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Chapter 1

Introduction

1.1 Background and Motivation

Recent years have witnessed an unprecedented development of the radio frequency identification (RFID) tech-

nology due to its low cost and non-line-of-sight communication pattern which overcomes the drawbacks of

traditional barcode technology [1]. An RFID system typically consists of one or several RFID readers and a

large number of RFID tags. Specifically, an RFID reader is a device equipped with a dedicated power source

and an antenna and can collect and process the information of tags within its coverage area. An RFID tag, on

the other hand, is a low-cost microchip labeled with a unique serial number (ID) to identify an object and can

receive and transmit the radio signals via the wireless channel. More specially, the tags are generally classified

into two categories: passive tags and active tags. The passive tags are energized by the radio wave of the reader,

whereas, the active tags have power sources and relatively long communication range. Moreover, the commu-

nication between readers and tags follows frame slotted Aloha (FSA) mechanism which has been standardized

in one of the most popular industrial standards, EPCGlobal Class-1 Generation-2 (C1G2) RFID standard [2].

As a promising low-cost technology, RFID is widely utilized in various applications ranging from inventory

control to supply chain management and logistics. In most, if not all, RFID applications, tag counting and

monitoring are perhaps one of the most fundamental component. Although simple to state and intuitively

understandable, designing efficient tag counting and monitoring algorithms require non-trivial efforts to solve,

especially in large-scale RFID systems, due to the following particular challenges in RFID systems.

• Large number of tags. An RFID system may consist of a large number of tags, such as a warehouse storing

thousands of goods for retailers. Any effective algorithm designed for these RFID systems needs to scale

elegantly.

• Limited computing resource at tags. The quest of compatible size and low energy consumption signifi-

cantly limits the computing and processing capability of individual tags in RFID systems, especially for

lightweight passive tags.

• Unreliable wireless links. Wireless links are notoriously unreliable and error-prone. Hence, algorithms

2



3 Chapter 1. Introduction

should be robust in the sense that they are able to work under unreliable channel conditions.

1.2 Thesis Overview and Organization

Motivated by the challenges pointed out previously, we conduct a systematic research in this thesis on tag

counting and monitoring in large-scale RFID systems by focusing on several representative research problems

of both fundamental and practical importance. Specifically, we address the following problems ranging from

theoretical modeling and analysis, to practical algorithm design and optimisation.

• Stability analysis of the frame slotted Aloha (FSA) protocol, the de facto standard in RFID tag counting

and identification,

• Tag population estimation in dynamic RFID systems,

• Missing tag event detection in the presence of unexpected tags,

• Missing tag event detection in multiple-group multiple-region RFID systems.

In our thesis, we adopt a research and exposition line from theoretical modeling and analysis to practical

algorithm design and optimisation. Fig. 1.1 illustrates the structure of our thesis. In the remainder of this

section, we provide a high-level overview of the technical contributions of our thesis, which are are presented

sequentially in Chapter 2-5. To facilitate readers, we adopt a modularized structure to present the results such

that the chapters are arranged as independent modules, each devoted to a specific topic outlined above. In

particular, each chapter has its own introduction and conclusion sections, elaborating the related work and

the importance of the results with the specific context of that chapter. For this reason, we are not providing a

detailed background, or a survey of prior work here.

Introduction
(Ch. 1)

Stability analysis of frame slotted Aloha protocol
(Ch. 2)

From static to dynamic tag population estimation: 
an extended Kalman filter perspective (Ch. 3)

Finding needles in a haystack: missing tag 
detection in large RFID systems (Ch. 4)

On missing tag detection in multiple-group 
multiple-region RFID systems (Ch. 5)

Conclusion
(Ch. 6)

Figure 1.1: Thesis organization

Chapter 2: Stability Analysis of the Frame Slotted Aloha Protocol



4 Chapter 1. Introduction

To lay the theoretical foundations for the design and optimization of tag counting and monitoring algorithms,

we start by investigating the stability of FSA, which is of fundamental importance both on the theoretical

characterisation of FSA performance and its effective operation in practical systems. To study the stability of

FSA, the effort should be devoted to answering the following natural and crucial questions:

• Under what condition(s) is FSA stable?

• When is the stability region maximised?

• How does FSA behave in the instability region?

Surprisingly, the above fundamental questions have not been explored in the literature. To fill the void

in the study of FSA stability, in Chapter 2, we investigate these questions by technically modeling the FSA

system backlog as a Markov chain with its states being backlog size at the beginning of each frame. The

main objective is to analyze the ergodicity of the Markov chain and demonstrate its properties in different

regions, particularly the instability region. Specifically, by employing drift analysis, we obtain the closed-form

conditions for the stability of FSA and show that the stability region is maximised when the frame length

equals the number of packets to be sent in the single packet reception model and the upper bound of stability

region is maximised when the ratio of the number of packets to be sent to frame length equals in an order of

magnitude the maximum multipacket reception capacity in the multipacket reception model, which answers the

first two questions. Furthermore, to characterise system behavior in the instability region, we mathematically

demonstrate the existence of transience of the backlog Markov chain, which provides the answer to the third

question.

Chapter 3: From Static to Dynamic Tag Population Estimation: An Extended Kalman Filter Perspective

In this chapter, we focus on the problem of tag counting, or tag population estimation, which has recently

attracted significant research attention due to its paramount importance on a variety of RFID application-

s. However, most, if not all, of existing estimation mechanisms are proposed for the static case where tag

population remains constant during the estimation process, thus leaving the more challenging dynamic case

unaddressed, despite the fundamental importance of the latter case on both theoretical analysis and practical

application.

Motivated by the above argument, we design a generic framework of stable and accurate tag population

estimation schemes based on Kalman filter for both static and dynamic RFID systems. Our main contributions

are two-fold. Firstly, we model the dynamics of RFID systems as discrete stochastic processes and leverage the

techniques in extended Kalman filter (EKF) and cumulative sum control chart (CUSUM) to estimate tag popula-

tion for both static and dynamic systems. Secondly, By employing Lyapunov drift analysis, we mathematically

characterise the performance of the proposed framework in terms of estimation accuracy and convergence

speed by deriving the closed-form conditions on the design parameters under which our scheme can stabilise

around the real population size with bounded relative estimation error that tends to zero with exponential

convergence rate.
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Chapter 4: Finding Needles in a Haystack: Missing Tag Detection in the Presence of Unexpected Tags

RFID technology has been widely used in missing tag detection to reduce and avoid inventory shrinkage. In

this application, promptly finding out the missing event is of paramount importance. In Chapter 4 and 5, we

further address the problem of missing tag detection. Different to existing works in this field, we focus on two

unexplored while fundamentally important scenarios, missing tag detection in the presence of unexpected tags

(Chapter 4) and in multiple-group multiple-region RFID systems (Chapter 5).

In the first scenario, existing missing tag detection protocols cannot efficiently handle the presence of a large

number of unexpected tags whose IDs are not known to the reader, which shackles the time efficiency. To deal

with the problem of detecting missing tags in the presence of unexpected tags, we devise a two-phase Bloom

filter-based missing tag detection protocol (BMTD). The proposed BMTD exploits Bloom filter in sequence to

first deactivate the unexpected tags and then test the membership of the expected tags, thus dampening the

interference from the unexpected tags and considerably reducing the detection time. Moreover, the theoretical

analysis of the protocol parameters is performed to minimize the detection time of the proposed BMTD and

achieve the required reliability simultaneously. Extensive experiments are then conducted to evaluate the per-

formance of the proposed BMTD. The results demonstrate that the proposed BMTD significantly outperforms

the state-of-the-art solutions.

Chapter 5: On Missing Tag Detection in Multiple-group Multiple-region RFID Systems

In Chapter 5, we formulate and study a new missing tag detection problem, arising in multiple-group multiple-

region RFID systems, where a mobile reader needs to detect whether there is any missing event for each group

of tags. The problem we tackle is to devise missing tag detection protocols with minimum execution time

while guaranteeing the detection reliability requirement for each group. By leveraging the technique of Bloom

filter, we develop a suite of three missing tag detection protocols, each decreasing the execution time compared

to its predecessor by incorporating an improved version of the Bloom filter design and parameter tuning. By

sequentially analysing the developed protocols, we gradually iron out an optimum detection protocol that

works in practice.

Finally, Chapter 6 concludes the thesis with the summary of the overall results and the perspective for the

future research.

Part of our research work presented in this thesis is published or in submission in various journals and

conferences. Specifically, our work on the stability analysis of FSA was presented in the 23rd International

Symposium on Quality of Service (IWQoS), Portland, OR, USA, June 2015. The extended version is currently

under second round (minor) revision of IEEE Transactions on Mobile Computing (TMC). Our work on tag

population estimation in dynamic RFID systems is currently under second round (minor) revision of IEEE

Transactions on Communications (TCOM). Our work on missing tag event detection in the presence of unex-

pected tags is currently under submission of IEEE Transactions on Communications (TCOM). Our work on
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missing tag event detection in multiple-group multiple-region RFID systems is under second round (minor)

revision of IEEE Transactions on Mobile Computing (TMC).



Chapter 2

Stability Analysis of Frame Slotted Aloha

Protocol

2.1 Introduction

2.1.1 Context and Motivation

Since the introduction of Aloha protocol in 1970 [3], a variety of such protocols have been proposed to improve

its performance, such as Slotted Aloha (SA) [4] and Frame Slotted Aloha (FSA) [5]. SA is a well known random

access scheme where the time of the channel is divided into identical slots of duration equal to the packet

transmission time and the users contend to access the server with a predefined slot-access probability. As a

variant of SA, FSA divides time-slots into frames and a user is allowed to transmit only a single packet per

frame in a randomly chosen time-slot.

Due to their effectiveness to tackle collisions in wireless networks, SA- and FSA-based protocols have been

applied extensively to various networked systems ranging from the satellite networks [6], wireless LANs [7, 8]

to the emerging Machine-to-Machine (M2M) networks [9, 10]. Specifically, in radio frequency identification

(RFID) systems, which is our specific interest in this thesis, FSA plays a fundamental role in the identification

of tags [11, 12] and is standardized in the EPCGlobal Class-1 Generation-2 (C1G2) RFID standard [2]. In FSA-

based protocols, all users with packets transmit in the selected slot of the frame respectively, but only packets

experiencing no collisions are successful while the other packets referred to as backlogged packets (or simply

backlogs), are retransmitted in the subsequent frames.

Given the paramount importance of the stability for systems operating on top of Aloha-based protocols, a

large body of studies have been devoted to stability analysis in a slotted collision channel [13, 14, 15] where

a transmission is successful if and only if just a single user transmits in the selected slot, referred to as sin-

gle packet reception (SPR). Differently with SPR, the emerging multipacket reception (MPR) technologies in

wireless networks, such as Code Division Multiple Access (CDMA) and Multiple-Input and Multiple-Output

7
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(MIMO), make it possible to receive multiple packets in a time-slot simultaneously, which remarkably boosts

system performance at the cost of the system complexity.

More recently, the application of FSA in RFID systems and M2M networks has received considerable re-

search attention. However, very limited work has been done on the stability of FSA despite its fundamental

importance both on the theoretical characterisation of FSA performance and its effective operation in practical

systems. Motivated by the above observation, we argue that a systematic study on the stability properties of

FSA incorporating the MPR capability is called for in order to lay the theoretical foundations for the design and

optimization of FSA-based communication systems.

2.1.2 Summary of Contributions

In this chapter, we investigate the stability properties of p-persistent FSA with SPR and MPR capabilities. The

main contributions of this chapter are articulated as follows:

• We model the packet transmission process in a frame as the bins and balls problem [16] and derive the

number of successfully received packets under both SPR and MPR models.

• We formulate a homogeneous Markov chain to characterize the number of the backlogged packets and

derive the one-step transition probability with the persistence probability p.

• By employing drift analysis, we obtain the closed-form conditions for the stability of p-persistent FSA and

derive conditions maximising the stability regions for both SPR and MPR models.

• To characterise system behavior in the instability region with the persistence probability p, we mathemat-

ically demonstrate the existence of transience of the backlog Markov chain.

• We investigate how to achieve the stability condition and give the control algorithm for updating the

frame size.

Our work demonstrates that the stability region is maximised when the frame length equals the number

of sent packets in the SPR model and the upper bound of stability region is maximised when the ratio of the

number of sent packets to frame length equals in an order of magnitude the maximum multipacket reception

capacity in the MPR model. In addition, it is also shown that FSA-MPR outperforms FSA-SPR remarkably in

terms of the stability region size.

2.2 Related Work

Aloha-based protocols are basic schemes for random medium access and are applied extensively in many

communication systems. As a central property, the stability of Aloha protocols has received a lot of research

attention, which we briefly review in this section.

Stability of slotted Aloha. Tsybakov and Mikhailov [17] initiated the stability analysis of finite-user slotted

Aloha. They found sufficient conditions for stability of the queues in the system using the principle of stochastic
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dominance and derived the stability region for two users explicitly. For the case of more than two users, the

inner bounds to the stability region were shown in [18]. Subsequently, Szpankowski [19] found necessary and

sufficient conditions for the stability under a fixed transmission probability vector for three-user case. However,

the derived conditions are not closed-form, meaning the difficulty on verifying them. In [13] an approximate

stability region was derived for an arbitrary number of users based on the mean-field asymptotics. It was

claimed that this approximate stability region is exact under large user population and it is accurate for small-

sized networks. The sufficient condition for the stability was further derived to be linear in arrival rates without

the requirement on the knowledge of the stationary joint statistics of queue lengths in [14]. Recently, the stability

region of SA with K-exponential backoff was derived in [15] by modeling the network as inter-related quasi-

birth-death processes. We would like to point out that all the above stability analysis results were derived for

the SPR model.

Stability of slotted Aloha with MPR. The first attempt at analyzing stability properties of SA with MPR

was made by Ghez et al. in [20, 21] in an infinite-user single-buffer model. They drew a conclusion that the

system could be stabilized under the symmetrical MPR model with a non-zero probability that all packets were

transmitted successfully. Afterwards, Sant and Sharma [22] studied a special case of the symmetrical MPR

model for finite-user with an infinite buffer. They derived sufficient conditions on arrival rate for stability of

the system under the stationary ergodic arrival process. Subsequently, the effect of MPR on stability and delay

was investigated in [23] and it was shown that stability region undergoes a phase transition and then reaches

the maximization. Besides, in [24] necessary and sufficient conditions are obtained for a Nash equilibrium

strategy for wireless networks with MPR based on noncooperation game theory. More recently, Jeon and

Ephremides [25] characterised the exact stability region of SA with stochastic energy harvesting and MPR for a

pair of bursty users. Although the work aforementioned analyzed the stability of system without MPR or/and

with MPR, they are mostly, if not all, focused on SA protocol, while our focus is FSA with both SPR and MPR.

Performance analysis of FSA. There exist several studies on the performance of FSA. Wieselthier and

Anthony [26] introduced an combinatorial technique to analyse performance of FSA-MPR for the case of finite

users. Schoute [27] investigated dynamic FSA and obtained the expected number of time-slots needed until the

backlog becomes zero. Recently, the optimal frame setting for dynamic FSA was proved mathematically in [28]

and [29]. However, these works did not address the stability of FSA, which is of fundamental importance.

In summary, only very limited work has been done on the stability of FSA despite its fundamental im-

portance both on the theoretical characterisation of FSA performance and its effective operation in practical

systems. In order to bridge this gap, we devote this chapter to investigating the stability properties of FSA

under both SPR and MPR models.

2.3 System Model

We introduce our system model which will be used throughout the rest of this chapter.



10 Chapter 2. Stability Analysis of Frame Slotted Aloha Protocol

2.3.1 Physical layer and random access model in FSA

We consider a system of infinite identical users operating on one frequency channel. In one slot, a node can

complete a packet transmission. We investigate two physical layer models of practical importance, the models

with single packet reception (SPR) and multipacket reception (MPR) capabilities:

• Under the SPR model, a packet suffers a collision if more than one packet is transmitted in the same

time-slot. SPR is a classical and baseline physical layer model.

• Under the MPR model, up to M (M > 1) concurrently transmitted packets can be received successfully

with non-zero probabilities as specified by a stochastic matrix Ξ defined as below:

Ξ ,



ξ̂10 ξ̂11

ξ̂20 ξ̂21 ξ̂22

0...
...

...
. . .

ξ̂x00 ξ̂x01 · · · · · · ξ̂x0x0

...
...

...
...

. . .

ξ̂M0 ξ̂M1 · · · · · · ξ̂MM

1 0
· · · · · · · · · 0



(2.1)

where ξ̂x0k0 (k0 ≤ x0 ≤ M) is the probability of having k0 successful packets among x0 transmitted

packets in a slot. Ξ is referred to as the reception matrix. The last two decades have witnessed an

increasing prevalence of MPR technologies such as CDMA and MIMO. Mathematically, the SPR model

can be regarded as a degenerated MPR model with M = 1 and

Ξ =


0 1

01 0
...

...

1 0

 .

The random access process operates as follows: FSA organises time-slots with each frame containing a

number of consecutive time-slots. Each user is allowed to randomly and independently choose a time-slot to

send his packet at most once per frame. More specifically, suppose the length of frame t is equal to Lt, then

in the beginning of frame t each user generates a random number R and selects the (R mod Lt)-th time-slot

in frame t to transmit his packet. Note that unsuccessful packets in the current frame are retransmitted in the

next frame with the constant persistence probability p while newly generated packets are transmitted in the

next frame following their arrivals with probability one.
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For notation convenience, we use FSA-SPR and FSA-MPR to denote the FSA system operating on the SPR

and MPR models, respectively.

2.3.2 Traffic model

Let random variable Nt denote the total number of new arrivals during frame t and denote by Atl the number of

new arrivals in time-slot l in frame t where l = 1, 2, · · · , Lt. Assume that (Atl) are independent and identically

Poisson distributed random variables with probability distribution:

P{Atl = u} = Λu(u ≥ 0) (2.2)

such that the expected number of arrivals per time-slot Λ = ∑∞
1 uΛu is finite.

Then as Nt = ∑Lt
l=1 Atl , the distribution of Nt, defined as {λt(n)}n≥0, also follows Poisson distribution with

the expectation Nt = LtΛ.

2.3.3 Packet success probability

The process of randomly and independently choosing a time-slot in a frame to transmit packets can be cast

into a class of problems that are known as occupancy problems, or bins and balls problem [16]. Specifically,

consider the setting where a number of balls are randomly and independently placed into a number of bins,

the classical occupance problem studies the maximum load of an individual bin.

In our context, time-slots and packets to be transmitted in a frame can be cast into bins and balls, respec-

tively. Denote by Yt the random variable for the number of packets to be transmitted in frame t. Given Yt = ĥ

in frame t and the frame length Lt, the number x0 of packets sent in one time-slot, referred as to occupancy

number, is binomially distributed with parameters ĥ and 1
Lt

:

Bĥ, 1
Lt
(x0) =

(
ĥ
x0

)
(

1
Lt
)x0(1− 1

Lt
)ĥ−x0 . (2.3)

Applying the distribution of equation (2.3) to all Lt slots in the frame, we can get the expected value b(x0) of

the number of time-slots with occupance number x0 in a frame as follows:

b(x0) = LtBĥ, 1
Lt
(x0) = Lt

(
ĥ
x0

)
(

1
Lt
)x0(1− 1

Lt
)ĥ−x0 . (2.4)

We further derive the probability that a packet is transmitted successfully under both SPR and MPR.

Packet success probability of FSA-SPR

In FSA-SPR, the number of successfully received packets equals that of time-slots with occupance number

x0 = 1. Following the result of [30], we can obtain the probability that under SPR there exist exactly k successful
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packets among ĥ transmitted packets in the frame, denoted by ξSPR
ĥk

, as follows:

ξSPR
ĥk =



(Lt
k )(

ĥ
k)k!G(Lt−k,ĥ−k)

Lĥ
t

, 0 < k < min(ĥ, Lt)

(
Lt
ĥ )ĥ!

Lĥ
t

, k = ĥ ≤ Lt

0, k > min(ĥ, Lt)

0, k = Lt < ĥ

(2.5)

where

G(V, w) = Vŵ +
ŵ

∑
t=1

(−1)t
t−1

∏
j=0

[(ŵ− j)(V − j)](V − t)ŵ−t 1
t!

with V , Lt − k and ŵ , ĥ− k.

Consequently, the expected number of successfully received packets in one frame in FSA-SPR, denoted as

rSPR
h , is

rSPR
ĥ =

min(ĥ,Lt)

∑
k=1

kξSPR
ĥk = b(1). (2.6)

Packet success probability of FSA-MPR

Let occupancy numbers xl and kl be the number of transmitted packets and successful packets in the lth

time-slot, respectively, where l = 1, 2, · · · , Lt. The probability that k packets are received successfully among ĥ

transmitted packets in the frame, denoted by ξMPR
ĥk

, can be expressed as

ξMPR
ĥk = ∑

∑l xl=ĥ
∑

∑l kl=k
∏ ξ̂xlkl (2.7)

We can further derive the expected number of successfully received packets in one frame as

rMPR
ĥ =

ĥ

∑
k=1

kξMPR
ĥk = Lt

ĥ

∑
x0=1

x0

∑
k0=1

Bĥ, 1
Lt
(x0)k0ξ̂x0k0 . (2.8)

In the subsequent analysis, to make the presentation concise without introducing ambiguity, we use ξ ĥk to

denote ξSPR
ĥk

in FSA-SPR and ξMPR
ĥk

in FSA-MPR. The notations used in the chapter are summarized in Table 2.1.

2.4 Main results

To streamline the presentation, we summarize the main results in this section and give the detailed proof and

analysis in the subsequent sections that follow.

Aiming at studying the stability of FSA, we decompose our global objective into the following three ques-

tions, all of which are of fundamental importance both on the theoretical characterisation of FSA performance
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Table 2.1: Main Notations
Symbols Descriptions
p persistence probability
M maximum MPR capacity
Λ expected arrival rate per slot
Nt expected arrival rate in frame t
λt(n) prob. of n new arrivals in frame t
Lt the length of frame t
Xt random variable: No. of backlogs in frame t
i the value of backlogs in frame t, i.e., Xt = i
Yt random variable: No. of transmitted packet in frame t
ĥ the value of packets sent in frame t, i.e., Yt = ĥ
Zt random variable: No. of retransmitted packet in frame t
h the value of retransmitted packets in frame t, i.e., Zt = h
α the ratio of ĥ to Lt

ξ̂x0k0 prob. of having k0 out of x0 successful packets in a slot
ξ ĥk prob. of having k out of ĥ successful packets in frame t
Pis one-step transition probability
Di drift in frame t

and its effective operation in practical systems:

• Q1: Under what condition(s) is FSA stable?

• Q2: When is the stability region maximised?

• Q3: How does FSA behave in the instability region?

Before answering the questions, we first introduce the formal definition of stability employed by Ghez et al.

in [20].

Define by random variable Xt the number of backlogged packets in the system at the start of frame t. The

discrete-time process (Xt)t≥0 can be seen as a homogeneous Markov chain.

Definition 2.1. An FSA system is stable if (Xt)t≥0 is ergodic and unstable otherwise.

By Definition 2.1, we can transform the study of stability of FSA into investigating the ergodicity of the

backlog Markov chain. The rationality of this transformation is two-fold. One interpretation is the property of

ergodicity that there exists a unique stationary distribution of a Markov chain if it is ergodic. The other can

be interpreted from the nature of ergodicity that each state of the Markov chain can recur in finite time with

probability 1.

From an engineering perspective, if FSA is stable, then the number of backlogs in the system will reduce

overall; otherwise, it will increase as the system operates.

We then establish the following results characterizing the stability region and demonstrating the behavior

of the Markov chain in nonergodicity regions under both SPR and MPR.
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2.4.1 Results for FSA-SPR

Denote by i and ĥ the value of the number of backlogs and sent packets in frame t and α , ĥ
Lt

. Recall the

definitions of Xt and Yt, we can suppose that Xt = i and Yt = ĥ.

Theorem 2.1. Under FSA-SPR, consider an irreducible and aperiodic backlog Markov chain (Xt)t≥0 with nonnegative

integers. When i→∞, we have 1

1. The system is always stable if Λ < αe−α and Lt = Θ(ĥ). Specially, α = 1 maximizes the stability region2 and also

the stable throughput.

2. The system is unstable under each of the following three conditions: (1) Lt = o(ĥ); (2) Lt = O(ĥ); (3) Lt = Θ(ĥ)

and Λ > αe−α.

Remark. Theorem 2.1 answers the first two questions and can be interpreted as follows:

• When Lt = o(ĥ), i.e., the number of sent packets ĥ is far larger than the frame length Lt, a packet experiences

collision with high probability (w.h.p.), thus increasing the backlog size and destabilising the system;

• When Lt = O(ĥ), i.e., the number of sent packets ĥ is far smaller than the frame length, a packet is transmitted

successfully w.h.p.. However, the expected number of successful packets is still significantly less than that of new

arrivals in the frame. The system is thus unstable.

• When Lt = Θ(ĥ), i.e., ĥ has the same order of magnitude with the frame length, the system is stable when the

backlog can be reduced gradually, i.e., when the expected arrival rate is less than the transmission success rate.

It is well known that an irreducible aperiodic Markov chain falls into one of three mutually exclusive classes:

positive recurrent, null recurrent and transient. So, our next step after deriving the stability conditions is to

show whether the backlog Markov chain in the instability region is transient or recurrent, which answers the

third question.

Theorem 2.2. With the same notations as in Theorem 2.1, (Xt)t≥0 is always transient in the instability region, i.e., under

each of the following three conditions: (1) Lt = o(ĥ); (2) Lt = Θ(ĥ) and Λ > αe−α; (3) Lt = O(ĥ).

Remark. If a state of a Markov chain is transient, then the probability of returning to itself for the first time in a finite

time is less than 1. Hence, Theorem 2.2 implies that once out of the stability region, the system is not guaranteed to return

to stable state in finite time, that is, the number of backlogs will increase persistently.

1For two variables X, Y, we use the following asymptotic notations:
• X=o(Y)∗ if 0 ≤ X

Y≤θ0, as Y→∞, where constant θ0≥0;
• X=o(Y) if X

Y = 0, as Y → ∞;
• X=O(Y) if X

Y = ∞, as Y → ∞;
• X=Θ(Y) if θ1≤X

Y≤θ2, as Y→∞, where constants θ2 ≥ θ1 > 0.

2The ergodicity region of a Markov chain in this chapter is referred to as stability region.
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2.4.2 Results for FSA-MPR

Theorem 2.3. Under FSA-MPR, using the same notations as in Theorem 2.1, we have

1. The system is always stable if Lt = Θ(ĥ) and Λ < ∑M
x0=1 e−α αx0

x0! ∑x0
k0=1 k0ξ̂x0k0 . Specially, let α∗ denote the value of

α that maximises the upper bound of stability region, it holds that α∗ = Θ(M).

2. The system is unstable under each of the following conditions: (1) Lt = o(ĥ1−ε1) where 0 < ε1 ≤ 1; (2) Lt = O(ĥ);

(3) Λ > α and Lt = Θ(ĥ).

Remark. Comparing the results of Theorem 2.3 to Theorem 2.1, we can quantify the performance gap between FSA-SPR

and FSA-MPR in terms of stability. For example, when α = 1, the stability region is maximised in FSA-SPR with

Λ < e−1, while the upper bound of the stability region in FSA-MPR is e−1 ∑M
x0=1

1
(x0−1)! . Note that for M > 2, it holds

that

1 + 1 +
1
2
<

M

∑
x0=1

1
(x0 − 1)!

< 1 + 1 +
M

∑
x0=1

1
x0(x0 + 1)

< 2 +

(
M

∑
x0=1

1
x0
− 1

x0 + 1

)
= 3− 1

M + 1
.

The upper bound of the stability region of FSA-MPR when α = 1 is thus between 2.5 and 3 times the maximum stability

region of FSA-SPR. And hence the maximum upper bound of the stability region of FSA-MPR achieved when α∗ = Θ(M)

is far larger than that of FSA-SPR.

Theorem 2.4. With the same notations as in Theorem 2.3, (Xt)t≥0 is transient under each of the following three conditions:

(1) Lt = o(ĥ1−ε1); (2) Lt = O(ĥ); (3) Λ > α and Lt = Θ(ĥ).

Remark. Theorem 2.4 demonstrates that despite the gain on the stability region size of FSA-MPR over FSA-SPR, their

behaviors in the unstable region are essentially the same.

2.5 Stability Analysis of FSA-SPR

In this section, we will analyse the stability of FSA-SPR and prove Theorem 2.1 and 2.2.

2.5.1 Characterising backlog Markov chain

As mentioned in Sec. 2.4, we characterize the number of the backlogged packets in the system at the beginning

of frame t as a homogeneous Markov chain (Xt)t≥0. We assume that Xt = i and Yt = ĥ. Denote by Zt the

random variable for the number of retransmitted packets in frame t. Since the transmitted packets in frame t

consists of the new arrivals during frame t− 1 and the retransmitted packets in frame t, we have

Yt = Zt + Nt−1. (2.9)



16 Chapter 2. Stability Analysis of Frame Slotted Aloha Protocol

Suppose w new packets arrive in frame t− 1 and h out of i− w backlogs are retransmitted in frame t of which

the probability is as follows:

Bi−w(h) ,
(

i− w
h

)
ph(1− p)i−w−h.

As a consequence, the number of packets transmitted in frame t is ĥ = w + h.

We now calculate the one-step transition probability as a function of ξ ĥk, retransmission probability p and

{λt(n)}n≥0. Denote by Pis = P{Xt+1 = s|Xt = i} the one-step transition probability, we can derive the following

results:

1) For i = 0:

P00 = λt(0),

P0s = λt(s), s ≥ 1,

2) for i ≥ 1:

Pi,i−s =
i

∑
w=0

λt−1(w)
i−w

∑
h={s−w}+

Bi−w(h)
min(L,ĥ)−s

∑
n=0

λt(n)ξ ĥ,n+s, 1 ≤ s ≤ i,

Pi,i = λt(0)
(

λt−1(0)Bi(0) +
i

∑
w=0

λt−1(w)
i−w

∑
h=0

Bi−w(h)ξ ĥ,0

)
+

i

∑
w=0

λt−1(w)
i−w

∑
h=0

Bi−w(h)
min(ĥ,L)

∑
n=1

λt(n)ξ ĥn,

Pi,i+s =
i

∑
w=0

λt−1(w)
i−w

∑
h=0

Bi−w(h)
min(ĥ,L)

∑
n=0

λt(n + s)ξ ĥn, s ≥ 1,

(2.10)

where {s− w}+ = max{s− w, 0}.

The rationale for the calculation of the transition probability is explained as follows:

• When i = 0, i.e., there are no backlogs in the frame, the backlog size remains zero if no new packets arrive

and increases by s if s new packets arrive in the frame.

• When i > 0, we have three possibilities, corresponding to the cases where the backlog size decreases,

remains unchanged and increases, respectively:

– The state 1≤s≤min(ĥ, Lt) corresponds to the case where the backlog size decreases by s when n ≤

min(ĥ, Lt)−s new packets arrive but n + s backlogged packets are received successfully.

– The backlog size remains unchanged if either of two following events happens: (a) no new packets

are generated and either no backlogged packets are transmitted or all the transmitted backlogged

packets fail; (b) n ≤ min(ĥ, Lt) new packets arrive but n backlogged packets are successfully received.

– The backlog size increases when the number of successful packets is less than that of new arrivals.

In order to establish the ergodicity of the backlog Markov chain (Xt)t≥0, it is necessary to ensure (Xt)t≥0 is

irreducible and aperiodic. To this end, we conclude this subsection by providing the sufficient conditions on



17 Chapter 2. Stability Analysis of Frame Slotted Aloha Protocol

{λt(n)} for the irreducibility and the aperiodicity of (Xt)t≥0 as

0 < λt(n) < 1, ∀ n ≥ 0. (2.11)

We would like to point out that most of traffic models can satisfy (2.11). Throughout the chapter, it is

assumed that (2.11) holds and hence (Xt)t≥0 is irreducible and aperiodic.

2.5.2 Stability analysis

Recalling Definition 2.1, to study the stability of FSA, we need to analyse the ergodicity of the backlog Markov

chain (Xt)t≥0. We first define the drift and then introduce two auxiliary lemmas which will be useful in the

ergodicity demonstration.

Definition 2.2. The drift Di of the backlog Markov chain (Xt)t≥0 at state Xt = i where i ≥ 0 is defined as

Di = E[Xt+1 − Xt|Xt = i]. (2.12)

Lemma 2.1 ([31]). Given an irreducible and aperiodic Markov chain (Xt)i≥0 having nonnegative integers as state space

with the transition probability matrix P = {Pis}, (Xt)t≥0 is ergodic if for some integer Q ≥ 0 and constant ε0 > 0, it

holds that

1. |Di| < ∞, for i ≤ Q,

2. Di < −ε0, for i > Q.

Lemma 2.2 ([32]). Under the assumptions of Lemma 2.1, (Xt)t≥0 is not ergodic, if there exist some integer Q ≥ 0 and

some constants B ≥ 0, c ∈ [0, 1] such that

1. Di > 0 for all i ≥ Q,

2. φi −∑s Pisφ
i ≥ −B(1− φ) for all i ≥ Q, φ ∈ [c, 1].

Armed with Lemma 2.1 and Lemma 2.2, we start to prove Theorem 2.1.

Proof of Theorem 2.1. In the proof, we first explicitly formulate the drift defined by (2.12) and then study the

ergodicity of Markov chain based on drift analysis.

Denote by random variable Ct the number of successful transmissions in frame t, we have

Xt+1 − Xt = Nt − Ct.

Recall (2.12), it then follows that

Di = E[Nt − Ct|Xt = i] = Nt − E[Ct|Xt]. (2.13)
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Since all new arrivals and unsuccessful packets in frame t− 1 are transmitted in frame t with probability

one and p, respectively, we have

P{Ct = k|Xt = i, Nt−1 = w, Zt = h} = ξSPR
ĥk ,

for 0 ≤ k ≤ min(ĥ, L). Recall (2.6), we have

E[Ct|Xt = i] =
i−w

∑
h=0

Bi−w(h)E[Ct = k|Xt = i, Nt−1 = w]

=
i

∑
w=0

λt−1(w)
i−w

∑
h=0

Bi−w(h)rSPR
ĥ . (2.14)

Following (2.13) and (2.14), we obtain the value of the drift as follows:

Di = Nt −
i

∑
w=0

λt−1(w)
i−w

∑
h=0

Bi−w(h)rSPR
ĥ . (2.15)

After formulating the drift, we then proceed by two steps.

Step 1: Lt = Θ(ĥ) and Λ < αe−α.

In this step, we intend to corroborate that the conditions in Lemma 2.1 can be satisfied if Lt = Θ(ĥ) and

Λ < αe−α. We first show that |Di| is finite. This is true for i ≤ Q since

|Di| < max{Nt,
i

∑
w=0

λt−1(w)
i−w

∑
h=0

Bi−w(h)rSPR
ĥ }

< max{Nt, min{Lt,
i

∑
w=0

λt−1(w)
i−w

∑
h=0

(w + h)Bi−w(h)}}

< max{Nt, min{Lt,
i

∑
w=0

wλt−1(w) +
i

∑
w=0

(i− w)pλt−1(w)}}

< max{Nt, min{Lt, (1− p)λ + ip}}. (2.16)

Next, to derive the limit of Di, we start with the following lemma which is proved in Appendix 2.10.1.

Lemma 2.3. If rSPR
ĥ

has a limit r̂, then it holds that

lim
i→∞

i

∑
w=0

λt−1(w)
i−w

∑
h=0

Bi−w(h)rSPR
ĥ = r̂.
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Following Lemma 2.3, we have

lim
i→∞

Di = Nt − lim
ĥ→∞

rSPR
ĥ

= lim
ĥ→∞

Lt

{
Λ−

(
ĥ
1

)
1
Lt
·
(

1− 1
Lt

)ĥ−1
}

= Lt(Λ− αe−α), (2.17)

where α , ĥ
Lt

. It thus holds that limi→∞ Di < −ε0 with ε0 = αe−α−Λ
2 since both α and Λ are constants when

Lt = Θ(ĥ) and Λ < αe−α.

It then follows from Lemma 2.1 that (Xt)t≥0 is ergodic. Specially, when α = 1, the system stability region is

maximized, i.e., Λ < e−1.

Step 2: Lt=o(ĥ) or Lt=O(ĥ) or Lt=Θ(ĥ) and Λ>αe−α.

In this step, we prove the instability of (Xt)t≥0 by applying Lemma 2.2. Taking into consideration the impact

of different relation between Lt and ĥ on the limit of Di. With (2.17), the following results hold for ĥ→ ∞:

• Λ− limα→∞ αe−α = Λ > 0, when Lt = o(ĥ),

• Λ− limα→0 αe−α = Λ > 0, when Lt = O(ĥ),

• Λ− αe−α > 0, when Lt = Θ(ĥ) and Λ > αe−α.

Consequently, we have lim
i→∞

Di > 0, which proves the first condition in Lemma 2.2.

Next, we will validate the second condition of Lemma 2.2 in two cases according to the probable relationship

between ĥ and i, i.e., ĥ = o(i) and ĥ = Θ(i).

Note that the second condition apparently holds for φ=0 and φ=1, we thus focus on the remaining value

of φ, i.e., φ ∈ (c, 1). Moreover, given ĥ, Pi,i−s in (2.10) can also be expressed as

Pi,i−s =
ĥ

∑
w=0

λt−1(w)Bi−w(ĥ− w)
ĥ−s

∑
n=0

λt(n)ξ ĥ,n+s. (2.18)

Now, we start the proof with the above arms.

Case 1: ĥ = o(i).

Given ĥ = o(i), we can derive the result as follows:

∞

∑
s=0

φsPis =
i−ĥ−1

∑
s=0

φsPis +
i

∑
s=i−ĥ

φsPis +
∞

∑
s=i+1

φsPis

≤ φi+1 +
i

∑
s=i−ĥ

φs
ĥ

∑
w=0

λt−1(w)Bi−w(ĥ− w) ·
ĥ+s−i

∑
n=0

λt(n)ξ ĥ,n+i−s

≤ φi+1 +
i

∑
s=i−ĥ

φs
ĥ

∑
w=0

Bi−w(ĥ− w)

≤ φi+1 + ĥe−
ip
2 (1−

ĥ
ip )

2
φi−ĥ ≤ φi, as i→ ∞, (2.19)
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where we use the Chernoff’s inequality to bound the cumulative probability of Bi−w(ĥ − w). Therefore, the

second condition of Lemma 2.2 holds when ĥ = o(i).

Case 2: ĥ = Θ(i).

In this case, we need to distinguish the three instability regions. Without loss of generality, we assume that

ĥ = βi where constant β ∈ (0, 1].

(1) Lt = o(ĥ).

When Lt = o(ĥ), it also holds that Lt = o(i) and that at most Lt − 1 packets are successfully received, we

thus have

∞

∑
s=0

φsPis =
i−Lt−1

∑
s=0

φsPis +
i

∑
s=i−Lt

φsPis +
∞

∑
s=i+1

φsPis

≤ φi+1 + Ltφ
i−Lt ≤ φi + B(1− φ), as i→ ∞, (2.20)

for any positive constant B.

(2) Lt = Θ(ĥ).

The key steps we need in this case are to obtain upper bounds of ξSPR
ĥk

and the arrival rate in a new way. To

this end, we first recomputed ξSPR
ĥk

when Lt = Θ(ĥ) as follows:



ξSPR
ĥk =

(L
k)k!(Lt−k)ĥ−k

Lĥ
t

− ( Lt
k+1)(k+1)!(Lt−k−1)ĥ−k−1

Lĥ
t

≤ (Lt
k )k!
Lk

t

(
(1− k

Lt
)ĥ−k − (1− k+1

Lt
)ĥ−k)

≤ (Lt
k )k!
Lk

t
≤ (1− k/2

Lt
)k/2, k < min(ĥ, Lt),

ξSPR
ĥĥ =

(
Lt
ĥ )ĥ!

Lĥ
t
≤ (1− ĥ/2

Lt
)ĥ/2 ≤ (1− α/2)ĥ/2, k = ĥ ≤ Lt.

(2.21)

The rationale behind the above inequalities is as follows: Given ĥ transmitted packets, the probability of

exactly k successful packets equals the absolute value of the difference between the probability of at least k

successful packets and that of at least k + 1 successful packets.

Next, we introduce an auxiliary lemma to bound the probability distribution of the arrival rate. When

the number of new arrivals per slot Atl is Poisson distributed with the mean Λ, the number of new arrivals

per frame Nt (Atl and Nt is formally defined in Sec. 2.3.) is also a Poisson random variable with the mean

Nt = LtΛ > ĥe−α.

Lemma 2.4 ([33]). Given a Poisson distributed variable X with the mean µ, it holds that

Pr[X ≤ x] ≤ e−µ(eµ)x

xx , ∀ x < µ, (2.22)

Pr[X ≥ x] ≤ e−µ(eµ)x

xx , ∀ x > µ. (2.23)
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In the case that Lt = Θ(i), it holds that Nt = LtΛ > L
2
3
t , for the constant Λ and a large i. Consequently,

applying (2.22) in Lemma 2.4, we have

P{Nt ≤ L2/3
t } ≤

e−λ(eλ)L2/3
t

(L2/3
t )L2/3

t
≤ e

−L2/3
t ( LΛ

L2/3
t
−1)
(

LtΛ
L2/3

t

)L2/3
t

≤
(

e
LtΛ

L2/3
t
−1 L2/3

LtΛ

)−L2/3
t

≤ 1

aL2/3
t

1

, (2.24)

where a1 , eΛL1/3
t −1

ΛL1/3
t
� 1, following the fact that ex > 1 + x, for ∀ x > 0.

Armed with (2.21) and (2.24) and noticing the fact that at most ĥ packets are successfully received, we start

developing the proof and obtain the results as follows:

∞

∑
s=0

φsPis =
i−ĥ−1

∑
s=0

φsPis +
i

∑
s=i−ĥ

φsPis +
∞

∑
s=i+1

φsPis

≤ φi+1 +
i

∑
s=i−ĥ

ĥ

∑
w=0

λt−1(w)Bi−w(ĥ− w) ·
ĥ+s−i

∑
n=0

λt(n)(1−
n + i− s

2Lt
)(n+i−s)/2

≤ φi+1 +
i

∑
s=i−ĥ

φs
ĥ

∑
n=0

λt(n)(1−
n

2Lt
)

n
2

≤ φi+1 +
i

∑
s=i−ĥ

φs
( L2/3

t

∑
n=0

λt(n) +
ĥ

∑
n=L2/3

t

λt(n)(1−
n

2Lt
)

n
2

)

≤ φi+1 +
i

∑
s=i−ĥ

φs
( 1

aL2/3
t

1

+ (1− 1
2L1/3

t

)
L2/3

2

)
≤ (ĥ + 1)

( 1

aL2/3
t

1

+ e−
L1/3

t
4
)
φi−ĥ + φi+1

≤ φi + B(1− φ), as i→ ∞, (2.25)

for any positive constant B, where the last inequality holds for (ĥ + 1)
( 1

a
L2/3

t
1

+ e−
L1/3

t
4
)
∼ Θ(ie−i1/3

)→ 0 as i→ ∞,

while B(1− φ) is positive constant.

Consequently, the second condition in Lemma 2.2 holds for Case 2. Next, we proceed with the proof for the

third case.

(3) Lt = O(ĥ).

When Lt = O(ĥ), it also holds that Lt = O(i) such that the expected number of new arrivals per frame

Nt = LtΛ� i. Since Nt is Poisson distributed as mentioned in Case 2 above, recall (2.24), it also holds that

P{Nt ≤ i} ≤ 1
ai

2
, (2.26)

where a2 , i
LtΛ
· e

LtΛ
i −1 ≥ LtΛ

i , following the fact that ex > 1 + x + x2

2 + x3

6 , for ∀ x > 0.
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Using (2.26) then yields

∞

∑
s=0

φsPis =
i

∑
s=0

φsPis +
∞

∑
s=i+1

φsPis ≤
i

∑
s=0

φs
s

∑
n=0

λt(n) + φi+1

≤
i

∑
s=0

s

∑
n=0

λt(n) + φi+1 ≤ i + 1
(φ LtΛ

i )i
φi + φi+1 ≤ φi, as i→ ∞, (2.27)

since φ is constant while LtΛ
i → ∞ as i→ ∞.

Combining the analysis above, it follows Lemma 2.2 that the backlog Markov chain (Xt)t≥0 is unstable when

Lt = o(ĥ) or Lt = O(ĥ) or Lt = Θ(ĥ) and Λ > αe−α. And the proof of Algorithm 2.1 is thus completed.

2.5.3 System behavior in instability region

It follows from Theorem 2.1 that the system is unstable in the following three conditions: Lt = o(ĥ); Lt = O(ĥ);

and Lt = Θ(ĥ) but Λ > αe−α. Lemma 2.2, however, is not sufficient to ensure the transience of a Markov chain,

we thus in this section further investigate the system behavior in the instability region, i.e., when (Xt)t≥0 is

nonergodic. The key results are given in Theorem 2.2.

Before proving Theorem 2.2, we first introduce the following lemma [34] on the conditions for the transience

of a Markov chain.

Lemma 2.5 ([34]). Let (Xt)t≥0 be an irreducible and aperiodic Markov chain with the nonnegative integers as its state

space and one-step transition probability matrix P = {Pis}. (Xt)t≥0 is transient if and only if there exists a sequence

{yi}i≥0 such that

1. yi (i ≥ 0) is bounded,

2. for some i ≥ N, yi < y0, y1, · · · , yN−1,

3. for some integer N > 0, ∑∞
s=0 ysPis ≤ yi, ∀ i ≥ N.

Armed with Lemma 2.5, we now prove Theorem 2.2.

Proof of Theorem 2.2. The key to prove Theorem 2.2 is to show the existence of a sequence satisfying the proper-

ties listed in Lemma 2.5, so we first construct the following sequence (2.28) and then prove that it satisfies the

required conditions.

yi =
1

(i + 1)θ
, θ ∈ (0, 1). (2.28)

It can be easily checked that {yi} satisfies the first two properties in Lemma 2.5.

Noticing that the sequence {φi} in Lemma 2.2 satisfies the first two properties in Lemma 2.5 for 0 < φ < 1,

and recall (2.19) and (2.27), we can conclude that (Xt)t≥0 is transient if ĥ = o(i) or Lt = O(i). Therefore, we

next proceed with ĥ = Θ(i) by distinguish two cases.

Case 1: Lt = o(ĥ).
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When ĥ = Θ(i), it also holds that Lt = o(i). To streamline the complicated analysis in this case, we

partition the region Lt=o(i) into two parts, i.e., 1) Lt=o((ln i)4)∗, and 2) Lt=o(i) except part 1), i.e., the region

[O((ln i)4), o(i)].

• Part 1): Lt=o((ln i)4)∗.

The result in this part is shown in the following lemma for the third property in Lemma 2.5. The proof is

detailed in Appendix 2.10.2.

Lemma 2.6. If Lt=o((ln i)4)∗, then (Xt)t≥0 is always transient.

• Part 2): Lt=o(i) except part 1).

In this case, since a1 > ln i and yi − yi+1 = 1
(i+1)θ (1− (1− 1

i+2 )
θ) ≥ θ

(i+1)θ(i+2) where we use the fact that

(1− 1
i+2 )

θ ≤ 1− θ
i+2 following Taylor’s theorem, using (2.24) and (2.28) yields

∞

∑
s=0

ysPis =
i−Lt

∑
s=0

ysPis +
i

∑
s=i−Lt+1

ysPis +
∞

∑
s=i+1

ysPis

≤yi+1 +
i

∑
s=i−Lt+1

ys

s

∑
n=0

λt(n)(1−
n

2Lt
)

n
2

≤
i

∑
s=i−Lt+1

ys

( L
2
3
t

∑
n=0

λn +
s

∑
n=L

2
3
t +1

λt(n)(1−
n

2Lt
)

n
2

)
+ yi+1

≤
i

∑
s=i−Lt+1

ys

( 1

aL2/3
t

1

+ (1− 1
2L1/3

t

)
L2/3

t
2

)
+ yi+1

≤ L
(i− Lt + 2)θ

( 1

aL2/3
t

1

+ e−
L1/3

t
4

)
+

1
(i + 2)θ

≤ Lt

(i− Lt + 2)θ

(
(ln i)−(ln i)8/3

+ i−
(ln i)1/3

4

)
+

1
(i + 2)θ

≤i−4 +
1

(i + 2)θ
≤ 1

(i + 1)θ
, as i→ ∞. (2.29)

Case 2: Lt = Θ(ĥ).

In this case, the method to prove is similar with that used in (2.25). Recall (2.25) , we have

∞

∑
s=0

ysPis =
i−ĥ−1

∑
s=0

ysPis +
i

∑
s=i−ĥ

ysPis +
∞

∑
s=i+1

yssPis

≤ yi+1 +
i

∑
s=i−ĥ

ys

( 1
aL2/3

1

+ (1− 1
2L1/3 )

L2/3
2

)
≤ ĥ + 1

(i− ĥ + 1)θ

( 1
aL2/3

1

+ e−
L1/3

4
)
+

1
(i + 2)θ

≤ 1
(i + 1)θ

, as i→ ∞. (2.30)

Consequently, it follows Lemma 2.5 that the backlog Markov chain (Xt)t≥0 is transient in the instability

region, which completes the proof of Theorem 2.2.
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2.6 Stability Analysis of FSA-MPR

In this section, we study stability properties of FSA-MPR. Following a similar procedure as the analysis of

FSA-SPR, we first establish conditions for the stability of FSA-MPR and further analyse the system behavior in

the instability region.

2.6.1 Stability analysis

We employ Lemma 2.1 and Lemma 2.2 as mathematical base to study the stability properties of FSA-MPR,

more specifically, in the proof of Theorem 2.3.

Proof of Theorem 2.3. We develop our proof in 3 steps.

Step 1: stability conditions.

In step 1, we prove the conditions for the stability of (Xt)t≥0, i.e., Λ< ∑M
x0=1 e−α αx0

x0! ∑x0
k0=1 k0ξ̂x0k0 and Lt =

Θ(ĥ).

Similar to (2.15), the drift at state i of (Xt)t≥0 in FSA-MPR can be written as:

Di = Nt −
i

∑
w=0

λt−1(w)
i−w

∑
h=0

Bi−w(h)rMPR
ĥ . (2.31)

According to (2.16), Di is finite as shown in the following inequality:

|Di| < max{Nt, (1− p)Nt + ip},

which demonstrates the first conditions in Lemma 2.1 for the ergodicity of (Xt)t≥0.

Recall (2.8) and Lemma 2.3, we have

lim
i→∞

Di = lim
i→∞

Nt −
i

∑
w=0

λt−1(w)
i−w

∑
h=0

Bi−w(h)rMPR
ĥ

= lim
ĥ→∞

Lt

(
Λ−

ĥ

∑
x0=1

Bĥ, 1
L
(x0)

x0

∑
k0=1

k0ξ̂x0k0

)

= Lt

(
Λ−

M

∑
x0=1

e−α αx0

x0!

x0

∑
k0=1

k0ξ̂x0k0

)
. (2.32)

Therefore, it holds that limi→∞ Di < −ε0 if Lt = Θ(ĥ) and Λ < ∑M
x0=1 e−α αx0

x0! ∑x0
k0=1 k0ξ̂x0k0 , R̂1. It then

follows from Lemma 2.1 that (Xt)t≥0 is ergodic with ε0 = R̂1−Λ
2 .

Step 2: α∗ = Θ(M).

In Step 2, we show that α∗ = Θ(M). Since the proof consists mainly of algebraic operations of function

optimization, we state the following lemma proving Step 2 and detail its proof in Appendix 2.10.3.

Lemma 2.7. Let α∗ denote the value of α that maximises the upper bound of the stability region, it holds that α∗ = Θ(M).



25 Chapter 2. Stability Analysis of Frame Slotted Aloha Protocol

Step 3: instability region.

In Step 3, we prove the instability region of (Xi)i≥0 by applying Lemma 2.2.

When Lt = o(ĥ), recall (2.32), we have

ĥ

∑
x0=1

Bĥ, 1
L
(x0)

x0

∑
k0=1

k0ξ̂x0k0 =
M

∑
x0=1

Bĥ, 1
L
(x0)

x0

∑
k0=1

k0ξ̂x0k0 ≤
M

∑
x0=1

x0Bĥ, 1
L
(x0)→ 0, as ĥ→ ∞,

since limĥ→∞ Bĥ, 1
L
(x0) = 0 for a finite M.

Moreover, for Lt = O(ĥ), it can be derived from (2.32) that ∑M
x0=1 e−α αx0

x0! ∑x0
k0=1 k0ξ̂x0k0 →0 since α → 0 as

ĥ→ ∞.

Furthermore, according to the analysis in the first step, we know that limi→∞ Di > 0, if the conditions in the

first step are not satisfied.

Additionally, in the analysis of FSA-SPR system, we have proven that if ĥ = o(i) or Lt=o(ĥ) or Lt=O(ĥ), the

Markov chain (Xt)t≥0 is always unstable, independent of ξ ĥk. Noticing that ξ ĥk is the only difference between

FSA-SPR and FSA-MPR, it thus also holds that (Xt)t≥0 is unstable under FSA-MPR in the three cases.

We next study the instability of FSA-MPR when Lt = Θ(ĥ) and Λ > α. In this case, it holds that Nt =

LtΛ > ĥ such that

P{Nt ≤ ĥ} ≤ 1

aĥ
3

, (2.33)

where a3 , α
Λ e

Λ
α −1 > 1.

Note that the one-step transition probability Pis in FSA-MPR can be obtained by replacing min(ĥ, Lt) with ĥ

in (2.10).

Hence, recall (2.25), we have

∞

∑
s=0

φsPis =
i

∑
s=0

φsPis +
∞

∑
s=i

φsPis ≤
i

∑
s=0

φs
ĥ

∑
n=0

λt(n)ξ ĥ,n+i−s + φi+1

≤ 1

aβi
3

+ φi+1 ≤ φi + B(1− φ), as i→ ∞, (2.34)

which proves the instability of FSA-MPR following Lemma 2.2 and also completes the proof of Theorem 2.3.

2.6.2 System behavior in instability region

It follows from Theorem 2.3 that the system is unstable under the following three conditions: Lt = o(ĥ);

Lt = O(ĥ); Lt = Θ(ĥ) and Λ > α. In this subsection, we further investigate the system behavior in the

instability region, i.e., when (Xt)t≥0 is nonergodic. The key results are given in Theorem 2.4, whose proof is

detailed as follows.

Proof of Theorem 2.4. In the proof of Theorem 2.2, we have proven that when Lt=O(ĥ) or ĥ=o(i), the Markov

chain (Xt)t≥0 is always transient, we thus develop the proof for ĥ=Θ(i) by distinguishing two cases.
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Case 1: Lt = o(ĥ1−ε1)∗ with ε1 ∈ (0, 1].

In this case, it holds that Lt = o(i1−ε1)∗ for ĥ=Θ(i). As counterparts in FSA-SPR, we also partition the

region into two parts, i.e., 1) Lt=o((ln i)4)∗, and 2) Lt=o(i) except part 1), i.e., the region [O((ln i)4), o(i)].

Recall the proof of Lemma 2.6, it has been shown that (Xt)t≥0 is always transient, independent of ξ ĥk,

meaning (Xt)t≥0 is also transient in FSA-MPR when Lt=o((ln i)4)∗.

As a consequence, it is sufficient to show the transience of (Xt)t≥0 in part 2). The key step here is to obtain

the upper bound of ξ ĥk. To this end, we first introduce the following auxiliary lemma.

Lemma 2.8 ([35]). Given ĥ packets, each packet is sent in a slot picked randomly among Lt time-slots in frame t. If

ρj = Lt
e−ĥ/Lt

j! ( ĥ
Lt
)j remains bounded for ĥ, Lt → ∞, then the probability P(mj) of finding exactly mj time-slots with j

packets can be approximated by the following Poisson distribution with the parameter ρj,

P(mj) = e−ρj
ρj

mj

mj!
. (2.35)

We next show that Lemma 2.8 is applicable to FSA-MPR when Lt = o(ĥ1−ε1)∗ for a large enough ĥ. To that

end, we verify the boundedness of ρj, which is derived as

0 ≤ ρj ≤
ĥj

j!Lj−1
t eĥε

≤ ĥj

j!Lj−1
t

·
(d 1

εej)!
(ĥε)d

1
ε ej
≤

(d 1
εej)!

j!Lj−1
t

, (2.36)

meaning that ρj is bounded if j is finite.

Apparently, when Lt = o(ĥ1−ε1)∗, the probability of finding exactly mj time-slots with j packets in FSA-

MPR can be approximated by the Poisson distribution with the parameter ρj, following from Lemma 2.8 with

j = 1, 2, · · · , M.

Consequently, we can derive the probability ξMPR
1→M

that there are no slots with 1 ≤ j ≤ M packets as follows:

ξMPR
1→M = e−(ρ1+ρ2+···+ρ

M
). (2.37)

Furthermore, since the event that all ĥ packets fail to be received has two probabilities, i.e., 1) there are no

slots with 1 ≤ j ≤ M packets in the whole frame, and 2) there exists slots with 1 ≤ j ≤ M packets, but all of

these packets are unsuccessful. As a result, it holds that ξMPR
ĥ0
≥ ξMPR

1→M
.

We thus can get the following inequalities:

ξMPR
ĥk ≤ 1− ξMPR

ĥ0 ≤ 1− e−(ρ1+ρ2+···+ρM ) ≤ 1− e−Mρ
M , k ≥ 1, (2.38)

where we use the fact that the probability of exact k ≥ 1 successfully received packets among ĥ packets is less

than that of at least one packet received successfully in the first inequality. And the third inequality above
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follows from the monotonicity of ρj when L = o(ĥ1−ε1)∗, i.e.,

ρ
M
> ρ

M−1
> · · · > ρ2 > ρ1.

In addition, we can also derive the following results:

0 ≤ lim
ĥ→∞

ĥ4(1− e−MρM) ≤ lim
ĥ→∞

eMρM − 1
(1/ĥ4)

≤ lim
ĥ→∞

ε1ĥMε1+5

4M!eĥε1
≤ lim

ĥ→∞

∏
M−1+d 5

ε1
e

x=0 (M + 5
ε1
− x)

4M!eĥε1
≤ 0,

which means 1− e−MρM ≤ 1
ĥ4 . Using this inequality and recall (2.39), we have

∞

∑
s=0

ysPis =
i−L

∑
s=0

ysPis +
i

∑
s=i−L+1

ysPis +
∞

∑
s=i+1

ysPis

≤ yi+1 +
i

∑
s=i−L+1

ys

s

∑
n=0

λt(n)ξ ĥ,n+i−s

≤
i

∑
s=i−L+1

ys

( L
2
3

∑
n=0

λn +
s

∑
n=L

2
3 +1

λt(n)ξ ĥ,n+i−s

)
+ yi+1

≤
i

∑
s=i−L+1

ys

( 1
aL2/3

1

+
1
ĥ4

)
+ yi+1

≤ L
(i− L + 2)θ

( 1
aL2/3

1

+
1
ĥ4

)
+

1
(i + 2)θ

≤ 2(βi)−3 +
1

(i + 2)θ
≤ 1

(i + 1)θ
, as i→ ∞. (2.39)

Thus, according to Lemma 2.6, the backlog Markov chain (Xt)t≥0 is transient when Lt = o(ĥ1−ε1)∗.

Case 2: Lt = Θ(ĥ) and Λ > α.

In this case, we have Nt = LtΛ > ĥ. Using similar reasoning as (2.34), we have

∞

∑
s=0

ysPis ≤
βi + 1

aβi
3

+
1

(i + 2)θ
≤ 1

(i + 1)θ
, as i→ ∞.

Therefore, (Xt)t≥0 is also transient in this case and the proof of Theorem 2.4 is completed.

2.7 Discussion

In the sections above, we prove that the stability of FSA relies on the relationship between the frame size and

the number of packets to be transmitted in this frame. In order to stabilize FSA systems, all the users should

know the value of transmitted packets in the current frame. The state information, However, is imperfect in

some scenarios such that the users do not have access to the value of packets to be transmitted in the frame.

Fortunately, we can get its approximate value.
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Recall (2.9), because Nt follows the Poisson distribution and Zt follows the binomial distribution which can

be approximated as the Poisson distribution, Yt can also be approximated as a Poisson distributed random

variable. According to Lemma 2.4, the value of Yt sharply concentrates around its expectation, we thus use the

following E[Yt] to approximate ĥ:

E[Yt] = ip + (1− p)E[Nt−1|Xt = i]

= ip + (1− p)
i

∑
w=0

we−Lt−1Λ(Lt−1Λ)w

w!
. (2.40)

As a result, we can set the frame size following the control algorithm as follows:

Lt = c1

(
ip + (1− p)

i

∑
w=0

we−Lt−1Λ(Lt−1Λ)w

w!

)
, (2.41)

L0 = c1ϑ, (2.42)

where X0=ϑ means the initial number of packets in the system, and c1 = 1 for FSA-SPR and c1 = 1
α∗ for

FSA-MPR.

By the above control algorithm, the frame size Lt only depends on the value of backlog population size i, so

the original problem is translated to estimate the number of backlogs Xt, i.e., i. Fortunately, there exist several

estimation approaches which exploit the channel feedback, such as the probability of a idle or collision slot,

and the number of idle or collision slots.

According to the requirement on the estimation accuracy, we can select a rough estimator or an accurate

estimator. Since ip ≤ Lt ≤ i in (2.41), we can estimate Xt roughly so that the estimate X̃t = Θ(Xt) in very short

time, more specifically, in log(Xt) or log log(Xt) slots [36]. While if the accurate result is required, we can use

the additive estimator as in [9] and Kalman filter-based estimator as in our another work [37] to estimate the

value of Xt and update Lt.
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Figure 2.1: The evolution of backlog population in FSA-SPR.
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(b) L = o(h) and Λ = 0.01
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Figure 2.2: The evolution of backlog population in FSA-MPR.

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

t (frame)

T
he

 n
um

be
r 

of
 b

ac
kl

og
s

 

 

αααα=1,p=0.2
αααα=1,p=0.6
αααα=1,p=1
αααα=1.25,p=0.2
αααα=1.25,p=0.6
αααα=1.25,p=1

x 104

Figure 2.3: SPR: # of backlogs.
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Figure 2.4: MPR: # of backlogs.
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Figure 2.5: SPR vs. MPR.

2.8 Numerical Results

In this section, we conduct simulations via MATLAB to verify our theoretical results by illustrating the evolution

of the number of backlogs in each frame under different parameters with the following default settings: the

initial number of backlogs X0=104, the simulation duration tmax=100, o(ĥ)≤0.01ĥ, O(ĥ) ≥ 100ĥ, α = 1 in FSA-

SPR and α = α∗ ∈ (M−1
e , M) in FSA-MPR when Lt = Θ(ĥ). To simulate FSA, each user first generates a random

number among [0, Lt − 1] uniformly and responds in the corresponding slot. And all results are obtained by

taking the average of 100 trials.

2.8.1 Stability properties of FSA

FSA-SPR systems. We start by investigating numerically the stability properties of FSA-SPR. As stated in

Theorem 2.1, if Λ < 1
e , the system is stable and unstable otherwise when α = 1, we thus set the expected arrival

rate per slot Λ to 0.3 and 0.37 for the analysis of stability and instability for Lt = ĥ, respectively. Moreover, we

set a small Λ = 0.01 to analyze the instability for the cases Lt = o(ĥ) and Lt = O(ĥ).

As shown in Fig. 2.1(a), for the case Lt = ĥ, the number of backlogs decreases to zero at a rate in proportion

to the retransmission probability if Λ < 1
e , while increasing gradually otherwise. This is due to the nature of

FSA that frame size varies with the number of the sent packets to maximize the throughput per slot. Moreover,

Fig. 2.1(b) and Fig. 2.1(c) illustrate the instability when Lt = o(ĥ) and Lt = O(ĥ). The numerical results is in
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accordance with the analytical results on FSA-SPR in Theorem 2.1.

FSA-MPR System. We then move to the FSA-MPR exploiting MPR model as in [8] with M = 10. Recall

Lemma 2.7, it can be derived that α∗=10/1.37 and the maximum stability region is R̂1 = 5.814. We thus set

Λ = 5 and Λ = 5.9 for the stability analysis in the case Lt = ĥ/α∗. From Fig. 2.2, we can see that the numerical

results is in accordance with the analytical results on FSA-MPR.

2.8.2 Comparison under different frame sizes

Here we evaluate the performance difference when the frame size deviates from its optimum value that α =

ĥ
Lt

= 1 in FSA-SPR and α = α∗ in FSA-MPR. To that end, we set Λ = 0.3 for FSA-SPR and Λ = 5 for FSA-MPR.

As shown in Fig. 2.3 and Fig. 2.4, the performance degrades significantly when the frame size is not optimal

because the throughput is reduced in this case.

2.8.3 Comparison between FSA-SPR and FSA-MPR

We further compare the performance of FSA-SPR and FSA-MPR. To that end, for both FSA-SPR and FSA-MPR,

we set Λ = 0.3 and Lt = ĥ where ĥ is the number of backlogs in FSA-SPR maximizing the throughput of FSA-

SPR. Although this setting is not optimal to FSA-MPR, we can also see from Fig. 2.5 that FSA-MPR remarkably

outperforms FSA-SPR.

2.9 Conclusion

In this chapter, we have studied the stability of FSA-SPR and FSA-MPR by modeling the system backlog as a

Markov chain. By employing drift analysis, we have obtained the closed-form conditions for the stability of

FSA and shown that the stability region is maximised when the frame length equals the number of sent packets

in FSA-SPR and the upper bound of stability region is maximised when the ratio of the number of sent packets

to frame length equals in an order of magnitude the maximum multipacket reception capacity in FSA-MPR.

Furthermore, to characterise system behavior in the instable region, we have mathematically demonstrated

the existence of transience of the Markov chain. In addition, we conduct the numerical analysis to verify the

theoretical results. Our results provide theoretical guidelines on the design of stable FSA-based protocols in

practical applications such as RFID systems and M2M networks.

2.10 Proofs

2.10.1 Proof of Lemma 2.3

Proof. We take into account two cases depending on whether r is finite.

Case 1: r̂ = +∞.
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Recall the definition of the limit, fix M > 0 and pick a w∗≥0 such that λt−1(w∗) 6=0, there exists an integer

Q such that rSPR
ĥ

>M for all ĥ≥Q. Then fix such Q, we have

i

∑
w=0

λt−1(w)
i−w

∑
h=0

B(i−w)(h)r
SPR
h+w > λt−1(w∗)

i−w∗

∑
h=0

B(i−w∗)(h)r
SPR
h+w∗

> λt−1(w∗) ·
i−w∗

∑
h=Q

B(i−w∗)(h)r
SPR
h+w∗ > Mλt−1(w∗)

i−w∗

∑
h=Q

B(i−w∗)(h)

for all i ≥ Q + w∗, since for any fixed Q and w∗ it holds that

lim
i→∞

i−w∗

∑
h=Q

B(i−w∗)(h) = 1. (2.43)

Case 2: r̂ < +∞.

For i > 2Q, after some algebraic operations, we get

i

∑
w=0

λt−1(w)
i−w

∑
h=0

B(i−w)(h)r
SPR
h+w =

Q

∑
w=0

λt−1(w)
i−w

∑
h=0

B(i−w)(h)r
SPR
h+w +

i

∑
w=Q+1

λt−1(w)
i−w

∑
h=0

B(i−w)(h)r
SPR
h+w

=
Q

∑
w=0

λt−1(w)
2Q−w

∑
h=0

B(i−w)(h)r
SPR
h+w +

Q

∑
w=0

λt−1(w)
i−w

∑
h=2Q−w+1

B(i−w)(h)r
SPR
h+w

+
i

∑
w=Q+1

λt−1(w)
i−w

∑
h=0

B(i−w)(h)r
SPR
h+w. (2.44)

Now we proceed by calculate three items in the right hand side of the last equality in (2.44).

• In the the first item, since 0 ≤ rh+w ≤ h + w ≤ 2Q and 0 < λt−1(w) < 1 and (2.43) holds, we have ∑Q
w=0

λt−1(w)∑2Q−w
h=0 B(i−w)(h)rSPR

h+w → 0, as i→ ∞.

• In the second item, since it holds that h + w > Q and (2.43), we have

lim
i→∞

Q

∑
w=0

λt−1(w)
i−w

∑
h=2Q−w+1

B(i−w)(h)r
SPR
h+w = lim

i→∞
r̂

Q

∑
w=0

λt−1(w)
i−w

∑
h=2Q−w+1

B(i−w)(h) = r̂
Q

∑
w=0

λt−1(w).

• In the third item, since it holds that h + w > Q, we have

lim
i→∞

i

∑
w=Q+1

λt−1(w)
i−w

∑
h=0

B(i−w)(h)r
SPR
h+w = lim

i→∞
r̂

i

∑
w=Q+1

λt−1(w)
i−w

∑
h=0

B(i−w)(h) = r̂
i

∑
w=Q+1

λt−1(w).

Consequently, we can get

lim
i→∞

i

∑
w=0

λt−1(w)
i−w

∑
h=0

B(i−w)(h)r
SPR
h+w = r̂

Q

∑
w=0

λt−1(w) + r̂
i

∑
w=Q+1

λt−1(w) = r̂, (2.45)

which completes the proof of Case 2 and the lemma as well.
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2.10.2 Proof of Lemma 2.6

Proof. Recall the definition of transition probability, we can get the following equivalent:

∑
s

ysPis ≤ yi ⇐⇒
min(i,Lt)

∑
s=1

(yi−s − yi)Pi,i−s +
∞

∑
s=1

(yi+s − yi)Pi,i+s ≤ 0.

With the following definitions:


f ′(i) = (i + 1)θ

min(i,Lt)

∑
s=1

(
1

(i + 1− s)θ
− 1

(i + 1)θ

) i

∑
w=0

λt−1(w)
i−w

∑
h={s−w}+

Bi−w(h)
min(Lt,ĥ)−s

∑
n=0

λt(n)ξ ĥ,n+s,

g′(i) = (i + 1)θ
∞

∑
s=1

(
1

(i + 1 + s)θ
− 1

(i + 1)θ

) i

∑
w=0

λt−1(w)
i−w

∑
h=0

Bi−w(h)
min(ĥ,Lt)

∑
n=0

λt(n + s)ξ ĥn,

(2.46)

we have ∑s ysPis ≤ yi ⇐⇒ f ′(i) + g′(i) ≤ 0.

Moreover, the drift can be rewritten as

Di = −
min(i,Lt)

∑
s=1

sPi,i−s +
∞

∑
s=1

sPi,i+s = f (i) + g(i),

where f (h) and g(h) are defined as


f (i) =

min{i,Lt}

∑
s=1

s
i

∑
w=0

λt−1(w)
i−w

∑
h={s−w}+

Bi−w(h)
min(Lt,ĥ)−s

∑
n=0

λt(n)ξ ĥ,n+s,

g(i) =
∞

∑
s=1

s
i

∑
w=0

λt−1(w)
i−w

∑
h=0

Bi−w(h)
min(ĥ,Lt)

∑
n=0

λt(n + s)ξ ĥn.

(2.47)

Therefore, (Xt)t≥0 is transient if it holds that

lim
i→∞

[ f ′(i) + g′(i) + θDi] = 0. (2.48)

Noticing that Di = f (i)+ g(i), we prove (2.48) by showing that: (1) limi→∞[ f ′(i)+ θ f (i)] = 0; (2) limi→∞[g′(i)+

θg(i)] = 0.

We first prove limi→∞[ f ′(i) + θ f (i)] = 0.

From (2.46) and (2.47), we get

f ′(i) + θ f (i) = (i + 1)
min(i,Lt)

∑
s=1

[
(

i + 1
i + 1− s

)θ − 1− θs
i + 1

]
·

i

∑
w=0

λt−1(w)
i−w

∑
h={s−w}+

Bi−w(h)
Lt−s

∑
n=0

λt(n)ξ ĥ,n+s, (2.49)
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which is nonnegative since

(
i + 1

i + 1− s
)θ − 1− θs

i + 1
> 0, ∀1 ≤ s ≤ i.

and thus

f ′(i) + θ f (i) ≤ (i + 1)
Lt

∑
s=1

[
(

i + 1
i + 1− s

)θ − 1− θs
i + 1

]
.

Given 0 < v ≤ Lt < i, define mi(v) as

mi(v) =
i + 1

v2

[
(

i + 1
i + 1− v

)θ − 1
]
− θ

v

which is positive and nondecreasing in v for i ≥ 1, we get

mi

(
b i + 1

2
c
)
≤ 1

i + 1
[4(2θ − 1)− 2θ] ,

A
i + 1

,

where A is a positive constant only depending on θ. Thus,

f ′(i) + θ f (i) ≤
Lt

∑
s=1

s2mi(s) ≤
A

i + 1

Lt

∑
s=1

s2 ≤ ALt(Lt + 1)(2Lt + 1)
6(i + 1)

.

Since limi→∞
ALt(Lt+1)(2Lt+1)

6(i+1) = 0 when Lt = o((ln i)4)∗, it thus holds that limi→∞[ f ′(i) + θ f (i)] = 0.

We then prove limi→∞[g′(i) + θg(i)] = 0.

From (2.46) and (2.47), we get

g′(i) + θg(i) = (i + 1)
∞

∑
s=1

[
(

i + 1
i + 1 + s

)θ − 1 +
θs

i + 1

] i

∑
w=0

λt−1(w)
i−w

∑
h=0

Bi−w(h)
min(ĥ,Lt)

∑
n=0

λt(n + s)ξ ĥn.

Since
[
( i+1

i+1+s )
θ − 1 + θs

i+1

]
≥ 0, after some algebraic operations, we have

g′(i) + θg(i) ≤ (i + 1)
∞

∑
n=1

λt(n)
n

∑
s=1

[
(

i + 1
i + 1 + s

)θ − 1 +
θs

i + 1

]
· ξ ĥ,n−s

Using the following inequalities for v ≥ 0 and 0 < θ < 1,

0 ≤ 1
(1 + v)θ

− 1 + θv ≤ θ(1 + θ)
v2

2
, (2.50)
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we have

0 ≤g′(i) + θg(i)

≤ θ(θ + 1)
2

(i + 1)
i

∑
w=0

λt−1(w)
i−w

∑
h=0

Bi−w(h)
N

∑
n=1

λt(n)
n

∑
s=1

s2

(i + 1)2 ξ ĥ,n−s

+ θ(i + 1)
i

∑
w=0

λt−1(w)
i−w

∑
h=0

Bi−w(h)
∞

∑
n=N+1

λt(n)
n

∑
s=1

s
i + 1

ξ ĥ,n−s

≤ 1
2(i + 1)

N

∑
n=1

n2λt(n) +
∞

∑
n=N+1

nλt(n).

When Lt=o((lni)4)∗, according to (2.23) in Lemma 2.4, we can choose N = i1/3�LtΛ such that

P{Nt ≥ i1/3} ≤ e−λ(eλ)i1/3

(i1/3)i1/3 ≤ e−i1/3(
LtΛ
i1/3−1)

(
LtΛ
i1/3

)i1/3

≤ 1
ai1/3

4

, (2.51)

where a4 , i1/3

ΛLt
e

ΛLt
i1/3−1

> 1
2 i1/3.

Then, fix N = i1/3, we have

1
2(i + 1)

N

∑
n=1

n2λt(n) ≤
i1/3

2(i + 1)
LtΛ ≤ i−1/3. (2.52)

As a consequence, we have limi→∞[g′(i) + θg(i)] = 0 at last, which completes the proof of the second part

and also Lemma 2.6.

2.10.3 Proof of Lemma 2.7

Proof. Recall R̂1, we have R̂1 ≤ ∑M
x0=1 x0e−α αx0

x0! , Φ(α). We then rewrite the upper bound Φ(α) of R̂1 as

Φ(α) = e−α
M

∑
m=1

αm

(m− 1)!
,

whose derivative can be calculated as

Φ′(α) = e−α

[
M−1

∑
m=0

αm

m!
− αM

(M− 1)!

]
. (2.53)

We distinguish two cases to look for α∗.

Case 1: α ≥ M.

Since it holds that N! ≤ NN−1 for ∀N ∈N, we can get

Φ′(α) <
e−α

(M− 1)!
·
(

M

∑
m=1

MM−m
αm−1 − αM

)
<

e−α

(M− 1)!
·
(

MαM−1 − αMM) < 0,
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meaning that Φ(α) monotonously decreases when α≥M.

Case 2: α ≤ M−1
e .

Substituting the inequality N! ≥ (N
e )

N into (2.53) yields

Φ′(α) ≥ e−α

(M− 1)!
·
[
(

M− 1
e

)M−1 + α(
M− 1

e
)M−1 −αM

]
≥ e−α

(M− 1)!
·
(
αM−1 + αM − αM) > 0,

meaning that Φ(α) monotonously increases as α≤M−1
e .

Combining the analysis in both cases, we have proved that α∗ maximising Φ(α) falls into the interval

(M−1
e , M), i.e., α∗ = Θ(M).



Chapter 3

From Static to Dynamic Tag Population

Estimation: An Extended Kalman Filter

Perspective

3.1 Introduction

3.1.1 Context and Motivation

Recent years have witnessed an unprecedented development and application of the radio frequency identifi-

cation (RFID) technology. As a promising low-cost technology, RFID is widely utilized in various applications

ranging from inventory control [38][39], supply chain management [40] to tracking/location [41][42]. A stan-

dard RFID system has two types of devices: a set of RFID tags and one or multiple RFID readers (simply called

tags and readers). A tag is typically a low-cost microchip labeled with a unique serial number (ID) to identify an

object. A reader, on the other hand, is equipped with an antenna and can collect the information of tags within

its coverage area.

Tag population estimation and counting is a fundamental functionality for many RFID applications such as

warehouse management, inventory control and tag identification. For example, quickly and accurately es-

timating the number of tagged objects is crucial in establishing inventory reports for large retailers such as

Wal-Mart [43]. Due to the paramount practical importance of tag population estimation, a large body of stud-

ies [44] [45] [46] [47] [48] have been devoted to the design of efficient estimation algorithms. Most of them,

as reviewed in Sec. 3.2, are focused on the static scenario where the tag population is constant during the esti-

mation process. However, many practical RFID applications, such as logistic control, are dynamic in the sense

that tags may be activated or terminated as specialized in C1G2 standard [49], or the tagged objects may enter

and/or leave the reader’s covered area frequently, thus resulting in tag population variation. In such dynamic

applications, a fundamental research question is how to design efficient algorithms to dynamically trace the tag

36
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population quickly and accurately.

3.1.2 Summary of Contributions

In this chapter, we develop a generic framework of stable and accurate tag population estimation schemes for

both static and dynamic RFID systems. By generic, we mean that our framework both supports the real-time

monitoring and can estimate the number of tags accurately without any prior knowledge on the tag arrival and

departure patterns. Our design is based on the extended Kalman filter (EKF) [50], a powerful tool in optimal

estimation and system control. By performing Lyapunov drift analysis, we mathematically prove the efficiency

and stability of our framework in terms of the boundedness of estimation error.

The main technical contributions of this chapter are articulated as follows. We formulate the system dynam-

ics of the tag population for both static and dynamic RFID systems where the number of tags remains constant

and varies during the estimation process. We design an EKF-based population estimation algorithm for static

RFID systems and further enhance it to dynamic RFID systems by leveraging the cumulative sum control chart

(CUSUM) to detect the population change. By employing Lyapunov drift analysis, we mathematically charac-

terise the performance of the proposed framework in terms of estimation accuracy and convergence speed by

deriving the closed-form conditions on the design parameters under which our scheme can stabilise around the

real population size with bounded relative estimation error that tends to zero within exponential convergence

rate. To the best of our knowledge, our work is the first theoretical framework that dynamically traces the tag

population with closed form conditions on the estimation stability and accuracy.

3.2 Related Work

Due to its fundamental importance, tag population estimation has received significant research attention, which

we briefly review in this section.

3.2.1 Tag Population Estimation for Static RFID systems

Most of existing works are focused on the static scenario where the tag population is constant during the

estimation process. The central question there is to design efficient algorithms quickly and accurately estimating

the static tag population. Kodialam et al. design an estimator called PZE which uses the probabilistic properties

of empty and collision slots to estimate the tag population size [51]. The authors then further enhance PZE

by taking the average of the probability of idle slots in multiple frames as an estimator in order to eliminate

the constant additive bias [44]. Han et al. exploit the average number of idle slots before the first non-empty

slots to estimate the tag population size [52]. Later, Qian et al. develop Lottery-Frame scheme that employs

geometrically distributed hash function such that the jth slot is chosen with prob. 1
2j+1 [46]. As a result, the

first idle slot approaches around the logarithm of the tag population and the frame size can be reduced to the
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logarithm of the tag population, thus reducing the estimation time. Subsequently, a new estimation scheme

called ART is proposed in [47] based on the average length of consecutive non-empty slots. The design rational

of ART is that the average length of consecutive non-empty slots is correlated to the tag population. ART is

shown to have smaller variance than prior schemes. More recently, Zheng et al. propose another estimation

algorithm, ZOE, where each frame just has a single slot and the random variable indicating whether a slot is

idle follows Bernoulli distribution [48]. The average of multiple individual observations is used to estimate the

tag population.

We would like to point out that the above research work does not consider the estimation problem for

dynamic RFID systems and thus may fail to monitor the system dynamics in real time. Specifically, in typical

static tag population estimation schemes, the final estimation result is the average of the outputs of multi-round

executions. When applied to dynamic tag population estimation, additional estimation error occurs due to the

variation of the tag population size during the estimation process.

3.2.2 Tag Population Estimation for Dynamic RFID systems

Only a few propositions have tackled the dynamic scenario. The works in [53] and [54] consider specific tag

mobility patterns that the tags move along the conveyor in a constant speed, while tags may move in and out

by different workers from different positions, so these two algorithm cannot be applicable to generic dynamic

scenarios. Subsequently, Xiao et al. develop a differential estimation algorithm, ZDE, in dynamic RFID systems

to estimate the number of arriving and removed tags [55]. More recently, they further generalize ZDE by taking

into account the snapshots of variable frame sizes [56]. Though the algorithms in [55] and [56] can monitor the

dynamic RFID systems, they may fail to estimate the tag population size accurately, because they must use the

same hash seed in the whole monitoring process, which cannot reduce the estimation variance. Using the same

seed is an effective way in tracing tag departure and arrival, however, it may significantly limit the estimation

accuracy, even in the static case.

Besides the limitations above, prior works do not provide formal analysis on the stability and the conver-

gence rate. To fill this vide, we develop a generic framework for tag population estimation in dynamic RFID

systems. By generic, we mean that our framework can both support real-time monitoring and estimate the

number of tags accurately without the requirement for any prior knowledge on the tag arrival and departure

patterns. As another distinguished feature, the efficiency and stability of our framework is mathematically

established.

3.3 Technical Preliminaries

In this section, we briefly introduce the extended Kalman filter and some fundamental concepts and results

in stochastic process which are useful in the subsequent analysis. The main notations used in this chapter are
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listed in Table 3.1.

Table 3.1: Main Notations
zk System state in frame k: tag population
yk Measurement in frame k: idle slot frequency
ẑk+1|k Priori prediction of zk+1

ẑk|k Posteriori estimate of zk
Pk+1|k Priori pseudo estimate covariance
Pk|k Posteriori pseudo estimate covariance
vk Measurement residual in frame k
Kk Kalman gain in frame k
Qk, Rk Two tunable parameters in frame k
ek|k−1 Estimation error in frame k
Φk Normalization of vk
Lk The length of frame k
Rsk,h(·) Random seed in frame k and Hash function
rk Persistence probability in frame k
Nk The number of idle slots in frame k
p(zk) Probability of an idle slot in frame k
uk,Var[uk] Gaussian random variable and Variance of uk
φk Controllable parameter
wk Random variable: variation of tag population
θ, Υk CUSUM threshold and reference value
ε Upper bound of initial estimation error
λk, δk Upper bounds of E[wk] and E[w2

k ]

3.3.1 Extended Kalman Filter

The extended Kalman filter is a powerful tool to estimate system state in nonlinear discrete-time systems.

Formally, a nonlinear discrete-time system can be described as follows:

zk+1 = f (zk, xk) + w∗k (3.1)

yk = h(zk) + u∗k , (3.2)

where zk+1 ∈ Rn denotes the state of the system, xk ∈ Rd is the controlled inputs and yk ∈ Rm stands for

the measurement observed from the system. The uncorrelated stochastic variables w∗k ∈ Rn and u∗k ∈ Rm

denote the process noise and the measurement noise, respectively. The functions f and h are assumed to be the

continuously differentiable.

For the above system, we introduce an EKF-based state estimator given in Definition 3.1.

Definition 3.1 (Extended Kalman filter [50]). A two-step discrete-time extended Kalman filter consists of state predic-

tion and measurement update, defined as
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1) Time update (prediction)

ẑk+1|k = f (ẑk|k, xk) (3.3)

Pk+1|k = Pk|k + Qk, (3.4)

2) Measurement update (correction)

ẑk+1|k+1 = f (ẑk+1|k, xk) + Kk+1vk+1 (3.5)

Pk+1|k+1 = Pk+1|k (1− Kk+1Ck+1) (3.6)

Kk+1 =
Pk+1|kCk+1

Pk+1|kCk+1
2 + Rk+1

, (3.7)

where

vk+1 = yk+1 − h(ẑk+1|k) (3.8)

Ck+1 =
∂h(zk+1)

∂zk+1

∣∣∣∣
zk+1=ẑk+1|k

. (3.9)

Remark. In the above definition of extended Kalman filter, the parameters can be interpreted in our context as follows:

• ẑk+1|k is the prediction of zk+1 at the beginning of frame k + 1 given by the previous state estimate, while ẑk+1|k+1

is the estimate of zk+1 after the adjustment based on the measure at the end of frame k + 1.

• vk+1, referred to as innovation, is the measurement residual in frame k+1. It represents the estimated error of the

measure.

• Kk+1 is the Kalman gain. With reference to equation (3.5), it weighs the innovation vk+1 w.r.t. f (ẑk+1|k, xk).

• Pk+1|k and Pk+1|k+1, in contrast to the linear case, are not equal to the covariance of estimation error of the system

state. Here, we will refer to them as pseudo-covariance.

• Qk and Rk are two tunable parameters which play the role as that of the covariance of the process and measurement

noises in linear stochastic systems to achieve optimal filtering in the maximum likelihood sense. We will show later

that Qk and Rk also play an important role in improving the stability and convergence of our EKF-based estimators.

3.3.2 Boundedness of Stochastic Process

In order to analyse the stability of an estimation algorithm, we need to check the boundedness of the estimation

error defined as follows:

ek|k−1 , zk − ẑk|k−1. (3.10)

Due to probabilistic nature of the estimation algorithm, the estimation process is a stochastic process. Thus,

we further introduce the following two mathematical definitions [57] [58] on the boundedness of stochastic

process.
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Definition 3.2 (Boundedness of Random Variable). The stochastic process of the estimation error ek|k−1 is said to be

bounded with probability one (w.p.o.), if there exists X > 0 such that

lim
k→∞

sup
k≥1

P{|ek|k−1| > X} = 0. (3.11)

Definition 3.3 (Boundedness in Mean Square). The stochastic process ek|k−1 is said to be exponentially bounded in the

mean square with exponent ζ, if there exist real numbers ψ1, ψ2 > 0 and 0 < ζ < 1 such that

E[e2
k|k−1] ≤ ψ1e2

1|0ζk−1 + ψ2. (3.12)

To investigate the boundedness defined in Definition 3.2 and 3.3, we introduce the following lemma [59].

Lemma 3.1. Given a stochastic process Vk(ek|k−1) and constants β, β, τ>0 and 0<α≤1 with the following properties:

βe2
k|k−1 ≤ Vk(ek|k−1) ≤ βe2

k|k−1, (3.13)

E[Vk+1(ek+1|k)|ek|k−1]−Vk(ek|k−1) ≤ −αVk(ek|k−1) + τ, (3.14)

then for any k ≥ 1 it holds that

• the stochastic process ek|k−1 is exponentially bounded in the mean square, i.e.,

E[e2
k|k−1] ≤

β

β
E[e2

1|0](1− α)k−1 +
τ

β

k−2

∑
j=1

(1− α)j ≤ β

β
E[e2

1|0](1− α)k−1 +
τ

βα
, (3.15)

• the stochastic process ek|k−1 is bounded w.p.o..

From Lemma 3.1, it can be known that if we can construct Vk(ek|k−1), a function of ek|k−1, such that both

its drift and
Vk(ek|k−1)

e2
k|k−1

are bounded, i.e, (3.14) and (3.13) hold, then ek|k−1 is also bounded and the convergence

rate depends on constant α mostly. Besides, it can be noted that Lemma 3.1 can only be implemented offline.

To address this limit, we adjust Lemma 3.1 to an online version with time-varying parameters, which can be

proven by the same method as in [58] and [60].

Lemma 3.2. If there exist a stochastic process Vk(ek|k−1) and real numbers β∗, βk, τk>0 and 0<α∗k≤1 with the following

properties:

V1(e1|0) ≤ β∗e2
1|0, (3.16)

βke2
k|k−1 ≤ Vk(ek|k−1), (3.17)

E[Vk+1(ek+1|k)|ek|k−1]−Vk(ek|k−1) ≤ −α∗k Vk(ek|k−1) + τk; (3.18)

then for any k ≥ 1 it holds that
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• the stochastic process ek|k−1 is exponentially bounded in the mean square, i.e.,

E[e2
k|k−1] ≤

β∗

βk
E[e1|0

2]
k−1

∏
i=1

(1− α∗i ) +
1
βk

k−2

∑
i=1

τk−i−1

i

∏
j=1

(1− α∗k−j), (3.19)

• the stochastic process ek|k−1 is bounded w.p.o..

Remark. The conditions in Lemma 3.2 can be interpreted as follows: To prove the boundedness of ek|k−1, it is sufficient

by constructing a function Vk(ek|k−1) such that both its drift, i.e, (3.18), and
Vk(ek|k−1)

e2
k|k−1

, i.e, (3.16), (3.17), are bounded.

3.4 System Model and Problem Formulation

3.4.1 System Model

Consider a RFID system consisting of a reader and a mass of tags operating on one frequency channel. The

number of tags is unknown a priori and can be constant or dynamic (time-varying), which we refer to as static

and dynamic systems, respectively throughout this chapter. The MAC protocol for the RFID system is the

standard framed-slotted ALOHA protocol, where the standard Listen-before-Talk mechanism is employed by the

tags to respond the reader’s interrogation [61].

The reader initiates a series of frames indexed by an integer k ∈ Z+. Each individual frame, referred to as a

round, consists of a number of slots. The reader starts frame k by broadcasting a begin-round command with

frame size Lk, persistence probability rk and a random seed Rsk. When a tag receives a begin-round command,

it uses a hash function h(·), Lk, Rsk, and its ID to generate a random number i in the range [0, Lk − 1] and reply

in slot i of frame k with probability rk.1

Since every tag picks its own response slot individually, there may be zero, one, or more than one tags

transmitting in a slot, which are referred to as idle, singleton, and collision slots, respectively. The reader is not

assumed to be able to distinguish between a singleton or a collision slot, but it can detect an idle slot. We term

both singleton and collision slots as occupied slots throughout this chapter. By collecting all replies in a frame,

the reader can generate a bit-string Bk illustrated as Bk = {· · · |0|0|1|0|1|1| · · · }, where ‘0’ indicates an idle slot,

and ‘1’ stands for an occupied one.

Subsequently, the reader finalizes the current frame by sending an end round command. Based on the

number of idle slots, i.e., the number of ‘0’ in Bk, the reader runs the estimation algorithm, detailed in the next

section, to trace the tag population.

1The outputs of the hash function have a uniform distribution such that the tag can choose any slot within the round with the equal
probability.
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3.4.2 Tag Population Estimation Problem

Our objective is to design a stable and accurate tag population estimation algorithm for both static and dynamic

systems. By stable and accurate we mean that

• the estimation error of our algorithm is bounded in the sense of Definition 3.2 and 3.3 and the relative

estimation error tends to zero;

• the estimated population size converges to the real value with exponential rate.

Mathematically, we consider a large-scale RFID system of a reader and a set of tags with the unknown size

zk in frame k which can be static or dynamic. Denote by ẑk|k−1 the prior estimate of zk in the beginning of frame

k. At the end of frame k, the reader updates the estimate ẑk|k−1 to ẑk|k by running the estimation algorithm. Our

designed estimation scheme need to guarantee the following properties:

• lim
zk→∞

∣∣∣∣ ẑk|k−1 − zk

zk

∣∣∣∣ = 0;

• the converges rate is exponential.

3.5 Tag Population Estimation: Static Systems

In this section, we focus on the baseline scenario of static systems where the tag population is constant during

the estimation process. We first establish the discrete-time model for the system dynamics and the measurement

model using the bit string Bk observed during frame k. We then present our EKF-based estimation algorithm.

3.5.1 System Dynamics and Measurement Model

Consider the static RFID systems where the tag population stays constant, the system state evolves as

zk+1 = zk, (3.20)

meaning that the number of tags zk+1 in the system in frame k + 1 equals that in frame k.

In order to estimate zk, we leverage the measurement on the number of idle slots during a frame. To start,

we study the stochastic characteristics of the number of idle slots.

Assume that the initial tag population z0 falls in the interval z0 ∈ [z0, z0], yet the exact value of z0 is unknown

and should be estimated. The range [z0, z0] can be a very coarse estimation that can be obtained by any existing

population estimation method. Recall the system model that in frame k, the reader probes the tags with the

frame size Lk. Denote by variable Nk the number of idle slots in frame k, that is, the number of ‘0’s in Bk, we

have the following results on Nk according to [51, 62].

Lemma 3.3. If each tag replies in a random slot among the Lk slots with probability rk, then it holds that Nk ∼ N [µ, σ2]

for large Lk and zk, where µ = Lk(1− rk
Lk
)zk and σ2 = Lk(Lk − 1)(1− 2rk

Lk
)zk + Lk(1− rk

Lk
)zk − Lk

2(1− rk
Lk
)2zk .
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Lemma 3.4. For any ε∗ > 0, there exists some M > 0, such that if zk ≥ M or Lk = ẑk|k−1 ≥ M, then it holds that

∣∣µ− Lke−rkρ
∣∣ ≤ ε∗, (3.21)∣∣σ2 − Lk(e−rkρ − (1 + r2

kρ)e−2rkρ)
∣∣ ≤ ε∗, (3.22)

where ρ = zk
Lk

is referred to as the reader load factor.

Lemmas 3.3 and 3.4 imply that in large-scale RFID systems, we can use Lke−rkρ and Lk(e−rkρ− (1+ r2
kρ)e−2rkρ)

to approximate µ and σ2.

At the end of each frame k, the reader gets a measure yk of the idle slot frequency defined as

yk =
Nk

Lk
. (3.23)

Recall Lemma 3.3, it holds that yk is a Normal distributed random variable specified as follows: E[yk] = e−rkρ

and Var[yk] = 1
Lk
(e−rkρ − (1 + r2

kρ)e−2rkρ). Since there are zk tags reply in frame k with probability rk, the

probability that a slot is idle, denoted as p(zk), can be calculated as

p(zk) = (1− rk

Lk
)zk ≈ e−

rkzk
Lk . (3.24)

Notice that for large zk, p(zk) can be regarded as a continuously differentiable function of zk.

Using the language in the Kalman filter, we can write yk as follows:

yk = p(zk) + uk, (3.25)

where, based on the statistic characteristics of yk, uk is a Gaussian random variable with zero mean and variance

Var[uk] =
1
Lk

(e−rkρ − (1 + r2
kρ)e−2rkρ). (3.26)

We note that uk measures the uncertainty of yk.

To summarise, the discrete-time model for static RFID systems is characterized by (3.20) and (3.25).

3.5.2 Tag Population Estimation Algorithm

Noticing that the system state characterised by (3.20) and (3.25) is a discrete-time nonlinear system, we thus

leverage the two-step EKF described in Definition 3.1 to estimate the system state. In (3.7), the Kalman gain

Kk increases with Qk while decreases with Rk. As a result, Qk and Rk can be used to tune the EKF such that

increasing Qk and/or decreasing Rk accelerates the convergence rate but leads to larger estimation error. In our

design, we set Qk to a constant q > 0 and introduce a parameter φk as follows to replace Rk to facilitate our
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demonstration:

Rk = φkPk|k−1Ck
2. (3.27)

It can be noted from (3.7) and (3.27) that Kk is monotonously decreasing in φk, i.e., a small φk leads to quick

convergence with the price of relatively high estimation error. Hence, choosing the appropriate value for φk

consists of striking a balance between the convergence rate and the estimation error. In our work, we take a

dynamic approach by setting φk to a small value φ but satisfying (3.62) at the first few rounds (J rounds) of

estimation to allow the system to act quickly since the estimation in the beginning phase can be very coarse.

After that we set φk to a relatively high value φ to achieve high estimation accuracy.

Now, we present our tag population estimation algorithm in Algorithm 1 where P0|0, q can be set to some

constants straightforward since the performance mostly depends on φk and kmax is the pre-configured time

horizon during which the system needs to be monitored. The major procedures can be summarised as:

1. In the beginning of frame k: prediction (line 3). The reader first predicts the number of tags based on the

estimation at the end of frame k−1. The predicted value is defined as ẑk|k−1. Then the reader sets the

persistence probability rk following Lemma 3.8 and zk is set to ẑk|k−1.

2. Line 4-5. The reader launches the Listen-before-talk protocol as introduced in 3.4.1 in order to receive the

feedbacks from tags.

3. At the end of frame k: correction (line 6-14). The reader computes Nk based on Bk and further calculates yk

and vk from Nk. It then updates the prediction with the corrected estimate ẑk|k following (3.5).

We will theoretically establish the stability and accuracy of the algorithm in Sec. 3.7.

Algorithm 1 Tag population estimation (static cases): executed by the reader
Require: z0, P0|0, q, J, L, φ, φ, maximum number of rounds kmax

Ensure: Estimated tag population set Sz = {ẑk|k : k ∈ [0, kmax]}
1: Initialisation: ẑ0|0 ← z0, Q0 ← q, Sz = {ẑ0|0}
2: for k = 1 to kmax do
3: ẑk|k−1 ← ẑk−1|k−1, Lk ← L, rk ← 1.59Lk/ẑk|k−1, Pk|k−1 ← Pk−1|k−1 + Qk−1
4: Generate a new random seed Rsk and broadcast (Lk, rk, Rsk)
5: Run Listen-before-Talk protocol
6: Obtain the number of idle slots Nk, and compute yk and vk using (3.23) and (3.8)
7: Qk ← q
8: if k ≤ J then
9: φk ← φ

10: else
11: φk ← φ
12: end if
13: Calculate Rk and Kk using (3.27) and (3.7)
14: Update ẑk|k and Pk|k using (3.5) and (3.6)
15: Sz ← Sz ∪ {ẑk|k}
16: end for
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3.6 Tag Population Estimation: Dynamic Systems

In this section, we further tackle the dynamic case where the tag population may vary during the estimation

process. The objective for the dynamic systems is to promptly detect the global tag papulation change and

accurately estimate the quantity of this change. To that end, we first establish the system model and then

present our estimation algorithm.

3.6.1 System Dynamics and Measurement Model

In dynamic RFID systems, we can formulate the system dynamics as

zk+1 = zk + wk, (3.28)

where the tag population zk+1 in frame k+1 consists of two parts: i) the tag population in frame k and ii)

a random variable wk which accounts for the stochastic variation of tag population resulting from the tag

arrival/departure during frame k. Notice that wk is referred to as process noise in Kalman filters and the

appropriate characterisation of wk is crucial in the design of stable Kalman filters, which will be investigated in

detail later. Besides, the measurement model is the same as the static case. Hence, the discrete-time model for

dynamic RFID systems can be characterized by (3.28) and (3.25).

3.6.2 Tag Population Estimation Algorithm

In the dynamic case, we leverage the two-step EKF to estimate the system state combined with the CUSUM test

to further trace the tag population fluctuation.

Algorithm 2 Tag population estimation (unified framework): executed by the reader
Require: z0, P0|0, q, J, L, φ, φ, maximum number of rounds kmax

Ensure: Estimation set Sz = {ẑk|k : k ∈ [0, kmax]}
1: Initialisation: ẑ0|0 ← z0, Q0 ← q, Sz = {ẑ0|0}
2: for k = 1 to kmax do
3: ẑk|k−1 ← ẑk−1|k−1, Lk ← L, rk ← 1.59Lk/ẑk|k−1, Pk|k−1 ← Pk−1|k−1 + Qk−1
4: Generate a new seed Rsk and broadcast (Lk, Rsk) and run Listen-before-Talk protocol
5: Obtain the number of idle slots Nk, and compute yk and vk using (3.23) and (3.8)
6: Qk ← q
7: if k ≤ J then
8: φk ← φ
9: else

10: Execute Algorithm 3
11: φk ← output of Algorithm 3
12: end if
13: Calculate Rk and Kk using (3.27) and (3.7), and update ẑk|k and Pk|k using (3.5) and (3.6)
14: Sz ← Sz ∪ {ẑk|k}
15: end for
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ẑk|k
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p(ẑk|k-1)-

⊕
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Kk⊗

CUSUM

ẑk|k-1

⊕ kφ

Figure 3.1: Estimation algorithm diagram: Dashed box indicates the EKF.

Our main estimation algorithm is illustrated in Algorithm 2. The difference compared to the static scenario

is that tag population variation needs to be detected by the CUSUM test presented in Algorithm 3 in the next

subsection and the output of Algorithm 3 acts as a feedback to φk, meaning φk is no more a constant after

the first J rounds as the static case due to the tag population variation. Specifically, if a change on the tag

population is detected in frame k, φk is set to φ to quickly react to the change, otherwise φk sticks to φ to

stabilize the estimation. The overall structure of the estimation algorithm is illustrated in Fig. 3.1. We note that

in the case where zk is constant, Algorithm 2 degenerates to Algorithm 1.

3.6.3 Detecting Tag Population Change: CUSUM Test

The CUSUM Detection Framework. We leverage the CUSUM test to detect the change of tag population and

further adjust φk. CUSUM test is a sequential analysis technique typically used for change detection [63]. It is

shown to be asymptotically optimal in the sense of the minimum detection time subject to a fixed worst-case

expected false alarm rate [64].

In the context of dynamic tag population detection, the reader monitors the innovation process vk = yk −

p(ẑk|k−1). If the number of the tags population is constant, vk equals to uk which is a Gaussian process with

zero mean. In contrast, upon the system state changes, i.e., tag population changes, vk drifts away from the zero

mean. In our design, we use Φk as a normalised input to the CUSUM test by normalising vk with its estimated

standard variance, specified as follows:

Φk =
vk√

(Pk|k−1 + Qk−1)Ck
2 + Var[uk]

∣∣
zk=ẑk|k−1

. (3.29)
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The reader further updates the CUSUM statistics g+k and g−k as follows:

g+k = max{0, g+k−1 + Φk − Υ}, (3.30)

g−k = min{0, g−k−1 + Φk + Υ}, (3.31)

g+k = g−k = 0, if δ = 1, (3.32)

where g+0 =0 and g−0 = 0. And Υ≥0, referred to as reference value, is a filter design parameter indicating the

sensitivity of the CUSUM test to the fluctuation of Φk, Moreover, by δ we define an indicator flag indicating tag

population change:

δ =


1 if g+k > θ or g−k < −θ,

0 otherwise,
(3.33)

where θ > 0 is a pre-specified CUSUM threshold.

The detailed procedure of the change detection is illustrated in Algorithm 3 where ϕ1(δ) is used to assign

the value to φk according to whether the system state changes and is shown in (3.37).

Algorithm 3 CUSUM test: executed by the reader in frame k
Require: Υ, θ
Ensure: φk

1: Initialisation: g+0 ← 0, g−0 ← 0
2: Compute Φk using equation (3.29)
3: g+k ← (3.30), g−k ← (3.31)
4: if g+k > θ or g−k < −θ then
5: δ← 1, φk ← ϕ1(δ), g+k ← 0, g−k ← 0
6: else
7: δ← 0, φk ← ϕ1(δ)
8: end if
9: Return φk

Parameter tuning in CUSUM test. The choice of the threshold θ and the drift parameter Υ has a directly

impact on the performance of the CUSUM test in terms of detection delay and false alarm rate. Formally, the

average running length (ARL) L(µ∗) is used to denote the duration between two actions [65]. For a large θ,

L(µ∗) can be approximated as 2

L(µ∗) =


Θ(θ), if µ∗ 6= 0,

Θ(θ2), if µ∗ = 0,
(3.34)

where µ∗ denotes the mean of the process Φk.

2For two variables X, Y, asymptotic notation X = Θ(Y) implies that there exist positives c1, c2 and x0 such that for ∀X > x0, it
follows that c1X ≤ Y ≤ c2X.
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In our context, ARL corresponds to the mean time between two false alarms in the static case and the mean

detection delay of the tag population change in the dynamic case. It is easy to see from (3.34) that a higher

value of θ leads to lower false alarm rate at the price of longer detection delay. Therefore, the choices of θ and

Υ consists of a tradeoff between the false alarm rate and the detection delay.

Recall that Φk can be approximated to a white noise process, i.e, Φk ∼ N [µ∗, σ∗2] with µ∗ = 0, σ∗ = 1 if the

system state does not change. Generically, as recommended in [66], setting θ and Υ as follows achieves good

ARL from the engineering perspective.

θ = 4σ∗, (3.35)

Υ = µ∗ + 0.5σ∗. (3.36)

In the CUSUM framework, we set φk by ϕ1(δ) as follows:

ϕ1(δ) =


φ, if δ = 1,

φ, if δ = 0.
(3.37)

The rationale is that once a change on the tag population is detected in frame k, φk is set to φ to quickly react

to the change, while φk sticks to φ when no system change is detected.

3.7 Performance Analysis

In this section, we establish the stability and the accuracy of our estimation algorithms for both static and

dynamic cases.

3.7.1 Static Case

Our analysis is composed of two steps. We first derive the estimation error and then establish the stability and

the accuracy of Algorithm 1 in terms of the boundedness of estimation error.

Computing Estimation Error. We first approximate the non-linear discrete system by a linear one. To that

end, as the function p(zk) is continuously differentiable at zk = ẑk|k−1, using the Taylor expansion, we have

p(zk) = p(ẑk|k−1) + Ck(zk − ẑk|k−1) + χ(zk, ẑk|k−1), (3.38)
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where

Ck = −
rkρ

erkρ ẑk|k−1
, (3.39)

χ(zk, ẑk|k−1) =
∞

∑
j=2

1
erkρ j!

(rkρ− rkρzk

ẑk|k−1
)j. (3.40)

Regarding the convergence of χ(zk, ẑk|k−1) in (3.40), assume that

zk = a′k ẑk|k−1, (3.41)

we can obtain the following boundedness of the residual for the case |a′k − 1| < 1
rkρ :

|χ(zk, ẑk|k−1)| =
(rkρ)2(ẑk|k−1 − zk)

2

erkρ ẑ2
k|k−1

∞

∑
j=0

(rkρ)j

(j + 2)!

∣∣∣1− zk

ẑk|k−1

∣∣∣j
≤

(rkρ)2(ẑk|k−1 − zk)
2

2e(rkρ)ẑ2
k|k−1[1−

∣∣(rkρ)(1− zk
ẑk|k−1

)
∣∣] ≤ (rkρ)2(ẑk|k−1 − zk)

2

2e(rkρ)ak ẑ2
k|k−1

,

where

ak = 1− (rkρ)|1− a′k|. (3.42)

Recall the definition of the estimation error in (3.10) and using (3.20), (3.3) and (3.5), we can derive the

estimation error ek+1|k as follows:

ek+1|k =zk+1 − ẑk+1|k = zk − ẑk|k = zk − ẑk|k−1 − Kk
[
Ck(zk − ẑk|k−1) + χ(zk, ẑk|k−1) + uk

]
=(1− KkCk)ek|k−1 + sk + mk, (3.43)

where sk and mk are defined as

sk = −Kkuk, (3.44)

mk = −Kkχ(zk, ẑk|k−1). (3.45)

Boundedness of Estimation Error. Having derived the dynamics of the estimation error, we now state the

main result on the stochastic stability and accuracy of Algorithm 1.

Theorem 3.1. Consider the discrete-time stochastic system given by (3.20) and (3.25) and Algorithm 1, the estimation

error ek|k−1 defined by (3.10) is exponentially bounded in mean square and bounded w.p.o., if the following conditions hold:



51 Chapter 3. From Static to Dynamic Tag Population Estimation: An Extended Kalman Filter Perspective

1. there are positive numbers q, q, φ and φ such that the bounds on Qk and φk are satisfied for every k≥0, as in

q ≤ Qk ≤ q, (3.46)

φ ≤ φk ≤ φ, (3.47)

2. The initialization must follow the rules

P0|0 > 0, (3.48)

|e1|0| ≤ ε (3.49)

with positive real number ε > 0.

Remark. By referring to the design objective posed in Section 3.4, Theorem 3.1 prove the following properties of our

estimation algorithm:

• the estimation error of our algorithm is bounded in mean square and the relative estimation error tends to zero;

• the estimated population size converges to the real value with exponential rate.

Moreover, the conditions in Theorem 3.1 can be interpreted as follows:

1. The inequalities (3.46) and (3.47) can be satisfied by the configuring the correspondent parameters in Algorithm 1,

which guarantees the boundedness of the pseudo-covariance Pk|k−1 as shown later.

2. The inequality (3.48) consists of establishing positive Pk|k−1 for every k ≥ 1.

3. As a sufficient condition for stability, the upper bound ε may be too stringent. As shown in the simulation results,

stability is still ensured even with a relatively large ε.

Before the proof of Theorem 3.1, we first state several auxiliary lemmas to streamline the proof and show

how to apply these lemmas to prove Theorem 3.1 subsequently.

Lemma 3.5. Under the conditions of Theorem 3.1, if P0|0 > 0, there exist p
k
, pk > 0 such that the pseudo-covariance

Pk|k−1 is bounded for every k ≥ 1, i.e.,

p
k
≤ Pk|k−1 ≤ pk. (3.50)

Proof. Recall (3.4) and (3.6), we have Pk|k−1 ≥ Qk−1, and

Pk|k−1 = Pk−1|k−2(1− Kk−1Ck−1) + Qk−1

= Pk−1|k−2

(
1−

Pk−1|k−2Ck−1
2

Pk−1|k−2Ck−1
2 + Rk−1

)
+ Qk−1. (3.51)
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Following the design of Rk in (3.27) and by iteration, we further get

Pk|k−1 = Pk−1|k−2

(
1− 1

1 + φk−1

)
+ Qk−1

= P1|0

k−1

∏
i=1

(
1− 1

1 + φi

)
+

k−2

∑
i=0

Qi

k−2

∏
j=i

(
1− 1

1 + φj+1

)
+ Qk−1.

Since φk and Qk are controllable parameters, we can set φk ≤ φ and Qk ≤ q for every k ≥ 0 in Algorithm 1,

where φ, q > 0. Consequently, we have

Pk|k−1 ≤ P1|0

(
1− 1

1 + φ

)k−1

+ q
k−1

∑
j=1

(
1− 1

1 + φ

)j

+ Qk−1

≤ (P0|0 + Q0)

(
1− 1

1 + φ

)k−1

+ qφ + Qk−1 (3.52)

Let pk = ((P0|0 + Q0)
(

1− 1
1+φ

)k−1
+ qφ + Qk−1 and p

k
= Qk−1, we have p

k
≤ Pk|k−1 ≤ pk.

Lemma 3.6. Let αk ,
1

1+φk
, it holds that

(1− KkCk)
2

Pk+1|k
e2

k|k−1 ≤ (1− αk)
e2

k|k−1

Pk|k−1
, ∀k ≥ 1. (3.53)

Proof. From (3.51), we have

Pk+1|k = Pk|k−1 (1− KkCk) + Qk ≥ Pk|k−1 (1− KkCk) . (3.54)

By substituting it into the left-hand side of (3.53) and using the fact that Rk = φkPk|k−1Ck
2 for every k ≥ 1, we

get
(1− KkCk)

2

Pk+1|k
e2

k|k−1 ≤
(1− KkCk)

2

Pk|k−1 (1− KkCk)
e2

k|k−1 ≤ (1− KkCk)
ek|k−1

2

Pk|k−1
≤
(

1− 1
1 + φk

) e2
k|k−1

Pk|k−1
.

We are thus able to prove (3.53).

Lemma 3.7. Let bk ,
rkρ(4akφk + 1− ak)

4a2
kφk(1 + φk)ẑk|k−1Pk|k−1

, it holds that

mk[2(1− KkCk)ek|k−1 + mk]

Pk+1|k
≤ bk|ẑk|k−1 − zk|3. (3.55)
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Proof. From (3.45), we get the following expansion

mk[2(1− KkCk)ek|k−1 + mk]

Pk+1|k
=

1
Pk+1|k

−Pk|k−1Ck

Pk|k−1Ck
2 + Rk

χ(zk, ẑk|k−1)

·
[

2

(
1−

Pk|k−1Ck
2

Pk|k−1Ck
2 + Rk

)
ek|k−1 −

Pk|k−1Ck

Pk|k−1Ck
2 + Rk

χ(zk, ẑk|k−1)

]
. (3.56)

It then follows from (3.39), (3.41) and (3.54) that

mk[2(1− KkCk)ek|k−1 + mk]

Pk+1|k
≤ 1

Pk|k−1(1− KkCk)

−Pk|k−1Ck

Pk|k−1Ck
2 + Rk

(rkρ)2(ẑk|k−1 − zk)
2

2erkρak ẑ2
k|k−1

·
[

2

(
1−

Pk|k−1Ck
2

Pk|k−1Ck
2 + Rk

)
|ẑk|k−1 − zk| −

Pk|k−1Ck

Pk|k−1Ck
2 + Rk

(rkρ)2(ẑk|k−1 − zk)
2

2e1.59ak ẑ2
k|k−1

]

≤ rkρ(4akφk + 1− ak)

4a2
kφk(1 + φk)ẑk|k−1Pk|k−1

|ẑk|k−1 − zk|3.

We are thus able to prove (3.55).

Lemma 3.8. E

[
sk

2

Pk+1|k

∣∣ek|k−1

]
≤

2.46ẑk|k−1

φk(1 + φk)rkPk|k−1
when rkρ = 1.59.

Proof. From (3.44), we have E
[

s2
k

Pk+1|k

∣∣ek|k−1

]
=

K2
k E[u2

k ]
Pk+1|k

. With (3.7), (3.26) and (3.54), we have

E

[
s2

k
Pk+1|k

∣∣ek|k−1

]
≤

e2rkρ ẑk|k−1

φk(1 + φk)Pk|k−1ρr2
k
(e−rkρ − (1 + r2

kρ)e−2rkρ).

Since item E
[

s2
k

Pk+1|k

∣∣ek|k−1

]
influences the estimation accuracy, we set the optimal persistence probability to

minimize this item. Denote Λ(rk) =
e2rkρ

r2
k
(e−rkρ − (1 + r2

kρ)e−2rkρ), we have

dΛ
drk

=
(rkρ− 2)erkρ + 2

r3
k

.

Since rkρ > 0 and d((rkρ−2)erkρ+2)
drkρ = (rkρ − 1)erkρ which is greater zero if rkρ > 1 and is smaller than zero if

rkρ < 1, and 1) if rkρ = 1, dΛ
drk

< 0; 2) if rkρ = 0, dΛ
drk

= 0; 3) if rkρ = 2, dΛ
drk

> 0, there exists a unique solution

rkρ ∈ (1, 2) for dΛ
drk

= 0 such that Λ(rk) is minimized. Searching in (1, 2), we find the optimal rkρ = 1.59.

Therefore, we can obtain that

E

[
s2

k
Pk+1|k

∣∣ek|k−1

]
≤

2.46ẑk|k−1

φk(1 + φk)rkPk|k−1
, ξk, (3.57)

which completes the proof.

Armed with the above auxiliary lemmas, we next prove Theorem 3.1.
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Proof of Theorem 3.1. First, we construct the following Lyapunov function to define the stochastic process:

Vk(ek|k−1) =
e2

k|k−1

Pk|k−1
,

which satisfies (3.4) and (3.48) as Pk|k−1 > 0.

Next, we use Lemma 3.2 to develop the proof. Because it follows from Lemma 3.5 that the properties (3.16)

and (3.17) in Lemma 3.2 are satisfied, the main task left is to prove (3.18).

From (3.43), expanding Vk+1(ek+1|k) leads to

Vk+1(ek+1|k) =
e2

k+1|k
Pk+1|k

=
[(1− KkCk)ek|k−1 + sk + mk]

2

Pk+1|k
=

(1− KkCk)
2

Pk+1|k
e2

k|k−1

+
mk[2(1− KkCk)ek|k−1 + mk]

Pk+1|k
+

2sk[(1− KkCk)ek|k−1 + mk]

Pk+1|k
+

s2
k

Pk+1|k
.

Furthermore, by Lemmas 3.6, 3.7 and 3.8 and some algebraic operations, we have

E
[
Vk+1(ek+1|k)|ek|k−1

]
−Vk(ek|k−1) ≤ −αkVk(ek|k−1) + bk|ek|k−1|3 + ξk. (3.58)

To obtain the same formation with (3.18), we further proceed to bound the second term in bk in (3.58) as follows:

bk|ek|k−1|3 ≤ ςαkVk(ek|k−1), (3.59)

where 0 < ς < 1 is preset controllable parameter. To prove the above inequality, we need to prove |ek|k−1| ≤
4ςa2

kφk ẑk|k−1
1.59(4akφk+1.59|a′k−1|) . Since |ek|k−1| = |a′k − 1|ẑk|k−1, it suffices to show

|a′k − 1| ≤
4ςa2

kφk

1.59(4akφk + 1.59|a′k − 1|) , (3.60)

which is equivalent to (1− 4φk − 4φkς)ak
2 + (4φk − 2)ak + 1 ≤ 0 because of (3.42). With some algebraic opera-

tions, we obtain 1) 1−2φk−2
√

φk(φk+ς)

1−4φk(1+ς)
< ak ≤ 1, if φk < 1

4(1+ς)
; and 2) 2φk−1+2

√
φk(φk+ς)

4φk(1+ς)−1 ≤ ak ≤ 1, if φk > 1
4(1+ς)

;

and 3) 1+ς
1+2ς ≤ ak ≤ 1, if φk =

1
4(1+ς)

. Since it holds that 2φk−1+2
√

φk(φk+ς)

4φk(1+ς)−1 < 1+ς
1+2ς for every ς and 2φk−1+2

√
φk(φk+ς)

4φk(1+ς)−1

will decrease monotonically to 1
1+ς for a large φk, we have in the worst case for φk ≥ 1

4(1+ς)
,

1 + ς

1 + 2ς
≤ ak ≤ 1. (3.61)

It follows from the analysis that if we set

φk ≥
1

4(1 + ς)
, (3.62)
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(3.60) can be satisfied. Moreover, it holds that

|a′k − 1| ≤ 0.63ς

1 + 2ς
. (3.63)

That is,

|ek|k−1| ≤ εk, (3.64)

where εk ,
0.63ς
1+2ς ẑk|k−1. By setting φk in (3.62), for |ek|k−1| ≤ εk, we thus have

E
[
Vk+1(ek+1|k)|ek|k−1

]
−Vk(ek|k−1) ≤ −(1− ς)αkVk(ek|k−1) + ξk. (3.65)

Therefore, we are able to apply Lemma 3.2 to prove Theorem 3.1 by setting ε = 0.63ς
1+2ς ẑ1|0, β∗ = 1

Q0
, α∗k =

(1− ς)αk, βk =
1
pk

and τk = ξk.

Remark. Theorem 3.1 also holds in the sense of Lemma 3.1 (the off-line version of Lemma 3.2) by setting the parameters

in (3.15) as β = 1
Q0

, α = 1−ς
1+φ
≤ α∗k , β = (P0|0 + Q0 + q(φ+ 1) ≥ pk, and τ = Q0 ẑmax

φ(1+φ)
≥ ξk, where ẑmax is the maximum

estimate.

We conclude the analysis on the performance of our estimation algorithm for the static case with a more

profound investigation on the evolution of the estimation error |ek|k−1|. More specifically, we can distinguish

three regions:

• Region 1:
√

2.46Mẑk|k−1
φk(M−1)rk(1−ς)

≤ |ek|k−1| ≤ εk. By substituting the condition into the right hand side of (3.65),

we obtain: −(1− ς)αkVk(ek|k−1) + ξk ≤ − (1−ς)αk
M Vk(ek|k−1), where M > 1 is a positive constant and can be

set beforehand. It then follows that

E
[
Vk+1(ek+1|k)|ek|k−1

]
≤
(

1− (1− ς)αk

M

)
Vk(ek|k−1).

Consequently, we can bound E[e2
k|k−1] as:

E[e2
k|k−1] ≤

pk
Q0

E[e1|0
2]

k−1

∏
i=1

(1− α∗i ) (3.66)

with α∗k = (1−ς)αk
M . It can then be noted that E[e2

k|k−1]→ 0 at an exponential rate as k→ ∞.

• Region 2:
√

2.46ẑk|k−1
φkrk(1−ς)

≤ |ek|k−1| <
√

2.46Mẑk|k−1
φk(M−1)rk(1−ς)

. In this case, we have

− (1− ς)αk

M
Vk(ek|k−1) < −(1− ς)αkVk(ek|k−1) + ξk ≤ 0.
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It then follows from Lemma 3.2 that

E[e2
k|k−1] ≤

pk
Q0

E[e1|0
2]

k−1

∏
i=1

(1− α∗i ) + pk

k−2

∑
i=1

ξk−i−1

i

∏
j=1

(1− α∗k−j). (3.67)

Hence, when k→ ∞, E[e2
k|k−1] converges at exponential rate to pk ∑k−2

i=1 ξk−i−1· ∏i
j=1 (1− α∗k−j) ∼ Θ(ẑk|k−1),

which is decoupled with the initial estimation error and it thus holds
E[ek|k−1]

zk
= Θ

( 1√
zk

)
→ 0 when

zk → ∞.

• Region 3: 0 ≤ |ek|k−1| <
√

2.46ẑk|k−1
φkrk(1−ς)

. In this case, we can show that the right hand side of (3.65) is positive,

i.e., −(1− ς)αkVk(ek|k−1) + ξk > 0. It also follows from Lemma 3.2 that

E[e2
k|k−1] ≤

pk
Q0

E[e1|0
2]

k−1

∏
i=1

(1− α∗i ) + pk

k−2

∑
i=1

ξk−i−1

i

∏
j=1

(1− α∗k−j). (3.68)

Hence, when k → ∞, E[e2
k|k−1] converges exponentially to pk ∑k−2

i=1 ξk−i−1 · ∏i
j=1 (1− α∗k−j) ∼ Θ(ẑk|k−1),

which is decoupled with the initial estimation error and it thus holds
E[ek|k−1]

zk
≤ Θ

( 1√
zk

)
→ 0 when

zk → ∞.

Combining the above three regions, we get the following results on the convergence of the expected esti-

mation error E[ek|k−1]: (1) if the estimation error is small (Region 3), it will converge to a value smaller than

Θ(
√

ẑk|k−1) as analysed in Region 3; (2) if the estimation error is larger (Region 1), it will decrease as analysed in

Region 1 and fall into either Region 2 or Region 3 where E[ek|k−1]≤ Θ(
√

ẑk|k−1) such that the relative estimation

error
E[ek|k−1]

zk
→0 when zk→∞.

3.7.2 Dynamic Case

Our analysis on the stability of Algorithm 2 for the dynamic case is also composed of two steps. First, we

derive the estimation error. Second, we establish the stability and the accuracy of Algorithm 2 in terms of the

boundedness of estimation error.

We first derive the dynamics of the estimation error as follows:

ek+1|k = (1− KkCk)ek|k−1 + sk + mk, (3.69)

which differs from the static case (3.43) in sk. In the dynamic case, we have

sk = wk − Kkuk (3.70)

Next, we show the boundedness of the estimation error in Theorem 3.2.

Theorem 3.2. Under the conditions of Theorem 1, consider the discrete-time stochastic system given by (3.28) and (3.25)
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and Algorithm 2, if there exist time-varying positive real number λk, σk > 0 such that

E[wk] ≤ λk, (3.71)

E[wk
2] ≤ σk, (3.72)

then the estimation error ek|k−1 defined by (3.10) is exponentially bounded in mean square and bounded w.p.o..

Remark. Note that the condition E[wk] ≤ λk always holds for E[wk] < 0, we thus focus on the case that E[wk] ≥ 0. In

the proof, the explicit formulas of λk and σk are derived. As in the static case, the conditions may be too stringent such

that the results still hold even if the conditions are not satisfied, as illustrated in the simulations.

The proof of Theorem 3.2 is also based on Lemmas 3.6, 3.7 and 3.8, but due to the introduction of wk into

sk, we need another two auxiliary lemmas on E[sk] and E[s2
k ].

Lemma 3.9. If E[wk] ≥ 0, then there exists a time-varying real number dk > 0 such that

E

[
2sk[(1− KkCk)ek|k−1 + mk]

Pk+1|k

∣∣∣ek|k−1

]
≤ dk|ek|k−1|E[wk].

Proof. When E[wk] ≥ 0, from E[vk] = 0, (3.41), (3.54) and the independence between wk and ek|k−1, we can

derive

E

[
2sk[(1− KkCk)ek|k−1 + mk]

Pk+1|k

∣∣∣ek|k−1

]
≤ 2E[wk]

1 + φk

φkPk|k−1

[
φk|ek|k−1|

1 + φk
+

1.59|ek|k−1|2

2ak(1 + φk)ẑk|k−1

]

≤ E[wk]
2akφk + (1− ak)

akφkPk|k−1
|ek|k−1|.

We thus complete the proof by setting

dk =
2akφk + (1− ak)

akφkPk|k−1
. (3.73)

Lemma 3.10. There exists a time-varying parameter ξ∗k > 0 such that E
[

sk
2

Pk+1|k

∣∣ek|k−1

]
≤ ξ∗k .

Proof. By (3.70), we have s2
k = w2

k − 2Kkwkuk + K2
k u2

k . Since wk and uk are uncorrelated and ek|k−1 does not

depend on either wk or uk, we have

E

[
s2

k
Pk+1|k

∣∣ek|k−1

]
=

E[w2
k ]

Pk+1|k
+

K2
k E[u2

k ]

Pk+1|k
. (3.74)
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Substituting (3.7), (3.54) and using Lemma 3.8, noticing that E[uk] = 0, we get

E

[
s2

k
Pk+1|k

∣∣ek|k−1

]
≤ 1 + φk

φkPk|k−1
E[w2

k ] +
2.46ẑk|k−1

φk(1 + φk)rkPk|k−1
.

Finally, by setting ξ∗k as

ξ∗k =
1 + φk

φkPk|k−1
E[wk

2] +
2.46ẑk|k−1

φk(1 + φk)rkPk|k−1
, (3.75)

we complete the proof.

Armed with the above lemmas, we next prove Theorem 3.2 by utilizing the same method with the proof of

Theorem 3.1.

Proof of Theorem 3.2. Recall (3.44) and (3.70), we notice that the only difference between the estimation errors of

Algorithms 2 and 1 is sk. Therefore, it suffices to study the impact of wk on Vk(ek|k−1).

It follows from Lemmas 3.6, 3.7, 3.8, 3.9 and 3.10 that

E
[
Vk+1(ek+1|k)|ek|k−1

]
−Vk(ek|k−1) ≤ −αkVk(ek|k−1) + bk|ek|k−1|3 + dk|ek|k−1|E[wk] + ξ∗k .

Furthermore, bounding the second item in bk as (3.59) and given φk in (3.62), yields

E
[
Vk+1(ek+1|k)|ek|k−1

]
−Vk(ek|k−1) ≤ −(1− ς)αkVk(ek|k−1) + dk|ek|k−1|E[wk] + ξ∗k

for |ek|k−1| ≤ εk.

And we can thus prove Theorem 3.2 by setting ε = 0.63ς
1+2ς ẑ1|0, β∗ = 1

Q0
, α∗k = (1− ς)αk, τk = ξ∗k + dk|ek|k−1|λk

and βk =
1
pk

.

We conclude the analysis on the performance of our estimation algorithm for the dynamic case with a more

profound investigation on the evolution of the estimation error |ek|k−1| and derive the explicit formulas for λk

and σk. More specifically, we can distinguish three regions:

• Region 1:
√

9.84Mẑk|k−1
φk(M−1)rk(1−ς)

≤ |ek|k−1| ≤ εk. In this case, the objective is to achieve

E
[
Vk+1(ek+1|k)|ek|k−1

]
−Vk(ek|k−1) ≤ −

1
M

(1− ς)αkVk(ek|k−1) (3.76)

so that E[e2
k|k−1] is bounded as

E[e2
k|k−1] ≤

pk
Q0

E[e1|0
2]

k−1

∏
i=1

(1− α∗i ). (3.77)

That is, it should hold that dk|ek|k−1|E[wk] + ξ∗k ≤
M−1

M (1− ς)αkVk(ek|k−1). To that end, we firstly let the
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following inequalities hold


dk|ek|k−1|E[wk] ≤ M−1

2M (1− ς)αkVk(ek|k−1),

ξ∗k ≤
M−1
2M (1− ς)αkVk(ek|k−1).

(3.78)

Secondly, substituting (3.73), (3.75) into (3.78) leads to

E[wk] ≤
akφk(1− ς)|ek|k−1|

(1 + φk) (2akφk + 1− ak)
, (3.79)

E[wk
2] ≤

φk(M− 1)rk(1− ς)|ek|k−1|
2 − 4.92Mẑk|k−1

2M(1 + φk)2 . (3.80)

Thirdly, let
φk(M− 1)rk(1− ς)|ek|k−1|

2

2M(1 + φk)2 ≥
4.92ẑk|k−1

(1 + φk)2 , (3.81)

and we thus have

|ek|k−1| ≥

√
9.84Mẑk|k−1

φk(M− 1)rk(1− ς)
, ε̃, (3.82)

E[wk
2] ≤

2.46ẑk|k−1

(1 + φk)2 , σk. (3.83)

The rational behind can be interpreted as follows: i) the right term of (3.80) cannot be less than zero

and ii) there always exists the measurement uncertainty in the system. Consequently, the impact of tag

population change plus the measurement uncertainty should equal in order of magnitude that of only

measurement uncertainty, which can be achieved by establishing E[wk
2] ≤ K2

k E[uk
2] and (3.81) with refer-

ence to (3.74) and (3.75).

However, since a′k and ak are unknown a priori, we thus need to transform the right hand side of (3.79) to

a computable form. From (3.61), we get 1
ak
− 1 ≤ ς

1+ς such that it holds for the right hand side of (3.79)

that
akφk(1−ς)|ek|k−1|

3(1+φk)(2akφk+1−ak)
≥ φk(1−ς)ε̃

3(1+φk)(2φk+
ς

1+ς )
.

Finally, let

E[wk] ≤
φk(1− ς)ε̃

3(1 + φk)
(

2φk +
ς

1+ς

) , λk, (3.84)

we can establish (3.77) and thus get that E[e2
k|k−1]→ 0 at an exponential rate when k→ ∞.

• Region 2:
√

9.84ẑk|k−1
φkrk(1−ς)

≤ |ek|k−1| <
√

9.84Mẑk|k−1
φk(M−1)rk(1−ς)

. Given ε̃, λk and σk as in Region 1, in this case, we have
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−(1− ς)αkVk(ek|k−1) + dk|ek|k−1|E[wk] + ξ∗k ≤ 0. It then follows from Lemma 3.2 that

E[e2
k|k−1] ≤

pk
Q0

E[e1|0
2]

k−1

∏
i=1

(1− α∗i ) + pk

k−2

∑
i=1

τk−i−1

i

∏
j=1

(1− α∗k−j). (3.85)

Hence, when k→ ∞, E[e2
k|k−1] converges exponentially to pk ∑k−2

i=1 τk−i−1 · ∏i
j=1 (1− α∗k−j) ∼ Θ(ẑk|k−1) and

it thus holds that
E[ek|k−1]

zk
= Θ( 1√

zk
)→ 0 for zk → ∞.

• Region 3: 0 ≤ |ek|k−1| <
√

9.84ẑk|k−1
φkrk(1−ς)

. The circumstances in this region are very complicated due to E[wk]

and E[wk
2], we here thus just consider the worst case that E[wk] = λk and E[wk

2] = σk. Consequently, we

have −(1− ς)αkVk(ek|k−1) + dk|ek|k−1|E[wk] + ξ∗k > 0, and it then follows from Lemma 3.2 that

E[e2
k|k−1] ≤

pk
Q0

E[e1|0
2]

k−1

∏
i=1

(1− α∗i ) + pk

k−2

∑
i=1

τk−i−1

i

∏
j=1

(1− α∗k−j). (3.86)

Hence, when k→ ∞, E[e2
k|k−1] converges at exponential rate to pk ∑k−2

i=1 τk−i−1 ∏i
j=1 (1− α∗k−j) ∼ Θ(ẑk|k−1),

and thus
E[ek|k−1]

zk
≤ Θ( 1√

zk
)→ 0 for zk → ∞.

Note that for the case that E[wk] < λk and E[wk
2] < σk, the range of Region 3 will shrink and the range of

Region 2 will largen.

Integrating the above three regions, we can get the similar results on the convergence of the expected

estimation error E[ek|k−1] as in the static case.

3.8 Discussions

This section discusses the application of the proposed algorithm to the unreliable channel and multi-reader

scenario.

Error-prone channel. The unreliable channel may corrupt a would-be idle slot into a busy slot and vice

versa. We consider the random error model as [67]. Let t0 and t1 be the false negative rate that a would-be

empty slot turns into a busy slot and the false positive rate, respectively. Each parameter without error rate is

marked with a superscript ∗ to define its counterpart with error rate t0 and t1. Then, we have

p∗(Zk) = t1 + (1− t0 − t1)p(Zk) (3.87)

Var∗[uk] = (1− t0 − t1)
2Var[uk], (3.88)

and thus get the new Kalman gain K∗k as

K∗k =
1

(1− t0 − t1)
Kk. (3.89)
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It is noted that the ideal channel condition is equivalent to the special case where t0=t1=0. When the channel

is totally random, i.e., t0=t1=0.5, the noisy will overwhelm the measurement and estimation. Nevertheless, if

t0, t1∈ (0, 0.5), updating the analysis with the new equations, we find that Theorem 3.1 and 3.2 still holds under

the same conditions, meaning that the communication error can be compensated successfully.

Multi-reader case. In multi-reader scenarios, we leverage the same approach as [68]. The main idea is

that a back-end server can be used to synchronize all readers such that the RFID system with multiple readers

operates as the single-reader case. Specially, the back-end server calculates all the parameters and sends them

to all readers such that they broadcast the same parameters to the tags. Subsequently, each reader sends its

bitmap to the back-end server. Then the back-end server applies OR operator on all bitmaps, which eliminates

the impact of the duplicate readings of tags in the overlapped interrogation region.

3.9 Numerical Analysis

In this section, we conduct extensive simulations to evaluate the performance of the proposed tag population

estimation algorithms by focusing on the relative estimation error denoted as REEk =
∣∣∣ zk−ẑk|k−1

zk

∣∣∣. Specifically,

we simulate in sequence both static and dynamic RFID systems where the initial tag population are z0 = 104

with the following parameters: q = 0.1, P0|0 = 1, J = 3, θ = 4 and Υ = 0.5 with reference to (3.35) and (3.36),

L = 1500, φ = 0.25 and φ = 100 such that (3.62) always holds. Since the proposed algorithms do not require

collision detection, we set a slot to 0.4ms as in the EPCglobal C1G2 standard [49]. We will discuss the effect of

φ and φ on the performance in next section.

3.9.1 Algorithm Verification

In the subsection, we show the impact of φ and φ on the system performance. To that end, with REE0=0.5, we

keep zk=104 in static scenario while the tag population varies in order of magnitude from
√

ẑk|k−1 to 0.4ẑk|k−1 in

different patterns in dynamic scenario. Specifically, we set φ=100 while varying φ = 0.25, 0.5, 1 in Fig. 3.2, 3.3,

and fix φ=0.25 with varying φ=1, 10, 100 in Fig. 3.4, 3.5. As shown in the figures, a smaller φ leads to rapider

convergence rate while the bigger φ, the smaller the deviation. Thus, we choose φ=0.25 and φ=100 in the rest of

the simulation. Moreover, we make the following observations. First, as derived in Theorem 3.2, the estimation

is stable and accurate facing to a relative small population change, i.e., around the order of magnitude
√

ẑk|k−1.

Second, the proposed scheme also functions nicely even when the estimation error is as high as 0.4ẑk|k−1 tags

as shown in Fig. 3.3 and 3.5. This is due to the CUSUM-based change detection which detects state changes

promptly such that a small value is set for φk, leading to rapid convergence rate.
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Figure 3.2: Static:φ = 100.
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Figure 3.3: Dynamic:φ = 100.
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Figure 3.4: Static:φ = 0.25.

0 5 10 15 20 25
0.5

0.8

1

1.2

Time (frame)

N
um

be
r 

of
 t

ag
s(

×1
04 )

 

 

Actual

φ=1

φ=10

φ=100

Figure 3.5: Dynamic:φ = 0.25.

3.9.2 Algorithm Performance

In this section, we evaluate the performance of the proposed EKF-based estimator, referred to as EEKF here, in

comparison with [44] in static scenario and with [56] in dynamic scenario.

Static System (zk = 104)

We evaluate the performance by varying initial relative error as

• REE0 =
z0−ẑ0|0

z0
= 0.8 means a large initial estimation error.

• REE0 = 0.5 means a medium initial estimation error.

• REE0 = 0.2 implies a small initial estimation error and satisfies (3.64) with 0.5 ≤ ς < 1.

The purpose of the first two cases is to investigate the effectiveness of the estimation in relative large initial

estimation errors while the third case intends to verify the analytical results
ẑ0|0
z0
>0.79 as shown in (3.64). Note

that EZB uses the optimal persistence probability [44] that needs to know coarse range of tag size. And

estimation time of EZB increases with the width of the range. Fig. 3.6 illustrates the estimation processes with
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Figure 3.6: Algorithm performance under different initial estimation errors.

different initial estimation errors. As shown in the figures, the estimation ẑk|k−1 converges towards the actual

number of tags within very short time in all cases, despite the initial estimation error. It is worth noticing that

EZB suffers the significant deviation though it is faster than EEKF.

Dynamic system

Table 3.2: Execution time

Algo.
Variation of tag population

12500 6737 9364 7049 8616 11143 13385 8713 10761
JREP 3.28 3.28 3.28 3.28 3.28 3.28 3.28 3.28 3.28
EEKF 1.2 1.2 1.2 0.6 0.6 1.8 0.6 0.6 1.8

In this subsection, we evaluate the performance of EEKF for dynamic systems by comparing with the

start-of-the-art solution JREP [56] in terms of execution time to achieve the required accuracy. To that end,

we refer to the simulation setting in [56]. Specifically, the initial estimation error is 10%. The tag population

size changes by following the normal distribution with the mean of 10000 and the variance of 20002 and the

accuracy requirement is 95%. By taking 9 samplings, we obtain the results as listed in Table 3.2. As shown in

Table 3.2, EEKF is more time-efficient than JREP. This is because the persistence probability in JREP is set to

optimise the power-of-two frame size, which increases the variance of the number of empty slots and leads to

the performance degradation. In contrast, EEKF can minimise this variance while promptly detecting the tag

population changes.

3.10 Conclusion

In this chapter, we have addressed the problem of tag estimation in dynamic RFID systems and designed a

generic framework of stable and accurate tag population estimation schemes based on Kalman filter. Technical-

ly, we leveraged the techniques in extended Kalman filter (EKF) and cumulative sum control chart (CUSUM)

to estimate tag population for both static and dynamic systems. By employing Lyapunov drift analysis, we
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mathematically characterised the performance of the proposed framework in terms of estimation accuracy and

convergence speed by deriving the closed-form conditions on the design parameters under which our scheme

can stabilise around the real population size with bounded relative estimation error that tends to zero within

exponential convergence rate.



Chapter 4

Finding Needles in a Haystack: Missing Tag

Detection in Large RFID Systems

4.1 Introduction

4.1.1 Motivation and problem statement

According to the statistics presented in [69], inventory shrinkage, a combination of shoplifting, internal theft,

administrative and paperwork error, and vendor fraud, resulted in 44 billion dollars in loss for retailers in

2014. Fortunately, RFID technology can be used to reduce the cost by monitoring products for its low cost and

non-line-of-sight communication pattern. Obviously, the first step in the application of loss prevention is to

determine whether there is any missing tag. Hence, quickly finding out the missing tag event is of practical

importance.

The presence of unexpected tags, however, prolongs the detection time and even leads to missing detection.

Here, we present two examples to motivate the presence of unexpected tags in realistic scenarios.

• Example 1. Consider a retail store with expensive goods and a much larger amount of inexpensive goods,

and an RFID system is deployed to monitor the goods. Because of the higher value of expensive products,

they are expected to be detected more frequently, but the tags of inexpensive goods also response the

interrogation of readers, which influences the decision of readers.

• Example 2. Consider a large warehouse rented to multiple companies where the products of the same

company may be placed in different zones according to their individual categories, such as child food

and adult food, chilled food and ambient food. When detecting the tags identifying products from one

company, readers also receive the feedbacks from the tags of other companies.

In both examples, how to effectively reduce the impact of unexpected tags is of critical importance in

missing tag detection. In this chapter, we consider a scenario, as depicted in Fig. 4.1, where each product is

affixed by an RFID tag. The reader stores the IDs of expected tags. The problem we address is how to detect

65
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missing expected tags in the presence of a large number of unexpected tags in the RFID systems in a reliable

and time-efficient way.

Missing expected tag

Unexpected tag

Present expected tag

Reader

Figure 4.1: Missing tag detection with the presence of unexpected tags.

4.1.2 Prior art and limitation

Prior related work can be classified into three categories from the perspective of detecting missing tags: missing

tag detection protocols, tag identification protocols, and tag estimation protocols.

There are two types of missing tag detection protocols: probabilistic [70, 71, 72, 68] and deterministic [73,

74, 75]. The probabilistic protocols find out a missing tag event with a certain required probability if the

number of missing tags exceeds a given threshold, thus they are more time-efficient but return weaker results

in comparison with the deterministic protocols that report all IDs of the missing tags. Actually, they can be used

together such that a probabilistic protocol is executed in the first phase as an alarm that reports the absence of

tags and then a deterministic protocol is executed to report IDs of missing tags. Unfortunately, all missing tag

detection protocols except RUN [68] work on the hypothesis of a perfect environment without unexpected tags

and thus fail to effectively detect missing tags in the presence of unexpected tags. Although RUN [68] is tailored

for missing tag detection in the RFID systems with unexpected tags, all unexpected tags may always participate

in the interrogation, which leads to the significant degradation of the performance when the unexpected tag

population size scales.

Tag identification protocols [76, 77, 78, 79] can identify all tags in the interrogation region. To detect missing

tags, tag identification protocols can be executed to obtain the IDs of the tags present in the population and

then the missing tags can be found out by comparing the collected IDs with those recorded in the database.

However, they are usually time-consuming [73] and fail to work when it is not allowed to read the IDs of tags

due to privacy concern.

Tag estimation protocols [46, 47, 48, 36] are used to estimate the number of tags in the interrogation region.

If many expected tags are absent in RFID systems without unexpected tags, a missing tag event may be detected

by comparing the estimation and the number of expected tags stored in the database. However, the estimation

error may be misinterpreted as missing tags and cause detection error, especially when there are only a few
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missing tags. Moreover, the estimation protocol cannot handle the case with a large number of unexpected

tags.

4.1.3 Proposed solution and main contributions

Motivated by the detrimental effects of unexpected tags on the performance of missing tag detection, we

devise a reliable and time-efficient protocol named Bloom filter-based missing tag detection protocol (BMTD).

Specifically, BMTD consists of two phases, each consisting of a number of rounds.

• In each round of the first phase, the reader fist constructs a Bloom filter by mapping all the expected

tag IDs into it such that each tag has multiple representative bits. Then the constructed Bloom filter is

broadcasted to all tags. If at least one representative bit of a tag is ’0’s, it finds itself unexpected and will

not participate in the rest of BMTD. Thus, the number of active unexpected tags is considerably reduced.

• Subsequently, in each round of the second phase, the reader constructs a Bloom filter by aggregating

the feedbacks from the remaining tags and uses it to check whether any expected tag is absent from the

population.

The major contributions of this chapter can be articulated as follows. First, we propose a new solution for the

important and challenging problem of missing tag detection in the presence of a large number of unexpected

tags by employing Bloom filter to filter out the unexpected tags and then detect the missing tags. Second,

we perform the theoretical analysis for determining the optimal parameters used in BMTD that minimize the

detection time and also meet the required reliability. Third, we perform extensive simulations to evaluate the

performance of BMTD. The results show that BMTD significantly outperforms the state-of-the-art solutions.

4.2 Related Work

Extensive research efforts have been devoted to detecting missing tags by using probabilistic method [70, 71,

72, 68] and deterministic method [73, 74, 75]. Next, we briefly review the existing solutions of missing tag

detection problem and introduce Bloom filter.

4.2.1 Probabilistic protocols

The objective of probabilistic protocols is to detect a missing tag event with a predefined probability. Tan

et al. initiate the study of probabilistic detection and propose a solution called TRP in [70]. TRP can detect

a missing tag event by comparing the pre-computed slots with those picked by the tags in the population.

Different from our BMTD, TRP does not take into account the negative impact of unexpected tags. Follow-up

works [71, 72] employ multiple seeds to increase the probability of the singleton slot. Same to TRP, they are

required to know all the tags in the population. The latest probabilistic protocol called RUN is proposed in [68].

The difference with previous works lies in that RUN considers the influence of unexpected tags and can work
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in the environment with unexpected tags. However, RUN does not eliminate the interference of unexpected

tags fundamentally such that the false positive probability does not decrease with respect to the unexpected

tag population size, which shackles the detection efficiency especially in the presence of a large number of

unexpected tags. In addition, the first frame length is set to the double of the cardinality of the expected tag set

in RUN, which is not established by theoretical analysis and leads to the failure of estimation method in RUN

when the number of the unexpected tags is far larger than that of the expected tags.

4.2.2 Deterministic protocols

The objective of deterministic protocols is to exactly identify which tags are absent. Li et al. develop a series of

protocols in [73] which intend to reduce the radio collision and identify a tag not in the ID level but in the bit

level. Subsequently, Zhang et al. propose another series of determine protocols in [74] of which the main idea

is to store the bitmap of tag responses in all rounds and compare them to determine the present and absent

tags. But how to configure the protocol parameters is not theoretically analyzed. More recently, Liu et al. [75]

enhance the work by reconciling both 2-collision and 3-collision slots and filtering the empty slots such that

the time efficiency can be improved. None of existing deterministic protocols, however, have been designed to

work in the chaotic environment with unexpected tags.

4.2.3 Bloom Filter

A Bloom filter is a randomized data structure that is originally from database contexts [80, 81] and is used

to records the members of a set but has attracted much research attention in networking applications [82].

Specifically, given a set A = {a1, a2, · · · , an}, Bloom filter operates as follows:

Initialization: Let a bit array BF be the Bloom filter and the length of BF be f , we initialize BF with zero

array. Then the filter is incrementally built by inserting items of A by setting certain bits of BF to 1.

Insertion: To insert an arbitrary item ai ∈ A, we first need to feed ai to k independent hash functions

h1, h2, · · · , hk to retrieve k values: hv(ai) mod f for 1 ≤ v ≤ k, which directs to k positions in BF. Insertion of

ai is then achieved by setting the bits in these k positions to 1.

Query: To determine whether an item b belongs to A, we can check if b has been inserted into the Bloom

filter BF. Achieving this requires b to be inserted by the same hash functions and then we can check every bit

BF[hv(b) mod f ] for 1 ≤ v ≤ k. If all of k bits are set to 1, the Bloom filter asserts b ∈ A; otherwise, b /∈ A.

4.3 System Model and Problem Formulation

4.3.1 System model

Consider a large RFID system consisting of a single RFID reader and a large number of RFID tags. The reader

broadcasts the commands and collects the feedbacks from the tags. In the RFID system, the tags can be either
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battery-powered active ones or lightweight passive ones that are energized by radio waves emitted from the

reader. In this chapter, we first take account of the single-reader case and then extend the proposed protocol to

the multi-reader case.

The communications between the readers and the tags follow the Listen-before-talk mechanism [83]. During

the communications, the tag-to-reader transmission rate and the reader-to-tag transmission rate may differ with

each other and are subject to the environment. In practice, the former can be either 40kb/s ∼ 640kb/s in the

FM0 encoding format or 5kb/s ∼ 320kb/s in the modulated subcarrier encoding format, while the later is

normally about 26.7kb/s ∼ 128kb/s [49].

4.3.2 Problem formulation

In the considered RFID system, we use E to denote the set of IDs of the expected tags which are expected to

be present in a population and target tags to be monitored. In the RFID system, we assume that an unknown

number of tags, m, out of these |E| tags are missing. Note that | · | stands for the cardinality of a set. Denote

by Er the set of IDs of the remaining |E| −m tags that are actually present in the population. Let U be the set

of IDs of unexpected tags within the interrogation region of the reader which does not need to be monitored.

The reader may neither knows exactly the IDs of unexpected tags nor does it know the cardinality of U.

Let M be a threshold on the number of missing expected tags. We use Psys to denote the probability that the

reader can detect a missing event. The optimum missing tag detection problem is formally defined as follows.

Definition 4.1 (Optimum missing tag detection problem). Given |U| unexpected tags where both |U| and the IDs

of tags in U are unknown, the optimum missing tag detection problem is to devise a protocol of minimum execution time

capable of detecting a missing event with probability Psys ≥ α if m ≥ M, where α is the system requirement on the

detection reliability.

Table 4.1 summaries the main notations used in this chapter.

4.4 Bloom Filter-based Missing Tag Detection Protocol

4.4.1 Design rational and protocol overview

To improve the time efficiency of detecting missing tags in the presence of a large number of unexpected tags

in the population, we limit the interference of unexpected tags in our protocol. To achieve this goal, we employ

a powerful technique called Bloom filter which is a space-efficient probabilistic data structure for representing a

set and supporting set membership queries [80] to rule out the unexpected tags in the set U, which efficiently

reduces their interference and thus the overall execution time. Following this idea, we propose a Bloom filter-

based Missing Tag Detection protocol (BMTD), by which Bloom filters are sequentially constructed by the reader

and by the feedbacks from the active tags in the RFID system.
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Table 4.1: Main Notations
Symbols Descriptions
E set of target tags that need to be monitored
Er tags that are actually present in the population
U set of unexpected tags
α required detection reliability
m number of missing expected tags
M threshold to detect missing tags
Psys prob. of detecting a missing event in BMTD
J number of rounds in Phase 1
lj length of the j-th frame of Phase 1
k j number of hash functions in the j-th frame of Phase 1
sj random seed used in the j-th frame of Phase 1
Ur set of remaining active unexpected tags after Phase 1
N∗ number of remaining active tags after Phase 1
P1,j false positive rate in the j-th frame of Phase 1
T1 time cost of Phase 1
W number of rounds in Phase 2
fw length of the w-th frame of Phase 2
Rw number of hash functions in the w-th frame of Phase 2
dw random seed used in the w-th frame of Phase 2
P2,w false positive rate in the w-th frame of Phase 2
T2 time taken to execute W rounds in Phase 2
T theoretical execution time
q prob. of detect a missing tag in a given slot of Phase 2
Z random variable for slot of the first detection
E[TD] expected detection time of BMTD
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Figure 4.2: Example illustrating BMTD

The BMTD consists of two phases: 1) the unexpected tag deactivation phase and 2) the missing tag detection

phase.

• The first phase is divided into J rounds where the reader constructs J Bloom filters by mapping the

recorded IDs in the reader to deactivate the unexpected tags after identifying them.

• The second phase is divided into W rounds. The reader constructs W Bloom filters according to the

responses of the remaining active tags and uses the Bloom filters to detect any missing event. Our
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protocol either detects a missing event or reports no missing event if the reader does not detect a missing

event after W rounds.

We elaborate the design of the BMTD in the rest of this section.

4.4.2 Phase 1: unexpected tag deactivation

In Phase 1, we use Bloom filters to reduce the number of active unexpected tags. Specifically, in the j-th round

of Phase 1 (j = 1, 2, ..., J), the reader first constructs a Bloom filtering vector by mapping the expected tags in set

U into an lj-bit array using k j hash functions with random seed sj. Here, we denote the lj-bit Bloom filter vector

as BF1,j(E). How the values of lj, k j are chosen and how J is calculated are analysed in Sec. 4.5 on parameter

optimisation.

Then, the reader broadcasts the lj-bit Bloom filtering vector, k j and sj to all tags. Upon receiving BF1,j(E),

k j, and sj, each tag maps its ID to k j bits pseudo-randomly at positions h1(ID), h2(ID), · · · , hk j(ID), and checks

the corresponding positions in BF1,j(E). If all of k j bits are 1, then the tag regards itself expected by the reader.

If any of k j bits is 0, the tag regards that it is unexpected and then remains silent in the rest of the time.

Let Uj denote the set of the remaining active unexpected tags after the j-th round of Phase 1, and let

Uj ∩ BF1,j(E) denote the set of unexpected tags that pass the membership test of BF1,j(E). Since the Bloom

filter has no false negatives, the set of remaining active tags can be represented as Er ∪Uj−1 ∩ BF1,j(E).

After J rounds when Phase 1 is terminated, the number of remaining active unexpected tags, termed as

|Ur|, is |UJ ∩ BF1,J(E)|. The present tag population size can be written as |Er ∪Ur|. Subsequently, the reader

enters Phase 2.

4.4.3 Phase 2: missing tag detection

In the second phase, we still employ Bloom filter to detect a missing tag event. Note that the parameters that

the reader broadcasts in each round in Phase 2 except random seeds are identical. In the w-th round of Phase

2 (w = 1, 2, ..., W), the reader first broadcasts the parameters containing the Bloom filter size fw, the number

of hash functions Rw, and a new random seed dw. How their values are chosen and how W is calculated are

analysed in Sec. 4.5 on parameter optimisation.

After receiving the configuration parameters, each tag in the set Er ∪Ur selects Rw slots at the indexes

hv(ID) (1 ≤ v ≤ Rw) in the frame of fw slots and transmits a short response at each of the Rw corresponding

slots. As a consequence, a Bloom filter is formed in the air by the responses from the remaining active tags. In

each round, there are two types of slots: empty slots and nonempty slots.

According to the responses from the tags, the reader encodes an fw-bit Bloom filter as follows: If the i-th

slot is empty, the reader sets i-th bit of the fw-bit vector to be ’0’, otherwise ’1’. Consequently, a virtual Bloom

filter is constructed using which the reader then performs membership test. Let BF2,w(Er ∪Ur) denote the

constructed Bloom filter in w-th round.
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To perform membership test, the reader uses tag IDs from the expected tag set E. Specifically, for each ID

in E, the reader maps it into Rw bits at positions hv(ID) (1 ≤ v ≤ Rw) in BF2,w(Er ∪Ur). If all of them are

’1’s, then the tag is regarded as present. Otherwise, the tag is considered to be missing. If a missing event is

detected in w-round, the reader terminates the protocol without executing the remaining rounds. Otherwise,

the reader initiates a new round until the protocol runs W rounds. If the reader does not detect a missing event

after W rounds, it reports no missing event, i.e., the number of missing tags m is less than the threshold M.

4.4.4 An illustrative example of BMTD

We present an illustrative example to show the execution of BMTD. Consider an RFID system with 4 tags. We

assume that the reader needs to monitor tag 1 and tag 2 and thus knows their IDs, i.e., E={ID1, ID2}, but it is

not aware of the presence of tag 3 and tag 4, who are unexpected, i.e., U={ID3, ID4}. In the example, tag 2 is

missing from the population.

As shown in (1) of Fig. 4.2(a), the reader first constructs a Bloom filter BF1,j(E) by mapping IDs in E and

broadcasts a message containing BF1,j(E) and the values of k j and lj. Here we assume J = 1, k j = 2 and lj = 6.

After receiving BF1,j(E), each tag checks if it is an expected tag. As shown in (2) of Fig. 4.2(a), tag 1 finds

itself expected due to the fact that both h1(ID1) and h2(ID1) are equal to 1. However, tag 4 realizes that it is

unexpected for h1(ID4) = 0 and deactivates itself. Different from tag 4, actually unexpected tag 3 passes the

test and will participate in the rest of BMTD.

As depicted in (1) of Fig. 4.2(b), after the first phase, the reader starts to detect missing tags by broadcasting

parameters fw and Rw. Here we assume W = 1, Rw = 2 and fw = 7. By using fw and Rw, tag 1 and tag 3

generate a Bloom filter vector, respectively, which is shown in (2) of Fig. 4.2(b). Then they transmit following

their individual Bloom filter vector. By sensing the channel, the reader can encode a Bloom filter and use it to

check the IDs in E one by one. As shown in (3) of Fig. 4.2(b), since the Bloom filter is constructed based on the

responses of tag 1 and tag 3, tag 1 passes the test but tag 2 fails and is regarded as absent. Then the protocol

reports a missing event.

4.5 Performance optimisation and parameter tuning

In this section, we investigate how the parameters in the BMTD are configured to minimise the execution time

while ensuring the performance requirement.
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4.5.1 Tuning parameters in Phase 1

According to the property of Bloom filter, false negatives are impossible. The false positive rate of the Bloom

filter BF1,j(E) in the j-th round in Phase 1, defined as P1,j, can be calculated as follows [80]:

P1,j =

[
1−

(
1− 1

lj

)|E|k j
]k j

≈ (1− e−|E|k j/lj)k j . (4.1)

By rearranging (4.1), we can express the Bloom filter size in the j-th round as

lj =
−|E|k j

ln(1− P
1
kj

1,j)

. (4.2)

The total time spent in this round can thus be calculated as lj ∗ tr, where tr denotes the per bit transmission

time from reader to tags.

We denote Cj the cost to detect and deactivate an unexpected tag as follows:

Cj =
ljtr

|U|(1− P1,j)
=

−tr|E|k j

|U|(1− P1,j) ln(1− P
1
kj

1,j)

. (4.3)

From the expression of Cj, it can be noted that Cj represents the average time consumed to detect and deactive

an unexpected tag in the j-th round. In our design we minimize Cj so as to achieve the optimal time-efficiency.

To minimize Cj, we first compute the derivative of Cj with respect to k j as follows:

dCj

dk j
=

|E|tr

(
P

1
kj

1,j ln P1,j − k j(1− P
1
kj

1,j) ln(1− P
1
kj

1,j)

)

|U|(1− P1,j)k j(1− P
1
kj

1,j) ln2(1− P
1
kj

1,j)

. (4.4)

Furthermore, let dCj
dk j

= 0, we can obtain

P
1
kj

1,j =
1
2

, (4.5)

and the unique minimiser k∗j =
− ln P1,j

ln 2 as dCj
dk j

> 0 when k j >
− ln p1,j

ln 2 , and dCj
dk j

< 0 when k j <
− ln p1,j

ln 2 . Therefore,

Cj reaches the minimum value when P
1

k∗j
1,j =

1
2 . The optimum Bloom filter size, denoted as l∗j , can be computed

as

l∗j =
|E|k∗j
ln 2

. (4.6)

The time spent in the j-th round can be computed as
|E|trk∗j

ln 2 . Therefore, the total execution time of Phase 1,

denoted as T1, can be derived as

T1 =
J

∑
j=1

|E|trk∗j
ln 2

. (4.7)
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k∗j (1 ≤ j ≤ J), as well as J, are set with the parameters in Phase 2 to minimize the global execution time, as

analyzed in Sec. 4.5.3 and Sec. 4.5.4.

Let N∗ be the number of tags still active after Phase 1 (i.e., J rounds), it holds that

N∗ = |E| −m + |Ur|, (4.8)

where Ur is the set of unexpected tags still active after Phase 1. Recall (4.5), the expectation of N∗ can be

derived as

E[N∗] = |E| −m + |U|
J

∏
j=1

P1,j

= |E| −m + |U|
(1

2
)∑J

j=1 k∗j . (4.9)

4.5.2 Tuning parameters in Phase 2

Similar to Phase 1, the false positive rate of the w-th round in Phase 2, defined as P2,w, can be calculated as

P2,w =

[
1−

(
1− 1

fw

)N∗Rw
]Rw

≈ (1− e−N∗Rw/ fw)Rw . (4.10)

Therefore, the Bloom filter size is

fw =
−N∗Rw

ln(1− P
1

Rw
2,w )

.

Moreover, the probability that at least one missing tag can be detected in w-th round, denoted as Pd,w, can

be computed as

Pd,w = 1− Pm
2,w. (4.11)

Following the analysis above, the probability Psys that the reader is able to detect a missing event after at

most W rounds in Phase 2, can thus be written as

Psys = 1−
W

∏
w=1

(1− Pd,w) = 1− PmW
2,w . (4.12)

It follows from the system requirement that

Psys = 1− PmW
2,w = α. (4.13)

As a result, we can obtain

fw =
−N∗Rw

ln(1− (1− α)
1

mWRw )
. (4.14)

In the following lemma, we derive the optimum frame size of the Bloom filter fw which is broadcast by the
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reader in each round of Phase 2.

Lemma 4.1. Let y , WRw, the optimum Bloom filter frame size, denoted by f ∗w, that achieves the detection requirement

while minimising the execution time of Phase 2, is as follows:

f ∗w =
−N∗Rw

ln(1− (1− α)
1

my∗ )
(4.15)

where y∗ = ln(1−α)

m ln 1
2

.

Proof. Denote by f the total length of all W Bloom filters in the second phase, we thus have

f =
W

∑
w=1

fw =
−N∗WRw

ln(1− (1− α)
1

mWRw )
. (4.16)

It can be checked that f depends on the product of W and Rw which is the total number of hash functions used

in Phase 2. To minimize the execution time, let y , WRw, we first calculate the derivation of f with respect to

y as follows:

d f
dy

=
N∗(1− α)

1
my ln(1− α)

my(1− (1− α)
1

my ) ln2(1− (1− α)
1

my )
− N∗

ln(1− (1− α)
1

my )
.

Imposing d f
dy = 0 yields

y =
ln(1− α)

m ln 1
2

.

Moreover, when y < ln(1−α)

m ln 1
2

, it holds that d f
dy < 0; when y > ln(1−α)

m ln 1
2

, it holds that d f
dy > 0. Therefore, f achieves

the minimum at y∗ = ln(1−α)

m ln 1
2

. The minimum of fw, denoted by f ∗w can be computed by injecting y = y∗

into (4.14). The proof is thus completed.

Remark. As the reader does not have prior knowledge on m, the number of missing tags, in the design of BMTD, we

require that the detection performance requirement to be hold for any m ≥ M. Hence, f ∗w and y∗ are as follows:

f ∗w =
−N∗Rw

ln(1− (1− α)
1

My∗ )
, (4.17)

where y∗ =
ln(1− α)

M ln 1
2

, (4.18)

where we use m = M in N∗ and y∗, which is the hardest case. Since N∗ = |E| −m + |Ur|, it can be checked that the

detection probability Psys is monotonically increasing and P2,w is monotonically decreasing with respect to the number of

missing tags m, meaning that m = M makes the detection hardest and any greater m will ease the hardness, it is thus

reasonable to use m = M in the rest of the analysis, because if the reader can detect a missing tag event with probability α

when m = M, it will fulfill the detection with probability Psys > α when m > M.

In addition, since y∗ is the total number of hash functions used in Phase 2 and at least one round is executed so as to
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detect a missing event, y∗ needs to be a positive integer. Therefore, we set y∗=d ln(1−α)

M ln 1
2
e, which guarantees the required

detection performance requirement. Note that Rw and W can be set as arbitrary positive integers.

Under the optimum parameter setting derived above, we can calculate the time needed to execute W rounds

of Phase 2, denoted by T2, as follows:

T2 =
−ttN∗y∗

ln(1− (1− α)
1

My∗ )
, (4.19)

where tt is the time needed by the tags to transmit one bit to the reader. T2 sets an upper-bound on the

execution time of Phase 2.

4.5.3 Tuning k∗j and J to minimize worst-case execution time

In this subsection, we study how to set k∗j and J to minimize the worst-case execution time, which corresponds

to the experience of the execution time where no missing event is detected and hence all the W rounds in the

second round need to be executed. We denote the worst-case execution time by T. In the following theorem,

we derive the minimiser of E[T].

Theorem 4.1. Denote x , ∑J
j=1 k∗j , x need to be set to x∗ as follows to minimise the worst-case execution time of the

BMTD:

x∗ =


0 |U| ≤ U0

ln −tr |E| ln(1−(1−α

1
My∗ ))

tty∗|U| ln2 2
− ln 2 |U| > U0

, (4.20)

where U0 , |E|tr ln(1−(1−α)
1

My∗ )

−tty∗ ln2 2
. That is, in regard to minimise the worst-case execution time, when the number of

unexpected tags does not exceed a threshold U0, Phase 1 is not executed, otherwise Phase 1 is executed with the parameters

k∗j and J set to ∑J
j=1 k∗j = x∗.

Proof. Recall the two phases of BMTD and (4.7), we can derive the expectation of T as follows:

E[T] = T1 + T2 =
J

∑
j=1

|E|trk∗j
ln 2

+
−tty∗E[N∗]

ln(1− (1− α)
1

My∗ )

=
|E|tr

ln 2

J

∑
j=1

k∗j +
−tty∗

(
|E| −M + |U|

( 1
2

)∑J
j=1 k j

)
ln(1− (1− α)

1
My∗ )

. (4.21)

From (4.21), it can be noted that E[T] is a function of x = ∑J
j=1 k∗j . We then calculate the optimum x∗ that

minimizes E[T]. To that end, we compute the derivation of E[T] with respect to x:

dE[T]
dx

=
|E|tr

ln 2
+

tty∗|U| ln 2

ln(1− (1− α)
1

My∗ )

(1
2
)x. (4.22)
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Since
( 1

2

)x ≤ 1, it thus holds for all x ≥ 0 that dE[T]
dx ≥ 0 if |E|tr

ln 2 + tty∗|U| ln 2

ln(1−(1−α)
1

My∗ )
≥ 0, i.e.,

|U| ≤ |E|tr ln(1− (1− α)
1

My∗ )

−tty∗ ln2 2
= U0. (4.23)

It is worth noticing that E[T] is a monotonic nondecreasing function in this case with respect to x, we thus set

x = 0 to minimize the execution time, which means that if the number of unexpected tags is smaller than the

threshold U0, we should remove the Phase 1 and only execute Phase 2.

In contrast, if |U| > U0, dE[T]
dx can be negative, zero, or positive. Setting dE[T]

dx = 0, the optimal value of x to

minimise E[T], defined as x∗, can be calculated as

x∗ =
ln −tr |E| ln(1−(1−α)

1
My∗ )

tty∗|U| ln2 2

− ln 2
.

Remark. Since x∗ represents the total number of hash functions used in Phase 1, it needs to be a non-negative integer.

Therefore, we set x∗ either to its ceiling or floor integer depending on which one leads to a smaller E[T]. The parameters

k∗j and J are set such that ∑J
j=1 k∗j = x∗.

4.5.4 Tuning k∗j and J to minimize expected detection time

The parameters derived in Theorem 4.1 establish that the BMTD is able to detect a missing event with proba-

bility equal to or greater than the system requirement α after W rounds of Phase 2. However, in many practical

scenarios, the missing event may be detected in the round w < W when the algorithm can be terminated. In

this subsection, we derive the parameter configuration (i.e., k∗j and J) that minimises the expected detection

time. To that end, we first calculate the probability that at least one of the missing tags can be detected for the

first time in a given slot and use it to formulate the expectation of the missing event detection time.

Lemma 4.2. The probability that a missing tag can be detected in a given slot of Phase 1, denoted by q, is as follows:

q =
(

1− (1− (1− α)
1

y∗M )
M
N∗
)
·
(

1− (1− α)
1

y∗M
)

. (4.24)

A loose lower-bound for q, denoted as qmin, can be established as follows:

qmin =
(
1− (

1
2
)

M
|E|−M+|U|

)
(1− (1− α)

1
y∗M ). (4.25)

Proof. A missing tag can be detected in a given slot only when at least one missing tag is hashed to this slot

and no tag in Er ∪Ur selects the same location. Consider the hardest case for detecting a missing tag event, i.e.,

m = M, the probability that at least one missing tag maps to the given slot can be given by
(

1− (1− 1
f ∗w
)MRw

)
.
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The probability that no tag in Er ∪Ur maps to that slot is equal to (1− 1
f ∗w
)N∗Rw . Consequently, multiplying the

former by the later leads to q, i.e.:

q =

(
1− (1− 1

f ∗w
)MRw

)
· (1− 1

f ∗w
)N∗Rw

≈ (1− e−
MRw

f ∗w ) · e−
N∗Rw

f ∗w

=
(

1− (1− (1− α)
1

y∗M )
M
N∗
)
· (1− (1− α)

1
y∗M ).

We then derive the lower-bound qmin. To that end, noticing that q is negatively correlated with N∗ which falls

into the range
[
|E| −M, |E| −M + |U|

]
, we have

q ≥
(

1− (1− (1− α)
1

y∗M )
M

|E|−M+|U|
)
· (1− (1− α)

1
y∗M ).

On the other hand, noticing that y∗ = d ln(1−α)

M ln 1
2
e ≥ ln(1−α)

M ln 1
2

, we have q ≥ qmin =
(
1 − ( 1

2 )
M

|E|−M+|U|
)
(1 − (1 −

α)
1

y∗M ).

After calculating q, we next derive the expected missing event detection time, denoted by E[TD].

Theorem 4.2. The expected missing event detection time E[TD] is given by the following equation:

E[TD] =
|E|trx

ln 2
+ tt

|E|−M+|U|

∑
N∗=|E|−M

1− (1− q) f − f q(1− q) f

q(
|U|

N∗ − |E|+ M

)( 1
2x

)N∗−|E|+M(
1− 1

2x

)|U|−N∗+|E|−M
. (4.26)

Proof. Recall (4.16), it holds that there are f = −N∗y∗

ln(1−(1−α)
1

My∗ )
slots in Phase 2. We next calculate the number of

slots before detecting the first missing tag. It is easy to check that the event that in slot z the reader detects the

first missing tag happens if no missing tags is detected in the first z− 1 slots while at least one missing tag is

detected in slot z. Let Z denote the random variable of z, we have

P{Z = z} = (1− q)z−1 ∗ q, (4.27)

which is geometrically distributed.

We can then compute the expectation of Z, conditioned by N∗, as follows:

E[Z|N∗] =
f

∑
z=1

z · P{Z = z} = 1− (1− q) f − f q(1− q) f

q
. (4.28)

Moreover, it follows from the analysis of Phase 1 that the probability that an unexpected tag is still active

after Phase 1 is ∏J
j=1 P1,j. On the other hand, since Ur represents the ID set of active unknown tags after Phase

1, recall (4.5) and ∑J
j=1 k∗j = x, we can compute the probability of having u active unexpected tags after Phase 1
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as follows:

P{|Ur| = u} =
(
|U|
u

)( J

∏
j=1

P1,j

)u(
1−

J

∏
j=1

P1,j

)|U|−u
=

(
|U|
u

)( 1
2x

)u(
1− 1

2x

)|U|−u
.

It can be noted that |Ur| follows the binomial distribution. Recall the relationship between N∗ and |Ur| in (4.7),

it holds that

E[Z] =
|E|−M+|U|

∑
N∗=|E|−M

E[Z|N∗]
(

|U|
N∗ − |E|+ M

)
·
( 1

2x

)N∗−|E|+M
·
(

1− 1
2x

)|U|−N∗+|E|−M
(4.29)

Therefore, E[TD] can be derived as

E[TD] = T1 + E[Z] · tt =
|E|trx

ln 2
+ E[Z] · tt. (4.30)

Injecting E[Z] into E[TD] completes the proof.

After deriving E[TD] as a function of x, we seek the optimum, denoted by x∗e , which minimizes E[TD]. To

this end, we first establish an upper-bound of x∗e in the following lemma.

Lemma 4.3. It holds that x∗e ≤ 2tt ln 2
tr |E|qmin

.

Proof. We write E[TD] as a function of x. Specifically, let E[TD] = g(x). To prove the lemma, we show that for

any x > 2x0 it holds that g(x) ≥ g(x0) where x0 ,
tt ln 2

tr |E|qmin
.

To this end, we first derive the bounds of g(x). Recall (4.27),(4.28), (4.29) and (4.30), we have

g(x) >
|E|trx

ln 2
,

g(x) ≤ |E|trx
ln 2

+
tt

qmin
.

For any x > 2x0, we then have

g(x) >
|E|trx

ln 2
>

2|E|trx0

ln 2
=
|E|trx0

ln 2
+

tt

qmin
≥ g(x0)

The lemma is thus proved.

Lemma 4.3 shows that x∗e falls into the range [0, 2x0]. We can thus search [0, 2x0] to find x∗e that minimises

E[TD] and then set J and k∗j such that ∑J
j=1 k∗j = x∗e .

4.5.5 BMTD parameter setting: summary

We conclude this section by streamlining the procedure of the parameter setting in the BMTD:
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1. Set parameters in Phase 2: given |E|, M, α and |U|, compute f ∗w and y∗ by (4.17) and (4.18), respectively,

and set Rw and W such that RwW = y∗;

2. Set parameters in Phase 1: compute x∗ by Theorem 4.1 if the objective is to minimise the worst-case execution

time; compute x∗e if the objective is to minimise the expected detection time; then the set of k∗j and J is

given such that ∑J
j=1 k∗j = x∗ or ∑J

j=1 k∗j = x∗e .

Following the above two steps, we can obtain all parameters in the BMTD. Note that Rw and W can be picked

arbitrarily as long as RwW = y∗ is satisfied, if we set Rw = 1 and W = y∗, then the Phase 2 of BMTD is reduced

to RUN [68], RUN is thus a special case of our proposed BMTD.

4.6 Cardinality estimation

In order to execute the BMTD, the reader needs to estimate the number of unexpected tags |U|. In our work,

we use the SRC estimator which is designed in [36] and is the current state-of-the-art solution. Denote by

|E| −m + |U| the estimated total number of tags in the system, then the cardinality |U| can be approximated

as |U| = |E| −m + |U| − |E| if m << |E|, |U|. Because the number of bits that set to one in Bloom filter is

concentrated tightly around the mean [84] and [85], once the estimation |U| is obtained, we can calculate the

expectation of N∗ according to (4.9) with m = M and use it as the estimator of N∗.

The SRC estimator consists of two phases: rough estimation and accurate estimation. It is proven in [36]

that SRC can obtain a rough estimation n̂ which at least equals to 0.5(|E| −m + |U|) after its first phase. In

the second phase, SRC can achieve that the relative estimation error is not greater than ε which is referred to

as confidence range with the settings as follows: the frame size Lest =
65

(1−0.04ε)2 and the persistence probability

ppe = min{1, 1.6Lest/n̂}.

We then analyse the overhead introduced to estimate the cardinality of U. As proven in [36], the overhead

of SRC estimator is at most O( 1
ε2 + log log(|U|+ |E|)), which is moderate for large-scale RFID systems with

large |U| and |E|.

4.6.1 Fast detection of missing event

In our estimation approach, we require that m � |E|, |U|. In case where m is close to |E|, |U|, the estimation

may not be accurate. Luckily, in this case, we can quickly detect a missing event in the cardinality estimation

phase due to large m.

Specifically, we analyze the SRC estimator’s capability of detecting missing event under large m by com-

paring the pre-computed slots with those selected by the present tags. Recall the proof of Lemma 4.2, we can

derive the detection probability in any given slot, defined as qpre, as

qpre =

(
1−

(
1−

ppe

Lest

)m
)
∗
(

1−
ppe

Lest

)(U+E−m)
. (4.31)
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Since the detections in different slots are independent of each other, the probability of detecting at least one

missing tag event by the SRC estimator can be calculated as 1− (1− qpre)Lest which is a increasing function of

m.
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Figure 4.3: qpre vs. m.

Fig. 4.3 illustrates the detection probability of SRC with the various number of missing tags under different

unexpected tag population sizes. To obtain the figure, we set |E| = 103 and ε = 0.1. It is observed that in the

cases that |U| = 0.5 ∗ 104, 1 ∗ 104, 2 ∗ 104, SRC is able to detect at least a missing tag event with probability

one when m is not less than 100, 200, 600, which means that a missing event is detected by SRC and the reader

does not need to invoke the BMTD. In the other side, in the cases that m is less than 100, 200, 600, it holds that

| |U||U| − 1|≤ 0.138, 0.132, 0.128, respectively. With reference to the conclusion drawn from the Fig. 4.4, the BMTD

can tolerate these levels of estimation error.

4.6.2 Sensibility to estimation error

The estimation algorithm we use inevitably introduces error on |U|, which may have a negative impact on the

performance of the BMTD. In order to investigate this impact, we next illustrate the sensitivity of the detection

time to the estimation error.

0.5 1 1.5
0.99

0.995

1

1.005

1.01

1.015

1.02

1.025

1.03

Ratio of the estimation to the actual value of |U|

N
or

m
al

iz
ed

 d
et

ec
ti

on
 ti

m
e

 

 

|E|=103,|U|=0.5*104

|E|=103,|U|=1*104

|E|=103,|U|=2*104

Figure 4.4: E[TD ]
E[TD ]

vs. |U||U| .

Fig. 4.4 shows the theoretically calculated expected detection time from (4.26) under different unexpected

tag population sizes and various levels of estimation error for M = 1. All results here are normalized with

respect to the expected detection time without estimation error, which can be represented as E[TD ]
E[TD ]

. As shown in
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the figure, the expected detection time based on the estimation is greater than the actual one E[TD] almost in all

levels of estimation error. But it is worth noticing that the expected detection time only increases by up to 0.5%

when | |U||U| − 1| ≤ 0.1, which is nearly same with that without estimation error. Even when | |U||U| − 1| = 0.5, the

departure from the detection time without estimation is only 3%. Therefore, it can be concluded that BMTD is

very robust to the estimation error.

4.6.3 Enforcing detection reliability

Estimation error also has impact on the reliability of the BMTD as Psys is calculated base on the estimated

cardinality.

To enforce the detection reliability, we introduce more rounds to execute additional Bloom filters. The

scheme works as follows: After receiving the Bloom filtering vector constructed by the active tags in the set

Er ∪Ur in each round of Phase 2, the reader first counts the actual number of ’1’ bits in the filtering vector,

defined as s1 and uses it to compute the actual false positive probability, denoted by P̂2,w, as follows:

P̂2,w =
s1

f ∗w
, (4.32)

because an arbitrary unexpected tag maps to a ’1’ bit with a probability of s1 out of f ∗w.

Following (4.13), we have the observed protocol reliability, denoted by P̂sys, as follows:

P̂sys = 1− P̂MW
2,w . (4.33)

If P̂sys < α, the reader adds one more round in Phase 2 to further detect the missing tag event until P̂sys ≥ α.

4.6.4 Discussion on multi-reader case

In large-scale RFID systems deployed in a large area, multiple readers are thus deployed to ensure the full

coverage for a larger number of tags in the interrogation region. In such scenarios, we leverage the approach

proposed in [44] and employed in [68]. The main idea is that a back-end server is used to synchronize all

readers such that the RFID system with multiple readers operates as the single-reader case.

Specially, the back-end server calculates all the parameters involved in BMTD and constructs Bloom filter

and sends them to all readers such that they broadcast the same parameters and Bloom filter to the tags.

Furthermore, each reader sends its individual Bloom filtering vector back to the back-end server. When the

back-end server receives all Bloom filtering vectors, it applies logical OR operator on all received Bloom filtering

vectors, which eliminates the impact of the duplicate readings of tags in the overlapped interrogation region.

Consequently, a virtual Bloom filter is constructed by the back-end server.
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4.7 Performance Evaluation

The problem addressed in this chapter is to detect the missing expected tags in the presence of a large number

of unexpected tags in a time-efficient and reliable way. In this section, we evaluate the performance of the

proposed BMTD. It has been shown in [68] that existing missing detection protocols cannot achieve the required

reliability when there are unexpected tags in the RFID systems except the latest RUN [68]. We thus compare

our proposed BMTD to RUN in terms of the actual reliability and the detection time. Note that the detection

time can be interpreted as the time taken to either detect the fist missing tag event if a missing tag is found or

complete the execution if no missing tag is found.

The simulation parameters are set with reference to [72] and [68]. Specifically, since both transmission rates

from the tags to the reader and the reader to the tags depend on physical implementation and interrogation

environment, we make the same assumption as in [72] that tr = tt. Moreover, because RUN is the baseline

protocol, we use the similar simulation scenarios and the same performance metrics as in [68] where the time

needed to detect a missing tag event is shown in terms of the number of slots. To that end, we, without loss of

generality, assume tr = tt = 1 in (4.26) in the simulation. Besides, we compute the optimal parameter values

for RUN by following its specifications.

In the simulation, we use SRC [36] armed with missing tag detection function in this chapter to estimate

the unexpected tag population size with the confidence rang ε = 0.1. And all presented results are obtained by

taking the average value of 100 independent trials under the same simulation setting.

We start by evaluating the performance of the BMTD by optimizing the worst-case execution time and the

expected detection time.

4.7.1 Comparison between two strategies of BMTD

In this subsection, we compare the performance of two strategies of the BMTD which are abbreviated to Worst-

M and Expected-M here, respectively. We set |E| = 1000, m = 100, α = 0.9, |U| = 10000 : 5000 : 30000, M = 1

and 50.

Table 4.2 lists the results where the first and second elements in the two-tuple (·, ·) denote the actual

reliability and detection time, respectively. It can be seen that Expected-M costs less time than Worst-M to

achieve the same reliability which is greater than the system requirement on the detection reliability, especially

when M is small. Specifically, compared with Worst-1, Expected-1 reduces the detection time by up to 51.92%

when |U| = 10000. This is because x∗ = 5 is too large for Phase 1 by optimizing the worst-case execution time,

which wastes time. In contrast, minimizing the expected detection time relieves the influence of unexpected

tag population size on the time of Phase 2 and thus outputs a smaller x∗e = 2. In the rest of our simulation, we

configure the parameters of the BMTD to minimise the expected detection time.
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Table 4.2: Actual reliability and detection time of BMTD

Strategy
Number of unexpected tags

10000 15000 20000 25000 30000
Worst-1 (1,4108) (1,4441) (1,5013) (1,5453) (1,5510)
Expected-1 (1,1975) (1,3187) (1,3569) (1,3828) (1,4191)
Worst-50 (1,1357) (1,1841) (1,2753) (1,2762) (1,2995)
Expected-50 (1,1353) (1,1618) (1,2272) (1,2472) (1,2815)

4.7.2 Comparison between BMTD and RUN

Comparison under different number of missing tags

In this subsection, we evaluate the performance of BMTD under different number of missing tags, which stands

for the effectiveness and efficiency of BMTD. To that end, we set |E| = 1000, |U| = 30000, m = 1 : 50 : 901,

α = 0.9 and 0.99. Moreover, we set the threshold to M = 1.

Actual reliability: BMTD achieves the required reliability for any missing tag population size when there

are a large number of unexpected tags in the RFID systems. Fig. 4.5(a) and 4.5(b) illustrate the actual reliability

of BMTD and RUN for α = 0.9 and 0.99, respectively. It can be observed that both BMTD and RUN achieve the

reliability more than that required by the system.
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Figure 4.5: Actual reliability vs. number of missing tags

Detection time: BMTD is more time-efficient in comparison to RUN. Fig. 4.6(a) and 4.6(b) show the detection

time for α = 0.9 and 0.99, respectively. For clearness, we further highlight the caves from m = 51 to 901. As

shown in the figures, the detection time of BMTD is far shorter than that of RUN and decreases with the

number of missing tags significantly. This is unsurprising. BMTD is able to deactivate major unexpected tags,

which greatly reduces the number of active tags in the population, such that the presence of more missing tags

makes the detection much easier. In contrast, RUN does not take into account the impact of unexpected tag
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population size, leading to longer detection delay in the presence of large number of unexpected tags.
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Figure 4.6: Detection time vs. number of missing tags

Comparison under different number of unexpected tags

In this subsection, we evaluate the performance of BMTD under different number of unexpected tags, which

represents the generality of BMTD. To that end, we set |E| = 1000, m = 50, M = 1, α = 0.9 and 0.99. Moreover,

we select such |U| = 1000, 5000 : 5000 : 30000 that various values of |U||E| are covered in the simulation.

Actual reliability: BMTD achieves the reliability greater than the required reliability for different cardinali-

ties of unexpected tag set. Fig. 4.7(a) and 4.7(b) depict the actual reliability of BMTD and RUN for α = 0.9 and

0.99, respectively. It can be observed that the actual reliability achieved by both BMTD and RUN is equal to

one.

Detection time: The BMTD outperforms the RUN considerably in terms of detection time even in the

scenario with the small number of unexpected tag. Fig. 4.8(a) and 4.8(b) show the detection time for α = 0.9

and 0.99, respectively. As shown in the figures, BTMD is able to save time especially when more unexpected

tags are present in the population. Moreover, the increase in detection time of BTMD is more slow than that of

RUN. This is due to the ability of BTMD that it can detect the missing tag event when estimating the |U| and

determine whether to execute the unexpected tag deactivation phase following Lemma 4.3, which is exactly

ignored in RUN.

Comparison under different values of threshold

In this subsection, we evaluate the performance of BMTD under different thresholds, which represents the

tolerability of BMTD. To that end, we set |E| = 1000, |U| = 30000, m = 100, α = 0.9 and 0.99. Moreover, we

choose such M = 50 : 50 : 300 that the threshold can be greater or smaller than or equal to the number of
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Figure 4.7: Actual reliability vs. number of unexpected tags
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Figure 4.8: Detection time vs. number of unexpected tags

missing tags in the simulation.

Actual reliability: BMTD achieves better reliability than the required reliability when m ≥ M. As shown

in Fig. 4.9(a) and 4.9(b), BMTD fails to achieve the required reliability only when m < M, which does not have

negative impact because the objective of the missing tag detection protocol is to detect the missing tags only if

the number of missing tags exceeds the threshold M.

Detection time: BMTD can tolerate the deviation from the threshold in terms of the detection time even

when m < M. Fig. 4.10(a) and 4.10(b) show the detection time for α = 0.9 and 0.99, respectively. It can be

seen from the figures that the detection time of BMTD almost does not vary with the deviation. The detection

time of RUN, by contrast, increases substantially as the deviation increase when m < M. This is because RUN
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terminates only when it runs optimal number of frames since the first frame when the estimated value of |U|

does not vary by 0.1% in consecutive 10 frames if it does not detect any missing tag in any frame, while BMTD

stops once the observed reliability P̂sys exceeds α.
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(b) α = 0.99

Figure 4.9: Actual reliability vs. threshold
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(b) α = 0.99

Figure 4.10: Detection time vs. threshold

4.8 Conclusions

This chapter has investigated an important problem of detecting missing tags in the presence of a large number

of unexpected tags in large-scale RFID systems. Specifically, we aim at detecting a missing tag event in a reli-

able and time-efficient way. This chapter has presented a two-phase Bloom filter-based missing tag detection

protocol (BMTD). In the first phase, we employed Bloom filter to screen out and then deactivate the unexpected
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tags in order to reduce their interference to the detection. In the second phase, we further used Bloom filter to

test the membership of the expected tags to detect missing tags. We also showed how to configure the protocol

parameters so as to optimize the detection time with the required reliability. Furthermore, we conducted exten-

sive simulation experiments to evaluate the performance of the proposed protocol and the results demonstrate

the effectiveness and efficiency of the propose protocol in comparison with the state-of-the-art solution.



Chapter 5

On Missing Tag Detection in Multiple-group

Multiple-region RFID Systems

5.1 Introduction

We investigate a different version of missing tag detection problem in this chapter motivated by the increasing

application of mobile reader [86, 87] and the following practical settings.

• Multiple groups of tags. Tags are usually attached to objects belonging to different groups: e.g., different

brands of the goods with the high-end brands order-of-magnitude more valuable than their low-end peers.

Therefore, the missing tag events are characterized by asymmetrical threshold and reliability requirement

across groups.

• Multiple interrogation regions. Tags may be unevenly located in multiple interrogation regions: e.g., tags

may be located in several rooms or different corners or regions of a large warehouse. Hence, a reader may

need to move several times to cover all monitored tags and complete the missing tag detection process.

The problem we consider is to devise missing tag detection protocol with minimum execution time while

guaranteeing the detection reliability requirement for each group of tags in multiple-region scenario. In the

considered multiple-group multiple-region scenario, all existing missing tag detection protocols cannot work

effectively due to the following two reasons. First, existing approaches as reviewed in Section 4.2 of Chapter 4

require the full coverage of tags when executing the detection algorithms, which clearly does not hold in the

considered multiple-region scenario. Secondly, existing work does not take into account the heterogeneity

among groups and thus either cannot meet the individual reliability requirement, or suffers extremely long

detection delay.

To solve this challenging problem, we deliver a comprehensive analysis on the missing tag detection problem

in the above multiple-group multiple-region environment and investigate how to devise optimum missing tag

detection algorithms. Note that when there are only one group and all tags are with one interrogation region,

our problem degenerates to the classical missing tag detection problem studied in the literature.

89
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To design missing tag detection algorithms in the multiple-region multiple-group case, we leverage a pow-

erful technique called Bloom filter which is a space-efficient probabilistic data structure for representing a set

and supporting set membership queries [80] to detect a missing event. Specifically, we develop a suite of three

missing tag detection protocols, each decreasing the execution time compared to its predecessor by incorpo-

rating an improved version of the Bloom filter design and parameter tuning. By sequentially analysing the

developed protocols, we gradually iron out an optimum detection protocol that works in practice.

5.2 System Model and Problem Formulation

5.2.1 System Model

We consider a grouped RFID system composed of a mobile reader and G groups of tags distributed in R (R ≥ 1)

interrogation regions (e.g., R rooms), concisely referred to as regions. In case where a tag may be physically

located in two regions, i.e., regions may overlap one with another, the tag only responses to reader queries

regarding to the first region when it is interrogated. In this sense, we can treat the regions as non-overlapping

ones.

We use E to denote the set of the tags which are expected to be present and we denote its cardinality (i.e.,

the number of expected tags) by |E|. The reader knows the IDs of all tags in E but does not know the set of

tags in each region. For presentation conciseness, we set the ID of group g (1 ≤ g ≤ G) to its index g. We

assume every tag knows its group ID through a grouping protocol, e.g. [88]. We also assume the reader knows

the approximate number of tags of each group g actually present in each region r (1 ≤ r ≤ R), denoted by ngr.

The estimation of ngr can be achieved by the reader by deactivating all tags not belonging to group g (using the

ID of group g) and then using any state-of-the-art tag population estimation algorithm. Table 5.1 summaries

main notations used in this chapter.

5.2.2 Problem Formulation

We are interested in detecting missing tag event for each group g. Let mg denote the number of missing tags in

group g which is of course not known by the reader. Let Mg denote the threshold of group g. A missing event

of group g denotes the event where there are at least Mg tags of group g missing in the system. Let Pdg denote

the probability that the reader can detect a missing event of group g, we formulate the optimum missing tag

detection problem as follows.

Definition 5.1 (Optimum missing tag detection problem). The optimum missing tag detection problem is to devise

an algorithm of minimum execution time which can detect a missing event for each group g with probability Pdg ≥ αg

if mg ≥ Mg, where αg is the requirement on the detection reliability for group g. When there is only one group in the

system, the problem degenerates to the classical missing event detection problem.
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Table 5.1: Main Notations
Symbols Descriptions

G Number of groups
g Group index and group ID
R Number of interrogation regions
r Region index
E Set of target tags that need to be monitored

ngr Number of tags of group g in region r
mg Number of missing tags in group g
Mg Threshold of group g
Pdg Probability of detecting a missing event of group g
αg System requirement on the detection reliability for group g
f Length of Bloom filter in B-detect
k Number of hash functions in B-detect
s Hash function seed

Pf p False positive rate of Bloom filter in B-detect
TB Execution time of B-detect
fr Bloom filter vector size in region r in AB-detect
kg Number of hash functions for group g in AB/GAB-detect

Pf p,g False positive rate of Bloom filter for g in AB/GAB-detect
TAB Execution time of AB-detect
fgr Bloom filter vector length for group g in r in GAB-detect

TGAB Execution time of GAB-detect

5.2.3 Design Rational

To design missing tag detection algorithms in the multiple-region multiple-group case, we leverage a powerful

technique called Bloom filter which is a space-efficient probabilistic data structure for representing a set and

supporting set membership queries [80] to detect a missing event. In our design, we explore the following

three natural ideas, each corresponding to a proposed missing tag detection protocol detailed in the next three

sections.

Baseline approach. To enable missing tag detection in the multiple-region multiple-group case, we let the

reader use the same Bloom filter parameters in each region for each group of tags and construct the Bloom filter

based on the responses from the tags to perform missing event detection. This approach, termed as B-detect, is

a direct application of Bloom filter to solve our problem.

Adaptive approach. In the baseline approach B-detect, the reader uses the same parameters in each region,

which may not be optimum in the case when tags are not evenly distributed across regions. Motivated by

this observation, we develop an adaptive approach, named AB-detect, which enables the reader to use different

parameters based on the number of tags in the interrogation region the reader queries. Specifically, for each

region r, the reader executes one query, to which tags of all the groups in the region respond. The reader

constructs a Bloom filter Br for each region containing the response and aggregates Br (1 ≤ r ≤ R) to form a

virtual Bloom filter BAB, based on which it detects missing event for each group.

Group-wise approach. We go further by developing a group-wise approach, referred to as GAB-detect. In
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GAB-detect, the reader executes G group-wise queries for each region r. Only tags of group g (1 ≤ g ≤ G)

in the interrogation region respond to the g-th query. The reader then constructs a Bloom filter BGAB
gr for each

group g and aggregates BGAB
gr (1 ≤ r ≤ R) to form a virtual Bloom filter BGAB

g∗ using the technique in AB-detect,

based on which it detects missing event for group g.

By sequentially analysing the above three approaches and mathematically comparing their performance in

terms of execution time, we gradually iron out an optimum detection protocol that works in practice.

5.3 The Baseline approach

In the B-detect design to enable missing tag detection in the multiple-region case, we let the reader use the

same parameters in each region and construct the Bloom filter based on the responses from the tags to perform

missing event detection. Specifically, B-detect consists of two phases, detailed as below.

5.3.1 Protocol Description

Phase 1: Query and feedback collection. The reader performs a query in each region r with the same parameter

setting ( f , k, s), where f is the length of the Bloom filter vector, k is the number of independent hash functions

used to construct the Bloom filter vector, and s is the seed of the hash functions which is identical for all groups

and regions. How their values are chosen is analysed in Sec. 5.3.2 on parameter optimisation. Upon receiving

the request, each tag in region r, regardless of the group to which it belongs, selects k slots (hv(ID) mod f )

(1 ≤ v ≤ k) in the frame of f slots and replies in these slots. The reader then constructs a Bloom filter vector Br

with the responses from the tags in each region r as follows. Note there are two types of slots: empty slots and

nonempty slots. According to the responses from tags, if slot i (1 ≤ i ≤ f ) is empty, the reader sets Br(i) = 0,

otherwise it sets Br(i) = 1.

Phase 2: Virtual Bloom filter construction and missing event detection. After interrogating all R regions,

the reader combines the Bloom filter vectors Br (1 ≤ r ≤ R) to a virtual Bloom filter B by ORing each bit of

them, i.e., B(i) = B1(i) ∨ · · · ∨ BR(i). The reader then performs membership test. For each tag in E, the reader

maps its ID into k bits at positions (hv(ID) mod f ) (1 ≤ v ≤ k). If all the corresponding bits in B are 1, then

the tag is regarded as present. Otherwise, the tag is considered to be missing. The reader reports a missing

event in group g if the number of missing tags is at least Mg and no missing event otherwise.

5.3.2 Performance Optimisation and Parameter Tuning

The execution time of B-detect, defined as TB in number of slots, can be written as

TB = R(t1 + f δ) ' R f δ, (5.1)
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where t1 denotes the time for the reader to broadcast the query parameters and δ denotes the slot duration

which we normalise to 1 for notation conciseness. In a large RFID system, it holds that f � t1, so we ignore t1.

In this subsection, we derive the optimum value of f that minimizes TB.

It is well-known that there is no false negative in the Bloom filter membership test and the false positive

rate Pf p for an arbitrary group g can be calculated as follows [80]:

Pf p =

[
1−

(
1− 1

f

)(|E|−m)k
]k

≈ (1− e−(|E|−m)k/ f )k, (5.2)

where m = ∑G
g=1 mg denotes the total number of missing tags in all groups.

By rearranging (5.2), we can express the Bloom filter size as

f =
−(|E| −m)k

ln(1− P
1
k
f p)

. (5.3)

The following theorem derives the optimal values of f and k in the sense of minimising the execution time.

Theorem 5.1. The optimum size of the Bloom filter and the optimum number of hash functions in B-detect, denoted by f ∗

and k∗ respectively, that minimize the execution time while satisfying the detection reliability requirement for each group

g regardless of mg, are as follows:

f ∗ = (|E| −M) · k∗

− ln(1− X
1

k∗
g∗ )

, (5.4)

k∗ =
ln
(

1− α

1
Mg∗
g∗

)
ln 1

2

, (5.5)

where M=∑G
g=1 Mg, Xg , 1− α

1
Mg
g , and g∗=arg ming Xg.

Proof. Recall the definition of a missing event in group g that at least Mg tags are missing, the probability that

a missing event can be detected in group g by the reader, defined as Pdg, can be computed as

Pdg =
mg

∑
i=Mg

(
mg

i

)
(1− Pf p)

iPmg−i
f p , (5.6)
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and Pdg has the following property for any mg ≥ Mg:

Pdg = (1− Pf p)
Mg

mg

∑
i=Mg

(
mg

i

)
(1− Pf p)

i−Mg Pmg−i
f p

= (1− Pf p)
Mg

mg−Mg

∑
j=0

(
mg

j + Mg

)
(1− Pf p)

jPmg−Mg−j
f p

≥ (1− Pf p)
Mg

mg−Mg

∑
j=0

(
mg −Mg

j

)
(1− Pf p)

jPmg−Mg−j
f p

≥ (1− Pf p)
Mg , (5.7)

where the first inequality holds due to the inequality below

( mg
j+Mg

)

(mg−Mg
j )

=
Mg−1

∏
i=0

mg − i
Mg + j− i

≥ 1, ∀j ∈ [0, mg −Mg],

where the equality holds when mg = Mg.

Hence, to ensure the system requirement Pdg ≥ αg regardless of mg, we must ensure the following inequality:

(1− Pf p)
Mg ≥ αg, or Pf p ≤ (1− α

1
Mg
g ). (5.8)

Moreover, since Pf p is monotonically decreasing and thus (1 − Pf p)
Mg is monotonically increasing with

respect to the number of missing tags mg, meaning that mg = Mg makes the detection hardest and any mg

larger than Mg will ease the hardness, we thus consider the case where mg = Mg for 1 ≤ g ≤ G to meet the

detection reliability regardless of mg.

Injecting (5.8) into (5.3) with mg = Mg leads to

f ≥ −(|E| −M)k

ln
[
1−

(
1− α

1
Mg
g

) 1
k
] ,

where M=∑G
g=1 Mg. For clarity, let Xg,1− α

1
Mg
g . Because f needs to be set such that the required detection

reliability for any group is achieved and k is identical for all groups, we have:

f =
(|E| −M)k

− ln[1− (min1≤g≤G Xg)
1
k ]

. (5.9)

Without loss of generality, let g∗ = arg ming Xg and let the derivative of the right hand side of (5.9) with respect

to k be 0, we can derive that

k∗ =
ln ming Xg

ln 1
2

=
ln
(

1− α

1
Mg∗
g∗

)
ln 1

2

.
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It can be easily checked that f achieves its minimum as (5.4) at k∗. The theorem is thus proved.

Remark. Given the practical meaning of k∗ and f ∗, both of them should been further rounded to the smallest integers not

smaller than themselves.

5.4 The Adaptive Approach

In B-detect, the reader uses the same parameters in each region, particularly the length of the Bloom filter,

which may not be optimum in the case when the tags are not evenly distributed across interrogation regions.

Motivated by this observation, we develop another missing tag detection protocol, named AB-detect, which

enables the reader to use different parameters based on the number of tags in the region the reader queries.

5.4.1 Protocol Description

Phase 1: Query and feedback collection. The reader performs a query in each region r with the parameter

( fr, {kg}G
g=1, s) where fr is the length of the Bloom filter vector used in region r, kg is the number of hash

functions used by tags in group g, s is the hash seed which is identical for all groups and regions. There

are two differences compared to the baseline approach. First, fr may be different across different regions but

identical across groups; Second, kg may be different across different groups but identical across regions. We

require fr to be a power-multiple of two, i.e., fr = 2br , (br ∈ N). As in B-detect, the reader constructs an fr-bit

Bloom filter vector Br with the responses from the tags in each region r. Without loss of generality, we assume

that f1 ≤ f2 ≤ · · · ≤ fR.

Phase 2: Virtual Bloom filter construction and missing event detection. After interrogating all R regions,

the reader first expand Br to an fR-bit padded Bloom filter by repeating Br
BR
Br

times. Denote the padded Bloom

filter as PBr. The reader then combines PBr (1 ≤ r ≤ R− 1) and BR to a virtual Bloom filter BAB by ORing each

bit of them, i.e., BAB(i) = PB1(i)∨ · · · ∨ PBR−1(i)∨ BR(i) (1 ≤ i ≤ fR), as illustrated in Fig. 5.1. The reader then

performs membership test. For each tag in group g, the reader maps its ID into kg bits at positions (hv(ID)

mod fR) (1 ≤ v ≤ kg). If all the corresponding bits in BAB are 1, then the tag is regarded as present. Otherwise,

the tag is considered to be missing. The reader reports a missing event for group g if the number of missing

tags in the group g is at least Mg and no missing event otherwise.

1 0 01 1 0 01rPB

100 1

1PB

RB 1 000 1 1 10

100 1

OR 1 01 1 1 01 11 0 0rB 1

ABB

1B 0 1

Figure 5.1: An illustrative example of constructing virtual Bloom filter.

The following lemma proves that there is no false negative in AB-detect.
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Lemma 5.1. There is no false negative in AB-detect.

Proof. It suffices to prove that if a tag is present, it holds that

BAB(hv(a) mod fR) = 1, 1 ≤ v ≤ k,

where a denotes the ID of the tag.

Without loss of generality, assume that the tag a is located in region r. Consider any v ≤ k, let

hv(a) = x + y fr, x, y ∈N, x < fr.

Let c = fR
fr

. By definition of Br, PBr and BAB, we have

BAB(x + y′ fr) = PBr(x + y′ fr) = Br(x) = 1, (5.10)

for ∀y′ ∈N, y′ < c. On the other hand, we have

hv(a) mod fR = x + y fr mod (c fr) = x + (y mod c) fr.

It then follows from (5.10) that

BAB(hv(a) mod fR) = 1.

The proof is thus completed.

5.4.2 Performance Optimisation and Parameter Tuning

In this section, we investigate how to tune the parameters in AB-detect to minimise the execution time while

ensuring the reliability requirement of each group. We first formulate the false positive rate for each group

g, defined as Pf p,g. Recall the construction of BAB in AB-detect, the probability that any bit in BAB is zero is

∏
g
r=1

(
1− 1

fr

)∑G
g=1 kgngr

. The false positive rate for group g can then be derived as

Pf p,g =

[
1−

R

∏
r=1

(
1− 1

fr

)∑G
g=1 kgngr

]kg

≈
(

1− e−∑R
r=1 ∑G

g=1
kgngr

fr

)kg

. (5.11)

The following theorem derives the optimal values of fr and kg that minimize the execution time while

ensuring the group-wise reliability requirement.

Theorem 5.2. The optimum Bloom filter vector size for the region r and the number of hash functions for the group g,

denoted as f ∗r and k∗g, that minimize the execution time while satisfying the detection reliability requirement for each group
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g regardless of mg, are as follows:

f ∗r =

√
∑G

g=1 k∗gngr ·∑R
r=1

√
∑

g
g=1 k∗gngr

ming Y∗g
, (5.12)

k∗g =
ln(1− α

1
Mg
g )

ln 1
2

, (5.13)

where Y∗g , − ln[1− (1− α
1

Mg
g )

1
k∗g ]. The minimum execution time under the above setting, defined as T∗AB, is:

T∗AB =
1

min1≤g≤G Y∗g

 R

∑
r=1

√√√√ G

∑
g=1

k∗gngr

2

. (5.14)

Proof. By the same analysis as the proof of Theorem 5.1, we need to ensure the following inequality:

Pdg ≥ (1− Pf p,g)
Mg or Pf p,g ≤ (1− α

1
Mg
g ). (5.15)

Injecting (5.11) into (5.15) leads to

R

∑
r=1

G

∑
g=1

kgngr

fr
≤ −ln[1− (1− α

1
Mg
g )

1
kg ], 1 ≤ g ≤ G.

For clarity, let Yg , −ln[1− (1− α
1

Mg
g )

1
kg ]. The above inequality is readily transformed to the following inequal-

ity:
R

∑
r=1

G

∑
g=1

kgngr

fr
≤ min

g
Yg.

Without loss of generality, let gm = arg ming Yg. It can be checked that

kg ≥ kgm

ln (1− α
1

Mg
g )

ln(1− α
1

Mg
gm )

, 1 ≤ g ≤ G. (5.16)

Next we derive the execution time of AB-detect, defined as TAB. We can write TAB as

TAB = R · G · t′1 +
R

∑
r=1

fr '
R

∑
r=1

fr,

where t′1 denotes the time for the reader to broadcast protocol parameters including the group ID for each

group. In a large RFID system, it holds that fr � t′1. As RGt′1 is constant, finding the optimum kg and fr is
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equivalent to solving the following optimisation problem:

Minimize: T′AB =
R

∑
r=1

fr (5.17)

Subject to:
R

∑
r=1

G

∑
g=1

kgngr

fr
≤ Ygm . (5.18)

The corresponding Lagrange function can be defined as

L( fr, λ) =
R

∑
r=1

fr + λ

(
R

∑
r=1

G

∑
g=1

kgngr

fr
−Ygm

)
.

Solving ∇ fr ,λ = 0 yields the following optimum for fr:

f ∗r =

√
∑G

g=1 kgngr ·∑R
r=1

√
∑G

g=1 kgngr

Ygm

.

T′AB thus achieves its minimum with respect to fr as below:

T′
∗

AB =
∑R

r=1

√
∑G

g=1 kgngr ·∑R
r=1

√
∑G

g=1 kgngr

Ygm

=
1

Ygm

 R

∑
r=1

√√√√ G

∑
g=1

kgngr

2

.

It can be checked that T′AB is monotonously increasing in kg. Recall (5.16), it holds that T′AB achieves its

minimum as below when the equality in (5.16) holds:

T′
∗

AB = min
kgm

kgm

∑R
r=1

√√√√∑G
g=1

ln (1−α

1
Mg
g )

ln(1−α

1
Mg
gm )

ngr

2

Ygm

. (5.19)

In the above equation,

∑R
r=1

√√√√∑G
g=1

ln (1−α

1
Mg
g )

ln(1−α

1
Mg
gm )

ngr

2

is a constant. Hence, T′AB is minimized when Ygm
kgm

is

maximized. By performing straightforward algebraic analysis, we can derive that when k∗gm
=

ln(1−α

1
Mgm
gm )

ln 1
2

, Ygm
kgm

is maximized. Hence, T′AB is minimized at k∗g =
ln(1−α

1
Mg
g )

ln 1
2

for 1 ≤ g ≤ G. Injecting k∗g into (5.19) completes our

proof.

Remark. As k∗g needs to be an integer and fr a power-multiple of two, they need to be rounded to the smallest integer and

power-multiple of two not smaller than themselves.
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5.4.3 Performance Comparison: B-detect vs. AB-detect

Theorem 5.3. Given the optimum parameters in both B-detect and AB-detect, the following relationship between the

minimum execution time of B-detect T∗B and that of AB-detect T∗AB holds: 1
R ≤

T∗AB
T∗B
≤ 2.

Proof. Recall (5.4), (5.5), (5.13), (5.14) and Y∗g in Theorem 5.2, with some algebraic operations, it can be known

that − ln(1− X
1

k∗
g∗ ) in (5.4) is equal to ming Y∗g and k∗ ≥ k∗g for ∀g. We then have

T∗AB ≤
k∗

ming Y∗g

 R

∑
r=1

√√√√ G

∑
g=1

ngr

2

.

Let T∗AB , k∗
ming Y∗g

(
∑R

r=1

√
∑G

g=1 ngr

)2
and further recall (5.1), we have

T∗AB
T∗B

=

(
∑R

r=1

√
∑G

g=1 ngr

)2

R ∗∑R
r=1 ∑G

g=1 ngr
.

Expanding
(

∑R
r=1

√
∑G

g=1 ngr

)2
leads to

 R

∑
r=1

√√√√ G

∑
g=1

ngr

2

=
R

∑
r=1

G

∑
g=1

ngr +
R−1

∑
i=1

R

∑
r=i+1

2

√√√√ G

∑
g=1

ngi ·
G

∑
g=1

ngr

≤
R

∑
r=1

G

∑
g=1

ngr +
R−1

∑
i=1

R

∑
r=i+1

( G

∑
g=1

ngi +
G

∑
g=1

ngr

)
≤ R

R

∑
r=1

G

∑
g=1

ngr.

To guarantee that fr is power-multiple of two, we need to at most double it. It thus holds that T∗AB
T∗B
≤ 2.

On the other hand, the low bound of the ratio T∗AB
T∗ = 1

R occurs if all tags are located in only one region. It can

also be noted that T∗AB = T∗AB when both Mg and αg are identical across all groups. Therefore, it holds that
1
R ≤

T∗AB
T∗B
≤ 2.

Theorem 5.3 leads to the following engineering implications.

• In the worst case, AB-detect doubles the execution time compared to B-detect;

• In a large asymmetric system where the number of regions R is large, AB-detect can achieve significant

performance gain.

5.5 The Group-wise Approach

In AB-detect, the reader constructs one Bloom filter that contains the response bits of tags of all groups in the

interrogation region. Mixing responses from tags of different group may cause ”interference” among groups

and thus may increase the detection time for certain groups. Motivated by this observation, we develop a



100 Chapter 5. On Missing Tag Detection in Multiple-group Multiple-region RFID Systems

group-wise approach, termed as GAB-detect, in which the reader queries one group each time and constructs

group-wise Bloom filters to eliminate the inter-group interference.

5.5.1 Protocol Description

Phase 1: Query and feedback collection. The reader performs G queries in each region r. In the g-th query

(1 ≤ g ≤ G), the reader broadcasts a tetrad (g, kg, fgr, s) where g is the group ID of group g, kg is the number of

hash functions used by group g tags, fgr is the Bloom filter size used in region r for group g, s is the hash seed

which is identical for all regions and groups. Again, we require fgr to be a power-multiple of two. Without loss

of generality, we assume that fg1 ≤ fg2 ≤ · · · ≤ fgR. When receiving the query, each tag compares its group

ID with g. If the tag does not belong to the group being queried, it keeps silent and waits for the next query.

Otherwise, the tag selects kg positions (hv(ID) mod fgr) (1 ≤ v ≤ kg) in the frame of fgr slots and transmits

a short response at each of the kg slots. The reader then constructs a Bloom filter for each group g and each

region r, denoted by BGAB
gr .

Phase 2: Virtual Bloom filter construction and missing event detection. After interrogating all R regions,

the reader combines BGAB
gr (1 ≤ r ≤ R− 1) to a virtual Bloom filter BGAB

g∗ for each group g by using the expansion

and combination technique in AB-detect. The reader then performs membership test for each group g by using

BGAB
g∗ .

5.5.2 Performance Optimisation and Parameter Tuning

In this section, we investigate how to tune protocol parameters in GAB-detect to minimise the execution time

while ensuring the reliability requirement of each group. We first derive the false positive rate of GAB-detect

for any group g, defined as Pf p,g. Recall the construction of BGAB
g∗ , the probability that any bit in BGAB

g∗ is zero is

∏R
r=1

(
1− 1

fgr

)kgngr
. Hence, the false positive rate for group g can be derived as

Pf p,g =

[
1−

R

∏
r=1

(
1− 1

fgr

)kgngr
]kg

≈
(

1− e−∑R
r=1

kgngr
fgr

)kg

. (5.20)

The following theorem derives the optimal values of fgr and kg that minimize the execution time while

ensuring the group-wise reliability requirement.

Theorem 5.4. The optimum Bloom filter vector size and number of hash functions for group g in region r, denoted as f ∗gr

and k∗g, that minimize the execution time while satisfying the detection reliability requirement for each group g regardless
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of mg, are:

f ∗gr =

√ngr ·∑R
r=1
√ngr

Z∗g
, (5.21)

k∗g =
ln(1− α

1
Mg
g )

ln 1
2

, (5.22)

The minimum execution time under the above setting, defined as T∗GAB, is:

T∗GAB =
G

∑
g=1

(
∑R

r=1
√ngr

)2

Z∗g
, (5.23)

where Z∗g ,
ln[1−(1−α

1
Mg
g )

1
k∗g ]

−k∗g
.

Proof. By the same analysis as the proof of Theorem 5.1, we need to ensure the following inequality:

Pf p,g ≤ (1− α
1

Mg
g ). (5.24)

Injecting (5.20) into (5.24) leads to

R

∑
r=1

kgngr

fgr
≤
−ln[1− (1− α

1
Mg
g )

1
kg ]

kg
.

For clarity, let Zg ,
−ln[1−(1−α

1
Mg
g )

1
kg ]

kg
.

Furthermore, the execution time of GAB-detect, defined as TGAB, can be derived as follows

TGAB = RCt′1 +
G

∑
g=1

R

∑
r=1

fgr '
G

∑
g=1

R

∑
r=1

fgr.

Finding the optimum fgr and kg is equivalent to solving the following optimisation problem:

Minimize: T′GAB =
G

∑
g=1

R

∑
r=1

fgr (5.25)

Subject to:
R

∑
r=1

ngr

fgr
≤ Zg, 1 ≤ g ≤ G. (5.26)

The above optimization problem can be further decomposed to G sub-problem where sub-problem g (1 ≤ g ≤
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G) is specified as below:

Minimize:
R

∑
r=1

fgr

Subject to:
R

∑
r=1

ngr

fgr
≤ Zg.

We use the method of Lagrange multiplier to solve each sub-problem g. The Lagrange function can be

defined as

L( fgr, λg) =
R

∑
r=1

fgr + λg

(
R

∑
r=1

ngr

fgr
− Zg

)
. (5.27)

Solving ∇ fgr ,λg = 0 yields the following optimum:

fgr =

√ngr ·∑R
r=1
√ngr

Z∗g
,

where Z∗g is the maximum of Zg achieved at k∗g =
ln(1−α

1
Mg
g )

ln 1
2

. Injecting k∗g into TGAB yields the optimum of TGAB

and completes the proof.

5.5.3 Performance Comparison: AB-detect vs. GAB-detect

In this section, we compare the execution time of AB-detect and GAB-detect.

Theorem 5.5. When f ∗r in (5.12) and f ∗gr in (5.21) are power-multiples of two, it holds that T∗AB ≥ T∗GAB.

Proof. Recall Yg in Theorem 5.2 and Z∗g in Theorem 5.4 and let xgr , k∗gngr, we can rearrange (5.23) as

T∗GAB =
G

∑
g=1

(
∑R

r=1

√
k∗gngr

)2

Y∗g
≤

∑G
g=1

(
∑R

r=1

√
k∗gngr

)2

ming Y∗g

=
1

ming Y∗g

(
R

∑
r=1

G

∑
g=1

xgr + 2
R−1

∑
i=1

R

∑
r=i+1

G

∑
g=1

√
xgixgr

)
.

On the other hand, we can expand (5.14) as

T∗AB =
1

ming Y∗g

 R

∑
r=1

G

∑
g=1

xgr + 2
R−1

∑
i=1

R

∑
r=i+1

√√√√ G

∑
g=1

xgi

√√√√ G

∑
g=1

xgr
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Furthermore, define βir=
√

∑G
g=1 xgi ∑G

g=1 xgr and φir=∑G
g=1
√xgixgr, we have:

φ2
ir =

G

∑
g=1

xgixgr +
G−1

∑
g=1

G

∑
w=g+1

2
√

xgixgr · xwixwr (5.28)

β2
ir =

G

∑
g=1

xgixgr +
G−1

∑
g=1

G

∑
w=g+1

(xgixwr + xgrxwi), (5.29)

It follows from xgixwr + xgrxwi ≥ 2√xgixgr · xwixwr that φ2
ir ≤ β2

ir. We then have

(T∗AB − T∗GAB)min
g

Y∗g = 2
R−1

∑
i=1

R

∑
r=i+1

(βir − φir) ≥ 0.

The proof is thus completed.

5.6 Discussion

In this section, we discuss some implementation issues of our proposed missing tag detection algorithms.

5.6.1 Estimating Tag Population

In our algorithms, the reader needs to estimate the number of tags in ngr in each region and for each group.

This may lead to extra overhead prior to missing tag detection. However, this overhead can be limited as the

estimation can be achieved in O(log ngr) time using state-of-the-art estimation approaches. Specifically, we can

apply two types of methods to estimate ngr: single-group estimator and multi-group estimator. In the single-

group estimator, when staying at region r the reader queries with the group ID g and only the tags from g

respond. Then it operates like a single-group system. ngr can be estimated by the methods in [36]. On the

other hand, multi-group estimator estimates multiple group sizes simultaneously by employing the maximum

likelihood estimation method as in [89], which is time-efficient.

Despite the extra overhead due to estimation of ngr, this estimation phase enables the pre-detection of

missing tags if the number of missing tags is important (e.g., due to unexpected loss or accidents). More

specifically, the reader can achieve pre-detection by comparing the bitmaps constructed by the tag feedbacks

and computed a priori by the reader. If a bit that is 1 in the pre-calculated bitmap by reader but turns out

to be 0 in the bitmap of the feedbacks, the reader can identify the absence of tags mapped into this slot. If

the number of missing tag for a given group exceeds the threshold, a missing event is reported for the group.

Consequently, the reader may not need to execute the fine-grained detection algorithms as developed in the

last three sections since missing tag events have already been detected in the estimation phase, thus reducing

the time cost.

We may wonder whether existing tag estimation algorithms can be used to detect the missing tag event.
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When the detection requirement is not stringent, e.g., there are a large number of missing tags and the reader

only needs to detect a small number of them so as to report a missing event, estimating the number of tags may

be used. However, when the detection requirement is stringent, estimating the number of tags is not efficient

as it either requires long execution time or cannot satisfy the detection requirement. To demonstrate this, we

have conducted more experiments by comparing our approach with the estimation of tag numbers. Under the

same detection reliability requirement, the estimation algorithm spends over 48− 72.6 times as much time as

our algorithms. Therefore, in our approach, we perform a coarse estimation on the tag population for two

reasons: 1) our algorithms need a coarse estimation of tag population to configure parameters; 2) in case when

the detection requirement is not stringent, this phase allows the reader to quickly detect a missing event.

5.6.2 Presence of Unknown/Unexpected Tags

Unknown and unexpected tags can be interpreted as the tags that have not been identified by the reader [90],

such as newly arrived products, on which the reader does not have any knowledge. During the interrogation,

the unknown tags will respond together with the known tags, which results in the interference to the detection

of missing known tags and thus degrades the performance [68] [91].

Fortunately, two of our proposed algorithms, AB-detect and GAB-detect, are resistant to the interference

caused by unknown tags. The reason is as follows. The unknown tags have not been identified by the reader,

so they do not have their individual group IDs [88] such that no group ID in the interrogation messages matches

with theirs. Therefore, unknown tags stay silent during the whole detection process.

5.7 Numerical Results

In this section, we evaluate the performance of the proposed approaches in terms of execution time and inves-

tigate tradeoffs under different parameter settings.

5.7.1 Simulation Settings

We conduct the experiment under both symmetric and asymmetric scenarios under different settings of R, G

and Mg. By symmetric/asymmetric, we mean that tag population size in each region r is identical/different.

Moreover, we set the same Mg for all group g but vary αg for each group. Moreover, we use the symmetric

transmission rate as in [92] [72] in the numerical analysis and set the transmission time for one bit to be one

slot, i.e., δ = 1. The length of group ID is set to dlog2 Ge bits as in [88]. We simulate the optimum parameters

settings derived in (5.4) (5.5) for B-detect, (5.12) (5.13) for AB-detect, and (5.21) (5.22) for GAB-detect.

For a comprehensive evaluation, we simulate four cases with different combination of (R, G) in both the

symmetric and asymmetric scenarios: case 1: (6, 6), case 2: (12, 6), case 3: (6, 12), and case 4: (12, 12). The

required detection reliability for group g (1 ≤ g ≤ G) is set to αg = 0.749 + 0.05(g− 1), i.e., 0.749≤αg≤0.999 in
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(c) Case 3: R = 6, G = 12
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Figure 5.2: Performance comparison in symmetric scenario

case 1 and case 2, and αg= 0.44 + 0.05(g− 1), i.e., 0.449≤αg≤0.999 in case 3 and case 4. The total number of

tags in each region is 12000 and the group size is 12000/G in symmetric scenario. In the asymmetric scenario,

on the other hand, the total number of tags is randomly chosen from [1000, 5000] in each of the first R/2 regions

and [10000, 20000] in the remaining regions, and the group size in the same region is identical. The simulation

results are obtained by taking the average of 100 independent trials.

5.7.2 Performance Evaluation

Performance under symmetric scenario

Fig. 5.2 depicts the execution time of three protocols under different threshold for the four cases in the sym-

metric scenario. As shown in the results, globally GAB-detect achieves the best time efficiency and AB-detect

outperforms B-detect, especially when the detection reliability for each group varies more significantly, i.e.,

G = 12. This can be explained as follows: The frame size in AB-detec and B-detec are set based on ming Y∗g in
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Theorem 5.1 and 5.2, which overkills the groups with larger Y∗g . In contrast, GAB-detect addresses this limit

by eliminating the inter-group interference. We can also observe that in some cases, GAB-detect has longer

execution time than AB-detect. This is due to the design requirement that the Bloom filter size needs to be the

power-multiple of two. However, globally speaking, GAB-detect still outperforms B-detect. Furthermore, we

investigate the actual reliability of the proposed schemes. The results demonstrate that all proposed schemes

can detect the missing event with probability one.
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Figure 5.3: Performance comparison in asymmetric scenario

Performance under asymmetric scenario

Fig. 5.3 illustrates the execution time for the four cases with different thresholds in the asymmetric scenario.

It can be seen from the four subfigures in Fig. 5.3 that GAB-detect outperforms AB-detect and saves execution

time up to 70% in comparison to B-detect. This can be interpreted as follows: In the asymmetric scenarios,

the performance gap between AB-detect and B-detect is more significant compared to the symmetric scenario

because the frame size in B-detect is identical across the regions regardless of the tag size in an individual region
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while AB-detect distinguishes the regions with different tag sizes when setting the frame size. Furthermore,

we investigate the actual reliability of the proposed schemes and the results show that all proposed schemes

can detect the missing event with probability one.

To further evaluate the performance and evaluate the analytical results, we conduct a set of numerical

analysis in a even more asymmetric scenario where the tag size is randomly chosen from [50, 100] in each of the

first R− 1 regions and from [5000, 10000] in the remaining region. As shown in the four subfigures in Fig. 5.4,

the performance gain of GAB-detect and AB-detect over B-detect is more remarkable. Specifically, the detection

time of B-detect is up to 12.6 times as much as that of GAB-detect and AB-detect.
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(c) Case 3: R = 6, G = 12
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Figure 5.4: Performance comparison in more asymmetric scenario

Impact of nonidentical Mg

To comprehensively evaluate the performance, we conduct more numerical analysis in both symmetric and

asymmetric scenarios which are same with the previous settings except that R is fixed to 6 and Mg = g for
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group g. Moreover, we also investigate the impact of estimation error ε on the performance.

From the results listed in Table 5.2, we can observe that GAB-detect significantly outperforms AB-detect

and B-detect when Mg is different for each group. Besides, the execution time increases by less than 11% in the

worst case when ε varies from 0 to 10%. While on average, B-detect and GAB-detect and AB-detect spend 9%

and 6% and 2.6% more time, respectively. Therefore, it is fair to allow ε = 10%.

Table 5.2: Execution Time (×106) under nonidentical Mg and ε

Scenario
Number of groups G

Estimation error ε
6 12

Symmetric
(8.1, 6.3, 4.7) (8.4, 6.3, 4.3) 0
(8.9, 6.3, 4.7) (9.3, 6.3, 4.6) 10%

Asymmetric
(6.1, 3.9, 3.2) (6.4, 3.1, 2.8) 0
(6.6, 4.2, 3.4) (6.9, 3.4, 3.1) 10%

5.8 Conclusion

In this chapter, we formulate a missing tag detection problem arising in multiple-group multiple-region R-

FID systems, where a mobile reader needs to detect whether there is any missing event for each group of

tags. By leveraging the technique of Bloom filter, we develop a suite of three missing tag detection protocols,

each decreasing the execution time compared to its predecessor by incorporating an improved version of the

Bloom filter design and parameter tuning. We also experimentally demonstrate the detection efficiency of the

developed approaches.
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Conclusion

6.1 Thesis Summary

This thesis has been dedicated to addressing the fundamental problem of tag counting and monitoring in large-

scale RFID systems, at both the theoretical modeling and analysis and the algorithm design and optimisation

levels, with Chapter 2 focusing on the stability analysis of FSA protocol, Chapter 3 proposing a tag population

estimation framework in dynamic RFID systems, Chapter 4 addressing miss tag event detection problem in

the presence of unexpected tags, and Chapter 5 devising a suit of algorithms for multiple-group multiple-

region RFID systems to detect missing tag event. More specifically, Chapter 2 presented complete and accurate

characterisation of FSA behavior, which provides theoretical guidelines on the design of stable FSA-based

protocols in other practical applications such as vehicular networks and M2M networks. In Chapter 3, we

tackled the dynamic tag population estimation problem and showed a theoretical method of analyzing its

estimation error and convergence rate. Furthermore, we illustrated the key to algorithm design and parameter

configuration in missing tag event detection problem in Chapter 4 and Chapter 5.

In what follows, we discuss a number of open questions we judge pertinent to our work and outline several

important potential directions for future research.

6.2 Open Questions and Future Work

In this section, we develop the discussion on open issues and questions and future work at three levels: the

first level focuses on the new RFID application scenarios, the second one takes the inspiration of the problems

we studied to the design of more practical Bloom filter, and the third one focuses on the generalization of our

work in a broader context.

109
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6.2.1 Algorithm Design for RFID System With Blocker tags

With the wide adoption of RFID technology, privacy problem attracts more concerns, because RFID tags blindly

respond to the interrogation of any RFID reader, even an unauthorized one. An effective solution to this privacy

issue is to deploy blocker tags. By programming a set of known RFID tag IDs in a blocker tag, it behave exactly

the same as the blocked genuine tags such that the privacy of genuine tags can be protected as the block tag

always responds together with its blocking genuine tags which leads to the collision and makes the privacy-

retrieve attack miscarried.

Although effective on the protection of privacy, the blocker tag also blocks the legal reader from obtaining

the information of genuine tags, from which multiple problems arise. Specifically, Consider a large-scale

dynamic system where tags may join or leave, a number of blocker tags are deployed to protect the partial

tags (e.g., the tags attacked to the most expensive goods) which are referred to as key tags and the other tags

are called ordinary tags. In such a dynamic system, the introduction of blocker tags challenges the algorithm

design, because blocker tags will mislead the reader in believing the presence of all key tags. Consequently,

research effort should be devoted to address the following problems:

• Estimating key tags: a natural and primary concern is how many key tags are present at the current

moment.

• Detecting missing key tags: whether there are key tags absent from the population.

• Reconfiguring blocker tags: If the key tags blocked by some blocker tags are not in the systems any more,

then how to quickly reconfigure blocker tags to protect the remaining key tags.

6.2.2 Towards Practical Bloom Filter

Our works presented in the thesis can also motivate and inspire a number of design perspectives for Bloom

filter.

Fault-tolerable Bloom filter. In Chapter 3, we consider the influence of error-prone channel on estimation

efficiency where a would-be empty slot turns into a busy slot and a would-be busy slot turns into an empty

slot due to the unreliable channel conditions. While such cases also happen in the applications based on Bloom

filter. For example, due to the error in the hardware or the malicious attacks, bit 1 in Bloom filter may become

into 0 and vice versa. In such context, it is of great importance to design fault-tolerable Bloom filter, however,

the existing work ignores the fault tolerance of Bloom filter.

To address this problem, one direct way is to take into consideration the error rate when configuring the

Bloom filter parameters, which, however, is at the price of enlarging the needed store space. Therefore, how to

effectively and efficiently design fault-tolerable Bloom filter remains an open research problem.

Heterogeneous Multi-Set Bloom filter. In Chapter 5, we consider a realistic RFID system of multiple tag

groups with asymmetric requirement on detection reliability. Such heterogeneity also exists in Bloom filter-

based networking applications where data streams of some categories are more popular than the others and
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thus will be queried more frequently and should be identified with lower false positive rate. The prior work

on multi-set Bloom filter, however, does not differentiate this heterogeneity among different categories of data

flows. Consequently, how to construct multi-set Bloom filter with the consideration of heterogeneity should be

devoted more research effort.

6.2.3 Extension to Big Network Data

In this thesis, we mainly focused on the tag counting and monitoring in RFID systems. A natural extension for

our work is to investigate the cardinality estimation (i.e., flow counting and monitoring) in the networks with

big data. Currently, the cardinality and categories of data flow are increasing explosively. In this context, it is of

great importance to design efficient cardinality estimation algorithm to quickly count the number of flows and

data packets in a flow, for practical applications, such as the statistics of popularity of searched keywords in

Google and optimisation of traffic routing at ISP side. In a broader context, an important research avenue is to

develop efficient algorithms for measuring, monitoring, and analyzing big data transferred over the emerging

big data networks such as Internet, social networks or other types of networks.
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Synthèse en français

La technologie “Radio Frequency Identification (RFID)” est devenue de plus en plus répandue dans le dé-

ploiement de diverses applications, telles que le contrôle des stocks et la gestion de la chaîne d’approvisionnement.

Dans cette thèse, nous présentons une recherche systématique sur les problèmes de recherche liés au comptage

et à la surveillance d’étiquettes RFID, deux composants fondamentaux dans les systèmes RFID, en particulier

dans des systèmes à grande échelle. Ces problèmes sont simples à formuler et intuitivement compréhensi-

ble, tandis que tous les deux présentent des défis importants à la fois fondamentaux et pratiques, et exigent

des efforts non négligeables à résoudre. Plus précisément, nous abordons les problèmes suivants allant de la

modélisation et de l’analyse théorique, à la conception et l’optimisation de l’algorithme pratique.

1. Analyse de la stabilité du cadre fendu Aloha (FSA) protocole, la norme de facto dans le comptage et

l’indentification d’étiquette RFID;

2. Estimation de nombre d’étiquettes dans les systèmes RFID dynamiques;

3. Détection d’étiquettes manquantes en présence d’étiquettes inattendues;

4. Détection d’étiquettes manquantes dans les systèmes RFID multiple-région et multi-groupe.

Dans notre thèse, nous adoptons une ligne de la modélisation théorique et de l’analyse à la conception et

l’optimisation des algorithmes pratiques. Pour poser les bases théoriques pour la conception et l’optimisation

des algorithmes de comptage et la surveillance d’étiquette, nous commençons par étudier la stabilité de FSA.

Techniquement, nous modélisons le “backlog” du système comme une chaîne de Markov, dont ses états sont

la taille du “backlog” au début de chaque trame. L’objectif principal est mathématiquement traduit à analyser

l’érgodicité de la chaîne de Markov et à dériver ses propriétés dans différentes régions, y compris la région

d’instabilité. En utilisant l’analyse de la dérive, nous établissons les conditions mathématiques pour la stabilité

de FSA et pour maximiser la région de stabilité. Nous démontrons également mathématiquement l’existence

de fugacité de la chaîne de Markov, qui caractérise le comportement du système dans la région d’instabilité.

Nous établissons ensuite un cadre générique d’estimation du nombre d’étiquettes RFID basée sur le filtre de

Kalman pour des systèmes RFID statiques et dynamiques. Plus précisément, nous modélisons la dynamique

des systèmes RFID comme des processus stochastiques discrets et utilisons les techniques du filtre de Kalman
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étendu et la technique CUSUM pour estimer le nombre d’étiquettes pour les deux systèmes statiques et dy-

namiques. En employant l’analyse de Lyapunov, nous caractérisons mathématiquement la performance de

notre cadre en termes de la précision de l’estimation et de la vitesse de convergence en dérivant les conditions

mathématiques sur les paramètres dans lesquelles notre système peut se stabiliser autour du vrai nombre avec

l’erreur relative qui tend vers zéro avec un taux de convergence exponentiel.

Nous procédons en suite à résoudre le problème de détection des étiquettes manquantes, l’une des applica-

tions les plus importantes dans les systèmes RFID. Différent des travaux existants dans ce domaine, nous nous

concentrons sur deux scénarios inexplorés mais fondamentalement importants, celui en présence d’étiquettes

inattendues et celui des systèmes RFID multiple-région multi-groupe. Dans le premier scénario, nous dévelop-

pons un protocole à deux phases à base de filtre de Bloom. Le protocole proposé exploite le filtre Bloom en

séquence pour désactiver les étiquettes inattendues d’abord et ensuite teste la composition des étiquettes at-

tendues, limitant ainsi l’interférence des étiquettes inattendues et par conséquent le temps de détection. Pour

minimiser le temps de détection tout en garantissant la fiabilité de détection, nous effectuons une analyse

théorique et une optimisation sur la configuration des paramètres du protocole. Dans le deuxième scénari-

o, nous formulons et étudions un nouveau problème de détection d’étiquette manquante, survenant dans les

systèmes RFID multiple-région multi-groupe, où un lecteur mobile a besoin de détecter s’il y a un événement

manquant pour chaque groupe d’étiquettes. L’objectif est de concevoir des protocoles de détection d’étiquette

manquante avec le temps d’exécution minimal tout en respectant l’exigence de la fiabilité de détection pour

chaque groupe. Nous développons une suite de trois protocoles de détection d’étiquette manquante, cha-

cun diminuant la durée d’exécution par rapport à son prédécesseur en intégrant une version améliorée de

la conception du filtre Bloom. En analysant successivement les protocoles développés, nous nous dirigeons

progressivement vers un protocole de détection optimal qui fonctionne dans la pratique.
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Titre : Comptage et surveillance d’étiquettes dans des systèmes RFID à grande échelle: base théorique
et conception d’algorithmes
Mots clés : RFID, comptage d’étiquettes RFID, surveillance d’étiquettes RFID
Résumé : La technologie “Radio Frequency Identification (RFID)” est devenue de plus en plus répandue
dans le déploiement de diverses applications, telles que le contrôle des stocks et la gestion de la chaîne
d’approvisionnement. Dans cette thèse, nous présentons une recherche systématique sur les problèmes de
recherche liés au comptage et à la surveillance d’étiquettes RFID, deux composants fondamentaux dans les
systèmes RFID, en particulier dans des systèmes à grande échelle. Ces problèmes sont simples à formuler
et intuitivement compréhensible, tandis que tous les deux présentent des défis importants à la fois fonda-
mentaux et pratiques, et exigent des efforts non négligeables à résoudre. Plus précisément, nous abordons
les problèmes suivants allant de la modélisation et de l’analyse théorique, à la conception et l’optimisation
de l’algorithme pratique. Pour poser les bases théoriques pour la conception et l’optimisation des al-
gorithmes de comptage et la surveillance d’étiquette, nous commençons par étudier la stabilité de FSA.
Techniquement, nous modélisons le “backlog” du système comme une chaîne de Markov, dont ses état-
s sont la taille du “backlog” au début de chaque trame. Nous établissons ensuite un cadre générique
d’estimation du nombre d’étiquettes RFID basée sur le filtre de Kalman pour des systèmes RFID statiques
et dynamiques. Nous procédons en suite à résoudre le problème de détection des étiquettes manquantes,
l’une des applications les plus importantes dans les systèmes RFID. Différent des travaux existants dans ce
domaine, nous nous concentrons sur deux scénarios inexplorés mais fondamentalement importants, celui
en présence d’étiquettes inattendues et celui des systèmes RFID multiple-région multi-groupe. Dans le
premier scénario, nous développons un protocole à base de filtre de Bloom. Dans le second scénario, nous
développons trois protocoles de détection d’étiquette manquante en intégrant une version améliorée de la
conception du filtre Bloom.

Title: Tag Counting and Monitoring in Large-scale RFID systems : Theoretical Foundation and Algo-
rithm design
Keywords: RFID, RFID tag counting, RFID tag monitoring
Abstract: Radio Frequency Identification (RFID) technology has been deployed in various applications,
such as inventory control and supply chain management. In this thesis, we present a systematic research
on a number of research problems related to tag counting and monitoring, one of the most fundamental
component in RFID systems, particularly when the system scales. These problems are simple to state
and intuitively understandable, while of both fundamental and practical importance, and require non-
trivial efforts to solve. Specifically, we address the following problems ranging from theoretical modeling
and analysis, to practical algorithm design and optimization. To lay the theoretical foundations for the
algorithm design and optimization, we start by studying the stability of frame slotted Aloha. We model
system backlog as a Markov chain. The main objective is translated to analyze the ergodicity of the Markov
chain. We then establish a framework of stable and accurate tag population estimation schemes based on
Kalman filter for both static and dynamic RFID systems. We further proceed to addressing the problem of
missing tag detection, one of the most important RFID applications. Different from existing works in this
field, we focus on two unexplored while fundamentally important scenarios, missing tag detection in the
presence of unexpected tags and in multiple-group multiple-region RFID systems. In the first scenario, we
develop a Bloom filter-based protocol. In the second scenario, we develop three protocols by incorporating
an improved version of the Bloom filter design.
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