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Abstract

The continuous increasing traffic in existing cellular networks has forced the mobile

operators to look for efficient and viable options to manage their networks so as to

ensure operational efficiency over the network life cycle while also evolving with the

implementation of new technologies and features. Traffic hotspot localization can help

operators to identify the areas of capacity bottlenecks and also to deploy the appropriate

solutions reducing the congestion in these areas. Small cell deployment represents one

of the possible solutions allowing to reduce load and enhance service in high-dense

areas. In fact, cellular operators are currently shifting towards Heterogeneous Networks

as the most promising solution to meet user demands; by deploying small cells in a

network of macrocells.

In this thesis, we firstly propose and assess a new traffic hotspot localization method

based on the projection of O&M KPIs on the coverage map. Compared to probing

methods using storage servers and trace analysis, the computational costs and the

equipment expenditures are significantly reduced. In fact, all the exploited inputs are

not large in terms of volume, they are already available at the operators’ disposal and

the way the KPIs are processed is not consuming in terms of computations. Moreover,

the accuracy of localization is further improved as compared to actual operational

methods leading to more efficient small cell deployments.

Next, in order to evaluate the impact of the limited accuracy of traffic localization

tools on small cell deployment, we study the performances of three different scenarios.

Namely, the first one considers a network of macrocells only and represents a benchmark

to decide about the usefulness of small cells. The second one is based on a network

of macrocells with a perfectly deployed small cell allowing to identify the limitations

of small cell deployment and the last one is with an imperfectly deployed small cell.

Static and dynamic level analysis are performed. First, we assess the distribution of

the achievable data rates reflecting the distribution of radio conditions in the network.

The results of the first part of the study are injected in the dynamic level analysis

where the system presents dynamic arrivals and departures. The objectives of this

study are i. to identify the areas where the small cell deployment brings capacity gains
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and improve the radio conditions in the network and ii. to select the localization tools

that can be efficient in the site planning process.

Realizing that a significant amount of cellular demand is generated on the go and

suffers deteriorating quality, recent research efforts proposed deploying small cells

on-board public transportation means to enhance cellular coverage and capacity. In

this context, we investigate the potential performance gains of using moving small

cells in the presence of stationary but temporary traffic hotspots. Deploying classic

small cells is not efficient enough if they are installed for occasionally occurring traffic

hotspots. So, we evaluate the possible capacity and quality of service gains that can

be obtained when the hotspot is static. The major outcome is to understand if moving

cells leverage the relative operators’ investments or must be revised and enriched mainly

in terms of mobility control to reach higher efficiency.

Finally, we propose a novel mobile data offloading mechanism which capitalizes on

drone small cells to alleviate the data traffic load generated by traffic hotspots. Drones

are activated after the detection of high load in their controlling macrocells. They

are moved from a position to another thanks to the information provided by a traffic

hotspot localization tool. The proposed mechanism is not energy-consuming since the

drone will not fly when it starts to offload traffic. Better radio conditions with less

interference, less handovers and better reactivity to congestion are the most important

advantages of the proposed mechanism. Moreover, significant savings can be generated

because less equipments are required, drones are not active all the time and no air

conditioning is needed. At last, we realize a performance evaluation and comparison

with classic small deployment and also with a network of macrocells only in order to

estimate the additional capacity gains obtained from drone deployments.



Résumé

Introduction

Face à une augmentation importante du trafic de données et aux exigences des services

en terme de débits élevés, les réseaux cellulaires ont évolué très rapidement avec

l’introduction de nouvelles fonctionnalités de plus en plus avancées, ce qui a permis

d’améliorer les services, leurs performances et leurs disponibilités.

Plusieurs idées innovatrices et très prometteuses ont émergé, que ce soit dans le

domaine de la recherche ou de l’industrie. L’objectif commun est d’améliorer encore plus

les performances des réseaux, l’expérience des utilisateurs et le business de l’opérateur.

En effet, l’un des challenges le plus important pour les opérateurs des réseaux mobiles

est de dimensionner le réseau de la manière la plus efficace possible, c’est-à-dire, bien

planifier les ressources à mettre en œuvre pour fournir une bonne couverture et une

meilleure capacité.

Résoudre le problème de croissance du trafic de données n’implique pas forcément

une migration vers un nouveau système plus performant et donc plus coûteux, mais

plutôt optimiser et mettre à niveau les systèmes actuels et aussi ajouter des fonc-

tionnalités plus avancées qui ne requièrent que quelques changements mineurs sur

l’infrastructure et la configuration déjà existantes.

Dans ce contexte, afin de mieux gérer le trafic généré dans le réseau, les opérateurs

ont déployé des petites cellules pour aider les macro-cellules à délester (« offload » en

anglais) les zones de la cellule où le trafic de données est significativement supérieur au

trafic moyen dans la cellule; par souci de brièveté, on désignera ci-dessous une telle

zone par le mot anglais « hotspot ». Cependant, le problème majeur de ces réseaux

hétérogènes consiste à bien localiser ces hotspots et puis de mettre en place la meilleure

solution pour les absorber.

Une mauvaise localisation de hotspot ne se répercute pas uniquement sur les

utilisateurs qui vont avoir des débits très faibles suite à des conditions radio plus

dégradées (à cause des interférences qui vont être reçu de la petite cellule qui est
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supposée couvrir le hotspot mais elle est mal positionnée), mais aussi sur la capacité

globale du réseau, du fait que ces utilisateurs (UE) vont consommer une proportion

significative des ressources radio, affectant ainsi les performances globales du système.

Dans cette thèse, on traite le sujet de localisation de hotspot de trafic et on étudie

l’impact de la mauvaise localisation sur les performances des solutions basées sur

le déploiement des réseaux hétérogènes. Actuellement, ces deux sujets ont attiré

beaucoup d’attention auprès des chercheurs, des industriels et de la communauté de

standardisation.

On propose une nouvelle méthode de localisation de hotspot dans une première

étape. L’objectif de cette méthode est de réduire les coûts de localisation, améliorer

sa précision et réduire les calculs et les traitements faits sur les données de traffic

remontées au niveau du réseau d’accès.

Dans une deuxième étape, on propose d’évaluer l’impact d’une mauvaise localisation

de trafic sur le déploiement des petites cellules à travers une analyse de performances.

Dans cette étude, on commence par établir les expressions de la distribution spatiale

du débit pour trois différents scénarii et en présence d’une distribution spatiale de

trafic non uniforme. Le premier scénario est basé sur un réseau de macro-cellules

seulement permettant ainsi de déduire l’utilité des déploiements de petites cellules en

le comparant avec les deux autres scenarii. Le deuxième suppose que la petite cellule

couvre parfaitement le hotspot. Évaluer les performances de ce scénario permet de

connaitre les limites des déploiements de petites cellules s’il en existe. Le troisième

scénario prend en compte la mauvaise localisation de trafic. Le but est d’évaluer

l’intervalle de précision qui peut être toléré si on déploie des petites cellules en exploitant

les informations fournies par un outil de localisation de trafic. Les expressions obtenues

de la distribution de débit sont injectées dans une étude basée sur des modèles de

files d’attentes afin de mieux comprendre le comportement du système face à cette

mauvaise localisation de trafic.

Sachant qu’une grande quantité de trafic de données dans le réseau mobile est générée

par des utilisateurs qui sont en mouvement, on propose d’évaluer les performances

des petites cellules mobiles, qui peuvent être déployés sur le toit d’un bus, d’un taxi

ou un autre moyen qui circule dans des zones où on peut avoir plusieurs utilisateurs

connectés au réseau. Dans cette troisième étape, le modèle de mobilité de Manhattan1

est ainsi appliqué sur la petite cellule mobile puisque c’est un modèle qui s’approche de

1Le modèle de Manhattan est utilisé pour émuler le modèle de circulation des petites cellules
mobiles dans des rues par des cartes. Ce modèle peut être utile dans la modélisation de circulation
dans une zone urbaine dont la carte est composée d’un certain nombre de rues horizontales et verticales.
Donc, la petite cellule mobile est autorisé à se déplacer selon la grille des rues.
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la réalité surtout pour les zones urbaines. Cette étude est réalisée en deux parties; la

première est le calcul de la distribution de débit en présence du hotspot et la deuxième

se base sur l’exploitation de cette distribution de débit dans modèles de files d’attentes

de plusieurs classes d’utilisateurs (chaque classe est caractérisée par un taux d’arrivé

et un débit de service). L’objectif principal de cette étude est de décider de l’utilité

des petites cellules mobiles et de voir si cet investissement est rentable ou non.

La quatrième étape consiste à améliorer encore la solution de déploiement de petites

cellules en utilisant les drones. Initialement conçus à des fins militaires, les drones

connaissent depuis quelques années un grand succès dans le domaine des services de

surveillance et de contrôle. Or cette technologie pouvait également présenter un grand

intérêt dans le domaine des télécommunications. En effet, des progrès significatifs ont

été réalisés récemment sur le plan des coûts de déploiement et d’entretien, ainsi que sur

le plan de la fiabilité du contrôle de vol des drones. C’est pourquoi une architecture

réseau reposant sur une flotte de drones peut être utilisée avantageusement pour assurer

le délestage du trafic dans une cellule d’un réseau mobile. L’objectif du mécanisme

proposé est d’améliorer la mobilité de la petite cellule afin de bien couvrir les hotspots

et améliorer les conditions radio avec des communications plus en ligne de mire.

Localisation des hotspots de trafic dans les réseaux

cellulaires

Actuellement, la localisation de hotspot dans les réseaux cellulaires se fait principalement

à l’aide des sondes. Après avoir récupéré les traces de communications capturées par

les sondes et stockées dans des serveurs de stockage, des traitements sont exécutés

sur ces traces selon une de plusieurs techniques (citons par exemple, la méthode de

triangulation ou aussi la méthode de trilatération [19]). La localisation de trafic avec

des sondes s’est avérée très coûteuse puisqu’elle nécessite une mise en place d’un outil

d’acquisition de trace sur chaque interface du réseau. Puis, pas toutes les traces sont

capturées et le mécanisme manque d’efficacité (précision de trafic de 100 à 150m en

milieu dense urbain). De plus, cette solution est compliquée à gérer puisqu’elle nécessite

des outils de traitement des sondes et des serveurs de stockage des traces avec une

grande capacité mémoire.

Afin de remédier à ces derniers inconvénients, on propose une nouvelle solution de

localisation de hotspot. Notre idée se base uniquement sur l’exploitation de certains

compteurs et indicateurs de performance (KPI) que le réseau déjà fournit via le centre

d’opération et de maintenance (OMC). En faisant quelques traitements de corrélation
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avec les autres cellules voisines, nous pouvons estimer la localisation des hotspot de

trafic à des précisions meilleures que celle des solutions des sondes (presque à la taille

d’une petite cellule).

Principe

La solution proposée est basée sur 5 KPIs obtenus de l’OMC pendant les heures

chargées de chaque cellule et moyennés sur un ensemble de jours. Ces KPIs sont:

1) La distribution du temps de propagation (« timing advance » en anglais) dans

chaque cellule,

2) La distribution du angle d’arrivée (« Angle of arrival » en anglais) dans chaque

cellule,

3) Le degré de voisinage de chaque cellule voisine à la cellule serveuse,

4) La corrélation entre les charges radio des cellules,

5) La moyenne arithmétique et harmonique de débit (notées AMT et HMT respective-

ment).

Ces KPIs sont correctement choisis en ce qui concerne deux critères importants:

localiser les hotspots de trafic en termes de nombre d’utilisateurs connectés et aussi de

quantité de trafic écoulé. En fait, l’AoA et le degré de voisinage des cellules peuvent être

suffisants pour dériver la distribution spatiale des utilisateurs connectés. Cependant, un

hotspot de trafic est mesuré non seulement par la haute densité d’utilisateurs connectés

mais aussi par le volume de trafic. Ce dernier ne suit pas exactement la même évolution

que le nombre d’utilisateurs. Par conséquent, la localisation du trafic est amélioré en

ajoutant des KPIs directement liés au volume tel que la corrélation entre les charges

des cellules voisines et la différence entre l’AMT et le HMT.

Selon chaque KPI, un poids de trafic est attribué à chaque maille (« pixel »

en anglais) de la zone étudiée en exploitant les données de la carte de couverture2

(principalement, l’identifiant de la meilleure cellule serveuse, l’identifiant de la meilleure

cellule candidate pour le handover et le niveau de champs). La contribution de chacun

de ces KPIs est pondérée par un facteur d’importance obtenu grâce à la résolution

d’un problème d’optimisation minimisant la distance à la carte de lieux potentiels de

trafic (cette carte se base sur des données commerciales et contient des informations

sur les zones possibles d’apparition de hotspot comme les centres commerciaux, les

zones industrielles, . . . ). Les facteurs d’importance sont assignés afin d’éviter un excès

2Carte de couverture ( niveau de champs par pixel selon la résolution): cette carte est obtenue
par un outil de prédiction de couverture ou par les techniques MDT. La carte contient aussi les
coordonnées de chaque site et la zone de couverture de chaque cellule.
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de confiance dans la localisation des hotspot de trafic dû à la corrélation entre les KPIs

utilisés.

La méthode de localisation de trafic peut attribuer des poids importants à des

pixels isolés ou à ceux qui sont en bordure d’un hotspot. Ainsi, le smoothing de la

carte obtenue est une étape supplémentaire proposée dans ce travail, afin de rendre la

distribution prévue du trafic plus précise. Cette étape permet principalement d’éliminer

les faux hotspot.

L’exécution de la solution proposée n’exige pas des investissements et des coûts

d’exploitation énormes puisqu’elle est basée sur les entrées qui sont déjà disponibles

dans le réseau. Le seul coût de notre méthode est celui de l’exécution et du traitement

des données des KPIs qui est raisonnable par rapport au coût des méthodes utilisées

récemment comme celles basées sur les sondes.

Carte de couverture et KPIs: Définition et notation

Carte de couverture

La carte de couverture est une carte à granularité fine d’un secteur géographique

exploitée dans des procédés de planification du réseau ainsi que d’autres utilisations.

L’information extraite à partir des cartes de couverture couvrent les caractéristiques

géographiques, les aspects radio, les services disponibles, les règlements spectraux, etc.

La taille de chaque pixel (appelée aussi résolution de la carte de couverture) est

de l’ordre de 5 à 50 mètres dans la pratique. Cette carte est souvent prise des outils

de prédiction de couverture ou de mesures terrains remontées grâce au techniques de

minimisation des drivetests (MDT) [58].

Dans ce travail, la carte de couverture est dénotée par L. Sans perte de généralité,
nous supposons que L a la forme d’un carré et est discrétisé en m2 pixels de même

taille.

Pour 1 ≤ i, j ≤ m, on note par Pi,j les coordonnées de chaque pixel dans L et nous

supposons que le pixel P1,1 est situé au sommet en bas à gauche de la carte.

On note également, par C = {C1,C2, . . . ,Cn} l’ensemble des cellules situées dans

la carte de couverture L, où Ck est la zone géographique couverte par la cellule k et

n est le nombre de cellules dans le réseau étudié. Il est clair que C ⊆ L parce que le

niveau de champs reçu dans quelques pixels ne permet pas d’avoir un minimum de

qualité de service.

Soit RSRPk,i,j la puissance reçue de signal de référence (son équivalent dans UMTS

est RSCP et dans le GSM est Rxlev) [59] de la cellule k au pixel Pi,j . La couverture
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de cette cellule, notée par Ck, est donnée, pour 1 ≤ k ≤ n, par

Ck = {Pi,j ∈ L tel que RSRPk,i,j = max
1≤l≤n

RSRPl,i,j} (1)

Pour chaque pixel Pi,j dans L, on note par c∗
i,j et ĉi,j respectivement l’index la

meilleure cellule serveuse et de la meilleure cellule candidate pour le handover.

c∗
i,j = arg max

1≤l≤n
RSRPl,i,j (2)

ĉi,j = arg max
1≤l≤n
l Ó=c∗

i,j

RSRPl,i,j (3)

KPIs

• Timing Advance: temps de propagation qui est une mesure de temps réalisée par

une station de base (BS) entre sa propre transmission et celle reçue de l’UE [60].

La granularité de ce KPI dans les réseaux LTE est de l’ordre de 78.25 mètres[60].

En se basant sur cette granularité, le TA est discrétisé en 6 intervalles indexés

par t de la forme [78.25× t, 78.25× (t+1)], avec 0 ≤ t ≤ 4, et [391.25, +∞) pour

t = 5. Pour chaque cellule k, on note par τt(k) la valeur du TA KPI qui donne le

pourcentage des UEs dans l’intervalle de TA t.

• Angle d’arrivée: l’angle que fait un UE par rapport une direction de référence,

typiquement le nord géographique [61]. Généralement, n’importe quel signal de

la liaison montante (UL) de l’UE peut être employé pour estimer l’AoA, mais

typiquement, on utilise les signaux de référence comme le SRS ou le DMRS

[62]. La BS détermine la direction de l’arrivée en mesurant le timing advance à

différents éléments du réseau d’antennes. En conséquence, l’AoA est estimé à

l’aide de ces délais différents. Selon ce KPI, la cellule est divisée en trois zones

géographiques. Pour chaque cellule k, on note par φt(k) la valeur de AoA KPI

qui donne le pourcentage des UEs dans la zone de AoA t (Fig. 1).

• Degré de voisinage: Dans différents événements de la connexion des UEs au

réseau tel que le processus de handover, chaque UE mesure les signaux des cellules

détectées et envoie un rapport de ces mesures à sa cellule serveuse. Le compteur

dans la base de données de O&M représentant le niveau voisinage d’une cellule

voisine est incrémenté à chaque fois que cette cellule est remontée (dans un

rapport de mesure) comme cellule éligible de candidat pour la passation (fig. 2).
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Fig. 1 Division de la zone couverte par la station de base selon l’AoA.

Afin d’obtenir ce KPI comme une distribution, le niveau voisinage de chaque

cellule est définit par le nombre de remontée rapportant cette cellule comme

meilleure candidate pour le handover divisé par le nombre total de remontée.

Pour chaque voisine l d’une cellule serveuse k, on note par ϑl(k) le nombre de

fois où la cellule l est rapportée comme la meilleure cellule pour le handover.

• La charge de la cellule: la charge est définie comme le rapport entre les ressources

occupées et les ressources disponibles dans la cellule durant une période d’observation.

Ce KPI est calculé par heure et est donné durant les heures chargées ou pour la

journée, la semaine ou aussi le mois. On note par ρ(k) la charge dans la cellule k.

• La moyenne arithmétique (AMT) et harmonique (HMT) des débits: AMT

représente le débit utilisateur et HMT représente le débit cellule. Le HMT diffère

de l’AMT par le fait qu’il donne plus d’importance aux UEs avec de mauvaises

conditions radio. Sachant que la différence entre ces deux mesures de débits est

plus grande lorsque le trafic est au centre de la cellule, on peut ainsi déduire la

localisation du trafic dans la cellule si c’est au centre ou en bordure. Pour chaque

cellule k, on note par µa(k) et µh(k), respectivement, les KPIs AMT et HMT

obtenus de la base de données O&M.

Carte des lieux potentiels de trafic

Une carte des lieux potentiels de trafic est une couche supplémentaire obtenue à partir

des données commerciales afin d’améliorer la localisation des hotspot. Dans ce cas, la

distribution spatiale du trafic est calculée prenant en compte la connaissance apriori de

l’emplacement des secteurs industriels et commerciaux ou l’emplacement des résidences.

Cette carte contient également des informations sur l’emplacement des rivières, des
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Fig. 2 Mise à jour du degré de voisinage.

forêts, des événements de masse etc. Une telle carte peut être une carte de référence

pour définir la contribution de chaque KPI dans la localisation du trafic.

On note par Q̂= (q̂i,j)1≤i,j≤m la carte (ou la matrice) représentant les lieux potentiels

de trafic.

q̂i,j =











ωi,j si Pi,j est dans un hotspot potentiel

0 sinon
(4)

où ωi,j est une valeur définissant l’intensité possible du hotspot.
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Algorithme: Conception et optimisation

Étape 1: calcul de la carte de trafic selon TA

Chaque pixel prend un poids de trafic égal au pourcentage des UEs dans l’intervalle de

TA correspondant à ce pixel.

q
(1)
i,j =

5
∑

t=0

τt(c
∗
i,j)×χ1,t(Pi,j) (5)

où χ1,t(Pi,j) est la fonction indicatrice du la zone de TA t dans la cellule c∗
i,j et χ1,t(Pi,j)

prend la valeur 1 si le pixel appartient à la zone de TA t et 0 sinon.

Étape 2: calcul de la carte de trafic selon AoA

Chaque pixel prend un poids de trafic égal au pourcentage des UEs dans l’intervalle de

TA correspondant à ce pixel.

q
(2)
i,j =

1
∑

t=−1

φt(c
∗
i,j)×χ2,t(Pi,j) (6)

où φt(c
∗
i,j) représente la valeur du KPI AoA qui donne le pourcentage des UEs la zone

de AoA t et χ2,t(Pi,j) est donnée par

χ2,t(Pi,j) =











1 si Angle(Pi,j , c
∗
i,j)− θ(c∗

i,j) ∈ It

0 sinon
(7)

avec

It =































[−π
6 , π

6 ] si t=0

[π6 , π] si t=1

[−π, − π
6 ] si t=-1

(8)

Angle(Pi,j , c
∗
i,j)) est l’angle entre le pixel Pi,j et sa cellule serveuse c∗

i,j par rapport

au nord géographique de la carte de couverture. θ(c∗
i,j) est l’azimuth de l’antenne

couvrant la cellule c∗
i,j .
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Étape 3: calcul de la carte de trafic selon le degré de voisinage

En exploitant le degré de voisinage, on attribut les poids de trafic comme illustré dans

la figure 3.

Fig. 3 Attribution des poids de trafic selon le degré de voisinage.

On attribut à chaque pixel Pi,j le poids q
(3)
i,j égale à ϑĉi,j

(c∗
i,j)

Étape 4: calcul de la carte de trafic selon la corrélation des charges radio

On note par ψc∗
i,j

l’ensemble des cellules voisines ayant le même niveau de charge que

la cellule c∗
i,j et qui sont éligible pour un handover pour des UEs au pixel Pi,j . Le poids

attribué est donné par

ψc∗
i,j

= {k ∈ C tel que |ρ(c∗
i,j)−ρ(k)| < ǫ et |RSRPc∗

i,j ,i,j −RSRPk,i,j | < γ} (9)
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où γ est une paramètre permettant d’identifier les cellules éligibles pour un possible

handover et ǫ est utilisé pour identifier les cellules ayant le même comportement que la

cellule étudiée en terme de charge radio.

q
(4)
i,j =



















1
n(ψc∗

i,j
)

∑

k∈ψc∗
i,j

ρ(k) si ρ(c∗
i,j) > ρ̃

0 sinon

(10)

où n(ψ) est le nombre d’éléments de ψ et ρ̃ est le seuil utilisé pour identifier les cellules

chargées.

Étape 5: calcul de la carte de trafic selon AMT versus HMT

Dans cette étape, le poids de trafic attribué est la différence entre ces deux moyennes

divisée par une constante µ0 (µ0 peut être définit comme le débit maximum qu’un

utilisateur peut atteindre et elle permet d’avoir toujours une valeur dans [0, 1]).

Le poids de trafic q
(5)
i,j attribué à chaque pixel est formulé comme suivant:

q
(5)
i,j =











µa(c
∗
i,j)−µh(c

∗
i,j)

µ0
si RSRPc∗

i,j
,i,j > RSRP0

1− µa(c
∗
i,j)−µh(c

∗
i,j)

µ0
si RSRPc∗

i,j
,i,j < RSRP0

(11)

où RSRP0 est le niveau de champs seuil qui permet de différencier entre les utilisateurs

qui sont en bordure de cell et les utilisateurs qui sont au centre.

Étape 6: combinaison de tous les KPIs dans une métrique globale

On note par Q = (qi,j)1≤i,j≤m la carte de trafic qui en résulte de la combinaison de

tous les KPIs. La carte Q(s) = (q
(s)
i,j )1≤i,j≤m, 1 ≤ s ≤ 5, avec un facteur d’importance

donné par x = (x1,x2,x3,x4,x5)
T est définie par

Q =
5

∑

s=1

xsQ
(s) (12)
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Étape 7: smoothing de la carte de trafic estimée

Dans cette étape, afin d’éliminer les faux hotspots, on fait comme suit

q∗
i,j =

∑

Pi′,j′∈L G(Pi,j ,Pi′,j′)qi′,j′

∑

Pi′,j′∈L G(Pi,j ,Pi′,j′)
(13)

où

G(Pi,j ,Pi′,j′) =
1

2πh
e−

|Pi,j−P
i′,j′ |2

2h (14)

avec |Pi,j −Pi′,j′ | la distance euclidienne entre les pixels Pi,j et Pi′,j′ et h un paramètre

lié au nombre de pixels voisins inclus dans le smoothing de l’estimation au pixel Pi,j .

Les qi,js sont les poids de trafic obtenus après l’exécution de l’étape 6 et les q∗
i,js sont

les poids de trafic obtenus après l’exécution de l’étape 7.

Optimisation de l’algorithme de localisation de hotspot

Obtenir le meilleur vecteur des facteurs d’importance lié au KPIs x est le résultat d’un

problème d’optimisation qui réduit la distance entre les poids de trafic obtenus dans

l’étape 6 et les poids de trafic donnés par la carte des lieux potentiels de trafic Q̂. Ce

problème d’optimisation est donné par















minimise
x∈R5

∑m
i,j=1(qi,j − q̂i,j)

2 =
∑m

i,j=1

(

∑5
s=1xsq

(s)
i,j − q̂i,j

)2

xs ≥ 0, s = 1..5

(15)

Tout d’abord, on reformule le problème comme suivant:

AT =

















q
(1)
1,1 ... q

(1)
1,m ... q

(1)
2,1 ... q

(1)
m,m

. .. . .. . .. .

q
(5)
1,1 ... q

(5)
1,m ... q

(5)
2,1 ... q

(5)
m,m

















et

b = [q̂1,1...q̂1,m...q̂2,1...q̂m,m]T

La forme du problème initiale devient











minimise
x∈R5

‖Ax −b‖2

xs ≥ 0 , 1 ≤ s ≤ 5
(16)
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La solution de cette dernière forme est donnée par la méthode des moindres carrées

qui est simplement obtenue avec Gauss Newton [70].

Résultats

On prend un réseau LTE tri-sectoriel avec une distribution de station de base obtenue

d’un réseau réel ainsi que sa configuration. On génère un trafic non uniforme avec des

hotspots dans la carte et on essaye de les trouver. Avec notre algorithme, les hotspots

sont bien localisés avec une bonne précision.

Fig. 4 représente la CDF des poids trafic calculée en se basant sur l’algorithme

proposé. Pour localiser les hotspots, on s’intéresse à la partie encerclé en bleu dans la

figure 4 qui représente les poids élevés.
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after
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Fig. 4 CDF du trafic généré et estimé.

Selon les résultats de la Fig. 4, l’exploitation des 5 KPIs donne une meilleure

estimation de la distribution spatiale de trafic comparée à l’utilisation de quelques KPIs.

L’estimation est encore amélioré lorsque on exécute toutes les étapes de l’algorithme

proposé.
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Conclusion

Dans cette étude, on a proposé une solution de localisation de hotspot de trafic qui

réduit les coûts et améliore en même temps la précision avec moins de calculs. Les

résultats de simulations ont confirmé l’efficacité de la solution et a montré qu’on peut se

débarrasser de l’utilisation des sondes à cause de leur coût important et leur précision

faible.

Impact de la localisation parfaite et imparfaite des

hotspots sur le déploiement des petites cellules

Les zones urbaines denses sont des environnements où le spectre est une ressource rare

et le besoin de grande capacité est urgent pour assurer une bonne qualité de service. En

conséquence, un déploiement de réseau dense est nécessaire avec une topologie adaptée

à l’environnement de la zone étudiée afin d’assurer une meilleure couverture dans la

cellule entière. La compréhension de l’efficacité du déploiement des petites cellules en

présence des hotspots de trafic est un sujet qui attire l’attention des opérateurs.

En ce chapitre, on évalue l’impact du mauvais positionnement d’une petite cellule

sur les performances du réseau. On décrit tout d’abord, le modèle de système qu’on

étudie avec une focalisation spéciale sur les aspects radio. Puis, on calcule la distribu-

tion du débit et sa moyenne après une analyse au niveau statique, qui se réfère dans

notre contexte, à un ensemble de snapshots de réseau décorrélés où la distribution

d’emplacement des utilisateurs varie seulement dans l’espace. Trois scénarios différents

sont étudiés : i. avec des macro cellules seulement, ii. avec une petite cellule déployée

exactement au centre du hotspot de trafic et à iii. avec une petite cellule pas par-

faitement déployée près du hotspot de trafic (sa position est différente de celle du

hotspot).

On considère deuxièmement la dynamique du système (largement appelé analyse

flow level), avec des utilisateurs arrivant à des temps aléatoires au système et restant

pour une durée finie de temps correspondant à la fin de leurs services. Le modèle de

files d’attente étudié est basé sur le multi-classe processor sharing couplé. Le couplage

entre la macro cellule et la petite cellule est la conséquence de l’interférence produite

par chacune des cellules sur les utilisateurs de l’autre. On établie des expressions

analytiques pour plusieurs métriques de performance réseau prenant en compte le

niveau de précision des outils de localisation des hotspots de trafic [20].
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D’après les résultats obtenus, si on considère les analyses au niveau statique

seulement, on peut dire que l’efficacité du déploiement de petites cellules pour offloader

le trafic de la macro cellule congestionnée dépend principalement de la précision du

procédé de localisation de hotspot utilisé, de la position du hotspot dans la cellule et

aussi de la position de la petite cellule par rapport à l’emplacement de la macro cellule.

D’ailleurs, on observe que quand le hotspot est en bordure de cellule, les imper-

fections de la localisation du hotspot sont plus tolérées et les performances système

peuvent être améliorées en déployant de petites cellules comparé à un réseau composé

de macro cellules seulement. Par contre, quand le hotspot est au centre de la macro

cellule, même un positionnement parfait de la petite cellule n’est pas bénéfique pour

les performances globales du système et n’apporte pas des gains.

L’analyse de niveau dynamique nous a permis de conclure que le positionnement

parfait de la petite cellule par rapport à la position du hotspot est suffisante pour

obtenir de meilleurs résultats mais il n’est pas suffisant pour obtenir le gain maximal.

Ce dernier dépend de plusieurs autres paramètres tels que la portée radio de la petite

cellule (s’il couvre tout le hotspot ou une partie de lui quand ce ce dernier est plus

large), la capacité de la petite cellule et la quantité de trafic qu’elle doit offloader.

Analyse de performance des déploiements de petites

cellules mobiles dans les réseaux cellulaires en présence

des hotspots

Le concept de déplacement des petites cellules dans les réseaux mobiles est présenté et

évalué en considérant la dynamique du système. Une petite cellule se déplace selon un

modèle de mobilité de Manhattan qui est le cas quand la petite cellule est déployée

sur le dessus d’un autobus suivant une trajectoire prédéfinie dans les secteurs où il y a

généralement pleins de gens connectés. On étudie au niveau dynamique du système un

modèle de files d’attente basé sur un système multi-classe processor sharing couplé.

Le couplage est dû à l’interférence mutuelle produite par chaque cellule sur l’autre

(puisqu’elles fonctionnent dans le même spectre de fréquence).

Les résultats numériques obtenus des analyses réalisées prouvent que déployer les

petites cellules mobiles pour absorber le trafic dans la macro cellule congestionnée peut

être une solution efficace quand la petite cellule se déplace près du hotspot et couvre

une part importante de ce dernier. Cependant, quand la petite cellule se déplace loin

du hotspot de trafic, les performances système sont dégradées comparées à un réseau
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composé de macro cellules seulement. Ceci est dû à l’interférence mutuelle élevée entre

la macro cellule et la petite cellule.

Procédé de délestage de trafic utilisant les drones au

sein du réseau mobile

Description du mécanisme proposé

Les états du drone et de la macro cellule

Le drone peut être soit en mode:

• Idle: le drone est en état d’arrêt ou il recharge ses batteries,

• Stand-by: le drone active quelques composants électronique afin de se préparer

pour une congestion possible dans la cellule.

• Active: Le drone active tous ces composants lui permettant de voler et se déplace

à côté du hotspot.

• Ready: Le drone désactive les composants lui permettant de voler, active ses

composants RF et commence à servir les utilisateurs du hotspot.

Les états de charge de la macro cellule sont donnés par la figure 5.

La couleur verte représente un état de charge normal. Le jaune est un signe de

congestion possible en bordure de la cellule. Le rouge confirme l’apparition du hotspot.

Le bleu est la région où le drone peut se retourner en état d’inactivité après avoir

éliminé complètement le hotspot de trafic.

Dans la figure 5, Cell_Load représente la charge de la cellule et Hotspot_position

représente la position du hotspot de trafic par rapport au centre de la cellule.

On définit par {TPi, i = 1.n} l’ensemble d’emplacements où le drone peut s’installer

afin de bien couvrir toutes la macro cellule. En outre, SEL_offset, HO_hys et

HO_offset sont trois paramètres supplémentaires utilisés pour le processus de la

sélection et du handover des UEs. NUE est le nombre d’utilisateurs servis par le drone.

Dans la figure 6, les différentes étapes exécutées et les scénarios possibles de ce

mécanisme sont présentés.
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Fig. 5 State Diagram controlling the drone.

Spécification du mode d’accès

Un drone peut communiquer avec la station de base de la cellule via un lien filaire ou non-

filaire. Dans le cas d’un lien non-filaire, la station de base et le drone communiqueront

entre eux, de préférence, dans une bande de fréquences basses en FDD (initiales des

mots anglais « Frequency Division Duplexing » signifiant « Duplexage en Fréquence »),

ce qui est rendu possible par la portée étendue du drone en ligne de mire. Ce principe

permet d’avoir une faible congestion dans le spectre licencié, et peu d’interférences avec

d’autres applications dans le domaine radio ou avec des communications par satellite.

Quant aux communications entre le drone et les terminaux, elles utilisent de

préférence le spectre licencié si les ressources nécessaires sont disponibles, et le spectre

non-licencié dans le cas contraire. Concernant le spectre non-licencié, l’utilisation

du WiFi, qui est de fait une technologie disponible dans la plupart des smartphones

commercialisés ainsi que dans d’autres dispositifs, permet aux opérateurs d’obtenir un

revenu supplémentaire de la part des dispositifs compatibles seulement avec le WiFi.

Cependant, la facturation et la sécurité exigent des mises à jour matérielles et logicielles

liées au module WiFi du drone. Les mises à jour doivent être faites au niveau du

réseau cœur pour le système de facturation, et au niveau du drone pour assurer la

sécurisation des communications. De plus, les interférences dans la bande WiFi ne

peuvent pas être contrôlées en raison de la large utilisation de cette bande non-licenciée

dans d’autres domaines, tels que les domaines médicaux, scientifiques et industriels.

De préférence, on n’utilisera donc le WiFi qu’en cas d’insuffisance de ressources dans

le spectre licencié. Concernant justement le spectre licencié, on utilisera de préférence
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Fig. 6 Mécanisme de décongestion du réseau.
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le TDD (initiales des mots anglais « Time Division Duplexing » signifiant « Duplexage

en Temps ») pour les communications entre le drone et les terminaux mobiles, car

(comme il est connu de l’Homme du Métier) le TDD fonctionne efficacement pour les

communications sur de petites distances, d’autant que la plupart des opérateurs ont

investi dans l’achat d’une bande de fréquences licenciée en TDD, même si toutes ces

bandes ne sont pas exploitées (d’où un gaspillage de ressources). Grâce à l’utilisation

de ces bandes, on aura moins d’interférences dans les bandes FDD, les performances

globales du système seront améliorées, et l’on fera un usage efficace des ressources radio

disponibles.

Points forts et points à explorer

La solution proposée présente de nombreux avantages. Ainsi :

• les drones peuvent être déployés très rapidement aux endroits souhaités ;

• les drones peuvent se poser de manière stable près des hotspots, par exemple en

des points d’attachement prédéterminés (tels qu’un réverbère ou un bâtiment), et

même suivre les terminaux mobiles concernés (par exemple, une foule en marche)

dans leur déplacements au sein de la cellule, en « sautant » d’un point d’attache

à un autre ;

• les communications entre, d’une part, un drone et les terminaux mobiles qu’il

dessert, et d’autre part ce drone et la station de base qu’il aide, sont en ligne de

mire ;

• chaque drone possède, durant son déplacement, une base de données où tous

les trajets entre les points d’attachement sont définis ; le drone donc peut donc

circuler à basse altitude sans risque d’accident ;

• une fois le drone posé, il peut aisément établir un lien filaire ou non-filaire stable

avec la station de base ;



xxx

• la distance entre un drone et un terminal mobile étant courte, la puissance

d’émission requise aussi bien pour le terminal mobile que pour le drone est faible

;

• dès qu’un drone se pose, il active les composants RF et désactive les composants

qui lui permettent de voler ; la consommation électrique d’un drone est donc

faible, surtout s’il est alimenté par l’énergie solaire (comme on peut l’envisager si

la surface des ailes du drone est assez grande) ;

• le ravitaillement du drone est aisé puisqu’il peut se poser directement sur une

aire de ravitaillement pour recharger ses batteries ; on peut par exemple installer

des équipements de ravitaillement au sommet de quelques réverbères répartis

dans la cellule.

Les points qui ne sont pas encore abordés dans le monde de la recherche et de

l’industrie sont:

• De nos jours, les drones sont à la crête de leur développement et beaucoup

de constructeurs investissent dans la recherche afin de produire des modèles

commercialement viables et qui sont efficaces, autonomes, stables et qui ne

consomment pas beaucoup d’énergie. Néanmoins, l’exploitation des drones pour

usage professionnel manque toujours dans les réglementations gouvernementales.

Ce sujet a besoin des investigations approfondies au sujet de leur contrôle pour

créer de nouvelles règles principalement liées à la sécurité nationale et également

à l’interférence avec d’autres applications.

• Un autre point à investiguer est la coexistence avec les autres dispositifs et

d’autres applications et les possibilités d’interférence et de collision.

Conclusion

On a proposé un nouveau mécanisme utilisant les drones pour réduire la congestion dans

les réseaux cellulaires. Les drones réagissent immédiatement en réponse à l’apparition

des hotspot de trafic et commence à offloader le trafic efficacement. La disparition et

le mouvement du hotspot de trafic sont également adressés afin de faire un mécanisme

de décongestion complet, fiable et faisable. De plus, le mode d’accès des utilisateurs

et la communication du drone avec la station de base de la macro cellule sont aussi
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adressés. Enfin, les avantages et les points à explorer pour déployer ce mécanisme dans

le réseau réel sont abordés.

Conclusion

Dans cette thèse, et d’après les études menées, les scénarios évalués et les mécanismes

développés, nous pouvons conclure ce qui suit :

• La précision des outils opérationnels de localisation de hotspot doit toujours

être améliorée si des ingénieurs radio sont tentés en exploitant la production de

ces outils dans le processus de déploiement des HetNets. Autrement, la petite

cellule déployée en se basant sur ces outils sera toujours risquée et peut mener

aux pertes possibles en termes de dépenses et également de la capacité.

• L’O&M KPIs et la carte de couverture représentent des entrées intéressants pour

développer des méthodes de localisation plus sophistiqués afin d’améliorer encore

la précision.

• Le déploiement petites des cellules classiques au centre de la macro cellule dégrade

les performances globales du réseau. En effet, l’interférence de la macro cellule

sur les utilisateurs de la petite cellule sera ainsi très élevée conduisant à des

débits dégradés pour ces utilisateurs.

• Le déploiement petites des cellules en bordure de cellule est souvent une solution

bénéfique même avec des erreurs dans la localisation du trafic. Ceci est expliqué

par le fait que les conditions radio seront toujours améliorées dans ces secteurs.

• Les petites cellules mobiles peuvent être une solution efficace en termes d’efficacité

et également de coût. Néanmoins, l’incapacité pour contrôler la mobilité de ces

cellules est toujours un souci important et constitue une question ouverte afin

que cette solution atteigne le stade de maturité.
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• Les petites cellules drone est une nouvelle alternative prometteuse pour absorber

le trafic dans les réseaux cellulaires. C’est un sujet de recherche ouvert pour les

déploiements des technologies futures.
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Chapter 1

Introduction

1.1 Background and general context

Over the last few years, the demand for higher data rates in cellular networks has

been unceasingly increasing making from cellular services an undeniable success story.

Cellular networks were initially installed to ensure voice communications and to fulfill

wide area voice coverage. Nowadays, it has become a vital part of our everyday life with

a strong need for "everywhere and seamless" connectivity. In fact, many day-to-day

activities have been shifted to our online presence thanks to the widespread use of

smartphones, tablets etc.. and the development of several services (such as Internet

downloading, E-mail, web browsing, high definition video streaming, social networking,

file sharing, etc..). Facing this traffic increase represents a big challenge for operators.

So, they are always eager to implement new technologies such as 5G technology to

meet these rising capacity and quality of service demands. Meanwhile, operators have

to maintain the current network operational, reliable and efficient into absorbing the

existing traffic demands. The common goal is to improve network performance, users’

experience, and operators’ business as well.

Actually, cellular networks are facing an explosive increase in data traffic and a

frequent appearance of areas of capacity bottlenecks, which creates a fundamental

challenge for cellular operators. Dealing with this challenge can be ensured by an

efficient use of the available capacity with advanced features that only require few

modifications to the existing network infrastructure and configuration. Consequently,

during the planning and optimization process, radio engineers have to find the best

solution allowing the network to reach higher capacity and better quality of experience

without moving urgently to a new technology. This task can be further enhanced if
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they exploit most of the available informations about the treated traffic scenario, in an

accurate way.

In this context, several studies have been realized to find the best answers appro-

priate to these issues. While awaiting the outcomes of the new technologies proposed

and tested by the scientific community, Heterogeneous Networks (HetNet) deployment

remains one of the existing solutions that can be further enhanced allowing the network

to reach its capacity limits and to reduce the congestion in it. This kind of deployments

ranges from the installation of additional small cell sites and relay stations, as well

as signal boosters to the deployment of Wireless Fidelity (WiFi) networks for dual

mode devices to complement existing macrocell infrastructure. HetNets have been

considered as one of the main aspects to be investigated in 3rd Generation Partnership

Project (3GPP) Long Term Evolution (LTE)/Long Term Evolution-Advanced (LTE-A)

deployments [1]. This trend is encouraged by different factors: i. a fast and efficient

coverage and capacity expansion, ii. its ability to offload the mobile data traffic and

more specifically traffic hotspots, iii. its ability to improve poor radio conditions, iv.

its significant increase in spectral reuse efficiency per area, v. its reduced CAPEX

and OPEX costs and the expected performance results making from it a cost-effective

solution. Due to these relevant benefits, small cell deployments have garnered more

interest in the industrial and research communities which led to its consideration as an

integral part of 5G cellular network architecture [2].

1.2 Problem definition and challenges

In 4G networks, the tangible application of HetNet deployments did not reach yet the

maturity stage for different reasons. First, the uniform traffic scenario is always consid-

ered in the capacity and coverage planning process. However, small cells are deployed,

in several cases, at targeted high-demand areas (traffic hotspots). Consequently, the

estimation of network performances must be based on the characteristics of the studied

traffic scenario in order to be near to the really obtained results. From this first chal-

lenge, we notice the importance of the accuracy of the collected informations about the

traffic distribution in each area. So, the second challenge is to make the data collected

more informative and precise through the definition of new algorithms and processes.

On the one hand, an accurate traffic hotspot localization will lead to a better network

design and planning. On the other hand, including the imperfect small cell positioning

(due to the limited accuracy of the used traffic localization method) in performance

analysis of HetNet deployments is also of great importance. Indeed, this evaluation
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allows to assess the gain that can be generated from the deployment of a small cell

considering an error in hotspot localization. It allows also to identify the threshold of

localization accuracy that can be tolerated in operational tasks of HetNet deployments.

Next, the traffic mobility inside each cell is generally neglected in the network design

which results in unexpected performances. So, mobility of traffic hotspots must be

involved in the performance analysis and prediction in cellular networks. Moreover,

developing new intelligent, realizable and energy-efficient mechanisms to offload the

moving hotspots represents also a major concern in operators’ roadmaps. Next, im-

proving the mobility of the existing offloading mechanisms to follow the trajectory of

traffic hotspots is also a relevant topic to investigate. In addition to the aforementioned

challenges, operators always seek to reduce the costs without impacting the global

performances of the network or even with expecting more improvements.

1.3 Original contributions

This thesis includes four major contributions:

1. Development of a new traffic hotspot localization method using O&M KPIs

projected over the coverage map:

Nowadays, most of the connected devices are equipped with a GPS module

leading to a very good precision of traffic localization. However, due to the

considerable battery consumption related to the activation of this module, most

of mobile users prefer to put off their installed applications related to GPS.

Therefore, mobile operators are actively testing new solutions to localize traffic

based on their own data measurements. Probing and trace analysis is the

actual operational method used by operators in localizing traffic. Based on the

stored call traces, measurements analysis are performed to optimize the network

configuration and deploy new small cells or switch on/off some cells in areas with

low traffic intensity. As an alternative to probing based methods, it is possible

to identify the heavy traffic areas in the network using KPIs directly taken from

the O&M. It is true that key performance indicators can give an idea about the

hotspot zones with very low accuracy (with about a granularity of the cell radius).

However, the combination of many KPIs would significantly increase the precision

of traffic localization. The exploited KPIs are firstly projected over the coverage

map and then combined in a weighted sum. The weights are optimized using

additional information about potential hotspot areas obtained from commercial
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data. Furthermore, mobile equipment and field imperfections are considered in the

numerical results in order to meet with the real imperfections. Mobile equipment

imperfections consist mainly in the difference between the signal level measured

by the UE (User Equipment) and the signal level available in the coverage map.

This difference is typically due to the shadowing effect, the category and the

speed of the UE. On the other hand, field imperfections mean that some KPIs

present sporadic errors which are observed in real data measurements performed

in the context of individual UE localization. These errors do not really impact the

localization in the presence of a traffic hotspot since these errors are sporadic and

it is not common to have significant proportion of UEs with wrong measurements,

otherwise, the implementation of these KPIs becomes worthless. Using the

proposed localization method, a sufficient localization performance is achieved

along with significant savings on the expenditures as well as in the computation

complexity.

2. Performance analysis of small cell deployment under perfect and imperfect traffic

hotspot localization:

In the second line of contribution, system level analysis are realized for small

cell deployment and the impact of the imperfect traffic hotspot localization is

evaluated. So, three different scenarios are studied: i. with macrocells only, ii.

with a small cell deployed exactly at the center of the traffic hotspot and iii. with

a small cell not perfectly deployed near the traffic hotspot (its position is different

from the hotspot one). The derivation of the system performances is realized

through two main analysis levels: static and dynamic. In the static level, we

evaluate the distribution of the achievable data rates reflecting the distribution

of radio conditions in the network in the presence of the traffic hotspot. Then,

the results of the first part are injected in the dynamic level analysis where the

system presents dynamic arrivals and departures. Besides, the dynamic system

model presents a coupling between the macrocell and the small cell. In fact, the

interference generated from the one cell on the users of the other cell is counted

only when there is at least one user served by the interfering cell.

The objectives of this study are, firstly, to identify the areas where the small cell

deployment is accompanied with capacity gains and improve the radio conditions

in the network. Second, with involving the accuracy of traffic localization tools in

the analysis and considering the impact of imperfect small cell positioning, radio

engineers can be able to select the localization methods whose implementation in
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the planning process is followed by potential performance winnings. Moreover,

the predicted performance results will match better with the real ones helping

thus to optimize efficiently the network design.

3. Performance analysis of moving small cells in cellular networks under the presence

of mass events:

In the third line of contribution, the performances of moving small cells are

evaluated in the presence of a stationary but temporary traffic hotspot (reflecting

a mass event such as a street show). Deploying classic small cells is not efficient

enough if they are installed for occasionally occurring traffic hotspots. So, we

evaluate the possible capacity and quality of service gains that can be obtained

when the hotspot is static or is following a different trajectory compared to the

small cell one. The major outcome is to understand if moving cells leverage

relative operators investments or must be revised and enriched mainly in terms

of mobility control to reach higher efficiency.

Deploying moving cells is a topic already investigated in literature but with

considering in general, uniform traffic distribution. Moreover, to the best of our

knowledge, the previous studies were based on observed simulation results and no

mathematical expressions are derived from the initial definitions of the evaluated

performance metrics.

4. Development and performance analysis of a new mechanism for congestion

mitigation in cellular networks using drone small cells:

In the fourth line of contribution, we propose a new mechanism for congestion

mitigation in cellular networks using drones. Based on a traffic hotspot localiza-

tion tool, the drone can be activated and placed in areas of capacity bottlenecks

until regaining a normal situation without congestion. A drone cell is supposed

to replace the deployment of many classic small cells inside the coverage area of

each macrocell. So, significant savings can be generated because less equipments

are required, they are not active all the time and no air conditioning is needed.

The advantages and the limitations of the proposed mechanism are discussed. A

performance analysis and comparison with classic small cell deployments is carried

out in order to show the importance of deploying drones in cellular networks.
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1.4 Thesis outline

The structure of the thesis is as follows:

• In Chapter 2, an extensive state of the art on traffic hotspot localization in mobile

networks is provided. This is followed by a review of the different studies made

on HetNet deployments in 4G and 5G networks including moving small cells and

drone small cells.

• Chapter 3 starts with a description of a new proposed traffic localization method.

This is followed by details on the used inputs, the steps to be executed and how

the localization can be much more accurate. The performances of the proposed

method are investigated and are further compared to those of other methods

based on probing.

• Chapter 4 presents a static and dynamic level analysis for small cell deployment

under perfect and imperfect traffic hotspot localization. Performance expressions

are derived and numerically evaluated for three scenarios of deployments: i.

with macrocells only, ii. with a perfectly deployed small cell and iii. with an

imperfectly deployed small cell.

• Chapter 5 is devoted to investigating the performance of moving small cells

deployment under the presence of traffic hotspots in cellular networks. The

performances of the moving small cell scenario is compared to those of a network

composed of macrocells only.

• Chapter 6 proposes a new mechanism for congestion mitigation in cellular net-

works using drone small cells. Performance analysis of the proposed solution and

a comparison to other classic small cell solutions is also provided.

• Chapter 7 summarizes and concludes the work outlining the challenges and

limitations while providing directions for potential future work.
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Related works and state of the art

In this chapter, we review the contributions of related works and the state-of-the-art

on the subject of traffic localization in cellular networks and performance analysis of

HetNet deployments. This chapter includes also a bibliographic overview about moving

cells and drones deployments and their respective efficiencies in offloading congesting

traffic in cellular wireless networks.

2.1 Traffic hotspot localization in cellular networks

With the exponential growth of data traffic in modern mobile networks and the

emergence of a wide variety of connected devices, tracking mass events and localizing

traffic hotspots have become one of the major concerns in the operators roadmaps

for several planning and design processes such as deploying small cells or optimizing

the tilt1 or the azimuth2 of antennas. Indeed, radio engineering tasks must be based

on a precise and valid performance evaluation of any network configuration which

emphasizes the need of having accurate spatial traffic localization. Besides, the trend of

tracking traffic peaks is also driven by dominant themes for wireless evolution towards

5G networks [3] such as the problem of hotspot offloading solutions, the emergence of

HetNets [4, 5] with small cells’ deployment and the development of Green Networks’

concept [6].

Several traffic modeling and tracking techniques have been proposed in the literature

[7–19]. For traffic modeling, a temporal analysis of the traffic distribution has been

carried out in [7] based on the downloaded volume in all the Base Stations (BSs) of a

1The tilt represents the inclination or angle of the antenna to its horizontal axis.
2The azimuth is the angle between the direction of maximum antenna radiation with respect to

the geographical North.
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3G network. In [8], a spatio-temporal study has been conducted in order to analyze

the stationarity of traffic hotspots. Moreover, the spatial traffic distribution has been

well investigated in [9] for 4G HetNets through the analysis of traffic statistics. A

parameterized statistical model is proposed to characterize the correlation between user

and BS locations. In [10], authors proposed to extract the data volume downloaded of

each cell and then these measurements are distributed over the Voronoi cells constructed

through the BSs’ locations because of the complexity of projecting this measure on

the real coverage map (not following the Voronoi model). Results of [10] showed

that the traffic is log-normally distributed over the entire studied coverage area and

Weibull distributed across the cells. Obviously, the obtained results are very interesting

relatively to the ease of generating traffic maps mainly used for network performance

prediction. Nevertheless, the accuracy of the analysis is inappropriate for most of

the radio environments especially in urban zones (where shadowing effect significantly

impacts the Voronoi geometry) and also in rural zones (where BSs are deployed more

sparsely). And so, the relative precision is low. In reference [11], the analysis is much

more improved since authors proposed to use a spatial discretization technique which

allows to enhance the granularity of the traffic map.

For operational hotspot localization techniques, they are mostly based on prob-

ing supporting trace analysis and protocol decoding [12–14]. The most important

information extracted from traces is the received power level and the timing advance,

defined respectively as the duration between the BS transmission and the first signal

received from the UE. Authors in [12] provided a test transmitter playing the role

of a neighboring cell at first and then the role of a serving BS. Tests are realized

within the existing cells in the network in order to assess the traffic density within the

vicinity of the transmitting equipment. This solution requires to configure the test

transmitter and realize measurements in each subarea separately. So, it may take a

long time to assess the traffic distribution in the entire area covered by a BS. In the

same context, patent [13] disclosed a method where UEs send periodically their radio

measurements related to signals received from both the serving cell and the neighboring

cells. A recording unit is installed at the interface between the BS and the studied Base

Station Controller (BSC), termed A-bis, to examine the messages exchanged on this

interface. Then, based on these measurements, the traffic distribution is derived. It was

shown that the obtained precision does not fit with the small cell dimensions. Another

method was presented in patent [14] and proposed to localize traffic hotspots in GSM

networks using statistical analysis of timing advance and neighboring cell measurements

extracted from call traces. Authors in [15] proposed to exploit the predictability of
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human mobility patterns in localizing performance measurements in UMTS networks.

They used a snapshot of network signaling events at the Radio Network Controller

(RNC) to accurately assign performance measurements to fine-grained geographic

regions with the execution of clustering algorithms. Results in [15] show that the

accuracy of localization is improved compared to other methods elaborated in the

literature. Nevertheless, since the traffic localization is mainly extracted from handover

reports, the precision of localization is still not sufficient enough especially when most

of the traffic is located in the cell center. Proximity location is another method of

localization based on the detection of close Wi-Fi Access Points (Wi-Fi APs). This

helps to calculate the position of the UE knowing the location of the AP [18, 19].

RF-Fingerprinting [16, 19], cell-ID (LTE Rel 8) and Assisted-Global Positioning System

(A-GPS) (LTE Rel 9) [19] are also well-known techniques for locating individual UEs

with different accuracy levels.

Despite its wide use in the industrial field, probing-based methods suffer from some

shortcomings. First, not all the traces are captured by probes, some of them are lost.

Second, they require high capacity storage servers that cannot be provided by the

existing O&M databases. Third, using call traces, the position of each UE is calculated

separately leading to a heavy tracking process. Eventually, the tools needed for probing,

storing traces and processing them are expensive and do not improve sufficiently the

localization accuracy.

Another family of localization methods makes use of Key Performance Indicators

(KPIs) in order to infer the level of traffic in each area of the cell. In [17], authors

proposed to divide each cell of the network into several subareas, and to calculate a

traffic value for each subarea from O&M measurements in the network. The indicators

used to compute traffic values are the load of the cell, the call attempts and the number

of handovers. This method is very simple and does not require additional tests or

equipments. However, it is not efficient enough because of its important computational

cost. Moreover, for high data rate networks, such as LTE-A networks and beyond,

it only localizes traffic hotspots in terms of number of UEs and not in terms of data

volume.

In order to improve the method used in [17] with increased accuracy and fast

computations, we propose, in Chapter 3, a new method for tracking peaks of traffic

generated by permanent activity such as in industrial areas or temporary activity

related to mass events. This method consists in the exploitation of 5 KPIs directly

extracted from the O&M database in each cell of the network and projected over

the coverage map. These performance metrics are: Timing Advance (TA), Angle of
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Arrival (AoA), neighboring cell level, cell load and two mean throughputs: arithmetic

(AMT) and harmonic (HMT). Chapter 3 gives a definition of each of these KPIs

and a detailed description of the new proposed localization method in addition to its

performance evaluation. All the provided description and results are published in our

papers referenced by [20, 21].

2.2 Small cell deployment under perfect and im-

perfect traffic hotspot localization

Traffic hotspot localization is always accompanied with errors resulting in imperfect

traffic localization. Therefore, it is important to evaluate the impact of this limited

accuracy on the performance of the network especially when this information is included

in the deployment of a solution allowing to offload this congesting traffic. In particular,

performance analysis of small cell deployment under the presence of traffic hotspots

is a relevant issue to investigate and also to include in network planning process, as

it allows to evaluate the efficiency of HetNet deployments. In fact, cellular operators

are currently shifting towards HetNets as the most promising solution to meet user

demands; by using a mix of Macro BSs and Small ones. Therefore, considering the

impact of imperfect small cell positioning provides important results in terms of hotspot

localization accuracy beyond which it is worthless to perform network optimization

based on the information provided by the applied traffic localization technique. This

study falls in the area of network densification representing thus a relevant subject in

the performance analysis of wireless networks.

The efficiency of small cell deployment was the subject matter of many works using

different network topology models which yield either optimistic or pessimistic results.

An excellent survey on heterogeneous cellular networks is elaborated in reference [22].

In [23–25], authors considered a network with different tiers to evaluate performance

metrics such as the coverage probability, the average achievable rate and the average

load per tier. The network structure in each tier is based on a spatial Poisson Point

Process (PPP). Using PPP model allows simple and tractable analytical expressions but

it remains quite different from the real network layout, especially for macro tier which

is close to the hexagonal grid with imperfections [26, 27]. Moreover, the deployment

of small cells should be made based on the traffic distribution as well. Considering

small cell distribution as a PPP model implies that the traffic hotspot - in case it is the

reason for deploying small cells - follows also a PPP model with a constant traffic value

in each hotspot which is not the case, as shown in [10, 11]. It is important to recall that
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radio engineering tasks must be based on a precise and definite performance evaluation

of any network configuration leading thus to the need to include more accurate data

traffic profiles.

A different approach was used in [28] where the authors used a fluid model in order

to study the impact of small cell location on the performance and QoS in HetNets.

Non-uniform spatial traffic distribution and user dynamics were however not considered

in the analysis. In general, it is recommended to perform analysis in a hexagonal

network layout because of the fact that radio engineers start the design of the network

based on a hexagonal model. The deviation of the real network structure from the

hexagonal model is basically linked to the constraints imposed by engineering rules,

field imperfections and government charters. Then, according to these deviations,

some interfering sites will be closer to the UE resulting in high received interference

and some of the other sites will be farther from the UE resulting in less received

interference. In sum, the total experienced interference in any position of the network

will be approximately the same as the interference calculated in a regular hexagonal

network. More details are further discussed in [29] showing the importance of using

hexagonal model and the limitations of PPP model.

Performance of cellular networks incorporating sophisticated queuing models have

been well investigated in [30–35]. In the context of LTE-A HetNets, Ge et al. evaluated

the efficiency of deploying femtocells with partially open channels in [33]. The blocking

probability and the spectrum and energy efficiencies were derived based on a Markov

chain model including important parameters used in planning and network design

processes such as the number of femtocells, the average number of users and the number

of open channels. In references [34, 35], Saker et al. studied a network of Processor

Sharing (PS) queues to model the evolution of the system and how flows are served

by either macrocells or small cells. Under the stability condition, capacity, energy

consumption and outage rate in the network were evaluated. Authors showed that

the densification of the network with small cells is globally a good solution to offload

traffic and reduce the energy consumption. However, the spatial traffic distribution

was assumed to be uniform all over the covered area and the studied scenario did not

take into account the presence of traffic hotspots. Moreover, the small cell could be

even deployed near the macro BS, contrary to what had been recommended in [28]. In

fact, it was shown in [28, 36] that deploying small cells in already well-covered areas

does not generate capacity gains and even degrades the performances of the network

either in the presence of traffic hotspots or with a uniform spatial traffic distribution

(this observation is also verified in the numerical results of Chapter 4).
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The problem of the impact of bad traffic localization on small cell deployment is

investigated in Chapter 4 with a static and dynamic level analysis. From a practical

point of view, this study allows to evaluate the gain that can be generated from the

deployment of small cells for its own sake and more specifically the performance of

realistic and imperfect small cell positioning, due to errors generated by traffic hotspot

localization tools. It allows also to identify the tolerated margins of errors in hotspot

localization techniques exploited in operational tasks of HetNet design. Most of the

analysis given in Chapter 4 is published in our articles [36, 37].

2.3 Moving small cells in 5G networks in the pres-

ence of mass events

Contrary to the deployment of classic HetNets, the idea of moving small cells is a fresh

topic not exhaustively investigated in the literature. This new trend is motivated by

the fact that static small cells cannot be flexibly placed to fulfill time/space-varying

traffic. Mobility of small cells is the most advantageous feature allowing to efficiently

offload moving and/or unpredictable congesting traffic leading thus to improve the

network performance. Moreover, if the small cell is deployed on the top of public

transportation means (a bus or a taxi for instance) circulating in very crowded streets,

it will offload the traffic generated by its own passengers in addition to the one coming

from UEs in its vicinity. Consequently, the data rate of each user in the coverage area

of this moving cell will be improved since the Line-Of-Sight (LOS) signal is enhanced

and the effect of slow fading is reduced. So, moving small cells are supposed to serve

more users for longer periods of time maximizing thus the service time of the small

cell without wasting the available radio and energy resources.

In [38], authors presented the benefits and the challenges of using moving relay

nodes and applied a simulation approach in order to evaluate the capacity gains

generated from deploying this technology. Reference [38] showed that the performance

of vehicular users at cell edge are significantly improved with the new deployment

concept. This is explained by the fact that moving relay nodes can provide better

propagation conditions compared to the direct links to macro cells. Authors in [39]

stated that deploying mobile cells is among the promising key 5G wireless technologies

allowing to accommodate high-mobility users. In that regard, it has been shown in

[40] that using mobile femtocells makes high-data-rate services easily accessible with

reduced signaling overhead. In [41], a probabilistic approach is followed to allocate the

radio resources in the network containing moving small cells. Moreover, authors of [41]
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proposed to exploit the headway characteristics of city buses to study the interference

relationship between different moving small cells. Numerical results showed that with

moving cells, the usage rate of resource blocks is significantly reduced which boosts

more the consideration of this new technology in real deployments. The signaling

overhead for channel feedback is also investigated for a network of mobile small cells and

authors in [42] proposed a user-centric downlink scheduling scheme. Results confirmed

that the developed scheme is able to realize an appreciable increase in sum-rate and

throughput and also an important decrease of the signaling overhead.

Some of the research communities are trying to boost the combination of moving

cells’ concept with other new developing solutions such as the use of millimeter Wave

technology [43, 44] or the aggregation with Wi-Fi [45] or even with the implementation

of Multiple Input Multiple Output (MIMO) systems in order to reduce interferences

and improve coverage and capacity of the network.

Parallel to studies related to moving cells, a competing technology based on three

dimensional beamforming [46] is under study. Nevertheless, this feature remains not

very practical in real environments because of the complexity of the system and the

heavy signaling overhead related to the channel state information allowing to focus

the beam in a precise direction. So, from the vendors and operators point of view,

moving cells is one of the upcoming solutions which is expected to upgrade the network

performance.

Chapter 5 is dedicated to study a scenario where the small cell is moving according

to Manhattan mobility model (it models a movement in city streets environment such

as the classic bus trajectory using grid road topology) and we consider a stationary

traffic hotspot. In such traffic scenario, it is clear that operators do not need moving

small cells. Nevertheless, if this traffic hotspot is temporary, then deploying classic

small cells would be costly and inefficient (even with the cell shutdown concept because

not all the energy-consuming components in the BS are turned off in case of small

load.) and it turns out credible to replace them by smaller number of moving small

cells. Consequently, studying the scenario of moving small cells allows to evaluate the

possible capacity and QoS gains in case the traffic hotspot is not moving or is following

a different trajectory compared to the small cell one. The results allow operators to

understand if this solution can leverage the relative investments or must be revised

and enriched mainly in terms of mobility control to reach higher efficiency. The results

of Chapter 5 are published in our article [47].
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2.4 Offloading traffic hotspots using drones in 5G

Networks

As indicated in the previous sections, the occurrence of mass events or the existence of

areas of capacity bottlenecks have become among the important scenarios to be taken

into consideration in operators’ roadmaps to reach their objectives in terms of capacity,

coverage and quality of service. To deal with this issue, several features are proposed

in the literature to be implemented in real networks such as Device-To-Device (D2D)

communications [48], HetNet deployments and mmWave technology [49]. Obviously,

in the context of HetNet deployment, small cells do not represent an entirely new

concept in cellular networks but enhancing this offloading solution with more efficient

mechanisms is still a fresh topic to investigate. As a matter of fact, research and

industrial communities continue to develop and evaluate new approaches allowing to

realize the expansion of small cell-based technologies. Moreover, using drone cells have

come to prominence very recently with the study of 5G scenarios related to mass events

and the mobility of the traffic. Actually, using drones is still theoretic and not feasible

since no efficient and energy-saving drone-based mechanism has been developed until

today.

Small cell deployment is a concept well-investigated in the literature and different

categories of small cells have been developed with sophisticated mechanisms [22, 39,

5, 50–53]. The main advantages of small cells are the coverage expansion and the

capacity enhancement. Furthermore, previous studies cited many other advantages in

deploying small cells. First, the cost of small cells is very low compared to macrocell

equipments. The price is reduced because no heavy air-conditioning is needed with

small cells, the transmitting power is low (harmless to human and less CO2 emission)

and the cost of the hardware is also reduced. Second, small cells allow to achieve

more homogeneous user experience and more fair spread of the capacity between users.

Third, it is clear that small cell technology is a solution to combat the shadowing, the

penetration loss and even fast fading since the channel behaves more in a correlated

manner when users are near the small cell. Fourth, since small cells are close to UEs,

a green aspect of prolonged UE battery life can have also a positive impact to boost

studies of this technology even if operators do not generate direct revenues from this

advantage. Nevertheless, each reference between [22, 50–52] presents some limitations

making its provided solution not very encouraging to deploy. Some of these reasons

can be summarized in the lack of efficiency in terms of capacity improvement when

the traffic is not static and also in the additional costs of the installation and of the
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connection to the backhaul. In fact, deploying small cells might be an inappropriate

solution if the area where they are installed does not generate high traffic anymore.

Moreover, if the connexion to the backhaul is wireless, additional interferences will

be experienced in the macrocell and if this connexion is wire-lined, the cost of the

infrastructure will be increased. The different drawbacks of the existing studies on

HetNet deployments, principally those related to mobility (time-variability of traffic),

quality of service and network planning efficiency, have stressed the need to find new

alternatives to these ideas.

In contrast with the deployment of classic small cells, the concept of using low

altitude drone cells in cellular networks is still a fresh topic not actively discussed in

research and industrial communities [54, 55] because until recently, they are trying

to boost network performance with lower operational costs. It is true that costs of

deploying drones are quite high, but recently, many advances have been realized to

produce more efficient drones with good performance in terms of energy consumption

and stability control. The question is to find a mechanism allowing drones to efficiently

consume energy and react rapidly to congestion situations.

Performance of cellular networks is supposed to be improved with the deployment

of drones. This can be explained by the fact that drone cells can provide better

propagation conditions compared to the direct links to macrocells. They allow to reduce

interferences, handover rates, service times and power used in downlink transmissions.

Compared to classic small cells, the Line-Of-Sight from both sides (from the UE and the

macrocell) is always guaranteed with drone cells and they are still operational in periods

of natural disasters. Nevertheless, deploying drones in cellular networks is still not an

encouraging solution and requires quite important operational expenditures in the way

it is supposed to be exploited until recently. So, incorporating some improvements are

absolutely essential to encourage the deployment of new mechanism based on drones.

In Chapter 6, we propose and evaluate the performance of a new mechanism for

congestion mitigation in 5G networks using drone cells. Based on a traffic hotspot

localization tool [20], the drone can be activated and placed in areas of capacity

bottlenecks until regaining a normal situation without congestion. The proposed

mechanism is not energy consuming since the drone will not fly when it starts to offload

traffic. This advantage boosts more the feasibility of the drone-based solution from a

green point of view. Moreover, the proposed mechanism allows to improve the network

performance by providing better radio conditions with less interference, less handovers

and better reactivity to congestion. A drone small cell is supposed to replace the

deployment of many classic small cells inside the coverage area of each macrocell. So,
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significant savings can be generated because less equipments are required, they are not

active all the time and no air conditioning is needed. Chapter 6 is elaborated based on

our published papers [56, 57].



Chapter 3

Traffic Hotspot tracking in LTE
networks

One of the most important tasks that a telecommunication professional has is network

planning and optimization especially with the new technologies proposed in 3GPP

standards like HetNet deployments [4] and the features of Green Networks [6]. These

tasks can be improved by providing additional informations about heavy loaded areas

[14]. Besides, if we do not localize these areas of capacity bottlenecks properly - like

choosing wrong areas - the worst consequences range from an overall bad system

performance (compared to what it could be) to cases where we need more equipment

to meet the same requirements in the studied area. In other words, it implies losses of

CAPEX and OPEX and poor network quality.

In this chapter, we propose a new traffic hotspot localization technique allowing to

improve the localization accuracy with low operational costs. A detailed description of

the proposed process is given with several simulation results including imperfections in

coverage prediction and mobile equipment capabilities in handling measurements.

3.1 Principle

The proposed algorithm of tracking traffic hotspots is depicted in Fig. 3.1. As stated

earlier in Section 2.1, five KPIs define the first main inputs of the algorithm: TA, AoA,

neighboring cell level, correlation between traffic loads and the difference between the

mean throughputs AMT and HMT. Extracting information from these 5 KPIs and

projecting them over the coverage map, as will be explained later in Section 3.3, allow

to obtain the traffic level in each pixel of the coverage map.
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Fig. 3.1 General process of tracking traffic hotspots.

The 5 KPIs are properly chosen with respect to two important criteria: locating

hotspots in terms of number of connected UEs and traffic volume. In fact, TA, AoA

and neighboring cell level can be sufficient for deriving the spatial distribution of

connected UEs. However, in practice, a hotspot is measured not only by the high

density of connected UEs but also by the traffic volume. Actually, this latter does not

follow exactly the same evolution as the number of connected UEs. Therefore, the

traffic hotspot tracking is improved by adding directly data-volume related KPIs such

as the correlation between the cells’ traffic loads and the difference between the AMT

and HMT.

The contribution of each KPI is measured and an importance factor is assigned

to it in order to avoid the over-confidence in the localization of traffic hotspots due

to the correlation between KPIs. Optimal importance factors are found by solving

a least square problem minimizing the distance between subareas of the estimated

map (based on the weighted sum of the obtained maps corresponding to each KPI)

and the relative map of potential traffic hotspots if this latter is available. The map

of potential hotspots represents additional and optional informations about potential

hotspot areas obtained from commercial data (if this information is not available, it is
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possible to set importance factors intuitively). Next, a global metric combining all the

five KPIs and using the optimal importance factors is defined.

The localization of traffic hotspot areas can give significant weights to isolated areas,

or pixels, as well as pixels in the edge of a hotspot. And so, smoothing the estimated

map is an additional step proposed in this work, in order to make the estimated traffic

distribution more accurate.

The implementation of the proposed solution does not require important investments

and operational costs since it is based on inputs that are already available in the network.

Hence, the only relative cost is the one of the execution of the proposed localization

method which is reasonable compared to the cost of the recently used methods such as

those based on probing.

Eventually, more KPIs such as the call block rate, the interference level or the

Channel Quality Indicator (CQI) distribution are also analyzed and can give insights

about the location of hotspots. Nevertheless, these KPIs, when combined with the

proposed ones, do not improve the localization accuracy since they are highly correlated

with them. For example, the call block rate and the cell traffic load practically carry

the same information about the location of traffic which leads to an over-confidence in

the estimation.

3.2 Traffic tracking inputs

3.2.1 Coverage map: Definition and notation

The coverage map is theoretically an abstraction of real-world radio scenarios. It is

a fine-grained map of a bounded geographical area where environmental information

and prior knowledge for cognitive radios are given in each pixel of the network map.

The length of each pixel is called the resolution of the coverage map (often from 5

to 50 meters in practice). This map is often taken from coverage prediction tools or

from real measurements such as coverage provided by the Minimization of Drive Tests

(MDT) techniques [58] and it can be exploited in network planning processes and for

decision support. The information extracted from coverage maps cover geographical

features, radio aspects, available services, spectral regulations, activity profile of radio

devices and past experiences.

In this work, the coverage map is denoted by L and constitutes a bounded part
of R2. Without loss of generality, we assume that L has the form of a square and is
discretized into equally m2 pixels.
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Fig. 3.2 Best server map in the covered area.

For 1 ≤ i, j ≤ m, we designate by Pi,j the coordinates of each pixel in L and we
assume that the pixel P1,1 is located at the lower left corner of the map.

We denote by C = {C1,C2, ...,Cn} the set of the cells located in the coverage map
L, where Ck is the geographical area covered by cell k and n is the number of cells. It

is clear that C ⊆ L because some pixels may be not covered by any cell.
Let RSRPk,i,j be the Reference Signal Received Power (its equivalent in UMTS is

RSCP and in GSM is Rxlev) [59] from cell k in pixel Pi,j , then the cell coverage Ck

is given, for 1 ≤ k ≤ n, by

Ck = {Pi,j ∈ L such that RSRPk,i,j = max
1≤l≤n

RSRPl,i,j} (3.1)

For every pixel Pi,j in L, we denote by c∗
i,j and ĉi,j respectively the index of the

first and second best serving cells.

c∗
i,j = arg max

1≤l≤n
RSRPl,i,j (3.2)

ĉi,j = arg max
1≤l≤n
l Ó=c∗

i,j

RSRPl,i,j (3.3)



3.2 Traffic tracking inputs 21

Fig. 3.2 illustrates an example of the coverage map with the best serving cell in

each pixel. Colors illustrate the area covered by each sector in the network. Each site

has an identifier (BS01, BS02..) and sector’s identifier in each site is either A, B or C

since we are working in a tri-sectorized network.

Note that in practice even if each pixel has a best serving cell, a UE located indeed

in this pixel is accepted in the network only if the signal level received from its serving

cell is higher than a certain threshold, called Qrxlevmin in 3GPP LTE standard.

3.2.2 Definition of the extracted performance metrics (KPIs)

Traffic measurements or performance metrics (called also KPIs, the short of key

performance indicators) are expressed by sum or average values in a granularity

period and include all aspects related to paging, network access, congestion and

handover. They are collected from network entities called O&M centers or from

drivetests and they provide data characterizing the behavior of the system in addition to

call traces intercepted by probes. KPIs are reliable information that can be incorporated

in operational tasks such as network planning, network monitoring, and network

maintenance.

We now detail the 5 KPIs we use in our work.

Timing Advance

Timing Advance (TA) (in GSM, LTE and LTE-A) or propagation delay (in UMTS) is

a time offset realized by the BS between its own transmission and the transmission

received from the UE. According to the calculated offset, the serving BS determines

the suitable TA [60] for the UE. Then, from this TA, the BS calculates the distance

traveled by the radio signal. Depending on the resolution (or granularity) of TA, a

specific distance range where the UE is located will be calculated.

In practice, TA is used as a KPI for network supervision and analysis, with a

granularity of 78.25 meters in LTE networks [60]. Based on this granularity, TA is

discretized into 6 intervals indexed by t of the form [78.25× t, 78.25× (t+1)], with

0 ≤ t ≤ 4, and [391.25, +∞) for t = 5.

As illustrated in Fig. 3.3, each cell is divided into several intervals according to the

defined ranges of distances. The TA KPI that we obtain from the O&M database is

the distribution of the distance from the BS to the UEs in the cell. For example, 30%

of the UEs are in the range of t = 0, 20% in the range of t = 1, 40% in the range of

t = 2, 10% in the range of t = 3 and 0% in the range of t = 4 and t = 5.
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Fig. 3.3 The division of the covered area based on TA.

For each cell k, we denote by τt(k) the value of the TA KPI that gives the percentage

of UE in the TA interval t.

Angle of Arrival

Angle of Arrival (AoA) is defined as the estimated angle of a UE with respect to a

reference direction, typically the geographical North. The value of AoA is positive in

an anticlockwise direction [61]. In general, any uplink signal from the UE can be used

to estimate the AoA, but typically a known signal such as the Sounding Reference

Signals1 (SRS) or DeModulation Reference Signals2 (DMRS) would be used [62]. The

serving BS determines the direction of arrival by measuring the timing advance at

individual elements of the antenna array. Consequently, the AoA is predicted from

these delays.

In order to construct the shape of the downlink beam, direction of arrival estimation

already exists and is supported in UMTS but it is not standardized [63]. Experiments

in [64–66] showed that the accuracy of AoA estimation depends mainly on the number

of antenna elements and also on the separation distance between them. It varies from

small deviations (around 2◦ to 5◦) to significant deviations (about 30◦ = π
6 ) [64–66].

Based on the possible AoA deviations provided in [64–66], we assume that the cell

is divided into 3 areas, as depicted in Fig. 3.4, relative to the angle between the UE,

the BS and the geographical North. Likewise the TA, we denote by t = −1,0 or 1 the

index of each AoA area.

For each cell k, we denote by φt(k) the value of the AoA KPI that gives the

percentage of UE in the AoA area t. Therefore, the percentage of UEs connected to

1The Sounding Reference Signal is a reference signal transmitted by the UE in the uplink direction
which is used by the BS to estimate the uplink channel quality over a wider bandwidth.

2DeModulation Reference Signals are used to enable coherent signal demodulation at the eNodeB.
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Fig. 3.4 The division of the covered area based on AoA.

cell k and which are in the range of [−π
6 , π

6 ] is denoted by φ0(k). φ1(k) represents the

percentage of UEs connected to cell k and which are with an angle of arrival higher

than π
6 . φ−1(k) represents the percentage of UEs connected to cell k and that are with

an angle of arrival smaller than −π
6 . In this sectorization, we consider that the angle of

arrival is equal to zero when pixel Pi,j has the same angle as the azimuth of its serving

sector.

Neighboring cell level

In different events of UEs connection to the network such as handover process, every

UE measures the signals of the detected cells and sends a report of these measurements

to its serving cell. In GSM, the detected neighboring cells list is reported periodically

by the UE to the BS. However, in 3G and 4G networks, it is reported to the BS only

when a special event is triggered. The counter in the O&M database representing the

neighboring cell level of a given neighboring cell is incremented whenever that cell is

received (in a measurement report) as an eligible candidate cell for handover (Fig. 3.5).

In order to get the KPI as a distribution, the neighboring cell level of each neighboring

cell is calculated with respect to the total number of reported neighboring cells.

For each neighboring cell l of the serving cell k, we denote by ϑl(k) the relative

number of times where cell l is reported as eligible candidate cell for handover in a

measurement report to the serving cell k.

Normalizing with the total number of reported neighboring cells makes ϑl(k) a

density distribution KPI, i.e.,
∑

l∈Sk

ϑl(k) = 1 (3.4)

where Sk is the set of the neighboring cells to cell k.
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Fig. 3.5 Updating the neighboring cell level KPI.

Cell load

For each cell, the load is defined as the amount of occupied resources with respect to

the available ones in the cell during an observation period. The load value grows with

the cell’s traffic demand and the co-channel interference received from neighboring

cells. Intuitively, low load means that the network has sufficient capacity to meet the

demand and most of its radio resources are not occupied, whilst high load indicates poor

performance in terms of potential service outage. In the latter case, the network design

and the parameters’ settings should be revised and adapted to the real conditions in

the covered area in order to reduce the congestion in the studied cell.

This KPI is already defined and provided by all O&M vendors. It is calculated per

hour and can be given for the busy hours, for the day, the week or the month. We

denote by ρ(k) the load of cell k.
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Arithmetic and Harmonic Mean throughputs

The Arithmetic Mean Throughput (AMT) is the classic mean of the throughputs of

all connected UEs. On the other side, the Harmonic Mean Throughput (HMT) is the

inverse of the average of the reciprocals of the throughputs3. The HMT differs from

the AMT by the fact that it gives more importance to throughputs of UEs in bad radio

conditions so that the HMT is more influenced by the throughput of cell edge UEs.

Based on the formula of the cell throughput defined in the O&M database by most

equipment vendors, it is important to notice that the cell throughput has almost the

same value as the HMT.

The utility of these KPIs comes from the following possible scenarios: if most of the

users are at cell edge, the HMT becomes more significant and the AMT is decreased

and gets close to the HMT. However, if most of the users are in good radio conditions,

the difference between the HMT and the AMT becomes significant. So, the location of

the traffic in the cell can be deduced from the difference between the AMT and HMT.

To better understand this idea, we consider the following example. First, we divide

UEs into two clusters depending on the throughput of each one and we calculate the

ratio and the difference between HMT and AMT. Then, in numerical results, we notice

that the behavior of the difference between HMT and AMT changes according to the

proportion of UEs in each cluster as shown in Fig. 3.6a. However, in Fig. 3.6b, the

ratio between HMT and AMT is almost symmetric giving only an idea about the

uniformity of the UEs’ spatial distribution.

In Fig. 3.6a, we show that when most of the UEs are in the center of the cell, the

difference between AMT and HMT is very important and this is due to the fact that

the AMT is high and the HMT is low. However, in the opposite case, the AMT is very

low and the HMT is decreased a little but remains near the AMT. In summary, we

conclude that exploiting the difference between the AMT and HMT brings additional

information about the traffic distribution in the network and it is more informative

than the ratio between these two metrics.

Note that this proposition is true only under certain conditions; in the case where

there is a high proportion of UEs in the center or in the edge, the AMT is practically

equal to the HMT. In reality and with statistics provided by a tool of network su-

pervision, we were able to extract the Channel Quality Indicator (CQI) distribution

and we found that it is divided in a percentage of 85% of UEs in the center (with

good CQI > 9) and 15% in the edge (with bad CQI < 9)(see Fig. 3.7). So, the real

3HMT is always lower than AMT according to the mathematical definition of the harmonic mean
and the arithmetic mean.
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(a) The difference between AMT and
HMT.

(b) The ratio between AMT and HMT.

Fig. 3.6 AMT vs HMT for 2 clusters of mobile users (rc is the ratio of UEs close to the
serving cell, xe is the AMT for UEs in the edge of the cell, α is the number of times
the throughput for UEs close to the serving cell is higher compared to the UEs at cell
edge).

scenarios can exploit the information extracted from the difference of arithmetic and

harmonic throughputs.

Fig. 3.7 Example of field CQI distribution.

Fig. 3.7 represents an example of field CQI distribution in the week six of the year

2014 taken in the cell E1 of Agency Orange Bastille. This measurement reflects the

signal to noise plus interference ratio reported by the UE to its serving BS. In reality,

the scheduled UEs are in most of the cases located in the cell center as observed in

Fig. 3.7, because during the planning process, radio engineers always work on ensuring

good coverage and capacity, especially in very crowded areas. Consequently, most of

the users will experience acceptable radio conditions in most of the covered area.



3.3 Hotspot Tracking Algorithm: Design and Optimization 27

For each cell k, we denote by µa(k) and µh(k), respectively, the AMT and the HMT

KPIs taken from O&M database.

3.2.3 Map of potential traffic hotspots

A map of potential traffic hotspots is an additional layer obtained from commercial data

so as to improve the hotspot localization. In this case, the spatial traffic distribution is

calculated taking into consideration the apriori knowledge of the location of industrial

and commercial areas or the location of residences. This map includes also information

about the location of rivers, forests, etc. Mass events such as a protest march or

a concert can be further a useful information than can be projected in the map of

potential hotspots. Such a map can be a reference map to define the contribution of

each KPI in the estimation of the spatial traffic distribution as described in Subsection

3.3.2.

We define Q̂ = (q̂i,j)1≤i,j≤m as the matrix representing the potential hotspots.

q̂i,j =











ωi,j if Pi,j is in a potential hotspot

0 otherwise
(3.5)

where ωi,j represents the importance of the potential hotspot. In fact, the weight

assigned to each hotspot is evaluated according to the heaviness of the traffic that

can be carried inside it. For example, a residence cannot take the same weight as a

commercial area.

3.3 Hotspot Tracking Algorithm: Design and Op-

timization

3.3.1 Description of the algorithm

Before running the localization algorithm, the O&M reports the statistics of each KPI

corresponding to the cells in its controlled area. Then, the following steps are executed.

Step 1: calculate the map of traffic weights according to TA

Based on TA KPI, we attribute to each pixel Pi,j a traffic weight q
(1)
i,j . To do this, each

cell in the coverage map is divided into 6 areas depending on the distance from the BS
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as illustrated in Fig. 3.3. Then, each pixel takes a weight equal to the percentage of

UEs in its range of TA.

q
(1)
i,j =

5
∑

t=0

τt(c
∗
i,j)×χ1,t(Pi,j) (3.6)

where χ1,t(Pi,j) is the indicator function of TA area t in serving cell c∗
i,j and χ1,t(Pi,j)

takes the value 1 if the pixel belongs to TA area t of its serving cell c∗
i,j and 0 otherwise.

Step 2: calculate the map of traffic weights according to AoA

In this step, each cell in the coverage map is divided into 3 areas as illustrated in Fig.

3.4. So, each pixel in the same range of AoA takes a traffic weight q
(2)
i,j equal to the

percentage of connected UEs in this range of AoA.

q
(2)
i,j =

1
∑

t=−1

φt(c
∗
i,j)×χ2,t(Pi,j) (3.7)

where φt(c
∗
i,j) is the value of the AoA KPI that gives the percentage of UEs in the AoA

area t of the cell c∗
i,j , χ2,t(Pi,j) is the indicator function of AoA area t in cell c∗

i,j and

χ2,t(Pi,j) is given by

χ2,t(Pi,j) =











1 if Angle(Pi,j , c
∗
i,j)− θ(c∗

i,j) ∈ It

0 otherwise
(3.8)

with

It =































[−π
6 , π

6 ] if t=0

[π6 , π] if t=1

[−π, − π
6 ] if t=-1

(3.9)

Angle(Pi,j , c
∗
i,j)) is the angle between pixel Pi,j and its serving cell c∗

i,j with respect

to the geographical North of the coverage map. θ(c∗
i,j) is the azimuth of the antenna

covering the cell c∗
i,j .
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Step 3: calculate the map of traffic weights according to the neighboring

cell level

Exploiting the neighboring cell level is motivated by the fact that when a neighboring

cell is reported many times rather than others, the pixels having this cell as the second

best serving cell contain probably most of the traffic.

Fig. 3.8 Traffic weights attribution with Neighboring cell level.

We attribute to each pixel a traffic weight q
(3)
i,j equal to the value of the neighboring

cell level of its second best serving cell, as shown in Fig. 3.8.

q
(3)
i,j = ϑĉi,j

(c∗
i,j) (3.10)
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Step 4: calculate the map of traffic weights according to cell loads

In hotspot areas, the traffic evolution has almost the same behavior in the neighboring

cells due to the load balancing [67, 68] and also the users’ mobility. As a consequence,

if a cell is congested and one of its neighbors is congested too, it is likely that most of

the traffic is located in the edge between the two cells and if there is no correlation

with any of the neighboring cells, then traffic is most probably generated from users

close to the serving cell. Furthermore, if two cells are congested but the heavy traffic

is not located between them, the attributed traffic weight in the region between these

two cells will be significant. The next step provides corrections to this step since it

allows to identify if the traffic hotspot is at the cell edge or not.

We denote by ψc∗
i,j
the set of neighboring cells having the same behavior in terms

of load as the serving cell c∗
i,j and are eligible for RSRP-based handover in Pi,j . It is

given by

ψc∗
i,j

= {k ∈ C such that |ρ(c∗
i,j)−ρ(k)| < ǫ and |RSRPc∗

i,j ,i,j −RSRPk,i,j | < γ} (3.11)

where γ is a parameter used to identify the set of candidate cells for a possible handover

(by default, it is equal to the handover margin) and ǫ is used in order to get only the

cells having the same behavior as the serving cell (ǫ is set to 0.1 in the localization

exercise shown, next, in the simulation results).

The traffic weight q
(4)
i,j attributed to each pixel based on the load KPI is then given

as follows

q
(4)
i,j =



















1
n(ψc∗

i,j
)

∑

k∈ψc∗
i,j

ρ(k) if ρ(c∗
i,j) > ρ̃

0 otherwise

(3.12)

where n(ψ) is the number of elements in the set ψ and ρ̃ is a threshold used to identify

the very loaded serving cells (in practice the congestion threshold is set to 70%). Thus,

only pixels belonging to congested cells get traffic weights according to this KPI.

Step 5: calculate the map of traffic weights according to AMT versus HMT

According to this step, the attributed traffic weights are the difference between the

AMT of the cell and the HMT divided by a constant µ0 in order to have all the

calculated weights in the range [0, 1]. The constant µ0 is the maximum achievable

throughput. The weight in each pixel depends on its position relative to the position
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of its best serving cell and also on the value of the difference between the two mean

throughputs. So, the weights for pixels in the cell center take the value of the difference

between the HMT and the AMT divided by µ0. The rest of the pixels in the cell takes

a traffic weight as given in equation (3.13).

The traffic weight q
(5)
i,j attributed to each pixel is then formulated as follows:

q
(5)
i,j =











µa(c
∗
i,j)−µh(c

∗
i,j)

µ0
if RSRPc∗

i,j
,i,j > RSRP0

1− µa(c
∗
i,j)−µh(c

∗
i,j)

µ0
if RSRPc∗

i,j
,i,j < RSRP0

(3.13)

where RSRP0 is a RSRP threshold used to differentiate between the cell edge versus

cell center UEs.

Step 6: combine all KPIs in a global metric and estimate peaks of traffic

in the coverage area

After analyzing all the KPIs and extracting information about hotspots from them,

this step defines the way to transpose all the outputs from the previous steps into a

unique map of traffic weights Q = (qi,j)1≤i,j≤m. The simplest way to get the matrix

Q is by making a weighted sum of the matrices Q(s) = (q
(s)
i,j )1≤i,j≤m, 1 ≤ s ≤ 5, with

an importance factor x = (x1,x2,x3,x4,x5)
T depending on the quantity of information

extracted from each KPI. So, we have that

Q =
5

∑

s=1

xsQ
(s) (3.14)

The trivial value of x is (15 , 15 , 15 , 15 , 15)
T . In this case, x is not optimal because some

KPIs provide more precision than others and some KPIs are correlated, as stated earlier.

For these reasons, we define the optimal value of x as the result of an optimization

problem which reduces the distance between the map of potential hotspots and the

matrix Q. This optimization is detailed in subsection 3.3.2.

Step 7: smoothing of the estimated spatial distribution of the traffic

The estimated spatial traffic distribution is further enhanced with a smoothing step

which consists in combining the values estimated in each pixel with the values estimated

in the neighboring pixels. The main advantage of smoothing [69] is to delete isolated

pixels with significant weights (wrong estimated hotspots). On the other hand, this
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step allows to ensure more the existing hotspots in the network once they are not

eliminated.

It was shown in [10] that the spatial traffic distribution is very heterogeneous.

Therefore, we choose the function of the smoother to be as follows

q∗
i,j =

∑

Pi′,j′∈L G(Pi,j ,Pi′,j′)qi′,j′

∑

Pi′,j′∈L G(Pi,j ,Pi′,j′)
(3.15)

where

G(Pi,j ,Pi′,j′) =
1

2πh
e−

|Pi,j−P
i′,j′ |2

2h (3.16)

with |Pi,j − Pi′,j′ | the euclidean distance between the pixels Pi,j and Pi′,j′ and h a

parameter related to the number of the neighboring pixels that are involved in the

smoothing of the value in pixel Pi,j (in simulations, we take h = 10−3m2). The qi,js

are the elements of the traffic weight matrix obtained from the previous step and the

q∗
i,js are the elements of the traffic weight matrix estimated after smoothing.

3.3.2 Optimization of the traffic tracking algorithm

It is possible to manually set the importance factors but the relative performance of

the traffic tracking process may result in inaccurate localization precision compared to

existing solutions. For instance, KPIs holding small information should not be heavily

considered in the aggregated traffic weight Q because they bias the results. So, in

order to improve the accuracy of the proposed traffic tracking method, the importance

factors, as defined in step 6, need to be optimized so that the contribution of each KPI

in the weighted sum can be justified.

Finding the optimal vector x is the result of an optimization problem that reduces

the distance between the available map of potential hotspots Q̂ and the estimated

traffic map Q found in Step 6 of the algorithm. The optimization is performed only

one time for an area where the map of potential hotspots is already available. The

obtained optimal importance factors might be used later for any similar environment

(urban, suburban, rural etc.) without any knowledge of its potential hotspots because

the contribution of each KPI mostly depends on the type of environment. For instance,

TA and AoA are more efficient and have more contribution in rural areas, however

in urban areas, measuring the TA or the AoA presents more errors due to obstacles

(resulting thus in more reflections and diffractions).
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The optimization of x can be formulated as follows:















minimize
x∈R5

∑m
i,j=1(qi,j − q̂i,j)

2 =
∑m

i,j=1

(

∑5
s=1xsq

(s)
i,j − q̂i,j

)2

xs ≥ 0, s = 1..5

(3.17)

where m2 is the number of pixels in the coverage map.

In order to put the optimization problem in a known and solvable form, we consider

AT =

















q
(1)
1,1 ... q

(1)
1,m ... q

(1)
2,1 ... q

(1)
m,m

. .. . .. . .. .

q
(5)
1,1 ... q

(5)
1,m ... q

(5)
2,1 ... q

(5)
m,m

















and

b = [q̂1,1...q̂1,m...q̂2,1...q̂m,m]T

A is a matrix of m2 lines and 5 columns and b is a vector of length m2.

Using matrix notation, the optimization problem of equation (3.17) becomes a

minimization of the distance between the vectors Ax and b in the space Rm2
:











minimize
x∈R5

‖Ax −b‖2

xs ≥ 0 , 1 ≤ s ≤ 5
(3.18)

where ‖.‖2 is the standard 2-norm (the Euclidian norm) in the space Rm2
.

This formulation represents a least square optimization problem and can be simply

solved using the Gauss Newton method [70].

3.4 Numerical results

3.4.1 Parameters’ setting

In order to evaluate and validate the proposed algorithm, we use an LTE simulator

that allows dynamic users’ arrivals and departures after being served.

At each time step of the simulator, equal to 1s, the number of call attempts are

generated according to a Poisson distribution with intensity λ = 200 UEs/s. UE

positions are generated depending on the traffic weight in each pixel of the coverage

map. UEs are accepted in the network only when there are available resources and
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when their RSRP is higher than the threshold Qrxlevmin (set to −115dBm in this

work). We suppose that each UE has a file of size 1Mb to download. Each UE quits

the network after downloading the entire file. Moreover, we consider that a part of UEs

(20%) are moving during their transmission with a speed of 8.33km/h. This means

that the simulation supports also handover events with a handover margin set to 6dB.

UEs are scheduled according to the round robin model. At the end of the simulation,

which lasts 1 hour, all KPIs (including the previously cited ones) are calculated and

stored in a file.

The simulated network is shown in Fig. 3.2 and composed of 23 tri-sectorized BS

(called also eNodeB) covering an area of 3× 3km2. eNodeB positions and physical

characteristics are taken from a real network. Each sector in each eNodeB is equipped

with a directive antenna of type Kathrein K742-234 having a beamwidth equal to 65o.

The used antenna mask is drawn in Fig. 3.9 with G(θ) representing the antenna gain

depending on the angle deviation from the direction of the maximum antenna radiation.

Moreover, each sector has an available capacity equivalent to 20MHz of spectrum

bandwidth operating in the band 2.6GHz. Because of the network heterogeneity, the

list of parameters (e.g., BS transmitter noise figure, cable loss, maximum transmit

power, etc), involved in this simulation depends on each site. Hence, it is worthless to

cite all these parameters.
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Fig. 3.9 Representation of −10log(G(θ)) of the antenna mask.

The coverage map (RSRP from each cell in each pixel), provided by a planning

tool, has a resolution equal to 20 meters. According to this map, the first and the

second best serving cell are identified in each pixel.
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Before starting the simulation, we attribute the traffic weight in each pixel of the

coverage map based on a mixture of Log-normal distributions [10]. As shown in Fig.

3.10, each peak of a Log-normal density represents a traffic hotspot.

For the potential traffic map, we attribute arbitrary weights in some pixels according

to our knowledge about some hotspot areas in the chosen map. The exploitation of

this map improves the precision of hotspot localization but is not a key element in the

proposed algorithm.

The validation of the algorithm consists in finding the traffic weight in each pixel

(following the steps of the algorithm) and comparing it with the original traffic weights

generated at the beginning of the simulation.

In order to have a better understanding of the efficiency of the proposed method

in real networks, we further consider real imperfections due to errors in the reported

measurements by UEs or due to errors in the coverage prediction tools of network

operators. The considered mobile equipment and field imperfections are as follows:

• The signal level received at the UE is equal to the signal level in its position taken

from the coverage map plus a normal random variable with zero mean and a

standard deviation equal to 10dB =
√
82+62+22. These three values correspond,

respectively, to the impact of shadowing effect on mobile measurements plus

the incertitude of the coverage measurement in addition to the possible errors

generated by the mobile equipment when realizing measurements.

• The TA measurements are altered by adding a normal random variable with zero

mean and standard deviation equal to 75.25 meters in terms of distance.

• The AoA measurements are also altered by adding a normal random variable

with zero mean and standard deviation equal to π
6 .

3.4.2 Results

Running the traffic tracking algorithm and performing the optimization, as described

in Subsection 3.3.2, we get the importance factor as follows

x = [0.418 0.2689 0.2281 0.0358 0.0491]T (3.19)

In simulations, we were able to test other values for the importance factors and

the relative results are further improved after the optimization step. These optimal

importance factors are directly used in the performance evaluation of the present traffic

tracking process.
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Fig. 3.10 Original traffic distribution.
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(a) Estimated traffic distribution in step
6.
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(b) Estimated traffic distribution in step
7.

Fig. 3.11 Spatial traffic distribution.

In Fig. 3.10, the original traffic distribution generated at the beginning of the

simulation is drawn. In Fig. 3.11a, the estimated traffic distribution is depicted

based on the proposed algorithm without including the smoothing process. Fig. 3.11b

represents the spatial traffic distribution after smoothing the calculated distribution.

Then, Fig. 3.12 represents the estimated spatial traffic distribution with introducing

imperfections impacting both the coverage map and the mobile measurement reports.

Regarding the identification of the hotspot areas, we observe that most of the

hotspot areas are found in the entire network map even when the estimation takes into

account the mobile and field imperfections detailed above. Nevertheless, we observe

that the precision of localization is somewhat affected by the consideration of these

imperfections.

In Table 3.1, the coordinates of the generated hotspots and those estimated in steps

6 and 7 and after taking into account mobile and field imperfections are extracted
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Fig. 3.12 Estimated traffic distribution taking into account real mobile and field
imperfections.

Table 3.1 Coordinates of generated and estimated hotspots holding highest traffic
weights (x,y) in meters.

Generated hotspot (1100,960) (760,940) (20,980) (-1020,-640) (1040,280) (-200,-120) (-960,740) (220,100) (960,-300)
Estimated hotspot in step 6 (1140,940) (740,940) (40,980) (-1040,-660) (1200,420) (-240,-180) (-940,780) (320,140) (940,-280)
Distance to original hotspot
position

44.72 20 20 28.28 212.6 72.11 44.72 107.7 28.28

Estimated hotspot in step 7 (1100,960) (760,900) (40,980) (-1020,-660) (1100,340) (-180,-120) (-920,760) (260,100) (960,-320)
Distance to original hotspot
position

0 40 20 20 84.85 20 44.72 40 20

With imperfections (1140,920) (810,900) (60,880) (-1020,-660) (1200,280) (-160,-60) (-940,800) (160,100) (980,-300)
Distance to original hotspot
position

56.57 64 107.7 20 160 72.1 63.24 60 20

from the calculated matrices generating the figures above. From Table 3.1, we find

out that the execution of the proposed algorithm until step 6 pinpoints the hotspots

generated in the network with a precision of 64.26 meters (see Table 3.1, the mean

of the calculated distances between the original and the estimated hotspots in step

6). However, the spatial traffic distribution is quite uniform inside these hotspots.

Then, the shape of the estimated traffic distribution is improved after smoothing and

the precision becomes about 32.17 meters. In case the estimation is made based on

imperfect measurements, the precision of localization becomes less accurate than the

previous results and errors of localization are about 69.3 meters.

Fig. 3.13 shows the Cumulative Distribution Function (CDF) of traffic weights

attributed to pixels based on the proposed algorithm. To localize the hotspot areas,

we are interested only in the region surrounded by the (blue) ellipse in Fig. 3.13 which

represents the significant weights.

Fig. 3.13 indicates that using all the 5 KPIs in the network gives better estimation

of traffic distribution as compared to the case when using only some of them. In fact,

significant weights have a small density when using only one KPI which means that
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Fig. 3.13 CDF of real and estimated traffic weights.

the traffic distribution is more flat and uniform inside the hotspot area. This density

is increased and becomes near the exact distribution when all the KPIs are used and

when all the steps of the proposed algorithm are performed.

From the traffic weight distribution, we note that the most useful KPIs are the TA,

AoA and the neighbor cell level. The mean throughput and the cell load have also an

impact on the estimation and improve further the localization. In addition, smoothing

the estimated traffic distribution reduces the difference between the original spatial

traffic distribution and the estimated one.

Among the plotted curves in Fig. 3.13, the curve representing the combination

between TA and neighboring cell level allows us to compare the solution proposed in

[14] to the present proposed algorithm. Results show that our method performs better

when compared to the solution disclosed in [14].

From Fig. 3.13, we observe also that including real imperfections clearly impacts

the estimation of the spatial traffic distribution. Nevertheless, the observed results are

still favorable to further boost the development and the improvement of the proposed

traffic tracking solution.
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Table 3.2 Percentage of detected hotspots.

Real % of first Estimated % with Estimated % with Estimated % after Estimated % with
hotspots only TA all KPIs smoothing imperfections
0.5 0.12 0.30 0.422 0.22
1 0.26 0.48 0.58 0.42
2 0.46 1.09 1.13 0.95
5 1.12 2.17 2.56 2.03
10 2.29 4.34 4.8 4.11
20 4.87 33.45 9.7 9.1
50 14.22 74.34 27.32 22.47

We compare in Table 3.2 the percentage of detected hotspots that have the highest

weights to the original heaviest hotspots in the network. The analysis is based on the

fact that weights are sorted in a decreasing order. We determine the coordinates of

the pixels which hold 0.5% (1, 2, 5, 10, 20, and 50 respectively) of the traffic in the

network (using the real distribution). Then, we calculate the sum of estimated weights

in these pixels.

The purpose of the evaluation in Table 3.2 is to see the importance of using all the

KPIs and the impact of smoothing on the localization of most significant hotspots.

The column showing the performance of using only TA stands to the reason that, in

the literature, several traffic tracking techniques are based on only TA. It allows a

common comparison of these techniques to the proposed one. Table 3.2 shows that the

traffic tracking method is clearly improved when it is based on the 5 KPIs compared

to the use of only TA.

From Table 3.2, we also observe that the heaviest hotspots that have the highest

weights, are reasonably estimated and this estimation is further enhanced with the

step of smoothing. However, when we increase the percentage of the first significant

hotspots (from 0.5% to 10%), the estimation shows less efficiency and this is due to

the fact that some areas close to the hotspots could take a significant weight without

carrying heavy traffic.

Before smoothing, pixels within the same region of a hotspot take the same weight.

However, weights of isolated fake hotspot are eliminated after smoothing and weights

of pixels in the edge of a hotspot are reduced. Hence, when the percentage of the first

significant hotspots is low, only pixels in the center of a hotspot are evaluated and the

sum of weights before smoothing is less than the sum after smoothing. In contrast,

when the percentage of the first significant hotspots is high, pixels in the edge of the

hotspots are also included in the evaluation. As a result, the sum of weights before

smoothing is higher than the sum after smoothing since weights of pixels in the edge

of hotspots are reduced after smoothing.



40 Traffic Hotspot tracking in LTE networks

The results in Table 3.2 show that including mobile and field imperfections provide

also an acceptable estimation of the most important hotspots. This metric shows that

the proposed method, in the case when mobile and field imperfections are taken into

account, is less accurate when taking more percentage of traffic weights to estimate.

This result consolidates the previous results and is due to the same reasons discussed

in the case where mobile measurements are assumed to be correct.

3.5 Concluding remarks

In this chapter, we proposed a modular and optimized algorithm that consists in

combining several performance metrics projected over a coverage map. The proposed

traffic tracking process is tested including data measurement errors due to mobile

equipment and field imperfections. Results showed acceptable localization error, in

cases of moderate and heavy traffic. Therefore, the use of O&M KPIs projected over

a coverage map can be efficient for tracking traffic hotspots as they yield promising

results at low operational costs. So, we conclude that this method can be a useful and

promising solution to identify areas where a small cell must be deployed or to perform

appropriate configurations to lessen congestion in peak traffic areas.

The next step is to evaluate the impact of the imperfect traffic hotspot localization

on the deployment of small cells in cellular networks. This subject is investigated in

Chapter 4.



Chapter 4

Small cell deployment under

perfect and imperfect traffic
hotspot localization

Dense urban areas are environments where the spectrum is most scarce, the need

for high capacity is urgent and, in addition to the pathloss effect, interferences and

shadowing effect have also an important impact on the quality of service. Consequently,

a dense network deployment is needed with a topology adapted to the morphology of

the environment in order to ensure a best coverage in the entire cell. Understanding

the efficiency of small cell deployment in the presence of traffic hotspots can further

draw operators’ attention to this feature.

In this chapter, we evaluate the impact of imperfect small cell positioning on the

network performance. We start by describing the downlink system model with a special

focus on radio aspects. After that, we derive the throughput distribution and its mean

following a static level analysis, which refers in our context, to a set of decorrelated

averaged snapshots of the network where the user location distribution varies only in

space. Three different scenarios are studied: i. with macrocells only, ii. with a small

cell deployed exactly at the center of the traffic hotspot and iii. with a small cell not

perfectly deployed near the traffic hotspot (its position is different from the hotspot

one).

We secondly consider the dynamics of the system (widely named flow level analysis),

with users arriving to the system at random times and leaving it after a finite duration

corresponding to the end of their services, with the service rates derived in the static

level analysis. The studied model is based on coupled multi-class Processor Sharing

queues (PS). The coupling between the macrocell and the small cell is the consequence
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of the interference generated by each one on the other. We derive analytical expressions

for several performance metrics depending on the level of accuracy of traffic hotspot

localization tools [20].

4.1 System model

4.1.1 System description

We consider a cellular network with an infinite number of macrocells, each one transmit-

ting with power level P . The location of the macrocells is drawn following a hexagonal

grid layout (see Fig. 4.1) with inter-site distance denoted by δ. We also add a small

cell located in (Rs, θs), as illustrated in Fig. 4.1. The transmit power level of the small

cell is Ps = κP with 0 ≤ κ ≤ 1.

Fig. 4.1 Network layout.

A given User Equipment (UE) m, with polar coordinates (r,θ), is served either by

the central macrocell (cell at the origin) or the deployed small cell depending on the

relative signal strength coming from both antennas. The rest of the cells play the role

of interfering ones.

In order to evaluate the efficiency of the deployed small cells, we consider a traffic

hotspot with polar coordinates (Rh, θh). Without loss of generality, we assume that

this hotspot is located inside the central macrocell of the network. This means that

Rh is smaller than the radius of the cell, denoted by R. The choice of R is problematic

because the disk circumscribed around the hexagon over-estimates interferences whereas

the disk inscribed in the hexagon under-estimates interferences and generates coverage

holes. For all the theoretical study, we take an arbitrary R, such that R < δ, but for
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Fig. 4.2 A snapshot of the network with a traffic hotspot in (Rh = 0.44δ,θh = 2π
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the numerical results, we use R = δ

√√
3

2π which is the radius of the disk having the

same area as the hexagon representing the cell. UE locations are spatially distributed

in order to form a hotspot centered in (Rh, θh); its measure is given by

dt(r,θ) =
1

2πA2
e

− |reiθ−Rheiθh |2

2A2 rdrdθ (4.1)

where A is the standard deviation of the distribution allowing to control the spatial

dispersion of the traffic hotspot. An example of the relative spatial distribution is

plotted in Fig. 4.2 with A = 0.2m2 (the same value of A is used in simulations).

Remark: Considering more heterogeneity in the spatial traffic distribution is of great

importance in the performance evaluation of heterogeneous networks. This aspect and

its consequences on performance results are discussed in Subsection 4.3.3. Nevertheless,

if we consider more than one traffic hotspot, the impact of imperfect small cell

positioning may not make sense since a large error in small cell positioning could help

to cover another traffic hotspot. In this way, we may not identify the real impact of

imperfect small cell positioning which is the key driver of this work allowing us to

obtain the accuracy level that traffic localization tools must attain. Moreover, with

many traffic hotspots, it is not possible to know if it is beneficial to deploy small cells

near or far from the macrocell position1 unless all hotspots are generated in the same

region (in the edge or in the center).

1The macrocell or small cell position means the location of their transmitting antennas. For the
studied hexagonal model, the macrocell position is the center of its covered hexagon.



44 Small cell deployment under perfect and imperfect traffic hotspot localization

As indicated above, we consider three scenarios: In Scenario 1, there is no small

cells in the network. This scenario represents a benchmark allowing the comparison of

a network where small cells contribute to offloading traffic to a network without small

cells. Scenario 2 considers a small cell inside the central macrocell and it is perfectly

deployed in the center of the traffic hotspot, i.e. (Rh, θh) = (Rs, θs). In Scenario 3, we

consider a small cell deployed inside the central macrocell as in Scenario 2, but we add

imperfections due to the accuracy level of the used traffic hotspot localization method,

i.e. (Rh, θh) Ó= (Rs, θs).

In order to deduce the performance of Scenario 1 from that of Scenario 3, we

consider that in Scenario 3, the small cell is placed far enough from the traffic hotspot

and from the macrocell (i.e. Rs = ∞) or it is switched in a sleeping mode (i.e. Ps = 0).

4.1.2 Channel model and UE association

To model the wireless channel, we consider a distance based pathloss metric with a

standard function given by a|m−C|−2b, where |m−C| is the distance between the UE
m and any cell C in the network, which can be either a macrocell or a small cell, a is

a pathloss constant which depends on the type of the environment relative to the type

of the cell (indoor, outdoor, rural, urban, etc.) and 2b > 2 is the pathloss exponent

coefficient. Without loss of generality, we consider that the transmit power levels P

and Ps include the pathloss constant a, antenna gain, UE antenna gain and body loss.

Based on the proposed pathloss model, the UE located in m = (r,θ) is served by

the small cell if the RSRP of the small cell is higher than the RSRP coming from the

macrocell. This can be expressed by the following inequality

Ps|reiθ −Rse
iθs|−2b > Pr−2b (4.2)

If the constraint in inequality (4.2) is not satisfied, the UE will be connected to the

macrocell.

Based on inequality (4.2), we evaluate the absorption coefficient (denoted by µ)

which reflects the percentage of mobile locations (generated according to a given traffic

distribution) that can be covered and served by the small cell. This performance metric

is given by

µ =
1

S0

∫

S∗
1

(

Ps|reiθ −Rse
iθs|−2b > Pr−2b

)

dt(r,θ) (4.3)
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Fig. 4.3 Throughput-SINR link level curve.

where S∗ is the covered area by the central macrocell and the deployed small cell.

S0 =
∫

S∗
dt(r,θ) (4.4)

4.1.3 Link level capacity: Throughput vs SINR

The SINR and the throughput of a UE m = (r,θ) are respectively denoted by γ(r,θ)

and η(r,θ) if received from the macrocell and by γ̃(r,θ) and η̃(r,θ) if received from

the small cell. Independently from the type of the cell, the relationship between γ (in

linear scale) and η (in Mbps) depends on the UE capability and receiver characteristics,

the available bandwidth, the radio conditions and small scale fading effects, the type

of the service and the choice of the Modulation and Coding Schemes (MCS). This

relationship gives the peak data rate practically experienced by the UE in any position

of the network in the absence of any other active user in the cell. It is often modeled

by the modified Shannon formula [71],

η =min(K1 ×W × ln(1+K2 ×γ),η0) (4.5)

where K1 and K2 are two variables depending on the transmission conditions and can

be adapted for each UE speed and category, W is the used bandwidth expressed in

MHz and η0 is the maximum achievable throughput.

For the numerical results, we consider UE category 3 operating at 20MHz. From

a simple fitting of practical data, we find out that, under laboratory measurement

conditions, η0 = 98Mbps, K1 = 0.85 and K2 = 1.9. Fig. 4.3 provides a comparison
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between the theoretical and empirical Throughput-SINR link curve of the specified

category of UE.

4.2 Static level analysis

In this section, we evaluate the user throughput obtained in each position of the

covered region of the studied macrocell and small cell based on the modified Shannon

formula given in equation (4.5). Then, the mean throughput and its Complementary

Cumulative Distribution Function (CCDF) are calculated considering a user location

variable having a measure dt(r,θ) as given in equation (4.1), reflecting the presence of

a traffic hotspot in the cell.

Definition 1: As mentioned in Subsection 4.1.3, γ and γ̃ are the SINRs received at

a UE with polar coordinates (r,θ) and served respectively by the macrocell and the

small cell. Hence, γ and γ̃ are expressed as follows

γ(r,θ) =
1

g(r)+κ|reiθ −Rseiθs |−2br2b
(4.6)

γ̃(r,θ) =
Ps|reiθ −Rse

iθs |−2b

(g(r)+1)Pr−2b
(4.7)

where g(r) represents the interference plus noise factor in a network composed of only

macrocells. It is defined by the sum of the power coming from all the interfering

macrocells plus the noise power divided by the received power from the serving

macrocell.

In order to evaluate the impact of an infinite number of interfering macrocells, we

established and validated in [27] an expression of g(r) for the considered hexagonal

network model. This formula is expressed as follows:

g(r) = 6α
(

r

δ

)2b







1+(1− b)2
(

r
δ

)2

(1−
(

r
δ

)2
)2b−1

+ω(b)−1





+
PN

P
r2b (4.8)

where α is the average cell load over all the interfering macrocells, PN is the noise

power level (exterior to the system and including thermal noise) and

ω(b) = 3−bζ(b)
(

ζ(b,
1

3
)− ζ(b,

2

3
)
)
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ζ(.) and ζ(., .) are respectively the Riemann Zeta and Hurwitz Riemann Zeta functions

[72, pp. 1036].

Definition 2: We define the mean user throughput ηavg in the region S∗, covered by

the macrocell and the deployed small cell as follows:

ηavg = ηmacro + η̃small (4.9)

with

ηmacro =
1

S0

∫

S∗
1

(

Ps|reiθ −Rse
iθs|−2b < Pr−2b

)

×

min(K1W ln(1+K2 ×γ(r,θ)),η0)dt(r,θ) (4.10)

η̃small =
1

S0

∫

S∗
1

(

Ps|reiθ −Rse
iθs|−2b > Pr−2b

)

×

min(K1W ln(1+K2 × γ̃(r,θ)),η0)dt(r,θ) (4.11)

where dt(r,θ) represents the spatial UE location distribution reflecting the presence of

a traffic hotspot located in (Rh, θh) and 1(.) is the indicator function which returns 1

if the input condition is verified and zero otherwise. S∗ is the studied covered area and

S0 =
∫

S∗
dt(r,θ) (4.12)

Definition 3: In the presence of a hotspot (following a spatial distribution such as

the one given in equation (4.1)) in the region covered by the central macrocell and the

deployed small cell (Rs, θs), we define the throughput CCDF for both cells as follows:

P(η ≥ l) =
1

S

∫

S∗
1

(

Ps|reiθ −Rse
iθs |−2b ≤ Pr−2b

)

×

1(min(K1W ln(1+K2 ×γ(r,θ)),η0) ≥ l)dt(r,θ) (4.13)

P(η̃ ≥ l) =
1

S̃

∫

S∗
1

(

Ps|reiθ −Rse
iθs |−2b > Pr−2b

)

×

1(min(K1W ln(1+K2 × γ̃(r,θ)),η0) ≥ l)dt(r,θ) (4.14)
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with S∗ the studied covered area and

S =
∫

S∗
1

(

Ps|reiθ −Rse
iθs |−2b ≤ Pr−2b

)

dt(r,θ) (4.15)

S̃ =
∫

S∗
1

(

Ps|reiθ −Rse
iθs |−2b > Pr−2b

)

dt(r,θ) (4.16)

where dt(r,θ) represents the spatial UE location distribution reflecting the presence of

a traffic hotspot located in (Rh, θh).

We notice that the performance analysis in Scenario 1 is equivalent to the case of

Scenario 3 but with deploying a small cell far enough from the macrocell and hotspot

positions. For instance, Rs can be taken as equal to +∞. Hence, the inequality in
(4.2) will never be satisfied for UEs located inside the hotspot and it follows that

ηavg = ηmacro and η̃small = 0 (4.17)

On the other hand, Scenario 2 is illustrated by the equality

(Rs, θs) = (Rh, θh) knowing that Rh ≤ R (4.18)

Scenario 3 is eventually depicted by the following conditions

(Rs, θs) Ó= (Rh, θh) and Rs ≤ R (4.19)

Lemma 4.2.1 For l > η0, the throughput CCDFs in the macrocell and in the small

cell are equal to zero since the peak throughput a UE (of a given category) can reach in

the best radio conditions, cannot be higher than η0.

∀l > η0, P(η ≥ l) = 0 and P(η̃ ≥ l) = 0

On the other hand, when l ≤ η0, the throughput CCDFs are further simplified and

are given by

P(η ≥ l) =
1

S

∫

S∗
1

(

Ps|reiθ −Rse
iθs|−2b ≤ Pr−2b

)

1

(

1

γ(r,θ)
≤ ψ(l)

)

dt(r,θ) (4.20)

P(η̃ ≥ l) =
1

S̃

∫

S∗
1

(

Ps|reiθ −Rse
iθs|−2b > Pr−2b

)

1

(

1

γ̃(r,θ)
≤ ψ(l)

)

dt(r,θ) (4.21)



4.2 Static level analysis 49

with

ψ(l) = K2

(

e
l

K1W −1
)−1

(4.22)

Proof: The proof is based on the fact that the inequality min(K1W ln(1 +K2 ×
γ̃(r,θ)),η0) ≥ l simplifies to K1W ln(1+K2× γ̃(r,θ)) ≥ l since η0 ≥ l. Then, we proceed

by performing elementary algebraic transformations. �

In the rest of the analysis, the throughput CCDF is only calculated for l ≤ η0

because it is simply equal to zero otherwise.

4.2.1 Case of no small cells deployed in the studied area

As mentioned above, we take Rs = ∞ to study the case where the macrocell area does

not contain small cells. Then, all the UEs in the hotspot, following dt(r,θ) defined in

equation (4.1), are only served by the macrocell. In this case, the mean user throughput

and its CCDF are given by the following propositions.

Proposition 4.2.1 The mean user throughput in a network of macrocells only in the

presence of a traffic hotspot, distributed as given in equation (4.1), is equal to

ηavg =
2

S0

K1W

2

1

A2
e

− R2
h

2A2 ln

(

1+
K2

ψ(η0)

)

×
Λ

∫

0

re
− r2

2A2 I0

(

rRh

A2

)

dr+

2

S0

K1W

2

1

A2
e

− R2
h

2A2 ×
R

∫

Λ

re
− r2

2A2 ln

(

1+
K2

g(r)

)

I0

(

rRh

A2

)

dr (4.23)

where ψ(η0) is given as in equation (4.22), I0(.) is the first order of the modified

Bessel function of the first kind [73], g(r) is given in (4.8) and Λ=min
(

g−1 (ψ(η0)) ,R
)

.

Proof: From the definition of the mean user throughput incorporating the hotspot

traffic distribution, one has

ηavg =
2

S0

K1W

2

1

A2
e

− R2
h

2A2 ×
R

∫

0

re
− r2

2A2 ln

(

1+
K2

max(ψ(l),g(r))

)

1

π

π
∫

0

e
rRhcos(θ)

A2 drdθ

=
2

S0

K1W

2

1

A2
e

− R2
h

2A2 ×
R

∫

0

re
− r2

2A2 ln

(

1+
K2

max(ψ(l),g(r))

)

I0

(

rRh

A2

)

dr (4.24)
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Function g realizes a continuous increasing function from [0, R] to [0, g(R)]. And

so, it can be explicitly inversed using series reversion or by switching numerically the x

and y axes. A simple and accurate inverse function of g is provided in [29].

Using the monotonicity of g, the expression of ηavg is further simplified and we

obtain the expressions in equation (4.23) which completes the proof. �

Proposition 4.2.2 When the studied area does not contain a small cell, the throughput

CCDF in the macrocell, in the presence of UE location distribution defined as in equation

(4.1), is expressed by

P(η ≥ l) =
1

S

e
− R2

h
2A2

A2

Λ
∫

0

re
− r2

2A2 I0

(

rRh

A2

)

dr (4.25)

with Λ =min
(

g−1 (ψ(l)) ,R
)

and I0(.) is the first order of the modified Bessel function

of the first kind, ψ is defined in equation (4.22) and g(r) is given in equation (4.8).

Proof: In the studied scenario, one has S =
∫

S∗ dt(r,θ) since no small cells are deployed

in the evaluated area. Next, from the throughput CCDF definition given in equation

(4.20) and based on the monotonicity of g, P(η > l) is expressed as follows

P(η ≥ l) =
1

S

∫

S∗
1(g(r)≤ ψ(l))dt(r,θ)

=
1

S

∫ R

0

∫ 2π

0
1

(

r ≤ g−1(ψ(l))
)

dt(r,θ)

=
1

S

∫ Λ

0

∫ 2π

0
dt(r,θ)

with Λ =min
(

g−1 (ψ(l)) ,R
)

and ψ(l) as defined in (4.22).

Finally, replacing dt(r,θ) by its expression in (4.1) and evaluating the integral on θ,

we find (4.25) and complete the proof. �

4.2.2 Case of small cell deployed in the studied area

When the small cell is deployed in the coverage of the macrocell, the mean user

throughput and its CCDF in the system composed of the macrocell and the small cell

are given in the following propositions.
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Proposition 4.2.3 When users are located in the hotspot given by dt(r,θ) and centered

in (Rh, θh), they are served either by the macrocell or the small cell (with polar

coordinates (Rs, θs)). Then, the expression of ηmacro and of η̃small given in definition

2 can be expressed as follows:

ηmacro =
1

S0

K1W

2π

1

A2
e

− R2
h

2A2

∫

[0, r1]∪[r2, R]
re

− r2

2A2

π
∫

0

(

e
rRhcos(θ−θh+θs)

A2 + e
rRhcos(θ+θh−θs)

A2

)

×

ln



1+
K2

max
(

ψ(η0),g(r)+κr2b|reiθ −Rs|−2b
)



drdθ

+
1

S0

K1W

2π

1

A2
e

− R2
h

2A2

r2
∫

r1

re
− r2

2A2

π
∫

cos−1(h(r)

(

e
rRhcos(θ−θh+θs)

A2 + e
rRhcos(θ+θh−θs)

A2

)

×

ln



1+
K2

max
(

ψ(η0),g(r)+
Ps
P r2b|reiθ −Rs|−2b

)



drdθ (4.26)

η̃small =
1

S0

K1W

2π

1

A2
e

− R2
h

2A2

r2
∫

r1

re
− r2

2A2

cos−1(h(r))
∫

0

(

e
rRhcos(θ−θh+θs)

A2 + e
rRhcos(θ+θh−θs)

A2

)

×

ln



1+
K2

max
(

ψ(η0),(g(r)+1) 1κr−2b|reiθ −Rs|2b
)



drdθ (4.27)

where r1 =
Rs

1+κ
1
2b

, r2 =
Rs

1−κ
1
2b

, ψ(η0) is defined in (4.22) and

h(r) =
R2

s + r2−κ
1
b r2

2rRs
(4.28)

Proof: First, we start by developing 1
(

Ps|reiθ −Rse
iθs|−2b < Pr−2b

)

in the expression

of ηmacro given in definition 2:

ηmacro =
1

S0

∫

S∗
1

(

Ps|reiθ −Rse
iθs|−2b < Pr−2b)

min(K1W ln(1+K2×γ(r,θ)),η0)dt(r,θ)

=
1

S0

∫

S∗
1(cos(θ − θs) < h(r))min(K1W ln(1+K2×γ(r,θ)),η0)dt(r,θ)
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Then, using the monotonicity of the function cos(.) in [0, π] and in [−π, 0] separately,

the obtained expression is further transformed to

ηmacro =
1

S0

∫ R

0

∫ π

0
1

(

θ − θs > cos−1(h(r)|1−1)
)

min(K1W ln(1+K2×γ(r,θ)),η0)dt(r,θ)+

1

S0

∫ R

0

∫ 0

−π
1

(

θ − θs < cos−1(h(r)|1−1)
)

min(K1W ln(1+K2×γ(r,θ)),η0)dt(r,θ)

with

h(r)|1−1 =



























h(r) if −1 < h(r) < 1

−1 if h(r) < −1

1 if h(r) > 1

(4.29)

Knowing that cos−1(h(r)|1−1) can be expressed as in equation (4.30) and after
performing algebraic transformations notably in the expression of the traffic distribution

dt(r,θ), we obtain equation (4.26) and complete the first part of the proof.

cos−1(h(r)|1−1) =











cos−1(h(r)) if r1 < r < r2

0 otherwise
(4.30)

We follow the same steps to prove the resulting expression of η̃small in equation

(4.27). �

Remark: When the small cell position matches with the hotspot’s one (Scenario 2),

the mean throughput of UEs served by the macrocell is further simplified and its

expression becomes as follows

ηmacro =
2

S0

K1W

2π

1

A2
e

− R2
h

2A2

∫

[0, r1]∪[r2, R]
re

− r2

2A2

π
∫

0

e
rRhcos(θ)

A2

ln



1+
K2

max
(

ψ(η0),g(r)+κr2b|reiθ −Rh|−2b
)



drdθ+

2

S0

K1W

2π

1

A2
e

− R2
h

2A2

r2
∫

r1

re
− r2

2A2

π
∫

cos−1(h(r))

e
rRhcos(θ)

A2

ln



1+
K2

max
(

ψ(η0),g(r)+κr2b|reiθ −Rh|−2b
)



drdθ (4.31)
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Likewise, the mean throughput of UEs served by the small cell is given by

η̃small =
2

S0

K1W

2π

1

A2
e

− R2
h

2A2

r2
∫

r1

re
− r2

2A2

cos−1(h(r))
∫

0

e
rRhcos(θ)

A2 ×

ln



1+
K2

max
(

ψ(η0),(g(r)+1) 1κr−2b|reiθ −Rh|2b
)



drdθ (4.32)

Proposition 4.2.4 In the presence of a traffic hotspot with a probability measure

dt(r,θ), the throughput CCDFs in the macrocell and in the small cell (with polar

coordinates (Rs, θs)) are given by the following expressions

P(η ≥ l) =
1

S

∫ Λ

Λ0

∫ 2π

0
1(cos(θ − θs) ≤ g2(r))dt(r,θ)+

1

S

∫ Λ0

0

∫ 2π

0
1(cos(θ − θs) ≤ g1(r))dt(r,θ) (4.33)

P(η̃ ≥ l) =
1

S̃

∫ R

Λ0

∫ 2π

0
1(cos(θ − θs) ≥ g3(r))dt(r,θ)+

1

S̃

∫ Λ0

0

∫ 2π

0
1(cos(θ − θs) > g1(r))dt(r,θ) (4.34)

with Λ0=min(g−1(ψ(l)−1),R), Λ=min
(

g−1 (ψ(l)) ,R
)

, ψ and g are given in equations

(4.22) and (4.8) respectively.

g1(r) =
R2

s + r2−κ1/br2

2rRs

g2(r) =
R2

s + r2−κ
1
b r2 (ψ(l)−g(r))−1/b

2rRs

g3(r) =
R2

s + r2− (ψ(l)κ)
1
b r2 (g(r)+1)−1/b

2rRs

Proof: First, we replace γ(r,θ) in equation (4.20) by its expression given in definition

1. Next, we consider Ω defined by

Ω = 1

(

g(r)+κr2b|reiθ −Rse
iθs|−2b ≤ ψ(l)

)
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If g(r) ≥ ψ(l), then Ω = 0. Consequently, since g is an increasing function in [0, R],

P(η ≥ l) becomes as follows

P(η ≥ l) =
1

S

∫ Λ

0

∫ 2π

0
1

(

κ|reiθ −Rse
iθs |−2b ≤ r−2b)

×

1

(

g(r)+κr2b|reiθ −Rse
iθs|−2b ≤ ψ(l)

)

dt(r,θ)

with Λ =min
(

g−1 (ψ(l)) ,R
)

and ψ(l) as defined in equation (4.22).

Subsequently, applying elementary transformations yields to

P(η ≥ l) =
1

S

∫ Λ

0

∫ 2π

0
1(cos(θ − θs)≤min{g1(r),g2(r)})dt(r,θ)

Then, one has g1(r)< g2(r) if and only if g(r)< ψ(l)−1. Knowing that g−1 is the

inverse function of an increasing one, it follows that g−1 (ψ(l))≥ g−1 (ψ(l)−1). Finally,
we obtain equation (4.33) which completes the first part of the proof.

The throughput CCDF in the small cell is defined in equation (4.21). We replace

γ̃(r,θ) by its expression given in definition 1 and we apply elementary transformations

in order to obtain

P(η̃ ≥ l) =
1

S̃

∫ R

0

∫ 2π

0
1(cos(θ − θs)> g1(r))×1(cos(θ − θs)≥ g3(r))dt(r,θ)

Furthermore, one has g1(r)< g3(r) if and only if g(r)> ψ(l)−1. Hence, we obtain
the expression in equation (4.34). �

Remark: The advantage of the obtained expressions is the simplification of the integral

with the reduction of the double use of the indicator function in the entire disk to

become a simple one in each subarea. In fact, numerical computations of the original

expressions in equations (4.10), (4.11), (4.13) and (4.14) are time consuming and

their simplifications in equations (4.23), (4.26), (4.27), (4.25), (4.33) and (4.34) reduce

significantly the computational costs. This kind of expressions are often implemented

in planning and performance prediction tools as a complementary layer to the Monte

Carlo simulations’ module.

4.3 Dynamic level analysis

In this section, we derive performance metrics based on a dynamic level analysis. First,

we define the term flow, regularly used in the rest of the analysis, to refer to a session
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Fig. 4.4 Extraction of (pk, p̃l) and (ηk, η̃l).

where a user initiates and finishes his transmission successfully. It is characterized by

a starting time, corresponding to the time the user arrives to the system, and the size

of the file to be transferred. We focus, in this work, on the case of best effort traffic.

Flows may belong to different classes where the notion of class reflects the different

clusters of users experiencing approximately the same radio conditions. For each class,

the arrival rate and the peak data rate are extracted from the static level analysis as

described in the next subsection.

4.3.1 Inputs extracted from the static level analysis

The distribution of users in each flow class can be extracted from the CQI distribution

for a cell already installed and operational. However, during the planning task, this

information is not available. The throughput distribution, obtained from the static

level analysis in the presence of non-uniform spatial traffic distribution (adapted to real

scenarios), can be therefore a relevant alternative to predict the distribution of radio

conditions in the studied area. Following this approach, we extract from the throughput

CCDF the distribution of radio conditions involving the spatial traffic distribution as

follows: First, we denote by pk and p̃l (k = 1..K and l = 1..L) the proportion of users

in each class of radio conditions where K and L represent the number of classes in

the macrocell and the small cell respectively. Second, in Fig. 4.4, the x-axis of the

throughput is discretized in order to divide users into classes of flows according to their

peak data rates. Each class is characterized by ηk for the macrocell and η̃l for the small

cell which corresponds to the mean (or the max [30, 32]) of peak data rates in this
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class. Third, the proportion of users pk in class k (or pl in class l for the small cell) is

directly extracted from the y-axis by simply taking the value of P(ηmin,k ≤ η ≤ ηmax,k),

where ηmin,k and ηmax,k represent the boundaries of the interval of class k peak data

rate.

4.3.2 Traffic characteristics and dynamic system model

For both cells, random arrivals of data flows are modeled by multi-class flows; the flow

classes are sorted according to the associated peak data rate ηk (or η̃l for small cell)

in an increasing order. All users of the same class have approximately the same data

rate when scheduled in the same cell, however the data rate differs from a flow class to

another one. We assume that each flow of class k for macrocell and l for small cell

arrives to the network following a Poisson process of intensity λk = λpk = λT ot
S

S+S̃
pk

in the macrocell and λ̃l = λ̃p̃l = λT ot
S̃

S+S̃
p̃l in the small cell, where λT ot is the total

arrival intensity in the studied system.

Flow sizes, denoted by σ, are assumed to be mutually independent and exponentially

distributed with mean σ0 in Mbits. Traffic is assumed to be FTP-like data. Such elastic

flows result from the transfer of electronic documents like peer-to-peer file sharing,

typically characterized by a file size and a variable duration which depends on the

network capacity and load, and also on the radio conditions of the user.

Cell capacity is assumed to be shared between all transmissions according to a

multi-class M/G/1 Processor Sharing discipline wherein resources are equally shared

between all the users and all the classes. Moreover, the service in the macrocell and the

small cell are coupled because the peak data rate of the macrocell users and small cell

ones depends on the existence of an active user in the small cell and in the macrocell,

respectively. Indeed, macrocell interference on small cell users is accounted for when

there is at least one active user in the macrocell. Similarly, small cell interference on

macrocell users is accounted for when there is at least one active user in the small

cell. Therefore, the service data rates ηk and η̃l of each class take each one two values

depending on the presence of an active user in the interfering cell. Their expressions
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Fig. 4.5 Dynamic system model.

are given as follows

∀k = 1..K, ηk =











ηk,0if no user is served by the small cell

ηk,1otherwise
(4.35)

∀l = 1..L, η̃l =











η̃l,0if no user is served by the macrocell

η̃l,1otherwise
(4.36)

where ηk,0 is given by the throughput distribution curve of Subsection 4.2.1 (equation

(4.25)) and ηk,1 is given in Subsection 4.2.2 (equation (4.33)). For the small cell,

η̃l,0 is simply given by deleting the contribution of the macrocell in the interference

experienced by the small cell’s UEs. η̃l,1 is also derived from the throughput distribution

curve of Subsection 4.2.2 (equation (4.34)). An explanatory scheme of the dynamic

system model and its specifications is depicted in Fig. 4.5.

4.3.3 Performance analysis

Preliminary analysis of the model

We denote by ρ and ρ̃ the load of the macrocell and the small cell respectively. In the

quasi-stationary regime, i.e. the rate processes evolve on an infinitely slow time scale,

ρ and ρ̃ are given by

ρ =
K

∑

k=1

λkE

(

σ

ηk

)

, ρ̃ =
L

∑

l=1

λ̃lE

(

σ

η̃l

)

(4.37)
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At instant t, we denote by nk(t) and ñl(t) the number of flows in each class of

the macrocell and the small cell respectively. Then, (n(t), ñ(t)) = (nk, ñl) k=1..K,l=1..L

represents an irreducible Markov process (Fig. 4.6) with non-null transition rates from

state (n, ñ) to state (m,m̃) given by

q((n, ñ),(n+ ek, ñ)) = λk

q((n, ñ),(n− ek, ñ)) = 1(nk > 0)
ηk

|n|
q((n, ñ),(n, ñ+ el)) = λ̃l

q((n, ñ),(n, ñ− el)) = 1(ñl > 0)
η̃l

|ñ|

where the states n = (n1, ..,nK) and ñ = (ñ1, .., ñL) respectively in the macrocell and

the small cell represent the number of simultaneously active flows in each flow class.

We denote by |n| =
K
∑

k=1
nk and |ñ| =

L
∑

l=1
ñl the cardinality of all the active flows in

the macrocell and the small cell respectively and ek or el the row vectors with all

components equal to 0 except the kth and lth one equal to 1.

Fig. 4.6 Markov process of the Macro-Small cells system.

The transition from state (n, ñ) to (n+ ek, ñ) means that a new macrocell user

arrived with radio conditions of class k. Likewise, the transition from state (n, ñ)

to (n, ñ+ el) means that a new small cell user arrived with radio conditions of class

l. However, transition from state (n, ñ) to (n − ek, ñ) signifies that a user of class k
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attached to the macrocell has successfully finished his service. The same applies for the

transition from (n, ñ) to (n, ñ+ el) where a user of class l in the small cell completed

its transmission and quit the system.

Furthermore, we take

q((n, ñ),(n, ñ)) = −
∑

(m,m̃)Ó=(n,ñ)

q((n, ñ),(m,m̃)) (4.38)

Knowing that ρ, ρ̃ < 1, there exists a unique invariant probability distribution πn,ñ,

(n, ñ) ∈ Z
K
+ ×Z

L
+ satisfying

πQ = 0 and
∑

(n,ñ)∈ZK
+×ZL

+

πn,ñ = 1 (4.39)

where π = [πn,ñ] (n,ñ)∈ZK
+×ZL

+
is the row vector composed of the stationary probabilities

in each state and Q = [q((n, ñ),(m,m̃))] n,m∈ZK
+ and ñ,m̃∈ZL

+
is the matrix of transition

rates.

The relative balance equations of the defined Markov process are given by

K
∑

k=1

(

1(nk > 0)λkπn−ek,ñ +
ηk

|n|+1
πn+ek,ñ

)

+
L

∑

l=1

(

1(ñl > 0)λ̃lπn,ñ−el
+

η̃l

|ñ|+1
πn,ñ+el

)

= πn,ñ





K
∑

k=1

1(nk > 0)
ηk

|n| +λk +
L

∑

l=1

1(ñl > 0)
η̃l

|ñ| + λ̃l



 (4.40)

Resolution of the model

The interaction between the macrocell and the small cell with a multi-class PS system

makes an exact analysis very complex and impractical since the derivation of the exact

solution to the system of equations defined in (4.39) or in (4.40) is very difficult. There-

fore, we propose, for tractability issues, to transform the system model as described next.

Lemma 4.3.1 Under the stability condition, i.e. ρ, ρ̃ < 1, the average loads in equation

(4.37) is given by

ρ = 1−P0 , ρ̃ = 1− P̃0 (4.41)

where P0 and P̃0 are the probabilities of the steady states where no user is in the

macrocell and the small cell respectively.

Proof: As largely considered in literature, the load is equal to the percentage of time

where the cell’s resources are occupied by UEs. In the studied model, if at least one
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UE is active, all the available resources in the cell will be occupied by it or shared with

other UEs since the traffic generated is elastic. Based on this elastic sharing process,

the load is equal to the percentage of time when there is at least one active flow in the

cell. Hence, ρ = 1−P0, ρ̃ = 1− P̃0. �

In the studied system, macrocell flows experience permanent interference-limited

service rate ηk,1 during a proportion 1−P̃0 of the total observation time and interference-

free service rate ηk,0 during the rest of the observation time (a proportion of P̃0). The

same applies for the small cell. It follows that, based on the expression of the load

given in equation (4.37) and under the stability condition, ρ becomes as follows

ρ =
K

∑

k=1

[

P̃0
λkσ0
ηk,0

+
(

1− P̃0
) λkσ0

ηk,1

]

(4.42)

Similarly, the load ρ̃ in the small cell is given by

ρ̃ =
L

∑

l=1

[

P0
λ̃lσ0
η̃l,0

+(1−P0)
λ̃lσ0
η̃l,1

]

(4.43)

Theorem 4.3.1 In the coupled multi-class processor sharing system defined above, the

stationary probability of having at least one active flow in the macrocell (in the small

cell respectively) is equal to the cell load. The latter is given by

ρ =

K
∑

k=1

[

λkσ0
ηk,0

+
(

λkσ0
ηk,1

− λkσ0
ηk,0

)

×
L
∑

l=1

[

λ̃lσ0
η̃l,0

]

]

1−
K
∑

k=1

(

λkσ0
ηk,1

− λkσ0
ηk,0

)

×
L
∑

l=1

(

λ̃lσ0
η̃l,1

− λ̃lσ0
η̃l,0

)
(4.44)

ρ̃ =

L
∑

l=1

[

λ̃lσ0
η̃l,0

+
(

λ̃lσ0
η̃l,1

− λ̃lσ0
η̃l,0

)

×
K
∑

k=1

[

λkσ0
ηk,0

]

]

1−
L
∑

l=1

(

λ̃lσ0
η̃l,1

− λ̃lσ0
η̃l,0

)

×
K
∑

k=1

(

λkσ0
ηk,1

− λkσ0
ηk,0

)
(4.45)

with σ0, λk, λ̃l, ηk,0, η̃l,0, ηk,1 and η̃l,1 are as defined in Subsection 4.3.2.

Proof: In order to find equation (4.44), we take, at first, the expression of the load ρ

given in equation (4.42). Based on the equality given in Lemma 4.3.1, we replace P̃0

by 1− ρ̃ in equation (4.42). Then, ρ̃ is also replaced by its expression given in equation
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(4.43) and we obtain the following identity, equivalent to equation (4.44),

ρ =
K

∑

k=1





λkσ0
ηk,0

+

(

λkσ0
ηk,1

− λkσ0
ηk,0

)

×
L

∑

l=1

[

λ̃lσ0
η̃l,0

+

(

λ̃lσ0
η̃l,1

− λ̃lσ0
η̃l,0

)

ρ

]



 (4.46)

Transforming equation (4.46) to extract ρ yields equation (4.44).

The same steps are followed to obtain equation (4.45). �

Based on the expressions given in equations (4.44) and (4.45), the stationary distri-

bution is derived in the following proposition.

Proposition 4.3.1 Under the stability condition (ρ, ρ̃ < 1), the stationary distribution

of the state (n, ñ) becomes equal to

πn,ñ =
|n|!(1−ρ)

K
∏

k=1
(ρ̃nk)! ((1− ρ̃)nk)!

|ñ|!(1− ρ̃)
L
∏

l=1
(ρñl)! ((1−ρ)ñl)!

K
∏

k=1

(λkσ0)
nk

η
(1−ρ̃)nk

k,0 ηρ̃nk
k,1

L
∏

l=1

(

λ̃lσ0

)ñl

η̃
(1−ρ)ñl

l,0 η̃ρñl
l,1

(4.47)

Proof: For each class k of flows in the macrocell, the queuing system can be modeled

with a proportion P̃0 of flows experiencing a peak data rate equal to ηk,0 and a

proportion 1− P̃0 of flows experiencing a peak data rate equal to ηk,1. The same

applies for the small cell. The system is partially modified and behaves like a network

with two types of classes in both the macrocell and the small cell: macro and small cell

flow classes suffering all the time from interference coming from the small cell and the

macrocell respectively and flow classes not affected by this interference. Consequently,

the service rate in each cell does not depend anymore on the queue state of the other

interfering cell. Under the stability condition and following [74, Chap. 7, p. 119], the

stationary distributions are directly derived as in equation (4.47), which completes the

proof. �

Remark: Considering more heterogeneity in the traffic distribution can be depicted

by two main possible scenarios: The first one consists in adding a uniform traffic

distribution in addition to the hotspot distribution. In this case, analysis is not

significantly altered since a uniform traffic will approximately add the same proportion

of users in each class of flows which leads to obtain the same results but for higher

value of λT ot = λHotspot +λUniform. The second scenario consists in considering more

than one traffic hotspot (but not too many because otherwise the traffic becomes as if
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it is uniformly distributed in the macrocell). Despite its inability to respond to the

main objective of this study for the reasons cited in Subsection 4.1.1, the scenario of

more than one traffic hotspot can be a particular case of our study and would simplify

the system mainly for the dynamic level analysis. For instance, if the deployed small

cell is serving a traffic hotspot and the macrocell is serving other traffic hotspots, then

the load in the macrocell will tend to 1. Consequently, the coupling defined in equation

(4.36) will disappear since there will be always at least one active user in the macrocell.

From equation (4.47) and following [32], the mean number of flows in each class is

equal to

Nk = ρ̃
λkσ0

(1−ρ)ηk,1
+(1− ρ̃)

λkσ0
(1−ρ)ηk,0

(4.48)

Ñl = ρ
λ̃lσ0

(1− ρ̃)η̃l,1
+(1−ρ)

λ̃lσ0
(1− ρ̃)η̃l,0

(4.49)

Applying Little’s law to the presented ergodic process implies that the mean service

time of class k flows in the macrocell is τk = Nk
λk
. For class l in the small cell, it is equal

to τ̃l =
Ñl

λ̃l
.

Let υk and υ̃l be the stationary throughputs of class k flows in the macrocell and

class l flows in the small cell, respectively. Then, from equations (4.42), (4.43) and the

expression of service time for each class, we have the following identities:

υk = ρ̃ηk,1(1−ρ)+(1− ρ̃)ηk,0(1−ρ) (4.50)

υ̃l = ρη̃l,1(1− ρ̃)+(1−ρ)η̃l,0(1− ρ̃) (4.51)

According to the previous expressions, when the load is very small in the macrocell,

the flow throughput υk is at its maximum. It then decreases linearly with its own

cell load. When the load is very small in the small cell, the flow throughput in the

macrocell is at its maximum and decreases linearly with the load in the small cell.

4.4 Numerical results

We now evaluate the different performance metrics of the studied scenarios at static

and dynamic levels. We show in Table 4.1 the most relevant parameters used in the

numerical evaluation (taken from the 3GPP LTE-Advanced specifications [75] and also

from operational network settings). In the legends of the obtained figures, MC and SC

stand for macrocell and small cell respectively, HS stands for the traffic hotspot and
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Table 4.1 Parameters’ configuration.

Macro deployment infinite hexagonal with δ = 1 km
Association UE associated to highest RSRP
Pathloss model MtoUE 151+37.6log10(dkm)
Pathloss model StoUE 148+36.7log10(dkm)
BS power Macro:46dBm, Small:30dBm
Antenna gain with cable loss Macro:18dBi, Small:6dBi
Antenna mask Macro:Omni, Small:Omni
Frequency/Bandwidth 2.6 Ghz / 20 Mhz
Thermal noise per Hertz -174dBm/Hz
Noise figure 8dB
UE category/Throughput 3 / η0 = 98Mbps, K1 = 0.85, K2 = 1.9
UE antenna gain/Body loss 0dB / 2dB
File size/Scheduling/Traffic type 2Mb / PS (Round Robin Scheduling) / FTP

perfect SC means that the small cell is deployed in the center of the hotspot (perfect

in terms of positioning). MUeTh refers to the mean user throughput.

4.4.1 Static level results

In this section, we firstly vary the position of the hotspot by varying Rh and then

θh and determine the minimum distance to the macro BS from which the small cell

deployment can be considered as an efficient solution. We assume the error of small cell

positioning to be constant relative to the position of the hotspot, taking the following

values: error of 0 meters (perfect hotspot localization), 60 meters (accuracy provided

in [20]) and 120 meters (current accuracy when using probes) between the variables

Rh and Rs and we suppose that θs is equal to θh (equal to
π
3 ). Then, the mean user

throughput is calculated as a function of Rh. Next, we take Rs = Rh = 0.4km, and we

consider the error between θh and θs to be equal to 0, π/6 and π/3 respectively and

we evaluate the same performance metrics as in the first part of the simulations.

After that, we secondly fix the position of the traffic hotspot in 0.35ei π
6 and 0.52ei π

2

respectively. Then, the mean user throughput and the absorption coefficient are plotted

as a function of the small cell position by varying Rs (with θs = θh) at first and then

by varying θs (with Rs = Rh).

From Fig. 4.7a, we observe that deploying a small cell near the macrocell does

not generate additional capacity gains since the interference in this case is very high

compared to the SNR received either from the serving small cell or macrocell. In fact,

for a traffic hotspot in position of less than 300 meters far from the macrocell, the

evaluation of the impact of bad localization of the traffic hotspot is worthless and not
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justified because the offloading gain2 is negative even with a perfect positioning. Hence,

the deployment of a small cell near the macrocell does not help to offload the traffic and

it deteriorates the throughput in the macrocell. However, the deployment of a small

cell improves significantly the overall performance of the macrocell in the presence of

the traffic hotspot at cell edge. In the latter case, the small cell still generates positive

offloading gains even when its position does not match exactly with the hotspot’s one.

Moreover, from Fig. 4.7b, it is clear that when the hotspot is in the center of the cell,
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Fig. 4.7 The mean user throughput (a) and the absorption coefficient (b) for different
locations of the traffic hotspot with varying Rh.

the RSRP received from the macrocell is often higher than the RSRP received from

the small cell. As a result, the absorption coefficient relative to the presence of the

small cell is very small even with a perfect positioning of this latter. This coefficient is

more important when the hotspot is at cell edge. Moreover, deploying a small cell with

errors in its positioning remains a useful solution to offload an important percentage of

traffic located at cell edge.

We also notice that for a hotspot in the cell center, a small percentage of UEs can

be offloaded by the small cell but the mean throughput in the small cell (denoted by

ηSc2) in Scenario 2 is not improved compared to the mean throughput in Scenario 1

(denoted by ηSc1 which means that the mean user throughput is calculated only in the

same region as the served area by the small cell in Scenario 2). This is due to the high

interference in the center between the small cell and the macrocell. This observation is

2The offloading gain is the extra capacity effectively exploited in the deployed small cell. It is

defined by ι =

ηScenario 2,3−ηScenario 1

ηScenario 1
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deduced from the extra curves represented with triangles for ηSc1 and dotted line for

ηSc2 in Fig. 4.7a.

We observe in Fig. 4.8a that the mean throughput in Scenario 2 is higher than

that in Scenario 1. However, when we introduce an error of π/6, the mean throughput

becomes lower because most of the traffic is served by the macrocell and the small cell

will play the role of an interfering cell. When the error is taken higher than π/6, the

mean user throughput is improved since the interference is attenuated.

Fig. 4.8b shows that when θh is different from θs and especially if this difference

Fig. 4.8 The mean user throughput (a) and the absorption coefficient (b) for different
locations of the hotspot with varying θh.

is high, the absorption coefficient is reduced as compared to the case of a perfectly

deployed small cell.

In Fig. 4.9a, we compare the mean user throughput in the presence of a traffic

hotspot and with varying the position of the small cell. When the small cell is deployed

near the macrocell, the traffic located in the cell center (hotspot located at 0.35Km far

from the macrocell) and served by the macrocell will be significantly interfered by the

small cell. If this small cell is deployed near the traffic hotspot, most of the traffic will

be offloaded by the small cell and the mean user throughput is improved. However,

we observe also that when the distance between Rs and Rh increases, the mean user

throughput is approximately constant (function of Rh) and its value is equal to the

mean user throughput of a network without small cells (offloading gain near 0%). This

means that when the small cell is deployed far from the traffic hotspot and from the

macrocell, the performance of Scenario 1 is approximately the same as that of Scenario

3.

On the other hand, we observe that when the traffic hotspot is in the cell edge, the

small cell is an appropriate solution to offload the congesting traffic and errors of small

cell positioning are more tolerated compared to the case of a hotspot located near the
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Fig. 4.9 The mean user throughput (a) and the absorption coefficient (b) for different
locations of the small cell relative to the hotspot position with varying Rs.

macrocell position. In fact, for a traffic hotspot 520m far from the macrocell, the small

cell still improves the mean user throughput in the macrocell even with an error of

hotspot localization of 160m which is not the case for a hotspot 350m far from the

macrocell. In such scenarios, some traffic hotspot localization techniques [20, 21] can

be implemented and used in operational small cell planning tools.

Results in Fig. 4.9b show that more traffic is served by the small cell when its

coordinates approaches those of the hotspot. The absorption coefficient is higher for a

hotspot at cell edge and is reduced when the hotspot gets nearer to the macrocell.

Fig. 4.10a shows that when the hotspot is in the cell edge, the performance of

the macrocell is improved with deploying a small cell with θs − θh less than a certain

threshold. This can be explained by the fact that UEs in bad radio conditions and

previously taken in charge by the macrocell are now offloaded to the small cell which is

near the traffic hotspot. Moreover, we observe that the impact of error related to θs is

very important and may cause significant degradation of the system performance when

the distance between the hotspot and the macrocell increases. This can be explained

by the fact that the distance between the small cell and the hotspot is proportionally

increased with the difference between θs and θh.

Fig. 4.10b consolidates the different observations of Fig. 4.10a and it further shows

that the absorption coefficient is more important when the hotspot is at cell edge and

the error of small cell positioning is more tolerated.
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Fig. 4.10 The mean user throughput (a) and the absorption coefficient (b) for different
locations of the small cell relative to the hotspot position with varying θs.

In the rest of the numerical results, we consider a specific scenario (Rh = 0.5, θh = π
3 )

where the traffic hotspot is in an area where the deployment of a small cell is more

eligible to generate positive gains. Like in the previous results, we fix an error of 0

meters, 60 meters and 120 meters respectively between the variables Rh and Rs. θs

and θh are taken equal to
π
3 since the small cell deployment is practically insensitive to

the angle coordinate as we verified in [27].

The throughput CCDF is plotted for the different proposed scenarios in Fig. 4.11.

From Fig. 4.11, we observe that the perfect positioning of the deployed small cell

improves significantly the capacity of the system (composed of the macrocell and

the small cell deployed within its covered area) since user locations with degraded

throughputs will be covered by the small cell and hence will experience a better SINR

level. Moreover, we note that, even with taking into consideration the imperfect traffic

hotspot localization (60 meters), the system capacity is improved compared to the

scenario where only macrocells are operating in the studied area. However, when the

distance between the small cell and the hotspot increases due to inaccurate traffic

hotspot localization technique, the solution of deploying small cells becomes useless

because the cell throughput distribution is not improved anymore compared to a

network without small cells. Based on these results, we conclude that the efficiency of

small cell deployment depends mainly on the precision of the traffic hotspot localization

process in addition to the position of the hotspot with respect to the macrocell’s

position.
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Fig. 4.11 Throughput CCDF in the 3 scenarios defined in the static level study.

4.4.2 Dynamic level results

We now turn to the system performance at the dynamic level. In Fig. 4.12, we plot, for

the different studied scenarios, the evolution of the load in the macrocell and the small

cell when the arrival intensity λT ot increases. In addition to the analytical expressions

of the load, simulations are also performed so as to validate the obtained expressions.

From Fig. 4.12, we observe that the load is significantly reduced with the deployment

of a small cell even when it is not perfectly located near the hotspot. Moreover, we

notice that the load in the small cell is less than the load in the macrocell. This can

be explained by the fact that the traffic hotspot is in the cell edge and interference

experienced by users in cell edge is more significant when they are attached to the

macrocell compared to users attached to the small cell.

Furthermore, we observe that, when the small cell is slightly deviated from its

perfect position, the load in the macrocell reduces and the load in the small cell

increases. In fact, when the small cell is deployed in the center of the traffic hotspot, it

absorbs most of the traffic which leads to more interference on the macrocell users due

to the coupling between the macrocell and the small cell.

On the other hand, the load in the perfectly deployed small cell is marginally reduced

compared to the load of the small cell slightly deviated from its perfect position (60

meters far from the hotspot). This is due to the increase of the proportion of users

having good radio conditions in the perfectly deployed small cell. However, when this



4.4 Numerical results 69

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

Arrival intensity λ

L
o
a
d

ρ
With MCs only

In MC with perfect SC

In perfect SC

In MC with SC 60m far from HS

In SC 60m far from HS

In MC with SC 120m far from HS

In SC 120m far from HS

*o, : Simulation results

Fig. 4.12 The load in the small cell and the macrocell.

latter is slightly far from its perfect position, a significant proportion of traffic becomes

with degraded radio conditions while its absorption coefficient still remain more or

less the same as for perfectly deployed small cell (see Fig. 4.7b). In addition, when

the proportion of traffic absorbed by a small cell 120 meters far from the hotspot is

significantly reduced (see Fig. 4.7b), its load becomes smaller than the load in perfectly

deployed small cell even with users exclusively located at small cell edge. Nevertheless

and still in the scenario with small cell 120 meters far from the hotspot, the load of

the macrocell is significantly increased compared to the perfect deployment scenario.

In Figs. 4.13 and 4.14, we plot the average number of active flows and the mean

flow throughput in the macrocell and the small cell. The analytical expressions derived

from equations (4.49) and (4.51) are compared with simulation results and we show

that the approximations made are accurate for evaluating the system performance. The

same conclusions as before regarding the load are recovered for the average number of

active flows. First, when the small cell is significantly far from the hotspot, the mean

number of active flows in the small cell is reduced compared to a perfectly deployed

small cell. On the other hand, this metric is increased for the macrocell when the small

cell is not perfectly positioned near the hotspot since it will take more traffic. Besides,

more active flows are observed in macrocell with perfect small cell positioning than

in the case of a slightly deviated small cell. In addition to the explanation given in

the evaluation of the load, this is related to the large proportion of users that are at

the small cell edge and attached to the macrocell (see the absorption coefficient in Fig.
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4.7b). And so, these users are highly interfered by the small cell and will stay longer in

the system to complete their transfers. Results from Fig. 4.14 confirm once again

the different observations concluded from the load and mean number of flows’ analysis.

Contrary to the static level results, the mean flow throughput in the small cell and

the macrocell is improved when the traffic hotspot is partially absorbed by the small

cell (the small cell is not deployed exactly in the center of the hotspot). This can be

further explained by the fact that more users will share the small cell resources when

it is perfectly deployed and so their transmission rates will be slightly reduced. We

also notice that the flow throughput in the small cell deployed far enough from the

hotspot is improved conversely to the flow throughput in the macrocell. The increase

of the throughput in the small cell is reasonable since the number of active flows is

reduced and the cell resources are divided between a smaller number of flows (see the

absorption coefficient in Fig. 4.7b).

Finally, we conclude that deploying small cells represents always a good way to

offload traffic but improving the efficiency of this solution depends on many constraints

in addition to those identified in the static level results. First, the small cell must cover

all the hotspot in order to reduce the proportion of macrocell users located near the

small cell and experiencing high interference from this latter. Second, the capacity

of the small cell and the size of its carried traffic are also important to take as an

input in the HetNet planning process. Third, in the case where the small cell does not

completely cover the hotspot, the interference coming from the small cell on macrocell
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Fig. 4.14 Mean flow throughput.

users represents a crucial limitation leading thus to the need of improving interference

mitigation techniques.

4.5 Concluding remarks

We have studied, in this chapter, the impact of deploying a small cell in the presence

of traffic hotspot inside a macrocell. We have firstly performed our modeling following

a static level analysis to assess the mean throughput and its distribution and also the

absorption coefficient of the small cell. We have secondly investigated the dynamic

level analysis where users come to the system at random times and leave it after being

served with data rates derived from the static level part.

If one considers analysis at static level only, results show that the efficiency of

deploying small cells to offload traffic in the congested macrocell depends mainly on the

precision of the traffic hotspot localization process and also on the hotspot’s position

within the cell as well as the small cell’s position with respect to the macrocell location.

Moreover, we conclude that when the hotspot is at the cell edge, the imperfections

of the hotspot localization are more tolerated and the system performance can still

be improved by deploying small cells as compared to a network composed of only

macrocells. However, when the hotspot is at cell center, even a perfect positioning of
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the small cell is not beneficial for the overall system performance and does not bring

offloading gains.

Dynamic level analysis allows us to observe that, for small cell deployments with

positive gains (obtained from the static level analysis), the perfect positioning of the

small cell with respect to the hotspot position is sufficient to obtain better performance

but it is not sufficient to obtain the best one. This latter depends on several input

parameters such as the radio range of the small cell (if it covers all the hotspot or

a part of it when this latter is more flat), the small cell capacity and the amount of

traffic it carries as well as the level of interference generated by the small cell.



Chapter 5

Moving small cells in 5G networks

under the presence of mass events

In this chapter, the concept of moving small cells in mobile networks is presented and

evaluated taking into account the dynamics of the system. We consider a small cell

moving according to a Manhattan mobility model which is the case when the small

cell is deployed on the top of a bus following a predefined trajectory in areas which are

generally crowded. Taking into account the distribution of user locations, we study the

dynamic system level considering a queuing model composed of multi-class Processor

Sharing queues combined with a coupling due to the mutual interference generated by

each cell to the other (since they are operating in the same bandwidth).

5.1 Manhattan mobility model

Manhattan model is used to emulate the movement pattern of the small cell. The city

is modeled by Manhattan style grid composed of horizontal and vertical streets. All

streets are two-way, with one lane in each direction and small cells movements are

constrained by these lanes which represent the main characteristic and the geographic

restriction of this model. At an intersection of a horizontal and a vertical street, the

small cell can turn left, right or go straight. In Fig. 5.1, the trajectory of the moving

small cell is defined.

Moreover, the velocity of the small cell at a time slot is dependent on its velocity

at the previous time slot. It is also restricted by the velocity of the road traffic on the

same lane of the street and by the stops where the bus must take passengers.
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Fig. 5.1 A moving small cell according to Manhattan mobility model.

We model the mobility of the small cell in position Ls(t) = (Rs(t), θs(t)) moving, at

time t, with a speed of Vs(t) by the following expression

Vs(t+dt) = min(Vmax,Vs(t)+βdVs(t)) (5.1)

where Vmax is the maximum allowed velocity, Vs(t) and dVs(t) are respectively the

current speed and the acceleration of the small cell and β ∈ [−1,1]. If β is negative,

then the moving small cell is decelerating. The small cell position at time t+ dt is

likewise given by

Ls(t+dt) = Ls(t)+Vs(t)dt (5.2)

Note that Vs(t) and Ls(t) are complex numbers (in C) since the small cell is moving

in a bi-dimensional space.

5.2 Downlink system model

As in Chapter 4, we consider a hexagonal cellular network where the inter-site distance

is denoted by δ and the transmitting power level is equal to P . At time t, a moving

small cell is located at position Ls(t) and offloading data traffic in its coverage area,

as illustrated in Fig. 5.1. The transmit power level of the small cell is Ps = κP with

0 ≤ κ ≤ 1.



5.3 Preliminary analysis 75

In order to evaluate the efficiency of moving small cells, we consider a stationary

traffic hotspot with polar coordinates (Rh, θh). The traffic hotspot is assumed to be

located inside the central macrocell, i.e. Rh < R with R the approximated radius of the

cell. UE locations are spatially distributed in order to form a traffic hotspot centered

in (Rh, θh) with a standard deviation denoted by A; its measure is given by equation

(4.1).

We consider two scenarios: In the first scenario, only macrocells are operational.

This scenario represents a benchmark allowing the comparison of a network where

moving small cells contribute in offloading traffic to a network without smalls cells.

Scenario 2 considers a small cell moving near the traffic hotspot.

The wireless channel is modeled as in Subsection 4.1.2. At time t, the SINR received

by the UE and its throughput are respectively denoted by γt(r,θ) and ηt(r,θ) if it is

received from the macrocell and by γ̃t(r,θ) and η̃t(r,θ) if it is received from the small

cell.

Independently of the time t and of the cell size (macro, small), the relationship

between γ (in linear scale) and η is modeled by the modified Shannon formula given in

equation (4.5).

5.3 Preliminary analysis

We first evaluate the instantaneous user throughput obtained in each position of

the covered region of the studied macrocell and its moving small cell. Then, the

instantaneous throughput CCDF is calculated considering the distribution of user

locations given in equation (4.1).

The instantaneous SINRs received from the macrocell and the small cell are ex-

pressed as follows

γt(r,θ) =
1

g(r)+κ|reiθ −Rs(t)eiθs(t)|−2br2b (5.3)

γ̃t(r,θ) =
Ps|reiθ −Rs(t)e

iθs(t)|−2b
(g(r)+1)Pr−2b (5.4)

where g(r) is as defined in equation (4.8).

We define the instantaneous throughput CCDF for both the macrocell and the

moving small cell (Rs(t), θs(t)) as in equations (4.13) and (4.14), by only replacing the

static position of the small cell by its instantaneous coordinates.
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As in Chapter 4, the following results still apply:

∀l > η0, P(ηt ≥ l) = 0 and P(η̃t ≥ l) = 0

∀l ≤ η0, P(ηt ≥ l) =
1

St

∫

S∗
1I

(

Ps|reiθ −Rs(t)e
iθs(t)|−2b ≤ Pr−2b)

×

1I

(

1

γt(r,θ)
≤ ψ(l)

)

dm(r,θ) (5.5)

P(η̃t ≥ l) =
1

S̃t

∫

S∗
1I

(

Ps|reiθ −Rs(t)e
iθs(t)|−2b > Pr−2b)

×

1I

(

1

γ̃t(r,θ)
≤ ψ(l)

)

dm(r,θ) (5.6)

Besides, when the moving small cell leaves the coverage of the studied macrocell

and goes far enough from it, all UEs in the traffic hotspot (Rh, θh) will be served by

the macrocell. Hence, the throughput CCDF can be simply given by the expression in

equation (4.25).

5.4 Dynamic level analysis of moving small cells

5.4.1 Dynamic system model description

As in Chapter 4, we focus, in this work, on the case of best effort traffic where flow

sizes, denoted by σ, are assumed to be mutually independent and exponentially dis-

tributed with mean σ0 in Mbits. Flows may belong to different classes depending

on the radio conditions of mobile users. Then, flow classes are sorted, for tractabil-

ity issues, in an increasing order according to the associated data rate, denoted by

ηk,t, η̃l,t, k = 1..K, l = 1..L, index k for macrocell user classes and index l for moving

small cell ones. The probabilities pk,t, p̃l,t, k = 1..K, l = 1..L denote the density of each

flow class in the macrocell and the moving small cell respectively. Each class follows

a Poisson Process of intensity λk,t = λtpk,t = λT ot
St

St+S̃t
pk,t, k = 1..K in the macrocell

and λ̃l,t = λ̃tp̃l,t = λT ot
S̃t

St+S̃t
p̃l,t, l = 1..L in the moving small cell. Data rates and flows’

arrival intensities are extracted from the preliminary analysis as depicted in Fig. 4.4.
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Due to the mutual interference between the macrocell and the moving small cell,

the coupling between the two cells is expressed by

∀k = 1..K, ηk,t =











ηk,t,0 if no user is served by the small cell

ηk,t,1 otherwise
(5.7)

∀l = 1..L, η̃l,t =











η̃l,t,0 if no user is served by the macrocell

η̃l,t,1 otherwise
(5.8)

where ηk,t,0 is obtained from the throughput distribution of a macrocell network

in Section 5.3 and ηk,t,1 is obtained from the scenario involving a deployed moving

small cell. However, for the moving small cell, η̃l,t,0 is simply given by deleting the

contribution of the central macrocell in the interference experienced by the small cell’s

UEs. η̃l,t,1 is also derived from the throughput distribution curve obtained in Section

5.3.

Moreover, we assume that users near the small cell (i.e. in its coverage area or in the

coverage area of the macrocell but experiencing a significant interfering signal coming

from the small cell) change from a flow class to another adjacent class after exponential

durations due to the mobility of the small cell and also of the users. Handovers are

also taken into account. Therefore, we assume that users handed over from a cell

to another will affect the system only in the first flow class of each cell since users

with bad radio conditions are the most eligible to trigger a handover and they will

be highly interfered by their previous serving cell. The transition rates from a flow

class to another vary according to the mobility of the small cell and their values are

extracted from the evolution of the throughput CCDF in time. This represents the

main difference to the dynamic system model studied in Chapter 4. Hence, at time

t, these transitions rates are denoted by νk,k+1,t, νk,k−1,t, ν̃l,l+1,t and ν̃l,l−1,t (see Fig.

5.2). Similarly, νt and ν̃t denote the instantaneous handover rates from the macrocell

to the small cell and inversely. The dynamic system model is depicted in Fig. 5.2.

5.4.2 System coupling

We denote by ρ and ρ̃ the load of the macrocell and the small cell respectively and by

P0, P̃0 the steady state probabilities when no user is in the macrocell and the small

cell respectively. Without considering the mobility of the small cell, we apply the same

decoupling approach as in Chapter 4. So, for each class k of flows in the macrocell, the

queuing system can be modeled with a proportion P̃0 = 1− ρ̃ of flows experiencing a
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Fig. 5.2 Dynamic system model

data rate equal to ηk,0 and a proportion 1− P̃0 of flows experiencing a data rate equal

to ηk,1 and the same for the small cell. Hence, the stationary distribution of the state

(n = (n1, ..,nK), ñ = (ñ1, .., ñL)) is expressed as in equation (4.47).

5.4.3 Performance analysis

Analysis taking into account the mobility of the small cell is not affected by the system

coupling detailed in the previous subsection since transition rates (between classes and

between cells) does not depend on the queue state of the interfering cell.

The probability of having an active flow of class k for the macrocell (of class l for

the small cell) is given by

∀k = 1..K, Pk =
Et[nk,t]

K
∑

i=1
Et[ni,t]+

L
∑

j=1
Et[ñj,t]

(5.9)

∀l = 1..L, P̃l =
Et[ñl,t]

K
∑

i=1
Et[ni,t]+

L
∑

j=1
Et[ñj,t]

(5.10)

where nt = (n1,t, ..,nK,t) and ñt = (ñ1,t, .., ñL,t) represent the queue state in each cell

and of each class at time t and Et[h(t)] =
1
t

∑t
s=0h(s).

With the deployment of moving small cells and in the presence of traffic hotspots,

the system presents two important characteristics allowing to derive several performance

metrics: a high mobility and a heavy system load. Hence, following [76], the probability
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that a user is of class k (or of class l) satisfies

∀k = 1..K, qk =

Et

[

ν̃t
νt

k−1
∏

i=1

νi,i+1,t

νi+1,i,t

L−1
∏

j=1

ν̃j,j+1,t

ν̃j+1,j,t

]

K
∑

i=1
qi +

L
∑

j=1
q̃j

(5.11)

∀l = 1..L, q̃l =

Et

[

νt
ν̃t

l−1
∏

j=1

ν̃j,j+1,t

ν̃j+1,j,t

K−1
∏

i=1

νi,i+1,t

νi+1,i,t

]

K
∑

i=1
qi +

L
∑

j=1
q̃j

(5.12)

Under the round robin policy and with considering the proposed coupling approach,

it follows that the K and L queues are equivalent to one PS queue with service data

rate given by

η̄ =
K

∑

k=1

qkEt

[

ρ̃tηk,t,1+(1− ρ̃t)ηk,t,0

]

+

L
∑

l=1

q̃lEt

[

ρtη̃l,t,1+(1−ρt)η̃l,t,0

]

(5.13)

where ρt and ρ̃t, representing the load in both cells at time t, are supposed to be in

[0, 1], otherwise they are taken equal to 1 in the analysis. It is important to notice

that this assumption affects only the coupling statement where the proportion of users

with data rate ηk,t,0 plus those with data rate ηk,t,1 are equal to 100% when we have,

respectively, ρ̃t ≥ 1 and ρt ≥ 1.

The load of the cells may be higher than one since the mobility of the small

cell allows to offload the extra load from a cell to another and the system remains

stable. In this context, it is proved in [76], that mobility increases the stability region in

wireless networks. Then, under the stability condition, i.e. ρ̄ = λT otσ
η̄ < 1, the stationary

probability of state (n = (n1, ..,nK), ñ = (ñ1, .., ñL)) is given by

πn,ñ =

(1− ρ̄)|n+ ñ|!
K
∏

k=1
qnk

k

L
∏

l=1
q̃ñl

l

K
∏

k=1
(ρ̃nk)! ((1− ρ̃)nk)!

L
∏

l=1
(ρñl)! ((1−ρ)ñl)!

(5.14)

with ρ = lim
t→∞

Et[ρt] and ρ̃ = lim
t→∞

Et[ρ̃t].
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The traffic conservation equation, which still applies, is expressed by

λT otσ =
K

∑

k=1

Et

[

ηk,tΦk(nt)
]

+
L

∑

l=1

Et

[

η̃l,tΦ̃l(ñt)
]

(5.15)

where Φk(nt) =
nk,t

|nt| and Φ̃l(ñt) =
ñl,t

|ñt| , with the round robin scheduling, represent the

proportion of allocated resources to users of class k and l in their serving cells.

Subsequently, the mean flow throughput is given by

R =
K

∑

k=1

PkEt

[

ηk,tΦk(nt)

nk,t

]

+
L

∑

l=1

P̃lEt

[

η̃l,tΦ̃l(ñt)

ñl,t

]

(5.16)

5.5 Numerical results

The most important parameters used in the numerical evaluation are already given in

the results’ section of Chapter 4 (Table 4.1). In the figures’ legend, MC and SC stand

for macrocell and small cell respectively, HS stands for traffic hotspot.
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Fig. 5.3 Throughput CCDF defined in the preliminary study.

We consider a specific scenario where the position of the traffic hotspot is equal to

(Rh = 0.5, θh = π
3 ). We plot in Fig. 5.3, the throughput CCDF in a network without

small cells, and also in a network with a moving small cell in different times (when the
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small cell is 0m, 60m and 120m far from the hotspot) and also on average (during the

observation time).

From Fig. 5.3, we observe that the deployment of a moving small cell improves

significantly the capacity of the system when it moves near the traffic hotspot since

user locations with degraded radio conditions will be covered by the moving small cell

and hence will experience a better SINR level. Moreover, we note that, even when the

small cell moves far from the hotspot (60 meters), the system capacity is improved

compared to scenario where only macrocells are operating in the studied area. In

average and during all the simulation period, the deployment of a moving small cell

generates positive gains and improves the distribution of radio conditions compared to

a network without small cells.
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Fig. 5.4 The load ρ̄ (left) and the mean flow throughput R (right) in the system before
and after the deployment of a moving cell.

In Fig. 5.4, we plot the evolution of the load and the mean flow throughput in

time for the studied scenarios: with and without a moving small cell. This latter is

moving according to Manhattan mobility model and is supposed to pass by the traffic

hotspot periodically (after each 30 minutes) since it is located on top of buses. Curves

are divided into three intervals.

In interval i, the load in the system is reduced with the deployment of a moving

small cell and the mean flow throughput is higher than in a network with macrocells

only. This is explained by the fact that the small cell is moving near the traffic

hotspot located in (0.5km, π
3 ). In interval ii, the small cell is moving far away from the

traffic hotspot and higher interference (between the macrocell and the small cell) is
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experienced by users compared to the first interval of time. Consequently, we observe

that the load is increased with the deployment of a small cell and the mean flow

throughput is reduced. This means that when the small cell is near the traffic hotspot

but covering a small proportion of it, the system performance is degraded due to the

significant interference on macrocell users and the increase of the proportion of cell

edge users in the small cell. In interval iii, we notice that the load is reduced again

and the mean flow throughput is improved. This is explained by the fact that the

small cell is moving again near the traffic hotspot (since small cells are supposed to be

deployed on the top of buses, the existence of small cells near the traffic hotspot is

periodic which leads to the periodicity of the network performance).

5.6 Concluding remarks

We studied in this chapter the impact of deploying a moving small cell in the presence

of stationary traffic hotspot inside a macrocell. We studied the system taking into

account its dynamics where users’ radio conditions may vary during service and allow

then to move from a class to another.

Results show that the efficiency of deploying moving small cells to offload traffic in

the congested macrocell can be a beneficial solution when the small cell is moving near

the traffic hotspot and covers a significant proportion of it. However, when the small

cell is moving far away from the traffic hotspot, the system performance is degraded

compared to a network composed of only macrocells due to the high mutual interference

between macro and small cell users.

Aiming to better exploit the mobility of cells, we develop in the next chapter a

mechanism allowing to control the mobility of small cells in order to cover traffic

hotspots and reduce congestion in cellular networks so as to make this promising

technology a cost-effective investment.



Chapter 6

Drone small cells in 5G Networks

In this chapter, we develop a new traffic offloading mechanism using drone cells. First,

we describe the different steps of the whole mechanism including several possible

scenarios. Second, the access mode is discussed. Third, a study of the performance of

the proposed mechanism is realized. Finally, the advantages and the limitations of the

drone-based mechanism are investigated.

6.1 Description of the proposed offloading mecha-

nism

In this section, we start by presenting the different parameters, variables and states

involved in the proposed drone-based mechanism to reduce congestion. After that,

we describe the different steps related to specific scenarios such as the appearance,

disappearance and movement of traffic hotspots.

6.1.1 Definitions and notations

Drone & Macrocell states

It is clear that the drone is not active all the time. It is activated only when some

specific conditions (mainly related to the macrocell load and the location of traffic) are

verified. So, we define the following drone activity modes: Idle/Stand-by/Active/Ready.

In Idle mode, the drone is connected to a powering terminal to recharge its battery and

all its Radio Frequency (RF) and flying components are deactivated. The Stand-by

mode is conceived in order to enhance the reactivity of the drone and anticipate

the appearance of a traffic hotspot. In this mode, the drone activates several flying
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components in an energy-saving mode. If there is congestion due to heavy load in the

macrocell, the drone switches to Active mode and moves to the hotspot position but

its RF components are not yet activated to serve users (only the communication with

the macro Base Station (BS) remains running). Finally, when the drone settles up near

the traffic hotspot, it switches to Ready mode and starts serving users while behaving

like a small cell.

Since activity modes of the drone are dependent on the congestion state of the

macrocell, we define the following congestion states: Green/Yellow/Red. Green state

means that the macrocell is not congested and the its load is not high. Yellow state

means that a possible congestion may occur in the macrocell. Red state means that the

macrocell is facing a serious congestion problem and it needs immediately a solution

to offload traffic.

If the traffic hotspot is located close to the macro BS, it was shown in recent studies

[36, 37] that deploying small cells, using the same spectrum as the macrocell, degrades

the overall system performance. This is explained by the fact that the interference

coming from the macrocell on the small cell users will be very high. Consequently,

users spend more time to finish their transmissions and the useful data rate is reduced

since more bits are required to protect the transmitted signal. Similarly, if the drone is

working with the same frequencies as the macro BS, deploying drones near macro BSs

does not represent a good solution. Moreover, the only way to offload a traffic hotspot

at cell center is to review the capacity dimensioning of the macrocell. That is why,

incorporating the hotspot’s position in the activation of the drone is very important to

make its deployment a beneficial solution.

In order to efficiently use the drone-based mechanism, we combine these two criteria

as depicted in Fig. 6.1: the hotspot’s position and the cell load. In the green region,

the drone is in Idle mode. The blue region is conceived to trigger the switch to Idle

mode given that the drone is already in Active or Ready mode. The yellow region is

related to the Stand-by mode where the drone is waiting the order from the macro BS

to move. Finally, the red region represents the situation where the drone must switch

from Stand-by mode to Active or must stay in Ready mode. The parameters set in

Fig. 6.1 are defined in the next subsection.

Measurement variables and parameters

In Fig. 6.1, the x-axis, denoted by Cell_Load represents the measured load in the cell

(e.g. load of the cell evaluated by Physical Resource Block (PRB) usage in 3GPPP
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Fig. 6.1 State Diagram controlling the drone.

LTE-A networks). Hotspot_position is defined as the position of the hotspot calculated

through a hotspot localization method executed in the macro BS [20].

To define the different events that may occur in the macrocell, we firstly define the

following thresholds related to the cell load and to the traffic hotspot’s position. LD0 is

the threshold of macrocell load to switch from green state to yellow one when the traffic

hotspot position is between HS0 and HS1 and from green state to red one when the

traffic hotspot position is higher than HS1. Note that when the traffic hotspot position

is smaller than HS0, nothing will happen because, as explained before, deploying a

small cell near the macro BS, in case they are operating in the same frequency band,

does not bring any positive gains and it even degrades the overall system performance.

LD1 represents the threshold of cell-load to switch from yellow state to red one when

the traffic hotspot position is between HS0 and HS1. To ensure the resumption of a

normal situation, the hotspot position must be less than HS2 and the cell-load less

than LD2.

We define {TPi, i = 1..n} as a set of locations planned during the network design

process for positioning drones to allow the best possible coverage. Furthermore,

SEL_offset, HO_hys and HO_offset are three additional parameters used for the

process of UEs’ selection and handover. NUE is the number of users served by the

drone.
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6.1.2 Designed mechanism and followed steps

In Fig. 6.2, a general overview of the designed mechanism with its performed operations

is presented.

Initial state of the drone

Each drone is initially attached to one of the already-planned set of possible locations

{TPi, i = 1..n}. These locations are defined in the planning step to be in strategic
positions (covering most of the areas where the signal from macrocell is not good

mainly because of shadowing). These positions can be the top of a lamppost or a high

building which has the advantage that the drone is always able to choose a place where

it can be in line-of-sight with its attached macrocell and also with the users, source of

the congestion in the macrocell. Moreover, it is possible to install power terminals in

some of these points capable of efficiently charging the drones’ batteries. When the

macrocell is not congested (Cell_Load ≤ LD0), the drone stays in Idle mode.

Detection of congestion symptoms in the macrocell

Once the congestion level in the macrocell exceeds a certain threshold but is still

less than a second predefined threshold (LD0 < Cell_Load ≤ LD1), an event_D is

triggered in the macrocell. Subsequently, a traffic hotspot localization process (see

for example [20]) starts to be periodically executed each T0 to estimate the possible

position of the hotspot generating the congesting traffic. Performing periodically

the traffic localization allows also to predict the mobility profile of the hotspot. If

the resulting hotspot position is near the macro BS (Hotspot_position ≤ HS0), the

drone will not be notified of this event. However, if the hotspot is not near the

macro BS, we have to deal with one of two different situations. The first one is

when HS0 < Hotspot_position ≤ HS1 and LD0 < Cell_Load ≤ LD1. In this case, a

notification message is sent to the drone in order to be in Stand-by mode. The second

situation is when Hotspot_position > HS1 and Cell_Load > LD0 resulting in the

activation of the drone in the next step.

Preparation for possible congestion

In this step, we have two different situations:

When Hotspot_position > HS1 and Cell_Load > LD0, the drone switches to

Stand-by mode and the macrocell waits the expiration of a timer T1 and verifies if the

two previous conditions are still satisfied or not. If the congestion persists with the
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Fig. 6.2 Offloading mechanism.
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same previous conditions, the macrocell triggers the event_DC meaning that it needs

the intervention of the drone to reduce the congestion level in the cell. However, if

Hotspot_position ≤ HS1 or Cell_Load ≤ LD0, two possible cases can be identified.

In the first one, Hotspot_position is less than HS0 or Cell_Load ≤ LD0. Then, after

expiration of T2, if Hotspot_position is still less than HS0 or Cell_Load ≤ LD0, the

macrocell sends a message to the drone in order to return to Idle mode. In the second

case, Hotspot_position > HS0 and Cell_Load > LD0, the drone stays in Stand-by

mode.

When HS0 < Hotspot_position < HS1 and LD0 < Cell_Load < LD1, the macro-

cell waits the expiration of a timer T3 and verifies if the two previous conditions

are still satisfied or not. After T3, if HS0 < Hotspot_position < HS1 and LD0 <

Cell_Load < LD1, the drone is still in Stand-by mode. Otherwise, if the distance

to the hotspot becomes smaller than HS0 or the load becomes less than LD0, the

macrocell waits until the expiration of T2. Then, if the same conditions are still valid,

the macrocell sends a message to the drone in order to return to Idle mode. However,

if after T3, Hotspot_position > HS1 and Cell_Load > LD0, the macrocell triggers

the event_DC.

Persistent congestion and activation of the drone

The action following event_DC is that the macrocell sends an activation message with

the information of the position where the drone must move. Based on this information,

the drone switches to Active mode and moves to the communicated position, chosen

between the set of points {TPi, i = 1...n}, and settles up on the top of it. This position
is properly determined allowing to minimize the distance and to ensure line-of-sight

condition to the traffic hotspot.

Mobility control of the hotspot

Drones are controlled by an intelligent entity connected to the macrocell which com-

municates the positions to which the drone needs to move. A database, filled with

predefined trajectories to each position in {TPi, i = 1...n}, is checked by the drone in
order to find the best path to arrive to the communicated position. The drone is also

equipped with a GPS module allowing to adjust and update its trajectory.

The macrocell tries also to anticipate and predict the mobility profile of UEs so

that the drone can move and settle up in the next position in order to cover most of it

for long periods of time. That is why, the hotspot localization process is periodically

performed (each T0) while the drone is in Active mode.



6.1 Description of the proposed offloading mechanism 89

Parameters’ configuration

After being landed in the right position, the drone switches to Ready mode. In the scope

of Self Organizing Networks (SON) technology [67, 77], parameters’ configuration of

the drone and of the macro BS are done as follows: Selection and handover parameters

(SEL_offset, HO_hys and HO_offset) of the drone-cell are auto-configured in

order to absorb more traffic and quickly anticipate the handover to the drone. The

HO_hys between the macrocell and its drone is increased in such a way that the drone

will take most of the UEs in its covered area. However, the individual HO_offset of

the drone is decreased in order to make all the drone-served UEs stay larger periods

connected to it. The SEL_offset is also increased to allow the drone to handle new

arrivals.

State evolution of the macrocell

Once the experienced load in the macrocell (including the traffic served by the drone)

becomes less than a threshold LD2 or the hotspot position becomes less than HS2,

event_DN is triggered and a timer T4 is activated in order to test if the situation

in the macrocell is still the same or not. If T4 times out and the previous condition

persists, this means that the macrocell can serve all the traffic generated inside its

covered region without using the drone. Consequently, the macrocell switches its

congestion state to blue which is the green mode after regaining a normal situation

with minimized risk of congestion in the macrocell. Then, parameters SEL_offset,

HO_hys and HO_offset are auto tuned allowing the drone to offload all its served

UEs to the macrocell and it waits in Ready mode until the expiration of T5. If the

congestion state in the macrocell is still blue, the drone switches from Ready to Active

mode and moves to the nearest position where a power charger is available (if it does

not dispose of sufficient energy for an upcoming mission). Once the drone arrives at

this position, it switches to Idle mode. However, if Cell_Load becomes higher than

LD0 and Hotspot_position > HS0 after T4, the drone will continue to serve the UEs

in Ready mode.

The traffic hotspot is moving to another macrocell

If users move from a macrocell to another, event_DM is triggered and a warning

message will be sent to the new serving macrocell informing it about the arriving

hotspot. Based on its congestion state, the new macrocell executes the same steps

as described above based on measurements sent by the first macrocell (mainly the
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position and the size of the hotspot in terms of number of UEs NUE). While the new

macrocell is only searching for the best solution (nothing is activated yet), if the next

hotspot localization report of the first macrocell (after T1) says that the traffic hotspot

is still in the same cell, nothing will happen in the second macrocell and the drone will

remain in Ready mode. However, if this hotspot localization report still gives a position

belonging to the covered region of the new macrocell, the first drone can still offload

traffic temporarily until the expiration of timer T6. The new macrocell proceeds with

the activation of its own drone if it is congested. Once a message is sent to the initial

serving macrocell informing it that the new macrocell is ready to serve its arriving

hotspot of UEs, HO_offset of the drone will be increased and all UEs of the first

drone will be connected to the new macrocell directly or via its drone. SEL_offset

of the original drone is decreased in order to be inaccessible for new arrivals. Next,

a message from the first macrocell is sent to the drone informing it about the next

position where to move to either serve a new hotspot or to be in Stand-by mode or to

switch into Idle mode. The HO_hys between the macrocell and the drone is also set

to the initial value.

The drone recharges its battery

With the development of the drone technology, drones can remain for longer times in

the air without the need to be connected to a power terminal. Moreover, as described in

the proposed mechanism, the drone flies only when it moves to cover a traffic hotspot or

when it returns to its initial position. When the drone arrives at the desired position, it

lands on the top of it and then all its flying components are deactivated. Consequently,

less energy is consumed by the drone during its service since only RF components are

active.

To recharge its battery, the drone needs to find the nearest point where a recharging

equipment is installed and then moves to reach this position and settle up on it. The

best solution is to exploit the well-distributed network of lampposts and install in

some of them electric feeders allowing to recharge the drone. It follows that operators

could negotiate with the government on how to allow them to use the public electric

resources with reasonable costs.
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6.2 Specification of access mode between macro-

cell, drone and UEs

The communication between the backhaul and the drone can be transported through

wire-lined links installed in each strategic point (defined in subsection 6.1.1) or realized

through directive antennas with dedicated frequency band. However, in order to save

the spectrum resources, the connection to the backhaul will be performed, in this

work, through the dedicated band attributed to the macrocell. Indeed, a proportion of

the macrocell FDD (Frequency Division Duplexing) frequency, used formerly to serve

mobile users, is exclusively allocated to the drone when it is activated.

Communications between the drone cell and UEs is based either on licensed spectrum

if the required resources are available or on unlicensed spectrum otherwise. WiFi, as a

well known unlicensed spectrum based technology and currently available in most of

commercialized smartphones and other connected devices, allows operators to generate

extra income from the access of WiFi-only-devices. However, billing and security still

require hardware and software upgrades for the WiFi module. Moreover, interference

in WiFi band cannot be controlled due to the wide use of this unlicensed band in other

applications such as in medical, scientific and industrial fields or even for domestic

personal use. For the licensed spectrum, each operator actually has licensed TDD (Time

Division Duplexing) frequency bands constituting an important investment. However,

they are not favorably exploited in operational networks which represents a waste

of resources. This can be explained by the fact that, with large scale distances, the

uplink/downlink guard time in TDD mode is not enough to overcome the interferences

between the two transmission links. Nevertheless, TDD mode is known to perform

efficiently for small scale distant communications. So, using TDD mode between the

drone and its users is recommended and henceforth applied in the present work.

6.3 Performance analysis of the proposed drone-

based offloading mechanism

6.3.1 System model

Network layout and traffic distribution

As in Section 4.1.1, we consider a hexagonal macrocell network where each cell is

transmitting with power level P . The inter-site distance and the antenna elevation



92 Drone small cells in 5G Networks

Fig. 6.3 Network layout

are denoted by δ and ǫ, respectively. We also add a drone located in (rd(t), θd(t))

depending on the instantaneous position of the traffic hotspot. (rd(t), θd(t)) does not

depend on time during the time interval where it is installed in a serving position

since it stays in the same position to serve users until the hotspot moves out of the

drone coverage (so, for notational simplicity, we replace (rd(t), θd(t)) by (rd, θd) in each

serving position). The altitude of the drone is denoted by h typically representing the

height of the serving points (Fig. 6.3). The transmit power of the drone is Pd = κP

with 0 ≤ κ ≤ 1.

In order to connect the drone to the backhaul, a proportion, denoted by α of the

radio resources of the macrocell used to serve mobile users is exclusively allocated to

the drone when it is activated. A given UE m, with polar coordinates (r,θ), is served

either by the central macrocell (cell at the origin) or the deployed drone depending on

the relative signal strength coming from both antennas. For notational simplicity, the

altitude of the UE is incorporated in the values of ǫ and h cited above.

In order to evaluate the efficiency of the deployed mechanism, we consider a traffic

hotspot with polar coordinates, at time t, (rh(t), θh(t)). Without loss of generality, we

assume that this hotspot moves inside the central macrocell of the network according to

the Manhattan mobility model [47] (with rh(t) smaller than the radius of the macrocell

R < δ).

UE locations are spatially distributed in order to form a hotspot centered in

(rh(t), θh(t)); its measure at time t is given as in equation (4.1).
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The wireless channel is modeled as in Subsection 4.1.2 with pathloss coefficients

denoted by (a,b) for the macrocell and by (ã, b̃) for the drone cell. In fact, for the

channel between the drone and the users, the signal at the receiver is principally

composed of strong LOS component. In fact, according to the planning of the serving

points where the drone can be settled up, the probability of occurrence of LOS signals

is near to one and it is quite credible to neglect NLOS components. Consequently,

incorporating this specification in the system model can be realized by using the same

propagation model as the one of the macrocell but with different pathloss coefficients

ã and b̃ [78].

All the users in the radio range of the drone will be exclusively served by the drone

even if the received macrocell signal level is better than the RSRP received from the

drone. This decision is in accordance with the initial objective of deploying drones

which is the fact that the congested macrocell needs to offload a high proportion of

traffic using the drone. Consequently, the drone handles all the users in its coverage

area. We denote by R̃ the radius of the disk that the drone can cover with a certain

quality of service represented by an Signal to Noise Ratio (SNR) threshold γ̃0.

R̃ =

√

√

√

√

√

(

ãPd

γ̃0PN

)
1
b̃

−h2 (6.1)

where PN is the thermal noise power.

At time t, the SINR received by the UE and its throughput are respectively denoted

by γt(r,θ) and ηt(r,θ) if it is received from the macrocell and by γ̃t(r,θ) and η̃t(r,θ) if

it is received from the drone cell. The relationship between γ (in linear scale) and η is

modeled by the modified Shannon formula given in equation (4.5).

Let us consider that W (in equation (4.5)) is the total bandwidth used in the

network. Then, when the drone is activated, the drone will occupy α × W and the

macrocell will operate only in (1− α)W to serve its users. This coefficient α is set

before the activation of the drone according to the macrocell congestion state evolution.

Since the backhaul of the drone involves the connection to the macrocell like a

mobile equipment, the interference coming from the neighboring macrocells must be

included in the derivation of the drone capacity, denoted by η̃d. Consequently, the

drone capacity becomes as follows:

η̃0 = min(K1αW ln(1+K2γ̃d),αη) (6.2)
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with

γ̃d =
1

g(rd)
(6.3)

where g(r) is given by equation (4.8) but with including further the different antennas’

elevations.

g(r) =
PN

P
(r2+ ǫ2)b +6χ0

(

r2+ ǫ2

δ2

)b











1+(1− b)2
(

r
δ

)2

(

1−
(

r
δ

)2
)2b−1 +ω(b)−1











(6.4)

where χ0 is the average cell load over all the interfering macrocells and ω(b) is expressed

in equation (4.2).

Remark: The studied system model is different from the systems studied in Chapter 4

and 5. In fact, the interference of the drone cell on macrocell users and of the macrocell

on drone cell users is equal to zero since the drone is serving its users using a different

spectrum bandwidth. Moreover, the access to the network, in this case, is not based

anymore on the highest received signal power (RSRP) but it is directly linked to the

radio range of the drone cell defined in equation (6.1).

6.3.2 Throughput distribution definition and derivation

To communicate with its users, the deployed drone operates in TDD frequency band, a

fixed proportion of the FDD frequency band (used by the macrocell to serve its users) is

exclusively allocated to the drone to be connected to the backhaul. Consequently, the

co-channel interference on macrocell users comes only from the neighboring macrocells.

However, drone users will not experience interference from macrocells. Based on these

specifications, we provide the following definitions of SINRs and throughputs.

Definition 1: Let γt and γ̃t be the instantaneous SINRs received at a UE (r,θ) from

the macrocell and the drone respectively, at time t. Then, γt and γ̃t are expressed as

follows

γt(r,θ) =
1

g(r)
(6.5)

γ̃t(r,θ) =
Pd

PN

(

|reiθ − rdeiθd|2+h2
)−b̃

(6.6)

Remark:
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• The elevation distance (denoted by ǫ) between the UE and the neighboring

macrocells is not considered in the evaluation of the interference coming from

them since the ground distances between the UE and these cells are very high

and can be suitable to approximate the distance including this elevation.

• If a neighbor macrocell is also using its drone (rn, θn), it is better to simply have a

synchronization between the two drones in order to avoid the overlapping between

the uplink of one transmission and the downlink of another one. Nevertheless,

the mutual interference between downlink transmissions of both drones is not

avoided in this case. So, the experienced SINR by UE in position m is given by

γ̃(r,θ) =

(

|reiθ − rdeiθd|2+h2
)−b̃

(

|reiθ − rneiθn |2+h2
)−b̃

+ PN
Pd

(6.7)

Definition 2: In the presence of a hotspot (following a spatial distribution such as

the one given in equation (4.1)) in the region covered by the central macrocell and the

deployed drone, we define the instantaneous throughput CCDF, at time t, as follows:

P(ηt ≥ y) =
1

St

∫

S∗
1

(

|reiθ − rdeiθd| > R̃
)

×

1(min(K1(1−α)W ln(1+K2γt(r,θ)),η0) ≥ y)dm(r,θ, t) (6.8)

P(η̃t ≥ y) =
1

S̃t

∫

S∗
1

(

|reiθ − rdeiθd| ≤ R̃
)

×

1(min(K1W ln(1+K2γ̃t(r,θ)), η̃0) ≥ y)dm(r,θ, t) (6.9)

where

St =
∫

S∗
1

(

|reiθ − rdeiθd| > R̃
)

dm(r,θ, t)

S̃t =
∫

S∗
1

(

|reiθ − rdeiθd| ≤ R̃
)

dm(r,θ, t)

with dm(r,θ, t) the measure representing the spatial UE location distribution reflecting

the presence of a traffic hotspot located in (rh(t), θh(t)).
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In the analysis, we only derive the throughput CCDF for l ≤ η0 for the macrocell

and for l ≤ η̃0 for the drone because, as explained in [37], this quantity is simply equal

to zero otherwise.

Proposition 6.3.1 When the position of the traffic hotspot matches exactly with

the position of the drone, i.e. (rh(t), θh(t)) = (rd, θd), the throughput CCDFs in the

macrocell and in the drone cell are given by the following expressions

P(ηt ≥ l) =
2e

− rh(t)
2

2A2

2πA2St

∫ g−1(ψ(l))

0
re

− r2

2A2

∫ π

cos−1(h(r)|1−1)
e

− rh(t)r cosθ

A2 drdθ (6.10)

P(η̃t ≥ l) =
1

S̃t

∫ R

0

∫ cos−1(s(r)|1−1)

0
dm(r,θ, t) (6.11)

with ψ(l) = K2

(

e
l

K1(1−α)W −1
)−1
, ψ̃(l) = K2

(

e
l

K1W −1
)−1

and

h(r) =
r2+ rh(t)

2− rh(t)
2

2rh(t)r

s(r) =

r2+ rh(t)
2−min

(

rh(t)
2,

(

PN
Pd

ψ̃(l)
)− 1

b̃ −h2
)

2rh(t)r

The function u stands for h in equation (6.10) and s in equation (6.11) and is

defined by

u(r)|1−1 =



























u(r) if −1 < u(r) < 1

−1 if u(r) < −1

1 if u(r) > 1

6.3.3 Flow level analysis of system performance

As in Subsection 5.4.1, we derive performance metrics based on a dynamic level analysis.

We focus on the case of best effort traffic. Cell capacity is assumed to be shared between

all transmissions according to a multi-class M/G/1 Processor Sharing discipline. Users

of the same class have the same data rate denoted by ηk,t for the macrocell and η̃l,t for

the drone, k ≤ K and l ≤ L. We assume that we have K classes in the macrocell and

L classes in the drone cell when it is activated. We define the arrival rate λk,t for the
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Fig. 6.4 Dynamic system model

macrocell and λ̃l,t for the drone cell when it is activated. Flow sizes are assumed to be

mutually independent and exponentially distributed with mean σ0 in Mbits.

As mentioned in the dynamic level analysis of Chapter 4, flow classes are sorted, for

tractability issues, in an increasing order according to the associated data rate, denoted

by ηk,t, η̃l,t, k = 1..K, l = 1..L. The probabilities pk,t, p̃l,t, k = 1..K, l = 1..L denote the

density of each flow class in the macrocell and the drone cell respectively observed at time

t. Each class follows a Poisson process of intensity λk,t = λtpk,t = λT ot
St

St+S̃t
pk,t, k = 1..K

in the macrocell and λ̃l,t = λ̃tp̃l,t = λT ot
S̃t

St+S̃t
p̃l,t, l = 1..L in the drone cell when it is

activated (with λT ot = λt + λ̃t the total arrival intensity of the system composed of the

macrocell and the drone cell). Data rates and flows’ arrival intensities are extracted

from analysis in Chapter 4 as explained in Fig. 4.4.

Due to the mobility of the traffic and also of the drone, we keep the same notations

for transition rates as in Chapter 5. The dynamic system model is depicted in Fig. 6.4.

The main difference to the dynamic system model studied in Chapters 4 and 5 is that

there is no coupling between the macrocell and the drone cell since they are operating

in different spectrum bandwidths.

The derived performance metrics remain the same as in Chapter 5 but without

the coupling between the transmissions. So, under the round robin policy and with

heavy mobile traffic, only the expression of the service data rate η̄ and of the stationary

probability will be modified to become as follows

η̄ =
K

∑

k=1

qkEt

[

ηk,t

]

+
L

∑

l=1

q̃lEt

[

η̃l,t

]

(6.12)
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πn,ñ =

(1− ρ̄)|n+ ñ|!
K
∏

k=1
qnk

k

L
∏

l=1
q̃ñl

l

K
∏

k=1
nk!

L
∏

l=1
ñl!

(6.13)

6.3.4 Numerical results

We now evaluate the different performance metrics and investigate the efficiency

of deploying drones in offloading traffic. The same parameters’ configuration as in

Chapters 4 and 5 is set. The parameters configuration is also the same for TDD and

FDD mode (the only difference is that in TDD mode, we use another frequency band

in 2.6GHz with the same band size of 20MHz and we need to specify the type of

UL/DL configuration).The transmission power of the drone is 20dBm and its pathloss

equation is given by 115+26log10(dkm). The arrival rate in the network is equal to 6

and α is taken equal to 50%. For the TDD mode, the UL/DL configuration is taken as

the configuration 1 (see 3GPP TS 36.211 [79]) which stands for a resource partition as

follows: 40% DL, 40% UL and 20% for special subframes. The hotspot is moving with

a speed of 3km/h (the reference speed for pedestrian users [80]).

We consider a specific scenario where the traffic hotspot is moving inside the

macrocell constraining the drone to move from a strategic point to another to get

closer to the hostpot. We plot in Fig. 4.11 the mean (over time) of the throughput

CCDF in a network without drones where the hotspot is moving from (0.5km, π
3 ) to

(0.5km, 4π
3 ) while passing through (0.5km, 2π

3 ) in straight lines according to Manhattan

model. The mean throughput CCDF (during the movement of the hotspot and the

drone) is also plotted after the deployment of the proposed drone mechanism. The

drone starts working in position (0.5km, π
3 ). After 5 minutes of service in that position,

it moves to (0.5km, 2π
3 ). Then, after 4 minutes and 30 seconds, the drone moves

to the next position (0.5km, 4π
3 ). The obtained results are further compared to the

throughput CCDF of a network using a classic small cell operating in FDD mode (with

the same spectrum as the macrocell) and to small cells operating in TDD mode (with

paramters configured as for the drone cell). In these two evaluated scenarios, the posi-

tion of the deployed small cell will be equal to the initial position of the moving hotspot.
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Fig. 6.5 Throughput CCDF in the different compared scenarios.

In the figures’ legend, MC, SC and DC stand for macrocell, small cell and drone

cell respectively, HS stands for the traffic hotspot.

From Fig. 4.11, we observe that the deployment of the drone improves the capacity of

the system composed of only macrocells since user locations with degraded throughputs

will be covered by the drone. So, these users will experience a better SINR level since

radio conditions are less impacted by fading and shadowing effects and also thanks

to the exploitation of TDD bands. When the hotspot is moving, the mean of the

throughput CCDF over time shows that deploying drones gives better performance

than small cells especially for small data rates which are significantly improved. With

drone cells, more than 40% of the traffic can be offloaded with approximately 50Mbps.

However, the best performance that we can obtain from the other solutions is more

than 75% of the traffic offloaded with less than 50Mbps. Compared to the deployment

of a small cell operating whether in TDD or FDD mode, the system capacity is still

competitive admitting that the drone has less capacity allocated to its users with

α = 50%.

Besides, we observe that deploying drones performs better than small cells for

small throughput values meaning that the small cell edge users experience better

QoS when they are connected to the drone. So, deploying drone cells allows to have

more homogeneous user experience all over its covered area which is illustrated by the

decreasing proportion of users with high data rates in favor of medium data rates.
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Fig. 6.6 Load in each cell.

In Fig. 6.6, we plot, for the four deployment scenarios defined as in Fig. 6.5, the

evolution (over time) of the load in the network. From situations 1. and 2. in Fig. 6.6,

we observe that the load is significantly reduced in the macrocell with the deployment

of a drone located near the traffic hotspot. This can be explained by the fact that the

users served by the drone have better radio conditions and experience less interference

than the scenario with only macrocells. The peak of the load in the macrocell obtained

in 2. is due to the fact that the traffic hotspot is getting far from the drone cell.

Consequently, more users are handed over to the macrocell.

Next, in situation 3. of Fig. 6.6, the load in the macrocell (in the scenario of

deployed drone) is reduced again thanks to the drone which changed its position to get

nearer to the hotspot. The reached load in situation 4. for the drone cell is explained

by the fact that the hotspot is approaching again to the drone. In situation 5., we

observe that the load in the macrocell (with a deployed small cell either operating in

TDD or FDD mode) is increasing since the small cells are not anymore covering the

hotspot. Furthermore, the same conclusion is consolidated by the results in situation 6.

showing that the load in the small cell is considerably decreased when the hotspot is

moving far from this latter. The peak in situation 7. for the macrocell with a small

cell operating in FDD mode is explained by the increase of the number of users near

the small cell edge and thus receiving more interference from the small cell.

After that, as illustrated in situation 8., the impact of the interference is reduced

when the hotspot gets far from the small cell edge. Finally, we observe that users
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Fig. 6.7 Mean flow throughput in each scenario.

generating the traffic hotspot can efficiently exploit the available resources resulting in

the reduction of the load in the drone cell and also in the macrocell (even better than

the scenario of small cell because good radio conditions are always guaranteed).

Regarding the deployment of classic small cells, we notice that the load in the

macrocell is most of the time higher than the one in the scenario of deploying a drone

which is also in accordance with the results of Fig. 4.11.

In summary, we conclude that the drone deployment could be a relevant solution to

offload moving traffic hotspots, whereas the classic small cells does not always deliver

good performance especially when the mobility of the traffic is considered.

The different observations deduced from Fig. 4.12 are also consolidated by the

results obtained in Fig. 6.7 illustrating the evolution of the mean flow throughput in

each scenario. Moreover, we observe that the mean flow throughput in the small cell

(either operating in TDD or FDD mode) is improved when the traffic hotspot moves

far from it. This is explained by the fact that the load is reduced. So, even with users

exclusively located at small cell edge, they will be served with more radio resources.

The mean flow throughput in a network composed of only macrocells is in specific

cases better than the one in a macrocell with a small cell operating in FDD mode with

the same spectrum as the macrocell. In fact, when the traffic hotspot moves far from

the small cell, this latter will not actively offload the traffic and it will play the role of

an only interfering cell leading thus to the degradation of the macrocell performance.



102 Drone small cells in 5G Networks

6.4 Discussion on the blocking points and the key

advantages of the proposed mechanism

Nowadays, drones are at the peak of their development and many constructors are

investing in research in order to produce viable professional and commercial models

which are safe, autonomous, stable and power-efficient. Nevertheless, until recently,

exploiting drones for professional use is still missing in the government regulations. It

needs exhaustive investigations about their control to create new rules mainly related

to the national security and also the interference with other applications.

Concerning the security aspects, many companies, mainly working in military

projects, are developing new solutions to control drones, identify their owners and the

reason for which it is flying in a specific region and this by intercepting and analyzing

all its transmissions.

The cost efficiency of deploying drones, such as described in the proposed mechanism,

is guaranteed since one drone can efficiently replace many classic small cells in an

energy-saving way. In fact, even the case of low battery power cannot be addressed

because with the advanced achievements in the design of drones and also with the

described drone mobility mechanism, energy consumption will not be a limitation for

this type of communications. Consequently, the cost of drones does not represent

anymore a limitation factor for their deployment.

Another limiting factor is the coexistence with other flying devices and interference

with other applications. This point can be treated by identifying and avoiding the

probable collisions with other operating applications and flying devices.

Several advantages can be obtained by deploying the proposed drone-based mecha-

nism in offloading traffic. First, drones guarantee the line-of-sight condition to UEs

and also to the macrocell which reduces interferences and energy consumption of

macrocells. In fact, with such channel model based on a strong line-of-sight condition,

the relationship between the transmitted and received signals is not highly dependent

on fast fading and shadowing effects. Consequently, the network performance can be

upgraded without complex signal processing computations.

Second, using drones rapidly improves radio conditions of UEs in unpredictable

events such as accidents and infrequently occurring events such as street shows. Further-

more, it is possible to cover unknown dead spots difficult to be predicted by operators’

planning tools.
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Third, the need to relay communications with complex systems with more than

two hops and to have cooperative relays doesn’t exist anymore since the drone will be

in line-of-sight with the macrocell and UEs also.

Fourth, the mobility of drones helps the macrocell to cover a mobile hotspot located

in cell edge or in coverage holes for long periods of time. Consequently, handover

interruptions are notably reduced since handovers are only triggered when UEs quit

the coverage of the drone cell.

Fifth, a better control of drones leads to enhanced homogeneous user experience all

over the covered area and to a better control of the coverage and capacity expected in

the planning process.

Sixth, with deploying drones (especially as explained in the proposed mechanism), no

strict installation guidelines are imposed with respect to planning and site-acquisition.

Most of the raised advantages are further confirmed through the obtained numerical

results specifically the homogeneous user experience, the good radio conditions and

the reduction of the system load.

In addition to the advantages enumerated in the previous paragraph, the mobility

of the drone is an important characteristic allowing to significantly improve network

performance (for instance, a drone serving a hotspot of UEs in a mass event). When

this hotspot is moving, the drone anticipates this movement and chooses the next best

location where to settle up to continue serving this hotspot. Following this concept,

the next generation network design process will be related to the initial planning of the

set of best drone locations where it can move to cover traffic hotspots. Furthermore,

it is important to note that the planned drone locations will not contain specific

equipment; they are only used to specify location points where the drone can be placed.

Nevertheless, it is possible to install power terminals in some of these positions in

order to recharge drones’ batteries. The second important element in the proposed

mechanism is that the drone moves near the traffic hotspot to land on the communicated

position and deactivates all its flying components before starting to serve users. This

allows to make from deploying drones in cellular networks a more feasible solution

since it reduces significantly the energy consumption. An additional point, raised from

the performance analysis section, is that deploying drones always provides additional

capacity gains since radio conditions are improved inside the macrocell and its UEs

are not impacted by interference coming from the drone when this latter is operating

in TDD band.
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6.5 Concluding remarks

In this chapter, a new offloading mechanism is developed to reduce congestion in cellular

networks. We propose to use drone cells in an efficient and energy-saving way. Drones

instantly react in response to the appearance of traffic hotspots and allow to efficiently

offload traffic with providing better radio conditions. The disappearance and the

movement of the traffic hotspot are also addressed in order to make a complete, reliable

and feasible offloading mechanism. The performance of the deployed mechanism is also

investigated in terms of system load evolution in time and throughput distribution. The

obtained results are compared to the ones of a classic small cell deployment showing

that deploying drones improves further the capacity and the quality of service in the

network (especially for users with bad radio conditions) in an efficient and cost-effective

way.

To further highlight the benefits of the deployment of drone cells, a study on the

efficiency in terms of reactivity and the energy consumed when applying the proposed

mechanism is indispensable.



Chapter 7

Conclusion and future works

7.1 Summary

Traffic hotspots’ localization and HetNets’ deployment are among the main topics

facing the existing and the future generations of cellular networks. Dealing with these

issues is challenging, especially in the context of meeting the ever-growing capacity

and coverage requirements of cellular networks. Indeed, depending only on macrocell

deployments cannot meet the demand users are currently imposing on cellular operators.

Therefore, recent wireless systems are constantly upgraded with new parameterizations

and features that aim to improve both the users’ experience and the system capacity.

A core goal of this thesis is to develop a new traffic localization method and to assess

the impact of the limited accuracy of traffic hotspot localization tools on small cell

deployments. Aiming to boost capacity and coverage in cellular networks, the second

objective of this thesis was to propose and evaluate the performance of new offloading

mechanisms, that capitalize on future HetNet deployments.

Chapter 1 started by presenting the background and the general context of our work.

It covered also the targeted problems in this thesis and our original contributions.

Chapter 2 provided an overview of the topics related to traffic localization and

HetNet deployment. The accuracy and the limitations of developed methods in the

literature were investigated. Then, the motivations behind our developed localization

method were presented. HetNet deployments and the performance of each studied

scenario in the literature were also investigated. This spanned classic, moving and

drone small cells. Likewise, the motivations behind the realized studies were presented

in order to understand the difference between the developed study and previous ones.

Chapter 3 investigated the problem of traffic hotspot localization in high-traffic

urban environments to provide an important information in the HetNet planning
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process. We proposed a new traffic hotspot localization method based on O&M KPIs

and projected over the coverage map. The accuracy of the proposed method is evaluated

and our results demonstrated that this solution was able to provide improved traffic

tracking precision at low operational and computational costs.

Chapter 4 presented a study on the impact of imperfect traffic hotspot localization

on small cells deployment, namely to quantify potential performance gains of classic

small cells when they are not perfectly covering traffic hotspots. Specifically, we chose

to study three different scenarios: i. with macrocells only, ii. a network of macrocells

with a small cell deployed exactly at the center of the traffic hotspot and iii. with a

small cell not perfectly deployed near the traffic hotspot (its position is different from

the hotspot one). The study is realized in two stages: static level and flow level.

In the static level, the throughput CCDF and the mean user throughput are

investigated in the presence of non-uniform traffic distribution in the network. In the

dynamic level, user arrivals and departures are generated according to the defined

spatial traffic distribution reflecting the presence of a traffic hotspot. We also examined

the achievable performance gains in terms of load, mean number of active users and

mean flow throughput.

Our analytical and simulation results indicated that deployment of a small cell

is less impacted by the imperfect positioning with respect to traffic hotspot location

when this latter is in cell edge. In addition, our results demonstrated that there are no

potential gains when small cells are deployed to cover traffic hotspots at cell center. In

areas close to the cell edge, dynamic level results showed that it is sufficient to obtain

better performance with the deployment of small cells but it is not sufficient to obtain

the best ones. This latter depends, in addition to the spatial traffic distribution in

the network, on several input parameters such as the radio range of the small cell (if

it covers all the hotspot or a part of it when this latter is more flat), the small cell

capacity and the amount of traffic it has to offload as well as the level of the mutual

interference generated by both the small cell and the macrocell.

In Chapter 5, we introduced the mobility of small cells in the network of macrocells.

Moving small cells are deployed in this case on top of vehicles (for example public

transportation means since they are generally moving in crowded areas which maintains

appropriate levels of small cells utilizations). Deploying moving cells allows to cover

more traffic hotspots with less investments since one mobile small cell can replace

many classic small cells. Static and dynamic level results showed that moving small

cell can be a beneficial solution with positive capacity gains as compared to a network

with only macrocells. Nevertheless, the mobility control of mobile cells is still an
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important challenge for cellular operators. In fact, when the traffic hotspot is far from

the deployed small cell, the system performance is not improved due to the additional

interference generated by this latter on macrocell users. That’s why, following the

trajectory of the traffic hotspot represents a major concern.

Finally, in Chapter 6, we proposed a novel traffic offloading mechanism based on

drone small cells. Overloaded macrocells activate their drones and move them near

the heaviest traffic hotspots. Then, each drone starts to serve the users generating

the traffic hotspot in an energy-efficient way since it will settle up on strategic points

defined in the planning process. The key advantages and the limiting factors of the

solution were investigated in order to show the potential gains and also the blocking

issues or non treated ones related to drone deployments. The performance of the

proposed mechanism was compared to classic small cell solutions and to networks with

macrocells only so as to assess the additional capacity that is obtained from drones.

Our results showed that using drones according to the proposed mechanism makes

this new deployment solution a beneficial one. In fact, deploying drones was shown

to be useful to further improve the capacity and the quality of service in the network

(especially for users with bad radio conditions) in an efficient and cost-effective way.

7.2 Conclusions

Throughout this thesis, and from the evaluated scenarios and developed mechanisms,

we can conclude the following:

• The accuracy of the actual traffic hotspot localization tools still need to be

improved if radio engineers are tempted by exploiting the output of these tools in

the HetNet design process. Otherwise, deploying small cell based on these tools

will be always risky and could lead to possible losses in terms of expenditures

and also of capacity.

• The O&M KPIs and the coverage map represent relevant inputs for traffic

localization methods and their combination with more sophisticated tools could

lead to high accuracy.

• Deploying classic small cells in areas receiving good radio signals from the

macrocell degrades the overall network performance. Indeed, the interference

from the macrocell on small cell users will be very high leading thus to degraded

service data rate for these users.
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• Deploying small cells in cell edge areas is often a beneficial solution even with

errors in traffic localization. This is explained by the fact that the radio conditions

will be always improved in these areas.

• Deploying moving cells can be further efficient solution in terms of capacity

improvement and also of costs. Nevertheless, the incapability to control the

mobility of these cells is still a major concern and constitutes an open research

question for this solution to reach maturity.

• Drone small cells is a new promising alternative to offload congesting traffic in

cellular networks. It will be surely an open research topic for future generation

technologies.

7.3 Future works

The main focus of the work in this thesis is to efficiently localize and offload traffic

hotspots in cellular networks through the deployment of heterogeneous networks. In

view of this, several directions of future works can be established in order to address

the challenges and the deployment issues helping operators to leverage potential gains

of HetNets.

First, new traffic localization methods can be developed and studied while exploit-

ing the new features activated in cellular networks such as Device-to-Device (D2D)

communications and Minimizing Drive Tests (MDT) techniques. A hybrid localization

process based on O&M KPIs and also on D2D technology is of interest since it can be

a good solution for indoor and outdoor localization with a good accuracy.

Secondly, this work analyzes the impact of imperfect traffic hotspot localization on

the performance of small cell deployment. However, we consider that all the deployed

sites are omni-directional and we do not consider shadowing. For real networks,

these assumptions are not always verified especially in urban areas due to underlying

design issues or inherent environment characteristics. The challenge to incorporate the

shadowing and to study a network composed of tri-sectorial sites can be a future work.

Furthermore, considering the network structure as a perturbed hexagonal one (site

location is perturbed by a random variable) can be also an interesting scientific opening

for future studies. In fact, perturbed hexagonal network model approximates more

than any other model the geometry of the real network [26]. Consequently, performance

of perturbed hexagonal model would be closer to the performance of a real network.
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Although the performance evaluation in this thesis was carried out for different

traffic offloading solutions (classic, moving and drone small cells) and was limited to

metrics linked to the quality of service and radio conditions, a study on the cost and

on the energy consumption of each deployed solution is also envisaged.

Another interesting problem would be to add a data caching feature to these

small cells to increase offloading throughput and relieve cellular networks by storing

frequently requested information. What, where and when to cache to achieve certain

objectives, is still an open question.

Moreover, the developed work is mainly related to the impact of imperfect traffic

hotspot localization. So, only one small cell is considered since more traffic hotspots or

more small cells will not allow to achieve the goal of this study. Nevertheless, the case

where multiple small cells are deployed in the network of macrocells, can be studied in

order to gain a more comprehensive and coherent understanding of real-time behavior.

Besides, the mobility of cells represents an interesting option that can be further

developed in terms of mobility control in order to improve the overall system perfor-

mance. In this context, handover metrics also present a relevant performance study to

investigate.

Finally, another open research problem lies in the efficient use of the WiFi capabilities

in addition to the licensed spectrum in order to offload the heavy data traffic in cellular

networks.





References

[1] Dongwoon Bai, Cheolhee Park, Jungwon Lee, Hoang Nguyen, Jaspreet Singh,
Ankit Gupta, Zhouyue Pi, Taeyoon Kim, Chaiman Lim, Min-Goo Kim, et al.
LTE-advanced modem design: challenges and perspectives. IEEE Communications
Magazine, 50(2):178–186, 2012.

[2] Ekram Hossain and Monowar Hasan. 5G cellular: key enabling technologies and
research challenges. IEEE Instrumentation & Measurement Magazine, 18(3):11–21,
2015.

[3] Jeffrey G Andrews, Stefano Buzzi, Wan Choi, Stephen V Hanly, Aurelie Lozano,
Anthony CK Soong, and Jianzhong Charlie Zhang. What will 5G be? Selected
Areas in Communications, IEEE Journal on, 32(6):1065–1082, 2014.

[4] Aleksandar Damnjanovic, Juan Montojo, Yongbin Wei, Tingfang Ji, Tao Luo,
Madhavan Vajapeyam, Taesang Yoo, Osok Song, and Durga Malladi. A survey
on 3GPP heterogeneous networks. Wireless Communications, IEEE, 18(3):10–21,
2011.

[5] Woon Hau Chin, Zhong Fan, and Robert Haines. Emerging technologies and
research challenges for 5G wireless networks. IEEE Wireless Communications, 21
(2):106–112, 2014.

[6] Tao Chen, Yang Yang, Honggang Zhang, Haesik Kim, and Kari Horneman.
Network energy saving technologies for green wireless access networks. Wireless
Communications, IEEE, 18(5):30–38, 2011.

[7] E Nan, Xiaoli Chu, Weisi Guo, and Jie Zhang. User data traffic analysis for 3G
cellular networks. In Communications and Networking in China (CHINACOM),
2013 8th International ICST Conference on, pages 468–472. IEEE, 2013.

[8] Thomas Louail, Maxime Lenormand, Oliva G Cantu Ros, Miguel Picornell, Ricardo
Herranz, Enrique Frias-Martinez, José J Ramasco, and Marc Barthelemy. From
mobile phone data to the spatial structure of cities. Scientific reports, 4, 2014.

[9] Meisam Mirahsan, Rainer Schoenen, and Halim Yanikomeroglu. HetHetNets:
Heterogeneous traffic distribution in heterogeneous wireless cellular networks.
Selected Areas in Communications, IEEE Journal on, 33(10):2252–2265, 2015.

[10] Dongheon Lee, Sheng Zhou, Xiaofeng Zhong, Zhisheng Niu, Xuan Zhou, and
Honggang Zhang. Spatial modeling of the traffic density in cellular networks.
IEEE Wireless Communications, 21(1):80–88, 2014.



112 References

[11] Henrik Klessig, Vinay Suryaprakash, Oliver Blume, Albrecht Fehske, and Gerhard
Fettweis. A framework enabling spatial analysis of mobile traffic hot spots. IEEE
Wireless Communications Letters, 3(5):537–540, 2014.

[12] Silvia Martin-leon, Mustafa Ahmed, and Timothy David Hurley. Traffic location
in mobile cellular telecommunications systems, August 23 2001. US Patent
20,010,016,490.

[13] Olivier Ho-A-Chuck. Process for analyzing traffic localization within a cellular
radio communication network, October 27 1998. US Patent 5,828,962.

[14] Tomi Vaara and Risto Aalto. Traffic hot spot locating method, November 20 2001.
US Patent 6,321,083.

[15] Qiang Xu, Alexandre Gerber, Zhuoqing Morley Mao, and Jeffrey Pang. AccuLoc:
practical localization of performance measurements in 3G networks. In Proceedings
of the 9th international conference on Mobile systems, applications, and services,
pages 183–196. ACM, 2011.

[16] Martin Azizyan, Ionut Constandache, and Romit Roy Choudhury. SurroundSense:
mobile phone localization via ambience fingerprinting. In Proceedings of the
15th annual international conference on Mobile computing and networking, pages
261–272. ACM, 2009.

[17] C.S. Randriamasy. Geographic representation of traffic load in a mobile radio
communication network, January 2 2002. EP Patent App. EP20,010,401,494.

[18] Akshay Athalye, Vladimir Savic, Miodrag Bolic, and Petar M Djuric. Novel
semi-passive RFID system for indoor localization. Sensors Journal, IEEE, 13(2):
528–537, 2013.

[19] A. Roxin, J. Gaber, M. Wack, and A. Nait-Sidi-Moh. Survey of wireless geolocation
techniques. In Globecom Workshops, 2007 IEEE, pages 1–9, Nov 2007.

[20] Aymen Jaziri, Ridha Nasri, and Tijani Chahed. Traffic hotspot localization in
3G and 4G wireless networks using OMC metrics. In Personal, Indoor, and
Mobile Radio Communication (PIMRC), 2014 IEEE 25th Annual International
Symposium on, pages 270–274. IEEE, Sept 2014.

[21] Aymen Jaziri, Ridha Nasri, and Tijani Chahed. Tracking traffic peaks in mobile
networks using statistics of performance metrics. accepted with major revisions in
International Journal of Wireless Information Networks, 2016.

[22] Xiaoli Chu, David Lopez-Perez, Yang Yang, and Fredrik Gunnarsson. Hetero-
geneous Cellular Networks: Theory, Simulation and Deployment. Cambridge
University Press, 2013.

[23] Harpreet S Dhillon, Radha Krishna Ganti, Francois Baccelli, and Jeffrey G
Andrews. Modeling and analysis of k-tier downlink heterogeneous cellular networks.
Selected Areas in Communications, IEEE Journal on, 30(3):550–560, 2012.



References 113

[24] Harpreet S Dhillon, Marios Kountouris, and Jeffrey G Andrews. Downlink mimo
hetnets: Modeling, ordering results and performance analysis. Wireless Commu-
nications, IEEE Transactions on, 12(10):5208–5222, 2013.

[25] Robert W Heath, Marios Kountouris, and Tianyang Bai. Modeling heterogeneous
network interference using Poisson point processes. Signal Processing, IEEE
Transactions on, 61(16):4114–4126, 2013.

[26] Anjin Guo and Martin Haenggi. Spatial stochastic models and metrics for the
structure of base stations in cellular networks. Wireless Communications, IEEE
Transactions on, 12(11):5800–5812, 2013.

[27] Ridha Nasri and Aymen Jaziri. On the analytical tractability of hexagonal
network model with random user location. in IEEE Transactions on Wireless
Communications, 15(5):3768–3780, 2016.

[28] Jean-Marc Kelif, Stephane Senecal, and Marceau Coupechoux. Impact of small
cells location on performance and QoS of heterogeneous cellular networks. In
Personal Indoor and Mobile Radio Communications (PIMRC), 2013 IEEE 24th
International Symposium on, pages 2033–2038. IEEE, 2013.

[29] Ridha Nasri and Aymen Jaziri. Tractable approach for hexagonal cellular network
model and its comparison to Poisson point process. in Wireless Communications
Symposium, IEEE Globecom 2015, San Diego, 2015.

[30] Thomas Bonald and Alexandre Proutière. Wireless downlink data channels: user
performance and cell dimensioning. In Proceedings of the 9th annual international
conference on Mobile computing and networking, pages 339–352. ACM, 2003.

[31] Richard Combes, Zwi Altman, and Eitan Altman. Self-organization in wireless
networks: a flow-level perspective. In INFOCOM, 2012 Proceedings IEEE, pages
2946–2950. IEEE, 2012.

[32] Ahlem Khlass, Thomas Bonald, and Salah Eddine Elayoubi. Flow-level perfor-
mance of intra-site coordination in cellular networks. In Modeling & Optimization
in Mobile, Ad Hoc & Wireless Networks (WiOpt), 2013 11th International Sympo-
sium on, pages 216–223. IEEE, 2013.

[33] Xiaohu Ge, Tao Han, Yan Zhang, Guoqiang Mao, Cheng-Xiang Wang, Jing Zhang,
Bin Yang, and Sheng Pan. Spectrum and energy efficiency evaluation of two-tier
femtocell networks with partially open channels. Vehicular Technology, IEEE
Transactions on, 63(3):1306–1319, 2014.

[34] Louai Saker, Salah Eddine Elayoubi, Tijani Chahed, and Azeddine Gati. Energy
efficiency and capacity of heterogeneous network deployment in LTE-advanced.
In European Wireless, 2012. EW. 18th European Wireless Conference, pages 1–7.
VDE, 2012.

[35] Louai Saker, Salah-Eddine Elayoubi, and Tijani Chahed. How femtocells impact the
capacity and the energy efficiency of LTE-advanced networks. In Personal Indoor
and Mobile Radio Communications (PIMRC), 2011 IEEE 22nd International
Symposium on, pages 177–181. IEEE, 2011.



114 References

[36] Aymen Jaziri, Ridha Nasri, and Tijani Chahed. Performance analysis of small
cells’ deployment under imperfect traffic hotspot localization. In IEEE Globecom,
Wireless Networks Symposium, 2015.

[37] Aymen Jaziri, Ridha Nasri, and Tijani Chahed. System level analysis of heteroge-
neous networks under imperfect traffic hotspot localization. in IEEE Transactions
on Vehicular Technology, DOI: 10.1109/TVT.2016.2530844, 2016.

[38] Yutao Sui, Jaakko Vihriala, Agisilaos Papadogiannis, Mikael Sternad, Wei Yang,
and Tommy Svensson. Moving cells: a promising solution to boost performance
for vehicular users. Communications Magazine, IEEE, 51(6):62–68, 2013.

[39] Cheng Xiang Wang, Fourat Haider, Xiqi Gao, Xiao-Hu You, Yang Yang, Dongfeng
Yuan, Hadi Aggoune, Harald Haas, Sam Fletcher, and Erol Hepsaydir. Cellu-
lar architecture and key technologies for 5G wireless communication networks.
Communications Magazine, IEEE, 52(2):122–130, 2014.

[40] Fourat Haider, Haiming Wang, Harald Haas, Dongfeng Yuan, Haiming Wang,
Xiqi Gao, Xiao-Hu You, and Erol Hepsaydir. Spectral efficiency analysis of mobile
femtocell based cellular systems. In Communication Technology (ICCT), 2011
IEEE 13th International Conference on, pages 347–351. IEEE, 2011.

[41] S. Jangsher and V.O.K. Li. Resource allocation in cellular networks with moving
small cells with probabilistic mobility. In Personal, Indoor, and Mobile Radio
Communication (PIMRC), 2014 IEEE 25th Annual International Symposium on,
pages 1701–1705, Sept 2014.

[42] Wei Ni, Iain B Collings, and Ren Ping Liu. Decentralized user-centric scheduling
with low rate feedback for mobile small cells. Wireless Communications, IEEE
Transactions on, 12(12):6106–6120, 2013.

[43] Antonio Mastrosimone and Daniela Panno. A comparative analysis of mmWave
vs LTE technology for 5G moving networks. In Wireless and Mobile Comput-
ing, Networking and Communications (WiMob), 2015 IEEE 11th International
Conference on, pages 422–429. IEEE, 2015.

[44] Antonio Mastrosimone and Daniela Panno. New challenge: Moving network based
on mmwave technology for 5g era. In Computer, Information and Telecommu-
nication Systems (CITS), 2015 International Conference on, pages 1–5. IEEE,
2015.

[45] Mahmoud H Qutqut, Fadi M Al-Turjman, and Hossam S Hassanein. Hof: a
history-based offloading framework for LTE networks using mobile small cells and
Wi-Fi. In Local Computer Networks Workshops (LCN Workshops), 2013 IEEE
38th Conference on, pages 77–83. IEEE, 2013.

[46] S Mohammad Razavizadeh, Minki Ahn, and Inkyu Lee. Three-dimensional
beamforming: A new enabling technology for 5G wireless networks. Signal
Processing Magazine, IEEE, 31(6):94–101, 2014.

[47] Aymen Jaziri, Ridha Nasri, and Tijani Chahed. Offloading traffic hotspots using
moving small cells. In IEEE ICC, Wireless Networks Symposium, 2016.



References 115

[48] Yanru Zhang, Erte Pan, Lingyang Song, Walid Saad, Zaher Dawy, and Zhu Han.
Social network enhanced device-to-device communication underlaying cellular
networks. In IEEE Computer Society, 2013.

[49] Omid Semiari, Walid Saad, Zaher Dawy, and Mehdi Bennis. Matching theory
for backhaul management in small cell networks with mmWave capabilities. In
Communications (ICC), 2015 IEEE International Conference on, pages 3460–3465.
IEEE, 2015.

[50] Insoo Hwang, Bongyong Song, and Samy S Soliman. A holistic view on hyper-
dense heterogeneous and small cell networks. Communications Magazine, IEEE,
51(6):20–27, 2013.

[51] Tony QS Quek, Guillaume de la Roche, İsmail Güvenç, and Marios Kountouris.
Small cell networks: Deployment, PHY techniques, and resource management.
Cambridge University Press, 2013.

[52] Mehdi Bennis, Samir M Perlaza, Pol Blasco, Zhu Han, and H Vincent Poor. Self-
organization in small cell networks: A reinforcement learning approach. Wireless
Communications, IEEE Transactions on, 12(7):3202–3212, 2013.

[53] Shanzhi Chen and Jian Zhao. The requirements, challenges, and technologies for
5G of terrestrial mobile telecommunication. Communications Magazine, IEEE, 52
(5):36–43, 2014.

[54] Mohammad Mozaffari, Walid Saad, Mehdi Bennis, and Merouane Debbah. Drone
small cells in the clouds: Design, deployment and performance analysis. In 2015
IEEE Global Communications Conference (GLOBECOM), pages 1–6. IEEE, 2015.

[55] Sebastian Rohde and Christian Wietfeld. Interference aware positioning of aerial
relays for cell overload and outage compensation. In Vehicular Technology Con-
ference (VTC Fall), IEEE, pages 1–5. IEEE, 2012.

[56] Aymen Jaziri, Ridha Nasri, and Tijani Chahed. Congestion mitigation in 5G
networks using drone relays. in International Wireless Communications and
Mobile Computing Conference (IWCMC), Wireless Networks symposium, 2016.

[57] Aymen Jaziri, Ridha Nasri, and Tijani Chahed. Offloading moving traffic hotspots
with drone cells in future wireless networks. submitted to IEEE Transactions on
Vehicular Technology, 2016.

[58] Johan Johansson, Wuri A Hapsari, Sean Kelley, and Gyula Bodog. Minimization
of drive tests in 3GPP release 11. Communications Magazine, IEEE, 50(11):36–43,
2012.

[59] Evolved universal terrestrial radio access (e-utra); mobility enhancements in
heterogeneous networks, September 2012.

[60] Evolved universal terrestrial radio access (e-utra); physical layer procedures, March
2009.



116 References

[61] Evolved universal terrestrial radio access (e-utra); physical layer; measurements,
April 2011.

[62] Sesia Stefania, Toufik Issam, and Baker Matthew. LTE-the UMTS long term
evolution: From theory to practice. A John Wiley and Sons, Ltd, 19.4.3:432, 2011.

[63] Parveen Singla and Dr Jyoti Saxena. Beam forming algorithm for smart antenna in
WCDMA network. International Journal of Engineering and Innovative Technology
(IJEIT) Volume, 3, 2013.

[64] Lars Zimmermann, Alexander Goetz, Georg Fischer, and Robert Weigel. Gsm
mobile phone localization using time difference of arrival and angle of arrival
estimation. In Systems, Signals and Devices (SSD), 2012 9th International Multi-
Conference on, pages 1–7. IEEE, 2012.

[65] Sébastien Reynaud, Moctar Mouhamadou, K Fakih, O Akhdar, Cyril Decroze,
David Carsenat, E Douzon, and Thierry Monediere. Outdoor to indoor channel
characterization by simulations and measurements for optimising WiMAX relay
network deployment. In VTC Spring 2009-IEEE 69th Vehicular Technology
Conference, 2009.

[66] Ari Kangas and Torbjörn Wigren. Angle of arrival localization in LTE using MIMO
pre-coder index feedback. Communications Letters, IEEE, 17(8):1584–1587, 2013.

[67] Ridha Nasri and Zwi Altman. Handover adaptation for dynamic load balancing
in 3GPP long term evolution systems. International Conference on Advancnes in
Mobile Computing and Multimedia (MoMM), 2007.

[68] Qiaoyang Ye, Beiyu Rong, Yudong Chen, Mazin Al-Shalash, Constantine Carama-
nis, and Jeffrey G Andrews. User association for load balancing in heterogeneous
cellular networks. Wireless Communications, IEEE Transactions on, 12(6):2706–
2716, 2013.

[69] Matt P Wand and M Chris Jones. Kernel smoothing. Crc Press, 1994.

[70] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge
university press, 2004.

[71] Preben Mogensen, Wei Na, István Z Kovács, Frank Frederiksen, Akhilesh
Pokhariyal, Klaus Pedersen, Troels Kolding, Klaus Hugl, Markku Kuusela, et al.
LTE capacity compared to the Shannon bound. In Vehicular Technology Confer-
ence, 2007. VTC2007-Spring. IEEE 65th, pages 1234–1238. IEEE, 2007.

[72] Alan Jeffrey and Daniel Zwillinger. Table of integrals, series, and products. Elsevier
Academic Press publications, 7 edition, 2007.

[73] George Neville Watson. A treatise on the theory of Bessel functions. Cambridge
university press, 1995.

[74] Thomas Bonald and Mathieu Feuillet. Network performance analysis. John Wiley
& Sons, 2013.



References 117

[75] 3GPP TR 36.839 V11.0.0 (2012-09). Evolved Universal Terrestrial Radio Access
(E-UTRA); Mobility enhancements in heterogeneous networks. 2012.

[76] Nivine Abbas, Thomas Bonald, and Berna Sayrac. Opportunistic gains of mobility
in cellular data networks. In Modeling and Optimization in Mobile, Ad Hoc,
and Wireless Networks (WiOpt), 2015 13th International Symposium on, pages
315–322. IEEE, 2015.

[77] Mugen Peng, Dong Liang, Yao Wei, Jian Li, and Hsiao-Hwa Chen. Self-
configuration and self-optimization in LTE-advanced heterogeneous networks.
IEEE Communications Magazine, 51(5):36–45, 2013.

[78] Noman Shabbir, Muhammad T Sadiq, Hasnain Kashif, and Rizwan Ullah. Com-
parison of radio propagation models for LTE network. International Journal of
Next-Generation Networks, 3(3):27, 2011.

[79] Physical Channels. Modulation (Release 8), 3GPP TS 36.211. V1. 0.0, Mar, 2007.

[80] Joan Olmos, Albert Serra, Silvia Ruiz, Mario García-Lozano, and David Gonzalez.
Exponential effective sir metric for LTE downlink. In 2009 IEEE 20th International
Symposium on Personal, Indoor and Mobile Radio Communications, pages 900–904.
IEEE, 2009.




