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Résumé en Français

1. Contexte

Les réseaux de capteurs sans fils (RCSFs) [Ver+10] suscitent un intérêt croissant depuis une ving-
taine d’années. Ces réseaux permettent de prélever, traiter, et diffuser les mesures de phénomènes
physiques, tels que la température, la pression, ou l’hygrométrie sur de vastes zones géographiques.
Leur domaine d’application s’étend de la surveillance d’environnements extérieurs au contrôle d’ateliers
industriels.

Cette thèse aborde quelques problèmes en lien avec la collecte et l’acheminement efficace de
données ainsi qu’avec l’estimation distribuée dans un RCSF.

1.1. Codage réseau pour la collecte distribuée de données corrélées

Afin de faciliter le déploiement et d’améliorer la robustesse des RCSFs, la communication entre les
nœuds peut être effectuée en l’absence de point d’accès désigné et de structure hiérarchique. Au
niveau de la couche réseau, la diffusion des mesures vers tous les nœuds peut être réalisée, par
exemple à l’aide d’un protocole d’inondation (flooding), ou en utilisant un protocole exploitant le
codage réseau (CR) [Ahl+00], afin de réduire le trafic. Lorsqu’un schéma de CR est utilisé, les
données mesurées sont quantifiées et placées par chaque capteur au sein de paquets qu’il envoie
vers ses voisins. Ces derniers réalisent des combinaisons linéaires des paquets reçus et des paquets
qui contiennent leurs données propres. Ces combinaisons linéaires sont ensuite réémises. Le plus
souvent, les coefficients des combinaisons linéaires sont choisis aléatoirement, et sont envoyés dans
chaque en-tête de paquet. Un nœud du réseau souhaitant effectuer un traitement doit prélever
un certain nombre de paquets contenant des combinaisons linéaires indépendantes des paquets
contenant les données mesurées par les capteurs.

Sans exploiter la corrélation entre données, il faut recevoir autant de paquets contenant des
combinaisons linéaires indépendantes qu’il y a de capteurs dans le réseau. Dans de nombreuses sit-
uations pratiques, les mesures obtenues par le RCSF sont spatialement et temporellement corrélés.
Cette corrélation peut être exploitée pour effectuer un décodage, comme cela se fait dans [IKAA12;
Bas+12; RAG12; BTF12]. Le premier objectif de cette thèse est d’étudier le nombre de combi-
naisons linéairement indépendantes qui sont nécessaires et suffisantes pour récupérer parfaitement
les données que les capteurs mesurent.

1.2. Auto-évaluation distribuée

Les nœuds d’un RCSF peuvent être équipés de capteurs ayant des caractéristiques différentes en
terme de bruit de mesure ou de capacité de traitement. Chaque nœud n’a pas nécessairement une
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connaissance complète des caractéristiques du bruit de ses capteurs, par exemple, biaisé et non
biaisé, voir [Chi+11]. Il peut être intéressant d’estimer ces caractéristiques. Plus largement, dans
des applications de type crowdsensing [Guo+15], où les réseaux de capteurs sont constitués de nœuds
participant de manière opportuniste à la collecte de données, la fourniture de services d’acquisition
fiables exige des mesures de bonne qualité. De telles mesures ne sont pas toujours disponibles dans
tous les appareils participant à la collecte, sachant que la précision d’acquisition dépend fortement
des capteurs embarqués. Il est donc important d’identifier les appareils fournissant les mesures de
la meilleure qualité. Ce problème est considéré, par exemple, en utilisant des mécanismes basés sur
la réputation [KM14a; KM14b; Ren+15]. Dans ces systèmes les données sont collectées à partir de
smartphones, sur la base d’un mécanisme d’enchères. Les tâches d’acquisition sont attribuées par
une autorité centrale aux agents selon leur niveau de réputation, afin de maximiser l’utilité pour le
réseau. Ces mécanismes basés sur la réputation sont efficaces pour l’évaluation des agents, mais ont
besoin d’une centralisation des données et d’une autorité de supervision.

Nous supposerons dans cette thèse que chaque agent ou nœud du réseau ne connait pas les carac-
téristiques de son dispositif d’acquisition et qu’il souhaite auto-évaluer ces caractéristiques. La sec-
onde partie de cette thèse sera dédiée à la conception et à l’analyse d’algorithmes d’auto-évaluation
distribués (AED), qui permettent à chaque nœud d’un réseau d’auto-évaluer les caractéristiques
de ses capteurs. Plus généralement, ces outils permettent à des agents d’un réseau d’évaluer leur
niveau d’expertise dans la réalisation de certaines tâches (mesure, décision, classification...).

Nous commencerons par un problème simple d’AED, à savoir la Détection Distribuée des nœuds
possédant des capteurs Défaillants (DDD) d’un réseau. C’est un problème d’AED où seuls deux
niveaux de performance des capteurs sont considérés: bon ou défectueux. Les capteurs défectueux
produisent fréquemment des mesures aberrantes, c’est-à-dire, des mesures anormales qui ne peuvent
pas être justifiées par les simples effets du bruit d’acquisition [BL94]. La présence de nœuds équipés
de capteurs défectueux peut considérablement dégrader les performances d’un RCSF dédié à une
tâche d’estimation distribuée. Il est donc très important de détecter ces nœuds efficacement (avec
des coûts de communication et de calcul faibles), idéalement de manière distribuée.

1.3. Prise en compte d’une connectivité intermittente

Les réseaux tolérants aux déconnections (RTDs) sont des réseaux dont la topologie est dynamique
et le degré de connectivité très faible. Les communications entre nœuds du réseau sont alors très
limitées et de courte durée. Cette intermittence rend les problèmes d’estimation et d’auto-évaluation
de performance beaucoup plus complexes que dans des réseaux plus classiques [HCY11; SRF14;
Zhu+14; GLG16; Pan+15].

Ce type de contrainte de communication apparaît dans des RCSFs où afin d’économiser de
l’énergie, les nœuds sont la plupart du temps en veille et ne communiquent que de manière spo-
radique. Le modèle de RTD est alors très adapté dans ce contexte [Fal03; KAF12].

La dernière partie de cette thèse est consacrée au développement et à l’analyse d’algorithme de
DDD pour des RTDs. Ces résultats sont ensuite généralisés à l’AED en considérant un nombre fini
de niveaux d’expertise. Les agents du réseau seront supposés avoir des interactions sporadiques et
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seulement de pair à pair, comme c’est généralement le cas dans des RTDs, ou dans des réseaux où
les échanges sont effectués via gossiping [FZ08; Dim+10].

2. Codage réseau et compression distribuée dans un RCSF

Dans un RCSF, le codage conjoint source-réseau de données produites par des sources corrélées peut
être effectué en utilisant des techniques empruntées au compressed sensing (CS) [Don06]. L’objectif
du CS est l’estimation d’un vecteur θ ∈ RN à partir de mesures consistant en des combinaisons
linéaires des composantes de θ dont le nombre M peut être nettement inférieure à N . Si θ est
k-sparse dans une base connue, la reconstruction de θ peut alors être effectuée presque sûrement
à partir O(k log(N)) combinaisons linéaires en utilisant des algorithmes de type basis poursuit
[CRT06; CT06a]. Des résultats similaires peuvent être obtenus lorsque θ est seulement compressible
[Don06], avec une qualité de reconstruction correspondant à celle permise par l’observation directe
des k coefficients de plus grandes valeurs absolue de θ dans un domaine transformé.

La caractéristique principale du CS est que les combinaisons linéaires ne doivent pas nécessaire-
ment être adaptées au signal à acquérir. Il suffit que des conditions, dites de restricted isometry sur
la matrice de mesure soient satisfaites [CT06a; CT05]. Par ailleurs, le CS est robuste à la présence
de bruit dans les mesures [CT05; HN06].

L’estimation de θ a été abordée dans un contexte bayésien [JXC08]. Le vecteur à estimer est
alors vu comme une réalisation d’un vecteur aléatoire Θ, dont une distribution a priori traduit
le caractère sparse ou la compressibilité des composantes. Dans les implémentations pratiques,
l’estimation de θ à partir des combinaisons linéaires de ses composantes peut être réalisée en ex-
ploitant des modèles graphiques statistiques [Mon12], et des algorithmes de type belief propagation
(BP) [KFL01], voir [BSB10] pour des matrices de mesure déterministes et [BM11] pour des matrices
de mesure aléatoires.

Lorsque l’on cherche à combiner CS et CR dans des RCSF, on est rapidement confronté au
fait que les mesures des capteurs sont à valeurs réelles ou sont quantifiées et que les opérations de
CR le sont en général dans des corps finis. En conséquence, la matrice de CR, qui joue le rôle de
la matrice de mesure dans le CS classique, a des éléments dans un corps fini. Il est alors difficile
d’exploiter les algorithmes de reconstruction efficace du CS. Une première solution à ce problème
est proposée par [FM11], où le CR est réalisé dans le corps des réels. Ce cadre est également adopté
dans [LCJ15], où la reconstruction des données est effectuée progressivement pour réduire le délai
de décodage. Dans [NL14], la matrice des combinaisons linéaires résultant du CR dans le corps des
réels est quantifiée avant transmission. Le prix à payer par toutes ces techniques est de plus grands
en-têtes et une incompatibilité avec le CR classique.

L’analyse de la performance des estimateurs de θ a été abordée dans [DM09; RAG12], et [SL13].
Le travail de [SL13] n’a pas considéré d’a priori Bayésien, et suppose un niveau connu de sparsité
de θ. Un décodage idéal via une minimisation de norme `0 est supposé. Les conditions nécessaires
et suffisantes pour l’estimation exacte de θ sont dérivés, en fonction de la taille de θ, de son niveau
de sparsité, du nombre de mesures, et de la sparsité de la matrice d’acquisition. Les résultats
numériques montrent que les conditions nécessaires et suffisantes coïncident, lorsque la taille de θ
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augmente asymptotiquement. Un contexte Bayésien est considéré dans [DM09] et [RAG12]. Dans
[DM09], une distribution a priori induit la sparsité de la réalisation de Θ, dont les éléments sont
supposées statistiquement indépendants. En utilisant la méthode des types [Csi98], l’exposant
d’erreur de reconstruction en utilisant une minimisation `0 est obtenu en l’absence de bruit de
mesure, et l’exposant d’erreur de reconstruction en utilisant un décodeur minimisant l’entropie
empirique est détaillé pour des mesures bruitées. Dans [RAG12], certains modèles de corrélation
spécifiques (entre paire de composantes, entre groupe de composantes) de Θ sont considérés. Les
exposants d’erreur pour un décodage MAP sont proposés, à nouveau en cas l’absence de bruit de
mesures.

Le chapitre 2 de cette thèse est consacré à l’étude de l’efficacité de compression de données
corrélées provenant d’un RCSF et acheminées vers un point de collecte à l’aide du codage réseau
linéaire aléatoire (CRLA). Nous supposons un contexte Bayésien et nous considérons un décodage
au sens du maximum a posteriori. Le modèle de système considéré est représenté dans la figure 1.
On suppose que les données prélevées appartiennent à FNQ , le corps fini à Q éléments. Le vecteur
aléatoire ΘN ∈ FNQ représente le vecteur de source et xN ∈ FNQ est une copie de ΘN corrompu par le
bruit de mesure. Le chapitre 2 considère un modèle de source plus général que celui considéré dans la
littérature, à savoir un modèle stationnaire et ergodique, de taux d’entropie H (Θ). Chaque capteur
du réseau prélève une composante de xN , la quantifie à l’aide d’un quantificateur à Q intervalles de
quantification. Chaque nœud réalise un CRLA du paquet contenant cette valeur quantifiée et des
paquets reçu des autres nœuds.

Les effets du CRLA peuvent être modélisés par la multiplication de xN par une matrice aléa-
toire A ∈ FM×NQ . Les éléments de Ai, la i-ème colonne de A, sont supposés être indépendants et
identiquement distribués (iid) dans FQ selon

pAi (0) = 1− γi, pAi (q) =
γi

Q− 1
pour tout q ∈ FQ \ {0} (1)

où γi est le facteur de sparsité de Ai. Les valeurs de γi pour les différentes colonnes ne sont pas
nécessairement identiques. Nous supposons qu’un bruit additif uM ∈ FMQ affecte les paquets reçus.
Le vecteur d’entrée du décodeur, notée yM ∈ FMQ , peut être représenté comme

yM = AxN + uM . (2)

Le décodeur observe la réalisation yM de yM et connait parfaitement la réalisation A de A, par ex-
emple, grâce aux en-têtes des paquets, voir [CWJ03] et [Jaf+09]. L’estimation au sens du maximum
a posteriori θ̂

N
de la réalisation de ΘN est alors

θ̂
N

= arg max
θN∈FNQ

p
(
θN | yM ,A

)
. (3)

En nous inspirant du travail de [SL13], nous cherchons à obtenir des conditions nécessaires et
suffisantes pour la reconstruction presque sûrement exacte de θ, lorsque sa taille augmente asymp-
totiquement. En utilisant des outils tels que le théorème de Shannon-McMillan-Breiman, ou la
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Figure 1: Schéma du modèle de système

typicité faible, nous avons montré que le taux de compression optimal dépend du niveau de corréla-
tion de source. On considère H (Θ, x) comme le taux d’entropie jointe entre la valeur de la source
Θ et sa mesure x et H (pu) comme l’entropie du bruit additif. Asymptotiquement, il faut que

M

N
>

H (Θ, x)

logQ−H (pu)
, (4)

et que l’entropie conditionnelle H
(
ΘN | xN

)
tende vers zéro pour que l’erreur d’estimation puisse

devenir arbitrairement faible. De (4), on peut déduire qu’il n’est possible de reconstruire parfaite-
ment θN en présence de bruit de mesure que lorsque H (pu) < logQ. De plus, on a aussi trouvé
une condition suffisante sur les facteurs de sparsity γi

min
i=1...N

γi > 1− 2−H(pu), (5)

pour assurer la reconstruction parfaite. Cette condition indique que la matrice de codage peut être
arbitrairement sparse, dans le cas sans bruit.

Les hypothèses relatives aux caractéristiques de la source et de la matrice de codage dans
notre travail sont beaucoup plus réalistes que celles qui ont été considérées préalablement. De
plus, aucune analyse n’a été effectuée précédemment tenant compte d’un bruit d’acquisition. Nos
résultats pour le cas sans bruit sont compatibles avec ceux présentés dans [SL13]; en outre, nous
pouvons formellement prouver la convergence asymptotique des conditions nécessaires et suffisantes,
et étendre les bornes sur le facteur de sparsité de la matrice de codage en présence de bruit additif.
Les analyses asymptotiques avec décodage MAP, pour le cas sans bruit et en présence de bruit
additif, sont compatibles avec les résultats obtenues dans [DM09], respectivement sous décodage
par minimisation de norme `0 et par le décodage minimisant l’entropie empirique. Les exposants
d’erreur pour le décodage MAP des sources corrélées dans le cas sans bruit sont compatibles avec
ceux présentés dans [RAG12], et sont ici étendus au cas d’une source ergodique et en présence des
deux types de bruits.

Les résultats en lien avec ce sujet ont fait l’objet de:

• W. Li, F. Bassi, and M. Kieffer, “Sparse Random Linear Network Coding for Data Compres-
sion in WSNs”, Proc. IEEE International Symposium on Information Theory, ISIT 2016,
Barcelona, Spain, 2016. [LBK16]

• W. Li, F. Bassi, and M. Kieffer, “Robust Bayesian compressed sensing over finite fields: asymp-
totic performance analysis”, in preparation. [LBK14]
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3. Détection distribuée des nœuds défaillants dans un RCSF

De nombreux travaux ont été entrepris en lien avec la problématique de la détection des nœuds
équipés de capteurs défectueux au sein d’un RCSF, voir par exemple [ZMH10; MK13; Don+14].
L’article [MK13] propose une classification des différentes techniques de détection. Certaines tech-
niques reposent uniquement sur les données provenant du voisinage direct de chaque nœud [CKS06],
d’autres utilisent également les données provenant des nœuds plus éloignés [DP+15; Bra+13]. Cer-
taines techniques reposent sur un modèle paramétrique du phénomène observé par les capteurs pour
identifier des mesures aberrantes [Ise05; Lo+13]. Les techniques, qui ne sont pas à base de modèles,
exploitent principalement des propriétés statistiques des mesures, telles que la corrélation spatiale
et temporelle. A titre d’exemple, l’algorithme de [CKS06] permet à chaque nœud d’estimer son
état en comparant ses mesures locales avec celles de ses voisins. Dans une première phase seule
une tendance (bon, défectueux, probablement bon, ou probablement défectueux) est déterminée.
Dans une deuxième phase, chaque nœud recueille les tendances de ses voisins et les associée à ses
mesures pour obtenir une évaluation plus fiable. Dans [Din+05] une comparaison entre la mesure
locale et la valeur médiane des mesures des voisins est réalisée. Dans [PK15], une version modifiée
d’un test reposant sur un écart de plus de trois écart-types du bruit est considéré pour identifier les
nœuds produisant des mesures de très grande variance. Des algorithmes itératifs sont proposés dans
[GXL07; Ji+10], où respectivement les critères de la médiane pondérée et de la moyenne pondérée
sont considérés. Dans les deux cas, le test local pondère les mesures des voisins par leur niveau de
confiance qui sont obtenu à partir d’une détection préalable, dans l’hypothèse d’une défaillance per-
manent des nœuds. Dans [LC08], l’algorithme utilise la redondance temporelle afin de lutter contre
les défauts transitoires de détection et de communication. L’algorithme adaptatif proposé dans
[Cho+09] ajuste le seuil de décision à chaque étape pour améliorer sa précision de détection. Dans
[Bra+13], une fonction générique d’identification de mesures aberrantes est supposée être disponible
à chaque nœud. Les résultats fournis par cette fonction à chaque nœud, ainsi que les mesures sont
échangées pour permettre à l’ensemble du réseau d’identifier toutes les mesures aberrantes dans
un ensemble de données. Dans [DP+15], une approche bayésienne distribuée est proposée pour
détecter les mesures aberrantes dans un grand ensemble de données collectées par un RCSF.

En général, la disponibilité de plus de données à un nœud de référence facilite la détection
et l’identification de mesures aberrantes, au prix d’un coût de communication et d’un délai de
détection qui augmente avec la quantité de données. Une approche intéressante pour réduire le
nombre de tests est l’approche par group testing (GT), qui est une méthode statistique permettant
d’identifier un petit nombre de mesures aberrantes dans un grand ensemble de données en effectuant
un nombre limité de tests élémentaires, appelés test locaux de détection de mesures aberrantes
(TLD), impliquant des sous-ensembles de données [DH93]. Ces tests élémentaires sont seulement
en mesure de déterminer si les mesures aberrantes sont présents dans l’ensemble considéré. Un
algorithme distribué de GT [Che+11], qui étend les résultats obtenus en utilisant le GT centralisé,
est proposée dans [TTF13], dans l’hypothèse d’un taux de capteurs défectueux assez faible. La
solution proposée dans [TTF13] présente cependant un inconvénient important dans les en-têtes de
communication nécessaires, pour l’indexation des nœuds et pour la diffusion des résultats des tests
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à l’ensemble du RCSF.
Malgré l’abondante littérature sur le sujet de la détection de capteurs défaillants, il y a en-

core de nombreux problèmes ouverts identifiés dans [MK13; Don+14]. Les nœuds d’un RCSF sont
généralement limités en termes de mémoire, puissance de calcul et énergie disponible. La plu-
part des systèmes de DDD traditionnels ont accordé peu d’attention à ces problèmes. Ils sont
généralement gourmands en énergie et en mémoire, et ont souvent besoin d’un nombre important
de communications.

Par ailleurs, les travaux précédents se sont souvent concentrés sur l’amélioration des TLD. Ceux-
ci sont ensuite analysés en considérant des études de cas spécifiques par des simulations. La relation
entre les paramètres des algorithmes de détection, comme le seuil de décision de défaillance d’un
capteur et les performances de ces algorithmes est difficile à prévoir. A notre connaissance, peu
de travaux ont cherché à mettre les techniques de DDD dans un cadre générique et à fournir une
analyse de l’équilibre ou de la stabilité des algorithmes itératifs de DDD.

Au Chapitre 3, nous considérons un ensemble de nœuds S déployés uniformément et de façon
indépendant dans un plan. Un nœud ne peut que communiquer avec les nœuds à portée de com-
munication. On définit D ⊆ S comme l’ensemble des nœuds équipés de capteurs défectueux et
G = S \ D comme l’ensemble des nœuds avec des bons capteurs. Le statut du nœud i ∈ S est
représenté par θi ∈ {0, 1}. On a θi = 1 si i ∈ D et θi = 0 si i ∈ G.

Nous considérons des TLD capable uniquement de détecter la présence de mesures aberrantes
dans un ensemble de mesures MA fournis par un ensemble de nœuds A, sans nécessairement être
capable d’identifier lesquelles des données sont erronées. Cette hypothèse élargit la gamme des
TLDs applicables aux TLD n’ayant besoin que de peu de mesures (typiquement 2 ou 3). Les TLDs
sont caractérisés par qD (MA) et qFA (MA), les probabilités de détection de mesures aberrantes,
dans le cas où A∩D 6= ∅ et de fausse alarme, lorsque A∩D = ∅, respectivement. Par ailleurs, pour
simplifier de l’analyse, nous considérons uniquement les TLDs vérifiant les propriétés suivantes

• P1 ). qD (MA) = qD (ng, nd) et qFA (MA) = qFA (ng), où ng = |A ∩ G| et nd = |A ∩ D|;

• P2 ). qD (ng, nd) et qFA (ng) augmentent avec ng et nd.

Il est très facile de construire de tels TLDs, par exemple dans un contexte d’estimation à erreurs
bornées [Mil+96; Jau+01].

Le chapitre 3 de cette thèse, propose deux algorithmes de DDD inspirés des techniques de GT:
une version avec une seule décision (SDDD) et une autre itérative (IDDD). La seconde version
est mieux adaptée aux RCSF possédant une grande proportion de capteurs défectueux. Dans les
deux cas, on découple le TLD, qui fournit seulement une indication (vrai, faux) de la présence de
mesures aberrantes dans un ensemble de mesures, de la décision finale sur le statut de nœud (bon,
défectueux).

Les algorithmes proposés consistent de deux étapes : une détection locale de la présence de
mesures aberrantes en utilisant un TLD, et la décision. Dans la première étape, chaque nœud i

recueille des données provenant de son voisinage, effectue le TLD pour déterminer si des mesures
aberrantes sont présentes parmi les données recueillies. On introduitNi comme l’ensemble de voisins
de nœud i et Ui = Ni∪{i}. Idéalement (sans aucune perte de paquets et d’erreurs de transmission),
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le TLD effectué par le nœud i, dont le résultat est yi, implique les données fournies par les nœuds
Ui. Chaque nœud diffuse le résultat de son TLD à ses voisins et calcule la somme des yj qu’il a
reçus, c’est-à-dire

∑
j∈Ui yj . La nature en deux étapes de l’algorithme rend la phase de décision

indépendante de la nature du TLD considéré. Nous formulons les hypothèses que le TLD devrait
satisfaire pour permettre de prouver l’existence d’un état d’équilibre. Par ailleurs, il est possible
de caractériser analytiquement les performances de l’algorithme et ainsi d’ajuster la valeur de ses
paramètres. Cet aspect est l’une des problématiques ouvertes mentionnées dans [ZMH10; MK13].

Dans la version avec une seule décision de l’algorithme DDD proposé, les nœuds réalisent L
itérations de la première étape et ensuite estiment le statut de ses capteurs dans une phase de
décision unique sur la base des résultats des TLDs effectuées et reçus des nœuds voisins

θ̂i =

1 (défectueux) si
∑L

`=1

∑
j∈Ui y

(`)
j > γL |Ui| ,

0 (bon) sinon.
(6)

Cette version ne fonctionne bien que dans le cas où le rapport des nœuds dont les capteurs sont
défectueux est très faible. Sinon, la probabilité qu’un bon nœud soit considéré comme défectueux,
notée par PFA, peut être élevée.

Dans la version itérative de l’algorithme DDD, chaque nœud est autorisé à prendre des décisions
temporaires θ̂(`)

i sur le statut de son capteur. Les nœuds avec θ̂(`−1) = 1 restent silencieux au cours
de l’itération `. Toute décision peut être mise à jour au cours des prochaines itérations. Les nœuds
réalisent L1 itération de ces traitements. Ensuite, les nœuds avec θ̂(L1) = 0 mettent en œuvre
l’algorithme DDD avec décision unique et L2 itérations. Les nœuds pour lesquels θ̂(L1) = 1 sont
déterminés comme défectueux et ne participent pas aux dernières L2itérations. Quelques exemples
numériques sont représentées sur Figure 2, dont le détail de la simulation peut être trouvé dans
la thèse au Chapitre 3.5. Les L1 premières itérations aident à diminuer PFA et les L2 itérations
suivante améliorent PD, qui est la probabilité qu’un nœud défectueux soit détecté.

Il est intéressant d’étudier la dynamique de la proportion de nœuds dans chaque état (θ, θ̂),
avec θ, θ̂ ∈ {0, 1}. Des conditions suffisantes à satisfaire par le TLD ont été mises en évidence pour
assurer l’existence d’un équilibre des algorithmes DDD.

Un avantage des algorithmes DDD proposés est que, lorsque les conditions de communication
sont parfaites, les nœuds ne doivent que transmettre le résultat binaire de son TLD à chaque itéra-
tion. Cependant, comme chaque nœud diffuse des paquets au cours de l’algorithme, les problèmes
de canal et les pertes de paquets ne peuvent être négligés. Les algorithmes DDD initiaux peuvent
encore fonctionner, mais avec des performances dégradées. Une alternative consiste, en plus de la
transmission de yi, pour chaque nœud i, de transmettre également un ensemble Vi ⊆ Ui afin de
signaler les indices des voisins qui ont été impliqués dans son TLD. Chaque nœud i peut décider
de prendre en compte le yj reçu en vérifiant si i ∈ Vj .Une discussion détaillée sur le trafic généré
par l’algorithme DDD est présenté dans la thèse pour des situations différentes. Il est intéressant
de voir s’il est nécessaire de transmettre Vi. La figure 3 compare des algorithmes itératifs avec ou
sans la transmission de Vi, ainsi que l’algorithme de référence [LC08], avec différentes proportions
de nœuds défectueux. Dans cet exemple, la transmission de Vi n’est pas très importante tant que
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Figure 2: PD (à gauche) et PFA (à droite) en fonction du nombre d’itérations, avec
un taux des nœuds défectueux µ̄d/µ̄ ∈ {0.02, 0.1}, L = 10 pour le DDD avec décision

unique; L1 = 7 et L2 = 3 pour le DDD itératif.

Psuccess > 0.6, où Psuccess est la probabilité qu’un nœud réussisse à accéder au canal et à transmettre
son paquet.

Pour étudier l’impact des protocoles de communication et des conditions de propagation réelles,
l’algorithme proposé a également été mis en œuvre sur la plate-forme Data Sensing and Process-
ing Testbed (DataSens), qui est une partie des installations expérimentales disponibles dans Eu-
WIn@CNIT/Bologne. La plate-forme adoptée est composé de 20 ou de 41 nœuds sans fil de type
EMB-2530PA [Ins]. La pile logicielle TIMAC, conforme au standard IEEE 802.15.4, a été utilisée
pour l’implantation des algorithmes. Les résultats obtenus sont ensuite comparés avec ceux de la
simulation pour évaluer l’efficacité de l’algorithme. L’algorithme proposé réalise de bonne perfor-
mance (le rapport des nœuds ayant une mauvaise estimation du statut est inférieur à 5%) dans un
court délai (1 seconde), même dans un environnement de communication instable.

En résumé, les principales contributions du Chapitre 3 sont

• La proposition d’algorithmes de DDD de complexité réduite, reposant sur des TLDs très
génériques qui ont le potentiel de fonctionner avec très peu de mesures ;

• L’obtention des conditions à satisfaire par un TLD et par la densité des nœuds du réseau pour
faire en sorte que l’algorithme DDD itératif atteigne un équilibre ;

• Une caractérisation analytique des performances dans des conditions de canal réalistes, liées
aux pertes de paquets et les problèmes d’accès au canal à la couche MAC, ce dernier problème
étant rarement pris en compte dans d’autres travaux ;

• La mise en œuvre de l’algorithme proposé dans un réseau de capteurs réel pour vérifier
l’efficacité des algorithmes.
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Figure 3: Comparaison des algorithmes itératifs avec ou sans la transmission de Vi,
ainsi que l’algorithme de référence [LC08], avec µ̄d/µ̄ ∈ {0.02, 0.1}.

Les résultats en lien avec ce sujet sont dans les publications:

• W. Li, F. Bassi, D. Dardari, M. Kieffer, and G. Pasolini, “Defective Sensor Identification for
WSNs involving Generic Local Outlier Detection Tests”, IEEE transactions on Signal and
Information Processing over Networks, vol. 2, no. 1, pp 29-48, 2016. [Li+16a]

• W. Li, F. Bassi, D. Dardari, M. Kieffer, and G. Pasolini, “Low-Complexity Distributed Fault
Detection for Wireless Sensor Networks”, Proc. IEEE International Conference on Commu-
nications, ICC 2015, London, UK, 2015, pp. 6712–6718. [Li+15b]

• W. Li, F. Bassi, D. Dardari, M. Kieffer, and G. Pasolini, “Iterative Distributed Outlier De-
tection for Wireless Sensor Networks: Equilibrium and Convergence Analysis”, Proc. IEEE
Conference on Decision and Control, CDC 2015, Osaka, Japan, 2015, pp. 3050-3056. [Li+15a]

• W. Li, F. Bassi, D. Dardari, M. Kieffer, and G. Pasolini, “Impact of Channel Access Issues
and Packet Losses on Distributed Outlier Detection within Wireless Sensor Networks”, Proc.
IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2016,
Shanghai, China, 2016. [Li+16c]

4. Détection distribuée des nœuds défaillants dans un RTD

Le problème de DDD est beaucoup moins étudié dans le contexte des RTDs que dans les RCSFs
génériques. Lorsque un peu de mesures sont disponibles, les TLDs classiques ne sont pas très
efficaces: par exemple, il est très difficile, à partir de deux mesures seulement fournies par deux
nœuds différents, de déterminer lequel de ces nœuds est défectueux. Ceci est une situation typique
dans RTDs lorsque deux nœuds se rencontrent, prennent des mesures, et partagent ces mesures.



xvii

Une application directe des algorithmes DDD classiques dans le contexte des RTDs peut donc être
tout à fait inefficace.

Un problème lié a été considéré par [Zhu+12], dans le contexte des RTDs véhiculaires (VRTDs).
Un grand nombre de capteurs sont fixes et liés à l’infrastructure routière. Certains véhicules, appelés
mobile carriers (MC), recueillent des données issues de ces capteurs. Les capteurs ne peuvent
communiquer qu’avec les MCs de leur voisinage. Un MC a besoin de recueillir suffisamment de
mesures pour effectuer un test permettant de déterminer les mesures produites par des capteurs
défectueux. Une fois qu’un nœud est jugé défectueux par un MC, il est ajouté à la liste noire. Les
MCs fournissent des informations aux capteurs sur leur statut et échangent aussi leurs listes noires
afin d’accélérer la détection des capteurs défaillants.

Dans [Pen+14], le problème de détection de nœuds infectés par des logiciels malveillants et
formant un RTD est considéré. Chaque nœud détermine après la rencontre avec un autre nœud si
celui-ci a effectué des actions suspectes (essai de transmission de logiciel malveillant). Les nœuds
détectés comme infectés sont isolés.

La gestion de confiance ou de la réputation des nœuds est un autre aspect important pour
aider un RTD à résister à des attaques. Ainsi, [AF12] fournit un mécanisme itératif de gestion
de la confiance pour lutter contre les attaques byzantines où des nœuds sont totalement contrôlés
par un adversaire. Un modèle de confiance pour les réseaux de capteurs acoustiques sous-marins
est présenté dans [Han+15] pour prendre en compte plusieurs paramètres de confiance tels que la
confiance de lien, la confiance des données, et la confiance du nœud. La gestion des niveaux de
confiance est également très importante dans des application de type Sensing as a Service (SaaS),
voir par exemple [She+13].

Le chapitre 4 présente un algorithme entièrement distribué et facilement implémentable pour
permettre à chaque nœud d’un RTD de déterminer si ses propres capteurs sont défectueux. Les
conditions de communication des RTDs imposent une structure d’algorithme DDD complètement
différente de celle introduite au Chapitre 3, même si les deux algorithmes utilisent des TLD.

Le statut d’un nœud est représenté par la variable θ ∈ {0, 1} où θ = 0 désigne un nœud
normal et θ = 1 indique un nœud défectueux. La proportion de nœuds avec θ = 0 et θ = 1 sont
p0 et p1, avec p0 + p1 = 1. Comme dans [Zhu+10; GLG16; HO+15; Pan+15], nous supposons
que l’intervalle du temps entre deux réunions successives suit une distribution exponentielle de
paramètre λ. De plus, nous supposons que chaque réunion implique seulement deux nœuds. Lorsque
plus de deux nœuds se rencontrent au même temps, le traitement est effectué paire par paire.
Lorsque 2 nœuds ont une réunion, ils peuvent échanger leurs données et effectuer un TLD identique
à celui considéré au chapitre 3. Dans le contexte des RTDs, un TLD implique n0 ∈ {0, 1, 2}
nœuds normaux et n1 ∈ {0, 1, 2} nœuds défaillants, avec n0 + n1 = 2. On suppose en outre que
qFA (2) < qD (1, 1) 6 qD (0, 2), qui est raisonnable: la probabilité de détection de la présence d’un
nœud défaillant augmente avec le nombre de nœuds défaillants participant au TLD.

L’idée principale de l’algorithme RTD-DDD proposé est simple: chaque nœud gère deux comp-
teurs cm,i(t) et cd,i(t) initialisés à 0 à l’instant t = 0. En utilisant cm,i(t), le nœud i compte le nombre
de TLDs qu’il a effectués. Avec cd,i(t), il compte le nombre de TLD ayant détecté la présence de
mesures aberrantes. Chaque nœud met à jour l’estimée de son statut en utilisant la règle de décision
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θ̂i(t) =

1 (défectueux), si cd,i(t)/cm,i(t) > ν,

0 (bon), sinon.
(7)

où ν est un seuil de décision constant. Lorsqu’un nœud i avec θ̂i (t) = 1 rencontre un nœud j, le
nœud i n’envoie pas ses mesures locales vers nœud j, mais il effectue encore un TLD et met à jour
ses compteurs locaux si θ̂j (t) = 0.

Le chapitre 4 étudie le comportement de l’algorithme RTD-DDD à l’aide des modèles de Markov
et d’outils empruntés à la théorie du contrôle et à l’étude de la dynamique des populations. Pour
ce faire, la croyance de chaque nœud sur l’état de ses capteurs est quantifiée. On introduit xi(t) =

(θi, cm,i(t), cd,i(t)) comme l’état du nœud i à l’instant t. Parmi les nœuds dont le statut est θ, on
définit

• X`,k
θ (t): la proportion des nœuds dans l’état (θ, `, k), avec cm,i(t) = ` et cd,i(t) = k;

• pθθ̂ (t): la proportion des nœuds avec le statut réel θ et le statut estimé θ̂.

On remarque que p11 représente le taux de détection, i.e., la proportion de mauvais capteurs qui ont
effectivement identifié leurs capteurs comme défectueux, et p01 représente le taux de fausse alarme,
i.e., la proportion de nœuds qui croient que leurs capteurs normaux sont en fait défectueux.

Pour limiter le nombre d’états possibles, on ne considère que les M dernières réunions au cours
desquelles le nœud i a effectué un TLD. Ainsi, cd,i(t) 6 cm,i(t) 6M . L’évolution de xi(t) suit deux
chaînes de Markov indépendantes, suivant la valeur de θi. La dynamique des proportions X`,k

θ (t)

est décrite à l’aide d’un ensemble d’équations différentielles. On a montré qu’il existe toujours
un certain équilibre du système dynamique pour ν ∈ [0, 1]. Au point d’équilibre, on a X`,k

θ = 0,
∀k 6 ` < M et XM,k

θ s’exprime de la manière suivante

X
M,k
θ =

(
M

k

)
(hθ)

k (1− hθ)M−k ,

avec

h0 =
p0qFA (2) p00 + p1qD (1, 1) p10

p0p00 + p1p10 , h1 =
p0qD (1, 1) p00 + p1qD (0, 2) p10

p0p00 + p1p10 ,

dans lesquelles p00 et p10 peuvent être obtenus en résolvant
p00 =

∑
k:k/M<ν

(
M
k

)(p0qFA(2)p00+p1qD(1,1)p10

p0p00+p1p10

)k(
p0(1−qFA(2))p00+p1(1−qD(1,1))p10

p0p00+p1p10

)M−k
,

p10 =
∑

k:k/M<ν

(
M
k

)(p0qD(1,1)p00+p1qD(0,2)p10

p0p00+p1p10

)k(
p0(1−qD(1,1))p00+p1(1−qD(0,2))p10

p0p00+p1p10

)M−k
.

(8)

Des conditions suffisantes sur les paramètres de décision pour assurer l’unicité d’un équilibre de
l’algorithme RTD-DDD sont ensuite fournies. Lorsque M tend vers l’infini, on peut prouver que
tous les p01 et p10 tendent vers 0, ce qui signifie que chaque nœud est capable d’estimer correctement
son statut, si la valeur de M est suffisamment grande.
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Les valeurs exactes de XM,k
θ s sont difficile à obtenir. Cependant, on peut obtenir les approxi-

mations suivantes

X̃M,k
0 =

(
M

k

)
(qFA (2))k (1− qFA (2))M−k , X̃M,k

1 =

(
M

k

)
(qD (1, 1))k (1− qD (1, 1))M−k , (9)

puis l’approximation de pθ0 est
p̃θ0 =

∑
k:k/M<ν

X̃M,k
θ .

Les valeurs réelles des p00 and p10 sont très proches de p̃11 and p̃01, dans la région où p11 est proche
de 1. Ces approximations fournissent des lignes directrices pour choisir correctement la valeur de ν.

En simulation, on considère tout d’abord certains modèles idéaux de communication pour véri-
fier la validité des résultats théoriques obtenus. L’algorithme RTD-DDD est ensuite simulé en
considérant des RTD dont les rencontres entre nœuds ont été stockées dans des bases de données
expérimentales bien étudiés, voir le projet Haggle [Sco+09] et le projet du MIT Reality Mining
Projet [EP06]. Plus précisément, nous avons extrait de ces bases les instants de rencontres entre
nœuds. Dans chaque test, ND nœuds sont tirés aléatoirement comme défaillants et l’algorithme
RTD-DDD est lancé pour permettre à tous les nœuds de déterminer leur statut. Des simulations de
Monte-Carlo sont effectuées 500 fois pour les bases de données Reality et Infocom05. En haut de la
figure 4, chaque point suer une ligne indique un nœud actif (qui est en contact avec un autre nœud).
Ceci montre l’évolution de la fréquence des contacts au cours du temps. L’évolution de p10 et p01 est
en bas de la figure 4. Tous les p10 et p01, obtenus par les deux bases de données, diminuent jusqu’à
10−3 après une durée suffisamment longue. On observe également que la vitesse de convergence de
p10 et p01 est fortement liée à la fréquence des contacts. La figure 5 représente les états à l’équilibre
X
M,k
θ s obtenus en utilisant les bases de données Reality et Infocom05, et ainsi que ceux résultant

de l’approximation (9). Il y a une excellente coïncidence entre les valeurs à l’équilibre prédite par
la théorie et celles obtenues par simulation.

Enfin, on caractérise l’influence des paramètres sur les performances de l’algorithme RTD-DDD.
Pour montrer l’efficacité de l’algorithme proposé, on considère qD (0, 2) = 0.9 et M = 10 fixés.
Pour p1 = 0.1 et p1 = 0.5, on s’intéresse aux p10 et p01 réalisables pour 0 6 qFA (2) < qD (0, 2)

et qFA (2) < qD (1, 1) 6 qD (0, 2). Quatre domaines sont considérés: Dans le domaine 3: tous les
p10 et p01 sont inférieures à 10−3; dans le domaine 2: tous les p10 et p01 sont inférieurs à 10−2;
dans le domaine 1: tous les p10 et p01 sont inférieurs 10−1; dans le domaine 0: p10 ou p01 peuvent
être plus grands que 10−1. La figure 6 montre la partition du triangle (qD (1, 1) , qFA (2)) en quatre
domaines, représentés par des couleurs différentes. Le ratio de nœuds défectueux dans le réseau
n’a pas d’impact significatif sur la performance à l’équilibre, même quand 50% des nœuds sont
défectueux.

Les résultats en lien avec ce sujet sont dans les publications:

• W. Li, L. Galluccio, M. Kieffer, and F. Bassi, “Distributed Faulty Node Detection in DTNs”,
Proc. International Conference on Computer Communication and Networks, ICCCN 2016,
Hawaii, USA, 2016. [Li+16b]
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• W. Li, L. Galluccio, M. Kieffer, and F. Bassi, “Distributed Faulty Node Detection in Delay Tol-
erant Networks: Design and Analysis”, IEEE transactions on Mobile Computing, submitted.
[Li+16d]

5. Auto-évaluation distribuée

Le chapitre 5 considère un groupe d’agents collaborant afin d’exécuter une tâche donnée (acquisition,
détection, classification, voir par exemple [Luo+07; Ang+09; SBW16]), pour laquelle chaque agent
a potentiellement un niveau d’expertise différent. Ce niveau d’expertise peut être liée, par exemple à
la qualité des capteurs ou à la puissance de calcul que chaque agent a à sa disposition. Initialement,
nous supposons que chaque agent ne connait pas son niveau d’expertise, ou s’il le connait, ne
sais pas se situer vis-à-vis des autres agents. L’objectif de l’auto-évaluation distribuée (AED) est
de permettre à chaque agent, par l’intermédiaire d’échanges de pair-à-pair avec d’autre agents,
d’évaluer son niveau d’expertise par rapport à celui d’autre agents.

Ce type de problème est important des dans applications de type sensing as a service (SaaS).
Permettre à chaque agent d’être conscient de son niveau d’expertise permet de fournir des mesures
ou des décision avec des niveaux de confiance associés. Des mécanismes de réputations sont mis
en œuvre dans ces dispositifs. En cas de défaillance temporaire, cela permet à un agent de ne
pas transmettre de données, plutôt que de corrompre sa réputation. Cela permet également aux
meilleurs agents de mieux valoriser la qualité de leurs mesures ou de leurs décisions, sans avoir
besoin de l’aide d’un organe de traitement central.

Des problèmes simples d’AED ont été abordés dans le passé par [Chi+11; FFR14], où chaque
nœud d’un RCSF doit estimer la valeur d’un paramètre constant à partir de mesures scalaires
bruitées, ainsi que le biais [Chi+11] ou le niveau de la variance [FFR14] de son bruit de mesure,
tous les deux supposés ne prendre que deux valeurs distinctes. Les nœuds sont partitionnés en
deux groupes dans [Chi+11], chaque groupe étant caractérisé par l’absence ou la présence de biais
de mesure. L’algorithme proposé nécessite un consensus [HM09] avec des échanges de type pair-
à-pair par gossiping, ainsi que le classement distribué des nœuds [FZ08] selon la valeur de leur
mesure. Chaque nœud est alors capable de décider si son bruit de mesure est biaisé. Les partitions
considérées dans [FFR14] dépendent des valeurs possibles de la variance du bruit de mesure.

Dans le chapitre 5 un nombre fini de niveaux d’expertise est considéré. Ce niveau d’expertise,
représenté par θi ∈ Θ = {1, . . . ,K} pour l’agent i est supposé constant et décrit sa capacité à
effectuer une certaine tâche. Nous supposons que les niveaux d’expertise vont en décroissant avec θ.
Ainsi, θ = 1 indique le niveau d’expertise maximal et θ = K le niveau minimal. L’algorithme d’AED
implique des interactions entre agents de type pair-à-pair et des tests de comparaison (TC). Un TC
implique deux agents et est capable d’estimer l’agent ayant le niveau d’expertise le plus élevé, mais
n’est pas capable de quantifier la différence de niveau d’expertise. Ainsi, le TC renvoie yi,j = 1

lorsqu’il est vraisemblable que l’agent i a un niveau d’expertise supérieur à celui de l’agent j.
Il renvoie yi,j = 0 sinon. Tout comme les TLDs, les TC sont caractérisés par leurs propriétés
statistiques q (θi, θj) = P {Yi,j = 1|θi, θj}. Seules ces propriétés sont importantes dans la suite. Le
TC peut donc être très générique.
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Tout comme pour l’algorithme de RTD-DDD, chaque agent i utilise deux compteurs, ct,i(t) et
cb,i(t) pour compter le nombre de TCs qu’il a effectués et le nombre de TCs ayant produit yi,· = 1.
Intuitivement, un agent dont le niveau d’expertise est θ a plus de chances d’avoir un plus grand
rapport cb,i(t)/ct,i(t) qu’un agent avec un niveau d’expertise θ′ lorsque θ < θ′. On peut alors
introduire une partition de l’intervalle [0, 1] en K intervalles de décision [νk, νk−1) avec ν0 = 1 et
νK = 0, chacun correspondant à un niveau d’expertise estimé

θ̂i (t) = k si cb,i(t)/ct,i(t) ∈ [νk, νk−1) , k = 1 . . . ,K. (10)

Nous considérons que lorsque deux agents i et j se rencontrent, ils commencent à échanger
leur niveau d’expertise estimé. L’agent i demande à poursuivre l’interaction avec une probabilité
α
(
θ̂i, θ̂j

)
et l’agent j avec une probabilité α

(
θ̂j , θ̂i

)
. L’interaction se poursuit lorsqu’au moins

l’un des agents la demandent. Seuls les agents qui demandent à poursuivre l’interaction effectuent
le TC et exploitent son résultat. Les valeurs de α

(
θ̂i, θ̂j

)
sont des paramètres d’ajustement pour

optimiser les performances de l’algorithme d’AED.
L’efficacité de l’algorithme d’AED proposé est mesurée par le taux de décision correcte (TDC) et

par le taux de décision erronée (TDE), c’est-à-dire, la proportion des agents qui auto-évaluent cor-
rectement ou non leur niveau d’expertise. L’analyse de l’algorithme d’AED est réalisée en supposant
une population bien mélangée d’agents pour lesquels l’intervalle de temps entre deux rencontres est
distribué exponentiellement. Ce modèle permet de décrire l’évolution des proportions d’agents ayant
des estimées similaires dans leur expertise par des équations d’état à temps continu.

Comme au chapitre 4, on introduit Xτ,β
θ (t) comme la proportion des agents avec cb,i(t) = β et

ct,i(t) = τ , parmi les agents dont le niveau d’expertise est θ. Ici, pθ représente la proportion d’agents
dont le niveau d’expertise est θ ; pθθ̂ représente la proportion d’agents de niveau d’expertise réel θ
et de niveau estimé θ̂. Afin de simplifier l’analyse, chaque nœud ne considère que les M dernières
résultats des TCs.

L’analyse du comportement de l’algorithme d’AED pour des valeurs arbitraires de α est difficile.
On se focalise sur deux cas particuliers ici.

• Dans le cas I, une rencontre entre deux agents conduit toujours à une interaction, α(k1, k2) = 1,

∀k1, k2. Dans ce cas, on peut obtenir l’expression exacte des proportions d’agents à l’équilibre,
X
τ,β
θ = 0, ∀τ < M et

X
M,β
θ =

(
M

β

)(∑
k∈Θ

pkq (θ, k)

)β (
1−

∑
k∈Θ

pkq (θ, k)

)M−β
. (11)

• Dans le cas II, une rencontre entre deux agents se poursuit par une interaction uniquement
lorsqu’un agent i rencontre un agent j estimant que son niveau d’expertise est le meilleur,

α (k1, k2) =

1 si k2 = 1,

0 sinon.
(12)
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Dans ce cas, l’expression explicite de XM,β
θ n’est pas facile à écrire. On a trouvé cependant

une condition suffisante pour assurer l’existence d’un équilibre XM,β
θ . Ceci permet ensuite

d’obtenir une approximation

X̃M,β
θ =

(
M

β

)
(q (θ, 1))β (1− q (θ, 1))M−β , (13)

qui peut être vue comme une extension du résultat (9).

En utilisant (11) ou (13), on peut optimiser les seuils de décision introduits dans (10). Par exemple,
pour maximiser la somme de TDC , i.e.,

∑
θ∈Θ p

θθ ou
∑

θ∈Θ p̃
θθ, les valeurs de νθ doivent satisfaire

νθ =
log
(

1−aθ
1−aθ+1

)
log
(
aθ+1

aθ
1−aθ

1−aθ+1

) , ∀θ = 1 . . . (K − 1) , (14)

où aθ =
∑

k∈Θ pkq (θ, k) pour le cas I et aθ = q (θ, 1) pour le cas II.
Pour la partie expérimentale, on utilise à nouveau les deux bases de données expérimentales,

Reality et Infocom05. Le modèle de TC est décrite en détail au chapitre 5.4, page 103-104. La
figure (7) montre l’évolution de P θe = 1 − pθθ pour le cas II. Pour les deux bases de données, P θe
décroit aux alentours de 10−2 pour toutes les valeurs de θ ∈ Θ après un temps suffisant. La figure 8
représente les valeurs de XM,β

θ obtenues en utilisant les bases de données Reality et Infocom05, et
aussi par l’approximation (13). Dans ce cas, il y a à nouveau une excellente coïncidence entre la
théorie et la simulation. Cependant, les résultats pour le Cas I, également fourni dans la thèse, ne
sont pas aussi bons. Ceci illustre l’importance du choix de α. Un travail important reste à faire pour
analyser le comportement de l’algorithme d’AED avec des probabilités d’interaction quelconques.

Une partie des résultats en lien avec ce sujet sont dans les publications:

• W. Li, F. Bassi, L. Galluccio, and M. Kieffer, “Self-Rating in a Community of Peers”, IEEE
Conference on Decision and Control, CDC 2016, Las Vegas, USA, 2016. [Li+16e]

• W. Li, F. Bassi, L. Galluccio, and M. Kieffer, “Peer-assisted Individual Assessment in a Multi-
agent system, Automatica, submitted. [Li+16f]

6. Perspectives

Plusieurs problèmes ouverts peuvent être considérés à la suite de cette thèse.

6.1. Codage réseau linéaire aléatoire

Au Chapitre 2, nous avons analysé les limites en termes de compression de données dans un RCSF
en présence de bruit, en considérant une matrice de codage avec différents niveaux de sparsité.

Pour assurer le taux de compression optimal, nous avons proposé une condition suffisante sur le
niveau de sparsité minimal de la matrice de codage réseau. Un travail reste à faire sur la recherche
des conditions que doit satisfaire le niveau de sparsité moyen. La réciproque de la preuve que nous
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avons proposée repose principalement sur l’inégalité de Fano. Aucune condition nécessaire sur la
sparsité de la matrice de codage n’a été proposée. Il est important de chercher ce type de résultat,
afin de déterminer si les conditions nécessaires et suffisantes sur la sparsité peuvent coïncider.

Compte-tenu des résultats obtenus sur le facteur de sparsité, un problème intéressant est de
voir comment configurer un RCSF pour permettre de satisfaire les conditions sur la sparsité. Ainsi,
lorsque les nœuds sont uniformément distribués sur un plan avec une densité donnée, il s’agit de
déterminer comment les nœuds doivent réaliser les combinaisons linéaires des paquets.

6.2. Détection distribuée de défauts dans un RTD

Dans ce chapitre, nous avons supposé que le statut des nœuds reste constant sur l’intervalle de
temps que dure la phase de détection de défauts. Il serait intéressant d’introduire un statut des
nœuds variant au cours du temps, ce qui est plus réaliste. Ainsi, un nœud normal peut devenir
défectueux lorsque sa puissance est faible, un nœud défaillant peut redevenir normal lorsque son
capteur défectueux est remplacé, ou lorsqu’il recharge sa batterie. Dans cette situation, des prob-
abilités de transition entre statuts doivent être introduites et les chaines Markov conditionnées par
les deux statuts (voir, par exemple, la figure 4.1) ne seront plus indépendantes. L’analyse est plus
complexe dans ce cas.

Les techniques développées pour l’analyse de la dynamique de l’algorithme de détection de
défauts peut être utile afin analyser d’autres types de problèmes d’auto-estimation. Par exemple,
cet outil peut être appliqué à la détection d’infection des nœuds par des logiciels malveillants.
Les nœuds du réseau doivent à nouveau être rationnels et souhaiter connaître leur statut (infecté
par un virus ou sains). Lors d’une rencontre, nous supposons que chaque nœud dispose d’un test
permettant d’évaluer si le nœud rencontré a tenté de lui transmettre un logiciel malveillant. La
détection de logiciels malveillants est plus difficile que la détection du capteur défectueux, à cause
de la nature des logiciels malveillants: un nœud normal peut être infecté par un nœud infecté lors de
leur interaction. Il est donc indispensable de considérer l’évolution temporelle du statut des nœuds.
Le modèle de propagation des logiciels malveillants (voir [KSA12] par exemple) peut être considéré
et introduit dans notre modèle de Markov pour analyser la dynamique. Il y aura un compromis
entre la proportion des nœuds infectés actifs et la proportion des nœuds normaux qui sont mal
détectés comme infectés.

6.3. Auto-évaluation distribuée

Les résultats présentés au chapitre 5 en lien avec l’auto-évaluation distribuée du niveau d’expertise
des agents d’une communauté sont obtenus en considérant deux cas particuliers de probabilités
d’interaction entre agents: soit les agents interagissent à chaque rencontre, soit ils n’interagissent que
s’ils rencontrent un agent estimant avec le niveau d’expertise maximal. Un travail important reste à
faire pour analyser le comportement de l’algorithme d’auto-évaluation distribué avec des probabilités
d’interaction quelconques. L’existence et l’unicité de l’équilibre de la dynamique doit être analysé
dans le cas général. L’objectif est de déterminer les probabilités d’interaction optimales afin de
maximiser la précision de l’estimation du niveau d’expertise pour différents scénarios applicatifs.
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On peut également chercher, sous la contrainte d’un taux de mauvaise décision donné, de minimiser
le nombre moyen d’interactions entre agents. Ceci peut être intéressant lorsque les interactions ont
un coût en termes de temps ou d’énergie.

Ce problème est lié aux problèmes de bandits manchots (BM) [AB10], dont l’objectif est
d’estimer la statistique des différentes machines afin de choisir la machine maximise la gain. Dans
ce scénario, il n’y a pas de contrainte lors de la phase d’apprentissage sur le choix de la machine à
tester. Dans le cas de l’auto-évaluation distribuée, chaque agent doit décider, lors d’une rencontre
avec un autre agent s’il continue à interagir avec cet agent ou s’il préfère attendre de rencontrer
un agent qui lui permettra de gagner une meilleure connaissance de son niveau d’expertise. Cette
contrainte supplémentaire, liée aux RTD, rend l’analyse plus complexe.

Un autre problème similaire est le classement des agents en utilisant une comparaison de type
pair-à-pair [Hec+16]. Lorsque le nombre de groupes de niveaux d’expertise similaire est égal au nom-
bre d’agents, le problème d’auto-évaluation distribué devient un problème de classement distribué.
Ce problème est délicat en l’absence d’organe de traitement central permettant d’ordonnancer les
rencontres entre agents. En l’absence d’organe de traitement central, le seul choix pour accélérer
l’algorithme est d’agir sur les probabilités d’interaction, et éventuellement d’autoriser ces proba-
bilités à évoluer au cours du temps. Ainsi, en début de classement, une interaction pourra avoir
lieu à chaque rencontre entre agents. Au bout d’un certain temps, la probabilité d’interaction peut
évoluer comme une fonction décroissante avec la différence entre les niveaux d’expertise estimés des
deux agents. Il s’agit de trouver la probabilité d’interaction assurant le meilleur compromis entre
le nombre d’interactions nécessaires et la vitesse de convergence de l’algorithme.
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Chapter 1

Introduction

1.1 Background and Motivation

Wireless sensor networks (WSNs) [Ver+10] have attracted much interests in the last decade. They
are composed by autonomous nodes, with sensing capability of some physical phenomenon (e.g.
temperature, pressure, or radioactivity level). Their application area ranges from environmental
or traffic monitoring to industrial domain. This thesis addresses several problems related to the
efficient information collection as well as distributed estimation in a WSN.

1.1.1 Network coding for distributed data collection

In order to ensure ease of deployment and robustness, the communication between the nodes might
need to be performed in absence of designated access points and of a hierarchical structure. At
the network layer, dissemination of the measurements to all the nodes can be achieved using an
asynchronous protocol based on network coding (NC) [Ahl+00] in order to reduce the traffic. In
the protocol, each node in the network broadcasts a packet evaluated as the linear combination of
the local measurement, and of the packets received from neighboring nodes. The linear coefficients
are randomly chosen, and are sent in each packet header. Upon an appropriate number of commu-
nication rounds, each node has collected enough linearly independent combinations of the network
measurements, and can perform decoding, by solving a system of linear equations.

Without considering the correlation of the source, the number of linearly independent combina-
tions should be equal to the number of sensor nodes in the network. In many practical situations,
the measurements obtained by the WSN are spatially and temporally correlated. This correlation
can be exploited to perform decoding, as done in [IKAA12; Bas+12; RAG12; BTF12]. The first
objective of this thesis is to investigate how many linearly independent combinations are necessary
and sufficient to recover the source information.

1.1.2 Distributed self-rating

The numerous nodes in a WSN may have different sensing abilities and each node may only have
a partial knowledge of the characteristics of the noise of its sensors, e.g., biased or unbiased as in
[Chi+11]. It may thus be interested in getting an estimate of these characteristics. Similarly, in
crowdsensing applications [Guo+15], the reliability of the sensing services (SaaS) [She+13] requires
high quality measurements that are not always available at all devices, since the sensing accuracy
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is highly dependent on the embedded sensors. This problem is addressed, e.g., by introducing
reputation-based mechanisms [YS12; Han+13; KM14a; KM14b; Ren+15]. In such schemes data
are collected from smartphones, based on an auction mechanism. The sensing tasks are assigned by
some central authority to the agents on the basis of their reputation level, to maximize the utility
for the crowd. Such reputation-based mechanisms are effective in rating agents, but need data
centralization and some rating authority. Allowing agents to assess their ability has the benefit
to help them providing measurements as well as their associated quality levels. This facilitates
further measurement processing and may avoid compromising the reputation of an agent temporarily
producing outliers. Moreover, in SaaS application, agents knowing that their sensing ability is above
the average may negotiate a better reward for their measurements.

Assume that each node or agent does not know initially the characteristics of its sensor mea-
surements and it is willing to self-rate these characteristics. The rest of this thesis is to design and
analyze some distributed self-rating(DSR) algorithm allowing each node in a network to self-rate the
characteristics of its sensors. More generally, the proposed approaches allow the agents of a network
to self-rate their level of ability (LoA) at doing some task (sensing, detection, classification...).

We start with a sub-problem of DSR, namely distributed faulty node detection (DFD), by con-
sidering only two levels of the performance of sensors, i.e., good and defective. Defective sensors
are defined as those sensors who frequently produce outliers, i.e., abnormal measurements which
cannot be justified by the mere effects of sensing noise [BL94]. The presence of nodes equipped
with defective sensors may significantly altered the behavior of a WSN dedicated to distributed
estimation task. It is thus very important to detect such nodes efficiently (with low communication
and computation costs), ideally in a distributed way.

1.1.3 Considering an intermittent connectivity

The delay/disruption-tolerant networks (DTNs) are challenging networks with dynamic topology
and sparse connectivity. The communications between nodes of a DTN are quite limited and have
a short duration. Due to their intermittent connectivity, inference and learning over DTNs is
much more complicated than in traditional networks, see, e.g., [HCY11; SRF14; Zhu+14; GLG16;
Pan+15].

For a large WSN with extreme power constraint, in order to conserve power, nodes should not
always communicate with the others. That is why a DTN architecture is important in the design
of a WSN in many application scenarios [Fal03; KAF12].

In the last part of the thesis, DFD algorithms are proposed for DTNs, as a following of DFD in
dense WSNs. The results are then generalized to the DSR problem by considering a finite number
of possible LoA. Nodes are assumed to have only sporadic pairwise interactions, as is typically the
case in DTNs, or in networks where exchanges are performed via gossiping [FZ08; Dim+10].

1.2 State of the Art and Main Contributions

This section presents the related work and the contribution of this thesis in different topics.



1.2. State of the Art and Main Contributions 3

1.2.1 Network coding for data compression in WSNs

Joint source-network coding in WSNs with correlated source data can be performed using tech-
niques borrowed from compressive sensing (CS) [Don06]. The well-known CS problem refers to the
compression of a vector θ ∈ RN , obtained by acquiring linear measurements whose number M can
be significantly smaller than N . If θ is k-sparse with respect to some known basis, its almost surely
exact reconstruction can be evaluated from the linear measurements using basis pursuit, for M as
small as O(k log(N)) [CRT06; CT06a]. The same result holds true also for compressible vector θ
[Don06], with reconstruction quality matching the one allowed by direct observation of the biggest
k coefficients of θ in the transform domain. The major feature of compressed sensing is that the
linear coefficients do not need to be adaptive with respect to the signal to be acquired, but can
actually be random, provided that appropriate conditions on the global measurement matrix are
satisfied [CT06a; CT05]. Moreover, compressed sensing is robust to the presence of noise in the
measurements [CT05; HN06].

Bayesian compressed sensing [JXC08] refers to the same problem, considered in the statistical
inference perspective. In particular, the vector to be compressed is now understood as a statistical
source Θ, whose a priori distribution can induce sparsity or correlation between the symbols. In
practical implementations, estimation from the linear measurements can be achieved exploiting sta-
tistical graphical models [Mon12], e.g., using belief propagation as done in [BSB10] for deterministic
measurement matrices, and in [BM11] for random measurement matrices.

The main difficulty of the direct application of CS in WSNs comes from the fact that usually,
sensor readings are real-valued or quantized while NC operations are done in finite fields. As a
consequence, the NC matrix, which plays the role of the sensing matrix in CS, has elements in
a finite field, which makes it difficult to exploit the efficient reconstruction algorithms of CS. A
first solution to this problem is proposed in [FM11], where NC is performed in the real field. This
framework is also applied in [LCJ15], where data reconstruction is performed progressively to reduce
the decoding delay. In [NL14], linear combinations resulting from real-field NC are quantized before
transmission. The price to be paid by all these technique is larger headers and an incompatibility
with classical NC.

We consider random linear network coding (RLNC) [Ho+06], where both the quantization levels
for the measurements and the NC coefficients are chosen in the same finite field. With RLNC, the
coding coefficients are randomly chosen and sent in each packet header [CWJ03]. Usually, NC
vectors are sparse: packets reaching the sink are seldom combinations of all packets and depend on
the network topology. This allows compressing efficiently the NC vectors [Jaf+09] and reduces the
decoding complexity [Bas+12].

The considered problem can be formulated as the estimation of a source vector θ (of N sym-
bols), obtained by acquiring M non-adaptive linear measurements, with M < N . In a Bayesian
setting, θ is understood as a realization of a random source Θ, whose a priori distribution induces
compressibility (sparsity and/or correlation between the symbols). The reconstruction problem is
formulated in this case as an estimation problem, solvable using standard Bayesian techniques,
e.g., Maximum A Posteriori (MAP) estimation. This setting has been considered in [IKAA12],
where exact MAP reconstruction is obtained solving a mixed-integer quadratic program, and in
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[Bas+12; BTF12; RAG12], where approximate MAP estimation is obtained using variants of the
belief propagation algorithm [KFL01].

This problem can also be defined as Bayesian compressed sensing over finite fields, of which the
performance analysis has been addressed in [DM09; RAG12], and [SL13]. The work in [SL13] does
not consider Bayesian priors, and assumes a known sparsity level of θ. Ideal decoding via `0-norm
minimization is assumed, and necessary and sufficient conditions for exact recovery are derived
as functions of the size of the vector, its sparsity level, the number of measurements, and the
sparsity of the sensing matrix. Numerical results show that the necessary and sufficient conditions
coincide, as the size of θ asymptotically increases. A Bayesian setting is considered in [DM09] and
[RAG12]. In [DM09] a prior distribution induces sparsity on the realization of Θ, whose elements
are assumed statistically independent. Using the method of types [Csi98], the error exponent
with respect to exact reconstruction using `0-norm minimization is derived in absence of noise in
the measurements, and the error exponent with respect to exact reconstruction using minimum-
empirical entropy decoding is derived for noisy measurements. In [RAG12] specific correlation
patterns (pairwise, cluster) between the elements of Θ are considered. Error exponents under MAP
decoding are derived, only in case of absence of noise on the measurements.

This work investigates the compression efficiency of RLNC. The contribution of this work can
be summarized as follows. We assume a Bayesian setting and we consider MAP decoding. Inspired
by the work in [SL13], we aim to derive necessary and sufficient conditions for almost surely exact
recovery of θ, as its size asymptotically increases. We consider

• a sparse coding matrix with entries of different sparsity level, which is a more realistic hy-
pothesis and no analysis has been previously performed for such model.

• two kinds of noise: a) the sensing noise, affecting the measurements prior to network coding
(i.e., prior to random projection acquisition in the CS framework); b) the additive noise,
affecting the network coded packets (i.e., the random projections in the cs framework). To
the best of our knowledge, no analysis has been previously performed in presence of both
kinds of noise.

• three classes of prior distributions on the source vector: i) the prior distribution is sparsity
inducing, and the elements are statistically independent; ii) the vector Θ is a Markov process;
iii) the vector Θ is an ergodic process. To the best of our knowledge, no analysis has been
previously performed for the latter source model, which is quite general.

Considering source model i), our results for the noiseless setting are compatible with the ones pre-
sented in [SL13]; in addition, we can formally prove the asymptotic convergence of necessary and
sufficient conditions, and extend the bounds on the sparsity factor of the sensing matrix in presence
of additive noise. The asymptotic analysis under MAP decoding, both for the noiseless case and in
presence of additive noise b), are compatible with the results derived in [DM09], respectively under
`0-norm minimization decoding and under minimum-empirical entropy decoding. Error exponents
for MAP decoding of correlated sources in the noiseless setting are compatible with the ones pre-
sented in [RAG12], and are here extended to the case of arbitrary statistical structure, and presence
of noise contamination both preceding and following the sensing operation.
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1.2.2 Distributed faulty node detection in WSNs

Many efforts have been considered in the detection of nodes with defective sensors in WSNs, see
[ZMH10; MK13; Don+14] and references therein. As far as the DFD is concerned, in particular,
many different techniques have been proposed in the literature (see the survey paper [MK13] for
a detailed classification). Some techniques rely only on data coming from the direct neighborhood
of each node [CKS06], others also use data coming for farther nodes [DP+15; Bra+13]. Some
techniques are model-based and rely on a parametric model of the system observed by the sensors to
identify outliers [Ise05; Lo+13], whereas model-free techniques mainly exploit statistical properties
of the measurements, such as spatial and temporal correlation. For example, the algorithm in
[CKS06] allows each node to estimate its own status by comparing its local measurements with
those at neighboring nodes. In a first phase only a tendency status (good, faulty, likely good, or
likely faulty) is determined. In the second phase the tendency status of neighbors are collected and
associated to their measurements to obtain a more reliable assessment. In [Din+05] the local test
is based on the comparison between the local measurement and the median of the measurements of
the neighbors. In [PK15], a modified three-sigma edit test is proposed to identify nodes producing
measurements with very high variance. Iterative algorithms are proposed in [GXL07; Ji+10], where
the weighted-median and the weighted average criterion are considered, respectively. In both cases
the local test weights the measurements of the neighbors by the confidence level obtained from
the previous detection rounds, under the assumption of permanent node failure. In [LC08], the
algorithm uses time redundancy to tolerate transient faults in sensing and in communication. The
adaptive algorithm proposed in [Cho+09] adjusts the decision threshold at each round to improve its
detection accuracy. In [Bra+13], a generic outlier identification function is assumed to be available
at each node. The results provided by this function at each node as well as measurements are
exchanged to allow the whole network to identify all outliers in a given dataset. In [DP+15], a
distributed Bayesian approach is proposed to detect the outliers in a large set of data collected by
a WSN.

In general the availability of more data at a given node facilitates the detection and identification
of outliers, at the price of higher communication costs and detection delays. An interesting approach
to reduce the number of tests is group testing (GT), which is a statistical method allowing to
identify a small number of outliers within a large set of data by performing only a limited number
of elementary tests, referred to as LODTs, on data subsets [DH93]. The elementary test is only able
to determine whether outliers are present in the considered set. A distributed GT-based algorithm
extending the results of centralized GT [Che+11] is proposed in [TTF13], under the assumption
of vanishing ratio of defective sensors. The solution provided in [TTF13] suffers however from
a significant drawback in the communication overhead necessary for node indexing and for the
dissemination of the test results from the cluster heads to the rest of the wireless sensor network
(WSN).

Despite the significant number of papers on this topic, there are still open issues to be addressed,
as pointed out in [MK13; Don+14]. It is well known, in this regard, that WSNs are usually con-
strained in terms of memory, computational power and energy sources. Most of the traditional fault
detection schemes, conceived for wired networks, have paid little attention to these issues. They are
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usually memory and energy eager, and are often high demanding in terms of communication effort
and computational complexity. It is certainly true, on the one hand, that the exchange of messages
and their processing are the only means of fault diagnosis; on the other hand, however, outlier
detection schemes targeted to WSNs must be lightweight and impose a limited communication cost.

The literature is mainly focused on new or improved LODTs, which are validated considering
specific case studies through simulation, thus without determining a priori the relationship between
the parameters of the algorithm (e.g., detection threshold) and the performance. At the our best
knowledge, no attempts are present to widen the perspective, generalizing the DFD methodology
and providing equilibrium or stability analysis of iterative DFD algorithms. The latter are very im-
portant issues as the knowledge of the conditions under which the algorithm reaches the equilibrium
and is stable, prevents the system to fail in an unpredictable way.

In Chapter 3, we propose two DFD algorithms inspired by the GT technique: a single-decision
one and an iterative one, the second being better suited to WSNs with a large proportion of defective
sensors. In both cases we decouple the LODT, that provides only an indication (true, false) of the
existence of outliers in the neighborhood, from the final decision on the node status (good, faulty).
The proposed algorithms consist, in fact, of two stages, namely local outlier detection using a LODT,
and decision. In the first stage, each node collects data from its neighborhood, performs the LODT
to determine whether outliers are present among the collected data, and broadcasts the result. Then,
each node estimates the status of its sensor in the decision stage, on the basis of the outcomes of
the LODTs performed in the neighborhood.

Sufficient conditions to be satisfied by the LODT have been established to ensure the existence of
an equilibrium of the DFD algorithms. These results are general, since no specific form of the LODT
need to be considered. We show that the LODT is only required to determine whether outliers are
present in a set of data, without necessarily being able to identify which data are erroneous, thus
widening the range of applicable LODTs to those requiring a few measurements from neighboring
nodes. Such LODTs are easily accessible, e.g., in the context of bounded-error estimation [Mil+96;
Jau+01] and may provide good results even with as few as two or three measurements available to
perform the test. This aspect is crucial in the WSNs context because it allows to relieve the network
traffic and prolong its lifetime. Let us stress, in this regard, that most of traditional outlier detection
tests (based on the median [GXL07] or the mean [Ji+10] of measurements, for instance) are not
very efficient when only few measurements are available. Furthermore, the low complexity of such
LODTs is well-suited to the stringent resource (memory, computational power, etc.) constraints
that usually affect sensor nodes.

Finally, the trade-off between false alarm probability and detection probability is characterized
theoretically and by simulation for some outlier models in realistic channel conditions.

Summarizing, the main novelties of this work are:

• Proposed a low-complexity DFD algorithm based on very generic LODTs that have the po-
tential to work with very few measurements;

• Found the mild conditions to be satisfied by the LODT and by the density of nodes in the
network to ensure that the iterative DFD algorithm leads to an equilibrium;
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• Characterized analytically the performance in realistic channel conditions, related to packet
losses and to channel access issues at the MAC layer, the latter being seldom considered in
other papers;

• Implementation of the proposed algorithm on a real testbed to verify the effectiveness of the
algorithm.

1.2.3 Distributed faulty node detection in DTNs

The DFD problem is much less investigated in DTNs. When only few measurements are available,
classical LODTs are not very efficient: for example, they cannot, based on two measurements only,
determine which node is defective. This is a typical situation in DTNs when two nodes meet, take
measurements, and share these measurements. Applying directly classical DFD algorithms in DTNs
may thus be quite ineffective.

A closely related problem has been previously considered in [Zhu+12] in the context of Vehicular
DTNs (VDTNs). A large number of sensor nodes are fixed and some vehicles, called mobile carriers
(MC) collect data from these sensors. The sensor nodes can only communicate with the MCs in
their vicinity. A MC needs to collect enough measurements to perform a test to decide which have
been produced by defective sensors. Once a defective node is deemed defective by a MC, it is added
to its blacklist. The MC provides information to sensors about their status. MCs also exchange
their blacklists to accelerate the faulty node detection.

In [Pen+14], a similar problem of distributed malware detection in DTN is addressed. Each node
evaluates after the meeting with another node whether the latter has performed suspicious actions
(malware transmission trial). When after several meetings of Node j, Node i detects often suspicious
activities, a cut-off decision is performed against Node j, which is ignored in next meetings. The
main drawback of this approach is the long time required to identify and isolate misbehaving
nodes. Misbehavior detection in DTN is also considered in [Zhu+14; HO+15], where the DTN is
perturbed by routing misbehavior caused by selfish or malicious nodes. The identification approach
in [Zhu+14] is not distributed, since a Trusted Authority periodically checks the forwarding history
of nodes to identify possible misbehavior. A collaborative approach is proposed in [HO+15], where
each node can detect whether the encountered node is selfish using a local watchdog. The detection
result is disseminated over the network to increase the detection precision and to reduce the delay.
Trust/Reputation management is another important aspect to help DTNs resist various potential
threats. For example, [AF12] provides an iterative trust management mechanism to fight against
Byzantine attacks in which several nodes are totally controlled by the adversary. In [Liu+15], a
defense against Sybil attacks [Dou02] is introduced, which is based on the physical feature of the
wireless propagation channel. A trust model for underwater acoustic sensor networks is presented
in [Han+15] to take into account several trust metrics such as link trust, data trust, and node trust.

In Chapter 4, we present a fully distributed and easily implementable algorithm to allow each
node of a DTN to determine whether its own sensors are defective. Due to the communication
conditions of DTNs, DFD algorithm in DTNs is quite different from those in WSNs, despite of their
same settings of LODT. The analysis of the properties of the algorithm is also totally different. This



8 Chapter 1. Introduction

work shows that the behavior of the proposed DFD algorithm can be analyzed using Markov models
and tools borrowed from control theory and population dynamics. For that purpose, the belief of
each node about the status of its sensors is quantized. The evolution of these quantized beliefs are
then shown to follow two Markov chains. The dynamic of the proportions of nodes with a given
belief is then analyzed. Sufficient conditions on the decision parameters to ensure the existence
and unicity of an equilibrium of the DFD algorithm are then provided. Given the characteristics
of the LODT, upper and lower bounds of the detection rate, i.e., proportion of nodes which have
effectively identified their sensors as defective, and of the false alarm rate, i.e., proportion of nodes
which believe that their good sensors are in fact defective, are also obtained. These theoretical
results provide guidelines to properly choose the parameters of the algorithm.

1.2.4 Distributed Self-Rating by Pairwise Interaction

Consider a community of agents collaborating to execute some task (sensing, detection, classifi-
cation, see, e.g., [Luo+07; Ang+09; SBW16]), for which it is reasonable to expect agents showing
different levels of ability (LoA). This ability can be related, for example, to the quality of the sensors
they are equipped with. Initially, each agent does not know how well it performs in comparison
with its peers and it is thus willing to assess its own ability.

In Chapter 5, one assumes that agents are able to have only sporadic pairwise interactions, as
in DTNs, or in networks where exchanges are performed via gossiping [FZ08; Dim+10]. Based
on these assumptions, a distributed algorithm allowing each agent to assess its own LoA at doing
some task is presented. This individual assessment procedure involves pairwise interactions with the
peers and local comparison tests (LCT), providing an estimate, among two interacting agents, of the
better-performing one. Similar LCT have been considered in [Hec+16], where a central authority
aims at ranking agents based on the results of LCTs. The central authority has the power to select
the interacting pairs of agents and the sequence of interactions to obtain the fastest ranking.

Previous instances of the DSR problem have been considered in [Chi+11; FFR14], where each
node of a WSN has to estimate the value of some constant parameter from noisy scalar mea-
surements, as well as the bias [Chi+11] or the level of the variance [FFR14] of its measurement
noise, both assumed to take only two possible values. The nodes are partitioned into two classes
in [Chi+11], each class being characterized by the absence or presence of measurement bias. The
algorithm involves a gossip consensus, robust against node mobility, and a distributed ranking of
the agents [FZ08] according to their measured value. Each node is then able to decide whether its
measurement noise is biased. The partitions considered in [FFR14] depend on the possible values
of the measurement noise variance. Cooperation is achieved via consensus algorithms [HM09]. The
LOA of a node is determined just by comparing the local measurement with the estimate of the
common parameter.

The DSR problem can be viewed as a generalization of DFD, in which the number of LOA is 2.
When the number of LoA is equal to the number of agents, the DSR problem is equivalent to the
distributed self-ranking problem addressed in a centralized way in [Hec+16] and with a distributed
approach in [FZ08].
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DSR can also be viewed as a type of distributed classification problem [Luo+07; Ang+09].
Nevertheless, the latter is aimed at classifying data with network of agents, whereas DSR in this
paper is to make each agent estimate its own LoA. Agents aim thus at performing a self-classification.

Chapter 5 extends the DTN-DFD to DSR considering a finite number of possible LoA for each
agent. One assumes here that there is an agreement on the proportions of agents with similar
LoA, and that each agent knows the characteristics of the LCT. Then, the proposed DSR algorithm
involves only the results of LCTs performed when two agents interact. One shows that each agent,
based on the proportion of interactions during which it was deemed better than the other agents, is
able to iteratively estimate its LoA. This work extends also previous results obtained in the context
of DSR by [Chi+11; FFR14] in several directions. The DSR algorithm involves a generic LCT,
only characterized by its probabilities of error. Many situations can be described with such LCT,
ranging from the noisy measurement with possible bias of some constant parameter as in [Chi+11],
to the result of supervised image classification tests performed by pairs of agents, via the results of
blitz-games when agents have to assess their level in a game.

The effectiveness of the proposed algorithm is measured by the correct decision rate (CDR)
and by the false decision rate (FDR), i.e., the proportion of agents that correctly and erroneously
self-rate their level of expertise. The analysis of the DSR algorithm is performed assuming a well-
mixed population of agents with intercontact delay following an exponential distribution [Zhu+10;
GLG16; HO+15; Pan+15]. This is somewhat more restrictive than the connected communication
graph model with sporadic communication considered in [Chi+11]. The communication model
considered here allows describing the evolution with time of the proportions of agents with similar
beliefs in their LOA by continuous-time state equations. The existence of an equilibrium is shown.
Closed-form expressions for the various proportions of agents with similar beliefs in their LOA is
provided at equilibrium. The dependence of the CDR and FDR in the characteristics of the LCT
provides insights on the way the DSR algorithms should be tuned to get a compromise between CDR
and FDR. Simulation results in the context of agents equipped with sensors aiming at determining
the performance of their sensors show and excellent match with theoretical results.
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Chapter 2

Sparse Random Linear Network Coding
for Data Compression in WSNs

This chapter contains an analysis of some information gathering problems in the WSNs. The random
linear network coding is considered for data compression, and an information-theoretic approach is
applied to demonstrate the necessary and sufficient conditions to realize the asymptotically perfect
reconstruction under MAP estimation. Several related work has been discussed in Section 1.2.1.

The chapter is organized as follows. Section 2.1 presents a motivation example and shows that
in practice the sparsity factors of different entries in a network coding matrix are usually different.
Section 2.2 introduces the considered signal models in the context of data dissemination in a wireless
sensor network. In Section 2.3, we derive the necessary conditions for asymptotic almost surely exact
recovery, both for the noiseless and noisy cases. Section 2.4 describes the sufficient conditions and
the error exponents under MAP decoding, for the noiseless case and in presence of additive noise
only. In Section 2.5, sensing noise is also taken into account. Section 2.6 concludes the chapter.

2.1 Motivating Example

Consider the WSN whose topology is shown in Figure 2.1(a). S = 29 wireless sensor nodes are
uniformly distributed over a square of unit area with a sink node located at the center. Assume
that each sensor Node i attempts to transmit a binary measurement θi to the sink using RLNC over
the Galois field F2. Time is slotted and each sensor broadcasts a packet or combination of packets in
its time slot, starting from the nodes the farthest from the sink. Each node can only communicate
with its neighbor nodes at a distance less than 0.25. When Node i performs a combination of
packets, its local measurement θi is assumed to be always used, whereas a packet received from
one of its neighbors has a probability ν to be involved. After NR communication rounds, the sink
is able to build an NC matrix with M = NRS0 lines and S columns, where S0 is its number of
one-hop neighbors. The sparsity of each column of the NC matrix is then evaluated. Figure 2.1(b)
represents the proportion of non-zero coefficients of each column parametrized in ν averaged over
106 independent Monte-Carlo simulations of the network. Only connected networks are considered
in the simulations. The average value of M is 17 < S. Columns associated to nodes which are far
from the sink are sparser than columns associated to nodes close to the sink. Moreover, a small
value of ν makes the overall coding matrix sparser. This justifies our study considering coding
matrices with sparsity varying among columns.
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Figure 2.1: (a) example network topology ; (b) evolution of the proportion of non-
zero NC coefficient as a function of the node index sorted by increasing distance to

the sink, for ν ∈ {0.1, 0.2, 0.3, 0.4, 0.5} .

2.2 System Model and Problem Setup

This section introduces the system model as well as various hypotheses on the sources and on
the sensing and additive noises. In what follows, sans-serif font denotes random quantities while
serif font denotes deterministic quantities. Matrices are in bold-face upper-case letters. A length
n vector is in bold-face lower-case with a superscript n. Calligraphic font denotes set, except H,
which denotes the entropy rate. All logarithms are in base 2.

2.2.1 The source model

Consider a wireless sensor network consisting of a set N of N = |N | sensors. The target physical
phenomenon (e.g. the temperature) at the n-th sensor is represented by the random variable
Θn, taking values on a finite field FQ of size Q. Let θN be a realization of the random vector
ΘN = (Θ1, . . . ,ΘN ), taking values in FNQ . The vector ΘN represents the source in the Bayesian
compressed sensing framework. The probability mass function (pmf) associated with ΘN is denoted
by p

(
θN
)
, rather than pΘN

(
θN
)
, for the sake of simplicity. In general, the analytic form of p

(
θN
)

depends on the characteristics of the observed phenomenon and on the topology of the sensor
network. Here we consider three different models, defined as follows.

SI: Sparse, Independent and identically distributed source. Each element of the source vector
ΘN is independent and identically distributed (iid) with pmf pΘ (·) and pΘ (0) > 0.5,

p
(
θN
)

=

N∏
n=1

pΘ (θn) . (2.1)
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Figure 2.2: Block diagram for network compressive sensing model

StM: Stationary Markov model. Let θn+r−1
n ∈ FrQ denote the sequences (θn, . . . , θn+r−1). This

is the stationary r-th order Markov model with r ∈ N+ and 1 6 r � N and transition probability
p
(
θn+r | θn+r−1

n

)
. The pmf of ΘN may be written as

p
(
θN
)

= p (θr1)

N−r∏
n=1

p
(
θn+r | θn+r−1

n

)
. (2.2)

GSE: General Stationary and Ergodic model. This is the general case, without any further
assumption apart from the ergodicity of the source.

2.2.2 The sensing model

The considered system model is shown in Figure 2.2.
Let xn ∈ FQ be the measurement of Θn obtained by the n-th sensor. The random vector

xN = (x1, x2, . . . , xN ) ∈ FNQ is a copy of the source vector ΘN corrupted by the sensing noise. The
sensing noise models the effect of imperfect measure acquisition at each sensor. It is described by the
stationary transition probability px|Θ(xn | θn), ∀n. Remark that this implies that xN is stationary
as long as ΘN is stationary. The local measurement xn at node n is used to compute a packet
via RLNC [Ho+06], which is then broadcast and received by the neighbors of n. Each node in the
network can act as a sink, and attempt reconstruction of ΘN , after a number M 6 N of linear
combinations has been received. The effects of RLNC at a sink node can be modeled as multiplying
xN by a random matrix A ∈ FM×NQ . We assume that some additive noise uM ∈ FMQ affects the
received packets, modeling the effects of transmission. Each entry of uM is iid with pmf pu (·). The
sink node is assumed to have received M packets, with the i-th packet carrying the coefficients Ai

and the result of linear combination yi ∈ FQ, where Ai is the i-th row of A and yi = AixN + ui,
with all operations in FQ. The vector yM = (y1, y2, . . . , yM )t ∈ FMQ can be then represented as

yM = AxN + uM , (2.3)

where the network coding matrix A plays the role of the random sensing matrix in the compressed
sensing setup. Depending on the presence of the sensing and additive noises, one obtains four types
of noise models, namely Without Noise (WN ), Noise in Communications (NC ) only, Noise in the
Sensing process (NS ) only, and noise in both Communications and in the Sensing process (NCS ).
These models are summarized in Table 2.1.

In general, the matrix A is not necessarily of full rank, and it is assumed to be independent on
xN . Two different assumptions about the structure of A are considered here: (A1 ) the entries of A
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Table 2.1: Classification and notation based on the presence of noise

Additive Noise
absent present

Sensing absent WN NC
Noise present NS NCS

are iid, uniformly distributed in FQ; (A2 ) the entries of Ai, the i-th column of A, are assumed to
be iid in FQ with pmf

pAi (0) = 1− γi, pAi (q) =
γi

Q− 1
for q ∈ FQ \ {0} (2.4)

where γi is the sparsity factor of Ai. The sparsity factors γi and γj of two different columns Ai and
Aj may be different. Define γ = mini=1,...,N γi as the minimum sparsity factor. We only assume
that

0 < γ 6 1−Q−1. (2.5)

Notice that choosing γ < 1 − Q−1 corresponds to assumption (A2), while choosing γ1 = . . . γN =

1−Q−1 corresponds to assumption (A1), since (2.4) becomes the uniform distribution.
In practice, sparser matrices are preferable. As the information of the network coding matrix

is carried in the headers of packets [CWJ03; Jaf+09], the network coding overhead may be large
if A is dense and N is large. Moreover, as mentioned in [Bas+12], sparse matrices facilitate the
convergence of the approximate belief propagation algorithm [KFL01]. Notice that, in practice, the
structure of A is strongly dependent on the structure of the network. For example, [RAG12] assumes
that only a subset of sensors Si ⊂ N have participated in the i-th linear mixing. The content of
the subsets Si depends on the location of each sensor and is designed to minimize communication
costs. In A, coefficients associated to nodes belonging to Si follow a uniform distribution, while the
others are null. The model in [RAG12] is not considered here, since we aim at a general asymptotic
analysis, independent on the topology of the network.

2.2.3 MAP Decoding

The sink node observes the realization yM and perfectly knows the realization A, e.g., from packet
headers, see [CWJ03] and [Jaf+09]. The maximum a posteriori estimate θ̂

N
of the realization of

ΘN is evaluated as
θ̂
N

= arg max
θN∈FNQ

p
(
θN | yM ,A

)
, (2.6)
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where the a posteriori pmf is

p
(
θN | yM ,A

)
∝ p

(
θN ,yM ,A

)
=

∑
xN∈FNQ

∑
uM∈FMQ

p
(
θN ,xN ,uM ,yM ,A

)
=

∑
xN∈FNQ

∑
uM∈FMQ

p
(
θN
)
p
(
xN | θN

)
p
(
uM
)
p (A) p

(
yM | xN ,uM ,A

)
. (2.7)

Note that the conditional pmf p
(
yM | xN ,uM ,A

)
is an indicator function, i.e.,

p
(
yM | xN ,uM ,A

)
= 1yM=AxN+uM . (2.8)

An error event (decoding error) occurs when θ̂
N 6= θN , with probability

Pe = Pr
{

Θ̂
N 6= ΘN

}
. (2.9)

Our objective is to evaluate lower and upper bounds of (2.9) under MAP decoding, as functions
ofM , N , and γ, for the various source and noise models previously introduced. With these bounds,
one can obtain necessary and sufficient conditions on the ratio M/N for asymptotic (with N →∞)
perfect recovery, i.e., to obtain

lim
N→∞

Pe = 0. (2.10)

2.3 Necessary Condition for Asymptotic Perfect Recovery

This section derives the necessary conditions for asymptotically (N →∞) vanishing probability of
decoding error. They only depend on the assumptions considered about the sensing and additive
noises. We directly analyze the NCS case for the GSE source model. The results for this case can
be easily adapted to the other cases. This work extends results obtained in [SL13] for the noiseless
case (WN). Two situations are considered, depending on the value of the entropy rate

H (x) = lim
N→∞

1

N
H
(
xN
)
. (2.11)

Proposition 2.1. Assume the presence of both additive and sensing noises and that H (x) > 0.
Consider some arbitrary small δ ∈ R+. For N →∞, the necessary conditions for Pe < δ are

H (Θ, x)−H (x) < 3ε+ δ logQ, (2.12)

H (pu) < logQ, (2.13)

and
M

N
>
H (Θ, x)− (5ε+ 2δ logQ)

logQ−H (pu)
, (2.14)
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where ε ∈ R+ is an arbitrary small constant.

Corollary 2.1. Consider the same hypotheses as in Proposition 2.1 and assume now that H (x) = 0.
Consider some arbitrary small δ ∈ R+. For N →∞, the necessary condition for Pe < δ is

H (Θ, x) < 3ε+ δ logQ, (2.15)

where ε ∈ R+ is an arbitrary small constant.

In Proposition 2.1, (2.12) implies that for asymptotically exact recovery, p
(
xN | ΘN

)
should

degenerate, almost surely, into a deterministic mapping. The condition (2.13) indicates that asymp-
totically exact recovery for non-deterministic sources is not possible in case of uniformly distributed
additive noise. Finally, (2.14) indicates that the minimum number of required measurements de-
pends both on the sensing and additive noises as well as on the distribution of Θ. In particular,
for a given source with entropy rate H (Θ), the number of necessary measurements increases with
the level of the sensing noise, determined by H (x | Θ). Similarly, the number of necessary measure-
ments increases when the additive noise gets closer to uniformly distributed. The following proof is
inspired by the work in [SL13]: both additive noise and sensing noise are considered here.

Proof. From the problem setup, one has the Markov chain

ΘN ↔ xN ↔
(
yM ,A

)
↔ Θ̂

N
, (2.16)

from which one deduces that

H
(
ΘN | xN

)
6 H

(
ΘN | Θ̂N

)
, (2.17)

and
H
(
xN | yM ,A

)
6 H

(
ΘN | Θ̂N

)
. (2.18)

Applying Fano’s inequality [CT06b, Sec. 2.10], one gets

H
(

ΘN | Θ̂N
)

6 1 + Pe · log
(
QN − 1

)
< 1 +NPe logQ, (2.19)

an upper bound of Pe is obtained combining (2.17) and (2.19),

Pe >
H
(
ΘN , xN

)
−H

(
xN
)
− 1

N logQ
. (2.20)

Since ΘN and xN are stationary and ergodic, for any ε > 0, there exists N0 ∈ N such that ∀N > N0,
one has 

H (Θ, x)− ε < H(ΘN ,xN)
N < H (Θ, x) + ε,

H (x)− ε < H(xN)
N < H (x) + ε,

ε > 1
N .

(2.21)
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Hence for N > N0, (2.20) can be rewritten as

Pe >
H (Θ, x)−H (x)− 3ε

logQ
. (2.22)

For Pe < δ, one deduces (2.12) from (2.22). For δ and ε arbitrary small, (2.12) imposes H (Θ, x) =

H (x), meaning that Θ should be deterministic knowing x, almost surely.
From (2.18) and (2.19), one gets another lower bound for Pe

Pe >
H
(
xN | yM ,A

)
− 1

N logQ
. (2.23)

The conditional entropy H
(
xN | yM ,A

)
can be bounded as

H
(
xN | yM ,A

)
= H

(
xN
)
− I

(
xN ; yM ,A

)
= H

(
xN
)
−
(
I
(
xN ; A

)
+ I

(
xN ; yM | A

))
(a)
= H

(
xN
)
−
(
H
(
yM | A

)
−H

(
yM | A, xN

))
(b)

> H
(
xN
)
−M · logQ+H

(
yM | A, xN

)
(c)
= H

(
xN
)
−M · logQ+MH (pu) , (2.24)

where (a) follows from the assumption that xN and A are independent, (b) comes fromH
(
yM | A

)
6

H
(
yM
)
6 log

∣∣∣FMQ ∣∣∣ = M logQ, and (c) is because

H
(
yM | A, xN

)
= H

(
AxN + uM | A, xN

)
= H

(
uM
)

= MH (pu) . (2.25)

Using (2.23) and (2.24), a second necessary condition for Pe < δ is

H
(
xN
)
−M (logQ−H (pu))− 1

N logQ
< δ. (2.26)

For N > N0, using (2.21) in (2.26) yields

H (x)− M
N (logQ−H (pu))− 2ε

logQ
< δ. (2.27)

Now consider two cases. In the first case, the additive noise is assumed uniformly distributed, i.e.,

H (pu) = logQ; (2.28)

the condition (2.27) becomes
H (x) < δ logQ+ 2ε. (2.29)

As δ can be made arbitrary small, (2.29) imposes that, for uniform additive noise, asymptotically
vanishing probability of error is possible only if H (x) is arbitrary close to zero. For non-degenerate
cases, i.e., H (x) > 0, one obtains the necessary condition (2.13). In this second case, a lower bound
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of the compression ratio M/N is obtained immediately from (2.27),

M

N
>
H (x)− (2ε+ δ logQ)

logQ−H (pu)
. (2.30)

We can represent the condition (2.30) in terms of the joint entropy rate H (Θ, x) by applying (2.12).
Then, one gets (2.14) and Proposition 2.1 is proved.

Consider now H (x) = 0, then (2.27) holds for any value of M/N , and for any H (pu) 6 logQ,
since the left side of (2.27) is always negative. Hence, (2.12) is the only necessary condition for this
case. Corollary 2.1 is also proved.

With the results of the NCS noise model, one may derive the necessary conditions for the other
models. If no sensing noise is considered, i.e., xN = ΘN , one has H

(
ΘN | xN

)
= H

(
xN | ΘN

)
= 0

and H
(
ΘN , xN

)
= H

(
ΘN

)
. If additive noise is absent, i.e., uM = 0, H

(
uM
)

= 0. The necessary
conditions for asymptotically (N → ∞) vanishing probability of decoding error for each case are
listed in Table 2.

Table 2.2: Necessary conditions for asymptotic perfect recovery in noiseless and
noisy cases

Case Necessary Condition (H (x) > 0)
WN M

N > H(Θ)
logQ , already obtained in [SL13]

NC M
N > H(Θ)

logQ−H(pu) and H (pu) < logQ

NS M
N > H(Θ,x)

logQ and H (Θ | x) = 0

NCS M
N > H(Θ,x)

logQ−H(pu) and H (pu) < logQ and H (Θ | x) = 0

2.4 Sufficient Condition in Absence of Sensing Noise

This section provides an upper bound of the error probability for the MAP estimation problem in
absence of sensing noise (the WN and NC cases). These two cases are considered simultaneously
because their proofs are similar. When the channel noise vanishes, the NC case boils down to the
WN case.

2.4.1 Upper Bound of the Error Probability

Proposition 2.2. Under MAP decoding, the asymptotic (N → ∞) probability of error in absence
of sensing noise can be upper bounded as

Pe 6 P1 (α) + P2 (α) + 2ε, (2.31)

where ε ∈ R+ is an arbitrarily small constant. P1 (α) and P2 (α) are defined as

P1 (α) = 2
−N

(
−M
N

(H(pu)+log(1−γ)+ε)−H2(α)−α log(Q−1)− log(αN)
N

)
, (2.32)
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and

P2 (α) = 2
−N

(
−H(Θ)−M

N

(
H(pu)+log

(
Q−1+

(
1− γ

1−Q−1

)dαNe
(1−Q−1)

)
+ε

)
−ε
)
, (2.33)

with α ∈ R+ and α < 0.5.

Proof. The proof consists of two parts. First we define the error event, and then we analyze the
probability of error.

Since no sensing noise is considered, we have xN = ΘN throughout this section. The a posteriori
pmf (2.7) becomes

p
(
θN | yM ,A

)
∝

∑
uM∈FMQ

p
(
θN
)
p
(
uM
)
p (A) 1yM=AθN+uM . (2.34)

Suppose that θN (given but unknown) is the true state vector and consider that A has been
generated randomly. At the sink, A and yM are known. With MAP decoding, the reconstruction
θ̂
N

in (2.6) is
θ̂
N

= arg max
θN∈FNQ

∑
uM∈FMQ

p
(
θN
)
p
(
uM
)
p (A) 1yM=AθN+uM . (2.35)

A decoding error happens if there exists a vector ϕN ∈ FNQ \
{
θN
}
such that∑

vM∈FMQ

p
(
ϕN
)
p
(
vM
)

1yM=AϕN+vM >
∑

uM∈FMQ

p
(
θN
)
p
(
uM
)

1yM=AθN+uM . (2.36)

For fixed yM , A, and θN , there is exactly one vector uM such that uM = yM −AθN . Hence the
right side of (2.36) can be represented as pΘN

(
θN
)
puM

(
yM −AθN

)
. The subscripts for the pmfs

are introduced to avoid any ambiguity of notations. Then (2.36) is equivalent to

pΘN

(
ϕN
)
puM

(
yM −AϕN

)
> pΘN

(
θN
)
puM

(
yM −AθN

)
. (2.37)

An alternative way to state the error event can be: For a given realization ΘN = θN , which implies
the realization uM = uM = yM −AθN , there exists a pair (ϕN ,vM ) ∈ FNQ × FMQ such that

ϕN 6= θN ,

AϕN + vM = yM = AθN + uM ,

p
(
ϕN
)
p
(
vM
)
> p

(
θN
)
p
(
uM
)
.

(2.38)

From conditions (2.38), one concludes that the MAP decoder is equivalent to the maximum Q-
probability decoder [Csi82] in the NC case.

An upper bound of the error probability is now derived. For a fixed θN and uM , the conditional
error probability is denoted by Pr

{
error | θN ,uM

}
. The average error probability is

Pe =
∑

θN∈FNQ

∑
uM∈FMQ

p
(
θN ,uM

)
Pr
{
error | θN ,uM

}
. (2.39)
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Weak typicality is instrumental in the following proofs. The notations of [Yeu04, Definition 4.2]
are extended to stationary and ergodic sources. For any positive real number ε and some integer
N > 0, the weakly typical set AN[Θ]ε ⊂ FNQ for a stationary and ergodic source ΘN is the set of
vectors θN ∈ FNQ satisfying ∣∣∣∣− 1

N
log p

(
θN
)
−H (Θ)

∣∣∣∣ 6 ε, (2.40)

where H (Θ) is the entropy rate of the source. Similarly, for the noise vector uM , define

AM[u]ε =

{
uM ∈ FMQ :

∣∣∣∣− 1

M
log p

(
uM
)
−H (pu)

∣∣∣∣ 6 ε

}
. (2.41)

Recall that the entries of uM are uncorrelated, so H (u) = H (pu). Thanks to Shannon-McMillan-
Breiman theorem [CT06b, Sec. 16.8], the pmf of the general stationary and ergodic source converges.
In other words, for any ε > 0, there exists Nε and Mε such that for all N > Nε and M > Mε,

Pr

{∣∣∣∣− 1

N
log p

(
ΘN

)
−H (Θ)

∣∣∣∣ 6 ε

}
> 1− ε, (2.42)

and
Pr

{∣∣∣∣− 1

M
log p

(
uM
)
−H (pu)

∣∣∣∣ 6 ε

}
> 1− ε. (2.43)

We can make ε arbitrary close to zero as N →∞ and M →∞. A sandwich proof of this theorem
is proposed in [CT06b, Sec. 16.8]. For the sparse and uncorrelated source defined in (2.1), H (Θ) is
equal to H (pΘ), the entropy of a single source. The entropy rate of the StM source is the conditional
entropy H

(
Θn+r | Θn+r−1

n

)
.

From (2.42) and (2.43), one has Pr
{

ΘN ∈ AN[Θ]ε

}
> 1 − ε and Pr

{
uM ∈ AM[u]ε

}
> 1 − ε for

N > Nε and M > Mε. It implies that, for N and M sufficiently large, ΘN and uM belong to
the weakly typical set AN[Θ]ε and A

M
[u]ε, almost surely. With respect to the typicality, FNQ × FMQ can

be divided into two parts. Define the sets U and Uc for the pair of vectors
(
θN ,uM

)
, such that

U ∪ Uc = FNQ × FMQ and

U =
{
θN ∈ FNQ , uM ∈ FMQ : θN ∈ AN[Θ]ε and uM ∈ AM[u]ε

}
, (2.44)

Uc =
{
θN ∈ FNQ , uM ∈ FMQ : θN /∈ AN[Θ]ε or uM /∈ AM[u]ε

}
. (2.45)
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U is the joint typical set for (θN ,uM ), due to the independence of ΘN and uM . The error probability
can be bounded as

Pe =
∑

(θN ,uM)∈U

p
(
θN
)
p
(
uM
)
· Pr

{
error | θN ,uM

}
+

∑
(θN ,uM)∈Uc

p
(
θN
)
p
(
uM
)
· Pr

{
error | θN ,uM

}
(a)

6
∑

(θN ,uM)∈U

p
(
θN
)
p
(
uM
)
· Pr

{
error | θN ,uM

}
+

∑
(θN ,uM)∈Uc

p
(
θN
)
p
(
uM
)

(b)

6
∑

(θN ,uM)∈U

p
(
θN
)
p
(
uM
)
· Pr

{
error | θN ,uM

}
+ 2ε, (2.46)

where (a) comes from Pr
(
error | θN ,uM

)
6 1 and (b) follows from the fact that∑

(θN ,uM)∈Uc

p
(
θN
)
p
(
uM
)

= 1−
∑

(θN ,uM)∈U

p
(
θN
)
p
(
uM
)

= 1−
∑

θN∈AN
[Θ]ε

p
(
θN
) ∑
uM∈AM

[u]ε

p
(
uM
)

6 1− (1− ε) (1− ε) 6 2ε. (2.47)

Since A is generated randomly, define the random event

E
(
θN ,uM ;ϕN ,vM

)
=
{

AθN + uM = AϕN + vM
}
, (2.48)

where
(
θN ,uM

)
is the realization of the environment state, and (ϕN ,vM ) is the potential recon-

struction result. Conditioned on
(
θN ,uM

)
, Pr

{
error | θN ,uM

}
is in fact the probability of the

union of the events E
(
θN ,uM ;ϕN ,vM

)
with all the parameter pairs (ϕN ,vM ) ∈ FNQ × FMQ such

that ϕN 6= θN and p
(
ϕN
)
p
(
vM
)
> p

(
θN
)
p
(
uM
)
, see (2.38). The conditional error probability

can then be rewritten as

Pr
{
error | θN ,uM

}
= Pr


⋃

ϕN∈FN
Q
\{θN}, vM∈FMQ :

p(ϕN )p(vM )>p(θN )p(uM )

E
(
θN ,uM ;ϕN ,vM

)
 . (2.49)
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Introducing (2.49) in (2.46) and applying the union bound yields

Pe 6
∑

(θN ,uM)∈U

p
(
θN
)
p
(
uM
) ∑
ϕN∈FN

Q
\{θN}, vM∈FMQ :

p(ϕN )p(vM )>p(θN )p(uM )

Pr
{
E
(
θN ,uM ;ϕN ,vM

)}
+ 2ε

=
∑

(θN ,uM)∈U

p
(
θN
)
p
(
uM
)

·
∑

ϕN∈FN
Q
\{θN}

vM∈FM
Q

Φ
(
θN ,uM ;ϕN ,vM

)
Pr
{
E
(
θN ,uM ;ϕN ,vM

)}
+ 2ε, (2.50)

where

Φ
(
θN ,uM ;ϕN ,vM

)
=

1 if p
(
ϕN
)
p
(
vM
)
> p

(
θN
)
p
(
uM
)
,

0 if p
(
ϕN
)
p
(
vM
)
< p

(
θN
)
p
(
uM
)
.

(2.51)

Now consider the following lemma.

Lemma 2.1. Consider some s ∈ R+ with s 6 1. For any θN ,ϕN in FNQ and uM ,vM in FMQ , the
following inequality holds,

Φ
(
θN ,ϕN ,uM ,vM

)
6

(
p
(
ϕN
)
p
(
vM
)

p
(
θN
)
p (uM )

)s
. (2.52)

Lemma 2.1 is a part of Gallager’s derivation of error exponents in [Gal68, Sec. 5.6]. Introducing
(2.52) with s = 1 into (2.50), one gets

Pe 6
∑

(θN ,uM)∈U

∑
ϕN∈FN

Q
\{θN}

vM∈FM
Q

p
(
ϕN
)
p
(
vM
)

Pr
{
E
(
θN ,uM ;ϕN ,vM

)}
+ 2ε. (2.53)

In (2.53),
Pr
{
E
(
θN ,uM ;ϕN ,vM

)}
= Pr

{
AµN = sM | µN 6= 0, sM

}
(2.54)

with µN = ϕN − θN ∈ FNQ \ {0}, and sM = uM − vM ∈ FMQ . This probability depends on the
sparsity of µN and of sM , let d1 =

∥∥µN∥∥
0
and d2 =

∥∥sM∥∥
0
. Both d1 and d2 are integers such that

1 6 d1 6 N and 0 6 d2 6M . Define the multivariable function

f (d1, d2) = Pr
{

AµN = sM |
∥∥µN∥∥

0
= d1,

∥∥sM∥∥
0

= d2

}
, (2.55)

which depends on γ, Q, and M of the random matrix A.

Lemma 2.2. The function f (d1, d2), defined in (2.55), is non-increasing in d2 for a given d1 and

f (d1, d2) 6 f (d1, 0) 6

(
Q−1 +

(
1− γ

1−Q−1

)d1 (
1−Q−1

))M
. (2.56)
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Moreover f (d1, 0) is non-increasing in d1 and

f (d1, 0) 6 f (1, 0) 6 (1− γ)M . (2.57)

If γ1 = · · · = γN = 1−Q−1, which corresponds to a uniformly distributed network coding matrix,

f (d1, d2) = Q−M (2.58)

is constant.

See Section A.1 for the proof details. Using Lemma 2.2, (2.53) can be expressed as

Pe
(a)

6
N∑

d1=1

M∑
d2=0

∑
(θN,uM )∈U

ϕN∈FN
Q

:‖ϕN−θN‖0=d1

vM∈FM
Q

:‖uM−vM‖0=d2

p
(
ϕN
)
p
(
vM
)
f (d1, d2; γ,Q,M) + 2ε

(b)

6
N∑

d1=1

∑
(θN,uM )∈U

ϕN∈FN
Q

:‖ϕN−θN‖0=d1

p
(
ϕN
)
f (d1, 0; γ,Q,M)

 ∑
vM∈FMQ

p
(
vM
)+ 2ε

(c)

6
bαNc∑
d1=1

∑
(θN,uM )∈U

ϕN∈FN
Q

:‖ϕN−θN‖0=d1

p
(
ϕN
)
f (1, 0; γ,Q,M)

+
N∑

d1=dαNe

∑
(θN,uM )∈U

ϕN∈FN
Q

:‖ϕN−θN‖0=d1

p
(
ϕN
)
f (dαNe , 0; γ,Q,M) + 2ε, (2.59)

where (a) is by the classification of ϕN and vM according to the `0 norm of their difference with
θN and uM respectively and (b) is obtained using the bound (2.56) and using

∑
vM∈FMQ

p
(
vM
)

= 1.
The splitting in (c) permits f (d1, 0; γ,Q,M) to be bounded in different cases; this idea comes from
[TBD12] and is also meaningful here. The parameter α is a positive real number with 0 < α < 0.5.
The best choice of α is discussed in Section 2.4.2. The two terms in (2.59), denoted by PU1 (α) and
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PU2 (α), need to be considered separately. For the first term PU1 (α), we have

PU1 (α) = f (1, 0; γ,Q,M)

bαNc∑
d1=1

∑
(θN,uM )∈U

ϕN∈FN
Q

:‖ϕN−θN‖0=d1

p
(
ϕN
)

(a)
= (1− γ)M

∑
uM∈AM

[u]ε

bαNc∑
d1=1

∑
ϕN∈FNQ

p
(
ϕN
) ∑

θN∈AN
[Θ]ε

:

‖θN−ϕN‖0=d1

1

(b)

6 (1− γ)M
∑

uM∈AM
[u]ε

bαNc∑
d1=1

∑
ϕN∈FNQ

p
(
ϕN
) ∣∣{θN ∈ FNQ :

∥∥θN −ϕN∥∥
0

= d1

}∣∣
(c)

6 (1− γ)M
∑

uM∈AM
[u]ε

bαNc∑
d1=1

2
NH2

(
d1
N

)
(Q− 1)d1

(d)

6 (1− γ)M ·
∣∣∣AM[u]ε

∣∣∣ · αN · 2NH2(α) (Q− 1)αN

(e)

6 2
−N

(
−M
N

(H(pu)+log(1−γ)+ε)−H2(α)−α log(Q−1)− log(αN)
N

)
= P1 (α) (2.60)

where (a) is by changing the order of summation and (b) is obtained considering all θN ∈ FNQ and
not only typical sequences. The bound (c) is obtained noticing that

∣∣{θN ∈ FNQ :
∥∥θN −ϕN∥∥

0
= d1

}∣∣ =
(
N
d1

)
(Q− 1)d1

6 2
NH2

(
d1
N

)
(Q− 1)d1 , (2.61)

where H2 (p) denotes the entropy of a Bernoulli-p source and
∑
ϕN∈FNQ

p
(
ϕN
)

= 1; (d) is because

of the monotonicity of the function H2

(
d1
N

)
, which is increasing in d1 as d1 6 bαNc < N/2; (e)

comes from [CT06b, Theorem 3.1.2], the upper bound of the size of AM[u]ε, i.e.,∣∣∣AM[u]ε

∣∣∣ 6 2M(H(pu)+ε), (2.62)

for M > Mε. Similarly, for N > Nε, one has∣∣∣AN[Θ]ε

∣∣∣ 6 2N(H(Θ)+ε). (2.63)
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Now we turn to PU2 (α),

PU2 (α) =
N∑

d1=dαNe

∑
(θN,uM )∈U

ϕN∈FN
Q

:‖ϕN−θN‖0=d1

p
(
ϕN
)
f (dαNe , 0; γ,Q,M)

(a)

6
∑

(θN ,uM)∈U

∑
ϕN∈FNQ

p
(
ϕN
)
f (dαNe , 0; γ,Q,M)

=
∣∣∣AN[Θ]ε

∣∣∣ · ∣∣∣AM[u]ε

∣∣∣ ·(Q−1 +

(
1− γ

1−Q−1

)dαNe (
1−Q−1

))M
(b)

6 2
−N

(
−H(Θ)−M

N

(
H(pu)+log

(
Q−1+

(
1− γ

1−Q−1

)dαNe
(1−Q−1)

)
+ε

)
−ε
)

= P2 (α) , (2.64)

where (a) is by ignoring the constraint that
∥∥ϕN − θN∥∥

0
= d1, and (b) is by the upper bounds of∣∣∣AN[Θ]ε

∣∣∣ and ∣∣∣AM[u]ε

∣∣∣, as before. Equations (2.59), (2.60), and (2.64) complete the proof.

2.4.2 Sufficient Condition

In this section, sufficient conditions for the WN and NC cases are derived to get a vanishing upper
bound to the error probability.

Proposition 2.3. Assume the absence of sensing noise and consider a network coding matrix with
sparsity factor γ. For some δ ∈ R+ (which may be taken arbitrary close to zero), there exists small
positive real numbers ε, ξ, and integers Nδ, Mε such that ∀N > Nδ and M > Mε, if the following
conditions hold

• the additive noise is not uniformly distributed, i.e.,

H (pu) < logQ− ξ, (2.65)

• the sparsity factor is lower bounded

γ > 1− 2−H(pu)−ε, (2.66)

• the compression ratio M/N satisfies

M

N
>

H (Θ) + ε

logQ−H (pu)− ξ
. (2.67)

Then, one has Pe 6 δ using MAP decoding. As N → ∞ and M → ∞, ε and ξ can be chosen
arbitrary close to zero.

Proof. Both P1 (α) and P2 (α) need to be vanishing for increasing N and M . The exponent of each
term is considered respectively. Define, from (2.60),

ENC
1 = −M

N
(H (pu) + log (1− γ) + ε)−H2 (α)− α log (Q− 1)− log (αN)

N
. (2.68)
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Then limN→∞ 2−NE
NC
1 = 0 if ENC

1 > 0. Thus, if ENC
1 > 0, for any τ1 ∈ R+ arbitrarily small, ∃Nτ1

such that ∀N > Nτ1 , one has P1 (α) < τ1.
Notice that if H (pu) + log (1− γ) + ε > 0, ENC

1 is negative, thus one should first have

H (pu) + log (1− γ) + ε < 0, (2.69)

leading to (2.66). With this condition, ENC
1 > 0 leads to

M

N
>
H2 (α) + α log (Q− 1) + log(αN)

N

log 1
1−γ −H (pu)− ε

. (2.70)

Similarly, define from (2.64)

ENC
2 = −H (Θ)− M

N

(
H (pu) + log

(
Q−1 +

(
1− γ

1−Q−1

)dαNe (
1−Q−1

))
+ ε

)
− ε. (2.71)

Again, if ENC
2 > 0, for any τ2 ∈ R+ arbitrarily small, ∃Nτ2 ∈ N+ such that ∀N > Nτ2 , one has

P2 (α) < τ2. Since 0 < γ 6 1−Q−1, one gets 0 6 1− γ
1−Q−1 < 1 and

lim
N→∞

(
1− γ

1−Q−1

)dαNe
= 0. (2.72)

Thus for σ ∈ R+ arbitrarily small, there exists an Nσ such that for ∀N > Nσ,(
1− γ

1−Q−1

)dαNe (
1−Q−1

)
< σQ−1. (2.73)

Hence ENC
2 in (2.71) can be lower bounded by

ENC
2 > −H (Θ)− M

N

(
H (pu) + log

(
Q−1 + σQ−1

)
+ ε
)
− ε, (2.74)

for N > Nσ. If this lower bound is positive, then ENC
2 is positive. Again, if H (pu)− logQ+ log(1 +

σ) + ε 6 0, one obtains a negative lower bound for ENC
2 from (2.74). Thus, one deduces (2.65) in

Proposition 2.3, with
ξ = log (1 + σ) + ε. (2.75)

From (2.65), to get a positive lower bound for (2.74), one should have

M

N
>

H (Θ) + ε

logQ−H (pu)− log (1 + σ)− ε
. (2.76)

From (2.76) and (2.75), with ξ → 0 as N →∞, one gets (2.67) in Proposition 2.3.
From (2.70) and (2.76), one obtains

M

N
> max

{
H2 (α) + α log (Q− 1) + log(αN)

N

log 1
1−γ −H (pu)− ε

,
H (Θ) + ε

logQ−H (pu)− ξ

}
. (2.77)
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The value of α should be chosen such that the lower bound (2.77) on M/N is minimum. One may
compare (2.77) with the necessary condition (2.14). The second term of (2.77) is similar to (2.14),
since both ξ and ε can be made arbitrarily close to 0 as N →∞. The best value for α has thus to
be such that

H2 (α) + α log (Q− 1) + log(αN)
N

log 1
1−γ −H (pu)− ε

6
H (Θ) + ε

logQ−H (pu)− ξ
. (2.78)

The function H2 (α) + α log (Q− 1) is increasing when α ∈ ]0, 0.5[ and tends to 0 as α → 0. The
term log (αN) /N is also negligible for N large. Thus, there always exists some α satisfying (2.78).
Since the speed of convergence of ξ is affected by α, we choose the largest α that satisfies (2.78).
Finally, the sufficient condition (2.67) is obtained for M/N .

From (2.31), one may conclude that

Pe 6 τ1 + τ2 + 2ε. (2.79)

To ensure Pe < δ, we should choose τ1, τ2, and ε to satisfy τ1 + τ2 + 2ε < δ. Then a proper value
of σ, which depends on τ2 and ε, can be chosen. At last, ξ is obtained from (2.75). With these well
determined parameters, if all the three conditions in Proposition 2.3 hold, there exists integers Nε,
Nτ1 , Nτ2 , and Nσ, such that for any

N > Nδ = max {Nε, Nτ1 , Nτ2Nσ} , (2.80)

and M > Mε, one has Pe < δ.

2.4.3 Discussion and Numerical Results

In [DM09, Eq. (24)], considering a sparse and iid source, a uniformly distributed random matrix
A, and the minimum empirical entropy decoder, the following error exponent in the case NC is
obtained

ENC
0 = min

p,q
D (p ‖ pΘ) +

M

N
D (q ‖ pu) +

∣∣∣∣MN logQ−H (p)− M

N
H (q)

∣∣∣∣+ , (2.81)

where D (· ‖ ·) denotes the relative entropy between two distributions and |·|+ = max {0, ·}. In par-
allel, [Ho+06] proposed an approach to prove that the upper bound for the probability of decoding
error Pe under minimum empirical entropy decoding is equal to that of the maximum Q-probability
decoder. As discussed in Section 2.4.1, in the WN and NC cases, the MAP decoder in the considered
context is equivalent to the maximum Q-probability decoder. As a consequence, (2.81) is also the
error exponent of the MAP decoder. A proof for (2.81) using the method of types needs to make
some assumptions on the topology of the considered sensor network to specify the type of θN . For
correlated sources, one can extend (2.81) considering a Markov model, and use higher-order types,
leading to cumbersome derivations.
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From (2.81), provided that ENC
0 > 0, Pe tends to 0 as N increases. ENC

0 cannot be negative
and ENC

0 = 0 if and only if 
D (p ‖ pΘ) = 0,

D (q ‖ pu) = 0,

M
N logQ−H (p)− M

N H (q) 6 0.

(2.82)

Thus, (2.82) implies that M
N logQ − H (pΘ) − M

N H (pu) 6 0. Then, a necessary and sufficient
condition to have ENC

0 > 0 is M
N logQ −H (pΘ) − M

N H (pu) > 0, which is the same as (2.67) with
γ = 1 − Q−1 (corresponding to A uniformly distributed). The proof using weak typicality leads
to the same results (in terms of sufficient condition for having asymptotically vanishing Pe) as the
technique in [DM09].

In the noiseless case, since γ can be chosen arbitrarily small, the necessary condition in Propo-
sition 2.1 and the sufficient condition in Proposition 2.3 asymptotically coincide. This confirms the
numerical results obtained in [SL13]. In the NC case, the difference between the two conditions
comes from the constraint linking γ and the entropy of the additive noise. In Section 2.3, the
structure of A was not considered and no condition on γ has been obtained. The lower bound on
γ implies that A should be dense enough to fight against the noise. Since the additive noise is iid,
for a given probability of having one entry of uM non-zero, i.e., Pr (u 6= 0), the entropy H (pu) is
maximized when pu (q) = Pr (u 6= 0) / (Q− 1) for any q ∈ FQ \ {0}. This corresponds to the worst
noise in terms of compression efficiency.

Figure 2.3 represents the lower bound of γ as a function of Pr (u 6= 0), ranging from 10−5 to
10−1, for different values of Q. There is almost no requirement on γ when Pr (u 6= 0) 6 5×10−4. For
a given noise level, a larger size of the finite field needs a denser network coding matrix. Figure 2.4
shows the influence of the additive noise on the optimum compression ratio. The lower bound of
M/N is represented as a function of H (Θ) / logQ, for different values of Q and for different values
of Pr (u 6= 0).

2.5 Sufficient Condition in Presence of Sensing Noise

This section performs an achievability study in presence of sensing noise by considering the condi-
tional pmf px|Θ. The additive noise uM is first neglected to simplify the problem (NS case). The
extension to the NCS case is easily obtained from the NS case. Assume that θN is the true state
vector and that xN represents the measurements of the sensors. The sink receives yM = AxN . The
a posteriori pmf (2.7) can be written as

p
(
θN | yM ,A

)
∝

∑
zN∈FNQ

p
(
θN
)
p
(
zN | θN

)
1yM=AzN . (2.83)
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Figure 2.3: Lower bound of γ to achieve the optimum compression ratio for N →∞,
according to (2.66)

In the case of MAP estimation, an error occurs if there exists a vector ϕN ∈ FNQ \
{
θN
}
such that∑

zN∈FNQ

p
(
θN , zN

)
1yM=AzN 6

∑
zN∈FNQ

p
(
ϕN , zN

)
1yM=AzN . (2.84)

θN and xN are considered as fixed, but unknown. The decoder has knowledge of A and yM = AxN ,
thus an alternative way to express (2.84) is∑

zN∈FNQ

p
(
θN , zN

)
1AxN=AzN 6

∑
zN∈FNQ

p
(
ϕN , zN

)
1AxN=AzN . (2.85)

2.5.1 Achievability Study

We begin with the extension of the basic weakly typical set as introduced in Section 2.4.1. For
any ε > 0 and N ∈ N+, based on AN[Θ]ε for θN , one defines the weakly conditional typical set
AN[x|Θ]ε

(
θN
)
for xN , which is conditionally distributed with respect to px|Θ, with θN ∈ AN[Θ]ε,

AN[x|Θ]ε

(
θN
)

=

{
xN ∈ FNQ such that

∣∣∣∣− 1

N
log p

(
xN | θN

)
−H (x | Θ)

∣∣∣∣ 6 ε

}
. (2.86)

Since H (Θ, x) = H (Θ) +H (x | Θ), if θN ∈ AN[Θ]ε and xN ∈ AN[x|Θ]ε

(
θN
)
, then

(
θN ,xN

)
∈ AN[Θ,x]2ε

by consistency, where AN[Θ,x]2ε denotes the weakly joint typical set, i.e., the set of pairs
(
θN ,xN

)
∈

FNQ × FNQ such that ∣∣∣∣− 1

N
log p

(
θN ,xN

)
−H (Θ, x)

∣∣∣∣ 6 2ε. (2.87)

For any ε > 0 there exist an Nε such that for all N > Nε and for any θN ∈ AN[Θ]ε, one has

Pr
{

xN ∈ AN[x|Θ]ε

(
θN
)}

> 1− ε and Pr
{(

ΘN , xN
)
∈ AN[Θ,x]2ε

}
> 1− 2ε. The cardinality of the set
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Figure 2.4: Optimum asymptotic achievable compression ratio in function of
H (Θ) / logQ, according to (2.67), for a crossover probability equal to 0.01, 0.05,

0.1, and 0.2 respectively, and without noise

AN[Θ,x]2ε satisfies ∣∣∣AN[Θ,x]2ε

∣∣∣ 6 2N(H(Θ,x)+2ε). (2.88)

One may have ε arbitrary close to zero as N →∞.
Considering AN[Θ,x]2ε, the estimation error probability is bounded by

Pe 6
∑

(θN ,xN)∈AN[Θ,x]2ε

p
(
θN ,xN

)
Pr
{
error | θN ,xN

}
+

∑
(θN ,xN)/∈AN[Θ,x]2ε

p
(
θN ,xN

)
6

∑
(θN ,xN)∈AN[Θ,x]2ε

p
(
θN ,xN

)
· Pr

{
error | θN ,xN

}
+ 2ε, (2.89)

Errors appear mainly due to a bad network coding matrix. By averaging over all A ∈ FM×NQ , (2.89)
becomes

Pe 6
∑

A∈FM×NQ

p (A)
∑

θN∈AN
[Θ]ε

∑
xN∈AN

[x|Θ]ε(θ
N)

p
(
θN ,xN

)
Pr
{
error | θN ,xN ,A

}
+ 2ε, (2.90)
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where p (A) = Pr {A = A}. Pr
{
error | θN ,xN ,A

}
can be written as

Pr
{
error | θN ,xN ,A

}
=

1 if ∃ϕN ∈ FNQ \
{
θN
}

s.t. (2.85) holds,

0 if ∀ϕN ∈ FNQ \
{
θN
}
, (2.85) does not hold.

(2.91)

Using again the idea of Lemma 2.1, probability is bounded by

Pr
{
error | θN ,xN ,A

}
6

∑
ϕN∈FNQ\{θN}

∑
zN1 ∈FNQ

p
(
ϕN , zN1

)
1AxN=AzN1∑

zN2 ∈FNQ
p
(
θN , zN2

)
1AxN=AzN2

. (2.92)

From (2.90) and (2.92), one gets

Pe 6
∑

A∈FM×N
Q

θN∈AN
[Θ]ε

p (A)
∑

xN∈AN
[x|Θ]ε(θ

N)

p
(
θN ,xN

) ∑
ϕN∈FNQ\{θN}

∑
zN1 ∈FNQ

p
(
ϕN , zN1

)
1AxN=AzN1∑

zN2 ∈FNQ
p
(
θN , zN2

)
1AxN=AzN2

+ 2ε. (2.93)

Now, for some θN ∈ AN[Θ]ε, consider the direct image by A of the conditional typical set AN[x|Θ]ε

(
θN
)

Yε
(
A,θN

)
=
{

yM = AxN , for all xN ∈ AN[x|Θ]ε

(
θN
)}
. (2.94)

Lemma 2.3. For any arbitrary real-valued function h
(
xN
)
with xN ∈ FNQ , one has∑

xN∈AN
[x|Θ]ε(θ

N)

h
(
xN
)

=
∑

yM∈Yε(A,θN)

∑
xN∈AN

[x|Θ]ε(θ
N)

h
(
xN
)

1yM=AxN . (2.95)

Proof. For a given yM ∈ Yε
(
A,θN

)
, consider the set

Xε
(
yM ,A,θN

)
=
{

xN ∈ AN[x|Θ]ε

(
θN
)
such that yM = AxN

}
. (2.96)

Then one has
AN[x|Θ]ε

(
θN
)

=
⋃

yM∈Yε(A,θN)

Xε
(
yM ,A,θN

)
, (2.97)

with Xε
(
yMi ,A,θ

N
)
∩ Xε

(
yMj ,A,θ

N
)

= ∅ for any yMi 6= yMj , since the multiplication by A is a

surjection from AN[x|Θ]ε

(
θN
)
to Yε

(
A,θN

)
. So any sum over xN ∈ AN[x|Θ]ε

(
θN
)
can be decomposed

as ∑
xN∈AN

[x|Θ]ε(θ
N)

h
(
xN
)

=
∑

yM∈Yε(A,θN)

∑
xN∈Xε(yM ,A,θN)

h
(
xN
)

=
∑

yM∈Yε(A,θN)

∑
xN∈AN

[x|Θ]ε(θ
N)

h
(
xN
)

1yM=AxN . (2.98)
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Applying (2.95) to (2.93), one obtains

Pe 6
∑

A∈FM×N
Q

θN∈AN
[Θ]ε

p (A)
∑

yM∈Yε(A,θN)

∑
xN∈AN

[x|Θ]ε(θ
N)

p
(
θN ,xN

)
1yM=AxN

·

 ∑
ϕN∈FNQ\{θN}

∑
zN1 ∈FNQ

p
(
ϕN , zN1

)
1yM=AzN1∑

zN2 ∈FNQ
p
(
θN , zN2

)
1yM=AzN2

+ 2ε

=
∑

A∈FM×N
Q

θN∈AN
[Θ]ε

p (A)
∑

yM∈Yε(A,θN)

 ∑
ϕN∈FNQ\{θN}

∑
zN1 ∈FNQ

p
(
ϕN , zN1

)
· 1yM=AzN1



·

∑xN∈AN
[x|Θ]ε(θ

N) p
(
θN ,xN

)
1yM=AxN∑

zN2 ∈FNQ
p
(
θN , zN2

)
1yM=AzN2

+ 2ε

6
∑

A∈FM×N
Q

θN∈AN
[Θ]ε

p (A)
∑

yM∈Yε(A,θN)

 ∑
ϕN∈FNQ\{θN}

∑
zN1 ∈FNQ

p
(
ϕN , zN1

)
1yM=AzN1

+ 2ε, (2.99)

since we have ∑
xN∈AN

[x|Θ]ε(θ
N) p

(
θN ,xN

)
1yM=AxN∑

zN2 ∈FNQ
p
(
θN , zN2

)
1yM=AzN2

6 1. (2.100)

The bound (2.100) is tight because for N sufficiently large, the probability of the non-typical set
vanishes. Recall that yM = AxN , even though xN is not explicit in (2.99). As a vector yM may
correspond to several xN s, (2.99) is further bounded by

Pe 6
∑

A∈FM×N
Q

θN∈AN
[Θ]ε

p (A)
∑

xN∈AN
[x|Θ]ε(θ

N)

∑
ϕN∈FN

Q
\{θN}

zN1 ∈F
N
Q

p
(
ϕN , zN1

)
1AxN=AzN1

+ 2ε

6
∑

θN∈AN
[Θ]ε

ϕN∈FN
Q
\{θN}

∑
xN∈AN

[x|Θ]ε
(θN )

zN1 ∈F
N
Q

p
(
ϕN , zN1

) ∑
A∈FM×NQ

p (A) 1AxN=AzN1
+ 2ε. (2.101)

Since ∑
A∈FM×NQ

p (A) 1AxN=AzN1
= Pr

{
AxN = AzN1

}
, (2.102)

one gets
Pe 6

∑
θN∈AN

[Θ]ε

ϕN∈FN
Q
\{θN}

∑
xN∈AN

[x|Θ]ε
(θN )

zN1 ∈F
N
Q

p
(
ϕN , zN1

)
Pr
{

AxN = AzN1
}

+ 2ε. (2.103)

Suppose that
∥∥xN − zN1

∥∥
0

= d. If d = 0, Pr
{

AxN = AzN1
}

equals 1. Otherwise we can apply
Lemma 2.2, without additive noise, Pr

{
AxN = AzN1

}
6 f (d, 0; γ,Q,M) . Depending on d being
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zero or not, PA is split as follows
Pe 6 PA1 + PA2 + 2ε, (2.104)

where
PA1 =

∑
θN∈AN

[Θ]ε

ϕN∈FN
Q
\{θN}

∑
zN1 ∈AN[x|Θ]ε(θ

N)

p
(
ϕN , zN1

)
, (2.105)

and
PA2 =

∑
θN∈AN

[Θ]ε

ϕN∈FN
Q
\{θN}

∑
xN∈AN

[x|Θ]ε
(θN )

zN1 ∈F
N
Q
\{xN}

p
(
ϕN , zN1

)
Pr
{

AxN = AzN1
}
. (2.106)

Lemma 2.4. A sufficient condition for PA1 6 2ε is that, for any pair of vectors (θN ,ϕN ) ∈
AN[Θ]ε ×A

N
[Θ]ε such that θN 6= ϕN ,

AN[x|Θ]ε

(
θN
)
∩ AN[x|Θ]ε

(
ϕN
)

= ∅. (2.107)

Proof. Assume that (2.107) is satisfied. Changing the order of summation, (2.105) becomes

PA1 =
∑

ϕN∈FNQ

p
(
ϕN
) ∑
θN∈AN

[Θ]ε
\{ϕN}

zN1 ∈A
N
[x|Θ]ε

(θN )

p
(
zN1 | ϕN

)
, (2.108)

which can be further decomposed as PA1 = PA11 + PA12 , with

PA11 =
∑

ϕN∈AN
[Θ]ε

p
(
ϕN
) ∑
θN∈AN

[Θ]ε
\{ϕN}

zN1 ∈A
N
[x|Θ]ε

(θN )

p
(
zN1 | ϕN

)

(a)

6
∑

ϕN∈AN
[Θ]ε

p
(
ϕN
) ∑
zN1 ∈FNQ\A

N
[x|Θ]ε

(ϕN )

p
(
zN1 | ϕN

)
6

∑
ϕN∈AN

[Θ]ε

p
(
ϕN
)
ε 6 ε, (2.109)

where (a) comes from the fact that if (2.107) is satisfied, one has⋃
θN∈AN

[Θ]ε
\{ϕN}

AN[x|Θ]ε

(
θN
)
⊆ FNQ \ AN[x|Θ]ε

(
ϕN
)
. (2.110)

On the other hand,

PA12 =
∑

ϕN∈FNQ\A
N
[Θ]ε

p
(
ϕN
) ∑

θN∈AN
[Θ]ε

zN1 ∈A
N
[x|Θ]ε

(θN )

p
(
zN1 | ϕN

)

6
∑

ϕN∈FNQ\A
N
[Θ]ε

p
(
ϕN
)
6 ε, (2.111)
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since for this part ⋃
θN∈AN

[Θ]ε

AN[x|Θ]ε

(
θN
)
⊆ FNQ . (2.112)

From (2.109) and (2.111), Lemma 2.4 is proved.

Now consider the term (2.106),

PA2 =

N∑
d=1

∑
θN∈AN

[Θ]ε

ϕN∈FN
Q
\{θN}

∑
xN∈AN

[x|Θ]ε
(θN )

zN1 ∈F
N
Q

:‖xN−zN1 ‖0
=d

p
(
ϕN , zN1

)
· f (d, 0; γ,Q,M)

6
bβNc∑
d=1

∑
θN∈AN

[Θ]ε

ϕN∈FN
Q
\{θN}

∑
zN1 ∈FNQ

∑
xN∈FNQ :‖xN−zN1 ‖0

=d

p
(
ϕN , zN1

)
· f (1, 0; γ,Q,M)

+
∑

θN∈AN
[Θ]ε

xN∈AN
[x|Θ]ε

(θN )

∑
ϕN∈AN

[Θ]ε
\{θN}

zN1 ∈F
N
Q

p
(
ϕN , zN1

)
· f (dβNe , 0; γ,Q,M) , (2.113)

which is similar to (2.59) in Section 2.4.1. For N sufficient large, the condition on M/N to ensure
PA2 tends to zero as N →∞ is

M

N
>
H (Θ, x) + ε

logQ− ξ
, (2.114)

for some ξ ∈ R+. Finally, we have Proposition 2.4 to conclude the sufficient condition for reliable
recovery in the NS case.

Proposition 2.4. In the NS case, fix an arbitrary small positive real number δ, there exists ε ∈ R+,
ξ ∈ R+, Nδ ∈ N+ and Mε ∈ N+ such that for any N > Nδ and M > Mε, one has Pe < δ under
MAP decoding if (2.107) and (2.114) hold. One can make both ε and ξ arbitrary close to 0 as
N →∞.

Finally, the NCS case, accounting for both additive and sensing noise, has to be considered.

Proposition 2.5. [Sufficient condition, NCS case] Considering both additive noise and sensing
noise, for N and M sufficient large and positive ε, ξ arbitrary small, the reliable recovery can be
ensured under MAP decoding if

• the additive noise is not uniformly distributed, (2.65)

• there is no overlapping between any two different weakly conditional typical sets, i.e., AN[x|Θ]ε

(
θN
)
∩

AN[x|Θ]ε

(
ϕN
)

= ∅ for any two typical but different θN and ϕN ,

• the sparsity factor satisfies the constraint in (2.66),

the compression ratio M/N is lower bounded by

M

N
>

H (Θ, x) + ε

logQ−H (pu)− ξ
. (2.115)
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The derivations are similar to those of Proposition 2.3 and Proposition 2.4.

2.5.2 Discussion and Numerical Results

When comparing the necessary condition in Proposition 2.1 and the sufficient condition in Propo-
sition 2.5, an interesting fact is that H (Θ | x) = 0 is a sufficient condition to have (2.107). This
implies that the value of θN should be fixed almost surely, as long as xN is known. So, (2.107) is
helpful to interpret (2.12), justifying the need for the conditional entropy H (Θ | x) to tend to zero
as N increases. This condition may be satisfied since

∣∣∣AN[Θ]ε

∣∣∣� ∣∣∣FNQ ∣∣∣ as long as H (Θ) < logQ. The
entropy rate H (Θ) can be very small, Appendix A.2 presents a possible situation where H (Θ) = 0.
Another implicit constraint resulting from (2.107) is∑

θN∈AN
[Θ]ε

AN[x|Θ]ε

(
θN
)
6
∣∣FNQ ∣∣ (2.116)

which means that
H (Θ, x) 6 logQ. (2.117)

Consider a additive noise with Pr (u 6= 0) = 0.1 and the transition pmf

p(xn | θn) =

1− Pr (x 6= Θ) if xn = θn
Pr(x6=Θ)
Q−1 if xn ∈ FNQ \ {θn}

, (2.118)

where Pr (x 6= Θ) denotes the probability of the sensing error. In Figure 2.5, the lower bound of
M/N is represented as a function of H (Θ) / logQ, for different values of Q and for different values
of Pr (x 6= Θ).

2.6 Conclusions and future work

In this chapter we have considered a WSN where network nodes observe the components of a vector
sparse in some basis. Random linear network coding is used to propagate the quantized noisy
measurements in the network. MAP estimation is then used by each node of the network to estimate
the sparse vector. Both asymptotically necessary and sufficient conditions of the compression ratio
for reliable recovery are obtained and their convergence is also shown, even in the case of sparse
network coding matrices. Several previous results have been generalized by considering a stationary
and ergodic source model. Both additive noise and sensing noise have been taken into account. We
have shown that the choice of the sparsity factor of the network coding matrix only depends on the
additive noise. Since necessary and sufficient conditions asymptotically converge, the MAP decoder
achieves the optimum lower bound of the compression ratio, which can be expressed as a function
of H (Θ, x), H (pu), and the alphabet size.

In this chapter, the network coding matrix was assumed to be perfectly known, without specific
structure. In sensor network compressive sensing applications, the structure of the coding matrix
usually depends on the structure of the network. Evaluating the impact of these constraints on the
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Q=2, Pr(x≠θ) = 0.01

Q=4, Pr(x≠θ) = 0.01

Q=16, Pr(x≠θ) = 0.01

Q=256, Pr(x≠θ) = 0.01

Q=2, Pr(x≠θ) = 0

Q=4, Pr(x≠θ) = 0

Q=16, Pr(x≠θ) = 0

Q=256, Pr(x≠θ) = 0

Q=2, Pr(x≠θ) = 0.05

Q=4, Pr(x≠θ) = 0.05

Q=16, Pr(x≠θ) = 0.05

Q=256, Pr(x≠θ) = 0.05

Q=2, Pr(x≠θ) = 0.1

Q=4, Pr(x≠θ) = 0.1

Q=16, Pr(x≠θ) = 0.1

Q=256, Pr(x≠θ) = 0.1

Figure 2.5: Optimum achievable compression ratio in function of H (Θ) / logQ,
according to (2.115), for the cases that Pr (x 6= Θ) being 0 (NC case), 0.01, 0.05, and

0.1, respectively, when Pr (u 6= 0) = 0.1

compression efficiency will be the subject of future research. A first step in this direction was done
in [RAG12], which considered clustered sensors.
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Chapter 3

Distributed Faulty Node Detection for
WSNs

In a wireless sensor network (WSN), the sensors of some nodes may be defective and frequently
produce outliers, i.e., abnormal measurements. The identification of defective sensors is important
to improve the global behavior of a WSN [ZMH10; MK13]. This chapter proposes and analyzes
the performance of distributed algorithms to help each node of a WSN to determine whether it
is equipped with a normal or a defective sensor. Several related work has been discussed in Sec-
tion 1.2.2.

This chapter is organized as follows. Section 3.1 presents the system model and basic assump-
tions. Section 3.2 describes the two variants of the proposed DFD algorithm. Section 3.3 develops
the theoretical analysis of the proposed algorithms. Section 3.4 presents some outlier models and
a LODT. Section 3.5 and 3.6 provide some numerical results using simulations and experiments
respectively. Section 3.7 concludes this chapter.

3.1 Notations and System Model

3.1.1 Network model

Consider an infinite plane where nodes, equipped with one sensor each, are uniformly and indepen-
dently deployed, with spatial density ρ, according to a 2D homogeneous Poisson point process (PPP)
[Hae12]. Let S denote the set of nodes. Each sensor observes some physical phenomenon and pro-
duces measurements perturbed by random noise. The noise samples at different nodes, or corrupting
different measurements at the same node, are assumed statistically independent. A sensor is de-
fective if it produces outliers. Several examples of sensing noise and outlier models are introduced
in Section 3.4.1. The sets of nodes equipped with defective and non-defective (good) sensors are
denoted by D and G respectively, with D∪G = S. The spatial densities of nodes with defective and
good sensors are ρd and ρg, respectively, with ρ = ρd + ρg. Let θi denote the status (defective or
good) of an arbitrary sensor node i ∈ S. One has θi = 1 if i ∈ D and θi = 0 if i ∈ G. In this work,
it is assumed that θi remains constant in the time interval during which the DFD is performed.

Assume that any pair of nodes (i, j) can communicate only if ri,j 6 R0, where ri,j is their physical
distance and R0 is the communication range, dependent on the transmission power, transmitter and
receiver characteristics, and propagation scenario. Define Ni = {j ∈ S | 0 < ri,j 6 R0} as the set of
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the neighbors of Node i. The number of nodes in Ni follows a Poisson distribution

P {|Ni| = n} =
µ̄n

n!
exp (−µ̄) , (3.1)

with µ̄ = ρπR2
0, see [Hae+09]. The probability of having n1 nodes with good sensors and n2 = n−n1

nodes with defective sensors in Ni is

P {|Ni ∩ G|=n1, |Ni ∩ D|=n2} =
µ̄n1

g µ̄n2
d

n1!n2!
exp(−(µ̄g + µ̄d)) ,

= P (µ̄g, µ̄d, n1,n2) , (3.2)

where µ̄g = ρgπR
2
0 and µ̄d = ρdπR

2
0.

When nodes try to broadcast messages to their neighbors, we assume that some collision avoid-
ance mechanism is put at work to limit packet losses. As a consequence, in a given finite time
interval, all nodes are not necessarily able to access the channel to broadcast their message. More-
over, a message broadcast by some node is not necessarily received by all its neighbors due to
transmission errors, residual packet collisions, shadowing, etc. Packet integrity is assumed to be
determined with some CRC or checksum. Corrupted packets are considered as lost. To model
all these phenomena, we assume that in the communication interval ∆t, Node i only receives the
messages transmitted by a subset N ′i ⊆ Ni of its neighbors. The probability of having n nodes in
N ′i still follows a Poisson distribution

P
{∣∣N ′i ∣∣ = n

}
=
µn

n!
exp (−µ) , (3.3)

where µ = ρπR2
0 (1− ε (∆t)) is the average number of nodes from which Node i receives a message

during the transmission interval, see [Hae+09]. We assume that ε (∆t) is a decreasing function of
∆t accounting for all the above mentioned channel access impairments. This is reasonable, because
as ∆t increases more nodes have the opportunity to access the channel.

3.1.2 Local outlier detection test

Consider a generic set of nodes A ⊆ S and define

ϕ (A) =

1, if A ∩D 6= ∅,

0, otherwise,
(3.4)

as the indicator function for the presence of nodes with defective sensors in A. At a given time
instant, let the random variable Mi ∈ Rη denote the η-dimensional data provided by the sensor
of Node i, i ∈ A. Mi may be a scalar or vector measurement, may contain a measurement and
the value of some regressor in the case of system models linear in their parameters, or may contain
measurements and experimental conditions, for general nonlinear system models.
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The data provided by all nodes in A are gathered in MA = [Mi]i∈A ∈ Rη|A|. For a given
realization mA ∈ Rη|A| of MA, denote T (mA) the outcome of some LODT

T (mA) =

0, if no outlier is detected from mA,

1, otherwise.
(3.5)

Even if ϕ (A) = 1, i.e., at least one node with a defective sensor belongs to A, the noise character-
istics of the defective sensors may produce realizations mA that do not allow for the detection of
the outliers. Thus, one introduces the probability of detection of the LODT

qD (MA) = P
{
T (MA) = 1

∣∣ϕ (A) = 1
}
. (3.6)

Similarly, one considers the probability of false alarm of the LODT

qFA (MA) = P
{
T (MA) = 1

∣∣ϕ (A) = 0
}
. (3.7)

In this work we consider only LODTs satisfying the following properties.

Property 3.1. Let ng = |A ∩ G| and nd = |A ∩ D|, then

qFA (MA) = qFA (ng) , qD (MA) = qD (ng, nd) . (3.8)

Property 3.2. Let k be an arbitrary node in A, then

P
{
T
(
MA\{k}

)
= 1 | T (MA) = 0, ϕ (A) = 0

}
= 0. (3.9)

P
{
T
(
MA\{k}

)
= 1 | T (MA) = 0, ϕ (A) = 1

}
= 0. (3.10)

In Property 3.1, we consider only the class of LODTs T (MA) processing the random data vector
MA in a way that disregards the knowledge of the identity of the node producing the data. For
this reason, (3.6) and (3.7) depend only on the number of sensors in each status belonging to A.
In practice, the LODT takes a realization mA as input and does not need to know ng and nd. The
notations in (3.8) indicate the dependence of the probabilities qFA and qD in ng and nd that will be
exploited in the analysis of the proposed DFD algorithms involving the LODT outcomes.

Property 3.2 implies that if no outlier is detected testing the whole vector mA, then no outlier will
be detected testing any sub-vector of mA. LODTs satisfying Properties 3.1 and 3.2 are characterized
by probabilities of false alarm and of detection depending on ng and nd as described by the following
lemma.

Lemma 3.1. The following inequalities hold for any LODT T (MA) satisfying Properties 3.1
and 3.2:

qFA (ng) 6 qFA (ng + 1) , (3.11)

qD (ng, nd) 6 qD (ng + 1, nd) , (3.12)
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qD (ng, nd) 6 qD (ng, nd + 1) . (3.13)

The proof of Lemma 3.1 is given in Appendix B.1. Lemma 3.1 implies that a LODT satisfying
Properties 3.1 and 3.2 is more likely to detect an outlier when the number of data involved in the
test increases. Examples of LODTs satisfying Properties 3.1 and 3.2 are provided in Section 3.4.2.

Properties 3.1 and 3.2 correspond to mild sufficient conditions a LODT has to satisfy to ensure
the existence of an equilibrium of Algorithm 2 introduced in Section 3.2.2. LODTs, which do not
satisfy these properties, may also be considered, but the behavior of Algorithm 2 cannot be analyzed
theoretically in such cases.

Example 3.1. This example introduces a LODT suited to a WSN aiming at solving a bounded-
error parameter estimation problem, see [Mil+96]. In such a context, some parameter vector has
to be estimated from noisy measurements. The noise corrupting the measurements provided by good
sensors is assumed bounded with known bounds. Let x ∈ X ⊂ Rnx be the vector of parameters to be
estimated from the vector measurements z1, . . . , znS provided by ns sensors. Here, the data mi is a
vector measurement zi. Assume that the measurement model is

zi = zm (x∗) + wi (3.14)

where x∗ is the true value of the parameter vector, zm is a possibly non-linear model of the measure-
ment process, and wi is some noise such that ‖wi‖∞ 6 ε, with ε representing some known noise
bound. One may then introduce the set Xi of parameter vectors consistent with measurement zi as

Xi = {x ∈ X | ‖zi − zm (x)‖∞ 6 ε} (3.15)

and the set X of parameter vectors consistent with all measurements as

X =

ns⋂
i=1

Xi = {x ∈ X | ‖zi − zm (x)‖∞ 6 ε, i = 1 . . . ns} . (3.16)

Accurate inner and outer-approximations of X may be obtained, even for models zm non-linear in
x with ellipsoids, parallelotopes, zonotopes, boxes, unions of boxes, see [Mil+96; Jau+01]. When X
is empty, the model zm is either not suited to describe the system of interest, or the bounded noise
property ‖wi‖∞ 6 ε is not satisfied for at least one measurement, i.e., there is at least one defective
sensor. An empty X may be obtained even with as few as two vector measurements, providing
the ability to detect outliers with very few sensor readings. A LODT may then be designed in such
bounded-error parameter estimation context considering a set of measurements z1 . . . znS by checking
whether the set X introduced in (3.16) is empty or not.

3.2 DFD Algorithm

This section proposes two DFD algorithms (a single-decision variant and an iterative variant). In
the single-decision variant, several measurement rounds and LODTs are performed by each node.
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At the end of the last round, a single decision concerning the status of its sensor is taken locally by
each node. In the iterative variant, a decision is taken at each round and may be updated at the
next one. As will be seen in Section 3.5, the most appropriate variant depends on the ratio µ̄d/µ̄

of defective sensors in the network. In what follows, we assume that the network topology does not
change within a round of both algorithms.

3.2.1 Single-decision DFD algorithm

The proposed single-decision DFD algorithm is described in Algorithm 1. The local outlier detection
stage consists of two successive phases (Phase I and Phase II), alternating during L rounds. Then,
the decision stage consists of a final decision phase, whose outcome is an estimate θ̂i of the status
θi of the sensor of Node i.

In the `-th round, during Phase I, Node i collects fresh data transmitted by its neighborhood Ni.
A subset containing a proportion ζ of randomly chosen data among the received ones is then used
with Node i fresh privy data to perform the LODT described in Section 3.1.2. Define Ui = Ni ∪{i}
and let N (`,I)

i ⊂ Ni be the subset of nodes from which Node i received data (excluding itself) during
Phase I of Round `. Consider

V(`,I)
i = Sζ

(
N (`,I)
i

)
∪ {i} (3.17)

the set of node indices whose data are involved in the LODT performed by Node i at Round `. The
function Sζ selects a random subset of nodes in N (`,I)

i such that∣∣∣Sζ (N (`,I)
i

)∣∣∣ =
⌈
ζ
∣∣∣N (`,I)

i

∣∣∣⌉ , (3.18)

where
∣∣∣N (`,I)

i

∣∣∣ is the cardinal number of N (`,I)
i and d·e denotes upwards rounding. The role of ζ is

illustrated in Example 3.3 and further discussed in Section 3.3.4. The LODT outcome is denoted
Y

(`)
i = T (MV(`,I)

i

), which, for a given realization MV(`,I)
i

= mV(`,I)
i

, provides y(`)
i = T (mV(`,I)

i

).

Then, during Phase II, Node i tries to broadcast (y
(`)
i ,V(`,I)

i ) to indicate the other nodes which data
were involved in the LODT it just performed. At the end of Phase II, Node i has received pairs
(y

(`)
j ,V(`,I)

j ) from a subset of nodes V(`,II)
i ⊆ Ui. Denote

B(`)
i =

{
j ∈ V(`,II)

i such that i ∈ V(`,I)
j

}
. (3.19)

Node i then adds to a first counter zi all y
(`)
j s such that j ∈ B(`)

i . Thus only LODT outcomes
involving the data produced by Node i are added to zi. Node i also accumulates in a second counter
ni the cardinal number

∣∣∣B(`)
i

∣∣∣ of B(`)
i . This counter represents the number of LODT outcomes

received by Node i in which its data were involved (including its own LODT outcomes). At the end
of the L rounds the value zi/ni is the statistics on which the decision is taken in the final decision
phase.

The decision (3.22) can result in both false alarm, with probability PFA, and non-detection,
with probability PND = 1 − PD, where PD is the detection probability. The value of ζ and of the
threshold γ affect the trade-off between PD and PFA, and have to be adjusted to meet the targeted
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Algorithm 1 Single-decision DFD

1. Initialize θ̂(0)
i = 0, zi = 0, and ni = 0 for all i ∈ S.

2. For each round 1 ≤ ` ≤ L:

• Phase I, lasting 4tI: Node i tries to broadcast a packet containing its local data m(`)
i ,

receives the data produced by the nodes in Ni, randomly selects a subset Sζ
(
N (`,I)
i

)
of

received data and performs the test (3.5) with outcome

y
(`)
i = T

(
mV(`,I)

i

)
; (3.20)

• Phase II, lasting 4tII: each node broadcasts
(
y

(`)
i ,V(`,I)

i

)
generated in Phase I and

updates zi and ni as follows zi = zi +
∑

j∈B(`)
i

y
(`)
j ,

ni = ni +
∣∣∣B(`)
i

∣∣∣ . (3.21)

3. After L rounds:

• Decision phase: each node i estimates the status θi of its sensor

θ̂i =

{
1 (defective) if zi/ni > γ,

0 (non defective) otherwise,
(3.22)

where γ is some threshold, 0 < γ 6 1.
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performance (see Appendix B.2 for more details). For a fixed value of ζ, when γ is close to one,
PD may be low. On the other hand, PFA may be high for values of γ close to zero. Increasing L
provides a better averaging effect in (3.22), which reduces the variance of θ̂i. Nevertheless, L cannot
be taken too large, to preserve the hypothesis that the status θi does not vary during the whole
DFD procedure.

As will be seen in Section 3.5, the single-decision DFD algorithm performs well when µ̄d � µ̄g.
However, PFA rapidly increases with µ̄d/µ̄. Consider the case where µ̄d is large enough so that every
non-defective sensor node has at least one defective sensor node in its neighborhood. When ζ = 1,
all measurements from neighbors are involved in the LODT of Node i. As a consequence, for all
sensors i ∈ S, the LODT outcome will be y(`)

i = 1 with a high probability. Non-defective sensors
are then frequently diagnosed as defective. Reducing ζ increases the chance for Node i to get an
outlier-free subset of data on which the LODT can be performed and thus reduces PFA. The idea
of selecting only a subset of data to perform the LODT is reminiscent to GT [Che+11].

Now, when µ̄ is small, i.e., the degree of connectivity of the network is low, it may be useful to
collect measurements from the h-hop neighborhood of each node and to broadcast test outcomes
to the same h-hop neighborhood. Appendix B.3 describes the updates required in Algorithm 1 to
handle DFD with multi-hop data collection and LODT result dissemination.

Examples 3.2 and 3.3 illustrate the behavior of the single decision DFD algorithm in various
situations.

Example 3.2. Figure 3.1 depicts a first example WSN, where no channel access issues nor collisions
are considered, thus ε = 0. Let k be the only node equipped with a defective sensor. Assume that both
qFA defined in (3.7) and qND defined in (3.6) are negligible: all the sensors in Uk successfully detect
outliers. Moreover consider L = 1 (unique round) and take γ = 0.7 and ζ = 1. At the end of Phase
II, B(1)

i = Ui, i = 1, . . . , k. Moreover, z(1)
k = |Uk| = 7, z(1)

1 = |Uk ∩ U1| = 4, z(1)
2 = |Uk ∩ U2| = 1,

and z(1)
3 = |Uk ∩ U3| = 0. Since z(1)

k / |Uk| = 1 > γ, z(1)
1 / |U1| ≈ 0.67 < γ, z(1)

2 / |U2| = 0.25 < γ,
and z(1)

3 / |U3| = 0 < γ, only Node k determines its sensor as defective, according to (3.22), while
Nodes 1, 2, and 3 diagnose their own sensor as non-defective. All decisions are thus correct.

Example 3.3. Figure 3.2 represents a second example of a WSN with a minimum degree of con-
nectivity.

Node 2 is equipped with a defective sensor. With the same assumptions as in Example 3.2,
considering L = 1, ε = 0, γ = 0.7, and ζ = 1, Node 1 and 2 will determine themselves as defective.
Allowing two-hop data collection and the LODT outcome dissemination worsens the situation since
all nodes will have the outlier produced by Node 2 in their collected data. As a consequence, all
LODTs will detect the presence of an outlier, and all nodes will determine themselves as defective.
This is why it is necessary to perform the LODT only on a subset of data. Consider again a two-hop
data collection with ζ = 0.5. In Phase I, Nodes 1 and 4 receive data from Nodes 2 and 3. Their
LODTs will provide y(1)

1 = 0 with a probability 0.5 and y
(1)
4 = 0 with a probability 0.5. Node 2

always uses its own data and produces y(1)
2 = 1. Node 3 receives data from Nodes 1, 2, and 4. It

randomly selects d0.5× 3e = 2 data out of these 3 data and provides thus y(1)
1 = 0 with a probability

2/3. In Phase II, Node 1 will receive LODT outcomes from Nodes 2 and 3. Only outcomes such
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defective

sensor:

non-defective	

sensor:

Figure 3.1: Example where k is the only node with a defective sensor, (a) shows
that z(1)k = |Uk| = 7. In (b), Node 1 belongs to Uk and z

(1)
1 = 4. In (c), Node 2 is

not in Uk but r2,k 6 2R0, which results in z
(1)
2 = 1. In (d), Node 3 has a distance

r3,k > 2R0, so z
(1)
3 = 0.

21 3 4
Figure 3.2: Example where Node 2 is the only defective sensor.

that y(1)
i = 1 and {1} ⊂ V(1,I)

i contribute to zi. Moreover, all outcomes with {1} ⊂ V(1,I)
i contribute

to n1. The third line of Table 3.1 provides the probability vector

P
(1)
i =

[
P
{
{j} ⊂ V(1,I)

i

}]
j=1,...,4

, ∀i = 1, . . . , 4,

e.g., P
{
{1} ⊂ V(1,I)

2

}
= 2/3. One deduces for example

E (N1) =
4∑
i=1

P
{
{1} ⊂ V(1,I)

i

}
= 7/3.

The fourth line of Table 3.1 provides the probability vector

P
(2)
i =

[
P
{
{j, 2} ⊂ V(1,I)

i

}]
j=1,...,4

, ∀i = 1, . . . , 4,

which helps to evaluate E (Zi), e.g.,

E (Z1) =
4∑
i=1

P
{
{1, 2} ⊂ V(1,I)

i

}
= 11/6.

The last line of Table 3.1 provides E (Zi) /E (Ni). One observes that a proper selection of γ >
9/14 allows in average to detect the node producing an outlier, while avoiding false alarms. One
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Node i 1 2 3 4
P
{
Y

(1)
i = 1

}
1/2 1 2/3 1/2

P
(1)
i

(
1, 1

2 ,
1
2 , 0
) (

2
3 , 1,

2
3 ,

2
3

) (
2
3 ,

2
3 , 1,

2
3

) (
0, 1

2 ,
1
2 , 1
)

P
(2)
i

(
1
2 ,

1
2 , 0, 0

) (
2
3 , 1,

2
3 ,

2
3

) (
1
3 ,

2
3 ,

2
3 ,

1
3

) (
0, 1

2 , 0,
1
2

)
E (Zi) 3/2 8/3 4/3 3/2
E (Ni) 7/3 8/3 8/3 7/3

E (Zi)/E (Ni) 9/14 1 1/2 9/14

Table 3.1: Illustration of the single decision DFD for Example 3.3

also observes that E (Zi) /E (Ni) is larger for Nodes 1 and 4 which are connected (at one or two
hops) to fewer good nodes than Node 3. This illustrates the fact that the level of protection against
a false alarm is related to the number of connections to good nodes.

Example 3.3 illustrates the importance of the choices of the values of γ and ζ. Some insights
are provided for their tuning in Section 3.3.4 and Appendix B.2.

3.2.2 Iterative DFD algorithm

To improve the single-decision DFD algorithm for increasing µ̄d/µ̄, an iterative variant of Algo-
rithm 1 is described in Algorithm 2. The iterative algorithm is composed of two parts, of duration
L1 and L2 rounds, respectively. In each round of the first part (Lines 1 to 4 of Algorithm 2) nodes
collect data from their neighborhood, perform a LODT, and are allowed to take temporary decisions
θ̂

(`)
i about the status of their sensor (i.e., a single round consists of both the local outlier detection
and the decision stages). The temporary decision at Round ` − 1 affects the set of sensor data
tested by Node i at Round `, i.e., the nodes with θ̂(`−1) = 1 remain silent during Round `. The
set of active neighbors of Node i is then Û (`)

i = {j ∈ Ui s.t. θ̂(`−1)
j = 0} and one has V(`,I)

i ⊆ Û (`)
i

and V(`,II)
i ⊆ Û (`)

i . Any temporary decision can be updated during the next rounds of the first part.
This is why zi and ni are reinitialized at the beginning of Phase I in each round of this first part.
Finally, Algorithm 1 is performed during the second part (Lines 6 and 7 of Algorithm 2) involving
only nodes with sensors deemed as non-defective.

The core procedure of the first part is described in Lines 2 and 3. One has θ̂(`)
i = 1 if Node i

and all neighbors which have used the data of Node i detect an outlier. Note that (3.23) is similar
to (3.22) with L = 1 and γ = 1. This choice has been considered in the first part of Algorithm 2 to
minimize the number of nodes with sensors wrongly deemed as defective, while having a reasonable
probability of detection PD. This allows then to work in the second part of Algorithm 2 with a
smaller value of µ̄d/µ̄. This is especially important when µ̄d > 1: a large amount of non-defective
sensors may be diagnosed as defective even with γ = 1. In Line 2, if θ̂(`−1)

i = 1, Node i stops
broadcasting its data in Round `. Nevertheless, Node i still performs the LODT: this gives it
a chance to become active again at Round ` + 1, in case it erroneously considered its sensor as
defective at Round `.
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Algorithm 2 Iterative DFD

1. Set ` = 1; θ̂(0)
i = 0 for all i ∈ S.

2. Phase I, lasting 4tI: Set zi = ni = 0.

(a) If θ̂(`−1)
i = 0, Node i tries to broadcast a packet containing its local data m(`)

i , receives
the data produced by the nodes in N (`,I)

i ⊂ Ni , randomly selects a subset Sζ
(
N (`,I)
i

)
of

received data and performs the test (3.5) with outcome y(`)
i = T (mV(`,I)

i

);

(b) Else Node i is silent, i.e., it does not broadcast its data but receives data from its
neighbors.

3. Phase II, lasting 4tII:

(a) If θ̂(`−1)
i = 0, Node i tries broadcast (y

(`)
i ,V(`,I)

i ) , evaluates zi and ni, and performs the
decision

θ̂
(`)
i =

{
1, if zi/ni = 1,

0, otherwise.
(3.23)

(b) Else, Node i performs the decision θ̂(`)
i = y

(`)
i .

4. ` = `+ 1.

5. If ` 6 L1, go to 2.

6. After round L1:

• each node i such that θ̂(L1)
i = 0 sets zi = ni = 0.

• each node i such that θ̂(L1)
i = 1 is determined as defective. It stops broadcasting its data.

It does not participate in the single-decision DFD during the following rounds.

7. Single-decision DFD is performed during L2 rounds with threshold γ.
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3.3 Analysis of the proposed DFD algorithms

In Section 3.3.1 we characterize analytically the probabilities of detection PD and of false alarm PFA

of the proposed DFD algorithms, when the decision is taken after collecting a single data by each
node in the neighborhood. These represent PD and PFA of the single-decision DFD algorithm for
L = 1, or the probability of detection and false alarm on the temporary decision of the first stage
of the iterative algorithm. Conditions for the existence of an equilibrium of the iterative algorithm
are also evaluated in Section 3.3.4. An analysis of the traffic generated by both algorithms is then
performed in Sections 3.3.3 and 3.3.6.

3.3.1 PD and PFA for a single round of the single-decision DFD algorithm

To lighten the notations, the round index is omitted in this section, e.g., Y (`)
i , V(`,I)

i and V(`,II)
i are

replaced by Yi, V(I)
i and V(II)

i respectively. Moreover, ε (4tI) and ε (4tII) are simplified to εI and εII
respectively. Assume that Node i successfully accesses the channel during Phase I with probability
α1. One has α1 > 1− εI since εI also accounts for channel impairments, such as packet collisions.

In order to perform the analysis of PD and PFA for a decision involving a single round of data
collection from the neighborhood of Node i, one has to characterize the probability P {Yi = 1} of
the LODT (3.5). This probability depends on the numbers N (I)

g =
∣∣∣V(I)
i ∩ G

∣∣∣ and N (I)
d =

∣∣∣V(I)
i ∩ D

∣∣∣
of nodes equipped with good and defective sensors in V(I)

i . Define the function h(ng, nd) as the
probability a LODT yields Yi = 1, conditioned on N (I)

g = ng and N (I)
d = nd, i.e.,

h (ng, nd) = P
{
Yi = 1 | N (I)

g = ng, N
(I)
d = nd

}
=

qFA (ng) , if nd = 0,

qD (ng, nd) , if nd 6= 0.
(3.24)

Now, P {Yi = 1 | θi = 0} can be expressed as a function of µ(I)
g = α2ζµ̄g and µ

(I)
d = α2ζµ̄d,

respectively, where α2 = (1 − εI) indicates the probability Node i successfully received a packet
from one of its neighbors and ζ accounts for the probability a node has to select in its LODT the
data produced by a neighboring node. The rounding effects have been neglected. One has thus

f1

(
µ(I)

g , µ
(I)
d

)
= P {Yi = 1 | θi = 0}

(a)
=

∞∑
ng=1

∞∑
nd=0

P{Yi = 1 | N (I)
g = ng, N

(I)
d = nd, θi = 0}

· ·P{N (I)
g = ng, N

(I)
d = nd | θi = 0}

(b)
=

∞∑
ng=1

∞∑
nd=0

h (ng, nd) · P (µ(I)
g , µ

(I)
d , ng − 1, nd), (3.25)

where P is the function defined in (3.2). Moreover, (a) is due to the fact that if i ∈ V(I)
i and θi = 0,

then N (I)
g > 1, and (b) comes from Property 3.1, which states that qFA and qD depend only on the
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number of good and defective sensors. Similarly, one may introduce

f2

(
µ(I)

g , µ
(I)
d

)
= P {Yi = 1 | θi = 1}

=

∞∑
ng=0

∞∑
nd=1

h (ng, nd) · P (µ(I)
g , µ

(I)
d , ng, nd − 1). (3.26)

In order to characterize PFA, introduce N
(II)
g = |Bi ∩ G|, N (II)

d = |Bi ∩ D| and the conditional
false alarm event

Eng,nd
i,FA =

{∑
j∈Bi Yj

ng + nd
> γ

∣∣∣∣N (II)
g = ng, N

(II)
d = nd, θi = 0

}
(3.27)

representing, according to (3.23), the situation where Node i with non-defective sensor diagnoses it
as defective, knowing that N (II)

g = ng > 1 and N (II)
d = nd > 0. Introducing

τFA (ng, nd) = P
{
Eng,nd
i,FA

}
, (3.28)

then PFA can be expressed as

PFA =
∞∑

ng=1

∞∑
nd=0

τFA(ng, nd)P
{
N (II)

g = ng, N
(II)
d = nd

∣∣∣∣θi = 0

}
. (3.29)

Two situations need to be considered. If Node i fails to access the channel, then Bi = {i}, which
means that N (II)

g = 1 and N (II)
d = 0. Otherwise N (II)

g − 1 and N (II)
d follow Poisson distributions. To

evaluate their averages µ(II)
g and µ(II)

d , one has to consider the probability α3 = (1− εI)(1− εII)/α1

that Node i received a packet in Phase II from one of its neighbors, assuming that Node i actually ac-
cessed the channel in Phase I. Moreover, knowing that such packet comes from a neighbor of Node i,
it contains a decision involving the data of Node i with a probability equal to ζ. Consequently,
µ

(II)
g = α3ζµ̄g and µ(II)

d = α3ζµ̄d. Then

PFA = α1P̃FA

(
µ(II)

g , µ
(II)
d

)
+ (1− α1) f1

(
µ(I)

g , µ
(I)
d

)
(3.30)

where

P̃FA

(
µ(II)

g , µ
(II)
d

)
=

∞∑
ng=1

∞∑
nd=0

τFA (ng, nd)P (µ(II)
g , µ

(II)
d , ng − 1, nd). (3.31)

Similarly, consider Node i with defective sensor. The conditional defective sensor detection event
is

Eng,nd
i,D =

{∑
j∈Bi Yj

ng + nd
> γ

∣∣∣∣N (II)
g = ng, N

(II)
d = nd, θi = 1

}
, (3.32)
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where ng > 0 and nd > 1. Introducing

τD (ng, nd) = P
{
Eng,nd
i,D

}
, (3.33)

then PD can be expressed as

PD = α1P̃D

(
µ(II)

g , µ
(II)
d

)
+ (1− α1) f2

(
µ(I)

g , µ
(I)
d

)
, (3.34)

where

P̃D

(
µ(II)

g , µ
(II)
d

)
=

∞∑
ng=0

∞∑
nd=1

τD (ng, nd)P
(
µ(II)

g , µ
(II)
d , ng, nd − 1

)
. (3.35)

Lemma 3.2. PFA and PD are decreasing functions of γ.

Proof. The monotonicity of PFA and PD with respect to γ comes from the fact that if γ1 > γ2,∑
j∈Bi Yj > γ1 (ng + nd) implies

∑
j∈Bi Yj > γ2 (ng + nd).

In what follows, we assume that γ is fixed, and express PFA and PD as functions of µ(II)
g

and µ
(II)
d . To find a closed-form expression for PFA and PD, one has to evaluate the pmf of(∑

j∈Bi Yj | N
(II)
g , N

(II)
d , θi

)
. Consider now the event

Yng,nd
j,D =

{
Yj = 1

∣∣∣∣j ∈ Bi, N (II)
g = ng, N

(II)
d = nd, θi = 1

}
,

with j ∈ Bi. For any k ∈ Bi with j 6= k, Yng,nd
j,D and Yng,nd

k,D are dependent. Their dependency comes
from the fact that in general Nj ∩ Nk 6= ∅. The pmf of

∑
j∈Bi Yj is thus quite difficult to evaluate,

since the dependency between the Yjs is not explicit. For this reason, only upper bounds of PFA

and PD are derived in what follows.

Lemma 3.3. Consider an arbitrary γ with 0 < γ 6 1, then for all µg > 0 and µd > 0, one has

PFA

(
µ(II)

g , µ
(II)
d

)
6 f1 (4µ̄g, 4µ̄d) , (3.36)

PD

(
µ(II)

g , µ
(II)
d

)
6 f2 (4µ̄g, 4µ̄d) . (3.37)

The proof of Lemma 3.3 is given in Appendix B.5. The upper bounds in Lemma 3.3 are tight
only if γ → 0 but loose if γ = 1. Since γ = 1 in the first stage of the iterative algorithm, tighter
upper bounds for PFA

(
µ

(II)
g , µ

(II)
d

)
and PD

(
µ

(II)
g , µ

(II)
d

)
are needed in this situation.

Lemma 3.4. If γ = 1, one has

PFA

(
µ(II)

g , µ
(II)
d

)
6 f1

(
µ(II)

g , µ
(II)
d

)
, (3.38)

PD

(
µ(II)

g , µ
(II)
d

)
6 f2

(
µ(II)

g , µ
(II)
d

)
. (3.39)
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Proof. By definition of Eng,nd
i,FA in (3.27), if γ = 1, one has

τFA (ng, nd) = P

⋂
j∈Bi

{Yj = 1}
∣∣∣∣θi = 0, Ng = ng, Nd = nd


6 P

{
Yi = 1

∣∣∣∣θi = 0, Ng = ng, Nd = nd

}
= h (ng, nd) . (3.40)

Then (3.38) can be obtained from (3.25), (3.31), and (3.40). Equation (3.39) can be obtained
similarly.

3.3.2 Effects of the MAC layer on PD and PFA

This section focuses on the affects of the channel issues and packet losses on PD and PFA. Assume
a perfect LODT, i.e.,

h (n0, n1) =

1, if n1 > 0 and n0 + n1 > 1,

0, otherwise,
(3.41)

which means that an outliers is detected if and only if there exists at least two data and at least
one outlier in the data provided by V(0)

i . With this setting, (3.25) and (3.26) have the closed formsf1

(
ng, nd, λ

(0)
)

= 1−
(
1− λ(0)

)nd ,

f2

(
ng, nd, λ

(0)
)

= 1−
(
1− λ(0)

)ns−1
,

(3.42)

where ns = ng + nd.
If θi = 1 and |Bi| > 1, one is sure that Yj = 1 for any j ∈ Bi \ {i}. Hence, the only situation to

have θ̂i = 0 is |Bi| = 1 and
∣∣∣V(0)
i

∣∣∣ = 1, knowing that Node i successfully accesses the channel during
Phase 0. One needs to evaluate

Pr
{
|Bi| = 1 and

∣∣∣V(0)
i

∣∣∣ = 1
}

=

ns−1∑
n=0

(
ns − 1

n

)
λ̄n(1− λ̄)ns−1−n (1− α2)n (1− α3)n

=
(
1− (α2 + α3 − α2α3)λ̄

)ns−1
. (3.43)

Define α4 = α2 + α3 − α2α3, then PND = 1− PD is

PND = α1

(
1− α4λ̄

)ns−1
+ (1− α1)

(
1− α2λ̄

)ns−1
. (3.44)

In the case where θi = 0, the probability of false alarm is more complex. Nevertheless, one has

PFA ≤ f1

(
ng, nd, λ

(0)
)

= 1−
(
1− α2λ̄

)nd , (3.45)
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as En0,n1
i ⊆ {Yi = 1}. One may easily prove that PD and the upper bound of PFA are increasing

functions of α1, α2, and α3.

3.3.3 Traffic generated by the single-decision DFD algorithm

This analysis assumes that a single-hop data collection and LODT result dissemination is employed.
During Phase I of each round `, the data m(`)

i collected by each node has to be transmitted,
with its identifier, usually already present in the packet header. This type of information typically
fits a single IEEE 802.15.4 payload [Ver+10].

During Phase II,
(
y

(`)
i ,V(`,I)

i

)
has to be broadcast. One single bit is needed for y(`)

i . The

transmission of V(`,I)
i is necessary if the network topology is dynamic or in presence of packet

losses. This information requires (µ̄+ 1) dlog2 |S|e bits in average, assuming that each node can be
identified with an index of dlog2 |S|e bits only. In a static network, nodes usually know the index
of their neighbors. Thus, only the indexes of neighbors which do not participate to the LODT of
Node i need to be transmitted. These nodes belong to Ui \ V(`,I)

i . In this case, the required average
number of bits boils down to (1− α2ζ) µ̄ dlog2 |S|e.

Without the knowledge of V(`,I)
i , the algorithm can still be performed with somewhat degraded

performance, as will be shown in Section 3.5.3.

3.3.4 Equilibrium of the iterative algorithm

Let the pair (θi, θ̂i) denote the state of the sensor of Node i, where θi is its actual status and θ̂i is
its estimated status. Among the four possible states, (0, 0) and (1, 1) are states resulting from a
correct decision, (0, 1) corresponds to a false alarm, and (1, 0) corresponds to a non-detection. Let
µ̄

(`)

θi,θ̂i
denote the density of sensors in the state (θ

(`)
i , θ̂

(`)
i ) at the beginning of round `. The aim of

this section is to characterize the evolution of µ̄(`)

θi,θ̂i
to determine whether the iterative algorithm

converges to a steady state.
Before the first round of the iterative algorithm, one has µ̄(0)

00 = µ̄g, µ̄
(0)
10 = µ̄d, and µ̄

(0)
01 = µ̄

(0)
11 =

0. Note that at any round `, µ̄(`)
00 + µ̄

(`)
01 = µ̄g and µ̄(`)

10 + µ̄
(`)
11 = µ̄d. Since the actual status of a sensor

is assumed constant during the rounds of the DFD algorithm, the only possible transitions are
between states (0, 0) and (0, 1) and between states (1, 0) and (1, 1). The evolution of the densities
during round ` is given by

µ̄
(`+1)
00

µ̄
(`+1)
01

µ̄
(`+1)
10

µ̄
(`+1)
11

 =


P

(`)
0,00 P

(`)
0,10 0 0

P
(`)
0,01 P

(`)
0,11 0 0

0 0 P
(`)
1,00 P

(`)
1,10

0 0 P
(`)
1,01 P

(`)
1,11



µ̄

(`)
00

µ̄
(`)
01

µ̄
(`)
10

µ̄
(`)
11

 (3.46)

where P (`)
a,bc = P

{
θ̂

(`)
i = c | θ̂(`−1)

i = b, θi = a
}

is the transition probability from (a, b) to (a, c), for
any a, b, c ∈ {0, 1}. The sensors considered as defective in the previous iteration are silent, so all the
transition probabilities are functions of µ̄(`)

00 and µ̄(`)
10 . For different values of θ̂

(`−1)
i , θ̂(`)

i is obtained
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according to Line 2 of Algorithm 2. More precisely, if θ̂(`−1)
i = 0, one applies (3.23). According to

(3.30) and (3.34), one has

P
(`)
0,01 = α1P̃FA

(
µ

(`,II)
00 , µ

(`,II)
10

)
+ (1− α1) f1

(
µ

(`,I)
00 , µ

(`,I)
10

)
,

P
(`)
0,00 = 1− P (`)

0,01,

P
(`)
1,01 = α1P̃D

(
µ

(`,II)
00 , µ

(`,II)
10

)
+ (1− α1) f2

(
µ

(`,I)
00 , µ

(`,I)
10

)
,

P
(`)
1,00 = 1− P (`)

1,01,

(3.47)

where µ(`,I)
θi,θ̂i

= α2ζµ̄
(`)

θi,θ̂i
and µ(`,II)

θi,θ̂i
= α3ζµ̄

(`)

θi,θ̂i
. If θ̂(`−1)

i = 1, one has θ̂(`)
i = y

(`)
i and

P
(`)
0,11 = f1

(
µ

(`,I)
00 , µ

(`,I)
10

)
, P

(`)
0,10 = 1− P (`)

0,11,

P
(`)
1,11 = f2

(
µ

(`,I)
00 , µ

(`,I)
10

)
, P

(`)
1,10 = 1− P (`)

1,11.
(3.48)

For any variables x ≥ 0 and y ≥ 0, consider functions

F1 (x, y) = α1x
(
f1 (α2ζx, α2ζy)− P̃FA (α3ζx, α3ζy)

)
+ µ̄g (1− f1(α2ζx, α2ζy)) ,

and
F2 (x, y) = α1x

(
f2 (α2ζx, α2ζy)− P̃D (α3ζx, α3ζy)

)
+ µ̄d (1− f2(α2ζx, α2ζy)) .

From (3.46-3.48), one thus obtains the reduced non-linear state equation µ̄
(`+1)
00 = F1

(
µ̄

(`)
00 , µ̄

(`)
10

)
,

µ̄
(`+1)
10 = F2

(
µ̄

(`)
00 , µ̄

(`)
10

)
,

(3.49)

which describes the evolution of µ̄(`)
00 and µ̄(`)

10 in the iterative DFD algorithm,
Let µ∗00 and µ∗10 be values at equilibrium of µ̄(`)

00 and µ̄(`)
10 , respectively. From (3.49), one deduces

that µ∗00 and µ∗10 should satisfy

α1µ
∗
00P̃FA(α3ζµ

∗
00, α3ζµ

∗
10)

µ̄g − µ∗00

=1− µ̄g−α1µ
∗
00

µ̄g − µ∗00

f1(α2ζµ
∗
00, α2ζµ

∗
10) , (3.50)

and

α1µ
∗
10P̃D (α3ζµ

∗
00, α3ζµ

∗
10)

µ̄d − µ∗10

=1− µ̄d−α1µ
∗
10

µ̄d − µ∗10

f2(α2ζµ
∗
00, α2ζµ

∗
10) . (3.51)

The existence property of the equilibrium point depend on the monotonicity of f1, f2, P̃FA, and P̃D.

Lemma 3.5. f1 (µ00, µ10) and f2 (µ00, µ10) are non-decreasing functions of µ00 and µ10.

Proof. One has

∂f1

∂µ00
=

∞∑
ng=1

∞∑
nd=0

µnd
10µ

ng−1
00

nd! (ng − 1)!
exp (−µ10 − µ00) (h (ng + 1, nd)− h (ng, nd)) , (3.52)
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as shown in Appendix B.4. From Lemma 3.1, one has h (ng, nd + 1) > h (ng, nd) and then ∂f1

∂µ00
> 0.

Similarly, one has ∂f1

∂µ10
> 0, ∂f2

∂µ00
> 0, and ∂f2

∂µ10
> 0.

The following lemma provides sufficient conditions to have monotone left hand-side expressions
in (3.50) and (3.51).

Lemma 3.6. Assume that the LODT (3.5) satisfies Properties 3.1 and 3.2. Assume also that for
some reference Node i and some node with random index K ∈ Ni with θi = θK = 0 and Yi = 1, the
LODT is such that

P {YK =1 | Yi=1, θi = θK = 0,K ∈ Bi}>1− 4

α3ζµ̄g
, (3.53)

qD (0, 2) > 1− 4

α3ζµ̄d
, (3.54)

then, for any µ10,

gFA (µ00, µ10) =
µ00P̃FA (µ00, µ10)

α3ζµ̄g − µ00
(3.55)

is an increasing function of µ00 over [0, µ̄g] and for any µ00,

gD (µ00, µ10) =
µ10P̃D (µ00, µ10)

α3ζµ̄d − µ10
(3.56)

is an increasing function of µ10 over [0, µ̄d].

The proof of Lemma 3.6 is in Appendix B.6.
Lemma 3.6 allows us to propose a sufficient condition on the LODT, so that existence and

uniqueness of the equilibrium point can be guaranteed.

Proposition 3.1. Assume that the considered LODT satisfies Properties 3.1 and 3.2, as well as
(3.53) and (3.54), then (3.50-3.51) admits a solution, and an equilibrium of (3.49) exists.

Proof. We study first the behavior of the right-hand side of (3.50) for a fixed value of µ10. As shown
in Section 3.3.1, both µ̄g−α1µ00

µ̄g−µ00
and f1 are positive and non-decreasing function of µ00, then

s1 (µ00, µ10) = 1− µ̄g − α1µ00

µ̄g − µ00
f1 (α2ζµ00, α2ζµ10) (3.57)

is a non-increasing function of µ00. If (3.53) is satisfied, the left-hand side of (3.50), α1gFA (α3ζµ00, α3ζµ10),
is a strictly increasing function of µ00 over [0, µ̄g]. Moreover

α1gFA (0, α3ζµ10) = 0 < 1− f1 (0, µ10) ,

and
lim

µ00→µ̄g
α1gFA (α3ζµ00, α3ζµ10)� lim

µ00→µ̄g
s1 (µ00, µ10)

since limµ00→µ̄g gFA (µ00, µ10)→∞ and s1 (µ00, µ10) 6 1. Therefore, there exists a unique intersec-
tion of the graphs of functions α1gFA (α3ζµ00, α3ζµ10) and s1 (µ00, µ10) as µ00 goes from 0 to µ̄g,
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for any fixed µ10 ∈ [0, µ̄d]. The value µ+
00 of µ00 at which they intersect is thus a function of µ10.

One may write
µ+

00 = β1 (µ10) ,

where β1 : [0, µ̄d]→ [0, µ̄g]. The continuity of β1 is deduced from that of s1 and gFA.
Similarly, one may show that if (3.54) is satisfied, for any fixed µ00, there exists a unique

intersection of the graphs of α1gD (α3ζµ00, α3ζµ10) and

s2 (µ00, µ10) = 1− µ̄d − α1µ10

µ̄d − µ10
f2 (α2ζµ00, α2ζµ10) (3.58)

as µ10 varies from 0 to µ̄d. The value µ+
10 of µ10 at which both graphs intersect is thus a function

of µ00. One may write
µ+

10 = β2 (µ00) ,

where β2 : [0, µ̄g] → [0, µ̄d]. The continuity of β2 is deduced from that of f2 and gD. Then, the
equation

µ∗00 = β1 (β2 (µ∗00))

admits at least a solution from Brouwer’s fixed-point theorem, since β1 ◦ β2 : [0, µ̄g] → [0, µ̄g] is
continuous. In this way, Proposition 3.1 is proved.

The unicity of the equilibrium requires additional monotonicity conditions on α and β, which
are not easy to establish for a generic LODT.

If α3ζµ̄g < 4 and α3ζµ̄d < 4, one has 1 − 4/(α3ζµ̄g) < 0 and 1 − 4/(α3ζµ̄d) < 0. Then an
equilibrium exists for any type of LODT. In practice, µ̄d is usually small and (3.54) is easily satisfied.
When α3ζµ̄g > 4, (3.53) imposes some constraint on the LODT: considering two non-defective nodes
i and k, the conditional probability P {Yk = 1 | Yj = 1} should be larger than 1−4/(α3ζµ̄g). The fact
that Yi and Yk are dependent when k ∈ Bi helps to have P {Yk = 1 | Yj = 1} relatively large. The
expression of a lower bound for P {Yk = 1 | Yj = 1} depends on the type of LODT (Section 3.4.2).
In all cases, for large values of µ̄g, one has to choose small ζ to ensure equilibrium.

The fact that µ̄g should not be too large may appear counter-intuitive. To explain this, assume
that R0 is large enough to allow all nodes to communicate directly with all other nodes and that
Bi = Ui. At each node, in presence of a node with defective sensor, all LODTs are likely to yield
Yi = 1 for all nodes. All nodes will then stop communicating their data, perform a LODT at the
next round with their own data only, be unable to detect an outlier, and finally turn on again. As
a consequence, most of the nodes will turn on and off alternately, preventing the DFD algorithm to
reach an equilibrium.

A simple way to address this issue is by reducing µ̄g and µ̄d. This may be done with a smaller
R0, obtained by lowering the power with which nodes are transmitting data. Alternatively, one may
use a small ζ, reducing the number of data involved in each LODT.
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3.3.5 Local asymptotic stability of the iterative algorithm

Consider a small perturbation µ̄(`)
00 = µ∗00 + δ

(`)
0 and µ̄(`)

10 = µ∗10 + δ
(`)
1 around equilibrium (µ∗00, µ

∗
10).

One may linearize (3.49) around equilibrium to get(
δ

(`+1)
0

δ
(`+1)
1

)
= A

(
δ

(`)
0

δ
(`)
1

)
, (3.59)

where

A =

[
∂F1
∂µ̄00

(µ∗00, µ
∗
10) ∂F1

∂µ̄10
(µ∗00, µ

∗
10)

∂F2
∂µ̄00

(µ∗00, µ
∗
10) ∂F2

∂µ̄10
(µ∗00, µ

∗
10)

]
.

The linearized system (3.59) is asymptotically stable if the eigenvalues of A are in the unit
circle. Providing stability conditions independently of the LODT is difficult. Nevertheless, for a
given LODT, the local stability of (3.49) may be verified numerically. This requires an evaluation
of the derivatives of f1, f2, PFA and PD with respect to µ̄00 and µ̄10 at equilibrium (Section 3.5.1).

3.3.6 Traffic generated by the iterative DFD algorithm

Compared to the single-decision DFD algorithm, the traffic generated by the iterative DFD algo-
rithm is less heavy. Consider Round ` of the iterative algorithm, only the nodes with θ̂

(`−1)
i = 0

will try to broadcast packets. As discussed in Section 3.3.4, the proportion of the active nodes

is κ(`) =
µ̄

(`−1)
00 +µ̄

(`−1)
10

µ̄ . Therefore, the average number of bits per sensor to perform an L-round
iterative algorithm is

•
∑L

`=1 κ
(`) (µ̄+ 1) dlog2 |S|e, if the network topology is time-varying.

•
∑L

`=1 κ
(`) (1− α2ζ) µ̄ dlog2 |S|e, if the network is static.

3.4 Application Examples

This section presents different outlier models and an example of LODT to be used in the simulations
presented in Section 3.5.

3.4.1 Outlier model

Assume that each sensor i gets a noisy observation of the same scalar physical quantity φ

xi = φ+ wi, ∀i ∈ S. (3.60)

The components wi of the measurement noise in (3.60) are assumed to be realizations of independent
random variablesWi. Here three different outlier models are considered, with different distributions
of the measurement noise. When successive measurements are taken by the same sensor, we assume
that the noise realizations are also independent.
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• UHV: Uniform distribution with High Variance. The measurement noise of a good sensor
i ∈ G is assumed to be uniformly distributed in the interval [−∆,∆]. For a defective sensor
i ∈ D, Wi is also uniformly distributed, but in a larger interval [−ξ∆, ξ∆] with ξ > 1.

• GHV: Gaussian distribution with High Variance. The measurement noise follows a zero-mean
Gaussian distribution, i.e.,

Wi ∼

N
(
0, σ2

)
, if i ∈ G,

N
(

0, (ξσ)2
)
, if i ∈ D,

(3.61)

where σ is the standard deviation and ξ > 1.

• BGLV: Bias Gaussian distribution with Low Variance. In this situation, we assume that
Wi ∼ N

(
Ei, σ

2
)
where the bias Ei is also a random variable. If i ∈ G, then Ei is uniformly

distributed in [−∆,∆]. If i ∈ D, then Ei is uniformly distributed in [−ξ∆,−∆]∪ [∆, ξ∆] with
ξ > 1. Moreover, the value of Ei of each sensor is constant, i.e., Ei does not vary over time.

3.4.2 Local outlier detection test

Consider some threshold ν ∈ R and the interval [mi] = [mi − ν,mi + ν] of width 2ν centered around
each measurement mi. Consider a set of nodes A ⊂ S and the intersection of all [mi]s with i ∈ A[

φ̂ (mA)
]

=
⋂
i∈A

[mi] . (3.62)

With and without presence of outliers, one is able to evaluate P
{[
φ̂
]

= ∅
}

as a function of σ, ξ,
and ∆ for the three models introduced in Section 3.4.1. Equation (3.62) can be used to define a
low-complexity LODT

T (mA) =

1, if
[
φ̂ (mA)

]
= ∅,

0, else.
(3.63)

The following example illustrates the behavior of the LODT in (3.63) with a small number of
measurements.

Example 3.4. Consider three sensors measuring some constant temperature, e.g., with actual value
t = 20◦C. Suppose that non-defective sensors have a bounded measurement error, e.g., ±1◦C.
Assume that the local measurement of the first sensor is t1 = 19.5◦C, and that two other sensors
provide t2 = 20.8◦C and t3 = 18.2◦C, respectively. Assuming that there is no defective sensor, and
taking into account the bounded measurement noise, one deduces that t ∈ t1 = [t1 − 1, t1 + 1] =

[18.5, 20.5], t ∈ t2 = [19.8, 21.8], and t ∈ t3 = [17.2, 19.2]. However since t1 ∩ t2 ∩ t3 = ∅, either the
bounds on the measurement noise are too optimistic, or there is at least one outlier. Considering the
second hypothesis, it remains difficult to determine which sensor produces an outlier, as t1 ∩ t2 6= ∅
and t1 ∩ t3 6= ∅.

The test (3.63) allows to detect the presence of an outlier based on mA only, without having
to consider the identity of nodes producing each measurement. This test does not give any insight
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on the nodes with defective sensors. Thus qFA and qD defined in (3.7) and (3.6) only depend on ng

and nd, where ng = |A ∩ G| and nd = |A ∩ D|. Property 3.1 is thus satisfied.
T (mA) = 0 implies

[
φ̂ (mA)

]
6= ∅. As consequence,

[
φ̂
(
mA\{j}

)]
6= ∅ for any j ∈ A, since

[
φ̂ (mA)

]
=
⋂
i∈A

[mi] ⊆
⋂

i∈A\{j}

[mi] =
[
φ̂
(
mA\{j}

)]
.

Therefore, (3.10) holds and Property 3.2 is satisfied as well.
Hereafter we investigate the conditions introduced by Proposition 3.1.

Lemma 3.7. Consider the LODT defined in (3.63). Consider a reference Node i and a node with
random index K ∈ Ni such that θi = θK = 0, and Yi = 1, then

P {YK = 1 | Yi = 1, θi = θK = 0,K ∈ Bi} > 1−
√

3

π
− 5

6π2
. (3.64)

See Appendix B.8 for the proof. From (3.64), one obtains that the condition (3.53) is 1−
√

3
π −

5
6π2 > 1− 4

α3ζµ̄g
and thus α3ζµ̄g <

24π2

5+6
√

3π
≈ 6.3.

3.5 Simulation Results

We consider a WSN of 1000 nodes randomly deployed according to a 2D PPP over a square of size
10× 10 units, with µ̄ = 6. To avoid boundary effects, only nodes in the central square area of size
(10− 2R0)× (10− 2R0) units are considered in the evaluations of PD and PFA. The parameters of
the outlier models and of the LODT are in Table 3.2.

Table 3.2: Parameters of the outlier models presented in Section 3.4.1 and of the
LODT presented in Section 3.4.2.

outlier model outlier detection test
UHV ξ = 10 ν = 2∆

GHV ξ = 10 ν = 6σ

BGLV ξ = 10, ∆ = 10σ ν = 2∆

The values of ν reported in Table 3.2 have been chosen in each case via Monte-Carlo simulation
of the measurement models for ng = 10 and nd = 1. Since qD (ng, nd) and qFA (ng) are increasing
functions of ng, the derived values of qD and qFA are valid upper bounds for all ng ∈ [1, 10].
Meanwhile, one uses nd = 1 so that the obtained qD is the lower bound for all values of nd > 1.
Figure 3.3 represents the evolutions of qD (10, 1) and qFA (10) as a function of ω = ν/∆ for the UHV
and BGLV outlier models, and ω = ν/ (3σ) for the GHV outlier model. With the UHV outlier
model, the noise corrupting data produced by a good sensor is bounded in [−∆,∆], thus qFA = 0 if
ν > 2∆. With a GHV outlier model, qFA (10) 6 10−3 as soon as ν > 6σ. With the BGLV model,
ν = 2∆ ensures both qD (10, 1) > 0.95 and qFA (10) ≤ 10−1.

In what follows, all results have been averaged over 2000 independent realizations of the WSN.



58 Chapter 3. Distributed Faulty Node Detection for WSNs

0 1 2 3
0.4

0.5

0.6

0.7

0.8

0.9

1

ω

q
D

(1
0

,1
)

 

 

0 1 2 3

0.2

0.4

0.6

0.8

1

ω

q
F

A
(1

0
)

 

 

UHV

GHV

BGLV

UHV

GHV

BGLV

Figure 3.3: qD (10, 1) (left) and qFA (10) (right) as functions of ω = ν/∆ for the
UHV and BGLV outlier models, and ω = ν/ (3σ) for the GHV outlier model.

3.5.1 Performance of proposed DFD algorithm, ideal communication model

One considers here that εI = εII = 0, i.e., channel access issues and packets losses are neglected.
First, the performance of a single round of the DFD algorithm described in Section 3.2.1 is

evaluated. Figure 3.4 shows PD as a function of PFA parametrized in the threshold γ ∈ (0, 1], for
different values of the ratio µ̄d/µ̄ ∈ {0.02, 0.1} and for the different outlier models presented in
Section 3.4.1. These curves are obtained with ζ = 1. When γ increases, PD and PFA decrease
in all cases, as shown by Lemma 3.2. For a given outlier model, the performance (in terms of
detection accuracy) becomes worse as µ̄d/µ̄ goes larger. Among the different outlier models, the
GHV provides the worst performance. This comes from the fact that nodes with defective sensors
may produce measurements that appear valid with a relatively high probability. Figure 3.4 also
represents with straight lines the upper bounds for PD and PFA provided by Lemma 3.3 for all
possible values of γ ∈ (0, 1]. For small values of γ, these bounds are relatively tight.

Figure 3.5 represents PD and PFA as a function of µ̄, with γ ∈ {0.8, 1} and ζ = 1, and for
different values of µ̄d/µ̄. Increasing µ̄ increases PD, but also increases PFA. For large values of µ̄,
PFA is unacceptable. Figure 3.6 represents a similar curve, but now, ζ is adapted for each value of
µ̄ to have LODT involving less than 6 data in average. The main benefit is a decrease of PFA when
µ̄ increases. The price to be paid is a saturation of PD when µ̄ > 6.

The role played by the number of rounds on the achievable performance of the proposed DFD
algorithms (single-decision and iterative) is then illustrated in Figures 3.7-3.9 corresponding to the
outlier models UHV, GHV, and BGLV, respectively. PD and PFA are shown as functions of the
round index 1 6 ` 6 10. One sets ζ = 1 and γ = 0.6 in the iterative algorithm in all the cases,
while the value of γ in the single-decision algorithm is adjusted so that both algorithms result to a
similar PD when L = 10. With this setting, one may evaluate the performance by comparing PFA

only. As can be observed, the single-decision DFD performs well when µ̄d/µ̄ is small. However,
when µ̄d/µ̄ = 0.1, PFA is larger than 10% to keep a large PD.

For the single decision algorithm, an oscillating behavior of PD, depending on the iteration after
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different values of µ̄d/µ̄ with γ ∈ {0.6, 0.8, 1} and ζ adapted to have LODT involving

less than 6 neighboring data.
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Figure 3.7: PD (left) and PFA (right) as a function of the round index, with µ̄ = 6,
ζ = 1, and µ̄d/µ̄ ∈ {0.02, 0.1}. The outlier model is UHV; For the single-decision
algorithm, γ = 0.65, for the iterative algorithms, γ = 0.6, and L1 = 7 and L2 = 3.



3.5. Simulation Results 61

0 5 10
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Round

P
D

0 5 10
10

-3

10
-2

10
-1

10
0

Round

P
F
A

Iterative DFD, m
d
/ =0.02m

Iterative DFD, m
d
/ =0.1m

Single-decision DFD, m
d
/ =0.02m

Single-decision DFD, m
d
/ =0.1m

Figure 3.8: PD (left) and PFA (right) as a function of the number of rounds, with
µ̄ = 6, ζ = 1, and µ̄d/µ̄ ∈ {0.02, 0.1}. The outlier model is GHV. For the single-
decision algorithm, γ = 0.5 as µ̄d/µ̄ = 0.02 and γ = 0.59 as µ̄d/µ̄ = 0.1. For the

iterative algorithms, γ = 0.6, L1 = 7, and L2 = 3.

which the decision is taken can be observed. This is due to the decision rule (3.22), where zi/ni,
for small values of L, may vary significantly, since ni and zi are small. This effect vanishes as L
increases, since ni and zi increase as well.

For the iterative algorithm, one considers L1 = 7, and L2 = 3. As can be observed, the seven
iterative rounds of the first stage significantly reduces PFA. The oscillations of PD and PFA are due
to the fact that, during the iterative phase of the algorithm, a decreasing proportion of nodes in
false alarm alternatively turns off and on in subsequent rounds until the algorithm switches to the
single-decision phase. During the following three rounds, PD improves rapidly, while PFA remains
small. This is due to the fact that most of the defective sensors have been detected and turned off
during the previous iterative phase. Hence at the beginning of the single-decision rounds the residual
µ̄d/µ̄ is much lower than the initial µ̄d/µ̄. Thus the iterative DFD algorithm performs better than
the single-decision variant. For the same value of PD, PFA is almost one order of magnitude smaller
with the iterative variant.

To better understand the oscillating behavior observed in Figures 3.7-3.9, one has to study
the stability of the iterative DFD algorithm. Consider for example µ̄ = 6 and the UHV outlier
model with ξ = 10 and ν = 2∆. Evaluating f1, f2, PFA and PD as a function of µ̄00 and µ̄10, the
equilibrium can be characterized numerically. Consider ζ = 1 andE1 (µ00, µ10) = α1gFA (α3µ00, α3µ10)− s1 (α3µ00, α3µ10) ,

E2 (µ00, µ10) = α1gD (α3µ00, α3µ10)− s2 (α3µ00, α3µ10) ,
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Figure 3.9: PD (left) and PFA (right) as a function of the number of rounds, with
µ̄ = 6, ζ = 1, and µ̄d/µ̄ ∈ {0.02, 0.1}. The outlier model is BGLV. For the single-
decision algorithm, γ = 0.68 as µ̄d/µ̄ = 0.02 and γ = 0.85 as µ̄d/µ̄ = 0.1 For the

iterative algorithms, γ = 0.6, L1 = 7, and L2 = 3.

Table 3.3: Entries of the matrix A in (3.59) and of its eigenvalues λ1 and λ2 for the
UHV outlier model when µ̄ = 6, ξ = 10, and ν = 2∆

µ̄d/µ̄ 0.02 0.1(
µ∗00
µ̄g
,
µ∗10
µ̄d

)
t

( 0.998, 0.145 ) ( 0.988, 0.145 )(
µ∗00
µ̄g
,
µ∗10
µ̄d

)
s

( 0.995, 0.142 ) ( 0.988, 0.142 )

A

(
0.011, −2.02
−0.001, −0.006

) (
0.075 − 2.01
−0.005 − 0.052

)
(λ1, λ2) ( 0.05, 0.046 ) ( 0.13, 0.10 )

deduced from (3.50-3.51), the equilibrium conditions may be rewritten asE1 (µ∗00, µ
∗
10) = 0,

E2 (µ∗00, µ
∗
10) = 0.

Figure 3.10 shows that E1 (µ∗00, µ
∗
10) = E2 (µ∗00, µ

∗
10) = 0 for the pairs (µ∗00, µ

∗
10) reported in Table 3.3,

with µ̄d/µ̄ ∈ {0.02, 0.1, 0.2}. The simulation results (µ∗00/µ̄g, µ
∗
10/µ̄d)s obtained from Figure 3.7 are

also presented in Table 3.3 showing a very good match with the theoretical results (µ∗00/µ̄g, µ
∗
10/µ̄d)t

obtained by solving (3.50-3.51).
The derivatives of f1, f2, PFA and PD with respect to µ00 and µ10 allow to get the matrix A

of the linearized model (3.59) and to evaluate its eigenvalues λ1 and λ2. Table 3.3 shows that for
three different values of the ratio µ̄d/µ̄, the eigenvalues are within the unit circle. The linearized
system is thus asymptotically stable. Moreover, the norms of the eigenvalues increase with µ̄d/µ̄.
The iterative DFD algorithm converges thus faster to equilibrium when µ̄d/µ̄ is small.



3.5. Simulation Results 63

0.7 0.75 0.8 0.85 0.9 0.95 1
-1

0

1

2

3

m
00

/m
g

E
1
, m

d
/ =0.2m

E
1
,m

d
/ =0.1m

E
1
,m

d
/ =0.02m

0 0.05 0.1 0.15 0.2 0.25
-1

0

1

2

3

m
10

/m
d

E
2
, m

d
/ =0.2m

E
2
,m

d
/ =0.1m

E
2
,m

d
/ =0.02m

Figure 3.10: Evolution of E1 (µ00, µ
∗
10) and E2 (µ00, µ

∗
10) as functions of µ00/µ̄g

(top), and of E1 (µ∗
00, µ10) and E2 (µ∗

00, µ10) as functions of µ10/µ̄d (bottom), with
µ̄d/µ̄ ∈ {0.02, 0.1, 0.2} and ζ = 1

3.5.2 Performance of proposed DFD algorithm, realistic communication model

In this section, channel access issues as well as packet losses are considered. For that purpose, we
assume α1 = 0.95, εI = εII = 0.10. This leads to α2 ≈ 0.9, and α3 ≈ 0.85. A node manages to
access the channel in 95% of the cases during a given phase of the considered algorithms. It has
90% chance to receive in Phase I a packet from one of its neighbors, and 85% chance to receive in
Phase II a packet containing a decision involving the data it manages to broadcast in Phase I.

Figure 3.11 is the counterpart of Figure 3.7 for the UHV outlier model. PD (left) and PFA (right)
are depicted as a function of the round index, with µ̄ = 6, ζ = 1, and µ̄d/µ̄ ∈ {0.02, 0.1}. For the
single-decision algorithm, γ = 0.65, whereas for the iterative algorithms, γ = 0.6, and L1 = 7 and
L2 = 3.

As far as the iterative algorithm is concerned, the values of PD and PFA are very close to
those obtained with ideal communication conditions. During iterations, the oscillations are better
damped. For example, when µ̄d/µ̄ = 0.1, it results λ1 = 0.034 and λ2 = −0.117.

For the single decision algorithm, performance are more degraded, e.g., PD is reduced from 0.97
to 0.91 when the more realistic communication model is considered.

3.5.3 Comparison with other DFD solutions

This section compares the proposed approach with two alternative DFD algorithms presented in
[CKS06] and in [LC08]. These reference DFD schemes have a LODT relatively close to that con-
sidered here. Nevertheless, a fair comparison between the two algorithms is quite difficult because
the tests have some differences in their form and parameters.

First, ideal communication conditions are considered. In [CKS06], in the first stage, each node
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Figure 3.11: PD (left) and PFA (right) as a function of the round index, with µ̄ = 6,
ζ = 1, and µ̄d/µ̄ ∈ {0.02, 0.1}. The outlier model is UHV; For the single-decision
algorithm, γ = 0.65, for the iterative algorithms, γ = 0.6, and L1 = 7 and L2 = 3.

exchanges its measurement with its neighbors and then performs a LODT. Compared to the pro-
posed approach, Node i performs pairwise comparisons of its local measurement with all measure-
ments received from its neighbors, to produce a binary value ci,j indicating whether there exists an
outlier among mi and mj . Then, Node i decides whether its sensor is defective based on ci,j , j ∈ Ni.
In a second stage, Node i broadcasts the estimate of its status, as well as its table of neighbors
(including the index of Node j and ci,j), which needs (µ̄+ 1) (1 + log2 |S|) bits in average. This is
of the same order of magnitude as the results indicated in Sections 3.3.3 and 3.3.6.

Figure 3.12 compares the proposed DFD and the DFD algorithm in [CKS06] in terms of PD and
PFA, after 10 rounds of the algorithms, with µ̄ = 6. In fact, the only parameter one can control in
the DFD algorithm of [CKS06] is the threshold of a local test (similar to ν in our case), whereas
the performance of the proposed DFD depends on ν, γ, ζ, L1, and L2. For example, we fix ν (as
the value in Table 3.2), L1 = 7, L2 = 3 and choose different values of γ and ζ = 1. As can be seen
in Figures 3.12, the (PD, PFA) curve of the proposed DFD algorithm is in most of the cases above
that of the DFD algorithm of [CKS06].

Now packet losses and the channel access issues are taken into account. The DFD algorithm
of [LC08] is considered, since it is a modified version of that of [CKS06] accounting for channel
impairments. The UHV and BGLV models are considered for different values of the probability
Psuccess of successful channel access and transmission. Results shown in Figure 3.13 compare also
the performance of the proposed algorithm with and without transmission of nodes indices in V(`,I)

i .
The performance of the algorithm in [LC08] is also indicated. With or without the knowledge of
V(`,I)
i , the performance of the proposed algorithm are very close, especially when Psuccess > 0.8. The

amount of data that needs to be transmitted between nodes can thus be reduced to one bit per
node for the LODT result dissemination phase.

For the UHV model, the DFD algorithm in [LC08] provides lower PFA for a similar PD than



3.5. Simulation Results 65

10
−2

10
−1

10
0

0.8

0.85

0.9

0.95

1

P
FA

P
D

reference DFD, µ
d
/µ=0.1

reference DFD, µ
d
/µ=0.2

proposed DFD, µ
d
/µ=0.1

proposed DFD, µ
d
/µ=0.2

γ=0.05

γ=1 γ=1

10
−2

10
−1

10
0

0.7

0.75

0.8

0.85

0.9

0.95

1

P
FA

P
D

reference DFD, µ
d
/µ=0.1

reference DFD, µ
d
/µ=0.2

proposed DFD, µ
d
/µ=0.1

proposed DFD, µ
d
/µ=0.2

10
−2

10
−1

10
0

0.8

0.85

0.9

0.95

1

P
D

P
FA

reference DFD, µ
d
/µ=0.1

reference DFD, µ
d
/µ=0.2

proposed DFD, µ
d
/µ=0.1

proposed DFD, µ
d
/µ=0.2
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Figure 3.13: Comparison of the iterative algorithms with or without the trans-
mission of V(`,I)

j , as well as the DFD algorithm of [LC08], with µ̄ = 6, ζ = 1, and
µ̄d/µ̄ ∈ {0.02, 0.1}. The outlier model is UHV (left) and BGLV (right). For the

iterative algorithms, γ = 0.6, L1 = 7, and L2 = 3.

the proposed algorithm only when Psuccess is close to 1. When Psuccess decreases the price to be
paid in [LC08] for a low PFA translates in a significantly degraded PD. For the BGLV model, the
DFD algorithm in [LC08] provides higher PFA for a similar PD for Psuccess ∈ [0.6, 1] compared to
the proposed approach. When Psuccess < 0.6, the value of PD significantly decreases, even if PFA

decreases too. In this case, the proposed approach performs better for all values of Psuccess.

3.6 Experimental Results

To further investigate the impact of the protocol stack and of real propagation conditions, the pro-
posed algorithm has also been implemented on the Data Sensing and Processing Testbed (DataSens),
which is a part of the experimental facilities available within EuWIn@CNIT/Bologna. The testbed
we adopted consisted of 20 or 41 wireless sensor nodes of type EMB-2530PA [Ins]. The TIMAC
software stack [Tim], compliant with the IEEE 802.15.4 standard, has been used for the realization
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of the algorithm. The obtained results are then compared with the simulation results to evaluate
effectiveness of the algorithm. The proposed algorithm achieves good performance (both NDR and
FAR are under 5%) within a short time (1s), even under an unstable communication environment.

Figure 3.14: EMB-2530PA with debugger.

3.6.1 Modified DFD for implementation

Figure 3.15 presents a modified version of Algorithm 2. Recall that L1 and L2 represent the
number of iterative rounds and of non-iterative rounds, respectively. Each round ` involves two
transmission phases of identical duration ∆t indexed by k ∈ {0, 1}. Notice that p(`,k)

i represents the
MAC payload that needs to be transmitted during Phase k of Round `. According to Algorithm 2,
one has p(`,0)

i = m
(`)
i and p(`,1)

i = (y
(`)
i ,V(`,0)

i ).
To improve the probability of successful transmission, during each phase, Node i waits a random

time Tw to broadcast its packet, with Pr {Tw = t} = 1/4t for any t ∈ {1, 2, . . . ,4t}. Here 4t is
an integer and the unit of time is ms. As 4t decreases, the nodes will have more difficulties to
access the channel. This time constraint due to the MAC layer impacts the performance of the
DFD algorithm as will be seen in what follows.
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Figure 3.15: DFD algorithm performed by Node i
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3.6.2 Impact of channel access issues

In a first set of experiments focusing on channel access issues, all the nodes are closely located and
can receive packets from all other nodes. However, each node is assigned a random virtual location
V . Node i and Node j are virtual neighbors if |V i − V j | ≤ r̄, where r̄ is the virtual transmission
range. V is indicated in the MAC payload. Each node needs to determine whether Node i is its
virtual neighbor. If |V i − V j | > r̄, the packets received from Node i are ignored by Node j. This
setting of virtual neighbors, compliant with the assumption in Section , facilities the investigation of
the impact of MAC layer. A special node, named coordinator, is used to manage the test procedure.
At the beginning of each test, the coordinator broadcasts a start message. All the devices start then
the DFD algorithm at the same time. After a desired number of independent tests, the coordinator
collects the results from the other nodes.

Since all nodes have good sensors in the experiments, some nodes are manually assigned as
defective, i.e., their measurements are corrupted by a large constant offset. ns = 20 wireless sensor
nodes have been considered, among which nd = 3 nodes are defective. An interesting problem
is to compare the performance of algorithm with different number of initial and final rounds as a
function of ∆t. Independent experiments have been repeated 1000 times for each case. Figure 3.16
presents the experimental results performed on DATASENS platform, as well as the simulation
results using Matlab. In the simulations, we set the probability of successfully accessing the channel
as α1 = max {1− 0.14(n− 1), 0}, where n denotes the number of nodes that has chosen the same
time window tW to access the channel. With this setting, the simulation results and the experimental
results are very close in terms of NDR.

For all cases, the NDR decreases as ∆t increases, whereas the FAR decreases less significantly.
As expected, a large ∆t reduces the average number of nodes that have chosen the same tW, and then
increases α1. Therefore the performance of the algorithm becomes better with larger ∆t. Moreover,
both NDR and FAR become smaller as the number of initial rounds L1 increases, considering the
same ∆t.
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Figure 3.16: Average NDR and FAR as functions of ∆t for DFD algorithms with
different L1 and L2.
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Figure 3.17: Node distribution in WiLab

3.6.3 Impact of a real environment

In a second set of experiments, the DFD tests are performed in a more realistic situation where
the network is not fully connected. The essential step is to properly choose the transmission power
(TxP) of the nodes to have some acceptable coverage distance. The power amplifier (PA) of every
device is turned off. The PA of the coordinator keeps functioning and its TxP is set to its maximum
to better monitor the test procedure. Figure 3.17 shows the network topology where ns = 41 nodes
are randomly deployed over the right side of Wireless Communication Lab (Wilab) of the University
of Bologna. The WSN covers an area of 15× 4m2. The position of nodes remains unchanged, each
node has a given probability to be defective in each test. In our tests, the defective probability is
set to be 15%, the DFD is performed with L1 = 5 and L2 = 1.

Figure 3.18 illustrates the average DFD performance in different areas and using different TxP,
based on 1000 independent tests. The results show that the nodes in the center have lower NDR
and FAR than those at sides, considering the same TxP. As is intuitive, the performance of DFD
suffers from boundary affects. Three different TxP are considered with their values P1 > P2 > P3.
Comparing the average NDR and FAR of the nodes in the center, the results highlight that NDR
converges faster as TxP decreases, whereas the variation of FAR is not significant. Note that
the total execution time of the algorithm is te = 2∆t (L1 + L2). The results show that after
te = 2× 26 × 6 = 768ms, both NDR and FAR of the nodes in the center are less then 5%, with P1

and P2.
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Figure 3.18: Average NDR and FAR as functions of log2 ∆t for different transmis-
sion power and different area of the testbed.

3.7 Conclusions

This chapter proposed two variants of a two-stage DFD algorithm, which allows each node of a
WSN to decide whether its sensor is producing outliers. The performance of the single-decision
algorithm has been theoretically characterized. For the iterative variant, sufficient conditions to
be satisfied by the LODT are identified to ensure existence of an equilibrium. These results are
generic, since no specific form of the LODT needs to be considered. These conditions translate into
upper bounds on µ̄g and µ̄d. Conditions for the local asymptotic stability of this equilibrium are
also provided. The influence of channel access issues and packet losses has been analyzed.

The DFD algorithm has been tested considering three outliers models and a simple local outlier
detection algorithm. When the bounds on µ̄g and µ̄d are satisfied, the algorithms behave well.
When they are not satisfied, some oscillating behavior appears, and an equilibrium is more difficult
to reach. Randomly selecting a subset of the received data to perform each LODT addresses this
issue.

The performance of both variants have been characterized by simulations, which enables to get
some insights on the impact of the algorithm parameters (number of rounds, local test threshold,
probability of packet loss) and of the network topology (density of faulty sensors, size of the neigh-
borhood) on the trade-off between PD and PFA. Comparisons with two alternative DFD algorithms
have been performed, showing that for comparable or even lower traffic requirements, the proposed
algorithm performs better in most of the cases.

The DFD algorithm is also implemented on the real WSN to verify our results. The iterative
algorithms with a larger L1 achieve a better performance under the same time constraint.

A way to account for the effect of node mobility during rounds is, e.g., by an adaptation of ζ.
Nevertheless, a precise analysis of the performance of both algorithm in case of significant node
mobility is left for future research.
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Chapter 4

Distributed Faulty Node Detection in
DTNs

Inference and learning over delay tolerant networks (DTNs) is much more complicated than in
traditional networks, due their intermittent connectivity. This chapter proposes a fully distributed,
easily implementable, and fast convergent approach to allow each DTN node to rapidly identify
whether its sensors are producing outliers. Several related work has been discussed in Section 1.2.3.

This chapter is organized as follows. Section 4.1 presents the system model and basic as-
sumptions. Section 4.2 details the DFD algorithm for DTNs. Section 4.3 discusses the transition
probabilities between the state values for some reference nodes. Section 4.4 develops the theoretical
analysis of the macroscopic evolution of the proportion of nodes in different states. Section 4.5
analyzes the property of the equilibrium obtained from the state equations. Section 4.6 presents
the approximation of the proportion of nodes at the equilibrium and discusses the choice of the
parameters in the algorithm. Section 4.7 provides some numerical results and Section 4.8 concludes
this chapter. Notations are presented in Table 4.1.

4.1 System Model

Consider a set S of NS moving nodes equipped with sensors. D ⊂ S represents the subset of nodes
with defective sensors producing outliers. The status of Node i is θi(t) = 0 (good node) if all its
sensors are good and θi(t) = 1 (defective node) if at least one of them is defective. The proportion
of nodes with good and defective status are p0 and p1, with p0 + p1 = 1. Each node is not aware of
its own status. In what follows, we assume that over the time horizon of the experiment, the status
of sensors does not change, i.e., θi(t) = θi.

Our aim is (i) to design a distributed algorithm so that each Node i rapidly evaluates an
accurate estimate θ̂i of its own status θi, as fast as possible, (ii) to provide a theoretical analysis of
the behavior of this algorithm.

4.1.1 Communication model

Nodes can exchange information only during the limited time interval in which they are in vicinity.
As in [Zhu+10; GLG16; HO+15; Pan+15], we assume that the time interval between two successive
meetings follows an exponential distribution with an inter-contact rate λ. Moreover, we assume that
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Table 4.1: Symbols used in this chapter

θi status of the sensors of Node i
θ̂i estimate of status of the sensors of Node i
λ inter-contact rate
ν decision threshold
t time instant
yi outcome of a LODT performed by Node i
qD detection probability of a LODT
qFA false alarm probability of a LODT
cm,i number of LODTs performed by Node i
cd,i number of LODTs by Node i resulting in a detection of outliers
M window size of the LODT results that are considered for the decision
xi state of Node i, containing θi, cm,i, and cd,i
X`,k
θ state component of the DTN: proportion of nodes in state xi = (θ, `, k) among

the nodes with sensors of actual status θ
pθ proportion of nodes with sensors of status θ
pθθ̂ proportion of nodes believing its sensors are in status θ̂, among the nodes with

sensors of actual status θ
X
`,k
θ value of X`,k

θ at equilibrium
pθθ̂ value of pθθ̂ at equilibrium
X̃`,k
θ approximate value of X`,k

θ at equilibrium
p̃θθ̂ approximate value of pθθ̂ at equilibrium

each meeting involves only two nodes. When more than two nodes meet at the same time instant,
processing is performed pair-by-pair. These assumptions facilitate the analysis of the proposed
DTN-DFD algorithm.

4.1.2 Detection scenario

We assume that during each meeting of a pair of nodes (i, j) ∈ S, the nodes collect data with their
sensors. Each node may or may not transmit its data to the other node. If a node has received
data from its neighbor, it may run a LODT (as introduced in Chapter 3) involving its own data
and those received from its neighbor. We assume that the spatial and temporal correlation between
data is such that only data collected during the meeting of two nodes can be exploited by a LODT.
Therefore, previously collected data are not exploited. As a consequence, contrary to the situation
of WSN, where n0 and n1 may be large, in the DTN scenario, a LODT will involve n0, n1 ∈ {0, 1, 2},
with n0 + n1 = 2. In this chapter, one furthermore assumes that qFA (2) < qD (1, 1) 6 qD (0, 2),
which is reasonable, since the outcome of a LODT is more likely to be 1 as the number of outliers
involved increases.

4.2 DTN-DFD algorithm

In the proposed DTN-DFD algorithm, each node manages two counters cm,i(t) and cd,i(t) initialized
at 0 at t = 0. Using cm,i(t), Node i counts the number of meetings during which it has received
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data from its neighbor, and has been able to perform a LODT. Using cd,i(t), it counts the number
of LODT tests resulting in the detection of outliers. When cd,i(t)/cm,i(t) > ν, where ν is some
constant decision threshold, Node i considers itself as carrying defective sensors, i.e., it sets its own
estimate θ̂i (t) = 1. Otherwise, it considers that its sensors are good, i.e., θ̂i (t) = 0.

When a node with θ̂i (t) = 1 encounters another node, it still takes measurements, but it does
not send these data to the other node to avoid infecting the network with outliers. Any node,
upon receiving data from another node, performs a LODT and updates cm,i(t) and cd,i(t). As a
consequence, a node which meets another node considering itself as defective, transmits its data, but
since it does not receive any data, it does not update cm,i(t) and cd,i(t) at the end of the meeting.
Algorithm 3 summarizes the proposed DTN-DFD technique for an arbitrary reference Node i.

The vector xi(t) = (θi, cm,i(t), cd,i(t)) represents the (microscopic) state of each Node i. As
t→∞, one has cm,i(t)→∞, which leads to an infinite number of possible values for xi(t) and the
global (macroscopic) behavior of the algorithm is difficult to analyze. To limit the number of possible
states, one has chosen to consider the evolution of cm,i(t) and cd,i(t) over a sliding time window
containing the time instants of the last M meetings during which Node i has performed a LODT.
Algorithm 4 is a modified version of Algorithm 3 accounting for this limited horizon procedure. It
involves an additional counter µ indicating the number of LODT performed by Node i. Note that
when µ < M, then (4.5) is equivalent to (4.3).

The next sections are devoted to the analysis of Algorithm 4.

4.3 Evolution of the state of a node

The state of Node i is represented by the triple xi(t) = (θ, cm,i (t) , cd,i (t)). Since cm,i (t) ∈
{0, 1 . . .M} and cd,i (t) ∈ {0 . . . cm,i (t)}, the number of values that may be taken by the state
of a node is

∑M
`=0 (`+ 1) = (M + 1) (M + 2) /2. The evolution of the state of Node i, conditioned

by its status θi, follows a Markov model with state transition diagram similar to that shown in
Figure 4.1 for M = 4.

In particular, there are two chains, one conditioned by θi = 0 and the other conditioned by
θi = 1. Both are characterized by a transient phase for state values with cm,i(t) < M , then, a
permanent regime starts when cm,i(t) = M . With cm,i (t) = ` and cd,i (t) = k, the transitions from
State (θ, `, k) to State (θ, `′, k′) are analyzed in what follows.

Assume that the reference Node i meets a random Node J at time t and define the random
event

E1(t) =
{
θ̂J (t) = 0

}
, (4.6)

representing the event that the node met believes its status is good. According to (4.4), among the
nodes with status θ, the proportion of nodes that believe themselves as good is 1

pθ0 (t) = X0,0
θ (t) +

∑
`,k,k/`<ν

X`,k
θ (t) , (4.7)

1For the sake of simplicity, the dependency of pθ0 (t) in ν is omitted, as ν is constant during the DTN-DFD
algorithm.
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Algorithm 3 DTN-DFD algorithm for Node i

1. Initialize at t0i = 0, θ̂i
(
t0i
)

= 0, cm,i(t0i ) = cd,i(t
0
i ) = 0, κ = 1.

2. Do  θ̂i (t) = θ̂i
(
tκ−1
i

)
,

cm,i (t) = cm,i
(
tκ−1
i

)
,

cd,i (t) = cd,i
(
tκ−1
i

)
,

(4.1)

t = t+ δt (4.2)

until the κ-th meeting occurs at time t = tκi with Node jκ ∈ S \ {i}.

3. Perform local measurement of data mi (tκi ).

4. If θ̂i (tκi ) = 0, then transmit mi (tκi ) to Node jκ.

5. If data mjκ have been received from Node jκ, then

(a) Perform a LODT with outcome yi (tκi ).

(b) Update cm,i and cd,i according to{
cm,i(t

κ
i ) = cm,i(t

κ−1
i ) + 1

cd,i(t
κ
i ) = cd,i(t

κ−1
i ) + yi (tκi )

(4.3)

(c) Update θ̂i as follows

θ̂i(t
κ
i ) =

{
1 if cd,i(tκi )/cm,i(t

κ
i ) > ν,

0 else.
(4.4)

6. κ = κ+ 1.

7. Go to 2.
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Algorithm 4 Sliding-Window DTN-DFD algorithm for Node i

1. Initialize t0i = 0, θ̂i
(
t0i
)

= 0, cm,i(t0i ) = cd,i(t
0
i ) = 0, κ = 1, and µ = 0.

2. Do (4.1)-(4.2) until the κ-th meeting occurs at time tκi with Node jκ ∈ S \ {i}.

3. Perform local measurement of data mi (tκi ).

4. If θ̂i (tκi ) = 0, then transmit mi (tκi ) to Node jκ.

5. If data mjκ have been received from Node jκ, then

(a) µ = µ+ 1. Perform a LODT with outcome yµi .

(b) Update cm,i and cd,i as {
cm,i(t

κ
i ) = min {µ,M} ,

cd,i(t
κ
i ) =

∑µ
m=max{1,µ−M+1} y

m
i .

(4.5)

(c) Update θ̂i using (4.4).

6. κ = κ+ 1.

7. Go to 2.

where p10 (t) is in fact the non-detection rate (NDR) of the nodes with defective sensors at time
t. Assuming that the nodes are randomly spread, the probability that Node J believes it has only
good sensors conditioned to its true status is

P
(
θ̂J (t) = 0|θJ (t) = θ

)
= pθ0 (t) , (4.8)

and then
P {E1(t)} = p0p

00 (t) + p1p
10 (t) . (4.9)

Similarly, introducing E1(t) = {θ̂J (t) = 1}, among the nodes with sensors in status θ, the proportion
of nodes with θ̂j (t) = 1 is

pθ1 (t) =
∑

`,k,k/`>ν

X`,k
θ (t) , (4.10)

where p01 (t) and p11 (t) represent the false alarm rate (FAR) and the detection rate (DR) respec-
tively. From (4.10), one gets

P
{
E1(t)

}
= p0p

01 (t) + p1p
11 (t) . (4.11)

Since Node i performs an LODT only when it meets a node J with θ̂J (t) = 0, one introduces the
random event

Eθ2 (t) =
{
Yi (t) = 1 | θi = θ, θ̂J (t) = 0

}
, (4.12)
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Figure 4.1: Example of Markov model for the evolution of the state of a node when
M = 4.

for the reference node with actual status θ. The statistical properties of the outcome Yi (t) of the
LODT depend only on θi and θj . For example, when Node i has good sensors, one has

P
{
E0

2 (t)
}

=

1∑
ϕ=0

P
{
Yi (t) = 1, θJ = ϕ | θi = 0, θ̂J (t) = 0

}
(a)
=

1∑
ϕ=0

P {Yi (t) = 1 | θi = 0, θJ = ϕ}P
{
θJ = ϕ | θ̂J (t) = 0

}
(b)
=
p0qFA (2) p00 (t) + p1qD (1, 1) p10 (t)

p0p00 (t) + p1p10 (t)
. (4.13)

In (4.13-a), one uses the fact that the LODT outcome is not influenced by the estimate of the status
of a node and that in P

{
θJ = ϕ | θi = 0, θ̂J (t) = 0

}
, the status of Node J , does not depend on θi.

In (4.13-b), P {Yi (t) = 1 | θi = 0, θJ = 0} = qFA (2) ,

P {Yi (t) = 1 | θi = 0, θJ = 1} = qD (1, 1) .
(4.14)

Moreover,

P
{
θJ = ϕ | θ̂J (t) = 0

}
=

P
{̂
θJ (t)=0|θJ =ϕ

}
P{θJ = ϕ}∑1

φ=0P
{̂
θJ (t)=0|θJ =φ

}
P{θJ = φ}

=
pϕp

ϕ0 (t)

p0p00 (t) + p1p10 (t)
.

Now, if Node i has defective sensors, (4.12) can be expressed as

P
{
E1

2 (t)
}

=
p0qD (1, 1) p00 (t) + p1qD (0, 2) p10 (t)

p0p00 (t) + p1p10 (t)
. (4.15)
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Similarly, one may introduce the random event

Eθ3 (t) =
{
Yi (t) = 0 | θi = θ, θ̂J (t) = 0

}
, (4.16)

and show that

P
{
Eθ3 (t)

}
=


p0(1−qFA(2))p00(t)+p1(1−qD(1,1))p10(t)

p0p00(t)+p1p10(t)
, if θ = 0,

p0(1−qD(1,1))p00(t)+p1(1−qD(0,2))p10(t)
p0p00(t)+p1p10(t)

, if θ = 1.
(4.17)

Define πδm,δdθ as the transition probability from State (θ, `, k) to State (θ, `+ δm, k + δd), where
θ ∈ {0, 1}. One has δm ∈ {0, 1} since ` may either increase (δm = 1) in the transient regime or
remain constant (δm = 0) in the permanent regime. One has δd ∈ {−1, 0, 1}, depending on the value
of the last LODT outcome and on the value of the M + 1-th last LODT outcome, which is no more
considered in the permanent regime. Thus, (δm, δd) ∈ {(0, 0) , (0, 1) , (0,−1) (1, 0) , (1, 1) , (1,−1)}.
Note that πδm,δdθ depends on the current state of the reference node, but also on the current pro-
portion of active (good and defective) nodes. Therefore, the transition probabilities are denoted as
πδm,δdθ (t, `, k), where t is the time instant, cm,i(t) = `, and cd,i(t) = k. Depending on the value of `,
two different cases are considered in Section 4.3.1 and in Section 4.3.2, respectively corresponding
to the transient and permanent regimes.

4.3.1 Case I, ` < M

In the transient regime, when cm,i(t) = ` < M , cm,i(t) and cd,i(t) are updated according to (4.3)
whenever Node J with θ̂J (t) = 0 is met,. The only possibility that leads to δm = 0 is the event E1,
i.e., Node i meets Node J with θ̂J (t) = 1. As a consequence, no LODT is performed by Node i.
Therefore, for any θ ∈ {0, 1},

π0,0
θ (t, `, k) = P

{
E1 (t)

}
= p0p

01 (t) + p1p
11 (t) , (4.18)

where pθ1 (t) is defined by (4.10).
A state transition occurs with (δm, δd) = (1, 1) when Node i with status θi = θ meets Node J

with θ̂J (t) = 0 and when the LODT yields yi (t) = 1. Since the two events are independent, one
has

π1,1
θ (t, `, k) = P

{
Yi (t) = 1, θ̂J (t) = 0|θi = θ

}
= P {E1 (t)}P

{
Eθ2 (t)

}
. (4.19)

Depending on the value of θi, using (4.9), (4.13), and (4.15), one may rewrite (4.19) as

π1,1
θ (t, `, k)=

p0qFA (2) p00 (t) + p1qD (1, 1) p10 (t) , if θ = 0,

p0qD (1, 1) p00 (t) + p1qD (0, 2) p10 (t) , if θ = 1.
(4.20)
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Finally, π1,0
θ (t, `, k) = P

{
Yi (t) = 0, θ̂J (t) = 0|θi = θ

}
is obtained similarly from (4.17)

π1,0
θ (t, `, k) =

p0 (1− qFA (2)) p00 (t) + p1 (1− qD (1, 1)) p10 (t) , if θ = 0,

p0 (1− qD (1, 1)) p00 (t) + p1 (1− qD (0, 2)) p10 (t) , if θ = 1.
(4.21)

4.3.2 Case II, cm,i(t) =M

In the permanent regime, cm,i(t) = M and does not increase any more, thus δm = 0. In Algorithm 4,
µ is the number of LODTs performed by Node i up to time t. When µ >M , only the lastM LODT
outcomes are considered: LODT outcomes ymi with m 6 µ−M are no more considered.

To determine the value taken by δd ∈ {−1, 0, 1} after the µ-th LODT, consider the random
event

E1
4 (t) =

Y µ−M
i = 1 |

µ−1∑
m=µ−M

Y m
i = k

 , (4.22)

which corresponds to a situation where one knows that k LODTs where positive among the last M
tests and the LODT that will be ignored, once the new LODT outcome is available, also concluded
in the presence of defective sensors. P

{
E1

4 (t)
}
is relatively complex to evaluate, since P {Y n

i = 1}
is time-varying according to (4.13-4.15). In what follows, we assume that LODT outcomes with
Y m
i = 1 are independently distributed over the time horizon corresponding to m = µ−M, . . . , µ−1.

One obtains then
P
{
E1

4 (t)
}

=
k

M
. (4.23)

This approximation is exact in steady-state, when the X`,k
θ s do not vary any more. Similarly, define

E0
4 (t) =

{
Y µ−M
i = 0 |

∑µ−1
m=µ−M Y m

i = k
}
. Making the same assumption used to get (4.23), one

has
P
{
E0

4 (t)
}

= 1− P
{
E1

4 (t)
}
≈ M − k

M
. (4.24)

Assume that the (µ−M)-th LODT performed by Node i occurred at time t̃, then yµ−Mi can also
be denoted as yi

(
t̃
)
and the transition related to cd,i is such that δd = yi (t)− yi

(
t̃
)
∈ {−1, 0, 1} .

To have (δm, δd) = (0, 1), three independent events have to occur: 1) the encountered Node J
believes it is good at time t, i.e., E1 (t); 2) yi (t) = 1, i.e., E2 (t); 3) yi

(
t̃
)

= 0, i.e., E0
4 (t). Thus the

transition probability may be expressed as

π0,1
θ (t,M, k) = P {E1 (t)}P

{
Eθ2 (t)

}
P
{
E0

4 (t)
}
. (4.25)

Using (4.9), (4.13), (4.15), and (4.23) in (4.25), one gets

π0,1
θ (t,M, k)=


(
p0qFA(2) p00 (t) + p1qD(1, 1) p10 (t)

)
M−k
M , if θ = 0,(

p0qD(1, 1) p00 (t) + p1qD(0, 2) p10 (t)
)
M−k
M , if θ = 1.

(4.26)

Consider now (δm, δd) = (0,−1). To have such transition, the three following independent
events should occur: 1) E1 (t); 2) yi (t) = 0, i.e., E3 (t); 3) yi

(
t̃
)

= 1, i.e., E1
4 (t). Thus, the
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Figure 4.2: Transient regime: Possible state transitions from and to state (θ, `, k)
when 0 < ` < M and 0 < k < `

transition probability is

π0,−1
θ (t,M, k) = P {E1 (t)}P

{
Eθ3 (t)

}
P
{
E1

4 (t)
}

=


(
p0(1−qFA (2)) p00 (t) + p1(1−qD (1, 1)) p10 (t)

)
k
M , if θ = 0,(

p0(1−qD (1, 1)) p00 (t) + p1(1−qD (0, 2)) p10 (t)
)
k
M , if θ = 1.

(4.27)

Considering the last transition (δm, δd) = (0, 0). To obtain the expression of π0,0
θ (t,M, k), one

needs to introduce (4.26-4.27) into the following

π0,0
θ (t,M, k) = 1− π0,1

θ (t,M, k)− π0,−1
θ (t,M, k) . (4.28)

4.4 Macroscopic evolution of the DTN state

At time t, among the nodes with status θ ∈ {0, 1} , let X`,k
θ (t) be the proportion of nodes in state

(θ, `, k). All node state transition probabilities evaluated in Section 4.3 are now used to determine
the evolution of the DTN state components, i.e., of the various proportions of nodes X`,k

0 (t) and
X`,k

1 (t) in the corresponding states, with ` = 0, . . . ,M and k 6 `.
Considering an inter-contact rate λ and a well-mixed population of nodes, during a short

time interval [t, t+ δt] the number of nodes with state (θ, `, k) that will meet another node is
λpθNSX

`,k
θ (t)δt.

When 0 < ` < k < M , these nodes will switch to the states (θ, `+ δm, k + δd), with (δm, δd) ∈
{(0, 0) , (1, 0) , (1, 1)} with a probability πδm,δdθ (t, `, k). Moreover, nodes in the states (θ, `− 1, k − 1)

and (θ, `− 1, k) that have met an other node in the time interval [t, t+ δt] may reach state (θ, `, k),
respectively with a probability π1,1

θ (t, `− 1, k − 1) and π1,0
θ (t, `− 1, k), see Figure 4.2.
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Figure 4.3: Permanent regime: Possible state transitions from and to State (θ,M, k)
when 0 < k < M

As a consequence, at time t + δt, the number of nodes in State (θ, `, k) may be expressed as
follows

pθNSX
`,k
θ (t+ δt)= pθNSX

`,k
θ (t)+λδtpθNS

(
−X`,k

θ (t)
(
π1,0
θ (t, `, k)+π1,1

θ (t, `, k)
)

+X`−1,k−1
θ (t)π1,1

θ (t, `−1,k−1)+X`−1,k
θ (t)π1,0

θ (t,`−1,k)
)
. (4.29)

The evolution of X`,k
θ (t) is then described by the following differential equation, where the time

dependency is omitted to lighten notations

dX`,k
θ

dt
= −λX`,k

θ

(
π1,0
θ (`, k) + π1,1

θ (`, k)
)

+ λX`−1,k−1
θ π1,1

θ (`− 1, k − 1) + λX`−1,k
θ π1,0

θ (`− 1, k) . (4.30)

When ` = M and 0 < k < M , nodes in state (θ,M, k) will switch to the states (θ,M, k + δd), δd ∈
{−1, 0, 1} with a probability π0,δd

θ (t,M, k). Nodes in the states (θ,M − 1, k − 1) and (θ,M − 1, k)

that have met an other node in the time interval [t, t+ δt] may reach state (θ,M, k), respectively
with a probability π1,1

θ (t,M − 1, k − 1) and π1,0
θ (t,M − 1, k), see Figure 4.3. As a consequence, the

evolution of XM,k
θ (t) can be described by

dXM,k
θ

dt
= −λXM,k

θ

(
π0,1
θ (M,k) + π0,−1

θ (M,k)
)

+ λXM−1,k−1
θ π1,1

θ (M − 1, k − 1)

+ λXM−1,k
θ π1,0

θ (M − 1, k) + λXM,k−1
θ π0,1

θ (M,k − 1) + λXM,k+1
θ π0,−1

θ (M,k + 1) . (4.31)

Similar derivations can be made for the remaining DTN state components to obtain

dX0,0
θ
dt

(a)
= −λX0,0

θ

(
π1,0
θ (0, 0) + π1,1

θ (0, 0)
)
,

dX`,0
θ
dt

(b)
= λ

(
−X`,0

θ

(
π1,0
θ (`, 0) + π1,1

θ (`, 0)
)

+X`−1,0
θ π1,0

θ (`− 1, 0)
)

dX`,`
θ
dt

(c)
= λ

(
−X`,`

θ

(
π1,0
θ (`, `) + π1,1

θ (`, `)
)

+X`−1,`−1
θ π1,1

θ (`− 1, `− 1)
)
,

dXM,0
θ
dt

(d)
= λ

(
−XM,0

θ π0,1
θ (M, 0) +XM−1,0

θ π1,0
θ (M − 1, 0) +XM,1

θ π0,−1
θ (M, 1)

)
,

dXM,M
θ
dt

(e)
= λ

(
−XM,M

θ π0,−1
θ (M,M)+XM,M−1

θ π0,1
θ (M,M−1) + XM−1,M−1

θ π1,1
θ (M− 1,M− 1)

)
,

(4.32)
for any ` = 1 . . .M − 1, with the initial conditions X0,0

θ (0) = 1 and X`,k
θ (0) = 0, ∀`, k 6= 0.
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The state equation (4.32) is nonlinear, since each πδm,δdθ depends on X`,k
θ , see (4.7) and (4.10).

4.5 Analysis of the DTN state equations

In what follows, the asymptotic behavior of the DTN state equations (4.32) is characterized. Algo-
rithm 4 may drive X`,k

θ to an equilibrium X
`,k
θ at which the proportions of nodes in different states

X`,k
θ (t) do not vary any more. As a consequence, pθ0 (t) defined in (4.7) also tends to an equilibrium

pθ0.

4.5.1 Equilibrium of X`,k
θ

One investigates first the evolution of X`,k
θ (t) when ` < M . As shown in the following proposition,

the DTN state always reaches the permanent regime.

Proposition 4.1. For any ` < M and k 6 `, lim
t→∞

X`,k
θ (t) = 0.

Proof. See Appendix C.1.

From Proposition 4.1, the only possible value at equilibrium of X`,k
θ (t) when ` < M is 0. Thus

pθ0 may be written as
pθ0 =

∑
k:k/M<ν

X
M,k
θ . (4.33)

Denote p =
(
p00, p10

)
∈ P0 with

P0 = {(x, y) ∈ [0, 1]× [0, 1] and (x, y) 6= (0, 0)} (4.34)

and consider the functions

h0 (p) =
p0qFA (2) p00 + p1qD (1, 1) p10

p0p00 + p1p10 , (4.35)

h1 (p) =
p0qD (1, 1) p00 + p1qD (0, 2) p10

p0p00 + p1p10 , (4.36)

Fθ (p) =

dMνe−1∑
k=0

(
M

k

)
(hθ (p))k (1− hθ (p))M−k , (4.37)

and F (p) = (F0 (p) , F1 (p)). The following proposition provides a non-linear equation that has to
be satisfied by p. The various XM,d

θ at equilibrium are easily deduced from the solutions of the
mentioned equation.

Proposition 4.2. Assume that the dynamic system described by (4.30-4.32) admits some equilib-
rium X

`,d
θ , then p ∈ P0 is the solution of

p = F (p) , (4.38)
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and for any θ ∈ {0, 1} and k 6 `,

X
`,k
θ =

0, ∀` < M,(
M
k

)
(hθ (p))k (1− hθ (p))M−k , ` = M.

(4.39)

Proof. See Appendix C.2.

4.5.2 Existence and unicity of the equilibrium point

Now we investigate the existence and the unicity of the solution of (4.38), which is rewritten in
detail as the following equations

p00 =F0

(
p00, p10

)
=

∑
k:k/M<ν

(
M
k

)(p0qFA(2)p00+p1qD(1,1)p10

p0p00+p1p10

)k(
p0(1−qFA(2))p00+p1(1−qD(1,1))p10

p0p00+p1p10

)M−k
,

p10 =F0

(
p00, p10

)
=

∑
k:k/M<ν

(
M
k

)(p0qD(1,1)p00+p1qD(0,2)p10

p0p00+p1p10

)k(
p0(1−qD(1,1))p00+p1(1−qD(0,2))p10

p0p00+p1p10

)M−k
.

(4.40)
For that purpose, using fixed-point theorems, one may alternatively show that for all p (0) =(

p00 (0) , p10 (0)
)
∈ P0, the discrete-time system{

p00 (n+ 1) = F0

(
p00 (n) , p10 (n)

)
,

p10 (n+ 1) = F1

(
p00 (n) , p10 (n)

)
.

(4.41)

converges to a unique equilibrium point
(
p00, p10

)
, which is then solution of (4.40).

One first shows the existence of an equilibrium using Brouwer’s fixed-point theorem [GD13] in
the following proposition.

Proposition 4.3. For any ν ∈ [0, 1], (4.40) always admits a solution, which is an equilibrium point
of the dynamical system (4.30)-(4.32).

Before proving Proposition 4.3, one first shows that p00 (n) and p10 (n) are contained in intervals
with lower and upper bounds increasing (resp. decreasing) with n.

Lemma 4.1. For any n ∈ N∗ and θ ∈ {0, 1}, one has

pθ0min (n) 6 pθ0 (n) 6 pθ0max (n) ,

with pθ0min (0) = 0, pθ0max (0) = 1, andpθ0min (n+ 1) = Fθ
(
p00

min (n) , p10
max (n)

)
, ∀n ∈ N+,

pθ0max (n+ 1) = Fθ
(
p00

max (n) , p10
min (n)

)
, ∀n ∈ N+.

(4.42)

Moreover,
p00

min (n+ 1) > p00
min (n) , p00

max (n+ 1) < p00
max (n) . (4.43)

Proof. See Appendix C.3.
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Using Lemma 4.1, one can now prove Proposition 4.3.

Proof. F0 and F1 are both continuous functions. For some n > 0, consider the set Pn =
[
p00
min (n) , p00

max (n)
]
×[

p10
min (n) , p10

max (n)
]
, where pθ0min (n) and pθ0max (n) are defined in (4.42). For any p =

(
p00, p10

)
∈ Pn,

one can prove using Lemma 4.1 that F (p) ∈ Pn. Thus F maps Pn to Pn. Applying Brouwer’s
fixed-point theorem, F admits a fixed point and Proposition 4.3 is proved.

Sufficient conditions on p0, p1, qD, qFA, M and ν are then provided to ensure the uniqueness of
this equilibrium by applying Banach’s fixed-point theorem [Ban22].

Proposition 4.4. If there exists some N ′, such that ∀θ ∈ {0, 1} and ∀n > N ′, one has

cθ(qFA(2), qD(0, 2),qD (1, 1), p1,M, ν, n)< 1, (4.44)

where c0 and c1 are defined as

c0(qFA(2), qD(0,2),qD(1,1), p1,M, ν, n)

=
M (qD (1,1)− qFA (2)) p0p1p

00
max (n) p10

max (n)(
p0p00

min(n)+p1p10
min(n)

)(
(1− qFA(2))p0p00

min(n)+(1− qD(1,1))p1p10
min(n)

) , (4.45)

c1(qFA(2), qD(0,2),qD(1,1), p1,M, ν, n)

=
M (qD (0,2)− qD (1,1)) p0p1p

00
max (n) p10

max (n)(
p0p00

min(n)+p1p10
min(n)

)(
(1− qD(1,1))p0p00

min(n)+(1− qD(0,2))p1p10
min(n)

) , (4.46)

then the discrete-time system (4.41) converges to a unique equilibrium point and the solution of
(4.40) is unique.

Proof. See Appendix C.4.

Due to the monotonicity of pθ0min (n) and pθ0max (n) shown in Lemma 4.1, cθ decreases with n.
Hence, if a given ν satisfies (4.44) for some N ′, then ν will satisfy (4.44) for all n > N ′ and the
equilibrium is unique. If the values of p1, qD, qFA, and M are fixed, then one may deduce sufficient
conditions on the value of ν to have a unique equilibrium point. See Example 4.1.

Example 4.1. Consider qFA (2) = 0.05, qD (0, 2) = 0.9, qD (1, 1) ∈ {0.5, 0.8}, M ∈ {4, 10}, and
p1 ∈ [0.05, 0.5]. One verifies whether (4.44) is satisfied considering n = 10 for different values of
ν. One obtains that (4.44) holds if 0 < ν 6 νmax, where νmax depends on the values of p1, qD, qFA,
and M . See Figure 4.4 for the numerical values of νmax in each case.

4.5.3 Equilibrium point as M →∞

Both p00 and p10 can be seen as functions of M . As M →∞, Algorithm 4 turns into Algorithm 3.
In this situation, if ν is properly chosen, the probabilities of false alarm and non-detection tend to
zero, as shown in Proposition 4.5.
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Proposition 4.5. If qFA (2) < ν < qD (1, 1), then (4.40) has a unique solution and

lim
M→∞

p00 = 1, lim
M→∞

p10 = 0. (4.47)

Proof. See Appendix C.5.

4.6 Approximations of the Equilibrium

Closed-form expressions for p00 and p10 are difficult to obtain from (4.40). This section introduces
an approximation of (4.40) from which some insights may be obtained on the way ν should be
chosen.

Since p10 represents the proportion of nodes with defective sensors that have not detected their
status, the value of p10 should be small. From (4.35-4.36) one sees that limp10→0 h0 = qFA (2) and
limp10→0 h1 = qD (1, 1), thus one may consider the following approximations

h0 ≈ h̃0 = qFA (2) , h1 ≈ h̃1 = qD (1, 1) . (4.48)

Therefore, (4.40) may be rewritten as{
p̃00 =

∑
k:k/M<ν

(
M
k

)
(qFA (2))k (1− qFA (2))M−k ,

p̃10 =
∑

k:k/M<ν

(
M
k

)
(qD (1, 1))k (1− qD (1, 1))M−k .

(4.49)

from which one deduces approximate values X̃M,k
0 of XM,k

0 at equilibrium{
X̃M,k

0 =
(
M
k

)
(qFA (2))k (1− qFA (2))M−k ,

X̃M,k
1 =

(
M
k

)
(qD (1, 1))k (1− qD (1, 1))M−k .

(4.50)
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Figure 4.5: Approximate p10 as a function of approximate p01, for various ν and
fixed M = 10 .

For any fixed value of M , qFA (2), and qD (1, 1), the values of detection rate (p11) and false
alarm rate (p01) at equilibrium can be predicted using (4.49), since p01 = 1− p00 and p11 = 1− p10.
Consider for example M = 10, qFA (2) = 0.05, and qD (1, 1) = 0.8. Figure 4.5 presents p̃10 as a
function of p̃01 for different values of ν. This figure is helpful to choose the value of ν to meet
different performance requirements. The actual values of p10 and p01 are also shown in Figure 4.5,
which are very close to p̃10 and p̃01, in the region where p10 is close to 1.

4.7 Numerical results

4.7.1 Numerical verification of theoretical results

This section presents first the solution of the state equation (4.32) describing the evolution of the
proportion of nodes in various states. Algorithm 4 is simulated considering a random displacement
of nodes without constraint on their speed. This allows to verify the correctness of the theoretical
results presented in this chapter.

Consider a LODT where qFA (0, 2) = 0.05, qD (1, 1) = 0.8, and qD (0, 2) = 0.9. Besides, p0 = 0.9,
p1 = 0.1, M = 4, ν = 0.4, and λ = 1. Figure 4.6 presents the evolution of the proportion of nodes
with good sensors (top part) and defective sensors (bottom part) in different states, obtained by
solving (4.32). Note that ∆t represents the duration of a unit time slot used in the simulation. One
observes that the proportion of nodes in each state becomes almost constant as t/∆t > 15. For the
nodes with θ = 0, only two states are such that X`,k

0 > 0.05, (0, 4, 0) and (0, 4, 1), while the others
are very close to 0. For the nodes with θ = 1, only X4,4

1 , X4,3
1 , and X4,2

1 are relatively large. Since
there is no common (`, k) such that both X`,k

0 and X`,k
1 have unnegligeable values, the accuracy of

the algorithm can be very good. With ν = 0.4, one has p00 = 0.985 and p10 = 0.027. Only 1.5% of
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Figure 4.6: Evolution of X`,k
0 (t) (top) and X`,k

1 (t) (bottom) obtained from (4.32),
in the case where qFA (0, 2) = 0.05, qD (1, 1) = 0.8, qD (0, 2) = 0.9, M = 4, ν = 0.4,

and λ = 1.

the good nodes believe they are carrying defective sensors. Less than 3% of the nodes with defective
sensors have not been detected.

Consider now a set S ofNS = 1000 moving nodes uniformly distributed over a square of unit area.
In the first displacement model (jump motion model): Node i randomly chooses its location at time
instant (k + 1) ∆t, independently from its previous location at time k∆t. Two nodes communicate
only at discrete time instants k∆t when their distance is less than r0. Node i has its neighbors in the
set Ni = {j ∈ S : 0 < Ri,j ≤ r0}, where Ri,j is the distance between Nodes i and j. Furthermore, if
|Ni| > 1, we assume that Node i communicates only with its closest neighbor. Denote ρ = πr2

0NS

as the average value of |Ni|. The cardinality of Ni approximately follows a Poisson distribution as
NS is large enough, the inter-contact probability is thus

λ∆t = P {|Ni| = 1} = ρ exp (−ρ) .
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Figure 4.7: Evolution of X`,k
0 (t) (top) and X`,k

1 (t) (bottom) by simulations with
the jump model, in the case where qFA (0, 2) = 0.05, qD (1, 1) = 0.8, qD (0, 2) = 0.9,

M = 4, ν = 0.4, and λ∆t = 0.33.

In the Monte-Carlo simulations, we set r0 = 0.014, so that ρ ≈ 0.6 and λ∆t ≈ 0.33. Using the
same values ofM , ν, qD, and qFA as in Figure 4.6, the simulation results for this jump motion model
are shown in Figure 4.7. Comparing Figure 4.6 and Figure 4.7, one remarks that the state evolution
in the transient phase has similar shape but with different convergence speed, which depends mainly
on λ. Figure 4.8 shows a good match between theory and simulation for the proportions of states
at equilibrium. The approximation of X4,k

θ using (4.50) is also presented in Figure 4.8, which is
very close to its actual value.

4.7.2 Simulation with Brownian motion model

Consider now a Brownian motion model where each node is moving with a random speed. Each node
changes its orientation when it reaches the boundary of the unit square. Define Oi =

(
oix, o

i
y

)
as the
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θ at the equilibrium.

location of Node i. Consider a second order mobility model, i.e., d2ox/dt
2 = vx and d2oy/dt

2 = vy,
where vx, vy ∼ N

(
0, (σr0)2

)
.

Consider σ ∈ {0.1, 1}, qFA (2) = 0.05, qD (1, 1) = 0.8, qD (0, 2) = 0.9, M = 10, and ν = 0.4.
Figure 4.9 compares the evolution of p01 and p10 as functions of time for the jump motion model
and the Brownian motion model, with fixed ρ ≈ 0.6. At equilibrium, the performance obtained for
both models is quite close. However, the convergence speed depends on the inter-contact rate λ.
When σ = 0.1, the algorithm converges slowly in the Brownian motion model. When σ = 1, which
results to a larger value of λ, the evolution of p01 and p10 with the Brownian motion model are close
to the jump motion model.

At the beginning of the algorithm, each node believes that its sensors are good, thus p01(0) = 0

and p10(0) = 1. During the algorithm, p10(t) decreases in the transient phase until it reaches the
equilibrium. Whereas, p01(t) increases at first and then decreases to the equilibrium. This comes
from the fact that p10(t) is large at the beginning and the LODT performed on a good node often
detects outliers.

4.7.3 Simulation with real databases

In this section, Algorithm 4 is executed on some experimental databases instead of motion models.
These databases, provided by the MIT Reality Mining Project [EP06] and the Haggle Project
[Sco+09], are well investigated in several previous works, e.g., [HCY11]. In this work, we use the
following databases:

• Reality, where NS = 97, lasts more than 200 days with about 111 inter-contacts per day.

• Infocom05, where NS = 41, lasts 3 days with approximately 312 inter-contacts every hour.

More specifically, one is interested in the inter-contact trace, i.e., which pair of nodes have a meeting
at which time. The traces were taken from [Orl], which are converted from the original databases
[EP06; Sco+09].



4.7. Numerical results 89

0 20 40 60 80 100

10
−3

10
−2

10
−1

10
0

t/∆t

, Brownian, σ=0.1
p01, Brownian, σ=1

, Jumping Model

, Brownian, σ=0.1

, Brownian, σ=1
, Jumping Model

p01

p01

p10

p01

p01

Figure 4.9: Evolution of p01 and p10 for the two moving models, with σ ∈ {0.1, 1},
qFA (2) = 0.05, qD (1, 1) = 0.8, qD (0, 2) = 0.9, M = 10 and ν = 0.4.

Consider again the following parameters: qFA (2) = 0.05, qD (1, 1) = 0.8, qD (0, 2) = 0.9,M = 10,
and ν = 0.4. Monte-Carlo simulations are performed 500 times for each database. In each test, ND

nodes with random index are chosen to be defective. One sets ND = 10 in Infocom05 and ND = 20

in Reality. At the top of Figures 4.10 - 4.11, the index of the active nodes (which have contact with
the others) are presented at each time to show the frequency of the inter-contacts at different epochs.
The evolution of p10 and p01 is plotted at the bottom of Figures 4.10 - 4.11. Interestingly, both p10

and p01, obtained by both databases, decrease to 10−3 after a sufficient long time. One also observes
that the convergence speed of p10 and p01 is highly related to the inter-contact rate (reflected by the
density of points in the sub-figures at the top): variations are significant at beginning of working
hours.

Figure 4.12 represents the states at equilibrium X
M,k
θ obtained by using the databases Reality

and Infocom05, and also by the approximation (4.50). There is an excellent match between the
values at equilibrium predicted by theory and those obtained in practice.

4.7.4 Influence of the parameters

This section characterizes the influence of the parameters, such as p1, qD (1, 1) , and M , on the
performance of Algorithm 4. The jump motion model is used throughout this section to describe
the displacement of the nodes.

Consider fixed qFA (2) = 0.05, qD (1, 1) = 0.8, qD (0, 2) = 0.9, the evolution of p10 and p01 for
various p1 ∈ {0.1, 0.5} and M ∈ {4, 10, 20} is shown in Figure 4.13. For each different case, the
value of ν is chosen such that it minimizes p̃01 + p̃10. One observes that a large M leads to a better
performance at equilibrium. The price to be paid is a longer time required to reach equilibrium.
When M = 10, both p10 and p01 are around 10−3. The proportion of the nodes with defective
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with qFA (2) = 0.05, qD (1, 1) = 0.8, qD (0, 2) = 0.9, M = 10, and ν = 0.4.
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with qFA (2) = 0.05, qD (1, 1) = 0.8, qD (0, 2) = 0.9.

sensors has also an impact on the convergence speed of the algorithm. For example, when p1 is
large, more time is needed to achieve a given level of performance (in terms of p10 and p01).

To show the effectiveness of the proposed DTN-DFD algorithm, consider now qD (0, 2) = 0.9

and M = 10. For p1 = 0.1 and p1 = 0.5, one is interested in the achievable p10 and p01 for
0 6 qFA (2) < qD (0, 2) and qFA (2) < qD (1, 1) 6 qD (0, 2). Four areas are considered:

• Area 3: both p10 and p01 are less than 10−3 ;

• Area 2: both p10 and p01 are less than 10−2 ;

• Area 1: both p10 and p01 are less than 10−1;

• Area 0: either p10 or p01 cannot be less than 10−1.

Figure 4.14 shows partition of the (qD (1, 1) , qFA (2)) triangle in four areas, represented in different
colors. The ratio of defective nodes in the network has not a significant impact on the performance
at the equilibrium, even when 50% of nodes are defective.
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Figure 4.14: Achievable p10 or p01 for different values of the pair (qD (1, 1) , qFA (2))
when p1 = 0.1 (left) and for p1 = 0.5 (right).

4.7.5 Experiment

The following experiment has been conducted at the EuWIn platform at University of Bologna.
NS = 35 wireless sensor nodes with unique identifier i have been used. The transmission range of
each node is tuned approximately at 1 m. Each node maintains a local timer and broadcasts, at a
period ∆t = 1s , a packet containing its identity. Each time a node receives a packet, it records the
identity of the encountered node as well as the current value of the local timer.

During the break of a course (which lasts about 15 minutes), the nodes are distributed 34
students. At the beginning of the experiment, the nodes were close to each other so that a master
node can be used to make all the nodes start their timer at the same time. The students were
asked to move freely in the university and then to return the nodes at the end of the break. The
proposed algorithm has then been executed on the obtained traces with the same parameters as
in Section 4.7.3. In each of the 1000 simulations, ND = 5 nodes with random index are chosen to
be defective. Similar to Figure 4.10 - 4.11, the results of post-processing are shown in Figure 4.15.
Both p10 and p01 are decrease to less than 10−2 . One also observes that variations are significant
at the end, as the students were back to class.

4.8 Conclusion

This chapter presents a fully distributed algorithm allowing each node of a DTN to estimate the
status of its own sensors using LODT performed during the meeting of nodes. The DTN-DFD
algorithm is analyzed considering a Markov model of the evolution of the proportion of nodes with
a given belief in their status. This model is then used to derive the evolution of the proportions
of the nodes in different states. The existence and uniqueness of an equilibrium is discussed.
Interestingly, the proportions at the equilibrium follow a Binomial distribution. Approximations of
these proportions of nodes provide a clear guide to properly choose the decision parameter of the
DTN-DFD algorithm. In the simulations, a jump motion model and a Brownian motion model are
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Figure 4.15: Indexes of active nodes at different time (top) and evolution of p01
and p10 (bottom) obtained by using our trace, with qFA (2) = 0.05, qD (1, 1) = 0.8,

qD (0, 2) = 0.9, M = 10, and ν = 0.4.

considered. The results show a good match with theory. The convergence speed of the DTN-DFD
algorithm depends on the inter-contact rate and on the proportion of nodes with defective sensors
p1. Nevertheless, p1 has not a significant impact on the non-detection and false alarm rates at
equilibrium, showing the robustness of the approach to a large number of defective nodes.

Further research will be dedicated to an adaptation of ν with time to increase the convergence
speed of the proposed DTN-DFD algorithm. This may be particularly important in variants of the
considered problem, such as malware detection.
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Chapter 5

Distributed Self-Rating by Pairwise
Interaction

Consider a community of agents 1 that perform some task (estimation, detection...) with different
levels of ability (LoA). As indicated in Section 1.1.2, knowing the LoA of each agent has a lot of
benefits, e.g., facilitating the measurement processing in the context of wireless sensor networks.
This chapter presents and analyzes a distributed algorithm to make each agent in the community
assess its own LoA. Several related work has been presented in Section 1.2.4.

The chapter is organized as follows. Section 5.1 introduces the system model and the local
comparison test (LCT). Section 5.2 describes and analyzes the proposed DSR algorithm. Section 5.3
discusses the property of the equilibrium obtained from the dynamic state equations describing the
evolution with time of the proportion of agents with a given belief in their expertise. Simulations
results are reported in Section 5.4 before drawing some conclusions in Section 5.5.

5.1 System Model and Local Comparison Test

Consider a set A of NA moving agents. The status θi ∈ Θ = {1, . . . ,K} of Agent i, assumed
constant with time, describes its LoA at performing some task. Based on the different status of
the agents, A can be partitioned into K groups denoted A1, . . . ,AK , with Aθ = {i ∈ A : θi = θ}.
Denote pθ as the proportion of the agents belonging to Aθ.

Without loss of generality, we assume that groups are sorted in decreasing LoA of their agents.
Thus, agents in A1 are the best-performing and those in AK are the worst-performing. Initially,
Agent i is not aware of the actual value of θi but is willing to estimate it as fast as possible. As in
Chapter 4, one considers the following assumptions on the agents

• A1 ) θi(t) = θi, i.e., the group to which Agent i belongs does not change over the time horizon
of the experiment;

• A2 ) only pairwise interactions between agents are considered;

• A3 ) the agents are mobile and form a well-mixed population;

• A4 ) the time interval between two successive meetings follows an exponential distribution
with an inter-contact rate λ [Zhu+10].

1Notice that "agent" is a more general conception than "node".
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In what follows, one will present a DSR algorithm allowing each Agent i to get an estimate θ̂i
of its status θi. For that purpose an LCT is introduced, performed by Agent i after meeting and
interacting with an other Agent j. The output yi,j of the LCT performed by Agent i upon interaction
with Agent j is binary. The LCT yields yi,j = 1 when it is likely that Agent i is not worse at doing
the considered task than Agent j. It yields yi,j = 0 when Agent i is worse than Agent j. The LCT
is unable to determine the absolute LoA of Agent i. LCTs may provide erroneous conclusions and
are characterized by their statistical properties

q (θi, θj) = P {Yi,j = 1|θi, θj} . (5.1)

As will be seen in Section 5.4, one has not necessarily q (θi, θj) = 1−q (θj , θi) . Concerning the LCT,
one considers the following assumptions

• A5 ) θi 6 θj implies q (θi, 1) > q (θj , 1) and q (1, θi) > q (1, θj) ,

• A6 ) for all (θi, θj) ∈ Θ2,one has q (θi, θj) > 0.

A5) appears reasonable, since the first group contains the agents with the highest LoA, and, com-
pared to an agent of intermediate expertise, an agent with a low LoA has less probability to be
deemed better than the best-performing agents. A6) means that even if θi corresponds to the group
with the worst agents, the LCT has a non-zero probability to conclude that Agent i is better than
Agent j. This probability can be made arbitrarily small, but is required to show the existence of
an equilibrium of the dynamics describing the evolution of the proportions of Agents with a given
belief in their status, see Section .

Interactions may take various forms depending on the application scenario, ranging from the
exchange of noisy measurements mi and mj of the same physical quantity when the agents are
nodes of a WSN, to a blitz-game between humans, willing, e.g., to self-rate their LoA. An example
LCT is provided in Section 5.4 in the context of WSNs. A meeting between two nodes does not
necessarily entail interaction: one assumes here that the probability of interaction α

(
θ̂i, θ̂j

)
is a

function of the estimates θ̂i(t) and θ̂j(t) of the groups to which each agent belongs. When the agents
aim is to self-rate their LoA in doing some task, for instance, α

(
θ̂i, θ̂j

)
will approach one when θ̂i

and θ̂j are close and thus the outcome of the LCT is difficult to predict. When θ̂i and θ̂j are very
different, α

(
θ̂i, θ̂j

)
may be small, thus preventing the agents wasting time in a LCT whose outcome

is reputed easily foreseeable.
In practice, one assumes that when two agents i and j meet, they start exchanging their esti-

mated status, Agent i will request for a further interaction with probability α
(
θ̂i, θ̂j

)
and Agent j

with a probability α
(
θ̂j , θ̂i

)
. Interaction occurs when at least one of the agents request it. Only

agents requesting an interaction perform the LCT and exploit its result. The values of α
(
θ̂i, θ̂j

)
are design parameters that can be adjusted to optimize the performance of the DSR algorithm.
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5.2 Distributed Self-Rating Algorithm

In the proposed DSR algorithm, each agent manages two counters ct,i(t) and cb,i(t) initialized at
0 at t = 0. The number of LCT performed by Agent i following an interaction it has requested is
stored in ct,i(t). The number of tests concluding that Agent i is better than the agent met is stored
in cb,i(t). As indicated in Section 5.1, an agent involved in an interaction it has not requested does
not update ct,i(t) and cb,i(t). If the agents are randomly spread and moving (Assumption A3), the
ratio cb,i(t)/ct,i(t) will mainly depend on the proportions of agents in each group, on the interaction
probabilities, and on the statistical properties of the LCT.

Intuitively, an agent with status θ is likely to have a larger ratio cb,i(t)/ct,i(t) than an agent
with status θ′ when θ < θ′. One may thus introduce a partition of the interval [0, 1] into K decision
intervals [νk, νk−1) with ν0 = 1 and νK = 0 and consider the decision rule

θ̂i (t) = k if cb,i(t)/ct,i(t) ∈ [νk, νk−1) , k = 1 . . . ,K. (5.2)

The aim of this work is to determine conditions on p1, . . . , pK and q to show that the decision rule
(5.2) leads to a satisfying self-rating of the agents, for appropriate choice of the value of νk, for all
k = 1, . . . ,K.

5.2.1 Practical Self-Rating Algorithm

Let xi(t) = (θi, ct,i(t), cb,i(t)) represent the state of each Agent i. If all the LCT results obtained
in the past are considered, then ct,i(t) can go unbounded, which results in an infinite number of
possible values for xi(t). The global behavior of the algorithm is in this case difficult to analyze.
To limit the number of possible states, one considers the evolution of ct,i(t) and cb,i(t) over a
sliding variable-length time interval containing the time instants of the last M meetings during
which Agent i has performed a LCT. Algorithm 5 summarizes the proposed DSR algorithm for an
arbitrary reference Agent i.

5.2.2 Macroscopic evolution

At time t, among the agents with status θ, let Xτ,β
θ (t) be the proportion of agents in state xi(t) =

(θ, τ, β), i.e., with ct,i (t) = τ , cb,i (t) = β, and 0 6 β 6 τ 6 M . The evolution of the state
of Agent i with status θi, follows a Markov model with state transition diagram similar to that
considered in DTN-DFD. With the initial conditions X0,0

θ (0) = 1 and Xτ,β
θ (0) = 0, ∀τ, β 6= 0, the

evolution of the various proportions Xτ,β
θ (t) of agents in the corresponding states, with θ = 1, . . . ,K
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Algorithm 5 DSR algorithm for Agent i

1. Initialize t0i = 0, θ̂i (0) = 1, ct,i (0) = cb,i (0) = 0, κ = 1, and µ = 0.

2. Do θ̂i (t) = θ̂i
(
tκ−1
i

)
, ct,i (t) = ct,i

(
tκ−1
i

)
, cb,i (t) = cb,i

(
tκ−1
i

)
, and t = t + δt until the κ-th

meeting occurs at time tκi with Agent j ∈ A.

3. Transmit θ̂i (tκi ) to Agent jκ and receive θ̂j (tκi ) from Agent jκ.

4. With probability α
(
θ̂i (tκi ) , θ̂j (tκi )

)
, perform a LCT with outcome yµi , then

(a) µ = µ+ 1. Update ct,i and cb,i as{
ct,i(t

κ
i ) = min {µ,M}

cb,i(t
κ
i ) =

∑µ
m=max{1,µ−M+1} y

m
i

(5.3)

(b) Update θ̂i according to (5.2)

5. κ = κ+ 1.

6. Go to 2.

and 0 < β 6 τ < M , are described by

dX0,0
θ

dt

(a)
= −λX0,0

θ

(
π1,0
θ (0, 0) + π1,1

θ (0, 0)
)
,

dXτ,0θ

dt

(b)
= λ

(
−Xτ,0

θ

(
π1,0
θ (τ, 0) + π1,1

θ (τ, 0)
)

+Xτ−1,0
θ π1,0

θ (τ − 1, 0)
)
,

dXτ,τθ
dt

(c)
= λ

(
−Xτ,τ

θ

(
π1,0
θ (τ, τ) + π1,1

θ (τ, τ)
)

+Xτ−1,τ−1
θ π1,1

θ (τ − 1, τ − 1)
)
,

dXM,0θ

dt

(d)
= λ

(
−XM,0

θ π0,1
θ (M, 0) +XM−1,0

θ π1,0
θ (M − 1, 0) +XM,1

θ π0,−1
θ (M, 1)

)
,

dXM,Mθ

dt

(e)
= λ

(
−XM,M

θ π0,−1
θ (M,M)+XM,M−1

θ π0,1
θ (M,M−1) + XM−1,M−1

θ π1,1
θ (M − 1,M − 1)

)
,

dXτ,βθ
dt

(f)
= λ

(
−Xτ,β

θ

(
π1,0
θ (τ, β) + π1,1

θ (τ, β)
)

+Xτ−1,β
θ π1,0

θ (τ − 1, β) + Xτ−1,β−1
θ π1,1

θ (τ − 1, β − 1)
)

dXM,βθ

dt

(g)
= λ

(
−XM,β

θ

(
π0,1
θ (M,β) + π0,−1

θ (M,β)
)

+XM−1,β−1
θ π1,1

θ (M − 1, β − 1)

+XM−1,β
θ π1,0

θ (M − 1, β) + XM,β−1
θ π0,1

θ (M,β − 1) +XM,β+1
θ π0,−1

θ (M,β + 1)
)
,

(5.4)

in which πδt,δbθ denotes the transition probability from State (θ, τ, β) to State (θ, τ + δt, β + δb).
Although the state equations are the same as those in DTN-DFD, πδt,δbθ differs due to the increased
number of groups and to the interaction probability α.

Note that πδt,δbθ depends on the current state (θ, τ, β) of the reference Agent i, but also on the
current proportion of agents with estimated status θ̂i (t). One has first to evaluate the probability
that some Agent i with state (θ, τ, β), i.e., estimated status θ̂ (τ, β) performs a LCT during a
meeting with a random Agent J . This probability may be evaluated as

γ (τ, β) = E
(
α
(
θ̂ (τ, β) , θ̂J (t)

))
(5.5)
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where the expectation has to be taken over θ̂J (t). Then

γ (τ, β) =
∑

k1,k2∈Θ

α
(
θ̂ (τ, β) , k2

)
P
{
θ̂J (t) = k2, θJ = k1

}
=

∑
k1,k2∈Θ

α
(
θ̂ (τ, β) , k2

)
P
{
θ̂J (t) = k2|θJ = k1

}
P {θJ = k1}

=
∑

k1,k2∈Θ

α
(
θ̂ (τ, β) , k2

)
pk1p

k1k2 (t) , (5.6)

where pk1k2 (t) = P
{
θ̂J (t) = k2|θJ = k1

}
is the proportion of agents with status k1 believing their

status is k2. Using (5.2), one deduces that

pk1k2 (t) = P
{
θ̂J (t) = k2|θJ = k1

}
=

X
0,0
k1

(t) +
∑

τ,β,β/τ∈[νk2
,νk2−1)X

τ,β
k1

(t) , if k2 = 1,∑
τ,β,β/τ∈[νk2

,νk2−1)X
τ,β
k1

(t) , else.
(5.7)

For each agent, two phases have to be considered in Algorithm 5, depending on the value of ct,i(t).
In the transient regime, for states with ct,i(t) = τ < M , one has (δt, δb) ∈ {(0, 0) , (1, 0) , (1, 1)},
since τ may either increase or remain constant and δb 6 δt. The only possibility leading to δt = 0

is that Agent i, once it has met a random Agent J , decides to interact. Then

π0,0
θ (t, τ, β) = 1− γ (τ, β) . (5.8)

A state transition occurs with (δt, δb) = (1, 1) when, once Agent i has met Agent J , they
continue interacting and the LCT yields yi,J (t) = 1. Since α only depends on the estimates of the
status, these two events can be assumed as independent and one has to consider all possible values
taken by θ̂J (t) to get

π1,1
θ (t, τ, β)

=
∑
k2∈Θ

α
(
θ̂ (τ, β) , θ̂J (t) = k2

)
P
{
Yi = 1, θ̂J (t) = k2|θi = θ

}
=

∑
k1,k2∈Θ

α
(
θ̂ (τ, β) , k2

)
P
{
Yi = 1, θJ = k1, θ̂J (t) = k2|θi = θ

}
=

∑
k1,k2∈Θ

α
(
θ̂ (τ, β) , k2

)
P {Yi = 1|θi = θ, θJ = k1}P

{
θ̂J (t) = k2|θJ = k1

}
P {θJ = k1}

=
∑

k1,k2∈Θ

α
(
θ̂ (τ, β) , k2

)
pk1p

k1k2 (t) q (θ, k1) . (5.9)

Then, π1,0
θ (t, τ, β) is obtained similarly

π1,0
θ (t, τ, β) =

∑
k1,k2∈Θ

α
(
θ̂ (τ, β) , k2

)
pk1p

k1k2 (t) (1− q (θ, k1)) . (5.10)
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In the permanent regime, one can obtain the following transition probabilities using the similar
derivations as considered in Section 4.3.2,

π0,1
θ (t,M, β) =

∑
k1,k2∈Θ

α
(
θ̂ (M,β) , k2

)
pk1p

k1k2 (t) q (θ, k1)
M − β
M

, (5.11)

π0,−1
θ (t,M, β) =

∑
k1,k2∈Θ

α
(
θ̂ (M,β) , k2

)
pk1p

k1k2 (t) (1− q (θ, k1))
β

M
. (5.12)

and π0,0
θ (t,M, β) = 1− π0,1

θ (t,M, β)− π0,−1
θ (t,M, β).

5.3 Analysis of Equilibrium

In this section, the asymptotic behavior of the state equations (5.4) is characterized. Let Xτ,β
θ be

the value at equilibrium of Xτ,β
θ . The proportion of agents with status θ estimating their status as

θ̂ depends on the partition of the interval [0, 1] introduced in (5.2)

pθθ̂ =
M∑
τ=1

∑
β:β/τ∈[νθ̂,νθ̂−1)

X
τ,β
θ . (5.13)

This analysis for general αs is challenging, one thus considers the following two special cases.

• Case I, where a meeting always leads to an interaction, i.e.,

α(k1, k2) = 1, ∀k1, k2. (5.14)

• Case II, where an interaction is only performed when an Agent i meets an Agent j believing
its status is 1, i.e.,

α (k1, k2) =

1 if k2 = 1

0 else.
(5.15)

5.3.1 Case I

To lighten the notations, introduce

sθ =
∑
k∈Θ

pkq (θ, k) , (5.16)

then πδt,δbθ introduced in Section 5.2.2 may be rewritten asπ
1,1
θ (t, τ, β) = sθ, π0,1

θ (t,M, β) = M−β
M sθ,

π1,0
θ (t, τ, β) = 1− sθ, π0,−1

θ (t,M, β) = β
M (1− sθ) .

(5.17)
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Clearly, the transition probabilities is now time-invariant.

Proposition 5.1. In Case I, the dynamic system (5.4) admits an equilibrium X
τ,β
θ , for all θ ∈ Θ

and d 6 τ , with

X
τ,β
θ =

0, ∀τ < M,(
M
β

)
(sθ)

β (1− sθ)M−β , τ = M.
(5.18)

Proof. Consider a reference Agent i with ct,i = τ < M . In Case I, from (5.17), one has π1,0
θ (t, τ, β)+

π1,1
θ (t, τ, β) = 1. As a consequence, when Agent i meets an other agent, ct,i increases. Hence, ct,i

will reach M after M meetings and as t → ∞, no node will be in a state (θ, τ, β) with τ < M .
Hence, necessarily Xτ,β

θ = 0, for all τ < M and β 6 τ . The derivation is similar to Appendix C.2
to prove the distribution of XM,β

θ .

With the closed-form expression of Xτ,β
θ presented in Proposition 5.1, one gets the correct

decision rate (CDR) of agents with status θ ∈ Θ,

pθθ =
∑

β:β/M∈[νθ,νθ−1)

(
M

β

)
(sθ)

β (1− sθ)M−β . (5.19)

The next proposition introduces a sufficient condition on the decision thresholds to get pθθ → 1 as
M →∞.

Proposition 5.2. If s1 > s2 > . . . > sK and for all θ ∈ Θ \ {K},

νθ < sθ < νθ−1,

then for all θ ∈ Θ,
lim
M→∞

pθθ = 1, θ ∈ Θ. (5.20)

Proof. See Appendix D.1.

5.3.2 Case II

The results obtained in this case are in fact the extension of those shown in Section 4.5. Let
p1 =

(
p11, . . . , pK1

)
and consider the functions

hθ
(
p1
)

=

∑
k∈Θ pkp

k1q (θ, k)∑
k∈Θ pkp

k1
, (5.21)

Fθ
(
p1
)

=
M∑

d=dν1Me

(
M

β

)(
hθ
(
p1
))β (

1− hθ
(
p1
))M−β

, (5.22)

and F
(
p1
)

=
(
F1

(
p1
)
. . . FK

(
p1
))
. As an extension of Proposition 4.2, the following proposi-

tion provides a non-linear equation that has to be satisfied by p1, to deduce the various Xτ,β
θ at

equilibrium.
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Proposition 5.3. If the dynamic system (5.4) admits some equilibrium X
τ,β
θ , then for any θ ∈ Θ

and β 6 τ ,

X
τ,β
θ =

0, ∀τ < M,(
M
β

) (
hθ
(
p1
))β (

1− hθ
(
p1
))M−β

, τ = M,
(5.23)

where p1 is the solution of
p1 = F

(
p1
)
. (5.24)

Again, using Brouwer’s fixed-point theorem, the existence of a solution of (5.24) can be obtained,
in Proposition 5.4.

Proposition 5.4. For any 0 = νK < · · · < ν1 < ν0 = 1, (5.24) always admits a solution, and the
dynamical system (5.4) has an equilibrium.

Proof. See Appendix D.2.

Similar to Proposition 5.2, a sufficient condition to have limM→∞ p
θθ = 1 is stated in the

following proposition.

Proposition 5.5. If q (1, 1) > q (2, 1) . . . > q (K, 1) and

max
θ∈Θ\{1},k∈Θ

q (θ, k) < ν1 < q(1, 1), (5.25)

q(θ + 1, 1) < νθ < q(θ, 1), ∀θ ∈ Θ \ {1} , (5.26)

then limM→∞ p
θθ = 1, ∀θ ∈ Θ.

Proof. See Appendix D.3.

Explicit expressions for pθ1 are difficult to obtain from (5.24). Since pθ1 with θ 6= 1 represent
the proportions of agents that have wrongly estimated their group, the vector p1 =

(
p11, . . . , pK1

)
should be close to p̃1 =

(
p̃11, . . . , p̃K1

)
. One has limp1→p̃1 hθ

(
p1
)

= q (θ, 1). Assuming that at
equilibrium, hθ

(
p1
)
' q (θ, 1), using (5.23), XM,β

θ can be approximated as

X̃M,β
θ =

(
M

β

)
(q (θ, 1))β (1− q (θ, 1))M−β , (5.27)

and follows thus a binomial distribution.

5.3.3 Choice of ν

Knowing XM,β
θ (in Case I) or X̃M,β

θ (in Case II), one is able to optimize the decision thresholds
introduced in (5.2). The value of the νθs may for example be adjusted to maximize the correct
decision rate (CDR) under some cumulated false decision rate (FDR) constraint evaluated using
(5.27), but alternative performance requirements may be considered. The following proposition
provides the optimal values of νθs to maximize the sum of CDR, i.e.,

∑
θ∈Θ p

θθ or
∑

θ∈Θ p̃
θθ.
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Proposition 5.6. In Case I, if

νθ =
log
(

1−sθ
1−sθ+1

)
log
(
sθ+1

sθ
1−sθ

1−sθ+1

) , ∀θ = 1 . . . (K − 1) , (5.28)

where sθ is introduced in (5.16), then
∑

θ∈Θ p
θθ takes its maximum value.

In Case II, if

νθ =
log
(

1−q(θ,1)
1−q(θ+1,1)

)
log
(
q(θ+1,1)
q(θ,1)

1−q(θ,1)
1−q(θ+1,1)

) , ∀θ = 1 . . . (K − 1) , (5.29)

then
∑

θ∈Θ p̃
θθ takes its maximum value.

Proof. See Appendix D.4.

One sees that the values at equilibrium (5.18) and the decision thresholds in Case I are functions
of the values of sθ, themselves functions of the a priori proportions of agents in each group pθ and of
the characteristics of the LCT q (θi, θj). In Case II, the approximate values at equilibrium (5.27) and
the thresholds are only functions of the characteristics of the LCT. This may be very interesting in
a practical implementation, since in Case II, agents do not need to know in advance the proportion
of agents with a given status. Only the characteristics of the LCT are required.

5.4 Illustration

Consider a set A of NA moving agents with very limited communication range, forming a DTN
such that hypotheses A1-A4 are satisfied. Each agent is equipped with a sensor providing noisy
observations

mi (xi, t) = φ (xi, t) + wi (t) , ∀i ∈ A (5.30)

of some scalar field φ (xi, t) at its location xi and at time t. The components wi (t) of the mea-
surement noise at time t in (5.30) described as realizations of independently distributed Gaussian
variables Wi ∼ N

(
ei, σ

2
)
, where ei is some constant, agent-specific bias. The bias terms ei, i ∈ A,

are assumed to be realizations of iid zero-mean Laplacian random variables Ei with parameter γ.
Initially, the agents do not know their measurement bias.

The sensors with small ei provide better measurements. Our aim is to apply the DSR algorithm
introduced in Section 5.2 to allow each agent getting an estimate of its bias. For that purpose,
introducing some constant parameter ε > 0, the set of agents is partitioned into K groups defined
as

Aθ = {i ∈ A : Λθ−1 6 |ei| < Λθ} ,

where

Λθ =

εθ/γ, ∀θ ∈ Θ \ {K} ,

∞, θ = K.
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Therefore, the proportion of agents with status θ is pθ = exp (−ε (θ − 1))− exp (−εθ). The status θ
of an agent represents thus the group to which it belongs and provides an indication of the level of
its bias. This problem is a generalization of that introduced in [Chi+11], where φ (xi, t) is assumed
constant with location and time, and where the bias can only take discrete values.

Two agents, when meeting at some location x and time t, perform an independent measurement
of φ (xi, t). Then, following Algorithm 5, both agents exchange their estimate of θ determine if
they want to continue interacting. If this is the case, they have to exchange measurements and run
individually the LCT introduced in Section 5.4.1.

5.4.1 LCT

The LCT considered in this work has similar form as the LODT considered in Chapters 3 and 4.
Consider a measurement m, some tolerance ω, and the interval [m] = [m− ω,m+ ω] of width

2ω centered around m. Consider now Agents i and j meeting at time t and exchanging the mea-
surements mi and mj they just performed at the same location x. The set estimate [BBC90] of
φ (x, t) obtained from mi and mj is defined as

[
φ̂ (mi,mj)

]
= [mi] ∩ [mj ] . If

[
φ̂ (mi,mj)

]
6= ∅ it

is likely that the biases ei and ej are close. Both agents can conclude that their sensors perform
similarly. If

[
φ̂ (mi,mj)

]
= ∅, it is likely that ei and ej differ significantly more than ω. An agent

is in this case unable to determine whether it is carrying the best sensor. As a consequence, each
agent chooses to conclude that its sensor behaves worse than that of the other agent. One obtains
as a consequence the following low-complexity LCT,

yi,j = yj,i =

1, if
[
φ̂ (mi,mj)

]
6= ∅,

0, else.
(5.31)

For any arbitrary pair of status (θ, θ′), one is able to evaluate the probability q (θ, θ′) =

P {Yi,j = 1|i ∈ Aθ, j ∈ Aθ′} as a function of ω,σ, and γ.

5.4.2 Numerical verification of theoretical results

This section presents first the solution of the state equation (5.4) describing the evolution of the
proportion of nodes in various states. Algorithm 5 is simulated first considering the Jumping model
introduced in Section 4.7.1.

For the numerical example, one takes K = 4, σ2 = 0.16, and γ = ε = 0.7, resulting in

p1 = 0.503, p2 = 0.250, p3 = 0.124, p4 = 0.123. (5.32)

Moreover, taking ω = 1.8, one gets

q =


0.95 0.66 0.22 0.01

0.66 0.52 0.44 0.10

0.22 0.44 0.50 0.27

0.01 0.10 0.27 0.35

 , (5.33)
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Figure 5.1: Case I: evolution of pθθ̂ (t) obtained solving (5.4).

which satisfies Assumption A5. Besides, one considers M = 50, and a sampling period ∆t dur-
ing which the inter-contact probability is λ∆t = 0.33. The decision thresholds are chosen using
Proposition 5.6:

• In Case I, ν1 = 0.61, ν2 = 0.42, and ν3 = 0.19;

• In Case II, ν1 = 0.84, ν2 = 0.43, and ν3 = 0.07.

Figure 5.1 and 5.2 presents the evolution pθθ̂ (t) for θ, θ̂ ∈ Θ = {1, 2, 3, 4}, in Case I and in Case
II respectively. One observes that the proportion agents of each state converges. Moreover, in
Case II, for any θ ∈ Θ, pθθ is close to 1 for t sufficient large, while pθθ̂ tends to 0 for any θ̂ 6= θ.
Nevertheless, in Case I, Algorithm 5 does not behave in a satisfying way: the values of p11 and p22

at the equilibrium are around 0.8, which means that 20% of the nodes with status θ = 1 or θ = 2

do not correctly rate their status.
In the following simulations, one considers the same Jumping model as presented in Section 4.7.1

that leads to λ∆t ≈ 0.33. The evolutions of pθθ̂ (t) are shown in Figure 5.3 and 5.4 for Case I and
Case II respectively. They are very close to those predicted by the direct integration of the state
equation (5.4) as shown in Figure 5.1 and 5.2.

Figure 5.6 further illustrates the good match between theory and simulation for the proportions
of states X50,β

θ at equilibrium in Case I. In Case II, Figure 5.6 shows also a very good match between
the simulation and the approximation of X50,β

θ obtained using (5.27).
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Figure 5.2: Case II: evolution of pθθ̂ (t) obtained solving (5.4).
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Figure 5.3: Case I: evolution of pθθ̂ (t) by simulations with the Jumping model.
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Figure 5.4: Case II: evolution of pθθ̂ (t) by simulations with the Jumping mode.
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5.4.3 Simulation with real databases

In this section, one applies again the databases Reality and Infocom05. For each database, 100
independent simulations are performed and results are averaged over these simulations. As in
Section 5.4.2, K = 4 groups are considered. The status of each node is randomly chosen according
to (5.32). When an agent decides to continue interaction with an other agent, instead of performing
a measurement and a test, a LCT is simulated with outcome randomly generated using (5.33).

Case I

At the top of Figure 5.7, for each time instant, a dot on the line corresponding to the index of an
agent represents a contact with an other agent. The bottom of Figure 5.7 presents the evolution
with time of the proportions pθe = 1 − pθθ of nodes erroneously self-rating their status for each θ,
considering M = 50 and M = 200. One also observes that the convergence speed of pθe is highly
related to the inter-contact rate (reflected by the density of points in the sub-figures at the top):
variations are significant at beginning of working hours.

Figure 5.7 as well as the values at equilibrium of XM,β
θ reported in Figure 5.10 show some

mismatch between theory and simulations for the agents with status θ = 1 and θ = 2. Although
there are many inter-contacts, some XM,β

θ s have not reached their theoretical values, especially
for θ = 1 and θ = 2. This effect is more significant when M is small, which is consistent with
Proposition 5.4: the behavior of the DSR algorithm improves whenM increases. After investigation
of the trace, one observes that some agents have only few contacts with other agents. For example,
4 agents have less than 100 contacts with other agents. Moreover, the variety of agents met by some
agents is limited. For example, 4 nodes have contacts with less than 10 different other nodes. This
has a significant influence on the performance of the algorithm.

Case II

Figure 5.9 shows the evolution of pθe in Case II. For both databases, pθe remains around 10−2 for all
θ ∈ Θ after a sufficient long time.

Figure 5.10 represents XM,β
θ obtained by using the databases Reality and Infocom05, and also by

the approximation (5.10). In this case, there is an excellent match between the values at equilibrium
predicted by theory and those obtained in simulation.

Comparison

Comparing the theoretical values of X50,β
θ at equilibrium for different values of θ ∈ Θ, one observes

from Figures 5.8 and 5.10 that the different curves overlap more in Case I, especially those for θ = 1

(blue) and θ = 2 (green) and overlap much less in Case II. As a consequence, when considering some
self-rating thresholds, better self-rating decision will be obtained in Case II. This illustrates that
the importance of the probability of interaction α

(
θ̂i, θ̂j

)
. In the considered application scenario,

a better self-rating is obtained when agents only perform LCT with agents believing their status is
the best one.
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Figure 5.7: Case I: Indexes of active nodes (having met another node) at different
time (top) and evolution of P θe = 1 − pθθ when M = 50 (middle) and M = 200
(bottom) obtained using the Reality database (left) and the Infocom05 database

(right).
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Figure 5.9: Case II: Evolution of P θe = 1− pθθ obtained using the Reality database
(left) and the Infocom05 database (right)
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5.5 Conclusions

This work has investigated the problem of helping agents self-rating their level of ability at doing
some task via exchange of information with peers. Using local compatibility tests involving, e.g.,
data exchanged during meetings with other agents, each agent is able to estimate the proportion
of agents it is better at doing the considered task. With that information, each agent may then
determine to which group of agents with similar expertise it belongs to.

The behavior of the proposed algorithm is described using dynamical equations. The existence
of an equilibrium is established. The proportions of agents with similar beliefs in their expertise is
characterized at equilibrium. This gives some insight in the tuning of the various parameters of the
proposed algorithm.

The approach is illustrated with agents equipped with sensing devices of different sensing per-
formance, which may be found in crowd sensing scenarios. Simulation results are in good match
with theory.

Significant work remains to be done to analyze the behavior of the proposed algorithm with
generic probabilities of interaction. The existence and uniqueness of the equilibrium has also to
be shown in the general case. Nevertheless, the proposed approach may be useful to analyze other
types of self-rating problems.
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Chapter 6

Conclusion and Prospective

6.1 Conclusion

The first part of this thesis contains a detailed analysis of a correlated data gathering problem
in WSNs. More precisely, the random linear network coding approach is considered to perform
jointly data compression and data collection. A the components of compressible are observed by
wireless sensors. An information-theoretic approach is applied to demonstrate the necessary and
sufficient conditions to realize the asymptotically perfect reconstruction of this vector considering
MAP estimation. The obtained results are consistent with those in the state-of-the-art and are
more general, since a stationary and ergodic model of the vector components is considered as well
as a sparse network-coding matrix. Moreover, both sensing noise and noise corrupting the network-
coded components are taken into account. Interestingly, in absence of noise, the coding matrix can
be arbitrarily sparse to achieve the optimum lower bound of the compression ratio. Some sufficient
conditions on the minimum sparsity factor is proposed, which mainly depend on the additive noise.

The second part of this thesis concerns the distributed self-rating (DSR) problem, for wireless
networks with nodes that have different expertise at performing some task (sensing, detection,
classification...). The main assumption is that each node does not know its level of expertise and is
willing to estimate it.

In Chapter 3, one considers a dense WSN and only two levels of expertise: network nodes are
either equipped with normal sensors or with defective ones producing outliers. This thesis has
proposed and analyzed the performance of two distributed faulty node detection (DFD) algorithms
to help each node in determining whether it is equipped with a defective sensor. A node first collects
data from its neighborhood, processes them to decide, using some generic local outlier detection
test, whether these data contain outliers and broadcasts the result. Then, it determines the status
(good or defective) of its own sensor using its result and those received from neighboring nodes. A
single-decision and an iterative algorithm for DFD are proposed. Bounds on the performance of the
single-decision algorithm are derived. A theoretical analysis of the probability of error and of the
equilibrium of the iterative algorithm is provided for a wide class of local outlier detection tests.
The trade-off between false alarm probability and detection probability is characterized theoretically
and by simulation. MAC-layer issues, as well as the effect of packet losses are accounted for. The
proposed algorithms have also been implemented on a real testbed to verify their efficiency.

In Chapter 4, the DFD problem is considered in delay tolerant networks (DTNs) which have
sparse and dynamic connectivity. Propagation of faulty data in DTNs can be a critical aspect
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to counteract due to the inherent feature of exhibiting frequent disconnections,. Indeed the rare
meeting events require that nodes are effective and efficient in propagating correct information. Ac-
cordingly, mechanisms to rapidly identify possible faulty or misbehaving nodes should be obtained.
DFD has been addressed in the literature in the context of dense WSNs, but seldom considered
in DTNs. One proposes a fully distributed, easily implementable, and fast converging approach to
allow each DTN node to rapidly identify whether its sensors are producing outliers. The difference
between the DFD algorithms in Chapter 3 and that in Chapter 4 dedicated to DTNs mainly comes
from the communication conditions, which also makes their analysis quite different. The behavior
of the proposed algorithm is described by some continuous-time state equations, whose equilibrium
is characterized. Interestingly, the proportions of nodes with different beliefs of their status at the
equilibrium follow a Binomial distribution. Detection and false alarm rates are evaluated both theo-
retically and by simulation and show an excellent match. Theoretical results assess the effectiveness
of the proposed solution and give guidelines in the design of the algorithm.

In Chapter 5, the DSR problem with agents with multiple levels of expertise is considered. The
proposed self-rating algorithm involves pairwise interactions between agents and a local comparison
test, able to determine which, among two agents, performs better. A probability of interaction
has been introduced to determine whether two agents, interact during a meeting. The analysis
of the dynamics of the DSR algorithm extends that considered in Chapter 4. Two special forms
of the probability of interaction are analyzed in details. The main difficulty lies in determining
decision thresholds to minimize the probability of erroneous self-rating. Simulation results match
well theoretical results in the context of nodes equipped with sensors aiming at determining the
performance of their sensors. These results have also shown the importance of an appropriate choice
of the probability of interaction.

6.2 Perspective

Several open research directions may be considered at the end of this thesis.

6.2.1 Sparse random linear network coding

In Chapter 2, we have tried a first step towards handling varying levels of sparsity in the network
coding matrix considering noisy environments to analyze data compression limits in WSNs.

To ensure the optimal compression ratio, some sufficient conditions on the sparsity of the network
coding matrix have been exhibited. For instance, these results mainly depend on the minimum
sparsity level, i.e., mini=1...N γi, recall that γi represents the sparsity factor of the i-th column of
the network coding matrix. A future reserach direction should be related to conditions on the
average sparsity level of the network coding matrix, i.e.,

∑N
i=1 γi/N . Besides, our converse analysis

is mainly based on the classical Fano’s inequality, thus no necessary condition on the sparsity of the
network coding matrix has been proposed. Hence, it is also essential, yet challenging, to search some
converse information-theoretic result, in order to see whether the necessary and sufficient conditions
on the sparsity could converge.



112 Chapter 6. Conclusion and Prospective

Beside the results obtained related to the sparsity factor, another interesting problem is to
see how to set up a WSN that meets these sparsity requirements. For example, when nodes are
randomly and uniformly distributed over a plane with some density, one needs to determine with
which probability mass function each node should choose the number of received packets to linearly
combine, in order to satisfy the minimum sparsity requirement. It may be interesting to consider
routing algorithms designed toadjust the sparsity of network coding matrix, see, e.g., [Bas+12].

6.2.2 Distributed faulty node detection in a DTN

In Chapter 4, one has assumed that the status of the nodes remains constant, which facilitates
the analysis of the DFD algorithm in a DTN. It would be interesting to consider a dynamic status
of the nodes and see its impact. This problem is quite realistic. For example, a good node may
become faulty when its power is low, a faulty node may become good when its defective sensor
is replaced, or when it is able to harvest enough energy to reload its battery. In this situation,
transition probabilities between status should be introduced and the Markov chains conditioned by
the two status (see, e.g., Figure 4.1, page 76) are no more independent.

The proposed approach to analyze the dynamics and equilibrium of the DFD algorithm may be
useful to analyze other types of self-estimation problems. For example, the DFD algorithm may
be applied in the context of malware detection. In this context, nodes may be infected by some
malware, the latter propagating to other nodes during exchanges. This extension requires again
that each node in the network is rational and willing to know whether it is infected by the malware.
Two nodes which meet can interact to learn whether there is some suspicious actions during the
interaction. Since the status of nodes changes with time, this clearly requires to consider transitions
between node status. This makes the detection of nodes infected by malware more challenging.
Specific malware propagation models (see [KSA12] for example) may be considered and introduced
into our Markov model for the analysis of the dynamic. There will be a trade-off between the
proportion of active infected nodes and the proportion of good nodes being wrongly detected as
infected.

Finally, for the time being, a constrant decision threshold has been considered. A time-varying
threshold may be of interest to speed-up the convergence of the algorithm to an equilibrium. This
may be particularly useful in the context of malware detection. To perform such design, one cannot
consider only dynamics at equilibrium. Transients have to be more carefully studied than was done
in this thesis.

6.2.3 Distributed self-rating

As mentioned in Chapter 5, our results on distributed self-rating have been obtained considering two
special types of interaction probabilities. To widen its application potential, significant work remains
to be done to analyze the behavior of the proposed algorithm with generic probabilities of interaction.
An interesting related problem is the optimization of the values ofthe interaction probabilities.
Several criteria may be considered. One may try to maximize the proportion of correct self-rating
Alternatively, considering some correct self-rating threshold, one may be interested at minimizing
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the number of necessary interactions between agents. This is important when interactions have
some cost, e.g., are time consuming, drain the energy of agents...

This problem can be related to the well-known multi-armed bandits (MAB) problem [AB10],
in which the focus is to learn the statistics of different machines to choose the best machine and
maximize some reward. Here, instead of choosing at each time step the best arm to pull, in order
to maximize, e.g., the sum of discounted future rewards [SB98], the aim is to determine whether
it may be of interest to interact with an encountered agent with a given estimate of its status.
Interaction providing only little additional knowledge to the agent on its own status should be
avoided. In a DTN, however, contrary to the classical MAB problem, agents are not totally free to
chose the encountered agents. So it may take some time to meet the agents which will maximize
this additional knowledge.

Another related problem is distributed ranking by pairwise comparison [Hec+16]. The dis-
tributed self-rating problem becomes a distributed ranking problem when the number of levels of
ability is equal to the number of agents. The problem is relatively easy when some network controller
is able to decide which pair of agents needs to interact at some time instant, in order to minimize
the number of required tests. Nevertheless, in our distributed self-rating set-up, such controller
does not exist. The only way to accelerate convergence of the algorithm is to adjust the interaction
probability. For example, at the beginning of the algorithm, an interaction may always occur when
two agents have a meeting. Then, after some time, the interaction probability becomes a function,
that decreases with the difference of the estimated levels of the two agents. An attractive open
problem is to learn the best compromise between the number of interaction and the convergence
speed of the algorithm.
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Appendix A
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A.1 Proof of Lemma 2.1

Proof. Consider another matrix B ∈ FM×NQ , whose entries are iid with the sparsity factor γ. Ac-
cording to [TBD12, Lemma 21], we have

Pr
{

Bjµ
N = 0 |

∥∥µN∥∥
0

= d1

}
= Q−1 +

(
1− γ

1−Q−1

)d1 (
1−Q−1

)
, (A.1)

and

Pr
{

Bjµ
N = q |

∥∥µN∥∥
0

= d1, q ∈ FQ \ {0}
}

= Q−1 −
(

1− γ

1−Q−1

)d1

Q−1, (A.2)

where Bj is j-th row of B. If d2 is the number of non-zero entries of sM , then by combining (A.1)
and (A.2), one gets

Pr
{

BµN = sM | µN 6= 0, sM
}

=

M∏
j=1

Pr
{

bjµ
N = sj | µN 6= 0, sj

}
=

(
Q−1 +

(
1− γ

1−Q−1

)d1 (
1−Q−1

))M−d2
(
Q−1 −

(
1− γ

1−Q−1

)d1

Q−1

)d2

6

(
Q−1 +

(
1− γ

1−Q−1

)d1 (
1−Q−1

))M
. (A.3)

Now consider the matrix A with its columns having different sparsity factors such that γ =

mini=1...N γi. One has the following extension

Pr
{

AµN = sM | µN 6= 0, sM
}

= f (d1, d2) 6 f (d1, 0)

6

(
Q−1 +

(
1− γ

1−Q−1

)d1 (
1−Q−1

))M
, (A.4)

according to fact that the probability of having AµN = 0 (with µN 6= 0)is larger if the matrix
A is sparser. The monotonicity of the function is not hard to obtain with its expression and the
condition (2.5).
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A.2 A Possible Situation for H (Θ) = 0

Consider N sensors uniformly deployed over a unit-radius disk. The physical quantities (in R),
which are collected by the sensors, are denoted by ΩN ∈ RN . We assume that ΩN ∼ N (0,Σ) with

Σ =


1 e−λd

2
1,2 · · · e−λd

2
1,N

e−λd
2
2,1 1 e−λd

2
2,N

...
. . .

...
e−λd

2
N,1 · · · · · · 1

 , (A.5)

where λ is some constant, di,j is the distance between sensors i and j. The distance between two
sensors is random since the location of each sensor is random. The real-valued entries of ΩN are
quantized with a Q−level scalar quantizer. We assume that Q = 2, corresponding to the rule

Θi =

0 if Ωi < 0,

1 if Ωi ≥ 0.
(A.6)

With the above assumptions, we can prove the following lemma.

Lemma A.1. The conditional entropy H
(
Θn | Θn−1

1

)
converges to zero for n→∞ .

Proof. Suppose that j is the index of the sensor which has the minimum distance to sensor n, among
the n− 1 neighbor sensors, i.e.,

j = arg min
1≤i≤n−1

dn,i. (A.7)

We have
H
(
Θn | Θn−1

1

)
≤ H (Θn | Θj) (A.8)

Denote the minimum distance as d (n) = dn,j , the covariance matrix of Ωn and Ωj is

Σn =

[
1 ρ

ρ 1

]
, (A.9)

where ρ = e−λd(n)2

. For a pair of realizations ωn and ωj , the joint probability density function
writes

g (ωn, ωj) =
1

2π
√

1− ρ2
exp

(
−
ω2
n + ω2

j − 2ρωnωj

2 (1− ρ2)

)
. (A.10)

We easily obtain the probability of both Ωn and Ωj being negative,

Pr {Ωn < 0 and Ωj < 0} =

ˆ 0

−∞

ˆ 0

−∞
g (ωn, ωj) dωndωj

=
1

4
+

1

2π
arctan

(
ρ√

1− ρ2

)
(A.11)
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Taking into account (A.6), (A.11) is exactly the probability of the pair (Θn,Θj) being (0, 0). Define

ε (ρ) :=
1

4
− 1

2π
arctan

(
ρ√

1− ρ2

)
. (A.12)

After the similar derivations, one obtains

Pr (Θn = 0,Θj = 0) = Pr (Θn = 1,Θj = 1) =
1

2
− ε (ρ) (A.13)

and
Pr (Θn = 0,Θj = 1) = Pr (Θn = 1,Θj = 0) = ε (ρ) . (A.14)

Then the joint entropy is
H (Θn,Θj) = 1 +H2 (2ε (ρ)) . (A.15)

Meanwhile H (Θj) = 1, thanks to the 2-level uniform quantizer. Obviously

H (Θn | Θj) = H2 (2ε (ρ)) = H2

(
2ε
(
e−λd

2
))

. (A.16)

This conditional entropy is increasing in d. When the number of sensors increases, the disk will be
denser, and the minimum distance d goes smaller. Thus, d tends to 0 as n → ∞, which implies
that H (Θn | Θj) → 0. According to (A.8), we conclude that H

(
Θn | Θn−1

1

)
also goes to zero as

n→∞.

Applying the chain rule, the entropy rate writes

H (Θ) = lim
N→∞

H (Θ1) +
∑N

n=2H
(
Θn | Θn−1

1

)
N

. (A.17)

By Cesaro mean [CT06b, Theorem 4.2.3], H (Θ) = 0 as H
(
Θn | Θn−1

1

)
→ 0.
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B.1 Proof of Lemma 3.1

We start with the proof of (3.11).
Note that both qD and qFA represent the probability that the LODT yields 1. One has, for any

k ∈ A

P
{
T
(
MA\{k}

)
= 1
∣∣ϕ (A) = 0

}
= P

{
T
(
MA\{k}

)
= 1, T (MA) = 0

∣∣ϕ (A) = 0
}

+ P
{
T
(
MA\{k}

)
= 1, T (MA) = 1

∣∣ϕ (A) = 0
}

(a)
= P

{
T
(
MA\{k}

)
= 1, T (MA) = 1

∣∣ϕ (A) = 0
}

6 P
{
T (MA) = 1

∣∣ϕ (A) = 0
}
, (B.1)

where (a) is obtained from Property 3.2. Combining (3.7) and (B.1), one gets

qFA
(
MA\{K}

)
6 qFA (MA) . (B.2)

Suppose that |A| = ng+1 with ng > 1, then based on Property 3.1, (B.2) is equivalent to qFA (ng) 6

qFA (ng + 1), which proves (3.11).
One may prove (3.12) and (3.13) in a similar way, by considering ϕ (A) = 1 in the derivations.

B.2 Analysis of the decision rule (3.22)

At the end of Algorithm 1, each node estimates its status from the results of the LODTs, which
may be gathered in the vector

Y
(L)
i =

[
Y

(`)
j

]
j∈B(`)

i ,1≤`≤L
. (B.3)

Let y(L)
i be one realization of Y (L)

i . In what follows, one will show that the decision rule (3.22)
corresponds, under some simplifying assumptions, to

θ̂i = arg max
φ∈{0,1}

cφP
{
Y

(L)
i = y

(L)
i | θi = φ

}
, (B.4)

where cφ is some weight. If c0 = c1 = 1, then (B.4) is a maximum likelihood estimate of θi from
y

(L)
i ; if cφ = P {θi = φ}, then (B.4) is the maximum a posteriori estimate of θi.
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Expressing the likelihoods in (B.4) is complicated due to the correlation between the components
of Y (L)

j . Nevertheless, assuming that the Y (`)
j s are iid, one obtains

P
{
Y

(L)
i = y

(L)
i | θi = φ

}
=

L∏
`=1

∏
j∈B(`)

i

P
{
Y

(`)
j = y

(`)
j | θi = φ

}
. (B.5)

Assuming further that P
{
Y

(`)
j = y

(`)
j | θi = φ

}
= P

{
Y

(`)
i = y

(`)
i | θi = φ

}
for all j ∈ B(`)

i , which
can be justified by Property 3.1 when the number of measurements considered by Node j to get
Y

(`)
j is equal to the number of measurements by Node i to get Y (`)

i . Then for all j ∈ B(`)
i , one gets

P
{
Y

(`)
j = 1 | θi = 0

}
= f1 (µ̄g, µ̄d) , (B.6)

P
{
Y

(`)
j = 1 | θi = 1

}
= f2 (µ̄g, µ̄d) . (B.7)

Let zi =
∑L

`=1

∑
j∈B(`)

i

y
(`)
j = zi and ni =

∑L
`=1

∣∣∣B(`)
i

∣∣∣, then from (B.5-B.6) one obtains

c0P
{
Y

(L)
i = y

(L)
i | θi = 0

}
c1P

{
Y

(L)
i = y

(L)
i | θi = 1

} =
c0f

zi
1 (1− f1)ni−zi

c1f
zi
2 (1− f2)ni−zi

. (B.8)

Therefore, one obtains the following decision rule

θ̂i =

0, if zi
ni
<

1
ni

log
c1
c0
−log

1−f1
1−f2

log
f1(1−f2)
f2(1−f1)

,

1, otherwise.
(B.9)

When c0 = c1 = 1, the threshold corresponding to the maximum likelihood estimate is

γML =
log 1−f1

1−f2

log 1−f1

1−f2
+ log f2

f1

. (B.10)

When cφ = P {θi = φ}, the threshold corresponding to the maximum a posteriori estimate of θ
depends on ni as follows

γMAP (ni) =
log 1−f1

1−f2
− 1

ni
log µ̄d

µ̄g

log 1−f1

1−f2
+ log f2

f1

. (B.11)

One notes that limni→∞ γMAP (ni) = γML.
Figure B.1 represents the theoretical values of γML, γMAP (µ̄) with L = 1, and γMAP (µ̄) with

l = 10 as functions of µ̄ for different values of µ̄d/µ̄. For a constant value of µ, γ increases with µ̄d.
Moreover, γML and γMAP (µ̄) with L = 10 behave very similarly, increasing with µ̄. Finally, γMAP (µ̄)

with L = 1 is always larger than the other thresholds: when a limited number of measurements is
available, this limits the probability of false alarm.
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Figure B.1: γML, γMAP (µ̄) with L = 1, and γMAP (µ̄) with L = 10 as functions of
µ̄ for different values of µ̄d/µ̄.

B.3 Multi-hop Algorithm

When the WSN is sparse, i.e., when µ̄ is small, the performance of DFD algorithms may be poor,
due to a reduced amount of data to perform LODT. This appendix presents the modifications to be
performed in the DFD algorithm to allow multi-hop data collection and LODT result dissemination.
It is a variant of multi-hop dissemination protocol, see, e.g., [Ver+10, Chap. 4.5], where data
aggregation in packets is performed to limit the number of transmitted packets.

This feature requires that each node acts as a router to forward the packets it has received. This
forwarding has to be limited using some time-to-live information TTL associated to each data. TTL

has to be initialized to H, the maximum number of allowed hops. Let p
(`,I,k)
i be the payload of the

k-th packet transmitted by Node i, during Phase I in the `-th round. Initially k = 1 and one has

p
(`,I,1)
i =

{(
TTL
i , m

(`)
i

)}
, (B.12)

with TTL
i = H. The identification of Node i, stored in Addri, is included in the packet header.

Node i has received packets from its neighbors in the set N (`,I,1)
i during the first transmission of

Phase I of Round `. The corresponding data and associated TTL are denoted
(
TTL
j ,m

(`)
j

)
,

j ∈ N (`,I,1)
i ⊂ S. Node i then needs to forward all data which have a TjTL > 0. To save bandwidth

resources, these data are aggregated into one packet to get

p
(`,I,2)
i =

⋃
j∈N (`,I,1)

i st TTL>0

{(
Addrj , TTL

j − 1, m
(`)
j

)}
. (B.13)
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During k-th transmission with k ≥ 2, packets are transmitted similarly, accounting for newly
received data.

A similar process is performed during Phase II where LODT results are broadcast with limited
hop count. Now, the payload of the first packet transmitted by Node i, during Phase II in the `-th
round is

p
(`,II,1)
i =

[
TTL
i , y

(`)
i ,

∣∣∣V(`,I)
i

∣∣∣ , ⋃
j∈V(`,I)

i

{Addrj}
]
. (B.14)

In (B.14), TTL
i is again initialized at H. The number of nodes participating to the LODT results y(`)

i

as well as their addresses are also indicated. For the k-th transmitted packets, payload containing
LODT outcomes with TTL > 0 can again be aggregated as done in (B.13).

B.4 Proof of (3.52)

Consider a bounded sequence 0 6 B (n) 6 1 for any n ∈ N and a real-valued function GN (µ) =∑N
n=0B (n) · µ

n

n! exp (−µ) with µ > 0. First, one evaluates the derivative of GN (µ),

dGN (µ)

dµ
= exp (−µ) ·

(
N∑
n=0

(B (n+ 1)−B (n))
µn

n!
−B (N + 1)

µN

N !

)
. (B.15)

Second, one shows that dGN (µ)
dµ converges uniformly to

H (µ) =
∞∑
n=0

(B (n+ 1)−B (n))
µn

n!
exp (−µ) . (B.16)

Let ε ∈ R+ be an arbitrary number, then for any µ > 0, there exists Nµ ∈ N+, such that

∞∑
n=Nµ

µn

n!
exp (−µ) < ε. (B.17)

One has ∣∣∣∣dGNµ (µ)

dµ
−H (µ)

∣∣∣∣
6 B (Nµ + 1) · µ

Nµ

Nµ!
exp (−µ) +

∞∑
n=Nµ+1

|B (n+ 1)−B (n)| · µ
n

n!
exp (−µ)

(a)

6
∞∑

n=Nµ

µn

n!
exp (−µ)

(b)
< ε,

where (a) comes from the fact that 0 6 B (n) 6 1 and −1 6 B (n+ 1) − B (n) 6 1 for any
n ∈ N, and (b) is by (B.17). Similarly, one can also show that GN (µ) converges uniformly to
G (µ) =

∑N
n=0B (n) · µ

n

n! exp (−µ) for any µ > 0.
Therefore, according to [Rud64, Thm 7.17], one obtains that limN→∞

dGN (µ)
dµ = H (µ) , G (µ) is

differentiable for any µ > 0 and dG(µ)
dµ = H (µ).
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B.5 Proof of Lemma 3.3

Let Ri = {j ∈ S such that ri,j 6 2R0} be the set of nodes at a distance to the reference Node i less
than 2R0, including i itself. For any j ∈ Bi, V(I)

j ⊆ Ri. Let MRi and MV(I)
j

be the vectors of data

provided by the sensors in Ri and V(I)
j respectively. From Property 3.2, one has

P
{
T

(
MV(I)

j

)
= 0 | T (MRi) = 0

}
= 1, ∀j ∈ Bi. (B.18)

To lighten notations, define Zi =
∑

j∈Bi T

(
MV(I)

j

)
. From (B.18), one deduces

P {Zi = 0 | T (MRi) = 0} = 1. (B.19)

Then

P {Zi = 0} =
1∑
y=0

P {Zi = 0, T (MRi) = y}

> P {Zi = 0, T (MRi) = 0}

= P {Zi = 0 | T (MRi) = 0} · P {T (MRi) = 0}

= P {T (MRi) = 0} . (B.20)

On the other hand
P {Zi < (Ng +Nd) γ} > P {Zi = 0} . (B.21)

Combining (B.20) and (B.21), one gets

P {Zi > (Ng +Nd) γ} 6 1− P {Zi = 0} 6 P {T (MRi) = 1} , (B.22)

independently of the status of Node i. When θi = 0,

PFA

(
µ(II)

g , µ
(II)
d

)
6 P {T (MRi) = 1 | θi = 0}

=
∞∑

ng=1

∞∑
nd=0

h (ng, nd)
(4µ̄d)nd−1 (4µ̄g)ng

(ng − 1)!nd!
exp (−4µ̄d − 4µ̄g) ,

leading to (3.36). Note that the area of the disk associated to Ri is 4πR2
0, thus in average |Ri ∩ G|

is 4µ̄g and in average |Ri ∩ D| is 4µ̄d. One may show (3.37) in a similar way.
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B.6 Proof of Lemma 3.6

To prove that gFA (µ00, µ10) as defined in (3.55) is monotone increasing in µ00, one has to show that

∂gFA

∂µ00
=

µ00

α3ζµ̄g − µ00

∞∑
ng=1

∞∑
nd=0

µnd
10µ

ng−1
00 exp (−µ10 − µ00)

nd! (ng − 1)!

·
(
τFA (ng + 1, nd) +

µ2
00 − α3ζµ00µ̄g + α3ζµ̄g

µ00 (α3ζµ̄g − µ00)
τFA (ng, nd)

)
(B.23)

is strictly positive. Therefore, a sufficient condition to have ∂gFA
∂µ00

> 0 is

τFA (ng + 1, nd)

τFA (ng, nd)
> −µ

2
00 − α3ζµ00µ̄g + α3ζµ̄g

(α3ζµ̄g − µ00)µ00
. (B.24)

Since

−µ
2
00 − α3ζµ00µ̄g + α3ζµ̄g

(α3ζµ̄g − µ00)µ00
= 1− α3ζµ̄g

(α3ζµ̄g − µ00)µ00
6 1− 4

α3ζµ̄g
,

a sufficient condition to have (B.24) is

τFA (ng + 1, nd)

τFA (ng, nd)
>

(
1− 4

α3ζµ̄g

)
for any ng > 1 and nd > 0, which is equivalent to

min
ng>1,nd>0

τFA (ng + 1, nd)

τFA (ng, nd)
> 1− 4

α3ζµ̄g
. (B.25)

One needs to find a lower bound of τFA (ng + 1, nd) as a function of τFA (ng, nd). Introducing
I = {θi = 0, Ng = ng + 1, Nd = nd}, by definition,

τFA (ng + 1, nd) = P
{ ∑

j∈Bi Yj

ng + nd + 1
= 1

∣∣∣∣I}
(a)
= P

{∑
j∈Bi\{K} Yj

ng + nd
= 1

∣∣∣∣θK = 0, I

}
P

{
YK = 1

∣∣∣∣
∑

j∈Bi\{K} Yj

ng + nd
= 1, θK = 0, I

}
(b)

> P

{∑
j∈Bi\{K} Y

′
j

ng + nd
= 1

∣∣∣∣θK = 0, I

}
P

{
YK = 1

∣∣∣∣
∑

j∈Bi\{K} Yj

ng + nd
= 1, θK = 0, I

}
(c)
= P

{∑
j∈Bi\{K} Y

′
j

ng + nd
= 1

∣∣∣∣θi = θK = 0, N ′g = ng, Nd = nd

}

· P

{
YK = 1

∣∣∣∣
∑

j∈Bi\{K} Yj

ng + nd
= 1, θK = 0, I

}
(d)
= τFA (ng, nd) · P

{
YK = 1

∣∣∣∣
∑

j∈Bi\{K} Yj

ng + nd
= 1, θK = 0, I

}
(e)

> τFA (ng, nd) · P {YK = 1|Yi = 1, θK = 0, I} , (B.26)
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where the considered Bi is such that θi = 0, Ng = ng + 1, and Nd = nd. For all j ∈ Bi, the LODTs
are performed based on the data vector MV(I)

j

with outcome Yj . In (a), K 6= i is a random node

in Ni ∩ G; such node exists since ng > 1. In (b), Y ′j = T

(
MV(I)

j \{K}

)
and one uses the results of

Lemma 3.1 to get P {Yj = 1} > P
{
Y ′j = 1

}
for all j ∈ Bi \ {K}. To get (c), one uses the fact that

Node K, equipped with a good sensor, is not used to get Y ′j and one accounts only for the presence
of N ′g = ng nodes with good sensors. Then (d) is by definition of τFA (ng, nd) and see Appendix B.7
for the proof of (e). According to (B.25) and (B.26), the first statement of Lemma 3.6 is proved.

In the similar way, a sufficient condition to have µ10PD (µ00, µ10) / (µ̄d − µ10) an increasing
function of µ10 is that

τD (ng, nd + 1)

τD (ng, nd)
> P {Yk = 1 | θi = θk = 1}

> qD (0, 2) > 1− 4

α3ζµ̄d
, (B.27)

which corresponds to the second statement of Lemma 3.6.

B.7 Proof of P {Yj1 = 1} 6 P {Yj1 = 1 | Yi = 1, Yj2 = 1, . . . }

In this section, one aims to prove the following lemma.

Lemma B.1. Consider a LODT satisfying Properties 3.1 and 3.2, and some Node i. For any set
of distinct indexes {i, j1, j2, . . . } ⊂ Bi, one has

P {Yj1 = 1} 6 P {Yj1 = 1 | Yi = 1} 6 P {Yj1 = 1 | Yi = 1, Yj2 = 1} 6 .... (B.28)

Proof. Let Yik = T
(
MV(I)

i ∩V
(I)
k

)
. Note that if

∣∣∣V(I)
i ∩ V

(I)
k

∣∣∣ 6 1, one has Yik = 0 .

P {Yk = 1 | Yi = 1}

=
1∑
y=0

P {Yk = 1, Yik = y | Yi = 1}

(a)
= P {Yik = 1 | Yi = 1}+ P {Yk = 1, Yik = 0 | Yi = 1}
(b)
= P {Yik = 1 | Yi = 1}+ P {Yik = 0 | Yi = 1}P {Yk = 1 | Yik = 0}

= P {Yik = 1 | Yi = 1} (1− P {Yk = 1 | Yik = 0}) + P {Yk = 1 | Yik = 0} , (B.29)

where (a) comes from Property 3.2 which states that if Yik = 1, then Yk = 1. Then (b) is by

P {Yk = 1, Yik = 0 | Yi = 1} = P {Yik = 0 | Yi = 1} · P {Yk = 1 | Yik = 0, Yi = 1}

= P {Yik = 0 | Yi = 1} · P {Yk = 1 | Yik = 0}
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as Yi and Yk are independent knowing that Yik = 0. Similarly,

P {Yk = 1} = P {Yik = 1} · (1− P {Yk = 1 | Yik = 0}) + P {Yk = 1 | Yik = 0} . (B.30)

Moreover,

P {Yik = 1 | Yi = 1} =
P {Yik = 1, Yi = 1}

P {Yi = 1}
=

P {Yik = 1}
P {Yi = 1}

> P {Yik = 1} . (B.31)

From (B.29), (B.30), and (B.31), one obtains that P {Yk = 1} 6 P {Yk = 1 | Yi = 1}. The other
inequalities of Lemma B.1 are proved in the same way.

B.8 Proof of Lemma 3.7

Consider the reference Node i and a node with random index K ∈ Bi \ {i}, both known with
non-defective sensors. The location of Node K is uniformly distributed on the disk of center i and
radius R0. One has to evaluate

P {YK = 1 | Yi = 1, θi = θK = 0,K ∈ Bi \ {i}}

= P
{
T
(
MV(I)

K

)
= 1 | Yi = 1, θi = θK = 0,K ∈ Bi \ {i}

}
.

Since Yi = 1, for any realization mBi , there exists at least a pair of nodes (j1, j2) ∈ B2
i with j1 6= j2

such that [mj1 ] ∩ [mj2 ] = ∅. For the random measurement vector MBi , let Di the set of such

(random) pairs of node indexes. If for some (J1, J2) ∈ Di, one has also (J1, J2) ∈
(
V(I)
K

)2
, then

T
(
MV(I)

K

)
= 1. As a consequence,

P
{
T
(
MV(I)

K

)
= 1 | Yi = 1, θi = θK = 0,K ∈ Bi \ {i}

}
> P

{
J1 ∈ V(I)

K , J2 ∈ V(I)
K | (J1, J2) ∈ Di,K ∈ Bi \ {i}

}
.

One has thus to evaluate the probability that V(I)
K contains the nodes J1 and J2, which themselves

belong to Bi. To evaluate this probability, the fact that (J1, J2) belong to Di is not important, since
the outcome of the LODT does not account for the indexes of the nodes. As a consequence

P
{
T
(
MV(I)

K

)
= 1 | Yi = 1, θi = θK = 0,K ∈ Bi \ {i}

}
> P

{
J1, J2 ∈ V(I)

K ∩ Bi | (J1, J2) ∈ Di,K ∈ Bi \ {i}
}

=
(
P
{
J1 ∈ V(I)

K ∩ Bi | J1 ∈ Bi,K ∈ Bi \ {i}
})2

(B.32)

since the locations of the nodes are independent.
The distance Ri,K between Nodes i and K is a random variable with distribution

πR (r) = 2r/R2
0. (B.33)
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Figure B.2: Sensor configuration.

Now, let S1 be the intersection of the two disks of radius R0 and centers i and K respectively,
see Figure B.2. The probability of a node known to belong to Ni to be in Ui ∩ UK is equal to
the area of S1 divided by πR2

0, which is a function of Ri,K . When Ri,K = r, the area of S1 is
S1 (β) = R2

0 (2β − sin (2β)), with β = arccos
(

r
2R0

)
. Thus, one has to average (B.32) over all

possible values of RiK to obtain from (B.33),

P {YK = 1 | Yi = 1, θi = θK = 0,K ∈ Ni}

>
ˆ R0

0

2r

R2
0

(
S1 (r)

πR2
0

)2

dr

=

ˆ π/2

π/3
4 sin (2β) ·

(
2β − sin (2β)

π

)2

dβ

= 1−
√

3

π
− 5

6π2
. (B.34)
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Appendix C

Appendices of Chapter 4

C.1 Proof of Proposition 4.1

For the proof, one considers first the following lemmas.

Lemma C.1. If

lim
t→∞

ˆ t

0

(
p0p

00 (τ) + p1p
10 (τ)

)
dτ =∞ (C.1)

then p0p
00 (t) + p1p

10 (t) > 0 for all t ∈ R+.

Proof. Since p0 > 0, p1 > 0, p00 > 0, and p10 > 0, it suffices to prove that

p00 (t) + p10 (t) 6= 0 ∀t > 0. (C.2)

Assume that there exists a time instant t∗ > 0, such that p00 (t∗)+p10 (t∗) = 0. As a consequence, at
time t∗, all nodes in the network believe themselves as carrying defective sensors. As a consequence,
no node will transmit its data to its neighbors. No LODTs will be performed after time t∗ and the
state of nodes will remain constant. Hence, if p00 (t∗)+p10 (t∗) = 0 for some t∗, then p00 (t)+p10 (t) =

0 for all t > t∗. Consequently,

lim
t→∞

ˆ t

0

(
p0p

00(τ)+p1p
10(τ)

)
dτ =

ˆ t∗

0

(
p0p

00(τ)+p1p
10(τ)

)
dτ,

which contradicts (C.1).

Lemma C.2. The property (C.1) is always satisfied.

Proof. From (4.32-a), one has

X0,0
θ (t) = exp

(
−λ
ˆ t

0

(
p0p

00 (τ) + p1p
10 (τ)

)
dτ

)
. (C.3)

Assume that there exists C∗ > 0 such that

lim
t→∞

ˆ t

0

(
p0p

00 (τ) + p1p
10 (τ)

)
dτ 6 C∗ (C.4)

then ∀t > 0, one has ˆ t

0

(
p0p

00 (τ) + p1p
10 (τ)

)
dτ 6 C∗. (C.5)
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Combining (C.3) and (C.5), one gets

X0,0
θ (t) > exp (−λC∗) > 0. (C.6)

Moreover, from (4.7), one has p00 (τ) > X0,0
θ (τ), leading to

ˆ t

0

(
p0p

00(τ)+p1p
10(τ)

)
dτ>

ˆ t

0
p0X

0,0
θ (τ)dτ >p0 exp (−λC∗) t. (C.7)

Since exp (−λC∗) t → ∞ as t → ∞, (C.7) leads to a violation of the hypothesis (C.4). Hence, one
always has (C.1).

The proof of Proposition 4.1 is then by induction. Starting with (4.32-a), one has (C.3). Since
(C.1) is satisfied according to Lemma C.2, for any ξ > 0, there exists t00 > 0 such that t > t00

implies X0,0
θ (t) < ξ and limt→∞X

0,0
θ (t) = 0.

Then, assume that for any ` 6 M − 1, and ξ > 0, there exists t(`−1)0 > · · · > t00 such that
t > t(`−1)0 impliesXj,0

θ (t) < ξ for j = 0, . . . , `−1. One has to show now that there exists t`0 > t(`−1)0

such that X`,0
θ (t) < ξ for all t > t`0.

Define Z`,0θ (t) =
∑`

j=0X
j,0
θ (t). From (4.32a) and (4.32b), one has

dZ`,0θ
dt

= −λ
(
v (t)Z`−1,0

θ (t) +
(
p0p

00 (t) + p1p
10 (t)

)
X`,0
θ (t)

)
,

where v(t) = π1,1
θ (t, `, k), since π1,0

θ and π1,1
θ do not depend on ` and k when ` < M . Using (C.2)

one has dZ`,0θ /dt < 0 for any X`0
θ > 0. As a consequence, Z`,0θ (t) decreases until X`,0

θ (t) reaches 0.
Hence, for any ξ > 0, there exists t`,0 > t(`−1)0, such that X`,0

θ < ξ and limt→∞ X`,0
θ (t) = 0.

In the same way, using (4.32c) and the previous results that X`k
θ (t)→ 0 with k = 1, . . . ,M − 2

and ` = k, . . . ,M − 2, one can prove that for any k = 1, . . . ,M − 1, X`′,(k+1)
θ (t) tends to zero as

t→∞, with any `′ = k + 1, . . . ,M − 1.

C.2 Proof of Proposition 4.2

According to Proposition 4.1, one has X`,k
θ = 0, for all ` < M and k 6 `. To evaluate XM,k

θ , one
thus considers the following simplified dynamics derived from (4.32) for θ ∈ {0, 1},
dXM,0

θ
dt =λ

(
−XM,0

θ π0,1
θ (M, 0)+XM,1

θ π0,−1
θ (M, 1)

)
,

dXM,M
θ
dt =λ

(
−XM,M

θ π0,−1
θ (M,M)+XM,M−1

θ π0,1
θ (M,M− 1)

)
,

dXM,k
θ
dt =λ

(
−XM,k

θ

(
π0,−1
θ (M,k) + π0,1

θ (M,k)
)

+XM,k+1
θ π0,−1

θ (M,k + 1) +XM,k−1
θ π0,1

θ (M,k−1)
)

(C.8)
At equilibrium, one has dXM,k

θ (t)/dt = 0 for all k 6 M . Moreover, the transition probabilities do

not vary any more. LetXM
θ =

(
X
M,1
θ , . . . , X

M,M
θ

)T
, aθ (k) = π0,1

θ (M,k), and bθ (k) = π0,−1
θ (M,k).
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From (C.8), one deduces that the vector XM
θ should satisfy Ψθ ·X

M
θ = 0 where

Ψθ =


−aθ (0) bθ (1)

aθ (0) −aθ(1)− bθ (1) bθ (2)
. . . . . . . . .

aθ (M − 1) −bθ (M)

 .

Summing Lines 1 to k + 1, for all k = 0, . . . ,M − 1, one obtains aθ (k)X
M,k
θ = bθ (k + 1)X

M,k+1
θ ,

which leads to

X
M,k
θ = X

M,0
θ

k−1∏
j=0

a0 (j)

b0 (j + 1)
. (C.9)

One evaluates

aθ (j)

bθ (j + 1)
=

π0,1
θ (M, j)

π0,−1
θ (M, j + 1)

= ηθ
M − j
j + 1

, (C.10)

where using (4.26) and (4.27), one hasη0 = p0qFA(2)p00+p1qD(1,1)p10

p0(1−qFA(2))p00+p1(1−qD(1,1))p10 ,

η1 = p0qD(1,1)p00+p1qD(0,2)p10

p0(1−qD(1,1))p00+p1(1−qD(0,2))p10 .
(C.11)

with p00 and p10 defined in (4.33).
From (C.9) and (C.10), one deduces

X
M,k
θ = X

M,0
θ

k−1∏
j=0

(
ηθ
M − j
j + 1

)

= X
M,0
θ ηkθ

M · (M − 1) · (M − k + 1)

1 · 2 · · · · k
=

(
M

k

)
ηkθX

M,0
θ . (C.12)

Since
∑M

k=0X
M,k
θ = 1, one has

1 =

M∑
k=0

(
M

k

)
ηkθX

M,0
θ = (ηθ + 1)M X

M,0
θ . (C.13)

From (C.12) and (C.13), ∀k = 0, . . . ,M ,

X
M,k
θ =

(
M

k

)(
ηθ

ηθ + 1

)k( 1

ηθ + 1

)M−k
=

(
M

k

)
(hθ)

k(1− hθ)M−k (C.14)

with hθ = ηθ
ηθ+1 . Introducing (C.14) into (4.33), one obtains (4.38) with Fθ defined in (4.37). Thus

one needs to solve (4.38) to determine p, which is then used to deduce XM,d
θ using (C.14).
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C.3 Proof of Lemma 4.1

To prove Lemma 4.1, one needs first investigate the monotonicity of Fθ. To lighten the notations,
let α = qFA (2), β = qD (1, 1) and γ = qD (0, 2). Then h0 and h1 defined in (4.35-4.36) can be
rewritten as

h0 (x, y) =
αp0x+ βp1y

p0x+ p1y
, h1 (x, y) =

βp0x+ γp1y

p0x+ p1y
, (C.15)

with (x, y) ∈ P0. One starts showing some monotonicity properties.

Lemma C.3. If α < β < γ, then h0 and h1 are decreasing with x and increasing with y, for all
(x, y) ∈ P0. If β = γ, then h1 = β = γ is a constant.

Proof. Since α < β 6 γ, one has

∂h0

∂x
=

(α− β) p0p1y

(p0x+ p1y)2 6 0,
∂h0

∂y
=

(β − α) p0p1x

(p0x+ p1y)2 > 0,

∂h1

∂x
=

(β − γ) p0p1y

(p0x+ p1y)2 6 0,
∂h1

∂y
=

(γ − β) p0p1x

(p0x+ p1y)2 > 0.

then Lemma C.3 can be proved.

Lemma C.4. For z ∈ [0, 1], the family of functions

fi (z) = zi (1− z)M−i, i = 0, 1 . . . ,M. (C.16)

are increasing over [0, i
M ] and decreasing over [ iM , 1].

Proof. Consider three possible situations: 1) If i = 0, f0 (z) = (1− z)M is decreasing over [0, 1]. 2)
If i = M , fM (z) = zM is increasing over [0, 1]. 3) If 1 6 i 6M − 1,

dfi
dz

= zi−1 (1− z)M−i−1 (i−Mz) , (C.17)

and dfi/dz > 0 when z ∈ [0, i
M ] and dfi/dz 6 0 when z ∈ [ iM , 1]. Therefore, Lemma C.4 holds

∀i = 0, . . . ,M.

Lemma C.5. If 0 < ν < 1, the function

g(z) =
∑

i:i/M<ν

(
M

i

)
fi (z) =

∑
i:i/M<ν

(
M

i

)
zi (1− z)M−i, (C.18)

is decreasing for all z ∈ [0, 1].

Proof. First, consider z ∈ [ν, 1]. In (C.18), each i in the sum is such that i
M < ν 6 z. From

Lemma C.4, fi (z) is a decreasing function for any i
M < z, thus g(z) is also decreasing with z.

Now, consider z ∈ [0, ν], one rewrites (C.18) as

g(z) = 1−
∑

i:i/M>ν

(
M

i

)
fi (z) , (C.19)
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in which each i in the sum is such that z < ν 6 i
M . Applying again Lemma C.4, since fi (z)

is an increasing function for any z 6 i
M , the sum in (C.19) is also increasing with z and g (z) is

decreasing. Thus g(z) is a decreasing function of z over [0, 1].

Considering the functions hθ and g, then one may rewrite Fθ as Fθ (x, y) = g (hθ (x, y)), ∀θ ∈
{0, 1}. The monotonicity of F0 and F1 is shown in the following lemma.

Lemma C.6. If α < β < γ, then F0 and F1 are increasing functions of x and decreasing functions
of y, for all (x, y) ∈ P0. If β = γ, then F1 = g(β) = g(γ) is a constant.

Proof. The proof of obtained by combining Lemma C.3 and Lemma C.5.

The proof of Lemma 4.1 is by induction. At the beginning, one has 0 6 pθ0(0) 6 1, thus
pθ0min (0) = 0 and pθ0max (0) = 1. Using Lemma C.6, one has Fθ(0, 1) 6 Fθ

(
p00 (0) , p10 (0)

)
6 Fθ (1, 0),

thus 

p00
min (1) = F0 (0, 1) = g (β) > 0 = p00

min (0) ,

p00
max (1) = F0 (1, 0) = g (α) < 1 = p00

max (0) ,

p10
min (1) = F1 (0, 1) = g (γ) > 0 = p10

min (0) ,

p10
max (1) = F1 (1, 0) = g (β) < 1 = p10

max (0) ,

(C.20)

thus (4.42) and (4.43) are true for n = 1.
Consider then an arbitrary n ∈ N∗ and n > 1. Assume that (4.42) and (4.43) are satisfied for

any n′ < n and n′ ∈ N∗, one needs to see whether (4.42) and (4.43) are still satisfied for n. Applying
Lemma C.6 again, one obtains

pθ0min (n) = Fθ
(
p00
min (n− 1) , p10

max (n− 1)
)

> Fθ
(
p00
min (n− 2) , p10

max (n− 2)
)

= pθ0min (n− 1) ,

and

pθ0max (n) = Fθ
(
p00
max (n− 1) , p10

min (n− 1)
)

< Fθ
(
p00
max (n− 2) , p10

min (n− 2)
)

= pθ0max (n− 1) ,

Similarly, one gets p10
min (n) > p10

min (n− 1) and pθ0max (n) < pθ0max (n− 1) .

C.4 Proof of Proposition 4.4

As seen in the proof of Proposition 4.3, ∀n ∈ N∗, F (p) maps Pn to Pn, with Pn =
[
p00
min (n) , p00

max (n)
]
×[

p10
min (n) , p10

max (n)
]
. In order to apply Banach’s fixed-point theorem [Ban22] to prove Proposi-

tion 4.4, it suffices to show that F is contracting, i.e., that for any pairs p = (x, y) ∈ Pn and
p + δ = (x+ δx, y + δy) ∈ Pn, one has

|F (p + δ)− F (p)| < |δ| . (C.21)
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A sufficient condition to have (C.21) is that the eigenvalues of the matrix

A =

(
∂F0(x,y)

∂x
∂F0(x,y)

∂y
∂F1(x,y)

∂x
∂F1(x,y)

∂y

)

have module less than 1. The eigenvalues of A are the solutions of

z2 −
(
∂F0

∂x
+
∂F1

∂y

)
z +

(
∂F0

∂x

∂F1

∂y
− ∂F0

∂y

∂F1

∂x

)
= 0. (C.22)

As in Appendix C.3, denote α = qFA (2), β = qD (1, 1) and γ = qD (0, 2). First, one evaluates

∂F0

∂x

∂F1

∂y
− ∂F0

∂y

∂F1

∂x
=

∂g

∂h0

∂g

∂h1

(
∂h0

∂x

∂h1

∂y
− ∂h0

∂y

∂h1

∂x

)
(a)
= 0,

where (a) comes from ∂h0
∂x

∂h1
∂y = ∂h0

∂y
∂h1
∂x , using the partial derivatives calculated in the proof of

Lemma C.3. Then, the solutions of (C.22) are z1 = ∂F0
∂x + ∂F1

∂y and z2 = 0. Hence, it suffices to
prove that |z1| < 1.

We begin with the evaluation of an upper bound of the partial derivative of F0 (x, y) with respect
to x

∂F0 (x, y)

∂x
=
∂g (h0 (x, y))

∂x
=

∂g

∂h0
· ∂h0

∂x

(a)
=

(β − α) p0p1y

(p0x+ p1y)2

∑
i:i/M<ν

(
M

i

)
hi0 (1− h0)M−i

h0M − i
h0 (1− h0)

(b)

6
(β − α) p0p1y

(p0x+ p1y)2 F0 (x, y)
M

1− h0
6 c0 (α, β, γ,M, ν, n) , (C.23)

where (a) is obtained using (C.17), (b) comes from i > 0, and c0 is defined in (4.45). Meanwhile,
from Lemma C.6, one has ∂F0 (x, y) /∂x > 0, as F0 is an increasing function of x.

Similarly,

∂F1 (x, y)

∂x
=
∂g (h1 (x, y))

∂y
=

∂g

∂h1
· ∂h1

∂y

=
(γ − β) p0p1x

(p0x+ p1y)2

∑
i:i/M<ν

(
M

i

)
hi1 (1− h1)M−i

i− h1M

h1 (1− h1)

>
(γ − β) p0p1x

(p0x+ p1y)2 F1 (x, y)
−M

1− h1
> −c1 (α, β, γ,M, ν, n) , (C.24)

and ∂F1 (x, y) /∂y 6 0 as F1 is a non-decreasing function of y. One concludes that

−c1 6
∂F0 (x, y)

∂x
+
∂F1 (x, y)

∂y
6 c0,

thus c0 < 1 and c1 < 1 lead to |z1| < 1, which ensures the unicity of the equilibrium.
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C.5 Proof of Proposition 4.5

First, one shows that if ν < qD (1, 1), then for any ε > 0, there exists M > M ′, such that p10 < ε.
From Lemma 4.1, p10 can be bounded as

p10 = F1

(
p00, p10

)
<

∑
k:k/M<ν

(
M

k

)
(qD (1, 1))k (1− qD (1, 1))M−k (C.25)

Consider Φ1,Φ2, . . . an infinite sequence of i.i.d. binary random variables with P {Φm = 1} =

qD (1, 1). For any % ∈ [0, 1] such that %M ∈ N+, one has

P

{∑M
m=1 Φm

M
=%

}
=

(
M

%M

)
(qD (1,1))%M (1−qD (1,1))M(1−%).

According to the weak law of large numbers [CT12], for ε > 0, there exists M ′, such that for any
M > M ′, one has

P

{∣∣∣∣∣
∑M

m=1 Φm

M
− qD (1, 1)

∣∣∣∣∣ > qD (1, 1)

}
< ε. (C.26)

From (C.26), one also has

∑
k:k/M<(qD(1,1)−ε)

(qD (1, 1))k (1− qD (1, 1))M−k = P

{∑M
m=1Φm

M
−qD(1,1)<−ε

}

6 P

{∣∣∣∣∣
∑M

m=1Φm

M
−qD(1,1)

∣∣∣∣∣>ε
}
< ε. (C.27)

If ν < qD (1, 1)− ε, then using (C.27), the bound of p10 in (C.25) may be further written as

p10 <
∑

k:k/M<ν

(
M

k

)
(qD (1, 1))k(1−qD (1, 1))M−k

6
∑

k:k/M<(qD(1,1)−ε)

(
M

k

)
(qD (1, 1))k(1−qD (1, 1))M−k<ε. (C.28)

From Lemma C.3 and the fact that qFA (2) 6 p10 6 qD (1, 1) and 0 6 p10 < ε, one has
h0

(
p00, p10

)
∈ [qFA (2) , χ (ε)], with

χ (ε) =
p0 (qFA (2))2 + p1qD (1, 1) ε

p0qFA (2) + p1ε
. (C.29)

Thus, according to Lemma C.5,

p00 = F0

(
p00, p10

)
= g

(
h0

(
p00, p10

))
> g (χ (ε)) =

∑
k:k/M<ν

(
M

k

)
(χ (ε))k (1− χ (ε))M−k . (C.30)
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Using derivations similar to those leading to (C.27), one gets

∑
k:k/M>(χ(ε)+ε)

(
M

k

)
(χ (ε))k (1− χ (ε))M−k < ε, (C.31)

which leads to ∑
k:k/M6(χ(ε)+ε)

(
M

k

)
(χ (ε))k (1− χ (ε))M−k > 1− ε. (C.32)

If ν > χ (ε) + ε, then

p00 >
∑

k:k/M<ν

(
M

k

)
(χ (ε))k (1− χ (ε))M−k

>
∑

k:k/M6(χ(ε)+ε)

(
M

k

)
(χ (ε))k (1− χ (ε))M−k > 1− ε. (C.33)

As a conclusion, for any ε > 0, if χ (ε) + ε < ν < qD (1, 1) − ε, then p00 > 1 − ε and p10 < ε.
Since limε→0 χ (ε) = qFA (2), one concludes that if qFA (2) < ν < qD (1, 1), one obtains (4.47).



134

Appendix D

Appendices of Chapter 5

D.1 Proof of Proposition 5.2

Consider an arbitrary θ ∈ Θ and some ε > 0 such that

ε < min
16θ<K

sθ − sθ+1

2
. (D.1)

Let Φθ
1,Φ

θ
2, . . . be an infinite sequence of i.i.d. binary random variables with P

{
Φθ
m = 1

}
= sθ. For

any % ∈ [0, 1] such that %M ∈ N+, one has

P

{∑M
m=1 Φθ

m

M
=%

}
=

(
M

%M

)
(sθ)

%M (1− sθ)M(1−%). (D.2)

According to the weak law of large numbers [CT12], there exists M ′, such that for all M > M ′, one
has

P

{∣∣∣∣∣
∑M

m=1 Φθ
m

M
− sθ

∣∣∣∣∣ < ε

}
> 1− ε. (D.3)

From (D.2) and (D.3), one also has

∑
β:β/M∈(sθ−ε,sθ+ε)

(
M

β

)
(sθ)

β (1− sθ)M−β

=P

{∑M
m=1 Φθ

m

M
∈ (sθ − ε, sθ + ε)

}
> 1− ε. (D.4)

If νθ−1 and νθ are chosen such that
νθ−1 > sθ + ε (D.5)

and
sθ − ε > νθ, (D.6)
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then ∀θ ∈ Θ,

pθθ =
∑

β:β/M∈(νθ,νθ−1)

(
M

β

)
(sθ)

β (1− sθ)M−β

>
∑

β:β/M∈(sθ−ε,sθ+ε)

(
M

β

)
(sθ)

β (1− sθ)M−β > 1− ε.

The constraints (D.5) and (D.6) have to be satisfied for θ = 1, . . . ,K. They may be reformulated
as

sθ+1 + ε < νθ < sθ − ε (D.7)

for θ = 1, . . . ,K − 1. Such values of νθ may be found, since one imposes the constraints (D.1) on ε.
One concludes that ∀θ ∈ Θ and ∀ε > 0 satisfying (D.1), there exists a choice of the values of νθ

such that (D.7) is satisfied and there exists M ′, such that for all M > M ′, pθθ > 1− ε. The value
of ε can be chosen arbitrarily close to zero, which will require M going to infinity, so, provided that
sθ+1 < νθ < sθ, ∀θ ∈ Θ, one has limM→∞ p

θθ = 1, if νθ < sθ < νθ−1, ∀θ ∈ Θ.

D.2 Proof of Proposition 5.4

Brouwer’s fixed-point theorem [GD13] can be used to show the existence of a solution of (5.24). For
that purpose, one has to show that for any p1 (0) =

(
p11 (0) . . . pK1 (0)

)
∈ P0 =

{
x ∈ [0, 1]K and x 6= 0

}
,

the discrete-time system
p1 (n+ 1) = F

(
p1 (n)

)
, (D.8)

with p1 (n) =
(
p11 (n) . . . pK1 (n)

)
∀n ∈ N∗ , converges to a equilibrium point p1.

Each Fθ with θ ∈ Θ is a continuous function. One needs to verify whether the value p1 (0)

belongs to some compact set. Using the similar derivations as in the proofs of Lemma C.1 and C.2,
one obtains that there is always

∑
θ∈Θ

pθ1 (t) > 0. (D.9)

which means that
p1 (0) ∈ P0 =

{
x ∈ [0, 1]K such that x 6= 0

}
. (D.10)

P0 is not compact. One then has to find a compact Pn such that F maps Pn to Pn, in order to
apply Brouwer’s fixed-point. One starts showing some properties of some basic functions involved
in F.

Lemma D.1. If x = (x1 . . . xK) ∈ P0, then hθ (x) is bounded as follows

0 < hθ,min 6 hθ (x) 6 hθ,max, (D.11)
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where hθ,max = max {q (θ, 1) . . . q (θ,K)} ,

hθ,min = min {q (θ, 1) . . . q (θ,K)} .
(D.12)

Proof. Using Assumption A6), one has hθ,min = min {q (θ, 1) . . . q (θ,K)} > 0. Moreover, one has

hθ,max − hθ (x) = hθ,max −
∑

k∈Θ pkq (θ, k)xk∑
k∈Θ pkxk

=

∑
k∈Θ pk (hθ,max − q (θ, k))xk∑

k∈Θ pkxk
.

Since hθ,max > q (θ, k), ∀k ∈ Θ, one gets hθ,max − hθ (x) > 0. In a similar way,

hθ,min − hθ (x) =

∑
k∈Θ pk (hθ,min − q (θ, k))xk∑

k∈Θ pkxk
6 0.

Then (D.11) is proved.

Lemma D.2. If 0 < ν1 < 1, the function

g(z) =
M∑

β=dMν1e

(
M

β

)
zβ (1− z)M−β, (D.13)

is increasing for all z ∈ [0, 1].

Proof. In Lemma C.5, one has shown that 1−g(z) is decreasing for z ∈ [0, 1], thus g(z) is increasing.

From Lemma D.1 and Lemma D.2, one obtains that for any θ ∈ Θ and x ∈ P0Fθ (x) 6 g (hθ,max) ,

Fθ (x) > g (hθ,min) > 0
(D.14)

Define pθ1max (n) and pθ1min (n) as upper and lower bounds of pθ1 (n), i.e., pθ1min (n) 6 pθ1 (n) 6 pθ1max (n).
When n = 0, one has pθ1min (0) = 0 and pθ0max (0) = 1. From (D.14), one getspθ1min (1) = g (hθ,min) > 0

pθ1max (1) = g (hθ,max) .
(D.15)

Define
P1 =

[
p11
min (1) , p11

max (1)
]
× . . .×

[
pK1
min (1) , pK1

max (1)
]
, (D.16)

then p1 (1) = F
(
p1 (0)

)
∈ P1. Notice that 0 /∈ P1 and P1 is a compact set since pθ1min (1) > 0

Consider then an arbitrary integer n ∈ N∗. Assume that p1 (n− 1) ∈ P1, one needs to see
whether p1 (n) ∈ P1 is satisfied. Since P1 ⊆ P0, one still has

hθ,min 6 hθ
(
p1 (n− 1)

)
6 hθ,max,
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which leads to pθ1 (n) = Fθ
(
p1 (n− 1)

)
6 g (hθ,max)

pθ1 (n) = Fθ
(
p1 (n− 1)

)
> g (hθ,min)

. (D.17)

Therefore F maps P1 to P1. Besides, P1 is compact. Hence one can apply Brouwer’s fixed-point
theorem to prove Proposition 5.4.

D.3 Proof of Proposition 5.5

First, one investigates the upper bound of pθ1 for θ ∈ Θ \ {1} and M sufficient large. As for (D.4),
for any ε > 0, there exists m1, such that for all M > m1

d(sθ+ε)Me−1∑
β=b(sθ−ε)Mc+1

(
M

β

)
(hθ,max)β (1− hθ,max)M−β > 1− ε, (D.18)

which leads to

M∑
β=b(hθ,max+ε)Mc+1

(
M

β

)
(hθ,max)β (1− hθ,max)M−β

< 1−
d(sθ+ε)Me−1∑

β=b(sθ−ε)Mc+1

(
M

β

)
(hθ,max)β (1− hθ,max)M−β

< ε. (D.19)

If ν1 > hθ,max + ε, then from (D.17) and (D.19), one gets

pθ1 <

M∑
β=dν1Me

(
M

β

)
(hθ,max)β (1− hθ,max)M−β

<

M∑
β=b(hθ,max+ε)Mc+1

(
M

β

)
(hθ,max)β (1− hθ,max)M−β

< ε. (D.20)

Moreover, if
ν1 > max

θ∈Θ\{1}
(hθ,max + ε) = max

θ∈Θ\{1},k∈Θ
(q (θ, k) + ε) ,

then
pθ1 < ε, ∀θ ∈ Θ \ {1} . (D.21)
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Second, one derives the lower bound of p11. Denote ζ = minθ∈Θ\{1} q (1, θ), one has

h1

(
p1
)

=
p1q (1, 1) p11 +

∑
k∈Θ\{1} pkq (1, k) pk1∑

k∈Θ pkp
k1

>
p1q (1, 1) p11 + ζ

∑
k∈Θ\{1} pkp

k1∑
k∈Θ pkp

k1

>
p1q (1, 1) p11

min (1) + ζε
∑

k∈Θ\{1} pk

p1p11
min (1) + ε

∑
k∈Θ\{1} pk

= χ.

According to Lemma D.2, one has p11 > g (χ). If ν1 < χ− ε, p11 can be further bounded as

p11 > g (χ) =

M∑
β=dν1Me

(
M

β

)
χβ (1− χ)M−β

>
M∑

β=b(χ−ε)Mc+1

(
M

β

)
χβ (1− χ)M−β

>
d(χ+ε)Me−1∑

β=b(χ−ε)Mc+1

(
M

β

)
χβ (1− χ)M−β

(a)
> 1− ε.

Again, similar to (D.4), there exists m2 > m1 such that for all M > m2, (a) is true.
Notice that limε→0 χ = q(1, 1), one obtains that if

max
θ∈Θ\{1},k∈Θ

q (θ, k) < ν1 < q(1, 1),

then limM→∞ p
11 = 1. Using similar derivations, if q(θ+1, 1) < νθ < q(θ, 1), for all θ = 1, . . . ,K−1,

one has limM→∞ p
θθ = 1, ∀θ ∈ Θ \ {1}.

D.4 Proof of Proposition 5.6

One starts with Case I. From (5.27), one has

∑
θ∈Θ

pθθ =

K∑
θ=1

∑
β:νθ6β/M<νθ−1

X
M,β
θ

=

M∑
β=dν1Me

(
M

β

)
(s1)β (1− s1)M−β +

K∑
θ=2

dνθ−1Me−1∑
β=dνθMe

(
M

β

)
(sθ)

β (1− sθ)M−β (D.22)
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To lighten the notations, let dθ = dνθMe. Then one needs to find d∗ = (d∗1 . . . d
∗
K−1) such that

d∗1 > . . . > d∗K−1 and

U (d) =

M∑
d=d1

(
M

β

)
(s1)β (1− s1)M−β +

K∑
θ=2

dθ−1∑
d=dθ

(
M

β

)
(sθ)

β (1− sθ)M−β (D.23)

takes maximum value as d = d∗.
Consider an arbitrary θ ∈ Θ, one evaluates

δθ = U (d1 . . . , dθ + 1, . . . dK−1)− U (d1 . . . , dθ, . . . dK−1)

=

(
M

dθ

)(
(sθ+1)dθ (1− sθ+1)M−dθ − (sθ)

dθ (1− sθ)M−dθ
)
. (D.24)

If δθ > 0, then
(sθ+1)dθ (1− sθ+1)M−dθ > (sθ)

dθ (1− sθ)M−dθ , (D.25)

leading to

dθ < M
log
(

1−sθ
1−sθ+1

)
log
(
sθ+1

sθ
1−sθ

1−sθ+1

) = d̃θ, (D.26)

notice that log
(
sθ+1

sθ
1−sθ

1−sθ+1

)
< 0 as sθ+1 < sθ.

In contrast, if δθ < 0, then dθ > d̃θ. As a conclusion, for any d1 > . . . dθ . . . > dK−1, one has

U (d1 . . . , dθ, . . . dK) 6 U (d1 . . . , d
∗
θ, . . . dK) , ∀θ = 1 . . . (K − 1) (D.27)

where

d∗θ =
⌈
d̃θ

⌉
=

M
log
(

1−sθ
1−sθ+1

)
log
(
sθ+1

sθ
1−sθ

1−sθ+1

)
 . (D.28)

Then one has

U (d1 . . . dK−1) 6 U (d∗1, d2 . . . dK−1) 6 U (d∗1, d
∗
2, d3 . . . dK−1)

6 U (d∗1, d
∗
2, d3 . . . dK−1) 6 · · ·

6 U (d∗1 . . . d
∗
K) . (D.29)

Replacing sθ with q (θ, 1) and using the same derivations, one obtains the νθs which maximize∑
θ∈Θ p̃

θθ.
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Titre : Collecte et estimation robustes d’information dans un réseau de capteurs sans fils 
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réseau tolérant aux déconnections 

Résumé : Les réseaux de capteurs sans fils 

(RCSFs) suscitent un intérêt croissant depuis une 

vingtaine d'années. La première partie de cette 

thèse est consacré à l'étude de l'efficacité de 

compression de données corrélées provenant 

d'un RCSF et acheminées vers un point de 

collecte à l'aide du codage réseau linéaire 

aléatoire. Les conditions nécessaires et 

suffisantes sont obtenues pour récupérer 

parfaitement les données que les capteurs 

mesurent. Puis on considère les nœuds dans un 

RCSF collaborant afin d'exécuter une tâche 

donnée (acquisition, détection...), pour laquelle 

chaque nœud a potentiellement un niveau 

d'expertise différent. La seconde partie de cette  

 

thèse est dédiée à la conception et à l'analyse 

d'algorithmes d'auto-évaluation distribués 

(AED), qui permettent à chaque nœud d'auto-

évaluer son niveau d’expert. Trois types de 

problèmes sont considérés: i) la détection 

distribuée des nœuds défaillants (DDD), qui 

permet d'identifier les nœuds équipés de capteurs 

défectueux dans un RCSF; ii) la DDD dans un 

réseau tolérant aux déconnections (RTD) dont la 

topologie est dynamique et le degré de 

connectivité très faible; iii) la AED avec 

interactions pair à pair. Les résultats théoriques 

sont utiles pour configurer les paramètres des 

algorithmes.  
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Abstract : Wireless sensor networks (WSNs) 

have attracted much interests in the last decade. 

The first part of this thesis considers sparse 

random linear network coding is for data 

gathering and compression in WSNs. An 

information-theoretic approach is applied to 

demonstrate the necessary and sufficient 

conditions to realize the asymptotically perfect 

reconstruction under MAP estimation. The 

second part of the thesis concerns the distributed 

self-rating (DSR) problem, for WSNs with 

nodes that have different ability of performing 

some task (sensing, detection...). The main 

assumption is that each node does not know and 

needs to estimate its ability. Depending on the 

number of ability levels and the communication  
 

conditions, three sub-problems have been 

addressed: i) distributed faulty node detection 

(DFD) to identify the nodes equipped with 

defective sensors in dense WSNs; ii) DFD in 

delay tolerant networks (DTNs) with sparse and 

intermittent connectivity; iii) DSR using 

pairwise comparison. Distributed algorithms 

have been proposed and analyzed. Theoretical 

results assess the effectiveness of the proposed 

solution and give guidelines in the design of the 

algorithm.  
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