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Génération de sources térahertz intenses par des impulsions
laser ultrabrèves

Mots-clés: Sources térahertz intenses, Interaction laser-matière, Op-
tique non-linéaire, Oscillations plasma, Photoionisation

Résumé en français:

Le spectre électromagnétique possède une zone étroite, localisée entre les micro-ondes
et l’infrarouge, appelée région des ondes térahertz (THz), qui est comprise entre 0.1 et
30 THz. Ces ondes, longtemps inaccessibles car situées à la frontière entre l’électronique
et l’optique, connaissent aujourd’hui un intérêt grandissant et possèdent des applica-
tions prometteuses dans divers secteurs de la science comme l’imagerie médicale et
l’identification des explosifs à distance. Cependant, la production de rayonnement THz
intense, d’amplitude proche du GV/m, qui devrait permettre de sonder efficacement des
matériaux à distance, reste encore une question en suspens. Cette thèse a précisément
pour but d’étudier la génération d’un tel rayonnement THz par couplage de deux im-
pulsions laser ultracourtes —une onde fondamentale et son harmonique deux— capables
d’ioniser un gaz (par exemple, l’air ou l’argon). Le plasma ainsi créé joue le rôle de con-
vertisseur nonlinéaire de fréquence, transformant une partie de l’énergie du champ laser
dans la bande THz via une gamme riche de mécanismes physiques, notamment l’effet
Kerr, la photoionisation et les forces pondéromotrices induites dans le plasma. Grâce à
un travail de modélisation analytique et numérique de ces principaux mécanismes, nous
avons examiné de manière complète la génération d’impulsions THz pour des intensités
laser allant de celles rencontrées en filamentation laser (1012-1014 W cm−2) jusqu’aux in-
tensités proches de la limite relativiste (1015-1018 W cm−2), une fourchette d’intensités
peu étudiée jusqu’à présent dans ce domaine. Il est déjà connu qu’à basses intensités la
photoionisation induite par le champ laser domine l’émission térahertz, laquelle dépend
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fortement de la configuration des couleurs (ou harmoniques) laser. Nous démontrons ici
que, au-delà de la configuration laser « classique » à deux couleurs, coupler plusieurs
fréquences laser suivant les harmoniques d’une forme d’onde en dents de scie est optimal
pour renforcer la production de rayonnement. Les simulations prévoient une efficacité
de conversion d’énergie THz de 2% avec quatre couleurs, valeur record inégalée à ce
jour. De plus, en nous aidant d’une expérience faite dans l’air, nous identifions la signa-
ture de l’effet Kerr dans le spectre THz émis, qui, plus faible, se révèle complémentaire
de la signature plasma. Quand l’intensité de l’impulsion laser est augmentée au-delà
de 1015 W cm−2, nous démontrons que le rayonnement térahertz émis croît de manière
non-monotone, dû au fait qu’il existe une valeur d’intensité maximisant l’énergie THz
produite par chaque couche électronique. Finalement, nous avons étudié en géométrie 2D
l’effet combiné de la photoionisation et des forces pondéromotrices plasma à des inten-
sités proches de 1018 W cm−2, nous permettant d’obtenir des champs THz excédant le
GV/m dans l’argon. Ces dernières forces augmentent avec l’intensité laser et ouvrent des
perspectives intéressantes pour la génération de champs térahertz très intenses dans le
régime relativiste de l’interaction laser-matière.
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Generation of intense terahertz sources by ultrashort laser
pulses

Keywords: Intense terahertz sources, Laser-matter interaction, Nonlin-
ear optics, Plasma oscillations, Photoionization

Abstract in English:

The electromagnetic spectrum has a narrow frequency band, lying between microwaves
and infrared, known as terahertz (THz) waves and extending from 0.1 to 30 THz. These
waves, inaccessible until a recent past because they are situated at the boundary be-
tween electronics and optics, are raising interest because of their promising applications
in several areas such as medical imaging and remote identification of explosives. However,
producing intense THz radiation with amplitudes belonging to the GV/m range should
allow us to probe efficiently remote materials, which still remains an open issue. The
goal of this thesis is precisely to study the generation of such intense THz radiation by
coupling two ultrashort laser pulses —the fundamental and its second harmonic— able
to ionize a gas target (for example, air or argon). The plasma created by photoionization
then acts as a nonlinear frequency converter, transforming part of the laser energy into
the THz band via a wide range of physical mechanisms including the Kerr effect, the
photoionization and ponderomotive forces induced inside the plasma. By means of an
analytical and numerical modelling of these key mechanisms, we have comprehensively
examined the generation of THz pulses at laser intensities ranging from characteristic
intensities met in laser filamentation (1012-1014 W cm−2) to near-relativistic intensities
(1015-1018 W cm−2), this latter intensity range having been little investigated so far in
this domain. It is already known that at low intensities laser-induced photionization dom-
inates in terahertz generation, which strongly depends on the configuration of the laser
colours (or harmonics). We demonstrate here that, beyond the “classical” two-colour laser
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setup, coupling several laser frequencies following the harmonics of a sawtooth waveform
is optimal to enhance THz production. Simulations predict a laser-to-THz energy con-
version efficiency of 2% with four colours, a record value unequalled so far. Moreover,
with an experiment realized in air, we identify the Kerr signature in the emitted THz
spectrum, which, even weaker, looks complementary to the plasma signature. When the
intensity of the laser pulse is increased beyond 1015 W cm−2, we prove that the growth of
the emitted terahertz radiation is nonmonotonic, due to the fact that that there exists an
optimal intensity value that maximizes the THz energy produced by each electronic shell
of the irradiated atom. Finally, we have studied in 2D geometry the combined effect of
photoionization and ponderomotive forces at intensities close to 1018 W cm−2, allowing us
to obtain THz fields exceeding the GV/m threshold in argon. These latter forces increase
with the laser intensity and thus open interesting perspectives for the generation of very
intense terahertz fields in the relativistic regime of laser-matter interaction.
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Generación de fuentes de radiación Terahertz intensas mediante
pulsos láser ultrabreves

Palabras clave: Fuentes Terahertz intensas, Interacción láser-materia,
Óptica no lineal, Oscilaciones plasma, Fotoionización

Resumen en español:

El espectro electromagnético posee una zona estrecha, localizada entre las microondas y
la radiación infrarroja, llamada región de las ondas Terahertz (THz), que está comprendida
entre 0.1 et 30 THz. Estas ondas, durante mucho tiempo inaccesibles debido a que se
encuentran situadas en la frontera entre la electrónica y la óptica, están despertando un
interés creciente por la gran cantidad de aplicaciones prometedoras que poseen en diversos
sectores científicos, como la imagen médica y la identificación de explosivos a distancia.
No obstante, la producción de radiación THz intensa, de amplitud cercana al GV/m, la
cual debería permitir sondar materiales energéticos a distancia, sigue siendo una cuestión
abierta. Esta tesis tiene precisamente como objetivo el estudio de la generación de dicha
radiación THz intensa acoplando dos pulsos láser —una onda fundamental y su segundo
armónico— capaces de ionizar un gas (por ejemplo, aire o argón). El plasma creado de este
modo desempeña el papel de convertidor no lineal de frecuencia, transformando una parte
de la energía del láser en la banda THz mediante una rica gama de mecanismos físicos,
entre los que destacan el efecto Kerr, la fotoionización y las fuerzas ponderomotrices
inducidas dentro del plasma. Gracias a un trabajo de modelización tanto numérico como
analítico de estos mecanismos clave, hemos examinado de forma integral la generación
de pulsos THz a intensidades láser yendo desde las encontradas en la filamentación láser
(1012-1014 W cm−2) hasta las cercanas al límite relativista (1015-1018 W cm−2), habiendo
sido este último rango de intensidades poco estudiado en este campo hasta el presente. Ya
es sabido que a bajas intensidades la fotoionización inducida por el láser domina la emisión
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Terahertz, la cual depende enormemente de la configuración de los colores (o armónicos)
del láser. Demostramos aquí que, más allá de la “clásica” configuración del láser en dos
colores, acoplar varias fréquencias láser siguiendo los armónicos de una forma de onda en
diente de sierra es óptimo para incrementar la producción THz. Las simulaciones predicen
una eficacia de conversión de energía THz de 2% empleando cuatro colores, un valor
récord inigualado hasta hoy. Además, ayudándonos de un experimento realizado en aire,
identificamos la firma del effecto Kerr en el espectro THz emitido, la cual, pese a ser más
débil, resulta complementaria a la firma del plasma. Cuando se aumenta la intensidad del
láser más allá de 1015 W cm−2, demostramos que la radiación Terahertz emitida crece de
manera no monotóna, debido a que existe un valor de intensidad que maximiza la energía
THz producida por cada capa electrónica. Finalmente, hemos estudiado en geometría 2D
el efecto conjunto de la fotoionización y de las fuerzas ponderomotrices a intensidades
próximas a 1018 W cm−2, lo que nos permite obtenter campos THz cuyas amplitudes
exceden el GV/m en argon. Estas últimas fuerzas aumentan con la intensidad láser y,
por tanto, ofrecen perspectivas interesantes para la generación de campos Terahertz muy
intensos en un régimen de interacción láser-materia relativista.
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Synthèse en français

Le spectre électromagnétique possède une zone étroite, localisée entre les micro-ondes et
l’infrarouge, appelée région des ondes térahertz (THz ou rayons T) et qui est tradition-
nellement comprise entre 0.1 et 30 THz (cette limite supérieure est de nos jours étendue
jusqu’à 100 THz). Le rayonnement THz est non-ionisant et il est capable de pénétrer
quelques millimètres de matériaux non conducteurs tels que textiles, papier, carton, plas-
tique, céramique, bois ou tissus biologiques. Il peut également traverser le brouillard et
les nuages, mais il est absorbé sur de courtes distances de l’ordre du mètre à cause de la
présence de vapeur d’eau. Du point de vue de la spectroscopie moléculaire, cette bande
de fréquences fournit de nombreuses informations sur la structure des molécules et leurs
mouvements associés. En effet, chaque molécule a une signature unique dans cette bande,
qui peut être exploitée pour l’identification de groupes chimiques fonctionnels spécifiques.
Ces ondes furent longtemps inaccessibles par la technologie courante, car elles sont

situées à la frontière entre les domaines de l’électronique et de l’optique. Longtemps
réservée à l’observation astrophysique, elles connaissent aujourd’hui un intérêt grandissant
et possèdent des applications prometteuses dans divers secteurs de la science comme
l’imagerie médicale et l’identification des explosifs à distance. Néanmoins, la production
de rayonnement THz intense, d’amplitude proche du GV/m et à bande spectrale large
ajustable au-delà de 30 THz, qui devrait permettre de sonder efficacement de nombreux
matériaux à distance dans l’infrarouge lointain, reste encore une question en suspens.
Diverses technologies pour la génération du rayonnement THz existent aujourd’hui comme
les lasers à cascade quantique ou la rectification optique dans des cristaux non linéaires.
Cependant, ces techniques sont basées sur des émetteurs solides et elles sont donc limitées
par leur seuil d’endommagement et l’étroitesse de leur spectre THz émis.
Dans ce contexte, une méthode alternative apparut il y a moins de deux décennies,

offrant le potentiel de fournir des champs THz intenses à large bande. Cette méthode
consiste à coupler plusieurs impulsions laser ultracourtes —typiquement deux impulsions,
une onde fondamentale et son harmonique deux—, lesquelles, focalisées, sont capables
d’ioniser un gaz (par exemple, l’air ou l’argon). Le plasma ainsi créé joue le rôle de
convertisseur nonlinéaire de fréquence, transformant une partie de l’énergie du champ
laser dans la bande THz via une gamme riche de mécanismes physiques, notamment l’effet
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Kerr, la photoionisation et les forces pondéromotrices induites dans le plasma. Comme
le plasma est un état de la matière qui peut supporter des puissances très élevées sans
subir d’endommagement, cette technique peut donc fournir des champs THz importants
et à large bande spectrale avec des efficacités de conversion en énergie laser-THz les plus
grandes (� 10−4) parmi toutes les technologies explorées.

Cette thèse a précisément pour but d’étudier cette technique afin de mieux comprendre
les principaux mécanismes responsables de la conversion d’énergie laser dans la bande
spectrale THz et, en outre, d’explorer de nouveaux régimes d’interaction laser-matière
propices à l’émission THz. En effet, nous avons examiné de manière complète la généra-
tion d’impulsions THz pour des intensités optiques allant de celles rencontrées en filamen-
tation laser (1012-1014 W cm−2) jusqu’aux intensités proches de la limite relativiste pour
le mouvement des électrons (1015-1018 W cm−2), un domaine d’intensités laser peu étudié
jusqu’à présent dans ce contexte. Notre objectif était de proposer les meilleures config-
urations d’une onde de pompe laser et d’un gaz d’interaction pour maximiser l’énergie
du champ THz émis, et d’en contrôler les caractéristiques (amplitude et largeur spec-
trale). La plupart de notre étude a notamment consisté en un travail de modélisation
analytique et de simulation numérique haute-performance, dont une partie a été confron-
tée à de nouvelles mesures expérimentales. Nous avons commencé par étudier le régime
d’interaction à basse intensité laser, où les gaz sont faiblement ionisés (Z∗ < 1). En
nous aidant d’une expérience d’interaction laser-air, nous identifions grâce à des simula-
tions numériques la signature de l’effet Kerr dans le spectre THz émis, qui, plus faible
et à fréquences plus élevées, se révèle complémentaire de la signature plasma. En ef-
fet, au front de propagation du filament laser, la polarisation nonlinéaire des électrons
liés crée une émission THz sur l’axe par le mécanisme dit de mélange à quatre ondes.
L’émission THz provenant des photocourants induits ensuite par le plasma formé domine
la contribution de l’autofocalisation Kerr et se propage dans un cône présentant un petit
angle d’émission (< 10°). Nous démontrons l’existence d’une diminution abrupte de la
fréquence centrale du spectre THz des hautes fréquences associées à l’effet Kerr aux basses
fréquences proches de la fréquence plasma, accompagnée d’une croissance de plus de deux
ordres de grandeur dans l’intensité spectrale quand la photoionisation a lieu.

Il est déjà connu qu’aux intensités élevées la photoionisation induite par le champ
laser constitue le mécanisme principal de l’émission térahertz. Cependant, celle-ci dépend
fortement de la configuration des couleurs (ou harmoniques) laser, comme expliqué par le
modèle appelé « Local Current » (LC). En effet, ce modèle est construit sur l’hypothèse
que localement, dans un volume plasma infinitésimal, le champ rayonné est proportionnel
à la dérivée du courant des électrons libres. Sachant que l’ionisation apparait au voisi-
nage des extrema du champ laser (ces instants sont appelés « relativement évènements
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d’ionisation »), la densité électronique croît de manière échelonnée, avec un saut de den-
sité à chaque évènement d’ionisation. Le courant dépend de cette densité électronique et
d’une vitesse électronique fluide, laquelle est proportionnelle à l’intégrale du champ laser.
Selon la configuration laser, ce courant développe une composante à variation lente, qui est
responsable de l’émission THz par photoionisation et qui dépend de la somme de tous les
évènements d’ionisation produits au cours de l’impulsion optique. Le modèle LC explique
donc le rayonnement THz comme une interférence de ces évènements d’ionisation.

Nous nous sommes posé la question de savoir quelle est la configuration laser, au-delà de
la configuration « classique » à deux couleurs, optimisant la valeur vitesse aux évènements
d’ionisation de façon à maximiser la génération de rayonnement THz. Comme la vitesse
fluide est liée à l’intégrale du champ électrique, la seule façon de placer ses extrema aux
évènements d’ionisation est de casser la continuité du champ laser. Nous démontrons ici
qu’un tel profil laser optimal est la forme d’onde en dents de scie. Suivre les harmoniques
de cette forme d’onde nous donne le couplage optimal de plusieurs fréquences laser. Nous
avons vérifié ce résultat avec des simulations 3D dans l’argon. Elles prévoient une efficacité
de conversion d’énergie THz de 2% avec quatre couleurs laser, une valeur record inégalée
à ce jour. Quand l’intensité de l’impulsion laser est augmentée au-delà de 1015 W cm−2,
le gaz est ionisé plusieurs fois (Z∗ > 1). Nous démontrons analytiquement et à l’aide
de simulations numériques que le rayonnement THz émis croît de manière non-monotone.
Nous lions ce phénomène aux seuils d’ionisation de chaque couche électronique d’un atome
donné (hydrogène, helium ou argon). En effet, quand l’intensité laser est augmentée,
nous avons, d’un côté, des évènements d’ionisation plus intenses, mais d’un autre côté,
l’ionisation du gaz est réalisée avec très peu de cycles laser, donc moins d’évènements
d’ionisation. Il existe donc une valeur d’intensité maximisant l’énergie THz produite
par chaque couche électronique et pour laquelle ces deux effets opposés se compensent.
Finalement, nous avons étudié, en géométrie 2D pour un volume de plasma fini, comment
le rayonnement THz est généré à partir de l’effet combiné de la photoionisation et des
forces pondéromotrices plasma (longitudinales et transversales) à des intensités proches
de 1018 W cm−2. Nous avons aussi examiné les composantes du champ THz susceptibles
d’être transmises hors de ce volume plasma. Aussi grâce à une étude analytique, nous
démontrons que la photoionisation est encore le mécanisme dominant à ces intensités
laser élevées proches de la limite relativiste et elle nous permet d’obtenir des champs
THz excédant le GV/m se propageant sur l’axe dans l’argon. Les forces pondéromotrices
augmentent avec l’intensité laser dans le plasma. Hors du plasma, nous décrivons, par la
première fois, une forte émission THz hors axe due aux forces pondéromotrices transverses,
laquelle dépend des gradients de densité aux interfaces plasma-vide. Ces résultats ouvrent
des perspectives intéressantes pour la génération de champs térahertz très intenses dans
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le régime relativiste de l’interaction laser-matière.
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General physical constants

S.I. accounts for International System of units.

Symbol Description Value (S.I.)
c speed of light in vacuum 2.99792458× 108 m s−1

µ0 vacuum permeability 1.256637061435917× 10−6 V s A−1 m−1

ε0 vacuum permittivity 8.854187817620391× 10−12 F m−1

h Planck constant 6.62606957× 10−34 J s
~ = h/(2π) reduced Planck constant 1.05457173× 10−34 J s

KC = (4πε0)−1 Coulomb constant 8.987551787368176× 109 N m2 C−2

e elementary charge 1.602176565× 10−19 C
me electron mass 9.10938291× 10−31 kg
NA Avogadro number 6.02214129× 1023 mol−1

R0 ideal gas constant 8.3144621 J K−1 mol −1

kB Boltzmann constant 1.3806488× 10−23 J K−1

The values of c, µ0 and ε0 are related by:

ε0µ0 = 1
c2 . (0.0.1)
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Mathematical identities

Vector calculus identities

Let φ and ψ be scalar functions; uuu and vvv are vectors. We recall here the definition of the
tensor product uuu⊗ vvv, whose (i, j)-th component is given by (uuu⊗ vvv)i,j = uivj.

First-order differentiation identities

∇∇∇ · (φuuu) = uuu · ∇∇∇φ+ φ (∇∇∇ · uuu) . (0.0.2)

∇∇∇× (φuuu) = φ (∇∇∇× uuu) + (∇∇∇φ)× uuu. (0.0.3)

∇∇∇ · (uuu× vvv) = vvv · (∇∇∇× uuu)− uuu · (∇∇∇× vvv) . (0.0.4)

∇∇∇ · (uuu⊗ vvv) = (∇∇∇ · vvv)uuu+ (∇∇∇uuu)vvv. (0.0.5)

∇∇∇ · (uuu⊗ vvv) = (∇∇∇ · vvv)uuu+ (vvv · ∇∇∇)uuu. (0.0.6)

Second-order differentiation identities

∇∇∇× (∇∇∇φ) = 000. (0.0.7)

∇∇∇ · (∇∇∇× uuu) = 0. (0.0.8)

∇∇∇× (∇∇∇× uuu) =∇∇∇ (∇∇∇ · uuu)−∇2uuu. (0.0.9)
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Fourier transform
The Fourier transform and the inverse Fourier transform used in this dissertation are
defined as

f̂(ω) = F [f(t)] = 1√
2π

∫ +∞

−∞
f(t)e−iωt dt, (0.0.10)

f(t) = F−1
[
f̂(ω)

]
= 1√

2π

∫ +∞

−∞
f̂(ω)eiωt dω. (0.0.11)

Convolution product
The convolution product of two functions f and g is defined as follows:

f ∗ g = (f ∗ g)(t) = 1√
2π

∫ +∞

−∞
f(τ)g(t− τ)dτ = 1√

2π

∫ +∞

−∞
f(t− τ)g(τ)dτ. (0.0.12)

The convolution theorem states that

F [f ∗ g] = F [f ]F [g], (0.0.13)

F [fg] = F [f ] ∗ F [g]. (0.0.14)
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1 Introduction

1.1 The terahertz radiation

The terahertz radiation, usually abbreviated as THz or even T-rays, traditionally refers
to the electromagnetic radiation lying in the frequency band from 0.1 THz to 30 THz.
Nowadays, with the emergence of ultra-broadband terahertz-wave generation and related
detection techniques, the upper limit of this range is usually extended to 100 THz. In
terms of wavelength, the THz band goes from 3 µm to 3 mm. With regard to energy, the
corresponding photon energies are between 0.4 and 400 meV. Concerning the temperature,
the extended frequency range of this radiation can lie in between 5 and 5000 K. As shown
in Fig. 1.1.1, the so-called “THz gap” corresponds in the electromagnetic spectrum to
the boundary between the microwaves and the infrared waves. If it is seen as the upper
limit of microwaves, it is sometimes called submillimetre waves. Seen as the lower limit
of infrared waves, it is sometimes referred as far infrared.

Figure 1.1.1: Electromagnetic spectrum as a function of the wavelength (lower axis) and
frequency (upper axis) in the electromagnetic spectrum.

The terahertz radiation is non-ionizing and can penetrate a few millimetres of non-
conducting materials such as clothes, paper, cardboard, plastic, ceramics, wood and body
tissues. Regarding the latter, it does not jeopardize biological tissues. It can also pass
through fog and clouds, but is absorbed by water vapour over short distances < 10 m.
Metals and water are opaque for these waves. Highly polarized materials as well as samples

1



1 Introduction

Figure 1.1.2: Terahertz spectrum and its impact on molecular dynamics. Source: www.
riken.jp.

with high absorption coefficients in the THz range can attenuate dramatically the THz
signals in spectroscopy experiments.
From the viewpoint of molecular spectroscopy, the THz band provides a lot of informa-

tion about molecular structures and related motions, such as the fundamental rotational
modes of molecules and intermolecular vibrations (see Fig. 1.1.2). Each molecule has
unique fingerprints in this frequency band, a property which can be exploited to iden-
tify some chemical functional groups in complex molecules. Even more, high-power THz
sources could be utilized to engineer transient states of matter [83].
From the technological point of view, the terahertz radiation lies at the boundary

between the electronics and optics technological domains and it remains one of the least
explored spectral regions. The frequency band lying approximately from 0.3 to 30 THz
is difficult to access by conventional technologies. Indeed, the frequencies generated by
transistors and lasers, typical semiconductor devices, do not overlap within this band
and only advanced semiconductor technology can barely convert an electrical power into
electromagnetic radiation belonging to that range [150]. This is the reason why this band
of the electromagnetic spectrum is usually referred as the terahertz gap.

1.1.1 Applications of terahertz radiation

For a long time, the interest in THz radiation has remained confined to astrophysical
submillimetre observation of cold bodies at temperatures of a few Kelvins, e.g., the cold
dust of the interstellar medium in the Milky Way (10-20 K) and starburst galaxies.
With the advent of THz time-domain spectroscopy (THz-TDS), terahertz radiation is

nowadays fully attractive thanks to its many applications in a large number of scientific
domains. For example, we shall highlight the following ones:

2
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1.1 The terahertz radiation

Figure 1.1.3: THz imaging for epithelial cancer diagnosis. Source: http://www.
teraview.com.

Figure 1.1.4: (a) Internal structure of human tooth mapped out by THz imaging. (b) THz
image of a human hand. (c) Optical image of a person carrying a concealed
weapon. (d) THz image of the same person. Source: Liu and Zhang [112].

Figure 1.1.5: THz absorption of an envelope containing C-4 inside and its position de-
pendence. (Left) Circles indicate the areas of the envelope where THz
pulses were transmitted: (red) C-4 fragment inside and (blue) envelope only.
(Right) THz absorption spectra obtained from the transmission at the two
selected areas. Source: Yamamoto et al. [183].

• Medical THz imaging [Fig. 1.1.3 and Fig. 1.1.4(a,b)]. Unlike X-rays, THz radiation
is not ionizing and it can pass through several millimetres of tissue of low water

3
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1 Introduction

Figure 1.1.6: Terahertz detection of narcotics. THz image (upper) and photograph (lower)
of specimens under inspection. Three kinds of powder (codeine, cocaine and
sucrose) are hidden in an envelope and can be distinguished using THz-TDS
spectroscopy by their own THz signatures. Source: Tonouchi [162].

content (e.g., fatty tissue) and be reflected back, without causing damage to DNA.
Due to its ability to recognize spectral fingerprints, THz imaging provides good
contrast between different types of soft tissue, and offers a non-invasive sensitive
means for detecting the degree of water content as well as other markers for, e.g.,
epithelial cancer and other diseases [187]. Figure 1.1.3 presents the advantages of
THz imaging on epithelial cancer diagnosis. The standard methodology for its diag-
nosis is the excision biopsy to remove tissues from the body and examination under
a microscope. Terahertz imaging offers the ability to produce 3D images at high
resolution through thick tissues using molecular markers, such as water, to provide
spectral and absorption information in order to differentiate between cancerous and
non-cancerous tissues, non-invasively and using non-ionising radiation. This greatly
improves conventional biopsy and associated surgery by identifying more precisely
the areas to be excised, thereby facilitating earlier and more accurate diagnosis.

• Homeland security [Fig. 1.1.4(c,d), Fig. 1.1.5, Fig. 1.1.6 and Fig. 1.1.12]. Since
THz rays can penetrate fabrics, papers and plastics, they can be applied to security

4



1.1 The terahertz radiation

Figure 1.1.7: (a) Optical image of a 600 mm × 600 mm panel of foam insulation on a
metal substrate. There exist some hidden defects underneath the surface.
(b) THz image of the same panel. Black circles are the embedded defects.
Source: Liu and Zhang [112].

Figure 1.1.8: (Left) THz image of a fresh leaf. Attenuation of THz radiation through the
leaf is largely due to water within the leaf. (Right) THz image of the same
leaf after 48 h later. Water has clearly evaporated from the leaf, except from
its stems. The colour scale indicates the relative water concentration within
the leaf; darker green corresponds to higher water concentration. Source:
Hu and Nuss [75].

screening to remote imaging and identification [111] of concealed weapons, explosives
or drugs on a person or in a package, for instance.

• Non-destructive evaluation [Fig. 1.1.7]. THz-TDS and THz tomography are suit-
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able for imaging samples which are opaque in the visible and near-infrared regions
of the electromagnetic spectrum. It can be used, for instance, in manufacturing,
quality control, and process monitoring to inspect packaged goods, since plastic
and cardboard are transparent to THz radiation. It can also be employed to see
murals hidden beneath coats of plaster or paint in centuries-old buildings (heritage
applications), without harming the artwork.

• Information and communication technology. Ishigaki et al. set a record for wireless
data transmission by using THz rays [78], which could be used in high-altitude
telecommunications, above altitudes where water vapour causes signal absorption,
such as aircraft-to-satellite or satellite-to-satellite communications.

• Global environmental monitoring of greenhouse gases and pollutants [166], and non-
invasive and continuous measuring and monitoring of the water content in leaves
and plants [62] (see Fig. 1.1.8).

The current challenge for open-air broadband THz spectroscopy technology, such as
homeland security and environmental monitoring, is to deal with high ambient moisture
absorption, which acts at distances below ∼ 10 m [151]. Therefore, there is nowadays
an increasing and yet unmet demand on intense THz sources (∼ GV/m) to overcome
this absorption over longer distances. Nevertheless, producing the intense and broadband
THz pulses appropiate for these applications is still nowadays a challenging technological
task.

1.1.2 Technologies for generation and detection of terahertz waves
Besides conventional devices (e.g., photoconductive antennas, photoconductive switches
—see Fig. 1.1.9(b)—, resonant tunnelling diodes, Schottky barrier diodes), which emit
weak and narrow THz emissions, there exist two main techniques based on solid gain
media to produce sub-picosecond THz sources in the microjoule range:

• Terahertz Quantum Cascade Laser (QCL) [175]. These devices can deliver mW-
level power from continuous-wave coherent radiation throughout a narrow terahertz
range below < 10 THz.

• Optical rectification in second-order nonlinear crystals, such as ZnTe and LiNbO3

[see Fig. 1.1.9(a)]. Pumped by multi-mJ single colour pulses, this technique requiring
phase matching can generate THz pulses up to 10 µJ energy, but the resulting
bandwidth is limited to a few THz [185]. Recently, large-sized organic crystals were
used to deliver THz pulses with GV/m electric field strength, and a conversion
efficiency of about 1% was demonstrated [167].

6
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Figure 1.1.9: (a) THz generation by optical rectification in asymmetric crystals. An in-
tense femtosecond pump pulse inside a non-inversion-symmetric transparent
crystal induces a charge displacement with a rectified component PPP r(t) that
roughly follows the intensity envelope of the pulse (blue curve in yellow crys-
tal). PPP r(t) acts as a source of a THz electromagnetic transient (red curve).
(b) Photoconductive switch. Pump-induced mobile charge carriers are ac-
celerated by an external voltage U , leading to a current burst and emission
of THz radiation. Pump and THz pulses are not shown. (c) Electro-optic
sampling. The THz electric fieldEEE(t) (red) is detected by a time-delayed, co-
propagating laser pulse (blue) that acquires an elliptical polarization. The
ellipticity is proportional to EEE, thereby providing access to EEE as a function
of the delay τ . Source: Kampfrath et al. [83].

T-rays can be detected similarly to how they are generated, for instance by means of
photoconductive and electro-optic methods [192]. A photoconductive antenna was first
used to detect THz rays [6]. Electro-optic sampling, depicted in Fig. 1.1.9(c), is a widely
met THz detection method. In such setup, the field-induced birefringence of the sensor
crystal, due to an applied electric field (THz wave), modulates the polarization ellipticity
of an optical probe beam that passes through the crystal. This ellipticity modulation (i.e.,
change in polarization) of the latter beam can then be analysed to provide information
on both the amplitude and the phase of the applied electric field.

Alternatively (see Section 1.1.3), a gas such as air can be used to detect THz pulses
through optical rectification [41]. This technique is known as THz Air-Biased-Coherent-
Detection (THz-ABCD). Mixing the THz pulse with the fundamental harmonic gives
rise to second-harmonic generation, whose intensity is proportional to the square of the
intensity of the fundamental laser pump and to the intensity of the THz pulse, supplying
an efficient method of THz detection [see Fig. 1.1.10(e)]. However, just measuring the
intensity of the second harmonic supplies only data on incoherent beams, because the
information about the phase is lost. This problem is overcome by introducing a second-

7



1 Introduction

order oscillator controlled by an AC or DC external bias [85]. When measuring the
intensity of the THz-induced second-order harmonic mixed with that bias-induced second-
order harmonic (known), the coherent cross term provides the information about the phase
of the former and thus of the complete THz signal (i.e., the THz field).

Figure 1.1.10: Overview of different plasma-based THz generation techniques. (a) Conical
THz emission by ponderomotive forces. (b) THz emission when an external
DC bias is applied to the plasma region [113, 114]. (c) THz generation
from two laser colours (fundamental and second harmonic) [37, 89, 90]. (d)
THz generation by few-cycle single-colour laser [95]. (e) THz detection by
second-harmonic generation (THz-ABCD) [41, 85]. Source: Thomson et
al. [140].

1.1.3 Laser-based terahertz sources

In this thesis, we study an alternative technique of producing intense, coherent, broadband
and highly-directional THz waves, which has been discovered and exploited for over two
decades, namely, the laser-driven terahertz sources [8, 36, 37, 44, 89, 90, 181]. Basically,
these THz waves result from the coupling of an ultrashort infrared laser colour (usually
with wavelength between 800 nm and 2000 nm, and duration of tens of femtoseconds)
with its second harmonic (see Fig. 1.1.11). The overall laser beam is then focused into a
gas, e.g., air or noble gases such as argon or helium. If the laser pulse is intense enough to
exceed the ionization threshold of the gas, a plasma is created. The medium composed by

8
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the neutral atoms and the plasma acts as a nonlinear frequency converter which produces
“low-frequency” harmonics belonging to the THz band through a rich variety of physical
mechanisms [e.g., Fig. 1.1.10(a-d)].

Figure 1.1.11: (Left) Schematic representation of THz generation by a two-colour laser.
(Right) Picture a plasma created in air in the detection zone of the
THz-ABCD method. Source: http://www.iiserpune.ac.in/~pankaj/
resources.html.

Because it is mainly based on plasma nonlinearities, this technique presents several
advantages over the conventional THz emitters recalled above:

Figure 1.1.12: (a) Absorption THz spectra of conventional explosives. Different spectra
are shown depending on the sample, here Semtex and SX2. A measurement
of the refractive index of Metabel is also plotted. (b) The schematic con-
figuration proposed in Ref. [26] of the broadband remote THz wave sens-
ing using the technique of “radiation-enhanced emission of fluorescence”
(REEF) with two-colour laser pulses to detect explosives, in this case C4.
Source: http://erc-assoc.org.

• Conventional THz emitters are based on solid materials, where the THz emission
results from elementary atomic transitions, which produce a narrow THz spectrum.

9
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In laser-driven sources, instead, nonlinear processes induced by ultrashort high-
intensity laser pulses lead to broad THz spectra from 1 to 100 THz (see Fig. 1.1.13).

• Since plasmas are not subject to material damage and have high breakdown thresh-
olds, THz fields with strong amplitudes can be produced. Typically, laser-driven
THz sources are expected to deliver amplitudes of ∼ GV/m and mean powers of
100 W, whereas conventional methods do not usually go beyond ∼ 0.1 GV/m and
mean powers of ∼ mW. This implies a real advantage because high-power THz
pulses propagate more successfully over longer distances, as they can better over-
come absorption by water vapour molecules.

• Laser filamentation allows the generation of THz pulses remotely. The absorption of
THz frequencies by water molecules in the atmosphere can indeed be circumvented
by controlling the distance where the plasma is created. In this way, target materials
at distances of tens of metres can be analyzed using THz spectroscopy [42, 170, 172].

• The energy contained by the THz pulse scales with the fundamental laser wavelength
λ0 as ∼ λ4

0, at least in the range 800 nm to 2000 nm, and it may also augment
at increasing laser durations [15, 35]. Since near- and mid-infrared laser devices
delivering few optical cycles are already available [73], this opens the door to enrich
THz pulse generation and achieve higher THz energy by optimizing the optical
propagation aspects and related conversion efficiency.

• The “modus operandi” of laser-driven THz-TDS spectroscopy is relatively simple.
As schematically shown by Fig. 1.1.12(b), the spectra of two time-recordings of
THz signals, obtained with and without the characterized material, are calculated
in amplitude and phase by simple Fourier transform. The ratio between the two
spectra leads to the refraction index, the absorption coefficient and the depth of
the irradiated material with a low noise level. As said above, these spectra restore
also unique fingerprints of intermolecular vibrations, intramolecular torsions and
the vibration modes of cristalline structures (phonons).

10
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Figure 1.1.13: Experimental THz absorption spectra of (a) TNT and (b) RDX explosive
samples, obtained from THz-TDS spectroscopy using laser-driven sources
(black curves) and conventional photoconductive antennas (blue curves).
A much better indentification of the molecule is obtained with the former
THz setup. Source: DTU Lyngby / ISL.

1.2 Motivation of this PhD work

This PhD work has been achieved at the Commisariat à l’Énergie Atomique et aux Éner-
gies Alternatives (CEA), in the centre Direction des Applications Militaires Île de France
(DAM DIF). Our research team has collaborated with various groups and researchers such
as Institut für Quantenoptik (University of Leibniz, Germany), Centre Lasers Intenses et
Applications (CELIA, Université de Bordeaux, France), Facultad de Óptica y Optometría
(Complutense University of Madrid, Spain), Institute for Scientific Computing (Technical
University of Dresden, Germany), Max-Born-Institut für Nichtlineare Optik und Kurzzeit-
spektroskopie (Germany), Faculty of Physics (M. V. Lomonosov Moscow State University,
Russia), and Centre d’Optique, Photonique et Laser (University of Laval, Canada).
My work is essentially theoretical and numerical. All the numerical simulations have

been carried out on the supercomputers Curie and Airain belonging to the “Très Grand
Centre de Calcul” (TGCC) infrastructure of CEA, an infrastructure for scientific high-
performance computing and Big Data, which is able to host petascale supercomputers.
We have been awarded the access to Curie supercomputer by the European project
PRACE1 (CAPITOL2 Project) and through national projects GENCI@CEA3.
The objective of the present thesis is to analyze theoretically and numerically the phys-

ical mechanisms underlying the laser-driven terahertz sources and their dependence on
1Partnership foR Advanced Computing in Europe.
2Computing Accelerated Particles, Intense Terahertz and Optical radiation by Lasers.
3Grand Équipement National de Calcul Intensif.

11



1 Introduction

laser and gas parameters, in order to propose the best configurations allowing to produce
the strongest and broadest terahertz pulses with the best laser-to-terahertz energy con-
version efficiency when possible. We have specially devoted our work on the generation
of intense THz radiation at high laser intensities by addressing multiple ionization and
multi-dimensional plasma effects, a domain which had been little studied so far. The per-
spective for the CEA is that such intense THz pulse generation could improve in a near
future homeland security technologies such as the remote detection of energetic materials
(explosives), as illustrated for instance by Fig. 1.1.13.

This dissertation is divided into four main sections. Section 2 introduces the physical
concepts exploited throughout our study. We start by introducing the general physical
models describing the laser pulse propagation through the target medium (in filamenta-
tion and focusing regimes), the nonlinear response of gas targets (nonlinear optics and
ionization), and the dynamics of the created plasma (triggering plasma oscillations that
appear in both the longitudinal and transverse directions). We end this section by ex-
posing the known mechanisms yielding terahertz radiation, which mainly consist in Kerr
optical rectification, photocurrents and longitudal plasma waves.

Section 3 presents the three numerical codes used during this thesis and named UPPE
(spectral code), Calder (Particle-In-Cell code), and MaxFlu. It is mostly committed to
the last code, a new Finite-Volume code that solves relativistic cold-plasma Maxwell-Fluid
equations and allows us to study both nonlinear optics and plasma dynamics, discussed
here in the scope of THz pulse generation. Finally, we comment on our simplified Maxwell-
Fluid model, which is a semi-analytical solution of the complete Maxwell-Fluid model that
unifies the photocurrent mechanisms with longitudinal plasma current oscillations at high
intensities (∼ 1017 W cm−2).

Section 4 is dedicated to typical laser filamentation intensities (< 1014 W cm−2). First,
we have investigated experimentally the signatures of the THz spectrum of bound and
free electrons in two-colour air filaments. These experimental results obtained at the
International Laser Center of M. V. Lomonosov Moscow State University (Russia) are
interpreted theoretically by means of Maxwell-Fluid and Unidirectional Pulse Propagation
Equation (UPPE) models. Second, we have explored the possibility of coupling more than
two laser colours to boost the laser-to-THz energy conversion efficiency. Harmonics of a
specific laser waveform, shaped on a sawtooth profile, appear quite promising for this
goal.

Section 5 is devoted to the THz generation at high laser intensities (1015-1018 W cm−2).
First, we study the nonmonotonic growth of the THz radiation due to the photoionization
of different electronic shells. This nonmonotonic growth is explained by the fact that, for
each electron extracted from an atom, there exists a maximum THz field resulting from

12
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the best compromise between high laser intensity and a minimum number of optical cycles
contributing to photoionization. Then we examine how the photocurrent mechanism com-
petes with plasma wakefield effects in a two-dimensional geometry. Our Particle-In-Cell
(PIC) simulations performed for this purpose demonstrate that, besides photoionization,
we have to account for transverse ponderomotive forces in order to explain THz generation
at high laser intensities, up to the relativistic limit.
Section 5.2 concludes this work.
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2 Terahertz waves driven by laser
pulses

Contents
1.1 The terahertz radiation . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Applications of terahertz radiation . . . . . . . . . . . . . . . . 2
1.1.2 Technologies for generation and detection of terahertz waves . 6
1.1.3 Laser-based terahertz sources . . . . . . . . . . . . . . . . . . . 8

1.2 Motivation of this PhD work . . . . . . . . . . . . . . . . . . . 11

This section is devoted to the physical models used in this thesis in order to under-
stand the terahertz generation by laser sources. Section 2.1 treats the different models
of laser-plasma interaction, while Section 2.2 is more dedicated to ionization. All the
basic physics concerned with nonlinear optical and plasma phenomena is discussed in
Section 2.3. Finally, the mechanisms responsible for terahertz emissions are explained in
Section 2.4.
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2 Terahertz waves driven by laser pulses

2.1 Laser-plasma interaction
When an intense femtosecond laser pulse propagates through a gas, this gas becomes ion-
ized and produces an electron plasma. The resulting plasma acts a as nonlinear frequency
converter, capable of emitting higher harmonics of the laser central frequency as well as
much lower frequencies belonging to the terahertz band. The models presented here de-
scribe the underlying physical mechanisms converting a small part of the laser energy into
a residual spectral source corresponding to terahertz radiation.
Plasmas are considered as cold (the electron temperature is assumed close to some tens

of eV) and weakly collisional. Moreover, for laser intensities up to 1019 W cm−2 and
over time scales fixed by the laser pulse duration (usually 10 − 100 fs), ion motions are
discarded in THz pulse generation, and we only focus on the electron motion.
In this context, the plasma can be appropriately described by the kinetic approach

given by the Vlasov equation (Section 2.1.2), which is coupled to the Maxwell equations
(Section 2.1.1) governing the electromagnetic fields. From the numerical point of view,
Particle-In-Cell codes solve this system of equations (Section 3.1.2). Additionally, for non-
relativistic intensities (< 1018 W cm−2), a fluid description of the plasma (Section 2.1.4)
couples the macroscopic average of the electron velocity governed by the Vlasov equation
to Maxwell equations, and thereby provides an equivalent approach to study the physics
intrinsic to laser-driven terahertz sources. Although approximative, this fluid approach is
computationally faster and its numerical results satisfactorily agree with those of Particle-
In-Cell codes (Section 3.3.2). Particle-In-Cell and Maxwell-Fluid computations can both
be limited by the propagated distances that can be covered in reasonable time by the cur-
rent computers. However, because they embed a rich plasma physics, they are suitable
for understanding how the plasma medium contributes to terahertz emission over short
distances of the order of, e.g., hundreds of micrometres. So they may not be appropriate
for simulating laser-driven terahertz radiation cumulating over long distances.
Alternatively, to describe laser-plasma interactions in the context of extreme nonlinear

optics, the unidirectional pulse propagation equation (UPPE; see Section 2.1.5.3) may
be sufficient to study the action of nonlinear optical effects (spatial diffraction, temporal
dispersion, Kerr response and photoionization with related losses) over metre-long prop-
agation ranges. This model comes directly from Maxwell equations and it integrates a
first-order approximation of the cold-plasma fluid equations for the free electron density.

2.1.1 Maxwell equations

The Gauss law [Eq. (2.1.1)], the law for absence of magnetic monopoles [Eq. (2.1.2)],
the Faraday’s law [Eq. (2.1.3)] and the Ampère’s law [Eq. (2.1.4)] constitute the Maxwell
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2.1 Laser-plasma interaction

equations:
∇∇∇ ·DDD = ρf , (2.1.1)

∇∇∇ ·BBB = 0, (2.1.2)

∂tBBB +∇∇∇×EEE = 000, (2.1.3)

−∂tDDD +∇∇∇×HHH = JJJ f + JJJ loss, (2.1.4)

where ρf = ρ− ρb is the free charge density, ρ is the total charge density, ρb is the density
for bound charges, JJJ f is the free current density, EEE is the electric field, BBB is the magnetic
field, DDD is the electric displacement field and HHH is the magnetic field strength [1]. To
assure the energy conservation, we heuristically add to Ampère’s law (2.1.4) an artificial
current density, the ionization loss current density JJJ loss, to account for the energy lost by
the laser pulse during the photoinization process (see Section 2.2.3.3 for details). In order
to close this system of equations, two constitutive equations of the medium are added,
which relate EEE and DDD [Eq. (2.1.5)], together with BBB and HHH [Eq. (2.1.6)]:

DDD = ε0EEE +PPP , (2.1.5)

BBB = µ0HHH +MMM, (2.1.6)

where ∇∇∇ ·PPP = −ρb is the electric polarization,MMM = µ0χmHHH is the magnetic polarization,
and χm is the magnetic susceptibility. The S.I. units for all these fields are summarized
in Table 2.1.

In the following, the medium is assumed to be nonmagnetic, i.e., MMM = 000. The elec-
tric polarization is separated into the linear electric polarization (PPP L) and the nonlinear
electric polarization (PPPNL):

PPP = PPP L +PPPNL. (2.1.7)

2.1.1.1 Linear polarization

The linear electric polarization is modelled as

PPP L(t) = ε0χ
(1)(t) ∗EEE(t), (2.1.8)
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2 Terahertz waves driven by laser pulses

Symbol Name S.I. units
EEE electric field V/m
DDD electric displacement field C/m2

PPP electric polarization C/m2

BBB magnetic field T
HHH magnetic field strength A/m
MMM magnetic polarization T
ρ charge density C/m3

ρb bound charge density C/m3

ρf free charge density C/m3

JJJ f free current density A/m2

Table 2.1: S.I. units of electromagnetic fields, charge densities and current density gov-
erned by Maxwell equations.

where ∗ stands for the convolution product in time and χ(1)(t) = F−1[χ̂(1)(ω)] is the
first-order electric susceptibility given by

χ̂(1)(ω) = n̂(ω)2 − 1 (2.1.9)

in the Fourier domain. By abuse of language, the angular frequency ω (also known as
pulsation) will be called “frequency” henceforth.

In Eq. (2.1.9), n̂(ω) is the frequency-dependent linear refractive index of the gas medium
at the local pressure pgas:

n̂(ω)2 − 1 = pgas

1 bar
(
n̂1bar(ω)2 − 1

)
, (2.1.10)

where n̂1bar accounts for the refractive index at 1-bar pressure. In the most simplified sit-
uation, a constant refractive index n0 = n̂(ω0) is considered [and thus n0,1bar = n̂1bar(ω0)].
For ultrashort laser pulses the linear refractive index depends on the frequency. n̂ = n̂(ω)
determines the chromatic dispersion of the material, as evaluated, for instance, in the
articles by Dalgarno and Kingston [43], Leonard [103], Mansfield [119], Börzsönyi et al.
[21], and Bideau-Mehu et al. [16]. Here different linear dispersion relations depending
on even powers of the optical frequency (e.g., ω2, ω4, etc.) are proposed for approaching
n̂(ω) of different gases (argon, xenon, neon, helium, etc.). To pass to the time domain,
a differential equation on n(ω) can be used through the Sellmeier equation [145]. For
example, Leonard [103], Mansfield [119], Börzsönyi et al. [21], and Bideau-Mehu et al.
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2.1 Laser-plasma interaction

[16] propose linear refractive indices in the general form

n̂1bar(ω)− 1 =
∑
i

fi,1bar
ω2
i − ω2 , (2.1.11)

where fi,1bar is the absorption oscillator strength for the transition at a resonant frequency
ωi, measured at a pressure of 1 bar. In most of practical situations, we assume pulse
propagation within a frequency window far from such material resonances.

Since |n̂(ω)| is expected to remain close to unity, it is reasonable to approximate the
first-order electric susceptibility, formally defined by χ̂(1)

1bar(ω) = n̂1bar(ω)2 − 1, as

χ̂
(1)
1bar(ω) ≈ 2 [n̂1bar(ω)− 1] , (2.1.12)

because [n̂1bar(ω)2 − 1] − 2[n̂1bar(ω) − 1] = [n̂1bar(ω) − 1]2 � χ̂
(1)
1bar(ω). By combining

Eqs. (2.1.10), (2.1.11) and (2.1.12), a model for the first-order electric susceptibility can
be obtained, which fits Sellmeier’s equation [145]:

χ̂(1)(ω) =
∑
i

2fi
ω2
i − ω2 , (2.1.13)

fi = pgas

1 barfi,1bar. (2.1.14)

Since the linear polarization is defined as PPP L(t) = ε0F−1[χ̂(1)(ω)ÊEE(ω)] according to
Eq. (2.1.8), the Sellmeier-like model of Eq. (2.1.13) gives the following differential equation
for the linear polarization in time:

PPP L(t) =
∑
i

PPP L,i(t), (2.1.15)

(
∂2
t + ω2

i

)
PPP L,i(t) = 2ε0fiEEE(t), (2.1.16)

whose exact solution, for the initial condition PPP L,i(0) = 000, expresses as

PPP L,i(t) = 2ε0fi

∫ t

0
cos2 (ωi(τ − t))EEE(τ) dτ. (2.1.17)

Note that instead of using the first-order electric susceptibility, alternatively, the relative
permettivity ε̂r and the permittivity ε̂ of the medium can be used. They are linked through
the relationships:

ε̂r(ω) = 1 + χ̂(1)(ω) = n̂(ω)2, (2.1.18)
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2 Terahertz waves driven by laser pulses

ε̂(ω) = ε0ε̂r(ω). (2.1.19)

2.1.1.2 Nonlinear polarization

Besides PPP L, the polarization vector contains nonlinear contributions that become active
at high laser intensities. For an isotropic medium, the nonlinear polarization can be
expressed as a power series in the electric field through high-order electric susceptibilites
[1, 23]. Even-order electric susceptibilities vanish for a medium whose molecules are
centrosymmetric (i.e., they stay invariant under a point reflection), which applies to the
gases which are considered here. Only third-order electric susceptibility will be treated in
this work, which characterizes the Kerr effect. It is expressed as a frequency-dependent
four-rank tensor and is responsible for third-harmonic generation and four-wave mixing:

P̂PPNL = ε0
ˆ̄̄̄
χ̄(3)(ω) ... ÊEEÊEEÊEE, (2.1.20)

where ... stands for tensor product [1].
Third-order electric polarization [Eq. (2.1.20)] has an instantaneous response only —Ra-

man scattering by anisotropic molecules is not taken into account [14, 153]— and its ith
vectorial component (i = x, y, z) is given by

P̂NL,i(ω) = ε0
∑

j=x,y,z

∑
k=x,y,z

∑
l=x,y,z

χ̂
(3)
i,j,k,l(ω)Êj(ω)Êk(ω)Êl(ω). (2.1.21)

The tensor
ˆ̄̄̄
χ̄(3) is considered as isotropic and the nonlinear dispersion will be neglected;

in other words, its diagonal components satisfy χ̂(3)
x,x,x,x(ω) = χ̂(3)

y,y,y,y(ω) = χ̂(3)
z,z,z,z(ω) =

χ̂(3)(ω0) = χ(3) while the remaining ones are zero. Therefore, the nonlinear electric polar-
ization will here reduce to

PPPNL = ε0χ
(3)


E3
x

E3
y

E3
z

 . (2.1.22)

The third-order electric susceptibility χ(3) is often expressed as a function of the non-
linear refractive index of the medium, n2:

χ(3) = 4
3cε0n

2
0,1barn2, (2.1.23)

where the nonlinear refractive index at a certain pressure pgas is given by

n2 = pgas

1 barn2,1bar. (2.1.24)
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2.1 Laser-plasma interaction

Here n2,1bar denotes the nonlinear refractive index at 1-bar pressure.

Remark 1. As χ(3) depends on the nonlinear response of the neutrals to an external
electric field, the nonlinear polarization could be better modelled if it were corrected at
every position and instant by the ratio between the density of neutral atoms still existing
at those coordinates and the initial density of neutrals. However, in the intensity domain
where the Kerr response acts efficiently on terahertz generation, the density of neutrals is
not significantly impacted by the density of freed electrons. Therefore, χ(3) will always be
viewed as constant in what follows.

In connexion with PPPNL, the optical refractive index of the medium is defined at central
frequency ω0 as [23]:

n̄ = n0 + n2I0, (2.1.25)

where I0 is the averaged intensity of the laser pulse E(t) over one period T0 = 2πω−1
0 :

I0 = n0ε0c
〈
E(t)2

〉
= n0ε0c

1
T0

∫ T0

0
E(t)2 dt. (2.1.26)

In Eq. (2.1.25), the nonlinearities are assumed small: n2I0 � n0. Equation (2.1.23) can
be retrieved from Eq. (2.1.25). Let

E(t) = a0 cos(ω0t) (2.1.27)

be a scalar single-colour laser plane wave. The scalar polarization, according to
Eqs. (2.1.7), (2.1.8) and (2.1.22), reads as

P (t) = ε0χ
(1)E(t) + ε0χ

(3)E(t)3 = ε0χ
(1)E(t) + 3

4ε0χ
(3)a2

0E(t) + 1
4ε0χ

(3)a3
0 cos(3ω0t),

(2.1.28)
which, in the Fourier domain, yields for ω = ω0:

P̂ (ω0) = ε0

(
χ(1) + 3

4χ
(3)a2

0

)
Ê(ω0) = ε0χeffÊ(ω0), (2.1.29)

where χeff denotes the effective susceptibility at frequency ω0. Taking into account that
a2

0 = 2〈E(t)2〉, this effective susceptibility should be given by the optical refractive index
of Eq. (2.1.25) in accordance with Eq. (2.1.9):

χeff = n̄2 − 1 ≈ n2
0 − 1 + 2n0n2I0 = n2

0 − 1︸ ︷︷ ︸
χ(1)

+ ε0cn
2
0n2︸ ︷︷ ︸

3
4χ

(3)

a2
0, (2.1.30)

where the simplification n2I0 � n0 is applied. By comparing Eq. (2.1.30) with
Eq. (2.1.29), one recovers the electric susceptibilities of Eqs. (2.1.9) and (2.1.23).
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2 Terahertz waves driven by laser pulses

The previous results also hold for a N -colour laser pulse in the form

E(t) =
N∑
k=0

akEk(t) cos (ωkt+ φk), (2.1.31)

where ak, kω0 and φk are the amplitude, the frequency and the phase of the kth colour
(harmonic), respectively. In this situation, the cycle-average intensity is

I0 = n0ε0c
〈
E(t)2

〉
= 1

2n0ε0c
N∑
k=1

a2
k, (2.1.32)

and thus the cycle-average amplitude is defined by a0 =
√∑N

k=1 a
2
k.

2.1.2 Vlasov equation

A plasma can be seen as a dynamical system of N charged particles (N � 1) of several
species (free electrons and different types of ions), which move under the influence of
both external fields and fields generated by the particles themselves. Such system will
be described in the following by the Hamiltonian mechanics, a formalism based on the
concept of energy and specially convenient when the particles have complex and chaotic
trajectories. At every instant t, the state of each particle i, to which a mass mi and a
charge qi are associated, is characterized by two vectors: its position rrri(t) and its linear
momentum pppi(t). In a three-dimensional geometry, this state represents a point in the
phase space of six dimensions: rrri(t) = (xi(t), yi(t), zi(t)) and pppi(t) = (px,i(t), py,i(t), pz,i(t)).
The Hamiltonian densityH = H(t, rrr,ppp) is a scalar function on this phase space, describing
the motion of each particle through Hamilton’s equations:

drrri
dt

= ∂H
∂pppi

= vvvi, (2.1.33)

dpppi
dt

= −∂H
∂rrri

= FFF i = qi (EEEi + vvvi ×BBBi) , (2.1.34)

where vvvi = pppi(miγi)−1 is the velocity, γi = (1 − v2
i /c

2)−1/2 is the Lorentz factor, FFF i =
FFF (t, rrri) = qi (EEEi + vvvi ×BBBi) is the Lorentz force, EEEi = EEE(t, rrri) and BBBi = BBB(t, rrri) are the
electric and magnetic fields acting on the particle, respectively.
The microscopic state of the plasma is known when Eqs. (2.1.33) and (2.1.34) are solved

for all the N particles. In three dimensions this implies solving 12N degrees of freedom in
the dynamical system, which is far to be accessible for current computers. Nevertheless,
the evolution of macroscopic variables can be described thanks to statistical physics. To
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2.1 Laser-plasma interaction

species σ a smooth distribution function fσ(t, rrr,ppp) is associated, which must verify:

lim
|ppp|→∞

|ppp|αfσ(t, rrr,ppp) = 0, ∀α ∈ R+. (2.1.35)

This distribution function represents a probability density function. Therefore, the
averaged number density of species σ is calculated as

〈Nσ(t, rrr)〉 =
∫∫∫

R3
fσ(t, rrr,ppp) dppp. (2.1.36)

Analogously, the mean value of a certain field Φσ acting on the phase space for species
σ (for example, velocity or linear momentum) is given by

〈Φσ(t, rrr)〉 =

∫∫∫
R3

Φσ(t, rrr,ppp)fσ(t, rrr,ppp) dppp∫∫∫
R3
fσ(t, rrr,ppp) dppp

=

∫∫∫
R3

Φσ(t, rrr,ppp)fσ(t, rrr,ppp) dppp

〈Nσ(t, rrr)〉 , (2.1.37)

and thus the mean value of ΦσNσ verifies

〈Φσ(t, rrr)Nσ(t, rrr)〉 =
∫∫∫

R3
Φσ(t, rrr,ppp)fσ(t, rrr,ppp) dppp = 〈Φσ(t, rrr)〉〈Nσ(t, rrr)〉. (2.1.38)

The Vlasov equation modelizes the time derivative of this distribution function:

d

dt
fσ(t, rrr,ppp) = Sσ(t, rrr,ppp), (2.1.39)

where the source term Sσ(t, rrr,ppp) is discussed in Section 2.1.3. Taking Eqs. (2.1.33) and
(2.1.34) into account, the time derivative of fσ is:

d

dt
fσ(t, rrr,ppp) = ∂

∂t
fσ(t, rrr,ppp) + drrr

dt
· ∂
∂rrr
fσ(t, rrr,ppp) + dppp

dt
· ∂
∂ppp
fσ(t, rrr,ppp) =

∂

∂t
fσ(t, rrr,ppp) + vvv · ∂

∂rrr
fσ(t, rrr,ppp) + qσ (EEE + vvv ×BBB) · ∂

∂ppp
fσ(t, rrr,ppp),

(2.1.40)

where qσ is the charge associated to the species σ. By subsituting Eq. (2.1.40) into
Eq. (2.1.39), the general expression of Vlasov equation for species σ is obtained:

∂

∂t
fσ(t, rrr,ppp) + vvv · ∂

∂rrr
fσ(t, rrr,ppp) + qσ (EEE + vvv ×BBB) · ∂

∂ppp
fσ(t, rrr,ppp) = Sσ(t, rrr,ppp). (2.1.41)
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2 Terahertz waves driven by laser pulses

2.1.3 Moments for electrons

Discarding ion motions, Vlasov equation (2.1.41) only treating electrons with the distri-
bution function f = f(t, rrr,ppp) then expresses as

∂

∂t
f(t, rrr,ppp) + ppp

meγ(ppp) ·
∂

∂rrr
f(t, rrr,ppp)− e

(
EEE + ppp

meγ(ppp) ×B
BB

)
· ∂
∂ppp
f(t, rrr,ppp) =

S(EEE,ppp)δ(ppp),
(2.1.42)

where ppp = meγ(ppp)vvv, δ is the Dirac distribution and S(EEE,ppp) is a source term that represents
laser-induced ionization. This source term is modelled with a Dirac distribution because
electrons are assumed to be ionized with zero initial momentum.
The equations for the averaged macroscopic fields can next be obtained by calculating

the d-degree moments of Eq. (2.1.42), which are extracted by computing the integral over
ppp of Eq. (2.1.42) multiplied by pppd. Only the zeroth-order moment (conservation of the
averaged electron density) and the first-order moment (conservation of the averaged elec-
tron linear momentum) will be established. After some manipulations shown in Section C,
these moments read as

∂t〈Ne〉+∇∇∇ · 〈Nevvv〉 = S(EEE,ppp = 000), (2.1.43)

∂t〈Neppp〉+∇∇∇ · ¯̄Ψ +∇∇∇ · [〈Ne〉〈vvv〉 ⊗ 〈ppp〉] = −e〈Ne〉 (EEE + 〈vvv〉 ×BBB) , (2.1.44)

respectively, where ¯̄Ψ is the kinetic pressure tensor [Eq. (C.21)]. Equation (2.1.43) is the
continuity equation for the electron density. Equation (2.1.44) is the fundamental fluid
equation for the charged particles (electrons).

2.1.4 Cold-plasma fluid equations

The symbol 〈〉 denoted the phase-space-averaged macroscopic variables in Section 2.1.3.
These variables will be considered hereinafter as fluid variables and consequently renamed
as Ne ≡ 〈Ne〉, ppp ≡ 〈ppp〉 and vvv ≡ 〈vvv〉, linked together through the relationships:

ppp = meγvvv, (2.1.45)

γ = 1√
1− v2

c2

. (2.1.46)
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2.1 Laser-plasma interaction

The conservation of the averaged electron density, Eq. (2.1.43), is directly rewritten
into its fluid version:

∂tNe +∇∇∇ · (Nevvv) = ∂t
∑
s

∑
j

qj,s
e
Nj,s, (2.1.47)

where the source term, which accounts for ionization, is expressed as the time derivative
of the charge density of all ions species indexed by s (see Section 2.2.3). Here, Nj,s is the
density of j-th ion for the s-th species and qj,s denotes its corresponding charge. As we
neglect ion velocities under the assumption vion � ve, the fluid electron current simply
expresses as

JJJ = −eNevvv. (2.1.48)

It is then more interesting to express Eq. (2.1.47) in terms of JJJ :

∂tNe −
1
e
∇∇∇ · JJJ = ∂t

∑
s

∑
j

qj,s
e
Nj,s. (2.1.49)

Equation (2.1.49) is equivalent to the well-known continuity equation

∂tρf +∇∇∇ · JJJf = 0, (2.1.50)

where ρf = −eNe + ∑
s

∑
j qj,sNj,s is the free charge density, as the total free current

density follows from the motion of electrons, i.e., JJJf = JJJ . This continuity equation can
also be obtained from Maxwell equations, by taking the divergence of Eq. (2.1.4) and
neglecting ∇∇∇ · JJJ loss.

The assumption of a cold plasma implies that we omit pressure effects, i.e., ∇∇∇ · ¯̄Ψ = 000
in Eq. (2.1.44). This can be justified by viewing the plasma as an ideal polytropic gas,
veryfing ΨV n = cst and TeV

n−1 = cst, where Ψ, Te and V account for the electron pres-
sure, temperature and volume, respectively, and n is the polytropic index. The gradient
of pressure is thus

∇∇∇Ψ = n

n− 1
Ψ
Te
∇∇∇Te, (2.1.51)

which implies that neglecting thermal effects is equivalent to neglect this pressure gradient.

For completeness, a collisional term can be heuristically introduced into Eq. (2.1.44)
by hand, proportional to Neppp and characterized by a collision rate νc. This exponential
damping of the electron linear momentum accounts for the average of different elastic and
inelastic collisions (electron-neutral, electron-ion, and electron-electron) [130, 154]. In
underdense and weakly ionized plasmas (like in filamentation regime), electron-electron
collisions are not significant. In single or highly ionized plasmas, instead, electron-electron
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2 Terahertz waves driven by laser pulses

collision rate is about ten times higher than the rate of inelastic collisions (i.e., collisional
ionization). In spite of this fact, we will analyse separately the collisional ionization in
Sections 2.2.3.2 and 2.4.3 as a potential THz emitter. With this collisional rate, the
resulting fluid equation thus becomes:

∂t (Neppp) +∇∇∇ · (Nevvv ⊗ ppp) = −eNe (EEE + vvv ×BBB)− νcNeppp. (2.1.52)

The value of νc can be adjusted to describe the collisions in the current density over
long times. Equation (2.1.52) was already proposed by Sprangle et al. in Ref. [154] for
a nonrelativistic plasma. Alternatively, it may be useful to express it in terms of the
electron current density JJJ :

∂t (γJJJ) +∇∇∇ · (vvv ⊗ γJJJ) = e2

me
NeEEE −

e

me
JJJ ×BBB − νcγJJJ. (2.1.53)

2.1.5 Forward propagating electric fields

Maxwell equations [Eqs. (2.1.1), (2.1.3) and (2.1.4)], together with Eqs. (2.1.5) and (2.1.6),
can be combined to lead to the following equation for the electric field:

∇2EEE − 1
c2∂

2
t (εr ∗EEE)−∇∇∇ (∇∇∇ ·EEE) = µ0

[
∂tJJJ f + ∂tJJJ loss + ∂2

tPPPNL
]
, (2.1.54)

where
∇∇∇ ·EEE = 1

ε
∗ (ρf −∇∇∇ ·PPPNL) . (2.1.55)

Briefly speaking, Eqs. (2.1.5) and (2.1.6) are inserted into the Ampère’s equation
[Eq. (2.1.4)], assuming MMM = 000 and by applying Eq. (0.0.1):

∇∇∇×BBB = µ0JJJ f + µ0JJJ loss + 1
c2∂tEEE + µ0∂tPPP .

Next, by differentiating in time and using Eq. (2.1.3), we find:

−∇∇∇× (∇∇∇×EEE) = µ0∂tJJJ f + µ0∂tJJJ loss + 1
c2∂

2
tEEE + µ0∂

2
tPPP .

Applying the identity (0.0.9) and Eqs. (2.1.7) and (2.1.8),we obtain

∇2EEE = µ0∂tJJJ f + µ0∂tJJJ loss + 1
c2∂

2
tEEE + 1

c2∂
2
t (χ(1) ∗EEE) + µ0∂

2
tPPPNL +∇∇∇ (∇∇∇ ·EEE) ,

which yields Eq. (2.1.54) after employing Eq. (2.1.18).
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2.1 Laser-plasma interaction

By combining Eqs. (2.1.1), (2.1.5), (2.1.7) and (2.1.8), we furthermore get

∇∇∇ ·EEE = 1
ε0

(
ρf − ε0∇∇∇ · (χ(1) ∗EEE)−∇∇∇ ·PPPNL

)
,

from which Eq. (2.1.55) follows after using Eqs. (2.1.18) and (2.1.19).

2.1.5.1 The non-relativistic limit of the forward propagation equations

The free current density JJJ f in Eq. (2.1.54) in the nonrelativistic regime is given by
Eq. (2.1.53) with γ ≈ 1. It is even more simplified when assuming v � c and neglecting
the convective term ∇∇∇ · (vvv ⊗ JJJ), because it is of second order in vvv, and the Lorentz force
em−1

e JJJ ×BBB, because it scales as ≈ |NeEEE × vvv/c| � |NeEEE|:

∂tJJJ = e2

me
NeEEE − νcJJJ. (2.1.56)

Assuming a neutral plasma (i.e., ρf = 0), the electron density is calculated from the ion
densities (see Section 2.2.3 for details), so that:

Ne =
∑
s

∑
j

qj,s
e
Nj,s, (2.1.57)

Because ρf = 0, Eq. (2.1.55) turns into ∇∇∇ · EEE = −ε−1 ∗ ∇∇∇ · PPPNL. The nonlinear
polarization is supposed to be very small compared with the linear one (|PPPNL| � |PPP L|).
Thus it is reasonable to neglect the term ∇∇∇ (∇∇∇ ·EEE) in Eq. (2.1.54) and assume ∇∇∇ ·EEE = 0
henceforth. The following wave equation for the electric field then readily follows:

∇2EEE − 1
c2∂

2
t (εr ∗EEE) = µ0

[
∂tJJJ + ∂tJJJ loss + ∂2

tPPPNL
]
. (2.1.58)

Equation (2.1.58) is now rewritten in Fourier domain:

∇2ÊEE + 1
c2ω

2ε̂rÊEE = µ0
[
iωĴJJ + iωĴJJ loss − ω2P̂PPNL

]
. (2.1.59)

From now on, the propagation axis is z and the laser pulse is assumed to be linearly
polarized over the x axis:

EEE(x, y, z) = E(x, y, z)x̂xx. (2.1.60)

With JJJ = Jx̂xx and PPPNL = PNLx̂xx, Eq. (2.1.59) turns to the scalar equation
(
∂2
z +∇2

⊥ + 1
c2ω

2ε̂r

)
Ê = µ0

[
iωĴ + iωĴloss − ω2P̂NL

]
, (2.1.61)
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2 Terahertz waves driven by laser pulses

where ∇2
⊥ = ∂2

x + ∂2
y . As the wavenumber is defined as

k(ω) = ω

c

√
ε̂r(ω), (2.1.62)

Eq. (2.1.61) can be rewritten as the extended Helmholtz equation:

(
∂2
z +∇2

⊥ + k2
)
Ê = µ0

[
iωĴ + iωĴloss − ω2P̂NL

]
. (2.1.63)

Figure 2.1.1: (a) Components of the wavevector kkk, kz and k⊥, with the diffraction angle
θ = arcsin(k⊥/k). (b) No diffracting pulse (plane wave): θ = 0 at every
position. (c) Diffracting pulse: |θ| ≥ 0 varies with the position.

The wavevector kkk is defined as the vector parallel to the propagation direction of the
laser field and whose modulus is the wavenumber given by Eq. (2.1.62). The transverse
component of this vector is k⊥ =

√
k2
x + k2

y while the longitudinal one is kz, verifying
k2 = k2

⊥ + k2
z [see Fig. 2.1.1(a)]. For the laser pulse propagating along z, the diffraction

angle with respect to that axis is sin θ = k⊥/k [see Fig. 2.1.1(b,c)].
The scalar approach of Eq. (2.1.63) holds under the hypothesis that k⊥ � kz, which

means that the propagation is mostly paraxial, i.e., it only supports small diffraction
angles θ � 1. From Eq. (2.1.63) several approaches modelling the forward propagation
of the laser pulse can be done [14, 24, 61, 76, 93, 94]. Two well-known equations can be
derived from Eq. (2.1.63), namely, the Forward Maxwell Equation (Section 2.1.5.2) and
the Unidirectional Pulse Propagation Equation (Section 2.1.5.3).

2.1.5.2 The Forward Maxwell Equation (FME)

For technical convenience, the following propagation operators are introduced:

D̂±(ω) = ∂z ∓ ik(ω), (2.1.64)

where D̂+ is the forward propagation operator associated to the propagation of linear
modes ∼ exp(ikz), and D̂− the backward propagation operator associated to the coun-
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2.1 Laser-plasma interaction

terpropagating linear modes ∼ exp(−ikz). Since D̂+D̂− = ∂2
z + k2, Eq. (2.1.63) can be

rewritten as
D̂+D̂−Ê = −∇2

⊥Ê + µ0
[
iωĴ + iωĴloss − ω2P̂NL

]
. (2.1.65)

Accordingly, the laser field is decomposed on the basis of the two linear modes, i.e,

Ê = Ê+eikz + Ê−e−ikz, (2.1.66)

where Ê+ refers to the forward propagating optical field and Ê− to its backward propa-
gating part. Under the hypothesis k⊥ � kz and small nonlinearities, the backscattered
part Ê− can be separated from the forward field, viewed as the dominant pulse component
[58]. Therefore, the laser field is approximated by a forward propagating pulse:

Ê = Ê+eikz. (2.1.67)

We apply the operator D̂− onto Eq. (2.1.67):

D̂−Ê = (∂z + ik)
(
Ê+eikz

)
≈ eikz

(
∂zÊ+ + 2ikÊ+

)
. (2.1.68)

Thanks to the paraxiality assumption, |∂zÊ+| � |ikÊ+|, which states that Ê+(ω) does
not vary significantly on propagation distances of order of 2πcω−1, the above equation is
simplified to

D̂−Ê = eikz
(
�
��

∂zÊ+ + 2ikÊ+
)
≈ 2ikÊ+eikz = 2ikÊ. (2.1.69)

Applying next the operator D̂+ to Eq. (2.1.69), one has

D̂+D̂−Ê = D̂+
(
2ikÊ

)
= (∂z − ik)

(
2ikÊ

)
= 2ik

(
∂zÊ − ikÊ

)
. (2.1.70)

Subsituting Eq. (2.1.70) into Eq. (2.1.65) yields the Forward Maxwell Equation (FME):

∂zÊ = ikÊ + i
2k∇

2
⊥Ê + µ0

2k
[
ωĴ + ωĴloss + iω2P̂NL

]
, (2.1.71)

which was first proposed by Husakou and Herrmann in Ref. [76].

Anterior models as, e.g., that proposed by Brabec and Krausz [24], have often dealt with
improved envelope equations where the wavenumber given by Eq. (2.1.62) is expanded
through Taylor series around a central frequency ω0 [1]:

k(ω) = k0 + k1 (ω − ω0) + D̂, (2.1.72)

where k0 = k(ω0) = ω0n0/c, n0 = n̂(ω0), k1 = ∂ωk(ω)|ω=ω0 is the inverse of the group
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2 Terahertz waves driven by laser pulses

velocity of the pulse, and D̂ accounts for high-order dispersion:

D̂ =
∞∑
m=2

km
m! (ω − ω0)m , (2.1.73)

with km = ∂mω k(ω)|ω=ω0 . k2 is called the group velocity dispersion (GVD) and k3 the
third-order dispersion (TOD). Such extended envelope equations, however, assume that
most of the propagation physics is carried out around ω0 only. They are usually expressed
in the co-moving reference frame that travels at the group velocity k−1

1 [24]. The resulting
“Nonlinear Envelope Equation” (NEE) has consisted in an important progress in mod-
elling ultrashort pulse propagation compared with the standard Nonlinear Schrödinger
Equation (NSE) [1], as it accounts, e.g., for self-steepening effects through operators in
the form T = 1 + iω−1

0 ∂t that correct the slowly-varying envelope approximation. This
phenomenon, modelled by the term T P̂NL ∼ T |Ê|2Ê, induces a steepening of the trailing
edge of the pulse, which manifests into an important blueshifting of the spectrum.

2.1.5.3 The Unidirectional Pulse Propagation Equation (UPPE)

Similarly to Eq. (2.1.64), instead of excluding the diffraction term from the elementary
linear modes, one can account for it through the propagation operators

D̂⊥±(ω) = ∂z ∓ ikz(ω) = ∂z ∓ i
√
k(ω)2 − k⊥(ω)2, (2.1.74)

where k2
⊥ = k2

x + k2
y, D̂⊥+ is the forward propagation operator associated to linear modes

∼ exp(ikzz) and D̂⊥− the backward propagation operator associated to linear modes ∼
exp(−ikzz). The key idea here is to express Eq. (2.1.65) in the transverse Fourier variables
kx and ky occurring through ∇⊥ → −ik⊥. By doing so, the composition of these two
operators gives

D̂⊥+D̂
⊥
− = (∂z − ikz) (∂z + ikz) = ∂2

z + k2
z = ∂2

z + k2 − k2
⊥ = ∂2

z +∇2
⊥ + k2. (2.1.75)

Equations (2.1.63) and (2.1.75) are combined into

D̂⊥+D̂
⊥
−Ê = µ0

[
iωĴ + iωĴloss − ω2P̂NL

]
. (2.1.76)

The laser pulse is again decomposed into forward (Ê+) and backward (Ê−) field com-
ponents as

Ê = Ê+eikzz + Ê−e−ikzz. (2.1.77)
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2.1 Laser-plasma interaction

Neglecting the backscattered field, the laser field simplifies into

Ê = Ê+eikzz. (2.1.78)

By applying the paraxiality assumption to Eq. (2.1.78), it is then easy to verify that

D̂⊥−Ê = (∂z + ikz)
(
Ê+eikzz

)
= eikzz

(
���
∂zÊ+ + 2ikzÊ+

)
≈ 2ikzÊ+eikzz = 2ikzÊ, (2.1.79)

D̂⊥+D̂
⊥
−Ê = (∂z − ikz)

(
2ikzÊ

)
= 2ikz

(
∂zÊ − ikzÊ

)
. (2.1.80)

Substituting Eq. (2.1.80) into Eq. (2.1.76) gives the Unidirectional Pulse Propagation
Equation (UPPE):

∂zÊ = i
√
k2 − k2

⊥Ê + µ0

2
√
k2 − k2

⊥

[
ωĴ + ωĴloss + iω2P̂NL

]
, (2.1.81)

which was proposed by Kolesik, Moloney and Mlejnek in Refs. [93] and [94]. Both
Eqs. (2.1.71) and (2.1.81) provide quite similar results when the condition k⊥ � kz ≈ k

applies. The major difference with the FME model is that Eq. (2.1.81) allows to describe
direct-current (DC) field components in the limit ω → 0, i.e., strongly diffracting waves,
whereas Eq. (2.1.71) is strictly limited to weakly dispersive and diffractive waves. This can
be seen from the term accounting for linear dispersion and diffraction i[k − k2

⊥/(2k)]Ê in
Eq. (2.1.71), which diverges in the limit k → 0, unlike the term i

√
k2 − k2

⊥Ê in Eq. (2.1.81).
The former proceeds from the latter in the limit k2 � k2

⊥.
The UPPE equation gives a complete description of the electromagnetic spectrum,

including low frequencies and high-order harmonics. The terahertz field in time domain
is recovered by applying a filter at a cut-off frequency νco and then calculating the inverse
Fourier transform:

Eνco = F−1
[
Π(ω)Ê(ω)

]
, (2.1.82)

where Π(ω) represents the filter. We use the simplest filter, which is the rectangular
function:

Π(ω) =
 1, if |ω| ≤ 2πνco

0, otherwise.
(2.1.83)
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2.2 Ionization of gases

0 x
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U i
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−Ui −Ui

v0 ≈ 0

−Ui −Ui

Figure 2.2.1: Schematic representation of photoionization regimes. The Coulomb energy
potential of Eq. (2.2.1) is the blue solid curve, the sum of the potentials
due to the electrostatic attraction of the core (black dashed curve) and the
external electric field (red dashed curve). The energy level (−Ui < 0) of the
bound electron is represented by the green solid line. The black dotted line
stands for the zero energy level. (a) Multiphoton ionization: the electron
absorbs a minimum number of photons to get freed. (b) Above treshold
ionization: the electron gains from absorbed photons more energy than nec-
essary to be ionized. (c) Tunnelling ionization: the Coulomb potential is
bent by the strong external electric field and the resulting barrier is narrow
enough for the electron to tunnel it through. The black dot refers to the po-
sition of electron birth. (d) Over-barrier ionization: the Coulomb potential
is heavily deformed, such that the energy of the bound electron exceeds the
height of the barrier and the electrons can thus escape.

The atomic Coulomb potential acts as an energy barrier that binds the bound electrons
to atoms, because the electrons are in an energy level (negative) below this potential.
This barrier is created by the electrostatic attraction of the atom nucleus and the external
electric field, of amplitude a0, undergone by an irradiated atom. By reducing the geometry
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2.2 Ionization of gases

to one dimension for the sake of simplicity, this potential reads:

U(x) = − Ze2

4πε0|x|︸ ︷︷ ︸
core

− ea0x,︸ ︷︷ ︸
external field

(2.2.1)

where Ze is the charge of the core and x is the distance of the electron from the nucleus.
When the atoms are subject to strong enough electric fields, bound electrons can be ion-

ized due to different processes. The most important mechanism is the optical-field-induced
ionization, simply known as photoionization, which encompasses the multi-photon ioniza-
tion and the tunnel ionization (see Fig. 2.2.1). For low intensities (below 1013 W cm−2),
the electric field is not intense enough to deform the Coulomb potential. In this situation,
electrons can absorb photons until they overcome the energy barrier, becoming free elec-
trons. This photoionization regime is known as multi-photon ionization (MPI), as shown
in Fig. 2.2.1(a). A special case of this regime is the above threshold ionization, when elec-
trons absorb more than the minimum number of photons needed to get free [Fig. 2.2.1(b)].
On the other hand, strong electric fields with intensities above 1013 W cm−2 deform the
Coulomb potential to such a point that electrons can be ionized by passing through the
Coulomb potential barrier by tunnel effect [Fig. 2.2.1(c)]. The distance from the nucleus
where the electrons are born to the outer side of the potential barrier, with zero initial
velocity v0 ≈ 0 [38, 61], is x0 ≈ Ui/(ea0) [61, 169]. An extreme case is the over-barrier
ionization, when the potential barrier dissapears [Fig. 2.2.1(d)].
Keldysh [87] was a pioneer in the theory of photoionization. For an electric field of

strength a0, he defined the so-called adiabaticity parameter:

γK = ω0
√

2meUi

ea0
= ω0tt, (2.2.2)

where Ui is the energy necessary to extract one electron from a given atom, known as
ionization energy. This parameter compares the laser frequency ω0 with the electron
tunnelling time, defined by

tt =
√

2meUi

ea0
. (2.2.3)

Here, ea0 is the value of the electric force acting on the electron and mevt =
√

2meUi

is the electron linear momentum associated to the tunnelling velocity vt. The latter is
estimated by supposing that the kinetic energy of the electron that tunnels through is
equal to the ionization energy: mev

2
t /2 = Ui. When γK � 1 the atom is ionized in the

MPI regime; when γK � 1, instead, ionization occurs by tunnel effect.
The early photoionization models (see Section 2.2.2) assumed hydrogen-like atoms sup-

porting only a single-electron ionization. However, because this thesis is also devoted to
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high intensity levels > 1015 W cm−2, a more realistic multiple ionization scheme will be
considered (see Section 2.2.3).
Since electrons are ionized from the outermost to the innermost atomic shells, leading

to a sequential production of ion charge states, photoionization is usually referred as a
sequential process. Apart from it, there is a wide variety of non-sequential ionization
mechanisms, where atoms lose several electrons simultaneously via inelastic collisional
processes [5, 11, 39, 59, 98, 105, 169, 180]. One example is the non-sequential double
ionization (NSDI), which is explained in two steps by Corkum thanks to his electron
rescattering model [39]. In a first step, the outmost electron of an atom is released near
the peak of the oscillating laser field, by passing over or tunnelling the effective barrier
created by the Coulomb attraction of the ion core and the instantaneous laser electric
field. In a second step, as shown in Fig. 2.2.2, the laser field accelerates the freed electron
away from the ion and, then, the electron, if it has not enough kinetic energy, is driven
back when the field reverses its sign. This returning first electron can collisionally ionize
a second electron by kicking it out provided that the former has enough energy to liberate
the latter. The maximum and most probable kinetic energy that the first electron can
have is 3.17 times the laser ponderomotive energy, Up = e2a2

0/(4meω
2
0).

Figure 2.2.2: Schematic representation of the two steps of the electron rescattering model.
Source: Wikipedia.

When electrons are freed, they can contribute to enhance even more the plasma den-
sity by collisional processes. These non-sequential mechanisms can be modelled using
experimental data for electron-impact ionization (EII) cross-sections [137]. The measured
electron-impact cross-sections, directly dependent on the electron kinetic energy, pro-
vide the probabibilities of ionizing one or several electrons through electron-neutral and
electron-ion processes. The EII model is closely related to the avalanche ionization model
[115, 88, 182], also known as cascade ionization or Drude model. Because it may con-
tribute to terahertz radiation, the effect of the electron-impact ionization will be analyzed
in Sections 2.2.3.2 and 2.4.3.
We will not consider electron recombination that acts over long times in gases. For
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example, Tzortzakis et al. measured an electron recombination time of the order of the
nanosecond in air [165].

2.2.1 Ionization parameters

Before proceeding further with the concepts of photoionization, some useful quantities are
introduced:

Notation Description
Zs atomic number
Ui,j,s ionization energy to create j-th ion
Zeff,j,s effective charge to create j-th ion
n∗j,s effective principal quantum number of j-th ion
l∗j,s effective angular quantum number of j-th ion
lj,s angular quantum number of j-th ion
mj,s magnetic quantum number of j-th ion

In laser-driven plasmas, the gas target is formed, in general, from a mixture of several
atomic and/or molecular species. The s-th species of such mixtures is first defined by its
atomic number, Zs, which is the total number of electrons that can be extracted from
that species (1 for hydrogen, 2 for helium, 18 for argon and so on). Hence, there will be
Zs+ 1 possible ions corresponding to such species, indexed by their charge j. The neutral
state is thus denoted with j = 0 and the fully ionized state with j = Zs.
The energy necessary to ionize the (j−1)-th ion into the j-th ion is known as ionization

energy or binding energy, Ui,j,s. There are Zs ionization energies associated to the s-th
species, one for each electron ranging from Ui,1,s to Ui,Zs,s. All values will be taken from
the NIST1 Atomic Spectra Database [124] recalled in Table 2.2.
The ionization properties of each ion (0 ≤ j ≤ Zs) are determined by its valence elec-

trons, which are in turn characterized by several quantum numbers used in the ionization
theory: n∗j,s (effective principal quantum number), lj,s (angular quantum number), l∗j,s
(effective angular quantum number), and mj,s (magnetic quantum number).
The effective principal quantum number n∗j,s is defined by

n∗j,s = Zeff,j+1,s√
2Ui,j+1,s/Uau

, (2.2.4)

where Uau ' 27.21 eV is the atomic unit of energy and Zeff,j,s refers to the effective charge
of the created j-th ion. For atomic gases such as hydrogen, helium or argon, Zeff,j,s = j

1National Institute of Standards and Technology (U.S.).
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j H He Ne Ar O2 N2
1 13.60 24.59 21.56 15.76 12.07 15.58
2 - 54.42 40.96 27.63 - -
3 - - 63.42 40.74 - -
4 - - 97.19 59.58 - -
5 - - 126.25 74.84 - -
6 - - 157.93 91.29 - -
7 - - 207.27 124.41 - -
8 - - 239.10 143.46 - -
9 - - 1195.81 422.60 - -
10 - - 1362.20 479.76 - -

Table 2.2: First binding energies, in eV, of some gases.

is widely used. For molecules, instead, the effective charge is sometimes calculated semi-
empirically. Talebpour et al. proposed in [158] the values of Zeff,1,O2 = 0.53 for dioxygen
molecule (O2) and Zeff,1,N2 = 0.9 for dinitrogen molecule (N2), in order to describe the
apparent reduction in the ionization level observed from ion signals.
The angular quantum number lj,s is given by the orbital which the valence electron

belongs to (0 for s-orbital, 1 for p-orbital, etc.). In contrast, the effective angular quantum
number is defined by

l∗j,s = n∗j,s − 1. (2.2.5)

The magnetic quantum number, mj,s, can take any integer value in the interval from
−lj,s to lj,s. In practice, the value mj,s = 0 mostly applies, because the ionization rate
associated to mj,s = 0 has a larger probability than the one associated to any values
|mj,s| > 0.

2.2.2 Single ionization

For the sake of clarity and in accordance with the chronological developement, the ioniza-
tion models will be first presented in this section for hydrogenoid atoms (i.e., they cannot
lose more than one electron). They will be next extended to the more realisitic context
of multiple ionization in Section 2.2.3.
The ionization energy of an hydrogen-like atom will be denoted simply as Ui and its

quantum numbers as n∗, l∗, l and m. The laser pulse is viewed as the monochromatic
plane wave defined by Eq. (2.1.27):

E(t) = a0 cos(ω0t). (2.2.6)
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If initially the density of neutral hydrogenoid atoms is Na, then the electron density is
governed by the following differential equation:

∂tNe(t) = W (t) [Na −Ne(t)] , (2.2.7)

where W (t) is the ionization rate. With initial condition Ne(t → −∞) = 0, the solution
of Eq. (2.2.7) is thus

Ne(t) = Na

[
1− exp

(
−
∫ t

−∞
W (τ) dτ

)]
. (2.2.8)

If Tgas is the temperature of the gas and pgas its pressure (total or partial if the target
is formed of a mixture of gases), the initial density of neutrals is calculated assuming an
ideal gas as

Na = NApgas

R0Tgas
. (2.2.9)

2.2.2.1 The PPT ionization rate

The PPT ionization rate refers to Perelomov, Popov and Terent’ev, who constructed a
theory of ionization for hydrogen-like atoms by single-colour laser fields [131, 132, 133].
This theory encompasses both MPI and tunnel regimes, based mostly on the earlier theory
by Keldysh [87]. Assuming that the values of the external electric field of Eq. (2.2.6) are
largely smaller than the atomic ones [ω0 � Ui/~ and a0 �

√
2U3

i me/(~e)2], these authors
reduced the problem to the solving of the one-dimensional motion of an electron under
short-range forces [the Coulomb potential of Eq. (2.2.1) is replaced by a Dirac-delta-like
potential], resulting in the Schrödinger equation

[
i~∂t + ~2

2me
∂2
x

]
Ψ(x, t) =

−eE(t)x−
√

2Ui~2

me
δ(x)

Ψ(x, t), (2.2.10)

where Ψ(x, t) is the electron wave function and δ(x) is the Dirac delta function. As
initial condition, the solution to Eq. (2.2.10) with E(t) = 0 is applied, which is the wave
function associated to the electron in the bound state of energy Ui. The ionization rate is
determined by the associated probability current at infinity, x→ ±∞, averaged over one
laser period 2π/ω0:

W = ω0

2π

∫ 2πω−1
0

0

[
lim

x→−∞
j(x, t) + lim

x→+∞
j(x, t)

]
dt = ω0

π

∫ 2πω−1
0

0
lim

x→+∞
j(x, t) dt, (2.2.11)
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j(x, t) = ~i
2me

(Ψ(x, t)∂xΨ∗(x, t)−Ψ∗(x, t)∂xΨ(x, t)) , (2.2.12)

where Ψ∗ stands for the complex conjugate of Ψ.

This theory was later extended in the tunnel regime to complex atoms of atomic number
Z by Ammosov, Delone and & Krăınov (ADK) [2, 3, 77, 99, 125]. The resulting ionization
rate reads

WPPT(a0, ω0) = 4
√

2
π

νauCA(a0, ω0)HPPT(a0, ω0), (2.2.13)

where the coefficient C takes into account the nature of the electronic shell:

C(n∗, l∗, l,m) = 22n∗(2l + 1)(l + |m|)!
2|m||m|!(l − |m|)!n∗Γ(n∗ + l∗ + 1)Γ(n∗ − l∗) , (2.2.14)

Γ is the Euler’s Gamma function, A(a0, ω0) is the transcendental function associated to
the MPI regime:

A(a0, ω0) = 1
1 + γ2

K
×

∞∑
k=0

Φm


√√√√√2γK(κ− ν + k)√

1 + γ2
K

 exp
(κ− ν + k)

 2γK√
1 + γ2

K

− 2 arcsinh γK


 , (2.2.15)

ν = Ui

~ω0

(
1 + 1

2γ2
K

)
, (2.2.16)

κ =< ν + 1 > is the number of absorbed photons (< z > represents the integer part of
z),

Φm(z) = e−z2

|m|!

∫ z

0

(
z2 − ζ2

)|m|
eζ2

dζ, (2.2.17)

and the function HPPT(a0, ω0) describes the tunnelling ionization as

HPPT(a0, ω0) = Ui

Uau

 2 (2UiU
−1
au )3/2

a0E−1
au

√
1 + γ2

K

2n∗− 3
2−|m|

×

exp
−2ν

arcsinh γK −
γK

√
1 + γ2

K

1 + 2γ2
K

.
(2.2.18)

By taking the limit of Eq. (2.2.13) when γK → +∞, the MPI rate, proportional to the
κth power of the laser intensity, is obtained (for m = 0)

WMPI(a0) = σMPIa
2κ
0 , (2.2.19)
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with

σMPI = 8
√

2
π

2−3κν
3κ
au~κ−1/2

E2κ
au

C

(
Ui

3/2−κ

ω01/2+2κ

)
exp (2κ− ν)Φ0

(√
2κ− ν

)
. (2.2.20)

2.2.2.2 The ADK tunnelling rate

The limit of Eq. (2.2.13) when γK → 0 represents ionization in the tunnel regime. It
converges when m = 0 and |m| = 1 towards:

WADK(a0) =
√

6
π
νauCHADK(a0), (2.2.21)

where

HADK(a0) = Ui

Uau

2 (2UiU
−1
au )3/2

a0E−1
au

2n∗− 3
2−|m|

exp
2 (2UiU

−1
au )3/2

3a0E−1
au

. (2.2.22)

This formulation originally applied to a constant field strength. In the context of
ultrashort propagation, however, the variations in the ionization levels along each field
cycle need to be described. Therefore, to account for the rapid oscillations of the electric
field, a quasi-static approximation of Eq. (2.2.21) responding quasi-instantaneously to the
rapid pulse oscillations in time, WADK-inst(t), must be employed. This uses the absolute
value of the electric field, |E(t)| = a0| cos (ω0t)|. The relationship between WADK(a0) and
WADK-inst(t) follows from averaging the resulting ADK rate over one optical cycle:

WADK(a0) = ω0

2π

∫ 2π/ω0

0
WADK-inst(τ) dτ, (2.2.23)

which gives

WADK-inst(t) =
√

6
π
νauCHADK-inst(t), (2.2.24)

HADK-inst(t) = Ui

Uau

2 (2UiU
−1
au )3/2

|E(t)|E−1
au

2n∗−1−|m|

exp
2 (2UiU

−1
au )3/2

3|E(t)|E−1
au

. (2.2.25)

After some manipulations, the prevalence of the configuration m = 0 over the cases
|m| ≥ 1 announced above can be proven:

WADK(t)
∣∣∣
|m|=1

WADK(t)
∣∣∣
|m|=0

= l(l + 1)
2

2 (2UiU
−1
au )3/2

|E(t)|E−1
au

−1

� 1, (2.2.26)
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because the inequality |E(t)| � 2 (2UiU
−1
au )3/2

Eau applies, which delimits the effective
range of atom ionization. For this reason, henceforth, only the case m = 0 will be used
and, consequently, after some manipulations, Eq. (2.2.24) reduces to

WADK-inst(|E(t)|) =νau
2 8

5 (n∗−1)

n∗Γ(2n∗)(2l + 1)

[
4(2UiU

−1
au ) 5

2
] 6n∗−1

5

(|E(t)|E−1
au )2n∗−1 ×

exp
−2

3
(2UiU

−1
au ) 3

2

|E(t)|E−1
au

.
(2.2.27)

So far, original ionization theories were established for single-colour laser fields
[Eq. (2.1.27)]. Further, Eq. (2.2.27) will be assumed to remain valid when |E(t)| is an
arbitrary laser pulse containing N -colours [Eq. (2.1.31)].

2.2.2.3 The QST ionization rate

For hydrogen-like atom (n∗ = 1 and l = 0), Eq. (2.2.27) recovers the Quasi-Static Tun-
nelling (QST) ionization rate, which was originally derived by Landau and Lifschitz [97]
and later exploited by Corkum et al. for high-order harmonic generation [38]:

WQST(|E(t)|) = νau
4(2UiU

−1
au ) 5

2

|E(t)|E−1
au

exp
−2

3
(2UiU

−1
au ) 3

2

|E(t)|E−1
au

. (2.2.28)

Differences between the QST and the instantaneous ADK ionization rates have been
discussed in Ref. [66]. Figure 2.2.3 compares the rates (2.2.28) and (2.2.27) for helium and
argon. They increase with the electric field amplitude until a peak value Epeak, before they
decay to zero. For hydrogen, helium and argon, the maximum fields reach the physical
amplitudes of 342.5, 832.8 and 427.3 GV/m for QST and 342.5, 1707.3 and 497.9 GV/m
for ADK, respectively. The ionization rates are expected to be valid for electric fields
lower than Epeak, as ionization probability is expected to grow at increasing field values.
Also, the growth of ionized atoms to the detriment of the population of neutral atoms is
well described at high enough field levels before Epeak is reached.
Ionization efficiency is mainly determined by the slope of the curve W (|E(t)|) in the

interval [0, Epeak]. This slope nonlinearly depends on the position of the peak, which is
function of n∗ and Ui [see Eqs. (2.2.29) and (2.2.30)]. The higher W (Epeak) and the lower
Epeak, the higher ionization. The peaks are found by differentiating Eqs. (2.2.28) and
(2.2.27):

EQST
peak = 2

3

(
2 Ui

Uau

) 3
2
Eau, (2.2.29)
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EADK
peak = 1

2n∗ − 1E
QST
peak . (2.2.30)
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Figure 2.2.3: Comparison between QST and ADK ionization rates for helium and argon
(single-electron ionization): red curve (argon and ADK), magenta curve
(argon and QST), blue curve (helium and ADK), and cyan curve (helium
and QST). The peak values are indicated by circles.

Figure 2.2.3 evinces that the QST model, widely used because of its simplicity, over-
estimates —for helium— or underestimates —for argon— the tunnelling ionization rates
[66].

2.2.3 Multiple ionization

At high enough laser intensities, atoms as well as molecules are expected to be ionized
multiple times. For a given gas, if Z is the atomic number, there will be Z + 1 possible
ion densities, from N0(t) (neutrals) to NZ(t) (fully-ionized ions). Each ion Nj(t), for
0 ≤ j ≤ Z, is expected to be ionized following a rate (PPT or ADK) involving the
ionization energy (Ui,j) and the associated quantum numbers (n∗j , l∗j , lj and mj), for
a given electron shell j. Ion densities vary according to the following system of rate
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2 Terahertz waves driven by laser pulses

equations:

∂tN0(t) = −W1(t)N0(t),

∂tNj(t) = −Wj+1(t)Nj(t) +Wj(t)Nj−1(t), j = 1, . . . , Z − 1,

∂tNZ(t) = WZ(t)NZ−1(t),

(2.2.31)

which can be written into the matrix form:

∂t



N0

N1

N2
...

NZ−1

NZ


= A(t)



N0

N1

N2
...

NZ−1

NZ


, (2.2.32)

A(t) =



−W1 0 0 . . . 0 0
W1 −W2 0 . . . 0 0
0 W2 −W3 . . . 0 0
... ... ... . . . ... ...
0 0 0 . . . −WZ 0
0 0 0 . . . WZ 0


. (2.2.33)

The initial conditions for Eq. (2.2.31) or Eq. (2.2.32) are
 N0(t→ −∞) = Na,

Nj(t→ −∞) = 0, j = 1, . . . , Z.
(2.2.34)

From Eq. (2.2.31) or Eq. (2.2.32) and the initial conditions (2.2.34), matter conservation
holds:

Z∑
j=0

Nj(t) = Na. (2.2.35)

The solution to Eq. (2.2.32) between two instants tn and tn+1 = tn + ∆t, assuming that
the ionization rate keeps its value at tn over the whole time interval, then expresses as


N0(tn+1)

...
NZ(tn+1)

 = P (tn,∆t)


N0(tn)

...
NZ(tn)

 , (2.2.36)
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where the matrix P (tn,∆t) reads

P (tn,∆t) = V (tn) exp [D(tn)∆t]V (tn)−1. (2.2.37)

Here, D(tn) denotes the diagonal matrix of A(tn) (i.e., its eigenvalues) and V (tn) is a
matrix containing by columns the eigenvectors of A(tn). Moreover:

exp[D(tn)∆t] =

exp [−W1(tn)∆t] 0 . . . 0 0
0 exp [−W2(tn)∆t] . . . 0 0
... ... . . . ... ...
0 0 . . . exp [−WZ(tn)∆t] 0
0 0 . . . 0 1


.

(2.2.38)

Note that, since the system given by Eq. (2.2.32) conserves the matter at every instant
[Eq. (2.2.35)], the sum of the elements in each column of P (tn,∆t), given by Eq. (2.2.37),
takes the value 1.

The matrix elements P (tn,∆t) [Eq. (2.2.37)] are the probabilities of ionizing each ion
over the time interval [tn, tn+1]. Nuter et al. calculated all these probabilities in Ref. [126].
Nevertheless, those analytic formulae are numerically weak, as several subcases must be
distinguished to avoid some divisions by zero. Moreover, the calculation of analogous
formulae when the electron-impact ionization rates are added in Eq. (2.2.33) (see Sec-
tion 2.2.3.2) almost becomes an unaffordable task. Therefore, in practice, all the codes
used in this dissertation will employ a new numerical algorithm that calculates the eigen-
vectors V (tn) in order to obtain, with no subcases, the matrix of ionization probabilites,
P (tn,∆t), thanks to Eq. (2.2.37). For the interested reader, the original algorithm which
we developed is presented in Appendix D.

2.2.3.1 ADK-based degree of ionization for single-colour laser pulses

An important factor impacting laser-driven sources is the ionization degree, defined as
the ratio between the final electron density and the initial density of neutrals:

Z∗ = Ne(t→ +∞)
Na

, (2.2.39)
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for a laser pulse with intensity I0 and FWHM duration τp. In general, the ionization
degree has to be computed numerically. However, for single-colour pulses in the form

E(t) =
√

2I0

ε0c
exp

−2 ln 2
(
t

τp

)2
 cos (ω0t) , (2.2.40)

it is possible to calculate analytically the degree of ionization based on the ADK ionization
rate of Eq. (2.2.27) [46]. The analytical ionization degree is cumbersome. Therefore, its
derivation, which was led during the present thesis, has been postponed to a proof given
in Appendices, Section E. Its expression reads as

Z∗(I0, τp) = Z −
Z−1∑
j=0

exp
−Φj

τp

tref

(
Ī0,j

Iref

)1−n∗j
exp

−Ψj

√√√√Iref

Ī0,j

, (2.2.41)

where
Φj = (2lj + 1)

(j + 1)6n∗j−4(n∗j)3−6n∗j

Γ(2n∗j)
, (2.2.42)

Ψj = 1
6

(
j + 1
n∗j

)3

, (2.2.43)

tref =
√
π

12 tau ' 3.57× 10−3 fs, (2.2.44)

Iref = 8cε0E
2
au ' 5.62× 1017 W cm−2, (2.2.45)

Ī0,j =


I0, if n∗j ≤ 1,

min
I0,

(j + 1)6

144
(
n∗j

8 − 2n∗j 7 + n∗j
6
)Iref

, otherwise. (2.2.46)

Alternatively, employing hand-waving arguments, the intensities Ij for which each elec-
tronic shell is fully ionized (i.e., the ionization degree is an integer j, 1 ≤ j ≤ Z) are those
for which the j-th ADK ionization rate is equal to the laser frequency ω0 divided by the
number of cycles, i.e., cτpλ

−1
0 , where λ0/c is the fundamental period of the laser field:

WADK-inst(Ij) = ω0

τpcλ
−1
0

= 2π
τp
. (2.2.47)

Figure 2.2.4 shows the ionization degree of hydrogen, helium and argon as a function
of the intensity and for two laser durations, calculated with Eqs. (2.2.41) and (2.2.47).
The ionization degree is weakly dependent on the pulse duration τp. From this figure one
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concludes that Eq. (2.2.47) is a good approximation of Eq. (2.2.41).
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Figure 2.2.4: Analytical degree of ionization [Eq. (2.2.41)] of hydrogen (blue curve), he-
lium (red curve) and argon (black curve), as a function of the single-colour
laser intensity and FWHM durations of 10 cycles (τp ' 33.4 fs, solid curves)
and 40 cycles (τp ' 133.4 fs, dashed curves). Dots are calculated according
to Eq. (2.2.47).

2.2.3.2 Electron-Impact ionization

In this thesis the model proposed by Rae and Burnett in Ref. [137] for the electron-impact
ionization (EII) has also been implemented in some of our codes. An electron e− that
collides with an ion can ionize the latter one or several times. For the the j-th ion there
are Z − j possible reactions:

Nj + e− −→ Nj+k + (k + 1)e−, 1 ≤ k ≤ Z − j, 0 ≤ j < Z. (2.2.48)

Accordingly, we define by Rj
j+k(t) the partial electron-impact ionization rate to ionize

the j-th ion into the (j + k)-th ion. To satisfy the matter conservation law (2.2.35) at
every instant, Rae and Burnett add these partial ionization rates to the matrix given by
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Ionization reaction Experimental measurements
H + e− −→ H+ + 2e− [147]
He + e− −→ He+ + 2e− [122][138][144][155]
He + e− −→ He2+ + 3e− [138][144][155]
He+ + e− −→ He2+ + 2e− [52][129]
Ne + e− −→ Ne+ + 2e− [138][144][155]
Ne + e− −→ Ne2+ + 3e− [138][144][155]
Ne + e− −→ Ne3+ + 4e− [138][144][155]
Ne+ + e− −→ Ne2+ + 2e− [51][53][101][118]
Ne+ + e− −→ Ne3+ + 3e− [101][190]
Ne+ + e− −→ Ne4+ + 4e− [101]
Ne2+ + e− −→ Ne3+ + 2e− [10][120]
Ne3+ + e− −→ Ne4+ + 2e− [70]
Ne4+ + e− −→ Ne5+ + 2e− [10][54]
Ne5+ + e− −→ Ne6+ + 2e− [10][54]
Ne5+ + e− −→ Ne7+ + 3e− [54]
Ne6+ + e− −→ Ne7+ + 2e− [10][54]
Ne6+ + e− −→ Ne8+ + 3e− [54]
Ne7+ + e− −→ Ne8+ + 2e− [48][54]
Ne8+ + e− −→ Ne9+ + 2e− [54]

Table 2.3: Compilation of references proposing electron-impact ionization cross-sections
for hydrogen, helium and neon, and their corresponding channels.

Eq. (2.2.33) as follows

A(t) =



−
(
W1 +

Z∑
k=1

R0
k

)
0 . . . 0 0

W1 +R0
1 −

(
W2 +

Z∑
k=2

R1
k

)
. . . 0 0

... ... . . . ... ...
R0
Z−1 R1

Z−1 . . . −
(
WZ +RZ

Z−1

)
0

R0
Z R1

Z . . . WZ +RZ
Z−1 0


. (2.2.49)

Each partial electron-impact ionization rate is modelled via partial cross-sections σjj+k =
σjj+k(UK), which depend on the kinetic energy of the freed electrons, UK:

Rj
j+k(t) = σjj+k (UK)Ne(t)|vvv(t)|. (2.2.50)
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Ionization reaction Experimental measurements
Ar + e− −→ Ar+ + 2e− [138][155][157]
Ar + e− −→ Ar2+ + 3e− [138][155][157]
Ar + e− −→ Ar3+ + 4e− [138][155][157]
Ar + e− −→ Ar4+ + 5e− [138][157]
Ar+ + e− −→ Ar2+ + 2e− [12][118][176]
Ar+ + e− −→ Ar3+ + 3e− [12][123]
Ar+ + e− −→ Ar4+ + 4e− [12]
Ar+ + e− −→ Ar5+ + 5e− [12]
Ar2+ + e− −→ Ar3+ + 2e− [120]
Ar2+ + e− −→ Ar4+ + 3e− [161]
Ar3+ + e− −→ Ar4+ + 2e− [70]
Ar3+ + e− −→ Ar5+ + 3e− [161]
Ar4+ + e− −→ Ar5+ + 2e− [40][191]
Ar4+ + e− −→ Ar6+ + 3e− [123][135]
Ar5+ + e− −→ Ar6+ + 2e− [191]
Ar5+ + e− −→ Ar7+ + 3e− [161][191]
Ar6+ + e− −→ Ar7+ + 2e− [191]
Ar6+ + e− −→ Ar8+ + 3e− [161][191]
Ar7+ + e− −→ Ar8+ + 2e− [136]

Table 2.4: Compilation of references proposing electron-impact ionization cross-sections
for argon, and their corresponding channels.

The total cross-section for the j-th ion, σj, is the sum of the partial ones:

σj (UK) =
Z−j∑
k=1

σjj+k (UK) . (2.2.51)

The model by Rae and Burnett [Eq. (2.2.49)] is the matter-conservation generaliza-
tion of the classical avalanche ionization model [115, 84, 88, 182]. Indeed, for hydrogen,
Eq. (2.2.49), combined with Eq. (2.1.49) where ∇∇∇ ·JJJ = 0, leads to the following equation
for the electron density:

∂tNe = (W1 + σ1
1Ne|vvv|)(Na −Ne). (2.2.52)

If Eq. (2.2.52) is expanded and the hypothesis Ne � Na is applied to the EII part (i.e.,
low degree of ionization), the following equation is obtained:

∂tNe = W1(Na −Ne) + σ1
1Ne|vvv|(Na −��Ne) = W1(Na −Ne) + σ1

1Na|vvv|Ne, (2.2.53)
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which recovers the classical avalanche ionization model:

∂tNe = W1(Na −Ne) + σ̄
I

Ui
Ne, (2.2.54)

where σ̄ is the avalanche cross-section.
These collisional ionization cross-sections are here estimated from experimental mea-

surements. Tawara and Kato compiled many experimental measurements of cross-sections
available at their moment for a wide collection of gases in [159]. Tables 2.3 and 2.4 sum-
marize all the references used in this work (for hydrogen, helium, neon and argon) in order
to analyse the action of the electron-impact ionization on terahertz generation. These ex-
perimental data have been fitted by least-squares following the formula proposed by Kim
and Rudd in [91]:

σ(x) = α

β + x

[
ln x+ γ

(
x− 1
x
− ln x

1 + x

)]
, (2.2.55)

where the abscissa x accounts for the kinetic energy of electrons (UK) and α, β and γ are
fitting constants that need to be determined by the method of nonlinear least-squares.
Figure 2.2.5 presents the fitted partial cross-sections of helium, with the corresponding
experimental references, proving that Eq. (2.2.55) is quite appropriate. Note that the
partial cross-sections follow the hierarchy: σjj+1 > σj+1

j+2 and σjj+k > σjj+k+1.
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Figure 2.2.5: Fitted partial cross-sections using Eq. (2.2.55) for helium (red solid curves).
Experimental data: blue rhombus [52], black right triangles [122], dark-green
left triangles [129], cyan squares [138], magenta dots [144], green stars [155].
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The model by Rae and Burnett [Eq. (2.2.49)], together with Eq. (2.2.55), reproduces
quite well experimental measurements of the ion densities reported in the current bibliog-
raphy: Walker et al. for helium [169], Larochelle et al. for neon [98], and Augst et al. for
argon [5]. For instance, Fig. 2.2.6 compares the experimental measurements of helium ions
reported by Walker et al. for an ADK ionization rate with and without electron-impact
ionization. With Eq. (2.2.49), the density of He2+ is better modelled over a higher range
of intensities than with Eq. (2.2.33) alone. The differences between the measurements
and this EII model are visible at low and moderate intensities < 1015 W cm−2, where
secondary non-sequential ionization mechanisms, discarded here, also contribute to the
density of He2+. From the present comparisons, we anticipate that the model (2.2.49)
should be enough to study the effect of electron-impact ionization on terahertz generation
(see Section 2.4.3).
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Figure 2.2.6: Comparison of the densities He+ (cyan curves) and He2+ (magenta curves):
experimental measurements by Walker et al. [169] (dashed curves with solid
squares), calculated with ADK ionization rate (dashed dotted curves), and
calculated with ADK plus EII (solid curves).

2.2.3.3 Ionization loss current

The ionization loss current density, JJJ loss, is added heuristically to Ampère’s law
[Eq. (2.1.4)] in order to account for the laser energy consumed during ionization. Rae
and Burnett proposed in Ref. [137] the following expression JJJ loss, obtained by just match-
ing the Ohmic power dissipation (JJJ loss ·EEE) to the energy employed to ionize the electrons
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for all ions:
JJJ loss(t) = EEE(t)

E(t)2

∑
s

Zs−1∑
j=0

Ui,j+1,sNj,s(t)Wj+1,s(t), (2.2.56)

which follows the same direction and sense as the electric field. This model for ionization
energy losses depends on the instantaneous value of the electric field and thus, strictly
speaking, it is only valid for tunnelling ionization.
Going back to Fig. 2.2.1(c), for single-electron ionization, Geissler et al. in Ref. [61]

derived similar losses by introducing the overall polarization vector for free electrons,
expressed with the classical trajectory of the freed electron, x(t), as P = −eNex. The
time derivative of P is the free electron current density J such as

∂tJ = ∂2
t P = −e∂t(x∂tNe)− e∂tNe∂tx− eNe∂

2
t x. (2.2.57)

In Eq. (2.2.57), ∂2
t x is given by the Newton’s equation of motion me∂

2
t x(t) = −eE(t).

By substituting the terms in x and ∂tx of Eq. (2.2.57) by the electron birth position and
velocity, x0 = Ui/(eE(t)) and v0 = 0, respectively, one recovers Eq. (2.1.56):

∂t

(
J + Ui

E(t)∂tNe

)
= e2

me
NeE(t). (2.2.58)

For single ionization ∂tNe(t) ≈ W (t)N0(t), the loss current obtained in Eq. (2.2.58) and
defined by

JJJ loss ·EEE = Ui∂tNe, (2.2.59)

is then equivalent to Eq. (2.2.56).
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2.3 From optical self-focusing to UHI2 plasmas

2.3.1 Laser filamentation

The Forward Maxwell Equation (2.1.71) describes a competition between two opposite
effects when the laser pulse propagates through a nonlinear medium. On the one hand,
the term i(2k)−1∇2

⊥Ê accounts for linear diffraction and broadens the laser beam spatially
in the transverse plane. On the other hand, the Kerr term iµ0(2k)−1ω2P̂NL ∼ ̂ε0χ(3)E3

leads to a local increase of the optical refractive index (n0 + n2I), causing a transverse
compression of the beam.
For simplicity, when linear dispersion and photocurrents are discarded, setting k(ω0) =

k0 and considering only the complex slowly-varying envelope of the electric field3 (E),
Eq. (2.1.71) easily reduces to the nonlinear Schrödinger equation [14]:

i∂zE + 1
2k0
∇∇∇2
⊥E + ω0

c
n2|E|2E = 0, (2.3.1)

which can be easily normalized to unity through simple field and spatial rescalings4 as

i∂zE +∇∇∇2
⊥E + |E|2E = 0. (2.3.2)

In Eq. (2.3.2) there are two physical quantities that are conserved upon propagation,
namely the power P and the Hamiltonian H, defined as

P =
∫∫

R2
|E|2 dx dy, (2.3.3)

H =
∫∫

R2

(
|∇⊥E|2 −

1
2 |E|

4
)
dx dy. (2.3.4)

Let 〈r2
⊥〉 be the transverse mean squared radius of the pulse

〈
r2
⊥

〉
= 1
P

∫∫
R2

(x2 + y2)|E|2 dx dy. (2.3.5)

From Eq. (2.1.71) the following virial equality can be obtained for 〈r2
⊥〉 after multi-

plying Eq. (2.3.2) by 〈r2
⊥〉 E∗ and then by 〈r2

⊥〉∇∇∇
2
⊥E∗, yielding after classical (but not

2Ultra-High Intensity.
3The complex slowly-varying envelope of the electric field is defined as E =

√
2n0cε0(E + iH[E]),

where H denotes the Hilbert transform.
4These rescalings are: x → w0x (w0 is the initial beamwidth), y → w0y, z → 2ω0n0w

2
0c
−1z, and

E → cω−1
0 w−1

0 (2n2n0)−1/2E .
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2 Terahertz waves driven by laser pulses

Figure 2.3.1: (a) Principle of wave self-focusing. Insets (b) and (c) detail some intensity
profiles of the solution to Eq. (2.3.1) applied to silica (n2 = 3.2 × 10−16

cm2 W−1). The initial condition is the Gaussian pulse E(z = 0, r⊥, t) =
E0 exp(−r2

⊥/w
2
0 − t2/t2p), where w0 = 130 µm, P/Pcr = 3, tp = 85 fs. Source:

Bergé et al. [14].

straightforward) calculations [14, 64, 168]:

∂2
z

〈
r2
⊥

〉
= 8H

P
. (2.3.6)

The previous expression can be integrated twice over z to give

〈
r2
⊥

〉
= 8 H

Pin
z2 +

[
∂z
〈
r2
⊥

〉]
z=0

z +
[〈
r2
⊥

〉]
z=0

. (2.3.7)

Equation (2.3.7) demonstrates that if H < 0 then the pulse blows up at a finite distance
by self-compressing in the diffraction plane [96]. In other words, Kerr compression over-
comes the transverse linear diffraction and the laser beam self-focuses at a finite distance
zcr < +∞: 〈r2

⊥〉 → 0 and
∫∫

R2 |∇⊥E|2 dx dy → +∞ (see Fig. 2.3.1). Using the constancy
of H and the Sobolev inequality

∫∫
R2 |E|4 dx dy < 2(Pin/Pcr)

∫∫
R2 |∇⊥E|2 dx dy, a necessary

condition for collapse is that Pin exceeds a critical value [33]. Expressed in physical units,
this critical power for self-focusing reads as

Pcr = 3.72λ2
0

8πn0n2
. (2.3.8)

Therefore, when the laser input power is larger than the critical power, the laser beam
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2.3 From optical self-focusing to UHI plasmas

Figure 2.3.2: (a) Remote detection of biological aerosols. The tube in the centre of the
picture is an open cloud chamber generating a bioaerosol simulant. The laser
beam arrives from the left and spans a filamentary beam extending over 10
m. Source: Bergé et al. [14]. (b) Photograph of a self-guided filament
induced in air by a high-power, infrared (800 nm) laser pulse. Source: www.
teramobile.org.

can self-focus. This process leads to the singular increase of the beam intensity. This
intensity diverges near the so-called “collapse point” or “nonlinear focus”, until plasma
generation comes into play through photoionization, where ∂tJ ∝ NeE and ∂tNe = σKI

K

in the MPI regime [Eq. (2.2.19)]. The latter mechanism stops the self-focusing process.
So a laser pulse can propagate over long distances through one or several filaments along
successive cycles of Kerr-focusing and plasma defocusing. For example, Fig. 2.3.2 show
two pictures of laser filaments clamped at moderate intensities (1013-1014 W cm−2).

2.3.2 Plasma waves

Whereas laser filamentation involves moderate intensities, other nonlinear mechanisms
can occur at higher intensities and supply potential THz emitters. These are plasma
waves. A plasma channel of volume V that is created due to laser interaction is neutral
and verifies:

∫∫∫
V
Ne(t, x, y, z) dx dy dz =

∫∫∫
V

∑
s

∑
j

Nj,s(t, x, y, z) dx dy dz. (2.3.9)

The propagation of the driver pulse is strongly influenced by this plasma channel as
schematicaly illustrated in Fig. 2.3.3 [44, 152, 153, 154]. In a nonrelativistic situation, for
a highly ionized plasma (Z∗ ≥ 1) where the fluid approach holds, the current density is
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2 Terahertz waves driven by laser pulses

described by Eq. (2.1.53), rewritten as

(∂t + νc) (γJJJ) = ε0ω
2
pEEE + ΠΠΠ, (2.3.10)

where ωp denotes the characteristic plasma frequency

ωp =
√
e2Ne

meε0
. (2.3.11)

The laser pulse propagates through the plasma only if ω > ωp, since the refractive index
of a plasma is

n̂p(ω) =
√

1−
ω2

p

ω2 . (2.3.12)

Equation (2.3.12) is derived from Eqs. (2.1.56) and (2.1.58) by neglecting transverse
diffraction (∂x = ∂y = 0), collisions (νc = 0), medium dispersion (εr = 1 and PPPNL = 000)
and losses (JJJ loss = 000):

c2∂2
zE − ∂2

tE = ω2
pE. (2.3.13)

If the linear mode E = a0 cos(kz − ωt) is substituted into Eq. (2.3.13), the following
dispersion relation is obtained:

−c2k2 + ω2 = ω2
p, (2.3.14)

which leads to Eq. (2.3.12) knowing that k = n̂p(ω)ω/c [Eq. (2.1.62)]. The critical density
Ne,c is defined as the density for which the plasma frequency given by Eq. (2.3.11) equals
ω0. In this manuscript the plasma will always be underdense (Ne < Ne,c) and thus
transparent for the laser field.
In Eq. (2.3.10), the source ΠΠΠ encompasses the convective terms and the Lorentz force:

ΠΠΠ = (∇∇∇ · JJJ)
eNe

γJJJ + (JJJ · ∇∇∇)
(
γJJJ

eNe

)
− e

me
JJJ ×BBB︸ ︷︷ ︸

Lorentz force

, (2.3.15)

The source ΠΠΠ can be decomposed [9, 44] into the ponderomotive force —its longitudinal
component proceeds from the Lorentz force and is proportional to the gradient of the
intensity envelope, whereas its transverse components come from the quadratic terms in
JJJ— and the radiation pressure force —related to the collision rate νc—, as exploited in
Section 2.4.4 for a one-dimensional geometry.
The laser pulse is assumed to be linearly polarized in the transerse xy plane and it

propagates along the z axis. After easy manipulations, Eq. (2.3.10) can be decomposed
into longitudinal [JJJ‖ = (0, 0, Jz)] and transverse [JJJ⊥ = (Jx, Jy, 0)] components as follows:
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2.3 From optical self-focusing to UHI plasmas

(∂t + νc)
(
γJJJ‖

)
= ε0ω

2
pEEE‖ + ΠΠΠ‖, (2.3.16)

(∂t + νc) (γJJJ⊥) = ε0ω
2
pEEE⊥ + ΠΠΠ⊥, (2.3.17)

where the driving forces are given by

ΠΠΠ‖ = (∇∇∇ · JJJ)
eNe

γJJJ‖ + (JJJ · ∇∇∇)
(
γJJJ‖
eNe

)
− e

me
JJJ⊥ ×BBB⊥, (2.3.18)

ΠΠΠ⊥ = (∇∇∇ · JJJ)
eNe

γJJJ⊥ + (JJJ · ∇∇∇)
(
γJJJ⊥
eNe

)
− e

me

(
JJJ⊥ ×BBB‖ + JJJ‖ ×BBB⊥

)
. (2.3.19)

Figure 2.3.3: Schematic diagram of the plasma channel created by the propagation of
the laser pulse. The ponderomotive forces associated with the laser pulse
envelope drive the transverse and axial currents, JJJ⊥ and JJJ‖, respectively.
Source: Sprangle et al. [154].

Following Sprangle et al. [152, 154], electrons are ionized during the first cycles of the
laser pulse, i.e., the head of the laser pulse where transverse fields dominate. The laser
field drags the electrons from their equilibrium position through the longitudinal Lorentz
force induced by the transverse fields ΠΠΠ‖ ∼ −em−1

e JJJ⊥ × BBB⊥ in the beam head. This
displacement of charges induces a longitudinal electrostatic field, EEE‖, to which electrons
are subject because they are attracted by ions. Ionized electrons under this longitudinal
field end up by oscillating around their corresponding ions, at the frequency ∼ ωp/

√
γ

according to Eq. (2.3.16), creating plasma waves in the wake of the laser pulse (“plasma
wakefield”). This plasma frequency —more precisely νp = ωp(2π)−1— takes typical values
between 2.8 and 9.0 THz for densities between 1017 and 1018 cm−3. Thus it lies in
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2 Terahertz waves driven by laser pulses

the THz bandwidth. These longitudinal plasma waves, which are almost sinusoidal at
nonrelativistic intensities [Fig. 2.3.4(a)] and whose amplitude grows with the intensity,
become nonlinear at relativistic intensities, enhancing high-order harmonics of ωp (2ωp,
3ωp, etc.) in the spectrum of the wakefield. In intensity regimes above 1018 W cm−2, the
electron density develops sharp peaks above the equilibrium density [Fig. 2.3.4(b)], which
is a consequence of the accumation of electrons whose velocity becomes close to the phase
velocity of the laser pulse (≈ c).

Figure 2.3.4: Longitudinal electric field Ez (solid curve) and electron density variation
δn/n0 = Ne/(Z∗Na)− 1 (dashed curve) as a function of the laser-comoving
distance ξ = (z − ct)/λ0 at a vector potential of (a) AL = 0.5mec/e and
(b) AL = 2mec/e. Source: Sprangle et al. [152].

Equation (2.3.17) indicates that transverse plasma waves, perpendicular to the polar-
ization direction of the laser pulse, can also be created from ΠΠΠ⊥. This will be discussed
in Section 5.2.
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2.4 Laser-based terahertz emitters

In this section, the main mechanisms yielding terahertz radiation in laser-driven sources
are presented, supported by two simplified models. The idea is to show how an ultrashort
infrared laser pulse (λ0 of order of 1 µm) radiates components in the terahertz spectrum
(from 0.1 to 100 THz) due to the nonlinearities of the medium, namely, the Kerr effect, the
photoionization and the plasma waves associated to ponderomotive and radiative forces.
As the THz spectrum concerns frequencies whose typical values are at least two orders
of magnitude lower than the laser frequency ω0, the limit ω/ω0 → 0 is considered here as
representative of the terahertz domain.

2.4.1 The Four-wave mixing mechanism: Kerr effect

Optical rectification via the four-wave mixing mechanism was the first explanation given
by Cook and Hochstrasser in [37] to explain terahertz generation measured in experiments,
using two-colour laser pulses in gases.

With two colours, the third-order nonlinear polarization given by Eq. (2.1.22) develops
direct-current (DC) components in the electric field by addition and subtraction of fre-
quencies, the latter down-conversion process contributing to the THz (i.e., low-frequency)
spectrum. The existence of such signature is made possible by using femtosecond pulses
having broad bandwidths. Let us consider the following two-colour laser plane wave:

E(t) = a0
[√

1− r cos(ω0t) +
√
r cos (2ω0t+ φ)

]
, (2.4.1)

where r and φ are is the intensity ratio and relative phase between the second harmonic
and the fundamental, respectively. After trigonometric manipulations, the electric field
[Eq. (2.4.1)] substituted into Eq. (2.1.22) yields the following nonlinear polarization with
a component coming from frequency mixing:

PNL(t) = 3
4ε0χ

(3)a3
0
√
r (1− r) cosφ+ · · · , (2.4.2)

where · · · refers to the fundamental and high-order harmonics: ω0, 2ω0, 3ω0 and so on.
This DC component reflects the possibility to generate low-frequency radiation using
Kerr sources. It is maximal at φ = 0 and zero with φ = π/2. From the viewpoint of the
intensity ratio, it is maximal at r = 1/3 and zero with one colour (r = 0 and r = 1).

From Helmholtz equation [Eq. (2.1.58)], we can anticipate that the radiated field Ẽ(t)
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2 Terahertz waves driven by laser pulses

Figure 2.4.1: Experimental verification of the dependence of THz amplitude generated by
a 800+400-nm laser beam on (a) the intensity of the fundamental harmonic
and (b) the square root of the second harmonic intensity. The solid curves
are linear fit and square-root fit, respectively. Once the plasma is created,
the THz wave signal follows Eq. (2.4.4). Source: Xie et al. [181].

is locally proportional to ∂2
t PNL(t), i.e.,

ˆ̃E(ω) ∝ −ω2P̂NL(ω). (2.4.3)

Therefore, the DC component of Eq. (2.4.2) is translated into a parabolic signature of
the Kerr effect on the THz spectrum:

ˆ̃E(ω) ∝ ω2 3
4ε0χ

(3)a3
0
√
r (1− r) cosφ ∝ ω2 χ(3)Iω0

√
I2ω0 cosφ, (2.4.4)

where Iω0 ∝ a2
0(1−r) is the mean intensity of the fundamental pulse and I2ω0 ∝ a2

0r is the
mean intensity of the second harmonic. This formula was first validated experimentaly
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2.4 Laser-based terahertz emitters

by Cook and Hochstrasser, and later by Xie et al. [181] as recalled by Fig. 2.4.1.
Recent experiments conducted by Andreeva et al. in air [4] showed that this Kerr

signature is actually present in the THz spectrum at filament intensities in air, which
contributes to broaden the pump and second harmonic spectra along propagation through
self-phase modulation and constructively interfere with the plasma-driven THz radiation
(see Section 4.1). Nevertheless, this signature, which is related to bound electrons and is
beyond the plasma frequency, is small compared with the signature of the photocurrents
and plasma effects, the response of free electrons. It is thus a secondary mechanism,
expected to emit on-axis mostly at low intensities prior to gas ionization.

2.4.2 The local current model and the photocurrent mechanism

Few years after Cook and Hochstrasser, Kim et al. understood in Refs. [89, 90] that
the so-called photocurrent mechanism, i.e., the effect of the free-electron current, is the
dominant mechanism for two-colour laser pulses ionizing a gas. This was explicitly shown
by Li et al. in Ref. [108], who recorded the THz yield as a function of the two-colour
phase difference.
The local current (LC) model, proposed by Babushkin et al. [8] and later improved

by González de Alaiza Martínez et al. [67], is a zero-dimensional (0D) model that ex-
plains how terahertz radiation is produced from photocurrents, i.e., the electron currents
induced by photoionization. This simple model explains why two-colour laser pulses pro-
duce impressive terahertz fields, while single-colour ones cannot reach similar conversion
efficiencies, as experimentally observed by Kim and his collaborators.
The 0D model is constructed on the local current limit hypothesis, which claims that

locally, in an infinitesimal volume of plasma, the radiated electric field, Ẽ, is proportional
to the time derivative of the electron current, J :

Ẽ(t) = g∂tJ(t), (2.4.5)

where g is a geometrical factor [8]. Equation (2.4.5) was proposed as a mere hypothesis,
sustained anyway from the Jefimenko’s equations (see Jefimenko [80], and Dushek and
Kuzmin [55]), where the electric field radiated by accelerated charges depends, amongst
other variables, on the time derivative of the current and the geometry between the point
where the field is measured and the point where the charge is placed. From these equations
the geometrical factor was early evaluated as

g = − 1
4πε0c2

∆V
d
, (2.4.6)
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where ∆V is the volume of the plasma spot and d is the distance at which the radiated
field is measured. Since the ratio ∆V/d is actually unknown due to the 0D geometry
assumption, the LC model is not able to estimate quantitatively the accurate amplitude
of the terahertz field.

Originally, the model was developed for weakly ionized gases in tunneling regime
(∼ 1013 W cm−2) using the QST ionization rate [Eq. (2.2.28)] for hydrogen-like gases.
Nevertheless, because the photoionization mechanism may also play a crucial role even
at relativistic intensities for which multiple ionization events take place, an improved for-
mulation is necessary (see Sections 3.4, 5.1 and 5.2). For the sake of simplicity, only the
LC model for a hydrogen-like atom ionized through the QST rate will be presented here
in detail. The extension to a complex atom ionized at high intensities is straightforward
as the superposition principle holds for each atomic shell.

To evaluate the electron current, the first step is to calculate the QST ionization rate
for a given laser field E(t), which, by hypothesis, does not have DC components [i.e.,∫+∞
−∞ E(t) dt = 0]. As shown in Fig. 2.4.2, ionization occurs at the neighbourhood of the
extrema of the electric field, which hereinafter will be referred as ionization events and
labelled as {tn}. Near each of these ionization events, the absolute value of the electric
field is approximated through a second-degree Taylor series:

|E(t)| ≈ |E(tn)| − 1
2 |Ë(tn)| (t− tn)2 , (2.4.7)

where Ë(t) = ∂2
tE(t).

The QST ionization rate, according to Eq. (2.2.28), is expressed as

W [E(t)] = α

|E(t)| exp
(
− β

|E(t)|

)
, (2.4.8)

where α = 4(2UiU
−1
au )5/2νauEau and β = 2Eau(2UiU

−1
au )3/2/3, Ui being the ionization po-

tential of an hydrogen-like atom. Assuming |E(t)| � β, which holds as long as atoms are
not fully ionized, the ionization rate (see grey curves in Fig. 2.4.2) can be approximated
via a Gaussian profile in the vicinity of each instant t = tn as

Wn(t) ≈ W (|E(tn)|) exp
[
−
(
t− tn
τn

)2]
, (2.4.9)

where τn is the characteristic duration of the nth ionization event given by

τn =

√√√√2|E(tn)|2
β|Ë(tn)|

. (2.4.10)
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t

E(t)

tn

tn+1

tn+2

tn+3

tn+4

tn+5

tn+6

tn+7

tn+8

tn+9

W (t)

Ne(t)

Figure 2.4.2: LC model: electric field [E(t), blue curve], ionization rate [W (t), grey curve]
and electron density [Ne(t), green curve with filled area beneath].

Equation (2.4.9) is obtained from the Taylor expansion of Eq. (2.4.8) using Eq. (2.4.7)
[8]. By virtue of the superposition principle, the ionization rate is finally

W (t) ≈
∑
n

Wn(t) =
∑
n

W (|E(tn)|) exp
[
−
(
t− tn
τn

)2]
. (2.4.11)

The second step is to calculate the electron density given by Eq. (2.2.8) and whose
integral is easily approximated with Eq. (2.4.11):

∫ t

−∞
W (τ) dτ =

∑
n

[√
πτnW (|E(tn)|)Hn(t− tn)

]
. (2.4.12)

Here Hn(t) is the step-like function

Hn(t− tn) = 1
2

[
1 + erf

(
t

τn

)]
, (2.4.13)

which tends to the Heaviside step function Θ(t) when τn → 0:

lim
τn→0

Hn(t− tn) = Θ(t) =
 1, if t ≥ 0,

0, otherwise.
(2.4.14)

By treating the functions Hn(t) as Heaviside step functions to approximate the expo-
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nential of Eq. (2.4.12) in Eq. (2.2.8), a recurrence reasoning gives the following step-like
growth of the electron density (see filled green curve in Fig. 2.4.2):

Ne(t) ≈
∑
n

δNn
e Hn(t− tn), (2.4.15)

where δNn
e are the density steps at ionization events given by [67]:

δNn
e = Naεn

[
1− exp

(
−
√
πτnW (|E(tn)|)

)]
, (2.4.16)

εn =



1, if n = 1,

exp
−√π n−1∑

j=1
W (|E(tj)|)τj

, otherwise.
(2.4.17)

Finally, the current is calculated from the scalar version of Eq. (2.1.56). After plugging
Eq. (2.4.15) into Eq. (2.1.56), the following two components of the electron current are
obtained:

J(t) ≈ JA(t) + JB(t), (2.4.18)

JA(t) = −evf(t)Ne(t), (2.4.19)

JB(t) = −e
∑
n

vf(tn)δNn
e exp

(
−t− tn

τn

)
Hn(t− tn). (2.4.20)

Here vf(t) is the velocity of the free electrons ionized at t→ −∞:

vf(t) = − e

me
exp (−νct)

∫ t

−∞
E(τ) exp (νcτ) dτ, (2.4.21)

where the initial condition vf(t → −∞) = 0 holds. These free electrons oscillate around
their equilibrium position, rf(t → −∞) = 0. Their position is given by the integral of
Eq. (2.4.21), when discarding the effect of the pulse envelopes5:

rf(t) =
∫ t

−∞
vf(τ) dτ ∼ e

me

∑
k

Ek(t)
ω2
k

, (2.4.22)

where E(t) = ∑
k Ek(t) is the Fourier series of the electric field, ωk = kω0 being the

frequency of the k-th harmonic, Ek(t).

5Note that the assumption of
∫ +∞
−∞ E(t) dt = 0 implies that also

∫ +∞
−∞ vf(t) dt =

∫ +∞
−∞ rf(t) dt = 0,

which means that the phase space of the free electrons, (rf , vf(rf)), must be closed spirals that reflect their
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Figure 2.4.3: Comparison of J(t) [Eq. (2.4.18), blue curves], JB(t) [Eq. (2.4.20), red curves]
and JA(t) [Eq. (2.4.19), black curves, only shown in spectra], calculated in
argon with 1/νc = 200 fs and a 1-µm Gaussian laser pulse. (a) Single-
colour laser field of 35 fs-FWHM and 5× 1013 W cm−2. (d) Corresponding
spectra. Note that there are almost no components in the THz band. (b)
Two-colour laser pulse of 35 fs-FWHM (both harmonics), 5× 1013 W cm−2

(10% of intensity in the second harmonic) and 0 phaseshift. (e) Correspond-
ing spectra. (c) Two-colour laser pulse of 35 fs-FWHM (both harmonics),
5 × 1013 W cm−2 (10% of the intensity in the second harmonic) and π/2
phaseshift. (f) Corresponding spectra.

The current JA(t) is the fast component of J(t) and mostly covers the high-harmonic
generation due to plasma effects (see Brunel [25]). However, this current component can
also have an impact on the terahertz band of the spectrum. The current JB(t), instead, is
the slow component of J(t) and its influence reduces to the terahertz band of the spectrum.
Figure 2.4.3 plots in time J(t), JA(t) and JB(t) and their corresponding time derivatives
in Fourier space for three different situations, anticipating that the impact on the THz
band of JA(t) and JB(t) strongly depends on the laser configuration. Figures 2.4.3(a,d)
display evidence that single-colour laser fields are likely to yield almost no THz radiation
by either JA(t) or JB(t). For two-colour pulses, the phaseshift between the fundamental
and the second harmonic determines how strongly JA(t) and JB(t) build the THz band of

conservative oscillatory motion around the equilibrium position rf(t→ −∞) = 0 and vf(t→ −∞) = 0.
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the spectrum: JA(t) seems to dominate over JB(t) when the two colours are in phase [see
Fig. 2.4.3(b,e)], whereas THz generation due to JB(t) clearly overshadows JA(t) when the
phaseshift is equal to π/2 [see Fig. 2.4.3(c,f)].

To understand how terahertz radiation is produced from both JA(t) and JB(t), the
Fourier transforms of their time derivatives are analyzed. These are approximated in the
low-frequency domain as [67]

F [∂tJA] (ω) ≈ − e√
2π

iω
∑
n

δNn
e rf(tn), (2.4.23)

F [∂tJB] (ω) ≈ e√
2π

ω

(iνc + ω)
∑
n

δNn
e vf(tn) exp(itnω). (2.4.24)

On the one hand, the amplitude of the THz field due to JA(t) is proportional to the
sum over all ionization events of the products δNn

e rf(tn), i.e., the density steps multiplied
by the positions of the free electrons. On the other hand, through JB(t) each ionization
event contributes in the limit ω → 0 with a cosine-like wave ∼ δNn

e vf(tn) cos(tnω) because
lim
ω→0

exp(itnω) ∼ cos(tnω) ∼ 1. Therefore, the interference is governed by the density steps,
δNn

e , being always non-negative and closely related to the laser intensity and duration,
and the phase space of the free electrons, (rf(tn), vf(tn)). This phase space contains all the
information on the shape of the laser electric field and determines if these interferences
are constructive or destructive, conforming to whether the positions and velocities at
ionization events are sign-definite or not.

To explain the previous statement we again make use of the two-colour plane wave
(2.4.1). Ignoring the collisions for simplicity, this electric field gives the following phase
space according to Eqs. (2.4.21) and (2.4.22):

vf(t) = − e

me
a0

[√
1− r
ω0

sin(ω0t) +
√
r

2ω0
sin(2ω0t+ φ)

]
, (2.4.25)

rf(t) = e

me
a0

[√
1− r
ω2

0
cos(ω0t) +

√
r

4ω2
0

cos(2ω0t+ φ)
]
. (2.4.26)

For the particular case of a 1-µm laser pulse with 5× 1013 W cm−2 intensity, the phase
spaces given by Eqs. (2.4.25) and (2.4.26) are represented in Fig. 2.4.4 for four different
laser configurations: (a) r = 0 (single-colour laser pulse), (b) r = 0.1 and φ = 0, (c)
r = 0.1 and φ = π/4, and (d) r = 0.1 and φ = π/2. In Fig. 2.4.4 the dots correspond to
the maxima (black) and minima (red) of the laser electric field. The strongest extrema
are signalled by squared. Since in the limit r → 0 the ionization events of Eq. (2.4.1) are
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Figure 2.4.4: Phase spaces given by Eqs. (2.4.25) and (2.4.26) for a 1-µm laser pulse with
5×1013 W cm−2 intensity [Eq. (2.4.1)]. (a) r = 0 (single-colour laser pulse).
(b) r = 0.1 and φ = 0. (c) r = 0.1 and φ = π/4. (d) r = 0.1 and φ = π/2.
The points of the phase space corresponding to the maxima (black dots)
and minima (red dots) of the electric field are also depicted. The strongest
extrema are signalled by squares. The phase spaces for a 35-fs-FWHM
Gaussian envelope are plotted by cyan dashed curves.

given by:

ω0tn ≈ nπ − 2(−1)n
√

r

1− r sinφ, (2.4.27)

one finds that vf(tn) ∼ sinφ and rf(tn) ∼ cosφ [7, 8]. These phase spaces thus allow us
to discuss qualitatively how the ionization events interfere between each other:

• Figure 2.4.4(a). This phase space justifies why single-colour laser pulse a priori do
not yield THz radiation, as already seen in Fig. 2.4.3(d). On the one hand, there is
no interference due to JB(t) because vf(tn) = 0. On the other hand, as the phase
space is completely symmetrical, the interference due to JA(t) is destructive and the
contribution of the maxima and minima cancel exactly one another.

• Figure 2.4.4(b). This phase space, symmetric with respect to the rf-axis, explains
why, with a two-colour in-phase laser field, THz generation is dominated by JA(t),
as shown in Fig. 2.4.3(e). On the one hand, the maxima of JB(t) do not contribute
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2 Terahertz waves driven by laser pulses

to the THz [vf(tn) = 0] and its minima cancel exactly each other. On the other
hand, from JA(t), the contribution of the laser extrema on the rf-axis do not cancel
out, resulting in a net THz yield.

• Figure 2.4.4(c). This asymmetric phase space is close to (d), evidencing that the
contribution to the THz band from JB(t) is the most relevant one.

• Figure 2.4.4(d). This phase space, symmetric with respect to the vf-axis, shows that
JB(t) prevails over JA(t), as seen in Fig. 2.4.3(f). On the one hand, vf(tn) ∼ sinφ
is sign-definite and therefore the interference due to JB(t) is constructive. On the
other hand, with respect to JA(t), the contributions from rf exactly cancel out and
thus no net THz yield is expected from JA(t).

The conclusion based on the above plane wave approximation is that, in order to pro-
duce a net THz pulse, an asymmetric arrangement of the extrema of the laser pulse in
the phase space is necessary, making that current contributions do not cancel each other
or are sign-definite.
Of course, the pulse envelope affects the phase space, as shown in Fig. 2.4.4 (see cyan

dashed curves). First, the values of the extrema and thus the corresponding density steps
are modified. In addition, the location of the extrema in the phase space and the phase
space itself are perturbed. Hence, the nature of the previous ideal interference patterns
can be altered substantially. For example, a completely symmetric situation becomes also
asymetric in terms of δNn

e and produces a net THz pulse. This is the case of single-colour
laser fields, which do yield THz radiation at high intensities with short pulse duration,
coming from the envelope contribution in JA(t).
The phase space reveals only qualitatively if a laser configuration better promotes ter-

ahertz generation from JA(t) and/or JB(t).To compare quantitatively two laser configu-
rations, it is necessary to estimate the value of g introduced in Eq. (2.4.5). The most
reasonable assumption, without accounting for propagation effects, is that the radiated
field has the same energy than the laser pulse, namely

g = −

√√√√ ∫+∞
−∞ |E(t)|2 dt∫+∞
−∞ |∂tJ(t)|2 dt

, (2.4.28)

where the sign − follows from Eq. (2.4.6). Neglecting collisions, the derivative of the
current is ∂tJ(t) = e2m−1

e Ne(t)E(t) according to the scalar version of Eq. (2.1.56). The
laser pulse is assumed centred at t = 0 and completely symmetric. Following Eq. (2.4.15),
the electron density can be approximated via a Heaviside step function centred at t = 0:
Ne ≈ Z∗NaΘ(t), where Z∗ = Ne(t → +∞)/Na is the degree of ionization. Under these
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2.4 Laser-based terahertz emitters

approximations, the prefactor g of Eq. (2.4.28) is expressed as

g ≈ −

√√√√√√√
∫+∞
−∞ |E(t)|2 dt(

e2

me
Z∗Na

)2 ∫ +∞

0
|E(t)|2 dt

= −me

e2

√
2

Z∗Na
∼ 1
Z∗Na

. (2.4.29)
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Figure 2.4.5: Terahertz field given by Eqs. (2.4.5) and (2.4.28) filtered at νco = 90 THz cal-
culated in argon (Na = 2.7×1021 cm−3, ν−1

c = 200 fs) and with a two-colour
1-µm 35-fs-FWHM laser pulse with 5 × 1013 W cm−2 of intensity (second
harmonic: 10% of the intensity, same FWHM duration). The prefactor g
has been estimated with Eq. (2.4.28). (a) φ = 0. (b) φ = π/4. (c) φ = π/2.
Contributions of the ionization events to JB(t), Bn. (d) φ = 0. (e) φ = π/4.
(f) φ = π/2. Contributions of the ionization events to JA(t), An. (g) φ = 0.
(h) φ = π/4. (i) φ = π/2.

Equation (2.4.29) indicates that the THz yield is inversely proportional to the degree of
ionization, as confirmed in Section 3.4. Taking this fact into account, the contributions to
the THz domain from JA(t) and JB(t) can be compared on equal terms via the following
contributions of ionization events, homogeneous to a velocity:

An = C
δNn

e
Z∗Na

ωcorf(tn), (2.4.30)

Bn = δNn
e

Z∗Na
vf(tn), (2.4.31)
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2 Terahertz waves driven by laser pulses

where C ≈ 0.4362 comes from the inverse Fourier transform of Eq. (2.4.23).
Figure 2.4.5(a,b,c) plot THz generation (filtered at νco = 90 THz) predicted by the LC

model for the configurations corresponding to Fig. 2.4.4(b,c,d) and a 35-fs-FWHM laser
pulse. They confirm numerically that the case of φ = π/2, the most favorable for JB(t)
and with the greatest number of ionization events acting constructively to build the THz
signal, yields the most intense and energetic THz pulse. The contributions Bn and An,
displayed in Fig. 2.4.5(d,e,f) and Fig. 2.4.5(g,h,i), respectively, agree with the qualitative
predictions of Fig. 2.4.4(b,c,d).

2.4.3 Electron-impact ionization
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Figure 2.4.6: Comparison of the terahertz yield calculated from LC model [Eqs. (2.4.5)
and (2.4.28)] in argon (at 1-bar pressure) without (red) and with (blue)
collisional ionization. The collision rate is set to ν−1

c = 190 fs. Single-
colour 1-µm laser pulse (50 fs in solid curves, 300 fs in dashed curves) at (a)
5×1014 W cm−2 and (c) 5×1015 W cm−2. Two-colour laser pulse (phaseshift:
0; second harmonic: 10% intensity and half duration; 50 fs in solid curves;
300 fs in dashed curves): (b) 5 × 1014 W cm−2 and (d) 5 × 1015 W cm−2.
Both curves are superimposed.

Since the LC model predicts that photocurrents through tunnel ionization have a direct
impact on the THz yield, electron-impact ionization [Section 2.2.3.2] may also contribute
to the total THz yield, as it takes part of the ionization process. However, the non-
sequential ionization rates such as EII are, at least, two or three orders of magnitude
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2.4 Laser-based terahertz emitters

smaller than the sequential tunnelling ionization rates (ADK, for example) and, there-
fore, their signatures on the THz spectrum should be very limited. This is numerically
confirmed by comparing Eq. (2.2.33) with Eq. (2.2.49).

Figure 2.4.6(a,c) compare, for argon at 1-bar pressure (Na = 2.7 × 1019 cm−3), the
terahertz yield obtained with one-colour pulses when using only ADK ionization rate and
ADK plus EII ionization rates (see Table 2.4), calculated from the LC model [Eqs. (2.4.5)
and (2.4.28)]. Two different FWHM durations are used, 50 fs and 300 fs (with two-colour
pulses, the second harmonic has half duration); the latter produces less THz signal because
the asymmetries in the pulse envelope are less important over long pulse durations. At low
intensities, in both cases with ADK plus EII, at least five orders of magnitude stronger
THz amplitudes are obtained, because with single-colour laser pulse at low intensities
the photocurrent mechanism is not active. However, with 50-fs pulse duration, when
photocurrents start to contribute, no significant difference exists between ADK and ADK
plus EII. The difference of more than five orders of magnitude at low intensities is, however,
not interesting, because the produced THz siganl is too weak for applications. With a
two-colour pulse, as depicted in Fig. 2.4.6(b,d), the photocurrent mechanism engaging
photoionization is always dominant and no difference can be seen between ADK and
ADK plus EII.

Thus, the present results signify that the role of impact ionization in laser-driven THz
generation can be neglected in practice.

2.4.4 Longitudinal plasma wakefield

Last but not least, an efficient laser-to-THz converter can be a plasma wave. Assuming
that the laser spot size is large compared to the plasma channel produced in laser-matter
interaction, Sprangle et al. claimed in Ref. [154] that Eq. (2.3.16), evaluated on laser
field, gives a good approximation of the amplitude of longitudinal electric fields induced
inside the plasma. They constructed a nonrelativistic (γ ≈ 1) model propagating over
z-axis, discarding transverse ponderomotive sources. Assuming that the laser pulse is
polarized along the x-axis, the electric and magnetic fields can be reduced in a simplified
geometry to EEE = (Ex, 0, Ez) and BBB = (0, By, 0), and consequently JJJ = (Jx, 0, Jz). Under
these hypothesis, ignoring the Kerr term and for an optical refractive index equal to unity
(n0 = 1), Ampère’s law [Eq. (2.1.4)] gives the following equation for Ez:

∂tEz = −Jz
ε0
, (2.4.32)
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2 Terahertz waves driven by laser pulses

which, by multiplying by (∂t+νc) and substituting into Eq. (2.3.16), yields the longitudinal
wave equation (

∂2
t + νc∂t + ω2

p

)
Ez = Πz. (2.4.33)

It is reasonable to approximate the driving source term on the laser field, ΠΠΠ ≈ ΠL,
where ΠL comes from Eqs. (2.3.18) and (2.3.19) when EEE ≈ EEEL = (EL, 0, 0) and BBB ≈
BBBL = (0, EL/c, 0). This laser electric field is here a single-colour forward-propagating
wave

EL(t, z) = a0E(k0z − ω0t) cos(k0z − ω0t), (2.4.34)

where a0 is the laser amplitude, k0 = n0ω0/c, and 0 ≤ E ≤ 1 is the slowly-varying
envelope. Therefore, according to Eqs. (2.3.18) and (2.3.19), the driving forces reduce to:

ΠL,z = − e

mec
JLEL, (2.4.35)

ΠL,x = (∇∇∇ · JJJ)
eNe

JL. (2.4.36)

In the rear of the laser pulse, where the ionization process is ended, the divergence of
the current can be approximated as (∇∇∇ · JJJ)/e ≈ ∂tNe and thus Eq. (2.4.36) reads as:

ΠL,x = ∂tNe

Ne
JL. (2.4.37)

The laser current JL is readily calculated from Eq. (2.3.17):

(∂t + νc) JL = ε0ω
2
pEL + ΠL,x, (2.4.38)

whose solution is

JL =
ε0ω

2
pa0E

ω2
0 + (νc + ∂tNe/Ne)2 [(νc + ∂tNe/Ne) cos(k0z − ω0t) + ω0 sin(k0z − ω0t)] . (2.4.39)

Equation (2.4.39) is simplified by assuming (νc + ∂tNe/Ne)2 � ω2
0 in the denominator.

Taking into account that ω0 sin(k0z−ω0t) = −c∂z cos(k0z−ω0t), Eq. (2.4.39) reduces to:

JL =
ε0ω

2
p

ω2
0

[
νc + ∂tNe

Ne
− c∂z

]
EL. (2.4.40)

By substituting Eq. (2.4.40) into Eq. (2.4.41) and ∂tNe/Ne = ∂t(ω2
p)/ω2

p, the longitudinal
driving term is thus

ΠL,z ≈ −
eω2

p

2ω2
0mec

[
2νc

c
+ 2
cω2

p
∂t(ω2

p)− ∂z
]
IL, (2.4.41)
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where IL = ε0cEL(t)2 is the instantaneous laser intensity. The dominant terms in ΠL,z are
the radiation pressure created by the laser pulse (∼ νcIL) and the ponderomotive force
(∼ ∂zIL) [154]. In Fig. 2.4.7 an example of the longitudinal electric field computed from
Eqs. (2.4.33) and (2.4.41) and extracted from [44] is shown. The plasma wave pulse is
rather short, containing few oscillations before damping out within the time scale of ν−1

c .

Figure 2.4.7: Temporal profile of the longitudinal electric field [Eqs. (2.4.33) and (2.4.41),
with ν−1

c = 1.3 ps and ω−1
p = 10 ps] in the plasma channel (red curve),

created in the wake of a square-sine laser pulse pulse intensity IL(t) =
I0 sin2(πt/τL), with I0 = 24 TW cm−2 and τL = 120 fs (blue curve). Source:
D’Amico et al. [44].

Neglecting the time variations of ω2
p in Eq. (2.4.41) and since ∂z = −c−1∂t according to

Eq. (2.4.34), the spectrum of the longitudinal electric field reads as

Êz(ω) =
eω2

p (2νcω − iω)
2ω2

0mec2
(
ω2 − iνc − ω2

p

) ÎL(ω), (2.4.42)

which confirms that it is peaked at the plasma frequency, belonging to the terahertz
domain. The amplitude of the longitudinal field grows linearly with the pump intensity.
The longitudinal current density in this scenario is the responsible for a transition-

Cherenkov conical terahertz radiation emitted by the plasma [9, 35, 44, 117, 128, 130].
According to Eqs. (2.4.32) and (2.4.42), its spectrum expresses as

Ĵz(ω) = −
eε0ω

2
pω (2νci + ω)

2ω2
0mec2

(
ω2 − iνcω − ω2

p

) ÎL(ω), (2.4.43)

which also exhibits a pronounced maximum around the plasma frequency.
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In Section 2, three physical models have been presented to study laser-driven terahertz
generation:

1. The Maxwell-Vlasov model, which couples Maxwell equations [Section 2.1.1] to
Vlasov equation [Section 2.1.2].

2. The Maxwell-Fluid model, which combines Maxwell equations [Section 2.1.1] with
the cold-plasma fluid equations [Section 2.1.4]. This model is the average in the
phase space of the Maxwell-Vlasov model over the electron velocities.

3. The forward propagation equations such as FME [Section 2.1.5.2] and UPPE [Sec-
tion 2.1.5.3]. These consist in some simplifications of the wave equation obtained
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from the Maxwell-Fluid model to describe only the forward propagation of the laser
electric field through a nonrelativistic plasma.

The complete analytical solution of any of these models, which might reveal how the
terahertz radiation depends on all the physical laser and material parameters, is, unfortu-
nately, not achievable. Solely a simplified analytical solution has been obtained recently
and in the framework of this thesis, as we shall explain in Section 3.4. In spite of the
applied simplifications, such solution can appear in good agreement with the results of
comprehensive numerical simulations and, therefore, it will help to understand how the
main emitters of terahertz fields behave. It must be emphasized here that, in the course
of this thesis, experimental measurements of THz spectra were not avalaible except in
Section 4.1. Therefore, numerical modelling appears to us as a fundamental tool to clear
up the physics underlying laser-driven terahertz emissions.

0 z

t

u
(z
,
t)

u(z, 0) = u0(z)

u(z, t) = u0(z − λt)

Figure 3.0.1: Linear advection of a Gaussian pulse (blue curves), for λ > 0, at different
instants. One characteristic is plotted (red curve), along which the field is
conserved.

In this section three different numerical codes are described, each of which involves
different ingredients treated within different strategies:

• Calder, which solves the Maxwell-Vlasov equations by the Particle-In-Cell tech-
nique [Section 3.1.2].

• MaxFlu, a new code developed during this thesis that solves the Maxwell-Fluid
equations thanks to finite volumes [Section 3.2].
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• UPPE, which solves the UPPE equation through spectral algorithm [Section 3.1.1].

These codes have to integrate numerically the equations presented in Section 2, which
are hyperbolic equations and model fields that propagate in space and time at finite ve-
locity. In this section we shall focus mostly on MaxFlu, because the other two codes are
already known in the literature. Before dwelling on technical details, we introduce basic
concepts about hyperbolic equations, from both the physical and numerical viewpoints.
The simplest example of hyperbolic equations is the one-dimensional scalar linear ad-

vection equation, formally given by the following initial value problem: ∂tu(z, t) + λ∂zu(z, t) = 0,
u(z, t = 0) = u0(z),

(3.0.1)

where λ refers to the constant velocity at which the field u(z, t) propagates and u0(z) is
the initial condition [104, 163]. In particular, when u(z, t) represents an electromagnetic
(EM) wave, λ is its phase velocity. The solution to this problem is straightforward and
expresses as u(z, t) = u0(z − λt). This means, as depicted in Fig. 3.0.1 for λ > 0, that
the solution is conserved along the characteristics lines given by z(t) = z(0) + λt, along
which the equality u(z(t)) = u(z(0)) = u0(z(0)) holds. This is the reason why u is usually
called conserved quantity in this context.
More generally, we can consider a one-dimensional hyperbolic system with source term:

∂tUUU(z, t) + ∂zFFF (UUU(z, t)) = SSS (z, t,UUU(z, t)) , (3.0.2)

where UUU is the conserved vector, FFF is called physical flux and SSS is the source term. The
Jacobian matrix of the flux, A = ∂UUUFFF , defines the characteristic curves and thus contains
the information about the phase velocities for EM fields. By definition, the system is
strictly hyperbolic if this matrix is diagonalizable and its eigenvalues are real and distinct
from each other. This definition is equivalent to state that at every position and instant
the characteristic curves are unambiguously defined. Here the vector UUU evolves along the
characteristics due to the presence of the source term. When the propagation velocities
depend on z, t and/or UUU , the hyperbolic system is said nonlinear and the characteristics
may overlap causing a singularity, i.e., a shock wave.
Explicit versions of finite difference methods, which discretize differential operators in

time and space, are very interesting for solving numerically hyperbolic systems because
they are easy to implement for parallel computing: as the waves travel at finite velocity, to
calculate the solution at a given point, only the values at its neighbourhood are necessary.
The spatial and time dimensions are discretized with the steps ∆z and ∆t, respectively,
i.e., the mesh {zi}× {tn} is defined, where zi+1 = zi + ∆z and tn+1 = tn + ∆t. Therefore,
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as shown in Fig. 3.0.2, the conserved vector UUU(z, tn) takes the constant discrete value of
UUUn
i on the cell [zi−∆z/2, zi + ∆z/2], where zi±1/2 = zi±∆z/2 locate the interfaces. The

finite difference method is convergent if its discretized solution tends to the solution of
the system when both ∆z → 0 and ∆t → 0. The speed at which the numerical method
converges towards the physical solution, UUUn

i

∆z,∆t→0−−−−−→ UUU(z, tn), is determined by its order
of accuracy in space and time. For instance, the method is n-order accurate in space if
the error between the discrete and physical solution is divided by 2n when the spatial
step ∆z is divided by 2 (idem for time). One resolution level is accepted if the norm
of the difference between the solution obtained with that grid and the solution obtained
with a finest grid (usually half steps) is below a small tolerance value. In practice, the
three codes mentioned above use second-order accurate methods because they are a good
compromise between the convergence speed and the computational cost.

u
(z
,
t n
)

zi+1zi+ 1
2

zi

uni

uni+1

Figure 3.0.2: Finite volume discretization at tn. The interfaces {zi+ 1
2
} delimit the cells.

On each cell [zi− 1
2
, zi+ 1

2
], centred at z = zi and of length ∆z, the solution is

assumed constant and equal to uni .

Discretizing successfully a whole system like Eq. (3.0.1) is difficult and challenging,
because many physical phenomena are mutually competing. In general, finite difference
schemes discretizing both advection and evolution operators fail when working with non-
linear systems. The best and most robust way of overcoming this problem is to apply the
splitting approach (Strang [156]), also known as fractional-step method. Two examples of
splitting schemes support the UPPE and Calder codes. The former, which is an evolu-
tion equation along the z-axis (i.e., the solution advances in z), separates the source term
into the linear part and the nonlinear part. The latter solves on the one hand Maxwell
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equations and on the other hand Vlasov equation.
The Maxwell-Fluid model fits the structure of the nonlinear hyperbolic system given

by Eq. (3.0.2). As explained in Section 3.2, MaxFlu code benefits from the splitting
approach to solve such system, dividing the latter into an advection stage [Eq. (3.0.3)]
and an evolution stage [Eq. (3.0.4)]:

∂tUUU(z, t) + ∂zFFF (UUU(z, t)) = 000, (3.0.3)

∂tUUU(z, t) = SSS (z, t,UUU(z, t)) . (3.0.4)

0

t

z

u
(z
,
t)

0

t

z

u
(z
,
t)

(a) (b)

Figure 3.0.3: Illustration of (a) numerical diffusion and (b) numerical dispersion for the
linear advection equation given by Eq. (3.0.1), with λ > 0, for a rectangu-
lar function as initial condition (blue curve at t = 0). The exact solution
(blue curve) is compared with the numerical solution (red curves), calcu-
lated with (first-order) FORCE scheme [a, Eq. (3.2.30)] and (second-order)
Lax-Wendroff scheme [b, Eq. (3.2.31)]. The integration uses a small time
step, λ∆t = ∆z/10, to render both numerical effects more visible.

Classical Runge-Kutta methods can be employed for solving the evolution stage with no
stability restriction on ∆t. The numerical challenge for the Maxwell-Fluid model lies in
its advective part, whose cold-plasma fluid equations are strongly nonlinear [Eqs. (2.1.49)
and (2.1.53)]. The advection will be discretised through finite volume methods, which
are a subfamily of finite difference methods especially adapted to deal with nonlinear
hyperbolic systems (see LeVeque [104] and Toro [163]). As with Particle-In-Cell codes, the
so-called Courant-Friedrichs-Lewy (CFL) stability condition must be also satisfied, which
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reduces the practical computational domain of the Maxwell-Fluid code to small interation
volumes. The main problem of finite volumes and finite difference schemes when applied
to nonlinear systems is that two opposite intrinsic numerical problems can strongly affect
the numerical solution to a point that is not acceptable, namely, the numerical diffusion
and the numerical dispersion. As depicted in Fig. 3.0.3, the former increases unphysically
the diffusion dynamics and forces the maxima and minima of the fields to reduce at every
iteration (fields spread out). The latter causes unphysical oscillations (Gibbs phenomenon)
mostly in the neighbourhood of sharp field gradients such as the electron density profile
when it is computed, e.g., by MaxFlu.
Numerical diffusion is inherent to monotonic schemes (||UUUn

i || ≤ ||UUU
n
i+1|| ⇔ ||UUU

n+1
i || ≤

||UUUn+1
i+1 ||) and the Godunov theorem states that these schemes must at most be first-

order accurate. This, however, becomes a huge dilemma for the numerical strategy of
the MaxFlu code. Indeed, if first-order monotonic schemes are used, the amplitude of
the laser electric field will unphysically decrease. Moreover, if second-order nonmonotonic
(thus dispersive) schemes are used, unphysical oscillations can appear in the electron
density, which will perturb the spectra in the best case and create instability in the worst
case. Actually, overcoming this problem is still an open issue for nonlinear hyperbolic
systems. In this thesis, the flux-corrected transport (FCT) algorithm has been chosen for
MaxFlu. This technique, initially proposed by Boris and Book [18] (see the work by
Zalesak [189]), controls the appearance of oscillations by weighting locally and nonlinearly
a first-order diffusive scheme with a high-order dispersive scheme. The weighting factor
is called flux limiter. The critical point of this approach is, obviously, the calculation of
this flux limiter, i.e., which oscillations are accepted or rejected when pondering the two
schemes. In this thesis, we have obtained a simple flux limiter (see Section F), which
prevents any unphysical (i.e., numerical) oscillation of the plasma without affecting the
physical harmonics that are generated (including, of course, terahertz radiation).
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3.1 Propagation and PIC codes

These two codes, known as UPPE (for “Unidirectional Pulse Propagation Equation”)
and Calder (in tribute to the famous American sculptor Alexander Calder [1898-1976]),
already exist and have often been described in the literature [7, 102]. Only a short sketch
of their structure will be recalled below.

3.1.1 The UPPE code

The UPPE 3D code is a fully parallel spectral code that resolves in three dimensions the
UPPE equation (2.1.81). It has been succesfully validated against several experiences,
in particular for reproducing THz spectra emitted from low-pressure argon cells (see
Fig. 3.1.1).

Figure 3.1.1: (a) Measured THz spectra and (b) simulation results for argon pressures
between 1 and 1000 mbar. In (d), experimental (solid lines) and theoret-
ical (dashed lines) spectra are compared for various pressures. In (e), the
overall THz yield versus pressure is shown (simulation: dashed line, exper-
iment: solid line). (c) Low-frequency spectrum for 1000 mbar measured by
electro-optic sampling in ZnTe. Shading signifies frequency ranges where no
experimental data were available. Source: Babushkin et al. [7].

Numerically, the UPPE equation, which describes the electric field propagation along
the z-axis, is split thanks to a split-step Fourier algorithm [1]. The code solves separatedly
the linear source terms (e.g., transverse diffraction and temporal dispersion) from the
nonlinear ones (among which the Kerr effect and photoionization). Equation (2.1.81) is
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split into two equations, which indeed account for opposite physical effects:


∂zÊ = i

√
k2 − k2

⊥Ê,

∂zÊ = µ0

2
√
k2 − k2

⊥

[
ωĴ + iω2P̂KERR + ωĴloss

]
= L̂(Ê).

(3.1.1a)

(3.1.1b)

The integration domain is discretized over a regular grid in x, y and t by means of steps
∆x, ∆y and ∆t, respectively. The propagation step ∆z self-adapts1 along the propagation
direction z by evaluating the growth of the nonlinear phase of the pulse. The code uses
a fully spectral scheme with absorbing boundary conditions in (x, y, t). Parallelization is
done by spatial domain decomposition using MPI (Message Passing Interface protocole),
for which the real laser field is discretized in stripes along dimension y. The UPPE code
is written in Fortran 90 and uses the library FFTW3.
The two evolution equations (3.1.1) over z are solved alternatively at each longitudinal

step. In other words, the value Ê(z + ∆z) is calculated from Ê(z) in two stages. First,
Eq. (3.1.1a), the linear part, is solved exactly in Fourier space:

Êlinear(z + ∆z) = exp(i∆z
√
k2 − k2

⊥)Ê(z). (3.1.2)

Second, Eq. (3.1.1b), the nonlinear part, is integrated as

Ê(z + ∆z) = Êlinear(z + ∆z) +
∫ z+∆z

z
L̂
(
Ê(ζ)

)
dζ. (3.1.3)

The integral of Eq. (3.1.3) is solved via classical Runge-Kutta methods, e.g.,

∫ z+∆z

z
L̂(ζ) dζ ≈ L̂

(
Êlinear(z + ∆z)

)
∆z. (3.1.4)

3.1.2 The Calder code

Calder is a multi-dimensional (1D, 2D and 3D) fully-parallel Particle-In-Cell code, writ-
ten in Fortran 90 and devoted to study laser-plasma interactions in many physical contexts
(see Lefebvre et al. [102]).
A kinetic description given by Vlasov equation applied to seven dimensions (t, x, y,

z, px, py, pz) entails a very large computational load, which is required for the strongly
nonequilibrium physics of intense laser-matter interaction. In order to lighten the com-
putational cost when solving Vlasov equation, the distribution function is approximated

1This is the great advantage of the UPPE code: ∆z can be significantly larger than the step of Particle-
In-Cell and Maxwell-Fluid codes, e.g., at moderate intensities or in the absence of sharp gradients, which
allows it to describe pulse propagation over long distances in reasonable computing time.
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3.1 Propagation and PIC codes

as the sum of a collection of macroparticles p, each of which is endowed with a position
(rrrp) and a linear momentum (pppp).

Figure 3.1.2: Positions of various field components. The electric field components (Ex,
Ey, Ez) are in the middle of the edges and the magnetic field strength
components (Hx, Hy, Hz) are in the centre of the faces. Source: Yee [184].

Maxwell equations are discretized on a regular, fixed, staggered Cartesian mesh (∆x,
∆y, ∆z and ∆t) according to the well-known Yee scheme [184]. As shown in Fig. 3.1.2,
this second-order accurate method locates the magnetic field components in the centre
of the faces of a cell and the electric field components and related current densities lie
in the middle of the edges of cells. Magnetic fields and current densities are delayed by
∆t/2 with respect to the electric fields. Magnetic fields and electric fields are calculated
alternatively; for example, the discretizations for Bx and Ex are:

Bx|n+1/2
i,j+1/2,k+1/2 = Bx|n−1/2

i,j+1/2,k+1/2+ ∆t
∆z

[
Ey|ni,j+1/2,k+1 − Ey|ni,j+1/2,k

]
−

∆t
∆y

[
Ez|ni,j+1,k+1/2 − Ez|ni,j,k+1/2

]
,

(3.1.5)

Ex|n+1
i+1/2,j,k =Ex|ni+1/2,j,k + c2∆t

∆y
[
Bz|n+1/2

i+1/2,j+1/2,k −Bz|n+1/2
i+1/2,j−1/2,k

]
−

c2∆t
∆z

[
By|n+1/2

i+1/2,j,k+1/2 −By|n+1/2
i+1/2,j,k−1/2

]
+ ∆t
ε0
Jx|n+1/2

i+1/2,j,k.

(3.1.6)
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Both the Maxwell Solver and the Particle Mover advance in time in explicit ways. The
code is parallelized using MPI with a domain decomposition technique, according to which
the simulation volume is partitioned among the calculation cores. The Calder code
possesses Monte Carlo modules describing strong-field-induced elastic collisions, inelastic
collisions and tunnel multiple ionization. Its main numerical steps are (see Fig. 3.1.3):

1. Maxwell Solver: electromagnetic fields are computed at nodes of the Yee mesh.

2. Interpolate the electromagnetic fields at the positions of the macroparticles.

3. Particle Mover: advance macroparticle trajectories by solving relativistic equa-
tions of motion.

4. Communicate the macroparticles across sub-domain boundaries (parallel simula-
tions).

5. Deposit the charge and the current densities of macroparticles on the Yee mesh.
The current densities given by the movement of the macroparticles are interpolated
into the Maxwell grid thanks to the Esirkepov method [57]. This method calculates
the current density JJJn on the Yee grid from the particle positions xxxn−1/2 and xxxn+1/2

in such a way that the Gauss law [Eq. (2.1.1)] is verified exactly at discrete level.

6. Compute and use output diagnostics. Return to step 1, the Maxwell Solver.

Maxwell Solver:
EEE, BBB

Field weightening
on particles:
EEEp, BBBp

Particle Mover:
rrrp, pppp

Charge and current
weightening on grid:

ρ, JJJ

→

→
→

→

Figure 3.1.3: Sketch of one iteration loop of Particle-In-Cell codes (e.g., Calder).

Particle-In-Cell codes suffer from a restrictive stability condition imposed by the Yee
scheme and reading as c∆t ≤

√
∆x2 + ∆y2 + ∆z2. This stability condition makes these

codes be computationally expensive. Nowadays treating plasmas over scales from hun-
dreds of micrometres to several millimetres can, however, be achieved by such codes by
means of massively-parallel computers.
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3.2 A new Maxwell-Fluid code: MaxFlu

The Maxwell-Fluid model is a nonlinear hyperbolic system that couples Maxwell equations
[Eqs. (2.1.3), (2.1.4) and (2.1.6)] with the cold-plasma fluid equations [Eqs. (2.1.49) and
(2.1.53)]: 

∂tBBB +∇∇∇×EEE = 000,

− ∂t
(
ε−1

0 DDD
)

+ c2∇∇∇×BBB = JJJ

ε0
+ JJJ loss

ε0
,

∂tNe −
1
e
∇∇∇ · JJJ = ∂t

∑
s

∑
j

qj,s
e
Nj,s,

∂t (γJJJ) +∇∇∇ · (vvv ⊗ γJJJ) = e2

me
NeEEE −

e

me
JJJ ×BBB − νcγJJJ,

(3.2.1a)

(3.2.1b)

(3.2.1c)

(3.2.1d)

where the electric displacement field is given by Eqs. (2.1.5), (2.1.7) and (2.1.8):

ε−1
0 DDD = EEE + ε−1

0 PPP L + ε−1
0 PPPKERR = EEE + χ(1) ∗EEE + ε−1

0 PPPKERR, (3.2.2)

and the current density and Lorentz factor are:

JJJ = −eNevvv, (3.2.3)

γ = 1√
1− v2

c2

. (3.2.4)

The linear momentum of electrons is defined by

ppp = meγvvv. (3.2.5)

This system is well-defined since there is the same number of unknowns (BBB, DDD, Ne and
JJJ) as equations.

There is little bibliography concerning Maxwell-Fluid codes. Usually the geometry
and/or the plasma nonlinearities are simplified due to the numerical difficulty of solving
directly the system (3.2.1). For instance, Berenzhiani et al. in Ref. [13] (and similarly
Wu et al. [177], and Tushentsov et al. [164]) performed Maxwell-Fluid simulations in
pre-formed overdense plasmas without ionization sources. They ignored all the kinetic
effects and, therefore, the electron density never vanishes (Ne 6= 0). Following their
derivation, after easy manipulations, Eq. (3.2.1d) is transformed through Eqs. (3.2.3) and
(3.2.5) when νc = 0 into ppp[∂tNe + ∇∇∇ · (Nevvv)] = −Ne[∂tppp + (vvv · ∇∇∇)ppp + eEEE + evvv × BBB].
Assuming furthermore no ionization, the left-hand side of this equation is zero thanks to
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Eq. (3.2.1c) and its expression simplifies into ∂tppp + (vvv · ∇∇∇)ppp = −eEEE − evvv ×BBB. However,
instead of employing this equation, the authors used the cold unmagnetized electron fluid
equation for the linear momentum, ∂tppp+mec

2∇γ = −eEEE in the framework of relativistic
hydrodynamics. Besides, Shadwick et al., instead, in Ref. [146] did solve the previous
equation for the linear momentum derived from the system (3.2.1) by the method of lines
[142]. By expressing this equation in the laser comoving reference frame2 they could solve
it directly for a non-ionizable preformed plasma (Ne 6= 0).
In this section, we shall focus on the one-dimensional version of the MaxFlu code,

a fully-parallelized finite-volume-based code developed during the course of this thesis
and solving the complete Maxwell-Fluid system (3.2.1). We derive the one-dimensional
(1D) version of such system to describe the propagation of secondary and laser fields
over the z-axis. We assume that the laser field is linearly polarized along the x-axis.
This implies to ignore the transverse gradients (e.g., diffraction) and to adapt the field
geometry: ∂x = ∂y = 0, DDD = (Dx, 0, Dz), BBB = (0, By, 0) and JJJ = (Jx, 0, Jz). The system
(3.2.1) then expresses as



∂tBy + ∂zEx = 0,

∂t
(
ε−1

0 Dx

)
+ ∂z

(
c2By

)
= − 1

ε0
Jx −

1
ε0
Jloss,x,

∂t
(
ε−1

0 Dz

)
= − 1

ε0
Jz −

1
ε0
Jloss,z,

∂tNe + ∂z

(
−1
e
Jz

)
= ∂t

∑
s

∑
j

qj,s
e
Nj,s,

∂t (γJx) + ∂z (γvzJx) = e2

me
NeEx + e

me
JzBy − νcγJx,

∂t (γJz) + ∂z (γvzJz) = e2

me
NeEz −

e

me
JxBy − νcγJz.

(3.2.6a)

(3.2.6b)

(3.2.6c)

(3.2.6d)

(3.2.6e)

(3.2.6f)

In the electric displacement field given by Eq. (3.2.2), nonlinear dispersion is not taken
into account and therefore PPPKERR is given by Eq. (2.1.22):

ε−1
0 Dx = Ex + ε−1

0 PL,x + χ(3)E3
x, (3.2.7)

ε−1
0 Dz = Ez + ε−1

0 PL,z + χ(3)E3
z . (3.2.8)

In the most realistic case, the electric linear polarization PL,x/z should be calculated
by using an ordinary differential equation that models the medium response, such as

2They solved the one-dimensional version of these equations along z in the frame: t, ζ = ct− z.
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Ne(t, z)
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Figure 3.2.1: Example of MaxFlu 1D geometry. (a) Semi-infinite target. (b) Finite
target. It is possible to add a gradient at each vacuum-plasma interface.
(c) Example of evolving electric field (Ex, blue curves) and electron density
(Ne, red curves). The target is positioned between z = 200 and z = 300 µm
(light green area). Initially, at t = 0, the laser field is centred at z = 100 µm.
The laser field and the electron density, both in arbitrary units, are depicted
at t = 200, 400, 600 and 800 fs. Note that MaxFlu 1D can also simulate
the backward field that propagates from the interface at z = 200 µm.

the Sellmeier model [Eqs. (2.1.15) and (2.1.16)]. However, in most situations, a constant
refractive index is just considered [i.e., n(ω) = n0], taking into account that the propagated
distances simulated by MaxFlu 1D here are usually not long enough to be sensitive to
linear dispersion:

ε−1
0 Dx = n2

0Ex + χ(3)E3
x, (3.2.9)

ε−1
0 Dz = n2

0Ez + χ(3)E3
z . (3.2.10)

Figure 3.2.1 shows the geometrical slab treated by the MaxFlu 1D code. A vacuum
region lies at the left of the target (n0 = 1 and χ(3) = 0). At t = 0 all the fields are set to
zero except the laser field, which is initialized in the left vacuum region and propagates
forward. The density of neutrals is also initialized inside the gas (target). The target
can be finite (i.e., with vacuum beyond its right boundary) [Fig. 3.2.1(b)] or semi-infinite
[Fig. 3.2.1(a)]. The linear and nonlinear indices n0 and n2 are considered constant. They
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are set to 1 and 0 in vacuum, respectively, and they satisfy n0 ≥ 1 and n2 ≥ 0 inside the
target. When there is a plasma (Ne > 0), the full Maxwell-Fluid system applies. Without
plasma (Ne = 0), like in vacuum, the plasma quantities are zero (Dz = Ne = Jx = Jz = 0)
and the Maxwell-Fluid system reduces to an advection of the laser pulse:

∂tBy + ∂zEx = 0, (3.2.11)

∂t(n2
0Ex + χ(3)E3

x) + c2∂zBy = 0. (3.2.12)

The critical aspect of this geometry lies at the interface between vacuum and plasma,
where Ne → 0 and thus the fluid part of the model is not well defined [13]. The MaxFlu
code overcomes this problem by imposing a small density threshold εN allowing one to
distinguish vacuum from plasma. Below that value the velocity is set to zero (vx = vz = 0).
This simple technique assures a stable transition at vacuum-plasma interfaces.

3.2.1 Numerical strategy

The 1D Maxwell-Fluid system [Eq. (3.2.6)] fits the general structure of a nonlinear hy-
perbolic system represented by Eq. (3.0.2) with the following conserved field vector (UUU),
physical flux (FFF ) and source term (SSS):

UUU =



By

ε−1
0 Dx

ε−1
0 Dz

Ne

γJx

γJz


, (3.2.13)

FFF (UUU) =



Ex

c2By

0
−e−1Jz

γvzJx

γvzJz


, (3.2.14)
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SSS(UUU) =



0
−ε−1

0 Jx − ε−1
0 Jloss,x

−ε−1
0 Jz − ε−1

0 Jloss,z

∂t
∑
s

∑
j

qj,s
e
Nj,s

e2

m
NeEx + e

me
JzBy − νcγJx

e2

m
NeEz −

e

me
JxBy − νcγJz



. (3.2.15)

The field variables of the Maxwell-Fluid system are the components of UUU defined by
Eq. (3.2.13). The physical unknowns Ex, Ez, Jx and Jz, which intervene in the flux and the
source, are calculated from these field variables. For the sake of clarity, the components
of UUU are underlined below in a box. The electric field, if a constant linear refractive index
n0 is used in Eqs. (3.2.9) and (3.2.10), is calculated as

Ex/z(UUU) =



ε−1
0 Dx/z

n2
0

, if χ(3) = 0,

3

√
2
3n

2
0Ēx/z(UUU)− 1

3
√

18χ(3)Ēx/z(UUU)
, otherwise,

(3.2.16)

Ēx/z(UUU) =
−9χ(3)2

ε−1
0 Dx/z +

√
12χ(3)3

n6
0 + 81χ(3)4

(
ε−1

0 Dx/z

)2
− 1

3

, (3.2.17)

where Eq. (3.2.16) comes from the analytical solution of the cubic equation ε−1
0 Dx/z =

n2
0Ex/z(UUU) +χ(3)Ex/z(UUU)3 given by Eqs. (3.2.7) and (3.2.8). Here the subscript x/z refers

to both x and z components. The linear dispersion of Eqs. (3.2.7) and (3.2.8) is treated by
introducing into the second and third equations of the Maxwell-Fluid system [Eq. (3.2.6)]
a linear polarization current density JL,x/z = ∂tPL,x/z. By doing so, dispersion is handled
as a source term calculated by solving, for instance, the differential equations given by
Eqs. (2.1.15) and (2.1.16):


∂t
(
ε−1

0 Dx

)
+ ∂z

(
c2By

)
= − 1

ε0
(Jx + JL,x + Jloss,x) ,

∂t
(
ε−1

0 Dz

)
= − 1

ε0
(Jz + JL,z + Jloss,z) ,

(3.2.18)

where ε−1
0 Dx/z = Ex/z+χ(3)E3

x/z and Eqs. (3.2.16) and (3.2.17) can be applied with n0 = 1.
For this reason, as a numerical strategy, the electric displacement field is determined by
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Eqs. (3.2.9) and (3.2.10).

0
Ne

1
/N

ǫ e
(U

)

ǫN

Figure 3.2.2: Inverse of the corrected electron density, 1/N ε
e (UUU) [Eq. (3.2.22)], as a function

of Ne . This quantity is linear from Ne = 0 to Ne = εN = 10−16Ne,c.

Plasma quantities are given by:

Jx/z(UUU) =
γJx/z

γ(UUU) , (3.2.19)

γ(UUU) =

√√√√√1 +

(
γJx

)2
+
(
γJz

)2

e2c2 (N ε
e (UUU))2 , (3.2.20)

vx/z(UUU) = −Jx/z(U
UU)

eN ε
e (UUU) , (3.2.21)

N ε
e (UUU) =


Ne , if Ne ≥ εN,

ε2N

Ne
, otherwise.

(3.2.22)

N ε
e (UUU) accounts for a corrected electron density that discriminates between the value

of the electron plasma density between vacuum ( Ne < εN) and plasma ( Ne ≥ εN).
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As shown in Fig. 3.2.2, its inverse has been modelled linearly from the value ε−1
N when

Ne = εN to the value 0 when Ne = 0. This choice gives a smooth transition at the
interface. The value of the tolerance εN can be taken close to the machine precision.
With double precision, the choice εN = 10−16Ne,c worked well for all simulations, even at
relativistic intensities ≈ 1019 W cm−2.
For the numerical resolution of the Maxwell-Fluid model, the fields UUU(z, t) are dis-

cretized as UUUn
i on z (index: i; step: ∆z) and t (index: n; step: ∆t) as in Fig. 3.0.2. The

resolution of Eq. (3.0.2), together with Eqs. (3.2.13), (3.2.14) and (3.2.15), is tackled by
splitting this equation into Eqs. (3.0.3) and (3.0.4). This technique is very robust because
each physical part of the problem is treated separatedly from the others.
The evolutive part [Eq. (3.0.4) with Eqs. (3.2.13) and (3.2.15)] acts on the fields Dx,

Dz, Ne, γJx and γJz:



∂tDx = −Jx − Jloss,x,

∂tDz = −Jz − Jloss,z,

∂tNe = ∂t
∑
s

∑
j

qj,s
e
Nj,s,︸ ︷︷ ︸

ionization

∂t (γJx) = e2

me
NeEx︸ ︷︷ ︸

electric force

+ e

me
JzBy︸ ︷︷ ︸

Lorentz force

− νcγJx,︸ ︷︷ ︸
collision term

∂t (γJz) = e2

me
NeEz︸ ︷︷ ︸

electric force

− e

me
JxBy︸ ︷︷ ︸

Lorentz force

− νcγJz.︸ ︷︷ ︸
collision term

(3.2.23a)
(3.2.23b)

(3.2.23c)

(3.2.23d)

(3.2.23e)

Equations (3.2.23a) and (3.2.23b) refer to the field induced by the plasma (∂tEx/z ∼
−Jx/z) and the Kerr nonlinearity [∂tEx/z ∼ −JKERR

x/z = −∂t(χ(3)E3
x/z)]. Equation (3.2.23c)

accounts for ionization, calculated with Eq. (2.2.32). In Eqs. (3.2.23d) and (3.2.23e) there
are three important players:

1. The electric force driven by ∂tJx/z ∼ γ−1NeEx/z ∼ γ−1ω2
pEx/z. The transverse

component of this force is responsible for inducing the transverse current Jx in the
beam head. Moreover, in the rear part of the laser pulse, this force accounts for the
contributions oscillating at the plasma frequency (ωp/

√
γ) on both components of

the radiated electric field.

2. The Lorentz force ∂tJx/z ∼ γ−1Jz/xBy. Its longitudinal component is the laser-
induced ponderomotive force that excites longitudinal fields in the beam head.

3. The collision term ∂tJx/z ∼ νcJx/z, which damps the field components over long
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times, after the laser pulse has interacted with the medium.

Classical Runge-Kutta methods are suitable to solve numerically Eq. (3.2.23) (expressed
in the form of Eq. (3.0.4)). MaxFlu 1D uses the classical explicit two-step second-order
Runge-Kutta scheme to progress over ∆t except for the densities of electrons and ions
(i.e., to calculate UUUn+1

i from UUUn
i ):

UUU
n+ 1

2
i = UUUn

i + ∆t
2 SSSni ,

UUUn+1
i = UUUn

i + ∆tSSSn+ 1
2

i ,

(3.2.24)

where SSSni = SSS(UUUn
i ) and SSSn+ 1

2
i = SSS(UUUn+ 1

2
i ). The densities of ions and electrons are inte-

grated with the scheme Eq. (3.2.24) by exploiting the matrix of ionization probabilities
given by Eq. (2.2.37) as follows:




N0,s
...

NZs,s


n+ 1

2

i

= Ps

(
tn,

∆t
2

)
N0,s
...

NZs,s


n

i

,

Ne|
n+ 1

2
i = Ne|ni +

∑
s

∑
j

qj,s
e

(
Nj,s|

n+ 1
2

i −Nj,s|ni
)
,


N0,s
...

NZs,s


n+1

i

= Ps
(
tn+ 1

2
,∆t

)
N0,s
...

NZs,s


n+ 1

2

i

,

Ne|n+1
i = Ne|

n+ 1
2

i +
∑
s

∑
j

qj,s
e

(
Nj,s|n+1

i −Nj,s|
n+ 1

2
i

)
,

(3.2.25)

where the matrices of ionization probabilites Ps(tn,∆t/2) and Ps(tn+ 1
2
,∆t) are calculated

with the modules of the electric field
√

(Ex|ni )2 + (Ez|ni )2 and
√

(Ex|
n+ 1

2
i )2 + (Ez|

n+ 1
2

i )2,
respectively. There is no stability restriction for ∆t in the evolutive stage.

In the advective part [Eq. (3.0.3) with Eqs. (3.2.13) and (3.2.14)] the kernel acting on
the Maxwell fields (By and Dx) is actually decoupled from the system treating the Fluid
fields (Ne, γJx and γJz): 

∂tBy + ∂zEx = 0,

∂t
(
ε−1

0 Dx

)
+ ∂z

(
c2By

)
= 0,

(3.2.26)
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∂tNe + ∂z (vzNe) = 0,

∂t (γJx) + ∂z (vzγJx) = 0,

∂t (γJz) + ∂z (vzγJz) = 0.

(3.2.27)

It is interesting to discuss the phase velocities at which the above different fields prop-
agate:

1. Equation (3.2.26) reveals that the phase velocities of transverse electromagnetic
fields (By and ε−1

0 Dx) are:

vMAX
phase = ± c√

n2
0 + χ(3)E2

x

≈ ± c
n̄
, (3.2.28)

where n̄ is the effective (nonlinear) optical refractive index [Eq. (2.1.25)]. These
fields travel at c in vacuum and at a smaller velocity inside the medium due to its
refractive index. Indeed, n̄ depends on the laser pulse profile: it is maximum at
the peak intensity and minimum at its leading and trailing edges. Hence, inside the
medium, the laser peaks will travel at a speed lower than that of its leading and
trailing edges, which ultimately causes the formation of an optical shock at trailing
edges [49, 60]. This phenonemon is known as pulse self-steepening.

2. The fact that the longitudinal field ε−1
0 Dz does not intervene in the advection stage

reveals that it is electrostatic and thus it will not propagate outside the target.

3. Equation (3.2.27) shows that the phase velocities of the three fluid fields (Ne, γJx
and γJz) are all equal to

vFLU
phase = vz. (3.2.29)

This evidences that the fluid part of the system is actually weakly hyperbolic [104].
Fortunately, the potential numerical artifacts which may appear due to this lack of
hyperbolicity are sucessfully overcome thanks to the numerical algorithm which we
have designed for the fluid part (see Section F).

The MaxFlu 1D code numerically solves advections defined by Eqs. (3.2.26) and
(3.2.27) thanks to explicit centred three-point finite volumes schemes, because they are
not expensive to compute and are easily parallelizable. Two major schemes have been
chosen. The first scheme is FORCE (First-ORder CEntred scheme), given by Eq. (3.2.30)
below, which is the less diffusive first-order-accurate centred three-point finite-volume
scheme (proposed by Toro; see chapter 7 of [163]). The second scheme is the Richtmyer
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two-step Lax-Wendroff method, given by Eq. (3.2.31) below, the only3 three-point second-
order-accurate finite-volume scheme (see Lax and Wendroff [100], and Richtmyer [139]).
Both are two-step schemes, solving first the part of the waves travelling from right to left
(backward) and then the part of the waves propagating from left to right (forward).


UUU
n+ 1

2
i = UUUn

i+1 +UUUn
i

2 − ∆t
2∆z

(
FFF n
i+1 −FFF

n
i

)
,

UUUn+1
i = UUU

n+ 1
2

i +UUU
n+ 1

2
i−1

2 − ∆t
2∆z

(
FFF
n+ 1

2
i −FFF n+ 1

2
i−1

)
.

(3.2.30a)

(3.2.30b)


UUU
n+ 1

2
i = UUUn

i+1 +UUUn
i

2 − ∆t
2∆z

(
FFF n
i+1 −FFF

n
i

)
,

UUUn+1
i = UUUn

i −
∆t
∆z

(
FFF
n+ 1

2
i −FFF n+ 1

2
i−1

)
,

(3.2.31a)

(3.2.31b)

where FFF n
i = FFF (UUUn

i ) and FFF n+ 1
2

i = FFF (UUUn+ 1
2

i ). Since both schemes utilize the first step, they
are easy to adapt for hybrid schemes. The CFL stability condition for these two schemes
is vphase∆t ≤ ∆z, where vphase represents the largest phase velocity in absolute value.
MaxFlu 1D works with a constant time step, ∆t = c−1∆z, in order to have a regular
grid in both space and time. This time step always assures stability because |vMAX

phase| ≤ c

and |vFLU
phase| ≤ c, according to Eqs. (3.2.28) and (3.2.29). In Section F we justify why the

Maxwell advection is solved by Lax-Wendroff scheme, whereas the Fluid advection needs
to be solved by a hybrid scheme based on FORCE and Lax-Wendroff.
The evolution [Eq. (3.2.23)] and advection [Eqs. (3.2.26) and (3.2.27)] stages can be

numerically combined in different fractional-step schemes converging towards the solu-
tion of the whole system (3.2.6). Let A∆t represent the discrete advection operator over
the time step ∆t. Calculating UUUn+1 from UUUn by either Eq. (3.2.30) or Eq. (3.2.31) is
formally denoted as UUUn+1 = A∆tUUUn (the spatial index i is omitted because all the points
of the grid are solved). Analogously, the discrete evolution operator S∆t is defined, which
represents formally Eq. (3.2.24) as UUUn+1 = S∆tUUUn. The first-order accurate splitting com-
binations are the advection-evolution and the evolution-advection fractional-step schemes:
respectively UUUn+1 = S∆tA∆tUUUn and UUUn+1 = A∆tS∆tUUUn. The advection-evolution split-
ting first advects the solution over ∆t and next makes those advected values evolve over
∆t. The evolution-advection splitting, instead, first integrates the solution over ∆t and
next advects those new values over ∆t. For linear hyperbolic systems the splitting of
the advection and the source is exact [65, 104, 163]. For nonlinear systems, instead,
there exists a splitting error that vanishes when ∆t → 0. To converge faster, it is more
interesting to use a second-order accurate splitting scheme: either the advection-evolution-

3Strictly speaking, this is true for linear systems. For nonlinear systems there exist alternatives of
this scheme such as the MacCormack’s scheme [116].
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S∆t/2

S∆t/2

A∆t

forward
advection

backward
advection

calculation domain

solution at tn

advance sliding
window:
solution at tn+1

Figure 3.2.3: Illustration of a whole iteration of MaxFlu 1D, which uses the splitting
UUUn+1 = S∆t/2A∆tS∆t/2UUUn. The computation domain is represented with
a box. The longitudinal positions (black dots) are signalled by a coloured
circle: unknown values (red), known values (green) and laser-unperturbed
values, i.e., the initial condition (cyan). During the first evolution stage
(S∆t/2), the values belonging to the computational domain can be calculated
and the unperturbed values at the right side do not change. Idem for the
backward advection of A∆t. In the forward advection, the first value of
the computational domain cannot be calculated and the value on its right-
hand side is affected and must be stored (indicated with light green). Idem
for the second evolution stage (S∆t/2). When the computional domain is
advanced one longitudinal step forward, the initial situation is restored: all
the values inside are known and the values on its left are unperturbed. Thus,
apart from the initial condition, no extra boundary conditions are used by
MaxFlu 1D.

advection splitting, UUUn+1 = A∆t/2S∆tA∆t/2UUUn, or the evolution-advection-evolution split-
ting, UUUn+1 = S∆t/2A∆tS∆t/2UUUn. The MaxFlu 1D code uses the latter because it presents
two advantages. First, it allows us to solve exactly the propagation of the laser field in
vacuum [Eqs. (3.2.30) and (3.2.31) are exact with n0 = 1 and χ(3) = 0, when ∆t = c−1∆z].
Second, it reduces the amount of communications between processors when parallelizing
the code, since only the advective stage requires such communications.
For computational reasons, the calculation domain of MaxFlu 1D is a sliding window

that moves forward at the speed of light (see Fig. 3.2.3). With the fixed time step
∆t = c−1∆z, the window is advanced by one spatial step forwards at each time step.
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Since the right side of the domain is not yet perturbed by the laser field, the fields are
known and given by the initial condition (all the fields are zero except for the densities of
neutrals). These values at the right boundary are the only boundary condition used by
MaxFlu 1D
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3.3 Comparing MaxFlu with UPPE and Calder

3.3.1 MaxFlu versus UPPE

In this section, we shall discuss the suitability of MaxFlu 1D to deal with nonlinear
optical effects on pulse propagation. To do this, we start reproducing with MaxFlu 1D
the carrier wave shocks studied by Flesch et al. in Ref. [60].
Here, pulse self-steepening is studied for a dispersionless medium. In this context, the

shock wave originates from the different phase velocities between the pulse components in
the peak and the leading and trailing edges [49], according to Eq. (3.2.26). Figure 3.3.1
shows an optical shock formation at the trailing edge for n2 > 0 as the peak travels slower.
The agreement between Ref. [60] and MaxFlu 1D is very good in the spectra. After
propagating over 20.2 µm, the ratio between the third harmonic and the fundamental one
is ≈ 0.11 with MaxFlu 1D and ≈ 0.12 in Ref. [60], whereas the fifth harmonics are in
identical ratio ≈ 0.04.
Next, we have examined shock formation in a dispersive medium. In Fig. 3.3.2 the pulse

at two different positions is plotted in time, while the corresponding spectra are shown in
Fig. 3.3.3. After propagating over 27 µm, Fig. 3.3.3 reveals that a strong third order har-
monic appears due to the Kerr effect, which is in good agreement between MaxFlu and
Ref. [60] (relative ratio is ≈ 0.16). Higher harmonics are suppressed by the small GVD
which prevents the carrier wave from breaking early. After the pulse has propagated upon
525 µm, the situation differs: the developement of an envelope shock is clearly visible and
it is accompanied by a strong spectral broadening and modulations. On the trailing edge
the third harmonic pulse starts to separate from the fundamental due to the difference
in the group velocities of the fundamental and third harmonic. The agreement between
MaxFlu 1D and Ref. [60] is very good, despite MaxFlu 1D utilizes Sellmeier’s disper-
sion relation. Comparing specific values in the spectrum after propagating over 525 µm,
the normalized spectral amplitudes, with respect to the amplitude of the fundamental
harmonic after propagating over 27 µm, at 0.9ω0, ω0 and 3ω0 are ≈ 0.59, ≈ 0.22 and
≈ 0.034 with MaxFlu 1D and ≈ 0.56, ≈ 0.21 and ≈ 0.038 in Ref. [60], respectively.
For completeness, we have compared directly MaxFlu 1D with UPPE 1D spectra

in the THz band for argon target, as shown in Fig. 3.3.4. The agreement between the
two codes is very good after propagating over 1 mm, because the differences due to the
dispersion, only computed by UPPE 1D, appear over longer distances (> 1 cm).
Figure 3.3.5 shows an example of results obtained in a filamentation regime promot-

ing THz generation in air, calculated by the UPPE 3D code. The filamentation pro-
cess manifests by the balance between Kerr self-focusing and plasma defocusing, leading
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Figure 3.3.1: Kerr-induced wave shock in a dispersionless medium. One-colour laser pulse
of wavelength 4.71 µm and FWHM-duration of 21.21 fs. For computational
convenience, a strong third-order susceptibility χ(3) = 0.022a−2

0 is consid-
ered. (a) Normalized electric field calculated by Ref. [60] after propagating
over 6.8 µm (dotted curve, translated to the position of the solid curve) and
20.2 µm (solid curve). (b) Spectrum of the solid curve of (a) in terms of
wavenumber k/k0. (c) Electric field calculated by MaxFlu 1D after prop-
agating 6.8 µm (dashed red curve, translated to the position of the solid
curve) and 20.2 µm (solid black curve). A laser intensity of 1012 W cm−2 is
chosen; the nonlinear refractive index is thus n2 = 8.25× 10−15 cm2/W. (d)
Spectra of (c) in terms of k/k0. Source: Flesch et al. [60].

to the “intensity clamping” phenomenon. The beam intensity, initially chosen around
25 TW cm−2, increases during propagation due to the beamwidth narrowing caused by
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Figure 3.3.2: Kerr-induced optical shock in a dispersive medium. One-colour laser pulse
of wavelength 1.5 µm and FWHM-duration of 56.6 fs. A strong third-order
susceptibility χ(3) = 0.01a−2

0 is considered. The linear refractive index of the
medium is n0 = 1.1 and the group velocity dispersion is GVD = 25 fs2/cm.
MaxFlu 1D uses the Sellmeier dispersion model [Eqs. (2.1.15) and (2.1.16)].
(a) Electric field calculated by MaxFlu 1D over 27 µm. (c) Normalized
counterpart calculated in Ref. [60]. The dotted line refers to the solution to
“classical” envelope equation. (b) Electric field calculated by MaxFlu 1D
at z = 525 µm. (d) Normalized field calculated in Ref. [60]. Source: Flesch
et al. [60].

the Kerr effect, until becoming high enough to trigger photoionization and creating free
electrons. The balance between the two processes clamps the beam intensity around 80-
100 TW cm−2. We have compared, in time and Fourier domains, the THz fields obtained
by UPPE 3D, filetered at 80 THz, with the results of MaxFlu 1D (overall intensity of
100 TW cm−2) at three different positions, namely, z = 1 cm, z = 5 cm, and z = 15 cm.
For short distances —z = 1 cm and z = 5 cm— the results of both codes are quite
resembling, even if MaxFlu 1D overestimates THz field amplitudes because the absence
of transverse diffraction (∂x = ∂y = 0) in 1D geometry makes the fields be confined along
one dimension only. Because of this, the MaxFlu 1D code yields at z = 15 cm highly
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Figure 3.3.3: (a) Spectra of Fig. 3.3.2(c). (b) Spectra of Fig. 3.3.2(d). (c) Spectra of
Fig. 3.3.2(a) (green curve) and Fig. 3.3.2(b) (blue curve).

diverging THz fields and produce results which cannot hold the comparison with full 3D
numerical modelling as provided by UPPE 3D.

3.3.2 MaxFlu versus Calder: relativistic plasmas at
1018-1019 W cm−2

The Maxwell-Fluid approach is the phase-space average of the Maxwell-Vlasov model in
the sense that it mainly holds whenever the phase space is monokinetic and applies to a
single distribution function. In this section, we discuss the limits of this model at rela-
tivistic intensities. The results of MaxFlu 1D are compared with those of Calder 1D,
at different intensities and with different laser-gas configurations. The objective of this
section is to prove that the Maxwell-Fluid model is able to capture the physics underlying
laser-driven terahertz sources up to relativistic intensities, with the advantage that fluid
codes are computationally faster than Particle-In-Cell codes.
In the classical scenario, plasma generation is initiated from the very first cycles of the

laser pulse. These first ionized electrons are longitudinally displaced to the right from
their equilibrium position (the position of their corresponding ions, assumed fixed) by the
Lorentz force ∼ JxBy [Eq. (3.2.6f)], which corresponds to the longitudinal ponderomo-
tive force. This ponderomotive force first pushes forward the electrons, which start to
copropagate with the laser pulse. By feedback of this plasma motion, a positive longitu-
dinal electric field is induced, which attracts the electrons back to the ions (i.e., to the
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Figure 3.3.4: Comparison between MaxFlu 1D and UPPE 1D. A 1-µm 50-fs-FWHM
one-colour laser pulse of 50 TW cm−2 is employed. The target is 1-bar ar-
gon, which is singly ionized according to QST ionization rate [Eq. (2.2.28)].
The nonlinear refractive index is n2 = 10−19 cm2/W. UPPE 1D consid-
ers the dispersion model by Leonard [103], whereas MaxFlu 1D discards
dispersion. (a) Terahertz spectra after propagating upon 1 mm, computed
by MaxFlu 1D (blue curves) and UPPE 1D (red curves). Solid curves
are calulated by taking into account Kerr and plasma effects; dashed curves
do not consider the Kerr effect. (b) Corresponding radiated electric fields
filtered at 90 THz.

left). This causes a longitudinal oscillation of the ionized electrons around the ions at the
plasma frequency ωp/

√
γ [152]. This plasma oscillation is associated to the generation of

an oscillatory electrostatic longitudinal electric field in the wake of the laser beam, which
leads to the creation of the wakefield. This scenario, depicted in the left-hand side of
Fig. 3.3.6, can be well described up to relativistic intensities by the Maxwell-Fluid model
because the phase space remains essentially monokinetic in helium or argon.

The intensity threshold from which relativistic effects start to play a significant role is
usually considered at ε0ω

2
0m

2
ec

3e−2/2 (∼ 1.4 × 1018 W cm−2 for a wavelength of 1 µm).
At those intensities, if the cycles inside the pulse still ionize the gas, those electrons,
born when the longitudinal electrostatic field is already created from the very first freed
electrons, will acquire high velocities. The regions where the longitudinal electric field
is negative correspond to accelerating regions for the electrons. At the back of this first
accelerating region, the electrons whose velocity is above the group velocity of the laser
pulse will be enough accelerated to co-propagate with the wakefield structure (which

99



3 Numerical modelling

0 20 40 60 80

10
0

ν [THz]

|Ê
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Figure 3.3.5: Laser filamentation in air. We employ a two-colour laser pulse with funda-
mental at 800 nm (second harmonic has its central wavelength at 400 nm)
for an initial intensity of 25 TW cm−2 (10% in the second harmonic). The
FWHM duration is 40 fs (20 fs for the second harmonic). The initial
beamwidth is equal to 400 µm. The cut-off frequency closing the THz win-
dow over which the THz field is evaluated by inverse Fourier transform is
νco = 80 THz. (a) Maximum intensity and (b) maximum electron density
forming an extended plasma channel computed over one metre-long distance.
(c) THz spectra calculated by UPPE 3D (solid curves) and MaxFlu 1D
(dashed curves) at different distances: z = 1 cm (red), z = 5 cm (blue),
and z = 15 cm (green). Temporal profiles of THz field at (d) z = 1 cm and
z = 5 cm, and (e) z = 15 cm.

travels at the laser group velocity) and stay in the accelerating region. These electrons
are then trapped by the plasma wave and are accelerated to relativistic velocities, as
plotted in the right side of Fig. 3.3.6, instead of acquiring an oscillatory motion. This
phenomenon is referred as ionization-induced electron injection [50, 56]. This acceleration
consumes energy from the longitudinal electric field, whose strength, therefore, decreases
after the first cycle. This means that the first ionized electrons, which do not have enough
initial velocity to get injected, will oscillate at a higher frequency than the relativistic one
(ωp/
√
γ), closer to classical frequencies (ωp). Due to electron injection, the space phase

also broadens into two kinetic families of electrons and the Maxwell-Fluid model may no
longer be valid after the first cycle of the longitudinal field in this context.

The comparison between both codes is done with the geometry represented in Fig. 3.3.7.
A 100-µm-long linear gradient in the density of neutral argon is placed at the right of
the vacuum-plasma interface in order to minimize the boundary effects on electrons. The
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Figure 3.3.6: (a) Example of fluid electrons trajectory (black curve) for a one-colour 1-µm
35-fs-FWHM laser pulse with 1.4× 1018 W cm−2, calculated with MaxFlu
1D (geometry: semi-infinite argon target starting from z = 300 µm, the
peak of the laser envelope being at z = 200 µm at t = 0). Electrons oscillate
longitudinally, seeing an alternating longitudinal electric field (colour map).
(b) Example of the trajectory followed by trapped electrons (the intensity
is 2.2× 1019 W cm−2). At high intensities, the electrons born in the second
semi-cycle of the longitudinal electric field are strongly accelerated to the
right. With the adequate initial velocity, they are accelerated in such a way
that they always see a negative electric field and are accelerated close to the
speed of light, by being trapped by the plasma wave.

density of neutrals at the plateau is Na = 2.4× 1017 cm−3 (0.009-bar pressure). The peak
of the laser envelope (one or two colours) is initially located at 39.8 µm at the left of the
interface. The results of the two codes, MaxFlu 1D and Calder 1D, are compared
in time at 300 µm at the right of the interface, and in space after propagating during
1061 fs, i.e., after the laser envelope peak has propagated over ∼ 318 µm. Comparisons
are carried out with one-colour laser pulses (wavelength of 1 µm and FWHM of 35 fs)
at two intensities: 1.4× 1018 W cm−2 (the relativistic threshold) and 2.2× 1019 W cm−2

(sixteen times the relativistic intensity threshold).
Two different gas targets are considered: helium and argon. As shown in Fig. 3.3.8

for 35-fs single-colour laser pulses, helium is completely ionized far before relativistic
intensities (∼ 1016 W cm−2) and no ionization-induced electron injection is expected.
Argon, instead, has a different behaviour. Its first eight electronic shells are ionized
before the relativistic intensities: the Ar8+ ion has a very stable electronic configuration
till the relativistic range 1017-1018 W cm−2. Close to 1019 W cm−2, argon can be ionized
further and the additional ionized electrons will be injected at relativistic velocities. In
this high-intensity regime, strong differences between the results of MaxFlu 1D and
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Figure 3.3.7: Geometry for the comparison MaxFlu 1D vs Calder 1D. The laser pulse
(blue curve) is located at 39.8 µm at the left of the interface. The initial
density profile of neutrals (red curve) is shaped with a 100-µm-long linear
gradient.

Calder 1D are expected to be observed.
Figure 3.3.9(a) superimposes the longitudinal linear momentum pz = meγvz distribu-

tion as a function of the longitudinal position z calculated by the code MaxFlu 1D
(red curve) with the phase space calculated with the code Calder 1D (colour bar), for
argon ionized at 1.4 × 1018 W cm−2. The agreement is very good in the first longitu-
dinal cycles because the phase space, as expected, is monokinetic. This is not the case
at 2.2 × 1019 W cm−2, as illustrated in Fig. 3.3.9(b). The agreement between the two
codes holds over the first cycle only; then the phase space broadens because the electrons
resulting from the ionization of Ar9+ to Ar15+ are trapped. After that cycle, Calder 1D
reveals, as expected, that the frequency of the oscillating electrons increases due to the
energy taken away from the longitudinal field through the trapping proccess. In constrat,
the MaxFlu 1D code cannot cover similar broadening of the phase space; the plasma
frequency does not change after the first cycle and its value keeps close to ωp/

√
γ. The

differences between these two intensity levels are also seen when plotting the fields as a
function of time. The agreement between the results of the two codes is very good in both
longitudinal and transverse fields at 1.4×1018 W cm−2 [see Fig. 3.3.10 (a,b,c,d)]. However,
at 2.2 × 1019 W cm−2 differences appear due to phase space broadening [see Fig. 3.3.10
(e,f)]. Only the first cycle of the longitudinal field is well described by MaxFlu 1D.
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Figure 3.3.8: Degree of ionization, calculated with Eq. (2.2.41), for argon (black curves)
and helium (red curves) by a single-colour laser pulse of 1-µm wavelength
and FWHM duration of 35 fs. At 1.4× 1018 W cm−2, argon is ionized ∼ 8.6
times, whereas at 2.2× 1019 W cm−2 it is fully ionized 16 times. Helium is
fully ionized twice from ∼ 1016 W cm−2.

Afterwards, as displayed by Calder 1D, the amplitude and wavelength of these fields
decrease. The head of the computed transverse terahertz pulse is well calculated by
MaxFlu 1D because it is mostly due to photoionization; only differences between the
results of MaxFlu 1D and Calder 1D appear in its rear part.
For helium, instead, the phase space stays monokinetic due to the absence of further

electron injection since only two electrons are available and immediately ionized (see
Fig. 3.3.11) and, thus, both codes agree.
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Figure 3.3.9: Linear momentum calculated by MaxFlu 1D (red curve) vs the phase space
obtained from Calder 1D (colour map), for argon, at t = 1061 fs, with a
single-colour laser pulse. (a) At 1.4×1018 W cm−2. (b) At 2.2×1019 W cm−2.
The resolution is ∆z = 7.6 nm for MaxFlu 1D, and ∆z = 19.0 nm and
∆p = 0.007mec for Calder 1D.
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Figure 3.3.10: Transverse and longitudinal fields calculated by MaxFlu 1D (blue curves)
and Calder 1D (red curves), for argon, at z = 300 µm, with a single-colour
laser pulse. (a) Transverse field (filtered at 90 THz) at 1.4× 1018 W cm−2.
(b) Longitudinal field at the same intensity. (c,d) Corresponding spectra.
(e) Transverse field (filtered at 90 THz) at 2.2 × 1019 W cm−2. (f) Lon-
gitudinal field at the same intensity. The resolution is ∆t = 25.4 as for
(a,b,c,d), ∆t = 12.7 as for (e,f) and ∆ν = 0.26 THz for MaxFlu 1D, and
∆t = 79.1 as and ∆ν = 0.47 THz for Calder 1D.
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Figure 3.3.11: Longitudinal momentum as a function of the position z calculated by
MaxFlu 1D (red curve) versus the phase space obtained from Calder 1D
(colour map), for helium, at t = 1061 fs, with a single-colour laser pulse.
Intensities are (a) 1.4× 1018 W cm−2, and (b) 2.2× 1019 W cm−2.
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3.4 Simplified ½D semi-analytical Maxwell-Fluid model
The one-dimensional version of the Maxwell-Fluid model [Eq. (3.2.6)] describes correctly
the physics underlying laser-driven terahertz sources up to relativistic intensities. Thus,
analytical solutions to these equations should improve the local current model (Sec-
tion 2.4.2), and thereby supply quantitative evaluation of terahertz yields. That general
solution is, however, not (still) achievable. Nevertheless, in this section a “½D” semi-
analytical solution, obtained in a simplified context, is presented. The resulting equations
include the local current model with the correct amplitude factor g and they are in good
agreement with simulations of MaxFlu 1D. We call this model “½D” because the electric
field evolves along the z-axis, but z is treated as a parameter.
Some hypothesis are here conjectured to simplify the starting Maxwell-Fluid model

[Eq. (3.2.6)] into the “½D semi-analytical model”:

1. Laser intensities are limited to ε0ω
2
0m

2
ec

3e−2/4 ∼ 3.5×1017 W cm−2 for a wavelength
of 1 µm. This allows us to consider a constant Lorentz factor evaluated from the
laser pulse only: γ(t) = γL '

√
1 + 2I0ε

−1
0 ω−2

0 m−2
e c−3e2 (Sprangle et al. [152]).

2. The linear refractive index is n0 = 1, i.e., the medium is non-dispersive and the
laser pulse travels exactly at fixed group velocity equal to c.

3. The laser pulse, EL(t), which propagates forward, is assumed unperturbed upon
propagation, which is a reasonable approximation for short distances of order of 100
µm. The phaseshift between the different colours of the laser pulse can actually
vary along the propagation axis, but this fact is omitted here.

4. Energy losses due to photoionization are neglected: JJJ loss = 000.

5. The transverse electric field is expressed as the sum of the laser field and a pertur-
bation caused by the propagation (i.e., the radiated field): Ex = EL + Ẽx.

6. The transverse current is split accordingly: Jx = JL + J̃x. The laser-driven current
is defined as JL = e2m−1γ−1

L (∂t+νc)−1Ne,LEL, where Ne,L = ∑
s

∑
j qj,se

−1Nj,s is the
electron density produced by photoionization.

7. No Kerr effect is considered on the longitudinal field. In the transverse field, the Kerr
effect is assumed to be given only by the laser pulse: JKERR = JNL,L = ∂t(χ(3)E3

L).

8. Since at subrelativistic intensities the electron velocities are small compared with
the speed of light (v2

x/z � c2), the convective terms of the currents, ∂z(γvzJx) ∼ vxvz

and ∂z(γvzJz) ∼ v2
z , being of second order in vvv, are neglected.

107
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9. At leading order, it is reasonable to evaluate the source ΠΠΠ [Eq. (2.3.15)] from the
laser fields (Jx ' JL, By ' BL = EL/c and Ne ' Ne,L).

10. Moreover, because EL is assumed unperturbed, the quasi-static hypothesis is applied
to longitudinal fields (Sprangle et al. [152]): ∂t + c∂z = 0. This implies that the
source for the longitudinal fields solely proceeds from the laser pulse and propagate
at the speed of light together with the laser pulse.

Under these hypothesis, the one-dimensional Maxwell-Fluid model (3.2.6) reduces to
two equation sets, one for the longitudinal fields [Eq. (3.4.1)] and one for the transverse
fields [Eq. (3.4.2)]:



∂tEz = − 1
ε0
Jz,

∂tNe + ∂t

( 1
ec
Jz

)
= ∂tNe,L,

γL (∂t + νc) Jz = e2

m
Ne,LEz −

e

m
JLBL,

(3.4.1a)

(3.4.1b)

(3.4.1c)



∂tBy + ∂zEx = 0,

∂tEx + ∂z
(
c2By

)
= − 1

ε0
(Jx + JKERR) ,

γL (∂t + νc) Jx = e2

m
NeEx + e

m
JzBy.

(3.4.2a)

(3.4.2b)

(3.4.2c)

3.4.0.1 0D model for the longitudinal fields

The expressions for the longitudinal current and the electron density are directly given
by Eqs. (3.4.1a) and (3.4.1b) as a function of Ez and the laser pulse:

Jz = −ε0∂tEz, (3.4.3)

Ne = Ne,L −
Jz
ec
. (3.4.4)

By applying the operator (∂t+νc) to Eq. (3.4.3) and then combining it with Eq. (3.4.1c),
the following equation for the longitudinal electric field is obtained:

(
∂2
t + νc∂t + ω̃2

p

)
Ez = e

meε0cγL
JLEL, (3.4.5)

108



3.4 Simplified ½D semi-analytical Maxwell-Fluid model

where the characteristic frequency of this system is:

ω̃2
p = e2Ne,L

meε0γL
. (3.4.6)

Eq. (3.4.5) simply means that all the longitudinal fields are initiated from the laser-
driven ponderomotive force ∼ JLEL and then oscillate at the frequency ω̃p = ωp/

√
γL.

By taking the Fourier transform of Eq. (3.4.5) and assuming that the plasma frequency
is constant, the analytical spectrum can be obtained straightforwardly:

Êz = − e

meε0cγL

F [JLEL](
ω2 − iνcω − ω̃2

p

) . (3.4.7)

Similar expressions [Eqs. (2.4.33) and (2.4.41)] were earlier derived by Sprangle et al.
[154] and D’Amico et al. [44] for a single wave in the non-relativistic limit γ = 1 by
approximating the source term ΠΠΠz [Eq. (2.3.18)] with slowly-varying envelopes. Besides
γ 6= 1, the three differences with these former works are the following:

1. In Eq. (3.4.5), the product of the rapid variations of Ne(t) in ω̃2
p through pho-

toionization in the beam head [∂tNe(t) ∼ ∂t
∑
s

∑
j qj,se

−1Nj,s] yields non-zero field
contributions in the THz domain.

2. We account for wakefield plasma oscillations linked to a non-zero longitudinal field
(Jz 6= 0) increasing from high enough laser intensities.

3. Our model equations apply to two-colour pulses and can easily be extended to more
colours.

3.4.0.2 1D model for the transverse fields

By decomposing Jx = JL + J̃x and Ex = EL + Ẽx, Eq. (3.4.2c) gives:

γL (∂t + νc)
(
JL + J̃x

)
= e2

m
Ne
(
EL + Ẽx

)
+ e

m
JzBy, (3.4.8)

which, by applying Eq. (3.4.4), (3.4.6) together with JL = e2m−1
e γ−1

L (∂t + νc)−1Ne,LEL,
reduces to

(∂t + νc) J̃x = ε0ω̃
2
pẼx + e

meγL
Jz

By −

(
EL + Ẽx

)
c

 . (3.4.9)

In Eq. (3.4.9) one simplification is still performed: the transverse magnetic field is split
as By = BL + B̃y, with BL = EL/c. Therefore, the second term of the right-hand side of
Eq. (3.4.9) is proportional to Jz(B̃y − Ẽx/c). This term can be neglected for two reasons:
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on the one hand, B̃y ' Ẽx/c holds and, on the other hand, em−1
e γ−1

L c−1Jz � ε0ω̃
2
p is

reasonable at nonrelativistic intensities (oscillations of the electron density are small).
Therefore, the equation for the radiated current density finally reads as:

J̃x = (∂t + νc)−1 ε0ω̃
2
pẼx. (3.4.10)

Using Eqs. (3.4.2b) and (3.4.2a), the following wave equation is then easily obtained:

(
∂2
t − c2∂2

z

)
Ex = − 1

ε0
∂t (Jx + JKERR) . (3.4.11)

By substituting Ex = EL + Ẽx, knowing that the laser pulse verifies (∂2
t − c2∂2

z )EL = 0,
and Jx = JL + J̃x with Eq. (3.4.10) into Eq. (3.4.11), the wave equation for the transverse
radiated field follows:

(
∂2
t − c2∂2

z + ∂t (∂t + νc)−1 ω̃2
p

)
Ẽx = − 1

ε0
∂t (JL + JKERR) . (3.4.12)

Remark 2. An equation similar to Eq. (3.4.12) was earlier proposed by Debayle et al.
[45], where analytical solutions were obtained in the beam head and behind the laser pulse.
Removing the propagation operator ∂2

z was proposed to obtain a non-propagating plasma-
like model, equivalent to Eq. (3.4.5). That 0D model, however, is limited as it only provides
a rough estimation of the first maximum oscillation in the transverse THz field.

The right-hand side of Eq. (3.4.12) depends, by hypothesis, exclusively on the laser
field. It is therefore unperturbed during the propagation. Moreover, the plasma frequency
ω̃p, given by Eq. (3.4.6), also depends exclusively on the same unperturbed laser field.
Equation (3.4.12) is a wave equation and the only field that varies with the propagation
distance z is Ẽx. This equation can thus be reduced in the laser comoving reference system
by subsituting the operator ∂2

t − c2∂2
z by c2(∂z + 2c−1∂t)∂z, where hereinafter z accounts

for the propagated distance and t for the reduced time of the laser pulse (see González de
Alaiza Martínez et al. [68])4:

[
c2
(
∂z + 2

c
∂t

)
∂z + ∂t (∂t + νc)−1 ω̃2

p

]
Ẽx = − 1

ε0
∂t (JL + JKERR) , (3.4.13)

which contains the mechanisms yielding terahertz radiation along the laser polarization
axis: the photocurrent mechanism (see Section 2.4.2), the Kerr effect (see Section 2.4.1)
and the so-called plasma current oscillations related to the second term ∼ ω̃2

pẼx [45]. The

4With our change of variables τ = t − z/c and ζ = ct (and thus ∂t = ∂τ + ∂ζ and ∂z = −c−1∂t),
we approximate the collisional term, assumed small, through the operator (1 + νc/(∂τ + c∂ζ))−1 ≈
(1 + νc/∂τ )−1. For consiceness, we keep the name of the original variables (z, t) unchanged.
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initial condition Ẽx(t, z = 0) = 0 is applied to deal with a well-posed problem.
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Figure 3.4.1: Prefactor of Eq. (3.4.16) as a function of the frequency and propagated
distance for ν̃p = 5 THz (νc = 0). The plasma frequency is indicated with a
white line.

An analytical spectrum of Eq. (3.4.13) can be obtained assuming, for simplicity, that
the plasma frequency, ω̃p, is constant.By Fourier transform, Eq. (3.4.13) reduces to an
ordinary differential equation in z:

(
c2∂2

z + 2ciω∂z + ω

ω − iνc
ω̃2

p

)
ˆ̃Ex = − 1

ε0
F [∂t (JL + JKERR)] , (3.4.14)

whose solution, verifying ˆ̃Ex(ω, z = 0) = 0 and ∂z ˆ̃Ex(ω, z = 0) = 0, is

ˆ̃Ex = g(ω, z)F [∂t (JL + JKERR)] , (3.4.15)

g(ω, z) = − 1
δω̃2

pε0

[
1− exp

(
− iωz

c

)(
cos

(
z

c
Ω
)

+ iω
Ω sin

(
z

c
Ω
))]

. (3.4.16)

Ω =
√
ω2 + δω̃2

p, (3.4.17)

δ = ω

ω − iνc
. (3.4.18)

Equation (3.4.15) confirms the local current hypothesis done in Section 2.4.2, Ẽx =
g∂tJL, but with the correct factor g given by Eq. (3.4.16). This models predicts the
following:
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1. The photocurrent mechanism is the main mechanism of producing terahertz radia-
tion, at least up to the relativistic limit, if ionization events contribute by construc-
tive interference. This is confirmed in Sections 3.3.2, 5.1 and 5.2.

2. The Kerr effect has a direct contribution to the terahertz yield (see Section 4.1).

3. Terahertz emission increases with the propagated distance: a simple Taylor expan-
sion can indeed reveal that g(ω, z) ∼ z2 over short distances.

4. The prefactor g(ω, z) increases with the propagated distance in the neighbourhood
of the plasma frequency ω̃p, as plotted in Fig. 3.4.1.

5. Plasma effects are accumulated along propagation, as also revealed by Fig. 3.4.1.
Note that, however, Eq. (3.4.16) does not cover correctly the part of the spectrum
ω < ω̃p due to the simplification of constant plasma frequency.

The simplified model given by Eqs. (3.4.5), (3.4.13) and (3.4.15) provides us with a
useful tool for characterizing terahertz radiation: namely, photoionization and Kerr effect,
in the laser beam, and plasma wakefield oscillations, beyond the laser head. The part
involved with transverse currents unifies the Local Current theory with THz-driven four-
wave mixing sources. Our model is, however, restricted to short distances for which
the laser pulse remains unperturbed. In these conditions, the agreement with the code
MaxFlu 1D, as displayed by Fig. 3.4.2, and with the on-axis results of Calder 2D,
as addressed in Section 5.2, is very good. The model does not include dispersion effects
and it also discards the fact that terahertz generation is inherently nonlocal, so that the
already produced terahertz can have a significant influence on the terahertz generation
upon propagation (see Cabrera-Granado et al. [28]). Of course, our 1D model ignores
multi-dimensional effects, which will be discussed in Section 5.2.
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Figure 3.4.2: Comparison between the simplified Maxwell-Fluid model [black curves for
Eqs. (3.4.5) and (3.4.13); red curves for Eq. (3.4.15)] and the code MaxFlu
1D (blue curves). The target (argon at 0.009 bar) starts at z = 1000 µm, and
the peak of the envelope of the laser pulse is placed at z = 850 µm at t = 0.
Fields are calculated at z = 1050 µm. (a,b) Solutions for a single-colour
35-fs-FWHM 1-µm laser pulse at 1015 W cm−2. (c,d) Solutions for a two-
colour 1-µm laser pulse (35/17.5 fs-FWHM, π/2 phaseshift, 10% of intensity
in the second harmonic) at the same intensity. (e,f) Corresponding spectra.
The vertical dotted line corresponds to the plasma frequency ω̃p ∼ 0.021ω0.
(g,h) Solutions for the same two-colour laser pulse but at 1017 W cm−2.
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This section is devoted to laser-driven THz generation at moderate intensities
(. 1014 W cm−2), which are typical of laser filamentation or loosely focused geome-
tries, and for which the gas targets are weakly ionized (Z∗ � 1). For more than two
decades there has been an active experimental and theoretical research aiming to clar-
ify the underlying physical mechanisms responsible for the THz emission from plasma
gases. In 1993 Hamster et al. [72] reported the first experimental measurement of THz
radiation emitted from an ionized gas by a single-colour laser pulse. The experimental
setup is sketched in Fig. 4.0.1(a). The authors tightly focused a 50-mJ 800-nm laser pulse
(peak power ∼ 1012 W) onto a helium gas cell at 1-bar pressure. The measured terahertz
generation was attributed to the strong ponderomotive forces present at the focus, which
generate a large density difference between ionic and electronic charges as the laser pulse
length is short enough to inertially confine the ions. This charge separation results in a
powerful subpicosecond electromagnetic transient delivery a THz pulse. A laser-to-THz
conversion efficiency of less than 10−6 was measured in this experiment.
Some years later, the potential of two-colour setups started to be exploited in order to

increase the laser-to-THz gain through a richer variety of nonlinear mechanisms. Two ex-
amples of these setups are represented in Fig. 4.0.1(b,c). The simplest setup [Fig. 4.0.1(b)]
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4 Terahertz generation at moderate intensities

Figure 4.0.1: Three schematic illustrations of experimental setups. (a) A single optical
beam excitation, in which the terahertz generation is assigned to the pon-
deromotive force to drive electrons and ions. (b) The common setup ex-
ploiting four-wave mixing from two colours that results from third-order
nonlinear optical process. The 2ω-beam is generated from the fundamental
colour passing through a type-I BBO crystal. (c) A dichroic mirror (DM)
combines the second harmonic beam with the fundamental beam. Phase,
amplitude, and polarization of both beams can be controlled individually.
Source: Xie et al. [181].

uses a β-BBO (beta barium borate) crystal for second harmonic generation (SHG). The
fundamental laser colour (ω), usually generated from a Ti:sapphire amplifier laser device,
passes through the crystal after a linear focusing stage to generate the second-harmonic
wave (2ω). Here, the second harmonic matches the phase of the fundamental. A more
tunable step is presented in Fig. 4.0.1(c), which allows us to control individually the
parameters of each laser colour: the phase, polarization, amplitude, and duration. The
ω- and 2ω-colours are firstly separated by a dichroic mirror into different optical paths
with indivual polarizers, attenuators and a time-delay piezoelectric stage [not shown in
Fig. 4.0.1(c)]. Then these beams are again recombined by another dichroid mirror and
focused into the gas target. The latter setup allows to control the phaseshift between the
two colours (φ) through the path difference between the two colours in the pulse prop-
agation direction (∆l): φ = k2ω∆l = ω2ωτ , where k2ω and ω2ω are the wavenumber and
frequency associated to the second harmonic and τ = ∆l/c is the delay between the ω-2ω
beams.
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Utilizing similar setups, Cook and Hochstrasser in 2000 improved the laser-to-THz gain
to 10−5-10−4 by employing a two-colour 800+400-nm laser pulse focused in several gases
(e.g., nitrogen, argon and air) at intensities ∼ 5× 1014 W cm−2 [37]. They attributed the
observed THz emission to the four-wave optical rectification in the gases [see Section 2.4.1].
They gave the following plane-wave expression for the radiated THz field, claiming that
the THz radiation in the far field should be proportional to the second time derivative of
the four-wave rectified component of the third-order polarization:

ẼTHz(t) ∝ χ(3)E2ω(t)E∗ω(t)E∗ω(t) cosφ, (4.0.1)

where
Eω(t) = aω

2 exp [iωt] + c.c., (4.0.2)

E2ω(t) = a2ω

2 exp [i(2ωt+ φ)] + c.c., (4.0.3)

and aω and a2ω account for the amplitudes of the ω- and 2ω-pulses, respectively. In terms
of the laser intensity, Eq. (4.0.1) is equivalent to:

ẼTHz(t) ∝ χ(3)
√
I2ωIω cosφ, (4.0.4)

Iω and I2ω being the intensities of the ω- and 2ω-pulses, respectively, as earlier introduced
in Eq. (2.4.4). The dependence of the THz radiation from four-wave mixing on the
intensities and the phaseshifts φ was further studied by Xie et al. six years later [181].
These authors also applied to experimental measurements the model (4.0.4) in air plasma.
They verified that, once the overall pulse energy exceeds the plasma ionization threshold,
the measured THz energy was proportional to the energy of the ω-beam and the square
root of the 2ω-beam energy, together with the coherent nature of the interference pattern
with respect to cosφ. Moreover, they concluded that the optimal efficiency of the THz
field generation is achieved when all the waves (ω, 2ω and the THz wave) possess the
same polarization state in the four-wave mixing process, precisely as predicted by Cook
and Hochstrasser. However, a surprising result is that this model predicts a THz field
strength remaining four orders of magnitude lower than the measured THz field when
the standard χ(3) susceptibility of air is only considered. Since this phenomenological
explanation based on the four-wave mixing mechanism could not match the conversion
efficiency supplied by the third-order nonlinearity χ(3), they already advanced that the
laser-induced plasma should be a major nonlinearity in enhancing the THz generation.

One year later, Kim et al. [89, 90] performed several experiments using 800-nm one-
and two-colour laser filaments in several gases (e.g., helium, dinitrogen, air, argon and
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4 Terahertz generation at moderate intensities

Figure 4.0.2: (a) experimental and (b) simulated harmonic generation (THz, second
harmonic generation and third harmonic generation) with a two-colour
setup where the polarization angle and intensity of the second laser har-
monic vary. The simulations were performed for Iω = 1014 W cm−2 and
I2ω = 2 × 1013 W cm−2 with a relative phase φ = π/2. (c) Anticorre-
lated THz and third harmonic spectral intensities for a phase of φ = 0 and
φ = π/2. The relative phase is denoted as θ insead of φ. Source: Kim et al.
[90].

krypton) at high intensities ∼ 1014 W cm−2. They reported laser-to-THz energy conver-
sion efficiencies > 10−4 and broad THz spectra extending over 75 THz with two colours;
the THz energy reported with a single colour was < 1% than the energy from the ω-
2ω setup. Microscopically, they associated the THz generation to the photoionization
process, since the amount of far-field measured THz energy was consistent with the mag-
nitudes of the tunnelling ionization rates of the gases. Indeed, they were the first to argue
that when the laser field is asymmetric across individual optical cycles, a non-vanishing
electron current surge can arise during optical field ionization, emitting the THz pulse
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(see Section 2.4.2). For the laser pulse EL = Eω + E2ω [Eqs. (4.0.2) and (4.0.3)], they
could explain the experimental measurements with the QST photoionization model and
proposed a phase-matched condition depending on sinφ, under the assumption that the
amplitudes are smaller than the atomic unit of electric field (i.e., a2ω � aω � Eau):

ẼTHz(t) ∝ ∂tJ ∝ f(aω)a2ω sinφ, (4.0.5)

where
f(aω) ≈

√
Eau

aω
exp

[
−2

3
Eau

aω

]
. (4.0.6)

Figure 4.0.3: Experimental setup used for THz generation and measurement by D’Amico
et al. [44]. The laser source is produced by a Ti:sapphire CPA amplifier. A
single filament is produced when focusing the femtosecond laser pulse using
a f = 2 m focal lens. Spectral components of the broadband THz radiation
emitted by the plasma filament were detected with a heterodyne detector.

Equation (4.0.5) can be derived from the Local Current model [Section 2.4.2]. According
to Eq. (2.4.24), the THz radiation is proportional to vf(tn)δNn

e . By integrating in time
the laser electric field, one easily has that vf(tn) ∝ a2ω sinφ provided that a2ω � aω. On
the other hand, for small degree of ionization, δNn

e ≈
√
πNaτnW [EL(tn)], given a limited

Taylor expansion of Eq. (2.4.16). The ionization duration is given by τn ∝
√
aω/Eau

according to Eq. (2.4.10), where |E(tn)| ≈ aω and |Ë(tn)| ≈ ω2aω. The QST ionization
rate for hydrogen [Eq. (2.2.28), with 2Ui,HU

−1
au = 1] at ionization events is W [EL(tn)] ≈

W [Eω(tn)] ∝ (Eau/aω) exp[−(2/3)(Eau/aω)]. These values of vf(tn), τn and W (EL(tn))
lead to Eq. (4.0.5). Figure 4.0.2 collects the experimental results by Kim et al. compared
with their model of Eq. (4.0.5), evidencing the effect of the phase shift on the THz and
high harmonic generation.
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4 Terahertz generation at moderate intensities

In the same years, several authors examine the directivity of the energy radiated by
a laser-created plasma spot [9, 35, 117, 128, 130]. D’Amico et al. [44] also studied
through experiments in air the off-axis THz emission from a femtosecond laser pulse
propagating in a self-induced plasma channel (see Fig. 4.0.3). These authors supported
their measurements by the transition-Cherenkov emission model, which simplifies the
plasma channel as a L-long wire-antenna emitting from longitudinal plasma currents (see
Section 2.4.4). In this context, THz emission by the plasma channel is usually evaluated
through the flux of Poynting vector:

SSS = EEETHz ×HHHTHz = 1
µ0
EEETHz ×BBBTHz. (4.0.7)

One assumes that the THz elecromagnetic fields verify EEETHz = ETHzûuu = cBTHzv̂vv such
that the direction vectors are perpendicular to each other and to the laser propagation
direction ûuu ⊥ v̂vv ⊥ kkk. Thus, the flux of Poynting vector can be expressed in terms of the
vector potential as:

SSS = c

µ0
B2

THz k̂kk = c

µ0
|∇∇∇×AAATHz|2 n̂nn, (4.0.8)

where n̂nn = kkk/k. The vector potential radiated from the plasma channel, where the L-
long distribution of longitudinal current JJJ(rrr, t) is considered independent of z, follows the
well-known formula [79]:

AAA(rrr, t) = µ0

4π

∫∫∫ JJJ(rrr′, t′)
|rrr − rrr′|

drrr′, (4.0.9)

where t′ − t = |rrr′ − rrr|/c is the time for the field to travel from the point of emission to
the point of observation. By considering the far field limit, r � r′ and r � k−1 = c/ω,
Eq. (4.0.9) in Fourier domain simplifies to:

ÂAA(rrr, ω) = µ0

4π
eikr

r

∫∫∫
ĴJJ(rrr′, ω)e−ikkk·rrr′ drrr′. (4.0.10)

The total THz energy is given by the integral of the Poynting vector:

UTHz =
∫
dt
∫
r2|SSS| dΩ, (4.0.11)

where Ω accounts for the solid angle. Thanks to Parseval’s theorem and by using
Eq. (4.0.8), Eq. (4.0.11) is equivalent to:

UTHz = 1
π

c

µ0

∫
dω

∫
r2|∇∇∇× ÂAATHz|2 dΩ, (4.0.12)
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which, once differentiated and by utilizing Eq. (4.0.10), gives the following spectral THz
energy density in the laser co-moving reference system (here vg = c):

d2UTHz

dωdΩ = 1
π

c

µ0
r2|∇∇∇× ÂAATHz|2 = cµ0

16π3 r
2
∣∣∣∣∇∇∇× ∫∫∫ ĴJJ(rrr′, ω)eiωz′/c−ikkk·rrr′ drrr′

∣∣∣∣2 . (4.0.13)

The integral of Eq. (4.0.13) is now calculated as

∫∫∫
ĴJJ(rrr′, ω)eiωz′/c−ikkk·rrr′ drrr′ =

∫ L

0
eiωz′/c−ikzz′ĴJJ(kkk⊥, ω) dz′ =∫ L

0
eiω/c(1−cos θ)z′ĴJJ(kkk⊥, ω) dz′ = −iceiω/c(1−cos θ)L − 1

ω(1− cos θ) ĴJJ(kkk⊥, ω).
(4.0.14)

After substituting Eq. (4.0.14) into Eq. (4.0.13) and applying Fraunhofer approximation
1/r2 � k/r, one finds:

d2UTHz

dωdΩ = ω2L2

16ε0π3c3 sinc
2
[
ωL

2c (1− cos θ)
]
|n̂nn× ĴJJ(ω,kkk⊥)|2. (4.0.15)

Figure 4.0.4: Examples of (a) spectrum and (b) angular distribution of a conical electro-
magnetic emission for a plasma length Lω/c = 200 induced by longitudi-
nal plasma waves according to the transition-Cherenkov radiation model.
Source: D’Amico et al. [44].

Here, ĴJJ(ω,kkk⊥) is the Fourier transform of the radiating current density expressed in the
pulse retarded time τ ≡ t−z/c and in the (x, y) plane, ω is the pulse frequency, kkk⊥ denotes
its transverse wavevector, ϕ is the azimuthal angle while θ is the polar angle between n̂nn and
the laser field wavevector along the propagation axis [kz = (ω/c) cos θ]. Equation (4.0.15)
holds for a current density JJJ assumed to be uniform over the propagation axis z and
whenever the laser pulse components (colours) have walk-off and phase mismatch lengths
much longer than the plasma length L. From Eq. (4.0.15) the directivity of a plasma-
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4 Terahertz generation at moderate intensities

induced THz emission is thus linked to that of the current density JJJ triggered by different
source terms, such as photoionization or ponderomotive forces. This link is expected to
provide crucial information on the nonlinearities prevailing in the far-field THz emissions,
since the factor |n̂nn × ĴJJ |2 = ∑

j |Ĵj|2fj(θ, ϕ) with j = x, y, z has characteristic angular
distributions fj(θ, ϕ) = 1 − (n̂nn · êeej)2, where n̂nn = sin θ cosϕêeex + sin θ sinϕêeey + cos θ êeez.
In particular, if longitudinal forces are dominant (fz = sin2 θ), the angular distribution
of the radiated power flow exhibits multiple (N) lobes at angular positions fixed by the
relationship

θ = 2 arcsin
√Nλ

4L

, (4.0.16)

λ = 2πc/ω being the emission wavelength. The angular pattern here consists of two
off-axis symmetric lobes (N = 1) and the opening angle is inversely proportional to the
plasma length [see Fig. 4.0.4(b)]. When transverse forces instead prevail, the geometrical
factors fx, fy are close to unity for small angles θ � 1 and the central lobe is filled, up
to small conical deviations � 10◦ [186]. This feature holds except if Ĵy vanishes on-axis
(k⊥ = 0), which may be the case for instance for a ponderomotively driven current.

Figure 4.0.5: Schematic of THz emission from a long, two-colour laser-produced filament.
The phase slippage between 800 nm (dashed red curves) and 400 nm (solid
blue curves) pulses along the filament results in a periodic oscillation of
microscopic current amplitude and polarity. The resulting far-field THz
radiation is determined by interference between the waves emitted from the
local sources along the filament. Source: You et al. [186].

When the laser-plasma filament is long (> 10 mm), the relative phase between the ω-
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Figure 4.0.6: Measured far-field THz radiation profiles obtained with (a),(b) 10-mm-long
and (c),(d) 40-mm-long filaments, all obtained by raster scanning of a py-
roelectric detector with a silicon filter. For THz imaging, the pyroelectric
detector is raster scanned over 5 cm × 3.5 cm, which provides a detection
angle of ∼ 10°. Additional (a),(c) Teflon and (b), (d) germanium filters are
used for low (< 3 THz) and high (< 10 THz) frequency band transmission.
(e),(f) Simulated THz profiles (using phase matching conditions) for the long
filament case. Source: You et al. [186].

and 2ω-beams is expected to vary along the distance as [17, 19, 69, 92, 127, 186]:

φ = ωL

c
(nω − n2ω) + φ0, (4.0.17)

where nω and n2ω are the refractive indices of the plasma channel at ω and 2ω frequencies,
respectively, contributed from both air and plasma dispersion, i.e.,

nfilament,ω = nair,ω + nplasma,ω, (4.0.18)
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4 Terahertz generation at moderate intensities

where nplasma,ω ≈
√

1− ω2
p/ω

2, L is the plasma filament length and φ0 is the relative
phase at the starting point of the filament, determined by the frequency doubling process
and air dispersion prior to filament formation. The dephasing length —the distance over
which the resulting THz polarity remains the same— is given by

Ld = λTHz

2 (nω − n2ω) . (4.0.19)

The fact that the phase between the two laser colours varies continuously along the
filament distance causes an oscillatory THz output in the forward direction which is
maximal when L ≈ Ld. You et al. [186] claimed that such a phase matching occurs in
the off-axis direction by a simple interference effect. As shown in Fig. 4.0.5, for channel
length comparable or longer to Ld the THz waves produced along the filament have both
positive and negative polarities. The waves produced at two points A and B, separated
by a distance Ld and having a positive polarity in A and a negative one in B, interfere
constructively if the path difference between the two THz emissions is:

∆l = (P1 + P2)− P3 = λTHz

(
m+ 1

2

)
, (4.0.20)

where m = 0, 1, 2, ... is an integer and λTHz is the radiation wavelength. For m = 0, the
law of cosines applied to Fig. 4.0.5 gives the following angle of constructive interference
in the far field limit (i.e., P3 � Ld, λTHz):

cos θ = P 2
1 + P 2

3 − P 2
2

2P1P3
≈ 1− λTHz

2Ld
, (4.0.21)

where P1 = Ld and P2 is expressed as a function of P3 thanks to Eq. (4.0.20).
This interference model explains the off-axis propagation of the THz radiation inside

a cone, which produces a ring in the far-field. It has recently been validated through
experiments with very good agreement [92, 127, 186]. In such experiments, a pyroelectric
detector is employed to detect the THz radiation emitted from the filament, using for
example a silicon filter to block unwanted infrared and optical light. You et al. [186]
utilized additional filters to discriminate THz emission at different frequency bands: THz
frequencies mostly at < 10 THz are detected by a germanium wafer, whereas a 3-mm-
thick Teflon window is used as a low-pass filter to detect < 3 THz. In Fig. 4.0.6(a,b) the
measured far-field THz profiles emitted from a short laser-plasma filament of ∼ 10 mm are
depicted (1.3-mJ-energy, 5-mm-beamwidth laser pulse focused with a lens of f = 15 cm).
In Fig. 4.0.6(c,d), instead, the THz field radiated from a long laser-plasma filament of
∼ 40 mm is captured (5-mJ-energy 10-mm-beamwidth laser pulse focused with lens of
f = 300 cm). Here the dephasing length is Ld ≈ 22 mm. When the length of the filament
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is shorter than Ld, like in Fig. 4.0.6(a,b), all the THz waves have the same polarity
and constructive interference occurs in the forward direction, producing THz radiation
peaked on axis. In the opposite case, like in Fig. 4.0.6(c,d), interference acts destructively
at centre and forms a ring profile (here the peak cone-emission angle is ∼ 5°), which,
however, reaches stronger THz amplitudes.
Below we present two new results related to this field:

• On the one hand, comprehensive 3D numerical simulations supporting experimental
measurements show the combined contribution of both bound and free electrons to
the THz radiation generated by two-colour laser filaments in air. The THz signature
of the bound electrons coming from the four-wave mixing mechanism is much weaker
and higher in frequency than the distinctive plasma lower-frequency contribution of
free electrons. The former is in forward direction while the latter is in a cone
and reveals an abrupt downshift to the plasma frequency. This results have been
published in Ref. [4].

• On the other hand, since early experiments already proved that photocurrents are
the main mechanism responsible for THz emission when using two-colour laser se-
tups, one wonders how to boost the THz generation by controlling the laser pa-
rameters, for instance by suitably distributing pulse energies and phaseshifts in
multiple-frequency pumps. The LC model predicts that a sawtooth-like waveform
is optimal for achieving this goal. Due to the impossibility of carrying out exper-
iments on this latter topic during this thesis, comprehensive 3D simulations have
been done, revealing 2% THz energy conversion efficiency when using four-colour
sawtooth pulses in argon, a performance unequalled so far. This results have been
published in Ref. [67].
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4 Terahertz generation at moderate intensities

4.1 Experimental study of the terahertz emission by
laser-plasma filaments: action of bound electrons
versus free electrons

Filament plasmas can promote continuous spectral bandwidths from 0.1 up to 100 THz
depending on the pulse duration [17, 74, 86]. Importantly, coherent terahertz (THz)
radiation can be delivered through the filamentation process to a desired remote position
in the atmosphere, thereby avoiding its absorption by water vapour [15, 181]. As briefly
recalled above, experiments on the spatial profile of THz radiation from laser-created
plasmas demonstrated that this radiation propagates inside a cone and forms a ring in
the far field [17, 19, 69, 92, 127, 186].

As introduced in Section 2.4, three major physical mechanisms can be triggered by
a two-colour air filament for producing THz radiation, namely, the optical rectification
by four-wave mixing [20, 37], which is the Kerr response related to bound electrons (see
Section 2.4.1), plasma currents induced by tunneling ionization [8, 90, 108, 179] (see
Section 2.4.2), as well as transverse and longitudinal plasma wave excitations [9, 45, 154,
44] (see Section 2.4.4). For this reason, a numerical approach accounting for both optical
nonlinearities and plasma effects should be employed to explain the observed phenomena,
which consists below in both neutrals and plasma contributions to the THz radiation.

Figure 4.1.1: (a) Experimental setup. Note the slit moved across the THz transverse pro-
file to scan the conical emission. (b) Typical interferogram and (c) THz
spectrum (black curve), compared to that obtained with the ABCD tech-
nique (red curve).
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4.1 Experimental study of the terahertz emission by laser-plasma filaments...

First of all, the experimental setup is described1. In the experiment a 800-nm beam
supplied by a Ti:sapphire regenerative amplifier2 is focused with a f = 15 cm plano-convex
lens into ambient air [Fig. 4.1.1(a)]. A 0.1-mm-thick beta barium borate (β-BBO) crystal
(I type) adjusted to reach the maximum THz yield is used for generating the second har-
monic. A 1.5-cm laser spark formed near the geometrical focus locates the emitted THz
radiation, which is collimated using an off-axis parabolic mirror (51.6 mm in diameter and
150-mm effective focal length). A 0.35-mm-thick silicon wafer filters the radiated field.
To investigate the frequency-angular terahertz spectrum, a Michelson interferometer is
coupled to a liquid helium-cooled silicon bolometer LN-6/C3, used as a detector of the
THz radiation. A 3.5-mm-thick high-resistive silicon beam splitter4 with 50-mm aperture
is employed for separation and recombination of the two arms of the interferometer end-
ing with flat metallic mirrors, one of which is placed on a motorized translation stage.
After recombination, the THz beam is refocused with an off-axis parabolic mirror into
the aperture of the bolometer with filters transparent in the THz region (e.g., < 24 THz).
Typical interferograms have 500-800 points with 2.5-µm increment ensuring spectral res-
olution up to 75 GHz. The reconstruction of the THz spectrum is done using the Fourier
transform of the THz signal autocorrelation function. THz spectra recorded from 50
averaged interferograms have been obtained using 1.4-mJ, 130-fs two-colour pulses with
∼10% fraction of second harmonic in amplitude. The resulting THz field is displayed in
Fig. 4.1.1(b). Figure 4.1.1(c) details the spectrum plotted from the interferograms (black
curve). The spectrum reaches noise level at 15 THz while the signal measured in similar
conditions using the air-biased coherent detection (ABCD) method [19, 86] reaches noise
level at 6-7 THz [see the black and red curves of Fig. 4.1.1(c)]. Thus, the autocorrelation
experimental technique is adequate for the study of broadband THz spectra.
The measured spectra in the range 0-30 THz have been integrated over a 12-mm trans-

verse aperture [Fig. 4.1.2(a), black dots]. The red curve plots numerical spectra computed
from the UPPE equation [Eq. (2.1.81)] for comparable laser inputs. The experimentally
measured THz spectrum is in good agreement with the simulated one. A maximum at
around 0.5-1 THz in the experimentally obtained spectrum is due to the photocurrent
induced by the plasma, whose signature is compatible with the peak around the electron
plasma frequency, νp = ωp/(2π) =

√
e2Nem−1

e ε−1
0 ≈ 0.75 THz, where Ne ≈ 7× 1015 cm−3

is the typical free electron density for filaments. The spectral amplitudes at higher fre-
quencies ν > 12.5 THz are more attenuated in the experiment because of absorption by

1Experiments were realized at the International Laser Center of M. V. Lomonosov Moscow State
University (Moscow, Russia).

2The model is Spectra Physics Spitfire Pro, with characteristic values: 130 fs, < 1.5 mJ, 800 nm, 1
kHz.

3Infrared Laboratories.
4Tydex HRFZ-Si, with 54% transmittance.
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Figure 4.1.2: (a) Experimental (black dots) and simulated (red solid line) THz spectra
from a two-colour pulse (800 nm: 1.4 mJ, 150 fs; 400 nm: 10 µJ, 220 fs)
focused in air (f = 15 cm). (b),(c) Frequency-angular distributions: (b)
simulation and (c) experiment in logarithmic color scale. Dashed vertical
lines show the directions of maximum THz signals. (d) THz spectra peaked
at ν = νp (grey dashed line) and (e) 100-THz-filtered electromagnetic fields
computed from the nonpropagating plasma fluid model Eq. (4.1.3). The
black (grey) curves show the transverse field triggered by photoionization
with (without) the Kerr nonlinearity; the blue curves refer to longitudinal
plasma wakefields. Both fields are evaluated with the non-propagative model
[Eq. (4.1.3)].

the HRFZ-Si beam splitter and filters used in the setup. In addition, measurements of
frequency-angular spectra of the THz radiation were performed by moving a 1.5-mm slit
across the diverging THz beam before collimation [Fig. 4.1.1(a)]. The angular distribu-
tion of THz radiation exhibits a maximum in the emission direction at 4-6° relative to
the beam propagation axis [white dashed lines in Fig. 4.1.2(b,c)]. The off-axis maximum
in the frequency-angular distribution corresponds to a ring in the far zone as already
announced. In both the experiment and the simulations 15% of the THz energy in the
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4.1 Experimental study of the terahertz emission by laser-plasma filaments...

range 0.5-13 THz propagates forwardly (on axis) and 85% in the ring. The overall THz
radiation energy in the range 0-30 THz is 9 nJ.

The numerical simulations by UPPE equation were carried out with laser and resolution
in accordance with the experimental setup: broad beam size (3 mm), large non-paraxial
radiation divergence (up to 45°) and frequency resolution of 0.05 THz. Axially symmetric
propagation was assumed, pertinent to the single filament regime of the experiment. The
input two-colour electric field, linearly polarized has been chosen as

E(r, τ, z = 0) =

exp
(
− r

2

w2
0

)[
a1 exp

(
− τ 2

t2p,1

)
cos(ω0τ) + a2 exp

(
− τ 2

t2p,2

)
cos(2ω0τ)

]
,

(4.1.1)

where z is the longitudinal coordinate, r =
√
x2 + y2 is the transverse coordinate, τ is the

time in the moving reference frame, w0 = 2.1 mm is the initial beamwidth, tp,1 = 106.1 fs
and tp,2 = 155.6 fs are the 1/e-duration of the laser beam components, and ν0 = ω0/(2π) =
375 THz is the fundamental frequency at a wavelength of 800 nm (the frequency of the
second harmonic is thus 750 THz). The field amplitudes a1 and a2 are calculated in such
a way that the energy of the fundamental and second harmonic are 1.4 mJ and 10 µJ,
respectively. Geometrical focusing is described by multiplying Eq. (4.1.1) by the phase
factor exp[(iωr2)/(2cf)] in the frequency domain, where f = 15 cm is the focal length of
the lens.

Air is modelled as a mixture of 80% of dinitrogen molecules (N2) and 20% of dioxygen
molecules (O2), whose ionization is limited to a single electron. The binding energies of
N2 and O2 are, respectively, 15.58 and 12.07 eV [124]. Following Talepbour et al. in Ref.
[158], the effectives charges of Zeff,O2 = 0.53 and Zeff,N2 = 0.9 are considered. The PPT
ionization rate [Eq. (2.2.13)] is used with the instantaneous value of the electric field, even
if originally this ionization model was derived for single-colour laser pulses, namely:

WPPT(|E(t)|, ω0) = 4
√

2
π

νauCA(|E(t)|, ω0)HPPT(|E(t)|, ω0), (4.1.2)

where the coefficient C is calculated via Eq. (2.2.14) and the terms A and H respectively
through Eqs. (2.2.15) and (2.2.18). Note that this instantaneous PPT ionization rate
does not follow the same evaluation of time-averaging over one optical cycle as done with
ADK rate (see Section 2.2.2.2). However, Fig. 4.1.3 compares this ionization rate (black
curve) with two other ionization models for the O2 molecule: the standard ADK model
[Eq. (2.2.27)] with the effective charge of Talepbour et al. (red curve) and the ADK
molecular theory [125]. One can check that the discrepancies between Eq. (4.1.2) and
the other two ADK rates remain only of order of unity for |E(t)| < 30 GV/m in the
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Figure 4.1.3: Comparison of different models for the ionization rate of O2 molecule as
a function of the instantaneous electric field: ADK molecular theory (blue
curve), ADK ionization rate (red curve), instantaneous PPT ionization rate
(black curve).

tunnelling regime. Unlike the latter two ionization rates, the former one also involves the
multiphoton ionization up to 15 GV/m ≈ 3 × 1013 W cm−2. The nonlinear refractive
index of air is taken equal to 10−19 cm2/W at 1-bar pressure [22, 188].

THz emissions of Fig. 4.1.2, which proceed from both four-wave mixing and plasma
waves, can be explained inside the plasma by the simplified Maxwell-Fluid model of Sec-
tion 3.4. Indeed, for this section, a non-propagative, non-relativistic version of that model
is considered. Neglecting propagation (i.e., ∂z = 0) and considering γ = 1, Eqs. (3.4.5)
and (3.4.12) can be rewritten into a vectorial form as follows:

(
∂2
t + νc∂t + ω2

p

)
ẼEE = − 1

ε0
(ΠΠΠ + ∂tJJJ + ∂tJJJNL) , (4.1.3)

where ẼEE accounts for the low-frequency components of the radiated electric field, νc =
5 ps−1 is the electron-neutral collision frequency [154], JJJ is the electron current density,
JJJNL = ∂tPPPNL is the current density associated to the nonlinear polarization PPPNL (Kerr
effect), and the source term ΠΠΠ comes from Eq. (2.3.15), which gathers the radiation
pressure and ponderomotive effects:

ΠΠΠ = −∇∇∇ · (vvv ⊗ JJJ)− e

me
JJJ ×BBB. (4.1.4)
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4.1 Experimental study of the terahertz emission by laser-plasma filaments...

Figure 4.1.4: (a) Simulated frequency spectra along z in the two-colour filament. (b)
Maximum of the THz spectrum (black circles joined by black line) and peak
plasma density (blue line) as function of the propagation distance. Vertical
dashed line indicates the position of the maximum THz signal emitted by
neutrals. (c) Downshift of the THz spectral maximum from ∼ 4 to ∼ 0.5
THz as indicated by the red contour (99% of the maximum spectral inten-
sity).

As highlighted by the LC model (Section 2.4.2), the radiated field polarized in the trans-
verse plane of the 800-nm pulse polarization direction is due to photocurrents through
the derivative ∂tJJJ [90]. Longitudinal low-frequency currents can also originate from the ΠΠΠ
driving source term, as explained in Section 2.4.4. Figure 4.1.2(d,e) clearly confirms that,
for the laser and material parameters used in the experiment, the transverse field compo-
nent (black and grey curves) prevails over the longitudinal one (blue curve) at ν > 1 THz.
In addition, the transverse spectrum appears peaked at the same plasma frequency as that
characterizing longitudinal plasma oscillations. Here, a plasma wave emerges over time
scales longer than the laser pulse duration tp, which explains the spectral peak reached at
νp. Indeed, the photoionization emission range 1/tp ≈ 10 THz is close to νp ≈ 1 THz and,
thus, enhances plasma waves. It may be surprising that the longitudinal field, although
smaller than its transverse counterpart, may not be negligible in our context. This follows
probably from the small fraction of second harmonic that inhibits the efficiency of the
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4 Terahertz generation at moderate intensities

photocurrents, with only 1% of energy in the second harmonic. We will see in the next
section that such longitudinal waves cannot go out of the plasma channel. Beyond the
plasma frequency the spectrum rapidly falls down like 1/ν2, faster than in the experiment
[compare the grey curve of Fig. 4.1.2(d) and the black dots of Fig. 4.1.2(a)]. In fact,
the Kerr contribution increases the spectral amplitude at frequencies ν > νp [the black
curve in Fig. 4.1.2(d), where PPPNL 6= 000]. This behaviour thus indicates that the spectral
wing spreading up to 30 THz in Fig. 4.1.2(a) may be attributed to the nonlinearity of the
bound electrons.
In the UPPE numerical simulations, the low-frequency part of the filament spectrum

is integrated over the whole 12-mm transverse aperture as done in the experiments. The
length of the plasma channel near focus with f = 15 cm is∼ 1.5 cm and the temporal walk-
off between the fundamental and second harmonic is negligible within 20 cm of the optical
path. As evidenced by Fig. 4.1.4(a), the simulations provide new insights into the filament-
driven THz spectral dynamics. Close to the early self-focusing Kerr stage (z ≤ 14 cm),
where there are almost no free electrons, the nonlinear polarization of neutrals mainly
contributes to the emitted THz spectrum. The THz signal from the neutrals reaches a
maximum at z ≈ 13.8 cm [vertical line in Fig. 4.1.4(b)] and at a comparatively high
frequency of ∼ 4 THz. This signature of the Kerr response agrees quantitatively with
the simple four-wave mixing model [37, 20], which, following Eq. (2.4.2), supplies the
parabolic signal F(∂tJJJNL) ∼ −(3/4)ε0χ

(3)a2
1a2ω

2 ∝ ω2 for the laser parameters given by
Eq. (4.1.1).
From there on, a first generation of plasma immediately overwhelms the higher-

frequency THz signal from neutral air molecules. As plasma quickly builds up, the THz
spectrum changes dramatically with an abrupt downshift around 0.5-1 THz corresponding
to the plasma frequency [Fig. 4.1.4(b,c)]. Starting from z ≥ 15 cm the downshifted spec-
trum corresponds to that typically observed in the experiment [Fig. 4.1.2(a)]. The inten-
sity in this downshifted spectral maximum is about three orders of magnitude larger than
in the initial Kerr-induced THz emission at z < 14.5 cm [see blue arrow in Fig. 4.1.4(a)].
The contribution from the four-wave mixing due to the Kerr nonlinearity can be seen

clearly in the developed filament, since it is separated by a small dip at approximately
25 THz starting from z ≈ 14.58 cm and further in Fig. 4.1.4(a). The spectral amplitude
at ν ≥ 25 THz is almost three orders of magnitude less than the peak at ν ≈ 0.75 THz,
rendering the Kerr contribution masked by the much stronger plasma contribution.
To clear up the physical mechanisms responsible for the on-axis and conical propagation

of THz radiation5, now a purely Kerr medium is simulated, terminating the simulation as

5According to Eq. (4.0.16), the emission angle from longitudinal currents at a wavelength λp = 300 µm
(νp = 1 THz) in a plasma channel of length L = 1.5 cm is θ ≈ 8° for the principal lobe N = 1.
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Figure 4.1.5: Simulated conical and on-axis THz emission from the two-color filament.
The focal length is f = 20 cm, the pump pulse energy is 3.2 mJ and its
duration is 54 fs. (a) Filament peak intensity. (b)-(d) THz angular distri-
bution integrated over 0.05-30 THz at indicated distances and propagation
media. (e)-(g) Frequency-angular spectra.

Figure 4.1.6: ω0 (red) and 2ω0 (blue) optical components, THz field (black), and plasma
density (magenta curves) in the complete configuration [as in Fig. 4.1.5(c,f)].
The fields at ω0, 2ω0, and THz frequency are normalized to their correspond-
ing maximum values Emax. (a) Overall pulse and the green frame detailing
in (b) the ω − 2ω phase matching in the front pulse region.

soon as the ionization threshold is reached [see green line interrupted at z ≈ 12.5 cm in
Fig. 4.1.5(a)]. The THz spectra remain confined in the forward direction [Fig. 4.1.5(e)].
Thus, starting from the onset of filamentation, the on-axis THz source is formed, which
moves with the pulse front in the neutral medium and irradiates in the forward direction at
each z point along the filament. In contrast, conical emission occurs as plasma defocusing
does compete with the Kerr effect [Fig. 4.1.5(f)]. The spectral intensity in the ring (red
curves) is two orders of magnitude larger than at the centre (green curves). When there is
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no Kerr nonlinearity and the plasma only contributes to the spectrum, terahertz conical
emission takes place very similarly to the complete configuration [Fig. 4.1.5(g)]. Hence,
photocurrents produced by plasma generation are the major source of THz radiation [see
Fig. 4.1.5(e,g)]. The influence of the Kerr response manifests by the enhancement of
the forwardly directed THz radiation [“green” maximum in Fig. 4.1.5(f)], experimentally
observed in Refs. [31, 32, 171]. The spatial distribution of THz radiation integrated over
the range of 0.05-30 THz shows an increase in the on-axis THz yield when both free
and bound electron responses are included [see Fig. 4.1.5(c,d)]. The ω0, 2ω0, and THz
radiation extracted by filtering the overall light field exhibit the characteristic phaseshift
values 0 or π of Kerr-induced THz signals in the pulse front region −32 < τ < 20 fs [37],
as shown in Fig. 4.1.6(a,b). This confirms that THz radiation born in the front before
the plasma rises (at τ ≈ −20 fs) is mainly due to four-wave mixing.

During the experimental campaign, the Kerr-induced broadband THz spectra could be
identified by using an ABCD detection scheme [19, 86] for pump pulse energies of 30-
60 µJ, which are below the photoionization threshold (100 µJ) in the particular focusing
geometry of the experiment. In the experimental conditions, it is hard to separate the
contributions from different parts of the pulse or the parts of the emitting zone. However,
the THz emission due to the Kerr nonlinearity of neutral molecules has been isolated by
decreasing the energy of the pump beam below the photoionization threshold. Measure-
ments were performed using 120-fs-FWHM optical pulses focused by the lens with the
focal distance f = 20 cm through a 100-µm-thick I-type BBO crystal with orientation
and position allowing to achieve maximum THz output at high pump energy and ABCD
detection. The spectra of THz pulses radiated for different pump energies are shown in
Fig. 4.1.7(a). The broadband THz emission was collected from the beam waist even at
lowest pump beam energies (30 and 60 µJ), where the photoionization does not occur yet.
Indeed, plasma fluorescence starts at about 100 µJ for 120 fs pulse duration, as shown by
Fig. 4.1.7(b). Thus, at low enough energies, plasma contribution to the signal is minimal
compared to the Kerr contribution. The terahertz radiation is clearly observable and it
is broadband. However, ABCD detection could not provide data for the correct shape of
the THz spectrum at frequencies exceeding a few THz.

The results of our self-consistent simulations agree with the interference models
[17, 69, 127, 186], which introduce ω − 2ω phase mismatch and plasma dispersion phe-
nomenologically as key mechanisms responsible for pushing the THz emission off axis and
leading to ring formation in the far field.

In order to show the universality of the THz conical emission, the propagation of col-
limated beams is also simulated (f = +∞), corresponding to a plasma channel length of
∼ 50 cm. The overall frequency-angular spectra are plotted in Fig. 4.1.8. The conical
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Figure 4.1.7: (a) THz spectra from ambient air for pump beam energies above and below
the photoionization threshold. (b) Fluorescence measured from the beam
waist at 391.4 nm, which is proportional to the plasma density dependent
on the pump pulse energy [160].

Figure 4.1.8: (a) Simulated frequency-angular spectra in the two-colour filament of col-
limated 800-nm and 400-nm beams with 54 fs pulse duration, 3.2 mJ and
10 µJ energies, respectively (spectral intensity is in logarithmic color scale).
(b-d) Simulated angular distributions for the three selected frequencies of
(a).

emission occupies all the low-frequency region, with an on-axis radiation being less than
the conical emission propagating at ∼ 2° from axis [see bottom of Fig. 4.1.8(a)]. Filtering
the transverse distribution at 10, 50, and 100 THz shows the decrease in the field diver-
gence with increasing frequency [see the ring radius in Fig. 4.1.8(b,d)], experimentally
reported in Refs. [17, 92]. As already shown in Fig. 4.1.4(a), the higher frequencies of
the THz and far infrared range are first produced by the Kerr nonlinearity of neutrals
from the front pulse and they increase the overall forward THz emission. In addition, the
natural diffraction is smaller for the higher frequencies. For a perfect Gaussian beam, the
expected beamwidth w(ν) linearly decreases with the frequency: w(ν) ∝ 1/ν [33]. There-
fore, at 10 THz there exists a ring with 1.8° half-cone angle, at 50 THz the half-cone angle
decreases to 1°, and at 100 THz we observe on-axis propagation [Fig. 4.1.8(b,d)].
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In conclusion, the numerical and experimental analysis of the mechanisms responsible
for the THz generation in two-colour air filaments demonstrates that both neutrals and
plasma contribute to the THz yield. The contribution of neutrals arises mainly from
the front part of the self-focusing laser pulse, which always sees the neutral gas as it
propagates. The polarizability of the bound electrons forms an on-axis THz source at
the onset of filamentation, which is much weaker than the free electron photocurrent
THz source. Terahertz radiation triggered by plasma photocurrents propagates inside a
cone. Both experiments and simulations displayed evidence of an abrupt downshift of the
spectral peak in the THz spectrum from higher-frequency Kerr contribution towards the
electron plasma frequency accompanied by more than two orders of magnitude increase
in the spectral intensity when photoionization takes place. The “plasma” peak in the
THz spectrum appears close to the electron plasma frequency with electron densities
fixed by the filamentation mechanism at moderate clamping intensities. Ring-shaped
spatial distributions of the THz radiation are shown to be of universal nature and they
occur in both collimated and focusing propagation geometries. Simulated THz conical
distributions and THz spectra agree with the experimental data.
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4.2 Boosting terahertz generation using a sawtooth-wave
shape

The Local Current (LC) model presented in Section 2.4.2 predicts that the laser configura-
tions fostering the interference of ionization events through the photocurrent component
JB(t) are the most efficient to convert the energy of the pulse into THz radiation. Beyond
the standard scenario of two-colour pulses, where the highest THz yields are attained
when the phaseshift between the fundamental and second harmonics is π/2, one wonders
what is the optimal pump waveform that promotes the greatest THz signals, as gathered
through the expression:

Ẽωco(t) = g[∂tJA(t)]ωco + g[∂tJB(t)]ωco . (4.2.1)

To answer this question, among all the pump waveforms being suitable to fulfill certain
requirements (for example, having a fixed intensity I0 or producing a fixed degree of
ionization Z∗Na) the one that maximizes g[∂tJB(t)]ωco and makes g[∂tJA(t)]ωco vanish has
to be found. Neglecting collisions for the sake of simplicity (νc = 0), the inverse Fourier
transform of Eq. (2.4.24) filtered at ω = ωco and Eqs. (2.4.29) and (2.4.31) give:

g[∂tJB(t)]ωco ≈ −2
√

2νco
me

e

1
Z∗Na

∑
n

δNn
e vf(tn)︸ ︷︷ ︸

Bn

sinc (ωco(t− tn)) . (4.2.2)

Maximizing Eq. (4.2.2) is equivalent to optimize the absolute value of Bn for a set
{Bn} being sign-definite. Each contribution Bn depends on the corresponding density
jump, δNn

e , and the velocity of free electrons at such ionization event, vf(tn). The former,
as claimed by Eq. (2.4.16), depends locally on the electric field, concretely on its values
at ionization events, {E(tn)}. The latter, instead, is influenced by the whole shape of
the electric field, since vf(t) is the integral of the electric field according to Eq. (2.4.21).
Thus, the waveform for which all vf(tn) are local extrema and sign-definite would be the
sought optimal solution, because moreover if vf(tn) is an extremum then rf(tn)→ 06 and
therefore g[∂tJA(t)]ωco = 0. Notwithstanding, no physical continuous waveshape7 of E(t)
verifies that both E(tn) and vf(tn) are simultaneously local extrema because ∂tvf(t) ∼ E(t)
and hence if vf(tn) is a local extremum then necessarily E(tn) = 0, which cannot be
a local extremum. More generally, without requiring that E(t) be differentiable, from

6Provided that the phase space (rf , vf) is symmetric with respect to the vf -axis, which is the case
when the interference via JB(t) is privileged (see Fig. 2.4.4). Free electrons then go across the equilibrium
position rf(tn) = 0 at the highest velocities as a consequence of their oscillatory motion.

7Rigorously, we mean differentiable waveshape.
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Figure 4.2.1: (a) Sawtooth waveform E(t) given by Eq. (4.2.5) (black solid line) having
the maxima of |vf(t)| (grey dashed line) at the same instants as the extrema
of E(t). Solid curves show the three-colour (green curve) and ten-colour
(magenta curve) approximations to the ideal sawtooth shape. (b) Trajecto-
ries of free electrons in the phase space (rf , vf) for an increasing number of
colours. Dots locate the maxima of |E(t)|. (c) Stepwise increase of the elec-
tron density Ne(t) for a one-colour (blue curve), two-colour (red curve), and
a sawtooth pulse with identical ionization yield in argon. (d) Corresponding
current densities J(t). The sawtooth pulse develops a larger low-frequency
component in J(t). (e) Spectrum of the sawtooth waveform containing all
harmonics of ω0 with intensities decreasing as 1/k.

Eq. (2.4.21) vf(tn) is an extremum if and only if E(t) changes its sign at such instant
[i.e., E(t−n )E(t+n ) ≤ 0, where E(t±n ) = lim

t→t±n
E(t)]. This fact is straightforwardly proven by

computing

vf(tn)− vf(tn −∆t) = − e

me

∫ tn

tn−∆t
E(τ) dτ ≈ − e

me
E(t−n )∆t, (4.2.3)

vf(tn)− vf(tn + ∆t) = e

me

∫ tn+∆t

tn
E(τ) dτ ≈ e

me
E(t+n )∆t, (4.2.4)

where ∆t > 0 is small. If vf(tn) is an extremum, then [vf(tn) − vf(tn − ∆t)][vf(tn) −
vf(tn + ∆t)] ≥ 0 and thus −e2m−2

e ∆t2E(t−n )E(t+n ) ≥ 0, which is true if E(t−n )E(t+n ) ≤ 0.
Reciprocally, if E(t−n )E(t+n ) ≤ 0 one finds from Eqs. (4.2.3) and (4.2.4) that vf(tn) is
necessarily an extremum.
Consequently, the only way to achieve the maxima of both |E(t)| and |vf(t)| at the same
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instants is to have a discontinuous electric field and we advance here that the optimal
solution is the sawtooth waveshape [67], given by:

E(t) = E(t)
√

3
2a0

( 2t
T0
− 2

⌊1
2 + t

T0

⌋)
, (4.2.5)

where 0 ≤ E(t) ≤ 1 is the slowly-varying envelope, a0 =
√

2ε−1
0 c−1I0 is the amplitude of

the electric field with intensity I0, T0 = 2πω−1
0 is the fundamental period, and bxc accounts

for the “floor” function (the largest integer that is less or equal to x). In Fig. 4.2.1(a) this
ideal waveform is plotted with E(t) = 1 (black solid curve), together with its corresponding
free electron velocity (grey dashed curve). The largest extrema of |vf(tn)| are located at
the instants when E(t) is discontinuous, i.e., at the ionization events.

Nonetheless, such ideal sawtooth waveform cannot be created in laboratories. This
should not represent a major problem because Eq. (4.2.5) can be decomposed into Fourier
harmonics as

E(t) ≈ EN(t) =
N∑
k=1

Ek(t) =
N∑
k=1
E(t) a0

k
√∑N

j=1 j
−2

cos
(
kω0t+ (−1)k π2

)
, (4.2.6)

where Ek(t) is in fact the k-th Fourier harmonic of Eq. (4.2.5). The sawtooth profile is well
approximated by its first harmonics (N = 3 orN = 4). In Fig. 4.2.1(a) the approximations
N = 3 (green curve) and N = 10 (magenta curves) are compared with the ideal sawtooth
shape, pointing out that already the three-colour electric field is close enough to the
sawtooth profile. Indeed, as Fig. 4.2.1(e) displays, the intensity of harmonics falls like
∼ 1/k2, which reflects that first harmonics are the most efficient in the THz conversion
process.

Neglecting the envelope [E(t) = 1] and collisions (νc = 0), the phase space given by the
N -colour electric field of Eq. (4.2.6) is determined, by virtue of Eqs. (2.4.21) and (2.4.22),
by

vNf (t) = − e

me

N∑
k=1

a0

k2ω0
√∑N

j=1 j
−2

sin
(
kω0t+ (−1)k π2

)
, (4.2.7)

rNf (t) = e

me

N∑
k=1

a0

k3ω2
0

√∑N
j=1 j

−2
cos

(
kω0t+ (−1)k π2

)
. (4.2.8)

The extrema of Eq. (4.2.6) are located at the ionization events given by

{tn} =
{
± N

N + 1
T0

2 + nT0

}
, (4.2.9)
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whereas the extrema of the free electron velocity [Eq. (4.2.7)] are always located at

{±T0/2 + nT0}, (4.2.10)

for all N . The phase space, together with the pairs (rNf (tn), vNf (tn)), have been plotted
in Fig. 4.2.1(b) for different values of N , in order to analyze qualitatively how ideal the
sawtooth shape can be in terms of the THz conversion efficiency. For any number of
harmonics the phase space is always symmetric with respect to the vf-axis, which inhibits
the interference due to JA(t) and enhances that due to JB(t) because the contributions
{Bn} are sign-definite. Increasing the number of harmonics converging towards the ideal
sawtooth wave shape has two positive effects. On the one hand, the phase space gets more
and more asymmetric with respect to the abscissa axis at increasing N , which increases
the values of |vNf (tn)| and reduces the values of |rNf (tn)|. On the other hand, the positions
of the two ionization events, which are always symmetric with respect to the vf-axis, get
closer and closer when N →∞, which means that the two ionization events fuse together
into one unique event for the ideal sawtooth of Eq. (4.2.5) and the extrema given by
Eqs. (4.2.9) and (4.2.10) coincide. Therefore, from the phase space one concludes that
the sawtooth waveform is ideal in the sense that it generates the THz energy exclusively
through constructive interference from JB(t) and with the largest possible value of free
electron velocity.

The optimal coupling of the laser harmonics following the intensity ratios and phase-
shifts of Eq. (4.2.6) is proven numerically in Fig. 4.2.2(a,b,c). Here a generic N -colour
laser pulse is considered:

E(t) =
N∑
k=1

Ek(t) =
N∑
k=1
E(t)ak cos (kω0t+ φk) , (4.2.11)

where, in accordance with Eq. (4.2.6), ak is the amplitude of the k-th harmonic and φk
the corresponding phase. By definition, the colour amplitudes define the total intensity
of the laser pulse, I0, as follows [Eq. (2.1.32)]:

I0 = ε0c

2

N∑
k=1

a2
k. (4.2.12)

The pulse of Eq. (4.2.11) has 2N − 1 degrees of freedom, N phases (φ1, ..., φN) and
N − 1 amplitudes (a1, ..., aN−1), because, for a given intensity I0, the amplitude of the
highest harmonic, aN , is calculated from Eq. (4.2.12). However, instead of fixing the pulse
intensity, a more realistic assumption is to fix the ionization degree reckoned with I0. In
Fig. 4.2.2(a) the THz pulse energy, filtered at 100 THz and yielded by a two-colour 40-fs-
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Figure 4.2.2: (a) Dependency of local THz yield on a2, φ2 for a N = 2 colour field in
Eq. (4.2.11). (b) Same for a3, φ3 and N = 3. (c) Same for a4, φ4 and N = 4.
Relative amplitudes and phases of the lower harmonics in (a)-(c) are fixed
according to the (optimum) sawtooth shape, i.e., ak = 1/k, φk = (−1)kπ/2.
The total electric field amplitude a0 is determined by the fixed ionization
yield Z∗Na = 2.7 × 1018 cm−3. White crosses in (a)-(c) indicate the values
of the sawtooth waveform.

FWHM laser pulse, is plotted as a function of a2 and φ2, where we have set φ1 = −π/2
and a1 = 1, computed for an argon gas ionized in the tunneling regime up to Z∗ = 0.1
through the QST ionization rate [Eq. (2.2.28)] (Na = 2.7 × 1019 cm−3). Two optima are
reached for a2 = 0.5 and φ2 = π/2, and a2 = 0.5 and φ2 = −π/2. That indicated by a
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white cross is the second harmonic of Eq. (4.2.6). To this optimal configuration a third
harmonic is added into Fig. 4.2.2(b). Again, the THz energy is represented as a function
of a3/a1 = 0.5 and φ3 = π/2. The optimum for the third harmonic is a3/a1 = 1/3
and φ2 = −π/2, which, as expected, corresponds to the third harmonic of the sawtooth.
Figure 4.2.2(c) concludes the same reasoning for four colours. By proceding further, one
would conclude that the optimal colour added to the pump is the corresponding harmonic
of the sawtooth. This conclusion is universal and the same analysis has been done for
different ionization degrees, e.g., Z∗ = 0.05 and Z∗ = 0.5. Figure 4.2.2(a,b,c) also reveal
the robutness of this configuration against small variations in the laser parameters, which
are expected in a realistic setup, since one can see in these figures that variations up
to 10% in the relative amplitudes and/or phaseshifts do not decrease considerably the
amount of THz radiation.

The optimal character of the sawtooth waveform can be also demonstrated for large N
by maximizing |vf(tn)| for the generic laser pulse given by Eq. (4.2.11). Neglecting again
its slowly-varying envelope [E(t) = 1] and assuming no collision (νc = 0) for technical
convenience, we define the unitary amplitudes ãk = ak/a0 ≥ 0, so that ∑k ã

2
k = 1.

Equation (4.2.11) thus reads

E(t) = a0

N∑
k=1

ãk cos (kω0t+ φk) . (4.2.13)

Without loss of generality, let E(0) be an extremum. Then the derivative of Eq. (4.2.13)
evaluated at tn = 0 must be zero:

∂tE(0) = −a0ω0

N∑
k=1

ãkk sinφk = 0. (4.2.14)

From Eq. (2.4.21), the free electron velocity evaluated at tn = 0 is thus

vf(0) = − e

me

a0

ω0

N∑
k=1

ãk
k

sinφk. (4.2.15)
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The optimization problem can thus be rexpressed as follows:


Maximize: |vf(0)| = e

me

a0

ω0

∣∣∣∣∣
N∑
k=1

ãk
k

sinφk
∣∣∣∣∣,

subject to:

∂tE(0) = −a0ω0

N∑
k=1

ãkk sinφk = 0,∑
k

ã2
k − 1 = 0.

(4.2.16)

This problem is solved by the Lagrange multiplier technique. The optimum of
Eq. (4.2.16) is necessarily a stationary point of the Lagrange function

L = e

me

a0

ω0

∣∣∣∣∣
N∑
k=1

ãk
k

sinφk
∣∣∣∣∣− Λ0a0ω0

N∑
k=1

ãkk sinφk + Λ1

(∑
k

ã2
k − 1

)
, (4.2.17)

where L = L(ãk, sinφk,Λ0,Λ1) is a Lagrangian density and the variables Λ0 and Λ1

are Langrange multipliers. A stationary point of Eq. (4.2.17) satisfies simultaneously
∂ãkL = ∂sinφkL = ∂Λ0L = ∂Λ1L = 0. Taking into account that the problem (4.2.16) is
equivalent to maximizing separately vf(0) and −vf(0) and then keeping the maximum
between the optima, we can avoid dealing with absolute values when calculating the
stationary points of Eq. (4.2.17). Therefore, the stationary points of maximizing ±vf(0)
satisfy simultaneously in both cases:

∂ãkL = ± e

me

a0

ω0

sinφk
k
− Λ0a0ω0k sinφk + 2Λ1ãk = 0, (4.2.18)

∂sinφkL = ± e

me

a0

ω0

ãk
k
− Λ0a0ω0ãkk = 0, (4.2.19)

∂Λ0L = −a0ω0

N∑
k=1

ãkk sinφk = 0, (4.2.20)

∂Λ1L =
(∑

k

ã2
k − 1

)
= 0. (4.2.21)

Equation (4.2.19) does not depend on the value of sinφk. This means that, for arbi-
trarily fixed values of {ãk}, Λ0 and Λ1, the extrema of ±vf(0) are retrieved for maximally
or minimally possible values of sinφk, i.e., for sinφk = ±1. Since the terms kãk are
non-negative, the only way to satisfy Eq. (4.2.20) in the limit N → +∞ is that sinφk
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4 Terahertz generation at moderate intensities

changes alternatively its sign, i.e, sinφk = (−1)k like in the sawtooth8. Knowing this, an
equivalent problem to Eq. (4.2.16) is formulated in terms of vectors, again in terms of the
absolute value |vf(0)|: 

Maximize: |aaa · ccc|,

subject to:
aaa · bbb = 0,
aaa · aaa = 1,

(4.2.22)

where the vector aaa = (ã1, . . . , ãk, . . . , ãN) contains unitary amplitudes, the vec-
tor bbb = (−1, . . . , (−1)kk, . . . , (−1)NN) denotes Eq. (4.2.14), and the vector ccc =
(−1, . . . , (−1)kk−1, . . . , (−1)NN−1) expresses Eq. (4.2.15). According to the above condi-
tions, aaa is a unitary vector orthogonal to bbb. Denoting by ⊥ the components perpendicular
to bbb, the problem (4.2.22) is equivalent to maximize |aaa⊥ · ccc⊥| since aaa = aaa⊥. The optimum
is trivial:

aaa = ccc⊥√
ccc⊥ · ccc⊥

, (4.2.23)

where ccc⊥ is calculated by projecting ccc onto bbb:

ccc⊥ = ccc− bbbb
bb · ccc
bbb · bbb

, (4.2.24)

where
bbb · ccc
bbb · bbb

= 6
N(1 +N)(1 + 2N) . (4.2.25)

This gives the following optimal amplitudes:

ãk
√
ccc⊥ · ccc⊥ = 1

k
− (−1)kk 6

N(1 +N)(1 + 2N) . (4.2.26)

By taking the limit of Eq. (4.2.26) when N → ∞, then ccc⊥ →
(−1, . . . , (−1)kk−1, . . . , (−1)NN−1) with √ccc⊥ · ccc⊥ =

√∑N
j=1 j

−2. Hence, the optimal uni-
tary amplitudes are:

ãk = 1
k
√∑N

j=1 j
−2
, (4.2.27)

which restore the sawtooth waveform amplitude [Eq. (4.2.6)]. Therefore, this demon-
strates that the sawtooth shape provides the optimal high-frequency profile.
Once the theoretical optimality of Eq. (4.2.6) is proved, what matters in practice is to

determine how much the THz conversion efficiency is actually improved when using N
colours (for example, N = 4) with respect to the classical two-colour scenario. Obviously,

8The choice sinφk = (−1)k+1 is also possible and gives an equivalent result.
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4.2 Boosting terahertz generation using a sawtooth-wave shape

the extra cost of using more laser harmonics must be justified by a substantial increase
in THz energy. The growth in efficiency is studied numerically in an argon target with
neutral density Na = 2.7× 1019 cm−3. The fundamental wavelength of the laser pulse is
set to λ0 = 1600 nm. This choice is clearly advantageous over the usual one, 800 nm,
because more harmonics are accessible in practice. In particular, the first four harmonics
are λ0/2 = 800 nm, λ0/3 = 533 nm and λ0/4 = 400 nm. All these wavelengths can be
produced from an 800-nm femtosecond laser source using, for instance, optical parametric
amplification to obtain λ0 and λ0/3 and frequency doubling to obtain λ0/4. In constrast,
if the fundamental wavelength were 800 nm, then the fourth harmonic at 200 nm would lie
already in the ultraviolet spectrum and would not be easy to produce. All the harmonics,
including the pump, are endowed with 40-fs-FWHM Gaussian envelopes. The THz energy
is studied in the frequency band of 0-100 THz.
The gains predicted by the LC model are analyzed for these physical parameters. In

Fig. 4.2.3 the overall THz energy is plotted as a function of the number of harmonics in
the sawtooth, normalized to the two-colour case. The behaviour is very similar in the two
situations that are considered here. First, in Fig. 4.2.3(a) the laser intensity is adjusted,
from 120 to 140 TW cm−2, in order to preserve the ionization degree at Z∗ = 0.1. Second,
in Fig. 4.2.3(b) the intensity is fixed at I0 = 100 TW cm−2. The horizontal dashed lines
represent the THz energy that would be provided by the ideal sawtooth waveform in the
limit N → +∞ [Eq. (4.2.5)], which is one order of magnitude greater than the energy
supplied by the two-colour configuration. The energy increase is quasilinear for the first
colours (N ∼ 5), and then it starts to saturate as the N -colour approximation converges
towards the ideal sawtooth profile. Looking at this figure, a four-colour configuration
predicts a fourfold gain in the THz energy compared with the two-colour scenario.
The LC model allows to estimate analytically, for fixed ionization degree and assuming

plane waves, the evolution of the THz energy gain as a function of N . According to
Eq. (4.2.2) the THz energy is approximately ∼ (∑nBn)2 ∼ (∑n δN

n
e vf(tn))2. A represen-

tative value of vNf (tn) can be obtained from Eqs. (4.2.7) and (4.2.9):

vNf (tn) ∝ aN0
χ(N)√
HN,2

, (4.2.28)

where aN0 is the amplitude of the N -colour laser pulse (adjusted to the desired ionization
degree), HN,2 = ∑N

j=1 j
−2 (generalized harmonic number), and χ(N) is the series

χ(N) =
N∑
k=1

(−1)k
k2 cos

(
πk

N

N + 1

)
. (4.2.29)

If δNn,N
e is the representative value of the density jumps, then the growth of the THz
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Figure 4.2.3: Terahertz energy (νco = 100 THz) in argon at ambient pressure calculated
from the LC model [Eqs. (2.4.5) and (2.4.28)] with QST ionization rate for
different N -colour approximations of the sawtooth waveform [Eq. (4.2.6)].
Energies are normalized to the corresponding two-colour case. The laser
pulse has a fundamental wavelength of 1600 nm and a duration of 40 fs-
FWHM (Gaussian envelope). (a) Growth of THz radiation for a fixed ion-
ization degree Z∗ = 0.1 (intensities vary between 120 and 140 TW cm−2).
(b) Growth of THz radiation for a fixed intensity of I0 = 100 TW cm−2. The
dashed lines indicate the energy yielded by an ideal sawtooth [Eq. (4.2.5)].
The dashed-square blue curve of (a) is the analytical plane-wave estimate of
the gain given by Eq. (4.2.31).

energy with respect to the two-colour case is roughly given by:

Uωco(N)
Uωco(2) =

(
δNn,N

e

δNn,N=2
e

)2 (
aN0
aN=2

0

)2 (
vNf (tn)
vN=2

f (tn)

)2

. (4.2.30)

Assuming that δNn,N
e ≈ δNn,N=2

e and aN0 ≈ aN=2
0 , Eq. (4.2.30) simplifies as:

Uωco(N)
Uωco(2) = 80

9
χ(N)2

HN,2
, (4.2.31)

which is plotted in Fig. 4.2.3(a) as the dashed-square blue curve. Even though this curve
slightly overestimates the gain owing to the plane-wave approximation, it reflects correctly
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4.2 Boosting terahertz generation using a sawtooth-wave shape

Figure 4.2.4: Low frequency spectra 0-100 THz (image plots) of (a) a 800-nm two-colour
pulse whose second harmonic represents 6% of the laser energy, (b) a 1600-
nm two-colour pulse whose second harmonic represents 40% of laser energy,
and (c) a 1600-nm four-colour pulse following Eq. (4.2.6). The overall THz
energy (νco = 100 THz) contained in the numerical box (white curve) is
shown as a function of the propagated distance on the right axis. (d) Evo-
lution of the peak electron density for all these three pulses.

the behaviour of the gain with respect to N .
The advantage of using the four-colour approximation for the sawtooth field compared

with the two-colour scenario is finally studied numerically employing the UPPE equation
[Eq. (2.1.81)], which takes into account propagation effects in full space and time resolved
geometry. The simulations have been performed using the UPPE 3D code [Section 3.1.1].
The fourfold increase in THz energy predicted by the LC model is expected to be reduced
to some extent because of the 3D propagation effects, which affect the relative phases,
local intensities and pulse durations.
For the 3D simulations, whose results are summarized in Fig. 4.2.4, the overall energy of

the laser pump pulse is set to 300 µJ, its beam width to 100 µm and its FWHM duration
to 40 fs (Gaussian envelope). The laser pulse is focused with a focal length of f = 5 mm
into argon, whose linear refractive index is modelled following the dispersion relation by
Dalgarno and Kingston [43]. Three situations are simulated:

• Figure 4.2.4(a): Two-colour laser configuration at the standard pump wavelength of
λ0 = 800 nm. The energy in the second harmonic represents 6% of the total pulse
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4 Terahertz generation at moderate intensities

energy, which is not the optimized energy ratio.

• Figure 4.2.4(b): Two-colour laser configuration at doubled pump wavelength, λ0 =
1600 nm. The energy of the second harmonic is increased up to 40% of the overall
laser energy to approach the first two harmonics of the sawtooth.

• Figure 4.2.4(c): Four-colour laser configuration (λ0 = 1600 nm) and the energy
repartition is given as in Eq. (4.2.6), adapted to a three-dimensional pulse geometry.

The spectra of the three laser configurations along the z-propagation axis exhibit anal-
ogous shapes. Their intensity is indicated by the colour bar and the frequency range on
the left ω-axis extends from 0 to 100 THz. The THz pulse energy here appears confined
mostly in the frequency band 0-30 THz due to tight focusing. The THz energy produced
along the propagated distance is indicated by the white curve (see right-hand side axis).
The first configuration yields ∼ 1 µJ THz energy [Fig. 4.2.4(a)], whereas the second one
generates ∼ 2 µJ THz pulse energy [Fig. 4.2.4(b)]. Note that only a twofold increase
of the THz energy when doubling the pump wavelength is achieved in the enhancement
of the THz yield. The four-colour configuration [Fig. 4.2.4(c)] increases the THz energy
until ∼ 5 µJ. Compared with the 1600-nm two-colour configuration, the gain is ∼ 2.5. A
comparable fraction of ≈ 10% of neutral atoms is ionized, as shown in Fig. 4.2.4(d). As
expected, the gain ≈ 2.5 is smaller than the prediction ≈ 4 due to the 3D propagation
effects which may affect the shape of the laser pulse over propagation. Nevertheless, these
effects are not able to prevent the four-colour configuration from reaching a conversion
efficiency of 2%, which is unprecedented for THz generation in gases.
In conclusion, the remarkable property of sawtooth waveforms has been confirmed nu-

merically by these comprehensive 3D simulations, awaiting experimental proofs in future
experiments. Surprisingly, somewhat similar wave shapes were found to increase the yield
and electron recollision energy in the generation of high-order harmonics by up to two
orders of magnitude [34, 71].
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regimes
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So far, our theoretical study of laser-driven terahertz sources in gases has been devoted
to intensities below 1015 W cm−2. Those regimes are reached in current experiments
devoted to the filamentation or loosely focused propagation [9, 35, 117, 128, 130]. As
explained in Section 4 and summarized in Fig. 5.0.1, in this scenario the terahertz radiation
mainly originates from both the nonlinear Kerr effect (i.e., the response of bound electrons)
at the lowest intensities, and the electron plasma (i.e., the response of free electrons).
Plasma-induced THz fields are created mostly through photocurrents and also plasma
wakefields. These are expected to be responsible for the Cherenkov-like conical radiation
yielded by longitudinal plasma waves at higher intensities exceeding the gas ionization
threshold. In this situation, gas targets (e.g., air or noble gases such as hydrogen, helium
and argon) are only weakly ionized with an effective charge number less than unity. Thus,
usually single-ionization models are applied in both MPI and tunnelling regimes that only
solicit the outermost electronic shell of the gas atoms.
Since the last ten years, terahertz generation has emerged as a recurrent topic in the

scope of relativistic laser-plasma interactions able to delive strong radiated, i.e, secondary
electromagnetic fields. For instance, several authors (Hamster et al. [72], Li et al. [106,
107], Li et al. [109], Sagisaka et al. [141]) have reported, experimentally and with Particle-
In-Cell (PIC) simulations, impressive terahertz fields with energy > 400 µJ, amplitude
> 0.1 GV/m and conversion efficiency > 1 ‰, when irradiating micrometre-width solid
targets such as metal foils (copper, aluminium and titanium) or plastics (methylene) with
ultrashort laser pulses at relativistic intensities above 1019 W cm−2. In this configuration,
terahertz radiation is explained by two main processes, namely, Transition Radiation
Currents (TRC) and Target Normal Sheath Acceleration (TNSA) mechanisms. Both of
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5 Terahertz generation in high-intensity regimes

Figure 5.0.1: Schematic representation of the relevance of the different key players pro-
ducing terahertz radiation as a function of the laser intensity. The Kerr
effect and four-wave mixing play a role at low intensities before the onset
of plasma generation. Free electrons convert part of the laser energy into
terahertz radiation through photocurrents, longitudinal and transverse pon-
deromotive forces (plasma waves). The latter emitters grow in importance
with the intensity, but the former (photocurrents) is very dependent on the
laser configuration and the gas nature.

these involve acceleration of electrons and even ions by the strong ponderomotive forces
driven inside the plasma. The former process states that the electron bunch ejected from
the plasma into vacuum must radiate an electromagnetic pulse (part of which in the
terahertz frequency domain) to satisfy the continuity of the electric field at the interface
between the two media. This mechanism relies on the strong acceleration of electrons and
ions (first ejected into vacuum in all directions and then confined into the plasma), which
are caused by the rapid longitudinal and the slow transversal ion current densities driven
by the optical field and which will irradiate also a part of the energy in their terahertz
band.
Between the classical filamentation scenario and this recent scenario of strongly rela-

tivistic laser-plasma interactions, the broad range of intensities between 1015 W cm−2 and
1018 W cm−2 of laser-gas interactions has been little studied. However, it may be promis-
ing to produce intense terahertz sources reaching amplitudes of the order of GV/m and
broad terahertz spectra up to 100 THz with an almost homogeneous spectral energy den-
sity distribution. Plasmas are expected to attain high ionization levels in the tunnelling
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Figure 5.0.2: Maximum THz amplitude generated in hydrogen, as a function of a 50-
fs-FWHM single-colour laser intensity for different wavelengths: (a) 1 µm,
(b) 2 µm, (c) 4 µm. Source: Wang et al. [174].

regime (Z∗ ≥ 1). Furthermore, intense longitudinal and transverse plasma waves may
occur in the wake of the laser pulse. A number of papers [26, 63, 154, 174] have addressed
the terahertz wave generation in this intensity range by single-colour pulses, mostly in
classical (non-relativistic) plasma regimes, i.e., taking only into account photoionization
and emissions from longitudinal plasma waves. Terahertz field amplitudes of the order
of 1 GV/m have been predicted. Moreover, Wang et al. [174], by means of 2D Particle-
In-Cell simulations, observed in hydrogen that, instead of enhancing monotonically with
the laser intensity, THz field strengths develop oscillations with a period increasing with
a longer laser wavelength and a maximum amplitude growing as the laser intensity is
enhanced (see Fig. 5.0.2). They reasoned in terms of the averaged velocity of the newly
born electrons, with which the THz amplitude develops from the slow component of the
current. This velocity scales linearly as

〈vx,0〉 = − e

mecN

N∑
j=1

Ax(ξj), (5.0.1)

where Ax is the vector potential, N being the total number of free electrons and ξj =
ctj−zj is determined by the birth position (zj) and instant (tj) of j-th electron. When the
laser electric field is intense enough to ionize completely the gas (hydrogen) at its leading
edge, the number distribution of newly born electrons versus the electron birth position ξ
is asymmetric. This implies that 〈vx,0〉 6= 0 and thus a THz pulse is emitted. Wang et al.
[174] explained this oscillatory behaviour in the THz amplitude as a mismatch between
the number distribution of newly born electrons and the laser cycles that ionize the gas.

151



5 Terahertz generation in high-intensity regimes

From the viewpoint of wave coupling process, Singh and Sharma [149] besides examined
the influence of external magnetic fields resulting in higher conversion efficiencies through
the three-wave parametric decay mechanism. Much fewer researches, nonetheless, have
been devoted to two-colour pulses in strongly ionized plasmas [9, 46, 173, 130, 181]. Some
of these retrieved that the terahertz electric field can be proportional to the intensity of
the fundamental and to the square root of the intensity of the second harmonic [like in
Eq. (4.0.4)]. Let us recall here that Balakin et al. [9] justified that the terahertz emission
originated from photocurrents scales as the sine of the phaseshift —this was shown in
Section 2.4.2— and the THz emission induced by the radiation pressure force and the
ponderomotive force (see Section 2.3.2) varies in proportion to the cosine of the phaseshift
between the two laser colours. Contributions from ponderomotive and radiation pressure
effects also vary according to the polarization state (orthogonal or parallel) of the second
harmonic compared to that of the pump wave.

Figure 5.0.3: (a) Schematic representation of the laser-driven electron acceleration setup.
Source: LOA/ENSTA Paris Tech/CNRS/École Polytechnique. (b) Details
of a realistic setup: laser pulse (red), gas jet (blue) and electron buch (green).
Source: Max Plack Institute of Quantum Optics [121].

The goal of this section is to clarify, for the first time to our knowledge, which among
the terahertz conversion mechanisms studied in Section 4 can be the most efficient when
they play together in a gas target, for a general laser pump configuration (e.g., one or
two colours) and at this high intensity range (from 1015 W cm−2 to near-relativistic
intensities ∼ 1018 W cm−2). We again assume a second harmonic pulse parallel to the
fundamental polarization direction. The novelty of our research lies not only in modelling
and analyzing numerically the terahertz generation inside the plasma taking into account
all these processes, but also in studying numerically how a plasma volume with (realistic)
finite extents transmits terahertz radiation out of the plasma zone into the vacuum, which
is of practical interest in many situations. For the curious reader, Fig. 5.0.3 shows how
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the gas volumes with density gradients at target-vacuum interfaces considered for our
simulations at high intensities could be created practically. Basically, this appropriate
volume could be produced in a vacuum chamber with gas flow streaming from a nozzle
with supersonic velocity, in the same way as it is done in laser-driven electron acceleration
setups [27].
The importance of the four potential THz emitters illustrated in Fig. 5.0.1 are here

worth being shortly addressed for high laser intensities:

• The four-wave mixing mechanism (Kerr effect) becomes irrelevant in this context
because it is mainly due to the response of the neutral atoms, whereas those are
completely ionized in the very first cycles of the laser field at high intensities. Indeed,
for a Z-charged atom, the third-order electric susceptibility χ(3) at a certain position
and instant can be approximated by linear weighting over all ions [from j = 0 (the
neutrals) to j = Z]:

χ(3) =

Z∑
j=0

χ
(3)
j Nj

Z∑
j=0

Nj

, (5.0.2)

where Nj is the density of the j-th ion and χ(3)
j the corresponding third-order electric

susceptibility. The prevalence of neutrals (i.e., χ(3)
j≥1 � χ

(3)
0 ) usually implies that

Eq. (5.0.2) reduces to χ(3) = χ
(3)
0 N0/(

∑Z
j=0Nj) [see Remark 1 in Section 2.1.1],

which means that χ(3) is virtually zero at high-ionization levels. Therefore, this
process will be discarded in this intensity range.

• Equation (3.4.15) already advances that the on-axis radiated field along the laser
polarization direction is proportional to the derivative of the transverse current.
This signifies that the well-known and robust photocurrent mechanism, explained in
Section 2.4.2, seems to be also a relevant mechanism above 1015 W cm−2. Nonethe-
less, its efficiency above 1015 W cm−2 is an open issue because at these intensities
longitudinal plasma waves as well as transverse plasma waves appear as alterna-
tive key players which can take over in THz generation. Apart from its nonlinear
dependence on the laser configuration (e.g., number of colours, phaseshifts and du-
rations), a new nonlinearity comes into play: the sucessive ionization of all the
electronic shells, namely, the evolution of the ionization degree as a function of the
laser intensity [see Fig. 2.2.4]. Taking into account that laser-induced photoioniza-
tion can be considered as a sequential process, the superposition principle holds over
all shells and hence the contributions to the THz radiation by JA [Eq. (2.4.30)] and
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JB [Eq. (2.4.31)] cumulated over the ionization events can now be expressed as

An =
Z−1∑
j=0

Ajn =
Z−1∑
j=0

C
δNn

e
Z∗Na

ωcorf(tn), (5.0.3)

Bn =
Z−1∑
j=0

Bj
n =

Z−1∑
j=0

δNn
e

Z∗Na
vf(tn), (5.0.4)

where j stands for the number of ion charge.

• Longitudinal plasma waves promoted by the longitudinal driving source
ΠΠΠ‖ [Eq. (2.3.18)], emitting a conical terahertz radiation when the plasma channel
is assumed to behave like a wire-antenna (see Section 4), depend principally on the
laser pulse instantenous intensity and on the plasma frequency (see Section 2.3.2).
Therefore, the longitudinal electric field inside the plasma can be expected to grow
with the laser intensity (with a similar behaviour if one or two colours are employed),
even if ionization is saturated.

• Transverse plasma waves induced by the transverse driving source ΠΠΠ⊥ [Eq. (2.3.19)]
should also increase with the intensity. Little information is, however, available on
plasma geometries with finite transverse extents, as all the past literature proposed
that only the plasma-gas boundaries should emit within the plasma skin depth1.

In this section two new results are presented, which are of prime importance for the
design of laser-driven terahertz sources in high-intensity laser-matter interaction:

• The nonmonotonic growth of terahertz generation with the intensity is clarified in
Section 5.1. Here, the photoionization and plasma current oscillations are studied
inside the plasma using our 1D model and numerical simulations. The sequential
action of the successive electronic shells [Eqs. (5.0.3) and (5.0.4)] is the main respon-
sible for the nonmonotonic growth of the terahertz radiation. This research helps
to select specific intensity levels that best promote laser-to-THz energy production,
according to the properties of the gas target. These results have been published in
Ref. [46].

• How photoionization and wakefield effects compete in a multidimensional configura-
tion is discussed in Section 5.2. The main result is that prevalence of the photocur-
rent mechanism is confirmed with a two-colour scheme and it is conditioned by the
above nonmonotonic growth along the multiple ionization events [Section 5.1]. The

1It is defined as the depth in a plasma which electromagnetic radiation can penetrate. From the
plasma wave dispersion relation, ω2 = ω2

p + ω2
0 , one can easily express it as c/ωp.
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importance of transverse plasma wave oscillations is reported. This result opens
the door to the design of laser-driven THz sources benefiting also from transverse
ponderomotive emitters that could increase the amount of THz radiation. These
results have been published in Ref. [68].
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5 Terahertz generation in high-intensity regimes

5.1 1D configuration: non-monotonic growth of the
terahertz energy through multiple ionization

The purpose of this section is to understand how the THz pulse energy increases with
the laser and target parameters. Unlike most of anterior studies which considered either
hydrogen or singly ionized gas targets [37, 127, 170, 181], we shall here focus our attention
on noble gases whose shell structures are not limited to one extractable electron. In this
section the production of laser-driven THz radiation in common gases such as helium and
argon is examined, allowing for multiple ionization events at laser intensities approaching
1017 W cm−2.
For intensities beyond 1014-1015 W cm−2, Debayle et al. recently showed for hydrogen,

thanks to a one-dimensional non-relativistic Maxwell-Fluid model supported by Particle-
In-Cell (PIC) simulations [45], that the forward-propagating transverse THz waves are
initiated from both plasma current oscillations and photoionization. Here, single ioniza-
tion was applied and the backward THz waves keep the trace of electron current oscilla-
tions at the plasma frequency. Transverse ponderomotive effects were discarded from this
study because there were expected to be of secondary importance compared to photoion-
ization in nonrelativistic interaction regimes (< 1017 W cm−2 ) [30, 148, 173, 178]. In
this section we shall still stay in the context of one-dimensional geometry to address the
impact of multiple ionization. The action of transverse wakefield effects will be treated in
Section 5.2.
To start with, we describe both rapid laser oscillations and plasma wave excitations

[45], extended to complex atoms [46]. The field propagating along the z-axis and the laser
electric field being polarized along x-axis, this model is actually included in Eq. (3.4.12)
derived in Section 3.4. Here we assume a non-relativistic plasma (γ = 1) and discard the
Kerr effect (JKERR = 0), so that:

(
∂2
t − c2∂2

z + ∂t (∂t + νc)−1 ω2
p

)
Ẽx = − 1

ε0
∂tJL, (5.1.1)

where the transverse electric field Ex = EL + Ẽx is decomposed into the laser pump EL,
which remains unperturbed over propagation by hypothesis, and the radiated field Ẽx.
The plasma frequency is ωp =

√
m−1

e ε−1
0 e2Ne, and νc accounts for the electron collision

rate. The electron density is calculated in tunnel-based multiple ionization described by
Eqs. (2.1.57) and (2.2.31) with the ADK ionization rate of Eq. (2.2.27). In the limit
Ẽx � EL, one can extract approximate solutions for both the reflected and transmitted
secondary fields that self-consistently contain the THz field created by ionization [7] and
plasma current oscillations [173]. We only address the forward emission.
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5.1 1D configuration: non-monotonic growth of the terahertz energy...

In a first approach, a non-propagative model is employed from Eq. (5.1.1), which only
provides a rough estimation of the first maximum oscillation in the transverse terahertz
field. This “rapid” model, called 0D model, is enough to qualitatively evaluate the laser-
to-THz energy conversion (see Remark 2 in Section 3.4.0.2). Removing the propagation
effects (∂2

z = 0) and assuming weak collisions (2πνc � ωp), Eq. (5.1.1) indeed reduces to

(
∂2
t + ω2

p

)
Ẽx = −ω2

pEL, (5.1.2)

where the transverse laser current ∂tJL = e2m−1
e NeEL is calculated in line with

Eq. (2.1.56). In the comoving frame τ ≡ t − z/c, the one- or two-colour laser electric
field is given by

EL(τ) =
√

2I0

cε0

[√
1− rE1(τ) cos (ω0τ) +

√
rE2(τ) cos (2ω0τ)

]
, (5.1.3)

E1(τ) = exp
−2 ln 2

(
τ

τp

)2
 , E2(τ) = exp

−8 ln 2
(
τ

τp

)2
 , (5.1.4)

where ν0 = ω0/(2π) is the fundamental frequency, I0 is the cycle-average intensity [as
defined in Eq. (2.1.32)], 0 ≤ r ≤ 1 is the intensity ratio between the second and the
fundamental harmonics, τp is the FWHM duration of the fundamental pulse (the second
harmonic has half duration). For simplicity, in Eq. (5.1.3) the two colours are in phase,
i.e., their relative phase is zero.

In the laser covoming reference frame, the analytical solution to Eq. (5.1.2), with the
initial condition Ẽx(τ → −∞) = 0, reads as:

Ẽx(τ) = cos(ωpτ)
∫ τ

−∞
ωpEL(τ ′) sin(ωpτ

′) dτ ′−

sin(ωpτ)
∫ τ

−∞
ωpEL(τ ′) cos(ωpτ

′) dτ ′.
(5.1.5)

Figure 5.1.1 shows the numerical solution Ẽx to Eq. (5.1.2), in argon and helium with
an initial density of neutrals Na = 1.2 × 1018 cm−3 for a 1-µm, single-colour laser pulse
with I0 = 5×1015 W cm−2 and τp/(2πω−1

0 ) = 10 (black dotted line). The laser field ionizes
both gases over times shorter than the pulse length. After the laser pulse has passed, the
electrons retain a nonzero momentum px = −e∂τEx(τn)/c proportional to the value of
the derivative of the electric field at the ionization time τ = τn, yielding a low-frequency
transverse current. This produces a radiated field Ẽx (cyan curve for helium) from which
the THz emission is extracted using a low-pass filter with a cutoff frequency at 45 THz
(dashed lines: red curve for helium and green curve for argon). The 0D model therefore
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Figure 5.1.1: Solution of the 0D model given by Eq. (5.1.2), together with the elec-
tron density calculated in an ADK-based multiple ionization scheme by
Eqs. (2.2.27), (2.1.57) and (2.2.31), in argon and helium (initial density
of neutrals Na = 1.2× 1018 cm−3) for a 1-µm, single-colour laser pulse with
I0 = 5 × 1015 W cm−2 and τp/(2πω−1

0 ) = 10. Notation: laser field (dotted
black curve), Ẽx in helium (cyan curve), filtered THz field in helium (dashed
red curve), filtered THz field in argon (dashed green curve), ionization de-
gree in helium (red curve), and ionization degree in argon (green curve). All
the electric fields are normalized to their maximum value.

self-consistently incorporates plasma current oscillations in contrast to the LC model [8]
(see Section 2.4.2), which relies on constructive interferences occurring during ionization
only. The resulting THz field oscillates at the plasma frequency fixed by the ionization
degree Z∗ reached in the wake of the pulse (Z∗ = 1 in He and Z∗ = 4 in Ar). Because our
model neglects propagation effects, the THz field oscillates with a constant amplitude.
This 0D model is an “easy means” to predict the main characteristics of the produced

THz pulse with regard to the laser and gas parameters. These predictions will be after-
wards validated by direct numerical simulations. Figure 5.1.2(a) displays the variations
of the THz field maxima against the intensity of single-colour pulses as predicted by
Eq. (5.1.2) to which the multiple ionization model [Eqs. (2.2.27), (2.1.57) and (2.2.31)]
is coupled, for different pulse FWHM durations in argon and helium. Compared to the
reference hydrogen case, THz amplitudes as high as 0.1 GV/m can be reached in argon
at intensities of a few 1015 W cm−2, provided the FWHM duration is short enough. The
drop in the THz signal at long pulse durations stems from the increasing time symmetry
in the ionization events (see Section 2.4.2). Indeed, if the laser duration is very short
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Figure 5.1.2: THz field strength versus pump intensity for argon (green curves), he-
lium (red curves), and hydrogen (gray curves) predicted by Eq. (5.1.2) for
Na = 1.2× 1018 cm−3: (a) single-colour pulses with τp/(2πω−1

0 ) = 10 (solid
curves) and τp/(2πω−1

0 ) = 40 (dashed curves); (b) two-color pulses with
τp/(2πω−1

0 ) = 10; (c) two-color pulses with τp/(2πω−1
0 ) = 40. Dotted ver-

tical lines visualize the ionization thresholds in each gas with same colour
convention. In (a), the predictions of the LC model [Eqs. (2.4.5) and (2.4.28)]
in argon are plotted as thin dark-green curves. THz emission is computed
for the frequency window ≤ 45 THz.

compared with the plasma period, τp � 2π/ωp, which implies that the unperturbed laser
field EL(τ) behaves with cos(ωpτ) ≈ 1 and sin(ωpτ) ≈ 0, the radiated field given by
Eq. (5.1.5) reduces to

Ẽx(τ) ≈ −ωp

Ne
sin(ωpτ)G(τ), (5.1.6)

where G(τ) is the source term of the ionization current, given by

G(τ) =
∫ τ

−∞
NeEL(τ ′) dτ ′ = me

e2 JL(τ). (5.1.7)

As the characteristic ionization time associated to the ionization event [see Eq. (2.4.10)]
is much smaller than a laser cycle 2π/ω0, the source term G(τ) can be approximated as

G(τ) ≈
Np∑
n=1

δNn
e Ax(τn), (5.1.8)

where τn refers here to the ionization instants yielding the extrema of EL(τ), Np accounts
for the number of ionization events, δNn

e is the electron density jump induced by tunnel
ionization at τ = τn, and Ax(τ) =

∫ τ
−∞Ex(τ ′) dτ ′ is the laser potential vector.

For single-colour laser pulses, the ionization events are simply given by τn = nπ/ω0. In
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5 Terahertz generation in high-intensity regimes

this case, for perfectly monochromatic plane waves, the source term G(τ) vanishes. In
the case of a time-varying laser envelope, the radiated field between two ionization events
is conditioned by the variation of the vector potential [45]:

Ax(τn+1)− Ax(τn) ∝
√
I0

4π2τp

(τpω0)2 − 16π2 sin
(

2π2n

τpω0

)
, (5.1.9)

which roughly scales as λ2
0/τp if τpω0 � 1. During the laser pulse, successive alternating

current bursts are excited, fostering destructive interferences when many laser cycles take
place. The resulting dramatic drop of the THz signal, evidenced in argon in Fig. 5.1.2(a),
is generic for all considered gases: the THz radiation induced in hydrogen and helium by
single-colour pulses of FWHM duration τp/(2πω−1

0 ) = 40 barely reaches the kV/m level
at 1017 W cm−2 [it is not visible in Fig. 5.1.2(a)].

With two-colour pulses, the direct dependence of Ax(τn) upon the laser envelope breaks
down due to the asymmetric field extrema. This leads to a slower decrease in the THz
yield for increasing pulse duration, as one can see in Fig. 5.1.2(b,c).

In general, as shown in Fig. 5.1.2(a), the THz emission increases in high-Z gases due
to the stronger laser fields required to ionize inner shells. The observed higher threshold
intensity for THz emission in helium stems from its large first ionization energy, Ui,1 =
24.6 eV, compared to Ui,1 = 13.6 eV and 15.76 eV in hydrogen and argon, respectively. As
recalled in the introduction [45, 173], the THz signal in hydrogen presents an oscillatory
dependence upon the laser intensity due to the varying number of the available ionizing
optical cycles. For a given valence electron and pulse duration, the higher the laser
intensity, the lesser the number of ionizing cycles, which, above a certain intensity value,
may not be sufficient to constructively build the THz pulse. For instance, the THz field
saturates in hydrogen around 0.1 GV/m at high intensities. This saturation can be partly
overcome in argon and helium, where one to two orders of magnitude in the field strength
can be gained for I0 = 1016-1017 W cm−2. Figure 5.1.2(a) also plots with thin green curves
the predictions of the LC model [8] in argon with the prefactor g calculated by Eq. (2.4.28)
(see Section 2.4.2). Both non-propagative models agree reasonably well although they are
built from different relationships between the radiated field and the current: the 0D model
of Eq. (5.1.2) predicts Ẽx(τ) ∝ JL(τ) according to Eqs. (5.1.6) and (5.1.7), whereas the
LC model assumes Ẽx(τ) ∝ ∂τJL(τ).

Figure 5.1.2(b,c) show the results of Eq. (5.1.2) for two-colour pulses. As expected [90,
140], the THz yield is strongly increased, by at least two orders of magnitude with respect
to the corresponding one-colour case shown in Fig. 5.1.2(a). THz fields above the GV/m
level are thus obtained in argon with a laser pump of τp/(2πω−1

0 ) = 10 [Fig. 5.1.2(b)].
This enhancement is particularly pronounced for long pulses [see Fig. 5.1.2(c)], which have
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Figure 5.1.3: Oscillatory growth of the THz energy in helium predicted by the LC model
(Section 2.4.2), for a two-colour 1-µm 20-fs-FWHM laser pump, whose sec-
ond harmonic represents 10% of the total intensity and is shifted by π/2
with respect to the fundamental. The contributions of JB, Bn given by
Eq. (2.4.31), dominant in this case, are plotted for the two electrons (blue:
first shell; red: second shell) and four intensities: (a) 2× 1015 W cm−2, (b)
5× 1015 W cm−2, (c) 1.2× 1016 W cm−2, (d) 2× 1016 W cm−2.

been associated with negligible THz emission in the single-colour case. Compared with
hydrogen, the gain factor varies between 20 and 70 for short pulses ionizing helium and
argon, respectively, and it can even exceed 100 for longer pulses at mean intensities close
to 1016 W cm−2. Another remarkable result is the persisting oscillations of the maximum
THz field strength. Each THz maximum roughly corresponds to the ionization of a
distinct electron shell. This effect is demonstrated by plotting the ionization thresholds
in Fig. 5.1.2(b,c) (see vertical dotted lines). For the three gases considered, the local field
maxima match the ionization thresholds. The number of oscillations qualitatively follows
the averaged charge number. This behaviour is attributed to the THz source term G(τ),
which is maximized each time a j-th shell of the ion population, with binding energy Ui,j+1

necessary to create the (j + 1)-th ion, becomes fully ionized around the pulse envelope
maximum.

Equivalently, this oscillatory behaviour, coming from the successive ionization of elec-
tron shells, can also be predicted qualitatively by the LC model (see Section 2.4.2). Fig-
ure 5.1.3(a,b,c,d) show the contributions Bn ∼ δNn

e vf(τn)/Z∗ [Eq. (2.4.31)] for helium and
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5 Terahertz generation in high-intensity regimes

a two-colour 1-µm 20-fs-FWHM laser pump, whose second harmonic contains 10% of the
total laser intensity and is shifted by π/2 with respect to the fundamental, at four intensi-
ties values: 2×1015 W cm−2, 5×1015 W cm−2, 1.2×1016 W cm−2, and 2×1016 W cm−2. In
Fig. 5.1.3(a,b) only the ionization of the first shell is active. While many ionization events
are developed with moderate amplitude, less but stronger events occur in the latter as
the laser pump is strong enough to ionize the first shell in few cycles. The same happens
to the second electronic shell in Fig. 5.1.3(c,d). There appear two relative maxima when
summing up these contributions as a function of the intensity, each one being related to
the ionization of each electronic shell. Oscillations in the produced THz field strength
result from the balance between two opposite requirements for THz energy: achieving
many ionization events and strong ionization strengths.
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Figure 5.1.4: THz field strength versus pump intensity as predicted by Eq. (5.1.2) (black
curve), CALDER 1D code (red curve linking squares), and UPPE 3D code
(blue curve linking circles): (a) single-colour pulse with τp/(2πω−1

0 ) = 10
in argon; Two-colour pulses with (b) τp/(2πω−1

0 ) = 10 (solid curve) and
τp/(2πω−1

0 ) = 40 (dashed curve) in helium.

To validate these predictions, 1D simulations using the electromagnetic Particle-In-Cell
code Calder have been carried out, which, as detailed in Section 3.1.2, resolves the
full set of Vlasov-Maxwell equations that encompass multiple photoionization, kinetic,
collective and plasma wakefield effects. Here the initial density profile of the gas (argon
or helium) consists of a 90-µm-long plateau bordered by 5-µm-long linear ramps at each
side. Additional simulations have been performed with the UPPE 3D code (see Sec-
tion 3.1.1), rather used in the nonlinear optics community. While both codes employ the
same multiple ionization scheme [Eq. (2.2.31)], UPPE 3D further models nonlinear Kerr
and chromatic dispersion effects [15, 94]. The incident pulse profile is initialized according
to Eq. (5.1.3). The maximum amplitude of the THz fields, measured after propagation
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5.1 1D configuration: non-monotonic growth of the terahertz energy...

over 100 µm and filtered for frequencies below 45 THz, are presented in Fig. 5.1.4(a,b)
for single- and two-colour pulses in the intensity range 1015 ≤ I0 ≤ 6.5 × 1016 W cm−2.
The oscillatory variations with the laser intensity predicted by the fluid model are repro-
duced by both codes to within one order of magnitude, apart from the rapid modula-
tions in argon smoothed by the pump dispersion. Particularly good agreement between
Calder 1D and UPPE 3D results is obtained in all cases shown in Fig. 5.1.4 at high
intensities > 1016 W cm−2. Although THz emission is dominated by photoionization and
plasma currents rather than Kerr-induced four-wave mixing [20], discrepancies between
Calder 1D and UPPE 3D simulations are attributed to the action of Kerr self-focusing
in the latter code, above all in argon at intensities 1016 W cm−2 due to a higher Kerr
index. In this configuration, as well as for helium, steady-state nonpropagating simula-
tions of Eq. (5.1.2) (see black curves) tend to underestimate the THz fields, as these are
expected to accumulate while they nonlinearly propagate [15, 148].
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Figure 5.1.5: On-axis transmitted spectra with mean pulse intensity I0 = 2 × 1016 W
cm−2 for (a) argon irradiated by a single-colour with τp/(2πω−1

0 ) = 10,
(b) helium irradiated by a two-colour pulse with τp/(2πω−1

0 ) = 10, and (c)
helium irradiated by a two-colour pulse with τp/(2πω−1

0 ) = 40. Red dash-
dotted curves: Calder 1D simulations (∆ν = 0.5 THz); blue dashed curves:
UPPE 3D simulations (∆ν = 1 THz); black solid curves: 1D Maxwell-Fluid
model of Eq. (5.1.1) (∆ν = 1 THz). Insets show the time-resolved THz field
after propagation over 100 µm.

In order to examine the spectra of the transmitted THz waves, the spatial derivative
term ∂z is retained in Eq. (5.1.1) and this wave equation is integrated numerically us-
ing a second-order explicit scheme. This numerical solution is similar to the output of
MaxFlu 1D when the Lorentz factor is supposed equal to unity (γ = 1). The spectra
thus predicted are compared with the results of Calder 1D and UPPE 3D for a semi-
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5 Terahertz generation in high-intensity regimes

infinite gas2 (z > 0) of neutral density Na = 1.2× 1018 cm−3 and a mean pulse intensity
I0 = 2 × 1016 W cm−2. The transmitted spectra are plotted in Fig. 5.1.5(a,b,c) for a
set of laser and gas parameters. Good overall agreement between the results supplied
by three numerical codes is observed. The plateau-like low-frequency spectra (ω . ωp)
are mainly generated by single-cycle current oscillations at the plasma frequency with
quasi-DC components ˆ̃Ex(ω → 0) 6= 0 [see insets of Fig. 5.1.5(a,b,c)].
By contrast, the THz components in the frequency range ωp < ω < ω0 originate from

the constructive interferences of attosecond current bursts emitted at each field maximum
through tunnelling ionization (photocurrents) [45]. For sufficiently long plasmas of length
L, the latter contribution becomes dominant as inferred from Eq. (5.1.1) in the laser
region, (c2∂2

z − ∂2
t )Ẽx ' ω2

pEL, whose solution behaves as 2ω0LG/c following Ref. [45].
In the three cases presented in Fig. 5.1.5, the plasma length is set to L = 200πcω−1

0 and
the spectrum due to photoionization indeed prevails. The cut-off frequency bounding
the plateaulike spectrum scales as νco ∼

√
Z∗νap , where νap =

√
e2m−1

e ε−1
0 Na/(2π) is the

plasma frequency associated to the electron density reached when Z∗ = 1. For Na =
1.2 × 1018 cm−3, νap ≈ 9.9 THz; due to the higher ionization degree reached in argon
(Z∗ = 6 in argon versus Z∗ = 2 in helium), νco increases from ≈ 17.2 THz in helium
to ≈ 30.8 THz in argon. Filtered below 45 THz, the THz signal reaches ∼ 1 GV/m
with a two-colour pulse in helium [Fig. 5.1.5(b)] and ten times less with a single-colour
pulse in argon [Fig. 5.1.5(a)]. The expected drop in conversion efficiency for longer pulses
[45] is mitigated in a two-colour configuration: in agreement with Fig. 5.1.2(b,c), the THz
amplitude only decreases by a factor of ∼ 2 when increasing the two-colour pulse duration
from τp/(2πω−1

0 ) = 10 to τp/(2πω−1
0 ) = 40 [compare insets of Fig. 5.1.5(b,c)].

As a conclusion, in this section we examined the THz emission produced by forward
nonrelativistic femtosecond laser pulses in gases by taking into account the effects of
multiple ionization. Our Maxwell-Fluid model supplies good agreement with the results
of more sophisticated simulations carried out by Calder 1D and UPPE 3D. A general
result is that stronger THz fields can be achieved when allowing for multiple ionization in
gases with high Z numbers. For a given medium, however, an oscillatory laser dependence
of the THz emission is revealed, even though the overall THz signal tends to increase with
the laser intensity. For two-colour pulses, an unprecedented rapid growth of the THz
field against laser intensity is predicted due to the strong electron currents induced by
ionization of the inner atomic shells. In this respect, a gain factor of about two orders of
magnitude with two-colour pulses at pump intensities ∼ 1016 W cm−2 when using argon

2As further shown in Section 5.2, the transmitted transverse field Ex keeps the amplitude produced
inside the plasma. Therefore, we conjecture that we can compare the field computed by Eq. (5.1.1)
in the plasma after a propagation of 100 µm with the transmitted fields computed by UPPE 3D and
Calder 1D codes.
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5.1 1D configuration: non-monotonic growth of the terahertz energy...

or helium instead of hydrogen is reported. The THz modes below the plasma frequency
originate from plasma current oscillations, while those above the plasma frequency are
attributed to photocurrents during the ionization process. Our study suggests that the
THz field strength may be monitored by changing the gas composition and exploiting
multiple ionization effects. These results can thus be of prime importance for designing
bright laser-driven THz sources using low-energy ultrashort laser pulses. However, this
1D study is incomplete because the impact of longitudinal and transverse wakefield effects
on the THz generation, which may compete against the photocurrent mechanism, has not
been addressed. This complete situation is treated below.
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5 Terahertz generation in high-intensity regimes

5.2 Multidimensional configuration: competition
between photoionization and wakefield effects

This section is devoted to a complete physical scenario of laser-driven THz sources at high
laser intensities approaching the relativistic threshold (from 1015 to ∼ 1018 W cm−2).
Thanks to comprehensive two-dimensional PIC simulations in argon and the Maxwell-
Fluid model presented in Section 3.4, we offer, to the best of our knowledge, the first
unified description of the main THz sources created in nearly-relativistic plasmas, i.e.,
the joint action of both tunnelling photoionization and longitudinal as well as transverse
plasma wave excitations.

Figure 5.2.1: Geometry used in 2D Particle-In-Cell simulations. The propagation (longi-
tudinal) direction is the z-axis and the transverse plane is (x, y). The laser
pulse is linearly polarized along x. The two-dimensional (y, z) argon target
has a trapezoidal initial density profile, with a 90-µm-long plateau bordered
by 5-µm-long linear ramps at each side.

To start with, we present the simulation parameters chosen for our multidimensional
numerical analysis of THz emission at intensities ≥ 1015 W/cm2 performed with the
Calder 2D code.
Figure 5.2.1 shows the geometry of our argon target. The laser pulse is linearly polarized

along the x-axis and propagates along z through a 100-µm-long plasma of a 2D-geometrical
(y, z) slab of argon. The initial density profile is trapezoidal along z, with a 90-µm-long
plateau bordered by 5-µm-long linear ramps at each side, and constant along y. The initial
ion temperature is 1 eV and the initial neutral density, Na = 2.4×1017 cm−3, guarantees an
underdense plasma even at the highest intensities considered. As illustrated by Fig. 5.0.3,
although these simulation parameters are chosen for an academic purpose, they can be
approached using gas-jet tailoring techniques developed for laser-wakefield accelerators.
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Figure 5.2.2: Spectral angular distribution of THz radiation (arb. units) in the (ky, kz)
plane produced by Ex and Bx along the laser polarization axis in the fol-
lowing configurations: (a) Single-colour pulse and (b) two-colour pulse with
mean intensity I0 of 1015 W cm−2; (c) two-colour pulse with 5×1016 W cm−2

and (d) two-colour pulse with 3× 1017 W cm−2. The fields are recorded as
a function of t and y at the given position z = 175 µm (outside the plasma
zone) and their spectra are discretized on a uniform, Cartesian mesh as a
function of ω and ky. Due to the quadratic dependence of k2

z = ω2/c2 − k2
y

on ω and ky, the fields are plotted on a non-uniform mesh as a function of kz
and ky. Each point in the (kz, ky) space is represented by a colour dot. The
overlap of the dots creates the color map; this overlap cannot be achieved
for the very low frequencies kz � ky.
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In this scope sharp downward density transitions are created through shock fronts induced
either by a knife edge or by nanosecond laser pulses into a supersonic gas target [82, 143].
A typical scheme could here employ 35-fs, 70-mJ pump pulses focused into a vacuum
chamber by a f/10 off-axis mirror (numerical aperture ∼ 0.02) and passing through a
0.1-mm-thin β-barium borate (BBO) crystal. At the centre of the vacuum chamber, the
nozzle delivering a supersonic argon-gas jet would host a razor blade mounted laterally,
allowing to switch a shock front transversally along the laser propagation axis and to
monitor density gradients over ∼ 10 µm lengths. The forwardly emitted THz radiation
would then be collected by a parabolic mirror and directed toward a pyroelectric detector
equipped with a silicon filter.
In our numerical simulation the laser pulse is initialized at z = 0 via Gaussian profiles

both in space and time:

EL(t, y, z = 0) =
√

2I0

cε0
E(y)

[√
1− rE1(t) cos (ω0t) +

√
rE2(t) cos (2ω0t+ φ)

]
, (5.2.1)

E(y) = exp
[
−
(
y

w0

)2
]
, (5.2.2)

E1(t) = exp
−2 ln 2

(
t

τp

)2
 , E2(t) = exp

−8 ln 2
(
t

τp

)2
 , (5.2.3)

where ν0 = ω0/(2π) is the fundamental frequency, I0 is the mean pump intensity, 0 ≤ r ≤ 1
is the intensity ratio between the second and the fundamental harmonics, τp is the FWHM
duration of the fundamental harmonic (the second harmonic has again half duration), and
w0 is the 1/e2 transverse width of the pulse. The relative phase φ between the fundamental
and second harmonic is initially set to π/2. As explained in Section 2.4.2, this phase offset
optimizes local photocurrents [8, 90, 108]. However, as the relative phase evolves along
propagation, the gain factor achieved with another initial phase offset would remain of
similar order of magnitude. The FWHM duration of the pump pulse centred at 1-µm
wavelength is τp = 35 fs and its 1/e2 transverse width along y is w0 = 20 µm, allowing
to form a rather thick plasma. We always consider an intensity ratio r = 0.1 between
the fundamental pump and its second harmonic (0.5-µm wavelength) when two colours
are employed (r = 0 for a single colour). Our intensity range, I0 ≤ 3 × 1017 W cm−2,
corresponds to the normalized laser vector potential |aL| = e|AL|/mec

2 ≤ 0.5. The
maximum values of ωp, which initiate the THz spectra, are then comprised between
0.02ω0 and 0.04ω0 in argon, i.e., νp ≡ ωp/(2π) ≈ 6-12 THz.
The resolution in time and space is ∆t = 0.079 fs, ∆y = 0.48 µm, and ∆z = 0.024 µm,

for a spectral step of ∆ν = 0.47 THz. The Calder code includes Ammosov-Delone-
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5.2 Multidimensional configuration: competition between photoionization and wakefield...

Krainov (ADK)-based strong-field ionization modules [126] and Coulomb binary collisions
[134]. Concerning the latter, we performed several tests on the impact of electron-electron
and electron-ion collisions in the THz conversion efficiency and spectral patterns. A lim-
ited action of electron-electron collisions was found for intensities less than 1017 W cm−2.
Instead, electron-ion collisions dominate over long times and mainly condition the slow
exponential damping of the longitudinal plasma waves. At larger, near-relativistic in-
tensities, electron-electron collisions can, however, take over when the electrons acquire
high drift velocities. For each simulation set, the collisional rate changes with the plasma
characteristics and input laser parameters. The Calder code does not describe electron-
neutral collisions, which is a valid approximation for sufficiently ionized plasmas. With
free electron densities about ≈ 1018 cm−3 levels, electron-ion collisions always persist with
an effective rate νc, which varies with the input laser intensity and the achieved electron
density as

νc [s−1] ∼ 3× 10−6(lnΛ)Z∗ Ne[cm−3]
(W 2

osc[eV] + T 2
e [eV])

3/4 , (5.2.4)

whereWosc ∼ I0 is the electron oscillation energy in the laser field, Te denotes the electron
temperature, lnΛ ≈ 10 is the Coulomb logarithm, and Z∗ is the ionization degree [47, 130].
Collisions thus decrease at increasing laser energy, up to the variations in the electron
temperature that can reach ∼ 0.1 keV in the intensity range considered in this section.
2D PIC simulations indicate an effective electron-ion collision time of ∼ 200 fs at 1015 W
cm−2 intensity, being characteristic of weakly ionized gases [7], of about 1 ps at 5× 1016

W cm−2 intensity, and a collision time larger than 10 ps at 3 × 1017 W cm−2 intensity.
All these values satisfy ν2

c/4 � ω̃2
p, where the reduced plasma frequency ω̃p is given by

Eq. (3.4.6).

The different radiated field components (Ẽx, Ẽy, Ẽz) and their magnetic counterparts
(B̃x, B̃y, B̃z), indicated with tilde symbol, are extracted from the PIC simulations. For-
ward radiation is only regarded in the present study and the transverse field Ex = EL +Ẽx
includes both the laser field EL and the secondary (radiated) field Ẽx. Secondary fields
are polarized along their respective current densities Jx, Jy and Jz, which should con-
tain the spectral signature of the THz source terms at remote distances from the plasma
channel [44] (see Section 4). In the chosen 2D (y, z) geometry, the Ampère’s relationship
JJJ = −ε0∂tEEE + µ−1

0 ∇∇∇×BBB invites us to map the THz spectrum yielded by Jx from Ex in
order to capture photocurrents only, and use ∂tBx = ∂zEy− ∂yEz to isolate contributions
subject to the ponderomotive forces acting in the orthogonal plane.

Figure 5.2.2 shows the principal result of this section, which, to the best of our knowl-
edge, consists of the first spectral mapping of laser-plasma-based THz generation account-
ing for both photocurrents and ponderomotive forces in multidimensional geometry. From
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5 Terahertz generation in high-intensity regimes

top to bottom are presented the spectra of the radiated field component Ẽx and of the
transverse magnetic field B̃x. As the two-colour laser field is linearly polarized on the x-
axis, no propagation or plasma interaction effects will occur. Along this axis, the angular
distribution in (ky, kz) of Ẽx thus reflects in Fourier space THz emission by photoioniza-
tion, since ∂tẼx ∝ Jx ∝ ω2

pAL according to Eqs. (5.1.1) and (5.1.2). Here the electron
plasma frequency ωp =

√
e2ε−1

0 m−1
e Ne increases with the free electron density Ne(t) along

fast ionization steps [8] and reaches its maximum value beyond the laser region. Along
the same direction, the polar emission map of B̃x displays THz radiation from Ẽy and
Ẽz, which excludes photoionization but keeps the trace of plasma wakefield effects in the
(y, z) plane.

For the main three intensity levels investigated here, 1015 W cm−2, 5×1016 W cm−2 and
3×1017 W cm−2, THz emissions forwarded beyond the plasma zone (z = 175 µm) exhibit
similar spectral signatures. Photocurrents induced by tunnelling ionization are known to
play a major role in THz generation from gases irradiated by two-color laser pulses at
filamentation intensities ∼ 1014 W/cm2 [15]. As explained in Section 4.1, this property
was recently confirmed by direct measurements supported by numerical simulations of
two-colour filaments in air, the plasma response of which was shown to take over the Kerr
nonlinearity in the conversion process, shifting the peak of the THz spectrum towards the
electron plasma frequency [4]. For one order of magnitude larger intensities, photocurrents
again persist as being the major mechanism in driving THz emissions, whereas single-
colour pulses mostly initiate THz radiation from plasma wakefields [compare Fig. 5.2.2(a)
and Fig. 5.2.2(b)]. One or two-colour schemes do not change the wakefield contributions
to the THz yield. The Ex-field spectra, peaked on-axis (θ = 0), decay at larger θ angles
according to the sinc function of Eq. (4.0.15). At laser intensities high enough to promote
large ion charge numbers Z∗ = Ne/Na → 8, photoionization still competes with wakefield
effects for emitting THz electromagnetic fields, despite the important strength of the
driving sources ΠΠΠ [see Fig. 5.2.2(c)]. Close to the relativistic limit, I0 = 3× 1017 W cm−2,
the conversion efficiency due to photocurrents, however, somewhat saturates due to the
particularly stable electronic configuration of Ar8+, but goes on delivering intense THz
pulses [Fig. 5.2.2(d)]. In summary, along x, photocurrents increase the THz yield as the
pump intensity is augmented till saturation at near-relativistic intensity. THz components
due to wakefield emitters along the orthogonal directions, by contrast, monotonically
increase.

Understanding the results of Fig. 5.2.2 requires to scan the field dynamics initiated
inside the plasma channel. Working with high laser intensities and strong plasma excita-
tions, a minor role from bound electrons is assumed and all optical effects are discarded
here, such as Kerr self-focusing and chromatic dispersion (i.e., n0 = 1 and χ(3) = 0). By
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5.2 Multidimensional configuration: competition between photoionization and wakefield...

Figure 5.2.3: Comparison between 2D Particle-In-Cell results (solid curves) and semi-
analytical solutions of the 1D model of Eqs. (3.4.5) and (3.4.13) (dashed
curves) for the on-axis electric fields (top row) Ẽx and (middle row) Ẽz
emitted by two-colour pulses inside the plasma channel at z = 50 µm for
the mean pump intensity (a,d) I0 = 1015 W cm−2 (black curves), (b,e)
I0 = 5× 1016 W cm−2 (blue curves), and (c,f) I0 = 3× 1017 W cm−2 (green
curves). (Bottom row) On-axis spectra of the radiated fields (g) Ẽx and (h)
Ẽz with same colour plotstyles. The vertical dotted lines indicate values of
the plasma frequency.

combining the Faraday and Ampère laws [Eqs. (2.1.3) and (2.1.4)] with the cold-plasma
fluid equations [Eqs. (2.1.49) and (2.3.10)], omitting the loss current JJJ loss due to plasma
absorption supposed small in underdense plasmas, the propagation equation for the elec-
tric field EEE is directly retrieved:

(
∂2
t + c2∇∇∇×∇∇∇×+

ω2
p

γ

)
EEE + (∂t ln γ + νc)

(
∂tEEE + c2∇∇∇×∇∇∇×AAA

)
= − ΠΠΠ

ε0γ
, (5.2.5)

where AAA(t) =
∫ t
−∞EEE(t′) dt′ is the vector potential. The electron density Ne = meε0e

−2ω2
p

is calculated in an ADK-based multiple ionization context by Eqs. (2.2.27), (2.1.57) and
(2.2.31). The electric field being the solution to Eq. (5.2.5) contains both the laser electric
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5 Terahertz generation in high-intensity regimes

field polarized along the x-axis and the field components radiated from photocurrents and
the driving source term ΠΠΠ [Eq. (2.3.15)].

For simplicity, we shall use a reduced model discriminating THz emitters only pro-
moted by the x- and z-polarized fields, since photocurrents generate THz pulses along
the laser polarization axis and propagation aspects mainly concern the longitudinal axis.
Neglecting the diffraction operators (∂x = 0 and ∂y = 0), Eq. (5.2.5) reduces to the
one-dimensional Maxwell-Fluid model presented in Section 3.2 and numerically solved by
the MaxFlu 1D code. We will use the results given by the Simplified Maxwell-Fluid
model [Eqs. (3.4.5) and (3.4.13)] derived in Section 3.4 in order to interpret the numerical
simulations carried out with Calder 2D.

Figures 5.2.3(a-f) proceed with a direct comparison between the on-axis transverse (x)
and axial (z) components of the electromagnetic field emitted in a 90-THz-wide frequency
window (ω < 0.3ω0) at the middle of the plasma channel, i.e., at z = 50 µm. Black, blue
and green curves in solid lines refer to Calder 2D computations for increasing intensities;
dashed curves plot the corresponding solutions to Eqs. (3.4.5) and (3.4.13) with the same
colour plotstyle. The dominant part of the solution to Eq. (3.4.13) is a single-cycle pulse
due to photoionization, as plasma current oscillations only form a residual tail modulated
at plasma frequency [Fig. 5.2.3(a-c)]. The axial field is connected with plasma wave oscil-
lations, where the plasma frequency increases like

√
Ne, i.e., with the ionization state Z∗

when the laser intensity is increased [Fig. 5.2.3(d-f)]. For each intensity value, Fig. 5.2.3
displays evidence of a very good agreement between 2D PIC computations and the 1D
simplified Maxwell-Fluid model of Section 3.4. Small discrepancies occur in the THz
pulse profiles at near-relativistic intensity. These are linked to two-dimensional effects
(e.g., transverse diffraction), small deviations from the assumption of constant γ, and the
non-negligible influence of electron-electron collisions —discarded in our one-dimensional
model— compared to electron-ion collisions at near relativisitic intensities. They, how-
ever, preserve an accurate estimate of the THz field strength. Maximum achievable field
strengths are 3 GV/m for the transverse field produced at 5×1016 W cm−2 and 10 GV/m
for the longitudinal field emitted at 3×1017 W/cm−2 inside the plasma. These are record
values reported in this context.

Figures 5.2.3(g,h) detail the spectral dynamics corresponding to the emitted fields at
z = 50 µm calculated in Fig. 5.2.3(a-c) and Fig. 5.2.3(d-f), respectively. The dotted
vertical lines locate the plasma frequency ω̃p achieved in the wake of the laser field and
expressed in ω0 units. In Fig. 5.2.3(h) the spectrum of the longitudinal field remains
highly peaked around the plasma frequency, as justified by its direct dependency on
I0(ω2 + iνcω − ω̃2

p)−1 [see Eq. (3.4.7)]. By contrast, the spectrum of the transverse field,
given by Eq. (3.4.15), increases in amplitude and towards long wavelengths with the laser
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5.2 Multidimensional configuration: competition between photoionization and wakefield...

Figure 5.2.4: (a) 2D Particle-In-Cell spatio-temporal map of Ẽy triggered by two-colour
pulses for I0 = 3 × 1017 W cm−2. (b) 2D Particle-In-Cell simulation (blue
curve) and 1D semi-analytical solution given by Eq. (3.4.13) (black curve) of
the on-axis x-polarized radiated field at z = 50 µm for a single colour with
the same intensity. Spatio-temporal maps Ẽx(y, t) for (c) a single-colour
pulse and (e) a two-colour pulse at the same distance and intensity. (d,f)
Same patterns at remote distance z = 175 µm outside the plasma channel.
The colour bars of (c-f) are cut at ±1 GV/m for better visibility of the
emitted waves. Note the change of scale in time.

intensity, before saturating at 3×1017 W cm−2 due to the stability of Ar8+ [Fig. 5.2.3(g)].
Initiated around the plasma frequency (0.02 < ωp/ω0 ≤ 0.04), the transverse THz spec-
trum develops a broad extent comparable with the patterns of Fig. 5.2.2. The overall
agreement between PIC simulations and our 1D Maxweel-Fluid model is good, except in
the very low-frequency limit.

Figure 5.2.4(a) confirms that, at the highest intensity I0 = 3 × 1017 W cm−2, the y-
polarized fields induced by transverse ponderomotive forces generate in-situ off-axis THz
components (Πy ∝ ∂yE

2
L) being weaker than their longitudinal counterpart [compare with

Fig. 5.2.3(f)]. This justifies a posteriori our 1D semi-analytical Maxwell-Fluid model. At
the same intensity level and for one colour, the on-axis Calder Ẽx field and its semi-
analytical evaluation are shown in Fig. 5.2.4(b), evidencing that the semi-analytical model
again provides reliable approximations at near-relativistic intensities for a single-colour
pulse, apart from the aforementioned discrepancies. By comparison of this subplot with
Fig. 5.2.3(c), one can observe that both the single- and two-colour pulse schemes supply
analogous on-axis x-field strengths (∼ GV/m). The maximum THz field amplitudes
delivered by tunnel ionization being located on-axis, one infers a clear saturation in the
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5 Terahertz generation in high-intensity regimes

Figure 5.2.5: Two-colour pulses for I0 = 5 × 1016 W cm−2. Top: (y, z) mapping of the
fields emitted inside and outside the plasma channel at time t = 1200ω−1

0 .
The left-hand side blue/green colour bar indicates the field strength value
in GV/m; the right-hand side red colour bar indicates the electron density
in cm−3. (a) Ẽx (the laser field is filtered out), (b) Ey, (c) Ez and (d) cBx.
Bottom: Angular spectral distribution (arb. units) of (e) Êy, (f) Êz, and
(g) B̂x at z = 175 µm. In (e) the inset represents the y-component of the
current density generated inside the plasma.

conversion efficiency of the two-colour scheme near the relativistic intensity threshold.
The reason of this saturation is that, at intensities close to 1018 W cm−2, argon atoms
have their outermost electron shell empty (Z∗ = 8); so the remaining Ar8+ ion is shaped
into a stable neon-like atom configuration. This property manifests itself by a long plateau
in the curve Z∗ versus I0 [46] (see Fig. 2.2.4), signalling the hardness to further ionize the
ion. Approaching Z∗ = 9 with 1.4 × 1018 W cm−2 intensities re-activates the two-colour
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5.2 Multidimensional configuration: competition between photoionization and wakefield...

pulse efficiency by the delivery of 7.6 GV/m THz transverse fields (not shown here),
which, however, remains comparable with the present performances. This explains why
the ionization process loses efficiency near relativistic intensities. The same saturation
phenomenon can be expected in other gases, for instance helium, once the available two
electrons have been ionized at similar intensities. It is worth noticing that although
photocurrents cannot produce stronger THz fields, they can supply more energetic THz
pulses as the volume of the secondary radiation is broader along the y-axis for two colours
[compare Figs. 5.2.4(c,e)]. Figure 5.2.4(d,f) show that the field values ∼ 1 GV/m achieved
inside the plasma are preserved at remote distances.

While the secondary transverse and longitudinal fields contain the THz signature of
their respective nonlinear sources, it is not guaranteed that outside the plasma channel
all these components preserve their field strength —thus the transmitted THz power—
all the way to the detector. Figure 5.2.5 answers this point by detailing the (y, z) maps
of the electric field and x-magnetic components inside the plasma zone and transmitted
in vacuum, once the pulse has propagated along the whole gas length (t = 1200ω−1

0 ).
The free electron density (red colour bar) and the field amplitude level (blue/green colour
bar) are specified. It is clearly seen that the THz field Ẽx created through photoioniza-
tion keeps an amplitude ∼ GV/m comparable with the one produced inside the plasma
tube, as already reported above. By contrast, Ẽy decreases by a factor ∼ 2.5 and Ẽz van-
ishes rapidly. Along y, transverse ponderomotive forces generate obliquely-propagating
THz pulses. This behaviour can be understood from the ponderomotive source term
(JJJ · ∇∇∇)(γJJJ/eNe) ∝ ∂yE

2
L [Eq. (2.3.15)] computed on the laser field of Eq. (5.2.1), which

is zero at y = 0 and maximum near y = 10 µm. For comparison, the longitudinal field is
maximum at centre (y = 0), but its amplitude rapidly falls down outside the plasma chan-
nel. Amongst these two players, the transverse ponderomotive force hence conveys the
highest THz field contribution, unlike the longitudinal field that becomes unable to trans-
mit the THz pulse. As shown by Fig. 5.2.5(d), the peaks of the magnetic field B̃x outside
the plasma are mainly those of the Ẽy component. Inside the plasma region, B̃x arises
from the current components in the transverse gradients of the plasma profile. Spectrally,
B̃x keeps the signature of the transverse and longitudinal fields created inside the plasma
channel, in such a way that it consists in the direct sum of Ẽy and Ẽz conical emissions. In
this respect, Fig. 5.2.5(e,f,g) indeed display evidence that the longitudinal field spectrum
Ẽz is non-zero at an angle larger than that of Ẽy, so that B̃x simply superimposes both
contributions. In connection with Eq. (4.0.15), the inset of Fig. 5.2.5(e) reveals that Jy
is an odd function of y and has no on-axis spectral component [Ĵy(ky = 0) = 0]. The
transverse ponderomotive currents, therefore, emit oblique THz waves, which was never
reported before.
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5 Terahertz generation in high-intensity regimes

Figure 5.2.6: (a) THz energy distribution UTHz normalized to laser energy versus the elec-
tromagnetic frequency ν ≡ ω/2π at z = 175 µm in the two-colour case with
I0 = 5×1016 W/cm2 from the ponderomotive forces (Bx) and photocurrents
(Ex). The solid line represents the cumulative distribution function in fre-
quency that integrates the THz energy yields over the antecedent frequency
domains. (b) Spatial map of the laser field Ex at three different propagation
distances along and outside the plasma channel (electron density is plotted in
red). (c,d) Influence on the angular far-field spectra (arb. units) of the laser
pulse duration and longitudinal plasma profile for the same intensity and (c)
a pump FWHM of 17.5 fs (second harmonic length remains unchanged) and
a higher initial ion density level Na ≈ 5× 1017 cm−3 at z = 175 µm (φ = 0);
(d) a longer plasma gradient [50µm instead of 5µm in the rear part of the
plasma profile, which still extends over 100 µm; the laser parameters are
unchanged compared with Fig. 5.2.2(c)]. The x-field spectrum radiated by
photocurrents built from fewer optical cycles is broader and more intense.
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To end with, in Fig. 5.2.6(a) the energy converted to the THz and infrared domains over
the 100-µm long plasma channel for the same laser characteristics as those of Fig. 5.2.5 is
presented. One can see that the energy radiated outside the plasma region (z = 175 µm)
is located around the plasma frequency (∼ 10 THz) due to wakefield and plasma wave
emitters (Bx). Yet most of this energy results from photoionization (Ex) and accumulates
over a broader frequency range. This property is reflected by the solid red line, plotting the
cumulative distribution function in frequency. Note that the value of conversion efficiency
is weak, i.e., the plasma-to-THz conversion scheme is not optimal, but it is achieved
over 100 µm of an underdense plasma only. For completeness, Fig. 5.2.6(b) details the
evolution of the spatial structure of the laser field along the propagation range exceeding
the plasma zone. This map clearly shows that over short propagation ranges the laser
pulse profile remains preserved, which is consistent with the small energy losses.

The previous behaviours, of course, depend on the number of optical cycles contributing
to THz pulse generation, on the initial gas atomic density and on the laser and plasma
geometry. However, they should be generic. Figure 5.2.6(c,d) confirm this expectation
by showing 2D PIC simulations of a two-colour pulse whose fundamental has 17.5-fs-
FWHM duration and interacts with a twice higher initial density of atoms [Fig. 5.2.6(a)]
or with a plasma profile having a longer gradient length [Fig. 5.2.6(b)]. The spectral
pattern delivered by Ẽx exhibits a broader extent and higher amplitude, as fewer optical
cycles render the pump profile more asymmetric [45], and there is a decrease in the
ponderomotive spectral signal of B̃x with longer density gradients in agreement with the
recent reference [110]. Apart from these modifications, the THz spectra present generic
features and we can anticipate that in a three-dimensional geometry the field distributions
should remain close to the present ones, including solely an additional ponderomotive
component along the x-axis.

To conclude, in this section we have reported PIC simulation results on the interaction of
two-colour laser Gaussian beams with an underdense plasma generating THz pulses. Our
objective was to discriminate THz emissions promoted by photocurrents along the laser
polarization axis from those produced by plasma wave oscillations that develop at high
intensities. These results have been corroborated by our semi-analytical 1D Maxwell-
Fluid model. This model can be faithfully used for a broad range of laser intensities
to predict THz fields occurring inside plasmas through photoionization and longitudinal
wakefields in various experimental setups. We showed that, in the range of laser intensities
between 1015 W cm−2 and 3× 1017 W cm−2 covering the domain of classical laser-plasma
physics, THz pulse generation proceeds from both photoionization and ponderomotive
forces. While the photocurrent mechanism prevails at intensities of 5 × 1016 W cm−2 in
argon, the resulting THz field strength saturates when the relativistic limit I0 → 1018 W
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cm−2 is approached. This saturation stems from the fact that all outermost electrons of
the valence shell have been ionized, leaving the ion in a relatively stable atomic state,
unless resorting to much higher relativistic intensities. Finally, we demonstrated that
the longitudinal fields alone rapidly decay away from the plasma and cannot transmit
significant THz power remotely. It turns out that in multidimensional configurations
the fields produced by transverse ponderomotive forces prevail outside the plasma zone
over their longitudinal counterparts. Therefore, the radiated THz magnetic field along the
laser polarization axis conveys the most relevant information on the plasma ponderomotive
emitters.

178



Conclusions and perspectives

Today the terahertz region of the electromagnetic spectrum, which until a recent past was
barely accessible in practice, has raised a huge interest in many scientific domains because
of its rich potential applications in, e.g., medical imaging and the remote identification of
drugs and explosives. These applications require strong terahertz fields, transmitting am-
plitudes up to the GV/m and broadband, tunable spectra from 0.1 to 100 THz. Current
terahertz generation technologies based on solid emitters, like quantum cascade lasers and
rectification in asymmetric crystals, are limited by damage thresholds or narrowness of
the emitted spectra. An alternative technique recently happened with the potential for
yielding very intense terahertz pulses compared with most of the existing technologies,
namely, terahertz emissions driven by multicoloured femtosecond laser pulses. Demon-
strated experimentally for the first time in 1993 by Hamster et al. [72], this technique
consists of ionizing a gas (e.g., air or noble gases) by focusing a femtosecond infrared
two-colour laser pulse (fundamental plus second harmonic) and creating a plasma spot
that acts as a nonlinear frequency converter turning a small part of the laser energy into
the THz spectral domain. Since plasma is a state of matter supporting very high powers
without undergoing material damage, laser-driven terahertz sources can supply strong
and broadband terahertz fields with record energy conversion efficiencies (� 10−4).
This thesis proposed to understand better the main physical mechanisms responsible

for producing terahertz radiation from ultrashort laser pulses, build the numerical tools
for this goal and explore novel interaction regimes at near relativisitic laser intensities.
Our objective was to reveal the best laser and gas configurations to maximize the laser-
to-terahertz energy conversion efficiency and enhance the quality of the yielded terahertz
radiation while controlling its amplitude and the spectral bandwidth up to ∼ 100 THz.
During these three years of PhD an ample study has been realized, whose main effort has
focused on analytical modelling and high-performance numerical computations, some of
them being confronted to new experimental data.
The different physical models as well as the corresponding numerical codes have been

described in Sections 2 and 3, respectively. The ultimate physical equations that govern
the laser-matter interaction in this context are the Maxwell equations coupled to a ki-
netic description of the plasma (Vlasov equation). Unlike past theoretical studies, the gas
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target is here ionized in a complete multiple ionization context, including laser-induced
photoinization and electron-impact ionization. Three different mathematical models have
been exploited, namely, Maxwell-Vlasov model, Maxwell-Fluid model, and Unidirectional
Pulse Propagation Equation (UPPE) model, all derived from Maxwell-Vlasov equations.
At the beginning of this PhD, two fully-parallel high-performance codes were already
available at CEA-DAM-DIF, namely, the Particle-In-Cell code Calder, which discretizes
Maxwell-Vlasov equations and describes the evolution of macroparticles and their related
fields, and the spectral code UPPE, which computes the forward propagating solution
of the Maxwell wave equation. This latter approach treats the rich nonlinear optics but
discards several plasma effects, such as the ponderomotive forces. In between these two
models, the Maxwell-Fluid approach, the macroscopic average of the Vlasov equation
coupled to Maxwell equations, has been derived and coded during this thesis. This ap-
proach has been very fruitful. On the one hand, the one-dimensional version of the new
finite-volume code MaxFlu has been successfully programmed and its results agree with
those of both Calder and UPPE under their respective validity limits. In the future,
the numerical strategy conceived for the MaxFlu 1D code should be extended to a three-
dimensional geometry thanks to a dimensional splitting distributed over the x, y and z
dimensions. On the other hand, we have managed to obtain a semi-analytical solution
of these equations for the on-axis transverse and longitudinal secondary radiation. The
resulting simplified Maxwell-Fluid equations extends the Local Current model based on
photocurrents to high intensities and it integrates contributions from the longitudinal
plasma waves and plasma ponderomotive oscillations.

In Section 4 we have tackled terahertz generation at moderate intensities
(. 1014 W cm−2), typical of laser filamentation for which gas targets are weakly ion-
ized (Z∗ � 1). The novelty of our study lies in the fact that we have examined within
the same framework the characterisitics of the radiated field from the three main mecha-
nisms yielding terahertz pulses and acting together, i.e., photoionization and Kerr optical
rectification emitting close to axis, and longitudinal plasma oscillations emitting out of
axis.

First, thanks to experimental measurements interpreted by comprehensive numerical
UPPE simulations and the simplified Maxwell-Fluid model, we have demonstrated the
combined contribution of both bound and free electrons to the THz radiation in two-
colour laser filaments in air [4]. At the onset of filamentation the polarizability of the
bound electrons forms a forward-propagating on-axis THz source by four-wave rectifi-
cation, which is much weaker and higher in frequency than the distinctive free-electron
photocurrent THz source. Terahertz radiation from the photocurrents then occurs to
balance Kerr self-focusing and propagates inside a cone, with small emission angle < 10°.
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The associated ring-shaped spatial distribution is of universal nature in both collimated
and focusing propagation geometries. We displayed evidence of an abrupt downshift of
the spectral peak in the THz spectrum from higher-frequency Kerr contribution towards
frequencies close to the electron plasma frequency and accompanied by more than two
orders of magnitude increase in the spectral intensity when photoionization takes place.

Second, since early experiments already proved that in two-colour setups photocurrents
provide the main mechanism yielding THz radiation, we wondered whether THz emissions
could be boosted beyond a classical two-colour setup. To answer this question, we iden-
tified the optimal coupling parameters of laser configurations employing more than two
spectral components and determined their best duration, energy and mutual phaseshifts.
We predicted from the Local Current model that ideally a sawtooth waveform is optimal
[67]. Since such a wave shape is not feasible in practice, we also demonstrated that only
coupling a few (e.g., three or four) laser colours following the harmonics of a sawtooth field
profile could remarkably increase the THz yield. Comprehensive 3D simulations revealed
a THz energy conversion efficiency of 2% when using a four-colour pulse in argon, which
is a performance unequalled so far. We hope that future experiments will confirm this
finding.

At this point, since the progress on laser technology makes it possible to deliver ultra-
short laser pulses with intensities higher than 1015 W cm−2, we have examined in Sec-
tion 5 terahertz generation in the rarely-explored intensity range between 1015 W cm−2

and 1018 W cm−2 (relativistic threshold), taking into account, for the first time to our
knowledge, all the physical mechanisms that play a role at such intensities (not only pho-
toionization, but also longitudinal and transverse ponderomotive forces), for single-colour
and two-colour laser configurations.

We analyzed, inside the plasma, the effect of photocurrents and longitudinal plasma
current oscillations on terahertz emissions in a one-dimensional geometry. Through the
Maxwell-Fluid model and numerical simulations performed with the Calder and UPPE
codes, we reported that the growth of the terahertz yield with the intensity is nonmono-
tonic for one- and two-colour laser pulses [46]. We reported an oscillatory increase in the
THz field strength which we related to the successive ionization of each electronic shell of
a given gas atom. Our research, thereby, should permit to adjust the best pump intensity
level to maximize THz production from a given gas.

Next, we revealed how terahertz radiation is generated from photocurrents, longitudi-
nal and transverse ponderomotive forces in a two-dimensional plasma volume with finite
extents at nearly relativistic intensities, and which radiated fields are transmited outside
the plasma volume [68]. Thanks to comprehensive two-dimensional Particle-In-Cell sim-
ulations, we have concluded that the photoionization is still the main mechanisms up to
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the relativistic limit (1018 W cm−2), which propagates forwards close to axis. Longitu-
dinal plasma oscillations triggered by ponderomotive motions do not emit outside the
plasma, whereas their transverse counterparts are able to transmit off-axis components
still keeping THz field amplitudes of the order of GV/m outside the plasma at high laser
intensities. Both mechanisms, photocurrents and plasma wakefield effects, usually com-
pete in this intensity range. From the Maxwell-Fluid model, we succeeded in inferring
analytically the on-axis fields created inside the plasma in a simplified one-dimensional
geometry showing good agreement with PIC simulations. This method allowed us to
understand that the influence of both photoionization and plasma oscillations increase at
growing intensities but the former process is limited according to the solicited electronic
shell. This explains why the efficiency of the two-colour configuration saturates in argon
at intensities ∼ 1018 W cm−2, due to the stability of Ar8+ electronic configuration.
Our results pave the way to design laser-driven THz sources benefiting also from the

strong off-axis terahertz fields radiated by transverse ponderomotive forces in order to
increase the overall amount of THz radiation. We believe that they will find further
links with recent research on the impressive THz emissions recently reported from solid
targets irradiated by laser pulses operating at ultra-high intensities (> 1019 W cm−2).
In this context, other key mechanisms, such as Transtion Radiation Currents and Target
Normal Sheath Acceleration mechanisms [72, 106, 107, 109, 141], should moreover strongly
enhance the terahertz signal.
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A Atomic units
The atomic system of units (a.u.) fixes me, e, ~, KC and kB as unity. Let a physical
magnitude be of dimension [m]α[s]β[kg]γ[A]δ[K]ε in S.I. units, where α is the dimension
of length (m), β of time (s), γ of mass (kg), δ of electric current (A) and ε of temperature
(K). This magnitude will be of dimension

[me]α
′ [e]β′ [~]γ′ [KC]δ′ [kB]ε′ (A.1)

in the atomic system of units, where α′, β′, γ′, δ′ and ε′ are calculated by solving the
following change-of-basis system:

0 0 2 3 2
0 1 −1 −4 −2
1 0 1 1 1
0 1 0 −2 0
0 0 0 0 1





α′

β′

γ′

δ′

ε′


=



α

β

γ

δ

ε


. (A.2)

In Eq. (A.2), the rows of the matrix refer to the S.I. dimensions (m, s, kg, A, K) and
the columns to the basis of atomic units (me, e, ~, KC, kB) expressed in terms of those
dimensions.
The atomic units for the principal magnitudes used in this dissertation are:

Symbol Atomic unit of ... Value (a.u. basis) Value (S.I.)
tau time m−1

e e−4~3K−2
C 2.4189× 10−17 s

νau frequency mee
4~−3K2

C 4.1341× 1016 Hz
Eau electric field m2

ee
5~−4K3

C 5.1422× 1011 V m−1

Uau energy mee
4~−2K2

C 4.3597× 10−18 J

The atomic unit of energy, Uau, also called Hartree energy, is approximatively equal to
the double of the ionization energy of hydrogen atom (H) in its ground state.
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B Gaussian and squared-cosine slowly-varying envelopes
The slowly-varying envelopes chosen for the laser electric field, E(t), are unitary (i.e.,
0 ≤ E(t) ≤ 1) and defined by a pulse duration. Two measurements for this duration are
widely used:

• The full width at half maximum (FWHM), τp, is the difference between the two
instants for which the envelope of intensity ∼ E(t)2 takes the value 1/2.

• The 1/e-duration, tp, is the half of the difference between the two instants for which
the envelope E(t) values 1/e or, equivalently, for which E(t)2 values 1/e2.
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(t
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(a) (b)

Figure B.1: Comparison between a Gaussian (blue curve) and squared-cosine (red curve)
envelopes, plotted in intensity, i.e., E2(t). (a) Both envelopes have the same
duration tp. (b) Both envelopes have the same duration τp.

There are two widely used pulse profiles, namely, Gaussian envelopes and squared-cosine
envelopes, respectively defined by

E(t) = exp
−( t

tp

)2
, (B.1)

E(t) =


cos2

(
cpt

tp

)
, if |t| ≤ πtp

2cp
≈ 1.7090 tp,

0, otherwise,
(B.2)
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where the coefficient cp is

cp = arccos
(
e− 1

2
)
≈ 0.9191. (B.3)

The squared-cosine envelope [Eq. (B.2)] is of compact support from which the number
of cycles can be controlled.
The two durations, τp and tp, are related to one another as

Gaussian: tp = τp√
2 ln 2

≈ 0.8493 τp, (B.4)

Squared-cosine: tp = cpτp

2 arccos
(

1
4
√

2

) ≈ 0.8036 τp. (B.5)

The envelopes (B.1) and (B.2) are compared in Fig. B.1.
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C Moments of Vlasov equation for electrons

Zeroth-order moment

The zeroth-order moment of the Vlasov equation [Eq. (2.1.42)] is given by the identity

∫∫∫
R3

(
∂f

∂t
+ ppp

meγ
· ∂f
∂rrr
− e

(
EEE + ppp

meγ
×BBB

)
· ∂f
∂ppp
− S(EEE,ppp)δ(ppp)

)
dppp = 0. (C.1)

The four parts of Eq. (C.1) are calculated separately. The first integral term is cal-
culated straightforwardly by inverting the order of operators ∂t and

∫∫∫
ppp and applying

Eq. (2.1.36): ∫∫∫
R3

∂f

∂t
dppp = ∂

∂t

∫∫∫
R3
f dppp = ∂

∂t
〈Ne〉. (C.2)

Since rrr and ppp are independent variables, the second integral term is calculated by
inverting the order of operators ∂rrr· ≡ ∇∇∇· and

∫∫∫
ppp, and by applying Eq. (2.1.38):

∫∫∫
R3

(
ppp

meγ
· ∂f
∂rrr

)
dppp =

∫∫∫
R3

∂

∂rrr
·
(
f

ppp

meγ

)
dppp = ∂

∂rrr
·
∫∫∫

R3
f

ppp

meγ
dppp =∇∇∇·〈Nevvv〉. (C.3)

The third integral term is split into the part integrating EEE and that integrating vvv×BBB.
As the electric and magnetic fields do not depend on ppp, the first part is directly zero by
applying Eq. (2.1.35):

∫∫∫
R3

(
−eEEE · ∂f

∂ppp

)
dppp = −eEEE ·

∫∫∫
R3

∂f

∂ppp
dppp = 0, (C.4)

and the second part is treated as

∫∫∫
R3

(
−e

(
ppp

meγ
×BBB

)
· ∂f
∂ppp

)
dppp =

∫∫∫
R3

(
−e

(
∂f

∂ppp
× ppp

meγ

)
·BBB
)
dppp =

− eBBB ·
∫∫∫

R3

(
∂f

∂ppp
× ppp

meγ

)
dppp.

(C.5)

The vectorial product inside the integral is transformed thanks to the identity (0.0.3)
and γ =

√
1 + p2m−2

e c−2:

∂f

∂ppp
× ppp

meγ
= ∂

∂ppp
×

f ppp√
m2

e + p2

c2

−
��

���
���

����

f
∂

∂ppp
×

 ppp√
m2

e + p2

c2

 = ∂

∂ppp
×

f ppp√
m2

e + p2

c2

 , (C.6)
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where ∂ppp × [ppp(m2
e + p2c−2)−1/2] = 000 after easy calculations. By subsituting Eq. (C.6) into

Eq. (C.5) and using Eq. (2.1.35), the second part of the third integral term becomes:

−eBBB ·
∫∫∫

R3

(
∂f

∂ppp
× ppp

meγ

)
dppp = −eBBB ·

∫∫∫
R3

 ∂

∂ppp
×

f ppp√
m2

e + p2

c2


 dppp = 0. (C.7)

The fourth integral term represents ionization for which electrons are born with zero
linear moment: ∫∫∫

R3
(−S(EEE,ppp)δ(ppp)) dppp = −S(EEE,ppp = 000). (C.8)

Therefore, by combining Eqs. (C.2), (C.3), (C.4), (C.7) and (C.8) the zeroth-order
moment of Vlasov equation restores the conservation relation

d

dt
〈Ne〉+∇∇∇ · 〈Nevvv〉 = S(EEE,ppp = 000), (C.9)

which is the continuity equation for the electron density.

First-order moment

The first-order moment is provided by

∫∫∫
R3
ppp

(
∂f

∂t
+ ppp

meγ
· ∂f
∂rrr
− e

(
EEE + ppp

meγ
×BBB

)
· ∂f
∂ppp
− S(EEE,ppp)δ(ppp)

)
dppp = 0. (C.10)

Again, the four parts of Eq. (C.10) are calculated separately. The first integral term is
directly calculated as

∫∫∫
R3
ppp
∂f

∂t
dppp =

∫∫∫
R3

∂

∂t
(fppp) dppp = ∂

∂t

∫∫∫
R3
fppp dppp = ∂

∂t
〈Neppp〉. (C.11)

First, the identity (0.0.2) is applied to the second integral term:

∫∫∫
R3
ppp

(
ppp

meγ
· ∂f
∂rrr

)
dppp =

∫∫∫
R3
ppp

 ∂
∂rrr
·
(
f

ppp

meγ

)
−

���
���

��

f
∂

∂rrr
·
(

ppp

meγ

) dppp =

∫∫∫
R3
ppp
∂

∂rrr
·
(
f

ppp

meγ

)
dppp,

(C.12)
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which we combine with the identity (C.12) to get

∫∫∫
R3
ppp
∂

∂rrr
·
(
f

ppp

meγ

)
dppp =

∫∫∫
R3

[
∂

∂rrr
·
(
ppp⊗ f ppp

meγ

)
−

���
����∂ppp

∂rrr

(
f

ppp

meγ

)]
dppp =

∫∫∫
R3

∂

∂rrr
·
(
ppp⊗ f ppp

meγ

)
dppp,

(C.13)

where
∫∫∫

R3

∂

∂rrr
·
(
ppp⊗ f ppp

meγ

)
dppp = ∂

∂rrr
·
∫∫∫

R3

(
ppp⊗ f ppp

meγ

)
dppp =

∂

∂rrr
· 〈ppp⊗Ne

ppp

meγ
〉 =∇∇∇ · 〈ppp⊗Nevvv〉.

(C.14)

The third integral term is separated into the part including EEE and that containing
vvv ×BBB. To the former, the identity (0.0.2) gives

∫∫∫
R3
ppp

(
−eEEE · ∂f

∂ppp

)
dppp =

∫∫∫
R3
ppp

[
∂

∂ppp
· (−eEEEf)−

�
���

���

f
∂

∂ppp
· (−eEEE)

]
dppp =

−
∫∫∫

R3
ppp

[
∂

∂ppp
· (eEEEf)

]
dppp,

(C.15)

and using the identity (0.0.5) one has:

−
∫∫∫

R3
ppp

[
∂

∂ppp
· (eEEEf)

]
dppp =−

∫∫∫
R3

[
��������∂

∂ppp
· (ppp⊗ eEEEf)− eEEEf

]
dppp =∫∫∫

R3
eEEEf dppp = eEEE

∫∫∫
R3
f dppp = eEEE〈Ne〉.

(C.16)

To the second part of the third integral, the invariance of the scalar triple product
under a circular shift and Eq. (C.6) yield

∫∫∫
R3
ppp

[
−e

(
ppp

meγ
×BBB

)
· ∂f
∂ppp

]
dppp =

∫∫∫
R3
ppp

[
−eBBB ·

(
∂f

∂ppp
× ppp

meγ

)]
dppp =

∫∫∫
R3
ppp

(
−eBBB ·

[
∂

∂ppp
×
(
f

ppp

meγ

)])
dppp,

(C.17)

to which the identities (0.0.4) and (0.0.5) are applied, resulting in:

∫∫∫
R3
ppp

(
−eBBB ·

[
∂

∂ppp
×
(
f

ppp

meγ

)])
dppp =

∫∫∫
R3
ppp

[
∂

∂ppp
·
(
−ef ppp

meγ
×BBB

)]
dppp =

e

[∫∫∫
R3

(
f

ppp

meγ

)
dppp

]
×BBB = e〈Nevvv〉 ×BBB.

(C.18)
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The fourth integral term is straightforward:

−
∫∫∫

R3
pppS(EEE,ppp)δ(ppp) dppp = 000. (C.19)

Hence, by combining Eqs. (C.11), (C.14), (C.16), (C.18) and (C.19) the first-order
momentum of Vlasov equation produces the conservation of the averaged electron linear
momentum:

∂

∂t
〈Neppp〉+∇∇∇ · 〈Nevvv ⊗ ppp〉 = −e〈Ne〉 (EEE + 〈vvv〉 ×BBB) . (C.20)

Equation (C.20) is usually expressed in terms of the kinetic pressure tensor, defined as

¯̄Ψ =
∫∫∫

R3
f (ppp− 〈ppp〉)⊗ (vvv − 〈vvv〉) dppp. (C.21)

By making use of the distributivity property and Eqs. (2.1.36), (2.1.37) and (2.1.38) to
Eq. (C.21), the kinetic pressure tensor is applied to macroscopic averaged fields:

¯̄Ψ =
∫∫∫

R3
fppp⊗ vvv dppp− 〈vvv〉

∫∫∫
R3
fppp dppp− 〈ppp〉

∫∫∫
R3
fvvv dppp+ 〈ppp〉 ⊗ 〈vvv〉

∫∫∫
R3
f dppp =

〈Nevvv ⊗ ppp〉 − 〈vvv〉 ⊗ 〈Neppp〉 = 〈Nevvv ⊗ ppp〉 − 〈Ne〉〈vvv〉 ⊗ 〈ppp〉.
(C.22)

By substituting Eq. (C.22) into Eq. (C.20), the conservation of the averaged electron
linear moment finally expresses as

∂

∂t
〈Neppp〉+∇∇∇ · ¯̄Ψ +∇∇∇ · [〈Ne〉〈vvv〉 ⊗ 〈ppp〉] = −e〈Ne〉 (EEE + 〈vvv〉 ×BBB) . (C.23)
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D An algorithm to calculate the matrix of ionization
probabilities

The algorithm to compute Eq. (2.2.37) is presented here. Let us denote by A, V and P
the matrix of ionization rates, the matrix containing by columns the eigenvalues of A and
the matrix of ionization probabilities, respectively. These matrices are of size n× n.

1. The matrices are initialized to zero:
for i going from 1 to n do

for j going from 1 to n do
Pi,j = 0
Vi,j = 0

end for
end for

2. The eigenvalues of A are calculated and saved in the lower triangular part of V :
Vn,n = 1
for i going from n− 1 to 1 (decreasing) do
Vi,i = 1
if |Ai,i| > 0 then

for j going from i+ 1 to n do
Vj,i = − 1

Aj,j − Ai,iDOT_PRODUCT(Vi:j−1,i, Aj,i:j−1)
end for

end if
end for

3. The inverse of eigenvalues of A are calculated and saved in the upper triangular
part of V :
V1,2:n = −V2:n,1

for i going from 2 to n do
Vi,i+1:n = −Vi+1:n,i

for j going from i+ 1 to n do
V1:i−1,j = V1:i−1,j + Vi,jV1:i−1,i

end for
end for

4. The probability matrix is finally calculated:
for i going from 1 to n do
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Pi,i = EXP(∆t Ai,i)
Vi:n,i = Pi,iVi:n,i

for j going from 1 to i− 1 do
Pi,j = Vi,j + Pi,iVj,i + DOT_PRODUCT(Vi,j+1:i−1, Vj,j+1:i−1)

end for
end for
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E ADK-based degree of ionization for single-colour lasers
We start by considering a hydrogen-like atom subject to the QST ionization rate
[Eq. (2.2.28)]:

WQST[E(t)] = α

|E(t)|e
− β
|E(t)| , (E.1)

where α = νauEau4(2UiU
−1
au )5/2 and β = (2/3)Eau(2UiU

−1
au )3/2. Following the local pho-

tocurrent theory of Babushkin et al. [8] (see Section 2.4.2), ionization events occur in
the neighbourhood of the electric field extrema and the density can be approximated as
Ne(t) ≈

∑
n δN

n
e Hn(t − tn) according to Eq. (2.4.15), where tn are the instants of ion-

ization events, Hn(t) = [1 + erf(t/τn)]/2 are steplike functions [Eq. (2.4.13)], τn defines
the duration of the n-th ionization event [Eq. (2.4.10)] and δNn

e is the associated density
jump [Eqs. (2.4.16) and (2.4.17)]. The sum of such density jumps over all the ionization
events determines the degree of ionization. For single ionization, we get:

Ne(t) = Na

[
1− exp

(
−
∫ t

−∞
WQST(τ) dτ

)]
, (E.2)

with ∫ t

−∞
WQST(τ) dτ ≈

∑
n

√
πτnWQST(tn)Hn(t− tn). (E.3)

To evaluate the exponential of this sum, step functions Hn(t) are approximated by
standard Heaviside functions [Eq. (2.4.14)], so that we can establish the direct recurrence:

δN1
e = Na

(
1− e−

√
πτ1WQST(t1)

)
, (E.4)

δN2
e = Nae−

√
πτ1WQST(t1)

(
1− e−

√
πτ2WQST(t2)

)
, (E.5)

...

δNn
e = Nae−

∑n−1
m=1

√
πτmWQST(tm)

(
1− e−

√
πτnWQST(tn)

)
, n > 1. (E.6)

By summing up all ionization events, we obtain

Z∗ = Ne(t→∞)
Na

≈ 1− e−
∑

n

√
πτnWQST[E(tn)]. (E.7)

The exponential argument can be estimated as

√
πτnWQST[E(tn)] ≈

√
2π α

βω0
φ

(
β

a0E(tn)

)
, (E.8)

where φ(x) =
√
xe−x. This approximation is acceptable when the FWHM duration is
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greater than 1.5(2πω−1
0 ). With the Gaussian envelope E(t), we apply the approximation

of compact support:

φ

(
β

a0
e2 ln 2(t/τp)2

)
≈

 φ
(
β
a0

)
cos2

(
π
4

√
2β
a0

t
τp

)
, if |t| ≤

√
2a0
β
τp,

0, otherwise,
(E.9)

which holds for a0 ≤ 2β, i.e., if I0 ≤ 62.4 × 1015 W cm−2. Higher intensities closer to
1017 W cm−2 are discarded.

The time separation between two ionization events being π/ω0, we obtain an approxi-
mation of the number N of ionization events:

N ≈ 2
π

√
2a0

β
ω0τp, (E.10)

which, without loss of generality, is supposed to be an even integer. This gives the
following arithmetic progression for the instants of ionization:

tn ≈
√

2a0

β
τp

(2n
N
− 1

)
, (E.11)

where 0 ≤ n ≤ N . As

N∑
n=0

cos2

π
4

√
2β
a0

tn
τp

 = N

2 = 1
π

√
2a0

β
ω0τp, (E.12)

we can sum up the terms of Eq. (E.8) and substitute the result into Eq. (E.7) to obtain
finally

Z∗ ' 1− exp
(
− 2√

π

α

β
τpe−

β
a0

)
. (E.13)

For complex atoms such as argon and helium, the same reasoning must be extended to
the complete multiple ionization scheme [Eqs. (2.2.24) and (2.2.31)]. After cumbersone
calculations, we can obtain the formula [Eq. (2.2.41)]

Z∗(I0, τp) = Z −
Z−1∑
j=0

exp
−Φj

τp

tref

(
Ī0,j

Iref

)1−n∗j
exp

−Ψj

√√√√Iref

Ī0,j

, (E.14)

where
Φj = (2lj + 1)

(j + 1)6n∗j−4(n∗j)3−6n∗j

Γ(2n∗j)
, (E.15)

Ψj = 1
6

(
j + 1
n∗j

)3

, (E.16)
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tref =
√
π

12 tau ' 3.57× 10−3 fs, (E.17)

Iref = 8cε0E
2
au ' 5.62× 1017 W cm−2, (E.18)

Ī0,j =


I0, if n∗j ≤ 1,

min
I0,

(j + 1)6

144
(
n∗j

8 − 2n∗j 7 + n∗j
6
)Iref

, otherwise. (E.19)

Ī0,j of Eq. (E.19) is an artificial saturation of Eq. (E.14) originating from the validity
limit of Eq. (E.9). This guarantees that a fully ionized shell will remain untouched at
higher intensities. Equation (E.14) is valid for any gas ionized in the tunnelling regime
by a laser pulse whose FWHM duration is at least 1.5 (2πω−1

0 ).
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F Anti-dispersive correction conserving the monotonicity

The resolution of the advective part [Eq. (3.0.3) in Section 3] is the numerical challenge
that the MaxFlu 1D has to face. An explicit three-point finite volume method solving
Eq. (3.0.3) has the following structure:

UUUn+1
i = H(UUUn

i−1,UUU
n
i ,UUU

n
i+1) = UUUn

i −
∆t
∆z

(
ΦΦΦn+ 1

2
i+ 1

2
−ΦΦΦn+ 1

2
i− 1

2

)
, (F.1)

where ΦΦΦn+1/2
i+1/2 is the numerical flux at the intercell position zi+1/2 (see the discretization

in Fig. 3.0.2). The numerical fluxes for the FORCE scheme [Eq. (3.2.30)] and the Lax-
Wendroff scheme [Eq. (3.2.31)] are, respectively (see Chen and Toro [29])

ΦΦΦFORCE, n+ 1
2

i+ 1
2

= 1
4

[
FFF n
i+1 +FFF n

i + 2FFF n+ 1
2

i − ∆z
∆t

(
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i+1 −UUU

n
i

)]
, (F.2)

ΦΦΦLW, n+ 1
2

i+ 1
2

= FFF
n+ 1

2
i . (F.3)

The finite volume scheme of Eq. (F.1) is said monotonic if it does not change the
monotonicity of the field, i.e., ||UUUn

i || ≤ ||UUU
n
i+1|| ⇔ ||UUU

n+1
i || ≤ ||UUUn+1

i+1 ||. This is equivalent
to the fact that all the eigenvalues of all the Jacobian matrices ∂UUUni−1

H(UUUn
i−1,UUU

n
i ,UUU

n
i+1),

∂UUUniH(UUUn
i−1,UUU

n
i ,UUU

n
i+1) and ∂UUUni+1

H(UUUn
i−1,UUU

n
i ,UUU

n
i+1) are non-negative (see Jennings [81]).

This class of schemes does not produce any spurious oscillation by definition. However,
monotonicity is a very restrictive condition and only holds for certain first-order accurate
schemes such as the FORCE method. The main disadvantage of these methods is that
they suffer from strong numerical diffusion, i.e., at every iteration, the amplitudes of the
relative maxima and the relative minima can noticeable decrease.
The total variation of UUUn at instant tn is defined by TV(UUUn) = ∑

i ||UUUn
i+1 −UUU

n
i ||. The

finite volume scheme of Eq. (F.1) is said total variation diminishing (TVD) if TV(UUUn+1) ≤
TV(UUUn). This criterion is less restrictive than monotonocity (a monotonic scheme is TVD,
but a TVD scheme is not necessarily monotonic) and high-order resolution can be achieved
[104, 163]. These schemes limit the numerical fluxes so that the variations of the slopes
UUUn
i+1 −UUU

n
i stay controlled (i.e., small) by the TVD criterion.

As built in Section 3.2.1, the advective part of the Maxwell-Fluid model is decoupled
into two independent advections: the advection of the Maxwell electromagnetic fields
[Eq. (3.2.26)] and the advection of the Fluid (plasma) fields [Eq. (3.2.27)]. Each part is
treated separately by the code MaxFlu 1D.
Since the Maxwell part [Eq. (3.2.26)] is a hyperbolic system and the Kerr nonlinear

refractive index —the only source of nonlinearities in this advective part— is expected to
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be small in front of the linear index, the code MaxFlu 1D uses directly the Lax-Wendroff
scheme [Eq. (3.2.31)], yielding accurate results.

The numerical problem lies in the weakly hyperbolic Fluid part [Eq. (3.2.27)]. Here
the spurious oscillations must be avoided because they destabilize the simulation. To
overcome this problem, an antidispersive correction hybridizing the FORCE and Lax-
Wendroff schemes has been conceived, inspired by the flux-corrected transport (FCT)
algorithm (see Boris and Book [18], and Zalesak [189]):
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(F.4)

where UUUD, n+1
i is the dispersive solution at tn+1 calculated by the Lax-Wendroff method,

AAA
n+1/2
i+1/2 is the antidispersive numerical flux that corrects UUUD, n+1

i and 0 ≤ ψ
n+1/2
i+1/2 ≤ 1 is a

flux limiter acting on AAAn+1/2
i+1/2 . If ψn+1/2

i+1/2 = 0, Eq. (F.4) is identical to the Lax-Wendroff
scheme; if ψn+1/2

i+1/2 = 1, then it is identical to the FORCE method. The key issue lies in
choosing an appropriate flux limiter. In the bibliography many TVD flux limiters are
found [18, 104, 163]. However, they are based on numerical fluxes that give the smallest
slopes (UUUn

i+1 −UUU
n
i , UUUn

i+2 −UUU
n
i+1 and so on). Therefore, they act indiscriminately on both

physical and numerical oscillations. Taking into account that the terahertz yield is related
to the low-frequency components of NeEx (see Section 2.4.2), modifying the physical
oscillations of the fluid part is not acceptable. At a first glance, using a monotonic scheme
would not be a priori acceptable because of its strong numerical diffusion. However, it is
acceptable if one physical constraint is applied: the wave propagation speed of the fluid
fields, vz, is smaller than c (i.e., |vz| � c). This means that the fluid part must be solved
using a time step ∆t = c−1∆z (fixed by the Maxwell part) which is smaller than the
maximum time step of the CFL condition for the Fluid part: |vz|−1∆z.

For the linear advection given by Eq. (3.0.1), the flux limiter assuring that the scheme
of Eq. (F.4) is monotonic for any ratio ∆t/∆tCFL, with ∆tCFL = |λ|−1∆z, is

ψ =
2 ∆t
|λ|−1∆z

1 + ∆t
|λ|−1∆z

. (F.5)
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To prove Eq. (F.5), let us consider the linear advection equation [Eq. (3.0.1)]:

∂tu(z, t) + λ∂zu(z, t) = 0, (F.6)

where λ is the constant propagation velocity. For Eq. (F.6), the Lax-Wendroff and FORCE
fluxes at the intercells [Eqs. (F.2) and (F.3)] are
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, (F.8)

According to Eq. (F.4), the dispersive solution is calculated from the Lax-Wendroff
scheme:
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(
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which is corrected by the antidispersive flux limiter as

un+1
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where
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Let us now define the following derivatives

αkj = ∂un
k
uLW, n+1
j , (F.12)

βkj = ∆t
∆z∂u

n
k
A
n+ 1

2
j+ 1

2
. (F.13)

As explained in Section F, the scheme (F.10) is monotonic if and only if ψn+ 1
2

i+ 1
2

verifies
simultaneously the following four conditions:
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2
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2
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2
βii ≥ 0, (F.16)
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αi+1
i+1 + ψ

n+ 1
2

i+ 1
2
βi+1
i ≥ 0. (F.17)

The monotonicity-preserving flux limiter (F.5) results from Eqs. (F.14), (F.15), (F.16)
and (F.17).
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Figure F.1: Antidispersive flux limiter for the Fluid part [Eq. (F.18)] as a function of
|vz|/c (black curve). The monotonic zone (light green area) lies above the
undesirable non-monotonic zone (light red area).

For the Fluid part [Eq. (3.2.27)], calculating the optimal flux limiter preserving the
monotonicity must take into account the ratio between ∆t and |vz|−1∆z. This ratio is
very cumbersome to evaluate. In practice, the MaxFlu 1D code heuristically extrapolates
the limiter of Eq. (F.5) to the Fluid part in this way:

ψ
n+ 1

2
i+ 1

2
= 2|vz(UUU

D, n+ 1
2

i )|
c+ |vz(UUU

D, n+ 1
2

i )|
, (F.18)

where vz(UUU
D, n+ 1

2
i ) is calculated with Eq. (3.2.21) and the values of the first stage of the

Lax-Wendroff scheme [Eq. (3.2.31a)]. This flux limiter for the Fluid part, plotted in
Fig. F.1, is very easy to compute. In fact, most of the standard TVD flux limiters are
computed with five points, from UUUD, n+1

i−2 to UUUD, n+1
i+2 , which would imply extra commu-

nications between processors. No spurious oscillations have been noticed, even at high
intensities, when using this limiter. Therefore, this limiter is suitable for the scheme (F.4)
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applied to the Fluid part of the Maxwell-Fluid model. Note that, since ψ > 0 if |vz| > 0,
the scheme is first-order accurate and thus numerically diffusive. Nevertheless, as almost
always |vz| � c holds, the limiter will be close to zero so that diffusion remains negligible.
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Résumé : Les ondes térahertz (THz) appar-

tiennent à une bande étroite du spectre  élec-

tromagnétique, comprise entre les micro-ondes 

et les ondes optiques. Le rayonnement THz 

intense est très prometteur pour la spectroscopie 

résolue en temps et l’identification des explosifs 

à distance. Le but de cette thèse est précisément 

d’étudier la génération d’un tel rayonnement 

THz par couplage de deux impulsions laser 

ultracourtes capables d’ioniser un gaz. Le plas-

ma créé par photoionisation joue le rôle de con-

vertisseur nonlinéaire de fréquence, trans-

formant une partie de l’énergie du champ laser 

dans la bande THz via une gamme riche de mé-

canismes physiques. À des intensités laser mo-

dérées (10
12

-10
14

 W/cm²) nous identifions, à 

l’aide d’une expérience faite dans l’air, la signa-

ture de l’effet Kerr dans le spectre THz émis, 

qui, plus faible, se révèle complémentaire de 

celle du plasma. De plus, nous démontrons que, 

au-delà de la configuration laser « classique » à 

deux couleurs, coupler plusieurs fréquences 

laser suivant les harmoniques d’une forme 

d’onde en dents de scie maximise l’émission 

THz. Nos simulations prédisent une efficacité 

de conversion d’énergie THz de 2% avec quatre 

couleurs, une valeur record inégalée à ce jour. À 

des intensités laser élevées (10
15

-10
18

 W/cm²), 

nous démontrons que le rayonnement THz émis 

croît de manière non-monotone parce qu’il 

existe une valeur d’intensité maximisant 

l’énergie THz produite par chaque couche 

électronique. Finalement, nous avons étudié 

l’effet combiné de la photoionisation et des 

forces pondéromotrices à des intensités proches 

de 10
18

 W/cm². Ces dernières forces augmentent 

avec l’intensité laser et ouvrent des perspectives 

intéressantes pour la génération de champs 

térahertz très intenses dans le régime relativiste 

de l’interaction laser-matière. 
 

 

Title : Generation of intense terahertz sources by ultrashort laser pulses 
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Abstract : Terahertz (THz) waves belong to a 

narrow frequency band of the electromagnetic 

spectrum, wedged between microwaves and 

optical waves. Intense THz radiations are 

highly promising for time-resolved spec-

troscopy and remote identification of ex-

plosives. The goal of this thesis is precisely to 

study the production of intense THz waves by 

coupling two ultrashort laser pulses able to 

ionize a gas target. The plasma created by 

photoionization acts as a nonlinear frequency 

converter, transforming part of the laser energy 

into the THz band via a wide range of physical 

mechanisms. At moderate laser intensities 

(10
12

-10
14

 W/cm²) we identify, with an ex-

periment done in air, the optical Kerr signature 

in the emitted THz spectrum, which, even 

weaker, looks complementary to the plasma 

signature. Moreover, we demonstrate that, be- 

yond the “classical” two-colour setup, coupling 

several laser frequencies following the 

harmonics of a sawtooth waveform is optimal 

to enhance THz emission. Simulations predict a 

laser-to-THz energy conversion efficiency of 

2% with four colours, a record value 

unequalled so far. At high laser intensities 

(10
15

-10
18

 W/cm²), we prove that the emitted 

THz radiation grows nonmonotonically, 

because there exists an optimal intensity value 

that maximizes the THz energy produced by 

each electronic shell of the irradiated atom. 

Finally, we have studied the combined effect of 

photoionization and ponderomotive forces at 

intensities close to 10
18

 W/cm². The latter 

increase with the laser intensity and thus open 

interesting perspectives for the generation of 

very intense terahertz fields in the relativistic 

regime of laser-matter interaction. 
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