
HAL Id: tel-01430609
https://theses.hal.science/tel-01430609v1

Submitted on 10 Jan 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Free surface flow simulation in estuarine and coastal
environments : numerical development and application

on unstructured meshes
Andrea Gilberto Filippini

To cite this version:
Andrea Gilberto Filippini. Free surface flow simulation in estuarine and coastal environments : numer-
ical development and application on unstructured meshes. Numerical Analysis [math.NA]. Université
de Bordeaux, 2016. English. �NNT : 2016BORD0404�. �tel-01430609�

https://theses.hal.science/tel-01430609v1
https://hal.archives-ouvertes.fr


THÈSE

PRÉSENTÉE À

L'UNIVERSITÉ DE BORDEAUX

ÉCOLE DOCTORALE DE MATHÉMATIQUES ET D'INFORMATIQUE

par Andrea Gilberto Filippini
POUR OBTENIR LE GRADE DE

DOCTEUR
SPÉCIALITÉ : Mathématiques Appliquées

Free surface �ow simulation in estuarine and
coastal environments: numerical development and

application on unstructured meshes

Préparée à INRIA Bordeaux Sud-Ouest (équipe CARDAMOM)

Directeur de thèse : Mario RICCHIUTO

Co-directeur de thèse : Philippe BONNETON

Soutenue le : 14 Décembre 2016

Après avis des rapporteurs :

Michel Benoit Professeur des Universités, IRPHE and École centrale de Marseille
Eleuterio Toro Professeur des Universités, DICAM Università of Trento . . . . . . . . . .

Devant la commission d'examen composée de :

Riadh Ata . . . . . . . . . Chargé de recherche, LHSV . . . . . . . . . . . Examinateur
Michel Benoit . . . . . Professeur des Universités, IRPHE . . . . Rapporteur
Philippe Bonneton Directeur de recherche, EPOC - CNRS Examinateur
David Lannes . . . . . Directeur de recherche, IMB . . . . . . . . . . Président
Rodrigo Pedreros . Chargé de recherche, BRGM . . . . . . . . . . Examinateur
Mario Ricchiuto . . Directeur de recherche, INRIA . . . . . . . . Examinateur
Lisl Weynans . . . . . Maître de conférences, IMB . . . . . . . . . . . Examinateur

2016





Dedicated to my parents

iii



Abstract : Over the last decades, there has been considerable attention in
the accurate mathematical modeling and numerical simulations of free surface
wave propagation in near-shore environments. A physical correct description
of the large scale phenomena, which take place in the shallow water region,
must account for strong nonlinear and dispersive e�ects, along with the inter-
action with complex topographies. First, a study on the behavior in nonlinear
regime of di�erent Boussinesq-type models is proposed, showing the advantage
of using fully-nonlinear models with respect to weakly-nonlinear and weakly-
dispersive models (commonly employed). Secondly, a new �exible strategy
for solving the fully-nonlinear and weakly-dispersive Green-Naghdi equations
is presented, which allows to enhance an existing shallow water code by sim-
ply adding an algebraic term to the momentum balance and is particularly
adapted for the use of hybrid techniques for wave breaking. Moreover, the
�rst discretization of the Green-Naghdi equations on unstructured meshes is
proposed via hybrid �nite volume/ �nite element schemes. Finally, the models
and the methods developed in the thesis are deployed to study the physical
problem of bore formation in convergent alluvial estuary, providing the �rst
characterization of natural estuaries in terms of bore inception.

Résumé : Ces dernières décennies, une attention particulière a été portée
sur la modélisation mathématique et la simulation numérique de la propagation
de vagues en environnements côtiers. Une description physiquement correcte
des phénomènes à grande échelle, qui apparaissent dans les régions d'eau peu
profonde, doit prendre en compte de forts e�ets non-linéaires et dispersifs, ainsi
que l'interaction avec des bathymétries complexes. Dans un premier temps,
une étude du comportement en régime non linéaire de di�érents modèles de
type Boussinesq est proposée, démontrant l'avantage d'utiliser des modèles
fortement non-linéaires par rapport à des modèles faiblement non-linéaires et
faiblement dispersifs (couramment utilisés). Ensuite, une nouvelle approche
�exible pour résoudre les équations fortement non-linéaires et faiblement dis-
persives de Green-Naghdi est présentée. Cette stratégie permet d'améliorer
un code "shallow water" existant par le simple ajout d'un terme algébrique
dans l'équation du moment et est particulièrement adapté à l'utilisation de
techniques hybrides pour le déferlement des vagues. De plus, la première
discrétisation des équations de Green-Naghdi sur maillage non structuré est
proposée via des schémas hybrides Volume Fini/Élément Fini. Finalement,
les modèles et méthodes développés dans la thèse sont appliqués à l'étude du
problème physique de la formation du mascaret dans des estuaires convergents
et alluviaux. Cela a amené à la première caractérisation d'estuaire naturel en
terme d'apparition de mascaret.

Keywords : Boussinesq-type models, Serre-Green-Naghdi equations, Fully
nonlinear and weakly dispersive, Wave breaking, Finite Volume, Finite Ele-
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ment, Dispersion error, Tidal bore, Alluvial estuaries, Scaling analysis

Mots-clés : Modèle de type Boussinesq, équations de Serre-Green-Naghdi,
Fortement non-linéaire et faiblement dispersif, Déferlement des vagues, Volume
Fini, Élément Fini, Error de dispersion, Mascaret, Estuaires, Analyse dimen-
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Résumé substantiel

Dans les dernières décennies, la modélisation numérique de la propagation des
vagues en environnements côtiers a de plus en plus remplacé les expériences en
laboratoire dans l'ingénierie côtière. Cela a été possible grâce à la constante
augmentation de la puissance des plates-formes informatiques, la parallélisa-
tion et le développement des algorithmes de calculs, ainsi que les progrès dans
l'analyses numérique des PDEs. Tout ceci a contribué à construire un outil
fondamental pour la compréhension et la description du phénomène étudié, ex-
ploité par l'ingénierie côtière dans le design des structures côtières, la préven-
tion de l'impact des tsunamis ou de l'inondation due aux mascarets.

Les vagues se propageant près des côtes subissent d'importantes transfor-
mations dues à la nature fortement non linéaire et dispersive des phénomènes
qui se produisent suite à l'interaction avec des bathymétries complexes (réfrac-
tions, di�ractions, dispersions des fréquences, shoaling, déferlement, ...). Le
systèmes d'équations d'Euler incompressible est le plus adapté pour fournir
une description complète et précise du phénomène à toutes ses échelles car-
actéristiques. Cependant, ce travail a comme objectif de développer un outil
permettant une bonne prédiction du problème des vagues à larges échelles (de
O(m) à O(km)), pour lequel l'utilisation de ce système d'équations est très
onéreux. C'est pourquoi, des modèles asymptotiques sont couramment util-
isés dans l'ingénierie côtière. Ces modèles sont dérivés sous l'hypothèse d'eau
peu profonde en utilisant la méthode des perturbations par rapport a un petit
paramètre µ = h0/λ (avec h0 et λ respectivement la profondeur et longueur
horizontale caractéristiques), introduite initialement par Boussinesq [1872]. Le
plus simple et populaire de ces modèles est le système d'équations non linéaires
de Saint-Venant . Ce système donne une simulation correcte de la propagation
des vagues quand le rapport entre la profondeur d'eau h et la longueur d'onde
λ est su�samment petit et fournit une représentation simple et e�cace du run-
up des vagues. Néanmoins, ce modèle est inadapté pour reproduire les e�ets de
shoaling et de dispersion des fréquences qui ont lieu near-shore. Des modèles
non-hydrostatiques sont alors nécessaires. Ceux-ci introduisent des termes de
dispersion dans les équations, augmentant le niveau de complexité de leurs ré-
solutions. Plusieurs modèles ont été développés dans les dernières années sous
les hypothèses de faible non-linéarité et faible dispersion (cf. Peregrine [1967];
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Abbott et al. [1978]; Beji et Nadaoka [1996]; Madsen et Sørensen [1992]; Nwogu
[1994]; ...). Les propriétés d'élaboration de ces modèles reposent souvent sur la
relation de dispersion linéaire et le coe�cient de shoaling linéaire, qui doivent
être aussi proche que possible de ceux de la théorie linéaire des vagues (Airy
theory). Cependant, ces modèles sont fréquemment utilisés hors de leur do-
maine d'application (e.g. en s'approchant de la condition de déferlement), là
où il serait préférable d'utiliser des modèles fortement non-linéaires comme
le système d'équations de Green et Naghdi [1976]. Le domaine de validité
de ce modèle requiert seulement une faible dispersion mais n'impose aucune
restriction sur la non-linéarité. Néanmoins, il partage les mêmes propriétés
de dispersion linéaire du modèle de Peregrine [1967]. C'est pourquoi, Chazel
et al. [2011] ont proposé un modèle équivalent avec des propriétés de dispersion
améliorées qui fait l'objet d'étude de ce travail. Comme tous les modèles de
type Boussinesq, les équations de Green-Naghdi ne peuvent pas représenter
les e�ets de dissipation de l'énergie associés au déferlement des vagues. Pour
inclure ces e�ets dans le modèle, un mécanisme de wave-breaking doit être in-
corporé dans les équations: pour détecter et traiter les vagues déferlantes dans
le domaine computationnel.

Ce manuscrit présente, dans un premier temps, la dérivation des modèles de
type Boussinesq les plus connus de la littérature et l'analyse de leurs propriétés
de dispersion et de shoaling dans les régimes linéaire et non-linéaire. Cette
analyse met en lumière dans le régime non-linéaire, une connexion entre les
performances des modèles faiblement non-linéaires et faiblement dispersifs et
la forme des termes dispersifs présents dans les équations. En particulier, nous
montrons que pour un couple donné, relation de dispersion linéaire-coe�cient
de shoaling linéaire, deux systèmes de PDEs non-linéaires peuvent être dérivés,
di�érenciés par la forme de leurs opérateurs dispersifs. Ces opérateurs peuvent
être formulés à travers des dérivés de la vitesse ou des dérivés du �ux. Nous
parlons dans le premier cas de la forme amplitude-velocity du modèle et dans
le deuxième de la forme amplitude-�ux et nous montrons que, lorsque la vague
s'approche des conditions de déferlement, seul la forme amplitude-velocity ou
amplitude-�ux des équations détermine le comportement du modèle (e.g. as-
pect et hauteur des vagues calculés).

Dans une deuxième partie, notre but est d'évaluer une nouvelle stratégie,
pour résoudre le système d'équations fortement non-linéaire et faiblement dis-
persif de Green-Naghdi, qui puisse être facilement généralisée sur un maillage
non structuré dans le cas multidimensionnel. Nous considérons une approche
hybride (e.g. Bonneton et al. [2011b]; Kazolea et al. [2014]) utilisant le système
de Green-Naghdi pour la propagation et le shoaling des vagues, en revenant
au système de Saint-Venant pour modéliser la dissipation de l'énergie dans
les régions déferlantes. Nous réécrivons les équations de Green-Naghdi en sé-
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parant la partie hyperbolique et elliptique du problème à travers la dé�nition
d'une nouvelle variable auxiliaire. Donc, nous considérons une procédure de
résolution à deux étapes: une phase elliptique dans laquelle un terme source
est calculé en inversant l'opérateur associé aux e�ets dispersifs; une phase hy-
perbolique dans laquelle les variables du problème évoluent en résolvant les
équations de Saint-Venant, contenant le terme source calculés dans la phase
précédente. Cette approche est extrêmement �exible dans le sens où elle per-
met l'utilisation du schéma numérique le plus approprié pour chaque phase de
sa résolution. De plus, elle permet d'améliorer un code existant, qui résout le
système d'équations de Saint-Venant, en ajoutant simplement un terme pure-
ment algébrique à l'équation du moment prenant en compte les e�ets dispersifs.
Concernant la discrétisation numérique de ces deux étapes, nous appliquons des
méthodes adaptées à l'utilisation sur maillages arbitrairement non-structurés.
Plus spéci�quement, nous nous servons d'une méthode d'éléments �nis (EF)
standard (Galerkin C0 avec une approximation linéaire P1) pour la partie ellip-
tique, tandis que deux options sont étudiées pour la partie hyperbolique: une
méthode des volumes �nis (VF) d'ordre élevé et une méthode d'éléments �nis
stabilisée. Les propriétés de dispersion associées aux schémas de discrétisation
en espace sont étudiés et optimisés par rapport a la relation de dispersion du
modèle, en montrant une erreur de phase très proche à celle d'une méthode dif-
férences �nies d'ordre 4. La technique de résolution proposée est ainsi étendue
au cas bi-dimensionnel en utilisant une approche hybride similaire EF/VF. Les
modèles discrets obtenus sont minutieusement testés sur des cas de référence
concernant la dispersion des vagues, le déferlement et le run-up, en montrant
un potentiel prometteur pour la simulation de la dynamique des vagues en
environnements côtiers.

La dernière partie de la thèse concerne l'investigation de mécanismes à large
échelle qui mènent à la formation d'un mascaret dans des estuaires alluviaux
convergents. En utilisant les équations de Saint-Venant, nous développons une
analyse dimensionnel qui introduit un nouveau jeu de paramètres sans dimen-
sion qui gouverne la dynamique estuarienne, dépendant du forçage de la marée
et des propriétés géométriques à large échelle du canal. Nous dé�nissons un
critère pour la détection du mascaret basé sur les observations expérimentales
in situ (cf. Bonneton et al. [2015]) et nous e�ectuons une investigation sys-
tématique, basée sur 225 simulations numériques dans un canal idéalisé, pour
identi�er les conditions physiques qui mènent à la génération du mascaret.
De cette façon, nous déterminons dans l'espace des paramètres une courbe
critique divisant les estuaires en fonction de l'apparition du mascaret. Nous
montrons que ce phénomène est contrôlé par la compétition entre deux pro-
cessus physiques: la distorsion et la dissipation de la vague des marées, respec-
tivement favorable et non-favorable à la formation du mascaret. De plus, nous
mettons en évidence le fait que l'ampli�cation de la vague des marées due à la
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convergence topographique n'est pas une condition nécessaire pour la généra-
tion du mascaret et qu'il existe des estuaires caractérisés par la génération du
mascaret avec une dissipation de la vague des marées. Ce travail représente
donc la première étude focalisée sur ce sujet, qui a été aussi validé par un jeu
de données d'estuaires réels.
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Introduction

With the advent of a signi�cantly increased computing power in the last
decades, the accurate numerical simulation of free surface �ows in realistic
environments has started to play a major role in coastal engineering, largely
replacing laboratory experiments in the design of coastal structures and pro-
viding a comprehensive picture of the phenomenon under consideration. The
reasons of an increasing interest in the �eld are multiple: the prevention of
the impact of tsunami waves and of inundations due to tidal bores (e.g. �gure
1), the study of the sediment transport and of the coastal and river banks
erosion process, the exploitation of renewable resources for energy production
(e.g. tidal and wind wave energy), the management of coastal human activi-
ties (e.g. commercial, tourism, sport etc.). Performing an accurate numerical
simulation of wave propagation in near-shore zones means providing a phys-
ically correct description of water wave dynamics from deep waters, through
the near-shore region, up to the shoreline giving a precise prediction of local
wave direction, height, speed and strength. In order to accomplish this goal,
a set of numerical issues has to be faced as the transition between sub and
super-critical �ows, frequency dispersion, interaction with natural complex to-
pographies and wetting/drying processes.

Mathematical modeling

In this work we want to achieve a good prediction of the water wave problem
on large scales, from O(m) to O(km). The use of systems of asymptotic depth
averaged equations on this task is quite common, since they lead to numerical
models that are of practical use in coastal engineering, compared to the ones
produced by more complicated mathematical systems, like the Euler equations.
Depth averaged models have thus gained a lot of attention and popularity and
signi�cant research e�orts have been made in the last 20 years in the devel-
opment of systems of depth averaged equations which correctly reproduce the
e�ects of wave propagation in the near-shore region including wave shoaling,
refraction, di�raction, run-up and breaking.
The Nonlinear Shallow Water (NLSW) equations are one of the most widely
used models belonging to this category. They are applied in many works in
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Mathematical modeling

Figure 1: Motivational examples: (Left) undular tidal bore propagation in
the Garonne river (from Bonneton et al. [2015]); (Right) the Sumatra 2004
tsunami wave approaching the coast of Thailand (from Madsen et al. [2008]).

literature (cf. Munchow et Garvin [1991]; Titov et Synolakis [1998]; Hubbard
et Dodd [2002]; Lanzoni et Seminara [1998]; To�olon et al. [2006]; Bonetton
[2007]; Marche et al. [2007]; Ricchiuto et Bollermann [2009]; Nikolos et Delis
[2009] among the others) to describe long wave hydrodynamics when the ver-
tical acceleration of water particles can be neglected, assuming the �ow to
be nearly horizontal. The NLSW model is a hyperbolic system of balance
laws, particularly well suited to represent wave run-up on beaches and break-
ing wave energy dissipation in the form of propagating bores. However it is
inappropriate for the description in deep(er) waters, where the e�ects related
to frequency dispersion become more signi�cant.
The main tool for performing studies in the context of dispersive waves have
been pioneered by Boussinesq [1872], which derived a system of equations un-
der the assumption that nonlinearity and dispersion are weak and of the same
order of magnitude. Peregrine [1967] derived the �rst set of Boussinesq-type
(BT) equations for variable bathymetry. However, the Peregrine BT model
provides a linear dispersion description which rapidly diverges from that given
by the linear theory of waves (or Airy theory) as the ratio between water depth
and wavelength increases. In the 90s, several enhanced set of weakly nonlin-
ear and weakly dispersive BT equations have been developed using the linear
dispersion relation and shoaling coe�cient as design properties to improve the
original model of Peregrine and pushing towards deep(er) waters the range of
applicability of these equations (cf. Madsen et Sørensen [1992]; Nwogu [1994];
Beji et Nadaoka [1996] are only the most known). Each of these models is
di�erent in the form and arrangement of the dispersive terms inside the equa-
tions. Such terms take the form of higher order derivatives (∂xxx or ∂xxt) of the
unknowns of the problem. These models are adapted to describe wave propa-
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gation and transformation in intermediate waters, but are often used outside
their range of applicability, attending the wave breaking point in conditions of
increased nonlinearity. Even though the results provided can be satisfactory,
fully nonlinear models should instead be used in these cases. Green et Naghdi
[1976] (GN) derived a set of fully nonlinear and weakly dispersive BT equations
which has gained a lot of attention in the recent past. Its range of validity
requires only the dispersion parameter to be small (long wave or shallow water
hypothesis) but does not impose any restriction to nonlinearity. However, the
GN system share the same linear dispersion properties of the Peregrine model.
Chazel et al. [2011]; Bonneton et al. [2011b] proposed an equivalent model
with improved dispersion properties, which will be the subject of study of this
work.
Like all the BT models, the GN equations are unable to represent the energy
dissipation e�ects associated to wave breaking. To actually include these ef-
fects in the model, a wave breaking mechanism has to be incorporated to the
equations in order to track and handle breaking waves in the computational
domain. Several approaches have been developed among the years, which
mainly reduced to either including ad-hoc viscosity terms in the governing
equations, or coupling the BT model with the NLSW equations creating a
hybrid BT/NLSW model, which suppress the dispersive terms in breaking re-
gions.
Even after the choice of the more suitable mathematical model, the overall
numerical simulation of water waves propagating in coastal environments has
to deal with many challenges and numerical issues. The problem is time-
dependent. Nonlinear and dispersive processes have to be accurately simu-
lated, which implies limiting the dissipation and the dispersion error of the
numerical schemes. Rolling breaking waves cannot be represented with 2D
models, however the abrupt decrease of averaged wave height and the dissi-
pation/transformation of the wave potential energy in breaking waves can be
represented by shocks. Therefore, shock-capturing capabilities are demanded
to the schemes, which have to be also positivity-preserving and to respect the
well-balancedness/C-property in order to treat dry states and wet/dry fronts
inside the computational domain. Moreover, simulations on complex topogra-
phies and with moving fronts requires dealing with un-structured meshes. Fi-
nally, to solve the equations on physical close domains, boundary conditions
are required. For dispersive models the use of wave generation and sponge
layers have to be considered in order to either produce incoming waves or to
dissipate the outgoing ones. These techniques are far from being optimal and
need to be reiteratively tuned with respect to the model used and to the char-
acteristics of the wave that want to be created/dissipated.
The work discussed in the thesis will, thus, deal with all these numerical as-
pects describing the strategies adopted to face the above issues.
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Numerical approaches

From the numerical point of view BT equations have been discretized using
di�erent numerical techniques like Finite Di�erences (FD), Finite Elements
(FE) and Finite Volume (FV) approaches. The major challenges that need
to be dealt with are the approximation of the complex higher order derivative
terms present in all the non-hydrostatic depth-averaged models, in respect of
the accuracy requirements on the schemes in terms of low dispersion errors.
FD discretizations have been the �rsts applied to solve BT equations. Their
initial popularity is due to the ease with which higher order derivatives can
be discretized (cf. Beji et Nadaoka [1996]; Fuhrman et Bingham [2004]; Wei
et Kirby [1995]; Nwogu [1994] to cite a few). Higher order schemes have been
realized mixing fourth and second order centered di�erence formula (cf. Wei
et Kirby [1995]). The main drawback of the �nite di�erence approach is the
need of structured spatial meshes, even for irregular domains, and poor local
mesh adaptivity potential (even tough hierarchical block structured multi-level
approaches do exist, see e.g. Berger et Leveque [1998]). Moreover, high or-
der discretizations need sensibly enlarged stencil and these schemes have also
revealed to be noisy in practice near shorelines and in locations with rapidly
changing solutions, such as breaking wave crest.
Fully unstructured solvers, allowing for adaptive mesh re�nement, have been
proposed based either on the FV, or on the FE approach. FV methods still
represent the vast majority of the existing schemes of the literature, exploiting
the fact that the robustness of the numerical schemes developed for the NLSW
equations (cf. Toro [2001]; LeVeque [2002]) carries over to the Boussinesq appli-
cation. Moreover the shock capturing capabilities of these codes, when applied
to the NLSW equations, have motivated the use of hybrid BT/NLSW models
to take over and control the wave breaking process.
On the other hand, the FE approximation gives a framework to naturally in-
troduce higher order polynomial representation of the unknowns and of their
derivatives, simply by handling these as auxiliary variables. The work of Eskils-
son et Sherwin [2006]; Engsig-Karup et al. [2006] on discontinuous Galerkin ap-
proximations of enhanced BT models shows the potential in terms of accuracy
of the �nite element approach. Continuous Galerkin discretizations of Boussi-
nesq models have been discussed in Walkley [1999]; Walkley et Berzins [2002];
Ricchiuto et Filippini [2014], while the use of an upwind stabilized Galerkin
scheme, known as Streamline Upwind Petrov Galerkin scheme (SUPG) of
Hauke [1998]; Hughes et Brook [1982]; Hughes et al. [2010], is presented in
Ricchiuto et Filippini [2014]. These contributions show results at least as good
as those obtained by means of �nite di�erence schemes, with the additional
�exibility of a natural unstructured mesh formulation. Moreover, the SUPG
scheme have shown very high potential in handling the NLSW, both in terms of
preservation of physically relevant steady equilibrium (well-balancedness), and
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Figure 2: Illustration of a tidal bore propagating in the Garonne River. Aerial
photograph taken at Podensac on September 10, 2010. Tidal wave amplitude
at the estuary mouth a0 = 2.5 [m] and freshwater discharge q0 = 128m3/s
(from Bonneton et al. [2016]).

in terms of a stable approximation of moving shorelines Ricchiuto et Boller-
mann [2009]; Ricchiuto [2011]; Hauke [1998]; Brufau et Garcia-Navarro [2003].
An hybrid BT/NLSW model based on the SUPG scheme of Ricchiuto et Fil-
ippini [2014] has been discussed in Bacigaluppi et al. [2014a,b]. For purely
hyperbolic problems, it is known that, compared to �nite di�erences, �nite
element schemes have improved dispersion characteristics, due to the presence
of a mass matrix.

For what concerns the GN equations, several discretization approaches have
been explored. We refer to Antunes do Carmo et al. [1993]; Cienfuegos et al.
[2006, 2007]; Chazel et al. [2011]; Bonneton et al. [2011b]; Marche et Lannes
[2015]; Li et al. [2014]; Mitsotakis et al. [2014]; Duran et Marche [2014] among
others. In Cienfuegos et al. [2006, 2007], the authors derive a higher order
FV scheme in one dimension. In Chazel et al. [2011]; Bonneton et al. [2011b]
a hybrid FV/FD splitting approach is used, while Marche et Lannes [2015]
follows the same idea for the solution of a new class of two-dimensional GN
equations on structured meshes. In Li et al. [2014] a coupled discontinuous
Galerkin and Continuous Galerkin is developed in one dimension but using
only �at bottom topographies. Most of them are also really hard to extend in
two dimensions. Up to now, the only known work of the literature involving
the solution of the fully nonlinear GN equations on 2D unstructured meshes is
the approach of Duran et Marche [2016] using a discontinuos Galerkin method.
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Estuarine dynamics

Over the last decade there has been an increasing interest in estuarine dy-
namics, producing an increasing understanding of the complex mechanisms
which rule their �uid dynamic and morphodynamic processes. The research
in the �eld is motivated by the important impact of estuaries to the global
surrounding environment and to human activities which exploit river estuaries
as important trade routes. An estuary is the transition between two distinct
water bodies: a river and a sea. The alternance of the tidal forcing on the river
mouth is responsible for the harmonic pumping of into and out of the estuary
with an erosive power that �nds its natural morphological equilibrium only if
the banks converge at an exponential rate. The discharge of the river provides
fresh water and sediments to the estuary system. These are transported down-
stream by the residual downstream �ux, which is result of a combination of
the harmonic tidal �ow and the downward river �ow. Under particular con-
ditions of tidal forcing, river discharge, estuary convergence rate and bottom
friction the original tidal wave can experience strong phenomena of distortion
and ampli�cation/dissipation which may lead, in some case, to the formation
of a bore.
Tidal bores are an intense nonlinear wave phenomenon which has been ob-
served in many convergent alluvial estuaries world-wide (see example in �gure
2). Up until the beginning of the 21st century, tidal bore characterization
in natural environments was based essentially on qualitative observations (cf.
Lynch [1982]; Bartsch-Winkler et Lynch [1988]). In the last decade several
quantitative �eld studies have been focused on small-scale bore processes, de-
voted to the analysis of wave, turbulent and sediment processes associated
with tidal bores (e.g. Simpson et al. [2004]; Wolanski et al. [2004]; Bonneton
et al. [2011c, 2012]; Furgerot et al. [2013] and references therein). Most of
these studies focused on well-developed tidal bores and small scale processes
for some speci�c estuaries, but not on the tidal-bore occurrence conditions for
any given alluvial estuaries. The basic conditions for tidal bore formation are
well-known (cf. Bartsch-Winkler et Lynch [1988]): a large tidal range, a shal-
low and convergent channel, and low freshwater discharge. Yet, estuarine clas-
si�cation in terms of tidal bore occurrence cannot be established from simple
criteria based on these hydrodynamic and geometric conditions. Nevertheless,
bore formation criteria based on the tidal range, Tr, has been published (cf.
Bartsch-Winkler et Lynch [1988]; Chanson [2012]), but the empirical criteria
used for these estimations are not clearly de�ned and numerous observations
on tidal bores in the Gironde/Garonne estuary (cf. Bonneton et al. [2015]),
Seine estuary (cf. Bonneton et al. [2012]) or Sée estuary (cf. Furgerot et al.
[2013]) do not support them. These examples prove that such a simple cri-
terion, based on a dimensional �ow variable, cannot be relevant to determine
tidal bore occurrence. A systematic study on the physical parameters control-

6 Andrea Gilberto Filippini



Introduction

ling tidal bore formation has not been addressed yet.

Thesis contributions

This thesis is the result of a transversal research on BT models. In the �rst
part of the work, we consider the derivation of some widely used systems of
BT equations, including both weakly-nonlinear weakly dispersive systems and
fully-nonlinear weakly-dispersive ones, focusing in particular on the analysis
of their dispersive and shoaling properties in both the linear and nonlinear
regimes. The BT models are often designed optimizing their linear proper-
ties with respect to Airy theory, however understanding their behavior in the
nonlinear conditions is of paramount importance for practical applications.
The analysis performed has put in light a connection between models perfor-
mances in the nonlinear regime and the form of the dispersive terms included
in the equations. For a given couple linear dispersion relation-linear shoaling
parameter, we show that is possible to derive two systems of nonlinear PDEs
di�ering in the form of the linear dispersive operators. In particular, within
the same asymptotic accuracy, these operators can either be formulated by
means of derivatives of the velocity, or in terms of derivatives of the �ux. In
the �rst case we speak of amplitude-velocity form of the model, in the second of
amplitude-�ux form. We show examples of these couples for some known linear
relations. We then show, both analytically and by numerical nonlinear shoal-
ing tests, that while for small amplitude waves the accuracy of the dispersion
and shoaling relations is fundamental, when approaching breaking conditions
it is only the amplitude-velocity or amplitude-�ux form of the equations which
determines the behaviour of the model, and in particular the shape and the
height of the waves. In this regime we thus �nd only two types of behaviours,
whatever the form of the linear dispersion relation and shoaling coe�cient.

In the second part of the manuscript, our aim is to evaluate a strategy that
can be easily generalized on arbitrary unstructured meshes in the multidimen-
sional case for the solution of fully nonlinear, weakly dispersive free surface
waves. For this reason we consider the hybrid approach, used e.g. in Bon-
neton et al. [2011b] and Kazolea et al. [2014] using the GN partial di�erential
equations for propagation and shoaling, while locally reverting to the NLSW
equations to model energy dissipation in breaking regions. Starting from the
form of the GN equations proposed in Bonneton et al. [2011b] and Chazel et al.
[2011], we consider a two steps solution procedure: an elliptic phase in which
a source term is computed by inverting the coercive operator associated to the
dispersive e�ects; an hyperbolic phase in which the �ow variables are evolved
by solving the NLSW equations, with all non-hydrostatic e�ects accounted for
by the source computed in the elliptic phase. For the numerical discretization
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of these two steps in one dimension, we consider methods which can be easily
generalized on arbitrary unstructured meshes in the multidimensional case. In
particular, we focus on the use of a standard C0 Galerkin �nite element method
for the elliptic phase, while high order �nite volume (FV) and stabilized �nite
element (FE) methods are used independently in the hyperbolic phase. The
discrete dispersion properties of the fully coupled methods thus obtained are
studied and optimized with respect to the model dispersion relation, showing
phase accuracy very close to that of a fourth order �nite di�erence method. In
addition, we will exploit the two steps solution procedure to obtain a robust
embedding of wave breaking. We evaluate two strategies: one based on sim-
ply neglecting the non-hydrostatic contribution in the hyperbolic phase; the
second involving a tighter coupling of the two phases, with a wave breaking
indicator embedded in the elliptic phase to smoothly turn o� the dispersive ef-
fects. The solution strategy proposed is then extended to the two-dimensional
case, using a similar FE/FV hybrid approach. The discrete models obtained
are thoroughly tested on benchmarks involving wave dispersion, breaking and
run-up, showing a very promising potential for the simulation of complex near
shore wave physics.

The last part of the thesis deals with the investigation of the large scale
mechanism of tidal bore formation in convergent alluvial estuaries. Using the
Saint Venant (or NLSW) equations, we develop a scaling analysis of the global
tidal wave transformation as a function of both the tidal forcing at the estu-
ary mouth and the large-scale geometric properties of the channel, introducing
a new set of dimensionless parameters. Using a criterion for bore detection
based on experimental observations in situ (cf. Bonneton et al. [2015]), we
perform extensive numerical simulations (225 runs) on an idealized channel to
identify the physical conditions that lead to tidal bore generation. In the space
of parameters, we determine a critical curve which divides estuaries according
to tidal bore occurrence. We show that bore formation is controlled by the
competition between two physical processes: a) the knee-shaped distortion of
the tidal wave, with �ood dominance and eventually bore inception; b) the
dissipation of the tidal wave, which is unfavourable to bore formation. We
also provide evidence that ampli�cation due to topographic convergence is not
a necessary condition for tidal bore generation and that there exist estuaries
which display both wave damping and bore development. The work represents
the �rst systematic study focusing on this scope, which is also validated using
some real estuaries data collection. The validity of the results has been also
assessed in presence of freshwater river discharge, showing that, for low river
discharge, its e�ect on estuarine dynamics can be neglected.

These contributions have produced the following series of scienti�c publi-
cations and talks in workshops and conferences:
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Publications:

• Ricchiuto, M. and Filippini, A.G. (2014), Upwind residual discretization
of enhanced Boussinesq equations for wave propagation over complex
bathymetries, J.Comput.Phys., 271, 306-341.

• Filippini, A.G., Bellec, S., Colin, M. and Ricchiuto, M. (2015), On the
nonlinear behavior of Boussinesq type models: amplitude-velocity vs
amplitude-�ux forms, Coast.Eng., 99, 109-123.

• Filippini, A.G., Kazolea, M. and Ricchiuto, M. (2016), A �exible gen-
uinely nonlinear approach for nonlinear wave propagation, breaking and
run-up, J.Comput.Phys., 310, 381�417.

• Bonneton, P., Filippini, A.G., Arpaia, L., Bonneton, N. and Ricchiuto,
M. (2016) Conditions for tidal bore formation in convergent alluvial es-
tuaries, Estuar.Coast.Shelf S., 172, 121-127.

• Arpaia, L., Filippini, A.G., Bonneton, P. and Ricchiuto, M. in prepara-
tion Modelling analysis of tidal bore formation in convergent estuaries.

• Filippini, A.G., Kazolea, M. and Ricchiuto, M. in preparation, A fully
nonlinear and weakly dispersive approach for wave propagation, breaking
and run-up on unstructured meshes.

Conferences and Workshops:

• ECMI 2014: On nonlinear shoaling properties of enhanced Boussinesq
models; Taormina (Italy), 9-13 June 2014.

• Tidal Bore Workshop 2015: Modeling analysis of tidal bore formation
on convergent estuaries; Caen (France), 18-20 May 2015.

• IAHR 2015: Modeling analysis of tidal bore formation on convergent
estuaries; The Hague (Nederlands), 28 June - 3 July 2015.

• Boundary Conditions Workshop: Boundary conditions for coastal wave
models: hyperbolic systems; Bordeaux (France), 17-20 November 2015.

Outline of the thesis

The thesis is organized as follows. Chapter 1 is dedicated to the mathematical
modeling of free surface �ows in the domain of the asymptotic depth averaged
BT models. We show the main steps for the derivation of the most known and
used BT model of the literature from the original Euler system. The dispersive
and shoaling property of each model are discussed and compared with respect
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to the results given by the Airy theory in the linear regime. The behaviour
of the di�erent type of PDEs in the nonlinear contest is also compared and
analyzed. The chapter ends introducing the fully nonlinear weakly dispersive
system of GN, and its enhanced variant of Chazel et al. [2011]; Bonneton et al.
[2011b], which will be the subject of study in the second part of the work.
The solution strategy proposed for the one dimensional GN system of equa-
tions is introduced in chapter 2. The equations are re-written obtaining an
elliptic-hyperbolic decoupling and the details of the discretization strategies
are presented: a continuous C0 Galerkin scheme for the elliptic part; a high
order FV and SUPG schemes for the hyperbolic part. The dispersive proper-
ties of the schemes are investigated and optimized in the time-continuous case.
The description of the basic discretizations is completed with a discussion
on the time integration schemes along with boundary condition and wet/dry
treatment and friction. Two alternative ways of embedding wave breaking are
proposed. Suitable numerical tests in one spatial dimension are implemented
in chapter 3 to validate the schemes implemented, highlight their di�erent per-
formances and compare the results to experimental data.
In chapter 4, we apply the solution strategy to the two-dimensional case. The
2D GN system of equations is discretized by means of a hybrid FE/FV method
and all the arguments discussed for the one-dimensional case are extend to the
multi-dimensional. The scheme is then validated and tested against analytical
solutions and experimental data for standard benchmark of the �eld and on
unstructured meshes in chapter 5.
Finally, chapter 6 is dedicated to the numerical investigation of the physi-
cal conditions leading to tidal bore formation in convergent alluvial estuaries.
We introduce the governing equations and de�ne the dimensionless parame-
ters emerging from the scaling analysis. Using real estuaries data, collected
from the literature, we identify the space of parameters suitable to perform
our study. We provide the de�nition of the idealized case of study and intro-
duce a criterion for bore detection based on experimental observation in situ.
We discuss the implementation of the boundary conditions for the simulation,
validating the implemented ones using previous numerical results from the lit-
erature. Then, at last, we show the results of the numerical investigation and
we account for the e�ect of water river discharge on bore formation.
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The accurate mathematical modeling and numerical simulation of water
wave propagation in near-shore regions has received considerable attention in
the last decades, since they have largely replaced laboratory experiments in the
coastal engineering community. In the classical �uid-mechanics framework, a
free surface �ow can be described using the three dimensional Navier-Stokes
(NS) system of equations, assuming the �uid to be Newtonian, viscous and
incompressible. The solution of the NS system of equations in practical appli-
cation is extremely costly. For this reason, despite the modern ever increasing
computing power, less computational demanding models have been developed
and are now widely used in the engineering community, especially in large
scale approximation as e.g. tsunami propagation or storm surge simulations
at global or regional scales. In shallow water conditions, the classical ap-
proach is based on a perturbation method with respect to a small parameter
µ = h0/λ (with h0 and λ the characteristic water depth and horizontal scale)
in order to reduce the three-dimensional equation system to a two-dimensional
one. This method, initially introduced by Boussinesq [1872], allows to derive
several system of depth averaged shallow water equations, which are named
Boussinesq-type equations.

The simpler and most popular depth-averaged model is the Nonlinear Shal-
low Water (NLSW) system of equations. This set of equations performs a cor-
rect simulation of the wave propagation where the ratio between water depth h
and wavelength λ is su�ciently small, it gives a good description of energy dis-
sipation in wave breaking as shocks and is simple and e�cient to represent the
wave run-up on beaches. However, the NLSWmodel is unable to reproduce the
e�ects of shoaling and frequency dispersion which take place in the near-shore
region, before the waves reach the surf zone. These phenomena are the main
causes which determine the height of the waves reaching the beach together
with the instant and location of wave breaking. For these reasons, even if the
interest in coastal applications is mainly focused on the on-shore zone, where
the human activities are concentrated, it is of primary importance to be able
to accurate simulate the whole process of wave transformation from the deep
ocean, up to the coast. Many other models have, thus, been developed, based
on Boussinesq-type (BT) equations, trying to extend the range of validity of
the NLSW system and to optimize its dispersion properties with respect to
the so-called Airy theory, directly obtained from the three-dimensional Euler
equations.

BT models explicitly introduce dispersion terms in the equations, which,
therefore, are more suitable in waters where dispersion e�ects start to have
a relevant in�uence on the free surface deformation. They have become an
increasingly important predictive tool in coastal engineering. However, they
have to be used with much care. Quite often, weakly-nonlinear variants of these
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models, such as those proposed in Abbott et al. [1978]; Beji et Nadaoka [1996];
Madsen et Sørensen [1992]; Nwogu [1994]; Peregrine [1967], are used outside
of their range of applicability, e.g. when reaching breaking conditions. In
these cases fully-nonlinear models should, instead, be used Grilli et al. [1994].
Moreover, to actually include the energy dissipation e�ects associated to wave
breaking, either ad-hoc viscosity terms are included, or a coupling with the
NLSW equations is introduced Tonelli et Petti [2011]; Tissier et al. [2012];
Brocchini [2014]; Kazolea et al. [2014]. Despite of the fact that they are theo-
retically well adapted only for small amplitude waves, in practice these models
seem to provide good results even when they are used outside they domain of
validity Roeber et Cheung [2012]; Brocchini [2014]; Kazolea et al. [2014].

One of the keys of the successfull application of these systems of equations
is the use of a properly designed wave breaking model. Such a model includes
a breaking detection criterion and a dissipation mechanism. The challenge for
a correct capturing of these fronts is the understanding of the genuinely non-
linear physics underlying breaking, as well as the behavior of the underlying
dispersive wave propagation model, and in particular the wave shoaling when
approaching the nonlinear regime. Accounting for genuinely nonlinear e�ects
is thus a research topic of high priority Brocchini [2014]. While the linear prop-
erties of the models can be thoroughly studied analytically Dingemans [1997],
in the nonlinear case some properties, such as e.g. the shoaling behavior, must
be studied numerically.

There exist several types of weakly nonlinear BT models. These all pro-
vide di�erent approximations of the nonlinear wave (or Euler) equations. The
design properties of these models are often the linear dispersion relation and
shoaling coe�cients, which should be as close as possible to those of the lin-
ear wave theory in the range of wave numbers relevant for the applications
sought. Given a linear dispersion relation and linear shoaling coe�cient, it is
known that two nonlinear set of Partial Di�erential Equations (PDEs) can be
formulated, both degenerating to the same linearized system. Denoting by a
the wave amplitude, hb the mean water level, and λ the wavelength, these two
models are alternate forms within the same asymptotics in terms of the non-
linearity ε = a/hb and dispersion µ = hb/λ parameters. The main di�erence
is in the nature of the higher order derivatives, which can either be applied
to the velocity u, or to the �ux q = hu, h denoting the water depth. These
formulations are referred here to as amplitude-velocity, and amplitude-volume
�ux forms. Examples of such couples for some dispersion relations are given
in Dingemans [1997].

13



1.1. The Euler system of equations

1.1 The Euler system of equations

Before showing the governing equations for the water waves problem, we
present the general notation used in this work. In order to simplify the no-
tation, all the models and their asymptotic developments will be shown in
two-dimensions (in the vertical plane (x, z)), however the procedure is abso-
lutely general and can be performed in the three dimensional case (x, y, z)
(cf. Lannes [2013]). As shown in �gure 1.1, a Cartesian coordinate system is
adopted, with horizontal and vertical directions x and z respectively. We de-
note the velocity vector by u = (u,w)T . The free surface elevation is the main
unknown of the problem. It is denoted by η(x, t) and measured with respect
to its rest state represented by h0. The bathymetry b(x) is a time-independent
and su�ciently regular function. The total water depth can be thus expressed
by:

h(t, x) = h0 + η(t, x)− b(x) = η(t, x) + hb(x) ,

where hb represents the water depth at rest, de�ned by hb(x) = h0 − b(x).

b

h

η

x

z

w

u

h0 bh

Figure 1.1: Sketch of the free surface �ow problem, main parameters descrip-
tion.

Using the hypothesis of constant density ρ of the �uid, bathymetry b(x)
independent from time, and neglecting the e�ects due to the surface tension
and viscosity, the water wave problem can be described using the incompress-
ible Euler's equations. Following the notation just introduced, denoting with
p the pressure and g the gravity, this system, valid for z ∈ [b(x), h0 + η(x, t)],
takes the form:
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1. The Physical Models

ut + uux + wuz +
px
ρ

= 0 , (1.1)

wt + uwx + wwz +
pz
ρ

+ g = 0 , (1.2)

ux + wz = 0 , (1.3)

where (·)x and (·)z indicate respectively the derivatives with respect to x and
z of the quantity (·). The system is composed by two equations of momentum
conservation, in the x (1.1) and z (1.2) Cartesian directions respectively, writ-
ten in convective form, and by the incompressible equations (1.3).
The equation for the vorticity ω = ∇ ∧ u of a two-dimensional free surface
and inviscid �ow reads:

ωt +
(
u · ∇

)
ω = 0 . (1.4)

Due to the fact that the viscous e�ects have been neglected, there are
no source terms in equation (1.4), so an irrotational initial state will remain
irrotational. For water wave propagation, irrotationality is quite well veri�ed.
The e�ects of the viscous boundary layer (ocean �oor) and shear layer (water-
air) are very small in the propagation phase. We can, thus, include into the
previous system (1.1)-(1.3) the irrotational condition:

uz − wx = 0 . (1.5)

Two boundary conditions have to be added to the irrotational and incom-
pressible Euler system in order to solve it. The free surface is the interface
between the water and the air. It is de�ned by the property that the �uid
particles cannot cross this interface and it is characterized by the equation
f(x, z, t) = 0. Due to the fact that the two �uids are immiscible all the
particles belonging to the surface interface will remain on it and the velocity
components, of the �uid and of the surface, normals to the interface must
equal. Given the free surface velocity vector us and the unitary vector normal
to the interface n = ∇f

‖∇f‖ , it follows that:

u · n = us · n ,

hence:

u · ∇f = us · ∇f .
Deriving with respect to time the free surface relation f(x, z, t) = 0, we

obtain:

df

dt
=
∂f

∂t
+
∂f

∂x

dx

dt
+
∂f

∂z

dz

dt
,
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1.2. On near-shore wave transformation

that, by means of the us de�nition, becomes:

df

dt
= ft + us · ∇f = 0 ,

from which:

ft + u · ∇f = 0 .

Considering the free surface de�nition: f(x, z, t) = z − (h0 + η(x, t)), we
thus obtain ∇f = (−ηx, 1)T and, �nally, the cinematic condition at the free
surface z = h0 + η(x, t):

w = ηt + uηx . (1.6)

Following the same procedure, but taking into account the fact that the
bed does not change along the time, we can obtain the slip condition at the
bottom boundary z = b(x):

w = ubx . (1.7)

1.2 On near-shore wave transformation

Waves propagating in near-shore regions undergo deep transformations in both
phase and energy. Shoaling, dispersion and breaking deeply a�ect the incom-
ing wave, such that a description of the �ow �eld can be said accurate only
if all these playing actors are well reproduced by the model, used for the nu-
merical simulation. In particular, the right time instant and space location of
breaking are caught only if the wave shoaling and dispersion processes are well
set out. For this reason, the correct choice of the most suitable model for the
speci�c application considered is essential.

Wave shoaling is a transformation process experienced by waves entering
shallower waters. In particular, water depth reduction acts on the incoming
wave increasing its steepness and height, augmenting its initial wavenumber
k0 and decreasing its celerity.
Figure 1.2 shows, instead, the e�ects of frequency dispersion acting on a
monochromatic wave, propagating over a submerged bar. The original sig-
nal propagates undisturbed until the bar is reached. The abrupt change of the
bed, with initial reduction of water depth, causes the wave to shoal, changing
its original amplitude and its spectrum adding higher frequencies, and causes
the fragmentation of the original wave signal into a complex train of waves
also including higher harmonics. Each of them start to travel with an own
characteristic celerity speed, such that they originate an intricate process of
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wave interactions which give a seemingly chaotic texture to the water free sur-
face. This example may induce to think that dispersion is mainly related to
nonlinear waves and to interactions with bed variations. However, a simple
analysis on the linear theory of waves (or Airy wave theory) tells us that this
is not the case, and that dispersion is present also in the linear regime and for
�at bathymetry.
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Figure 1.2: Monochromatic wave propagating over a submerged bar: numerical
computation using the Madsen and Sørensen model (1.93).

Giving the most accurate possible description to these phenomena has be-
come the guideline in the derivations of the several depth-averaged models
that, within the limits of di�erent asymptotic approximations of the Euler
model, have been developed to avoid the cost and complexity of using sys-
tem (1.1)-(1.5) in practical coastal application. In particular, it has become a
common use in the literature to validate (or invalidate) simpli�ed systems of
equations by studying their linear dispersion characteristics and, in particular,
evaluating the error made with respect to the results of the linear Airy theory.
We will, thus, pursue the same strategy in the following sections, in which we
are going to introduce and discuss some well known depth-averaged models.
We will start by recalling the linear wave theory in the next section.

1.3 Airy wave theory

The linear theory of waves can be derived by linearizing the Euler equations
(1.1)-(1.3) together with (1.5) . In order to perform this linearization, we �rst
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use the irrotational condition (1.5) to rewrite the �rst two equations of the
system as:

ut + uux + wwx +
px
ρ

= 0 ,

wt + uuz + wwz +
pz
ρ

+ g = 0 .

Than, we observe that, as a consequence of incompressibility and irrota-
tionality of the �ow, the velocity can be derived from a potential Φ, whose
derivatives with respect to the Cartesian directions represent the two compo-
nents of the velocity vector: u = Φx and w = Φz. Introducing the potential Φ
in the equations, we obtain:

Φxt + ΦxΦxx + ΦzΦxz +
px
ρ

= 0 ,

Φzt + ΦxΦzx + ΦzΦzz +
pz
ρ

+ g = 0 ,

that can be also written introducing the gradient operator ∇(·) as:

∇
(

Φt +
1

2

(
(Φx)

2 + (Φz)
2
)

+
p

ρ
+ gz

)
= 0 .

Integrating the last expression and rede�ning the �ow potential in order to
include in it the constant coming from the integration Φ := Φ +

∫
C(t)dt, we

get:

Φt +
1

2

(
(Φx)

2 + (Φz)
2
)

+
p

ρ
+ gz = 0 . (1.8)

Note that equation (1.8) is also known as the non-stationary Bernoulli
equation in b(x) ≤ z ≤ h0 + η. We can obtain a new formulation of system
(1.1)-(1.5) evaluating (1.8) at the free surface z = h0 +η. The pressure appears
in the Euler system only through its gradient. It can be thus rede�ned up to
an arbitrary constant value, giving us the possibility to assign p = 0 at the
free surface. The �nal form we get is the following:

Φt +
1

2

(
(Φx)

2 + (Φz)
2
)

+ gη = 0 at z = h0 + η(x, t) , (1.9)

Φxx + Φzz = 0 at b ≤ z ≤ h0 + η(x, t) , (1.10)

Φz = ηt + Φxηx at z = h0 + η(x, t) , (1.11)

Φz = −(hb)xΦx at z = b(x) . (1.12)
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The system is now ready to be linearized around the rest state h(x) = h0

and u = w = 0, giving what we can call the Airy system of equations:

Φt + gη = 0 at z = h0 , (1.13)

Φxx + Φzz = 0 at b ≤ z ≤ h0 , (1.14)

Φz = ηt at z = h0 , (1.15)

Φz = −(hb)xΦx at z = b(x) . (1.16)

Dispersion Properties: It is common use, in the literature, to evaluate
the dispersion characteristics of a model by means of a Fourier analysis on
a horizontal bottom, looking for signals of the type u(x, t) = u0expj(ωt−kx),
with ω the angular frequency and k the corresponding wave number of the
signal. Such analysis allows to obtain an expression for the phase velocity C
described by the model. The phase velocity of a wave is the rate at which
the phase of the wave propagates in space, meaning the velocity at which the
phase of any frequency component of the wave travels. It is generally de�ned
by the following relation:

C =
ω

k
. (1.17)

Another quantity used to measure the wave dispersion, which is related to
C, is the group velocity Cg. This represents the velocity of propagation of the
energy in a wave train and is de�ned as:

Cg =
∂ω

∂k
, (1.18)

having denoted with ∂(·)/∂k the partial derivative of (·) with respect to the
variable k. Using the phase velocity de�nition (1.17), it emerges the relation:

Cg = C + k
∂C

∂k
. (1.19)

In order to �nd the expression for C given by the Airy theory, we �rst
rewrite system (1.13)-(1.16) using a constant value of bathymetry b(x) = b.
Moreover, the variable η can be eliminated by substituting (1.15) into (1.13),
previously derived with respect to time. This, �nally, gives:

Φtt + gΦz = 0 at z = h0 , (1.20)

Φxx + Φzz = 0 at b ≤ z ≤ h0 , (1.21)

Φz = −(hb)xΦx at z = b . (1.22)
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1.3. Airy wave theory

We, than, introduce in equation (1.21) a solution of the form Φ(x, z, t) =
B(z) expj(ωt−kx), with j the imaginary unit, obtaining the Ordinary Di�erential
Equation (ODE):

Bzz − k2B = 0 .

The solutions of this ODE are written in the form:

B(z) = α cosh
(
kz
)

+ β cosh
(
kz
)
.

Using the condition (1.22) to �nd the constants, we deduce that:

Φ(x, z, t) = α cosh
(
kz
)

exp
(
j(ωt− kx)

)
. (1.23)

with α a real number that will not play any role in the rest of the derivation.
In fact, substituting (1.23) into (1.20) leads to:

− ω2α cosh
(
kh0

)
exp

(
j(ωt− kx)

)
+ gαk sinh

(
kh0

)
exp

(
j(ωt− kx)

)
= 0 ,

and, �nally, rearranging:

C2
Airy =

ω2

k2
= gh0

tanh(ϕ0)

ϕ0

, (1.24)

having introduced the variable:

ϕ0 = kh0 = 2πh0/λ = 2πµ ,

with µ = h0/λ.
Relation (1.24) states that the phase velocity of a wave is function of its
wavenumber k, meaning that any wave travels at a di�erent speed depending
on its frequency causing dispersion. This result has been found using the linear
theory of Airy and making the hypothesis of �at bathymetries, meaning that,
dispersion is an e�ect inherent to wave propagation and it is not introduced
by the bathymetry. However, the e�ects of dispersion become quantitatively
important only for increasing values of the parameter kh0 or h0

λ
.

The group velocity can be evaluated using the relation (1.19). This gives:

Cg,Airy =
CAiry

2

(
1 +

2ϕ0

sinh(2ϕ0)

)
. (1.25)

Shoaling Properties: To characterize wave shoaling in the linear case, one
introduces the shoaling coe�cient s which relates the rate of change in wave
amplitude to the rate of change in water depth h = h(x):

ax
a

= −shx
h
. (1.26)
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The procedure to compute explicit expressions for the coe�cient s is de-
scribed in many papers and textbooks, see e.g. Dingemans [1997]; Beji et
Nadaoka [1996]; Madsen et Sørensen [1992]; Kazolea [2013]; Lee et al. [2003].
Here we retrace the main steps to recover the shoaling gradient expression for
the Airy theory. We start by considering the so-called conservation relation of
the energy �ux (cf. Dingemans [1997]):(

a2Cg
)
x

= 0 , (1.27)

from which straightforward manipulations lead to:

1

a2Cg

(
a2Cg

)
x

=
ax
a

+
1

2Cg

(
Cg
)
x

= 0 . (1.28)

From equation (1.25), introducing ϕ = kh, we note that Cg,Airy = CAiryF (ϕ).
This means:

1

Cg,Airy

(
Cg,Airy

)
x

=
1

CAiry

(
CAiry

)
x

+
1

F
Fx ,

From the phase velocity de�nition (1.17), we also deduce that:

Cx =

(
ω

k

)
x

= − ω
k2
kx ,

being ω independent of x. Thus:

Cx
C

= −kx
k
,

which transforms the energy �ux conservation equation (1.27) as follow:

ax
a

+
1

2

(
Fx
F
− kx

k

)
= 0 . (1.29)

The value of Fx/F can be obtained directly from (1.25):

Fx
F

=
2ϕ
(

sinh(2ϕ)− 2ϕ cosh(2ϕ)
)

sinh(2ϕ)
(

sinh(2ϕ) + 2ϕ
) (

kx
k

+
hx
h

)
= 0 . (1.30)

In order to �nd a relation between hx/h and kx/k we rewrite the phase
velocity expression (1.24):

ω2h

g
= ϕ tanh(ϕ) , (1.31)

and we derive it with respect to x:
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ω2

g
hx =

(
tanh(ϕ) + ϕ

(
1− tanh2(ϕ)

))(kx
k

+
hx
h

)
.

Using again (1.31) to substitute ω2 and rearranging the terms, we obtain
the relation between the derivative of h and k:

kx
k

=

( −2ϕ

2ϕ+ sinh(2ϕ)

)
hx
h
. (1.32)

Finally we use (1.32) and (1.30) into (1.29), deducing the expression of the
shoaling gradient for the linearized wave theory:

sAiry = 2ϕ
sinh(2ϕ) + ϕ

(
1− cosh(2ϕ)

)(
2ϕ+ sinh(2ϕ)

)2 . (1.33)

To be able to actually compare the results of the analysis to the results
obtained by numerically solving the models, there is a small catch, not often
underlined in literature. To explain this, �rst consider that, for a given vari-
ation (usually linear) of the bathymetry, the local wavenumber k(x) can also
be obtained by solving an ODE, as (1.32), of the type:

kx
k

= −γhx
h
, (1.34)

where h(x) is de�ned by the test set up, and where the expression for γ are
dependent on the wave model used (Madsen et Sørensen [1992]; Beji et Nadaoka
[1996]; Lee et al. [2003] etc). The values of the shoaling parameter, can be thus
represented in two ways (cf. Filippini et al. [2015]). The one which is most
classically reported is s0 = s(h(x), k0), representing its variation with respect
to k0h(x), where k0 is the initial wave number of the incoming wave. This leads
to the result reported on the left on �gure 1.3. However, the variation shown in
the picture is not the actual one obtained in practice. To obtain this variation,
one must integrate (1.34) to obtain k(x), and use it to modify s(h(x), k(x))
when integrating (1.26) to compute the actual wave amplitudes. The shoaling
coe�cient can then still be plotted against k0h, by computing for a given
x the corresponding values of k0h(x), and the local value of s(h(x), k(x)) =
−ax(x)h(x)/(a(x)hx(x)). This results in the right picture on �gure 1.3, similar
to the one reported (without any explanation) in Madsen et Sørensen [1992].
Remark that only when including the variation of the wavenumber in the
integration of 1.26 the correct amplitudes are obtained.
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Figure 1.3: Linear shoaling: representation of the linear shoaling coe�cient s
of the linear wave theory of Airy (1.33). On the left is sketched s(h(x), k0),
thus computing the values of s using the initial wavenumber of the signal k0.
On the right, instead, the variation of k(x) along the domain is considered in
the computation of the shoaling coe�cient, thus: s(h(x), k(x)).

1.4 On modeling dispersion

Before proceeding to the derivation of the asymptotic models for wave propa-
gation, we want to spend some words on what is the mathematical instrument
that allows to model the dispersion in a given partial di�erential equation.
This will provide us a better comprehension of the complex structure which
characterizes most of the models that we are going to discuss in the following
sections.
We consider the simplest PDE represented by a mono-dimensional linear scalar
advection equation for the generic variable u:

ut + aux = 0 , (1.35)

where a is the constant velocity of propagation of the information.
Applying the Fourier analysis to (1.35), the following relation for the phase
velocity is obtained:

jw − jak = 0 ,

which, using the de�nition (1.17), leads to:

C2 = a2 .

Contrary to what has been pointed out for the Airy equations, the expres-
sion for the phase velocity C does not depend on the wavenumber k in this
case, meaning that all the information will travel according to the same veloc-
ity value, given by a. This can be easily veri�ed since the solution of (1.35)
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can be determined analytically through the method of characteristics in all the
space-time domain, for a given couple of initial and boundary conditions. It
can be thus con�rmed that any signal will be transported unchanged to the
right or to the left, according with the sign of a, and no frequency dispersion
will appear in the simulation.
In the context of the Fourier analysis, used to perform this study, the only way
to include wave dispersion in the equations is thus of adding terms containing
higher order derivatives (in odd number) of the scalar quantity u. Consider
the following PDE:

ut + aux − αuxxt = 0 , (1.36)

with α any real number. The Fourier analysis gives, in this case, the following
result:

jw − jak − jαwk2 = 0 ,

from which it follows:

C2 =

(
a

1− αk2

)2

.

The general idea just presented, �nds extensive application in the systems
of equations that will be introduced in the following sections. These dispersive
models for water wave propagation are, in fact, generally characterized by the
occurrence of third order derivatives ((·)xxx and (·)xxt) of the variables of the
problem. Some models, called enhanced, are also characterized by the presence
of some tuning parameters. These are real numbers, like α in (1.36), whose
value is generally adjusted in order to match as much as possible the linear
dispersive properties described by the Airy theory.
Note that equation (1.36) can be rewritten as a system of PDEs, composed
by a hyperbolic and a stationary elliptic equation, by introducing a new scalar
variable w:

wt + aux = 0 ,

u− αuxx = w .

Reformulating the problem in this way allows to identify a PDE struc-
ture involving a �rst order problem plus an auxiliary elliptic equation. This
structure is basically the same of the nonlinear wave system (1.9)-(1.12). This
decomposition may be used to apply the more appropriate numerical method
to each of the two part which compose the system. This idea is the base of the
discretization procedure proposed in this work, and described in chapters 2
and 4, discussing the application of this approach to the Green-Naghdi system
of equations (cf. Filippini et al. [2016, 2017]).
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1.5 Asymptotic development

Solving the incompressible and irrotational Euler system for large scale nu-
merical simulations is very computational demanding. The Boussinesq-type
models have been developed in the past in order to bypass this obstacle in
practical applications. These are depth averaged asymptotic approximation
of the original system. Their derivation, in fact, consists of two main steps.
Firstly, the velocity u is expressed by an asymptotic development in terms of
the depth averaged velocity ū or in terms of the velocity value uθ, measured
at an arbitrary depth zθ. Secondly, some hypothesis, involving the order of
magnitude of the dimensionless parameters of the problem, are imposed to ne-
glect some terms in the asymptotic development. The physical characteristics
scales for propagating waves are the wavelength λ, the wave amplitude a and
the still water depth h0 (considering negligible the variation of the bed). The
wave period T is not considered, since it can be obtain from λ and h0, through
the dispersion relation. The wave propagation is, thus, characterized by two
dimensionless parameters:

ε =
a

h0

and µ =
h0

λ
=
ϕ0

2π
,

where ε characterizes the degree of nonlinearity of the �ow and µ characterizes
the degree of dispersion of the waves. Some other nondimensional parameters
can be obtained through di�erent combinations of ε and µ, and may be used
to recover other dimensionless forms of the Euler equations.

Before performing the dimensional analysis of the Euler system, we rewrite
the model in order to eliminate the pressure from the unknowns. To this scope
we use the irrotational condition (1.5) to rewrite the (1.1) and (1.2) as:

ut + uux + wwx +
px
ρ

= 0 ,

wt + uuz + wwz +
pz
ρ

+ g = 0 .

We now reintroduce the velocity potential, Φ, such that u = Φx and w =
Φz. It is thus possible to obtain an expression for the pressure by integrating
the second equation from the free surface h0 + η to an arbitrary level z. Such
expression can be thus substituted into the �rst equation and, after some
simpli�cations, the following relation will be obtained:

[Φt(h0 + η)]x + gηx +

[
u2(h0 + η)

2

]
x

+

[
w2(h0 + η)

2

]
x

= 0 .
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Using the cinematic boundary condition, we develop the derivative of Φt(h0+
η) with respect to x in order to rewrite the equation in terms of the only un-
knowns η, u and w:

[Φ(h0 + η)]x = Φx(h0 + η) + ηxΦz(h0 + η) .

In this way, the original Euler system of equations can be rewritten as:

ut(h0 + η) + ηxwt(h0 + η) + gηx+

+

[
u2(h0 + η)

2

]
x

+

[
w2(h0 + η)

2

]
x

= 0 ,

ux + wz = 0 ,

uz − wx = 0 ,

(1.37)

with boundary conditions:

w = ηt + uηx at z = h0 + η , (1.38)

w = ubx at z = b . (1.39)

System (1.37) is now ready to be made dimensionless. At this scope, we
introduce the following set of dimensionless quantities:

x′ =
x

λ
, z′ =

z

h0

, t′ =

√
gh0

λ
t , η′ =

η

a
, b′ =

b

h0

, (1.40)

u′ =
h0

a
√
gh0

u , w′ =
λ

a

1√
gh0

w , p′ =
p

gh0ρ
. (1.41)

Substituting these expressions into (1.37), the dimensionless parameters ε
and µ appear in the equations (we drop the primes for the sake of clarity):

ut(1 + εη) + εµ2 ηxwt(1 + εη) + ηx +

+ε

[
u2(1 + εη)

2

]
x

+ εµ2

[
w2(1 + εη)

2

]
x

= 0 , (1.42)

ux + wz = 0 , (1.43)

uz − µ2wx = 0 , (1.44)

with the boundary conditions:

w = ηt + εuηx at z = 1 + εη , (1.45)

w = ubx at z = b . (1.46)
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We want now to express the horizontal velocity u by means of an asymptotic
development in terms of the depth averaged horizontal velocity ū, de�ned by:

ū =
1

(1 + εη − b)

∫ 1+εη

b

u dz .

To this scope, we consider in this part that O(µ2)� 1, while O(ε) ∼ 1.
Integrating the equation (1.44) from z = 1 to a general water depth z̃, and
neglecting the terms of order O(µ2), we obtain:

ũ = u0 + O(µ2) ,

where ũ and u0 are the dimensionless horizontal velocities respectively at the
arbitrary depth z̃ and at the reference depth z = 1. This expression can be
used in equation (1.43), which can than be integrated between z = b and z̃,
using the boundary condition (1.46), in order to obtain:

w̃ = −
(

(z̃ − 1)(u0)x + (hbu0)x

)
+ O(µ2) . (1.47)

This can be substituted in (1.44) that, integrated again from z = 1 to z̃,
provides the asymptotic development of u in terms of u0, up to the fourth
order O(µ4):

ũ = u0 − µ2

(
(z̃ − 1)2

2
(u0)xx + (z̃ − 1)(hbu0)xx

)
+ O(µ4) . (1.48)

It now remains to express u0 as function of the depth averaged horizontal
velocity ū. We, thus, integrate equation (1.48) from z = b to z = 1+εη. Divid-
ing the result by the water depth h = 1+εη− b and after some manipulations,
the following expression can be obtained:

ū = u0 − µ2

[
ε2η2 − εηhb + h2

b

6
(u0)xx +

εη − hb
2

(hbu0)xx

]
+ O(µ4) . (1.49)

From (1.49), introducing h = εη + hb and isolating u0, it directly comes:

u0 = ū+µ2

[(
h2

6
− hb

2

(
h−hb

))
(u0)xx+

(
h

2
−hb

)
(hbu0)xx

]
+O(µ4) . (1.50)

Neglecting the terms of order O(µ2), the previous relation simpli�es to:

u0 = ū+ O(µ2) ,

that can be used inside equation (1.50), to express u0 as function of ū:
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1.5. Asymptotic development

u0 = ū+ µ2

[(
h2

6
− hb

2

(
h− hb

))
ūxx +

(
h

2
− hb

)
(hbū)xx

]
+ O(µ4) . (1.51)

We can �nally replace (1.51) into (1.48):

ũ = ū− µ2

[(
(z̃ − 1)2

2
− h2

6
+
hb
2

(
h− hb

))
ūxx +

+

(
(z̃ − 1)−

(h
2
− hb

))
(hbū)xx

]
+ O(µ4) .

(1.52)

Using equation (1.52), we can express the horizontal velocity at an arbitrary
level ũ as an asymptotic development of the depth averaged horizontal velocity
ū, truncated at the fourth order O(µ4). This represents the starting point for
the derivation of all the asymptotic models treated in this work.
Similarly, we can deduce an asymptotic development for the vertical velocity,
by substituting equation (1.51) in (1.47):

w̃ = −
(

(z̃ − 1)ūx + (hbū)x

)
+ O(µ2) . (1.53)

Before showing how di�erent models can be derived, we remark that an
exact equation can be obtained by integrating the incompressibility equation
on the depth: ∫ hb+η

b

uxdz +

∫ hb+η

b

wzdz = 0 .

Applying the Leibnitz rule 1 and using the boundary conditions (1.38) and
(1.39) to simplify the expression, we get:

ηt + (hū)x = 0 . (1.54)

This is the so-called continuity equation, equivalent to an equation for vol-
ume conservation. Since it comes from the cinematic boundary condition of
the Euler equations, it is an exact equation and characterizes all the models
having η and ū as unknowns.

1Given three functions f(x, z), a(x) and b(x) such that f and fx are continuous in x and

z, and such that a and b belong to C1, than:

∂

∂x

(∫ b(x)

a(x)

f(x, z)dz

)
=

∫ b(x)

a(x)

fx(x, z)dz + f
(
x, b(x)

)
b′(x)− f

(
x, a(x)

)
a′(x)
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1. The Physical Models

1.6 The Nonlinear Shallow Water equations

The simplest depth averaged approximation of the Euler equations that can
be derived from the asymptotic development (1.52) is the so-called NonLinear
Shallow Water system (NLSW). This model is based on the assumptions that
O(ε) ∼ 1, while O(µ2) � 1 and therefore negligible. Because of this, the
velocity development (1.52) reduces to the simple relation:

ũ = ū+ O(µ2) .

Evaluating this relation at the free surface z = 1 + εη, it gives:

u(1 + εη) = ū+ O(µ2) ,

which can be used in (1.42), obtaining:

ūt + εūūx + ηx = O(µ2) . (1.55)

Neglecting the terms of order O(µ2) and coming back to the physical vari-
ables, we obtain the one-dimensional NLSW system by coupling equation
(1.55) with the continuity equation (1.54):

ηt + (hū)x = 0 ,

ūt + ūūx + gηx = 0 .
(1.56)

Considering the two horizontal Cartesian directions (x,y), the system (1.56),
written in two-dimensional form, reads:

ηt +∇ · (hū) = 0 ,

ūt + (ū · ∇)ū + g∇η = 0 ,
(1.57)

where the vector ū contains the depth averaged velocity components ū and v̄
respectively in the x and y directions, and ∇ represents the gradient operator.
The NLSW model (1.56) is a system of nonlinear hyperbolic Partial Di�eren-
tial Equations (PDEs). This particular nature is the key of its great success
and large di�usion. It can be numerically solved using many di�erent tech-
niques. To this end, the model should be rewritten in a conservative form,
which is more suitable for numerics. To this purpose, a new variable: the
volume �ux q̄ = hū, has to be introduced. A conservation law can be ob-
tained for this variable by multiplying the �rst equation of system (1.56) by
ū and adding to it the second equation of (1.56), multiplied by h. Since:
ηt(x, t) =

(
η(x, t) + hb(x)

)
t

= ht(x, t), this �nal one-dimensional conservative
formulation is obtained:
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1.6. The Nonlinear Shallow Water equations

ht + q̄x = 0 ,

q̄t +

(
q̄2

h

)
x

+ g

(
h2

2

)
x

+ gh(hb)x = 0 ,
(1.58)

which, in two-dimensions, becomes:

ht +∇ · q̄ = 0 ,

q̄t +∇ ·
(

q̄⊗ q̄

h

)
+∇

(
gh2

2

)
+ gh∇hb = 0 ,

(1.59)

being q̄ = hū and ⊗ denoting the tensor product between two vectors:

a⊗ b =

[
a1b1 a1b2

a2b1 a2b2

]
,

with a = [a1, a2]T and b = [b1, b2]T .

Linear Dispersion Properties : The NLSW system does not contain any
dispersive term. According to the fundamentals of wave dispersion modeling,
presented in section 1.4, we expect this model to be characterized by a phase
velocity which will be completely independent from the wave number k. We
thus linearize system (1.56) around the steady state characterized by h(x) =
h0 = const and u = 0:

ηt + h0ūx = 0 ,

ūt + gηx = 0 .
(1.60)

Then, we perform the Fourier analysis on system (1.56), looking for a solu-
tion in the form η(x, t) = η0 expνt−jkx, ū(x, t) = ū0 expνt−jkx, where ν = ξ+ jω
(being ξ the dissipation rate and ω the phase shift), ending up on the following
system:

νη0 + jkh0ū0 = 0 ,

νū0 + jkgη0 = 0 .

Solving for ν, we get the complex eigenvalue problem:(
ν jkh0

jkg ν

)(
η0

ū0

)
= 0

which simply gives:

ξ = 0 ,

ω2 = k2gh0 .
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1. The Physical Models

Using the de�nition (1.17), the phase velocity described by the NLSW
model appears to be:

C2
SW = gh0 , (1.61)

Figure 1.4 shows, in function of the reduced frequency of the wave kh0,
the trend of the error in phase velocity with respect to the Airy theory one,
determined by the relation:

err = 100

(
C − CAiry
CAiry

)
, (1.62)

The �gure puts in evidence the lack of accuracy given by the NLSW model
in terms of linear dispersion. This will propagate any frequency with the same
speed, de�ned by CSW , hence, its error with respect to the linear wave theory
rapidly diverges and becomes greater than 5% already after kh0 ' 0.6.
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Figure 1.4: Percentage error in phase velocity description with respect to the
Airy theory (eq. (1.24)) for the NLSW model (eq. (1.61)).

Linear Shoaling Properties : The expression of the shoaling gradient s for
the NLSW model will be obtained using the procedure described in Madsen
et Sø rensen [1992]. The system of equation is linearized on a mild slope
bathymetry, h(x) = hb(x):

ηt + (hū)x = 0 ,

(hū)t + ghηx = 0 .
(1.63)

A wave equation, corresponding to system (1.63), is then found by deriving
the �rst equation with respect to time t, deriving the second equation with re-
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1.6. The Nonlinear Shallow Water equations

spect to the horizontal coordinate x and summing up the resulting expression.
In this case the result gives:

ηtt − g(hηx)x = 0 . (1.64)

A solutions of the form η(x) = a(x) expj(ωt−ψ(x)), with ψx = k(x), is substi-
tuted in (1.64), considering the wave amplitude a(x), the water depth h(x) and
the wave number k(x) as slowly varying functions of x (so to neglect higher
order derivatives and product of derivatives of such quantities). Collecting the
terms containing �rst order derivatives of a, k and c, one ends with:

α1
ax
a

+ α2
kx
k

+ α3
hx
h

= 0 .

The relation between kx and hx emerges from algebraic manipulations on
the lowest order terms of (1.64), as detailed in Madsen et Sørensen [1992].
This allows to de�ne the coe�cient γ of (1.34) and, in turn, to obtain the
�nal expression of the shoaling gradient coe�cient as (see Madsen et Sørensen
[1992] for details):

s =
α3 − α2γ

α1

. (1.65)

For the model considered, we found simply:

α1 = 2 , α2 = 1 , α3 = 1 , γ =
1

2
,

and, consequently, that the shoaling gradient expression of the NLSW model
sSW (h, k) is the constant number:

sSW =
1

4
. (1.66)

The comparison with respect to the result of Airy theory (1.33), illustrated
in �gure 1.5 (left for s(h(x), k0) and right for s(h(x), k(x))), shows once more
the limitations of this basic model.
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Figure 1.5: Linear shoaling: comparison between the linear shoaling coe�cient
of the NLSW model sSW (eq. (1.66)) and the one described by the linear
wave theory of Airy (eq. (1.33)). On the left is sketched s(h(x), k0), thus
computing the values of s using the initial wavenumber of the signal k0. On
the right, instead, the variation of k(x) along the domain is considered in the
computation of the shoaling coe�cient, thus: s(h(x), k(x)).

Summary : In this section, we have shown how the NLSW model can be
recovered by neglecting all the terms of order O(µ2) in the asymptotic devel-
opment of the horizontal velocity ũ (1.52). In this sense, the NLSW model
represents the least accurate approximation of the Euler system of equations
(1.37), or an approximation of order O(ε). Despite its poor linear dispersion
and shoaling characteristics, it performs accurate description of wave propa-
gating in very shallow waters. Other models should, instead, be used for the
region of intermediate waters, when the interaction with the bathymetry be-
comes more important and the dispersion and shoaling e�ects are predominant.
As mentioned in the introduction, more accurate models have been developed
in the last years to tackle this problem. In the following paragraphs we will
present some of them, in order of growing degree of accuracy and complexity.

1.7 Weakly nonlinear Boussinesq-type models :
amplitude-velocity vs amplitude-�ux forms

In this section, we review a certain number of weakly nonlinear Boussinesq-
type (BT) models, showing the main passages for their derivation, which is
based on the assumptions that:

ε� 1 , µ2 � 1 and ε = O(µ2) .

This fact implies the Ursell number Ur of the problem to be:
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Ur = aλ2/h3
b = ε/µ2 ∼ O(1) .

Moreover, the small magnitude of ε gives a weakly nonlinear nature to
these models. Because of these assumptions, the BT models are obtained by
retaining all the O(ε) and O(µ2) terms of the Euler equations, neglecting the
O(εµ2) and O(µ4) ones. For this reasons, their structure is generally composed
by an hyperbolic part, formed by the NLSW system in its conservative (1.58)
or non-conservative (1.56) form, plus some elliptic operators containing the
higher order dispersive terms. These are the terms of order O(µ2), that have
been neglected for the NLSW derivation.
In this section we will show that, within the same asymptotic accuracy, it is
possible to construct two nonlinear set of PDEs, characterized by dispersive
terms that involve: the free surface elevation and the velocity in one case, the
free surface elevation and the volume �ux in other. We will thus speak respec-
tively in terms of amplitude-velocity and amplitude-�ux forms. What follows
is largely inspired by the published work of Filippini et al. [2015], where this
theory was applied to four linear relations corresponding to the model of Pere-
grine Peregrine [1967] and to the enhanced models of Beji and Nadaoka Beji et
Nadaoka [1996], Madsen and Sørensen Madsen et Sørensen [1992], and Nwogu
Nwogu [1994]. Here, for brevity, the only Peregrine and Madsen-Sørensen
models will be discussed. The interested reader can consult Filippini et al.
[2015] for more details.

1.7.1 The models of Peregrine and Abbott

In order to obtain the model of Peregrine, the terms of order O(εµ2) in the
asymptotic development (1.52) have to be neglected. The expression resulting
from this operation will read:

ũ = ū−µ2

[(
(z̃ − 1)2

2
−h

2
b

6

)
ūxx+

(
(z̃−1)−hb

2

)
(hbū)xx

]
+O(εµ2, µ4) . (1.67)

Following the same procedure adopted to recover the NLSW system, we
evaluate (1.67) at the free surface z = 1 + εη:

ũ = ū+ µ2

(
h2
b

6
ūxx −

hb
2

(
hbū
)
xx

)
+ O(εµ2, µ4) .

and we use it in (1.42). Once again terms of order εµ have to be neglected,
obtaining:

ūt + εūūx + ηx + µ2

(
h2
b

6
ūxxt −

hb
2

(
hbū
)
xxt

)
= O(εµ2, µ4) . (1.68)
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Coming back to dimensional variables, the one dimensional Boussinesq
model of Peregrine is obtained, reading:

ηt + (hū)x = 0 ,

ūt + ūūx + gηx +
h2
b

6
ūxxt −

hb
2

(hū)xxt = 0 ,
(1.69)

and in two dimensions:

ηt +∇ · (hū) = 0 ,

ūt + (ū · ∇)ū + g∇η +
h2
b

6
∇
(
∇ · ūt

)
− hb

2
∇
(
∇ · (hū)t

)
= 0 .

(1.70)

Multiplying the �rst equation of (1.69) by ū, the second one by h and
summing up the resulting expressions, we can rewrite the Peregrine system in
terms of the conservative variables (h, q̄), to which we will refer all along this
work in terms of the P system:

ht + q̄x = 0 ,

q̄t +

(
q̄2

h

)
x

+ ghηx + hPt(ū) = 0 .
(1.71)

where P (·) is the elliptic operator de�ned by:

P (·) =
h2
b

6
(·)xx −

hb
2

(
h(·)

)
xx
. (1.72)

In two-dimensions, system (1.71) becomes:

ht +∇ · (hū) = 0 ,

q̄t +∇ ·
(

q̄⊗ q̄

h

)
+ gh∇η + hPt(ū) = 0 ,

(1.73)

with P (·) now:

P (·) =
h2
b

6
∇
(
∇ · (·)

)
− hb

2
∇
(
∇ ·
(
hb(·)

))
. (1.74)

System (1.71) allows to underline the structure of the Peregrine model,
which is obtained by adding to the NLSW equations some O(µ2) dispersive
terms expressed by the time derivative of an elliptic linear di�erential operator
applied to the depth-averaged velocity ū.

Focusing on the dimensionless form of the dispersive terms of system (1.71),
we can observe that:
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(
εη + hb

)
µ2

(
h2
b

6
ūxx −

hb
2

(hbū)xx

)
= µ2

(
h3
b

6

(
q̄

hb

)
xx

− h2
b

2
q̄xx

)
+ O(εµ2, µ4) .

(1.75)
As a consequence, an asymptotically equivalent system can be obtained

by replacing the dispersive terms of system (1.71) by the right hand side of
equality (1.75). The resulting system of equations is known in the literature
as the BT model of Abbott (A model), which �rstly derived these equations
in Abbott et al. [1978], and in dimensional variables it reads:

ht + q̄x = 0 ,

Qt(q̄) +

(
q̄2

h

)
x

+ ghηx = 0 ,
(1.76)

where, once more, there is the appearance of the time derivative of a linear
elliptic operator, denoted by Q(·) and de�ned by :

Q(·) = (·) + hb

(
h2
b

6

(
(·)
hb

)
xx

− hb
2

(·)xx
)
. (1.77)

For completeness we report the two-dimensional form of (1.76), which
reads:

ht +∇ · (hū) = 0 ,

Qt(q̄) +∇ ·
(

q̄⊗ q̄

h

)
+ gh∇η = 0 ,

(1.78)

with:

Q(·) = (·) + hb

(
h2
b

6
∇
(
∇ ·
(

(·)
hb

))
− hb

2
∇
(
∇ · (·)

))
. (1.79)

Linear Dispersion Properties: The two models, just derived, di�er from
the NLSW one by the presence of the third order derivative terms in the
momentum equation, which are O(µ2). As we have shown in section 1.4,
these are essential for modeling wave dispersion with a given set of PDEs.
We will, now, compute the phase velocity of these models, which share the
same linear form. Linearizing around the steady state h(x) = h0 = const the
one-dimensional systems (1.71) and (1.76), we get:

ηt + h0ūx = 0 ,

ūt + gηx −
h2

0

3
ūxxt = 0 .

(1.80)
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The Fourier analysis follows the same procedure shown for the NLSW sys-
tem and provides the following expression for the phase velocity:

C2
P =

gh0

1 +
ϕ2

0

3

. (1.81)

The phase velocity just computed is an improvement of (1.61) and is now
explicitly dependent from the wavenumber k. Figure 1.6 displays the percent-
age error with respect to the Airy theory, using the error de�nition (1.62). We
can, thus, observe that the P and A models give a better description to wave
dispersion with respect to the NLSW one, even if the error with respect to the
linear wave theory rapidly grows moving towards values of kh0 greater than
1 (err > 5% for kh0 > 1.9), and hence deeper waters or equivalently shorter
waves.
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Figure 1.6: Percentage error in phase velocity description with respect to the
Airy theory (eq. (1.24)) for the P and A models (eq. (1.81)).

Linear Shoaling Properties: We want now to verify the linear shoaling
properties of the P and A models. The starting point consists of the linearized
system:

ηt + (hū)x = 0 ,

(hū)t + ghηx −
h2

3
(hū)xxt −

hhx
3

(hū)xt = 0 .
(1.82)

Note that here, following Madsen et Sørensen [1992], we have used the mild
slope approximation, consisting in neglecting both higher derivatives of hb and
(hb)

2
x terms. Once again, the linear form (1.82) is shared by both the models.

The procedure to obtain s is identical to that already described in the previous
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section. We limit ourself in reporting the expressions of the coe�cients α1, α2,
α3 and γ, reading:

α1 = 2 , α2 = 1 , α3 = 1− 2

3
ϕ2 , γ = −1

2

(
ϕ2

3
− 1

)
,

These can be used in (1.65), to obtain:

sP =
1

4
(1− ϕ2) . (1.83)

As it was for the phase velocity expression, also the linear shoaling gradient
appears to be clearly improved with respect to the NLSW one. In Figure 1.7
we can appreciate such improvement. In particular we can see that the linear
shoaling description is closer to the Airy one, especially for k0h < 0.5, however
this rapidly diverges from the true behaviour in deeper water, rendering the P
and A models invalid in these situations.
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Figure 1.7: Linear shoaling: the linear shoaling coe�cient of the NLSW model
sSW (eq. (1.66)) and of the P-A ones sP (eq. (1.83)) are plotted against sAiry
(given by eq. (1.33)). On the left is sketched s(h(x), k0), thus computing the
values of s using the initial wavenumber of the signal k0. On the right, instead,
the variation of k(x) along the domain is considered in the computation of the
shoaling coe�cient, thus: s(h(x), k(x)).

Summary: The models of Peregrine and Abbott allow to improve the re-
sults performed by the NLSW model for higher values of µ. In the linearized
case, the two models are identical and share the same linear dispersive and
linear shoaling characteristics. In the nonlinear case the two systems are both
O(εµ2, µ4) approximations of the Euler equations, however they do di�er as
the dispersive terms are expressed in terms of the derivatives of ū in the Pere-
grine one and in terms of q̄ in (1.76). Compared to (1.71), system (1.76) has a
more compact and seemingly conservative structure, as it does not involve any
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additional non-conservative product w.r.t the NLSW equations. Note how-
ever, that the two systems are not just one the equivalent reformulation of the
other in terms of a di�erent set of variables. They actually contain di�erent
di�erential terms.
The limited accuracy of systems (1.71) and (1.76), e.g. in terms of linear dis-
persion relations, has pushed the development of the so-called enhanced BT
models. These are improved approximations which, while still remaining of
order O(εµ2, µ4) with respect to the Euler equations, provide substantially
enhanced approximations of the linearized dispersion relations and shoaling
coe�cients of the original three-dimensional equations. The dispersion rela-
tions of these models are valid up to the deep water limit (correspondent to
h/λ = 0.5 in the literature), increasing their useful range for many practical
application. In the following we will recall the derivation and properties of the
enhanced BT model originally proposed in Madsen et Sørensen [1992].

1.7.2 The model of Madsen and Sørensen

From the huge family of enhanced Boussinesq-type models, we discuss here
the one proposed by Madsen and Sørensen in Madsen et Sørensen [1992]. This
model can be obtained from the Abbott equations. First we add and subtract
the quantity µ2βq̄xxt, to the non-dimensional form of the momentum equation
of system (1.76):

q̄t + ε

(
q̄2

h

)
x

+ hηx + µ2

(
h3
b

6

(
q̄

hb

)
xxt

− h2
b

2
q̄xxt + βq̄xxt − βq̄xxt

)
= O(εµ2, µ4) .

(1.84)
Neglecting the terms of order O(ε) and O(µ2), and using the fact that

h = hb + O(ε), we deduce that:

q̄t = −hbηx + O(ε, µ2) .

Such expression can be used in (1.84) in order to replace the term +βq̄xxt by
−βηxxx. The system analyzed in Madsen et Sørensen [1992] is �nally obtained
by neglecting all terms of order O(εσ2, σ4), and in the mild slope hypothesis
by neglecting terms containing (hb)

2
x and (hb)xx. The resulting dimensional

equations are known in the literature as the Madsen and Sørensen (MS) model,
and they read:

ht + q̄x = 0 ,

Q̂t(q̄) +

(
q̄2

h

)
x

+ ghηx − gβhbP̂ (ηx) = 0 ,
(1.85)

where P̂ (·) and Q̂(·) are de�ned by:
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P̂ (·) = h2
b(·)xx + 2hb(hb)x(·)x , (1.86)

Q̂(·) = (·)−
(

1

3
+ β

)
h2
b(·)xx −

hb
3

(hb)x(·)x . (1.87)

We report also the two-dimensional form of the system, which is:

ht +∇ · (hū) = 0 ,

Q̂t(q̄) +∇ ·
(

q̄⊗ q̄

h

)
+ gh∇η − gβhbP̂ (∇η) = 0 ,

(1.88)

where q̄ = (q(1) q(2))T , with:

P̂ (·) = h2
b∇
(
∇ · (·)

)
+ hb

(
D(∇η) +∇hb

(
∇ · (·)

))
, (1.89)

Q̂(·) = (·)−
(

1

3
+ β

)
h2
b∇
(
∇ · (·)

)
− hb

6
D(·)− hb∇hb

6

(
∇ · (·)

)
.(1.90)

(1.91)

and the operator D de�ned by:

D =

(
(hb)xq

(1)
x + (hb)yq

(2)
x

(hb)xq
(1)
y + (hb)yq

(2)
y

)
. (1.92)

We will show in the following paragraphs that the free parameter β allows
to substantially improve the linear dispersion and shoaling properties with
respect to (1.76), at the cost of a more complex and nonconservative struc-
ture, due to the term gβdP̂ (ηx). By reason of the same hypothesis on the
bathymetry, the MS model reduces exactly to the Abbott one when β = 0 just
in case of constant bathymetries.

The model presented is in amplitude-�ux form, as the dispersive terms in-
volve derivatives of the depth averaged �ux q̄ and not of the velocity. An
asymptotically equivalent system in wave amplitude-velocity form can be ob-
tained by manipulating the P model in a very similar way and applying the
mild slope hypothesis (details omitted for brevity). The �nal form of the model
reached is:

ht + q̄x = 0 ,

q̄t +

(
q̄2

h

)
x

+ ghηx − hP̃t(ū)− gβhP̂ (ηx) = 0 ,
(1.93)
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where:

P̃ (·) =

(
1

3
+ β

)
h2
b(·)xx + (1 + 2β)hb(hb)x(·)x . (1.94)

In two-dimensions, this becomes:

ht +∇ · (hū) = 0 ,

q̄t +∇ ·
(

q̄⊗ q̄

h

)
+ gh∇η − hP̃t(ū)− gβhP̂ (∇η) = 0 ,

(1.95)

with:

P̃ (·) =

(
1

3
+ β

)
h2
b∇
(
∇ · (·)

)
+

(
1

6
+ β

)
hbD(·) +

hb∇hb
6

(
∇ · (·)

)
. (1.96)

System (1.93) reduces to the P model when β = 0 and the bathymetry
is constant, however it has substantially improved linear characteristics with
respect to (1.71). In the following we will refer to this model as to the Madsen-
Sørensen-Peregrine (MSP) system.

Linear Dispersion Properties: Models (1.85) and (1.95) share the same
linearized system which reads:

ηt + h0ūx = 0 ,

ūt + gηx −
(

1

3
+ β

)
ūxxt − gβh2

0ηxxx = 0 .
(1.97)

The Fourier analysis, performed on system (1.97), gives the following rela-
tion for the phase velocity C of the model:

C2
MS = gh0

1 + βϕ2
0

1 +

(
1

3
+ β

)
ϕ2

0

, (1.98)

where ϕ0 has been de�ned in the previous sections.
Note that (1.98) improves the previous relation of the P model (1.98). This can
still be recovered, since for the particular choice of β = 0 the two expressions
collapse into one another. The constant β can assume any real value. This
gives the opportunity to arbitrarily improve the linear dispersion properties
of the MS and MSP models. In particular, for this couple of models, one can
match the Padé approximation of the dispersion relations of the linear wave
theory, using β = 1/15 (following Madsen et Sørensen [1992]). This particular
value of β has been used to produce �gure 1.8, where it can be observed that
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the error in the linear phase representation, committed by using the MS or
MSP models instead of the Euler one, is < 2% in almost all the range of kh0

considered, pushing in the so called �deep water� region (kh0 > π) the limit of
applicability of these models.
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Figure 1.8: Percentage error in phase velocity description with respect to the
Airy theory (eq. (1.24)) for the MS and MSP models. The plot has been
performed using β = 1/15 in equation (1.98).

Linear Shoaling Properties: Once more, we complete the linear shoal-
ing coe�cient of the models under consideration by applying the procedure
described in Madsen et Sørensen [1992]. The models are, thus, linearized as-
suming a slow varying bathymetry h(x) = hb(x) for which all higher order
derivatives of hb can be considered small and neglected. The two systems
reduce to:

ηt + (hū)x = 0 ,

(hū)t + ghηx −
(

1

3
+ β

)
h2(hū)xxt −

hhx
3

(hū)xt +

− gβh
(
h2ηxxx + 2hhxηxx

)
= 0 .

(1.99)

The coe�cients α1, α2, α3 and γ, that can be obtained from the analysis
of (1.99) and are:
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α1 = 2

(
1 + 2βϕ2 + β

(
1

3
+ β

)
ϕ4

)
,

α2 = 1 + 6βϕ2 + 5β

(
1

3
+ β

)
ϕ4 ,

α3 = 1 +

(
4β − 2

3

)
ϕ2 + β

(
2

3
+ 3β

)
ϕ4 ,

γ =
1

2

[
1 + (2β − 1

3
)ϕ2 + β(β + 1

3
)ϕ4

1 + 2βϕ2 + β(1
3

+ β)ϕ4

]
.

(1.100)

These can be used in (1.65) to obtain the expression of the shoaling co-
e�cient sMS(h, k). Figures 1.9 left and right compare the shoaling gradient
coe�cient of all the models discussed so far to the reference sAiry. The re-
sults puts in evidence the great improvement in the linear shoaling description
obtaining with the enhanced BT models introduced.
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Figure 1.9: Linear shoaling: the linear shoaling coe�cients (1.66), (1.83) and
sMS are plotted against sAiry (given by eq. (1.33)). On the left is sketched
s(h(x), k0), thus computing the values of s using the initial wavenumber of
the signal k0. On the right, instead, the variation of k(x) along the domain is
considered in the computation of the shoaling coe�cient, thus: s(h(x), k(x)).

Summary: The models discussed in this section are among the most pop-
ular enhanced BT models of the literature. They share the linear shoaling
coe�cient and an improved linear dispersion relation, which matches the Padé
approximation of (1.24), when β = 1/15. However they di�er in the com-
position of their dispersive terms, written in terms of (η,q̄) in (1.85) and in
terms of (η,ū) in (1.93). Due to these characteristics, the MS and MSP sys-
tems give a more accurate representation of the phase velocity and shoaling in
intermediate water, with k0h up to 3, with respect to the models, discussed in
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the previous section. These improved characteristics have been shown for the
case of the MS and MSP models but they can be generalized, with di�erent
levels of accuracy every time, for all the enhanced BT models proposed in the
literature, e.g. the ones of Nwogu Nwogu [1994], Beji and Nadaoka Beji et
Nadaoka [1996], etc.
However, in practical applications, weakly nonlinear BT models are used, quite
often, outside their range of applicability, approaching the nonlinear regime.
As we will see shortly, in these conditions, their behaviour is practically in-
dependent on their linear dispersion relations and shoaling parameters. In
particular, the analysis of the higher harmonics will show that the nonlinear
form of the system has a dramatic e�ect on the amplitudes of the harmon-
ics, which basically depends on whether the model is in amplitude-velocity of
amplitude-�ux form (Filippini et al. [2015]), as it will be discussed in the next
section.

1.7.3 Nonlinear Dispersion: second order harmonics

In the previous sections we have already used the Fourier analysis on a hori-
zontal bottom to investigate the linear dispersion properties of the models. In
this section, our attention focuses on higher-order solutions (in particular the
second-order one) that emerge from introducing in the dimensionless form of
the models a solution of the form:

η′ = a1 cos(ξ)+εa2 cos(2ξ) , u′ = u1 cos(ξ)+εu2 cos(2ξ) , (1.101)

with ξ = ω′t′ − k′x′ and being ω′ the dimensionless angular frequency and k′

the corresponding dimensionless wave number:

ω′ =
λ√
gh0

ω , k′ = λk .

The procedure follow closely the work of Madsen et Scha�er [1998]. Here
we show its application just to the Peregrine model, the analysis of the other
models is similar with small variations discussed in a �nal remark.

The linear dispersion properties of the models emerge looking at the �rst-
order solution: substituting (1.101) in system (1.71) and collecting all the
terms of O(1). For the Peregrine equations, one obtains (dropping the primes
for sake of clarity):

−ωa1 + kh0u1 = 0 ,

−ωu1 + ka1 + µ2ω
k2h2

0

3
u1 = 0 ,

which can be easily solved, giving:
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u1 =
ω

kh0

a1 ,

ω2

k2h0

=
1

1 +
µ2ϕ2

0

3

,
(1.102)

where one can identify the expression for the dimensionless phase velocity of
the P model obtained earlier.
However, more information on the theoretical behaviour of the models can be
extracted looking at the higher harmonics. Collecting all the terms of order
O(ε) one obtains:

−2ωa2 + 2kh0u2 + ka1u1 = 0 ,

−2ωu2 + 2ka2 +
k

2
u2

1 −
8

3
µ2k2ωu2 = 0 .

Using the �rst equation of system (1.102), we can write:(
m11 m12

m21 m22

)(
a2

u2

)
=
a2

1

h0

(
F1

F2

)
,

with:

m11 = 2ω , m12 = −2kh0 , m21 = −2k , m22 = 2ω(1 + 4/3φ) ,

F1 = ω , F2 =
ω2

2h0k
.

Solving the linear system, using the dispersion relation to simplify ω, and
passing to dimensional variables, we end up with:

a2 =
3

4

a2
1

h0

1

φ2

(
1 +

8

9
φ2

)
. (1.103)

This value can be compared to the one found with the Stokes theory (Mad-
sen et Scha�er [1998]):

aAiry2 =
1

4

(
a2

1

h0

)
φ coth(φ)(3 coth2(φ)− 1) . (1.104)

Remark 1.1. In adapting this procedure to the di�erent BT models discussed,
particular attention must be paid for the A and MS systems. For these mod-
els the relevant ansatz is: q′ = q1 cos(ξ) + εq2 cos(2ξ). Subsequently, always
dropping the primes:

ε
q2

h0 + εη
= ε

q2

h0

+ O(ε2) ,

which can be used to show:
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ε

(
q2

h0 + εη

)
x

= ε2k
q2

1

h0

sin(ξ) cos(ξ) + O(ε2). (1.105)

The analysis of the �rst and second harmonics can then be performed as-
sembling the proper order linear systems as shown for the Peregrine equations.

The results obtained for the di�erent models are compared on �gure 1.10
in terms of the ratio a2/a

Stokes
2 . The �rst obvious remark is that the second

harmonic, taking into account the nonlinear behavior of the PDEs, reveals four
di�erent behaviours: one for each BT model considered. This is in contrast
with the results given by the �rst order solutions discussed up to now, which
where coupling the models on the base of their linear properties.
The most striking result, however, is that only two di�erent trends are ob-
served, which, as anticipated, depend uniquely on whether the model is in
amplitude-velocity or amplitude-�ux form. In particular, all the models in
amplitude-�ux form underestimate the wave amplitude: the error is mono-
tonically increasing with an increase of the reduced wavenumber kh0. On the
contrary, all the models in amplitude-velocity form give a non-monotone trend,
with an initial overestimation of the amplitude, and a peak which is close to
kh0 = 1 for the enhanced BT models (Filippini et al. [2015]). Moreover, the
error obtained with this latter class of models is smaller, being the ratio closer
to one.
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Figure 1.10: Ratio of the second harmonic a2/a
Stokes
2 for the models considered.

Continuous line : amplitude-velocity models. Dashed lines : amplitude-�ux
models.
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1.7.4 Nonlinear Shoaling

In this paragraph we use of the test proposed in Grilli et al. [1994] to study
the wave shoaling characteristics of the discussed models in conditions close to
wave breaking. The test consists of a solitary wave of amplitude a/h0 = 0.2 m
propagating on a water depth h0 = 0.44 m, and shoaling onto a constant slope
of 1 : 35. Note that in this test the local values of the nonlinearity parameter
are roughly ε = a0/h ∈ [0.2; 2.2], which is clearly in the nonlinear range ε ≥ 1.
A representation of this test is given below in �gure 1.11.

0-20 35

1:35 slope

x / h0

0

1h /
 h a / h  = 0

0.2

0 1 9

Figure 1.11: Shoaling of a solitary wave; computational con�guration and
gauges position.

The simulations are performed with a stabilized �nite element approach
which will be presented in chapter 2. However, note that all the results are
grid converged and the curves reported are a genuine representation of the
behaviour of the models. Results are discussed for the four weakly nonlinear
BT models presented and are compared to the data of the laboratory exper-
iments of Grilli et al. [1994]. The data available consist in the values of the
free-surface elevations measured in 10 gauges positioned at stations from 0 to 9
(�gure 1.11), with gauge 0 positioned just before the toe of the slope and gauge
9 located close to the wave breaking point. We refer to Grilli et al. [1994] for
the precise description of the setup. In our test, gauge 0 is used to calibrate the
phase of the solutions obtained, the semi-analytical solitary waves traveling at
a celerity depending on the form of the model. The resulting shoaling wave
pro�les are compared to the experiments in �gures 1.12 and 1.13, while the
spatial evolution of the peak height is compared to the experiments in �gure
1.14.

In �gure 1.12 and 1.13, we can observe that all the models provide results
in phase with the experimental data, meaning that the transformation of the
phase speed during shoaling is well represented by all of them. Moreover, it
appears that, as soon as nonlinear e�ects start being relevant, the main factor
in�uencing the behavior of the model is its amplitude-velocity or amplitude-
�ux form, enhanced models giving the same results as Peregrine or Abbott
equations. All the models in amplitude-velocity form provide waves with con-
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Figure 1.12: Nonlinear shoaling. Comparison between the computed wave
heights at gauges 1, 3, 5, 7 and 9 and laboratory data from Grilli et al. [1994];
models in amplitude-�ux form.

siderably higher peaks and fronts with larger slope compared to the data. On
the contrary, all the models in amplitude-�ux form give shorter waves with
smaller slopes. This independently on the quality of the linearized system.
This result con�rms the analytical �ndings about the study of the propagation
of higher harmonics, realized in the previous paragraph, and is extremely im-
portant if one is to use these models in conjunction with a breaking detection
plus dissipation mechanism. In particular, whether based on the slope of the
front, on wave curvature, or on wave height, two distinct parametrizations of
the detection criterion are necessary for these two family of models. In fact,
looking at gauge 9, which is roughly where wave breaking should be detectable
according to the experiments, we can see that: amplitude-velocity models
have front slopes and wave heights larger than those of the data; amplitude-
�ux models give lower amplitudes and, more importantly, much smaller front
slopes. For criteria based on the shape of the pro�les, such as those discussed
e.g. in Tissier et al. [2012]; Kazolea et al. [2014], this might mean that, for
a given parametrization of the constants involved in the breaking criterion,
amplitude-velocity models might give an early breaking, while amplitude-�ux
models will most likely give a late breaking, or not break at all. We remark,
once more, that this result is independent on the quality of the model in terms
of linear phase accuracy, the models of Peregrine and Abbott giving results
considerably close to their enhanced versions. Moreover, the outcome is com-
pletely general and can be easily extended to the enhanced BT models of
Beji-Nadaoka and Nwogu and their respective amplitude-�ux formulations, as
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Figure 1.13: Nonlinear shoaling. Comparison between the computed wave
heights at gauges 1, 3, 5, 7 and 9 and laboratory data from Grilli et al. [1994];
models in amplitude-velocity form.

done in Filippini et al. [2015].
To overcome this duality, fully nonlinear models need to be considered. This
is the object of the next sections.

1.8 Fully nonlinear Boussinesq-type models :
the Serre-Green-Naghdi model

Green et Naghdi [1976] derived a fully non-linear weakly dispersive set of equa-
tions for an uneven bottom, which represents a two dimensional extension of
the Serre equations Sebra-Santos et al. [1987]. They are known as Serre or
Green-Naghdi (GN), or fully nonlinear Boussinesq equations. The range of
validity of this model may vary as much as far the nonlinearity parameter ε is
concerned but it requires the shallowness parameter µ to be small (less than
one). The GN model has been fully justi�ed mathematically by Lannes [2013],
in the sense that the error between the solutions of the GN system and the
Euler equations is small and of size O(µ2) and that uGN → uEuler if µ → 0.
We refer to Lannes [2013]; Lannes et Bonneton [2009] for more details.

In this section, we will brie�y review the main steps for the derivation
of the GN model. As already mentioned, these equations are based on the
assumptions that:
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Figure 1.14: Nonlinear shoaling. Comparison between the computed wave
peak evolutions in space and laboratory data from Grilli et al. [1994] for the
models discussed.

ε ∼ O(1) , µ2 � 1 .

Thus, the GN model can be obtained by pushing on the asymptotic de-
velopment of the Euler's system up to the order O(µ4), retaining into the
equations also the terms of order O(εµ2). This will require to �nd the asymp-
totic expressions of u(1 + εη), w(1 + εη), ut(1 + εη) and wt(1 + εη) in terms
of ū as to be used into (1.42). We start by evaluating (1.67) and (1.53) at the
free surface z = 1 + εη. This gives:

u(1 + εη) = ū− µ2

((
h2

3
− hhb

2

)
ūxx +

h

2

(
hbū
)
xx

)
+ O(µ4) , (1.106)

and:

w(1 + εη) = −
((
h− hb

)
ūx + (hbū)x

)
+ O(µ2) . (1.107)

Then, we derive (1.67) and (1.53) with respect to time and we evaluate the
resulting expression at the free surface:

ut(1 + εη) = ūt − µ2

((
h2

3
− hhb

2

)
ūxxt +

h

2

(
hbū
)
xxt

)
+

− µ2

((
2h

3
− hb

2

)
htūxx +

ht
2

(
hbū
)
xx

)
+ O(µ4) ,

(1.108)
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wt(1 + εη) = −
((
h− hb

)
ūxt + (hbū)xt

)
+ O(µ2) . (1.109)

We can now use in (1.42) all the relations just found: (1.106), (1.108),
(1.107) and (1.109). Neglecting all the terms of order O(µ4), using also (1.54)
to replace ht by −(hū)x and rearranging the �nal expression, we end with:

ūt + εūūx + ηx −
µ2

h

[(
h3

3
− h2hb

2

)
R(ū) +

h2

2
R(hbū)

]
x

+

+ µ2(hb)x

(
(h− hb)R(ū) +R(hbū)

)
= O(µ4) .

(1.110)

with R(·) de�ned as follows:

R(·) = (·)xt + εū(·)xx − εūx(·)x , (1.111)

We thus obtain the system of equations of Green-Naghdi by coupling the
continuity equation (1.54) with the equation (1.110) just found. In the form
used by Bonneton et al. [2011b], the GN system in one-dimension �nally reads:

ηt + (hū)x = 0 ,

(1 + T ) (ūt + ūūx) + gηx +Q1(ū) = 0 ,
(1.112)

with:

T (·) = − 1

3h

(
h3(·)x

)
x
− h

2
(·)xbx +

1

2h

(
h2bx(·)

)
x

+ bx(·)bx , (1.113)

Q1(·) =
2

3h

(
h3
(
(·)x
)2
)
x

+ h
(
(·)x
)2
bx +

1

2h

(
h2(·)2bxx

)
x

+ (·)2bxxbx . (1.114)

According to Lannes et Marche [2015] the above formulation does not re-
quire the computation of third order derivatives, while this is necessary in the
standard formulation of the GN system. Moreover, the presence of the oper-
ator (1 + T ) makes the model very stable with respect to high frequency
perturbations, which is of highest interest for numerical computations.
In terms of the conservative variables (h, q̄) the system can be rewritten as:

ht + q̄x = 0 ,

(1 + T )

(
q̄t +

(
q̄2

h

)
x

)
+ ghηx + hQ1(ū) = 0 ,

(1.115)

where:

T (·) = hT
(

(·)
h

)
. (1.116)
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This system of equations di�ers from the P one only for the nonlinear
terms of order O(εµ2) that have been retained in the asymptotic development
of the velocity. For this reason, the GN model share the same linear disper-
sion properties of the P model. In, Chazel et al. [2011], the authors propose
an equivalent model with enhanced linear frequency dispersion and shoaling
description with respect to (1.115). This has been recovered by adding some
terms of O(µ2) to the momentum equation using a tuning parameter α:

ht + q̄x = 0 ,

(1 + αT )

(
q̄t +

(
q̄2

h

)
x

+ g
α− 1

α
hηx

)
+
g

α
hηx + hQ1(ū) = 0 .

(1.117)

In this work we will refer to this new system of equation as the enhanced
GN system (eGN); note that it is possible to recover the original GN model by
simply setting α = 1, while the value of α which allows to optimize the linear
dispersion properties of the model will be discussed and indicated in the next
paragraph.
The two-dimensional forms of systems (1.117) can be written in the following
form:

ht +∇ · (hū) = 0 ,

(I + αT )

(
q̄t +∇ ·

(
q̄⊗ q̄

h

)
+ g

α− 1

α
h∇η

)
+
g

α
h∇η + hQ1(ū) = 0 ,

(1.118)
with the operators T (·) and Q1(·) now de�ned by:

T (·) =− 1

3
∇
(
h3∇ ·

(
(·)
h

))
− h2

2

(
∇ ·
(

(·)
h

))
∇b +

+
1

2
∇
(
h2∇b ·

(
(·)
h

))
+ h

(
∇b ·

(
(·)
h

))
∇b ,

(1.119)

Q1(·) =
2

3h
∇
(
h3

(
∇(·)1 · ∇⊥(·)2 +

(
∇ · (·)

)2
))

+

+ h2

(
∇(·)1 · ∇⊥(·)2 +

(
∇ · (·)

)2
)
∇b +

+
1

2h
∇
(
h2

(
(·) ·

(
(·) · ∇

)
∇b
))

+

+

(
(·) ·

(
(·) · ∇

)
∇b
)
∇b ,

(1.120)
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where (·)1 and (·)2 indicates respectively the �rst ans second component of
the vector (·), and ∇⊥ stays for the normal gradient operator. Note that the
two-dimensional form of system (1.115) will read exactly as (1.118) when the
value α = 1 is set.

The operator T (·) plays a key role, as its inversion is necessary to be able to
obtain evolution equations for the physical variables. For this reason, following
Alvarez-Samaniego et Lannes [2008] it is important to stress that T (·) can be
written in compact form involving two operators S1(·) and S2(·) and their
adjoint S∗1(·) and S∗2(·), namely:

T (·) = S∗1

(
hS1

(
(·)
h

))
+ S∗2

(
hS1

(
(·)
h

))
, (1.121)

where, in multiple space dimensions:

S1(·) =
h√
3
∇ · (·)−

√
3

2
∇b · (·) , S2(·) =

1

2
∇b · (·) ,

reducing in one-dimension to:

S1(·) =
h√
3

(·)x −
√

3

2
bx(·) , S2(·) =

1

2
bx(·) . (1.122)

Note that this formulation is essential to show the coercivity of the operator
(I + αT ), via the corresponding variational form of T (·):

aT(ν, φ) =

∫
Ω

S1(ν)hS1

(
φ

h

)
+

∫
Ω

S2(ν)hS2

(
φ

h

)
. (1.123)

The interested reader can refer to Alvarez-Samaniego et Lannes [2008] for
details concerning the coercivity analysis.

Based on this property, a discretization procedure for system (1.117) is
proposed in chapter 2, while the spatial discretization in two dimensions is
treated in chapter 4. In the remainder of this chapter, we discuss, instead, the
dispersion and shoaling properties of these models.

Linear Dispersion Properties: The expression of the phase velocity for
the eGN model can be recovered similarly to what already done for the previous
models. In this case the linearized eGN system reads:

ηt + h0ūx = 0 ,

ūt + gηx −
α

3
h2

0ūxxt − g
(α− 1)

3
h2

0ηxxx = 0 ,
(1.124)
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with h0 the constant still water level. This linearized system is similar to
(1.97), except for the form of the tuning coe�cients multiplying the dispersive
terms. Consequently, also the phase velocity expression has a structure similar
to that of CMS:

C2
eGN = gh0

1 +

(
α− 1

3

)
ϕ2

0

1 +
α

3
ϕ2

0

. (1.125)

Chazel et al. [2011] indicate α = 1.159 to be the value optimizing the the
above relation with respect to the Airy theory. A proof of this is given in �gure
1.15, where it is shown the percentage error for the phase velocity, performed
by the GN and eGN models with respect to the Airy's theory. In particular, it
can be noted that the absolute value of the error never exceeds 1% , in the case
of the eGN model, for the whole range of reduced frequencies kh0 considered,
pushing in deeper waters the limit of application of this model. Moreover,
the comparison of the linear dispersion relations (1.97) and (1.124) reveals the
relation α = 3β+ 1 that provide the same linear dispersion description for the
MS and eGN models.
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Figure 1.15: Percentage error in phase velocity description with respect to the
Airy's theory (eq. (1.24)) for the GN and eGN models. The plot has been
performed using the optimized value of α = 1.159 given by Lannes et Marche
[2015].

Linear Shoaling Properties: To investigate the linear shoaling behaviour,
the following system has to be studied:
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ηt + (hū)x = 0 ,

(hū)t + ghηx −
α

3
h2(hū)xxt −

α

3
hhx(hū)xt +

− g(α− 1)h

(
h2

3
ηxxx + hhxηxx

)
= 0 ,

(1.126)

where, as before, the linearization has been performed considering a slow
varying bathymetry h(x) = hb(x) and high order derivatives of this quantity
have thus been neglected. Once more, an analogy can be done with system
(1.99), observing that in this case any relation between the two parameters β
and α would give the same linear shoaling behaviour to the two systems.
The analysis described in Madsen et Sørensen [1992], performed on system
(1.126), reveals the following values of the coe�cients α1, α2, α3 and γ:

α1 = 2

(
1− α

3

P

Q
ϕ2 +

4

3
(α− 1)ϕ4

)
,

α2 = 1− α

3

P

Q
ϕ2 + 2(α− 1)ϕ4 ,

α3 = 1− αP
Q
ϕ2 + 2(α− 1)ϕ4 ,

γ = −1− Ω

Ω
,

(1.127)

having set P = 1 + α−1
3
, Q = 1 + α

3
and Ω = 2

(
1 + α−1

3P
ϕ2 − α

3Q
ϕ4
)
.

The above relations are used into (1.65) giving the shoaling coe�cient expres-
sion seGN(h, k), whose behaviour is plotted in �gure 1.16 as function of the
quantity k0h. It can be observed that the eGN trend is, once again, very close
to the MS one, diverging from it only for k0h > 1.6, but still remaining a great
improvement with respect to the pattern of the GN model which, as well as
the P one, rapidly deviates from the Airy's reference curve.
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Figure 1.16: Linear shoaling: comparison between the linear shoaling coe�-
cients of the discussed models with respect to the results given from the Airy's
theory. On the left is sketched s(h(x), k0), thus computing the values of s
using the initial wavenumber of the signal k0. On the right, instead, the varia-
tion of k(x) along the domain is considered in the computation of the shoaling
coe�cient, thus: s(h(x), k(x)).

Nonlinear Shoaling Properties: After having investigated the linear prop-
erties of the fully nonlinear GN and eGN models, �nding that these are compa-
rable to those of the weakly nonlinear models presented in the previous section,
we now make use of the shoaling test of Grilli et al. [1994], already presented,
to investigate their behaviour in the nonlinear regime.
As we have done before, we compare the simulations performed using the two
models with respect to some gauge signals at di�erent locations along the slope
(�gure 1.17), in particular gauge 9 is located close to the breaking point of the
wave, and to the wave height envelope in space (�gure 1.18).

Once again, �gure 1.17 shows that the results performed with the two mod-
els are well in phase with respect to the laboratory data. But this time, also
the wave amplitude is very well described by the simulation. This highlights
the fact that, as soon as nonlinear e�ects start being relevant, the weakly non-
linear models gives an inadequate representation of the phenomenon, which is
instead well reproduced by the fully nonlinear GN equations and even better
by the eGN ones.

Further Developments: The analysis of the linear and nonlinear proper-
ties, just accomplished, show that systems (1.115) and (1.117) are, generally,
more accurate than the weakly nonlinear BT models in simulating the water
wave propagation problem in the near-shore region. Nevertheless, they are,
also, more complicated to solve. In particular, the inversion of the di�erential
operator

(
1 + αT (·)

)−1
at any time step is very computational demanding,

especially in two-dimensional problems. Very recently a strategy to tackle this
issue has been proposed in Lannes et Marche [2015]. Neglecting some terms
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Figure 1.17: Nonlinear shoaling. Comparison between the computed wave
heights at gauges 1, 3, 5, 7 and 9 and laboratory data from Grilli et al. [1994]
for the GN and eGN models.

of order O(µ4), while keeping the same linear properties of the model, they
show that it is possible to derive a system of equations in which the operator
to be inverted is diagonal with time independent coe�cients. We invite the
interested reader to consult Lannes et Marche [2015] for more details about the
derivation procedure and the mathematical justi�cation of this model. Here
we limit ourself in showing its �nal form, that reads:



ht + q̄x = 0 ,

(1 + αTd)

(
q̄t +

(
q̄2

h

)
+ g

α− 1

α
hηx

)
+
g

α
hηx+

+ h
(
Q1(ū) + gQ2(η)

)
+ gQ3(η) = 0 .

(1.128)

The several operators appearing in the system are de�ned as follows:
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Figure 1.18: Nonlinear shoaling. Comparison between the computed wave
peak evolutions in space and laboratory data from Grilli et al. [1994] for the
models discussed.

Td(·) = hbTd
(

(·)
hb

)
= −1

3

(
h3
b

(
(·)
hb

)
x

)
x

, (1.129)

Q2(·) = − 1

2h

(
h2bx(·)x

)
x

+

(
h

2
(·)x − bx(·)x

)
bx , (1.130)

Q3(·) = −S
((

1 + αTb
)−1(

h(·)x
))

, (1.131)

S(·) = −1

6
(h2 − h2

b)x(·)x −
h2 − h2

b

3
(·)xx +

1

6
(h2 − h2

b)xx(·) . (1.132)

All along the text we will refer to system (1.128) as the GNd model in the
case with α = 1, as the eGNd model when, instead, the optimized value of α
is used.
If it is true that the inversion of the operator (1+αTd) allows to achieve a great
gain in the computational time, since this operation can be done just ones at
the beginning of the simulation and the result stored, it is also true that the
GNd and eGNd models represent, in the same asymptotic of the fully nonlinear
BT models, two di�erent system of equations respect to respectively the GN
and eGN models. Therefore, even if the linear properties of these systems
remain the same, there is no point to expect them to behave the same in the
nonlinear regime. Indeed, by repeating the nonlinear shoaling test with these
models, we found that the envelope in space of the maximum wave elevation
is not as well represented as the respective non diagonal models. Moreover,
the gauge signals show a large phase lag in time. These results deserve more
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attention and further investigations.
In this work we focus on the eGN model (1.117)-(1.118).
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Figure 1.19: Nonlinear shoaling. Comparison between the computed wave
heights at gauges 1, 3, 5, 7 and 9 and laboratory data from Grilli et al. [1994],
using the GNd and eGNd models.

1.9 Modelling wave breaking

Wave breaking is an important phenomenon in near-shore environments. It
dissipates wave energy through the generation of turbulence, including sub-
stantial air entrainment. As waves shoal, wave fronts become steeper and
steeper, until wave crest overturns. Depth averaged models, such as those
considered in this work, are unable to describe this phenomenon, limiting the
possibility of their application in real coastal environments. A lot of e�orts
have been made in modern days to overcome this problem and incorporate in
the existing models the description of this additional physical e�ect. To this
end, a closure model is necessary to simulate the breaking process numerically.
This is composed of two main elements: an energy dissipation mechanism, and
a trigger mechanism related to the initiation and possibly the termination of
the breaking process.
Concerning the former aspect, the �rst e�orts have been towards the develop-
ment of roller models (cf. Scha�er et al. [1993]), vorticity models (cf. Veera-
mony et Svendsen [2000]) or eddy viscosity models (cf. Zelt [1991]; Kennedy
et al. [2000]), these latters still widely used. In eddy viscosity models, the dis-
sipation due to turbulence generated by wave breaking is treated by a di�usion
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Figure 1.20: Nonlinear shoaling. Comparison between the computed wave
peak evolutions in space and laboratory data from Grilli et al. [1994] for the
several variants of the Green-Naghdi model discussed.

term in the momentum equation . The amount of dissipation is then calibrated
through the value of the eddy viscosity coe�cient, tuned with respect to some
experimental data.
More recently, Bonetton [2004] and Bonetton [2007] have shown the ability
of the NLSW equations to accuratly reproduce the celerity of irregular waves
propagating over gently sloping beaches and to predict wave distortion and
energy dissipation of periodic broken waves in the inner surf zone, validating
their results with respect to the experiments conducted by Cox [1995] and Ting
et Kirby [1996]. Pictures of �gure 1.21 have been taken from Bonetton [2007]
and show, for a case of periodic broken wave propagation over a gently slop-
ing beach, computed and measured time series of surface elevation at di�erent
locations inside the inner surf zone (on the right), and the spatial evolution of
the wave elevation towards the beach (on the left). These results prove that
the NLSW model is able to reproduces the nonlinear wave distortion towards
the sawtooth shape assumed by the wave pro�les in the surf region, and give
a good prediction of the wave height decay and dissipation.

Thus, recent progress in the representation of wave breaking has been made
using hybrid approaches in which the dispersive e�ects are turned o� when
some criteria are satis�ed, reducing the model to the NLSW. In such models,
breaking waves are threated as discontinuos solutions and the wave energy dis-
sipation, which occurs in breaking, is recovered in moving bores and hydraulic
jumps. Such an approach has gained attention by several researchers in the
past few years (cf. Borthwick et al. [2006]; Tonelli et Petti [2009, 2010]; Ka-
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Figure 1.21: Source: Bonetton [2007]. On the left: spatial evolution of wave
elevation; (short-dashed lines) computed ηmin and ηmax; (long-dashed line)
computed η̄; (solid line) instantaneous surface elevation at a given time t̄; (�)
measured ηmin and ηmax; (∗) measured η̄. On the right: time series of surface
elevation in the inner surf zone; comparison between NLSW numerical model
(dashed lines) and experiments by Cox [1995].

zolea et Delis [2013]; Shi et al. [2012]; Roeber et Cheung [2012]; Orszaghova
et al. [2012]; Tissier et al. [2012]; Tonelli et Petti [2012]), and goes hand in
hand with the adoption of the �nite-volume method as the dominant com-
putational technique. These methods have, in fact, been evolved to provide
robust shock-capturing capabilities for the NLSW equations (cf. Toro [2001]).
In this work, we also applied a hybrid approach for energy dissipation in break-
ing regions, with special reference to the works of Tissier et al. [2012]; Kazolea
et Delis [2013]; Bacigaluppi et al. [2014a]. The additional advantage of the
solution procedure proposed, by decomposing the original eGN system in an
elliptic and an hyperbolic part, is to allow a direct embedding of wave breaking
either by simply neglecting the non-hydrostatic contribution φ in the hyper-
bolic phase, or even with a tighter coupling of the two phases using the breaking
indicator to smoothly turn o� φ in the elliptic phase. More details concern-
ing the detection and triggering of the breaking model and on the coupling
between Green-Naghdi and NLSW equations will be discussed in section 2.9.
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2. Numerical Discretization in One-Dimension

In this chapter we propose two hybrid strategies for the solution of the one-
dimensional enhanced Green-Naghdi system of equations (1.117). We consider
a two steps solution procedure composed by: a �rst step where the non hy-
drostatic source term is recovered by inverting the elliptic coercive operator
associated to the dispersive e�ects; a second step which involves the solution
of the hyperbolic shallow water system with the source term, computed in the
previous phase, which accounts for the non-hydrostatic e�ects. Our objective
is to choose numerical methods that can be also generalized on arbitrary un-
structured meshes in two dimensions. In particular, we focus on the use of a
classical C0 Galerkin �nite element method (described in section 2.2) for the
elliptic phase. For the hyperbolic step, we will consider both a third order
Finite Volume (section 2.3) and a third order stabilized Finite Element solver
(section 2.4). The choice of a continuous �nite element approach for the ellip-
tic phase aims at simplifying as much as possible this step, and minimize its
cost. As it will be illustrated in section 2.7.2, a second order P 1 approxima-
tion already allows to obtain the dispersion properties of a fourth order �nite
di�erence scheme (cf. Ricchiuto et Filippini [2014]). Moreover, the discrete
dispersion properties of the fully coupled schemes obtained are also studied in
section 2.7.2, showing accuracy close or better to that of a fourth order �nite
di�erence method. The hybrid approach of locally reverting to the nonlin-
ear shallow water equations is used to recover energy dissipation in breaking
regions. To this scope, in section 2.9.3, we evaluate two strategies: simply
neglecting the non-hydrostatic contribution in the hyperbolic phase; imposing
a tighter coupling of the two phases, with a wave breaking indicator embedded
in the elliptic phase to smoothly turn o� the dispersive e�ects. The discrete
models obtained are thoroughly tested on benchmarks involving wave disper-
sion, breaking and run-up in chapter 3, showing a very promising potential for
the simulation of complex near shore wave physics in terms of accuracy and
robustness. The main content of this chapter has appear in Filippini et al.
[2016].

2.1 Discretization Strategy: elliptic-hyperbolic
decoupling

To discretize system (1.117), we apply the idea enunciated at the end of section
1.4. To this scope, the system is recast in the following way (from now on we
will leave the notation (̄·) for the depth averaged quantities for simplicity):

ht + qx = 0 ,

(I + αT )

[
qt +

(
q2

h

)
x

+ ghηx

]
− T (ghηx) + hQ1(u) = 0 .

(2.1)
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2.1. Discretization Strategy: elliptic-hyperbolic decoupling

This allows the operator (I + αT ) to be applied to the full shallow water
residual. This form suggests a possible splitting of the elliptic part of the
problem from the hyperbolic one, which is obtained as follow:

(I + αT )φ = W −R , (2.2)

ht + qx = 0 , (2.3)

qt +

(
q2

h

)
x

+ ghηx = φ .

having also de�ned W = T (ghηx) and R = hQ1(u) . Given an initial
solution, the system above can now be solved in two independent steps :

1. An elliptic step solving (2.2) for the non-hydrostatic term φ ;

2. An hyperbolic step for system (2.3), evolving the �ow variables.

Note that this formulation di�ers from the ones previously proposed in
literature (see e.g. Duran et Marche [2014]) as it allows the enhancement of
an existing shallow water code by the addition of a purely algebraic term to
the discrete momentum balance. It has the additional advantage of being a
priori able to embed wave breaking e�ects in the elliptic phase, thus remaining
completely non-intrusive with respect to the hyperbolic code. To evaluate this
simpli�ed and �exible strategy, we will investigate the accuracy and robustness
obtainable when the two steps above are each solved with a di�erent numerical
method. The aim is to allow the choice of the method most appropriate and
e�cient for each step and to provide a simple technique to enhance shallow
water codes including genuinely nonlinear dispersive e�ects.
We have purposely used here the word decoupling and not splitting. Indeed,
the elliptic phase does not involve any time derivative, so this is not a splitting
method, at least not in the sense used in Bonneton et al. [2011b] or in Strang
[1968]. In particular, this approach provides an unsplit spatial discretization
of:

ht + qx = 0 ,

qt +

(
q2

h

)
x

+ ghηx = (I + αT )−1 [T (ghηx)− hQ1(u)] .

This results in systems of ODEs, which can be evolved in time by any of
the known high order time integration methods without any other source of
error that the truncation of the spatial discretizations involved and of the ODE
integrators. Our aim is to evaluate a strategy in which the two steps are each
solved with an appropriate numerical method. Many hybrid methods can be
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2. Numerical Discretization in One-Dimension

obtained by choosing di�erent hyperbolic methods, such as e.g. the disconti-
nous Galerkin method Zhang et al. [2012]; Xing et al. [2010], or the residual
distribution method Ricchiuto [2015]. The interest is to study the potential
of a formulation which can be easily generalised on arbitrary unstructured
meshes. Here we focus on the use of a standard C0 Galerkin �nite element
method for the elliptic phase, using P 1 approximation. High order �nite vol-
ume (FV) and �nite element (FE) methods are, instead, used independently
in the hyperbolic phase and the resulting algorithms will be compared in the
following sections. These schemes have been preferred to the class of Discon-
tinuous Galerkin (DG) schemes, since the higher number of degrees of freedom
in the DGs approaches increases the computational cost of the simulations,
augmenting the size of the matrix to invert. Furthermore, the DGs schemes
are characterized by CFL restrictions of the computational time-step and the
application of boundary conditions breaks the order of the scheme. On the
contrary, Wei et Kirby [1995] have proven, in the �nite di�erence framework,
to be able to obtain a fourth order accurate method by discretizing the disper-
sive terms using only second order formulae and Ricchiuto et Filippini [2014]
developed a generalization of this, based on a P 1 Galerkin method, showing
that it was possible to perform a dispersion description close to that of the
fourth order �nite di�erence scheme, by simply using P 1 basis functions.

2.2 Elliptic phase: Continuous Finite Element
formulation

Spatial domain discretization and notation: Let Ω denote the spatial
domain. We consider a tesselation Ωh composed by a set of non-overlapping
elements, the subscript h denoting the reference mesh size. The generic element
K is de�ned by a set of nodes, e.g. in one space dimension K ≡ [xi, xi+1], with
hK = xi+1 − xi. Unknowns are stored at nodes as time dependent values
{ηi(t)}i≥1 and {qi(t)}i≥1. For a generic node i we will also denote by Ki the
set of elements containing i as a node. As in the standard P 1 �nite element
method, nodal values are interpolated by means of piecewise linear continuous
shape functions ϕi(x), the interpolated values being denoted by ηh, and qh
with:

ηh(t, x) =
∑
i≥1

ηi(t)ϕi(x) =
∑
K

∑
j∈K

ηj(t)ϕj(x) ,

qh(t, x) =
∑
i≥1

qi(t)ϕi(x) =
∑
K

∑
j∈K

qj(t)ϕj(x) ,

with ϕi(x) the standard continuous piecewise linear �nite element basis func-
tions assuming value 1 in node i and zero in all the other nodes (cf. �gure
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2.2. Elliptic phase: Continuous Finite Element formulation

2.1). As discussed in the introduction, in this work we focus on piecewise
linear interpolation in order to show the feasibility of the use of compact low
order discretizations of the elliptic operator for wave propagation. However all
the developments presented, including the general form of the schemes, extend
naturally to higher order polynomial approximations.

 h

 i

η
 i+1

η
 i−1

η

i−1 i+1i i−1 i+1i

ϕ
i

1

η

Figure 2.1: P 1 �nite element interpolation

In the following subsections we present the schemes studied in the work
in the hypothesis that periodic boundary conditions are used. More details
concerning boundary conditions and wave generation are given in sections
2.8.3.
For simplicity we assume in the following that the points are equally spaced,
so that xi+1−xi = ∆x ∀i, but non-uniform meshes can be used with the same
methods discussed here with very little modi�cations. For a given node i, we
will also denote by Ci the cell [xi− 1

2
, xi+ 1

2
], with xi+ 1

2
− xi− 1

2
= ∆x.

Continuous Galerkin approximation: The �rst step for solving system
(2.3) is to compute separately the value of the auxiliary variable φ from (2.2).
In this work we discretize equation (2.2) by means of a standard C0 Galerkin
�nite element approach. This discretization strategy passes by the writing of
the variational form of the equation. The actual discretization is obtained by
evaluating all the integrals by a numerical quadrature over each element of
the discretization, with the assumption of piecewise linear variation of all the
quantities involved hh , ηh , bh , uh , φh . De�ning Φ = [φ1(t), φ2(t), ..., φN(t)]T

and U = [u1(t), u2(t), ..., uN(t)]T , with N the total number of nodes, the �nal
form of the Galerkin approximation of the problem can be written as:

(MG + αT)Φ = W− R , (2.4)

W = T δ , (2.5)

R = Q (h, U) , (2.6)

with δ an approximation of ghηx.

The matrix MG is the Galerkin mass matrix: a symmetric, positive de�nite
and constant matrix whose entries are represented by:
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2. Numerical Discretization in One-Dimension

MG
i,j =

∫
Ωh

ϕi ϕj . (2.7)

The matrix T(hh, bh) is deduced immediately from the variational form
of (1.116), discussed e.g. in Lannes [2013]. All computation done, due to
the assumed periodic boundary conditions, we obtain (partial derivatives now
denoted by ∂(·) for the sake of clarity):

Ti,j(hh, bh) =
1

3

∫
Ωh

∂xϕi h
2
h ∂xϕj −

1

3

∫
Ωh

∂xϕi hh ∂xhh ϕj +

+
1

2

∫
Ωh

ϕi ∂xbh ∂xhh ϕj −
1

2

∫
Ωh

∂xϕi hh ∂xbh ϕj +

− 1

2

∫
Ωh

ϕi hh ∂xbh ∂xϕj +

∫
Ωh

ϕi (∂xbh)
2 ϕj ,

(2.8)

having developed all the derivatives of 1/hh in order to explicitly remove the
singularity with respect to h.
Proceeding similarly we obtain for the operator Q(hh, uh, bh, δbh):

Qi,j(hh, uh, bh, δbh) =− 2

3

∫
Ωh

∂xϕi h
3
h (∂xuh)

2 +

∫
Ωh

ϕi ∂xbh h
2
h (∂xuh)

2 +

+

∫
Ωh

ϕi δbh h
2
h uh ∂xuh +

∫
Ωh

ϕi δbh hh ∂xhh uh +

+
1

2

∫
Ωh

ϕi ∂xδbh h
2
h uh +

∫
Ωh

ϕi ∂xbh δbh hh uh .

(2.9)

The arrays δ and δb contain nodal values of auxiliary variables introduced
to handle the third order derivatives. In particular, we have:

(MGδh)i =

∫
Ωh

ϕi g hh ∂xηh , (2.10)

(MGδbh)i = −
∫
Ωh

∂xϕi ∂xbh . (2.11)

The linear systems (2.10) and (2.11) can be solved very e�ciently, being
MG symmetric, positive de�ned and constant. On the contrary, the properties
of the matrix (MG + αT) cannot be known a priori. However, the continuous
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2.3. Hyperbolic phase: Finite Volume Scheme

�nite element formulation, used here, inherits the coercivity property of the
corresponding continuous variational form (1.123). This bilinear form has
been studied in Lannes [2013] and shown to be coercive, which is enough to
guarantee the invertibility of (MG + αT).
This inversion, however, remains the most computationally demanding process
of our algorithm. In particular, exploiting the tridiagonal structure of the
MG and (MG + αT) matrices, their inversions have been performed using the
DGTSV function of LAPACK package, which uses a method based on Gaussian
elimination by partial pivoting. For the MG matix, we have stored the constant
LU decomposition, reducing the reconstruction of the nodal values δh,i and
δbh,i to a matrix-vector product. This cannot be done for (MG + αT), whose
decomposition has to be re-computed at each time step.
The kind of discretization performed allows many degrees of freedom in the
management of the Galerkin mass matrices MG which appear in it and that
can be lumped (or not) always retaining second order of accuracy, as it will
be shown in section 2.7.1. The optimization of the linear dispersion properties
of the resulting schemes (see section 2.7.2) led us to the choice of not lumping
any of the mass matrices appearing in the discretization. In the case of linear
system (2.11), the choice does not a�ect the linear dispersion properties of the
scheme, due to the fact that Q is nonlinear, and is motivated by the will to
be consistent with (2.10) and the consideration that the cost to solve (2.11)
should be payed only once at the beginning of the computation and kept all
along the simulation, being b time-independent.

2.3 Hyperbolic phase: Finite Volume Scheme

Setting U = [h, q]T , we will use the FV scheme to write the equations for
averages of U over the cells Ci, namely for:

Ui(t) =
1

∆x

∫
Ci

U(x, t) . (2.12)

Using (2.2)-(2.3), and following Bermudez et Vazquez [1994]; Brufau et al.
[2002]; Hubbard et García-Navarro [2000]; Nikolos et Delis [2009], the semi-
discrete form of the equations can now be written as:

d

dt
Ui = − 1

∆x

[
Fi+ 1

2
− Fi− 1

2

]
+

1

∆x
∆Sb i + Φ , (2.13)

where Fi± 1
2
and ∆Sb i are the numerical �uxes at each cell interface and the

numerical topography source respectively. The last term is where the link with
the elliptic phase is made. In particular, it reads:

Φ =
1

∆x

∫
Ci

(
0
φh

)
=

1

8

(
0

φi−1 + 6φi + φi+1

)
, (2.14)
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2. Numerical Discretization in One-Dimension

having integrated exactly over Ci the piecewise linear polynomial φh obtained
from the elliptic phase discussed in the previous section. The numerical �uxes
Fi± 1

2
at the cell interfaces can be evaluated by means of an exact or approxi-

mate Riemann solver. In this work we used the approximate Riemann solver
of Roe [1981] along with an upwind discretization of the topography source
Bermudez et Vazquez [1994]. The numerical �uxes in (2.13) are de�ned as:

Fi+ 1
2

= Fi+ 1
2
(UL

i+ 1
2
,UR

i+ 1
2
) =

=
1

2

(
F(UR

i+ 1
2
) + F(UL

i+ 1
2
)
)
− 1

2
|A|i+ 1

2
∆Ui+ 1

2
,

(2.15)

where ∆(·)i+ 1
2

= (·)R
i+ 1

2

− (·)L
i+ 1

2

. Ai+ 1
2
is the Roe-averaged Jacobian matrix

and is equal to [X|Λ|X−1]i+ 1
2
, where Xi+ 1

2
and X−1

i+ 1
2

are respectively the left

and right eigenvector matrices and Λi+ 1
2
is the diagonal matrix having the

eigenvalues on the main diagonal.

The numerical integration with the upwind scheme presented up to now
leads to approximations that are only �rst order accurate, if a constant distri-
bution is assumed in each computational cell Ci. To achieve higher accuracy
we evaluate the left and right states using a third order MUSCL reconstruction
scheme (cf.Waterson et Deconinck [2007]; Kermani et al. [2003]). The recon-
struction is performed for the variables [h, u] as well as for the topography b.
For the (i+ 1

2
) interface the reconstructed values of a primitive variable w can

be written as:

wL
i+ 1

2
= wi +

ψ(ri)

4

[
(1− κ)∆wi− 1

2
+ (1 + κ)∆wi+ 1

2

]
,

wR
i+ 1

2
= wi+1 −

ψ(ri+1)

4

[
(1− κ)∆wi+ 3

2
+ (1 + κ)∆wi+ 1

2

]
,

(2.16)

where ψ is the limiter function with ri =
∆h

i− 1
2

∆h
i+ 1

2

, and where third order of

accuracy in smooth regions is obtained for κ = 1
3
. In this work, the widely

known MIN-MOD, MC and Van Albada limiter functions are implemented
(cf. LeVeque [2002]) and used only only in the region of the domain where the
NLSW system is solved, i.e. the regions where wave breaking is detected. Any
other function of the literature can be used, but the study of the in�uence on
the solution is beyond the scopes of this work. The initial Roe scheme may
allow non-physical numerical solutions, as expansion shocks (cf. Toro [2009];
LeVeque [2002]). The solution to this problem can be achieved by ensuring the
numerical solution to respect the so called entropy condition. This problematic,
together with the strategy adopted to tackle it, will be discussed in section 2.6.
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2.3. Hyperbolic phase: Finite Volume Scheme

In the numerical solution, the correct discrete balance between the nu-
merical �uxes and the numerical topography source is very important. A
scheme that respects this balance is known in the literature as a well-balanced
scheme, while the property is also known as C-property. As it has been shown
in Bermudez et Vazquez [1994], an upwind discretization approach should also
be used for the bed topography term Sb to avoid non-physical oscillations in
the solution by satisfying the C-property in hydrostatic �ow conditions (�ow
at rest). The choice of a Roe's solver in this work is justi�ed not only by its
wide popularity and applicability, but also by the well established numerical
treatment of the topography source terms in order to satisfy the C-property,
which can be easily incorporated in this solver. To satisfy the exact C-property,
the topography source term must be linearized in the same way and evaluated
in the same state (Roe-averaged state) as the �ux terms and reconstructed as
∂xh. Of course, if an other Riemann solver is employed (e.g. HLL, HLLC)
for the computation of the numerical �uxes, a di�erent technique should be
used, see for example Roeber et al. [2010]; Tonelli et Petti [2009]. In this work,
following Bermudez et Vazquez [1994]; Hubbard et García-Navarro [2000], the
source term in (2.13) contains the following two contributions:

∆Sb, i = S−
b, i+ 1

2

(UL
i+ 1

2
,UR

i+ 1
2
) + S+

b, i− 1
2

(UL
i− 1

2
,UR

i− 1
2
) ,

where:

S+
b i+ 1

2

(UL
i+ 1

2
,UR

i+ 1
2
) =

1

2

[
X(I+ Λ−1|Λ|)X−1

]
i+ 1

2

S̃b i+ 1
2
(UL

i+ 1
2
,UR

i+ 1
2
) ,

S−
b i+ 1

2

(UL
i+ 1

2
,UR

i+ 1
2
) =

1

2

[
X(I−Λ−1|Λ|)X−1

]
i+ 1

2

S̃b i+ 1
2
(UL

i+ 1
2
,UR

i+ 1
2
) ,

(2.17)

and with:

S̃b i+ 1
2
(UL

i+ 1
2
,UR

i+ 1
2
) =

 0

−gh
L + hR

2

(
bR − bL

)

i+ 1

2

.

For the �rst order scheme, using the relation above, the discretization of
the numerical �ux term balances with the one of the topography source term
for hydrostatic conditions. This gives in each mesh cell: u = 0 and bR −
bL = −

(
hR − hL

)
. While this holds for the �rst order scheme, this is not the

case when using higher reconstructions as we do here. In this case, following
Hubbard et García-Navarro [2000]; Nikolos et Delis [2009], we include the
additional correction term S?b for maintaining the correct balance i.e.:

∆Sb i = S−
b i+ 1

2

+ S+
b i− 1

2

+ S?b

(
UL
i+ 1

2
,UR

i− 1
2

)
,
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with:

S?b

(
UL
i+ 1

2
,UR

i− 1
2

)
=

 0

−g
hR
i− 1

2

+ hL
i+ 1

2

2

(
bR
i− 1

2
− bL

i+ 1
2

)
 .

2.4 Hyperbolic phase: Upwind Stabilized Finite
Element Scheme

2.4.1 Continuous Galerkin approximation:

Two FE methods are considered here. The �rst is a classical C0 Galerkin
approximation of the two equations (2.3). For an internal node i, the discrete
continuous Galerkin (cG) equations are readily obtained by evaluating the
integrals of the weak formulation:

∫
Ωh

ϕi ∂thh −
∫
Ωh

∂xϕi qh = 0

∫
Ωh

ϕi ∂tqh −
∫
Ωh

∂xϕi

[
q2
h

hh
+ g

h2
h

2

]
−
∫
Ωh

ϕi S̃b −
∫
Ωh

ϕi φh = 0 ,

(2.18)

with qh,i = (hhuh)i and S̃b = −gh∂xb.
With the notation of the previous section, the integrals can be approximated
as in Ricchiuto et Filippini [2014]:

MG d

dt
U = −1

2
[F(Ui+1)− F(Ui−1)] +

1

2
S̃b i+ 1

2
+

1

2
S̃b i− 1

2
+ Φ

G
, (2.19)

where MG is the Galerkin mass matrix de�ned in (2.7).
By analogy with (2.13), we use the notation Φ for the contribution of the
non-hydrostatic terms, which in this case is given by:

Φ
G

= MGΦ . (2.20)

As shown in section 2.7.1, scheme (2.19) is fourth order accurate in space
on constant ∆x meshes, when the shallow water limit is considered.

2.4.2 Stabilized Upwind discretization:

Scheme (2.19) is a centered approximations of the equations and is not well
suited for the discretization of the shallow water limit for which some form of

73
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upwinding is necessary to stabilize the system, or to provide positivity correc-
tions in correspondence of moving shorelines and discontinuities (cf. Ricchiuto
et al. [2007]; Ricchiuto et Bollermann [2009]). We thus consider the upwind
stabilized method proposed in Ricchiuto et Filippini [2014], Bacigaluppi et al.
[2014a,b] (see also Hughes et al. [2010]). We start by rewriting scheme (2.18)
with the short-notation:

RcG
i (ηh, qh) = 0 , (2.21)

with RcG
i (η, q) the array whose components are the left hand sides of the

�rst two equations in (2.18). In order to construct an upwinding operator, we
consider now the quasi-linear form of the NLSW equations which can be recast
as:

∂t

(
η
q

)
+ A∂x

(
η
q

)
= 0 , A =

(
0 1

c2 − u2 2u

)
,

where c2 = gh0 is the NLSW celerity (1.61). We recall that matrix A admits a
full set of real linearly independent eigenvectors, associated to the two eigen-
values u±c . Following the SUPG stabilization technique (cf. Hughes et Brook
[1982]; Hughes et al. [2010]; Ricchiuto et Bollermann [2009]; Abgrall [2006]),
we de�ne the stabilized variant of the continuous Galerkin (2.18) as:

RcG
i (ηh, qh) +

∑
K∈Ωh

∫
K

A∂xϕi τK Rh = 0 , (2.22)

where the matrix τK is the so-called SUPG stabilization parameter, and having
denoted by Rh the local residual value of the eGN equations:

Rh =

(
∂thh + ∂xqh

∂tqh + ∂x(q
2
h/hh + gh2

h/2)− S̃b − φh

)
, (2.23)

obtained by replacing in the continuous equations the discrete approximation
of the unknowns. We employ here the de�nition of the SUPG stabilization
parameter allowing to recover the upwind discretization of a �rst order hyper-
bolic operator (see e.g. Barth [1998]; Deconinck et al. [2003] and references
therein), namely:

τSU =
1∑

j∈K
|∂xϕKj |

|AK|−1 , (2.24)

which in the 1D case becomes, in practice, τSU = ∆x
2
|A|−1, with the absolute

value |A| computed by means of standard eigenvalue decomposition.
Using the notation of (2.19), the streamline upwind scheme, thus, reads:
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MG d

dt
U =− 1

2
[F(Ui+1)− F(Ui−1)] +

1

2
S̃b i+ 1

2
+

1

2
S̃b i− 1

2
+ Φ

G
+

−
1∑
j=0

xi+j∫
xi+j−1

A∂xϕi τSU R∆x .
(2.25)

Using de�nitions (2.23)-(2.24) and the notation of the previous section, the
following form can be derived:

MSU d

dt
U = −

[
Fi+ 1

2
(Ui,Ui+1)− Fi+ 1

2
(Ui−1,Ui)

]
+ S−

b i+ 1
2

(Ui,Ui+1) +

+ S+
b i− 1

2

(Ui−1,Ui) + Φ
SU

,

(2.26)

where the numerical �uxes and sources have exactly the same expression as in
(2.15) and (2.17) respectively, and where the entries of the Streamline Upwind
mass matrix now couple the h and q ODEs and depend on the sign of the
shallow water �ux Jacobian matrix A. In particular:

[
MSU(·)

]
i

=
∆x

6
(·)i−1 +

2∆x

3
(·)i +

∆x

6
(·)i+1 +

+
∆x

4
sign(Ai− 1

2
)
(

(·)i−1 + (·)i
)

+

− ∆x

4
sign(Ai+ 1

2
)
(

(·)i+1 + (·)i
)
.

(2.27)

By analogy with (2.13), we have used the notation Φ for the contribution
of the non-hydrostatic terms, which in this case is given by

Φ
SU

= MSUΦ .

Because of the coupling of the two equations, caused by the Jacobian ma-
trix, MSU(·) results in a sparse matrix with a block structrure which corre-
sponds to the connectivity of the mesh. As a consequence of this, the inversion
of this matrix is performed using the ITSOLVE routine ILUT of SPARSEKIT
(cf. Saad [1996]), which uses a preconditioned GMRES algorithm.
As it will be shown later on, the stabilized FE method (2.26) is third order
accurate in space when the shallow water limit is considered for constant ∆x,
and it preserves exactly steady state still �at free surface states, we refer to
Ricchiuto et Filippini [2014]; Bacigaluppi et al. [2014a,b] for all additional
details.
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2.4.3 Shock capturing �nite element method:

Let us consider again, in this paragraph, the scalar advection equation (1.35).
Imagine to have applied our numerical discretization of the PDE and to have
now to deal with the linear system:

AUn+1 = BUn .

Consider the case in which the data at time tn are given by a discontinuity
between ur and ul, so that ur ≤ uni ≤ ul ∀i. We are interested in preserving
this condition, in particular in being able to compute ur ≤ un+1

i ≤ ul ∀i as
well. A su�cient condition for this to be true is that the following conditions
are simultaneously veri�ed (cf. Berman et Plemmons [1979]):

• Bij ≥ 0 ,

• Aii > 0 and Aij ≤ 0 ,

• |Aii| >
∑

j 6=i |Aij| at least for one i (irreducibly diagonally dominant) .

The �rst condition is easily satis�ed, as the right hand side of the SUPG
scheme is the same as that of the �rst order Roe scheme, which can be guar-
anteed positive coe�cient (or also TVD as cf. Harten [1983]; Barth et M.
[2004]) under a ∆t restriction. The second and third conditions guarantee
that A−1

ij ≥ 0, allowing to prove the required bounds on Un+1. In the case of
the SUPG scheme, this can be obtained at discontinuities by modifying the
method discussed in the previous paragraph by locally introducing a lumping
of the mass matrix MSU, wherever discontinuities occur (cf. Bacigaluppi et al.
[2014a,b]). Handling moving bores and dry areas will thus be possible, by
introducing the following nonlinear splitting of the mass matrix (�sc� stands
for shock capturing):

[
MSU-sc(·)

]
i

= ∆x(·)i + ψi+ 1
2

∆x

2

[
1

3

(
(·)i+1 − (·)i

)
−

sign(Ai+ 1
2
)

2

(
(·)i+1 + (·)i

)]

+ ψi− 1
2

∆x

2

[
1

3

(
(·)i−1 − (·)i

)
+

sign(Ai− 1
2
)

2

(
(·)i−1 + (·)i

)]
.

(2.28)

The quantity ψi± 1
2
in (2.28) is a limiter function.

For ψ = 0 the lumping of the matrix is activated and the scheme reduces
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2. Numerical Discretization in One-Dimension

to the �rst order version of Roe's scheme, which is basically the �rst order
version of (2.13). This scheme shows a monotonicity preserving behaviour,
also preserving the non-negativity of the depth in �ooding areas. Moreover,
the lumping of the mass matrix on the Galerkin scheme, in case of the chosen
P 1 basis function space, introduces a degree of dissipation, but in general it
does not imply a reduction of the asymptotic overall accuracy, which remains
second order, as it will be shown in section 2.7.1.
For ψ = 1 the third order �nite element method (2.26) is recovered. Any func-
tion can be used to detect smooth areas and dry or shocked regions. Here, we
use the smoothness sensor proposed in Bacigaluppi et al. [2014a,b] and based
on two di�erent approximation of the curvature of the free surface elevation η:

ψi+ 1
2

= min(ψi, ψi+1) , ψi = min

(
1, α

|
∫

Ω
ϕi∂xηh|

|
∫

Ω
∂xϕi∂xηh + Vi|

)
(2.29)

where Vi is obtained as the fourth order �nite di�erence approximation of
∂xxηi, and with α = 1

9
as in the cited references.

The �nal form of the scheme, thus, reads:

MSU-sc d

dt
U = −

[
Fi+1/2(Ui,Ui+1)− Fi+1/2(Ui−1,Ui)

]
+ S−b i+1/2(Ui,Ui+1) +

+ S+
b i−1/2(Ui−1,Ui) + Φ

SU-sc
,

(2.30)

where, again, we have made use of the following notation for the non-hydrostatic
contribution term:

Φ
SU-sc

= MSU-scΦ .

Note that the hybrid technique for the wave breaking treatment, which
is the one used in this work, consists in solving smooth wave pro�les with
the Boussinesq equations, reverting to the NLSW system only when breaking
waves are detected. The use of the limiter is thus only active in the region of
the domain where the ShallowWater equations are solved, namely the breaking
region. Anywhere else, in the Green-Naghdi region, ψ = 1 and the third order
scheme (2.26).

2.5 Wetting/drying and Mass conservation

In order to treat dry cells we use the technique described in Ricchiuto et Boller-
mann [2009] and Ricchiuto [2015]. In particular, we introduce two threshold
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2.5. Wetting/drying and Mass conservation

parameters εwdh and εwdu , acting independently on the water height and the ve-
locity respectively. So, if h in a node is less that εwdh , that node is considered
as dry. This parameter is very small, compared to the mesh size (typical val-
ues range are between 10−9 ÷ 10−6). The second parameter is used to avoid
division by zero, especially when the velocity values are recovered from q, and
is set to:

εwdu =
∆x2

L2
,

with L the length of the spatial domain. If in a node h ≤ εwdu , the velocity
is set to zero in that node. To avoid loosing mass from this procedure, and
guarantee an absolute mass conservation, we follow the treatments proposed
in Delis et al. [2011]; Brufau et al. [2004] and Liang et Borthwick [2009], where
the total mass in nodes with h ≤ εwdu is redistributed uniformly to the rest of
the domain.

In the previous section 2.3 we have already spoken about the C-property
of a model. The goal is to ensure that the �ux and source terms in the upwind
are numerically balanced, such to preserve exactly the steady state lake at rest
solution (corresponding to u = 0 and η = 0 everywhere) also in presence of
bathymetry variations and dry areas. In particular, the presence of dry areas
may generate spurious numerical waves, as illustrated in Castro et al. [2005];
Kazolea et Delis [2013]; Ricchiuto et Bollermann [2009]. In this case, it is of
primary importance to ensure that ∆η is seen to be zero at the dry front.
As the value of η = h − h0 + b in the �rst dry node only depends on the
bathymetry, this is not necessarily the case, and an arti�cial hydrostatic force
may be experienced by the scheme, which can induce oscillations or spurious
mass �ow. To ensure this property, we use a standard technique consisting in
rede�ning the bed elevation at the emerging dry cell (cf. Brufau et al. [2002,
2004] as:

∆b =

{
hL if hL > εwdh and hR ≤ εwdh and bR < (bR − bL) ,

(bL − bR) otherwise ,
(2.31)

when a wet/dry front exists between computational cells with (reconstructed)
face values L and R. For both FV and FE schemes this modi�cation is applied
in the computation of the source term S̃b. A similar treatment holds if R is
wet and L dry.
Just for the FV scheme, further modi�cations have to be done. The higher
order MUSCL reconstruction (2.16) is switched o� on the wet/dry interface
and a �rst order approximation of the L and R states is performed instead.
Moreover, in order to prevent the simulation to display an unphysical �ow in
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2. Numerical Discretization in One-Dimension

motion over adverse slopes, following Castro et al. [2005] and Kazolea et Delis
[2013], we impose at the wet/dry interface the condition below:

if: hL > εwdh and hR ≤ εwdh and hL < (bR − bL) ,

then: uL = uR = 0 .

Note that the actual velocity is not zero on the wet cell, but only on as-
sumed as such at the interface when computing the numerical �ux and the
topography source term contributions.

Finally we use the exponential �lter proposed in Ricchiuto et Bollermann
[2009] and Ricchiuto [2015] to properly detect regions in proximity of dry areas
and to recover there the �rst order scheme. This exponential function is de�ned
by fh = e−( 10

N
y)2
, where:

y =
hMAX − εh

max
(
εh, (hmin − εh)

) ,
hMAX is computed as the maximum value of water depth in the whole grid,
while hmin is the minimum water column on a stencil composed by �ve nodes
in one-dimension.

2.6 Entropy �x

Shock capturing methods, such as the FV and SUPG schemes just discussed in
the previous sections, must verify a discrete analogous of the Rankine-Hugoniot
jump conditions, so that the proper shock speed and strength are obtained. As
deeply documented in the literature (cf. Roe [1981]; Harten et Hyman [1983];
Toro [2001]; LeVeque [2002] among the others), the Rankine-Hugoniot condi-
tions do not allow, alone, to de�ne a unique weak solution to the Riemann
problem. Unphysical shock may, in fact, appear in the expansion region, typi-
cally when sonic conditions are reached. In order to �nd the physically correct
solution to the problem, it is generally invoke the concept of entropy condi-
tions, by reference to the second law of thermodynamics. Expansion shocks,
in fact, violate the principle which impose the entropy to increase across a
shock, and can thus considered as non admissible solutions. The numerical
schemes must, thus, be modi�ed in order to account for the only weak solution
satisfying the entropy condition; such modi�cation is known as entropy �x.
The �rst proposals for such an entropy �x were put forward in the by Harten
et Hyman [1983]. Their approach is quite general: the entropy �x is consid-
ered as a means to guarantee that the numerical scheme produces the entropic
solution to the hyperbolic problem, de�ned as the limit of the solution of the
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corresponding viscous problem, when the viscosity and the thermal conductiv-
ity vanish (vanishing viscosity solution).This can be accomplished by writing
the upwind scheme so as to put into evidence its numerical dissipation matrix,
and by operating on this matrix to assure a non-zero viscous contribution to
the numerical �ux.
This viewpoint is not limited to the approximate Riemann solver formulated
by Roe, but may be applied to any method written in dissipation form Harten
et Hyman [1983]. In our case the absolute value of the Jacobian matrix |A|
can be seen as a matrix viscosity. Harten's entropy correction consists in pre-
venting the eigenvalues of this matrix from becoming too small or to vanish.
This will allow the discontinuity to be correctly dissipated by the scheme.
In each cell [a, b] of the computational domain, we compute the eigenvalues of
the shallow water system: λ̄1,2 = ū ∓ c̄, using the average quantities on the
cell:

h̄ =
hi+1 + hi

2
, ū =

qi+1 + qi
hi+1 + hi

, c̄ =

√
gh̄ .

The eigenvalues are also computed in the two nodes of the cell, giving
λ1,2a = ua∓ca and λ1,2b = ub∓cb. Than, considering the spectral decomposition
of the absolute value of the local Jacobian matrix |A| = R|Λ|L, the eigenvalues
matrix |Λ| is modi�ed as follows:

Λ =

[
λ̄1/v1 0

0 λ̄2/v2

]
,

where v1,2 are de�ned follow Harten et Hyman [1983]:

v1,2 =


|λ̄1,2| if |λ̄1,2| ≥ ε1,2 ,

λ̄2
1,2

2ε1,2
+
ε1,2
2

otherwise ,

and where the ε1,2 are small positve numbers de�ned by:

ε1,2 =
1

2
max

(
0,max(λ1,2a − λ1,2b, λ1,2b − λ1,2a)

)
(2.32)

Both the FV and SUPG schemes discussed in sections 2.3 and 2.4.2 share
the same Jacobian matrix for the computation of the upwind term. The en-
tropy �x procedure just described is thus applied to both the schemes and
tested against Riemann problem cases in section 3.2. The results of the tests
performed assess the valdity of the procedure applied.
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2.7 Time continuous error analysis

In this section we present a truncation and dispersion error analysis of the
schemes introduced. While it is natural to consider the linearized system
(1.124) for the dispersion analysis, for simplicity we will consider equations
(1.124) for the truncation error as well. The analysis is time-continuous, mean-
ing that we do not take into account time integration, thus allowing to better
underline di�erences between the space discretizations considered. In particu-
lar, we will study �ve di�erent schemes: the three described in sections 2.3 and
2.4, plus the second (FD2) and fourth (FD4) order centered �nite di�erence
schemes, used as references for comparison.

Following the work done in Walkley [1999]; Walkley et Berzins [2002]; Es-
kilsson et Sherwin [2003], we consider the �nite di�erence form of all the
schemes and we analyze it with respect to its truncation and dispersion errors.
Clearly, this approach is not the standard one for �nite element and residual
distribution (cf. Burman [2010]; Hartmann et Houston [2009]; Abgrall et Roe
[2003]; Deconinck et Ricchiuto [2007]); it is only suited in one space dimension
and its results cannot be generalized to the multidimensional case, especially
on irregular meshes. It does however provide a very good indication of the
potential of the schemes, especially when structured, or mildly unstructured,
grids can be used in two dimensions.

Equivalent �nite di�erence equations: The expressions obtained when
discretizing (1.124) are quite long and reporting them in the body of the
manuscript might lead to useless excessive length. The full discrete equa-
tions are thus reported in appendix A (equations (A.1), (A.2), (A.3), (A.4),
and (A.5) for the FD2, FD4, cG, SUPG and FV schemes respectively). We
limit ourselves to a few observations which can be made.

By only considering the discrete form of the FD2 and cG schemes, reported
here after:

81



2.7. Time continuous error analysis

• FD2:

dηi
dt

+
h0

2∆x
(ui+1 − ui−1) = 0 ,

dui
dt

+
g

2∆x
(ηi+1 − ηi−1)− φi

h0

= 0 ,

φi −
αh2

0

3∆x2
(φi+1 − 2φi + φi−1) =

=
gh3

0

6∆x3
(−ηi+2 + 2ηi+1 − 2ηi−1 + ηi−2) ;

(2.33)

• cG:

∆x

6

(
dηi+1

dt
+ 4

dηi
dt

+
dηi−1

dt

)
+
h0

2
(ui+1 − ui−1) = 0 ,

∆x

6

(
dui+1

dt
+ 4

dui
dt

+
dui−1

dt

)
+
g

2
(ηi+1 − ηi−1) +

− ∆x

6h0

(φi+1 + 4φi + φi−1) = 0 ,

∆x

6
(φi+1 + 4φi + φi−1)− αh2

0

3∆x
(φi+1 − 2φi + φi−1) =

=
gh3

0

6∆x2
(−ηi+2 + 2ηi+1 − 2ηi−1 + ηi−2) .

(2.34)

It can be observed that the same second order accurate discretization of
the hyperbolic �uxes, and of the dissipative and dispersive terms of the elliptic
equation, is provided by the FD2 and cG schemes. Concerning the remaining
terms of the equations, the FD2 scheme provides a pointwise approximation
of the quantities (·)i , while the cG scheme yields a coupling of neighboring
nodes via the mass matrices:

1

6
(·)i+1 +

2

3
(·)i +

1

6
(·)i−1 .

The two schemes are otherwise identical. In particular scheme (2.33) can
be recovered from (2.34) by simply lumping all the mass matrices.
In addition, we remark that for the FV and SUPG schemes, expression (A.5)
and (A.4) respectively, although the upwind stabilization techniques are ap-
plied on the hyperbolic part of system (2.2)-(2.3), the elliptic one still re-
main discretized by means of the centered Continuous Galerkin discretization,
namely the third equation of (2.34), in accordance with the solution strategy
proposed in section 2.1.
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2.7.1 Truncation Error Analysis

The procedure to compute the truncation errors for the schemes in appendix A
requires lenghty calculations, here we just report the leading order expressions.
We make use, in this section, of the notation ∂(·)n to indicate the derivative
of order n with respect to (·); c2 = gh0 denotes the square of the linearized
Shallow Water celerity (cf. (1.61)).

Elliptic phase: Here we report the leading order expressions of the trunca-
tion errors of the schemes concerning the discretization of the elliptic part of
the system (cf. equation (2.2)):

TEφ
FD2 = −∆x2

4
∂x2

(
−αh

2
0

9
∂x2φi +

gh3
0

3
∂x3ηi

)
+ O(∆x4) , (2.35)

TEφ
FD4 = −∆x4

90
∂x4

(
αh2

0

3
∂x2φi +

7gh3
0

4
∂x3ηi

)
+ O(∆x6) , (2.36)

TEφ
cGML

= −∆x2

12
∂x2

(
−αh

2
0

3
∂x2φi + gh3

0 ∂x3ηi

)
+ O(∆x4) , (2.37)

TEφ
cG = −∆x2

12
∂x2

((
1− αh2

0

3

)
∂x2φi +

5gh3
0

3
∂x3ηi

)
+ O(∆x4) .(2.38)

For the cG scheme proposed in section 2.2, we report the two expressions
when the two mass matrices appearing in equations (2.2) and (2.10) are lumped
TEφ

cGML
, or not TEφ

cG. It can be observed, in this way that mass lumping does
not change the accuracy of the scheme which remains of O(∆x2), while instead
a�ecting the linear dispersion of the scheme, as it will be explored in detail in
section 2.7.2.

Hyperbolic phase: In this paragraph we report the leading order terms of
the truncation errors of the discretization of the hyperbolic step. We compare
here the expressions for the three schemes proposed to the ones obtained using
the FD2 and FD4 schemes:

• FD2 scheme:

TE η
FD2 = −h0∆x2

6
∂x2

(
∂xui

)
+ O(∆x4) ,

TEu
FD2 = −g∆x2

6
∂x2

(
∂xηi

)
+ O(∆x4) ;

(2.39)
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• FD4 scheme:

TE η
FD4 =

h0∆x4

30
∂x4

(
∂xui

)
+ O(∆x6) ,

TEu
FD4 =

g∆x4

30
∂x4

(
∂xηi

)
+ O(∆x6) ;

(2.40)

• cG scheme:

TE η
cG =

∆x4

24
∂x4

(
2

15
h0 ∂xui

)
+ O(∆x6) ,

TEu
cG =

∆x4

24
∂x4

(
2

15
g ∂xηi

)
+ O(∆x6) ;

(2.41)

• FV scheme:

TE η
FV = −c∆x

3

12
∂x3

(
∂xηi

)
+ O(∆x4) ,

TEu
FV = −c∆x

3

12
∂x3

(
∂xui

)
+ O(∆x4) ;

(2.42)

• SUPG scheme:

TE η
SUPG = −c∆x

3

12g
∂x3

(g
2
∂xηi

)
+ O(∆x4) ,

TEu
SUPG = −g∆x3

12c
∂x3

(
h0

2
∂xui

)
+ O(∆x4) ;

(2.43)

A �rst remark must be done concerning the form of the leading errors just
presented. These formulae have been obtained in the classical way by sub-
stituting the standard Taylor series expansions in space into equations (A.1),
(A.2), (A.3), (A.4), and (A.5). In the procedure we have, thus, considered
the exact solution of the term φi/h0 in the momentum equations, given by
φi/h0 = ∂tui + g∂xηi. It should be, thus, not surprising to observe a complete
fourth order of accuracy for the cG scheme and a third order one for the FV
and SUPG schemes. In fact, the classic results of the literature concerning the
leading truncation errors of these schemes (cf. Ricchiuto et Filippini [2014])
are recovered by considering that, numerically, the complete coupling of the
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three equations will provide a perturbed value of φi with an O(∆x2), which
may be propagate also in the solution of the hyperbolic system.
After this speci�cation, we can now compare the above expressions, making the
following remarks. Concerning the two equations of the hyperbolic system, all
the schemes provide higher consistency order with respect to the FD2 scheme.
In particular, the FD4 and cG schemes are fourth order accurate in space on
constant ∆x meshes, while SUPG and FV provides an O(∆x3) approximation
of the equations. This, while well known for the FD4 and cG scheme, is an
interesting result for the SUPG.
In particular, looking at the form of the truncation error, we can try to guess
what the dispersion error of the schemes might be. Indeed, the FD2 scheme
contains, in the leading O(∆x2) truncation error term, third order derivatives
which will a�ect its dispersion relation signi�cantly. In particular, note that
these will be active at the same wavenumbers impacted by the physical dis-
persion, which is also modelled by third order derivatives. On the contrary
the FD4 and cG schemes show a truncation error containing only �fth order
derivatives, which allows to guess a very good discrete dispersion relation for
these methods. Similar considerations can be done for the errors of the FV
and SUPG schemes, which do not contain any third order derivative, similar
to those contained in the equations, but only fourth and �fth order terms re-
lated to higher order dissipation and dispersion. This allow to anticipate good
dispersion relations for these schemes. The qualitative observation just made
will be quantitatively veri�ed by means of the explicit study of the dispersion
error of the schemes, which is the subject of the next section.

2.7.2 Dispersion Error Analysis

The analytical expression of the linear dispersion relation for the enhanced
Green-Naghdi model has been given in section 1.8. As already explained,
such relation can be recovered by means of a Fourier analysis on a horizontal
bottom, performed on the linearized system of equations:

(I + αTLIN)φ = TLIN(gh0ηx) , (2.44)

ηt + h0ux = 0 , (2.45)

h0ut + gh0ηx = φ .

where h0 represents the constant water depth and TLIN(·) = −1
3
h2

0(·)xx.
Having a low dispersion error with respect to the model is of paramount im-
portance for any numerical scheme that wants to be applied to the study of
near-shore wave propagation. In this section, we will perform an analysis on
the discrete dispersion relations of the schemes implemented: continuous �nite
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element (with and without the upwind stabilization) and �nite volume; com-
paring them and �nding the best possible con�guration of the discretization
which minimizes the dispersion error. We remark that the following analysis is
devoted to the optimization of the schemes with respect to the eGN dispersion
relation. An other approach may consist in performing this optimization with
respect to the Airy dispersion relation, but the investigation of this aspect is
left to future works.
We perform our analysis replacing the nodal values of η and u, in each of the
�nite di�erence form of the discretized schemes of appendix A, by a propagat-
ing Fourier mode Wi = W0e

ν∆xt+jkxi ; where ν∆x = ξ∆x + jω∆x and ξ∆x and
ω∆x represents respectively the ampli�cation rate and the phase speed, while
k is the wave number of the Fourier mode. The algebraic expression obtained
in such a way can be easily rewritten in terms of the nodal value Wi, using
relations of the type Wi±1 = e±jk∆x. The resulting system of equations con-
stitutes a complex eigenvalue problem whose solution is the dispersion factor
ν∆x.
The dispersion formula obtained are hard to interpret, so we have chosen to
present the results in the form of comparison plots, in which the dispersion
error curves of the model are compared among them and with respect to the
ones given by second (FD2) and fourth (FD4) order �nite di�erence discretiza-
tion schemes. For the sake of brevity and clarity, in the following, we will just
present the concluding remarks and we invite the reader to consult appendix
B, where it is reported the complete de�nition of the several quantities involved
in the following analysis.

Finite element: When also the hyperbolic part is discretized with the cen-
tered Galerkin FE scheme described in (2.19), the system obtained has the
�nite di�erence form (A.3). For the nodal values of a Fourier mode this be-
comes:

(
M̃

G − αh2
0

3
S̃
G
)
φi = −gh

3
0

3
T̃
G
(
M̃

G
)−1

ηi , (2.46)

M̃
G
ν∆xηi + h0F̃

G
ui = 0 , (2.47)

M̃
G
ν∆xui + gF̃

G
ηi =

1

h0

M̃
G
φi .

While di�erent expressions are obtained for the second and third equations
when other schemes are used in the hyperbolic phase, note that the �rst one
remains the same in all the cases considered in this work. The discrete phase
ω∆x is computed by imposing that the above linear system admits a non-trivial
solution, and hence that the associated matrix has zero determinant.
As �rst approach, we compute the error performed by the scheme respect to
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the NLSW equations. The discretized NLSW linear system can be recast sim-
ply setting φ = 0 in (2.47) and the error is displayed in �gure 2.2 through the
quantity |ωScheme − ωSW |/ωSW , plotted against the inverse of the number of
nodes per wavelength N . The relative errors of the FD2 and FD4 �nite dif-
ference schemes are also reported as a reference (see appendix B for detailed
expressions). For the Shallow Water case, the trends displayed are found to
be invariant with respect to the choice of kh0. This is not surprising, since the
phase celerity of the NLSW model (1.61) is independent from the wavenumber
k, as discussed in section 1.6. The picture show that the centered Galerkin
scheme provides a dispersion error which is better than that of the fourth order
�nite di�erence method.

Figure 2.2: Dispersion error for the centered Galerkin FE scheme with respect
to the NLSW model (the error is independent from reduced frequency kh0):
comparison with respect to the FD2 and FD4 schemes.

Concerning the eGN system, the results obtained from (2.47) are summa-
rized in �gure 2.3. We still consider the relative dispersion error with respect
to the exact phase (1.15). The curves are obtained for the two values kh0 = 0.5
and kh0 = 2.5, corresponding to a long and to a short(er) wave (or equivalently
to shallow and deep(er) waters) respectively. Also in this case, the pictures
show that the centered Galerkin scheme provides a dispersion error which is
comparable or better than that of the fourth order �nite di�erence method.
Please, note that the value kh0 = 2.5 approaches π, which is considered as
the limit between shallow and deep waters for Boussinesq models, due to the
estimation of the phase error of the model (cf. �gure 1.15). Of course, it is
more crucial for a numerical scheme to provide a small dispersion error when
also the error provided by the model is low.
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Figure 2.3: Dispersion error for the centered Galerkin FE scheme with respect
to the eGN model, for kh0 = 0.5 (left) and kh0 = 2.5 (right): comparison with
respect to the FD2 and FD4 schemes.

In section 2.2 we mentioned some implementation choices associated to the
�nite element solution of the elliptic problem (2.2). These boil down to the type
of quadrature used to evaluate some of the integrals, or, in other words, to the
use of mass lumping for the mass matrices appearing in equations (2.4), (2.10)
and (2.11). The �rst two, in particular, in�uence the form of the Φ̃LIN injected
in the hyperbolic component. The study of the impact of this choice leads to
interesting results. Four possibilities exist, for which explicit calculations are
provided in the appendix B:

1. mass lumping is performed in both (2.4) and (2.10), in which case the
elliptic solver is exactly the same obtained with the FD2 method ;

2. mass lumping is only performed in the computation of the auxiliary
variable (2.10), and not in (2.4). In this case, the elliptic system is
not identical to the FD2 one, however the third order derivative formula
obtained is exactly the same as the one used in FD2 ;

3. no mass lumping is performed for the auxiliary variable (2.10), while
(2.4) is lumped. In this case, the elliptic system is the same as the FD2
one, however, its right hand side contains an approximation of the third
order derivatives obtained starting from an L2 projection of the gradients
of the free surface ;

4. no mass lumping is performed, leading to the �rst in (2.46) .

88 Andrea Gilberto Filippini



2. Numerical Discretization in One-Dimension

0 0.05 0.1 0.15 0.2
0

0.05

0.1

0.15

0.2

0.25

1/N

|ω
S
c
h
e
m

e−
ω

G
N
|/
ω

G
N

 

 

FD2
FD4
Galerkin 1
Galerkin 2
Galerkin 3
Galerkin 4

0 0.05 0.1 0.15 0.2
0

0.05

0.1

0.15

0.2

0.25

1/N

|ω
S
c
h
e
m

e−
ω

G
N
|/
ω

G
N

 

 

FD2
FD4
Galerkin 1
Galerkin 2
Galerkin 3
Galerkin 4

Figure 2.4: Dispersion error of the Galerkin scheme with respect to the eGN
model, for kh0 = 0.5 (left) and kh0 = 2.5 (right): impact of lumping strategy.

The di�erences between these four cases are visualized in �gure 2.4 for the
continuous Galerkin scheme, showing that in deep waters the �rst and second
con�gurations provide a considerable increase in error. This clearly means that
the most relevant parameter is the approximation of the third order derivative.
It appears from the results that the use of an improved approximation of the
free surface gradient in the third order derivatives is the key element to reduce
the dispersion error. In particular, the con�gurations 1 and 2 provide errors of
the same magnitudes as the FD2 scheme, despite the fact that the hyperbolic
phase, and part of the elliptic phase, are not the same. These are precisely the
cases in which the approximation of the third order operator is the same as in
FD2.

SUPG scheme: We repeat the analysis for the upwind stabilized �nite el-
ement scheme (SUPG) (A.4). We refer to the appendix B for details and
analytical expressions. Please, note that a system similar to (2.46)-(2.47) has
to be analyzed and, in particular, that the �rst equation of this system is ex-
actly the equation (2.46) itself.
We procede, as in the previous case, by �rst analysing the dispersion error of
the scheme with respect to the NLSW model. For this, we set φi = 0 inside
(A.4), obtaining a trend of the relative phase error (cf. �gure 2.5), which is
close to the one of the Galerkin scheme and still better than that of the fourth
order �nite di�erence scheme.

For the eGN model, in �gure 2.6 we visualize the impact of the mass lump-
ing strategy on the dispersion error, as done for the non-stabilized method.
Also in this case, for short waves/deep waters the largest errors are obtained
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Figure 2.5: Dispersion error for the SUPG scheme with respect to the NLSW
model (the error is independent from kh0): comparison with respect to the
FD2, FD4 and GAL schemes.

whenever the third order derivatives are approximated with the simple FD2
formula (cases 1 and 2). In the other two cases, involving an improved treat-
ment of this term, we obtain errors comparable or even smaller than those of
the non-stabilized method. Provided that a third order method is used in the
hyperbolic phase, we see that dispersion properties equivalent to those of a
fourth order method are obtained.
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Figure 2.6: Dispersion error of the SUPG scheme for kh0 = 0.5 (left) and the
kh0 = 2.5 (right): impact of lumping strategy.
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FV scheme: We repeat the exercise for the hybrid Galerkin-FV scheme of
section 2.3, whose �nite di�erence form is given in (A.5). In the NLSW case,
the error is reported in �gure 2.7, compared to those of the other schemes
previously analyzed, showing a trend which almost identical to the FD4 one.
The main �ndings concerning the eGN case are, instead, reported in �gure 2.8.
Once more, the critical element to obtain low errors in deeper waters is the
approximation of the third order derivative. The use of the FD2 approximation
for this term (cases 1 and 2) provides error levels comparable to those of the
FD2 scheme. The improvement in the approximation of the nodal gradient
(2.10) leads to a reduction of the error of a factor three or four, providing
errors close to those of the FD4 method. The best results are obtained in this
case when no mass lumping is performed.

Figure 2.7: Dispersion error for the FV scheme with respect to the NLSW
model (the error is independent from kh0): comparison with respect to the
FD2, FD4, GAL and SUPG schemes.

Summary: This analysis has allowed to highlight the following results. First,
the behaviour of the schemes is quite similar, despite the di�erent treatment
of the hyperbolic part. It appears that the treatment of the third order deriva-
tives is very important, and in particular that the use of exact quadrature
in the L2 projection de�ning the auxiliary variable (2.10), is fundamental to
reduce the error for deep(er) waters/short(er) waves. When no lumping is
performed, the errors are similar or smaller than those provided by the fourth
order �nite di�erences.

Finally, these similarities allow to provide a general recipe for the elliptic
solver, as, for all the methods involved, the choice of the approach 4 allows to
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Figure 2.8: Dispersion error for the FV scheme for kh0 = 0.5 (left) and the
kh0 = 2.5 (right): impact of lumping strategy.
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Figure 2.9: Dispersion error of FD2, FD4, Galerkin, SUPG, and FV schemes.
Left: kh0 = 0.5. Right: kh0 = 2.5.

reduce the dispersion errors close to those of the FD4 scheme or below them.
A summary of the resulting error curves is reported on �gure 2.9 con�rming
the above observations.
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2.8 Time integration and boundary conditions

2.8.1 High-order time integration methods:

Similarly to the spatial domain, the temporal domain is discretized by a set
of non-overlapping slabs [tn, tn+1]. We will denote by ∆tn+1 = tn+1 − tn. For
generality, we compare three di�erent time discretization techniques. Only
third-order time integration methods have to be considered (order greater or
equal to three) in order not to spoil the dispersion characteristics of the schemes
in space. One is a classical method in the context of the BT numerical models,
while the other two have been chosen as representatives of boundedness or
strong stability preserving methods. For all of these methods, the time step is
computed by means of the CFL condition:

∆tn+1 = CFL
∆x

max
i

(|uni |+
√
ghni )

. (2.48)

AB-AM predictor-corrector scheme: The �rst time integration scheme
we consider is the Adams Bashforth - Adams Moulton (AB-AM) predictor-
corrector method, well known in the community of Boussinesq modeling (see
e.g. Wei et Kirby [1995] and Roeber et al. [2010]). For the general ODE:

U′ = L(U) , (2.49)

this time integration scheme is composed by two stages:

1. Predictor stage (Adams-Basforth method)

Up = Un +
∆t

12

[
23L(Un)− 16L(Un−1) + 5L(Un−2)

]
, (2.50)

2. Corrector stage (Adams-Moulton method)

Un+1 = Un +
∆t

24

[
9L(Up) + 19L(Un)− 5L(Un−1) + L(Un−2)

]
. (2.51)

The Adams predictor corrector has stability properties close to those of the
explicit Euler scheme, with respect to which we thus have an a�ective CFL of
1/2 (2 stages for the same time step magnitude). The method is obtained by a
combination of Lagrange polynomial extrapolation, and polynomial interpola-
tion to evaluate the integral of L in the interval [tn, tn+1]. For the autonomous
ODE (2.49), fourth order of accuracy can be easily shown by standard trunca-
tion error analysis. The method used to derive the method can be generalized
to include variable time step sizes, however, a simple technique to account for

93



2.8. Time integration and boundary conditions

variable time step sizes, while keeping constant the coe�cients in the scheme,
is to re-correct iteratively the solution with the Adams-Moulton step, stopping
when the relative magnitude of the correction is below a given threshold (cf.
Wei et Kirby [1995]; Roeber et al. [2010]). In practice, however, the improve-
ment brought by this multi-corrector procedure are very small, and a single
correction is already enough to obtain accurate results also for variable step
sizes (see Wei et Kirby [1995]).

RK3 scheme: The second time integration scheme tested is the three stages
third order SSP Runge-Kutta (RK3) scheme which, for the general ODE (2.49),
reads (cf. Gottlieb et al. [2001]):

Up =Un + ∆tL(Un) ,

U2p =
3

4
Un +

1

4
Up +

∆t

4
L(Up) ,

Un+1 =
1

3
Un +

2

3
U2p +

2∆t

3
L(U2p) .

(2.52)

The RK3 belongs to the family of strong stability preserving multi-stage
methods with positive coe�cients, inheriting the same stability properties of
the explicit Euler scheme. In particular, compared to the latter, the RK3 has
a CFL condition of 1, giving an e�ective CFL of 1/3.

eBDF3 scheme: Lastly, the third order extrapolated Backward Di�erencing
Method (eBDF3) (cf. Hundsdorfer et Verwer [2003]; Klosa [2012]) reading:

αn+1U
n+1 + αnU

n + αn−1U
n−1 + αn−2U

n−2 =

= βn L(Un) + βn−1 L(Un−1) + βn−2 L(Un−2) ,
(2.53)

with the following for of the weights:

αn+1 =
1

∆tn+1
+

1

∆tn+1 + ∆tn
+

1

∆tn+1 + ∆tn + ∆tn−1
,

αn = −(∆tn+1 + ∆tn)(∆tn+1 + ∆tn + ∆tn−1)

∆tn+1∆tn(∆tn + ∆tn−1)
,

αn−1 =
∆tn+1(∆tn+1 + ∆tn + ∆tn−1)

(∆tn+1 + ∆tn)∆tn∆tn−1
,

αn−2 = − ∆tn+1(∆tn+1 + ∆tn)

(∆tn+1 + ∆tn + ∆tn−1)(∆tn + ∆tn−1)∆tn−1
,
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and

βn =
(∆tn+1 + ∆tn)(∆tn+1 + ∆tn + ∆tn−1)

∆tn(∆tn + ∆tn−1)
,

βn−1 = −∆tn+1(∆tn+1 + ∆tn + ∆tn−1)

∆tn∆tn−1
,

βn−2 =
∆tn+1(∆tn+1 + ∆tn)

(∆tn + ∆tn−1)∆tn−1
.

The eBDF3 is part of a family of high order explicit multi step methods verify-
ing, under a time step restriction, the same boundedness preserving property
of the explicit Euler scheme for linear problems. Compared to the latter, the
eBDf3 has a stability condition of CFL= 1/3 (cf. Hundsdorfer et al. [2003]),
which gives the same e�ective CFL of the RK3 method.

2.8.2 Friction terms discretization

When treating the water running over shores, in proximity of dry areas and, in
general, when water depth is low, the friction e�ect displayed by the bottom
must be taken into account. Friction on the bottom is a major unknown in
environmental studies an the friction laws themselves are mostly empirical and
needs model calibration through parameter estimation techniques. Friction
stress exerted by a horizontal plane on a �ow is parallel to the �ow itself and
can be expressed by the formula:

τ = −Cf
2

u|u| , (2.54)

where Cf can be a constant number or, more often, de�ned by a law which
account for the local bottom steepness and water depth. This term is then
added as a source term in the momentum equation. However, an explicit
treatment of the friction can produce numerical oscillations (cf. Brufau et al.
[2004]; Murillo et al. [2007, 2009]) when the roughness coe�cient is high. For
this reason, we use the technique proposed by Brufau et al. [2004]; Murillo
et al. [2009]. More precisely, for all the three schemes proposed, at the end of
each time step we upgrade the �ux solution by the following relation:

(hu)n+1
i = (hu)?i − g(hSf )

n+1
i ∆tn ,

where the values signed with ? are the values computed without the friction,
and (Sf )i is de�ned by the following relation:

(Sf )i = (uRf )i = ui
N2
m||ui||
h

4/3
i

.

Substituting in the above equation, we can recover:
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(hu)n+1
i = (hu)?i − g(huRf )

n+1
i ∆tn =

= (hu)?i − g(hu)n+1
i

[
(1− θ)(Rf )

n+1
i + θ(Rf )

n
i

]
∆tn ,

with Nm being the Manning roughness coe�cient.
Now, by separating explicit and implicit part and by assuming that Rn+1

f = R?
f ,

we can write:

(hu)n+1
i =

(hu)?i − θg(hu)ni (Rf )
n
i ∆tn

1 + (1− θ)g(Rf )?i∆t
n

.

When the implicitness parameter θ is set to zero, the friction source term
is computed in a completely implicit manner, while it is computed in a totally
explicit point wise manner when θ = 1. We have used the value θ = 0 in all the
one-dimensional simulations performed. This modi�cation, albeit very robust,
but makes the scheme locally �rst order in time when friction is dominating.
This is especially the case in wet-dry fronts. Techniques to construct high order
variants for the eBFD and Runge-Kutta methods are discussed in Hundsdorfer
et Verwer [2003]; Chertock et al. [2015]. These have been implemented in
the two-dimensional scheme in order to increase the e�ciency of the friction
treatment and will thus be discussed in section 4.4.

2.8.3 Boundary conditions and internal wave generation

To de�ne di�erential problems and the application of the model for realistic
wave propagation problems, boundary conditions must be considered. It is
worth emphasizing that boundary conditions a�ect the numerical properties of
the scheme. Stability and accuracy of high-order methods can be dramatically
reduced if boundary treatment is not performed carefully. However, while
exact boundary conditions can be imposed in the case of hyperbolic problems,
and many works are available in the literature on this topic (cf. LeVeque [2002];
Toro [2009] among the others), this remains argument of discussion in the case
of dispersive models and an active research topic. While the fully re�ective wall
boundary condition can be obtained by imposing some symmetric conditions
leading to the satisfaction of: u · n = 0 on the wall line (being n the normal
direction to the wall), in�ow and out�ow boundaries require more complex
treatments. As in the aeroacustics, it has become general practice to apply
heuristic techniques involving the use of arti�cial layers for wave dissipation
of generation (cf. Kirby et al. [1998]; Wei et al. [1999]; Walkley [1999]; Zhang
et al. [2014]. A nonlinear boundary condition obtained by embedding in the
shallow water characteristic decomposition a dispersive correction has been
proposed in Cienfuegos et al. [2007]. The most recent developments concerning
boundary conditions for nonlinear dispersive problems, including the BBM-
type equations are discussed in Besse et al. [2016].
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In this work we use some of the existing techniques to generate and dump
waves in approximately de�ned layers of the domain. Two types of bound-
ary conditions are used, depending on the case: solid (fully re�ective) wall or
absorbing boundary conditions. For the FV scheme with third-order MUSCL
reconstruction, the reconstructed values on the �rst and last cell of the compu-
tational domain are computed using neighbouring ghost cells (cf. Kazolea et
Delis [2013]). For the FE schemes, ghost cells are not needed since the scheme
is node centered and the degrees of freedom are located directly on the physical
boundary. Dirichlet boundary conditions can be easily applied in this case.

Absorbing boundaries replace outlet conditions, trying to simulate a signal
leaving the domain of study. These are applied with the goal of completely
dissipating the energy of the outgoing waves possibly without introducing any
spurious re�ections in the domain. Several methods have been proposed in the
literature (see the already cited works and references therein). Among these,
we consider two. The �rst one consists in adding a dissipation term to all
the equations of the system, premultiplied by an arti�cial viscosity function
designed in order to be zero in the inner domain and to become predomi-
nant inside the absorbing boundary (cf. Walkley [1999]; Ricchiuto et Filip-
pini [2014]). The second method, applied here, consists in damping inside
the absorbing layer the computed surface elevation and/or the momentum by
multiplying their values by a coe�cient m(x) de�ned as Kazolea et al. [2014]:

m(x) =

√
1−

(
x− d(x)

Ls

)2

.

In the previous expression, Ls is the sponge layer width and d(x) is the
normal distance between the cell center with coordinates x and the absorbing
boundary. Typical values for the sponge layer width are related to the wave-
length of the incoming wave: λ ≤ Ls ≤ 1.5λ. Thus, longer wavelengths require
longer sponge layers.

A large number of tests involve the interaction of monochromatic periodic
waves of small amplitude with a given bathymetry. In absence of an exact
solution, the generation of such periodic waves is a bit tricky. For very small
amplitude waves, some authors suggest the use of Dirichlet type conditions
with imposition at the inlet boundary of the condition (see e.g. Tonelli et
Petti [2009] and references therein) (ηb(t), qb(t))

T = (A sin(ωt), cA sin(ωt))T

with c2 = gh0. We have found numerically the use of this approach relatively
ine�cient: the signal obtained presented a transient phase after which it sta-
bilized to a periodic wave of amplitude generally larger than A.
In this work we, thus, make use of the internal wave generator of Wei et al.
[1999], which is obtained by adding a source function to the mass equation.
Wei et al. [1999] derived the method in the context of the enhanced Boussi-
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nesq equations of Nwogu [1994], but its use can be generalized for other types
of Boussinesq-type equations by simply changing the dispersion relation used
in the generator. In this work, as to be compatible with the equations of
Green-Naghdi, we have used the dispersion relation (1.15).

2.9 Embedding wave breaking

In section 1.9, the problem of reproducing the e�ects of wave breaking by means
of the BT models has been illustrated and a brief overview of the solutions
proposed in the literature has been provided. As we have seen, a closure model
is necessary to simulate the breaking process numerically. This is composed
of two main elements: an energy dissipation mechanism, a trigger mechanism
related to the initiation and termination of the breaking process. We have
already mentioned that, in this work, an hybrid approach is applyed, consisting
in reverting the dispersive eGN equations to the NLSW system, to exploit
its capability to describe wave energy dissipation in breaking. More details
concerning the detection and triggering of the breaking model and on the
coupling between Green-Naghdi and NLSW equations are discussed hereafter.

2.9.1 Breaking front detection

The di�erence between the several implementations of the hybrid model strat-
egy proposed in the literature basically boils down to choosing criterion for
when turning dispersion o� and when to turn it back on . The existing criteria
are normally based on the computed values of the local surface velocity and
free surface gradient. Tonelli et Petti [2009, 2010] based their criterion on the
local ratio between surface elevation and water depth ε = η/h, thus solving
the NLSW equations in regions where the nonlinearity prevails and for the BT
ones elsewhere. The method does not need any calibration and its simplicity
is its main advantage. Clearly the criterion acts locally, on each node of the
domain and has no memory of what has happened the time-step before or in
the neighbouring nodes. It may, thus, introduce instabilities in the computa-
tion and reveal inadequate, due to its static local application, in cases where
a mechanism able to track propagating breaking fronts is instead needed.
Further phase resolving models have been identi�ed in Scha�er et al. [1993]
and Kennedy et al. [2000]. In Scha�er et al. [1993], a formula is introduced
based on the tangent of the angle of the wave front slope, being a function
on time, and two angles have been chosen to represent the threshold for the
start and the end of wave breaking. Kennedy et al. [2000], instead, developed
a criteria based on the value of the vertical velocity of the free surface eleva-
tion. These two criteria represent the building blocks of the trigger mechanism
presented in Kazolea et al. [2014], and used for this work. This is composed

98 Andrea Gilberto Filippini



2. Numerical Discretization in One-Dimension

by the combination of two phase-resolving criteria:

• the surface variation criterion: |∂tη| ≥ γ
√
gh, with γ ∈ [0.3, 0.65] ;

• the local slope angle criterion: ||∇η||2 ≥ tan(φc), where φc is the critical
front slope at breaking, and φc ∈ [14◦, 33◦] ;

with the value of the tuning parameters γ and φc depending on the type of
breaking wave.
The �rst criterion assumes that wave breaking occurs when the vertical veloc-
ity component at the free surface exceeds a certain value proportional to the
shallow water phase celerity

√
gh0. It has been introduced in Borthwick et al.

[2006], where a value of γ = 0.3 has been used for breaking solitary waves on
sloping beach, and can be derived considering the nonlinear advection equa-
tion for the free surface (cf. D'Alessandro et Tomasicchio [2008]). It �ags
for breaking when ∂tη is positive, as breaking starts on the front face of the
wave, and has the advantage that can be easily calculated during the running
of the code. This criterion works well for moving fronts, but it is ine�cient
in presence of steady hydraulic jumps for which ∂tη ≈ 0. In order to be able
to detect possible breaking fronts also for these cases, the second criterion is
introduced, which is complementary to the �rst one and based on the critical
front slope approach (cf. Scha�er et al. [1993]; Sørensen et al. [1998]). This cri-
terion depends strongly on the wave breaking type (e.g. spilling or plunging).
For some BT models, this criterion has been considered as the least sensitive
breaking threshold, with correct breaking locations predicted using φc ≈ 30◦.
However, the discussion on nonlinear shoaling in chapter 1 shows clearly that
this value cannot be used for all BT models. In practice, in the numerical
tests of chapters 3 and 5 the values of φ and γ used for the computations are
γ = 0.6 and φ = 30 everywhere, unless otherwise speci�ed.

2.9.2 Practical implementation

The practical implementation of the criteria discussed above consists in mainly
three steps:

1) Initial �agging : The surface variation criterion turns into:

|ηn+1
i − ηni |

∆t
≥ γ

√
g|hi| ,

while the local slope angle criteria becomes:
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max

(
ηi−1 − ηi+1

2∆x
,
ηi − ηi+1

∆x
,
ηi−1 − ηi

∆x

)
≥ tanφ .

At any time step, for any node of the mesh, we check if any of the two
criteria above is satis�ed and we activate the breaking mechanism in the
interested node. The computational domain may contain several break-
ing waves at the same time. Di�erent breaking waves are distinguished
as discussed in Kazolea et al. [2014] and Tissier et al. [2012], and each
one is processed individually. In one-dimensional problems any consecu-
tive group of �agged nodes de�nes a breaking wave, it is thus relatively
easy to distinguish between di�erent breaking waves of the domain.

2) Flagged region enhancement : Once identi�ed, each breaking wave is
treated individually. For each �agged wave front we compute peak and
trough depths: hpeak and htrough respectively (cf. �gure 2.10). The length
of the wave roller has be found experimentally to be lr ≈ 2.9(hpeak −
htrough). The computational region �agged for breaking de�nes a length
lNLSW , which is roughly centered around the wave front. Non-physical
oscillations may originate at the interface between the regions where the
BT equations are solved and those in the NLSW regime. In Tissier et al.
[2012], lNLSW was extended to be larger than the order of magnitude of
the physical length of the wave roller. The value of lNLSW adopted in
the present work is lNLSW = 2.5lr, as the one proposed by Kazolea et al.
[2014].

Figure 2.10: Sketch of a roller wave and de�nition of the breaking zone where
the NLSW equations are solved.

3) Froude number computation: In order to decide when a wave front has
ended to break, we use an analogy between breaking waves and bores.
Tidal bores undergo a transition from breaking to undular character,
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when the Froude number drops below a certain critical value. Tissier
et al. [2012] identi�ed this value as Frc = 1.3. The Froude number of
the wave can be computed through:

Fr =

√
(1 + 2hpeak/htrough)

2 − 1

8
. (2.55)

If the computed Froude number is Fr ≤ Frc, then the breaking mecha-
nism is switched o�.

2.9.3 Embedding breaking regions in the GN solver

In the region �agged as breaking the �ow quantities are evolved using the Shal-
low Water equations, thus switching o� the dispersive terms. The particular
solution strategy proposed allows to do it in a very simple way, since all the
dispersive terms are lumped in the variable φ, computed through the elliptic
equation (2.2). In the numerical results of section 3.9, we will compare two
di�erent approaches:

• Simply neglect the terms related to φ in the spatial discretization. For
a breaking node i, this means setting Φi = 0 in (2.13), or (2.30). In this
case, the two phases of the discretization (elliptic and hyperbolic) are
completely independent on one another. In particular, only the hyper-
bolic phase is aware of the breaking process;

• For each breaking wave, the computational region where the NLSW equa-
tions are solved is roughly centered around the wave front. However,
non-physical e�ects may appear at the interface between two regions
governed by the two di�erent models. In Tissier et al. [2012], the break-
ing region is extended, assuming a length larger than the physical scale
of the wave roller, trying to minimize this e�ect. To have a tighter cou-
pling between the two phases, and hopefully a smoother transition, the
breaking condition is embedded in the elliptic phase as a sort of Dirichlet
boundary condition. In particular, for a breaking node i the line of the
matrix issuing form the �nite element discretization, discussed in section
2.2, is replaced by δij∆x, δij denoting Kroenecker's δ, while the right
hand side is set to zero. The elliptic problem being second order, the
discrete solution for φ is now expected to go to zero in breaking nodes
trying to keep also the continuity of its �rst derivative. As the source
term Φ is kept into the discretization, and as it involves an average of
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2.9. Embedding wave breaking

neighbouring values of φ, a smoother transition may be expected.

In both cases, the nonlinear limiters involved in the discretizations are
turned on only if the nodes are in the shallow water regime. In other words,
in non breaking regions we set ψ = 1 in both (2.16) and (2.28).
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3.1. Shallow Water grid convergence

In this chapter, the solution strategy for the eGN model (1.117) and the
three spatial discretizations, presented in chapter 2, are tested against stan-
dard test cases. To start, we �rst asses the theoretical order of accuracy of
the schemes in discretizing only the hyperbolic part of system (2.2)-(2.3), i.e.
the NLSW system, without accounting for dispersion: φ = 0. The same hy-
perbolic context will be also used to verify the behaviour of the schemes on
discontinuous solutions and dry areas.
Then, other benchmarks will be used to ascertain the schemes accuracy on the
eGN equations, to validate the numerical treatment of the dispersive terms of
the equations and of the wave breaking treatment, through the comparison
with respect to laboratory data ans analytical solutions. The tests involving
shocks, together with the Shallow Water benchmarks, only the upwind schemes
are used. The most part of these results are included in the published work
Filippini et al. [2016].

3.1 Shallow Water grid convergence

In order to verify the accuracy of the implemented schemes in the Shallow
Water limit, we perform a grid convergence using the Method of Manufactured
Solutions (cf. Salari et Patrick [2000]; Roy et al. [2004]). The strength of this
method, compare to the Method of Exact Solutions, is that allows to check
the order of accuracy of a numerical method using an in�nite multiplicity of
solutions which are not exact solutions of the system of equations concerned.
In the simple di�erential equation:

Du(x, t) = g , (3.1)

where D is the di�erential operator, u is the variables vector and g is a source
term, one manufactures a solution ũ(x, t) and then applies D to ũ to �nd a
new g̃ 6= g. The new source term will be then added to the original equations
and discretized with them. The manufactured solution ũ(x, t) will be thus
exact solution of:

Du(x, t) = g̃ , (3.2)

and can be used to check the scheme accuracy in approaching ũ(x, t), solving
3.2. In our case we exploit this method using the exact solitary wave solution
of the GN equation. It is known that for horizontal bottoms, the GN model
(1.115) has an exact solitary wave solution, which is given by:

h̃(x, t) = h0 + asech2(k(x− ct)) , (3.3)

ũ(x, t) = c

(
1− h0

h(x, t)

)
, (3.4)

104 Andrea Gilberto Filippini



3. Numerical Tests and Results in One-Dimension

with k =
√

3a
2h0
√
h0+a

and c =
√
g(h0 + a). (3.4) are used in (1.58) to compute

the analytic expression of the source term g̃ to add to the system. Since (3.4)
is exact solution of the continuity equation, we have that g̃ = (0, gq)

T , with gq
equal to the exact evaluation of the non-hydrostatic term of the GN equation
φ̃ = q̃t + ( q̃

2

h̃
)x + gh̃η̃x (cf. equation (2.3)), with q̃ = h̃ũ.

We consider the case of a solitary wave propagating over a �at bathymetry,
with depth h0 = 10 [m], and with ε = 0.2. The computational domain has been
set between [0, 2000] [m] and the initial wave have been placed in x0 = 1000
[m]. In order to quantify the numerical accuracy and assess the convergence
of the numerical scheme, the numerical solution is computed for several cell
sizes ∆x, over a duration t = 1 [s]. Starting with ∆x = 5 [m], the test case
is performed on a set of six meshes successively dividing the space step by
two up to ∆x = 0.15625 [m] while keeping the time step small enough to
ensure that the leading error order is provided by the spatial discretization.
For this, the corresponding time step size of the simulation has been re�ned
according to (2.48), with CFL ≈ 0.2. The relative error on the total water
depth EL2(h) = ||hnum − hex||2/||hex||2, with hnum is the numerical solution
and hex is the analytical one, is computed at t = 1 [s].
The convergence of the L2 error is plotted in Figure 3.5, where the slopes 2.5
and 3 are also plotted for reference. Similar behaviours are observed with other
norms. The slopes obtained from the error reveal convergence rates in between
close to 3 for all the combinations, showing that the dominant component of
the error is the one related to the spatial discretization and con�rming the
results of the truncation error analysis of the linear scheme, performed in
section 2.7.1.
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Figure 3.1: Shallow Water grid convergence: convergence rates for the FV
scheme (left) and the SUPG scheme (right) computed on a manufactured so-
lution using the exact GN solitary wave shape (3.4).
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3.2 Riemann problem

Shock capturing methods, such as the FV and SUPG schemes discussed in sec-
tions 2.3 and 2.4.2, must verify a discrete analogous of the Rankine-Hugoniot
jump conditions, so that the proper shock speed and strength are obtained.
We thus present a preliminary veri�cation of the behaviour of the FV and
SUPG schemes, presented in the previous sections, in the case of a Riemann
problem with initial solution characterized by left state hL = 1 [m] and right
state hR = 0.5 [m]. The discontinuity is placed at the center of a computa-
tional domain x ∈ [0, 100] and the �nal time of the simulation is t = 10 [s].
The computed results are shown in �gure 3.2, where they are also compared
with respect to the exact analytical solution (cf. Ambrosi [1995]; Stoker [1992];
Toro [2001]; Delestre et al. [2013]), implemented as reported in Delestre et al.
[2013]:

h(x, t) =



hL if x ≤ xA(t) ,

4

9g

(√
ghL −

xi − x0

2t

)2

if xA(t) ≤ xB(t) ,

c2
m

g
if xB(t) ≤ xC(t) ,

hR if xC(t) ≤ x ,

u(x, t) =



0 if x ≤ xA(t) ,

2

3

(
xi − x0

t
+
√
ghL

)
if xA(t) ≤ xB(t) ,

2
(√

ghL − cm
)

if xB(t) ≤ xC(t) ,

0 if xC(t) ≤ x ,

with xA(t) = x0−t
√
ghL, xB(t) = x0+t(2

√
ghL−3cm), xC(t) = x0+2t(

√
ghL−

cm)c2
m/(c

2
m − ghR), and being cm the solution of:

− 8ghR(
√
ghL − cm)2c4

m + (c2
m − ghR)2(c2

m + ghR)c2
m = 0 ,

as follows from Stoker [1992].
The numerical results shown in �gure 3.2 display a smooth trend for all the
schemes discussed. The Van Albada limiter function, in the case of the FV
scheme, and the smoothness sensor limiter, in the case of the SUPG scheme,
act properly, killing the numerical oscillations which normally originate in
proximity of the shock when high-order schemes are used.

The test is repeated considering an initial dry right state: hR = 0 [m]. This
test allows to assess the numerical treatment of the wet/dry front, discussed
in section 2.5. The red lines in �gure 3.3 represents the numerical solution
given by the SUPG (top left and right) and the FV (bottom) schemes, when
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Figure 3.2: Solution of a Riemann problem: Case (a). Comparison of the
computed water depth h with respect to the analytical solution (top-left).
Zoom on the �ow expansion (top-right). Zoom on the shock region (bottom).

no entropy correction is made, after t = 5 [s] from the beginning of the com-
putation. It is clearly visible that an unphysical shock is numerically obtained
with the two schemes in the middle of the rarefaction region. This is not an
admissible solution, since the characteristic lines of the hyperbolic model are
coming out from the shock and not converging on it. The size of the shock
appears to be much bigger for the FV than for the SUPG one. This may be
due to the averaging e�ect played by the mass matrix of the �nite element
scheme.
When the two schemes are corrected by means of the entropy �x technique,
described in section 2.6, the results obtained do not present any unphysical
expansion shock. Completely smooth solutions are obtained even in the sonic
region.

One of the most critical aspects in the simulation of the Riemann problem
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Figure 3.3: Solution of a Riemann problem: Case (b). Comparison of the
computed water depth h, with and without the entropy �x correction, respect
to the analytical solution. SUPG scheme (top-left) and a zoom and the sonic
region (top-right). FV scheme (bottom).

with a dry right state is the computation of the velocity close to the interface
with the dry region. In fact, the system is solved for the conservative variables h
and q = hu and the velocity is constructed only a posteriori by the expression:
u = q/h. The wet/dry treatment technique of section 2.5 allows to de�ne a
value for εwdu for which the singularity, which may originate from dividing the
�ux value by zero, is avoided. However, the velocity may not be correctly
calculated close to the wet/dry front line, generating oscillation or unphysical
values. The values of q and u in the computational domain, at the �nal
time of the simulation, are reported in �gure 3.4, showing that the schemes
implemented are able to compute all the unknowns of the problem without
spurious variations. The impact of the cuto� can however be seen in the
velocity plots, which go to zero before the theoretical shock position.
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Figure 3.4: Solution of a Riemann problem: Case (b). Comparison of the
computed volume �ux q and velocity u respect to the analytical solutions:
SUPG scheme (on top left-right) and FV scheme (on bottom left-right).

3.3 Grid convergence for a GN solution

We, now, verify the accuracy of the numerical schemes proposed for the GN
equations, performing a convergence analysis with respect to space and time
step size. Once again, we consider the propagation of a solitary wave over a
�at bathymetry, with depth h0 = 10 [m], and with ε = 0.2. The wave solution
3.4 is now exact solution of the equations and we compute the rate of conver-
gence of the numerical solution to the exact one computing the relative error
on the total water depth EL2(h) = ||hnum − hex||2/||hex||2, with hnum is the
numerical solution and hex is the analytical one. The convergence test have
been performing using the same set-up considered in section 3.1, using a set of
six uniform meshes with the �rst characterized by ∆x and halving every time
the mesh size. The computation run for t = 1 [s] and the results obtained are
the one illustrated in �gure 3.5 together with slopes 2.5 and 3 as references.
The slopes obtained reveal convergence rates of the norm of the error con-
sidered always in between 2.5 and 3 for all the combinations, con�rming the
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3.4. Wave propagation over a submerged bar

results of the truncation error analysis of the linear scheme, performed in sec-
tion 2.7.1. Similar behaviours are also observed with other norms.
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Figure 3.5: Grid convergence for a GN solution: convergence rates for the
FV scheme (top-left), the SUPG scheme (top-right) and the Galerkin scheme
(bottom).

3.4 Wave propagation over a submerged bar

The next test case considers monochromatic waves propagating over a sub-
merged bar. For this test extensive experimental data exist (cf. Beji et Battjes
[1994]). This benchmark allows to investigate the frequency dispersion charac-
teristics of the schemes in presence of nonlinear interactions of complex waves.
The geometry of the test is sketched on �gure 3.4. Monochromatic waves are
generated and propagate on a depth of h0 = 0.4 [m] before reaching the sub-
merged bar. The periodic waves shoal over the 1 : 20 front slope, developing
higher harmonics which are then released, from the carrier frequency, on the
1 : 10 slope of the lee side of the obstacle. The submerged trapezoidal bar was
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0.3 [m] high with front slope of 1 : 20 and lee slope of 1 : 10, separated by a
level plateau 2 [m] in length. The periodic wave is generated by means of an
internal source function (cf section 2.8.3) located at x = 10 [m] in the domain
[0, 35] [m]. Two sponge layers with 3 [m] of thickness are used at the left and
rightmost boundaries in order to absorb any reaching wave. The grid used for
the computation has a uniform size of ∆x = 0.04 [m] and the CFL number
has been set equal to 0.2.
We consider two test con�gurations and the numerical results are compared
with the data of Beji et Battjes [1994]. In particular, the �rst gauge is always
used to calibrate the phase of the signal with the experiments, while the others
are used to compare and validate the computations. For further details on the
experiment and for the exact location of the gauges the interested reader can
consult Beji et Battjes [1994]; Dingemans [1997]; Kazolea et al. [2014].
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Figure 3.6: Wave propagation over a submerged bar: sketch of the computa-
tional con�guration and of the gauges position; case (a) on top, case (b) on
bottom.

Case (a): In this case, the amplitude of the incident wave is a = 0.01 [m]
and T = 2.02 [s] is its period. This case is often used to validate dispersive
wave propagation models. The water depth parameter is kh0 ≈ 0.67 with
depth to wavelength ratio h0/λ = 0.11 [m]. The propagating waves shoal
along the front slope of the bar causing the growth of the wave amplitude and
the surface pro�le to become asymmetric. In the back slope the waves separate
into independent signals which travel at their own speed. Figure 3.7 presents
the comparison between experimental data and the numerical results provided
by the FV scheme, combined with all the three time schemes considered in
this work. Figures 3.8 and 3.9 present the same gauge signals for the Galerkin
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3.4. Wave propagation over a submerged bar

and the SUPG schemes respectively. For brevity, we only show the results
registered in gauge 4, 7, 8 and 10, placed respectively at the toe of the bar,
before the plateau, on the top and after the bar.
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Figure 3.7: Wave propagation over a submerged bar, Case (a): time series of
water surface elevation in gauges 4,7,8,10 (from top to bottom). Numerical
results computed using the FV scheme discussed in section 2.3.

In the �rst �gure we can see that the results obtained are independent
from the time scheme used. Moreover, we remark that the FV scheme pro-
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Figure 3.8: Wave propagation over a submerged bar, Case (a): time series of
water surface elevation in gauges 4,7,8,10 (from top to bottom). Numerical
results computed using the Galerkin scheme discussed in section 2.4.1.

duces slightly less accurate results in the lee side of the bar compared to the
two FE schemes, as can be seen from gauge 10 signals in �gures 3.7, 3.8 and
3.9. In this region the water depth parameter kh increases rapidly so a worst
description may be expected from the linear dispersion analysis results of �g-
ure 2.9. Nevertheless, the agreement is still acceptable as the wave shape and
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Figure 3.9: Wave propagation over a submerged bar, Case (a): time series of
water surface elevation in gauges 4,7,8,10 (from top to bottom). Numerical
results computed using the SUPG scheme discussed in section 2.4.2.

amplitudes are quite well reproduced overall the schemes proposed represent
quite accurately the nonlinear and dispersive properties of the original contin-
uous model and the phase resolution properties of the schemes are con�rmed.

Case(b): In this case, the monochromatic wave height is 0.054 [m] and
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the period is T = 2.5 [s], that corresponds to the water depth parameter
kh0 ≈ 0.52, with depth to wavelength ratio of h/λ = 0.0835. Considerably
nonlinear conditions are obtained toward the end of the �rst slope, where wave
breaking is expected to occur after the shoaling of the waves. The value of
the surface breaking criterion γ is set to 0.3 for the simulation, while φ =
30◦ was used for the local slope angle criterion. We must note that, for the
numerical treatment of the wave breaking (in all the test cases), we use the
second approach described in section 2.9.3. A discussion on the topic will
follow in section 3.9. The numerical results along with the experimental data
are recorded in four wave gauges (1 to 4). They are all presented in �gures
3.10 and 3.11 for the FV and the SUPG schemes respectively.

The wave shape is well-reproduced for all wave gauges. As expected, the
waves shoal along the front slope, since nonlinear e�ects cause the waves prop-
agating along this slope to steepen and broke at the beginning of the bar crest.
For this experiment, breaking is classi�ed as plunging. Bound higher harmon-
ics are developed along the front slope, which are then released from the carrier
frequency on the lee side of the bar, as the water depth parameter kh increases
rapidly.
Figures 3.12 and 3.13 illustrate the phase-resolving breaking criteria working
in the wave-by-wave treatment. The bounded region between the two red
dashed vertical lines represents lNLSW , the area where the NLSW systems is
solved to reproduce the wave dissipation mechanism. It is plotted at di�erent
time instants (covering roughly one wave period) and for the two discretization
techniques adopted for this test (FV and SUPG). Results were performed using
the AB-AM method in time for both FV and SUPG, but similar results can be
obtained using the RK3 and eBDF3. The onset of breaking is correctly pre-
dicted for both schemes, close to the beginning of the bar crest and continues
along the �at of the bar leading to a wave height decay. We can observe that,
during the breaking process, the SUPG scheme is more di�usive, leading to a
slightly earlier termination of breaking and, after that, a small ampli�cation
of the wave height compared to the FV scheme. Di�erent calibrations of the
breaking model may be needed for di�erent numerical schemes but this study
is beyond the purpose of this work.

3.5 Solitary wave run-up on a planar beach

To further verify and validate our wave breaking implementation, we use one
of the most intensively studied problems in long-wave modeling: the solitary
wave-run-up on a plane beach. Synolakis [1987] carried out laboratory experi-
ments for incident solitary waves of multiple relative amplitudes over a planar
beach with a slope 1 : 19.85. Performing this test, we want to asses the ability
of our model to describe propagation, shoreline motions, breaking and run-up.
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Figure 3.10: Wave propagation over a submerged bar, Case (b): time series
of water surface elevation in gauges 1,2,3,4 (from top to bottom). Numerical
results computed using the FV scheme discussed in section 2.3.

Detailed description of the test case, along with the initial conditions, can be
found e.g. in Synolakis [1987]; Bonneton et al. [2011a]; Tonelli et Petti [2010];
Roeber et Cheung [2012]; Cienfuegos et al. [2010] among many others. The
incident wave height used in this work is a/h0 = 0.28 with h0 = 1 [m]. This
wave breaks strongly both in the run-up and run-down phases of the motion.
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Figure 3.11: Wave propagation over a submerged bar, Case (b): time series
of water surface elevation in gauges 1,2,3,4 (from top to bottom). Numerical
results computed using the SUPG scheme discussed in section 2.4.2.

The computational domain used is x ∈ [−20, 100] [m] with a uniform grid of
∆x = 0.05 [m]. The CFL number is set equal to 0.2, a sponge layer is applied
o�shore with length Ls = 5 [m] and γ, in the breaking tracking criteria, is set
equal to 0.6. Finally, a Manning coe�cient of nm = 0.01 is used to de�ne the
glass surface roughness used in the experiments.
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Figure 3.12: Wave propagation over a submerged bar, Case (b): snapshots of
the free surface elevation at di�erent increasing times of the simulation (from
top to bottom) for FV scheme. Vertical lines de�ne the region of of the domain
solved by the NLSW equations.

Figure 3.14 provides a comparison of the measured free surface pro�les and
the numerical models results at di�erent non-dimensional times. The blue
line denotes the numerical results produced by the FV scheme, green dotted
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Figure 3.13: Wave propagation over a submerged bar, Case (b): snapshots of
the free surface elevation at di�erent increasing times of the simulation (from
top to bottom) for SUPG scheme. Vertical lines de�ne the region of of the
domain solved by the NLSW equations.

line those given by the SUPG scheme and red circles denote the experimental
data.
Until time t

√
g/h = 10, the solitary propagates to the shore and the two

models produce identical results, since wave breaking has not started yet. We
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3.6. In�uence of mesh regularity

can already observe that, due to the well-balanced wet/dry treatment (cf.
2.5) applied on the shoreline, no unphysical overtopping or water movement
appears in the solution, starting from the wet/dry front. The experimental
wave breaks around t

√
g/h = 20. The numerical solution is represented like

a bore, storing the water spilled from the breaking wave behind the front.
A slight di�erence can be seen in the two solutions at time t

√
g/h = 20,

which may be due to the use of two di�erent limiters (SUPG scheme uses the
smooth sensor limiter, while FV scheme uses the MIN-MOD one). At time
t
√
g/h = 25, the bore collapses at the shore and the results show a really good

agreement with respect to the data. After that, the wave starts to run-up.
The time of maximum run-up occurs for t

√
g/h = 45. During the backwash,

a breaking wave is created at t
√
g/h = 55 right below the initial still water

level. The numerical solution is approximated as a hydraulic jump for both
models which can be fully resolved since the breaking criterion recognizes it
and the NLSW equations are used in this region.
Globally, the experimental data are very well �t by the numerical results.
The breaking criteria used detect the right instant and position of both the
initial breaking of the incoming wave and of the hydraulic jump formed during
the backwash. Small numerical oscillations originate from the interface with
breaking regions. The e�ort made in order to minimize this e�ect motivates
the study about a di�erent breaking formulation, discussed in section 3.9.

We perform this test case using all the time schemes described up to now.
Like in the previous propagation of a periodic wave over a bar, we obtain
numerical results independent from this choice. We thus present only two
snapshots concerning their comparison in �gure 3.15. Since the three time
schemes used up to now provide the same results for all the tests, from now
on we will just present those obtained using AB-AM. Of course, the choice is
not restricted to the methods described in the manuscript. Any time scheme
of order greater than (or equal to) three can be used.

3.6 In�uence of mesh regularity

In order to assess the in�uence of mesh regularity on the results, we present
some examples of computations on perturbed point distributions. These are
obtained from uniform grids, by displacing all the points by a factor of ρi∆x,
with ρi a random number such that |ρi| ≤ 0.2, and with ∆x the initial mesh
size. For completeness we consider both a smooth case, and a case involving
wave breaking.
For the elliptic part, the continuous Galerkin scheme have been introduced in
section 2.4 in a completely general way, valid for both uniform and non-uniform
grids. In this case, due to the compact stencil of the P 1 basis functions chosen
for the discretization, each one of the integrals of section 2.4 can be evaluated
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Figure 3.14: Solitary wave run-up on a planar beach: computed free sur-
face elevation at di�erent increasing times of the simulation (from top-left to
bottom-right) for the FV and SUPG (named FE in the �gures legend) schemes.
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Figure 3.15: Solitary wave run-up on a planar beach: comparison of di�erent
time schemes on a solitary wave run-up on a plane beach, for the FV scheme
(up) and the SUPG scheme (down).

as the sum of the two contributions on the left and right elements containing
the node i: ∫

Ωh

ϕi u =

∫ i+1

i

ϕi u+

∫ i

i−1

ϕi u .

When, now, solving the integrals with a quadrature formula, ∆x = xi+1 −
xi = xi − xi−1 will appear in the discrete terms when the mesh is uniform,
rather than ∆xi = xi+1 − xi and ∆xi−1 = xi − xi−1 if a non-uniform mesh
is instead used. The same consideration is also valid for the Galerkin and
SUPG schemes discussed in section 2.4.2 to discretize the hyperbolic part of
the system.
Concerning the FV scheme of section 2.3, one has to deal with a variable size
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3. Numerical Tests and Results in One-Dimension

of the �nite volume dual cells (xi+ 1
2
− xi− 1

2
), which can be now de�ned as:

|Ci| = ∆xi−1

2
− ∆xi

2
. The cell volume |Ci| will thus substitute ∆x in equations

(2.12) and (2.13), while Φ is evaluated using the formula:

Φ =
1

|Ci|

∫
Ci

φh =
∆xi−1

2

(
3

4
ui +

1

4
ui−1

)
+

∆xi
2

(
1

4
ui+1 +

3

4
ui

)
(3.5)

Smooth case: The �rst test involves the interaction of two symmetric
solitary waves, propagating in opposite directions in a �at frictionless chan-
nel. This head-on collision is a common test for Boussinesq-type and non-
hydrostatic models. After the interaction, one should ideally recover the ini-
tial pro�les of the two waves with exchanged positions. However, this simple
test presents additional challenges to the model by a sudden change of the
nonlinear and frequency dispersion characteristics. The numerical model must
handle the equilibrium between amplitude and frequency dispersion to prop-
agate the wave pro�le at a constant shape and speed. We consider a channel
200 [m] long, depth h0 = 1 [m] and two solitary waves with an equal initial
hight of a/h0 = 0.3, initially centered respectively at x = 60 [m] and x = 140
[m]. The computational parameters used are CFL value 0.2, number of nodes
4000 and domain x ∈ [0, 200][m].
Figure 3.16 shows the free surface pro�les of the solitary waves in time t = 5, 11
and 17 [s] for the FV model. Virtually identical results are obtained using
the Galerkin and SUPG methods and have not been reported. Each sub�g-
ure compares the numerical solutions obtained from the uniform (continuous
lines) and the non-uniform meshes (dashed lines). The waves initially propa-
gate undisturbed until they collide. After the collision, as expected, the waves
are transformed and a dispersive tail appears. Any in�uence of mesh irregu-
larity on the results can be observed at this scale.

Breaking case: As an example including wave breaking, we repeat on a
perturbed mesh the computation of a solitary wave run-up on a plane beach.
The results obtained are shown on �gure 3.17 for both the hybrid FV and
SUPG methods, using the AB-AM time integrator. Comparing to the results
of the previous section, we can again see that the in�uence of mesh regularity is
very small, and perhaps the main impact of the irregularity is on the e�ciency
of the limiters implemented in detecting the shocks, especially for the SUPG
scheme. This is clearly a topic for future improvement.

3.7 Solitary wave on a composite beach

One of the benchmark methods for tsunami model validation and veri�ca-
tion, according to the NOOA center for tsunami research, is the propagation
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Figure 3.16: Head-on collision of two solitary waves: surface pro�les of the
solution computed at times t = 5, 11, 17 [sec] for the FV scheme.

of a solitary wave over a composite beach, simulating the Revere beach in
Massachusetts. A physical model was constructed at the Coastal Engineering
Research Center in Vicksburg, Mississippi by the U.S. Army Corps of Engi-
neers. The con�guration of the problem can be found in Marche et Lannes
[2015]; Synolakis et al. [2007]. The setup of the problem is shown in �gure
3.18. The time series of the surface elevation is registered in six gauges, placed
at x = 15.04, 17.22, 19.04, 20.86, 22.33, 22.80 [m]. We consider two di�erent
con�gurations. The �rst one is the propagation and breaking of a solitary
wave of ε = 0.3, while the second one involves a solitary wave of higher non-
linearity: ε = 0.7. The computational domain used is x ∈ [−5, 23.23] [m],
with the initial wave placed at x = 0 [m] and h0 = 0.218 [m]. The CFL number
is set to 0.2 and a uniform grid is considered with ∆x = 0.046 [m]. A sponge
layer of 2 [m] is placed at the left boundary of the domain, while a vertical
wall is placed on the right. In the wave breaking tracking criterion a value of
γ = 0.6 is used for the time variation of the surface elevation.

Case (a): Figure 3.19 shows, for the less nonlinear case, the compari-
son between the experimental data (red circles) and the numerical results:
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Figure 3.17: Solitary wave run-up on a planar beach: free surface elevation
at di�erent increasing times of the simulation (from top-left to bottom-right)
performed by the FV and the SUPG (named FE in the �gures legend) schemes
using a non-uniform mesh.
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Figure 3.18: Solitary wave on a composite beach: initial setup.

blue lines denote the FV scheme, while green dashed line stay for the SUPG
scheme. The solitary travels down the domain, shoals and breaks between the
second and the third gauge. After breaking, it continues to travel onshore until
it hits the wall, re�ects and starts to propagate o�shore. A very good match
between the experimental data and the numerical results is observed for both
the schemes tested in all the wave gauges. Only in gauge 10, the closest to
the left boundary of the domain, an equal overestimation of the two amplitude
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peaks can be noted for both the methods.
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Figure 3.19: Solitary wave on a composite beach, Case (a): Time series of the
free surface elevation at gauges locations.

Case (b): In �gure 3.20 the numerical results along with the experimental
data for the more nonlinear case (ε = 0.7) are presented. The solitary wave is
highly non-linear and presents the same behavior described above. It breaks
between the second and the third wave gauges, re�ects on the wall and travels
o�shore. Also in this case, the numerical results are in very good agreement
with the experimental data.
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Figure 3.20: Solitary wave on a composite beach, Case (b): Time series of the
free surface elevation at the gauges locations.

3.8 Solitary wave propagation over a two dimen-
sional reef

The last experimental test case we consider in one dimension is the solitary
wave transformation over an idealized fringing reef. The problem is very chal-
lenging and tests the model capability in handling non-linear dispersive waves
along with wave breaking, bore propagation, hydraulic jump detection and wall
re�ection. It has been initially presented in Roeber et al. [2010] and the labo-
ratory experiments have been carried out at the O.H. Hinsdale Wave Research
Laboratory of Oregon state University from 2007-2009. The test includes a
steep slope, along with a reef crest in order to represent fringing reefs. The to-
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3.8. Solitary wave propagation over a two dimensional reef

pography includes a fore reef slope of 1/12, a 0.2 [m] reef crest and an o�shore
water depth h0 = 2.5 [m]. The reef crest is then exposed by 0.06 [m] and sub-
merges the �at with h = 0.14 [m]. The computational domain is x ∈ [0, 83.7]
[m], discretized with a constant grid of size ∆x = 0.1 [m]. A solitary wave
of 0.75 [m] amplitude is set at x = 17.64 [m]. A CFL number of 0.2 is used,
and γ = 0.6 in wave breaking detection criteria. Wall boundary conditions
are placed at each boundary of the computational domain and, as suggested
in Roeber et Cheung [2012], a Manning coe�cient nm = 0.012 [s/m1/3] is used
to de�ne the roughness of the concrete surface of the reef. Experimental re-
sults for the free surface elevation were recorded at 14 wave gauges along the
centerline of the computational domain. Please refer to Roeber et al. [2010]
for the complete setup of the experiment and the precise position of the gauges.

Figures 3.21 and 3.22 show the measured and computed wave pro�les, for
both FV and SUPG schemes, as the numerical solitary wave propagates. For
additional comparison purposes, we also account for the results obtained by
Kazolea et Delis [2013], solving Nwogu's equations (cf. Nwogu [1994]) with
a FV scheme. As the initially symmetric solitary wave propagates along the
inclined bottom, it starts to shoal across the toe of the slope, at x = 25.9
[m], and it begins to skew to the wave front. As expected (cf. Filippini et al.
[2015]), during the shoaling (at t

√
g/h = 65), Nwogu's equations slightly over

predict the wave height, which is instead better described by the eGN model.
The wave begins to break as it approaches the reef, developing a plunging
breaker on the top of the reef crest that collapses around t = 34.5 [s]. Both
the Nwogu and enhanced Green-Naghdi models (and all schemes) are mim-
icking the breaker as a collapsing bore that slightly underestimates the wave
height, but conserved the total mass. The two models give identical results
as the wave overtops the reef, deforming both a hydraulic jump and a down-
stream propagating bore. A di�erence can be observed in the approximation
of the undular bore that forms after the re�ection on the wall, overtop the reef
and travels o�shore. Here, higher amplitudes are observed in the computation
using the weakly nonlinear model of Nwogu, clearly visible in the gauge sig-
nals on �gures 3.23 and 3.24. The �gures compare the computed and recorded
surface elevation time series at speci�c wave gauges, respectively before and
after the reef. The higher amplitude oscillations may indicate that a di�erent
treatment of the breaking mechanism is needed for di�erent PDE models, but
this study is beyond the scope of this work.
This experiment is particularly challenging for the breaking criteria used (cf.
2.9), which has to deal with stationary and nearly stationary jumps and re-
�ected bores on the �ow pro�le. Stationary hydraulic jumps are correctly
recognized by the local slope angle criterion in all instances. The development
of an undular bore in the �ow justi�es the use of the critical Froude termina-
tion criterion, which correctly recognizes the non-breaking undular bore which
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is resolved by the Green-Naghdi model as it travels in deeper waters.

The recorded data from the wave gauges at x ≤ 50.4 [m] shows the e�ect
of the dispersive waves on the free surface. The produced train of waves over
the increasing water depth and the resulting undulations were intensi�ed as
higher harmonics were released. As a matter of fact, wave gauges near the toe
of the slope recorded highly dispersive waves of kh0 > 30 Roeber et al. [2010].
The hybrid BT model manage to reproduce these highly dispersive waves with
the correct phase and height strengths. The time series at x = 58.1 [m]
present the initial and subsequently overtoppings at the reef crest and con�rm
the e�ciency of the applied wet/dry front treatment. The numerical model
reproduced these overtoppings at the correct phase, but slightly overestimated
the height of the arrival waves. At the gauges located at x = 65.38 [m], 72.7
[m] and 80 [m], the arrival of the initial wave, the �rst re�ected bore from the
end wall, its subsequent re�ection from the back reef, as well as any subsequent
re�ections are almost correctly reproduced by the numerical models.
Both the models reproduce the long and intermediate-period oscillations after
a long simulation involving a series of wave breaking and re�ection in the
�ume. The conservative structure of the model allows a good description
of the transition between super and subcritical �ows and the present wave
breaking model reproduces surging and plunging waves over the reef. The
local deactivation of the dispersive terms in the breaking regions is e�cient, it
does not originate any source of instability into the simulation and does not
alter the dispersion properties of the wave transformation process.

3.9 Discussion on two di�erent breaking formu-
lations

As mentioned in section 2.9.3, in this work we consider two di�erent approaches
for the implementation of wave breaking technique in the hybrid schemes. The
�rst approach takes advantage from the fact that the elliptic and the hyper-
bolic part of the system are completely independent of one another and only
the hyperbolic phase is aware of the breaking process. This makes it particu-
lar easy to implement in any Shallow Water code, by simply using Φ̄. In the
second approach, we expect to achieve a smoother transition between the two
phases, but the breaking condition must be embedded in the elliptic part. In
this section we use the two di�erent wave breaking formulations for both the
FV and SUPG schemes, with the goal of revealing the di�erences, if any, the
limitations and advantages of each approach by performing test cases involving
di�erent wave characteristics and breaking conditions.

First: The �rst test case performed is the solitary wave propagation over
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a plane beach, described in section 3.5. Figure 3.25 shows the numerical re-
sults obtained by applying the two di�erent approaches to both schemes and
depicts the breaking procedure before the run-up of the wave. The left column
corresponds to the FV scheme and the right column to the SUPG scheme.
Each snapshot presents the values in space of the free surface elevation and
the computed quantity Φ̄. We must mention that, while for the FV scheme
Φ̄i contributes only to the momentum equation, this is not the case for the
SUPG scheme in which Φ̄i is coupled by the stabilization term (see eq. 2.30).
In all the results, we present only the term contributing to the momentum
equation. The numerical results obtained for both schemes are quite similar.
We can observe that the �rst approach of wave breaking tends to be slightly
more oscillatory, while the second provides smoother wave pro�les.

Second: Next �gure describes the same problem but with a re�ned mesh
of 4800 nodes. Here the oscillatory behavior of the �rst approach is revealed
in both schemes, but is more pronounced in the FV scheme. Oscillations are
produced during breaking and due to the abrupt switching between the two
formulations. They travel o�shore and they a�ect the back of the wave. We
must mention that the SUPG scheme is more di�usive during breaking due to
the di�erent nature of the limiters used, compared to the FV scheme. Further
research on the e�ects of the limiters during breaking is necessary. We observe
that the more we re�ne the mesh the more oscillations on Φ̄ are observed.
These are introduced to the free surface elevation and eventually lead to solu-
tion blow up on re�ned meshes (cf. �gure 3.27). A similar behaviour has been
observed with other implementations of the hybrid approach (cf. Bacigaluppi
et al. [2014b]; Duran et Marche [2014]; Kazolea et al. [2014]).

Third: Figure 3.27 presents the numerical results for a solitary wave of
ε = 0.5 propagating in the same inclined topography as before. As expected
the wave breaks at an earlier time and once again the �gures depict the strong
breaking close to the shore. Once more, it can be noticed that the second
approach is able to reduce the spurious oscillations originating at the interface
between breaking and non-breaking region, producing a smoother transition.
Still, the SUPG scheme provides neater free surface pro�les with respect to
the FV one, thank to a more e�cient dissipation of the spurious perturbation
which may be due to the di�erent nature of the limiter implemented for the
two methods.

Fourth: A di�erent trend can be observed for the wave propagation over
a bar test case (cf. �gure 3.28). The test have been �rstly performed using the
same uniform mesh with ∆x = 0.04, used to compute the results of section 3.4,
without remarking any big di�erence between the two approaches. The results
in this case are not reported inside this manuscript. The simulation has been,
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thus, repeated using a �ner mesh containing 4000 nodes; the results displayed
in �gure 3.28 refers to this case. The two formulations provide di�erent de-
scriptions of the water �eld after the submerged bar, with a phase lag which is
perhaps related to the perturbation disturbing the upstream signal. Moreover,
we found that the second approach reduces the spurious noise derived from
wave breaking on the top of the bar.

Summary: From this brief investigation we can conclude that smoother re-
sults can be generally performed using the second breaking formulation. This,
also, allows all the coupling to be embedded in the computation of Φ without
the need to modify the hyperbolic part of the code, opening to the possibility
to easily introduce both the computation of the dispersive terms and the hy-
brid wave breaking treatment into an existing Shallow Water solver. Still, the
open problem of blowing up solutions for ∆x → 0 has not been solved, so a
fundamental problem of the hybrid schemes remains. Further research on the
topic is thus needed.
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Figure 3.21: Solitary wave propagation over a two dimensional reef (Part I):
evolution of the free surface pro�les computed by the two GN schemes of this
work (FV and SUPG) and by the FV solver of Kazolea et al. [2014] for the
weakly nonlinear BT equations of Nwogu.
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Figure 3.22: Solitary wave propagation over a two dimensional reef (Part II):
evolution of the free surface pro�les computed by the two GN schemes of this
work (FV and SUPG) and by the FV solver of Kazolea et al. [2014] for the
weakly nonlinear BT equations of Nwogu.
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Figure 3.23: Solitary wave propagation over a two dimensional reef: time series
of the normalized free surface elevation at the wave gauges locations, before
the reef (gauges from 1 to 8).
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Figure 3.24: Solitary wave propagation over a two dimensional reef: time series
of the normalized free surface elevation at the wave gauges locations on top
and after the reef (gauges fro 9 to 13).
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Figure 3.25: Di�erent breaking treatments: values of the free surface elevation
and of the non-hydrostatic correction Φ̄ at two signi�cant time instant (top
and bottom), computed by the FV (left) and SUPG (right) schemes, using the
two di�erent approaches for wave breaking treatment in the case of a solitary
wave of amplitude of ε = 0.28 propagating towards a planar beach. Vertical
dashed lines de�ne the breaking region lNLSW where the NLSW equations are
solved.
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Figure 3.26: Di�erent breaking treatments: values of the free surface elevation
and of the non-hydrostatic correction Φ̄ at two signi�cant time instant (top and
bottom), computed by the FV (left) and SUPG (right) schemes, using the two
di�erent approaches for wave breaking treatment in the case of a solitary wave
of amplitude of ε = 0.28 propagating towards a planar beach. Computation on
a re�ned mesh of 4800 nodes. Vertical dashed lines de�ne the breaking region
lNLSW where the NLSW equations are solved.
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Figure 3.27: Di�erent breaking treatments: values of the free surface elevation
and of the non-hydrostatic correction Φ̄ at two signi�cant time instant (top
and bottom), computed by the FV (left) and SUPG (right) schemes, using the
two di�erent approaches for wave breaking treatment in the case of a solitary
wave of amplitude of ε = 0.5 propagating towards a planar beach. Vertical
dashed lines de�ne the breaking region lNLSW where the NLSW equations are
solved.
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Figure 3.28: Di�erent breaking treatments: free surface elevation and non-
hydrostatic term Φ̄ at three consecutive times (from top to bottom), computed
using the FV (left) and SUPG (right) schemes, for periodic waves propagating
over a bar. Results performed on a re�ned mesh containing 4000 nodes.
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4.1. Elliptic phase: Continuous Finite Element formulation

In this chapter we extend the solution strategy, discussed and validated in
the previous chapters 2 and 3, to the two-dimensional problem. The system
of two-dimensional enhanced Green-Naghdi equations (1.118) is rewritten as
in section 2.1:

(I + αT )φ = W −R , (4.1)

ht +∇ · q = 0 , (4.2)

qt +∇ ·
(

q⊗ q

h

)
+ gh∇η = φ ,

by splitting the original system in its elliptic (4.2) and hyperbolic (4.1) parts,
through the de�nition of the new variable φ = [φx φy]T , accounting for the
dispersive e�ects and having the role of a non-hydrostatic pressure gradient
in the Shallow Water equations. Similarly to what has been done in the one-
dimensional case, we use the following de�nitions: W = T (gh∇η) and R =
hQ1(u), where the operators T (·) and Q1(·) have been de�ned respectively in
(1.119) and (1.120).
We propose an hybrid FE-FV scheme, where the elliptic part of the system
is discretize by means of the continuous Galerkin �nite element method. In
order to increase the e�ciency of the scheme in 2D, we have looked to a
di�erent implementation of the elliptic solver, which ensures the invertibility
of the matrix derived by the discretization of the operator (I + αT ). The
hyperolic part of the system is discretize, instead, by the two dimensional
formulation of the �nite volume scheme described in section 2.3 and inspired
by the works of Kazolea et al. [2012]; Delis et al. [2011]; Nikolos et Delis [2009].
In particular we refer to the node centered �nite volume approach of Kazolea
et al. [2012] which has proven to be robust and capable of simulating wave
transformations providing accurate results in complex scenarios and over two-
dimensional unstructured meshes.

4.1 Elliptic phase: Continuous Finite Element
formulation

4.1.1 Exploiting the self-adjoint character of T

In section 1.8, we have already stressed the fact that the coercivity of the
operator (I + αT ) can be proved, via the variational form of T (cf. equation
(1.123)). This property descends on the self-adjoint nature of the operator T ,
and is of primary importance to ensure the invertibility of the matrix derived
from the discretization of (I+αT ), which is necessary condition for the discrete
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equation to be solved. Knowing that, as discussed in section 2.5, the result of
the elliptic equation will not be used inside the hyperbolic part in nodes where
hi ≤ εwdh , and simply φi = (0 , 0)T is set, we de�ne a speci�c (per unit depth)
dispersive correction ψ such that:

φ = hψ . (4.3)

We can, thus, formulate the elliptic step using the unknown ψ. The de�-
nitions of the operator T (1.121) and of S1(·) and S2(·), given in (1.122), lead
to the following variational form of the elliptic equation:

∫
Ω

hν ·ψ + α

∫
Ω

S1(ν)hS1(ψ) + α

∫
Ω

S2(ν)hS2(ψ) = RHS , (4.4)

being RHS a compact form to write the variational formulation of the right
hand side of the equation, and being ν the vector of components respectively
(ϕi , 0)T or (0 , ϕi)

T (with ϕi the standard linear Lagrange basis functions), if
the equation in the x or y direction is taken into account. ψi = (0 , 0)T is
imposed when hi ≤ εwdh .
The use of ψ as an unknown in the FE phase leads to a symmetric positive
de�nite bilinear form on the left hand side of the variational equation (4.4),
namely for the matrix of the di�erential operator (h + αT ). The elliptic part
of the system is, thus, solved for ψ. The value of φ, to use in the conservative
hyperbolic equations (4.2), are then recovered nodally a posteriori by reverting
the de�nition (4.3).

4.1.2 Discrete Formulation:

Let Ωh denote, in this chapter, an unstructured triangulation of the spatial
domain Ω, with h the reference element size and with K denoting the generic
element of area |K|. For a node i ∈ Ωh, let Ki denote the set of elements con-
taining the node i. As done in the one space dimension, we consider piecewise
linear continuous approximations ηh and qh of the variables of type (2.4), with
standard piecewise linear continuous Lagrange bases (cf. �gure 4.1).

Denoting with (·)x the component of the vectorial quantity (·) along the
x-axis and with (·)y the one along the y-axis, we de�ne Ψ = [Ψx, Ψy]T , with
Ψx = [ψx1 (t), ψx2 (t), ..., ψxN(t)]T and Ψy = [ψy1(t), ψy2(t), ..., ψyN(t)]T , and U =
[U, V ]T , being U = [u1(t), u2(t), ..., uN(t)]T and V = [v1(t), v2(t), ..., vN(t)]T .
The discrete form of the elliptic equation (4.1) will thus read:

(MG
H + αT)Ψ = W− R , (4.5)

W = T δ , (4.6)

R = Q (h,U) , (4.7)
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η
 h

ϕ
i

1

i

Figure 4.1: P 1 �nite element interpolation

with δ an approximation of g∇η.
The matrix MG

H is the four block matrix with zero o�-diagonal terms:

MG
H =

[
MG

H 0
0 MG

H

]
,

where MG
H is the symmetric positive de�nite matrix whose entries are repre-

sented by: (
MG

H

)
i,j

=

∫
Ωh

hϕi ϕj . (4.8)

The matrix is no more time invariant, as instead was MG, and needs to be
recomputed at any time iteration.
The operator T(hh, bh) is a matrix di�erential operator of order two, acting on
two dimensional vectors, which can be written as:

T =

[
T1 1 T1 2

T2 1 T2 2

]
.

We call Tm,n
i,j the element (i, j) belonging to the block (m,n) of the ma-

trix T. Its fully discrete expression is obtained evaluating, with approximate
numerical quadrature over each mesh element and the hypothesis of piecewise
linear variations of all the quantities involved, the following series of integrals
(obtained by the assumption of periodic boundary conditions):

Tm,ni,j (hh, bh) =
1

3

∫
Ωh

∂Xm(ϕi)h
3
h ∂Xn(ϕj)−

1

2

∫
Ωh

ϕi hh ∂Xn(ϕj) ∂Xm(bh) +

− 1

2

∫
Ωh

∂Xm(ϕi)h
2
h ∂Xn(bh)ϕj +

∫
Ωh

ϕi hh ∂Xn(bh)ϕj ∂Xm(bh) ,

where {X} = {x, y} and m = 1, 2 and n = 1, 2.
As already remarked in section 1.8, T does not de�ne a scalar elliptic equation,
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but a coupled system for the vector Ψ. This makes the computation of this
phase costly compared to the diagonal model proposed by Lannes et Marche
[2015].

Proceeding similarly, the full discrete form for the operator Q[hh,uh, bh, δbh]
is found by evaluating, with a quadrature approximation over each triangle of
the mesh and with the hypothesis of piecewise linear variation of the quantities
involved, the following series of integrals:

Q[hh,uh, bh, δbh] =− 2

3

∫
Ωh

∇ϕi
(
h3
h

(
∇uh · ∇⊥vh

)
+
(
∇ · uh

)2
)

+

+

∫
Ωh

ϕi h
2
h

((
∇uh · ∇⊥vh

)
+
(
∇ · uh

)2
)
∇bh +

− 1

2

∫
Ωh

∇ϕi h2
h

(
u2
h ∂xδ

x
bh + v2

h ∂yδ
y
bh

+ 2uh vh ∂xδ
y
bh

)
+

+

∫
Ωh

ϕi h
(
u2
h ∂xδ

x
bh + v2

h ∂yδ
y
bh

+ 2uh vh ∂xδ
y
bh

)
∇bh .

(4.9)

As direct consequence of the linear dispersion analysis performed on the
one-dimensional scheme in section 2.7.2 and of the resulting optimum con�g-
uration that have been found to minimize the dispersion error with respect to
the continuous expression (1.15), also in the two-dimensional scheme we use
non-lumped mass matrix in equation (4.5) and for the reconstruction of the
auxiliary variables δh and δbh:

(
MGδh

)
i

=

∫
Ωh

ϕi g hh∇ηh ,(
MGδbh

)
i

=

∫
Ωh

ϕi∇bh . (4.10)

Note that the cost of solving the additional linear system (4.10) is payed
just once at the beginning of the simulation since the bed is invariant in time.
Finally, the complete discrete linear system is solved by making use of the
standard functionalities of the MUMPS algebraic library (cf. Amestoy et al.
[2001, 2006]) to factorize the (MG

H + αT) matrix in any time step of the sim-
ulation. Please refer to the cited references and to the o�cial documentation
of the library for more informations about MUMPS and the techniques there
implemented. Here we limit to say that MUMPS is a direct solver, the use
of iterative methods (or matrix free as GMRES) or simple methods exploiting
the symmetric nature of the system (cf. conjugate gradient) must be exploited
in the future.
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4.2 Hyperbolic phase: Finite Volume Scheme

For the two-dimensional spatial discretization of the hyperbolic part of the eGN
system (4.1)-(4.2), we use the node centered �nite volume scheme developed
and validate in Kazolea [2013]; Kazolea et al. [2012]; Delis et al. [2011]; Nikolos
et Delis [2009], based on a third order MUSCL reconstruction of the �uxes.
In this �nite volume framework, the triangulation of Ω used for the �nite
element discretization of the elliptic phase provides what we refer to as mesh.
In the node-centered discretization, a median-dual partition is used to generate
non-overlapping control volumes, covering the entire computational domain
(cf. �gure 4.2). We denote by Ci the median dual cell obtained by joining the
gravity centers of the triangles in Ki with the midpoints of the edges meeting
in the node i, being Ki the set of triangles of the mesh containing i (as in the
FE notation). We can thus write:

|Ci| =
∑
K∈Ki

|K|
3

.

The interface belonging to adjacent nodes i, j is named ∂Cij and is com-
posed by the union of two segments connecting the barycenters of the two
triangles satisfying K 3 i, j with the midpoint of the edge ij (cf. �gure 4.2).
The boundary of the median dual cell of i can thus be de�ned as:

∂Ci =
∑
j∈Ki

∂Cij .

Moreover, we de�ne rij the vector connecting nodes i and j, while the
normal and the area associated to the interface ij are:

nij =
1

2

∑
K3i,j

nK
ij , |Cij| =

∑
K3i,j

|C K
ij | ,

with |C K
ij | = |K|

6
.

The scheme will evolve approximations of the solution averages over the
standard median dual cells that will be denoted, as in the one-dimensional
case, as:

Ui(t) =
1

|Ci|

∫
Ci

U(x, t) , (4.11)

being U the vector of the conservative variables U = [h, hu, hv]T .
To be consistent with the notation used in section 2.3, we rewrite the system
of conservation laws (4.2) as:

Ut +∇ ·H(U) = Sb + Φ , (4.12)

146 Andrea Gilberto Filippini



4. Numerical Discretization in Two-Dimensions

Figure 4.2: Finite volume: median dual control cell de�nition for an internal
node i of the mesh (left), basic notation for the ij interface.

where H(U) denote the �ux vector of components F(U) and G(U) in respec-
tively the x and y directions, and Φ = [0, φx, φy]T represents the dispersive
terms of the eGN equations, computed in the elliptic part via the continuous
�nite element discretization and treated here just like a simple source term,
thank to the decoupled approach proposed.
The integral form of (4.12) reads:

∂

∂t

∫
Ω

U +

∫
Ω

∇ ·H(U) =

∫
Ω

(Sb + Φ) . (4.13)

After the application of the Gauss divergence theorem to the �ux integrals,
the integral conservation law (4.13) becomes:

∂

∂t

∫
Ω

U +

∫
∂Ω

(
H(U) · n̂

)
=

∫
Ω

(
Sb + Φ

)
,

being n̂ = [n̂x, n̂y]T the unitary outward vector normal to the boundary of the
computational domain ∂Ω.
Using (4.11) in the expression above, we �nd the evolution equation for the
averaged quantities Ui:

∂Ui

∂t
+

1

|Ci|

∫
∂Ω

(
Fn̂x + Gn̂y

)
=

1

|Ci|

∫
Ω

(
Sb + Φ

)
.

The �ux integral is then split over the interfaces ∂Cij between connected
nodes, while the integral of the source term is partitioned in the subcells of
the dual mesh contributions Cij, giving:

147



4.2. Hyperbolic phase: Finite Volume Scheme

∂Ui

∂t
+

1

|Ci|
∑
j∈Ki

∫
∂Cij

(
Fn̂x + Gn̂y

)
=

1

|Ci|
∑
j∈Ki

∫
Cij

Sb + Φ , (4.14)

where Φ =
∫
Cij

Φ, that, as in the one-dimensional approach, is computed by
exactly integrating over Ci the piecewise linear polynomial φh, obtained from
the elliptic phase discussed in the previous section.

For all the edges of the unstructured mesh, the �ux vector:

H∗ij =

∫
∂Cij

(
Fn̂x + Gn̂y

)
,

has to be computed and added, with the proper sign, to the �ux summations
for the two adjacent nodes considered i and j. The �ux vector is approximated
assuming a uniform distribution over ∂Cij and equal to the value that can be
computed at the midpoint of the ij edge, namely Mij:

H∗ij =

∫
∂Cij

(
Fn̂x+Gn̂y

)
≈
(
Fn̂x+Gn̂y

)∣∣∣
Mij

||nij||=
(
Fnxij+Gnyij

)∣∣∣
Mij

. (4.15)

A fundamental aspect of the �nite volume methods, as already pointed out
in one dimension, is the idea of substituting the exact �ux at the interface
by an approximated Riemann �ux depending on the left (L) and right (R)
states existing on the two sides of the pointMij. We de�ne these two states as
respectively UL

ij and UR
ij. As in 2.3, in this work we solve the Riemann problem

at each interface using the well known and widely used approximate Riemann
solver of Roe Roe [1981], based on the assumption that the Jacobian matrix
of the system is constant and computed using consistency and conservation
conditions. Thus, being Z(UL

ij, nij) a short notation to represent the scalar
product H(UL

ij) · nij = F(UL
ij)n

x
ij + G(UL

ij)n
y
ij, the Roe-type numerical �ux

reads:

H∗ij =
1

2

(
Z(UL

ij, nij) + Z(UR
ij, nij)

)
− 1

2
|Aij|

(
UR
ij −UL

ij

)
,

with |Aij| the Roe-averaged Jacobian matrix, computed using the Roe-averaged
values of the primitive variables (h, u, v) as:

h̃ =
√
hLhR , c̃ =

√
g
hL + hR

2
,

ũ =
uL
√
hL + uR

√
hR√

hL +
√
hR

, ṽ =
vL
√
hL + vR

√
hR√

hL +
√
hR

,
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and equal to to [X|Λ|X−1]ij, where Xij and X−1
ij are respectively the left and

right eigenvector matrices and Λij is the diagonal matrix having the eigenval-
ues on the main diagonal.

Higher-Order Reconstruction: In the �rst part of this work, we have of-
ten emphasize the importance to use at least at third order scheme in space
and time for the discretization of the BT equation in order to limit the in-
�uence of the scheme on the dispersive error of the model. As also in the
one-dimensional case, the upwind scheme presented above is only �rst-order
accurate when a constant distribution is assumed on the computational dual
cells Ci, namely when the left and right states are approximated with their
corresponding values at the dual cells i and j: i.e. UL

ij = Ui and UR
ij = Uj. In

order to improve the spatial order of accuracy of the scheme concerned, some
�nite volume schemes adopt an evaluation of the values of the �uxes at the in-
terface by linear extrapolation of the primitive variables values. This MUSCL
reconstruction, proposed by Van Leer [1979], reads for each w component of
W = [h, u, v]T :

wLij = wi + (∇w)Lij · r̂ij ,

wRij = wj − (∇w)Rij · r̂ji ,
(4.16)

with :

r̂ij = ri +
rij
2
,

r̂ji = rj +
rij
2
,

(4.17)

being rij the distance vector between nodes i and j. ri and j and rj are respec-
tively the distance between the node i of the mesh and the center of gravity
of the dual cell Ci, and the distance between the node j of the mesh and the
center of gravity of the dual cell Cj. Note that, when symmetric meshes are
used, ri = 0. This term becomes relevant only if very stretched cells are con-
sidered but is fundamental for the conservation of the mean property.

The extrapolating gradients (∇w)Lij and (∇w)Rij are computed using a com-
bination of centered and upwind gradients (cf. Barth [1992]; Delis et Kazolea
[2011]) in order to increase the accuracy of the basic MUSCL reconstruction:
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(∇w)Lij · r̂ij =
1

2

(
(1− β)(∇w)ui · r̂ij + (1 + β)(∇w)cij · r̂ij

)
,

(∇w)Rij · r̂ji =
1

2

(
(1− β)(∇w)uj · r̂ji + (1 + β)(∇w)cij · r̂ji

)
,

(4.18)

where (∇w)cij is the centered gradient and (∇w)ui and (∇w)uj are the upwind
gradients at nodes i and j respectively, de�ned by the following formulae:

(∇w)cij · r̂ij = (∇w)cij · r̂ji = wj − wi ,

(∇w)ui = 2(∇w)i − (∇w)c ,

(∇w)uj = 2(∇w)j − (∇w)c .

Following Barth et C. [1989]; Barth [2003]; Barth et M. [2004], the gradient
(∇w)i is computed as integral averaged by taking into account that the discrete
solution w varies linearly into the dual cell Ci, meaning that the gradient will
be constant on Ci (Green-Gauss linear reconstruction). This can be proven to
result:

(∇w)i =
1

|Ci|
∑
j∈Ki

1

2
(wi + wj)nij .

The parameter β in (4.18) can be chosen in order to control a family of
schemes, as the central di�erencing (using β = 1), or the fully upwind scheme
(when β = −1). The value of β which is used in this work is β = 1/3. This
particular value, in fact, leads to a third order accurate upwind scheme, al-
though the strictly third order accuracy is only reached in linear problems and
for su�ciently regular meshes (cf. Barth [1992]; Koobus et al. [2008]).
Alternative higher-order reconstructions have been considered and tested: e.g.
the reconstruction of the states at the cells interfaces by means of the solution
of a least-square minimization problem up to the second order derivatives, or
the use of two Gauss quadrature points to solve integral 4.15 (cf. Gooch et
Van Altena [2002]; Gooch et al. [2009] and references therein). However, the
approach just presented was preferred due to its simplicity and to the fact that
no sensible improvement of the results was observed with the other methods
considered.
In order to prevent numerical oscillations in the solution in proximity of dis-
continuous regions, a strict monotonicity is enforced in the reconstruction by
the use of a limiter function ψ. This results in reconstructed values:
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wLij = wi +
1

2
ψ
(

(∇w)ui · r̂ij, (∇w)cij · r̂ij
)

(∇w)Lij · r̂ij ,

wRij = wj −
1

2
ψ
(

(∇w)uj · r̂ji, (∇w)cij · r̂ji
)

(∇w)Rij · r̂ji ,

where, for our implementation, we have chosen to use the Van Albada-Van
Leer edge-based nonlinear slope limiter de�ned by:

ψ(a, b) =
ab+ |ab|+ ε

a2 + b2 + ε
,

with ε � 1, used to prevent divisions by zero and the limiters activations in
smooth regions (usually ε ≈ 10−14) (cf. Venkatakrishan [1993]). As also in the
1D scheme, the limiter is activated only in regions where the NLSW equations
are solved.

Interface with FE: As previously mentioned, the FV scheme just discussed
will evolve the average solutions over the dual cells Ci. However, the FE elliptic
phase needs to know the values of the variables in the nodes of the mesh. When
the mesh is symmetric the two values of course coincides, since the mesh node
is also the barycenter of Ci. This is not the case anymore when unstructured
meshes are used. In very stretched meshes, in particular the error becomes
signi�cant. The nodal values are thus reconstructed at every time step using
the following approximation:

wh
i = wi − (∇w)i · ri . (4.19)

Topography source term: In order to derive a scheme which respects the
C-property, the source term due to the bathymetry gradient must be treated
as shown in section 2.3 for the one-dimensional case. This means that it has
to be linearized and evaluated at the same Roe-averaged state as the �ux �ux
term. Thus, we introduce the following �ux vector Rij due to the topography
source: ∫

Ci

Sb(U) =
∑
j∈Ki

Rij .

The upwind discretization of this �ux provides, in the case of a �rst order
scheme (cf. Hubbard et García-Navarro [2000]; Nikolos et Delis [2009]; Kazolea
et al. [2012]):

Rij =
1

2

(
X
(
I− |Λ|Λ−1

)
X−1S̃b

)
ij
,
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which has to be added to the computational cells in order to balance the cor-
responding �ux terms in the hydrostatic conditions, with (S∗b)ij approximated
in the following way :

(S̃b)ij =


0

−gh
L + hR

2
(bR − bL)nxij

−gh
L + hR

2
(bR − bL)nyij

 .

When, instead a MUSCL reconstruction of the state at the interface is used
to improve the order of the scheme, as in this case, an additional term (S∗b)ij
has to added to the previous one in order to keep the balance. This term reads:

(S∗b)ij =


0

−gh
L + hi

2
(bL − bi)nxij

−gh
L + hi

2
(bL − bi)nyij

 .

Note that the above term vanishes in the case of a �rst order scheme since
bL = bi.

4.3 Wet/dry fronts treatment

Also in the two-dimensional discretization, some modi�cations of the scheme
are needed in order to treat wet/dry fronts. The same techniques discussed in
section 2.5, are adapted for 2D applications. In particular, two thresholds are
de�ned: εwdh indicates the value below which a cell is considered as dry, while
εwdu indicates the value below which the velocity on a cell is considered as zero.
Generally εwdh � εwdu , with εwdu de�ned by:

εwdu =
h2

L2
,

with h the characteristic mesh length and L the characteristic length of the
spatial domain. The water mass cut in this way is linearly redistributing among
the wet cells of the domain.
In the presence of wet/dry fronts it is fundamental to keep a consistent com-
putation between ∇h and ∇b. In cells without any wet/dry interface, for
hydrostatic conditions, it holds ∇h = −∇b. However, this is not the case
anymore in cells having wet/dry interfaces. In this cases, a �rst order approx-
imation of the states at the cell interfaces is thus performed.
Moreover, in order to preserve the conservation of the lake at rest condition
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when the computational domain contains emerging topographies, the bed ele-
vation is rede�ned at the wet/dry interface . The exact balance between the
bed slope and the hydrostatic terms is obtained by applying (see section 2.5):

∆b =

{
hL if hL > εwdh and hR ≤ εwdh and bR < (bR − bL) ,

(bL − bR) otherwise .

In addition to the above bed rede�nition, to avoid the �ow in motion over
adverse slope, we impose at the two faces having a wet/dry front the follow-
ing conditions for the computation of the corresponding numerical �uxes and
source terms:

if: hL > εwdh and hR ≤ εwdh and hL < (bR − bL) ,

then: uL = uR = 0 and vL = vR = 0 .

This treatment will be, of course, symmetric in the case when the right
state is wet and the left one dry.

4.4 Time integration and boundary conditions

In the previous sections we have discussed the spatial discretization of the
the two-dimensional eGN system of equations (1.118). In order to obtain a
fully discrete scheme, the time evolution operator must be also discretized. In
section 2.8, three numerical scheme have been used in the one-dimensional case.
In 2D the third order strong stability preserving (SSP) Runge-Kutta (RK)
scheme is applied, whose structure has already been described in section 2.8 for
the general ODE U′ = L(U) and will be here just reported for completeness:

Up =Un + ∆tL(Un) ,

U2p =
3

4
Un +

1

4
Up +

∆t

4
L(Up) ,

Un+1 =
1

3
Un +

2

3
U2p +

2∆t

3
L(U2p) .

(4.20)

Also in 2D, most of the numerical applications, that will be presented need
the addition of a friction term. This term has the form (2.54), it is added to
the momentum equation where it plays the role of a sti� dumping term. The
explicit treatment of this term may impose a severe time step restriction in
presence of dry areas. The semi-implicit approach discussed and applied in
section 2.8 is only �rst order accurate when friction becomes dominating. In
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order to tackle this problem, Chertock et al. [2015] developed SSP-RK based
semi-implicit methods, on both a scalar ODE and system of ODEs, arising
from the semi-discretization of the shallow water equations with sti� friction
term, which are able to conserve the high-order accuracy of the initial scheme.
Denoting a general ODE:

U′ = L(U) +G(U)U ,

with G(U) a general friction term, the approach of Chertock et al. [2015]
modify the previous RK3 (4.20) steps in the following way:

Up =
Un + ∆tL(Un)

1−∆tG(Un)
,

U2p =
3

4
Un +

1

4
· U

p + ∆tL(Up)

1−∆tG(Up)
,

U3p =
1

3
Un +

2

3
· U

2p + ∆tL(U2p)

1−∆tG(U2p)
,

Un+1 =
U3p − (∆t)2 L(U3p)G(U3p)

1 +
(
∆tG(U3p)

)2 .

(4.21)

where the fourth additional step is using to perform a correction which allows
to recover the third order of the scheme even for friction dominating problems.
This scheme is the one used in the applications shown in the next chapter.

Boundary Treatment: As also in 1D, only wall re�ective and absorbing
boundary conditions have been used in this work. Considering �rst the wall
boundary conditions, a strong imposition is made on the elliptic system con-
sidering the following conditions:

φ · n = 0 , ∂nφ
t = 0 ,

While the �rst condition simply seems reasonable and can be derived from
the momentum equation, considering that u · n = 0, the second one, which
forces the tangent component of φ to be constant in the normal direction with
respect to the wall, seems arti�cial. Note that this condition can be obtained
by requiring that ∇ ∧ Φ on the wall boundaries (with ∇∧ indicating the curl
operator), and using the fact that ∂t(φ · n) = 0 along these boundaries. The
imposition is made by directly modifying the right hand side of (4.5) and the
related entries of the matrix operator (MG

H + αT).
A strong imposition of the re�ective wall boundary is also applied in the hy-
perbolic phase through the condition: u · n = 0.
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Concerning absorbing boundary conditions and internal wave generation,
the techniques used are the same already reported in section 2.8 for the one-
dimensional case and they are applied with no changes in the 2D case. We
thus refer the interested reader to the cited section and references therein for
details.

4.5 Embedding wave breaking

Like in 1D, the hybrid strategy for wave breaking treatment is implemented
in the scheme. We �rst estimate the location of breaking waves using explicit
criteria, applying the NLSW equations to solve the �ow in the �agged cells
and the eGN ones elsewhere. Hybrid wave breaking treatment has been ap-
plied by many authors in the last years using di�erent BT models (cf. in
particular Tonelli et Petti [2009]; Roeber et Cheung [2012]; Shi et al. [2012];
Kazolea [2013]; Kazolea et al. [2014]) but very rarely on unstructured meshes
(cf. Kazolea et al. [2014]). In Tonelli et Petti [2009, 2010], the authors apply
on structured meshes the nonlinearity criterion ε = η

d
> 0.8 to decide if a wave

is breaking, switching o� the wave energy dissipation when the value drops be-
low 0.35− 0.55. The limitation of this treatment remains, as in 1D, its static
and local application, despite its great simplicity. In here, following Kazolea
et al. [2014], we apply in the two-dimensional framework the combination of
two phase-resolving criteria discussed in section 2.9:

• the surface variation criterion: |ηt| ≥ γ
√
gh with γ ∈ [0.35, 0.65] ;

• the local slope angle criterion: ||∇η|| ≥ tanφc with φc the critical angle
value .

As in 1D the �rst criterion �ags for breaking when ηt is positive, since breaking
starts on the front face of the wave, while the second criterion, acting com-
plementary to the �rst, is useful for the detection of hydraulic jumps. In this
work the value of φc = 30◦ is used. Moreover, the estimation of the Froude
number of the wave is used to established when to switch of the breaking and
to detect non-breaking bores.

4.5.1 Practical implementation

It should be stressed that the application of any hybrid approach to the un-
structured FV scheme presented here, is not straightforward and a special
treatment is in need to perform a stable switch between the eGN and the
NLSW equations which minimizes mesh dependence and stability issues on
�ner meshes. At every time step, the hybrid scheme is applied with the fol-
lowing steps:
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4.5. Embedding wave breaking

1) Check, for any node of the mesh, if any of the two criteria for wave
breaking triggering is satis�ed.

2) Identify each breaking wave of the domain, creating a list of the nodes
belonging to the breaking front. The list is created by starting from a
random �agged node and adding the neighboring nodes which are also
�agged. The procedure will be iterate considering the neighbors of each
new node add into the list and ends when no more breaking nodes are
found from the algorithm, or if the ones found are already inside the list.

3) An extension of each wave breaking region is performed, according to
the corresponding wave height, following Tissier et al. [2012]. We select
the nodes of each list having the maximum and minimum values of the
coordinates x (xmax and ymax) and those having the maximum and min-
imum values of the coordinate y. Further, concerning the x-direction, if
lNLSW = xmax − xmin < 2.5lr (see section 2.9) we extend the breaking
region including in the nodes list of the breaking wave front those laying
in the interval [xmin − 0.5(lNLSW − 2.5lr), xmax + 0.5(lNLSW − 2.5lr)] ×
[ymin, ymax]. Of course the procedure can be easily adapted for a break-
ing wave front traveling in the y-direction, but it is not general. In this
work, we limit to consider numerical benchmarks with main wave fronts
aligned with axis of the computational domain. Of course, a more gen-
eral procedure to extend the breaking region, considering the direction
of propagation of the wave front in the xy plane, remains an important
theme for future developments.

4) For each breaking front, we measure the water depth at the wave crest
and at the wave trough to compute the Froude number of the wave
through (2.55). If Fr ≤ Frc all the breaking points of the interested wave
are un-�agged ans the wave is considered as non-breaking. Following
Tissier et al. [2012], we have set Frc = 1.3.

After the characterization of the breaking regions, the NLSW model has
to be solved in the �agged part of the domain. For simplicity, in the initial
development of the scheme the �rst approach studied in sections 2.9.3 and 3.9
has been used. The suppression of the dispersive terms of the eGN equations
is accomplished in breaking nodes by nodally imposing Φ̄i = 0 into 4.14. The
elliptic phase of the system is thus not aware of the breaking process.
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5.1. Travelling vortex

In this chapter the two dimensional scheme discussed in chapter 4 is tested
against several standard two-dimensional benchmarks, designed in order to
assess its accuracy with respect to both experimental data and analytical so-
lutions. We �rst want to verify our implementation of the schemes to assess
that the expected order of accuracy is obtained and test their ability to handle
discontinuous solutions and wet/dry fronts in the Shallow Water case. Some of
the one-dimensional tests of chapter 3 will be then reproposed and solved using
the two-dimensional scheme implemented. This will allow a direct comparison
with the results obtained with the 1D hybrid FE-FV scheme of sections 2.2
and 2.3. Finally, genuinely multidimensional benchmarks will be presented,
including complex interactions between wave shoaling, breaking, re�ections,
di�ractions.

5.1 Travelling vortex

To verify the numerical order of accuracy for the 2D �nite volume scheme in
the Shallow water context, we consider the vortex problem proposed in Ric-
chiuto et Bollermann [2009]. This problem allows to test the ability of the
scheme to transport, along the x−direction, a vortex described by an analyti-
cal perturbation of the total water depth h and of the velocity u, with respect
to a rest state characterized by constant h = 10 [m] and u = 6 [m/s]. For
the analytical expressions of the initial conditions of the test, please refer to
Ricchiuto et Bollermann [2009]. The vortex is initially placed in the center
of a square domain [0, 1]× [0, 1]; periodic boundary conditions are applied to
left and right boundaries of the domain, such that after T = 1/6 [s] the vortex
comes back to its initial position. The computations have been performed on
four unstructured grids with topology shown on �gure 5.1 (left). The elements
of the coarsest mesh had a reference size of hK ≈ 0.0125; the other three have
been constructed halving the mesh size at each step.

For comparison purposes, the test has been not only performed with the
third order �nite volume scheme (FV3), discussed in section 4.2, but also using
its second order variant. This second order �nite volume scheme (FV2) can be
obtained by simply setting β = −1 (cf. Barth [1992]) inside the reconstruction
of the values of the variables gradients on the left and right states of each edge
discontinuity (cf. equation (4.18)). The scheme obtained in this way will be
also exploited in chapter 6 to investigate the large scale estuarine dynamics of
coastal alluvial estuaries.
The grid convergence history of the L2 norm of the error is plotted in �gure
5.1 (right), con�rming for both the schemes the theoretical second and third
order of accuracy.
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Figure 5.1: Vortex transport: representation of the coarser unstructured mesh
used for the computation (left); grid convergence for the 2D FV scheme of
section 4.2 (right).

5.2 Asymmetric break of a dam

The next test will assess the capability of the two dimensional scheme to deal
with a discontinuous initial solution. The test performed, taken from Ricchiuto
et al. [2007]; Seaid [2004], consists of the asymmetric break of a dam separating
two basins with water depths of 5 and 10 [m]. The computational domain is
represented in �gure 5.2 (top-left), formed by a square basin of [0, 200]×[o, 200]
[m], with the discontinuity initially placed in x = 95 [m]. For the precise sizes
of the geometry please address to the cited works of Ricchiuto et al. [2007];
Seaid [2004]. Re�ective boundary conditions are used on all boundaries of the
computational domain, discretized with a regular unstructured mesh of refer-
ence size hK = 2.5 [m], represented in �gure 5.2 (top-right) and corresponding
to 7480 nodes.

The computation have been run up to time T = 7.2 [s]. Figure 5.2 (top-
right) shows a 3D visualization of the free surface level computed by the third
order �nite volume scheme (FV3), while data extracted from along the line
y = 132 [m] are shown in the bottom picture. Here reference solutions are
computed using a �ner mesh and a �rst order �nite volume scheme (without
the use of the MUSCL reconstruction 4.16). The third order FV scheme ap-
pears to well behave in presence of discontinuous solutions, describing sharper
shocks and stronger rarefactions and performing a solution which is close to
the one performed on a �ner mesh of 39130 nodes and in good agreement with
what perform by others in the literature (cf. Ricchiuto et al. [2007]; Ricchi-
uto [2015]; Seaid [2004]; Nikolos et Delis [2009]). The results show also the
good implementation of the Van Albada-Van Leer limiter: in fact, no spurious
oscillations appears from the discontinuity.
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5.2. Asymmetric break of a dam
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Figure 5.2: Asymmetric break of a dam: sketch of the domain and of the
mesh used for the computation (top-left), 3D visualization of the computed
solution after T = 7.2 [s] (top-right), data extracted along the line y = 132 [m]
(bottom).
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5.3 Thacker's oscillations in a parabolic bowl

To verify the capability of the scheme to provide an accurate and stable ap-
proximation of moving shorelines, we consider the periodic oscillations of a
curved free surface in a paraboloid (cf. Thacker [1981]). Thacker's solutions
have been used by a number of researchers in order to evaluate their numer-
ical models (cf. Hubbard et Dodd [2002]; Brocchini et Dodd [2008]; Lynett
et al. [2002]; Marche et al. [2007]; Nikolos et Delis [2009]; Ricchiuto et Boller-
mann [2009]), and the details concerning the setup and exact solutions of
the test can be found in Thacker [1981]. Here, a square spatial domain of
[−1.5, 1.5] × [−1.5, 1.5] is considered, which is discretized using an unstruc-
tured triangulation with the topology shown in �gure 5.3 (right), characterized
by reference size of hK = 0.025 and containing 11180 nodes.

Figure 5.3: Thacker's oscillations in a parabolic bowl: (left) 3D view of the
initial solution, (right) topology of the unstructured mesh used for the com-
putation.

The test case chosen has considered as being perhaps the most di�cult
for a numerical model to accurately represent. One major di�culty is the
correct determination of the wet region with acceptable precision. The initial
free surface is set at t = 0 [s] and let oscillating in absence of friction for
three full periods. The results are sketched in �gure 5.4 (top left) and 5.4
(bottom left), considering the extracted free surface solution along y = 0 at
times t = 3T +δt with δt = T/6, T/3, T/2, 2T/3, 5T/6 and T . The computed
solutions are nicely close to the analytical ones. Moreover, the close up of the
wetting/drying region reported on the right column of �gure 5.4 show a very
accurate and oscillation free capturing of the moving shoreline.
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5.4. 2D Solitary wave propagation

Figure 5.4: Thacker's oscillations in a parabolic bowl: section of the analytical
and computed free surface levels at t = 3T + δt with δt = T/6, T/3, T/2 (top
left) and δt = 2T/3, 5T/6, T (bottom left); on the right: close up views on
the wet/dry interface.

5.4 2D Solitary wave propagation

The accuracy of the two-dimensional scheme proposed for the GN equations is
veri�ed by performing a convergence analysis on a solitary wave propagation
problem. A solitary wave of amplitude 0.2 [m] and with the shape described
by (3.4) is left propagating for t = 1 [s] inside a computational domain of
[0, 70] × [0, 0.8 [m], characterized by a value of still water depth of h0 = 1
[m]. Once again, to measure the rate of convergence of the numerical solution
to the exact one, we compute the relative error on the total water depth
EL2(h) = ||hnum − hex||2/||hex||2, with hnum is the numerical solution and hex
is the analytical one. The convergence test have been performed considering
hexagonal meshes as the one shown in �gure 5.5 (left) and characterized by
element size of hK = [0.2, 0.1, 0.05, 0.025]. The results obtained are illustrated
in the right picture of �gure 5.5, together with slopes 2.5 and 3 as references,
con�rming the expected order of accuracy for the scheme implemented.

162 Andrea Gilberto Filippini



5. Numerical Tests and Results in Two-Dimensions

log10(hK)
-1.8 -1.6 -1.4 -1.2 -1 -0.8 -0.6

lo
g
10
||
e
r
r
||
2

-10

-9

-8

-7

-6

-5

-4

-3

-2

FV3

slope 2.5

slope 3

Figure 5.5: 2D Solitary wave propagation: close up view of the hexagonal
mesh used for the computation (left), grid convergence for the 2D FV scheme
of section 4.2 (right).

5.5 Solitary wave run-up on a plane beach

We consider again the case described in section 3.5, performed on the 2D com-
putational domain [0 , 70] × [0 , 0.08] with wall re�ecting boundaries on the
top and on the bottom. The numerical model uses an unstructured triangular
grid consisting of elements with characteristic length hK ≈ 0.1 [m] (cf. �gure
5.6), leading to a mesh with N = 6931 nodes. The CFL number is set to 0.5.

Figure 5.6: Solitary wave run-up on a plane beach: close up view of the
unstructured mesh used for the computation.

Figure 5.7 compares the measured surface pro�les with respect to exper-
imental data for di�erent non-dimensional times. The hybrid wave breaking
model (cf. section 2.9) is used with γ = 0.6 and tan(φc) = 0.37. We can
appreciate that the numerical result not only �t well the experimental data,
accurately reproducing all the physics of the test, composed by wave shoaling,
breaking, run-up and down, hydraulic jump etc., but also correspond to the
ones obtained in the one dimensional case (cf. �gure 3.14), validating the 2D
scheme implementation.
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5.5. Solitary wave run-up on a plane beach

10 15 20 25 30 35 40

−0.1

0

0.1

0.2

0.3

0.4

x (m)

h
(m

)

 

 

Exp.
bed
SLOWS

eGN

10 15 20 25 30 35 40

−0.1

0

0.1

0.2

0.3

0.4

x (m)

h
(m

)

 

 

Exp.
bed
SLOWS

eGN

10 15 20 25 30 35 40

−0.1

0

0.1

0.2

0.3

0.4

x (m)

h
(m

)

 

 

Exp.
bed
SLOWS

eGN

10 15 20 25 30 35 40

−0.1

0

0.1

0.2

0.3

0.4

x (m)

h
(m

)

 

 

Exp.
bed
SLOWS

eGN

10 15 20 25 30 35 40

−0.1

0

0.1

0.2

0.3

0.4

x (m)

h
(m

)

 

 

Exp.
bed
SLOWS

eGN

10 15 20 25 30 35 40

−0.1

0

0.1

0.2

0.3

0.4

x (m)

h
(m

)

 

 

Exp.
bed
SLOWS

eGN

10 15 20 25 30 35 40

−0.1

0

0.1

0.2

0.3

0.4

x (m)

h
(m

)

 

 

Exp.
bed
SLOWS

eGN

10 15 20 25 30 35 40

−0.1

0

0.1

0.2

0.3

0.4

x (m)

h
(m

)

 

 

Exp.
bed
SLOWS

eGN

10 15 20 25 30 35 40

−0.1

0

0.1

0.2

0.3

0.4

x (m)

h
(m

)

 

 

Exp.
bed
SLOWS

eGN

10 15 20 25 30 35 40

−0.1

0

0.1

0.2

0.3

0.4

x (m)

h
(m

)

 

 

Exp.
bed
SLOWS

eGN

Figure 5.7: Solitary wave run-up on a plane beach: snapshots of the free surface
elevation for increasing time of the simulation (from top-left, to bottom-right).
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5. Numerical Tests and Results in Two-Dimensions

5.6 Solitary wave propagation over a two dimen-
sional reef

In the next test case we have performed in two dimensions the solitary wave
propagation over a two dimensional reef, already described in section 3.8. The
computational domain has been extended in the y direction for 1 [m] and it has
been discretized using a uniform hexagonal mesh (cf. left picture of �gure 5.5)
with triangles of characteristic length hK = 0.1 [m], resulting in 9223 nodes.
The CFL condition used for the simulation was set to 0.5 and the parameters
for breaking tracking was γ = 0.6. Wall boundary conditions have been set
to each boundary of the domain. The Manning coe�cient has been set to
Nm = 0.0014 [s/m

1
3 ] to represent the roughness of the bathymetry.

Figures 5.8 and 5.9 represent the measured and computed free surface level
in the whole domain at several time instants along the simulation, allowing also
a direct comparison with respect to the one-dimensional results of section 3.8.
These results, together with the computed time series at gauges positions of
�gures 5.10 and 5.11, are very satisfying. The implemented two-dimensional
scheme reproduces the same results obtained with the one-dimensional one,
accurately describing the physics of this very challenging test. The use of the
proposed breaking criteria is critical, including nonlinear shoaling and run-up,
multiple wave breaking front, undular bores and hydraulic jumps.

5.7 Solitary wave propagation over a three di-
mensional reef

Swigler et Lynett [2011] performed laboratory experiments at the O.H. Hins-
dale Wave Research Laboratory of Oregon State University to study the spe-
ci�c phenomena which occurs when a tsunami like wave approaches the coast,
including shoaling, refraction, breaking and run-up. They performed their
test in a 45 × 26.4 [m] basin. A complex three-dimensional bathymetry was
set down consisting of a 1 : 30 slope connected with a triangular reef �at,
submerged between 0.075 [m] and 0.09 [m] below the still water level. The o�-
shore shelf edge has an elevation of 0.71 [m], with the apex located at x = 12.6
[m]. The steepest slope of the shelf is at the apex and becomes milder moving
along the shelf edge, toward the basin side walls. The planar beach contin-
ues to x = 31 [m], becoming then horizontal until the end of the basin. In
addition, a concrete cone of 6 [m] diameter and 0.45 [m] height is placed to
the apex of the reef, between x = 14 [m] and x = 20 [m]. Nine wave gauges
were placed into the basin in order to measure the variation of the free surface
elevation (cf. �gure 5.12 (left)): gauges 1, 2, 3, 7 were located at y = 0 [m]
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Figure 5.8: Solitary wave propagation over a two dimensional reef, Part I:
Evolution of free surface pro�les and wave transformations over an exposed
reef for a solitary wave of a/h = 0.3 and 1 : 12 slope.
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Figure 5.9: Solitary wave propagation over a two dimensional reef, Part II:
Evolution of free surface pro�les and wave transformations over an exposed
reef for a solitary wave of a/h = 0.3 and 1 : 12 slope.
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Figure 5.10: Solitary wave propagation over a two dimensional reef: time series
of the normalized free surface at the wave gauges location, before the reef.
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Figure 5.11: Solitary wave propagation over a two dimensional reef: time series
of the normalized free surface at the wave gauges location, on top and after
the reef
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5.7. Solitary wave propagation over a three dimensional reef

Figure 5.12: Solitary wave propagation over a three dimensional reef: (left)
geometry along with wave gauge's position; (right) close up view of the adapted
mesh used for the computation.

and x = 7.5, 13, 21, 25 [m]; gauges 4, 5, 6, 8 were located at y = 5 [m] and
x = 7.5, 13, 21, 25 [m], while gauge 10 have been set at y = 10 [m] and x = 25
[m].
Compared to the experiment, the computational domain has been extended
from x = 0 [m] to x = −5 [m] in order to be able to completely contain the ini-
tial solitary wave. It has been discretized by means of a non-uniform unstruc-
tured grid, adapted to the bed curvature, as shown in 5.12 (right), and charac-
terized by reference maximum and minimum size respectively: max(hK) = 0.3
[m] and min(hK) = 0.125 [m]). A solitary wave of amplitude a = 0.39 [m],
corresponding to ε = 0.5, is initially placed in x = 0 [m] and wall re�ecting
boundary conditions are imposed in each boundary of the domain. We perform
two computations, one is frictionless, while the other uses a Manning coe�-
cient Nm = 0.0014 for representing bed roughness. For the two simulations, a
CFL number of 0.5 was used, together with γ = 0.6 for the breaking detection
criterion.

Figure 5.13 shows the computed free water surface at di�erence time instant
during the simulation. Moreover, we show in �gure 5.14 the time evolution of
the breaking reagions detected by the criteria described in section 4.5. As the
solitary wave propagates towards the beach it shoal, increases its steepness and
nonlinearity, up to reaching a breaking point at t = 5 [s] on the center line of
the domain, when it reaches the apex of the triangular shelf. At t = 6.5 [s], the
central part of the wave has completely overtopped the concrete cone, while
on the two sides, the surge continues to shoal, di�racting around the base of
the cone. By t = 8.5 [s], the refracted and di�racted waves collide on the lee
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side of the shelf. After t = 9 [s], the water starts to withdraw from the cone
top and a bore-front forms, from the combined waves after the di�raction, and
propagates on the shelf behind the cone and then onshore. After t = 15 [s],
a new bore is creates from the the drawn-down of the water and collides with
the refracted waves.
The computed free surface time series at the nine gauge positions are illus-
trated in �gure 5.15 and compared with respect to experimental ones. The
arrival of the �rst incoming wave is correctly captured in gauges 1 and 2, as
it is for the refracted and di�racted waves at the lee side of the cone, as can
be seen from gauge 3, except for the minimum of water height registered at
t ≈ 8.5 [s], which is partially caught only in the frictionless case. A slight
deviation from the measurements is displayed after t ≈ 35 [s], maybe due to
late arrival of the re�ected waves from the extended left wall boundary. The
signal at gauges 4, 5, 6, 7 and 8, located on the north side of the cone, indi-
cates that wave shoaling, breaking and propagation on the shelf is accurately
predicted, together with the complex nonlinear interaction between di�racted
and refracted waves. The onshore propagation of the surge and the subse-
quent water recession are registered in gauges 7, 8 and 9, placed along the
initial shore line. The experimental data are well represented also in this case.
As expected, the results computed with the frictionless simulation are charac-
terized by bigger waves and are more oscillatory. However, in gauges 3, 7 and
9 they are closer to the experimental data and able to better reproduce the
drying phenomenon behind the obstacle due to the strong re�ections taking
place in the interactions.

5.8 Wave di�raction over a semi-circular shoal

We consider here the reproduction of the tests carried out in Whalin [1971]
involving the study of the focusing e�ect induced by a semicircular shoal on
wave trains of di�erent periods. The experiments were carried out in a wave
tank 6.096 [m] wide and 25.6 [m] long, its middle portion consisted in a semi-
circular shoal leading the water depth to decrease from h0 = 0.4572 [m] (at
the wave maker) to 0.1524 [m] at the end of the tank. The bottom topography
is described by the equation:

z =


0 if 0 ≤ x < 10.67−G(y) ,

(10.67−G(y)− x)/25 if 10.67−G(y) ≤ x < 18.29−G(y) ,

0.30480 if 10.29−G(y) ≤ x ,

with G(y) =
√
y(6.096− y). The depth h is obtained as h = h0 − z. A con-

tour plot of the bathymetry is reported on the left on �gure 5.8. This test is
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Figure 5.13: Solitary wave propagation over a three dimensional
reef: computed free surface solution with friction at times t =
6.5, 8.5, 11.5, 14.5, 20.5, 27.5 [s] from the top-left picture to the bottom-right
one.
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Figure 5.14: Solitary wave propagation over a three dimensional
reef: computed free surface solution with friction at times t =
3.5, 4.5, 5.5, 6.5, 8.5, 9.5, 11.5 [s] (from the top-left picture to the bottom one).
The red area represents the region where wave breaking is detected and the
NLSW equations are solved.

173



5.8. Wave di�raction over a semi-circular shoal

t
√

(g/h)
0 10 20 30 40 50 60 70

η
/h

0

0.2

0.4

WG1

Experim.

Friction

No Friction

t
√

(g/h)
0 10 20 30 40 50 60 70

η
/h

-0.1

0

0.1

0.2

0.3

0.4
WG2

Experim.

Friction

No Friction

t
√

(g/h)
0 20 40 60

η
/h

-0.05

0

0.05

0.1

0.15

0.2
WG3

Experim.

Friction

No Friction

t
√

(g/h)
0 10 20 30 40 50 60 70

η
/h

0

0.2

0.4

WG4

Experim.

Friction

No Friction

t
√

(g/h)
0 10 20 30 40 50 60 70

η
/h

-0.1

0

0.1

0.2

0.3

0.4
WG5

Experim.

Friction

No Friction

t
√

(g/h)
0 20 40 60

η
/h

-0.05

0

0.05

0.1

0.15

0.2
WG6

Experim.

Friction

No Friction

t
√

(g/h)
0 10 20 30 40 50 60 70

η
/h

-0.1

0

0.1

0.2

0.3

0.4
WG7

Experim.

Friction

No Friction

t
√

(g/h)
0 20 40 60

η
/h

-0.05

0

0.05

0.1

0.15

0.2
WG8

Experim.

Friction

No Friction

t
√

(g/h)
0 20 40 60

η
/h

-0.05

0

0.05

0.1

0.15

0.2
WG9

Experim.

Friction

No Friction

Figure 5.15: Solitary wave propagation over a three dimensional reef: com-
puted time series of the free surface elevation on gauges positions .

174 Andrea Gilberto Filippini



5. Numerical Tests and Results in Two-Dimensions

a standard benchmark for 2D dispersive model, being used by several authors
(cf. Madsen et Sørensen [1992]; Beji et Nadaoka [1996]; Walkley et Berzins
[2002]; Sorensen et al. [2004]; Eskilsson et al. [2006]; Tonelli et Petti [2009];
Kazolea et al. [2012]; Ricchiuto et Filippini [2014] and references therein).

Figure 5.16: Wave di�raction over a semi-circular shoal. Left: bathymetry
contours. Right: close up view of the structured grid

Three cases are considered here, with wave trains characterized by Whalin
[1971]:

(a) T=1 s, A = 0.0195 m, h0/λ = 0.306 ;

(b) T=2 s, A = 0.0075 m, h0/λ = 0.117 ;

(c) T=3 s, A = 0.0068 m, h0/λ = 0.074 ;

having denoted by T the period and by λ the wavelength.
For all the cases, the harmonic analysis of free surface elevation measurements
taken along the tank centerline are available, and are used to verify the ca-
pabilities of a model to reproduce nonlinear refraction and di�raction. The
computational domain is the rectangle [−10, 36] × [0, 6.096] [m]. Periodic
waves are generated by means of the internal generator described in section
2.8.3, centered at x = −4 [m]. Sponge layers (cf. section 2.8.3) of a length of 6
[m] are set at the left and right ends of the domain, while re�ective boundary
conditions are imposed along the top and bottom boundaries. Following Walk-
ley et Berzins [2002]; Kazolea et al. [2012], the tests have been run on regular
triangulations (cf. right picture on �gure 5.8) of size approximately h ≈ 0.05
in the x direction, for case (a), and h ≈ 0.1 for case (b) and (c). The mesh
size in the y direction is instead 0.1 [m] for all the cases. The two meshes used
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was thus containing 28151 and 56211 nodes respectively. The CFL condition
used for the simulations was 0.5.

For all the cases, we compare the solution obtained with the experimental
data. In particular, we report in �gures 5.17, 5.18, and 5.19 a three dimen-
sional visualization of the wave patterns obtained from the computation (top
pictures), the centerline signal at the �nal time of the simulation (bottom-left
pictures), and comparisons of the harmonic components of the η(t) signal along
the channel centerline with respect to the experiments ones.
In order to make sure that a steady periodic state is obtained, we start sam-
pling the solution after at least 15 periods of oscillations. The then perform
a DFT of the centerline data collected over one period of the main incoming
wave.
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Figure 5.17: Wave di�raction over a semi-circular choal, case (b). Top: rescaled
3D view of the free surface. Bottom-left: computed free surface elevation, data
extract from the centerline of the domain, Bottom-right: comparison of DFT
of the computed centerline data with experiments.

The results reported are comparable to those presented by others (cf. Mad-
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Figure 5.18: Wave di�raction over a semi-circular choal, case (b). Top: rescaled
3D view of the free surface. Bottom-left: computed free surface elevation, data
extract from the centerline of the domain, Bottom-right: comparison of DFT
of the computed centerline data with experiments.

sen et Sø rensen [1992]; Beji et Nadaoka [1996]; Walkley et Berzins [2002];
Sorensen et al. [2004]; Eskilsson et al. [2006]; Tonelli et Petti [2009]; Kazolea
et al. [2012]; Ricchiuto et Filippini [2014]). The incoming waves are linear in
the deeper portion of the tank but, as they propagate onto the topography,
they become steeper due to shoaling. Wave energy gradually spreads out to
higher harmonics, which increase in amplitude in the shoaling region.
In particular, case (c), which we consider as being resolved concerning both
the spatial and temporal scales, a slight overestimation of the �rst harmonic
can be noted, which is common to many computational results presented in
literature, while both the second and third harmonics are underestimated, as
also quite common in literature.
In case (b), which we also consider well resolved, a very good match between
the harmonic content of the computed signal and the experiments is found.
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Figure 5.19: Wave di�raction over a semi-circular shoal, case (c). Top: rescaled
3D view of the free surface. Bottom-left: computed free surface elevation, data
extract from the centerline of the domain, Bottom-right: comparison of DFT
of the computed centerline data with experiments.

Finally, in case (a), a slight dissipation of the incoming wave amplitude can
be observed in both the bottom-left and bottom-right pictures of �gure 5.17.
This induces a slight underestimation of the amplitude of the �rst and second
harmonic in all the computational domain, compared to other published re-
sults. Re�ned meshes on the x-direction should be applied in this case.
Overall we judge these results very encouraging. In particular we believe that
they con�rm our observations in one space dimension.

5.9 Wave di�raction over an elliptic shoal

This test reproduces the experiment of Berkho� et al. [1982] studying the
refraction and di�raction of monochromatic waves over a complex bathymetry.
This is a standard test to verify models based on the mild-slope equations but
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it is often also used as a test for extended Boussinesq models (see e.g. Tonelli
et Petti [2009]; Walkley et Berzins [2002]; Walkley [1999]; Wei et Kirby [1995];
Ricchiuto et Filippini [2014]; Kazolea [2013] and references therein). A sketch
of the experiment is reported on the left picture on �gure 5.20. The actual
wave tank is 20 [m] wide and 22 [m] long. The bathymetry consists of an
elliptic shoal mounted on a ramp of constant slope, forming a 20◦ angle with
the x axis. The maximum water depth is h0 = 0.45 [m] at the wave maker,
while the bathymetry is given by the formula z = z0 + zs, where:

z0 =

{
(5.82 + yr)/50 if yr ≤ −5.82 ,

0 otherwise ,

zs =

 −0.3 +
1

2

√
1−

(xr
5

)2

−
(

4yr
15

)2

if
(xr

4

)2

+
(yr

3

)2

≤ 1 ,

0 otherwise ,

with the transformed coordinates (xr, yr) de�ned as: xr = x cos(20◦)−y sin(20◦),
yr = x sin(20◦) + y cos(20◦). The incoming periodic wave has period T = 1
[s], and amplitude a = 0.0232 [m], corrispondent to ε = 0.3. In Berkho� et al.
[1982], the wave elevation was measured in 8 di�erent sections along which
the normalized time average wave height distribution has been computed. A
sketch of the problem with the indicative position of the measurement sections
is reported in the left picture on �gure 5.20 (cf. Berkho� et al. [1982] for de-
tails).
The computational domain is the square [−10, 10] × [−17, 15][m]. The in-
coming periodic wave is obtained by means of the internal wave generator
described in section 2.8.3, centered at y = −13 [m], while sponge layers of 4
[m] thickness are placed at the bottom and top ends of the domain. As in
Tonelli et Petti [2009] and Ricchiuto et Filippini [2014], re�ective boundary
conditions are imposed on the left and right boundaries. Concerning the mesh
size, we have run this case on an unstructured grid, re�ned in the region of
the shoal. In particular, the grid size in the y direction varies from hy ≈ 0.1
[m] on the bottom and top boundaries to hy ≈ 0.05 [m] in the region around
the shoal. In the x direction, the grid size is hx = 2hy. A close up view of
the mesh re�nement in the bottom left region of the computational domain is
reported in the right picture on �gure 5.20. Computations have been run until
time t = 50 [s] with CFL= 0.5.

Three dimensional visualizations of the water elevation computed at time
t = 50 [s] are reported on �gure 5.21. The left picture shows the region of
the interaction with the mesh superimposed. Both pictures provide a visual-
ization of the complex pattern obtained from the di�raction of the incoming
periodic wave on the elliptic shoal. To compare our results with the experi-
ments of Berkho� et al. [1982] time dependent data have been extracted from
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Figure 5.20: Wave di�raction over an elliptic shoal. Left: sketch of the problem
with bathymetry contours and position of the experimental sections; Right:
close up view of the mesh used for the computation.

Figure 5.21: Wave di�raction over an elliptic shoal, results at t = 50 [s]. Left:
top view of the free surface with mesh; Right: exaggerated 3D view of the free
surface with bathymetry.

t = 25 [s] to t = 50 [s] from the sections (cf. left picture on �gure 5.20
and Berkho� et al. [1982]): section 1≡ {y = 1m| − 5m ≤ x ≤ 5m}; section
2≡ {y = 3m| − 5m ≤ x ≤ 5m}; section 3≡ {y = 5m| − 5m ≤ x ≤ 5m}; sec-
tion 4≡ {y = 7m| − 5m ≤ x ≤ 5m}; section 5≡ {y = 9m| − 5m ≤ x ≤ 5m};
section 6≡ {x = −2m|0m ≤ y ≤ 10m}; section 7≡ {x = 0m|0m ≤ y ≤ 10m}
and section 8≡ {x = 2m|0m ≤ y ≤ 10m}. The data obtained have been ana-
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lyzed using the zero up-crossing principle to isolate single waves and compute
the average wave height distributions, the wave height of a single wave being
de�ned as ηmax − ηmin.
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Figure 5.22: Wave di�raction over an elliptic shoal: comparison of the com-
puted average wave height with the experimental data of Berkho� et al. [1982]
(sections 1 to 5).
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The results, normalized by the incoming wave height 2a = 0.0464 [m], are
reported on �gures 5.22 and 5.23. Our computational results compares well
with the experiments and with what can be found in published literature (see
e.g. Tonelli et Petti [2009]; Walkley et Berzins [2002]; Ricchiuto et Filippini
[2014]; Kazolea [2013] and references therein).
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Figure 5.23: Wave di�raction over an elliptic shoal: comparison of the com-
puted average wave height with the experimental data of Berkho� et al. [1982]
(sections 6 to 8).
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The analysis of tidal wave transformation in convergent alluvial estuar-
ies have been the subject of intensive scienti�c research. It has already re-
ceived considerable attention to tackle a sustainable management of water re-
sources and to adequately understand the human impact on estuarine ecosys-
tem. Parametric studies conducted in Lanzoni et Seminara [1998]; To�olon
et al. [2006]; Bonneton et al. [2015]; Munchow et Garvin [1991]; Cai et al.
[2014], have shown that, when neglecting river discharge e�ects, the estuarine
hydrodynamics is controlled by only three dimensionless parameters. These
parameters represent a combination of the properties of the tidal forcing at
the estuary mouth (wave amplitude and period), the large-scale geometrical
characteristics of the channel and the friction coe�cient. For particular condi-
tions of the above dimensional variables, of freshwater �ow and of river channel
bathymetry, the tidal wave may result strongly distorted when the �ow turn
to rise, and a bore can be observed at the beginning of the �ood tide. This
chapter is precisely devoted to the numerical study of the physical conditions
that lead to the formation of tidal bores in estuaries.

Tide propagation in funnel shaped estuaries is both a nonlinear and a
dispersive wave phenomenon. Two types of tidal bores have been observed,
undular bores and breaking bores. In order to provide a physically relevant de-
scription of the wave transformation, one should typically use a nonlinear and
dispersive model, such as the Green-Naghdi system, that has demonstrated to
accurately simulate these complex scenarios (cf. Tissier et al. [2011]). How-
ever, at large spatial and temporal scales, where the non-hydrostatic e�ects
associated with tidal bores can be neglected, the physical processes of tidal
ampli�cation/damping and distortion can be accurately described by the use
of the simple nonlinear and non-dispersive Saint-Venant system of equations,
as it will be also shown later on in this chapter. Some numerical studies al-
ready used the Saint-Venant system to simulate the propagation of tidal waves
in rivers up to bore formation, but they are limited to a single (cf. Madsen
et al. [2005]; Pan et Lu [2010]) or to a small number (cf. Munchow et Garvin
[1991]) of estuaries. A similar limitation concerns also �eld data: since every
estuary in nature represents a unique combination of the three dimensionless
variables, we dispose only of a limited number of points in the parameter space
coming from in situ measurements. Based on the set of data available, it is very
di�cult to understand how such parameters in�uence the bore development
process. Our interest is, �rstly, in bypassing this major constraint through a
numerical investigation, by means of the NLSW system and on idealized con-
vergent channels, of the whole space of the dimensionless variables, leading to
a better understanding of the physics dominating the estuarine dynamics.

The small database available has generated, over time, a fragmentary and
incomplete comprehension of the bore formation mechanism. Although the
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basic conditions are well known (cf. Bartsch-Winkler et Lynch [1988]) (large
tidal range, shallow and convergent channel, low freshwater discharge), a para-
metric estuarine classi�cation in terms of bore occurrence does not exist in the
literature. Based on measurements on the Garonne river and using available
data from existing estuaries, Bonneton et al. [2015] showed that the dominant
dimensionless parameter for bore formation appears to be the dissipation one,
which multiplies the frictional term of the Saint-Venant equations. They con-
cluded that bore generation is associated with large values of the dissipation
parameter. On the other hand, it is also generally accepted that tidal bores
form in estuaries which amplify the incoming tidal wave (cf. Chanson [2012]).
In the next section we show that these empirical criteria based on one dimen-
sionless �ow parameter cannot be relevant, being the underlying physics of
bore formation more complex with many processes involved. We propose a
new scaling for the equations that ensures a clear separation of the di�erent
e�ects. As a consequence, we end up with a set of dimensionless parameters
de�ning a space in which real alluvial estuaries developing bores are clearly
divided from those where bores are not observed. The main �ndings of this
chapter refers to the published work of Bonneton et al. [2016] and to the sub-
mitted work of Arpaia et al. [2016].

6.1 Physical background

The study of large scale tidal wave propagation in funnel shaped estuaries is
often performed under several simplifying assumptions. The geometry of real
alluvial estuaries in coastal plains can be well-approximated by an exponen-
tially decreasing width variation and �at bathymetry (cf. Davies et Woodro�e
[2010]; Friedrichs et Aubrey [1994]; Savenije [2012]). This morphology is the
natural result of a morphodynamic equilibrium of the erosion/sedimentation
process. An alluvial estuary geometry can, thus, generally be characterized by
two characteristic length scales: the mean water depth h0 and the convergence
length LB, de�ned as LB = |B/dB

dx
|, where B(x) is the channel width and x is

the along channel coordinate directed landward. Our study will, thus, be per-
formed on the simpli�ed case (�gure 6.1) of a tide propagating in an idealized
convergent channel of constant depth h0 and width B(x), assumed to decrease
exponentially in the x-direction with the law:

B(x) = B0e
−x/LB .

We assume a rectangular cross-section suitable, as a �rst approximation, to
describe the behaviour of a real section with the same area.

The shallow water equations for �ows in open channel with exponentially
decreasing cross section area are de�ned by:
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Figure 6.1: Sketch of the idealized geometry of the channel and basic notations.

∂η
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+ h

∂u

∂x
− uh

LB
= 0 , (6.1)

∂u

∂t
+ u

∂u

∂x
+ g

∂η

∂x
+ Cf0

u|u|
h

= 0 ,

The friction term has been modelled by a quadratic law, with Cf0 the friction
coe�cient.
Several non-dimensional forms of system (6.1) have been proposed in literature,
here we refer the reader in particular to Munchow et Garvin [1991]; Lanzoni et
Seminara [1998]; To�olon et al. [2006]; Cai et al. [2014]; Bonneton et al. [2015].
These studies are based on the following scaling of the variables:

x = L0x
′ , t =

t′

ω0

, h = h0h
′ , η = a0η

′ , u = U0u
′ , (6.2)

where h0, a0 and ω0 = 2π
T0

form a set of reference external parameters, respec-
tively the water depth, the amplitude and the angular frequency of the tidal
wave, while L0 and U0 are respectively the a priori unknown scales of length
and velocity related to the channel response. As a result, they can be formu-
lated as functions of the previous external variables. With the above scaling,
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the dimensionless governing equations become (dropping the primes for the
sake of clarity):

∂η

∂t
+
K

L

(
ε0u

∂η

∂x
+ h

∂u

∂x

)
−Kuh = 0 , (6.3)

∂u

∂t
+
K

L ε0u
∂u

∂x
+

1

KLδ
2
0

∂η

∂x
+K

ε0φ0

δ0

u|u|
h

= 0 .

These equations appear to be fully controlled by the three external dimen-
sionless parameters ε0, δ0 and φ0 de�ned by:

ε0 =
a0

h0

; δ0 =
Lw0

LB
; φ0 =

Cf0(gh0)1/2

ω0h0

. (6.4)

in here, ε0 represents the standard nonlinearity parameter, δ0 is the con-
vergence ratio and φ0 is a friction parameter and Lw0 = (gh0)1/2ω−1

0 is the
frictionless tidal-wave length scale. Moreover, for later use, we de�ne the dis-
sipation parameter as the ratio between friction terms and local inertia:

Di = K
ε0φ0

δ0

. (6.5)

K and L are functions of the length and velocity scales of the phenomenon:

L =
L0

Lb
; K =

U0D0

A0ω0Lb
. (6.6)

Note that K represents the ratio between the temporal variation of water
depth and the kinematic e�ects of channel convergence, as described in Lan-
zoni et Seminara [1998].

According to Lanzoni et Seminara [1998], the dimensionless parameters
K and Di allow the classi�cation of the natural estuaries into four main cate-
gories: as strongly/weakly dissipative, respectively for values of the dissipation
parameters Di� 1 and Di� 1; as strongly/weakly convergent, respectively
for values of K∼O(1) and K� 1. Field observations, reported in Bonneton
et al. [2015], showed that tidal bore estuaries displays K ' 1. In this case,
the comparison between the two nonlinear terms of the momentum equations
(advection and friction) shows that D∗i = ε0φ0/δ0 fully characterizes the tidal
wave nonlinearity, being in nature always one order of magnitude greater than
ε0. This comparison is reported in �gure 6.2 for 21 natural alluvial estuar-
ies, characterized (red) or not (blue) by a tidal bore, the interested reader is
referred to table C.1 for an overview on the used database. The data have
been collected from several published works in the literature, selecting allu-
vial and regular funnal-shaped estuaries. Eight tidal-bore (TB) and thirteen
non tidal-bore (NTB) estuaries have been collected. We have not considered
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TB estuaries with complex morphologies such as the Sée/Mont Saint Michel
estuary (cf. Furgerot [2014]) or the Petitcodiac river (cf. Bartsch-Winkler et
Lynch [1988]). It is worth mentioning that the morphology of most estuaries
presented in table C.1 is now constrained by manmade structures and their
morphology cannot evolve naturally anymore.
Both theoretical studies (cf. Lanzoni et Seminara [1998]) and experimental
observations Bonneton et al. [2015] agree that large values of the dissipation
parameter D∗i produce great distortion and peaking of the free surface and
velocity pro�les of the tidal wave, leading to �ood dominance; characteristics
which correspond to necessary conditions for tidal bore formation (D∗i ≥ 1.7
in Bonneton et al. [2015]). However, large values of D∗i correspond also to
high energy dissipation, leading to tidal damping; unfavourable to tidal bore
formation. For this reason, D∗i ≥ 1.7 could not represent a su�cient condition
for tidal bore formation and many natural estuaries, despite having high values
of D∗i , don't display a bore (see �gure 6.2). To this purpose, we point out the
mixed distribution of red and blue points in �gure 6.2.

In order to evaluate the relative importance of friction in the momentum
balance, several de�nitions of the friction parameter have been introduced in
the literature. Since they rely on the same scaling of the equations, it is
worth clarifying the relation with our set of parameters. Lanzoni et Seminara
[1998] introduced R/S = Kε0φ0δ

−1
0 , whereas To�olon et al. [2006] and Savenije

et al. [2008] de�ned χ = ε0φ0, and �nally Munchow et Garvin [1991] used
φ = (ε0φ0)−1/3. Although the de�nitions are analogous from a physical point
of view, the one introduced in this work allows to investigate separately the
opposite e�ects of peaking and dissipation which take place for high values of
D∗i . We will thus explore numerically the space of the external parameters ε0,
δ0 and φ0 to understand the complex equilibrium between these two e�ects.

6.2 First observations

In order to start analyzing tidal bore occurrence as a function of the three
external dimensionless parameters (ε0, δ0 and φ0), we start by presented the
respective positions of the 21 estuaries of table C.1 in the two planes (ε0, δ0)
and (φ0, ε0).
Figure 6.3 (left) shows the data projection on the space of parameters (ε0,
δ0). We can see that no clear separation between TB and NTB estuaries
emerges in this plane: the TB estuaries are characterized by large δ0 values
with a relative low dispersion around the mean value of 2.4 . It can also be
noted that large dimensionless tidal amplitudes correspond to large estuary
convergences. This observation, which points to a coupling between the tidal
forcing and the estuary morphology, is in agreement with previously results
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Figure 6.2: The relationship between the two nonlinear parameters ε0 and
D∗i displayed by the 21 alluvial estuaries listed in table C.1. The log-log plot
highlights the di�erent order of magnitude assumed by the two terms. The
black dashed line (- -) delineates points where D∗i /ε0 = 10, displaying the
dominance of D∗i in in�uencing the nonlinear behaviour of tidal propagation
in natural estuaries. Red line (- -) represents the limit of Bonneton's necessary
condition for tidal bore formation (D∗i ≥ 1.7). For brevity and completeness,
we list here the name and number of the estuaries included in the picture: 1.
Chao Phya; 2. Columbia; 3. Conwy; 4. Corantijin; 5. Daly; 6. Delaware;
7. Elbe; 8. Gironde; 9. Hooghly; 10. Humber; 11. Limpopo; 12. Loire; 13.
Mae Klong; 14. Maputo; 15. Ord; 16. Pungue; 17. Qiantang; 18. Scheldt;
19. Severn; 20. Tha Chin; 21. Thames. Sources: Savenije [2012] for estuaries
1, 4, 11, 13, 14, 18, 20; Lanzoni et Seminara [1998] for 2, 3, 6, 7, 15, 19,
21; Bonneton et al. [2015] for 8, 9, 10, 16, 17; Wolanski et al. [2006] for 5;
Winterwerp et al. [2013] for 12.

from Prandle [2003] and Davies et Woodro�e [2010]. Moreover, it is worth
mentioning that these convergence ratios are close to the critical convergence
δc introduced by Jay [1991]; Savenije et al. [2008]. δc is a threshold condition
for the transition from the mixed tidal wave to the apparent standing tidal
wave. Savenije et al. [2008] derived the following equation, relating the critical
convergence and the dimensionless parameter χ = ε0φ0:

χ(δc) =
1

2
δc(δ

2
c − 4) +

(δ2
c − 2)

2

√
δ2
c − 4 .

The position of the 21 estuaries in the plane (δ0, χ) are plotted in �gure
6.3 (right). It can be seen that tidal bores occur near critical convergence. At
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this stage, we have no physical explanation for this observation and further
theoretical and numerical investigations would be desirable.
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Figure 6.3: Projection of the real estuaries of table C.1 on the plane (ε0, δ0)
(on the left) and on the plane (χ, δ0) (on the right). The dashed black line (-
-) represents points with δ0 = 2, while the black continuous line (�) stays for
the critical curve χ(δc), de�ned in Savenije et al. [2008]. The database used to
generate the picture can be found in table C.1, for brevity and completeness
we list here the name and number of the estuaries included in the picture: 1.
Chao Phya; 2. Columbia; 3. Conwy; 4. Corantijin; 5. Daly; 6. Delaware;
7. Elbe; 8. Gironde; 9. Hooghly; 10. Humber; 11. Limpopo; 12. Loire; 13.
Mae Klong; 14. Maputo; 15. Ord; 16. Pungue; 17. Qiantang; 18. Scheldt;
19. Severn; 20. Tha Chin; 21. Thames. Sources: Savenije [2012] for estuaries
1, 4, 11, 13, 14, 18, 20; Lanzoni et Seminara [1998] for 2, 3, 6, 7, 15, 19,
21; Bonneton et al. [2015] for 8, 9, 10, 16, 17; Wolanski et al. [2006] for 5;
Winterwerp et al. [2013] for 12.

The projection of the available data on the plane (φ0, ε0) is instead plot-
ted in �gure 6.2. In this parameter plane, we can observe a clear separation
between TB and NTB estuaries. Tidal bores occur when the nonlinearity pa-
rameter ε0 is greater than a critical value, εc, which is an increasing function
of φ0. For small φ0 values (φ0 ∼ 15), corresponding to estuaries such as that
of the Severn river, tidal bores can form for ε0 > 0.2 . In contrast, for large
φ0 values, the tidal bore formation requires much larger nonlinearities. For
instance, in the Conwy estuary, the tidal wave dynamics is strongly nonlin-
ear (ε0 = 0.8), but its very large friction parameter value (φ0 = 65) prevents
tidal bore formation. Due to the limited number of estuaries documented in
the literature, it is di�cult to accurately characterize the function εc(φ0). A
numerical investigation can be overcome this limitation.
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Figure 6.4: Projection of the real estuaries of table C.1 on the plane (φ0, ε0),
for brevity and completeness we list here the name and number of the estuaries
included in the picture: 1. Chao Phya; 2. Columbia; 3. Conwy; 4. Corantijin;
5. Daly; 6. Delaware; 7. Elbe; 8. Gironde; 9. Hooghly; 10. Humber; 11.
Limpopo; 12. Loire; 13. Mae Klong; 14. Maputo; 15. Ord; 16. Pungue;
17. Qiantang; 18. Scheldt; 19. Severn; 20. Tha Chin; 21. Thames. Sources:
Savenije [2012] for estuaries 1, 4, 11, 13, 14, 18, 20; Lanzoni et Seminara [1998]
for 2, 3, 6, 7, 15, 19, 21; Bonneton et al. [2015] for 8, 9, 10, 16, 17; Wolanski
et al. [2006] for 5; Winterwerp et al. [2013] for 12.

6.3 Case study

Considering that, for most alluvial estuaries, the convergence ratio δ0 is close
to 2 (as showed in �gure 6.3), we have chosen to perform our analysis using
a constant value δ0 = 2. Due to such a simpli�cation, the expression of the
dissipation parameter (6.5) reduces to: D∗i = αε0φ0 (with α constant). Thus,
it is possible to investigate the separate e�ects of peaking and dissipation,
both contained in D∗i , by numerically exploring the plane of the dimensionless
parameters (φ0, ε0).

We will, at �rst, neglect the e�ects of both bathymetric variations, and
river discharge. The latter will be investigated in section 6.6, con�rming that,
if limited to small values, the river discharge has no signi�cant in�uence on
the phenomenon. Nevertheless, in nature, tide propagation up to an estuary
is partly limited by an increasing bottom slope and by discharge. In our ide-
alized channel, instead, even the weakest and linear tidal wave would be able
to propagate landward and, being dissipated by only friction, it would reaches
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non-physical distances with unnatural generation of shock solutions. For this
reason, a characteristic physical length Lc has been introduced to limit the
region in which the tidal signal is assumed to be physically relevant. In partic-
ular, examining real estuaries data, we observed that tidal bores occur, before
reaching a distance of 3LB from the estuary mouth, see table 6.1. We, thus,
have chosen to limit the region of interest for our simulations to Lc = 3LB.

Estuaries Lb [km] xc [km] xc/Lb
Gironde/Garonne 43 90 2.09
Hooghly 25 60 2.4
Humber 25 75 3.0
Pungue 17 50 2.94
Qiantang 40 90 2.25
Severn 41 55 1.34

Table 6.1: Ratio between the location of tidal bore inception xc and conver-
gence length Lb for some alluvial estuaries. Data taken from Bonneton et al.
[2015].

In nature, tidal bore inception is a continuous process which takes place as
a gradual increase of the free surface slope at the beginning of the �ood phase.
The same continuous increase of steepness is observed in our simulations. A
criterion is thus needed to detect the bore onset, within the domain [0, Lc]
just de�ned. During the two measurement campaigns on the Garonne river,
Bonneton et al. [2015] observed that bore passage was associated to an increase
in the value of the free surface spatial gradient, at the start of the �ood, with at
least one order of magnitude (from O(10−4) in the smooth case without tidal
bore). For each numerical simulation we compute, in a post-processing phase,
the spatial slope of the free surface all along the domain, up to Lc, retaining
for each position x the maximum value in the tidal period. The quantity Amax
has been de�ned as:

Amax = max
x∈Lc

[
max
t∈T0

(
∂ζ(x, t)

∂x

)]
,

and the following criterion for determining tidal bore occurrence is used:

Amax ≥ 10−3. We observe that the function A(x) = maxt∈T0

(
∂ζ(x,t)
∂x

)
is mono-

tone for all the simulations performed. In practice, Amax has been thus evalu-
ated by only considering the last section of the channel at x = Lc:

Amax = max
t∈T0

(
∂ζ

∂x

∣∣∣
Lc

)
.

192 Andrea Gilberto Filippini



6. Modeling tidal bore formation in convergent estuaries

6.4 Numerical model

For robustness, we performed our simulations with both second order �nite
volume (FV2) and residual distribution schemes (RD2), solving the conserva-
tive form of the two-dimensional NLSW equations (1.59), with now a friction
term written in the form: τ = Cfu|u| . The former one consists in the scheme
obtained by imposing β = −1 in the MUSCL formula of the left and right
gradients computation (4.18), whose accuracy on the Shallow Water system
have been tested on the traveling vortex case (cf. 5.1). The second order
residual based scheme is the one discussed and validated in Ricchiuto [2015].
It consists of a shock capturing residual distribution scheme with an explicit
predictor-corrector time integrator. The numerical method is based on a �ux
limited non-linear residual distribution approach, allowing a fully second order
approximation of smooth waves, and a monotone approximation of bores. This
method has been used in Bonneton et al. [2016] to perform the results that will
be discussed in the following. At the mesh used for the computations, the two
schemes perform almost identical results on the large scale of the phenomenon,
as illustrated by �gure 6.5. They can be thus considered as mesh converged re-
sults, leading to a numerical analysis completely independent from the method
used.

Figure 6.5: Illustrative result of tidal propagation into an idealized channel
with the shape described in section 6.1, ε0 = 0.4, φ0 = 20. Computed free
surface pro�le, measured at 11 stations along the channel corresponding to
x = αLB with α = 0 : 1/3 : 3. The simulation have been realized using both
the FV2 and RD2 schemes.

In section 6.1, some dominant dimensionless parameters have been derived
under the hypothesis of quasi-one-dimensional �ow. At the beginning of our
investigation, this assumption has been veri�ed, founding that the largest
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transversal deviations from the average values were below 1.5%. Thank to
this, the �ow �eld inside the channel can be fully described by the values of
the variables measured on the longitudinal axis. Moreover, due to the sym-
metry of the geometry, only half of the domain will be used in the simulation,
imposing wall re�ecting boundary conditions on the symmetry axis. Wall
boundary conditions are also imposed in the exponential varying edge of the
domain.

Seaward boundary condition: The choice of the boundary conditions on
the two shorter edges of the domain, namely the in�ow and out�ow bound-
aries, a�ects the �ow �eld signi�cantly To�olon [2002]. The seaward boundary
condition is given, in terms of the free surface, by the sea level, which is as-
sumed to be determined by the tidal oscillation without any in�uence of the
internal response of the estuary. The following temporal law:

ζ(t) = A0 sin

(
2πt

T0

)
,

is thus applied at the estuary mouth by imposing the incoming Riemann
invariant. We consider here the case of semi-diurnal tides with period T0 =
12.41 [h].

Numerical Validation: Lanzoni et Seminara [1998] performed several one-
dimensional computations using the Saint-Venant system (6.1). For the case
of strongly convergent and medium/strongly dissipative channels, they have
presented many solutions corresponding to a progressive increase of the value of
the friction parameter φ0. Our numerical scheme and inlet boundary condition
have thus been validated by reproducing the numerical test case contained in
Lanzoni et Seminara [1998] characterized by values of the external parameters:
ε0 = 0.15, δ0 = 1.98 and φ0 = 26.41 (cf. �gure 9 of Lanzoni et Seminara [1998]).
Figure 6.6 shows the comparison between our results and the ones presented in
Lanzoni et Seminara [1998] in terms of the time evolution of the dimensionless
�ow surface elevation η/h0 and tidal velocity u/U0 at distances x/LB = m/4
(m ∈ [0, 4]). These are recovered by imposing a wall boundary condition at
the end of the channel x/LB = 1. The results show globally a very good match
on this smooth case.

Landward boundary condition: On the landward boundary, the infor-
mation of still water (we recall that the river discharge is neglected at this
level) coming from far on the right should be generally imposed by means of
the Riemann invariants. However, such condition is not known a priori due
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Figure 6.6: Time evolution of the dimensionless �ow surface elevation (left)
and tidal velocity (right) at locations: x/LB = 0 blue, x/LB = 1/4 green,
x/LB = 1/2 red, x/LB = 3/4 cyan, x/LB = 1 magenta. Continuous lines (−)
represent the results computed by our 2D numerical scheme, while circles (o)
represent the results of Lanzoni et Seminara [1998].

to the presence of the friction, which is not easy to take into account in the
computation of the Riemann invariants. Because of this, imposing correctly
the landward boundary condition is not a trivial operation. Up to the au-
thors knowledge, there is not an e�cient and systematic method to impose
absorbing boundary conditions in the presence of friction and convergence.
To�olon To�olon [2002] revealed the di�culties of imposing such conditions.
He considered two limit cases: the re�ecting barrier and the transparent con-
dition. On the former, a wall boundary condition was imposed at the end of
the channel, which determined a complete re�ection of the wave. The latter
condition, instead, referred to a situation where the tidal wave exited from
the computational domain without being deformed or re�ected. This condi-
tion was implemented by replacing, on the last cells of the domain, mass and
momentum conservation laws with a scalar advection equation for each con-
servative variable, characterized by an advection speed equal to the outgoing
eigenvalue. Even though, the need of considering a longer estuary in order to
vanish the in�uence of the boundary on the solution, remained.
Here we set an absorbing boundary by means of the homogeneous NLSW in-
variants. A sensitivity analysis has been performed in order to quantify the
in�uence of the inexact boundary condition that has been implemented. Two
tests have been conducted: one for a low and the other for a high value of the
nonlinear parameter ε0, respectively ε0 = 0.1 and ε0 = 0.7. We compare two
solutions: the former computed by setting the absorbing boundary condition
at the location x = 5LB, and the latter, considered as a reference, derived by
imposing a re�ective wall at the further distance x = 8LB, where the tidal wave
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is assumed to be completely dissipated. Figure 6.7 shows the time evolution
pro�les of the non-dimensional free surface and velocity at di�erent positions
along the channel. In order to measure the deviation from the reference solu-
tion we use the L2-norm

||η−ηref ||L2

||ηref ||L2
. At the station x = 3LB, the percentage

values of the deviation are 3.3% for η and 3.98% for u in the case with ε0 = 0.1,
while being respectively 5.27% and 7.67% in the case with ε0 = 0.7.
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Figure 6.7: Time evolution pro�les of the non-dimensional free surface (left)
and velocity (right) measured at x = 2LB (�), x = 2.5LB (�) and x = 3LB (�)
for the two test cases performed with ε0 = 0.1 (top) and ε0 = 0.7 (bottom).
In the two computations φ0 has been set constant and equals to φ0 = 35.
Continuous lines represent the results obtained by using absorbing landward
boundary conditions by means of the homogeneous NLSW invariants at x =
5LB; while dashed lines were obtained by imposing wall boundary conditions
at x = 8LB.
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ε0 = 0.1 ε0 = 0.7

Location
||η − ηref ||L2

||ηref ||L2

||u− uref ||L2

||uref ||L2

||η − ηref ||L2

||ηref ||L2

||u− uref ||L2

||uref ||L2

x = 2Lb 0.0113 0.0132 0.0133 0.0188
x = 2.5Lb 0.0197 0.0232 0.0274 0.0384
x = 3Lb 0.0330 0.0398 0.0527 0.0767

Table 6.2: L2 norm of the error of the computation performed using an absorb-
ing boundary condition at the landward boundary of the domain at x = 5LB,
with respect to a reference solution is computed using a wall boundary condi-
tion at x = 8LB.

In addition, �gure 6.8 shows the comparison with the solution performed by
implementing the transparent boundary condition used in To�olon [2002]. The
percentage deviations from the reference are of the same order of magnitude as
those recovered using our approach and, most importantly, the two approaches
provide identical topologies for both the water depth and the velocity. We can
conclude that the results of our study are independent from the choice of the
method used.
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Figure 6.8: Time evolution pro�les of the non-dimensional free surface (left)
and velocity (right) measured at x = 3LB, obtained by setting the absorbing
homogeneous b.c. (�) and the transparent b.c. of To�olon [2002] (�). The red
curve (�) represents the reference solution computed by imposing wall b.c. on
a longer domain of L = 8LB (ε0 = 0.7 and φ0 = 35).

As pointed out by Cai et al. Cai et al. [2014], the frictional e�ect in-
creases the mean (tidally averaged) water level landward. The imposition of
the homogeneous invariants cannot take into account this e�ect, introducing a
non-physical behaviour of the solution in the outlet proximity. For this reason,
the absorbing boundary conditions should be coupled with an extension of the

197



6.5. Numerical investigation results

computational domain, to reduce these spurious in�uences on the solution in
the region of study. In practice it has been enlarged up to x = 6LB, to further
limit non-physical e�ects due to the boundary conditions.

Dispersive e�ects: In the introduction of the chapter, we state that we
perform an investigation looking to the long spatial scale of the phenomenon,
where the e�ects of dispersion do not play a signi�cant role and the free surface
pro�le can be well described by the NLSW equations. In order to give a direct
proof of this, we have performed the computation of a very nonlinear and
less dissipative channel (ε = 0.7 and φ0 = 10) with both the NLSW and
the eGN system of equation, discussed in the previous chapters of this work.
The eGN system is discretized using the third order hybrid FE/FV approach
described in chapter 4. Also to be noted: while for SW one could use pseudo-
1D models, there are no fully nonlinear weakly dispersive pseudo-1D models.
Their derivation is still a subject of research (for a weakly nonlinear model see
e.g. Winckler et Liu [2015]). The results obtained are compared in �gure 6.9.
They are performed in a section of the channel with x ∈ [0.9LB, 1.8LB], where
the bore is expected to originate, on a very re�ned mesh in order to catch the
right wavelength of the dispersive e�ects.
It can be seen that the two models perform identical results in the whole
domain except when the shock is formed (cf. top of �gure 6.9). On the
discontinuity the GN model describes the formation of an undular bore with
a very local e�ect on the free surface pro�le. The characteristic wavelength
and wave period of the secondary waves are shown in the two pictures on the
bottom of �gure 6.9. In particular it can be computed λ ≈ 50 [m] and T ≈ 6
[s] which is in good agreement with observations insitu from Bonneton et al.
[2015].

6.5 Numerical investigation results

The (ε0, φ0) space: We have performed 225 simulations of the idealized
case of study de�ned in section 6.3, corresponding to an equivalent number of
estuaries. We recall that the value of convergence ratio is constant, δ0 = 2,
and thus each simulation represents a unique combination of the parameters
ε0, φ0, corresponding to precise conditions of the tidal forcing at the mouth and
to speci�c geometrical and physical properties of the channel. In such a way
we have systematically investigated the plane (φ0, ε0), applying the criterion
described in section 6.3 in order to detect bore formation. Figure 6.10 shows
the contour lines of the quantity Amax in the plane of the parameters (φ0,
ε0), performed by collecting and linearly interpolating the simulations results.
The red color denotes the region where the bore detection criterion is satis�ed,
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Figure 6.9: Illustrative result of tidal propagation into an idealized channel
with the shape described in section 6.1, ε0 = 0.7, φ0 = 10. Top: computed
free surface pro�le at di�erent increasing times of the simulation. Bottom-left:
free surface signal in space. Bottom-right: free surface signal in time.

while the blue one represents cases characterized by a smooth solution. The
results show that there exists a critical curve εc(φ0) that can be traced in this
plane, dividing tidal-bore and no-tidal-bore estuaries. This curve is the white
dashed line traced in �gure 6.10. Observing the shape of the isolines in �gure
6.10, two di�erent behaviours can be distinguished, depending on the values
assumed by the friction parameter φ0.

The �rst region is characterized by values of the friction parameter in the
range 1 < φ0 ≤ ∼ 20. Here the mechanism of bore inception appears to be
fully controlled by the nonlinear parameter ε0. Figure 6.11 shows a compari-
son between two numerical results computed using two di�erent values of ε0,
one just above the critical curve and one just below it (ε0 = 0.3 and ε0 = 0.225
respectively), at a constant value of φ0 equal to 13.33. The comparison is
made in terms of the free surface and velocity time series, respectively in �g-
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Figure 6.10: Isocurves of the quantity Amax in the plane of the parameters
(φ0, ε0), the white dashed line represents the εc(φ0) curve, namely the limit for
tidal bore appearance following the criterion Amax ≥ 10−3.

ure 6.11(top-left) and 6.11(top-right), measured at the location x = Lc. In
both �gures, the signals associated to the case at higher ε0 are characterized
by a greater distortion at the beginning of the �ood phase, leading to bore
formation according to our threshold. The two zooms, displayed in �gures
6.11(bottom-left) and (bottom-right), allow to better appreciate the di�erent
time gradients exhibited by the water wave on the time scale of the tidal bore
(around 20 minutes). It is also interesting to note that the free surface pro-
�le of �gure 6.11(top-left) does not display a Burger's like shock, but rather
a knee shape is observed. This is mainly due to the fact that the nonlinear
e�ect of friction prevails on the advective one, remaining the dominant non-
linearity for the major part of the wave transformation. Figures 6.12 and 6.13
display the relative importance of the various terms in the governing equations
(6.1) during a tidal cycle in the previous case of bore development (ε0 = 0.3
and φ0 = 13.33). In the �gures, the time evolution of these quantities is
represented at three equispaced locations along the channel, in particular at
x = 1

3
Lc, x = 2

3
Lc and x = Lc. It emerges that the advective term remains

negligible in the momentum equation and the bore formation results from a
balance between acceleration, friction and hydrostatic terms. Only in the pres-
ence of incipient bore, the relative importance of the advective term rises up
overcoming the frictional nonlinearity.
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Figure 6.11: Time variation of the free surface elevation (top-left) and the
velocity (top-right) signals measured at x = Lc for a �xed value of φ0 = 13.33
and the two di�erent values of ε0 = 0.225 (�) and ε0 = 0.3 (�). (bottom-left)
and (bottom-right) are two zooms on the water wave pro�le at the beginning
of the �ood phase, on the time scale of the tidal bore (around 20 minutes).

For higher values of φ0 (φ0 ≥ ∼20), the isolines of Amax spread out forming
a wider transition region but, more important, display an almost vertical slope.
This implies an increasing role of the friction parameter in the physical mecha-
nism of bore formation. In �gure 6.14, we show the solutions computed for two
cases across the transition zone (φ0 = 20 and φ0 = 40 respectively), keeping
constant ε0 = 0.4 . Once again, we look to the free surface and velocity time
signals to compare the two results, �gures 6.14(top-left) and 6.14(top-right)
respectively. It clearly appears that an increase of the value of the friction
parameter φ0 is directly associated to both potential and kinetic energy dis-
sipation, leading to more damped pro�les. This process decreases the local
nonlinearity of the wave which, in turn, is smeared out, as one can see from
the free surface zooms on the time scale of the bore (�gures 6.14(bottom-left)
and 6.14(bottom-right)). Moreover, �gures 6.14(top-right) displays the par-
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Figure 6.12: The order of magnitude of the several dimensionless terms in
the continuity equation of system (6.3); three test sections are presented: at
x = 1

3
Lc (top-left), x = 2

3
Lc (top-right) and x = Lc (bottom): (a) ∂η

∂t
, (b)

K
L ε0u

∂η
∂x
, (c) K

LD
∂u
∂x

and (d) −KuD. Upper and lower peaks on the �gure
(right) reach values respectively of 13.38 and −12.

ticular tendency of the �ow river to become constant during the ebb tide for
large values of the friction parameter (strongly dissipative estuaries), recover-
ing what already observed in Lanzoni et Seminara [1998] and Bonneton et al.
[2015].

The separation between estuaries displaying or not a tidal bore, which
emerges from our numerical results, is also in qualitative agreement with �g-
ure 6.2, realized using the estuary database of table C.1. A critical curve can
be traced by hand on �gure 6.2, inspired by the trend emerged from the numer-
ical results of �gure 6.10. In this case, we could notice that the two curves only
slightly di�er. This is due to the several simplifying modeling assumptions. In
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Figure 6.13: The order of magnitude of the several dimensionless terms in
the momentum equation of system (6.3); three test sections are presented: at
x = 1

3
Lc (top-left), x = 2

3
Lc (top-right) and x = Lc (bottom): (e) ∂u

∂t
, (f)

K
L ε0u

∂u
∂x
, (g) 1

KLδ
2
0
∂η
∂x

and (h) K ε0φ0

δ0

u|u|
D
. Upper and lower peaks on the �gure

(right) reach values respectively of 30.65 and −28.61.

particular, in real alluvial estuaries the general decrease of depth landward is
favourable to bore inception and this can cause the transition curve in �gure
6.2 to be located slightly below with respect to the one on �gure 6.10. More-
over, the fact that a constant value δ0 = 2 has been used for the simulations
contributes to the deviation, since each estuary on �gure 6.2 is characterized
by its own value of δ0 and they are, here, just projected on the same plane for
sake of clarity.

Summary: We can schematically summarize that the nonlinear parameter
ε0 mainly relates to the distortion mechanism which leads to bore formation,
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Figure 6.14: Time variation of the free surface elevation (top-left) and the
velocity (top-right) signals measured at x = Lc for a �xed value of ε0 = 0.4
and the two di�erent values of φ0 = 20 (�) and φ0 = 40 (�). (bottom-left)
and (bottom-right) are two zooms on the water wave pro�le at the beginning
of the �ood phase, on the time scale of the tidal bore (around 20 minutes).

while the friction parameter φ0 mainly relates the dissipation of the tidal wave,
unfavourable to bore generation. It is worth noting that only the particular
de�nition of φ0 as the friction parameter allows to clearly separate this two
e�ects on the parameter space. Other choices, which includes the dependence
from ε0 (as the case of χ), although allowing to de�ne a critical curve for
bore formation would not have provide us the right comprehension of the bore
formation mechanism. To support this, it is note that any competition between
di�erent e�ects can be recognized from �gure 6.15, where an almost linear
relationship between the two parameters ε0 and χ0 is displayed. The use of φ0

seems a better choice because it highlights the existence of two di�erent regimes
for the critical curve (cf. �gure 6.10): in this way the nonlinear distortion and
the tidal wave dissipation e�ect can be schematically separated.
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Figure 6.15: Isocurves of the quantity Amax in the plane of the parameters
(χ0, ε0). The white dashed line represents the critical curve for bore formation
(εc(χ0)) following the criterion Amax ≥ 10−3 .

Tidal wave ampli�cation/damping: From the observations made in the
previous paragraph, a close relation between bore formation and tidal damping
emerges. A standard parameter used in the literature (cf. Savenije et Veling
[2005]; Savenije [2001]) to measure the ampli�cation/damping of the tidal wave
during its propagation along the estuary is the rate of change of the tidal range
Tr, de�ned in accordance to Savenije [2001] as:

δTr =
1

Tr
dTr
dx

. (6.7)

In the present work we integrate equation (6.7), from the estuary mouth
to x = Lc (end of our region of study), and we compute, for each simulation
performed, the quantity:

∆Tr =
Tr(Lc)− Tr(0)

Tr(0)
,

using the tidal range at the estuary mouth Tr(0) as a scaling factor.
Figure 6.16 (left) shows, on the same plane (φ0, ε0) of �gure 6.10, the contour
lines of the computed quantity ∆Tr, obtained by linearly interpolating the
values of each simulation. The black dashed line is the contour line for ∆Tr = 0,
namely the marginal curve for tidal range ampli�cation, where all the estuaries
with unampli�ed and undamped wave lie. It represents an ideal situation for
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which the ampli�cation e�ect associated to funnelling is exactly balanced by
friction. The marginal curve divides the plane into two regions; estuaries
located below are characterized by a tidal range ampli�cation while estuaries
located above are a�ected by damping. A simple analytical model, derived
by Savenije et Veling [2005] in the linearized framework, allows to explicitly
compute the damping factor of an estuary as a function of the three external
independent parameters of the estuarine dynamics. According to this model,
To�olon et al. [2006] found that synchronous estuaries (δTr = 0) lie on a curve,
which can be recast in terms of our parameters as:

ε0 =
δ0(δ2

0 + 1)

φ0

. (6.8)

Using the value of δ0 = 2 in (6.8), we get the red curve plotted in �gure
6.16 (left). A good agreement is observed between the marginal curve obtained
through numerical simulations (black dashed line) and the one of the analytical
model of Savenije (red line), especially for low values of ε0, namely the linear
regime.

From �gure 6.16 (left) it is interesting to note that ε0 plays a fundamen-
tal role also in the damping/ampli�cation process. If we �x the physical and
geometrical properties LB, Cf0, D0, this corresponds to a speci�c estuary con-
�guration with φ0 constant in addition to δ0 = 2. In this context, the variations
of ε0 can be considered as associated with neap-spring tide cycles. We can,
thus, conclude that strong tides lead to weaker tidal wave ampli�cation values
and, for particularly strong tides, the wave most likely will be damped. This
result is in qualitative agreement with respect to the physical observation made
by Bonneton et al. [2015] on the Garonne river. Their measurements showed
that, for such estuary always characterized by tidal wave ampli�cation, minor
ampli�cations were related to higher values of ε0, observed during spring tides
(�gure 10(a) of the cited paper).

The superimposition of the computed marginal curve on the contour lines
of the quantity Amax, in �gure 6.16 (right), shows that a large part of the
red region in the �gure lies in the part of the plane (φ0, ε0) characterized by
damping of the tidal range. This means that, despite a reduction of the local
nonlinearity of the wave, this remains high enough to develop distorted pro�les
and to produce bores. We can conclude that, contrary to what is generally
accepted, tidal range ampli�cation along the estuary is not a necessary condi-
tion for tidal bore formation.

The critical curve intersects the computed marginal curve of ampli�cation,
dividing the plane into four main areas. Estuaries will thus experience tidal
range ampli�cation or damping, tidal bore formation or not, depending on
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Figure 6.16: (Left): contour lines of the quantity ∆Tr on the plane (φ0, ε0);
the black dashed line (- -) represents the marginal curve resulting from the
computations, while the continuous red one (�) is the analytical marginal
curve of the Savenije model Savenije [2001]. Hot colours cover the region
of ampli�cation of the tidal wave during propagation; cold colours represent
damping. (Right): the computed marginal curve (- -) is superimposed on the
Amax contour lines.

which region in the plane they belong to. This separation is sketched in �gure
6.17. The existence of a sector characterized by tidal bore generation and
tidal range damping shows that tidal range ampli�cation along the estuary is
not a necessary condition for tidal bore occurence, as it is instead commonly
assumed in the literature Chanson [2012]. The tidal dynamics which take place
in the Ord and Punge rivers (data taken respectively from Wright et al. [1973]
and Chanson [2012]; Savenije [2001]), which are in this region of the plane
(numbers 15 and 16 respectively in �gure 6.2), provide clear evidence of this.

6.6 River Discharge

In the previous sections, we have analyzed tidal wave transformation and tidal
bore occurrence in a simpli�ed context in which freshwater river discharge was
neglected. However, it is well known that tide in estuaries may be signi�-
cantly a�ected by the rate of discharge (cf. Horrevoets et al. [2004]; Cai et al.
[2014]). The e�ects of river discharge become much more important moving
landward from the mouth of the estuary and can in�uence for bore formation.
The present section will provide a qualitative estimation on the e�ects of dis-
charge, leaving a full quantitative study for future works.

In the experimental campaigns on the Garonne river, Bonneton et al. [2015]
observed that small river discharges Q were favourable to tidal range ampli-
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Figure 6.17: The computed critical line for bore formation (white dashed line)
and the computed marginal curve of ampli�cation (black dashed line) divide
the (φ0, ε0) plane into four main areas. In the picture, TB stands for tidal-bore
estuaries, while NTB stands for no tidal-bore estuaries; A indicates ampli�ca-
tion of the tidal wave along the estuary, D damping.

�cation and bore occurrence, while signi�cant freshwater discharges o�sets
the ampli�cation mechanism related to estuary convergence. Horrevoets et al.
[2004] described, with an analytical model, that the in�uence of river discharge
on tidal damping takes place mainly through friction. Generally speaking, the
tidally averaged free surface elevation along the estuary does not coincide with
the mean sea level, due to the nonlinear frictional e�ect on the averaged wa-
ter level h̄(x). An analytical expression for the mean free surface elevation,
valid also for the case of a non negligible river discharge, has been derived
by Vignoli et al. Vignoli et al. [2003]. The validity of such expression have
been tested and con�rmed also by Cai et al. Cai et al. [2014] by means of
a numerical investigation through a fully nonlinear one-dimensional numeri-
cal model accounting for river discharge. These works show that the mean
water depth h̄(x) = 1

T

∫
T
h(x, t)dt is a monotonically increasing function of x

and that higher values of Q0 correspond to bigger deviations. This increase
of local mean water depth D̄(x), together with the damping of the local tidal
range Tr(x) pointed out by Bonneton et al. Bonneton et al. [2015], results in a
local nonlinear parameter ε(x) = Tr(x)/(2h̄(x)), which is decreasing function
of Q0. Due to this damping e�ect, tidal bores are rarely observed for strong
freshwater river discharges.

For a �xed estuary (�xed δ0 and φ0), the dimensionless parameters gov-
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erning the �ow dynamics are the amplitude of tidal forcing ε0 and the dimen-
sionless intensity of river discharge Q0. The goal of the present section is to
explore the space of parameters (ε0, Q0) in order to �nd, for an estuary char-
acterized by δ0 = 2 and φ0 = 18 (values closed to the ones of the Garonne
river), a critical curve εc(Q0) for tidal bore development, following the crite-
rion Amax ≥ 10−3.
In order to perform our investigation, we have to express Q0 as a function of
the external variables of the problem. A characteristic velocity scale can be
derived from the fact that in convergent alluvial estuaries K ∼ 1. In fact,
de�nition (6.6) implies that U0 = ε0ω0Lb. Using this velocity scale and the
width at the estuary mouth B0 (�gure 6.1), we thus de�ne:

Q0 =
Q

A0B0Lbω0

. (6.9)

The river discharge is introduced by the boundary condition already de-
scribed in section 6.4, through the incoming Riemann invariant from far on
the right. Figures 6.18 shows, for the particular estuary considered, the e�ect
of an increasing river �ow in terms of normalized free surface elevation and
velocity signals at the position x = Lc along the channel. The simulations
were performed using ε0 = 0.32 and a range of values Q0 ∈ [0, 4.16 × 10−3],
obtained by scaling the typical values of the Garonne river through relation
(6.9). In particular, the values Q0 = 4.16 × 10−4 and Q0 = 4.16 × 10−3 cor-
respond to the low and high characteristic fresh water discharges measured in
the Garonne (respectively Q = 150 [m3/s] and Q = 1500 [m3/s]).
In �gure 6.18 (top-left), we observe that the dimensionless mean water depth
h̄(Lc)/h0 increases with Q0, from 1.033 with Q0 = 0 to 1.219 with Q0 =
4.16 × 10−3. We can also measure the damping e�ect of freshwater river dis-
charge on the tidal range; the dimensionless value ∆Tr(Lc) (as de�ned in (6.7))
goes from 0.156 with Q0 = 0 (ampli�ed case) to -0.041 with Q0 = 4.16× 10−3

(damped case).
An important vertical shift of the velocity curve, in agreement with experi-
mental observations in situ (cf. Horrevoets et al. [2004]), can be observed in
�gure 6.18 (top-right), moving towards the condition of unidirectional �ow.
Moreover, it can be noticed that this result con�rms the theoretical predic-
tions set by Horrevoets et al. [2004] concerning the evolution of the phase lag
between high water and high water slack (and at the same time between low
water and low water slack). Note that all the e�ects described are small below
the value of Q0 = 4.16×10−4 and the discharge does not a�ect the topology of
the tidal wave for the river �ow values typically observed in the Garonne river
at the end of the summer season. Thus, the parametric analysis performed in
section 6.1, by neglecting Q0, can be considered valid in this range of small Q0.

In �gure 6.18 (bottom), the zoom on the time scale of the bore displays
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Figure 6.18: Time variation of the free surface elevation (top-left) and the
velocity (top-right) signals measured at x = 3LB for an ideal estuary charac-
terized by ε0 = 0.32, φ0 = 18 and increasing values of freshwater discharge
from Q0 = 0 to Q0 = 4.16 × 10−3 (in particular the values have been chosen
considering the typical range of values displayed by the Garonne river and
measured by Bonneton et al. [2015]). Figure (bottom) represents a zoom on
free surface signal in the time scale of the bore (around 20 min).

the tendency of the free surface pro�le to become much smoother as the value
of river discharge increases. In order to explore better this point, we have
performed 47 simulations for di�erent combinations of tidal amplitude and
river discharge (ε0, Q0). The values of Amax, obtained for all the simulations,
have been plotted in �gure 6.19. Note that we chose to represent in the y-
axis of the �gure the product Q0ε0, rather than simply Q0, in order to remove
the dependence of Q0 from A0 (cf. (6.9)). The �gure shows that, in the
presence of weak river discharges, estuarine dynamics is not in�uenced by Q0

and, consequently, the e�ects of discharge can be considered negligible in the
bore formation process.
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6. Modeling tidal bore formation in convergent estuaries

A qualitative critical curve εc(Q0) has been traced by hand (grey dashed line
in �gure 6.19) according to the few computations performed. This trend is in
qualitative agreement with experimental data for the Garonne river, presented
in �gure 6 of Bonneton et al. [2016].
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Figure 6.19: Circles represent computations performed for a �xed estuary (δ0 =
2 and φ0 = 18) varying the values of the tidal forcing amplitude A0 and river
discharge Q0; colors represent the intensity of Amax for each computation; with
a gray dashed line we have represented by hand the εc(Q0) curve, namely the
limit for tidal bore appearance following the criterion Amax ≥ 10−3.
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This work proposes several developments related to the study and numerical
simulation of free surface �ows in near shore environments. In this chapter
we recall the main contributions and propose some possible avenues for future
works.

Analysis of BT models:

The �rst chapter of the thesis has considered the form of the equations used
to describe dispersive wave propagation. We have, thus, presented the main
steps for the derivation of the class of depth-averaged Boussinesq-type mod-
els, from the initial Euler system of equation. Since these asymptotic models
are designed in order to optimize their linear dispersion representation with
respect to the one given by the Airy theory, we have analyzed their linear and
nonlinear dispersion and shoaling properties, which also de�ne the range of
practical applicability of these models in real applications. In particular, we
have stressed the impact of the formulation of weakly nonlinear BT models on
their behavior in situations in which nonlinearity is not negligible. We have
recalled how, within the same asymptotic truncation, a given linearized form,
hence a given dispersion relation and shoaling coe�cient, allows to derive two
sets of PDEs : one, referred to as amplitude-velocity form, in which dispersive
terms contain di�erential operators applied to the velocity; the other, referred
to as amplitude-�ux form, in which these operators are applied to the �ux.
We have given two examples of these couples, including the widely known
models of Peregrine, Abbott and Madsen and Sørensen (more BT models are
considered in Filippini et al. [2015]). The analytical and numerical study of
these models has shown that: as soon as nonlinear e�ects start being relevant,
the main factor in�uencing the behavior of the model lies in its formulation,
that is amplitude-velocity versus amplitude-�ux form, enhanced models giv-
ing the same results as Peregrine or Abbott equations. This fact has been
demonstrated analytically by the study of the propagation of higher harmon-
ics in section 1.7.3, following Madsen et Scha�er [1998], and numerically with
tests involving shoaling in genuinely nonlinear regimes. While in the linear
case we have as many models as the number of linear dispersion relations and
linear shoaling coe�cients, in the nonlinear case, only two types of behaviors
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are observed. Since weakly nonlinear and weakly dispersive models are widely
used in the scienti�c and engineering community, and often used outside their
range of validity, this result has important consequences, e.g. on the way in
which wave breaking conditions are applied to these models, as well as on the
way in which wave breaking dissipation is included. Clearly, breaking criteria
should not be the same for the two family of models, and perhaps even the
amount of dissipation in breaking regions necessary in the two cases should be
di�erent. This result has pushed us toward genuinely nonlinear models, and in
particular Green-Naghdi type systems. We have thus considered and studied
the enhanced GN equations proposed by Bonneton et al. [2011b]; Chazel et al.
[2011], which couples the genuinely nonlinear properties of the original GN
system with the improved linear dispersive properties of the enhanced weakly
nonlinear BT models. The last model taken into account has been the constant
diagonal eGNd model proposed by Lannes et Marche [2015], which, despite be-
longing to the same asymptotic of the GN and eGN model, has displayed a
di�erent behaviour in the nonlinear shoaling test performed, showing a large
phase lag in time respect to the experimental data. The results presented
seem, however, to be in�uenced by the initial setup of the test (i.e. initial
still water level, amplitude of the solitary wave) and therefore deserve further
investigations.

Discretization in one-dimension:

The second part of the thesis was devoted to the study of a �exible and un-
split strategy, which allows to enhance a (hyperbolic) Shallow Water code, by
a purely algebraic correction to the discrete momentum equation with, both
the fully-nonlinear weakly dispersive eGN e�ects and wave breaking. This
correction can be computed from the solution of a stationary elliptic problem.
To evaluate the potential of this enhancement technique, we have investigated
hybrid discretizations in which di�erent methods are used in the two di�erent
phases (elliptic solver, hyperbolic evolution step). Several methods are thus
tested both in space and in time, involving both �nite element and �nite vol-
ume methods in space, and both multi-stage and multi-step methods in time.
In particular, we have focused on the use of a C0 Galerkin approximation of
the variational form of the elliptic problem, and on the use of both upwind
�nite volumes (cf. Nikolos et Delis [2009]; Kazolea et al. [2014]), Galerkin
and stabilized Galerkin �nite elements (cf. Bacigaluppi et al. [2014a]; Ricchi-
uto et Filippini [2014]) in the hyperbolic part. All the schemes implemented
are endowed with robustness and stability properties such as positivity, well-
balancing and wet/dry interfaces treatment.
Time continuous dispersion analysis of the schemes has shown several im-
portant facts. Firstly, the behavior obtained when coupling the continuous
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Galerkin elliptic solver with di�erent hyperbolic methods is quite similar, con-
�rming the �exibility of the approach proposed. Then, an essential role is
played by the approximation of the third order derivatives in the right hand
side of the elliptic equation. Evaluating this term by exact integration allows
to recover, for all the combinations considered, dispersion errors which are of
the same order, or smaller, than those provided by fourth order �nite di�erenc-
ing. Lastly, we �nd that the use of a properly designed second order accurate
discretization for the elliptic phase is enough to achieve such low levels of dis-
persion errors, provided that at least third order of accuracy is guaranteed for
the hyperbolic component. This is true for all the di�erent combinations of
the elliptic�hyperbolic methods considered. This result generalizes previous
�ndings and constructions in the �nite di�erence context (cf. Wei et Kirby
[1995]). The analysis shows that this approach allows enough �exibility to
enhance many of the existing Shallow Water codes based on �nite element and
�nite volume discretizations.
The fourth order Adams Bashforth - Adams Moulton method Wei et Kirby
[1995]; Roeber et al. [2010], the three stages third order SSP Runge-Kutta
scheme Gottlieb et al. [2001] and the third order explicit backward di�erenc-
ing method Hundsdorfer et al. [2003] have been used for the integration in
time in one-dimension. The results have shown little in�uence to this choice.
The method proposed has been thoroughly veri�ed on a large number of bench-
marks involving both simple analytical solutions, and complex �ows with wave
propagation and breaking, as well as run-up and overtopping. The results show
monotone shock-capturing performances and accuracy close to third order for
all the schemes discussed.

Discretization in two-dimensions:

In chapter 4 we have discussed the extension to the two-dimensional case of
the hybrid FE-FV scheme, which uses the C0 continuous Galerkin method for
the elliptic part, coupled with a third order �nite volume scheme with MUSCL
reconstruction for the hyperbolic phase. The e�ciency of the two dimensional
scheme has been improved by exploiting the coercivity property of the elliptic
operator (I+αT ). In particular, we have shown that, solving for ψ the elliptic
phase, and recomputing φ in a second time by the de�nition φ = hψ, allows
to work always with SPD matrices. Moreover, the MUSCL reconstruction has
been corrected in order to respect the conservation of the mean property also
in the case of very stretched meshes. The only SSP Runge-Kutta scheme has
been used in 2D for the integration in time, as a consequence of the small
in�uence of the time scheme (if higher-order) on the results, shown in 1D. The
SSP-RK scheme has been implemented in the form of Chertock et al. [2015],
which allows to increase the e�ciency of the friction treatment and to avoid
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losing the order of the scheme when friction becomes dominant (typically in
run-up processes). The results performed on academic benchmarks con�rms,
also in 2D, the good performances of the proposed scheme also on non-uniform
triangulations.

Wave breaking:

For the management of wave breaking, the hybrid scheme presented in Kazolea
et al. [2014] have been successfully applied in the context of fully nonlinear
models in both one and two dimensions. The strategy proposed, dividing the
original system in its elliptic and hyperbolic parts, has revealed particularly
adapted for the implementation of a hybrid technique, since the e�ects of dis-
persion can be easily switched o� when breaking is detected by simply imposing
φ = 0. A preliminary study on two di�erent formulations on the treatment
of the hybrid breaking technique have been performed in the one-dimensional
case (cf. section 2.9.3 and 3.9), in the hope of reducing spurious oscillations
arising form the coupling of GN and NLSW equations in breaking regions, as
pointed out by many in the past Tonelli et Petti [2011]; Tissier et al. [2012];
Kazolea et Delis [2013]; Kazolea et al. [2014]. Embedding the breaking in the
elliptic phase is shown to reduce considerably spurious oscillations in the prox-
imities of the breaking region. However, it does not resolve issues related to
the intermittency of the breaking detection and, unfortunately, still leaves open
the problem of obtaining fully mesh converged solutions for the coupled model.

The numerical schemes have been validated against standard one and two-
dimensional benchmarks of non-breaking and breaking wave propagation over
variable topographies, using arbitrary unstructured meshes, with emphasis to
comparisons with experimental results. In all test cases, on meshes similar
to those used in the reference literature, the performed results were in good
agreement with experimental data and previously solutions by other authors,
proving the potential of this approach.

Estuarine dynamics:

In the last part of this work, under the hypotheses of constant bathymetry and
negligible river discharge, we have used the Saint-Venant system of equations
to numerically investigate the bore occurrence in convergent alluvial estuar-
ies of idealized geometry. The scaling of the equations shows that estuarine
dynamics is fully controlled by three dimensionless parameters entirely depen-
dent on the estuary geometrical properties and tidal forcing: the nonlinearity
ε0, the convergence parameter δ0 and the friction parameter φ0, de�ned by
(6.4).
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Taking a constant value of δ0 = 2, we have numerically explored the plane
(φ0, ε0), ensuring that the results provided are independent from the scheme
chosen for the investigation, and that they can be considered as mesh con-
verged. By means of a bore detection criterion, we have traced the critical
line εc(φ0) dividing estuaries into displaying or not a tidal bore. This curve
is in good agreement with real estuaries data, despite the several assumptions
made (�gure 6.2), and provides the necessary conditions for tidal bore forma-
tion. These conditions are a result of a complex equilibrium between nonlinear
distortion and tidal range damping/ampli�cation processes both driven by the
dissipation parameter D∗i ∝ ε0φ0 multiplying the friction, the dominant non-
linear term for this class of estuaries. The particular shape of εc(φ0) shows
that, for low values of φ0 (indicatively 1<φ0 ≤ ∼20), bore formation depends
almost exclusively on the nonlinear parameter ε0, while being, instead, mainly
disciplined by the dissipation, related to the value of φ0, for φ0 ≥ ∼ 20.
The critical curve intersects the computed marginal curve of ampli�cation,
dividing the plane into four main areas. Estuaries will thus experience tidal
range ampli�cation or damping, tidal bore formation or not, depending on
which region in the plane they belong to. The existence of a sector character-
ized by tidal bore generation and tidal range damping shows that tidal range
ampli�cation along the estuary is not a necessary condition for tidal bore oc-
currence, as it is instead commonly assumed in the literature Chanson [2012].
We have studied the e�ect of river discharge for estuaries characterized by δ0 =
2 and φ0 = 18 (which are close to the values displayed by the Gironde/Garonne
estuary). We have shown that for low Q0 (i.e. Q0 < 4.16× 10−3), correspond-
ing to the dry season, the e�ect of river discharge on tidal wave dynamics and
on bore formation can be neglected.
The above �ndings are based on several simplifying assumptions, that have
allowed a clear understanding of the bore inception mechanism.

Future works and further developments:

We consider that the results obtained show that the approach proposed has
enormous potential as a non-intrusive enhancement technique for existing Shal-
low Water solvers. The work done highlights several issues still open and pro-
vides many research avenues.

Modeling wave propagation: The analysis on the two di�erent nonlinear
shoaling behaviours of weakly nonlinear BT models suggests that di�erent re-
sults should be expected when coupling of the BT models considered with
physical breaking criteria, as those used e.g. in Bacigaluppi et al. [2014a];
Kazolea et al. [2014]; Tonelli et Petti [2011]; Tissier et al. [2012] and references
therein. This should be argument of future analysis.
Moreover, we found the constant diagonal eGNd model of Lannes et Marche
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[2015] very promising, since it sensibly reduces the cost of the solution of the
elliptic part of the system without a�ecting the linear properties of the original
model. However, as the nonlinear shoaling test of chapter 1 shows, some more
understanding of the basic properties of this model is required. This is the
object of ongoing studies.

Modeling wave breaking: The implementation of the breaking criterion
inside the elliptic phase has been shown to sensibly reduce the numerical per-
turbations appearing at the breaking interface in the hybrid approach. This
approach should thus be preferred and used also in 2D. Note that this for-
mulation has the additional advantage of leaving all additional the physical
modeling in the elliptic phase, the shallow water solver being completely un-
aware of the dispersive and breaking e�ects, all lumped into the computation
of the source phi. Clearly, some e�orts are required to improve this coupling
as mesh converged results still are not obtainable with this method. This may
hinder the use of local mesh adaptation to capture e�ciently these regions.
The well-posedness of the overall procedure should be investigated in the fu-
ture.
Alternative approaches to model wave breaking, based on the use of turbu-
lence models to improve dissipation or based on an eddy viscosity should also
be explored (cf. Nwogu [1996]; Briganti et al. [2004]; Demirbilek et al. [2007];
Kazolea et Ricchiuto [2016]). Also, more general �agging techniques to detect
breaking fronts should be developed in order to handle genuinely multidimen-
sional wave dynamics.

E�ciency of the implementation: The exploitation of the coercivity of
the elliptic operator (I+αT ) has simpli�ed the formulation of the elliptic step
by making it completely symmetric. However, remarking that the dispersive
correction is only computed in smooth areas and the use of the conservative
form of the problem does not bring anything to the implementation, the fully
non-conservative form of the elliptic phase could be now considered:

(I + αT )ψ = T (g∇η)−Q1(u) , (6.10)

ht +∇ · q = 0 ,

qt +∇ ·
(

q⊗ q

h

)
+ gh∇η = hψ ,

with T and Q1 the di�erential operators of the non-conservative GN formula-
tion, respectively de�ned by (1.113) and (1.114).
This would have the same cost of a splitting approach and, in particular, it
would reduce the requirements on the quadrature formulas used to evaluated
the �nite element matrices, and of the right hand side, by one degree of accu-
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racy. This is currently object of investigations.
Moreover, the use of a direct method for matrix inversion is not well suited for
the algorithm proposed here. This is due to the fact that most matrices change
at each time step (or sub-stage for the Runge-Kutta schemes). This requires
a re-factorization of the new matrix after each assembly, which is too costly.
Other techniques should be exploited, taking also advantage from the SPD
form of the matrix (e.g. iterative matrix free methods or conjugate gradients).
This has to be coupled with a parallelization of the algorithm implemented for
an additional increase of performance.

Numerical discretization: This work is based on a low order approxima-
tion of the non-hydrostatic terms of the eGN equations. A �rst numerical issue
would be the comparison of the gains in dispersion accuracy when enhancing
the elliptic solver from second to higher order. Moreover, the dispersion anal-
ysis and optimization of the schemes could be repeated by optimizing (with
respect to the linear Airy theory) the dispersion relation of the discrete equa-
tions instead of that of the continuous one. This may allow to further gain
some accuracy on coarser meshes. The objective, here, is to reduce as much
as possible the overhead of the elliptic phase, by devising what the minimal
accuracy requirements are for this step.
In the hybrid FE/FV scheme proposed, the non-hydrostatic correction φ has
been added to the hyperbolic part exactly integrating over the computational
cells the piecewise linear polynomial φh. The use of polynomial reconstruction
techniques for this quantity may be an interesting alternative to a costly high
order �nite element discretization of the elliptic step, and will be explored in
the future.
Other future directions involve the application of the �exible approach pro-
posed to other discretization techniques. For instance, the coupling of contin-
uous �nite elements for the elliptic phase with discontinuous Galerkin methods
for the hyperbolic one, possibly with a lower order continuous approximation
for the elliptic phase to further reduce the algebraic costs. The use of dynamic
unstructured mesh adaptation techniques can also be investigated, coupled
with implicit or local time stepping, to compensate for the reduction in time
step brought by the adaptation process.

Tidal bore conditions: The study of the occurrence of tidal bores should
be enhanced by considering other e�ects in�uencing the spatial location of
bore development that have been so far ignored, as the variable bathymetry,
river banks and meanders. In particular, it would be important to extend the
scaling analysis presented, taking into account large variations of the estuary
water depth.
Our approach has been validated from both �eld observations and numerical
simulations. However, an accurate estuarine classi�cation would require new
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quantitative �eld measurements for estuaries having contrasting characteris-
tics. Furthermore, addressing alluvial estuaries with nonlinear parameter ε0

close to εc(φ) would allow a more accurate determination of the critical curve
between tidal-bore and no-tidal-bore estuaries.
Moreover, very energetic phenomena, such as the tsunami-tide interaction, can
propagate the bore far upstream (cf. Chanson [2012]). The analysis of the in-
teraction between impulsive and periodic waves in complex scenarios is the
subject of current investigations. The consideration of such e�ects will require
signi�cant attention, but will provide a more thorough comprehension when
approaching the analysis of real natural estuaries.

220 Andrea Gilberto Filippini



Appendix A

FD formulations of the schemes

We report here the �nite di�erence expressions of the one-dimensional schemes
analyzed in chapter 2 when applied to the linearized equations (1.124). All the
derivation is done by assuming an equally spaced mesh of size h = ∆x; c2 = gh0

denotes the square of the linearized Shallow Water celerity (cf. (1.61)).

Second order central �nite di�erences:

dηi
dt

+
h0

2∆x
(ui+1 − ui−1) = 0 ,

dui
dt

+
g

2∆x
(ηi+1 − ηi−1)− φi

h0

= 0 ,

φi −
αh2

0

3∆x2
(φi+1 − 2φi + φi−1) =

=
gh3

0

6∆x3
(−ηi+2 + 2ηi+1 − 2ηi−1 + ηi−2) .

(A.1)

Fourth order central �nite di�erences:

dηi
dt

+
h0

12∆x
(−ui+2 + 8ui+1 − 8ui−1 + ui−2) = 0 ,

dui
dt

+
g

12∆x
(−ηi+2 + 8ηi+1 − 8ηi−1 + ηi−2)− φi

h0

= 0 ,

φi −
αh2

0

36∆x2
(−φi+2 + 16φi+1 − 30φi + 16φi−1 − φi−2) =

=
gh3

0

24∆x3
(−ηi+3 + 8ηi+2 − 13ηi+1 + 13ηi−1 − 8ηi−2 + ηi−3) .

(A.2)

221



Continuous Galerkin scheme:

∆x

6

(
dηi+1

dt
+ 4

dηi
dt

+
dηi−1

dt

)
+
h0

2
(ui+1 − ui−1) = 0 ,

∆x

6

(
dui+1

dt
+ 4

dui
dt

+
dui−1

dt

)
+
g

2
(ηi+1 − ηi−1) +

− ∆x

6h0

(φi+1 + 4φi + φi−1) = 0 ,

∆x

6
(φi+1 + 4φi + φi−1)− αh2

0

3∆x
(φi+1 − 2φi + φi−1) =

=
gh3

0

6∆x2
(−ηi+2 + 2ηi+1 − 2ηi−1 + ηi−2) .

(A.3)

SUPG scheme: In the linearized case, the matrix associated to the Shallow
Water quasi-linear form is:

A0 =

[
0 h0

g 0

]
Straightforward eigenvalue decomposition show that the sign of this matrix

can be written as:

sign(A0) =

[
0 c/g
g/c 0

]
Using this expression we can deduce the form of the SUPG scheme (2.26)

applied to system (1.124):

∆x

6

(
dηi+1

dt
+ 4

dηi
dt

+
dηi−1

dt

)
+
h0

2
(ui+1 − ui−1)− c

2g

[
∆x

2

(
dui+1

dt
− dui−1

dt

)
+

+ g(ηi+1 − 2ηi + ηi−1)− ∆x

2h0

(φi+1 − φi−1)

]
= 0 ,

∆x

6

(
dui+1

dt
+ 4

dui
dt

+
dui−1

dt

)
+
g

2
(ηi+1 − ηi−1)− ∆x

6h0

(φi+1 + 4φi + φi−1) +

− g

2c

[
∆x

2

(
dηi+1

dt
− dηi−1

dt

)
+ h0(ui+1 − 2ui + ui−1)

]
= 0 ,

∆x

6
(φi+1 + 4φi + φi−1)− αh2

0

3∆x
(φi+1 − 2φi + φi−1) =

=
gh3

0

6∆x2
(−ηi+2 + 2ηi+1 − 2ηi−1 + ηi−2) .

(A.4)
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Finite Volume scheme:

dηi
dt

+
h0

2∆x

(
−1

6
ui+2 +

4

3
ui+1 −

4

3
ui−1 +

1

6
ui−2

)
+

− c

2∆x

(
−1

6
ηi+2 +

2

3
ηi+1 − ηi +

2

3
ηi−1 −

1

6
ηi−2

)
= 0 ,

dui
dt

+
g

2∆x

(
−1

6
ηi+2 +

4

3
ηi+1 −

4

3
ηi−1 +

1

6
ηi−2

)
+

− c

2∆x

(
−1

6
ui+2 +

2

3
ui+1 − ui +

2

3
ui−1 −

1

6
ui−2

)
+

− 1

h0

(φi+1 + 6φi + φi−1) = 0 ,

∆x

6
(φi+1 + 4φi + φi−1)− αh2

0

3∆x
(φi+1 − 2φi + φi−1) =

=
gh3

0

6∆x2
(−ηi+2 + 2ηi+1 − 2ηi−1 + ηi−2) .

(A.5)
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Appendix B

Dispersion error

We report here the de�nitions of the several quantities called in section 2.7.2
and involved in the analysis of the dispersion properties of the schemes. More-
over, the paragraph contains the expressions of the dispersion relation formulae
of the FD2 and FD4 schemes used as comparison in �gures from 2.3 to 2.8 and
the description of the several con�gurations (from 1 to 4) taken into account
for the elliptic problem discretization.

cG scheme: The quantities involved in the dispersion analysis are easily
computed from the �nite di�erence form of the schemes, reported in appendix
(A), and read:

• the Galerkin mass matrix: M̃
G

=
1

6

(
4 + 2 cos µ̄

)
;

• the solution of the elliptic problem:

Φ̃LIN = −gh
3
0

3
T̃
G
(
M̃

G
)−1(

M̃
G − αh2

0

3
S̃
G
)−1

and the Galerkin discretization of:

• the �rst order space derivatives ∂x(·): F̃
G

= j
k

2µ̄

(
2 sin µ̄

)
;

• the second order space derivatives ∂xx(·): S̃
G

=
k2

µ̄2

(
2 cos µ̄− 2

)
;

• the third order space derivatives ∂xxx(·): T̃
G

= j
k3

2µ̄3

(
2 sin 2µ̄−4 sin µ̄

)
;

where µ̄ = k∆x and k represents the wavenumber associated to the Fourier
mode.
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For the Galerkin scheme, the phase resulting from the condition that the
matrix of system (2.47) has zero determinant is:

(
ωG∆x

)2

=
gh0

(
F̃
G
)2

− F̃
G
M̃

G
Φ̃LIN(

M̃
G
)2 . (B.1)

The ampli�cation rate is found to be identically equal to zero (no dumping
or ampli�cation).

SUPG scheme: The analysis is more complex for the SUPG scheme. Dis-
cretizing system (2.44)-(2.45) by means of the SUPG scheme will now lead
to:

(
M̃

G − αh2
0

3
S̃
G
)
φi = −gh

3
0

3
T̃
G
(
M̃

G
)−1

ηi , (B.2)

M̃
G
ν∆xηi + h0F̃

G
ui −

c

2g

[
M̃

UFE
ν∆xui + gF̃

UFE
ηi −

1

h0

M̃
UFE

φi

]
= 0 , (B.3)

M̃
G
ν∆xui + gF̃

G
ηi −

g

2c

[
M̃

UFE
ν∆xηi + h0F̃

UFE
ui

]
=

1

h0

M̃
G
φi ,

the two quantities M̃
UPE

and F̃
UPE

derive from the FE discretization of the
upwind �ux and have the following form:

• M̃
UFE

= j sin µ̄ ;

• F̃
UFE

=
k

µ̄

(
2 cos µ̄− 2

)
.

The writing of the Jacobian matrix of the system (B.3) and of its charac-
teristic polynomial lead to a complex algebraic equation, whose solution in the
real part can be written in the form:

(
ωSU∆x

)2

=
ASU
S

ASU
ν2

−
(

ASU
ν

2ASU
ν2

)2

, (B.4)

where ASU
ν2 , ASU

ν and ASU
S are functions of the just de�ned quantities M̃

G
, F̃

G
,

M̃
UPE

, F̃
UPE

and Φ̃LIN .
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FV scheme: Concerning the FV scheme, using the linearized equations
(2.45) and the third order MUSCL reconstruction, described in section 2.3,
we get for the following system of equations:

(
M̃

G − αh2
0

3
S̃
G
)
φi = −gh

3
0

3
T̃
G
(
M̃

G
)−1

ηi , (B.5)

ν∆xηi + h0F̃
FV
ui − cF̃

UFV
ηi = 0 , (B.6)

ν∆xui + gF̃
FV
ηi − cF̃

UFV
ui =

1

h0

M̃
FV
φi ,

which, by means of the procedure already described above for the SUPG
scheme, lead to the �nal form of the dispersion relation:

(
ωFV∆x

)2

=
AFV
S

AFV
ν2

−
(

AFV
ν

2AFV
ν2

)2

. (B.7)

being AFV
ν2 , AFV

ν and AFV
S functions of the quantities M̃

FV
, F̃

FV
, F̃

UFV
and

Φ̃LIN , whose expressions comes from the discretization of the:

• elliptic term Φ: M̃
FV

=
1

8

(
6 + 2 cos µ̄

)
;

• centered �uxes: F̃
FV

= j
k

2µ̄

(
8

3
sin µ̄− 1

3
sin 2µ̄

)
;

• upwind �uxes: F̃
UFV

=
k

2µ̄

(
4

3
cos µ̄− 1

3
cos 2µ̄− 1

)
.

FD2 and FD4 schemes: Figures from 2.3 to 2.8 show the dispersion errors
of the several schemes with respect to the analytical dispersion relation of the
model given by (1.15). The comparison is made for low and high values of
the parameter kh0 with respect to the errors provided by the FD2 and FD4
discretization schemes, whose dispersion relations are respectively:

(
ωFD2∆x

)2

= gh0

(
F̃
FD2
)2

− F̃
FD2

Φ̃
(FD2)
LIN , (B.8)(

ωFD4∆x

)2

= gh0

(
F̃
FD4
)2

− F̃
FD4

Φ̃
(FD4)
LIN , (B.9)

where the introduced tensors are de�ned in the following and come from the
second order �nite di�erence:

227



• discretization of the �rst order space derivatives ∂x(·): F̃
FD2

= F̃
G
;

• discretization of the second order space derivatives ∂xx(·): S̃
FD2

= S̃
G
;

• discretization of the �rst order space derivatives ∂xxx(·): T̃
FD2

= T̃
G
;

• solution of the elliptic problem: Φ̃
(FD2)
LIN = −gh

3
0

3
T̃
FD2
(

1− αh2
0

3
S̃
FD2
)−1

;

and from the fourth order �nite di�erence:

• discretization of the �rst order space derivatives ∂x(·):

F̃
FD4

= j
k

12µ̄

(
− 2 sin 2µ̄+ 16 sin µ̄

)
;

• discretization of the second order space derivatives ∂xx(·):

S̃
FD4

=
k2

12µ̄2

(
− 2 cos 2µ̄+ 32 cos µ̄− 30

)
;

• discretization of the �rst order space derivatives ∂xxx(·):

T̃
FD4

= j
k3

8µ̄3

(
− 2 sin 3µ̄+ 16 sin 2µ̄− 26 sin µ̄

)
;

• solution of the elliptic problem: Φ̃
(FD4)
LIN = −gh

3
0

3
T̃
FD4
(

1− αh2
0

3
S̃
FD4
)−1

.

Elliptic con�guration analysis: Finally, we give in the following the de-
scriptions of the four di�erent con�gurations studied for the discretization of
the elliptic equation (2.46), whose dispersion errors are compared each other
on �gures 2.4, 2.6 and 2.8.

1). it stands for the choice to lump both the mass matrices of the equations

(2.4) and (2.10). The equation (2.46) thus becomes
(

1 − αh2
0

3
S̃
G
)
φi =

−gh
3
0

3
T̃
G
ηi and the related Φ̃LIN takes the form:

Φ̃
(1)
LIN = −gh

3
0

3
T̃
G
(

1− αh2
0

3
S̃
G
)−1

;
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2). it stands for the choice to lump only the mass matrix of equation (2.10).

The equation (2.46) thus becomes
(
M̃

G − αh2
0

3
S̃
G
)
φi = −gh

3
0

3
T̃
G
ηi and

the related Φ̃LIN takes the form:

Φ̃
(2)
LIN = −gh

3
0

3
T̃
G
(
M̃

G − αh2
0

3
S̃
G
)−1

;

3). it stands for the choice to lump only the mass matrix of equation (2.4).

The equation (2.46) thus becomes
(

1− αh
2
0

3
S̃
G
)
φi = −gh

3
0

3
T̃
G
(
M̃

G
)−1

ηi

and the related Φ̃LIN takes the form:

Φ̃
(3)
LIN = −gh

3
0

3
T̃
G
(
M̃

G
)−1(

1− αh2
0

3
S̃
G
)−1

;

4). it stands for the choice not to lump any mass matrix. The equation
(2.46) thus dont changes and the related Φ̃LIN is given by:

Φ̃
(4)
LIN = −gh

3
0

3
T̃
G
(
M̃

G
)−1(

M̃
G − αh2

0

3
S̃
G
)−1

.

229



230 Andrea Gilberto Filippini



Appendix C

Real Estuaries Data

Index Estuaries Tidal bore h0[m] LB[km] a0[m] Cf0 ε0 δ0 φ0 D∗i
1 Chao Phya no 7.2 109 1.2 0.0039 0.167 0.548 32.343 9.84

2 Columbia no 10 25 1.0 0.0031 0.1 2.815 21.814 0.775

3 Conwy no 3 6.3 2.4 0.0051 0.8 6.118 65.522 8.568

4 Corantijin no 6.5 48 1.0 0.0032 0.154 1.182 27.93 3.645

5 Daly yes 10 27 3.0 0.0025 0.3 2.606 17.592 2.025

6 Delaware no 5.8 40 0.64 0.0021 0.11 1.34 19.404 1.598

7 Elbe no 10 42 2.0 0.0025 0.2 1.675 17.592 2.1

8 Gironde yes 10 43 2.3 0.0025 0.23 1.636 17.592 2.4725

9 Hooghly yes 6 25 2.15 0.0015 0.358 2.18 13.627 2.24

10 Humber yes 12 25 3.2 0.0031 0.267 3.083 19.914 1.722

11 Limpopo no 7 50 0.55 0.0027 0.079 1.177 22.709 1.515

12 Loire no 13 21 2.5 0.0024 0.192 3.82 14.812 0.746

13 Mae Klong no 5.2 155 1.0 0.0035 0.192 0.327 34.154 20.063

14 Maputo no 3.6 16 1.4 0.0027 0.389 2.639 31.666 4.667

15 Ord yes 4 15.2 2.5 0.0024 0.625 2.928 26.703 5.7

16 Pungue yes 4 17 3.2 0.0031 0.8 2.618 34.491 10.54

17 Qiantang yes 10 40 3.1 0.0015 0.31 1.759 10.555 1.86

18 Scheldt no 10.5 28 2.0 0.0023 0.19 2.575 15.795 1.168

19 Severn yes 15 41 3.75 0.0025 0.25 2.102 14.364 1.708

20 Tha Chin no 5.3 87 1.35 0.0048 0.255 0.589 46.396 20.07

21 Thames no 8.5 25 2.0 0.0050 0.235 2.595 38.163 3.46

Table C.1: Tidal and geometric properties of convergent alluvial estuaries. h0,
water depth; LB, convergence length; a0, mean spring tidal amplitude at the
estuary mouth; Cf0, friction coe�cient. Sources: Savenije [2012] for estuaries
1, 4, 11, 13, 14, 18, 20; Lanzoni et Seminara [1998] for 2, 3, 6, 7, 15, 19, 21;
Bonneton et al. [2015] for 8, 9, 10, 16, 17 where we substituted the mean spring
tidal amplitude for the maximum spring tidal amplitude; Wolanski et al. [2006]
for 5; Winterwerp et al. [2013] for 12. We consider that for these 21 estuaries
the dominant tidal period T0 is semi-diurnal.
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