus wilsoniana NC_016065.1 Taiwania cryptomerioides NC_016069.1 Picea morrisonicola Gymnosperms

Table 6 .

 6 1: List of chloroplast genomes of photosynthetic Eucaryotes lineages from NCBI annotation tool is reputed and specific to chloroplasts.

Table 6 .

 6 2: Size of core and pan genomes w.r.t. the similarity threshold

			Similarity-Based Approach	
			NCBI	DOGMA		
	Threshold(%) core pan core	pan	genes NCBI	genes DOGMA
	50	1	163	1	118	1	1
	55	5	692	2	409	3, 4, 19, 61, 69	1, 45
	60	2	1032	2	519	4, 88	1, 57
	65	1	1454	2	685	4	1, 66
	70	0	2000	1	1116		10
	75	0	2667	1	1781		19
	80	0	3541	0	2730		
	85	0	4620	0	3945		
	90	0	5703	0	5181		
	95	0	7307	0	7302		
	100	0	8911	0	10132		

Table 6 .

 6

	Genome	X	Y	X ∩ Y NCBI (%) DOGMA (%)	Genome	X	Y	X ∩ Y NCBI (%) DOGMA (%)
	Epif_virginiana	21	51	20	95.24	39.22	Dios_elephantipes	78 119	76	97.44	63.87
	Eugl_gracilis	67	59	33	49.25	55.93	Frag_chiloensis	78 120	76	97.44	63.33
	Mono_aenigmatica	62	67	42	67.74	62.69	Lact_sativa	78 118	76	97.44	64.41
	Ostr_tauri	60	68	42	70	61.76	Magn_denudata	78 121	76	97.44	62.81
	Floy_terrestris	74	73	43	58.11	58.9	Mani_esculenta	78 118	76	97.44	64.41
	Pycn_provasolii	68	71	44	64.71	61.97	Moru_indica	78 119	76	97.44	63.87
	Duna_salina	79	71	45	56.96	63.38	Oeno_biennis	78 120	76	97.44	63.33
	Schi_leibleinii	77	74	45	58.44	60.81	Rici_communis	78 120	76	97.44	63.33
	Stig_helveticum	79	73	45	56.96	61.64	Wolf_australiana	77 120	76	98.7	63.33
	Chla_reinhardtii	66	73	46	69.7	63.01	Boea_hygrometrica 78 120	77	98.72	64.17
	Gnet_parvifolium	63	88	46	73.02	52.27	Bras_napus	79 117	77	97.47	65.81
	Oedo_cardiacum	83	78	46	55.42	58.97	Buxu_microphylla	79 119	77	97.47	64.71
	Nann_gaditana	118 86	51	43.22	59.3	Chlo_spicatus	79 121	77	97.47	63.64
	Cusc_gronovii	59	86	52	88.14	60.47	Coff_arabica	79 121	77	97.47	63.64
	Pedi_minor	79	82	52	65.82	63.41	Colo_esculenta	79 121	77	97.47	63.64
	Pseu_akinetum	103 81	52	50.49	64.2	Dauc_carota	79 119	77	97.47	64.71
	Oltm_viridis	83	89	57	68.67	64.04	Drim_granadensis	79 121	77	97.47	63.64
	Emil_huxleyi	119 91	61	51.26	67.03	Heli_annuus	79 118	77	97.47	65.25
	Aure_lagunensis	110 98	64	58.18	65.31	Illi_oligandrum	79 121	77	97.47	63.64
	Pyra_parkeae	87	95	64	73.56	67.37	Nand_domestica	79 121	77	97.47	63.64
	Fucu_vesiculosus	139 96	65	46.76	67.71	Nico_undulata	103 120	77	74.76	64.17
	Phal_equestris	67 115	65	97.01	56.52	Nymp_alba	79 120	77	97.47	64.17
	Trac_caeruleum	74 112	66	89.19	58.93	Pana_ginseng	79 120	77	97.47	64.17
	Euca_grandis	69 120	67	97.1	55.83	Pipe_cenocladum	79 120	77	97.47	64.17
	Char_vulgaris	104 109	69	66.35	63.3	Psil_nudum	95 124	77	81.05	62.1
	Pice_morrisonicola	69 116	69	100	59.48	Pter_aquilinum	84 117	77	91.67	65.81
	Lari_decidua	71 115	70	98.59	60.87	Typh_latifolia	79 121	77	97.47	63.64
	Cyan_caldarium	197 106	72	36.55	67.92	Viti_vinifera	79 120	77	97.47	64.17
	Equi_arvense	84 115	73	86.9	63.48	Phoe_dactylifera	80 121	78	97.5	64.46
	Jasm_nudiflorum	78 116	73	93.59	62.93	Phys_patens	85 122	78	91.76	63.93
	Mank_chejuensis	87 119	73	83.91	61.34	Sesa_indicum	80 120	78	97.5	65
	Popu_trichocarpa	91 117	73	80.22	62.39	Sola_lycopersicum	80 120	78	97.5	65
	Ambo_trichopoda	79 119	74	93.67	62.18	Angi_evecta	85 119	79	92.94	66.39
	Isoe_flaccida	82 115	74	90.24	64.35	Cyca_taitungensis	118 125	80	67.8	64
	Marc_polymorpha	89 126	74	83.15	58.73	Gink_biloba	82 123	80	97.56	65.04
	Sacc_japonica	139 107	74	53.24	69.16	Hete_akashiwo	143 112	80	55.94	71.43
	Vauc_litorea	139 108	74	53.24	68.52	Hupe_lucidula	86 124	84	97.67	67.74
	Zea_mays	105 118	74	70.48	62.71	Neph_olivacea	147 130	89	60.54	68.46
	Anth_formosae	88 115	75	85.23	65.22	Chlo_atmophyticus 113 131	91	80.53	69.47
	Bamb_emeiensis	77 118	75	97.4	63.56	Meso_viride	105 141	96	91.43	68.09
	Cast_mollissima	77 120	75	97.4	62.5	Ulna_acus	128 149	116	90.62	77.85
	Goss_darwinii	77 118	75	97.4	63.56	Odon_sinensis	138 155	119	86.23	76.77
	Ipom_purpurea	78 118	75	96.15	63.56	Fist_DA0580	134 154	122	91.04	79.22
	Olea_europaea	78 121	75	96.15	61.98	Thal_CCMP1005	142 152	124	87.32	81.58
	Ranu_macranthus	78 119	75	96.15	63.03	Duri_baltica	127 156	125	98.43	80.13
	Sile_vulgaris	77 119	75	97.4	63.03	Porp_purpurea	209 171	125	59.81	73.1
	Taiw_cryptomerioides 83 117	75	90.36	64.1	Phae_tricornutum	131 160	129	98.47	80.62
	Theo_cacao	76 119	75	98.68	63.03	Kryp_foliaceum	139 167	136	97.84	81.44
	Ceph_wilsoniana	82 120	76	92.68	63.33	Grac_liui	203 227	188	92.61	82.82

3: Number of common genes obtained from NCBI and DOGMA annotations.

Table 6 . 4

 64 CombinationsCore genes Permutations rem. gene 1 rem. gene 2 rem. gene 3 rem. gene 4

		2	2	0	0	0
		6	3	0	0	0
		24	4	6	0	0
		120	5	10	10	0
		720	6	15	20	15
		5040	7	21	35	35
		40320	8	28	56	70
		362880	9	36	84	126
	10	3628800	10	45	120	210

: Amounts of trees w.r.t removing homoplasy genes.

Table 7

 7

	78CHAPTER 7. INFERRING PHYLOGENETIC TREES USING GENETIC ALGORITHM
	Group	Occ.	c # taxa	b	Terminus Likelihood	Outgroup
	Gossypium_group_0	85	84	12	26	1	-84187.03 Theo_cacao
	Ericales	674 84	9	67	3	-86819.86 Dauc_carota
	Eucalyptus_group_1	83	82	12	48	1	-62898.18 Cory_gummifera
	Caryophyllales	75	74	10	52	1	-145296.95 Goss_capitis-viridis
	Brassicaceae_group_0	78	77	13	64	1	-101056.76 Cari_papaya
	Orobanchaceae	26	25	7	69	1	-19365.69 Olea_maroccana
	Eucalyptus_group_2	87	86	11	71	1	-72840.23 Stoc_quadrifida
	Malpighiales	422 78	10	96	3	-91014.86 Mill_pinnata
	Pinaceae_group_0	76	75	6	80	1	-76813.22 Juni_virginiana
	Pinus	80	79	11	80	1	-69688.94 Pice_sitchensis
	Bambusoideae	83	81	11	80	3	-60431.89 Oryz_nivara
	Chlorophyta_group_0	231 24	8	81	3	-22983.83 Olea_europaea
	Marchantiophyta	65	64	5	82	1	-117881.12 Pice_abies
	Lamiales_group_0	78	77	8	83	1	-109528.47 Caps_annuum
	Rosales	81	80	10	88	1	-108449.4 Glyc_soja
	Eucalyptus_group_0	2254 85	11	90	3	-57607.06 Allo_ternata
	Prasinophyceae	39	43	4	97	1	-66458.26 Oltm_viridis
	Asparagales	32	73	11	98	1	-88067.37 Acor_americanus
	Magnoliidae_group_0	326 79	4	98	3	-85319.31 Sacc_SP80-3280
	Gossypium_group_1	66	83	11	98	1	-81027.85 Theo_cacao
	Triticeae	40	80	10	98	1	-72822.71 Loli_perenne
	Corymbia	90	85	5	98	2	-65712.51 Euca_salmonophloia
	Moniliformopses	60	59	13	100	1	-187044.23 Prax_clematidea
	Magnoliophyta_group_0	31	81	7	100	1	-136306.99 Taxu_mairei
	Liliopsida_group_0	31	73	7	100	1	-119953.04 Drim_granadensis
	basal_Magnoliophyta	31	83	5	100	1	-117094.87 Ascl_nivea
	Araucariales	31	89	5	100	1	-112285.58 Taxu_mairei
	Araceae	31	75	6	100	1	-110245.74 Arun_gigantea
	Embryophyta_group_0	31	77	4	100	1	-106803.89 Stau_punctulatum
	Cupressales	87	78	11	100	2	-101871.03 Podo_totara
	Ranunculales	31	71	5	100	1	-100882.34 Cruc_wallichii
	Saxifragales	31	84	4	100	1	-100376.12 Aral_undulata
	Spermatophyta_group_0	31	79	4	100	1	-94718.95 Mars_crenata
	Proteales	31	85	4	100	1	-92357.77 Trig_doichangensis
	Poaceae_group_0	31	74	5	100	1	-89665.65 Typh_latifolia
	Oleaceae	36	82	6	100	1	-84357.82 Boea_hygrometrica
	Arecaceae	31	79	4	100	1	-81649.52 Aegi_geniculata
	PACMAD_clade	31	79	9	100	1	-80549.79 Bamb_emeiensis
	eudicotyledons_group_0	31	73	4	100	1	-80237.7	Eryc_pusilla
	Poeae	31	80	4	100	1	-78164.34 Trit_aestivum
	Trebouxiophyceae	31	41	7	100	1	-77826.4	Ostr_tauri
	Myrtaceae_group_0	31	80	5	100	1	-76080.59 Oeno_glazioviana
	Onagraceae	31	81	5	100	1	-75131.08 Euca_cloeziana
	Geraniales	31	33	6	100	1	-73472.77 Ango_floribunda
	Ehrhartoideae	31	81	5	100	1	-72192.88 Phyl_henonis
	Picea	31	85	4	100	1	-68947.4	Pinu_massoniana
	Streptophyta_group_0	31	35	7	100	1	-68373.57 Oedo_cardiacum
	Gnetidae	31	53	5	100	1	-61403.83 Cusc_exaltata
	Euglenozoa	29	26	4	100	3	-8889.56	Lath_sativus

.1 can be divided in four parts: Some phylogenetic trees obtained for different chloroplast groups are shown in Figure 7.6.

Table 7 .

 7

1: Results of our pipeline approach on various families.

Table 7 .

 7 2: Genomes information of Apiales. The number of genes represents the restricted amount of genes.

	Species	Accession	Genome Id	Size	nb.Genes	Family
	Daucus carota	NC_008325.1 114107112 155911 bp	138	Apiaceae
	Anthriscus cerefolium	NC_015113.1 323149061 154719 bp	132	Apiaceae
	Panax ginseng	NC_006290.1	52220789	156318 bp	132	Araliaceae
	Eleutherococcus senticosus NC_016430.1 359422122 156768 bp	134	Araliaceae
	Aralia undulata	NC_022810.1 563940258 156333 bp	135	Araliaceae
	Brassaiopsis hainla	NC_022811.1 558602891 156459 bp	134	Araliaceae
	Metapanax delavayi	NC_022812.1 558602979 156343 bp	134	Araliaceae
	Schefflera delavayi	NC_022813.1 558603067 156341 bp	134	Araliaceae
	Kalopanax septemlobus	NC_022814.1 563940364 156413 bp	134	Araliaceae

Table 8 .

 8 1: Genomes information of Rosales species under consideration

	Species	Accession	Seq.length Family	Genus
	Chiloensis	NC_019601 155603 bp Rosaceae Fragaria
	Bracteata	NC_018766 129788 bp Rosaceae Fragaria
	Vesca	NC_015206 155691 bp Rosaceae Fragaria
	Virginiana	NC_019602 155621 bp Rosaceae Fragaria
	Kansuensis NC_023956 157736 bp Rosaceae Prunus
	Persica	NC_014697 157790 bp Rosaceae Prunus
	Pyrifolia	NC_015996 159922 bp Rosaceae Pyrus
	Rupicola	NC_016921 156612 bp Rosaceae Pentactina
	Indica	NC_008359 158484 bp Moraceae Morus
	Mollissima	NC_014674 160799 bp Fagaceae Castanea

Table 8 .

 8 2: Best tree in each swarm.

	Swarm	genes	b(%) p(%) (p + b)/2
	1	4	73	95.1	84.05
	2	6	76	92.7	84.35
	3	20	88	75.6	81.80
	4	52	89	36.6	62.8
	5	3	72	96.3	84.15
	6	19	92	76.8	84.40
	7	47	92	42.7	67.35
	8	9	74	89	81.50
	9	10	73	87.8	80.40
	10	13	84	84.1	84.05

Table 8

 8 .3, which is only equal to 715 trees (after deleting frequencies). In this table, we obtained 7 unique topologies after either convergence or maxIter iterations. But, we kept only the ones that have a good minimum bootstrap and a low omitted gene. Only 3 of them have occurred a representative number of time, namely Topologies 0, 2, and 4, which are illustrated in Figure8.4.

	Topology	Swarms	b	p Occurrences
	0	1, 2, 3, 4, 5, 6, 7, 8, 9, 10 92 63	568
	1	1, 2, 3, 4, 5, 6, 10	63 45	11
	2	1, 2, 3, 4, 5, 6, 7, 8, 9, 10 76 67	55
	3	8, 1, 2, 3, 4	56 41	5
	4	1, 2, 3, 4, 5, 6, 7, 8, 9, 10 89 30	65
	5	1, 3, 4, 5, 6, 9	71 33	9
	6	5, 6	25 45	2

Table 8 .

 8 3: Best topologies obtained from the generated trees. b is the lowest bootstrap of the best tree having this topology, while p is the number of considered genes to obtain this tree.

 .4, several well known statistical tests such as bootstrap probability (BP), Shimodaira-Hasegawa (SH), and Weighted Shimodaira-Hasegawa (WSH) are used by Consel to give a measure of confidence to a set of candidate trees.The procedure is simple, it starts by computing the p-value from maximum likelihood (ML) model (i.e., GTR model of RAxML) based on different bootstrap replications, then candidate trees are ranked based on computed minimal ML values. For each given tree, statistical methods are then used to compute the probability value (between 0 and 1) from bootstrap replications and select the tree with greater p-values. In Table8.4, we can find this latter in the tree provided by topology 0 , which has larger support values than topologies 4 and 2.

	Rank Topo obs	au	np	bp	pp	kh	sh	wkh	wsh
	1	0	-1.4 0.774 0.436 0.433 0.768 0.728 0.89 0.672 0.907
	2	4	1.4 0.267 0.255 0.249 0.194 0.272 0.525 0.272 0.439
	3	2	3	0.364 0.312 0.317 0.037 0.328 0.389 0.328 0.383
			Table 8.4: Consel results regarding best trees
	8.4/ MPI: PROPOSED METHODOLOGY		
	This section presents the strategy deployed to design a parallel version of PSO algorithm.
	8.4.1/ THE MASTER-SLAVE PROPOSAL			
	Traditional PSO algorithms are time consuming in sequential mode. The parallel version
	shown in Figure							

 these tables, for difficult groups, we notice that the minimum bootstrap (b) of the best topology obtained of Chlorophyta, Pinus and Bambusoideae is larger than that the one in GA. Euglenozoa and Magnoliidae, Eucalyptus, Picea, Ehrartoideae and Trebouxiophyceae have got the same value of b with GA. But, Ericales has got less minimum bootstrap value than in GA, we think this is because the time limitation reserved for each swarm or due to some biological reasons. Malpighiales has good b but the number of removed genes is high. For light groups, Pinus data set has got minimum bootstrap (b) larger than that in GA. Picea and Trebouxiophyceae have got the same values of b as in GA.

Table 8 .

 8 6 and Table 8.7). 7: PSO vs GA.

	Particles	10	15	10	15	10	15	10	15	10	15	10	15	10	15	10	15	10	15	10	15	10	15	10	15	
	Topo. NbTrees b |c| 100 -p Occ. Swarms	3 508 98 79 32 462 1,2,3,4,5,6,7,8,9,10	3 530 94 79 11 129 1,2,3,4,5,6,7,8,9,10	1 100 100 85 42 100 1,2,3,4,5,6,7,8,9,10	1 428 100 85 13 428 1,2,3,4,5,6,7,8,9,10	3 750 100 79 20 613 1,2,3,4,5,6,7,8,9,10	3 845 100 79 19 707 1,2,3,4,5,6,7,8,9,10	30 344 53 84 26 185 1,2,3,4,5,6,7,8,9,10	34 555 54 84 5 363 1,2,3,4,5,6,7,8,9,10	8 496 72 94 37 456 1,2,3,4,5,6,7,8,9,10	11 694 69 94 18 621 1,2,3,4,5,6,7,8,9,10	16 828 86 83 7 632 1,2,3,4,5,6,7,8,9,10	20 1073 86 80 4 845 1,2,3,4,5,6,7,8,9,10	34 327 65 78 35 233 1,2,3,4,5,6,7,8,9,10	38 483 69 78 40 326 1,2,3,4,5,6,7,8,9,10	25 191 70 24 11 109 1,2,3,4,5,6,7,8,9,10	29 94 68 24 11 1 1,2,3,4,5,6,7,8,9,10	3 450 100 26 7 292 1,2,3,4,5,6,7,8,9,10	3 520 100 26 4 491 1,2,3,4,5,6,7,8,9,10	2 23 100 81 0 23 1,2,3,4,5,6,7,8,9,10	3 455 100 81 0 451 1,2,3,4,5,6,7,8,9,10	3 409 100 41 2 405 1,2,3,4,5,6,7,8,9,10	3 415 100 41 8 354 1,2,3,4,5,6,7,8,9,10	1 971 100 80 9 971 1,2,3,4,5,6,7,8,9,10	1 1399 100 80 20 1399 1,2,3,4,5,6,7,8,9,10	Table 8.5: Families applied on DPSO Version1
	Group	Pinus	Pinus	Picea	Picea	Magnoliidae	Magnoliidae	Ericales	Ericales	Bambusoideae	Bambusoideae	Eucalyptus	Eucalyptus	Malpighiales	Malpighiales	Chlorophyta	Chlorophyta	Euglenozoa	Euglenozoa	Ehrhartoideae	Ehrhartoideae	Trebouxiophyceae	Trebouxiophyceae	Poeae	Poeae	

Table 9 .

 9

	Organism name	Sequence length nb. genes dup.genes	Lineage
	Daucus carota	155911 bp	166	31	Apiaceae
	Anthriscus cerefolium	154719 bp	166	32	Apiaceae
	Panax ginseng	156318 bp	169	31	Araliaceae
	Eleutherococcus senticosus	156768 bp	169	31	Araliaceae
	Aralia undulata	156333 bp	169	31	Araliaceae
	Brassaiopsis hainla	156459 bp	168	31	Araliaceae
	Metapanax delavayi	156343 bp	169	31	Araliaceae
	Schefflera delavayi	156341 bp	170	31	Araliaceae
	Kalopanax septemlobus	156413 bp	169	31	Araliaceae

1: Genomes information of Apiales (no spelling error). At this level, each genome is described by an ordered list of gene names, with possible duplication. Other approaches are possible, see, e.g.,

[START_REF] Alkindy | Gene similarity-based approaches for determining core-genes of chloroplasts[END_REF][START_REF] Alkindy | Finding the core-genes of chloroplasts[END_REF][START_REF] Alkindy | Improved core genes prediction for constructing well-supported phylogenetic trees in large sets of plant species[END_REF]

.

Amino-acids are inferred from different nucleotide codons, see Figure3.2

This matrix is used by BLAST when scoring an alignment called BLOSUM (see Section

3.2.3). Indeed this latter is obtained by applying the following formula: S i, j = 10 * log(q i, j p i) on the PAM 1 matrix.

Biological sequences could be nucleotide, RNA, or protein sequences.

Informative sites: a column in multiple sequence alignment with no gap and at least two characters.

Non-Informative sites: a column with a gap (missing character represented by a minus -) or with only one character.

A posterior probability is the probability that the tree is considered to be correct, if it has the maximum probability.

DOGMA has been developed in

at the University of Texas for annotating plant chloroplast and animal mitochondrial genomes. This tool translates a genome in all six reading frames and then queries its amino acid sequence database using BLAST (blastx[START_REF] Stephen F Altschul | Basic local alignment search tool[END_REF]) with various ad hoc parameters.

see http://members.femto-st.fr/christophe-guyeux/en/chloroplasts

NCBI cores are available on footnote 2.

Core genes in Core_81: psbE, psbD, petG, psbF, psbA, psbC, rpl36, psbN, psbI, psbJ, atpH, psaJ, atpI, atpA, psaA, and psaC.

The lowest bootstrap value for 16 core genes is 15.

Available on http://www.supertriplets.univ-montp2.fr/index.php

200 is a parameter that has been specified according to our experiments: it seems to offer the best trade-off between computation time and quality of the initial population.

That is, a set of taxa that finally require deeper investigations, and/or that consume high memory and time.

Light groups: is a set of taxa in which they do not need a lot of time to acquire the high support phylogenetic relations among its taxa.

(a) Meta_Delavayi and kalo_septemlobus from gene content method.(b) Meta_Delavayi and kalo_septemlobus from gene renaming method.

I extend my warmest thanks to the Minister of Higher Education and Scientific Research in Iraq represented by Campus France, the University of Mustansiriyah,

and, finally, the score is computed as:

Remark 11: Close N-cube nodes Two close nodes of the N-cube have two close percentages of core genes.

We thus have to construct two phylogenies based on close sequences, leading to a high probability to the same topology with close bootstrap. In other words, the score remains essentially unchanged when moving from a node to one of its neighbors. It allows to find optimal solutions using approaches like PSO.

Algorithm 2: PSO algorithm population ← 10, maxiter ← 10, iter ← 1 for each particle in population do particle[position] ← [randint(0, 1) for each gene in core genome] particle[velocity] ← [rand(0, 1) for each gene in core genome] particle[score] ← 0 particle[best] ← Empty list end for f itness ← 0, b ← 0, p ← percentage of gene contents u ← calculate initial inertia value from equation (8.5) while f itness < S and iter < Maxiter do for each particle in population do Calculate new_ f itness if new_ f itness > f itness then particle[score] ← new_ f itness particle[best] ← particle[position] b ← min(bootstrap of particle[position]) end if end for f itness ← max(particle[score]) Gbest ← position[Max(Particle[score]in population)] Update the inertia weight u from equation (8.5) for each particle in population do Calculate particle velocity according to Equation (8.1) Update particle position according to Equations (8.3) and (8.2) end for iter ← iter + 1 end while Initially, the L (set to 10 in our experiments) particles are randomly distributed among all the vertices (binary words) of the N-cube that have a large percentage of 1. The objective is then to move these particles in the cube, hoping that they will converge to an optimal node. At each iteration, the particle velocity is updated according to the fitness and its best position. It is influenced by constant weight factors according to Equation (8.1) .

it is used before the completeness of on-going transaction. Blocking communications ensure that this never happens: when control returns from the blocking call, the buffer can safely be modified without any corruption risks of some other part of the process.

Tasks need to be synchronized. Our algorithm requires that cooperating processes must be kept in a more or less strict lockstep which represents computing fitness of each particle. As this step takes a long time, non-blocking calls become less useful. Besides, synchronization is what the blocking calls are intended to provide. The master processor must be blocked until all worker processors finish their computations for determining the best position. Calculate particle velocity according to Equation (8.3) Update particle position according to Equations (8.1) and (8. The global optimum over the tree may be obtained with a few local solutions (one ancestor of two genomes) that are not optimal. Given ordered lists of genes at their leaves, the ancestral states in each tree of Figure 9.2 are determined according to the minimum number of edition operations (measured by an edit distance d) required to obtain the leaves starting from the ancestors, as described thereafter:

• In α-tree: the ancestor node α can be determined according to the following formula:

In this tree, α-node is the ancestor of leaves A and B. In gaps-free sequences, if the distance d ∈ [0, 1] between gene lists A and B is not zero, we have at least one recombination operation (insertion, deletion, or replacement) between these two sequences. In this case, we cannot determine which situation to consider in the α-ancestor genome. So, shared genes in the two given sets will appear in the ancestral genome plus question marks in problematic positions.

• Composite one-α-tree: the ancestor nodes α and β, as shown in Figure 9.2(b), can be determined according to the following formula:

where α 1 -ancestor can be deduced from the following formula:

where C in left or right α-tree is considered as a reference. More precisely, the βtree is composed of two α-trees: the inner one represented by α 1 = (A ∩ B) and the outer one represented by β = (α 1 ∩ C). We now explain how to deduce the ancestral genome of α 1 node in the inner α-tree. Consider for instance the case where one gene i in A does not match with its correspondent in B. In this case, we consider the outer branch C as a reference (cousin) to take a decision, by observing the i-th gene in C. If this latter matches with gene i in A, then this gene will be put inside the ancestor α 1 .

A particular case can occur, when the gene in position C i matches neither with gene A i nor with B i . In this case, if possible, we need to investigate another outer (but close) genome X, by computing the distances to the inner α-tree, and selecting at each time the minimum one based on the following formula:

thus, X is computed as follows:

where O 1 , O 2 , . . . , O m are the set of m outer (but close) branches to current α-tree, and X is the name of the minimum distant branch to A and B. If we cannot deduce the character state of position i, we simply put "?" in the ancestor. α 1 (A, B) is then deduced as follows: As presented in a tree in Figure 9.5 of Apiales order, considering two brothers genomes as leaves: the first step of the algorithm starts by evaluating the distance between all node in the clade. This process will help to select the cousin genome to ensure our results for each gene presents into the internal ancestor genome.

Table 9.2 describes the name and the number of copies of each duplicated gene. We can notice in some cases, if there are differences in the amount of gene duplications between

List of Figures

List of remarks

Abstract:

In Bioinformatics, understanding how DNA molecules have evolved over time remains an open and complex problem.

Algorithms have been proposed to solve this problem, but they are limited either to the evolution of a given character (for example, a specific nucleotide), or conversely focus on large nuclear genomes (several billion base pairs), the latter having known multiple recombination events -the problem is NP complete when you consider the set of all possible operations on these sequences, no solution exists at present. In this thesis, we tackle the problem of reconstruction of ancestral DNA sequences by focusing on the nucleotide chains of intermediate size, and have experienced relatively little recombination over time: chloroplast genomes. We show that at this level the problem of the reconstruction of ancestors can be resolved, even when you consider the set of all complete chloroplast genomes currently available. We focus specifically on the order and ancestral gene content, as well as the technical problems this raises reconstruction in the case of chloroplasts. We show how to obtain a prediction of the coding sequences of a quality such as to allow said reconstruction and how to obtain a phylogenetic tree in agreement with the largest number of genes, on which we can then support our back in time -the latter being finalized. These methods, combining the use of tools already available (the quality of which has been assessed) in high performance computing, artificial intelligence and bio-statistics were applied to a collection of more than 450 chloroplast genomes.

Keywords: core genome, clustering algorithms, genetic algorithm, particle swarm optimization, dynamic systems, intelligent algorithms, ancestral reconstruction, phylogenetic tree.

Résumé :

En bio-informatique, comprendre comment les molécules d'ADN ont évolué au cours du temps reste un problème ouvert et complexe. Des algorithmes ont été proposés pour résoudre ce problème, mais ils se limitent soit à l'évolution d'un caractère donné (par exemple, un nucléotide précis), ou se focalisent a contrario sur de gros génomes nucléaires (plusieurs milliards de paires de base), ces derniers ayant connus de multiples événements de recombinaison -le problème étant NP complet quand on considère l'ensemble de toutes les opérations possibles sur ces séquences, aucune solution n'existe à l'heure actuelle. Dans cette thèse, nous nous attaquons au problème de reconstruction des séquences ADN ancestrales en nous focalisant sur des chaînes nucléotidiques de taille intermédiaire, et ayant connu assez peu de recombinaison au cours du temps : les génomes de chloroplastes. Nous montrons qu'à cette échelle le problème de la reconstruction d'ancêtres peut être résolu, même quand on considère l'ensemble de tous les génomes chloroplastiques complets actuellement disponibles. Nous nous concentrons plus précisément sur l'ordre et le contenu ancestral en gènes, ainsi que sur les problèmes techniques que cette reconstruction soulève dans le cas des chloroplastes. Nous montrons comment obtenir une prédiction des séquences codantes d'une qualité telle qu'elle permette ladite reconstruction, puis comment obtenir un arbre phylogénétique en accord avec le plus grand nombre possible de gènes, sur lesquels nous pouvons ensuite appuyer notre remontée dans le temps -cette dernière étant en cours de finalisation. Ces méthodes, combinant l'utilisation d'outils déjà disponibles (dont la qualité a été évaluée) à du calcul haute performance, de l'intelligence artificielle et de la biostatistique, ont été appliquées à une collection de plus de 450 génomes chloroplastiques.

Mots-clés : génome noyau, algorithme génétique, optimisation par essaim de particules, systèmes dynamiques, algorithmes intelligents, reconstruction ancestrale, arbre phylogénétique.