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Résumé en français

Introduction

Internet modifie constamment nos façons de communiquer, d’apprendre et de découvrir
de nouvelles choses. Les moteurs de recherche comme Google sont l’exemple le plus
connu. Grâce à l’interconnexion incessante entre humains via Internet, notre pouvoir
de découvrir n’est plus seulement lié à notre proche entourage, mais à l’ensemble de
la planète. Archiver, synthétiser, et pouvoir questionner toute cette activité humaine
souvent parcellaire est le défi du “crowd intelligence”.

Un outil clé est le système de recommendation qui analyse notre activité passée
pour nous proposer des suggestions dignes de notre intérêt. Cela nous pousse à donner
une appréciation sur nos expériences ce qui améliorera en retour la qualité des futures
suggestions qui nous seront destinées ainsi que pour tous ceux qui partagent les mêmes
goûts.

Les systèmes de recommendation sont nés dans les années 90 pour la musique [SM95],
les videos [HSRF95], les actualités [RIS+94] et même les blagues [GRGP01]. Le succès
d’Amazon qui utilise cette technologie pour améliorer ses ventes [LSY03] a popular-
isé les systèmes de recommendation. Des compétitions internationales comme celle
organisée par Netflix [BL07] ont intensifié la recherche dans cette discipline.

Les qualités d’un système de recommendation sont les suivantes :

• le passage à l’échelle : en commerce électronique, un système doit pouvoir traiter
toujours plus d’utilisateurs et de biens. Dans la recherche d’information ou la
publicité en ligne, la situation est encore plus critique car l’ordre de grandeur du
nombre de pages web ou de publicités est beaucoup plus grand.

• la dynamicité : le système doit être dynamique, gérant de nouveaux utilisateurs
ou des biens qui ne sont plus à vendre. Ceci doit se retrouver à la fois dans
l’infrastructure qui analyse les données avec des contraintes d’espace mémoire et
de temps de calcul, et dans la qualité des suggestions faites à des utilisateurs dont
les goûts évoluent.

• la confidentialité : cet aspect, au sens du respect de la vie privée, a longtemps
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vi Résumé

été négligé. Les systèmes de recommendation analysent des données sensibles
car personnelles. L’anonymisation des données n’est pas suffisante car elle peut
être compromise en croisant différentes bases de données [NS08]. Il faut ainsi
perturber aléatoirement les données selon le principe de la confidentialité dif-
férentielle (‘differential privacy’ en anglais).

Nos contributions sont les suivantes :

• Une étude défiant la confidentialité différentielle lorsqu’elle est appliquée au cal-
cul de la similarité entre deux profils utilisateurs. Nous jouons ici le rôle de
l’attaquant dont le but est de révéler quels biens ont été consommés ou appréciés
par tel utilisateur. La confidentialité différentielle donne des garanties sur la dif-
ficulté d’une telle attaque lorsque l’attaquant devine le profil de l’utilisateur bien
par bien. En revanche, nous montrons qu’en analysant conjointement des sous-
ensembles de biens, l’attaque est moins difficile. Ceci est prouvé théoriquement et
instancié sur deux systèmes basés sur le filtre de Bloom (système BLIP [AGK12])
et sur la transformée de Johnson-Lindenstrauss [KKMM12]. Nous montrons aussi
comment réaliser une attaque conjointe en pratique au moyen d’une simulation
MCMC (Markov Chain Monte Carlo).

• Un système complet de recommendation scalable, dynamique et conforme à la
confidentialité différentielle. Ce système procède à une factorisation de la matrice
des appréciations utilisateur / bien. Les vecteurs latents sont appris et stockés
via la technique du ‘count-sketch’ pour passer à l’échelle. Pour assurer la con-
fidentialité différentielle, nous modifions la descente du gradient stochastique en
une dynamique de Langevin stochastique. De plus, nous avons mis en place un
protocole expérimental dédié aux systèmes de recommendation pour évaluer le
niveau de confidentialité différentielle.

• Nous proposons une amélioration d’une autre technique de ‘sketching’ très connue:
Locality Sensitive Hashing, aussi connue sous le nom de ‘cosine sketch’. Cette
technique voit le ‘sketching’ comme une quantification vectorielle. Minimiser
l’erreur de reconstruction conduit à de meilleurs résultats de recherche. De plus,
cela permet de reconstruire approximativement les données intéressantes pour un
calcul de similarité affiné.

Analyse de confidentialité différentielle

Soit P le profil d’un l’utilisateur vu comme une séquence binaire indiquant quels biens
ont été consommés par celui-ci. Des approches [KKMM12, AGK12] proposent d’y
associer une représentation compacte B̃P difficile à inverser mais permettant un calcul
approché de la similarité entre deux profils. Cette dernière opération est nécessaire pour
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recommander à l’utilisateur les choix faits par d’autres utilisateurs proches, c’est-à-dire
ayant un profil similaire. La représentation B̃P est en fait aléatoire pour respecter le
principe de la confidentialité différentielle.

Nous jouons maintenant le rôle de l’attaquant qui observe B̃P et qui veut savoir
si l’utilisateur a consommé le bien j. L’attaquant procède donc à un test d’hypothèse
binaire : ou bien l’utilisateur a consommé ce bien ou bien il ne l’a pas fait. En découlent
deux types d’erreur de probabilités α1 (faux positifs) et α2 (faux négatifs). Le lemme
de Stein assure que

α1 ≥ e−(I(B̃P ;X)+1)/(1−α2), (1)

où I(B̃P ; X) est l’information mutuelle entre la représentation B̃P et la signature X
du bien j utilisée dans le calcul de B̃P . En testant tous les N biens, l’attaquant
reconstruit le profil de l’utilisateur avec une probabilité de faux positif globale η1. Ceci
n’est possible que si l’ensemble de biens n’est pas trop grand:

log(N) ≤ I(B̃P ; X)
1− α2

+ log η1. (2)

où on voit le rôle fondamental de I(B̃P ; X). En fait, la confidentialité différentielle
oblige I(B̃P ; X) à prendre de petites valeurs. Par conséquent, en procédant bien par
bien, l’attaquant ne pourra pas reconstruire tout le profil.

Supposons que l’utilisateur ait consommé c biens. L’attaquant considère maintenant
conjointement un c-uplet de biens et teste si celui-ci serait égal au profil de l’utilisateur.
Procéder par c-uplet amène plus d’infirmation, mais le nombre de c-uplets à tester est
bien plus grand. Le même raisonnement conduit à une inégalité similaire :

log(N) ≤ I(B̃P ;P )
c(1− α2) + log η1. (3)

où I(B̃P ;P ) est l’information mutuelle entre la représentation B̃P et le profil P . Le
théorème [Mou08, Eq. (3.4)] prouve que dans tous les cas I(B̃P ;P )/c ≥ I(B̃P ; X), ce
qui montre qu’une analyse conjointe des biens produit toujours une meilleure attaque.
Le reste de l’étude calcule ces informations mutuelles pour les deux schémas BLIP et
JLT. Elle montre que si la confidentialité différentiellle assure bien que I(B̃P ; Xj) ≤ ε,
ce n’est pas le cas pour I(B̃P ;P )/c.

L’attaque jointe est théorique : en pratique, l’attaquant doit tester tous les sous-
ensembles de taille c parmi N . Soit une complexité en O(N c). Nous proposons d’utiliser
une chaîne de Markov et un échantillonneur de Gibbs multi-étapes pour explorer de
manière efficace l’ensemble des c-uplets. Après une période transitoire, la chaîne échan-
tillonne des profils suivant la distribution a posteriori des profils. Il ne reste plus qu’à
retenir le profil ayant la plus grande vraisemblance ou la plus grande probabilité a
posteriori (en incluant une information a priori sur les biens les plus consommés) ou
encore à estimer les probabilités marginales a posteriori par bien afin de les classer.
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Table 1: Caractéristiques des jeux de données

Dataset Nb utilisateurs Entraînement Test N cavg Remplissage %
Digg 531 331 200 1237 317 25.63%
MovieLens 943 600 343 1682 106 6.30%

L’étude expérimentale se base sur deux jeux de données : Digg et MovieLens (cf.
Tableau 1). Le lecteur trouvera les résultats expérimentaux dans le chapitre 3. Pour ré-
sumer, la confidentialité différentielle fonctionne bien : pour des ε petits, l’attaque bien
par bien est contenue. Elle produit des résultats pire que l’attaque ‘idiote’ qui recon-
struit le profil par les biens les plus populaires. En revanche, dès que l’attaquant sort
du contexte de la confidentialité différentielle avec l’attaque jointe, plus aucune garantie
ne tient. Cette étude révèle aussi que, pour la même utilité, le schéma JLT [KKMM12]
produit plus de confidentialité que BLIP [AGK12], ce qui n’est pas étonnant puisque
sa représentation est moins compacte.

Cette première contribution offre donc une analyse critique du concept de confiden-
tialité différentielle.

Factorisation de matrice par technique de ‘sketching’

Cette étude est une proposition d’un système de recommendation centralisé ayant les
propriétés listées dans l’introduction. Soit R la matrice des appréciations utilisateur
/ bien : ru,i est la note laissée par l’utilisateur u concernant le bien i. Cette matrice
contient des données manquantes, elle est très creuse. Notre système modélise les
utilisateurs et les biens par des vecteurs latents à d composantes: pu pour l’utilisateur
u et qi pour le bien i de telle manière que l’appréciation ru,i sera prédite par le produit
scalaire p>u qi.

On définit la fonctionelle suivante :

L(P,Q) =
∑

<u,i,ru,i> observés

L(ru,i,p>u qi) (4)

qui est la somme des coûts d’erreur de prédiction entre ru,i et p>u qi (ici ce coût L(·, ·)
est l’erreur quadratique). L’apprentissage consiste à trouver les facteurs P et Q (les
matrices contenant les vecteurs latents des utilisateurs et des biens) minimisant cette
fonctionelle avec un terme de régularisation introduit sous la forme d’une pénalité sur
la norme au carré des vecteurs latents:

Rλ(P,Q) =
∑

<u,i,ru,i> observés

L(ru,i,p>u qi) + λ

2 (‖pu‖2 + ‖qi‖2). (5)
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Ceci est un problème d’optimisation simple mais rendu difficile par la taille des
facteurs. Une solution approchée avec une complexité raisonnable est habituellement
donnée par l’algorithme de descente de gradient stochastique. Cependant, l’échelle
de notre système est tellement grande que cette solution reste encore trop complexe.
Stocker les facteurs est en fait problématique. C’est pour cette raison que nous pro-
posons l’utilisation d’une technique de ‘sketching’ vue comme unité de stockage.

Nous avons choisi la technique du ‘count sketch’ pour stocker dans une matrice C
unique de taille (w, k) toutes les composantes de tous les vecteurs latents, utilisateur et
bien. Si l’étape de lecture du ‘count sketch’ utilise l’opérateur moyenne (et non médian
comme souvent choisi), nous montrons que la descente de gradient sur les composantes
des vecteurs latents stockés par count sketch revient à une descente de gradient sur
les entrées de matrice C elles-mêmes où la pénalisation sur la norme au carré des
vecteurs latents est en fait une pénalisation sur la variance de l’erreur de lecture du
‘count-sketch’.

L’utilisation du ‘count-sketch’ réduit l’espace mémoire nécessaire mais introduit du
bruit : une valeur lue est égale à la valeur écrite auparavant plus du bruit. Ainsi,
on s’attend à une baisse de la qualité de la recommendation. L’étude expérimentale
montre que cette baisse est relativement faible. Nous pensons que le bruit introduit a
un effet ‘self-régularisant’ qui évite un sur-apprentissage. Une preuve expérimentale est
que le paramètre λ de pénalisation a un impact moindre, et que le système converge
plus vite. Ceci a le bon goût de rendre le système plus dynamique.

Ajouter du bruit dans les calculs internes d’un algorithme est un mécanisme récem-
ment proposé pour se conformer au concept de confidentialité différentielle. Le bruit in-
duit par le ‘count-sketch’ transforme la descente de gradient en une dynamique stochas-
tique de Langevin (Stochastic Gradient Langevin Dynamics). Ainsi, l’apprentissage ne
cherche plus les facteurs au sens du maximum a posteriori en minimisant (5), mais tire
aléatoirement les facteurs suivant leur distribution a posteriori [WT11, VZT15]. Or
des travaux récents [WFS15, LWS15] montre que, d’une manière très générale et sous
certaines conditions, ceci est un mécanisme produisant une confidentialité différentielle
de niveau ε.

Tout ceci est théorique, impliquant des hypothèses peu vérifiables en pratique. Nous
avons créé un protocole expérimental pour mesurer en pratique le niveau de confiden-
tialité différentielle, chose totalement absente dans la littérature. L’idée est toute sim-
ple : on tire au hasard une note ru,i dans le jeu de données d’apprentissage ou dans
celui de test, on met au défi l’attaquant de savoir si cette appréciation a été utilisée
ou non lors de l’apprentissage. L’attaquant a le droit de questionner le système de
recommendation pour obtenir l’estimation p>u qi. En répétant ce défi un grand nombre
de fois, nous obtenons la distribution empirique de l’erreur ru,i − p>u qi pour les notes
de chaque jeu de données. Puis, nous vérifions que leur distance de Kullback-Leibler
décroit avec la valeur théorique ε. Autrement dit, l’attaquant ne peux décider avec
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précision si l’utilisateur u a soumis ou non une appréciation concernant le bien i et ce
même s’il connaît la vraie valeur de cette appréciation.

Amélioration de recherche d’information par technique de
‘sketching’ LSH

La recherche des profils utilisateur les plus similaires ou des vecteurs latents les plus
pertinents pour un utilisateur donné suppose le calcul d’un très grand nombre de sim-
ilarités. Nous considérons ici les techniques d’encodage binaire qui transforment un
vecteur x de Rd en un mot binaire b(x) dans BL de telle manière que la similarité
‘cosinus’ x>y/‖x‖‖y‖ est estimée au moyen de la distance de Hamming dh(b(x),b(y))
bien plus rapide à calculer sur les ordinateurs actuels. En particulier, nous analysons
la technique dite LSH proposée par Charikar [Cha02]. Ayant généré aléatoirement
L vecteurs {wj}Lj=1 uniformément sur la sphère unité, le signe de la projection w>j x
produit un bit de signature :

bj(x) = sign(w>j x). (6)

La signature de x est la concaténation de ces bits :

b(x) = [bj(x)]Lj=1 . (7)

Si L > d, il est impossible de générer L directions orthogonales. Il est d’usage de
prendre W = [w1, . . . ,wL] [GVT98] telle que W.W> ∝ Id (autrement dit une ‘tight
frame’) [JFF12, SVZ13].

Nous soulignons la sous optimalité de cette technique ‘project and sign’ d’un point
de vue de la quantification. Nous considérons le vecteur reconstruit x̂ suivant :

x̂ ∝
L∑
j=1

bj(x)wj = Wb(x), (8)

où la constante de proportionalité telle que ‖x̂‖ = 1. La technique LSH associée à cette
reconstruction ne donne pas la meilleure quantification (des exemples simples en d = 2
dimensions sont faciles à trouver). Elle n’est pas surjective car certaines signatures
sont impossibles. Cependant, la quantification optimale est très complexe : il s’agit de
parcourir tous les 2L mots de BL pour retenir celui qui offre la meilleure reconstruction.
Une alternative est la méthode des représentations étalées [Fuc11, JFF12].

Nous proposons une méthode ayant un compromis complexité / qualité de re-
construction plus attractif. Partant du résultat de la technique ‘project and sign’,
nous cherchons quel bit parmi les L modifier pour améliorer la reconstruction. Cette
recherche est effectuée séquentiellement M fois. Notre méthode est sous optimale mais
simple.
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Le point de vue de la quantification amène aussi une autre idée en recherche de
vecteurs similaires. Pour un vecteur requête donné, on calcule rapidement les similarités
approchées grâce aux signatures des vecteurs de la base. Ceux ayant les plus grandes
similarités sont stockés dans une liste. Il est maintenant possible de reconstruire ces
vecteurs à partir de leurs signatures, ce qui donnera une meilleure estimation de leurs
similarités avec le vecteur requête. Autrement dit, nous pouvons raffiner ce premier
classement à peu de frais.

Nous montrons que notre technique produit une estimation de la similarité ‘cosinus’
avec moins de biais et moins de variance (cf. fig. 5.1). Ceci donne de meilleurs résultats
de recherche dans une grande base (cf. fig. 5.2).

Conclusion

Le thème central de la thèse est l’étude et l’évaluation de la confidentialité et de la
scalabilité des systèmes de recommendation. Concernant la confidentialité, nous avons
intégré, évalué et proposé de nouveaux mécanismes. Nous observons aussi que le niveau
ε de confidentialité différentielle n’est qu’un paramètre de contrôle dans la littérature et
nous avons ressenti le besoin de mesurer réellement cette garantie. Concernant la scal-
abilité, nous avons montré que les techniques de ‘sketching’ apportent une amélioration
tout en ne sacrifiant pas trop la dynamicité et la qualité des recommendations.

Le message le plus important est que confidentialité et scalabilité ne s’opposent pas.
La scalabilité induit nécessairement un compromis temps-espace versus approximation.
C’est cette approximation qui non seulement prévient le sur-apprentissage, mais aussi
renforce la confidentialité différentielle.

Les travaux de cette thèse ont été publiés dans les articles suivants :

• Challenging differential privacy: the case of non-interactive mechanisms, Raghaven-
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• Sketching techniques for very large matrix factorization, Raghavendran Balu, Teddy
Furon, Laurent Amsaleg. ECIR 38th European Conference on Information Re-
trieval, mars 2016, Padoue, Italie.

• Differentially Private Matrix Factorization using Sketching Techniques, Raghaven-
dran Balu, Teddy Furon. IHMMSec ACM workshop on Information Hiding and
MultiMedia SECurity, juin 2016, Vigo, Espagne.

• Beyond “project and sign” for cosine estimation with binary codes, Raghavendran
Balu, Teddy Furon, Hervé Jégou. IEEE ICASSP International Conference on
Acoustics, Speech, and Signal Processing, mai 2014, Florence, Italie.
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Chapter 1

Introduction

The advent of internet has revolutionized the society by totally reshaping the way we
learn, communicate, express our opinion and purchase products. Search engines like
Google completely altered the manner in which we search and acquire information.
This did not stop with search alone, resonating in other activities. One such is our
approach to discover and try new things. The de-facto approach before internet era
was to seek our close social connections and networks for suggestions. Thanks to the
incessant interconnectivity, now we no longer have to rely on our immediate network,
but contribute and probe from a much larger pool. These pooling in and probing from
diverse sources with incomplete information is also called as crowd intelligence. This is
accelerated with access to intelligent systems, which, using our previous behavior and
preference, fine tune suggestions to us. These are collectively called as recommender
systems. Recommender systems fill a niche gap of exploring new and unknown things
and also exploiting known possibilities. This also motivates people to give feedback
which can be utilized by other like minded users, closing the loop. As a side effect, it
also gives the much necessary feedback, thereby facilitating a collective voice for the
consumers.

The need for intelligent recommender systems was recognized during the late nineties,
owing to the growth of the internet and the ever increasing content available for
the end-users. It started out with domains such as music [SM95], videos [HSRF95],
news [RIS+94] and jokes [GRGP01]. The success of Amazon Inc. in utilizing recom-
mender systems [LSY03] to improve the sales and product engagement demonstrated
its application in a commercial setup and motivated other service providers to follow the
trail. The Netflix recommender systems for movies and their open competition [BL07]
intensified the attention and fueled further research on this evolving discipline. The
commonality of the problem among diverse applications motivated to devise generic
solutions that are independent of the application domain.

Systems providing recommendations for Amazon, Netflix, Google and other big
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internet players are typically centralized. Such architectures are easy to control and
tune, solid and well established large scale, efficient and fault tolerant data storage
solutions can be used, computational demands can be well addressed. In addition, the
very important security and privacy requirements are easy to enforce in such common
platforms.

This thesis is done in the context of a collaboration between INRIA and Alcatel-
Lucent Bell labs. It therefore has a very strong industrial component. Alcatel-Lucent
Bell is very much interested in recommendation systems (see [NAB11, ABK+13]).
Proposing contributions that are close to the real world is hence a key element in their
research agenda. For that reason, the work in this thesis is also considering centralized
recommendation systems. We are well aware, however, that some academic works
have recently proposed fully distributed recommendation systems that for example use
the more sophisticated peer-to-peer architectures. These systems have nice properties
such as a better preserving of the privacy of the users receiving recommendations.
The industrial context for this thesis, however, is pushing out of our scope such non-
centralized recommendation contributions.

1.1 Challenges

With the rise of a new discipline, came new challenges. Some of these challenges are
scalability, privacy and dynamism.

Scalability

Thanks to relentless connectivity and access to wide sources of information, more and
more people are turning to internet based services. The number of internet users
is estimated to be in billions. This is only increasing with new interconnectivity in
developing countries. On the other hand, more and more items are made available to
these users. The magnitude of these items also depend on the domain. In e-commerce,
millions of products are made available for end users, with new products being added
to the catalogue constantly. Similar conditions prevail in creative industries like music,
movies and fiction works. In domains like search and advertising, the situation is even
more pronounced as the number of web pages and ads are much higher. Furthermore,
the same user can be served hundreds of a time in any given day, making latency
additional constraint. All these requires a highly scalable recommender system both to
increasing user base and items. This motivates us to address the scalability problems
of such recommender systems.
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Dynamism

The users and items are not static in many cases and constantly evolving over time. It
is becoming increasingly uncertain if the same user or item will be served again. Also
the addition of new information such as items and feedback, that is fed to the system
invalidates the user/item models in place. Hence static modeling is becoming a thing
of past, requiring dynamic systems that can not just endure this data deluge, but take
advantage of such evolving data over time. Dynamic capabilities are required from both
infrastructure and relevance point of view. The infrastructure requirements are to make
sure the system is capable of handling the volume of data without failing and preferably
efficient in terms of space of time demands. The infrastructure demands should not be
met at the cost of relevance as user satisfaction is equally important. A highly scalable
system that suggests random items is of no good. Hence dynamic capabilities must be
in the requirements checklist of any realistic industry-scale recommender systems.

Retrieval efficiency

The scalability challenges of prediction of relevant items is not given its due importance
compared to modeling. In case of large-scale systems, the cost of retrieval is prohibitive,
that is worsening with many concurrent requests. Prediction usually involves retrieval
and ranking of relevant items from a large collection of available items. Retrieving
and finding such relevant items is often modeled as nearest neighbor search problem,
which is well studied. On very large high dimensional datasets, finding exact nearest
neighbors is time consuming and impractical, leading to approximation techniques.
From a large collection of vectors in a high dimensional space, the approximate most
similar search aims at extracting the most similar vectors to a query. Approximate
neighbor search techniques compromise relevance to improve storage retrieval runtime
efficiency. Hence there is a scope for improving the trade-off for such approximate
neighbor search techniques. These scalability enhancements resonate into usability
improvements and improve the quality of service.

Privacy

Among the various properties, privacy is one aspect which is often forgotten while
designing recommender systems. Recommender systems handle user behavioral data
which is personal to the user and sensitive data. The consumed items have to be
collected at a centralized database, to perform both analysis and prediction, which
compromises user privacy. If the data is accompanied by identifiable information it
might lead in trouble for the users, because of the potential of abuse by malicious
adversaries.

The usual technique to ensure privacy is anonymization of the data before release.



4 Introduction

Anonymization includes modifying or removing identifiable information of individuals.
The usual anonymization alone is not sufficient as demonstrated in [NS08]. In this
work the authors proved the de-anonymization risks by linking users contributed to
the celebrated Netflix prize dataset with other public profiles such as IMDB. But user
modeling requires historical information of behavioral data and this leads to a stand-
off: To release or not. At the end, the users are required to trust a centralized service
as only such systems are known to be commercially viable and practical. All these
motivate to look for better privacy preserving mechanisms that are both rigorously
defined and at the same time practical to implement.

1.2 Solution

Collaborative filtering for centralized recommendations

Among various approaches to recommender systems, collaborative filtering is emerg-
ing as a prominent technique to provide recommendations. It uses the user-item rat-
ing relationship to provide recommendations. Collaborative filtering techniques can be
broadly classified into two kinds: Neighborhood based and model based. Neighborhood
methods utilize user-item similarity to find neighbors of a given profile and aggregate
information from those neighbors to provide suggestions. On the other hand, model
based systems utilize statistical modeling techniques to approximate user-item simi-
larity and represent users and items that enables fast and accurate predictions. Both
approaches are widely popular, scalable and promising in terms of prediction relevance.
We consider both approaches in our recommender systems, with more emphasis and
importance to model based systems. In model based systems, we consider the popular
matrix factorization [KBV09] as our modeling technique in our recommender systems.
Factorization techniques map both users and items to a low dimensional representa-
tion, retaining pairwise similarity. Compared to other methods, matrix factorization
is simple, space efficient and can generalize well with missing information. It also has
many desirable properties that suits statistical modeling, justifying to be our technique
of choice.

Differential privacy for privacy preserving personalization

It is observed that anonymization alone is insufficient to enforce privacy. An alter-
native ingenious solution to anonymization comes to the rescue through the means of
randomized perturbation of the data before release. Differential privacy is one such
randomization mechanisms. Differential privacy argues that absolute privacy is impos-
sible to achieve and instead settles to relative level. It was originally devised to answer
queries on statistical databases without compromising on row level privacy. Since then
it has garnered wide spread attention among the research community for its theoretical
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rigorousness and robustness to auxiliary information. The privacy objective is achieved
by means of a randomizing mechanism, which takes the database as input and per-
turbs the output such that it is not differentiable, to an extent, from its neighboring
databases that differs by a row. Owing to the success of differential privacy in other
data release problems we motivate utilizing differentially private mechanisms for user
modeling in our privacy preserving system.

Sketching techniques for scalable privacy preserving personalization

The scalability and privacy challenges calls for designing scalable privacy preserving
recommender systems. Conventional techniques add explicit noise to perturb the data
to enable privacy, which serves no additional purpose. Hence it is desirable to look
for efficient perturbation mechanisms are that are also inherently random. Recent
advances in database community lead to a class of randomized techniques called data
sketching. Sketching techniques were originally proposed to efficiently estimate and
answer queries over data that come in a streaming fashion. Since then it has found
applications in various other domains. Sketching techniques are space-efficient and
scalable to data. They are simple in construction and facilitate efficient inserts, updates
and estimation. They are also randomized by design. The inherent randomness of such
sketch structure also preserve privacy as a side effect. Hence these benefits prompted us
to incorporate sketching techniques into user modeling and prediction to satisfy these
objectives. Sketching techniques are task specific and are defined to approximate a
particular statistic of interest.

We use sketching technique to improve both user modeling and prediction. In the
context of modeling, we first consider the task of compactly representing the item
consumption binary information and similarity estimation using such compact repre-
sentation. There are differentially private similarity estimation mechanisms using these
compact representations. We studied two recent promising approaches: BLIP [AGK12]
and Johnson-Lindenstrauss transform (JLT) [KKMM12]. These two approaches mo-
tivated us to evaluate the privacy preserving guarantees of such similarity estimation
mechanisms.

We then examine the problem of user modeling with more informative data such
as user ratings. We utilize a frequency approximation sketching technique called count
sketch, to store user models and evaluate its properties. Such a representation promises
both scalability and enhances privacy.

In the context of retrieval, we use similarity approximation techniques called Local-
ity sensitive hashing (LSH). In recent times, LSH [IM98] is proven to be promising in
retrieving near-similar items efficiently. LSH is space-efficient, improves runtime and
provides approximate retrieval guarantees. This motivates us to improve the time com-
plexity of item retrieval using LSH and make it efficient without compromising much
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Figure 1.1: Overview of our contributions

on relevance.

1.3 Our Contributions

Our core contributions examines the scalability and privacy properties of sketching
technique based recommender systems. The consequence is that the thesis is at an
intersection of three different domains: recommender systems, sketching techniques,
data privacy. We locate our contributions in the interaction of these three domains
pictorially as in figure 1.1. We categorize the contribution into three groups: con-
tribution A focuses on privacy aspects of compact-neighborhood based recommender
systems, contribution B focuses on scalability and privacy aspects of model based
recommender systems and contribution C focuses on the retrieval aspects. The rela-
tion of the contributions on the privacy and scalability aspects is tabulated in table 1.1,
with italicized cells corresponding to existing techniques.

Technical background

As our contributions are at an intersection of three different domains: recommender
systems, sketching techniques, data privacy; we provide the necessary background in
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Contribution Approach Aspect Evaluation Mechanism
A Neighborhood Privacy Joint decoder BLIP, JLT
B1 Model Recommendation RMSE Count sketch
B2 Model Privacy KLD Count sketch
C Model Retrieval Recall LSH

Table 1.1: Our contributions on the scalability and privacy aspects

chapter 2 before describing our contributions. We first describe the technical concepts
of recommender systems. It is followed by defining and describing the properties of
sketching techniques. We then define differential privacy, its properties followed by a
discussion on differentially private mechanisms. Our core contributions are in providing
both scalable differential privacy mechanisms and estimating the privacy guarantees.

Contribution A

We first focus on the privacy aspects differentially private similarity approximation for
recommender systems. We assume the recommender system approach to be neighbor-
hood based and note that efficient differentially private mechanisms has been proposed
in the past such as BLIP and JLT pertaining to this neighborhood setup. In chapter 3,
we focus on the evaluation problem and asses the privacy guarantees of such differen-
tially private systems. We quantify the amount of information that we can learn from
sanitized database by playing the role of the attacker. We first describe a simple attack
using single decoder and we improve it by using a more sophisticated joint decoder. We
test our attack models on two sketch based differentially private recommender system
techniques: BLIP and Johnson-Lindenstrauss transform. We begin the chapter 3 by
motivating the problem theoretically and design practical decoders to work on the be-
fore mentioned schemes. We also experimentally validate our proposed attack models
on public datasets.

Contribution B1 & B2

We then focus on the scalability and privacy aspects of model based recommender
systems. We assume a centralized recommender system framework for our model based
recommender system. The user representation is based on latent factor modeling and
the parameters are learnt through matrix factorization technique. In chapter 4, we
describe our matrix factorization approach using a sketching technique called count
sketch. We also demonstrate the scalability and dynamicity properties of sketch based
factorization through experimental results on benchmark public rating datasets. In
particular, our contribution answers the storage scalability challenges faced by model
based recommender system, when events arriving in a streaming fashion. We observe
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through experimental results that our approach adapts to such new incoming data
very well compared to regular factorization. We also observe other desirable properties
related to modeling such as generalization capabilities.

We then describe a modification to our system to learn the models in a differentially
private setup. We then describe a privacy evaluation metric using Kullback-Leibler di-
vergence that is more relevant to our setup and evaluate it on standard datasets. We
observe that our approach enables privacy capabilities implicitly, which is in contrast
to conventional privacy preserving methods. Thus our contribution hints strong con-
nection between privacy, ability to generalize and the randomized nature of sketching
techniques.

Contribution C

We then address the storage and computational challenges in efficient retrieval of rel-
evant items so that it can scale along well with growing item base. In chapter 5, we
improve the retrieval efficiency of latent factor based recommender systems using lo-
cality sensitive hashing technique. We describe a family of LSH called cosine sketches
which can approximate normalized inner product estimation. We also propose a new
technique to improve the estimation efficiency of such cosine sketches. We finally vali-
date our system on synthetic and benchmark real-vector datasets.



Chapter 2

Background

2.1 Introduction

In this chapter, we cover the background material necessary for understanding our
contributions. Section 2.2 describes recommender systems in detail. It starts with
characterizing recommender system based on factors like data source, approaches and
techniques. We then discuss about prediction and evaluation strategies.

The section 2.3 describes sketching techniques in detail. It starts with problem
statement and interpretation followed by estimation characteristics. We then discuss
some of the common tasks like set membership, frequency approximation, norm ap-
proximation and similarity approximation. We also describe the sketching techniques
used in our contributions: Bloom filter, count sketch, Johnson Lindenstrauss transform,
Locality sensitive hashing and other related techniques. We also survey some of the
sketching techniques that were used in recommender systems.

The section 2.4 describes differential privacy in detail starting with problem def-
inition. It is followed by properties of differential privacy such as immunity to side
information and composition. We also describe various differential privacy mechanisms
such as Laplacian, Exponential and Bayesian. We then describe differentially private
recommender systems, characterizing by various factors such as data source, computing
model, mechanism and privacy definition.

Finally we conclude in section 2.5 with views on similarity among these three diverse
topics, scope for work and position our contributions within the scope.

2.2 Recommender systems

Recommender systems can be characterized by the components that are part of the
systems and how these components fit and work together for optimal user modeling
and prediction. Some of the common parameters that define a recommender system
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are:

• Data source: Nature of input data and its representation

• Approach: The basis on which recommendations are provided

• Modeling technique: Model representation and fitting

• Prediction: Systems output like individual suggestions, list or ranked list

2.2.1 Data Source

As modern recommender systems are intended to model user behavior, the primary data
source is naturally the user interaction logs. The user interaction is often the feedback
provided by the user in response to a suggested item. If the feedback is explicitly
requested after the suggestion, it is known as explicit feedback. In some cases such
explicit feedback is not possible, so the consumption of the item is considered as a
positive feedback and absence of such information is considered as unknown. Implicit
feedback is often domain dependent. Some of the examples for implicit feedback are
user click or purchase in product suggestions, play duration in music/video suggestion,
etc. Explicit feedback could be of different types ranging from a simple like/favorite in
social media, to up(down) voting or 5-scale rating and even elaborate review/comment.

Data Representation: The usual representation is a sparse matrix R with non
zero entries ru,i representing user feedback provided by the user u ∈ U for a given item
i ∈ I, where U is set of users and I is set of items. Each row vector in R corresponds
to an user u and column vector to an item i. In case of implicit feedback, ru,i ∈ {0, 1}
and for explicit feedback: ru,i ∈ R

2.2.2 Approaches

There are various approaches proposed in the past to provide recommendations. They
can be broadly classified into content based, collaborative filtering and hybrid ap-
proaches.

2.2.2.1 Content based System

In this approach, the characteristics of a given item along with user consumption history
is used as a basis to provide recommendations. These characteristics are typically called
features and are combined with the given users’s preference for these features. The
user preference can be asked explicitly or learnt implicitly from his past consumption
behavior. If in case the user preference is unavailable, his recent consumed items are
used as a query to the system to fetch similar items. A typical use-case is when a user
makes a purchase of an item in an e-commerce site in a guest account.
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The factors used to represent the given item are often the characteristics of the
item. Hence it is primarily a domain dependent approach. As it does not rely on
user-generated transaction information, it does not suffer from cold starting problem
like other approaches. But, characterizing items are usually non-trivial (e.g video rec-
ommendations) and not always possible for some domains. Also cross-domain recom-
mendation (such as books to video) is a non trivial prediction problem.

2.2.2.2 Collaborative filtering

In this approach, the system utilizes similarity relationship between users and items to
provide recommendations. Unlike content based filtering, collaborative filtering utilizes
crowd intelligence to provide recommendations. It is achieved by taking into account
of the consumption behavior of users similar to the given user and deciding based
on collective preference. The relationship can be visualized as a bi-partite graph and
is usually represented as a sparse matrix R with row representing users and column
representing items. As it is primarily driven by the user interaction data it requires
minimum domain information and can be bootstrapped easily for a new domain.

Collaborative systems is broadly classified based on the way in which the collec-
tive preferences are aggregated, as neighborhood based approach and model based
approaches.

Neighborhood based: In neighborhood based approaches, the rating matrix is
used as it is with minimal preprocessing. The rating matrix is stored as it is in memory
and utilized during prediction. It is also known as memory based approach. The
neighborhood includes all other elements (user/item) or just the top-n elements as in
K-Nearest Neighbor search or a thresholded set of elements as in ε-Nearest Neighbor
search. These techniques require a similarity measure defined on user-user or item-item.
Some of the common similarity measures are Jaccard coefficient, Pearson coefficient and
cosine similarity. The similarity measure is often used to weight the contribution of the
other elements during aggregation.

Based on the axis of aggregation they can be classified as user-to-user, item-to-item
and hybrid approaches. In user-to-user approach, the following sequence of operations
is performed.

1. The given user is compared against all other users in the database based on a
similarity measure to find neighbors.

2. The neighbors are filtered based on rank or threshold.

3. The items consumed by the given user’s neighbors are aggregated. The aggrega-
tion can be simple or weighted.
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4. The final aggregated set of items are post-processed to get the final prediction
set. The post processing could be a ranking based as in top-n prediction or a
threshold based filtering.

The item-to-item recommendation is very similar to user-to-user recommendation, with
the weighting by item instead of by user and aggregation at user level compared to item
level.

Neighborhood based collaborative filtering systems were one of the first successful
techniques used to provide recommendations. GroupLens [RIS+94] was one such pio-
neering system that used user-to-user similarity to predict relevant articles in usenet
groups. Similar systems were proposed for other domains such as music [SM95] and
video recommendation [HSRF95]. Amazon.com is widely credited for employing neigh-
borhood based recommender system in a large-scale commercial setup [LSY03]. Their
system suggested products based on their similarity with other products. An alterna-
tive view of item-based collaborative filtering from user based is described in [SKKR01].
Such systems are evaluated in a top-n setup in [DK04] along with effects of normaliza-
tion. The Netflix recommender systems competition [BL07] served as a catalyst and
accelerated many new recommendation techniques.

Model based: In this approach, the rating matrix is used to build statistical mod-
els and these models are used during prediction. It also un-necessitates storing the
rating matrix after model building. Much of the statistical models comes from ma-
chine learning domain. These models are usually compact and hence memory efficient.
However model building often requires extensive training data, making it unsuitable for
bootstrapping new systems unlike neighborhood based approaches. Some of the com-
mon statistical approaches used are data clustering, classification and dimensionality
reduction techniques like factor models, Singular Value Decomposition (SVD), topic
models and matrix factorization. Section 2.2.5 describes matrix factorization used in
our approach in detail.

The success of dimensionality reduction techniques in information retrieval prompted
similar endeavors in collaborative filtering. Eigentaste [GRGP01] was one of the first
model recommender systems. It used principal component analysis to complete rating
matrix. The rating matrix is dense and generated by rating jokes in a web interface.
Billsus and Pazzani proposed using SVD in collaborative filtering in [BP98], followed by
its success in Latent Semantic Analysis (LSA) of text documents. Applying dimension-
ality reduction techniques is examined in detail in [SKKR00]. A probabilistic variation
of LSA called Probabilistic LSA is proposed in [Hof04] to tackle collaborative filtering.
The formulation is not fully Bayesian, leading to difficulties in generalizing to new en-
trants. It is addressed in Latent Dirichlet Allocation (LDA) [BNJ03] by introducing
Dirichlet priors. Model based collaborative filtering includes other diverse approaches
such as factor analysis [HH05], Bayesian methods [BHK98], data clustering [UF98] and
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restricted Boltzmann machines [SMH07].

2.2.2.3 Hybrid systems

Given that these two methods have their pros and cons as discussed before, it is natural
to treat them as subsystems and combine them to get the best of both. These are called
hybrid approaches. There are many ways to combine them:

1. Simple aggregation of results from the subsystems

2. Weighted aggregation

3. Using one approach as a preprocessing step to the other

4. Using one approach as a post processing step to the other

5. Integrating one system into the other in a tightly coupled way

2.2.3 Prediction

Given a recommender systems, there are many ways in which one can query it. The
most common scenarios are testing whether the given item might interest the user. A
lesser common scenario is coming with a ranked subset of items for the given user. It
can be also be used to group disparate kinds of items as a single package, like a tourist
itinerary.

2.2.4 Evaluation techniques

There are standard measures that can evaluate the prediction performance of recom-
mender systems. The prediction measure depends on the type of the prediction.

For a simple testing of whether the given item will interest the user, the measure
starts at atomic rating level and is aggregated for all the ratings. Some of the common
measures are root mean square error and mean absolute error.

Root mean square error: The root mean square error materializes the deviation
of the predicted rating r̃u,i from the actual rating ru,i. This error is squared and
averaged across all non-zero elements of the rating matrix to get mean squared error:

RMSE(R′) =
√√√√ 1
‖R′‖0

∑
ru,i∈R′

(r̃u,i − ru,i)2 (2.1)

where R′ is the restriction of R to the testing set.
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Mean absolute error: The mean absolute error materializes the absolute devia-
tion of the predicted rating r̃u,i from the actual rating ru,i, averaged across all non-zero
elements of the rating matrix:

MAE(R′) = 1
‖R′‖0

∑
ru,i∈R′

|r̃u,i − ru,i| (2.2)

Precision and Recall: For an unordered set of predictions, precision and recall
are commonly used as an evaluation measure. Given a set of items as ground truth Iu,
precision measures the ratio of relevant items that are retrieved to the actual number
of retrieved items I′u for a given user. Recall measures the ratio of relevant items to the
size of the ground truth set for the given user. Precision and recall at a system level
are found by averaging the values across all the users in the system.

Precision = 1
|U|

∑
u∈U

|I′u ∩ Iu|
I′u

(2.3)

Recall = 1
|U|

∑
u∈U

|I′u ∩ Iu|
Iu

(2.4)

For a ranked list of prediction, the popular measures are Mean Average Precison
(mAP), Normalized Discounted Cumulative Gain (NDCG) and Mean reciprocal rank
(MRR).

Mean Average Precision: Mean Average Precision atK (mAP@K) given in (2.5)
is defined as mean over the Q profiles in the test dataset of the average of the precisions
at rank 1 ≤ k ≤ K. The precision(k) refers to the fraction of correct items out of the
top k predicted items. The mAP is sensitive to the order of the correct results and is
a better gauge of the quality of a ranking.

mAP@K = 1
Q

Q∑
q=1

(
1
K

K∑
k=1

precisionq(k)
)
. (2.5)

NDCG metric scales the relevance scores of individual items based on its position
in the ranked list and normalizes it to the ground truth. MRR calculates the expected
reciprocal of the rank of the first relevant item in the list.

2.2.5 Matrix Factorization

Among various model based collaborative filtering techniques, dimensionality reduction
techniques is gaining popularity in the recent years. Broadly, the approach consists of
factorizing the huge and sparse R matrix into smaller dense factor models. Some
of the popular dimensionality reduction techniques are SVD and variants and matrix
factorization.
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In latent factor models, each user u is associated with a vector pu ∈ Rd. Similarly,
item i is associated to a vector qi ∈ Rd. This allows to approximate the rating ru,i.

The latent vectors pu and qi of all users and items are represented together as d×|U|
matrix P and d×|I| matrix Q. Matrix factorization assumes a linear factor model and
approximates R by the low rank matrix R̂ = P>Q: rating ru,i is estimated by means
of inner product estimation r̂u,i = p>u qi. A loss function L(ru,i, r̂u,i) quantifies the
deviation of the approximation to the observed value. It is often the squared error
1
2(ru,i− r̂u,i)2 that is used as the loss function. The error is summed across all observed
ratings, measuring the aggregate residual error, to be used as objective for optimal
approximation [SJ+03]:

L(P,Q) =
∑

observed <u,i,ru,i>

L(ru,i,p>u qi) (2.6)

2.2.5.1 Regularization

The objective (2.6), if minimized only on observed data might lead to undesirable
results. As the parameter space of the factors are unbounded, it usually leads to
large values. This results in poor generalization to unseen data [SJ+03], also called
overfitting. Regularization terms controlled by a parameter λ are typically used to
tune the model capacity and ensure generalization. We consider the one proposed by
Koren et al. [KBV09], which leads to minimization of the combined objective function:

Rλ(P,Q) =
∑

observed <u,i,ru,i>

L(ru,i,p>u qi) + λ

2 (‖pu‖2 + ‖qi‖2) (2.7)

2.2.5.2 Optimization

Techniques to efficiently find the latent factors (P,Q) minimizers of the objective func-
tion Rλ(P,Q) of (2.7) work either offline or online. Offline techniques such as alternate
least squares, gradient descent or online approaches such as the stochastic gradient de-
scent proved to work well. Alternate least squares work by considering the factorization
as bi-directional least squares and optimizes by alternating least squares approximation
along rows and columns. This is equivalent to do least square approximation on user
factor followed by item factors and so on. The convergence is fast, but the least squares
approximation is an expensive operation for large datasets.

Gradient descent, a first-order optimization algorithm, works by taking steps pro-
portional to the negative gradient of the objective function (2.7). The proportionality
constant, called learning rate, controls the speed of convergence. The usual approach
is to sweep the entire training set, before updating the parameters. For large data sets,
this is expensive leading to slow convergence. Hence stochastic variants are used which
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use random subsets of the original data to take small steps. Though it leads to high
variance, the estimation-updates are inexpensive, which leads to faster convergence.

At each step, the stochastic gradient descent [KBV09] randomly picks an observed
rating ru,i and optimizes the parameters with respect to that rating. This update
relies on the gradient of the loss function with respect to parameters, controlled by the
learning rate η:

pu ← pu − η∇uRλ(P,Q) (2.8)
qi ← qi − η∇iRλ(P,Q) (2.9)

where

∇uRλ(P,Q) = ∂L(ru,i, r̂u,i)
∂r̂u,i

∂r̂u,i
∂pu

+ λpu,

∇iRλ(P,Q) = ∂L(ru,i, r̂u,i)
∂r̂u,i

∂r̂u,i
∂qi

+ λqi.

As the algorithm is sequential, only the latent factors have to be stored in main
memory. The updates can be parallelized as they are local only to the parameters
corresponding to a particular rating. Hence the algorithm can scale well to increasing
data size.

2.2.5.3 Experimental protocol

The factorization has two levels of optimization: the low level fitting optimal parame-
ters for the latent factor models and the high level finding optimal hyper parameters.
Some of the common hyper parameters are learning rate, regularization constant and
model size. Using same training data for optimizing the hyper parameters and the
parameters might be optimistic and incorrect. Hence a subset of training data is seg-
regated as validation to fit the hyper parameters. A separate set is used to test the
overall performance of the system. To sum up, the given rating matrix is partitioned
into three: training, validation and test sets. The usual ratio is {80%, 10%, 10%} for
training, validation and test sets respectively. The procedure is to train on the training
set for different hyper parameters and pick the ones that perform best on the valida-
tion set. The hyper parameter search is a linear search on different possible values.
If there are more than one hyper parameter, then it is called grid search to search in
combinations. Finally, the performance of the system on the test set is reported as the
overall system performance.

2.2.5.4 Variants

Matrix factorization, being a popular technique with diverse applications such as infor-
mation retrieval, signal processing, pattern recognition, visualization, bio-informatics,
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etc is well studied with numerous contributions. We emphasis approaches that solve
collaborative filtering among these. Early approaches were based in Singular Value
Decomposition (SVD), factorizing a large matrix into two orthonormal matrices and a
diagonal singular matrix. The input matrix is highly sparse with the rest are missing
values and SVD is not very efficient in handling these missing elements. Srebro et
al. proposed an efficient factorization technique by optimizing only on observed val-
ues [SJ+03]. They also regularized the optimization by means of L2 norm of the latent
factors. [KBV09] further improved it by weighting the regularization of factors based
on frequency, as we described before.

Another variant is formulating as a large-margin optimization, where objective is
to target low-norm instead of low rank [SRJ04]. It was improved in [RS05, WKS08].
Weimer et al. provided a ranking based framework with maximum margin optimization
in [WKLS07].

Matrix factorization is also studied as a parametric estimation problem in a Bayesian
setup. Salakhutdinov et al. introduced probabilistic formulation for matrix factoriza-
tion with advanced complexity control techniques [SM08b]. The Bayesian formulation is
further improved in [SM08a, RFGST09]. We describe the Bayesian formulation [SM08b]
in the following sub section as one of our contributions is related to it.

2.2.5.5 Bayesian matrix factorization

The bayesian approach assume a probabilistic linear model where in the sparse rating
model is decomposed using a linear model with gaussian noise. It is also common to
assume a simple Gaussian prior distribution of latent factors:

P[P,Q] = ΠU
u=1P[pu] ·ΠI

i=1P[qi] (2.10)

with P[pu] and P[qi] are Gaussian distribution N (0d, λ−1Id), with 0d the all zero d× 1
vector, Id the identity matrix of size d and λ > 0. The conditional pdf of the rating
knowing the latent factors (i.e. the likelihood) is:

P[ru,i|P,Q] ∼= N (p>u qi, ν2), with ν = 1 (2.11)

This implies that, once some ratings are observed, the a posteriori distribution of the
latent factors is

P[P,Q|observed < u, i, ru,i >] ∝ e−Rλ(P,Q) (2.12)

with Rλ(P,Q) defined in (2.7). Therefore, minimizing this functional as proposed
in expression (2.7) amounts to chose (P,Q) as their MAP (Maximum A Posteriori)
estimates [MS07].

An alternative parameter estimation approach is through posterior estimation. The
issue then is how to draw according to such a complex a posteriori distribution. Recent
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papers show that perturbating the stochastic gradient descent by some Gaussian noise
is an efficient way to simulate such a sampling [WT11, VZT15]. This technique is
called Stochastic Gradient Langevin Dynamics (SGLD). In our context, this would
mean replacing (2.8) and (2.9) by:

pu ← pu − η∇uRλ(P,Q) +√ηBP (2.13)
qi ← qi − η∇iRλ(P,Q) +√ηBQ (2.14)

with BP and BQ ∼ N (0, 1).

2.3 Sketching techniques

Sketching is an active area of development, particularly in a streaming setup. A data
structure maintaining a particular synopsis of the data irrespective of the history of
updates can be called a sketch [Cor11]. The space complexity of these techniques is
usually sub-linear and the techniques also easy to update and query anytime. These
techniques are highly interesting to scenarios where the linear complexity of naively
storing is demanding, requiring a sub-linear storage complexity. Some of examples for
such cases are user click logs and financial data.

2.3.1 General properties

Streaming setup

As sketching techniques are primarily designed to address statistical queries in stream-
ing data, it is imperative to define the streaming setup.

Let us assume a set of items Ω and for a given item e ∈ Ω, a quantity associated to
the item arrive as a sequence {ue,t}Tt=1: at time t, we receive a quantity related to item
e whose value is ue,t. If the elements arrive in an order and only once, then it is time-
series data and the ue,t is not considered as update. If there is no such order and the
elements can repeat, then the stream type depends on the domain of the updates. If the
domain of ue,t is non-negative then the stream is called cash register model, otherwise
as turn-stile model.

With such data stream as input, the objective is to answer statistical query qe
related to any item e ∈ Ω. It is desirable to have a sketch structure S(k,w) that has
a redundancy factor k and storage space w such that runtime complexity is O(k) and
storage complexity O(w × k) with k � w � N , where N is the number of observed
elements.
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Linear transformation model

The reduced storage space is usually achieved by performing a linear transformation
of the input data before updating the structure. This can be summarized as follows:
S ← S ⊕ P ∗ D, where S is the sketch structure, P is the linear projection and D is
the input data. This property also allows it to compose well, as the sketch of union of
dataset subsets can be computed by operating on the sketch of these subsets, without
datasets themselves. The projection matrix P can be ranging from a dense matrix to
sparse matrix and even sparser matrix defined by a set of hash functions defined on the
input.

Estimation Characteristics

The quality of estimation is usually quantified by means of (ε, δ) parameters. These
allow to understand how close are our approximation to the actual quantity. The
most common approximation guarantees are additive, as defined in definition 2.3.1
that measures absolute error and the multiplicative approximation (definition 2.3.2),
which measures the relative error.

Definition 2.3.1. An estimation q̃e by Sketching technique TS is said to be (ε, δ) ad-
ditive approximate to the true quantity qe, if P[|q̃e − qe| > ε] ≤ δ

Definition 2.3.2. An estimation q̃e by Sketching technique TS is said to be (ε, δ) mul-
tiplicative approximate to the true quantity qe, if P[|q̃e − qe| > εqe] ≤ δ

Tasks and Techniques

Sketching techniques are in general query focused, designed and built to answer spe-
cific query patterns. This factor distinguishes it from other conventional techniques
like sampling, that generalizes well. This property allows it to take advantage of the
nature of the query to conserve space. Some of the common query patterns and the
corresponding techniques are:

• Set membership: Bloom filter

• Frequency approximation: count min sketch, count sketch

• Frequency moment approximation: AMS sketch

• Similarity approximation: Johnson Lindenstrauss transformation, Locality
sensitive hashing
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2.3.2 Sketching for streaming

2.3.2.1 Set membership

The objective is to answer approximate membership queries on a set, with the elements
arriving in a streaming fashion. In such setup two types of errors are possible: mis-
reporting presence (false-positive) and missing an item (false-negative). An effective
data structure should try to minimize both and improve space efficiency also. The most
popular technique, called Bloom filter is described in detail.

2.3.2.2 Set membership with Bloom filter

The Bloom filter [Blo70] is a data structure proposed to check for the presence of
elements in a finite set probabilistically. In terms of streaming setup, the update ue,t
is the element e itself arriving sequentially over time and the query is to check if
e ∈ E = {ue,t|1 ≤ t ≤ T} ⊂ Ω or not at time T . It consists of a uni-dimensional array
B of w bits and a set of k hash functions {hj(·)}kj=1. Each hash function hj(·) yields
an index hj(e) for any item e ∈ E in the w bit array.

Update: The given element ue,t = e is given as input to the k hash functions hj(·),
to get k indices in the w bit array B. These k bits are then set to 1 irrespective of its
previous state: ∀j, 1 ≤ j ≤ k, bhj(e) ← 1.

Query: The query qe is an indicator for the presence of item e in E: qe = IE(e).
The query element e is given as input to the k hash functions hj(·) to be used as index
in the w bit array B. If all the k bits are on, then item is reported to be present in the
set, and not otherwise: q̃(e) = ∧(bhj(e))kj=1.

Analysis: The k hash functions share the storage of the w bits and this induces
collision. The collision leads to false positives, as the k bits for an item might have
been set by some of the other N items, even if the given item was not updated. The
false positive probability is approximately P[q̃e = 1|qe = 0] ≈ (1 − exp

−kN
w )k, whereas

false negativity is P[q̃e = 0|qe = 1] = 0. It is evident that increasing the storage space
or reducing the N decreases the probability of false positivity. Unlike other data struc-
tures like linked list or arrays, Bloom filters provide constant-time update and query
guarantee as it is only a function of k and k � N .

Variants: Bloom filter was devised by B.H Bloom [Blo70] in 1970 and is used in
many domains like networking, caching, search engines, etc. Bloom filter being one of
the first-of-a-kind probabilistic data structures, invited many improvements and exten-
sions. One such extension is the ability to maintain count with (≈ 4-bit) counter cells in
place of bits. This allows deletions to some extent. It was first introduced in [FCAB00]
and improved in [BMP+06], [PSS07] and [RKK14]. Bloomier filter [CKRT04] extends
Bloom filter’s membership query to an approximate associative array. [DR06] adds
dynamicity property to Bloom filter focussing on streaming data. [ABPH07] improves
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the scalability of Bloom filter to meet ever-growing demands. Not limiting to these,
Bloom filter has inspired many popular sketching techniques solving diverse problems
like frequency approximation [Mut05, CCFC02] and norm approximation [DKS10].

2.3.2.3 Frequency approximation

Frequency approximation algorithms aim to estimate frequency of elements, for which
the updates arrive in a streaming fashion. The updates could be negative as in turn-
stile model or strictly non-negative as in cash register model. We describe two such
techniques: Count-min sketch and count sketch.

2.3.2.4 Frequency approximation with count-min sketch

Count-min sketch is proposed to approximate frequency information of set of elements
arriving in a cash register model [Mut05]. It is represented by a k×w matrix C and a
set of pairwise independent hash functions {hj(·)}kj=1.

For a set of elements e ∈ Ω and a set of associated quantities ve to each element e,
we observe updates to the element quantities over time; update to element e being ue,t
and the update stream being < ue,t >

T
t=1 | ue,t ∈ N. Our objective is to monitor the

quantities over the time: v(t+1)
e = v

(t)
e + ue,t.

Update: Upon the reception of the update ue,t of the e-th quantity, k entries of
matrix C are updated: ∀j, 1 ≤ j ≤ k cj,hj(e) ← cj,hj(e) + ue,t.

Query: The query q
(T )
e is to return the aggregated updates of a given item e:

q
(T )
e =

∑T
t=1 ue,t = v

(T )
e . At time T , given a query index e, minimum of {cj,hj(e)}kj=1 is

returned as an approximation of v(T )
e : q̃(T )

e = min{cj,hj(e)}kj=1.
Analysis: The hash indices returned at each row Cj of C is {1, . . . , w} and w � N .

This induces collision in each row and leads to over estimation of the count. Taking
minimum of k such rows minimizes such over estimation error: q̃(T )

e ≥ q(T )
e . In terms of

(ε, δ), the space required by the C array is of O(1
ε log 1

δ ), for the estimate to be within
ε : P[|q̃(T )

e − q(T )
e | < ε

∥∥∥q(T )
−e

∥∥∥
1
] > δ, where ‖·‖1 is the L1 norm and q(T )

−e is the vector of
all the query elements except e.

2.3.2.5 Frequency approximation with count sketch

Count sketch [CCFC02] is a probabilistic data structure designed to maintain approx-
imations of quantities constantly updated in a turnstile model data stream, but with
sub-linear space complexity. It was originally proposed to find heavy hitters(high fre-
quency items), but can also be used to approximate the frequencies in turnstile model.
Structurally it is very similar to count-min sketch.

For a set of elements e ∈ Ω and a set of associated quantities ve to each element e,
we observe updates to the element quantities over time; update to element e being ue,t
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and the update stream being < ue,t >
T
t=1 | ue,t ∈ R. Our objective is to monitor the

quantities over the time: v(t+1)
e = v

(t)
e + ue,t.

A count sketch is represented by a k×w matrix C and two sets of pairwise indepen-
dent hash functions {hj(·), sj(·)}kj=1. The address hash function hj(·) maps an element
of Ω to the set {1, ..., w} and the sign hash function sj maps an element of Ω to {±1}.

Update: Upon the reception of the update ue,t of the e-th quantity, k entries of
matrix C are updated: ∀j, 1 ≤ j ≤ k

cj,hj(e) ← cj,hj(e) + sj(e) · ue,t. (2.15)

Query: The query q
(T )
e is to return the aggregated updates of a given item e:

q
(T )
e =

∑T
t=1 ue,t = v

(T )
e . At time T , given a query index e, mean or median of

{sj(e)cj,hj(e)}kj=1 is returned as an approximation of q(T )
e . The median operator is

more robust to noise [CCFC02] but the mean is easier to compute. In the sequel, we
choose the mean operator: q̃(T )

e = k−1∑k
j=1 sj(e)cj,hj(e).

Analysis: The update and query run-time complexity are O(k) like count-min
sketch, whereas the estimation accuracy is modified by the inclusion of sign-function.
For a given (ε, δ) and sketch width and depth of w = O(ε−2), k = O(log 1

δ ) respectively,
the estimation accuracy is bounded by P[|q̃(T )

e − q(T )
e | < ε

∥∥∥q(T )
−e

∥∥∥
2
] > δ, where ‖·‖2 is

the L2 norm.
Variants: Count sketch is an influential technique, with extensions solving related

problems like norm approximation, parameter representation in machine learning, etc.
The hashing technique of count sketch influenced a faster version AMS sketch [AMS96],
described in section 2.3.2.7. A special case of count sketch, with k = 1, called Feature
hashing [WDL+09] is used in machine learning applications for efficient parameter rep-
resentation. The hash based addressing with collisions ensures compact representation
of parameters, thereby realizing large-scale learning applications. It also influenced a
sparse dimensionality reduction described in [DKS10, KN10]. In [PP13], it is used to
approximate polynomial kernel, going by the name Tensor sketch.

2.3.2.6 Frequency moment approximation

The objective of frequency moment approximation is to estimate the Fp moment of a set
of elements e ∈ Ω, with updates to the elements arriving in a streaming fashion. Here
frequency refers to counting the number of time an element appears in the stream: ve.
In terms of streaming setup, the update ue,t = 1 to the element e arrives sequentially
over time and the query is to estimate qp =

∑N
i=1 |ve|p, which is a global statistic about

the observed elements.
Fp estimation is an interesting problem with diverse applications. An equivalent

problem is the Lp norm estimation. We describe the popular AMS Sketch below.
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2.3.2.7 Frequency moment approximation with AMS sketch

AMS sketch, one of the earliest known sketches, tries to approximate the F2 moment
by utilizing a set of four-wise independent sign functions and array of counters that are
updated based on the sign of hashed element. The original version described in [AMS96]
consists of an array C of size w and w four-wise independent sign functions {sj(·)}wj=1
mapping from Ω to {±1}. The estimation is further improved by maintaining k such
independent copies of arrays.

Update: For an update ue,t = 1 to component e, each element in the array C is
updated by the sign-transformed value of the update: ∀j ∈ [w], c(t)

j ← c
(t)
j + sj(e) ·ue,t.

If k multiple arrays are maintained, the same process is repeated for each array.
Query: The Fp moment is reported by averaging the p raised entries of the C

array: 1
w

∑w
j=1 |C

(T )
j |p. If k independent copies are maintained, then median of these k

copies are used to report the final value.
Analysis: In terms of (ε, δ), the sketch required w = ε−2 sized array with k =

O(log 1
δ ) repetitions to make sure that |q̃2 − q2| < εq2 with δ probability. Update and

query cost are O(wk).
To reduce the update and query complexity, a hash based indexing is introduced

similar to count-min and count sketch. This new techniques is referred as fast AMS
sketch. It uses an additional set of k pair-wise independent hash functions {hj(·)}kj=1
mapping from Ω to [w] that finds the array cell to be updated (queried) rather than
updating (querying) all w cells. Hence it reduces the update and query complexity by
a factor of w without impacting the estimation accuracy.

2.3.3 Sketching for similarity approximation

Similarity computation is central to many domains such as nearest neighbor search,
ε-neighbor search, manifold learning and visualization. Similarity computation in high
dimension is non-trivial due to the curse of dimensionality. There are many indexing
techniques that approximate similarity computation in higher dimensions.

2.3.3.1 Similarity approximation with Johnson Lindenstrauss transform

Similarity preserving transforms have a wide range of applications including dimension-
ality reduction, nearest neighbor search, compressed sensing, visualization, etc. The
objective is to come up with a mapping which transforms a d dimensional vector to k
dimensional vector such that k < d and similarity among data points are preserved.
The Johnson Lindenstrauss lemma forms the foundation for such transforms. It is
stated in lemma 2.3.1

Lemma 2.3.1. For a Rd space with a set X of N points, there exists a linear map
f(·) : Rd → Rk with k = O(ε−2logN), such that for any two vectors u,v ∈ X 2 :
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(1− ε) ‖u− v‖ ≤ ‖f(u)− f(v)‖ ≤ (1 + ε) ‖u− v‖.

Given the existence of such linear map, the challenge is to find such a linear-map.
The linear-map is also called as projection matrix. There are several such known
distributions used to prove the lemma 2.3.1 :

• In the source paper [JL84] they proved it using the notion of Lipschitz constant.

• In [FM87] they assumed a random subspace of dimension k and its projection
matrix.

• In [IM98] the projection matrix is sampled from 2-stable distribution (Gaussian)
for approximating L2 norm.

Variants: The naive approach requires k × d operations, which is expensive if it
has to be repeated many times. This becomes increasingly evident in streaming cases,
where updates to the entries of the d-dimensional vectors arrive as a stream. Hence
many contributions were proposed to improve the runtime of the projection. Achlioptas
et al. [Ach01] simplified the projection operation by sampling the entries from {±1},
making it database friendly. Ailon and Chazelle [AC06] improved it by using projection
matrix with sparsity defined by a probabilistic distribution. They also pre-condition
the vector with a diagonal matrix with {±1} entries followed by a Walsh-Hadmard
matrix Hd to make it work on sparse inputs also. In [LAS08], Ailon et al. utilized
Lean-Walsh matrices to decrease the projection runtime down to O(d).

Another line of approach is to increase the sparsity of the projection matrix, so that
update time is reduced. This is desirable in streaming setup, where the entries of input
vector arrives as a stream. In [Mat08], they established the sparsity limit of projection
matrix achievable by resetting individual entries to zero. Hence Dasgupta et al. [DKS10]
proposed an alternative approach using k-wise independent hash functions that directly
address dimensions in the low-dimensional vector space. Kane et al. derandomized the
technique in [KN10] and improved the sparsity by reducing the collisions among the
hash addressing in [KN14].

2.3.3.2 Similarity approximation with locality sensitive hashing

Locality sensitive hashing (LSH) is widely known and successful among similarity ap-
proximation techniques. LSH aims to approximate Lp norm by taking advantage of the
content directed hash collisions. In LSH, similar items (by normalized correlation) are
mapped to same hash code with high probability. In practice, many such hash functions
are used to create a compact representation called signature. The similarity computed
on these signatures is used as an approximation to the original similarity measure. It
is also common to use the hash functions to map elements to buckets, thereby indexing
elements based on similarity.
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Definition 2.3.3. Locality sensitive hash functions: A family of functions defined
on a Rd metric space with distance function D is called Locality sensitive, if it satisfies
the following properties:
∀(u,v) ∈ (Rd)2, R > 0, c > 1

• if D(u,v) ≤ R then P[h(u) = h(v)] ≥ P1

• if D(u,v) ≥ cR then P[h(u) = h(v)] ≤ P2

and P1 > P2.

There are many LSH functions defined to approximate well-known similarity mea-
sures. Of them, we will describe the popular approximation techniques : Minhash
that approximates Jaccard similarity, p-stable projection that approximates Euclidean
distance based similarity and project-sign that approximates Cosine similarity.

2.3.3.3 Similarity approximation with Min hashing

Min hashing [BCFM98] aims to preserve Jaccard similarity between two sets A ⊂ [N ]
and B ⊂ [N ]: J (A,B) = |A∩B|

|A∪B| . The technique utilizes a set of k random permuting
functions {hj(·) : [N ] → [N ]}kj=1. The elements of a given set is randomly permuted
using the permuting function hj(·) and the minimum index of the permuted set is
retained: bj(A) = min({hj(e)}e∈A). The probability of two sets two have the same
minimum is equivalent to the Jaccard similarity. This property is used to approximate
the similarity J̃ (A,B).

The variance of such technique is high and hence to reduce it, k such permutations
are computed to get k minimum indices: B(·) = [bj(·)]kj=1. This vector of k indices
is the signature of the set with k logN size. The similarity approximation J̃ (A,B) is
computed by averaging element-wise collisions: 1

k

∑k
j=1[bj(A) == bj(B)].

Variants: Min hashing was originally proposed to find approximately duplicates
in documents using keyword shingles [Bro97]. Since then it has been applied to many
other domains with new improvements and extension. The k different hash permu-
tations used in Min hashing is an expensive operation on large item data sets. One
simplification is to permute once and use k-minimum indices, improving indexing speed
at the cost of accuracy. In restricted min hashing [MS03], the permutation is replaced
by a k-wise independent hash function to improve the indexing speed. A notable im-
provement is b-bit min hashing technique [LK11], in which only b-bits of the min-index
is used to reduce the space utilization. Another similar technique called conditional
random sampling [LCH06] uses combination of permutation and random sampling to
approximate L1 and L2 distance on sparse datasets.



26 Background

2.3.3.4 Similarity approximation with p-stable distributions

In section 2.3.3.1, it is shown that N points in Rd can be projected to k(� d) dimen-
sional vector space. This property is used to map Rd space points to an integer vector
by using k hash functions. The hashing function is defined as hj(·) : Rd → Z with
hj(x) = bwj ·x+aj

b c.
Here aj is uniformly sampled from [0, b] and wj is a d-dimensional vector with

entries independently sampled from stable distributions [DIIM04]. A distribution is
said to be p-stable, if

∑n
i=1 aiXi of i.i.d variables with Xi ∼ D distribution has the

same distribution as (
∑n
i=1 |ai|p)1/pX, where X ∼ D. As we are interested in L2 norm,

we use gaussian distribution which is a 2-stable distribution. To compare two vectors,
their hash code is compared for exactness. To improve the estimation, k such hash
functions are used and the average of k such similarities is used as an approximation,
similar to section 2.3.3.3.

LSH based on 2-stable distribution, also called as Euclidean LSH, has strong connec-
tions with lattice based methods for low-dimensional embedding. Some of the popular
approaches are described in [PJA10]. The technique also depends on multiple parame-
ters, making it important to understand their impact and to find the optimal parameter.
Stanley et al. studied parameter estimation of p-stable based LSH family in [SLH12].

2.3.3.5 Similarity approximation with cosine sketches

Binary coding LSH aims to approximate cosine similarity of unit-norm vectors in Rd

space. They are also called as cosine sketch [Cha02]. Cosine sketches are usually
constructed with random projections, each being defined by a vector wj , j = 1 . . . k.
For any vector x ∈ Rd, each projection produces a bit:

bj(x) = sign(w>j x). (2.16)

The sketch of x is just the concatenation of these bits:

b(x) = [bi(x)]ki=1 (2.17)

Let assume that the projection direction is random and uniformly drawn on the
unit sphere. The hyper-plane whose normal vector is wj separates two vectors x and
y with a probability related to the unoriented angle θ between x and y. This gives the
following key property:

P[bj(x) 6= bj(y)] = θ

π
. (2.18)

The expectation of the Hamming distance between the sketches is also related to this
probability if the wj are independently drawn: E(dh (b(x),b(y))) = kP[bj(x) 6= bj(y)].
Therefore, the Hamming distance gives an unbiased estimator of the angle as

θ̂ = π

k
dh (b(x),b(y)) . (2.19)
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The cosine function is decreasing over the range of the unoriented angle [0, π]. There-
fore, ranking vectors by increasing order of the Hamming distance between their sketches
and the sketch of a query approximates the ranking by increasing angle or decreasing
cosine similarity.

Several researchers have proposed extensions to this initial framework, e.g., by
proposing other kernel estimations [RR07a, WTF09a, RL10, GL11]. Note that this
approach has been introduced in different communities: For instance, spectral hash-
ing [WTF09a], universal quantizer [Bou12], and `2 binary sketches [DCL08] are very
similar. These constructions are designed for the `2 distance and share the idea of
cyclic quantization. The same idea is considered and analyzed in a compressive sensing
framework [Bou12].

2.3.4 Sketching techniques for machine learning

Application of sketching techniques for machine learning is not a new topic, with numer-
ous previous works. We highlight some of the works, which align well with the context
of the thesis. Random projection is well known as a preprocessing technique applied
on the input data, that is usually followed by supervised learning. In [WDL+09], the
authors use hashing to map feature space into a fixed-width representation to reduce
the sparsity of input.In [LSMK11], the authors use a variant of min hashing to reduce
the feature space, and integrate it with popular linear supervised learning algorithms.
Feature maps that approximate kernel matrices are another recent active research area
and some of the popular approaches are [RR07b, PP13].

On the other hand machine learning has improved the optimality of sketches such
as compact binary codes [SH09, NB11, WTF09b, KD09b]. A complete summary of
such compact binary code techniques is presented in [TFW08b]. Also in [Lib13], SVD
is used to efficiently find item frequencies using the notion of “Frequent directions”.

2.3.5 Sketching techniques for recommender systems

When it comes to recommender systems, sketching techniques are often used to repre-
sent user profiles. In case of memory based systems, the user profile is nothing but a
function of the set of items consumed. There are many ways to approximate such a set.
In [AGK12] the authors used Bloom filter to approximate such a set and exchanged
with other users to compute similarity. LSH is another suitable candidate to perform
efficient similarity search. A variant of LSH is adapted to measure proportional inter-
section in collaborative systems in [BPR09]. MinHash, an instance of LSH is shown
to improve the scalability of collaborative filtering in [DDGR07]. A variant of minwise
hashing called b-bit minwise hashing is incorporated into linear learning algorithms
in [LSMK11]. In [KKMM12] they used Johnson-Lindenstrauss transform to reduce the
sparse item-set to compact dense low-dimensional real vector. In [MDDC15] they used
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count sketch to succinctly represent co-occurrence counts that can be used to identify
similar profiles.

When it comes to model based systems, the model is often latent factors, which
are themselves space-efficient. Still there were attempts to take advantage of the com-
pactness property of sketches to further-efficiently represent these factors. Feature
hashing [WDL+09] is applied to matrix factorization in [KWS10]. One of our contribu-
tions is well related to this work as count sketch is a generalization of their hash sketch.
Although LSH has a compact representation, it is a discrete structure and not suitable
for continuous optimization problems like matrix factorization. Still there are existing
works such as [ZZ12, WWY15, LHDL14] that utilize compact binary codes for model
representation.

2.4 Differential privacy

We choose differential privacy [Dwo06a] as the data sanitization criterion. Differen-
tial privacy argues that absolute privacy is impossible to achieve and instead settles to
relative level. It was originally devised to answer queries on databases without compro-
mising on row level privacy. Since then it has garnered wide spread attention among the
research community for its theoretical rigorousness and robustness to auxiliary informa-
tion. The privacy objective is achieved by means of a randomizing mechanism, which
takes the database as input and perturbes the output such that it is not differentiable,
to an extent, from its neighboring databases that differs by a row.

2.4.1 Problem definition

Definition 2.4.1. A randomized algorithm A is ε-differentially private if for all pairs of
neighboring databases D,D′ that differs by 1 row (|D−D′|1 = 1) and all s ⊆ Range(A)

P[A(D) = s] ≤ eεP[A(D′) = s] (2.20)

A weaker variant of ε-differentially private is the (ε, δ)-differentially private [DKM+06],
can be seen as a probabilistic variant in which the guarantees of differential privacy
hold with probability of 1− δ. It is stated as follows:

Definition 2.4.2. A randomized algorithm A is (ε, δ)-differentially private if for all
pairs of neighboring databases D,D′ that differs by 1 row (|D − D′|1 = 1) and all
s ⊆ Range(A)

P[A(D) = s] ≤ eεP[A(D′) = s] + δ (2.21)

The promise of differential privacy is that any individual will not have additional
impact, whether he decides to contribute in the released data or not. This is differ-
ent from conventional techniques, where the promise is that individuals will not be
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affected at all. The argument is that any individual cannot control the outcome of
prediction even if he refuses to contribute. Hence absolute privacy is impossible to
achieve. Instead, preserving the uncertainty about the contribution of the individual
in a given database is more realistic. It not only mitigates re-identification risks but
also encourages more people to contribute to the data release.

2.4.2 Post processing

The second promise of differential privacy is its immunity to auxiliary information,
thanks to the randomization factor. This can be formally defined as:

Property 2.4.1. Given a (ε, δ)-differentially private algorithm A: D → R, let f :
R → R be any arbitrary randomized mapping. Then the composition f ◦ A is (ε, δ)-
differentially private.

It suggests that any post processing of the outcome of a (ε, δ)-differentially private
algorithm by any other mechanism will not reduce the (ε, δ) bounds.

2.4.3 Sequential composition

A desirable property of differential privacy is composability. Often the data processing
pipeline is composed of many subsystems and each such sub-systems might require
different level of access to database. Therefore it is imperative to talk about differ-
ential privacy guarantees at a system level, rather than at the granular subsystem
level. This necessitates understanding how these heterogenous differentially private al-
gorithms compose together and what is the information leakage when considering the
whole system. Thankfully the (ε, δ) of the composition of these differentially private
algorithms are simple enough to be just sum of (ε, δ) of individual algorithms, when
queried on the same database. It is defined as follows:

Property 2.4.2. Given set of algorithms {Ai : D → R}ni=1 that provides (εi, δi)- differ-
ential privacy, then composing them such that A×(·) = (Ai(·))ni=1 provides (

∑n
i=1 εi,

∑n
i=1 δi)

differential privacy.

Composition also helps in defining the privacy budget of the system and deciding
how to allocate or limit privacy leaks at various stages.

2.4.4 Computation model

The computation model in general could be interactive or non-interactive. Interactive
mechanisms perturbate the output for a given statistical query and are done indepen-
dently for each such queries. Non-interactive mechanisms, on the other hand, randomize
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the output once-for-all and release the data, which will be used for all future queries. In-
teractive mechanisms can tune the perturbation to a given query and hence can improve
the utility of the system, without compromising privacy, compared to non-interactive
mechanisms. But, answering successive queries from the same database means diluting
the privacy guarantees.

2.4.5 Variants

The ε and (ε, δ) form of differential privacy, though answering majority of privacy
concerns, still leaves some questions unanswered. One concern is the data security.
What happens if there is a security breach and someone could access the internal state
of the system. Pan privacy aims to tackle such a scenario. Its objective is to maintain
a differentially private internal state such that is robust to both inference and security
attacks.

Another strong requirement is maintaining differential privacy under continuous
observation. A typical use case is a streaming data setup, wherein incremental data
arrives anytime and the system can be queried anytime in between.

A third variant is local privacy, which guarantees privacy at user level. The conven-
tional techniques make assumptions about the trusted curator, who manages the data
release. Local privacy makes minimal assumptions about such trusted third-parties and
randomizes the response at user level to achieve stronger privacy [KLN+11].

The (ε, δ) version is weaker than ε but still becomes unrealistic for certain scenar-
ios like machine learning systems. Even hard-to-infer statistics used by such learning
systems have very high ε values, which gives an impression of privacy dilution. Concen-
trated differential privacy [DR16] aims to tackle such use-cases. An algorithm is said to
be (µ, τ)-Concentrated differentially private if the privacy loss is centered around at µ
and the probability of the loss exceeding µ is τ sub-gaussian distributed. It is primarily
tailored to the cases where there are repeated computations of the same variable, a
case where the usual (ε, δ) measure is unrealistic.

2.4.6 Mechanisms

As such, differential privacy is a measure and not a mechanism by itself. There are
many mechanisms that are proposed in the past that can achieve differential privacy
including randomized response, Laplacian mechanism [Dwo06b], exponential mecha-
nism [MT07], Bayesian inference [WFS15], smooth sensitivity and sample-aggregate
frameworks [NRS07].
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2.4.6.1 Laplacian mechanism

Laplacian mechanism achieves ε-differential privacy by adding Laplacian noise to the
output. The amount of noise added depends on the properties of data, in particular
the sensitivity of the data. The L1-sensitivity of a function f , δfL1 , is defined as the
maximum variation in the function output for all 1-row neighboring databases. It is
shown in [Dwo06b] that adding noise sampled from Lap(ε−1δfL1) distribution to the
function output is ε-differentially private. Laplacian mechanism is generic and most
popular of all other mechanisms.

2.4.6.2 Exponential mechanism

The Laplacian mechanism only cares about the L1-sensitivity and is independent of
the actual output of the function. It is desirable in some cases to selectively prefer
sub-ranges of the function outputs. Exponential mechanism [MT07] caters to these
cases and is shown to be superior to Laplacian mechanism. It is primarily designed
to privately conduct auctions with revenue maximizing objective. The preference is
usually expressed by means of a utility function u(·, ·) : (D,R) → R which takes both
the database D and an output r and returns a utility score u(D, r). Given such a utility
function with L1 sensitivity, δu, it is shown in [MT07] that an algorithm that outputs
A(D) = r ∈ R where P[A(D) = r] ∝ exp

εu(D,r)
2δu is ε-differentially private.

2.4.6.3 Bayesian inference

A third class of mechanism is Bayesian sampling. It is primarily used in a machine
learning setup, where the parameter estimation is performed in a Bayesian setup. It was
observed in [WFS15] that performing sampling on posterior distribution is differentially
private to an extent. It is notable that this privacy comes as free, without any special
effort. It is shown in [WFS15] that if the log-likelihood sensitivity is bounded by B:
supD;θ∈Θ| logP[D | θ]| ≤ B, then one sampling according to the posterior P[θ | D] is
4B-differentially private, irrespective of the prior. In practice, 4B could be very large
making the privacy level unusable. In [WFS15], they also propose a mechanism to scale
the likelihood by max( ε

4B , 1) to make it ε-differentially private. When the epsilon is
very low, the likelihood scaling makes posterior distribution smoother.

The challenge is then on finding an efficient approximate sampling algorithm as
exact sampling on large sets is intractable. One such approximate sampling is Stochastic
Gradient Langevin Dynamics as described in section 2.2.5.5

2.4.7 Attack models

Even though the characteristics of perturbation based methods are well defined, a
study from adversarial stance is essential to assess the information leakage. The attack
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models are often probabilistic with optional auxiliary information. The complexity
of such models increase with the assumptions these models make and improves the
information gain often limited by the theoretical guarantees of the techniques.

A detailed survey on inference attacks on sanitized data can be found in [LGK08]
and [CL08]. Common attacks include eigen-analysis [GW06, HDC05], MAP estima-
tion [HDC05], Independent Component Analysis (ICA) [GW07] and distribution anal-
ysis [AA01]. MAP estimation and ICA make direct assumptions on the distribution
of the original data, whereas distribution analysis and our approach estimate it from
publicly available information. In addition, eigen-analysis makes even stronger as-
sumptions on the representation of data and thus is not generic enough to apply to
all representations. Furthermore, the possibility of using probabilistic inference tech-
niques to attack sanitized histogram data has been illustrated in [DS98] and [Dob00].
In these works, bounds of records count are estimated from histogram of attributes
coming from a Markov Chain Monte Carlo (MCMC) simulation. Application of prob-
abilistic inference techniques for parameter estimation on differentially private data is
illustrated in [WM10]. In this work, the authors have also experimentally validated
their approach using MCMC on parameter estimation of logistic regression and prob-
abilistic inference of principal components. Although their objective was not directly
the reconstruction of data, their approach demonstrates that probabilistic inference is
possible on differentially private data.

2.4.8 Differential privacy and machine learning

Since its introduction, Differential privacy has found applications beyond answering
statistical queries including machine learning [CMS11]. Applying Differential privacy
to machine learning is an active topic of research with many notable work. The works
differ on the stage in which the randomization mechanism is added to the system. Initial
approaches were advocating at the input and output level. In [CMS11], they advocated
incorporating at the optimization level and demonstrated its superiority over output
level perturbation. Differential privacy is also applied to online learning at [JKT11].

A detailed survey of different techniques is available at [SC13, Dwo08, JLE14].
[FS10] applied differential privacy to data mining. [KLN+11] studied the theoretical
properties of learning under differential privacy setup. [WFS15] proved that Bayesian
posterior sampling is differentially private to an extent.

As for matrix factorization, [BFK+15] compares different ways to ensure differential
privacy, among them, the Laplace mechanism on the inputs or on the updates of the
stochastic gradient descent. In [KT13],they proposed a differentially private low rank
approximation using exponential mechanism. In [LWS15], they use Bayesian posterior
sampling to perform differentially private matrix factorization.
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2.4.9 Differentially private recommender systems

Recommender systems are based on personal data which are sensitive information.
Simple recommender systems depend on just basic information like demographics and
personal preferences. Advanced systems depend additionally on dynamic and incre-
mental data sources like item consumption and feedback, which are even critical. This
requires efficient privacy preserving mechanisms that can hide both item consumption
and feedback information from user. Such privacy preserving mechanism can be char-
acterized by the privacy measure, the kind of mechanism, the computing model and the
privacy level. We are primarily interested in recommender systems based on differential
privacy measure.

2.4.9.1 Mechanism

The most common differentially private mechanism used in recommender systems is
Laplacian. In case of neighborhood based systems, this involves adding Laplacian
noise to co-occurrence counts [MM09]. It is also used in model based systems such as
matrix factorization [BFK+15]. A recent innovation is utilizing Bayesian mechanism for
efficient differentially private learning. It involves Bayesian sampling on latent factor
posterior distribution to make the learning differentially private [LWS15].

2.4.9.2 Computing model

The computing model in privacy-aware recommender systems can be classified by the
nature of the server: trusted server or untrusted server. In the trusted server, a cen-
tralized server does most of the computations leaving only presentation and feedback
to the clients. This means that the data is stored at this server and released in a
responsible way, such that information leakage is minimized. This also means that
perturbation/encryption happens at this centralized server. It is assumed that such
centralized service provider is not malicious and won’t collude with other malicious
third-parties. In the untrusted server case, no such guarantees are assumed. Hence
noise is added at the input source level by individual users leading to local privacy, a
stronger form of differential privacy.

2.4.9.3 Privacy level

The privacy can be defined at different levels: event level and user level. The event
level is simpler of these two. The mechanism aims to assure that releasing the database
does not change the odds of associating the user with an event. These events could be
implicit item consumption or explicit feedback. These events are sometimes accompa-
nied by contextual information like geo-location, timestamp, referral, platform, which
are sensitive too. An even harder privacy assurance is at the user level [LWS15]. Here
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the objective is to obscure that the user contributed to the database at all. One way
to approach user level privacy is the aggregation of all events associated with the user.

2.4.9.4 Data source

These mechanisms also differ by the type of data that it uses (described in 2.2.1). We
describe two common data sources: binary data representing item consumption and
real data representing item rating.

Binary data: Mechanisms involving binary data are simple as the objective is to
hide just the item presence information. Hence the differential privacy definition is
similar to the one defined in section 2.4. In this case, a user profile is just a set of all
items that he consumed in the past.

Definition 2.4.3. Differential privacy for user profile: A randomized function
F : Dn → Dn is ε-differentially private, if for all neighboring profiles x,x′ ∈ Dn and
for all t ∈ Dn:

P[F(x) = t] 6 eε · P[F(x′) = t] .

This probability is taken over all the coin tosses of F and e is the base of the natural
logarithm.

Two profiles x and x′ are said to differ in at most one element or said to be neighbors
if they are equal except for possibly one entry.

Real data: Mechanism that involve explicit feedback are more complex as the data
source (i.e. ratings) is usually in R. Let us consider the case of a trusted recommenda-
tion system with rating(event) level privacy. In this case, differential privacy convinces
users to submit their ratings by showing that an attacker querying the recommenda-
tion system has difficulty in deciding whether a particular rating has been used by the
system to perform prediction. Even with the side-information that user u rates item i

by the true value ru,i, the attacker cannot say whether the user submitted or not this
information.

Denote by D the dataset of observed ratings used training the system, and D′ =
D ∪ {< u′, i′, ru′,i′ >} s.t. these two datasets differs by one rating. Denote by r̂u,i(D)
the output of a recommendation system when trained on dataset D and queried about
user u and item i.

Definition 2.4.4. A trusted recommender system with rating level privacy is ε-differentially
private, if ∀(a, b) ∈ R2, a < b, ∀u ∈ U,∀i ∈ I

P[a < r̂u,i(D) < b] ≤ eεP[a < r̂u,i(D′) < b]. (2.22)
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2.4.10 Differentially private mechanisms using sketching techniques

Differential privacy enabling mechanisms depend on external source of randomness to
generate the required noise. The usual methodology is to separate the computation from
noise generation and mixing them at a point. Introducing sketching techniques changes
the procedure significantly. Sketching techniques are also randomized by design, making
it a good source of random noise. The approximate answering of sketching techniques
resemble differentially private techniques albeit non-compact representations. Also if
the output is a sketch, the noise can be added to the sketch directly. Hence the synergy
of sketching techniques and differentially private mechanisms is irrefutable.

2.4.11 Differentially private recommender systems using sketching
techniques

When it comes to recommender systems, sketching techniques are often used to rep-
resent user profiles. The sketch structure helps in selectively masking identifying indi-
vidual consumed items, but facilitating efficient aggregation at the same time.

A centralized recommender system through anonymized channel is proposed by the
Alcatel-Lucent Bell labs team [NAB11, ABK+13]. In this system, the user feedback
and request are routed through anonymous channel called Tor network and recom-
mendations are aggregated among like-minded groups. Identification of the group and
addressing is made possible with the help of (LSH) [IM98]. Though the scheme pre-
serves privacy by means of closed-group aggregation, the availability of uncorrupted
information among theses closed groups makes it vulnerable to linkage attacks. Also
the privacy guarantees are hard to control and measure. Nevertheless, the proposal is
more of a framework, leaving room for differentially private data aggregation within
the discovered groups.

We introduce two existing techniques that are evaluated by our joint-decoder attack
model, described in Chapter 3. In [AGK12] they used Bloom filter to approximate the
set of consumed items and exchanged with other users to compute similarity. They
also perturbate the bits of the Bloom filter before publishing to enforce ε-differential
privacy. The perturbation is achieved by flipping the bits of Bloom filter using noise bits
sampled from Bernoulli distribution. The technique is called BLIP (BLoom filter and
FlIP). Another recent approach [KKMM12] utilizes Johnson-Lindenstrauss transform
to reduce the sparse item-set to compact dense low-dimensional real vector. Then they
perturbate the profile vector using random noise sampled from Gaussian distribution.
This technique guarantees (ε, δ)-differential privacy. They also compare it against the
classical randomized response technique [War65].

In [MDDC15], they proposed a recommender system by aggregating co-occurrence
count in a privacy preserving way. They utilize count sketch to aggregate the frequency
information and perturb to enforce differential privacy. [MS06] used sketch to provide



36 Background

privacy. Their notion of privacy is very similar to differential privacy except that the
loglikelihood ratio is bounded by a linear parameter instead of exponential.

2.5 Conclusion

In this chapter, we described the background necessary to understand our contributions
towards using sketching techniques for building scalable and privacy-aware recommender
systems. As we see, differential privacy and sketching techniques have many things in
common: inexactness, approximations, query-focussed. Yet the intersection of differen-
tial privacy and sketching techniques is not given its due importance. We emphasize
the connections in the following chapters through our contributions, so that it will be
evident that differentially private recommender systems with sketching techniques are
realizable. Sketching techniques also come with general benefits like scalability and
problem-specific benefits like regularization. We also study these benefits through ex-
perimental analysis.

We also observe that differential privacy and model based recommender systems
using machine learning techniques has complementary objectives. While differential
privacy strives to mask identification of individual data, machine learning strives to
generalize from such a data source. The connection is even strongly evident from
regularization point of view. We demonstrate it in the following chapters. We mainly
touch upon the intersection of differential privacy and machine learning and sketching
techniques.



Chapter 3

Challenging differentially private
compact user modeling
mechanisms

Outline
In this chapter, we focus on existing techniques that enable privacy-friendly
compact representation of user profiles using sketching techniques. These
compact representations are used to perform neighborhood based collabora-
tive filtering systems in a scalable way. In these techniques the profile of a
user is sanitized by a non-interactive differentially private mechanism before
publication.

We consider two existing schemes offering a differentially private represen-
tation of profiles: BLIP (BLoom-and-flIP) and JLT (Johnson-Lindenstrauss
Transform), described in sections 3.1 and 3.2. For assessing their security
levels, we play the role of an adversary aiming at reconstructing a user pro-
file. We compare two inference attacks, namely single and joint decoding.
The first one decides of the presence of a single item in the profile, and
sequentially explores all the item set. The latter strategy decides whether a
subset of items is likely to be the user profile, and considers all the possible
subsets.

Our theoretical analysis shows that joint decoding is more powerful than
single decoding. We also propose a joint decoding method based on the
Monte-Carlo Markov Chain algorithm (MCMC). The theoretical analysis is
described in 3.3 and a practical implementation is proposed in section 3.4.
We tested experimentally the validity of our approach on datasets composed
of real user profiles. We describe our experimental setup and the results

37
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in section 3.5. The results obtained demonstrates the superiority of joint
decoding, while also giving useful insights on how to set the differential
privacy parameter ε.

Neighborhood based collaborative filtering systems are one of the promising meth-
ods in recommender systems. These systems produce relevant suggestions based on
user behavior by finding similar users and aggregating their suggestions. A technical
description of neighborhood methods were available in section 2.2.2.2. Finding similar
users require computing some kind of pairwise similarity between the profiles of differ-
ent users. Some of the challenges that such systems face include privacy and scalability
issues.

The standard neighborhood based methods naively represent the user as a sparse
vector, with non-zero elements representing the items consumed by the given user. With
ever-increasing number of users and items, this naive representation pose scalability
challenges. The storage of user profile as sparse vectors turns to be expensive with
growing item consumption. Also comparing such user profiles require sparse vector
similarity estimations which proves to be costly with increasing user database size.
Sketching techniques comes to rescue as an efficient solution to compactly represent the
user profiles. Sketch structures are simple and compact by setup and facilitate efficient
insert, update and comparison operations. A detailed technical discussion of sketching
techniques was presented in section 2.3. The inherent randomness of sketch structure
provide privacy to an extent but is not well quantified and might be inadequate.

The inadequacy is a serious threat for the sensitive information of the profile database
and some users may even refuse to participate if they have no guarantees on the pri-
vacy of their profiles. The privacy concern can be mitigated by using a more stronger
privacy preserving notion such as differential privacy. Differential privacy is originally
proposed to ensure row level privacy in a database. The concept of differential privacy
and related mechanisms were described in section 2.4. In our setting, the input of the
computation is the profile of a user and the randomized output will be a perturbed
version of a compact representation of this profile (e.g., a Bloom filter or a random pro-
jection). The popular differentially private mechanisms enforce privacy by randomizing
the output of this computation, and this independently of the auxiliary information
that the adversary might have gathered. Differential privacy definition pertaining to
user profile was presented in section 2.4.9.4.

One of the usual limits of differential privacy is that each time a differentially private
computation takes place, the user loses a little bit of privacy (as measured by the value of
the privacy parameter ε). Therefore, if this computation takes place too many times, the
user may spend all his privacy budget and remains with no privacy left. The adversary
is then able to reconstruct almost entirely the user’s profile. These mechanisms are
called interactive. Interactive mechanisms require a two-way communication protocol
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between the curator (the entity in charge of the database) and the client performing
the query. Therefore, the curator has to be online in order to receive the query and
prepare the associate response to this query. However, if the system is dynamic there
might be no upper bound on the maximum number of similarity computations that can
occur and therefore an interactive mechanism would be of limited applicability.

On the other hand, a non-interactive mechanism computes some function from the
original database and releases it once and for all, which corresponds to a one-way
communication protocol. The output released by the non-interactive mechanism can
later be used by anyone to compute the answer to a particular class of queries (usually
not just a single specific query), without requiring any further interactions with the
curator. It is important to understand that the answer is computed from the output
released by the non-interactive mechanism, thus after publishing this output the curator
can go offline. One particular type of non-interactive mechanism is the generation of a
synthetic dataset that allows the answer to certain class of queries (but not necessarily
all) to be approximated. Examples of non-interactive mechanisms for differential privacy
include [BNO08, LZWY11].

For these reasons, a scalable and privacy friendly approach is to compactly repre-
sent the user profile using sketching technique and sanitize the profile of a user with a
non-interactive mechanism compliant with the concept of differential privacy before his
publication. Hence, we are interested in two non-interactive mechanisms offering a com-
pact differentially private representation of profiles: BLIP (BLoom-and-flIP) [AGK12]
and JLT (Johnson-Lindenstrauss Transform) [KKMM12]. Both schemes have been de-
signed to protect the privacy of the profile while still enabling efficient computations of
distances and similarities on the differentially private representation of the profiles.

The privacy level offered by differential privacy is quantified by the parameter ε,
which shares an inverse relationship with the amount of privacy offered: A low ε is
equivalent to high privacy level and vice versa. Though differential privacy seals an
upper bound on the maximum amount of information leakage, it does not thoroughly
describe the information gain from an adversarial stance. This raises a question on the
amount of information gained by performing inference attacks on the publicly released
user profiles. In specific, we are interested in describing the privacy level by means
of mutual information between the sanitized user profile and the original user profile.
The mutual information point of view provides the necessary theoretical motivation
to devise efficient inference attacks on the observed profile to predict and reconstruct
the original user profile. We start with a simple inference attack called single decoder
and then propose an advanced inference attack called joint decoder. The single decoder
reconstructs the profile by testing items individually where as the joint decoder tests
group of items. We analytically find that the mutual information present in a group-
tested item-set is higher than testing individual items.

Our approach is inspired by a problem appearing in several applications such as in
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group testing [MF11, KST96], traitor tracing [FGC12, MF12], multiple access channels,
or compressed sensing. The problem is described in general terms as follows. We observe
a vector which is the aggregation of some reference patterns plus some noise. These
patterns are called codewords in traitor tracing or atoms in compressed sensing. They
can be binary (group testing, traitor tracing) or real vectors (multiple access channel,
compressed sensing). The set of all reference patterns is publicly known, however we
don’t know which subset was used to produce the observation. The aggregation pro-
cess is also known (except in traitor tracing and compressed sensing). It is either a
component-wise process, which is deterministic (like a sum or a XOR) or probabilistic
(components are randomly selected) depending on the application. The observation is
a noisy version of the aggregation. Again, the distribution of the noise is assumed to be
known. The goal is to infer which reference patterns were used to create the observation.
In these fields of application, it has been proven that jointly measuring the likelihood of
a subset of reference patterns being at the root of the observation is theoretically more
reliable than measuring the likelihood of a single pattern at a time.

Though the theoretical justifications favor joint decoder in place of single decoder,
the combinatorial cost of testing all possible groups out of a set items grows expo-
nentially, making it impractical. This computational bottleneck is not unique to our
decoding problem, but common among all Bayesian estimation problems. Efficient ap-
proximation techniques exists such as Variational inference and Markov Chain Monte
Carlo (MCMC) techniques. We use Markov Chain Monte Carlo technique to approxi-
mate the estimation and use it to propose a practical decoder owing to its practicality
and popularity.

Together with single decoder, these two practical decoders are used perform infer-
ence attack that help to assess the privacy guarantee provided by the BLIP and JLT
mechanisms. We also provide an analysis of the utility and the protection offered by
BLIP and JLT against these attacks, by deriving theoretical bounds on the resulting ap-
proximation error generated by a specific value of the privacy parameter. Furthermore,
we evaluate experimentally the trade-off between privacy and utility achieved by these
mechanisms. These attacks helps to better understand the privacy guarantees offered
by a differentially-private mechanism, while also enabling the privacy practitioner to
tune ε experimentally.

In the next sections, we describe two non-interactive mechanisms that have re-
cently been proposed. The first mechanism is based on randomizing a Bloom filter
representation of the profile [AGK12] while the second relies on the application of the
Johnson-Lindenstrauss transform and the addition of noise [KKMM12]. Both mecha-
nisms preserve some global properties such as the ability to compute a distance between
two profiles while hiding the details of the profiles themselves.
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3.1 BLIP

The main objective of BLIP [AGK12] is to prevent the adversary from learning the
presence (or absence) of an item in the profile of a user by observing the Bloom filter
representation of this profile. Our theoretical analysis provided in Section 3.3 is based
on the model of profiles and the BLIP sanitization described thereafter.

3.1.1 Setup of BLIP

The setup that we consider for the theoretical analysis is the following. We assume that
a profile P is a list of c items randomly picked from a set of N ∈ N? possible items:
P = {j1, . . . , jc}. We denote the set of items by [N ], with [N ] , {1, . . . , N} and the set
of all possible profiles by P. This set is a subset of the power set of [N ] and we have
|P| =

(N
c

)
. For the moment, we make the assumption that c is publicly known, but this

hypothesis will be lifted later by inferring this value directly from the Bloom filter.
The profile is first encoded in the form of a Bloom filter, which is a binary string

of L bits. Each item j ∈ P is hashed through K different hash functions (h1, . . . , hK).
Each hash function yields a position hk(j) in the Bloom filter, pseudo-randomly selected
based on the identifier of the item j. One simple technique to implement this is to rely
on K cryptographic hash functions modulo L. We call the codeword Xj associated to
item j the following string of L bits:

Xj(`) =
{

1 if ∃k ∈ [K] such that hk(j) = `,

0 otherwise.
(3.1)

The Bloom filter associated to the profile P = {j1, . . . , jc} is denoted by BP and
computed as the aggregation of the codewords:

BP = Xj1 ∨ . . . ∨Xjc , (3.2)

in which ∨ denotes the bit-wise (inclusive) OR operator. Our presentation of Bloom
filters is different than usual to stress the link with our general problem.

The BLIP mechanism adds noise to the Bloom filter representation of a profile before
publishing it. We denote the output of BLIP by B̃P :

B̃P = BP ⊕N, (3.3)

in which⊕ corresponds to the bit-wise logical (exclusive) XOR operator and N ∈ {0, 1}L
is a random binary string of size L, whose symbols are i.i.d. (independent and identically
distributed) as a Bernoulli distribution B(pε) (i.e. , N(`) ∈ {0, 1} and P[N(`) = 1] = pε,
∀` ∈ [L]). Alaggan, Gambs and Kermarrec [AGK12] proved that the BLIP mechanism
ensures ε-differential privacy for the items of the profile if

pε = 1/(1 + eε/K). (3.4)
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3.1.2 The simple model

We assume that the hash functions produce independently random outputs, which
means that the probability that hk(j) “points” to a given index is 1/L. This assumption
implies that the bits of the codewords can be modeled as independent Bernoulli random
variables: Xj(`) ∼ B(p), ∀(j, `) ∈ [N ]× [L] with

p , P[Xj(`) = 1] = 1−
(

1− 1
L

)K
. (3.5)

For a random P composed of c items, we have BP (`) ∼ B(πc), ∀` ∈ [L], with

πc , P[BP (`) = 1] = 1− (1− p)c = 1−
(

1− 1
L

)cK
. (3.6)

As for the BLIP, B̃P contains i.i.d. random symbols B̃P (`) ∼ B(π̃c) with

π̃c , P[B̃P (`) = 1] = (1− pε)πc + pε(1− πc). (3.7)

3.1.3 More complex models

This subsection presents two possible extensions of the simple model, in which we no
longer assume that c is fixed in advance and publicly known.

To account for this, we introduce the probability P[|P | = c], in which |P | denotes
the number of items in P . Then, we have to replace πc by:

πc → π =
∑
c>0

πcP[|P | = c]. (3.8)

This new expression leads to π̃ = (1−pε)π+pε(1−π). Not knowing c may not be a big
challenge for the adversary because he can easily infer the number of items in a profile.
The quantity ω(B̃P )/L, in which ω(.) is the Hamming weight of a binary string (the
number of bits set to one), is an unbiased estimator of π̃c. Inverting (3.7) is possible
when pε 6= 1/2 (i.e. , ε > 0) since pε is public:

π̂c = ω(B̃P )/L− pε
1− 2pε

, (3.9)

which in turn gives an estimator ĉ by inverting (3.6). In the same way, a confidence
interval for π̃c based on ω(B̃P )/L yields a confidence interval [cmin, cmax] on c.

An even more refined model consists in taking into account the popularity of the
items. Indeed, popular items impact the Bloom filter by ensuring that some of its bits
are more likely to be set to one. To tackle this issue, we still pretend that the bits
are independent but distributed according their own Bernoulli law: BP (`) ∼ B(π(`)),
∀` ∈ [L]. The same model holds for the BLIP symbols: B̃P (`) ∼ B(π̃(`)), with π̃(`) =
(1− pε)π(`) + pε(1− π(`)).



JLT 43

3.2 JLT

Kenthapadi and co-authors [KKMM12] proposed another mechanism to prevent the
adversary from learning the presence (or absence) of an item in the profile, although
their scheme tackles a different data type (i.e., real vector). In the sequel, we denote
this proposal by JLT because it is based on the Johnson-Lindenstrauss Transform. A
technical description of JL Transform is presented in the section 2.3.3.1.

3.2.1 Description

The profile is encoded in the form of a real vector of length L as follows. A codeword
Xj associated to item j is a real vector. Its L components have been independently
and identically drawn such that Xj(i)

i.i.d.∼ N (0, 1/L), ∀(i, j) ∈ [L]×N . The codebook
(X1,X2, · · · ,XN ) is generated once for all and is public. Profile P is encoded into vector
YP =

∑
j∈P Xj , then the user adds a noise N (private data) before publishing ỸP =

YP + N. The authors of [KKMM12] recommend a white Gaussian noise: N(i) i.i.d.∼
N (0, σ2). According to [KKMM12, Lemma 2], if

L ≥ 2(log(N) + log(2/δ)), σ ≥ 4
ε

√
log(1/δ) and ε < log(1/δ) (3.10)

then this mechanism complies with (ε, δ)-differential privacy (for 0 < δ < 1).

3.2.2 A simple probabilistic model

The adversary does not know the profile P and therefore he models the observation
ỸP as a white Gaussian noise since ỸP is the sum of c + 1 white Gaussian noises.
As these patterns are statistically independent, their powers sum up so that ỸP (i) i.i.d.∼
N (0, σ2 + c/L). We assume now that σ2 is a recommended noise power, and thus that
it is a public parameter. This allows the adversary to estimate the number of items in
profile P in the following manner:

ĉ = L

L− 1

L∑
i=1

ỸP (i)2 − Lσ2. (3.11)

Consider now the case in which the adversary knows that the item j is in the profile.
This knowledge stems into a refined statistical model of the observation: ỸP (i) i.i.d.∼
N (Xj(i), σ2+(c−1)/L). In the same way, knowing the profile P ends up with ỸP (i) i.i.d.∼
N
(∑

j∈P Xj(i), σ2
)
.

3.3 Theoretical analysis

In this section, we propose two decoders that can be used by an adversary to reconstruct
the profile of a given user out of his public representation. This analysis is detailed for
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the BLIP mechanism, but similar concepts hold for the JLT scheme. The expressions
of the information theoretical quantities are given in subsection 3.3.3.1 for BLIP and
subsection 3.3.3.2 for JLT.

3.3.1 Single decoder

From the observation of one BLIPed representation b̃, the adversary would like to infer
which item belongs to the original profile. The adversary can conduct this inference by
analyzing the L symbols of b̃ and making an hypothesis test about the presence of item
j in the underlying profile.

• H0: Item j is not in the profile, which means that the observed BLIP symbols
are statistically independent from the symbols of codeword Xj : P[B̃P (`), Xj(`)] =
P[B̃P (`)]P[Xj(`)], ∀` ∈ [L].

• H1: Item j belongs to P , and thus there is a slight dependency between the
symbols of the observed BLIP and that of codeword Xj : P[B̃P (`), Xi(`)] =
P[B̃P (`)|Xi(`)]P[Xi(`)], ∀` ∈ [L].

For a given item, this test may make two types of error: 1) False positive rate α1:
The probability of detecting the presence of an item that does not belong to the profile;
2) False negative rate α2: The probability of missing the presence of an item that
belongs to the profile. Information theory gives an upper bound on the performance of
the test thanks to the Stein’s lemma. More precisely, for a given α2, the probability of
false positive cannot be lower than

α1 ≥ e−(I(B̃P ;X)+1)/(1−α2), (3.12)

in which I(B̃P ; X) is the mutual information between a BLIPed filter and the codeword
of an item of the profile.

This test concerns a particular item, but an adversary that wants to reconstruct
the whole profile needs to repeat it for the whole ensemble of size N . This repetition
increases the global probability of false positive η1:

η1 = 1− (1− α1)N−c . Nα1, (3.13)

in which we assume that Nα1 � 1 and c � N . η1 is the probability that at least one
item not in the profile is detected as belonging to the profile. At the end, for targeted
error probabilities (α2, η1), inequality (3.12) constraints the size of the item ensemble
the adversary can deal with:

log(N) ≤ I(B̃P ; X)
1− α2

+ log η1. (3.14)

The last inequality stresses the important role of I(B̃P ; X). Subsections 3.3.3.1
and 3.3.3.2 provide expressions of this quantity for the BLIP and JLT mechanisms.
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3.3.2 Joint decoder

Let us consider another strategy. From the observation b̃, the adversary would like to
test whether P was the original profile that gave birth to this BLIPed representation.
The difference with the previous approach is that the presence of items are not tested
independently but jointly, hence the name “joint decoder”.

Basically, the analysis is the same as previously except that the information theoretic
quantity is now I(B̃P ;P ) = I(B̃P ; (Xj1 , . . . ,Xjc)) and that the ensemble of profiles is
much bigger. Roughly, log(|P|) ≈ c logN , thus we have:

log(N) ≤ I(B̃P ;P )
c(1− α2) + log η1. (3.15)

Stated differently, the performance of this approach is driven by the quantity I(B̃P ;P )/c.
Theorem [Mou08, Eq. (3.4)] states that I(B̃P ; (Xj1 , . . . ,Xjc))/c ≥ I(B̃P ; Xj), which
means that considering the items jointly yields better performances. Subsections 3.3.3.1
and 3.3.3.2 provide expressions of this quantity for respectively the BLIP and JLT mech-
anisms. For this first scheme, subsection 3.3.3.1 shows that the difference
I(B̃P ; (Xj1 , . . . ,Xjc))/c−I(B̃P ; Xj) can be be substantial for practical setups. We also
provide upper bounds simply depending on ε.

3.3.3 Information theoretic bounds

3.3.3.1 BLIP mechanism

We have I(B̃P ; X) = H(B̃P ) − H(B̃P |X), in which H is the (Shannon) entropy of a
random variable. With the simple model detailed in Section 3.1.2, we get that

I(B̃P ; X) = L(hb(π̃c)− (1− p)hb(π̃c−1)− phb(pε)), (3.16)

with hb(p) the entropy of a Bernoulli distribution B(p) (in nats):

hb(p) , −p log(p)− (1− p) log(1− p) = hb(1− p). (3.17)

The probabilities π̃c and π̃c−1 appear in (3.16) because we assume that the profiles
are of identical size c. When considering more complex but also more practical models,
this difference vanishes as π̃c and π̃c−1 are replaced by π̃:

I(B̃P ; X) ≈ Lp(hb(π̃)− hb(pε)). (3.18)

As for the joint decoding, Bloom filter being a deterministic process, we write:

I(B̃P ;P ) = I(B̃P ; BP ) = H(B̃P )−H(B̃P |BP )
= H(B̃P )−H(N) = L(hb(π̃c)− hb(pε)). (3.19)
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Figure 3.1: (Left): Mutual information of the joint decoder I(B̃P ;P )/c in nats as a
function of (c, L). (Right): Difference I(B̃P ;P )/c− I(B̃P ;X) in nats as a function of
(c, L).

Example.
Figure 3.1 (left) shows I(B̃P ;P )/c as a function of c and L. From a particular (c, L),

we set
K =

⌊
log(2)L

c

⌋
, (3.20)

which is the recommended number of hash functions in Bloom filter design, and we
apply the model of Section 3.1.2 with ε = 20. For a given c, too small L means too
few observed symbols for reliably estimating the profile. Too large L implies a big
K and therefore, pε tends to 1/2 according to (3.4). Figure 3.1 (right) shows that
I(B̃P ;P )/c − I(B̃P ; X) can be substantial: a joint decoding allows the adversary to
tackle up to 3.5 (i.e. e1.25) times more items.

Upper bounds.
As ε → 0, pε → 1/2 as well as π̃, so that I(B̃P ; X) → 0 and also I(B̃P ;P ) → 0.

When ε = 0, observing the BLIP is useless since it brings no information. In this
situation, neither the single nor the joint decoding can do anything. We can bound the
quantity in common in both expressions as follows:

hb(π̃c)− hb(pε) ≤ log(2)− hb(pε) ≤ log(2)− log
(
1 + eε/K

)
+ ε

K

eε/K

1 + eε/K

≤ ε

K

eε/K

1 + eε/K
≤ ε

K
. (3.21)

Typical Bloom filter setup.
Figure 3.1 shows that estimating an important number of items is possible provided

that L grows linearly with c. Indeed, it is also common practice in the design of Bloom
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filter to set:
L =

⌈
−c log(Pfp)

(log 2)2

⌉
, (3.22)

in which Pfp is the probability of false positive of the Bloom filter (i.e., to detect the
presence of an item not belonging to P ). Inserting (3.20) and (3.22) in the expression
of the mutual informations, we get quantities independent of c:

1
c
I(B̃P ;P ) ∼ − log(Pfp)

log(2)

(
1− 1

log(2)hb
(

(1 + 2
ε

− log(Pfp) )−1
))

, (3.23)

I(B̃P ; X) ∼ log(2).1
c
I(B̃P ;P ). (3.24)

This shows that if the Bloom filter is properly designed, the power of the attack does not
depend on c but solely on the values of − log(Pfp) and ε. Moreover, the joint decoder
is 1/ log(2) ∼ 1.44 more “powerful” than the single decoder.

3.3.3.2 JLT mechanism

The same analysis holds for the JLT representation described in Section 3.2. The main
difference lies in the fact that we manipulate differential entropies because the JLT
representation is a real vector. The quantities at stake respectively for the single and
joint decoders are upper bounded, thanks to conditions (3.10)

I(ỸP ; X) = L

2 log
(

1 + 1
(c− 1) + Lσ2

)
≤ ε

32 + 2ε(c− 1)L, (3.25)

I(ỸP ;P )
c

= L

2c log
(

1 + c

Lσ2

)
≤ ε

32 , (3.26)

3.4 Practical decoders

The previous section can be summarized as follows: joint decoding is theoretically more
powerful than single decoding. However, no complexity argument has been so far taken
into account. This section deals with this issue by proposing practical implementations
of a single and a joint decoder. Again, we take the example of BLIP but our approach
is more generic as it works also with JLT.

3.4.1 Single decoders

In practice, a single decoder computes from the observed BLIPed profile a score sj for
any item j ∈ [N ], which reflects the likelihood of belonging to the profile (i.e., the
most likely item has the highest score). The score is compared to a threshold to decide
whether or not the item should be included in the reconstructed profile. The complexity
of this single decoder is O(N) since it is exhaustive and goes through all the possible
items.
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As a practical implementation, we propose the Maximum Likelihood decoder in
which the score sj = log P[B̃P=b̃|j∈P ]

P[B̃P=b̃] equals, by independence of the symbols:

sj = n11 log 1− pε
π̃

+ n01 log pε
1− π̃ , with: (3.27)

n11 = |{` ∈ [L]|b̃(`) = 1ANDXj(`) = 1}|, (3.28)
n01 = |{` ∈ [L]|b̃(`) = 0ANDXj(`) = 1}|. (3.29)

This decoder is derived from models that are more realistic in which πc ≈ πc−1 ≈ π,
so that the score of item j only takes into account the (n11 + n01) symbols in which
Xj(`) = 1 (i.e., at most K symbols over L).

3.4.2 Joint decoder

In practice, a joint decoder computes from the observed BLIPed filter a score for any
profile P ′ ∈ P, which reflects the likelihood that P ′ is the true profile. This score
is computed by taking into account L symbols but the complexity of a joint decoder
is proportional to |P| (i.e., O(N c)), which is computationally expensive. Yet, there
exists at least three possible approaches that approximate joint decoding with a reason-
able complexity: 1) Monte Carlo Markov Chain (MCMC) [KST96, FGC12], 2) Belief
Propagation Decoder [SJ10] and 3) Joint Iterative Decoder [MF12].

We investigate the first approach. The MCMC decoder is based on two key ideas.
First, it receives as input an observed BLIPed filter b̃ and then creates a Markov Chain
that will be used to sample profiles according to the posterior distribution P[P |b̃]. This
sampling requires a burn-in period after which the Markov Chain has converged. Once
this convergence has occurred, it samples profiles with the targeted posterior distribu-
tion. During a second phase, some profiles are sampled and statistics are computed
such as the marginal a posteriori distribution P̂[j ∈ P |b̃] that item j belongs to the true
profile.

Posterior distribution. The objective is to sample profiles according to the posterior
distribution P[P |b̃], which can be written as:

P[P |b̃] = P[B̃P = b̃|P ]P[P ]
P[B̃P = b̃]

. (3.30)

In this equation, P[P ] is the a priori probability of P . To simplify our presentation,
we consider only the simple model exposed in Section 3.1.2. We denote by |P | the size
of profile P (i.e., the number of his items), and we set by P[P ] = 0 if |P | 6= c, and 1/|P|
otherwise. Any profile is equally likely provided it has exactly c items. When we use
more realistic models in our experimental work, the prior will be substantially different.
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We denote by ω(B) the Hamming weight of a binary vector B (i.e., the number of bits
set to 1). The probability P[B̃P = b̃|P ] = P[N = BP ⊕ b̃] has the following expression

P[B̃P = b̃|P ] = pω(BP⊕b̃)
ε (1− pε)L−ω(BP⊕b̃). (3.31)

The evaluation of the last quantity P[B̃P = b̃] in (3.30) is more involved:

P[B̃P = b̃] =
∑
P∈P

P[B̃P = b̃|P ]P[P ]. (3.32)

It requires a screening of P, which is intractable for large c and N , which is why we will
rely on the Markov chain.

Markov Chain. A Markov Chain is an iterative process with an internal state (i.e.,
a profile in our case) taking value P (t) at iteration t. The next iteration draws a
new state P (t+1) according to a transition probability distribution P[P (t+1)|P (t)]. The
Markov Chain is initialized randomly at state P (0). The probability distribution of
transitions is crafted with care to enforce a convergence of the distribution of sampled
profile P (t) to the posterior P[P |b̃] of (3.30) as t→∞ (see Section 3.4.2). In practice,
the convergence occurs after the first T iterations, the so-called burn-in period. Once
this period has passed, it means that the Markov Chain has forgotten its starting point
(i.e., the samples are now independent of P (0)) and that the distribution of the sample
profiles has converged.

Monte Carlo method. After the burn-in period, the Markov Chain keeps on sampling
for M more iterations. The marginal a posteriori probabilities are then estimated by a
Monte Carlo method, which computes the empirical frequency that item j is present in
sample P (t):

P̂[j ∈ P |b̃] = |{t ∈ [T + 1, T +M ]|j ∈ P (t)}|/M. (3.33)

From these estimations, several post-processing are possible such as:

• inferring the most likely items of the true profile by ranking them in decreasing
marginal probabilities,

• reconstructing the profile as the set of items whose marginal probability is above
a given threshold,

• reconstructing the profile as the set of items with highest marginal.

Transition probabilities

Algorithmic coding of a profile.
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Section 3.1.3 describes how to infer from the observed BLIP a maximum number
cmax of items of the corresponding profile. In this algorithm, we code a profile as a vector
of cmax components taking values in [N ]∪{0}. Some of these components may take the
value “0” meaning an “empty item”, while the others have different values (i.e., there
is no pair of non-zero components with the same value). For instance, for cmax = 5,
P = (0, 3, 2, 0, 4) represents the profile of 3 items: #2, #3 and #4.

We define V(P0, i) as the neighborhood of profile P0 in the following manner:

V(P0, i) = {P ∈ P|P (k) = P0(k) ∀k 6= i}. (3.34)

This neighborhood profile is the set of all profiles whose coding differs at most from the
i-th component. Note that P0 ∈ V(P0, i). If P0(i) = 0, this neighborhood comprises
profiles having at most one more item. Otherwise if P0(i) > 0, this neighborhood
contains profiles having at most one different item (i.e., P0(i) is substituted by another
item) and one profile having one less item (i.e., item P0(i) is substituted by 0, the
“empty item”).

Multi-stage Gibbs sampling.
Instead of computing the transition probabilities for all the possible profiles, we

restrict the transitions to the neighborhood of the actual state. At the iteration t+ 1,
an integer i is first uniformly drawn in [cmax] that indicates the subset V(P (t), i). Then,
the following transition probability distribution is computed: ∀P ∈ V(P (t), i)

P[P (t+1) = P |P (t)] = P[B̃P = b̃|P ]P[P ]∑
P ′∈V(P (t),i) P[B̃P ′ = b̃|P ′]P[P ′]

(3.35)

Iteration t+ 1 ends by randomly drawing state P (t+1) from this distribution.
This choice of probabilistic transitions is called a multi-stage Gibbs sampler with

random scan [RC04, Alg. A.42]. It guarantees that the law of sampled profiles con-
verges to the stationary distribution P[P |b̃], which legitimates our approach [RC04,
Sect. 10.2.1]. The unknown multiplicative constant P[B̃P = b̃] in (3.30) has disappeared
in the ratio. This transition probability distribution only depends on the priors P[P ]
(which depends on the mathematical model of a profile), and the conditional probabili-
ties P[B̃P = b̃|P ] (which depends on the privacy-preserving mechanism). For instance,
for the JLT mechanism, P[ỸP = ỹ|P ] ∝ exp(−‖ỹ−

∑
j∈P Xj‖2/2σ2).

3.5 Experiments

3.5.1 Setup

In this section, we test the inference attacks designed on two real datasets: Digg and
MovieLens. The Digg dataset has been collected on a social news aggregator and the
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Table 3.1: Datasets characteristics

Dataset Nb of users Training set size Testing set size N cavg Sparsity %
Digg 531 331 200 1237 317 25.63%
MovieLens 943 600 343 1682 106 6.30%

profile of a user is composed of the news he has read. The MovieLens dataset is a
snapshot from a movie recommendation site and in this dataset the profile of a user is
composed of the movies he likes. For the experiments, we split both datasets into two
parts : the training set and the testing set. The characteristics of these datasets are
summarized in Table 3.1, in which cavg is the average number of items per profile and
sparsity is the average occupancy of items among the user profiles.

During the experiments, we assume that the adversary has access to some raw pro-
files of users to estimate the item priors (i.e., popularities of items). This is similar to
assuming that the adversary has access to some global information about the general
distribution of items in the population. We rely on the training dataset for computing
the frequencies of items while the testing dataset is used solely for evaluating the per-
formance of the attacks. In terms of parameters, for BLIP we set the number of hash
functions K = 20 and the number of bits of the representation to L = 5, 000. The values
of ε are from the set {59, 28, 17, 8, 6, 5, 3, 2, 0}, which equivalently translate to the cor-
responding flipping pε from the range {0.05, 0.2, 0.3, 0.4, 0.42, 0.44, 0.46, 0.48, 0.5}. For
the JLT scheme, we set the size of the representation L to 1, 000. L is set to a lower
value as the representation, a dense real vector, is richer than the binary version of
BLIP. The privacy parameter ε takes value in the set {600, 6, 3, 2, 1, 0.75, 0.5, 0.25, 0.1},
which translates into a noise level σ in {0, 1, 2, 3, 6, 8, 12, 24, 61}.

For MCMC, we used a burn-in period of T = 1, 000 samples and estimation sample
size of M = 19, 000 for all the experiments. In practice, we observed that the perfor-
mance is not very sensitive to the burn-in period length. As with other MCMC based
approaches proper initialization for sampling is highly desirable for a faster convergence
to the stationary distribution. We used the input public representation of the profile
to estimate ĉ and started with ĉ random items. A poor estimation of ĉ has to be
traded-off with a longer burn-in period. We also prefilter items that are to be tested
against the public profile for joint decoder, to reduce the search space. To realize this,
we first predict the f × ĉ most probable items for a given profile (f ∈ [2, 6]) using single
decoder and then run the joint decoder on the filtered items to return ĉ items. This
prefiltering decreases significantly the running time of the algorithm without impacting
the prediction as only unlikely items will not be considered by the joint decoder.
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3.5.2 Reconstruction attacks

We benchmark four attacks that produce a score per item:

• The single decoder.

• The popularity-based attack in which the score of an item is its prior estimated
from the training data, independent of the given public representation.

• Our MCMC joint decoder with and without priors (i.e., with flat priors) in which
the scores are the estimated marginal a posteriori probabilities.

Reconstruction P̂ is then the list of the top ĉ items ranked based on their scores.
We measure the performance of a reconstruction attack by computing the cosine

similarity between the reconstruction P̂ and the true profile P as expressed in (3.36)
for all the profiles of the testing set.

cos(P, P̂ ) = |P.P̂ |
|P ||P̂ |

(3.36)

Afterwards, we compute the following statistics: average, the 10% and the 90% quantiles
of the cosine similarities.

The plots in Figure 3.2 show that the performance of the reconstruction attack is
better for high values of ε while it degrades as ε→ 0. In this case, pε → 0.5 and every
profile becomes equiprobable so that inferring the original profile becomes impossible.
In addition, ĉ depends on ε and low value results in a poor estimation of ĉ, which
impacts the similarity measure as only top ĉ items of the prediction is considered in
the reconstructed profile. As the estimation of ĉ is performed similarly for all the four
attacks, the performance drop is common to all of them. Overall the performance of
our MCMC attack is better than the single decoder of [AGK12] for almost all ε values
over the two datasets. Another way to see this is to find the range of ε in which a
given attack performs worse than the baseline (i.e., the popularity-based attack). For
instance, by setting ε = 8, the designer is sure that the single attack is no longer a
threat. However, a skilled adversary can reconstruct almost 50% of the profile thanks
to our MCMC attack.

Taking into account the prior of items improves the efficiency in the reconstruc-
tion significantly, provided that the estimation is reliable. This improvement is clearly
observed on the MovieLens dataset. As for the Digg setup, priors of the training set
do not generalized to the test set, hence they do not help much. We conducted the
same experiment with the JLT scheme. The figure is shown in 3.3, and the results
that we obtained are very close from the one of BLIP and thus we can draw the same
conclusions.
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Figure 3.2: Values of the cosine similarity (average, 10% quantile and 90% quantile)
of BLIP for MCMC with prior, with no prior and single decoding for various ε on
Movielens (left) and Digg (right) dataset.
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Figure 3.3: Values of the cosine similarity (average, 10% quantile and 90% quantile) of
JLT for MCMC with prior, with no prior and single decoding for various ε on Movielens
(left) and Digg (right) dataset.

3.5.3 Identifying the presence of an item

When ε is very small, Figure 3.2 clearly shows that the adversary cannot hope to
reconstruct the full profile. In this situation, we evaluate the prediction of top R items,
with R� c, as another assessment of the privacy guarantees. The success is measured
in terms of the mean Average Precision at R (mAP@R) given in (3.37), which is the
mean over the Q profiles in the test dataset of the average of the precisions at rank
1 ≤ r ≤ R. The precision(r) refers to the fraction of correct items out of the top r

predicted items. The mAP is sensitive to the order of the correct results and is a better
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Figure 3.4: Mean Average Precision for R = 10 for BLIP for MCMC with prior, with
no prior and single decoding for various ε on Movielens (left) and Digg (right) dataset.

0 1 2 3 6 8 12 24 61
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
A

P
@

10

epsilon

 

 
joint decoder with prior
joint decoder uniform prior
 single decoder
 popular items

0 1 2 3 6 8 12 24 61
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
A

P
@

10

epsilon

 

 
joint decoder with prior
joint decoder uniform prior
 single decoder
 popular items

Figure 3.5: Mean Average Precision for R = 10 for JLT for MCMC with prior, with no
prior and single decoding for various ε on Movielens (left) and Digg (right) dataset.

gauge of the quality of a ranking.

mAP@K = 1
Q

Q∑
q=1

(
1
R

R∑
r=1

precisionq(r)
)
. (3.37)

The characteristics of mAP@R depicted in Figures 3.4 and 3.5 are almost similar
to the exact reconstruction measurement. Even if the exact reconstruction of profile
is hardly possible for a given ε, predicting the top R items work. For instance, the
maximum reconstruction for ε = 0 for Movielens is 0.23 whereas the mean average
precision is close to 0.5. The same conclusion holds for the Digg dataset.
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Figure 3.6: Utility against privacy for BLIP and JLT for various ε on Movielens (left)
and Digg (right) datasets.

3.5.4 Utility-privacy trade-off

Finally, we also studied the achievable trade-off between privacy and utility. Since BLIP
and JLT are used for similarity estimation, we quantify the utility in terms of the recall,
which is defined as the probability of identifying the k-nearest neighbors (we set k = 10
in our experiments). In this experiment, we measure privacy as 1 − cos(P, P̂ ) (see
(3.36)) based on the joint decoder. Figure 3.6 illustrates the utility-privacy trade-off
obtained for various ε. The trade-off is almost similar on the two datasets. The privacy
preserving properties of JLT transform is slightly better than BLIP, at least for the
parameters we used in our simulation. This difference in performance is due partially
to the representation superiority of dense real vector over binary vector. However, BLIP
offers a more compact representation of the profile (5, 000 bits versus 1, 000 scalars).
The plot is helpful in fixing ε giving good utility without compromising much on privacy.

3.6 Conclusion

In differential privacy, the trade-off between utility and privacy is set by the parame-
ter ε. However, being able to choose an appropriate value for this parameter is still an
open research question, which has not been deeply investigated, with a few exceptions
[LC11, AACP11]. In this chapter, we have made a step forward to answer this question
by proposing two generic inference attacks, namely single and joint decoding, whose
objective is to reconstruct the profile of a user out of a differentially-private representa-
tion produced through a non-interactive mechanism. The first inference attack decides
the presence of a single item and sequentially explores all the item set, while the latter
strategy decides whether a subset of items is likely to be the user profile and considers
all possible subsets.
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We have evaluated the effectiveness of the attack on two schemes producing differ-
entially private representations: BLIP (BLoom-and-flIP) [AGK12] and JLT (Johnson-
Lindenstrauss Transform) [KKMM12]. Our theoretical analysis as well as the experi-
mental results clearly shows that joint decoding is more powerful than single decoding.
Overall, we believe that this attack helps better understanding the privacy guarantees
offered by a wide class of differentially-private mechanisms (interactive or not) as well
as for the privacy practitioner to tune experimentally ε to ensure the maximum utility
without compromising much on privacy.



Chapter 4

Count sketching for matrix
factorization

Outline
In this chapter, we describe our contributions towards improving the scala-
bility and privacy aspects of model based collaborative filtering using sketch-
ing techniques. In particular, we use count sketch to store the latent factors
in matrix factorization. We observe that sketch based factorization improves
the scalability of factorization in a highly dynamic setup and is self regular-
ized.

We describe the proposed method in section 4.1 and experimentally study
the technique on benchmark real datasets with focus on the scalability and
regularization properties of the proposed technique. We move on to the
privacy properties of such sketch based factorization in section 4.2. Our ap-
proach utilizes the inherent randomness of the storage structure to preserve
data privacy, contrasting to explicit noise added in conventional techniques.
We compare our approach with a recent bayesian formulation of matrix fac-
torization, which guarantees differential privacy guarantees. We then sug-
gest a novel method of clipping the training data to vary the ε parameter in
differential privacy. We also suggest a novel evaluation metric to measure
the expected information loss of model based factorization. We experimen-
tally validate on real datasets and study the privacy-utility tradeoff and the
effectiveness of our proposed metric.

The rapid expansion of internet necessitated an efficient mechanism for discovering
new and popular interesting content across diverse domains. The evolution of web
2.0 fueled the necessity further, with outpouring contributions from end users, whose
previous role was just limited to be a consumer. Collaborative filtering systems filled

57
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the niche gap of being such efficient mechanism by employing similarity among user
and items to suggest new items to these users. A technical background of collaborative
filtering systems was presented in section 2.2.2.2. Such collaborative filtering systems
were revolutionized with the influx of new wave of users, inviting new challenges and
making way for evolving and reprioritizing the requirements. The challenges faced by
this transition is more pronounced in model based collaborative filtering systems. Two
most prominent challenges among them are scalability and privacy.

Models built under a static data setup are becoming ineffective in handling the
changes pertaining to user profiles and the volume of such changes calls for a scalable
solution. The scalability challenges are not limited to a single function of the system
but at various operational points such as user modeling, model updates and retrieval.
In this chapter, we focus on the modeling and updates to the model. The scalability
demands are both to the runtime and storage aspects of model based systems. We also
observe that storage complexity dominates runtime complexity in large scale systems
requiring an efficient means to utilize the allocated storage space for the user and item
models.

Another challenge that is often forgotten is user data privacy, which is a cost the user
pays for these personalization services. The consumed items have to be collected at a
centralized database, to perform both analysis and prediction, which compromises user
privacy. The usual anonymization alone is not sufficient as demonstrated in [CKN+11].
This calls for robust privacy preserving techniques. The usual perturbation method is
to explicitly add noise to the sensitive statistic to prevent data leakage. The noise added
is extraneous and serve no other purpose other than privacy. Hence there is a scope
for efficient storage mechanisms that are inherently random, thereby privacy preserving
and also provides additional benefits.

We provide sketching as a solution for both scalability and privacy problems in model
based collaborative filtering systems. Sketch structures are simple in construction, ef-
ficient and inherently random, making it a good fit for all the above said problems.
In particular, we demonstrate using count sketch to store the user and item models.
A technical description of the count sketch technique was presented in section 2.3.2.5.
To demonstrate the effectiveness of our technique, we chose matrix factorization, an
acclaimed technique used primarily for approximate matrix reconstruction and noise
reduction.

The section 4.1 describes addressing the scalability challenges and section 4.2 de-
scribes the privacy challenges solved by count sketch based matrix factorization tech-
nique.



Sketching techniques for very large matrix factorization 59

4.1 Sketching techniques for very large matrix factoriza-
tion

In this section, we demonstrate the scalability properties of a count sketch based matrix
factorization, when employed to perform collaborative filtering in a streaming setup.
The common scenario in collaborative filtering systems is that:

• maintaining the entire matrix R in memory is inefficient because it consumes way
too much memory,

• the observed elements in R are, in many cases, not even available as a static data
beforehand, but instead as a stream of tuples < u, i, ru,i >.

Alternative representations for R have been invented, such as the popular latent factor
model. The latent factor model maps both users and items to a low dimensional repre-
sentation, retaining pairwise similarity. Matrix factorization learns these representation
vectors from some observed ratings. They are then used to predict (by inner product)
the missing entries and thereby to fill the incomplete user-item matrix [KBV09]. Com-
pared to other methods, matrix factorization is simple, space efficient and can generalize
well with missing information. It can be easily customized with different loss functions,
regularization methods and optimization techniques. A technical discussion of matrix
factorization is presented in section 2.2.5.

The storage requirements for the latent factors are significantly lower, however, the
memory required for the factors grows linearly with the number of users and items. This
becomes increasingly cumbersome when the numbers are in millions, a frequent real-
world situation for domains like advertising and search personalization. The situation
is complicated further when there are new incoming users and/or items. In this case,
managing latent factors and running factorization techniques becomes inefficient.

Overall, supporting real-world large scale and dynamic recommendation applica-
tions asks for designing a much more compact representation for the latent factors, for
techniques to more efficiently manipulate them (updates) while facilitating the insertion
of new users and new items. Hence we propose using sketching techniques, in particular
count sketch, to represent the latent factors in order to achieve the above goals. Count
sketch enable to use extremely compact representations for the parameters, which help
scaling. It also, by construction, facilitates updates and inserts.

We find through experimental results that sketch based factorization improves stor-
age efficiency without compromising much on prediction quality. Furthermore, the
randomized nature of these sketches provide inherent regularization abilities.

4.1.1 Sketching vectors

In regular matrix factorization, d-dimensional vectors {pu}u∈U and {qi}i∈I are stored
as dense arrays P and Q, contiguous in memory. This facilitates indexing on the two



60 Count sketching for matrix factorization

dimensional array by increments of d. We propose replacing this matrix representation
with a single count sketch. Surprisingly, although user and item vectors carry different
semantic, their underlying representations are the same, therefore we store both of them
in the same structure, which should provide estimates for N = d(|U| + |I|) elements.
For the sake of clarity, we introduce two families of address hash functions: {huj (·)}kj=1
for the users, {hij(·)}kj=1 for the items. Same for the sign hash functions.

By varying (w, k), we explore the trade-off between the storage efficiency and the
quality of the estimation. The storage improvement comes at the cost of increasing the
retrieval complexity from O(d) to O(kd) for a d-dimensional vector. The trade-off is
acceptable, supported by the observation that memory bound computation are more
common than CPU bound computation. Lowering memory requirements also makes it
possible to process huge sparse matrices using main memory alone and avoiding out-of-
the-core computations, thereby improving run time as well.

It should be noted that

• When k = 1, count sketch is equivalent to feature hashing and our approach is
identical to the one described in [KWS10]. Hence we are generalizing the sketch
based factorization to arbitrary k values.

• As the latent vectors are just estimations, dimension d can be modified any time
(unlike regular factorization). This gives the flexibility to adapt at run time, based
on the requirements.

4.1.2 Sketch based factorization

The sketch based online factorization differs from regular online factorization (Sec-
tion 2.2.5) in the latent factor retrieval and gradient updates merging. When a new
tuple < u, i, ru,i > arrives, the count sketch is queried to approximately reconstruct user
and item latent vectors. Both user ID u and component index l, 1 ≤ l ≤ d, are used as
inputs to the k pairs of address and sign hash functions to get a mean estimate of the
vector component as follows (the same holds for item):

p̃u,l = 1
k

k∑
j=1

suj (u, l) · cj,huj (u,l), ∀l ∈ {1, · · · , d}, (4.1)

q̃i,l = 1
k

k∑
j=1

sij(i, l) · cj,hij(i,l), ∀l ∈ {1, · · · , d}. (4.2)

Yet for the same user or item, the kd accessed cells in the count sketch structure are
not adjacent but at random locations addressed by the hash functions.

The estimated rating r̃u,i = p̃>u q̃i is compared with the actual rating ru,i to get
the loss L(ru,i, r̃u,i). The gradient updates for p̃u and q̃i are just computed as in (2.8)
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and (2.9). Then for each component of p̃u (as well as q̃i), the k respective cells C are
updated with their sign corrected gradients:

cj,huj (u,l) ← cj,huj (u,l) − ηsuj (u, l)
(
∂L(ru,i, r̃u,i)

∂r̃u,i
q̃i,l + λp̃u,l

)
∀l ∈ {1...d} (4.3)

cj,hij(i,l)
← cj,hij(i,l)

− ηsij(i, l)
(
∂L(ru,i, r̃u,i)

∂r̃u,i
p̃u,l + λq̃i,l

)
∀l ∈ {1...d} (4.4)

4.1.3 Approximation and equivalence

Our approach leads to approximations compared to the original online algorithm. When
we update a quantity, i.e. pu,l or qi,l, the sketching technique inherently modifies this
quantity. It means that a write directly followed by a read access of the count sketch
sees a modification of the update. This hurts our algorithm twice: In (4.3) and (4.4),
not only p̃u,l and q̃i,l are noisy versions of what was maintained along previous iterations,
but also r̃u,i is different from r̂u,i. The true update depends on the derivative of the loss
L(ru,i, r̂u,i) in (2.8) and (2.9), a quantity which is not computed in our scheme. Instead,
the sketching technique yields a reconstructed loss L(ru,i, r̃u,i). Our system is no longer
linear and it is difficult to see how these double approximations cumulate along with
the updates.

An easier way to prove the soundness of our approach is to show that it is indeed
equivalent to directly optimizing the count-sketch structure:

arg −minC Rλ(P̃(C), Q̃(C)), (4.5)

where P̃(C) and Q̃(C) are the reconstructed latent vectors (as given by (4.1) and (4.2)).
Let us consider a particular cell cj,m of C. Its update triggered by the observation
< u, i, ru,i > is:

δcj,m = −η

∂Rλ(P̃, Q̃)
∂p̃u

>

.
∂p̃u
∂cj,m

+ ∂Rλ(P̃, Q̃)
∂q̃i

>

.
∂q̃i
∂cj,m

 . (4.6)

The expression of vector ∂p̃u/∂cj,m is derived from the read access to the count sketch (4.1):
Its l-th component equals sj(u, l)k−1.1[huj (u,l)==m] (same for ∂q̃i/∂cj,m). In the end,
this stems into the following update rules: ∀l ∈ {1, · · · , d}

δcj,m = −η
k

((
suj (u, l)∂L(ru,i,r̃u,i)

∂r̃u,i
q̃i,l + λp̃u,l

)
1[huj (u,l)==m]

+
(
sij(i, l)

∂L(ru,i,r̃u,i)
∂r̃u,i

p̃u,l + λq̃i,l
)
1[hij(i,l)==m]

)
. (4.7)

We find back the same update rules as in (4.3) and (4.4) up to a factor k−1 due to the
read access to the count-sketch based on the mean operator. However, this is not an
issue as the gradient is at the end multiplied by the learning rate η.
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4.1.4 Regularization based on sketch representation

The Lp norm based regularization is generally associated with matrix factorization, as
it can be controlled and customized well to the needs. There are other methods to
regularize like corrupting the input data. It is shown by Bishop et al in [Bis95] that
training with corrupted data is equivalent to Tikhonov regularization. In our scheme,
we observe that the sketch structure itself regularizes the learnt latent vectors. The error
p̃u,l − pu,l is due to the address hash collision among different elements. Thanks to the
pairwise independence assumption, the error is independent of the cell location. Also the
sign hash function sj(·) makes sure that the expected error is centered: E(p̃u,l−pu,l) = 0.
We surmise that these errors indeed provide regularization capabilities like corrupting
the input data. We experimentally prove the claim in section 4.1.5.5.

We implement the regularization with a Tikhonov penalization:
λ
∑

(u,i) ‖p̃u‖2 + ‖q̃i‖2. This has an interpretation in the equivalent problem (4.5): the
variance of the count sketch estimation error is proportional to σ2 (Section 4.2), which,
in our case, is

∑
(u,i) ‖p̃u‖2 +‖q̃i‖2. Our method thus aims at minimizing a combination

of the error prediction and the error estimation of the latent vectors.

4.1.5 Experiments

In this section, we benchmark our method against regular online matrix factorization
and feature hashing based factorization [KWS10] as it is a special case of our approach
(k = 1).

4.1.5.1 Setup

Dataset

We use three publicly available datasets: Movielens1M and 10M [mov], EachMovie and
Netflix. Data characteristics are in Table 4.1. The data is preprocessed and randomly
partitioned into the training, validation and test sets with proportion [0.8, 0.1, 0.1].
Preprocessing includes mean correction and frequency based thresholding. User, item
and global means are substracted from rating to remove user and item bias. Ratings
with user/item frequency < 10 are removed from the test and validation sets. The same
procedure is repeated 10 times to obtain 10 fold dataset.

Evaluation

We use root mean square error to measure the quality of recommendations. The error
materializes the deviation of the predicted rating from the actual rating. This error
is squared and averaged across all non-zero elements of the rating matrix to get mean
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squared error:

RMSE(R′) =
√√√√ 1
‖R′‖0

∑
ru,i∈R′

(p̃>u q̃i − ru,i)2, (4.8)

where R′ is the restriction of R to the testing set.

Parameters

We compare the performance for various configurations (w, k) of the sketch and different
latent factor dimensions. The sketch depth k is picked from {1, 4} and the latent
factor dimension d is chosen from {1, 2, 3, 4, 6, 8, 11, 16,23, 32}. We measure the space
gain γ by the ratio of space that the regular factorization would need for the same
dimension d to the space actually utilized by sketch based factorization. We vary γ

within {1, 2, 2.83, 4, 5.66, 8, 11.31, 16, 23, 32}. We determine the sketch width based on
the space gain, dimension d and sketch depth k:

w =
⌈(|U|+ |I|)d

γk

⌉
. (4.9)

We choose optimal parameters for learning rate η and regularization constant λ by a
two stage line search in log-scale, based on validation set prediction score. We iterate
for T = 20 epoch over the training set, before predicting on the testing set. Learning
rate is scaled down at every iteration using the formula ηt = η

1+t/T .

Dataset |U| |I| |R| rating
MovieLens 1M 6,040 3,952 1,000,209 1:5 (5)
EachMovie 61,265 1,623 2,811,718 1:6 (6)
MovieLens 10M 69,878 10,677 10,000,054 0.5:5 (10)
Netflix 480,136 17,167 96,649,938 1:5 (5)

Table 4.1: Dataset characteristics

4.1.5.2 RMSE comparison on various standard datasets

Table 4.2 reports RMSE with d = 32 and γ = 1, i.e. the three techniques needs the
same space. We also initialize the parameters to small random values, sampled from
same distribution for all the three algorithms. Best values (η, λ) are found by two stage
linear search on validation set. The results are averaged over 10 fold dataset. Except
for MovieLens 1M, the table shows that performance of sketch based factorization is
similar to regular factorization while feature hashing is slightly worse.
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Dataset regular factorization count sketch (k = 4)* feature hashing
MovieLens 1M 0.873 0.876 0.906
MovieLens 10M 0.811 0.809 0.818
EachMovie 1.145 1.146 1.159
Netflix 0.854 0.855 0.862

Table 4.2: RMSE on various real datasets for d = 32, γ = 1

4.1.5.3 Variation of RMSE with factors size and space gain

We now evaluate the effect of space gain and dimension d on RMSE measure. Results are
displayed as heatmaps for different sketch depth values in Figure 4.2 for MovieLens 1M
and EachMovie datasets. The axes are in log2 scale, with horizontal and vertical axes
representing d and γ. The best λ and η depends on γ and d as observed through 10
fold cross validation on individual configurations. The map with k = 1 corresponds to
feature hashing and k = 4 corresponds to count sketch.

As expected, the RMSE increases when d decreases, as it impacts the representation
capacity of the model, and when space gain γ increases because it implies smaller sketch
width w and hence higher variance of estimated for p̃u and q̃i (due to more collisions
in the count sketch). We can also observe that there is an improvement in RMSE score
with higher k. This effect is more amplified for low γ values. As the trade-off is both
ways and the improvement is almost diagonal, we can fix a desirable error bound and
determine an optimal configuration (d,w).

4.1.5.4 Variation of RMSE with model size on dynamic updates

We first evaluate the convergence of RMSE along the number of epochs on training
data. Figure 4.3 shows the result for MovieLens 10M dataset for the same setting as in
Table 4.2. The three algorithms take the same space. We observe that convergence of
count sketch is faster than the other two algorithms. Our explanation is the following:
Every new observation < u, i, ru,i > stems into 2kd cell updates for the count sketch
compared to 2d only cell updates for the other two methods, and this for the same space.
We surmise then that count sketch factorization can be more suitable to collaborative
filtering systems with dynamic updates as it has better convergence properties.

To simulate a dynamic environment, we do one pass over the training data and report
the results on test data for best λ and η values. The RMSE scores are averaged on 10 fold
data as described in the setup. The space of regular factorization is varied by increasing
the dimension dr from 1 to 32. The space of the two sketch based factorizations is
matched with the former by fixing ds = 32 but varying w according to (4.9). In other
words, the space gain ranges from 32 to 1 while dr goes from 1 to 32 to maintain the
same space between the three methods.
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Figure 4.1: Heatmaps of RMSE for feature hashing (left) and count sketch (right) on
MovieLens 1M

1 3 6 11 23

1

3

6

11

23

k=1

1 3 6 11 23

k=4

1.32

1.38

1.44

1.50

1.56

1.62

1.68

1.74

rm
se

d

sp
a
ce

 g
a
in

Figure 4.2: Heatmaps of RMSE for feature hashing (left) and count sketch (right) on
EachMovie
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Figure 4.3: Convergence on MovieLens 10M.

Figure 4.4 shows that the performance of count sketch is better than other ap-
proaches for dr > 7 (or γ < 32/7). This shows that count sketch factorization converges
faster on dynamic data. We also observe that with increase in space, the performance
of the other two techniques degrades, whereas count sketch saturates. This reveals that
there are not enough data to train the other two techniques yielding some overfitting,
whereas count sketch copes with k times more updates as above mentioned.

4.1.5.5 Regularizing effect of count sketch

We now study the effect of regularization parameter λ on RMSE. We use EachMovie
dataset under the setup of Table 4.2 (d = 32, γ = 1). We vary λ from 10 to 0 in log
scale. Figure 4.5 compares the performance. The three techniques share the following
observations: The optimal λ is around 0.1 and the RMSE increases with λ beyond this
value. When we decrease λ below the optimal value, the RMSE degrades and this is
attributed to overfitting. The degradation of count sketch factorization is not as worse
as the other two techniques. Even when the regularization is turned off (λ = 0), our
scheme performs better than the other two, for the same model complexity. This shows
that the ‘noisy’ sketch structure by itself provides some regularization capabilities.

The heatmap of Figure 4.6 represents the optimal lambda values for various (d, γ)
pairs on MovieLens 1M dataset. The optimal value is often lower than 10−2, except
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Figure 4.4: Dynamic setting on EachMovie.
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Figure 4.6: Best λ w.r.t. (d, γ), MovieLens 1M

in the top right corner, where γ is small while d is big. This setting indeed ensures
superfluous parameter space, which does require stronger regularization to avoid over-
fitting. The λ value diminishes with d: a smaller model requires less regularization. An
interesting observation is that λ lowers with increase in γ and it is true even for a fixed
d. This increases address hash collisions and hence the variance of the count sketch
estimation (Sect. 4.1.4) which helps model generalization like when learning on noisy
data.

4.2 Privacy aware matrix factorization using sketching
techniques

We demonstrated the scalability and regularization properties of our sketch based fac-
torization and also observe that it is inherently random. It is also known that adding
independent noise to a statistic of interest enforces privacy [AS00], hence supporting
privacy preserving characteristic of our approach. It is then imperative to quantify that
privacy level and also the relationship between privacy and the utility of the system.
As user profile data is sensitive, assessing the privacy guarantees becomes crucial. We
start with understanding the noise characteristics of count sketch in a streaming setup.

Count sketch error analysis: The accuracy of the estimation is related to
the size of the count sketch [Cor11]. Note that if we query index e just before
and after its update, the difference of the approximates is the true update:
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ṽ
(t+1)
e −ṽ(t)

e = δve. However, updating the e-th quantity might have modified
the others due to collision. In the j-th row of the count sketch, one entry
has been modified by ±δve (see (2.15)) whereas the w − 1 others remained
the same. In other words, the entries of C have been modified by random
variables i.i.d. according to the p.m.f. (1− w−1)∂0 + (2w)−1(∂δve + ∂−δve),
where ∂a represent the Dirac distribution on x = a. The expectation is
zero and the variance (δve)2/w. This implies that the update of the e-th
quantity adds on all the others ṽe′ , e′ 6= e, a centered noise of variance
(δve)2/wk. Overall, the estimate based on the mean operator is unbiased
with variance σ2/wk, where σ2 =

∑
e∈[N ](δve)2. For a given (w, k), the

accuracy decreases with N because the variance of the estimate increases
with σ2. In other words, the representational capacity N of count sketch
can be controlled by varying (w, k).

We thus note that the noise introduced by our sketch structure our factor model
parameters is equivalent to adding random noise centered with variance of σ2/wk to the
latent factors. If we assume that the noise to be gaussian, we observe that our approach
is similar to a Bayesian learning enforcing differential privacy [LWS15].

The following section describes our novel method of altering the ε parameter of
differential privacy by means of clipping instances of training data that are too revealing.

4.2.1 Data clipped factorization

The data clipped factorization is a modification to the sketch factorization described in
section 4.1.2. The modification is primarily in the update phase, where in the latent
factors are updated only if the estimated loss between observed and predicted rating is
bounded by ε. We describe the approach in detail anyway for readability purpose.

When a new tuple < u, i, ru,i > arrives, the count sketch is first queried to approxi-
mately reconstruct user and item latent vectors. Both user ID u and component index
l, 1 ≤ l ≤ d, are used as inputs to the k pairs of address and sign hash functions to get
a mean estimate of the vector component as follows (the same holds for item):

p̃u,l = 1
k

k∑
j=1

suj (u, l) · cj,huj (u,l), ∀l ∈ {1, · · · , d}, (4.10)

q̃i,l = 1
k

k∑
j=1

sij(i, l) · cj,hij(i,l), ∀l ∈ {1, · · · , d}. (4.11)

The estimated rating r̂u,i = p̃>u q̃i is compared with the observed ru,i to get the loss
L(ru,i, r̂u,i).
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If L(ru,i, r̂u,i) ≤ ε, the gradient updates for p̃u and q̃i are just computed as in (2.8)
and (2.9). Then for each component of p̃u (as well as q̃i), the k respective cells C are
updated with their sign corrected gradients:

cj,huj (u,l) ← cj,huj (u,l) − ηsuj (u, l)∇u,lRλ(P̃, Q̃), (4.12)

cj,hij(i,l)
← cj,hij(i,l)

− ηsij(i, l)∇i,lRλ(P̃, Q̃). (4.13)

∇u,lRλ(P̃, Q̃) denotes the l-th component of the gradient: (ru,i − p>u qi)qi + λpu, and
similarly for the item gradient.

Otherwise (i.e. L(ru,i, r̂u,i) > ε), the cells are not updated at all. This is equivalent
to not taking into account this particular observation. Our rationale behind the clip-
ping is that an update corresponding to large deviation carries more information and
enforces radical changes to the model parameters. Hence if such an update is taken into
account, it will lead to information leak for that event of the user. It should be noted
that we reject the observation for that particular epoch and not forever. Hence if the
same observation fits well into the model at a later stage (epoch), it will be taken into
consideration for updating the corresponding model parameters.

4.2.2 Differential privacy

Our algorithm inherently adds noise on the updates thanks to the count sketch. The
noise perturbation and estimation mechanism makes it similar to the bayesian matrix
factorization, described in section 2.2.5.5. It is shown in [WFS15, LWS15] that Baysian
inference is differentially private, as described in section 2.4.6.3. In particular, we follow
the real data source definition described in section 2.4.9.4, as user rating is in Real scale.
Though our setup looks exactly like the SGLD (2.13) (2.14), this is not the case. We
can find the following differences.

1. When updated, latent factors related to observed ru,i are not corrupted by noise,
whereas all the others are.

2. The noise induced by the count sketch has a variance equalling δ2/wk where δ
is the last update (see Sec. 2.3.2.5). Therefore, this variance is proportional to
η2/wk and not η as in the SGLD algorithm.

3. This noise results from 2d latent factors updates only therefore it is certainly not
Gaussian distributed.

The differential privacy is enforced by clipping the log-likelihood s.t.

| log p(ru,i|P,Q)| =
{

(ru,i − r̂u,i)2/2 if (ru,i − r̂u,i)2 ≤ ε
ε/2 otherwise

This enables ε-DP as shown in [WFS15, LWS15], except that this no longer defines a
valid conditional probability.
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4.2.3 Kullback-Leibler divergence to measure privacy

Though differential privacy provides a concrete upper bound on the information leak,
it does not describe any other privacy preserving property of the system. Also the per-
turbation requirements are, at times, too stringent and idealistic to be used in a large
scale realistic setup. Metrics such as (ε, δ)-differential privacy [DKM+06], concentrated
differential privacy [DR16], heterogenous differential privacy [AGK15] were proposed to
relax the perturbation requirements owing to practical constraints. Still the ε param-
eter in all these measures is a control parameter and not a measured variable. Hence
to provide an alternate view of the information leakage, we propose to estimate the
expected information loss as a privacy measure.

In particular, we use Kullback-Leibler divergence to gauge privacy. The KL diver-
gence gives the expected amount of information ‘leaked’ about the fact that user u
submitted his rating about item i. This divergence quantifies the difference between
the probability distributions of the prediction for observed ratings (the training set Dtr)
and non observed ratings (the testing set Dte).

KLD = E
∣∣∣∣∣ logP[r̂u,i − ru,i|ru,i ∈ Dtr]
logP[r̂u,i − ru,i|ru,i ∈ Dte]

∣∣∣∣∣ (4.14)

A low divergence means that the predicted rating r̂u,i is statistically similar whether
ru,i was used in training or not. An attacker observing r̂u,i and even knowing ru,i can
not decide whether this rating was submitted to the recommendation system. To this
aim, we experimentally observed that the prediction error (r̂u,i − ru,i) ∼ N (m, s2). We
measure (mtr, s

2
tr) over the training set and (mte, s

2
te) over the testing set, and compute

KLD = 1
2

(
s2
tr

s2
te

+ (mtr −mte)2

s2
te

− 1 + log s
2
te

s2
tr

)
. (4.15)

4.2.4 Experiments

This section evaluates the claimed benefits of our approach. We first experimentally
study its regularization capabilities. Then we analyze the privacy-utility trade-off and
compare to regular factorization (without privacy).

4.2.4.1 Setup

Dataset

We use two publicly available datasets: Movielens1M [mov] and EachMovie. Data char-
acteristics are in Table 4.1. The data preprocessing steps are similar to the description
in section 4.1.5.1.
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Evaluation

We use root mean square error to measure the quality of recommendations as described
in equation 4.8 We use Kullback-Leibler divergence to gauge privacy as described in
section 4.2.3 and estimate using the expression (4.15).

Parameters

We compare the performance for various configurations (w, k) of the sketch and different
latent factor dimensions. The sketch depth k is picked from {1, 4} and the latent factor
dimension d is chosen from {8, 16, 32}. We measure the space gain γ by the ratio of space
that the regular factorization would need for the same dimension d to the space actually
utilized by sketch based factorization. We vary γ within {1, 2, 4}. We determine the
sketch width based on the space gain, dimension d and sketch depth k as in equation 4.9
We choose optimal parameters for learning rate η and regularization constant λ by a
two stage line search in log-scale, based on validation set prediction score. We iterate
for T = 100 epochs over the training set, before predicting on the testing set, measuring
RMSE(R′) and KLD. Learning rate is scaled down using the formula ηt = η

1+b·t/T .

4.2.4.2 Privacy utility tradeoff

In this section, we compare the variation of RMSE with respect to parameter ε as shown
in figure 4.7. We vary ε in the range of {2, 4, 8,∞} and benchmark it against regular
factorization. We have ε on x-axis and RMSE on y-axis, plotted for each latent factor
dimension d ∈ {8, 16, 32}. As expected, lowering the privacy by increasing ε improves
the utility, i.e. decreases RMSE. The improvement is significant in the lower range of ε
and drops gradually as we increase ε further. When the epsilon is above 16 the RMSE
is close to regular factorization.

4.2.4.3 KL divergence as a privacy measure

We take the role of an attacker willing to know whether a particular rating was used
in the training. We use KL divergence to measure the amount of information ‘leaked’
by getting access to its prediction. We plot the variation of KL divergence with ε for
various values of latent factor dimensions. We have ε on x-axis and KL divergence on
y-axis, plotted for each latent factor dimension d ∈ {8, 16, 32}. Figure 4.8 shows that
KL divergence increases along with the targeted level of privacy ε. The KL divergence of
regular factorization without any differential privacy mechanism is higher for most of the
cases. This supports our approach. It is also clear from the figure that compact models
(higher γ or lower d) produce recommendations leaking less information compared to
bigger one. The KL divergence which is a measurement on average is indeed much
smaller than the target ε which is a guaranty on the worst case.
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Figure 4.7: RMSE w.r.t. ε, Movielens
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Figure 4.8: KL divergence w.r.t. ε, Movielens
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4.3 Conclusion

The memory intensive nature of matrix factorization techniques calls for efficient rep-
resentations of the learned factors. This work investigated the use of count sketch for
storing the latent factors. Its compact and controllable representation makes it a good
candidate for efficient storage of these parameters. We show that the optimization of
the latent factors through the count sketch storage is indeed equivalent to finding the
optimal count sketch structure for predicting the observed ratings. Experimental eval-
uations show the trade-off between performance and space and also reveal that count
sketch factorization needs less data for training. This property is very useful in dynamic
setting.

We also demonstrate that sketching techniques can be used to preserve privacy by
taking advantage of their inherent randomness. This is in contrast to conventional
techniques which uses special mechanism to achieve the same. We experimentally vali-
date our approach using standard datasets and also define a new privacy measure using
Kullback-Leibler divergence. We conclude that the scalability and privacy preserving
nature of our sketch based factorization are more suited to applications which deal with
large scale data of sensitive nature.



Chapter 5

Improving retrieval efficiency of
recommender systems using LSH

Outline
Recommender systems require efficient retrieval methods to find relevant
items for a given user based on his preferences and past consumption. The
retrieval is achieved by searching the user profile against item profiles to
provide relevant suggestions, where the profiles are learnt from past con-
sumption data. The search process is often modeled as nearest neighbor
problem. Many nearest neighbor search algorithms rely on encoding real
vectors into binary vectors. The most common strategy projects the vectors
onto random directions and takes the sign to produce so-called sketches.
This chapter discusses the sub-optimality of this choice, and proposes a bet-
ter encoding strategy based on the quantization and reconstruction points of
view. The section 5.2 describes the sub-optimality of project-sign methods,
followed by section 5.3, that describes our approach. An optimal coding
scheme from reconstruction, is to search for the best binary code on the
binary space, which quickly becomes infeasible for higher dimensions. Our
quantization optimized LSH (qoLSH), iteratively optimizes the binary code
obtained from project-sign method to minimize the reconstruction error in a
realistic setup. We observe that it strikes a nice balance between efficiency
and utility making it a practical technique of choice. We also propose a
novel asymmetric estimator for the cosine similarity. Similar to previous
asymmetric schemes, the query is not quantized and the similarity is com-
puted in the compressed domain. Our contributions lead to improve the
quality of nearest neighbor search with binary codes. Our experimental
results, described in section 5.4 substantiates the improvement against a
recent encoding technique called anti-sparse encoder.

75
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The growing popularity of recommender systems posed new requirements that have
to be solved to enhance utility. Two such broad requirements are effective modeling
and prediction. The modeling challenges are addressed by customized machine learning
techniques, some of which are discussed in the previous chapters. The other unad-
dressed problem is prediction, which is not given its due importance, when compared
with modeling. Prediction often involves retrieval of relevant items from a huge pool
of available item space and ranking them according to the relevance. The prominent
latent factor model based recommender systems embed user and items in a common
real vector space such that the distance/similarity defined in the vector space approx-
imates the similarity relationship among user and items. Hence finding relevant items
is reduced to performing a nearest neighbor search on this latent vector space, which
is a well studied problem with many approaches. Nearest neighbors search has wide
range of application in many domains other than recommender systems, such as multi-
media indexing, pattern recognition, computational geometry, etc. On very large high
dimensional datasets, finding exact nearest neighbors is time consuming and impracti-
cal, leading to approximation techniques. From a large collection of vectors in a high
dimensional space, the approximate most similar search aims at extracting the most
similar vectors to a query. Locality Sensitive Hashing is one of the popular family of
approximate nearest neighbor techniques, with well defined properties and sound the-
oretical justification. Locality sensitive sketches are defined as an approximation for
some of the popular distance measures and one such is Cosine. A technical background
of LSH was presented in section 2.3.3.2 and Cosine sketches in section 2.3.3.5.

These approximate nearest neighbor search techniques are broadly classified into
two categories: partition based and distance approximation based. The first class of
methods work on to reduce the search space by partitioning the vectors into clusters,
so that the query vector can be searched only on a subset of data. Often the size
of the subset is very low compared to the size of the dataset, which improves the
retrieval efficiency. To improve the retrieval chances, these techniques maintain multiple
independent indices, multiplying the space requirements in favor of better recall. As
the dimensionality increases, the partitioning is inefficient which worsens the retrieval
complexity to linear. Also, finding optimal partitions becomes a non-trivial problem in
high dimensional space. Many times, the original vectors have to be stored separately for
detailed re-ranking, which increases the query latency and space utilization drastically.

An alternative approach is to approximate the similarity, to speedup the calculation.
It means the query complexity is linear to the database size, but similarity computation
is done much faster, so that queries can be answered in realistic time. One such method
called Hamming Embedding, designs a function that maps vectors in Rd to binary
sketches in BL such that the Hamming distance between sketches estimates the similar-
ity between vectors. In recent papers [TFW08a, JDS08, WTF09a, PLSP10, JB11], LSH
is no longer considered in the context of probe algorithms, but employed as a Hamming
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Embedding. To the best of our knowledge, Charikar [Cha02] was the first to estimate
the angle between two Euclidean vectors based on their LSH sketches. Project and sign
based method is one of the simplest encoding scheme that approximates cosine distance
in hamming space by projecting on random hyperplane and retaining the sign informa-
tion of the projection. Section 2.3.3.5 provides the necessary technical background to
understand Cosine sketches. Since the individual sign information is stored as a single
bit, cosine sketches are very compact, making storage and retrieval much easier. Also
they are simple in construction and easy to encode and decode. Another advantage of
project-sign based cosine sketches is that original vector can be reconstructed from the
binary code, unnecessitating separate storage of original vectors. Cosine sketches are
often used along with asymmetric similarity estimation.

The asymmetric scheme computes similarity measurements from the query vector
and the database sketches. In other words, the sketch of the query is not processed.
We would like to find a new design with the following properties: (i) it is an Hamming
embedding for the similarity based on the cosine between two vectors, (ii) it allows a
simple reconstruction of the original vector from its sketch. The first property is cru-
cial for efficiently finding a subset of the database containing similar vectors while the
second property yields to an asymmetric scheme re-ranking these vectors by computing
a better estimate from the query and their reconstructions. Yet, Section 5.2 outlines
the suboptimalities of LSH from the viewpoint of reconstruction. In a previous paper,
we have already proposed a design fulfilling the two properties but its complexity pre-
vents its application to high dimensional space and/or large scale database. This is
the reason why we propose in Section 5.3 a simple modification of LSH to boost its
reconstruction ability while maintaining its efficiency. Section 5.4 shows experimental
results demonstrating the good performances of our two-step approximate search which
strikes a better trade-off between complexity and quality of search when compared to
previous schemes.

5.1 Cosine sketches setup

This section briefly describes the setup of project-sign based cosine sketches, followed by
the design of the project and sign hash function for cosine sketch and then asymmetric
distance estimation using these sketches. Let us assume the query and database vectors
are unit-normed and in Rd vector space. Let the L projection vectors {wj}Lj=1 be
iid sampled from unit sphere. For a vector x, each projection w>j x, followed by sign
produces a bit:

bj(x) = sign(w>j x). (5.1)
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The sketch of x is just the concatenation of these bits:

b(x) = [bi(x)]Li=1 (5.2)

Comparison of two binary codes b(x) and b(y) is nothing but hamming distance
between the two bit vectors: dh(b(x),b(y)) =

∑L
j=1 b(x)j 6= b(y)j . Therefore, ranking

vectors by increasing order of the hamming distance between their sketches and the
sketch of a query approximates the ranking by increasing angle or decreasing cosine
similarity.

5.1.1 Hash function design

The performance of sketches depends on the design of the hash functions. The random
projections proposed by Charikar [Cha02] are widely used for cosine similarity, however
they do not offer the best results. We distinguish two cases.

? L ≤ d: A set of orthogonal vectors yields better results than random projections [JDS08,
JFF12]. The methods performing a PCA rotation learned in a training set, such as spec-
tral hashing [WTF09a], implicitly use orthogonal vectors.

? L > d: It is no longer possible to generate L orthogonal projections. The L projec-
tion vectors form an over-complete frame W = [w1, . . . ,wL] [GVT98]. A tight frame
satisfying W.W> ∝ Id is better than random projections [JFF12, SVZ13]. Another
concurrent strategy [JLY+12] takes the union of subsets of orthogonal vectors (called
super-bits). This construction has not been compared to an uniform tight frame.

Another track of research aims at optimizing the projection directions in order to
better reconstruct the small distances [KD09a]. Similarly, a rotation matrix is opti-
mized to balance the variance on the different components [JDSP10, GL11] so that
each bit gives the same approximation error. These works mainly differ by the way the
optimization is carried out.

5.1.2 Asymmetric scheme with sketches

The main interest of sketches is their compactness. In a typical scenario, they allow
storing a representation of millions to billions vectors in memory. However, the memory
constraint is not critical for the query, as this one is processed online.

This observation motivates the use of asymmetric methods [DCL08, PLSP10, JDSP10,
JJG11, JDS11a], in which databases vectors are encoded into short sketches but the
query is kept uncompressed to avoid quantization error. The first proposal consid-
ered the Euclidean distances from the query y to separating hyperplanes to weight the
Hamming distance [DCL08]:

da(y,b(x)) =
L∑
j=1

(y>wj).bj(x) (5.3)
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5.2 Suboptimality of project and sign

Instead of considering the analysis which maps x into b(x), we take a look at the
synthesis, i.e. the reconstruction of the direction pointed by a vector from its sketch.
From now on, we restrict to vectors on the hypersphere: ‖x‖ = 1. We only consider a
very simple reconstruction:

x̂ ∝
L∑
j=1

bj(x)wj = Wb(x). (5.4)

The proportionality constant is set such that ‖x̂‖ = 1. In the sequel, we exclude
degenerated cases s.t.

∑L
j=1 bjwj = 0.

5.2.1 ‘project and sign’ is not a good quantizer

The new point of view of reconstruction/quantization stems in an interesting question
about the binarization strategy. Formally, we have defined a codebook C comprising at
most 2L distinct centroids over the hypersphere. Does the centroid c ∝Wb(x), induced
by the selected sketch b(x), provides the best possible choice from a reconstruction point
of view? The best centroid is the one maximizing the co-linearity to the input unitary
vector x as

c?(x) =arg −maxc∈Cx>c (5.5)

∝Warg −maxb∈BL

∑L
j=1 bj x>wj∥∥∥∑L
j=1 bjwj

∥∥∥ . (5.6)

Let first consider the case of an orthonormal set of vectors: W>W = IL. The
denominator is then constant and the optimum is therefore obtained when bj and x>wj

have the same sign. Therefore, the project and sign method is optimal for orthogonal
frames with respect to quantization.

For the case L > d, the frame cannot be orthogonal and the above property does
not hold, meaning that the best reconstruction may not take the sign of x>wj .

? Example: Consider the frame

W = [w1w2w3] =
[

1 0 cos π3
0 1 sin π

3

]
(5.7)

The vector x ∝ w1 +w2−w3 happens to have a sketch b(x) = [1, 1, 1], whereas the best
centroid is obviously c?(x) ∝W.[1, 1,−1]> = x. In other terms, projecting and taking
the sign is suboptimal in this case. Indeed, the function x 7→ b(x) is not necessarily
surjective as some sketches might never be selected. This implies a loss of capacity in
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the encoding scheme: although computed on L bits, the entropy of the sketches is lower
than L bits.

At this stage, we mention that this problem is not solely due to the choice of the
frame operator, but to the quantization procedure as well. Selecting the closest centroid
in C to the input vector yields a better quantization as reported in Section 5.4. Yet this
quantization is not possible for large values of L, for which browsing the whole set of
centroids is not tractable.

5.2.2 Spread representations

These observations motivate a recent approach [JFF12] for a better encoding strategy
based on spread representations [Fuc11]. It reduces the quantization error underpinning
the sign function.

The “anti-sparse coding" strategy first looks at

v?(x) = arg min
v∈RL:Wv=x

‖v‖∞ . (5.8)

This goal resembles the objective of sparse coding, except that the `0 norm is replaced
by `∞. As a result, instead of concentrating the signal representation on few compo-
nents, anti-sparse coding has the opposite effect: It tends to spread the signal over all
components, whose magnitude is comparatively less informative.

Interestingly, L − d + 1 components of v?(x) are stuck to the limit, i.e. , equal
to ±‖v?(x)‖∞. As a result, this vector can be seen as a “pre-binarized version". The
subsequent binarization to b(x) = sign(v?(x)) introduces less quantization loss than
with the regular “project and sign" approach.

The main problem of anti-sparse coding is its low efficiency: Encoding a vector
requires several matrix inversions, and the complexity strongly depends on the vector
dimensionality [JFF12]. Although this encoding step is done offline, it remains the
bottleneck in practical setups involving billions of descriptors and is not tractable for
high-dimensional vectors.

5.3 Our approach: quantization-optimized LSH (qoLSH)

This section explains how we improve the cosine sketch detailed in Section 2.3.3.5 by
adopting a quantization point of view. The section 5.2 illustrated the suboptimality of
the “project and sign", from a reconstruction point of view, and the prohibitive cost of
the optimal strategy due to the exponential increase in the number of centroids |C| with
L.

Matrix W: We only use tight frames, as they generally offer better performance in
this context [JFF12, SVZ13]. We randomly draw a L × d matrix with i.i.d. Gaussian
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entries. Then we compute its QR decomposition and set W as the first d rows of Q, so
that

W.W> = ID. (5.9)

Computation of the sketch: Our approach is to alter the cosine sketch b of (5.1) in
such a way that it decreases the reconstruction error. This way the Hamming distance
between sketches still approximate the angle between their real vector counterparts.
We alter the cosine sketch b by flipping sequentially individual bits that improves the
reconstruction error.

For a given vector x, its sketch b(x) and reconstructed vector x̂ = Wb(x), we define
the objective function as:

L(b) = x>x̂
‖x̂‖ (5.10)

We start with sketch b(0) of (5.1) and compute the reconstruction vector x̂(0). By
flipping the j-th bit in b(0), we get a new sketch b(1j) and reconstruction vector

x̂(1j) = x̂(0) − 2bjwj . (5.11)

For L such bits in b, we get L possible b(1j) sketches. Out of L such sketches, we choose
the one that maximizes the improvement in the objective function and call it b(1), i.e.

b(1) = arg −maxL(b(1j)). (5.12)

We now take b(1) as the base sketch and find the next best bit to flip, which gives a
new sketch b(2), as described before. We continue this iteration until no bit flipping
improves the objective function, or we reach a predefined number of iterations, say M .

The discrete nature of b makes exact optimization impossible. Changing a single
coordinate at a time is suboptimal but it has a limited complexity.

Asymmetric scheme: The estimation of the similarity is based on the cosine of the
angle between the query y and the reconstructed vector:

cos(y, x̂) = y>Wb(x)
‖Wb(x)‖ (5.13)

=
∑L
j=1(y>wj)bj(x)
‖Wb(x)‖ . (5.14)

The major difference with (5.3) comes from the denominator.
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5.4 Experiments

This section evaluates our approach against the popular LSH sketch for cosine esti-
mation [Cha02] and a recent state-of-the-art search technique based on Anti-Sparse
coding [JFF12].

5.4.1 Evaluation protocol

The methods are evaluated on both synthetic and real datasets.

Synthetic dataset. We draw i.i.d vectors uniformly on the d-dimensional unit sphere,
d = 8. For this purpose, we draw the vectors with normal distribution and normalized
them to Euclidean unit norm. We produce N = 1 million vectors as database (indexed)
vectors and 10, 000 queries vectors. The ground-truth is the (exact) cosine similarity.

Real dataset: SIFT1M. We also use a public dataset [JTDA11]1 of SIFT descrip-
tors [Low04]. This dataset, referred to as SIFT1M, consists of 1, 000, 000 database and
10, 000 query vectors of dimensionality d = 128.

Evaluation metrics. For both datasets, we compare the different methods based on
recall@R curves: For each rank R, we measure the proportion of queries for which the
true NN (Nearest Neighbor) appears in a position lower or equal to R.

Re-ranking. We adopt a two-stage retrieval procedure for all the methods. The first
stage computes the similarities based on the binary codes and produce a short-list
of 1,000 vector candidates based on fast Hamming-based computation: we order the
vectors based on (2.19). This short-list is subsequently re-ordered with the asymmetric
cosine estimation in (5.3), i.e. , we use the un-approximated query vector and compare
it with short-list vectors reconstructed from their binary codes.

Encoding parameters. All the binarization methods considered in this section pro-
duce L-dimensional binary sketches. We set L = 16 for the synthetic dataset, in order
to get a tractable complexity for the exhaustive optimal quantizer. For SIFT1M, we set
L = 256. Note the optimal quantizer c? is not tractable for the SIFT dataset, as it is
not possible to exhaustively list set of 2L possible reconstruction values. Similarly, we
mention that anti-sparse coding is not tractable with this parameter. The comparison
with these two approaches is therefore only performed on the synthetic dataset.

For our method, we set M = 5 for the synthetic dataset and M = 10 for SIFT1M.
The reconstruction quality is always better with higher values of M , however large
values of M (e.g., M = L/2) suffer the same problem as the optimal quantizer: the
sketch is less stable w.r.t. perturbations of the input vector, yielding inferior results
w.r.t. binary comparison.

1http://corpus-texmex.irisa.fr
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Table 5.1: Comparison of the properties of different binary sketch constructions on the
synthetic dataset.

MSE entropy Query time µs/vector
LSH 0.434 11.39 0.12
LSH+frame 0.207 12.47 0.12
Anti-sparse 0.142 14.23 1,307.40
Optimal 0.075 15.75 324.40
qoLSH 0.107 15.43 3.89

5.4.2 Encoding analysis

Table 5.1 compares several sketch encoding methods based on (1) the quantizer per-
formance measured by mean square error (MSE), (2) the empirical entropy and (3)
the encoding time. We use the same tight frame for all the methods except "LSH":
for the others, including LSH+Frame, only the encoding strategy differs. The optimal
quantizer, by construction, offers the best quantization performance, see (5.6). Our
method qoLSH is the best among the tractable encoding strategies. In particular the
reconstruction is much better than LSH encoding (with the same frame). The encoding
cost of qoLSH is larger than that of LSH, however it remains very efficient: encoding
1,000 vectors takes less than 4ms. As a reference, computing 1,000×1 million Ham-
ming distances takes 15.5 seconds. For larger datasets, the binary sketch computation
associated with the query is negligible compared to Hamming distance computation.

Figure 5.1 plots some statistics (mean, 5% and 95% quantiles) of the difference
between the true and estimate cosine similarities, i.e. , we show (cos(y, x̂)−cos(y,x)) as
a function of cos(y,x). Compared to LSH, qoLSH decreases the bias and the estimation
noise.

5.4.3 Search quality

Figure 5.2 compares the search performance of our algorithm with LSH and anti-sparse
on both synthetic and real data with a 2-stage retrieval procedure (short-listing with
binary codes and then asymmetric computation). Again, the optimal quantizer achieves
the best results on the synthetic dataset, which confirms the importance of improving
the quantizer. However, it is slow for L ≥ 20, typically.

Our approach outperforms the optimal quantizer for large values of R. This is be-
cause the sketch comparison based on binary codes is better with our method than with
this optimal quantizer, for which two nearby vectors may have very different sketches.
This explains the saturation effect of the optimal quantizer observed in the figure. Note
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Figure 5.1: Statistics about the difference between estimated and cosine similarities
(d = 128, L = 256): mean (plain), 5% quantile (dash), 95% quantile (dot-dash).

that all techniques gives different trade-offs from this point of view: anti-sparse coding
is also appealing as the binary codes are even more stable than in our approach for large
values of R.

For lower R values the performance of our algorithm is much better than LSH and
anti-sparse. This assures higher chances of finding nearest neighbors in the top positions.
The performance deteriorates after R = 100, because of the first binary filter.

Overall, our approach gives a competitive trade-off: For typical values of M , the
binary comparison is significantly better than that of regular LSH and slightly better
than that of LSH+Frame and anti-sparse coding. After re-ranking with asymmetric
distance computation, qoLSH exhibits a large gain over the other tractable methods.

5.5 Conclusion

This chapter discusses the “project and sign” sketch construction method commonly
used to estimate the cosine similarity in the compressed domain, and evidences that
the method is sub-optimal when seen as a spherical quantizer. This is problematic in
a context where the search is refined by considering the explicit reconstruction of a
short-list of database vectors.
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This leads us to define an alternative encoding strategy that offers significantly better
performance both from quantization and approximate search points of view. Compared
to other reconstruction focussed encoding schemes, the encoding time is much faster,
which makes our solution more useful in practice. We surmise that the improvement
we bring to Cosine sketches not just improve the retrieval efficiency of recommender
systems, but also other domains which make use of approximate nearest neighbors.
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Chapter 6

Conclusion

Our central theme of focus was to study and evaluate the privacy and scalability prop-
erties of recommender systems using sketching techniques and propose scalable privacy
preserving personalization mechanisms. To that end, we attempted to answer some of
prominent issues pertaining to the topic of interest.

On the privacy aspects, we were interested in both new privacy preserving mech-
anisms and the evaluation of such mechanisms. We observed that ε in differential
privacy is a control parameter and motivated to find measures that can assess the pri-
vacy guarantees. We were also interested in proposing new mechanisms that are privacy
preserving and get along well with the evaluation metrics.

On the scalability aspects, we were motivated to solve the challenges arising in user
modeling and item retrieval. User modeling with evolving data poses new difficulties
in storage and adapting to new data, that has to be addressed. Also, addressing the
retrieval aspects finds applications in various domains other than recommender systems.

What amplified the motivation is the intersection of these two goals, making the
problem more challenging. The thesis being at the intersection of three different do-
mains: recommender systems, differential privacy and sketching techniques; provided
ample opportunities for exploring various possibilities and answering many other con-
cerns in combination of these domains. Some of the interesting combinations are: differ-
ential privacy and sketching, sketching and modeling, modeling and differential privacy.
We conclude on our contributions that stemmed to answer these questions and address
the privacy scalability challenges.

6.1 Summary of contributions and observations

In figure 6.1, we graphically present a high level overview of our contributions and how
they fit in the big picture of topic of interests. Blocks colored in blue are our contri-
butions and green shaded blocks are existing works and grey shaded blocks are scope

87
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Figure 6.1: Overview of our contributions

for future work. We categorize the contributions into three groups: contribution A
focuses on neighborhood based recommender systems, contribution B deals with scal-
ability and privacy aspects of model based recommender systems and contribution C
focuses on retrieval aspects. We now list the contribution wise summary, observation
and future scope, followed by overall perspectives.

Contribution A

In chapter 3, we assessed the privacy guarantees of differentially private systems. We
quantified the amount of information that we can learn from a sanitized database by
playing the role of the attacker. We first described a simple attack using single decoder
and we improved it by using a more sophisticated joint decoder. We tested our at-
tack models on two sketch based differentially private recommender system techniques:
BLIP and Johnson-Lindenstrauss transform. We studied the problem theoretically and
also designed practical decoders to work on the before mentioned schemes. Through our
theoretical analysis and experimental validation on public datasets, we proved the supe-
riority of joint decoders over single decoder in performing inference attacks on sanitized
data.

The superiority of joint decoder over single decoder is huge for large ε (low privacy),
tapering down with decreasing ε (increasing privacy). The observation is a consistent
pattern on all datasets supporting the guarantees of differential privacy. Nevertheless,
we should not rule out the possibility of existence of more sophisticated inference attacks,
which can derive more information. Our MCMC based practical implementation of
joint decoder is a compromise between usability and accuracy. We acknowledge the
possibility of using other approximate inference techniques such as Belief propagation
and variational inference.

We used existing techniques and only contributed on the evaluation aspects of dif-
ferentially private similarity estimation mechanisms. We observed that the two existing
techniques: BLIP and JL Transform use Bloom filter and random projection respec-
tively, which are not the best known space efficient similarity estimation techniques in
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Technique Representation size Prediction error
Count sketch factorization Fixed Variable
Regular factorization Variable Fixed

Table 6.1: Count sketch vs regular factorization

the literature. Hence, we suggest devising new mechanisms using compact and efficient
similarity estimation techniques such as LSH. LSH has proved its efficacy in similarity
approximation and the trend might follow in differentially private estimation too.

Contribution B1 & B2

In chapter 4, we described our matrix factorization approach using count sketch. We also
demonstrated the scalability and dynamicity properties of sketch based factorization
through experimental results on benchmark public rating datasets. We also described
a modification to our system to learn the models in a differentially private setup. We
then described a privacy evaluation metric using Kullback-Leibler divergence that is
more relevant to our setup and evaluated it on standard datasets.

Our first observation is that our count sketch based factorization has contrasting
trade-off properties when compared against regular matrix factorization. With increas-
ing data, the prediction accuracy of our approach goes down, without impacting the
representation size. In case of regular factorization, the properties are quite opposite:
the representation size increases with data, without much impacting the prediction
accuracy. We tabulate and highlight the difference in table 6.1.

Our second observation is that the regularization and privacy capabilities are in-
herent, thanks to the hash-based randomization, which contrasts to the conventional
methods. In conventional approaches, regularization is incorporated by limiting the
parameter search and privacy by explicit perturbation of data. A future scope would
be to find and explore other similar sketching techniques to represent parameters, so
that regularization and privacy capabilities are implicitly provided at storage level.

Contribution C

In chapter 5, we improved the retrieval efficiency of latent factor based recommender
systems using LSH. We described an instance of LSH called cosine sketches which can
approximate normalized inner product estimation. We motivated the problem from
a reconstruction point of view and briefly described the existing anti-sparse encoder
technique. We also proposed a new technique, from a reconstruction point of view,
to improve the estimation efficiency of such cosine sketches. We finally validated our
technique on synthetic and benchmark real-vector datasets.



90 Conclusion

We observe that our sequential improvement of reconstruction error is suboptimal
from a reconstruction point of view. Hence there is a room for devising sophisticated
quantization based encoders that optimizes multiple bits together. The catch is that
such an encoder should obey time and space complexities like our technique.

Our contribution is primarily on the later stage of encoding and we make simple
assumptions about the projection matrix: it is over-complete and a tight-frame. Not
optimizing to the input data distribution makes our approach simple, generic and ro-
bust. Nevertheless, optimizing the projection matrix to the input data distribution
might reduce the reconstruction error arising from quantization and thereby improve
the retrieval accuracy. Hence there is a scope to explore the possibilities using machine
learning techniques.

We observe that quantization step in the encoding introduces error on reconstruction
and anticipate that the introduced error might enable privacy as a side effect. But
the privacy properties of LSH based quantization is hard to evaluate, leaving room for
finding efficient and retrieval friendly privacy preserving mechanisms using LSH (shaded
grey block in figure 6.1).

Publications

The thesis work resulted in the following list of publications, presented in various inter-
national conferences.

• Contribution A: Challenging differential privacy: the case of non-interactive
mechanisms, Raghavendran Balu, Teddy Furon, Sébastien Gambs. ESORICS
European Symposium on Research in Computer Security, Sep 2014, Wroclaw,
Poland. Best student paper award.

• Contribution B1: Sketching techniques for very large matrix factorization,
Raghavendran Balu, Teddy Furon, Laurent Amsaleg. ECIR 38th European Con-
ference on Information Retrieval, Mar 2016, Padoue, Italy.

• Contribution B2: Differentially Private Matrix Factorization using Sketching
Techniques, Raghavendran Balu, Teddy Furon. IH&MMSec ACM workshop on
Infomation Hiding and MultiMedia SECurity, Jun 2016, Vigo, Spain.

• Contribution C: Beyond “project and sign” for cosine estimation with binary
codes, Raghavendran Balu, Teddy Furon, Hervé Jégou. IEEE ICASSP Interna-
tional Conference on Acoustics, Speech, and Signal Processing, May 2014, Flo-
rence, Italy.
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6.2 Perspectives

We present some new directions on the topics related to our thesis work, that are worth
exploring by the research community in the future.

Retrieval friendly recommender systems

Our contribution C focused on improving retrieval of recommender systems and other
similar problems. The number of items to be recommended is enormous these days in
applications like music, video, and keeps increasing. This increasing pattern hints the
necessity to concentrate on the retrieval challenges. A promising direction is to model
the user and items using retrieval friendly representations such as compact binary codes
and optimize. But, the discrete nature of such representations makes optimization
cumbersome. Nevertheless, there are some promising existing works such as [ZZ12,
WWY15, LHDL14]. We suggest exploring more in this perspective of retrieval focused
recommender systems.

Sketching techniques for machine learning

A brief summary of the interaction between sketching and machine learning is pre-
sented in section 2.3.4. We observe that the symbiotic relationship between these two
techniques are significant to explore more in the future. Sketching is a subtype of ran-
domization techniques and it is known that machine learning complements well with
these techniques.

In problems like dimensionality reduction, randomization techniques such as ran-
dom projection are seen as a simpler alternative to linear and non-linear machine
learning techniques such as principal component analysis, linear discriminant analysis,
manifold learning, etc. In similarity approximation, LSH is a simpler randomization
based alternative to sophisticated learning based techniques such as learning binary
codes [SH09, WTF09b] and quantization codes [JDS11b]. On other cases, randomiza-
tion is incorporated well into the learning algorithm itself such as stochastic gradient
descent, random sampling, drop out [SHK+14] and input perturbation [Bis95], to name
a few.

All these suggest that sketching techniques have deeper connections with machine
learning, which is unexplored as of now. We positioned our contribution on the scalabil-
ity and privacy aspects. A systematic exploration on other aspects might be beneficial
to both sketching and machine learning domains.

Privacy: Control or Estimate?

We presented two classes of attack models: Single and Joint decoders and KL divergence
based inference. Our Single and joint decoders are theoretically bounded by the mutual
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information between sanitized profile and “items in suspect”, as described in section 3.3.
On the other hand, KL divergence is nothing but a measure of information gain in the
error distributions of observed (training) and unobserved (testing) data. We perceive
the similarity among the two techniques and concur that information theoretic approach
is a strong contender as a privacy evaluation measure.

Observing that differential privacy is nothing but maximal information gain among
neighboring datasets supports our argument. The difference being, ε is a control mea-
sure, where as our contributions are estimated measures. We suggest to explore in this
direction in the future, for new potential privacy measures. An evaluation measure is
practical, easy to implement, and complements well with the control parameter ε, which
gives only theoretical security assurance.

Differentially private machine learning

We described the interaction of differential privacy and machine learning in section 2.4.8.
We observe that privacy is often seen as a constraint that has to be incorporated with
other objectives. Recent advances in efficient differentially private mechanisms such as
Bayesian sampling [WFS15] paint a different and promising picture. Bayesian methods
are widely popular in the machine learning community and the equivalence of privacy
mechanisms and bayesian posterior estimation means that privacy is not alien to the
community and encourages incorporating privacy into the learning objectives. It is
imperative to see that the objective of both privacy and machine learning is one and
same: “generalize well and don’t overfit to/remember individual instances”. Hence we
suggest to devise more privacy enabling mechanisms in the future that benefits both
domains.

Privacy, Regularization and Randomized storage

Our previous perspective implied the commonality of privacy and generalization require-
ments. The usual approach to achieve both is through explicit mechanisms. We demon-
strated through contribution B that providing these two properties can be achieved
implicitly by means of a randomized storage structure. We suggest exploring along the
lines, in finding new randomized storage structures that guarantee privacy and regular-
ization implicitly, by taking advantage of randomized nature of such structures.

On a surface level, these topics may look like remote, as it arose from different
communities. However, the deeper connections among these topics cannot be ruled
out, owing to the play of randomness factor on these disparate objectives. It is also
worthwhile to see if there is a latent “topic of interest” that is still unexplored and
waiting to be discovered.
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Résumé

Cette thèse étudie les aspects passage à l’échelle et respect de la vie privée des systèmes
de recommandation grâce à l’emploi d’algorithmes à base de sketchs. Les contributions
techniques liées à cette étude nous permettent de proposer un système de recomman-
dations personnalisées capable de passer à l’échelle tant en nombre d’utilisateurs qu’en
nombre de produits à recommander, tout en offrant une bonne protection de la confi-
dentialité de ces recommandations. La thèse se situe ainsi à la croisée de trois domaines
qui sont les systèmes de recommandation, la confidentialité différentielle et les tech-
niques à base de sketchs. Concernant la confidentialité, nous nous sommes intéressés à
définir de nouveaux mécanisme garantissant une bonne confidentialité mais aussi à les
évaluer. Nous avons pu observer que c’est ε qui est le paramètre essentiel contrôlant le
respect plus ou moins garanti de la confidentialité différentielle. Par ailleurs, le besoin
de fonctionner à grande échelle demande de relever les défis liés à la modélisation de
très nombreux utilisateurs et à la prise en compte de très nombreux produits à recom-
mander. Ces défis sont particulièrement difficiles à relever dans un contexte où les
préférences des utilisateurs et le catalogue de produits évoluent dynamiquement. Cette
évolution complexifie les techniques de stockage des profils des utilisateurs, leur mise à
jour et leur interrogation. Nos contributions sur cet aspect intéressent non seulement le
domaine de la recommandation, mais ont une portée plus générale. Globalement, nous
avons mené de nombreuses campagnes d’évaluation de nos propositions, sur des jeux de
données réels de très grande taille, démontrant ainsi la capacité de nos contributions à
passer à l’échelle tout en offrant de la dynamicité et des garanties sur la confidentialité.

Abstract

In this thesis, we aim to study and evaluate the privacy and scalability properties of rec-
ommender systems using sketching techniques and propose scalable privacy preserving
personalization mechanisms. Hence, the thesis is at the intersection of three different
topics: recommender systems, differential privacy and sketching techniques. On the
privacy aspects, we are interested in both new privacy preserving mechanisms and the
evaluation of such mechanisms. We observe that the primary parameter ε in differential
privacy is a control parameter and motivated to find techniques that can assess the pri-
vacy guarantees. We are also interested in proposing new mechanisms that are privacy
preserving and get along well with the evaluation metrics. On the scalability aspects, we
aim to solve the challenges arising in user modeling and item retrieval. User modeling
with evolving data poses difficulties, to be addressed, in storage and adapting to new
data. Also, addressing the retrieval aspects finds applications in various domains other
than recommender systems. We evaluate the impact of our contributions through ex-
tensive experiments conducted on benchmark real datasets and through the results, we
surmise that our contributions very well address the privacy and scalability challenges.
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