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Résumé

Les chercheurs dans le domaine de la conception aérodynamique et de la fabrication des avions ont fait beaucoup d'effort pour améliorer les performances des ailes par des techniques d'optimisation. Le développement de la mécanique des fluides numérique a permi de réduire les dépenses en soufflerie tout en fournissant des résultats convaincants pour simuler des situations compliquées des aéronefs. Dans cette thèse, il a été choisi une partie spéciale et importante de l'avion, à savoir, la structure de l'aile.

L'optimisation basée sur la fiabilité est une méthode plus appropriées pour les structures sous incertitudes. Il se bat pour obtenir le meilleur compromis entre le coût et la sécurité tout en tenant compte des incertitudes du système en intégrant des mesures de fiabilité au sein de l'optimisation. Malgré les avantages de l'optimisation de la fiabilité en fonction, son application à un problème d'ingénierie pratique est encore assez difficile.

Dans notre travail, l'analyse de l'incertitude dans la simulation numérique est introduite et exprimée par la théorie des probabilités. La simulation de Monte Carlo comme une méthode efficace pour propager les incertitudes dans le modèle d'éléments finis de la structure est ici appliquée pour simuler les situations compliquées qui peuvent se produire. Pour améliorer l'efficacité de la simulation Monte Carlo dans le processus d'échantillonnage, la méthode de l'Hypercube Latin est effectuée. Cependant, l'énorme base de données de l'échantillonnage rend difficile le fait de fournir une évaluation explicite de la fiabilité. L'expansion polynôme du chaos est présentée et discutée. Le modèle de Kriging comme un modèle de substitution jouet un rôle important dans l'analyse de la fiabilité.

Les méthodes traditionnelles d'optimisation ont des inconvénients à cause du temps de calcul trop long ou de tomber dans un minimum local causant une convergence prématurée. Le recuit simulé est une méthode heuristique basée sur une recherche locale, les Algorithmes Génétiques puisent leur inspiration dans les principes et les mécanismes de la sélection naturelle, qui nous rendent capables d'échapper aux pièges des optimums locaux. Dans l'optimisation de la conception de base de la fiabilité, ces deux méthodes ont été mise en place comme procédure d'optimisation. La boucle de l'analyse de fiabilité est testée sur le modèle de substitution.

Chapter 1 Introduction

Introduction of background

As result of impressive advances in computational capability of hardware and software in recent decades, computational methods are gradually replacing empirical methods [START_REF] Ingram-Cotton | Reliability program requirements for space systems[END_REF]. In the process of design and analyze aircraft components, more time and energy are spent in applying computational tools instead of conducting physical experiments [START_REF] Yao | Review of uncertainty-based multidisciplinary design optimization methods for aerospace vehicles[END_REF].

For wing design, the requirement of new tools capable of accurate predicting aerodynamic behavior is performed. Numerical simulation of computational fluid dynamics can be applied for early detection of unwanted effects regarding stability and control behavior [START_REF] Bermúdez | Viscous-inviscid method for the simulation of turbulent unsteady wind turbine airfoil flow[END_REF]. In the same time, uncertainty is an inevitable issue in the field of research. Since aircrafts have complicated operation environment and sophisticated mechanical structural itself.

The uncertainties in the aircraft can cause system performance to change or fluctuate, or even contribute to severe deviation and result in unprecedented function fault and mission failure. The consideration of uncertainty in the stage of design process is necessary [START_REF] Haldar | Probability, reliability, and statistical methods in engineering design[END_REF]. According to specific characteristics of uncertainty, it should be represented in the research and design process by reasonable approaches.

The traditional analysis of deterministic Finite Element Model ignores the fluctuation of parameters as uncertain variables in the real operation environment. Application of Monte Carlo Method to probabilistic structural analysis problems is comparatively recent [START_REF] Rubinstein | Simulation and the Monte Carlo Method[END_REF]. It is a powerful mathematical tool for determining the approximate probability of a specific event that is the outcome of a series of stochastic processes.

Monte Carlo methods are useful and reliable only when a huge amount of sampling was performed [START_REF] Doubilet | Probabilistic sensitivity analysis using Monte Carlo simulation, A practical approach[END_REF]. It means heavy calculation burden of repeating sampling and timeconsuming process to deal with result databases for grasping the key information. In the one hand, the struggles for reducing calculation expense in Monte Carlo Simulation are considerable. Among them, Latin Hypercube Sampling is one of advanced methods due to its advantage of having memory and effectiveness in the repeating sampling simulation [START_REF] Helton | Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems[END_REF]. In the other hand, sensitivity analysis is a way to predict the importance level of one variable to the final outcome. By creating a given set of scenarios, the analyst can determine how changes in one variable will impact the target variable.

After perform Monte Carlo simulation in finite element models of aircraft structure, the huge database for the following reseach is also a big challenge to resarchers.

Stochastic expansion for probability analysis is a promising method to provide believeable evalution in the next reliability analysis in our work. It also plays an important role in reducing the heavy calculation burden of reliability based design optimization.

Outline of the dissetation

In chapter 2, methods of uncertainty analysis are presented. Firstly, the uncertainty classification and sources of uncertainty in the simulated-design are discussed.Then we demonstrated uncertainty representation and modeling as concluded in the literatures. After that, model validation and sensitivity analysis are also taken into consideration. In the last part of this chapter, mentods of uncertatiny propagation are showed and discussed.

Chapter 3 begins with the introduction of mathematical formulation of Monte Carlo

Integration. Next, we present advanced Monte Carlo methods, as importance sampling and Latin Hypercube sampling. Then, random interpolation quadratures, iterative Monte Carlo methods for linear equations and Morkow Chain Monte Carlo methods for Eigen-value problem are also demonstated in this chapter. Lastly, we have a numerical example of importance sampling method. Monte Carlo simulation in fininte element model of wing structure in chapter 3 is performed as original work.

In Chapter 4, stochastic expansion for probability analysis is discussed. The fundamental theory of polynomial chaos expansion is presented in the first part of this chapter. Next, Hermite pomynomial and Gram -Charlier series are expressed. Then Karhunen -Loeve transform as a very useful method in simulation is also presented.

In this chapter, we also explain the spectral stochastic finite element method, role of Karhunen -Loeve expansion and role of polynomial chaos expansion in spectral stochastic finite element method are demonstrated. Based on these theories, we also have serveral examples of stochastic expansion for probability analysis.

Chapter 5 presents reliability based design optimization. At first, general remarks of RBDO is illustrated. Then, first order and second order reliability method are explained. Next, we demonstrate mathematical formulation of RBDO. Robust design optimization is also introduced in this chapter. In the last part, examples of numerical simulation are presented.

In Chapter 6,two complet examples are demonstrated. The first example is cumulatice damage analysis of wing structure by stochastic simulation. As one of the most essential components in the aircraft structure, wing often operates in very complicated environment. It causes difficulties in identifying the exact values for the parameters in the models to simulate the real situation. In this example, a deterministic finite element model is created, the corresponding parameters in the model are sampled by Monte Carlo Method in numerous times. The process of stochastic simulation provides a useful database for the following cumulative damage analysis. Gaussian, Rayleigh, and Weibull distribution are proposed and used to express the probability density function for maximum stress in the wing structure. The last expression of probability distribution for maximum stress in the wing structure is polynomial function. In this method, sensitivity analysis was performed to find the most important several input variables. The relationship between the input variables and output variables in the database of stochastic simulation is obtained by linear regression method in the form of polynomial function. All of these four expressions were applied and discussed in cumulative damage analysis for wing structure.

The second example is airfoil shape optimization by heurist algorithms in surrogated model. Many struggles of researchers and designers in the field of aerodynamic design and aircraft production were made to improve wing airfoil by optimization techniques. Despite the development of computational fluid dynamic (CFD) in computer simulation, airfoil shape optimization is still quite challenging. In this example, we propose an effective method to have airfoil shape optimization by heuristic algorithms in surrogate model. To create an appropriate surrogate model, Monte Carlo simulation was performed by repeating computational fluid dynamic calculation, and reliable information was captured from this black box and concluded as Kriging interpolators. In order to prevent the premature convergence in the process optimization, attempts in heuristic algorithms for optimization were made.

The results of genetic algorithm and simulated annealing algorithm were tested in CFD to confirm the reliability of the method proposed in this paper.

Chapter 7 presents a summary of this dissertation, conclusions concerning the results and recommentations for future work.

Chapter 2 Uncertainty analysis

In the process of structural design, uncertainties include prediction errors induced by design model assumption and simplification; performance uncertainty arising from material properties, manufacturing tolerance; and uncertainty of load conditions applied on the structure during operation [START_REF] Yao | Review of uncertainty-based multidisciplinary design optimization methods for aerospace vehicles[END_REF]. These uncertainties can cause system performance to change or fluctuate, or even contribute to severe deviation and result in unanticipated or even unprecedented function fault and mission failure.

Uncertainty analysis is the premise of uncertainty-based design optimization. It includes adopting suitable taxonomy to comprehensively identify and classify uncertainty sources; utilizing appropriate mathematical tools to represent and model these uncertainties; and applying sensitivity analysis approaches to screen out uncertainties with minor effects on design so as to simplify the problems.

Uncertainty classification

In different research fields, there are different definitions and taxonomies for the term of uncertainty. In computational modeling and simulation process, uncertainty is regarded as a potential deficiency in phases or activities of the modeling process caused by lack of knowledge [START_REF] Yao | Review of uncertainty-based multidisciplinary design optimization methods for aerospace vehicles[END_REF] .

In some literatures, uncertainty is defined as the incompleteness in knowledge, and causes model-based predictions to differ from reality in a manner described by some distribution function [START_REF] Delaurentis | Uncertainty modeling and management in multidisciplinary analysis and synthesis[END_REF] . In another useful functional definition it is defined as the information/knowledge gap between what is known and what needs to be known for optimal decisions with minimal risks [START_REF] Noor | Non-deterministic approaches and their potential for future aerospace system[END_REF].

From the perspective of systems engineering and taking the whole lifecycle into account during the design phase, the definition of uncertainty is as follows:

• Uncertainty: the incompleteness in knowledge and the inherent variability of the system and its environment.

• A robust system is defined to be relatively insensitive to variations in both the system components and the environment. The degree of tolerance to these variations is measured with robustness [START_REF] Haldar | Probability, reliability, and statistical methods in engineering design[END_REF].

• Reliability is defined as the likelihood that an item will perform its intended function without failure for a specified period of time under stated operating conditions [START_REF] Ingram-Cotton | Reliability program requirements for space systems[END_REF].

To address uncertainty classification, the most popular uncertainty taxonomy is in risk assessment, which classifies uncertainty into two general categories: aleatory and epistemic.

• Aleatory uncertainty describes the inherent variation associated with the physical system or the environment under consideration. Sources of aleatory uncertainty can commonly be singled out from other contributors to nondeterministic simulation. Because their representation as distributed quantities can take on values in an established or known range, but the exact value will vary by chance from unit to unit or from time to time [START_REF] Helton | Treatment of aleatory and epistemic uncertainty in performance assessments for complex systems[END_REF]. Aleatory uncertainty is also referred to in the literature as stochastic uncertainty, variability, inherent uncertainty, and cannot be eliminated by collection of more information or data.

• Epistemic uncertainty is due to lack of knowledge, and exists as a potential inaccuracy in any phase or activity of the modeling process. The first feature that our definition stresses is "potential", in other words, the deficiency may or may not exist. It is possible that there is no deficiency even though lack of knowledge when model the phenomena correctly. The second key feature is that its fundamental cause is incomplete information due to vagueness, nonspecificity, or dissonance. Epistemic uncertainty is known as subjective or cognitive, also referred to as reducible uncertainty and ignorance [START_REF] Doubilet | Probabilistic sensitivity analysis using Monte Carlo simulation, A practical approach[END_REF]. This taxonomy is widely accepted and has been applied in numerous fields. The conclusion of the difference between aleatoty uncertainty and epistemic uncertainty is clearly showed in Fig 2-1. Acknowledged errors [START_REF] Oberkampf | Estimation for total uncertainty in modeling and simulation[END_REF] are deficiencies recognized or introduced by the analysts.

Examples of acknowledged errors are finite precision arithmetic in a digital computer, approximations made to simplify the modeling of a physical process, and conversion of partial differential equations into discrete equations, or lack of spatial convergence.

Acknowledged errors can be estimated, bounded, or ordered.

Examples of unacknowledged errors are blunders or mistakes. They can be programming errors, input or output errors, and compilation and linkage errors. There are no straightforward methods for estimating, bounding, or ordering the contribution of unacknowledged errors.

Sources of uncertainty

In the process of simulation-based design, uncertainties origins from four sources: input, operational environment, model uncertainties, and measurement; as showed in • Input uncertainties are caused by imprecise or even ambiguous requirements and problems description.

• Uncertainties in operational environment are due to unknown or uncontrollable external disturbances.

• Model uncertainties include model structure uncertainty and model parameter uncertainty. Model structure uncertainty, also mentioned as non-parametric uncertainty, is mainly due to assumptions underlying the model which may not capture the physics characteristics correctly. While model parameter uncertainty is mainly due to limited information in estimating the model parameters for a given fixed model form.

• For uncertainties exist in measurement, they arise when the response of interest is not directly computable from the math model. 

Uncertainty representation and modeling

According to its specific characteristics, uncertainty should be represented in the research and design process by reasonable approaches. In different context, model input and model parameter uncertainties have different features. The most popular methods in research includes: probability theory, evidence theory, possibility theory, interval analysis, and convex modeling [START_REF] Haldar | Probability, reliability, and statistical methods in engineering design[END_REF].

Probability theory

Probability theory is a more prevalent or better known theory to engineers. Its relative advantages are due to sound theoretical foundation, deep root in the research of non-deterministic design.

In probability theory, uncertainty is represented as random variable or stochastic process. Let X denote the quantity of interest whose probability density function (PDF) is given by fX(x/p), and cumulative distribution function (CDF), where p refers to the distribution parameters of the random variable X (continuous random variable), and x is a realization of X. For discrete random variable, a sample space is firstly defined which relates to the set of all possible outcomes, each element of the sample space is assigned a probability value between 0 and 1, and the sum of all the elements in the sample space to the "probability" value is called probability mass function (PMF).

In the context of a probabilistic approach, two difficulties are encountered. The first is the choice of the distribution type (normal, lognormal, etc.). The choice of distribution type is known from previous experiences, priori knowledge, or expert opinion, those are quite subjective. The second difficulty is lack of adequate data to estimate the distribution parameters with a high degree of confidence [START_REF] Pawitan | In all likelihood: statistical modeling and inference using likelihood[END_REF].

Fig 2 -3 Examples of probability density function

Classical statistics-based frequentist methodology addresses the uncertainty in the distribution parameters by estimating statistical confidence intervals, which cannot be used further in uncertainty propagation, reliability analysis, etc. In contrast, Bayesian probability interprets the concept of probability as a measure of a state of belief or knowledge of the quantity of interest, not as a frequency or a physical property of a system. It specifies some prior probability subjectively [START_REF] Youn | Bayesian reliability analysis with evolving, insufficient, and subjective data sets[END_REF] , and then updates in the light of new evidence or observations by means of statistical inference approach. In this way it can combine pre-existing knowledge with subsequent available information and update the prior knowledge with uncertainties. With the capability of dealing with both aleotory and epistemic uncertainties, the Bayesian theory has been widely applied, especially in reliability engineering.

Evidence theory

Evidence theory (Dempster-Shafer theory, D-S theory) measures uncertainty with belief and plausibility determined from known information. For a proposition, lower and upper bounds of probability with consistent evidence are defined instead of assigning a precise probability [START_REF] Yager | Advances in the Dempster-Shafer theory of evidence[END_REF]. The information or evidence to measure belief and plausibility comes from a wide range of sources (e.g., experimental data, theoretical evidence, experts' opinion concerning belief in value of a parameter or occurrence of an event, etc.). Meanwhile, the evidence can be combined with combination rules [START_REF] Sentz | Combination of evidence in Dempster-Shafer theory[END_REF] .

Evidence theory begins with defining a frame of discernment X, which includes a set of mutually exclusive "elementary" propositions. The elements of the power set 2X can be taken to represent propositions concerning the actual state of the system.

Evidence theory assigns a belief mass to each element of the power set by a basic belief assignment function m: 2X→[0,1] which has the following two properties: the mass of the empty set is zero, and the mass of all the member elements of the power set adds up to a total of 1.

The mass m(A) express the proportion of all relevant and available evidence that supports the claim that the actual state belongs to A. The value of m(A) pertains only to A and makes no additional claims about any subsets of A, each of which has its own mass. From the mass assignments, a probability interval can be defined which contains the precise probability, and the lower and upper bound measures are belief (Bel) and plausibility (Pl) as Bel(A) ≤ P(A) ≤ Pl(A).

The belief Bel(A) is defined as the sum of mass of all the subsets of A, which represents the amount of all the evidence supporting that the actual state belongs to A, and the plausibility Pl(A) is the sum of mass of all the sets that intersect with A, which represents the amount of all the evidence that does not rule out that the actual state belongs to A:

𝐁𝐁𝐁(𝐀) = ∑ 𝒎(𝑩) 𝑩/𝑩∈𝑨
(2 -1)

𝐏𝐁(𝐀) = ∑ 𝒎(𝑩) 𝑩/𝑩∩𝑨≠∅ (2 -2)
The two measures are related to each other as 𝐏𝐁(𝐀) = 𝟏 -𝐁𝐁𝐁(𝑨 � ) 𝐁𝐁𝐁(𝐀) + 𝐁𝐁𝐁(𝑨 � ) ≤ 𝟏 𝐏𝐁(𝐀) + 𝐏𝐁(𝑨 � ) ≥ 𝟏 (2 -3) Where 𝐴 ̅ is the complement of A.

The evidence space is characterized with cumulative belief function (CBF) and cumulative plausibility function (CPF).

Evidence theory can deal with the problems both of aleatory and epistemic uncertainties flexibly with its evidence combination rules to update probability measures [START_REF] Soundappan | Comparison of evidence theory and Bayesian theory for uncertainty modeling[END_REF]. It is actually close related to probability theory. When the amount of available information increases, an uncertainty representation with evidence theory can approach that with probability theory [START_REF] Alyanak | Gradient projection for reliability-based design optimization using evidence theory[END_REF], [START_REF] Bai | Evidence-theory-based structural static and dynamic response analysis under epistemic uncertainties[END_REF]. However, it also has limitations when handle highly inconsistent data sources, which may render the evidence combination rule unreliable. Anyway, it has been widely utilized and attracted great research interest in the fields of uncertainty-based information, risk assessment, decision making, and design optimization [START_REF] Agarwal | Uncertainty quantification using evidence theory in multidisciplinary design optimization[END_REF], [START_REF] Mourelatos | A design optimization method using evidence theory[END_REF].

Possibility theory

Possibility theory is introduced as an extension of the theory of fuzzy set and fuzzy logic, which can be used to model uncertainties when there is imprecise information or sparse data. The term fuzzy set is in contrast with the conventional set (fixed boundaries).

In possibility theory, uncertain parameters are not treated as random variables but as possibilistic variables, the membership function is extended to possibility distribution.

It expresses the degree of an event can occur by analyst as subjective knowledge.

Like evidence theory, possibility theory can deal with both the aletory and epistemic uncertainties [START_REF] Jensen | Structural optimal design of systems with possibility theory[END_REF] . Compared to probability theory, possibility theory can be more conservative in terms of a confidence level. Because the knowledge of the analyst can be easily introduced to the design process and make problems more tractable [START_REF] Lopez | A review of uncertainty in flight vehicle structural damage monitoring, diagnosis and control: Challenges and opportunities[END_REF] . The application of fuzzy set and possibility theory is feasible in engineering design optimization and decision making. Fractile approach, modality optimization approach and spread minimization approach also be developed to solve possibilistic programming problems [START_REF] Inuiguchi | Modality constrained programming problems: A unified approach to fuzzy mathematical programming problems in the setting of possibility theory[END_REF] . Possibility theory can also be applied along with probability theory, the integrated or unified algorithms are necessary to research and exploded [START_REF] Mauris | Possibility distributions: A unified representation of usual directprobability-based parameter estimation methods[END_REF], [START_REF] Sakallı | Can the uncertainty in brass casting blending problem be managed A probability/possibility transformation approach[END_REF], [START_REF] Miranda | On the connection between probability boxes and possibility measures[END_REF], [START_REF] Dubois | Bayesian conditioning in possibility theory[END_REF], [START_REF] Baudrit | Joint propagation of probability and possibility in risk analysis: Towards a formal framework[END_REF] .

Interval analysis

Interval analysis is an approach to putting bounds on rounding errors and measurement errors in mathematical computation, and yield reliable results by developing numerical methods. In interval analysis the value of a variable is replaced by a pair of numbers representing the maximum and minimum values that the variable is expected to take. Interval arithmetic rules are applied to perform mathematical operations with the interval numbers, therefore the propagation of the interval bounds through the computational model is implemented, and the bounds on the output variables are achieved [START_REF] Impollonia | Interval analysis of structures with uncertain-butbounded axial stiffness[END_REF], [START_REF] Jiang | An uncertain structural optimization method based on nonlinear interval number programming and interval analysis method[END_REF], [START_REF] Majumder | Interval-based optimization of aircraft wings under landing loads[END_REF], [START_REF] Verhaeghe | Interval fields to represent uncertainty on the output side of a static FE analysis[END_REF].

Convex modeling

Convex modeling is a more general approach to represent uncertainties with convex sets [START_REF] Ben-Haim | Convex models of uncertainty in applied mechanics[END_REF]. It is unlikely that the uncertain components are independent with each other and the bounds on the components of the object are reached simultaneously. Therefore, it is more reasonable to apply the convex model with representation of correlations between uncertain components in realistic application. In addition, techniques in interval analysis can be used here, when the convex models are intervals [START_REF] Ben-Haim | Convex Models of Uncertainty: Applications and Implications[END_REF], [START_REF] Fuchs | Uncertainty modeling with clouds in autonomous robust design optimization[END_REF].

Besides the foregoing five theories, there are other alternative approaches to represent uncertainties, especially for epistemic uncertainty [START_REF] Troffaes | A robust Bayesian approach to modeling epistemic uncertainty in common-cause failure models[END_REF], such as cloud theory mediating between fuzzy set theory and probability distribution, fuzzy random theory and random fuzzy theory with characteristics of both fuzzy set theory and probability theory [START_REF] Heltona | Quantification of margins and uncertainties: Alternative representations of epistemic uncertainty[END_REF] , [START_REF] Heltona | An exploration of alternative approaches to the representation of uncertainty in model predictions[END_REF].

Model validation

In uncertainty based design, uncertainty representation models also have model form uncertainties, especially probabilistic models whose distributions are assumed and fitted based on past experience, expert opinions, experimental data, etc. Hence, it is also necessary to measure the uncertainty of the model to validate the feasibility of the uncertainty representation [START_REF] John | The Relationship between the Coefficient of Correlation and the Angle Included between Regression Lines[END_REF].

Model form uncertainty can be characterized through model accuracy assessment by comparison between simulation results and experimental measurements. This process is also called model validation. It can be determined when the mathematical model of a physical event is sufficiently reliable to represent the actual physical event in the real practice.

To discuss whether a specific distribution is suitable to a data-set, the goodness of fit criteria can be applied. It includes the Pearson test [START_REF] Pearson | Notes on regression and inheritance in the case of two parents[END_REF], the Kolmogorov-Smirnov test [START_REF] Shorack | Empirical Processes With Applications to Statistics[END_REF], the Anderson-Darling test [START_REF] Stephens | EDF Statistics for Goodness of Fit and Some Comparisons[END_REF], etc. When the data available to test the hypothesis about probabilistic models are too scarce to allow definite conclusions to choose or discard totally one model among others, Bayesian method can be applied.

It has the capability of combining several competing probability distribution types together to describe a random variable. More generally, a complete Bayesian solution is proposed to average over all possible models which can provide better predictive performance than any single model accounting for model uncertainties.

When sampling from random vectors, it is important to control correlation or even dependence patterns between marginal. The bounds on the correlation errors can be useful for the selection of stopping criteria in algorithms employed for correlation control. In order to quantify an error in the correlation of a given sample, one must select a correlation estimator and define a scalar measure of the correlation matrix.

Another goal of controlled statistical sampling is usually to perform the sampling with the smallest possible sample size, and yet achieve statistically significant estimates of the response.

The estimated correlation matrix is a symmetric matrix of the order var N and can be written as the sum

T A I L L = + + (2 -4)
Where I is the identity matrix and L is the strictly lower triangular matrix with entries with the range 1,1 -. There are c N correlation that describe pairwise correlations:

var var var ( 1) 2 2 c N N N N   - = =    
(2 -5)

Pearson correlation coefficient

The most well-known correlation measure is the linear Pearson correlation coefficient (PCC) [START_REF] Galton | Regression towards mediocrity in hereditary stature[END_REF]. The PCC takes values from between -1 and +1, inclusive, and provides a measure of the strength of the linear relationship between two variables. The actual PCC between two variables, say i X and j X , is estimated using the sample

correlation coefficient ij A as , j, 1 2 2 , j, 1 1 (x X )(x X ) (x X ) (x X ) sim sim sim N i s i s j s ij N N i s i s j s s A = = = - - = - - ∑ ∑ ∑ (2 -6) , 1 1 X x sim N i i s s sim N = = ∑ , j, 1 1 X x sim N j s s sim N = = ∑ (2 -7) When the actual data i, x s , 1, 2, , sim s N =  of each vector var 1, 2, , i N =  are standardized into i,s
z into vectors that yield zero average and unit sample variance estimates, the formula simplifies to

i, j, 2 2 , j, s s ij i s s r r A r r = ∑ ∑ ∑ (2 -8) i, j, 1 1 sim N ij s s s sim A z z N = = ∑ (2 -9)
Which is the dot product of two vectors divided by the sample size.

Spearman correlation coefficient

The formula for Spearman correlation coefficient [START_REF] Lehman | Basic Univariate And Multivariate Statistics: A Step-by-step Guide[END_REF] 

= -. 1 1 1 2 sim N sim i j s sim N s N π π π = + = = = = ∑ (2 -10)
The rank correlation is then defined as, 

sim sim i s s N N r r - = = ∑ ∑
, and the rank correlation reads:

i, j, i, j, 2 3 12 12 1 3 ( 1) 1 s s s s sim ij sim sim sim sim sim r r N A N N N N N π π + = = - - - - ∑ ∑ (2 -12)
In the case of ties, the averaged ranks are used. Note that when LHS is applied to continuous parametric distributions no ties can occur in the generated data.

Therefore, we do not consider ties from here on. Another formula exists for Spearman correlation suitable for data with no ties. The correlation coefficient between any two vectors each consisting of permutations of integer ranks from 1 to

sim N is 2 6 1 ( 1) ij sim sim D A N N = - - (2 -13)
Where D is the sum of values s d , the differences between the th s integer elements in the vectors:

2 1 sim N s s D d = = ∑ (2 -14)
Every mutual permutation of ranks can be achieved by permuting the ranks s π of the second variable against the identity permutation corresponding to the ranks of the first variable. Therefore, we may write

2 2 1 1 1 (s ) 2 s (s ) sim sim sim N N N s s s s s D π π = = =   = - = -     ∑ ∑ ∑ (2 -15)
This is equal to

1 ( 1)(2 1) 2 (s ) 3 sim N sim sim sim s s N N N π = + + -∑ (2 -16)
Spearman correlation can, in general, take any value between -1 and 1, inclusive, depending on the value of the sum 

Kendall correlation coefficient

Kendall's correlation [START_REF]Ordinal Measures of Association[END_REF] (nonparametric or distribution-free) coefficient estimates the difference between the probability of concordance and discordance between two variables, i x and j

x . For data without ties, the estimate is calculated based on the rankings i π and j π of sim N samples of two vectors i x and j

x . Let us index the ranks by 1 ,

sim k l N ≤ ≤
. The formula for sample correlation is a direct estimation of the difference between the probabilities:

, ,l j, j,l sgn ( )( ) 2 2 sim N i k i k c d k l ij sim sim n n A N N π π π π <   - -   - = =             ∑ (2 -17)
Where sgn(z) 1 = -for negative z , +1 for positive z , and zero for z =0.

The numerator counts the difference between concordant pairs c n and discordant pairs d n . The denominator is the maximum number of pairs with the same order, the total number of item pairs with respect to which the ranking can be compared. The number of concordant pairs c n is the number of item pairs on the order of which both rankings agree. A pair ( ) The number of concordant pairs can be calculated by adding scores: a score of one for every pair of objects that are ranked in the same order and a zero score for every pair that are ranked in different orders:

, ,l j, j,l 1 
( )( ) 0 1 1 (l ) sim sim i k i k N N c k l k n π π π π - - - > = = + = ∑ ∑ (2 -18)
Where the indicator function l A equals one if A is true, and zero otherwise.

Analogically, d n would count only for opposite orders and the formula would be identical but with opposite orientation of the inequality sign.

In the cases of tied rank, the denominator is usually adjusted. We do not consider ties. Therefore, ij A can be rewritten by exploiting the fact that the number of pairs is the sum of concordant and discordant pairs and therefore the number of discordant pairs is

2 sim d c N n n   = -    
. Then,

4 4 1 1 ( 1) ( 1) 
c d ij sim sim sim sim n n A N N N N = -= - - - (2 -19) 
A straightforward implementation of the algorithm based on the above equations has

2 ( N ) sim ϑ complexity.
In practice, it is convenient to rearrange the two rank vectors so that the first one is in increasing order.

Kendall's correlation coefficient is intuitively simple to interpret. When compared to the Spearman coefficient, its algebraic structure is much simpler. Note that Spearman's coefficient involves concordance relationship among three sets of observation, which makes the interpretation somewhat more complex than that for Kendall's coefficient. Regarding the relation between Spearman's correlation ( ρ ) and Kendall's correlation (τ )

2 2 (1 ) 3 2 (1 ) τ τ τ ρ τ τ -- ≤ - ≤ + - (2 -20)
For many joint distribution, correlation coefficients of Spearman and Kendall have different values, as they measure different aspects of the dependence structure. It has long been known about the relationship between the two measurements that, for many distributions exhibiting weak dependence, the sample value of Spearman's is about 50% larger than the sample value of Kendall's.

Sensitivity analysis

Sensitivity analysis is the study of how the variation in the model output can be apportioned, qualitatively or quantitatively, to different sources of variations in the model input [START_REF] Saltelli | Sensitivity analysis of model output: An investigation of new techniques[END_REF]. By means of this technique, uncertainty factors can be systematically studied to measure their effects on the system output, so as to filter out the uncertainty factors with negligible contributions and reduce complexity. With this specific aim, sensitivity analysis in this context is also termed uncertainty importance analysis.

There are numerous approaches to address sensitivity analysis under uncertainty, especially with probability theory. Probabilistic sensitivity analysis methods mainly include differential analysis, response surface methodology, variance decomposition, Fourier amplitude sensitivity test, sampling-based method [START_REF] Helton | Uncertainty and sensitivity analysis for gas and brine migration at the Waste Isolation Pilot Plant: Permeable shaft with panel seals[END_REF], etc. Among these approaches, sampling-based method is widely applied for its flexibility and ease of implementation.

Once the sample is generated, evaluation of f created the following mapping from analysis inputs to analysis results

[ ]

, y , 1, 2, ,

i i x i nS =  Where ( ) i i y f x = Then 1 (y) nS i i i E y w = = ∑ (2 -21) [ ] 2 1 (y) (y) nS i i i V E y w = = - ∑ (2 -22)
The mapping in [ ] , y , 1, 2, ,

i i x i nS =
 can be explored with various techniques to determine the effects of the individual elements of x on y.

Differential analysis is based on the partial derivative of f with respect to the elements of x . In its simplest form, differential analysis involves approximating the model by the Taylor series

0 0 0 1 y(x) f(x ) (x ) nX j j j j f x x x =     = + ∂ ∂ -     ∑ (2 -23)
Where

0 10 20 ,0 x x , x , , x nX   =   
is a vector of base-case values for the j x .

One the approximation in the model of Taylor series is determined, variance propagation formulas can be used to determine the uncertainty in y that results from the distribution. In particular,

0 0 0 1 (y) y(x ) (x ) nX j j j j E f x E x x =     = + ∂ ∂ -     ∑ (2 -24)
[ ]
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Thus, the Taylor series leads to approximations of the expected value and variance for y that result from the distributions. Sensitivity analysis is based on the use of partial derivatives associated with a Taylor series to determine the effects of the individual elements. If the elements are independent, then the fractional contribution of j

x to the variance of y can be approximated by

2 0 ( ) (x ) ( ) ( ) j j j V y x f x V x V y   = ∂ ∂   (2 -26)

Uncertainty propagation

Uncertainty analysis is concerned with quantifying uncertainty characteristics of output in the system resulted from model input uncertainties and model uncertainties propagated through computational simulation. Generally uncertainty analysis approaches can be categorized into two types: intrusive and non-intrusive [START_REF] Acharjee | A non-intrusive stochastic Galerkin approach for modeling uncertainty propagation in deformation processe[END_REF].

The intrusive type is mainly related to the physics-based approaches. It involves reformulation of governing equations and modification to the simulation codes so as to incorporate uncertainty directly into the system [START_REF] Panayirci | Efficient component-wise and solver-based intrusive SFEM analysis of complex structures[END_REF]. Typical example of this type is Polynomial Chaos expansion based approaches, which represent a stochastic process with expansion of orthogonal polynomials. The coefficient of the expansion can be defined by substituting the stochastic process with its polynomial chaos expansion in the original governing equations, which results in a coupled system of deterministic equations to be solved by editing the existing analysis codes.

In contrast to intrusive approaches, non-intrusive approaches treat computer simulation model as black-box and need no modification to existing deterministic simulation codes. So it can be developed for general use and take the advantage of being applicable to legacy codes. With this merit, the preceding Polynomial Chaos expansion based methods are also studied to be solved with non-intrusive approaches. Widely used non-intrusive approaches, include Monte Carlo simulation method, Taylor series approximation method, and some methods specific for reliability analysis [START_REF] Lopez | A non-intrusive methodology for the representation of crack growth stochastic processes[END_REF]. Considering the computational difficulty in application of the conventional uncertainty analysis methods, decomposition based methods are introduced, which can treat uncertainty cross propagation among complex coupling disciplines more efficiently by decomposing the system uncertainty analysis problem into subsystem or disciplinary level.

Monte Carlo simulation

Monte Carlo simulation (MCS) methods (sampling-based methods) are a class of computational algorithms that perform repeated sampling and simulation. If sufficient samples are provided, MCS methods can provide statistical analysis results with arbitrary level of accuracy [START_REF] Goel | Monte Carlo simulation applied to distribution feeder reliability evaluation[END_REF].

MCS is often used as a benchmark for evaluating the performance of new uncertainty analysis techniques. Lots of efforts have been devoted to develop approximation approaches to numerically evaluate this integral [START_REF] Balopoulou | Sensitivity of seismic response to uncertainties in restoring force model: a Monte Carlo simulation case study[END_REF].

Gauss quadrature approaches and other numerical quadrature and cubature methods are proposed to approximate the multi-dimensional integral with weighted sum of the integrand values at a set of discrete integration points within the integration region. Laplace Approximation approach is proposed to approximate the integrand with second order Taylor series expansion at its minimum so as to derive the integral. Unfortunately, these approximate numerical integration approaches are generally only efficient and accurate for a special type of problem, quadrature based method for polynomial response, and may be not applicable especially for problems with high dimensional uncertainties and complex integrand which has no explicit formula and can only be calculated with time-consuming simulation analysis [START_REF] Long | Fast estimation of expected information gains for Bayesian experimental designs based on Laplace approximations[END_REF].

The difficulties with the traditional numerical integration approaches as motivation to the development of simulation based MCS integration methods, statistics of the system response by simply performing repeated sampling and simulation can be computed.

The disadvantage of MCS methods is computational prohibitive when simulation model is complex. For problems need iterations of several coupled disciplinary simulations to reach a consistent system response result, the situation becomes even worse [START_REF] Rao | Dynamic fault tree analysis using Monte Carlo simulation in probabilistic safety assessment[END_REF]. To be more efficient than the random sampling method, several improved MCS methods with different sampling techniques have been developed and proved.

Among these sampling methods, importance sampling (weighted sampling) [START_REF] Engelund | A benchmark study on importance sampling techniques in structural reliability[END_REF], is pervasively studied. It is expected to reduce error to zero if importance sampling probability density function is correctly selected. However, in realistic engineering problems, generally theoretical optimum importance sampling functions are not practical.

A compromise method is Latin hypercube sampling (LHS) approach [START_REF] Roshanian | Latin hypercube sampling applied to reliability-based multidisciplinary design optimization of a launch vehicle[END_REF]. This approach divides the range of each variable into disjoint intervals of equal probability, and one value is randomly selected from each interval. It improves MCS stability and also maintains the tractability of random sampling.

The first-order sensitivity method, as a variance reduction technique, is also utilized to accelerate MCS estimation convergence [START_REF] Dimov | Monte Carlo sensitivity analysis of an Eulerian large-scale air pollution model[END_REF]. It is observed that this sensitivity enhanced method can improve accuracy by one order of magnitude compared to error. The variance reduction techniques are especially important when MCS is applied to estimate small failure probability.

Taylor series approximation

Taylor series approximation methods have been widely used for the relative ease of understanding and implementation [START_REF] Franceschini | Point estimate methods based on Taylor Series Expansion -The perturbance moments method -A more coherent derivation of the second order statistical moment[END_REF]. This method can be employed to approximate statistical moments of system output based on partial derivatives of the output f with respect to the elements of the random input vector x. The original simulation model function y=f(x) can be approximated with the first order Taylor series as,

+𝐲(𝐱) ≈ 𝐟(𝐱𝐱) + � � 𝒏 𝒌 �𝒙 𝒌 𝒂 𝒏-𝒌 𝒏 𝒌=𝐱 (2 -27)
Where x0 is the base point vector at which the derivatives are calculated. The output uncertainty resulting from the random input uncertainties can be determined with uncertainty propagation through this approximation formula.

Taylor series approximation methods have several disadvantages [START_REF] Kirsch | Approximate structural reanalysis based on series expansion[END_REF]:

(1) Its estimation accuracy is low when the coefficients of variation of the input random vector increase.

(2) The increase of Taylor series expansion order leads to rapidly increase of estimation complexity due to high-order terms and correlations between the elements.

(3) The determination of partial derivatives could be very difficult for complex system simulation models.

As Taylor series approximation methods only deal with the propagation of first two moments rather than the exact distribution of randomness, it belongs to first-order, second-moment methods which are related to the class of problems only concerning the means and variances and their propagation. This is a logical naming convention for the uncertainty propagation techniques with a given choice of the order of approximation and the statistical moment to be used [START_REF] Nagy | Distributional uncertainty analysis using power series and polynomial chaos expansions[END_REF]. Besides Taylor series approximation methods, there are also several other first order, second-moment approaches such as point-estimate-for-probability-moment methods.

Reliability analysis

Reliability of the system is generally difficult to calculate analytical as both the joint probability distribution function p(x) and the failure domain D are seldom accurately defined in an explicit analytical form, and the multidimensional integration can be computationally prohibitive especially for the complex system with time consuming analysis models [START_REF] Lee | Finite-element-based system reliability analysis of fatigueinduced sequential failures[END_REF]. Hence, it is motivated to develop various approximation methods, including the preceding numerical integration methods, as well as other integration approximation methods specific for reliability analysis. Laplace multidimensional integral method based asymptotic approximation, main domain of failure coverage base integration, fast Fourier transform (FFT) based method, tail modeling approach, dimension-reduction (DR) methodology, First Order Reliability Method (FORM) and Second Order Reliability Method (SORM), etc [START_REF] Biondini | Fuzzy reliability analysis of concrete structures[END_REF]. Among these approximation methods, FORM and SORM are most prevailing and wide applied in engineering problems.

To further improve reliability analysis efficiency, response surface methodology (RSM) can be utilized to replace the computationally expensive accurate function so as to reduce calculation burden [START_REF] Romero | Construction of response surfaces based on progressive-lattice-sampling experimental designs with application to uncertainty propagation[END_REF]. Interval analysis, possibility theory, evidence theory and convex uncertainty in reliability analysis are also studied. Besides the methods to determine exact reliability, there are also some approaches dealing with reliability bounds.

Decomposition based uncertainty analysis

For a complex system with close coupled disciplines, tremendous repeating multidisciplinary analysis (MDA), Monte Carlo methods, FORM/SORM make uncertainty analysis computationally prohibitive. As a solution to this problem, decomposition strategies are proposed to decompose the uncertainty analysis problem nested with MDA into several discipline or subsystem uncertainty analysis problems, so as to control each sub-problem within acceptable level and meanwhile take advantages of distributed parallel computing [START_REF] Agarwal | Uncertainty quantification using evidence theory in multidisciplinary design optimization[END_REF].

For MPP based uncertainty analysis, the search procedure of MPP is essentially a double loop algorithm, which includes a MPP search optimization in the outside loop and a MDA iteration procedure in the inner loop. To improve the search efficiency of MPP, decomposition based approaches have been suggested [START_REF] Lopezi | Reliability-based design optimization strategies based on FORM: a review[END_REF]. In addition, employing concurrent subspace optimization (CSSO) procedure to solve the MPP search optimization problem, so called MPP-CSSO, also greatly improve efficiency with parallelization of disciplinary analysis and optimization [START_REF] Kirsch | Approximate structural reanalysis based on series expansion[END_REF].

Last but not the least, another solution to address the double loop problem is to decompose MDA from the MPP search and organize them sequentially as a recursive loop. In this sequential approach to reliability analysis for multidisciplinary systems (SARAM), concurrent subsystem analysis can be applied in the separate MDA to further alleviate computational burden [START_REF] Kirsch | Approximate structural reanalysis based on series expansion[END_REF].

For numerical simulation based reliability analysis, Gibbs sampling [START_REF] Geman | Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images[END_REF] is utilized to decompose MDA into disciplinary sub-problems and reduce the consistency of multidisciplinary system at each run. Without consistency constraint on MDA, only the number of disciplines times the disciplinary analysis computation are needed for each run of sample simulation, which can greatly reduce calculation cost compared to the traditional sampling method that needs iterations of disciplinary analysis to obtain a consistent system response at each sample.

Conclusion

In this chapter, we first discussed the uncertainty classification and sources of uncertainty in numerical simulation. Probability theory, evidence theory, possibility theory, interval analysis and also convex modeling are reminded as theory of uncertainty representation and modeling for uncertainty analysis. applied the Monte Carlo method for estimating the correlation coefficient in his tdistribution [START_REF] Bailey | Polar Generation of Random Variates with the t-Distribution[END_REF].

A basic advantage of sampling methods is their direct utilization of experiments to obtain mathematical solutions or probabilistic information concerning problems whose system equations cannot be solved easily by known procedures [START_REF] Choi | Reliability-based Structural Design[END_REF].

Application of Monte Carlo Method to probabilistic structural analysis problems is comparatively recent, becoming practical only with the advent of digital computers. It is a powerful mathematical tool for determining the approximate probability of a specific event that is the outcome of a series of stochastic processes.

Mathematical formulation of Monte Carlo Integration

The quality of any algorithm that approximate the true value of the solution depends very much of the convergence rate. One needs to estimate how fast the approximate solution converges to the true solution. Let ξ be a random variable for which the mathematical expectation of ( ) 

E I ξ = exists.
ξ ξ ξ ξ ξ ξ ξ ξ ∞ ∞ -∞ -∞  =  =  =   ∫ ∫ ∑ ∑ (3 -1)
The nonnegative function ( ) p x (continuous or discrete) is called the probability density function. To approximate the variable I , a computation of the arithmetic mean must usually be carried out,

1 1 N N i i N ξ ξ = = ∑ (3 -2)
For a sequence of uniformly distributed independent random variables, for which the mathematical expectation exists, the theorem of J. Bernoulli [START_REF] Grimmett | Probability and Random Processes[END_REF] ( who proved for the first time the Law of Large Number Theorem) . This means that the arithmetic mean of these variables converges to the mathematical expectation:

p N I as N ξ → → ∞
The sequence of the random variables 1 2 , , , ,

N η η η   converges to the constant c if for every 0 h > , it follow that, { } lim 0 N N P c h η →∞ -≥ = Thus, when N is sufficiently large N I ξ ≈
Suppose that the random variable ξ has a finite variance, the error of the algorithm can be estimated as,

2 2 2 ( ) [ ( )] ( ) [ ( )] D E E E E ξ ξ ξ ξ ξ = - = - (3 -3)

Plain (crude) Monte Carlo Algorithm

Crude Monte Carlo is the simplest possible approach for solving multidimensional integrals. This approach simply applied the definition of the mathematical expectation.

Let Ω be an arbitrary domain and

d x R ∈ Ω ⊂
be a d-dimensional vector.

We consider the problem of the approximate computation of the integral

( ) ( ) I f x p x dx Ω = ∫ (3 -4)
Where the non-negative function Let the random points 1 2 , , ... , N ξ ξ ξ be independent realizations of the random point ξ with probability density function ( ) p x , then an approximate value of I is

1 1 N N i i N θ θ = = ∑ (3 -7) If 1 1 N N i i N ξ ξ = =
∑ were absolutely convergent, then N θ would be convergent to I .

Geometric Monte Carlo Algorithm

Let the nonnegative function f be bounded,

0 ( ) f x c for x ≤ ≤ ∈ Ω
Where c is a generic constant. Consider the cylindrical domain

[0, ] c Ω = Ω × 
And the random point 

c if f if f ξ ξ ξ θ ξ ξ ξ <   ≥   (3 -9)
The random variable introduced is a measure of the points below the graph of the

function f . { } 1 2 3 ( , ) 1 2 1 2 3 3 0 ( ) Pr ( ) ( , , ) f x x E c f dx dx p x x x dx I θ ξ ξ Ω = < = = ∫ ∫   (3 -10)
The algorithm consists of generating a sequence of random points uniformly distributed in the third direction and accepting points if they are under the graph of the function and rejecting other points. This is the reason to call this Geometric algorithm an acceptance-rejection technique.

Compare the accuracy of the Geometric and the Plain Monte Carlo algorithm

Let 2 ( , ) f L p ∈ Ω
guarantees that the variance

2 2 ( ) ( ) ( ) D f x p x dx I θ Ω = - ∫  in a Plain Monte Carlo algorithm is finite.
For the Geometric Monte Carlo algorithm the following equation holds

{ } 2 2 3 ( ) P ( ) E c x f cI θ ξ = < =  (3 -11)
Hence the variance is

2 ( ) D cI I θ = -  . Because 2 ( ) ( ) ( ) ( ) f x p x dx c f x p x dx cI Ω Ω ≤ = ∫ ∫ (3 -12)
Therefore, ( ) ( ) D D θ θ ≤  . The last inequality shows that the Plain Monte Carlo algorithm is more accurate than the Geometric one (except for the case when the function f is a constant). Nevertheless, the Geometric algorithm is often preferred, from the algorithmic point of view, because its computational complexity may be less than that of the plain algorithm.

Advanced Monte Carlo Methods

The probable error in Monte Carlo algorithms will appear when no information about the smoothness of the function is used

N D r c N ξ = (3 -13)
It is important for such computational schemes and random variables that a value of ξ is chosen so that the variance is as small as possible. 

( ) ( ) I h x p x dx I Ω ′ = = ∫ (3 -15)
The random variable

( ) ( ) f h I θ ξ ξ ′ ′ = - +
generates the following estimate for the integral

1 1 [ ( ) ( )] N N i i i I f h N θ ξ ξ = ′ ′ = + - ∑ (3 -16) 
A possible estimate of the variance of θ ′ is

2 2 2 ( ) [ ( ) ( )] ( ) ( ) D f x h x p x dx I I θ ε Ω ′ ′ = - -- ≤ ∫ (3 -17)
This means that the variance and the probable error will be quite small, if the function

( )
h x is such that the integral I ′ can be calculated analytically. The function ( ) h x is often chosen to be piece-wise linear function in order to compute the value of I ′ easily.

Importance Sampling Algorithm

Importance sampling is a variance reduction technique that can be used in the Monte Carlo method. The basic idea behind importance sampling is that certain values of the input random variables in a simulation have more impact on the parameter being estimated than others. If these "important" values are emphasized by sampling more frequently, then the estimator variance can be reduced. Hence, the basic methodology in importance sampling is to choose a distribution which "encourages" the important values.

Consider the problem of computing the integral For an arbitrary tolerant probability density function ( ) p x for ( ) f x in Ω . The random variable 0 θ can be defined in the following way:

0 0 ( ) , ( ) ( ) 0 , f x x p x x x θ +  ∈ Ω  =   ∈ Ω  (3 -18)
It is interesting to consider the problem of finding a tolerant density, ( ) p x , which minimizes the variance of 0 θ . The existence of such a density means that the optimal Monte Carlo algorithm with minimal probability error exists.

In importance sampling, a distribution g which is called importance distribution or instrumental distribution is introduced to apply a change of measure

(x) ( ) (x) g(x) dx (x) p E f g θ µ = = ∫ (3 -19)
In sampling space, w(x ) i are importance weights

(x ) w(x ) (x ) i i i p g = i=1,…, n (3 -20) 1 1 ( ) (x) p(x) dx 1 ( w(x ) (x )) (x ) n n i i i i i i E f f g dx n θ = = = = ∫ ∑ Π ∫ ∫  (3 -21)
Importance sampling methods are frequently used to estimate posterior densities or expectations in state and/or parameter estimation problems in probabilistic models that are too hard to treat analytically, for example in Bayesian networks. It is used to estimate properties of a particular distribution, while only having samples generated from a different distribution rather than the distribution of interest. Depending on the application, the term may refer to the process of sampling from this alternative distribution, the process of inference, or both.

θ θ θ θ = =  =   (3 -23)
Then, the intrgral can be estimated by

1 ˆ( ; ) ( ) ( ) N i i i i S g m w f g θ θ = = ∑ (3 -24)
Integration algorithms use the weight function w as the kernel of the approximation of the integrand

( ; ) ( ) ( ) ( ) ( ) ( ) [ ( ( ) ( ))] S g m g m d g w f d E w g f θ θ θ θ θ θ θ θ θ = = = ∫ ∫ (3 -25)

Latin Hypercube Sampling approach

The probability error usually has the form of

0.5 N R cN - =
. The speed of convergence can be increased if an algorithm with a probability error Usually, the exploiting of smoothness is combined with subdividing the domain of integration into a number of non-overlapping sub-domains. This is the reason to call the techniques leading to super-convergent Monte Carlo algorithms stratified sampling, or Latin Hypercube sampling. LHS also known as the "stratified sampling technique" represents a multivariate sampling method that guarantees non-overlapping design. In LHS, the distribution for each random variable can be subdivided into n equal probability intervals or bins.

Each bin has one analysis point. There are n analysis points, randomly mixed, so each of the n bins has 1/n of the distribution probability. The basic steps

• Divide the distribution for each variable into n non-overlapping intervals on the basis of equal probability

• Select one value at random from each interval with respect to its probability density.

• Repeat step (1) and (2) until you have selected values for all random variables, such as 1 2 , ,..., k x x x

• Associate the n values obtained for each xi with the n values obtained for the

other j i x ≠ at random
The regularity of probability intervals on the probability distribution function ensures that each of the input variables has all portions of its range represented, resulting in relatively small variance in the response. At the same time, the analysis is much less computationally expensive to generate. The LHS method also provides flexible sample size while ensuring stratified sampling, each of the input variables is sampled at n levels [START_REF] Roshanian | Latin hypercube sampling applied to reliability-based multidisciplinary design optimization of a launch vehicle[END_REF].

Random Interpolation Quadratures

A quadrature is called interpolation for a given class of functions if it is exact for any linear combination of functions. In the practical computations, since one can only perform a sample of r.v., the probability error is not zero, but it is very small. So, the random interpolation quadrature are high quality quadrature. The problem is that they have a restricted area of application: one should be sure that each integrand belongs to a given class of function presented by a linear combination of a system of orthonormal function. These quadratures could be effective for solving problems in some areas of modern physics, where people are interested to compute a large number of multidimensional integrals with similar integrands.

Assuming that the quadrature formula for computing the integral ( ) ( ) , , ( ) 0 , ( )

1 d I f x p x dx R p x p x dx Ω Ω = Ω ⊂ ≥ = ∫ ∫ (3 -26)
Is denoted by the expression 1 ( )

N j j j I c f x = ≈ ∑ (3 -27)
Where 1 ,..., N x x ∈ Ω are nodes. Then the random quadrature formula can be written in the following form:

1 ( ) N j j j I f κ ξ = ≈ ∑ (3 -28)
Where 1 ,..., N ξ ξ ∈ Ω are random nodes and 1 ,..., N κ κ are random weights.

All functions considered are supposed to be partially continuous and belong to the space 2 ( ) L Ω . Let 0 1 ,..., m ϕ ϕ ϕ , be a system of orthonormal functions, such that ( ) ( )

k j kj x x dx ϕ ϕ d Ω = ∫ (3 -29)
Where kj d is the Kronecker function [START_REF] Eugene | Incidence algebras[END_REF]. 

f m m W x x x I W x x x ϕ ≈ (3 -31)
Where

0 1 0 0 1 1 1 1 0 1 1 0 ( ) ( ) ( ) ( ) ( ) ( ) ( , ,..., ) ( ) ( ) ( ) m m g m m m m g x x x g x x x W x x x g x x x ϕ ϕ ϕ ϕ ϕ ϕ =        (3 -32)
It is easy to check that if 0 0 W ϕ ≠ then the formula is exact for every linear combination of the following form:

0 0 m m f a a ϕ ϕ = + + 

Iterative Monte Carlo Methods for Linear Equations

In general, Monte Carlo numerical algorithms may be divided into two classes --direct algorithms and iterative algorithms. The direct algorithms provide an estimate of the solution of the equation in a finite number of steps, and contain only a stochastic error. However, iterative Monte Carlo algorithms deal with an approximate solution obtaining an improved solution with each step of the algorithm.

Iterative algorithms are preferred for solving integral equations and large sparse systems of algebraic equations. Such algorithms are good for diagonally dominant systems in which convergence is rapid; they are not so useful for problems involving dense matrices.

Define an iteration of degree j as ( , , , , ... , )

k k k k j k u F A b u u u + - -+ = (3 -33)
Where k u is obtained from the th k iteration. Usually the degree of j is kept small because of storage requirements. The iteration is called stationary if

k F F = for all k , that is, k F is independent of k .
The iterative Monte Carlo process is said to be linear if k F is a linear function of The reason is that these algorithms find an approximation of a functional of powers of linear operators. It is also known as Markov chain Monte Carlo since the statistical estimates can be considered as weights of Markov chains.

Iterative Monte Carlo Algorithms

Consider a general description of the iterative Monte Carlo algorithms. Let Χ be a Banach space of real-valued functions. Let

( ) f f x X = ∈ and ( ) k k u u x X =
∈ be defined in Rd and

( ) L L u =
be a linear operator defined on X .

Consider the sequence 1 2 , ,..., u u defined by the recursion formula

1 ( ) , 1, 2, ... k k u L u f k - = + = (3 -34)
The formal solution of this equation is the truncated Neumann series

1 0 ( ) ( ) ( ) , 0 k k k u f L f L f L u k - = + + + + >  (3 -35)
Where k L means the th k iterate of L .

As an example consider the integral iterations.

Let ( ) , 

d u x X x R ∈ ∈ Ω ⊂ and ( 
( ( ( ))) ( ( )) L L u x L u x = (3 -36) Obviously, 2 ( ( )) ( , ) ( , ) L u x l x x l x x dx dx Ω Ω ′ ′ ′′ ′ ′′ = ∫ ∫ (3 -37)
In this way 3 ( ( )) , , ( ( )) ,

i L u x L u x 
 can be defined.

When the infinite series converges, the sum is an element u from the space X which satisfies the equation

( ) u L u f = + (3 -38)
The truncation error is 0 ( )

k k u u L u u -= - (3 -39)
Let ( ) k J u be a linear functional that is to be calculated. Consider the spaces

1 , 1, 2, , d d d i i times T R R R i k + = × × × =   
Where "× " denotes the Cartesian product of spaces.

Random variables , 0,1, , i i k θ =  are defined on the respective product spaces

1 i T +
and have conditional mathematical expectations:

0 0 1 0 1 0 ( ) ( ), ( ) ( ), , ( ) ( ) k k E J u E J u E J u θ θ θ θ θ = = =  (3 -40)
Where ( )

J u is a linear functional of u
The computational problem then becomes one of calculating repeated realizations of k θ and combining them into an appropriate statistical estimator of ( )

k J u
As an approximate value of the linear functional ( )

k J u is set up { } 1 1 ( ) N k k s s J u N θ = ≈ ∑ (3 -41)
Where { } k s θ is the th s realization of the random variable.

The probable error of the above equation is

0.5 ( ) N k r c N σ θ - = (3 -42) Where 0.6745 c ≈ and ( ) k σ θ is the standard deviation of the random variable k θ
There are two approaches which are corresponding with two special cases of the operator L :

 L is a matrix, u and f are vectors;

 L is an ordinary integral transform ( ) ( , ) ( ) L u l x y u y dy Ω = ∫ (3 -43)
First consider the case of an ordinary integral transform,

( ) ( , ) ( ) ( ) u x l x y u y dy f x Ω = + ∫ or ( ) u L u f = + (3 -44)
Monte Carlo algorithms frequently involve the evaluation of linear functionals of the solution of the following type

( ) ( ) ( ) ( , ) J u h x u x dx u h Ω = = ∫ (3 -45)
In fact, this equation defines an inner product of a given function ( )

h x X
∈ with the solution of the integral equation.

Sometimes, the adjoint equation

* v L v h = + will be used. * * * , , [ ] v h X L X X ∈ ∈ →
, where * X is the dual functional space to X and * L is an adjoint operator.

For some important applications

1 X L = and 1 ( ) L f f x dx Ω = ∫ (3 -46) 1 sup ( , ) L x L l x x dx Ω ′ ′ ≤ ∫ (3 -47) In this case ( ) h x L ∞ ∈ , hence 1 L L * ∞ ≡ and sup ( ) , L h h x x ∞ = ∈ Ω (3 -48)
For many applications

* 2 X X L = = . Note also, that if 2 , ( ) ( ) u x h x L ∈ then the inner product is finite. In fact, { } 1 2 2 2 ( ) ( ) ( ) ( ) h x u x dx h x u x dx h dx u dx Ω Ω Ω Ω ≤ ≤ < ∞ ∫ ∫ ∫ ∫ (3 -49) One can also see, that if 2 ( ) u x L ∈ and 2 ( , ) ( ) l x x L ′ ∈ Ω × Ω then 2 ( ( )) L u x L ∈ :

Convergence and mapping

To analyse the convergence of Monte Carlo Algorithms consider the following equation

( ) u L u f λ = + (3 -50)
Where λ is some parameter. 1 2 , , λ λ  are the eigne values, where it is supposed that

1 2
λ λ ≥ ≥ Note that the matrices can be considered as linear operators.

Define resolvent operator R λ by the equation

1 ( ) I R I L λ λ λ - + = - (3 -51)
Where I is the identity operator.

Monte Carlo algorithms are based on the representation

1 ( ) u I L f f R f λ λ λ - = - = + (3 -52) Where 2 R L L λ λ =+ +
The systematic error of R λ , where m terms are used, is

1 1 1 [ ] m s r m ρ λ λ + - = Ο (3 -53)
Where ρ is the multiplicity of the root 1 λ . When λ is approximately equal to 1 λ the sequence and the corresponding Monte Carlo algorithm converges slowly. When 1 λ λ ≥ the algorithm does not converge.

Morkov Chain Monte Carlo methods for Eigen-value Problem

It is known that the problem of calculating the smallest by magnitude eigen value of a matrix A is more difficult from a numerical point of view than the problem of evaluating the largest eigen-value. Nevertheless, for important application in physics and engineering it is necessary to estimate the value of the smallest by magnitude eigen value, since this usually defines the most stable state of the system described the considered matrix.

Formulation of Eigen-value problem

For matrices with a large size, which often appear in practice, it is not easy to find efficient algorithms for evaluating the smallest eigen value. Consider the following problem of evaluating eigen values ( )

A λ : ( ) Ax A x λ = (3 -54)
It is assumed that

A is a given symmetric matrix, ij ji a a = for all , 1, 2, , ; i j n =  min 1 2 2 1 max n n n λ λ λ λ λ λ λ - - = < ≤ ≤ ≤ < =  (3 -55)
We use the following presentation of matrices:

{ } 1 , 1 ( , , , , ) n T ij i n i j A a a a a = = =   (3 -56) Where 1 ( , , ) i i in a a a =  , 1, n i =  and the symbol T means transposition.
The following norms of vectors

1 1 n i i h h h = = = ∑ 1 1 n i i ij j a a a = = = ∑ (3 -57)
And matrices are used.

1 1 max n ij j i A A a = = = ∑ (3 -58)
In general,

max i i A a ≠
By A we denote the matrix containing the absolute values of elements of a given

matrix A : { } , 1 n ij i j A a = = 0 ( ) , k i k i i i p A c A c = = ∈ ∑ � (3 -59)
We denote matrix polynomial of degree k .

As usual, 1 ( , )

n i i i v h v h = = ∑
denotes the inner product of vectors v and h .

We will be interested in computing inner products of the following type:

( , ( ) ) k v p A h
The random variable ξ could be a randomly chosen component k h α of a given vector h . In this case the meaning of ( )

k E h α is mathematical expectation of the value of randomly chosen element of h 2 2 2 ( ) ( ) ( ) [ ( )] D E E ξ σ ξ ξ ξ = = - (3 -60)
We denote the variance of the random variable ξ . Basically, we are interested in evaluation of forms: ( , ( ) )

k v p A h
In a special case of ( )

k k p A A = the form ( , ( ) ) k v p A h becomes ( , ) , 1 k v A h k ≥
Suppose that a real symmetric matrix A is diagonalizable,

1 1 ( , , ) n x Ax diag λ λ - =  (3 -61)
If A is a symmetric matrix, then the values are real numbers, λ ∈ �

The well-known Power method gives an estimate for the dominant eigen value 1 λ .

This estimate uses the so-called Rayleigh quotient

1 ( , ) ( , ) k k k v A h v A h µ - =
Where , n v h∈ � are arbitrary vectors. The Rayleigh quotient is used to obtain an

approximation to 1 λ 1 1 ( , ) ( , ) k k v A h v A h λ - ≈ (3 -62)
Where k is an arbitrary large natural number.

To construct an algorithm for evaluating the eigenvalue of minimum modulus n λ , one has to consider the following matrix of polynomial:

1 0 ( ) i k k k i m k k p A q C A + - = = ∑ (3 -63)
Where

1 k m k
C + -are binomial coefficients, the characteristic parameter q is used as acceleration parameter of the algorithm. If 1 q A < and i → ∞ , then the polynomial becomes the re-solvent matrix

1 0 ( ) ( ) [ ] k k k m m m k q k p A p A q C A I qA R ∞ - ∞ + - = = = = - = ∑ (3 -64)
Where

1 [ ] q R I qA - = -
is the re-solvent matrix of the equation.

x qAx h = + (3 -65)
Values 1 2 , , q q  for which the equation above is fulfilled are called characteristic values. The re-solvent operator

1 2 [ ] q R I qA I A qA - = - = + + + (3 -66)
Exists if the sequence converges. The systematic error of the presentation when m terms are used is

1 1 1 [ ] m s R q q m ρ + - = Ο (3 -67)
Where ρ is multiplicity of the root 1 q . Estimation is analogue of MC algorithm converges if 1 q q < . When 1 q q ≥ the algorithm does not converge for * 1 q q = = , but the solution of x qAx h = + exists. In this case one may apply a mapping of the spectral parameter q .

One can consider the ratio:

( , ) ( , ( ) ) ( , ( ) ) ( , ) m q m q v AR h v Ap A h v p A h v R h λ = = (3 -68)
Where

1 m m m q k k k R h g c = = ∑ and m k g are computed. If 0 q < , then ( , ) 1 1 (1 ) ( , ) m q n m k q v AR h v R h q λ µ ≈ - ≈ (3 -69)
Where

min n λ λ =
is the minimal by modulo eigenvalue, and k µ is the approximation to the dominant eigenvalue of q R .

If 0 q > , then 1 ( , ) ( , ) m q m q v AR h v R h λ ≈ (3 -70)
Where

1 max λ λ = is dominant eigen value.
The approximate equations can be used to formulate efficient Monte Carlo algorithms for evaluating both the dominant and the eigenvalue of minimum modulus of real symmetric matrices. We consider a MAO algorithm for computing bilinear forms of matrix powers, which can be also used to formulate the solution for the dominant eigenvalue problem. Assume, we considering the set, A , of algorithms, A , for calculating bilinear forms of matrix powers ( , )

k v A h with a probability error , k N
R less than a given constant ε and the probability 1 c < is also fixed. Obviously, for fixed ε and 1 c < the computational cost depends linearly on the number of iterations k and on the number of Markov chains N .

Method for Choosing the Number of Iterations k

Assume that we wish to estimate the value of the bilinear form ( , ) k v A h , so that with a given probability 1 P < the error is smaller than a given positive ε :

1 1 ( , ) N k k i i v A h N θ ε = - ≤ ∑ (3 -71)
In the case of balanced errors,

, , 2 k N k s R R ε = = (3 -72)
When a mapping procedure is applied one may assume that there exists a positive constant

1 α < such that k i g A α ≥ ×
for any i and k .

Then

1 1 ( ) 2 1 1 k k k i k i g A h h g A α ε α + + ≤ ≤ - - (3 -73) 
And for k should be chosen the smallest natural number for which

log 1 log k d α ≥ - (1 ) 2 h ε α d - = (3 -74)
If a mapping procedure is not applied, the corresponding Neumann series converges fast enough, then one assumes that a positive constantα , such that A α ≥ exists.

Then the number of iterations k should be chosen.

There are other possibilities to estimate the number of needed iterations k if a mapping procedure is applied. The choice of the method of estimation of k depends on the available a priori information, which comes from the concrete scientific application.

Method for choosing the number of chains

To estimate the computational cost

( ) A τ
we should estimate the number N of realizations of the random variable k θ . We assume that there exists a constant σ such that

( ) k σ σ θ ≥ (3 -75)
Then we have

0.5 0.5 2 2 ( ) 2 k k N p p R c N c N ε σ θ σ - - = = ≥ (3 -76) And 2 2 p c N σ ε   ≥     Taking into account relations log 1 log k d α ≥ - , (1 ) 2 
h ε α d - = and 2 2 p c N σ ε   ≥    
one can get estimates of the computational cost of biased MC algorithms.

Examples

3.6.1 Importance sampling

( ) ( ) f x x dx µ π = ∫ (3 -77) ( ) f x is a measurable function and ( )
x π is a probability density function.

Importance distribution function g( )

x is used to apply a change of measure

( ) ( )g( ) g( ) x f x x dx x π µ = ∫ (3 -78) If (X ) (X ) , 1, ... , g(X ) i i i i n π ω = = , then 1 1 ˆ(X ) (X ) n IS n i i i f n µ ω = = ∑ (3 -79)
Here, we had an example of student-t distribution 2 ( , , )

ν θ σ Τ with density ( 1)/ 2 2 2 (( 1) / 2) ( ) ( ) 1 ( ) ( / 2) R x x x ν ν θ π νσ σ νπ ν -+   Γ + - = + Ι   Γ   ( 0, 1, 12 
θ σ ν = = = ) (3 -80)
We choose the quantities of interest to be

5 1 (2.1, ) 2 5 3 [0, ) 2 sin( ) ( ) ( ) ( ) 1 
( ) ( ) 1 ( 3) x f x x x x f x x x f x x x +∞ +∞    = Ι        =  -   = Ι  + -  (3 -81)
We study the performance of the importance sampling estimator ˆIS n µ when the following instrumental distributions are used

( , 0, 1) ν * Τ with ν ν * < , 7 ν * = (0, / ( 2)) ν ν Ν - (0,1) C
We shall note that the Cauchy distribution ( , )

C α β has density function

2 1 ( ) ( ) (1 (( ) ) ) x x x π πβ α β = Ι + - (3 -82)
Performed Monte Carlo simulation to estimate ˆIS n µ , plot 95% and 5% quantiles and the mean of the estimator for n=1,…, 50000 The fundamental issue in implementing importance sampling simulation is the choice of the biased distribution which encourages the important regions of the input variables. Choosing or designing a good biased distribution is the key point of importance sampling. The rewards for a good distribution can be huge run-time savings; the penalty for a bad distribution can be longer run times than for a general Monte Carlo simulation.

In principle, the importance sampling ideas remain the same in these situations, but the design becomes much harder. A successful approach to combat this problem is essentially breaking down a simulation into several smaller, more sharply defined sub-problems. Then importance sampling strategies are used to target each of the simpler sub-problems.

In order to identify successful importance sampling techniques, it is useful to be able to quantify the run-time savings due to the use of the importance sampling approach.

The performance measure commonly used is , and this can be interpreted as the speed-up factor by which the importance sampling estimator achieves the same precision as the Monte Carlo estimator. This has to be computed empirically since the estimator variances are not likely to be analytically possible when their 

Latin Hypercube sampling in Finite element model of structure

It is useful to know the modal frequencies of a structure as it allows you to ensure that the frequency of any applied periodic loading will not coincide with a modal frequency and hence cause resonance, which leads to large oscillations. The dynamic equation can be written as,

[ ]{ } [ ]{ } [ ]{ } { } M x C x K x F + + =   (3 -83)
Where [ ] 

M
[ ]{ } [ ]{ } { } M x K x F + =  (3 -84)
For free (unforced) vibrations the following relationship is obeyed

[ ]{ } [ ]{ } 0 M x K x + =  (3 -85)
The solution to which can be written in the form

{ } { } j iw t j x e ψ = (3 -86)
Where j ω are the resonant frequencies. Substituting back into the vibration equation leads to the well-known eigenvalue problem

[ ]{ } [ ]{ } j j j K M ψ λ ψ = (3 -87)
Where

2 j j λ ω
= , and { } j ψ can be thought of the mode shapes corresponding to the system natural frequencies{ } j ω .

While the eigenvalues have an exact relationship with the resonant frequencies, the eigenvectors are arbitrarily scaled; it is common practice to define a uniquely scaled set of eigenvectors such that

[ ] [ ][ ] [ ] T M I φ φ = (3 -88)
The result is

[ ] [ ][ ] ( ) T K diag φ φ λ = (3 -89)
Where [ ] φ is the matrix of mass normalized eigen-vectors.

The natural frequency of a system is dependent only on the stiffness of the structure and the mass which participates with the structure (including self-weight). It is not dependent on the load function, as demonstrated in equation .

In this paper, our finite element model of wing structure, as presented in Fig. 34 The results of natural frequencies of wing structure in the deterministic finite element model are as presented in Table 3.3. According to each natural frequency, the wing structure has deformation and the contour of Von-Mises stress as in Fig. 345. As discussed before, the natural frequencies of wing structure are the frequencies should be avoided in order to prevent the resonance disaster. If the distance between two neighbor frequencies are large, the domain of safety is amplified. This will be a criterion in the section of reliability analysis.

Table 3 - To begin generating the LH sample, an interval of each feature is chosen at random.

The intersection of these intervals in the multi-dimensional feature space is a small hypercube, from which a sample is taken at random. Next, type of interval is selected at random for each feature. A sample is produced at random from that small hypercube. This continues until N samples have been generated. Each interval of each parameter is sampled exactly once in the process. In contrast to random sampling, the entire range of each feature is always represented in a LH sample.

Unbiased estimates of the sample means of the outcomes are obtainable, and the mean squared errors of the estimators of the variances of model outcomes are smaller for the LH sample than for random or stratified sampling. They point out that in contrast to full or fractionalized factorial, central composite, and other fixed point strategies, LH sampling allows such estimates to be made without reliance upon the response surface itself.

Latin Hypercube sampling method is performed in the deterministic finite element model to calculate the natural frequencies. 10000 groups of sampling ensure the accuracy of the results. The parameters corresponding with geometry (S, D, L) and material property (E, P, R) are as input variables in the process of Latin Hypercube sampling method, while the natural frequencies of specific wing structure are as output variable in each sampling iteration. The evaluation of the stochastic simulation in Latin Hypercube sampling method presented in Table 3.4. The mean value, standard deviation, skewness, and also the minimum and maximum are concluded as statistic in the sampling method, or as showed in Fig. 345678. It is evident that the natural frequency increase by the serial number. For example, the mean value of the second natural frequency is larger than that of the first natural frequency, while the Fig. 3-6 also provides the evidence to it. In addition, the standard deviation and the minimum value have the same tendency with the mean value in the process of stochastic simulation. By contrast, the values of belta and skew do not have evident fluctuation and keep stable in a certain range for the five natural frequencies. 

Conclusion

The structure of this chapter is that in the first part we expressed the mathematical formulation of Monte Carlo simulation; however, to overcome the disadvatages of Monte Carlo Simulation, namely computational burden to make sure the certain level of accuracy, we discussed advanced MCS method in the second part of this chapter.

After that, the discussion about random interpolation quadratures, iterative MCS for linear equations and Morkov chain MCS is also provided. In the last section of this chapter, we applied MCS methods in numerical simulation of different examples.

In the example of importance sampling method of MCS, fundamental issue is the choice of the biased distribution which encourages the important regions of the input variables. The rewards for a good distribution can be huge run-time savings; the penalty for a bad distribution can be longer run times than for a general Monte Carlo simulation.

Performing Latin hypercube sampling method in the finite element model of mechanical structure is an effective to propogate the uncertainties in a deterministic system. In this chapter, two examples of Latin hypercube sampling method in finite element models were discussed, one is a static finite element model, the other is a dynamic finite element model.

In the first model, parameters which are corresponding with the geometry property and material property of finite element model were definded as input variables in the process of Latin Hypercube sampling, while the largest stress in the whole structutre were captured by finite element model calculation and recorded as the output datas.

In the second model, it is fininte element model of wing structure. Different with the first model, the output datas of Latin Hypercube sampling are the natural frequency of the certain wing structure.

Chapter 4 Stochastic Expansion for Probability analysis

One of the effective choices for uncertainty analysis is the direct use of stochastic expansion of output responses and input random variables for representing uncertainty. Stochastic expansion provides analytically appealing convergence properties based on the concept of a random process [START_REF] Crestauxa | Polynomial chaos expansion for sensitivity analysis[END_REF]. The polynomial chaos expansion can reduce computational effort of uncertainty quantification in engineering design applications where system response is computed implicitly [START_REF] Lia | Adaptive polynomial chaos expansions applied to statistics of extremes in nonlinear random vibration[END_REF].

Fundamental of PCE

The PCE stemmed from both Wiener and Ito's work on mathematical descriptions of irregularities [START_REF] Wan | Multi-element generalized polynomial chaos for arbitrary probability measures[END_REF]. Since Wiener introduced the concept of homogeneous chaos, the PCE has been successfully used for the uncertainty analysis in various applications.

A simple definition of the PCE for a Gaussian random response ( ) u θ as a convergent series is as follows:

( )

1 1 2 1 2 0 0 1 1 1 2 1 2 1 1 1 ( ( )) ( ( ), ( )) i i i i i i i i i i u a a a θ ξ θ ξ θ ξ θ ∞ ∞ = = = = Γ + Γ + Γ + ∑ ∑∑  (4 -1)
Where { } 1 ( )

i i ξ θ ∞ = is a set of Gaussian random variables; 1 ( , , ) p i ip ξ ξ Γ 
is the genetic element of a set of multidimensional Hermite polynomials, usually called homogeneous chaos of order p ; 1 a , , i ip a  are deterministic constants; and θ represents an outcome in the space of possible outcomes of a random event.

PCE is convergent in the mean-square sense and the th p order PCE consists of all orthogonal polynomials of order p , including any combination of { } 1 ( )

i i ξ θ ∞ = ;
furthermore, p q Γ ⊥ Γ for p q ≠ . This orthogonality greatly simplifies the procedure of statistical calculations, such as moments. Therefore, PCE can be used to approximate non-Gaussian distributions using a least-squares scheme: for example, in order to compare the skewness and kurtosis of distributions.

The general expression to obtain the multidimensional Hermite polynomials is given by

1 1 2 2 1 1 ( , , ) ( 1) 
, ,

T T n n p i ip i ip e e ξ ξ ξ ξ ξ ξ ξ ξ - ∂ Γ = - ∂ ∂       (4 -2)
Where the vector ξ  consists of n Gaussian random variables.

Then ( ) u θ can be written more simply as ( ) 0 ( ( ))

P i i i u b θ ξ θ = = Ψ ∑  (4 -3)
Where 

Stochastic approximation

One of the uses for stochastic expansion is the non-intrusive formulation to create a surrogate model of stochastic responses using PCE. The methodology is presented using a simple example. If we fit curvilinear data, the following regression model can be considered:

0 0 1 1 2 2 3 3 (x) (x) (x) (x) (x) Y F F F F β β β β = + + + (4 -4)
Where 0 β , 1 β , 2 β , 3 β represent the mean, linear, quadratic and cubic effect, respectively, of the response; Y and (x) PCE can be used to represent the response of an uncertain system in the nonintrusive formulation. The basic idea of this approach is to project the response and stochastic system operator onto the stochastic space spanned by PCE, with the projection coefficients, i b ,being evaluated through an efficient sampling scheme. We first define vector x at a particular point ( , , )

i m ξ ξ  of random variables.
The estimated response at this point is

(x) x T y β = (4 -5)
Where β is a set of undetermined coefficients of PCE.

Generally, the method of least squares is used to obtain the regression coefficients for n sample values of x and y as

1 ˆ(X X) X T T Y β - = (4 -6)
Where X is a n*p matrix of the levels of the regressor variables and Y is a n*l vector of the responses. The confidence level denotes the probability with which the interval contains the true parameter value. The margin of error represents how accurate our guess of the true parameter value is. Where 0

x is the vector at a particular point ( , , )

i m ξ ξ  of random
variables. Then, the estimated mean response at this point is

0 0 (x ) T y x β = (4 -8)
Where β is a set of undetermined coefficients of PCE. A 100(1 ) α percent confidence interval at the particular point 0 x is

2 1 2 1 0 0 0 0 0 0 , v , v 2 2 ˆ(x ) t (X X) (x ) t (X X) T T T T y x x y x x α α σ µ σ - - - ≤ ≤ + (4 -9)
Where 2

σ is variance, v is degree of freedom and α indicates the 100(1 ) α th percentile of the t distribution. The point 0 x is not limited to one of the sampling points used, since the interval includes the results of random samples from the given population with mean µ .

Gamma distribution or exponential distributions, which are widely used in engineering and science disciplines, should be represented by normal probability distribution. 

µ σξ + Uniform ( ) , a b 1 1 (b a) ( ) 2 2 2 a erf ξ   + - +     Exponential ( ) λ 1 1 1 log ( ) 2 2 2 erf ξ λ   - +     Gamma ( ) , a b 3 1 1 1 9 9 ab a a ξ   + -      

Hermite Polynomials and Gram-Charlier Series

Before beginning the topic of the KL transform, it is useful to see several properties of the Hermite polynomial, which is the basis of the PCE. The construction of Hermite Polynomial was described by Pafnuty Chebyshev and Charles Hermite. The secondorder differential equation is given by Where n is a positive integer. The corresponding possible solutions are ( ) ( 1) The basic idea of Gram-Charlier method is that the density function of the Gaussian distribution and its derivatives provide a series expansion to represent an arbitrary density function. The Gram-Charlier series is given by

n n x x n n d H x e e dx - = - (4 -13) 0 1 2 2 3 3 4 2 4 5 3 5 ( ) 1 ( ) ( ) 1 ( ) 3 ( ) 6 3 ( ) 10 15 
H x H x x H x x H x x x H x x x H x x x x =  =   = -   = -  = - +  = - +   (4 -14)
0 1 2 (x) b (x) b (x) b (x) f ϕ ϕ ϕ ′ ′′ = + + + (4 -15)
Where (x) f denotes the unknown probability density function, and (x) n ϕ is the th n derivative of the normal density function, To find the i b coefficient, multiply both sides by

2 2 (x) 1 2 x e ϕ π - = (n) (x) (x) ( 1) (x) n n H ϕ ϕ = - (4 -16) (n) (x) ( 1) (x) (x) n n H ϕ ϕ = - (4 -17) Then [ ] 0 0 1 1 2 2 0 (x) (x) (x) (x) (x) (x) ( 1) (x) m m m m f b H b H b H b H ϕ ϕ ∞ = = - + + = - ∑  (4 -18) -2 -1.5 -1 -0.5 0 0.5 1 
(x) n H and integrate from -∞ to ∞ .
The result is

0 (x) (x) ( 1) (x) (x) (x) m n m n m m f H dx b H H dx ϕ ∞ ∞ ∞ -∞ -∞ = = - ∑ ∫ ∫ (4 -19)
Because of the orthogonal property of the Hermite polynomials

! n m (x) (x) (x) 0 n m n for H H dx for n m ϕ ∞ -∞ =  =  ≠  ∫ (4 -20)
This property can be used to compute the coefficient,

( 1) b (x) (x) ! n n n f H dx n ∞ -∞ - = ∫ (4 -21)

Karhunen-Loeve (KL) Transform

The primary challenge of a stochastic analysis is to discover effective ways to represent the various types of uncertainty information and to use the information to evaluate the safety of structural systems in such a way that the computational effort of the analysis is minimized. Many engineering properties in structural analysis are distributed in space and time domains. For example, material properties, like Young's modulus and distributed dynamic loads, vary over the space or time domain of the structure. The description of such space-and -time-varying quantities can be represented by the concept of the random field. This section presents an efficient way of handling spatially-correlated data and dimensionality reduction of the random variables by using the KL transform.

Due to the simplicity of its procedure, the most widely used method of multivariate data analysis is the orthogonal transform method. The KL transform is a viable tool with multiple uses for uncertainty analysis because it can generate correlated random variables and effectively reduce the dimensionality of the correlated data set.

The KL expansion can be viewed as part of a general orthogonal series expansion.

Consider a general series expansion of (x) f with a complete set of orthogonal and normalized base functions (x) i φ :

1 (x) b (x) N i i i f φ = = ∑ (4 -22)
Where the coefficients b i represent the projection of (x)

f on the basis function (x) i φ and b i are obtained by b (x) (x) i i f dx φ = ∫ (4 -23)
The condition of uncorrelated coefficients yields

(b )(b ) i i j j j ij µ µ λ d - - = (4 -24)
Where • indicates the expected value operation, ij d is the Kronecker delta, and µ is the mean of the coefficients b . This restriction results in the following eigenvalue analysis of the covariance function

(x) (x, y) (y) dy i i i K λ φ φ = ∫ (4 -25)
Where (x) i φ and i λ denote the eigen-functions and eigen-values of the covariance function (x, y)

K

, respectively, and x and y are the temporal or spatial coordinates:

(x, y) (b(x) (x))(b(y) (y)) K µ µ = - - (4 -26)
Where (x) µ is the mean of the coefficients b(x) .

The series of the eigen functions and the eigen values forms the KL expansion:

1 (x) (x) i i i i w λ ξ φ ∞ = = ∑ (4 -27)
Where i ξ is a set of uncorrelated random variables, and this expansion expresses the projection of the random process Consequently, the orthogonal decomposition of the covariance matrix provides the product of the matrices of eigen vectors and eigen values:

[ ] [ ][ ][ ] T K P P = Λ (4 -29) Or [ ] [ ][ ] T K A A = Where [ ] A is the transform matrix chosen as [ ] [ ][ ] 1 2 
A P = Λ .

The transform matrix [ ]

A can be employed to yield the correlated random vector T:

[ ] [ ][ ] T A X = (4 -30)
Where [ ]

X is the (n*1) matrix of uncorrelated random variables j X , (j 1, , n) = 
, and the transformed matrix, [ ] T , possesses a given covariance matrix [ ] K .

In addition to generating the dependent random variables, T , the KL transform can be used to reduce the dimension of the random variables. The main advantage of this procedure is to permit significant reduction in the number of uncorrelated random variables that represent random fields, especially for high levels of correlation.

KL Expansion to solve Eigen value problem

The KL expansion can be derived based on the analytical properties of its covariance function. Let the covariance function be specified by the exponential covariance with a variance of 0 C , correlation length of 1 h , and two different location of 1 x and 2 x defined in [ ]

1 2 , a x x a -≤ ≤ : 1 2 1 2 0 ( , ) C h x x K x x e - - = , 1 2 , a x x a -≤ ≤ (4 -31) Then (x) (x, y) (y) dy i i i K λ φ φ = ∫
can be written as

1 2 1 0 2 2 ( ) C ( ) d a h x x a x e x x λφ φ - - - = ∫ (4 -32)
We need to solve the above equation by converting the integral equation to a differential equation, and then substituting the solution back into the integral equation. To eliminate the absolute magnitude sign, ( ) ( )

1 1 2 1 2 1 1 0 2 2 0 2 2 ( ) C ( ) d C ( ) d x a h x x h x x a x x e x x e x x λφ φ φ - - - - = + ∫ ∫ (4 -33) Defining 2 0 (2 ) C h h ω λ λ = - 2 1 1 ( ) ( ) 0 x x φ ω φ ′′ + = 1 a x a -≤ ≤ (4 -34) Letting 1 x t = 1 2 ( ) j t j t t c e c e ω ω φ = + , 2 0 ω ≥ (4 -35)
Where, 1 c and 2 c are constants.

Applying the boundary condition, yields

(h tan( a))( tan( a)) 0 h ω ω ω ω - + = h tan( a) 0 ω ω - = or tan( a) 0 h ω ω + =
The values of ω can be determined graphically or numerically, and the corresponding eigen values are

0 2 2 2C i i h h λ ω = + , i=1,2,3,…..,n (4 -36) 
The resulting eigen function are

cos ( ) sin(2 ) 2 i i i i t t a a ω φ ω ω = + (for, i=odd), a t a -≤ ≤ (4 -37) sin ( ) sin(2 ) 2 i i i i t t a a ω φ ω ω = - (for, i=even), a t a -≤ ≤ (4 -38)
After graphical or numerical solution of transcendental equations for i ω , the eign functions can be given as a set of periodic sines and cosines at approximately

(i 1) 2 π -

Spectral Stochastic Finite Element Method

PCE is used to represent stochastic responses, and the KL expansion is used to represent the input of random fields in the intrusive formulation procedure. This method is also known as the SSFEM and yields appropriate results for a wide range of random fluctuations [START_REF] Shinozuka | Simulation of stochastic processes by spectral representation[END_REF].

Role of KL expansion in SSFEM

Recall that in the KL expansion a series of eigen functions and eigen values with a set of random variables i ξ represent the random process. The eigen values and eigen functions can be obtained. Let (x, ) w θ denote a random process, so that the function can be expanded in the following form, truncated to M terms:

1 (x, ) w(x) ( ) (x) M i i i i w θ λ ξ θ φ = = + ∑ (4 -39)
Where w(x) denotes the expected value of the random process, and θ represents an outcome in the space of possible outcomes of a random event.

Suppose the Young's modulus is a Gaussian random field. Then, the elasticity matrix D can be written as

0 (x, ) (x, ) D w D θ θ = (4 -40)
Where 0 D is a constant matrix similar to the one in deterministic finite element analysis.

The element stiffness matrix is

(e) (e) 0 1 ( ) K K ( ) M e i i i K θ ξ θ = = + ∑ (4 -41)
Where (e) 0 K is the mean element stiffness matrix and Where e B is the matrix determined from the shape functions and geometric condition of the finite element.

Assembling the above element contributions in the finite element analysis procedure eventually gives

0 1 ( ) ( ) f M i i i K K u ξ θ θ =   + =     ∑ (4 -43) 1 0 0 1 ( ) ( ) f M i i i K I K K u ξ θ θ - =   + =     ∑ (4 -44) 1 1 0 0 0 1 ( ) ( ) M i i i I K K u u K f ξ θ θ - - =   + = =     ∑ (4 -45)
It leads to

1 1 0 0 1 ( ) ( ) M i i i u I K K u θ ξ θ - - =   = +     ∑ (4 -46)
Now, the displacement vector can be obtained by the Neumann series

1 0 0 0 1 ( ) ( 1) ( ) i M i n n i n u K K u θ ξ θ ∞ - = =   = -    ∑ ∑ (4 -47)
Applying the expected value operator, the mean of the response yields [ ]

1 0 0 0 1 ( 1) ( ) i M i n n i n E u E K K u ξ θ ∞ - = =     = -           ∑ ∑ (4 -48)
In a general case, the covariance matrix yields [ ]

1 1 0 0 0 0 0 0 1 1 , ( 1 
) i j M M i j T T T T n n m m i j n m Cov u u E K K K f f K K K ξ ξ ∞ ∞ + - - - - = = = =       = - ×               ∑∑ ∑ ∑ (4 -49)
Obviously, the KL expansion requires known covariance functions to obtain the eigen values and eigen functions. Since the covariance function of stochastic responses often is not known, PCE is used to represent stochastic responses in SSFEM.

Role of PCE in SSFEM

Recalling the definition of PCE, ( ) u θ can be projected on the expansion 0 ( ) ( )

j j j u b θ ψ θ ∞ = = ∑ (4 -50)
Then in finite element model

1 0 ( ) ( ) i i j j i j K b f ξ θ ψ θ ∞ ∞ = =     =         ∑ ∑ (4 -51)
Truncating the KL expansion after M terms and PCE after P terms results in 0 0 ( ) ( )

M P i j i j i j K b f ξ θ ψ θ ε = = -= ∑∑ (4 -52)
Minimization of the residual leads to an accurate approximation of the solution ( ) u θ .

This requires the residual to be orthogonal to the approximating space spanned by the PCE. Orthogonality requires the inner product be equal to zero, namely,

[ ] 0 k E ε ⋅ Ψ = (4 -53)
Thus, the expected value of 0 0 ( ) ( )

M P i j i j i j K b f ξ θ ψ θ ε = = -= ∑∑ become [ ] 0 0 ( ) ( ) ( ) ( ) M P i j k i j k i j E K b E f ξ θ θ θ θ = =   Ψ Ψ = Ψ   ∑∑ 0, , k P =  (4 -54)
Which can be rewritten as

0 P jk j k j K b f = = ∑ (4 -55) Where 0 M jk ijk i i K C K = = ∑ (4 -56) ( ) ( ) ( ) ijk i j k C E ξ θ θ θ   = Ψ Ψ   (4 -57) [ ] ( ) k k f E f θ = Ψ (4 -58)
In matrix, we can rewrite as

(0) (0) (0,0) (0,1) (0,P) (1,0) (1,1) (1,P) (1) (1) 
(P,0) (P,1) (P,P)

(P) (P) b f K K K K K K b f K K K b f                   =                                (4 -59)
There is a P+1 dimensional matrix

Once the system is computed with the coefficient vectors j b , the statistics of the solution can be readily obtained. The mean and covariance matrix of ( ) u θ can be obtained as

[ ] 0 ( ) E u b θ = (4 -60) [ ] 2 0 0 1 , (u u )(u u ) P T T j j j j Cov u u E E b b =     = - - = Ψ     ∑ (4 -61)
Multi-dimensional Hermite orthogonal polynomials are firstly proposed to represent Gaussian stochastic process by Wiener, based on which a spectral stochastic finite element method is developed by Ghanem and Spanos and widely used in various applications, including structural mechanics, fluid flow, etc [START_REF] Dham | Finite element analysis of multiphase flow in porous media with the polynomial chaos expansion[END_REF].

The efficient method for UA aims to reduce the time for a single reliability analysis or moment evaluation procedure, and the advanced formulation is to reduce the number of UA. Establish an explicit relation between the probability of failure/moments and the design variables.

• Sequential quadratic programming (SQP) method is one of the most used methods, a standard mathematical programming algorithm for solving nonlinear programming optimization problems. This method can assure a local optimum but not a global one. This shortcoming may be avoided by multiple initial design (evolutionary algorithm, genetic algorithm these approaches no gradient information is needed)

• Perturbation method is based on Taylor series expansion in terms of a set of zero mean random variables. It can be used advantageously in cased where the random fluctuations are small compared with the nominal structure, such that terms of order two or higher are negligible. The perturbation method has the capability to determine the uncertainties without large dispersion, especially for moment evaluations of the random response. There is less applications of such method to reliability analysis.

• Polynimial chaos expansion method. In the framework of the polynomial chaos expansion, the random response can be approximated with an acceptable accuracy.

The main advantage of the PCE compared to the K-L expansion is that the covariance structure is not required.

PCE, from the efficiency point of view, is more applicable for problems with small number of random inputs. This situation is more involved with static problems rather than dynamic ones since the stochastic excitation is discretized by a uncertainty sequence with high dimension.

Examples

Orthogonal polynomial

In the one-dimensional case, we can expand the random response u using orthogonal polynomials inξ , which has a known probability distribution such as unit normal, [ ] 0 ,1 N . If u is a function of a normally distributed random variable x , which has the known mean x µ and variance 2 x σ , ξ is a normalized variable:

x x x µ ξ σ - = (4 -62)
Generally, the one-dimensional Hermite polynomials are defined by

( ) ( ) ( 1) ( ) n n n ϕ ξ ξ ϕ ξ Ψ = - (4 -63)
Where ( ) n ϕ ξ is the n th derivative of the normal density function, This is simply the single-variable version

{ } { } 2 3 4 2 5 3 1, , 1, 3 , 6 3, 10 15 , 
i ξ ξ ξ ξ ξ ξ ξ ξ ξ Ψ = - - - + - +  (4 -64)
Thus, a second-order , 2-D PCE is given by

2 2 0 11 2 2 3 1 4 1 2 5 2 ( ) ( ) ( ) ( ( ) 1) ( ) ( ) ( ( ) 1) u b b b b b b θ ξ θ ξ θ ξ θ ξ θ ξ θ ξ θ = + + + -+ + - (4 -65) 
Where 1 ( ) ξ θ and 2 ( ) ξ θ are two independent random variables.

Suppose we have a random variable x that is normally/non-normally distributed. This random variable x can be approximated by the first four terms of the PCE as follows:

2 3 0 1 2 3 ( ) ( 1) ( 3 ) x z b b b b ξ ξ ξ ξ ξ ≈ = + + -+ - (4 -66)
Calculate the first four central moments of z in terms of the coefficients i b .

The standard normal random variable ξ and orthogonal polynomials i Ψ satisfy

0 1 Ψ =, [ ] 0 i E Ψ = (4 -67) 2 i j i ij E E d     Ψ Ψ = Ψ     , { 1, 0 , ij i j i j d = = ≠ (4 -68)
Where ij d is the Kronecker delta.

Suppose the first four moments of a random variable, x , are given by 1 2

x m = , 

j i j f b = ∑ (i 1, 2, 3) = Where 1 1 1 ( ) 0 i z x f b m m = -= 2 2 2 ( ) ( ) i z i x f b m b m = - 3 3 3 ( ) ( ) i z i x f b m b m = - 4 4 4 ( ) ( ) i z i x f b m b m = -
Then we can perform optimization to have solution of coefficients i b and make sure minimize 1 ,

4 2 1 ( ) j i j f b = ∑ 0 k E k odd ξ   = ∀   0 z m b = 2 2 2 2 2 0 1 2 3 (z b ) 2 6 z m E b b b   = - = + +   3 3 2 3 2 0 1 2 2 1 2 3 2 3 (z b ) 6 8 36 108 z m E b b b b b b b b   = - = + + +   4 4 4 4 4 3 2 2 2 2 2 3 2 2 0 1 2 3 1 3 1 2 1 3 1 2 3 1 3 2 
..

E E E E ξ ξ ξ ξ         = = = =        

Gram-Charlier series

Specify the first seven coefficients of the Gram-Charlier series

0 ( ) , b f x dx +∞ -∞ = ∫ (4 -69) 1 ( ) , b f x xdx +∞ -∞ = -∫ (4 -70) 2 2 1 ( )( 1) , 2 b f x x dx +∞ -∞ = - ∫ (4 -71) 3 3 1 ( )( 3 ) , 6 b f x x x dx +∞ -∞ = - - ∫ (4 -72) 4 2 4 1 ( )( 6 3) , 24 b f x x x dx +∞ -∞ = - + ∫ (4 -73) 5 3 5 1 ( )( 10 15 ) 
, 120 b f x x x x dx +∞ -∞ = - - + ∫ (4 -74) 6 4 2 6 1 ( )( 15 45 15) , 720 b f x x x x dx +∞ -∞ = - + - ∫ (4 -75) 
The th n order central moment can be given by

(X ) ( ) ( ) n n n x x x X m E X f x dx µ µ +∞ -∞   = - = -   ∫ (4 -76)
Let the first moment be zero 

1 0 x m µ = = Then 2 3 1 0 1 2 3 1 1 1 , 0 , ( 1) , b ( 3 ) 
P -   -   =   - - -   -   0.0653 0 0 0 0 0.1733 0 0 0 0 0.4807 0 0 0 0 3.4114 -     Λ =       [ ] [ ][ ]
C       =         

Surrogate model for reliability analysis

The example of Latin hypercube sampling ub finite element model of wing structure in Chapter 3, will be applied here for stochastic expansion in probabilistic analysis.

The direct use of stochastic expansions is an efficient choice for representing uncertain parameters because they provide analytically appealing convergence properties.

Effective methods for model updating are generally based on a sensitivity formulation, In a Bayesian parameter estimation procedure, the discrepancy between initial model predictions [START_REF] Bernardo | On the development of the reference prior method[END_REF] [13] and the test data is resolved by minimizing a weighted error This error can be minimized by taking the partial derivative of Eq.( 9) with respect to j P equal to zero. This leads to:

{ } { } [ ] { } { } { } { } [ ] { } { } 0 0 ( ) ( ) ( ) ( ) e T e T R P E R R C R R P P C P P = - - + - - (4 
{ } { } [ ] { } { } 0 ( ) e P P G R R = + - (4 -80)
With [ ] G the gain matrix computed as:

[ ] [ ][ ] [ ] [ ][ ][ ] 1 
( )

T T P R P G C S C S C S - ′ = + (4 -81)
In an iterative procedure, an error function is verified to control convergence. A general form of such error function can be, The sensitivity of variables are usually expressed as systems of differential equations and analyzed by calculation of partial derivatives of outcome or system variables with respect to the input parameters. Table 4.2 presents the results of sensitivity analysis for the input variables, namely S, D, L corresponding with the geometry of the wing structure and E, P, R, Young's module, Poission ratio and physical density respectively according to the specific material. The results point out that the natural frequencies are very sensitive to the change of length of the wing, additionally Young's module also play an important role to the output variable. In the other hands, the effect of Poisson ratio and physical density is not deserved to pay attention, which will be neglected in the following section. Therefore, S, D, L, E are chosen as the more sensitive parameters to natural frequencies.

1 1 N i i i R E N R = ∆ = ∑ (4 -82)
The polynomial regression models are used to approximate a structural response or the complete limit state function ( ) G x of the reliability problem. The limit state function defines the failure domain

{ } : ( ) 0 f D x G x = ≤
, and the safe domain

{ } : ( ) 0 s D x G x = > as a function of a vector { } 1 2
, ,... ,

T n x x x x =
of n basic random variables that describe the uncertain quantities of the structural system A regression model [START_REF] Kenney | Linear Regression and Correlation[END_REF] [14] for ( ) G x can be written as:

( ) ( : ) ( ) G x F x x β ε = + (4 -83)
With 0 1 ( : )

n i i i F x x β β β = = + ∑ (4 -84)
A polynomial regression model and ( )

x ε a random error term that represents the difference between the true limit state function values and the approximate values predicted by Eq.4-84. These random errors are assumed to be independent and normally distributed with zero mean and constant variance.

Where 0 β is the value of the model at the origin of the space of basic random variables, i β can be interpreted as the gradient in the direction i x . The total number of regression coefficients to be estimated in this model is p=n+1.

Second-order polynomials of the form,

0 1 1 1 ( : ) n n n i i ij i j i i j F x x x x β β β β = = = = + + ∑ ∑∑ (4 -85)
The regression model parameters β are estimated by fitting the model to a sample of support points.

These models re frequently described in the literature as the realization of a stochastic field. Based on this idealization, the limit state function [START_REF] Georges | Part 1 of Cahiers du Centre de morphologie mathématique de Fontainebleau, Le krigeage universel[END_REF] [15] can be written as

( ) ( : ) ( ) G x F x z x β = + (4 -86)
Where ( : ) A kriging interpolation model is completely defined by a vector of regression coefficients β , a vector of correlation parameter θ and the variance 2 σ of the stationary Gaussian process. These parameters are estimated by fitting the Kriging model to a sample of support points.

F
Where F is the regression matrix and y is the vector of true limit state function values. A 0-order polynomial or first-and second -order polynomials are adopted as regression models ( : )

F x β .
The matrix R defines the correlation between each pair of support points according to the prescribed correlation function.

The vector of correlation coefficients β and the process variance 2 σ depend on the vector of correlation parameters θ through the correlation matrix R , and therefore θ has to be first estimated using the method of maximum likelihood:

θ θ σ θ = (4 -90)
Its prediction at a given point of the space of basic random variables can be obtained,

ˆˆ( ) ( ) ( ) T T G x f x r x β γ = + (4 -91) 1 ( ) R y F γ β - = - (4 -92) (1) ( ) 
( ) [ ( : , ) , ... , ( : , )]

T m r x R x x R x x θ θ = (4 -93)
A vector with the correlations between the prediction point and the m realizations

( ) ( 1 , ... , ) k x k m =
of the vector of basic random variables used in the Kriging model fitting corresponds to the expected or mean value of the Kriging model prediction, an estimate for the variance or uncertainty associated with the model predictions can be given by:

2 2 1 1 1 1 ( ) ( ) ( ) ( ) ( ) T T T G u x F R F u x r x R r x σ σ - - -   = + -   (4 -94) 1 ( ) ( ) ( ) T u x F R r x f x - = - (4 -95) 2 G
σ provides an important index to quantify the uncertainty of predictions and to further adjudge the fitting accuracy. Its existence supplies an approach to improve the design of experiment and to make Kriging more precise.

To compare the results of Kriging model with Latin Hypercube method, probability density of first natural frequency in each method is calculated to demonstrate the accuracy and stability of this surrogate model. We built a deterministic finite element model to calculate the natural frequencies of wing structure. Latin Hypercube sampling method was applied to propagate the uncertainties in the parameters which corresponding with geometry property and material property. Sensitivity analysis pointed out the more important parameters in the stochastic simulation process. Kriging model as a surrogate model of the stochastic simulation sharply reduce the calculation expense, and also has good accuracy and convergence as discussed. We used the Kriging model in reliability analysis to find the influence of uncertainties in input variables to the natural frequency of wing structure, which should be taken care in order to prevent resonance disaster.

Conclusion

In this chapter, stochastic expansion for probability analysis is presented. Hermite pomynomial and Gram -Charlier series are introduced and applied in the examples.

Karhunen -Loeve expansion and polynomial chaos expansion are important methods in spectral stochastic finite element method as demonstrated. In the example of surrogate model for reliability analysis, we take consideration of natural frequency of wing structure. Usually, researchers and designers identify the basic natural frequencies of a specific structural system and avoid the periodic loading coincide with them in order to prevent the damage or failure of resonance. In the process of identification of natural frequencies for a structure, the deterministic model is not sufficient because of ignoring the uncertainties and complexities in the real operation situation. Probability method is an effective way to propagate and quantify the uncertainties. We applied advanced Monte Carlo Simulation (Latin Hypercube sampling approach) to perform the parameter fluctuation of the input variables, such as geometrical and material properties as in Chapter 3. Based on the results of MCS, Kriging model is built to reduce the computation burden and provide the continuous model for the following reliability analysis. To relief the heavy computational burden in the simulation process, the sensitivity analysis also was applied and effectively point out the most important parameters which evidently influence the output variables, namely natural frequencies in our research. Second order regression in Kriging model has good accuracy and convergence. In the process of predicting the results of natural frequency of wing structure, Kriging model has satisfied stability.

Reliabilty analysis based on Kriging model offers the useful information in preventing as resonance disaster in wing structure.

Chapter 5 Reliability based design optimization

In the field of mechanics, variation in systems, such as loading condition, material properties, geometry, boundary condition, etc. is considered by introducing simplifying hypotheses. These hypotheses are formulated based on past experiences and engineering judgment, by introducing extreme or mean values and/or application of safety factors in the designing process to simplify the problems. However, the traditional approaches of deterministic models are not appropriate because of neglecting the uncertainties and simplifying the problem for analysis. Hence, a proper design procedure must explicitly consider these types of uncertainties, as they may cause significant changes in the performance and reliability of final designs.

Despite of the fact that an adequate level of reliability is a basic objective when designing a system, other design goals may be important as well, there is an increasing demand for structures which are safer and at the same time more economical. In consequence, engineering practice expects to have optimization procedures available which take into account the effects of uncertainty.

Procedures which deal with optimization considering uncertainties are significantly more involved than their deterministic counterparts. Optimization processes requires the evaluation of costly objective and constraint functions numerous times. The associated computation costs are usually prohibitive, especially under uncertain condition, when the system is represented by means of a large and detailed finite element model or when the representation of the loading acting on a structure requires a numerically involved model. Therefore, special procedures must be applied in order to make the design problem tractable. Such procedures include:

1. Application of efficient optimization techniques which require less function calls. These techniques can take advantage of special characteristics of the problem by introducing sequential approximations for representations of the objective function and constraints by reciprocal and/or hybrid variable.

2. Introduction of approximation concepts at different levels of the optimization process.

3. Performing simulation that allowing treat realistic uncertainty models involving uncertain parameters in an efficient manner.

4. An appropriate computational implementation, computational aspects play a key role, as the systems and structures are large and require detailed modeling. In this regard, parallel computing has become a tool which is steadily gaining interest among researchers and engineers.

General remarks of RBDO

The fundamental goal in engineering disciplines is to design and construct systems or components that satisfy certain performance objectives during their lifetime. Such objectives cover a wide range of possibilities, control of vibrations induced by uncertainty, or minimization of the effects of multi-site damage. In practical design situation, it is impossible to comply with the performance objectives deterministically because of the inherent random nature of loading conditions, structural parameters and conditions of operation of the structures. Hence, the fulfillment of the performance objectives should be accomplished by probabilistic means, with an associated reliability.

In fact, high levels of reliability are usually associated with large economical costs.

Obviously, the enhanced reliability requires increased amount of construction material, more sophisticated construction procedures, thorough maintenance, etc. An adequate design procedure should offer an appropriate trade-off between an acceptable reliability level and economical design of the structure. RBDO provides the means for achieving such trade-off offering an optimal design solution taking into account the effects of uncertainties.

The RBDO allows determining the best design according to some predefined criterion.

The formulation of an RBDO problem requires the identification and definition of a number of items, namely the input variables of the system (design variables and uncertain parameters), the failure events of the system (violation of target performance), the constraints of the design problem and the objective function that allows identifying the most convenient design. Clearly as following, 1 Definition of the design variables 2 Identification of the uncertain parameters 3 Formulation of the failure (or critical) events associated with the performance of the system 4 Definition of the constraints of the design problem.

Statement of an objective function

Design variables, the parameters that need to be determined to obtain the desired structural performance under some constraints, they can be geometry parameters like beam length, plate thickness and cross section, as well as material properties including reinforcement distribution.

State variables are the parameters representing responses of the structure. A typical response refers to displacement, velocity, acceleration, stress, strain and so on. In practical application, the state variables are mostly implicit functions of design variables and available in numerical way.

Objective function is the function to evaluate the merit of a design. Frequently, one objective function can measure weight, stiffness, displacement in a given direction, or simple costs. The objective function is commonly formulated by a minimization problem.

Deterministic constraint is the restriction that must be satisfied in a structural design optimization corresponding some critical failure mechanism. Side constraints provide the lower bound and upper bound of the design variables.

Single Objective Optimization Description

A single objective optimization problem consists of optimizing function:

Opt (F(x))
Where

1 2
( , ,....., ) t n x x x x = Subject to:

( ) 0,
1, 2,...., , ( ) 0, 1, 2,...., , ( )

j j g x j q h x j r q r m ≤ = = = + = (5 -1)
There are several types of single optimization problems.

Type 1 (component reliability):

Minimize a system cost function ( , )

S i i C C R x = Subject to ,min ,max
,min ,max , 1, 2,...., ;

i i i S S S R R R i n R R R ≤ ≤ = ≤ ≤ (5 -2)
Type 2 (redundancy allocation):

Find the optimal i x , 1, 2,...., , 

i n = which Max ( , ) S i i R f R x = Subject to:
S i i R f R x = , 1, 2,...., , i n = Subject to: 1 1 2 2 
( , , , ,....., , ) 0, 1, 2,...., ,

j n n g x R x R x R j m ≤ = (5 -3) 0 1, 1, 2,...., ; i R i n ≤ ≤ = 1 i x ≥
For both type 2 and 3 problems the function ( , )

i i f R x can be any expression. For example, in the cases to be analyzed in series-parallel systems, the expression for

( , ) i i f R x is 1 ( , ) 1 (1 ) i n x i i i i f R x R =   = ∏ --  
(5 -4)

Within these single optimization problems, the constraints j g are usually associated

with system weight, volume and cost and are often defined or assumed, for the purpose of simplicity, as linear functions.

As examples of such constraints we have:

2 1 1 n i i i g Px P = = ≤ ∑ (5 -5) [ ] 2 1 exp( ) n i i i i i g C x k x C = = + ≤ ∑ (5 -6) [ ] 3 1 exp( ) n i i i i i g W x k x W = = * ≤ ∑ (5 -7)
Constraint Eq. (5-5) is a combination of weight and volume: i P is the product of weight per unit and volume per unit. Constraint Eq. (5-6) is a cost constraint. The term exp( ) i i k x is the additional cost for interconnecting parallel units while Eq. (5-7) is a weight constraint: the weight of a single unit is increased by the factor exp( )

i i k x due
to the weight of the interconnecting links.

Note that in these formulations, only a single objective function is considered. The other objectives (reliability, cost, weight, or volume) are modeled as constraints. That means that the designers consider all individual targets separately.

Multiple-Objective Optimization description

A multi-objective optimization problem consists of optimizing a vector of functions:

( ) ( ) 1 2
Opt F x ( ( ), ( ),....., ( ))

k f x f x f x = (5 -8)
Subject to:

( ) 0, 1, 2,...., , ( ) 0, 1, 2,...., , ( )

j j g x j q h x j r q r m ≤ = = = + = (5 -9)
Where

1 2 ( , ,....., ) t n x x x x X =
∈ is a solution vector, or vector of decision variables, and X is the feasible domain.

The concept of optimality in single objective is not directly applicable in multipleobjective problems. For this reason a classification of the solutions is introduced in terms of Pareto optimality, according to the following definitions:

In terms of minimization: Definition 1. Pareto optimal: A solution vector x X * ∈ is Pareto optimal solution iff

x X ¬∃ ∈ : { } ( ) ( ) ( ) ( ); 1, 2,...., i i i i f x f x f x f x i k * * ≤ ∧ ≠ ∀ = .
(5 -10)

These solutions are also called true Pareto solutions.

Definition 2. Pareto dominance: A solution 1 x dominates 2 x , denoted as

1 2 x x  iff { } 1 2 2 ( ) ( ) : ( ) ( ); , 1, 2,...., i i j j f x f x j f x f x i j k ≤ ∧ ∃ < = (5 -11)
If there are no solutions which dominate 1 x , then 1

x is non-dominated. The reliability optimization problems presented in single objective problem can be formulated as multi-objective problem, transforming one or more constraints into one or more objectives. For example, we define the following multi-objective problems:

MOP Type 1 (component reliability):

Maximize the system reliability S R and minimize a cost function S C subject to

,min ,max i i i R R R ≤ ≤ , 1, 2,...., . i n =

MOP Type 2 (redundancy allocation):

Find the optimal i x ,

1, 2,...., . i n = which maximize ( , )

S i i R f R x =
and minimize a cost ( , , , ,....., , ) 0, 1, 2,...., ;

S i i R f R x = , 1 
j n n g x R x R x R j m ≤ = 0 1, 1, 2,...., ; 1 i i R i n x ≤ ≤ = ≥ (integer).
Within these problems, we will consider that the cost function to be minimized corresponds to the previously defined cost constraint 2 g in the single objective formulation.

Notice that even if the two objectives considered in these MOP types are reliability and cost, the MOP approach is general and can be used for any type and number of objectives. The selection of such objectives clearly depends on the problem under study and the design maker criteria.

First -order reliability method

When a structure exceeds a specific limit causes it is unable to perform as requires, this specific limit is called a limit-state. The structure will be considered unreliable if the failure probability of the structure limit-state exceeds the required value. For most structures, the limit-state can be divided into two categories:

• Ultimate limit-states are related to a structural collapse of part or all of the structure. Examples of the most common ultimate limit-states are corrosion, fatigue, deterioration, fire, plastic mechanism, progressive collapse, fracture, etc. Such a limit-state should have a very low probability of occurrence, since it may risk the loss of life and major financial losses.

• Serviceability limit-states are related to disruption of the normal use of the structures, typical examples are excessive deflection, excessive vibration, drainage, leakage, local damage, etc. A higher probability of occurrence may be tolerated in such limit-states.

The probabilistic methods include the stochastic finite element method, the first-and second-order reliability method, sampling methods, the utilization of stochastic expansion based on the random process concept, etc.

Due to the curse of dimensionality in the probability-of-failure calculation, numerous methods are used to simplify the numerical treatment of the integration process. The Taylor series expansion is often used to linearize the limit-state. In this approach, the first-or second-order Taylor series expansion is used to estimate reliability. FOSM is also referred to as the Mean Value First Order Second Moment method (MVFOSM), since it is a point expansion method at the mean point and the second moment is the highest-order statistical result used in this analysis.

The variance of the approximate limit-state function ( )

g X  is [ ] [ ] ( ) ( ) ( ) ( ) T X X X Var g X Var g Var g X µ µ µ   ≈ + ∇ -    (5 -17)
Therefore, the standard deviation of the approximate limit-state function is [ ]

1 2 2 2 2 1 ( ) ( ) ( ) ( ) i n T X g X x i i g Var g X g Var X x µ σ µ σ =     ∂     = = ∇ =     ∂       ∑   (5 -18)
The reliability index β is computed as:

g g µ β σ =  
(5 -19)

If the limit-state function is nonlinear, the approximate limit-state surface is obtained by linearizing the original limit-state function at the mean value point. In a general case with independent variables of n-dimensional space, the failure surface is a hyper-plane and can be defined as a linear-failure function:

0 1 ( ) n i i i g X c c x = = + ∑  (5 -20)
The MVFOSM reliability index can still be used for this n-dimensional case, in which

1 2 0 1 2 .... n g x x n x c c c c µ µ µ µ = + + + +  (5 -21) 2 2 1 i n g i x i c σ σ = = ∑  (5 -22)
The MVFOSM method changes the original complex probability problem into a simple problem. This method directly establishes the relationship between the reliability index and the basic parameters (mean and standard deviation) of the random variables. However, there are two serious drawbacks in the MVFOSM method:

(1) Evaluation of reliability by linearizing the limit-state function about the mean values leads to erroneous estimates for performance functions with high nonlinearity, or for large coefficients of variation. Therefore, the distributions of U are rotationally symmetric with respect to second moment distribution. Based on the transformation, the mean value point in the original space is mapped into the origin of the normal space. The failure surface ( ) 0 g X = in X-space is mapped into the corresponding failure surface ( ) 0 g U = in Uspace. Due to rotational symmetry of the second-moment representation of U, the geometrical distance from the origin in U-space to any point on ( ) 0 g U = is simply the number of standard deviations from the mean value point in X-space to the corresponding point on ( ) 0 g X = . The distance to the failure surface can then be measured by the safety-index function:

1 2 2 ( ) ( ) , ( ) 0 T U U U U U g U β = = ∈ = (5 -28) 
The safety-index β is the shortest distance from the origin to the failure surface

( ) 0 g U = 1 2 ( ) 0 min ( ) T U g U U U β ∈ = = (5 -29)
The point ( )

* * * * 1 2
, ,..., n U u u u on ( ) 0 g U = is the design point. The values-of-safety indices are the same when the failure surface is a hyper-plane. The value of HL β is the same for the true failure surface as well as for the approximate tangent hyperplane at the design point. The ambiguity in the value of the first-order reliability index is thus resolved when the design point is taken as the linearization point. The resultant reliability index is a sensible measure for the distance to the failure surface.

HL

β is the solution of a constrained optimization problem in the standard normal space.

Minimize:

1 2 ( ) ( ) T U U U β = Subject to : ( ) 0 g U =
There are many algorithms available that can solve this problem, such as mathematical optimization schemes or other iteration algorithms. Several constrained optimization methods were used, including primal methods (feasible directions, gradient, projection, reduced gradient), penalty methods, dual methods, and Lagrange multiplier methods. Each method had its advantages and disadvantages, depending upon the attributes of the method and the nature of the problem.

The HL method was proposed by Hasofer and Lind. Rachwitz and Fiessler extended the HL method to include random variable distribution information, calling their extended method the HL-RF method. Assuming that the limit-state surface with ndimensional normally distributed and independent random variables X is

} { 1 2 ( ) ( , ,... ) 0 T n g X g x x x = =
(5 -30)

This limit-state function can be linear or nonlinear. Based on the transformation, the limit-state function is transformed into

} { 1 1 2 2 1 2 ( ) ( , ,..., ) 0 n n T x x x x x n x g U g u u u σ µ σ µ σ µ = + + + =
(5 -31)

The normal vector from the origin O  to the limit-state surface ( ) g U generates an intersection point * P . The distance from the origin to the MPP is the safety-index β .

The first-order Taylor series of expansion of ( )

g U at the MPP * U is * * * 1 ( ) ( ) ( ) ( ) n i i i i g U g U g U u u U = ∂ ≈ + - ∂ ∑  (5 -32)
From the transformation

ˆ( ) ( ) i x i i g U g X u x σ ∂ ∂ = ∂ ∂ (5 -33)
The shortest distance from the origin to the above approximate failure surface

* * * 1 * * 2 1 ( ) ( ) ( ) ( ) i i n x i i i n x i i g U g U u x OP g U x σ β σ = = ∂ - ∂ = = ∂ ∂ ∑ ∑  (5 -34)
The direction cosine of the unit outward normal vector is given as

* * 1 2 * * 2 1 ( ) ( ) cos cos ( ) ( ) ( ) i i i i x i i x u i n x i i g U g X u x g U g X x σ θ θ α σ = ∂ ∂ ∂ ∂ = = - = - = ∇   ∂   ∂   ∑ (5 -35)
Where i α expresses the relative effect of the corresponding random variable on the total variation. Thus, it is called the sensitivity factor.

The coordinates of the point * P are computed as

* * * cos cos i i i i i x i x x x x u OP µ θ β θ σ - = = = 
(5 -36)

The coordinates corresponding to * P in the original space are * cos , ( 1, 2,...., )

i i i i x x x x i n µ βσ θ = + = (5 -37)
Since * P is a point on the limit-sate surface, } { 1 2 ( , ,... ) 0

T n g x x x = (5 -38)
The direction cosine of the unit outward normal vector of the limit-state function i α is defined as the sensitivity factor, which shows the relative importance of each random variable to the failure probability. The sensitivity of the failure probability or the safety index to small changes in the random variables can be examined, which usually provides information useful to studying the statistical variation of the response.

The physical meaning of i α implies the relative contribution of each random variable to the failure probability. For example, the larger the i α value is, the higher the contribution towards the failure probability. This is due to

2 2 2 1 2 .... 1 n α α α + + + = (5 -39)
In fact, i α is the sensitivity of the safety-index β at the MPP. From the definition of β as the distance from the origin to the limit-state surface, ( ) 0 g U = , it follows that

2 2 2 1 2
.... , ( 1, 2,..., )

i n i i i u u u u i n u u β α β ∂ ∂ = + + + = = = ∂ ∂ (5 -40)
The sensitivity factors for the failure probability f P are

(-)= (-) i i i u u u β β φ β φ β ∂ ∂ ∂ = ∂ ∂ ∂ (5 -41)
In some cases, the failure surface may contain several points corresponding to stationary values of the reliability-index function. Therefore, it may be necessary to The difference between the MVFOSM method and the HL method is that the HL method approximates the limit-state function using the first-order Taylor expansion at the design point

( ) k X or ( ) k U
instead of the mean value point X µ ; Also, the MVFOSM method does not require iterations, while the HL method needs several iterations to converge for nonlinear problems. The HL method usually provided better results than the mean-value method for nonlinear problems. How well a linearized limit-state function, ( ) 0

g U = 
, approximates a nonlinear function ( ) g U in terms of the failure probability f P depends on the shape of ( ) 0

g U = .
If it is concave towards the origin, f P is underestimated by the hyper-plane approximation. Similarly, a convex function implies overestimation. However, there is no guarantee that the HL algorithm converges in all situations. Furthermore, the HL method only considers normally distributed random variables, so it cannot be used for non-Gaussian random variables.

Hasofer Lind-Rackwitz Fiessler (HL-RF) Method

In the Hasofer Lind method, the random variables X are assumed to be normally distributed. In non-gaussian cases, even when the limit-state function ( ) g X is linear, the structural probability calculation is inappropriate. However, many structural reliability problems involve non-Gaussian random variables. It is necessary to find a way to solve the non-Gaussian problems. There are many methods available for conducting the transformations, such as Rosenblatt, and Hohenbichler and Rachwitz.

A simple, approximate transformation called the equivalent normal distribution, or the normal tail approximation, is described below. The main advantages of this transformation are:

(1) It does not require the multi-dimensional integration

(2) Transformation of non-Gaussian variables into equivalent normal variables has been accomplished prior to the solution.

(3) Calculation of the structural probability is retained (4) It often yields excellent agreement with the exact solution of the multi-dimensional integral of probability formula When the variables are mutually independent, the transformation is given as

-1 = ( ) i i x i u F x   F   (5 -43)
Where -1 F is the inverse of F One way to get the equivalent normal distribution is to use the Taylor series expansion of transformation at the MPP * X , neglecting nonlinear terms

* -1 * -1 * = ( ) ( ( ) ) ( ) i i i i x i x i i i x i u F x F x x x x ∂     F + F -     ∂
(5 -44)

Where

-1 -1 ( ) ( ) ( ( ) ) i i i x i x i i x i f x F x x F x φ ∂   F =   ∂   F   (5 -45) * -1 * -1 * * -1 * * ( ) ( ( ) ) ( ) = ( ( ) ) ( ) i i i i i i i x i x i x i i x i x i x x F x F x f x u F x f x φ φ       - -F F         F   (5 -46)
Which can be written as, ( )

= i i i x i x x u µ σ ′ ′ - ( 5 
i i i x i x x i F x f x φ σ ′   F   =
(5 -48) 

* -1 * = - ( ) i i i x i x i x x F x µ σ ′ ′   F   (5 -
i i x i x i F x x ′ (5 -50) Or * * ( )= ( ) i i i i x x i x x F x µ σ ′ ′ - F (5 -51) So * -1 * = - ( ) i i i x i x i x x F x µ σ ′ ′   F   (5 -52)
The probability density function value of x and * i x are equal:

* * ( )= ( ) i i x i x i f x f x ′ (5 -53) * * 1 ( )= i i i i i x x i x x x f x µ φ σ σ ′ ′ ′   -      
(5 -54)

FORM with adaptive approximations

In the previous algorithms, the limit-state function, ( ) g U was approximated by the first-order Taylor expansion at the MPP. For nonlinear problems, this approach is only an approximation, and several iterations are usually required. How fast the algorithm converges depends on how well the linearized limit-state function approximates the nonlinear function ( ) g U .

The limit-state function could be approximated by other functions, such as the Twopoint Adaptive Nonlinear Approximations (TANA), including TANA and TANA2. This new class of approximations is constructed by using Taylor series expansion in terms of adaptive intervening variables. The nonlinearity of the adaptive approximations is automatically changed by using the known information generated during the iteration process. TANA2 also has a correction term for second-order terms.

To compute the approximate U-space limit-state surface ( )

g U 
using TANA, we must first obtain the adaptive approximate limit-state surface in X-space. Two possible methods, TANA:

1 , , 1 g(X ) 1 (X)=g(X )+ ( ) n r r r k k i k i i k i i g x x x r x - = ∂ - ∂ ∑  (5 -55)
Where , i k

x is the th i element in the vector X k of the th k point/ iteration. The comma notation does not signify differentiation.

The nonlinear index r can be determined from

1 1 , , 1 , 1 g(X ) 1 g(X ) -g(X ) ( ) 0 n r r r k k k i k i k i k i i x x x r x - - - =   ∂  + - =   ∂    ∑ (5 -56) TANA2: 1 2 2 , 2 , 2 , 1 1 ( ) g(X ) 1 (X)=g(X )+ ( ( ) ) ( ( ) ) 2 i i i i i p i k p p p p k k i i k i i k i i i i x g x x x x x p ε - = = ∂ - + - ∂ ∑ ∑  (5 -57)
Then,

1 1 , 1 1 2 , 1 , , 1 , g(X ) g(X ) =( ) ( ) i i i i i k p p p p k k i k i k i k i i i k i x x x x p x x x ε - - - - - - ∂ ∂ + - ∂ ∂ (5 -58) 1 , 2 1 , 2 , 1 , 1 1 ( ) g(X ) 1 g(X ) g(X ) ( ( ) ) ( ( ) ) 2 i i i i i p n n i k p p p p k k k i i k i k i k i i i i x x x x x x p ε - - - = = ∂ = + - + - ∂ ∑ ∑
(5 -59)

( 1, 2,...., ) i n = To map (X) g  into (U) g 
by using the standard normal or equivalent normal transformations:

1 1 2 2 1 2 (X)= ( u + , u + ,...., u + ) n n x x x x x n x g g σ µ σ µ σ µ ′ ′ ′ ′ ′ ′  
(5 -60)

The nonlinear index, r , is numerically calculated by minimizing the difference between the exact and the approximate limit-state functions at the previous point 1 X k -. In theory, r can be any positive or negative number. In practice, r can be restricted from, say, -5 to 5, for the X-space iterations to avoid numerical difficulties associated with higher order polynominals.

Usually, the adaptive safety-index algorithm is better than the HL-RF method, because the nonlinear index r is determined by comparing linear approximations and minimizing the difference between exact and approximate limit-state functions. In the process of searching for r , the nonlinear index will automatically become 1 if other values of r cannot provide any improvement over the linear approximation.

Second-order Reliability Method (SORM)

FORM usually works well when the limit-state surface has only one minimal distance point and the function is nearly linear in the neighborhood of the design point.

However, the failure probability estimated by FORM using the safety-index β may give unreasonable and inaccurate results, if the failure surface has large curvatures (high nonlinearity). To resolve this problem, the second-order Taylor series is considered. Various nonlinear approximate methods have been proposed in the literature.

First-and Second-order Approximation of Limit-state Function

To facilitate the integration, the standard normal Y-space instead of U-space can be considered in most failure probability calculations. To conduct the rotation from the standard normal U-space to the Y-space, an orthogonal matrix H need to be generated in which the th n row of H is the unit normal of the limit-state function at the MPP. To generate H, first, an initial matrix is selected as follows:

* * * 1 2 * * * ( ) ( ) ( ) ( ) ( ) ( ) 0 1 0 0 0 0 0 0 1 n g U U g U U g U U g U g U g U   -∂ ∂ -∂ ∂ -∂ ∂   ∇ ∇ ∇                         (5 -61)
Where the last n-1 row consist of zeros and unity on the diagonal. The Gram-Schmidt algorithm is used to orthogonalize the above matrix to obtain an orthogonal matrix.

First, And in general,

* * * 1 2 1 * * * ( ) ( ) ( ) , ,...., ( ) ( ) ( ) T n g U U g U U g U U f g U g U g U   -∂ ∂ -∂ ∂ -∂ ∂   =   ∇ ∇ ∇     (5 -62) } { 2 0,1, 0,...., 0 T f = (5 -63) } { 0, 0, 0,....,1 T n f = (5 -64) Set 1 2 1 1 1 ( , ) D f f = , 11 1 1 e D = , 1 11 1 e f γ = (5 -65) 1 2 2 2 2 2 2 1 ( , ) ( , ) D f f f γ   = -   (5 -66)
1 2 2 2 2 1 2 1
( , ) ( , ) ( , ) ,..., ( , )

k k k k k k k D f f f f f γ γ γ -   = - - ---  
(5 -69) 

1 2 1 1 2 1, ( , ) ( , ) ( , ) , ,...., k k k k k k k k k k k f f f e e e D D D γ γ γ - - = - = - = - (5 -70) 1 1 2 2 1, 1
{ } 0 1 2 , , ... , T T T T n H γ γ γ = . { } 2 3 1
, ,... , ,

T T T T T n H γ γ γ γ = (5 -72)
First-order approximation: assuming the most probable failure point (MPP) in Uspace to be

* * * ( ) ( ) ( )( ) 0 g U g U g U U U ≈ + ∇ - = 
(5 -73)

In this equation, * ( ) g U equals 0 because * U point is on the response surface.

Dividing by

* ( ) g U ∇ , * * * ( ) ( ) ( ) ( ) g U g U U U g U ∇ ≈ - ∇  (5 -74) * * * ( ) ( ) g U U g U β ∇ = - ∇ (5 -75)
Substituting this equation, we obtain

* * ( ) ( ) 0 ( ) g U g U U g U β ∇ ≈ + = ∇  (5 -76)
By a rotation of U into a new set of mutually independent standard normal random variables Y using the orthogonal matrix H

Y HU =

(5 -77)

And the approximate response surface becomes

( ) 0 n g U y β ≈ -+ = 
(5 -78)

Or n y

β =
If the limit-state functions of the practical problems are linear or close to linear, this approximation closely or exactly represents the response surface. Otherwise, the truncation errors from the first-order Taylor approximation might be large and more accurate approximations need to be employed.

The second-order approximation of the response surface ( ) 0 g U = is given by the second-order Taylor series expansion at the MPP:

* * * * 2 * * 1 ( ) ( ) ( ) ( ) ( ) ( )( ) 2 T T g U g U g U U U U U g U U U ≈ + ∇ - + - ∇ - 
(5 -79)

Where 2 * ( ) g U ∇ represents the symmetric matrix of the second derivative of the limitstate function:

2 * 2 * ( ) ( ) ij i j g U g U u u ∇ ∇ = ∂ ∂ (5 -80)
Dividing by

* ( ) g U ∇ and considering * ( ) 0 g U = , we obtain * * * 1 ( ) ( ) ( ) ( ) 2 T T g U U U U U B U U α ≈ - + - -  (5 -81) Where * * ( ) ( ) g U g U α ∇ = ∇ and 2 * * ( ) ( ) g U B g U ∇ = ∇ 1 1 * 1 1 * 1 ( ) ( ) ( ) 2 T n g Y y H Y H Y B H Y H Y β - - - - ≈ -+ + - -  (5 -82)
Where * Y is the Y-space MPP, corresponding to the U-space MPP * U . In Y-space, the n y axis is in coincidence with the β vector.

Since the H matrix is an orthogonal matrix,

1 T H H -=
(5 -83)

Substituting this equation into

* * 1 ( ) ( ) ( ) 2 T T n g Y y Y Y HBH Y Y β ≈ -+ + - - 
(5 -84)

By a series of orthogonal transformations, (5 -85)

1 2 ,...., m Y H H H Y ′ = (5 -86)
Quantities associated with n-1 variables are denoted with a bar. Finally, the first

( 1) ( 1) n n
-× -order matrix of T HBH becomes a diagonal matrix:

1 2 1 0 0 0 0 0 0 0 0 0 0 T n k k HBH k -         =               
(5 -87)

1 2 1 1 2 n n i i i y k y β - = ′ = + ∑ (5 -88)
In fact, the above procedure for finding the diagonal matrix can be treated as an eigenvalue problem. So, k are given by ( ) , ( , 1, 2,..., 1)

T ij ij k HBH i j n = = -
Where ij k represents the curvature of the response surface at the MPP.

The major computational cost is in computing the second derivatives B of the limitstate function at the MPP. The exact second-order derivatives of ( ) g U require additional ( 1) 2 n n + limit-state function simulations for a finite difference scheme. For problems having a large number of random variables, this calculation is extremely computer intensive. From this procedure, it is clear that one has to increase computational efficiency in calculating the curvature matrix and second-order function derivatives. Then, it enables an accelerated and cost-effective procedure to perform the second-order probability analysis, particularly when finite element-based structural analysis tools are used.

Breitung's Formulation

In Breitung formulation, first, a Laplace method for the asymptotic approximation of multidimensional integrals is needed, define as ( )

2 2 ( ) 0 exp( ) 2 g Y Y I dY β β < - = ∫ (5 -89)
Where ( ) I β is an integral over a fixed domain whose integrand is an exponential function depending linearly on the parameter 2 β .

( )

2 1 2 ( 1) 2 ( 1) 
(2 ) exp( ) , 2

n n I J β β π β β - - -+ - → ∞ � (5 -90)
Where J is a quantity independent of β , depending only on the first and second derivatives of the failure surface at the MPP.

In the case of independent standard normal random variables, the joint probability density function (PDF) is given by

2 2 ( ) 0 (2 ) exp( ) 2 n f g U U P dU π - < - = ∫ (5 -91) Substituting 1 2 1 2
( , ,..., ) ( , ,..., )

n n

x x x y y y → with

1 i i y u β - = 2 2 2 ( ) 0 (2 ) exp( ) 2 n n f g Y Y P dY β π β - < - = ∫ (5 -92) 2 1 2 1 2 1 (2 ) exp( ) , 2 f P J β π β β - - - - → ∞ � (5 -93)
Since the failure surface is approximated by the quadratic Taylor series expansion at the MPP (1 )

p n n i ij j i i J J k β - = = = = = ∏ + ∑ ∑ (5 -94)
Where p is the number of points on ( ) 0 g U = with the shortest distance β from the origin to the failure surface, and ij k is the main curvature of the failure surface at the MPP. If there is only one MPP on the surface, considering Mill's ratio

2 1 2 1 ( ) (2 ) exp( ) 2 Y Y Y π -- - F -≈
(5 -95)

1 1 2 1 ( ) (1 ) n f j j P k β β - - = ≈ F -∏ +
(5 -96)

Tvedt's Formulation

Based on the second-order approximation of the failure surface, the approximate failure region Ω is defined as

1 2 1 1 ( ) 0 2 n n i i i Y y k y β - =   ′ Ω = -+ >     ∑ (5 -97)
The failure probability can be computed from a formulation in Y-space:

1 2 1 1 1 1 1 1 2 1 ( ) ( ) ( ) n i i i f n n n n k y P y y y dy dy dy β φ φ φ - = +∞ +∞ ∞ - - -∞ -∞ ′ + = - ∑ ∫ ∫ ∫    (5 -98)
Tvedt has derived a three-term approximation for this equation by a power series expansion in terms of

1 2 1 1 2 n i i i k y - = ′
∑ , ignoring terms of orders higher than two. The resulting approximation for f P is

1 1 2 1 1 ( ) (1 ) n i i A k β β - - = =F -∏ + (5 -99) [ ] { } 1 1 1 2 1 2 2 1 1 ( ) ( ) (1 ) 
(1 ( 1)) ) Re (1 ( 1))

n n i i i i A k k β β φ β β β - - - - = = = F -- ∏ + -∏ + + (5 -100) [ ] { } { } 1 1 1 2 1 2 3 1 1 ( 1) ( ) ( ) (1 
n n i i i i A k k β β β φ β β β - - - - = = = + F -- ∏ + - ∏ + + (5 -101) 1 2 3 f P A A A = + + (5 -102)
The first term, 1 A is the Breitung formula. Re denotes the real part. This method has been found to give very good approximation in most cases. The asymptotic behavior of the three terms can be compared in the asymptotic sense. It may be shown that the ratio of the second term to the first term is

1 2 2 1 1 1 , 2 1 
n i i i k A A k β β β β - = ≈ → ∞ - ∑ (5 -103) Similarly, 2 1 1 1 2 3 2 2 1 1 1 1 3 1 ( ) , 8 1 2 (1 )(1 ) 
n n n i i m i i m i i i m A k k k A k k k β β β β β β β β - - - = = = + ≈ - - → ∞ - - - ∑ ∑ ∑
(5 -104)

SORM with adaptive approximations

Wang and Grandhi suggest an adaptive approximation method for SORM. In this method, Breitung's and Tvedt's formulas are used to perform the failure probability calculations. However, the main curvatures are calculated for the nonlinear approximation developed during the safety-index calculations. The second-order derivatives for the closed-form adaptive model representing the original limit-state can be given as

2 * 2 * (1 ) ( 2) 2 * , ( ) ( ) ( ) ( 1) ( ) ( ) ( ) 0 ( 
)
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(5 -105)

Mathematical Formulation of RBDO

RBDO is a methodology for finding optimized designs that are characterized with a low probability of failure. Mathematically, a basic formulation is described as 

.....,

j j l u i i i P G X j N d d d i ND φ β ≥ -- ≤ = ≤ ≤ =
(5 -107)

Where φ represents the cumulative distribution function for the standard normal distribution, and j β is the prescribed target reliability for the th j constraint.

The probability of failure is statistically defined by a cumulative distribution function

(0) j G F as ( ) 0 ( ( ) 0) (0) ..... ( ) ( ) j j j G X tj G X P G X F f X dX φ β ≤ ≥ = = ≤ - ∫ ∫ (5 -108)
Where ( ) X f X is a joint probability density function, which needs to be integrated. To integrate, a dependent standard normal vector u through Rosenblatt transformation.

In u-space, the most probable point for failure is found by locating the minimum distance between the origin and the limit-state or constraint function. The minimum

( ( ) 0) 0, 1, 2,......, , 1, 2,....., ; , 1, 2, 
.....

j j l u i i i k P G X R j N d d d i ND X k NR ≤ -≥ = ≤ ≤ = =
distance is defined as β . Approximate probability integration method, the first-order reliability method (FORM), has been widely used to provide efficient and adequately accurate solutions.

Through an inverse transformation with 1 ( ) φ -• and 1 ( ) g F -• , the probabilistic constraint can be further expressed in two different form as:

1 ( (0)) , Sj Gj tj F β φ β - = - ≥ (5 -109) 1 ( ( )) 0, Gj Pj tj G F φ β - = - ≥ (5 -110) 
Where Sj β and Pj G are the achieved safety reliability index and the achieved probabilistic performance measure for the th j probabilistic constraint, respectively.

The reliability index approach (RIA) RIA pj G uses the reliability index to describe the probabilistic constraint. It is also referred to as the performance measure approach (PMA) PMA pj G , if the probabilistic performance measure replaces the probabilistic constraint.

RIA based RBDO

RIA based RBDO is expressed as 

......,
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Solving RBDO by the PMA formulation is usually more efficient and robust than the RIA one where the reliability analysis is executed directly. The efficiency lies in the fact that the search for the most probable point (MPP) of an inverse reliability problem is easier to realize than the search for the MPP corresponding to an actual reliability. Moreover, the RIA based RBDO fails to converge for distributions with bound and extreme type distribution. Hence, the PMA based RBDO is more frequently used than the RIA based RBDO.

However, when sensitivity information or closed form limit state function is not available, the PMA family may not be efficient enough. To attain this objective, a new RBDO methodology is developed to integrated the PMA method with a new RSM.

Robust design optimization

The aim of RDO is to improve the quality of a product through minimizing the effect of variation without eliminating the causes, less sensitive to system variation. RDO is to reduce the variability of the system performances.

Basically, robust design addresses both the design objective robustness and the design feasibility robustness. The former is realized by minimizing the variability of the objective function, whereas the latter is guaranteed by satisfying the uncertain constraints. To achieve these targets, unlike RBDO, there is not a unified mathematical formulation in the literatures.

Design objective robustness

Nominal -the-best type

Minimize

(5 -113)

Smaller-the better type Minimize ( , )
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Larger-the-better type

Minimize

(5 -115)

Considering the high computational burden, several alternatives with low computational expense have been developed: such as moment approach, worst case approach, corner space evaluation approach, moment approach, first and second moment method. The mean and standard deviation can be evaluated efficiently by approximate method, such as the perturbation method and the first order Taylor's series. The associated uncertain constraint is replaced by the probabilistic constraint

Reliability based optimization in surrogate model

MCS can keep a certain level of accuracy unless a very large number of iterations are performed. It is obvious that MCS methods is computational prohibitive when simulation model is complex. To be more efficient than the random sampling method, several improved MCS methods with different sampling techniques have been developed and proved. Importance sampling (weighted sampling), is expected to reduce error to zero if probability density function is correctly selected [START_REF] Melchers | Importance sampling in structural systems[END_REF]. The firstorder sensitivity method, as a variance reduction technique, is also utilized to accelerate MCS estimation convergence [START_REF] Miguel | An original sensitivity statistic within a new adaptive accelerated Monte-Carlo method[END_REF]. The variance reduction techniques are especially important when MCS is applied to estimate small failure probability [START_REF] Liu | Optimization of a Monte Carlo variance reduction method based on sensitivity derivatives[END_REF].

A compromise method of advanced MCS is Latin hypercube sampling (LHS) approach. This approach divides the range of each variable into disjoint intervals of equal probability, and one value is randomly selected from each interval [START_REF] Florian | An efficient sampling scheme: Updated Latin Hypercube Sampling[END_REF]. It improves MCS stability and also maintains the tractability of random sampling.

To propagate uncertainty in the parameters of the Finite Element Model (FEM), we first create a deterministic FEM in the professional mechanical software ANSYS by parameter design language. In this paper, our example is a typical structure as presented in Fig 5 -1, corresponding parameters were showed in Table 5.1. Among

0 2 2 1 2 0 ( , ) ( , ) sgn( ( , ))( ) ( ) ( , ) f f f d f d w d w d σ µ µ µ σ Θ Θ = Θ + Θ
them, there were certain parameters to describe deterministic FEM. There were also ranges of variables in Latin Hypercube sampling. In the program of mechanical analysis for FEM, we can capture plenty of information about the displacement and deformation of the structure as showed in difference is not evident. It is obvious that LHS method is very stable and has good convergence. In the further discussion, we find that the results of probability density of maximum stress in different numbers of LHS are also close to each other, except in the peak of the curve. In this structural, larger number of sampling will contribute to higher peak in probability density of maximum stress.

A surrogate model can be thought of as a regression to a set of data, where the data is a set of input-output pairing obtained by evaluating a black-box model of the complex system [START_REF] Gaspar | Assessment of the efficiency of Kriging surrogate models for structural reliability analysis[END_REF]. Here, the black-box model is the system of performing Latin Hypercube sampling repeatedly in Finite Element Model.

In the other hand, a global surrogate model is a function that approximates the system across the design space. Kriging interpolators fit a spatial correlation function to a data set consisting of input-output pairs obtained by evaluating the underlying function.

( ) ( : ) ( ) G x F x z x β = +
(5 -116)

Where ( : )

F x
β is a deterministic component defined by a regression model that gives an approximation to ( ) G x in mean value and ( ) z x is a stationary Gaussian process with zero mean and covariance .

In the other hand, we also considered non-linear fitting as a reference. It can be written as,

( ) 0 1 : i n i i F x x β β β = = ∏
(5 -117) 
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From Tabel 5.2 we can find, firstly, the results of surface response method are not satisfied when fitting a huge amount database of random sampling space like LHS in this paper. The correlation coefficient of prediction and original database is far from 1, and the differences are also very large. Secondly, the result of non-linear fitting is a little better than surface response method. We will choose it in the following analysis as a reference in comparison. Lastly, the results of Kriging model have absolutely advantage when compared with the others. The difference of the prediction of Kriging model with the original database is extremely small and almost close to zero. In addition, in the structural example of this paper, from the results of D, second order Kriging model has a higher accuracy than first order Kriging model and zero order Kriging model. Therefore, Kriging models are more competitive in fitting huge amount of database.

To be clearer, predictions of surrogate models in cumulative probability and probability density were presented in Fig5-5 and Fig5-6 respectively. Because the results of Kriging model (zero order, first order and second order) are approximated to each other, here we put first order Kriging model in the group to compare with other surrogated model. The prediction of Kriging model is loyal to the original database in the whole predictive field. While the results of response surface method in cumulative probability and probability density are far from the original database. Therefore, Kriging model will be used to construct the approximated functional relationship between design variables and corresponding response to replace mechanical analysis in FEM.

The surrogate models discussed can be presented in flowchart as in Fig5-7. In this section, reliability based optimization will be performed in surrogate model. In two-level methods, there are reliability analysis loop and optimization loop as two nested loops. Reliability index approach (RIA) and the performance measure approach (PMA) are widely used methods in reliability assessment analysis [START_REF] Kiureghian | Multiple design points in first and second-order reliability[END_REF].

However, when concave performance measure functions are involved, the difficulties in convergence will be suffered. Single loop approach transforms the nested optimization into single loop process by replacing the reliability constraints by Karush-Kuhn-Tucker optimality conditions [START_REF] Shan | Reliable design space and complete single-loop reliabilitybased design optimization[END_REF]. It requires the explicit implementation of the probabilistic transformation and the calculation of the second order derivatives.

The decoupling approach is to transform the reliability based optimization problem into a deterministic one by explicitly approximating the failure probability as a function of the design variables [START_REF] Schuëller | Computational methods in optimization considering uncertainties -An overview[END_REF]. One possible way of constructing the approximation is to adopt the predefined function and select some predefined interpolation points in the space of the design variables, in this paper, as mentioned in above, Kriging model as a surrogate model will play a very important role in this step.

According to the sampling points extracted from the Latin Hypercube sampling method in Finite Element Model, we can construct the Kriging model which approximately describes the relationship between input and output. The optimization formulation can be expressed as,

Minimum
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Where V is the volume of the structure, it is linearly correlated with the weight and cost of the structure, here we make it as one of the objectives and to find small value for it. P is equal to ( )

M s P F F >
, it is the probability of the situation when maximum stress in the whole structure is larger than yield strength of certain material chosen in the structure. 1 PP and 2 PP are mentioned in Table 5.1, in order to simulate uncertainties of the complicated operation environment of the structure, specific probability distribution function will be chosen and settled in certain value according to the real practical situation.

For the optimization algorithm, two heuristic algorithms were attempted in this paper.

GA is a class of adaptive stochastic optimization algorithms that inspired by the principles of natural evolution to perform search and optimization [START_REF] Tam | Genetic algorithms, function optimization, and facility layout design[END_REF]. The basic idea of SA is adopted from the "annealing" process used in the metallurgical industry, by which slow cooling is applied to metals to produce better aligned, low energy-state crystallization [START_REF] Laursen | Simulated annealing for the QAP -Optimal trade-off between simulation time and solution quality[END_REF]. It is not to restrict the search to those solutions that decrease the objective function value, but also allow moves that increase the objective function value. This mechanism may avoid the procedure being trapped prematurely in a local minimum [START_REF] Goffe | Global optimization of statistical functions with simulated annealing[END_REF].

In GA, the variables i V were given specific ranges according to practical situation, as

i i i V V V i ≤ ≤ = . ,min ,max ( 1, 2,3) 
GA starts from a random initial solution. Every individual or chromosome is encoded into a structure which represents its properties. The chromosomes evolve through successive iterations of generations. During each generation, the chromosomes are evaluated using some measures of fitness. In this paper, the objective of optimization as the fitness in the procedure of the GA is to find

minimum (R1, R 2, ) V T , ( ) 
M s P F F >
. In this way, we want to find a solution of the structure design, make it more economic in material cost that is minimum the volume of the structure

(R1, R, ) V V T =
, in the same time, the reliability and safety of the structure should also been taken into consideration that is minimum the probability of failure ( )

P M s P F F = > .
To deal with multiple objectives in the optimization,

V P F = + ,
to keep a specific level of reliability of the structure, if ( ) 0.1

M s P F F > >
, P equals to infinitely large value to exclude this sample in the search iterations. It is an effective way to transform the constraints into objective function.

In SA, we have the same problem formation of reliability based optimization. For the algorithm of SA, a new solution is taken from the predefined neighbor-hood of the current solution. The search process proceeds by comparing with the objective function value of the current best solution. If the objective function value of the new solution is better, it becomes the current solution, the search iteration will continue until stopping criteria is met. Then we can find that, firstly even though nonlinear fitting surrogate model is economic in computational expense, it is not precise in the process of prediction and is not suitable to apply in reliability optimization. In its prediction, ( ) 0

M s P F F > = ,
however, when structure model takes the reliability optimization results of GA and SA in nonlinear fitting model and performs Latin Hypercube sampling, the probability of failure is far more large than 0, therefore nonlinear fitting surrogate model has the problem of distortion in prediction. Secondly, by applying nonlinear fitting surrogate model, SA obtained better result than GA, its result is safer in structural reliability and more material saving in cost. The disadvantage of SA in this group is that it spent longer time in reliability optimization program. Thirdly, Kriging model is more suitable than nonlinear fitting model as surrogate model. The results of Kriging model in two heuristic algorithms are completely satisfied to the safety criteria ( ) 0.1

M s P F F > ≤ .
In this group, SA also has small superiority than GA, a little more saving in material cost and safer in structure reliability. In computational cost, it also keep advantage. To improve the property of these two algorithms, we still have a lot of work to do in the future. 

Conclusion

Traditional reliability-based design optimization requires a double loop iteration process. The inner optimization loop is to find the most MPP, and the outer is the regular optimization to optimize the RBDO problem with reliability objective or constraints. The computation can be prohibitive when the associated function evaluation is expensive. As a result, many approximate RBDO methods, which convert the double loop to a single loop, have been developed. In the example of this chapter, we propose an effective method to decouple the loops of reliability assessment analysis and optimization by creating surrogate models. Latin Hypercube sampling approach is performed in finite element model of structure to obtain a huge size of database for surrogate models. In surrogate models, Kriging model is more competitive than response surface model and nonlinear fitting method. Heuristic algorithms for optimization were chosen in order to prevent the premature convergence in the process optimization.

The results of genetic algorithm and simulated annealing algorithm in Kriging model for reliability based optimization were tested in finite element model of the structure again. They are completely satisfied the reliability criteria and also material saving. The method proposed is constructive in reliability based optimization in structure design and engineering research. 

Fatigue Analysis

The Palmgren-Miner rule is commonly used to predict the damage accumulation due to fatigue [98][7]. According to this rule, a linear damage accumulation law at a point in the structure subjected to variable amplitude stress time history is defined as in the formula

m i i i n D N = ∑ (6 -2)
Where i n is the number of cycles at a stress level i σ , i N is the number of cycles required for failure at a stress level i σ , and m is the number of stress levels identified in a stress time history at the corresponding structural point. Available S-N fatigue curves, obtained from laboratory experiments on simple specimens that are subjected to constant amplitude loads, are used to describe the number of cycles i N required for failure in terms of the stress level i σ . For linear systems excited by time- varying loads that can be modeled by stationary stochastic processes, these power spectral densities can be straightforwardly computed using available random vibration results.

If we know probability density function of stress range, as be calculated then equation can be expressed 
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Where m and C are material constants.

Sensitivity analysis plays an important role in identification of key model features, effects of uncertainty, unnecessary model detail and database collection [99] [5]. The application of sensitivity analyses is involved in prediction of outcomes for parameter sets and parameter modifications leads to optimal or desired simulated outcomes.

When the amount of parameters in a mathematical model is large, the importance of sensitivity analyses is essential as model complexity growing, problems about validity and interpretation increasing. in the regression process to find the coefficient in the polynomial, we divide them into 6 groups. Each group includes 500 iterations.Table 6.2 provides the results of coefficients in the polynomial equation by linear regression method. it is also very stable, does not change when m amplify. In the other hand, the situations of the existing probability density distribution are more complicated. The results of Gaussian and Weibull are similar to each other. When m is small, they can provide the precise result, while when m become larger, the results of them far smaller than that of Monte Carlo Simulation. Different with them, the result of Rayleigh distribution will smaller than that of Monte Carlo Simulation when m is smaller than a specific value. After that, the result of Rayleigh distribution will larger than that of Monte Carlo Simulation. In a sense, the result of Rayleigh distribution is better than that of Gaussian and Weibull distribution. proposed and used to express the probability distribution of maximum stress in the wing structure. Polynomial expression method as a different method is suggested and provides satisfied results in fatigue analysis. Therefore, when deal with the huge amount of database of stochastic simulation, the regression method applied to obtain the appropriate polynomial expression is advantageous, it is more stable and approached to the precise results. 

Airfoil shape optimization by heurist algorithms in surrogated model

.1 Airfoil CFD model

An airfoil is a streamlined shape that is capable of generating significantly more lift than drag. The shape of the airfoil can be chosen in the famous NACA 4 digits library.

A numbering system is used to define NACA 4 digits wing sections. The first digit indicates the maximum value of the mean-line ordinate in percent of the chord [START_REF] Ingram-Cotton | Reliability program requirements for space systems[END_REF].

The second integer indicated the distance from the leading edge to the location of the maximum camber in tens of the chord. The last two integers indicate the section thickness in percent of the chord. In addition, Four-digit series airfoils by default have maximum thickness at 30% of the chord (0.3 chords) from the leading edge. This information provides reasonable limits for variables in geometry in the process of optimization.

The formula for the shape of a NACA 00xx foil, with "xx" being replaced by the percentage of thickness to chord, is:

2 3 4 1 2 3 4 5 t x x x x x y t c a a a a a c c c c c           = + + + +                       (6 -8)
Where c is the chord length, x is the position along the chord from 0 to c, y is the half thickness at a given value of x (centerline to surface), and t is the maximum thickness as a fraction of the chord (so 100 t gives the last two digits in the NACA 4-digit denomination), i a (i 1, 2, , 5) =  are the constants,

The simplest asymmetric foils are the NACA 4 digit series foils, which use the same formula as that used to generate the 00xx symmetric foils, but with the line of mean camber bent. The formula used to calculate the mean camber line is: 
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Where m is the maximum camber (100 m is the first of the four digits), p is the location of maximum camber (10 p is the second digit). Firstly, a sampling based approach provides a full coverage of the range of each uncertain variable in a complicated system. Secondly, modification of the model is not required, and direct estimates of distribution functions are provided. In addition, in the process of sampling, a variety of sensitivity analysis procedures are available.

Last but not the least, analysis procedures can be developed and allow the propagation of results through systems of linked models [START_REF] Cherchi | A Monte Carlo experiment to analyze the curse of dimensionality in estimating random coefficients models with a full variance-covariance matrix Transportation Research Part B: Methodological[END_REF]. A surrogate model can be thought of as a regression to a set of data, where the data is a set of input-output pairing obtained by evaluating a black-box model of the complex system. Here, the black-box model is the system of performing MCS repeatedly in CFD. To conclude or capture the useful information from this black-box, surrogate model is considered.

A global surrogate model is a function that approximates the system across the design space. Kriging interpolators fit a spatial correlation function to a data set consisting of input-output pairs obtained by evaluating the underlying function [START_REF] Kleijnen | Kriging metamodeling in simulation: A review[END_REF]. Where F is the regression matrix and y is the vector of true limit state function values. A 0-order polynomial or first-and second -order polynomials are adopted as regression models ( : )

F x β .
The matrix R defines the correlation between each pair of support points according to the prescribed correlation function.

A vector with the correlations between the prediction point and the m realizations

( ) ( 1 , ... , ) k x k m =
of the vector of basic random variables used in the Kriging model fitting corresponds to the expected or mean value of the Kriging model prediction, an estimate for the variance or uncertainty associated with the model predictions can be given by:
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Kriging model is used to construct the approximations of the analysis code and describe the functional relationship between design variables and corresponding response. Reliable information form the sufficient number of MCS in CFD was captured and concluded in the above mentioned Kriging model, zero order, first order and second order respectively. Simulated annealing algorithm and genetic algorithm are typical examples of heuristic algorithm. The concept of SA is originated from the "annealing" process in the metallurgical industry [START_REF] Harland | Simulated annealing: A review of the thermodynamic approach[END_REF]. GA is inspired by the principles of natural evolution to perform search and optimization [START_REF] Georgieva | Global optimization based on novel heuristics, lowdiscrepancy sequences and genetic algorithms[END_REF]. The optimization procedures of SA and GA search for a near global minimum mimicking.

In GA, every individual or chromosome is encoded into a structure that represents its properties. The set of individuals form the population. During each generation, the chromosomes are evaluated using some measures of fitness. A new generation is formed according to the fitness values of chromosomes by genetic operators (crossover operator, mutation operator and reproduction operator) [START_REF] Wang | A hybrid genetic algorithm for constrained multi-objective optimization under uncertainty and target matching problems[END_REF]. Then the new generation is evaluated and this process is repeated until a stopping criterion is met.

GA is a class of adaptive stochastic optimization algorithms [START_REF] Whittaker | A hybrid genetic algorithm for multiobjective problems with activity analysis-based local search[END_REF]. The processes of evolution and natural selection are computed on the population of candidate solution.

Fitness basically represents the strength of the individual and it plays a vital role in the selection process. Evolution occurs with the formation of the new generation of the individuals with the mating process. Mutation as the small random change is also mimicked in the algorithm, it widens the search space [START_REF] Shahraki | Reliability-based robust design optimization: A general methodology using genetic algorithm[END_REF]. an improvement has been achieved. In SA, the basic idea is not to restrict the search to those solutions that decrease the objective function value, but also allow moves that increase the objective function value [START_REF] Eglese | Simulated annealing: A tool for operational research[END_REF]. This mechanism may avoid the procedure being trapped prematurely in a local minimum.

In SA, the basic idea is not to restrict the search to those solutions that decrease the objective function value, but also allow moves that increase the objective function value [116]. This mechanism may avoid the procedure being trapped prematurely in a local minimum. In our model, the velocity and attack angle were fixed as specific value (v=250 m/s, att=3), the searching methods of optimization were GA and SA, the variables in the process optimization are parameters corresponding with airfoil geometry property (p, m, t), the objective of the optimization is to find the maximum Lift/drag coefficient. The formation of airfoil shape optimization in a traditional way can be written as

Maximum (p, m, t, v, att) C C = (6 -17) Subject to ,min ,max 1 2 3 , 1, 2, 3; , , 
, Kriging models (zero order, first order, and second order) were applied in the airfoil shape optimization by heuristic algorithms (GA and SA). The results of optimization were listed in Table 6.4. Firstly, the results of GA and SA in Kriging models were extremely close. In the last range of the table, CFD were performed in ANSYS FLOTRAN by setting the parameters according to the result of optimization, it proves the sufficient accuracy of Kriging models. To offer more information for aerodynamic mechanism analysis, On the other hand, we can find from Table 6.4 that for the computational expense, GA is more competitive than SA, it spent less time than SA, approximately half time of the cost of SA. As optimization algorithm, GA is more economic than SA in this model. In addition, the results of GA were more convergent than SA in different Kriging models. It means that SA is more sensitive to the change of order of Kriging model. However, in the whole scope, the results of GA and SA were close as mentioned in the above.

i i i s s V V V i V p V m V t v v att att ≤ ≤ = = = = = = (6 -18)

Conclusion

A constructive method for airfoil shape optimization was proposed by creating surrogate model. Attempts of heuristic algorithms in optimization process were made in genetic algorithm and simulated annealing algorithm.

We As the different algorithm for airfoil shape optimization, genetic algorithm is more economic in computational expense than simulated annealing.

Chapter 7 Conclusion

Aircrafts have complicated operation environment and sophisticated mechanical structure itself. The traditional analysis of deterministic Finite Element Model ignores the fluctuation of parameters as uncertain variables in the real operation environment.

Uncertainty is an inevitable issue in the process of manufacture, infrastructure, and engineering design. Quantifying and propagating the uncertainty in the simulation or design process as a key component of risk analysis, robustness evaluation or reliability based optimization attracts attention of researchers and designer. In this dissertation, Monte Carlo methods are chosen as an effective method to propogate uncertaintis in the system of structure, as discussed in Chapter 3. It is a non-intrusive, sampling based numerical method, but often requires a large ensemble of sampling points to provide a reliable and stable estimate of uncertainty. This makes MCS computationally expensive.

However, Latin hypercube sampling is an appropriated sampling strategy can sharply reduce the number of sampling points while reach a certain level of accuracy.

Reliability based optimization struggles to seek for the best compromise between cost and safety while considering system uncertainties by incorporating reliability measures within the optimization. Despite the advantages of reliability based optimization, its application to practical engineering problem is still quite challenging. We propose an effective method to decouple the loops of reliability assessment analysis and optimization by creating surrogate models. Latin Hypercube sampling approach is performed in finite element model to obtain a reliable and believable database for surrogate models. In order to prevent the premature convergence in the process optimization, attempts in heuristic algorithms for optimization were made. Surrogate models are helpful in the reliability analysis of complex and realistic structural systems.

The first proposals apply first-and second-order polynomial regression models as surrogates for the true limit state function, as applied in the example of cumulative 
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j i j f b = ∑ , 0 k E k odd ξ   = ∀   0 z m b = 2 2 2 2 2 0 1 2 3 (z b ) 2 6 z m E b b b   = - = + +   3 3 2 3 2 0 1 2 2 1 2 3 2 3 (z b ) 6 8 36 108 z m E b b b b b b b b   = - = + + +   4 4 4 4 4 3 2 2 2 2 2 3 2 2 0 1 2 3 1 3 1 2 1 3 1 2 3 1 3 2 
( ) , b f x dx +∞ -∞ = ∫ (8-12) 1 ( ) , b f x xdx +∞ -∞ = -∫ (8-13) 2 2 1 ( )( 1) , 2 b f x x dx +∞ -∞ = - ∫ (8-14) 3 3 1 ( )( 3 ) , 6 b f x x x dx +∞ -∞ = - - ∫ (8-15) 4 2 4 1 ( )( 6 3) , 24 b f x x x dx +∞ -∞ = - + ∫ (8-16) 5 3 5 1 ( )( 10 15 ) 
n n n x x x X m E X f x dx µ µ +∞ -∞   = - = -   ∫ (8-19) 1 0 x m µ = = 2 3 1 0 1 2 3 1 1 1 , 0 , ( 1) , b 
( 3 ) 2 6 b b b m m m = == - = - - 4 2 5 3 1 6 4 2 4 5 6 1 1 1 b ( 6 3) , ( 10 15 ) 
P -   -   =   - - -   -   0.0653 0 0 0 0 0.1733 0 0 0 0 0.4807 0 0 0 0 3.4114 -     Λ =       [ ] [ ][ ]
i i i V V V i V R V R V T ≤ ≤ = = = = (8-23)
V est le volume de la structure, il est corrélé linéairement avec le poids et le coût de la structure, nous faisons comme l'un des objectifs et à trouver de petits valeur pour elle.

P est égal à ( ) C est la longueur de la corde, x est la position le long de la corde de 0 à c, y est égal à la moitié de l'épaisseur à une valeur donnée de x (axe à la surface), et t est l'épaisseur maximale en une fraction de la corde (si 100 t donne les deux derniers chiffres de la NACA 4 chiffres dénomination), sont les constantes,

M
Les plus simples feuilles assymétriques sont les feuilles de la série NACA 4 chiffres, la formule utilisée pour calculer la ligne moyenne de carrossage est: 
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 21 Fig 2 -1 Comparison between aleatory uncertainty and epistemic uncertainty Besides aleatory and epistemic uncertainty, errors exist as a recognizable deficiency in phases of modeling and simulation. An error can be either acknowledged or unacknowledged.
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 22 Fig 2 -2 Uncertainty sources in the simulation-based design

∑

  . The lowest correlation is achieved for the reverse ordering of rank numbers and corresponds to the case when the sum D equal . Conversely, the maximum correlation is achieved for identical ranks and the sum equals zero.



  be independent realization of the random point ξ  .

Ω

  be the set of points x for which ( ) 0f x = and 0 + Ω = Ω -ΩDefine the probability density function ( ) p x to be tolerant to ( )

  , where c is a constant, ( ) 0 d ψ > and d is the dimension of the space.

  ..., ) ( , ,..., )

  to the function ( ( )) L u x , and is called an iteration of ( ) u x by the integral transformation kernel ( , ) l x x′ . The second integral iteration of ( ) u x is denoted by 2
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 313233 Fig 3 -1 Convergence history of different PDF in function f1

  . Other useful concepts in quantifying an importance sampling estimator are the variance bounds and the notion of asymptotic efficiency.
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 34 Fig 3 -4 Finite element model of wing structure
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 35 Fig 3 -5 Contour picture of Von-Mises stress in five natural frequencies
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 33637 Fig.3-6 provides the records of natural frequencies in the process of stochastic simulation. To be more obvious, the accumulative probabilities of five natural frequencies of wing structure are presented in Fig.3-7as numerical statistics.

  i b and ( ( )) i ξ θ Ψ  are one to one correspondences between the coefficients

  It is obvious that the use of orthogonal polynomial can eliminate collinearity and illconditioned problems. The basic idea of the stochastic approximation utilizing stochastic expansion is to select an appropriate basis function to represent the response of uncertain systems. The PCE, which employs orthogonal basis functions and is mean-square convergent, is a good choice for estimating the response variability of uncertain systems.

  The fitted model Ŷ and the residuals e are Once the analyst determines, various statistics can be obtained including the mean, variance, and confidence interval of the stochastic responses. A confidence interval indicates a range of values that likely contains the analysis results. Generally, the confidence interval of any parameter includes two parts: the confidence level and margin of error.

  polynomials are called the Hermite polynomials. Although these two equations are not equivalent, the first is a linear rescaling of the domain of the second. Since the th n derivative of the normal density function, this equation, the definition of Equation is often used in probabilistic analysis. The orthogonal properties of the Hermite polynomials are given in the interval [ ] , -∞ + ∞ with respect to the weight function of

∫

  It implies that the Hermite polynomials are orthogonal with respect to the Gaussian distribution. Also, notice that the weight functions, help keep the integral from reaching infinity over the interval from -∞ to ∞ , since the exponential functions converge to zero much faster than the polynomials blow up when x is large.

Fig 4 - 1

 41 Fig 4 -1 Hermite polynomials When this orthogonal property of the Hermite polynomials is used to estimate the probability density function, the procedure is known as the Gram-Charlier method.

  case [ ][ ] [ ][ ] P K P Λ = (4 -28) Where the covariance matrix [ ] K is a symmetric and nonnegative definite matrix, and [ ] P and [ ] Λ are the orthogonal eigenvector matrix and the eigenvalue matrix, respectively.

  Estimate the coefficients i b of z by using the least-

3 (Fig 4 - 2 5000

 342 Fig 4 -2 5000 Gaussian sampling points are generated in the Monte Carlo simulation

  The coefficients of Gram-Charlier series can be expressed by Hermite polynomials in terms of central moments.Suppose a target covariance matrix is given by

  using a truncated Taylor series expansion[START_REF] Howell | Truncated Taylor series solutions to a generalized Burgers' equation[END_REF] [START_REF] Ingram-Cotton | Reliability program requirements for space systems[END_REF]. The resulting matrix equation is of the form of { } P ∆ are the unknown adjustments to design variables that are required to produce the changes { } R ∆ between the reference response vector and the actual system responses. The sensitivity matrix [ ] S contains the gradients of responses with respect to design variables: be computed for all physical element properties (material properties; geometrical properties, boundary conditions, mass and spring stiffness) by using direct derivation or perturbation techniques depending on whether mass and stiffness show a proportional or non-proportional behavior with respect to the property.The most general estimation procedure is the Bayesian parameter estimation algorithm in which relative confidences in initial estimates of the parameters are taken into account together with confidences in the test data[START_REF] Wallach | Parameter Estimation with Bayesian Methods, Working with Dynamic Crop Models[END_REF] [START_REF] Helton | Treatment of aleatory and epistemic uncertainty in performance assessments for complex systems[END_REF]. The Bayesian view originates from statistical parameter estimation methods: the responses, as well as the model parameters, are not considered as deterministic values, but as stochastic variables with a certain probability to have the correct value. The confidences in the different measured test values and the confidences in initial parameter estimation can be expressed with weighting matrices for both the response and parameter vectors[START_REF] Berger | Statistical Decision Theory and Bayesian Analysis[END_REF] [START_REF] Oberkampf | Estimation for total uncertainty in modeling and simulation[END_REF].

RP

  are the analytical response and test data vectors respectively; are the parameter vector of the final and original model; [ ] R C ,[ ] P C are the weighting matrices expressing confidences in test data and model parameters.

x β is a deterministic 2 [ 2 σ 1 (- 1 [

 2211 component defined by a regression model that gives an approximation to ( ) G x in mean value and ( ) z x is a stationary Gaussian process with zero mean and covariance , errors between the regression model predictions ( : ) F x β and the true limit state function values ( ) G x at the m realizations of the vector of basic random variables x , with the constant process variance and R is a prescribed correlation function. Several correlation functions are available, such as the exponential, linear and Gaussian correlation functions, the most widely used correlation function for structural reliability problems is the anisotropic Gaussian correlation function 2 the distance between the evaluation point x and the reference point x′ in the ith direction of the basic random variables space and that define the inverse of the correlation length in each direction.
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 43 and Fig 4-4 are the results of different regression in Kriging model by fitting 1000 and 2000 groups of results of Latin Hypercube sampling method. In Fig 4-3, we can find the results of 0 order regression and first order regression are not satisfied, far from the exact probability density of 10000 groups of sampling in Latin Hypercube sampling, especially, the result of 0 order regression in Kriging model is even worse. Fig 4-4 proves the same situation. In the other hand, the results of second order regression in Kriging model are closer to the exact advanced MCS. However, the peak of probability density curve of Kriging model in our model is lower than that of Latin Hypercube sampling method. A certain point can be found, in the range of smaller than this certain point the probability and probability density of Kriging model is lower than that of Latin Hypercube sampling method. Fig 4-3 , Fig 4-4 also present the advantage of Latin Hypercube sampling method as mentioned in the stochastic simulation, the result of probability distribution of 1000, 2000, and 10000 groups of sampling is convergent and close. Therefore, the second order regression in Kriging model will be applied in the next section while the results of 1000 groups of sampling by Latin Hypercube method are settled as reference. The discussion of convergence for Kriging model (second order regression) by fitting different amount of sampling groups is concluded in Fig 4-5. It is obvious that the fitting results of 1000, 2000, 5000 groups of sampling are convergent. To make sure the integrity of the sample space, the results of 1000, 2000, 5000 Latin Hypercube sampling are independently performed in stochastic simulation. The results of natural frequencies are calculated in finite element model for each certain sampling iteration. Kriging model as a surrogate model, in it, the second order regression provides convergent and accurate results. In addition, the advantages of Kriging model are not only at their convergence and accuracy, but also reflect at time-saving process. The 5000 Latin Hypercube sampling and performing calculation of natural frequencies of wing structure in the finite element model costs 1955.491 s, and if 1000 sampling, it also cost 371.237 s; while in the surrogate model, fitting 1000 groups of sampling in second order regression only 9.632 s, and predict the corresponding result of 1000 random sampling groups, it costs 10.713 s. The advantage of time-saving is very competitive as a surrogate model. To test the stability of Kriging model, we applied the Kriging model by second order regression of fitting 1000 groups of Latin Hypercube sampling. In this model, the random sampling spaces are same with the original model and the samples are taken by same probability distribution as in Latin Hypercube method. Fig 4-6 shows the results, the result of 500 groups sampling is not sufficiently satisfied the accuracy, while the results of 1000 groups sampling and 2000 groups are close and convergent.
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 4345 Fig 4 -3 Kriging model 1000 points fitting result
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 4748 Fig 4 -7 Results of median value of natural frequency

Fig 4 - 9

 49 Fig 4 -9 Difference of median value between two neighbour natural frequencies

Definition 3 .Definition 4 .

 34 Pareto set: A set of non-dominated solutions { } Pareto front: the set of vectors in the objective space that ate image of a Pareto set,

  changing the expansion point from the mean value point to the MPP. Hasofer and Lind proposed a linear mapping of the basic variables into a set of normalized and independent variables i u .Any orthogonal distribution of standard normally distributed variables new set of normalized and uncorrelated variables.

  use several starting points to find all the stationary values 1 2 , ,...., m

  the equivalent means and standard deviation of the approximate normal distributions, and which are given as

G

  are the objective and constraint functions, respectively, X is the random design vector, d is the mean of X, N is the number of probabilistic constraints, ND is the number of design parameters, NR is the number of random parameters, j R is the desired reliability, and the probabilistic constraints are described by the performance function ( ) j G X , where ( ) 0 j G X ≥ indicates failure. This expression can be rewritten as: Minimize f(
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 5151 Fig 5 -1 Finite element model and results of mechanical analysis
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 525354 Fig 5 -2 Scatter results of Latin Hypercube sampling method

Fig 5 - 5 Fig 5 - 6

 5556 Fig 5 -5 Prediction of surrogate models in cumulative probability
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 57 Fig 5 -7 Flowchart of surrogate model The reliability based optimization has been proposed for optimization which concerns with the inherent randomness in physical quantities, such as element dimensions, material properties and external loads. It can be divided into three categories: twolevel methods, single loop methods and decoupled methods[91].
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 5859 Fig 5 -8 Probability density of Latin Hypercube sampling

Fig 6 - 1

 61 Fig 6 -1 Flowchart of Stochastic simulation in Finite Element Model The deterministic Finite Element Model of wing structure was created by ANSYS parameter design language as in Fig 6-1. The corresponding parameters are presented in Table 6.1. Among them, ( 1, 2, ... ,8) k I k = are the input random variables representing geometry uncertainties of airfoil, in the same time, ( 1, 2, ... , 24) j P j =
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 62136364 Fig 6 -2 Finite Element Model of wing structure in ANSYS

Fig 6 - 4

 64 presents results of sensitivity analysis for the random input variables in ANSYS Probabilistic Design System. It is reasonable to pick out the most important input random variables and find the relationship between the input random variables and the output variable (maximum stress in the wing structure).

Fig 6 - 5

 65 Fig 6 -5 Result of sensitivity analysis of random input variables In the work, we only pick out four most important input variables and expressed in the equation. Logically, the larger the amount of input random variables are picked out, more precise the polynomial to express the output variables. However, it is a trade-off between accuracy and computation burden. Our results are satisfactory in the following discussion. Since 3000 iterations of the repeating sampling are numerous,
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 26136768 Fig 6 -7 Probability density of different method Fig 6-6 compares the results of classical probability density function (Gaussian, Weibull, and Rayleigh distribution), polynomial equation (by the method of Dirac's delta) and Monte Carlo Simulation. For probability density, the result of polynomial equation is close to the result of Monte Carlo Simulation. The results of Gaussian and Weibull distribution are approached and both are better than that of Rayleigh distribution. It seems the Rayleigh distribution is far than the result of Monte CarloSimulation. Since in this kind of distribution, there is only one parameter to be identified in order to approach the result of Monte Carlo Simulation. It is evident that Rayleigh distribution does not have absolute advantages when to simulate complicated situation.

Fig 6 - 9

 69 Fig 6 -9 Comparison of D/Dmcs in each method

Fig 6 -Fig 6 - 11 ,

 6611 Fig 6 -10 Examples of airfoil geometry model The strength of CFD is its ability to inexpensively produce numerical simulations leading to understanding necessary of design. In the fluid element library of ANSYS FLOTRAN, Fluid 141 was chosen as the type of fluid finite element. Table 6.3 demonstrates the details of fluid property and flow environment. The results of certain nodes around airfoil in CFD calculation are captured and summarized as in Fig 6-10, Fig 6-11, Fig 6-12, namely the contour plot of nodal pressure result, total stagnation pressure and fluid velocity of nodal solution, respectively.

Fig 6 - 13 Fluid velocity of nodal solution 6 . 2 . 2

 613622 Fig 6 -11 Nodal pressure result

Fig 6 - 14

 614 Fig 6 -14 Samples of input variables

2 [ 2 σ- 1 [

 221 component defined by a regression model that gives an approximation to ( ) G x in mean value and ( ) z x is a stationary Gaussian process with zero mean and covariance , state function values ( ) G x at the m realizations of the vector of basic random variables x , with the constant process variance and R is a prescribed correlation function.Several correlation functions are available, such as the exponential, linear and Gaussian correlation functions, the most widely used correlation function for structural reliability problems is the anisotropic Gaussian correlation function[START_REF] Mira | Prediction of deterministic functions: an application of a Gaussian kriging model to a time series outlier problem[END_REF] the distance between the evaluation point x and the reference point x′ in the ith direction of the basic random variables space and that define the inverse of the correlation length in each direction.A kriging interpolation model is completely defined by a vector of regression coefficients β , a vector of correlation parameter θ and the variance 2 σ of the stationary Gaussian process[. These parameters are estimated by fitting the Kriging model to a sample of support points.

Fig 6 -

 6 Fig 6-16 compared the results of predictors of Kriging models (zero order, first order and second order) with the result of MCS, it proves that Kriging models have good property as fitting the result of MCS. The difference between the results and that of MCS is not evident and negligible. The accuracy of Kriging model is satisfied as a surrogate model. In the same time, Kriging model itself has stability of accuracy, the results of zero order, first order and second order are all closed to each other and approximated to the result of MCS. It also proves that the representation of stationary Gaussian process in Kriging model plays a very important role.
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 617 Fig 6 -17 Results of Kriging models Kriging model approximately describes the relationship between input variables and output parameters (Lift/drag coefficient). To compare the property of Kriging models which have different orders, the probability distributions of input variables (attack

Fig 6 -

 6 Fig 6 -20 Flowchart of Genetic algorithm programming SA starts from a random initial solution. A new solution is taken from the predefined neighbor-hood of the current solution[114]. The objective function value of this new solution is then compared with that of the current best solution in order to determine if
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 621 Fig 6 -21 Flowchart of Annealing simulated algorithm programming Based on the advantages of Kriging model, in the process of optimization, it is not necessary to perform CFD, while Kriging model can provide reliable results of Lift/drag coefficient of other parameters were settled down. Here we have attempt of airfoil shape optimization by GA and SA.

Fig 6 - 21 ,Fig 6 - 22

 621622 Fig 6 -22 Nodal pressure result of optimized airfoil

  find Kriging interpolation model has the interpolation capability for the huge amount database like the sample space of Monte Carlo. At the same time, it also has a high level of accuracy. Application of Kriging model can provide local uncertainty measures for the model predictions. Kriging model with different orders will cause difference of variance in prediction as discussed. Heuristic algorithms were chosen for airfoil shape optimization to avoid the premature convergence in the process optimization. Simulated annealing and genetic algorithm work very well in Kriging model because of the advantages of random process in the program.
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 8384858688 'historique de la convergence de différentes PDF en fonction f3 'Echantillonnage latin d'hypercube' dans le modèle éléments finis de la structure Modèle d'éléments finis de la structure de l'aile est construite par ANSYS 'Paramètre Design Language'. Les paramètres du modèle déterministe d'origine correspondent aux propriétés géométriques et les propriétés des matériaux. Modèle éléments finis de la structure de l'aile Chaque fréquence propres, la structure d'aile a une déformation et le contour de la contrainte de Von-Mises. Photos du Contour des contraintes de Von-Mises en cinq fréquences propres F 8 -6 fournit les registres de fréquences propres dans le processus de simulation stochastique. Les probabilités cumulées de cinq fréquences propres de la structure de l'aile sont présentés dans F 8 -7. Fréquences propres dans le processus de l'échantillonnage Hypercube LatinF 8 -7 La probabilité cumulative de cinq fréquences propres dans MCS Statistique de la simulation stochastique L'évaluation de la simulation stochastique dans la méthode d'échantillonnage latin d'hypercube est présentée dans le tableau. La valeur moyenne, écart-type, assymétrie, et aussi le minimum et le maximum sont donnés ainsi que la statistique dans la méthode d'échantillonnage.

  premiers moments d'une variable aléatoire x , sont donnés par,

  pouvons effectuer l'optimisation afin d'avoir une solution de coefficients et en s'assurant de minimiser

3 (

 3 Spécifiez les sept premiers coefficients de la série de Gram-Charlier 0

  Les coefficients de la série de Gram-Charlier peuvent être exprimées par des polynômes de Hermite en termes de moments centraux.Supposons une matrice de covariance cible est donnée par
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 88891288 9 et la F 8 -10 sont les résultats de la régression différente dans le modèle Kriging en ajustant 1000 et 2000 des groupes de résultats de la méthode d'échantillonnage Hypercube Latin. La discussion de la convergence pour le modèle de Kriging (régression de deuxième ordre) en ajustant montant différent de groupes d'échantillonnage est conclu dans la F Résultat raccord pour modèle de Kriging 1000 points F 8 -10 Résultat raccord pour modèle de Kriging 2000 points F 8 -11 Résultats de Deuxième order de modèle Kriging F 8 -12 Stabilité des résultats dans le modèle Kriging F 8 -13 Résultats de valeur médiane de la fréquence propre F 8 -14 Résultats de la variance de la fréquence propre F 8 -13 et F 8 -14 sont les résultats de valeur médiane et la variance de la fréquence propre de la structure de l'aile, respectivement. F 8 -15 fournit des informations importantes que la différence de valeur médiane entre deux voisins première fréquence propre. F 8 -15 présente les résultats de Belta de la fréquence propre de la structure de l'aile. F 8 -16 Différence de valeur médiane entre deux voisins fréquences propres F 8 -17 Résultats de belta de la fréquence propre de la structure de l'aile 8.2.4 Chapitre 5: Fiabilité et optimisation Les procédures qui traitent de l'optimisation des incertitudes comprennent les points suivants: Application des techniques d'optimisation efficaces qui nécessitent moins d'appels de fonction. Ces techniques peuvent profiter des caractéristiques spéciales du problème en introduisant des approximations successives pour les représentations de la fonction objectif et les contraintes par variable réciproque et / ou hybride. Introduction des concepts de rapprochement à différents niveaux du processus d'optimisation. 3. Effectuer une simulation permettant de simuler des modèles d'incertitudes réalistes, impliquant paramètres incertains d'une manière efficace. 4. Une mise en oeuvre appropriée de calcul, les aspects informatiques jouent un rôle clé, d'autant plus que les systèmes et les structures sont grands et nécessitent une modélisation détaillée. À cet égard, le calcul parallèle est devenu un outil qui prend de plus en plus l'intérêt des chercheurs et des ingénieurs. Optimisation basée sur la fiabilité de modèle de substitution Pour propager l'incertitude dans les paramètres du modèle élément fini (FEM), nous créons d'abord un FEM déterministe dans le logiciel ANSYS mécanique professionnelle via le langage de conception de paramètre. Paramètres correspondants ont été présentées dans le Tableau. 18 Résultats de l'analyse mécanique par éléments finis F 8 -19 Résultats de la dispersion de la méthode d'échantillonnage Hypercube LatinF 8 -20 Probabilité cumulative de contrainte maximale F 8 -21 Densité de probabilité de contrainte maximale T 8 -6 Comparaison des résultats du modèle de substitution clair, les prédictions des modèles de substitution de la densité de probabilité et la probabilité cumulée ont été présentés dans la F 8 -21 et la F 8 -22, respectivement. 22 Prévision de la probabilité cumulative pour modèles de substitution F 8 -23 Prévision de densité de probabilité pour modèles de substitution Les modèles de substitution décrits est représentés dans la F 8 -23. F 8 -24 Organigramme du modèle de substitution La formulation d'optimisation est exprimé sous la forme Le minimum
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 88 25 Probabilité densité d'échantillonnage Hypercube Latin 26 probabilité cumulative d'échantillonnage Hypercube Latin F 8 -24 et la F 8 -25 sont les résultats de l'échantillonnage Hypercube Latin de la probabilité densité et de la probabilité cumulative respectivement.
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 25 Chapitre 6: Exemples Analyse de dommages cumulatifs de la structure par simulation stochastique Comme présente dans l'organigramme, les paramètres correspondant à la description du modèle de la géométrie et le chargement aléatoire sont définies comme des variables aléatoires d'entrée.

.

  

F 8 - 1 = 3 33 F 8 - 24 )mF 8 -

 813338248 27 Organigramme de la simulation stochastique en Modèle éléments finis Le déterministe FEM de la structure de l'aile a été créé par ANSYS paramétrique langage comme dans la F 8 -27. F 8 -28 FEM de la structure de l'aile dans ANSYS T 8 -8 Les paramètres du FEM Length ℎ 29 Contrainte maximale dans la structure de l'aile par LHS F 8 -30 Histogramme de contrainte maximale par LHS Analyse de la fatigue Une loi linéaire d'accumulation des dommages à un point de la structure soumise à amplitude variable fonction du temps de stress est défini comme dans la formule Si nous connaissons la fonction de densité de probabilité de la gamme de stress, nombre total de la gamme de stress σ ∆ , ( ) f σ ∆ est le stress sonné PDF. La valeur de T n peut être calculée à partir de la vie de la conception multiplié par [ ] E σ ∆ , taux attendu de la gamme de stress occurrence, et ( ) N σ ∆ est le nombre de cycles à σ ∆ donnée dans courbe SN: et C sont des constantes des matériaux. 30 présente les résultats d'une analyse de sensibilité pour les variables d'entrée aléatoires dans ANSYS Design System probabiliste. Il est raisonnable de choisir les variables aléatoires d'entrée les plus importantes et de trouver la relation entre l'entrée des variables aléatoires et la variable de sortie (contrainte maximale dans la structure de l'aile).
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 8888 31 Résultat de l'analyse de sensibilité des variables d'entrée aléatoires T 8-9 présente les résultats de coefficients dans l'équation polynomiale par la méthode de régression. T 8 -9 Résultats de coefficient dans l'expression polynomiale 33 Probabilité densité par méthodes différentes F 8 -32 compare les résultats de la fonction classique de probabilité densité (gaussienne, Weibull et la distribution de Rayleigh), équation polynomiale (par la méthode de la delta de Dirac) et simulation de Monte Carlo. Les résultats sont obtenus statistiques de dommages cumulatifs, comme démontré dans F 8 -33 et F 8 -34. F 8 -34 Résultats de dommages cumulatifs par méthodes différentes 35 Comparaison des D/Dmcs par chaque méthode L'optimisation de la forme aérodynamique par des algorithmes heuristiques en modèle de substitution La formule pour la forme d'une feuille de 00xx NACA, «xx» étant remplacé par le pourcentage d'épaisseur accords, est:

  la cambrure maximale (100 m est le premier des quatre chiffres), p est la position de la cambrure maximale (10p est le deuxième digit).

F 8 -

 8 36 Exemples de modèle de la géométrie forme Dans l'élément de fluide FLOTRAN ANSYS, Fluid 141 a été choisi comme type d'élément fini de fluide. Le tableau T 8 -10 montre les détails de la propriété et de l'environnement fluide d'écoulement. Les résultats de certains noeuds autour de voilure dans le calcul CFD sont données et résumées comme dans F 8 -36, F 8 -37 et F 8 -38, à savoir le tracé de contour du résultat de la pression nodale, pression de stagnation totale et la vitesse du fluide de la solution nodale, respectivement. T 8 -10 Propriété du fluide et de l'environnement de flux F 8 -37 Résultat de la pression Nodal 38 Pression totale de stagnation F 8 -39 Vitesse du fluide de la solution nodale F 8 -40 Echantillons de variables d'entrée F 8 -41 Résultats de la probabilité densité de Lift/drag coefficient F 8 -42 La probabilité cumulative de Lift/drag coefficient F 8 -42 a comparé les résultats des prédicteurs de modèles Kriging (d'ordre zéro, de premier ordre et de second ordre) avec le résultat de MCS, cela prouve que les modèles de Kriging ont une bonne propriété comme le montage du résultat de MCS.

F 8 -

 8 43 Résultats prédits par les modèles Kriging Les résultats prédits par les modèles Kriging avec différents ordres ont été présentés dans la F 8 -43 et la F 8 -44.
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 8 44 Résultats prédits par les modèles Kriging F 8 -45 Résultats de probabilité cumulative dans les modèles Kiging F 8 -46 Organigramme de la programmation de l'algorithme génétique F 8 -47 Organigramme du la programmation de l'algorithme recuit simulé La formation de l'optimisation de forme aérodynamique de façon traditionnelle peut être
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 8 48 Résultat de la pression nodale du profil aérodynamique optimisée F 8 -49 Pression de stagnation totale du profil aérodynamique optimisée F 8 -50 Vitesse de fluide de solution nodal de profil aérodynamique optimisée 8.3 Conclusion Aéronefs est un problème compliqué car l'environnement de fonctionnement et la structure mécanique sont sophistiqués. L'analyse traditionnelle des modèles éléments finis déterministe ignore la fluctuation des paramètres comme variables incertaines dans l'environnement de fonctionnement réel. L'incertitude est un problème inévitable dans le processus de fabrication, les infrastructures et l'ingénierie de conception. La quantification et la propagation de l'incertitude dans le processus de simulation ou comme un élément clé de l'analyse des risques, l'optimisation de l'évaluation robustesse ou la fiabilité basée attire l'attention des chercheurs et des ingénieurs. Dans cette thèse, les méthodes de Monte Carlo sont choisies comme une méthode efficace pour propager des incertitudes dans le système de la structure, comme nous l'avons vu dans le chapitre 3. Il d'agit d'une méthode non-intrusive, l'échantillonnage basé méthode, mais nécessite souvent un grand ensemble de points d'échantillonnage pour fournir une estimation fiable et stable de l'incertitude. Cela rend l'approche MCS coûteuse en calcul. Cependant, l'échantillonnage latin hypercube est une stratégie d'échantillonnage appropriée pouvant réduire le nombre de points d'échantillonnage tout en atteingnant un certain niveau de précision. L'optimisation basée sur la fiabilité à trouver le meilleur compromis entre le coût et la sécurité tout en tenant compte des incertitudes du système en intégrant des mesures de fiabilité au sein de l'optimisation. Malgré les avantages de l'optimisation de la fiabilité, son application à problème d'ingénierie pratique est encore assez difficile. Nous proposons une méthode efficace pour découpler les boucles de l'analyse de l'évaluation

Fig 2 - 1 7 Fig 2 - 2 9 Fig 2 - 3 10 Fig 3 - 1 48 Fig 3 - 2 48 Fig 3 - 3 49 Fig 3 - 4 51 Fig 3 - 5 52 Fig 3 - 6 54 Fig 3 - 7 54 Fig 3 - 8 55 Fig 4 - 1 62 Fig 4 - 2 5000 73 Fig 4 - 3 82 Fig 4 - 4 82 Fig 4 - 5 83 Fig 4 - 6 83 Fig 4 - 7 84 Fig 4 - 8 85 Fig 4 - 9 86 Fig 4 - 10 87 Fig 5 - 1 Fig 5 - 2 Fig 5 - 3 Fig 5 - 4 Fig 5 - 5 Fig 5 - 6 Fig 5 - 7 Fig 5 - 8 Fig 5 - 9 Fig - 1 Fig - 2 FiniteFig - 3 Fig - 4 Fig - 5 Fig - 6 Fig - 7 Fig - 8 Fig - 9 Fig - 10 Fig - 11 Fig - 15 Fig - 16 Fig - 17 Fig - 18 Fig - 19 Fig - 20 FlowchartFig - 21 Flowchart

 21722923103148324833493451355236543754385541624273438244824583468347844885498641087515253545556575859123456789101115161718192021 Fig 2 -1 Comparaison between aleatory uncertainty and epistemic uncertainty......................... 7 Fig 2 -2 Uncertainty sources in the simulation-based design ..................................................... 9 Fig 2 -3 Examples of probability density function ......................................................................10 Fig 3 -1 Convergence history of different PDF in function f1.....................................................48 Fig 3 -2 Convergence history of different PDF in function f2.....................................................48 Fig 3 -3 Convergence history of different PDF in function f3.....................................................49 Fig 3 -4 Finite element model of wing structure ........................................................................51 Fig 3 -5 Contour picture of Von-Mises stress in five natural frequencies ..................................52 Fig 3 -6 Records of natural frequencies in the process of Latin Hypercube sampling ..............54 Fig 3 -7 Cumulative probability of five natural frequencies in MCS ...........................................54 Fig 3 -8 Numerical statistic in the stochastic simulation ............................................................55 Fig 4 -1 Hermite polynomials ...................................................................................................62 Fig 4 -2 5000 Gaussian sampling points are generated in the Monte Carlo simulation ............73 Fig 4 -3 Kriging model 1000 points fitting result .......................................................................82 Fig 4 -4 Kriging model 2000 points fitting results .....................................................................82 Fig 4 -5 Second order Kriging model fitting results ...................................................................83 Fig 4 -6 Stability of results in Kriging model ..............................................................................83 Fig 4 -7 Results of median value of natural frequency ..............................................................84 Fig 4 -8 Results of variance of natural frequency .....................................................................85 Fig 4 -9 Difference of median value between two neighbour natural frequencies .....................86 Fig 4 -10 Results of belta of natural frequency in wing structure ..............................................87 Fig 5 -1 Finite element model and results of mechanical analysis .......................................... 118 Fig 5 -2 Scatter results of Latin Hypercube sampling method ................................................. 119 Fig 5 -3 Cumulative probability of maximum stress ................................................................ 119 Fig 5 -4 Probability density of maximum stress ...................................................................... 120 Fig 5 -5 Prediction of surrogate models in cumulative probability ........................................... 123 Fig 5 -6 Prediction of surrogate models in probability density ................................................. 123 Fig 5 -7 Flowchart of surrogate model .................................................................................... 124 Fig 5 -8 Probability density of Latin Hypercube sampling ....................................................... 127 Fig 5 -9 Cumulative probability of Latin Hypercube sampling ................................................. 128

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  estimation is identical to the one for Pearson linear correlation with the exception that the values of random variables

	permutation of numbers. It is convenient to transform the ranks into , i s r π π s,i = -and i
	j, r π π s, j s	j
		i s π and j,s π , 1, 2, , sim s N = 	. The ranks are

i X and j X are replaced with the ranks ,

Chapter 3 Monte Carlo Simulation

  

	are the key problems in uncertainty analysis, we discussed it in the last section of this
	thiese.
	Monte Carlo sampling got its name as the code word for work that von Neumann and
	Ulam were doing during World War II on the Manhatten Project at Los Alamos for the
	atom bomb where it was used to integrate otherwise intractable mathematical
	functions[69] (Rubinstein, 1981). However, one of the earliest examples of the use of
	the Monte Carlo method was in the famous Buffon's needle problem where needles
	were physically thrown randomly onto a gridded field to estimate the value of p. In the
	beginning of the 20th century the Monte Carlo method was also used to examine the
	Boltzmann Equation and in 1908 the famous statistician Student (W.S. Gossett)
	To take
	consideration of in uncertainty representation models it is also necessary to validate
	the feasibility of the uncertainty representation by Person correlation, Spearman
	correlation or Kendall correlation.
	Sensitivity analysis, also termed uncertainty importance analysis, analyse the
	influence effect of different sources of variations in the model input to variation in the
	model output. It can filter out the uncertainty factors with negligible contributions and
	reduce complexity as discussed in fifth section of this chapter. Quantifying
	uncertainty characteristics of output in the system resulted from model input
	uncertainties and model uncertainties propagated through computational simulation

  Formally defined as,

	E	( )	( ) p d	where		( ) p x dx	1	. . when is a continuous r v
		ξ	p	( )	where	x	( ) 1 p x	. . when is a discrete r v

Table 3 -

 3 1 Time cost of different PDF by importance sampling method

		f1	f2	f3
	Student -T	7.634	7.628	7.600
	Normal	5.974	5.956	5.940
	Cauchy	3.807	3.563	3.923
	Exact	1.768	1.172	1.719
	Table 3 -2 Results of different PDF by importance sampling method
		f1	f2	f3
	Student -T	7.705e-5	1.157	4.523
	Normal	7.444e-5	1.167	4.659
	Cauchy	7.984e-5	1.165	4.514
	Exact	7.749e-5	1.164	4.708

Table 3 -

 3 

			4 Results of Latin Hypercube Sampling method	
			F1	F2	F3	F4	F5
	Mean value /*e5 Hz	0.48595	1.5632	2.2246	3.4208	4.7813
	Standard	deviation	0.26679	0.81028	1.1919	1.6633	2.0616
	/*e5 Hz						
	Skewness /*e5 Hz	1.2572	1.1292	1.2509	0.96708	0.91258
	Minimum /*e5 Hz	0.08809	0.32320	0.41714	0.74041	1.0691
	Maximum /*e5 Hz	1.9210	5.7092	9.4982	11.670	18.737
	Belta		1.8215	1.9292	1.8664	2.0566	2.3192

Table 4 -

 4 1 Representation of various distributions as functionals of normal random variables

	Distribution Type	Transformation
	Normal ( , ) µ σ	µ σξ +	
	Lognormal ( , ) µ σ	exp(	)

Table 4 -

 4 2 Results of sensitivity anlysis for input variables

		S	D	L	E	P	R
	F1	-0.268	-0.103	-0.777	0.513	0.032	0.001
	F2	0.013	-0.104	-0.806	0.542	0.028	0.005
	F3	-0.260	-0.144	-0.764	0.528	0.026	0.002
	F4	0.114	-0.089	-0.783	0.565	0.009	0.005
	F5	-0.204	-0.050	-0.688	0.641	-0.053	0.001

Table 5 -

 5 2 Comparison of results of surrogate model

					Correlation	D
					coefficient
	Non-linear fitting			0.9933	1.0585
	1-order regression	0.8002	23.7895
	2-order regression	0.9471	6.8092
	KM(0-order)				1				5.9341e-17
	KM(1-order)				1				1.6060e-19
	KM(2-order)				1				3.5514e-21
	To compared the results of these three surrogate model, namely non-linear fitting,
	response surface method (first order regression and second order regression) and
	Kriging model, correlation coefficient of prediction and original database and
	difference was calculated as in Eq (5-116)and Eq (5-117) and concluded in Table.2.
	c	n i	1	(	( y y 1 i i y y ) 2 i av	av	)(	) ˆˆn ( ) 2 1 i av y y n i av i y y

Table 5

 5 

		-3 Results of reliability based optimization
		GA(KM) GA(NF) SA(KM) SA(NF)
	R1	1.1879 0.3532 1.1063 0.3399
	R2	0.1092 0.1175 0.1022 0.1001
	T	0.9887 0.9896 0.9872 0.9900
	P	0.0100 0	0.0320 0
	V	0.0349 0.0037 0.0342 0.0032
	Time 2619	1.104	2244	4.436

Table 5 .

 5 3 presents the results of reliability based optimization of genetic algorithm and simulated annealing in two surrogate models, namely Kriging model and nonlinear fitting model. According to observation of Table5.3, we can find results can be divided into two groups by surrogate model. In the same surrogate model, the two heuristic algorithms have close results. Another thing that is valuable to mention is that the computational expenses in two surrogate model is evidently different. The nonlinear fitting surrogate model sharply reduce the heavy computational burden.However, the results should be tested in finite element model of structure by performing Latin Hypercube sampling again to propagate uncertainties in the operation environment.

Table 6 -

 6 3 Fluid property and flow environment

Table 1

 1 

Table 6

 6 

			-4 Results of SA and GA	
		P	M	T	C	TIME (s)
	SA (0)	0.1629	0.0704	0.0915	8.47	514.55
	SA (1)	0.1612	0.0703	0.0909	8.48	610.48
	SA (2)	0.1631	0.0704	0.0914	8.50	604.78
	GA (0)	0.1632	0.0704	0.0915	8.47	299.50
	GA (1)	0.1628	0.0704	0.0913	8.50	338.24
	GA (2)	0.1627	0.0704	0.0913	8.50	315.86
	CFD	0.16	0.07	0.09	8.43	6.7

.1 Chapitre 2: Analyse de l'incertitude

  damage analysis of wing structure by stochastic simulation in Chapter 6. In the other side, Kriging interpolation models for structural reliability problems hold several competitive features. It does not only have the interpolation capability, but also take the flexibility to approximate arbitrary functions with a high level of accuracy, and it also explores the capability of providing a local uncertainty measure for the model predictions. Kriging model was applied in Chapter 4 for reliability analysis, Chapter 5 for reliability based optimization and also Chapter 6 for airfoil shaper optimization. For optimization, traditional methods confront the challenges from unacceptable timecomplexity or natural drawbacks of premature convergence because of finding the nearest local optima of low quality. The algorithm of Simulated Annealing (SA) is local search-based heuristic that makes us capable of escaping from being trapped into a local optimum. Genetic Algorithm (GA) draws inspiration from the principles and mechanisms of natural selection, it belongs to a class of the evolutionary computing. SA and GA were applied in the examples of Chapter 5 for reliability based optimization in surrogate model and in Chapter 6 for airfoil shape optimization.Le chapitre 5 présente l'optimisation de la conception basée sur la fiabilité. Dans un premier temps, des remarques générales de RBDO[START_REF] Lee | Finite-element-based system reliability analysis of fatigueinduced sequential failures[END_REF] est illustré. Ensuite, la première commande et deuxième méthode de fiabilité sont expliquées. Ensuite, nous et classer les sources d'incertitude; utilisant des outils mathématiques appropriés pour représenter et modéliser ces incertitudes; et l'application de l'analyse de sensibilité se rapproche pour filtrer les incertitudes avec des effets mineurs sur la conception de manière à simplifier les problèmes.

	démontrons formulation mathématique de RBDO. Optimisation de la conception robuste
	est également sont introduit dans ce chapitre. Dans la dernière partie, des exemples de simulation numérique sont présentés. 8.2.2 Chapitre 3: simulation de Monte Carlo
	Dans le chapitre 6, deux exemples Complet sont présentées. Le premier exemple est Echantillonnage d'importance
	cumulatif de l'analyse des dommages de la structure de l'aile par une simulation stochastique. ( ) ( ) f x x dx µ π = ∫ (8-1)
	( ) f x est une fonction mesurable et ( ) x π	est une fonction de densité de probabilité.
	La fonction de distribution d'importance g( ) x est utilisé pour appliquer un changement
	de mesure	
	Le chapitre 7 présente un résumé de cette thèse, les conclusions concernant les
	résultats.	
	8.2Les incertitudes comprennent les erreurs de prédiction induites par hypothèse du
	modèle de conception et de simplification; l'incertitude de la performance découlant des
	propriétés des matériaux, et la tolérance de de la fabrication; et l'incertitude des
	conditions de charge appliquées sur la structure pendant le fonctionnement. Ces
	incertitudes peuvent entraîner des performances du système pour changer ou fluctuent,
	ou même de contribuer à la déviation grave et entraîner des défauts de fonction et la
	mission défaillance imprévue ou même sans précédent.

Le deuxième exemple est l'optimisation de forme aérodynamique par des algorithmes heuristiques. Pour créer un modèle de substitution appropriée, la simulation de Monte Carlo a été effectuée en répétant calcul dynamique des fluides numérique, une information fiable et a été capturé et a conclu que interpolateurs Kriging. Afin d'éviter la convergence prématurée dans le processus d'optimisation, les tentatives dans algorithmes heuristiques d'optimisation ont été faites. Les résultats de l'algorithme génétique et algorithme de recuit simulé ont été testés en CFD pour confirmer la fiabilité de la méthode proposée dans le présent document. L'analyse d'incertitude est le prémisse de l'optimisation de la conception basée sur l'incertitude. Il comprend l'adoption de la taxonomie appropriée pour déterminer de façon exhaustive

3 Chapitre 4: Expansion stochastique pour l'analyse de probabilité Polynôme orthogonal

  

				F1	F2		F3	F4	F5
	Mean value /*e5 Hz		0.48595	1.5632	2.2246	3.4208	4.7813
	Standard	deviation	0.26679	0.81028	1.1919	1.6633	2.0616
	/*e5 Hz						
	Skewness /*e5 Hz		1.2572	1.1292	1.2509	0.96708	0.91258
	Minimum /*e5 Hz		0.08809	0.32320	0.41714	0.74041	1.0691
	Maximum /*e5 Hz		1.9210	5.7092	9.4982	11.670	18.737
	Belta			1.8215	1.9292	1.8664	2.0566	2.3192
	8.2.0 ,1 N	. Si est une fonction d'une variable aléatoire x à distribution
	normale, qui a la moyenne x µ et la variance connue 2 x σ , est une variable normaliséeξ :
					ξ	=	x x µ σ -	x	(8-7)
	En général, les polynômes d'Hermite à une dimension sont définis par
	T 8 -3 Résultats de la méthode d'échantillonnage Hypercube Latin

Dans le cas monodimensionnel, on peut élargir la réponse aléatoire u à l'aide de polynômes orthogonauxξ , qui a une distribution de probabilité connue, avec comme unité normale [ ]

Modèle de substitution pour l'analyse de la fiabilité

  

							[ ] S S = = ij	i j R P ∂ ∂	(8-21)
					T 8 -4 Résultats de l'analyse de sensibilité pour les variables
						S	D	L	E	P	R
			F1	-0.268	-0.103	-0.777	0.513	0.032	0.001
			F2	0.013	-0.104	-0.806	0.542	0.028	0.005
			F3	-0.260	-0.144	-0.764	0.528	0.026	0.002
			F4	0.114	-0.089	-0.783	0.565	0.009	0.005
			F5	-0.204	-0.050	-0.688	0.641	-0.053	0.001
	Par conséquent, S, D, L, E sont choisis comme paramètres les plus sensibles aux
	fréquences naturelles.	
						0 0.1863 0.4275 0.8915 -	
		A	=	P	1 2 Λ =  	0 0.1591 0 0.2299 0.3152 0.9291 0.3602 0.9309 -  --
					 	0 0.2458 0.2623 0.9418	 
				1.1109 0.7590 0.8411 0.9690 	
	 	500 C 	    =	0.7590 1.0681 0.9923 0.8565 0.8411 0.9923 1.1375 0.8227	 
				 	0.9690 0.8565 0.8227 1.0850	 
	L'équation de la matrice résultante est de la forme
							{ } [ ]{ } R S P ∆ = ∆	(8-20)
	Lorsque les éléments{ } P ∆ sont les ajustements inconnus pour concevoir des variables
	qui sont nécessaires pour les changements { } R ∆ entre le vecteur de réponse de
	référence et les réponses du système réels. La matrice de sensibilité [ ] S contient les
	gradients de réponses par rapport à concevoir des variables:

  présente les résultats de la fiabilité de l'algorithme d'optimisation génétique et recuit simulé sur la base de deux modèles de substitution, à savoir le modèle de Kriging et le modèle de non linéaire.

			T		0.9887 0.9896 0.9872 0.9900
			P		0.0100	0	0.0320	0
			V		0.0349 0.0037 0.0342 0.0032
			Time	2619	1.104	2244	4.436
	T 8-7				
	P F	>	s F	, elle est la probabilité de la situation lorsque la contrainte
	maximale dans toute la structure est plus grande que la limite d'élasticité du matériau
	dans la structure.				
		T 8 -7 Résultats de l'optimisation de la fiabilité
					GA(KM) GA(NF) SA(KM) SA(NF)
			R1	1.1879 0.3532 1.1063 0.3399
			R2	0.1092 0.1175 0.1022 0.1001
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Although the implementation of FOSM is simple, it has been shown that the accuracy is not acceptable for low probability of failure or for highly nonlinear responses [START_REF] Ingram-Cotton | Reliability program requirements for space systems[END_REF]. In SOSM, the addition of a second-order term increases computational effort significantly, yet the improvement in accuracy is often minimal.

The safety index approach to reliability analysis is actually a mathematical optimization problem for finding the point on the structural response surface that has the shortest distance from the origin to the surface in the standard normal space.

The FOSM method, as implied, inputs and outputs are expressed as the mean and standard deviation. Higher moments, which might describe skew and flatness of the distribution, are ignored.

First -order second moment method

In mean value first order second moment method (MVFOSM), the limit-state function is represented as the first-order Taylor series expansion at the mean value point.

Assuming that the variables X are statistically independent, the approximate limitstate function at the mean is written as

Where,

The mean value of the approximate limit-state function ( )

( 5 -16) This can be seen from the following mean valued calculation of ( )

, which assumes that truncation of the Taylor series expansion for a case of only one random variable at the first three terms is

The mean value of the approximate limit-state function ( )

(5 -27)

It is obvious that the third term on the right side depends on the variance of X and the second-order gradients of the limit-state function. If the variance of X is small or the limit-state function is closed to linear, the third term can be ignored and the mean value of ( )

Otherwise, large errors in the mean value estimation will result.

(2) The MVFORM method fails to be invariant with different mathematically equivalent formulations of the same problem. This is a problem not only for nonlinear form of limit-state, but also for certain linear forms.

Hasofer and lind safety-index

Searching for the MPP on the limit-state surface is a key step in the HL method. The improvement of the HL method compared with the MVFOSM also comes from When sampling a function of N variables, the range of each variable is divided into M equally probable intervals. M sampling points are then placed to satisfy the Latin hypercube requirements; note that this forces the number of divisions, M , to be equal for each variable. Also note that this sampling scheme does not require more samples for more dimensions (variables); this independence is one of the main advantages of this sampling scheme. Another advantage is that random samples can be taken one at a time, remembering which samples were taken so far.

The maximum number of combinations for a Latin Hypercube of M divisions and N variables (i.e., dimensions) can be computed with the following formula:

The regularity of probability intervals on the probability distribution function ensures that each of the input variables has all portions of its range represented, resulting in relatively small variance in the response. At the same time, the analysis is much less computationally expensive to generate. The LHS method also provides flexible sample size while ensuring stratified sampling.

According to the advantages of LHS, it is chosen to perform Monte Carlo Simulation in order to propagate the uncertainties of stochastic process. As present in the flowchart, the parameters corresponding with description of geometry model and random loading are defined as input random variables. The maximum stress in the whole structure of wing is searched each time when calculation of FEM was performed, and it is also exported for the following procedure.

Thus, 0 x d may be interpreted as the density of probability associated to the point 0

x .

The following notations are often used in order to recall this property:

In these notations, Dirac's delta appears as a probability density. Then the probability density in the polynomial expression can be calculated.