
HAL Id: tel-01428885
https://theses.hal.science/tel-01428885v1

Submitted on 6 Jan 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Combining approaches for predicting genomic evolution
Bassam Alkindy

To cite this version:
Bassam Alkindy. Combining approaches for predicting genomic evolution. Bioinformatics [q-bio.QM].
Université de Franche-Comté, 2015. English. �NNT : 2015BESA2012�. �tel-01428885�

https://theses.hal.science/tel-01428885v1
https://hal.archives-ouvertes.fr

�����������������

é c o l e d o c t o r a l e s c i e n c e s p o u r l ’ i n g é n i e u r e t m i c r o t e c h n i q u e s

�
 � � � � � � � � � � � � � �
 � � � � � � 	 � �

��

Combining Approaches for
Predicting Genomic Evolution
Combinaison d’Approches pour Résoudre le Problème du
Réarrangement de Génomes

BASSAM BASIM JAMIL ALKINDY

�����������������

é c o l e d o c t o r a l e s c i e n c e s p o u r l ’ i n g é n i e u r e t m i c r o t e c h n i q u e s

�
 � � � � � � � � � � � � � �
 � � � � � � 	 � �

Combining Approaches for Predicting Genomic
Evolution

Combinaison d’Approches pour Résoudre le Problème du Réarrangement
de Génomes

A dissertation presented by

BASSAM BASIM JAMIL ALKINDY

and submitted to the

University of Franche-Comté

in partial fulfillment of the Requirements for obtaining the degree

DOCTOR OF PHYLOSOPHY

in speciality of Computer Science

Research Unit :
Laboratory of Femto-ST (SPIM)

Defended in public on 17 December 2015 in front of the Jury composed from :

LHASSANE IDOUMGHAR President of jury Professor, University of Haute-Alsace
JEAN-PAUL COMET Reviewer Professor, University of Nice
STÉPHANE CHRÉTIEN Reviewer Senior Researcher (HDR), National Physical

Laboratory Mathematics, Modelling, and
Simulation, UK

CHRISTOPHE GUYEUX Examiner Professor, University of Franche-Comté
JACQUES M. BAHI Supervisor Professor, University of Franche-Comté
JEAN-FRANÇOIS COUCHOT Co-Supervisor MCF, University of Franche-Comté
MICHEL SALOMON Co-Supervisor MCF, University of Franche-Comté

N◦ X X X

Acknowledgement

Following this work, I want to express my gratitude to allow all people who have con-
tributed, each has its method, at the completion of this thesis. I want to express my
deepest thanks to my supervisor Prof. Jacques M. Bahi and to my co-supervisors Dr.
Jean-Francois Couchot and Dr. Michel Salomon. Words are broken me to express my
gratitude. Their skills, their scientific rigidity, and clairvoyance taught me a lot. Indeed,
I thank them for their organizations, and expert advice provide me they knew through-
out these three years and also for their warm quality human, and in particular for the
confidence they have granted to me.

I would nevertheless like to thank more particularly proudly Prof. Christophe Guyeux,
professor in the University of Franche-Comté, for his advisers and his scientific expert
who helped and guided me a lot for the completion of this thesis.

I would like to extend my sincere thanks to Lhassane Idoumghar, Professor at the Univer-
sity of Haute-Alsace, for giving me the honor to president the jury. I also extend my sincere
thanks to Jean-Paul Comet, Professor at the University of Nice and Stéphane Chrétien,
MCF HDR, National Physical Laboratory Mathematics, Modelling, and Simulation, UK,
for giving me the honor of accepting to be rapporteurs of this thesis. I would like to extend
my sincere thank to the examiners: Christophe Guyeux, Professor at the University of
Franche-Comté and Jean-Francois Couchot, MCF, University of Franche-Comté.

I extend my warmest thanks to the Minister of Higher Education and Scientific Research
in Iraq represented by Campus France, the University of Mustansiriyah, and the University
of Franche-Comté, for their co-operation to finance this thesis.

My gratitude and my thanks go to the crew members of AND for the friendly and warm
atmosphere in which it supported me to work. Therefore thanks to Raphaël Couturier,
Karine Deschinkel, Stephane Domas, Giersch Arnaud, Mourad Hakem, Ali Idrees Kad-
hum, Ahmed Al-Badri, David Laiyamani, Yousra Ahmed Fadil, Abdallah Makhoul, Roxane
Mallouhy, Ahmed Mostefaoui, and to whom I missed their names.

My gratitude and my thanks go to the crew members of DISC for the friendly and warm
atmosphere in which it supported me to work. Therefore, Thanks Olga Kouchnarenko, di-
rector of DISC (Informatique des systèmes complexes) department in Besançon, Pierre-
Cyrille Héam, Dominique Menetrier, Jean-Michel Caricand, Laurent Steck and to all other
people if I forget his name. For their unwavering support and encouragement.

I would also like express my strongly thanks to the crew of super-computer facili-
ties (Mesocentre) for their generous advices and help in launching the calculations using
supercomputer capabilities by installing the modules, creation the site Internet that make
dreams come true. Therefore, thanks to Laurent Philippe, Kamel Mazouzi, Guillaume

v

vi

Laville, and Cédric Clerget.

I would also like express my thanks to my friends in bioinformatics team of Christophe
for their kindly friendship, Thanks, Huda AL-NAYYEF, Bashar Al-Nauimi, Panisa Treep-
ong. Before closing, I want to thank my dear friends including Lilia Ziane Khodja, Abbas
Abdulhameed, Hamida Bouaziz, Hana M’Hemdi, Lemia Louail, Kitsiri Kizzyy Chochiang,
who shared my hopes and studies, which made me comfort in the difficult moments and
with whom I shared unforgettable moments of events.

Dedication

To my wife Huda, with my love.

I am also addressing the strongest thanksgiving words to my parents, my wife’s parents,
my sisters and their families, my brothers and their families, and to my lovely family, for
their support and encouragement during the thesis in long years of studies. Their affection
and trust lead me and guide me every day. Thank you, Mom, Dad, for making me what I
am today.

vii

Abstract

Chloroplasts is one of many types of organelles in the plant cell. They are considered to
have originated from cyanobacteria through endosymbiosis, when an eukaryotic cell en-
gulfed a photosynthesizing cyanobacterium, which remained and became a permanent
resident in the cell. The term of chloroplast comes from the combination of plastid and
chloro, meaning that it is an organelle found in plant cells that contains the chlorophyll.
Chloroplast has the ability to convert water, light energy, and carbon dioxide (CO2) in
chemical energy by using carbon-fixation cycle (also called Calvin Cycle, the whole pro-
cess being called photosynthesis). This key role explains why chloroplasts are at the ba-
sis of most trophic chains and are thus responsible for evolution and speciation. Moreover,
as photosynthetic organisms release atmospheric oxygen when converting light energy in
chemical one, and simultaneously produce organic molecules from carbon dioxide, they
originated the breathable air and represent a mid to long term carbon storage medium.

Consequently, exploring the evolutionary history of chloroplasts is of great interest, and
we propose to investigate it by the mean of ancestral genomes reconstruction. This re-
construction will be achieved in order to discover how the molecules have evolved over
time, at which rate, and to determine whether evidences of their cyanobacteria origin
can be presented by this way. This long-term objective necessitates numerous inter-
mediate research advances. Among other things, it supposes to be able to apply the
ancestral reconstruction on a well-supported phylogenetic tree of a representative collec-
tion of chloroplastic genomes. Indeed, sister relationship of two species must be clearly
established before trying to reconstruct their ancestor. Additionally, it implies to be able
to detect content evolution (modification of genomes like gene loss and gain) along this
accurate tree. In other words, gene content evolution on the one hand, and accurate
phylogenetic inference on the other hand, must be carefully regarded in the specific case
of chloroplast sequences, as the two main prerequisites in our quest of the last universal
common ancestor of these chloroplasts.

In detail, given a collection of genomes, it is possible to define their core genes as the
common genes that are shared among all the species, while pan genome is all the genes
that are present at least once (all the species have each core gene, while a pan gene
is in at least one genome). The key idea behind identifying core and pan genes is to
understand the evolutionary process among a given set of species: the common part
(that is, the core genome) can be used when inferring the phylogenetic relationship, while
accessory genes of pan genome explain to some extent each species specificity. In the
case of chloroplasts, an important category of genome modification is indeed the loss
of functional genes, either because they become ineffective or due to a transfer to the
nucleus. Thereby a small number of gene loss among species may indicate that these
species are close to each other and belong to a similar lineage, while a large loss means

ix

x

distant lineages.

More precisely, a key idea concerning phylogenetic classification is that a given DNA mu-
tation shared by at least two taxa has a larger probability to be inherited from a common
ancestor than to have occurred independently. Thus shared changes in genomes allow to
build relationships between species. In that case, homologous genes are genes derived
from a single ancestral one. They are divided in two types, namely paralogous and or-
thologous genes. Paralogy arises from ancestral gene duplication while the orthologous
genes are products of speciation. Being able to understand the way that paralogous and
orthologous genes evolve over time should clarify certain aspects of both the chloroplast
evolution and origin.

We thus wonder, given a large set of complete chloroplastic genomes, how to find their
genes and to determine how they have been acquired or lost during Evolution. Such
a knowledge will lead to the ability to reconstruct the ancestral sequences of two sister
species, using an algorithm to develop. Applying such an algorithm on a well supported
tree will help us to reach the last common universal ancestor of all existing chloroplasts,
and finally to study how these genomes have evolved over time.

Table of Contents

Acknowledgement v

Dedication vii

Abstract ix

1 Introduction 1

1.1 General Presentation . 1

1.2 Presentation of the Problems . 2

1.3 Thesis Objective . 3

1.4 Contributions . 4

1.5 Publications . 4

1.5.1 Acts of selective international conferences 4

1.5.2 Publications in national seminars and workshops 5

1.6 List of Abbreviations . 6

1.7 Mathematical Notations . 7

1.8 Organization of the Thesis Manuscript . 7

I State of the Art 9

2 A short history regarding core and pan genome extraction 11

3 Technical Aspects of Sequence Alignments 13

3.1 Introduction . 13

3.2 Standard Substitution Matrices . 15

3.2.1 Nucleotide substitution matrices . 15

3.2.2 Point Accepted Mutation (PAM) matrix 17

3.2.3 Blocks Substitution Matrix (BLOSUM) 18

xi

xii TABLE OF CONTENTS

3.3 Local Alignment Algorithms . 20

3.3.1 Basic local alignment search tool (BLAST) 20

3.3.2 Smith–Waterman algorithm . 21

3.4 Global Sequence Alignment: the Needleman Wunsch example 23

3.5 Edit distances . 24

3.6 Multiple Sequence Alignment (MSA) . 25

3.7 Conclusion . 26

4 Concept of Phylogenetic Tree Construction 27

4.1 Various Types of Phylogenetic Trees . 27

4.2 Methods for Phylogenetic Construction . 30

4.2.1 Introduction . 30

4.2.2 A Distance-Based Method: the Neighbor-Joining Algorithm 30

4.3 Character-Based Methods . 32

4.3.1 Maximum Parsimony . 32

4.3.2 Bayesian Method . 33

4.3.3 Maximum Likelihood . 33

4.3.3.1 General presentation . 33

4.3.3.2 Bootstrap values . 33

4.4 Stages for Phylogenetic Analysis . 34

4.5 Conclusion . 37

II Contributions 39

5 General Introduction 41

6 Core-Genes Prediction Approaches 43

6.1 Introduction . 43

6.2 Core genome extraction Approaches . 44

6.2.1 Similarity-based Approach . 44

6.2.1.1 Theoretical presentation 45

6.2.1.2 A first case study . 46

6.2.2 Annotation-based Approach . 49

6.2.2.1 Using genes names provided by annotation tools 49

6.2.2.2 Names processing . 50

6.2.2.3 Core genes extraction . 50

TABLE OF CONTENTS xiii

6.2.3 Quality Test Approach . 52

6.2.3.1 Construction of quality genomes 53

6.2.3.2 Core and pan genomes . 55

6.2.3.3 Execution time and memory usage 59

6.3 Features visualization . 61

6.3.1 The core tree . 61

6.3.2 A first phylogenetic study . 61

6.4 Discussion and biological evaluation . 65

6.5 Conclusion . 66

7 Inferring Phylogenetic Trees using Genetic Algorithm 69

7.1 General Presentation . 69

7.2 Presentation of the problem . 70

7.3 Generation of the initial population . 70

7.4 Genetic algorithm . 72

7.4.1 Genotype and fitness value . 72

7.4.2 Genetic process . 73

7.4.3 Crossover step . 74

7.4.4 Mutation step . 75

7.4.5 Random step . 76

7.5 Targeting problematic genes using statistical tests 76

7.5.1 The Lasso test . 76

7.5.2 Second stage of genetic algorithm 77

7.6 Case studies . 77

7.6.1 Pipeline evaluation by various groups of plant species 77

7.6.2 Investigating Apiales order . 80

7.6.2.1 Method to select best topologies 80

7.6.2.2 Topological Analysis . 81

7.7 Conclusion . 84

8 Inferring Phylogenetic Trees using DPSO 85

8.1 Discrete Particle Swarm Optimization . 85

8.2 Application to Phylogeny . 86

8.3 Experimental results and discussion . 89

8.3.1 Experimental protocol and results 89

8.3.2 Selecting best phylogenetic tree using per-site analysis 92

xiv TABLE OF CONTENTS

8.4 MPI: Proposed Methodology . 92

8.4.1 The master-slave proposal . 92

8.4.2 Distributed BPSO with MPI . 95

8.4.2.1 Distributed BPSO Algorithm: Version I 95

8.4.2.2 Distributed BPSO Algorithm: Version II 95

8.4.3 Genetic Algorithm vs Particle Swarm Algorithm 95

8.5 Conclusion . 99

9 Ancestral Reconstruction 101

9.1 General Presentation of the Problem . 101

9.2 Ancestral Reconstruction Pipeline . 104

9.2.1 Data Preparation . 104

9.2.2 Ancestral Analysis Methods . 106

9.2.2.1 Ancestor Prediction based on Gene Contents 106

9.2.2.2 Ancestor Prediction based on Sequence Comparison . . . 110

9.2.3 Ancestral Information . 112

9.3 Conclusion . 115

III Conclusion and Future Work 117

10 Conclusion 119

10.1 Conclusion . 119

10.2 Future Investigative Directions . 121

CHAPTER 1

Introduction

1.1/ GENERAL PRESENTATION

Chloroplasts are one of the main organelles in plant cell. They are considered to have
originated from cyanobacteria through endosymbiosis, when an eukaryotic cell engulfed
a photosynthesizing cyanobacterium, which remained and became a permanent resident
in the cell. The term of chloroplast comes from the combination of plastid and chloro,
meaning that it is an organelle found in plant cells that contains the chlorophyll. Chloro-
plast has the ability to convert water, light energy, and carbon dioxide (CO2) in chemical
energy by using carbon-fixation cycle [1] (also called Calvin Cycle, the whole process
being called photosynthesis). This key role explains why chloroplasts are at the basis of
most trophic chains and are thus responsible for evolution and speciation. Moreover, as
photosynthetic organisms release atmospheric oxygen when converting light energy in
chemical one, and simultaneously produce organic molecules from carbon dioxide, they
originated the breathable air and represent a mid to long term carbon storage medium.

Consequently, exploring the evolutionary history of chloroplasts is of great interest, and
we propose to investigate it by the mean of ancestral genomes reconstruction. This re-
construction will be achieved in order to discover how the molecules have evolved over
time, at which rate, and to determine whether evidences of their cyanobacteria origin
can be presented by this way. This long-term objective necessitates numerous inter-
mediate research advances. Among other things, it supposes to be able to apply the
ancestral reconstruction on a well-supported phylogenetic tree of a representative collec-
tion of chloroplastic genomes. Indeed, sister relationship of two species must be clearly
established before trying to reconstruct their ancestor. Additionally, it implies to be able
to detect content evolution (modification of genomes like gene loss and gain) along this
accurate tree. In other words, gene content evolution on the one hand, and accurate
phylogenetic inference on the other hand, must be carefully regarded in the specific case
of chloroplast sequences, as the two main prerequisites in our quest of the last universal
common ancestor of these chloroplasts.

In detail, given a collection of genomes, it is possible to define their core genes as the
common genes that are shared among all the species, while pan genome is all the genes

1

2 CHAPTER 1. INTRODUCTION

that are present at least once (all the species have each core gene, while a pan gene
is in at least one genome). The key idea behind identifying core and pan genes is to
understand the evolutionary process among a given set of species: the common part
(that is, the core genome) can be used when inferring the phylogenetic relationship, while
accessory genes of pan genome explain to some extent each species specificity. In the
case of chloroplasts, an important category of genome modification is indeed the loss
of functional genes, either because they become ineffective or due to a transfer to the
nucleus. Thereby a small number of gene loss among species may indicate that these
species are close to each other and belong to a similar lineage, while a large loss means
distant lineages.

More precisely, a key idea concerning phylogenetic classification is that a given DNA mu-
tation shared by at least two taxa has a larger probability to be inherited from a common
ancestor than to have occurred independently. Thus shared changes in genomes allow to
build relationships between species. In that case, homologous genes are genes derived
from a single ancestral one. They are divided in two types, namely paralogous and or-
thologous genes. Paralogy arises from ancestral gene duplication while the orthologous
genes are products of speciation. Being able to understand the way that paralogous and
orthologous genes evolve over time should clarify certain aspects of both the chloroplast
evolution and origin.

We thus wonder, given a large set of complete chloroplastic genomes, how to find their
genes and to determine how they have been acquired or lost during Evolution. Such
a knowledge will lead to the ability to reconstruct the ancestral sequences of two sister
species, using an algorithm to develop. Applying such an algorithm on a well supported
tree will help us to reach the last common universal ancestor of all existing chloroplasts,
and finally to study how these genomes have evolved over time.

1.2/ PRESENTATION OF THE PROBLEMS

Understanding the evolution of DNA molecules is an open and complex problem.

Algorithms have been proposed to tackle this problem, but either they are limited to the
evolution of one given character (for instance, a specific nucleotide), or conversely they
theoretically focus on large scale nuclear genomes (several billions of nucleotides) facing
multiple recombination events. One-character methods cannot be extended to large scale
genomic evolution, while it is well known that the problem is NP hard when considering
the set of all possible recombination on large genomes. So no concrete solution exists
at present regarding the evolution of large DNA sequences. However, in this thesis, we
focus on genomes that have a reasonable size and who faced a reasonable number of
recombination. This is why we argue that the problem may be tractable in the chloroplast
case – but it requires the design of ad hoc solutions, and various difficulties still remain to
circumvent when dealing with such a specificity.

First, the evolution history of chloroplasts can only be inferred on shared coding se-
quences, which are difficult to extract. Indeed, no tool is available to find the core genes,
and so bioinformatics investigations using sequence annotation and comparison tools
are required to be able to determine the core of chloroplast genomes for a given set of
photosynthetic organisms. Additionally, the amount of completely sequenced chloroplast
genomes increases rapidly, leading to the possibility to build large-scale phylogenies that

1.3. THESIS OBJECTIVE 3

represent well the plant diversity. But the size of the core genome is dramatically reduced
when we consider very divergent plant species, which explain why these phylogenies are
usually done using a small number of chloroplastic genes. In that case, we can wonder
if we deal with a gene tree or a species one, and the obtained phylogeny is probably not
accurate enough to deploy an ancestral reconstruction on it.

It is true that, if we are able to automatically consider various subsets of close plants de-
fined according to their chloroplasts, some phylogenetic trees may be inferred on larger
sets of core genes. But these trees are not necessarily well supported, due to the pos-
sible occurrence of homoplasic genes that may blur phylogenetic signals: a trustworthy
phylogenetic tree can still be obtained only if the number of homoplasic genes is low, the
problem becoming to determine the largest subset of core genes that produces the most
supported tree. Furthermore, the way to merge such a forest of phylogenetic trees into
only one supertree is not obvious.

Finally, given an accurate phylogenetic tree whose leaves contain well annotated
genomes, the way to reconstruct node by node each ancestor until the last common
one still remains unclear.

1.3/ THESIS OBJECTIVE

The objective of this thesis is to explore the possibility to reconstruct the last universal
common ancestor (LUCA) of all available chloroplastic genomes, and to compare it with
the ancestor of current cyanobacterial genomes. It is not demanded to give a definitive
answer to this ambitious question, but to investigate scientific and technical obstacles that
may potentially appear when trying to reach such a difficult goal.

In other words, considering available a black box receiving as input a large set of complete
chloroplast genomes, and which produces LUCA as output, the thesis objective is to detail
the general functioning of such a magic box. We must not only emphasize all difficulties
that can possibly occur when trying to reach such an objective, but also be able to provide
intermediate scientific stages. Having such a knowledge or feeling that particular points
may raise difficulties, first elements of response to such putative difficulties should be
provided.

This ancestral reconstruction can be achieved in 3 stages. Firstly, after having obtained a
large collection of complete chloroplastic genomes, we must be able to extract their cod-
ing sequences. Using the genes shared in common by these species, a well-supported
phylogenetic tree must be obtained. In case where the core genome of the whole species
is too much small, a strategy grouping subsets of sequences according to their similarity,
inferring their phylogenies, and then merging all the forest of trees, must be investigated.
Secondly, algorithms that study the evolution of gene content and ordering among the
supertree must be provided, and it must be validated with naked eye on well chosen
plant families. Finally, ancestral nucleotide sequence of each gene must be obtained,
and intergenic regions must be filled using either state of the art or novel algorithms.

Again, it is not demanded to give a final response to this very ambitious question, but to
emphasize scientific and technical problems, and to provide first proposals to solve them.

4 CHAPTER 1. INTRODUCTION

1.4/ CONTRIBUTIONS

As stated previously, the main subject of this thesis is to investigate the evolution dynam-
ics of DNA sequences contained in chloroplastic organelles (plant cells), using the state
of the art or new bioinformatics intelligent algorithms that must be developed.

We have investigated in particular the problem of chloroplast annotations and of core
gene extraction. Given a large set of common genes, the way to find a core subset
as large as possible leading to a phylogenetic tree as supported as possible has been
investigated too, using genetic algorithm and particle swarm optimization. Effects of gene
selection on topology and supports has been regarded too by the mean of up to date
statistical tests.

These algorithms can be applied in a distributed pipeline that automatically extracts a
subset of 10 up to 20 close genomes from a collection of approximately 500 chloroplasts,
annotates them with accuracy, and produces a well supported tree using the largest pos-
sible subset of core genes. The way to merge such a forest in a supertree has been
regarded too, but this problem is not currently fully resolved. Finally, a first gene con-
tent and order ancestral reconstruction has been proposed and compared with manual
reconstruction on various families of plants.

1.5/ PUBLICATIONS

Our contributions has led to various communications in both conferences and journals,
which are listed thereafter.

1.5.1/ ACTS OF SELECTIVE INTERNATIONAL CONFERENCES

1. ICBBS’2014 Bassam Alkindy, Jean-François Couchot, Christophe Guyeux, Arnaud
Mouly, Michel Salomon, and Jacques Bahi. Finding the Core-Genes of Chloro-
plasts. 3rd Int. Conf. on Bioinformatics and Biomedical Science, number 4(5)
of IJBBB, Journal of Bioscience, Biochemistery, and Bioinformatics, Copenhagen,
Denmark, pages 357–364, June 2014.

2. BIBM’2014 Bassam Alkindy, Christophe Guyeux, Jean-François Couchot, Michel
Salomon, and Jacques Bahi. Gene Similarity-based Approaches for Determining
Core-Genes of Chloroplasts. IEEE International Conference on Bioinformatics and
Biomedicine, pages 71–74, Belfast, United Kingdom, November 2014.

3. IWBBIO’2015 Bassam Alkindy, Huda Al-Nayyef, Christophe Guyeux, Jean-François
Couchot, Michel Salomon, and Jacques Bahi. Improved Core Genes Prediction
for Constructing well-supported Phylogenetic Trees in large sets of Plant Species.
3rd Int. Work-Conference on Bioinformatics and Biomedical Engineering, Springer,
volume 9043 of LNCS, Granada, Spain, pages 379–390, April 2015

4. AlCoB’2015 Bassam Alkindy, Christophe Guyeux, Jean-François Couchot, Michel
Salomon, Christian Parisod, and Jacques Bahi. Hybrid Genetic Algorithm and
Lasso Test Approach for Inferring Well Supported Phylogenetic Trees based on
Subsets of Chloroplastic Core Genes. 2nd International Conference on Algorithms

1.5. PUBLICATIONS 5

for Computational Biology, volume 9199 of LNCS/LNBI, Mexico City, Mexico, August
2015. Springer. Note: To appear in the LNCS/LNBI series.

5. CIBB’2015 Reem Alsrraj, Bassam AlKindy, Christophe Guyeux, Laurent Philippe,
and Jean-François Couchot. Well-supported phylogenies using largest subsets of
core-genes by discrete particle swarm optimization. Preceedings of 12th Interna-
tional meeting on Computational Intelligence methods for Bioinformatics and Bio-
statistics (CIBB), Naples, Italy, vol. 2, p. 1–6, September 2015.

1.5.2/ PUBLICATIONS IN NATIONAL SEMINARS AND WORKSHOPS

1. SeqBio’2013 Bassam Alkindy, Jean-François Couchot, Christophe Guyeux, and
Michel Salomon. Finding the core-genes of Chloroplast Species. Workshop of
SeqBio 2013, Montpellier, November 2013.

2. Femto-st’2014 Bassam Alkindy, Huda Al’Nayyef, Jean-François Couchot,
Christophe Guyeux, Michel Salomon, and Jacques Bahi. Algorithmics Genomic
Evolution: Insertion Sequences and Core Genomes. Workshop of Femto-ST, June
2014, Besancon, France. Note: Poster.

3. Femto-st’2015 Bassam Alkindy, Huda Al’Nayyef, Panisa Treepong, Bashar Al-
Nuaimi, Christophe Guyeux, Jean-François Couchot, Michel Salomon, and Jacques
Bahi. Bioinformatics Approaches on Genomic Evolution in Femto-ST (Core
Genome, Phylogenetic Analysis, Transposable Elements, and Ancestral Recon-
struction). Workshop of Femto-ST, June 2015, Besancon, France. Note: Poster.

4. MCEB’2015 Bassam Alkindy, Christophe Guyeux, Jean-François Couchot, Michel
Salomon, and Jacques Bahi. Using Genetic Algorithm for Optimizing Phylogenetic
Tree Inference in Plant Species. In MCEB15, Conference of Mathematical and
Computational Evolutionary Biology, Porquerolles Island, France, June 2015. Note:
Poster.

5. SeqBio’2015 Bashar Al-Nuaimi, Roxane Mallouhi, Bassam AlKindy, Christophe
Guyeux, Michel Salomon, and Jean-François Couchot. Ancestral reconstruction
and investigations of genomic recombination on Campanulides chloroplasts. Work-
shop of SeqBio 2015, Orsay, November 2015.

6 CHAPTER 1. INTRODUCTION

1.6/ LIST OF ABBREVIATIONS

Abbreviation Description
BLAST Basic Local Alignment Search Tool.
BP Bootstrap Probability.
CC Connected Component.
CEGMA Core Eukaryotic Genes Mapping Approach.
CpBase The Chloroplast Genome Database.

CpGAVAS
Chloroplast Genome Annotation, Visualization, Analysis
and GenBank Submission Tool.

DDBJ DNA Data Bank of Japan.
DNA Deoxyribonucleic Acid.
DOGMA Dual Organellar GenoMe Annotator.
DBLT Dummy Binary Logit Test.
DPSO distributed Particle Swarm Optimization.
EMBL European Molecular Biology Laboratory.
FPE False Positive Error.
FNE False Negative Error.
GA Genetic Algorithm.
GSA Global Sequence Alignment.
ICM Intersection Core Matrix.
IS Intersection Score.
LASSO Least Absolute Shrinkage and Selection Operator Test.
LGI Lowest Number of Ignored Genes.
LSA Local Sequence Alignment.
MGI Maximum Number of Ignored Genes.
MSA Multiple Sequence Alignment.
MUSCLE MUltiple Sequence Comparison by Log- Expectation.
ML Maximum Likelihood.
NCBI National Center of Biotechnology Information.
NW Needle-man Wunsch Alignment.
Occ. Number of Tree Occurences.
PSA Pairwise Sequence Alignment.
PSO Particle Swarm Optimization.
RAxML Randomized Axelerated Maximum Likelihood.
RNA Ribonucleic acid.
SH Shimodaira-Hasegawa Algorithm.
SW Smith-Waterman Alignment.
rRNA ribosomal RNA.

T-COFFEE
Multiple sequence alignment that provides a dramatic im-
provement in accuracy with a modest sacrifice in speed as
compared to the most commonly used alternatives.

Topo. Topology Number.
tRNA Transfer RNA.
WSH Weighted Shimodaira-Hasegawa Algorithm.

1.7. MATHEMATICAL NOTATIONS 7

1.7/ MATHEMATICAL NOTATIONS

Symbol Description
A is the nucleotide alphabet.
A∗ the set of finite words on A.
R equivalent relation.
s1, ..., sk finite sequence of vertices (DNA sequences).
d : N = A∗ × A∗ → [0, 1] A function of similarity measure on A∗.
w the binary word.
w′i new word generated after specific event (ex., mutation).
s′ subset of core genome.
b bootstrap value.
p percentage of gene presents.
p′ the number of 1’s in w.
pval p-value.
P set of population.
P′ New population generated from P.
Pc Population generated from crossover stage.
Pm Population generated from mutation stage.
Pr populaton having lessthan 10% of 0’s.
T ′ is the list of phylogenetic trees.
W′ the set of topologies.
lb the lower bound threshold.
c the set of core genes.
|c| the length of core genome.
m′ is the size of T .
Nmutation amount of mutations.
Ncrossover amount of crossover.
2n phylogenetic tree inferences for a core genome of size n.
(X1, X2, . . . , Xn) Positions of n particles vectors.

(V1,V2, ...,Vn)
particles associated velocities, which are N-dimensional
vectors of real numbers between 0 and 1.

1.8/ ORGANIZATION OF THE THESIS MANUSCRIPT

The current chapter is devoted to a general introduction of the thesis, providing the
problematics and a brief description of thesis subject and objectives. Then the thesis
manuscript is organized in three parts.

In the state of the art, Part I, three chapters detail a small overview of main background
aspects in bioinformatics domain employed in this manuscript, like sequence alignments
and phylogenetic analysis, etc. Some available tools are provided too. In details, a state-
of-the-art in core and pan gene extraction is outlined in Chapter 2. The concepts of local
and global alignments are detailed in Chapter 3, by giving examples of most common
alignment algorithms used in this field. Multiple alignment algorithms are detailed too,
and we explain why small divergences in given sequences can lead to a hard alignment
problem. To analyse aligned sequences, in Chapter 4, we will detail various phylogenetic
concepts like rooted or unrooted trees. Methods for constructing phylogenetic trees are

8 CHAPTER 1. INTRODUCTION

also summarized (such as distance and character based methods), together with boot-
strap analysis.

Part II starts with an introduction that explains the importance of discovering core and pan
genes (Chapter 5). The way to distinguish the rooted and sub-rooted ancestor genomes,
and to understand their impact on the genomic recombination in Eukaryotes is detailed
too. Secondly, three pipelines for the discovery of core and pan genes of chloroplast se-
quences are presented in Chapter 6. The next chapter 7 details the use of an artificial
intelligence algorithm for phylogenetic tree reconstruction. It is based on genetic algo-
rithm while, in Chapter 8, a new pipeline for constructing phylogenetic trees with best
subsets of core genes is presented. It uses a particle swarm optimization approach that
is developed in both linear and parallel fashions, in order to reconstruct the phylogenetic
tree. Then, in the following chapter, a comparison between genetic algorithm and particle
swarm optimization is outlined in parallel version, by focusing on 12 groups of chloro-
plasts. In Chapter 9, a predefined ad-hoc algorithm for generating ancestor genomes is
finally detailed, depending on all provided information obtained with previously detailed
tools.

This manuscript ends with Part III, which contains a conclusion and some perspectives.

I
STATE OF THE ART

9

CHAPTER 2

A short history regarding core and pan genome extraction

Let us start by presenting some examples of core and pan gene extraction that can be
found in the state of the art. Note that we oddly have found only a few articles dealing
with such a problem, during our review of the literature.

An early study about finding the common genes in chloroplasts has been realized by
Stoebe et al. in 1998 [2]. They established the distribution of 190 identified genes and 66
hypothetical protein-coding genes (ysf) in all nine photosynthetic algal plastid genomes
available (excluding non-photosynthetic Astasia tonga) from the last update of plastid
genes nomenclature and distribution. The distribution reveals a set of approximately 50
core protein-coding genes retained in all taxa. In 2003, Grzebyk et al. [3] have studied
the core genes among 24 chloroplastic sequences extracted from public databases, 10
of them being algae plastid genomes. They broadly clustered the 50 genes from Stoebe
et al. into three major functional domains: (1) genes encoded for ATP synthesis (atp
genes); (2) genes encoded for photosynthetic processes (psa and psb genes); and (3)
housekeeping genes that include the plastid ribosomal proteins (rpl and rps genes). The
study shows that all plastid genomes were rich in housekeeping genes with one rbcLg
gene involved in photosynthesis.

Another example of the extraction of core genome can be found in 2009 by Sharon [4],
where he focused on photosynthetic productivity in Synechococcus and Prochlorococcus
(Cyanobacteria) to extract the core genome. He successfully identified the core genes
of photosystem II in Cyanophage as functional genes for photosynthesis process; then
he increased the viral fitness by supplementing the host production of a specific type of
proteins. The study also proposed an evidence of the presence of photosystem I genes
in the genomes of viruses that affect Cyanobacteria.

In 2014, De Chiara et al. [5] aligned a collection of 97 sequenced genomes to a reference,
the complete genome of the Haemophilus influenza strain 86-028NP, using the Nucmer
alignment program [6]. They generated a list of polymorphic sites with these alignments.
This list was then filtered to include only the polymorphic sites in the core genome of
NTHi, i.e., the regions of the reference strain that could be aligned against all other strains,
yielding a set of 149,214 SNPs. A clustering algorithm has been finally used on these
SNPs to achieve the core genes extraction.

11

12CHAPTER 2. A SHORT HISTORY REGARDING CORE AND PAN GENOME EXTRACTION

Many studies have then realized the extraction of core and pan genomes for bacteria
(such as Cyanobacteria) using NCBI annotations, which are mainly based on generic
annotation tools like Glimmer, MuMmer, RATT, or RAST (see [7]). Then, NTHi strains
selected for genome sequencing (dataset S1) were obtained from a collection of isolates
archived in Oxford.

In all of these studies, considered genomes have been annotated with various different
annotation algorithms, mixing human curated and automatic coding sequence prediction
tools that are not specific to chloroplastic genes. This large variety of manners to detect
coding sequences and their functionality leads to large variability in gene boundaries
(start and stop codons), which obviously severely biases the core and pan genomes
determination.

Let us now present, in the next chapter, various methods for aligning biological sequences
by using local and global alignment techniques (the last chapter of this part will focus on
phylogenetic reconstruction).

CHAPTER 3

Technical Aspects of Sequence Alignments

In this chapter, we will introduce different sequence alignment algorithms. We will adopt
an evolutionary perspective in our description of how amino-acids (or nucleotides) in

two sequences can be aligned and compared. We will then describe various local and
global alignment algorithms and programs for single and multiple alignment manners.

3.1/ INTRODUCTION

In bioinformatics, sequence alignment (or Pairwise Sequence Alignment (PSA)) is an
important stage for aligning and comparing DNA sequences. It can be seen as the fun-
damental procedure that can be implicitly or explicitly applied in any biological research
that compares two or more sequences (DNA, RNA, or protein). It is the procedure by
which one attempts to infer which positions (sites) within sequences are homologous,
that is, which sites share a common evolutionary history [8].

We need first to give some definitions for some important keywords such as: homology,
similarity, and identity. We recall the definition of these keywords from [9, 10]:

Definition 1: Homology

Two sequences are said to have a homologous relation, if they share a common
evolutionary ancestor.

It is clear to say that there are no degree of homology, sequences are either homologous
or not. Homologous protein sequences can be Orthologus: homologous sequences in
different species that arose from a common ancestral gene during speciation. Ortholo-
gous genes have similar biological functions [10].

Definition 2: Similarity

Two sequences are said to be similar, if it is possible to transform the first one
in the second one by using only a small number of edit operations (insertion,
deletion, and substitution).

13

14 CHAPTER 3. TECHNICAL ASPECTS OF SEQUENCE ALIGNMENTS

Definition 3: Sequence identity

Sequence identity between two different sequences is the amount of characters
that match exactly when comparing them pairwise. This is a percentage.

It is important to notice that sequence identity is not transitive, in the meaning that se-
quences S A and S B on the one hand, S B and S C on the other hand, can have a high
identity while it is not the case between S A and S C. For example:

Example 1: Sequence identity vs transitivity

Let S A = AAGCCTT, S B = AAGCC, and S C = AAGCCTA respectively, and S I

be the function that produces the identity score between two sequences. This
identity is computed by counting the number of matching characters between
two sequences divided on the minimum length of given sequences, multiplied by
100:

S I(S A, S B) =
5

min(7, 5)
× 100 = 100%

S I(S B, S C) =
5

min(5, 7)
× 100 = 100%

S I(S A, S C) =
6

min(7, 7)
× 100 = 85.7%

In a computer science perspective, PSA is simply a pattern matching problem. The goal
is to find the minimum edit distance between two given strings. Some algorithms ap-
plied for this task achieved to align strings in non-linear time and/or memory consuming,
specially for large strings. In 1973, for instance, Peter Weiner [11] proposed a linear al-
gorithm to find the maximum pattern matching score between two strings in linear time.
However he did not success to write a powerful matching algorithm running in less than
O(n2) and some string operations (such as, insertion, deletion, etc.) were not taken into
account. This is why, in 1985, Esko Ukkonen [12] presented a string matching algorithm
by considering three string operations:

1. Deletion: remove symbol a ∈
∑

from position i, where
∑

is a given alphabet.

2. Insertion: insert a symbol b ∈
∑

in position i.

3. Substitution: replace a symbol a in position i by a symbol b ∈
∑

in the same position.

The alphabet
∑

in above edit operations is constituted by strings (including alphabets,
numbers, and/or special characters). But, in bioinformatics, it is composed by four ni-
trogenous base characters when considering DNA, that is:

∑
= {A,T ,C,G}. So the

pattern matching algorithms developed for strings cannot directly be applied to DNA se-
quences, as both symbols and positions has biological meaning. Thus specific algorithms
need to be developed by taking into account the particularity of DNA “edit operations”.
For instance, deleting a part of the molecule should have approximately the same cost
for small or large part, as it corresponds to only one chemical operation. Considering
edit distances in the case of DNA sequences leads to two kinds of alignment algorithms:
either globally align two DNA sequences as shown in Figure 3.1(a), or find the best local
alignment as depicted in Figure 3.1(b).

3.2. STANDARD SUBSTITUTION MATRICES 15

(a) Global alignment matching. (b) Local alignment matching.

Figure 3.1: demonstration of sequence alignment approaches. (a) The process of global
alignment. (b) The process of local alignment.

In other words, in global alignments, the entire (protein or nucleotide) sequences are
aligned, while a local alignment concentrates the search on the regions of highest simi-
larities within two sequences. In Figure 3.1, we can see in the two examples that DNA
sequences have different sizes. It is remarkable that after applying global or local align-
ment algorithm, the two sequences have the same size, which is the largest one in the
global alignment case, and the size of the best common subpattern in the local one. Each
column in these two sequences is called a site. Homologous sites are columns in aligned
sequences where characters are equal. For instance, in Figure 3.1(a) that represent the
global alignment of sequence S 1 with sequence S 2, we have four homologous blocks of
eight homologous sites distributed along S 1.

Gaps in both figures indicate the non-matching sites due to an insertion or deletion of k
elements. The most accurate matching algorithms are those that consider an “opening
gap” penalty in its scoring function, and all these alignment algorithms need to evaluate
the cost of a substitution, either for nucleotides (A, T, C, G alphabet) in DNA alignment,
or for amino acids (20 letters) in the protein case. This need to attribute a cost to a sub-
stitution leads to the introduction of the standard substitution matrices of both nucleotides
and amino acids.

3.2/ STANDARD SUBSTITUTION MATRICES

3.2.1/ NUCLEOTIDE SUBSTITUTION MATRICES

Codons are not uniformly distributed in the genome. Over time, mutations have intro-
duced some variations in their frequency of apparition. It can be attractive to study the
genetic patterns (blocs of more than one nucleotide: dinucleotides, trinucleotides...) that
appear and disappear depending on mutation parameters. Mathematical models allow
the prediction of such an evolution, in such a way that statistical values observed in cur-
rent genomes can be recovered from hypotheses on past DNA sequences. A first model
for genome evolution was proposed in 1969 by Thomas Jukes and Charles Cantor [13].
This first model is very simple, as it supposes that each nucleotide A,C,G,T has the
probability m to mutate to any other nucleotide, as described in the following mutation

16 CHAPTER 3. TECHNICAL ASPECTS OF SEQUENCE ALIGNMENTS

matrix,
1 − 3m m m m

m 1 − 3m m m
m m 1 − 3m m
m m m 1 − 3m

In this matrix, the coefficient in row 3, column 2 represents the probability that the nu-
cleotide G mutates in C during the next time interval, i.e., P(G → C). This first attempt
has been followed up by Motoo Kimura [14], who has reasonably considered that transi-
tions (A ←→ G and T ←→ C) should not have the same mutation rate as transversions
(A←→ T , A←→ C, T ←→ G, and C ←→ G), leading to the following mutation matrix.

1 − a − 2b b a b

b 1 − a − 2b b a
a b 1 − a − 2b b
b a b 1 − a − 2b

This model was refined by Kimura in 1981 (three constant parameters, to make a distinc-
tion between natural A←→ T , C ←→ G and unnatural transversions), Joseph Felsenstein,
Masami Hasegawa, Hirohisa Kishino, Taka-Aki Yano [15], and so on. Up to date mutation
models encompass the General Time Reversible (GTR, [16], 1990), Tamura-Nei (TrN) in
1993 [17], or any model that describes rate variation among sites in a sequence such as
gamma distribution (G) and proportion of invariable sites (I). For more information on the
types of substitution matrices, reader is referred to [18].

In the next section, we will focus on amino acid substitution matrices: PAM and BLOSUM.

Figure 3.2: The standared genetic code for codon to amino acids translation. See [19]

3.2. STANDARD SUBSTITUTION MATRICES 17

3.2.2/ POINT ACCEPTED MUTATION (PAM) MATRIX

In pairwise alignment, the Point Accepted Mutation (PAM, sometimes called Percent Ac-
cepted Mutation) matrices are series of scoring matrices for amino acid1 substitution
costs, each reflecting a certain level of divergence between the acids. In 1978, The
researches of Margaret Dayhoff have led to the constitution of such a matrix, by just ob-
serving the differences based on global alignment of closely related protein sequences
with the identity score greater than 85% (see [20, 21]). The first version of this matrix is
called PAM1. This latter estimates of how much the rate of character substitution would
be if only 1% of amino acids residue had exchanged to another amino acid type. Dayhoff
starts by calculating the relative probability ratio (m j) for each amino-acid according to the
following formula:

m j =
number of changes of j

number of occurrences of j
(3.1)

The mutation probability matrix can be determined based on the following formulas:

• For diagonal elements:
M j j = 1 − λm j

where λ is a proportionality constant, and m j is the relative mutability ratio of jth

amino acid computed using Equation 3.1.

• For non-diagonal elements:

Mi j =
λm jAi j∑

i Ai j

where Ai j is a constant of accepted point mutation whose value can be found in [20],
λ is a proportionality constant, and m j is the relative mutability ratio of jth amino acid
computed using Equation 3.1

In further investigations, Dayhoff computed the Relatedness Odd matrix (Ri j) per amino
acid as:

Ri j =
Mi j

fi
(3.2)

where, Mi j is the probability element of changing residue j to residue i in mutation prob-
ability matrix, and fi represents the frequency of residue i that may occur by chance:

fi = k
∑

b

q(b)
j N(b)

where, the sum is taken over all alignment blocks b. q(b)
j is the observed frequency of

amino acid j in block b, N(b) is the number of substitutions in a tree built for b and the
coefficient k is chosen to ensure that the sum of the frequencies f j = 1.

The PAM1 matrix, shown in Figure 3.3(a), is at the basis of all the other PAM models like
the log-odds matrix2. Matrices such as PAM100 and PAM250 are generated to reflect the

1Amino-acids are inferred from different nucleotide codons, see Figure 3.2
2This matrix is used by BLAST when scoring an alignment called BLOSUM (see Section 3.2.3). Indeed

this latter is obtained by applying the following formula: S i, j = 10 ∗ log(qi, j
pi

) on the PAM1 matrix.

18 CHAPTER 3. TECHNICAL ASPECTS OF SEQUENCE ALIGNMENTS

different types of amino-acid substitutions that may occurred in distantly proteins, based
on the hypothesis that some repeated mutations would following the similar model con-
served in PAM1 matrix, and multiple substitutions may occur in the related site. However,
other PAM matrices such as PAM30 and PAM70 are still used. An example of PAM250
matrix is given in Figure 3.3(b). For more information on this matrix, we recommend to
read [20, 21, 22].

(a) PAM1 matrix, all its values are scaled by 10000.

(b) A PAM250 matrix. The column summation adjusted to 100.

Figure 3.3: Examples of PAM1 and PAM250 matrices presented in [20].

3.2.3/ BLOCKS SUBSTITUTION MATRIX (BLOSUM)

PAM matrices, introduced in the previous section, are obtained with the comparisons
of closely related protein sequences, and so more divergent sequences cannot work
with PAM. This is why, in 1992, Henikoff and Henikoff [23] introduced a new amino acid
substitution matrix named BLOcks SUbstitution Matrix (BLOSUM). This latter is used
to align protein sequences by scoring different alignments among evolutionary diverging
sequences. To construct this model, a local alignment algorithm is applied on given
protein sequences, then a database is scanned for highly similar block regions of protein

3.2. STANDARD SUBSTITUTION MATRICES 19

families (sequence alignment without gaps), in order to obtain the relevant frequencies of
conserved amino acids with their substitution probabilities. After the exploration of amino-
acids frequencies and their substitution probabilities, a computation of log-odds scores for
each of the 210 possible substitution pairs of the 20 standard amino acids is applied. All
BLOSUM matrices are based on observed alignments.

According to [23], BLOSUM matrices are obtained by using blocks of similar protein se-
quences as input data, then various statistical approaches are applied on the data to infer
similarity scores. We recalled the following pipeline steps:

• Procuring Frequency Table: In this step, a local alignment algorithm is applied
on the raw data of protein sequences to infer the set of conserved blocks of fam-
ilies, using an automatic tool named PROTOMAT [24], to acquire a set of scored
blocks. The latter lead to construct a database of blocks. Conserved blocks are
then clustered under a specific threshold to generate a set of clusters that contain
a set of blocks based on identity score. In the same manner, if we want to add
new sequence, then a set of matching/mismatching pairs of sequence compared
with blocks should be computed. If we have a block of width w amino acids and a
block depth of s sequences, it provides ws(s−1)

2 amino acid pairs. The result from this
counting is a frequency table, the latter listing the number of times each of different
amino acid pairs occurs among the blocks. A table is used to calculate a matrix rep-
resenting the odds ratio between these observed frequencies and those expected
by chance.

• Generate a Logarithm of Odds (Lod) Matrix: In this step, let the frequency table
of total pairs of amino-acids be denoted by a function (fi j). So, the function for
observed probability of each given pair is:

qi j =
fi j∑20

i=1
∑i

j=1 fi j
. (3.3)

We estimate the expected probability of occurrence for each i, j pair based on ith
amino-acids by the following formula:

pi = qii +
∑
j,i

qi j

2
.

The expected probability of occurrence ei j for each i, j pair is:

ei j =

pi p j = p2
i if i = j,

pi p j + p j pi = 2 × pi p j if i , j.
(3.4)

The odds ratio matrix is then calculated where each entry is qi j/ei j. A lod ratio is
then calculated in bit units as:

si j = log2(qi j/ei j)

where ei j is computed from Equation 3.4, and qi j is computed from Equation 3.3.
Lod ratios are finally multiplied by a scaling factor of 2 and then rounded to the
nearest integer value to produce the BLOSUM matrix in half-bit units, as shown in
Figure 3.4.

20 CHAPTER 3. TECHNICAL ASPECTS OF SEQUENCE ALIGNMENTS

Figure 3.4: The standared BLOSUM62 matrix. See [23]

Remark 1: BLOSUM Number

The number attached with BLOSUM matrix represents the identity matching
score in clustering step. In other words, if the conserved blocks are clustered
based on an identity score of 75%, then the generated matrix is called BLO-
SUM75.

For more information on different types of BLOSUM matrix, see, e.g., [23, 24]. Having the
way to attribute a cost to a substitution in either DNA or protein sequences, we can now
explain more deeply the alignment algorithms.

3.3/ LOCAL ALIGNMENT ALGORITHMS

In comparative biology, when we have a partial sequence of DNA and we need to pro-
vide some information about it, the first idea is to compare this sub-sequence (pattern)
with a database of already identified sequences, seeking for relatively conserved sub-
sequences [25] using local alignment algorithms (LSA). This process will find the con-
served regions of this partial sequence in the database, providing thus information thanks
to the reference sequence.

There are many algorithms developed for this kind of alignment. In next sub-sections, we
will summarize some of the most popular ones.

3.3.1/ BASIC LOCAL ALIGNMENT SEARCH TOOL (BLAST)

In 1985, David J. Lipman and William R. Pearson [26] have developed a software pack-
age for protein-protein sequence similarity search called FASTP for proteins and FASTN
for nucleotides. These software have been popularized under the name of FASTA, which
is an abbreviation of “FAST-All”. This tool combines the ability to do DNA-DNA and trans-
lated protein-DNA searches.The FASTA file format is now widely used by other sequence

3.3. LOCAL ALIGNMENT ALGORITHMS 21

database search tools, such as BLAST Altschul [25], and sequence alignment programs
like ClustalW [27], MUSCLE [28], T-COFFEE [29], etc.

In 1990, a more time-efficient algorithm than FASTA, called Basic local alignment search
tool (BLAST), was developed by Altschul [25]. BLAST is a heuristic algorithm that gives
a comparison approximation of the best local alignment between biological amino-acid
sequences of protein, or nitrogen base sequences. It enables bioinformatic researchers
to compare a desired query sequence with a library of sequence databases, in order
to identify the target sequences that are the most similar with the desired query (given
a certain threshold). Having the same sensitivity than FASTA, BLAST is more reliable
as it only searches the most significant patterns in the sequence database. Note that
various versions of BLAST have been developed by the National Center of Biotechnology
Information NCBI.

There are various software versions of BLAST depending on the type of the queried
sequence:

• BLASTN: Program that searches in nucleotide databases using a nucleotide query.

• BLASTP: Program that investigates protein databases using a protein query.

• BLASTX : Search in protein databases using a translated nucleotide query (e.g.,
protein query).

• TBLASTN: Search in translated nucleotide databases using a protein query.

• TBLASTX : Search in translated nucleotide databases using a translated nucleotide
query.

3.3.2/ SMITH–WATERMAN ALGORITHM

The Smith-Waterman is an algorithm based on dynamic programming developed by
Smith in 1981. Its main purpose is to align locally two biological sequences in order
to discover in minimal cost the optimal alignment path [30]. It is independent of any
distance function (such as Euclidean, Manhattan, or Levenshtein that will be detailed in
Section 3.5). The algorithm calculates the alignment that minimizes the costs provided
by a certain distance function. It aims to align two sequences in a way that similar sub-
sequences are aligned together. Local alignment is very useful when we want to align a
partial portion of a sequence with a database of biological sequences. It can be applied in
computer science in many applications, especially with those that need database search
(such as data mining, information retrieval, pattern matching, image processing, etc.).

In this algorithm, a two dimensional scoring matrix T of size (m+1)× (n+1) is formed from
the two provided biological sequences3 of length n and m. One extra column and one row
containing zeros are added to the matrix, for score computation. The score in each cell
is computed based on the scoring function presented in Equation 3.5.

Remark 2: Zero state in SW matrix

If the scoring numbers generated from the first three rules in Equation 3.5 are
negative, then zero must be inserted in the cell T (i, j) to ensure to have no neg-
ative value in the matrix.

3Biological sequences could be nucleotide, RNA, or protein sequences.

22 CHAPTER 3. TECHNICAL ASPECTS OF SEQUENCE ALIGNMENTS

T (i, j) = max

T (i − 1, j − 1) + σ(ai, b j),
T (i, j − 1) − gap penalty,
T (i − 1, j) − gap penalty,
0.

(3.5)

where T (i, j) is the value at line i and column j of the scoring matrix of ai and b j. The value
σ(ai, b j) is provided by a standard substitution matrix, like those detailed in Section 3.2
Note that some parameters can be optionally specified for the match, mismatch, and gap
penalties in the scoring matrix.

Let us now consider that we have two nucleotide sequences A and B of different sizes,
where A = a1a2a3...an and B = b1b2b3...bm, and let us explain how to compute the scoring
matrix T . Figure 3.5(a) shows that SW uses an individual pairwise comparisons between
characters to fill the scoring matrix. In this figure, to compute the value of T (i, j), we
need to take into consideration all the four scoring options and select the maximum one.
When the matrix T is all computed, a new process starts by tracing back the matrix by
selecting the position of maximum score. Then, from that position, we go up following the
maximum score until reaching the first diagonal position. The selected positions in trace
back process is considered as the optimal alignment path, as shown in Figure 3.5(b).

(a) Calculate the scoring values. (b) Tracing back alignments.

Figure 3.5: Example of Smith-Waterman local alignment algorithm of two given se-
quences (A, B), A = a1a2a3...an and B = b1b2b3...bm. (a) Calculate a new matching score
depending heuristically on the previous around values. (b) Tracing back the alignment by
starting from the maximum score in the generated matrix, then follow the maximum score
on each step up.

For more details on Smith-Waterman algorithm, see [30] or [31] for an improved version.

3.4. GLOBAL SEQUENCE ALIGNMENT: THE NEEDLEMAN WUNSCH EXAMPLE 23

3.4/ GLOBAL SEQUENCE ALIGNMENT: THE NEEDLEMAN WUNSCH

EXAMPLE

In global alignments, we compare the entire sequences by counting the amount of identi-
cal residues along the alignment. We explain in what follows how one of these algorithms
works, namely the Needleman Wunsch algorithm.

The Needleman–Wunsch algorithm has been firstly developed by Saul B. Needleman
and Christian D. Wunsch in 1970 [NW70]. This algorithm follows the concepts of dynamic
programming: it divides a large problem (e.g., the full sequence) in a series of smaller
ones more tractable. Then, it solves the smaller problems in order to finally provide a
solution for the larger one. The Needleman-Wunsch algorithm is still widely applied for
optimal global alignment, especially when the quality of the global alignment is of high
importance.

This algorithm is constituted by the following steps:

• Setting up the matrix: let A = a1a2a3 . . . an and B = b1b2b3 . . . bm be two sequences
of different sizes that we want to compare. A two-dimensional matrix T should be
computed. In this matrix, the row vector represents sequence A while the column
one corresponds to sequence B. A perfect correspondence or a mismatch align-
ment between these two sequences is represented by a diagonal line as shown in
Figure 3.6(a). A gap in the first sequence leads to a horizontal line (Figure 3.6(b)),
while a gap in the second sequence is drawn as a vertical line, as shown in Fig-
ure 3.6(c).

(a) Identical sequence match-
ing.

(b) Gaps in horizontal lines. (c) Gaps in vertical
lines.

Figure 3.6: Example of Needleman Wunsch global alignment algorithm of two given se-
quences A = a1a2a3...an and B = b1b2b3...bm. (a) A diagonal line is when the two characters
are equal, or when there is a substitution of characters. (b) Gaps in the first sequence are
expressed from horizontal line. (c) Gaps in the second sequence correspond to vertical
lines.

• Scoring the Matrix: In Needleman-Wunsch algorithm, we fill the matrix T in the
same manner than in Smith-Waterman, as shown in Figure 3.7(b):

24 CHAPTER 3. TECHNICAL ASPECTS OF SEQUENCE ALIGNMENTS

T (i, j) = max

T (i − 1, j − 1) + σ(ai, b j)
T (i − 1, j) − gap penalty
T (i, j − 1) − gap penalty

(3.6)

Remark 3: Needleman-Wunsch vs Smith-Waterman

The main differences between Needleman-Wunsch and Smith-Waterman
algorithms are:

– The zero condition: in SW algorithm, we insert a 0 in the cell i, j if Ti, j

is negative, which is not the case in the NW one.

– Sequences in scoring matrix are ordered in an opposite direction.

A computation example of scoring matrix is given in Figure 3.7.

(a) Matrix initialization. (b) Computing the scoring values.

Figure 3.7: Example of Needleman-Wunsch global alignment algorithm of two given se-
quences A = a1a2a3...an and B = b1b2b3...bm. (a) The initialization of the scoring matrix.
(b) How to calculate the next score: (+1) for matching, (-2) for mismatching, and (-2) for
gap penalty.

• Identify the optimal path: In Figure 3.8, the tracing back process starts from
the lowest right position in the scoring matrix, following the maximum scores until
reaching the upper left position. The path drawn by this matrix is considered as the
optimal alignment path given for aligning the two sequences.

3.5/ EDIT DISTANCES

In computer science and information retrieval, edit distance is a way of clarifying how
different two strings are. This latter can be achieved by counting the minimum number
of events that are required to convert one word into another one. Edit distances are
used in various application domains, for example in natural language processing where
the automatic spell corrections are determined according to the closest word in a given

3.6. MULTIPLE SEQUENCE ALIGNMENT (MSA) 25

Figure 3.8: Tracing back the alignment by starting from the lowest right corner and follow-
ing the maximum score on each step up.

dictionary. In bioinformatics, such distances are used to evaluate the similarity of DNA or
amino acid strings.

Needleman-Wunsch alignment algorithm can be used to provide an edit distance with
gaps, as the lowest right column of the scoring matrix contains the scoring cost. If the
distinction between gap opening and extension is not required, and if we only need to
consider insertion, deletion, and substitution of characters, then the Levenshtein edit dis-
tance can be used. This latter corresponds to usual spelling errors like in gene names,
while the former is more adequate when considering usual chemical modifications of
biomolecules (this fact will be used in our first contribution). Let us bring more details
about the Levenshtein distance.

The string metric proposed by Vladimir Levenshtein in 1965 [32, 33], is defined formally as
the minimum number of insertion, deletion, or substitution operations required to change
one word into the other one. Mathematically speaking, the Levenshtein distance between
A, a string of length n, and B, another string of length m, can be computed using the same
dynamic programing canvas than in Needleman-Wunch, except that T matrix is filled as
follows:

T (i, j) =

max (i,j) if min (i,j) = 0,

min

T (i − 1, j) + 1
T (i, j − 1) + 1
T (i − 1, j − 1) + 1(ai,b j)

Otherwise.

where 1(ai,b j) is 1 if and only if ai , b j and 0 otherwise.

3.6/ MULTIPLE SEQUENCE ALIGNMENT (MSA)

Dynamic programming as described by Needleman-Wunsch for pairwise alignment is
guaranteed to identify the optimal global alignment. Exact methods for multiple sequence
alignment employ dynamic programming too.

The goal here is to maximize the summed alignment score of each pair of sequences.
Exact methods generate optimal alignments but are not feasible in time or space for more
than a few sequences. MSA are easy to generate for a group of very closely related
protein (or DNA) sequences, as shown in Figure 3.9, as soon as the sequences exhibit

26 CHAPTER 3. TECHNICAL ASPECTS OF SEQUENCE ALIGNMENTS

some divergence, the problem of multiple alignment becomes extraordinary difficult to
solve. The Multiple Sequence Alignment (MSA), is a collection of three or more nucleic
acid (or protein) sequences that are partially or completely aligned. Homologous residues
are aligned in columns across the length of the sequences. These aligned residues are
homologous in a structural sense or even in an evolutionary sense: they are presumably
derived from a common ancestor.

Figure 3.9: Multiple sequence alignment editing of different sequences of Apiales order.

The MUltiple Sequence Comparison by Log-Expectation (MUSCLE) measures the dis-
tance between given sequences by iteratively refining multiple sequence alignment by
deleting the edge of the guide trees to form a bi-partition, and then extracting pair of pro-
files and realigning then. Several functions are applied to align pairs of columns optimally.
MUSCLE uses the sum-of-pairs (PSP) profile in the scoring function:

PSPxy
=
∑

i

∑
j

f x
i f y

j S i j

where PSPxy is a sequence-weighted sum of substitution matrix scores for each pair of
latters. S i j is the log expectation S i j = log(pi j/pi p j). MUSCLE applies two PAM matrices
and new log-expectation score for its PSP function:

LExy = (1 − f x
G)(1 − f y

G)log
∑

i

∑
j

f x
i f y

j

pi j

pi p j

where the factor (1 − fG) is the occupancy of a column. For more information, see [28].

3.7/ CONCLUSION

In this chapter, we recall various algorithms of sequence alignments based on computing
the edit distance. Computing the edit distance means that we considered the minimum
edit operations that change one sequence into other one. In bioinformatics, sequence
alignment algorithms lie in two types: local and global alignment algorithms.

In local alignment algorithms, a query sequence is aligned with a database of well-known
protein or nucleotide sequences, where there are some regions with highest similarity
score. Well-known algorithms for Local alignment are BLAST and Smith-Waterman. For
global alignment, two sequences are aligned based on the computation of optimal align-
ment path. This latter is computed from a scoring function by tracing back the scoring
matrix from the lower right cell following the maximum scores until reaching the upper
left cell. Distance measures such as Levenshtein, Euclidean, and Manhattan distances
are also detailed. Levenshtein measure is not an alignment algorithm, but it takes into
account some edit operations such as insertion and deletion.

Finally, we detailed MUSCLE algorithm of multiple sequence alignment tools. We ex-
plained that this algorithm use the sum-of-pairs (PSP) profile with two PAM matrices and
novel log-expectation formula.

CHAPTER 4

Concept of Phylogenetic Tree Construction

In computational and molecular biology, phylogenetic tree reconstruction is an attempt
to focus on the ancestral relationship among a set of biological sequences. It involves

the construction of a tree, where the nodes indicate separate evolutionary paths, and the
lengths of the branches give an approximation of how distantly related the sequences
represented by those branches are. This chapter gives a brief knowledge on how a phy-
logenetic tree can be generate from a set of DNA sequences, and how we can evaluate
the predicted one. Finally, some concepts regarding phylogenetic analysis will be defined,
and algorithms used for phylogenetic reconstruction will be detailed.

4.1/ VARIOUS TYPES OF PHYLOGENETIC TREES

A phylogenetic tree is a graph composed of edges (or branches) and nodes as shown
in Figure 4.1(a). In this figure, edges connect exactly two nodes. A node can be either
an internal (an ancestry node) or a terminal one (a leaf). Terminal nodes are sometimes
called taxonomic units (TU) or simply taxa (plurial of taxon). These taxa can be organ-
isms, coding sequences, proteins, genes, etc. Internal nodes in the tree represents the
ancestor of the given TUs. A phylogenetic tree can be either rooted or not. Finally, the
edge that connects one leaf with an internal node is called an external branch, while an
edge between two internal nodes is called an internal branch or an inner one.

Branches define how nodes are connected in the tree, or in other words its topology.
The latter highlights the relationship among TUs and their ancestors. Each branch has a
value (or weight) which is called branch length. This value represents, for example, the
number of changes (in amino-acids or nucleotide) that have possibly occurred between
sequences in this branch. More precisely, depending on the existence of branch lengths,
the tree can be either a cladogram or a phylogram.

In cladograms, branch lengths are not meaningful in the tree, which means that they
are not related to the number of changes that have occurred between sequences. This
tree is useful to align large TUs and to infer the time scale if a date of divergence is
assumed precisely. An example of cladogram tree is shown in Figure 4.1(b). Conversely,
in phylograms, branch lengths are scaled in the tree: they depend on the number of

27

28 CHAPTER 4. CONCEPT OF PHYLOGENETIC TREE CONSTRUCTION

changes between sequences. An example of such trees is depicted in Figure 4.1(c).

(a) An overview of phylogenetic tree structure.

(b) An overview of clado-
gram tree.

(c) An overview of phylogram
trees.

Figure 4.1: Types of phylogenetic trees. (a) An overview of phylogenetic tree structure.
(b) Example of cladogram tree. (c) Example of phylogram trees.

As stated previously, a phylogenetic tree can be either rooted or unrooted. Let us now
detail these two tree structures (for further information on phylogenetic tree construction,
see, e.g., [34]).

• Unrooted Phylogenetic Trees: This type of trees specifies the relationships
among the given TUs. However, they did not provide any information to infer com-
pletely the evolution from the last common ancestors. The number of possible un-
rooted trees can be inferred according to the number of TUs (c.f. Cavalli-Sforza and
Edwards [35]). It is indeed well-known that the number of trees increases rapidly
with the number of TUs. More precisely, the number TU of possible unrooted trees
can be computed according to the following formula:

TU =
(2m − 5)!

[2m−3(m − 3)!]
,

where m ≥ 3 is the number of TUs.

4.1. VARIOUS TYPES OF PHYLOGENETIC TREES 29

Example 2: Number of unrooted trees with 6 species

Suppose that m = 6, then the number of generable unrooted trees is:

TU =
(2 × 6 − 5)!

[26−3(6 − 3)!]
=

7!
[8 × 3!]

=
5040
48

= 105.

An example of unrooted tree is provided in Figure 4.2. For further information re-
garding unrooted trees, the reader is referred to [35, 34].

Figure 4.2: An overview of unrooted tree.

• Rooted Phylogenetic Trees: This type of phylogenetic trees includes a root that
represents the last common ancestor of all TUs in the tree. In Figure 4.3 for in-
stance, the internal nodes, represented by yellow circles, have an ancestor depicted
in red. The main way to root a tree is to specify an outgroup, which is a TU known
to be outside the group of TUs under consideration. This latter can be a species
known to have diverged before the divergence of the considered TUs. For instance,
if the leaves correspond to chloroplast genomes, then an outgroup node could be a
Cyanobacteria, which is probably the bacteria at the origin of the chloroplasts. We
have represented an outgroup (the node F) in Figure 4.3.

The number of rooted trees can also be computed, see Cavalli-Sforza and Edwards
for instance [35]. This number TR of possible bifurcating rooted trees for m TUs is:

TR =
(2m − 3)!

[2n−2(n − 2)!]

where m ≥ 2.

Example 3: Number of rooted trees with 6 leaves

Suppose that m = 6, then the number of rooted trees is equal to:

TR =
(2 × 6 − 3)!

[26−2(6 − 2)!]
=

(12 − 3)!
[(24) × 4!]

=
362880

384
= 945

TR(m) is too the size of the searching space when inferring a rooted phylogenetic
tree with m TUs.

The dotted lines in Figure 4.3 represent the delay between two bifurcations, while
the red circle represents the last common ancestor of given TUs. So the time of
evolution can be computed from each sub-ancestor to the last common one when
either the date of divergence or the divergence rate are known. Until now, however,
this problem is still a challenging task. For further information, see, e.g., [36, 10, 37]

30 CHAPTER 4. CONCEPT OF PHYLOGENETIC TREE CONSTRUCTION

Figure 4.3: An overview on rooted phylogenetic tree.

4.2/ METHODS FOR PHYLOGENETIC CONSTRUCTION

4.2.1/ INTRODUCTION

There is a lot of methods for constructing a phylogenetic tree, which can be roughly
separated in two categories: the distance-based and the character-based methods.

In distance-based methods, a multiple alignment algorithm is applied on given sequences
and pairwise distances are computed on each couple of aligned sequences. This compu-
tation leads to a two-dimensional distance matrix, on which a distance-based algorithm
is applied to infer the desired phylogenetic tree. These algorithms encompass UPGMA
and Neighbor-Joining, this latter being detailed below.

In character-based methods, an outgroup is compared to a set of sequences. A multi-
ple alignment algorithm is then launched to align all sequences of characters against the
outgroup. The multiple character-based alignment is then exploited using Maximum Like-
lihood, Maximum Parsimony, or Bayesian methods, in order to find the best tree accord-
ing to the characters. For the sake of illustrations, we will detail the maximum likelihood
method in what follows.

4.2.2/ A DISTANCE-BASED METHOD: THE NEIGHBOR-JOINING ALGORITHM

Neighbor-joining consists of building unrooted phylogenetic trees using distance meth-
ods [38]. It produces both topology and branch lengths by defining iteratively (based on a
distance matrix) a neighbor as a pair of TUs that are connected in a single internal node X

4.2. METHODS FOR PHYLOGENETIC CONSTRUCTION 31

in an unrooted bifurcating tree. Depending on the distance matrix previously computed,
the method steps are:

1. Generate a full tree with all TUs in a starlike structure with no hierarchy, see Fig-
ure 4.4(a).

2. A pairwise comparison using the distance matrix is done, in order to recognize the
two most related sequences (TUs). To check the selection, the sum of the branch
lengths of selected TUs should be smaller than all the other ones.

3. The identified TUs are connected to an internal node X, and they are treated now
as one TU, see Figure 4.4(b).

4. Select the base pair that has the smallest sum-of-branch-lengths.

5. The process continues until the topology of the tree is completed.

The neighbor-joining method produces an unrooted tree. According to Saitou and Nei
(1987), The sum of the branch lengths of N TUs in the tree 4.4(a) is computed as follows:
Let us define Di j and Lab as the distance between TUs i and j and the branch length
between nodes a and b respectively. The sum of branch lengths of the tree is defined
based on the following formula:

S =

N∑
i=1

LiX =
1

N − 1

∑
i< j

Di j

where Di j is equal to the distance between TUs i and j. Note that in Figure 4.4, we
suppose that a means TU number 1, b is TU number 2, and so on. Furthermore, to
compute the distance between nodes X and Y, we proceed as follows:

LXY =
1

2(N − 2)

 N∑
k=3

(D1k + D2k) − (N − 2)(L1X + L2X) − 2
N∑

i=3

LiY

In this equation, the term inside the brackets is the sum of all distances including LXY , and
the outer term 1

2(N−2) is to exclude irrelevant branch lengths. For more details, see [38, 39].

William et al. have presented in 2002 an improved version of neighbor-joining method
called weighted neighbor joining, or simply Weighbor [39]. The Weighbor criteria for de-
termining a pair of TUs measures the errors in the distance which can be exponentially
large for higher distances. The former includes a likelihood function for computing the
distances, while the latter are modeled as correlated Gaussian random variables with
various means and variances, estimated under a probabilistic model for sequence evolu-
tion.

In this model, the cost function is:

S (i, j) = gAdd(i, j) + Pos(i, j)

where g is used to address that the tree may not be at all starlike by correcting for potential
correlations among different terms in Add(i, j). Add(i, j) is defined as:

Add(i, j) =
1
2

∑
k<{i, j}

[dik − d jk − (diP − d jP)]2

σ2
noadd(diP, dPk) + σ2

noadd(d jP, dPk)

32 CHAPTER 4. CONCEPT OF PHYLOGENETIC TREE CONSTRUCTION

(a) A starlike tree. (b) The identification of lowest sum of
branch lengths TUs.

Figure 4.4: Simulation of Neighbor-Joining method. (a) All TUs are organized in starlike
tree. (b) Two nodes are connected to internal node if they have lowest sum of branch
lengths value.

This equation can be translated as weighted least-squares χ2 function. σ2
noadd is called a

“no addition” and computed as follows:

σ2
noadd(diP, dPk) = σ2(dik − σ

2(diP) − σ2(dPk)),

where diP and dPk are simple estimation values. Finally, the “evaluating positively function”
Pos(i, j) is computed as [39]:

Pos(i, j) = −ln

12erfc

 −dPQ
√

2σPQ

 .
4.3/ CHARACTER-BASED METHODS

We will give in what follows brief details on the three most known character-based meth-
ods, namely the maximum likelihood, the maximum parsimony, and the Bayesian infer-
ence method. We will then explain how to launch a RAxML maximum likelihood analysis
on a given multifasta.

4.3.1/ MAXIMUM PARSIMONY

In a maximum parsimony MP method, the best tree is defined as the tree with the lowest
branch lengths. More precisely, for given sequences, a multiple alignment algorithm is
used to align the sequences, and to identify the informative1 and non-informative2 sites.
The next step is to count the number of changes and assign this cost to each generated

1Informative sites: a column in multiple sequence alignment with no gap and at least two characters.
2Non-Informative sites: a column with a gap (missing character represented by a minus -) or with only

one character.

4.3. CHARACTER-BASED METHODS 33

phylogenetic tree. The method then computes the total length L for each tree and selects
the minimum one. The L value is calculated according to the following formula:

L =

C∑
j=1

w jl j

where l j is the sum of the lengths of a full tree, C is the total number of characters, and
wi is the assigned weight for each character, which is set to 1 in most cases. For further
information about maximum parsimony model, see [40].

4.3.2/ BAYESIAN METHOD

For the sake of completeness, we evoke here the well-known and frequently used
Bayesian methods, which estimate the phylogeny by calculating the conditional proba-
bility given the model, based on the following formula:

Pr[Tree|Data] =
Pr[Data|Tree] × Pr[Tree]

Pr[Data]

where Pr[Tree|Data] is called a posterior probability distribution3.

Being not familiar with probability and statistics, and due to the fact that we do not have
used such methods during our thesis, we will not enter more deeply in Bayesian inference.
For more information about this method, see [41].

4.3.3/ MAXIMUM LIKELIHOOD

4.3.3.1/ GENERAL PRESENTATION

The maximum likelihood ML method is commonly used for determining the topology and
branch lengths that have the greatest likelihood to produce the aligned data, providing
the substitution model and the tree.

Given a set of sequences on which a multiple alignment procedure has been applied,
the phylogenetic tree that optimizes the above likelihood must be found. To do so, the
search space (the set of all rooted trees having the good number of leaves) is visited
until reaching the tree that optimizes the likelihood score (this is an optimization problem
in which any optimization technique can be used). To compute this score, we must first
have chosen a substitution model (see Section 3.2). Then the likelihood to have the
residue (column) of the alignment, given the model and the visited tree, is computed, and
all per site likelihoods are finally summed.

4.3.3.2/ BOOTSTRAP VALUES

Additionally to branch length values, a rooted tree can have another value attached with
internal nodes, which is called a bootstrap value. This value is mainly used to evaluate
the robustness of a given phylogenetic tree topology. This robustness evaluation can be
achieved in the following way.

3A posterior probability is the probability that the tree is considered to be correct, if it has the maximum
probability.

34 CHAPTER 4. CONCEPT OF PHYLOGENETIC TREE CONSTRUCTION

After obtaining the phylogenetic tree with branch lengths values, a bootstrap analysis
is then involved by creating a simulated dataset of the similar size as the original one.
The process starts by randomly picking columns from the multiple sequence alignment
sequences; this is usually performed with replacement, where any individual column may
appear multiple times or not at all. Novel trees are generated by considering a large
number of bootstrap replicates (from 50 to 1000). The trees generated from bootstrap
replications are then compared with the original inferred one, and the proportion of trees
that present the same branch is set as bootstrap value on the associated node in the best
tree. By doing so, we can observe the frequency of each clade topology in the original
one.

4.4/ STAGES FOR PHYLOGENETIC ANALYSIS

In what follows, we summarize the four stages required to construct a phylogenetic tree
with bootstraps using maximum likelihood method.

1. Acquiring Gene Sequences: In this stage, corresponding sequences of each given
core gene are collected from both the outgroup and the genomes under considera-
tion (methods for acquiring gene sequences are presented in Chapter 6). The gene
file, having the form depicted in Figure 4.5 in fasta format, is generated for each core
gene. Such multifasta files will be the input of next stages aiming at constructing
the phylogenetic tree.

Figure 4.5: Generating individual sequence gene files. Each gene in the core genome is
treated by acquiring its sequences from outgroup and given genomes.

2. Multiple Sequence Alignment and Concatenation Stage: A multiple sequence
alignment tool, as previously explained, receives the generated fasta file. It aligns
globally all including sequences of given gene as shown in Figure 4.6. Various mul-
tiple sequence alignment algorithms, like MUSCLE [28] or T-COFFEE [29], can be
used for aligning separated fasta gene files.

4.4. STAGES FOR PHYLOGENETIC ANALYSIS 35

• MUSCLE (briefly detailed in Chapter 3) on the one hand, has been used during
this thesis with its default parameters. It accepts the fasta file described above,
for each gene, as an input. So it produces a multiple alignment file as output.
MUSCLE is a fast and semi-accurate alignment tool working with either small
or large amount of sequences, while its accuracy decreases accordingly to the
increasing of sequence lengths.

• On the other hand, T-COFFEE is slower than MUSCLE but more robust and
accurate. It generates more accurate alignments than MUSCLE, and it works
with large amount of DNA sequences. This advantage gives an extra point to
use T-COFFEE instead of MUSCLE. T-COFFEE is also considered in special
cases under mcoffee mode.Wallace et al. (2006) have developed a meta ver-
sion of T-COFFEE called M-Coffee. This latter makes it possible to combine
the output of at least eight packages (MUSCLE, probcons [42], dialignT [43],
mafft [44], clustalw [27], PCMA [45] and T-COFFEE [29]). T-COFFEE will gen-
erate two files: .aln and .dnd. The former is the multiple alignment file of input
sequences, while the latter is the guided newick format tree.

A concatenation is required to have one sequence per TU. The result of this assem-
bly is provided as an input file for the phylogenetic tree reconstruction stage.

3. Tree Building Stage: This stage is concerned with the construction of phylogenetic
tree. In this stage, we consider to use RAxML as a default phylogenetic tree recon-
struction toolkit. If you are more interested in RAxML, we adviced you to see [46].
In this stage, the procedure of building phylogenetic tree by RAxML is divided into
the following steps:

• Generating RAxML input file: As shown in Figure 4.6, the generated files
from sequence alignment stage are used to formulate the desired RAxML file.
Based on binary pattern of given individual, gene sequences of presented
genes in the binary pattern are assembled (e.g., concatenating) together for
each given genome. The predicted fasta file is then saved, with the amount of
given genomes and the length of assembled sequences at the top of the file.

• Generating random tree: In this step, a random tree of target taxa genomes
is created based on the following RAxML command:
raxmlHPC -d -f o -p 12345 -m GTRGAMMA -q Resultats/’+texte+’/modele.txt
-n ’+texte+’1 -o ’+outgroup+’ -s Resultats/’+texte+’/alignementsRAxML.fasta.
The description of the used RAxML options are presented in Table 4.1. The
GAMMA substitution model is used on the input sequence alignment file in −s
symbol. The assignment of models to the alignment partitions are stored in
modele.txt file. Note that, in this step neither branch lengths, nor bootstraps
values are computed yet.

• Invoking bootstrap analysis: The parameters for initializing the bipartition
analysis are given based on the following RAxML command: raxmlHPC -d -f o
-p 12345 -m GTRGAMMA -n ’+texte+’2 -o ’+outgroup+r’ -b 0123 -N autoMRE
-s Resultats/’+texte+’/alignementsRAxML.fasta. In this command, -b 0123 and
-N auto MRE are two new options for invoking the multiple bootstrapping anal-
ysis. According to Table 4.1, -b 0123 is the random bootstrap seed that will be
considered across runs, while -N auto MRE specifies the number of alternative
runs on given starting trees. Branch length values are estimated in this step
and added into generated best tree.

36 CHAPTER 4. CONCEPT OF PHYLOGENETIC TREE CONSTRUCTION

Figure 4.6: Multiple sequence alignment of genes files. In this figure, gene files with
correspondent gene sequences are inputted during the multiple alignment stage. In con-
catenation stage, all gene sequences are concatenated based on given genomes with
the outgroup. This assembly file will be used in the phylogenetic construction stage using
RAxML.

• Applying bootstrap analysis: In this step, depending on the given trees
from previous steps, the bootstrap analysis is employed by generating a bi-
partition file of different tree topologies based on various bootstrap replications
as stated in the following command: raxmlHPC -f o -m GTRGAMMA -q Re-
sultats/’+texte+’/modele.txt -n ’+texte+’3 -o ’+outgroup+’ -f b -t RAxML_best-
Tree.’+texte+’1 -z RAxML_bootstrap.’+texte+’2’. The most supported tree is
then generated into a newick file format.

4. Tree Verification: To verify the given trees, all generated .newick phylogenetic trees
from given analysis are verified based on two factors: lowest bootstrap value and
the amount of genes in given tree. A bootstrap function is applied on each tree
generated from the last RAxML command in previous subsection. −NautoMRE is
used to specify the number of alternative runs on distinct starting tree. Using −N
with −b, this will invoke a multiple bootstrap analysis. Bootstrap information are
drawn using -f b option over the best selected bootstrap tree specified by −t option.

4.5. CONCLUSION 37

Symbol Description

-b 0123
Specify the random bootstrap number seed that will be consistent
across runs.

-d
Used to start maximum likelihood optimization from random starting
tree.

-f o
Slower rapid hill climbing algorithm without the heuristic cutoff but this
algorithm typically get slightly better likelihood scores.

-f b
Draw bipartition information on a best knowing Bootstrapping tree pro-
vided with -t, based on multiple bootstrap trees in a file specified by
-z.

-m GTRGAMMA
Specify the substitution DNA model where the ALPHA values esti-
mated.

-n Specify the name of output file.

-N autoMRE
Specifies the number of alternative runs on distinct starting trees, with
-b this will invoke a multiple bootstrap analysis.

-o Specify the name of single outgroup genome.
-p 12345 Specify a random number seed for the parsimony inferences.

-q
Specify the file name which contains the assignment of models to align-
ment partitions for multiple models of substitution.

-s Specify the name of the alignment data file in PHYLIP or FASTA format.

-z
Specify the file name of a file containing multiple trees e.g. from a boot-
strap that shall be used to draw bipartition values onto a tree provided
with −t.

Table 4.1: Optional parameters of RAxML commands.

The number of genes (or gene rate) in the other hand indicates how many gene are
conserved to generate the target phylogenetic tree. The largely presented genes
are the highly stable tree.

4.5/ CONCLUSION

In this chapter, we gave a small background on phylogenetic tree reconstruction from bio-
logical sequences. The types of the phylogenetic tree presented as rooted and unrooted
trees, and we showed how unrooted tree can represent the natural relations among ap-
plied Taxonomy units (TUs). The unrooted tree based on some related works can be
inferred based on the number of TUs. Indeed, this latter did not provide useful informa-
tion. On the contrary, rooted trees provide more useful information on how the given tree
are growth over time. We also showed how many rooted trees can be infer based on the
number of TUs.

Various models can be applied for constructing the phylogenetic tree of desired se-
quences. Two branches have been realized in this domain: distance-based and
character-based methods. In distance-based methods, a phylogenetic tree can be con-
structed by calculating the distances between desired sequences for a distance matrix.
Two models are available in this kind of models: UPGMA and Neighbor-joining methods.
The two algorithms are closed in their techniques so that we focused on neighbor-joining

38 CHAPTER 4. CONCEPT OF PHYLOGENETIC TREE CONSTRUCTION

algorithm as the fast, reliable, and most know algorithm for constructing phylogenetic tree
based on distance matrix.

In character-based methods, three methods are available for the construction of tree de-
pending on providing a reference sequence (outgroup): maximum likelihood, maximum
parsimony, and Bayesian methods. Each of these algorithms has its own technique. In
this manuscript, we only focus on the maximum likelihood as the main method for con-
structing phylogenetic trees. A bootstrap analysis is applied with each generated tree to
compute the fitness value. We conclude that producing phylogenetic trees supported by
bootstrap values can give to us a confident tree, so that, different TUs laying in the same
clade are biologically related.

II
CONTRIBUTIONS

39

CHAPTER 5

General Introduction

We now enter in the main contribution part of this manuscript.

The first chapter of this part, Chapter 6, investigates the problem to find the core and pan
genomes of a given set of chloroplastic sequences. Various approaches are evaluated,
based either on NCBI database or on DOGMA annotation tool.

We describe in chapter 7 an optimization pipeline using the genetic algorithm that can
efficiently optimize the searching space for well supported phylogenetic inference. In
other words, we deal with discovering homoplasy in phylogenetic reconstruction. This
is considered as a difficult computational problem, because the number of situations to
investigate dramatically increases with the number of core genes and taxa.

More precisely, the objective is to obtain a well-supported phylogenetic tree by using the
largest possible subset of core genes obtained previously. Indeed, if a well-supported
tree cannot be reached by taking all core genes, the first thing to investigate is to test
whether one or two particular genes are not responsible for this problem (by blurring the
phylogenetic signals). In order to find such a supported tree that uses the largest possible
subset of core genes, a genetic algorithm coupled with a lasso test is applied to identify
(and remove) blurring genes

This work is then extended in chapter 8 by integrating a discrete particle swarm opti-
mization method to provide the largest subset of sequences in order to obtain the most
supported species tree.

Our proposed pipeline has been applied to various families of plant species. More than
65% of phylogenetic trees produced by this pipeline have presented bootstrap values
larger than 95.

Finally, the last chapter 9 of this part proposes a first ancestral reconstruction algorithm.
It receives a well supported phylogenetic tree based on a large set of core genes, and
it puts gene contents at its leaves. Then all internal nodes until the root receive their
(ancestral) gene contents.

41

CHAPTER 6

Core-Genes Prediction Approaches

Due to the recent evolution of sequencing techniques, the number of available
genomes are rising steadily, leading to the possibility to make a large-scale genomic

comparison between sets of close species. An interesting question to answer is: what is
the common functionality genes of a collection of species. Or, conversely, to determine
what is specific to a given species when compared to other ones belonging to the same
genus or family. Investigating such problem means to find both core and pan genomes
of a collection of species, i.e., genes in common to all the species versus the set of
all genes in all species under consideration. This chapter presents some general and
heuristic methods for inferring such core and pan genomes, it summarizes three articles
published in international conferences [47, 48, 49].

6.1/ INTRODUCTION

In bioinformatics, identifying core genes may be of importance, for instance to understand
the shared functionality and specificity of a given set of species, or to construct their
phylogeny using curated sequences. Therefore, in this chapter we present methods to
determine both core and pan genomes of a large set of DNA sequences. However,
obtaining trustworthy core and pan genomes is not an easy task, leading to a significant
amount of computation, and requiring a rigorous methodology. This chapter is the basis
of our work, which is progressively presented in the next chapters.

More precisely, we provide three distinct methods in order to obtain the set of desire core
genome. A general overview of the entire proposed pipeline for core and pan genomes
production and exploitation is presented in Figure 6.1, which consists of three principle
stages: Genomes Annotation, Core Extraction, and Features Visualization.

As a starting point, the pipeline uses a DNA sequence database like NCBI’s Gen-
Bank [50], the European EMBL database [51], or the Japanese DDBJ one [52] for acquir-
ing target genomes. It is possible to obtain annotated genomes (DNA coding sequences
with gene names and locations) by interacting with these databases, either by directly
downloading annotated genomes delivered by these web sites, or by launching an anno-
tation tool on complete downloaded genomes. Obviously, this annotation stage must be of

43

44 CHAPTER 6. CORE-GENES PREDICTION APPROACHES

Figure 6.1: A general overview of the annotation-based approach

quality if we want to obtain acceptable core and pan genomes. Various cost-effective an-
notation tools [53] that produce genomic annotations have been designed recently, some
reputed ones being: DOGMA [54], CpBase [55], CpGAVAS [56], and CEGMA [57]. Such
tools usually use one out of the three following methods for finding gene locations in large
DNA sequences: alignment-based, composition-based, or a combination of both [57].
An alignment-based method is used when trying to predict a protein coding sequence
by aligning a genomic DNA sequence with a cDNA sequence coding an already known
homologous protein [57]. This approach is applied, for instance, in GeneWise [58]. The
alternative method, the composition-based one (also known as ab initio) is based on
probabilistic models of gene structure [59].

These tools will be used in our pipeline in order do find, in a second stage, the genes
that are commonly shared through the considered set of annotated genomes. Then,
a final step is to take advantage of the information produced during this core and pan
genome search. The feature visualization stage encompasses phylogenetic tree con-
struction using core genes, genes content evolution illustrated by core trees, functionality
investigations, and so on.

At the end of this chapter, a running example is proposed to demonstrate the relevance
of the suggested approaches.

6.2/ CORE GENOME EXTRACTION APPROACHES

We will detail three general approaches, published in various international confer-
ences [47, 48, 49], for eliciting core genome, which serve as the second stage of the
offered pipeline. The first approach uses similarities computed on predicted coding se-
quences, while the second one uses all the information provided during the annotation
stage. The third method takes the advantages from the first two methods by considering
gene names and sequences in order to find the target core genome. Indeed, such an-
notations can be used in various manners (based on gene names, gene sequences, and
protein sequences) to extract the core and pan genomes.

6.2.1/ SIMILARITY-BASED APPROACH

The first method, described below, considers a distance-based similarity measure on
gene’ coding sequences. Such an approach requires annotated genomes, like the ones

6.2. CORE GENOME EXTRACTION APPROACHES 45

provided by the NCBI website.

6.2.1.1/ THEORETICAL PRESENTATION

We start with the following preliminary definition:

Definition 4: Similarity Matrix

Let A = {A,T ,C,G} be the nucleotides alphabet, and A∗ be the set of finite words
on A (i.e., of DNA sequences). Let d : N = A∗ × A∗ → [0, 1] be a function called
similarity measure on A∗. Consider a given value T ′ ∈ [0, 1] called a threshold.
For all x, y ∈ A∗, we will say that x ∼d,T ′ y if d(x, y) 6 T ′.

Let be given a similarity threshold T ′ and a similarity measure d. The method begins by
building an undirected graph between all the DNA sequences g of the set of genomes as
follows: there is an edge between gi and g j if gi ∼d,T ′ g j is established. In other words,
vertices are DNA sequences and two sequences are connected with an edge if their
similarity is larger than a predefined threshold.

Remark 4: Graph connection limitation

This graph is not connected for sufficiently large threshold values.

An example of such a graph denoted as the “similarity” graph, is shown in Figure 6.2(a).
We thus say that two coding sequences gi, g j are equivalent with respect to the relation R
if both gi and g j belong to the same Connected Component (CC) of this similarity graph,
i.e., if there is a path between gi and g j in the graph. To say this in another way, if there is
a finite sequence s1, ..., sk of vertices (DNA sequences) such that gi is similar to s1, which
is similar to s2, etc., and sk is similar to g j (as shown in Figure 6.2(b)).

It is not hard to see that this relation is an equivalence relation whereas ∼ is not. Any
class for this relation is called a “gene” in this chapter, where its representatives (DNA se-
quences) are the “alleles” of this gene, such abuse of language being proposed to set
our ideas down. Thus this first method produces for each genome G, which is a set{
gG

1 , ..., g
G
mG

}
of mG DNA coding sequences, the projection of each sequence according to

π, where π maps each sequence into its gene (class) according to R. In other words,
a genome G is mapped into

{
π(gG

1), ..., π(gG
mG

)
}
. Note that a projected genome has no

duplicated gene since it is a set.

Consequently, the core genome (resp., the pan-genome) of two genomes G1 and G2 is
defined as the intersection (resp., as the union) of their projected genomes. We finally
consider the intersection of all the projected genomes, which is the set of all the genes
ẋ such that each genome has at least one allele in ẋ. This set will constitute the core
genome of the whole species under consideration. The pan-genome is computed simi-
larly as the union of all the projected genomes.

Remark 5: Major issue of gene prediction method

This first method requires the computation of all similarities among all allele se-
quences in all species under consideration. According to the number of organ-
isms and even with a focus on a specific family or function, this is a computation-
ally heavy operation.

46 CHAPTER 6. CORE-GENES PREDICTION APPROACHES

(a) Complete (fully connected) graph for given
coding sequences for T = 1.

(b) Amounts of generated connected compo-
nents when T = 0.5.

(c) No connected components when T = 0.

Figure 6.2: Example of similarity-based approach of two given genomes (G1,G2),
G1 has five coding sequences ({x1, x2, x3, x5, x6}) and G2 has six coding se-
quences ({y1, y2, y4, y6, y9, y10}). (a) The similarity graph. On each connected edge, there is
a similarity score between gi and g j. (b) Connected components obtained when T = 0.5.
(c) No connected components when T = 0.

6.2.1.2/ A FIRST CASE STUDY

For illustration purposes, we have considered in this chapter 99 genomes of chloroplasts
downloaded from GenBank database [50] as shown in Table 6.1. These genomes lie in
the eleven type of chloroplast families as shown in Figure 6.3. Two kinds of annotations
has been used, namely the ones provided by NCBI on the one hand, and the ones by
DOGMA on the other hand. DOGMA1, which stands for Dual Organellar GenoMe Anno-
tator, has already been evoked in this chapter. The choice of DOGMA is natural, as this

1DOGMA has been developed in 2004 at the University of Texas for annotating plant chloroplast and
animal mitochondrial genomes. This tool translates a genome in all six reading frames and then queries its
amino acid sequence database using BLAST (blastx [25]) with various ad hoc parameters.

6.2. CORE GENOME EXTRACTION APPROACHES 47

F. # Acc. No Scientific Name

B
ro

w
n

A
lg

ae

11

NC_001713.1 Odontella sinensis
NC_008588.1 Phaeodactylum tricornutum
NC_010772.1 Heterosigma akashiwo
NC_011600.1 Vaucheria litorea
NC_012903.1 Aureoumbra lagunensis
NC_014808.1 Thalassiosira oceanica
NC_015403.1 Fistulifera sp
NC_016731.1 Synedra acus
NC_016735.1 Fucus vesiculosus
NC_018523.1 Saccharina japonica
NC_020014.1 Nannochloropsis gadtina

F1 3
NC_000925.1 Porphyra purpurea
NC_001840.1 Cyanidium caldarium
NC_006137.1 Gracilaria tenuistipitata

G
re

en
A

lg
ae

17

NC_000927.1 Nephroselmis olivacea
NC_002186.1 Mesotigma viride
NC_005353.1 Chlamydomonas reinhardtii
NC_008097.1 Chara vulgaris
NC_008099.1 Oltmannsiellopsis viridis
NC_008114.1 Pseudoclonium akinetum
NC_008289.1 Ostreococcus tauri
NC_008372.1 Stigeoclonium helveticum
NC_008822.1 Chlorokybus atmophyticus
NC_011031.1 Oedogonium cardiacum
NC_012097.1 Pycnococcus provaseolii
NC_012099.1 Pyramimonas parkeae
NC_012568.1 Micromonas pusilla
NC_014346.1 Floydiella terrestris
NC_015645.1 Schizomeris leibleinii
NC_016732.1 Dunaliella salina
NC_016733.1 Pedinomonas minor

F2 3
NC_001319.1 Marchantia polymorpha
NC_004543.1 Anthoceros formosae
NC_005087.1 Physcomitrella patens

F3 2
NC_014267.1 Kryptoperidinium foliaceum
NC_014287.1 Durinskia baltica

F4 2
NC_001603.2 Euglena gracilis
NC_020018.1 Monomorphina aenigmatica

Fe
rn

s

5

NC_003386.1 Psilotum nudum
NC_008829.1 Angiopteris evecta
NC_014348.1 Pteridium aquilinum
NC_014699.1 Equisetum arvense
NC_017006.1 Mankyua chejuensis

F5 1 NC_007288.1 Emiliana huxleyi

F6 2
NC_014675.1 Isoetes flaccida
NC_006861.1 Huperzia lucidula

F. # Acc. No Scientific Name

A
ng

io
sp

er
m

s
45

NC_007898.3 Solanum lyopersicum
NC_001568.1 Epifagus virginiana
NC_001666.2 Zea Mays
NC_005086.1 Amborella trichopoda
NC_006050.1 Nymphaea alba
NC_006290.1 Panax ginseng
NC_007578.1 Lactuca sativa
NC_007957.1 Vitis vinifera
NC_007977.1 Helianthus annuus
NC_008325.1 Daucus carota
NC_008336.1 Nandina domestica
NC_008359.1 Morus indica
NC_008407.1 Jasminum nudiflorum
NC_008456.1 Drimys granadensis
NC_008457.1 Piper cenocladum
NC_009601.1 Dioscorea elephantipes
NC_009765.1 Cuscuta gronovii
NC_009808.1 Ipomea purpurea
NC_010361.1 Oenothera biennis
NC_010433.1 Manihot esculenta
NC_010442.1 Trachelium caeruleum
NC_013707.2 Olea europea
NC_013823.1 Typha latifolia
NC_014570.1 Eucalyptus
NC_014674.1 Castanea mollissima
NC_014676.2 Theobroma cacao
NC_015830.1 Bambusa emeiensis
NC_015899.1 Wolffia australiana
NC_016433.2 Sesamum indicum
NC_016468.1 Boea hygrometrica
NC_016670.1 Gossypium darwinii
NC_016727.1 Silene vulgaris
NC_016734.1 Brassica napus
NC_016736.1 Ricinus communis
NC_016753.1 Colocasia esculenta
NC_017609.1 Phalaenopsis equestris
NC_018357.1 Magnolia denudata
NC_019601.1 Fragaria chiloensis
NC_008796.1 Ranunculus macranthus
NC_013991.2 Phoenix dactylifera
NC_016068.1 Nicotiana undulata

G
ym

no
sp

er
m

s

7

NC_009618.1 Cycas taitungensis
NC_011942.1 Gnetum parvifolium
NC_016058.1 Larix decidua
NC_016063.1 Cephalotaxus wilsoniana
NC_016065.1 Taiwania cryptomerioides
NC_016069.1 Picea morrisonicola
NC_016986.1 Gingko biloba

where lineages F1, F2, F3, F4, F5, and F6 are Red Algae, Bryophytes, Dinoflagellates, Euglena, Haptophytes, and

Lycophytes respectively.

Table 6.1: List of chloroplast genomes of photosynthetic Eucaryotes lineages from NCBI

annotation tool is reputed and specific to chloroplasts.

Each genome is thus transformed in a list of coding sequences, which depends on the
chosen annotation tool. We have firstly evaluated the similarity score between each cou-
ple of sequences by using a Needleman-Wunch global alignment. The number of genes
in the core genome and the pan-genome has then been computed according to the graph
method detailed in the previous section. Obtained results with various threshold values
are represented in Table 6.2.

48 CHAPTER 6. CORE-GENES PREDICTION APPROACHES

Figure 6.3: Distribution of 99 chloroplast genomes.

(a) Results based on NCBI annotation. (b) Results based on DOGMA annotation.

Figure 6.4: Results obtained from genomes annotated based on (a) NCBI and (b)
DOGMA

Computations regarding this first method, using both data and measure described pre-
viously, were done on the supercomputing facilities of the Mésocentre of calculations of
Franche-Comté. Obtained results are presented in Figures 6.4(a) and 6.4(b) with respect
to various threshold values on Needleman-Wunsch similarity scores.

Remark 6: Threshold status

When the threshold is large, we obtain more connected components, but with
smaller sizes: a large number of genes, with a few numbers of alleles for each
of them. In other words, when the threshold is high, the pan-genome is large too
whereas the core-genome becomes either small or empty.

6.2. CORE GENOME EXTRACTION APPROACHES 49

Similarity-Based Approach
NCBI DOGMA

Threshold(%) core pan core pan genes NCBI genes DOGMA
50 1 163 1 118 1 1
55 5 692 2 409 3, 4, 19, 61, 69 1, 45
60 2 1032 2 519 4, 88 1, 57
65 1 1454 2 685 4 1, 66
70 0 2000 1 1116 10
75 0 2667 1 1781 19
80 0 3541 0 2730
85 0 4620 0 3945
90 0 5703 0 5181
95 0 7307 0 7302

100 0 8911 0 10132

Table 6.2: Size of core and pan genomes w.r.t. the similarity threshold

No matter the chosen annotation tool, this first approach suffers from producing too small
core genomes, for any chosen similarity threshold, compared to what is usually expected
by biologists. For NCBI, it is certainly due to a wrong determination of start and stop
codons in some annotated genomes. Indeed, due to the large variety of annotation tools
used during genomes submission on the NCBI server, some of them being old or defi-
cient, some genes may be truncated. And such truncated genes will not produce a sig-
nificant similarity score with their orthologuous genes found in other genomes. The case
of DOGMA, for its part, is more difficult to explain as. According to our experiments and
the state of the art, this gene prediction tool produces normally good results in average.

The best explanation of such an under-performance is that a few genomes are very spe-
cific and far from the remaining ones, in terms of gene contents, which leads to a small
number of genes in the global core genome. However, this first approach cannot help
us to determine which genomes we must remove from our data. To do so, we need to
introduce a second approach based on gene names: from the problematic gene names,
we will be able to trace back to the problematic genomes.

6.2.2/ ANNOTATION-BASED APPROACH

6.2.2.1/ USING GENES NAMES PROVIDED BY ANNOTATION TOOLS

Instead of using the sequences predicted by annotation tools, we can try to use the names
associated with these sequences, when available. The basic idea is thus to annotate all
the sequences using a given software, and to consider as a core gene each sequence
whose name can be found in all the genomes.

It is true that the NCBI annotations are of varying qualities, and sometimes such annota-
tions are totally erroneous. However this database contains human-curated annotations
of very good quality, and we wonder in this chapter if it is possible to detect and only
use such well-annotated and curated genes. To summarize the approach detailed in this
section: automatic DOGMA annotations are useful due to the automatic mechanism used
for identifying genes and associating names without mistakes, while NCBI contains very
good human-based annotations (together with errors). Our idea here is then to try to take

50 CHAPTER 6. CORE-GENES PREDICTION APPROACHES

the best of both automatic and humanly curated approaches. Let us finally remark that
DOGMA also predicts locations of ribosomal RNA (rRNA), while they are not in the gene
features file downloaded from NCBI.

We now investigate core and pan genome discovery using each of the two tools sepa-
rately, which will constitute the second approach detailed in this chapter. From now on we
will only consider annotated genomes: either “gene features” downloaded from the NCBI
or the result of DOGMA.

6.2.2.2/ NAMES PROCESSING

As DOGMA is a deterministic annotation tool, when a given gene is detected twice in
two genomes, the same name will be attached to the two coding sequences: DOGMA
spells exactly in the same manner the two gene names. So each genome is replaced by
a list of gene names, and finding the common core genes between two genomes simply
consists in intersecting the two lists of genes. The sole problem we have detected using
DOGMA on our chloroplasts is the case of the RPS12 gene: some genomes contain
RPS12_3end or RPS12_5end in DOGMA result. We have manually considered that all
these representatives belong to the same gene, namely to RPS12.

Dealing with NCBI names is more complicated, as various automatic annotation tools
have been used together with human annotations, and because there is no spelling rule
for gene names. For instance, NAD6 mitochondrial gene is sometimes written as ND6
while we can find RPOC1, RPOC1A, and RPOC1B in our chloroplasts. So if we sim-
ply consider NCBI data without treatment, intersecting two genomes provided as a list of
gene names often leads to duplication of misspelled genes. Automatic names homoge-
nization is thus required on NCBI annotations, the question being where to draw the line
on correcting errors in the spelling of genes? In this second approach, we propose to
automate only obvious modifications like putting all names in capital letters and removing
useless symbols as “_”, “(”, and “)”. Remark that such simple renaming process cannot
tackle with the situations of NAD6 or RPOC1 evoked above. To go further in automatic
corrections requires using edit distances like Levenshtein. However, such use will raise
false positives (different genes with close names will be homogenized). The use of edit
distances on gene names, together with a DNA sequence validation stage, will be inves-
tigated in a second methodology chapter.

In this section, we now consider that each genome is mapped to a list of gene names,
where names have been homogenized in the NCBI case.

6.2.2.3/ CORE GENES EXTRACTION

To extract core genes, we iteratively collect the maximum number of common genes
among genomes. Therefore, during this stage, an Intersection Core Matrix (ICM) is built.
ICM is a two-dimensional symmetric matrix where each row and each column corre-
sponds to one genome. Hence, an element of the matrix stores the Intersection Score
(IS): the cardinality of the core genes obtained by intersecting the two genomes. Math-
ematically speaking, if we have n genomes in local database, the ICM is a n × n matrix
whose each element scorei j satisfies:

scorei j = |gi ∩ g j| (6.1)

6.2. CORE GENOME EXTRACTION APPROACHES 51

where 1 ≤ i ≤ n, 1 ≤ j ≤ n, and gi, g j are genomes. The generation of a new core genome
obviously depends on the value of the intersection scores scorei j. More precisely, the
idea is to consider a pair of genomes such that their score is the largest element in the
ICM. These two genomes are then removed from the matrix and the resulting new core
genome is added for the next iteration. The ICM is then updated to take into account
the new core genome: new IS values are computed for it. This process is repeated until
no new core genome can be obtained. Figure 6.5 demonstrates the construction of ICM
matrix.

(a) Initialization. (b) Remove lower triangle. (c) Select max IS in each
row.

(d) Max IS selected. (e) Remove G1 and G2. (f) Add C0 = G1 ∩ G2 and
start new iteration.

(g) Select max IS. (h) Remove G3 and G4, re-
place them with C1.

(i) Select max IS.

Figure 6.5: Evolution of the Intersection core matrix.

We can observe that the ICM is relatively large due to the amount of species. As a conse-
quence, the computation of the intersection scores is both time and memory consuming.
However, since ICM is obviously a symmetric matrix we can reduce the computation over-
head by considering only its upper triangular part. The time complexity for this process
is: O(n.(n−1)

2), where n is the number of genes. Algorithm 1 illustrates the construction of
the ICM matrix and the extraction of the core genomes, where GenomesDB represents
the database storing all genome data. At each iteration, this algorithm computes the
maximum core genome from a set of genomes.

52 CHAPTER 6. CORE-GENES PREDICTION APPROACHES

Algorithm 1: Retrieve Maximum Intersection Score
Require: L← GenomesDB
Ensure: Scores← Max Core genome

for i← 1 : len(L) − 1 do
Gi ← genome Li

score← 0
core1 ← gene set of Gi

for j← i + 1 : len(L) do
G j ← genome L j

core2 ← gene set of G j

core← core1 ∩ core2
if |core| > score then

score← |core|
Gbest ← G j

end if
end for
Scores[score]← (Gi,Gbest)

end for
return max(Scores)

6.2.3/ QUALITY TEST APPROACH

Let us now present the last approach. We start by the following definition:

Definition 5: Quality genome

Let Gi be a set of n gene names in genome i annotated by NCBI, and G′i be a
set of m gene names in genome i annotated by DOGMA.
A core gene g from the set of core genes ci = Gi ∩ G′i , is called a quality gene

if and only if d(S Gi
g , S

G′i
g) > 90%, where d is the similarity score obtained after a

global alignment algorithm between sequence S Gi
g of gene g in Gi and sequence

S
G′i
g of gene g in G′i .

The quality genome Gquality
i contains the sequences of generated quality genes

from ci.

In Definition 5, we propose to take the best from NCBI and DOGMA annotations. This
latter is done by integrate a similarity distance on gene names in the pipeline (see Fig-
ure 6.6). Each similarity is computed between a name from DOGMA and a name from
NCBI, as shown in the Gene column in Figure 6.7.

The proposed distance is the Levenshtein one, which is close to the Needleman-Wunsch,
except that gap opening and extension penalties are equal. The same name is then set
to sequences whose NCBI names are close according to this edit distance. The risk is
now to merge genes that are different but whose names are similar (for instance, ND4
and ND4L are two different mitochondrial genes, but with similar names). To fix such
a flaw, the sequence similarity of intersected genes in a genome is also compared in
a second stage, using a Needleman-Wunsch global alignment algorithm. The genes
correspondence is simply ignored if this similarity is below a predefined threshold. We
call this operation, which will result in a set of quality genes, a “quality test”. A result from

6.2. CORE GENOME EXTRACTION APPROACHES 53

this quality test process is a set of quality genes. These genes will then constitute the
quality genomes as given in Definition 5. A list of generated quality genomes based on a
specific threshold will construct the intersection core matrix to generate the core genes,
core tree, and the phylogenetic tree after choosing an appropriate outgroup.

It is important to note that DNA sequence annotation raises a problem in the case of
DOGMA: contrary to what happens with gene features in NCBI, genes predicted by
DOGMA annotation might be fragmented in several parts. Such genes are stored in
the gene-vision file format produced by DOGMA, as each fragment is in this file with the
same gene name. A gene whose name is present at least twice in the file is either a du-
plicated gene or a fragmented one. Obviously, fragmented genes must be defragmented
before the DNA similarity computation stage (remark that such a defragmentation has
been already realized on NCBI website). The defragmentation consists in concatenating
all possible permutations (in the case of duplication), and keeping only the permutation
with the best similarity score in comparison with other sequences having the same gene
name, if this score is larger than the given threshold.

6.2.3.1/ CONSTRUCTION OF QUALITY GENOMES

The first step in producing annotated genomes is to find the set of common genes, that
is, genes sharing similar names and sequences, by using various annotation tools and
following the method described previously. Figure 6.9(a) presents the original amount

Figure 6.6: An overview of the pipeline.

54 CHAPTER 6. CORE-GENES PREDICTION APPROACHES

.

Figure 6.7: Part of the implementation of the third method, sequence comparison of the
common genes from NCBI and DOGMA. In this figure, each record have information of
selected common gene such as gene name, sequence length from NCBI and DOGMA
annotations, start and stop codons for both annotations, and the sequence matching
score value. Note that the gene column comes from producing common genes pro-
cess (see Figure 6.8(a))

of genes based on NCBI and DOGMA annotations. Two quality test routines then take
place to produce “quality genomes” as shown in Figure 6.8 by: (1) selecting all com-
mon genes based on gene names (see Figure 6.8(a)) and (2) checking the similarity
of sequences (see Figure 6.8(b)), which must be larger than or equal to a predefined
threshold (see Figure 6.9(a)).

Remark 7: Threshold usage

The predefined threshold is not used to determine the orthologuous genes, but
to to ensure that core genes from NCBI and DOGMA annotations are identical.

6.2. CORE GENOME EXTRACTION APPROACHES 55

(a) Producing sharing genes based on gene names.

(b) Producing quality genomes.

Figure 6.8: demonstration of quality test approach pipeline. (a) The process of extracting
quality genes based on gene features (e.g., gene names). (b) The process of predicting
the quality genomes based on quality genes from previous step.

6.2.3.2/ CORE AND PAN GENOMES

To produce core genomes based on quality control approach2, we need to know what are
the common genes that share almost the same name and sequence from different anno-
tation tools. Figure 6.11(a) shows the original amount of genes based on two annotation

2see http://members.femto-st.fr/christophe-guyeux/en/chloroplasts

http://members.femto-st.fr/christophe-guyeux/en/chloroplasts

56 CHAPTER 6. CORE-GENES PREDICTION APPROACHES

(a) Amount of genes based on NCBI and DOGMA w.r.t quality common genes.
DOGMA gives the larger number of genes.

(b) Core genomes sizes w.r.t. threshold. A maximal number of core genes does
not mean a good core genomes: we are looking for genes meeting biological
requirements.

Figure 6.9: (a) Genes coverage for a threshold of 60% and (b) core genomes sizes.

tools. We also calculate the correlation coefficient (r) by applying the usual formula:

rxy =

∑n−1
i=0 (xi − x̄)(yi − ȳ)√∑n−1

i=0 (xi − x̄)2∑n−1
i=0 (yi − ȳ)2

(6.2)

where x, y are sample data (nb. of genes from two annotation algorithms), x̄, ȳ are the
sample mean for x, y, and n is the number of genomes. We found that the correlation value
based on the number of genes produced by the two annotation algorithms is r = 0.57 (see
Figure 6.10(a)), which means that the two ways to obtain annotations are really different.

Two steps quality test routines have then been launched to produce “quality genomes”
and to enlarge the correlation: (1) select all common genes based on gene names, (2)

6.2. CORE GENOME EXTRACTION APPROACHES 57

(a) Correlation coefficient between predicted NCBI
and DOGMA genes.

(b) Correlation coefficient between predicted NCBI
and common genes.

(c) Correlation coefficient between predicted
DOGMA and common genes.

Figure 6.10: Correlation coefficient between predicted NCBI and DOGMA annotations
and predicted common genes

check the similarity of sequences, which must be larger than a predefined threshold.
Table 6.3 summarize the results of annotating 98 chloroplast genomes. In this table, X
and Y represents the number of genes obtained from NCBI and DOGMA annotations
from a given genome. X ∩ Y specifies the number of common genes (quality genes)
between genome Xi and genome Yi. The last two columns give the covering percentage
of common genes to the current ones.

Based on the values in Table 6.3, Figure 6.11(b) presents the genes coverage percent-
age between NCBI and DOGMA. The correlation value based on the number of genes
between the produced quality genomes and NCBI genomes is r = 0.6731 (see Fig-
ure 6.10(b)), and r = 0.9664 between produced quality genomes and DOGMA ones (see
Figure 6.10(c)). Such correlation coefficients illustrate the large variability in the quality
of NCBI annotations, and the average stability in the DOGMA ones. Obviously, these
differences between the annotation tools can affect the final core genome.

Remark 8: Possible origins of differences between NCBI and DOGMA

The number of tRNAs and rRNAs genes is very large in the case of DOGMA
while they are very low in the NCBI case. Additionally, unnamed or misspelled
genes are frequent in the NCBI annotations.

Figure 6.9(b) represents the amount of genes in the computed core genome of 98

58 CHAPTER 6. CORE-GENES PREDICTION APPROACHES

Genome X Y X ∩ Y NCBI (%) DOGMA (%)
Epif_virginiana 21 51 20 95.24 39.22
Eugl_gracilis 67 59 33 49.25 55.93
Mono_aenigmatica 62 67 42 67.74 62.69
Ostr_tauri 60 68 42 70 61.76
Floy_terrestris 74 73 43 58.11 58.9
Pycn_provasolii 68 71 44 64.71 61.97
Duna_salina 79 71 45 56.96 63.38
Schi_leibleinii 77 74 45 58.44 60.81
Stig_helveticum 79 73 45 56.96 61.64
Chla_reinhardtii 66 73 46 69.7 63.01
Gnet_parvifolium 63 88 46 73.02 52.27
Oedo_cardiacum 83 78 46 55.42 58.97
Nann_gaditana 118 86 51 43.22 59.3
Cusc_gronovii 59 86 52 88.14 60.47
Pedi_minor 79 82 52 65.82 63.41
Pseu_akinetum 103 81 52 50.49 64.2
Oltm_viridis 83 89 57 68.67 64.04
Emil_huxleyi 119 91 61 51.26 67.03
Aure_lagunensis 110 98 64 58.18 65.31
Pyra_parkeae 87 95 64 73.56 67.37
Fucu_vesiculosus 139 96 65 46.76 67.71
Phal_equestris 67 115 65 97.01 56.52
Trac_caeruleum 74 112 66 89.19 58.93
Euca_grandis 69 120 67 97.1 55.83
Char_vulgaris 104 109 69 66.35 63.3
Pice_morrisonicola 69 116 69 100 59.48
Lari_decidua 71 115 70 98.59 60.87
Cyan_caldarium 197 106 72 36.55 67.92
Equi_arvense 84 115 73 86.9 63.48
Jasm_nudiflorum 78 116 73 93.59 62.93
Mank_chejuensis 87 119 73 83.91 61.34
Popu_trichocarpa 91 117 73 80.22 62.39
Ambo_trichopoda 79 119 74 93.67 62.18
Isoe_flaccida 82 115 74 90.24 64.35
Marc_polymorpha 89 126 74 83.15 58.73
Sacc_japonica 139 107 74 53.24 69.16
Vauc_litorea 139 108 74 53.24 68.52
Zea_mays 105 118 74 70.48 62.71
Anth_formosae 88 115 75 85.23 65.22
Bamb_emeiensis 77 118 75 97.4 63.56
Cast_mollissima 77 120 75 97.4 62.5
Goss_darwinii 77 118 75 97.4 63.56
Ipom_purpurea 78 118 75 96.15 63.56
Olea_europaea 78 121 75 96.15 61.98
Ranu_macranthus 78 119 75 96.15 63.03
Sile_vulgaris 77 119 75 97.4 63.03
Taiw_cryptomerioides 83 117 75 90.36 64.1
Theo_cacao 76 119 75 98.68 63.03
Ceph_wilsoniana 82 120 76 92.68 63.33

Genome X Y X ∩ Y NCBI (%) DOGMA (%)
Dios_elephantipes 78 119 76 97.44 63.87
Frag_chiloensis 78 120 76 97.44 63.33
Lact_sativa 78 118 76 97.44 64.41
Magn_denudata 78 121 76 97.44 62.81
Mani_esculenta 78 118 76 97.44 64.41
Moru_indica 78 119 76 97.44 63.87
Oeno_biennis 78 120 76 97.44 63.33
Rici_communis 78 120 76 97.44 63.33
Wolf_australiana 77 120 76 98.7 63.33
Boea_hygrometrica 78 120 77 98.72 64.17
Bras_napus 79 117 77 97.47 65.81
Buxu_microphylla 79 119 77 97.47 64.71
Chlo_spicatus 79 121 77 97.47 63.64
Coff_arabica 79 121 77 97.47 63.64
Colo_esculenta 79 121 77 97.47 63.64
Dauc_carota 79 119 77 97.47 64.71
Drim_granadensis 79 121 77 97.47 63.64
Heli_annuus 79 118 77 97.47 65.25
Illi_oligandrum 79 121 77 97.47 63.64
Nand_domestica 79 121 77 97.47 63.64
Nico_undulata 103 120 77 74.76 64.17
Nymp_alba 79 120 77 97.47 64.17
Pana_ginseng 79 120 77 97.47 64.17
Pipe_cenocladum 79 120 77 97.47 64.17
Psil_nudum 95 124 77 81.05 62.1
Pter_aquilinum 84 117 77 91.67 65.81
Typh_latifolia 79 121 77 97.47 63.64
Viti_vinifera 79 120 77 97.47 64.17
Phoe_dactylifera 80 121 78 97.5 64.46
Phys_patens 85 122 78 91.76 63.93
Sesa_indicum 80 120 78 97.5 65
Sola_lycopersicum 80 120 78 97.5 65
Angi_evecta 85 119 79 92.94 66.39
Cyca_taitungensis 118 125 80 67.8 64
Gink_biloba 82 123 80 97.56 65.04
Hete_akashiwo 143 112 80 55.94 71.43
Hupe_lucidula 86 124 84 97.67 67.74
Neph_olivacea 147 130 89 60.54 68.46
Chlo_atmophyticus 113 131 91 80.53 69.47
Meso_viride 105 141 96 91.43 68.09
Ulna_acus 128 149 116 90.62 77.85
Odon_sinensis 138 155 119 86.23 76.77
Fist_DA0580 134 154 122 91.04 79.22
Thal_CCMP1005 142 152 124 87.32 81.58
Duri_baltica 127 156 125 98.43 80.13
Porp_purpurea 209 171 125 59.81 73.1
Phae_tricornutum 131 160 129 98.47 80.62
Kryp_foliaceum 139 167 136 97.84 81.44
Grac_liui 203 227 188 92.61 82.82

Table 6.3: Number of common genes obtained from NCBI and DOGMA annotations.

species. In this figure, two methods are used and compared using the same sample
of genomes: in the first one, the gene prediction approach presented previously in Sec-
tion 6.2.1 and published in [47, 48] has been used on genomes annotated by NCBI and
DOGMA, while on the other one the quality test approach also published in [48] is ap-
plied on genomes annotated by DOGMA. Different thresholds have been examined for
both approaches. The amount of final core genes within the two approaches is low, as
the species considered here are highly divergent. However even in that particular situa-
tion, it is obvious that the quality test approach outperforms the other one for each tested
threshold.

As stated previously, the main goal is to find the largest number of core genes compatible
with biological background related to chloroplasts. In the quality test approach case, one
genome (Micromonas pusilla, with accession number NC_012568.1) has been discarded
from the sample, as we observed that this genome always has the lowest number of
common genes in our selected data set. This latter can be explained by two reasons:
(1) either one or more genomes consists of non-functional genes, or (2) the diversity is
too large. With quality approach, an absence of genes in rooted core genome means

6.2. CORE GENOME EXTRACTION APPROACHES 59

(a) Sizes of genomes based on NCBI and DOGMA annotations.

(b) Percentage of genes coverage between NCBI and DOGMA.

Figure 6.11: Original and coverage sizes between NCBI and DOGMA genomes based on
a threshold of 60%. (a) The number of genes with DOGMA is larger than the ones with
NCBI, because the former generates more tRNAs and rRNAs genes than NCBI. (b) The
former outperforms the latter, as almost all genes in NCBI genomes have been covered
with common genes, while most of the DOGMA genes are ignored. However, correlation
of them with NCBI (after quality test) is 0.6731, while it is 0.9664 with DOGMA, this latter
being thus more accurate than NCBI.

that we have two or more subtrees of organisms completely divergent among each other.
Unfortunately, for the first approach with NCBI annotation, the generated cores did not
provide a good biological distribution of targeted genomes. More precisely, Micromonas
pusilla evoked previously is the only genome that totally destroys the final core genome
with NCBI annotations3, for both gene features and gene quality methods. Conversely, in
the case of DOGMA annotation, the distribution of genomes is biologically relevant.

6.2.3.3/ EXECUTION TIME AND MEMORY USAGE

In computational biology, time and memory consumptions are two important factors due
to high throughput operations among gene sequences. Figure 6.12 shows the amount of
time and memory needed to extract core genes using the two approaches: in the first one,
building the connected components depends on the construction of a distance matrix by

3NCBI cores are available on footnote 2.

60 CHAPTER 6. CORE-GENES PREDICTION APPROACHES

considering the similarity scores from the global alignment tool, which takes a long time
in the case of NCBI and DOGMA genomes.

Computation time is different for DOGMA and NCBI due to the size of genomes and
the amount of gene sequences that need to be compared: NCBI genomes have 8,992
genes, instead of 11,242 in DOGMA genomes. Figure 6.12(a) presents the execution
time needed for each method with respect to thresholds in range [50− 100]. The DOGMA
one requires more computational time (in minutes) for sequence comparisons, while gene
quality method needs a low execution time to compare quality genes. Let us notice that
once the “quality genomes” have been constructed, this method takes only 1.29 minutes
to extract core genes on a personal computer running Ubuntu 12.04 32 bits with 6 Giga
bytes of memory, and a quad-core Intel Core i5 processor with an operating frequency of
2.5 GHz.

(a) Time needed to execute each method.

(b) Memory usage (MB unit) (sizes usually available on personal com-
puters).

Figure 6.12: Execution time and memory usage w.r.t. threshold.

The second important factor is the amount of memory used by each methodology, this
one is highlighted in Figure 6.12(b). The low values show that the gene quality method
based on gene sequence comparisons presents the most reasonable memory usage
(when constructing quality genomes). It also depends on the size of genomes. Deter-
mining which method to choose depends on the user preferences: if we search for a fast

6.3. FEATURES VISUALIZATION 61

and semi-accurate method, then the second approach should be chosen. Otherwise, if
an accurate but relatively slow approach is desired, then the first method with DOGMA
annotations should be preferred.

6.3/ FEATURES VISUALIZATION

6.3.1/ THE CORE TREE

The last stage of the proposed pipeline is to take advantage of the produced core and pan
genomes for biological studies. As this key stage is not directly related to the methodology
for core and pan genomes discovery, we will only outline few tasks that can be done using
the produced data.

Figure 6.13: Part of a core genomes evolutionary tree (NCBI gene names)

Obtained results may be visualized by building a core genomes evolutionary tree, simply
called core tree or a dendrogram in some literature. Each node in this tree represents a
chloroplast genome of a predicted core, as depicted in Figure 6.13. In this figure, nodes
labels are of the form (Genes number:Family name_Scientific name_Accession number),
while an edge is labeled with the number of gene loss when compared to its parents (a
leaf genome or an intermediate core genome). Such numbers can answer questions like:
how many genes are different between two species? Which functionality has been lost
between an ancestor and its children? For complete core trees based either on NCBI
names or DOGMA ones, see Footnote 2.

A second application of such data is obviously to build accurate phylogenetic trees, using
tools like PHYML [60] or RAxML [61]. Consider, given a set of species, the least com-
mon core genome in a core tree that contains all shared common genes among these
species. To infer a phylogenetic tree, these core genes can be multi-aligned to serve as
an input to any phylogenetic tool mentioned above. Using core genomes here guarantee
to build the phylogenetic tree on the largest possible common coding sequences of the
considered species. An example of such a phylogenetic tree is provided in Figure 6.14, it
is investigated more deeply in the next subsection.

6.3.2/ A FIRST PHYLOGENETIC STUDY

Having a common set of DNA sequences shared by all the chloroplasts thanks to our
quality core genes approach, we can now focus on the first objective of our thesis, namely
to infer their phylogeny based on their core genome. At this point, we do not consider all

62 CHAPTER 6. CORE-GENES PREDICTION APPROACHES

Green_Algae_Chlorokybus_atmophyticus_NC_008822.1
Green_Algae_Mesotigma_viride_NC_002186.1
Green_Algae_Chara_vulgaris_NC_008097.1
Fern_Equisetum_arvense_NC_014699.1
Fern_Angiopteris_evecta_NC_008829.1
Fern_Pteridium_aquilinum_NC_014348.1
Fern_Psilotum_nudum_NC_003386.1
Fern_Mankyua_chejuensis_NC_017006.1
Lycopodiophyta_Huperzia_lucidula_NC_006861.1
Lycopodiophyta_Isoetes_flaccida_NC_014675.1
Gymnosperms_Cycas_taitungensis_NC_009618.1
Gymnosperms_Gingko_biloba_NC_016986.1
Gymnosperms_Cephalotaxus_wilsoniana_NC_016063.1
Gymnosperms_Taiwania_cryptomerioides_NC_016065.1
Gymnosperms_Gnetum_parvifolium_NC_011942.1
Gymnosperms_Picea_morrisonicola_NC_016069.1
Gymnosperms_Larix_decidua_NC_016058.1
Angiosperms_Illicium_oligandrum_NC_009600.1
Angiosperms_Magnolia_denudata_NC_018357.1
Angiosperms_Drimys_granadensis_NC_008456.1
Angiosperms_Chloranthus_spicatus_NC_009598.1
Angiosperms_Sesamum_indicum_NC_016433.2
Angiosperms_Boea_hygrometrica_NC_016468.1
Angiosperms_Jasminum_nudiflorum_NC_008407.1
Angiosperms_Olea_europea_NC_013707.2
Angiosperms_Coffea_arabica_NC_008535.1
Angiosperms_Cuscuta_gronovii_NC_009765.1
Angiosperms_Ipomea_purpurea_NC_009808.1
Angiosperms_Nicotiana_undulata_NC_016068.1
Angiosperms_Solanum_lyopersicum_NC_007898.3
Angiosperms_Helianthus_annuus_NC_007977.1
Angiosperms_Lactuca_sativa_NC_007578.1
Angiosperms_Trachelium_caeruleum_NC_010442.1
Angiosperms_Panax_ginseng_NC_006290.1
Angiosperms_Daucus_carota_NC_008325.1
Angiosperms_Silene_vulgaris_NC_016727.1
Angiosperms_Populus_trichocarpa_NC_009143.1
Angiosperms_Manihot_esculenta_NC_010433.1
Angiosperms_Ricinus_communis_NC_016736.1
Angiosperms_Castanea_mollissima_NC_014674.1
Angiosperms_Morus_indica_NC_008359.1
Angiosperms_Fragaria_chiloensis_NC_019601.1
Angiosperms_Gossypium_darwinii_NC_016670.1
Angiosperms_Theobroma_cacao_NC_014676.2
Angiosperms_Brassica_napus_NC_016734.1
Angiosperms_Oenothera_biennis_NC_010361.1
Angiosperms_Eucalyptus_NC_014570.1
Angiosperms_Vitis_vinifera_NC_007957.1
Angiosperms_Buxus_microphylla_NC_009599.1
Angiosperms_Nandina_domestica_NC_008336.1
Angiosperms_Ranunculus_macranthus_NC_008796.1
Angiosperms_Piper_cenocladum_NC_008457.1
Angiosperms_Zea_mays_NC_001666.2
Angiosperms_Bambusa_emeiensis_NC_015830.1
Angiosperms_Typha_latifolia_NC_013823.1
Angiosperms_Phoenix_dactylifera_NC_013991.2
Angiosperms_Phalaenopsis_equestris_NC_017609.1
Angiosperms_Dioscorea_elephantipes_NC_009601.1
Angiosperms_Wolffia_australiana_NC_015899.1
Angiosperms_Colocasia_esculenta_NC_016753.1
Angiosperms_Nymphaea_alba_NC_006050.1
Angiosperms_Amborella_trichopoda_NC_005086.1
Brypoytes_Anthoceros_formosae_NC_004543.1
Brypoytes_Marchantia_polymorpha_NC_001319.1
Brypoytes_Physcomitrella_patens_NC_005087.1
Green_Algae_Nephroselmis_olivacea_NC_000927.1
Green_Algae_Ostreococcus_tauri_NC_008289.1
Green_Algae_Pycnococcus_provasolii_NC_012097.1
Green_Algae_Pedinomonas_minor_NC_016733.1
Green_Algae_Oltmannsiellopsis_viridis_NC_008099.1
Green_Algae_Pseudoclonium_akinetum_NC_008114.1
Green_Algae_Dunaliella_salina_NC_016732.1
Green_Algae_Chlamydomonas_reinhardtii_NC_005353.1
Green_Algae_Schizomeris_leibleinii_NC_015645.1
Green_Algae_Stigeoclonium_helveticum_NC_008372.1
Green_Algae_Oedogonium_cardiacum_NC_011031.1
Green_Algae_Floydiella_terrestris_NC_014346.1
Euglena_Monomorphina_aenigmatica_NC_020018.1
Euglena_Euglena_gracilis_NC_001603.2
Green_Algae_Pyramimonas_parkeae_NC_012099.1
Haptophytes_Emiliana_huxleyi_NC_007288.1
Brown_Algae_Nannochloropsis_gadtina_NC_020014.1
Brown_Algae_Heterosigma_akashiwo_NC_010772.1
Brown_Algae_Saccharina_japonica_NC_018523.1
Brown_Algae_Fucus_vesiculosus_NC_016735.1
Brown_Algae_Vaucheria_litorea_NC_011600.1
Brown_Algae_Aureoumbra_lagunensis_NC_012903.1
Brown_Algae_Fistulifera_sp._NC_015403.1
Brown_Algae_Phaeodactylum_tricornutum_NC_008588.1
Dinoflagellates_Durinskia_baltica_NC_014287.1
Dinoflagellates_Kryptoperidinium_foliaceum_NC_014267.1
Brown_Algae_Thalassiosira_oceanica_NC_014808.1
Brown_Algae_Odontella_sinensis_NC_001713.1
Brown_Algae_Synedra_acus_NC_016731.1
Red_Algae_Porphyra_purpurea_NC_000925.1
Red_Algae_Gracilaria_tenuistipitata_NC_006137.1
Red_Algae_Cyanidium_caldarium_NC_001840.1
Outgroup

1e+02

1e+02

1e+02

1e+02

1e+02

62

1e+02

53

98

81

73

1e+02

1e+02

1e+02

1e+02

15

57

15

10

1e+02

1e+02

1e+02

58

1e+02

1e+02

33

64

60

58

1e+02

1e+02

1e+02

78

98

1e+02

1e+02

65

1e+02

1e+02

1e+02

1e+02

1e+02

1e+02

1e+02

1e+02

1e+02

1e+02

1e+02

1e+02

1e+02

1e+02

1e+02

1e+02

1e+02

1e+02

1e+02

1e+02

1e+02

1e+02

1e+02

98

1e+02

1e+02

97

1e+02

1e+02

85

91

1e+02

1e+02

72

28

1e+02

1e+02

1e+02

1e+02

1e+02

86

1e+02

1e+02

1e+02

1e+02

92

85

1e+02

1e+02

1e+02

1e+02

71

1e+02

1e+02

1e+02

96

1e+02

1e+02

Figure 6.14: Phylogenetic tree based on DOGMA annotation.

available chloroplastic genomes, but we still focus on the 5 core genes of the 98 plant
species used during our core and pan genome investigations.

To obtain such a tree, the RAxML [62] program has been employed to compute the phy-
logenetic maximum-likelihood (ML) function with the following setup: the General Time
Reversible model of nucleotide substitution with the Γ model of rate heterogeneity and

6.3. FEATURES VISUALIZATION 63

the hill-climbing optimization method, while the Prochlorococcus marinus (NC_009091.1)
cyanobacteria species is chosen as outgroup due to the supposed cyanobacteria origin
of chloroplasts. The tree representation is obtained with Geneious [63] based on the
RAxML information.

Figure 6.15: Amount of permutations w.r.t the number of core genes.

We first wonder whether the way to order the core genes in the alignment file may impact
the inferred phylogeny. Thus, in order to find a well supported phylogenetic tree from all
core genes, we have achieved the computation of 120 bootstrapped trees by considering
all possible permutations, using itertools package, of the 5 core genes (remark that having
a core genome larger than 7 genes leads to a searching space whose size explodes, see
Figure 6.15). Among all these trees, we have then selected the one with the largest value
of its lowest bootstrap b, this latter being denoted as the most accurate tree (MAT) in what
follows, after having verified that gene order has no effect on the supports.

The obtained MAT has a lowest bootstrap equal to b = 32, which is very low. To im-
prove this value, we have investigated in a second stage of experiments whether some
core genes impact the robustness of the tree, for instance because they are homoplasic
ones (see Table 6.4). In fact, when the core is large enough, it is possible to remove a few
of them that obviously break the supports according to the maximum likelihood inference.
After having systematically removing 1, 2, 3, and 4 genes, the best phylogenetic tree,
having its lowest bootstrap value equal to 35, was obtained with one gene loss.

The low improvement previously observed when removing some core genes suggests
that their number is not sufficient to produce a well-supported phylogenetic tree. There-
fore we decided for the second experiment to split the set of species in two and to work
with the core genome of the largest subset: 52 genomes lead to a core genome of
16 genes4 (Core_81 in the core tree available online). As expected, working with this
large core genome allows to really improve the lowest bootstrap value5, since by remov-
ing randomly 1, 2, 3, and 4 genes the resulting MAT has 55 for its lowest bootstrap value.
Figure 6.16 presents this best tree obtained after removing one gene (atpI). Let us no-
tice that, for large core genomes such a systematic approach is intractable in practice,
due to the dramatic number of core genes combinations to calculate (next chapters will
investigate more deeply this scaling problem).

4Core genes in Core_81: psbE, psbD, petG, psbF, psbA, psbC, rpl36, psbN, psbI, psbJ, atpH, psaJ, atpI,
atpA, psaA, and psaC.

5The lowest bootstrap value for 16 core genes is 15.

64 CHAPTER 6. CORE-GENES PREDICTION APPROACHES

Combinations
Core genes Permutations rem. gene1 rem. gene2 rem. gene3 rem. gene4

2 2 2 0 0 0
3 6 3 0 0 0
4 24 4 6 0 0
5 120 5 10 10 0
6 720 6 15 20 15
7 5040 7 21 35 35
8 40320 8 28 56 70
9 362880 9 36 84 126
10 3628800 10 45 120 210

Table 6.4: Amounts of trees w.r.t removing homoplasy genes.

Figure 6.16: Core_81 phylogenetic tree with 15 core genes (1 gene removed randomly).

Finally, the support of the best phylogenetic tree can be improved again by using the
whole knowledge inherited by all the constructed trees, that is, by merging all trees com-
puted when removing genes. SuperTripletes [64] is one of the methods that can infer a

6.4. DISCUSSION AND BIOLOGICAL EVALUATION 65

supertree from a collection of bootstrapping phylogenetic trees. This tool6 receives a file
that stores all bootstrap values. In this last experiment, phylogenetic trees with 1, 2, 3,
and 4 random gene loss have been concatenated in one file and transmitted to Super-
Tripletes. The obtained supertree with all taxa is provided in Figure 6.17. It can be seen
that the minimum bootstrap has been further improved to 64.

Figure 6.17: Supertree for Core_81 from 248 bootstrap phylogenetic trees after removing
1, 2, 3, or 4 genes randomly.

6.4/ DISCUSSION AND BIOLOGICAL EVALUATION

It is well known that the first plants’ endosymbiosis ended in a glorious diversification
of lineages comprising Red Algae, Green Algae, and Land Plants (terrestrial). Several
second endosymbioses occurred then: two involving a Red Algae and other heterotrophic

6Available on http://www.supertriplets.univ-montp2.fr/index.php

http://www.supertriplets.univ-montp2.fr/index.php

66 CHAPTER 6. CORE-GENES PREDICTION APPROACHES

eucaryotes and giving birth to both Brown Algae and Dinoflagellates lineages; another
involving a Green Algae and a heterotrophic eucaryote and giving birth to Euglens [65].

The interesting point with the produced core trees (especially the one obtained with
DOGMA, see 2) is that the organisms resulting from the first endosymbiosis are dis-
tributed in each of the lineages found in the chloroplast genome structure evolution. More
precisely, all Red Algae chloroplasts are grouped together in one lineage, while Green
Algae and Land Plant chloroplasts are all in a second lineage. Furthermore, organ-
isms resulting from the secondary endosymbioses are well localized in the tree: both the
chloroplasts of Brown Algae and Dinoflagellates representatives are found exclusively in
the lineage also comprising the Red Algae chloroplasts from which they evolved, while
the Euglens is related to Green Algae from which they evolved. This latter makes sense
in terms of biology, history of lineages, and theories of chloroplasts origins (and so pho-
tosynthetic ability) in different Eucaryotic lineages [65].

Interestingly, the sole organisms under consideration that possess a chloroplast (and
so a chloroplastic genome) but that have lost the photosynthetic ability (being para-
sitic plants) are found on the basis of the tree, and not together with their phylogenet-
ically related species. This latter means that functional chloroplast genes are evolu-
tionary constrained when used in the photosynthetic process, but lose their efficiency
rapidly when not used, as recently observed for a species of Angiosperms [66]. These
species are Cuscuta gronovii, an Angiosperm (flowering plant) at the base of the DOGMA
Angiosperm-Conifers branch, and Epifagus virginiana, also an Angiosperm, at the com-
plete basis of the DOGMA core tree.

Another interesting result is that Land Plants that represent a single sub-lineage originat-
ing from the large and diverse lineage of Green Algae in Eucaryotes history are present
in two different branches of the DOGMA tree, both associated with Green Algae: one
branch comprising the basal grade of Land Plants (mosses and ferns) and the second
one containing the most internal lineages of Land Plants (conifers and flowering plants).
Independently of their split in two distinct branches of the DOGMA tree, the Land Plants
always show a larger number of functional genes in their chloroplasts than the Green
Algae from which they emerged, probably meaning that the terrestrial way of life necessi-
tates more functional genes for an optimal photosynthesis than the marine one. However,
a more detailed analysis of selected genes is necessary to understand better the reasons
why such a distribution has been obtained.

Remark 9: Biological relevance of the results

All biologically interesting results are apparent only in the core tree based on
DOGMA, while they are not obvious in the NCBI one.

6.5/ CONCLUSION

In this chapter, we studied three methodologies for extracting core genes from a large set
of chloroplast genomes, and we developed python programs to evaluate them.

We firstly considered extracting core genomes by the way of comparisons (global align-
ment) of DNA sequences downloaded from NCBI database. However, this method failed
to produce biologically relevant core genomes, no matter the chosen similarity threshold,
probably due to annotation errors. We then considered to use the DOGMA annotation

6.5. CONCLUSION 67

tool to enhance the gene prediction process.

The second method consisted in extracting gene names either from NCBI gene features
or from DOGMA results. At the beginning an “intersection core matrix (ICM)” is built. In
this matrix, each coefficient store the intersection cardinality of the two genomes placed
at the extremities of its row and column. New ICMs are then successively constructed by
selecting the maximum intersection score (IS) in this matrix, removing each time the two
genomes having this score and adding the corresponding core genome in the next ICM
construction.

Finally, we have employed a third method named “quality test approach” to extract core
genes from a large set of chloroplastic genomes, and we compared it with the gene pre-
diction approach developed at the beginning of this chapter. A two stage similarity mea-
sure, on names and sequences, has thus been proposed for clustering DNA sequences
in genes, which merges the best results provided by NCBI and DOGMA. Results ob-
tained with this quality control test have finally been deeply compared with our previously
obtained results.

Core trees have been generated for each method, to investigate the distribution of chloro-
plasts and core genomes. The tree from second method, based on DOGMA, has re-
vealed the best distribution of chloroplasts regarding their evolutionary history. In par-
ticular, it appears that each endosymbiosis event is well branched in the DOGMA core
tree. Phylogenetic trees have finally been generated to investigate the distribution of
chloroplasts and core genomes. We performed intensive computations on the mésocen-
tre supercomputing facilities to produce the highest bootstrap valued tree by generating
all the trees resulting from different gene orders and random removing of genes in the
core genome. A supertree is then generated, leading to a quite accurate phylogenetic
tree for a large amount of plant species.

In next chapter, we will study the gene content of each given core genome, and phyloge-
netic relations between all these species will be investigated too.

CHAPTER 7

Inferring Phylogenetic Trees using Genetic Algorithm

We now consider that, given a set of complete chloroplastic genomes, we are able
to annotate them well and to extract their core genes. The next problem, in the

quest of the last universal common ancestor, is to use them to obtain a well-supported
phylogenetic tree.

The contribution of this chapter can be summarized as follows. We focus on situations
where a large number of genes are shared by a set of species so that, in theory, enough
data are available to produce a well-supported phylogenetic tree. However, a few genes
tell a different evolutionary scenario than the majority of sequences, leading to phyloge-
netic noise blurring the phylogeny reconstruction. In this chapter, we propose a pipeline
that attempts to solve such an issue by computing all phylogenetic trees that can be
obtained by removing at most one core gene. In the case where such a preliminary sys-
tematic approach does not solve the phylogeny, new investigation stages are added to
the pipeline, namely a Monte-Carlo based random approach and two invocations of a ge-
netic algorithm, separated by a Lasso test. The pipeline is finally tested on various sets
of chloroplast genomes. Note that this contribution has been presented and published
in [67], the international conference Algorithms for Computational Biology (AlCoB 2015).

7.1/ GENERAL PRESENTATION

The multiplication of complete chloroplast genomes should normally lead to the abil-
ity to infer trustworthy phylogenetic trees for plant species. Indeed, the existence of
trustworthy coding sequence prediction and annotation softwares specific to chloroplasts
(like DOGMA), with the right control of sequence alignment, and maximum likelihood or
Bayesian inference phylogenetic reconstruction techniques, should imply the capability to
determine accurately the sister relationship between species. More precisely, given a set
of close species, their core genome (the set of genes in common) can be as large and
accurately detected as possible to finally obtain a well-supported phylogenetic tree. How-
ever, all genes of the core genome are not necessarily constrained in a similar way: some
genes have a larger ability to evolve than other ones due to their lower importance. Such
minority genes tell their story instead of the species one, blurring so the phylogenetic

69

70CHAPTER 7. INFERRING PHYLOGENETIC TREES USING GENETIC ALGORITHM

information.

To obtain a phylogenetic tree with high support values, the deletion of these problematic
genes (which may result from homoplasy, stochastic errors, undetected paralogy, incom-
plete lineage sorting, horizontal gene transfers, or even hybridization) is an answer. To
do so, we propose to construct the phylogenetic trees that correspond to all the combina-
tions of core genes and to finally consider the tree that is as supported as possible while
considering as many genes as possible.

The major drawback of this solution is its prohibitive computational cost, since testing
all the possible combinations is totally intractable in practice (2n phylogenetic tree recon-
structions with n ≈ 100 core genes of plants belonging to the same order). Therefore,
we propose to remove the problematic genes without exhaustively testing all the com-
binations of genes. More precisely, our proposal is to combine various approaches to
extract promising subsets of core genes, encompassing systematic deletion of genes,
random selection of large subsets, statistical evaluation of gene effects, and genetic algo-
rithms (GAs) [68, 69]. These latters are efficient, robust, and adaptive search techniques
designed for solving optimization problems, which have the ability to produce suboptimal
solutions [70, 71, 72].

7.2/ PRESENTATION OF THE PROBLEM

Let us consider a set of chloroplast genomes that have been annotated using DOGMA.
We have then access to the core genome (genes present everywhere) of these species,
whose size is about one hundred genes when the species are close enough. For fur-
ther information on how we found the core genome, see Chapter 6. Sequences are then
further aligned with MUSCLE [28] and the RAxML [46] tool infers the corresponding phy-
logenetic tree. If this resulting tree is well-supported, then the process is stopped without
further investigations. Indeed, if all bootstrap values are larger than 95, then we can rea-
sonably consider that the phylogeny of these species is resolved, as the largest possible
number of genes has led to a very well supported tree.

In the case where some branches are not well-supported, we can wonder whether a
few genes can be incriminated in this lack of support. If so, we face an optimization
problem: find the most supported tree using the largest subset of core genes. Obviously,
a brute force approach investigating all possible combinations of genes is intractable, as
it leads to 2n phylogenetic tree inferences for a core genome of size n. To solve this
optimization problem, we propose a hybrid approach mixing a genetic algorithm with the
use of some statistical tests for discovering problematic genes. The initial population for
the genetic algorithm is built by both systematic and random pre-GA investigations. These
considerations led to the pipeline detailed in Figure 7.1, whose stages will be developed
thereafter.

7.3/ GENERATION OF THE INITIAL POPULATION

The objective is to obtain a phylogenetic tree with high-supporting values (applying boot-
strap analysis) by using the largest possible subset of genes. If this goal cannot be
reached by taking all core genes, the first thing to investigate is to check whether one
particular gene is responsible for this problem. Therefore we apply two preliminary stages

7.3. GENERATION OF THE INITIAL POPULATION 71

Figure 7.1: Overview of the proposed pipeline for phylogenies based on chloroplasts.

before applying genetic algorithm: the systematic stage and the random one.

The systematic stage consists to systematically compute all the trees we can obtain by
removing exactly one gene from the core genome, leading to n new phylogenetic trees,
where n is the core size (see Figure 7.2(a)). If, during this systematic approach, one
well-supported tree is obtained, then it is returned as the phylogeny of the species under
consideration. Conversely, if all obtained trees have at least one problematic branch,
then deeper investigations are required. However the systematic approach has reached
its limits.

Another preliminary stage to GA, called random stage, is then launched by investigating
two directions:

(a) Systematic mapping. (b) Random mapping.

Figure 7.2: Binary mapping operation overview. (a) Initial individuals obtained in system-
atic mode stage. Two kinds of individuals are generated. First, by considering all genes
in the core genome. Second, by omitting one gene sequentially depending on the core
length. (b) Initial individuals are generated randomly in random mode stage by omitting
2-10 genes randomly.

72CHAPTER 7. INFERRING PHYLOGENETIC TREES USING GENETIC ALGORITHM

1. Investigate deeply generated phylogenetic trees from systematic stage that have
high-supporting values from bootstrap analysis. In other words, when the loss of
one specific gene has led to a good tree, we try to improve it again by removing
another gene (n-2 possibilities for each specific gene).

2. Generate numerous phylogenetic trees that can be obtained by removing randomly
between 2 and 10 genes among the core genome.

In more details, the second direction of the random stage consists of a chosen number
of iterations (for instance 200), where for each iteration an integer k between 2 and 10
is randomly picked. This random number defines the number of genes which are then
randomly removed, and a phylogeny is inferred using the remaining genes. If during
these iterations, by chance, a very well supported tree is obtained, a stop signal is sent
to the master process and the obtained tree is returned.

However the number of cases explodes and we can only reasonably hope to investigate
a slight proportion of all possibilities: it is illusory to hope to investigate all reachable trees
by discarding 10% of a core genome having 100 genes. This explains why the genetic
algorithm has been proposed. This latter supposes first to have an initial population of
subset of core genes, which must be improved step by step.

And we now have enough data to build a good initial population for the genetic algorithm.
More precisely, using the n + 1 computed trees from the systematic mode to initialize the
population of the genetic algorithm results in a population which remains too small and
too homogeneous. Indeed, all these trees have been computed in the same way, each
inference being produced using 99% of the core genome (in systematic stage, we have
removed at most 1 gene in a core genome having approximately 100 genes). Thus, the
objective of the random stage is not really to find a well supported tree, but to increase
the diversity of the initial population (see Figure 7.2(b)).

Let us now explain the main part of the pipeline, that is, the genetic algorithm.

7.4/ GENETIC ALGORITHM

A genetic algorithm (GA) is a well-known metaheuristic algorithm which has been de-
scribed by a rich body of literature since its introduction [73, 74]. In the following, we will
only discuss the choices we made regarding operators and parameters. For further infor-
mation and applications regarding the genetic algorithm, see for example [68, 69, 75, 76].

7.4.1/ GENOTYPE AND FITNESS VALUE

Genes of the core genome are supposed to be lexicographically ordered. At each subset
s′ of the core genome corresponds thus a unique binary word w of length n: for each i
lower or equal to n (i ∈ {1, . . . , n}), wi is 1 if the i-th core gene is in s′, else wi is equal
to 0. At each binary word w of length n, we can associate its percentage p of 1’s and
the lowest bootstrap b of the phylogenetic tree we obtain when considering the subset of
genes associated to w. At each word w we can thus associate as fitness value the score
b + p, which must be as large as possible.

7.4. GENETIC ALGORITHM 73

Remark 10: parameters values in scoring function

We currently consider that the lowest bootstrap value b and the percentage of
genes p have the same importance in the scoring function. However, changing
the weight of each parameter may be interesting in deeper investigations.

7.4.2/ GENETIC PROCESS

Until now, binary words (genotypes) of length n that have been investigated are:

1. the word having only 1’s (systematic mode);

2. all words having exactly one 0 (systematic mode);

3. at least 2001 words having between 2 and 10 0’s randomly located (random mode).

To each of these words is attached its score b + p. This latter is used to select the 50
best words, or fittest individuals, in order to build the initial population (see the upper
part of Figure 7.3). After that, the genetic algorithm loops during 200 iterations or until
discovering a word such that its score is larger than 190 (corresponding approximately
to a case where at least 95% of core genes are used, which produces a tree whose
bootstraps are larger than 95).

During an iteration the algorithm applies the following steps to produce a new population
P′ given a population P (see Figure 7.4):

Figure 7.3: Random pair selections from given population.

• Repeat five times a random pickup of a couple of words and mix them using a
crossover approach. The obtained words are added to the population P, as de-
scribed in Section 7.4.3, resulting in population Pc.

• Mutate 5 words of the population Pc, the mutated words being added too to Pc, as
detailed in Section 7.4.4, leading to population Pm.

1200 is a parameter that has been specified according to our experiments: it seems to offer the best
trade-off between computation time and quality of the initial population.

74CHAPTER 7. INFERRING PHYLOGENETIC TREES USING GENETIC ALGORITHM

Figure 7.4: Outline of the genetic algorithm.

• Add 5 new random binary words having less than 10% of 0’s (see Section 7.4.5) to
Pm producing population Pr.

• Select the 50 best words in population Pr to form the new population P′.

Let us now explain with more details each step of this genetic algorithm.

7.4.3/ CROSSOVER STEP

Given two words w1 and w2, the idea of the crossover operation is to mix them, hoping
by doing so to generate a new word w having a better score (see Figure 7.5(a)). For
instance, if we consider a one-point crossover located at the middle of the words, for
i < n

2 , wi = w1
i , while for i > n

2 , wi = w2
i : in that case, for the first core genes, the choice

(to take them or not for phylogenetic construction) in w is the same than in w1, while the
subset of considered genes in w corresponds to the one of w2 for the last 50% of core
genes.

More precisely, at each crossover step, we first pick randomly an integer Ncrossover = k
where k < n

2 , and randomly again k different integers i1, . . . ik such that 1 < i1 < i2 < . . . <

ik < n. Then w1 and w2 are randomly selected from the population P, and a new word w is
computed as follows:

• wi = w1
i for i = 1, ..., i1,

7.4. GENETIC ALGORITHM 75

• wi = w2
i for i = i1 + 1, ..., i2,

• wi = w3
i for i = i2 + 1, ..., i3,

• etc.

Then the phylogenetic tree based on the subset of core genes labeled by w is computed,
the score S of w is deduced, and w is added to the population with the fitness value of
S attached to it. Note that, as a parametric option, one word instead of two is generated
from this step.

(a) Crossover operation. (b) Mutation operation.

Figure 7.5: (a) Two individuals were selected from given population. The first portion
from determined crossover position in the first individual is switched with the first portion
of the second individual. The number of crossover positions is determined by Ncrossover.
(b) Random mutations are applied depending on the value of Nmutation, changing randomly
gene state from 1 to 0 or vice versa.

7.4.4/ MUTATION STEP

In this step, we ask how small changes in a given subset of genes (removing and/or
adding few genes) may by chance improve the support of the associated tree. Similarly
speaking, we try here to improve the score of a given word by replacing a few 0’s by 1
and/or a few 1’s by 0 as shown in Figure 7.5(b).

In practice, an integer Nmutation = k where k 6 n
4 corresponding to the number of changes,

or “mutations”, is randomly picked. Then k different integers i1, . . . , ik lower or equal to n
are randomly chosen and a word w is randomly extracted from the current population. A
new word w′ is then constructed as follows: for each i = 1, ..., n,

• if i in {i1, . . . , ik}, then w′i = (wi + 1) mod 2 (the gene is mutated),

• else w′i = wi (no modification).

Again, the phylogenetic tree corresponding to the subset of core genes associated with
w′ is computed, and w′ is added to the population together with its score.

76CHAPTER 7. INFERRING PHYLOGENETIC TREES USING GENETIC ALGORITHM

7.4.5/ RANDOM STEP

In this step, new words having a large amount of 1’s are added to the population. Each
new word is obtained by starting from the word having n 1s, followed by k random selection
of 1s which are changed to 0, where k is an integer randomly chosen between 1 and 10.
The new word is added to the population after having computed its score thanks to a
phylogenetic tree inference.

7.5/ TARGETING PROBLEMATIC GENES USING STATISTICAL TESTS

7.5.1/ THE LASSO TEST

The Least Absolute Shrinkage and Selection Operator (LASSO) test [77] is an estima-
tor that takes place in the category of least-squares regression analysis. Like all the
algorithms in this group, it estimates a linear model which minimizes a residual sum with
respect to a variable λ. Let us explain how this variable can be used to order genes with
respect to their ability to modify the bootstrap support.

Definition 6: Configuration Matrix

Let X be a m × p matrix where each line Xi = (Xi1, . . . , Xi j, . . . Xip), 1 ≤ i ≤ m, is a
configuration where Xi j is 1 if gene number j is present inside the configuration
i and Xi j is 0 otherwise. For each Xi, let Yi be the real positive support value for
each problematic bootstrap b per topology and per gene.

According to [77], the Lasso test β = (β1, . . . , βi, . . . , βp) is defined by

β = argmin

m∑

i=1

Yi −

p∑
j=1

β jXi j

2

+ λ

p∑
j=1

|β j|

 . (7.1)

Note that, when λ has high value, beta is null vector. It is thus sufficient to decrease
the value of λ to observe that some components β j of vector beta are no more null.
Moreover, the sign of β j is positive (resp. negative) if the bootstrap support increases
(resp. decreases) with respect to j.

After having carried out 200 iterations of the genetic algorithm detailed above, it may oc-
cur that no well-supported tree has been produced. Various reasons may explain this
failure, like a lazy convergence speed, a large number of problematic genes (e.g., homo-
plasic ones, or due to stochastic errors, undetected paralogy, incomplete lineage sorting,
horizontal gene transfers, or hybridization), or close divergence species leading to very
small branch lengths between two internal nodes. However, we now have computed
enough word scores to determine the effects of each gene in topologies and bootstraps,
which allows to remove the few genes that break supports.

The idea is to investigate each topology that appeared enough times among previous
computations. In this study, we only consider topologies having a frequency of occurrence
larger than 10%. Remark that this percentage value is convenient for the given case
study, but it depends in fact on the number of obtained topologies. Then for each best
word of these best topologies, and for each problematic bootstrap in its associated tree,
we apply a Lasso test.

7.6. CASE STUDIES 77

7.5.2/ SECOND STAGE OF GENETIC ALGORITHM

Targeting problematic genes using Lasso approach can solve the issue of badly sup-
ported values in some cases, especially when only one support is lower than the prede-
fined threshold. In cases where at least two branches are not well supported, removing
genes that break the first support may or may not have an effect on the second prob-
lematic support. In other words, each of the two problematic supports can be separately
solved using Lasso investigations, but not necessarily both together.

However, the population has been improved, receiving very interesting words for each
problematic branch. Therefore, a last genetic algorithm phase is launched on the updated
population, in order to mix these promising words by crossover operations, hoping by
doing so to solve in parallel all of the badly supported values. This last stage runs until
either the resolution of all problematic bootstraps or the number of GA iterations reaches
a fixed value (set to 1000 in our simulations).

7.6/ CASE STUDIES

7.6.1/ PIPELINE EVALUATION BY VARIOUS GROUPS OF PLANT SPECIES

In this section, the proposed pipeline is tested on various sets of close plant species. An
example of approximately 50 subgroups (including on average from 12 to 15 chloroplasts
species) encompassing 356 plant species are presented in Table 7.1.

In this table, the column Occ represents the amount of generated phylogenetic trees from
the corresponding searching space for each group. The column c represents the number
of core genes included within each group. The # taxa column is the amount of species
corresponding to the considered group. b is the lowest value from bootstrap analysis.
The Terminus column contains the termination stage for each subgroup, namely: the sys-
tematic (1), random (2), or optimization (3) stage using genetic algorithm and/or Lasso
test. Finally, the Likelihood column store the likelihood value of the best phylogenetic tree
(i.e., according to the lowest bootstrap value b). A large occurrence value in this table
means that the associated p-value and/or subgroup has its computation terminated in ei-
ther penultimate or last pipeline stage. An occurrence of 31 is frequent due to the fact that
32 MPI threads (one master plus 31 slaves) have been launched on our supercomputer
facilities. Notice that the groups in Table 7.1 can be divided in four parts:

Some phylogenetic trees obtained for different chloroplast groups are shown in Figure 7.6.

78CHAPTER 7. INFERRING PHYLOGENETIC TREES USING GENETIC ALGORITHM

Group Occ. c # taxa b Terminus Likelihood Outgroup
Gossypium_group_0 85 84 12 26 1 -84187.03 Theo_cacao
Ericales 674 84 9 67 3 -86819.86 Dauc_carota
Eucalyptus_group_1 83 82 12 48 1 -62898.18 Cory_gummifera
Caryophyllales 75 74 10 52 1 -145296.95 Goss_capitis-viridis
Brassicaceae_group_0 78 77 13 64 1 -101056.76 Cari_papaya
Orobanchaceae 26 25 7 69 1 -19365.69 Olea_maroccana
Eucalyptus_group_2 87 86 11 71 1 -72840.23 Stoc_quadrifida
Malpighiales 422 78 10 96 3 -91014.86 Mill_pinnata
Pinaceae_group_0 76 75 6 80 1 -76813.22 Juni_virginiana
Pinus 80 79 11 80 1 -69688.94 Pice_sitchensis
Bambusoideae 83 81 11 80 3 -60431.89 Oryz_nivara
Chlorophyta_group_0 231 24 8 81 3 -22983.83 Olea_europaea
Marchantiophyta 65 64 5 82 1 -117881.12 Pice_abies
Lamiales_group_0 78 77 8 83 1 -109528.47 Caps_annuum
Rosales 81 80 10 88 1 -108449.4 Glyc_soja
Eucalyptus_group_0 2254 85 11 90 3 -57607.06 Allo_ternata
Prasinophyceae 39 43 4 97 1 -66458.26 Oltm_viridis
Asparagales 32 73 11 98 1 -88067.37 Acor_americanus
Magnoliidae_group_0 326 79 4 98 3 -85319.31 Sacc_SP80-3280
Gossypium_group_1 66 83 11 98 1 -81027.85 Theo_cacao
Triticeae 40 80 10 98 1 -72822.71 Loli_perenne
Corymbia 90 85 5 98 2 -65712.51 Euca_salmonophloia
Moniliformopses 60 59 13 100 1 -187044.23 Prax_clematidea
Magnoliophyta_group_0 31 81 7 100 1 -136306.99 Taxu_mairei
Liliopsida_group_0 31 73 7 100 1 -119953.04 Drim_granadensis
basal_Magnoliophyta 31 83 5 100 1 -117094.87 Ascl_nivea
Araucariales 31 89 5 100 1 -112285.58 Taxu_mairei
Araceae 31 75 6 100 1 -110245.74 Arun_gigantea
Embryophyta_group_0 31 77 4 100 1 -106803.89 Stau_punctulatum
Cupressales 87 78 11 100 2 -101871.03 Podo_totara
Ranunculales 31 71 5 100 1 -100882.34 Cruc_wallichii
Saxifragales 31 84 4 100 1 -100376.12 Aral_undulata
Spermatophyta_group_0 31 79 4 100 1 -94718.95 Mars_crenata
Proteales 31 85 4 100 1 -92357.77 Trig_doichangensis
Poaceae_group_0 31 74 5 100 1 -89665.65 Typh_latifolia
Oleaceae 36 82 6 100 1 -84357.82 Boea_hygrometrica
Arecaceae 31 79 4 100 1 -81649.52 Aegi_geniculata
PACMAD_clade 31 79 9 100 1 -80549.79 Bamb_emeiensis
eudicotyledons_group_0 31 73 4 100 1 -80237.7 Eryc_pusilla
Poeae 31 80 4 100 1 -78164.34 Trit_aestivum
Trebouxiophyceae 31 41 7 100 1 -77826.4 Ostr_tauri
Myrtaceae_group_0 31 80 5 100 1 -76080.59 Oeno_glazioviana
Onagraceae 31 81 5 100 1 -75131.08 Euca_cloeziana
Geraniales 31 33 6 100 1 -73472.77 Ango_floribunda
Ehrhartoideae 31 81 5 100 1 -72192.88 Phyl_henonis
Picea 31 85 4 100 1 -68947.4 Pinu_massoniana
Streptophyta_group_0 31 35 7 100 1 -68373.57 Oedo_cardiacum
Gnetidae 31 53 5 100 1 -61403.83 Cusc_exaltata
Euglenozoa 29 26 4 100 3 -8889.56 Lath_sativus

Table 7.1: Results of our pipeline approach on various families.

7.6. CASE STUDIES 79

(a) Cupressales group. (b) Pooideae group.

(c) Chlorophyceae group. (d) Rhodophyta group.

(e) Alveolata group. (f) Prasinophytes group.

(g) Fagales group. (h) Gentianales group.

80CHAPTER 7. INFERRING PHYLOGENETIC TREES USING GENETIC ALGORITHM

(i) Haptophyceae group. (j) Lycopodiidae group.

(k) Cryptophyta group. (l) Cucurbitales group.

Figure 7.6: Some phylogenetic trees obtained for different chloroplast groups.

• groups of species stopped in systematic stage with weak bootstrap values (which
is due to the fact that an upper time limit has been set for each group and/or sub-
groups, while each computed tree in these remarkable groups needed a lot of times
for computations),

• subgroups terminated during systematic stage with desired bootstrap value,

• groups or subgroups terminated in random stage with desired bootstrap value,

• finally, groups or subgroups terminated with optimization stages.

The majority of subgroups has its phylogeny satisfactorily resolved, as can be seen on all
obtained trees which are downloadable at http://meso.univ-fcomte.fr/peg/phylo.

In what follows, an example of one problematic group, namely the Apiales, is more deeply
investigated as a case study.

7.6.2/ INVESTIGATING Apiales ORDER

In our study, Apiales choroplasts consist of two sets, as detailed in Table 7.2: two species
belong to the Apiaceae family set (namely Daucus carota and Anthriscus cerefolium),
while the remaining seven species are in the Araliaceae family set. These latter are:
Panax ginseng, Eleutherococcus senticosus, Aralia undulata, Brassaiopsis hainla, Meta-
panax delavayi, Schefflera delavayi, and Kalopanax septemlobus. Chloroplasts of Apiales
are characterized by having highly conserved gene content and order [78].

7.6.2.1/ METHOD TO SELECT BEST TOPOLOGIES

We define T = [t0, t1, ..., tm′] as a list of m′ = 9053 obtained trees from multiple execution of
given pipeline, starting one time from systematic stage, and multiple times from random
stage. By comparing each tree ti in T with the other trees in T , a set of topologies is then
numbered and defined as W′ = {w′0,w

′
1,w

′
2, ...,w

′
n}, where w′i is the topology of number

http://meso.univ-fcomte.fr/peg/phylo

7.6. CASE STUDIES 81

Species Accession Genome Id Size nb.Genes Family
Daucus carota NC_008325.1 114107112 155911 bp 138 Apiaceae
Anthriscus cerefolium NC_015113.1 323149061 154719 bp 132 Apiaceae
Panax ginseng NC_006290.1 52220789 156318 bp 132 Araliaceae
Eleutherococcus senticosus NC_016430.1 359422122 156768 bp 134 Araliaceae
Aralia undulata NC_022810.1 563940258 156333 bp 135 Araliaceae
Brassaiopsis hainla NC_022811.1 558602891 156459 bp 134 Araliaceae
Metapanax delavayi NC_022812.1 558602979 156343 bp 134 Araliaceae
Schefflera delavayi NC_022813.1 558603067 156341 bp 134 Araliaceae
Kalopanax septemlobus NC_022814.1 563940364 156413 bp 134 Araliaceae

Table 7.2: Genomes information of Apiales. The number of genes represents the re-
stricted amount of genes.

i. Let f (x) be a function on W′ which represents the number of trees having x for their
topology. We say that a given topology w′i is selected as the best topology if and only if
f (w′i) ≥ lb where lb is the lower bound threshold computed by the following formula

lb =
m′ ∗ γ
100

γ is a constant value in [1, 10] and m′ is the size of T . Then w′i is stored as a best topology.

7.6.2.2/ TOPOLOGICAL ANALYSIS

In our case, γ = 8, which means that we exclude as noise the topologies representing less
than 8% from the given trees. By doing so, among the 43 topologies which were obtained
three of them can be considered as “best topologies” as their number of occurrences f (x)
were larger than lb = 724, see Table 7.3.

Figure 7.7: Best trees of topologies 0, 1, and 2.

82CHAPTER 7. INFERRING PHYLOGENETIC TREES USING GENETIC ALGORITHM

Topo.
b

A
v(b)

p
=

(p
′
∗100)
|c
|

p
′

A
v(p
′)

b
+

p
2

O
cc.

LG
I

M
G

I
B

estTree
S

tatus

0
88

56
64.66

75
88.23

76.33
5422

1
97

01111111101100111101101110010110110010100101001101010111101111010001110111111110111111111110111010010111000110001100
P

ass
1

96
76

44.83
52

65.02
70.41

2579
2

96
00001010010010000001000010011001011110000011001001110010111000010110010101111000110111001001100011001111101001011100

P
ass

2
100

68
99.14

115
72.66

99.57
787

0
98

111011
P

ass
3

72
50

44.83
52

59.24
58.41

89
5

95
01101001010110110101000011010000010000010100111111010000000110110100111100001001001000001111101101011100100010101001

Fail
4

49
29

35.34
41

54.67
42.17

48
6

98
00110101100000100100001000000001101110001011110010100110000000110010100100010110010100100111100100000000100001000100

Fail
5

61
48

25.00
29

50.67
43

31
22

94
00100010000000000001110000010101100100000010010000011000110001000000001110000000000000101101000000011000100001010000

Fail
6

80
48

34.48
40

43.27
57.24

21
8

100
01101101100110101101100010010011000001000101100010001001110001000010010010000001001000010001000000011000011001000100

Fail
7

63
53

53.45
62

44.59
58.22

11
31

88
10010000011001101011011100100011000011011001010001001011100101111110111101101110100001101001001100111011111010011110

Fail
8

62
50

68.10
79

48.92
65.05

8
35

92
10111111111110101101110001101000101000011111011111111101111011000101111000111111111101100110100110111111011111011010

Fail
9

56
47

43.97
51

32.11
49.98

4
65

93
11110101001101001011110001011001001100000100001011011000011000101000110100110001010000011111100000001000111011001010

Fail
10

46
35

29.31
34

40.95
37.66

4
52

82
01001100101000000000000001100001000001000101100001101000001010010000000011000000000000100101010001000111111011000010

Fail
11

63
55

62.07
72

38.36
62.54

4
44

92
01101101111011111111111101100001110001101110000010100011110011000110000111110111101011110111110111100010100111011011

Fail
12

28
24

45.69
53

38.36
36.85

4
63

85
00101001010111110101100011010101000000001100111111000010000110110100110100001001001000001101101101011100110000101011

Fail
13

35
30

18.97
22

16.95
26.98

3
94

99
00001111010000010010000001000000000000000000001000000110010010000000010010001000000100000010010000000000010010100000

Fail
14

52
44

44.83
52

35.92
48.41

3
63

96
00011110010011000000010111000011010010100111010100100110010110010010010100011110111000100001001111001111100001001100

Fail
15

46
43

22.41
26

31.61
34.21

3
61

90
00000100100000001100000000000010001010000000001000100010000000001000100010010001110101000000000010100010010010001010

Fail
16

24
21

29.31
34

21.55
26.66

2
82

100
10001000001010000011101000101101101000000010010000000011100100100000100000011001001001100001001000000010011001000000

Fail
17

45
41

27.59
32

25
36.29

2
84

90
00100001101000000001001000110000001100000000010001010010010101001010000000000010110110100010100000001000000101010001

Fail
18

47
30

42.24
49

36.21
44.62

2
67

81
00110100000010001001010001000011110101001110010001000010011011010010000101011010100110011000100010111100001011110101

Fail
19

38
31

30.17
35

28.02
34.09

2
81

86
10010000000000000010000000000111001001010101111100000101000000000100010100011101000100100001010001110100000100110000

Fail
20

28
25

61.21
71

44.83
44.60

2
45

83
11011001101101011110011011110110101111000111000110101111110110011010101011111011101111011111101010000010010110110000

Fail
21

17
17

18.97
22

18.97
17.98

1
94

94
00000000000000000000000100000000001011000000011000000010000100010010010100111010000000011000010000000001000000000011

Fail
22

4
4

0.86
1

0.86
2.43

1
115

115
0010

Fail
23

39
39

17.24
20

17.24
28.12

1
96

96
00000000000000000001000001000000000000001000011010100000001010000010000000000010001110000000001001000000010010100100

Fail
24

25
25

19.83
23

19.83
22.41

1
93

93
00000000000001001110100100010010000001000010000010000010001001000010001000010110000000010000000000000010000001000010

Fail
25

4
4

11.21
13

11.21
7.60

1
103

103
00000000000010000010010000100000000000000000000000000000000000001100001000000100000001100001001000000000000000000010

Fail
26

13
13

19.83
23

19.83
16.41

1
93

93
00001000001001000110000000100000000000000000000101000000010000000010000001001000110100100001000000011101100100000000

Fail
27

34
34

27.59
32

27.59
30.79

1
84

84
01000000000010100001011011000010000110000001011001100010000000000110110010001000000000000100100000000010110000111001

Fail
28

10
10

25.86
30

25.86
17.93

1
86

86
00101100100001000000000000010011000110000001000111000000100110000001010100001000001010010000000011001001000000000110

Fail
29

3
3

22.41
26

22.41
12.70

1
90

90
01011000000000001000100000000100000101000000000000100000000010000000101011101011000010110001100010000100010000000000

Fail
30

4
4

16.38
19

16.38
10.19

1
97

97
00001000000100000001000000100000100100000000000000100001000011001000000000100000000100011000010100000000000001100000

Fail
31

14
14

14.66
17

14.66
14.33

1
99

99
01010001000100011000000000000001000000100000001100000000010010000000000000100000000000100000001000000000010000000001

Fail
32

18
18

44.83
52

44.83
31.41

1
64

64
10101101010100110010011000101001000101000110011001000001000011000100101000101110101110110001111111000100111110010000

Fail
33

26
26

31.03
36

31.03
28.52

1
80

80
00010110000100100100000000100100100000000010110010100001000000010010010000011001100110000010000011010101100101100011

Fail
34

33
33

18.10
21

18.1
25.55

1
95

95
00000100110100100001001010000011100000000000100000000011000010000000000000000001000000000001010010000000010000000010

Fail
35

46
46

39.66
46

39.66
42.83

1
70

70
00011001100101110000010010010000010010110110110111000011001111010000000110001110000000100100101110110000010001010001

Fail
36

9
9

15.52
18

15.52
12.26

1
98

98
00110100000000000101000100000000100010000000000000000000010000000000010110000000010001000000100000000000000001100001

Fail
37

35
35

42.24
49

42.24
38.62

1
67

67
01000101100010110010011001111101101011100101000010000100010000110101110000110000101111001111100100001000010010000010

Fail
38

5
5

15.52
18

15.52
10.26

1
98

98
00000000100001000000000000010010000100000000000010000000100010000000000010000000000000010010000001011000010100010100

Fail
39

38
38

25.86
30

25.86
31.93

1
86

86
10000001100000000001110100000000001011011100010001000000000101010000110000000001001000001000100001111101000000000000

Fail
40

23
23

16.38
19

16.38
19.69

1
97

97
10000000000000001001010000000100000000000110000000001000000000010000010001000001000000000000000001001100000110110000

Fail
41

11
11

15.52
18

15.52
13.26

1
98

98
00011000000010100010000000000000100000010000001110000000000100000001010010100000000000000000000100000000000000100010

Fail
42

14
14

15.52
18

15.52
14.76

1
98

98
00011000010001000000101000000010100001001000000000100000100000000000000000111000000000000000000000000000110000000010

Fail

Table
7.3:

Inform
ation

regarding
obtained

topologies
w

here
|c
|
=

116,and
lb

=
724.

7.6. CASE STUDIES 83

In this table, p′ is the count of 1’s in each word, while p is the percentage of gene contents.
|c| is the cardinality of the set of core genes (the size of the core genome), and b is the
lowest bootstrap value. Topologies 0 and 1 are delivered from optimization stages when
the desired bootstrap value is set to 96, while topology2 is obtained from the systematic
stage when we increase the desired bootstrap to 100. Note that Min.Bootstrap b in the
table is larger than Avg(b), as the former represents the lowest bootstrap value of the best
tree in the given topology, while Avg.Bootstrap (Avg(b)) consists of the average lowest
bootstrap in all trees having this topology. LGI is the lowest number of omitted genes and
MGI is the maximum number of omitted genes within given topology. The best obtained
phylogenetic trees from selected topologies are provided in Figure 7.7.

As it can be noted, only 3 of the 43 obtained topologies contain trees whose lowest
bootstrap is larger than 87, namely the topologies number 0, 1, and 2. It is not so easy
to make the decision, since all selected trees are very close to each other with small
differences. The only notable difference between topologies 0 and 1 is the taxa position
of Kalo_septemlobus and Meta_delavayi. In the same way, there is only one difference
between topologies 0 and 1 with 2: grouping the same two taxa of Kalo_septemlobus
and Meta_delavayi. Different comparisons on trees provided with selected topologies are
summarized in Figure 7.8.

(a) (b)

(c) (d)

Figure 7.8: Different comparisons of the topologies w.r.t the amount of removed genes:
the number of disregarded genes in these figures is specified by n

3 where n is the number
of core genes. (a) Number of trees per topology, (b) number of trees whose lowest boot-
strap is larger than or equal to 80, (c) lowest bootstrap in best trees, and (d) the average
of lowest bootstraps.

84CHAPTER 7. INFERRING PHYLOGENETIC TREES USING GENETIC ALGORITHM

A new question needs to be answered: which genes are responsible for changing the
tree from topology0 to topology1, or to topology2? Deep investigations are still needed in
future work to discover the subset of genes in groupA, groupB, and groupC that change
one tree topology to another one (see Figure 7.7).

7.7/ CONCLUSION

In this chapter, five essential pipeline stages have been applied for inferring trustworthy
phylogenetic trees from various plant groups. We have verified that inferring a phyloge-
netic tree based on either the full set or some subsets of common core genes does not
always lead to sufficient supports in phylogenetic reconstruction. In both systematic and
random stages, many trees have been generated based on omitting some genes. When
the desired score is not reachable, a genetic algorithm is then applied inside two specific
stages using previously generated trees, to find new optimized solutions after performing
crossover and mutation operations. Furthermore, we applied a statistical lasso test for
identifying and removing systematically blurring genes, discarding so those which have
the worst impact on supports.

We have tested this pipeline on 322 different plant groups, where 63 of them are real
families while the remaining ones are random species, these latter playing the role of
skeletons when reconstructing the supertree. A case study regarding Apiales order has
been analyzed, and three “best” topologies stand out from the 43 obtained ones. In the
next chapter, in order to reconstruct the phylogenetic tree for chloroplasts and to apply
ancestral investigation on it, we plan to deepen our analysis by investigating another
artificial intelligence approach instead of genetic algorithms, namely the particle swarm
optimization.

CHAPTER 8

Inferring Phylogenetic Trees using DPSO

In the previous chapter, we shown how to extract the largest subset of core sequences
in order to obtain the most supported species tree. Due to computational complexity of

such a task, we have proposed a pipeline based on genetic algorithm. We now propose,
for the sake of comparison, a distributed Binary Particle Swarm Optimization (DPSO).
This work is dedicated to the core genes of Rosales order, but it can be applied to any
other species. This chapter was accepted and presented in the 12th international confer-
ence on Computational Intelligence methods for Bioinformatics and Biostatistics (CIBB
2015, [79]).

8.1/ DISCRETE PARTICLE SWARM OPTIMIZATION

Particle Swarm Optimization (PSO) is a stochastic optimization technique developed by
Eberhart and Kennedy in 1995 [80]. The most recent update of this study was realized
by Kennedy in 2010 [81]. PSOs have been successfully applied in function optimization,
artificial neural network training, and fuzzy system control. Basically, each particle follows
a very simple behavior which consists in learning from the success of neighboring parti-
cles, which are also called individuals. An emergent behavior enables individual swarm
members to take benefit from the discoveries or from previous experiences of the other
members that have obtained more accurate solutions. PSO is thus a stochastic optimiza-
tion method that relies on an iterative evolution of a set (the swarm) of candidate solutions
in the shape of individuals. Particles move in the solution space and follow the current
optimal individual. In the case of the standard binary PSO model [82], the particle posi-
tion is a vector of N parameters that can be set as “yes” or “no”, “true” or “false”, “include”
or “not include”, etc. (binary values). A function associates to such kind of vector a real
number score according to the optimization problem. The objective is then to define a
way to move the particles in the N dimensional binary search space so that they produce
the optimal binary vector w.r.t. the scoring function.

In details, each particle i is thus represented by a binary vector Xi (its position). Its
length N corresponds to the dimension of the search space, that is, the number of binary
parameters to investigate. An 1 in coordinate j in this vector means that the associ-

85

86 CHAPTER 8. INFERRING PHYLOGENETIC TREES USING DPSO

ated j-th parameter is selected. A swarm of n particles is then a list of n vectors of
positions (X1, X2, . . . , Xn) together with their associated velocities (V1,V2, ...,Vn), which are
N-dimensional vectors of real numbers between 0 and 1. These latter are initially set
randomly. At each iteration, the new velocity is computed as follows:

Vi(t + 1) = u.Vi(t) + φ1(Pbest
i − Xi) + φ2(Pbest

g − Xi) (8.1)

where u, φ1, and φ2 are weighted parameters setting the level of each 3 trends for the
particle, which are respectively to continue in its adventurous direction, to move in the
direction of its own best position Pbest

i , or to follow the gregarious instinct to the global
best known solution Pbest

g . Both Pbest
i and Pbest

g are obtained according to the scoring
function.

The new position of the particle is then obtained using the equation below:

Xi j(t + 1) =

1, if ri j ≤ Sig(Vi j(t + 1)),
0, otherwise,

(8.2)

where ri j is a chosen threshold that depends on both the particle i and the parameter j,
while the Sig function which operates as selection criterion is the sigmoid one in [82], that
is:

Sig(Vi j(t + 1)) =
1

1 + e−Vi j(t+1) . (8.3)

8.2/ APPLICATION TO PHYLOGENY

Let us consider, for illustration purpose, a set of chloroplast genomes of Rosales, which
has already been analyzed in the previous chapter using an hybrid genetic algorithm and
Lasso test approaches [67]. We sampled 9 ingroup species and 1 outgroup of (Mol-
lissima), see Table 8.1 for details, which have been annotated using DOGMA. We can
then compute the core genome (genes present everywhere), whose size is equal to 82
genes, by using for instance the methods described in Chapter 6. After having aligned
them using MUSCLE, we can infer a phylogenetic tree using RAxML [62], as described
in Chapter 4. If all bootstrap values are larger than 95, then we can reasonably consider
that the Rosales phylogeny is resolved, as the largest possible number of genes has led
to a very well supported tree.

In case where some branches are not well supported, we can wonder whether a few
genes can be incriminated in this lack of support, for a large variety of reasons already
listed in previous chapter, which encompass homoplasy, stochastic errors, undetected
paralogy, incomplete lineage sorting, horizontal gene transfers, or even hybridization. As
previously stated, trying to find these blurring genes lead to an optimization problem,
which is to find the largest subset of core genes that lead to the tree of largest support
values. Obviously, a brute force approach investigating all possible combinations of core
genes is practically intractable (2N phylogenetic trees for N core genes, with N = 82 for
Rosales).

As previously, genes of the core genome are supposed to be lexicographically ordered.
Each subset s′ of the core genome is thus associated with a unique binary word w of
length n: for each i, 1 ≤ i ≤ n, wi is 1 if the i-th core gene is in s′ and 0 otherwise (see
Figure 8.1).

8.2. APPLICATION TO PHYLOGENY 87

Species Accession Seq.length Family Genus
Chiloensis NC_019601 155603 bp Rosaceae Fragaria
Bracteata NC_018766 129788 bp Rosaceae Fragaria
Vesca NC_015206 155691 bp Rosaceae Fragaria
Virginiana NC_019602 155621 bp Rosaceae Fragaria
Kansuensis NC_023956 157736 bp Rosaceae Prunus
Persica NC_014697 157790 bp Rosaceae Prunus
Pyrifolia NC_015996 159922 bp Rosaceae Pyrus
Rupicola NC_016921 156612 bp Rosaceae Pentactina
Indica NC_008359 158484 bp Moraceae Morus
Mollissima NC_014674 160799 bp Fagaceae Castanea

Table 8.1: Genomes information of Rosales species under consideration

Figure 8.1: Core genes in lexicographical order. Each gene has two possible binary
states: either present (1) or absent (0).

Any n-length binary word w can be associated with its percentage p of 1’s and the lowest
bootstrap b of the phylogenetic tree obtained when considering the subset of genes as-
sociated to w. Each word w is thus associated with a fitness score value b+p

2 which must
be as large as possible. Initial binary individuals are shown in Figure 8.2.

Figure 8.2: Binary words w where the state of each gene in w is randomly selected.

Back in the DPSO context, the search space is then {0, 1}N . Each node of this N-cube
is associated with the set of following data: its subset of core genes s′, the deduced
phylogenetic tree, its lowest bootstrap b and the percentage p of considered core genes,

88 CHAPTER 8. INFERRING PHYLOGENETIC TREES USING DPSO

and, finally, the score is computed as:

S =
b + p

2
(8.4)

Remark 11: Close N-cube nodes

Two close nodes of the N-cube have two close percentages of core genes.

We thus have to construct two phylogenies based on close sequences, leading to a high
probability to the same topology with close bootstrap. In other words, the score remains
essentially unchanged when moving from a node to one of its neighbors. It allows to find
optimal solutions using approaches like PSO.

Algorithm 2: PSO algorithm
population← 10, maxiter ← 10, iter ← 1
for each particle in population do

particle[position]← [randint(0, 1) for each gene in core genome]
particle[velocity]← [rand(0, 1) for each gene in core genome]
particle[score]← 0
particle[best]← Empty list

end for
f itness← 0, b← 0, p← percentage of gene contents
u← calculate initial inertia value from equation (8.5)

while f itness < S and iter < Maxiter do
for each particle in population do

Calculate new_ f itness
if new_ f itness > f itness then

particle[score]← new_ f itness
particle[best]← particle[position]
b← min(bootstrap of particle[position])

end if
end for
f itness← max(particle[score])
Gbest ← position[Max(Particle[score]in population)]
Update the inertia weight u from equation (8.5)

for each particle in population do
Calculate particle velocity according to Equation (8.1)

Update particle position according to Equations (8.3) and (8.2)

end for
iter ← iter + 1

end while

Initially, the L (set to 10 in our experiments) particles are randomly distributed among all
the vertices (binary words) of the N-cube that have a large percentage of 1. The objective
is then to move these particles in the cube, hoping that they will converge to an optimal
node. At each iteration, the particle velocity is updated according to the fitness and its
best position. It is influenced by constant weight factors according to Equation (8.1).

u = umax −
umax − umin

Imax
∗ Icur (8.5)

8.3. EXPERIMENTAL RESULTS AND DISCUSSION 89

In this one, φ1 = c1.r1 and φ2 = c2.r2, where we have set c1 = 1 and c2 = 1. r1, r2 are
random numbers between 0.1 and 0.5, and u is the inertia weight whose initial value is
determined by Equation (8.5), as presented in [83]. In this equation, umax and umin are the
boundaries for u, which are set to 0.9 and 0.4 respectively. Imax is set to 10, and Icur is
equal to iter values. This latter determines the contribution rate of a particle’s previous
velocity to its velocity at the current time step.

To increase the number of included components in a particle, we reduced the interval
of Equation (8.1) to [0.1, 0.5]. For instance, if the velocity Vi of an element is equal to
0.511545 and r = 0.83, then Sig(0.51) = 0.62. So r > Sig(Vi) and this will lead to 0 in the
vector elements of the particle. By minimizing the interval we increase the probability of
having r < Sig(Vi), and this will lead to more 1s, which means more included elements in
the particle. A large inertia weight facilitates a global search while a small inertia weight
tends more to a local investigation [84].

Remark 12: Inertia Weight

On the one hand, a larger value of u allows a deep exploration of areas, on the
other hand a small one promotes exploitation of areas.

This is why Eberhart and Shi suggested to decrease u over time, typically from 0.9 to 0.4,
thereby gradually changing from exploration to exploitation.

Finally, each particle position is updated according to Equation (8.2), see Algorithm 2 for
further details. In this algorithm, the particle is defined by its position (a binary word) in
the cube together with its velocity (a real vector).

8.3/ EXPERIMENTAL RESULTS AND DISCUSSION

8.3.1/ EXPERIMENTAL PROTOCOL AND RESULTS

We have implemented the proposed DPSO algorithm on the Mésocentre de calculs su-
percomputer facilities of the University of Franche-Comté. Investigated Rosales species
are listed in Table 8.1. 10 swarms having a variable number of particles have been
launched 10 times, with c1 = 1, c2 = 1, and u linearly decreasing from 0.9 to 0.4.

Removed
Swarm genes b(%) p(%) (p + b)/2

1 4 73 95.1 84.05
2 6 76 92.7 84.35
3 20 88 75.6 81.80
4 52 89 36.6 62.8
5 3 72 96.3 84.15
6 19 92 76.8 84.40
7 47 92 42.7 67.35
8 9 74 89 81.50
9 10 73 87.8 80.40

10 13 84 84.1 84.05

Table 8.2: Best tree in each swarm.

90 CHAPTER 8. INFERRING PHYLOGENETIC TREES USING DPSO

The obtained results are summarized in Table 8.2 that contains, for each 10 runs of each
10 swarms, the number of removed genes and the minimum bootstrap of the best tree.

Remark 13: Bootstrap value vs removing genes

Some bootstraps are not so far from the intended ones (larger than 95), whereas
the number of removed genes are in average larger than what we desired.

We computed the sum of the number of occurrences in Table 8.3, which is only equal to
715 trees (after deleting frequencies). In this table, we obtained 7 unique topologies after
either convergence or maxIter iterations. But, we kept only the ones that have a good min-
imum bootstrap and a low omitted gene. Only 3 of them have occurred a representative
number of time, namely Topologies 0, 2, and 4, which are illustrated in Figure 8.4.

Topology Swarms b p Occurrences
0 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 92 63 568
1 1, 2, 3, 4, 5, 6, 10 63 45 11
2 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 76 67 55
3 8, 1, 2, 3, 4 56 41 5
4 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 89 30 65
5 1, 3, 4, 5, 6, 9 71 33 9
6 5, 6 25 45 2

Table 8.3: Best topologies obtained from the generated trees. b is the lowest bootstrap
of the best tree having this topology, while p is the number of considered genes to obtain
this tree.

These three topologies are almost well supported, except in a few branches. According to
Figure 8.2, the differences in these topologies are based on the sister relationship of two
species named Fragaria vesca and Fragaria bracteata, and on the relation between Pen-
tactina rupicola and Pyrus pyrifolia. Due to its larger score and number of occurrences,
we tend to select Topology0 as the best representative of the Rosale phylogeny.

Figure 8.3: Average fitness of Rosales order

8.3. EXPERIMENTAL RESULTS AND DISCUSSION 91

(a
)

T
op

ol
og

y 0
(b

)
T

op
ol

og
y 4

(c
)

T
op

ol
og

y 2

Fi
gu

re
8.

4:
B

es
to

bt
ai

ne
d

to
po

lo
gi

es
fo

rR
os

al
es

or
de

r.

92 CHAPTER 8. INFERRING PHYLOGENETIC TREES USING DPSO

8.3.2/ SELECTING BEST PHYLOGENETIC TREE USING PER-SITE ANALYSIS

To further validate this choice, Consel [85] software has been used on per site likeli-
hoods of each best tree obtained using RAxML [62]. Consel ranks the trees after having
computed the p-values of various well-known statistical tests. In Table 8.4, several well
known statistical tests such as bootstrap probability (BP), Shimodaira-Hasegawa (SH),
and Weighted Shimodaira-Hasegawa (WSH) are used by Consel to give a measure of
confidence to a set of candidate trees.

The procedure is simple, it starts by computing the p-value from maximum likelihood (ML)
model (i.e., GTR model of RAxML) based on different bootstrap replications, then can-
didate trees are ranked based on computed minimal ML values. For each given tree,
statistical methods are then used to compute the probability value (between 0 and 1)
from bootstrap replications and select the tree with greater p-values. In Table 8.4, we
can find this latter in the tree provided by topology0, which has larger support values than
topologies4 and 2.

Rank Topo obs au np bp pp kh sh wkh wsh
1 0 -1.4 0.774 0.436 0.433 0.768 0.728 0.89 0.672 0.907
2 4 1.4 0.267 0.255 0.249 0.194 0.272 0.525 0.272 0.439
3 2 3 0.364 0.312 0.317 0.037 0.328 0.389 0.328 0.383

Table 8.4: Consel results regarding best trees

8.4/ MPI: PROPOSED METHODOLOGY

This section presents the strategy deployed to design a parallel version of PSO algorithm.

8.4.1/ THE MASTER-SLAVE PROPOSAL

Traditional PSO algorithms are time consuming in sequential mode. The parallel version
shown in Figure 8.5 has thus been proposed to minimize the execution time as much as
possible. The general idea of Algorithm 3 is simple: a processor is employed for each
particle in order to compute its fitness function, while a last processor called the master
centralizes the obtained results. In other words, if we have a swarm of ten particles, we
use ten processors as workers and one processor as master (or supervisor).

The master initiates the particles of the swarm, and it distributes the information of the
particles to the worker processors. Each worker receives the information of one particle,
it computes the fitness function. When one worker finishes its job, it sends a “terminate”
signal with the fitness value to the master node. This latter waits that all the workers have
finished their jobs. Then, it determines the position of the particle that has the best fitness
value as the global best position. This mechanism is repeated until a particle achieves to
have a fitness value larger than or equal to 95% with a large set of included genes.

Let us now explain why some calls need to be blocked. In the hierarchical approach of
Algorithm 3, a point to point communication has been chosen. There are several types of
point to point communication models, but we preferred to work with the standard model to
get the most confidential results. In both sending and receiving modes, the buffer is used
to cover the message that can be frequently used resources. The problems arise when

8.4. MPI: PROPOSED METHODOLOGY 93

Fi
gu

re
8.

5:
Th

e
pa

ra
lle

ls
tr

uc
tu

re
of

P
S

O
al

go
rit

hm
.

94 CHAPTER 8. INFERRING PHYLOGENETIC TREES USING DPSO

it is used before the completeness of on-going transaction. Blocking communications
ensure that this never happens: when control returns from the blocking call, the buffer
can safely be modified without any corruption risks of some other part of the process.

Tasks need to be synchronized. Our algorithm requires that cooperating processes must
be kept in a more or less strict lockstep which represents computing fitness of each
particle. As this step takes a long time, non-blocking calls become less useful. Besides,
synchronization is what the blocking calls are intended to provide. The master processor
must be blocked until all worker processors finish their computations for determining the
best position.

Algorithm 3: Proposed Parallel Algorithm
rank ← GetProcessorRank()
*********************** Master part ******************************
population← 10, maxiter ← 10,i← 0
NBworkers← GroupS ize − 1
if rang = 0 then

for each particle in population do
particle[position]← [randint(0, 1) for each gene in core genome]
particle[velocity]← [rand(0, 1) for each gene in core genome]
particle[score]← 0
particle[best]← position

end for
while f itness < 95 and iter < Maxiter do

for each particle in population do
Send (particle, destination← i + 1) /*i, is the number of worker, sending particle
parameters for workers*/

end for
for each particle in population do

particle← Receive(source← i) /*receiving results from worker*/
end for
Fitness← Max(Particle[score]inpopulation) /*determining the global best
according to fitness of particles*/
Gbest ← position[Max(Particle[score]inpopulation)]/*assigning global best to
particle which has best fitness*/
for each particle do

Calculate particle velocity according to Equation (8.3)

Update particle position according to Equations (8.1) and (8.2)

end for
end while

end if
********************* Slave part **********************************
if rang > 0 then

Receive(source← 0, particle) /*receive data from master*/
Calculate fitness /*according to received parameters*/
Send(particle, destination← 0)/*sending results to master*/

end if

8.4. MPI: PROPOSED METHODOLOGY 95

8.4.2/ DISTRIBUTED BPSO WITH MPI

Traditional PSO algorithms are time consuming in sequential mode. The distributed ver-
sion shown in Figure 8.5 has thus been proposed to minimize the execution time as much
as possible. The general idea of the proposed algorithm is simple: a processor core is
employed for each particle in order to compute its fitness value, while a last core called
the master centralizes the obtained results. In other words, if we have a swarm of ten
particles, we use ten cores as workers and one core as master (or supervisor).

More precisely, the master initializes the particles of the swarm and distributes them to the
workers. When one worker finishes its job, it sends a “terminate” signal with the fitness
value to the master. This latter waits until all the workers have finished their jobs. Then,
it determines the position of the particle that has the best fitness value as the global best
position and sends this information to the workers that update their respective particle
velocity and position. This mechanism is repeated until a particle achieves a fitness
value larger than or equal to 95 with a large set of included genes. In the following, two
distributed versions of the BPSO described previously are considered: in version I the
equation used to update the velocity is slightly changed as shown below, and in version II
we use the equations of Section 8.1.

8.4.2.1/ DISTRIBUTED BPSO ALGORITHM: VERSION I

In this version Equation (8.1), which is used to update the velocity vector, is replaced by:

Vi(t + 1) = x · [Vi(t) + C1(Pbest
i − Xi) + C2(Pbest

g − Xi)] (8.6)

where x, C1, and C2 are weighted parameters setting the level of each three trends for
the particle. The default values of these parameters are C1 = c1 · r1 = 2.05, C2 = c2 ·

r2 = 2.05, while x which represents the constriction coefficient is computed according to
formula [86, 87]:

x =
2 × k

|2 −C − (
√

C × (C − 4))|
, (8.7)

where k is a random value between [0,1] and C = C1 + C2, where C ≥ 4. According to
Clerc [87], using a constriction coefficient results in particle convergence over time.

8.4.2.2/ DISTRIBUTED BPSO ALGORITHM: VERSION II

This version is a distributed approach of the sequential PSO algorithm presented previ-
ously in Section 8.1.

8.4.3/ GENETIC ALGORITHM VS PARTICLE SWARM ALGORITHM

In order to test our method, two versions of PSO have been compared on several plant
datasets. We compared too these swarm methods with the GA one presented previously
in Chapter 7.

96 CHAPTER 8. INFERRING PHYLOGENETIC TREES USING DPSO

12 groups from the 49 ones contained in Table 7.1 of Chapter 7 have been considered
in order to compare the two algorithms. We have tested 5, 10, and 15 particles in the
initial population of the swarm approach. As can be seen in Tables 8.5 and 8.6, we do
not obtained the same kind of results between 5 particles and 10-15 ones. On the one
hand, seven difficult groups1 are selected whose terminus passed the third stage in GA
method. Some groups of light groups2 are also selected which were passed from the first
stage in GA.

From these tables, for difficult groups, we notice that the minimum bootstrap (b) of the
best topology obtained of Chlorophyta, Pinus and Bambusoideae is larger than that the
one in GA. Euglenozoa and Magnoliidae, Eucalyptus, Picea, Ehrartoideae and Treboux-
iophyceae have got the same value of b with GA. But, Ericales has got less minimum
bootstrap value than in GA, we think this is because the time limitation reserved for each
swarm or due to some biological reasons. Malpighiales has good b but the number of
removed genes is high. For light groups, Pinus data set has got minimum bootstrap (b)
larger than that in GA. Picea and Trebouxiophyceae have got the same values of b as in
GA.

In Table 8.5 and Table 8.6, Topo. is the number of topologies and NbTrees is the total
number of obtained trees from 10 times of executions (10 swarms). b is the minimum
bootstrap value of selected w, 100− p is the number of missing genes in w (note that, p is
not in percentage), and Occ. is the number of occurrences of the best obtained topology
from 10 swarms. More comparison results between GA and both versions of PSOs are
provided in Figure 8.6.

(a) PSO with 15 particles vs. GA (b) PSO with 10 particles vs. GA

Figure 8.6: PSO with 10 and 15 particles vs. GA.

According to this figure, we can conclude that the two approaches lead to quite equiva-
lent bootstrap values in most data sets, while on particular subgroups obtained results are
complementary. In particular, PSO often produces better bootstraps that GA (see Mag-
noliidae or on Bambusoideae), but with a larger number of removed genes. Finally, using
15 particles instead of 10 does not improve so much the obtained results (see Figure 8.6
and Table 8.7).

1That is, a set of taxa that finally require deeper investigations, and/or that consume high memory and
time.

2Light groups: is a set of taxa in which they do not need a lot of time to acquire the high support phyloge-
netic relations among its taxa.

8.4. MPI: PROPOSED METHODOLOGY 97

G
ro

up
To

po
.

N
bT

re
es

b
|c
|

10
0
−

p′
O

cc
.

S
w

ar
m

s
P

ar
tic

le
s

P
in

us
3

50
8

98
79

32
46

2
1,

2,
3,

4,
5,

6,
7,

8,
9,

10
10

P
in

us
3

53
0

94
79

11
12

9
1,

2,
3,

4,
5,

6,
7,

8,
9,

10
15

P
ic

ea
1

10
0

10
0

85
42

10
0

1,
2,

3,
4,

5,
6,

7,
8,

9,
10

10

P
ic

ea
1

42
8

10
0

85
13

42
8

1,
2,

3,
4,

5,
6,

7,
8,

9,
10

15

M
ag

no
lii

da
e

3
75

0
10

0
79

20
61

3
1,

2,
3,

4,
5,

6,
7,

8,
9,

10
10

M
ag

no
lii

da
e

3
84

5
10

0
79

19
70

7
1,

2,
3,

4,
5,

6,
7,

8,
9,

10
15

E
ric

al
es

30
34

4
53

84
26

18
5

1,
2,

3,
4,

5,
6,

7,
8,

9,
10

10

E
ric

al
es

34
55

5
54

84
5

36
3

1,
2,

3,
4,

5,
6,

7,
8,

9,
10

15

B
am

bu
so

id
ea

e
8

49
6

72
94

37
45

6
1,

2,
3,

4,
5,

6,
7,

8,
9,

10
10

B
am

bu
so

id
ea

e
11

69
4

69
94

18
62

1
1,

2,
3,

4,
5,

6,
7,

8,
9,

10
15

E
uc

al
yp

tu
s

16
82

8
86

83
7

63
2

1,
2,

3,
4,

5,
6,

7,
8,

9,
10

10

E
uc

al
yp

tu
s

20
10

73
86

80
4

84
5

1,
2,

3,
4,

5,
6,

7,
8,

9,
10

15

M
al

pi
gh

ia
le

s
34

32
7

65
78

35
23

3
1,

2,
3,

4,
5,

6,
7,

8,
9,

10
10

M
al

pi
gh

ia
le

s
38

48
3

69
78

40
32

6
1,

2,
3,

4,
5,

6,
7,

8,
9,

10
15

C
hl

or
op

hy
ta

25
19

1
70

24
11

10
9

1,
2,

3,
4,

5,
6,

7,
8,

9,
10

10

C
hl

or
op

hy
ta

29
94

68
24

11
1

1,
2,

3,
4,

5,
6,

7,
8,

9,
10

15

E
ug

le
no

zo
a

3
45

0
10

0
26

7
29

2
1,

2,
3,

4,
5,

6,
7,

8,
9,

10
10

E
ug

le
no

zo
a

3
52

0
10

0
26

4
49

1
1,

2,
3,

4,
5,

6,
7,

8,
9,

10
15

E
hr

ha
rt

oi
de

ae
2

23
10

0
81

0
23

1,
2,

3,
4,

5,
6,

7,
8,

9,
10

10

E
hr

ha
rt

oi
de

ae
3

45
5

10
0

81
0

45
1

1,
2,

3,
4,

5,
6,

7,
8,

9,
10

15

Tr
eb

ou
xi

op
hy

ce
ae

3
40

9
10

0
41

2
40

5
1,

2,
3,

4,
5,

6,
7,

8,
9,

10
10

Tr
eb

ou
xi

op
hy

ce
ae

3
41

5
10

0
41

8
35

4
1,

2,
3,

4,
5,

6,
7,

8,
9,

10
15

Po
ea

e
1

97
1

10
0

80
9

97
1

1,
2,

3,
4,

5,
6,

7,
8,

9,
10

10

Po
ea

e
1

13
99

10
0

80
20

13
99

1,
2,

3,
4,

5,
6,

7,
8,

9,
10

15

Ta
bl

e
8.

5:
Fa

m
ili

es
ap

pl
ie

d
on

D
P

S
O

Ve
rs

io
n1

98 CHAPTER 8. INFERRING PHYLOGENETIC TREES USING DPSO

G
roup

Topo.
N

bTrees
b

|c
|

100
−

p
′

O
cc.

S
w

arm
s

P
articles

P
inus

3
615

98
79

14
275

1,2,3,4,5,6,7,8,9,10
10

P
inus

3
628

100
79

12
558

1,2,3,4,5,6,7,8,9,10
15

P
icea

1
635

100
85

14
635

1,2,3,4,5,6,7,8,9,10
10

P
icea

1
821

100
85

15
821

1,2,3,4,5,6,7,8,9,10
15

M
agnoliidae

3
494

100
79

16
73

1,2,3,4,5,6,7,8,9,10
10

M
agnoliidae

3
535

100
79

42
384

1,2,3,4,5,6,7,8,9,10
10

B
am

busoideae
6

952
84

81
23

94
1,2,3,4,5,6,7,8,9,10

10

B
am

busoideae
9

1450
82

81
18

113
1,2,3,4,5,6,7,8,9,10

15

E
ucalyptus

17
972

88
80

18
618

1,2,3,4,5,6,7,8,9,10
10

E
ucalyptus

23
1439

92
80

10
843

1,2,3,4,5,6,7,8,9,10
15

C
hlorophyta

25
529

71
24

6
397

1,2,3,4,5,6,7,8,9,10
10

C
hlorophyta

46
1500

82
24

11
397

1,2,3,4,5,6,7,8,9,10
10

E
ricales

30
97

51
84

11
56

1,2,3,4,5,6,7,8,9,10
10

E
ricales

34
1257

52
84

7
800

1,2,3,4,5,6,7,8,9,10
15

M
alpighiales

35
725

72
79

25
445

1,2,3,4,5,6,7,8,9,10
10

M
alpighiales

86
1464

84
79

45
359

1,2,3,4,5,6,7,8,9,10
15

E
uglenozoa

3
197

100
26

1
165

1,2,3,4,5,6,7,8,9,10
10

E
uglenozoa

3
450

100
26

10
393

1,2,3,4,5,6,7,8,9,10
15

E
hrhartoideae

1
24

100
81

10
24

1,2,3,4,5,6,7,8,9,10
10

E
hrhartoideae

1
20

100
81

9
20

1,2,3,4,5,6,7,8,9,10
15

Trebouxiophyceae
3

319
100

41
1

313
1,2,3,4,5,6,7,8,9,10

10

Trebouxiophyceae
3

818
100

41
2

81
1,2,3,4,5,6,7,8,9,10

15

Poeae
1

991
100

80
22

991
1,2,3,4,5,6,7,8,9,10

15

Poeae
1

1490
100

80
26

1490
1,2,3,4,5,6,7,8,9,10

15

Table
8.6:

G
roups

applied
on

D
P

S
O

Version2

8.5. CONCLUSION 99

PSO Ver.I PSO Ver.II
Group 10 15 10 15 GA
Ericales 53 54 51 52 67
Bambusoideae 72 69 84 82 80
Pinus 98 94 98 100 80
Chlorophyta 70 68 71 82 81
Eucalyptus 86 86 88 92 90
Malpighiales 65 69 72 84 96
Magnoliidae 100 100 100 100 98
Ehrhartoideae 100 100 100 100 100
Euglenozoa 100 100 100 100 100
Picea 94 100 100 100 100
Poeae 80 80 100 100 100
Trebouxiophyceae 100 100 100 100 100

Table 8.7: PSO vs GA.

8.5/ CONCLUSION

In this chapter, a discrete particle swarm optimization algorithm has been proposed,
which focuses on the problem of finding the largest subset of core sequences having
the most supported phylogenetic tree. This heuristic approach has then been applied to
the Rosales order of 82 core genes. Like in the previous chapter, the scoring function is
based on two parameters: the lowest bootstrap value b and the percentage of gene p.
These two parameters have the same importance in the scoring function, any modifica-
tion on any one leading us to deeply investigations.

A per site analysis by Consel is applied after the phylogenetic discovery stage, where
a special topological process analysis all trees generated from swarms and classifying
them based on its topology. Few topologies of high scores are then selected from from
all available topologies using a threshold of lower bound formula. If there is only one
nominated tree, then its done, else we use per site analysis to choose the relevant one.

Two parallel versions of discrete particle swarm optimization algorithm was developed in
order to reduce the time and memory. 12 groups of plant genomes are applied on two
swarm versions. In one hand, we used a swarm of 10 particles with the two versions of
algorithms, while in other hand, we employ a swarm of 15 particles with the two algorithm
versions. We used the Mésocentre de calcul facilities for the computation of all versions.
Various results of hard and light groups are obtained and compared with genetic algorithm
one.

CHAPTER 9

Ancestral Reconstruction

Ancestral genome reconstruction has already been investigated several times in the
literature [88, 89], but usually it deals with permutations of integers. In other words,

tools like Badger [90] or MLGO [91] do not support genomes of various length and with
repeated/missing genes. Our problem applied to chloroplasts may appear as more diffi-
cult, as we relax the permutation hypothesis. However, in the classical Multiple Genome
Rearrangement Problem [92], targeted genomes are bacterial or nucleus ones, which
have much more genes than a chloroplast. Furthermore, gene order and content do not
evolve so much when considering related plant species. Such observations explain why
state-of-the-art algorithms cannot be applied to our particular problem even if this latter
should be solvable. In this chapter, we applied a pipeline of two suggested methods to
compute the ancestral genomes in all presented internal nodes using a well-supported
phylogenetic tree of Apiales species.

9.1/ GENERAL PRESENTATION OF THE PROBLEM

Given a set of n genomes and a well-supported phylogenetic tree T , the problem consists
in finding the genomes at each of the internal nodes, as described in Figure 9.2. Doing
so will provide the evolution of genomes from the root until the leaves.

Any rooted phylogenetic tree as shown in Figure 9.1 is composed by the subtrees pro-
vided in Figure 9.2. In the α-tree illustrated in Figure 9.2(a), only one ancestor genome re-
construction is required. The two other main subtrees, shown in Figures 9.2(b) and 9.2(c),
have one or two additional taxa compared with the α-tree (they are indeed aggregations
of α-trees). More precisely, at each time a new taxon is added to the tree, a new internal
(ancestor) node is created in the tree, and its ancestor is then computed. The recon-
struction operation must be as parsimonious as possible, according to the recombination
operations already listed in this manuscript. At this point, we need to keep in mind the
following remark.

101

102 CHAPTER 9. ANCESTRAL RECONSTRUCTION

Remark 14: Global optimum over the tree

The global optimum over the tree may be obtained with a few local solutions (one
ancestor of two genomes) that are not optimal.

Figure 9.1: The general overview of rooted phylogenetic tree with internal and root nodes.

(a) α-tree. (b) Composite tree of
one α-tree.

(c) Composite tree of
two α-trees.

Figure 9.2: The subtrees forms located in any rooted phylogenetic tree.

Given ordered lists of genes at their leaves, the ancestral states in each tree of Figure 9.2
are determined according to the minimum number of edition operations (measured by an
edit distance d) required to obtain the leaves starting from the ancestors, as described
thereafter:

• In α-tree: the ancestor node α can be determined according to the following formula:

α(A, B) =

A or B if d(A, B) = 0,
? else.

(9.1)

9.1. GENERAL PRESENTATION OF THE PROBLEM 103

In this tree, α-node is the ancestor of leaves A and B. In gaps-free sequences, if
the distance d ∈ [0, 1] between gene lists A and B is not zero, we have at least
one recombination operation (insertion, deletion, or replacement) between these
two sequences. In this case, we cannot determine which situation to consider in
the α-ancestor genome. So, shared genes in the two given sets will appear in the
ancestral genome plus question marks in problematic positions.

• Composite one-α-tree: the ancestor nodes α and β, as shown in Figure 9.2(b), can
be determined according to the following formula:

β1(α1,C) = α(α1(A, B),C)

where α1-ancestor can be deduced from the following formula:

α1(A, B)

A or B if d(A, B) = 0,
A if d(A,C) = 0, and d(B,C) , 0,
B if d(B,C) = 0, and d(A,C) , 0,
? else.

(9.2)

where C in left or right α-tree is considered as a reference. More precisely, the β-
tree is composed of two α-trees: the inner one represented by α1 = (A ∩ B) and the
outer one represented by β = (α1∩C). We now explain how to deduce the ancestral
genome of α1 node in the inner α-tree. Consider for instance the case where one
genei in A does not match with its correspondent in B. In this case, we consider
the outer branch C as a reference (cousin) to take a decision, by observing the i-th
gene in C. If this latter matches with genei in A, then this gene will be put inside the
ancestor α1.

A particular case can occur, when the gene in position Ci matches neither with gene
Ai nor with Bi. In this case, if possible, we need to investigate another outer (but
close) genome X, by computing the distances to the inner α-tree, and selecting at
each time the minimum one based on the following formula:

β1(α1,C) = α1(A, B) ∩ X′

thus, X is computed as follows:

X = min[min(d(A,O1), d(B,O1)), . . . ,min(d(A,Om), d(B,Om))]

where O1,O2, . . . ,Om are the set of m outer (but close) branches to current α-tree,
and X′ is the name of the minimum distant branch to A and B. If we cannot deduce
the character state of position i, we simply put “?" in the ancestor. α1(A, B) is then
deduced as follows:

α1(A, B)

A or B if d(A, B) = 0,
A if A = X′, and d(A, B) , 0,
B if B = X′, and d(A, B) , 0,
? else.

(9.3)

104 CHAPTER 9. ANCESTRAL RECONSTRUCTION

• Composite tree with two-α-trees: two α-trees are included in this type of trees,
leading to a hard computational problem due to the number of distance calculations.
To determine the ancestor genome β1, we need first to deduce the ancestors α1 and
α2 from taxonomy units (A, B,C,and D) by the following formula:

β(α1, α2)

α1 ∩ α2 if d(α1, α2) = 0,
α1i ∩ α2i or ?i if d(α1, α2) , 0.

(9.4)

where α1 and α2 are computed using Equation 9.3. To calculate α1-genome, we
consider that X′ has the minimum genome distance from α2(C,D), and vice-versa.

Taking into consideration all subtree cases, we can conclude the ancestor genomes in
most phylogenetic trees. Note that inversions, sometimes located among taxonomy units,
are excluded from this first approach: they must be considered, but in more sophisticated
ancestor reconstruction algorithms.

9.2/ ANCESTRAL RECONSTRUCTION PIPELINE

In this section, our new pipeline for ancestral reconstruction problem is explained with
more details, in the particular case of chloroplast genomes, see Figure 9.3. It is fun-
damentally based on the gestalt pattern matching algorithm [93], via the use of naked
eye investigation and matching results with the SequenceMatcher of the Python difflib
module. In this pipeline:

1. The first stage consists of handling the input data: the phylogenetic tree and the
ordered lists of genes. We then need to decide whether duplicated genes must
be considered or not. In case where they are under consideration, this first stage
provides too some information regarding them.

2. The second step deals with genome comparisons of sister species, from leaves
until the root. Desired operations are performed such as gene matching, deletion,
or insertion within one of both genomes. The obtaining results are essential in order
to build ancestor genomes.

3. The final stage provides statistical information and all ancestral genomes, for each
internal node until reaching the root.

9.2.1/ DATA PREPARATION

Let us consider a set of complete chloroplastic genomes for close plant species, like the
Apiales order as shown in Table 9.1.

We assume first that:

1. Each genome has been annotated with Dogma [54], already presented in this
manuscript. By doing so, the same gene prediction and naming process has been
applied to the same average quality of annotation. In particular, when a gene ap-
pears twice in the considered set of genomes, it receives twice the same name

9.2. ANCESTRAL RECONSTRUCTION PIPELINE 105

Figure 9.3: General overview of the proposed pipeline. In this pipeline, you can see
some arrows are in both sides because we need to prepare the chosen new cousin, or to
acquire new information.

Organism name Sequence length nb. genes dup.genes Lineage
Daucus carota 155911 bp 166 31 Apiaceae
Anthriscus cerefolium 154719 bp 166 32 Apiaceae
Panax ginseng 156318 bp 169 31 Araliaceae
Eleutherococcus senticosus 156768 bp 169 31 Araliaceae
Aralia undulata 156333 bp 169 31 Araliaceae
Brassaiopsis hainla 156459 bp 168 31 Araliaceae
Metapanax delavayi 156343 bp 169 31 Araliaceae
Schefflera delavayi 156341 bp 170 31 Araliaceae
Kalopanax septemlobus 156413 bp 169 31 Araliaceae

Table 9.1: Genomes information of Apiales

(no spelling error). At this level, each genome is described by an ordered list
of gene names, with possible duplication. Other approaches are possible, see,
e.g., [48, 47, 49].

2. The sequences in the core genome (genes present everywhere in the considered
set of species) have been multi-aligned using MUSCLE, and a well-supported phy-
logenetic tree has been obtained based on this alignment as shown in Figure 9.4
for Apiales order. This stage may necessitate the deletion of a few core genes
that possibly blur the phylogenetic signal (for various reasons encompassing homo-
plasy, incomplete lineage sorting, horizontal gene transfers, etc.), for instance by
using methods detailed in [79, 67, 94].

For all three steps of reconstruction, a set of authorized operations are provided, which
are:

• Insertion, deletion, duplication, or inversion of one or a block of genes, at gene lists
level.

• Operations commonly considered in the Needleman-Wunsch edit distance [95] (in-
sertion, modification, or deletion of a nucleotide, together with opening and enlarg-
ing a gap), at DNA sequence levels.

106 CHAPTER 9. ANCESTRAL RECONSTRUCTION

Figure 9.4: High supported phylogenetic tree of Apiales order.

In what follows, two general algorithms for ancestral reconstruction of chloroplastic
genomes are proposed. In the first one we do not tackle with gene duplication, while
they are considered in the second algorithm. In both cases, inversions are not consid-
ered too.

9.2.2/ ANCESTRAL ANALYSIS METHODS

We now present the two methods we have used in order to predict the set of ancestral
genomes, provided a set of chloroplast genomes and a well-supported phylogenetic tree.
The first one is manual, while the second one is an algorithm. Note that they only repre-
sent our first basic approaches in the problem of ancestral reconstruction of chloroplasts.

More precisely, the first method is based on finding the ancestor genes (e.g., core genes)
using naked eye investigation between close genomes, and to identify the set of rear-
rangement operations (gene duplication is considered). In the second method, we start
by removing gene duplication based on a renaming duplicated gene names process. We
use sequence comparisons with reference genome as a preliminary step, then we follow
the same remaining stages than in the first method.

9.2.2.1/ ANCESTOR PREDICTION BASED ON GENE CONTENTS

This method encompasses the following general steps:

• Step 1: Preliminary stage: In this step, all internal nodes from leaf nodes to
the root are named following an alphabetical order. Each letter in internal node
represents an ancestor genome. This latter can be the ancestor of two leaves, an
internal ancestor and a leaf node, or two internal ancestors. The result of this step
is shown in Figure 9.5.

9.2. ANCESTRAL RECONSTRUCTION PIPELINE 107

Figure 9.5: Phylogenetic tree of Apiales order.

In this tree, we applied a bottom-up procedure for predicting the ancestor genome
at each internal node. More precisely, starting from leaves nodes, the given tree
can be divided according to the subtrees presented in Figure 9.2 where the node C
could be interpreted as a composite tree of two α-trees A and B. However, predicting
the ancestor from bottom to top levels will lead to the last common ancestor (I) at
the root level.

(a)

(b) (c)

Figure 9.6: Graphical presentation of genes alignment between two genomes.

108 CHAPTER 9. ANCESTRAL RECONSTRUCTION

• Step 2: Genome Selection: Figure 9.5 presents the best topology for Api-
ales order obtained in a previous chapter. We then start by selecting two close
genomes at leaf level (e.g., Meta_Delavayi (J) and kalo_septemlobus (H) for an-
cestor genome (A), and Eleu_senticosus (M) and Bras_hainla (L) for ancestor
genome (B)) as organized in the phylogenetic tree. Selected genomes are aligned
graphically as shown in Figure 9.6. We then identify, by using naked eyes investiga-
tion and our mind, the most parsimonious scenario applied on a deduced ancestor,
which can lead to these two children using the lowest number of edit operations
(such as inserted and deleted genes). Figure 9.6(a) shows this matching process
applied on Meta_Delavayi and kalo_septemlobus, which have a core genome of
169 genes (only the 23 first genes are depicted). Note that, in this example, Meta_-
Delavayi (J) and kalo_septemlobus (H) match completely, so the ancestor A is very
easy to obtain (A = H ∩ J has 169 genes).

• Step 3: Genes Investigation: In the easiest situation presented above, all couple
of genes match completely between the two sister species (which thus have the
same length). In this case, whose frequency of occurrences depends on the con-
sidered family, the ancestor is easily deduced as being the same than its children.
If we have at least one problematic situation between the selected genomes (that
is, if we have at least one deleted, duplicated, or inserted gene in one genome),
like between Eleu_senticosus and Bras_hainla (renamed U1 and U2 respectively),
then a deeper investigation is initiated using one or more cousin genome(s). For
instance, in our example, Meta_Delavayi and kalo_septemlobus will be considered
as cousin genomes to take the final decision in the treatment of such problematic
situations.

Mathematically speaking, for all genes in U1 ∪U2, if gene gi in U1 matches properly
in name, position, and orientation with g′i in U2, then adds it in the ancestor genome
γ at position i. Else, consider the position i in cousin genome: if gi or g′i equal to g′′i
in cousin genome, then add the most frequent gene to the ancestor genome γ in
position i; otherwise, this gene is considered as Insertion.

Figure 9.7 gives a simulation example of the considered procedure. In this figure,
suppose that A, B, C, D, and E in the leaves are genes, and we want to predict
the ancestor α1. Remark that genes A, B, and D match in positions. The problem-
atic C gene between these two genomes needs a cousin genome to determine its
presence in α1 ancestor genome or not. One or both genomes in α2 subtree are
considered to be cousin(s) to treat the problem of gene C. The two cousin genomes
have one copy of gene C in their gene lists. According to our voting system, gene C
will be in α1 ancestor and one delete operation is recorded (that is, AB_D). An insert
state is also marked in α2 subtree, where gene E did not appear neither in cousin
genomes of α1 tree, nor in its brother. With our tree, the graphical presentation
of delete operation of gene number 112 is illustrated in Figures 9.6(b) and 9.6(c)
comparing with two cousin genomes.

9.2. ANCESTRAL RECONSTRUCTION PIPELINE 109

Figure 9.7: Simulation of gene investigation step between two genomes

• Step 4: Save Ancestor: After defining all operations between given genomes in
gene investigation step, the gene list of ancestral genome is determined. We need
to keep this list for further investigation with other leaves or sub-ancestral from other
internal nodes until reaching the root node (R). A python pickle file is used to save
each predicted internal ancestor with its correspondent node letter.

• Step 5: Repeat step 2 until the prediction of root ancestor.

Note that all matching genes are directly assigned to the ancestor. For non-matching
genes, the process consists in the selection of a third genome, among the cousins ac-
cording to the provided tree. The selected cousin is the closest one to the two considered
genomes, according to the chosen distance. It is then compared to the two sister species
for each non-matching gene: if the cousin agrees with one sister, then the considered
gene is added to the ancestor. Figure 9.8 simulates the entire process of ancestral re-
construction between two genomes.

Figure 9.8: Simulation of ancestral reconstruction process between two genomes

110 CHAPTER 9. ANCESTRAL RECONSTRUCTION

The results from this algorithm is shown in Figure 9.9. In this figure, the gene list of the
ancestor genome in internal nodes are well predicted by considering sometimes multiple
cousin genomes for selecting the most frequent gene for problematic position. To under-
stand the evolution of Apiales order, we use the concept of top-down tree tracing. More
precisely, we regards the ancestor of top root node and then we trace down the branches
connected to it. The number of inserted and deleted genes are then written on an arc
directed from top to bottom.

Figure 9.9: Ancestral results from gene contents method.

This method can generally provide the ancestor gene list in each internal node in or-
der fashion, but it also has some limitations: for example, the matching criteria depends
on finding the shared genes between closed genomes based on gene name, while se-
quences are not taken into account. To tackle this problem and to provide more accurate
gene lists for internal node ancestors, deeper investigations should be considered.

9.2.2.2/ ANCESTOR PREDICTION BASED ON SEQUENCE COMPARISON

In this section, we consider the same stages than in previous method, except that we add
an initialization renaming stage preliminary to Step 1. We consider two datasets, accord-
ing to genome names set in the previous method. Duplicated genes in each genome are
then renamed, depending on the Needleman–Wunsch algorithm [96] sequence similarity
distance, by adding an index number to the end of the working gene name.

For illustration purpose, let us consider Figure 9.10. We have three copies of gene C
in genome A, and two copies of the same gene in genome B. We need first to rename
all duplicated genes in genome A to be a reference genome. Suppose that we want to
rename all duplicated genes in B according to A (which operates here as a reference).
Duplication in gene names of genome A are firstly renamed according to their position,

9.2. ANCESTRAL RECONSTRUCTION PIPELINE 111

Figure 9.10: General process of renaming genes based on sequence comparisons.

the i-th copy of gene g becoming gi−1, while g0 is simply noted g, see Example 4.

Example 4: Renaming duplicated gene numerically

Genome A: [A, B, A,C, B, B,C,D]

Duplicated genes A, B,and C are renamed numerically to:

Genome A: [A, B, A1,C, B1, B2,C1,D]

Note that, the first copy of duplicated genes is labeled starting from zero la-
bel (ex., A0). All genes of zero label are represented as the same gene name.

Each copy of gene C in genome B is secondly compared to each copy of the same gene
in genome A using global sequence alignment distance. It then receives the same index
that the gene in A having the best similarity score, based on the Equation 9.5:

Cidx =

0 if min(d(S c, S 0), d(S c, S 1), d(S c, S 2)) = d(S c, S 0),
1 if min(d(S c, S 0), d(S c, S 1), d(S c, S 2)) = d(S c, S 1),
2 if min(d(S c, S 0), d(S c, S 1), d(S c, S 2)) = d(S c, S 2),
99 else.

(9.5)

where S c represents the coding sequence of target gene C in genome B, d(S c, S 0)
represents the similarity score from global sequence alignment comparisons, and
S 0, S 1,and S 2 represent the reference coding sequences of gene C in genome A.

The results from this stage are duplication free gene lists for genome A and genome B. If
we applied a cousin genome, then we will have a duplication free gene list for the cousin
genome. We applied the same next steps from the previous method.

This method has been applied on Apiales order. Figure 9.11(b) presents the graphical
matching relations among the genes between Meta_Delavayi and kalo_septemlobus con-
sidering this method, which can be compared with Figure 9.11(a) that illustrates our pre-
vious method. The tree of Apiales, with ancestors generated from this improved method,
is shown in Figure 9.12. In this tree, inserted or deleted genes are maybe more accu-
rate now, as we considered sequence comparisons using Needleman-Wunsch algorithm.

112 CHAPTER 9. ANCESTRAL RECONSTRUCTION

Note that a gene is indexed by 99 when it has revealed a low similarity score (lower than
60%) with all associated gene sequences on the reference genome. This particular gene
should be further investigated, to identify where it has been inserted during the chloro-
plast evolution.

Figure 9.12: Ancestral results from sequence comparison method.

9.2.3/ ANCESTRAL INFORMATION

We now present information regarding different ancestor node in target phylogenetic
trees. These information are stored for statistical computations or for future ancestral
computation. Table 9.2 presents the amount of duplicated genes inside the ancestors.

An annotation-based approach has been performed in a pipeline for core genomes by
two genomes using NCBI and DOGMA annotation tools. The implicit evolutionary model
considered for the ideal method occurs when comparing two genomes (containing the
same set of genes, but with different number of copies) developed from a common an-
cestor: in such case, each genome contains exactly the same copy of each gene, through
a series of independent gene duplications and reversals. As demonstrated previously in
Figure 9.8.

The central idea of this approach is to keep members of each gene family (from two
genomes), its actual prototype, which best reflect the original position of the gene in the
ancestor genome. This process proceeds in a bottom-up fashion: it starts from the most
recent ancestors of two leaves in the tree and finishes at the root of the tree.

The genomes of the extant species are recorded. The file is in an FASTA format, where,
instead of the gene sequence, we list the gene name, ID, with plus (+) or minus (–) signs
representing orientations. In this study, we have described another method for ancestral
genome reconstruction for chloroplasts. We selected Apiales species. We suggest for all

9.2. ANCESTRAL RECONSTRUCTION PIPELINE 113

(a
)

M
et

a_
D

el
av

ay
ia

nd
ka

lo
_s

ep
te

m
lo

bu
s

fro
m

ge
ne

co
nt

en
tm

et
ho

d.

(b
)

M
et

a_
D

el
av

ay
ia

nd
ka

lo
_s

ep
te

m
lo

bu
s

fro
m

ge
ne

re
na

m
in

g
m

et
ho

d.

Fi
gu

re
9.

11
:

G
ra

ph
ic

al
re

pr
es

en
ta

tio
ns

be
tw

ee
n

M
et

a_
D

el
av

ay
i

an
d

ka
lo

_s
ep

te
m

lo
bu

s
fro

m
ge

ne
co

nt
en

t
m

et
ho

d
an

d
ge

ne
re

na
m

in
g

m
et

ho
d.

114 CHAPTER 9. ANCESTRAL RECONSTRUCTION

Gene name B
.h

ai
nl

a

E
.s

en
tic

os
us

A
.u

nd
ul

at
a

P.
gi

ns
en

g

M
.d

el
av

ay
i

A
.C

er
ef

ol
iu

m

D
.c

ar
ot

a

S
.d

el
av

ay
i

K
.s

ep
te

m
lo

bu
s

accD 0 0 0 0 0 2 2 0 0
rps12 2 2 2 2 2 2 2 2 2
ndhA 2 2 2 2 2 2 2 2 2
ndhK 2 2 2 2 2 0 0 2 2
rpl2 4 4 4 4 4 4 4 4 4
rps7 2 2 2 2 2 2 2 2 2

rpoC1 2 2 2 2 2 2 2 2 2
ycf2 4 4 4 4 4 4 4 4 4
ycf3 3 3 3 3 3 3 3 3 3
rpl23 2 2 2 2 2 2 2 2 2
ycf1 3 2 2 2 2 2 2 3 2
clpP 3 3 3 3 3 3 3 3 3
atpF 2 2 2 2 2 2 2 2 2
orf56 4 4 4 4 4 2 4 4 4
rrn23 2 2 2 2 2 2 2 2 2
ycf68 4 6 6 6 6 2 0 6 4
rrn5 2 2 2 2 2 2 2 2 2

rrn4.5 2 2 2 2 2 2 2 2 2
ycf15 2 2 2 2 2 4 4 2 2
rrn16 2 2 2 2 2 2 2 2 2
orf42 2 2 2 2 2 0 2 2 2
rps19 0 0 0 0 0 2 2 0 0

tRNV-GAC 2 2 2 2 2 2 2 2 2
tRNL-UAA 2 2 2 2 2 2 2 2 2
tRNL-CAA 2 2 2 2 2 2 2 2 2
tRNV-UAC 2 2 2 2 2 2 2 2 2
tRNR-ACG 2 2 2 2 2 2 2 2 2
tRNN-GUU 2 2 2 2 2 2 2 2 2
tRNA-UGC 4 4 4 4 4 4 4 4 4
tRNI-GAU 4 4 4 4 4 4 4 4 4
tRNI-CAU 2 2 2 2 2 2 2 2 2

rps12_3end 2 2 2 2 2 2 2 2 2

Table 9.2: Gene duplication for each genome in Apiales species

gene duplications, each copy refers to a separate coding sequence.

As presented in a tree in Figure 9.5 of Apiales order, considering two brothers genomes
as leaves: the first step of the algorithm starts by evaluating the distance between all node
in the clade. This process will help to select the cousin genome to ensure our results for
each gene presents into the internal ancestor genome.

Table 9.2 describes the name and the number of copies of each duplicated gene. We can
notice in some cases, if there are differences in the amount of gene duplications between

9.3. CONCLUSION 115

two selected genomes, then we depend on the cousin genome by regarding the position
of the same gene name to make our final decision. In some cases more than one cousin
is chosen if one cousin can not perfectly guide the decision.

The evolutionary tree presented in Figure 9.9 shows the basic evolutionary scenario
based on two rearrangement operations: insert and delete. It also illustrates the amount
of core genes in each internal ancestor. For both brothers genomes, E. senticosus and B.
hainla, the best cousin genome is K. septemlobus. The results from similarity matching
process declares that there is only one insertion and one deletion operations difference
in gene duplication (for example, the gene ycf1 is presented twice in E. senticosus, while
it is presented in three copies in B. hainla). In the same way, the gene Ycf68 is presented
in four copies in B. hainla and in six copies in E. senticosus. The results from the match-
ing process will built the ancestor genome B. Both brother genomes A. undulata and P.
ginseng are similar in all genes; the result is assigned to ancestor genome E. However,
genomes such as A. undulata and p. ginseng, M. delavayi and k. septemlobus, S.delavayi
and M. delavayi, k. septemlobus and E. sentucosus are sharing the same genes names,
positions, and number of copies of gene duplication, which means a perfect matching.

This process is repeated until the prediction of the ancestor genome of the root node.
Figure 9.9 shows the results of Apiales order. In this figure, edit operations (such as
insertions and deletions) are recoded in the tree. One delete and one insert gene in
internal node (C), The gene psbG was presented in all genomes except in (C), while there
is an inserted gene of tRNG-GCC in (C). The remaining genes are matching perfectly in
names and positions.

9.3/ CONCLUSION

In this chapter, we suggested a pipeline of three stages to evaluate how the accuracy of
ancestral genomes reconstruction depends on species sampling and quality of the phylo-
genetic tree. Two methods were applied in ancestral analysis stage: ancestor prediction
based on gene contents and ancestor prediction based on sequence comparisons. These
two methods are sharing almost the same implementation stages. There is a preliminary
stage for sequence comparisons method called gene renaming, where each copy of du-
plicated gene are compared with all copies of the same gene in reference genome.

The pipeline provides in the last stage some graphical and non-graphical images to high-
light the possible rearrangement operations (e.g., insertion, deletion, replace, inversion)
on the given tree.

This chapter is a step forward in developing approximation algorithms and investigating
the properties of building an accurate phylogenetic tree and reconstructing the ancestral
genomes. Finally, this work continues to handle all other species in the domain of Eu-
karyotic, such as (Ericales, Solanales, Gentianales, and Lamiales_Oleaceae). Many
questions still need some deep investigations to completely understand the evolution
process in Eukaryotic domains by including more gene features and gene sequences.
Furthermore, other edit distance operations (such as the role of inversions, transposition,
replacement, etc.) need to be taken into consideration in future studies.

III
CONCLUSION AND FUTURE WORK

117

CHAPTER 10

Conclusion

10.1/ CONCLUSION

During our thesis, we have investigated some scientific and technical problems that may
arise when trying to reconstruct the last universal common ancestor (LUCA) of a large set
of all available complete chloroplastic sequences. The problems of genome annotation,
core extraction, phylogenetic inference, and ancestral reconstruction have specifically
been regarded as key elements in that LUCA quest.

Concerning the automatic annotation problem of complete chloroplastic sequences, we
have tested various solutions and decided that an updated version of DOGMA was the
best compromise. The problem in this context was that, except DOGMA, most coding
sequence prediction or annotation tools were not specific to chloroplasts and so their
accuracies were perfectible, as it has been verified on well humanly curated genomes.
Conversely, annotations on databases like the NCBI one were of too much varying quality,
some genomes being annotated and curated well while other ones embedded obvious
annotation errors. The objective at this level was to take the best from both systematic
annotations from DOGMA and humanly curated ones from NCBI, by using name and
sequence similarities. We have shown that such an approach may introduce other kind
of artifacts, and that finally DOGMA alone provides annotations of sufficiently accurate
level.

Given a set of close annotated chloroplastic genomes, we then have investigated, how to
extract the largest subset of core genes that lead to the most supported phylogenetic tree.
We have proposed two artificial intelligence ways to reach this goal, namely by the mean
of genetic algorithms or particle swarm optimization. A second stage encompassing both
LASSO test and dummy binary logistic regression has been added to the algorithm, in
order to describe the effect of each gene on topology selection and on support evolution.
These algorithms have been deployed on the Mésocentre de Calculs de Franche-Comté
thanks to a distributed master/slave approach.

On such trees, we have proposed a first ancestral reconstruction of gene content and
order. This algorithm is based on SequenceMatcher tool, and obtained results have been
verified to what can be deduced by naked eye on well defined families. Ways to merge

119

120 CHAPTER 10. CONCLUSION

the forest of phylogenetic trees in a supertree have been regarded too, and the way gene
content evolves through a tree of core genomes has finally been presented.

10.2. FUTURE INVESTIGATIVE DIRECTIONS 121

10.2/ FUTURE INVESTIGATIVE DIRECTIONS

In future work, our main objective will be to complete what has been initiated during our
thesis, until being able to reconstruct the last universal common ancestor of chloroplasts.

The current annotation process using DOGMA seems reliable and convenient, but we
need to investigate more deeply the case of fragmented genes. Testing all possible com-
binations of fragments is a very costly task, and choosing the combination that has the
higher similarity score with a gene database we have constructed may, in some cases,
provide artifacts or chimeras. This is why we believe that the fragmented genes must be
deeply regarded, by considering two times a list of such genes, and checking if the auto-
matically obtained defragmented genes are coherent with what can be manually inferred.

The way to separate the large set of inputted genomes is currently based on taxonomy
information according to the NCBI database. However this latter is not completely reliable,
and new sequencing capability makes that the whole taxonomy is currently evolving. The
risk in this case is to consider by error a divergent species in a subset of coherent species
– this latter being then misplaced after the supertree reconstruction, leading to errors in
all its ancestral nodes. A way to reinforce confidence put in the subset selection is to
compare gene content and sequence similarity too, to be sure that we put together only
close species.

Other artificial intelligence approaches like simulated annealing should be compared to
our genetic algorithm and our particle swarm optimization, when we attempt to extract
the largest subset of core genes that produces the most supported tree, and hybrid ap-
proaches must be investigated too. They must be compared to a brute force approach on
a small family, to see if the optimum produced by our algorithm is really the “best tree”.
Investigating the per site likelihood level instead of the gene one may be more relevant,
and thus it must be regarded. However the number of observed characters dramatically
explodes, so it is likely that such an approach is impossible in practice. Statistical results
concerning the gene effects on topology and supports must be explained biologically,
among other things by investigating the gene functionality, or by regarding whether gene
transfer may explain it. Finally, the trees we produce must be compared with gene trees,
and similarities or differences must be explained.

We currently reconstruct the supertree by hand, and we have not yet proposed an al-
gorithm to achieve this goal. No solution can be found in the literature, as supertree
reconstruction currently supposes that the same genes are shared among the trees to
merge, or other restrictive hypotheses of that kind, which are incompatible with our su-
pertree problem.

Concerning ancestral reconstruction of gene order and content, the first solution we pro-
posed is perfectible. In particular, we do not obtain exactly the same ancestor that what
we have reconstructed manually. Divergences must be understood and our algorithm
must be updated and simplified. Sequence level must be added too to the algorithm.

Finally, the whole pipeline must be finalized, deployed on the Mésocentre or on DARI re-
sources, and it should be launched on all currently available chloroplastic genomes, and
obtained results must be carefully regarded. In particular, the last universal common an-
cestor must be compared to cyanobacterial genomes, to see if a cyanobacterial origin of
chloroplasts can be assessed by the mean of ancestral reconstruction. Gene content and
recombination events must be investigated too in the supertree, to see if some branches

122 CHAPTER 10. CONCLUSION

in the tree can be related to hot spots of evolution. Endosymbiosis events among the su-
pertree must be searched too, while possible gene transfer to the nucleus genome must
finally be studied.

List of Figures

3.1 demonstration of sequence alignment approaches. (a) The process of
global alignment. (b) The process of local alignment. 15

3.2 The standared genetic code for codon to amino acids translation. See [19] 16

3.3 Examples of PAM1 and PAM250 matrices presented in [20]. 18

3.4 The standared BLOSUM62 matrix. See [23] 20

3.5 Example of Smith-Waterman local alignment algorithm of two given se-
quences (A, B), A = a1a2a3...an and B = b1b2b3...bm. (a) Calculate a new
matching score depending heuristically on the previous around values. (b)
Tracing back the alignment by starting from the maximum score in the gen-
erated matrix, then follow the maximum score on each step up. 22

3.6 Example of Needleman Wunsch global alignment algorithm of two given
sequences A = a1a2a3...an and B = b1b2b3...bm. (a) A diagonal line is when
the two characters are equal, or when there is a substitution of characters.
(b) Gaps in the first sequence are expressed from horizontal line. (c) Gaps
in the second sequence correspond to vertical lines. 23

3.7 Example of Needleman-Wunsch global alignment algorithm of two given
sequences A = a1a2a3...an and B = b1b2b3...bm. (a) The initialization of the
scoring matrix. (b) How to calculate the next score: (+1) for matching, (-2)
for mismatching, and (-2) for gap penalty. 24

3.8 Tracing back the alignment by starting from the lowest right corner and
following the maximum score on each step up. 25

3.9 Multiple sequence alignment editing of different sequences of Apiales order. 26

4.1 Types of phylogenetic trees. (a) An overview of phylogenetic tree structure.
(b) Example of cladogram tree. (c) Example of phylogram trees. 28

4.2 An overview of unrooted tree. 29

4.3 An overview on rooted phylogenetic tree. 30

4.4 Simulation of Neighbor-Joining method. (a) All TUs are organized in star-
like tree. (b) Two nodes are connected to internal node if they have lowest
sum of branch lengths value. 32

123

124 LIST OF FIGURES

4.5 Generating individual sequence gene files. Each gene in the core genome
is treated by acquiring its sequences from outgroup and given genomes. . . 34

4.6 Multiple sequence alignment of genes files. In this figure, gene files with
correspondent gene sequences are inputted during the multiple alignment
stage. In concatenation stage, all gene sequences are concatenated
based on given genomes with the outgroup. This assembly file will be
used in the phylogenetic construction stage using RAxML. 36

6.1 A general overview of the annotation-based approach 44

6.2 Example of similarity-based approach of two given genomes (G1,G2), G1
has five coding sequences ({x1, x2, x3, x5, x6}) and G2 has six coding se-
quences ({y1, y2, y4, y6, y9, y10}). (a) The similarity graph. On each connected
edge, there is a similarity score between gi and g j. (b) Connected compo-
nents obtained when T = 0.5. (c) No connected components when T = 0. . 46

6.3 Distribution of 99 chloroplast genomes. 48

6.4 Results obtained from genomes annotated based on (a) NCBI and (b)
DOGMA . 48

6.5 Evolution of the Intersection core matrix. 51

6.6 An overview of the pipeline. 53

6.7 Part of the implementation of the third method, sequence comparison of
the common genes from NCBI and DOGMA. In this figure, each record
have information of selected common gene such as gene name, sequence
length from NCBI and DOGMA annotations, start and stop codons for both
annotations, and the sequence matching score value. Note that the gene
column comes from producing common genes process (see Figure 6.8(a)) 54

6.8 demonstration of quality test approach pipeline. (a) The process of ex-
tracting quality genes based on gene features (e.g., gene names). (b) The
process of predicting the quality genomes based on quality genes from
previous step. 55

6.9 (a) Genes coverage for a threshold of 60% and (b) core genomes sizes. . . 56

6.10 Correlation coefficient between predicted NCBI and DOGMA annotations
and predicted common genes . 57

6.11 Original and coverage sizes between NCBI and DOGMA genomes based
on a threshold of 60%. (a) The number of genes with DOGMA is larger
than the ones with NCBI, because the former generates more tRNAs and
rRNAs genes than NCBI. (b) The former outperforms the latter, as almost
all genes in NCBI genomes have been covered with common genes, while
most of the DOGMA genes are ignored. However, correlation of them with
NCBI (after quality test) is 0.6731, while it is 0.9664 with DOGMA, this latter
being thus more accurate than NCBI. 59

6.12 Execution time and memory usage w.r.t. threshold. 60

6.13 Part of a core genomes evolutionary tree (NCBI gene names) 61

6.14 Phylogenetic tree based on DOGMA annotation. 62

LIST OF FIGURES 125

6.15 Amount of permutations w.r.t the number of core genes. 63

6.16 Core_81 phylogenetic tree with 15 core genes (1 gene removed randomly). 64

6.17 Supertree for Core_81 from 248 bootstrap phylogenetic trees after remov-
ing 1, 2, 3, or 4 genes randomly. 65

7.1 Overview of the proposed pipeline for phylogenies based on chloroplasts. . 71

7.2 Binary mapping operation overview. (a) Initial individuals obtained in sys-
tematic mode stage. Two kinds of individuals are generated. First, by
considering all genes in the core genome. Second, by omitting one gene
sequentially depending on the core length. (b) Initial individuals are gener-
ated randomly in random mode stage by omitting 2-10 genes randomly. . . 71

7.3 Random pair selections from given population. 73

7.4 Outline of the genetic algorithm. 74

7.5 (a) Two individuals were selected from given population. The first portion
from determined crossover position in the first individual is switched with
the first portion of the second individual. The number of crossover positions
is determined by Ncrossover. (b) Random mutations are applied depending
on the value of Nmutation, changing randomly gene state from 1 to 0 or vice
versa. 75

7.6 Some phylogenetic trees obtained for different chloroplast groups. 80

7.7 Best trees of topologies 0, 1, and 2. 81

7.8 Different comparisons of the topologies w.r.t the amount of removed genes:
the number of disregarded genes in these figures is specified by n

3 where n
is the number of core genes. (a) Number of trees per topology, (b) number
of trees whose lowest bootstrap is larger than or equal to 80, (c) lowest
bootstrap in best trees, and (d) the average of lowest bootstraps. 83

8.1 Core genes in lexicographical order. Each gene has two possible binary
states: either present (1) or absent (0). 87

8.2 Binary words w where the state of each gene in w is randomly selected. . . 87

8.3 Average fitness of Rosales order . 90

8.4 Best obtained topologies for Rosales order. 91

8.5 The parallel structure of PSO algorithm. 93

8.6 PSO with 10 and 15 particles vs. GA. 96

9.1 The general overview of rooted phylogenetic tree with internal and root
nodes. 102

9.2 The subtrees forms located in any rooted phylogenetic tree. 102

9.3 General overview of the proposed pipeline. In this pipeline, you can see
some arrows are in both sides because we need to prepare the chosen
new cousin, or to acquire new information. 105

9.4 High supported phylogenetic tree of Apiales order. 106

126 LIST OF FIGURES

9.5 Phylogenetic tree of Apiales order. 107

9.6 Graphical presentation of genes alignment between two genomes. 107

9.7 Simulation of gene investigation step between two genomes 109

9.8 Simulation of ancestral reconstruction process between two genomes . . . 109

9.9 Ancestral results from gene contents method. 110

9.10 General process of renaming genes based on sequence comparisons. . . . 111

9.12 Ancestral results from sequence comparison method. 112

9.11 Graphical representations between Meta_Delavayi and kalo_septemlobus
from gene content method and gene renaming method. 113

List of Tables

4.1 Optional parameters of RAxML commands. 37

6.1 NCBI Genomes Families . 47

6.2 Size of core and pan genomes w.r.t. the similarity threshold 49

6.3 Number of common genes obtained from NCBI and DOGMA annotations. . 58

6.4 Amounts of trees w.r.t removing homoplasy genes. 64

7.1 Results of our pipeline approach on various families. 78

7.2 Genomes information of Apiales. The number of genes represents the
restricted amount of genes. 81

7.3 Information regarding obtained topologies where |c| = 116, and lb = 724. . . 82

8.1 Genomes information of Rosales species under consideration 87

8.2 Best tree in each swarm. 89

8.3 Best topologies obtained from the generated trees. b is the lowest boot-
strap of the best tree having this topology, while p is the number of consid-
ered genes to obtain this tree. 90

8.4 Consel results regarding best trees . 92

8.5 Families applied on DPSO Version1 . 97

8.6 Groups applied on DPSO Version2 . 98

8.7 PSO vs GA. 99

9.1 Genomes information of Apiales . 105

9.2 Gene duplication for each genome in Apiales species 114

127

List of Definitions

1 Definition: Homology . 13

2 Definition: Similarity . 13

3 Definition: Sequence identity . 14

4 Definition: Similarity Matrix . 45

5 Definition: Quality genome . 52

6 Definition: Configuration Matrix . 76

129

List of remarks

1 Remark: BLOSUM Number . 20

2 Remark: Zero state in SW matrix . 21

3 Remark: Needleman-Wunsch vs Smith-Waterman 24

4 Remark: Graph connection limitation . 45

5 Remark: Major issue of gene prediction method 45

6 Remark: Threshold status . 48

7 Remark: Threshold usage . 54

8 Remark: Possible origins of differences between NCBI and DOGMA 57

9 Remark: Biological relevance of the results 66

10 Remark: parameters values in scoring function 73

11 Remark: Close N-cube nodes . 88

12 Remark: Inertia Weight . 89

13 Remark: Bootstrap value vs removing genes 90

14 Remark: Global optimum over the tree . 102

131

List of examples

1 Example: Sequence identity vs transitivity 14

2 Example: Number of unrooted trees with 6 species 29

3 Example: Number of rooted trees with 6 leaves 29

4 Example: Renaming duplicated gene numerically 111

133

Bibliography

[1] NIGEL CHAFFEY. Alberts, b., johnson, a., lewis, j., raff, m., roberts, k. and walter, p.
molecular biology of the cell. Annals of Botany, 91(3):401–401, 2003.

[2] Bettina Stoebe, William Martin, and Klaus V Kowallik. Distribution and nomenclature
of protein-coding genes in 12 sequenced chloroplast genomes. Plant Molecular
Biology Reporter, 16(3):243–255, 1998.

[3] Daniel Grzebyk, Oscar Schofield, Costantino Vetriani, and Paul G Falkowski. The
mesozoic radiation of eukaryotic algae: The portable plastid hypothesis1. Journal of
Phycology, 39(2):259–267, 2003.

[4] Itai Sharon, Ariella Alperovitch, Forest Rohwer, Matthew Haynes, Fabian Glaser, Nof
Atamna-Ismaeel, Ron Y Pinter, Frédéric Partensky, Eugene V Koonin, Yuri I Wolf,
Nathan Nelson, and Oded Béjà. Photosystem i gene cassettes are present in marine
virus genomes. Nature, 461(7261):258–262, 2009.

[5] Matteo De Chiara, Derek Hood, Alessandro Muzzi, Derek J Pickard, Tim Perkins,
Mariagrazia Pizza, Gordon Dougan, Rino Rappuoli, E Richard Moxon, Marco Sori-
ani, and Claudio Donati. Genome sequencing of disease and carriage isolates of
non typeable haemophilus influenzae identifies discrete population structure. Pro-
ceedings of the National Academy of Sciences, 111(14):5439–5444, 2014.

[6] Stefan Kurtz, Adam Phillippy, Arthur L Delcher, Michael Smoot, Martin Shumway,
Corina Antonescu, and Steven L Salzberg. Versatile and open software for compar-
ing large genomes. Genome biology, 5(2):R12, 2004.

[7] Hervé Tettelin, Vega Masignani, Michael J Cieslewicz, Claudio Donati, Duccio Me-
dini, Naomi L Ward, Samuel V Angiuoli, Jonathan Crabtree, Amanda L Jones,
A Scott Durkin, Robert T. DeBoy, Tanja M. Davidsen, Marirosa Mora, Maria Scarselli,
Immaculada Margarit, Jeremy D. Peterson, Christopher R. Hauser, Jaideep P. Sun-
daram, William C. Nelson, Ramana Madupu, Lauren M. Brinkac, Robert J. Dodson,
Mary J. Rosovitz, Steven A. Sullivan, Sean C. Daugherty, Daniel H. Haft, Jeremy
Selengut, Michelle L. Gwinn, Liwei Zhou, Nikhat Zafar, Hoda Khouri, Diana Radune,
George Dimitrov, Kisha Watkins, Kevin J. B. O’Connor, Shannon Smith, Teresa R.
Utterback, Owen White, Craig E. Rubens, Guido Grandi, Lawrence C. Madoff, Den-
nis L. Kasper, John L. Telford, Michael R. Wessels, Rino Rappuoli, and Claire M.
Fraser. Genome analysis of multiple pathogenic isolates of streptococcus agalactiae:
implications for the microbial “pan-genome”. Proceedings of the National Academy
of Sciences of the United States of America, 102(39):13950–13955, 2005.

135

136 BIBLIOGRAPHY

[8] Michael S Rosenberg. Sequence alignment: methods, models, concepts, and strate-
gies. Univ of California Press, 2009.

[9] GR Reeck, C DE HAËN, DC TELLER, RF DOOLITTLE, WM FITCH, RE DICKER-
SON, P CHAMBON, AD MCLACHLAN, E MARGOLIASH, and TH JUKES. E. zuck-
erkandl. 1987. homology in proteins and nucleic acids: a terminology muddle and a
way out of it. Cell, 50:667.

[10] Jonathan Pevsner. Bioinformatics and functional genomics. John Wiley & Sons,
2005.

[11] Peter Weiner. Linear pattern matching algorithms. In Switching and Automata The-
ory, 1973. SWAT’08. IEEE Conference Record of 14th Annual Symposium on, pages
1–11. IEEE, 1973.

[12] Esko Ukkonen. Algorithms for approximate string matching. Information and control,
64(1):100–118, 1985.

[13] Allan C Wilson and Vincent M Sarich. A molecular time scale for human evolution.
Proceedings of the National Academy of Sciences, 63(4):1088–1093, 1969.

[14] Motoo Kimura. A simple method for estimating evolutionary rates of base substi-
tutions through comparative studies of nucleotide sequences. Journal of molecular
evolution, 16(2):111–120, 1980.

[15] Masami Hasegawa, Hirohisa Kishino, and Taka-aki Yano. Dating of the human-ape
splitting by a molecular clock of mitochondrial dna. Journal of molecular evolution,
22(2):160–174, 1985.

[16] FJLOJ Rodriguez, JL Oliver, A Marin, and J Rß Medina. The general stochastic
model of nucleotide substitution. Journal of theoretical biology, 142(4):485–501,
1990.

[17] Koichiro Tamura and Masatoshi Nei. Estimation of the number of nucleotide sub-
stitutions in the control region of mitochondrial dna in humans and chimpanzees.
Molecular biology and evolution, 10(3):512–526, 1993.

[18] Jacques M Bahi, Christophe Guyeux, and Antoine Perasso. Predicting the evolution
of two genes in the yeast saccharomyces cerevisiae. Procedia Computer Science,
11:4–16, 2012.

[19] Peter Godfrey-Smith and Kim Sterelny. Biological information. In Edward N. Zalta,
editor, The Stanford Encyclopedia of Philosophy. Fall 2008 edition, 2008.

[20] Margaret O Dayhoff and Robert M Schwartz. A model of evolutionary change in
proteins. In In Atlas of protein sequence and structure. Citeseer, 1978.

[21] Federico Abascal, Rafael Zardoya, and David Posada. Prottest: selection of best-fit
models of protein evolution. Bioinformatics, 21(9):2104–2105, 2005.

[22] J.-P. Comet. Programmation dynamique et comparaison de séquences biologiques.
PhD thesis, Université de Technologie de Compiègne, Novembre 1998.

BIBLIOGRAPHY 137

[23] Steven Henikoff and Jorja G Henikoff. Amino acid substitution matrices from protein
blocks. Proceedings of the National Academy of Sciences, 89(22):10915–10919,
1992.

[24] Steven Henikoff, Jorja G. Henikoff, and Shmuel Pietrokovski. Blocks+: a non-
redundant database of protein alignment blocks derived from multiple compilations.
Bioinformatics, 15(6):471–479, 1999.

[25] Stephen F Altschul, Warren Gish, Webb Miller, Eugene W Myers, and David J Lip-
man. Basic local alignment search tool. Journal of molecular biology, 215(3):403–
410, 1990.

[26] David J Lipman and William R Pearson. Rapid and sensitive protein similarity
searches. Science, 227(4693):1435–1441, 1985.

[27] Julie D Thompson, Toby Gibson, Des G Higgins, et al. Multiple sequence alignment
using clustalw and clustalx. Current protocols in bioinformatics, pages 2–3, 2002.

[28] Robert C Edgar. Muscle: multiple sequence alignment with high accuracy and high
throughput. Nucleic acids research, 32(5):1792–1797, 2004.

[29] Cédric Notredame, Desmond G Higgins, and Jaap Heringa. T-coffee: A novel
method for fast and accurate multiple sequence alignment. Journal of molecular
biology, 302(1):205–217, 2000.

[30] Temple F Smith and Michael S Waterman. Identification of common molecular sub-
sequences. Journal of molecular biology, 147(1):195–197, 1981.

[31] Osamu Gotoh. An improved algorithm for matching biological sequences. Journal
of molecular biology, 162(3):705–708, 1982.

[32] Vladimir Iosifovich Levenshtein. Binary codes with correction for deletions and inser-
tions of the symbol 1. Problemy Peredachi Informatsii, 1(1):12–25, 1965.

[33] Li Yujian and Liu Bo. A normalized levenshtein distance metric. Pattern Analysis and
Machine Intelligence, IEEE Transactions on, 29(6):1091–1095, 2007.

[34] Eric C. Rouchka Jeffrey Rizzo. Review of phylogenetic tree construction. University
of Louisville Bioinformatics Laboratory Technical Report Series, (TR-ULBL-2007-
01):2–7, 2007.

[35] Luigi L Cavalli-Sforza and Anthony WF Edwards. Phylogenetic analysis. models and
estimation procedures. American journal of human genetics, 19(3 Pt 1):233, 1967.

[36] Pamela S Soltis, Douglas E Soltis, and Mark W Chase. Angiosperm phylogeny in-
ferred from multiple genes as a tool for comparative biology. Nature, 402(6760):402–
404, 1999.

[37] Deren AR Eaton and Richard H Ree. Inferring phylogeny and introgression using
radseq data: an example from flowering plants (pedicularis: Orobanchaceae). Sys-
tematic Biology, 62(5):689–706, 2013.

[38] Naruya Saitou and Masatoshi Nei. The neighbor-joining method: a new method for
reconstructing phylogenetic trees. Molecular biology and evolution, 4(4):406–425,
1987.

138 BIBLIOGRAPHY

[39] William J Bruno, Nicholas D Socci, and Aaron L Halpern. Weighted neighbor joining:
a likelihood-based approach to distance-based phylogeny reconstruction. Molecular
Biology and Evolution, 17(1):189–197, 2000.

[40] Y Tateno, N Takezaki, and M Nei. Relative efficiencies of the maximum-likelihood,
neighbor-joining, and maximum-parsimony methods when substitution rate varies
with site. Molecular Biology and Evolution, 11(2):261–277, 1994.

[41] John P Huelsenbeck, Fredrik Ronquist, Rasmus Nielsen, and Jonathan P Bollback.
Bayesian inference of phylogeny and its impact on evolutionary biology. science,
294(5550):2310–2314, 2001.

[42] Chuong B Do, Mahathi SP Mahabhashyam, Michael Brudno, and Serafim Batzoglou.
Probcons: Probabilistic consistency-based multiple sequence alignment. Genome
research, 15(2):330–340, 2005.

[43] Amarendran R Subramanian, Jan Weyer-Menkhoff, Michael Kaufmann, and
Burkhard Morgenstern. Dialign-t: an improved algorithm for segment-based mul-
tiple sequence alignment. BMC bioinformatics, 6(1):66, 2005.

[44] Kazutaka Katoh, George Asimenos, and Hiroyuki Toh. Multiple alignment of dna
sequences with mafft. In Bioinformatics for DNA sequence analysis, pages 39–64.
Springer, 2009.

[45] Jimin Pei, Ruslan Sadreyev, and Nick V Grishin. Pcma: fast and accurate multiple
sequence alignment based on profile consistency. Bioinformatics, 19(3):427–428,
2003.

[46] Alexandros Stamatakis, Thomas Ludwig, and Harald Meier. Raxml-iii: a fast program
for maximum likelihood-based inference of large phylogenetic trees. Bioinformatics,
21(4):456–463, 2005.

[47] Bassam Alkindy, Jean-François Couchot, Christophe Guyeux, Arnaud Mouly, Michel
Salomon, and Jacques M. Bahi. Finding the core-genes of chloroplasts. Journal of
Bioscience, Biochemistery, and Bioinformatics, 4(5):357–364, 2014.

[48] Bassam AlKindy, Christophe Guyeux, Jean-François Couchot, Michel Salomon, and
Jacques M Bahi. Gene similarity-based approaches for determining core-genes of
chloroplasts. In Bioinformatics and Biomedicine (BIBM), 2014 IEEE International
Conference on, pages 71–74. IEEE, 2014.

[49] Bassam AlKindy, Huda Al-Nayyef, Christophe Guyeux, Jean-François Couchot,
Michel Salomon, and Jacques M. Bahi. Improved core genes prediction for con-
structing well-supported phylogenetic trees in large sets of plant species. In Fran-
cisco Ortuño and Ignacio Rojas, editors, Bioinformatics and Biomedical Engineering,
volume 9043 of Lecture Notes in Computer Science, pages 379–390. Springer In-
ternational Publishing, 2015.

[50] Eric W Sayers, Tanya Barrett, Dennis A Benson, Evan Bolton, Stephen H Bryant,
Kathi Canese, Vyacheslav Chetvernin, Deanna M Church, Michael DiCuccio, Scott
Federhen, Michael Feolo, Ian M. Fingerman, Lewis Y. Geer, Wolfgang Helmberg,
Yuri Kapustin, David Landsman, David J. Lipman, Zhiyong Lu, Thomas L. Madden,
Tom Madej, Donna R. Maglott, Jian Ye, Aron Marchler-Bauer, Vadim Miller, Ilene

BIBLIOGRAPHY 139

Mizrachi, James Ostell, Panchenko, Anna, Lon Phan, Kim D. Pruitt, Gregory D.
Schuler, Edwin Sequeira, Stephen T. Sherry, Martin Shumway, Karl Sirotkin, Dou-
glas Slotta, Alexandre Souvorov, Grigory Starchenko, Tatiana A. Tatusova, Lukas
Wagner, Yanli Wang, W. John Wilbur, and Eugene Yaschenko. Database resources
of the national center for biotechnology information. Nucleic acids research, 39(suppl
1):D38–D51, 2011.

[51] Tamara Kulikova, Ruth Akhtar, Philippe Aldebert, Nicola Althorpe, Mikael Andersson,
Alastair Baldwin, Kirsty Bates, Sumit Bhattacharyya, Lawrence Bower, Paul Browne,
et al. Embl nucleotide sequence database in 2006. Nucleic acids research, 35(suppl
1):D16–D20, 2007.

[52] Hideaki Sugawara, Osamu Ogasawara, Kousaku Okubo, Takashi Gojobori, and
Yoshio Tateno. Ddbj with new system and face. Nucleic acids research, 36(suppl
1):D22–D24, 2008.

[53] Peter Bakke, Nick Carney, Will DeLoache, Mary Gearing, Kjeld Ingvorsen, Matt Lotz,
Jay McNair, Pallavi Penumetcha, Samantha Simpson, Laura Voss, et al. Evalua-
tion of three automated genome annotations for halorhabdus utahensis. PLoS One,
4(7):e6291, 2009.

[54] Stacia K. Wyman, Robert K. Jansen, and Jeffrey L. Boore. Automatic anno-
tation of organellar genomes with dogma. BIOINFORMATICS, oxford Press,
20(172004):3252–3255, 2004.

[55] Javier De Las Rivas, Juan Jose Lozano, and Angel R Ortiz. Comparative analy-
sis of chloroplast genomes: functional annotation, genome-based phylogeny, and
deduced evolutionary patterns. Genome research, 12(4):567–583, 2002.

[56] Chang Liu, Linchun Shi, Yingjie Zhu, Haimei Chen, Jianhui Zhang, Xiaohan Lin, and
Xiaojun Guan. Cpgavas, an integrated web server for the annotation, visualization,
analysis, and genbank submission of completely sequenced chloroplast genome
sequences. BMC genomics, 13(1):715, 2012.

[57] Genis Parra, Keith Bradnam, and Ian Korf. Cegma: a pipeline to accurately annotate
core genes in eukaryotic genomes. Bioinformatics, 23(9):1061–1067, 2007.

[58] Ewan Birney, Michele Clamp, and Richard Durbin. Genewise and genomewise.
Genome research, 14(5):988–995, 2004.

[59] Genís Parra, Enrique Blanco, and Roderic Guigó. Geneid in drosophila. Genome
research, 10(4):511–515, 2000.

[60] Stephane Guindon, Franck Lethiec, Patrice Duroux, and Olivier Gascuel. Phyml
online—a web server for fast maximum likelihood-based phylogenetic inference. Nu-
cleic acids research, 33(suppl 2):W557–W559, 2005.

[61] Alexandros Stamatakis. The raxml 7.0. 4 manual. Department of Computer Science.
Ludwig-Maximilians-Universität München, 2008.

[62] Alexandros Stamatakis. Raxml version 8: A tool for phylogenetic analysis and post-
analysis of large phylogenies. Bioinformatics, 2014.

140 BIBLIOGRAPHY

[63] Matthew Kearse, Richard Moir, Amy Wilson, Steven Stones-Havas, Matthew Che-
ung, Shane Sturrock, Simon Buxton, Alex Cooper, Sidney Markowitz, Chris Duran,
et al. Geneious basic: an integrated and extendable desktop software platform for
the organization and analysis of sequence data. Bioinformatics, 28(12):1647–1649,
2012.

[64] Vincent Ranwez, Alexis Criscuolo, and Emmanuel JP Douzery. Supertriplets: a
triplet-based supertree approach to phylogenomics. Bioinformatics, 26(12):i115–
i123, 2010.

[65] Geoffrey Ian McFadden. Primary and secondary endosymbiosis and the origin of
plastids. Journal of Phycology, 37(6):951–959, 2001.

[66] Xi Li, Ti-Cao Zhang, Qin Qiao, Zhumei Ren, Jiayuan Zhao, Takahiro Yonezawa,
Masami Hasegawa, M. James C Crabbe, Jianqiang Li, and Yang Zhong. Com-
plete chloroplast genome sequence of holoparasite Cistanche deserticola (oroban-
chaceae) reveals gene loss and horizontal gene transfer from its host Haloxylon
ammodendron(chenopodiaceae). PLoS ONE, 8(3):e58747, 03 2013.

[67] Bassam AlKindy, Christophe Guyeux, Jean-François Couchot, Michel Salomon,
Christian Parisod, and Jacques M. Bahi. Hybrid genetic algorithm and lasso test
approach for inferring well supported phylogenetic trees based on subsets of chloro-
plastic core genes. In Adrian-Horia Dediu, Francisco Hernández-Quiroz, Carlos
Martín-Vide, and David A. Rosenblueth, editors, Algorithms for Computational Bi-
ology, volume 9199 of Lecture Notes in Computer Science, pages 83–96. Springer
International Publishing, 2015.

[68] Dinabandhu Bhandari, CA Murthy, and Sankar K Pal. Genetic algorithm with elitist
model and its convergence. International Journal of Pattern Recognition and Artificial
Intelligence, 10(06):731–747, 1996.

[69] Lashon B. Booker, David E. Goldberg, and John H. Holland. Classifier systems and
genetic algorithms. Artificial intelligence, 40(1):235–282, 1989.

[70] S-I Tate, Ikuo Yoshihara, Kunihito Yamamori, and Moritoshi Yasunaga. A parallel
hybrid genetic algorithm for multiple protein sequence alignment. In Computational
Intelligence, Proceedings of the World on Congress on, volume 1, pages 309–314.
IEEE, 2002.

[71] Mridu Gupta and Shailendra Singh. A novel genetic algorithm based approach for
optimization of distance matrix for phylogenetic tree construction. International Jour-
nal of Computer Applications, 52(9):14–18, 2012.

[72] Hideo Matsuda. Construction of phylogenetic trees from amino acid sequences us-
ing a genetic algorithm. In Proceedings of Genome Informatics Workshop, volume 6,
pages 19–28, 1995.

[73] John H. Holland. Adaptation in Natural and Artificial Systems. The University of
Michigan Press, 1975.

[74] John H. Holland. Adaptation in Natural and Artificial Systems - Second edition. MIT
Press, Cambridge, MA, USA, 1992.

BIBLIOGRAPHY 141

[75] Eric Krevice Prebys. The genetic algorithm in computer science. MIT Undergrad. J.
Math, 2007:165–170, 2007.

[76] David E Goldberg. Genetic algorithms in search, optimization and machine learning.
Reading: Addison-Wesley, 1993.

[77] R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society (Series B), 58:267–288, 1996.

[78] Jeffrey D Palmer. Plastid chromosomes: structure and evolution. The molecular
biology of plastids, 7:5–53, 1991.

[79] Reem Alsrraj, Bassam AlKindy, Christophe Guyeux, Laurent Philippe, and Jean-
François Couchot. Well-supported phylogenies using largest subsets of core-genes
by discrete particle swarm optimization. Proceedings of CIBB, 2:1, 2015.

[80] James Kenndy and RC Eberhart. Particle swarm optimization. In Proceedings of
IEEE International Conference on Neural Networks, volume 4, pages 1942–1948,
1995.

[81] James Kennedy. Particle swarm optimization. pages 760–766, 2010.

[82] Mohammad Teshnehlab Mahdi Aliyari Shoorehdeli Mojtaba Ahmadieh Khanesar,
Hassan Tavakoli. Novel binary particle swarm optimization. www.intechopen.com,
(978-953-7619-48-0):11, 2009.

[83] K Premalatha and AM Natarajan. Hybrid pso and ga for global maximization. Int. J.
Open Problems Compt. Math, 2(4):597–608, 2009.

[84] Tim Blackwell Riccardo Poli, James Kennedy. Particle swarm optimization. Springer
Science + Business Media, 1(10.1007/s11721-007-0002-0):33–57, 2007.

[85] Hidetoshi Shimodaira and Masami Hasegawa. Consel: for assessing the confidence
of phylogenetic tree selection. Bioinformatics, 17(12):1246–1247, 2001.

[86] D. Sedighizadeh and E. Masehian. Particle swarm optimization methods, taxon-
omy and applications. International Journal of Computer Theory and Engineering,
1(5):486–502, 2009.

[87] M. Clerc. The swarm and the queen: towards a deterministic and adaptive particle
swarm optimization. In Evolutionary Computation, 1999. CEC 99. Proceedings of
the 1999 Congress on, volume 3. IEEE, 1999.

[88] Mathauieu Blanchette, Abdoulaye Baniré Diallo, Eric D Green, Webb Miller, and
David Haussler. Computational reconstruction of ancestral dna sequences. In Phy-
logenomics, pages 171–184. Springer, 2008.

[89] Virginie Lopez Rascol, Pierre Pontarotti, and Anthony Levasseur. Ancestral animal
genomes reconstruction. Current opinion in immunology, 19(5):542–546, 2007.

[90] Bret Larget, Donald L. Simon, Joseph B. Kadane, and Deborah Sweet. A bayesian
analysis of metazoan mitochondrial genome arrangements. Molecular Biology and
Evolution, 22(3):486–495, 2005.

142 BIBLIOGRAPHY

[91] Fei Hu, Yu Lin, and Jijun Tang. MLGO: phylogeny reconstruction and ancestral
inference from gene-order data. BMC Bioinformatics, 15:354, 2014.

[92] Sridhar Hannenhalli, Colombe Chappey, Eugene V Koonin, and Pavel A Pevzner.
Genome sequence comparison and scenarios for gene rearrangements: A test case.
Genomics, 30(2):299–311, 1995.

[93] John W. Ratcliff and David E. Metzener. Pattern matching: The gestalt approach.
13(7):46, 47, 59–51, 68–72, July 1988.

[94] Bassam Alkindy, Christophe Guyeux, Jean-François Couchot, Michel Salomon, and
Jacques Bahi. Using genetic algorithm for optimizing phylogenetic tree inference in
plant species. In MCEB15, Mathematical and Computational Evolutionary Biology,
Porquerolles Island, France, June 2015. poster.

[95] S. Needleman and C. Wunsch. A general method applicable to the search for sim-
ilarities in the amino acid sequence of two proteins. Journal of Molecular Biology,
48(3):443–453, March 1970.

[96] Tolga Güyer, Bilal Atasoy, and Sibel Somyürek. Measuring disorientation based on
the needleman-wunsch algorithm. The International Review of Research in Open
and Distributed Learning, 16(2), 2015.

Document generated with LATEX and:
the LATEX style for PhD Thesis created by S. Galland — http://www.multiagent.fr/ThesisStyle

the tex-upmethodology package suite — http://www.arakhne.org/tex-upmethodology/

http://www.multiagent.fr/ThesisStyle
http://www.arakhne.org/tex-upmethodology/

Abstract:

In Bioinformatics, understanding how DNA molecules have evolved over time remains an open and complex problem.
Algorithms have been proposed to solve this problem, but they are limited either to the evolution of a given character (for
example, a specific nucleotide), or conversely focus on large nuclear genomes (several billion base pairs), the latter having
known multiple recombination events - the problem is NP complete when you consider the set of all possible operations
on these sequences, no solution exists at present. In this thesis, we tackle the problem of reconstruction of ancestral DNA
sequences by focusing on the nucleotide chains of intermediate size, and have experienced relatively little recombination
over time: chloroplast genomes. We show that at this level the problem of the reconstruction of ancestors can be resolved,
even when you consider the set of all complete chloroplast genomes currently available. We focus specifically on the order
and ancestral gene content, as well as the technical problems this raises reconstruction in the case of chloroplasts. We
show how to obtain a prediction of the coding sequences of a quality such as to allow said reconstruction and how to
obtain a phylogenetic tree in agreement with the largest number of genes, on which we can then support our back in time
- the latter being finalized. These methods, combining the use of tools already available (the quality of which has been
assessed) in high performance computing, artificial intelligence and bio-statistics were applied to a collection of more than
450 chloroplast genomes.

Keywords: core genome, clustering algorithms, genetic algorithm, particle swarm optimization, dynamic systems, in-
telligent algorithms, ancestral reconstruction, phylogenetic tree.

Résumé :

En bio-informatique, comprendre comment les molécules d’ADN ont évolué au cours du temps reste un problème ouvert et
complexe. Des algorithmes ont été proposés pour résoudre ce problème, mais ils se limitent soit à l’évolution d’un caractère
donné (par exemple, un nucléotide précis), ou se focalisent a contrario sur de gros génomes nucléaires (plusieurs milliards
de paires de base), ces derniers ayant connus de multiples événements de recombinaison – le problème étant NP complet
quand on considère l’ensemble de toutes les opérations possibles sur ces séquences, aucune solution n’existe à l’heure
actuelle. Dans cette thèse, nous nous attaquons au problème de reconstruction des séquences ADN ancestrales en nous
focalisant sur des chaînes nucléotidiques de taille intermédiaire, et ayant connu assez peu de recombinaison au cours
du temps : les génomes de chloroplastes. Nous montrons qu’à cette échelle le problème de la reconstruction d’ancêtres
peut être résolu, même quand on considère l’ensemble de tous les génomes chloroplastiques complets actuellement
disponibles. Nous nous concentrons plus précisément sur l’ordre et le contenu ancestral en gènes, ainsi que sur les
problèmes techniques que cette reconstruction soulève dans le cas des chloroplastes. Nous montrons comment obtenir
une prédiction des séquences codantes d’une qualité telle qu’elle permette ladite reconstruction, puis comment obtenir un
arbre phylogénétique en accord avec le plus grand nombre possible de gènes, sur lesquels nous pouvons ensuite appuyer
notre remontée dans le temps – cette dernière étant en cours de finalisation. Ces méthodes, combinant l’utilisation d’outils
déjà disponibles (dont la qualité a été évaluée) à du calcul haute performance, de l’intelligence artificielle et de la bio-
statistique, ont été appliquées à une collection de plus de 450 génomes chloroplastiques.

Mots-clés : génome noyau, algorithme génétique, optimisation par essaim de particules, systèmes dynamiques, algo-
rithmes intelligents, reconstruction ancestrale, arbre phylogénétique.

	 Acknowledgement
	 Dedication
	 Abstract
	1 Introduction
	1.1 General Presentation
	1.2 Presentation of the Problems
	1.3 Thesis Objective
	1.4 Contributions
	1.5 Publications
	1.5.1 Acts of selective international conferences
	1.5.2 Publications in national seminars and workshops

	1.6 List of Abbreviations
	1.7 Mathematical Notations
	1.8 Organization of the Thesis Manuscript

	I State of the Art
	2 A short history regarding core and pan genome extraction
	3 Technical Aspects of Sequence Alignments
	3.1 Introduction
	3.2 Standard Substitution Matrices
	3.2.1 Nucleotide substitution matrices
	3.2.2 Point Accepted Mutation (PAM) matrix
	3.2.3 Blocks Substitution Matrix (BLOSUM)

	3.3 Local Alignment Algorithms
	3.3.1 Basic local alignment search tool (BLAST)
	3.3.2 Smith–Waterman algorithm

	3.4 Global Sequence Alignment: the Needleman Wunsch example
	3.5 Edit distances
	3.6 Multiple Sequence Alignment (MSA)
	3.7 Conclusion

	4 Concept of Phylogenetic Tree Construction
	4.1 Various Types of Phylogenetic Trees
	4.2 Methods for Phylogenetic Construction
	4.2.1 Introduction
	4.2.2 A Distance-Based Method: the Neighbor-Joining Algorithm

	4.3 Character-Based Methods
	4.3.1 Maximum Parsimony
	4.3.2 Bayesian Method
	4.3.3 Maximum Likelihood
	4.3.3.1 General presentation
	4.3.3.2 Bootstrap values

	4.4 Stages for Phylogenetic Analysis
	4.5 Conclusion

	II Contributions
	5 General Introduction
	6 Core-Genes Prediction Approaches
	6.1 Introduction
	6.2 Core genome extraction Approaches
	6.2.1 Similarity-based Approach
	6.2.1.1 Theoretical presentation
	6.2.1.2 A first case study

	6.2.2 Annotation-based Approach
	6.2.2.1 Using genes names provided by annotation tools
	6.2.2.2 Names processing
	6.2.2.3 Core genes extraction

	6.2.3 Quality Test Approach
	6.2.3.1 Construction of quality genomes
	6.2.3.2 Core and pan genomes
	6.2.3.3 Execution time and memory usage

	6.3 Features visualization
	6.3.1 The core tree
	6.3.2 A first phylogenetic study

	6.4 Discussion and biological evaluation
	6.5 Conclusion

	7 Inferring Phylogenetic Trees using Genetic Algorithm
	7.1 General Presentation
	7.2 Presentation of the problem
	7.3 Generation of the initial population
	7.4 Genetic algorithm
	7.4.1 Genotype and fitness value
	7.4.2 Genetic process
	7.4.3 Crossover step
	7.4.4 Mutation step
	7.4.5 Random step

	7.5 Targeting problematic genes using statistical tests
	7.5.1 The Lasso test
	7.5.2 Second stage of genetic algorithm

	7.6 Case studies
	7.6.1 Pipeline evaluation by various groups of plant species
	7.6.2 Investigating Apiales order
	7.6.2.1 Method to select best topologies
	7.6.2.2 Topological Analysis

	7.7 Conclusion

	8 Inferring Phylogenetic Trees using DPSO
	8.1 Discrete Particle Swarm Optimization
	8.2 Application to Phylogeny
	8.3 Experimental results and discussion
	8.3.1 Experimental protocol and results
	8.3.2 Selecting best phylogenetic tree using per-site analysis

	8.4 MPI: Proposed Methodology
	8.4.1 The master-slave proposal
	8.4.2 Distributed BPSO with MPI
	8.4.2.1 Distributed BPSO Algorithm: Version I
	8.4.2.2 Distributed BPSO Algorithm: Version II

	8.4.3 Genetic Algorithm vs Particle Swarm Algorithm

	8.5 Conclusion

	9 Ancestral Reconstruction
	9.1 General Presentation of the Problem
	9.2 Ancestral Reconstruction Pipeline
	9.2.1 Data Preparation
	9.2.2 Ancestral Analysis Methods
	9.2.2.1 Ancestor Prediction based on Gene Contents
	9.2.2.2 Ancestor Prediction based on Sequence Comparison

	9.2.3 Ancestral Information

	9.3 Conclusion

	III Conclusion and Future Work
	10 Conclusion
	10.1 Conclusion
	10.2 Future Investigative Directions

