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Résumé (French) 

Les matériaux piézoélectriques sans plomb ont reçu une attention croissante au cours de la 

dernière décennie en raison des problèmes environnementaux et des problèmes de santé qu’ils 

peuvent causer. Un intérêt considérable a été porté sur le système à base de (K,Na)NbO3 (KNN) 

qui possède une température de Curie relativement élevée et de bonnes propriétés 

piézoélectriques. De nombreuses publications sur des céramiques polycristallines performantes 

à base de KNN ont accru l'intérêt pour ce matériau et son étude sous forme monocristalline le 

rend particulièrement intéressant pour deux raisons principales. La première consiste à 

s’affranchir du rôle négatif des interactions intergranulaires sur la réponse électromécanique 

que l’on peut observer dans les céramiques. La deuxième concerne l'ingénierie des domaines. 

En effet, la relation entre la direction du champ électrique externe, l'orientation 

cristallographique et les vecteurs de polarisation spontanée pour une structure spécifique peut 

être établie plus facilement dans des monocristaux. Ceci offre ainsi une voie pour une 

compréhension approfondie du mécanisme fondamental de la piézoélectricité dans ce type de 

matériaux et des applications potentielles en découlant. La considérable amélioration des 

réponses piézoélectriques et ferroélectriques qui a été effectuée dans le passé dans les 

monocristaux à base de plomb encourage également une exploration plus poussée des cristaux 

piézoélectriques à base de KNN car ils possèdent la même structure pérovskite. 

Le but principal de cette thèse est d’identifier et de mettre en œuvre les approches possibles 

pour l’amélioration des propriétés électromécaniques de monocristaux piézoélectriques à base 

de KNN. Après une courte introduction sur les connaissances fondamentales sur les 

piézoélectriques et les ferroélectriques, une revue bibliographique exhaustive sur le 

développement actuel de monocristaux à base de KNN en tant que piézoélectriques est 

présentée dans le chapitre 2. Par la suite dans le chapitre 3, la croissance en solution par deux 

techniques distinctes est présentée. La TSSG (pour Top-Seeded Solution Growth) et la SSSG 

(pour Seed-Submerged Solution Growth) sont entreprises afin de faire croître des 

monocristaux. L’accent est ensuite mis sur les problèmes liés à la croissance cristalline de 

monocristaux de KNN substitués par Li, Ta et / ou Sb. Les principales conclusions sur les 

résultats issus de la croissance des cristaux sont ensuite présentées au chapitre 4 et peuvent être 

résumées comme suit: (i) Pour chaque élément pris individuellement, leurs coefficients de 

ségrégation reposent fortement sur leurs concentrations initiales dans la solution liquide. La 



 

 XX                                                                                                                                                            Abstract 

discussion systématique menée sur le phénomène de ségrégation des éléments a contribuée à la 

formulation adéquate de la composition future des cristaux à base de KNN. (ii) La compétition 

entre éléments occupant le même site du réseau est démontrée. (iii) Le très faible coefficient de 

ségrégation de Li dans la matrice KNN est responsable de l'apparition d'une phase secondaire 

présentant la structure bronze de tungstène quadratique. (iv) Les régions optiquement laiteuses 

observées dans les monocristaux diminuent la réponse électrique et peuvent être réduites par 

traitement thermique et refroidissement lent.  

Dans la deuxième partie de la thèse, nous avons utilisé trois approches pour améliorer le 

comportement piézoélectrique et ferroélectrique des monocristaux à base de KNN et elles sont 

présentées au chapitre 5. La substitution chimique par les ions Ta ou Sb indique qu'une réponse 

électromécanique améliorée est obtenue lorsque la transition orthorhombique-quadratique est à 

proximité de la température ambiante, comme cela est observé pour les céramiques 

polycristallines. Le traitement thermique sous atmosphère d'O2 pur a conduit au doublement de 

la valeur du coefficient piézoélectrique et des paramètres ferroélectriques (polarisation 

maximale et rémanente) d'un monocristal de (K,Na,Li) (Ta,Nb,Sb)O3. Son coefficient 

piézoélectrique à la température ambiante, qui constitue un record mondial à l’heure actuelle 

vis-à-vis de ce qui est reporté dans la littérature internationale, vaut 732 pC.N-1. Ceci est attribué 

à la plus faible concentration de défauts dans le monocristal après traitement thermique. La 

troisième approche consiste au dopage des monocristaux de (K,Na,Li)(Ta,Nb)O3 avec une 

petite quantité d'ions Mn. Enfin, dans le chapitre 6, la dépendance des propriétés 

électromécaniques vis-à-vis de l’orientation cristallographique montre que des valeurs élevées 

de la polarisation maximale, de la polarisation rémanente, du champ coercitif, de la déformation 

maximale et de la déformation négative sont observées lorsque le champ électrique est orienté 

le long de la direction de la polarisation spontanée, à la fois dans les phases quadratique et 

orthorhombique. Ceci est relié à l'effet de la rotation de polarisation sous différentes directions 

de champ électrique. 
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Abstract (English)  

Lead-free piezoelectric materials have received increasing attention in the last decade, driven by 

environmental issues and health concerns. Of considerable interest is the (K,Na)NbO3 (KNN)-based 

system, which possesses a relatively high Curie temperature and good piezoelectric properties. 

Abundant publications on KNN-based polycrystalline ceramics increased the interest in studying their 

single-crystalline form, based on two major concerns. The first concern refers to the negative role of 

grain interactions on the electromechanical response. The second concern deals with domain 

engineering. The relationship between external electric field direction, crystallographic orientation, and 

spontaneous polarization vectors for a specific structure can be more readily established in single 

crystals and thus offers a pathway for an in-depth understanding of fundamental mechanism and 

potential applications. The exciting enhancement of both piezoelectric and ferroelectric response in lead-

based single crystals also encourages the further exploration of KNN-based piezoelectric crystals, as 

they possess the same perovskite structure. 

The main goal of this thesis is to find possible approaches for improved electromechanical properties in 

KNN-based piezoelectric single crystals. In Chapter 2, the current development of KNN-based single 

crystals as piezoelectrics is reviewed, following a short introduction of fundamental knowledge on 

piezoelectrics and ferroelectrics. Both submerged-seed solution growth and top-seeded solution growth 

techniques were employed to produce single crystals, as described detailed in Chapter 3. Emphasis is 

subsequently placed on issues of the crystal growth process, effective methods to enhance electrical 

properties, and crystallographic orientation-dependent electrical properties in Li-, Ta-, and/or Sb-

substituted KNN single crystals. The main conclusions from the crystal growth aspect are presented in 

Chapter 4 and can be summarized as follows: (i) For individual elements, segregation coefficients highly 

rely on the initial concentration in the liquid solution. The systematic discussion in this work contributes 

to future composition design in KNN-based crystals. (ii) A competition between elements occupied on 

the same lattice site was found. (iii) The very low Li segregation coefficient in the KNN matrix is 

importantly responsible for the occurrence of a secondary phase with the tetragonal tungsten bronze 

structure. (iv) The observed optically-cloudy regions in as-grown KNN-based single crystals decrease 

the electrical response and can be reduced by thermal treatment with slow cooling. In the second part of 

the thesis we used three approaches to enhance the piezoelectric and ferroelectric behavior of KNN-

based single crystals, which is shown in Chapter 5. Chemical substitution with Ta or Sb ions indicates 

that enhanced electromechanical response is achieved when the orthorhombic-tetragonal phase 

transition temperature is in the proximity of room temperature, as previously reported for polycrystalline 

ceramics. Thermal treatment in pure O2 atmosphere resulted in a twofold increase of the piezoelectric 

coefficient and ferroelectric parameters (maximum and remanent polarization) of a 
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(K,Na,Li)(Ta,Nb,Sb)O3 single crystal. The up-to-date highest room-temperature piezoelectric 

coefficient in annealed KNN-based single crystals of 732 pC/N was obtained, which is attributed to the 

lower defect concentration after the thermal treatment. The third approach, doping with a small amount 

of transition metal Mn ions in (K,Na,Li)(Ta,Nb)O3 single crystals, is also presented. Orientation 

dependence of electromechanical properties in Chapter 6 indicates that high maximum polarization, 

remanent polarization, coercive field, maximum strain, and negative strain were observed when the 

electric field was applied along one of the spontaneous polarization vectors in both tetragonal and 

orthorhombic phases. This is related to the effect of polarization rotation under different electric field 

directions. 
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1 Introduction 

The interconversion between mechanical and electrical energy in ferroelectric materials enables their 

application in a wide range of devices, such as transducers, actuators, and sensors. Since the 1950s, lead-

based piezoelectric materials have been extensively developed due to their excellent piezoelectric 

coefficients, especially when the compositions are in the vicinity of the morphotropic phase boundary 

(MPB) [1]. Moreover, the inherent temperature independence of the MPB enables good temperature 

stability of piezoelectric and ferroelectric performance [1,2]. However, the increasing demand for 

healthy and sustainable development drives more and more governments to restrict the use of lead-based 

materials. These efforts resulted in various legislations, such as the “Restriction of the use of certain 

hazardous substances in electrical and electronic equipment” (RoHS) [3]. Researchers are therefore 

required to develop lead-free piezoelectric materials to replace the lead-based systems.  

In 2004, a high piezoelectric coefficient of 416 pC/N was reported by Saito et al. [4] in the textured 

(K,Na,Li)(Ta,Nb,Sb)O3 (KNLTNS) polycrystalline ceramics. This report to a great extent stimulated 

the development of the (K,Na)NbO3 (KNN)-based systems as promising lead-free candidates for 

piezoelectric applications. This is evident by their 50 % share in the total number of publications in the 

lead-free piezoceramic field [5]. The main advantages of the KNN-based systems are high Curie 

temperature, high mechanical quality factors, fatigue resistance, low density, biocompatibility, and 

compatibility with base-metal electrodes.  

Single crystals enable the study of fundamental mechanisms and the inherent anisotropy of the 

electromechanical properties of ferroelectrics. This knowledge is of outmost importance for further 

development of piezoelectric devices. Moreover, the absence of intergranular interactions allows the 

full exploitation of the induced strain mechanisms. Thus very high piezoelectric and ferroelectric 

properties have been observed in many lead-based and lead-free perovskite piezoelectric single crystals, 

such as Pb(Zn1/3Nb2/3)O3-PbTiO3 (PZN-PT) [6], Pb(Mg2/3Nb1/3)O3-PbTiO3 (PMN-PT) [7], BaTiO3 [8], 

and (Na1/2Bi1/2)TiO3-BaTiO3 (BNT-BT) [9,10]. However, similar reports about enhanced piezoelectric 

and ferroelectric properties in KNN-based system are scarce. This is related to several aspects: the 

appearance of the secondary phase, the low intrinsic response of as-grown crystals which are far from 

the orthorhombic-tetragonal phase transition, and the high defect concentration resulting from 

volatilization of A-site alkali ions [11] and the high temperature growth processing. 

The main aim of this work is to investigate the factors influencing the electromechanical properties of 

KNN-based single crystals and to develop approaches of improving their performance. The thesis starts 

with a short summary of the fundamental knowledge on ferroelectrics, crystal growth methods, and an 
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up-to-date literature review on KNN-based polycrystalline ceramics and single crystals (Chapter 2). 

Chapter 3 briefly introduces the utilized experimental procedures.  

The crystals presented in this work were obtained by the submerged-seed solution growth and the top-

seeded solution growth techniques. Chapter 4 focuses on crystal growth issues for an in-depth 

understanding of the growth behavior and producing a crystal with the desired composition and high 

crystalline quality. The influence of element concentrations in the initial liquid on the segregation 

coefficients is investigated and the reasons for the occurrence of secondary phases during growth of 

KNN-based crystals are discussed. In addition, temperature dependence of structural parameters and 

domain configurations is provided. 

Chapter 5 describes the relationship between the chemical composition and the dielectric, piezoelectric, 

and ferroelectric properties of (K,Na,Li)(Ta,Nb)O3 (KNLTN) and KNLTNS single crystals. The main 

focus is on Ta and Sb substitutions. The change of the molar ratio between different elements shifts the 

orthorhombic-tetragonal phase transition (TO-T) and the Curie temperature (TC), consequently 

influencing the electrical response. Following the optimization of the chemical composition in KNLTN 

and KNLTNS single crystals, the chapter describes the comparison of electrical properties before and 

after thermal annealing in O2 atmosphere for a KNLTNS single crystal, which offers a promising method 

to enhance electrical properties. At the same time, the Sb valence states in KNLTNS single crystals are 

investigated. Subsequently, the influence of doping with transition metal Mn ions on the electrical 

behavior of KNLTN single crystals is presented. 

Chapter 6 highlights the relationship between crystallographic orientations, crystallographic structure, 

and the electric field-induced polarization and strain curves in a Mn-doped KNLTN single crystal. The 

cases with electric field parallel and nonparallel to one of the spontaneous polarization vectors are 

studied and compared. 
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2 Theory and Literature Review 

2.1 Fundamentals of Ferroelectrics 

This paragraph gives a brief review of the theoretical background on ferroelectrics, piezoelectrics, and 

related materials. For a more complete description, the reader is referred to the textbooks of Jaffe et al. 

[1], Waser et al. [12], Tagantsev et al. [13], and Heywang et al. [14], as well as the review papers of 

Damjanovic [15,16], and Haertling [17].  

2.1.1 Dielectrics 

If an electric field is applied to an ideal dielectric material, positively and negatively charged centers 

will be separated. This charge separation is described by the dipole moment 𝑝 , which is defined as the 

product of charges and the distance between these charges. The sum of all dipole moment vectors in a 

unit volume 𝑉 is defined as polarization �⃑⃑�. 

�⃑⃑� =
∑ �⃑�

𝑉
                                                                    (2.1) 

In a dielectric material, the induced polarization is proportional to the external electric field �⃑⃑�, and can 

be expressed as: 

�⃑⃑� = 휀0𝜒�⃑⃑�                                                                (2.2) 

where 𝜒 is the dielectric susceptibility, 휀0 the permittivity of vacuum. 

Dielectric displacement in dielectrics can be described by Equation 2.3.  

�⃑⃑⃑� = 휀0�⃑⃑� + �⃑⃑� = 휀0(1 + 𝜒)𝐸 ⃑⃑⃑⃑                                 (2.3) 

where 1+𝜒 is the relative permittivity 휀𝑟, describing the degree of polarization in the dielectric materials. 

In general, there are four main types of polarization mechanisms: electronic 𝑃𝑒⃑⃑⃑⃑ , ionic 𝑃𝑖⃑⃑⃑, orientation 𝑃𝑜⃑⃑ ⃑⃑ , 

and space charge polarization �⃑⃑�𝑠𝑝𝑎𝑐𝑒 𝑐ℎ𝑎𝑟𝑔𝑒. The total polarization �⃑⃑� in dielectrics is the sum of all 

cases, written as Equation 2.4. 

�⃑⃑� = 𝑃𝑒⃑⃑⃑⃑ + 𝑃𝑖⃑⃑⃑ + 𝑃𝑜⃑⃑ ⃑⃑ + �⃑⃑�𝑠𝑝𝑎𝑐𝑒 𝑐ℎ𝑎𝑟𝑔𝑒 = 𝛼𝑒𝑙 �⃑⃑� + 𝛼𝑖 �⃑⃑� + 𝛼𝑜�⃑⃑� + �⃑⃑�𝑠𝑝𝑎𝑐𝑒 𝑐ℎ𝑎𝑟𝑔𝑒         (2.4) 

where 𝛼𝑒𝑙, 𝛼𝑖, and 𝛼𝑜  are the electronic, ionic, and orientation polarizability, respectively.   
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Electronic polarization 𝑃𝑒⃑⃑⃑⃑  originates from the separation of the positively charged atomic nuclei and the 

negatively charged electron cloud after an electric field is applied. Therefore, it is present in all dielectric 

materials. For an individual atom, the electronic polarizability 𝛼𝑒𝑙  is temperature-independent. Ionic 

polarization 𝑃𝑖⃑⃑⃑, which appears in ionic materials, refers to the distance between positively charged 

cations and negatively charged anions under an electric field. Orientation polarization 𝑃𝑜⃑⃑ ⃑⃑  is related to 

the rotation of permanent dipole moments after the application of electric field. If no external field is 

applied, the net polarization is zero due to the random distribution of these permanent dipole moments. 

The orientation polarizability 𝛼𝑜 is dependent on the temperature. Space charge polarization involves 

the presence and accumulation of mobile charge carriers. In functional dielectric materials, other 

mechanisms can exist, such as domain wall polarization induced by the movement of domain walls in 

ferroic materials.  

The 𝑃𝑒⃑⃑⃑⃑  and 𝑃𝑖⃑⃑⃑ are also referred to as intrinsic contributions to the total polarization due to their lattice 

dependence, while others are extrinsic contributions. The overall polarization is frequency-dependent 

due to the different response times of individual species to the electric field, as shown in Figure 2.1 [12]. 

At a very low frequency, the permittivity has the same response as in the static field. At an increased 

frequency, the electronic and ionic polarization response are able to follow well the field, whereby the 

orientation and space charge polarization cannot follow. This time lag is defined as relaxation behavior. 

 

 
 

Figure 2.1. Frequency-dependence of the real part of the dielectric permittivity [12]. 

 

The relaxation behavior between the applied field and the permittivity response gives rise to the 

dielectric losses of the system. The permittivity of the system can therefore be described by the complex 

quantity by Equation 2.5. 

휀 = 휀′ + 𝑖휀′′                                                      (2.5) 
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where 휀 
′ is the real and 휀′′ the imaginary part. The imaginary part reflects the contribution of dielectric 

losses resulting from the conductivity. The dielectric loss tan𝛿 can be calculated as the ratio of the 

imaginary and real parts. 

2.1.2 Piezoelectrics 

Piezoelectric effects were first discovered in quartz by Pierre and Jacques Curie in 1880. Piezoelectricity 

is a coupling effect between mechanical and electrical energies in certain materials. It can be expressed 

by the following two equations: 

𝐷𝑖 = 𝑑𝑖𝑗𝑘𝜎𝑗𝑘                                                                 (2.6) 

𝑆𝑖𝑗 = 𝑑𝑖𝑗𝑘𝐸𝑘                                                                 (2.7) 

where 𝐷𝑖 is the dielectric displacement vector, 𝜎𝑗𝑘 the stress tensor, 𝑑𝑖𝑗𝑘 the piezoelectric tensor, while 

𝑖, 𝑗, and 𝑘 represent the three axes. The effect described by Equation 2.6 is the direct piezoelectric effect, 

whereas Equation 2.7 corresponds to the converse piezoelectric effect. 

Piezoelectricity is highly correlated to the symmetry of the crystalline structure of the material and 

requires a non-centrosymmetric structure, i.e., absence of an inversion center. Out of all 32 point groups, 

11 are centrosymmetric. Except the point group 432, all other 20 point groups exhibit piezoelectricity. 

Among them, 10 point groups display a spontaneous dipole moment and are therefore referred to as 

polar or pyroelectric. When spontaneous polarization vectors are switchable by an applied electric field, 

the point group will exhibit ferroelectric properties. 

2.1.3 Ferroelectrics 

Ferroelectricity is defined as the ability of a material to switch the spontaneous polarization with an 

external electric field. Dipoles within a region of a ferroelectric material are aligned in the same direction 

and these regions are referred to as ferroelectric domains (will be shortened to “domains” in the 

following text). The boundaries separating adjacent domain regions are so-called ferroelectric domain 

walls (will be shortened to “domain wall”). Multi-domain states typically exist in a ferroelectric material, 

due to the minimization of the total electrostatic and elastic energies. However, a single-domain state 

can be achieved in single crystals under specific conditions. 

With the application of an electric field, domains can be switched and the polarization aligned with the 

direction as close as possible to the direction of the electric field. As one of the main features of 

ferroelectric materials, the electric field-induced domain switching process can be described by the 

hysteresis loops (P-E loops). The hysteresis is related to the influence of the magnitude and direction of 
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the external field on the spontaneous polarization, domain switching, and domain wall growth ability. 

The ferroelectric hysteresis loop is accompanied by a change of the strain.  

 

 

 

(1)  E = 0                  (2)  E = Emax                           (3)  E = 0                     (4)  E = -EC 

 
Figure 2.2. (a) Ferroelectric hysteresis and (b) field-induced strain curves of a typical ferroelectric ceramic. The 

corresponding domain orientations under various fields: (c) E=0, (d) E=Emax, (e) E=0, and (f) E=-EC. 

 

 

Figure 2.2 (a) and (b) show a typical P-E and electric field-induced strain curve (S-E) of a ferroelectric. 

Zero macroscopic polarization and strain can be observed at the virgin state (1) of Figure 2.2 (a) and (b), 

resulting from the random distribution of domains, as shown in Figure 2.2 (c). By the application of a 

low electric field, the polarization and strain increase linearly. If the field is decreased in this region, the 

polarization and strain can return to the original state because the electric field is not high enough for 

domain switching to take place. On the contrary, further increasing the field results in irreversible 

domain switching and both polarization and strain start to increase rapidly and nonlinearly. Higher 

electric field strength can promote more and more domain switching into the directions close to the 



 

2  Theory and Literature Review                                                                                                                          7  

electric field direction. When the field is high enough, the polarization can reach the saturation state 

Pmax with the maximum strain Smax, as observed at state (2) in Figure 2.2 (a), (b), and (d). Continuously 

decreasing the field, back-switching occurs, and the polarization is reduced. Domain back-switching can 

induce a decrease in strain because of shrinking of the lattice. Moreover, this back-switching is subjected 

to hysteresis. After the removal of the electric field, some domains switch back to their initial states, as 

depicted in Figure 2.2 (e). Therefore, remanent polarization Pr and remanent strain Sr are observed at 

state (3) in Figure 2.2. In order to change the Pr and Sr, an opposite field has to be applied. When the 

field reaches -EC, zero polarization can again be observed. Figure 2.2 (f) shows the corresponding 

domain state, which is similar to the virgin state. Simultaneously, the strain reaches the minimum value. 

This value may be different with respect to the strain of the virgin state because of possible defects, 

grain boundaries, irreversible domain switching, and other effects. If the opposite field keeps increasing, 

dipoles will be aligned along directions as close as possible to the opposite field and the polarization 

begins to increase in the opposite direction with increasing positive strain. A higher field in the opposite 

direction also leads to a saturation state (state (5) in Figure 2.2). Decreasing the field in the opposite 

direction shows similar behavior as when the positive field is applied. The described parameters Pmax, 

Pr, EC, Sr, and Smax are used to evaluate the ferroelectricity of materials. Note that they can be 

significantly influenced by the applied frequency. 

It should be pointed out that all dielectrics deform under an external field, which corresponds to the so-

called electrostriction. In centrosymmetric dielectrics, this deformation is proportional to the square of 

the magnitude of the field. However, the deformation can be reversed by a small negative signal field 

due to the domain reorientation in ferroelectrics [18]. In ferroelectrics, the strain can be expressed as: 

𝑆𝑖𝑗 = 𝑄𝑖𝑗𝑘𝑙𝑃𝑘𝑃𝑙                                                                        (2.8) 

 

For the longitudinal strain of a poled ferroelectric ceramic,   

𝑆3 = 𝑄33(𝑃𝑟 + 𝑃3)
2 = 𝑄33𝑃𝑟

2 + 2𝑄33𝑃𝑟𝑃3 + 𝑄33𝑃3
2                   (2.9) 

where 𝑄𝑖𝑗𝑘𝑙  and 𝑄33  are the electrostrictive coefficients. 𝑄33𝑃𝑟
2  refers to the contribution from the 

remanent strain, the term 2𝑄33𝑃𝑟𝑃3 is attributed to the piezoelectric effect as linearized electrostriction. 

The term 𝑄33𝑃3
2 represents the contribution from the induced polarization to the electrostriction.  

According to the angle between the dipoles in the adjacent domain regions, domain walls are in general 

categorized as non-180 o and 180 o types (Figure 2.3). 180 o domain walls appear in all perovskite 

ferroelectrics. The non-180 o domain walls depend on the spontaneous polarization orientations in a 
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certain crystal structure, which will be discussed in the following paragraph. Note that only non-180 o 

domain walls contribute to the reduction of the ferroelastic energy, while both types reduce the 

electrostatic energy.  

 

 

 

 

 

 

 
Figure 2.3. (a) Neutral, (b) “head-to-head”, and (c) “tail-to-tail” type of 180 o domain walls, and (d) neutral, (e) 

“head-to-head” and (f) “tail-to-tail” type of 90 o domain walls. 

 

 

When the 180 o domain wall is parallel to the spontaneous polarization PS directions of the domains, it 

will be electrostatically neutral (Figure 2.3 (a)). However, if the 180 ° domain wall is not parallel to the 

PS, it will be constrained by negative or positive charges, stemming from the “head-to-head” or “tail-to-

tail” domain configurations, which can be seen in Figure 2.3 (b) and (c). Similar cases occur for non-

180 o domain walls, as shown in Figure 2.3 (a)-(d). Charged domain walls are in general energetically 

less favorable, due to the higher required energy [19]. Higher conductivity can be observed due to the 

accumulation of electrons or holes at walls [20].  

The multi-domain structure in ferroelectric materials is formed according to the requirement of energy 

minimization. The formation of the domain configuration is driven by the minimization of the total 

energy 𝐹1, including elastic 𝑊𝑥, domain wall 𝑊𝑤, and depolarization 𝑊𝐸 contributions, as written in 

Equation 2.10 [21]. 

𝐹1 = 𝐹1
0 + ∫(

𝛼

2
𝐷2 +

𝛾

4
𝐷4)𝑑𝑉 +𝑊𝑤 +𝑊𝐸                                  (2.10) 

    Neutral                                      Head-to-Head                                   Tail-to-

Tail (a)                                                (b)                                              (c) 

 

 

 

 

(d)                                                (e)                                              (f) 
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The magnitude of the depolarization energy 𝑊𝐸 is related to the geometry of the crystal and the domain 

configuration at the surfaces. The depolarization field is usually proportional to the polarization, so that 

𝑊𝐸 can be described as,  

𝑊𝐸 =
1

2
∫ �⃑⃑⃑��⃑⃑�
 

𝑣
𝑑𝑉 =

1

1
∫
𝜀

𝜀0
𝐿2𝑃2 𝑑𝑉                                          (2.11) 

where 𝐿 is the depolarization factor. The domain wall energy 𝑊𝑤 depends on the domain wall density 

𝜎𝑑  for a given domain geometry. In the volume 𝑉, 𝑊𝑤 depends on the domain width 𝑑:  

𝑊𝑤 = (
𝜎𝑑

𝑑
)𝑉                                                                            (2.12) 

It should be noted that the formation of the domains is the most common mechanism for the reduction 

of the depolarizing fields, but it is not the only one. Other mechanisms include electrode screening, 

charge flow due to the electrical conduction, compensation by the surrounding medium, and others.  

2.1.4 Phase Transitions 

Among the most common structures of ferroelectric materials is the perovskite structure, described by 

the chemical formula ABO3, where the valence of the A site can be +1, +2, or +3 and the valence of the 

B site can be +3, +4, +5, or +6. The corners and body-centered positions of the unit cell are occupied by 

A-site and B-site cations, respectively, while the O2- ions are located on the face-centered positions 

(Figure 2.4). 

 

 

 
Figure 2.4. Schematic of the perovskite structure ABO3. 
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An ideal perovskite material has a cubic structure. It can also be described as consisting of BO6 octahedra 

sharing corners with intermediate A-site cations in 12-fold coordination sites. A cubic perovskite shows 

neither ferroelectric nor piezoelectric properties because of the coincidence of positively and negatively 

charged centers. The paraelectric cubic structure can evolve into tetragonal, orthorhombic or 

rhombohedral with lower symmetry, originating from thermal- or stress-induced lattice distortions. 

Figure 2.5 displays the possible spontaneous polarization PS orientations for various crystallographic 

structures. Common materials with perovskite structure include BaTiO3, PbTiO3, KNbO3, etc. 

 

   

 

Figure 2.5. The orientation of PS for various crystallographic structures: (a) rhombohedral, (b) orthorhombic, and 

(c) tetragonal phases. Please note that the distortions with respect to the cubic phase are exaggerated in the 

drawings for better visibility. 

 

 

In the following section, BaTiO3 will be taken as an example to describe ferroelectric phase transitions. 

Figure 2.6 shows temperature-dependent dielectric properties and polarization of single domain BaTiO3 

crystals. BaTiO3 has a cubic structure without any macroscopic polarization above 120 oC. Note that 

BaTiO3 goes into the hexagonal phase above 1539 oC [22]. As this phase is too far from the ferroelectric 

phase, it is not discussed for ferroelectric properties generally. A phase transition between paraelectric 

and ferroelectric phase occurs when BaTiO3 is cooled below the so-called Curie temperature TC. The 

structure changes to tetragonal and correspondingly exhibits a lattice distortion. The spontaneous 

polarization vector PS is oriented along the axes of <001>PC family. Note that “PC” stands for “pseudo-

cubic” and the corresponding directions or planes mentioned in this thesis represent those of a cubic 

structure. Upon further cooling, the orientations of PS switch to <110>PC and the structure becomes 

orthorhombic. Eventually, PS changes to <111>PC when the rhombohedral symmetry appears. As shown 

(a)                                       (b)                                       (c) 
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in Figure 2.6 (b), a relationship between the magnitudes of PS for various phases exists in a BaTiO3 

single domain [14]: 

𝑃𝑠(Tetra. ) = √2 ∗ 𝑃𝑠(𝑂𝑟𝑡ℎ𝑜. ) = √3 ∗ 𝑃𝑠(𝑅ℎ𝑜𝑚𝑏𝑜. )                     (2.13) 

 

 

 

 
 

Figure 2.6. Temperature dependences of (a) dielectric properties and (b) polarization of a [001]PC-oriented 

single-domain BaTiO3 crystal. Reprinted from Ref. [14], with permission of Springer. 

 

 

The domain configuration is therefore strongly dependent on crystallographic structures, especially for 

the non-180 o domains. In the tetragonal ferroelectric, non-180 o domain walls are of 90 o type. In the 

orthorhombic phase, one refers to 60 o, 90 ° and 120 o domain walls [23]. In the rhombohedral phase, 

the types are of 71 o and 109 °. These non-180 ° domain walls make important contributions to the 

ferroelastic properties. Figure 2.7 schematically shows the domains in tetragonal and rhombohedral 

Pb(Zr,Ti)O3 (PZT) crystals with selected orientations [14]. 
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Figure 2.7. Domains in tetragonal and rhombohedral PZT crystals with selected orientations. Reprinted from 

Ref. [14], with permission of Springer. 

 

 

Due to the versatility, the perovskite structure can be modified by the addition of various cations. This 

is an important routine to obtain a desired functional material due to the different atomic size and 

polarizability, i.e. with high ferroelectric or piezoelectric constant at room temperature, or good 

temperature stability of electrical properties. 

In order to roughly classify the perovskite structures and the degree of distortion, Goldschmidt’s 

tolerance factor t was defined based on the ionic radii [24], 

𝑡 =
𝑅𝐴+𝑅𝑂

√2(𝑅𝐵+𝑅𝑂)
                                                                       (2.14) 

where 𝑅𝐴 , 𝑅𝐵 , and 𝑅𝑂  represent average ionic radii of A-site, B-site cations, and oxygen ions, 

respectively. The tolerance factor t of an ideal cubic structure, such as SrTiO3, equals to 1. The ions in 

the structure do not have the ability to move freely. When a smaller A ion or a larger B ion is doped into 

a perovskite structure, the t value will be smaller than 1. In this case, B-site ions can easily move to off-

center positions, which often results in rhombohedral or orthorhombic lattice distortion. If t becomes 

larger than 1, the A ion can increase or the B ion decrease, which typically results in tetragonal 

symmetry. The prerequisite of a stable perovskite structure is 0.9 < t < 1.1 [25]. The t values outside this 

range will lead to an unstable perovskite structure.  
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2.1.5 Defects in Perovskite Structure 

The electrical properties of ferroelectrics are influenced not only by the lattice and domains, but also by 

structural defects. Therefore, the understanding of the defect chemistry of perovskite-type ferroelectric 

materials is very important for altering their electrical performance. The Kröger-Vink notation is 

typically used to classify the defects, using a main symbol, a subscript, and a superscript [26,27]. The 

main symbol refers to the defect species, denoted by the atomic symbol or V if it is a vacant lattice site. 

The subscript represents the lattice site the defect occupies, which may be a lattice or interstitial site. 

The superscript represents the charge at the defect site. A dot “ . ” denotes a positive charge, while a 

comma “ ′ ” stands for a negative charge. The zero net charge is indicated as “ x ”. Moreover, several 

conservation rules need to be considered: the conservation of mass, charge, structure, and electronic 

states. Table 2.1 lists some defects, which are expected to appear in the investigated materials in this 

work. 

 

 
Table 2.1. Defect types, which are expected to appear in the investigated materials. 

 

Defect type Kröger-Vink notation 

Oxygen vacancy VO
.. 

K/Na/Li vacancy VK′, VNa′, VLi′ 

Sb3+ impurity center SbNb′′  

Free electron e′ 

Free hole h. 

 
 

Defects can be created unintentionally during the processing of ferroelectrics. In addition, they can also 

be created intentionally with small amounts of isovalent or aliovalent doping, in order to obtain the 

desired functional properties. Defects can be located in the bulk, near the grain boundaries, or at domain 

walls. When a material is chemically substituted with lower valence ions, referred to as acceptor doping. 

Typical examples are Fe3+ doped Pb(Zr,Ti)O3, Cu2+ doped PbTiO3, or Mn2+ doped BaTiO3. In order to 

compensate charges, oxygen vacancies will be created simultaneously. It was demonstrated that these 

defects, such as, CuTi′′, FeTi′, MnTi′′ centers, are driven by a strong chemical force to form defect 

associations with oxygen vacancies, also denoted as defect dipoles [28]. With the application of electric 

or thermal fields, defect dipoles can align along the orientation parallel to spontaneous polarization 

vectors [29,30] and stabilize the domain structure [31]. Acceptor doping therefore typically hardens the 

ferroelectricity, accompanied by a larger coercive field, smaller polarization, and appearance of an 
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internal bias field. On the other hand, when high valence ions are introduced into a material (donor 

doping), such as Nb5+-doped PZT [32], the ferroelectricity can soften. This leads to a lower coercive 

field, lower oxygen vacancy concentration, large electromechanical coefficients, and large nonlinearity.   

In addition, the charged defects also influence the electrical conductivity. For example, if the activation 

energy of conductivity is low, high mobility of oxygen vacancies will induce a high leakage current.  

2.2 Fundamentals of Crystal Growth 

Crystal growth refers to the separation of a solid-state phase from a solid, a liquid, or a gas state [33]. 

Oxide compounds with a high crystallization temperature, such as KTaO3- or BaTiO3-type materials, 

are usually grown from a high temperature liquid phase. There are two kinds of crystal growth methods: 

growth from the melt for congruently-melting compounds and growth from the solution for the others. 

Besides, single crystal growth from solid state is also reported. In this part, several crystal growth 

techniques are introduced briefly, including: Czochralski, Bridgman-Stockbarger, the conventional flux 

growth, top-seeded solution growth, and solid-state crystal growth methods. Most information is taken 

from the textbooks of Elwell and Scheel [34], Dhanaraj et al. [35], Jackson et al. [36], and Benčan et al. 

[37], and the review papers of Sun et al. [38], and Kang et al. [39]. 

Growth from Melts 

For a crystallization process from the melt, the crystal is separated from the melt by directional 

solidification without any solvent. The composition of the as-grown crystal is the same as that of the 

melt. Crystals, which can be grown from the melt, must satisfy the following conditions: 

1. The compound melts congruently, meaning that the liquidus and solidus curves coincide at the 

crystallization temperature. The crystallization temperature occurs at the melting temperature 

of the compound. 

2. The compound does not decompose below the melting point.  

3. No destructive solid‒solid phase transition, particularly the first-order phase transition, occurs 

between the melting and room temperature. 

Growth methods from the melt include the Czochralski growth method, Bridgman-Stockbarger method, 

and floating zone method among others. Note that the latter can also be used for non-congruent melting 

compounds. The growth rate of crystals from a melt is usually much higher than that of crystals grown 

from a solution due to the same chemical nature of both liquid phase and the crystals. 

However, a large variety of crystals do not satisfy the above mentioned conditions due to the incongruent 

melting points, volatile components, or phase transitions. Moreover, high viscosity melts may lead to 



 

2  Theory and Literature Review                                                                                                                       15 

the formation of glasses. A very high melting point (TM > 2000 °C) also limits the use of the growth 

techniques from the melt because of the introduction of defects into the as-grown crystals, such as 

oxygen vacancies, thermal stresses, dislocations, and fractures, and because of the requirements of the 

setup. 

Growth from High Temperature Solutions 

Crystals, which cannot be obtained from their melts, are grown from a solution, such as an aqueous 

solution for hydrothermal growth or from a high temperature inorganic solution for the flux growth. For 

the solution crystallization process, the crystal is solidified from a solution with the addition of a solvent, 

which is called the flux. The crystallization process thus occurs at the saturation temperature of the 

solution, analogous to the melting temperature for congruently-melting materials. 

The flux growth method is often applied to obtain ferroelectric single crystals. Simple inorganic 

compounds are selected as fluxes due to the low melting temperatures, such as B2O3, Bi2O3, BaCl2, PbO, 

Na2CO3, KOH, PbF2, and others. The selected compound should not incorporate into the as-grown 

crystal. One of the disadvantages of the flux method is the appearance of flux inclusions inside the as-

grown crystals. It is a great challenge to produce large-scale crystals with high crystallographic quality 

by the conventional flux method. Other techniques have been developed by combining with the flux 

method, for instance, the solution Bridgman-Stockbarger growth [40,41,42] and the top-seeded solution 

growth method [43,44,45], which is widespread for (K,Na)NbO3 (KNN)-based crystal growth. The self-

flux method has been employed to produce single crystals when element species of the flux are contained 

in the desired crystal [46], and therefore avoids the foreign element contamination. 

Crystal growth has three sub-processes: nucleation, growth, and the termination of the growth process. 

Homogeneous nucleation occurs when the nuclei start to appear anywhere in the liquid. However, 

heterogeneous nucleation generally occurs due to the lower free enthalpy of the formation of stable 

nuclei. It is therefore much easier for the nuclei to crystallize at the preferential locations, such as the 

crucible wall or the impurities. However, the heterogeneous nucleation process is quite uncontrollable. 

Generally, seeds (oriented single crystalline form or random polycrystalline form) are used during 

crystal growth process to provide a heterogeneous nucleation. 

In the following section, the details of the Czochralski growth, Bridgman-Stockbarger, the conventional 

flux, top-seeded solution growth, and submerged-seed solution growth techniques are described. 

Moreover, a description of the solid-state crystal growth method, which is well-known in ferroelectric 

crystal growth, is also provided.  



 

16                                                                                                                2.2  Fundamentals of Crystal Growth  

2.2.1 Top-seeded Solution Growth 

In order to obtain large size crystals by the flux method, the top-seeded solution growth (TSSG) 

technique is undertaken with oriented single crystalline seeds. As compared to the Czochralski method, 

the TSSG setup has a similar geometrical and thermal configuration. However, a lower thermal gradient 

as well as the high temperature solution instead of a melt are employed in the flux growth method. 

Figure 2.8 (a) shows a scheme of the TSSG setup. The mixture of starting materials for the desired 

composition is loaded into a crucible and placed into a furnace. After being molten, the batch is soaked 

for 10‒24 h in order to homogenize the solution. A seed crystal with an adequate orientation is then 

dipped into the solution at about the saturation temperature in order to reach the solubility equilibrium. 

Then, the crystal starts to grow by cooling the system at a small rate, for example 1 °C/day, and with 

slow pulling out of the crystal. At the end of the growth, the as-grown crystal is pulled out of the liquid 

solution and then cooled down to room temperature at a relatively higher cooling rate in the range of 5‒

30 °C/h. The TSSG method was successfully used to grow many perovskite crystals such as BaTiO3 

[6,47,48], PMN-PT [49,50], PIN-PMN-PT [51], Pb(Yb1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 (PYN-

PMN-PT) [52], PZN-PT [44], NBT-BT [53,54,55], Mn-doped NBT-BT [56], Na1/2Bi1/2TiO3-

K1/2Bi1/2TiO3 (NBT-KBT) [57], Na1/2Bi1/2TiO3-Bi(Zn1/2Ti1/2)O3 (NBT-BZT) [58], KNbO3 [59,60,61], 

and (K,Na)NbO3 [62]. Figure 2.8 (b)-(g) shows various perovskite crystals grown by the TSSG 

technique. It should be pointed out that the crystal shapes are correlated to the seed orientations during 

the growth of KNbO3 single crystals [59]. In fact, the growth time, growth parameters, and crystal habits 

also affect the shape of the crystals. Generally, single crystals with good quality can be grown by the 

TSSG method due to the small temperature gradient and slow growth process [50]. However, the growth 

rate by the TSSG method is lower compared with the Czochralski method, which makes the growth 

lasting several weeks for centimeter-sized single crystals. For example, a crystal with a few cm length 

was produced in 2 weeks in the present work. 
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Figure 2.8. (a) Scheme of the TSSG setup. (b)-(g) Photographs of single crystals grown by the TSSG method: (b) 

PMN-PT [49], (c) PZN-PT [44], (d) BaTiO3 [48], (e) PYN-PMN-PT [52], (f) Mn-doped NBT-BT [56], and (g) 

KNbO3 [60]. The length of a regular grid in the graph paper in (b)-(e) is 1 mm. Adapted from Ref. 

[44,48,49,52,56,60], with permission of Elsevier, John Wiley and Sons, Royal Society of Chemistry, American 

Chemical Society, AIP Publishing LLC, and Elsevier, respectively.  

 

 

2.2.2 Czochralski Method 

The Czochralski technique is used to grow large-scale single crystals in a relatively short time. The 

process is determined by the temperature distribution in the melt and the heat convection between the 

melt, the crystal, and air, which are related to the thermal conductivity and heat capacity of the melt and 

the crystal. The growth technique is widely used to produce crystals that melt congruently, without any 

phase transition during growth process, such as Si or Ge single crystals.  

Figure 2.9 describes the typical steps of the Czochralski technique. Powder mixture is loaded into a 

crucible made of an inert material. The selection rule of the crucible depends on the chemical bound in 

the compounds of the solution. For example, oxide compounds, of which chemical bonds are generally 

ionic covalent, are usually grown in a metallic crucible such as gold, platinum, or iridium in order to 

minimize chemical interactions. The load is molten in the suitable crucible at high temperature, and then 

the seed is inserted into the melt from the top and slowly pulled out from the melt with the rotation of 

the seed holder. The temperature gradient, pulling rate, and rotation speed need to be controlled 

accurately. The real-time observation of the temperature, image, and mass during the whole process can 

be recorded by thermocouples, cameras, and an electronic balance, respectively. Note that the rotation 

speed has a significant influence on the thermal distribution and mass transfer. A suitable rotation speed 
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can provide a symmetric thermal field and a homogeneous composition, as well as a suitable solid—

liquid growth interface geometry, and this provides an environment for a steady growth. The Czochralski 

technique can supply high quality, centimeter-sized single crystals quickly in a few days. For example, 

Si single crystals with the length of 1 m and the diameter of 40 cm can be obtained within 3 days. 

 

 
 

Figure 2.9. Typical steps of the Czochralski technique: (a) pulling down the seed, (b) contact with the melt, (c) 

crystal growth with rotation and slow pulling up, and (d) crystal extraction from the melt after the growth. 

 

Some simple perovskite single crystals have been grown by the Czochralski method [63,64]. However, 

complex compositions of most ferroelectric solid solutions do not allow the use of this technique, due 

to incongruent melting (i.e., (K,Na)NbO3 (KNN), (Na0.5Bi0.5)TiO3 (NBT)), preferential volatilization of 

some components (TiO2 during BaTiO3 growth), and solid‒solid phase transitions (BaTiO3 phase 

transition from hexagonal to cubic structure around 1539 °C [22]). 

2.2.3 Bridgman-Stockbarger Method 

The Bridgman-Stockbarger furnace generally has three zones: an upper zone where the temperature is 

higher than the melting point of the material to be grown, a lower zone where the temperature is lower 

than the melting point, and an adiabatic zone in between. There are two configurations: vertical and 

horizontal furnaces. Figure 2.10 (a) shows a scheme of the vertical Bridgman-Stockbarger method with 

the corresponding thermal profile (b). The seed is located at the bottom of the growth ampoule and is 

molten on its half-length in order to obtain a monocrystal—liquid interface. The crucible is then pulled 

down at a slow rate of about 0.2‒1.0 mm/h. Driven by supercooling, the epitaxy and growth of the 

crystal proceed from the molten solution above the interface when the crucible passes through the 

temperature gradient zone. The bottom of the crucible can be designed as a tip in order to reduce the 

number of nuclei. The vertical Bridgman-Stockbarger method is used extensively for growing 

perovskite ferroelectric single crystals [38], such as PMN-PT [65,66], Pb(Zn1/3Nb2/3)O3-PbTiO3 (PZN-
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PT) [40], Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 (PIN-PMN-PT) [67], Pb(Lu1/2Nb1/2)O3-

Pb(Mg1/3Nb2/3)O3-PbTiO3 (PLN-PMN-PT) [68], (Na0.5Bi0.5)TiO3-BaTiO3 (NBT-BT) [69], and KNN-

based [70] crystals. Figure 2.10 (c) illustrates a PIN-PMN-PT single crystal grown by the Bridgman-

Stockbarger method. Although large-size crystals can be obtained using this method, segregation 

phenomena will induce compositional inhomogeneities, as plotted in Figure 2.10 (d). 

 

 
 

Figure 2.10. (a) Scheme of the vertical Bridgman method setup and (b) the temperature profile within the 

crucible [71]. (c) Photograph of a PIN-PMN-PT single crystal [67], and (d) the Ti concentration as a function of 

the position along the growth direction of the PMN-PT single crystal [72]. Reprinted from Ref. [67,71,72], with 

permission of AIP Publishing LLC, John Wiley and Sons, and Elsevier, respectively. 

 

 

2.2.4 Conventional Flux Growth Method 

The principle of the flux method is based on the chemical concept of solutions and solubility of a solute 

in a solvent. This method is dedicated to produce a single crystal at a lower temperature than its melting 

or its decomposition point, such as a peritectic transition, by mixing another compound (solute) to the 

raw material. Generally, high temperature growth process creates defects. The addition of the flux 

decreases the crystallization temperature, and therefore reduces the defect density. In order to obtain the 

desired composition, extensive experimental work is necessary to find the flux with the suitable 

chemical compounds and concentration, as well as the saturation temperature of the mixture. The crystal 

growth process with a flux is driven by the supersaturation of the liquid solution provided by the cooling 
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process below the saturation temperature. Hence, the crystallization occurs steadily by following the 

liquidus curve of the solute‒solvent phase diagram at thermodynamically stable state. 

The mixture, containing the starting materials and the flux, is first loaded into an inert crucible, covered 

by a lid and placed into a sealed alumina crucible. The whole system is heated to a temperature higher 

than the liquidus of the solution. In order to make the liquid solution stable and homogenous, it is soaked 

at a high temperature for several hours and then cooled with a slow rate, typically less than 1 °C/h. When 

the growth ends, higher cooling rates can be applied. The main drawback of this method is the formation 

of flux inclusions and the incorporation of impurities, resulting from the flux, into the as-grown crystals. 

In addition, it is difficult to obtain large-size crystals due to the absence of a seed and random 

spontaneous nucleation at the crucible wall. Figure 2.11 (a) displays the scheme of the conventional 

setup for crystal growth by the flux method. Three different perovskite single crystals grown by this 

technique are shown in Figure 2.11 (b)-(d). 

 

 
 

Figure 2.11. (a) Scheme of the conventional setup for crystal growth by the flux method. Three different 

ferroelectric crystals grown by the flux method: (b) (Pb,La)(Zr,Sn,Ti)O3 (PLZST) [73], (c) PMN-PT [74], and 

(d) [Bi0.5(KxNa1-x)0.5]TiO3 [75] single crystals. Note that the length of a regular grid in the graph paper is 1 mm. 

Reprinted or adapted from Ref. [73,74,75], with permission of Royal Society of Chemistry and Elsevier. 
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2.2.5 Submerged-seed Solution Growth 

An alternative to the TSSG technique is the submerged-seed solution growth (SSSG) method. The 

geometrical and thermal configuration of the system is similar to the TSSG technique. Unlike the TSSG 

method, a polycrystalline seed is employed and is submerged in the core of the liquid solution during 

growth process. Natural growth crystallographic planes are always displayed in the as-grown single 

crystals. In our case, a platinum spatula was used as an active nucleation site for the crystal growth. This 

technique presents the advantage to perform a steady growth by avoiding the influence of thermal 

fluctuations, occurring at the solid-liquid interface on the top of the solution and induced by the 

compound volatilization, as compared to the TSSG method. These thermal fluctuations are more likely 

to induce flux inclusions in as-grown crystals. Note that in addition the heterogeneous nucleation process 

will occur at the crucible wall and impurities during the crystal growth process with the SSSG method, 

which is difficult to control.  

2.2.6 Solid State Crystal Growth 

The solid state crystal growth (SSCG) method is classified into two types. As described in Figure 2.12 

(a), a seed crystal is embedded into a pressed matrix with polycrystalline powders of the targeted 

composition. The whole system is then heated at a high temperature below the melting point and the 

single crystal will grow from the seed into the polycrystalline part. Figure 2.12 (b) shows another 

method, whereby the seed crystal is placed on the top of a pre-sintered ceramic followed by the heating 

of the system. The single crystal starts to grow downwards from the seed into the polycrystalline ceramic 

[37].  

 

 
  

Figure 2.12. Schemes of two approaches for the solid-state single crystal growth method. Reprinted from Ref. 

[37], © 2011 Andreja Benčan. 
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In 1964, DeVries [76] first used the SSCG method for growing BaTiO3 single crystals. Later, the SSCG 

method has been used for many perovskite ferroelectric single crystals, for instance BaTiO3 [77], 

Ba(Zr,Ti)O3 [78], PMN-PT [79,80,81], Pb(Mg1/3Nb2/3)O3-PbZrO3-PbTiO3 (PMN-PZ-PT) [82], BiScO3-

Pb(Mg1/3Nb2/3)O3-PbTiO3 [83], and (K,Na)NbO3 [37]. The as-grown crystals obtained with this method 

are often porous and thus of limited use for the ferroelectric and piezoelectric applications. On the other 

hand, the processing temperature is lower than the melting point, which enables good chemical 

homogeneity and lower costs. 

2.3 KxNa1-xNbO3 Polycrystalline Ceramics 

KxNa1-xNbO3 (KNN)-based materials are considered as one of the important alternatives to lead-based 

piezoelectric materials, due to their good piezoelectric performance and their relatively high Curie 

temperatures TC. Saito et al. [4] reported an excellent textured (K,Na,Li)(Ta,Nb,Sb)O3 (KNLTNS) 

ceramic with a high d33 of 416 pC/N and a high planar mode coupling coefficient kp of 0.61, which could 

compete with those of Pb(Zr,Ti)O3 (PZT) polycrystalline ceramics.  

Pure KNN is a solid solution of ferroelectric (FE) KNbO3 and antiferroelectric (AFE) NaNbO3. Upon 

heating, the KNbO3 undergoes the following sequence of phase transitions: rhombohedral‒

orthorhombic at -50 oC, orthorhombic‒tetragonal at 220 oC, and tetragonal‒paraelectric cubic at 434 oC 

[84,85]. The phase transition sequence of the NaNbO3 upon heating is: ferroelectric monoclinic (FMON) 

– antiferroelectric orthorhombic (Ao) at -55 oC, antiferroelectric orthorhombic (Ao) – paraelectric 

orthorhombic (POM) at 355 oC, paraelectric orthorhombic (POM) – paraelectric pseudotetragonal (PTM3) 

at 430 oC, paraelectric pseudotetragonal (PTM3) – paraelectric pseudotetragonal (PTM2) at 470 oC, 

paraelectric pseudotetragonal (PTM2) – paraelectric tetragonal (PTM) at 530 oC, and paraelectric 

tetragonal (PTM1) – paraelectric cubic (PC) at 640 oC  [1,21,86,87]. Shirane et al. [88] obtained enhanced 

ferroelectric properties when Na was substituted by 50 mol% K, leading to the well-known composition 

K0.5Na0.5NbO3. Figure 2.13 shows the phase diagram of KNN, published by Li et al. [89] based on the 

work of Jaffe et al. [1] and Ahtee et al. [1,90,91]. 

Extensive work on perovskite ferroelectrics highlights that the electric performance can be enhanced by 

shifting the orthorhombic‒tetragonal polymorphic phase transition (PPT) to room temperature, as shown 

in Figure 2.14 [89,92] One of the effective methods to achieve this goal is chemical modification on the 

perovskite A or/and B sites. Saito et al. [4,93] successfully shifted the TO-T of KNN to room temperature 

by the addition of Li, Ta, and Sb. These chemical modifications will be described in detail in the 

following. 



 

2  Theory and Literature Review                                                                                                                       23 

  
Figure 2.13. Phase diagram of the KxNa1-xNbO3 solid solution [1,89]. Reprinted from [89], with permission of 

John Wiley and Sons. 

Symbols here represent phase regions. L: liquid, S: solid, PC: paraelectric cubic, PTM, PTM2, and PTM1: paraelectric tetragonal, 

POM: paraelectric orthorhombic, FT1, FT2, and FTM: ferroelectric tetragonal, Ao: antiferroelectric orthorhombic, FO1, FO2, FOM1, 
and FOM2: ferroelectric orthorhombic, FR: ferroelectric rhombohedral, and FMON: ferroelectric monoclinic. 

 

 

 
Figure 2.14. Influence of chemical modifications on TO-T and TC of KNN polycrystalline ceramics. Adapted from 

Ref. [89], with permission of John Wiley and Sons. 
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2.3.1 Li Substitution 

As an alkali metal, Li is one of the leading modifiers in the KNN system. Although Li-, Ta-, and Sb-co-

modified KNN ceramics show excellent piezoelectric properties, Li-modified KNN (KNLN) itself still 

attracts much interest due to the high cost of Ta and the toxicity of Sb. Guo et al. [94] studied the 

orthorhombic‒tetragonal phase boundary in [(K0.5Na0.5)1-xLix]NbO3 ceramics in the range of 0.05 < x < 

0.07. It was found that A-site Li substitution can shift the TC to a higher temperature, while the TO-T is 

shifted to a lower temperature due to the large lattice distortion. However, the K3Li2Nb5O15 secondary 

phase with a tetragonal tungsten bronze structure starts to appear if x is higher than 0.08.  

A slight shift of the phase transition temperature and a lower sintering temperature of KNLN ceramics 

(1080 oC), as compared to pure KNN (1120 oC), was found by Du et al. [95]. The lower sintering 

temperature is expected to enhance the electrical properties by improving the density and stoichiometry, 

which results from the lower volatilization of K and Na elements [11].  

One open question for KNLN system is the existence of a monoclinic phase. Klein et al. [96] reported 

that KNLN ceramics show a phase transition sequence similar to the one of pure KNN when x is below 

0.05. However, a new phase was found between the orthorhombic phase and the tetragonal phase for 

higher Li concentrations based on Raman spectra. This new phase was believed to be monoclinic by Ge 

et al. [97] according to refinement results of X-ray diffraction. However, the existence of the monoclinic 

phase is still under discussion. 

Li displays a similar influence also in (K,Na,Li)(Ta,Nb)O3 (KNLTN) and (K,Na,Li)(Ta,Nb,Sb)O3 

(KNLTNS) systems. Lin et al. [98] reported increased TC and decreased TO-T with increasing the Li 

content in ((K0.5Na0.5)1-xLix)(Nb0.8Ta0.2)O3 ceramics. An impurity phase started to form when x reached 

0.06. Sintering temperatures were also reported to decrease with increasing x. Optimized room 

temperature coercive field EC and Pr can be achieved at x = 0.04, in the vicinity of the orthorhombic‒

tetragonal phase boundary.  

Based on the investigation on KNLN [94], (K,Na)(Ta,Nb)O3 (KNTN), [98,99] and (K,Na)(Ta,Nb,Sb)O3 

(KNTNS) [100] ceramics, the increase rate of TC is about 8‒12 oC/mol% Li, while the decrease rate for 

TO-T is about 22‒35 oC/mol% Li. However, due to the much smaller ionic radius of Li+ (R(Li+)=0.092 

nm, R(Na+)=0.118 nm, and R(K+)=0152 nm [101]), a secondary phase will appear if the Li concentration 

is too high. The increasing EC might be due to the shift of TO-T to lower temperature and the increased 

unit-cell volume of the tetragonal phase with higher Li concentration.  
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2.3.2 Sb Substitution 

B-site substitution is another effective approach for enhancing the piezoelectricity of KNN, which can 

be achieved with Sb or Ta. Higher electronegativity of Sb than Nb induces a higher degree of covalency, 

enhancing the off-centering movement of the B-site ions [4].  

Recently, Wu et al. [102] investigated the role of Sb in (K0.48Na0.52)(Nb1-xSbx)O3 ceramics. Increasing x 

shifted both TC and TO-T to lower values, but increased the rhombohedral‒orthorhombic phase transition 

temperature (TR-O). The decrease rates for TC and TO-T were 22 oC/mol% and 12 oC/mol%, respectively, 

while the TR-O was increased by 10.5 oC/mol%. A mixed phase of rhombohedral and orthorhombic 

structures at room temperature was found when x was 0.08. However, a secondary phase and 

inhomogeneous distribution of Sb were detected for higher x values. On the other hand, the addition of 

Sb also increased the sintering temperature, which shows an opposite trend with Li substitution. 

Interestingly, an enhanced room temperature piezoelectric response did not appear at the rhombohedral‒

orthorhombic phase boundary (x = 0.08) but in the rhombohedral phase. Decrease rates of TC and TO-T 

in (K0.4425Na0.52Li0.0375)(Ta0.0375Nb0.9625-xSbx)O3 ceramics were 14.9 oC/mol% and 17.5 oC/mol%, 

respectively [103]. EC was also reported to decrease with increasing Sb content. Chang et al. [104] found 

that the tetragonality of the (K0.44Na0.52Li0.04)(Ta0.2Nb0.8-xSbx)O3 ceramics decreased with increasing the 

Sb content. 

Although the addition of Sb can improve piezoelectricity of KNN-based materials, its toxicity [105] to 

some extent limits its further usage. 

2.3.3 Ta Substitution 

Since the ionic radii of Nb and Ta are similar, B-site Ta substitution has also attracted a lot of attention 

for higher electrical performance. Moreover, unlike Li and Sb substitutions, larger amounts of Ta ions 

can diffuse into KNN materials. 

With increasing Ta concentration, both TC and TO-T were shifted to lower temperatures in KNTN 

[106,107,108], (K,Na,Li)(Ta,Nb)O3 (KNLTN) [98,109], and KNLTNS [3,110]. In KNTN ceramics, the 

decrease rates of TC and TO-T were calculated to be 5‒7 oC/mol% and 3‒5 oC/mol [106,107,108]. Similar 

rates can be calculated in KNLTN ceramics [98,109]. The role of Ta ions in the appearance of 

polarization in KNLTNS ceramics was studied using extended X-ray absorption fine structure by Huan 

et al. [111]. Three distinct peaks corresponding to the nearest neighbor Ta‒O bond were observed at the 

orthorhombic‒tetragonal phase transition, indicating the contribution of Ta displacements along 

different crystallographic orientations ([001]PC and [110]PC) to the enhanced ferroelectric properties at 

TO-T.  
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Note that Ta substitution also increases the melting temperature and sintering temperature of KNTN 

[106,112] and KNLTN [98] ceramics. One main disadvantage of Ta substitution is its high price. 

2.3.4 Li, Sb, and /or Ta Substitution 

It is a great challenge to shift the TO-T to room temperature with only one of the above mentioned 

elements. Li substitution fails due to the possible appearance of the secondary phase, while Sb 

substitution increases the TR-O, which cannot provide enhanced electrical properties. Only Ta addition 

enables to obtain the orthorhombic‒tetragonal phase boundary at room temperature. However, the small 

decrease rate requires a large amount of Ta ions. Moreover, the TC of KNTN compositions with room 

temperature TO-T will be strongly decreased, thus limiting the usage of these materials. Therefore, 

simultaneous substitution of two or three of the mentioned ions is typically adopted to form a solid 

solution, for example, the addition of LiTaO3 [113,114,115], and LiSbO3 [116,117,118]. 

Although TO-T in Li-, Ta-, and/or Sb-modified KNN systems can reach room temperature, the low 

temperature stability of piezoelectric and ferroelectric properties often prevents its application. Some 

other perovskite systems, such as CaTiO3 [119,120,121], BaTiO3 [122,123], SrTiO3 [124], and CaZrO3 

[125,126] were proposed to modify the KNN systems instead, by which the deviations between 

tetragonal and orthorhombic lattice distortion are smoothed.  

2.3.5 Mn Doping 

Mn has three possible oxidation states, namely Mn2+, Mn3+, and Mn4+. Oxides of all these states have 

been introduced into KNN-based ceramics: MnO [127,128,129], Mn2O3 [130], and MnO2 

[131,132,133,134,135,136,137,138,139]. MnO2 is the most frequently used one.  

Mn doping can effectively improve the density of KNN-based ceramics as a sintering aid 

[130,131,133,136]. Moreover, the grain size becomes larger with increasing the Mn concentration 

[131,132,136,137]. Zuo et al. [132] found that the grain size of KNLN ceramics increased from 2.7 µm 

to 7.1 µm when the MnO2 content increased from 0 mol% to 1.5 mol%. The phase structure at room 

temperature also changed with Mn concentration. The tetragonality c/a decreased with increasing Mn 

contents [129,135]. Note that impurity phases will appear when the amount of Mn is higher than 1% 

[124,127,128].   

Both TC and TO-T phase transition temperatures are dependent on the added amount of Mn. Rubio-Marcos 

et al. [127] reported that TC decreased monotonously with MnO content in KNLTNS ceramics. 

However, TO-T showed a decrease with a small amount of MnO, followed by an increase with higher 

MnO contents, as shown in Figure 2.15. Lin et al. [139] found that the addition of MnO2 in KNN 

ceramics did not shift the TC, but the TO-T to lower temperature markedly, when its content changed from 
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0.25 mol% to 1.5 mol%. No apparent change of TC with the addition of MnO2 in KNLN ceramics was 

detected in other works [132]. Park et al. [136] even found increased TC and decreased TO-T with 

increasing MnO2 from 0 mol% to 0.8 mol%. Mgbemere et al. [133] reported that upon increasing MnO2 

from 0 mol% to 10 mol %, TC increased, but TO-T decreased initially and then increased with a higher 

content. 

  

 
 

Figure 2.15. Shift of the TC and TO–T in Mn-doped KNLTNS ceramics with different MnO contents. Reprinted 

from Ref. [127], with permission of Elsevier.  

  

 

The influence of Mn doping on dielectric properties was also investigated. Both dielectric permittivity 

and loss values at room temperature decreased with Mn content [127,131,133,139]. Zuo et al. [132] 

reported that Mn doping in KNLN ceramics decreased the dielectric loss in the lower temperature region 

but increased the loss in the higher temperature region, especially when the temperature was higher than 

TC. Larger dielectric loss resulting from Mn doping at high temperature was also reported by Tian et al. 

[137] and Rubio-Marcos et al. [127]. With the Mn doping, the dielectric loss is decreased below TC and 

increased above TC [140]. The increased loss above TC results from the increased concentration of 

oxygen vacancies. The decreased loss below TC indicates the possible enhancement of 

electromechanical properties with Mn doping.    

Zuo et al. [132] found that a small amount of Mn doping (0.3 and 0.6 mol%) pinched the ferroelectric 

hysteresis loops and decreased the EC. On further increasing the Mn content, both EC and Pr increased. 

However, Ogawa et al. [130] found the opposite trend: Pr and EC increased with a small amount of Mn 
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doping but decreased with a large amount. Lin et al. [139] showed that Pr increased initially, but 

decreased with more Mn doping, while EC decreased. Wongsaenmal et al. [135] reported increasing EC 

and decreasing Pr, while Rubio-Marcos et al. [127] found that EC increased initially and then decreased, 

whereas Pr decreased monotonously. Therefore, the influence of Mn doping on Pr and EC might be 

related to the composition of KNN-based ceramics and the Mn contents. It might be also related to the 

sintering conditions, such as the sintering temperature and sintering time, due to the volatilization of the 

alkali elements.   

Furthermore, Mn doping can affect the electric field-induced strain curves. Decreased negative strains 

and positive strain with increasing Mn content were observed [132,133]. However, more experimental 

work about the influence of Mn content on electric field-induced strain curve is necessary for discussions. 

One suggestion is that Mn doping influences domain switching and domain wall movements in KNN-

based materials. Zuo et al. [132] held the opinion that the substitution of Mn for Nb ions created oxygen 

vacancies that formed defect dipoles, which could provide an internal bias field and inhibit the domain 

switching by pinning effects. 

Another feature is that the mechanical quality factor Qm of KNN-based ceramics can be improved with 

increasing Mn content [124,127,132,136,139], which is helpful to limit the heat generation. 

The ionic radii for individual elements in Mn-doped KNN-based ceramics are 0.067 nm for Mn2+, 0.064 

nm for Mn3+, 0.053 nm for Mn4+, 0.064 nm for Nb5+, 0.064 nm for Ta5+, 0.06 nm for Sb5+, 0.152 nm for 

K+, 0.118 nm for Na+ and 0.092 nm for Li+, based on the database of Ionic radii [101]. Mn ions may 

change their valence states with heating or cooling and may therefore enter into A or B sites of the 

perovskite structure. For example Rubio-Marcos et al. [127] reported that Mn enters the A site for small 

amounts, but enters both A and B sites for high Mn amounts. At present, the location and valence of Mn 

in KNN-based materials are still unclear. 

2.3.6 The Origin of Enhanced Piezoelectricity in KNN-based Systems 

The flattened free energy surface at structural phase boundaries gives rise to enhanced piezoelectric and 

ferroelectric response in most perovskite ferroelectric systems [141]. Several mechanisms have been 

proposed to clarify the enhanced electrical response. Nevertheless, this topic is still under intense 

discussion. 

The most wide-spread opinion is the coexistence of mixed phases at the morphotropic (MPB) [1] or 

polymorphic (PPT) [142] phase boundaries. More energetically equivalent spontaneous polarization 

directions facilitate the polarization to switch from one state to another. Akdogan et al. [142] reported 

the coexistence of orthorhombic and tetragonal phases at the phase boundary, where the maximum 
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polarization was observed in KNLTNS polycrystalline ceramics due to a lowered energy barrier. This 

is similar to the KNbO3 system, considering that Li-, Ta-, and/or Sb- modified KNN ceramics show the 

same sequence of polymorphic transitions. 

Enhanced piezoelectric and ferroelectric properties with excellent temperature stability have been 

presented in lead-based MPB compositions. Therefore, some researchers investigated the possible 

formation of MPB in KNN-based compositions. Wang et al. [143] reported the appearance of the MPB 

with coexistence of rhombohedral and tetragonal phases in the (K,Na)(Nb,Sb)O3-xBi0.5(K,Na)0.5ZrO3. 

Piezoelectric coefficient as high as 490 pC/N was observed at x =0.04. Cheng et al. [144] developed the 

(K,Na)(Nb,Sb)O3-xBi0.5(K,Na,Li)0.5ZrO3 system and obtained a composition with high piezoelectric 

coefficient (380 pC/N) and improved temperature stability of piezoelectric coefficient. Recently, Wang 

et al. [145] investigated the temperature stability of several key piezoelectric parameters in 

0.92(K0.5Na0.5)NbO3-0.02(Bi1/2Li1/2)TiO3-0.06BaZrO3 polycrystalline ceramics with the MPB structure. 

The piezoelectric coefficient decreased from ~ 350 pC/N to ~200 pC/N from room temperature to ~ 230 

oC, while the planar electromechanical coupling coefficient decreased from ~ 50 % to ~ 35 %. Despite 

the indication of improved piezoelectric properties and temperature stability, the exact nature of the 

rhombohedral phase and the appearance of a MPB remain controversial and further structural 

investigations are needed.  

In addition, the appearance of an intermediate monoclinic phase would contribute to the improved 

piezoelectric properties with 24 available polarization vectors [146]. The intermediate monoclinic phase 

is also considered as a bridge between different spontaneous polarization vector families under the 

application of an electric field and enables easier polarization rotation [147,148,149,150]. In KNN-based 

system, a new phase according to the Raman spectra was assigned as the monoclinic structure [96].  

It is believed that enhanced piezoelectric activity at the phase transition originates from enhancing 

intrinsic or extrinsic contributions [16,151]. The intrinsic contributions refer to phenomena originating 

from the local atomic displacements with the lattice distortion, whereas the extrinsic contributions are 

related to domain wall movements and interphase boundaries. Peng et al. [152] found that both intrinsic 

and extrinsic contributions increased to maximum below TO-T and decreased remarkably above TO-T in 

KNLTN ceramics. Note that the extrinsic contributions decrease faster than the intrinsic ones in 

tetragonal phase, while the opposite trend was observed in the orthorhombic phase. 

The presence of nanodomains in ferroelectric materials is another explanation for the high piezoelectric 

and ferroelectric response. Using transmission electron microscopy (TEM), Fu et al. [153] observed 

nanodomain arrangements within microdomains for the composition of KNLTNS ceramics with 

enhanced piezoelectric coefficients. Only domains with irregularly shaped boundaries were observed in 
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the orthorhombic phase, whereas the tetragonal phase showed clear parallel stripes without 

nanodomains. The lower domain wall energy of the nanodomains allows them to reorient readily, 

therefore enhancing piezoelectricity. Nanodomains with 20‒50 nm width were also observed by Huan 

et al. [154] and were believed to be the origin of high electric field-induced strain. Note that the extrinsic 

contribution from the nanodomains decreases after poling process due to the rearrangement of dipoles 

under an external field. 

Polarization extension following the E field-induced phase transition was proposed to explain the high 

electrical properties of lead-based systems near the MPB [145,148,155]. Recently, Ge et al. [156] 

reported an analogous phenomenon for [001]PC-oriented NBT-BT crystals near the depolarization 

temperature. A similar field-induced phase transition was also observed near the TO-T in [001]PC-textured 

KNLN ceramics [157]. Feng et al. [158] observed an E field-induced phase transition in KNLTNS 

polycrystalline ceramics with orthorhombic and tetragonal mixed structure and a higher piezoelectric 

coefficient. Iamsasri et al. [159] also proposed an E field-induced phase transition in KNLN 

polycrystalline ceramics according to the changed volume of the monoclinic and tetragonal phases near 

TO-T detected by in-situ high energy X-ray diffraction, which was used to observe the structural evolution 

of KNN-based ceramics under the applied electric field.

 

2.4 KNN-based Single Crystals 

2.4.1 Growth of KNN-based Single Crystals 

Pure KNN single crystals for piezoelectric applications were grown with a self-flux method by Kizaki 

et al. [160] in 2006, following the breakthrough report by Saito et al. [4] on excellent properties of 

KNN-based textured ceramics. The high leakage currents were decreased by B-site Mn-doping. A 

remanent polarization Pr of 40 µC/cm2 and a coercive field EC of 1.2 kV/mm were reported in a Mn-

doped KNN single crystal [160]. 

In 2007, K0.5Na0.5NbO3 single crystals were first grown by the SSCG method [161]. A [001]C-oriented 

KTaO3 seed with the size 2 x 2 x 0.5 mm3 was embedded in KNN powders (1.2 g). K4CuNb8O23 was 

selected as a sintering aid. After being pressed, the whole assembly was placed on a Pt foil in a sealed 

alumina crucible and sintered at 1100 oC for 10 h. Although the crystal grew along the length, its 

thickness was only about 160 µm due to the low growth rate and many pores were distributed in the 

volume, as presented in Figure 2.16. Hot pressing was used to reduce the porosity, but the crystal became 

much thinner. It was reported that the dimension and crystalline quality are dependent on the sintering 

aid content [162]. Note that the investigated single crystals were chemically homogenous. By optimizing 
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the density of the matrix before the growth process, the thickness of the single crystal regions increased 

but it was still difficulty to remove the pores [163]. Moreover, the pore size increased with increasing 

growth time. This SSCG method was also used to grow (K,Na,Li)(Ta,Nb)O3 single crystals [164].  

 

 
 

Figure 2.16: (a) Scanning electron microscopy (SEM) image of a KNN single crystal grown by the SSCG 

method [161], and (b) photographs of samples grown by the seed-free SSCG method [165]. Reprinted from Ref. 

[161,165], with permission of Elsevier and John Wiley and Sons. 

 

 

Uršič et al. [166] reported the electromechanical properties of a [131]O–oriented K0.5Na0.5NbO3 single 

crystal grown by the SSCG method: Pr = 17 µC/cm2; EC = 2.4 kV/mm; d33* = 67 pm/V and εr = 1015. 

Recently, Jiang et al. [165] obtained KNN-based single crystals by the seed-free SSCG. As shown in 

Figure 2.16 (b), the average area for a single crystalline piece was about 10 x 7 mm2 and the thickness 

about several micrometers. Due to the influence of multiple grains on the disk shaped sample, it was 

difficult to obtain large-size single crystals. The crystal dimensions and quality can be improved by the 

cold isostatic pressing. Recently, Yang et al. [167] obtained a crystal with dimensions of 6 x 5 x 2 mm3 

by the same growth method. This crystal showed a high piezoelectric coefficient d33 of 689 pC/N and a 

high TC of 432 oC.  

Many efforts have been made to grow KNN-based crystals with the flux method. Inagaki et al. [168] 

studied the influence of growth conditions of Mn-doped KNN crystals with a KF-NaF eutectic flux. It 

was found that a suitable cooling rate was important for dimensions and electrical properties of the 

single crystals. When a cooling rate of 0.5 oC/min was selected, excellent ferroelectric properties with 

Pr = 45 µC/cm2 and EC = 0.72 kV/mm were obtained. Figure 2.17 provides a photograph of 

K0.56Na0.44NbO3 single crystals grown by the slow-cooling technique in 2009 [169]. The largest crystal 

among was about 4 x 4 x 8 mm3. However, the authors found that crystallographic phases of crystals 

grown at different positions were very different, indicating chemical inhomogeneity. The room 

temperature d33 and the maximum d33 at TO-T along the [001]PC orientation were 132 pC/N and 220 pC/N, 

respectively. 
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KNN single crystals with sizes 2 x 2 x 0.5 mm3 and 8 x 3 x 3 mm3 were grown using K2CO3 and B2O3 

as the flux by Rafiq et al. [170]. High maximum permittivity, Pr (19 µC/cm2) and d33 (160 pC/N) were 

observed. Saravanan et al. [171] investigated the influence of the addition of B2O3 in the flux during 

KNN crystal growth. The selected flux was a mixture of KF, NaF, and B2O3. They found that larger-

size crystals can be grown by optimizing the amount of B2O3 in the flux. The crystal with 1.5 wt% B2O3 

in the flux showed the highest d33 of about 106 pC/N and a wider ferroelectric domain. A (K,Na,Li)NbO3 

single crystal [172] with 10 x 11 x 6 mm3 and a (K,Na,Li)(Nb,Sb)O3 single crystal [173] with 9 x 8 x 4 

mm3 were also grown with a mixture of Na2CO3, K2CO3, and Li2CO3 as the flux. Although the sizes 

were larger than other crystals grown by the flux method, the Pr of both crystals were less than 8 µC/cm2. 

 

 
 
Figure 2.17. Photograph of KNN crystals grown by the flux method. Reprinted from Ref. [169], with permission 

of Taylor & Francis.  

 

In 2007, Chen et al. [70] obtained a KNLN single crystal with an excellent d33 of 405 pC/N by the 

Bridgman method. The pre-densified polycrystalline sample was sealed into a Pt crucible and heated to 

1300 oC. After being soaked for 10 h, the crucible was pulled down at the rate of 0.4‒0.6 mm/h, whereas 

the temperature gradient near the solid‒liquid interface was maintained between 30 and 50 oC/cm. 

Several pieces with 4 x 6 x 0.5 mm3 were cut from the boule, as shown in the Figure 2.18 (a). 

Unfortunately, the P-E loop exhibited very high leakage currents (see Figure 2.18 (c)). A Na-rich KNN 

single crystal with high dielectric losses was grown by the same method, as shown in Figure 2.18 (b) 

[174]. 
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Figure 2.18. Photograph of (a) pieces of cut [70] and (b) as-grown KNN crystals obtained by the modified 

Bridgman method [174], and (c) P-E loop (f = 20 Hz) with high leakage current of [001]PC-oriented KNLN 

single crystals grown by the Bridgman method [70].  Reprinted from Ref. [70], with permission of AIP 

Publishing LLC and from Ref. [174], © 2014 Dabin Lin. 

 
 

Liu et al. [175] studied the effects of MnO2 on the properties of MnO2-doped KNLN single crystals, 

which were grown by the Bridgman method using KCl-K2CO3 as the flux. Although the highest d33 (226 

pC/N) is lower than the one report by Chen et al. [70], the crystals with Mn showed improved 

ferroelectric properties. Inagaki et al. [176] reported KNN and Mn-doped KNN single crystals grown 

by the floating zone method in air. The long green body of 6 mm in diameter was pre-pressed and then 

put into an infrared convergence-type floating furnace with two ellipsoidal mirrors. Set at the focal 

points of the ellipsoid, two halogen lamps were used as infrared sources. The growth rate and the rotation 

speed of the upper and lower shafts were fixed as 3 mm/h and 25 rpm, respectively. Finally, a Mn-doped 

KNN crystal of approximate 4‒5 mm in diameter and 12.5 mm in length was obtained, which is shown 

in Figure 2.19 (a). In Figure 2.19 (b) and (c), Scanning electron microscopy (SEM) images showed the 

crystal was in fact a polycrystalline stack of tabular layers of 50‒200 µm width and of 2 µm thickness 

along directions parallel and perpendicular to the growth direction.  

 

 
 

Figure 2.19. (a) Mn-doped KNN crystal grown by the floating zone method. (b) and (c) Cross section SEM 

images. Reprinted from Ref. [176], with permission of Elsevier. 

(a) 
(b) 

(c) 
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However, KNN crystals grown by the floating method were short along the growth direction due to the 

difficulty in maintaining a stable molten zone. In order to improve the stability, KNN crystals were 

grown in nitrogen or oxygen atmospheres [177]. These crystals were about 30 mm longer than the ones 

grown in air.  

The TSSG technique is one of the most popular methods for the growth of KNN-based single crystals, 

due to the possibility to obtain large-size crystals. Figure 2.20 (a) presents a (K0.95Na0.05)(Ta0.61Nb0.39)O3 

single crystal with high crystal quality grown by the TSSG method [178]. Unfortunately, its TC was 

lower than room temperature, which is not practical for applications. In 2013, Prakasam et al. [46] grew 

centimeter-sized (K,Na,Li)(Ta,Nb,Sb)O3 (KNLTNS) single crystals by a similar method, where a 

platinum spatula was used instead of a seed. This was one of the early reports on KNLTNS single 

crystals with high TC (370 oC). Compared with the TSSG method, the crystals did not show well-

arranged shapes due to random nucleation at the beginning of the growth, as shown in Figure 2.20 (b). 

The small crystals were absorbed by large crystals step by step and several crystals with similar 

composition for every attempt were obtained. For a better understanding of the growth of KNN-based 

single crystals, the segregation phenomena of individual elements were investigated for the first time.  

 

 
 

Figure 2.20. Examples of as-grown crystals: (a) colorless cubic KNTN (TSSG) [178], (b) KNLTNS (SSSG) 

[46], and (c) KNTN (TSSG) single crystals [179]. Reprinted from Ref. [46,178,179], with permission of Elsevier 

Masson, Springer, and Royal Society of Chemistry. 

 

An orthorhombic KNTN piezoelectric single crystal with the size of 12 x 11 x 11 mm3 was grown by 

Zheng et al. [179] The synthesized KNTN powders were loaded into a Pt crucible and heated at 1140 

oC. Then the seed was dipped into the liquid solution and pulled out at a rate of 0.2‒0.5 mm/h with slow 

rotation. Although the crystal was not as clear and transparent as the cubic KNN-based single crystals, 

it was uniform, as shown in Figure 2.20 (c). Table 2.2 summarizes dimensions and piezoelectric 

coefficients of selected KNN and KNN-based single crystals grown by TSSG. 
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Table 2.2. Dimensions and piezoelectric coefficients of selected KNN and KNN-based crystals growth by TSSG. 

 

Crystal Structure at RT Dimension d33 at RT 

(pC/N) 

Ref. 

KNN Orthorhombic Φ 30 mm x 10 mm 145 [180]  

KNN Orthorhombic 16 x 16 x 20 mm3 161 [62] 

KNT Tetragonal / 142 [181] 

KNTN Orthorhombic 12 x 11 x 11 mm3 200 [179] 

KNLTN Orthorhombic 18 x 18 x 10 mm3 255 [182] 

KNLTNS Tetragonal 8.5 x 8.5 x 13.5 mm3 173 [183] 

Mn: KNLTN Ortho.-Tetra. Mixed 5 x 5 x 9 mm3 630 [184] 

 

2.4.2 Piezoelectric and Ferroelectric Properties 

Pure KNN Single Crystals 

Several researchers focused on the growth of pure KNN single crystals due to the simpler composition 

[62,180], as compared to modified KNN systems. It was expected that pure KNN single crystals should 

show much better properties than the corresponding polycrystalline ceramics. Pure KNN single crystals 

with different K/Na molar ratios were successfully grown using the TSSG method by Tian et al. [62]. 

The authors made a comparison between electrical properties with various K/Na molar ratios, as shown 

in Table 2.3. The highest d33 of 161 pC/N was achieved for a K/Na molar ratio of 62.2/37.8. Although 

this value is comparable to most KNN polycrystalline ceramics, it was still much lower than for PZT 

polycrystalline ceramics. This was related to the weaker intrinsic ferroelectricity of pure KNN system.  

 
Table 2.3. Comparison of electrical properties of pure KNN single crystals with various K/Na ratios. 

 

K/Na molar 

ratio 

Growth 

Method 

TO-T 

(°C) 

TC 

(°C) 
휀33,𝑟/휀0 

tan𝛿 at 

RT (%) 

EC 

(kV/cm) 

Pr 

(µC/cm2) 

d33 

(pC/N) 
Ref. 

33.4/66.6 TSSG 174 395 68 0.4 11.59 11.2 105 [62] 

45.5/54.5 TSSG 181 397 73 0.5 11.10 8.3 142 [62] 

53.8/46.2 TSSG 195 418 339 0.3 12.93 11.8 145 [62] 

62.2/37.8 TSSG 199 424 70 0.3 14.24 10.8 161 [62] 

88.2/11.8 TSSG 220 436 69 0.2 18.78 9.2 110 [62] 

25/75 TSSG 187 396 375 / 8.4 7.2 145 [180] 

56/44 Cooling 214 433 / / / / 130 [169] 

51/49 Flux 215 429 300 / 10.6 19.4 160 [170] 

50/50 SSCG 192 410 1015 0.01 24.0 17.0 / [166] 
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Li, Ta or/and Sb Co-Modified KNN Single Crystals 

In order to shift the TO-T to room temperature, KNLN, KNTN, (K,Li)(Ta,Nb)O3 (KLTN), KNLTN, 

KNLNS, and KNLTNS single crystals were investigated, as summarized in Table 2.4. Compositions 

with TO-T near room temperature in Li, Ta, or/and Sb co-modified KNN single crystals, however, have 

been rarely reported. The possible reason is the different segregation coefficients for individual elements 

and for different growth conditions. As a consequence, the initial composition of the starting materials 

is typically very different from the one of the as-grown single crystal. In addition, no exceptionally high 

electrical properties were reported for these KNN-based single crystals, which might be due to high 

leakage currents. 

 
Table 2.4. Comparison of electrical behavior of Li, Ta, or/and Sb co-modified KNN-based single crystals. 

 

Crystal 
Growth 

Method 

TO-T 

(oC) 

TC 

(oC) 
휀33,𝑟/휀0 

tan𝛿 at 

RT (%) 

EC 

(kV/cm) 

Pr 

(µC/cm2) 

d33 

(pC/N) 
Ref. 

KNT TSSG 8 92 3900 / / / 142 [181] 

KNLN Flux 220 420 / / 8.02 4.01 115 [172] 

KNLN Bridgman 192 426 / 0.011 / / 405 [70] 

KNLN SFSSCG 75 432 500 <0.1 13.9 24.1 689 [167] 

KNTN TSSG 121 291 267 0.004 / / 200 [179] 

KNTN TSSG 85 253 255 / / / 150 [185] 

KNLTN TSSG 79 276 / 0.01 / / 255 [142] 

KNLNS Flux 205 355 833 / 15.45 3.66 125 [173] 

KNLTNS TSSG -10 210 912 / 8.165 9.045 173 [183] 

KNLTNS SSSG 160 370 / / / / / [46] 

 

Mn-Doped KNN-Based Single Crystals 

Mn doping was used to decrease the leakage current [62,70,177,183] and dielectric losses [166,175,182] 

of KNN-based single crystals [160]. Lin et al. [186] found that addition of 0.5 mol% Mn increased the 

permittivity of KNN crystals at room temperature from 240 to 730. Moreover, the piezoelectric 

coefficients d33 (Figure 2.21 (a)) were also improved due to the lower leakage current density and smaller 

domain size. Recently, a high d33 of 630 pC/N in a Mn-doped KNLTN single crystal has been reported 

by Huo et al. [184]. The large-signal piezoelectric coefficient d33
*, calculated from unipolar strain curves, 

reached 870 pm/V, which is comparable to the values of PZT ceramics and PIN-PMN-PT single crystals, 
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as shown in Figure 2.21 (b). The origin of the excellent piezoelectricity may be due to the proximity of 

TO-T (30 oC) to room temperature.  

 

 
 

Figure 2.21. (a) Influence of thermal depoling on room temperature d33 in [001]PC-oriented undoped and 0.5 

mol% MnO2-doped KNN crystals [186]. (b) Unipolar electric field-induced strain curves (f = 5 Hz) for Mn-

doped KNLTN single crystal, PIN-PMN-PT:Mn single crystal, PZT5 ceramics and KNLTN0.19 ceramics [184]. 

Reprinted from Ref. [184,186], with permission of John Wiley and Sons. 

 

Influence of Annealing Process 

As mentioned in the last paragraph, KNN-based single crystals often suffer from high leakage currents 

[62,70,177,183] and high dielectric losses [166,175,182]. They are believed to originate from the 

volatilization of alkali elements [11], the possible existence of Nb4+ ions and oxygen vacancies [160]. 

This limits their further applications in the piezoelectric field. Kizaki et al. [187] and Noguchi et al. 

[188] found that the leakage current densities of pure KNN crystals have been reduced after annealing 

in air or O2, as shown in Figure 2.22. However, the underlying conductivity mechanisms of 

(K,Na,Li)(Ta,Nb,Sb)O3 single crystals are currently still unclear and need further investigations. 

 

 
 
Figure 2.22. Leakage current density of the [001]PC-oriented KNN and Mn-doped KNN crystals annealed under 

various oxidation conditions. Reprinted from Ref. [187], with permission of AIP Publishing LLC. 
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2.4.3 Ferroelectric Domains in KNN-based Single Crystals 

The static and dynamic domain configurations in KNN-based single crystals were investigated using 

different techniques, such as polarized light microscopy (PLM) [189], transmission electron microscopy 

(TEM), piezoresponse force microscopy (PFM) [170], and confocal Raman microscopy [190].  

Inagaki et al. [191] investigated the influence of cooling rates during crystal growth on the domain 

configuration and ferroelectric properties. They found that small-scale domains are formed with slower 

cooling rates due to the releasing of internal stress. In addition, 60 o domains were formed easier with 

slower cooling rates, thus improving the ferroelectricity. Zheng et al. [189] observed the domain 

evolution of [001]PC-oriented KNTN crystals at various temperatures. The orientations of domain walls 

changed from {110}PC to {010}PC. They found that the domain structure is temperature stable in the 

orthorhombic phase region. Deng et al. [192] reported lamellar domains with reduced domain width 

under 2 kV/mm in pure orthorhombic KNN single crystals, as shown in Figure 2.23. 

 

 
 

Figure 2.23. In-situ domain configurations of pure orthorhombic KNN single crystals imaged by PLM at 

different E fields: (A) 1 kV/mm, (B) 2 kV/mm, (C) -1 kV/mm, and (D) -2 kV/mm. Reprinted from Ref. [192], 

with permission of Royal Society of Chemistry. 
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3 Experimental Procedure 

3.1 Crystal Growth 

Since (K,Na)NbO3 (KNN)-based materials are solid solutions, the liquidus and solidus curves in the 

corresponding phase diagrams are separated [193]. All the crystals presented in this work were therefore 

grown from high temperature solutions by the flux method [34]. The use of a solvent (flux) allows the 

crystallization of a compound (solute) under a thermodynamically stable condition. Among the wide 

choice of possible fluxes, a great advantage of the self-flux method is that the solvent and desired solute 

have the same element species, avoiding the contamination of the crystals by foreign elements. In this 

work, a self-flux consisting mostly of excess Li2O and K2O was employed.  

Two slightly different flux growth techniques were employed using resistive heating furnaces and 

platinum crucibles in air atmosphere. The longitudinal thermal gradient in the furnace was less than 

1°C/cm.  

3.1.1 Submerged-seed Solution Growth 

Crystal Growth Set-up 

Crystal growth attempts performed at ICMCB were implemented using a platinum spatula mounted on 

an alumina rod. As shown in Figure 3.1 (a), the furnace for the KNN-based single crystal growth was 

equipped with an electronic balance with an accuracy of 10-2 g. The electronic balance was connected 

with a home-made Lab-View program in order to accurately monitor the mass change and the different 

sub-processes during the growth. The furnace assembly with translation, rotation devices and Lab-View 

program was set up by the ICMCB engineer assistant, Mr. Oudomsack Viraphong. 
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Figure 3.1. (a) Photograph of the furnace and (b) schematic diagram of the growth process inside the crucible for 

the KNN-based crystal growth using the submerged-seed solution growth method. 

 

 

Experimental Process  

The starting materials were high-purity (99.99 %) MnO2, K2CO3, Na2CO3, Li2CO3, Nb2O5, and Ta2O5 

(Furukawa Chemicals Co. Ltd). The powders were first weighed according to desired compositions and 

the influence of segregation phenomenon, followed by the 24 h dry mixing process. The mixture was 

put into a platinum crucible and calcined for 12 h at 450 °C and then for 12 h at 850 °C. The processing 

route to obtain (K,Na,Li)(Ta,Nb)O3 (KNLTN) solid solutions is illustrated in Figure 3.2.  

 

 

 

 

Figure 3.2. Processing route of KNLTN solid solutions. 
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The following solid state reaction occurs during the calcination process: 

xLi2CO3 + yNa2CO3 + (1 − x − y)K2CO3 +mNb2O5 + (1 −m)Ta2O5 →

2(LixNayK1−x−y)(NbmTa1−m)O3 + CO2 ↑                                            (3.1) 

 

The calcined powder was heated and melted above 1200 °C. The platinum spatula was subsequently 

immersed into the liquid solution, followed by a 24 h-continuous stirring at a rate of 40 rpm at a soaking 

temperature about 20 °C above the saturation temperature. Then the rotation speed was set to 10‒35 rpm 

and the solution was slowly cooled at a rate of 0.1‒0.5 °C/h, in order to grow crystals within the liquid 

solution. Longitudinal pulling was not performed during the growth. When the crystal growth was 

stopped, the as-grown crystals hung on the platinum spatula were pulled out from the solution and kept 

5 mm above the liquid surface. The whole system was then cooled down to room temperature at the 

speed of 0.3‒0.5 °C/min. 

3.1.2 Top-seeded Solution Growth 

Crystals grown by the top-seeded solution growth method were supplied by our industrial partner, 

Forschungsinstitut für mineralische und metallische Werkstoffe -Edelsteine/ Edelmetalle (FEE) GmbH, 

Germany. Similar furnace and geometrical configurations were used as described in Section 3.1.1. 

[001]C-oriented KTaO3 seed crystals were used as the preferential nucleation sites instead of the 

platinum spatula. The KTaO3 shows similar perovskite structure and chemical composition to the 

KNLTN(S) composition, but has no phase transition in the temperature range of the KNN-based single 

crystal growth. In addition, the melting point of KTaO3 (TM= 1352 oC) [194] is higher than the saturation 

temperatures of KNLTN(S) single crystals, making it a suitable seed. High purity (99.99 %) starting 

materials were supplied by Aran Isles Chemical Inc. For certain attempts, Sb2O3 with high purity (99.99 

%) is also contained in the starting materials. Unlike the SSSG method with which crystal growth occurs 

beneath the surface of the liquid solution, the TSSG technique provides a method to grow crystals at the 

top of the liquid solution at a pulling rate of 0.1-0.6 mm/h. 

 

3.2 Chemical Characterization 

3.2.1 Electron Probe Micro Analysis 

The amounts of all elements (except Li) were detected on a carbon coated polished sample using a 

CAMECA SX-100 electron probe micro analysis (EPMA) instrument (Gennevilliers, France) with a 

wavelength-dispersive x-ray spectrometry system. The operating conditions were 20 keV and 20 nA. 
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The measurements were performed by Dr. Michel Lahaye from ICMCB. EPMA reference samples [195] 

used to determine element concentrations are described in Table 3.1. 

 

Table 3.1.  EPMA reference samples in this work. 

 

Elements to be detected EPMA references 

Li Undetected 

Na NaCl 

K KNbO3 single crystal 

Nb KNbO3 single crystal 

Ta Ta2O5 ceramics (99.99 %) 

Sb Sb or Sb2O3 polycrystalline ceramic (99.99 %) 

 

3.2.2 Inductively Coupled Plasma Optical Emission Spectrometry 

The microwave digestion method was used in order to dissolve KNN-based single crystals into acid 

solution. This technique provides a shorter time and sufficient accuracy due to the high operating 

temperature and pressure during the dissolution process. Approximately 50 mg of powders of the 

crushed single crystals were dispersed into 20 ml of 40 vol% HF acid solution. The mixed system was 

transferred into a closed Teflon reactor. This reactor was then placed into a microwave oven (CEX 

MarsExpress) and heated to 180 °C in 15 min with a gradually increasing autogenous pressure. After 

being kept at 180 °C and 5 bars for 30 min, the mixture was cooled down to room temperature. 

Subsequently, the solution was moved into a 100 ml flask and diluted up to 100 ml with distilled water. 

This procedure was performed by Dr. Nicolas Penin at ICMCB. In order to measure the content of Li, 

inductively coupled plasma optical emission spectrometry (ICP-OES) measurements were carried out 

with a VARIAN 720-ES spectrometer by Mrs. Laetitia Etienne at ICMCB.  

3.2.3 The Accuracy of Element Concentrations 

The experimental errors of element concentrations in EPMA measurements are determined by the 

concentration and the atomic number of the investigated element. The larger the concentration and the 

atomic number, the lower the error. The measurement error of element concentrations with the ICP-

OES technique depends on element concentrations and the difference of concentrations between the 

investigated sample and the standard solution. If the element concentration is out of the concentration 

range of standard solutions, the error will increase. In this work, element concentrations were calculated 

by averaging EPMA and ICP-OES results. Thus, absolute accuracies for each elements are 0.24 mol% 

for Li, 2.5 mol % for Na and K, and 0.5 mol % for Nb, Ta, and Sb. 
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For certain as-grown crystals, the concentrations of Na and K ions show significant difference between 

the EPMA and ICP-OES results, as compared to the concentration of Nb, Ta and Sb. This reconfirms 

the low relative concentration accuracy of Na and K. One of the possible origins is the different 

measurement scopes: EPMA provides local element concentrations of the surface layers (up to a few 

microns), whereas ICP-OES investigates the whole volume. Indeed, the element concentrations at the 

sample surface may be slightly different from the bulk after the machining step (cutting, polishing), due 

to possible preferential removal of light elements such as alkali ions. 

 

3.3 Structural Characterization  

3.3.1 X-ray Diffraction 

X-rays will be scattered by atoms in arbitrary directions when the incident X-ray beam hits a substance’s 

atoms at an angle 𝜃. As presented in Figure 3.3, when the path difference between the scattered waves 

is an integral multiple of the wavelength 𝜆 of the incident wave, the coherent reflected waves will 

produce a wave with a maximum intensity [196]. This phenomenon results from the phase matching 

between incident and diffracted X-ray beams, and reciprocal space vectors of (hkl) crystallographic 

planes, as described by Bragg’s law in the following equation, 

2𝑑hklsin𝜃hkl = n𝜆                                                                             (3.2) 

where n is an integer and  𝑑hkl represents the interplanar distance.  

Powder XRD data of crushed single crystals were recorded in order to determine the crystallographic 

structure and phase purity. The powders were first placed into a holder made of an aluminium alloy. 

XRD measurements at room temperature were carried out using a PANalytical X’pert Pro MPD 

diffractometer with Cu K𝛼  radiations (λK𝛼1  = 1.5406 Å and λK𝛼2  = 1.5444 Å), and Bragg-Brentano 

geometry. 2𝜃 was in the range between 8 ° and 80 ° with a step size of 0.02 °. 

In-situ XRD measurements in air at high temperature were performed with a PANalytical X’pert Pro 

diffractometer with Co K𝛼 radiation (λK𝛼= 1.7902 Å).  

All XRD measurements were carried out by Mr. Eric Lebraud at ICMCB. 

 



 

44                                                                                                                        3.3  Structural Characterization 

 

 

 
Figure 3.3. Illustration of Bragg’s law. 

 

3.3.2 Laue X-ray Diffraction and Crystal Cutting 

The orientations of single crystals were determined by the back-scattering Laue method. A CCD-

camera, through which a white incident X-ray beam passes, was used to collect the reflected X-ray 

patterns (see Figure 3.4). 

 

 
Figure 3.4. Scheme of the principle of the Laue technique in the back reflection mode. 

 

The crystal was mounted on a goniometer and illuminated with the incident white X-ray beam, 

composed of the Bremsstrahlung and the characteristic X-ray waves of a Mo anticathode. A spherical 

wave of scattered radiations was formed for each crystal plane, building a series of cone surfaces. When 

cone surfaces are intersected with the detector (CCD camera or film), hyperbolas with several diffraction 

spots appear. These hyperbolas are correlated to the symmetry, as well as the orientation of the crystal. 

The spots on the detector represent the nodes (hkl) of the reciprocal space. 

CCD camera 
or detector film 
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To obtain a sample with the desired plane, the relative position of the crystal was changed by adjusting 

the goniometer, followed by cutting with a diamond wire saw. The mismatch of the obtained plane with 

respect to the desired crystallographic orientation is less than 1 °. Most work on the orientation was 

performed at ICMCB with a Laue setup (Dual lens coupled X-ray Laue system, Photonic Science Ltd., 

Robertsbridge, UK) and OrientExpress program [197] (Institut Laue-Langevin, Grenoble, France). Part 

of the work was carried out at TU Darmstadt with a Huber Laue diffraction setup (1001 Model, Huber, 

Rimsting, Germany) and the Cologne Laue indexation program (Version 4.0 beta2) in Prof. Wolfgang 

Donner’s group.  

3.3.3 Raman Spectroscopy 

Micro-Raman spectra of investigated single crystals were recorded using a LabRAM HR800 Raman 

spectrometer at room temperature. The 633 nm radiation from a He-Ne laser with the spot size of 514 

nm was selected. 

 

3.4 Electrical Characterization 

3.4.1 Dielectric Properties 

Temperature-dependent dielectric properties in the temperature range from room temperature to 500 °C 

were measured at selected frequencies using a HP 4284A LCR meter (Hewlett Packard Corporation, 

Palo Alto, USA), equipped with a Nabertherm furnace (LE4/11/R6, Nabertherm GmbH, Lilienthal, 

Germany). A Novocontrol Alpha-A high performance frequency analyzer (Novocontrol technologies, 

Hundsangen, Germany) equipped with a cryostat was used from -100 °C to 30 °C. The heating or cooling 

rate was selected to either 2 or 1 °C/min. 

The capacitance (𝐶) and dielectric loss of samples were obtained during the measurements. As a sample 

can be considered as a parallel plate capacitor, its permittivity value can be calculated using the 

following equation: 

휀33
𝑇 /휀0 =

𝐶∙𝑑

𝜀0∙𝐴
                                                                        (3.3) 

where 𝐶 is the capacitance, 𝑑 is the thickness of the measured sample, 𝐴 is its effective surface area and 

휀0 is the vacuum permittivity. 휀0  = 8.854*10-12 F/m. The error of the permittivity was primarily 

determined by the error of the thickness and the surface area. Assuming that errors for the thickness and 

area are 0.01 mm and 0.1 mm2, respectively, the error of permittivity is estimated to be about 1 %. 
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3.4.2 Large-signal Electrical Properties 

The large-signal ferroelectric hysteresis loops at room temperature were measured with a Sawyer-Tower 

setup. In the Sawyer-Tower circuit, the sample capacitor and the reference capacitor are in series, as 

presented in Figure 3.5. The applied voltage and the voltage drop across the reference capacitor were 

recorded by the oscilloscope (DS06014A, Agilent Technologies, Deutschland GmbH, Böblingen, 

Germany). The voltage was supplied by a function generator (Agilent 33220A, Agilent technologies 

Deutschland GmbH, Böblingen, Germany) and amplified by a high voltage amplifier (20/20C, TREK 

Inc., Medina, NY, USA).   

 

 

Figure 3.5. Schematic of the Sawyer-Tower circuit. 

  

The typical triangular waveform with a certain frequency and amplitude was selected, as shown in 

Figure 3.6: (a) bipolar and (b) unipolar electric field loading signals.  

 

 

 
Figure 3.6. Schematics of applied electric field loading signals: (a) bipolar and (b) unipolar. 
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In the Sawyer-Tower circuit, the capacitance of the reference capacitor (𝐶𝑅) is set to be much higher 

than that of the sample (𝐶𝑆). The voltage drop across the sample is therefore approximated to be the 

applied voltage. The polarization (𝑃) of the measured sample and the applied electric field (𝐸) can be 

calculated by the following equations, 

𝑃 =
𝑄𝑆
𝐴
=
𝑄𝑅
𝐴
=
𝐶𝑅  ∙ 𝑈𝑅
𝐴

 =
𝐶𝑅
𝐴
∙ 𝑈𝑌                                              (3. 4) 

𝐸 =
𝑈𝑆
𝑑
=
1

𝑑
∙ 𝑈𝑋                                                                              (3. 5) 

 

where 𝑄𝑆 and 𝑄𝑅 represent the collected charges of the sample and the reference capacitor (𝐶𝑅), 𝑈𝑆 and 

𝑈𝑅 represent the voltage drops across the sample and the reference capacitor, respectively. The 𝑈𝑋 and 

𝑈𝑌 are the voltages recorded by the oscilloscope in the X and Y channels. The experimental error of 

polarization results from the errors of the measured voltage and the sample area, which is estimated to 

be 2 %. 

Simultaneously, an optical displacement sensor (Philtec, Inc., Annapolis, MD, USA) was equipped to 

measure the strain along the axial direction in the setup. The error of strain is relative to the errors of 

sample thickness and the resolution of the sensor. It is estimated as 3%. 

Large-signal ferroelectric hysteresis and electric field-induced strain curves at high temperatures were 

measured with an AixACCT ferroelectric testing system. The polarization was calculated based on the 

recorded current using the virtual ground method, as provided by Figure 3.7 [198]. The strain was 

recorded by the built-in laser interferometer. 

 

 

 
Figure 3.7. Schematic of the virtual ground circuit. 
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3.4.3 Small-signal Electrical Properties 

Small-signal permittivity 휀33′/휀0, dielectric losses tanδ and piezoelectric coefficient 𝑑33 as a function 

of electric field were measured. The excitation signal was a large-signal triangular base waveform 

superposed by a small-signal sinusoidal excitation waveform, as presented in Figure 3.8 [199]. 

Normally, selected frequencies of the base and small signal waveforms were 0.05 Hz and 1 kHz, 

respectively. The small-signal waveform had an amplitude of 10 V.    

 

 

 
Figure 3.8. Excitation signal during small-signal measurements: a large-signal triangular base waveform 

superposed by a small-signal sinusoidal excitation waveform [199]. Note that the enlarged small-signal 

sinusoidal waveform is provided.  

  

3.4.4 Piezoelectric Properties 

The large-signal converse piezoelectric coefficients 𝑑33
∗  were calculated from the unipolar maximum 

strain 𝑆max and the applied maximum electric field  𝐸max, as described by, 

𝑑33
∗ = 

𝑆max

𝐸max
                                                                 (3.6) 

Prior to the measurements of the small-signal direct piezoelectric coefficient 𝑑33, the samples were 

poled in a silicone oil bath. Unless mentioned, the poling electric field was 3 kV/mm. The poling 

temperature was selected between 50—100 oC. The room temperature 𝑑33  was measured by a 

Berlincourt piezoelectric meter after 24 h aging (PM 300, Piezotest Pte. Ltd., Singapore; 110 Hz, 2 N). 

Temperature-dependent converse small-signal 𝑑33 measurements were performed with a Doppler laser 

vibrometer (Polytec sensor head OFV-505 and front-end VDD-E-600). The measured sample was 

placed in a furnace with a point contact on the top and a metal base contact on the bottom. An alumina 
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cap and a steel cover were subsequently placed over both the sample and the upper contact in order to 

provide a thermally stable environment and a sealed atmosphere. The sample was connected to a 

Keithley electrometer (6517B), which provided an AC sinusoidal voltage with the amplitude of 10 V 

and the frequency of 1000 Hz. The displacement of the sample along the electric field direction was 

measured by the laser vibrometer and recorded by the Polytec vibrometer software 4.5.  

 

3.5 Transmission Electron Microscopy  

Transmission electron microscopy (TEM) requires the specimen to be transparent for electrons. The 

selected single crystals with 1 mm thickness were ground and polished to a thickness of about 20 µm 

with the diamond pastes of 30 µm, 15 µm, 6 µm, 3 µm, 1 µm, and 0.25 µm. The polishing steps were 

performed on a precision MultiprepTM polishing system (Allied High Tech Products Inc., United States). 

The specimen with the thickness of 20 µm was then mounted on a copper ring by Epoxy Bond 110 

(Allied High Tech Products Inc., United States). This step was followed by an Ar+ ion beam milling step 

(Model 600, Gatan GmbH, München, Germany) with 4 kV and then 2.5 kV, in order to obtain a 

specimen with a thickness of about 80 nm. The in-situ TEM measurements were performed on a 2100F 

TEM setup (JEOL Ltd., Japan) with a double-tilt heating holder (model 652, Gatan Inc., United States). 

The heating stage was equipped with a SmartSet Hot-Stage Controller (Model 901, Gatan Inc., United 

States), which can be operated between 25 °C and 500 °C. TEM measurements were performed by 

Alexander Zintler in the group of Prof. Hans-Joachim Kleebe at TU Darmstadt.

 

3.6 Other Techniques  

3.6.1 Mössbauer Spectroscopy   

A conventional MS-1104 spectrometer, with a Ca121mSnO3 source and a constant acceleration mode was 

used to record 121Sb Mössbauer spectra. The resonant absorption measurements were carried out by a 

8.5 keV escape peak, created by the Mössbauer gamma ray (Eγ = 37.15 keV) in a thin NaI(Tl) scintillator. 

The absorbers were powders from the crushed single crystals. A copper bar with the Ca121mSnO3 source 

and the investigated powder sample was dipped into liquid nitrogen, in order to perform the 

measurements at a low temperature. The approximated amounts of chemically-different antimony 

species can be calculated according to the relative area between corresponding spectral peaks at -173 oC 

[200]. The number, position, shape, and relative intensity of absorption lines of Mössbauer spectra are 

features of hyperfine interactions. These features can be described by the isomer shift (δ), the quadrupole 

coupling constant (eVzzQ5/2), the full width at half maximum of each individual peak ( ), and the relative 
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area (A). All these parameters are strongly dependent on the local electronic environment of the 

investigated atom, such as coordination number and oxidation state. The reported isomer shift values 

are referred to the Ca121mSnO3 source. 

All Mössbauer spectra were fitted by a superposition of Lorentzian lines. The hyperfine interaction 

parameters were calculated from the Hamiltonian by characterizing 121Sb M1 transition from the ground 

state with spin Ig = 5/2 to the excited state Ie = 7/2. All measurements and simulations of Mössbauer 

spectra were performed by Pavel B. Fabritchnyi and Mikhail I. Afanasov (Department of Chemistry, 

M.V. Lomonosov Moscow State University, Russian Federation). 

3.6.2 Electron Paramagnetic Resonance  

Electron paramagnetic resonance (EPR) spectra were measured to investigate the possible valence states 

of Mn in Mn-doped (K,Na,Li)(Ta,Nb)O3 single crystals. EPR spectra were recorded with a Bruker EMX 

spectrometer at an X-band frequency of 9.45 GHz and an Oxford Instruments ESR 900 liquid helium 

cryostat in the temperature range from -269 oC to room temperature. During the recording, the magnetic 

field modulation frequency was set to be 100 kHz and the amplitude was in the range between 0.2 mT 

to 0.8 mT. The microwave power was 20 mW and the resolution of the spectra was 0.1-0.7 mT/pt. The 

calibration standard of the spectrometer was 2,2-diphenyl-1-picrylhydrazyl (DPPH). All EPR spectra 

were simulated with the WINEPR and SIMFONIA software for the estimation of g values and hyperfine 

interaction parameters. The EPR measurements and simulations were performed by Dr. Matthieu 

Duttine at ICMCB. 
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4 Crystal Growth, Structural Properties, and Domains 

4.1 Crystal Growth 

Eleven growth attempts of KNN-based crystals with different compositions, numbered from N1 to N11, 

have been carried out, in order to obtain desired compositions with high quality and high piezoelectric 

and ferroelectric properties. As solid solutions, (K,Na,Li)(Ta,Nb)O3 (KNLTN) and 

(K,Na,Li)(Ta,Nb,Sb)O3 (KNLTNS) crystals were grown by the self-flux method [34] using either a seed 

or, in most cases because no seed was available, a platinum spatula acting as a preferential nucleation 

site. Suitable growth conditions and concentrations of starting materials in the solution have been set in 

order to reduce the influence of the segregation phenomena occurring during the growth process. 

4.1.1 Initial Compositions and Crystal Growth Results 

Concentrations of starting materials for each growth attempt are listed in Table 4.1. Note that N1, N2-

Mn, N3, N4-Mn, N5, and N6 attempts were carried out by the submerged-seed solution growth (SSSG) 

method at ICMCB, as described in Section 3.1.1, whereas N7, N8, N9, N10 and N11-Sb attempts were 

performed using the top-seeded solution growth (TSSG) method at FEE. Among them, crystals of the 

N2-Mn and N4-Mn attempts were doped with a small amount of Mn and crystal of the N11-Sb attempt 

was substituted with a few molar percent of Sb. 

 
Table 4.1. Concentrations of starting materials for each growth attempt. 

 

Attempt 

Number 

Amount on A site (mol %) Amount on B site (mol %) 
 

Method, 
Growth Place 

Li Na K Nb Ta Sb Mn 

N1 15.00 10.74 74.26 99.21 0.79 / / 

SSSG; 

ICMCB, 

France 

N2-Mn 15.00 10.74 74.26 99.21 0.79 / 1.00 

N3 11.38 21.54 67.08 97.10 2.90 / / 

N4-Mn 11.38 21.54 67.08 97.10 2.90 / 1.00 

N5 15.39 12.37 72.24 94.75 5.25 / / 

N6 15.39 10.11 74.50 95.12 5.88 / / 

N7 / 5.00 95.00 100.00 / / / 

TSSG; 

FEE, 

Germany 

N8 11.38 21.54 67.08 97.10 2.90 / / 

N9 15.30 16.05 68.65 95.00 5.00 / / 

N10 15.30 16.05 68.65 80.00 20.00 / / 

N11-Sb 11.30 21.40 67.30 91.90 1.50 6.60 / 
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As shown in Figure 4.1 and Figure 4.2, polycrystalline boules composed of several centimeter-sized 

single crystals are produced by the SSSG technique, when the polycrystalline Pt spatula is used as the 

nucleation site. If a single crystalline seed is used, a single crystalline boule is grown using the TSSG 

method (Figure 4.3). 

As-grown KNLTN polycrystalline boules with large-scale single crystals for (a) N1, (b) N3, and (c) N5 

attempts are shown in Figure 4.1. Figure 4.2 provides photographs of as-grown Mn-doped KNLTN 

boules for (a) N2-Mn and (b) N4-Mn attempts. Crystals without Mn doping are white milky, whereas 

those with Mn doping are yellow. Black regions were observed in Mn-doped KNLTN boules at 

boundaries between crystals or at their peripheries, which is attributed to the segregation of Mn in the 

flux. The low segregation coefficient of Mn makes this element difficult to enter in the perovskite matrix.  

 

 

 
Figure 4.1. Photographs of KNLTN boules grown on a platinum spatula: (a) N1, (b) N3, and (c) N5. 

 

 

 

 
Figure 4.2. Photographs of Mn-doped KNLTN boules grown on a platinum spatula: (a) N2-Mn and (b) N4-Mn. 
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Based on Figure 4.1 and Figure 4.2, shape prediction of crystals grown by the SSSG method on a 

platinum spatula is a great challenge if active nucleation sites are located at a polycrystalline Pt spatula 

[201]. Due to the random spontaneous nucleation, randomly-oriented small-sized crystals are observed 

on the surface of the platinum spatula. The further a crystal is from the Pt spatula during the growth, the 

larger its size (Figure 4.2 (b)). This phenomenon results from the growth of small nuclei occurring on 

the spatula surfaces in the early stage of the growth. It has been determined that the biggest observed 

crystallographic planes of as-grown crystals are the {001}PC faces, indicating their slowest growth rate 

and crystal habits of KNN-based perovskite crystals [34,36]. 

The N8 crystal (KNLTN) grown by the TSSG method at FEE is shown in Figure 4.3. The shape is very 

different from crystals grown by the SSSG technique due to the oriented single crystalline seed. The N8 

crystal looks milky, which is similar to the color of crystals in Figure 4.1. The milky color is related to 

crystal defects and inclusions created during crystal growth, as well as phase transitions during cooling. 

 

 

 
Figure 4.3. Photographs of the as-grown KNLTN (N8) crystal by the TSSG method: view from (a) the top, (b) 

the side, and (c) the bottom. 

 

 

4.1.2 Crystal Compositions 

EMPA and ICP-OES techniques were combined in order to determine average compositions of as-

grown crystals, as described in Section 3.2. Table 4.2 and Table 4.3 summarize crystal compositions of 

all attempts, except the N6 attempt during which only the tetragonal tungsten bronze (TTB) structure 

was observed in the as-grown single crystal.  
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Table 4.2. Element concentrations of as-grown crystals grown at ICMCB.  

The molar amount ratio between A-site ions and B-site ions is 1, except for N6. 

 

Attempt 

Number 

Chemical 

analysis 

Amount on A site (mol %) Amount on B site (mol %) 

Li Naa Kb Nb Ta Mn 

N1 EPMA / 39.46 60.54 97.32 2.68 / 

 ICP-OES 2.89 33.43 63.69 97.84 2.16 / 

Composition 2.89 35.87 61.24 97.58 2.42 / 

N2-Mn EPMA / 39.31 60.69 97.67 2.33 0.03 

 ICP-OES 2.90 28.54 68.56 97.75 2.25 / 

Composition 2.90 33.35 63.75 97.68 2.29 0.03 

N3 EPMA / 61.38 38.62 92.32 7.68 / 

 ICP-OES 2.84 59.47 37.69 92.05 7.95 / 

Composition 2.84 59.55 37.61 92.18 7.82 / 

N4-Mn EPMA / 68.53 31.47 89.86 10.14 0.14 

 ICP-OES 2.56 62.18 35.26 89.91 10.09 / 

Composition 2.56 64.48 32.96 89.75 10.11 0.14 

N5 EPMA / 55.77 44.23 81.86 18.14 / 

 ICP-OES 3.83 41.76 54.41 83.67 16.33 / 

Composition 3.83 47.70 48.47 82.77 17.23 / 

N6  EPMA Lix(K72.32Na27.68)3(Nb82.91Ta17.09)5O15 

Composition Li2(K72.32Na27.68)3(Nb82.91Ta17.09)5O15
c 

 

Note: a, b Na and K concentrations measured by the EPMA and ICP-OES technique have a high error. Their relatively high 

concentrations in the crystals increase the error induced by the reference solution in the ICP-OES measurements. The 

segregation phenomena, which will be discussed later, result in the chemical inhomogeneous distribution in as-grown crystal 

boules.  

c Subscript of Li in the chemical formula of the N6 crystal is assumed to be 2, based on the stoichiometry of the TTB 

structure [202].  
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Table 4.3. Element concentrations of as-grown crystals grown at FEE.  

The molar amount ratio between A-site ions and B-site ions is 1. 

 

Attempt 

Number 

Chemical 

analysis 

Amount on A site (mol %) Amount on B site (mol %) 

Li Na K Nb Ta Sb Mn 

N7 EPMA / 11.00 89.00 100.00 / / / 

 ICP-OES / 12.80 87.20 100.00 / / / 

Composition / 11.90 88.10 100.00 / / / 

N8 EPMA / 73.79 26.21 85.65 14.35 / / 

 ICP-OES 2.01 70.67 27.33 87.31 12.69 / / 

Composition 2.01 71.49 26.51 86.48 13.52  / 

N9 EPMA / 63.87 36.13 80.82 19.18 / / 

 ICP-OES 2.02 55.91 42.07 82.06 17.94 / / 

Composition 2.02 59.24 38.74 81.44 18.56  / 

N10 EPMA / 64.90 35.10 65.56 34.44 / / 

 ICP-OES 1.65 58.62 39.73 66.89 33.11 / / 

Composition 1.65 61.22 37.13 66.23 33.77  / 

N11-Sb EPMA / 72.79 27.21 87.82 6.14 6.03 / 

 ICP-OES 2.18 67.05 30.77 86.28 6.38 7.34 / 

Composition 2.18 69.13 28.70 87.05 6.26 6.68 / 

 

 

4.1.3 Element Segregation 

It should be noted that chemical compositions of as-grown crystals (Table 4.2 and Table 4.3) were very 

different from their corresponding initial liquid compositions (Table 4.1). This is explained by the 

different solubility of each individual element in the liquid phase and the solid phase under 

thermodynamic equilibrium state. This phenomenon is defined as effective segregation [203,204] and 

depends on initial solution concentrations, as well as thermokinetic parameters, such as the solute 

diffusion and the crystallization velocity in the solid-liquid front (i.e., growth rate).  

The difference of investigated element concentrations in the crystal and in the initial liquid solution can 

be described by the classical effective segregation coefficient keff [36]:  

 

𝑘eff =
1

1+(
1

𝑘0
−1)exp(

−𝜈𝛿

𝐷
)
×

1

𝑘volatilization
                                            (4.1) 
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where k0 is the thermodynamic segregation coefficient, kvolatilization ≥ 1 is defined as the volatilization 

contribution factor to the effective segregation coefficient, 𝜈 is the growth rate, 𝛿 is the thickness of the 

solid-liquid boundary layer, and D is the diffusion coefficient of the element in the liquid solution.  

As described in Section 2.2.4, the growth rate for the flux growth method is very slow and can therefore 

be assumed to be zero. Element volatilization during the high temperature growth process has a large 

influence on the effective segregation phenomenon with respect to the growth time. Therefore, effective 

segregation coefficient is defined as:  

𝑘eff ≈
𝑘0

𝑘volatilization
                                                                               (4.2) 

There is no composition gradient in each phase at the equilibrium state. Considering the slow growth 

rate in this work, it can be assumed that the equilibrium was reached during the growth process and 

therefore both solid and liquid phases can be assumed to be uniform at a given time. Hence, the effective 

segregation coefficient keff can be expressed as Scheil’s equation [205]: 

𝑘eff =
𝐶S

𝐶L(∞)
                                                                                           (4.3) 

where CS is the element concentration in the solid phase, i.e., in the single crystal, and CL() element 

concentration in the initial liquid solution at the beginning of the growth. 

All effective segregation coefficients of individual elements for each attempt are listed in Table 4.4. It 

is obvious that the effective segregation coefficient of each element relies on the relative content of the 

element on the site it occupies. 

  
Table 4.4. Effective segregation coefficients of individual elements for each growth attempt. 

 
 

A site B site 
 

Li Na K Nb Ta Sb 

N1 0.19 3.34 0.82 0.98 3.07 / 

N2-Mn 0.19 3.11 0.86 0.98 2.90 / 

N3 0.25 2.76 0.56 0.95 2.69 / 

N4-Mn 0.22 2.99 0.49 0.93 3.49 / 

N5 0.25 3.86 0.67 0.87 3.28 / 

N7 / 2.38 0.93 1.00 / / 

N8 0.18 3.32 0.40 0.89 4.66 / 

N9 0.13 3.69 0.56 0.86 3.71 / 

N10 0.11 3.81 0.54 0.83 1.69 / 

N11 0.19 3.23 0.43 0.95 4.18 1.01 
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Segregation coefficients keff as a function of the concentration in the initial liquid solutions CL() are 

plotted in Figure 4.4 (a). Three regions can be identified: the yellow and the light blue regions with keff 

values smaller than 1, and the grey region with keff values larger than 1. Both K and Nb ions are located 

in the yellow region (keff is lower than 1) when the concentration in the initial liquid is high enough. In 

the light blue region, where lower keff are obtained at a relatively lower concentration in the initial liquid, 

only Li ions are observed. Both Na and Ta ions appear in the grey region due to their high segregation 

coefficient keff with a low concentration in the initial liquid.  

In the cases of binary solutions with unlimited solubility, such as KNbO3-NNbO3 or KTaO3-KNbO3 

pseudo-binary systems, the magnitude of keff depends on the molar fraction ratio of elements between 

the solid and liquid phases, as well as the sign of the slopes of the liquidus and solidus curves. The 

influence can be described as follows: if keff of an element is higher than 1, it is preferentially absorbed 

by the crystal due to the higher melting point (TM) of the corresponding component compared to the 

similar component but without the element. For example, TM of KTaO3 (1352 °C) [194] is higher than 

that of KNbO3 (1050 °C) [194], which leads to keff(Ta) > 1. Same phenomena with other Ta- and Nb-

based components are observed, such as TM (NaTaO3, 1810 °C) [206] > TM (NaNbO3, 1420 °C) [193] 

and TM (LiTaO3, 1650 °C) > TM (LiNbO3, 1257 °C) [207]. Moreover, we found the same tendency for 

Na with a keff(Na) >1, since TM (NaNbO3) > TM (KNbO3) and TM (NaTaO3) > TM (KTaO3). This 

comparison confirms that segregation coefficients of Na and Ta are higher than 1. On the other hand, 

the elements with keff lower than 1 are rejected by the crystals (K and Nb), as evident by the lower 

melting points in their corresponding compounds. For example, for the K element, TM (KNbO3, 1050 °C) 

< TM (NaNbO3, 1420 °C);  and for the Nb element, TM (NaNbO3, 1420 °C) < TM (NaTaO3, 1810 °C). 
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Figure 4.4. keff of individual element as a function of element concentration in the liquid solution CL(): (a) all 

the elements, (b) Li, (c) Na, (d) K, (e) Nb, and (f) Ta. 

 

 

The segregation coefficients of Li, keff(Li), for each attempt are plotted in Figure 4.4 (b). Average keff(Li) 

of all KNN-based crystals is found to be approximately 0.19 and is very low compared to other elements. 

The keff(Li) calculated from Hofmeister et al. [208] in (K1-yLiy)( Ta0.35Nb0.65)O3:Cu crystals is about 

0.125, which is consistent with this work. Sadel et al. [209] grew a (Na0.98Li0.02)NbO3 crystal with the 

NaBO2 flux at 1147 °C, and a comparatively high keff(Li) of 0.25 was calculated. To some extent, this 

implies that the volatilization of Li-containing components plays an important role in its effective 

segregation coefficient during the growth of perovskite crystals. From the experience of this work, the 

saturation temperature for KNN-based crystal growth process is in the range from 1100 °C to 1200 °C, 

and keff(Li) is influenced by its volatilization from the liquid solution at high temperature. Indeed, the 

contribution of volatilization of Li-based components in Sadel’s et al. [209] work can be ignored due to 

the relatively low growth temperature. The keff(Li) is thus considered as the pure thermodynamic 

segregation coefficient k0 of Li during the growth of the (Na0.98Li0.02)NbO3 crystal. The same pure 

thermodynamic segregation coefficient value is assumed in the present work. According to the similar 

Li concentrations in initial solutions in Sadel’s and present work, kvolatilization factor has been estimated to 
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be in the range from 1.39 to 2.27. This reflects the fact that the volatilization phenomenon decreases the 

Li segregation in the crystal by a factor between 1.39 and 2.27, in addition to the thermodynamic 

segregation. Note that it is difficult to understand the trend of keff(Li), due to the limited sample quantity 

and the measurement error. 

Segregation coefficients of Na, keff(Na), for all investigated attempts are enlarged in Figure 4.4 (c). 

According to the evolution trends of liquidus and solidus curves in NaNbO3-KNbO3 pseudo-binary 

system [193], the segregation coefficient of Na should increase monotonically with increasing Na 

content in the initial liquid solution. As presented by arrows in Figure 4.4 (c), keff(Na) increases first and 

then decreases with the Na content in the initial liquid. This seems to disagree with the expected trend 

observed in the previously reported binary system where only two ions were introduced into A site 

[193,194]. It suggests a stronger competition between the three alkali elements in the present work, 

regarding their incorporation into the A sites. Moreover, it appears that the presence of Li increases 

keff(Na) in KNLTN crystals compared to systems without Li.  

Figure 4.4 (d) and (e) provide segregation coefficients of K and Nb, respectively, for all investigated 

attempts. Increasing the K and Nb contents in the initial liquid solutions result in the increase of their 

keff, although the trends are not exactly the same. This is directly related to the sign of the slope of 

liquidus and solidus curves, as described by analogy in NaNbO3-KNbO3 and KNbO3-KTaO3 phase 

diagrams where two ions on A or B site were considered [193,194]. Note that the point in the yellow 

region of Figure 4.4 (e) does not follow the trend due to the Sb substitution in the crystal. 

The segregation coefficient trend of Ta, keff(Ta), is plotted in Figure 4.4 (f). According to the binary 

KNbO3-KTaO3 phase diagram [194], keff(Ta) decreases with increasing the Ta content in the liquid 

solution, as plotted in Figure 4.5. The keff(Ta) of the N8, N9, and N10 attempts, which show similar A-

site ion ratio, are plotted in Figure 4.5. The keff(Ta) trend as a function of its concentration in the liquid 

solution follows the expectation: increasing Ta content in liquid solution induces a decrease of keff(Ta). 

In addition, it can be inferred that a keff(Ta) larger than 1 leads to a strong depletion of Ta in the liquid 

solution and subsequently to a step by step decrease of its incorporation into the crystal as the growth 

proceeds. The keff(Ta) might be influenced by the species on A sites, as evident by its deviation from the 

calculated curves for samples with different A-site ion contents. However, further investigations are 

required to better understand this phenomena. 
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Figure 4.5. Effective segregation coefficients keff(Ta) as a function of Ta molar concentration in the initial liquid 

solutions compared to those deduced from the pseudo-binary KNbO3-KTaO3 phase diagram given by Reisman et 

al. [194]. 

 

As described above, changes in element concentrations are detected along the growth directions of all 

crystals, as shown in Figure 4.6. The compositional inhomogeneity might affect electrical properties. 

However, due to the small sample sizes (typically 5-8 mm), the concentration of elements has been 

considered as chemically homogeneous for further electrical characterization. The deviation of the 

chemical composition for an 8 mm sample is expected to be maximum  0.1 mol % for B site ions and 

 0.2 mol % for A site ions.  

 

 
 

Figure 4.6. Changes of element concentrations along the measurement length in 

(K0.612Na0.359Li0.029)(Ta0.024Nb0.976)O3 (N1) crystal with the EPMA technique.
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4.2 Secondary Phase 

As described in Section 2.3.1, the addition of Li to KNN-based systems can increase the TC and decrease 

the TO-T, giving rise to improved electrical response. However, from previous reports on KNN-based 

polycrystalline ceramics [94,96], a high Li content can lead to the formation of a secondary tetragonal 

tungsten bronze phase (TTB). The secondary TTB phase is ascribed to the limited solubility of Li in the 

KNN lattice, which is described in the following section. 

4.2.1 Phase Structure 

XRD patterns of as-grown N1 and N6 crystals are shown in Figure 4.7. In the case of the N1 growth 

attempt, the secondary phase were found at the periphery of the perovskite crystal boules (see Figure 

4.1 (a), Page 52). This is an indication that the growth of the secondary crystal follows the growth of the 

perovskite crystals. There is a risk of obtaining non-perovskite phase crystals, as evident by the N6 XRD 

pattern in Figure 4.7 (a). These undesired crystals obtained in the N6 attempt (Figure 4.7 (b)) can be 

assigned to two different TTB structures: Li2K3Ta5O15 (ICDD No. 00-040-0349) and Li2K3Nb5O15 

(ICDD No. 00-034-0122). Due to the complex chemical compositions of the A (Li, Na, and K) and B 

(Nb and Ta) sites, it is assumed that the undesired phase is the Li2(K,Na)3(Ta,Nb)5O15 solid solution 

[210,211]. It is worth mentioning that undesired crystals with the TTB structure were also observed 

during the growth process of the N2-Mn and N5 attempts. Figure 4.8 provides photographs of the 

remainders in the crucible, which is solidified during after the pulling out of the as-grown perovskite 

crystals. The long and slender bars in the crucibles of N1, N5, N6, and N2-Mn attempts exhibit the TTB 

structure. The TTB crystals are dark if Mn is added in the attempts (Figure 4.8 (d)), but are transparent 

and/or white for the attempts without Mn (Figure 4.8 (a), (b), and (c)). Note that the TTB phase was not 

found in the N4-Mn attempt, as shown in Figure 4.8 (e). 
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Figure 4.7. (a) XRD patterns of as-grown N1 and N6 crystals, and (b) photograph of the as-grown N6 crystal. 

 

 

 
 
Figure 4.8. Photographs of remainders solidified in crucibles after the extraction of the perovskite crystal: (a) N1, 

(b) N5, (c) N6, (d) N2-Mn and (e) N4-Mn attempts. 

 

 

4.2.2 Influence of Alkali Ion Concentration and K/Li ratio 

The Appearance of the TTB Structure 

According to Li2O-K2O-Nb2O5 phase diagrams shown in Figure 4.9 [212,213,214], the appearance of 

either the perovskite or the TTB structure depends on the molar ratio of each alkali cation in the initial 

liquid solution. Considering the general formula of the TTB structure A2BC2M5O15, it is assumed that 

Na and K ions are located at the A and B sites, Li ions at the C site, and Nb and Ta ions at the M site 

[202]. It is found that increasing Li content in liquid solution induces the appearance of the TTB phase, 

as shown by the monovariant line and sub-solidus regions of ternary phase diagrams of Scott et al. [214] 

and Ikeda et al. [212] (Figure 4.9). The initial liquid compositions of N1 and N2-Mn attempts are located 

in the regions with two mixed phases, as provided by the red points in Figure 4.9 (a) and (b). Compared 

to the N1 attempt, the N6 attempt has 0.39 mol % more Li and 0.24 mol % more K in the initial liquid 

solution (Table 4.1, Page 51). However, as-grown crystals for the two attempts have different structure. 

For the N1 attempt, a perovskite crystal and a TTB secondary phase are observed, while for the N6 
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attempt, only the TTB crystals were obtained. In contrast, in the attempt N5, which has only 2.02 mol % 

less K in the initial liquid solution compared to the N6 attempt, a perovskite crystal was obtained.  

 

   
 

Figure 4.9. K2O-Li2O-Nb2O5 phase diagrams from (a) Scott et al. [214] and (b) Ikeda et al. [212]. Note that in 

(b) L, K, and N represent Li2O, K2O and Nb2O5. Red points mark the liquid composition of N1 and N6 attempts. 

Reprinted from Ref. [212,214], with permission of the Japan Society of Applied Physics and Elsevier. 

 

 

In order to enhance the room temperature electrical response of the KNN-based system, the Li content 

should be about 0.03-0.06 % on A sites [4,215]. However, as described in Figure 4.4 (b) (Page 58), the 

very low segregation coefficient of Li in KNN-based perovskite matrix [208] requires a relatively high 

concentration in the liquid solution. Therefore, during the growth of Li-modified KNN-based crystals, 

there is a high risk to produce a TTB secondary phase after the Li concentration reaches a critical value.  

Besides, the K/Li ratio in the initial liquid composition has also an influence on the appearance of the 

TTB phase. It was found that the TTB phase appeared when the K/Li ratio in the initial liquid solution 

was lower than 5, as observed in N1, N2-Mn, N5, and N6 attempts. In contrast, when the K/Li ratio was 

about 5.9 (N3 and N4-Mn attempts), the TTB phase did not appear during the growth process.  

Note that it is difficult to explain the influence of Mn doping on the TTB structure and segregation 

coefficients due to the small amount of samples and the higher inaccuracy in chemical analysis of the 

low Mn content. For example, in N2-Mn and N4-Mn attempts, a reverse tendency of segregation 

coefficients of Na ions is observed compared to Mn-free N1 and N3 attempts, even though the initial 

liquid contents for other elements are exactly the same in each group (see Table 4.1, Page 51).  

 

(b) 



 

64                                                                                                                                         4.2  Secondary Phase 

Limitations of the Growth Method 

One of the aims of the present work was to obtain a crystal with the LF4 composition 

(K0.44Na0.52Li0.04)(Ta0.10Nb0.86Sb0.04)O3 reported by Saito et al. [4], which exhibits excellent piezoelectric 

behaviour. In addition, the LF3 composition (K0.485Na0.485Li0.03)(Ta0.20Nb0.80)O3 was also targeted 

because of the similar alkali ion concentrations on A-site and the absence of the hazardous Sb. Based 

on the relationship between the compositions of the as-grown crystals and their structures with respect 

to the initial liquid solution composition, we argue that it may be impossible to grow a perovskite single 

crystal with LF3 or LF4 compositions [4,215] by using the self-flux method due to the competition 

among A-site ions and the appearance of the TTB structure.  

A possible approach to achieve single crystals with LF3 or LF4 compositions by the self-flux method 

would be to control and suppress the volatilization of Li and thus enhance its segregation coefficient 

keff(Li). This would require a controlled atmosphere in order to saturate the vapour pressure of lithium-

based components during the growth. If one wants to obtain the LF3 or LF4 crystal without producing 

a TTB structure, it is suggested to decrease the initial K content in a small proportion, as compared to 

the N5 or N6 attempts. Another method is to decrease the saturation temperature by adding a suitable 

flux, which requires further experimental work.  

 

4.3 Temperature Dependence of Structural and Domain Configurations  

4.3.1 Phase Evolution with Temperature 

Full range XRD patterns of powders of crushed (K0.612Na0.359Li0.029)(Ta0.024Nb0.976)O3 (N1) single 

crystals as a function of temperature are presented in Figure 4.10 (a). All peaks correspond to the 

perovskite phase and no secondary structure is detected for all patterns. Two phase transitions are 

detected at 105 °C and 420 °C. According to the relative intensities and the positions of the peaks at 

around 2𝜃 = 25.5 ° — 26.5 ° in Figure 4.10 (b), the (K0.612Na0.359Li0.029)(Ta0.024Nb0.976)O3 single crystal 

is indexed with an orthorhombic cell at room temperature. It evolves into the tetragonal phase above 

105 °C. Further increasing up to 450 °C, a pure paraelectric cubic phase is observed. Note that the peak 

indexed as (001)O (Figure 4.10 (b)) keeps shifting to a lower angle by increasing the temperature. This 

(001)O peak evolves into (001)T above 105 oC and then to (001)C at T=450 °C. A different behaviour has 

been found for the peak indexed as (110)O at room temperature. Its position does not change below 

105 °C and it disappears at higher temperature. On the other hand, a new peak referring to (100)T appears 

and shifts to higher angles with increasing temperature. Upon heating to 450 °C, this peak is merged into 

(001)C. 
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Figure 4.10. XRD patterns of powders of crushed (K0.612Na0.359Li0.029)(Ta0.024Nb0.976)O3 (N1) single crystals as a 

function of temperature: (a) full range, and (b) the enlarged region at around 2𝜃 = 25.5 °—26.5 °. Measurements 

were performed upon heating. The green arrows show the shift directions of the peaks with temperature. 

 

 

4.3.2 Polarized Light Microscopy 

The as-grown KNN-based piezoelectric single crystals in the present work were milky, as also 

previously reported by others [70,182,185]. Two different optical regions exist in these crystals and 

were observed by polarized light microscopy (PLM). By considering the 

(K0.612Na0.359Li0.029)(Ta0.024Nb0.976)O3 (N1) crystal as an example (Figure 4.11 (a)), optically transparent 

(marked red) and cloudy regions (marked green) coexist.  

 

2θ (o)                              2θ (o) 
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Figure 4.11. Domain configuration of the (K0.612Na0.359Li0.029)(Ta0.024Nb0.976)O3 (N1) crystal observed by PLM at 

various temperatures: (a) 25 °C, (b) 125 °C, (c) 300 °C, (d) 450 °C, and (e) 470 °C. The red regions are optically 

transparent and the green regions are optically cloudy.  

 

 

Figure 4.11 displays domain evolution of the [001]PC-oriented N1 single crystal at various temperatures 

using the PLM technique. As shown in Figure 4.11 (a), domain walls of transparent regions are along 

{110}PC planes, whereas those of cloudy regions are along {001}PC planes at room temperature. Domain 

structures of both regions change when the crystal is heated to 125 °C, as displayed in Figure 4.11 (b). 

The {110}PC family walls disappear and {010}PC walls appear in transparent regions. On the other hand, 

{110}PC family walls appear in cloudy regions. These domain structures remain stable throughout the 

tetragonal temperature regions from 125 °C to 450 °C, as shown in Figure 4.11 (b), (c), and (d). When 

the crystal is in the cubic phase (Figure 4.11 (e)), all domain walls disappear and the whole crystal 

becomes transparent. However, some lines along {100}C can be observed, which results from the 

nucleation process of tetragonal domains when the crystal starts evolving to the tetragonal phase [191]. 

Note that due to the operating temperature of the utilized heating stage, the crystal could not be heated 

to a higher temperature for the observation of the possible disappearance of these lines.  

Figure 4.12 (a) and (b) show enlarged images of domains in both regions. The domain size in the 

transparent regions is about 10 times larger than that in the cloudy regions. The back-scattering Laue 

pattern of the transparent region (Figure 4.12 (c) and (d)) displays clear and well-defined diffraction 

spots whereas that of the cloudy region displays splitting and not well-shaped diffraction spots. The 

latter spot morphology could be induced by crystal defects such as dislocations, twins, planar faults, or 
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internal strains due to chemical disorder [13]. Furthermore, in ferroelectric crystals, multi-domain 

structure is also one of the origin of this phenomenon [216], which is the more likely case in this work.  

 

 

 
 

Figure 4.12. Domain configurations of (a) transparent regions and (b) cloudy regions; experimental Laue back 

scattering patterns of (c) transparent regions and (d) cloudy regions for the (K0.612Na0.359Li0.029)(Ta0.024Nb0.976)O3 

(N1) single crystal. 

 

 

For a better understanding of the appearance of the cloudy regions, XRD measurements were performed 

on the [001]PC–oriented (K0.637Na0.334Li0.029)(Ta0.0229Nb0.9768Mn0.0003)O2.99955 (N2-Mn) crystal in which 

relatively large transparent regions were observed. Figure 4.13 compares XRD patterns of the 

transparent region and the cloudy region. It was found that the small peak at 2𝜃 = 22.5 o (marked as the 

blue star), present in the cloudy region, and disappears in the transparent regions. The appearance of the 

small peak is not clear. It can be induced by impurity phase, multi-domain structure, or dislocations.   

 

(c) (d) 
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Figure 4.13. XRD patterns of the different regions of the [001]PC-oriented 

(K0.637Na0.334Li0.029)(Ta0.0229Nb0.9768Mn0.0003)O2.99955 (N2-Mn) single crystal. The small peak appeared in the 

cloudy region is marked by the blue star.  

 

 

Figure 4.14 displays XRD patterns of the [001]PC-oriented (K0.612Na0.359Li0.029)(Ta0.024Nb0.976)O3 (N1) 

crystal at various temperatures. Two peaks were observed for this crystal at room temperature, similar 

to the black pattern in Figure 4.13 for the cloudy regions. The small peak keeps shifting towards lower 

angles during heating, while the large peak shifts first to a lower angle and then to a higher angle when 

the temperature is higher than 105 °C. Note that this temperature corresponds to the TO-T phase transition 

temperature. When the temperature approaches 500 °C, these two peaks merge into (001)C. Compared 

to XRD patterns of the powder of crushed N1 single crystals (Figure 4.10 (b), Page 65), the small and 

large peaks in Figure 4.14 reveal similar behaviour as (001)O and (110)O peaks in Figure 4.10 (b) (Page 

65), indicating that the transparent regions should have a [110]O orientation, while the cloudy regions 

should be [001]O orientation. 
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Figure 4.14. XRD patterns of the [001]PC-oriented (K0.612Na0.359Li0.029)(Ta0.024Nb0.976)O3 (N1) crystal at various 

temperatures. The green arrows show the evolution trends of both peaks with temperature.  

  

Figure 4.15 provides a schematic view of the cubic, tetragonal, and orthorhombic unit cells of the 

KNLTN perovskite structure. Upon cooling, KNLTN single crystals undergo two phase transitions: 

from cubic to tetragonal phase and from tetragonal to orthorhombic phase. The tetragonal unit cell can 

be considered as the consequence of oxygen octahedron distortions along the edges of the original cubic 

unit cell, creating 90 ° domain walls in order to release stresses during cooling. The orthorhombic unit 

cell is formed by the elongation along face diagonals of the original cubic unit cell, leading to 60 ° and 

90 ° domain walls. On the other hand, Figure 4.15  confirms that the peaks corresponding to (110)O and 

(001)O crystallographic planes are originated from the (001)C peak splitting during the cooling process.  
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Figure 4.15. Schematic view of the perovskite structure with the cubic (C, black), tetragonal (T, blue) and 

orthorhombic (O, red) unit cells. 

 

 

 

 
Figure 4.16. Representation of domain configurations for the transparent and the cloudy regions observed in the 

orthorhombic and tetragonal phases of the KNLTN single crystals. 
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Domain configurations of both regions in the orthorhombic and the tetragonal phase are illustrated in 

Figure 4.16. The transparent and cloudy regions coexist by sharing the [110]O and [010]T edge in the 

orthorhombic and tetragonal phase, respectively.  

Figure 4.17 shows the domain configuration of the same crystal piece in Figure 4.11 (Page 66) in the 

proximity of the cubic-tetragonal phase transition during cooling with a rate of 0.5 °C/min. When the 

temperature is close to 450 °C, the cubic-tetragonal phase transition is observed with instantaneous 

formation of domain walls, as shown in Figure 4.17 (a). With further cooling, all parts evolve into the 

tetragonal phase according to the movement of cubic-tetragonal phase transition planes (see the red lines 

in Figure 4.17). Note that the distribution of the cloudy regions in Figure 4.17 is not the same with that 

of Figure 4.11 (Page 66). This is an indication of the movement of the cloudy regions with thermal 

treatment. The different shape and size of the cloudy region are due to relatively high cooling rate and 

a slight thermal gradient induced by the heating stage. However, this experiment confirms that the 

appearance of the cloudy regions is related to the domain nucleation process when the crystal is cooled 

down from the cubic phase to the tetragonal phase. If the crystal is cooled too fast below TC, some of 

the tetragonal nuclei with two directions will be generated from the cubic phase, leading to the 

appearance of twinning. Cooling down of the as-grown crystals at a lower speed should therefore 

increase the chance to obtain high quality homogeneous crystals. 

 

 
 

Figure 4.17. Domain configuration of the [001]PC-oriented (K0.612Na0.359Li0.029)(Ta0.024Nb0.976)O3 (N1) single 

crystal in the vicinity of 450 °C during cooling process. (a) 450 °C, (b) 449 °C, (c) 448 °C, and (d) 447 °C. The 

red lines are the moving boundary of the cubic and tetragonal phases, and the green arrows are the directions of 

the movement. 

 



 

72                                                         4.3  Temperature Dependence of Structural and Domain Configurations 

4.3.3 Transmission Electron Microscopy 

Figure 4.18 shows the domain evolution of the [001]PC-oriented (K0.612Na0.359Li0.029)(Ta0.024Nb0.976)O3 

(N1)  single crystal as a function of temperature using the in-situ hot stage TEM with a double tilt heating 

holder. At room temperature (Figure 4.18 (a)), lamellar-type domain structure is observed. The 

corresponding selected area electron diffraction pattern (SAED) in Figure 4.19 (a) confirms the 

orientation of domain walls along <110>PC family in the orthorhombic phase. With temperature 

increasing from room temperature to 145 °C, the lamellar domains gradually disappear. Note that at 

145 °C, orthorhombic domain walls are still dimly visible (marked with C) in Figure 4.18 (f). From 

Figure 4.18 (c) to (f), bend contours start to appear when the sample is heated from 110 °C to 145 °C. 

This is explained by the decrease of the elastic compliance at the orthorhombic-tetragonal phase 

transition [118]. 

When the temperature approaches 145 °C, a new type of domain wall with a long-bar structure begins 

to grow (marked with B) in Figure 4.18 (f). Due to the limited number of domain structures in this region, 

a new region was selected for imaging from 150 °C to 450 °C, as seen in Figure 4.18 (g)-(k). The long-

bar domain walls form a T-shape-like domain structure. Based on their SAED patterns in Figure 4.19 

(c)-(e), domain walls in tetragonal phase are along the <001>PC direction. We note that the appearance 

of tetragonal domains was instantaneous, confirming that the orthorhombic-tetragonal phase transition 

in KNN-based single crystals is of the first order. Similar domain structure in a Sb-doped KNLTN 

polycrystalline ceramic has been observed using the TEM technique by Lu et al. [217]. When the crystal 

is in the tetragonal region, the T-type domain structure also disappeared gradually with increasing 

temperature. Even if the temperature is increased to 450 °C, at which the crystal evolves into the cubic 

phase, tetragonal domain structures are still weakly visible. 

The TEM images and the SAED patterns at various temperatures provide information about domain 

evolution at phase transition and the relationship between the orientations of domain walls and 

crystallographic structure. Hierarchical nanodomain structures [153,154] are expected to be observed in 

the vicinity of the TO-T. However, the unstable domain structure near the TO-T and the high temperature 

stage make it difficult to focus on details. Therefore, no nanodomain was detected during the 

measurements. Figure 4.18 (k) provides the enlarged view of “red-A” zone in Figure 4.18 (b) and a 

fingerprint-type domain structure is presented.  
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Figure 4.18. In-situ TEM images of ferroelectric domain structure in the [001]PC-oriented 

(K0.612Na0.359Li0.029)(Ta0.024Nb0.976)O3 (N1) single crystal. (a) 25 oC, (b) 100 oC, (c) 110 oC, (d) 125 oC,  (e) 130 
oC, (f) 145 oC, (g) 250 oC, (h) 300 oC, (i) 400 oC, and (j) 450 oC. (k) Enlarged “red-A” zone of (b). 
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Figure 4.19. Temperature-dependent selected area electron diffraction patterns in the [001]PC-oriented 

(K0.612Na0.359Li0.029)(Ta0.024Nb0.976)O3 (N1) single crystal: (a) 25 oC, (b) 100 oC, (c) 250 oC, (d) 300 oC, (e) 400 oC, 

and (f) 450 oC. 

 

 
 

4.4 Summary 

Eleven KNN-based piezoelectric single crystals were grown by the submerged-seed solution growth or 

the top-seeded solution growth method. The relationship between the effective segregation coefficients 

and the initial liquid concentrations for individual elements were discussed. It was found that Na and Ta 

ions are preferentially absorbed by the crystal during the growth process because their effective 

segregation coefficients are larger than 1, while K and Nb ions show the opposite behavior with the 

effective segregation coefficients less than 1. For the B-site ions, the segregation coefficient of Nb 

increases with its concentration in the initial liquid solution, whereas that of Ta shows a decreasing trend. 

For the A-site ions, K ions display a similar trend, as compared to Nb ions. The behavior of Na is 

complex and non-monotonic, due to the competition between Li, Na, and K ions. 
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The segregation coefficient of Li was found to be very low, approximately 0.19. In order to produce the 

(K,Na,Li)(Ta,Nb)O3 (KNLTN) and (K,Na,Li)(Ta,Nb,Sb)O3 (KNLTNS) crystal with a TO-T in the 

vicinity of room temperature, 17 — 25 mol % Li in the initial liquid solution is required, which greatly 

increases the risk of the appearance of the tetragonal tungsten bronze phase. We therefore argue that it 

is difficult to obtain a KNLTN(S) crystal with a room temperature TO-T.  

Temperature-dependent structure evolutions of the (K0.612Na0.359Li0.029)(Ta0.024Nb0.976)O3 (N1) crystal 

were studied using polarized light microscopy and X-ray diffraction techniques. Optically transparent 

regions with wider domains and opaque regions with narrow domains were observed in the crystal. 

Different domain walls for the two regions were observed. Based on the comparison of the temperature-

dependent XRD measurements between the powders and the [001]PC orientation, the cloudy regions 

were assigned to the (001)O plane. Temperature-dependent TEM images of the [001]PC-oriented 

(K0.612Na0.359Li0.029)(Ta0.024Nb0.976)O3 (N1) single crystal showed the domain walls shift from [110]PC to 

[001]PC direction when the phase changed from orthorhombic to tetragonal.
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5 Composition Dependence of Phase Transitions and Electrical 

Properties 

5.1 Influence of Ta Substitution 

The four crystals, N7, N8, N9, and N10, are selected to investigate the influence of Ta content on the 

structure and electromechanical properties of (K,Na,Li)(Ta,Nb)O3 (KNLTN) single crystals. As stated 

in Table 4.3 (Page 55), their compositions are N7: (K0.881Na0.119)NbO3, N8: 

(K0.265Na0.715Li0.020)(Ta0.135Nb0.865)O3, N9: (K0.387Na0.593Li0.020)(Ta0.186Nb0.814)O3, and N10:  

(K0.371Na0.612Li0.017)(Ta0.338Nb0.662)O3. The slight differences in A-site cation ratios between N8, N9, and 

N10 crystals result from the different initial compositions of the liquid, as well as the difficulty in 

keeping crystal growth conditions the same for each attempt. Note that the N7 crystal is selected as a 

reference for pure (K,Na)NbO3.  

5.1.1 Crystallographic Structures and Phase Transitions 

Figure 5.1 (a) shows XRD patterns measured on crushed single crystals. It is observed that all four 

crystals exhibit single perovskite phase without any secondary phases. Moreover, enlarged 2θ regions 

at about 45 o are highlighted in Figure 5.1 (b), revealing that the crystallographic structure of KNLTN 

crystals evolves from orthorhombic to tetragonal with increasing Ta content. For the N7 and N8 samples, 

the intensity ratio I(022)O/I(200)O is close to 2, while the I(002)T/I(200)T changes to about 0.5 for the N9 and 

N10 samples. The origin of this evolution is the substitution of Nb ions (R=0.069 nm; CN6) by the 

slightly smaller Ta ions (R=0.068 nm; CN6) [218], which was also reported for Ta-modified KNN-

based polycrystalline ceramics [109,110]. Lattice distortions (𝜂) of orthorhombic (Ortho.) and tetragonal 

(Tetra.) phases are calculated by the following equations,  

𝜂(Ortho. ) = (
𝑐𝑂

√2𝑎𝑂
− 1) ∗ 100                                                        (5.1) 

 

𝜂(Tetra. ) = (
𝑐𝑇

𝑎𝑇
− 1) ∗ 100                                                      (5.2) 

 

The calculated lattice parameters, lattice distortions, and crystallographic structures are summarized in 

Table 5.1. The lattice distortion in the tetragonal phase is slightly higher than that in the orthorhombic 

phase in the vicinity of the TO-T, which is consistent with the previous work on KNN-based 

polycrystalline ceramics [219].  
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Table 5.1. Lattice parameters of as-grown KNLTN single crystals with different Ta contents. 

 

Sample 
Ta content 

(%) 

Lattice parameters Lattice distortion 

(%) 
Phase 

a (Å) b (Å) c (Å) 

N7 0 3.963 5.681 5.707 1.84 Ortho. 

N8 13.5 3.970 5.587 5.704 1.61 Ortho. 

N9 18.6 / a / a / a / a Tetra. 

N10 33.8 3.997 3.997 4.073 1.90 Tetra. 
 

a The lattice parameters and the distortion of this composition could not be determined due to the presence of a minor 

amount of orthorhombic phase in the predominantly tetragonal sample. This is a consequence of the vicinity of the phase 

transition.  

 

 
 
Figure 5.1. XRD patterns of the crushed KNLTN single crystals with different Ta contents. (a) Full range and (b) 

enlarged region of (002)T/(200)T or (022)O/(200)O peaks. 

 

Raman spectra of [001]PC-oriented KNLTN single crystals at room temperature in the range from 100 

cm-1 to 1000 cm-1 are shown in Figure 5.2. Theoretically, six soft modes exist in KNLTN systems, 

related to the vibrational movement of BO6 octahedra: 1A1g(v1)+1Eg(v2)+2F1u(v3,v4)+F2g(v5)+F2u(v6), 

among which 1A1g(v1)+1Eg(v2)+1F1u(v3) are stretching modes and others are bending modes [220]. 

Raman peaks between 100 cm-1 and 200 cm-1 are ascribed to the translational modes of A-site cations 

and the rotations of the BO6 octahedra, while the ones between 200 cm-1 and 1000 cm-1 to the stretching 

and bending vibrations of the BO6 octahedra [220,221]. As shown in Figure 5.2, the v2 mode at about 

550 cm-1 and the shoulder of v5 at about 200‒300 cm-1 become weaker with increasing Ta content, as a 

consequence of the phase evolution from the orthorhombic to the tetragonal phase. When compared to 

the pure KNN single crystal (N7), KNLTN single crystals exhibit stronger v1 and v5 modes, but a weaker 
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v5+v1 coupling mode and v4 mode. The decoupling effect of v1 and v5 modes results from the weaker 

interactions among the BO6 octahedron after Li and Ta substitutions.  

 

 
 

Figure 5.2. Raman spectra of [001]PC-oriented KNLTN single crystals with various Ta contents. 

 

The temperature-dependent permittivity and dielectric losses of [001]PC-oriented KNLTN single crystals 

measured at 10 kHz are provided in Figure 5.3. The inset in Figure 5.3 displays the relationship between 

phase transition temperatures, extracted from the permittivity measurements, and the Ta contents. This 

relationship can be linearly fitted by following equations: 

𝑇𝐶(℃) =  −(4.6 ± 0.23) ∙ 𝑥 (𝑚𝑜𝑙%) + (436 ± 4.7)                       (5.3) 

 

𝑇𝑂−𝑇(℃) =  −(8.6 ± 1.25) ∙ 𝑥 (𝑚𝑜𝑙%) + (204 ± 26.19)               (5.4) 

where x is the Ta content in mol %. The decrease rates of TC and TO-T are 4.6 oC/mol%Ta and 8.6 

oC/mol%Ta, respectively. This shift of both phase transition temperatures is attributed to the different 

electronegativity between Ta and Nb [4], as well as the change of the Goldschmidt tolerance factor t 

[24]. Lower electronegativity of Ta weakens the B-O bond and therefore reduces the ability for off-

center movements of B-site ions during the tetragonal‒cubic phase transition.  
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Figure 5.3. Temperature-dependent dielectric permittivity and losses of [001]PC-oriented KNLTN single crystals 

during heating from -100 oC to 450 oC at 10 kHz. The inset displays the change of phase transition temperatures 

(TC and TO-T) as a function of the Ta content. The minor discontinuity at 30 °C is related to the use of different 

measurement setups for the low and high temperature range. 

 

The influence of the K/Na ratio on transition temperatures was previously studied by Zhang et al. in 

polycrystalline (K,Na)NbO3 ceramics [222]. When the K/Na ratio was changed from 70/30 to 30/70, 

both phase transition temperatures TC and TO-T decreased by less than 10 oC. Similar results were also 

obtained by others [223,224]. Therefore, the shift of both TC and TO-T observed in this work can be 

ascribed primarily to the changing Ta content, and the influence of the K/Na ratio can be neglected.  

Relative dielectric permittivity values ε33
T/ε0 of N7, N8, N9, and N10 crystals at 30 oC are 107, 371, 964, 

and 231, respectively. The N9 crystal with 18.6 % Ta exhibits the highest dielectric permittivity at room 

temperature, which is higher than the values from most other literature reports, as listed in Table 2.3 

(Page 35) and Table 2.4 (Page 36). This is related to the vicinity of the TO-T to room temperature, which 

will be described in more detail in the following sub-chapter and in Chapter 6.  

5.1.2 Influence of Ta Content on Room Temperature Electromechanical Properties 

Figure 5.4 (a) depicts bipolar electric field-induced strain curves (S-E) of [001]PC-oriented KNLTN 

single crystals. Butterfly-shaped S-E loops with evident negative strain (Sneg) are observed for all 

crystals. Figure 5.4 (b) plots the corresponding unipolar strain curves. Highest bipolar and unipolar 

strains at 2 kV/mm are observed in the N9 crystal with 18.6 % Ta content. The enhanced strain in the 

N9 crystal results from the proximity of its TO-T to room temperature (Figure 5.3) and the resulting lower 

energy barrier for polarization rotation [1,142].  
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Figure 5.4. Electric field-induced (a) bipolar and (b) unipolar strains of [001]PC-oriented KNLTN single crystals 

at 2 kV/mm and 10 Hz. 

 

Bipolar strain curves also exhibit an asymmetric shape, which indicates the existence of an internal bias 

field Ei. Coercive field EC and internal field Ei are calculated by Equations (5.5) and (5.6) and are plotted 

in Figure 5.5 (a). 

𝐸C =
|𝐸C
+|

2
+
|𝐸𝐶
−|

2
                                                                      (5.5)  

        𝐸i = |
|𝐸C
+|

2
−
|𝐸C
−|

2
|                                                                  (5.6) 

where EC
+ and EC

- represent the positive and negative coercive fields, respectively. Note that the coercive 

field EC was taken as the electric field where the minimum strain is obtained in bipolar strain curves 

[225,226]. 
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Figure 5.5. (a) EC, Ei, and (b) piezoelectric constant d33* at 2 kV/mm of the [001]PC-oriented KNLTN single 

crystals with different Ta contents. 

 

It can be observed in Figure 5.5 (a) that internal bias fields are up to 20 % of the corresponding coercive 

field values. The reason for the appearance of internal bias fields in KNLTN crystals is still unclear, but 

may be related to defects created during crystal growth. The evaporation of A-site alkali ions [11] during 

the high-temperature growth process results in the formation of VA’ vacancies and the charge-

compensating VO˙˙ vacancies. 

As shown in Figure 5.4 (a), the maximum positive strain Spos (0.06 %) of [001]PC-oriented KNLTN 

crystals was obtained with 18.6 % Ta. A remarkable decrease of Spos is observed when Ta content 

increases to 33.8 %. Interestingly, for the N10 crystal with 33.8 % Ta, the absolute Sneg value is much 

higher than its Spos. This phenomenon was previously observed in 0.62Pb(Mg1/3Nb2/3)O3-0.38PbTiO3 

(PMN-PT) single crystals [225]. It was proposed that the depolarization field and internal stresses are 

too small to produce significant back-switching of the polarization in the absence of grain boundaries. 

However, studies of lead-based single crystals revealed that the shape of the bipolar strain curve depends 

on the crystallographic orientation and phase structure [155]. A detailed discussion of the influence of 

the orientation on the properties of KNN-based single crystals is given in Chapter 6.  

It is observed that the coercive field EC of N10 sample with 33.8 % Ta is more than 2 times higher as 

compared to other crystals with lower Ta content (Figure 5.5 (a)), which can be related to the formation 

of the tetragonal phase with fewer spontaneous polarization vectors and increased lattice distortion. 

Figure 5.5 (b) shows the large-signal converse piezoelectric coefficients d33
* of [001]PC-oriented 

KNLTN single crystals, which are calculated from the maximum unipolar strain measurements. The 

values for N7, N8, N9, and N10 are 102, 221, 368, and 22 pm/V, respectively. The highest d33
* is 

obtained when Ta content is 18.6 % (N9 crystal), due to the proximity of the TO-T to room temperature. 
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The ferroelectric hysteresis loop of the [001]PC-oriented N8 with 13.5 % Ta and N9 single crystal with 

18.6 % Ta are presented in Figure 5.6. The high leakage currents of the N7 crystal with 0 % Ta and the 

N10 crystal with 33.8 % Ta made it impossible to study their ferroelectric properties. For the N9 single 

crystal with 18.6 % Ta (Figure 5.6 (b)), the remanent polarization is approximately 5 µC/cm2 and the 

coercive field is 0.80 kV/mm, which is in agreement with the value 0.76 kV/mm obtained from the 

bipolar strain loop. Note that the P-E loop of this crystal at 3 kV/mm field amplitude could not be 

obtained due to the lower breakdown field. As compared to the N9 single crystal with 18.6 % Ta, the Pr 

of 3 µC/cm2 at 3 kV/mm in the N8 single crystal (13.5 % Ta) is lower, which is also ascribed to the 

proximity of TO-T to room temperature in the N9 crystal.  

 

 
 

Figure 5.6. Room temperature ferroelectric hysteresis P-E loops of the [001]PC-oriented (a) N8 single crystal 

with 13.5 % Ta (f= 20 Hz) and (b) N9 single crystal with 18.6 % Ta (f= 10 Hz).  

 

Piezoelectric, ferroelectric, and dielectric parameters of all [001]PC-oriented KNLTN single crystals with 

different Ta contents are summarized in Table 5.2. 
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 Table 5.2. Piezoelectric, ferroelectric, and dielectric parameters of [001]PC-oriented KNLTN crystals with 

various Ta contents.  

  

Sample 

(Ta mol%) 

d33* 

(pm/V) 

Spos 

(%)a 

-Sneg 

(%)a 

Smax 

(%)b 

EC 

(kV/mm) 

Ei 

(kV/mm) 

ε33
T /ε0 

(RT) 

ε33
max /ε0 

(TC) 

TO-T 

(oC) 

TC 

(oC) 

N7 (0) 102 0.020 0.002 0.020 0.44 0.040 107 3814 216 437 

N8 (13.5) 221 0.024 0.005 0.044 0.52 0.017 371 5765 94 367 

N9 (18.6) 368 0.060 0.008 0.074 0.76 0.172 964 5743 1 352 

N10 (33.8) 22 0.004 0.008 0.004 1.17 0.065 231 7394 -75 275 

 
a Obtained from bipolar strain curves. 
b Obtained from unipolar strain curves. 

 

 

5.1.3 Temperature-dependent Electromechanical Properties 

Temperature-dependent ferroelectric hysteresis loops (2nd electric field loading cycle) for the [001]PC-

oriented N8 single crystal with 13.5 % Ta (TO-T = 94 oC) are presented in Figure 5.7. The P-E loop at 20 

oC exhibits the maximum remanent polarization Pr (3 µC/cm2) and maximum polarization Pmax (6.9 

µC/cm2). The local maximum Pr of 2.8 µC/cm2 is achieved at 90 oC, originating from the orthorhombic-

tetragonal phase transition.  

 

 
 

Figure 5.7. Temperature dependent P-E loops of the [001]PC-oriented N8 single crystal with 13.5 % Ta (f=20 

Hz). 
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Temperature-dependent electric field-induced strain curves of the [001]PC–oriented N8 single crystal 

with 13.5 % Ta are plotted in Figure 5.8. For all measured temperatures, the main difference of S-E 

curves between the first and the second electric field loading cycle is the initial process when the field 

increases from 0 to the positive maximum Emax (3 kV/mm in this work). This is due to the irreversible 

domain switching and domain wall movement processes.  

 

 
 
Figure 5.8. Temperature dependent electric field-induced strain curves of the [001]PC–oriented N8 single crystal 

with 13.5 % Ta. The black curve refers to the S-E curve during the first electric field loading cycle, whereas the 

red curve corresponds to the second electric field loading cycle. 

 

The maximum positive strain Spos for the first cycle and the absolute values of minimum negative strain 

–Sneg for both cycles in the [001]PC-oriented N8 crystal (13.5 % Ta) are shown in Figure 5.9 (a).  The 

ratio –Sneg,1/Spos,1 in the first cycle and Sneg,2/Sneg,1 for both cycles are plotted in Figure 5.9 (b). Note that 

‘-Sneg’ is the absolute value of Sneg. The maximum values of Spos are achieved at the orthorhombic side, 

in the vicinity of the TO-T: Spos (65 oC) = 0.054 %; and Spos (80 oC) = (0.053 %). The maximum –Sneg are 

obtained at the tetragonal side in the vicinity of the TO-T: -Sneg (first cycle, 100 oC) = 0.061 % and -Sneg 

(second cycle, 100 oC) = 0.017 %. The blue curve in Figure 5.9 (b) indicates that –Sneg,1/Spos,1 (for the 

first cycle) is smaller than 0.5 in the orthorhombic phase from 20 oC to 80 oC, whereas it is higher than 

1 in the tetragonal phase from 100 oC to 140 oC. The maximum ratio of 2 is observed at 100 oC. The 

Sneg,2/Sneg,1 ratio in Figure 5.9 (b) increases linearly from 25 % to 45 % during heating from 20 oC to 90 

oC. When the temperature approaches TO-T, it decreases from 45% to 35 %, followed by a decrease in 

the tetragonal phase. Since the main difference between the two electric field loading cycles is the 
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contribution of the irreversible domain switching and domain wall movement processes, the relatively 

larger Sneg,2/Sneg,1 in the orthorhombic phase indicates the lower contribution of irreversible processes 

during the initial field loading, as compared to the tetragonal phase. 

   

 
 

Figure 5.9. Temperature-dependent (a) maximum positive strain Spos, absolute value of the minimum negative 

strain –Sneg during the first cycle and –Sneg during the second cycle, and (b) – Sneg,1/Spos, 1 in the first cycle and 

negative strain ratios between two cycles Sneg,1/Sneg, 2 in the [001]PC-oriented N8 crystal with 13.5 % Ta. Note that 

1 represents the first cycle and 2 the second cycle. The orthorhombic-tetragonal phase transition is highlighted 

by the yellow region. 

 

5.1.4 Summary 

The influence of the Ta content on the structure and electrical properties was investigated in Li, Ta-

modified KNN single crystals. The evolution from the orthorhombic to the tetragonal phase with 

increasing Ta content was detected by XRD and Raman techniques. The TC and TO-T were found to 

linearly shift to lower temperatures with increasing Ta content. Highest room temperature electrical 

properties (d33* = 368 pm/V, ε33,r/ε0 = 964) were found for the [001]PC-oriented N9 single crystal with 

18.6 % Ta. This is attributed to the proximity of the TO-T of the N9 single crystal to room temperature. 

The observed asymmetric strain may be correlated to the presence of defects, created during the high-

temperature crystal growth. Temperature-dependent polarization P-E and strain S-E curves were studied 

in the [001]PC-oriented N8 single crystal with 13.5 % Ta. The remanent polarization Pr reached the local 

maximum at 90 oC, which is in the vicinity of TO-T (94 oC). The influence of temperature on the 

maximum positive strain Spos during the first electrical poling cycle and minimum negative strain Sneg 

during both the first and the second electric field loading cycles have been studied. The maximum of 

Spos of 0.053 % was obtained at 80 oC at the orthorhombic side in the vicinity of TO-T. The maxima of –

Sneg of 0.061 % in the first cycle and 0.017 % in the second cycle were obtained at 100 oC at the 
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tetragonal side in the vicinity of TO-T. The higher Sneg,2/Sneg,1 in the orthorhombic phase indicates the 

lower irreversible contribution of domain switching and domain wall movement processes. 

 

5.2 Influence of Sb Substitution 

5.2.1  Phase Transition 

The influence of Sb on the ferroelectric and piezoelectric response was studied using two crystals: 

(K0.287Na0.691Li0.022)(Ta0.063Nb0.870Sb0.067)O3 (KNLTNS; growth attempt N11-Sb) and the 

(K0.265Na0.715Li0.020)(Ta0.135Nb0.865)O3 (KNLTN; growth attempt N8, presented in the previous section).   

As shown in Figure 5.10 (a), the substitution of 6.7 % Sb on the B-site shifts the TO-T from 94 oC to 50 

oC and the TC from 367 oC to 285 oC. The decrease rate of TO-T (6.6 oC/mol%) is half of that of TC (12.2 

oC/mol%) and indicates narrowing of the tetragonal temperature range. This trend is opposite as in the 

case of Ta substitution, where a broadening of the tetragonal temperature range was observed (see 

Section 5.1.2 ). Note that the decrease rates are only half of the values reported for the Sb-substituted 

KNN-based polycrystalline ceramics [102,103]. This difference may be related to intergranular 

interactions; however, further experimental work is needed to understand this phenomenon. The TO-T of 

the N11-Sb crystal was shifted to 50 oC, which is in the vicinity of room temperature. Moreover, 

decreased dielectric losses below TC are observed for the N11-Sb crystal (Figure 5.10 (b)). 

 

 
 

Figure 5.10. Temperature-dependent permittivity of [001]PC-oriented (K0.265Na0.715Li0.020)(Ta0.135Nb0.865)O3 

(KNLTN, N8) and (K0.287Na0.691Li0.022)(Ta0.063Nb0.870Sb0.067)O3 (KNLTNS, N11-Sb) crystals at 10 kHz. 
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5.2.2 Influence of Annealing on Permittivity 

The abnormal increase of the dielectric permittivity and dielectric losses above TC in the as-prepared 

[001]PC-oriented KNLTNS single crystal (Figure 5.10; N11-Sb) could indicate the presence of defects. 

Kizaki et al. [187] and Noguchi et al. [188] reported that leakage current density of pure KNN crystals 

decreased after annealing in air or O2. However, the underlying conductivity mechanisms and the 

method to improve the weak piezoelectric and ferroelectric response (d33 = 173 pC/N, and Pr = 9 μC/cm2 

along the [001]PC orientation [183]) of KNLTNS single crystals are currently still under discussions. In 

the present section, an annealing process is employed in order to investigate the improvement of the 

electrical performance. Annealing was performed at 900 oC in pure O2 atmosphere for one week.  

Figure 5.11 presents the temperature-dependent dielectric permittivity and dielectric losses of two 

[001]PC-oriented single crystals with Sb: (a, c) non-annealed, and (b, d) annealed in O2. Phase transition 

temperatures TO-T and TC remained almost the same, whereas an increase of the permittivity was 

observed for the annealed sample. The noticeable decrease of the high-temperature dielectric losses after 

annealing indicates the changed defect state of the sample. The anomaly in the dielectric losses of the 

non-annealed sample at approximately 450 oC shows a strong frequency dependence and increases at 

lower frequencies, indicating that the conductivity behaviour of the KNLTNS single crystal is related to 

low-frequency relaxation processes [227]. This relaxation behaviour becomes weaker after annealing. 
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Figure 5.11. Temperature-dependent dielectric permittivity and losses for (a, c) non-annealed, and (b, d) 

annealed [001]PC-oriented KNLTNS samples. The insets are the enlarged regions from -120 oC to 250 oC. 

 

 

5.2.3 Electromechanical Properties 

Temperature-dependent Large-signal Polarization Hysteresis 

P-E loops at various temperatures for the non-annealed [001]PC-oriented KNLTNS single crystal are 

presented in Figure 5.12. Field amplitudes were selected to be 0.5, 1, 1.5, 2, and 3 kV/mm, at a frequency 

of 1 Hz. The investigated temperature range is from room temperature to 170 oC, during which the 

crystallographic phase of the KNLTNS crystal changes from orthorhombic to tetragonal. At 20 oC, a 

contribution from high leakage current is observed in the P-E loop and prevents the evaluation of the 

remanent polarization Pr and coercive field EC. When the temperature approaches 30 oC, the P-E loop 

becomes narrower and the leakage current contribution decreases to a negligible level. This is in 

agreement with the relatively high dielectric losses in the orthorhombic phase for the non-annealed 



 

90                                                                                                                        5.2  Influence of Sb Substitution 

sample in the inset of Figure 5.11 (c). The phenomenon has been also observed in several polycrystalline 

ceramics [118,228]; however, the origin of this behaviour is still not understood and requires further 

studies.  

 

 
 

Figure 5.12. P-E loops for the non-annealed [001]PC-oriented KNLTNS single crystal state at various 

temperatures (f=1 Hz). 

 

Figure 5.13 provides the temperature-dependent large-signal P-E loops for the annealed [001]PC-

oriented KNLTNS single crystal. Enhanced ferroelectric properties with rectangular shaped loops and 

better temperature stability are obtained in the annealed samples.  

 

 
 

Figure 5.13. P-E loops for the annealed [001]PC-oriented KNLTNS single crystal state at various temperatures 

(f=1 Hz). 
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Figure 5.14 summarizes the temperature-dependent maximum polarization Pmax, remanent polarization 

Pr, and coercive field EC of non-annealed and annealed KNLTNS single crystals, and of the KNLTN 

(non-annealed, N8) crystal along the [001]PC orientation at 3 kV/mm. Note that the latter was measured 

at a higher frequency (20 Hz) due to a higher leakage current contribution.  

The non-annealed KNLTNS sample reveals slightly lower Pmax and Pr, as shown in Figure 5.14 (a) and 

(b). For the KNLTN sample, maximum Pmax and Pr values are achieved at 90 oC, which is in the vicinity 

of its TO-T (94 oC in Figure 5.10 (a)). However, no enhancement of Pmax and Pr is observed at TO-T (50 

oC) in the non-annealed KNLTNS sample. Overall, no obvious changes in Pmax and Pr are obtained after 

the substitution of 6.7 % Sb on the B site before annealing, although trends for both KNLTN and 

KNLTNS single crystals are not the same. On the other hand, the temperature stability of polarization 

was improved with the substitution of Sb. The coercive field EC (see Figure 5.14 (c)) of the KNLTN 

sample (non-annealed) is higher than that of the non-annealed KNLTNS sample from 50 oC to 100 oC.  

The Pmax and Pr of the annealed KNLTNS sample are about 3‒5 times higher compared to the non-

annealed sample, which can be seen in Figure 5.14 (a) and (b). In fact, the Pmax and Pr of the annealed 

KNLTNS single crystal at 0.5 kV/mm are comparable to the non-annealed sample at 3 kV/mm (Figure 

5.12 (Page 90) and Figure 5.13 (Page 90)). With increasing temperature, the Pmax and Pr first increase 

and then decrease above 50 oC. From 130 oC to 170 oC, both Pmax and Pr increase again slightly. The 

maximum of Pmax and Pr at 50 oC is ascribed to the orthorhombic-tetragonal phase transition, resulting 

from the larger number of spontaneous polarization directions in the orthorhombic phase. The increase 

of both Pmax and Pr above 130 oC originates from the reduced EC and the non-saturated state at 3kV/mm, 

which enables more domain switching events. 

At 30 oC, coercive fields of both non-annealed and annealed KNLTNS samples are close to each other. 

The coercive field for the non-annealed sample decreases above 30 °C, while the values of the annealed 

crystal are 1.3‒1.4 times higher. However, the coercive field of the annealed sample decreases from 20 

oC to 30 oC, increases from 30 oC to 70 oC, and then decreases again. The local minimum at 30 oC is 

ascribed to the orthorhombic-tetragonal phase transition. In the proximity of TO-T, coercive field 

decreases with temperature in the orthorhombic phase side but increases with temperature in the 

tetragonal phase side. This is explained by the relatively lower lattice distortion of the orthorhombic 

phase, as compared to the tetragonal phase [219].  

The comparison of ferroelectric properties between the non-annealed and annealed KNLTNS single 

crystals indicates that the annealing process in O2 is effective to enhance the ferroelectric properties of 

this system, as compared to the chemical substitution. Several KNN-based single crystals reported in 

the literature show a high piezoelectric coefficient but low Pmax and Pr [70,184]. For example, Chen et 



 

92                                                                                                                        5.2  Influence of Sb Substitution 

al. [70] reported a KNN single crystal with a piezoelectric coefficient of 405 pC/N but a P-E loop with 

high leakage current (Figure 2.18, Page 33). Huo et al. [184] reported a Mn-doped KNLTN single crystal 

with a piezoelectric coefficient of 630 pC/N but a Pr of 3.45 µC/cm2. 

 

 
 

Figure 5.14. Temperature-dependent parameters extracted from P-E loops for the non-annealed and annealed 

[001]PC-oriented KNLTNS (f =1 Hz) and non-annealed [001]PC-oriented KNLTN (f =20 Hz) single crystal 

samples at 3 kV/mm: (a) maximum polarization Pmax, (b) remanent polarization Pr, and (c) coercive field EC. 

 

Temperature-dependent Large-signal Strain Curves 

The large-signal electric field-induced strain curves for both the non-annealed and annealed [001]PC-

oriented KNLTNS single crystal samples were measured at various temperatures and are presented in 

Figure 5.15. The electric field-induced strain increases almost 3 times after the annealing process, 

especially above 30 oC. For the non-annealed sample, the maximum positive strain (Spos) at the maximum 

field (Emax) decreases with temperature and the absolute minimum negative strain (-Sneg) is much lower 

than Spos. Note that a strong asymmetry of the curves is observed in the orthorhombic phase, which is 

strongly reduced in the tetragonal phase above 50 oC．  
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Figure 5.15. S-E curves for both non-annealed and annealed [001]PC-oriented KNLTNS single crystal state at 

various temperatures. 

 

Figure 5.16 presents the changes of the maximum positive strain (Spos), absolute negative strain (-Sneg) 

and the ratio between –Sneg/Spos of the annealed KNLTNS single crystal sample at different temperatures. 

Note that only the values at positive fields are used for this discussion because of the asymmetric curves. 

The Spos reaches a maximum (0.16 %) at 50 oC at the tetragonal side of the TO-T. However, a remarkable 

change in the increase rate below and above TO-T is observed. The -Sneg keeps increasing from room 

temperature to 110 oC, followed by a slight decrease above 110 oC. The Spos and Sneg of the annealed 

[001]PC-oriented KNLTNS single crystal are in the range of 0.11‒0.16 % and 0.01‒0.08 %, which are 

suitable for piezoelectric applications. It is a great challenge to explain the trend of –Sneg/Spos ratio in the 

whole temperature range, which depends on the composition, defects,  crystalline quality, and other 

factors. Based on the strain results of the annealed KNLTNS single crystal (Figure 5.16) and the non-

annealed KNLTN single crystal (Figure 5.9, Page 86), it is concluded that –Sneg/Spos ratio keeps 

increasing with temperature in the orthorhombic phase and -Sneg/Spos is higher in the tetragonal phase 

than in the orthorhombic phase in the vicinity of TO-T for the samples with the [001]PC orientation. This 

is believed to originate from the different contributions from 180 o and non-180 o domain switching 

when the angle between the electric field and spontaneous polarization changes, which will be discussed 

in detail in Chapter 6. 
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Figure 5.16. Temperature dependent Spos (maximum positive strain), -Sneg (minimum negative strain) and the 

ratio between –Sneg/Spos for the annealed [001]PC-oriented KNLTNS single crystal sample. 

 

 

The unipolar strain curves of both non-annealed and annealed KNLTNS single crystals are shown in 

Figure 5.17 (a) and (b), which were measured at 3 kV/mm and 2 Hz. The maximum unipolar strain Smax 

and the calculated large-signal converse piezoelectric constants d33* are summarized in Figure 5.17 (c), 

respectively. Both Smax and d33* of the non-annealed sample initially decrease with temperature and then 

slightly increase above 70 oC. The low Smax and d33* values of the non-annealed sample may result from 

the difficulty in poling under AC fields. On the other hand, the annealed crystal exhibits larger Smax and 

d33*. The largest Smax and d33* values for the annealed sample are achieved at 170 oC, which are 0.16 % 

and 530 pm/V, respectively. The local maximum Smax and d33* at 50 oC for the annealed sample are 0.12 

% and 390 pm/V, respectively. Note that the annealed sample shows good temperature stability of 

unipolar Smax and d33* from 20 oC to 150 oC, which is important for many piezoelectric applications. 
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Figure 5.17. Temperature-dependent unipolar strain curves of (a) non-annealed and (b) annealed [001]PC-

oriented KNLTNS single crystals. (c) Temperature-dependent maximum unipolar strain and converse 

piezoelectric coefficient of both [001]PC-oriented samples. 

 

 

Small-signal Field-dependent Permittivity and Piezoelectric Coefficients at Different 

Temperatures 

Figure 5.18 provides the small-signal field-dependent permittivity 휀33’/휀0 and piezoelectric coefficient 

d33* of non-annealed and annealed [001]PC-oriented KNLTNS single crystals at various temperatures. 

The small-signal field dependence of both, permittivity and piezoelectric coefficient curves, is ascribed 

predominantly to the reversible processes due to the low excitation field amplitude.  

The non-annealed sample reveals relatively stable field-dependent permittivity curves from 20 oC to 50 

oC (Figure 5.18 (a)-(e)). Afterwards, the permittivity curves start to shift to higher values. Although the 

values in the orthorhombic phase of the annealed sample are similar to the non-annealed one (at 20 oC 

and 30 oC), additional local minima are detected at the coercive field, which disappear above 50 °C. 

Unlike the non-annealed sample, the permittivity curves of the annealed sample shift to lower values at 

90 oC and then to higher values at 170 oC. Small-signal field-dependent permittivity is believed to be 

related to domain wall density and domain wall mobility [229,230]. The stable permittivity of both non-

annealed and annealed sample below TO-T indicates the relatively stable domain movement and domain 

configuration in the orthorhombic phase. The upward shift of the permittivity for the non-annealed 

sample is ascribed to the increased mobility of domain walls above TO-T at higher temperatures. For the 

annealed sample, the domain wall density is reduced above TO-T due to the higher amount of macro 

domains in the pure tetragonal phase, resulting in a lower permittivity. On the other hand, when the 



 

96                                                                                                                        5.2  Influence of Sb Substitution 

temperature is high enough, the domain wall mobility is largely increased and contributes to the overall 

permittivity, resulting in a considerable increase of the latter at 170 oC. As compared to the non-annealed 

crystal, the lower permittivity of the annealed sample above 90 oC is ascribed to the easier poling process 

and therefore the lower domain wall density after poling. 

Temperature dependence of small-signal field-dependent piezoelectric coefficient curves of both 

samples are presented in Figure 5.18 (f)-(j). At a given temperature, the annealed [001]PC-oriented 

KNLTNS single crystal reveals much higher piezoelectric coefficients than the non-annealed one. The 

enhanced piezoelectric coefficients at 170 oC in the annealed sample is related to the easier mobility of 

domain walls at high temperatures. 

 

 
Figure 5.18. Small-signal field-dependent permittivity ε33’/ε0 and piezoelectric coefficients d33* of non-annealed 

and annealed [001]PC-oriented KNLTNS single crystal states at various temperatures. The arrows in (a) and (c) 

show the direction of electric field loading processes. 

 

Room Temperature Large-signal Polarization Hysteresis Curves 

Figure 5.19 displays large-signal bipolar and unipolar polarization hysteresis P-E and S-E curves of both 

[001]PC-oriented KNLTNS single crystal states at room temperature. Prior to the measurements, samples 

were poled at 3 kV/mm and 100 oC for 30 min. The non-annealed [001]PC-oriented sample exhibits a 

slanted hysteresis loop with remanent polarization Pr of 10 µC/cm2 and coercive field EC of 0.6 kV/mm 

(Figure 5.19 (a)). On the other hand, a rectangular P-E loop with a Pr of 24.5 µC/cm2 and a coercive 

field EC of 0.6 kV/mm is obtained after annealing in O2. It should be noted that this Pr is much higher 

than those previously reported for the [001]PC-oriented single crystals with similar compositions 

[173,183]. The saturated polarization (PS) of the annealed [001]PC-oriented sample is estimated to be 

approximately 26.1 µC/cm2 (see Figure 5.19 (c)). Room temperature P-E loops after DC poling at 3 
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kV/mm show that the Pr and Pmax in the annealed KNLTNS sample are twice as large as in the non-

annealed one. 

As shown in Figure 5.19 (b), the unipolar P-E loops display a strong hysteresis in the non-annealed 

sample but almost zero hysteresis in the annealed one during the second electric field loading cycle. 

This is an evidence for the much higher degree of poling in the annealed sample than in the non-annealed 

sample. 

The bipolar and unipolar S-E curves of both [001]PC-oriented KNLTNS single crystal states are 

displayed in Figure 5.19 (d) and (e). Both bipolar and unipolar strain curves of the non-annealed [001]PC-

oriented sample are nonlinear. However, the annealed sample presents a linear bipolar strain for E > ±1 

kV/mm in Figure 5.19 (d), as well as a linear second cycle unipolar strain curve in Figure 5.19 (e). The 

maximum bipolar and unipolar strains at 4 kV/mm of the non-annealed [001]PC-oriented sample reach 

0.143 % and 0.13 %, respectively. The corresponding values of the [001]PC-oriented annealed sample 

increase to 0.195 % and 0.2 %, respectively.  

 

 
 

Figure 5.19. (a) Bipolar and (b) unipolar P-E, (c) enlarged bipolar P-E, and (d) bipolar and (e) unipolar S-E 

curves of both [001]PC-oriented KNLTNS single crystal states at room temperature (2nd electric field loading 

cycles; measured frequencies: 1 Hz for the bipolar and 2 Hz for the unipolar cycles).  
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Note that P-E loops of the non-annealed [001]PC-oriented KNLTNS sample in Figure 5.12 (a) (Page 90) 

and Figure 5.19 (a) are different from each other, which indicates irreversible processes during electrical 

measurements. The samples were poled at 3 kV/mm prior to the measurement in Figure 5.19 (Page 97) 

and subsequently depolarized by other temperature-dependent electrical measurements before 

performing the measurements shown in Figure 5.12 (Page 90). This phenomenon was observed in 

several crystals and resembles fatigue processes [231], such as charge accumulation or microcracking, 

and requires further investigation. Similar phenomenon also happens in the annealed sample.  

Room Temperature Piezoelectric Coefficients 

The large-signal converse piezoelectric coefficients d33* along the [001]PC orientation, calculated as 

unipolar Smax/Emax ( red curve in Figure 5.4 (b) on Page 81 and curves in Figure 5.19 (e)), are 221 pm/V 

for the non-annealed KNLTN (N8), 320 pm/V for the non-annealed KNLTNS (N11-Sb), and 505 pm/V 

for the annealed KNLTNS (N11-Sb) single crystal samples.  

Their small-signal direct piezoelectric coefficient d33 along the [001]PC orientation, measured by the 

Berlincourt method after being poled at 3 kV/mm, are 180 pC/N, 284 pC/N, and 450 pC/N, respectively. 

The samples were poled at 3 kV/mm and 100 oC prior to the measurement.  

The 6.7 % Sb substitution increases the large-signal converse piezoelectric coefficient d33* by 

approximately 45 % and the small-signal direct piezoelectric coefficient by 58 %, due to a decrease of 

the TO-T (close to room temperature). The one-week annealing process increases both the large- and 

small-signal piezoelectric coefficient by approximately 50 %, resulting from the decrease of 

conductivity. 

Temperature-dependent Small-signal Piezoelectric Coefficients 

Figure 5.20 shows temperature-dependent piezoelectric coefficients d33 for both non-annealed and 

annealed [001]PC-oriented KNLTNS single crystal samples. At room temperature, the piezoelectric 

coefficients are 381 pC/N and 732 pC/N, respectively. To the author´s knowledge, the latter value is the 

highest room temperature value reported in KNN-based single crystals so far. Note that these values are 

also higher as compared to the piezoelectric coefficients reported for both samples in the previous 

section of this chapter. The reason for this are the different poling conditions used in both cases.  Both 

samples presented in this section were first poled at room temperature with 3 kV/mm for 30 min, then 

kept at 80 oC for 30 min with 3 kV/mm, and subsequently field-cooled. The measurements were 

performed after 24 h aging. This indicates the importance of the poling conditions [232] of the KNN-

based single crystals; however, the study of these was out of the scope of this work.  
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When the temperature increases to TO-T, the maximum piezoelectric constants of 1431 pm/V and 464 

pm/V are achieved for annealed and non-annealed samples. The significant drop above TO-T is ascribed 

to the depolarization at the orthorhombic-tetragonal phase transition [233].  

 

 
 

Figure 5.20. Temperature-dependent piezoelectric coefficients d33 of non-annealed and annealed [001]PC-

oriented poled KNLTNS single crystal samples, measured at  8 V/mm and 1 kHz. 

 

  

5.2.4 121Sb Mössbauer Spectra 

Figure 5.21 shows 121Sb Mössbauer spectra of both samples of crushed KNLTNS single crystals at -173 

oC: (a) non-annealed and (b) annealed. Table 5.3 provides the fitted parameters. Two distinct 

components exhibit very different values of the isomer shift δ referring to the Ca121mSnO3 source. The 

main peak with δ of about 0.5 mm/s is typical of Sb5+ octahedrally coordinated to oxygen, while the 

other peak with δ of about -15 mm/s corresponds to the presence of Sb3+ [234]. The large negative value 

of Sb3+, which possesses 5s2 lone-pair electrons, is ascribed to the negative sign of the change in the 

nuclear radius between the nuclear excited and ground states, as well as the relatively higher value of 

the overall electron density, as compared to Sb5+ [235]. Moreover, the different shapes of the observed 

peaks indicate the different strength of the electric quadrupole hyperfine interaction in the Sb5+ and Sb3+ 

species. According to the fact that the quadrupole coupling constant eVzzQ5/2 of the dominated peak is 

close to 0, the octahedral sites occupied by Sb5+ are inferred as possessing a virtually undistorted local 

environment. On the contrary, the large positive eVzzQ5/2 of the weaker peak implies a steriochemically-

active behaviour of the lone-pair electrons on Sb3+. This implies the low coordination number of the 

sites occupied by Sb3+ species. This “discrepancy” is indeed not surprising, taking into account the 
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expected location of Sb3+ at bulk sites in the case of (K0.287Na0.691Li0.022)(Ta0.063Nb0.870Sb0.067)O3 single 

crystal. It is therefore concluded that Sb ions in KNLTNS crystals are located in both, the octahedral B 

site and similar B-site environments with a lack of oxygen, even after O2 annealing. It is an indicative 

of the existence of the dipole association (Sb(III)B’’-VO
··).  

 

 
Figure 5.21. 121Sb Mössbauer spectra of powders of the (a) non-annealed and (b) annealed KNLTNS samples, 

measured at -173 oC. 

  

Table 5.3. 121Sb Mössbauer parameters for crushed KNLTNS crystals measured at -173 oC. 

 

Samples 
Sb 

species 

Isomer shift 

δ (mm/s) 

Quadrupole 

coupling constant 

eVzzQ5/2  (mm/s) 

Full width at 

half maximum 

Γ (mm/s) 

Relative 

area 

A (%) 

Non-annealed 

KNLTNS 

Sb5+ 0.51  0.05 3.21 2.3  0.2 90  3 

Sb3+ -14.8  0.6 14.1  5 2.2  0.2 10  5 

Annealed 

KNLTNS (in 

O2) 

Sb5+ 0.53  0.05 2.6  1.0 2.5  0.2 95  3 

Sb3+ -14.6  0.9 13  6 2.2  0.1 5  4 

 

Note that the limitation of permittivity measurements (see Figure 5.11, Page 89) prevented the 

determination of the rhombohedral to orthorhombic phase transition temperature TR-O. Based on the 

Raman spectroscopy, Trodahl et al. [236] reported the rhombohedral phase in (K0.5Na0.5)0.98Li0.02NbO3 

polycrystalline ceramics to appear at about -123 oC. Moreover, the addition of Sb ions rapidly increases 

the TR-O [102,237]. It is therefore assumed that the KNLTNS single crystal investigated in this work is 

in the rhombohedral phase at -173 oC. Despite the structural change from orthorhombic to rhombohedral 

phase upon cooling, the chemical states of Sb species are believed to remain the same as at room 

temperature. Simultaneously, the signals of Sb5+ and Sb3+ in the 121Sb Mössbauer spectra are more 

distinguished and visible at a lower temperature.   

Non-annealed 
Sb

5+
 

Sb
3+

 

  Annealed in O2 Sb
5+

 

Sb
3+

 

(a)                                                           (b) 
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5.2.5 Mechanism of Enhanced Electrical Properties after Annealing in O2 

The permittivity, ferroelectric, and piezoelectric properties of the KNLTNS single crystal have been 

improved remarkably after the annealing in O2. This is an indication for the existence of defects in the 

as-grown KNLTNS single crystals, which could have 4 possible origins.  

The volatilization of the A-site ions (Li, Na, and K ions) during the high temperature process creates A-

site vacancies [11,187], as expressed by the following equation with Kröger-Vink notation [27], 

AA → VA
′ + h∙                                                                              (5.7) 

In addition, oxygen vacancies are also expected to be present in the KNLTNS single crystal [238,239] 

during high temperature growth process, following the mechanism, 

OO → VO
∙∙ +

1

2
O2 + 2e

′                                                                   (5.8) 

The third defect type are substituted centers, originating from the multi oxidation states of B-site ions. 

The oxidation states of Sb ions in KNN-based piezoelectric system were not reported in the literature so 

far. Note that X-ray photoelectron spectroscopy cannot be used to elucidate Sb oxidation states, due to 

the overlapping peaks of Sb5+ and O2- [240]. As an effective method to measure the oxidation state, 121Sb 

Mössbauer spectra in Figure 5.21 (a) (Page 100) and Table 5.3 (Page 100) show that the main oxidation 

state of Sb in the as-grown KNLTNS single crystal is Sb5+ and 10 % of Sb is present as Sb3+. Kizaki et 

al. [187] held the opinion that the Nb4+ state also appears in as-grown (K,Na)NbO3 single crystals, 

however, no direct observation has been reported so far. The two types of substituted centers correspond 

to the two processes: 

BB
Sb(Ш)
→   Sb(Ш)

B
′′ + 2h∙                                                                (5.9) 

BB
2Nb(IV)
→    Nb(IV)

B
′ + h∙                                                             (5.10) 

The last defect types highlighted here are those defects originating from flux inclusions, dislocations, 

twinning and cracks in single crystalline form [241,242].  

As shown in Equations 5.7, 5.9 and 5.10, the presence of A-site vacancies and B-site substituted centers 

is accompanied by the formation of holes for charge compensation, which therefore increases the 

concentration of oxygen vacancies. 

To conclude, there are two origins of oxygen vacancies in the as-grown KNLTNS single crystal: the 

intrinsic, due to the high temperature growth process, and the extrinsic, induced by the presence of A-
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site vacancies and B-site substituted centers to compensate charges. The high concentration of oxygen 

vacancies is therefore believed to be responsible for high electrical conductivity of as-prepared KNN-

based materials [128,170,243,244,245,246]. 

During the annealing process in O2, the concentration of oxygen vacancies is decreased due to its defect 

reaction with O2 and trapped electrons, as described by,  

VO
∙∙ + 2e′ +

1

2
O2 → OO

x                                                        (5.11)       

In addition, Mössbauer spectroscopy data in Figure 5.21 (b) and Table 5.3 (Page 100) indicate that the 

concentration of Sb3+ ions decreased by 50 % after the annealing process. This is related to the defect 

reaction between Sb(III)B’’ center and oxygen vacancy VO
 ∙ ∙ . 

Sb(III)B
′′ + VO

 ∙ ∙ +
1

2
O2 → Sb(V)B

x + OO
x                                (5.12) 

As reported previously [160], the oxidization of Nb4+ ions may also occur during the annealing process 

in O2, as described by Equation (5.13).  

2Nb(IV)B
′ + VO

 ∙ ∙ +
1

2
O2 → 2Nb(V)B

x + OO
x                          (5.13) 

The two processes described in Equations (5.12) and (5.13) thus further decrease the concentration of 

oxygen vacancies in KNLTNS crystals during the annealing process.  

The annealed KNLTNS crystal still shows enhanced conductivity at high temperatures, which is evident 

in Figure 5.11 (b) and (d) (Page 89). This originates from the fact that Sb3+ ions were not completely 

oxidized to Sb5+ and that A-site vacancies were not removed during annealing in O2. Previous 

experimental work of Kizaki et al. [187] showed dramatically decreased leakage current densities in 

pure KNN single crystals after annealing both in air and 35 MPa oxygen pressure. It is believed that the 

defect concentration in the KNN single crystal relies on both the annealing temperature and oxygen 

partial pressure. It should be noted that the thermodynamically stable conditions for defects in KNLTNS 

single crystals (both oxygen vacancy and Sb(III)B’’ center)  in the present work are not clear. Further 

annealing experiments under various oxygen partial pressures and annealing temperatures are therefore 

necessary to obtain thermodynamically stable defects and validate the proposed mechanisms.   

Several mechanisms have been proposed to clarify the influence of defects on the ferroelectric and 

piezoelectric behaviour. Defects in ferroelectrics are often energetically favourable at or near the domain 

walls [247,248,249]. After being annealed in O2, the sample shows decreased concentration of defects, 

which may reduce the interactions with domain walls and thus increase the contribution of domain walls 

to the ferroelectric and piezoelectric properties [250]. The defect complex, consisting of at least one 
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negatively charged defect center and one positively charged center, can reduce the total polarization 

[251]. The decreased concentration of defect dipoles after annealing in O2 enhances reversible domain 

switching and domain growth. Fan et al. [252] observed the re-construction of domains in 

Pb[(Zn1/3Nb2/3)0.5(Zr0.47Ti0.53)0.5]O3 ceramics after thermal annealing by TEM. The sample had a needle-

like domain structure after being annealed in Ar, but exhibited a lamellar domain structure after 

annealing in O2. The needle-like domain structure was related to charged domain walls [253] induced 

by the high concentration of defects, especially oxygen vacancies. Note that needle-like domain walls 

are charged, while twin-like domain walls are typically neutral. The charged domain walls in non-

annealed sample are believed to additionally decrease the polarization. Further analysis using local 

techniques, such as piezoresponse force microscopy, is necessary to confirm this hypothesis.  

5.2.6 Summary 

The room-temperature and temperature-dependent ferroelectric and piezoelectric properties were 

investigated in the [001]PC-oriented KNLTNS single crystals before and after one-week annealing in O2. 

More than a 2 times increase of polarization and piezoelectric properties were achieved in the annealed 

sample, as compared to the non-annealed one. The room temperature P-E loop with a remanent 

polarization of 24.5 µC/cm2 and a spontaneous polarization of 26.1 µC/cm2 were obtained in the 

annealed sample. In addition, a very high room temperature piezoelectric coefficient of 732 pC/N was 

obtained. The annealed KNLTNS single crystal shows better temperature stability of the remanent 

polarization and strain (bipolar and unipolar). Maximum polarization, remanent polarization, maximum 

positive and negative strain, and piezoelectric coefficient reach the maximum value in the vicinity of 

the orthorhombic-phase transition temperature. 

The enhanced electrical properties originate from the decrease of defect concentrations after annealing. 

The present work reveals the existence of Sb3+ in the as-grown KNLTNS single crystal and the decrease 

of Sb3+ after annealing by the Mössbauer spectra. The annealing process decreases the concentration of 

oxygen vacancies and Sb(III)B’’ centers. This improves the domain mobility processes, as evident by 

the increased field-dependent small-signal piezoelectric coefficients.  
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5.3 Influence of Mn Doping 

Figure 5.22 shows XRD patterns of powders of crushed crystals without Mn (N1 crystal; 

(K0.612Na0.359Li0.029)(Ta0.024Nb0.976)O3) and with Mn doping (N2-Mn crystal; 

(K0.637Na0.334Li0.029)(Ta0.0229Nb0.9768Mn0.0003)O2.99955). The intensity ratio of two peaks at about 2θ = 45 o 

(I022/I200) is approximately 2, confirming the orthorhombic symmetry in both crystals. No secondary 

phase is observed. It is found that peak positions move to lower 2θ values after Mn doping, as an 

evidence of the incorporation of the Mn ions into the perovskite structure and the resulting increase of 

the unit-cell volume. The ionic radii [101] for all the ions present in both samples are 0.067 nm for Mn2+, 

0.064 nm for Mn3+, 0.053 nm for Mn4+, 0.064 nm for Nb5+, 0.064 nm for Ta5+, 0.152 nm for K+, 0.118 

nm for Na+, and 0.092 nm for Li+. Therefore, the volume increase suggests the incorporation of the Mn2+ 

into the B-site. Similar results were reported in MnO2-doped KNN single crystals [186]. 

 

 
 

Figure 5.22. XRD patterns of powders of crushed crystals without Mn (N1, 

(K0.612Na0.359Li0.029)(Ta0.024Nb0.976)O3) and with Mn doping (N2-Mn, 

(K0.637Na0.334Li0.029)(Ta0.0229Nb0.9768Mn0.0003)O2.99955).  

 

 

Temperature-dependent (a) permittivity and (b) dielectric losses of the [001]PC-oriented crystals are 

presented in Figure 5.23. The TO-T and TC of the N1 and N2-Mn crystals are detected at (119 oC, 123 oC) 

and (449 oC, 450 oC), respectively.  No significant shift of TO-T and TC is observed after the Mn doping. 

This is attributed to a relatively low amount of Mn ions (0.03 %), as compared to the work of Lin et al. 

[186], who observed a shift of 15 °C for 0.5 % Mn doping. Frequency-dependent dielectric properties 

of the [001]PC-oriented N1 and N2-Mn crystals are shown in Figure A.1 (Page 123) of Appendix and 

Figure 6.2 (a) and (c) (Page 111), respectively.  
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Figure 5.23. Temperature-dependent (a) permittivity and (b) dielectric losses of [001]PC-oriented crystals without 

Mn (N1; (K0.612Na0.359Li0.029)(Ta0.024Nb0.976)O3) and with Mn (N2-Mn; 

(K0.637Na0.334Li0.029)(Ta0.0229Nb0.9768Mn0.0003)O2.99955, measured during heating. 

 

Figure 5.24 provides polarization hysteresis P-E, bipolar and unipolar strain curves of the non-annealed 

N1 crystal, the non-annealed and annealed N2-Mn crystal along the [001]PC orientation. The annealing 

was carried out at 900 oC for one week in pure O2 atmosphere. It is observed that both Mn-doped crystals 

show much higher maximum polarization Pmax, remanent polarization Pr, and unipolar maximum strain 

Spos, as compared to the N1 crystal without Mn doping. Although the bipolar maximum strain for the 

crystal without Mn is about 70 % of that for the Mn-doped crystal, it exhibits a much more asymmetric 

shape. After annealing in O2, the Mn-doped crystal shows almost no leakage current in P-E loops and a 

large unipolar strain, approximately twice as large as the one of the non-annealed N2-Mn crystal (Figure 

5.24 (a) and (c)). Temperature-dependent P-E and S-E curves of the [001]PC-oriented N1 and N2-Mn 

crystals are provided by Figure A.2 in Appendix (Page 123) and Section 6.2 (Page 111). 

 

 
 

Figure 5.24. (a) P-E, (b) bipolar and (c) unipolar S-E curves of [001]PC-oriented non-annealed N1 crystal, and 

non-annealed and annealed N2-Mn crystals at room temperature and a frequency of 1 Hz (bipolar) or 2 Hz 

(unipolar). 
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The piezoelectric charge constants d33 of all samples were measured with the Berlincourt method. The 

samples were poled at 3 kV/mm and 100 oC for 30 min prior to the measurement. The d33 values for the 

crystal without Mn, Mn-doped crystal and the annealed Mn-doped crystal are 22 pC/N, 91 pC/N, and 

209 pC/N, respectively.  

The enhanced ferroelectric and piezoelectric properties of the Mn-doped single crystal are ascribed to 

the decreased defect concentration after the Mn doping. In general, Mn ions can exist in three oxidation 

states: Mn2+, Mn3+, and Mn4+, with the 3d5 (S =5/2), 3d4 (S =2), and 3d3 (S =3/2) electronic configurations. 

Here S is the ground-state electron spin quantum number. The oxidation states and local environments 

of Mn ions, important to understand the role of Mn in KNN-based materials, are commonly investigated 

using the electron paramagnetic resonance (EPR) technique. Laguta et al. [254] and Eichel et al. [255] 

held the opinion that both Mn4+ and Mn2+ exist in the perovskite structure. However, Kaftelen et al. [256] 

argued that only Mn2+ ions exist in Mn-doped KNN polycrystalline ceramics. Note that the Mn3+ cannot 

be detected with EPR, due to its antiparallel spin. Figure 5.25 (a) shows temperature-dependent X-band 

EPR spectra of powders of crushed non-annealed N2-Mn crystal in the range from -269 oC to room 

temperature (RT). As shown in Figure 5.25 (b), the EPR signal at room temperature shows a hyperfine 

structure with characteristic six-line splitting. The sextets are assigned to the presence of both Mn2+ (3d5, 

S=5/2, I=5/2) and Mn4+ (3d3, S=3/2, I=5/2) ions on B sites. However, the two sextets cannot be clearly 

distinguished due to strong overlapping of the peaks. Upon cooling to -173 oC, a new peak starts to 

appear at about 273 mT and the peak at 315 mT becomes stronger. The stronger peak at 315 mT becomes 

visible due to the more intense and narrower signal at lower temperatures. Further decreasing the 

temperature to -213 oC results in detection of 3 peaks in the range of 275 mT to 300 mT. Those three 

peaks become more visible at lower temperature. Upon further cooling, even though the intensity of the 

peaks in the range between 304 mT and 362 mT changes, however, no shift of the peak positions was 

observed. The appearance of the four peaks between 270 mT and 300 mT is still not well understood. 

Similar phenomenon was detected in Mn-doped BaTiO3 single crystals by Maier et al. [257] and it is 

believed to be related to the rhombohedral-orthorhombic and tetragonal-cubic phase transitions and 

crystallographic orientation. As mentioned in Section 5.2.4, the rhombohedral to orthorhombic phase 

transition is expected to be below -123 oC. The observed new peaks below -173 oC may therefore be 

correlated to the appearance of the rhombohedral phase in the N2-Mn single crystal. Moreover, this 

response might also result from the hyperfine interaction between Mn nucleus and a nucleus with a high 

nuclear spin, such as Nb4+ (4d1, S=1/2, I=9/2). Temperature independence of the peak positions of the 

complex spectra in the range from 304 mT to 362 mT confirms the coexistence of two sextets. It is 

therefore concluded that both Mn2+ and Mn4+ exist and are located on the B sites in the N2-Mn single 

crystal.  
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Figure 5.25. (a) EPR spectra of powders of the crushed non-annealed N2-Mn crystal at various temperatures. 

Enlarged EPR spectra at (b) RT and (c) -269 oC. The two six-line groups represent the typical hyperfine structure 

information of Mn2+ and Mn4+. 
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6 Influence of Crystallographic Orientation 

The influence of the Ta, Sb, and Mn substitution on the permittivity, polarization, strain and 

piezoelectric coefficients of the KNN-based single crystals were discussed in Chapter 5. This chapter 

will focus on the effect of crystallographic orientations on the electrical properties, which has been 

investigated in many ferroelectric crystals, such as Pb(Mb1/3Nb2/3)O3-PbTiO3 (PMN-PT) [7], 

(Na0.5Bi0.5)TiO3 (NBT) [258], BaTiO3 [259], (K,Na)0.5Bi0.5TiO3 [260], and (1–x)(Na0.5Bi0.5)TiO3–

xBaTiO3 (NBT-BT) [9,10]. The N2-Mn ((K0.637Na0.334Li0.029)(Ta0.0229Nb0.9768Mn0.0003)O2.99955; Mn-

KNLTN) single crystal is selected for this investigation, considering the relatively low dielectric loss 

and high ferroelectric response (Section 5.3). 

Both [001]PC and [110]PC orientations are selected in this work, considering the possible energetically 

favorable orientations of spontaneous polarizations in tetragonal (<001>PC) and orthorhombic (<110>PC) 

phases. As a consequence, two different cases are investigated: in the first case, the applied electric field 

is oriented along the spontaneous polarization direction, while in the second case the field direction 

differs from the spontaneous polarization. Figure 6.1 presents images of Laue back-scattering for the 

two orientations at room temperature. The important difference is the angle marked in Figure 6.1. The 

45 o angle corresponds to the angle between [001]PC and [110]PC, while the 35 o is the angle between 

[110]PC and [111]PC. The standard stereographic (001) and (110) projection images in the pseudo cubic 

crystal are provided in Figure A.3 and A.4 of the Appendix (Page 123). 

  

 

Figure 6.1. Images of Laue back-scattering for the two orientations: (a) [001]PC and (b) [110]PC. 

45 o 
35 o 

(a)                                                        (b) 
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6.1 Phase and Phase Transitions 

The powder XRD pattern of the crushed Mn-KNLTN single crystal at room temperature show a pure 

orthorhombic perovskite structure without any secondary phase, as shown in Figure 5.22 (Page 104).  

The dielectric measurements were performed on unpoled samples at several selected frequencies. Figure 

6.2 reveals temperature-dependent dielectric permittivity and losses for the [001]PC (a, c) and [110]PC-

oriented (b, d) Mn-KNLTN crystals, respectively. Two anomalies were observed: the one at higher 

temperature was identified as the Curie temperature (TC), corresponding to the tetragonal-cubic phase 

transition, while the other one at lower temperature denotes the orthorhombic-tetragonal (TO-T) transition 

[236].  

The insets of Figure 6.2 (a1), (a2), (b1), and (b2) display the corresponding enlarged phase-transition 

regions. Both oriented samples have frequency-independent phase transition temperatures TC and TO-T. 

The TC and TO-T of both [001]PC and [110]PC orientations during cooling are (442 oC, 102 oC) and (441 

oC, 100 oC), respectively. During heating, these values are (450 oC, 123 oC) and (449 oC, 124 oC). The 

thermal hysteresis indicates that both transitions are first-order [261]. The differences of phase transition 

temperatures between two orientations are within the measurement error, indicative of the orientation-

independent phase transition temperatures.  
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Figure 6.2. Temperature-dependent dielectric permittivity and losses of (a,c) the [001]PC-oriented and (b,d) 

[110]PC-oriented Mn-KNLTN crystals during heating and cooling with the rate of 1 oC/min. 

  

The temperature-dependent dielectric losses of both orientations, as shown in Figure 6.2 (c) and (d), are 

very low due to the addition of Mn, even at temperatures above 450 oC. A slightly higher loss is detected 

between room temperature and TO-T, when compared with the temperature range from TO-T to TC, which 

was observed in both oriented samples. It is therefore concluded that the orthorhombic phase has 

comparatively higher losses than the tetragonal phase. At the orthorhombic-tetragonal phase transition, 

either during the heating or cooling process of both orientations, a higher frequency leads to a higher 

loss. When the temperature is beyond 450 oC, corresponding to TC, the losses of both [001]PC and 

[110]PC–oriented samples start increasing with temperature, especially when measured at a lower 

frequency. This is ascribed to the higher concentration of oxygen vacancies after the addition of Mn 

ions. 

 

6.2 Electromechanical Properties 

Figure 6.3 displays hysteresis P-E loops of [001]PC and [110]PC-oriented Mn-KNLTN single crystals 

measured at 3 kV/mm and a frequency of 1 Hz at various temperatures: (a) 20 oC, (b) 40 oC, (c) 80 oC, 
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(d) 100 oC, (e) 120 oC, and (f) 160 oC. Typical rectangular P-E loops are observed for both orientations 

below 100 oC. When the temperature is close to 100 oC, P-E loops get distorted and the one measured 

along the [110]PC orientation is pinched at lower fields. This pinched P-E loop indicates the high degree 

of backswitching polarization along the [110]PC orientation at the TO-T. 

 

 
 

Figure 6.3. Temperature-dependent bipolar ferroelectric hysteresis P-E loops (the second electric field loading 

cycles; 1Hz) of [001]PC and [110]PC-oriented Mn-KNLTN samples. 

 

Figure 6.4 displays temperature-dependent bipolar electric field-induced strain S-E curves for both 

orientations of the Mn-KNLTN single crystal (second electric cycle). Both orientations show 

asymmetric S-E curves below 80 oC, as previously observed for the KNLTNS samples. When the 

temperature reaches 100 oC, significant changes of the bipolar S-E curves of both orientations are 

observed. A S-E curve with a large negative strain appears in the [001]PC oriented Mn-KNLTN crystal, 

whereas a S-E curve with negligible negative strain is obtained along the [110]PC orientation. Further 

increasing the temperature above 100 oC, a similar shape is observed in the [001]PC oriented sample, 

whereas the [110]PC oriented  crystal shows decreased strain with increasing temperature. 
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Figure 6.4. Temperature-dependent bipolar electric field-induced strain curves (the second electric field loading 

cycles; 1Hz) of [001]PC and [110]PC-oriented Mn-KNLTN samples. 

 

 
 

Figure 6.5. Temperature-dependent unipolar electric field-induced strain curves (second electric field loading 

cycles, 2 Hz) of [001]PC and [110]PC-oriented Mn-KNLTN samples. 
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Figure 6.5 provides the unipolar S-E curves of both [001]PC and [110]PC-oriented single crystals during 

the second electric cycles at various temperatures. For the both orientations, the maximum positive strain 

Spos at Emax is relatively stable below 80 oC in the orthorhombic phase, increases remarkably at 100 oC 

(TO-T), and subsequently decreases quickly above 100 oC in the tetragonal phase.

 

6.3 Influence of Electric Field on Electromechanical Properties 

Influence of the Electric Field on Polarization Parameters 

Figure 6.6 (a)-(c) summarize the temperature-dependent maximum polarization Pmax, remanent 

polarization Pr, and coercive field EC for both orientations of the Mn-KNLTN single crystal, extracted 

from polarization loops. It should be noted that all the parameters listed here are the average of the 

values at maximum positive and negative fields. For both orientations, Pmax and Pr decrease with 

increasing temperature and exhibit a sharp drop near 100 oC, while EC first decreases and then increases 

remarkably when the temperature is close to 100 oC. This temperature corresponds to the orthorhombic-

tetragonal phase transition, as seen in Figure 6.2 (b) (Page 111). Above 100 oC, EC of both orientations 

remains stable. The gradual decrease of Pmax, Pr, and EC with increasing temperature within the single-

phase range, either orthorhombic or tetragonal, is related to the increased thermal oscillations and 

decreased lattice distortions.  

In Figure 6.6 (a)-(c), the orthorhombic phase reveals higher Pmax and Pr but lower EC, as compared to 

the tetragonal phase, which was previously reported in KNLTNS polycrystalline ceramics by Huan et 

al.[262]. This is attributed to the larger number of PS vectors and lower symmetry of the orthorhombic 

phase [263]. The higher coercive field EC in the tetragonal phase in the vicinity of TO-T can be explained 

by the higher lattice distortion of the tetragonal structure, as compared to the orthorhombic one [219]. 

Furthermore, while the 90 o domain switching can occur in both phases, the 60 o domain switching only 

happens in the orthorhombic phase, which additionally lowers the EC. 

Figure 6.6 (a)-(c) also indicates that in the orthorhombic phase the highest values of Pmax, Pr, and EC 

were obtained for the [110]PC orientation, while in the tetragonal phase highest values for these 

parameters were found along the [001]PC direction. This gives an indication of the relationship between 

the ferroelectric response and the electric field direction. It is well known that the spontaneous 

polarizations (PS) of the orthorhombic phase are along <110> PC directions (12 equivalent PS), while 

those of the tetragonal phase are along <001>PC directions (6 equivalent PS), as shown in Figure 6.7 (a)-

(d). It can thus be concluded that Pmax, Pr, and EC are the largest when electric field is parallel to one of 

the PS directions (labeled as E∥PS). This is due to the higher possibility to achieve a single-domain state 
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at Emax when E∥PS (see Figure 6.7 (f) and (g)). If the electric field is not parallel to any of the PS (labeled 

as E∦PS), dipoles cannot align at Emax, resulting in a multi-domain instead of single-domain state, as 

provided by Figure 6.7 (h) and (i). After field removal, both E∥PS and E∦PS cases exhibit a multi-domain 

state. The higher Pr for E∥PS corresponds to the orientation independence of backswitching in KNN-

based single crystals. This can be indicated by Figure 6.6 (a) and (b), which display similar decrease in 

polarization from Pmax to Pr for two orientations in either orthorhombic or tetragonal phase. 

 

 
 

Figure 6.6. Temperature-dependent (a) maximum polarization Pmax, (b) remanent polarization Pr, (c) coercive 

field EC, (d) bipolar positive strain Spos and (f) negative strain Sneg, and (g) large-signal piezoelectric coefficient 

d33
* values of [001]PC and [110]PC-oriented Mn-KNLTN samples. 
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Influence of the Electric Field on Strain Parameters 

The temperature dependences of the maximum bipolar positive strain Spos and negative strain Sneg, 

extracted from the bipolar strain curves, are plotted in Figure 6.6 (d) and (f). In addition, the large-signal 

piezoelectric constants d33
*, calculated from unipolar measurements as Smax/Emax, are presented in Figure 

6.6 (g). The highest values for Spos, Smax and d33
* are reached at 100 oC: 0.31 %, 0.42 %, 1391 pm/V for 

[001]PC and 0.21 %, 0.21 %, 700 pm/V for [110]PC-oriented samples. Above TO-T, Spos and d33
* become 

smaller for both orientations with increasing temperature. The absolute value of Sneg along the [001]PC 

orientation is relatively small at low temperatures, but increases sharply to 0.56 % at TO-T (Figure 6.6). 

On the other hand, the absolute value of Sneg along the [110]PC orientation is gradually reduced upon 

heating and becomes negligible above TO-T. In addition, both Spos and Sneg reduce slightly along the 

[001]PC direction above TO-T, but the latter is interestingly still higher than the former. The relatively 

good thermal stability and high values of Spos and Sneg indicate the large potential of these crystals for 

piezoelectric applications if TO-T is shifted to room temperature. This can be easily achieved by changing 

the Ta content, as explained in Chapter 5.  

 

 

Figure 6.7. Initial polarization distributions for different orientations and polarization distributions at maximum 

field Emax: (a) [110]PC-oriented orthorhombic, (b) [001]PC-oriented tetragonal, (c) [001]PC-oriented orthorhombic, 

and (d) [110]PC-oriented tetragonal crystals. 

 

 

The orientation dependence of EC and Sneg of the Mn-KNLTN crystal in a single-phase region is observed 

in Figure 6.6 (c) and (f), originating from the different contributions of non-180 o and 180 o domain 

switching events during increasing E from 0 to EC [264]. For tetragonal phases, the probability of non-

E∦P
S
 EǁP

S
  

O/[001]
PC

 T/[110]
PC

 T/[001]
PC

 O/[110]
PC

 State 

Initial 

E=E
max

 

(b) (a) (d) (c) 

(g) (f) (i) (h) 



 

6  Influence of Crystallographic Orientation                                                                                                    117  

[1] 

[2] 

180 o domain switching is approximately 4/6 if E∥PS ([001]PC), but only 2/6 if E∦PS ([110]PC), which 

can be seen in Figure 6.8 (b)->(g), and (d)->(i). For orthorhombic phases, this probability is about 10/12 

when E∥PS ([110]PC) and 4/12 when E∦PS ([001]PC), as provided in Figure 6.8 (a)->(c) and (c)->(h). 

Thus, non-180 o domain switching events are dominant for the E∥PS case, while the 180 o events are 

dominant for E∦PS, when E is increased from 0 to EC. Since non-180 o switching creates strain and 180 

o switching does not, higher Sneg can be observed when E∥PS. 

 

 

Figure 6.8. Change of the domain structure for different orientations when the field increases from 0 to coercive 

field EC: (a) [110]PC-oriented orthorhombic, (b) [001]PC-oriented tetragonal, (c) [001]PC-oriented orthorhombic, 

and (d) [110]PC-oriented tetragonal crystals. 

 

 

Trends of Backswitching Polarization and Strain 

During the bipolar electric field loading process, backswitching occurs when the field is decreased from 

the maximum to zero, accompanied by a decrease of polarization and strain. Given the definition of 

variables in Section 2.1.3 (Page 6) and Figure 6.3 (Page 112), polarization backswitching is defined as 

Pmax - Pr, while strain backswitching is defined as Spos. 

In nonlinear dielectrics, electric field-induced strain is highly dependent on the induced polarization, 

which can be described by the following fundamental equation, 
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𝑆𝑖𝑗 = 𝑄𝑖𝑗𝑘𝑙 ∙ 𝑃𝑘 ∙ 𝑃𝑙     (6.1) 

where 𝑆𝑖𝑗  is the strain tensor, 𝑄𝑖𝑗𝑘𝑙  is the electrostrictive coefficient tensor, and 𝑃𝑘  and 𝑃𝑙  are the 

polarization components. According to the literature reports, 𝑄𝑖𝑗𝑘𝑙  is believed to be temperature-

independent [1]. The temperature-dependent electric field-induced maximum strain Spos of the [001]PC-

oriented sample shows the same trends up to 90 oC as its field-induced polarization change (Pmax - Pr) 

(see Figure 6.9 (a)). However, at the phase transition temperature TO-T, the change in (Pmax - Pr) was 

negligible, while the electric field-induced strain Spos exhibits a large increase. The observed different 

behavior suggests a significant increase of the electrostrictive coefficient 𝑄 with increasing temperature, 

which was previously reported in other ferroelectric single crystals [7]. Unfortunately, we cannot 

calculate the electrostrictive coefficients of our samples due to the relatively low breakdown field of 

investigated crystals, which prevented full saturation of P-E and S-E curves.  

The counterintuitive behavior of the changes in strain and polarization at the phase transition TO-T is 

related to the change of the piezoelectric coefficient 𝑑33  and permittivity 휀33/휀0 , considering the 

following equations are valid for the condition of zero stress [265]: 

𝐷𝑖 = 휀𝑖𝑗𝐸𝑗 + 휀𝑖𝑗𝑘𝐸𝑗𝐸𝑘 +⋯       (6.2) 

𝑆𝑖𝑗 = 𝑑𝑖𝑗𝑘𝐸𝑘 +𝑀𝑖𝑗𝑘𝑙𝐸𝑘𝐸𝑙 +⋯       (6.3) 

where 𝐷𝑖  and 𝑆𝑖𝑗  denote the electric field-induced electric displacement and strain, 𝑀𝑖𝑗𝑘𝑙  is another 

electrostrictive coefficient tensor, related to 𝑄𝑖𝑗𝑘𝑙 by the permittivity, 휀𝑖𝑗 and 휀𝑖𝑗𝑘 are the permittivity 

tensors, 𝑑𝑖𝑗𝑘  is the piezoelectric coefficient tensor, and 𝐸𝑘 and 𝐸𝑙 are the electric field vectors. Note that 

in most ferroelectrics 𝐷𝑖 ≈ 𝑃𝑖 due to the large permittivity values, as mentioned in Chapter 2. Figure 6.9 

(b) plots the temperature-dependence of the changes in small signal 𝑑33 and 휀33 of the [001]PC-oriented 

sample, as compared to the room temperature values. Depolarization above TO-T yields a significant 

decrease of 𝑑33. Increasing 𝑑33  and 휀33 were observed from room temperature up to TO-T, which is 

anticipated for a normal ferroelectric-ferroelectric phase transition. However, when compared with each 

other, piezoelectric coefficient increases faster than dielectric permittivity. This difference is believed 

to be the main origin of the larger increase of the electric field-induced strain at TO-T, which depends 

predominantly on piezoelectric and electrostrictive coefficients (Equation 6.3), while the polarization is 

related only to the permittivity (Equation 6.2). Note that the small signal 𝑑33 and 휀33 were used for the 

comparison here and the temperature dependence of both parameters is expected to display similar 

trends under large electric fields.  
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Figure 6.9. Temperature-dependent properties of the [001]PC-oriented Mn-KNLTN sample: (a) large signal Spos 

and (Pmax-Pr), and (b) small signal d33 and permittivity, normalized with respect to room temperature value.  

 

 

Large Strain Response at TO-T 

Interestingly, electromechanical strains (bipolar Spos and unipolar Smax) in the vicinity of the TO-T along 

the [001]PC orientation are much larger than those along the [110]PC orientation (yellow regions in Figure 

6.6 (d) and (g)). A similar observation was reported for NBT-BT crystals by Ge et al. [156] This 

phenomenon can be described as follows. For the [001]PC-oriented sample, no polarization aligns with 

electric field below TO-T. When temperature approaches TO-T, the coexisted structure of orthorhombic 

and tetragonal phases drives polarizations to rotate to the electric field direction. For the [110]PC-oriented 

sample, some polarizations vectors align with electric field below TO-T. When temperature reaches TO-T, 

the majority of polarization vectors can be driven to rotate from <110>PC to <001>PC and some remain 

aligned with electric field, which reduces the degree of polarization extension under large fields. This 

hypothesis should be further verified by synchrotron XRD measurements

 

6.4 Summary 

Orientation and temperature dependence of dielectric and electromechanical properties of 

(K0.637Na0.334Li0.029)(Ta0.0229Nb0.9768Mn0.0003)O2.99955 single crystals were investigated. Samples exhibited 

very low dielectric losses, with tanδ between 0.03 and 0.05 over a broad temperature range between 

room temperature and 480 °C. Influences of the crystallographic structure and external electric field on 

polarization and strain parameters are discussed. The orientation-dependent electrical properties were 

found to be related to the anisotropic polarization switching and polarization extension in the crystals. 

Higher maximum polarization, coercive field, and negative strain were achieved when the electric field 

was oriented along one of the spontaneous polarization directions. The highest maximum unipolar strain 

of 0.42 % (at 3 kV/mm) and large-signal piezoelectric constant d33
* of 1391 pm/V were obtained in the 
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[001]PC-oriented sample at 100 oC, which was much higher than the values obtained for the [110]PC-

oriented sample. This was ascribed to the vicinity of the structural phase transition and additional 

contributions from polarization extension. Further insight of the phase transition behavior is given by 

comparing the temperature-dependence of the small- and large-signal dielectric and piezoelectric 

properties. The observed changes are rationalized by the different increase rates of the dielectric 

permittivity and piezoelectric coefficients with temperature.  
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7 Remarks and Outlook 

In this work, eleven K0.5Na0.5NbO3 (KNN)-based crystal growth attempts were carried out using either 

the submerged-seed solution growth (SSSG) or the top-seeded solution growth (TSSG) technique. The 

chemical composition, crystallographic structure, and electromechanical properties were analyzed.  

In the first part, the segregation coefficients of individual elements during the growth of 

(K,Na,Li)(Ta,Nb)O3 (KNLTN) single crystals were investigated and found to be strongly influenced by 

the initial liquid composition. The Na and Ta ions have segregation coefficients larger than 1 and are 

preferentially absorbed by the crystal during growth. The K and Nb ions show the opposite behavior 

with the effective segregation coefficients less than 1. The appearance of the secondary phase with the 

tetragonal tungsten bronze (TTB) structure was ascribed primarily to the very low segregation 

coefficient of Li. Two approaches are suggested to solve this issue: growth of KNN-based single crystals 

under oxygen partial pressure or exploration of novel flux compositions. These two approaches could 

decrease the defect concentrations in as-grown crystals. An additional drawback of the as-grown crystals 

in this work is the existence of optically cloudy regions, which were related to the different domain 

configurations. Further developments of the cooling process (especially across the phase transitions) 

and control of the thermal gradient of the furnace are required to decrease the area of the cloudy regions.  

The influence of the chemical composition on the electrical response were investigated in Chapter 5. 

Increasing the amount of Ta was found to linearly decrease the TC and TO-T with a rate of 4.6  oC/mol%Ta 

and 8.6 oC/mol%Ta, respectively. Different decrease rates were found for Sb substitution, namely 12.2 

oC/mol%Sb for TC and 6.6 oC/mol%Sb for TO-T, indicating narrowing of the tetragonal temperature 

range. Moreover, thermal annealing in O2 was performed to considerably improve the ferroelectric and 

piezoelectric properties. This is ascribed to the decreased defect concentration, resulting in decreased 

leakage currents. The defects are suggested to be related to the formation of A-site vacancies, changes 

of the B-site valence state, and oxygen vacancies. However, further systematic investigations of the 

electrical behaviour using impedance spectroscopy under different oxygen partial pressures are needed 

to confirm the proposed mechanisms and fully understand their individual contributions in KNN-based 

single crystals. 

Furthermore, we studied the influence of the addition of a small amount of Mn into the KNLTN single 

crystals. Large enhancements of the ferroelectric and piezoelectric properties were observed, without 

apparent changes in the cubic-tetragonal and tetragonal-orthorhombic phase transitions. Electron 

paramagnetic resonance (EPR) results suggested that both Mn2+ and Mn4+ ions appear in Mn-doped 

KNLTN single crystals, and occupy the B sites of the perovskite structure. However, it is still a challenge 

to control the amount of Mn ions having access to the perovskite structure during the crystal growth. In 
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our work, the appearance of an impurity phase, which is induced by the addition of Mn ions, was found 

in as -grown Mn-doped KNLNT crystal boules. This to some extent limits the dimensions of the as-cut 

crystals.  

The very low dielectric losses of the Mn-doped KNLNT crystals enabled a study of the orientation 

dependent electric field-induced polarization and strain curves over a broad temperature range, which is 

presented in Chapter 6. Higher maximum polarization, coercive field, and negative strain were observed 

when the electric field was oriented along one of the spontaneous polarization direction. Large negative 

strain values along the [001]PC orientation were observed above the TO-T, the possible application of 

which are still under discussion. Moreover, as compared to annealed KNLTNS single crystals in Chapter 

5, the Mn-doped KNLTN single crystal exhibits different strain behaviour, which was attributed to the 

different intrinsic piezoelectric responses of both systems. In order to understand the different intrinsic 

and extrinsic contributions to the electromechanical strain of Mn-doped KNLTN and annealed 

KNLTNS single crystals further in-situ structural investigations are required.  

The high piezoelectric properties and reduced leakage currents obtained in some of the investigated 

samples in our work and other recent literature reports indicate the potential of KNN-based single 

crystals for applications and will hopefully motivate further studies. The improved understanding of the 

segregation phenomena can aid the preparation of these crystals with the TSSG method using oriented 

seeds, which yields larger crystals. These can then be used for a broader analysis of the anisotropy of 

elastic, dielectric, and piezoelectric coefficients.  
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Appendix 

 Appendix I: Electrical Properties of the N1 Single Crystal 

  

 

  

Figure A.1. Temperature-dependent permittivity properties of the [001]pc-oriented N1 single crystal 

(K0.612Na0.359Li0.029)(Ta0.024Nb0.976)O3). 

 

 

 

 

Figure. A.2. Ferroelectric hysteresis polarization-electric field (P-E) and electric field-induced strain 

(S-E) curves of the [001]PC-oriented N1 single crystal ((K0.612Na0.359Li0.029)(Ta0.024Nb0.976)O3) at various 

temperatures from 40 oC to 120 oC. 
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Appendix II: Stereographic Projection 

 

 

 

 

Figure A.3. Stereographic projection for a cubic system along the [001] orientation. Reprinted from Ref. 

[266], with permission of Springer. 

 



 

Appendix                                                                                                                                                          125  

 

 

Figure. A.4. Some standard cubic stereographic projections: (A) [001] (B) [110], and (C) [111] 

orientations. Reprinted from Ref. [266], with permission of Springer. 
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Titre: Cristallogenèse et caractérisations de monocristaux piézoélectriques 

sans plomb à base de KNN 
 

Résumé: Cette thèse vise à trouver des approches possibles pour l’amélioration des propriétés 

électromécaniques de monocristaux piézoélectriques à base de KNN. La TSSG et la SSSG sont 

entreprises afin de faire croître des monocristaux La conclusion de l'aspect de croissance cristalline est: 

(1) Pour chaque élément pris individuellement, leurs coefficients de ségrégation reposent fortement sur 

leurs concentrations initiales dans la solution liquide. (2) La compétition entre éléments occupant le 

même site du réseau est démontrée. (3) Le très faible coefficient de ségrégation de Li dans la matrice 

KNN est responsable de l'apparition d'une phase secondaire présentant la structure bronze de tungstène 

quadratique. (4) Les régions optiquement laiteuses observées dans les monocristaux diminuent la 

réponse électrique et peuvent être réduites par traitement thermique et refroidissement lent. Dans la 

deuxième partie, nous avons utilisé trois approches pour améliorer le comportement 

piézo/ferroélectrique des monocristaux à base de KNN. La Ta ou Sb substitution indique qu'une réponse 

électromécanique améliorée est obtenue lorsque la transition orthorhombique-quadratique est à 

proximité de la température ambiante. Le traitement thermique sous atmosphère d'O2 pur a conduit au 

doublement de la valeur du coefficient piézoélectrique et des paramètres ferroélectriques d'un 

monocristal de (K,Na,Li) (Ta,Nb,Sb)O3. Son coefficient piézoélectrique à la température ambiante, qui 

constitue un record mondial à l’heure actuelle vis-à-vis de ce qui est reporté dans la littérature 

internationale, vaut 732 pC/N. La troisième approche consiste au dopage des monocristaux de 

(K,Na,Li)(Ta,Nb)O3 avec Mn.  

 

Mots clés : Croissance de la solution à haute température, KNN, monocristal, perovskite, 

ferroélectrique, piézoélectrique 
 

 

Title: Growth and Characterization of Lead-free (K,Na)NbO3-based 

Piezoelectric Single Crystals 
 

Abstract: The thesis aims to find possible approaches for improved electromechanical properties in 

KNN-based piezoelectric single crystals. Both submerged-seed and top-seeded solution growth 

techniques were employed to produce single crystals. Conclusions from the crystal growth aspect are: 

(i) For individual elements, segregation coefficients highly rely on the initial concentration in the liquid 

solution. (ii) A competition between elements occupied on the same lattice site was found. (iii) The very 

low Li segregation coefficient in the KNN matrix is responsible for the occurrence of a secondary phase 

with the tetragonal tungsten bronze structure. (iv) Observed optically-cloudy regions in as-grown 

crystals decrease the electrical response and can be reduced by thermal treatment with slow cooling. In 

the second part, we used three approaches to enhance the piezoelectric and ferroelectric behavior of 

KNN-based single crystals. Ta or Sb substitutions indicates that enhanced electromechanical response 

is achieved when the orthorhombic-tetragonal phase transition is near room temperature. Thermal 

treatment in pure O2 atmosphere resulted in a twofold increase of the piezoelectric coefficient and 

ferroelectric parameters of a (K,Na,Li)(Ta,Nb,Sb)O3 single crystal. The highest room-temperature 

piezoelectric coefficient in annealed KNN-based single crystals of 732 pC/N was obtained. The third 

approach, doping with Mn ions in (K,Na,Li)(Ta,Nb)O3 single crystals, is also presented.  

 

Keywords: High temperature solution growth, KNN, single crystal, perovskite, ferroelectric, 

piezoelectric 
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