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A B S T R A C T

The continuum limit of loop quantum gravity is still an open problem.
Indeed, no proper dynamics in known to start with and we still lack
the mathematical tools to study its would-be continuum limit. In the
present PhD dissertation, we will investigate some coarse-graining
methods that should become helpful in this enterprise. We concen-
trate on two aspects of the theory’s coarse-graining: finding natural
large scale observables on one hand and studying how the dynamics
of varying graphs could be cast onto fixed graphs on the other hand.

To determine large scale observables, we study the case of hyper-
bolic tetrahedra and their natural description in a language close to
loop quantum gravity. The surface holonomies in particular play an
important role. This highlights the structure of double spin networks,
which consist in a graph and its dual, which seems to also appear
in works from Freidel et al. To solve the problem of varying graphs,
we consider and define loopy spin networks. They encode the local
curvature with loops around an effective vertex and allow to describe
different graphs by hidding them in a coarse-graining process. More-
over, their definition gives a natural procedure for coarse-graining
allowing to relate different scales.

Together, these two results constitute the foundation of a coarse-
graining programme for diffeomorphism invariant theories.
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R É S U M É

Le problème de la limite continue de la gravitation quantique à boucle
est encore ouvert. En effet, la dynamique précise n’est pas connue et
nous ne disposons pas des outils nécessaires à l’étude de cette limite
le cas échéant. Dans cette thèse, nous étudions quelques méthodes
de coarse-graining (étude à gros grains) qui devraient contribuer à
cette entreprise. Nous nous concentrons sur deux aspects du flot: la
détermination d’observables naturelles à grandes échelles d’un côté
et la manière de s’abstraire du problème de la dynamique à graphe
variable en la projetant sur des graphes fixes de l’autre.

Pour déterminer les observables aux grandes distances, nous étu-
dions le cas des tétraèdres hyperboliques et leur description naturelle
dans un langage proche de celui de la gravitation quantique à boucle.
Les holonomies de surface en particulier jouent un rôle important.
Cela dégage la structure des double spin networks constitués d’un graphe
et de son dual, structure qui semble aussi apparaître dans les travaux
de Freidel et al. Pour résoudre le problème des graphes variables,
nous considérons et définissons les loopy spin networks. Ils encodent
par des boucles la courbure locale d’un vertex effectif et permettent
ainsi de décrire différents graphes en les masquant via le processus
de coarse-graining. De plus, leur définition donne un procédé naturel
systématique de coarse-graining pour passer d’une échelle à une autre.

Ensemble, ces deux principaux résultats posent le fondement d’un
programme de coarse-graining pour les théories invariantes sous dif-
féomorphismes.
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1
I N T R O D U C T I O N

Allons-y! — The Doctor

1.1 the problem

Loop Quantum Gravity (LQG) provides the framework for all the For textbooks and
reviews on Loop
Quantum Gravity,
see [26, 92, 117, 168,
198, 201, 203, 231].

work done in this thesis. This theory is, as its names suggests, a quan-
tum theory of gravity, or at least a proposal thereof. It is now well-
known that the two masterpieces of theoretical physics of the 20th

century, namely Quantum Field Theory (QFT) and General Relativ-
ity (GR) , are incredibly successful to a degree that is astonishing. QFT,
which successfully gives a quantum mechanical description of rela-
tivistic phenomena, now has experimental support to 13 digits [114,
181]. The Standard Model of particle which is expressed in the QFT

framework was confirmed quite recently when the final piece of the
particles it needed was discovered in 2012: the Higgs boson [1, 73]. GR

also has its own impressive track record, with precision tests in the
solar system [104, 233], the development of cosmology or the very
recent direct detection of gravitationnal waves [2]. The successes of
these theories suggest that they get something right. This entails, with
increasing evidence, that a complete description of physics must be
able to fathom events that are quantum mechanical, relativistic and
gravitationnal at the same time.

A quantum theory of gravity (already called quantum gravity) would
give a precise and complete description of gravity that is quantum
mechanical. It should reduce to GR in some large-distance, small en-
ergy density limit, and lead to QFT when the gravitationnal field is
weak. This can be recast in a diagramatic form as seen on fig.1 as the The details of the

cube might be up for
discussion. Indeed,
the newtonian limit
is also usually
considered in the
regime of low
curvature, not only
c =∞. But it is a
handy tool to present
the scope of possible
theories.

cube of fundamental constants. Each dimension of the cube corresponds
to some fundamental physical constant that can be considered or dis-
carded. c of course encodes (special) relativity,  h quantum mechan-
ics and G gravity. If all are discarded, we fall back to Newtonian
mechanics without gravity. We know how to consistantly implement
every couple of constants, with general relativity (c and G) and quan-
tum field theory (c and  h) and even, surprisingly the couple  h and
G [74]. Note that it is possible to define other limits by changing
which constant is considered more fundamental. Nothing prevents
us from replacing G by a string tension, a Planck length or a mass
for instance. These choices will underline different approaches. This

1
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Figure 1: The cube of fundamental constants (cliparts taken or adapted
from Open Clipart – free of use).

does not change however the fact that the last corner of the cube of
quantum gravity is still to be conquered. So far, it is only possible to
consider quantum field theory on a given classical background [30,
235] or limits in a non-relativistic setting [175], but no full quantum
theory of general relativity, not even with pure gravity is perfectly
known. Building such a full theory turns out to be difficult [67]. At
first sight, because of the huge success of gauge theories, it seems nat-
ural to try and follow the same path for quantum gravity as was used
for the other interactions: start with the canonical action and quantize
it. This method does not really work straightforwardly even in the
case of QCD or any Yang-Mills theory, since infinities appear. Fortu-
nately these infinities are absorbable by renormalization. This is not
the case however with quantum gravity. And it was to be expected as
gravity is conceptualy quite different from gauge theories. Indeed, the
symmetries of gauge theories are internal symmetries, which means
that they act at a given point in spacetime. The symmetries of gravity,
however, include the diffeomorphism group. This makes it difficult toSome approaches to

quantum gravity
even try to start

from notions like
causality. See for

instance causal sets
and causel histories

and [217] for a
recent overview.

define a precise notion of causality and locality in the usual manner.
Indeed, we loose the global symmetry group of spacetime (namely
the Poincare group) which was essential in the construction of quan-
tum field theories. Though causality and locality are still defined in
principle, they cannot be implemented as usual through a lightcone
structure on a fixed background.

http://openclipart.org
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There is a simple enough way to alleviate the problem though: con-
sidering the linearization of gravity around a flat Minkowskian met-
ric and developing the theory perturbatively. With such a procedure,
spacetime is now equipped with a natural (Minkowskian) metric and
such notions are well-defined on it. It might even be possible to de-
velop around other backgrounds, the expansion corresponding to
small perturbation coming from the quantum corrections. This how-
ever can not work in a simple way. The coupling constant of gravity
is G which is homogeneous to the inverse square of a mass in dimen-
sion 3 + 1 (in units where  h = c = 1). In particular, from a power
counting argument, it appears that the theory is non-renormalizable,
meaning that each order of the theory will bring new terms to the
action, with their corresponding coefficients. In fact, there is a mira-
cle for the one-loop amplitude of general relativity, implying that it is
renormalizable to one-loop [218] with the appropriate redefinitions of In principle,

renormalizability is
a property of the
whole perturbation
process, not of one
order. So,
renormalizability at
one-loop means that
all infinities at
one-loop can be
absorbed by field
redefinition.

the terms. This property however disappears at next orders or when
we include matter fields.

From this point on, there are essentially two possible directions,
two possible mindsets: either the technique applied to gauge theories
is not generalizable and something peculiar is happening with grav-
ity, or there is something wrong with general relativity. Considering
that something is wrong with general relativity does not mean, of
course, that everything and anything is possible. It means rather that
general relativity, though a good theory, must be completed at high
energies, as was the Fermi interaction by the weak force. In this re-
gard, GR must be considered as an effective field theory, valid only
at low energies. This leads to the search for either some new symme-
try (like supersymmetry) or new physics, which for example leads
to string theory. The first avenue or mindset is also possible and is
usually taken to mean that the main problem comes from the pertur-
bative expansion around flat space (or any other space). Therefore,
the natural way to solve the problem, in such a perspective, would be
to look for a non-perturbative quantization or treatment of quantum
gravity.

Some scales naturally appear in quantum gravity on a dimension-
nal ground. Let us fix units where  h = c = 1 as is now common in It should be noted

that the dimension
of G depends on the
dimension of
spacetime. In
particular, for
2-dimensionnal
spacetimes, G is
dimensionless and
for 3-dimensionnal
spacetimes, G is
directly the inverse
of a mass even at the
classical level ( h
does not intervene).

high energy physics. In this kind of units, only one unit is necessary
and can be taken to be a length or a mass for instance. In particular,
G is dimensionful and can be written as:

G =
1

m2P
(1)

where mP is the Planck mass. It represents the scale at which quan-
tum effects arise in gravity or, conversly, at what scale gravity effects
enter quantum theory. In quantum theory, this mass scale also gives a
length scale: the Planck length `P which is inversely proportionnal to
the Planck mass. We expect quantum gravity effects to be important
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at that scale. Indeed, there is a very simple physical interpretation of
the Planck mass and of the Planck length. For a particle of a given
mass m, the Scharzschild radius rS of the black hole it would create
runs linearly with the mass m following:

rS = 2Gm. (2)

But its Compton length lC caracterizing its dispersion due to quan-
tum effects increases with the inverse of the mass as:

lC =
1

m
. (3)

For low energies, the Compton length is much larger than the Schwarzschild
radius and therefore gravity effects can be neglected compared to
quantum mechanical ones. At some point however, the lengths cross:

rS = lC ⇔ 2Gm =
1

m
⇔ m =

1√
2G

(4)

and this corresponds to the point where gravity and quantum me-Discussion of
factors, like 2 or 8π

have been completely
omitted in this
dimensionnal

analysis.

chanics effects have the same order of magnitude. The tipping mass
is the Planck mass. The Planck length is then the radius of the corre-
sponding black hole. Now, as a scale naturally enters quantum grav-
ity, we do not expect spacetime to simply be Minkowskian. There
should be quantum fluctuation down at the Planck scale which might
solve the problem of perturbative expansion. It can be noted that thisIt is quite interesting

to see how
non-renormalizable

theories tend to
predict the scale at

which they are
broken, as was the

case with the Fermi
interaction.

would presumably also appear in other theories of quantum gravity
even if we consider general relativity to be some low energy approx-
imation. The new physics solving the pertubative expansion issue
would appear at that scale. The new physics is then expected to solve
some of the singularity issues in general relativity which are awaited
in black holes [174, 191] and at the Big Bang for instance [18].

An interesting argument, which can be found in Thiemann’s book
[231] and was originally introduced in [15], seems to support this idea
that non-pertubative effect can solve the problem of renormalization
even at the classical level. Let us consider the self-energy of a point
particle of mass m0 and electric charge q. Keeping the units whereIncluding the energy

from the fields is
natural from an

“inertial” as well as
“gravitionnal” mass

point of view. For
the gravitationnal

mass, energy
gravitates not mass.

For the inertial mass,
we should consider

that the fields
themselves will have

more energy if the
particle moves.

c = 1 (and  h = 1, but this won’t appear in the calculation), the self-
energy can be written as a physical mass m rather than an energy.
This physical mass corresponds to the total mass of the particle plus
the mass induced by all the energy coming from the fields it gener-
ates. All this contributes to the rest energy of the system which is the
definition of mass. It can be written:

m = m0 +
3q2

5ε
−
3Gm20
5ε

(5)

where the vacuum permittivity ε0 was put to 1 (canonical units) and
ε acts as a cut-off for the computation as the integral defining the
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energy diverges near the particle. The cut-off is necessary to make
the computation finite as the fields diverge. This amounts to consider
that the particle is a small ball of uniform mass and radius ε. Still,
the limit ε → 0 should be taken at some point eventhough it is not
possible here. The idea of renormalization is to use the bare mass m
as the good parameter. That means that instead of parametrizing the
theory by bare parameters (which might be remote or unaccessible
anyway, not to mention ill-defined), the theory will be expressed in
term of measurable quantities, in this case the full measurable mass.
This idea works if the limit can be taken after having reexpressed in
such a way. For this, the bare masses will be made to include counter-
terms that are infinite or, at finite cut-off, which includes terms of
the form 1

ε . But because of the square of m0 which appears in the
coupling with gravity, no polynomial expression of m0 in terms of
1
ε can ever alleviate all the powers of ε. Therefore, perturbatively,
renormalization fails.

Now, general relativity comes into play and tells us that gravity
actually couples to the physical mass and not the bare mass (as the
equivalence principle implies). Therefore, we should have written:

m = m0 +
3q2

5ε
−
3Gm2

5ε
(6)

This equation can be solved exactly as:

m =
5ε

6G

(√
1+

12G

5ε

(
m0 +

q2

ε

)
− 1

)
(7)

Now, the physical mass exists for ε = 0 (the limit can be taken),
without reabsorbing any infinities. It reads: The physical mass

we find do not even
depend on the bare
mass m0. This is
suspiscious of course
but we should
remember that this
is a hand-waving
argument, mixing
arguments from
classical physics,
newtonian gravity
and relativity, which
should not be trusted
quantitatively.

m =

√
5q2

3G
(8)

which is finite. This surprising result is obviously non-analytic, ex-
plaining the failure of the perturbative process, and making the self-
energy finite even in presence of an electric field. Therefore, we ex-
pect gravity phenomena could cure the divergences of field theory,
even of other coupled fields as the electromagnetic field. This should
be done at a non-pertuabtive level. Moreover, the central argument
here comes from diffeomorphism invariance even though it is quite
hidden at first sight. Indeed, diffeomorphism invariance is the sym-
metry that allows the principle of equivalence and, as a consequence,
the coupling to the physical mass, rather than the bare mass. Some
interplay is then to be expected between diffeomorphism invariance
and non-perturbative definition of the theory.

There are several routes to non-pertubative quantum gravity. A pos-
sible, and very interesting possibility, is the fixed-point approach to
the renormalization group or Asymptotic Safety (AS) scenario [178].
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In this thesis however, we will rather consider the loop quantum grav-
ity approach. Though it could arguably be linked to the first projectThe fact that

asymptotic safety
and loop quantum

gravity are
somewhat linked can

be argued most
persuably by the

presence of AS
gravity researcher at

nearly every LQG
conference.

[189], this programme has its own history. This approach makes an
attempt at quantifying precisely general relativity from the Hamil-
tonian perspective and by so doing has already developed a huge
framework that appears promising. In the next section, we will briefly
review the historical development of the theory, leaving for now the
technical sides as we will get back to those in the body of the thesis.

1.2 non-pertubative quantization programme

LQG already has some history and its main lines of development can
be found in [199]. We focus here on the points relevant to the rest of
the thesis. We can argue that the LQG programme relies on four major
points:

• the first development of quantization of general relativity and
its failure,

• the discovery of the new variables,

• the loop quantization,

• the development of the dynamics.

In Loop Quantum Gravity, we concentrate on the Hamiltonian per-
spective. The canonical quantization programme was launched byFrom the path

integral approach, a
lot of infinities tend

to appear and are
discared as

irrelevant factors.
Though this can be
justified, it is easier
to treat the problem

from an
Hamiltonian

perspective.

Dirac and Bergmann already in late 40s [45, 47, 50, 82] and matured
in the early 50s. This allowed the canonical treatment of general rela-
tivity (still at the classical level) by the end of the 50s [84, 172]. What
we now call the ADM variables, with their nice geometrical interpre-
tation, was developed in 1961 by Arnowit, Deser and Misner and also
led to the first clue that nonperturbative quantum gravity might be fi-
nite [13, 14]. By the end of the 60s, the Wheller-De Witt equation was
introduced [79–81] and canonical GR was defined in a formal sense.
And this opened the road for the first failures in the early 70s when it
became clear that perturbative quantization would not work at least
naively [77, 78].

Loop Quantum Gravity is founded on two main principles: the
idea that it is the perturbative treatment that is problematic, and
the idea of keeping the canonical perspective. The problem was that
the Wheeler-DeWitt equation was far too hard to define properly, let
alone to solve. A major advance came with the discovery of Ashtekar
connection [17] and then Ashtekar-Barbero variables [37, 140] allow-
ing the theory to be expressed in terms of polynomial constraints
(except for the Hamiltonian constraint when using non-self-dual vari-
ables). Though already interesting at the classical level, this is of
course a great simplification for quantization since it removes a lot
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of ambiguities which plagued the previous framework. Loop Quan-
tum Gravity was born, arguably with the seminal work of Jacobson
and Smolin, finding loop solutions to the Wheeler-DeWitt equations
with the new variables [141]. This finally led to the loop representa-
tion [207], and finally polymer quantization [22–25] giving a rigorous
basis for the quantum kinematical phase space of general relativity.
Uniqueness theorems were even proved making the diffeomorphism
assumptions essential in the construction [154].

This led to the present day problems of fixing the dynamics. Thie-
mann’s original proposal [221], though not satisfying [115, 153, 215],
is a milestone. Since then, the development in the canonical frame-
work, for the full-theory, is rather shy. We have the master constraint
programme [230] and some variations [28]. However, the work on
toy-models or simplified versions of the full-theory has shed great
light on the subject and allowed a better comprehension of the hur-
dles we have to take care of [134, 135, 148–150, 152, 232] (see also
[61] for a review). But most of the developments in the dynamics
have been on the covariant sides, where we consider evolution of the
geometry states along spacetime and consider amplitudes associated
to them. The first notable model is the Barrett-Crane model [39, 40],
which had a flatness issue [142]. This was solved with the most recent
EPRL [100] and FK [107] vertex which included an Immirzi parameter.
Since then, other variations have been proposed (for instance [97, 99,
102]) and the renormalization of these vertices have been investigated
(though not solved) as in [35, 36]. It should be noted that the work is
way more promising and accomplished on the (euclidean) 3d quan-
tum gravity side, first investigated with the so-called combinatorial
quantization [239] and with models in the canonical and covariant
approaches [58, 60, 179, 180] including or not a cosmological constant
[59, 94, 173, 194]. This covariant approach is developed in two dif-
ferent (though close) directions: spinfoams [31, 51, 100, 101, 155, 177,
190, 196] and Group Field Theory (GFT) [68, 184].

Let us now sum up the modern understanding of the theory in a
slightly more technical manner. LQG relies on the reformulation of
GR as a gauge field theory using Ashtekar-Barbero variables and pro-
vides a canonical quantization of it. The kinematics of the theory is
well-understood at a rigorous mathematical level [23, 154]: the states
of the theory are wavefunctions on the space of generalized connec-
tions and are defined using cylindrical functions over the connection
(that is functions depending only on a finite number of holonomies).
A basis of this state space is labeled by spin networks (see for a review
[29]): they are graphs with extra spins and intertwiners as colour-
ing on the edges and the vertices respectively [163, 209] (see fig.2a).
They were already introduced by Penrose for his twistor approach
[186–188]. These states possess a natural geometrical interpretation
as quantum discrete geometries. Each node of the graph represents a
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the glued polyhedra do not have to

match.

Figure 2: The geometrical interpretation of spin networks

polyhedron and the links of the graph indicate how to glue them to-
gether [210]. The extra spins are related to the area of the faces of the
polyhedra and the intertwiners of SU(2) at the nodes specify the re-
maining degrees of freedom for the polyhedra [38, 53, 108] (see fig.2b).
Therefore, they generalize usual Regge geometries since the shape of
the faces of the polyhedra are not required to match when glued
together (see fig.2c). They can be better understood in the twisted ge-
ometry framework [112] or in the more recent spinning geometries
[113] which are both generalizations of Regge geometries that take
into account metric discontinuity and torsion respectively [105, 132].
Curvature is allowed on spin networks but is supported by loops in
the graph: the graph links carry elementary excitations of the connec-
tion and thus correspond to non-trivial parallel transport accross the
faces of the polyhedra. Curvature is encoded in holonomies around
loops which correspond to the edges of the polyhedra when the dual
triangulation exists (that is when the matching conditions of Regge
geometries are verified). Then, the usual continuous curved space-
time is to be recovered in a large-scale limit. A Hilbert space can be
defined for any single graph, but the kinematical space of the full the-
ory contains states in superpositions from different graphs. As any
states can be enlarged to a bigger graph by allowing trivial depen-
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dancy of the wavefunction on the extra edges, it is possible to identify
two wavefunctions on two graphs if they only depends on the shared
parts of the graphs and if they do coincide on them. This consistency
condition (called the cylindrical consistency condition) implements
the fact that the states should not depend on the particular graph,
finer or coarser, as long as the graph is large enough to encode the
relevant degrees of freedom. This defines equivalence classes of wave-
functions and allows for the writing of a theory on varying graphs.
It can also act as a guideline for coarse-graining as was explored by
Dittrich [85].

The physics of LQG, however, is contained in its dynamics. Several
proposal have been carried out, in the canonical framework and in
the covariant setup. One of the other major challenges which is of
concern for this paper, is to show that the theory, at least in one of
these approaches, does indeed reproduce GR in the continuum semi-
classical limit. The problem of the dynamics is tentatively difficult
notably because the dynamics have two main aspects: the dynamics
at fixed graph and the dynamics changing the graph. This makes di-
rect calculations or even numerical simulations difficult in practice
because the two aspects come simultaneously. The usual stategy for
discrete systems on fixed graphs, as in condensed matter theory and
statistical physics, is to coarse-grain the theory, that is, to integrate
the microscopic degrees of freedom inside bounded regions, thus as-
similated to points, and to write effective theories for the relevant
macroscopic degrees of freedom. This process of coarse-graining nat-
urally makes possible the study of a continuum limit as we will ar-
gue below. In the LQG context, though the theory works with varying
graphs, we could hope to extend this process and further use it to
map the varying graphs dynamics onto a fixed graph dynamics (fol-
lowing developments along the KPZ conjecture [143]). The rationale
behind this is the following: starting from a base graph, each node
will correspond to a varying coarse-grained region. This means that
the internal degrees of freedom of the vertices in the effective theory
should reproduce a varying structure. This method should mimic a
development around this base graph considered as a skeleton graph
for the excitations. The problem may be treated in other ways and
other viable physical and geometrical pictures will be described be-
low. Still, this image can be used as a guide in the search of a good
coarse-graining scheme.

Though the physics is not fully elucidated yet, the work is indeed
promising. Models exists and some first checks have been possible.
The Loop Quantum Cosmology (LQC) field [18, 55], which we will
study further, has interesting developments and simplified settings
are increasingly studied. Let us mention here the results [202], which
are a good indication that the theory we are studying is indeed grav-
ity. The link between spinfoams, GFT and canonical quantization is
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also getting clearer [96, 156, 182, 183] and some computations can be
made [7, 8]. As a final note, a nice review of the current status of the
programme can be found in [204].

1.3 coarse-graining

As argued in the previous section, coarse-graining enters the study of
loop quantum gravity in at least one respect: the study of the contin-
uum limit. There is a second aspect that is also more or less automat-
ically taken care of: the study of large scales. Indeed, the study of the
renormalization and coarse-graining of a theory usually allows for
using large approximate discetizations still given accurate result com-
pared to a naive discretization of the Hamiltonian. It should be noted
here, that coarse-graining might not be the only way to study large
scales since symmetry reduction can also be used (as is done in cos-
mology). And some approaches have been devised along this line [6].
However, with the current state of the dynamics, coarse-graining is
mostly needed for two reasons: either for defining a continuum limit
(as we are still lacking a good Hamiltonian for instance) or for renor-
malizing a given dynamics (as in group field theory of spin foam
approaches).

How is the coarse-graining to help in the definition of a contin-
uum limit? As we saw, we still lack a correct Hamiltonian, which
would satisfy the (four dimensionnal) diffeomorphism algebra and
which reduces to general relativity in some limit. It is easier to sug-
gest a discretization of such an Hamiltonian (as in [57]), especially
since the Hilbert space of states carries a natural discrete structure.
Then, the process of coarse-graining can begin its work: at each step
of coarse-graining, the dynamics captures finer and finer details. In
particular, because the scale of the study gets large compared to the
fundamental blocks, the dynamics approaches a continuum hamilto-
nian. At the fixed point, the hamiltonian should be perfectly contin-
uous, though expressed on a truncation. The take-home idea is that
the correct algebra should be regained for fixed-points of the coarse-
graining flow [85]. This means that if a correct coarse-graining process
is devised, we could, rather than studying a given dynamics, search
for fixed points which would encode the continuum directly. There
are of course subtilities in the interpretation, as the discretization do
not rely on some fixed lattice, but the lattice itself is, in some sense,
dynamical. Still, coarse-graining can be understood as an approxima-
tion scheme, where the number of blocks is not related to some scale
but to the number of independant degrees of freedom we consider.
This idea is well-supported on simple models like reparametrization
invariant free particles [205].

Still, there are obvious problems with such an approach. The first
one comes with the representation of the fixed point: the couplings
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might be highly non-local (as is the case when renormalizing the Ising
model for instance). This can be seen in simple cases. Let us consider
for instance a simple free (scalar) field theory in 1 + 1d spacetime,
so that there is only one direction of propagation. In that case, it is
totally possible to consider a discrete theory with a field with values
on discrete points (the space will be isomorphic to Z) with some
spacing a between them (see figure 3).

•
φ−2 •

φ−1 •
φ0 •

φ1 •
φ2

a

· · · · · ·

x| | |
0

| |

Figure 3: We consider a scalar field on a discrete line, which is represented
by a function φ : Z→ C. We set the lattice spacing to a. This field can

be thought of as a truncation of a continuous field φ(x).

This discrete theory can encode naturally the full continuum the-
ory if we consider a truncation thereof. Indeed, the discretization does
not allow to decipher between waves of momentum k and waves of
momentum k+ 2π

a . But if we restrict to waves of momentum between
−πa and π

a , the ambiguity is solved and we can adjust the dynamics
so that the continuum theory is reproduced. But the natural variables
are now in the momentum space and involves highly non-local eval-
uation to compute the hamiltonian. Indeed, the evalutation involves
a Fourier transform which takes into account the whole line. This can
be seen quite simply, because our cut-off is a window on momenta
which can be applied quite simply in Fourier space by multiplication.
Back to real space, this will involve convolution with a sinc function
which decreases quite slowly at infinity.

This underlines a few problems we have to deal with: how to
choose a good cut-off and how to choose the right variables. Indeed,
we cannot expect, as for a free field theory, to find an exact cut-off.
In the absence of a metric, it will also be quite difficult to find some
meaningful notion of Fourier transform or something equivalent to
solve the problem of non-locality. We might also not be able to find
the fixed-points exactly. But an approximation scheme could be de-
vised where the correct dynamics is approximated as some non-exact
solution to the fixed-point equation. For all this to be possible, good-
choices of variables and cut-off are needed and, in the case of general
relativity, should presumably be motivated by geometrical aspects.
An interesting programme was started in this regard by Dittrich et
al. [33, 85, 86, 90]. The idea is to find what is called a physical vac-
uum. This vacuum would be the solution of the Hamiltonian con-
straint with minimal excitation (for example by choosing some homo-
geneous space). Then the (discrete) Hamiltonian could be written for
a finite number of excitations over this vacuum. The coarse-graining
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should be especially nice in this language as the vacuum and the way
the excitations are implemented and selected by the dynamics. Our
approach is rather different in spirit but should made contact some-
where. Indeed, if we manage to define a good choice of variables,
presummably, the large blocks of the discretization would be in a
state similar to this physical vacuum.

Still, this idea of searching for fixed points leads us to a research
programme, which involves various steps:

• First, we need to identify good variables for the description of
the macroscopic world. This is done at the kinematical level (of
course, since we do not have a dynamics yet). But it can be mo-
tivated on dynamical grounds. A good choice should lead us to
an exact discrete theory, or at least to controllable approxima-
tions.

• Then, we need to relate these variables to the actual phase space
of loop quantum gravity as expressed for the full theory, since
the previous variables would presummably be found in classi-
cal GR. Ideally, we would find that the complete phase space can
be described with these variables (maybe with additionnal con-
straints) meaning that they do correspond to a simple change
of variables. Then, the coarse-graining would still occur but the
variables would be particularly well-suited for truncations lead-
ing to a nice coarse-graining scheme relating the variables at
different truncations.

• Finally, we could write down the flow equations for the Hamil-
tonian and try to identify fixed points.

In this thesis, we will concentrate on the first two points. For the
first point, we will follow the (original) work done in [70, 71]. The idea
is to identify natural coarse-grained variables, in the context of hyper-
bolically curved spaces, thanks to some algebraic conditions related
to the symmetries. For the second point, we will start the programme
by considering coarse-graining by gauge-fixing, as we have done in
[72]. The goal is to find a natural way to cast numereous degrees of
freedom at some scale into excitations of the larger scale. The third
point is left for further investigation though we will suggest some
possible routes based on the work done in [69]. We will also concen-
trate on the canonical approach, though other roads are possible most
notably in the GFT formalism [219].
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1.4 outline of the thesis

This thesis is organized as follows. It contains four different parts.
The first two are the state of the art and the necessary grounds for
our own developments. In the first part, we concentrate on the kine-
matical aspects of loop quantum gravity. In the first chapter, we first
review the usual classical hamiltonian formulation of general relativ-
ity using the ADM variables. The quantification problems are quickly
reviewed to motivate the study of the new variables. The new vari-
ables, namely the Ashtekar-Barbero variables are introduced in the
second chapter. We discuss their constructions and the role of the var-
ious Immirzi parameters. We also discuss the possible physical rele-
vance of using such variables. In the third and last chapter of the first
part, we finally consider loop quantization (also called polymer quan-
tization). We explain the procedure and present the underlying pro-
gramme. We explain briefly how the various kinematical constraints,
that is the gauge constraint and the (spatial) diffeomorphism con-
straints, are implemented. We finish this chapter with a discussion
on the geometrical operators and the relevance of their spectrum to
the full theory. In the second part, we concentrate on the dynamics
of the theory at the Hamiltonian level and the various problems that
appear in its study. The first chapter of this second part is a short re-
view of the Hamiltonian development of the dynamics, what are the
most common approaches and the recent results in that direction. In
the second chapter, we review a more successful theory with regard
to the dynamics: loop quantum cosmology. This is a quick review as
it will serve as a guideline for our own work. And in the third chap-
ter, we introduce the coarse-graining technique (coarse-graining by
gauge fixing) that we used in this work.

The last two parts constitute the original work of this thesis. In
the first of these, we concentrate on the first point of coarse-graining
mentionned in this introduction: the search of good coarse-grained
variables. This part then exposes the work done in the following pa-
pers [70, 71]. The first chapter introduces the main idea of taking the
closure condition as a help for building good variables and a new
interpretation of it that is compatible with coarse-graining. The sec-
ond chapter introduces variables in the hyperbolic setting that make
use of the previous construction and, therefore, should enter a coarse-
grained description. A third and last chapter will comment on the role
of the Immirzi parameter or Immirzi-like parameter as they were in-
troduced in the previous chapters. We will also suggest some possible
(and speculative) avenues for coarse-graining based on the Immirzi
parameter. This is based on the work done in [69]. In the last part,
we consider the other problem of coarse-graining: starting from the
usual phase space and applying the coarse-graining by gauge-fixing
directly. This presents the work done in the paper [72]. This is done in
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three chapters: the first one introduces the concepts and the relevant
spaces and operators. The second one discusses various cut-offs and
their relevance to coarse-graining. Finally, the third and last chapter
considers a real life example by taking the example of BF theory and
writing it in this language.



Part I

L O O P Q U A N T U M G R AV I T Y K I N E M AT I C S





2
H A M I LT O N I A N F O R M U L AT I O N O F C L A S S I C A L
G E N E R A L R E L AT I V I T Y

[...] Alonso! — The Doctor

The final goal is therefore to quantize general relativity. The notion
of quantizing a theory might be a bit undefined in general but can It is true that

quantization is a bit
weird in principle,
as nature is
quantum mechanical
and not classical.
Therefore, it might
seem more natural to
consider the reverse
process of
classicalizing. But
we are doing
research and
therefore, this is an
epistemological order
not a logical one.

be summed up as follows: finding a quantum theory, with a Hilbert
space, an algebra of operators, constraints and hamiltonian, so that
its classical limit, usually devised through coherent states method, is
a given classical theory, in our case general relativity. Such a theory
might not be unique, and actually we don’t expect it to be unique at
all, given our experience in quantum mechanics. So it might even be
good to find all the possible theories giving the same classical limit.
In the case of GR though, finding just one to start with would already
be a success.

The process might look formidable at first as there is a huge space
of possible quantum theories and studying them all is a lost cause.
That been said, from the point of view of the quantum theory, the
structures of the classical theory do not come from nowhere. In par-
ticular, the Poisson bracket should correspond to a  h→ 0 limit of the
quantum commutator. So a particularly productive method would
be to start with expressions and data from the classical formulation,
specifically the Hamiltonian formulation which is closer to the quan-
tum language, and find equivalent in the quantum realm. It turns
out a quite effective process is to start with the a choice of variables
in the hamiltonian formalism, and then substitute each expression
by an operator equivalent. In particular, the brackets are replaced by
commutators, so that the first orders in  h match. Special care must
be taken when reproducing the algebra of symmetry groups (either
gauge or global) in order to reproduce them non-anomalously.

This process of canonical quantization is the one we will briefly sketch
in this first part as it was done in the early days of canonical quan-
tum gravity [199]. In this first chapter more specifically, we will con-
centrate on the classical theory and its expression as a hamiltonian
theory. Indeed, as we underlined, this formulation is closer to the
quantum theory and is not usually developed for general relativity as
the covariance is somewhat hidden. Our goal is this chapter is there-
fore to present the usual hamiltonian formulation, called the ADM
formulation [13] after their discoverers. We will also underline the
geometrical interpretation of the different variables and quickly sur-
vey how the covariance is preserved at the hamiltonian level. And

17
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because this formulation is not the one used in loop quantum gravity,
we will sketch its limits with respect to quantization.

2.1 original formulation

General relativity is a theory describing a metric on a manifold (for
lecture books, see [171, 234, 236]). In our world, which seems to have 3
spatial dimensions and 1 dimension of time, the manifold is taken to
be 4 dimensional and the metric to have a (−+++) signature, othersDifferent signatures

exist in the
literature. Some are

more popular in high
energy physic but as

long as it has a
relative sign for

time, the rest is pure
convention.

in pure general relativity . The metric encodes information distance
between points on the manifold. This distance should not always be
interpreted as a spatial distance but as a relativistic distance encoding
either proper time between events if they are separated by a timelike
path or minimal distance between events if the separation is space-
like. For two infinitesimally separated points, the square distance ds2

between them is [98]:

ds2 = gµνdxµdxν (9)

where we used the Einstein summation convention. The Greek let-The Einstein
summation

convention, of
implicit sums over

repeated indices (or
exponents), will be

used throughout this
work.

ters (µ, ν, ...) denote here coordinates numbering in spacetime. By
integrating ds, the length of a path is naturally defined.

The metric also gives a natural notion of angle through the scalar
product. In particular, for two vector v and w with the same base
point, their scalar product is defined to be gµνvµwν. This notion of
angle helps define a canonical notion of parallel transport on the man-
ifold. Indeed, we can concentrate on the parallel transports (given by
a connection) that preserve the angle between two vectors being trans-
ported simultaneously. This compatibility condition reads:

∀µ,ν,σ, ∇µgνσ = 0 (10)

where ∇ is the covariant derivative associated to the connection as
in: ∇µvν = ∂µvν − Γσνµvσ. The affine connection Γµνσ is the unique
connection satisfying the compatibility condition along with the tor-
sionless condition Γµ[νσ] = 0. This new condition can be seen as a
zero-curvature condition on scalar fields (the commutator of the co-
variant derivative is zero on scalars). As a function of the metric, it is
given by:

Γµνσ =
1

2
gµρ (∂σgνρ + ∂νgρσ − ∂ρgσν) (11)

This natural definition of parallel transport gives us a natural defini-
tion of curvature. The Riemann tensor, or curvature tensor, is defined
as the curvature for the transport of vectors:

[∇µ,∇ν]vσ = Rτσµνvτ (12)
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Here, we use some loose notations for indices but as this is this is
not exceedingly confusing, we’ll stick to the loose notation as long
as there is no ambiguity. Now, in terms of the affine connection, we
have:

Rτσµν = ∂νΓ
τ
σµ − ∂µΓ

τ
στ + Γ

ρ
σµΓ

τ
ρν − Γ

ρ
σνΓ

τ
ρµ (13)

This last quantity transforms as a rank 4 tensor under diffeomor-
phism. By contracting it, we obtain a rank 2 tensor, the Ricci tensor, It is sadly quite

standard to use the
same letter R to
denote these 3
different quantities.
This is why we keep
indices everywhere
we can to avoid
confusion.

usually denoted Rµν:

Rµν = RτRµντ (14)

and by further contracting it with the inverse metric, we find a scalar
quantity, the scalar curvature R:

R = gµνRµν (15)

General Relativity is then the study of the metrics satisfying the
Einstein equation given by:

Rµν −
1

2
gµνR =

8πG

c4
Tµν (16)

where G is Newton’s gravitational constant and c is the speed of light
in vacuum. In what follows, we will use the Planck units where c = 1
and  h = 1 in order to simplify the writings. The constants can be
recovered by dimensional analysis. Here, Tµν is the stress-energy ten-
sor of matter. It is equal to 0 in the vacuum. Let us point out here that
what is called the vacuum still contains the gravitational field. It is
not like the quantum field theory vacuum which is the lowest excita-
tion state. In the context of general relativity, vacuum means no matter,
and matter means anything but the gravitational field. Therefore, the
electromagnetic field would be considered matter. That been said, for
most of this thesis, we will consider the pure gravity case, that is the
vacuum case, or Tµν = 0.

Interestingly, this equation can be derived from a variational prin-
ciple, that is, it can be derived from an action, namely the Einstein-
Hilbert action [137]. It is: Actually, this action

principle is not well
defined without the
Gibbons-Hawking-
York boundary term
[122, 241] which
makes the action
differentiable. It is
not a problem of
course when there is
no boundary.

SEH[gµν] = −
1

16πG

∫
M

√
|g|Rd4x (17)

where g is the determinant of gµν and EH stands for Einstein-Hilbert.
Looking for the extrema of this action, we will find the previous equa-
tion of motion. That such a writing exists is good news for a quanti-
zation programme: this is a pretty good clue that a quantum theory
should exists as a variational formalism is usually a hint to a semi-
classical expansion of a quantum theory.

As was said in the beginning of this chapter, for the canonical
quantization of general relativity, it is more natural to start with the
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Hamiltonian formalism [46, 48, 49, 144] rather than the action of the
lagrangian formalism. Of course, both formalism are linked and can
be derived from each other by Legendre transform. This is what will
be done in the next section. However, there are some subtleties as
general relativity is a totally constrained theory. It means that, because
of the symmetries of the theory, there are only constraints. In partic-
ular, the Hamiltonian of the theory is always 0 and all the dynamics
itself is encoded in constraints [84]. Indeed, the time parameter must
not have any physical consequences as it is arbitrary. Therefore, the
time dynamics is trivial. Of course, the usual non-relativistic dynam-
ics must be hidden somewhere, and it is in the correlations of ob-
servables. These correlations are enforced by constraints, which also
encode the symmetry of the problem. This means, that what we want
to call dynamics is actually encoded in the way the time diffeomor-
phisms act which is itself encoded in the constraint enforced by the
lapse. Because, this constraint gives the natural dynamics, it is loosely
called the Hamiltonian constraint. We will therefore have to deal with
constraints at the quantum level. Let us then recap the quantization
programme when dealing with constraints:

• First, develop the classical hamiltonian formulation. In particu-
lar, identify the canonical variables and their conjugates as in
the ADM formalism.

• Then, write down all the constraints of the theory. The Hamilto-
nian should be a linear combination of them [14].

• We will then turn to the quantization. Formally, this amounts
to find a representation of the phase space variables where the
classical Poisson bracket { , } is replaced by − i

 h [ , ]. Ambiguities
can arise here with the choice of variables. This might lead to
different quantum theories.

• Finally, promote the constraints as operators and find their ker-
nel. At this level new ambiguities arise as operator ordering.

In the case of ADM variables, the first two steps (as usual in the
classical theory) can be entirely conducted. We will see however that
the quantization is rather more complicated. This will be our main
motivation to switch to the LQG formalism.

2.2 adm variables

The most natural way to tackle the hamiltonian formulation is to
make a 3 + 1 splitting of spacetime, that is, to choose a coordinate
system such as one (preferred) coordinate corresponds to time and
the 3 others to space. This might seem to break diffeomorphism in-
variance at first, but as long as we consider only covariant quantities,
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this won’t be a problem (as was underlined in [224]). In other terms,
we might choose a coordinate system but as long as the computation
result does not depend on it, we’re safe. We can regard this problem
in yet another way: the phase space can be defined as the space of
solutions of the equation. In that way, it is a covariant notion. But, in
order to put coordinate on it, we are brought to break the diffeomor-
phism invariance. This is not a problem though and just reveals our
freedom in choosing the coordinates, exactly like we are free to pick
a reference frame in usual Galilean relativity. Still, to write it down as
a splitting is natural and gives a natural definition for canonical mo-
menta for instance. Moreover, the Hamiltonian theory still preserves
a notion of covariance in the Dirac algebra, on which we will come
back later on.

However, it is not always true that such a 3+ 1 splitting exists. We
will assume (still following [224]) that the spacetime manifold M is
diffeomorphic to R× Σ where Σ is a three dimensional surface rep-
resenting space. In that case, a lot of possible solutions are excluded
from the onset. First, we are here assuming that the topology of space
is fixed. This might be reasonable in some cases, but it is hard to see
why it would be the case in general. Then, some solutions do not have
such a nice splitting because the chronology is not well-defined, for
instance for rotating universe solutions as Gödel’s [128]. Still, these
are highly exotic solutions. And as long as spacetime is globally hy-
perbolic, a coordinate system to our convenience exists. As global
hyperbolicity more or less corresponds to our intuitive notion of the
existence of causality, we will, for now, sweep all that kind of prob-
lems under the rug, hoping that we can solve them later. For a first
exploration, this is a very reasonable hypothesis.

Let us define more properly our spacetime coordinates. We have
the four dimensional manifold M. We consider a one-parameter fam-
ily of three dimensional hypersurfaces Σt [234]. The variable t is our
time. We will parametrize the surface Σt (for a given t) by a set of Remember here that

calling t “time” is
rather arbitrary as
we could have
chosen another
coordinate system.

coordinates (xa)a=1,2,3. Here, we have followed the usual convention
of using latin indices (a, b, c, ...) to denote spatial coordinates. Space-
time is therefore an infinite collection of three dimensional surfaces
and can be parametrized by (t, x1, x2, x3). In order for our foliation
to correspond to some notion of space and time, we will ask for the
surfaces Σt to be spacelike, that is for all their tangent vectors to be
spacelike or, equivalently, for their normal vectors to be timelike.

Let us now consider a timelike vector field tµ satisfying:

tµ∇µt = 1 (18)

This vector field gives us at each point of spacetime a notion of going
forward in time. Its direction is fixed toward growing ts, but there is
otherwise a large choice of such vector fields. Indeed, any timelike
vector field can be rescaled to satisfy such a condition. In particular,
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we have such a vector for all good choices of time variables on the
spacetime manifold. So the liberty of choice of tµ reflects the general
covariance of the theory. But as we have chosen a foliation of space-
time, selecting a generic field t is a way to restore covariance. By de-
composing our field onto coordinates associated to the foliation, we
are using a generic frame of reference but we map it in language us-
able in a Hamiltonian formalism. Therefore, let’s decompose tµ into
its normal and tangential parts on Σt:

tµ = Nµ +Nnµ (19)

where nµ is the unit normal vector field to the Σt given by nµ =Once again, loose
notations are used

for the inverse
metric, but this is

standard. gµν is the
inverse of gµν and

could be more
properly written

(g−1)µν.

gµνnν and Nµ is a purely tangential vector, that is it is orthogonal to
nµ (Nµnµ = 0) (see figure 4). Note here that the indices can be raised
or lowered by the metric. Upper indices corresponds to contravariant
quantities (usually vectors) and lower indices to covariant quantities
(like forms). The metric induces a bijection between these by Riesz
theorem, and therefore raises and lowers indices and exponents ac-
cordingly. The expression for Nµ and N are:{

N = −tµnµ

Nµ = qµνt
ν

(20)

where qµν = gµν + nµnν is the induced (spatial) metric on Σt. N is
called the lapse function and Nµ the shift vector. The spatial metric
is spatial in the sense that qµνnµ = 0, so that only tangential vec-
tors have non-zero norms. It means in particular that we can write
this tensor in a good coordinate system, all the relevant information
will be in the spatial components. By good coordinate system, it is
understood a coordinate system for which a fixed value of the time
parameter corresponds to the spatial surface of interests (Σt). Such
a good coordinate system is the system (t, x1, x2, x3) aforementioned.
In particular, it means that the normal to the surface corresponds
to the increasing (or decreasing) time direction. Expressed in such
a system, because the spatial coordinates do indeed parametrize the
spatial slice, pull-backs onto the space slice will will simply be given
by the spatial components of the objects. For instance, the induced
metric is simply qab where a and b denotes spatial components only.
Indeed, given a coordinate on Σt (rather than the whole spacetime),
considering the induced metric amounts to considering all the scalar
products of all the vectors of the coordinate basis. Of course, only the
distances on one surface Σt for a given t can be reconstructed with
this information.

These quantities, that is the lapse N, the shift Nµ and the induced
metric qab are the natural variables for the ADM (Richard Arnowitt,
Stanley Deser and Charles W. Misner) formalism [13]. Let us interpret
these quantities geometrically:
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Σt

~t

N~n

~N

Figure 4: Decomposition of ~t along the normal ~n of Σt and a tangent
vector ~N.

• The induced metric has a very simple interpretation: it gives
the notion of distance on the surface Σt at fixed t. So, for two
infinitesimally close points on Σt, the distance will be:

ds2 = gµνdxµdxν = qabdxadxb (21)

since the time component is 0.

• The shift Nµ is the displacement between two instants of the
observer corresponding to the frame of reference given by tµ.

• Finally, the lapse N represents the proper time between two
events of same spatial coordinate but on different times. Alter-
natively, it can be understood as the time dilation factor between
the time induced by the vector field tµ and the time coordinate
t.

This means we can reexpress the generic distance ds2 between two
infinitesimally close points using only the lapse, the shift and the
induced metric.

Σt

Σt+dt

•
P(xa)

• Q(xa+ dxa)

•R(xa−Nadt)

Nnµdt

dxa+Nadt

Figure 5: The geometrical interpretation of the splitting of the metric
into lapse, shift and induced (or spatial) metric.

At the infinitesimal level, we can use a Pythagorean development.
Indeed, let’s consider two points P and Q anywhere in spacetime, as
long as they are infinitesimally close to each other. In general, the
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point P will be on a first hypersurface Σt and the point Q will be on
a second and different Σt+dt. The coordinates of P on Σt could be
written (xa) and the coordinates of Q on Σt+dt would be infinitesi-
mally close and could be written (xa + dxa). Now, let’s define a newGranted that we are

supposing the the
coordinate mapping

is smooth.

point R on the surface Σt+dt which is also the time-slice to which
Q belongs, but with the coordinates (xa −Nadt) (see figure 5). That
way, the point R is the point we obtain when we start from the point
P and then move along the direction nµ toward Σt+dt until we reach
the second sheet. In particular, this means that we have split the path
from P to Q into two parts with a square angle for a turn. Therefore,
we can write the distance between P and Q as:

ds2 = −(Ndt)2 + qab(dxa +Nadt)(dxb +Nbdt) (22)

We therefore can write gµν in the coordinate system (t, x1, x2, x3). We
get:

(gµν) =

(
g00 g0b

ga0 gab

)
=

(
(NaN

a −N2) Nb

Na qab

)
(23)

All this allows us to write down the action in terms of the lapse, shift
and induced metric. We get [14]:

SEH = 1
16πG

∫
Ld4x

L = −qab∂tπ
ab −NR0 −NaR

a − 2∂a
(
πabNb −

1
2πN

i +∇iN√q
)

(24)

where:

R0 ≡ −
√
q
(
3R+ q−1(12π

2 − πabπab
)

Ri ≡ −2∇bπab
(25)

πab was used to designate the conjugate momentum to the induced
metric as can be seen from the first term of the lagrangian. Their
expression can be derived as:

πab =
√
|g|(Γ 0cd − qcdΓ

0
ef q

ef)qacqbd (26)

where the summation is only over spatial indices and the 0 denotes
the time component. q is the determinant of the induced metric, π
is the trace of the momenta (π = πaa), the quantity 3R is the cur-
vature of the spatial metric and the indices are raised and lowered
using the spatial metric qab and its inverse. We see here that the
time-derivatives of the lapse and the shift do not intervene in the ac-
tion. Therefore, they do not have conjugate momenta and are simply
Lagrange multipliers. We already foresee here the meaning of general
relativity as being a totally constrained theory (for an introduction to
constrained theory see [83, 136]): all the terms appear with a factor N
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or Na. By their Lagrange multipliers nature, they will impose these
terms to be zero on the solutions of the equations of motion. In gen-
eral, the Lagrangian is constituted of two terms: one encoding the
Poisson structure with time-derivatives and momenta and a second
term which is, up to a sign, the Hamiltonian. This means in particu-
lar, for the solution of the equation of motions, that the Hamiltonian
will also be zero. Therefore, all the dynamical aspects must be stored
somehow in the constraints enforced by the Lagrange multipliers.

Let us now deal with a Legendre transform and the proper writing
of the Hamiltonian. We defined the canonical momenta associated to
qab and wrote them πab. The phase space is naturally equipped with
the canonical Poisson brackets [84]:

{πab(t, x),qcd(t,y)} = 2κδa(cδ
b
d)δ(x− y) (27)

all other brackets being 0. The Hamiltonian of the theory then reads:

H = −
1

16πG

∫ (
NR0 +NaR

a + 2∂a

(
πabNb −

1

2
πNi +∇iN

√
q

))
d3x

(28)

We will comment on this form in the next section. In the mean-time,
let’s study the geometrical interpretation of πab.

Indeed, πab can be rewritten as:

πab = q−
1
2
(
Kab −Kqab

)
(29)

where q is the determinant of the induced metric qab, K = Kabq
ab is

the trace of Kab and Kab is the extrinsic curvature. It is the pull-back
of Kµν = qσµ∇σnν. Geometrically, it represents the projection onto Σt
of the derivative of the normal, or in more informal terms: how the
normal change from one point of Σt to the other. But the change in
the normal do correspond intuitively to the extrinsic curvature of Σt,
that is the curvature due to its embedding.

So, we have a new point of view on general relativity. We usu-
ally see it as a metric theory of spacetime, with equations of motion
governing the intrinsic curvature of spacetime. But when we define
the notion of space and time, it can be reexpressed as a theory relat-
ing the intrinsic curvature of space and its extrinsic curvature when
seen as an embedded manifold into spacetime. The intrinsic curva-
ture is encoded in qab, the induced metric (as it is encoded in gµν
for spacetime), and the extrinsic curvature is encoded in the canonical
momenta πab. They are related by four constraints imposed through
the Lagrange multipliers N and Na. The last three are grouped in a
(three dimensional) vector form and is globally called the vector con-
straint. The first constraint, enforced by the lapse, is called the scalar
constraint (for reasons that will appear clear soon). They read:

−Vc(qab,πab) ≡ 2∇(3)
d

(
q−

1
2πdc

)
= 0

−S(qab,πab) ≡
(
q
1
2

[
R(3) − q−1πcdπ

cd + 1
2q

− 1
2π2

])
= 0

(30)
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2.3 constrained theories

How are we to deal with such constraints at the Hamiltonian level?
As we said, the theory of general relativity is a totally constrained
theory. In that case, it means that the dynamics is trivial (the Hamil-
tonian is identically zero on the constraint surface) or, from a different
point of view, it is totally contained in the constraints. But constraints
can of course appear in a wider context of (not necessarily totally)
constrained theories [84]. Let us review some instances and develop
the Hamiltonian perspective on these.

From a Hamiltonian perspective, a constrained theory is defined
by:

• A phase space as usual, equipped with Poisson brackets

• In the generic case, a Hamiltonian whose flow gives the time
evolution

• A set of constraints

The constraints are functions of the canonical variables and momenta.
We look for solutions on the surface constraints, that is on the surface
where all the constraints vanish. We should not forget here that in
order to be complete, the set of constraints should be preserved in
some sense by time evolution. Let us look at a simple example: a free
non-relativistic particle in two dimensional space. The Hamiltonian
is:

H =
1

2m

(
p2x + p

2
y

)
(31)

where m is the mass of the particle and ~p is the canonical momentum
in 2d. Let us consider the constraint C:

C ≡ y = 0 (32)

which constrains the motion to be one dimensional in the x direc-
tion. It is quite obvious that this constraint cannot be satisfied at all
time unless {C,H} = py

m = 0 on the initial time-slice. Constraints that
come from this consistency over time requirement can of course them-
selves require new constraints to be preserved. We will only consider
here complete sets of constraints, where the Poisson bracket with the
Hamiltonian is guaranteed to vanish as soon as all the constraints are
satisfied.

In this perspective, the constraints select a subsurface of the phase
space, called the constraint surface, surface which is preserved by
time evolution. We now have a collection of constraints, let’s label
them Ci. When all the constraints are satisfied, the system is said
to be on-shell and when not, it is off-shell. Now, most equalities must
be verified weakly that is only when the system is on-shell. Such an
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equality will be written with ≈. We can then consider the matrix
Mij = {Ci,Cj}. It characterize how constraints commute with each
other in the Poisson bracket sense. We can consider two kinds of
constraints: constraints which do commute (weakly that is when the
constraints are satisfied) with all the other constraints and constraints
that do not. The first type are called (quite unimaginatively) first class
constraints and the second type second class constraints. The example Once again, the

standard names are
not really satisfying,
but we are now
stuck with it.

we gave of the free particle with constraints only has second class con-
straints. But, in the case of gravity, we will be very much interested
by first class constraints, as they are linked to gauge invariance.

Indeed, if a constraint, say C1, commutes (on-shell) with all the
others, then the flow generated by this constraint under the Poisson
bracket preserves all constraints. That means, we can generate new
solutions of the equations of motion and of the constraints by start-
ing from a known solutions and consider its flow under C1 action.
If a collection of constraints commute with all the other constraints
(on-shell) and their Poisson brackets with each other is linear in them,
they naturally generate a Lie algebra (or a generalization in the infi-
nite dimensional case), where the Poisson bracket has the role of a Lie
bracket. In that case, the collection of constraints can be considered as
the generators of a group, which can itself be considered a symmetry
group. This highlights the role of constraints in gauge theory: they
are linked to the gauge group and generate it.

How does this work in the case of general relativity? As we said
earlier, general relativity is a totally constrained theory. That means
the Hamiltonian is trivial and all the dynamics is specified by the
constraint surface which, by its choice, induces correlations between
observables. The constraints of general relativity are [13]:

−Vc(qab,πab) ≡ 2∇(3)
d

(
q−

1
2πdc

)
= 0

−S(qab,πab) ≡
(
q
1
2

[
R(3) − q−1πcdπ

cd + 1
2q

− 1
2π2

])
= 0

(33)

These constraints are actually an infinite collection of constraints: one
for each point of the three-dimensional manifold Σt. It is usual there-
fore to represent them in an integrated fashion. We define the diffeo-
morphism constraint (the name gives away their action) as: We could think that

the name,
Hamiltonian
constraint, is once
again a misnomer.
But for once, it does
carry the meaning of
its action: defining
the dynamics.

D[Nb] =

∫
NbV

bd3x (34)

The new constraints depend on a test field, which we named after
the Lagrange multipliers, the shift vector. In the very same way, we
define the Hamiltonian constraint:

H[N] =

∫
NSd3x (35)
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The Lagrange multiplier is now the lapse as it appears in the Hamil-
tonian. These constraints satisfy the following algebra [13]:

{D[Nb],D[Mc]} = D[LNbM
c]

{D[Nb],H[N]} = H[LNbN]

{H[N],H[M]} = −D[qab(N∂bM−M∂bN)]

(36)

where L is the Lie derivative. This algebra is known as the Dirac al-
gebra and encodes the symmetry of general relativity. The algebra is
actually the algebra of four-dimensional diffeomorphisms. It is split
into two parts: the vector constraints, that transform as vectors un-
der spatial diffeomorphism and indeed encode the spatial diffeomor-
phism themselves, and the scalar constraint that transform as a scalar
under spatial diffeomorphism and encodes the dynamics of the the-
ory as it links how different time slices are related.

How are we to promote this at the quantum level? For now, we are
lucky, we just have to deal with first class constraints. The procedure
is then quite simple, at least in principle:

• We define a representation of the variables and canonical mo-
menta as is usual in quantization. It might be done for instance
through the multiplication and derivative action.

• We quantize the constraints by looking at equivalent expressedIf the algebra is not
satisfied at the

quantum level, the
quantum theory has

an anomaly. It can
arise of course, but

we usually try to
avoid for gauge

theory as the
symmetry itself

guarantees the good
definition of the

theory.

in terms of operators on the previous space. Ambiguities due
to ordering might arise. But they might also be solved by the re-
quest that the algebra of constraints is realized non-anomalously.

• We solve the equation Ci|ψ〉 = 0, that is, we look for the ker-
nel of the constraints. This is the equivalent of looking for the
surface constraints in the classical setting.

It is standard to solve all the constraints but the Hamiltonian con-
straint first. Indeed, the Hamiltonian formalism quite naturally brings
a three-dimensional scene. It is therefore usually simpler to solve con-
straints that only concern the same time slice. This corresponds to
building a kinematical phase space of allowed configuration at a given
time. The Hamiltonian constraint because of its link with the dynam-
ics will be solved in another pass.

But in the case of the ADM variables, no representation is known
as of today which would include a nice scalar product and an action
of the diffeomorphism group. It does not really mean that such a
representation cannot exist but that, as its stands the programme can-
not successfully be conducted. Still, it is possible to sketch a formal
quantization process and see where this leads.
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2.4 a first approach to quantization

Let us now sketch such a would-be quantization as suggested in [13,
14] and effectively sketched in [201] for instance. This is formal at best
as the quantization of the ADM variables is not well-defined (at least
for now) but this approach will give us a feeling of what’s going on
and will guide us in the loop quantization to come. It is customary to

call a function of a
function, a
functional. Though
the term is
unnecessary in
principle, it is
certainly explicit
and usually carries
some implicit notion
of differentiability
and continuity.

In principle, we would like to promote the variables and momenta
to operators. The Hilbert space would be the space of wavefunctions
over the metric (for instance). That means the wavefunctions would
actually be functionals. The precise definition for the scalar product is
left imprecise. That would be a problem on the long run of course, but
as we will not dwell into this quantization effort, let’s not weep over
this. The variables could then be represented by the multiplication
action:(

ĝab(x)ψ
)
({gab}) = gab(x)ψ({gab}) (37)

And, in order to get the correct commutators, the momenta would
be represented by the (functional) derivative. To simplify the writing,
we have assumed 8πG = 1 to go to the full Planck units. For our
introductory purpose here, this will make the equations easier to read:

(
π̂ab(x)ψ

)
({gab}) = −i

δψ

δgab(x)
({gab}) (38)

We could now write down the Hamiltonian constraint (and all the It is now customary
to call Wheeler De
Witt equation any
Hamiltonian
constraint in the
quantum theory.

other constraints) in operator form. Up to ordering ambiguities, we
will then get the main equation of quantum general relativity, the
Wheeler De-Witt equation:

Ĥ|ψ〉 = 0 (39)

where we used the Dirac notation for the wavefunction. The equation
must interpreted as an equation over |ψ〉 as it is a constraint equation.
Of course, there is a slight problem here: nobody knows how to give a Most of the difficulty

of the quantization
comes from the
non-linear, even
non-analytical,
behavior of the
Wheeler De-Witt
equation.

precise sense to the above equation in the quantum framework. What
should we do then? Well, as usual in research, the right strategy is to
start with a simpler problem and work our way up from there. We
will therefore consider symmetry reduced version of this equation.

The idea is to classically reduce the problem we are considering
and then quantize. This approach might not be motivated on a math-
ematical level for example, but we must recognize it is effective. This
is precisely what we do for the quantization of the hydrogen atom for
instance. As Ashtekar notes [27], historically, we started from a clas-
sical electron in a potential and quantized this theory. But the true
theory, as we now know, is Quantum ElectroDynamics (QED). From
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the classical perspective, an electron in a potential is a reduced ver-
sion of electrodynamics where the modes of electromagnetism have
been frozen (and the non-relativistic limit is taken). Still, quantizing
the simple theory works surprisingly well. So, this is what we can do
here for quantum general relativity.

What kind of simplified theory could we study? The simplest idea
is to study homogeneous and isotropic universes, that is cosmology.It is indeed quite

surprising to see
how homogeneous

the universe is, with
relative temperature
fluctuations, in the

early universe, as
low as ∆TT ' 10

−5

[44].

Let us reduce the problem to a simpler problem of cosmology and
then quantize the equations. In order to have a non-trivial theory (a
homogeneous universe with pure gravity is kind of boring), we will
introduce matter. But we’ll concentrate, of course, on matter of the
simplest kind: a scalar field with no mass. The action corresponding
to such a scalar field (without any assumptions on the homogeneity)
is:

Sϕ = −

∫
M

1

2
gµν∂µϕ∂νϕ

√
|g|d4x (40)

where ϕ is the scalar field. So we get the total action:

Stot = −

∫
M

√
|g|

(
1

16πG
R+

1

2
gµν∂µϕ∂νϕ

)
d4x (41)

Let us go to the symmetry reduced version of this action. We choose
a splitting of spacetime such that ϕ is just a function of the time
variable t. We assume space to be homogeneous too, that means that
the line element can be written as [18]:

ds2 = −N2(t)dt2 + a(t)2dΣ2 (42)

where dΣ is the volume element and a(t) represents the scale fac-
tor of the universe. This scale factor solely depends on time, giving
a precise notion of homogeneity. The factor N(t) is the lapse. Fix-
ing it fixes our time parametrization. But because we want to stay
somewhat close to constrained theories (like general relativity), we
will keep it unfixed. Therefore the dynamics will still be encoded in
a Hamiltonian constraint. Let us assume spherical coordinates, then
we can write:

dΣ2 =
dr2

1− kr2
+ r2

(
dθ2 + sin2 θdφ2

)
(43)

k here represents the curvature of the universe. If it is 0, then the
universe is flat. It has positive curvature (like a sphere) when k = +1

and negative curvature (like a hyperboloid) when k = −1. r should
not be taken to be the physical distance, though it is linked to it. The
reduced action now reads:

Stot,reduced = −

∫
M

N(t)

(
3a(k− ȧ2) +

a3

2
ϕ̇2
)
d4x (44)
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where the dots represent time derivatives and the dimensionfull fac-
tors have been removed for clarity. The variables are now the scale
factor a and its canonical conjugate momentum, let’s call it πa, and
the field ϕ along with its momentum πϕ. Precisely, we have:{

πa = 6Naȧ

πϕ = Na3ϕ̇
(45)

The time derivative of N does not appear and therefore N is a La-
grange multiplier. From the Hamiltonian point of view, it will en-
force the Hamiltonian constraint associated to reparametrization of
time. All in all, we find the following Hamiltonian constraint:

H = a2(ka2 − π2a) + 6 (πϕ)
2 (46)

where appropriate multiplications have been done to simplify the de-
nominator. If we consider the case of flat space k = 0, the hamiltonian
simplifies further and simply gives:

H = −a2π2a + 6 (πϕ)
2 (47)

This is interesting since, we want to impose H = 0. We can very well
see that this can simplify (up to a sign) to:

πϕ =
aπa√
6

(48)

which, apart from some ordering ambiguities should be quantizable.
Let us do the quantization part then. We consider wavefunction of

a and ϕ. The operators are represented as follows:

âψ(a,ϕ) = aψ(a,ϕ)

π̂aψ(a,ϕ) = −i∂ψ∂a (a,ϕ)

ϕ̂ψ(a,ϕ) = ϕψ(a,ϕ)

π̂ϕψ(a,ϕ) = −i∂ψ∂ϕ(a,ϕ)

(49)

The Hamiltonian constraint now reads, up to ordering ambiguities:

∂ψ

∂ϕ
=

1

2
√
6

(
a
∂ψ

∂a
+
∂(aψ)

∂a

)
=

1

2
√
6

(
2a
∂ψ

∂a
+ψ

)
(50)

which can be solved! The general solutions can be written as follows:

ψ(ϕ,a) =
∫
e−iαϕa−i

√
6(α−2)ψαdα (51)

The problem appears in the limit ϕ → −∞. Indeed, here we are
using the matter field as a relational clock. That means we are using
the value of the field as a way to measure time. A good relational
clock is a quantity that takes one different value for every different
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time. Using such a quantity, we can reexpress any measurement with
respect to time without even mentioning a special reference frame
but in relations of different physical quantities. The matter field here
has this special role. It goes to infinity as time passes and it goes to
minus infinity toward the initial singularity. But this is the important
point: eventhough the singularity is reported to minus infinity with
respect to the scalar field, it is still obtained in finite time for any
observer, at least at the classical level. As one of our challenge when
considering quantum general relativity is to resolve singularities, we
should certainly hope that it is solved in the simple case of quantum
cosmology. And for this, we must check that the probability for the
quantum solution to hit a = 0 is zero, even when ϕ goes to −∞, and
since must be the case in a wide variety of solutions. It surely isn’t
when we look at the wavefunction we gave above as a = 0 cannot be
avoided generically.

The problem is worse that it seems at first sight. First, ordering
ambiguities do not lift the problem and no clever choice of ordering
changes the result (as explained in [27]). So, we could hope that the
representation of the variables is the problem. But it turns out that
there are some constraints in the possible representation of the vari-
ables. Indeed, in this simple case, we are just considering the Heisen-
berg algebra which is the standard algebra of quantum mechanics op-
erators of position and momentum. In this framework, the Von Neu-
mann theorem [176] implies that the representation is unique given
a few reasonable hypotheses, including in particular the weak con-
tinuity of the representation. This seems to doom our enterprise of
quantizing general relativity. Indeed, it seems that any theory must
give in the homogeneous case the previous development which can-
not solve the singularity problem.

One hope may still exist. it is that we, somehow, escape the hypothe-
sis of the Von Neumann theorem. This might be unreasonable at first.
But as it was argued recently [88], this might be needed to handle
diffeomorphism invariant theories. Indeed, in diffeomorphism invari-
ant theories, Dirac observables are generally not continuous leading
to difficulties in the definition of a Poisson structure. Resolving this
problem seems to lead to another quantization scheme, which is in-
cidentally very similar to loop quantization. That this method works
and solves our problem with the usual representation is the hope we
will nourish from now on.

In this chapter, we started from the usual lagrangian formulation
of general relativity and explored its hamiltonian formulation. Some
subtleties where underlined in the interpretation of the Hamiltonian
framework, specifically how the covariance was maintained though it
seemed it was broken by the choice of spacetime splitting. The Hamil-
tonian formulation was laid out in the ADM variables which are now
standard and their geometrical interpretation was given. Finally, we
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discussed the system of constrained and explored the quantization
of general relativity using the simpler system described by the Fried-
man equation. The resolution of the singularity (which might be a
good test for the good definition of the theory) was not found, at
least, not generically. It might be hoped at this stage that the problem
comes from a bad choice of quantization. In particular, it would be
good to circumvent one the hypothesis of the Von Neumann theorem
which states that the representation of quantum mechanics is unique.
This is what we are going to explore in the rest of this part. The next
chapter will concentrate on a new set of variables which might induce
or at least suggest a new representation more suited to our needs.





3
T H E A S H T E K A R - B A R B E R O VA R I A B L E S

One may tolerate a world of demons for the sake
of an angel. — Reinette

As was developed in the previous chapter, the straightforward path
to quantum gravity, starting with an Hamiltonian form and quantiz-
ing it canonically, seems a dead end. But a possible solution was also
brought to light: the possible existence of nonequivalent quantization
schemes. And indeed, LQG offers a different quantization process, us-
ing new representations and new variables. These new variables will
be the point of interest of this chapter.

We should illustrate this in a simpler example. Indeed, already
in the cosmological setting, we have the problem of inequivalent
representation. So, let’s consider a non-relativistic particle in a one-
dimensional space. Forgetting about the dynamics and concentrating
on the kinematics, the particle is described by two variables which
are its position x and its momentum p. They satisfy a Poisson bracket
which is, up to sign conventions:

{x,p} = 1 (52)

There is a natural representation of this at the quantum level by
the multiplicative operator x̂ on L2 wavefunctions and the derivative
p̂ = −i h d

dx . According to the Von Neumann theorem, this represen-
tation is unique with a very few hypothesis. Interestingly, the Von
Neumann theorem does not start with the variables x and p but with
their exponentials (which are well-defined operators on the whole
L2 space). But, in order to recover the existence of the position and
momentum per se, we need a continuity hypothesis. There are (natu-
ral) cases where this is not true and where the right variables are the
exponentials which turn out not to be (weakly) continuous. A sim-
ple example of this is a particle moving on a circle, where the angle
variable θ is not well-defined but its exponential is.

Back to gravity, this leads to a natural question: what is the expo-
nentiated version of our variables? Is it natural to consider that some
operator, presumably ˆqab or ˆπab, does not exist in the full quantum
gravity theory but only its exponential? And more importantly, does
this solve our problems? It turns out that all these problems can, for
the major part, be solved together along with another problem: the
non-polynomial writing of the constraints. Indeed, because the theory
is highly non-linear, it is very difficult to find a coherent quantization
of the formulas. Therefore, the quantization might actually need a

35
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rewriting of the theory in polynomial form. In particular, might a
clever change of variable bring the theory to such a writing? Thought
this might seem implausible at first, there is actually a way to do this,
and this is what we are going to study in this chapter.

In this first section, we will not solve this whole problem, but we
will explore other formulation of general relativity. The end goal is
to formulate general relativity as a gauge theory which will bring it
closer to Yang-Mills theory and allow us to use technology from the
treatment of these theories. It will also allow for a rewriting of gen-
eral relativity in first-order language in the second section, which is an
important point in the development of this chapter. This will unveil
a hidden symmetry of general relativity namely, the local Lorentz
invariance. In the third and fourth section, we will introduce the
now paramount variables for the quantization programme of LQG:
the Ashtekar-Barbero variables. And we will close this chapter with a
discussion on the role and possible physical implication of this choice
of variables.

3.1 tetrad variables

General relativity is a theory of a dynamical metric gµν. For all intents
and purposes, it can be understood as a rank two symmetric tensor.
The symmetry guaranties that the metric is diagonalizable as a real
matrix. In particular, we can write:

gµν = eIµe
J
νηIJ (53)

where η is Minkowski’s metric with signature (−+++). Indeed, this
can be shown by diagonalizing g then by rescaling the transfer matri-
ces. Only the signs remain so we can’t change the signs of the signa-
ture.

What is the geometrical meaning of this operation? At each point,
spacetime is locally flat. That means there exists a frame of reference,
and a corresponding choice of coordinates, such that the metric is
Minkowskian. The condition is actually more stringent as it can be
shown that the affine connection also vanishes (locally of course).
Locally, we can represent this choice of coordinates as a set of four
orthogonal vectors: they correspond to the basis vectors associated
to the local Cartesian coordinates (corresponding to the local trivial-
ization) projected onto the original coordinate system. As this Carte-
sian coordinate system correspond to a frame of reference, the vectors
have a physical interpretation. Indeed, in such a set, one vector must
be timelike and the other three spacelike. The timelike vector repre-
sents the proper time direction of the observer. The other three selects
three spatial directions and so distinguish observers rotated with re-
spect to each other.
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Technically, the tetrad is actually the corresponding base for forms
and the vectors eµI are defined as follows: Once again the

notation is a mess.
Inverse tetrads eµI
and tetrad eIµ are
denoted by the same
symbol e and only
context or indices
help distinguish
between them.

eIµe
µ
J = δIJ (54)

These new vectors form the inverse tetrad. They are precisely the
set of four vectors corresponding to a local observer. Computing the
dot product will allow to check that the base is actually orthonormal
and therefore diagonalize the metric and can be interpreted as a local
choice of observer:

e
µ
I gµνe

ν
J = ηIJ (55)

Therefore diagonalizing the metric actually corresponds to finding
a local falling observer (since the metric is flat in its coordinate sys-
tem at least locally). There is an SO(3, 1) freedom in choosing this
set of vector corresponding to the symmetries of the Minkowski met-
ric. From the physical point of view, this is the group sending one
falling observer onto the other. Since, this symmetry acts trivially on
the metric, it is respected by general relativity even if reexpressed in
terms of the tetrad. We have therefore uncovered a hidden symmetry
of general relativity. The presence of such a hidden symmetry should
not be a surprise. For instance, in electromagnetism, the U(1) sym-
metry cannot be seen with the electric and magnetic fields only: we
have to use the potentials to uncover it. It works quite similarly here:
the metric corresponds to a Lorentz invariant construction from more
fundamental variables, the tetrad.

Having tangential indices means that we can have a new connec-
tion, acting in the tangent space. Indeed, the tetrad acts as a map be-
tween the usual coordinates and coordinates in tangent space. There-
fore, we can define a connection, the spin connection, which is such
that acting with the tetrad before or after covariant derivation obtains
the same result. This compatibility requirement is equivalent to;

Dµe
I
ν = ∂µe

I
ν + Γ

σ
νµe

I
σ + ε

I
JKΓ

J
µe
K
ν = 0 (56)

where the usual affine connection is used for spacetime indices and
the new spin connection (denoted by the same Γ letter again) is used
for tangential indices. This formalism might seem an unnecessary ad-
dition at this point except maybe to point out the Lorentzian symme-
try. It is however necessary to use it in order to write down general
relativity coupled to fermions. Indeed, fermions are naturally writ-
ten in the tangent space (or in a spin fiber) and the spin connection
naturally appears as the connection to use for them, as the one they
couple to. In particular, this means that fermions are the only species
that couple to the spin connection as will become important latter on.
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3.2 palatini’s formalism

Now that we have uncover the hidden Lorentz symmetry, let’s dig
in the connection formalism. Let us start from the Einstein-Hilbert
action in the pure gravity case. It reads:

SEH[gµν] = −
1

16πG

∫√
|g|Rd4x (57)

Let us forget about all the conventional wisdom and just play a bit
with the formulas. First, we know that the scalar curvature R is ob-
tained by taking the trace of the Ricci tensor Rµν. This tensor is itself
obtained by contraction of the Riemann tensor which is entirely ex-
pressed as a function of the affine connection Γµνσ. The action can
therefore be written:

SEH[gµν] = −
1

16πG

∫√
|g|gµνRµν(Γ(gµν))d

4x (58)

The idea of Palatini’s formalism is to look at what happens if we con-
sider the affine connection to be independent of the metric. That is,
we look at a new theory a priori different from Einstein’s and gov-
erned by the following action:

SPalatini[gµν, Γµνσ] = −
1

16πG

∫√
|g|gµνRµν(Γ)d

4x (59)

We can derive the equation of motion to find the following result.
Varying with respect to the metric still gives Einstein’s equation but
as a function of Γ , that is we get:

Rµν(Γ) −
1

2
gµνg

στRστ(Γ) =
8πG

c4
Tµν (60)

where Tµν was added for clarity but is of course 0 when no matter
is present. Varying the action with respect to Γ however gives the
following (algebraic) equation of motion:

Γ = Γ(gµν) (61)

Where the left-hand side represents the Γ variables, but the right-
hand side correspond to the unique torsion-free metric compatible
connection. This means that the equation of motion gives the link be-It seems to me that

this must have some
deep geometrical
significance, but

which still eludes
me. Still, this is

probably a good clue
of the physical

relevance of the first
order theory.

tween the connection and the metric, it is not anymore imposed on
the theory. This is a remarkable fact that allows general relativity to
be expressed in a manner more closely related to Yang-Mills theory.

Of course, the same thing can be done in the tetrad formalism.
Rather than using the metric, we use the tetrad and rather than using
the affine connection, we will use the spin connection (the unique tor-
sionless compatible with metric and the tetrad connection). As stated
earlier, this formalism allows for fermions in the theory. We should
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make a side note here: when we include fermions, they do couple
with the spin connection so that, if we treat the connection and the
tetrad separately, the equation of motion might not induce a torsion-
free connection. The fermions act as a source of torsion and therefore
the theory, though close, is not exactly general relativity in the second
order formulation. Finding the right formulation of general relativity,
how to include fermions and what is the most natural action is a very
interesting problem. But as for this thesis, as we are only interested in
pure gravity for now, all these problems do not arise. Therefore let’s
not dwell into them.

Let us unravel a bit the tetrad formulation. The action of (pure)
general relativity can be written using the tetrad and in the first order
formulation as follows:

Stetrad = −
1

16πG

∫
M

εIJKLe
I ∧ eJ ∧ FKL(A) (62)

From the Hamiltonian point of view, the conjugate momentum of the
Lorentz connection AIJ will be the bivector εIJKLeK∧ eL. This shows
the close relationship between general relativity and BF theory. BF It is said that BF

theory is a misnomer,
since we should
rather call it EF
theory as the B field
has a role similar to
the electric field in
electromagnetism.

theory is the theory defined by the following action:

SBF =

∫
M

BIJ ∧ F
IJ(A) (63)

Bf theory is therefore the simplest possible theory we can imagine on
a connection: the B field acts as a Lagrange multiplier and impose flat
curvature everywhere on the manifold. It might be surprising to say
that general relativity is anywhere close to such a theory, but several
points should be noted in this direction.

First and foremost, it should be said that in 3 dimensions of space-
time, general relativity is exactly BF theory. Indeed, a simple counting
argument shows that general relativity in 3 dimensions has no local
degrees of freedom and further study explicitly demonstrates that the
equation of motion impose flatness of the connection. But even in 4
spacetime dimensions, the theory is not that different. The previous
writing of Stetrad underlines this. It is precisely BF, where the B field
is constrained to have the form:

BIJ = εIJKLe
K ∧ eL (64)

that is BIJ is constrained to be a simple bivector. As a consequence,
general relativity is sometimes called a constrained BF theory. The
advantage of looking at general relativity this way is that we progres-
sively express it in a theory of a connection. And theories of connec-
tion are much more well understood than metric theories. In partic-
ular, Yang-Mills theory, the archetype of a connection theory, is very
well studied. This means, we can hope that expressing general rela-
tivity as a connection theory will give us access to all the technology
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developed on these theories. Still, we need to rewrite still a few points
to arrive at a full theory of connection. As a side point, let’s note here
that general relativity can be written without the B field as a theory
of connection alone [147]. This might play some role in the renormal-
ization process. Though interesting, this is not the road considered in
this thesis.

3.3 ashtekar self-dual variables

Let us write the theory in a slightly different manner. We define the
following connection, known as the Ashtekar connection:

Aia = Γ0ia + i
εijk

2
Γ jka (65)

where Γ is the spin connection introduced earlier for the fermions,
which encode the same information as the affine connection. The in-
dices in small Latin letters of the middle of the alphabet (i, j, k) are
spatial only but still in the tangent space. The indices from the begin-
ning of the alphabet still refers to coordinates in space as was defined
in the Hamiltonian point of view. This new connection is an SL(2, C)

connection and thanks to the i parameter that makes it complex, it
still has the same information as the pull-back of the Lorentz connec-
tion on the spatial manifold. This connection is called the self-dual
connection as it is self-dual with respect to the natural Hodge star on
SL(2, C).

These variables are exactly the variables we need to reexpress gen-
eral relativity in the Hamiltonian framework. As we hinted earlier, a
new gauge symmetry is revealed and corresponds to local Lorentz
transform. In our case, the Lorentz connection is contained in an
SL(2, C) self-dual complex connection. The corresponding generators
(since we are allowed complex parameters) are therefore the genera-
tors of SU(2) and read:

GI = DaE
a
I (66)

where EaI is the momentum associated to the Ashtekar variables and
sometimes called the gravitational electric field as it plays a similar role
to the electric fields or more generally gauge fields in Yang-Mills the-
ory. The constraints themselves look exactly like the Gauß constraint
of electromagnetism. The parallel is to be expected as both express lo-
cal gauge freedom. The spatial diffeomorphism constraints can also
be reexpressed using the new variables and have the nice following
polynomial form:

Ca = EbI F
I
ab (67)
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where F is the curvature of A. And finally the Hamiltonian constraint
which encodes the dynamics can be written as:

H =
1

2
εIJK

EaI E
b
J F
K
ab√

detE
(68)

The simplicity of this form is astonishing. We are of course still dis-
cussing at the classical level and the quantum level will bring its level
of difficulties. But apart from the denominator (which guaranties that
H is a density one scalar), all the terms are polynomial in the vari-
ables or their conjugate momenta. Moreover, since we want to im-
pose H = 0, apart from some specific choices of E (i.e. when E is
degenerate), the condition is equivalent to εIJKE

a
I E
b
J F
K
ab = 0 which

is completely polynomial. This means we have achieved the formula-
tion of general relativity in polynomial terms only. This is a tremen-
dous achievement that should help us in the pursuit of the quantum
theory.

So what is the catch? What have we traded to have such a simple It is quite normal to
expect a catch:
except when a really
novel idea which is
in itself a solution,
there seems to be a
law of conservation
of difficulty at work
in research.

form? The main problem comes from the non-reality of the variables.
Indeed, written as this, the theory will actually be complex general
relativity where the metric is complex. The connection A is self-dual
by construction from the previous connection but when we express
only the theory in terms of A and E, we lost the specificity of the
construction and therefore the self-duality of the connection. We can,
of course, retrieve it by imposing new constraints, corresponding to
self-duality. They are suggestively called reality conditions [139] (see
also [237] for interesting developments). They simply read:

EiaE
ja − EiaE

ja = 0

iεIJKEcK(E
a
IDcE

b
J − E

b
JDcE

a
I ) − c.c. = 0

(69)

The first condition just expresses the reality of the (spatial) metric.
The second condition comes from time evolution or, seen in another
way, is necessary to guaranty the cancellation of all Poisson brackets
with the constraints. From a spacetime point of view, we can also see
this second condition as a reality condition on the time components
of the spacetime metric.

Such conditions are hard to solve, especially at the quantum level.
We will not dwell into those problems and restrict ourselves to real
variables in just about a moment. But still, let’s rapidly sketch we
would implement such conditions. There are naturally two possible
avenues:

• The first possibility is to treat these conditions as they are: sec-
ond class constraints. This can be done for instance with the
Dirac procedure and by defining new brackets which will solve
these conditions. When we do this, the connection becomes
however non-commutative and when we don’t know (for now)
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how to quantize such a theory. A way out is to find a commu-
tative sub-algebra, which precisely leads to the use of self-dual
variables and to the issue of reality conditions.

• Therefore, a second possibility is to try and implement reality
conditions on commuting variables (the self-dual variables). In
practice, we look for a Hilbert space such that, with respect to
the scalar product, the conditions are automatically satisfied. In-
deed, the reality conditions are really conditions between com-
plex variables and their conjugates. When promoted to quan-
tum conditions, they become conditions on operators and their
adjoints. But adjoints are defined by the scalar product and so,
we can try and tweak the scalar product so that these conditions
are automatically satisfied.

So far, however, this problem of solving the reality condition remains
open though it has been solved in reduced problems as in LQC [238].
This problem with using complex variables has motivated people to
move to yet another form of variables: the Ashtekar-Barbero variables.
Indeed, these variables are for the most part as convenient as the
original Ashtekar variables but they are real. Of course, they come
with their own caveats which we will study in the coming sections.

3.4 ashtekar-barbero variables

So, we are lead to search for real variables only. Barbero and Immirzi
found a trick just to do so. The idea is to generalize the Ashtekar vari-
ables a bit and change the i factor into a free parameter, called the
Immirzi parameter, which we will write β. Therefore, let’s consider
the new variables, called the Ashtekar-Barbero variables [37, 140] de-
fined as:

A
i(β)
a = Γ0ia +β

εijk

2
Γ jka (70)

This is a plain generalization of the Ashtekar variables and quite no-
tably, corresponds to a canonical transform [37, 212]. The interesting
point is that if we choose β to be real, the connection is a pure SU(2)

connection and as such, is real. But of course, we are not allowed to
take whatever we please as variables in a theory. Let us see how these
variables can be good variables for general relativity.

A rather interesting fact is that the Ashtekar-Barbero variables emerge
quite naturally when considering a slight modification of the action
[138]. Let us consider:

SAB = −
1

16πG

∫
M

(
εIJKLe

I ∧ eJ ∧ FIJ +
1

β
eI ∧ eJ ∧ F

IJ

)
(71)

As usual, the eI are the tetrad, and the F is the curvature of the
Lorentzian connection. As can be seen, we added a new term, called
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the Holst term. When the torsion is zero, this term is equal to the
Nieh-Yan term which is topological. Therefore, as long as torsion van-
ishes, the Holst term does not change the equations of motion.

How does the Ashtekar-Barbero variables appear from here? We
must start by fixing the gauge a little. Indeed, apart from the dif-
feomorphism invariance, Palatini’s formalism reveals a local Lorentz
gauge freedom. We will fix (partially) this gauge freedom by using
the time-gauge. Indeed, in the tetrad formalism, one of the tetrad vec-
tor is timelike. Since we chose a coordinate system on the spacetime
manifold with a preferred time direction, it is natural to ask for the
time vector of the tetrad to point in this direction. Technically, we will
require that the other three tetrad vectors have no time component.
Mathematically, we ask for:

eI0 = (1 0 0 0) (72)

This fixes the gauge freedom only partially are we are left with a lo-
cal SO(3) or SU(2) invariance corresponding to local rotation in the
space manifold. The advantage of this though, is that we can now sep-
arate the relevant degrees of freedom following Holst. The Ashtekar-
Barbero naturally appears as the canonical variables of Palatini’s for-
mulation of general relativity with the addition of the Holst term and
the time-gauge. We can from here derive the Hamiltonian formula-
tion which is strikingly similar to the previous formulation in terms
of the Ashtekar connection:

GI = DaE
a
I

Ca = EbI F
I
ab

H = 1
2ε
IJ
K

EaI E
b
J F
K
ab√

detE
+ 1+β2

β2
(EaI E

b
J−E

a
J E
b
I )K

I
aK

J
b√

detE

(73)

where K is the extrinsic curvature and can be expressed in terms of
the variables as: βKIa = AIa − Γ Ia where Γ is the torsionless spin con-
nection on the three dimensional space manifold associated to the
triad. The added bonus of this formulation is of course the reality of
the variables which imply that we do not need reality conditions. The
obvious disadvantage is the non polynomial character of the Hamilto-
nian. We can still rejoice in the fairly simple writing of the local SU(2)

gauge constraint and the spatial diffeomorphism constraint that we
know can hope to solve. Let us note also that the gauge group is now
compact and this will be one major point in the development of the
Hilbert space and one which we help us evade the no-go theorem of
Von Neumann. These variables can also be derived in another way:
as we mentioned, they are a canonical transform of the variables of
general relativity but only at the classical level [212].

There are other problems that plague this choice of variables. Most
notably, the fact that we used the time gauge means that the space-
time interpretation of the Ashtekar-Barbero variables is not trivial.
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And indeed, we have been careful to call it variables and not connec-
tion because it does not transform as a spacetime connection [213].
This situation might make it difficult to interpret the theory in a co-
variant way afterwards [121]. Also, fixing the time-gauge before quan-
tization might lead to an anomalous theory. This has lead some peo-
ple to rethink the possibility of using complex variables and to tackle
the problem of a covariant connection [11, 12, 119, 120, 157] which
usually implies the treatment of the reality conditions. The problem
was also analyzed in simpler contexts as in 3d [3] or for the entropy
of black holes [4]. But the Ashtekar-Barbero variables should not be
dismissed to easily either. For instance, some work has been done
in the spacetime interpretation of the Ashtekar-Barbero variables. It
gradually seems that a meaningful notion of Lorentz symmetry can
be restored [211].

To us, it seems that Wieland has done some very promising work
in this direction [237]. Indeed, he offered the idea of separating be-
tween the Holst-Immirzi parameter which appears before the Holst
term in the action and between the Barbero-Immirzi parameter which
appears in the choice of variable. In particular, if we do not use the
time-gauge, it is quite natural to define the variables to be Ashtekar
original connection, whatever the Immirzi-Holst parameter is. As it
turns out, it seems that the obtained theory is quite close to the the-
ory using Ashtekar-Barbero variables. From this perspective then, us-
ing Ashtekar-Barbero variables is just a clever choice revealing the
physical role of the Immirzi-Holst parameter. So for what follows, we
will keep the Ashtekar-Barbero variables, with real Immirzi parame-
ter. And we will hope that we are indeed lucky and that we can fix
the time gauge before quantizing.

3.5 physical consequences of the immirzi parameter

Let us side back from the Ashtekar-Barbero variables discussion and
let’s concentrate on the Holst-Immirzi parameter that appears in the
action. If it does not appear in the equations of motion, what is
its physical consequences? Let us start by mentioning an important
point: the Immirzi parameter can have consequences on the equations
of motion. If we had fermions, as we have seen, torsion does not van-
ish on-shell. This means that the Immirzi parameter then does change
the equation of motion. The influence can be shown to lead to a four
fermions interaction [110, 192]. This is however linked to the way the
Immirzi parameter is introduced. We can for instance introduce non-
minimal couplings for the fermions which compensate the four-point
interaction [166]. This is equivalent to using the Nieh-Yan topological
invariant rather than the Holst term (as the Nieh-Yan term contains a
contribution from torsion that compensate the contribution from the
fermions) [167]. This is linked to the precise implementation of the
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Immirzi parameter. It might also be seen as the implementation of
the dynamics of torsion.

Our concern, of course, is more general. Apart from this contribu-
tion from torsion (which might disappear depending on the use of
the Nieh-Yan or Holst term), what are the physical consequences of
the Immirzi parameter? In particular, let’s concentrate on the cases
where the equations of motion are untouched, the two canonical ex-
amples of that being by the use of the Nieh-Yan invariant or even
the simpler case of pure general relativity with no matter and there-
fore with no torsion. Then the role of the Immirzi parameter seems
to be purely quantum. Indeed, classically the Immirzi parameter has
no influence because of the cancellation of torsion. But quantum me-
chanically, the torsion might vanish only in average. The remaining
quantum fluctuations might then have a role and in that case, we also
expect the Immirzi parameter to enter the physical theory. Still, this
role must be, in some sense, tiny and should be negligible in the large
scale semi-classical limit.

Sadly, a precise and total understanding of the role of the Immirzi
parameter is still missing. If we have confidence in the results ob-
tained in the time-gauge, then the Immirzi-parameter appears in the
spectra of geometrical operators and determines the scale of quantum
gravity. It was argued however that the Immirzi dependence might
drop when considering Dirac observables and therefore disappear
from physical predictions [91]. The role of the Immirzi parameter
also has been compared with the role of the θ parameter in Quantum
ChromoDynamics (QCD) [169]. Indeed, the Nieh-Yan term has a strik-
ingly similar form as the correspond topological term of QCD. They
are both topological and are CP-odd. Therefore, the Immirzi parame-
ter might also be linked to CP violation. We should not haste in the
direction though since no clear topological interpretation as transition
amplitudes between vacua for example has been provided for the Im-
mirzi parameter as there is for the QCD θ term. We have ourselves
suggested that the Immirzi parameter might correspond to a trunca-
tion of the phase space and therefore corresponds to a cut-off [69].
This would support the view of the Immirzi parameter as defining
the scale of quantum gravity and might be relevant in the renormal-
ization process [42, 43].

In any case, though the role of the Immirzi parameter is still a bit
mysterious, it is necessary to define the Ashtekar-Barbero variables
and it naturally selects these variables when using the time-gauge.
Therefore, for our concern of coarse-graining loop quantum gravity,
we will gladly use it and leaves these questions for further inquiries.

In this chapter, therefore, we have studied various formulation of
general relativity. It turned out that using first-order formulations,
a local symmetry is revealed, namely local Lorentz symmetry. This
new formulation also allows for the use of a connection indepen-
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dent from the metric and even to see general relativity as a theory
of connection rather than a metric theory. In particular, a nice choice
of variables, the Ashtekar connection, leads to a polynomial theory
which might be easier to quantize. Sadly, reality conditions need to
be solved which are rather non-trivial at the quantum level. A new
choice of variables was introduced then , allowing real variables and
rather simple constraints, if we allow for a partial gauge fix. These
new variables, the Ashtekar-Barbero variables, might have physical
consequences but are retained thanks to their quantization friendly
structure. It might even be that their physical consequences is what
saves quantum gravity. In what follows, we will therefore see how
we can quantize the kinematics of general relativity expressed as a
theory of the Ashtekar-Barbero variables.



4
L O O P Q U A N T I Z AT I O N

Come on, Rory! It isn’t rocket science, it’s just
quantum physics! — The Doctor

Equipped with the new Ashtekar-Barbero variables, we can now
turn to the quantization of the theory. Let us detail a bit the enterprise.
We want indeed to quantize a constrained theory. More, we want to
quantize a totally constrained theory. In essence, we want to find a
representation of the basic variables and then solve all the constraints.
We won’t do this in one pass though. Indeed, there is first a natural
splitting of the constraints into two categories: the gauge constraints
and the (spacetime) diffeomorphisms constraints. These constraints
naturally separate because the groups they generate commute with
the other. There is also a natural second separation, as we will see,
between the Hamiltonian constraint (temporal diffeomorphism) and
the spatial diffeomorphisms constraints. This is natural because it cor-
responds to the splitting between the kinematics and the dynamics.
Also, since the Hamiltonian constraint is so much more involved, it
is natural to treat it separately.

So, the first step will be to define a Hilbert space H. From there,
we will impose the constraints step by step following this sequence
of the Dirac canonical quantization programme [83, 136, 164]:

H
Gauß−−−−−→ Hgauge

Diffeo−−−−−−→ Hdiff
Hamiltonian−−−−−−−−−−−→ Hphys

In this sequence, we mean that we start from the representation H

of the variables. This representation is the representation of the loop
algebra [16, 116] which will be our basic algebra of observables for
quantum gravity. Then we look for the kernel of the gauge constraints
Ga. The Hilbert space that pops out is Hgauge. Once the gauge con- Of course, it is more

involved
mathematically.
More often than not,
the kernel of the
constraints does not
exists as a subspace
and an appropriate
use of distributions
will be needed.

straints are imposed, we can look for the kernel of the spatial dif-
feomorphism constraints Da in the gauge invariant space and call
this new space Hdiff sometimes called the kinematical Hilbert space,
as it corresponds to the space describing the kinematics of the the-
ory. Therefore, once all this is done, we would have more or less
solved the kinematics up to finding interesting observables on the
last Hilbert space. The final step of the procedure corresponds to the
imposition of the dynamics and once again corresponds to the search
of a kernel. This last step is a bit more technical, and we will postpone
its discussion to the next chapter. Indeed, we will even have a whole
part dedicated to the dynamics of LQG.

47
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As a first step in this chapter, we will try to explore how we could
possibly hope to solve the Gauß constraints. This will motivate the
definition of our spaces. Let us note here that we won’t exactly follow
the mentioned sequence as it is not yet natural to do. But, after having
found some natural gauge invariant wavefunctions, generalize them
to some discrete version and defined a full continuum theory, we will
be able to look back and see how the full (kinematical) sequence can
be solved.

4.1 the loop excitation

In this section, we will work at a very formal level. We want to defineNote that formal in
physicists language

usually means
non-rigorous. It
means the same

thing here.

a quantum theory of the Ashtekar-Barbero variables. For now, we will
ignore the diffeomorphism constraints, either the spatial of temporal
ones and concentrate on the definition of a space that would help
us solve the Gauß constraints. The variables we have are a spatial
connection and its conjugate momentum, the densitized triad. This
should mean that we can consider the configuration space to be the
space of SU(2) spatial connection. So at the quantum level, we are led
to consider the space of wavefunctions over the spatial connection,
that is functional of the form ψ[Aia]. We do not care for now about
how to define the scalar product on this space. We will come back to
this question later.

How then should we represent our variables? Once again, let’s not
dwell in mathematical subtleties for now (we will have plenty of timeOne should not

think that
mathematical

subtleties are useless
or unimportant.

Indeed, they usually
help a lot in

understanding of
how some problem

arises or is resolved.
But we should not
start with them in

research.

for that by the end of the chapter). We will simply represent the con-
nection variable by multiplication, that is:(

Âia(x)ψ
)
[A] = Aia(x)ψ[A] (74)

and the conjugate momentum by (functional) derivation:(
Êai (x)ψ

)
[A] = −i

δψ

δAia(x)
[A] (75)

We can now try to quantize the Gauß constraints. Let us restate the
classical constraints:

GI = DaE
a
I = ∂aE

a
I + ε

K
IJ A

J
aE
a
K (76)

The simple course of action is of course to promote everything to oper-
ators and look at the result. There is however a more clever way to im-
plement this constraint. Let us remark that we want these constraints
to be implemented without anomalies, that is, we want the quan-
tum bracket to reproduce exactly the classical brackets. Note, that the
quantum brackets usually carry higher order terms compared to the
classical Poisson brackets. This is where the choice of fundamental
variables is important because their Poisson brackets will be the one
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reproduced exactly (with an  h factor). But, once a given choice is
made and once we try to implement this quantum mechanically, we
want the brackets to be reproduced. This would mean that the opera-
tors do indeed act as the generators of a group. More precisely, they
would act as the generators of the local SU(2) gauge transform. But
we know how the connection transforms under gauge transform. So
if the quantum theory reproduces in any plausible sense the symme-
try, if we consider the gauge transformation g and its action . on the
connection, we should have a unitary transform U(g) such as:

(U(g)ψ) [A] = ψ[g .A] (77)

Then being in the kernel of the constraints would mean to be invari-
ant under the action of g. This means, we are looking for wavefunc-
tions ψ that check the following condition:

∀g, ψ = U(g)ψ⇔ ∀g, ∀A, ψ[A] = ψ[g .A] (78)

Or to put in more verbal terms, we are looking for wavefunctions that
depend only on the orbit under gauge transformation of the connec-
tion. Do we know such functions? That is, do we know functions of
the connection that are gauge invariant?

Indeed we do, and they come from classical theory. Any classical
function of the connection that is gauge invariant will make a perfect
candidate for a gauge invariant wavefunction. The simplest of them
all is the holonomy. Let us consider a closed path C in space. It is
natural to integrate the infinitesimal transformations encoded in the
connection along this path. Mathematically, let’s parametrize the path
via a real number s between 0 and 1 using the coordinates xa(s). Then,
we can define a function g of this real number s valued in the group
SU(2) satisfying the following equations:{

g(0) = 1
dg
ds (s) = i dxa

ds (s)A
i
a(x(s))

σi
2 g(s)

(79)

where the σs are the Pauli matrices and therefore the σi
2 are the her-

mitian generators of the SU(2) group. This definition formalizes the
following intuitive notion: when we start at the origin point s = 0,
the transformation is still the identity. Indeed, we haven’t moved al-
ready. Then, for any infinitesimal displacement, the derivative of the
coordinates gives the displacement vector. Contracted with the con-
nection, this gives the infinitesimal transformation along the vector.
Contracted with the generators, we get a lie algebra element which
can be “added” to the transformation with the natural composition
law on the group. This way, g(t) represents the transformation in
SU(2) when following the curve C from the point at s = 0 to the point
s = t.

The interesting point is that g(1) is not necessarily equal to 1. Let us
say this in another fashion: the infinitesimal transform along a closed
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path is not necessarily trivial. This is precisely a mark of curvature:
a space is curved if one closed holonomy (that is the transformation
that results from the integration around a closed loop) is non trivial.
So, we have a non-trivial quantity g(1) which depends on the con-
nection. And this quantity is interesting from several aspects. If we
backpedal a bit, and consider a generic g(s) (so not necessarily on
a closed loop), we see that the element g(s) has nice transformation
properties. Let us consider a (finite) gauge transform h(y). At each
point y, we rotate via the SU(2) element h(y). Then, g(s) transforms
as follows:

g(s)→ h(x(s))−1g(s)h(x(0)) (80)

That means that the transformation of g(s) only depends on the initial
and final point of integration. In particular, if we consider g(1) which
is defined on a closed loop the transformation reads:

g(1)→ h(x(1))−1g(1)h(x(0)) = h(x(0))−1g(1)h(x(0)) (81)

So that g(1) is just conjugated when applying a local gauge transform.
Back to our quest of gauge invariant functions: if we can find a

function on the group that depends only on the conjugation class, by
composition we will have a gauge invariant function of the connec-
tion. And there is a very simple such function: the trace. We now have
a recipe for constructing a certain class of gauge invariant functions
over the space of connections: let’s choose a closed loop C. The trace
of the holonomy of the connection around this loop is a non-trivial
gauge invariant function of the connection. With our previous nota-
tion, it reads:

f[A] = Tr g(1) (82)

where it is understood that g depends on A and the path C. Note here
that we did not specify the starting point on the loop, thought it is
needed in the definition of g. This is because changing the starting
point will just amount to a conjugation and therefore the dependence
will drop off thanks to the gauge invariance condition.

We should pause for a second and dwell a bit about the various
meaning of holonomy. As we introduced it, it is a natural observable
of the classical theory. Disregarding the problem of the scalar product,
how does this function come to play any role in the quantum theory?
How is it that this function is not promoted to an operator for in-
stance? Let us disentangle all this now. The function we just defined,
that is the trace of a holonomy, is a mathematically well-defined func-
tion over the space of connection on a given manifold. Mathematically,
it is just one object. It appears, however, in two different physical con-
texts. It is used first in a classical context, and in that context it is a
function of the configuration space but is also a genuine observable.
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• particleθ

Figure 6: We consider the simple example of a particle (in red) moving
on a circle. The position is represented by the (oriented) angle θ.

It can also be used in a quantum context where it is to be interpreted
as a wavefunction.

We have a similar duality in simpler context. Let us consider, for
instance, a particle moving on a circle (see figure ??). Let us now
consider the function:

f(θ) = eiθ (83)

where θ represents the position of the particle. It can be interpreted as
a function of the variables in the classical theory. Or it can be under-
stood as a wavefunction and as such would represent an eigenstate
of the momentum observable. Incidentally, the trace of the holonomy
has a very similar role as a wavefunction: it is an eigenstate of the
momenta, which are the densitized triad, and therefore represents
eigenstates of the induced metric. Now of course, for the observable,
there should also be a quantum equivalent which would be a quan-
tum operator. This is for instance the case in the case of a particle on
a circle. f(θ) can be understood as a classical observable but can also
be understood as the corresponding quantum observable f̂(θ). It acts
as expected by multiplication on the wavefunctions:(

f̂(θ)ψ
)
(θ) = f(θ)ψ(θ) (84)

In a very similar manner, there is a quantum operator for the trace
of an holonomy. So, we have three versions of the holonomy. The
first two are mathematically identical and differ only in their phys-
ical interpretations. The former is a classical observable, depending
only on the configuration variables, but the latter is interpreted as a
wavefunction. The third holonomy is the quantum operator that cor-
responds to the classical observable. But this one is mathematically
different, though its physical interpretation is similar to the classical
observable. These three versions of holonomy should not, of course,
be confused.

4.2 spin networks

Now, we have a set of interesting candidates for wavefunctions. We
would probably want to add some interesting properties to our space.
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First, we should of course allow for superpositions of states, therefore
making it a vector space. Also, as the eluded holonomy operator will
act by multiplication, we should want the space to be stable under
(pointwise) multiplication. This would actually be a good strategy
and would lead to loop quantization per se. There is however a moreThe name loop

comes from historic
reasons as the

quantization would
rely on Wilson loops.

Polymer
quantization or spin

network
quantization might

better describe the
modern process.

modern way of constructing the space, and for this, we must first gen-
eralize the loop states. Indeed, to generate the whole space, we will
need products and sums of loops. But it can become quite cumber-
some to keep track of all possible multiplications. We will therefore
look for a generalization of loop states that appear after finite multi-
plication and additions.

The relevant property of the loop states is their one-dimensional as-
pect. Indeed, if we stare at the definition above long enough, we will
see that the wavefunction depends only on the value of the connection
along a one-dimensional manifold, namely the closed path C. If we
multiply or add loop states, we will never increase the dimensionality
of the manifold. To be precise, if there are crossing, the support line
will not be a manifold anymore, but will become a graph. This is how-
ever all that can happen. So, we are now looking for wavefunctions
representing one-dimensional excitations of the connection. These ex-
citations will therefore live on graphs. To be precise mathematically, a
graph is a collection of points and a collection of edges, with two ad-
ditional functions from the edges to the points called source and target
describing the connectivity of the graph (see figure 7)). This formal
definition will be handy in a moment, but for now, we will rather con-
sider embedded graphs. They are still collections of points and edges,
but the points are points in a manifold and the edges are paths in the
manifold linking these points. With our previous construction, they
are what naturally appears when considering a set of loops.

>
e

>

>

>

> >

>>

•
s(e)

•
t(e)

••

Figure 7: A graph is a collection of links and vertices. Each link is oriented
and has a source and a target vertex. For the edge e for instance (in red),

the source vertex is s(e) and the target vertex t(e).

So if the loop states are wavefunctions representing excitations of
the connection on a given loop, we will now consider graph states,
wavefunctions representing excitations of the connection on a given
graph (embedded in the space manifold). Said in yet another way, we
will consider wavefunctions with support on a graph. So, let’s take a
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graph Γ embedded in the space manifold Σ and let’s see how we can
construct wavefunctions around it. The concept of (open) holonomies
will be central: for each edge, we can set an orientation and compute
the open holonomy along the path as advocated above. This will give Normally, the term

holonomy should
only be used for
closed paths. But
because it is rather
natural to consider
open paths as well,
we usually allow
ourselves, in the
quantum gravity
literature, to talk
about open
holonomies.

a group element associated to each edge corresponding to the finite
parallel transport between its source and its target. Of course, if we
were to assign the reverse orientation on an edge, we would get the
inverse group element. So, our graph is now colored with one group
element per edge representing parallel transport (see figure 8). We
should note here that this group element is not fixed but is actually
a function of the connection, as was the group element for the closed
holonomy. We are therefore following the exact same recipe: we start
by defining group elements that are function of the connection and
then we will look for functions over these group elements that are
gauge invariant.
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Figure 8: We color the edges of the graph with group elements (noted
gi on the figure). The group elements come from the (open) holonomies

of the connection along the edge of the graph.

Let us number each edge of our graph Γ , therefore naming them
ei, and then also number the group elements gi accordingly. If the
graph has k edges, then we have k group elements from g1 to gk. We
are looking for a function over the group elements that end up in C

that is a function of the form:

f : SU(2)k
L2−→ C

(g1, ...,gk) 7→ f(g1, ...,gk)
(85)

Note that the functions are required to be square integrable with re-
spect to some scalar product that we will make more precise in a
moment. The goal is of course to have a respectable Hilbert space
structure for our quantum theory. We will come back to this point
later on. If we do not add any further requirement on the function,
this might be a very well defined wavefunction. Indeed, let’s define
ψ as:

ψ[A] = f(g1[A], ...,gk[A]) (86)

This is indeed a function of the connection that depends only on
its value along a given graph, specifically Γ . Of course, we have no
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reason to believe that it is gauge invariant (we can easily find counter
examples in the case k = 1). But this is still a honest wavefunction of
the connection.

The interesting point at this stage is that, because the space of
square integrable function over SU(2)k is a natural Hilbert space, if
we restrict to functions that depend on the connection only through
the group elements g1 to gk, this set will inherit the Hilbert space
structure. Let us describe the original Hilbert space. For any compact
group G, we can define a measure on the group, that is invariant un-The compactness of

the group G is
mathematically very

important. The
LOST theorem relies

on it [154] and no
coherent

quantization
schemes is known

for non-compact
group for now.

der left and right composition. More precisely, it means that we can
define a measure, let’s call it dg such that:

∀f, ∀h ∈ G,
∫
f(g)dg =

∫
f(hg)dg =

∫
f(gh)dg (87)

With the additional requirement that this measure is a measure on the
Borel subsets, it is unique up to a global factor, which can be set by
requiring

∫
dg = 1, which means that the volume of the group is unity.

This measure is called the (left and right) Haar measure. It exists
in some wider context than compact groups. The simplest example
would be the Lebesgue measure on the group R, which is indeed
invariant under translation (left and right can not be distinguished
for an abelian group). Equipped with this measure, we can define a
scalar on the functions over the group G:

∀(f1, f2), 〈f1|f2〉 =
∫
f1(g)f2(g)dg (88)

The space of square integrable functions (which are identified when
equal almost everywhere) on the group G is then a Hilbert space. We
can use this scalar product for our wavefunctions defined over graph.

Let us now look for a basis of this Hilbert space. How are we to
find one? If the group was U(1) (which it isn’t), the functions would
be functions over multiple copies of U(1) and could therefore be in-
terpreted as periodic functions on Rk. The natural way to go would
be Fourier analysis, which would exactly provide an orthogonal ba-
sis given by the exponentials. But here, the group is not U(1). In the
case of quantum gravity, the group is SU(2). We should look for an
equivalent of the Fourier decomposition on the SU(2) group (or more
generally a compact group). And there is: it is given by the Peter-
Weyl decomposition from the Peter-Weyl theorem. It says that the
elements of matrices of the irreducible representations of the group
are an orthogonal basis of the functions over the group. So, for SU(2),
the irreducible representations are labelled by half-integers j ∈ N

2 . An
element g ∈ SU(2) is represented by a matrix Dj(g) in the representa-
tion j. This matrix has elements labelled by row and column Dj(g)mn
which form the basis, so that any function over SU(2) valued in C can
be written:

f(g) =
∑
j,m,n

fmnj Dj(g)mn (89)
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If we think about it, this is exactly Fourier transform when the group
is abelian. For U(1) for instance, the irreducible representation are
one-dimensional and are labelled by integers n ∈ Z corresponding
to the power of the element. A matrix in such a representation is
just a complex number and turns out to be an exponential since the
representation is unitary. This means that function over U(1) can be
expanded as:

f(θ) =
∑
n

fneinθ (90)

which is precisely Fourier transform. So now that we have an equiva-
lent of the Fourier transform, and by that, an orthogonal basis (which
we will be able to normalize), we can study a bit more the space. The
group is no longer SU(2) but SU(2)k, this won’t stop us of course,
and the development is very similar. We write our functions over g1
to gk as:

f(g1, ...,gk) =
∑

{ji,mi,ni}

fm1,n1,...,mk,nk
j1,...,jk

Dj1(g1)m1n1 ...D
jk(gk)mknk (91)

The basis will therefore be the functions labelled by the spins j (la-
belling the representations) and the indices m and n (labelling the
matrix elements). They can be represented by colored graphs: each
edge of the graph carries three colors, the spin j and the indices m
and n. These colors describe a function from the Peter-Weyl basis
as follows: it defines completely the dependence over the holonomy
along the corresponding edge (see figure 9).
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Figure 9: The Peter-Weyl basis is labelled by colored graph. Each edge of
the graph is labelled by a spin and each half-edge is labelled by an index.
Here the 8 edges are colored by the spins for j1 to j8. The half-edge
connected to the source vertex of the complete edge are colored by m1
tom8. Similarly, the half-edges connected to the target vertex are colored
by n1 to n8. The graph given in the figure corresponds to the product

of Wigner matrix elements given on the right.

What is the physical or geometrical interpretation of such a wave-
function? The intuition should be alerted by the words of Fourier
transform. Indeed, usually when we start from a position represen-
tation and use the Fourier basis, we get eigenvectors of the momenta
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(indeed, the Fourier basis can be defined in this way). Here we start
from the configuration space of the connection and so, we should ex-
pect the Peter-Weyl basis to diagonalize in some sense the operators
corresponding to the densitized triad. And indeed they do. Now, the
precise mathematical sense will be explored by the end of the chapter.
For now, we just have the problem of defining operators that corre-
spond to the triad. Let us just work informally and see where it goes.
The densitized triad operators act by derivation. From the Peter-Weyl
decomposition, they act be inserting a σ (the generator of the group)
in the holonomy, at the point on the link where the operator acts. In
particular, we insert a σ at the left or at the right of the holonomy if
we consider the densitized triad at the beginning or at the end of the
edge. Then we see that the densitized triad becomes a quantum vec-
tor with its behavior dictated by the representation theory of SU(2)

as an angular momentum vector. The length of the densitized triad
(whether at the source or the target of a link) is given by the spin of
the representation and the indices give the projection of the vector on
the z axis, the first index m corresponds to the source while the sec-
ond index n corresponds to the target. This finally means that these
states correspond to eigenstates of the length and the z component
of the densitized triad at the source and targets of the links. By con-
struction, the length of both these vectors are always the same (this
comes from the fact that they are image from one another by parallel
transport).

The interest of the loop excitations was their gauge invariance. This
is a property we totally overlooked so far in the case of graphs exci-
tations. How are we to implement this? In the case of loops, this was
done by a clever choice of a function from the group element into C

that had to be compatible with gauge transform. We can do exactly
the same here. When we do a gauge transform, it acts only at the
starting and end points of the holonomies (as mentioned above). Let
us write the gauge transform h(x) where x is a point in Σ. Then the
holonomies transform as:

gi → h(ti)
−1gih(si) (92)

where si is the source of the link ei and ti is the target of the same
link. Then, to have a gauge invariant function is to have a function
which is invariant under such transformation. So we are looking for
a function f over SU(2)k such that:

f({gi}) = f({h(ti)
−1gih(si)}) (93)

From the Peter-Weyl decomposition point of view, this means that the
indices of the Wigner matrices must be contracted through a gauge-
invariant tensor, also called an intertwiner. The new natural basis then
still has spins on the links of the graphs but no longer indices as we
only need to know how to glue them together. This is given by the
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intertwiner at each node of the graph. If we choose a basis for the
intertwiners (which depend on the spins on the edges), the gauge in-
variant basis is labelled by the coloring of the graphs: a spin at each
edge and a basis vector of the intertwiner space at each node, the
intertwiner space being the one of the corresponding representations
of the edges meeting at the node (see figure 10). Of course, all this de-
velopment, while a bit more complicated, could be carried for loops.
Indeed, a loop is a special kind of graph with only one point (the
root point) and only one link with the source and target being the
root point. The holonomy along this link then does transform by con-
jugation. The trace is just a special kind of gauge invariant function:
it is the contraction between the fundamental representation and the
only intertwiner between the two 1

2 representations. It can easily be
seen that a natural generalization exists to any representations for the
loops and are given by traces in other representations. They would be
obtained by successive multiplication in the previous approach.
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Figure 10: The spin network basis of gauge invariant states is labelled by
graphs colored by spins and intertwiners. On this graph, the labels mi
and ni have been omitted because they are implicitly contracted over at
each vertex with the intertwiner. For instance, the intertwiner i1 carries 3
indices which are contracted with n5, m1 and n4 (in parenthesis and in
gray). The indices m5, n6, n7 and m8 have been kept precisely because
they should be summed over with the rest of the graph which does not

appear on the figure.

The space just described corresponds only to the excitations along a
given graph. So, we will need to go further and develop a continuum
theory. This is what we will do in the next section. Until then, the
theory so far resembles a discrete theory and in some ways is very
similar to lattice Yang-Mills theory [30, 229] (see figure 11). Let us
compare the two for a moment. It should be noted that lattice Yang-
Mills has exactly the same Hilbert space as the one just described,
except maybe that the graph might be infinite. Still, the connection
variable is usually replaced in the discrete theory by group elements
and the generalized electric field has value at the end of the links,
with the constraint that it should the same norm at both ends. These
similarities come from the similarities of the variables. It goes even
further when we study the gauge invariant functions since the basis
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we just developed is also a natural basis for Yang-Mills theory since
it diagonalizes the electric field. This similarity comes from the sim-
ilarity in the constraint algebra, since in both cases, we are dealing
with Gauß constraints. What are the differences then? The first point,
on the mathematical side, is that in the quantum gravity, we will de-
velop a continuum theory. That might be difficult for a Yang-Mills
theory because of the lack of diffeomorphism invariance. But the sec-
ond point comes from the interpretation. In a Yang-Mills theory, the
graph carries some information about space and distances. The graph
represents a sampling of space and the fields leaves on space. In the
quantum gravity theory, the graph represents connectivity informa-
tion (as will become apparent when we’ll have dealt with diffeomor-
phism invariance). The graph does not by itself carry distances or
geometrical information. The distances are carried by the states them-
selves. This was of course obvious from the beginning: if they have
a somewhat similar aspect, SU(2) Yang-Mills and quantum gravity
must be different. They are not with respect to the variables algebra
and from the Gauß constraint perspective. Therefore the difference
between the two theories will be encoded in the precise dynamics,
but also in the constraints.
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•
i4

•
i5

•
i6

Figure 11: The spin network basis of gauge invariant states is also natural
for lattice Yang-Mills. Edges are colored by irreducible representations of
the gauge group, which are spins in the case of SU(2), and the vertices by
intertwiners of these representations. Of course, there is a huge difference
in the interpretation of those states, compared to quantum gravity, as
these spins and intertwiners do not encode physical distance, which is in
fact represented by the graph itself in the case of lattice Yang-Mills.

4.3 the continuum phase space

Until then, we forgot the elephant in the room: what about a Hilbert
space for the continuum space? Indeed, the Hilbert space we just
defined is for a given support graph and therefore corresponds to
some intuitive notion of discrete excitations. How do we start from
here in order to go to the continuum Hilbert space. We will do this
in a manner similar to the usual one in discrete theories: we will
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consider refinement and somehow take a limit. In this section, we
will describe how to do such a process.

The main idea is the following: instead of capturing a continuum
theory directly, we will rather capture an arbitrarily refined theory.
Indeed, each state in a given discrete state space can be interpreted
as a state of more refined graph. So, if we call the previous Hilbert
space on the graph Γ HΓ , our goal is to define a Hilbert space like:

H =

(⋃
Γ

HΓ

)/
∼ (94)

where the union is over all possible graphs and the quotient is done
with respect to an equivalence relation which will give a precise no-
tion to the inclusion of Hilbert space. In essence therefore, we will
identify states in coarse graphs with their corresponding versions in
the refined graphs. Intuitively at least, this should work, since if we
are allowed any refinement we could consider any excitations as long
as it is finite in the sense that it has support on some graph. Of course,
this will only work because the support is not fixed, meaning that it
depends on the precise excitation but also that it can be as refined as
we want.

So as a first step, let’s first see how the previous construction natu-
rally gives a way to include coarse states into refined graphs. Let us
consider some graph Γ and a wavefunction ψ with support on this
graph. Let us now consider, as an example, a link ` not present in the
graph, with the only requirement that it is not in the graph Γ but its
starting and ending point to land in Γ (not necessarily on nodes of
Γ ). So ` is a genuine new link with respect to Γ (see figure 12). We The existence of

constant functions is
what makes the
compactness of the
gauge group needed
in the construction.
Indeed, constant
functions are not
square integrable for
non-compact groups
at least for the Haar
measure.

could consider the new graph Γ̃ = Γ ∪ ` with the added link which
is, arguably, more refined than Γ . Can we understand ψ as a function
with support on Γ̃? Yes indeed! Indeed, nothing prevents a function
over Γ̃ to not depend on the particular holonomy along `. Constant
functions are still allowed. And this is the basic idea on how to in-
terpret a wavefunction as a wavefunction on a finer graphs than its
original support: we only need to consider the function as constants
on added elements. There is a subtlety we ignored here: if the link
` starts or ends on a link of Γ rather than a node, that means that
Γ̃ has an additional node and one of the link of Γ must be split. Let It should be noted

here that graph
excitations, in light
of this refining
procedure, are
gauge-invariant
almost everywhere
except at the nodes
of the graph.

us call the split link m and the two parts m1 and m2. This means
that the wavefunction no longer depends on a single holonomy along
m. Therefore, gauge invariance will be automatically satisfied at the
added node. It must rather depend on two holonomies along m1 and
m2. How is this not a problem? We can define the dependence on m
as being a dependence of the composition m2m1, following the def-
inition of the holonomy along m. This also deals with another way
to refine a graph: we can simply add a node in the middle of a link,
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without adding any link. This is dealt by the previous comment on
composition.

•

Γ

•

` •

Figure 12: To define the continuum limit, we need to define the cylindrical
consistency. In essence, we need to define an inclusion of Hilbert spaces
at a finite number of excitations. Here, we show one of the elementary
step to define the inclusion: the adjunction of a single link to a graph. The
new link ` must start and finish on Γ introducing new vertices if necessary.

From there, we will use the mathematical construct of the projective
limit. The projective limit is precisely the construction corresponding
to the construction of the limit of ascending unions. For this, we must
construct the equivalence relation giving a sense to the ascending part
of the previously mentioned union. In order to have the equivalence
relation, we will first define the inclusion structure of the graphs. Let
us explain the idea in a simpler setting. Let us imagine we wanted
to define a function over an infinite number of (real) variables. So we
want to give a precise sense to f(x1, x2, ...) where there is an infinite
(let’s say countable) number of variables. Of course, the problem is
not to define such a function per se but to define it with a reasonable
sense of differentiability, of scalar products and properties alike. The
idea of the projective limit is to define such notions on a finite num-
ber of variables and then by an equivalence relation uphold this to
an infinite number of them. In a very similar way to the construction
presented above, a function over x1 can be interpreted as a function
over x1 and x2 but with no dependence on x2. Let us note here that
we must distinguish between functions of one-variable but different
variables. For instance, the Hilbert space of functions over x1 is not
the Hilbert space of functions over x42, though they are isomorphic.
It is of course similar for functions over several variables since, as
functions over the infinite set of variables, these functions are differ-
ent. And because we must distinguish between them, we must take
care of the inclusion of the different Hilbert space among themselves.

In this simple case, the inclusion structure is quite simply the natu-
ral inclusion of sets. We will identify functions over different subsets
of the integer in the following way. Given two functions, we look for
a refinement of both support sets. Then for any variables labelled by
this set, we will define the pull-back of these variables onto smaller
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subsets of the integer (which is simply given by dropping additional
variables). We can then compare the two functions over any value la-
belled by the bigger set. If they match, we consider them to be equiv-
alent. The idea is quite intuitive: considering the pull-back means we
drop the dependence on the added variables. So if we take two func-
tions, we are actually asking that they depend only on the variables of
the intersection of their support sets and if they match on this subset.

This can recast in a language closer to the language of connections
and holonomies we used. Indeed, even if, for our functions over the
reals, the support is not graphs but finite subsets of the (non-negative)
integers, the parallel could be made with zero-dimensional graphs.
The integers could be understood as dots in some space, and so the
subsets could be understood as zero-dimensional graphs with nodes
only. A set of dots is a coarse version of another if it is included in it.
A function over the reals can also be understood as a function over
the colors of these dots, where the colors are real numbers put on
these dots. The variables then acts as coloring of the dots.

We can do exactly the same thing, though it is of course a bit more
involved, for our wavefunctions of the connection. We define inclu-
sions of graph quite simply: a graph Γ1 is finer than another one Γ2 if
all the nodes (as points on the manifold) of Γ2 are in Γ1 and if all the
links (considered as sets of points on the manifolds) of Γ2 are in Γ1.
Simply put: the inclusion of graphs is defined as the inclusion of sets
when the graphs are seen as the collections of their points (coming
from nodes or links) (see figure 13). The pullback must be defined
a bit more carefully to take into account the composition problem:
links might be split in the finer graphs. Apart from this, the defini-
tion works quite as fine. Once the pull-back is defined, we can define
the equivalence relation and therefore define our Hilbert space. We
give more detail for this procedure in appendix B.

We do such a complicated thing for several reasons: first it is diffi-
cult to define infinitesimal links. Starting from the discrete case and
extending to the continuum is therefore natural. But second, this al-
lows us to indeed define notions as differentiability and scalar prod-
ucts. Indeed, the natural scalar products and differentiability struc-
tures on the wavefunctions over finite graphs are compatible with
the equivalence relation. This means that if we take two equivalence
classes and define their scalar product (for instance) by the scalar
product of their representatives, then the result does not depend on
the choice of representatives. Therefore the scalar product is well de-
fined for the equivalence classes themselves. The same goes for dif-
ferentiability. And it can even be showed in a very precise sense, that
this construction initially done by Ashtekar and Lewandowski, cor-
responds to the natural structure of square integrable functions over
the space of generalized connections, that is distribution-valued con-
nections.
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Figure 13: To define the scalar product in the continuum, we use cylindri-
cal consistency: wavefunctions with trivial dependency on some edges are
identified with functions on coarser graphs (with the gray dashed edges
removed from the graph). As a consequence, two coarse graphs can al-
ways be considered as being embedded in another finer graph on which

the scalar product is well-defined.

Let us see how this works for the Peter-Weyl basis. Given a basis
vector on a graph Γ , does it correspond to a basis vector of a finer
graph and if so, which one? The answer to this question is pretty
straightforward: yes and it corresponds to basis vector with spin 0
on the additional edge and contraction of indices of the split edges.
Indeed, the spin 0 corresponds to the trivial representation which is
constant and therefore gives the decomposition of constant functions.
The contraction comes from the fact that by using the composition
of holonomies, a function on the coarse-graph is gauge invariant at
the splitting of edges. Therefore, we must use the only intertwiner
available to glue the two dependencies. This means, from the basis
perspective that we identify the functions with 0 spin and the function
without the corresponding edge.The cylindrical

consistency
condition implies

that functions with
support on different

graphs may not be
orthogonal. It might

not be the case in
particular if the

dependence along an
edge is trivial.

In particular, any continuum observable on the phase space must
be invariant when removing an edge with 0 spin. To be compatible
with this means that the function does not depend on a choice of
representative of the equivalence class. This property of an observable
is called cylindrical consistency. All honest continuum observables
must be cylindrically consistent. This is the essence of our continuum
construction: a continuum function can be defined on discrete states
and there will be some relations between finer and coarser states.
But conversely when starting from discrete states, functions satisfying
cylindrical consistency conditions can be extended to the continuum
states.

Now, as advertised in the beginning of this chapter, we did not
really follow the quantization process. Instead, we first got a grasps of
what invariant states should look like and then constructed backward
in order to have something rather consistent. We should now ponder
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a bit and see if the various steps of this quantization sequence of
states:

H
Gauß−−−−−→ Hgauge

Diffeo−−−−−−→ Hdiff (95)

can be defined properly. We omitted the dynamical constraint as we
argued before and certainly, at this point, we won’t consider the dif-
feomorphism constraints (they are the object of the next section). Still,
what should H be and what is Hgauge. More importantly, of what
algebra of observables is H a representation of? We alluded to the
fact that the conventional variables are not very well suited. Our dis-
crete construction should highlight that. So, what kind of variables
should we consider? Integrated ones. We can consider first the (com-
mutative) algebra of cylindrical functions. These are functions over
the holonomies of links in a graph. As for the holonomy excitations,
we should distinguish here between two things, though they seem
similar at first sight. There ares the cylindrical functions as observ-
ables and there are the cylindrical functions as wavefunctions. For
now, we introduced the wavefunctions. But as we are considering
the algebra of observables, we are turning to the second kind. The
cylindrical functions of the wavefunctions define observables and we
can define their quantum counter-part by a multiplicative action. We
can then amend this algebra with the momenta. The momenta will
be integrated versions of the densitized triad. The densitized triads
are secretly bivectors and therefore are integrated on surfaces rather
than lines. Historically, the fluxes were understood as derivation of
the classical configuration space and would be defined as follows:

ES,f =

∫∫
S

fiEai nadS (96)

where S is a compact surface, fi is a vector function with support on S
and n the (unit) normal vector to the surface. fi would serve as a test
function but its main purpose is to track the problems link to parallel
transport when integrating. The Poisson algebra however turns out to
be non-intuitive and the fluxes do not commute among themselves.
This was understood as some difficulty in the limit procedure for
taking surface integrals rather than volume integrals [22]. A more
modern treatment [56, 89, 112] (explicit calculations in [229]) consider
that this non-commutativity comes from the parallel transport which
is done through the connection which does not commute with the
fluxes:

Ei,S =

∫∫
S

g . Eai nadS (97)

where g is the parallel transport by A through an appropriate path in
the surface S. It is a more simplicial (meaning discrete) point of view
of the same problem. In any case, it turns out the integrated triad
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act as derivation on the cylindrical functions. On the previously de-
fined Hilbert space, they therefore also act by derivation. This definesThis “simplicial”

point of view
highlights though

yet another problem
with changing the

Immirzi parameter:
because the

connection enters
the integrated fluxes,
these fluxes will also

change when the
Immirzi parameter

is changed. This
makes implementing

a discrete Immirzi
transformation

really difficult to
implement.

the algebra of observables called the holonomy-flux algebra and the
Hilbert space H. The imposition of the Gauß constraints is not ex-
actly straightforward but it can be carried as the Hilbert space carries
an action of the local SU(2) group. The results is, quite as expected,
the projective limits of gauge-invariant wavefunctions with support
on (finite) graphs as the same procedure can be carried and gauge-
invariance is a cylindrically consistent property (if a wavefunction is
gauge invariant all its restrictions are as long as the support graph
captures all the degrees of freedom).

Let us close this section with a remark comparing this representa-
tion with the usual Fock space. Indeed nothing, so far, needs diffeo-
morphism invariance. Our construction would seem natural for any
gauge theory with compact gauge group. So, is this representation the
same as the usual Fock space (are they isomorphic) or are there dif-
ferences? If so, could we write Yang-Mills theory for example on such
a representation or what would be the difficulties? First, no, the rep-
resentations are not equivalent. Our new representation evades the
weak-continuity hypothesis of the von Neumann theorem. In partic-
ular, there is no connection operator and this forbids the equivalence
of the representations. So, could we write Yang-Mills theory in this
new representation? Well, no. The problem is the Hilbert space thus
defined is not really a Hilbert space as it is not separable [103]. This
will be solved in the case of quantum gravity thanks to diffeomor-
phism invariance. But in a generic Yang-Mills theory, the Ashtekar-
Lewandowski space is not suited for a good definition of the theory.
There is also a difference in the vacuum state. In the usual Fock space
representation, the vacuum state is annihilated by one of the ladder
operators. It corresponds to a state where the configuration variable
and the conjugate momentum are zero in their expectation value but
spread statistically. Therefore, the Fock vacuum state is not an eigen-
vector of any of the canonical observables. This state is selected by
its property of symmetry under Poincare transform. In contrast, we
do not have such symmetries in quantum gravity and therefore, the
space we’ve built so far do not have a canonical vacuum which is
Poincaré invariant. We will see however, that it is possible to select
a preferred vacuum through diffeomorphism invariance. In that case,
it turns out to be the trivial state with no dependence at all. It is
annihilated by every flux observable and therefore is, of course, an
eigenvector of those. As a consequence, it is maximally distributed
in the holonomy observables. The structure of the kinematical space
is therefore quite different in a diffeomorphism invariant theory. We
must notice something however: we lost the weak continuity hypoth-
esis and the Poincare invariance. But it seems that diffeomorphism
helps us in several regards: with respect to the separability and also
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in the definition of a vacuum. So, in a sense, we must choose our
hypothesis. In the Yang-Mills case, it is natural to consider Poincare
invariant vacuum and try to simplify things as much as we can by
searching for weak continuity. But from the quantum gravity perspec-
tive, diffeomorphism invariance is the holy grail. Therefore it is natu-
ral to turn to a representation that can represent it faithfully. And as
we will soon see, diffeomorphism invariance will force us to forget
weak continuity. So, let’s turn to our next section and consider how
to implement it concretely in the theory.

4.4 diffeomorphism invariance

How are we to impose the diffeomorphism constraints? We would
like a similar trick that the one used for gauge invariance: we would
like to find a natural action of the diffeomorphism group and then
look for diffeomorphism invariant states. The first step is relatively
natural: given a functionψ over a connectionA and a diffeomorphism
φ, we define the diffeomorphism action as follows:

(φ .ψ)[A] = ψ(φ?A) (98)

In other words, because the diffeomorphism group has a natural ac-
tion (through pull-back) on the configuration variables, it also has a
corresponding canonical action on the algebra of functions on these
variables. So, given a wavefunction with support on a graph Γ , we
have an image of this function under the action of φ which now has
support on the image of Γ , let’s call it φ . Γ . This is quite intuitive:
diffeomorphism moves the support points and the new function de-
pends on the displaced points. This action moreover is compatible
with the equivalence relation, that is it is cylindrically consistent and
therefore carries into the continuum state space H.

The problem comes from the second step: can we find diffeomor-
phism invariant states? The answer is: there are none except from
the trivial state, which is the constant wavefunction. The problem
comes from non compactness of the group. Indeed, let’s consider for
instance a simple loop excitation. We could try and write a projector
onto the diffeomorphism invariant states (as this is very well possible
for gauge invariance) by average over the group. Applied to the loop
excitation ψ�, this would read something like this:

ψinv[A] =

∫
diff
ψ�[φ

?A]dφ (99)

There are a lot of problems in such a writing but here are the two most
stringent: the first one is the non-compactness of the group which
prevents such a simple writing. But as we will see in a moment, we
can evade this problem by considering the space of distributions. This
would not solve the second problem however of the measure. Indeed,
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in the integration we used a measure on the diffeomorphism group.
For the (compact) gauge group, we had the Haar measure which was
natural and respected in some sense the composition law of the group.
It is difficult to see what would serve as this for the diffeomorphism
group. Let us deal with each problem in order.

Regarding the non-compactness of the diffeomorphism group, the
natural thing to do is, as we said, to consider distributions. The idea
of distributions is to consider the topological dual of a proper subset
V of the interesting space H. This will allow the construction of aMore generally, we

can consider habitats
that is distributional

extension of the L2

space.

triplet of space, a Gelfand triple:

V ⊂ H ⊂ V? (100)

The choice of V is important as it must be small enough for all the
interesting operators to be defined on it. But it must also be large
enough so that the topological dual is larger than the original Hilbert
space. A usual choice is to use Schwarz’ space of smooth functions
with rapid fall-off. This space is interesting as all observables of the
holonomy-flux algebra are defined on it and it is stable under suc-
cessive action of these observables. As the gauge group is compact,
the fall-off condition is automatically satisfied. Equipped with a nice
topology, the space V becomes a Frechet space. The choice of topol-
ogy is also important for another reason: it must be fine enough to
be able to define the operators on V?. This means in particular that
we want the interesting observables to be continuous with respect to
the topology. All these technical points are somewhat important to
define the theory. But, it should be noted that once a choice is done,
the construction does not change. For what we are interested in, that
is the imposition of the diffeomorphism invariance, we just need to
fulfill the prerequirements of size and fineness of topology.

Distributions are continuous linear forms on the space V. In our
case, they can be considered as bras (as in bra-kets). And indeed, if
we go back to our problem of averaging with diffeomorphisms, and
if we forget the problem of the measure (for now), though it is ill-
defined for the vectors, it is somewhat better shaped in the case of
distributions. This would look like:

〈ψinv| =
∫

diff
〈φ .ψ�|dφ (101)

We mentioned that states are not necessarily orthogonal if they have
different support graphs. They are orthogonal though if they have
non-covering minimal support graph, that is graphs with all the edges
with trivial dependency removed. Therefore, we can hope that most
of the terms above will vanish and that this scalar product can be
defined at all. Still, this integral is something very ill-defined. What
is the problem? Let us imagine that we test against a function whose
support graph is diffeomorphic to the support graph of the function
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we are averaging ψ�. The support of this function is a loop. Then
we should ask the question of the volume of the subset of the diffeo-
morphism group that leaves the loop alone. The problem is that there
is a multitude of diffeomorphisms sending one graph onto another
one which is diffeomorphic. And in our integral all these terms will
appear and factor somehow a volume of this set of diffeomorphisms.
Apart from the definition of the measure precisely, this is the problem
we are facing: to define a volume for all the valid diffeomorphisms
sending a graph to a covering of our loop.

A natural idea is therefore to cut this liberty in the choice of dif-
feomorphism out. If we are averaging a wavefunction with support
graph Γ , let’s consider the group Diff/Γ which is the group of dif-
feomorphisms moving only the graph Γ around. That is, two diffeo-
morphisms are considered equivalent if they act in the same way on
Γ . In a way, we cut out the action outside of Γ effectively setting our
spurious volume to 1. Then we can define:

〈ψinv| =
∑

φ∈Diff/Γ

〈φ .ψΓ | (102)

At first sight, it might seem even worse as we traded an integral for
a very ill-defined continuous sum. But the trick is that we are con-
sidering distributions which are defined by their evaluation against
test functions. And now, because of the orthogonality we mentioned
between functions on different support graph, the sum will always
have a finite number of terms which are non-zero. In practice, if we
evaluate ψinv against a test function ϕΓ̃ (with support on Γ̃ ), there are
two possible outcomes: either Γ̃ and Γ are diffeomorphic and by con-
struction, there is only one diffeomorphism in the sum that will work
or Γ̃ and Γ are not diffeomorphic. In that case, the situation is a bit
more subtle as a coarser or finer version of a one of the graph might
be diffeomorphic to a coarser or finer version of the other graph and
we would be led to first case again. Or the graphs are really not dif-
feomorphic, not even in their subgraphs and no terms survive giving
a zero scalar product.

We can therefore define the space of diffeomorphism invariant states
as the space of all such averaged states. Being a space of distributions,
the space of diffeomorphism invariant states does not a priori carry a
scalar product. In our case though, it does carry a natural one. For
any state 〈ψ|, by definition of the space, there is a writing as:

〈ψ| =
∑

φ∈Diff/Γ

〈φ .ψΓ | (103)

for some support graphs Γ (it does not matter which representative
we choose). 〈ψΓ | could be understood as a representative of the dif-
feomorphism invariant state. How should we take the scalar product
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between two states |ψ1〉 and |ψ2〉? If we understand the sum as a
projector, then it would be written as:

〈ψ1|ψ2〉 = 〈ψ1,Γ1 |P
†Pψ2,Γ2〉 (104)

where P represents the projector and Γ1 and Γ2 are the support graphs
of the representatives of each of the diffeomorphism invariant states.
This would be divergent. But we force the matter and accept that P is
a projector in disguise then, we would hope:

P†P = PP = P = P† (105)

And this would lead to:

〈ψ1|ψ2〉 = 〈ψ1,Γ1 |P
†ψ2,Γ2〉 = 〈ψ1|ψ2,Γ2〉 (106)

which is, incidentally, well-defined. So rather than take the previous
discussion as rigorous, let’s rather consider the result as defining the
scalar product. This defines a bonafide Hilbert space of diffeomor-
phism invariant states. In a sense, we took the (divergent) projector
once too many, leading to divergences and bad definitions of the
scalar product.

This new scalar product solves some of the previously mentioned
difficulties. First of all, the Hilbert space is now separable. That meansThe separability of
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that the problem we mentioned for Yang-Mills theory disappears in
the case of quantum gravity theories as the final kinematical Hilbert
space is a honest Hilbert space. The basis of the space also becomes
countable, provided we take a somewhat larger group than diffeo-
morphisms. We must for that use star-diffeomorphism which are es-
sentially diffeomorphism almost everywhere: we are allowed some
non-inversibility at isolated points. This use is necessary in order to
deform the graphs around the nodes, because (regular) diffeomor-
phisms would not allow the transformation of different directions at
nodes of the graphs. Allowing for singularities at nodes of the graph
makes it possible relate nodes with valency greater than two. This
concludes the presentation of the kinematical space which is now
well-defined.

The construction seems relatively natural. Before we continue, we
should ask if the path is somewhat unique or to what extent it is. It
turns out, we are pretty constrained. In a more precise manner, what
we want is a representation of the holonomy-flux algebra (with or
without weak continuity, these operators would make sense, so let’s
start there) which has a natural notion of gauge invariance and which
also has a natural action of the diffeomorphism invariance. We also
want the representation to be cyclic: that means every states can be
obtained from a starting state, let’s call it the vacuum, through succes-
sive action of the holonomy-flux algebra. Otherwise this means our
representation has a bit too much states that we can’t distinguish with
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our observables. And we want the vacuum to be diffeomorphism in-
variant under the previously mentioned action of the diffeomorphism
group. According to the LOST theorem, with a few mathematical hy-
pothesis (namely semi-analicity of a bunch of functions), such a rep-
resentation is unique and is the one described above [154]. If we then
apply the constraints, the previous method naturally arises and it
seems that, at least at the kinematical level, the theory is unique or
tightly constrained.

There are ways to evade the LOST theorem though. Most of them
were investigated in the context of coarse-graining, so we will come
back to them. But let’s rapidly announce them. First, we can con-
sider a vacuum which is not invariant under diffeomorphism. This
was considered in order to describe excitations over a given (spatial)
metric [146]. In that case, we can consider a covariant rather than Fixing a metric

breaks
diffeomorphism
invariance in the
same way that using
finite temperature in
QFT breaks Poincaré
invariance. In both
cases, we need
another
representation

invariant vacuum and arrive at a different representation. A second
possibility is to remove an hypothesis which is close to weak conti-
nuity: the existence of the flux observables [86]. If we consider than
only exponentials of them exists, a new algebra can be defined and
without weak-continuity, a new representation can be found with a
diffeomorphism invariant vacuum. This was considered in the con-
text of developing a physical vacuum for Dittrich’s programme. The
BF vacuum was constructed along with its representation. In that case
the vacuum state is an eigenvector of the holonomies rather than the
flux and is purely flat. These alternative representations have been
studied in the context of coarse-graining. For us though, we will stick
to the usual Ashtekar-Lewandowski representation, at least for now,
and develop the theory along this line.

4.5 geometrical observables

Now that the kinematical space is defined, but before tackling the
dynamics, we should populate the space of operators. In particular,
it is paramount to define geometric operators with a precise action,
and the possible spectrum, on the kinematical phase space. We will
concentrate on two particular operators here: the area operator asso-
ciated to the area of a given surface and the volume operator [25]
defined in a similar way for volumes.

We face here the difficulty of dealing with diffeomorphism invari-
ance. Indeed, because of diffeomorphism invariance, the position of
points in the coordinate system is merely a choice. On diffeomor- The problem was

first mentioned
when considering
discrete GR as in
[195].

phism invariant states, we loose this possibility of designating points
and in a similar way, we loose the possibility of defining surfaces and
volumes in this way [118]. This is related to Einstein’s hole argument
[98] as points are not physical because of the diffeomorphism invari-
ance. The problem for us is that in spacetime, we do not define events
by their coordinates but rather by physical events. For instance, an
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event might be a collision of two particles. This notion will be diffeo-
morphism invariant: whatever the diffeomorphism we apply, there
will be a point corresponding to the collision and at this point, what-
ever the diffeomorphism, the value of Higgs field for example will be
the same. This suggests a relational point of view: physical quantities
are related to and are expressed with respect to other physical quan-
tities. And when we think about it, this is indeed what we do all the
time. Even when measuring time, we actually use a physical device
(a clock) with respect to which we express the movement of other
things. But, this seems to need the use of matter. And for now, we
concentrate on pure gravity. So, how are we to solve this dilemma?

The simple strategy is simply to write operators on Hgauge rather
than Hdiff. We will develop and define area and volume operators on
the space of Gauge invariant states but not on diffeomorphism invari-
ant states. In this way, it is pretty clear that we cannot possibility run
into trouble with respect to the diffeomorphism. In this Hilbert space,
the notion of space-point can very simply be mapped by coordinates
and nothing prevents to consider a given surface in the manifold Σ
or a volume. In particular, we do not need to consider equivalence
classes under diffeomorphism and that means that the surfaces and
volumes can be well-defined. But this raises a new problem: what
could possibly be the relation between these operators and the diffeo-
morphism invariant operators we would be interested in? Well, the
precise relation would be given by the construction of Dirac observ-
ables. The basic idea is that if we can define an operator giving the
coordinates of a collision for example and if we have an operator for
the value of the Higgs field, say, given coordinates, we can define
the value of the Higgs boson at the collision. The Dirac construction
therefore works in two steps: first define diffeomorphism covariant
operators and then identify a well-suited one for a physical choice of
coordinates. Then, we can combine them into diffeomorphism invari-A nice choice of

physical coordinates
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choose with the GPS
system as explained

in [200].

ant operators as wanted. Our area and volume operators will there-
fore correspond to the first step of the construction. But though there
are not themselves diffeomorphism invariant, they will participate in
the construction and interpretation of such operators.

We can turn to the definition of the area operator. The problem is of
course to express it using the canonical variables we introduced: the
densitized triad and the connection. As the densitized triad diagonal-
izes the metric (in the classical sense) and the metric is what we need,
this does not seem insurmountable. Let us write down the definition
of the area with the usual metric formalism:

A(S) =

∫
S

√
det
(
qab

∂xa

∂σi
∂xb

∂σj

)
ij

d2σ (107)

where S is the surface of interest embedded in Σ, σi are coordinates
on this surface and xa is a coordinate system on Σ. We also used the
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loose notation of xa(σ) to denote the coordinates in Σ of the point
parametrized by σ in S. (qab) is the spatial metric as usual and there-
fore the expression corresponds to taking the determinant of the in-
duced metric on the surface. Now, we want to express this using the
densitized triad. The densitized triad is a vector of weight one, or
secretly a bivector. This means that it is naturally integrated over sur-
faces and for our concern that its spatial indices should be contracted
with normals (which are pseudo-vectors) rather than vectors. In par-
ticular, this means we would like to make terms like Eai na appear
where n is the normal vector to the surface.

The expression is invariant under spatial diffeomorphism, let’s use
that in order to reexpress the area. Let us extend the coordinate sys-
tem given by σ1 and σ2 with a new component whose direction is
locally given by the normal vector. Locally, this is possible. Then, in
this coordinate basis, the metric (qab) reads:

(qab) =

(
q00 0

0 (hcd)

)
(108)

where (hcd) is the induced metric on the surface. We have hq00 = q

because the metric is block diagonal in this coordinate system. h is
the determinant of the induced metric and therefore is the quantity
we are interested in and can be written:

h = q−100 q (109)

Now, we can express quite simply the inverse metric in terms of the
densitized triad as follows:

qqab = Eai E
b
j δ
ij (110)

In particular, we can consider the quantity:

Eai E
b
j δ
ijnanb = qqabnanb = h (111)

because (na) = (1 0 0 0) in our coordinate system. This gives the
following expression for the area:

A(S) =

∫
S

√
Eai E

b
j δ
ijnanbd2σ (112)

We now only have to quantize it.
The problem is that we only have integrated version of the densi-

tized triad in our toolkit of operators so far. But we can deal with that
with a simple Riemann sum: let’s split the surface S into N smaller
surfaces Sn with (coordinate) area shrinking to 0 as N grows. We
have:

A(S) =

N∑
n=1

∫
Sn

√
Eai E

b
j δ
ijnanbd2σ (113)
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So far, the equality is exact but as the surface tends to zero, we can
approximate as follows:

∫
Sn

√
Eai E

b
j δ
ijnanbd2σ '

√∫
Sn

∫
Sn

na(σ)nb(σ ′)Tab(σ,σ ′)d2σd2σ ′

(114)

where:

Tab(r, s) = Eai (r)R
(1)(U(A,γrs))ijEbj (s) (115)

where R represents parallel transport in the adjoint representation
along the path γrs which is a straight path (in coordinates) between
r and s. For small surfaces, only the first term of the holonomy sur-
vives, that is the identity and the quantity converges to the previous
expression. Therefore, we have:

A(S) = lim
N→∞

N∑
n=1

√∫
Sn

∫
Sn

na(σ)nb(σ ′)Tab(σ,σ ′)d2σd2σ ′ (116)

which, for N finite only involves well-defined operator. The remain-
ing question is how to take the limit.

This problem is solved by the ingenious choice of representation in
LQG. Indeed, let’s consider a given spin network (with a given sup-
port graph) and try to evaluate the operators in the sequence defined
above. When sending the surfaces to zero area (in coordinates area),
because the excitations are polymer like, at some point each small
surface will cross by only one link of the spin network. Because theTechnically, it could

be crossed by a node
also. We will come

to this case later.

densitized triad acts by derivation, only the dependence of the spin
network wavefunction at the crossing point will intervene. For any
further refinement of the surface, the action of the operator cannot
possibly change. Let us say this in another way: once the splitting of
the surface is fine enough to capture each link of the spin network in-
dividually, the actions of the operators in the sequence are the same.
This means that evaluated against a given spin network, the previ-
ous sequence is actually constant starting from some N. The limit is
therefore well-defined and is the definition of the area operator in the
quantum case.

This is an important point that we should underline: in general con-
tinuum operators are hard to define. But, in the case of the Ashtekar-
Lewandowski representation, because the excitations are in some sense
discrete, it is possible to define continuum operation by the refine-
ment of discrete operators. Because the spin networks are discrete,
once the operators are sufficiently refined they will totally capture
the continuum behavior. Of course, the necessary refinement will de-
pend on the precise spin network, but for any spin network a suffi-
cient refinement exists. This implements the continuum limit (at the
kinematical level) for the Ashtekar-Lewandowski representation.



4.5 geometrical observables 73

Let us now discuss the spectrum of the area operator just defined.
It is a surprising and very important fact that this spectrum is actually
well understood! Let us consider a spin network with spins ji on its
edge ei. This spin network diagonalizes the area operator and its
eigenvalues are [10]:

A = 8πβG
∑

ei crossing S

√
ji(ji + 1) (117)

That is, for each crossing of the surface by a link, we get a quantum
of area given by the spin carried by the link. Actually, this is called
the non-degenerate spectrum as two others cases may arise:

• a link might touch the surface without crossing it,

• or it might end on the surface (if a node is on the surface).

In those case, the spectrum is a bit altered as can be seen in [129].
But the spectrum is still fully characterized and does show quanta of
geometry in the sense of quantized surfaces.

Of course, this quantization of the spectrum is linked to a compact-
ification, as is usual in quantum theory. In our case, this is linked to
the compact gauge group (SU(2)) used to describe the theory. This
sparkles a lot of discussion (see for instance [4]) about the role of
the Immirzi parameter and whether it should be included or if we
should turn to self-dual variables. In our case, we took the bet that the
Ashtekar-Barbero variables is just a clever choice of variables when
using the Holst-Immirzi parameter and so we take this quantification
to be physical. But further studies would of course be welcome.

As usual, there is more than one quantum operator corresponding
to a given classical quantity. This problem is most known when it is
manifested as ordering ambiguities and our area operator does not
escape those ambiguities. Here, we used the traditional ordering used
for quantum mechanical angular momentum and spin. But, of course,
this is not the only possible choice and, for now, it has not been se-
lected by experiments. Two other ordering can be found in literature
and so, we will discuss them as examples of other possibilities. They
come down to changing the quanta of surface Aj given, in the usual
ordering, by:

Aj =
√
j(j+ 1) (118)

We have two popular alternatives:

• The first one is favored by the Duflo map [75] which has nice
mathematical properties though their physical meaning is not
totally understood. It reads:

Aj = j+
1

2
(119)
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• The second one avoids the gap from when there is no link and
reads:

Aj = j (120)

These two orderings have some popularity since they both imply a
regular spectrum with equal spacing between area quanta. At this
point, it might seem difficult to choose an ordering without physical
input. But there are at least good theoretical reasons to avoid some of
them: and it boils down to cylindrical consistency.

Indeed, cylindrical consistency tells us that the action of the oper-
ators should not depend on the support graph of an evaluated spin
network as long as it is sufficiently refined to capture the whole spin
network. In particular, adding a link to a graph with spin 0 should
not change the eigenvalue of the operators [75]. For the area operator,
this means that a spin 0 link should not contribute to the eigen value.
This rules out the Duflo map induced ordering of the area operator.
Indeed, as we can see, it would have a non-zero contribution coming
from links with 0 spin corresponding to a gap, which is forbidden by
cylindrical consistency.

This argument forbids any spectrum which do not have Aj = 0

for j = 0. But any other ambiguities remain. It may be that physical
input is required or that a particularly clever argument is still missing.
One intriguing possibility comes from the U(N) framework [158, 159].
In this framework, an algebra of operators around a node has been
developed and seems to correspond to a discrete equivalent of 2d area
preserving diffeomorphism on the sphere. But, at the quantum level,
the preserved quantity is

∑
i ji where the i numbers the incoming

and outgoing links from the node. This seems to favor the second
ordering of Aj = j. But, this is only intriguing at best for now, and
further studies are really needed.

In order to close this chapter, let’s comment on another geometrical
operator: the volume. Sadly, the situation is much less clear. Though
similar strategies can be employed (discretization and refinement to
define a continuum limit), the volume operator is not unique at this
point. There are currently two different constructions that are equiva-
lent only for tetravalent nodes. In general they differ, with their differ-
ences linked to usual ambiguities in quantization [25] and no way to
select one of them is known for now. Some argument exists since one
of the operator is sensitive to the differential structure of the graph
and the other is only sensitive to topological information. Therefore
this might be linked to a choice of invariance group. Still, the dis-
cussion is open for now. Sadly, their spectrum is also open, though
progress has been made [54, 226]. The situation is quite unnerving
as the volume operator seems to play a great role in the theory. Still,
something quite satisfactory is there: it is that it is even possible to
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define such an operator. With area and volumes, the natural geometri-
cal operators are all defined (except for length which is more involved
[52, 162, 220]) and have a discrete spectrum [208]. This is really inter- The survival of the

discrete spectrum at
the gauge invariant
level though is still
discussed [91] and
might need a
resolution of the
dynamics.

esting as it corresponds to the intuition that quantum gravity should
induce a discrete nature to spacetime.

Therefore, in this chapter, we introduced the idea of loop quantiza-
tion. The idea is to use discrete excitations and to link them through
refinement in order to define a continuum Hilbert space. This space
can be endowed with an action of both the gauge group SU(2) but
also with an action of the (spatial) diffeomorphism group. More in-
terestingly, through group averaging techniques, we can define their
kernel and equip those with nice scalar products, finally defining a
kinematical Hilbert space for quantum gravity. This space shall now
be used to define the dynamics of the theory as we will turn to in the
next chapter.
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H A M I LT O N I A N D Y N A M I C S

People assume that time is a strict
progression of cause to effect, but *actually* from
a non-linear, non-subjective viewpoint - it’s more
like a big ball of wibbly wobbly... time-y wimey...
stuff. — The Doctor

So far, we have considered the kinematics of quantum gravity. Though
the results are impressive, considering in particular their relative unique-
ness, we have still major challenges ahead. The first one is the impo-
sition of the dynamics through the Hamiltonian constraint.

Indeed, in our quantization process, we isolated this constraint be-
cause of its peculiar form (it is non-polynomial) but also because its
geometrical interpretation is less clear. Of course, it must represents
diffeomorphism along the time direction, but this quite difficult to im-
plement on the spatial manifold Σ. We don’t have a canonical action
as for spatial diffeomorphisms. For the other constraints, the solving
method used an action of the transformation group and employed
group averaging techniques in order to define the solution of the
constraints. Remarkably, the spatial diffeomorphism constraints do
not even exist as operators. For the Hamiltonian constraint, we don’t
have, at least not yet, an interpretation as a group action. Of course,
this is not possible per se as the Hamiltonian constraint does not gen-
erate a subgroup of the spatiotemporal diffeomorphisms, as the Dirac
algebra testifies. Still, we could have hoped for an action of the full
spatiotemporal diffeomorphisms on the Hilbert space. Such an action
is not known however and the more tedious route of finding a quan-
tization of the Hamiltonian constraint is the one we should now take.

Still, imposing the dynamics as an operator constraint might seem
difficult for the least. There are several reasons to doubt such an en-
deavour. First, there is the problem just mentioned that spatial dif-
feomorphisms do not exist as operators on the kinematical Hilbert
space. One would not expect the time diffeomorphisms to work any
better. This is true, but is related to the distributional solutions of
the constraint. Indeed, the diffeomorphisms do not exist as operators
on the kinematical Hilbert space. They might exist though on a distri-
butional space. They do exist in particular on Hdiff where they are
represented trivially. The hope here is therefore that the Hamiltonian
constraint could be implemented as a well-defined constraint on the
diffeomorphism invariant Hilbert space.

79
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Then, there are problems concerning the quantization: indeed, we
could define operators as area and volume because they only used
the triad operators for which the spin networks are eigenvectors. For
the spatial diffeomorphism constraints already, the quantization was
not straightforward (and indeed it is impossible) because of the pres-
ence of the curvature in the constraint which does not scale well on
the spin network basis. Indeed, infinitesimal operators do not exist
in our representation. In particular, the curvature operator cannot be
represented. We might want to approximate it via some small but fi-
nite Wilson loop. But the continuum limit will be tricky in any case
because the operators are not weakly continuous as the lack of in-
finitesimal operators shows. In the spatial diffeomorphism case, we
could avoid the problem but to implement the dynamics as a con-
straint, we must get back to it.

So our goal is to find a way to implement the curvature (or any
infinitesimal operator we might need) that can be reasonably defined
on the kinematical Hilbert space with a suitable continuum limit. The
strategy will be to define discrete, or regularized, versions of our op-
erator and then take the limit in an appropriate sense. As can be seen
from a dimensional argument [61], for such a limit to be well-defined,
we need to use a density weight one operator. Only in such a case
can we hope the limit operator not to depend on the regularization
scale. This is quite intuitive as density weight ones are naturally inte-
grated on volumes and as such should scale accordingly and have a
nice continuum limit. This is quite the equivalent of finding discrete
definition that does not depend on the precise triangulation once it
is refined enough. In that case, the continuum limit is trivial. Because
of the non-commuting operators, we can’t define such a triangulation
invariant quantity but the density weight one is next best thing. Sadly,
this means that we must quantize the square root in the denominator
of the Hamiltonian. This kind of quantity is of course very hard to
quantize consistently and this is the main problem at this stage. It
should be noted that other density weights can be argued for [134,
135, 232], but apart from density weight two, the problem subsists.

In this chapter, we will first introduce Thiemann’s original con-
straint and rapidly explain the main ideas. We will then overview the
various criticism against it and how we might hope to resolve them.
We will then turn to the three-dimensional scenario which is more
clearly understood in order to get a sense of what the challenges may
be. Finally, we will comment on the precise role of the coarse-graining
in the dynamics.

5.1 thiemann’s constraint

In order to quantize the square root, Thiemann proposed a trick using
the fact that the Poisson bracket acts as a derivation [221, 224]. If it
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is indeed difficult to quantize the square root in the denominator, it
is way easier to quantize it in the numerator as it is linked to the
volume. Taking the Poisson bracket with the connection, we get the
inverse volume as needed. In more precise term we use:

{Aka,V} =
εabcε

ijkEai E
b
j√

q
(121)

where V =
∫√

qd3x is the volume. The advantage of this is that as
long as we can write down operators for the connection and the vol-
ume, their Poisson bracket can be quantized by replacing them by
appropriate commutators. And we know how to quantize the vol-
ume: this was done in the previous chapter. For the connection, it
is a bit more tricky as we need to consider finite refinements, that
is holonomies, but we also know how to do that. Apart from prob-
lems coming from the continuum limit, this should be doable. So,
this seems a good idea on how to quantize the inverse square root.

Sadly, nothing guarantees, at least a priori, the success of such a
method. Indeed, the quantities we wish to quantize are highly non
polynomial, there are not even analytic. Therefore, the quantization
is plagued with ambiguities. Moreover, it is not unusual for brack-
ets to get quantum corrections of higher order in  h. This means, that
nothing guaranties that the bracket is reproduced non-anomalously
in the quantum theory. On the plus though, it might also work, but
this must be checked afterwards, and we certainly have no reason to
believe it. Indeed, in simpler settings, this trick does not work. For in-
stance, in the spinor formalism (see appendix A for details about the
spinor formalism), the holonomy operator is way messier to write
down, but it is possible. One of the difficulty comes from a norm
that also appears in the denominator. Using a variant of Thiemann’s
trick[161] does not work and produce an anomalous algebra. Requir-
ing a non-anomalous algebra on the other hand fixes the ambiguities
and make it possible to define the holonomy operator in terms of
spinors. This trivial example does not show anything but the fact
that the result must be checked afterwards one way or the other.

Still, in a series of seminal papers [222–225, 227–229], Thiemann
actually defined the whole theory and the Hamiltonian constraint
which still satisfied some very interesting properties:

• First and foremost, the Hamiltonian satisfied a natural version
of covariance.

• There was a natural notion of continuum limit for diffeomor-
phism invariant states which allowed a complete definition of
the operator.

• The operator was non-anomalous in a minimal sense: on diffeo-
morphism invariant states, the commutator of two Hamiltonian
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constraints vanishes. This means that on-shell, that is when the
constraints are satisfied, the algebra is indeed verified.

Such properties are indeed remarkable and are good indicators of
the consistency of the theory. They are not however sufficient. In par-
ticular, two criticisms came out against Thiemann’s constraint. First,
the on-shell closure of the Dirac algebra seems very weak as a test
for the absence of anomaly. In other known situations, for instance in
string theory [177], the true test is off-shell when the constraints are
not verified. Now, this is quite hard to test in the quantum regime
as the diffeomorphism constraints are not well-defined in those cases.
Still, it is possible to explore the behavior of these operators on an ex-
tension of the diffeomorphism invariant space, called a habitat, and
some troubling behaviors were found [153]. A second problem comes
from what was ultimately called the ultra-locality of Thiemann’s pro-
posal [215]. Indeed, the operator does change the graph and creates
new nodes. But it does not act on the nodes it creates. This is an is-
sue as it seems to mean that there is no way any information could
propagate. This might also signify an anomaly in the theory.

5.2 an anomaly free algebra

The first problem as we saw, is the difficulty in reproducing the con-
straints algebra at the quantum level. What is at stake here? When we
use canonical quantization à la Dirac, it is quite natural to do a split-
ting of spacetime into space and time using a foliation. This splitting
does not necessarily breaks diffeomorphism or Lorentz invariance
(indeed we do it all the time in usual quantum field theory) but it cer-
tainly hides it, making these symmetries implicit. If we see the phase
space as the space of solutions of the constraints, then such a split-
ting corresponds to a choice of coordinates on the phase space. And
it happens that a clever choice is related to a foliation of spacetime.
Still, we must retain some notion of covariance. This means that the
choice of foliation cannot possibly have physical consequences and
we must have some kind of invariance under a change of foliation
or more generally under a change of spatio-temporal coordinates. At
the classical level, this remainder is encoded in the Dirac algebra:

{D[Nb],D[Mc]} = D[LNbM
c]

{D[Nb],H[N]} = H[LNbN]

{H[N],H[M]} = −D[qab(N∂bM−M∂bN)]

(122)

TheDs encode spatial diffeomorphisms while theH (which stands for
Hamiltonian constraint) encodes the time diffeomorphisms. The fact
that this algebra is satisfied guarantees that the theory has a space-
time interpretation.

What about the quantum level? We would like this algebra to be
realized anomaly-free. Indeed, the absence of anomaly is paramount
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for the quantum theory to be well-defined. This is the case for in-
stance in gauge theory where the absence of anomaly even restricts
the possible theories. In string theory, the anomaly-free algebra im-
poses the dimension of spacetime (as mentioned in [177]). The pres-
ence of anomaly on the other hand means that the symmetry is not
verified at the quantum level. This is a problem as symmetry usually
allows the quantum theory even to exist. In particular, symmetries
allow cancellations which protect some parameters of the theory un-
der renormalization. In general, a property of the classical theory (for
instance null masses) is usually lost in the quantum theory if there
is no symmetry to protect it (like the Chiral symmetry). Therefore,
symmetries are a much desirable from this point of view. For quan-
tum general relativity (and indeed any theory which implements dif-
feomophism invariance), that translates to the Dirac algebra being
reproduced at the quantum level. That means, there should exist, in
some sense, some operators such that their commutation relations re-
produce the algebra aforementioned. And this is where it becomes
difficult. Indeed, as we saw, there are no (spatial) diffeomorphism
operators on the non-diffeomorphism invariant Hilbert space (since
the representation of the diffeomorphisms is not weakly continuous).
We cannot therefore hope to reproduce the algebra on this Hilbert
spaces (except trivially on the diffeomorphism invariant space). But
a hope might be that it is reproduced on some particular subset or
generalization, with a space of distributions for example.

On this stand, the Thiemann constraint does kind of well at first
sight: the algebra is indeed satisfied in a precise sense on a particular
space of distributions. More precisely, it is realized on the space of
diffeomorphism invariant states. Of course, it is realized in a particu-
larly trivial sense: the diffeomorphism constraints act trivially, and so
as soon as the Hamiltonian constraints commute among themselves,
the algebra is satisfied. In particular, it is not really possible to check if
the precise relation {H[N],H[M]} = −D[qab(N∂bM−M∂bN)] is satis-
fied since the right hand side always vanishes on these states. In order
to check this algebra, it was proposed [115, 153] to extend the space
of diff-invariant states into a larger space which is still distributional
but would include non-invariant states. The hope of course is that
the Hamiltonian constraints could still be defined on such a space
and that the diffeomorphism constraint would have some canonical
writing on it. This proposal of an extended habitat led to the construc-
tion of a slightly larger space defined as follows.

For diffeomorphism invariant state, the construction starts from a
(gauge-invariant) spin network wavefunction and uses group averag-
ing to get a diff-invariant state as follows:

(ψΓ ,diff| =
∑

φ∈Diff(Σ/Γ)

〈φ .ψΓ | (123)
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We generalize the construction by allowing a weighted sum as fol-
lows:

(ψΓ ,f,hab| =
∑

φ∈Diff(Σ/Γ)

f(v1, ...vn)〈φ .ψΓ | (124)

where the {vi} are the vertices of the graph Γ and f is a function on Σn

not necessarily constant. If f is constant we recover a diff-invariant
state since it amounts (up to a factor) to the previous construction.
But, if f is not constant, it becomes sensitive to diffeomorphism and
thus, with a kind enough set of functions, we enlarge the space of diff-
invariant states into a habitat where non-trivial things can happen.

Now if we try and evaluate the commutator of two Thiemann’s
Hamiltonian constraints on this habitat, it turns out to be zero. This
is a problem a priori. Of course, we don’t need the theory to work off-
shell as physical predictions are only on-shell. And, as we don’t have
a precise definition for the diffeomorphisms anyway, they might also
cancel so this is not expected. This means there is, properly speaking, no
inconsistency. Still, this comes out as odd as we do not expect the dif-
feomorphism constraints to vanish on such a space. So, while not an
inconsistency per se, this seems to point to some anomaly which has
not been uncovered yet. According to Lewandowski [153], the surpris-
ing fact is that any density weight one, because of a simple counting
argument must have a vanishing commutator in this space. This is
precisely why the right hand side vanishes. On the other hand, an
ultra-local Hamiltonian constraint will always have a vanishing com-
mutator on this states space. This means that Thiemann’s proposal
seems to be wrong headed in at least two-different ways: the regu-
larization procedure and the density weight. The former, while inter-
esting, does seem to have problem with locality. We need an Hamil-
tonian which acts on the vertices it creates. And the latter, though
leading to a natural continuum limit, seems to actually hide a lot of
the structure.

There are of course further developments. To name a few, there
is the master constraint programme [230] and more algebraic ap-
proaches [124–127]. But at this point, we would like to highlight an-
other perspective. Rather than trying to quantize the Hamiltonian
and then check the Dirac algebra, we could search what are the good
properties the constraints must verify in order to check the algebra.
Then, this would select the correct quantization. In particular, con-
cerning the density weights, the density weight one was chosen to
avoid the dependence on the regularization scale δ. But, as it is ex-
posed in [61], a δ−1 factor on the right hand side, though leading to a
divergence, might actually be handy in order to regain the derivative
that we need on the right hand side. In that case, we should quantize
density weight 43 . The programme is not over, and the question is
still very well opened but these two elements, having a correct den-
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sity weight and taking the algebra as the holy grail to obtain, coupled
with the technology of the habitats might lead to the correct theory.

Though the full theory has not been resolved this way, interesting
developments have happened in the context of a simpler theories [61]
and especially in the U(1)3 theory. This theory was originally intro-
duced by Lee Smolin [214] as a G→ 0 limit of general relativity, in a
suitable sense. The advantage of this theory is twofold:

• it is still a complicated theory in the sense that there is still
a sense of general covariance in the theory. It is therefore an
interesting toy-model for the study of theories that encompass
diffeomorphism invariance;

• it is very simple in that the gauge group is abelian and there-
fore a lot of the technicalities due to non-commutativity of the
connection are removed.

The theory was originally introduced as a hope to expand general rel-
ativity around G = 0 but in a diffeomorphism invariant way. Though
this project has not been successful (yet), it is certainly an interest-
ing theory in itself, or at least as a toy-model for quantum gravity.
And indeed, the Dirac algebra was reproduced in a precise sense for
this theory. We refer the reader to the given papers [61, 134, 135, 214]
for the precise technicalities. But, what lessons can we learn from this
quantization of U(1)3 theory? It seems there are four main take-home
points:

• First, it is possible to quantize the constraints (even the spatial
diffeomorphisms) as operators on a suitably chosen distribu-
tional space. The use of distributions is of course needed as the
representations is not weakly continuous, but it is rather impres-
sive that such a possibility even exists.

• Second, the geometrical interpretation of the constraint seems
to be paramount in the construction. This is reminiscent of the
construction of the spatial diffeomorphism constraints which
heavily relies on the geometrical action.

• Third, the choice of density weight indeed matters and the den-
sity weight one does not work. This is because we should not
expect a continuum limit on a space for which the constraint
is not even defined. Indeed, we do not expect the infinitesimal
action of temporal diffeomorphism to be well-defined on the
kinematical space. As such, we should not expect a continuum
limit on this space, though an action of finite elements of the
group might be well-defined.

• And fourth, the constraint algebra indeed helps us a lot in the
right quantization. The m−ambiguity [64] is resolved for in-
stance in this context. The surprising feature is that the Hamilto-
nian in some sense depends on the coloring of the spin network
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not only its graph structure. By this, we mean that the regular-
ization we must use on a given spin network depends also on
the graphs coloring not only on the graph structure.

There are some drawback in this developments though. First, the al-
gebra has only been checked on a precise habitat, only as matrix ele-
ments. But still, the result is encouraging. Then, the non-commutativity
certainly helps a lot but this also means that a huge hurdle still has to
be overcome when considering the full-theory. In particular, because
there is no non-commutativity, the Hamiltonian constraint does not
create new vertices, it only moves them around. This is kind of the
equivalent in electromagnetism that the photon number is conserved
because there is no self-interaction. Here, a spin network, up to nicely
chosen diffeomorphism averaging and coloring, are directly solutions
of the constraint. A finite graph can be a solution. In some sense,
quanta of graphs are not created or destroyed, and discrete states are
solutions of the theory. Upon restoring the non-commutativity, this
won’t be the case any more and we expect a lot of technical troubles
to appear.

5.3 the three dimensional case

Since we are considering models with fixed graphs, we might as well
consider other models which cannot possibly change the graph, that
is topological model. The archetype of such a model is 2+1d quan-
tum gravity. Indeed, in three (spatiotemporal) dimensions, gravity
simplifies a lot and becomes a topological theory. From a differential
geometry point of view, this is due to the fact that the Riemann cur-
vature tensor can be formulated entirely in terms of the Ricci tensor
as follows:

Rabcd = f(Rac)gbd − f(Rad)gbc + f(Rbd)gac − f(Rbc)gad (125)

with:

f(Rab) = Rab −
1

4
Rgab (126)

This implies in particular that the vacuum equations of general rela-
tivity impose flat spacetime. From the Palatini formalism, it is even
clearer that flatness is imposed, since the triad will act as LagrangeIt is common to

designate the
equivalent of the

tetrad by a
dimensionnally

adapted name: triad
for three-dimensions,
even sometimes diad

for two. In general,
we might say

vielbein.

multipliers for the curvature. From a physics point of view, this can
be seen by a counting of degrees of freedom: in 3d, the triad has 6
independent components, and the same goes for the connection. All
these are eaten up by the constraints. There are indeed 3 constraints
(corresponding to three spacetime directions) eating up 3 components
and then, the three 3 gauge freedom generated by the constraints eat
up the rest (since gauge constraints eat each 2 degrees of freedom and
not just 1). We can say this in another fashion: as soon as the metric
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satisfy the constraints, there is always a gauge transformation than
sends it back to the flat metric.

This does not mean though that the theory is trivial. Indeed, topol-
ogy can happen. What is meant here is that curvature is a local notion
and does not totally restrict global degrees of freedom. As a simple
example, in 2d, the plane and the torus are both flat but are differ-
ent manifolds. Such things can also happen in 3d. We therefore get a
interesting theory which does not have local degrees of freedom. In
particular, this means that nothing gravitates and there are no gravi-
tational waves, but the quantization is not totally straightforward and
must also implement general covariance though in a simpler setting.
The advantage of studying such a topological theory is that we do By topological, it is

understood a theory
without local degrees
of freedom.

not need to capture local degrees of freedom. This led to the first suc-
cessful quantum theory of gravity with combinatorial quantization
[5, 239] which recast the theory into a Chern-Simons one. But, if we
want to stay close to four dimensional gravity, let’s keep our usual
variables. Now, if we are to work on a triangulation, for example, of
space as soon as it is refined enough to capture the topology, the dis-
crete quantization can reproduce exactly the continuum theory. This
lift the huge burden of handling varying graphs and other technical
subtleties.

In our case, let’s rapidly review the kinematics of the theory we
want to study. The gauge group is either SU(2) or SU(1, 1) depending
on the signature of spacetime. As we want to stay close to the 4 di-
mensional theory, we will consider 3d euclidean gravity with SU(2)

as a gauge group. Now, we can directly develop the kinematical phase
space as we’ve done in the 4d case, except we don’t need any time-
gauge. The Hilbert space will be spin network wavefunctions embed-
ded in a 2d space, on which we impose gauge invariance. We don’t
impose spatial diffeomorphism just yet. We could develop the cylin-
drical consistency in order to implement the continuum limit of the
theory, but as we said, this is exactly what we can to avoid in the case
of a topological theory. So, we’ll just fix a graph refined enough to
capture the topology of the embedding (spatial) 2d slice. The remain-
ing problem is indeed to implement the dynamics of the theory and
to give a precise sense to the Dirac algebra. Two strategies have been
implemented so far:

• The first one consists in implementing the diffeomorphism con-
straints as usual and then considering the discrete Hamiltonian
constraint as a regularization. Because we are really interested
in the physical results, we can as well define the projector onto
physical states, which is the projector onto flat space for 3d
quantum gravity.

• The second strategy is to quantize a discretization of the con-
straints. In this fashion, all the constraints (spatial diffeomor-
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phism and Hamiltonian) are discretized and a discrete Dirac
algebra is found.

In the first approach, we want to define a projector onto physical
states. This is not actually a projector as physical states are distribu-
tional but this is more of a technicality at this stage. In practice, we
want to define something like this:

P =
∏
�

δ(h�) (127)

where the � represents plaquettes surround by loops of the spin net-
work. The h� represents the holonomy around such loop and the
δ is the Dirac delta which enforces the holonomy to be trivial. This
indeed forces the curvature to be zero and leads to the right theory.
We can indeed check that the theory reproduces the Ponzanno-Regge
amplitude for example [179]. The problem of such an approach is
that it does not share much light on the subject of the quantization of
the Hamiltonian constraint: we have beautifully avoided the problem.
The algebra of constraints cannot be checked as there is no algebra
to check. Though interesting in the study of 3d quantum gravity, this
method is not sufficient for studying the quantization of the Hamil-
tonian constraint. It has the advantage though of given us the exact
result for 3d quantum gravity which will allow us to compare with
other techniques.

In the second approach, we want to quantize the Hamiltonian con-
straint but because the continuum limit is difficult to obtain, we use
the topological nature of the theory and try quantizing a discretiza-
tion of it. To do this, we need a geometrical interpretation of the con-
straints that will naturally extend to the discrete setting. Let us begin
with an observation: the constraints in 3d quantum gravity reads:{

Ca = Ebi F
i
ab

H = ε
ij
kE
a
i E
b
j F
k
ab

(128)

while the equation of motions for the connection (obtained by the
Lagrange-Euler equations) are:

Fiab = 0 (129)

and therefore, the constraints are actually the projection onto three in-
dependent directions of the flatness condition. Indeed, at each point,
the triad gives a correspondence between two directions in the spatial
slice and two directions in the tangential space. Therefore, there cross-
product, which appears in the Hamiltonian constraint, can be inter-
preted as the normal in tangent space to the spatial slice as embedded
in spacetime. The diffeomorphism constraint then correspond to lift-
ing the flatness condition into tangent space for the two tangential di-
rections to the spatial slice. This means that we need a way to project
the flatness condition onto various directions given by the triad.
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The solution [60] that was chosen was to interpret the Hamiltonian
constraint as a continuum version of: There is also an

extension to spinor
language [62] which
handles the full
double-cover SU(2)

rather than SO(3).

Hdiscrete = ~X1(̇h . ~X2) − ~X1̇~X2 (130)

that is to interpret the ε as the action of the SU(2) group rather than
the cross-product. In that case, the curvature is naturally understood
as the first deviation from the identity by the holonomy. So given a
wedge, that is a vertex and two links forming an angle, in the spin
network, we can compare the dot product between the two vectors
(which are the discrete equivalent of the triad) and the dot product
once one is parallel transported. This indeed corresponds to a natural
interpretation of the Hamiltonian constraint. But it comes with an ad-
ditional treat: for a loop, there is generally more than 3 wedges and
therefore, we get three different projections for the same loop. As the
vectors are not the same, this also gives the spatial diffeomorphisms
or more precisely, their discrete equivalent which is moving around
the point of the spin network graph. It can also be checked that the al-
gebra closes in simple cases and that the right recurrence relations are
generated for the tetrahedron. This means it is possible to reproduce
the amplitudes from the Ponzanno-Regge model [60]. The question of
a cosmological constant is not yet solved at the canonical level though
a covariant spinfoam model exists : the Tuarev-Viro model [173].

It should be noted that the quantized constraint correspond to
density weight two. This was done so because the density two is
algebraically really simple, avoiding all the complication of having
a square root in the denominator. The constraint being polynomial,
all the quantization process becomes somewhat easier. But it could
remarkable that it is even possible. That actually comes from the dis-
crete setting: because we went discrete, we don’t have to take a spe-
cific density weight to have the nice continuum limit. Any density
weight will have some meaning and we can as well take the simplest.
This has the side problem of giving us no information at all on how
to go to the continuum limit.

5.4 interplay with coarse-graining

Considering the large unknowns with regard to the dynamics, it
might seem odd that the coarse-graining is already attempted in or-
der to find the large scale of the theory. The large scale of what the-
ory? Coarse-graining seems premature at this point to say the least.
But we know already from works in QFT and in condensed matter
that coarse-graining and renormalization has a rather larger domain
of application than just studying the large scale phenomena. For in-
stance, in condensed matter, coarse-graining can be used to under-
stand phase transition for example. It can have similar roles in the
case of quantum gravity.
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As can be noted, one of the major problem is how to take into ac-
count varying graphs. And this is were coarse-graining might come
in handy. Indeed, we might hope to coarse-grain the state to the
same graph with additional structure. Another way of putting this
is that we might hope that the dynamics on a varying graph might be
mapped onto the dynamics of a single graph with additional struc-
ture, which might be easier to handle. This might not be a desperate
move. Indeed, this is what we observe, though in two-dimensions,
with all the work around the KPZ conjecture [143].

Coarse-graining can also be used to understood the continuum
limit of a theory. Though, this might not be useful as such for study-
ing quantum general relativity, it can fuel a programme starting from
some discrete equivalent of general relativity and, after quantization,
looking for a continuum limit. If such a limit is found, it is likely to
correspond to quantum general relativity. This would correspond to
the study of the continuum limit of lattice QCD for instance. Such a
technique would circumvent the problems of the density weights and
even of the precise algebra of diffeomorphism. Indeed, techniques
from 3D quantum gravity could even be imported and worked out.

But this point is more general than just for discrete theories ap-
proximating a continuum theory. Indeed, for usual quantum field
theories, which are expressed on a continuous spacetime, the idea
of renormalization is paramount to the definition of good theories. By
good theories we mean renormalizable theories, which happen to be
both the theories that have a nice behavior under renormalization
and the theories that have nice symmetries, namely gauge symme-
try. In other words, in quantum field theory, the dynamics can be
found using renormalization and the given theories reproduce classi-
cal symmetries in a very precise sense. We can nourish a similar hope
for quantum gravity. Let us define a coarse-graining or renormaliza-
tion flow for a quantum theory of geometry and the renormalizable
theories will be the interesting theories and, we can hope for this, will
be the theories reproducing the Dirac algebra.

There is a link between these two approaches: coarse-graining dis-
crete theories and renormalizing continuum ones. This can be seen in
lattice QCD for instance: the renormalizable parameters of usual QCD

correspond to the relevant parameters of the discrete theory, that is
parameters that are not eaten up by taking of the continuum limit.
In the case of quantum gravity, we expect the theory to be finite. But
the two distinctions should remain. It might be possible to define any
dynamics, even in particular, discrete ones. But only some parame-
ters might be relevant under coarse-graining. The distinction between
renormalizable and non-renormalizable could also remain in the re-
alization of the Dirac algebra. And indeed, it was argued [189] that
the finiteness of the theory will lure back in the quantum ambigui-
ties (allowing more or less any discrete theory to be written) but that
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the Dirac algebra (or more generally the realization of a well-chosen
symmetry) might select back the correct theories. This would indeed
be similar to the way gauge theories are selected by renormalizability
criteria. This programme seems very similar to the asymptotic safety
scenario. And indeed, eventhough the context is a bit different, we
would be looking for a fixed point under renormalization and a char-
acterization of the critical surface (given all the interesting theories).
The difficulty, as for the asymptotic safety programme, is also to find
nice cut and nice writing of the equations so that the renormalization
flow might be closed.

The two aspects of renormalization, that is the discrete approach
with coarse-graining and the continuum approach are linked in the
case of quantum field theory. The coarse-graining approach defines
a Wilson flow while renormalization does not use (fundamental) cut-
offs but both of these give access to the same physical idea and are
linked in their results. We should expect something similar in the case
of quantum gravity. This will be one of our focus point in this thesis.
To be sure, we will mainly study the coarse-graining process, but in
between we will highlight a possible link with a more continuous
process which might correspond to the definition of a renormaliza-
tion flow for quantum gravity.

Therefore, in this chapter, we introduced the problem of the dy-
namics of loop quantum gravity. We quickly stated Thiemann’s trick
to quantize the Hamiltonian constraint of general relativity but we
rapidly moved to the various difficulties it involves, in particular
regarding the realization of the Dirac algebra which should, at the
quantum level, implement the (spatiotemporal) diffeomorphism in-
variance. We quickly surveyed the work in this field concentrating on
toy models to finally turn the three-dimensional case to study it as a
guideline. Finally, we explained how coarse-graining and renormal-
ization should enter this big picture in order to help us finding the
correct dynamics for the theory.

As we explained, one of the major problem is to define nice cut-off
for the renormalization flow to be closed. One way to search such
cut-offs is to look at known coarse-grained dynamics as their form
should be close to the expression needed. This is why we will turn
to LQC in the next chapter since it implements the most large scale
theory we can think of and therefore its dynamics should be close
to the kind of dynamics we expect for coarse-grained loop quantum
gravity.
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T O WA R D L A R G E S C A L E S : L O O P Q U A N T U M
C O S M O L O G Y

“I thought... well, I started to think you were
just a madman with a box.” — Amy Pond

In an ideal world, we would start with some dynamics of LQG,
study the continuum limit in some way (coarse-graining for instance)
and find that the first order is classical GR with maybe some quan-
tum corrections. In an even better world, these deviations would be
testable quite soon and would be confirmed experimentally. Whether
such a world might exist or is possible is up to debate, but for sure,
it is not our current world. We have no dynamics to start with and
no way, currently, to study systematically the continuum limit of LQG

and certainly no definite testable predictions of it. While waiting for
such an advance, we can only hope for tests and studies in simplified
settings.

As we want to study coarse-graining, the natural setting is the one
of cosmology. Indeed, this is large scale enough to be somehow re-
lated to coarse-graining and the setting is quite simple. A natural hy-
pothesis for the study of the universe at large is that it is quite homo-
geneous and isotropic. Concentrating on homogeneous and isotropic
spacetime, we might get a chance to study the dynamics of LQG.
Moreover, this setting is important with respect to deviations from
usual GR: as the density of the universe grows as we go back in time
in the history of the universe, it approaches Planck density and so,
we expect corrections from the quantum regime. It might even be
testable for example by carefully looking in the cosmic microwave
background [19]. This is also a setting where we want deviations as
the initial singularity of the Big Bang is more of a red flag indicat-
ing something wrong in the theory than a genuine prediction. It has
long been hoped that a quantum theory of gravity would avoid sin-
gularities and therefore testing it in the cosmological setting seems
natural.

There is another reason to consider LQC: it is its dynamics. Indeed,
two dynamics were proposed in the early usually denoted the µ0 and
µ schemes. Only one of them reproduces the large scale dynamics
correctly. The problem comes from the regularization of the curva-
ture operator which can be approximated by an holonomy around
a loop. But as in coarse-graining, it might be very natural to con-
sider loops with increasing size as the universe grows. This leads to
the µ0 scheme and incorrect semi-classical behavior. And indeed, we
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rather expect the corrections to be around a loop of fixed size with re-
spect to Planck units. This is the µ scheme. As these two distinctions
will come naturally in the coarse-graining process, it is interesting
to study them in the redux. Moreover some recent work, even with-
out any coarse-graining, but just because of cylindrical consistency,
shows that defining infinitesimal operators (for diffeomorphism for
instance) requires some kind of µ scheme [151].

In this chapter, we will briefly review LQC (for a complete review
see [21]) which is precisely the theory of a homogeneous universe
quantized with LQG techniques. Though LQC is not strictly restricted
to homogeneous and isotropic universes, in this short chapter, we
will only consider to those. We will first recall the basic assumptions
of homogeneous isotropic cosmology. In the second section, we’ll de-
velop the quantum version of the dynamical equations and discuss
the various ambiguities in the kinematical setting that are the parallel
of the choice of representation in LQG. And finally, we will rapidly
discuss how this might be related to actual states and dynamics in
LQG.

6.1 the cosmological setting

In this first section, we shall start by briefly restating what was de-
scribed in the first chapter about cosmology but differently, of course,
in order to carry us to LQC. So, let’s consider a homogeneous and
isotropic universe. By homogeneous and isotropic, we mean that it
is spatially homogeneous and isotropic. The time direction is granted
much more freedom and will rather be determined by the matter
content and the dynamics. In particular, we do not assume any ho-
mogeneity in time. Otherwise, we would be rather restricted, up to
topology, to flat, De-Sitter and anti-De-Sitter spaces. We restrict our-
selves therefore to spacetimes with a high degree of symmetry but
not a maximal one. The space slices though have a maximal degree
of symmetry corresponding to the existence of a maximal number of
Killing vector fields. Each one of this field encodes an infinitesimal
transformation which does not transform the metric (up to gauge).
For a 3 dimensional space, the maximum number of such fields is(
3+ 1

2

)
= 6 corresponding to three rotations and three translations

or their equivalents in curved spaces.
In essence, we hope to be able to quantize the symmetry reduced

version of GR. In principle, this is not the correct way to symmetry
reduce a system. Indeed, we should start by quantizing the full the-
ory and then in the quantum regime we should reduce by symmetry.
Here, we are trying to do the opposite: start by reducing with symme-
try and then quantize. This means, we are hoping for the following
diagram to commute:
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symmetry reduction

quantize quantize

symmetry reduction

GR cosmology

LQG
LQC

?

Of course, it does not always work. But it also works in some exam-
ples. For instance, the hydrogen atom spectrum is excruciatingly hard
to derive from quantum electrodynamics. But if we start from the non-
relativistic limit and froze nearly all the degrees of freedom of the
electromagnetic field, the quantization is possible and the spectrum
can be derived quite easily. As it was argued in [21], we are hoping
for something similar here and this might not be so misguided. So
let’s start studying cosmology by first reducing and then quantizing.

From the metric point of view, we consider a metric of the form
given by the following line element:

ds2 = −N(t)2dt2 + a(t)
(

dr2

1− kr2
+ r2dΩ2

)
(131)

The metric is expressed in some polar coordinates for space. r is a
(fiducial) radius and dΩ represents an infinitesimal angle. The func-
tion of t, a(t) represents the size of the universe. It is called the scale
parameter or scale factor. In a spherical universe, it can even be inter-
preted as the radius of the universe. But otherwise, it is more though
of as a fiducial reference: it has a physical sense only up to a factor
and keeps track of the evolution of the size of the universe. Finally, the
parameter k gives the sign of the curvature. It can be 0 for flat space,
+1 for spherical universes and −1 for hyperbolic universes. In the Note that the

curvature k is the
curvature of space
and not spacetime.
In particular, the
genius of GR is to
understand that
even for k = 0

spacetime can be
curved and this
precisely encodes the
expansion.

previous expression for the metric, the parameter t is a time parame-
ter but is totally arbitrary. Indeed, this is why we kept the lapse N(t)

which will change accordingly when changing the time parametriza-
tion. We do this to keep the temporal diffeomorphisms a symmetry
of the theory, even though we’ve fixed the gauge for the spatial parts.
Keeping this invariance allows us to stay close to some difficulties
raised in LQG and see how they are resolved in this context.

Classically, the equations of motion are:

There are actually
two equations of
motion but because
of the symmetry,
they are equivalent.

(
ȧ

a

)2
+
k

a2
=
8πG

3a3
Hmatter(a) (132)

where Hmatter is the matter Hamiltonian. They can be derived either
by considering the symmetry reduction on Einstein equations or by
first simplifying the action and then deriving the equation with re-
spect to the variation of N in the Lagrangian. Our concern is to quan-
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tize this equation. For this, we should turn to the Hamiltonian formal-
ism. The variables are a and its conjugate momentum pa. A standard
analysis will reveal:

pa = −
3V0
4πG

aȧ

N
(133)

where V0 is the volume of the universe at some time t0 (or the vol-
ume of a fiducial cell if it is not well-defined). N does not appear asThe fiducial cell is a

device for studying
flat or more

generally
non-compact

universes. Because
their volume is not

well-defined, we
need to define a

small block whose
evolution can be
tracked. This is

precisely the fiducial
cell.

a dynamical variable but is rather a Lagrange multiplier. Therefore
its conjugate momentum checks the constraint pN = 0 which gener-
ates time diffeomorphisms. All this can be factored in the following
Hamiltonian constraint:

H = −
2πG

3

p2a
V0a

−
3

8πG
V0ak (134)

This is the Hamiltonian we want to quantize. We’ve already quickly
looked over the standard quantization but we will now consider an-
other avenue which is inspired by LQG techniques.

6.2 loop quantization

In order to connect to LQG, we should first consider connection vari-
ables as they are the fundamental variables. The number of variables
should not change though. Of course, we might add some variables
because of the local Lorentz invariance but for the gauge invariant
variables, their number cannot change. After toying around, we getAgain [21] is an

excellent reference
for the toying

around part.

that the triad is entirely given by its norm p̃ and the connection by its
component c̃. They can be expressed in term of the metric variables
as:

Note that the triad
gets an orientation

information which is
missed by the metric.

|p̃| = a2

4

c̃ = 1
2
(k+ γȧ)

(135)

where γ is the Immirzi parameter. Their conjugation relations can be
written as:

{c̃, p̃} =
8πγG

3V0
(136)

It is customary to reabsorb the volume factor by defining:

p = V
2/3
0 p̃

c = V
1/3
0 c̃

(137)

which finally gives:

{c,p} =
8πγG

3
(138)
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The natural step would now be to define wavefunction over c and
define p̂ as the conjugate operator (up to a factor) which acts by
derivation. But as we saw earlier, this would lead to the unique repre-
sentation of quantum mechanics from von Neumann’s theorem [176]
which we know to fail or at least not to resolve the singularity prob-
lem.

We must therefore consider another representation and find the
correct hypothesis of the theorem we should let go of. Actually, the
uniqueness of the representation is not the uniqueness of the Heisen-
berg algebra but of the Heisenberg group. It means the natural oper-
ators are in fact exponentiated version of c and p. Let us therefore
define:

Vλ = exp (iλc)

Wµ = exp (iµp)
(139)

with the corresponding commutation relations:

{Vλ,Wµ} =
8iπγG
3

(λ+ µ)VλWµ (140)

The advantage of these variables is that they will naturally be rep-
resented (quantum mechanically) by well-defined operators on the
whole of the Hilbert space (as multiplying by an imaginary exponen-
tial does not change the convergence properties of an L2 function).

Now, the crucial property of the Von Neumann representation is
the (weak) continuity of the operators Vλ and Wµ in λ and µ respec-
tively. If we were to forget at least one of these continuity hypoth-
esis, other representations would be allowed. Indeed, in LQG, only
holonomies operator exist, not connection. Therefore, a very natural
continuity hypothesis to forget is the continuity of Vλ since we do
not expect c to exist as an operator if it comes out of LQG. This means
that only the exponentials of c are well-defined at the quantum level.
p is still represented by a derivative though. We will now develop
this new representation but with an added convention to make the
notations easier:

8πγG

3
= 1 (141)

This way c and p are exactly conjugate without any factor to worry
about.

We have two operators. The first one is the exponentiated operator Though we use an
exponential in the
notations, we
shouldn’t think that
it is indeed an
exponential. There is
no operator ĉ of
which this operator
is the exponential.
This is just, once
again, a bad
notation.

êiλc and the second one is the conjugate momentum p̂. Formally, we
have:

p̂ = −i
d
dc

(142)

Now the Hilbert space has a natural basis:

{|λ〉 = |eiλc〉}λ (143)
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The operators act on this basis as:

êiλc|µ〉 = |µ+ λ〉
p̂|µ〉 = µ|µ〉

(144)

which means that the basis is constituted by the eigenvectors of p̂
(they are planewaves) and the exponentiated operators act as the in-
tuition would command that is as translation operators. The most
important now is that this basis is normalizable. More precisely:

〈λ|µ〉 = δλ,µ (145)

This is a paramount point. Indeed, note here that this is a Kronecker’s
delta, not a Dirac delta. This normalizability means a few things. First
it prevents the weak continuity of the translation operators. It can be
seem quite easily as follows:

〈µ|êiλc|µ〉 = 0, ∀λ 6= 0 (146)

In particular:

〈µ|êiλc|µ〉 −−−→
λ→0

0 (147)

where we would have expected 1 under weak continuity. It also means
that the representation is unitarily inequivalent to the usual Schrodinger
representation of quantum mechanics. Therefore, we might expect a
different behavior especially in the small c regime.

In the next section, we will indeed see the differences. The first
point will be to find a natural quantization of the Hamiltonian (con-
straint) in this language and see how this corrects the singular behav-
ior of Friedman-Lemaitre cosmologies.

6.3 deviations from standard quantum cosmology

Let us simplify the problem as much as we can. As we saw in the
first chapter, it is customary to use a scalar field as a physical clock.
The Hamiltonian constraint can then be expressed as a flow along
increasing (or decreasing scalar field). Up to a factor (which can be
absorbed in a redefinition of the field), the gravitational part of this
Hamiltonian is:

H = pc (148)

It can also be considered as the Hamiltonian constraint of pure LQC

that is LQC with no matter.
Up to ordering, this Hamiltonian is easy to quantize in the Schrodinger

picture. But, in our case, we don’t have any ĉ operator and therefore
this needs correction. The problem is more stringent that it looks: as
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there is no ĉ operator, there cannot be any way of reproducing the
(would-be) action of ĉ by combination of well-defined operators. We
are forced to change the equation of motions.

The natural thing to do is to consider approximations of c using
exponentials. For instance, it might be possible to write:

c ' eiλc − e−iλc

2iλ
(149)

where the approximation is better when c → 0. This amounts to re-
placing c by a sine. Because c encodes the curvature, this is quite
natural. Indeed, the curvature is evaluated in LQG using finite loops. “finite” here means

“not infinitesimal”.
Maybe “cofinite”
would be a better
suited word as it is
rather the inverse
which is finite.

This means that the connection is exponentiated. Intuitively, we ex-
pect the typical length of the loop to be around Planck size and we
should look for a dimensionful parameter which would help us select
this size. Sadly λ is dimensionless and therefore it cannot be used for
such a scheme. We could still try changing H to a corrected version
H0:

H0 = p
sin λc
λ

(150)

This is called the µ0 scheme and does not lead to the correct classical
limit. It can be seen quite easily: no scale appears in this Hamiltonian.
Quantizing this, the quantum effect will be of order of

√
p that is

the size of the universe and will grow with it. So there is definitely
something wrong with this scheme.

We can therefore constraint the scale the other way around: know-
ing that the quantum effects should be of Planck scale `p we can
choose λ to be:

λ =
`p√
|p|

(151)

This guarantees that the quantum effects are controlled. The new pa-
rameter `p is dimensionful and control the size of the probing loop.
At the classical level, this gives the new regularized Hamiltonian:

H = sgn(p)
|p|

3
2

`p
sin

`pc√
|p|

(152)

which of course has the correct limit when c→ 0 and is the µ scheme
Hamiltonian.

But this creates a new problem: what is the quantum operator cor-
responding to sin `pc√

|p|
? Of course, we cannot put simply the newly

found λ factor into the translation operator as the coefficient now de-
pends on the basis vector. There is a solution to this conundrum. The
quantity c√

|p|
(which is the small c limit of the sine) is conjugated to

the volume sgn(p)|p|
3
2 therefore, the operator should acts as a simple
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shift on the eigenvectors |V〉 of the volume. But these eigenvectors are
just a relabelling of the eigenvectors of p̂. Using a normalized version
of the volume:

ν =
V

2πγG`p
(153)

we simply have:

̂
exp

(
i
`pc√
|p|

)
|ν〉 = |ν+ 2〉 (154)

Allowing a full definition of the Hamiltonian at the quantum level,
up to ordering ambiguities as usual.

We were mostly interested in the different scheme and how they are
resolved. But let’s refer the reader to more detailed and more general
accounts on LQC. There are various reviews on the subject detailing
recent developments [19, 27, 55]. The mathematical details are most
explicit in [21]. One of the major advantage of LQC is its simpler
structure which allows the study of genuinely difficult question in
the full theory. In particular, it should be noted that using self-dual
variables is possible in this setting [238].

6.4 relation to loop quantum gravity

For us, there is still a question though: what is the connection with
full LQG? How similar the theories really are? To what extent does
homogeneous LQG resemble LQC? This can be answered in two ways.
First, we can focus on the genuine resemblance and establish some
link, though tentative for some parts. Second, we can consider how
LQC might be a simpler framework telling us how to solve difficult
questions in the full theory.

For the first point, it should be noted that the mathematical struc-
ture is actually quite close to that of LQG. Indeed, apart from the con-
tinuum limit issue (and all the technology around it as the cylindrical
consistency conditions), the process of construction of the states of the
theory is rather similar. The algebra of observable is taken to be the
exponentials and the derivative in LQC which is the direct parallel of
considering the algebra of holonomies and the fluxes (which act as
derivation). The states created by the holonomies or the exponentials
are all normalizable and the connection operator (c in LQC) does not
exist. Even the Hilbert spaces has some similarities. Indeed, the space
defined for LQC is the space of all quasi-periodic wavefunctions over
R. According to Gelfand theory, there exists a set R such as its alge-
bra of square integrable functions L2(R) (with the Haar measure) is
indeed the space of quasi-periodic functions on R. As this algebra is
unital, R is compact. It is therefore a compactification of R, called the
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Bohr compactification of the real line, different from the usual point-
at-infinity compactification. From a Fourier perspective, the dual to
R is the set R with discrete topology, which explains the normaliz-
ability of the plane waves. This compactification of R is the parallel
of switching from the set of connections to the set A of distributional
connections on the manifold in LQG.

For the second point, this is where LQC is really interesting for us,
in the context of coarse-graining. Indeed, the possibility of writing the
dynamic should guide us here. First, in the coarse-graining process,
it is very natural to define loop operators that are macroscopic mean-
ing of the size of the coarse-grained graph. Using a simple holonomy
cannot work there as is now obvious from LQC. We will need an equiv-
alent of the µ scheme. How this scheme is devised (using the algebra
of the volume) might also be a nice clue on how to write the dy-
namics of coarse-grained models. Even without coarse-graining, the
simple fact that we are dealing with discrete excitations for a contin-
uum theory seems to imply µ-like formulations, for instance for the
diffeomorphism constraints [151].

There is a second interest of LQC: as it is way simpler than the full
theory, eventhough it is derived in a non-rigorous manner (symmetry
reducing before quantizing), we can be quite confident in the results
it provides. In particular, it means that LQC can be a goal to obtain
in some models. In other words, a good test of techniques applied to
LQG is to apply them in the cosmological setting and compare them
to LQC. This was done for example with the condensate approach to
cosmology [123] quite popular in GFT.

In this chapter, we have introduced the idea of LQC. This theory
studies the quantum corrections to cosmology by considering the
classically reduced system and quantize it in a loopy fashion. The
resulting theory is interesting for at least two regards (with respect
to coarse-graining): it helps finding what the actual large-dynamics is,
and how to implement it on a coarse graph. Because the operators we
need in the Hamiltonian are not all well-defined, we are forced to reg-
ularize the curvature operator. This leads to two quantization scheme.
The first scheme, called µ0, is more naive one and does not lead to
the right semi-classical limit. The second scheme, µ is the right one
as far as we know today and have interesting properties which are
linked to problems in coarse-graining. If this represents the top-down
approach to coarse-graining, we are still clueless about a bottom-up
point of view where we would start with coarse-graining and find
a natural large scale description. These two methods may actually
meet and be used in concert. In the next chapter, we will therefore
turn to the problem of coarse-graining from the point of view of the
full-theory.
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C O A R S E - G R A I N I N G A N D G A U G E I N VA R I A N C E

The universe is big, its vast
and complicated, and ridiculous. And sometimes,
very rarely, impossible things just happen and we
call them miracles. — The Doctor

Until now, we’ve reviewed the kinematics of LQG. Concerning the
dynamics, we have been less ambitious, as this is still an open prob-
lem, but we have overviewed several developments in this direction.
And there, coarse-graining appears in at least two aspects. From a
pragmatic point of view first, even if we were able to devise the cor-
rect dynamics, we would still need coarse-graining in order to predict
the large scale behavior of the theory. This is why we review in the
last chapter the expected results devised from LQC. But we might also
need coarse-graining in another regard: in helping us find the correct
continuum dynamics for the theory. In this regard, cosmology helps
us again by signaling toward natural dynamics integrating a cut-off.
But this won’t help us at all if we have no systematic way of relating
scales.

In this chapter, we will therefore concentrate on coarse-graining
more precisely. In the context of LQG, or of any theory of spacetime,
coarse-graining is actually harder than anticipated. Indeed, the natu-
ral notion of coarse-graining from usual quantum field theory cannot
simply be reproduced as they are usually based on the definition of
an energy scale (or at least distance scale). It is difficult to use the
same trick in GR. Indeed, distance scales are set dynamically which
makes the endeavour, if not ill-defined, much more complicated. We
might introduce a background metric to measure the energy scales
but that breaks diffeomorphism invariance. Therefore, we need a new
approach.

A possible way is to make use of the discrete nature of LQG and try
and adapt techniques from condense matter. Indeed, coarse-graining
in this context does not correspond to scales but to the fineness of ex-
citations considered. The rationale behind this is that small momenta
can be captured more or less exactly via a small number of points,
while large momenta require finer structures. This observation can
be brought back into LQG by considering discrete excitations. The
more refined correspond to smaller scales while more coarse excita-
tions correspond to large scales. This way, there is no mention of a
scale and the scale of excitations is entirely coded into the state by its
fineness. The idea can pushed further by considering exact dynamics
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for the discrete excitations. Indeed, in the case of QFT, it is possible to
reproduce exactly low momenta excitations on a discrete setting. The
idea is to do something similar: define cut-offs compatible with the
dynamics so that the coarse description remain exact as times goes.
This means that a (discrete) truncation of the theory can encode the
full continuum dynamics. This is the idea behind perfect discretizations
[32, 34].

Note that the discreteness of the excitations might not be linked
with a natural discreteness of space. Indeed, this is already the case in
quantum field theory. If we want to describe low momenta excitations
of a free field on a discrete lattice, it is possible but the map from this
theory to the full continuum theory does not send the excitations to
point excitations of the field. A more natural description therefore is
to link different scales by mapping states of a coarse description into
a finer one. Because the cut-offs are compatible with the dynamics,
the new degrees of freedom of the finer description must be in a
minimum excitation state, a kind of physical vacuum. All this is very
similar to the kinematical constructions used so far and indeed the
property of such a representation and of a corresponding dynamics
was dubbed dynamical cylindrical consistency [85, 90]. The physical
vacuum then corresponds to a fundamental state for the theory and
can be constructed explicitly in some cases as for BF theory [33, 86].

Our goal is this chapter is more technical. It is to devise a way to
systematically coarse-grain a geometrical theory. It is linked to the
whole program but is more on the technical side. Indeed, for a more
complex theory than BF theory or a free field on flat spacetime, phys-
ical vacua are hard to construct. But the process of coarse-graining
can help define such states asymptotically. But for this we need a pro-
cedure to link different scales in the current and for this, we present
a possible method.

The construction is called coarse-graining by gauge-fixing, was orig-
inally introduced in [159] and is a way to define effective vertices in
a large scale graph from a small scale one. The method in itself do
not loose any degrees of freedom and therefore does not give any
truncation procedure. This will be studied in more details in our orig-
inal work in the following chapters. The method consists in gauge
fixing the SU(2) data inside a bounded region using synchronization
trees. The resulting information can naturally be collapsed into petals
around an effective vertex and unfolding information. This is there-
fore a natural way to collapse regions of a spin network into a single
point.

In this chapter, because the geometrical intuition is paramount in
this construction, we will first review the geometrical interpretation
of spin networks as twisted and spinning geometries. We will then
describe the various problems that arise if we try to coarse-graining
naively such a theory, particularly the problem of the closure defect.
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We will see how this comes naturally from a problem of parallel trans-
port which will allow us to finally consider the starting point of our
work: coarse-graining by gauge-fixing.

7.1 the geometrical interpretation of spin networks

So, as advertised, let’s consider the geometrical interpretation of spin
networks. As we have seen, spin networks are quantum states of the
theory encoded in (knotted) graphs colored with spins on the links
and intertwiners on the nodes. These states can be understood as
the quantum states diagonalizing some discrete operators [38]. The
relevant discrete operators are:

• the (open) holonomy along the link of the graphs and,

• the integrated triad over surfaces dual to the links.

These operators do have a counter part in a classical but still discrete
setting. This does not correspond to a straightforward classical limit
of the continuum theory. We can find a similar situation in electro-
magnetism if we consider the classical limit but with the number of
photon fixed. Normally, the relevant states for the macroscopic world
are coherent states. But we can also consider a fixed number of pho-
ton with the limit of large quantum numbers giving a classical limit
to the fixed number of photon theory.

Here, we do the same thing: we fix a graph structure and consider
the large quantum number limit. In that case, the classical limit that
appears is a discrete theory with support on the given graph. Al-
gebraically, we have a vector on each end of the links and a group
element on each link. We have furthermore two constraints:

• the closure constraint: at each vertex, the sum of outgoing vec-
tors must sum up to zero. This encodes the local gauge invari-
ance;

• the matching constraint: on a given link, the two vectors must be
images of one another (up to a sign) through the group element.
This implies in particular that the norm of the two vectors must
match. Geometrically, this means that the area of the surface
separating the two nodes is the same from whatever point of
view we choose.

Now that this structure is classical, we can try and interpret it classi-
cally. Indeed, our structure is combinatorial, being based on a graph
and algebraic data supported by this graph. But as we are entering the
realm of geometric theories in the discrete setting, we expect an inter-
pretation of the structure as a discrete manifold or as a parametriza-
tion of some set of discrete manifolds. And indeed, it is.
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The natural way to interpret the construction is through Minkowski’s
theorem [9, 170]. It states the following: given a convex polygon in flat
space, we can define all its normal as the vectors that are outgoing
orthogonal to their face and with a norm equal to the area of the face.
Then, the sum of all the normals sums up to zero. This is quite natu-
ral, at least from the integrated triad point of view, as in flat space we
can gauge fix the triad and then its integration is exactly the normals.
And of course, flat space is a solution of the Einstein equations, in par-
ticular, it satisfies the gauge condition. We can even see here that the
convex requirement for the polygon is not necessary. It is however
needed for the converse statement: given a set of vectors such that
their sum is zero, there is a unique convex polyhedron in flat space
such that these vectors correspond to the normals of the polyhedron.
This is Minkowski’s theorem.

This mandates the natural interpretation of spin networks as twisted
geometries: each node is interpreted as a convex polyhedron given by
its normals and they are connected according to the connection data
given by the links. The group element carried by the link is the natu-
ral discrete connection encoding the curvature at the gluing face. The
geometry is called twisted because the matching faces do not neces-
sarily have the same shape, though they must have the same area.
This can be interpreted as torsion or discontinuities of the metric at
the gluing point [112].

There is a second interpretation, developed by Freidel et al., which
will be of particular significance later on: the spinning geometry in-
terpretation [113]. The existence of such another interpretation should
not be surprising: when we are interpreting the discrete setting, we
are looking for a subset of continuum configurations that matches
the discrete phase space. It is not surprising that several possibilities
exist. If twisted geometry is such a possibility, spinning geometry is
a second one. The starting point of the spinning geometry interpre-
tation is actually the same one: the closure constraint. But it is then
interpreted as a Bianchi identity for some connection. Therefore, it is
possible to reconstruct a connection such that its holonomies give the
triad vectors. The advantage of such a construction is that, the gener-
alization of normal vectors can now be computed for non flat surfaces
as long as they are embedded in flat space. In fact, it allows for spin-
ning edges of the polyhedron, hence the name. In this construction,
the metric can be continuous as long as we allow for torsion.

In any case, the interpretations look similar and maybe there is a
global theme here for all imaginable interpretations: a polyhedron or
more generally a solid in flat space is associated to each node, this
association being granted by the closure constraint. They are then
connected with the connection of the links, the connection being im-
personated by the matching constraint. The global picture is one of
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discrete geometry with flat chunks of spaces connected to each other
allowing curvature at hinges through the gluing.

7.2 large scale curvature

Now armed with a geometrical interpretation, what should coarse-
graining should look like in this language? Let us consider some
(somewhat vague) coarse-graining scheme imported from condensed
matter. If we consider a given graph, the coarse-grained theory would
be expressed on a simpler graph following this kind of process: we
group together some vertices and decide to describe them collec-
tively. There is now a new graph of the connections of these regions,
which have some internal structure. The best case scenario of course
would be that the macroscopic degrees of freedom (whatever their
precise meaning in a diffeomorphism invariant theory) are precisely
described by a theory on this graph. Our goal in this section is to
underline two points regarding this: first, it is impossible for such a
theory to exist except for very special cases and second, it is possible
to interpret geometrically the source of this impossibility.

So what is the problem? If we consider such a coarse-grained graph,
as we sketch in the previous paragraph, we will find that the closure
condition can no longer hold for the coarse graph. This is easy to
see on a simple example. Let us illustrate it on the simplest possible
graph where this happens:

>

<

>

>

>
<

v1

v2

v3

vA

vB

vC

• A

•B•C

>

>
<

ṽA

ṽB

ṽC

We introduced here a loop and a minimal amount of outside edges,
that is three. The fluxes at the source of the edges are noted v with
an index labelling the edge. The outgoing edges are labelled by their
source vertex. The inner edges are labelled by numbers. We want to
coarse-graining this previous graph of a triangle into a single point
with edges going out of it. The new fluxes should be related to the
original fluxes up to parallel transport. The question is: can the exter-
nal vectors associated to the outside edges sum up to zero? We must
recognize first that we cannot sum these vectors directly because we
want a gauge covariant quantity, with a well-defined transformation
law. A way out of this conundrum is to use parallel transport.
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Let us use point A as a reference point and parallel transport quan-
tities following the path C→ B→ A. The natural sum for the external
vectors is:

−→
S = −→v A + gBA .−→v B + gBAgCB .−→v C (155)

where . is the natural action of SU(2) on vectors and gIJ is the trans-
port from point I to point J. This new quantity

−→
S is gauge covariant

and simply transforms with the natural action of the gauge group at
the point A. It is called the closure defect as it encodes how much of
the closure is missing.

Now, in order to compute this quantity, we will use the closure
condition at each point which state:

−→v A +−→v 1 − gCA .−→v 3 =
−→
0

−→v B +−→v 2 − gAB .−→v 1 =
−→
0

−→v C +−→v 3 − gBC .−→v 2 =
−→
0

(156)

Substituting in (155), we find:

−→
S = gBAgCB .−→v 3 − gCA .−→v 3 = (H− 1)gCA .−→v 3 (157)

where H is the holonomy around the whole loop ad reads:

H = gBAgCBgAC (158)

As we can see, the closure defect exists precisely because the holon-
omy around the loop is not trivial. In fact, it is possible to have closure
and still a non-trivial holonomy if the action of the loop is considered
on a correctly aligned vector. But in the general case, the curvature of
the loop will cause the closure condition to be relaxed on the large
scale.

This actually calls for a natural geometric interpretation. Indeed,
as we said in the previous section, curvature is encoded in hinges,
that is on loops of the graph. And we saw here that this curvature is
contained in the gluing of the polyhedra. Therefore, we should have
expected the failure of the closure condition: curvature is encoded
in the finer graph and, with a naive coarse graph, is entirely missed
in the coarse description. It would not even be allowed if we were
to enforce the closure condition. Or to put it quite simply: curvature
can build up at large scales (see figure 14). Interestingly, this also
supports the geometrical interpretations of the nodes as flat pieces,
as the closure condition applies to them.

More physically, this means that gravity gravitates. Gravity inter-
acts with itself (it is a non-linear theory after all) and can be a source
of gravity. This can be seen for example in the mass of a star which is
usually heavier than its constituents. We expect therefore gravity to
have some weigh when curvature is non-zero. As this manifests itself
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Figure 14: On this figure, we represented the dual graph of a 2d trivalent
graph. The curvature at the vertex manifests itself as a defect in the
closure condition. This can be seen by flattening the triangulation, which
amounts to gauge-fix the variables. The curvature manifests itself as a
gap (in gray on the figure) at some edge (in blue on the figure) in the
flattened manifold. The closure defect can be seen as the missing normal
coming from the closure of the flattened polygon (in red on the figure).

through the closure failure, it is an interesting road to consider that
the relevant macroscopic quantity would be the closure defect. At this Of course, it is usual

for a system to be
heavier than the sum
of its parts because
of the mass-energy
equivalence. But
note that in GR,
nearly everything
counts as matter.
Photons count as
matter. Even gluons
do. So the added
energy is
gravitational,
necessarily.

stage, however, let’s just note that this problem is ubiquitous to non-
linear theories and therefore to non-abelian gauge theories. We do
have the same problem in QCD and the same kind of defect appear
for instance in lattice QCD.

7.3 coarse-graining by gauge fixing

In this section therefore, we will concentrate on the kind of structure
we need for the coarse-graining of LQG. We need two important prop-
erties. We need the stability of the structure under coarse-graining,
that is, at each step, the structure must accommodate the necessary
information of the internal structure of the coarse-grained vertices.
And we need some notion of completude: the structure must keep
enough information to be able to write the dynamics for the coarse
graph. We will describe here a very straight forward way to accom-
modate both: we will consider how a structure can naturally arise
that keep all the internal structure.

The main point we have to consider is what are the internal degrees
of freedom of our coarse-grained vertices? Let us consider a graph
with several nodes and links and a bounded region of the graph that
we want to coarse-grain into a single point. We will assume that this
portion is also connected as illustrated on the figure 15. We will now
gauge-fix in a systematic manner the group elements on the graph. In-
deed, the degrees of freedom are far less numerous than it appears at
first sight because of gauge invariance. Gauge-fixing unravels this and
renders more clear the true degrees of freedom. The coarse-graining
procedure goes as follows:
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Figure 15: We coarse-grain bounded connected regions into effective ver-
tices. Presumably, because the curvature carried by the loops in the col-
lapsed bounded region leads to curvature, a new structure is needed to

describe these vertices.

• First, choose a maximal tree in the region with a given root
vertex also in the region.

Because the region is connected, the maximal tree will circle
over every vertices in it. This way, we have defined a unique
path linking every vertex in the region to the root vertex.

• Then, gauge-fix iteratively the group elements along the links
of the tree to the identity.

Indeed, as the wavefunction is gauge invariant (or as the states
do not depend on the gauge classically), we can apply a gauge
transformation at any vertex and still get the same state. In par-
ticular, starting from the root vertex and considering all the out-
going links, we can gauge-fix them to the identity by acting at
the opposite ends. We can then pursue this iteratively acting
on every vertex in the tree, and therefore because the tree is
maximal, on every vertex in the region. The tree acts as a syn-
chronization network: we fixed the reference frames at all the
vertices and connected them to the reference frame living at the
root of the tree. This procedure works because the path from
the root to any vertex is unique and therefore the synchroniza-
tion is well-defined. This well-definition can also be seen by the
absence of loops in the synchronization tree. Once, the graph
is gauge-fixed, there is still a residual action of SU(2) at the
root vertex representing the choice of frame there. This will be
upgraded to local SU(2) invariance of the coarse vertex in the
coarse-grained graph and so is desirable.

• Finally, collapse the region to the root vertex. All edges in the
tree are collapsed while the other links in the region become
loops starting and ending on the root vertex and now label the
independent loops of the regions.

These self-loops (illustrated on figure 16) carry the curvature
living in the bounded region. It is clear that the flux-vectors
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living on the boundary of the region do not necessarily satisfy
the closure condition as the loops also contribute to the sum.
The loops therefore induces a closure defect which is the sum
of the flux-vectors from their both ends. It should be noted that
the collapse seems natural from a quantum mechanical perspec-
tive where the wavefunction depends only on the configuration
space and the identity elements can be safely removed. But from
a classical perspective, this might be a bit odd, as we might won-
der on how we should reconstruct the flux-vectors that we lost
in the process. This answer is of course the closure constraints:
as soon as we know the expansion tree, the closure constraint
at each vertex allows us to reconstruct iteratively all the flux-
vectors.

This gauge-fixing procedure allows to clearly identify and distinguish
between the degrees of freedom of the internal geometry of the con-
sidered bounded region of space to coarse-grain. The loops describe
the internal structure and in particular, the closure failure that is in-
duced by the curvature. The boundary data are quite natural and
correspond to the original boundary data. The closure condition is
somewhat lifted to a generalization involving the self-loops.

`1

`2

`3

`4
` 5

j1 j2

j3j4

•
i1 •

i2

•
i3

•
i4

j1 j2

j3j4

k1

k2

•i

Figure 16: Coarse-graining via gauge-fixing: we can gauge-fix the sub-
graph using a maximal subtree (in red). The remaining edges (in blue)
correspond to loops on the coarse-grained vertex. There is a residual
gauge-freedom at the coarse-grained vertex that corresponds to the ac-
tion of the gauge group at the root of the tree (red vertex on the figure).

We should note here that with respect to the problem of the closure
condition, these loopy generalizations carry too much information.
Indeed, we only need to carry the information of the closure defect in
order to restore the closure constraint (as we will do with tagged spin
network in chapter 12). These loops, augmented with the unfolding
information actually carry all the degrees of freedom of the internal
geometry of a coarse-grained region. Some cuts will be needed for the
coarse-graining process. But we should not be hasty: we don’t know
yet what are the relevant degrees of freedom for the dynamics and
the different scales might be heavily interdependent. Still, it should
be noted that our initial problem is not motivational enough for the
introduction of full-fledged loopy spin networks.
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An interesting point with regard to this problems of defect closure
and loopy spin networks is that, even with only one loop, the loops
carry more information than the closure defect. They are the degrees
of freedom corresponding to the rotations carried by the loop along
the axis of the flux-vectors. These leave the flux-vectors invariant and
therefore the loop does not contribute to the closure defect. This can
be seen in our formula for the closure defect in the case of a triangle:

−→
S = (H− 1)gCA .−→v 3 (159)

If H is along the axis of gCA . −→v 3, then
−→
S =

−→
0 . We might then

wonder at this point if these degrees of freedom are relevant in the
coarse-graining process.

It should be noted that these degrees are ubiquitous in that kind
of theory and remain whenever the closure condition is satisfied. In
particular, they can also appear in linear theories like quantum elec-
trodynamics where the closure condition is always checked. They cor-
respond in these cases to localized magnetic field excitations. As they
appear in a linear theory (which can therefore be coarse-grained in a
very naive way), they might actually decouple from other modes and
this might lead us to consider that only the defect closure is relevant
as a macroscopic degree of freedom.

It is therefore time to see what cuts should be done. It is an im-
portant step to find a consistent cut of the degrees of freedom which
separates the macroscopic and the microscopic at least in some ap-
proximation, in order to make predictions. As we mentioned in the
previous sections, some degrees of freedom appear even in linear the-
ories and it is therefore reasonable to expect them to decouple. In the
case of quantum gravity, we can also find arguments for natural cut-
offs. For instance, from a more geometrical standpoint, we expect ho-
mogeneous curvature to be particularly relevant. We should be able
therefore to isolate the degrees of freedom linked to homogeneous
curvature of a vertex. From the loopy spin networks perspective, this
means that we should be able either to reduce the number of loops
and capture some mean component.

This gives us two directions for the programme of coarse-graining:
either we could start from some geometrical intuition and try and
find natural ways to describe coarse-grained geometry. Or we could
go the other way: starting from a natural construction of coarse-graining,
try to find algebraically the relevant degrees of freedom for the dy-
namics. If our geometric intuition is anywhere close to right, the two
directions should meet at some point. It could also be that the two
directions are needed: the first part of the programme tells us what
kind of variables we should look at, and the second part helps us
implement them concretely.
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In what follows, we will develop these two parts. In the first part,
we will consider homogeneously curved geometries and write down
generalization of the relations on flat geometry. In particular, because
this is the problem when coarse-graining, we will write down gen-
eralizations of the closure constraint for curved geometries. In the
second part, we will consider a more algebraic approach, doing ex-
plicitly coarse-graining and trying progressively to meet the first part
of the programme.
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T H E C L O S U R E C O N S T R A I N T A S A B I A N C H I
I D E N T I T Y: S P I N N I N G G E O M E T R I E S

Geronimo! — The Doctor

Let us start in this chapter our programme of coarse-graining. As
we explained earlier, there are two aspects to consider. One is the
definition of large and small scales in the context of diffeomorphism
invariant theories, i.e. a way to define a proper coarse-graining step.
A second aspect is the definition of natural large scale observables
which must be adapted to the precise theory. We will concentrate on
this second point in this chapter and the following.

Our intent can therefore be summed up in the following manner:
we want to find natural observables for large homogeneous blocks
of curved spacetime. Indeed, first we expect large scale observables
to be able to describe curved backgrounds as curvature can built up
on large scales in GR. Second, in the context of coarse-graining, we
hope that the inhomogeneities might be irrelevant or at least entail
higher order effects and that the homogeneous component becomes
the relevant one. Intuitively, this corresponds to a first order approx-
imation of the curvature. The problem we will have to face comes
from the closure constraint: in the usual LQG framework, the closure
constraint is enforced on every vertex of the supporting graph of a
spin network. It can be interpreted as a flatness constraint, effectively
encoding the fact that the quantum space results from the gluing of
quantum (convex) flat polyhedra. But in a larger framework of coarse-
graining where curved blocks are needed, this closure constraint will
be a problem.

In this regard, we want to define a generalization of the closure con-
straint, that will correspond to curved geometries. We will consider
this in two steps. In this first chapter, we will only try to point out rel-
evant properties of the closure constraint for a natural generalization
towards curved spaces. In the next chapter, we will apply this in the
context of hyperbolically curved spaces and find natural descriptions
of hyperbolic tetrahedra and more generally of hyperbolic polyhedra.
Therefore, we are actually considering flat spaces but in a new way
before tackling the case of curved spaces.

We will interpret the (usual) closure constraint in a new fashion
that will make this generalization easier. We will build on the work
done by Freidel et al. [113] on spinning geometry and show that the
closure constraint can be understood as a Bianchi identity. We will
in particular see how the normals can arise as holonomies and what
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are the important properties of the underlying connection for such an
interpretation.

This chapter is grounded in our work from [70] and most of its
content is available in our recent paper [71]. It is organized as fol-
lows: we will first reconsider the spinning geometry interpretation
and show in the discrete setting how the closure constraint can nat-
urally be interpreted as a Bianchi identity. In the second section, we
will review the continuum formulation in the flat case, underlying its
main properties that will become important in order to select interest-
ing closures. And finally, we will try and generalize this formulation
to other groups even in the flat case. This will help us understand
and interpret the results of the curved case of the next chapter.

8.1 a discrete point of view

Let us restate the problem and the usual interpretation of it. For each
link of the graph defining our state of quantum space, there is a natu-
ral operator associated to the integrated triad. Around a vertex, these
operators sum up to zero as the Gauß constraint implies. Classically,
this means we have N vectors ~vi around a vertex supported by the N
links going in and out of it. And we have:

N∑
i=1

~vi = ~0 (160)

which is the closure constraint. Geometrically, we can interpret this
as defining a convex polyhedron according to Minkowski’s theorem.
The vectors are then interpreted as normals: they are orthogonal to
the faces and their norms encode the areas of the faces. Therefore,
giving such N vectors is equivalent to parametrizing the space of
convex polyhedra with N faces.

There is another interpretation coming from spinning geometries.
The closure can be understood as a discrete Bianchi identity. We can
see this quite easily by comparing it with electromagnetism. Indeed,
it is not uncommon to call the densitized triad field the electric field,
since it appears in the same place as the electric field of electromag-
netism in the action as the conjugate of the connection. It also satisfies
the same kind of constraints hence the name of the Gauß constraints.
Now, in electromagnetism, when there is no source (as is the case for
us here), the equations are completely symmetrical in the electric and
magnetic fields. Usually, we choose to write down the fields as:{ −→

E = −
−→
∇φ− ∂

−→
A
∂t−→

B =
−→∇ ×

−→
A

(161)
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where
−→
E is the electric field,

−→
B is the magnetic field and φ and

−→
A

are the scalar and vector potentials. But it is also possible (as long as
there is no source) to write:{ −→

E =
−→
∇ ×

−→
AB

−→
B = −

−→
∇φB − ∂

−→
AB

∂t

(162)

where φB and
−→
AB are new scalar and vector potentials whose exis-

tence shows the symmetry of the equations. In particular, the fact that
−→
E can be written as a rotational comes from the Gauß constraint:

−→
∇ ·
−→
E = 0 (163)

This second way of writing is of course natural if we were to include
magnetic monopoles, but not electric ones. So, the Gauß constraint
can be interpreted as a structure equation saying that the electric field
is constructed from a connection. We can do the same thing in the
gravitational case.

From the discrete point of view, that is if we consider a triangula-
tion dual to the graph, such a construction correspond to associating
information to the edges of the triangulation. Then, the normal of a
given face would be reconstructed by summing over the information
at each edge around that face. In fact, this relation is of course well
known in discrete geometry. Consider a surface, which is homeomor-
phic to the sphere, and a graph on it, which is therefore a planar
graph. If we define a vector quantity for each face of the graph such
that the total sums up to zero, we can decompose the quantities on
the edges, up to an addition at the graph vertices. There is no cocycle
contribution, since the graph is planar. This fact can be checked quite
easily thanks to the gauge invariance at the vertices of the graph. We
can fix the gauge by selecting a maximal tree as a synchronization
tree. Let us consider the simple case of a tetrahedron to illustrate this.

A tetrahedron has six edges. Let us select a maximal tree on the
tetrahedron by choosing a vertex, which we will call the root and by
including every edge coming out this root as illustrated in figure 17.
Therefore if we label the four vertices of the tetrahedron A, B, C and
D and if we select A as our root, then the edges of the graph will
be AB, AC and AD. Now, we can gauge-fix in the following manner:
let’s act at the vertices B, C and D so that the connection on the edges
of the graph are sent to zero. Therefore, the integrated connections
will be:

gAB = ~0

gAC = ~0

gAD = ~0

(164)

This is always possible if the decomposition exists. Now, the full
holonomy for each face touching A is carried by the edge opposite



120 the closure constraint as a bianchi identity : spinning geometries

A

BC

D

Figure 17: We consider a tetrahedron. A is considered as the root vertex
of a maximal tree on the tetrahedron (in red). The parallel transport along
the edges of this tree is gauge fixed to the identity. This allows to directly
reconstruct the connection for the remaining edges of the form IJ as the

holonomy of the face AIJ.

to the root. We can define the integrated connection on the various
edges to be:

gBC = ~NABC

gCD = ~NACD

gDB = ~NADB

(165)

We only have to check that the holonomy around the last face BCD is
indeed its normal. This means that we have to check that:

gCB+gBD+gDC = ~NCBD ⇔ −~NABC− ~NACD− ~NADB = ~NCBD

(166)

which is precisely the closure condition. Therefore, the construction
works.

We should note here that we can give a more precise sense to the
root and to the normals associated to the edges. Consider for instance
the edge BC. Now consider a particle moving at constant speed along
BC and compute its angular momentum with respect to the point
A. It will precisely be the normal of ABC. Indeed, angular momen-
tum precisely encodes the idea of swept area. This interpretation stillNote that as angular

momentum encodes
swept area, this is
precisely how the

second law of Kepler
comes out from
conservation of

angular momentum.

works for the edges AB, AC and AD as their angular momentum
will be zero. We see here that we can also solve the problem by con-
sider a root vertex and angular momenta. This will give the area of
the swept surface for any edge and for a surface, this will give the
normal, precisely because of the closure condition stated for the poly-
hedron formed by the surface plus the root vertex.

8.2 freidel’s connection

Let us now turn to the continuum version of this construction. The
advantage of such a continuum construction is that we can better un-
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derstand the relation between the elements carried by straight and
curved edges. In Freidel’s work, this was important for defining spin-
ning geometries. But for us, because we turn to curved geometries,
this is a mandatory step. We can also use this opportunity to see
what are the relevant properties of the connection.

Let us define the following connection on flat space:

AFr(~x) =
1

2
εijkTix

jek (167)

Here e is the triad, the Ts are the generators of the R3 group and Note that the spin
connection does not
appear in AFr. This
is due to its
triviality in flat
space. If we were to
use non-cartesian
coordinates, it
should be included.

the ~x gives the point on flat space. We can see that this connection
reproduces the previous idea in an infinitesimal setting. Indeed, the
point ~x = ~0 is an arbitrarily selected origin of space. So, we are exactly
doing what we told before: given an infinitesimal edge, we take the
cross-product therefore computing the infinitesimal angular momen-
tum which is also the normal to the infinitesimal triangle formed by
the edge and the origin. Exactly as in the previous (finite) case, the
choice of origin is irrelevant to the computation of holonomy. And be-
cause the connection is commutative, we have no action of the group
on the holonomies and the holonomies are truly gauge-invariant.

So, how do we compute the holonomy around a closed loop? We
can simplify our problem here, since the group is commutative. There-
fore, according to a fundamental theorem, the holonomy around a
closed loop is equal to the integration of the curvature on (any of) the
enclosed surface(s). In particular, if the loop is planar, there is a flat
surface enclosed by it for which we can define the notion of a nor-
mal. Checking that the holonomy does give the normal just amounts
to checking that the curvature has an interpretation as an infinitesi-
mal normal. Therefore, we just have to compute the curvature of the
connection. We find:

F[AFr] = ε
i
jkTie

j ∧ ek (168)

which is exactly what we wanted: given two directions, we lift them
in tangent space thanks to the triad and take the cross-product to
have a normal. Because we used the triad, the result is directly pro-
portional to the area. And, because we have the commutativity of the
group, the results directly extends to the finite case. We can also in-
tegrate, out of a whim, the connection along a straight line and find
that it indeed does give the angular momentum as discussed in the
discrete setting. Therefore, we have here the continuum version of the
previous discussion in the discrete case, as long as we consider flat
polyhedra.

Let us note that the closure condition becomes trivial in this setting.
Indeed, because AFr is a connection, its curvature satisfies a Bianchi
identity. In our case, it is a pretty simple one as the group is abelian:

d~F[AFr] = ~0 (169)
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Integrated over a volume, we will find the closure condition. Indeed,
the very fact that the connection exists given the closure condition is
just the discrete equivalent of :

dF = 0⇔ F = dA (170)

as soon as the embedding space is simply connected (which is of
course the case for the interior of a polyhedron which is homeomor-
phic to the ball).

Introducing such a connection (or its equivalent in discrete terms)
makes some relations trivial (like the closure condition) but raises
new questions. This is similar to going from Maxwell’s equation, gov-
erning the electric and magnetic field, to a more modern and covari-
ant way of writing electrodynamics using the gauge connection of
U(1). In particular, the gauge transformation does not affect the elec-
tromagnetic fields, since the gauge group is abelian, but they do affect
the connection (and the matter fields) and even have an interpreta-
tion as a transformation on them. Now that we have a connection
to construct normals, it is natural to wonder what the gauge trans-
formations correspond to. We should notice that, as for electromag-
netism, the gauge group being abelian, and therefore the holonomies
do not transform under gauge transformation. This is reflected in
the fact that there is also no parallel transport needed in any of our
constructs so far. This implies that the gauge transformation will not
correspond to some rotation of space (otherwise they would trans-
form the normals) or, except for a few possible - but implausible
- exceptions (translations), to any geometrical transformation of the
tetrahedron.

Let’s dive a bit more into the precise transformations. Let us con-
sider a generic gauge transform ~φ which will encode a shift at each
point of space. More precisely, the fields transform as follows:{

AFr → AFr + dφiTi
−−→vAB → ~φB +−−→vAB − ~φA

(171)

where we put−−→vAB the integrated (open) holonomy between two points
A and B. So, we expect each (open) holonomy to be transformed by
two contributions coming from each end of the segment and depend-
ing only on the shift at these points. To what could possibly this cor-
responds to? Though, it cannot cover every possible transformation,
we see that a change of the origin point in our connection can indeed
be expressed like this. For instance, let’s define −−−−→vAB,O and −−−−→vAB,O ′ the
integrated connection along AB but using different reference points
O and O ′. We have:

−−−−→vAB,O =
1

2

−−→
OA×

−→
AB =

1

2

−−→
OO ′×

−→
OB+−−−−→vAB,O ′ −

1

2

−−→
OO ′×

−−→
OA (172)

And so, a change of origin from O to O ′ corresponds to a gauge
transform with ~φI = 1

2

−−→
OO ′ ×

−→
OI. So, though they do not cover all
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of possible gauge transform, a change of the origin just amount to a
gauge transform. It is easy to see that the only terms that appear this
way are orthogonal to

−→
OI as the cross-product implies. But, this calls

for a decomposition over this case plus a vector proportional to
−→
OI

that would not otherwise be obtainable. We could therefore write a
more general gauge transform:

~φI =
1

2

−−→
OO ′ ×

−→
OI+α

−→
OI (173)

with general O ′ and α. Of course, these can depend on the selected
point in general, reflecting the local nature of a gauge transform. But
this gives us a neat geometrical interpretation, that we already al-
lude to in the discrete case, for the closure of the gauge transformed
connection: one term disappears because of the independence of the
origin point (which is basically translation invariance) and the second
term disappear because of the closure of polygons in flat space.

It is now important to consider what are the important properties
of Freidel’s connection, as we will care about its possible generaliza-
tion. So as a first question, we might wonder if another connection
could precisely give us the normals. The answer is of course no as all
the gauge invariant information is contained in the curvature of the
connection. But it is possible to consider generalization of the normals
(as we will be forced to do in a curved context anyway). In that case,
the major point of our connection for its interpretation as normals is:

F[AFr] = ε
i
jkTie

j ∧ ek (174)

This totally defines Freidel’s connection and gives it its interpretation
as a normal. As we said, the dependence on the triad gives the de-
pendence on the area and the cross-product gives the right notion of
direction. Taken with a commutative group of dimension 3, it natu-
rally scales and gives the full construction.

8.3 non-abelian constructions

Our end goal is to consider curved geometries, and more specifically
hyperbolic geometries as we will see. But, as we will soon realize, the
natural group will not be an abelian group and we must therefore
relax the condition of commutativity. Instead of tackling these new
subtleties in the general case, let’s try and consider them in the sim-
plified setting of flat space. So, in this section, we will investigate a
non-abelian connection, still on the flat space. The goal is to have a
kind of toy-model to sharpen our intuition and understanding of the
geometry linked to what we might call non-abelian normals but in a
still controlled environment. So let’s try to define such a non-abelian
connection, in flat R3 , along with its curvature, which should give us
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a definition of non-abelian normals. Such a proposal seems counter-
intuitive at first. Indeed, the non-commutative nature of a connection
is linked to problems with parallel transport. In flat space, we do
not expect such complications to arise. Moreover, we do not want our
connection to be arbitrary so that it reflects no interesting geometrical
property.

Let us consider what interesting properties we should keep. First,
we need three generators to correspond to the three directions of
space. We also want an action of the rotation group to be well-defined
on the (deformed) normals. We also want some kind of homogeneity
for the connection as the normal definition should not depend on the
point, except maybe for some gauge transformation artifacts. All this
boils down to finding a group, with a good action of SU(2) for which
a connection Anc can be written such that:

F[Anc] = ε
i
jkJie

j ∧ ek (175)

where the Js are the 3 generators of the group. Of course, a natural
group appears and it is the rotation itself or its double-cover SU(2).
We should note moreover that the cross-product was extensively used
in the definition of Freidel’s connection. But the structure of the cross-
product is somewhat linked to SU(2) as it involves the structure con-
stants of the algebra su(2). This makes this group doubly natural.

There is of course a natural connection on flat space that is su(2)

valued: it is the natural spin connection, which is torsionless and com-
patible with the triad. However, it is trivial on flat space (by definition
of flat space) and therefore does not seem so well fitted for our case,
to say the least. We must therefore look for deformation of this con-
nection that stays homogeneous. The natural way to search for this is
to allow torsion and see if we can find a connection with a non-trivial
and interesting curvature.

A possibility is to work with a connection inspired from that of
Ashtekar-Barbero, namely:

AAB = Γ +βK (176)

where K is the extrinsic curvature. The extrinsic curvature depends on
the embedding of our manifold. The natural embedding of flat space
however is in R4 where its extrinsic curvature is trivial. In any case,
for such constructions, we should care more about intrinsic properties
as we are describing intrinsic geometry. Still, the idea to add a con-
nection valued in the tangent space is one we can emulate. Consider,
the following connection:

Anc = Γ + aJie
i = aJie

i (177)

where the Js are now the generators of SU(2) and a is a real coefficient.
The term Γ is the usual spin connection and is needed for gauge
invariance, but we can gauge-fix this on flat space and sent it to zero.
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Geometrically, this parallel transport according to this connection
gives a twist along the direction of propagation. As we said earlier,
the connection will have torsion, which we can compute:

dAnce
i = dei + aεijke

j ∧ ek = aεijke
j ∧ ek (178)

We already see that a notion of cross-product was encoded in the
connection. This is interesting because it gives the link with Freidel’s
abelian connection. Let us go to the infinitesimal level to uncover this.
We have:

F[Anc] = a
2εijkJie

j ∧ ek (179)

We should remember here that the curvature of a connection gives
the first order of its holonomy around infinitesimal surfaces. Getting
out the a2 factor and forgetting that Ji 6= Ti , we see here that the
curvature of Anc is the same as the curvature of AFr . In more precise
terms, it means that at the infinitesimal level, the holonomy precisely
encodes the normal as a rotation around the normal axis. The angle is
proportional to the area (we do not have to worry about compactness
at the infinitesimal level). We see here that AFr encodes the first order
of Anc.

We should not be surprised by this: the cross-product encodes the
infinitesimal action of the rotation. If we go to the first non-trivial or- The link between

rotation and
cross-product is of
course evident when
one knows about
angular momentum
in quantum
mechanics as the
SU(2) algebra is
reproduced by the
angular momentum
which are
cross-product.

der, we are to get a cross-product. But this implies something maybe
more interesting in the context of coarse-graining: the structure of
the SU(2) connection is more natural than the structure of R3 in the
following sense: no additional structure coming from outside of the
group is put. This is kind of similar to the development of the U(1)3

model of quantum gravity: the ε comes from nowhere in the struc-
ture of the model except from the theory that it tries to emulate. But,
for the full theory, it just comes out of a commutator of two group
elements. The same goes here: by going to some abelian limit, we lost
structure that we put kind of artificially back into the game. This is
important for coarse-graining because the abelian connection only ex-
ists locally (around the vertex), but it is not inconceivable that some
SU(2) might survive the long distance and gives some notion of clo-
sure for large chunks of space.

Now, this definition does not precisely gives a normal, it gives, at
best, a deformed normal. Let us go further and study the deviation.
This can be done quite easily because the holonomy of Anc can be
computed exactly at least for (flat) faces of polyhedra. For definite-
ness, let’s consider a triangle ABC. The closed holonomy around
the triangle will be the composition of three open holonomies cor-
responding to each edge. For an (oriented) edge

−→
AB, we define the

holonomy gAB which can be computed exactly as:

gAB = exp
(

ia
2

−→
AB · −→σ

)
(180)
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where the σs are the Pauli matrices. Note that the holonomy depends
on the choice of gauge. But here, even the closed holonomy will. It is
not a problem though as we have some good gauge invariant quantity
as the angle of the rotation and, for now, as we consider flat spaces,
we have natural gauge-fixing conditions. Let us now write the holon-
omy around the full triangle ABC. It is:

hABC = gCAgBCgAB = exp
(

ia
2

−→
CA · −→σ

)
exp

(
ia
2

−→
BC · −→σ

)
exp

(
ia
2

−→
AB · −→σ

)
(181)

In order to have a precise definition of a normal as a vector, we can
now take the rotation axis. We defined, the vector ~na (which depends
on the scale a) by:

hABC = gCAgBCgAB = exp
(

ia
2
~na · −→σ

)
(182)

This will act as a definition for our deformed normal and is well-
suited on a least one respect: it has a good infinitesimal limit when
we consider small triangles.

Note here that we introduced a squared factor a2, rather than just
a linear dependency in a. Indeed, we now that the factor already
appears squared in the curvature and therefore is the first order. The
linear order of a must therefore cancel in the expansion. Of course,
the expansion does not have to involve only squared terms and it
doesn’t. This implies some other interesting property: the vector ~na

depends on a and has a limit when a goes to 0. This limit, because we
factored out the first a2 is non-zero and is actually the undeformed
normal. This sharpens our intuition of a: it is a scale factor that tells
us at what scale the deformation of the normal kicks in. It will appear
for a triangle of an area of order 1

a2
.

We will not compute exactly ~na . The interested reader ca turn to
our paper [71]. We can summarize the full result as follows in:

hABC = 1+
ia2

4
−→n ·−→σ +

ia3

12

(−→
CA2
−→
CA+

−→
BC2
−→
BC+

−→
AB2
−→
AB
)
·−→σ +O(a4)

(183)

And so, at first order, we find:

~na = −→n +
a

3

(−→
CA2
−→
CA+

−→
BC2
−→
BC+

−→
AB2
−→
AB
)
+O(a2) (184)

Though the geometrical interpretation of this added term is not to-
tally clear, it shows that the shape of the triangle influences our de-
formed normal. Of course, we expected corrections due to the topol-
ogy of SU(2). For instance, a triangle with lengths of integer multiples
of 2π a necessarily has a trivial holonomy. This is due to the periodic
nature of SU(2) which, therefore, cannot distinguish all the triangles.
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Let’s finish with the closure of this connection, which is guaranteed,
as we now all understand, by the Bianchi identity. As in the previous
case, given any polyhedron, we can associate to each of its face a
holonomy hf. The closure condition will look like:

hn...h2h1 = 1 (185)

But now, there are new difficulties which are linked to parallel trans-
port. Indeed the connection is no longer abelian and therefore we
must consider the transport and transformation of the hf. For this,
we will need a reference point and a path for each holonomy as the
parallel transport depends on the precise path because of curvature.
Let us recap the procedure for a tetrahedron as an example: three
of the faces share a common point, which can be chosen as the ori-
gin. For the corresponding holonomies, it is always possible to start
the closed loop on this origin and all the holonomies are therefore ex-
pressed at the same point. In these cases therefore, the point is always
the same and no path (or the trivial path) is involved. But we have a
remaining face and as this one does not touch the origin, we will need
an edge to transport the corresponding holonomy. This path, contain-
ing only one edge, has to start at the origin and must land on one of
the vertices of the opposite face. Any edge of the tetrahedron satisfies
this criteria and so any edge will do the job. We must just be careful
in the order of composition so that the first three holonomies start
and finish on this edge as illustrated on figure 18. This whole proce-
dure can be thought of as a gauge fixing of the tetrahedron. We can
generalize this to any polyhedron by choosing a path going through
each faces and composing accordingly.

As we just saw, the gauge fixing needs a choice of origin. What is
the link with the previous choice of origin in AFr? Mathematically,
the transport is simply done through conjugation. This is exactly the
operation we would do if we gauge transform the holonomy. And we
saw in the previous case of AFr that gauge transform was linked, at
least partially, to a change of origin. This is implemented here in a
much more concrete sense as an origin must be selected to even de-
fine the holonomy. So eventhough we do not have an origin selected
in the definition of the connection, a trace remains in the parallel
transport needed for the closure relation.

8.4 duality and ISU(2) closure

There is still one point we haven’t discuss or illustrated in the flat case.
Indeed, in the hyperbolic case, we will look for SL(2, C) connections
rather than SB(2, C). This technicality, which is linked to the problem
of having a connection that transforms well under rotation, does not
have an equivalent in what we have seen just yet. But we could de-
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Figure 18: When defining the holonomies for the closure constraint, we
need to use the same reference point (root) for each holonomy. In the
case of a tetrahedron for instance, this means that the last holonomy
must have some parallel transport along an edge as shown on the forth

figure.

velop one using a connection of the isometry group rather that just
the rotation group.

The full isometry group of flat space is ISO(3) or, equivalently for
our concerns, its double cover ISU(2) and is the semi-direct product
of the rotation group and the translation group. It is 6 dimensional.
This last point might seem problematic since we have twice too many
dimensions in our group to reproduced the construction of a normal
at the infinitesimal level. However, the group naturally splits into two
three-dimensional parts and therefore, we can extend the idea.

So let’s construct our new ISU(2) connection:

AISU = aJiei + bTIeI (186)

where a and b are two real parameters. The indices i and I both run
from 1 to 3 but we’ve written them in a different style to underline
their differences. We named the a parameter in the same way as in
Anc to highlight its very same role. So, in a sense, our new connection
is really a generalization of the previous one where b was set to 0. It
also turns out that AISU is a generalization of AFr but in a more
subtle sense, that we will elaborate on. Let us also note that no extra
structure is imposed and everything will come from commutation
relationships in ISU(2), especially the interpretation as normals.

Let us compute the curvature to see what kind of meaning we can
associate to this connection and more particularly to its holonomies:

F[AISU] = (ab)εijkTie
j ∧ ek + (a2)εIJKJIe

J ∧ eK (187)
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Here, we have naively split into the R3 and SU(2) part using the same
exponents and indices notations as before. It now becomes clear that,
at the infinitesimal level, the curvature gives the same result as the
AFr connection (for the translational part) and as the Anc connection
(for the rotational part). In a sense, we’ve bundled the two together.
But, more importantly, once again this holonomy will have a nice
geometrical meaning of normals, as is clear at at the infinitesimal
level. Of course, we expect deformations at the finite level.

The way this connection is a generalization of the previous two is
also now clear: it gives them both in the appropriate limit. First, as we
saw, if b = 0, then we just fall back to the SU(2) connection. Freidel’s
connection however appears when we sent a to 0 but keeping ab
constant. This means that the two-parameter family of connections
we just defined is actually an interpolation between the two previous
one-parameter families of connections.

Let us now highlight a property of the writing of the closure that
will be of particular significance for the hyperbolic case. Let us use
the fact that ISU(2) is the semi-direct product of R3 and SU(2). In
particular this means that any ISU(2) group element has a unique
decomposition: gi = (Ni,hi) where Ni ∈ R3 and hi ∈ SU(2). We
used the same notation as in the previous section to highlight the
belonging in the rightful groups but we should not think that they
indeed corresponds to holonomy of the R3 or the SU(2) connections.
Now, the Bianchi identity which encodes the closure can be written
as:

gn...g2g1 = 1 (188)

with the same parallel transport problem as before, for the SU(2)

case, and with the same solution. There is however the new problem
of splitting the holonomy into two parts and how this relates to the
closure. Let us simply write the decomposition onto the closure itself:

{
Nn + hn .Nn−1 + ... + (hn...h3) .N2 + (hn...h3h2) .N1 = ~0

h1h2...hn = 1

(189)

where . is the natural action of SU(2) onto R3 (the adjoint repre-
sentation). We can see that a braiding appears in the composition of
normals. This behavior might appear odd at first but it will be of
paramount importance in the SL(2, C) case we will develop for the
hyperboloid. Note also that such braiding does not appear for the
SU(2) closure. This is due to our peculiar situation - working on a
flat manifold - but will not survive the generalization. Finally, let’s
note that we got two closure conditions here. Their precise link with
the closure conditions defined before is not straightforward (except
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for the SU(2) one which is undeformed) but an interesting idea is
that there is some duality. Indeed, if it is possible to reconstruct the
polyhedron from only the SU(2) closure for instance, then the sec-
ond closure can be reconstructed which tells us that there might be
a correspondence between R3 closure and SU(2) closure. This kind
of duality is interesting, particularly in the context of coarse-graining
where the fundamental variables are in R3 and the coarse-grained
description fits better in SU(2). This idea, though interesting will not
be the focus of our inquiry.

In this chapter, we have introduced a new interpretation of the
closure condition as a Bianchi identity. We have developed this by
studying it in the context of spinning geometry and we have extracted
the relevant information for a generalization. We also explored simple
generalization in the flat case as some prep work for the curved case.
We saw how different structure groups, linked to the symmetries of
the space considered can be natural for such construction, paving the
way for the hyperbolic case. We will now turn to this latter case and
see how all this work can enable us to define closure conditions for
curved geometries.



9
A C L O S U R E F O R T H E H Y P E R B O L I C
T E T R A H E D R O N

That’s how I see the universe. Every
waking second I can see what is, what was, what
could be, what must not. — The Doctor

In the previous chapter, we concentrated on the interpretation of
the closure constraint and illustrated various generalizations in flat
space. The goal though was to consider curved spaces for the coarse-
graining programme. This is what will be started in this chapter. Only
a specific case will be considered: the case of hyperbolic homoge-
neous spaces. Other cases, like spherically curved spaces, will be left
for further study. One of the reason is that their expected (quasi) Pois-
son structure is much more complicated if we are to believe that they
match quantum groups structure. We do not foresee however any
obstacle in the geometrical construct itself. So, the work done here
might be plainly generalizable to the spherical case.

Therefore, the goal is to generalize the notion of twisted geome-
tries or spinning geometries to curved spaces, more specifically to
hyperbolically curved spaces. In the image of twisted geometries, we
will consider a space constructed from fundamental blocks which are
curved polyhedra glued together via matching conditions of some
sort which should be made precise later on. These (curved) polyhe-
dra will be described by an appropriate generalization of normals
as introduced in the previous chapter and a corresponding closure
condition. Therefore, as advertised, we will continue the programme
started in the previous chapter and intensively interpret Bianchi iden-
tities as closure conditions. In this chapter, we will make explicit con-
structions of such interesting connections with some normal interpre-
tation.

A good generalization should have the following three properties:
there should be a notion of closure, it should have a nice geometri-
cal interpretation and we should have some reconstruction procedure
available à la Minkowski. The first point will be guaranteed by the in-
terpretation as a Bianchi identity of the closure constraint. The second
point will be harder to check and apart from special cases will remain
open. But it is satisfied in a minimal sense as the curvature (but not
finite holonomies) gives the normal. And the third is blatantly left
open in this thesis, though we have hinted at possible reconstruction
procedures in our published work [71].

131
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This chapter is taken from the work done in [71] and is organized
as follows: in the first section, we will pose definitions and notations
for our work on the hyperboloid. Then, we will discuss what group
we must expect for the normals and the various problems we will
encounter with naive approaches. This will allow us to finally define
our SL(2, C) connection generalizing the ISU(2) construction in the
flat case. We will discuss various limit cases. And finally, we will step
back to get some perspective and discuss the implications for coarse-
graining.

9.1 hyperbolic geometries

Let us define the framework. We want to define polyhedra on an hy-
perbolic manifold. Therefore, we must first define the 3d hyperboloid.
The simplest definition for our purpose is as follows: the 3d hyper-
boloid is the set of points at square distance κ2 from the origin of
Minkowski space, which maybe augmented by some sign condition
in order to avoid having a two-sheet hyperboloid. κ is the radius of
curvature of the hyperboloid. In equation form, this means that the
hyperboloid H is the set of points with coordinates (t, x,y, z) in R3,1

satisfying:

t2 − (x2 + y2 + z2) = κ2, t > 0 (190)

where the positivity condition on t selects the upper sheet of the
hyperboloid.

The isometry group of the hyperboloid is the transformations of
Minkowski space that preserves the previous quadratic form. This is
exactly the Lorentz transformations of 3+ 1d spacetime. Because, we
will need some idea on how to decompose the transformations of this
group in some notions of translational and rotational part, let’s make
precise the action of the SL(2, C) group onto this hyperboloid.

We note, first, that the points of Minkowski space are, as a vector
space, in one-to-one correspondence with the hermitian 2× 2 matri-
ces. Indeed, any matrix M from H2(C) can be written as:

M =

(
t+ z x− iy

x+ iy t− z

)
(191)

This writing seems a bit artificial at first (though it proves the exis-
tence of the bijection), but it is quite natural when we consider the
determinant of the matrix:

detM = t2 − (x2 + y2 + z2) (192)

which perfectly reproduces the quadratic form on Minkowski’s space.
Therefore, the hyperboloid H can now be seen as a set of matrices:

H ' {M ∈ H2(C) / detM = κ2 & TrM > 0} (193)
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The positivity condition on the trace corresponds to the selection of
the upper sheet as TrM = 2t. Using this writing of the coordinates,
the action of the Lorentz group is now quite simple. We have:

∀Λ ∈ SL(2, C), ∀M ∈ H2(C), Λ .M = ΛMΛ† (194)

where . is the action of the group and † denote the transconjugate.
This action preserves the determinant, as well as the sign of the trace
and therefore, defines an action on the hyperboloid.

Let us note here, that for any point M on the hyperboloid, there
is a Lorentz group element sending the origin point (t = κ) of the
hyperboloid onto this point, or more generally given two points on
the hyperboloid, there is always a group element sending one onto
the other. In usual special relativity, this corresponds to the fact that
there is always a Lorentz transform sending one frame of reference
onto another, a natural transformation being the boost. For us, this is
important because, we can now try and find a translational part of
the group which must be three dimensional but such that this subset
still has a transitive action on the hyperboloid. Two choices are quite
natural and correspond to different slicing of SL(2, C) with different
properties. First, we can, as was just mentioned, consider boosts. The
set of boosts enables us to cover the full hyperboloid starting from
one point and therefore gives a decomposition of any elements into
two parts (boost plus a rotational part corresponding to the stabilizer
of a point):

∀Λ ∈ SL(2, C), ∃!(B,H) ∈ SH2(C)× SU(2), Λ = BH (195)

This is called the left Cartan decomposition. We can of course change
the order and get a right decomposition instead. But the set of boosts
is not a group which might come in hard to handle. In particular, for
our closure condition, we won’t use them.

The second choice is the Borel subgroup of SL(2, C) usually written
SB(2, C). It corresponds to lower triangular matrices as follows:

∀` ∈ SB(2, C), ∃(λ,ω) ∈ R+ ×C, ` =

(
λ 0

ω λ−1

)
(196)

This is indeed a group, and with the previous action we can show
that it acts transitively on the hyperboloid. The drawback of using
such a group is that its elements transform in a very odd way un-
der rotation making some writings hard to do. Still, we will stick
with them. Indeed, as we will see in the next section, if we take the
structure of quantum groups to be the right one, we can articulate
what kind of algebraic laws, especially transformation laws might be
suited and therefore requested for our normals. It turns out that this
is precisely the one we will uncover for the Borel subgroup. In partic-
ular, the Borel subgroup SB(2, C) must somehow appear. This select
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another decomposition which is the (left) Iwasawa decomposition. It
is written as follows:

∀Λ ∈ SL(2, C), ∃!(L,H) ∈ SB(2, C)× SU(2), Λ = LH (197)

Once again, the order can be inverted to get the right decomposition.
To conclude this section on the 3d hyperboloid, let’s finally define

our question for the chapter. We want to consider polyhedra on this
hyperboloid. These polyhedra will be defined, presumably, by points
on the hyperboloid and geodesic arcs and faces between them. Our
goal will now be to define a connection on the hyperboloid such that
its holonomies around the faces of polyhedra will have some geomet-
ric notion of normals and more importantly, such as these normals
satisfy a natural and nice closure condition.

9.2 quantum deformed loop quantum gravity

The first kind of normals we might consider looking at is normals
in SU(2) directly given by the natural connection on the hyperboloid.
Indeed, this idea was explored in our work [70] as well as in [130, 131,
133] and is natural in several regards:

• First, this idea fits well into the scheme we developed so far:
Bianchi identities give natural closure and on a curved back-
ground, such a holonomy is non-trivial.

• Regarding algebraic behavior, the holonomy is also attractive:
because the connection is an SU(2) connection, it naturally gets
an SU(2) action on its holonomies corresponding to gauge-transform.
This means that we can naturally define parallel transport on
links of the coarse-grained graph.

• And for the geometric interpretation, this is where the idea
shines. Indeed, in a homogeneously curved background (such
as an hyperboloid), the curvature naturally encodes a notion
of normal and of area. Indeed, it can be shown that the axis
of rotation of an holonomy is normal to the (geodesic) surface
it surrounds. And as the deficit angle is related to the surface,
the angle of rotation (which also happens to be gauge-invariant)
encodes the area of the surface.

It has drawbacks though. One property of using such a connection
is that it looses the sign of the curvature. It must be reconstructed
from boundary data. This can also be seen as an attractive feature,
especially in the context of coarse-graining where we might want to
encode blocks of different curvature, but here, we will concentrate on
another endeavour. We will look for descriptions that differ depend-
ing on the sign of the curvature, either hyperbolic or spherical. Let us
note also that we expect our flat case result to be generalized to the
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hyperbolic case. In the flat case, the connection appeared as a defor-
mation of the spin connection, it could be that this works also in the
hyperbolic case.

Another route should also warn us that a more general structure
should be expected and it comes from 2 + 1d quantum gravity. In-
deed, when we want to include a cosmological constant in 2 + 1d
gravity, the Ponzanno-Regge model gets deformed into the Tuarev-
Viro model. This model is based on the representation theory of quan-
tum groups. Including this deformation in the canonical framework
has been investigated for some time now [58, 59, 94, 95]. At the clas-
sical limit, the main idea is that the element of T∗SU(2) on each link
of the graph gets replaced by an element of SL(2, C) (in case of hy-
perbolic curvature) with the appropriate symplectic structure coming
from a Drinfeld double construction. As the group T∗SU(2) gets sep-
arated into a translational (R3) and rotational part (SU(2)), the new
group also gets decomposed in a similar way. The Iwasawa decompo-
sition alluded to in the previous section is used and for each link, we
get an SU(2) element corresponding to the parallel transport and two
SB(2, C) elements, one for each end of the link, with some matching
condition. The spin network can then be naturally generalized to a
ribbon network as illustrated in figure 19. The closure condition are
imposed on every loop of SB(2, C) elements and flatness conditions The word “flatness”

might be misleading
as the curvature is
really negative. Still
as far as the
holonomies are
concerned, there are
sent to the identity.

can be imposed on SU(2) loops. The SB(2, C) therefore have a similar
role than the normals in the 4d theory. It has been conjectured for
some time now that they would also appear in a hyperbolic setting
as a deformation of R3 for the 4d theory [94]. The advantage of im-
porting such technology from the 3d case is that the algebraic data is
very well understood. Therefore we can use their properties to select
interesting normals. Our programme therefore corresponds to giving
a geometric interpretation to the quantum deformed framework.

>

`3

<
`1

>

`2

< h1>h̃1

>
h̃3

<
h3

<
h̃2

>
h2

Figure 19: In quantum deformed loop quantum gravity, the spin networks
are replaced by ribbon spin networks. Each vertex is replaced by a loop of
edges carrying SB(2, C) elements. And each link is replaced by two links
carrying (in general) different SU(2) elements for the two directions of
propagation. Therefore a vertex in usual spin networks correspond to the

whole encircled region on the graph.
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We should remember that these arguments are heuristic, but still,
we have some independent pieces of evidence pointing to such a con-
struction. One comes from the deformation which is natural and the
second one comes from a much more understood theory. We will con-
tinue this chapter therefore by supposing that indeed, the deformed
normals should be encoded in SB(2, C) elements. In the next section,
we will see how this naturally leads us to considering SL(2, C) con-
nections.

9.3 SB(2 , C) transformation laws

In the 3d theory, from which we will now borrow the algebraic con-
tent, the SB(2, C) elements come from the SB(2, C) part of an SL(2, C)

element carried by the link of the graph. This SL(2, C), carried by the
edge of the graph of a (deformed) spin network, must not be con-
fused with the one we will introduce for our connection. Indeed, we
will now introduce a new SL(2, C) element as a holonomy of a con-
nection. Both the SU(2) and the SB(2, C) carry information about the
normal. Whereas the SU(2) part coming from the deformed quantum
geometry correspond to parallel transport. This means that the de-
formed normals in SB(2, C) get transported using SU(2) elements. In
this part, we will concentrate on this particular: the parallel transport
of SB(2, C) elements with SU(2) elements.

The classical limit of the quantum group deformation can be seen
as endowing a even-dimensional group with a (symplectic) Poisson
bracket. This can be done using the Drinfeld double construction with
an R-matrix as done in [59]. In our case, the phase space is SL(2, C),
where we define the Poisson bracket for the elements D of the phase
space as follows:

{D1,D2} = −rD1D2 −D1D2r
† (198)

As usual in the quantum group literature, the indices mark places
in the tensor product. Therefore D1 = D⊗ 1 and D2 = 1⊗D and
the previous bracket should really be thought as the bracket of all
possible brackets of all the pair of matrix elements of D. r in the
previous equation is the r-matrix encoding the deformation and is
given by:

r =
κ

4

∑
i

τi ⊗ σi =
iκ
4


1 0 0 0

0 −1 0 0

0 4 −1 0

0 0 0 1

 (199)

in terms of the Pauli matrices σi, which are up to a factors the genera-
tors of SU(2), and τi = i(σi− 1

2 [σ3,σi]) = (iσi + εk3iσk) which are the
generators of SB(2, C). Now, this Drinfeld double structure induces a
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bracket on the SB(2, C) part of this phase space. Any SB(2, C) element
` can be written as:

` =

(
λ 0

ω λ−1

)
, λ > 0, ω ∈ C (200)

And then, with these notations, the induced Poisson bracket reads:

{λ,ω} =
iκ
2
λω, {λ,ω} = −

iκ
2
λω, {ω,ω} = iκ(λ2 − λ−2) (201)

If we use the brackets, the closure condition for the deformed nor-
mals, namely:

`n...`2`1 = 1 (202)

generates SU(2) rotations. The action is in fact non-linear but can still
be generated at the infinitesimal level in the following way:

exp

(∏
k

λ−2k {Tr VGG†, ·}

)
` = `(rot) (203)

where the λk are the λ component of the kth SB(2, C) matrix from
the (deformed) Gauss constraint G. The finite action can be computed
explicitly to find:

`→ k`k̃−1 (204)

where k̃ is the unique SU(2) element such as the previous quantity is
indeed in SB(2, C). If we were to take the four normals associated to
a tetrahedron (`1 to `4) we would have the following transformations
for a rotation k:∣∣∣∣∣∣∣∣∣∣

`4 → k`4(k
(1))−1

`3 → k(1)`3(k
(2))−1

`2 → k(2)`2(k
(3))−1

`1 → k(3)`1k
−1

(205)

where the k(i) must all be chosen as needed for the elements to fall
in the right group. Note that the last element is noted k and not k(4).
In principle, for a generic set of vectors, this has no reason to be. But
as our tetrahedron satisfies the closure, we have the guaranty that
`4...`1 = 1. As the identity transforms by conjugation, if the trans-
formation is consistent, then the action on the right for `1 will be k.
This can also be checked explicitly [59]. This transformation rule is
the difficulty we have to face in our construction. It is what makes
the passage to SL(2, C) connections necessary.

Indeed, if we were to develop an SB(2, C) connection, it is very
difficult to see how the SU(2) group would act. Indeed, if we were to



138 a closure for the hyperbolic tetrahedron

consider the holonomy around the same loop twice for instance, the
transformation could not apply. Let us label the holonomy around a
loop once ` and the holonomy around it twice L. We would have:

L = `2 (206)

But this quantity does not transform well under rotation. Indeed, if
` is seen as the generalization of a vector, its end point and its start
point do not transform in the same way. So, the product would need
some compensation in term of an SU(2) matrix for instance between
the too composition. Something like L = `h` with h having nice trans-
formation property. Precisely, we want h to behave like:∣∣∣ h→ k(1)hk−1 (207)

This idea leads us to construct elements into two parts, one in SB(2, C)

and one in SU(2) such as their product nicely transforms by conjuga-
tion. As the product of SB(2, C) and SU(2) is SL(2, C), this leads us to
an SL(2, C) connection.

But let’s convince ourselves first, that such a construction of an
SL(2, C) normal is natural and possible in the discrete setting. For def-
initeness, let’s consider a tetrahedron and four (deformed) normals
given by four SB(2, C) elements labeled from `1 to `4 and satisfying:

`4`3`2`1 = 1 (208)

Can we construct an SL(2, C) closure from there? Indeed, as any ele-
ment ` of SB(2, C) can be written uniquely using the Cartan decom-
position as:

` = bh (209)

where b is a boost, that is a matrix from H2(C) and h is a rotation
matrix from SU(2). The advantage of such a transformation is that
these new elements transform as follows:∣∣∣∣∣ b → kbk−1

h → khk̃−1
(210)

We see here that the boost has the transformation we wanted and
the h transforms exactly as the padding we hoped. We can now start
transformation our closure:

`4`3`2`1 = 1

⇔ b4h4`3`2`1 = 1

⇔ b4h4`3(h
(1)
4 )−1h

(1)
4 `2`1 = 1

(211)

In the last line, we just introduce a non-trivial writing of the identity,
so that we get a transformed SB(2, C) element namely h4`3(h

(1)
4 )−1.
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This element can now be decomposed using the Cartan decomposi-
tion:

`4`3`2`1 = 1

⇔ b4b3h3h
(1)
4 `2`1 = 1

(212)

Continuing the process we find:

b4b3b2b1h1h
(1)
2 h

(2)
3 h

(3)
4 = 1 (213)

This does not seem to have taken far. But actually, we now have an
SL(2, C) closure with elements that transform by conjugation. They
read:

b4, b3, b2 and (b1h1h
(1)
2 h

(2)
3 h

(3)
4 ) (214)

Of course, the converse construction can be undertaken: if we have an
SL(2, C) closure we can use the Iwasawa decomposition to find now
two closures, one in SB(2, C) and one in SU(2). Indeed, the SL(2, C)

connection associated to the SB(2, C) closure is not unique. But only
one is needed to find the SB(2, C) closure. This condition that the
connection transforms by conjugation will be our main guide. And
as we will see, some natural connections come out.

9.4 an SL(2 , C) connection

Let’s dwell into the technical side. We want to define explicitly an
SL(2, C) connection. Because this will ease our life later on, let’s note
here that SL(2, C) is the complexification of SU(2), that is: SL(2, C) '
SUC(2). Accordingly, the generators of SL(2, C) (which is 6-dimensional)
can be written as J1 , J2 , J3 , iJ1, iJ2 and iJ3 where J1, J2 and J3 are the
generators of SU(2). Therefore, an SL(2, C) connection can be thought
of as a complex SU(2) connection. Let’s now define the following con-
nection on the hyperboloid:

ASL =

(
Γ i +

β

κ
ei
)
Ji (215)

where the Ji are the generators of the SU(2) group, which can be rep-
resented (up to a 12 factor) by the Pauli matrices, β ∈ C is a parameter
and Γ i is the unique spin connection on the hyperboloid compatible
with the metric and the triad and without torsion. The κ parameter
is put here just to keep β dimensionless and to make a clearer com-
parison with the Immirzi-Barbero parameter of the Ashtekar-Barbero
connection. This connection is written as a complex connection of the
SU(2) group and can therefore be reinterpreted as an SL(2, C) connec-
tion. To further point out that it is indeed an SL(2, C) connection, we
can also write:

ASL =

(
Γ i +

<(β)

κ
ei
)
Ji +

=(β)

κ
eIBI (216)
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where the BI are the boosts generators and we used BI = iJI.
The connection we just defined is, in a certain sense, the Ashtekar-

Barbero connection which we will write AA-B. This is not true in a
general sense as the connection we just defined is totally intrinsic,
depending only on intrinsic geometry quantities like the spin connec-
tion or the triad, and the Ashtekar-Barbero connection is defined for
an embedded surface in a 4d spacetime. But with respect to the em-
bedding of the hyperboloid in Minkowski space, the two connections
match. Indeed, because the hyperboloid is homogeneous, we have:

ei

κ
= Ki (217)

where Ki is the extrinsic curvature. There are therefore subtle differ-
ences between ASL and AA-B. The first one is that ASL is intrinsic, that
is depends only on intrinsic geometry. AA-B on the other hand explic-
itly depends on extrinsic data and therefore on the embedding. So,
while they coincide on what we might call on-shell, the two connec-
tions are actually quite different and would differ if the embedding
were to change. For instance, if we were to embed the hyperboloid
in some curved space, like Anti-De-Sitter space for instance, the two
connections would not match. A second difference will be of rele-
vance latter on for the Poisson structure. There are natural non-trivial
brackets between AA-B and the triad because of the presence of the
extrinsic curvature. This is not the case for ASL which depends only
on the triad and therefore commutes with it.

With this in mind, it seems way more natural to consider ASL for
geometrical interpretation on the hyperboloid as it does not rely on a
particular embedding. For instance, the curvature of ASL should have
a natural geometric meaning:

F[ASL] =
1+β2

κ2
εijkJie

j ∧ ek (218)

We see here that, up to a (complex) factor, there is once again an
interpretation as a normal. That is, at least, at the infinitesimal level.
After integration, the non-commutativity of the group might induce
non trivial deformation from a canonical normal, but still, this is a
very natural generalization of Freidel’s connection. This also appears
to be a generalization of the usual SU(2) connection (which indeed
encoded a normal) when we note that we can write the curvature as:

Fij[ASL] = Λei ∧ ej (219)

where Λ = 1+β2

κ2
acts as a cosmological constant but complex. This in

particular shows that this connection is homogeneous. This will be of
great relevance for its property under rotation.

The precise behaviour of ASL will of course depend on the value of
β (or equivalently, on the value of Λ). Though we will not go through
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a complete survey of the possible values and behaviours, we should
note some specific instances with interesting properties:

• First, as for the Ashtekar-Barbero variables per se, the values β =

±i are very specific and induce very specific properties. In that
case, the connection is the self-dual SL(2, C) connection, which
can be thought of as the natural connection induced by the flat
Minkowski connection. This connection is entirely flat, as can
be seen from the value of Λ = 0. In particular, no information
at all is preserved in the holonomies. We do have a closure but
only because it is a trivial closure.

We should note here that this is not particularly surprising.
There are also peculiar values of a and b in AISU which makes
the connection trivially flat. But the values are simply a = b = 0.
Still, they exists and find their equivalent precisely in β = ±i.

• If β ∈ R, the connection is pure SU(2). The special case β = 0

corresponds to the usual metric-compatible torsion-free connec-
tion. But we have a whole class of new SU(2) connections here
which still have closure. They are a generalization of Anc, which
was a deformation of the flat connection on the plane.

• One particularly interesting choice is Λ ∈ iR, that is 1 + β2

purely imaginary. In this case, β is on the unit hyperboloid in
the complex plane. At the infinitesimal level, this implies that
the holonomy is a pure boost. Granted that the finite case might
be a bit more convoluted, this is in some sense an orthogonal ver-
sion of a pure SU(2) connection. What we mean here is that, as
in the flat case we had two natural sets of generators that where
in bijection, in the curved case also, we have a natural duality
between the rotation generators and the boosts generators. And
this construction seems to be the natural dual construction cor-
responding to the pure SU(2) case.

This choice seems to be one of the possible generalization of AFr.
Indeed, choosing Λ purely imaginary corresponds to choosing
a → 0 in AISU in the flat case, which sends the connection to
AFr. And in both cases, the class of connection at least appears
to have a free (real) parameter (contrary to the usual SU(2) con-
nection), the parameter being b in AISU and iΛ for ASL.

• We should note a final possibility which also carries some inter-
est: when β ∈ ±i + R. This case corresponds to a very natural
geometrical construction.

Indeed, let’s consider two points on the hyperboloid. What holon-
omy along the geodesic could we possibly attribute? A natural
choice is the unique boost sending the first point to the second.
But there is a whole lot class of possible holonomies that match
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this geometrical intuition. This is because the SL(2, C) transfor-
mation sending the first point to the second is in fact not unique
since any rotation around the final point can be added. This is
indeed the case by definition of the rotation subgroup which is
the stabilizer of a point.

If we set the rotation to be around the axis of the boost, we find
the previous connection with β = ±i + λ. The λ then is a helix
parameter telling us how much we wind up around the axis for
a specific length. The geometrical resemblance with spinning ge-
ometry is kind of cunning and might point to something deeper.
Note here that there is a natural equivalent in the flat case, once
again. This is when we set b = ±1 and a is let free in AISU.

Now that we have developed a more precise intuition about the
meaning of the connection ASL, especially at the infinitesimal level,
let’s now turn to the finite case. Our main interest is the study of
the hyperbolic tetrahedron. Its faces are hyperbolic triangle and as
such we are interested in the computation of the holonomy of ASL

around each of this triangle. The holonomy can now be computed
exactly around a finite triangle as detailed in [71]. The result has a
surprisingly simple form, as the holonomy h around a triangle ABC
simply reads:

h = −RY,π−âBiβ`ACRY,π−ĉBiβ`BCRY,π−b̂Biβ`AB (220)

where:

B` =

(
e−

`
2κ 0

0 e
`
2κ

)
, RY,α =

(
cos α2 sin α2
− sin α2 cos α2

)
(221)

are the boosts and rotation associated to a given length or angle and
`AB is the length of the geodesic from A to B and â is the angle at the
point A.

This expression is quite nice as each term has a clear geometrical
interpretation. For each edge, there is an exponential of the length.
The complex and imaginary part corresponds to the boost and rota-
tion part around the axis and are controlled by the β parameter. For
each wedge, there is a rotation of the corresponding angle. So the
holonomy is quite simply built by turning around the triangle and
composing every relevant term associated to the geometrical element
being passed on. The expression presented above corresponds to a
triangle in a specific plane with some gauge choice. It is if course pos-
sible to generalize for an arbitrary triangle. Indeed, we just have to
conjugate the expression by the appropriate rotation so that the σz co-
ordinate in tangent space corresponds to the direction of the normal
of the triangle. But we can do better. Let us write h in the following
manner:

h = RBiβ
CAB

iβ
BCB

iβ
AB (222)
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where R is the rotation around the triangle, that is the holonomy of
the natural spin connection on the hyperboloid, BAB is the boost send-
ing A onto B and the exponentiation must be understood as a quick
hand notation for:(

exp
(η
2
û · −→σ

))α
= exp

(αη
2
û · −→σ

)
(223)

which is strictly defined only for boosts, though α can be complex.
We, of course, recover the usual holonomy this way when β = 0. More
interestingly, we recover that h = 1 if β = ±i since the expression of
the holonomy is precisely the boosts closure condition found for a
hyperbolic triangle in [70]. More generally, we see in a quite precise
sense that the connection thus defined is indeed a deformation of the
usual spin connection.

Now, let’s turn back to the 3-dimensional problem. We want to
study the closure for the tetrahedron. The closure condition appears
exactly as in the ISU(2) (flat) case. To be a little more precise, and fix
the notation, if we have a hyperbolic tetrahedron ABCD, let’s define
a root for the holonomies. We choose the point A for this. Around
each face, we can define the SL(2, C) holonomy. Let us write it Λi
where i is the name of the opposite vertex. So, for the face ABC, the
holonomy is called ΛD. Then, we have:

ΛB = g−1ADgCDgAC

ΛC = g−1ABg
−1
BDgAD

ΛD = g−1ACgBCgAB

(224)

each holonomy being rooted in A. The gs correspond to the holonomy
for open path. Only three holonomies are given in the previous equa-
tion. Indeed, the last holonomy is bit more complicated as we have to
parallel transport along an edge. Choosing to parallel transport along
AC, we have:

ΛA = g−1AC
(
g−1CDgBDg

−1
BC

)
gAC (225)

The discrete Bianchi identity then reads:

ΛDΛCΛBΛA = 1 (226)

This is the SL(2, C) closure constraints derived from the connection
introduced in the previous paragraph. It is the direct parallel of the
ISU(2) closure constraint developed on flat space in the first section.

Now, the SL(2, C) connection is not the full story. Indeed, we were
interested in an SB(2, C) (the Borel subgroup) closure. So what is the
link between the two? The link is to be found in the Iwasawa decom-
position. Indeed, every element Λ ∈ SL(2, C) can be written uniquely
as a product of elements in SB(2, C) and SU(2). More formally, this
can be written:

∀Λ ∈ SL(2, C), ∃!(L,H) ∈ SB(2, C)× SU(2), such that Λ = LH (227)
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This decomposition highlights the fact that the SL(2, C) group can
be understood as a semi-direct product: SL(2, C) ' SB(2, C)o SU(2).
This is the exact equivalent, in the hyperbolic case, of the decomposi-
tion of the ISU(2) connection introduced in the flat case, since we have
ISU(2) ' R3 o SU(2). In the flat case, R3 is the translation subgroup
of the isometries and SU(2) is the rotation group (or more precisely its
double cover). We have a natural corresponding interpretation here:
SB(2, C) can be understood as a (deformed) translational group on
the hyperboloid. Indeed, it is three-dimensional, it is a group and its
action on the 3d hyperboloid is both transitive and faithful. The SU(2)

part can naturally be interpreted as a rotation group as it is indeed
the stabilizer of a point.

Now, using the Iwasawa decomposition, we can split the SL(2, C)

closure into two closures, one in SB(2, C) and a second one in SU(2).
For this, let’s write down the following decomposition for our group
elements:

ΛD = LDHD

(HD)ΛC (HD)
−1 = LCHC

(HCHD)ΛB (HCHD)
−1 = LBHB

(HBHCHD)ΛA (HBHCHD)
−1 = LAHA

(228)

And thus, we have:

ΛDΛCΛBΛA = LDLCLBLAHAHBHCHD = 1 (229)

The decomposition being unique, we have precisely:{
LDLCLBLA = 1

HAHBHCHD = 1
(230)

So, the Lorentz closure induces two closures, one for the Borel sub-
group and one for the rotational subgroup. The two closures can of
course be assembled back to the original closure and do not carry
extra information.

Note here, that in order to do this we used parallel transport through
the rotational part of the Lorentz elements. This introduces a kind of
twisting or braiding of the relations which is not that surprising. In-
deed, this twist was already present in the ISU(2) case in flat space
and is in fact introduced by the semi-direct product. The twist extends
here in the SU(2) part because of the non-linear action of SU(2) over
SB(2, C). This means in particular that the behaviour of the elements
under rotation are rather non-trivial. But this behaviour is actually
wanted as we saw earlier with the quantum group structure.

9.5 link with coarse-graining

Let us close this chapter by going back to coarse-graining considera-
tions. First let’s note that our connection is quite natural to consider
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in the context of coarse-graining. That is the relevant degrees of free-
dom for a coarse-grained region might very-well be better described
by holonomies of some connection on its boundary rather than the
flux-vector data. We could be tempted to use directly the Ashtekar-
Barbero connection but as we underlined the geometric interpretation
is rather different. Still, the link between the triad and the extrinsic
curvature is due to the flatness of the embedding space. It is not un-
reasonable to think that such a link might still have some reasonable
sense in the context of the equivalence principle which guarantees
that, locally, spacetime can be considered as flat. In that case, it might
be possible that the direct usage of the Ashtekar-Barbero connection
might be relevant for describing curved surfaces.

This work will be of help to identify the relevant degrees of free-
dom when coarse-graining. We should already remark that such a
mixing of the flux-vectors and the holonomy are now ubiquitous. We
refer in particular to the recent work of Freidel et al. [93, 111] on
the phase space of surfaces in quantum gravity. Indeed, their work
shows that it is natural to consider surface degrees of freedom, which
encode degrees of freedom related to the 2d metric of the surface and
which, in our context, can be understood as surface holonomies. It is
also interesting to note that similar structures (described by pair of
holonomies) appear in the description of defects in the context of 3D
quantum gravity [76].

All this suggest a new structure to describe coarse-grained quan-
tum geometries: dual spin networks. They are more or less usual spin
networks where the graph structure is the combination of a graph and
its dual (as illustrated on figure 21). Therefore, a dual spin network
naturally carries information about holonomies that are tangential to
a surface as well as transversal. Note, that this is per se a generalization
of spin networks, as non-existent link on spin networks correspond
to link with a trivial spin, but introducing such structure helps us
devising natural coarse-grained operators and ways to think about
coarse-grained space.

Let us note also the importance of the Immirzi parameter in this
construction and in particular, the role of a complex Immirzi param-
eter. The relevance of complex Immirzi has already been stated in
general in LQG [3, 4] but our work suggest we could even consider
non self-dual Ashtekar-Barbero connections and get interesting re-
sults. And more importantly, to have a non-trivial SB(2, C), having a
complex Immirzi is mandatory. Finally, the Immirzi parameter plays
here a peculiar role which might be linked to coarse-graining. For in-
stance, we might wonder how two descriptions, using two different
Immirzi parameters, might be linked. We want to suggest that this
may be linked to different descriptions at different energy scales. In
the chapter, we will pause on this, and see how it might be made a
bit more concrete a proposal.
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•

•

•
• •

Figure 20: The coarse-graining procedure suggest a new structure of dual
spin network. The idea is that instead of only having edges transversal
to the surface of interests (in blue on the figure), we will also need the
edges carrying tangential holonomies (in red on the figure). Reported
to the whole graph, we should carry the usual excitations plus the dual

graph.

Figure 21

In this chapter, we continued the work done on spinning geometry,
generalizing it to the context of hyperbolically curved manifolds. We
found interesting ways to define closure constraints for hyperbolically
curved geometries. These constraints have the very nice property of
giving a geometrical interpretation to quantum deformed hyperbolic
geometries as the transformation laws all fit the scheme. We also re-
flected on the role of this construction with respect to coarse-graining
suggesting in particular that a new structure of double spin network
might be hinted at here. Finally, we discussed the role of the Immirzi
parameter and the role of its complexity.
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T H E R E N O R M A L I Z AT I O N O F T H E I M M I R Z I
PA R A M E T E R

Do what I do. Hold tight and pretend it’s a plan!
— The Doctor

In the previous chapter, we highlighted the possible role of the
Immirzi parameter in the coarse-graining of the theory. This possi-
ble role is only suggestive at this stage and we want to explore it
more and elaborate on that. We showed in the previous chapter that
the Immirzi parameter (or a parameter playing a similar role) may
have profound implications. For example, it appears that the com-
pactness of SU(2) forbids the full reconstruction of tetrahedra in the
flat case if they are to be constructed with deformed holonomies. In
the coarse-graining context (which might take advantage of such de-
formed holonomies), this is a problem. But even more so, the same
kind of phenomena appears even with the usual Ashtekar-Babebero
connection and we wish to comment on this fact and consider how
this might impact the coarse-graining scheme.

In essence, what we aspire to show is that the choice of variables
for LQG, because the gauge group is compact, might be important.
This is of course true for euclidean quantum gravity which involves
compact gauge group even for self-dual variables. But because of the
usual choice of the Ashtekar-Barbero connection, this also carries to
the lorentzian case. And we will show, through a very simple calcu-
lation, that a given holonomy cannot resolve all possible curvatures.
This is a not a problem per se, since it only means that for high cur-
vature several holonomies are needed. It seems however to have im-
plications with regard to two points. First, this upper bound on the
curvature might be what makes the theory finite. Because the Immirzi
parameter seems sometimes ad hoc, this might triggers discussions on
the physicality of all this. Of course, it is also totally possible to be-
lieve that it is precisely the Immirzi parameter which saves the day.
Second, this will be a problem when coarse-graining as we want to
consider larger and larger holonomies. Indeed, if this is done naively,
this might lead to a faulty theory.

We will suggest in this chapter that renormalization might there-
fore entail a renormalization of the Immirzi parameter. We will discuss
more precisely how this idea comes around. But for now, it may be
plausible from a quantum field theory perspective (after all the Im-
mirzi parameter is a parameter of the theory) as considered in [43].
The problem however in LQG is that the Immirzi parameter appears in

147
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the definition of the connection and therefore affects the gauge struc-
ture. In particular, the spectrum of the geometrical operators seems to
depend on the Immirzi parameter making the definition of the renor-
malization of the Immirzi parameter tricky to say the least. Therefore,
the argument made in this chapter is only suggestive, taking inspi-
ration in techniques from LQC. But if the programme is supposed to
work, this means we would have to find yet another representation ofIndeed, after the

recent work of
Dittrich et al. [33,

86, 87], and as was
already emphasized

[91], it becomes even
more clear that the

spectrum of the
operators is highly

dependant on the
representation of the

theory.

quantum geometry.
This chapter is inspired from work in [69]. It is organized as follows:

in a first section, we will restate the results of [69] and comment on
them, in particular on their would-be consequences on the renormal-
ization flow. In a second section, we will develop a very simple model
of quantum cosmology. The goal is to see how the problem of coarse-
graining is solved in some LQC fashion. We will explore this precisely
in the third section. In a fourth and final section, we will expand
our main idea and how it might be encoded in a full coarse-graining
programme.

10.1 the immirzi parameter as a cut-off

In LQG, the Immirzi parameter β plays a crucial role. It can be seen as
a new coupling constant entering the Palatini action for general rel-
ativity in front of an almost-topological term [138]. But, at a deeper
level, it implements a canonical transformation from the original com-
plex self-dual Ashtekar connection, which we will call A, and the
real Ashtekar-Barbero su(2)-connection A [212]. This allowed both to
work with a compact gauge group SU(2) (instead of the non-compact
Lorentz group SL(2, C)) and to avoid the issue of the reality condi-
tions. Indeed, as the Ashtekar connection A is complex and is thus
not equal to its complex conjugate, it cannot be simply quantized as a
multiplicative operator if the scalar product is simply defined by the
Gaussian measure. One needs to modify in a non-trivial way either
the scalar product or the action of the connection operator (see e.g.
[216]).

At a more effective level, the Immirzi parameter enters the LQG dy-
namics in a non-trivial way. It also appears to control the couplings to
fermionic fields and possible quantum gravity induced CP violation
[110, 166, 167, 192]. The main drawback of the Immirzi parameter is
that the fact that the Ashtekar-Barbero connection is not a space-time
connection anymore and resulting in an apparent loss of covariance
[12] (see also the more recent [3, 121]). Nevertheless, this does not
cause any problem in practice as the kinematical operators are well
defined. Therefore, one can perfectly define the kinematical Hilbert
space of the theory and transition amplitudes between spin network
states either by a canonical Hamiltonian [61, 224] or by a spinfoam
path integral amplitude [100]. It can however be tempting to go back
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to the original complex formulation, given by the specific imaginary
choice of Immirzi parameter β = ±i, and attempt to define an ana-
lytic continuation of the real formulation of LQG [4].

The two important points that we would like to underline in this
section are:

• The connection A is not a space-time connection, except in the
special case of the (anti-) self-dual Ashtekar connection A for
the purely imaginary choice β = ±i. It depends on the space-
time embedding of the canonical hypersurface Σ. Considering a
Wilson loop γ, its value will change if we embed it in different
canonical space-like hypersurfaces Σ.

• The Ashtekar-Barbero connection, for real β, is in some sense a
projection of the non-compact Lorentz connection into the com-
pact SU(2) group. We lose some information, due to the period-
icity in the extrinsic curvature. At the classical level, different
extrinsic curvatures will still lead to the same value of the Wil-
son loop. This appears to impose a cut-off on the possible excita-
tions of the geometry, more precisely on the extrinsic curvature,
i.e. on the speed/momentum of the 3d intrinsic geometry.

We will illustrate these two points with the example of a closed
loop embedded in space-like hyperboloids with variable curvature
within the flat 4d space-time. We will discuss the dependence of the
Wilson loop on the curvature of the hyperboloid, to show both how
the Ashtekar-Barbero connection depends on the space-time embed-
ding and how we can recover the extrinsic curvature from the value
of the holonomy.

The hyperboloid has been defined in the previous chapter. We can
consider a slight generalization in order to have several different
hyperboloids of different curvature. Let us start with the flat 3+1d
Minkowski space-time with signature (-+++) and consider the upper
sheet of the space-like hyperboloid,

−(t− t0)
2 + (x2 + y2 + z2) = −κ2, t > t0 , (231)

with an arbitrary curvature radius κ > 0 and a possible time shift
t0 ∈ R. We would like to look at the Ashtekar-Barbero holonomy
around a loop of radius R, say

γ ≡ {t = T , x2 + y2 + z2 = R2} , (232)

where T and R are arbitrarily fixed. As illustrated on fig.22, we embed
this loop in the whole family of hyperboloid of arbitrary curvature
radius κ by adjusting their time shift in terms of κ,

t0 = T −
√
R2 + κ2 . (233)
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Figure 22: This shows several hyperboloids of different curvature all
containing the same loop in flat spacetime. The curvature of the embed-
ding hyperboloid affects however the curvature of the Ashtekar-Barbero

connection.
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Figure 23: The Wilson loop W plotted in terms of the loop size R (in
units of κ) in the upper graph, and in terms of the curvature radius κ (in
units of R) in the lower graph, both for a Immirzi parameter set to β = 1.

This setting is very similar to [213], but we extend that calculation
explicitly to arbitrary curvature κ.

All the computations can now be done. We refer the reader inter-
ested in the details to the corresponding paper [69]. Let us concentrate
here on the result. For the holonomy around the loop γ, we obtain for
the spin-1 Wilson loop (for the 3-dimensional representation, where
the holonomy is represented as a SO(3) group element):

Wκ(R) = 1+ 2 cos

(
2π

√
1+ (1+β2)

R2

κ2

)
(234)

We see a clear dependence of the size of the loop in units of the
curvature radius of the hyperboloid, as illustrated on the plots in
fig.23.

This term further depends on the Immirzi parameter β. For β2 =

−1, this extra term vanishes and we recover Wκ(R) = 3, which sig-
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nals a flat connection. This is indeed the case for the complex (anti-)
self dual Ashtekar connection, which is a space-time connection and
sees that the initial space-time here is flat. However in general, the
Ashtekar-Barbero connection is not flat, even though the space-time
is flat, and contains information about the curvature κ of the hyper-
boloid.

This means that extrinsic curvature information should be recon-
structed from the connection. Indeed, one can invert the relation
above and obtain the dimensionless ratio κ/R from W. However, this
ratio cannot be fully determined. Indeed, there is some periodicity
due to the compactness of SU(2). In general, we only have:

κ2

R2
=

1+β2

(ϕ+ k)2 − 1
, k ∈ Z (235)

with the angle ϕ given in terms of the Wilson loop by:

2πϕ = cos−1
(
W − 1

2

)
∈ [0,π] . (236)

Therefore, the curvature is not uniquely fixed but determined up to
a period k ∈ Z.

The periodicity implies an ambiguity in the determination of the
curvature from the Wilson loop. One could decide to take the lowest
value of the curvature, i.e the highest value of the curvature radius,
typically given by the natural choice k = 1. But this would mean
obviously neglecting the possibility of higher curvature fluctuations.
In this sense, we see that fixing a real Immirzi parameter leads to a
cut-off in curvature in the context of LQG. This highlights our major
difficulty: by approximating the spin network by coarse-grained ver-
sion of it, we will have access only to small curvature information,
due to the compactness of SU(2). Note here, that even if the problem
could be avoided with self-dual variables for instance, it still appears
in euclidean quantum gravity or with Yang-Mills theory. A quantum
theory of gravity coupled to matter fields will still have this problem
if they are Yang-Mills interactions. This problem is the one of the ma-
jor focus of the present chapter. And in what follows, we will consider
how it is solved in LQC (which is arguably coarse-grained) and how
this might suggest ways to solve it.

10.2 the single loop model of cosmology

The problem that we underlined in the previous section can be re-
stated as follows: capturing curvature with large loops (with respect
to the curvature radius) is not possible because of the cut-off im-
posed by the Immirzi parameter. This is actually why LQC needs the µ
scheme which implements loops of a given size and not a loop grow-
ing with the universe. How can we solve this problem in a coarse-
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grained setting? We will consider a model in this section, using tech-
nology from LQG, whose goal is to encode cosmological dynamics
which will allow a comparison with LQC. The model is inspired from
the U(N) [65, 66, 160] model but stripped out of all the non-necessary
ingredients for our purpose. It is in some sense justified only a posteri-
ori after the U(N) can be devised as a simple model reproducing the
same kind of dynamics. We refer the reader interested in the U(N)

model to the corresponding appendix A.
The U(N) model is a simple model aiming at describing homoge-

neous and isotropic universes using a fixed graph. The graph has
only two vertices linked together by a fixed number of edges. To de-
scribe a homogeneous and isotropic universe, this has still too many
degrees of freedom. It can be reduced by using the U(N) action on
the vertices. Indeed, each vertex can be endowed with a collection of
observables which satisfy a U(N) algebra. Enforcing that the equality
between these observables on the two vertices can be understood as a
homogeneity and isotropy condition. Because the constraints are first
class, we can study the remaining degrees of freedom by simplectic re-
duction. The observables have the following action: they carry quanta
of surfaces from one edge to the other, conserving the total area sep-
arating the two vertices. The simplectic reduction leads then to two
degrees of freedom, which are conjugated: the total area (which is
conserved under transformation) and the angle of the transformation
on each link (which is the same on each link between the two vertices
when the constraints are imposed).

These two degrees of freedom correspond more or less to the de-
grees of freedom we are interested in cosmology: the scale factor and
its conjugate. They have even a nice correspondence with the vari-
ables from LQC. Indeed as was presented in the chapter 6, the symme-
try reduction of LQC using the variables of LQG leads to two variables
p and c. p is the squared scale factor and c is its conjugate which is
linked to (extrinsic and intrinsic) curvature. These are precisely the
variables which are uncovered in the U(N) symmetric model.

We will not consider the full U(N) model since it clutters the discus-
sion. We will therefore concentrate on a much simpler model which
is sufficient to underline the problem. We simply called it the single
loop model, as it seems quite fit. Let us consider a single vertex and a
single link starting and ending on it, making it a loop. On this graph,
we have two variables classically which are conjugated : the area of
the transverse surface to the loop and the angle of the rotation along
the loop. They are the exact equivalent (up to factors) of the two vari-
ables of the U(N) model and do correspond to the variables of LQC.
This can be described quantum mechanically by wave functions over
SU(2) which are invariant under conjugation, that is functions of the
form:

ψ : SU(2)→ C (237)
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such as:

∀h,g ∈ SU(2), ψ(ghg−1) = ψ(h) (238)

A natural basis for this space of states is given by the characters of
SU(2) which we will write χj where j is the half-integer labelling
representations. Therefore, the state can be written:

ψ(g) =
∑
j∈N

2

ψjχj(g) (239)

There are natural operators on this space that will nicely do the job
as observables for curvature and area. There are the holonomy in the
fundamental representation and the casimir. We write them as: χ̂ψ(g) = χ 1

2
(g)ψ(g)

Ĉψ(g) =
∑
j∈N

2
j(j+ 1)ψjχj(g)

(240)

Note that these are not precisely the operators for p and c. Apart from
ordering ambiguities, p̂ is simply linked to the casimir by p̂2 = Ĉ. But
for c, there is no well-defined operator. This is precisely the point, as
we only want exponentials of the operator to be defined. It is therefore
appropriate to think of χ̂ as cos c (the even part of the exponential).

Now, let’s forget about the numerical factors. As we saw in chapter
6, the classical Hamiltonian for cosmology is (expressed in p and c):

H = (pc)2 (241)

Because c does not exist as an operator, we will need to change the
Hamiltonian slightly. The most basic thing to do is to consider:

H̃ = 2p2 (cos c− 1) (242)

This corresponds more or less to the µ0 scheme, which we sadly know
to be false. But it has the advantage of being writable in the model we
just exposed. Indeed, this is precisely why we are doing all this: the
connection does not exist as an operator and we are led to use holon-
omy operators. The problem is, we only have access to functions of c
of the form cosnc with n an integer. They correspond to the different
representations of the holonomy or, alternatively, to powers of the
fundamental one. This means that, at least at first sight, we cannot
represent correctly the µ scheme. Indeed, as we saw, we need more
than just the integer exponentials of the connection but all exponen-
tials for all real values of a prefactor. And this cannot be implemented
on our compact configuration space (namely SU(2)).

In a more LQC like language, everything is behaving as if we were
considering U(1) as a configuration space rather than RBohr. Most op-
erators are not well-defined in this context and more importantly, the
conjugate to the volume is not well-defined which is however needed
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for the µ scheme. Indeed, usually the geometrical interpretation goes
as follows: when the scale factor goes larger, the loops, relative to the
size of the universe, actually scales down. Therefore, the connection,
which is expressed in the comoving coordinates should scale down
accordingly. For the fundamental theory, this means the dynamics
should be graph changing and rather than a fixed graph with a com-
pact configuration space on each link. This is precisely the problem
we face with coarse-graining and renormalization, here in the redux.
This is also the equivalent of the problem mentioned in the previous
section and is manifest as a problem of periodicity. Indeed, all our
observables are periodic (due to the compactness of SU(2)) but the
observables we would like for quantum cosmology are non-periodic.
This is the natural problem we have to face.

10.3 the µ scheme in a coarse-grained fashion

Can we bypass this problem and find a way to write down equiva-
lents of the µ scheme operators? Let us start by considering a simpler
problem: let’s consider a scalar field in a one dimensional space. It
can be modeled by a function from R and valued in C (if we consider
a complex scalar field). A coarse-graining of it could be represented
by a function from Z into C. The relation between the discretization
and the continuum theory is left open here. But in principle, some-
thing similar to the perfect discretization process [32] should give an
ideal description of the low energy states of the continuum theory.
Still, there is a similar issue to the one we encountered above: be-
cause of the discretization, the Fourier space becomes compact and
it is now impossible to describe the non-periodic dispersion relations
on the Brillouin zone. The problem of compactification appears there-
fore once more but here in the Fourier space.

Technically, let’s note here that the problem is a bit different as this
is not a problem of compactness of the configuration space. Mathemat-
ically however, it is quite similar and it will be quite illustrative. How
can we resolve the problem? There are several possibilities. Consider
the dispersion relation of a (relativistic) free scalar field:

E2 = p2 +m2 (243)

with the usual conventions of c =  h = 1 and where E is the energy
and p the momentum. It can also be represented as on figure 24a.
Now, back to our discretization: because it is only spatial, energy is
not compactified, but momentum will be. This is a problem however
as the dispersion relation is clearly not periodic. Indeed, on a lattice,
only periodic function of p will exist, that is only those which de-
pend on p up to 2π

a . This is the equivalent in this simpler setting of
our compactification problem. A solution though is to simply concen-
trate on low energy excitations as illustrated on figure 24b. Indeed,
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if we consider momentum that are between −πa and π
a they can be

described both by the original dispersion relation or by a periodic
function. But this requires to concentrate on low energy excitations.
It could in principle be possible to extend to higher energies by defin-
ing energy bands but the practicality does not seem straight forward
(see figure 24c).
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(a) In the usual continuum theory,
the dispersion relation is the well-
known one: quadratic near p ' 0 and

linear at infinity.
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(b) A truncation of the theory can be
defined at low energies. Incidentally,
this theory can be defined on a dis-
crete space. Here π

a = 2 (arbitrary
units) where a is the lattice spacing.
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(c) It is possible in principle to describe any excitation on a discrete space
as long as the larger momentum are considered as energy levels, creat-
ing bands in a condensed matter fashion. The lattice spacing is a = π

2

(arbitrary units).

Figure 24: Representation of the dispersion relation E = f(p), the en-
ergy as a function of momentum, for a massive scalar field in different

frameworks with a mass m = 1 (arbitrary units).

Can we do the same thing for LQG? Classically, it is possible, at
least in the context of LQC. We can start with the µ Hamiltonian and
expand it in terms of sine and cosine of c as shown here:

∀c ∈] −π;π[, cos
`pc√
p
=

√
p

π`p
sin

`pπ√
p
+
∑
n>0

(−1)n`p
√
p

pn2 − `2p
cosnc (244)

and we would use:

H =
2p3

`2p

(
cos

`pc√
p
− 1

)
(245)
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The low energy limit is here replaced by a low curvature limit: as
long as c is small (that is |c| < π), the expansion will be exact. We
are quite lucky here as this is one of the property of the µ scheme: it
tends to keep c small. For larger values though, the expansion is not
directly usable, apart maybe from analytical continuations. It might
seems a way out but we should keep in mind at least two things here.
First, the expansion is highly singular and the proper definition of
corresponding operators might be tricky. Second, such an expansion
is available for any function restricted to a compact interval which
includes the standard Hamiltonian H = p2c2. This means that using
such expansion might harm the singularity resolution of the theory.

Though, we have not explored this the other way around, there
are also troubles linked to the spectrum of the area operator which
is quantized and linked to the Immirzi parameter. All this reveal the
real difficulty, that we have to work with varying graphs. Indeed, the
problem of how varying graphs enable the right dynamics has been
recently in the context of GFT [123]. This is expressed in the formalism
of condensed state where the universe consists of many tetrahedron
all in the same state. The fact that the number of tetrahedron is vari-Note that these

condensed states are
not gauge-invariant
and this is therefore

an approximation.

able allows the right dynamics of LQC to be found [185]. We will
develop this line of thought in the next part of this thesis.

But as we suggested in [69], because the Immirzi parameter acts as
the cut-off scale, we might try and see if it is possible to renormal-
ize the Immirzi parameter itself. This is what we will consider and
develop in the following section.

10.4 loop quantum gravity for all immirzis

The rationale behind the renormalization of the Immirzi parameter
comes from the following question: in a well-defined quantum the-
ory (without infinities) to what does the renormalization process cor-
respond? An interesting point of view is that it can be understood as
a unitary transform relating different scales. In usual QFT, this is dif-
ficult to see because of all the infinities. In condensed matter, which
usually comes with a cut-off, such a unitary transform is not possi-
ble because it would change the cut-off scale. But, what we should
expect in a well-defined theory of continuous quantum gravity? We
might indeed have a unitary transform corresponding to scales trans-
formation.

As we will see, the Immirzi canonical transform is a perfectly good
candidate. Indeed, classically it is generated by:

C =

∫
KIaE

a
I d
3x (246)

This acts on the densitized triad (and therefore on all spatial infor-
mation) as a scale transform. This is precisely the behavior we would
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like for the equivalent of the renormalization procedure. Therefore The very similar
form with the
(volume preserving)
conformal constraint
of shape dynamics
(see [165] for a
review) also
validates the
interpretation as a
scale transform.

the Immirzi parameter has a role even more special than previously
thought: it turns out precisely to be precisely the parameter selecting
the scale of the theory.

Of course, this is not as straightforward in practice. First of all, this
Immirzi canonical transformation is not represented unitarily in the
(current) quantum theory, as can be seen from the spectrum of the
area operator. Let us note right away that this argument falls when
considering self-dual variables. Indeed, they are arguments that indi-
cates that the spectrum of the area operator might be continuous in
this framework [10]. This would possibly allow scale transforms to be
implemented. But of course nothing guarantees that. And it leaves the
case of euclidean quantum gravity open anyway. Another possibility
might be the existence of other representations of quantum geometry.
Indeed, one of the major problem comes from the non-existence of
the connection operator. A representation insisting on exponentiated
fluxes (rather than connection), maybe similar to the BF representa-
tion [86], might be able to represent the transformation.

Now let’s admit that the problem is solved, that we can find a new
representation implementing unitarily the Immirzi canonical trans-
form. Or we could also imagine that the Immirzi parameter per se is a
topological parameter but that we find a natural way of implementing
a scale transform at the quantum level. Then, what would the renor-
malization programme look like? It would be remarkably similar to
the AS programme of LQG, with the infinities of QFT removed. Indeed,
the Immirzi canonical transform would generate the change in scale
and could be applied (for instance) to the Hamiltonian. A general
Hamiltonian could be written and its transformation under renormal-
ization resolved. Of course, we would know have the same problems
as in lattice Yang-Mills, since all couplings could in principle be writ-
ten. We could hope that the ambiguities might be resolved via the ful-
filling of some spatiotemporal diffeomorphism algebra [189]. In the
context of renormalization, this is where the asymptotic safety sce-
nario is joined, since that would correspond to fixed points and there
associated critical surface. So, in practice, we would look for Hamilto-
nians invariant under the renormalization flow, that is a fixed point of
the renormalization flow. From there, in the general space of possible
Hamiltonians, we would concentrate on the critical surface under the
flow connected to the fixed point. The dimensionality of the critical
surface would give the number of parameters necessary to describe
quantum gravity.

But what is the link between this approach and the more general
coarse-graining programme we started to study? The link would be
similar to the one between standard renormalization in QFT and the
Wilson flow. One is done without cut-offs between scales, the other
one explicitly use one. But the flow of both should be related. We
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should also note that if the Immirzi transform is generated by some-
thing like:

C =

∫
KIaE

a
I d
3x =

∫
(AIa − Γ

I
a(E))E

a
I d
3x (247)

then we do not expect spin networks, or combination of them with a
given support, to be eigenvectors of the transformation. Indeed, the
presence of the connection in the generator shows that the transforma-
tion would be graph changing. So, in the case of continuum quantum
gravity, it might very well be the case that the standard renormaliza-
tion flow and the Wilson flow are actually the exact same thing. In
practice, the unitary transform would be graph changing and there-
fore select a natural way to coarse-graining the theory.

We can of course hope that such a natural way would be found by
hand, that is without the guidance of some, properly implemented,
scale transform. Such a coarse-graining might be obtainable by ge-
ometrical consideration, as we have done in the previous chapters.
But, the argument suggest that we should now concentrate more on
varying graphs techniques. We will therefore need a new structure, of
course capable of describing large distances as coarse-graining would
imply, but more specifically which would encode finer graphs and
varying graphs. The importance of varying graphs comes therefore
through different channel: it has been discussed in chapters 6 and 7

but also appears from scale transformation consideration. It has not
however been fully explored yet in this thesis and this what we will
now do in the next part and the remaining chapters.

In this chapter, we show that the Ashtekar-Barbero connection is
not a spacetime connection and we show that its holonomy cannot
totally resolve the extrinsic curvature of its embedding manifold. We
explored, in the context of LQC, how this is linked to the problem of
varying graphs. But the specific role of the Immirzi parameter also
suggested a new route towards renormalization, which we discussed.
We will now turn to our last part of the dissertation, concentrating of
the problem – underlined in the current chapter – of handling varying
graphs in the full theory.
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T H E S PA C E O F L O O P Y S P I N N E T W O R K S

You want weapons? We’re in a library. Books
are the best weapon in the world. This room’s the
greatest arsenal we could have. — The Doctor

In the last chapter, we got out of the main flow of this thesis to
talk about the role of the Immirzi parameter. This got us back, sur-
prisingly, to coarse-graining. If this previous chapter defines a more
or less equivalent of the standard continuum renormalization proce-
dure, we still have not defined the equivalent of the Wilson flow in
LQG. Even assuming that indeed the right variables for large scale
descriptions are the surfaces holonomies and holonomies across the
surface, we should now try and explore a way of extracting these de-
grees of freedom in a coarse-graining procedure. The idea of coarse-
graining is to integrate out the microscopic degrees of freedom, by an
iterative procedure, up to some given energy or length scale to get the
effective dynamics of the macroscopic degrees of freedom. And to do
this, we must implement, concretely, what was presented in chapter 7,
namely coarse-graining by gauge fixing. Therefore, we will now turn
to the coarse-graining of spin networks for LQG.

Because of the discrete nature of spin networks, it is a good idea to
search for inspiration in condensed matter models. In these models,
one typically works on a regular lattice with degrees of freedom liv-
ing on its edges and/or nodes and one can decimate consistently the
variables, integrating out one node out of two for example, and thus
derive an effective Hamiltonian on the coarser lattice. The length scale
is set by the lattice spacing. In quantum field theory, the renormalisa-
tion group scheme integrates out quantum fluctuations of the field of
high momentum and energy to derive an effective dynamics on the
low momentum degrees of freedom. The idea is therefore always to
separate scales and to define a way of integrating out some irrelevant
scale. But, in GR, the main difficulty is that the space-time geometry
itself has become dynamical thus leading to some serious obstacles:
in a background independent context, we face the problem of defin-
ing consistently a length or energy scale and of properly localizing
perturbations and degrees of freedom both in position and momen-
tum. Of course, these conceptual difficulties do not wash away when
going to the quantum theory and are actually all the more difficult to
handle.

161
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We already suggested a way to generalize the renormalization pro-
cess in the previous chapter using a varying Immirzi parameter. But
even in quantum field theory, renormalization can be thought of in
various manners and appears in different forms. As advertised, we
want to consider a more Wilsonian version of the renormalization flow.
Such a flow is less speculative than our previous idea and is quite nat-
ural in the theory. Indeed, in LQG, the natural graph structure of the
theory makes it simpler to tackle the coarse-graining of the theory,
and least conceptually. Putting aside the huge complication of fluctu-
ating graphs and graph superpositions, in a coarse-graining process,
the graph underlying the spin network will no longer represent fun-
damental degrees of freedom, but the coarse degrees of freedom we
are interested in. Therefore, a natural coarse-graining procedure on a
fixed graph is to subdivide it into a partition of bounded (usually con-
nected) regions and to collapse those subgraphs to single points. The
internal geometrical information carried by the spin network state
on those subgraphs would be coarse-grained to some effective data
living at the new node of the coarser graph, as illustrated on fig.25.
Integrating over these local degrees of freedom would lead to new ef-
fective dynamics on the coarser graph. Such a procedure would then
be iterated to obtain a tower of effective theories à la Wilson for LQG

towards a large scale limit.

• •
••

•
•
•

• •
•

•

Figure 25: We coarse-grain a graph by partitioning it into disjoint con-
nected subgraphs. We will reduce each of these bounded region of space
by a single vertex of the coarser graph. Since each of these regions of
space had some internal geometrical structure and were likely carrying
curvature, the natural question is whether spin network vertices carry
each data to account for these internal structure and curvature. We will
see that standard spin network vertices can be interpreted as flat and that
we need to introduce some new notion of “curved vertices” carrying extra
algebraic information and define new extensions of spin network states
more suitable to the process of coarse-graining loop quantum gravity.

We propose a truncation of the theory based on this idea. The new
effective graph can be understood as a background lattice over which
various excitations at the vertices are possible and correspond to the
different possible spin networks for the covered region of each effec-
tive vertex. This might seem to break diffeomorphism invariance, but
the choice of a background graph does not have to be arbitrary. For
instance, a given observer might choose some geometry to probe and
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a support graph accordingly. Therefore, the lattice is not considered
as the fundamental graph underlying the physical spin network state.
Instead, since the observer is assumed to have a finite resolution, its
nodes represent bounded regions of space whose internal geometry
can fluctuate. Then, if we consider a spin network states based on a
graph with a very fine structure, we will coarse-grain it onto our cho-
sen lattice. Such a scheme has the additional benefit of allowing the
taking into account of graph fluctuations and superpositions while
actually working on a fixed lattice. Indeed, considering a superposi-
tion of graphs, it will live, by cylindrical consistency, on a finer graph
containing both graphs. Then we will coarse-grain the quantum ge-
ometry state on the finer graph until it lives on our reference lattice.

A key step of this procedure is the coarse-graining of subgraphs to
nodes. We use the “coarse-graining through gauge-fixing” procedure
introduced in [159, 162] and also exploited in [33, 86] to reformu-
late the algebra of geometrical observables in LQG. This is based on
the gauge-fixing for spin networks defined earlier in [109], which al-
lows to collapse an arbitrary subgraph to a flower , that is a single
vertex with self-loops -or petals- attached to it. These loops account
for the building-up of the curvature and thus of the gravitational
energy density within these microscopic bounded regions which we
will coarse-grain to single points on the measurement lattice chosen
by the observer. This chapter and the next one are both inspired from
our published work [72].

11.1 coarse-graining and flower graphs

Let us give a closer look to this gauge-fixing procedure and the result-
ing coarse-graining of spin networks. At the classical level, a spin net-
work state is given by the graph dressed with discrete holonomy-flux
data: each oriented edge carries a SU(2) group element ge ∈ SU(2)

while each edge’s extremity around a vertex is colored with a vector
Xve ∈ R3. So one edge carries two vectors, one living at its source ver-
tex and the other living at its target vertex, respectively Xs,t

e ≡ Xs,t(e)
e .

The group element gives the parallel transport of the vectors along
the edges, that is Xte = −ge . X

s
e with the action of ge as a SO(3)-

rotation on the flat 3d space. This obviously forces the two vectors
to have equal norm, |Xte| = |Xse|, which is called the (area-)matching
constraint. One requires another set of constraints: we impose the clo-
sure constraint at each vertex v, so that the sum of the fluxes around
the vertex vanishes,

∑
e3v X

v
e = 0. This holonomy-flux data can be

interpreted as some discrete geometry in the framework of twisted
geometries [112, 113]. This is achieved through Minkowski’s theorem
stating that the closure constraint determines a unique convex poly-
hedron in flat 3d space dual to each vertex v, such that the fluxes Xve
are the normal vectors to the polyhedron faces.
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Curvature appears as non-trivial holonomies around loops L of the
graph, when

−−−−→∏
e∈Lge 6= 1. As pointed out in [159], coarse-graining

a subgraph carrying non-trivial curvature leads to an effective vertex
breaking the closure constraint. This underlines the fact that a gener-
alization of spin network states is required in order to properly carry
out a coarse-graining procedure: we need an extended structure al-
lowing for curved vertices.

Indeed, let us consider a bounded region in space and the normals
to its boundary. Due to gauge-invariance, if the region contains a
single vertex, the sum of the normals will sum up to zero. But if
there are loops inside the region, the parallel transport around these
loops might introduce non-trivial rotations. And indeed, as soon as
the parallel transport around the loops is non-trivial, the sum of the
normals is no longer zero, leading to a closure defect [159]. This is
natural and translates the fact that curvature is carried by the loops
of the spin network. And this must be taken into account when coarse-
graining.

A rigorous way to make this explicit is to gauge-fix the spin net-
work state, following the procedure devised in [109]. Let us consider
a bounded region of a larger spin network, defined as a finite con-
nected subgraph γ of the larger graph Γ .The procedure goes as fol-
low:

1. Choose arbitrarily a root vertex v0 of the subgraph and select a
maximal tree T of the region:

The subgraph being connected, the maximal tree goes through
every vertex of the region and defines a unique path of edges
from the root vertex v0 to any vertex of the subgraph.

2. Gauge-fix iteratively all the group elements along the edges of
the tree ge∈T = 1:

Using the gauge-invariance of the wave-functions with gauge
transformations acting at every vertex by SU(2) group elements
hv as ge → h−1

s(e)geht(e), we can start from the root of the tree
v0 and progress through the tree until we reach the boundary
of our subgraph. We define the appropriate gauge transforma-
tions hv at every vertex in order to fix all the group elements
along the edges of the tree to the identity 1. The absence of
loops in the tree, by definition, guarantees the consistency of
this gauge-fixing. We can somewhat interpret this maximal tree
as a synchronization network: we set all the parallel transports
along the tree edges to the identity, thus synchronizing the ref-
erence frames at all the vertices and identifying them to a single
reference frame living at the root of the subgraph. This realizes
the coarse-graining of the subgraph γ to its chosen root vertex
v0. The action of SU(2) gauge transformations inside the region
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is not entirely gauge-fixed and we are still left with the SU(2)

gauge transformations at the root vertex.

3. Having collapsed the subgraph γ to its root vertex v0, the edges
of the subgraph γ which are not in the tree, e ∈ γ \ T label all
the (independent) loops of the subgraph and lead to self-loops
attached to the v0:

These self-loops or little loops carry the holonomies around the
loops of the original subgraph γ, that is the curvature living
in the bounded region. The flux-vectors living on the bound-
ary edges, linking the region to the outside bulk, generically
do not satisfy the closure constraint anymore since the effective
vertex does satisfy a closure constraint which takes into account
the flux-vectors of those boundary edges but also of the inter-
nal loops. The closure defect, induced by the little loops, thus
reflects the non-trivial internal structure of the coarse-grained
subgraph and curvature developed in the corresponding region
of the spin network state. The interested reader can find details
and proof in the previous work [159].

This gauge-fixing procedure allows to clearly identify and distin-
guish between the degrees of freedom of the internal geometry of the
considered bounded region of space to coarse-grain. The tree encodes
the internal combinatorial structure of the region and describes the
network of points and links within: they provide the bulk structure on
which we can create curvature. The little loops and the SU(2) group
elements coloring them are the excitations of the parallel transport
and curvature. Together, tree and little loops attached to a vertex de-
scribe all its internal structure and are the extra data needed to define
curved vertices for the effective coarse-grained theory. These curvature
excitations create a closure defect for the flux-vectors living on the
boundary edges linking the coarse-grained vertex -the root vertex- to
the rest of the spin network (obtained by the actually satisfied closure
constraint between boundary edges and little loops)

11.2 a hierarchy of structures

When coarse-graining in practice, we do not want to retain all the
information about the internal geometry, but only want to retain the
degrees of freedom most relevant to the dynamics and interaction
with the exterior geometry. In the next section, we will therefore in-
troduce a hierarchy of extensions of spin network states with curved
vertices, from the finest notion of spin networks decorated with both
trees and little loops to the coarser notion of spin networks with a
simple tag at each vertex recording the induced closure defect.
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(a) All the information can
be preserved by carrying
the SU(2) labels and an un-
folding tree describing the
inner details of the coarse-

grained vertex.
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(c) Everything except
the closure defect is
forgotten. Only a “tag”

remains.

Figure 26: The hierarchy of possible coarse-graining frameworks

In LQG, we start with spin network states, which are graphs deco-
rated with spins on the edges and intertwiners at the vertices:

HΓ =
⊕
{je,iv}

C|je, iv〉 . (248)

Curvature is carried loops of the graph. We have argued that coarse-
graining these networks should naturally lead to extended spin net-
works that can carry localized curvature excitations at the vertices.
Following the coarse-graining through gauge-fixing procedure, we
propose a hierarchy of three possible extensions of the spin network
states, which depend on how much extra information and structure
are added to each vertex:

1. Folded spin networks :

In the first scenario, we follow the gauge-fixing procedure but
we do a minimal coarse-graining, retaining as much informa-
tion as possible on the original state. Each vertex is allowed
with an arbitrary number of little loops attached to it and is en-
dowed with a tree connecting the ends of the external edges and
of the internal loops, as represented in fig.26a. This tree can be
seen as a circuit telling us how to unfold the vertex, reversing
the gauge-fixing procedure and recovering the original (finer)
graph. This Hilbert space Hfolded

Γ can be written formally as:

Hfolded
Γ =

⊕
{je,j(v)` ,iv,Tv}

C |je, j(v)` , iv,Tv〉 . (249)

Tv is the unfolding tree for each vertex, j(v)` are the spins carried
by the additional loops labeled by the index ` and the intertwin-
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ers iv now lives in the tensor product of the spins je of the edges
linking to the other neighboring vertices and (twice) the spins
j
(v)
` living on the internal loops (because each loop has its two

ends at the vertex).

With such an internal space at each vertex, we actually lose no
information at all on the internal degrees of freedom. Starting
with a spin network state living on a finer graph Γ̃ , we simply
gauge-fix it to a spin network on our coarser graph Γ . And we
can follow the reverse path. Using the tree at each vertex, we
can fully reconstruct the original finer graph Γ̃ thus simply per-
form generic gauge transformations to recover the fully gauge-
invariant spin network state.

Thus the chosen graph Γ can be considered as a skeleton graph,
to which we can add extra information to represent spin net-
work states living on any (finer) graph. In a sense, we have not
done any coarse-graining yet. The truncation of the theory will
happen when defining the dynamics on the folded spin net-
work Hilbert space, distinguishing actual edges and spins of
our skeleton lattice -the background- from spins and edges on
the unfolding trees and little loops, when the fundamental dy-
namics would have considered them on equal footing.

2. Loopy spin networks :

In a second scenario, we coarse-grain the internal structure of
the effective vertices by discarding the unfolding trees. We keep
the curvature excitations living on the little loops, but we dis-
card the combinatorial information of the internal subgraph: we
forget that the vertex effectively represents an actual extended
region of space and we localize all the internal curvature de-
grees of freedom on that coarse-grained vertex. This leads to
loopy spin networks, with an arbitrary number of loops at each
vertex but no unfolding tree data:

H
loopy
Γ =

⊕
{je,j(v)` ,iv}

C|je, j(v)` , iv〉 , (250)

where the j(v)` are the spins living on the little loops attached
to the vertex v and the intertwiners iv live again in the tensor
product of the spins carried by the graph edges attached to the
vertex v and the spins carried by its little loops.

Now our chosen graph Γ for loopy spin network states is to be
considered as a background graph. The little loops are explicit
local excitations of the gravitational fields located at each ver-
tex of the graph. A given loopy spin network comes from the
coarse-graining of several possible finer spin network states liv-
ing on finer graph, but we lack the unfolding tree information
to recover the original more fundamental state.
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The truncation of full theory is clear. Spin network states on
the “loopy graphs” living on top on Γ , that is the base graph
Γ plus an arbitrary number of self-loops at every vertices, are
already in the Hilbert space of the LQG, although we do not
usually focus on such graphs. Restricting ourselves to this sub-
set of states is a clear truncation of the full Hilbert space. The
difference with the standard interpretation is that we think here
of the base graph Γ as embedded in the space manifold, while
the little loops are abstract objects decorating the base graph
vertices.

Since we have local degrees of freedom, carried by the little
loops, we need to discuss their statistics, which leads to a few
variations of this theme:

a) Distinguishable loops : First, it is natural to consider that the
loops are distinguishable as they come from a substructure.
The loops do come from different edges of a finer graph
and create curvature excitations at different places within
the coarse-grained bounded region. As a result, we should
distinguish them and allow to number and order them.

b) Indistinguishable bosonic loops : A second possibility is to
push further along the logic of coarse-graining and to con-
sider that the loops indistinguishable since we do not have
access anymore to the specific substructure. This should
lead to bosonic statistics, as expected for gravitational field
excitations. Formally, this can be written as the identifica-
tion:

|je, iv, j(v)` 〉 = |je, iv, j(v)
σv(`)

〉 (251)

for any permutation σv ∈ S#` in the symmetric group of
order #` when the vertex v has #` loops. This point of view
is compatible with considering the action of space diffeo-
morphisms on the little loops around the vertex as gauge
transformations.

c) Anyonic statistics : We can easily imagine other statistics,
for instance by allowing for a phase in the equality above
(i.e a non-trivial representation of the permutation group).
In fact, instead of thinking of the vertex as a mere point,
we can represent the boundary of the bounded region as
a sphere and consider the little loops as living on a sphere
around it. Then the diffeomorphism invariance on the sphere
will lead to an action of the braiding group leading to in-
teresting anyonics statistics, similarly to the punctures of
a Chern-Simons theory as already explored in the case of
black holes in LQG [193].
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3. Tagged spin networks :

In this third and last scenario, we fully coarse-grain the internal
geometry of the bounded region now reduced to a graph vertex.
We discard the unfolding tree, used in the gauge-fixing and un-
fixing procedure, and we integrate out the little loops attached
to the vertex. All we retain is the closure defect induced by the
non-trivial holonomies and spins carried by those little loops.
The fact that coarse-graining spin networks, or their classical
counterpart of twisted geometries, leads to closure defect, ac-
counting for the presence of a non-trivial curvature within the
coarse-grained region was already pointed out in [159]. Here,
the simplest method to see how this comes about is to use the
intermediate spin decomposition of the intertwiner at the ver-
tices, as illustrated on fig.27, introducing a fiducial link separat-
ing the external edges from the internal loops:

InvSU(2)

[⊗
e V

je ⊗
⊗
`

(
Vj` ⊗Vj`

)]
=⊕

J InvSU(2)

[
VJ ⊗

⊗
e V
je
]
⊗ InvSU(2)

[
VJ ⊗

⊗
`

(
Vj` ⊗Vj`

)]
(252)

This spin Jv living at the vertex v encodes the closure defect

•
iv

J
•
iJv •

ĩJv

Figure 27: We represent a loopy vertex v, here with three little loops
attached to it. The intertwiner iv can be decomposed onto the interme-
diate spin basis, where we introduce a fiducial edge between the external
legs and the internal loops. This orthogonal basis is labeled by the inter-
mediate spin J, and two intertwiners iJv and ĩJv intertwining between that
intermediate spin and respectively the external legs or the internal loops.

and is the only extra information with which we decorate the
graph. We call it the tag and amounts to adding an open leg
to every vertex of the graph. This open edge is colored with
the spin Jv and a vector in that SU(2) representation. Using the
standard spin basis labeled by magnetic moment number M,
the Hilbert space of tagged spin networks on the base graph Γ is
then formally defined as:

H
tag
Γ =

⊕
{je,Jv,Mv,iv}

C|je, Jv,Mv, iv〉 , (253)
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where the intertwiner iv at the vertex v now lives in the tensor
product of the spins je3v on the external edges e attached to the
vertex and of the vertex tag Jv.

The state |Jv,Mv〉 is the quantized version of the closure defect
vector. Indeed, at the classical level, as shown in [159], the sum
of the flux-vectors living on the external edges e 3 v does not
vanish anymore and should be balanced by the sum of the flux-
vectors living on the internal loops. This defect vector means
that there is no convex polyhedron dual to the vertex, as usual
in twisted geometries. One way to go is to try to open the poly-
hedron somehow, which wouldn’t have a clear geometrical in-
terpretation. Instead we propose to interpret it as the dual con-
vex polyhedron should not be embedded in flat space but in a
(homogeneous) curved space, the curvature radius depending
on the actual value of the closure defect. Progress in this direc-
tion has been achieved in the study of hyperbolic and spheri-
cal tetrahedra [59, 70, 131] but we do not yet have an explicit
embedding and formula relating the curvature to the norm of
the defect. It would ultimately be enlightening to relate this tag
Jv to the spectrum of some quasi-local energy operator in LQG

(e.g. [240]), which would allow to view it as a measure of the
gravitational energy density within the bounded coarse-grained
region.

These three extended spin network structures are the heart of our
present proposal for studying effective truncations for the coarse-
graining of LQG. The goal would be to reformulate the dynamics of
LQG on these new structures and study their renormalisation flow
under coarse-graining. An important point is that these folded, loopy
and tagged spin networks sidestep the problem of fluctuating graph
dynamics and allow to project the whole dynamics on a fixed back-
ground graph, or skeleton, interpreted as the lattice postulated by the
observer. Note that the background lattice can then be adapted to the
studied models. We could choose a regular lattice or a much simpler
graph, such as a flower with a single vertex and an arbitrary number
of little loops. Such simple graphs could reveal useful in the study
of highly symmetric problems as is the case in cosmology or in the
study of Einstein-Rosen waves [20, 145]. In general though, we have
local excitations of the geometry, representing the internal fluctua-
tions of the gravitational field in the coarse-grained regions, living at
the graph vertices and represented by the new information attached
to them, respectively unfolding trees, little loops or tags. The use of
a background lattice, which might be regular, would simplify greatly
the setting of a systematic coarse-graining of LQG.

The folded spin networks are mathematically a simple gauge-fixing
of spin networks onto the skeleton graph. In the following sections,
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we will focus on providing a clean mathematical definition of loopy
and tagged spin networks and exploring the definition of a Fock
space of loopy spin networks with bosonic statistics for the little loops
living at every graph vertex.

11.3 projective limit proper

Here we would like to define properly loopy spin networks and in-
vestigate their properties. Choosing a fixed graph Γ with E edges, and
given numbers of little loops Nv at each vertex v, we consider the fol-
lowing space of wave-functions on SU(2)× (E+

∑
vNv) invariant under

SU(2) gauge transformations acting at every vertices:

ψ
(
{ge , hv` }e,v∈Γ

)
= ψ

(
{as(e)gea

−1
t(e) , avhv`a

−1
v }
)

, ∀av ∈ SU(2)×V .

(254)

The SU(2) gauge transformations act as usual on the edges e of the
graph, while they act by conjugation as expected on the little loops. A
basis is provided by the spin decomposition on functions in L2(SU(2))

as with standard spin networks. The loopy spin network basis states
are labeled with a spin je on each edge e, a spin kv` on each little loop
` attached to a vertex v, and an intertwiners iv at each vertex leaving
in the tensor product of the attached edges and of the loop spins:

iv ∈ InvSU(2)

[⊗
e3v

Vje ⊗
⊗
`3v

(Vk
v
` ⊗ V̄k

v
` )
]

(255)

so that the Hilbert space of loopy spin networks on the graph Γ with
given numberNv of little loops at every vertex is, as announced in the
previous section presenting the hierarchy of extended spin network
structures:

H
loopy
Γ ,{Nv}

= L2
(
SU(2)× (E+

∑
vNv) / SU(2)×V

)
=

⊕
{je,kv` ,iv}

C |je,kv` , iv〉 .

(256)

What needs to be properly defined and analyzed is the Hilbert space
of states with arbitrary number of little loops, allowing Nv to run all
over N and summing over all these possibilities. To this purpose, the
full graph structure Γ does not intervene and we can ignore it and
focus on the space of little loops around a single vertex. Thus, for the
sake of simplifying the discussion, we will focus on a single vertex
with no external, but with an arbitrary umber of little loops attached
to it. This is the flower graph.

In this section, we will assume the little loops to be distinguishable.
We define the spin network states with a given number of loops -the
flower graph with fixed number of petals- and we then discuss the
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whole Hilbert space of states with arbitrary number of excitations by
a projective limit. We define and analyze the holonomy operators act-
ing on that space and we finally implement the BF theory dynamics
on that space as a first application of our framework and a consistency
check. We will tackle the case of indistinguishable little loops in the
next chapter, imposing bosonic statistics and defining the holonomy
operator on symmetrized states.

Let us start with the flower graph with a fixed number N of petals,
that is a single vertex with N little loops attached to it as drawn on
fig.28. We are going to define the wave-functions on that graph, the
corresponding decomposition on the spin and intertwiner basis and
the action of the holonomy operators.

k2
k3

k4
k5

k1

•
I

Figure 28: We consider the class of special graph, flowers, with a single
vertex and an arbitrary number N of little loops attached to it. Here we
have drawn a flower with N = 5 petals. The spin network states on such
graphs are labeled by a spin on each loop, k`=1..N, and an intertwiner I

living in the tensor product
⊗N
`=1(V

k` ⊗ V̄k`).

Wave-functions are gauge-invariant functions of N group elements,
that is functions on SU(2)×N invariant under the global action by
conjugation:

Ψ(h1, ...,hN) = Ψ(gh1g−1, ...,ghNg−1) . (257)

The scalar product is defined by integration with respect to the Haar
measure on SU(2) and the resulting Hilbert space is:

HN = L2
(

SU(2)×N/Ad SU(2)
)

. (258)

A basis of this space is provided as usual by the spin network states,
labeled by a spin on each loop, k`=1..N ∈ N

2 , and an intertwiner I

living in the tensor product
⊗N
`=1(V

k` ⊗ V̄k`) and invariant under
the action of SU(2):

Ψ{k`,I}
(
{h`}`=1..N

)
= 〈h` |k`, I〉 = Tr

[
I⊗

N⊗
`=1

Dk`(h`)
]

, (259)

where the trace is taken over the tensor product
⊗N
`=1(V

k` ⊗ V̄k`).
To underline that each spin representation is doubled and that I is
an intertwiner between the loops around the vertex, we can dub it a
loopy intertwiner
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The holonomy operator is the basic gauge-invariant operator of
LQG. It can shift and increase the spins along the edges on which it
acts and so is used in practice as a creation operator. We define the
holonomy operators χ̂` along the loops around the vertex as acting
by multiplication on the wave-functions in the group representation:

(χ̂` .Ψ) (h1, ...,hN) = χ 1
2
(h`)Ψ(h1, ...,hN) (260)

where χ 1
2

is the trace operator in the fundamental two-dimensional
representation of SU(2). We can of course also consider holonomy
operators that wrap around several loops around the flower:

(χ̂i,j,k,l,... .Ψ) (h1, ...,hN) = χ 1
2
(hihjhkhl...)Ψ(h1, ...,hN) , (261)

where the i, j,k, l, .. indices label loops. These operators are obviously
still gauge-invariant, and we can further take the inverse or arbitrary
powers of each group element. There are two remarks we should
do about these multi-loop operators. First, they can be decomposed
as a composition of single loop operators combining both holonomy
operators and grasping operators (action of the su(2) generators as
a quantization of the flux-vectors) by iterating the following 2-loop
identity:

χ 1
2
(hihj) =

1

2

[
χ 1
2
(hi)χ 1

2
(hj) +

3∑
a=1

χ 1
2
(hiσa)χ 1

2
(hjσa)

]
, (262)

where the σa’s are the three Pauli matrices, normalized such that
their square is equal to the identity matrix. Second, if the loopy spin
network state comes from the gauge fixing of a more complicated
graph down to a single vertex, we had chosen a particular maximal
tree on that graph to define the gauge-fixing procedure. The loops
around the coarse-grained vertex correspond to the edges that didn’t
belong to the folding tree. Changing the tree actually maps the sin-
gle loop holonomies onto multi-loop holonomies [159]. So, from the
coarse-graining perspective, there is no special reason to prefer single
loops over multi-loop operators.

We would like to allow for an arbitrary number of loops N, with
possibly an infinite number of loops, and superpositions of number
of loops. We will apply the usual projective limit techniques used in
LQG. We assume here that the little loops are all distinguishable, so we
avoid all symmetrization issue. The case of indistinguishable loops
will be dealt with in the next chapter 12. We discuss the countable
infinity of loops around the vertex, so we can number them using
the integers N. The point, as with standard spin networks, is that
a state with a spin-0 on an edge does not actually depend on the
group element carried by that edge and is thus equivalent to a state
on the flower without that edge. Reversing this logic, a state built on a
finite number of loops is equivalent to a state with an arbitrary larger
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number of loops carrying a spin-0 on all the extra edges , which will
allow to define it in the projective limit as a state on the flower with
an infinite number of loops.

k2

k5

k3

k4

k1

k6

•

Figure 29: We consider a loopy spin network state with a varying number
of loops as a superposition of states with support over different loops.

Let us consider the set P<∞(N) of all finite subsets of N. A flower
with a finite number of loops corresponds to a finite subset E ∈
P<∞(N) of indices labeling its loops. Since we keep the loops dis-
tinguishable, we do not identify all the subsets with same cardinal-
ity and keep on distinguishing them. We define the Hilbert space of
gauge-invariant wave-functions on the flower corresponding to E:

HE = L2
(

SU(2)E/Ad SU(2)
)

,

Ψ({h`}`∈E) = Ψ({gh`g
−1}`∈E) ∀g ∈ SU(2) .

(263)

We would like to consider arbitrary superpositions of states with sup-
port on arbitrary subsets E of loops, but we do not wish to brutally
consider the direct sum over all E’s. We still require cylindrical consis-
tency. Indeed, a function on SU(2)E which actually does not depend
at all on the loop `0 ∈ E can legitimately be considered as a func-
tion on SU(2)E\`0 . We introduce the equivalence relation making this
explicit. For two subsets E ⊂ F, and two functions Ψ and Ψ̃ respec-
tively on SU(2)E and SU(2)F, the two wave-functions are defined as
equivalent if:

E ⊂ F , Ψ : SU(2)E → C , Ψ̃ : SU(2)F → C ,

Ψ ∼ Ψ̃ ⇔ Ψ̃({h`}`∈F) = Ψ({h`}`∈E) ,
(264)

that is the function Ψ̃ on the larger set F does not depend on the
group elements h` for ` ∈ F \ E and coincides with the function Ψ on
the smaller set E. More generally, when the two subsets E and F do
not contain one or the other, we transit trough their intersection E∩ F.

The space of wave-functions in the projective limit is defined as the
union over all subsets E of functions on SU(2)E, quotiented by this
equivalence. We similarly define the projective limit of the integra-
tion measure over SU(2). We use this measure to define the Hilbert
space Hloopy of states on the flower with an arbitrary number of loops.
All the rigorous mathematical definitions and proofs are given in the
appendix B.
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The practical way to see this Hilbert space is to use the spin net-
work basis and understand that a loop carrying a spin-0 means that
the wave-function actually does not depend on the group element liv-
ing on that loop. For every state, we can thus reduce its underlying
graph to the minimal possible one removing all the loops with trivial
dependency. Following this logic, for every subset E, we define the
space of proper states living on E, that is without any spin-0 on its
loops. This amounts to removing all possible 0-modes:

H0E =

{
Ψ ∈ HE : ∀`0 ∈ E ,

∫
SU(2)

dh`0 Ψ = 0

}
. (265)

We can decompose the Hilbert space of states on the subset E ⊂N of
loops onto proper states:

Proposition 11.3.1 The Hilbert space HE on loopy intertwiners on the set
of loops E decomposes as a direct sum of the Hilbert spaces of proper states
with support on every subset of E:

HE '
⊕
F⊂E

H0F . (266)

This isomorphism is realized through the projections fF = PE,Ff ∈ H0F,
acting on wave-functions f ∈ HE, defined for an arbitrary subset F ⊂ E:

fF
(
{h`}`∈F

)
=∑

F̃⊂F(−1)
#F̃
∫∏

`∈E\F dg`
∏
`∈F̃ dk` f

(
{h`}`∈F\F̃, {k`}`∈F̃, {g`}`∈E\F

)
.

(267)

These projections realize a combinatorial transform of the state f ∈ HE:

f =
∑
F⊂E

fF , fF ∈ H0F , ∀` ∈ F ,
∫

dh` fF = 0 . (268)

This decomposition is straightforward to prove. It will also be crucial
in the case of indistinguishable loops and symmetrized states, as we
will see in the next section 12. Then, as we show in the appendix
B, the Hilbert space of loopy spin networks on the flower, with an
arbitrary number of distinguishable loops, defined as the projective
limit of the Hilbert spaces HE is realized as the direct sum of those
spaces of proper states:

Hloopy '
⊕

F∈P<∞(N)

H0F , H0F =
⊕

j`∈F 6=0,I

C|j`∈F, I〉 . (269)

We can revisit the definition of the holonomy operators on our
Hilbert space H of states with arbitrary number of loops. In order
to identify a complete set of operators acting on the Hilbert space
Hloopy, we should further consider multi-loops holonomy operators
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or grasping operators or deformation operators such as U(N) oper-
ators [66], but in the first exploration we propose, in this paper, we
decide to focus on the single-loop holonomy operator. Let us consider
the loop `0 ∈N and define the corresponding holonomy operator χ̂`0 .
Looking at its action on a state Ψ with finite number of loops living
in the Hilbert space HE, we have two possibilities: either the loop `0
belongs to the subset E or it doesn’t. If the acting loop `0 is already a
loop of our state Ψ, then the holonomy operator acts on as before by
multiplication:

`0 ∈ E , Ψ ∈ HE , χ̂`0 Ψ ∈ HE ,

(χ̂`0Ψ) ({h`}`∈E) = χ 1
2
(h`0)Ψ ({h`}`∈E) .

(270)

If the acting loop doesn’t belong to the initial subset E, we use the
cylindrical consistency equivalence relation and we embed both the
new loop and the initial loops in a larger graph, say E∪ {`0},

`0 /∈ E , Ψ ∈ HE , χ̂`0 Ψ ∈ HE∪{`0} ,

(χ̂`0Ψ) ({h`}`∈E) = χ 1
2
(h`0)Ψ ({h`}`∈E) ,

(271)

with the holonomy operator χ̂`0 acting as a creation operator, creating
a new loop and curvature excitation. Since the SU(2) character χ 1

2
is

real and bounded by two, |χ 1
2
| 6 2, we can check that the holonomy

operators χ̂` are Hermitian, bounded and thus essentially self-adjoint.
The holonomy operator χ̂` is Hermitian and has a component act-

ing as a creation operator. It must have an annihilation counterpart.
The best way to see this explicitly is to write its action on proper states,
consistently removing the zero-modes. Indeed, if a loop carries a spin
1
2 , then it gets partly annihilated by the holonomy operator:

`0 ∈ E , Ψ ∈ H0E , χ̂`0 Ψ ∈ H0E ⊕H0E\{`0} ,

(χ̂`0Ψ) ({h`}`∈E) =

[
χ 1
2
(h`0)Ψ ({h`}`∈E) −

∫
dh`0χ 1

2
(h`0)Ψ ({h`}`∈E)

]
︸ ︷︷ ︸

∈H0
E

+

[ ∫
dh`0χ 1

2
(h`0)Ψ ({h`}`∈E)

]
︸ ︷︷ ︸

∈H0
E\{`0}

.

(272)

This way, it is clear that the holonomy operator χ̂`0 creates transition
adding and removing one loop. This proper state decomposition of
the holonomy operator will become essential when defining it on the
Fock space of symmetrized loopy spin networks in the next chapter.
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In this chapter, we have introduced the concept of loopy spin net-
work. They are generalization of spin networks with the extra possi-
bility of having local excitations at vertices of the graph. This frame-
work is particularly well-suited in the context of coarse-graining and
is especially designed for the application of coarse-graining by gauge-
fixing as advertised in chapter 7. In this chapter, we had a first survey
of the structure of loopy spin networks, by defining them properly
(using projective limits techniques) and by considering various oper-
ators on them.

But, in the context of coarse-graining, we should hope for the defi-
nition of a clever cut-off between scales. This is what we will consider
in the next chapter: in the context of loopy spin networks, what cut-
offs are natural for the description of local excitations?
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B O S O N I C S L O O P S A N D VA R I O U S C U T- O F F S

You should always waste time when you
don’t have any. Time is not the boss of you. Rule
408. — The Doctor

In the previous chapter, we introduced loopy spin networks as a nat-
ural structure appearing when coarse-graining spin networks which
are the natural states of LQG. But we have not considered the issue
of introducing cut-offs. To be clear, in this context, cut-offs are not
necessarily linked to energy scales or even distance scales but consist
in a truncation of the degrees of freedom down to the relevant one
for some description. In this chapter, we will consider two natural
cut-offs of the previous construction: imposing bosonic statistics on
the loops, making them indistinguishable, and removing them, keep-
ing only the closure defect. Note that this chapter is mainly technical,
focusing on the subtleties of such a procedure and consist in an ex-
ploration of the natural data and operators on such spaces.

The first idea of bosonics loops leads to a symmetrized space. The
space of loops will naturally gt a structure close to that of Fock spaces
(with a few subtleties) and will therefore describe a background skele-
ton graph with indistinguishable little loops living at its vertices.
From the perspective of coarse-graining, the little loops represent cur-
vature excitations within the bounded region coarse-grained to a sin-
gle vertex. This symmetrization can be understood as follows: as we
do not know the unfolding tree of a given vertex, we should not priv-
ileged one loop over the other. It should be more or less impossible to
distinguish between loops corresponding to different spatial position:
incoming energy at the vertex would then equally excite any of those
loops, irrespective to their a priori different localization on the inter-
nal subgraph that we coarse-grained. This is the rationale behind the
symmetrization. A second idea will be explored by the end of this
chapter, it is that of tagged spin networks. The idea is to remove as
much data as we can (from a kinematical perspective) and only keep
the closure defect in order to preserve gauge-invariance.

The main difficulty in this chapter won’t be the definition of the
spaces themselves. In fact, it will be the definition of various opera-
tors, in particular symmetric operators well-suited for these spaces,
that will be the focus making the present chapter quite technical.
We will define natural symmetrized holonomy operators as well as
flux operators. Though, the question will be much simpler, we will
also study natural operators for tagged spin networks. The space of

179
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bosonic loops will still have subtleties of its own. The difficulty re-
side in the compatibility of the symmetrization with the cylindrical
consistency. Indeed, a little loop carrying a spin-0 is considering as
a non-existing loop, and vice-versa. We must therefore be careful in
our symmetrization process not to include these non-existent loops
which will, by nature, always outnumber the non-zero spin excita-
tions. We would have to update the definition of the symmetrization
to take this new fact into account. Here, we will show how to system-
atically subtract the 0-modes components of the loopy spin network
states, symmetrize over non-trivial little loops and define an appro-
priate holonomy operator acting on symmetrized states. A resulting
subtlety is that we will be led to distinguish three components of the
holonomy operator, that respectively conserves the number of loops,
acts as a creation operator adding one little loop or as an annihila-
tion operator removing a loop. The parallel with a Fock space will
therefore be quite apparent.

This chapter is taken from our published work [72]. In the first
three sections, we will concentrate on bosonic loops defining in suc-
cession: the space itself, (symmetrized) holonomy operators and flux
operators. In the final section, we will present tagged spin network
and the associated operators.

12.1 symmetrization, proper

We would like to define symmetrized loopy intertwiner states in
Hloopy. A direct way would be to work directly on states with an
arbitrary number of loops. We would use an extension of the finite
symmetry groups Sn to the group of permutations of integers which
only act non-trivially on a finite subset:

S∞ = {f : N→N, f bijective and ∃n ∈N, ∀m > n, f(m) = m} .

We would use the canonical action of S∞ on the Hilbert spaces of
loopy spin networks HE with finite number of loops:

σ : HE → Hσ(E) , (σ . f)({hei}) = f({hσ−1(ei)
}) .

This action is compatible with the cylindrical consistency conditions
and naturally extends to the projective limit. However, requiring in-
variance of states |Ψ〉 ∈ Hloopy under permutations, ∀σ ∈ S∞, σ. |Ψ〉 =
|Ψ〉, only provides non-normalizable states. This forces us to work on
the dual space to define symmetrized states and creates unnecessary
technicalities for our present purpose. So we follow a more construc-
tive approach and work with finite number of loops, symmetrize and
then allow for varying number of loops.

We start from the definition of the loopy states in terms of proper
states, Hloopy =

⊕
E∈P<∞(N)H

0
E. This decomposition has removed all
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spin-0 and avoids all of the redundancies due to the cylindrical con-
sistency. We can now symmetrize the states. For each number of loops
N, we consider gauge-invariant wave-functions, symmetric under the
exchange of the N loops and such that no loop carries a vanishing
spin. The full symmetrized Hilbert space Hsym will then be the direct
sum over N of all the finite symmetrized states.

Let us realize this programme explicitly. We start with the Hilbert
space H

sym
N of wave-functions, f ∈ L2(SU(2)×N), gauge-invariant and

symmetrized on N loops:

∀k ∈ SU(2), f(h1, ...,hN) = f(kh1k−1, ...,khNk−1) ,

∀σ ∈ SN, f(h1, ...,hN) = f(hσ(1), ...,hσ(N)) . (273)

We define the subspace of proper states, removing the 0 mode:

H0N =

{
f ∈ H

sym
N :

∫
dh1 f(h1, ...,hN) = 0

}
. (274)

We only need to impose one integration condition, since the function
is invariant under permutation of its arguments. We have a simpli-
fied version of the decomposition onto proper states given in lemma
11.3.1:

Lemma 12.1.1 The Hilbert space of symmetrized states on N loops decom-
poses as a direct sum of the Hilbert spaces of proper symmetrized states on
at most N loops:

H
sym
N =

N⊕
n=0

H0n . (275)

This isomorphism is realized through a combinatorial transform of the wave-
functions:

∀f ∈ H
sym
N , f =

N∑
n=0

∑
16i1<..<in6N

fn
(
hi1 , ..,hin

)
, fn ∈ H0n (276)

fn(h1, ..,hn) =
∑n
m=0(−1)

n−m
∫∏n

i=m+1 dki
∏N
i=n+1 dgi

×
∑
16i1<..<im6n f

(
hi1 , ..,him ,km+1, ..,kn−m,gn+1, ..,gN

)
.

(277)

The scalar product is given by the integration with respect to the Haar mea-
sure. The integral condition (absence of 0-mode) for the proper states implies
that two proper states with different support are immediately orthogonal:

∀f, f̃ ∈ H
sym
N , 〈f|f̃〉N =

∫∏N
i=1 dhi f(h1, ..,hN) f̃(h1, ..,hN)

=
∑N
n=0

(
N

n

)
〈fn|f̃n〉n .

(278)
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In the resummation formula (276) above, the sum over labels 1 6 i1 <
.. < in 6 N corresponds to the sum over all subsets with n elements
-or n-uplets- among the first N integers {1, ..,N}. And the injection of
the proper state Hilbert space H0n in the larger symmetrized space
H

sym
N requires this sum over all possible choices of n-uplets. This

leads to the binomial coefficient in the scalar product formula (278).
This is a clear remnant of having distinguishable loops. Once the little
loops are assumed to be bosonic and fully indistinguishable, there is
no reason to distinguish a state fn(ha1 , ..,han) from fn(hb1 , ..,hbn)
with different choice of n-uplets.

Therefore, to define bosonic states in the projective limit N → ∞,
we will keep the decomposition as a direct sum of vector spaces
H

sym
N =

⊕N
n=0H

0
n defining the tower of symmetrized states, but we

will modify the scalar product to remove its dependence on N and
make it compatible with the projective limit:

〈f|f̃〉bosonic
N =

N∑
n=0

〈fn|f̃n〉n . (279)

This is achieved by simply including the symmetrizing factor in the
definition of the injection IN,N+1 : H

sym
N ↪→ H

sym
N+1 of wave-functions

of N loops seen as wave-functions of (N+ 1) loops:

f ∈ H
sym
N 7→ IN,N+1f ∈ H

sym
N+1 ,(

IN,N+1f
)
(h1, ..,hN+1) = 1

N+1

∑N+1
i=1 f(h1, .., ĥi, ..,hN+1) ,

(280)

where the element ĥi means that we omit it from the list of arguments.
This generalizes to injections H

sym
N ↪→ H

sym
N+p using the binomial coef-

ficients:

f ∈ H
sym
N 7→ IN,N+pf ∈ H

sym
N+p ,

(
IN,N+pf

)
(h1, ..,hN+p) =(

N+ p

N

)−1 ∑
16i1<..<iN6N+p f(hi1 , ..,hiN) .

(281)

These factors compensate the binomial factors from the scalar product
formula (278). As we will see a little bit further, this scalar product
〈f|f̃〉bosonic

N on symmetric states is the one which makes the holonomy
operator(s) Hermitian. Then we can define the Fock space of loopy
spin networks with bosonic little loop excitations.

Definition 12.1.2 The full Fock space of symmetrized loop states is defined
as the projective limit of the Hilbert spaces Hsym

N , endowed with the bosonic
scalar product (279), which amounts to the direct sum of the spaces of proper
states:

Hsym ≡
⊕
N∈N

H0N , ∀f, f̃ ∈ Hsym , 〈f|f̃〉 =
∞∑
N=0

〈fN|f̃N〉 . (282)
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This describes bosonic excitations of the holonomy at each vertex of
the base graph for the loopy spin network states. This Fock space of
little loops at a vertex have states for an arbitrary number of indis-
tinguishable loops, that can be created and annihilated, each of them
carrying a spin j` ∈ N/2 encoding the corresponding excitation of
the geometry (area quanta). The spin carried by a loop is similar to
the momentum carried by a particle. One must nevertheless keep in
mind two differences with the usual Fock space construction used in
standard quantum field theory:

• 0-modes are pure gauge: First, we have implemented explicitly the
cylindrical consistency requirement in the definition of the Fock
space of loopy spin networks. A little loop carrying a spin-0 is
identified to a vanishing excitation, i.e. a non-existing loop, so
we have systematically removed them using proper states. This
is similar to removing particle states with 0-momentum.

• Non-trivial intertwiner structure: Second, for a given number of
loops carrying some given spins, the loopy spin network state
still contains more information: the state requires the data of
an intertwiner linking all these little loops together (and to the
external legs of the vertex). Each time we create a loop, the inter-
twiner space at the vertex is further enlarged. This extra struc-
ture implies that factorized states do not constitute a basis of
the Fock space of loopy intertwiners.

After describing factorized states below, we will define the holonomy
operators acting on the Fock space of symmetrized states and show
how they shift the number of loops and become the basic creation
and annihilation operators.

It is interesting to check how factorized state, with no correlations
between the loops, get decomposed onto proper states. Let us con-
sider a integrable function ϕ on SU(2). We assume it to be invari-
ant under conjugation, so that it can be decomposed over the SU(2)-
characters for all spins:

∀h,g ∈ SU(2) , ϕ(h) = ϕ(ghg−1) , ϕ(h) =
∑
j∈N

2

ϕjχj(h) . (283)
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We consider the N-loop symmetric state ϕ⊗N and check its proper
state decomposition by the combinatorial formula given above in the
lemma 12.1.1:

ϕ⊗N0 =

(∫
ϕ

)N
= ϕN0 , (284)

ϕ⊗N1 (h) = ϕN−1
0

[
ϕ(h) −ϕ0

]
,

ϕ⊗N2 (h1,h2) = ϕN−2
0

[
ϕ(h1)ϕ(h2) −ϕ0ϕ(h1) −ϕ0ϕ(h2) +ϕ

2
0

]
= ϕN−2

0

[
ϕ(h1) −ϕ0

][
ϕ(h2) −ϕ0

]
,

ϕ⊗Nn (h1, ..,hn) = ϕN−n
0

n∑
m=0

(−1)n−m
∑

16i1<..<im6n

ϕn−m0 ϕ(hi1)..ϕ(him)

= ϕN−n
0

n∏
i=1

[
ϕ(hi) −ϕ0

]
.

We can check the scalar product formula (278):( ∫
|ϕ|2

)N
=

(
|ϕ0|

2 +
∫ ∣∣ϕ−ϕ0

∣∣2)N
=
∑N
n

(
N

n

)
|ϕ|
2(N−n)
0

( ∫ ∣∣ϕ−ϕ0
∣∣2)n

=
∑N
n

(
N

n

) ∫ ∣∣ϕ⊗Nn ∣∣2
First, we notice that the proper state projections are still factorized.

We are merely consistently removing the spin-0 component from all
the loops, without creating any correlation during the process. Sec-
ond, if we normalize the one-loop wave-function ϕ0 =

∫
ϕ = 1, then

the projections of the factorized state do not depend anymore on the
number of loopsN and we can take the projective limit. We can define
a factorized state ϕ⊗∞ with support on an infinite number of loops
by taking the limit N → ∞. We define its components, dropping the
useless∞ label:

ϕ = 1+ ϕ̃ ,
∫
ϕ̃ = 0 , ϕ0 = 1 , ϕn = ϕ̃⊗n . (285)

We can for instance apply this to the δ-distribution and define the flat
holonomy state in our Fock space of symmetrized states:

δ̃ = δ− 1 =
∑
j6=0

(2j+ 1)χj , δ0 = 1 , δn = δ̃⊗n . (286)

12.2 holonomy operators on the symmetrized space

Now that we have defined the Fock space of loopy intertwiners, we
would like to have the basic operators creating and annihilating loop
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excitations. This is naturally achieved by the (one-loop) holonomy
operator. We start, as in the case of distinguishable loops, with mul-
tiplying wave-functions by the spin-12 character χ(h`) applied to the
group element h` living on a little loop `. Then we will to distinguish
three cases: the loop ` does not belong the existing loops and the op-
erator creates a new loop, or the loop ` is already excited, in which
case it can act on a spin-12 excitation and actually annihilate the loop,
or the operator will generically act on all other spin excitations by
simple multiplication. This leads us to defining three components of
the holonomy operator χ̂ acting on symmetrized states:

Definition 12.2.1 We define three operators A, Ã,B acting on the Fock
space of symmetrized loopy intertwiners Hsym. They act on an arbitrary
state (fN)N∈N as:

(Af)N(h1, ..,hN) =

∫
dkχ 1

2
(k) fN+1(h1, ..,hN,k) , (287)

(Bf)0 = 2f0 , ∀N > 0 , (Bf)N(h1, ..,hN) =

1
N

∑N
i=1

[
χ 1
2
(hi)fN(h1, ..,hN) −

∫
dki χ 1

2
(ki) fN(h1, ..,ki, ..,hN)

]
(288)

(Ãf)0 = 0 , ∀N > 0 , (Ãf)N(h1, ..,hN) =
1
N

∑N
i=1 χ 1

2
(hi)fN−1(h1, .., ĥi, ..,hN)

(289)

The operator B is the usual action of the holonomy operator by multiplication
by the character up to the subtraction of the resulting spin-0 component. The
operatorA is the annihilation operator, removing one loop, while the operator
Ã creates a new loop. We have the following relations on Hsym:

Ã = A† , B = B† . (290)

Finally the one-loop holonomy operator for spin 1
2 is defined as the sum of

these three components and is self-adjoint:

χ̂ 1
2
≡ 1

2

(
A+ Ã+B

)
. (291)

The convention (Bf)0 = 2f0 follows the logic that the 0-component f0,
with no loop, represents by default a flat holonomy and thus should
be multiplied by χ 1

2
(I) = 2. Here is the proof for the Hermicity rela-

tions:

Proof 12.2.2 We compare the action of A and Ã:

〈φ|Aψ〉 =
∑
N∈N

∫
[dhi]Ni=1dkχ 1

2
(k)φN(h1, ..,hN)ψN+1(h1, ..,hN,k) ,
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〈Ãφ|ψ〉 =∑
N>0

∫
[dhi]Ni=1

1
N

∑N
i=1 χ 1

2
(hi)φN−1(h1, .., ĥi, ..,hN)ψN(h1, ..,hN) .

We shift the sum over N in 〈Ãφ |ψ〉 and we use the invariance of ψN
under permutation of its arguments to conclude that these two expressions
coincides, 〈φ|Aψ〉 = 〈Ãφ|ψ〉. As for the operator B, we compute:

〈φ|Bψ〉 =
2φ0ψ0 +

∑
N>0

∫
[dhi]Ni=1

1
N

∑N
i χ 1

2
(hi)φN(h1, ..,hN)ψN(h1, ..,hN)

−
∫
[dhi]Ni=1

1
N

∑N
i

∫
dki χ 1

2
(ki)φN(h1, ..,hi, ..,hN)ψN(h1, ..,ki, ..,hN) .

The last term vanishes due to the absence of 0-mode,
∫

dhiφN = 0. This
ensures that 〈φ|Bψ〉 = 〈Bφ|ψ〉 and thus B is a Hermitian operator.

To ensure that the operators A and B are well-defined and that the
holonomy operator χ̂ 1

2
is self-adjoint, it is enough to check that it is

bounded. And we show below that it is indeed bounded by 2 as in
the usual framework.

Lemma 12.2.3 The two parts of the holonomy operators are both bounded
by 2, that is for all states φ ∈ Hsym, we have the two inequalities:

|〈φ| (A+ Ã) |φ〉| 6 2〈φ|φ〉 , |〈φ|B|φ〉| 6 2〈φ|φ〉 . (292)

This ensures that they are both self-adjoint. The holonomy operator χ̂ 1
2

is
then also bounded by 2 and self-adjoint.

Proof 12.2.4 Let us start with the operator B. The analysis is simpler since
it doesn’t shift the number of loops:

〈φ|B|φ〉 = 2|φ0|2 +
∑
N>0 BN ,

BN = 1
N

∑N
i

∫
[dhi]Ni=1χ 1

2
(hi)φN(h1, ..,hN)φN(h1, ..,hN) .

The extra term in the action of B on the state φ vanishes as earlier due to
the integral condition on proper states,

∫
dhiφN = 0 for all i’s. Since the

character χ 1
2

is bounded by 2, it is direct to conclude:

|BN| 6
2
N

∑N
i

∫
|φN|

2 = 2
∫
|φN|

2 ,

〈φ|B|φ〉 6 2|φ0|2 + 2
∑
N>0

∫
|φN|

2 = 2〈φ|φ〉 .

We can proceed similarly with the operator A+ Ã:

〈φ| (A+ Ã) |φ〉 = 〈φ|A|φ〉+ 〈φ|A†|φ〉 = 〈φ|A|φ〉+ 〈φ|A|φ〉 ,
|〈φ| (A+ Ã) |φ〉| 6 2|〈φ|A|φ〉| ,

〈φ|A|φ〉 =
∑
NAN ,

AN =
∫∏N

i=1 dhi dkχ 1
2
(k)φN(h1, ..,hN)φN+1(h1, ..,hN,k)

(293)
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As long as the components φN’s are square-integrable, we can use the
Cauchy-Schwarz inequality to bound these integrals:

|AN| 6
√∫∏N

i dhi dkχ 1
2
(k)2

∣∣φN(h1, ..,hN)
∣∣2

×
√∫∏N

i dhi dk
∣∣φN+1(h1, ..,hN,k)

∣∣2 .

We use that the SU(2) character is normalized,
∫
χ21
2

= 1, and then apply

the inequality bounding a product ab 6 (a2 + b2)/2:

|AN| 6
1
2

∫∏N
i dhi

∣∣φN(h1, ..,hN)
∣∣2

+ 1
2

∫∏N
i dhi dk

∣∣φN+1(h1, ..,hN,k)
∣∣2

= 1
2

[
〈φN|φN〉+ 〈φN+1|φN+1〉

]
.

(294)

Summing overN ∈N, this allows us to conclude that |〈φ|A|φ〉| 6 〈φ|φ〉−
1
2 |φ0|

2 6 〈φ|φ〉 and thus reproduces the expected bound |〈φ| (A+ Ã) |φ〉|2 6
2〈φ|φ〉.

Although we consider the holonomy operator χ̂ 1
2

to be the aver-

aged sum of the two self-adjoint components (A+A†) and B, each of
these is a legitimate operator in itself. We could push this logic fur-
ther and state that we have defined two different holonomy operators,
on the one hand, a holonomy operator (A+A†) that acts as a ladder
operator, creating and annihilating loops, and on the other hand, a
holonomy operator B which acts as spin shifts on existing loops (i.e.
modifies the area quanta carried by each loop).

The important consistency check, which will be essential for the
analysis of the BF theory dynamics, is that the flat state is an eigen-
vector of the one-loop holonomy operator:

Proposition 12.2.5 The flat state δ, defined in (286) by its proper state
projections, δ0 = 1 and δN = (δ− 1)⊗N for N > 1, is an eigenvector of
the spin-12 one-loop holonomy operator χ̂ 1

2
with the highest eigenvalue on

Hsym:

χ̂ 1
2
|δ〉 = 2 |δ〉 . (295)

This distributional flat state is also an eigenvector of the loop annihilation
operator A and of the loop creation operator (B+A†):

A|δ〉 = (B+A†)|δ〉 = 2 |δ〉 . (296)

Proof 12.2.6 We compute the action of the three parts of the holonomy op-
erators acting on the flat state defined explicitly as

δ0 = 1 , δN(h1, ..,hN) =
N∏
i

[
δ(hi) − 1

]
.
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For the no-loop component, we get:

(Aδ)0 =

∫
dkχ 1

2
(k)
[
δ(k) − 1

]
= 2 , (A†δ)0 = 0 , (Bδ)0 = 2 ,

while we compute for all other components:

(Aδ)N(h1, ..,hN) = 2

N∏
i

[
δ(hi) − 1

]
= 2δN(h1, ..,hN) (297)

(A†δ)N(h1, ..,hN) =
1

N

N∑
i

χ 1
2
(hi)

N∏
` 6=i

[
δ(h`) − 1

]
(298)

(Bδ)N(h1, ..,hN) = 2

N∏
i

[
δ(hi) − 1

]
(299)

−
1

N

N∑
i

χ 1
2
(hi)

N∏
` 6=i

[
δ(h`) − 1

]
Adding these three contributions, we get as expected for all number of loops
(χ̂ 1

2
δ)N = 2δN.

Since we have three operators built in the holonomy operator, it is
natural to investigate their commutation algebra. It actually involves
higher spin operators. We generalize the definition of the operators
A, A† and B to arbitrary spins: one simply replaces in their defini-
tion 12.2.1 the character in the fundamental representation χ 1

2
by the

higher spin character χj for any j ∈N∗/2, thus producing new opera-
tors Aj annihilating a loop excitation of spin j, A†j creating a new loop
carrying a spin j and Bj acting with a spin j excitation on an existing
loop.

Then acting on a an arbitrary state f, we get:

(ABf)N =
N

N+ 1
(BAf)N +

1

N+ 1
(A1f)N ,

(BA†f)N =
N− 1

N
(A†Bf)N +

1

N
(A†1f)N ,

(AA†f)N =
N

N+ 1
(A†Af)N +

1

N+ 1
fN .

Remembering that the number of loops N is not constant on the Fock
space of loopy intertwiners and should be treated as an operator N̂,
these translate into commutation relations, being careful about the
operator ordering:

N̂B = BN̂ , (N̂+ 1)A = AN̂ , N̂A† = A†(N̂+ 1) , (300)

ABN̂ = N̂BA+A1 , N̂BA† = A†BN̂+A†1 ,

AN̂A† = I +A†AN̂ = I + N̂A†A .
(301)
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These generalize to the whole tower of higher spin operators, for all
spins a,b ∈ N∗

2 :

AaBbN̂ = N̂BbAa +Aa⊗b , N̂BbA
†
a = A†aBbN̂+A†a⊗b ,

AaN̂A
†
b = δabI +A†bAaN̂ = δabI + N̂A†bAa ,

(302)

where we use the (natural) convention of the tensor product of spins
for the annihilation operator:

Aa⊗b ≡
a+b∑

c=|a−b|

Ac . (303)

We give the last commutation relation:

N̂ [Ba,Bb] = A
†
bAa −A

†
aAb . (304)

We can combine these higher spin creation and annihilation oper-
ators to define a spin-j holonomy operator χ̂j as the average sum of
those operators as for the fundamental representation:

χ̂j =
1

2

(
Aj +A

†
j +Bj

)
. (305)

This rather natural definition unfortunately doesn’t ensure that the
operators χ̂j’s for different spins j’s commute with each other. Using
the algebra computed above, the commutator of two holonomy op-
erators χ̂a and χ̂b actually looks like a mess. Nevertheless we can
simplify the expressions by introducing suitable number of loops fac-
tors. Inserting the operator N̂ in the character, we find:

[
N̂χ̂a, N̂χ̂b

]
=
N̂

2
(A†bAa −A

†
aAb) =

N̂2

2
[Ba,Bb] . (306)

This combination N̂χ̂a isn’t Hermitian, but this can be easily reme-
died to by considering

√
N̂χ̂a

√
N̂ instead. This commutator doesn’t

vanish, but we can easily find other combinations of the creation and
annihilation operators that do:[

N̂(Ba +A
†
a −Aa), N̂(Bb +A

†
b −Ab)

]
= 0 . (307)

This suggests using the operators Aa and (Ba +A†a) as more funda-
mental as the holonomy operators. Although they are not Hermitian,
the flat state is an eigenvector of both operators and we will exploit
this fact in defining flatness constraints for BF theory in the following
section 13.5.

The other way to proceed to defining higher spin holonomy opera-
tors is to reproduce the classical algebra of the SU(2) characters. For
instance, a spin-1 is obtained from the tensor product of two spin-12
representations:

χ1(h) = χ 1
2
(h)2 − 1 .
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We propose to promote these relations to the quantum level:

χ̂ full
1 ≡ χ̂21

2

−1 =
1

4

[
A2+AB+BA+AA†+A†A+B2+A†B+BA†+A†2

]
−1 .

(308)

This new spin-1 holonomy operator is already a multi-loop operator:
it has a component A2 annihilating two loops and its adjoint compo-
nent A†2 creating two loops, and so on. We then define all the other
spin-j holonomy operators by recursion as polynomials of the funda-
mental χ̂ 1

2
operator:

χ41
2

= χ2 + 3χ1 + 2 ⇒ χ̂ full
2 ≡ χ̂41

2

− 3χ̂21
2

+ 1 , . . . (309)

and so on with χ̂ full
j constructed from χ̂

2j
1
2

and smaller powers. This

construction clearly ensures that all the holonomy operators com-
mute with each other. This method closely intertwines the definition
of higher spin operators with multi-loop holonomies. These multi-
loop operators create spins 12 (and then higher spins too) excitations
on several loops at once.

12.3 flux operators

To conclude the exploration of the basic LQG operators, we should
also deal with the symmetrized flux operators (and scalar products)
with the su(2) generators acting as derivations on the wave-functions,
and check their commutation relations with our new holonomy oper-
ators. The flux and grasping operators are especially important since
they allow to explore the intertwiner structure at the vertices. Indeed,
acting with one-loop holonomy operators will only create decoupled
loops at the vertex, while a generic intertwiner will couple them. So,
even though we postpone the detailed analysis of the action of flux
operators on loopy spin network to future investigation, we discuss
below multi-loop holonomy operators that allow for coupled loops
and thus explore the space of (loopy) intertwiners at the vertex.

For instance, considering two loops with group elements h1 and h2,
we would like to excite the overall holonomy instead of the two inde-
pendent holonomies, that is act with χ(h1h2) instead of χ(h1)χ(h2).
Proceeding similarly to the one-loop holonomy operator, we define
a two-loop holonomy operator χ̂(2)1

2

, which creates and annihilates

pairs of coupled loops:

Definition 12.3.1 We define the following five operators C−2,−1,0,+1,+2

on the Fock space of symmetrized loopy intertwiners Hsym. They act on an
arbitrary state (fN)N∈N as:

(C−2f)N(h1, ..,hN) =

∫
dkdkχ 1

2
(kk̃) fN+2(h1,hN,k, k̃) (310)
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(C−1f)N(h1, ..,hN) = 1
N

∑N
i

[ ∫
dkχ 1

2
(khi) fN+1(h1, ..,hN,k)

−
∫

dkdki χ 1
2
(kki) fN+1(h1, ..,ki, ..,hN,k)

]
(311)

(C0f)N(h1, ..,hN) =
2

N(N− 1)

N∑
i<j

[
χ 1
2
(hihj)fN(h1, ..,hN)

+

∫
dkidkj χ 1

2
(kikj) fN(h1, ..,ki, ..,kj, ..,hN)

−

∫
dki χ 1

2
(kihj) fN(h1, ..,ki, ..,hN)

−

∫
dki χ 1

2
(hikj) fN(h1, ..,kj, ..,hN)

]
(312)

(C+1f)N(h1, ..,hN) = 1
N(N−1)

∑N
i 6=j

[
χ 1
2
(hihj)fN−1(h1, .., ĥi, ..,hN)

−
∫

dkj χ 1
2
(hikj)fN−1(h1, .., ĥi, ..,kj, ..,hN)

]
(313)

(C+2f)N(h1, ..,hN) =
2

N(N− 1)

N∑
i<j

χ 1
2
(hihj)fN−2(h1, .., ĥi, .., ĥj, ..,hN)

(314)

We complete this definition with the “initial conditions” for N = 0 and
N = 1:

(C−1f)0 =

∫
χ 1
2
f1 , (C0f)0 = 2f0 , (C+1f)0 = (C+2f)0 = 0 , (315)

(C0f)1(h) = χ 1
2
(h)f1(h) −

∫
χ 1
2
f1 , (C+1f)1(h) = χ 1

2
(h)f0 ,

(C+2f)0 = 0 .
(316)

They satisfy the Hermicity relations:

C−2 = C
†
2 , C−1 = C

†
1 , C0 = C

†
0 , (317)

and the bounds for the L2-norm:

||C−2 +C+2||2 6 2 , ||C−1 +C+1||2 6 2 , ||C0||2 6 2 . (318)
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Finally the two-loop holonomy operator χ̂(2)1
2

for spin 1
2 is defined as the sum

of these five components:

χ̂
(2)
1
2

≡ 1

4

(
C−2 + 2C−1 +C0 + 2C+1 +C+2

)
. (319)

This operator is essentially self-adjoint and bounded by 2.

So the spectrum of the two-loop holonomy operator is once again
bounded by 2. An important consistency check is that this bound is
saturated by the flat state. The proof is a straightforward computation,
with special care to the initial conditions for N = 0 and N = 1.

Proposition 12.3.2 The flat state δ, defined by δ0 = 1 and δN>1 = (δ−

1)⊗N, is an eigenvector of the spin-12 two-loop holonomy operator χ̂(2)1
2

with
the highest eigenvalue on Hsym:

χ̂
(2)
1
2

|δ〉 = 2 |δ〉 . (320)

We could then similarly define an operator χ(hih−1j ) with a loop
reversal or multi-loop operators χ(hi1 ..hin) taking care of properly
symmetrizing the group elements. We can also generalize our con-
struction replacing the spin-12 character by an arbitrary spin j and de-
fine the spin-j two-loop holonomy operator χ̂(2)j , and so on for more
loops. We will not go into these details, although we do not foresee
any obstacle (beside the inflation of indices and sums).

12.4 a word on tagged spin network

In our published work [72], we considered another possibility: tagged
spin network. After folded spin networks, which retains the internal
combinatorial structure inside coarse-grained regions, and loopy spin
networks, which keep local curvature excitations as little loops at-
tached to the vertices of the base graph and which we have explored
in great details in the previous sections, this last structure only keeps
the curvature defect. We will spend this last section briefly describing
them.

When integrating out the connection group elements inside a bounded
region, as discussed in [33, 86, 159], and coarse-graining the region to
a single vertex, we naturally break the local gauge invariance at the
resulting coarse-grained vertex. This also happens as soon as we in-
troduce fermionic matter fields, which act as sources for LQG’s Gauss
law and thus create non-trivial closure defects. At the classical level,
this is reflected by a non-vanishing closure defect: the sum of the flux
vectors around the effective vertex does not vanish anymore and is ac-
tually balanced by the internal fluxes living on the loops living inside
the bounded region and carrying non-trivial holonomies. Overall, the
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gauge invariance is restored if we take into account the internal de-
grees of freedom of the region however, once we have coarse-grained
it, the breaking of the gauge invariance reflects the geometry excita-
tions which have developed in the region’s bulk and which we have
traced out. At the quantum level, the closure defect becomes a tag,
attached to each vertex, as drawn on fig.30. This internal degree of
freedom is defined as an extra spin coupling to the actual spin living
on the links and edges attached to the effective vertex and connecting
the coarse-grained region to its exterior. This tag allows to relax the
gauge invariance in a controlled way.

Mathematically, we are thus led to consider the whole space of non-
gauge-invariant cylindrical functionals of the connection on a given
fixed background graph Γ . The tagged spin networks will provide a
basis of that space, with the tags record how much the local gauge-
invariance is broken: when the tags vanish, we recover the usual
gauge-invariant spin network basis states. This allows to account for
graph changing dynamics in an effective manner. Even though the
graph changes and might get more complex as the geometry evolves,
we keep on coarse-graining the state projecting it onto the fixed base
graph (chosen by the observer), then the internal degrees of free-
dom and non-trivial curvature developed inside the coarse-grained
regions gets translated into excitations of the effective tag degree of
freedom attached to the base graph vertices.

The space of tagged spin networks is naturally quite simple and we
believe it offers a useful framework for the study of coarse-graining
of the LQG dynamics.

j1 j2

j3j4

j,m

•
i

Figure 30: We consider tagged vertices: a vertex with the additional tag
corresponding to a closure defect. The representations j1, .., j4 living on
the graph edges linked to the vertex do not form an intertwiner on their

own, but they recouple to the spin j defining the tag.

We consider the space H
tag
Γ of non-gauge-invariant wave-functions

on the (oriented and connected) graph Γ . This is simply the space of
L2 functions on SU(2)×E, where E is the number of edges or links
of Γ , with no further assumption. Considering such a function, we
can project onto the usual space of gauge-invariant states by group
averaging:

ψ({ge}e∈Γ ) ∈ H
tag
Γ 7→ ψ0({ge}e∈Γ ) =

∫
SU(2)V

dhvψ({h−1s(e)geht(e)}e∈Γ ) ∈ HΓ .
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(321)

We can generalize this projection to non-trivial recouplings at every
vertex and get an exact decomposition of the full non-invariant state:

ψ =
∑

{Jv}∈N
2

∏
v(2Jv + 1)P{Jv}ψ ,

P{Jv}ψ ({ge}e∈Γ ) =
∫

dhv
∏
v χJv(hv)ψ({h

−1
s(e)geht(e)}e∈Γ ) .

(322)

The spin Jv is the tag living at the vertex v and provides a mea-
sure of how much gauge-invariance is relaxed at that vertex. It is
the variable conjugate to the group averaging variable hv. Follow-
ing this logic, we can make all states in H

tag
Γ gauge-invariant by

adding hv as an actual argument of the wave-function. This pro-
vides a isomorphism between H

tag
Γ = L2(SU(2)×E) and HextΓ =

L2(SU(2)×E × SU(2)×V/SU(2)×V) where ext stands for “extended”:

Ψ({ge,hv}e,v∈Γ ) = Ψ({k−1
s(e)gekt(e),k

−1
v hv}e,v∈Γ )

7→ ψ({ge}e∈Γ ) = Ψ({ge,hv = I}e,v∈Γ ) .
(323)

We define tagged spin networks as basis states for HextΓ thus pro-
viding through this gauge-fixing map a basis for generic non-gauge-
invariant states. These generalizations of spin networks are labeled
by spins je on every edge e, the tag spin Jv an magnetic momentum
Mv at every vertex, as well as an intertwiner Iv recoupling at each
vertex between the tag and the spins on the edges attached to that
vertex: the incoming and outgoing edges attached to the vertex v:

Iv : V
Jv ⊗

⊗
e|s(e)=v

Vje −→
⊗

e|t(e)=v

Vje ,

Ψ{je,Jv,Mv,Iv}({ge,hv}) ≡∏
vD

Jv
mvMv

(hv)
∏
e〈jemse|ge |jemte〉

×
∏
v〈⊗e|t(e)=vjemte| Iv |Jvmv ⊗e|s(e)=v jemse〉 ,

(324)

with an implicit over the magnetic momenta mve and mv. In simple
words, we work with spin network on graphs with an extra open
edge at every vertex. The spins carried by those open edges are the
tags.

The whole question is the physical interpretation of these tags,
which we added to the usual spin network states. It is mathematically
clear how the closure defects arise from coarse-graining and that the
tags reflect non-trivial holonomies around the loops of the subgraph
within the coarse-graining regions. The next challenge would be to
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show that they can be related to some physical notions of (quasi-
)local energy density or mass (see e.g. [240] for a definition of the
quasi-local energy operator in LQG).

Let us show how starting from a loopy spin network and tracing
out the little loops attached to the vertices leads naturally to a re-
duced density matrix defined in terms of tagged spin networks. So
we consider a gauge-invariant loopy state defined on the base graph
Γ with a certain number of loops nv attached to each vertex v:

φ({ge,hv` }) = φ({k−1
s(e)gekt(e),k

−1
v hv`kv}) ∀kv ∈ SU(2)×V ,

where the group elements hv` live on the little loops ` attached to the
vertex v, and we integrate out the loops:

ρ({ge, g̃e}e∈Γ ) =

∫∏
v

nv∏
`=1

dhv` φ({ge,hv` })φ({g̃e,hv` }) . (325)

Let us compute the reduced density matrix using the natural loopy
spin network basis. We focus on the little loops attached to single
vertex, say v0, and drop the index v from the little loop group ele-
ments for the sake of simplicity. We consider the loopy states defined
by basis intertwiners defined by two intertwiners, one recoupling the
spins living on the edges linked to the vertex v0 and one recoupling
the little loops attached to that vertex, glued through an intermediate
spin Jv0 , as drawn on fig.31:

Φ{je,Jv0 ,iv,j`,ĩv0}
({ge,h`}) =

∏
e

〈jemse|ge |jemte〉
∏
`

〈j`ms` |h` |j`mt`〉

×
∏
v 6=v0

〈⊗e|t(e)=vjemte| iv |⊗e|s(e)=v jemse〉

〈⊗e|t(e)=v0jem
t
e| iv0 |Jv0Mv0 ⊗e|s(e)=v jem

s
e〉

× 〈Jv0Mv0 ⊗` j`m
t
` | ĩv0 |⊗` j`m

s
`〉 , (326)

with an implicit sum over all magnetic moment labels. We have as-
sumed, as announced, that only the vertex v0 has little loops attached
to it, so all other vertices are thought as having a vanishing interme-
diate spin Jv6=v0 = 0.

A loopy state will decompose onto that basis,

|φ〉 = φ{je,Jv0 ,iv,j`,ĩv0}
|Φ{je,Jv0 ,iv,j`,ĩv0}

〉

and we easily compute the resulting reduced density matrix using the
orthonormality of the Wigner matrices with respect to the Haar mea-
sure on SU(2) and find that it naturally decompose onto the tagged
spin network basis introduced Ψ{je,Jv,Mv,Iv} above in (324):

ρ = Tr{h`}|φ〉〈φ|
=

(∑
{ms,t

` }

∣∣〈Jv0Mv0 ⊗` j`mt` | ĩv0 |⊗` j`ms`〉
∣∣2)

× |Ψ{je,Jv0 ,Mv0
,iv}〉〈Ψ{je,Jv0 ,Mv0

,iv}| .

(327)
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je j`

Jv
•
iv •

ĩv

Figure 31: We introduce the intermediate spin basis for the vertices of
loopy spin networks: intertwiners will decompose into two intertwiners,
the first one iv recoupling the spins living on the base graph edges and
the other ĩv recoupling the spins living on the little loops attached to the
vertex, which are linked together by the intermediate spin Jv. When we
coarse-grain by tracing over the little loops, the only remaining informa-
tion is this intermediate spin Jv, which becomes the tag measuring the
closure defect at the vertex. It is the remnant of the curvature fluctuations

and internal geometry within the vertex.

Thus the intermediate spins of the loopy spin networks, which re-
couple between the base graph edges and the little loop excitations,
become the tags of the tagged spin network basis after tracing out
the holonomies living on the little loops. This concludes the coarse-
graining of the geometry of a bounded region to a single vertex plus
one extra degree of freedom -the tag- registering the excitations of
geometry and curvature within that region’s bulk.

We have reviewed different coarse-graining structures. Because of
their definition, they lead to natural cut-off in the context of coarse-
graining. We illustrated this in particular in the case of tagged spin
networks which can be implemented quite naturally with partial traces.
There is no reason to think a priori that such a coarse-graining would
be exact and, in fact, as GR is fairly non-linear, there are all the rea-
sons to think that the coarse-graining will be approximate. But still,
this illustrates several possibilities.

It should be noted here that the tagged spin network, though nat-
ural as a further coarse-graining possibility, is quite remote from the
coarse-graining scheme we have been developing so far. In the case of
loops, we still retain something like the surface holonomies we long to
find. In the case of tagged spin network, no such possibility seem to
arise spontaneously. Still, they might at least be useful in yet another
coarse-graining scheme.

Still, we can think of loopy spin network and tagged spin network
as sort of dual in our thinking of coarse-graining. If the loopy spin
networks might be more instrumental in the coarse-graining process
itself, tagged spin network might be more useful for defining the
coarse-grained structure itself. Indeed, we already hinted at the pos-
sibility of dual spin networks. But if this structure is to be trusted,
curvature must be carried at the vertices. This curvature might be
encoded by a tag or something similar.
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Anyway, before tackling the full theory and its coarse-graining, we
should try and explore the use of our coarse-graining structures with
a simpler theory, namely BF theory. This is what will be tackled in
the next chapter.





13
B F T H E O RY O N T H E F L O W E R G R A P H

There’s something that doesn’t make sense. Let’s
go and poke it with a stick. — The Doctor

Now that we have describe the whole kinematics of loopy spin net-
works, with distinguishable loops, we would like to tackle the issue
of the dynamics and imposing the Hamiltonian constraints on the
Hilbert space of loopy states Hloopy. The final goal of our proposal
is to write the Hamiltonian constraints of LQG on Hloopy, such that it
allows explicitly for local degrees of freedom, study its renormaliza-
tion group flow under the coarse-graining and extract its large scale
or continuum limit. Such a program could be started in a simpler
setting, like regular lattice, since these should not change much the
renormalization flow.

There are however various difficulties. The first one is to find natu-
ral dynamics to write for the support graph and for the loops. Indeed,
such writing should be stable, at least in some approximation, under
the coarse-graining flow. And because, GR is highly non-linear, such
a programme is not simple to start with. We expect correlations be-
tween different scales and we don’t know how the dynamics of the
support graph can evolve.

Therefore, we will instead describe the much simpler BF dynamics.
BF theory can be considered as a consistency check for all attempts
and methods to define of dynamics in (loop) quantum gravity. More-
over, once the dynamics of BF theory is properly implemented and
well under control in a certain framework, one usually use it as a
starting point for imposing the true gravity dynamics, with local de-
grees of freedom, relying on the reformulation of GR as a BF theory
with constraints. This is for instance the logic behind the construction
of spinfoam models for a quantum gravity path integral [51, 155, 190].
It is therefore a good place to start studying full GR.

But we are interesting in BF theory because of yet another fea-
ture with respect to coarse-graining: it has a trivial renormalization
flow. Indeed the flatness constraint behaves very nicely under coarse-
graining, as illustrated on fig.32 : considering a spin network graph,
imposing the flatness of the connection on all small loops guaranties
that larger loops will be flat too. This means that the dynamics for the
support graph as well as the dynamics for the loops is quite simple to
devise. In this chapter, we will concentrate on the loops are they are
the addition of our framework, the dynamics of a fixed graph having
been studied already [60, 62, 179].
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Figure 32: In BF theory, holonomies behave very nicely under coarse-
graining. If each small loops is flat, large loops are flat too. In other
words, the physical state of BF theory is a flat space, which is flat at all

scales.

The content of this chapter is taken from our published work [72].
It is organized as follows: we will first describe the natural (gauge-
invariant) constraints in the classical theory and show that these con-
straints alone are not sufficient in the quantum theory. In the next
two sections, we will introduce new constraints solving the problem
in two different ways: either by insuring independent gauge invariance
or by insuring that correlations vanish. We will discuss the full con-
straint in another section to conclude with the interaction with the
Fock structure of our space.

13.1 holonomy constraint on SU(2)

Considering the full space of loopy spin networks on some arbitrary
graph Γ , we would like the BF Hamiltonian constraints to project
onto the flat connection state(s), that is impose flatness around all the
loops of the graph Γ and also kill all the local excitations represented
by the little loops at every vertex. Flatness around the loops of the
background graph is the standard result for BF constraints. So here
we will focus on the fate of the little loops, that we introduced. To this
purpose, it suffices to focus on a single vertex, that is to work on the
flower graph.

Considering the flower graph with arbitrary number of loops, as
we have defined above, we introduce the following set of constraints:

∀` ∈N,
(
χ̂` − 2

)
|Ψ〉 = 0 . (328)

We impose one constraint for every (possible) loop by imposing that
the corresponding holonomy operator saturates its bound and projects
on its highest eigenvalue. These constraints all commute with each
other. Let us underline the dual role of Hamiltonian constraints. As
first class constraints, we need to solve them and identify their so-
lution space, but they also generate gauge transformations and we
need to gauge out their action. Here, the holonomy constraint oper-
ators both impose the flatness of the connection, but they also imply
that the little loops are pure gauge, so that their action can change
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the number of loops to arbitrary values. We will see below that these
one-loop holonomy constraints are almost enough to fully constrain
the theory to the single flat state on the flower graph.

Let us solve these constraints and consider a loop `0 and its action
of its holonomy operator χ̂`0 on a wave-function Ψ ∈ HE with sup-
port on the finite subset E ⊂ N of loops. A first case is when `0 ∈ E
belongs to the subset, in which case we have a simple functional equa-
tion on SU(2)E:

(χ̂`0Ψ) ({h`}`∈E) = χ 1
2
(h`0)Ψ ({h`}`∈E) = 2Ψ ({h`}`∈E) .

The second case is when the considered loop `0 /∈ E doesn’t belong
to the subset. The holonomy operator χ̂`0 then creates a loop, making
a transition from H0E to the orthogonal space H0E∪{`0}. This illustrates
that the flow generated by those Hamiltonian constraints can arbi-
trarily shift the number of loops and therefore the little loops become
pure gauge at the dynamical level in BF theory. This also means that
there is no solution to all holonomy constraints with support on a
finite subset E and a physical state must have support on all possible
loops.

To be rigorous, we need to go to the dual space (Hloopy)∗ and
solve the holonomy constraints on the space of distribution defined
in the projective limit. We are looking for a family of distributions
ϕE on SU(2)E, that is continuous linear forms over smooth functions
on SU(2)E (see appendix C for a discussion of the definition of dis-
tributions over SU(2)). The cylindrical consistency means that their
evaluations on two cylindrically equivalent smooth functions must
be equal:

∀E ⊂ Ẽ , fE ∼ f
Ẽ

⇒ ϕE(fE) =
∫

SU(2)E ϕEfE =
∫

SU(2)Ẽ
ϕ
Ẽ
f
Ẽ
= ϕ

Ẽ
(f
Ẽ
) .

Then the holonomy constraints read:

∀` ∈N ,∀E 3 ` , ∀fE ∈ C∞SU(2)E ,
∫

SU(2)E
ϕE(χ` − 2)fE = 0 ,

where we have considered by default that the loop ` belongs to the
wave-function support E. Indeed, if ` didn’t belong to E, then we
could enlarge the subset E to E ∪ {`} by cylindrical consistency and
consider both the test function f and the distribution ϕ as living on
that larger subset. Our goal is to show that the unique solution to
these equations is the flat state, i.e. that there exists λ ∈ C such that
ϕE = λ δ⊗E:

∀fE ∈ C∞SU(2)E
,ϕE(fE) = λδE(fE)

= λ
∫

SU(2)E
∏
`∈E δ(h`)fE({h`}`∈E)

= λfE(I, .., I) .

(329)
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Cylindrical consistency simply requires that the factor λ does not de-
pend on the subset E. So we are led to solve the holonomy constrain
on every finite subset E. Thus, let us consider the functional equation
on SU(2)N:

∀1 6 ` 6 N , (χ̂` − 2)ϕ = 0 , (330)

where we drop the subset label E.
Let us start with the one-loop case and solve for distributions ϕ on

SU(2) the equation:

∀h ∈ SU(2) , χ 1
2
(h)ϕ(h) = 2ϕ(h) . (331)

Since the character χ 1
2

is smooth and reaches its maximum value 2 at
a single point, the identity I, it seems natural that the ϕ must be a
distribution peaked at the identity. We therefore expect that the only
solution be the δ-distribution on SU(2), ϕ = δ. However, since the
identity is actually an extremum of χ 1

2
and that the first derivatives

of the character thus vanishes at this point, this equation admit more
solutions: the first derivatives of the δ-distribution. This clearly came
as a surprise for us.

Let us first assume that ϕ is gauge-invariant, i.e. invariant under
conjugation. Its Fourier decomposition on SU(2) involves only the
characters in all spins:

ϕ =
∑
j∈N

2

ϕjχj .

As well known, the holonomy constraint leads to a recursion relation
on the coefficients ϕj:

χ 1
2
χj = χj− 1

2
+χj+ 1

2
⇒ 2ϕ0 = ϕ 1

2
, 2ϕj> 12

= ϕj− 1
2
+ϕj+ 1

2
.

(332)

Once the initial condition ϕ0 is fixed, these lead to a unique solution:

ϕj = (2j+ 1)ϕ0 , ϕ = ϕ0
∑
j

(2j+ 1)χj = ϕ0δ . (333)

When solving such functional equations in the Fourier basis, one
should nevertheless be very careful to work with well-defined dis-
tributions. These are characterized by Fourier coefficients ϕj growing
at most polynomially with the spin j. This ensures that evaluations∫
fϕ of the distribution ϕ on smooth test functions f are convergent

series. The δ-distribution is clearly a good solution. But, as an ex-
ample, solving for eigenvectors of the holonomy operator associated
to (real) eigenvalues (strictly) larger than 2 would lead to exponen-
tially growing Fourier coefficients, which are too divergent to define
a proper distribution. The interested reader will find more details in
the appendix C.
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On the space of functions invariant under conjugation, everything
works as expected. Let us now consider the general case dropping
the requirement of gauge-invariance. The δ-distribution is obviously
still a solution:

∀f ∈ C∞SU(2) ,
∫
f (χ 1

2
− 2) δ = (χ 1

2
(I) − 2)f(I) = 0 . (334)

But, now the first derivatives of the δ-distributions are also solutions:

∀f ∈ C∞SU(2) ,
∫
f (χ 1

2
− 2)∂xδ = −(∂xχ 1

2
) f− (χ 1

2
− 2) f

∣∣∣
I
= 0 , (335)

where x ∈ R3 indicates the direction of the derivative and the deriva-
tives of the character vanish at the identity since it is a extremum.
We remind the reader that the right-derivative ∂Rx on SU(2) is a anti-
Hermitian operator (i∂ is Hermitian) defined by the infinitesimal ac-
tion of the su(2) generator ~x ·~J (where the~J in the fundamental spin-12
representation are simply half the Pauli matrices):

∂Rxf(h) = lim
ε→0

f(heiε~x·
~J) − f(h)

ε
= f(hx) , with x = ~x ·~J . (336)

We usually differentiate along the three directions in R3 ∼ su(2) lead-
ing to the insertion of the generators Ja=1,2,3:

∂Raf(h) = if(hJa) , ∂Laf(h) = if(Jah) . (337)

Acting on the δ-distribution gives the following Fourier decomposi-
tion for its derivatives ∂Laδ = ∂Raδ = ∂aδ:

∂aδ(h) = i
∑
j

(2j+ 1)Djnm(Ja)D
j
mn(h) , (338)

where we use the Wigner matrices for the group element h and the
su(2) generators.

We can actually generate a whole tower of higher derivative solu-
tions to the holonomy constraints. We simply need to identify the
differential operators whose action on the spin-12 character vanishes
at the identity. Thus, at second order, we get five new independent
solutions given by the following operators:

∂1∂2 , ∂1∂3 , ∂2∂3 , (∂1∂1 − ∂2∂2) , (∂1∂1 − ∂3∂3) , (339)

that is the ∂a∂b and (∂a∂a−∂b∂b) for a 6= b. Following this logic, we
will get 7 new independent solutions at third order, and so on with
(2n+ 1) independent differential operators at order n, for a total of
(n+ 1)2 independent solutions to the holonomy constraints given by
differential operators of order at most n acting on the δ-distribution.

Such as in the conjugation-invariant case, it is enlightening to switch
to the Fourier decomposition and translate the holonomy constraint
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into a recursion relation on the Fourier coefficients. The difference is
that we had one Fourier coefficient ϕj for each spin j in the gauge-
invariant case while in the general case ϕj is a (2j+ 1)× (2j+ 1) ma-
trix. Implementing the recursion, we start from spin 0 and work the
way up to higher spins. The problem is that the recursion relations de-
termine only (2j)2 matrix elements of ϕj in terms of the lower spins
coefficients, leaving (2j+ 1)2 − (2j)2 = (4j+ 1) matrix elements free
to be specified as initial conditions. This leads to an infinite number
of solutions to the recursion relations, which reproduces the tower
of higher order derivative solutions. The interested reader will find
all of the details on the recursion relations in the appendix of our
published work [72].

13.2 introducing the laplacian constraint on SU(2)

If we work with a single loop, a single petal on the flower, then the
wave-function is obviously gauge-invariant and we do not have to
deal with these extra solutions to the holonomy constraint. However,
as soon as we add external legs attached to the vertex (linking the
flower to other vertices in the graph) or add more loops, then we
have to find a way to suppress those derivative solutions, in ∂aδ and
so on, which would lead to extra degrees of freedom as some kind of
polarized flat states.

Since we want to ensure the full flatness of the holonomy, the most
natural proposal is to constrain all the components of the group ele-
ment living on the loop and not only its trace:

∀m,n = ±1
2

, D
1
2
mn(h)ϕ(h) = δmnϕ(h) .

One can indeed check, both from the differential calculus point of
view or the recursion relations in Fourier space, that these equations
admit the δ-distribution as unique solutions. We can also go beyond
multiplicative operators and insert some differential operators. Then
supplementing the trace holonomy constraint with the other con-
straints χ 1

2
∂aϕ = 2∂aϕ for a = 1, 2, 3 also ensures a unique flat

solution. However, these constraints are not gauge-invariant: the con-
straint operators map wave-functions invariant under conjugation to
non-invariant functions.

In order to keep gauge-invariant constraints, we go to the second
derivatives and consider the Laplacian operator. Actually, we intro-
duce the right-Laplacian ∆ ≡

∑
a ∂
R
a∂
R
a and a mixed Laplacian oper-

ator ∆̃ ≡
∑
a ∂
L
a∂
R
a . We can see how ∆ and ∆̃ differ through their

action on the coupled character χ(h1h2):

∆1χ 1
2
(h1h2) = −14χ 12

(h1σaσah2) = −34χ 12
(h1h2)

∆̃1χ 1
2
(h1h2) = −14χ 12

(σah1σah2)

= −14
(
2χ 1

2
(h1)χ 1

2
(h2) − χ 1

2
(h1h2)

)
,
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which are of course equal at h1 = I. We can now propose a new
constraint:

∆ϕ = ∆̃ϕ , (340)

At the classical level, the differential operator ∂a represents the flux
vector Xa: the right derivative represents the flux ~Xs at the source of
the loop while the left derivative is the flux ~Xt at the target of the
loop. The target flux is equal to the source flux parallely transported
around the loop by the holonomy h. The Laplacian constraint is the
equality of the scalar product ~Xt · ~Xs with the squared norm ~Xs · ~Xs
and therefore means that the two flux are equal, ~Xs = ~Xt. This implies
the flatness of the group element h (up to the U(1) stabilizer of the
flux vector).

At the quantum level, the Laplacian constraint turns out to play a
different role. It implies the invariance of the wave-function by conju-
gation:

∆ϕ = ∆̃ϕ ⇒ ∀h,g ∈ SU(2) , ϕ(h) = ϕ(ghg−1) . (341)

We rigorously prove this statement in the appendix D solving explic-
itly the recursion relations implied by the Laplacian constraint on
the Fourier coefficients of ϕ. Another way to understand the relation
of the Laplacian constraint to the invariance under conjugation is to
think in terms of spin recoupling. Let us call ~JL,R respectively the
su(2) generators living at the two ends of the loop and defining the
left and right derivations. The two Casimirs, given by the two scalar
products ~JL ·~JL and ~JR ·~JR, are equal and their (eigen)value is j(j+ 1)
is the loop carries the spin j. Then the Laplacian constraint means
that their recoupling is trivial:

0 = ~JR ·~JR −~JR ·~JL =
1

2
(~JR −~JL)2 , (342)

so that the two ends of the loop recouple to the trivial representa-
tion, i.e. the spin-0. As illustrated on fig.33, this also allows to show
that the Laplacian constraint operator (∆̃−∆) is positive and its spec-
trum is k(k+ 1)/2 where k is an integer running from 0 to (2j) if the
loop carries the spin j. One can also see that the derivatives of the
δ-distribution are eigenstates of (∆̃−∆) with non-vanishing eigenval-
ues. For example, we compute:∫
f(∆̃−∆)∂Raδ = i3

∑
b

[
f(JaJbJb)− f(JbJaJb)

]
= −if(Ja) = +

∫
f∂Raδ ,

(343)

and so on with higher order differential operators. In particular, the
derivative distribution ∂aδ corresponds to the eigenvalue k(k+ 1)/2
for k = 1. Higher order derivatives will explore higher eigenvalues.
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j
k

•
~JL

~JR

Figure 33: The left and right derivations respectively act as graspings at
the source and target of the loop, inserting su(2) generators in the wave-
functions. The Laplacian operator (∆̃−∆) then measures the difference
between the two scalar products ~JR ·~JR and ~JR ·~JL, or equivalently the
Casimir (~JR −~JL)2/2 of the recoupling of the spins at the two ends of
the loop. Assuming that the loop carries the spin j then recoupling j with

itself gives a spin k running from 0 to (2j).

To conclude, the original holonomy constraint, supplemented with
the new Laplacian constraint, acting on functions on SU(2) admit the
δ-distribution as unique solution: the Laplacian constraint imposes
invariance under conjugation while the holonomy constraint then im-
poses the flatness of the group element along the loop.

Proposition 13.2.1 There is a unique solution (up to a numerical factor) as
a distribution over SU(2) to the holonomy and Laplacian constraints:∣∣∣∣∣ (χ̂− 2)ϕ = 0

(∆− ∆̃)ϕ = 0
=⇒ ∃λ ∈ C , ϕ(h) = λ δ(h) . (344)

Below, we look at the generic case of an arbitrary number of loops.
We will show that we can supplement the holonomy constraints around
each loop either with Laplacian constraints for each loop or with
multi-loop holonomy constraints (that still act by multiplication) wrap-
ping around several loops at once.

13.3 holonomy constraints on SU(2)N for N > 2

We now turn to the holonomy constraints on SU(2)N:

∀1 6 ` 6 N, (χ̂` − 2)ϕ = 0 ,

with the requirement of invariance under simultaneous conjugation
of all the arguments h`. Since we do not require the invariance under
the individual action of conjugation on each little loop, the gauge
invariance is not enough to kill the spurious solution identified above.
As proposed above, we can reach the uniqueness of the physical state
by further imposing the Laplacian constraint on each loop:

∀` ∈N , (∆̃` −∆`)ϕ = 0 . (345)
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This now implies the invariance of the wave-function under the in-
dividual action of conjugation on each loop. In terms of spin recou-
pling, each little loop is linked to the vertex by a spin-0, as illustrated
on fig.34, this effectively trivializes the intertwiner space living at the
vertex and the loops can be thought of as decoupled from one another.
The holonomy constraints then impose that the only solution state is
the δ-distribution.

• •

••

•

• •

k1

k2k3k4

k5 k6

j1

j2j3

j4

j5 j6

Figure 34: The Laplacian constraint on a loop ` constraint the spin j`
carried by the loop to recouple with itself into the trivial representation
with vanishing spin k` = 0. Imposing this constraint on every loop, the
vertex then recouples a collection of spin-0, the intertwiner is thus trivial

and the loops are totally decoupled.

Instead of imposing the Laplacian constraints, another way to pro-
ceed is to introduce multi-loop holonomy constraints. To prove this,
let us start by describing the gauge-invariant derivative solutions to
the holonomy constraints. The general structure is as follows. One
acts with arbitrary derivatives on the δ-distribution

∏N
`=1 δ(h`). Then

to ensure invariance under simultaneous conjugation, one must con-
tract all the indices with a SO(3)-invariant tensor I:

ϕI({h`}) =
∑

{a`i}i=1..n`

I
a11..aNnN

N∏
`=1

∂a`1
..∂a`n`

δ(h`) , (346)

where n` is the order of the differential operator acting on the loop `,
for an overall order n =

∑
` n`, and I is a rotational invariant tensor

defining the contraction of the differential indices a’s, i.e. it is an
intertwiner between n spin-1 representations.

To be explicit, for n = 2 differential insertions, there is a single
invariant tensor: Iab = δab. Either we act with the two derivatives on
the same group elements, but then we already know that ∆δ is not a
solution to the holonomy constraint, or we act on two different loops
getting the non-trivial distribution

∑
a ∂aδ(h1)∂aδ(h2) (here we put

aside all the other loops, where no differential operator act):

〈
∑
a

∂aδ1∂aδ2 |f〉 = −f(Ja, Ja) , (347)
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which yields the evaluation f(Ja, Ja) of the spin network state ob-
tained by acting with the double grasping Ja ⊗ Ja on the test wave-
function f. We easily check that this provides a solution to the indi-
vidual one-loop holonomy constraints:

∀f ∈ C∞SU(2)2 ,
∫
f(χ 1

2
(h1) − 2)

3∑
a

∂aδ(h1)∂aδ(h2) = 0 , (348)

The double grasping, as shown on fig.35, couples the two loops. The
goal is to suppress such coupling between the two loops in order
to get as unique solution the factorized flat state δ⊗N where all the
loops are entirely decoupled. To make the system more rigid, the

•

h1

h2h3
∂a

•∂a

•

Figure 35: We act with derivatives ∂a on the group elements h1 and h2
and contract the indices, which translates graphically as a double grasping

linking the two loops.

natural constraint to introduce is a two-loop holonomy constraint,
which would kill any correlation between the two loops:

(χ̂12 − 2)ϕ(h1,h2) ≡ (χ 1
2
(h1h2) − 2)ϕ(h1,h2) = 0 . (349)

We check that this two-loop constraint eliminates the coupled solu-
tion proposed above:∫

f(χ 1
2
(h1h2) − 2)

3∑
a

∂aδ(h1)∂aδ(h2) = f∆χ 1
2

∣∣∣
I
=
3

2
f(I, I) 6= 0 .

(350)

For n = 3 differential insertions, we still have a unique intertwiner,
given by the completely antisymmetric tensor εabc. This corresponds
a triple grasping. The three derivatives can all act on the same loop,
in which case we do not get a solution of the one-loop holonomy
constraint, or they can act on two different loops, in which case it
is not a solution of the two-loop holonomy constraints we have just
introduced, or they can act on three different loops in which case we
need to introduce a three-loop holonomy constraint to discard it:∫

f(χ 1
2
(h1h2h3) − 2)ε

abc∂aδ(h1)∂bδ(h2)∂cδ(h3)

= − i2
3
f(I)εabcχ 1

2
(σaσbσc)

= −3i2 f(I) 6= 0 .

(351)
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For an arbitrary number n of differential insertions acting on the
N loops, the grasping will potentially couple the N loops. In order to
kill all those coupled solutions, we introduce all multi-loop holonomy
constraints:

∀E ⊂ {1, ..,N} ,
[
χ 1
2

(∏
`∈E

h`
)
− 2
]
ϕ = 0 . (352)

The ordering of the group elements is important of course for the pre-
cise definition of the multi-loop operator but is irrelevant to ensure
that the action of the corresponding constraint operator on the cou-
pled derivative distributions does not vanish. In fact, looking deeper
into the structure of SO(3)-invariant tensors, a fundamental theorem
on rotational invariants states that all SO(3)-invariant polynomial of
n 3d-vectors ~vi=1..n are generated by scalar products ~vi ·~vj and triple
products ~vi · (~vj ∧ ~vk). This means that we only need the two-loop
and three-loop holonomy constraints to ensure that the flat state, de-
fined as the δ-distribution, is the only solution to the Hamiltonian
constraints.

13.4 the full hamiltonian constraints for bf theory

on loopy spin networks

To summarize the implementation of BF theory on loopy spin net-
works, we have introduced individual holonomy constraints on each
little loop around each vertex of the background graph. This is the
usual procedure, for instance when constructing spinfoam amplitudes
for BF theory from a canonical point of view. Surprisingly, these con-
straints are not strong enough to fully constraint the theory to the
single flat state and kill all the little loop excitations. This can be
backtracked to the simple fact that the identity I is an extremum of
the SU(2)-character χ 1

2
and thus the derivative of the character van-

ishes at that point. As a result, the δ-function on SU(2) is not the
unique solution to the holonomy constraints, but its first derivative
are also solutions. While all the solution distributions are peaked on
the identity and vanish elsewhere, we are allowed grasping operators
coupling the loops together. To forbid such such coupling and force
to have a unique physical state, we have showed that we can sup-
plement the original one-loop holonomy constraints with either one-
loop Laplacian constraints or with multi-loop holonomy constraints,
which leads us to two proposals for the Hamiltonian constraints for
BF theory on loopy intertwiners:

• We impose on each loop two gauge-invariant constraints, the
holonomy constraint that acts by multiplication and the Lapla-
cian constraint which acts by differentiation:

∀` , χ̂`ϕ = 2ϕ , ∆`ϕ = ∆̃`ϕ . (353)
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• We impose all multi-loop holonomy constraints, requiring not
only that the group elements h` on each loop ` is the identity
I but also that all their products remain flat. This means one
constraint for each finite subset E of the set of all loops:

∀E ⊂N, χ̂Eϕ = 2ϕ , χ̂Eϕ({h`}`∈N) = χ 1
2

(∏
`∈E

h`

)
ϕ({h`}`∈N) .

(354)

The ordering of the group elements does not matter in order to
impose the flatness. These multi-loop constraints kill any cor-
relation or entanglement between the loops. It is actually suf-
ficient to impose only the two-loop and three-loop holonomy
constraints.

If we only impose the one-loop holonomy constraints, then the
totally flat state defined by the δ-distribution is not the only phys-
ical state. We get an infinite-dimensional space of physical states,
obtained by the action of first order grasping operators on the δ-
distribution, allowing for non-trivial coupling and correlations be-
tween the little loops. It would be interesting to understand the ge-
ometrical meaning of those states and if they play a special role in
the spinfoam models for BF theory (the Ponzano-Regge and Turaev-
Viro models for 3d BF theory and the Crane-Yetter model for 4d BF
theory). As an example, we have in mind the recursion relation sat-
isfied by the 6j symbol, which is understood to be the expression of
the action of the holonomy operator on the flat state on the tetrahe-
dron graph [58, 60, 63]. Our results suggest that the double and triple
graspings on the 6j symbol might be other solutions to this recursion
relation.That would be specially interesting since the triply grasped
6j symbols is understood to be the first order correction of the q-
deformed 6j-symbol [106]. On a totally different route, maybe those
local excitations could provide a first extension of the topological BF
theory to a field theory with local degrees of freedom.

On the other hand, imposing the full set of Hamiltonian constraints
proposed above leads to a unique physical state for BF theory: the flat
stateϕBF = δ. This physical state is clearly not normalizable. But since
it is unique, it is not a big problem to define the scalar product on this
final one-dimension Hilbert space. The physical scalar product on the
initial Hilbert space of loopy spin networks is defined by projecting
on this physical state, which amounts at the end of the day to simply
evaluate the wave-functions at the identity i.e. on flat connections:

∀f, f̃ ∈ Hloopy , 〈f|f̃〉phys = 〈f|ϕBF〉 〈ϕBF|f̃〉
= 〈ϕBF|f〉 〈ϕBF|f̃〉
= f(I) f̃(I) .

(355)
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As expected, we are left with a single physical state on the flower, the
little loops have been projected out and all local degrees of freedom
have disappeared.

Now that we have checked that loopy spin networks allow for a cor-
rect implementation of BF theory’s topological dynamics, we would
like to later introduce Hamiltonian constraints allowing for local de-
grees of freedom. We wouldn’t want to kill the little loops as happens
for BF theory. The goal would be to have dynamics coupling the lit-
tle loops to the spins living on the links of the background graph,
in such a way that it reproduces the propagation of the local geom-
etry excitations of GR in a continuum limit. The strategy would be
to slightly modify the BF dynamics -“constrain the BF theory”- most
likely following the approaches for the dynamics of discrete/twisted
geometries [57, 60, 62] or of EPRL spinfoam models [41, 51, 100].

13.5 revisiting the bf constraints as creation and an-
nihilation of loops

Let us see how to implement the flatness constraint on our Fock space
of loopy spin networks with bosonic statistics for the little loops. As
earlier, we do not discuss the flatness constraints around loops of the
base graph Γ , which are implemented as usual by using the standard
holonomy operators around those loops. Here, we will focus on the
fate of the little loop excitations at every vertex of the background
graph Γ . For this purpose, we can focus on a single vertex and we
can restrict ourselves to the flower graph, i.e. to the Fock space of
loop intertwiners around a unique vertex. As we have constructed
the holonomy operator in the previous section, we propose to use it
as the Hamiltonian constraints for BF theory and simply impose:

HBF = χ̂ 1
2
− 2 . (356)

This is a self-adjoint operator and imposing this constraint amounts
to projecting onto the highest eigenvalue of the holonomy operator.
Since χ̂ 1

2
creates and annihilates loops by construction, HBF shifts the

number of loops and its flow should imply that the number of loops
becomes pure gauge. Let us look at the space of physical states solv-
ing this flatness constraint. By proposition 12.2.5, we already know
that the flat state, defined as the factorized δ-distribution state, sat-
urates the holonomy bound, HBF |δ〉 = 0 . The natural question is
whether the flat state is the only solution to this constraint.

We will run into the same problem as in the case of distinguishable
loops of higher derivative solutions to the holonomy constraint. In
order to deal with this potential infinite-dimensional space of solu-
tions, we will introduce as before a Laplacian constraint and multi-
loop holonomy operators. However we will ultimately show that we
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require only a finite number of constraint operators (three to be ex-
act) to impose full flatness and the uniqueness of the physical state
despite the infinite number of loop excitation modes that need to be
constrained.

More precisely, the holonomy constraint amounts to solving func-
tional recursion relations, relating fN+1, fN and fN−1 at each step.
The problem is that this relation doesn’t entirely fix fN+1 in terms of
fN and fN−1, even assuming that these functions are invariant under
permutations of their arguments and invariant under conjugation. In-
deed it only fixes the integral

∫
dkχ 1

2
(k) fN+1(h1, ..,hN,k). This con-

dition seems to fix only the spin-12 component of the function, so we
face two obstacles: the non-trivial internal intertwiner structure and
arbitrary higher spin excitations on each loop. We explain below how
to get rid of all those modes by introducing constraints on the cre-
ation and annihilation of loops together with a Laplacian constraint.

Before treating the general case, we explore two simplified cases.
First, factorized states avoid the problem of possible non-trivial in-
tertwiner structure. It turns out that the spin-12 one-loop holonomy
constraint is enough to constrain all the higher spin excitations and
lead to the flat state as the unique physical state. Second we consider
the larger class of states with decoupled loops, defined mathemat-
ically as the wave-functions which are invariant under conjugation
of its individual arguments (and not simply under the simultaneous
conjugation of all its arguments as required by gauge invariance). In
this case, the spin-12 constraint is not enough anymore and we need
to explicitly introduce explicit constraints for all the higher spin exci-
tations. We summarize these two cases in the following two proposi-
tions.

Proposition 13.5.1 Let us consider a factorized stateϕ ∈ Hsym, thatϕ0 =
1 and ϕN = F⊗N for an integrable F invariant under conjugation, F(h) =
F(ghg−1). Then the constraint χ̂ 1

2
ϕ = 2ϕ has a unique solution, which is

the flat state, ϕ = δ and F(h) = δ(h) − 1.

Proof 13.5.2 Let us look at the eigenvector equation on factorized states ϕ
defined as ϕ0 = 1 and ϕN = F⊗N:(

A+A† +B
)
F⊗N = 4 F⊗N .

For N = 0, this gives an integral condition on the one-loop wave-function
F: ∫

dkχ 1
2
(k)F(k) = 2.

Then, for N = 1, we get a functional equality:

χ 1
2
F+ χ 1

2
− 2 = 2F .

Let us decompose F on the spin basis. Since it is invariant under conjugation,
it decomposes onto the characters F =

∑
j6=0 Fjχj. The N = 1 equation
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translates into a recursion relation on the coefficients Fj while the N = 0

equation sets its initial condition:

F 1
2
= 2 , F1 + 1 = 2F 1

2
, ∀j > 1 , Fj+ 1

2
+ Fj− 1

2
= 2Fj . (357)

This has a unique solution Fj = (2j+ 1), which translates to F = δ− 1. The
constraint equation for N > 2 automatically follows.

The case of factorized state works because the holonomy operator
couples the creation of loops and the exploration of the higher spin
components of the one-loop wave-function. Next, we move to the
larger class of functions which are invariant under conjugation of
its individual arguments. Then the functions φN decompose on the
character basis. Imposing the one-loop holonomy constraints for all
spins leads to functional recursion equations such that the flat state
is solution to the holonomy constraint.

Lemma 13.5.3 Considering a state invariant under conjugation of each of
its arguments,

φN(h1, ..,hN) = φN(g1h1g−11 , ..,gNhNg−1N ) , ∀gi ∈ SU(2)N ,

it decomposes on the character basis:

φN(h1, ..,hN) =
∑
j1,..,jN

φ
j1,..,jN
N

N∏
i

χji(hi) .

Assuming that the φN’s are all symmetric under permutations of their ar-
guments and that they have no 0-modes,

∫
dh1φN = 0 for all N > 1, then

the only such solution to the set of holonomy constraints χ̂jφ = (2j+ 1)φ

for all spins j ∈ N∗

2 is the flat state φN = (δ− 1)⊗N (up to a global factor).

Proof 13.5.4 The proof is straightforward by recursion. For N = 0, the
constraint gives φ1 in terms of the no-loop mode φ0:

∀j > 1
2

,
∫
dkχj(k)φ1(k) = (2j+ 1)φ0 , (358)

which gives φj1 = (2j+ 1)φ0 for all non-vanishing spins j while φ01 = 0

by hypothesis. This way, if we fix the initial normalization to φ0 = 1, we
recover φ1 = (δ− 1). Then the constraint equations for N > 1 reads:

∀j > 1
2 ,

2(2j+ 1)φN(h1, ..,hN) =
∫

dkχj(k)φN+1(h1, ..,hN,k)

+ 1
N

∑N
i=1φN−1(h1, .., ĥi, ..,hN)

+ 1
N

∑N
i=1

[
χj(hi)φN(h1, ..,hN)

−
∫

dki χj(ki)φN(h1, ..,ki, ..,hN)

]
.

(359)
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We can solve this equation by recursion, determining the Fourier coefficients
of φN+1 in terms of φN and φN−1. The coefficients φj1..jN

N vanish by as-
sumption if one of the spins ji is zero. When none of the spins vanishes, we
show that

φ
j1..jN
N =

N∏
i=1

(2ji + 1) . (360)

Comparing to the case of distinguishable loops, in this case where
the loops are individually gauge-invariant and thus decoupled, we
have traded the infinity of holonomy constraints, one for each dis-
tinguishable loop, for the infinite tower of one holonomy constraint
per spin mode for indistinguishable loops. Exploiting further the Fock
space structure for the bosonic little loops, we can nevertheless reduce
this infinity of holonomy constraints to a pair of constraints. Indeed,
checking the details of the proof of proposition 12.2.5 on the action of
holonomy operators on the δ-state, we propose to use non-Hermitian
constraints and characterize the flat state as an eigenvector of the loop
annihilation operator A and the loop creation operator (B+A†):

Lemma 13.5.5 Considering a state φ invariant under conjugation of each
of its arguments, and with no 0-modes, we introduce the pair of non-Hermitian
constraint operators defined by the spin-12 annihilation and creation opera-
tors acting on Hsym:

A |φ〉 = 2 |φ〉 , (B+A†) |φ〉 = 2 |φ〉 . (361)

Then the only solution to all these constraints is the flat state |φ〉 = |δ〉.

Proof 13.5.6 Let us write explicitly the eigenvalue equations for the state
φ:

∀N > 0,
∫

dkχ 1
2
(k)φN+1(h1, ..,hN,k) = 2φN(h1, ..,hN) (362)

∀N > 1,
∑N
`=1

[
χ 1
2
(h`)

[
φN−1(h1, .., ĥ`, ..,hN) +φN(h1, ..,hN)

]
−
∫

dk` χ 1
2
(k`)φN(h1, ..,k`, ..,hN)

]
= 2NφN(h1, ..,hN)

(363)

with the initial conditions equation at N = 0 for the creation operator
(B+A†) trivially satisfied. We could translate these equations into recur-
sion relations on the Fourier coefficients, but there is actually a simpler and
more direct route. The first equation (for A) can be injected in the second
equation turning it into a functional recursion:

N∑
`=1

(2−χ 1
2
(h`))

[
φN−1(h1, .., ĥ`, ..,hN)+φN(h1, ..,hN)

]
= 0 . (364)
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For N = 1, this relates the one-loop wave-function φ1 to the no-loop nor-
malization φ0:

∀h ∈ SU(2), (2− χ 1
2
(h)) (φ0 +φ1(h)) = 0 .

Since φ1 is invariant under conjugation, this holonomy constraint has a
unique distributional solution up to an arbitrary factor, (φ0 + φ1) ∝ δ.
The integral condition,

∫
χ 1
2
φ1 = 2φ0, fixes this factor and we recover

φ1 = (δ− 1) as expected as we fix the normalization φ0 = 1.
We then proceed by recursion, fixing the number of loops N > 2 and

assuming that φn = (δ− 1)⊗n for all n 6 (N− 1). Let us now prove this
statement holds for n = N. Using the identity (2− χ 1

2
(h))δ(h) = 0 , we

start by checking that:

N∑
`

(2− χ 1
2
(h`))

[∏
i

(δ(hi) − 1) −
∏
i 6=`

(δ(hi) − 1)
]
= 0 .

This implies that:(
N∑
`

(2− χ(h`)

)(
φN(h1, ..,hN) −

∏
i

(δ(hi) − 1)

)
= 0 .

Since every holonomy operator (2− χ̂`) is Hermitian positive, this means
that the holonomy constraint holds for each loop individually:

∀` 6 N ,
N∑
`

(2−χ(h`)

(
φN(h1, ..,hN)−

∏
i

(δ(hi)− 1)

)
= 0 . (365)

Since we have assumed that the wave-function is invariant under conjuga-
tion individually for each of its arguments, the only distribution solution to
this equation is the product of δ-function up to a global factor:

φN(h1, ..,hN) =
∏
i

(δ(hi) − 1) +α
∏
i

δ(hi) ,

for some factor α to be determined. Checking this identity against the inte-
gral condition

∫
χ 1
2
φN = φN−1 yields α = 0 thus proving the proposition.

We see that the requirement of the invariance under conjugation for
each loop individually (stronger than gauge-invariance requiring the
invariance under global conjugation) is crucial in the last step of the
proof. Else we would have to deal with derivative solutions, in ∂δ and
so on, as in the case of distinguishable loops.

Our proposal amounts to adding another constraint along side the
Hermitian holonomy constraint χ̂ 1

2
= 2. Instead of taking the average

of the two operators A and (B+A†) and defining the holonomy oper-
ator, we subtract them and get the other constraint B+ (A† −A) = 0.
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This new constraint operator has a Hermitian part B and a anti-
Hermitian part (A† − A), such that the overall structure can be in-
terpreted as a holomorphic constraint, similar to the annihilation op-
erator a = x̂− ip̂ for the harmonic oscillator. From this perspective,
eigenvectors of this “holomorphic” operator B+ (A† −A) can be con-
sidered as coherent states, which is pretty natural since we are look-
ing into coherent superpositions of any number of loops summing
over N, and the δ-state, as a null eigenvector of that operator, can be
considered as a ground state.

The trick why these two constraint operators A and (B+A†) are
enough to kill all the degrees of freedom and lead to a single physical
state is that they do not commute and their commutators actually
generate higher spin constraints:

Lemma 13.5.7 Imposing the two constraints withA and (B+A†) on Hsym

implies a tower of constraints with all the higher spin annihilation operators:

A |φ〉 = (B+A†) |φ〉 = 2 |φ〉 =⇒ ∀j > 1
2

, Aj |φ〉 = (2j+1) |φ〉 .

(366)

Proof 13.5.8 Let us look at the commutator (N̂ + 1) [Aj, (B +A†)]. This
commutator will vanish on solution states |φ〉. Using the commutation rela-
tions computed earlier (301) and (302), we get for j = 1

2 :

(N̂+ 1) [A, (B+A†)] = A1 + I − (B+A†)A ,

A1 |φ〉 =
[
(B+A†)A− I

]
|φ〉 = (4− 1) |φ〉 = 3 |φ〉 ,

then for higher spins j > 1 the commutation relation (N̂ + 1) [Aj, (B +

A†)] = Aj+ 1
2
+Aj− 1

2
I − (B+A†)Aj implies:

Aj+ 1
2
|φ〉 =

[
(B+A†)Aj−Aj− 1

2

]
|φ〉 =

[
2(2j+1)−2j

]
|φ〉 = (2j+2) |φ〉 .

(367)

Our two (non-Hermitian) constraints do not commute and gener-
ate an infinite number of constraints killing all the higher spin excita-
tions, leaving us at the end of the day with the single totally flat state.
In some sense, this pair of annihilation and creation constraint oper-
ators can be considered as the generators of the algebra of holonomy
operators on the Fock space of loopy spin networks.

Let us move on to the general case. Working with states invariant
under conjugation for each loop individually amounts to considering
states created loop by loop, only by the action of one-loop holonomy
operators. This leads to decoupled loops and unfortunately does not
explore the whole space of intertwiners: we still need to reach all the
states globally invariant under conjugation but not invariant under
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conjugation of the individual arguments, such as χ(h1h2..). In the
spin decomposition of the wave-functions, this corresponds to the
fact that the modes are not simply φj1,..,jN

N but should be labelled as
φ
j1,..,jN,I
N : they do not depend only on the spins ji=1..N but further

depend on the data of a (loopy) intertwiner I between (two copies of)
all the spins. This leads to the existence of the derivative solutions to
the holonomy constraints, defined by applying differential operators
(graspings) to the δ-distribution.

The intertwiner structure is hard to constraint completely. One way
to go is to not only use higher spin operators but introduce multi-loop
holonomy constraints, as in the case of distinguishable loops. Indeed,
since we would like to freeze all the spin excitations on the possi-
ble infinity of loops, it is natural to introduce one constraint operator
per mode. This leads us to conjecture a set of complete holonomy
constraints for BF theory. Considering all the multi-loop holonomy
operators for arbitrary spins acting on the Fock space of loopy inter-
twiners Hsym:

∀j ∈ N∗

2
, ∀n ∈N∗ , χ̂

(n)
j |φ〉 = (2j+ 1) |φ〉 ,

then the only solution to all these constraints is the flat state φ = δ.
We have checked this conjecture up to the three-loop component of
the state, N = 3, but we haven’t gone further. This would require
explicitly and carefully defining the multi-loop holonomy operators.
We should also take special care of working with legitimate states,
controlling the convergence/divergence of the series in j and N to
ensure that the states are distributions.

We propose to take a different route in order to keep a finite num-
ber of (primary) constraints. We introduce a Laplacian constraint to
project onto the space of wave-functions invariant under conjugation
and use the creation and annihilation operators for loops to impose
flatness:

Proposition 13.5.9 We consider the pair of non-Hermitian constraint op-
erators defined by the spin-12 annihilation and creation operators acting on
Hsym:

A |φ〉 = 2 |φ〉 , (B+A†) |φ〉 = 2 |φ〉 . (368)

We supplement these constraints with the Laplacian constraint:

(∆̃−∆) |φ〉 = 0 with (∆ϕ)N = 1
N

∑N
` ∆`ϕN ,

and (∆̃ϕ)N = 1
N

∑N
` ∆̃`ϕN .

(369)

Imposing these three eigenvalue equations leads to a unique solution (up to
a global factor), the flat state |φ〉 = |δ〉 defined by φN = (δ− 1)⊗N.

Proof 13.5.10 We start with the Laplacian constraints:∑
`

(∆̃` −∆`)φN = 0 .
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Since every Laplacian constraint operator (∆̃`−∆`) on each loop ` is Hermi-
tian and positive, this imposes that each of them vanish on the wave-function,
i.e. for all ` we have (∆̃` −∆`)φN = 0. This implies that φN is invariant
under conjugation of each of its argument. Then we apply lemma 13.5.5 to
prove the uniqueness of the solution state.

On the one hand, the Laplacian constraint fixes how every loop is
attached to the vertex, through a trivial spin-0. Each loop is invariant
under conjugation on its own, states are collections of bosonic loops,
each carrying a spin and with a trivial intertwiner between them. On
the other hand, the constraints A and (B+A†) realize explicitly the
idea that BF dynamics impose that the creation and annihilation of
loops are pure gauge.

To conclude this chapter, we would like to underline the similari-
ties and differences between the case of distinguishable loops and the
Fock space of indistinguishable little loop excitations. When working
with little loops endowed with bosonic statistics, one must take a
special care to consistently remove the spin-0 modes on every loop
to implement the cylindrical consistency of the wave-functions. This
leads to a (spin-12 ) holonomy operator also creating and annihilating
loops . We explicitly separate its components respectively creating
and annihilating loops and use them as legitimate constraint opera-
tors for BF theory. This is different from distinguishable loops where
holonomy operators are defined as attached to a loop: a holonomy
operator acts on a given loop, exciting and shifting the spin carried
by the loop.

Nevertheless, the issue of the intertwiner space living at vertex and
coupling the loops is the same in both frameworks. We have identi-
fied an infinity of solutions to the holonomy constraints, constructed
as differential operators acting on the δ-distribution (as graspings on
the spin network wave-function). These are still peaked on the iden-
tity group element, but they potentially define an infinity of gauge-
invariant local degrees of freedom living at the vertex. To get rid
of these “spurious” solutions, we have introducing a Laplacian con-
straint that forces each loop excitation to be invariant under conjuga-
tion, thus linking it trivially to the vertex. This allows to kill all local
intertwiner excitation. Then we take as Hamiltonian constraints for
BF theory this combination on holonomy and Laplacian constraints,
which lead as wanted to a unique physical state, the flat δ-state.

Now, they are several directions to explore. As BF theory was cho-
sen for its trivial renormalization flow, the study of the coarse-graining
of this precise theory is not particularly interesting. It may be inter-
esting however to look at possible renormalization flow and see if
BF theory emerges as a natural fixed point. It is also possible to try
and adapt techniques from spinfoams and implement simplicity con-
ditions, in order to go toward GR. It is also possible to try and impose
a discrete dynamics on the support graph and discover the dynamics



13.5 revisiting the bf constraints as creation and annihilation of loops 219

for the loops by coarse-graining. This might actually lead to LQG as
a fixed point. It might also be possible to test this framework in the
context of QCD and compare with the standard renormalization flow.
In essence, the framework is more or less ready to do real field testing.
But a more conceptual approach is also possible: as some degrees of
freedom have been revealed by our work on hyperboloids, it would
be interesting to see how we can recover them from loops. Operators
corresponding to surface holonomies, for instance, might therefore be
quite relevant in the writing of a coarse-grained theory.
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C O N C L U S I O N

Hello, I’m the Doctor — The Doctor

Let us now recap. LQG is a proposal for a theory of quantum gravity.
Its kinematics is well-understood: the Hilbert space is the Ashtekar-
Lewandowski Hilbert space of functions over the generalized connec-
tion. A basis of this states space is given by the spin network basis
which diagonalize the area and volume operators. Though some ques-
tions are still open, like the precise role of the Immirzi parameter, or
the existence of other possible representations, a rigorous framework
for discussing quantum geometry has been developed and is now
available to write down a quantum theory of quantum GR.

The problem is in the dynamics and in the continuum limit. The dy-
namics is not yet fully written down in a satisfactory manner, at least
in the canonical approach. Indeed, there are very interesting propos-
als as Thiemann’s constraint and the master constraint programme
but they are not definitive yet. Simplified models, as the U(1)3 model,
have been developed and shed light on the subject but the question
remains open. This is linked to the problem of the continuum limit:
even with a given dynamics, taken from the spinfoam approach for
instance, it is very difficult to say if GR is actually reproduced in some
continuum/low energy limit.

Two limits can be taken a priori: the limit of large spins on the edges
of the spin network state, and the limit of a very refined graph. The
first limit is sometimes called the classical limit and the second one The name “classical

limit” might be
somewhat
misleading at we
expect the classical
limit of LQG to be
GR. Here “classical”
must be understood
as “large quantum
numbers”.

the continuum limit. There are strong indications that spinfoams in-
deed lead to discrete general relativity when the first limit is taken.
But, for a genuine study of LQG, we want to study the second limit.
This implies graph changing dynamics, refined states and renormal-
ization tools. Indeed, it is usually called the continuum limit because
at the limit, the spin network would describe some kind of contin-
uum space. But for any finite graph, LQG desperately looks discrete
and may differ from GR. Therefore, the problem is two-fold: finding
the right dynamics and then study its continuum limit to compare it
to GR.

Coarse-graining is being developed as a strategy to tackle both
problems at the same time. Indeed, coarse-graining is a set of tech-
niques that have been used very successfully in the study of con-
densed matter systems or in lattice gauge theory in order to study
phase transitions and the continuum limit. In the context of back-
ground independent theories, like GR, the independence on the dis-

221
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cretization should encode a continuum theory. Therefore, by studying
the coarse-graining of LQG, we might hope to find dynamics that are
fixed point of the renormalization (or coarse-graining) flow. These
points would correspond to continuum dynamics. Then, the critical
surface around these points will determine the available parameters
characterizing the dynamics. In practice, this means that the pro-
gramme is very close to the AS scenario programme but expressed
in a somewhat different language. There are additional hopes in the
LQG programme: the non-perturbative language might shed light on
the failure of the perturbative renormalization programme and the
fixed point might be expressed more naturally in terms of geometric
operators.

The problem here is that the technology to actually coarse-grain
is simply not available as for now. The issue is two-sided. The first
problem comes from the specifics of GR which is, as we mentioned, a
background independent theory. This means that the theory does not
depend on some background metric which is expressed mathemat-
ically by the diffeomorphism invariance. The problem here comes
from this independence as it makes difficult the definition of a no-
tion of energy scale which is usually paramount in the definition of a
renormalization flow. This problem is partially solved in the context
of asymptotic safety [197] but is difficult to solve in the LQG context.
The second issue comes from the specific structure, namely the dis-
crete structure, of the theory. It is indeed hard to see how a continuous
structure can emerge and more importantly, it is difficult to define a
coarse-graining process on discrete structures.

The goal of this Ph.D. thesis was to try and develop the technology
needed to define a coarse-graining flow of LQG and therefore deter-
mine the right dynamics as well as the means to study its continuum
behavior. Because of the discrete nature of LQG, we concentrated on
two main problems. Both are related to the definition of a coarse-
graining step. The first point is to search for natural variables to con-
sider. In analogy to the Ising model coarse-graining, this would corre-
spond to a choice of strategy like spin-decimation or spin averaging.
The point is not the method itself but to isolate which macroscopic
variable should be relevant. For Ising model for instance, the average
spin is more natural as a macroscopic observable. Our work points
toward holonomies around faces of the triangulation in the case of
gravity. The second point is how to make the actual coarse-graining
step. We have attempted a first go through the definition of loopy
spin networks, but another route through the Immirzi parameter was
also suggested. These are the two main questions that were studied
in this PhD thesis.

This thesis was organized in four different parts. The first two were
state of the art and concentrate on the necessary ground for our own
developments. They also show how the problem might be formulated
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in a more precise manner. The first part concentrated on the kinemat-
ical aspects of LQG that is on the framework itself as it is understood
today. The second part concentrated on the dynamics and considered
more general discussions around it to see if some insights could be
gained for the coarse-graining process. The last two parts were the
original work of this thesis. Each one concentrated on one of the ques-
tions we mentioned. In the first of these parts, we concentrated on the
search of good coarse-grained variables. This part then exposed the
work done in the following papers [69–71]. The last part concentrated
more on the problem of varying graphs and how to recast this prob-
lem onto fixed graphs dynamics. This presented the work done in the
paper [72].

Let us dwell a bit on our first contribution: the search for right large
scale variables. Our concern was to describe large homogeneous sur-
faces. In the context of coarse-graining, the rationale could be under-
stood in the following manner: we want to concentrate on the surfaces
of coarse-grained volumes. This can be argued from different per-
spectives. First, it is the natural step when considering homogeneous
blocks. Indeed, in a non coarse-grained framework, the vertices of the
spin network are naturally considered as elementary blocks defined
by their surfaces. By analogy, a coarse-grained vertex would corre-
spond to a homogeneously curved block defined by its surface. But
more fundamentally, this joins other ideas in quantum gravity, like
holography. The correspondence is not complete, as we expect the
dynamics not to preserve homogeneity (except for very special cases)
but it might be a good approximation. This is also linked to recent
work by Freidel et al. [93, 111] pointing out that a surface in quantum
gravity has degrees of freedom linked to gauge invariance and these
are relevant in the description of objects like black holes. In particular, Indeed, these degrees

of freedom might be
the reason why the
firewall argument
fails in LQG.

the degrees of freedom of a given surface are more numerous than
just the degrees of freedom of a gas of puncture through a surface.

It is convenient and usual to consider surfaces that separate ver-
tices of a given spin network. In general however, surfaces can be
more general in LQG containing for instances edges of a spin network.
In particular, surfaces can have loops embedded in them correspond-
ing to curvature. These are the degrees of freedom pointed out by
Freidel and they also seem to appear in our context of hyperbolic ge-
ometry, either with our original work with SU(2) or with our more
recent work on SL(2, C). This suggests that the natural coarse-grained
description of a state is given by a very special spin network (or suit-
able generalization) with both the graph dual to the discretization
considered for the coarse-graining and the graph of the discretization
itself. This would correspond to some kind of double graph as illus-
trated on fig.36. Note that such a graph would not be a generalization
per se. Indeed, any usual spin network can be completed in this way
provided any new edge gets a spin 0. Conversely, any such graph is
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Figure 36: In loop quantum gravity, spin network vertices are thought of
as carrying volume excitations, of an abstract region of space bounded by
a surface dual to the vertex. Quantum states of geometry are then usually
defined as excitations of the holonomies of the Ashtekar-Barbero connec-
tion along the (transversal) edges puncturing the surface. Our derivation
of closure constraints as discrete Bianchi identities relies on interpreting
the holonomies on the dual surface as defining (non-abelian) normals to
the surface. This strongly suggests using new dual spin network structure,
as a graph dressed with the data of holonomies along the edges and also

around those edges. (image courtesy of Alexandre Feller)

directly a spin network. The important point is the structure of the
graph with respect to the surfaces considered.

Our study of renormalization also brought out the relevance of
the Immirzi parameter and in two ways. First, our latest construc-
tion used Immirzi-like parameter that were complex. The imaginary
part was indispensable for the construction of the right quantities,
namely the deformed normals. The link with the true Immirzi param-
eter should be investigated in a more general context (especially with-
out a homogeneous surfaces). However, if the picture of the double
graph which was just exposed is in anyway to be trusted, the surface
holonomies, in order to carry information about the curvature, must
be complex Ashtekar-Barbero holonomies. This reignites the possibil-
ity and the importance of a complex Immirzi parameter, though for
our proposal, we should not restrict to self-dual connections but con-
sider the whole class of possible complex Ashtekar-Barbero variables.

Second, we suggested to use the Immirzi parameter as a reference
parameter for the coarse-graining process. At first, we suggested to
use it as a cut-off. This might be a bit misguided. But the second idea,
which was to use it as a renormalization parameter, might still be spot
on. Let us recap a bit the thought process. At first, we deal more here
with renormalization rather than coarse-graining and, in this context,Note that

renormalization can
be thought of as

coarse-graining with
the cut-off removed.

we want to relate coupling strengths (like cross-sections) between dif-
ferent energy scales. This is basically the idea of renormalization: to
use a more or less physical quantity to express the other physical re-
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sults as a function of it. A theory is said to be renormalizable if we
can express all physical results in function of a finite number of physi-
cal measurements. But because the physical results are dependant on
many factors, like the energy scale, it induces a flow relating different
ways of parametrizing the theory. Therefore, renormalization is really
the study of how a theory is reexpressed at different energy scales. In
quantum gravity however, the definition of energy is quite difficult.
We do not have any background metric to define the scale of a phe-
nomenon. This is why we proposed to use the Immirzi parameter as
a reference scale.

The argument is two-fold. First, let’s admit that the Immirzi param-
eter gets renormalized and that its behavior is monotonic (with the
would-be energy scale). Then, it should be possible to parametrize
the evolution of the other parameters as a function of the Immirzi
parameter. This might not be the case. If the Immirzi parameter is a
topological parameter for instance, which is up for debate, this renor-
malization will not happen. Still, in the context of usual QFT, this
was investigated [42] and it seems indeed that a renormalization flow
is possible (but it might be inessential) for the Immirzi parameter.
Therefore, rather than using an energy scale to label the flow of the
couplings, we can use one of the parameter. There is a second point.
The renormalization flow corresponds to the flow of the couplings
with respect to the scale. Note also that the canonical transformation
corresponding to a change of the Immirzi parameter looks like a scale
transform. Indeed, in general relativity, it is difficult to relate different
scales but if something very naive was to be done, it would be to scale
up or down the densitized triad and change the extrinsic curvature
accordingly to maintain a canonical pair of variables. This is precisely
what an Immirzi transform does. This suggests a link between the Im-
mirzi canonical transform and the renormalization programme.

Of course, we encounter a problem since the Immirzi canonical
transform is not implemented unitarily in the quantum theory. There
are several suggestive ways to alleviate the problem. First, it might
be possible to consider larger Hilbert spaces containing the current
representation as a subspace. In that case, the triad operator would
have a continuum spectrum to allow for a unitary Immirzi trans-
form. It might also be possible to find other representations of the
holonomy-flux algebra. This would of course have to challenge the
LOST theorem on one of its assumptions. It might also be the case
that considering complex Immirzi parameters, which should allow
for a continuum spectrum of the geometrical observables, enabling
the definition of a unitary Immirzi transform. At this stage, all this is
speculative and we just note the would-be connection between the im-
plementation of varying Immirzi and complex Immirzi parameters.

Our last contribution was way more technical and tried to pave the
way toward an actual coarse-graining of the theory, in a way which
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would make use of the variables defined for large scale observables.
We considered loopy spin networks and developed the corresponding
Hilbert spaces and operators in order to have a way of systematically
coarse-graining the Hilbert space of loop quantum gravity. Loopy
spin networks are simply spin networks with the add-on of having
self-loops on vertices of the graph. These self-loops encode as vertex
excitations fine details with respect to the coarse-graining scale. Once
again, it is not a strict generalization as such loops are always possi-
ble in the usual representation, but insisting on them might underline
some peculiar properties. They were made into a real generalization
once we considered statistics on the loops.

The introduction of these loops was natural with regard to gauge-
invariance. In usual spin networks, gauge-invariance at the vertices
(the closure condition) has the natural interpretation of flatness of
the block. Because, we want to be able to include curvature, relaxing
this condition is natural in the coarse-graining context. The possible
excitations of the closure defect are encoded in the self-loops of loopy
spin networks. This also makes contact with two other remarks. First,
as Rovelli pointed out [206], gauge theories couple to gauge covariant
quantities. The closure defect or any quantity related to the self-loops
might induce a natural observable, coupling small and large scales.
Second, as we suggested, these loops can be interpreted as living on
a surface. In that case, they might be identifiable with the degrees of
freedom of a surface pointed out by Freidel et al. These loops more
naturally represent degrees of freedom of the interior of the region
and the precise mapping should be investigated. Still, this is a natu-
ral framework, which can be studied by itself (as we have done) and
should be investigated further for the coarse-graining of loop quan-
tum gravity.

To conclude, this work opens up a few possibilities, that we should
recap for possible future work:

• One of the major points of this thesis is to reveal the impor-
tance of the structure of the double spin networks, at least in
the context of homogeneously hyperbolically curved simplices.
The structure should be studied further and could fuel a new
interpretation of spin networks more suited for coarse-graining.

• In the same line but on a different route, it should be possible to
generalize the framework developed for hyperbolic geometries
to spherical ones. Ideally a full generalization would be able to
encompass both curvature signs. Then it should be possible to
define curved spin networks for which each vertex would corre-
spond to a curved polyhedra. The curvature would be different
from vertex to vertex. Such a space would be ideally suited for
coarse-graining.
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• The possibility of coupling large and small scales via the curva-
ture defect has been suggested. This framework is actually quite
hard to test. Moreover, simplified situations, like in 3d quantum
gravity, are way to simple not to work. But it might be possible
to test loopy spin networks or tagged spin networks in some
modified theory. For instance, it should be possible to study a
modified BF theory. Only the holonomies of an independent
set of loops would be fixed. This allows new (local) degrees of
freedom in the quantum context and might be used to test the
framework.

• Finally, and again one of the major points, it seems that the pos-
sibility of changing the Immirzi parameter, either to any real
value, or maybe to a complex value, might have a role in the
coarse-graining of quantum gravity. Therefore, one very inter-
esting pursuit of this thesis is to actually define and study the
possibility of having representations of the quantum geometry
capable of handling different Immirzi parameters.

Much more investigations are needed. It seems however that some
ideas are starting to emerge from quite different branches of research.
For instance, the full phase space of a surface in quantum gravity
seems to appear in quite various context. The questions surrounding
the precise role of the Immirzi parameter seem also to appear in mul-
tiple situations. It seems to us that these are very promising lines of
search and more importantly that they, as we argued, are important
lines of research for the coarse-graining of LQG and the establishment
of its continuum limit.
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A
S P I N O R F O R M A L I S M F O R L O O P Q U A N T U M
G R AV I T Y

In this appendix, we recap the spinor formalism for loop quantum
gravity. This formalism was mentionned in our discussion around
the U(N) two-vertex model of cosmology and is actually quite useful
to clarify some aspects of the kinematics of loop quantum gravity.
What is presented here can be found in [66].

a.1 schwinger representation of SU(2)

The spinor representation is based on the Schwinger representation of
SU(2) and as such, we should begin there. The idea of the Schwinger
representation is to put all the irreducible representations of SU(2)

into a larger representation of a slightly larger algebra containing, of
course, the algebra of SU(2) but also operators capable of going from
one representation to the other.

Technically, it relies on the observation that the SU(2) can be ob-
tained from the creation-annihilation algebra of two harmonic oscilla-
tors. More explicitly, let a, b and a†, b† be annihilation and creation
operators with the following algebra:

[a,a†] = [b,b†] = 1 (370)

all other commutators being zero. Then, the algebra of SU(2) can be
represented as:

Jz = 1
2

(
a†a− b†b

)
J+ = a†b

J− = b†a

(371)

It also turns out that the algebra commutes with:

J =
1

2

(
a†a+ b†b

)
(372)

If, now, one concentrates on the usual representation for quantum
harmonic oscillators, namely in our case, the Hilbert space H spanned
by |na,nb〉 which are eigenvectors of a†a and b†b with eigenvalues
na and nb respectively, then it can be shown that:

H '
⊕
j∈N

2

Vj (373)

where Vj is the irreducible representation of SU(2) labelled by the
half-integer j corresponding to the Casimir value j(j+ 1). It is quite

231
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easy to see that H shoul decompose over representations of SU(2)

but the multiplicity must be checked. This can be done for instance
by checking the dimensions.

To get back to the usual notation, let’s keep j to denote the represen-
tation of SU(2). Let m denote the eigenvalue of Jz. The link between
na, nb, j and m is simply:

j =
1

2
(na +nb), m =

1

2
(na −nb) (374)

Now it is obvious that indeed every (irreducible) representation of
SU(2) is present once and only once on the Schwinger representation.
The new operators a and b moreover are an added bonus allowing
to circle among representation and transformation as a spinor.

This is suited for loop quantum gravity as al the representations are
allowed on the links of a spin network. The Schwiner representation
therefore allows the writing of operators that exists on the full Hilbert
space.

a.2 U(N) algebra of the intertwiner

Now, if we consider one vertex and the corresponding intertwiner,
we can devise a similar representation if the number of incoming link
is fixed. Indeed, an intertwiner is an element of the following Hilbert
space:

Inv

(
N⊗
i=1

Vji

)
(375)

where Inv denotes the invariant subspace under gauge transform
(common SU(2) action) and ji is the representation at the link iwhich
we supposed to be outgoing for simplicity. But if we want to consider
generic intertwiners, it is very natural to consider the superposition
of every possible spin:

H '
⊕
{ji}

Inv

(
N⊗
i=1

Vji

)
(376)

where the sum is over every possible tuplets of representation. This
can be rewritten as:

H ' Inv

 N⊗
i=1

⊕
j∈N

2

Vj

 (377)

where we see the Schwinger representation appearing. Therefore a
generic intertwiner, that is an intertwiner for a given set of links but
no outgoing representation specified, is an element of the invariant
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subspace of the product of Schwinger representations, one for each
link.

It is therefore quite natural to define the a, b operators for each
link. Let us note them ai and bi and we have:

[ai,a
†
j ] = [bi,b

†
j ] = δij (378)

all other commutators being zero. We can similarly define:
Ji z = 1

2

(
a
†
iai − b

†
ibi

)
Ji + = a

†
ibi

Ji − = b
†
iai

Ji = 1
2

(
a
†
iai + b

†
ibi

) (379)

which are the SU(2) operators for each link. We can finally define
gauge invariance as operator equations:∑

i

Ji x|ψ〉 = 0,
∑
i

Ji y|ψ〉 = 0,
∑
i

Ji z|ψ〉 = 0 (380)

where Jx and Jy are defined as usual by:

J+ = Jx + iJy, J+− = Jx − iJy (381)

Now, the interesting part: can we write down gauge-invariant ob-
servables on this space? More interestingly can we write down an
algebra of such observables? This is indeed where the Schwinger rep-
resentation comes in handy. Starting from ~J, it is easy to construct
gauge-invariant observables via the dot product for instance. But such
quadratic operators have no chance of forming a closed algebra. In-
deed, the rank of the monomials will go one up at each commutator.
But, starting from quadratic expressions in terms of the Schwinger
operators a and b, we will get once again quadratic expressions in
these. Therefore it is possible to hope for an interesting algebra.

And indeed there is one, with the following operators:

Eij = a
†
iaj + b

†
ibj, Fij = aibj − ajbi (382)

These operators form a closed algebra. Among these, the Eij form
a sub-algebra with the structure of u(n) and gives its name to this
toolbox. These operators have a nice geometrical interpretation: the
Eij conserve the sum

∑
j ji and can be interpreted as a discrete (area

preserving) diffeomorphism group of the surface dual to the links.
The Fij are able to create and destroy quanta of surfaces but must act
on two links at a time, creating two half-integers at the same time.
For this algebra of operators, the representation is cyclic, meaning
that any intertwiner can be obtained by applying enough time the
operators of this algebra onto the fundamental with all spins to zero.
Note that this algebra seems to favor the regularly spaced discrete
spectrum of area and might be an argument for using this ordering.
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a.3 a word on the two-vertex model

Let us conclude this appendix with the link between this algebra and
the two vertex model of cosmology. Let us consider a graph with two
vertices and N links between the two.

We want to define a notion of homogeneity. For this, we can define
operators as previously for each vertex. For instance, we might have
E
(1)
ij and E(2)ij . A natural condition of homogeneity is:

∀i, j, E(1)ij = E
(2)
ij (383)

For i = j this is the matching condition, and for different i and j this
encodes information about angles between spinors which should be
the same from either of the two vertices. So basically, the surfaces and
the angle between the surfaces should be the same for either point of
the universe which is an idea of homogeneity.

Now, because of the u(n) algebra satisfied by these operators, the
constraints are actually first class and can be enforced quantum me-
chanically. They will also generate a kind of gauge invariance cor-
responding to an invariance under the action of the U(N) group.
Because, the group acts transitively on the subspace of fixed total
area, the only remaining degrees of freedom are the total area and its
conjugated momentum. and this gives the U(N) framework for the
two-vertex model. Hamiltonians respecting this symmetry can then
be written and correspond to what has already been discussed in the
main text.
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P R O J E C T I V E L I M I T S

b.1 general idea

The general framework of a projective family and the projective limit
can be found in [23], where it is applied to define the kinematical
Hilbert space of spin network states for loop quantum gravity. Here
we apply these definitions to loopy spin networks, in order to define
superposition states of potentially an infinite number of little loops.
To this purpose, we focus on the flower graph, with a single vertex
and an arbitrary number of loops attached to that central node.

In order to define precisely this idea of varying number of loops,
we start with wave-functions over a finite number of loops and define
a nesting, that is describe how to include a set of loops inside a larger
one. We will identity the set of all potential loops with the set of
integers. Finite sets of loops are defined as finite subsets of integers.
Loops are labeled by the integers and are a priori distinguishable. For
instance, a wave-function with the support on the loop number 2 and
a wave-function on the loop number 277 are not the same though
they both are one-loop states and depend on only one variable, as
illustrated in fig.37.

2

277

• 6=
2

277

•

Figure 37: We distinguish the different potential loops and therefore con-
sider the resulting wave-functions as different even when they excite the

same number of loops.

Mathematically, we consider the set of all finite subsets of integers
P<∞(N). To each subset E ∈ P<∞(N), we associate the set SU(2)E of
colorings of the corresponding loops by SU(2) group elements. Then
wave-functions on E are gauge-invariant functions over SU(2)E:

{Ψ : SU(2)E → C : ∀g ∈ SU(2), Ψ({gh`g−1}`∈E) = Ψ({h`}`∈E)} . (384)

Defining the scalar product using the Haar measure over SU(2)E, the
Hilbert space HE of quantum states on the loopy spin network de-
fined by the subset E of loops is the L2(SU(2)E/AdSU(2)).

235
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The space of loops is equipped with a partial directed order given
by the inclusion of subsets of integers. The partial directed order en-
codes how different subsets are nested within one another: a wave-
function over the loop number 2 and a wave-function over the loop
number 277 are different but they are both embedded in the larger
class of wave-functions which depend on both loop number 2 and
loop number 277 as illustrated in fig.38.

2

277

•

2

277

•

2

277

•

Figure 38: Though different, two functions over two different loops can
be embedded in a larger space of functions depending on several loops by
identifying them with functions with trivial dependancy on some loops.

This partial ordering by inclusion of subsets induces a projective
structure on the loop colorings by group elements. We define a pro-
jector pEE ′ defined for every pair of subsets (E,E ′) such that E ⊆ E ′
by:

pEE ′ : SU(2)E
′ → SU(2)E

s 7→ s E

This projector is simply the canonical restriction from the larger sub-
set E ′ to the smaller subset E. These projectors satisfy a key transitiv-
ity property:

∀E,E ′,E ′′, E ⊂ E ′ ⊂ E ′′ =⇒ pE ′E ′′ ◦ pEE ′ = pEE ′′ , (385)

so that the couple of sets (SU(2)E,pEE ′)E,E ′∈P<∞(N) form what is
called a projective family. The projective limit SU(2) is then defined
by:

SU(2) =
{
(gE)E∈P ∈ ×E∈PSU(2)E : E ⊆ E ′ ⇒ pEE ′gE ′ = gE

}
(386)

Intuitively, this corresponds to collections of colorings on all possible
subsets of loops which are compatible with each other with respect
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to the inclusion. Therefore, these compatibility conditions between all
finite samplings of the collection, as illustrated in fig.39, is the precise
implementation of the notion of a coloring of an infinite number of
loops.

2

27742 •

2

27742 •

2

27742 •

2

27742 • · · ·

Figure 39: The projective limit is made of collections of colorings of finite
subsets equipped with compatibility conditions: the coloring of a finite

subset is the projection of the coloring of any larger subset.

We translate the projective structure to the space of wave-functions.
The projectors pEE ′ for E ⊂ E ′ turn into injections IEE ′ ≡ p∗EE ′ defined
by their pull-backs:

IEE ′ : HE → HE ′ (387)

f 7→ p∗EE ′f : p∗EE ′f
(
{g`}`∈E ′

)
= f
(
{{g`}`∈E}

)
,

where p∗EE ′f trivially depends on group elements living on loops of E ′

which do not belong to the smaller set E. The compatibility conditions
translates into an equivalence relation:

fE1 ∼ fE2 ⇔ ∀E3 ∈ P, E1 ⊆ E3, E2 ⊆ E3, p∗E1E3fE1 = p
∗
E2E3

fE2 (388)

This allows to define wave-functions on the projective limit of the
loop colorings SU(2) and give a precise sense to functions over an
infinite number of loops:

H =

( ⋃
E∈P

HE

)
/ ∼ (389)

b.2 second representation

In order to make this projective limit less abstract and easier to han-
dle, we use another representation. For every equivalence class of
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wave-functions in the projective limit H, let us remove all the trivial
dependency and pick its representant based on the smallest subset of
loops. So, in practice, we define spaces of “proper states”, i.e. wave-
functions that have no trivial dependency:

H0E = {f ∈ HE : ∀` ∈ E ,
∫

SU(2)
dh` f = 0} . (390)

This is the space of functions really defined on the subset E, with an
actual dependance on each loop and no constant term. The integral
condition removes all the spin-0 components of the wave-functions.
First, we show that an arbitrary wave-function over the subset E of
loops can be fully decomposed into proper states with support on all
the subsets of E:

Lemma B.2.1 The following isomorphism holds as a pre-Hilbertian space
isomorphism:

∀E ∈ P<∞(N), HE '
⊕

F∈P(E)

H0F , (391)

where the direct sum is over all subsets F ⊂ E. This isomorphism is realized
through the projections fF = PE,Ff acting on wave-functions f ∈ HE:

fF
(
{h`}`∈F

)
=
∑
F̃⊂F

(−1)#F̃
∫ ∏
`∈E\F

dg`
∏
`∈F̃

dk` f
(
{h`}`∈F\F̃, {k`}`∈F̃, {g`}`∈E\F

)
.

(392)

Its inverse is the re-summation of the projections:

f =
∑
F⊂E

fF . (393)

Proof B.2.2 We proceed in two steps. First we check that each projection fF
is a proper state,

∀` ∈ F ,
∫

dh` fF = 0 ,

and that re-summing these projections
∑
F⊂E fF yields f. Second, we check

that the integral condition, ensuring that there is no spin-0 mode, also im-
plies that the subspaces H0F are pairwise orthogonal, which concludes the
proof.

This decomposition generalizes to the projective limit:

Proposition B.2.3 The following isomorphism holds as a pre-Hilbertian
space isomorphism:

H '
⊕

E∈P<∞(N)

H0E . (394)
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Proof B.2.4 If (fE)E∈P<∞(N) is in
⊕
E∈P<∞(N)H

0
E, we define the set of

subsets on which the state f does not vanish:

Cf = {E ∈ P<∞(N) : fE 6= 0} . (395)

By definition of the direct sum, Cf is finite, so we can define the finite subset
F = ∪E∈CfE and the re-summation map:

φ :
⊕

E∈P<∞(N)

H0E → H (396)

(fE)E∈P<∞(N) 7→

∑
E∈Cf

fE


where the brackets refer to the equivalence class of the function. This map
is obviously linear and we now look for a definition of its inverse. So let us
consider a state in H, that is an equivalence class s. We define the set of
subsets of loops on which it has support:

Ds = {E ∈ P<∞(N) : ∃f ∈ s, f ∈ HE} (397)

Then we consider the smallest set in Ds , which can be defined as the inter- This is the point
where we choose not
to use the completion
and just have an
isomorphism of
pre-Hilbertian
spaces in order to
have the existence of
Ff.

section Fs =
⋂
E∈Ds E. In a sense, this is the minimal support of the state

s. We choose a representative fs of the equivalence class s in Fs. It is actu-
ally unique by definition of the equivalence relation. Then we consider the
decomposition in proper states of fs over all subsets F of Fs and define:

ψ : H →
⊕

E∈P<∞(N)

H0E (398)

s 7→
∑
F⊂Fs

PFs,Ff
s

It is direct to check that it is indeed the inverse of φ.

This decomposition into proper states is very useful to visualize the
space: each wave-function can be decomposed into a sum of wave-
functions over a finite number of loops but with no trivial depen-
dancy. This gives a precise meaning to superpositions of numberss of
loops.





C
D I S T R I B U T I O N S O N S U ( 2 )

c.1 dual space definition

We would like to impose the holonomy constraints for BF theory
which read for a single group element:

∀g ∈ SU(2), χ̂ϕ (g) = χ 1
2
(g)ϕ(g) = 2 ,ϕ(g) . (399)

If we stay in the strict framework of the Hilbert space L2(SU(2)), no
square integrable function actually provides such an eigenvector for χ̂
and we should solve this equation in the dual space. As is standard in
quantum mechanics, the natural framework for solving the equation
is a rigged-Hilbert space (or Gelfand triple), that is a triplet: S ⊂
H ⊂ S∗. The space H is the Hilbert space. The smaller space S is
provided with a stronger topology than the induced one and can
thought of as the test function space, while its dual S∗ is the space
of continuous linear forms on S and defines the distribution space.
The major property of S is to be small enough for the algebra of
observables to be defined over it. Then the operator algebra can be
naturally extended on S∗ and thus on H. For instance, an operator A
defined on S acts on a (dual) state ϕ be in S∗ as:

∀f ∈ S, Aϕ(f) = ϕ(A†f) . (400)

So let us be explicit for functions over SU(2). The Hilbert space
H is the space of square-integrable functions. The space S is usually
chosen to be the Schwarz space so that canonical position and mo-
mentum operator can be defined. Here, the rapid fall-off condition is
not needed since we are dealing with a compact group, but we keep
the smoothness requirement:

S = {ψ ∈ H/ψ ∈ C∞} (401)

Regarding the topology, the space S is naturally endowed with the
convergence on every Ck space. More precisely the space of Ck func-
tions is equipped with the following norm:

‖f‖Ck = sup
06i6k

‖∂a1,...,aif‖∞ (402)

This norm has two nice properties. First, differentiation is continuous
from Ck to Ck−1. Second, the topology induced by the norms are
finer as k goes to infinity. So the limit topology on S =

⋂
k∈N Ckgoes

as follows: a sequence of functions fn∈N in S admits 0 as its limit if
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the sup-norm of all its derivatives ‖∂αfn‖∞ go to 0 for arbitrary multi-
index α. This is topology is naturally finer than all the Ck topologies
and the differentiation is still continuous. Provided with this topology,
S is a Frechet space: it is complete and metrizable (though no norm
is defined). Note that, although all the Ck are Banach spaces, their
descending intersection

⋂
k∈N Ck is not.

c.2 fourier point of view

Things are usually clearer and more explicit in the Fourier decompo-
sition. Let us consider the Fourier decomposition of a function over
SU(2) on the Wigner matrices:

f(g) =
∑
j,a,b

f
j
abD

j
ab .

By the Fourier convergence theorem, smoothness actually translates
into a rapid fall-off of the Fourier coefficients:

f ∈ S ⇐⇒ ∀K ∈N ,
∑
j

|fj|dKj < +∞ , (403)

where dj = (2j+ 1) is the dimension of the spin-j representation and
|fj| can equally be the sup-norm or the square-norm of the matrix fjab.
This also means that the Fourier coefficients of a distribution cannot
diverge faster than polynomially:

ϕ ∈ S∗ ⇐⇒ ∃K ,
∑
j

|ϕj|d−Kj < +∞ . (404)

The strong topology on S means that a sequence of smooth functions
fn converges to 0 in S if and only if all the K-power sums go to 0:

lim
n→∞ fn = 0 ⇐⇒ ∀K ∈N ,

∑
j

|fjn|d
K
j −→
n→∞ 0 . (405)

This ensures that the evaluations of a distribution ϕ will also con-
verge ϕ(fn)→ 0.

c.3 holonomy constraint

Let us apply this to the holonomy constraints for functions invariant
under conjugation on SU(2). In this case, all functions decompose on
the characters,

ϕ(g) =
∑
j∈N

2

ϕjχj(g) ,

and the eigenvalue problem χ(g)ϕ(g) = 2ϕ(g) translates into a recur-
sion relation on the Fourier coefficients:

ρϕ0 = ϕ 1
2

, ρϕj> 12
= ϕj− 1

2
+ϕj+ 1

2
. (406)
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Once we fix the initial condition ϕ0, this recursive equation has a so-
lution for every complex value ρ ∈ C, but this does not systematically
defines a solution state, in L2 or a distribution. The solution to the re-
cursion is given in terms of the two solutions µ± of the quadratic
equation µ2 − ρµ+ 1 = 0:

∀j ∈ N

2
, ϕj =

1

2
(µ2j+ + µ2j− ) . (407)

For ρ = 2, the discriminant (ρ2 − 4) vanishes and this ansatz fails
leads: instead of the power law, we get a linear growth fj = (2j+ 1),
which leads back to the δ-distribution peaked on the identity. For real
values |ρ| < 2, the discriminant is negative and we get an oscillatory
solution ϕj = cos(2jθ) with cos θ = ρ, which gives a δ-distribution
fixing the class angle of the group element g to θ. For |ρ| > 2, the posi-
tive discriminant will leads to exponentially divergent coefficients ϕj
and do not define a proper distribution.





D
L A P L A C I A N C O N S T R A I N T, D O U B L E R E C U R S I O N
A N D F L AT N E S S E Q U AT I O N S

We introduce another constraint supplementing the holonomy con-
straint in order to truly impose flatness and get the δ-distribution
as unique solution: we impose the Laplacian constraint (∆̃−∆) = 0,
where ∆ = ∂La∂

L
a = ∂Ra∂

R
a is the usual Laplacian operator and ∆̃ =

∂La∂
R
a mixes the right and left derivations. These two operators do not

change the spin j and act rather simply on the Wigner matrices:

∆D
j
mn(h) = −Djmn(hJaJa) = −j(j+ 1)Djmn(h),

∆D
j
mn(h) = −Djmn(JahJa) .

(408)

Using the explicit action of the three su(2) generators, and applying
the Cauchy-Schwarz inequality to bound the sums, we can check that
the operator (∆̃−∆) is positive. We can also translate the Laplacian
constraint ∆ϕ = ∆̃ϕ into equations on the Fourier coefficient matrices
ϕj:

j(j+ 1)ϕjnm = nmϕjnm

+
1

2
ϕ
j
n−1,m−1

√
(j+n)(j−n+ 1)(j+m)(j−m+ 1)

+
1

2
ϕ
j
n+1,m+1

√
(j−n)(j+n+ 1)(j−m)(j+m+ 1) .

(409)

This is a recursion at fixed spin j on the matrix elements of each ϕj

independently. It works at fixed (n−m), that is along the diagonals
of the matrix, determining the matrix elements from, say, the highest
weight components:

ϕj,j → ϕj−1,j−1 → ϕj−2,j−2 → . . .

ϕj,j−1 → ϕj−1,j−2 → ϕj−2,j−3 → . . .

ϕj,j−2 → ϕj−1,j−3 → ϕj−2,j−4 → . . .

Putting this constraint with the holonomy constraint, we get a double
recursion structure. The holonomy constraint realizes a recursion on
the spin j, determining the matrix ϕj from the lower spin matrices,
while the Laplacian constraint implements a recursion on the mag-
netic moment m within each matrix ϕj:

ϕ0 →

(
↘ ↘
↘ ↘

)
→

 ↘ ↘ ↘
↘ ↘ ↘
↘ ↘ ↘

→

↘ ↘ ↘ ↘
↘ ↘ ↘ ↘
↘ ↘ ↘ ↘
↘ ↘ ↘ ↘

→ . . .
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This allows to solve the problem of the infinite initial conditions
needed for the holonomy constraint. We easily check that ϕnm =

δnm is a solution:

j(j+ 1) = m2 +
1

2
(j+m)(j−m+ 1) +

1

2
(j−m)(j+m+ 1) .

But then, we completely solve the constraint and show that it implies
that the function is invariant under conjugation:

Proposition D.0.1 Let us consider the Laplacian constraint (∆− ∆̃)ϕ = 0

translated to the Fourier decompositionϕ(h) =
∑
j,m,n(2j+ 1)TrϕjDj(h).

Then the each of the Fourier coefficient matrix ϕj at fixed spin j is propor-
tional to the identity. This means that ϕ is invariant under conjugation.

Proof D.0.2 Let us fix j > 1
2 . The spin-0 component ϕ0 is unconstrained

and left free. The recursion relation (409) allows to start with an element
ϕj,j−M with 0 6M 6 2j and to determine all of the following components
along the corresponding diagonal, ϕj−N,j−M−N for 0 6 N 6 (2j−M).
One actually gets a relation in terms of combinatorial factors:

ϕj−N,j−M−N = ϕj,j−M

√
(M+N)!
M!N!

(2j)!(2j−M−N)!
(2j−M)!(2j−N)!

. (410)

In particular, one obtains for the other end of the diagonal:

ϕ−j+M,−j = ϕj,j−M
(2j)!

M!(2j−M)!
. (411)

The trick is that the recursion relation (409) is symmetric under the exchange
(n,m)↔ (−m,−n): we start now from the other end of the same diagonal
and work our way back to the initial top element. Therefore the previous
equality holds but in the opposite way:

ϕj,j−M = ϕ−j+M,−j
(2j)!

M!(2j−M)!
= ϕj,j−M

(
(2j)!

M!(2j−M)!

)2
(412)

Thus either:

(2j)!
M!(2j−M)!

= 1 (413)

or:

ϕj,j−M = 0 . (414)

In the special case M = 0, along the principal diagonal, the recursion rela-
tion simplifies and reads ϕj,j = ϕj−1,j−1 = ϕj−2,j−2 = . . . . For all the
other cases M 6= 0, the matrix elements must vanish. This concludes the
proof that the matrix ϕj must be proportional to the identity.
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