
HAL Id: tel-01431413
https://theses.hal.science/tel-01431413v1

Submitted on 10 Jan 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Bases of relations in one or several variables: fast
algorithms and applications

Vincent Neiger

To cite this version:
Vincent Neiger. Bases of relations in one or several variables: fast algorithms and applications.
Symbolic Computation [cs.SC]. École Normale Supérieure de Lyon - University of Waterloo, 2016.
English. �NNT : 2016LYSEN052�. �tel-01431413�

https://theses.hal.science/tel-01431413v1
https://hal.archives-ouvertes.fr

École Doctorale en Informatique et Mathématiques de Lyon (ED512)

THÈSE

pour l’obtention du

Doctorat de l’Université de Lyon
(spécialité informatique)

délivré par

l’École Normale Supérieure de Lyon

présentée et soutenue publiquement le 30 novembre 2016

par

Vincent Neiger

Bases of relations in one or several variables:

fast algorithms and applications

Bases de relations en une ou plusieurs variables :

algorithmes rapides et applications

Composition du jury

Rapporteurs : Bernhard Beckermann Université de Lille
Mark van Hoeij Florida State University

Examinateurs : Jean-Charles Faugère Inria, Université Pierre et Marie Curie, Paris VI
Nadia Heninger University of Pennsylvania
Marie-Françoise Roy Université de Rennes 1

Directeurs de thèse: Claude-Pierre Jeannerod Inria, École Normale Supérieure de Lyon

Éric Schost University of Waterloo

Gilles Villard CNRS, École Normale Supérieure de Lyon

Laboratoire de l’Informatique du Parallélisme — UMR 5668

Remerciements
Un grand merci à Bernhard Beckermann et Mark Van Hoeij pour avoir accepté de rap-
porter cette thèse, et à Jean-Charles Faugère, Nadia Heninger et Marie-Françoise Roy
pour avoir accepté de faire partie du jury. Je vous suis extrêmement reconnaissant pour
le temps que vous accordez à ce travail et pour l’intérêt que vous lui portez.

Un merci tout aussi grand à Claude-Pierre, Éric et Gilles, pour avoir supervisé et
encadré mes travaux pendant ces trois ans ainsi qu’en stage auparavant. Travailler avec
vous a été un réel plaisir, et je vous remercie d’avoir été généreusement attentifs au bon
déroulement de ma thèse, sur tous les plans. J’aurais de grandes difficultés à émettre la
moindre critique négative sur votre encadrement, indépendamment du fait que l’endroit
serait tout à fait inapproprié.

Merci aux nombreuses personnes avec qui j’ai pu avoir des discussions lors de diverses
conférences ou déplacements. Flûte, voici le passage redouté des remerciements où l’on
scrute cette zone de la mémoire où sont enfouies certaines rencontres qui nous ont marqués
et où surnagent d’autres souvenirs sans intérêt particulier. Pas de doute que je vais oublier
des noms, alors pour les gens concernés : désolé.

Merci à Bruno, Pascal, Romain ; à Olivier ; à Laurent ; à Clément ; à Armin, Esmaeil,
Javad, Muhammad ; à Albert, Andrew, Arne, George, Seny, Steve, Suzy ; à Guénaël,
Jérémy, Ludovic, Mohab ; à Guillaume, Hugo, Pierre-Jean, Svyat ; à Daniel, Johan, Luca ;
à Thomas S.-P., Louis ; et à toute l’équipe à Lyon.

Merci aux collègues thésards Adeline, Antoine, Fabrice, Philippe, Matei, Sébastien M.,
Sébastien T., Silviu, Thomas P., Valentina. Merci à Chiraz, Damien et Évelyne pour leur
travail efficace et souriant. Merci à Christophe pour avoir encadré mon stage de M1, qui
m’a donné un début de goût pour la recherche.

Merci enfin à Sandra, Robert, Julia et Thomas, pour votre gentillesse, votre bonne
humeur, votre ouverture d’esprit. Je garde un bon souvenir des séjours dans votre famille.

Pendant les deux premières années, ce doctorat était réalisé en cotutelle avec Western
University (London, Canada), où travaillait alors Éric Schost. À ce titre, mon travail
a été soutenu financièrement par les bourses de mobilité du Programme Avenir Lyon
Saint-Étienne, de la Région Rhône-Alpes (CMIRA - Explo’ra Doc), ainsi que par Mitacs
(Globalink Research Award - Inria).

i

ii

‘Pour tout bagage on a vingt ans
on a l’expérience des parents. . . ’

À mes parents,

Pour m’avoir pondu, élevé, éduqué,
puis supporté tant d’années,

en toutes circonstances.
b

À mes frères,

Pour toutes les choses partagées,
rigolades, disputes, sport,

repas, musique, etc.
K

À Clémentine,

Pour tes rires, ta douceur, tes mots,
et tous les instants de bonheur,

passés et surtout à venir

‘. . . pour qu’éclatent de joie
chaque heure et chaque jour.’

iii

iv

Contents

List of Problems xi

List of Algorithms xiii

List of Tables xv

List of Figures xv

Preamble 1

Part I Problems and overview of contributions 15

Chapter 1 Generating sets of modules over polynomial rings 19

1.1 Popov bases of modules over univariate polynomial rings 20

1.1.1 Bases and polynomial matrices 20

1.1.2 Row degrees and shifted reduced forms 22

1.1.3 Pivots and shifted Popov forms 27

1.2 Designing fast algorithms for shifted Popov bases 30

1.2.1 Finding and using the minimal degree 30

1.2.2 Size of bases and target costs 35

1.3 Gröbner bases of modules over multivariate polynomial rings 38

1.3.1 Generating sets of ideals and modules 39

1.3.2 Monomial orders and initial module 41

1.3.3 Gröbner bases . 46

1.3.4 Link with shifted Popov bases 48

1.3.5 Modules of finite (co)dimension and multiplication matrices . . 50

v

Contents

Chapter 2 Fast computation of relation bases 55

2.1 Relations or syzygies in finite-dimensional modules 55

2.1.1 Gröbner bases of multivariate modules of relations 55

2.1.2 Univariate case: minimal relation bases 60

2.1.3 Overview of our results . 62

2.2 Fast algorithms for dense multiplication matrices 63

2.2.1 Results . 63

2.2.2 Overview of our algorithm . 65

2.2.3 Change of monomial order for zero-dimensional ideals 68

2.3 Multiplication matrix in nilpotent Jordan form 70

2.3.1 Link with minimal approximant bases 70

2.3.2 Overview of previous work . 71

2.3.3 Computing shifted Popov approximant bases 72

2.4 Multiplication matrix in Jordan form 75

2.4.1 Link with minimal interpolant bases 75

2.4.2 Algorithm for almost uniform shifts 76

2.4.3 Computing shifted Popov interpolant bases 78

2.5 Companion-block diagonal multiplication matrix 80

2.5.1 Link with systems of linear modular equations 81

2.5.2 Computing shifted Popov solution bases 82

2.5.3 Computing a solution via structured linear algebra 86

Chapter 3 Impact on related problems 89

3.1 Multivariate interpolation and list-decoding algorithms 89

3.1.1 Multivariate interpolant with degree constraints 89

3.1.2 List-decoding of (folded) Reed-Solomon codes 92

3.1.3 Computing shifted Popov bases of multivariate interpolants . . 96

3.1.4 Soft-decoding of Reed-Solomon codes 100

3.1.5 General Coppersmith technique over K[X] 101

3.2 Computing shifted Popov forms of polynomial matrices 105

3.2.1 Overview . 105

3.2.2 Computing shifted Popov forms for arbitrary shifts 109

3.2.3 Deterministic computation of Hermite forms and determinants . 110

vi

Part II Relation bases for arbitrary multiplication matrices 115

Chapter 4 Computing relation bases via linear algebra 119

4.1 The linear algebra viewpoint . 120

4.1.1 Linearization: viewing polynomial relations as scalar relations . 120

4.1.2 Bounded-degree relations and nullspace of multi-Krylov matrices 122

4.1.3 Multi-Krylov matrices in the univariate case 125

4.2 Fast computation of the monomial basis 126

4.2.1 Row rank profile and monomial basis 127

4.2.2 Structure and row rank profile of a multi-Krylov matrix 128

4.2.3 Computing the row rank profile of a multi-Krylov matrix 129

4.3 Fast computation of the relation basis 134

4.3.1 Simultaneous computation of normal forms of monomials 134

4.3.2 Univariate case: computing shifted Popov relation bases 136

4.3.3 Computing reduced Gröbner relation bases 138

Chapter 5 Computing multiplication matrices from a Gröbner basis 141

5.1 Structural properties of the monomial basis 141

5.2 The case of two variables . 142

5.3 Computing rows of a Krylov matrix . 144

5.4 Computing the multiplication matrices 144

Part III Systems of linear modular univariate equations 151

Chapter 6 Preliminaries and ingredients 155

6.1 Multiplication time functions for polynomials and polynomial matrices 155

6.2 Using the minimal degree to ensure uniform shift and output degrees . 156

6.3 Computing residuals for systems of linear modular equations 158

6.4 Iterative relation basis for a triangular multiplication matrix [BL00] . . 160

Chapter 7 Computing shifted Popov approximant bases 165

7.1 Fast algorithms for almost uniform orders [GJV03] 166

7.2 Arbitrary orders: reduction to the case n ∈ O(m) 172

7.3 Fast approximant bases in Popov form with known minimal degree . . 175

7.4 Fast approximant bases in Popov form for arbitrary shifts 181

vii

Contents

Chapter 8 Computing shifted Popov solution bases 185

8.1 Fast algorithm via kernel bases when the minimal degree is known . . . 186

8.2 The case of one equation . 190

8.2.1 Amplitude, splitting indices, and block triangular shape 192

8.2.2 Fast algorithm for a single equation 194

8.3 Fast solution bases in Popov form for arbitrary shifts 198

Chapter 9 Computing a solution via structured linear algebra 201

9.1 Solving structured homogeneous linear systems 201

9.2 Reducing to solving a mosaic-Hankel linear system 204

9.3 Directly computing a solution via a Toeplitz-like system 208

Chapter 10 Coppersmith technique over the univariate polynomials 215

10.1 The approach based on row reduction 215

10.2 Reducing to a system of linear modular equations 218

10.2.1 Introduction: the specific case d = 1 218

10.2.2 The general case d > 1 . 220

Part IV Interpolant bases and multivariate interpolation 225

Chapter 11 Multivariate interpolation and list-decoding 229

11.1 Reducing Problem 11 to Problem 10 229

11.2 Impact on decoding algorithms for Reed-Solomon codes 234

11.2.1 Interpolation step of the Guruswami-Sudan algorithm 234

11.2.2 Re-encoding technique . 235

11.2.3 Interpolation step in the Wu algorithm 237

11.2.4 Slowdown due to repeating points in the soft-decoding 239

11.3 The approach based on row reduction 240

11.4 On assumption Hint,1 . 242

11.5 On assumption Hint,3 . 243

Chapter 12 Some tools for computing with polynomial matrices 245

12.1 More time functions for polynomial matrices 245

12.2 Multiplying matrices with unbalanced row degrees [ZLS12] 248

12.3 Detailed cost bound for the kernel basis algorithm of [ZLS12] 249

viii

Chapter 13 Computing shifted Popov interpolant bases 255

13.1 Divide-and-conquer approach for a triangular multiplication matrix . . 255

13.2 Fast interpolant bases in reduced form for almost uniform shifts 257

13.3 Fast interpolant bases in Popov form for arbitrary shifts 261

Chapter 14 Details of new ingredients for interpolant bases 265

14.1 Fast shifted reduction of a reduced matrix 265

14.2 Computing residuals for interpolant bases 267

14.2.1 Residuals and Chinese remaindering 268

14.2.2 Main algorithm . 270

14.2.3 Computing the residual by shifting P 272

14.2.4 Computing the residual by Chinese remaindering 274

14.3 Computing interpolant bases with known minimal degree 277

Part V Normal forms of polynomial matrices 281

Chapter 15 Shifted Popov forms 285

15.1 The generic determinant degree bound 285

15.2 Reducing to almost uniform input degrees 286

15.2.1 Column partial linearization . 287

15.2.2 Row partial linearization . 291

15.2.3 Reducing the degrees in shifted Popov form computation 292

15.3 Fast, probabilistic computation of the shifted Popov form 293

Chapter 16 Hermite form and determinant 297

16.1 Preliminaries: column bases . 298

16.2 Computing the diagonal entries of a triangular form 299

16.2.1 Fast block elimination . 300

16.2.2 Computational cost and example 300

16.3 Fast computation of the determinant of a polynomial matrix 303

16.4 Fast Hermite form algorithm with known minimal degree 309

16.4.1 Hermite form via shifted column reduction 309

16.4.2 Reducing the amplitude of the minimal degree 310

16.4.3 Algorithm and computational cost 314

16.4.4 Proof of Lemma 16.19 . 317

ix

Contents

16.5 Reduction to almost uniform input degrees 319

Perspectives 321

Index 325

Bibliography 329

x

List of Problems

1 Gröbner basis of a syzygy module . 56
2 Gröbner relation basis . 58
3 Gröbner basis of a syzygy module defined by a dual basis 59
4 Minimal relation basis . 62
5 Change of monomial order for a zero-dimensional ideal 68
6 Computing the multiplication matrices from a Gröbner basis 69
7 Minimal approximant basis . 71
8 Minimal interpolant basis . 76
9 Minimal solution basis . 81
10 Small solution vector . 86

11 Constrained multivariate interpolation . 90
12 Minimal basis of multivariate interpolants 98
13 Small modular roots (Coppersmith technique over K[X]) 102
14 Interpolation step of the Coppersmith technique over K[X] 103
15 Shifted Popov form of a square nonsingular polynomial matrix 106
16 Hermite form of a square nonsingular polynomial matrix 106

17 Change of basis in the interpolation step of Coppersmith technique 220

xi

List of Problems

xii

List of Algorithms

1 KrylovRankProf: Row rank profile of a multi-Krylov matrix 131
2 LinNormalForm: Normal forms via linear algebra 135
3 LinPopovRelBas: Shifted Popov relation bases via linear algebra 137
4 LinRelBas: Reduced Gröbner relation bases via linear algebra 139

5 KrylovEval: Computing rows of a Krylov matrix 145
6 NextExpSet: Computing the next exponent set Si 147
7 MulMat: Multiplication matrices from reduced Gröbner basis 149

8 IterRelBas: Iterative relation basis for triangular mult. mat. 161

9 LinAppBas: Approximant basis with identical orders: base case [GJV03] . 167
10 IterAppBas: Iterative approximant basis with identical orders [GJV03] . 169
11 DaCAppBas: Divide-and-conquer app. basis with identical orders [GJV03] 170
12 ReduceNbEqAppBas: Approximant basis: reduction to n ∈ O(m) 173
13 MinDegAppBas: Approximant basis with known minimal degree 179
14 FastPopovAppBas: Shifted Popov approximant basis 182

15 PivDegKerBas: Shifted Popov kernel basis with known pivot degree . . 190
16 MinDegSolBas: Solution basis with known minimal degree 191
17 FastPopovSolBasOneEq: Solution basis for a single equation 197
18 FastPopovSolBas: Shifted Popov solution basis 199

19 SolVecViaHankel: Small solution vector via a mosaic-Hankel system . . 209
20 SolVecViaToeplitz: Small solution vector via a Toeplitz-like system . . 212

21 ChangeBasisOneStep: Change of basis in Coppersmith: from P to Y P 222
22 ChangeBasis: Change of basis in Coppersmith technique 223

23 MultiIntViaSolVec: Finding multivariate interpolants as solution vectors233
24 GurSudIntReenc: Guruswami-Sudan interpolation step with re-encoding 237

25 RDegPolMatMul: Multiplication with unbalanced row degrees [ZLS12] 250
26 MinKerBas: Shifted minimal kernel basis [ZLS12] 252

27 DaCRelBas: Divide-and-conquer relation basis for triangular mult. mat. 256
28 MinIntBas: Minimal interpolant basis . 258

xiii

List of Algorithms

29 ShiftMinIntBas: Shifted minimal interpolant basis 260
30 FastPopovIntBas: Shifted Popov interpolant basis 262

31 ChangeShift: Shifted reduced form of a reduced matrix 267
32 JordanMul: Residuals for a multiplication matrix in Jordan form 271
33 JordanMulByShifting: Jordan residual via shifting 273
34 JordanMulByCRT: Jordan residual via Chinese remaindering 275
35 MinDegIntBas: Interpolant basis with known minimal degree 278

36 SPopovForm: Shifted Popov form of a polynomial matrix 295

37 HermiteDiag: Diagonal entries of the Hermite form 301
38 Determinant: Determinant of a nonsingular polynomial matrix 306
39 MinDegHermite: Hermite form with known minimal degree 315

xiv

List of Tables

1 Improvement: Gröbner basis of relation module 7
2 Improvement: computing the multiplication matrices 7
3 Improvement: systems of linear modular equations (known roots) 9
4 Improvement: approximant bases . 9
5 Improvement: systems of linear modular equations (arbitrary moduli) . . . 10
6 Improvement: Reed-Solomon list-decoding (µ = µ1 = · · · = µν , distinct xi’s) 11
7 Improvement: folded Reed-Solomon list-decoding 11
8 Improvement: Shifted Popov and Hermite forms of a matrix 12

2.1 Fast algorithms for systems of linear modular equations over K[X] 83

3.1 Fast algorithms for the interpolation step of Guruswami-Sudan list-decoding 94
3.2 Fast algorithms for shifted reduced forms and shifted Popov forms of a

polynomial matrix . 108

List of Figures

1.1 Staircase of the bivariate monomial ideals 〈X8, Y 〉 and 〈X8, X2Y 4, Y 7〉 . . 42
1.2 Staircase of a Borel-fixed monomial ideal in three variables 42

10.1 Shape of the known basis of the module in Copersmith technique 216

xv

List of Figures

xvi

Preamble

In this document, we aim at designing fast algorithms to solve problems from computer
algebra and connected fields such as coding theory. Our results improve upon those known
previously for a number of situations. This includes the faster computation of canonical
solution bases for systems of linear modular equations over the univariate polynomials,
and of normal forms of polynomial matrices. We exploit this to accelerate the interpolation
step of the Guruswami-Sudan and Kötter-Vardy algorithms for the list- and soft-decodings
of Reed-Solomon codes. In addition, we give a faster algorithm for the change of monomial
order for zero-dimensional multivariate ideals whose initial ideal is Borel-fixed.

Our main problem asks to compute relations between elements in a vector space, which
is finite-dimensional and equipped with multiplication matrices that make it a module over
a multivariate polynomial ring. More specifically, it asks to compute the Gröbner basis of
the syzygy module defined by these elements, for a given monomial order. Many of our
algorithms focus on modules over the univariate polynomials; then, the syzygy module
is free, monomial orders are specified by shifts, and Gröbner bases are known as shifted
Popov bases. This general setting encompasses fundamental algorithmic questions about
univariate polynomials, such as Padé approximation and rational interpolation, and from
linear algebra, such as finding the minimal polynomial of a vector.

Our results were obtained by elaborating over ideas and techniques developed for such
questions, with in particular Keller-Gehrig’s algorithm for computing the characteristic
polynomial of a matrix [KG85] and Beckermann-Labahn’s divide-and-conquer computa-
tion of minimal approximant bases [BL94]; the latter follows on from work on the half-gcd
algorithm [Knu70, Sch71, Moe73] and Padé approximation [BGY80, CC86]. We both ex-
tend these approaches to more general contexts and introduce new ingredients for faster
algorithms, in particular through a better control of the degrees during the computation.

? ? ?

Cost model

Our goal is to design fast sequential algorithms. To measure this quality, it is customary
in computer algebra to employ the notion of arithmetic cost, that we describe now.

In all the problems we will study, we work over some field K. The efficiency of our
algorithms is measured by a cost bound, which provides an upper bound on the number
of basic operations in K performed by the algorithm to compute its output. This bound
is usually expressed in terms of parameters that describe the size of the input and of the
output, where by size we mean the number of field elements that are used to represent
these objects. The basic operations inK are additions, multiplications, opposites, inverses,

1

Preamble

and equality testing, which are all supposed to have unit cost.
Our cost bounds will always be asymptotic estimates with constant factors hidden via

the notation O(·), and sometimes polylogarithmic terms omitted via the notation O (̃·).
In most cases we will not have any requirement regarding the base field K. There are two
exceptions where we require that the cardinality of K be large enough: first, for problems
from interpolation or from coding theory which involve a certain number of distinct points,
and second to ensure a good probability of success in the case of probabilistic algorithms.

? ? ?

Univariate polynomials and rational reconstruction

One of the important problems in computer algebra and coding theory is the reconstruc-
tion of rational functions: given a modulus m ∈ K[X] of degree D > 0 and a polynomial
f ∈ K[X] of degree less than D, it asks to compute polynomials p1, p2 ∈ K[X] such that

p1f = p2 mod m, deg(p1) < N1, and deg(p2) < N2 (1)

for some prescribed bounds N1, N2 ∈ Z>0. These are often such that N1 + N2 = D + 1,
thus ensuring the existence of a solution which may be found by linear system solving, as
the coefficients of p1 and p2 form a vector in the left nullspace of a (D + 1)×D matrix.

Eq. (1) is a single linear modular equation with two unknowns: one of the main goals
in this document is to design fast algorithms for systems of linear modular equations with
several unknowns. In particular, we will borrow from previous work on solving Eq. (1),
which we outline now; we refer to [GG13, Sec. 5.7 to 5.9] for a more detailed overview.

Depending on the moduli, we consider three cases of Eq. (1), which will all play a key
role in our algorithms for generalizations of this reconstruction problem.

The case m = XD, over the field of complex numbers, is known in analysis as Padé
approximation [Cau21, Her93, Pad94]. Early algorithms used recursion formulas in the
Padé table to find an approximant in O(D2) floating-point operations; this is discussed
for example in [Bak75, Cla75, BGM96]. Padé approximation was later considered from a
symbolic computation viewpoint, starting with [Ged73, Ged79].

In the meantime, a solution was independently proposed for solving the key equation
in the context of decoding BCH codes [Ber68, Ch. 7], which also corresponds to m = XD.
The algorithm was then modified in [Mas69] into what is known as the Berlekamp-Massey
algorithm; it uses O(D2) operations in K. The fact that this also computes the minimal
generator of a linearly recurrent sequence over K was highlighted in [Zie68, Mas69, Mil75].

The case of a modulus which splits, m =
∏

16k6D(X−xk) for some known field elements
(x1, . . . , xD), is called multipoint Padé approximation [Bak75, Ch. 8] and Hermite rational
interpolation [War74, War76], or Cauchy interpolation [Cau21] [GG13, Sec. 5.8] when the
roots are distinct. The latter situation occurs in the decoding of Reed-Solomon codes via
the Welch-Berlekamp approach [WB86].

In relation with the decoding of Goppa codes, Eq. (1) was considered in its general
form in [SKHN75], where it was solved via the Euclidean algorithm in O(D2) operations;
this approach can also be found in [MS78] or [GG13, Sec. 5.7]. The intimate connections
between the algorithms of Euclid, of Berlekamp-Massey, and for Padé approximants have
been extensively studied [Mil75, WS79, BGY80, Che84, CC86, Dor87].

2

In a nutshell, and from a computer algebra point of view, there are two approaches for
fast algorithms. The extended GCD-based approach works in a top-down fashion by first
considering the high-degree coefficients of the input polynomials. Relying on a divide-and-
conquer scheme similar to the half-gcd algorithm of Knuth-Schönhage-Moenck [Knu70,
Sch71, Moe73], a fast variant of this approach was obtained in [GY79, BGY80]. The Padé-
based approach rather operates in a bottom-up manner, starting with the coefficients of
low degree, with divide-and-conquer variants given in [BGY80, CC86].

In both cases, the divide-and-conquer algorithms can be roughly sketched as follows.
First, they do not compute a single solution (p1, p2) but a 2× 2 matrix over K[X]. After
splitting the input in two parts of half the degree, they recursively solve the problem for
the first part, update the second part accordingly, recursively solve the problem for this
updated part, and finally combine both recursive solutions via multiplication of 2 × 2
polynomial matrices. The updated part is called the residual.

This yields a cost bound of O(M(D) log(D)) operations in K, where the function
M(·) is such that univariate polynomials of degree at most D over K can be multiplied
using M(D) operations in K. It follows from [Sch77, Nus80] that M(D) can be taken in
O(D log(D) log(log(D))) ⊂ O (̃D).

? ? ?

A linear algebra point of view

We now discuss how the above reconstruction problem can be interpreted as the search of
a linear relation between the rows of a matrix over K. While this linear algebra viewpoint
is unnecessary in the design of fast algorithms for rational reconstruction as in Eq. (1), it
will be crucial concerning generalizations to systems of linear modular equations.

To see why, note that both the GCD- and Padé-based algorithms solve Eq. (1), which
involves two unknowns in K[X], by considering 2× 2 polynomial matrices in the process.
For systems withm unknowns, the algorithms will manipulatem×m polynomial matrices.
One may expect that, at some point such as in the base case of a recursion, these matrices
will have low degree or even be constant, and then the problem will be close to computing
nullspaces of matrices over K. Therefore, it becomes important to rely not only on fast
polynomial multiplication, but also on fast tools from K-linear algebra.

The setM = K[X]/〈m〉 is aK-vector space with basis {1, X, . . . , XD−1}. Representing
an element f ∈ M by its coefficient vector f ∈ K1×D, the multiplication by X in M is
given by a multiplication matrix M ∈ KD×D: the coefficients of Xf mod m are fM.

In the case of Padé approximation (m = XD), M is the upper shift matrix

M =

0 1

.
0 1

0

 .
More generally, for an arbitrary modulus m, the multiplication matrix is the companion

3

Preamble

matrix built from the coefficients m = c0 + c1X + · · ·+ cD−1X
D−1 +XD:

M =

0 1

.
0 1

−c0 −c1 · · · −cD−1

 .
When m =

∏
16k6D(X − xk) with known roots, we will also use another basis forM. For

example, if the roots are distinct then we can use the Lagrange basis. In this case f ∈M
is represented by its evaluation vector f = [f(x1) · · · f(xD)], and since the evaluations
of Xf are [x1f(x1) · · · xDf(xD)], the multiplication matrix is the diagonal

M =

x1

x2

. . .
xD

 .
Let us go back to the reconstruction problem, with degree constraints N1 = D+1 and

N2 = 0 to simplify matters: we look for p of degree at most D such that pf = 0 mod m.
Since the modular product pf mod m is represented by fp(M), computing a vector in the
left nullspace of the Krylov matrix

f
fM
...

fMD

 ∈ K(D+1)×D

yields the coefficient vector of a solution polynomial p. For an arbitrary matrix M, the
set {p ∈ K[X] | fp(M) = 0} is an ideal of K[X], whose monic generator is the minimal
polynomial of the vector f and is a factor of the characteristic polynomial of M.

The coefficient vector of this generator is the unique nullspace element whose right-
most nonzero entry has smallest index and is 1, and can be computed in O(Dω log(D))
operations in K, as follows. Here, ω is so that we can multiply m×m matrices over K in
O(mω) operations in K, the best known bound being ω < 2.38 [CW90, LG14]. First, the
Krylov matrix is formed within the above bound by repeated squaring of M, as in [KG85,
Sec. 3]. Then, we conclude by Gaussian elimination in O(Dω) operations [IMH82]. For
early numerical algorithms along the same lines, we refer to [Kry31, Dan37].

This linear algebra approach will provide an efficient base case for systems of modular
equations, thanks to its generality: it works for any M ∈ KD×D and directly extends to
F ∈ Km×D having rows f1, . . . , fm. In this case, we consider the K[X]-module

{(p1, . . . , pm) ∈ K[X]m | f1p1(M) + · · ·+ fmpm(M) = 0},
whose elements such that deg(pi) 6 D form linear relations between the rows of

F
FM
...

FMD

 ∈ Km(D+1)×D.

4

An overview of results related to this situation is given in [Kai80, Chap. 6]. In particular,
this module admits canonical bases, called Popov and Hermite bases. These are m ×m
matrices over K[X], with the former having uniformly small degrees and the latter being
triangular; they correspond to specific sets of vectors in the nullspace of the above matrix.

As an interesting particular case, the identity matrix F = I ∈ KD×D leads to the Popov
basis XI−M, whose determinant is the characteristic polynomial of M. Furthermore, the
Hermite basis is known to have the same determinant, and its triangular form allows us
to retrieve it efficiently. The characteristic polynomial algorithm of Keller-Gehrig [KG85,
Sec. 5] can be seen as the computation of the Hermite basis in O(Dω log(D)) operations.

For systems of linear modular equations, where F may be any matrix in Km×D, ideas
from [Kai80, KG85] and subsequent research lead to a similarly fast computation of Popov
or Hermite bases. One of our contributions is to extend this approach so as to work in
multivariate contexts and to cover a wide range of output canonical bases.

? ? ?

Some ingredients for fast algorithms

Two common threads in our fast algorithms for systems of linear modular equations are the
use of divide-and-conquer schemes adapted from Beckermann-Labahn’s algorithm [BL94]
and, for the base case of the recursion, of ideas from Keller-Gehrig’s algorithm.

The algorithm of [BL94] applies the bottom-up approach to the more general Hermite-
Padé approximation. In this context, one is given a vector f ∈ K[X]m×1 and a tuple N ofm
degree constraints, and the equation is pf = 0 mod XD for some unknown p ∈ K[X]1×m.
Eq. (1) corresponds to m = 2 and f being the transpose of [f − 1].

Then, it computes an m×m matrix over K[X] whose rows form a basis of the set of
all solutions without degree constraints. To ensure that one of these rows satisfies them
nevertheless, the algorithm computes specific bases which are said to be s-minimal, where
the shift s is a tuple of m integers that are related to the constraints in N.

In [BL94], the base case is for D = 1 and is solved by Gaussian elimination. Then,
when D > 2, the following recursion is used:

1. Compute an s-minimal basis P(1) of approximants for f modulo XD/2;
2. Compute the residual g from P(1) and f , and update s into t;
3. Compute a t-minimal basis P(2) of approximants for g modulo XD/2;
4. Return the product P(2)P(1).

After the first recursive call, which has processed the low-degree part of f , the residual
is an update of the high-degree part which then allows us to continue the computation.
Formally, g = (X−D/2P(1)f) mod XD/2. At the same time, the shift t corresponds to an
update of the degree constraints, depending on the degrees in P(1).

For Hermite-Padé approximation and some generalizations, this provides a solution in
O (̃mωD) field operations, which is similar to the cost bound O(mωM(D)) for multiplying
two m×m matrices with entries of degree at most D [CK91]. One main obstacle towards
faster algorithms is the non-uniformity and unpredictability of the degrees in the bases.

Our first objective is to solve systems of equations efficiently for shifts s whose entries
are uniform or close to it: in this case, the average degree of the rows in the output basis is

5

Preamble

in O(D/m). Concerning Hermite-Padé approximation, this was exploited in [Sto06, ZL12]
to reduce to a case with well controlled degrees solved in [GJV03], leading to the cost
bound O (̃mω−1D). This result and the ideas in these references can be used in some of
the more general situations we tackle. In situations where they seem not to apply, we
rather control the degrees by introducing a change of shift at each node of the recursion
described above, ensuring that only uniform shifts are dealt with in recursive calls.

A second goal is to support arbitrary shifts and to compute s-Popov bases, which are
canonical forms of the s-minimal bases. While they have the advantage of having average
column degree at most D/m independently of s, they do not behave well regarding the
product P(2)P(1). To solve this, we adapt the divide-and-conquer scheme: we use the bases
computed recursively to find degree information on the sought basis, and then exploit this
information to reduce to an instance with an almost uniform shift. Instead of multiplying
bases together, we solve this instance efficiently as sketched in the previous paragraph.

Another issue with the above divide-and-conquer scheme is that the recursive tree has
D leaves and each of them uses O(m2) operations. This makes a total cost of O(m2D)
operations, which is beyond our target cost bound O (̃mω−1D). We solve this by choosing
D ≈ m as the base case; in this context, we thus aim at the cost bound O (̃Dω). Besides,
the average column degree of the s-Popov basis is at most D/m ≈ 1, suggesting that fast
polynomial matrix multiplication should not be essential for a fast solution. We obtain
the desired efficiency via the linear algebra approach based on Keller-Gehrig’s algorithm.

? ? ?

Some notations and conventions

A list of the recurring notations in this document can be found at the end of the index.
We will often manipulate tuples of integers, that is, elements of Zm for some m ∈ Z>0.

Unless indicated otherwise, all tuple operations and comparisons are componentwise. The
set of matrices of dimensions m × n over a ring R is denoted by Rm×n. For simplicity
of presentation, in the cost analyses we only consider the case ω > 2. All our algorithms
still work if ω = 2, with cost bounds that are similar to the ones we give, except that they
may involve additional logarithmic factors. Hereafter, log(·) stands for the logarithm in
base 2, which we stress by writing log2(·) when any ambiguity should be avoided.

Most our improvements consist in providing algorithms that have the best known
cost bound or extend the scope of the fastest known algorithms, for example by using
less restrictive assumptions. In a few cases, our contribution is to give a deterministic
algorithm with a cost bound that had previously only been achieved by probabilistic
algorithms. In what follows, these are always of the Las Vegas type [Pap94, Chap. 11].

? ? ?

Multivariate relations and change of monomial order

Generalizing the linear algebra approach above to the multivariate case, we consider a
finite-dimensional K[X1, . . . , Xr]-module, given to us asM = KD along with a multipli-
cation matrix Mi ∈ KD×D for each variable; we write M = (M1, . . . ,Mr). Then, for
some elements f1, . . . , fm inM, we are interested in the module of relations

SyzM(F) = {(p1, . . . , pm) ∈ K[X1, . . . , Xr]
m | f1p1(M) + · · ·+ fmpm(M) = 0},

6

known as a syzygy module. Given the matrices, the module elements, and a monomial or-
der ≺ on K[X1, . . . , Xr]

m, our problem is to find the ≺-reduced Gröbner basis of SyzM(F).

Improvement: Gröbner basis of relation module

[FGLM93] O(rD3) general case
[FGHR14] O(Dω log(D) + rM(D) log(D)) ≺lex, Shape Position
Here (Theorem 2.13) O(rDω log(D)) general case

As sketched above in the univariate case, the sought Gröbner basis corresponds to a set
of vectors in the nullspace of a multi-Krylov matrix. Our algorithm essentially generalizes
Keller-Gehrig’s approach to the multivariate context and to arbitrary monomial orders.

As summarized below, in addition to computing the multiplication matrices from a
description ofM, the FGLM algorithm [FGLM93] solves this problem. It is written for
ideals (m = 1) in [FGLM93], but the ideas extend to the case of modules [Fit97]. Roughly,
our improvement comes from an efficient grouping of the operations, thus performing few
matrix-matrix products, as opposed to many matrix-vector products in [FGLM93].

In a specific context related to polynomial system solving, Keller-Gehrig’s approach
had already been used similarly in [FGHR14, Sec. 3], under the restrictive assumption that
the ideal is in Shape Position. Focusing on the lexicographic order, this reference gives
a probabilistic algorithm in O(Dω log(D) + rM(D) log(D)); a deterministic algorithm is
also proposed, yet it has the same cost bound as ours while requiring extra assumptions.

In the problem of the change of monomial order, we are given a ≺1-Gröbner basis of a
zero-dimensional ideal I of degreeD, as well as another order ≺2, and we want to compute
the ≺2-Gröbner basis of I. The efficient algorithms in [FGLM93, FGHR14, FM17] can
be seen as a two-step strategy, where one first computes the multiplication matrices M,
and then computes the ≺2-Gröbner basis of some module of relations as above.

More precisely, K[X1, . . . , Xr]/I is isomorphic to M = KD via its monomial basis;
then, I = SyzM(F) for F = [1 0 · · · 0] ∈ K1×D, which stands for the monomial 1.
Thus, we have seen that the second step can be done in O(rDω log(D)) operations. Under
the assumption that the ≺1-initial ideal of I is Borel-fixed, we obtain a similar cost bound
for the first step.

Improvement: computing the multiplication matrices

[FGLM93] O(rD3) general case
[FGHR14] 0 ≺drl, Mr only
Here (Theorem 2.14) O(rDω log(D)) Borel-fixed initial ideal

If I is in Shape Position, then one only needs to compute Mr. This case is studied in
[FGHR14], where ≺1 is the degree-reverse lexicographic order ≺drl. This reference shows
that Mr can be directly read off from the input ≺drl-Gröbner basis when I is a generic
ideal, or after a random linear change of coordinates. On the other hand, FGLM computes
all matrices with a cubic cost in general: ≺1, ≺2, and I are arbitrary [FGLM93].

7

Preamble

Our result lies in the middle, with a better cost than [FGLM93] and a more general
situation than [FGHR14]. Precisely, we only assume that the ≺1-initial ideal of I is Borel-
fixed, which holds after a random linear change of coordinates if ≺1 refines the degree.
Then, elaborating over the work in [FGHR14], we compute all the multiplication matrices
in O(rDω log(D)) field operations.

? ? ?

Systems of linear modular equations with known roots

Now, we consider systems of linear modular equations over K[X] of the form
p1f11 + · · ·+ pmfm1 = 0 mod m1

...
...

p1f1n + · · ·+ pmfmn = 0 mod mn

(2)

where each modulus is known through its roots and multiplicities. In a matrix form, this
system can be written as pf = 0 mod M, where f = [fij]i,j, M = diag(m1, . . . ,mn), and
the unknown is p = [pi]i.

As hinted at above, bases of solutions to such a system have cardinality m and can
be represented as m ×m matrices over K[X]. Given a shift s ∈ Zm, which stands for a
monomial order and allows us to take possible degree constraints into account, we will
compute bases of solutions that are s-minimal. More precisely, our goal is to compute the
canonical one called the s-Popov basis.

Working over K[X], the notions of ≺-reduced Gröbner bases and of s-Popov bases are
equivalent, so that our problem here is a particular case of the computation of Gröbner
bases for modules of relations SyzM(F). Here, the multiplication matrix M ∈ KD×D is
defined by the moduli, F ∈ Km×D is deduced from [fij]i,j, andD = deg(m1)+· · ·+deg(mn).

In [Bec92, VBB92], an s-minimal basis is computed in O(m2D2) operations, by an
iterative algorithm which processes the roots one after another. It admits a divide-and-
conquer variant, extending the approach of [BL94] outlined above to this case.

However, in this situation where roots may be repeated and shared by several moduli,
computing the residual is an obstacle. Here, we solve this by mixing polynomial matrix
multiplication with Chinese remaindering techniques. The latter allows us to convert be-
tween representations of the polynomials fij by their coefficients and by their evaluations,
which we alternatively use depending on the repetition of the roots. With this ingredient,
the divide-and-conquer version computes an s-minimal basis in O (̃mωD) operations.

Previously, cost bounds quasi-linear in D had only been obtained in the particular case
where all moduli have the form mi = XD/n, known as approximant basis computation
since it generalizes Padé approximation. The cost O (̃mω−1D) was achieved by exploiting
the facts that the output bases have degree at most D/n [GJV03], and furthermore that
they have small average row degree assuming that the entries of s are small [Sto06, ZL12].

Here, in our more general context, the second bound on the average row degree holds
when s is small, giving hope for an algorithm in O (̃mω−1D). However, the first bound
D/n does not hold, and thus we cannot rely on the same ideas as in [Sto06, ZL12]. The
main difficulty is that our assumption that s has small entries is not preserved in recursive

8

calls. To overcome this, we first give an algorithm which works only for the the uniform
shift s = (0, . . . , 0). We have seen that in the divide-and-conquer approach, the shift is
modified during the computation: we show how to rely on a fast change of shift to ensure
that all recursive calls are with the uniform shift. Using the linear algebra point of view
at the base case of the recursion, this achieves the cost bound O (̃mω−1D).

Now, without requiring assumptions on the shift, the s-Popov basis has small average
column degrees. In particular, using normalization at each step of the above-mentioned
iterative algorithm, it uses only O(mD2) operations [BL00] (see Section 6.4 for the cost
analysis). However, the shifted Popov form does not behave well with respect to multi-
plication, breaking the divide-and-conquer scheme of [BL94].

Here, we adapt this recursion so as to compute the shifted Popov basis in O (̃mω−1D),
for an arbitrary shift. Instead of multiplying the bases obtained recursively, we only use
them to deduce the degree shape of the sought basis. Once this degree information is
found, we manage to reduce the problem to a shift which has small entries, and thus can
be handled by our first algorithm.

Improvement: systems of linear modular equations (known roots)

Previous fastest [BL00] O(mD2) shifted Popov basis
Here (Theorem 2.19) O(mω−1M(D) log(D)2) minimal basis, small shift
Here (Theorem 2.20) O(mω−1M(D) log(D)3) shifted Popov basis

Combining this new approach to compute the s-Popov basis with techniques developed
for approximant bases, we also obtain improvements upon previous work when all moduli
are powers of X. Compared to [GJV03, Sto06, ZL12], at the cost of one logarithm factor,
our algorithm computes the canonical s-Popov basis, supports arbitrary shifts, and covers
a more general case since the moduli are not required to be the same power XD/n.

Improvement: approximant bases

[GJV03] O(mωM(D/n) log(D)) s-minimal, mi = XD/n

[Sto06, ZL12] O(mωM(D/m) log(D)) s-minimal, mi = XD/n, small shifts
Here (Theorem 2.17) O(mωM(D/m) log(D)2) s-Popov, mi = XDi , D =

∑
16i6nDi

? ? ?

Systems of linear modular equations with arbitrary moduli

Now, we consider the system of Eq. (2) for moduli in K[X] that are given to us by their
coefficients; we do not know their roots, which may not be over K in general. This makes
a difference regarding the available algorithmic techniques: in this context, the bottom-up
approach of [VBB92, BL94, BL00] does not work as such. A simple illustration is for a
single modular equation: it is unclear how to define subproblems with half the dimension
without having access to factors of the modulus.

9

Preamble

In the top-down approach, on the other hand, we do not need to know the roots: the
equations and moduli give a basis of a module,

A =

[
I [fij]i,j
0 diag(m1, . . . ,mn)

]
;

the sought basis of solutions can be found by computing the shifted Popov form of A for
a well-chosen shift. Yet, the efficiency of the latter computation is not satisfactory with
currently known algorithms.

A faster solution is to compute a left kernel for the right part of A via the algorithm of
[ZLS12], based on approximant bases. Still, this becomes less efficient when the shift has
large entries or the moduli have non-uniform degrees, and the output basis is not canonical.

One obstacle in both these approaches is that the quotients (p1f1i + · · · + pmfmi)/mi

are also computed, for all n equations and all m solutions in the basis. In general, even
the number of field elements used to represent these nm quotients may be beyond our
target cost bound, especially when n is large with respect to m.

In the next table, we assume n ∈ O(m); we write Di = deg(mi) and D = D1+· · ·+Dn.

Improvement: systems of linear modular equations (arbitrary moduli)

Via reduction [GSSV12] O (̃mωD) minimal basis, small shift
Via kernel [ZLS12] O (̃mω maxi(Di)) minimal basis, small shift
Via kernel [ZLS12] O (̃mωdD/me) min. basis, shift 0, Di ≈ D/n

Here (Theorem 2.22) O (̃mω−1D) shifted Popov basis
Here (Theorem 2.25) O(mω−1M(D) log(D)) a degree-constrained solution

To a small extent, the bottom-up approach can still be used: it suggests a divide-and-
conquer approach on the number of equations. At the base case, we thus consider a single
equation (n = 1) with a modulus of degree D.

Efficient solutions are provided by the linear algebra approach when D ∈ O(m), and
by approximant basis computations when the amplitude max(s) − min(s) of s ∈ Zm is
in O(D). When this amplitude is large, the shift partially indicates a block-triangular
shape of the output basis; this has already been exploited in the context of approximant
bases [ZL12, Sec. 6]. We split s into two parts of half its amplitude, so as to reveal this
shape precisely via recursive calls. At the base case of this recursion, shifts have small
amplitude and the equation can be solved by approximant bases computation.

To combine the results from recursive calls and obtain the Popov basis for any shift, we
manage to exploit our strategy based on finding and using degree information. However,
once degrees are known we make use of kernel bases and face the same obstacle as above,
leading us to assume n ∈ O(m). This assumption also allows us to compute the residual
efficiently via polynomial matrix multiplication.

We also provide another algorithm, which relies on the fast structured linear system
solver of [BJMS16], with the system being either quasi-Toeplitz or mosaic-Hankel. While
this algorithm is faster by some logarithmic factors, we note that it is probabilistic and
only returns one solution (p1, . . . , pm) which satisfies prescribed degree constraints.

10

Concerning the assumption n ∈ O(m), as of today it is unclear to us whether and how
the cost bound O (̃mω−1D) can be achieved for an arbitrary number n of equations.

? ? ?

Multivariate interpolation and list-decoding algorithms

Our results concerning systems of linear modular equations directly apply to problems
of multivariate interpolation with multiplicities. Here, we focus on those encountered in
list-decoding algorithms; for more general results, we refer to Section 3.1.

The list- and soft-decoding algorithms for Reed-Solomon codes in [GS99, KV03a] rely
on finding a bivariate interpolant, as follows. Given some points {(x1, y1), . . . , (xν , yν)} in
K2 and integers µ1, . . . , µν in Z>0, we look for a nonzero Q ∈ K[X, Y] whose degree in Y
is less than m and which satisfies

Q(xi, yi) = 0 with multiplicity µi for 1 6 i 6 ν, (3)

as well as some weighted degree constraint. Here, vanishing with multiplicity means that
the shifted polynomial Q(X + xi, Y + yi) has no monomial of total degree less than µi.

The Y -degree constraint leads to identifying Q with the vector (p1, . . . , pm) ∈ K[X]m

such that Q =
∑

j<m pj+1(X)Y j. Besides, Eq. (3) can be rewritten as a system of linear
modular equations [ZGA11, Zeh13], with moduli that have known roots among x1, . . . , xν
and known multiplicities related to µ1, . . . , µν ; the sum of their degrees isD = µ2

1+· · ·+µ2
ν .

Following the above discussions, a solution Q may be found in O (̃mω−1D) by com-
puting a shifted minimal basis of the set of (p1, . . . , pm) such that Eq. (3), where the shift
is chosen according to the weighted degree constraint and happens to have small entries.
In many cases, the dimensions of the system satisfy n ∈ O(m) and Q can also be found
slightly faster by solving a structured linear system over K; however this may not be the
case if there are many repetitions in x1, . . . , xν , like in soft-decoding.

Improvement: Reed-Solomon list-decoding (µ = µ1 = · · · = µν , distinct xi’s)

[Ber11, CH11, CH15] O(mωM(µν) log(ν)) deterministic, via row reduction
Here (Corollary 3.1) O(mω−1M(µ2ν) log(ν)) probabilistic, structured system
Here (Corollary 3.2) O(mω−1M(µ2ν) log(ν)2) deterministic, via interpolant basis

A similar problem involving more variables arises in the list-decoding of folded Reed-
Solomon codes [GR08]. In this context, Q ∈ K[X, Y1, . . . , Yr] can be represented by a
vector in K[X]m, where m =

(
r+λ
r

)
and λ is known as the list-size parameter. We have

µ1 = · · · = µν = µ, and we obtain a system of linear modular equations with D =
(
r+µ
r+1

)
ν.

Improvement: folded Reed-Solomon list-decoding

[CH12] O(mωM(µν) log(ν)) deterministic, via row reduction
Here (Corollary 3.1) O(mω−1M(D) log(ν)) probabilistic, structured system
Here (Corollary 3.2) O(mω−1M(D) log(ν)3) deterministic, shifted Popov basis

11

Preamble

Here, the xi’s are distinct, ensuring that the structured system approach is efficient.
However, for a deterministic solution, unlike above, the shift does not have small entries;
therefore we rely on our algorithm for computing a Popov basis for an arbitrary shift.

? ? ?

Normal forms of polynomial matrices

We consider the computation of the canonical basis of a submodule of K[X]m of rank m.
This module is specified by any of its bases, forming the rows of an m ×m nonsingular
polynomial matrix A; for a given shift s, we want to compute the s-Popov form of A.

Following ideas in [GS11], this problem reduces to that of finding the s-Popov basis of
solutions to a system of linear modular equations. In short, the Smith form of A and a
corresponding unimodular multiplier give us the moduli and the equations, respectively.
Using algorithms in [Sto03, Gup11] to compute these, and our algorithm for solving the
system, we obtain the s-Popov form of A in O (̃mωd) operations, where d is the largest
degree of the entries of A. Note that the Smith form algorithm of [Sto03] is probabilistic.

We also design an algorithm which relies on deterministic row reduction [GSSV12] to
compute the s-Popov form of A in O (̃mωd) operations if we have a priori knowledge of its
column degrees. For shifts such that this canonical form is the Hermite form of A, there
is a deterministic algorithm which computes these column degrees efficiently [Zho12]. In
this case, we thus have the same cost bound with a deterministic algorithm.

Finally, we show how partial linearization techniques from [GSSV12] can be used to
reduce the non-uniformity of the degrees in A. With only a minor increase of m, deg(A)
is decreased to being at most dD/me. Here, D is some bound on deg(det(A)) such that
D/m is in particular bounded from above by the average row and column degrees of A.
Thus, the resulting cost boundO (̃mωdD/me) is in some cases much better thanO (̃mωd).

Improvement: Shifted Popov and Hermite forms of a matrix (? = probabilistic)

[GJV03] O (̃mωd) reduced form, small shifts (?)
[GSSV12] O (̃mωd) reduced form, small shifts
[GS11, Gup11] O (̃mωd) Hermite form (?)
Here (Theorem 3.9) O (̃mωdD/me) Hermite form
Here (Theorem 3.7) O (̃mωdD/me) shifted Popov form (?)

? ? ?

Outline

We now describe the organization of the document, which consists of five parts. The first
part introduces our main problems and presents for each of them an overview of our results
and a comparison with previous work. Our motivation is that gathering the problems and
an overview of contributions in a single part should both simplify the reading and put
more emphasis on the strong connections between the problems that are studied. After
that, in the next four parts, we give the details of our algorithms: for the multivariate

12

case, then for systems of linear modular equations with arbitrary moduli, then for the case
of known roots, and finally for the computation of normal forms of polynomial matrices.

In the first part, Chapter 1 presents some background on canonical generating sets for
K[X]-submodules of K[X]: reduced Gröbner bases in the multivariate case, and shifted
Popov bases in the univariate case; we show that in the latter case these notions are
equivalent. Furthermore, we emphasize some key ingredients in our algorithms for systems
of modular equations. Precisely, we discuss how the shift affects the degree profiles of the
computed bases, and we describe our general strategy which consists in recursively finding
information on the degrees and then using it to efficiently compute the basis.

In the second chapter, we focus on the main problem in this document: computing
reduced Gröbner bases of modules of relations with known multiplication matrices. We
consider the general problem as well as the above-mentioned particular cases of approx-
imant bases and of systems of linear modular equations over K[X], with and without
the knowledge of the roots of the moduli. In each situation, we give an overview of our
algorithms and we compare our results to previous work.

Finally, in a third chapter, we present consequences of these results. We detail how
systems of linear modular equations can be used both to solve problems of multivari-
ate interpolation with multiplicities which arise in decoding algorithms, and to compute
shifted Popov forms of polynomial matrices.

Now, we list publications and unpublished reports corresponding to the material in
the parts that contain the technical details.

In the second part, Chapter 4 extends the results in [JNSV17, Sec. 7] to the multi-
variate case, while Chapter 5 is new.

In the third part, the material in Sections 6.2 and 6.3 is from [JNSV16] and [Nei16],
respectively, while Section 6.4 presents an algorithm from [BL00]. Chapter 7 is essentially
a specialization of the ideas [JNSV16] to the case of approximant bases, taking advantage
of the partial linearization techniques from [Sto06] that are available in this context.
Chapter 8 is an extended version of [Nei16, Sec. 2]. Chapters 9 and 10 respectively come
from [CJN+15] and unpublished notes for the Lattice and crypto meeting (ENS de Lyon,
March 3, 2016).

In the fourth part, Chapter 11 comes from [CJN+15], while Chapters 12 to 14 gather
the results in [JNSV17, JNSV16].

In the last part, Chapter 15 is an extended version of [Nei16, Sec. 3], and the results in
Chapter 16 were obtained in collaboration with George Labahn and Wei Zhou [LNZ16].

13

Preamble

14

Part I

Problems and overview of contributions

15

Contents

Chapter 1 Generating sets of modules over polynomial rings 19

1.1 Popov bases of modules over univariate polynomial rings 20

1.1.1 Bases and polynomial matrices 20

1.1.2 Row degrees and shifted reduced forms 22

1.1.3 Pivots and shifted Popov forms 27

1.2 Designing fast algorithms for shifted Popov bases 30

1.2.1 Finding and using the minimal degree 30

1.2.2 Size of bases and target costs 35

1.3 Gröbner bases of modules over multivariate polynomial rings 38

1.3.1 Generating sets of ideals and modules 39

1.3.2 Monomial orders and initial module 41

1.3.3 Gröbner bases . 46

1.3.4 Link with shifted Popov bases 48

1.3.5 Modules of finite (co)dimension and multiplication matrices . . 50

Chapter 2 Fast computation of relation bases 55

2.1 Relations or syzygies in finite-dimensional modules 55

2.1.1 Gröbner bases of multivariate modules of relations 55

2.1.2 Univariate case: minimal relation bases 60

2.1.3 Overview of our results . 62

2.2 Fast algorithms for dense multiplication matrices 63

2.2.1 Results . 63

2.2.2 Overview of our algorithm . 65

2.2.3 Change of monomial order for zero-dimensional ideals 68

2.3 Multiplication matrix in nilpotent Jordan form 70

2.3.1 Link with minimal approximant bases 70

2.3.2 Overview of previous work . 71

2.3.3 Computing shifted Popov approximant bases 72

2.4 Multiplication matrix in Jordan form 75

2.4.1 Link with minimal interpolant bases 75

2.4.2 Algorithm for almost uniform shifts 76

2.4.3 Computing shifted Popov interpolant bases 78

2.5 Companion-block diagonal multiplication matrix 80

2.5.1 Link with systems of linear modular equations 81

2.5.2 Computing shifted Popov solution bases 82

2.5.3 Computing a solution via structured linear algebra 86

Chapter 3 Impact on related problems 89

3.1 Multivariate interpolation and list-decoding algorithms 89

3.1.1 Multivariate interpolant with degree constraints 89

3.1.2 List-decoding of (folded) Reed-Solomon codes 92

3.1.3 Computing shifted Popov bases of multivariate interpolants . . 96

3.1.4 Soft-decoding of Reed-Solomon codes 100

3.1.5 General Coppersmith technique over K[X] 101

3.2 Computing shifted Popov forms of polynomial matrices 105

3.2.1 Overview . 105

3.2.2 Computing shifted Popov forms for arbitrary shifts 109

3.2.3 Deterministic computation of Hermite forms and determinants . 110

18

1

Generating sets of modules over
polynomial rings

In this chapter, we present properties about generating sets for modules over polynomial
rings, with a view towards algorithms. Informally, a module can be thought of as a vector
space where the base ring is not a field; the reader may refer to [DF04, Chapters 10
and 12] for more details. In this document, we will be interested in computing canonical
generating sets that have good properties: Popov bases in the univariate case and reduced
Gröbner bases in the multivariate case.

We start with modules over the univariate polynomial ring K[X], and more precisely,
submodules of K[X]m for some m ∈ Z>0. The fact that K[X] is a principal ideal domain
yields good structural properties for these submodules; in particular, they always have a
basis, that is, a finite set of generating elements which are K[X]-linearly independent.

In many situations one wants to compute such bases that have some type of minimal
degree, for some degree measure to be specified. Working over K[X], this measure is given
through a tuple of integers called shift, and the minimality is embodied by the notions
of shifted reduced bases and shifted Popov bases, encompassing the Popov and Hermite
forms. We will present these forms and their basic properties.

Then, we present ingredients that are at the core of the efficiency of our algorithms
for computing shifted Popov bases. An important aspect in the design and cost analysis
of these algorithms is the distribution of the degrees of the elements in these bases, which
may be difficult to control in the case of arbitrary shifts. We provide a detailed discussion
of some bounds on these degrees.

We also highlight the important role played by the minimal degree of shifted Popov
bases in our algorithms. We explain how knowing this minimal degree allows us to circum-
vent the difficulties of controlling the degrees for arbitrary shifts, and we show a general
divide-and-conquer approach to find the minimal degree for the kind of problems we will
be studying.

After that, we consider the case of a multivariate ring K[X] = K[X1, . . . , Xr], with
ideals in K[X] and more generally submodules of K[X]m. Having r > 2 brings a major
difference with the univariate case: most ideals and modules do not have a basis, that
is, a set of generating and K[X]-linearly independent elements. Yet, ideals and modules

19

Chapter 1. Generating sets of modules over polynomial rings

always have a finite generating set.
Specific such generating sets with useful properties are Gröbner bases1, which depend

on the choice of an ordering of the monomials. For a module and some monomial order,
a canonical form is given by the notion of reduced Gröbner basis.

We will introduce Gröbner bases and their basic properties, as well as the notion of
multiplication matrix which is a central computational tool in this document. We also
show that, in the univariate case, any monomial order can be defined by some shift, and
reduced Gröbner bases coincide with Popov bases.

1.1 Popov bases of modules over univariate polynomial
rings

Here, we focus on the situation where the polynomial ring is univariate. We first recall
some nice properties of this case, which naturally lead us to represent bases of modules as
univariate polynomial matrices. We also give some examples linked with questions at the
core of this thesis. Then, we study degree minimality aspects for bases of these modules,
the measure of their elements being given by the shifted degree.

In this context, bases that have minimal degree with respect to a given shift are said
to be in shifted reduced form. For a given module and a given shift, among its bases in
shifted reduced forms, there is a canonical one which is called the shifted Popov form; for
a specific shift, this form coincides with the Hermite form.

1.1.1 Bases and polynomial matrices

As a preliminary paragraph, we recall some definitions about free modules. For a polyno-
mial ring R = K[X1, . . . , Xr] with one or several variables, a free R-module is a module
that has a basis, that is, a generating set which consists of R-linearly independent ele-
ments. Then, the rank of thisR-module is the cardinality of this basis; this is well-defined,
since any other basis of this module has the same cardinality [Eis95, Corollary 4.4]. Be-
sides, for such rings R, the rank of an R-module coincides with the maximum number of
R-linearly independent elements in this module [DF04, Section 12.1, Proposition 3].

Let us now focus on the univariate case. In what follows, we consider bases of K[X]-
submodules of K[X]m, for some given m ∈ Z>0. The fact that K[X] is a principal ideal
domain implies many useful properties that we summarize in this section. More details
can be found for example in [DF04, Sections 10.3 and 12.1]. A central result is the
following [DF04, Section 12.1, Theorem 4].

Lemma 1.1. LetM be a K[X]-submodule of K[X]m. Then,

(i) M is free of rank at most m,

(ii) any K[X]-submodule ofM is also free and of rank at most the rank ofM.

1Gröbner bases are generating sets that are in most cases not linearly independent with respect to the
polynomial ring: they are not bases regarding module theory.

20

1.1. Popov bases of modules over univariate polynomial rings

LetM be a K[X]-submodule of K[X]m. ThenM is free of rank ρ 6 m, so that any
basis ofM can be represented by a ρ×m matrix over the univariate polynomials, whose
rows are the elements of the basis. We denote by K[X]ρ×m the set of such matrices, which
are called polynomial matrices. Hereafter, we see the elements of M as row vectors in
K[X]1×m, and we identify a basis ofM with the corresponding polynomial matrix. Then,
for any basis A ∈ K[X]ρ×m ofM, we haveM = {λA,λ ∈ K[X]1×ρ} = K[X]1×ρA. The
latter set is also called the row space of A.
Example 1.2 (Unimodular matrices). The identity matrix Im ∈ K[X]m×m is a basis of the
module K[X]m. Besides, any unit lower triangular matrix

T =

1
∗ 1
...
∗ · · · ∗ 1

 ∈ K[X]m×m

is also a basis of K[X]m. This can be verified by considering p = [p1, . . . , pm] ∈ K[X]1×m

and solving a K[X]-linear system to determine coefficients λ = [λ1, . . . , λm] such that
λT = [p1, . . . , pm], noticing that the resulting λ has entries in K[X] due to the special
shape of T.

More generally, the bases of K[X]m form the set of unimodular matrices, defined as
follows. A square matrix U ∈ K[X]m×m is said to be unimodular if U is nonsingular and
its inverse U−1 has entries in K[X] or, equivalently, if its determinant det(U) is a nonzero
element of the field K. b

For any submoduleM ⊆ K[X]m, two bases of M are related through a unimodular
transformation. Indeed, let A and B be two bases ofM. Then since A is a basis, each row
of B is in the row space of A, so there exists a matrix V ∈ K[X]ρ×ρ such that B = VA;
similarly, since B is a basis, there exists W ∈ K[X]ρ×ρ such that A = WB. Thus we have
B = VWB, hence (Iρ −VW)B = 0. Since the rows of B are K[X]-linearly independent
by definition, we obtain VW = Iρ. Thus V and W are unimodular and inverses of each
other. We say that A and B are left-unimodularly equivalent.
Remark 1.3. In some contexts, or depending on the preferences of the authors, one rather
asks that the basis forms the columns of an m× ρ matrix. Then, we have similar notions
of column space, and right-unimodular equivalence. Furthermore, polynomial matrices
are sometimes called matrix polynomials, seeing these objects as polynomials with matrix
coefficients (while polynomial matrix suggests a matrix with polynomial entries). K

We now give examples of K[X]-submodule of K[X]m. As mentioned above, one is often
interested in computing one of its bases that has some kind of minimality: we present the
related notion of reduced basis in Section 1.1.2.
Example 1.4 (Constrained bivariate interpolation). Let us consider {(xj, yj) ∈ K2, 1 6
j 6 D} a set of pairwise distinct points in K2, and fix a Y -degree bound m ∈ Z>0. Then

{Q ∈ K[X, Y] | degY (Q) < m and Q(xj, yj) = 0 for all 1 6 j 6 D}

is a free K[X]-module, since it can be seen as a submodule of K[X]m by identifying any
polynomial Q of Y -degree less than m with its Y -coefficients Q0, . . . , Qm−1 such that

21

Chapter 1. Generating sets of modules over polynomial rings

Q =
∑

06j<mQjY
j. Besides, it contains the moduleMK[X]m for any nonzero polynomial

M ∈ K[X] such that M(xj) = 0 for all j; since the rank of MK[X]m is m, the rank of
the module above is m as well, according to Lemma 1.1. b

Example 1.5 (Hermite-Padé approximation). Let F ∈ K[X]m×1 be a polynomial vector,
and let D be a positive integer. Then

{p ∈ K[X]1×m | pF = 0 mod XD}

is a free K[X]-module of rank m. Indeed, this set is included in K[X]1×m and contains
XDK[X]1×m, which are both of rank m. b

Example 1.6 (Row space of a matrix). Consider a polynomial matrix A ∈ K[X]k×m.
Then the row space of A, which is the set K[X]1×kA, is a free K[X]-module of rank
ρ 6 min(k,m). This number ρ is also called the rank of the matrix A. If ρ = min(k,m),
then A is said to have full rank ; if furthermore k = m (that is, A is a square matrix),
then A is said to be nonsingular. Notice that A is nonsingular if and only if det(A) is a
nonzero polynomial. b

Example 1.7 (Kernel of a matrix). Let F ∈ K[X]m×n be a polynomial matrix. Then the
kernel of F is the set

{p ∈ K[X]1×m | pF = 0}.
It is a free K[X]-module of rank m− ρ, where ρ is the rank of F. b

In the case of modules of rank m, the next result is often helpful to prove that some
given elements generate the module.

Lemma 1.8. LetM be a K[X]-submodule of K[X]m of rank m and let A ∈ K[X]m×m be
a basis of M. Then, for any nonsingular matrix B ∈ K[X]m×m whose rows are in M,
we have deg(det(B)) > deg(det(A)); if furthermore deg(det(B)) = deg(det(A)) then B
is also a basis ofM.

Proof. Since the rows of B are inM, there is U ∈ K[X]m×m such that B = UA. Having
A and B nonsingular implies that U is nonsingular too, and taking the determinant yields
deg(det(B)) = deg(det(U)) + deg(det(A)) > deg(det(A)). Now, in the case of equality,
this implies that deg(det(U)) = 0, and therefore U is unimodular.

1.1.2 Row degrees and shifted reduced forms

One is often interested in computing bases whose elements have small degrees. For ex-
ample, when the module is described by a set of equations as in the examples of bivariate
interpolation and Hermite-Padé approximation above, it is usually asked to compute one
element of the module which satisfies some degree constraints. With currently known
algorithms, the fastest way to obtain such an element is to compute a whole basis of the
module which has some type of minimal degrees, and contains in particular a small degree
element. Such a basis is said to be in reduced form; we give precise definitions below.

There is also another important reason for requiring that the computed bases have
small degrees: as a matter of efficiency of the algorithms, setting more constraints on the
output also allows us to better control the size of the objects that we manipulate during
the computation. We will come back to this point in Sections 1.1.3 and 1.2.2.

22

1.1. Popov bases of modules over univariate polynomial rings

Shifted degrees and degree constraints. We now explain how we measure the degree
of elements of K[X]1×m, which we call (polynomial) row vectors. In the simplest case,
we use a straightforward extension of the degree of univariate polynomials: the degree of
p = [pj]j ∈ K[X]1×m is rdeg(p) = max16j6m deg(pj). Here, we follow the convention that
the degree of a zero polynomial is deg(0) = −∞, and we extend it to row vectors. The
degree of a column vector p ∈ K[X]m×1 is defined similarly and denoted by cdeg(p).

More generally, we will measure the degree by considering shifted degrees. Hereafter,
a shift is a tuple of integers s = (s1, . . . , sm) ∈ Zm which specifies degree weights on the
entries of row vectors. Then, the s-degree of p = [pj]j ∈ K[X]1×m is

rdegs(p) = max
16j6m

(deg(pj) + sj).

For example, the degree of p as defined in the previous paragraph is its 0-degree for the
uniform shift 0 = (0, . . . , 0).

Remark 1.9. We allow s to have negative entries, and therefore the s-degree of a nonzero
row vector may be negative. One reason behind this choice lies in the following remark.
In many situations, one wants to find some element p = [pj]j in a given module with
prescribed degree constraints. Namely, some positive integers (Nj)j are given, and one
requires that deg(pj) < Nj for all j. Then, we can directly relate this to shifted row degrees
by noticing that this is equivalent to requiring that rdeg−N(p) < 0, where N = (Nj)j. K

Up to a change of sign, this notion of s-degree is equivalent to the one introduced
in [BLV06] for matrix normal forms, and also to the notion of defect from [BL94, Def-
inition 3.1] commonly used in the rational approximation literature. The usefulness of
shifted degrees can be seen from their applications. First, they allow us to take degree
constraints into account in many problems studied in this thesis, such as Hermite-Padé
and M-Padé approximations [VBB92, Bec92, BL94] (see also Sections 2.3 and 2.4.1), and
the interpolation step of the list-decoding and soft-decoding algorithms for Reed-Solomon
codes [GS99, KV03a] (see also Sections 3.1.2 and 3.1.4). Second, they also play a cen-
tral role in the design of fast algorithms for polynomial matrices, such as for computing
minimal kernel bases [ZLS12] or for matrix inversion [ZLS15].

This notion of shifted degree can then be naturally extended to polynomial matrices:
for A ∈ K[X]k×m, its row degree is the tuple rdeg(A) = (d1, . . . , dk) ∈ Zk>0, where for all i,
di is the row degree of the row i of A. In what follows, we use the notations Ai,∗ and A∗,j
to refer to the row i and column j of a matrix A, respectively. Then, the s-row degree of A
is rdegs(A) = (d1, . . . , dk), with di = rdegs(Ai,∗) for all i; and the notion of shifted column
degree cdegt(A) for t ∈ Zk is defined similarly. Besides, we write deg(A) for the degree of
A, which is the largest degree of its entries: deg(A) = max(rdeg(A)) = max(cdeg(A)).

When dealing with shifts, one can often think in terms of the case of the uniform shift
by means of the shift matrix Xs . For a shift s = (s1, . . . sm) ∈ Zm, we denote by Xs the
m ×m diagonal matrix with diagonal entries Xs1 , . . . , Xsm . Then, if s has nonnegative
entries, the s-row degree of A is rdegs(A) = rdeg(AXs). In fact, in some cases it will be
convenient to allow negative powers of X to simplify the presentation. For example, we
define the s-leading matrix of A ∈ K[X]k×m as the matrix lms(A) ∈ Kk×m whose entries

23

Chapter 1. Generating sets of modules over polynomial rings

are the coefficients of degree zero of X−rdegs(A) AXs . Notice that the latter matrix has
only coefficients of nonpositive degree.

Shifted reduced forms. Now, for a K[X]-submoduleM of K[X]m, we are interested
in bases of M that have a specific form: as already stated, our main motivation is to
consider bases that have some type of minimal shifted row degree. We give the following
definition, which focuses on this minimality, and we then state some properties that are
equivalent to this definition. For early presentations of the notion of reduced form, the
reader may refer to [Wol74, Section 2.5], [Kai80, Section 6.3]; more details about shifted
reduced forms can be found in [VBB92, BLV99] and [Zho12, Chapter 2].

Definition 1.10 (Reduced form). Let ρ 6 m and let R ∈ K[X]ρ×m have full rank. Then
R is said to be row reduced if rdeg(R) 6 rdeg(UR) for all unimodular matrices U ∈
K[X]ρ×ρ. More generally, for a shift s ∈ Zm, R is said to be s-row reduced if rdegs(R) 6
rdegs(UR) for all unimodular matrices U ∈ K[X]ρ×ρ. In both these inequalities, the tuples
are first sorted in non-decreasing order and then compared lexicographically.

In particular, this notion is invariant under permutation of the rows of the matrix, and
all bases of a module that are in s-reduced form must have the same s-row degree up to
permutation. The notion of column reducedness is defined similarly; since in what follows
we will mostly encounter row reduced forms, unless the context makes it ambiguous we
will simply write reduced for row reduced.

Besides, adding a constant c ∈ Z to each entry of s does not change the property of
s-reducedness. Indeed, writing s + c for this operation of adding a constant to a tuple, we
have rdegs+c(A) = rdegs(A) + c for any matrix A. In particular, one may always think
in terms of a shift with nonnegative entries by considering s−min(s) instead of s. For a
shift s with nonnegative entries, R is s-reduced if and only if RXs is reduced.

Definition 1.10 essentially tells us that the elements of a basis in shifted reduced
form have minimal degrees, in terms of the row degree defined above. There are several
equivalent definitions, which we list now, and which will be helpful for designing algorithms
and writing proofs. In what follows, for any tuple of integers s ∈ Zm, we denote by |s|
the sum of the entries of s.

Theorem 1.11. Let ρ 6 m, let R ∈ K[X]ρ×m have full rank, and let s ∈ Zm. The
following assertions are equivalent.

(i) R is s-reduced.

(ii) For all row vectors λ =
[
λ1 1 λ2

]
∈ K[X]1×ρ with the entry 1 at index i, we have

rdegs(λR) > rdegs(Ri,∗).

(iii) The s-leading matrix lms(R) has full rank.

(iv) Predictable degree property: for all λ = [λi]i ∈ K[X]1×ρ, we have

rdegs(λR) = max{deg(λi) + rdegs(Ri,∗), 1 6 i 6 ρ} = rdegd(λ),

where d = rdegs(R).

24

1.1. Popov bases of modules over univariate polynomial rings

(v) (Only in the square case, ρ = m.) We have |rdegs(R)| = deg(det(R)) + |s|.

Proof. In this proof, we write di = rdegs(Ri,∗) for all i, that is, d = (d1, . . . , dρ). Then
lms(R) is formed by the coefficients of degree 0 of the matrix X−d RXs , whose coefficients
are all of nonpositive degree.
¬(ii)⇒ ¬(i). Suppose that there is a row =

[
λ1 1 λ2

]
∈ K[X]1×ρ with 1 at index

i and such that rdegs(λR) < di. Considering the unimodular transformation

U =

Ii−1 0 0
λ1 1 λ2

0 0 Iρ−i

 ∈ K[X]ρ×ρ, (1.1)

we have that rdegs(UR) and rdegs(R) are identical except for their ith entries, which are
rdegs(λR) and di, respectively. Thus, our assumption that rdegs(λR) < di implies that
R is not s-reduced.
¬(iii)⇒ ¬(ii). Suppose that lms(R) does not have full rank. Therefore, there exists

a nontrivial linear combination of the rows of lms(R) which is zero, that is, µlms(R) = 0
for some nonzero µ = [µi]i ∈ K1×ρ. Let i be an index such that di is maximal with µi 6= 0.
Then, we consider λ = µ−1

i µXdi−d ∈ K[X]1×ρ: by choice of i, this row vector is over the
polynomials (we recall that di − d stands for the tuple −d with the constant di added to
every entry). We remark that λ has coefficient 1 at index i, and furthermore, we have
rdegs(λR) = rdeg(λRXs) < di = rdegs(Ri,∗). Indeed, λRXs = µ−1

i XdiµX−d RXs , and
the polynomial row vector µX−d RXs has only coefficients of (strictly) negative degree
since its coefficient of degree 0 is µlms(R) = 0.

(iii) ⇒ (iv). Assume that lms(R) has full rank. We always have (iv) for λ = 0, so
we consider the case λ 6= 0. Let t = rdegd(λ). We have rdegs(λR) 6 t, and our goal is
to prove that actually the equality holds. This follows from the fact that the coefficient
of degree 0 of the row vector X−tλRXs = X−tλXd X−d RXs is lmd(λ)lms(R), which is
nonzero since λ is nonzero and lms(R) has full row rank.
¬(i)⇒ ¬(iv). Suppose that (i) does not hold: there exists U ∈ K[X]ρ×ρ unimodular

such that d′ = rdegs(UR) does not satisfy d 6 d′ (where the tuples are first sorted and
then compared lexicographically). Up to row permutations, we can assume without loss
of generality that d = (d1, . . . , dρ) and d′ = (d′1, . . . , d

′
ρ) are in non-decreasing order. Then

there exists i ∈ {1, . . . , ρ} such that d′i < di and d′j = dj for all j < i. Therefore, writing

U =

[
U11 U12

U21 U22

]
with U11 ∈ K[X]i×(i−1) and U22 ∈ K[X](ρ−i)×(ρ−i+1),

all rows in
[
U11 U12

]
R have s-degree less than di, and thus less than all of di, . . . , dρ.

On the other hand, since U is nonsingular, we have that U12 is nonzero. Let us denote by
(j, k) the index of a nonzero entry of U located in U12. Then, considering the row vector
λ = Uj,∗ = [λt]16t6ρ, we obtain that d′j = rdegs(λR) < dk 6 deg(λk) + rdegs(Rk,∗).

(iii) ⇔ (v). By definition of the determinant, deg(det(R)) + |s| = deg(det(RXs)) 6
|rdeg0(RXs)| = |rdegs(R)|. This inequality may be strict if some cancellations of high-
degree terms in R occur: this is precisely what is forbidden by the fact that lms(R) =
lm0(RXs) has full rank. In fact, the coefficient of det(RXs) of degree |rdegs(R)| is
precisely det(lms(R)), hence the equivalence.

25

Chapter 1. Generating sets of modules over polynomial rings

The item (iii) in the above theorem is often chosen as a definition of row reducedness,
as in [VBB92, BLV99, GJV03]; the item (v) is used as a definition in [Kai80, Section
6.3.2]. The predictable degree property in item (iv), which was stated in [For75] (see also
[Kai80, Theorem 6.3-13]), is quite useful when one has to study the degrees in expressions
which involve shifted reduced matrices. A direct consequence is the following. LetM be
a submodule of K[X]m, and let R be a basis of M in s-reduced form for some s ∈ Zm.
Then, any p ∈M has s-degree at least min(rdegs(R)).

In other words, an element ofM of minimal s-degree can be found as a row of R of
minimal s-degree. In particular, when a problem asks to compute p = [pj]j ∈ M with
the degree constraints deg(pj) < Nj for all j, such a p can be found among the rows of a
basis ofM in −N-reduced form, where N = (Nj)j (unless the problem has no solution).

Example 1.12. Let us consider the finite field K = Z/7Z with 7 elements, and choose
D = 4 points {(xi, yi), 1 6 i 6 4} in K2 with (xi)i = (2, 1, 4, 6) and (yi)i = (6, 2, 1, 6).

We will give shifted reduced bases for the K[X]-module M of bivariate polynomials
Q ∈ K[X, Y] such that degY (Q) < m = 2 and Q(xi, yi) = 0 for 1 6 i 6 4. Then, identify-
ing a polynomial of the formQ0(X)+Q1(X)Y with the polynomial vector [Q0(X) Q1(X)],
we seeM as a K[X]-submodule of K[X]2; its rank is m = 2.

Defining the polynomials M = (X − 2)(X − 1)(X − 4)(X − 6) = X4 + X3 + 6X + 6
and the interpolant L = 5X3 + 6X2 + 5 such that L(xi) = yi for 1 6 i 6 4, the matrix

P =

[
M 0
−L 1

]
=

[
X4 +X3 + 6X + 6 0

2X3 +X2 + 2 1

]
is a basis ofM. This follows from the remark that a bivariate polynomial Q is such that
Q(xi, yi) = 0 for 1 6 i 6 4 if and only if Q belongs to the ideal 〈M,Y − L〉.

The shifted leading matrices of P for the shift s = (0, 3) and the uniform shift are

lm(0,3)(P) =

[
1 0
2 1

]
and lm0(P) =

[
1 0
2 0

]
;

therefore P is a (0, 3)-reduced basis ofM, but is not 0-reduced.
Furthermore, the matrix

A =

[
1 3X + 5
X 3X2 + 5X + 1

]
P =

[
5X2 + 5X + 2 3X + 5
6X2 + 2X + 2 3X2 + 5X + 1

]
is left-unimodularly equivalent to P and has a full rank 0-leading matrix: A is a 0-reduced
basis ofM. b

Existence and computation. Most importantly, for a given K[X]-submodule M of
K[X]m and a given shift s ∈ Zm, it is known that M admits a basis in s-reduced form.
In fact, if A ∈ K[X]k×m is a generating set for M for some integer k, then there are
algorithms to compute from A an s-reduced basis R ofM.

Such an algorithm is presented in [Wol74, Theorem 2.5.7]; it iteratively performs
elementary operations on A with unimodular transformations of the form of U in Eq. (1.1),
making at each step some progress towards obtaining a s-reduced form. Although in the

26

1.1. Popov bases of modules over univariate polynomial rings

latter reference the algorithm is presented for the uniform shift s = 0, adapting it to work
with an arbitrary shift s is straightforward. This reduction is done in time polynomial in
m, k, and deg(A).

Fast algorithms for the computation of a shifted reduced basis of M from a known
generating set are presented with more details in Section 3.2, where we also discuss the
problem of computing a canonical reduced form called the shifted Popov form.

1.1.3 Pivots and shifted Popov forms

A particular kind of shifted reduced form is the shifted Popov form, which includes the
Popov form [Pop72, Kai80] and the Hermite form [Her51] for specific shifts. In this
section, we define these forms and give their basic properties. There are two main reasons
that motivate us to study them. First, the shifted Popov form is a normal form: it is
uniquely defined in terms of the module and the shift. Second, shifted Popov forms have
a degree structure which allows us to compute them more efficiently than shifted reduced
forms in general; this point will be discussed more in depth in Section 1.2.

A basis is in s-Popov form when it simultaneously satisfies two degree minimality
requirements: roughly, it should both be s-row reduced and have columns of minimal
0-degree. We should stress that these two requirements are not of the same nature, since
both involve unimodular transformations on the rows only.

Pivots. We first present the notion of pivot [Kai80, Section 6.7.2], and specific shifted
reduced forms that are more restrictive than shifted reduced forms but are not yet the
canonical shifted Popov forms.

Definition 1.13 (Pivot). Let p = [pj]j ∈ K[X]1×m be nonzero and let s ∈ Zm. The
s-pivot index of p is the largest index j such that rdegs(p) = deg(pj) + sj. Then we call
pj and deg(pj) the s-pivot entry and the s-pivot degree of p.

Adding a constant to the entries of s does not change the notion of s-pivot. Thus, like
for s-reducedness, one may assume min(s) = 0 without loss of generality. In connection
with the notion of pivot, one can define the weak Popov form [MS03b] and the quasi
Popov form [BLV99], which we call here ordered weak Popov form.

Definition 1.14 ((Ordered) weak Popov form). Let ρ 6 m, let P ∈ K[X]ρ×m have full
rank, and let s ∈ Zm. Then, P is in s-weak Popov form if the s-pivot indices of its rows
are pairwise distinct. Furthermore, P is in s-ordered weak Popov form if the sequence of
the s-pivot indices of its rows is strictly increasing.

In other words, P is in s-ordered weak Popov form if and only if the s-leading matrix
of P is in some type of (non-reduced) row echelon form2. In particular, lms(P) contains an
ρ× ρ invertible lower triangular submatrix, and P is therefore s-reduced. Moreover, any
matrix in s-weak Popov form can be transformed into an s-ordered weak Popov form by
a permutation of its rows; thus a matrix in s-weak Popov form is in particular s-reduced.

2Precisely, it is the transpose of a matrix in column echelon form as in [BLV06, Definition 2.2].

27

Chapter 1. Generating sets of modules over polynomial rings

Remark 1.15. Here, quasi Popov forms [BLV99] will rather be called ordered weak Popov
forms to avoid that the reader possibly get the feeling that the difference between them
and Popov forms is minor: this is not the case, computationally speaking. Indeed, going
from a weak Popov form to an ordered one is a straightforward task: one just has to
locate the pivots and to permute the rows of the matrix accordingly; however, going from
an ordered weak Popov form to its Popov form is much more involved (see [SS11]). K

Now, we extend the notion of pivots to matrices; while it could be defined in general,
we will only use it for matrices in shifted weak Popov form.

Definition 1.16 (Pivot of a matrix). Let ρ 6 m, let s ∈ Zm, and let P ∈ K[X]ρ×m be in
s-weak Popov form. Then, the s-pivot index and the s-pivot degree of P are the tuples
of integers (j1, . . . , jρ) and (δ1, . . . , δρ) where ji is the s-pivot index of Pi,∗ and δi is the
s-pivot degree of Pi,∗ for 1 6 i 6 ρ.

Considering the shift ŝ = (sj1 , . . . , sjρ) ∈ Zρ, which is a permuted subshift of s, we
have rdegs(P) = ŝ + δ. The notions of pivot indices and pivot degrees for weak Popov
matrices refine that of row degrees for reduced matrices, by providing us with a stronger
degree minimality property than that used as a definition of shifted reduced forms. This
property, stated in the next lemma and illustrated in Example 1.18, has consequences that
are presented in Section 1.2 and are exploited to obtain efficiency in several algorithms in
this document.

Lemma 1.17. Let ρ 6 m, let s ∈ Zm, let P ∈ K[X]ρ×m be in s-weak Popov form, and
let (j1, . . . , jρ) and (δ1, . . . , δρ) be the s-pivot index and degree of P. Let p ∈ K[X]1×m

be a nonzero vector in the row space of P. Then, the s-pivot index of p is ji for some
1 6 i 6 ρ, and p has s-pivot degree at least δi.

Proof. Up to permuting the rows of P, we assume without loss of generality that P is in s-
ordered weak Popov form, that is, j1 < · · · < jρ. Let d = rdegs(P) = (sj1+δ1, . . . , sjρ+δρ),
and let λ ∈ K[X]1×m be such that p = λP. According to the part “(iii) ⇒ (iv)” of the
proof of Theorem 1.11, we have lms(p) = lmd(λ)lms(P). Let i ∈ {1, . . . , ρ} be the index
of the rightmost nonzero entry of lmd(λ); in particular, rdegs(p) = rdegd(λ) > sji + δi.
Furthermore, since P is in s-ordered weak Popov form, lms(P) has an echelon shape which
implies that the rightmost nonzero element of lms(p) is at index ji. Thus p has s-pivot
index ji, and since rdegs(p) > sji + δi we obtain that its s-pivot degree is at least δi.

Before moving to shifted Popov forms, we illustrate this property, insisting on the
information which is brought to us by the pivots of a weak Popov form and which we do
not have for reduced forms in general.
Example 1.18. LetM be a submodule of K[X]m of rank 4, and consider the case of the
uniform shift. First suppose that we know a reduced basis A ∈ K[X]4×4 of M, whose
entries have degrees as follows:

A =

[1] [1] [1] [1]
[5] [5] [5] [5]
[2] [2] [2] [2]
[7] [7] [7] [7]

 ,
28

1.1. Popov bases of modules over univariate polynomial rings

where [d] denotes an entry of degree d. We note that the pivot entries of A are all located
in its last column.

Then, we can assert that any nonzero vector p in the row space of A, which is M,
must satisfy rdeg(p) > 1 = min(rdeg(A)). However, by only considering the degrees in
A, we do not know if there may be inM a vector q whose degrees are

[
[8] [6] [4] [5]

]
.

Now suppose that we know a 0-ordered weak Popov basis B ofM, which has degrees

B =

[5] [4] [4] [4]
[7] [7] [6] [6]
[2] [2] [2] [1]
[1] [1] [1] [1]

 .
The lemma above implies that q 6∈ M since the pivot of q has index 2 and degree 6,
which is less than the pivot degree 7 of the second row of B. b

Shifted Popov forms. These are shifted ordered weak Popov forms that are further
normalized through an additional constraint on the degrees in the columns containing the
pivot entries. Formally, we will use the definition from [BLV99, Definition 3.3].

Definition 1.19 (Shifted Popov form). Let ρ 6 m, let P ∈ K[X]ρ×m have full rank, and
let s ∈ Zm. Then, P is said to be in s-Popov form if the s-pivot indices of its rows are
strictly increasing, the corresponding s-pivot entries are monic, and in each column of P
which contains a pivot the nonpivot entries have degree less than the pivot entry.

Thus, a matrix in s-Popov form is in particular in s-ordered weak Popov form and
s-reduced. For a more detailed treatment of shifted Popov forms, the reader may refer to
[BLV99, BLV06]. Shifted Popov forms are named after Popov, who introduced this form
for the uniform shift in [Pop72] in the context of control theory.
Remark 1.20. The definition of 0-Popov forms in [Kai80, MS03b] slightly differs from the
one above in its choice of the ordering of the rows. Instead of requiring that the s-pivot
indices be increasing as here and in [BLV99, BLV06], the definition in [Kai80, MS03b]
requires that rdegs(P) be non-decreasing, with increasing s-pivot indices for rows that
have identical s-degree. K

For ρ 6 m, a given shift s, and a given matrix A ∈ K[X]ρ×m with full rank, there
exists a unique matrix P ∈ K[X]ρ×m which is in s-Popov form and left-unimodularly
equivalent to A [BLV99, Theorem 3.5]. We call P the s-Popov form of A. In terms of
bases of modules, this means that for a given K[X]-submodule M ⊆ K[X]m of rank ρ,
there is a unique basis P ∈ K[X]ρ×m ofM which is in s-Popov form, called the s-Popov
basis ofM. In particular, if we are given the descriptions of two modules and we have a
procedure to compute their respective shifted Popov bases, this will directly allow us to
test whether these descriptions actually represent the same module.

The Hermite form, defined by Hermite [Her51] in the context of triangularizing integer
matrices, is a normal form for bases of submodules of K[X]m that has the particularity
of having a triangular shape. In fact, Hermite forms coincide with shifted Popov forms
for specific shifts that make them triangular, as detailed in [BLV06, Lemma 2.6]. We give
more details about Hermite forms in Section 3.2.

29

Chapter 1. Generating sets of modules over polynomial rings

For example, the matrix P in Example 1.12 is in Hermite form, and it is also in
(0, 3)-Popov form. On the other hand, the matrix A in the same example is in 0-ordered
weak Popov form, but not in 0-Popov form since the entry at position (2, 1) has the same
degree as the pivot in position (1, 1); A may be transformed into its 0-Popov form by a
constant elementary row operation.

1.2 Designing fast algorithms for shifted Popov bases
In this section, we discuss general ingredients and bounds that we will use in our algo-
rithms for computing shifted Popov bases. Here, we focus on the case of submodules of
K[X]m of rank m, whose bases are thus square nonsingular polynomial matrices.

We note that most of Section 1.2.1 can be extended to submodules of rank less than
m and to rectangular bases; however, this generality is not needed for our algorithms and
would thus make the presentation unnecessarily technical.

1.2.1 Finding and using the minimal degree

Here, we study the shifted minimal degree of a submoduleM⊆ K[X]m of rank m. After
giving some basic properties, we discuss how it can be used to compute shifted Popov
forms and how it can be found by a divide-and-conquer approach.

Minimal degree. A basis of such a module M is represented by square, nonsingular
matrix P ∈ K[X]m×m. Then, P is in s-ordered weak Popov form if and only if its s-pivot
entries are on the diagonal. In this case, the s-pivot degree δ ∈ Zm>0 of P is the tuple of the
degrees of its diagonal entries, and we have rdegs(P) = s+δ as well as deg(det(P)) = |δ|.
If P is furthermore in s-Popov form, then its s-pivot degree coincides with its column
degree: δ = cdeg(P). We have the following straightforward characterizations in terms
of shifted leading matrices.

Lemma 1.21. Let P ∈ K[X]m×m and s ∈ Zm. Then,

• P is in s-ordered weak Popov form if and only if its s-leading matrix is lower trian-
gular and invertible;

• P is in s-Popov form if and only if its s-leading matrix is unit lower triangular and
the 0-leading matrix of PT is the identity matrix.

Note that the second item was chosen as the definition of shifted Popov forms in
[BLV99, Definition 3.3]. We are particularly interested in the following degrees.

Definition 1.22 (Minimal degree). For a K[X]-submodule M ⊆ K[X]m of rank m and
any s ∈ Zm, the s-minimal degree ofM is the s-pivot degree of the s-Popov basis ofM.

Let us denote by δ = (δ1, . . . , δm) the s-minimal degree ofM. Then, the determinant
of any basis ofM has degree |δ| = δ1 + · · ·+δm. Besides, according to Lemma 1.17, δ also

30

1.2. Designing fast algorithms for shifted Popov bases

gives useful information concerning the degrees of elements of M: if a nonzero p ∈ M
has s-pivot index j ∈ {1, . . . ,m}, then the s-pivot degree of p must be at least δj, or in
other words, we must have rdegs(p) > sj + δj. We now illustrate this notion with an
example, showing in particular that the minimal degree cannot be deduced from the row
degrees of a reduced basis in general.

Example 1.23. As in Example 1.18, let us consider a moduleM which admits a 0-reduced
matrix with degrees

A =

[1] [1] [1] [1]
[5] [5] [5] [5]
[2] [2] [2] [2]
[7] [7] [7] [7]

 .
We know that the 0-Popov form of A has the same row degrees as A, up to permutation.
Besides, for the uniform shift the pivot degree of a row vector coincides with its 0-degree;
hence the minimal degree of M is a permutation of (1, 5, 2, 7). Yet, without additional
information, we do not know precisely which permutation it is.

More generally, if we have an s-reduced basis A ∈ K[X]m×m of M ⊆ K[X]m for an
arbitrary shift s, then the shifted minimal degree of M will be d − s, where d is some
permutation of rdegs(A) which is unknown a priori. b

The next lemma states that any row vector p ∈ K[X]1×m can be written uniquely as
the sum of an element of M and a remainder r = [r1, . . . , rm] such that deg(rj) < δj
for 1 6 j 6 m. In other words, the s-minimal degree gives the structure of the quotient
module K[X]m/M: it is isomorphic to K[X]/〈Xδ1〉× · · ·×K[X]/〈Xδm〉; that is, it admits
the monomial basis ∪16j6m{Xdcj, 0 6 d < δj} where cj ∈ K[X]1×m is the coordinate
vector with 1 at index j.

Lemma 1.24 (Division with remainder). Let s ∈ Zm, let P ∈ K[X]m×m be in s-Popov
form, and let δ ∈ Zm>0 be the s-pivot degree of P. Then, for any row vector p ∈ K[X]1×m,
there exists a unique (q, r) ∈ K[X]1×m×K[X]1×m such that p = qP+r and rdeg−δ(r) < 0.

For this result, the reader may refer to [Kai80, Theorem 6.3-15], noting that a matrix
in s-Popov form is in particular 0-column reduced.

By definition, left-unimodularly equivalent s-reduced matrices have the same s-row
degree up to permutation. In the case of shifted weak Popov forms, knowing the pivot
indices leads us to a more precise statement. Namely, the next result states that the s-row
degree is invariant among left-unimodularly equivalent matrices in s-ordered weak Popov
form. This implies that left-unimodularly equivalent matrices in s-ordered weak Popov
form have the same s-pivot degree, which must then be the s-minimal degree δ of the
module they generate.

In short, the next lemma shows that δ can be read off from any basis ofM in s-weak
Popov form; we recall from Example 1.23 that this is not true concerning s-reduced bases.

Lemma 1.25. Let s ∈ Zm and let P and Q in K[X]m×m be two left-unimodularly equiva-
lent matrices in s-ordered weak Popov form. Then P and Q have the same s-row degree.

As a corollary, for any submodule M ⊆ K[X]m of rank m, if P ∈ K[X]m×m is an
s-weak Popov basis of M with s-pivot index (j1, . . . , jm) and s-pivot degree (δ1, . . . , δm),

31

Chapter 1. Generating sets of modules over polynomial rings

and (π1, . . . , πm) is the permutation of {1, . . . ,m} such that (jπ1 , . . . , jπm) = (1, 2, . . . ,m),
then the s-minimal degree ofM is (δπ1 , . . . , δπm).

Proof. Since P and Q are in s-ordered weak Popov form, their respective s-pivot degrees
are rdegs(P)−s and rdegs(Q)−s. Then, since Pi,∗ is in the row space of Q for 1 6 i 6 m,
Lemma 1.17 implies that rdegs(P)−s 6 rdegs(Q)−s. The same argument applied to the
rows of Q leads to the equality rdegs(P)− s = rdegs(Q)− s, hence rdegs(P) = rdegs(Q).

The corollary follows, since (δπ1 , . . . , δπm) is the s-pivot degree of the matrix P with
rows permuted so as to obtain an s-ordered weak Popov form; and then its s-Popov
form must have the same s-pivot degree since it is in particular in s-ordered weak Popov
form.

Using the minimal degree. We explain now explicitly how we can use the knowledge
of the shifted minimal degree in the computation of shifted Popov bases. The central
tool is the next lemma, which is an extension of [SS11, Lemmas 15 and 17] to the case
of any shift s. It states that, as soon as the s-minimal degree δ of the module is known,
the computation of the s-Popov basis P essentially boils down to the computation of a
−δ-reduced basis R. Furthermore, as we will detail in Section 1.2.2, the shift −δ is among
those for which it is reasonable to hope that R can be computed efficiently.

Lemma 1.26. Let s ∈ Zm and let P ∈ K[X]m×m be in s-Popov form with s-pivot degree
δ ∈ Zm>0. Then P is also in −δ-Popov form, and we have rdeg−δ(P) = 0. In particular,
for any matrix R ∈ K[X]m×m which is left-unimodularly equivalent to P and −δ-reduced,
R has column degree δ, and P = lm−δ(R)−1R.

Proof. Since P is in s-Popov form we already have lm0(PT) = Im, and then according to
Lemma 1.21 it remains to prove that lm−δ(P) is unit lower triangular. In fact, considering
PX−δ which has only coefficients of negative degree except for those of degree zero which
form the identity matrix, we obtain that rdeg−δ(P) = 0 and lm−δ(P) = Im.

Now, let R be a −δ-reduced matrix left-unimodularly equivalent to P. Then, we have
rdeg−δ(R) = rdeg−δ(P) = 0, so that we can write R = lm−δ(R)Xδ + Q with the j-th
column of Q of degree less than δj, where δ = (δ1, . . . , δm). In particular, since lm−δ(R) is
invertible, this yields cdeg(R) = δ. Besides, we obtain lm−δ(R)−1R = Xδ +lm−δ(R)−1Q,
and the j-th column of lm−δ(R)−1Q has degree less than δj. Thus lm−δ(R)−1R is in −δ-
Popov form and unimodularly equivalent to P, hence equal to P.

Yet, for the knowledge of the s-minimal degree δ to be useful in algorithms, one has to
be able to compute it without computing the s-Popov basis itself. Such a nice situation,
which we will focus on in Section 3.2.3 and Chapter 16, is that of the computation of
the Hermite form of M when it is given by some basis A ∈ K[X]m×m. In this case,
two efficient algorithms have been given to compute the diagonal entries of this Hermite
form [GS11, Zho12]. These entries give in particular the minimal degree δ; we note that,
although the polynomials themselves are known, [GS11, Zho12] only use their degrees δ
to complete the computation of the whole Hermite form.

Concerning our main problems, the module is described by equations like in the exam-
ples of Hermite-Padé approximation or bivariate interpolation that we have given above.

32

1.2. Designing fast algorithms for shifted Popov bases

In this context, we show now that the shifted minimal degree behaves well with algo-
rithms based on a divide-and-conquer approach, and thus that it can be found without
computing the full shifted Popov basis.

Finding the minimal degree. Placing ourselves in an abstract setting, suppose that
we have some description of a moduleM ⊆ K[X]m of rank m and we want to compute
a basis P ∈ K[X]m×m ofM. Depending on the context, P should be in shifted reduced
form or in shifted Popov form; we will study both situations.

When the description ofM allows it, we split the problem into two subproblems, as
follows. The first subproblem asks to compute a basis P(1) ∈ K[X]m×m of a moduleM(1)

such thatM⊆M(1) ⊆ K[X]m; remark that these inclusions imply that the rank ofM(1)

is m. Then, we wish to use the knowledge of P(1) to progress towards obtaining a basis
ofM. For this, we express the elements ofM⊆M(1) on the basis P(1):

M = {p ∈M(1) | p ∈M}
= {λP(1),λ ∈ K[X]1×m | λP(1) ∈M} =M(2)P(1),

whereM(2) = {λ ∈ K[X]1×m | λP(1) ∈M}. Then, the second subproblem is to compute
a basis P(2) ofM(2).

Example 1.27 (Hermite-Padé approximation). Following on from Example 1.5, let F ∈
K[X]m×1 be a vector, let D be an even positive integer, and consider

M = {p ∈ K[X]1×m | pF = 0 mod XD},

which is of rank m. Then, one may consider the module

M(1) = {p ∈ K[X]1×m | pF = 0 mod XD/2},

which is such thatM⊆M(1) ⊆ K[X]m. As a first subproblem, we compute a basis P(1)

of M(1), which is an instance of Hermite-Padé approximation at order D/2. Then, for
any p ∈ K[X]1×m,

p ∈M ⇔ p ∈M(1) and pF = 0 mod XD

⇔ p = λP(1) for some λ such that λP(1)F = 0 mod XD

⇔ p = λP(1) for some λ such that λG = 0 mod XD/2,

where G = (X−D/2P(1)F) mod XD/2 is often called the residual in this context. With the
notation above, we have

M(2) = {λ ∈ K[X]1×m | λG = 0 mod XD/2},

and thus our second subproblem is to compute a basis P(2) ofM(2), which is an instance
of Hermite-Padé approximation at order D/2 for the vector G. b

33

Chapter 1. Generating sets of modules over polynomial rings

The computed bases P(1) and P(2) are combined into the product P(2)P(1), which is
a basis of M as we prove below. Most importantly, computing an s-reduced basis is
consistent with this strategy, via the computation of P(1) in s-reduced form and of P(2)

in t-reduced form for a well-chosen shift t. These properties, stated in items (i) and (ii)
of the theorem below, are behind most algorithms for Hermite-Padé approximation and
similar problems, including the iterative ones of [VBB92, BL94, BL00] and the divide-
and-conquer ones of [BL94, GJV03, ZL12, GL14].

Theorem 1.28. Let M ⊆ M(1) be two K[X]-submodules of K[X]m of rank m, and let
P(1) ∈ K[X]m×m be a basis ofM(1). Let further s ∈ Zm and t = rdegs(P

(1)). Then,

(i) the rank of the moduleM(2) = {λ ∈ K[X]1×m | λP(1) ∈M} is m, and for any basis
P(2) ∈ K[X]m×m ofM(2), the product P(2)P(1) is a basis ofM;

(ii) if P(1) is s-reduced and P(2) is t-reduced, then P(2)P(1) is s-reduced;

(iii) if P(1) is in s-ordered weak Popov form and P(2) is in t-ordered weak Popov form,
then P(2)P(1) is in s-ordered weak Popov form;

(iv) if δ(1) is the s-minimal degree of M(1) and δ(2) is the t-minimal degree of M(2),
then the s-minimal degree ofM is δ(1) + δ(2).

Proof. (i) To prove thatM(2) has rank m, we consider the adjugate adj(P(1)) ∈ K[X]m×m

of P(1), that is, the transpose of its cofactor matrix. Then, adj(P(1))P(1) = det(P(1))Im
and thus for any p ∈M we have p adj(P(1))P(1) = det(P(1))p ∈M. HenceM adj(P(1)) ⊆
M(2) and it remains to show thatM adj(P(1)) has rank m, which follows from the non-
singularity of adj(P(1)).

The rows of P(2)P(1) are K[X]-linearly independent since its determinant is nonzero.
Now let p ∈ M; we want to prove that p is a K[X]-linear combination of the rows of
P(2)P(1). First, p ∈ M(1), so there exists λ ∈ K[X]1×m such that p = λP(1). But then
λ ∈ M(2), and thus there exists µ ∈ K[X]1×m such that λ = µP(2). This yields the
combination p = µP(2)P(1).

(ii) Let d = rdegt(P
(2)); by the predictable-degree property from Theorem 1.11, we

have d = rdegs(P
(2)P(1)). Using X−d P(2)P(1)Xs = X−d P(2)Xt X−t P(1)Xs , we obtain

that lms(P
(2)P(1)) = lmt(P

(2))lms(P
(1)). According to Theorem 1.11, our assumption

implies that lmt(P
(2)) and lms(P

(1)) are invertible. Therefore lms(P
(2)P(1)) is invertible

as well, and P(2)P(1) is s-reduced.
(iii) Using Lemma 1.21, the result follows since lms(P

(2)P(1)) = lmt(P
(2))lms(P

(1)) is
lower triangular and invertible.

(iv) Let P(1) be the s-Popov basis ofM(1) and P(2) be the t-Popov basis ofM(2). Then,
by the item (iii) above, P(2)P(1) is in s-ordered weak Popov form. Thanks to Lemma 1.25,
it remains to show that the s-pivot degree of P(2)P(1) is δ(1) +δ(2). Since P(1) and P(2) are
in s- and t-Popov form, we have t = rdegs(P

(1)) = s + δ(1) and rdegt(P
(2)) = t + δ(2); the

conclusion then follows from rdegs(P
(2)P(1)) = rdegt(P

(2)) = t+δ(2) = s+δ(1) +δ(2).

We remark however that for P(1) in s-Popov form and P(2) in t-Popov form, the
product P(2)P(1) is generally not in s-Popov form. One may want to first compute P(2)P(1)

34

1.2. Designing fast algorithms for shifted Popov bases

and then normalize it into s-Popov form; while this will give the sought shifted Popov
form, this strategy is too costly in the worst cases. In fact, even the number of coefficients
from K needed to represent the product P(2)P(1) may be beyond our target cost, as we
will detail in Section 1.2.2.

To circumvent this difficulty, the algorithms presented in Sections 2.3 to 2.5 avoid to
directly follow this approach based on polynomial matrix multiplication. Instead, they
rely on the item (iv) above. It implies that, if we have obtained recursively P(1) and
P(2) in s- and t-Popov form, then the s-minimal degree δ ofM can be simply obtained
by adding the tuple of diagonal degrees of P(1) and P(2). Then, we rely in particular on
Lemma 1.26 to exploit the knowledge of δ in order to efficiently compute the s-Popov
basis ofM.

1.2.2 Size of bases and target costs

In this section, we discuss bounds on the size of the bases of a module, where by size, we
mean the number of field elements used to represent them. In this thesis, except when
indicated, we will always assume a dense representation of polynomial matrices, meaning
that the size of a matrix P = [pij]i,j ∈ K[X]m×n is measured asmn+

∑
{(i,j) | pij 6=0} deg(pij).

Studying the size of the matrices we compute is important, since it provides trivial lower
bounds: it is expected that an algorithm which returns a basis of size S will have to
perform some computation for each of the output field element, and thus it will use Ω(S)
operations in K assuming that no structure of the basis is exploited. These size bounds
can also be used to set up target costs for our algorithms.

Here we only consider modulesM⊆ K[X]m of rank m, which are thus represented by
a square, nonsingular polynomial matrix P ∈ K[X]m×m. If we do not make any specific
requirement on P, it may have entries of arbitrary large degree. For example, the bases of
the module K[X]1×m form the set of unimodular matrices, which contains all unit upper
or lower triangular matrices (see Example 1.2). On the other hand, as soon as we require
some minimality, the degree of the determinant of the computed bases will play a central
role in their size.

Shifted reduced bases and average row degree. The constraints of being a reduced
form immediately restrict the possibilities in terms of degrees. For example, the identity
matrix is a basis of K[X]1×m which is 0-reduced, and thus any other 0-reduced basis must
have the same 0-row degree, or in other words, must be a nonsingular constant matrix.
A convenient tool for analyzing the degrees of shifted reduced matrices is provided by the
determinant, thanks to Theorem 1.11: for instance, any unimodular matrix U which is
0-reduced satisfies |rdeg(U)| = deg(det(U)) = 0.

The shift s ∈ Zm, as a set of degree weights on the columns of s-reduced bases, affects
how the degrees of the entries of such bases are distributed. While in our problems the
precise degree distribution in the ouput is unknown a priori, we still have a global control
on it, as follows. We will always have, directly from the input, a bound D ∈ Z>0 on the
degree of the determinant of any basis ofM. Furthermore, we will have a related bound
on the size of the input, which will often be O(mD), or in some cases O(m2dD/me).

35

Chapter 1. Generating sets of modules over polynomial rings

Then, this quantity D provides us with a bound on the sum of the shifted row degrees
of any s-reduced basis P ofM:

|rdegs(P)| = deg(det(P)) + |s| 6 D + |s|.

After ensuring that the shift has nonnegative entries, by considering s − min(s) instead
of s without loss of generality, we bound the sum of actual row degrees of P as

|rdeg(P)| 6 |rdegs−min(s)(P)| 6 D + ξ,

where ξ = |s−min(s)|. This states that the average row degree of P is at most (D+ξ)/m.
In particular, P can be represented using at most m2 +m(D + ξ) field elements.

Our algorithms will fundamentally rely on polynomial matrix multiplication, as for
example in the general divide-and-conquer scheme presented in Section 1.2.1, where one
computes two bases and multiply them together. Having the above bound, we expect to
multiply matrices of dimensions m×m and average row degree in O((D+ξ)/m), with the
product also having average row degree O((D + ξ)/m). There are algorithms specialized
to this kind of situations, and thus a reasonable target cost is O (̃mω + mω−1(D + ξ)) =
O (̃mωd(D + ξ)/me), where the ceiling function takes into account the possibility that
D + ξ be negligible with respect to m.

To see why shifted reduced matrices may still have entries of large and unbalanced
degrees, here is an example of a unimodular matrix U in s-ordered weak Popov form
and such that rdeg(U) = rdegs(U) = s, and |rdeg(U)| = |rdegs(U)| = deg(det(U)) + ξ.
Assuming that s is non-decreasing and min(s) = s1 = 0, we consider

U =

1

[s2] 1
... . . .

[sm] 1

 ,
where [d] denotes an entry of degree d. The size of this matrix, in terms of number of field
elements, is not even the worst-case Θ(m2+m(D+ξ)), which can only be reached for some
specific shifts. Yet, currently known fast polynomial matrix multiplication algorithms do
not take size into account, but only the average row degree, for which this particular
matrix achieves the worst case deg(det(·)) + ξ.

Shifted Popov forms and average column degree. Concerning shifted Popov forms,
the situation is simpler since the bound D directly gives control on their average column
degree. Indeed, for a matrix P in s-Popov form, the column degree of P coincides with its
s-pivot degree, that is, cdeg(P) = δ. On the other hand, since P is also column reduced,
we have |cdeg(P)| = deg(det(P)). Then, having deg(det(P)) 6 D, the sum of column de-
grees satisfies |cdeg(P)| = |δ| = deg(det(P)) 6 D, and the average column degree of P is
at mostD/m. Thus, we readily have that the size of P is in O(m2+mD) = O(m2dD/me).

In particular, in our problems where the size of the input is within the same bound,
this means that one may hope for algorithms with cost bound O (̃mωdD/me). This is
smaller in general than the target cost given above for shifted reduced forms, which was

36

1.2. Designing fast algorithms for shifted Popov bases

dependent on ξ = |s−min(s)|. Yet, as remarked in Section 1.2.1, shifted Popov forms do
not behave well regarding matrix multiplication, so that additional techniques have to be
used in order to compute shifted Popov bases efficiently. To recall Section 1.2.1, currently
known fast algorithms for computing shifted Popov bases focus on finding the minimal
degree δ, and then use δ to reduce the problem to the computation of a shifted reduced
form for a shift that is “not far from uniform”. We now discuss this case in more detail.

Assumptions on the shift. These are designed to both hold in many interesting situa-
tions and ensure that the computed shifted reduced bases have a size that remains within
the size O(m2dD/me) of the input. This suggests a target cost of the form O (̃mωdD/me),
while according to the discussion above, such a cost seems infeasible for the computation
of s-reduced bases in general, where ξ = |s−min(s)| can be significantly larger than D.

From the degree bounds above, the assumption

Hs,1 : ξ = |s−min(s)| ∈ O(D), (1.2)

ensures that an s-reduced matrix P with deg(det(P)) 6 D satisfies |rdeg(P)| ∈ O(D).
This assumption states that s is not far from uniform, around its minimum value.

The second commonly encountered assumption is linked to the encoding of degree
constraints into shifts as in Remark 1.9. In this context, one has some prescribed bounds
N1, . . . , Nm ∈ Z>0 on the output polynomial vectors, and assumes N1 + · · ·+Nm = D+ 1
(for example in Hermite-Padé approximation [Her93, Pad94]), or more generally that the
sum N1 + · · · + Nm is greater than D but still in O(D) (for example in the bivariate
interpolation step of the Guruswami-Sudan algorithm [Sud97, GS99]).

In terms of the negative shift s = (−N1, . . . ,−Nm), we have |−s| = N1 + · · · + Nm;
the corresponding assumption that we encounter for example in [ZL12] is the following.

Hs,2 : |max(s)− s| ∈ O(D). (1.3)

This assumption states that s is not far from uniform, around its maximum value. As
we prove in the next paragraph, Hs,2 implies that the sum of the degrees in an s-reduced
matrix P with deg(det(P)) 6 D is in O(mD); or, in other words, the average degree of P
is in O(D/m). In this context, one can hope for algorithms with cost in O (̃mωdD/me).

Let P be such that deg(det(P)) 6 D and be s-reduced for s satisfying Hs,2. Since
lms(P) is invertible, we can find a permutation π of {1, . . . ,m} such that its entries at
indices {(π(j), j), 1 6 j 6 m} are nonzero. Up to permuting the rows of P by π, we can
assume that the diagonal of lms(P) is nonzero. Then, denoting by [dij]i,j the degrees of the
entries of P, we have rdegs(P) = (d11 + s1, . . . , dmm + sm), deg(det(P)) = d11 + · · ·+dmm,
and for all i, j, dij 6 dii + si − sj 6 dii + max(s)− sj. While dij may be −∞ when i 6= j,
the right-hand side is nonnegative. We finally obtain that∑
i,j: dij 6=−∞

dij 6
∑
i,j

(dii + max(s)− sj) 6 m deg(det(P)) +m|max(s)− s| ∈ O(mD),

giving the announced bound on the average degree of P.
For some problems, algorithms have been designed especially to work efficiently under

either Hs,1 or Hs,2 [Sto06, ZL12]. Yet, these assumptions are restrictive, and in fact there

37

Chapter 1. Generating sets of modules over polynomial rings

is an important example of a shift which they do not cover (while the ideas in Section 1.2.1
will allow us to deal with it efficiently):

h = (0, D, 2D, . . . , (m− 1)D). (1.4)

If a matrix P is in h-reduced form and such that deg(det(P)) 6 D, then P is lower
triangular; and if P is furthermore in h-Popov form then it is in Hermite form [BLV06,
Lemma 2.6]. The next paragraph proves that this shift is extremal: knowing the bound
D, one can restrict to considering shifts that, after being sorted in non-decreasing order,
lie between the uniform shift 0 and this Hermite shift h, for componentwise comparison.

Reducing the entries of the shift. Let A ∈ K[X]m×m be nonsingular, let s ∈ Zm,
and consider D ∈ Z>0 such that D > deg(det(A)). Here, we show how to construct from
s and D a shift t ∈ Zm>0 such that

• the s-Popov form P of A is also in t-Popov form;

• min(t) = 0, max(t) 6 (m− 1)D, and |t| 6 m2D/2.

We write ŝ = (sπ(1), . . . , sπ(m)), with π any permutation of {1, . . . ,m} such that ŝ is
non-decreasing. Then, we define t̂ = (t̂1, . . . , t̂m) by t̂1 = 0 and, for 2 6 i 6 m,

t̂i − t̂i−1 =

{
D if ŝi − ŝi−1 > D,
ŝi − ŝi−1 otherwise.

Let t = (t̂π−1(1), . . . , t̂π−1(m)). Since the diagonal entries of P have degree at most
deg(det(A)) < D, it is easily verified that P is in t-ordered weak Popov form. Fur-
thermore, since P is in s-Popov form, in each column its entries have degree less than the
diagonal entry, hence P is in t-Popov form.

1.3 Gröbner bases of modules over multivariate poly-
nomial rings

In this section, we extend our considerations to modules over a multivariate polynomial
ring K[X] = K[X1, . . . , Xr]. Having several variables brings new developments, since it
implies that several properties at the core of our discussions in the previous section do
not hold anymore. Namely, the fundamental difference is that K[X] is not a principal
ideal domain as soon as r > 2, and as a consequence most K[X]-modules we will consider
do not have a basis, consisting of K[X]-linearly independent elements. Still, it is known
from Hilbert Basis theorem that submodules of K[X]m always have a generating set: this
is what we will compute for our problems. New questions arise, starting with that of
specifying which useful properties we would like to require on the computed generators.

We will observe that generating sets of a submodule generated by monomials allow us
to efficiently compute in the quotient module, and can be directly turned into a generating
set which is unique in terms of the given submodule. Then, wanting similar properties

38

1.3. Gröbner bases of modules over multivariate polynomial rings

for generating sets of submodules in general, we present the notion of Gröbner basis.
It fundamentally relies on a chosen monomial order, and for a given order a submodule
admits a unique reduced Gröbner basis. We detail how this generalizes to several variables
the shifted Popov bases of univariate modules presented in Section 1.1, where the shift
can be seen as the specification of a monomial order.

Finally, we give more details and examples about a specific type of modules that plays
an important role in the problems we are interested in. Namely, these are the modules
which have finite dimension as K-vector spaces. Many computations with this kind of
modules can be done by means of linear algebra over K, involving multiplication matrices.

1.3.1 Generating sets of ideals and modules

Hereafter, we consider a polynomial ring K[X] = K[X1, . . . , Xr] for some integer r > 1.
As in Section 1.1, we study K[X]-submodules of K[X]m. In the case of one variable, we
derived many properties of submodules from the fact that a univariate polynomial ring
is a principal ideal domain: any ideal of K[X] is generated by a single polynomial. A
notable consequence is that submodules of K[X]m are free and of rank at most m, as
stated in Lemma 1.1. This does not hold anymore as soon as r > 2. We start with the
case m = 1, for which the K[X]-submodules of K[X] are exactly the ideals of K[X].

Ideals. In K[X], the question of finding a generating set of an ideal is naturally in-
terpreted as the question of finding its unique monic generator. The situation is more
complex in the multivariate case.
Example 1.29. The ideal of K[X, Y] generated by X and Y , denoted by I = 〈X, Y 〉, is
not principal. Indeed, if there exists a nonzero generator f ∈ K[X, Y] such that I = 〈f〉,
then both X and Y must be multiples of f , which implies that f is a constant; but then
we would have I = K[X, Y], which is not the case.

Now, assume that there is a generating set {f1, . . . , fs} of I consisting of s > 2 polyno-
mials. Then, f1 and f2 are not K[X]-linearly independent, since a nontrivial combination
αf1 + βf2 = 0 is given by α = f2 and β = −f1. b

One may note that the latter paragraph holds more generally for any ideal I of K[X]:
if I is not principal, it does not have a basis; we recall that we reserved the word basis for
generating sets that are K[X]-linearly independent. Such relations between generators
of I are called syzygies. Here is another example, encountered in interpolation problems
such as the one in Example 1.4.
Example 1.30. Let {(xj, yj,1, . . . , yj,r) ∈ Kr+1, 1 6 j 6 D} be a set of points with
x1, . . . , xD pairwise distinct. Then,

I = {Q ∈ K[X, Y1, . . . , Yr] | Q(xj, yj,1, . . . , yj,r) = 0 for all 1 6 j 6 D}

is an ideal. Let M(X) = (X − x1) · · · (X − xD), and for each k ∈ {1, . . . , r} let Lk(X) be
in K[X] such that Lk(xj) = yj,k for 1 6 j 6 D. Then,

I = 〈M(X), Y1 − L1(X), . . . , Yr − Lr(X)〉.

39

Chapter 1. Generating sets of modules over polynomial rings

As in the previous example, one can easily prove that I is not principal, and that it does
not have a basis. b

Although only principal ideals have a basis, the following result of Hilbert states that
all ideals in K[X] have a finite generating set [Eis95, Theorem 1.2].

Theorem 1.31 (Hilbert Basis Theorem). Let I be an ideal of K[X]. Then I is finitely
generated, that is, there exist f1, . . . , fs ∈ K[X] such that I = 〈f1, . . . , fs〉.

Note that this is called the basis theorem: in this result, as well as in the terminology
of Gröbner bases introduced below in Section 1.3.3, the word basis commonly refers to a
set of generators, without requiring that they be linearly independent over the polynomial
ring. To avoid possible ambiguities in the univariate case, which concerns a large part of
this document and where the bases we are interested in are linearly independent, in what
follows we will not use the word basis unless we know that the concerned generating set
is linearly independent, except of course in the standard name Gröbner basis.

Modules. Now, we consider the more general case of submodules of K[X]m for m > 1.
As above for ideals (m = 1), such submodules do not have a basis in general. Yet, it follows
from the Hilbert Basis Theorem that they are finitely generated [Eis95, Proposition 1.4].

Example 1.32 (Multivariate rational reconstruction [Fit95, Fit97]). Let us consider a prin-
cipal ideal I = 〈f〉 of K[X], and let g ∈ K[X]. Then,

{(p1, p2) ∈ K[X]2 | p1 = p2g mod f}

is a free submodule of K[X]2 of rank 2, with basis {(g, 1), (f, 0)} [Fit97, Theorem 3.1].
Now, suppose that I is not principal; then the submodule

M = {(p1, p2) ∈ K[X]2 | p1 + p2g ∈ I}

is not free. Still, it is finitely generated. Indeed, according to the Hilbert Basis Theorem
there exist polynomials f1, . . . , fs such that I = 〈f1, . . . , fs〉, and thenM is generated by
{(g,−1), (f1, 0), . . . , (fs, 0)}. b

In this context, we will compute generating sets for submodules of K[X]m. Like in the
univariate case, we are interested in such sets that have specific properties. An important
family of ideals and modules is formed by those which are generated by monomials.

Monomial modules. Now, we present the definition of monomial submodules and the
basic properties of their generating sets. The reader may refer to [Eis95, CLO05, CLO07]
for a more detailed introduction, and to [MS05] for an in-depth study.

Let us denote by c1, . . . , cm the coordinate vectors

cj = (0, . . . , 0, 1, 0, . . . , 0) ∈ K[X]m with 1 at index j,

which form a basis of the free K[X]-module K[X]m. A monomial in K[X] is a product of
powers of the variables,X i1

1 · · ·X ir
r for some (i1, . . . , ir) ∈ Zr>0. More generally, a monomial

40

1.3. Gröbner bases of modules over multivariate polynomial rings

in K[X]m is fcj = (0, . . . , 0, f, 0, . . . , 0) where 1 6 j 6 m and f is any monomial of K[X].

Then, a term in K[X] or in K[X]m is a monomial multiplied by a scalar from K.
In particular, a polynomial f ∈ K[X]m is a finite K-linear combination of monomials in
K[X]m, or in other words a finite sum of terms in K[X]m; these are called the terms of
f . Given terms f and g in K[X], we say that the term fcj is divisible by the term gck if
j = k and f is divisible by g in K[X].

An important family of ideals of K[X] is formed by the monomial ideals, that is,
those generated by monomials of K[X]. Similarly, a monomial submodule of K[X]m is
a K[X]-submodule of K[X]m which is generated by monomials of K[X]m. Note that
such a monomial submoduleM can be writtenM = I1c1 ⊕ · · · ⊕ Imcm, where Ij is the
monomial ideal of K[X] generated by the monomials f such that fcj ∈M.

Generating sets of monomial submodules have particularly nice properties. LetM =
〈f1cj1 , . . . , fscjs〉 be a monomial submodule. Then, we have a straightforward membership
characterization: an element f ∈ K[X]m belongs toM if and only if every term of f is
divisible by one of the monomials f1cj1 , . . . , fscjs . As a consequence, a basis of the quotient
K[X]m/M as a K-vector space is given by the set of monomials not inM.

Furthermore, one can easily turn the above set of generators of M into a unique,
minimal set of generators, by repeatedly removing from the set any monomial that is
divisible by others. The obtained generating set contains only elements that are minimal
for the partial order defined by divisibility on the monomials of K[X]m.

Identifying the exponents of the monomials with tuples in Zr>0 allows us to draw them,
and observe the properties stated above on this picture. In Fig. 1.1, we show examples of
monomial ideals in two variables; an example in three variables is given in Fig. 1.2.

To summarize, generating sets of monomial submodules allow us to easily test member-
ship, work in the quotient K[X]m/M, or find a canonical generating set. For a submodule
M in general, generating sets do not have such properties. Still, there is a specific type of
generating set which has them, called a Gröbner basis ofM, which besides reduces many
questions aboutM to questions about a monomial submodule related toM: the initial
module ofM.

1.3.2 Monomial orders and initial module

As above, let K[X] = K[X1, . . . , Xr] and m ∈ Z>0. Here, we first introduce monomial
orders on K[X]m, which then allow us to associate to any submoduleM of K[X]m its ini-
tial module. This is a monomial submodule which contains important information about
M and will play a central role in the definition of a Gröbner basis ofM in Section 1.3.3.

Monomial orders. First, we present monomial orders, mainly through several impor-
tant examples. For more details and insight, we refer the reader to [Eis95, Section 15.3],
[KR00, Sections 1.4 and 1.5], [CLO05, Section 5.2], and [CLO07, Section 2.2].

Definition 1.33 (Monomial order). A monomial order on K[X]m is a total order ≺ on
the monomials of K[X]m such that, for any pair of monomials f, g of K[X]m and any

41

Chapter 1. Generating sets of modules over polynomial rings

Figure 1.1: The staircase of the bivariate monomial ideals 〈X8, Y 〉 and 〈X8, X2Y 4, Y 7〉.
An arbitrary generating set for these monomial ideals must contain the minimal generators
(red dots); apart from that, it may contain any finite subset of the other monomials in
the ideal, which corresponds to the greyed part.

Figure 1.2: The staircase of a monomial ideal in three variables. The minimal generating
set is indicated by black-green cubes, while the monomial basis of the quotient module is
indicated by blue-red cubes.

42

1.3. Gröbner bases of modules over multivariate polynomial rings

monomial h 6= 1 of K[X],

f ≺ g implies f ≺ hf ≺ hg.

Let us give examples, first considering the case of the multivariate polynomial ring, that
is, m = 1. Note that in the case of one variable, this definition allows only one monomial
order on K[X], which is the natural order by comparing the exponents: X i ≺ Xj if and
only if i < j.

Hereafter, we only consider monomial orders such that Xr ≺ · · · ≺ X1; this can be
ensured without loss of generality up to renaming the variables. One first example is the
order used to sort the entries in a dictionary.

Example 1.34. The lexicographic order ≺lex on the monomials ofK[X] is defined as follows,
for two monomials f = X i1

1 · · ·X ir
r and g = Xj1

1 · · ·Xjr
r :

f ≺lex g if ik < jk for the first index k with ik 6= jk.

For example, X2
1X

3
2 ≺lex X

3
1X

2
2 ≺lex X

3
1X

5
2 ≺lex X

4
1 . b

For convenience, we will sometimes identify monomials and the corresponding expo-
nent tuple, and consider monomial orders as orders on Zr>0. In the previous example, for
r = 2, we would write (2, 3) ≺lex (3, 2) ≺lex (3, 5). Another monomial order, which has
proven to be very important in Gröbner basis computations, is the following.

Example 1.35. The degree reverse lexicographic order ≺drl on K[X] is defined as follows,
for two monomials f = X i1

1 · · ·X ir
r and g = Xj1

1 · · ·Xjr
r :

f ≺drl g if deg(f) < deg(g), or if deg(f) = deg(g) and
ik > jk for the last index k with ik 6= jk,

where deg(·) stands for the total degree. For example, X2
1X

3
2 ≺drl X

6
2 ≺drl X

2
1X

4
2 . b

This is an example of an order which refines the degree. In general, a monomial order
≺ on K[X] is said to refine the degree if it first compares the total degree of monomials
and then uses another tie-breaking order in case of equality.

Now we give the most often encountered monomial orders for modules. These are two
natural extensions of monomial orders on K[X] to monomial orders on K[X]m, called
term-over-position and position-over-term, respectively. We also include a shifted vari-
ant of term-over-position orders, which can be found for example in [Fit97] and [Mid11,
Definition 6.19], and which will allow us in Section 1.3.3 to establish precise links with
notions introduced in the univariate case in Section 1.1.

Definition 1.36 (TOP order, POT order). Let ≺ be a monomial order on K[X]. Con-
sider the module K[X]m with its canonical basis c1, . . . , cm, and let S1, . . . , Sm be mono-
mials in K[X]. Then, ≺ induces the following monomial orders on K[X]m. For any pair
of monomials fcj and gck of K[X]m,

• ≺-POT order: fcj ≺pot gck if j < k, or if j = k and f ≺ g;

43

Chapter 1. Generating sets of modules over polynomial rings

• ≺-TOP order: fcj ≺top gck if f ≺ g, or if f = g and j < k;

• shifted ≺-TOP order: fcj ≺S-top gck if fSj ≺ gSk, or if fSj = gSk and j < k.

For a more complete treatment of monomial orders for polynomials rings and modules,
one may refer to [Rob86, Eis95, FG06]. The shifted orders are sometimes called weighted
orders [FF92, OF07]. Here, we will prefer shift for several reasons: this announces links
with the notion of shifted degrees from Section 1.1; weighted orders also commonly refer
to assigning weights to the variables in the context of monomial orders on K[X]; we will
use the latter notion of weights later in multivariate interpolation problems (Problem 11).

Example 1.37. Here, r = m = 2. For any monomial order≺ onK[X] = K[X1, X2] and any
monomials f and g of K[X], we have (f, 0)≺pot (0, g) and (f, 0)≺top (0, f). Furthermore,
(f, 0)≺pot (g, 0) and (f, 0)≺top (g, 0) are both equivalent to f ≺ g. For ≺top

lex , we have

(0, X1)≺top
lex (X2

1X
3
2 , 0)≺top

lex (0, X3
1X

2
2)≺top

lex (X3
1X

5
2 , 0)≺top

lex (0, X3
1X

5
2),

while for ≺pot
lex we have

(X2
1X

3
2 , 0)≺pot

lex (X3
1X

5
2 , 0)≺pot

lex (0, X1)≺pot
lex (0, X3

1X
2
2)≺pot

lex (0, X3
1X

5
2). b

Example 1.38. Here, we consider the univariate module K[X]m, that is, r = 1 and m > 1.
As mentioned above, in the case of univariate polynomials, the only monomial order over
K[X] is given by Xa < Xb ⇔ a < b. Furthermore, the shifting monomials are Sj = Xsj

for all j, defining a shift s = (s1, . . . , sm) ∈ Zm>0. As a consequence, the monomial orders
defined above specialize into the following:

• <-POT order: Xacj <
pot Xbck if and only if (j, a) ≺lex (k, b);

• <-TOP order: Xacj <
top Xbck if and only if (a, j) ≺lex (b, k);

• shifted <-TOP order: Xacj <
s-top Xbck if and only if (a+ sj, j) ≺lex (b+ sk, k).

The reader may note that this is reminiscent of the notions of row degree and pivots from
Section 1.1. We will clearly state this link in Example 1.40 and Section 1.3.4. b

Initial module. Now that we have defined total orders on the monomials of K[X]m,
we may define the notion of initial term of a polynomial with respect to this order, which
generalizes to several variables r > 1 and to modules m > 1 the notion of leading term
for univariate polynomials.

For a given monomial order ≺ on K[X]m and an element f ∈ K[X]m, the ≺-initial
term of f , denoted by in≺(f), is the term of f whose monomial is the greatest with respect
to ≺. We extend this to any collection F ⊆ K[X]m of polynomials: the ≺-initial terms
of F , denoted by in≺(F), is the set of initial terms {in≺(f), f ∈ F} of the elements of
F . For a module M, the ≺-initial module of M, denoted by in≺(M), is the monomial
submodule {in≺(f), f ∈M} of K[X]m.

For example, the ≺lex-initial term of f = 3X3
1X

5
2 + 5X3

1X
2
2 + 2X2

1X
3
2 ∈ K[X1, X2] is

in≺lex
(f) = 3X3

1X
5
2 .

44

1.3. Gröbner bases of modules over multivariate polynomial rings

Example 1.39 (Multivariate rational reconstruction). From Example 1.32, for a given ideal
I = 〈f1, . . . , fs〉 of K[X] and some element g ∈ K[X],

M = {(p1, p2) ∈ K[X]2 | p1 + p2g ∈ I}

is a submodule of K[X]2 generated by F = {(−g, 1), (f1, 0), . . . , (fs, 0)}. Let ≺ be a
monomial order on K[X]. Then, assuming g is nonconstant, for the ≺-TOP order we
have

in≺top(F) = {(in≺(g), 0), (in≺(f1), 0), . . . , (in≺(fs), 0)}.
In particular 〈in≺top(F)〉 is a strict subset of in≺top(M), since we have for example (0, f1) =
f1(g, 1)−g(f1, 0) ∈M while in≺top(0, f1) = (0, in≺(f1)) 6∈ 〈in≺top(F)〉. On the other hand,
for the ≺-POT order we have

in≺pot(F) = {(0,−1), (in≺(f1), 0), . . . , (in≺(fs), 0)},

and one can check that in this case 〈in≺pot(F)〉 = in≺(I)×K[X] = in≺pot(M). b

The latter situation, when we have a generating set ofM whose initial terms generate
the initial module ofM, indicates that this generating set has good properties; this will
be developed in Section 1.3.3. In the univariate case, we can relate the initial term with
the notion of pivot introduced in Definition 1.13.
Example 1.40. Consider the K[X]-module K[X]1×m, and let < denote the monomial order
on K[X]. For a shift s ∈ Zm and a nonzero polynomial vector p = [pj]j ∈ K[X]1×m, let
(0, . . . , 0, αXd, 0, . . . , 0) denote the <s-top-initial term of p, with αXd at index π. Then
the s-pivot entry of p is pπ, the s-pivot degree of p is d = deg(pπ), and the leading term
of pπ is αXd.

More generally, let M be a submodule of K[X]1×m of rank m, let s ∈ Zm, and let
δ = (δ1, . . . , δm) be the s-minimal degree ofM. Then the <s-top-initial module ofM is

in<s-top(M) = Xδ1K[X]× · · · ×XδmK[X].

We recall that, as noted in Section 1.1.3, the quotient K[X]1×m/M is isomorphic to the
product of residue class rings K[X]/〈Xδ1〉 × · · · ×K[X]/〈Xδm〉, and it admits the vector
space basis ∪16j6m{Xdcj, 0 6 d < δj} where cj ∈ K[X]1×m is the coordinate vector with 1
at index j. b

The last property in this example actually holds more generally, as stated in the next
theorem. This implies in particular that the initial module gives important information
on the quotient K[X]m/M, notably for performing computations therein.

Theorem 1.41 (Macaulay). Let K[X] = K[X1, . . . , Xr], let m ∈ Z>0, and let M be
a K[X]-submodule of K[X]m. For any monomial order ≺ on K[X]m, the set E of all
monomials not in in≺(M) forms a basis of K[X]m/M as a K-vector space.

A proof can be found in [Eis95, Section 15.2]. Note that here and hereafter, we
identify the indeterminate Xi in K[X] and its image in the quotient K[X]m/M. Then, if
the module K[X]m/M is finite-dimensional as a K-vector space, it admits a finite basis
E = {ε1, . . . , εD} formed by the monomials not in in≺(M), which is commonly called the
≺-monomial basis of K[X]m/M. Note that it is sometimes required that this basis be
ordered such that 1 = ε1 ≺ · · · ≺ εD.

45

Chapter 1. Generating sets of modules over polynomial rings

Example 1.42. Following the notation of Example 1.30, let us show in detail that

I = {Q ∈ K[X, Y1, . . . , Yr] | Q(xj, yj,1, . . . , yj,r) = 0 for all 1 6 j 6 D}
= 〈M(X), Y1 − L1(X), . . . , Yr − Lr(X)〉

is such that the quotient ring M = K[X, Y1, . . . , Yr]/I has finite dimension D as a K-
vector space, and more precisely, that it admits {1, X, . . . , XD−1} as a vector space basis.
We will show later in Example 1.45 that, for a certain monomial order ≺, the initial ideal
of I is in≺(I) = 〈XD, Y1, . . . , Yr〉.

First, the monomials 1, X, . . . , XD−1 are K-linearly independent inM. Indeed, con-
sider a linear combination p(X) = p01+p1X+ · · ·+pD−1X

D−1 for some p0, . . . , pD−1 ∈ K.
If this combination is zero in the quotient, this means that p(X) ∈ I, and therefore
p(x1) = · · · = p(xD) = 0. Thus p(X) is a univariate polynomial of degree less than D
which has at least D pairwise distinct roots: it must be zero. Hence p0 = · · · = pD−1 = 0.

Then, the conclusion follows from the remark that for any f ∈ K[X, Y1, . . . , Yr], we
have f(X, Y1, . . . , Yr) = f(X,L1, . . . , Lr) + g for some g ∈ I. Considering the univariate
polynomial p(X) which is the remainder in the (univariate) division of f(X,L1, . . . , Lr)
by M(X), we obtain that the image of f in the quotient M is the same as that of p,
which is a K-linear combination of the monomials 1, X, . . . , XD−1. b

1.3.3 Gröbner bases

As above, let K[X] = K[X1, . . . , Xr], m ∈ Z>0, and let M be a submodule of K[X]m.
From Theorem 1.41, we obtain the following property regarding division moduloM: any
polynomial f ∈ K[X]m can be uniquely written f = g + h, where g ∈ M and h is a
K-linear combination of the monomials not in in≺(M). This remainder h is called the
≺-normal form of f (with respect toM), denoted by nf≺(f). Then, a natural question is
how to find nf≺(f) from f , assuming thatM is given by a generating set {f1, . . . , fs}.

There is an algorithm for performing multivariate division with remainder, which
generalizes the Euclidean algorithm for the univariate case, and relies on a monomial
order ≺ to decide at each step which monomial should be considered. Given f ∈ K[X]m,
this algorithm produces an expression f = q1f1 + · · ·+ qsfs + h, where none of the terms
of h is in 〈in≺(f1), . . . , in≺(fs)〉; for more details, one may refer to [Eis95, Section 15.3] or
to [CLO07, Chapter 2, §3].

One problem is that this does not always yield the unique remainder nf≺(f) as above;
in other words, h is not unique and we may have h 6= nf≺(f). Indeed, as observed in
Example 1.39, 〈in≺(f1), . . . , in≺(fs)〉 may be strictly contained in in≺(M). This leads us
to the following definition of a specific type of generating sets ofM, called Gröbner bases.

Definition 1.43 (Gröbner basis). Let ≺ be a monomial order on K[X]m and letM be a
K[X]-submodule of K[X]m. A generating set {f1, . . . , fs} ofM is said to be a ≺-Gröbner
basis of M if the ≺-initial module of M is generated by {in≺(f1), . . . , in≺(fs)}, that is,
in≺(M) = 〈in≺(f1), . . . , in≺(fs)〉.

We will drop from our notation the monomial order ≺ when there is no ambiguity. The
next result sometimes helps to prove that two sets of polynomials generate the same mod-

46

1.3. Gröbner bases of modules over multivariate polynomial rings

ule, by reducing the question to the comparison of their initial modules. This highlights
the fact that the initial module contains useful information about the module itself.

Lemma 1.44. If N ⊆ M ⊆ K[X]m are two submodules such that in≺(N) = in≺(M),
then N =M.

The proof can be found in [Eis95, Lemma 15.5]. An important consequence is that,
for any submodule M of K[X]m and any monomial order ≺ on K[X]m, there exists a
≺-Gröbner basis ofM. Indeed, the initial module ofM is finitely generated: in≺(M) =
〈g1, . . . , gs〉 for some monomials g1, . . . , gs ∈ in≺(M). These monomials are initial terms
of elements f1, . . . , fs ∈ M, and therefore in≺(M) = 〈g1, . . . , gs〉 ⊆ in≺(〈f1, . . . , fs〉) ⊆
in≺(M). Thus, by the above property we haveM = 〈f1, . . . , fs〉.

This lemma also gives us a Gröbner basis test: a set of elements ofM is a ≺-Gröbner
basis ofM if and only if their ≺-initial terms generate in≺(M). Another Gröbner basis
test is Buchberger’s criterion [Eis95, Theorem 15.8]. The latter can be turned into an
algorithm to compute a ≺-Gröbner basis of M, for any monomial order ≺ and any
submoduleM of K[X]m [Buc76] (see also [Eis95, Algorithm 15.9]).

Similarly to what we presented above for monomial modules, one can easily transform
a ≺-Gröbner basis ofM into a minimal one, by removing elements whose initial term is
divisible by the initial term of another element. More precisely, {f1, . . . , fs} is a minimal
≺-Gröbner basis of M if in≺(fi) is monic for all i (the coefficient from K is 1), and for
all i 6= j, in≺(fi) does not divide in≺(fj) [AL94, Definition 1.8.1]. Although this does not
yield uniqueness of the set of generators, all minimal ≺-Gröbner bases of M have the
same number of generators and the same initial terms, the latter forming the minimal
generating set of in≺(M).

There is a specific minimal ≺-Gröbner basis ofM, called the reduced ≺-Gröbner basis
of M, which is canonical: it is uniquely defined in terms of the module M and the
monomial order ≺. Namely, this is the Gröbner basis {f1, . . . , fs} ofM which satisfies

• for 1 6 i 6 s, in≺(fi) is monic;

• for 1 6 i 6 s, in≺(fi) does not divide any term of fj for j 6= i.

These properties directly give an algorithm to transform any ≺-Gröbner basis ofM into
the reduced ≺-Gröbner basis ofM.

Example 1.45. As in Examples 1.30 and 1.42, consider the ideal

I = {Q ∈ K[X, Y1, . . . , Yr] | Q(xj, yj,1, . . . , yj,r) = 0 for all 1 6 j 6 D}

of K[X, Y1, . . . , Yr], and let M(X) = (X − x1) · · · (X − xD), as well as Lk(X) ∈ K[X] be
such that Lk(xj) = yj,k for 1 6 j 6 D and k ∈ {1, . . . , r}. Furthermore, let ≺lex stand
for the lexicographic order on K[X, Y1, . . . , Yr], where the variables are ordered arbitrarily
with X ≺lex Yj for all j. Then,

{M(X), Y1 − L1(X), . . . , Yr − Lr(X)}

is the reduced ≺lex-Gröbner basis of I. b

47

Chapter 1. Generating sets of modules over polynomial rings

We have the following characterization, which gives in particular a property similar to
the predictable-degree property of Theorem 1.11.

Lemma 1.46. LetM be a submodule of K[X]m, ≺ be a monomial order on K[X]m, and
G = {f1, . . . , fs} ⊆ M. Then, G is a ≺-Gröbner basis ofM if and only if for all f ∈M,
there exist g1, . . . , gs ∈ K[X] such that

f = g1f1 + · · ·+ gsfs and in≺(f) = max
≺
{in≺(gifi), 1 6 i 6 s}.

For a proof of this result and other characterizations, see for example [AL94, Theo-
rem 3.5.14]. As mentioned above, one of the motivations for introducing Gröbner bases
is their usefulness regarding computations in the quotient K[X]m/M, or the computa-
tion of normal forms nf≺(f) of elements f ∈ K[X]m with respect toM. We summarize
properties about division with remainder here.

Lemma 1.47. LetM be a submodule of K[X]m, ≺ be a monomial order on K[X]m, and
G = {f1, . . . , fs} ⊆ M be a ≺-Gröbner basis of M. For any f ∈ K[X]m, the algorithm
of multivariate division with remainder computes g1, . . . , gs ∈ K[X] and h ∈ K[X]m such
that f = g1f1 + · · ·+ gsfs + h, with h = nf≺(f) having no monomial in in≺(M).

A detailed presentation of this algorithm can be found in [CLO07, Chapter 2, §3]. One
may notice the similarity of this result with Lemma 1.24 when working over K[X], keeping
in mind the description of in≺(M) given in Example 1.40. We will now formalize the fact
that, in the univariate case, reduced Gröbner bases of submodules of K[X]m correspond
to its shifted Popov bases.

1.3.4 Link with shifted Popov bases

Here, we focus on the univariate case. In the examples above, we have hinted at strong
links between the notions of shift and pivots, and the notions of monomial order and
initial terms. Since the former are used to define shifted Popov forms, and the latter are
used to define reduced Gröbner bases, one may wonder to which extent these canonical
generating sets differ in the case of univariate modules, if they do at all.

In a different context, this connection has been studied in [Mid11, Chapter 6] concern-
ing matrices over Ore polynomial rings. More precisely, [Mid11, Theorem 6.29] indicates
that shifted Popov forms coincide with reduced Gröbner bases for shifted TOP orders.
This also holds concerning matrices over K[X]; we state this precisely in Lemma 1.49. In
particular, we have that 0-Popov forms and Hermite forms coincide with reduced Gröbner
bases for the TOP order and the POT order, respectively.

We remark that the connection between specific reduced forms of polynomials matrices
and Gröbner bases has often been used in the context of coding theory [Fit95, Ale05, LO06,
LO08, Tri10], implicitly or explicitly, and was also studied in [Nie13, Section 2.1].

The results in this section can be summarized as follows: for a given submodule of
K[X]m, shifted Popov bases for arbitrary shifts cover the whole generality of reduced Gröb-
ner bases with respect to arbitrary monomial orders.

Let < denote the unique monomial order on K[X], given by Xa < Xb ⇔ a < b. The
TOP and POT orders in Definition 1.36 have the property that c1<

pot c2<
pot · · ·<pot cm

48

1.3. Gröbner bases of modules over multivariate polynomial rings

and c1 <
top c2 <

top · · ·<top cm. An important remark for our discussion here is that, from
the definition of a shifted s-TOP order for a given s ∈ Zm>0, we have

Xµ−s1c1 <
s-top Xµ−s2c2 <

s-top · · ·<s-top Xµ−smcm, (1.5)

where µ = max(s). Thus, one could slightly generalize the definition of the s-TOP order,
by using a permutation π of {1, . . . ,m} in order to specify how the monomials of the form
Xµ−sici compare to each other. The result below states that, up to such a permutation,
any monomial order on K[X]m coincide with a shifted TOP order on the monomials of
degree less than a prescribed bound.

Lemma 1.48. Let ≺ be a monomial order on K[X]m, let D ∈ Z>0 be some degree bound,
and let c1, . . . , cm be the canonical basis of K[X]m. Defining the shift s ∈ Zm>0 as detailed
below, and denoting by π the permutation of {1, . . . ,m} such that (Xmax(s)−sπ(i)cπ(i))16i6m

is increasing for ≺, then we have

Xaci ≺ Xbcj ⇔ a+ si < b+ sj or (a+ si = b+ sj and π−1(i) < π−1(j))

for any pair of monomials Xaci and Xbcj of K[X]m such that a and b are less than D.
To define s, let ` and ν1, . . . , ν` be the unique positive integers such that ν1+· · ·+ν` = m

and such that one can write {1, . . . ,m} = {iu,v, 1 6 v 6 νu, 1 6 u 6 `} with

• ci1,1 ≺ · · · ≺ ci1,ν1 ≺ · · · ≺ ci`,1 ≺ · · · ≺ ci`,ν` ,

• XDciu,νu ≺ ciu+1,1 for 1 6 u 6 `− 1,

• ciu,v+1 ≺ XDciu,v for 1 6 v 6 νu − 1 and 1 6 u 6 `.

Then, s = (s1, . . . , sm) ∈ Zm>0 is defined by

• si1,1 = 0 and siu+1,1 = siu,νu +D for 1 6 u 6 `− 1,

• siu,v = siu,1 + max{e | Xeciu,v ≺ ciu,1} for 2 6 v 6 νu and 1 6 u 6 `.

Proof. Let Xaciu,v and Xbciu′,v′ be monomials such that a, b < D. We want to prove that
Xaciu,v ≺ Xbciu′,v′ is equivalent to

a+ siu,v < b+ siu′,v′ or (a+ siu,v = b+ siu′,v′ and π
−1(iu,v) < π−1(iu′,v′)).

First, if iu,v = iu′,v′ then the equivalence follows from Xaciu,v ≺ Xbciu,v ⇔ a < b.
Now, if u < u′, on the first hand this implies siu,v+D 6 siu′,v′ , so that a+siu,v < b+siu′,v′

since a − b < D; on the other hand, we have XD+a−bciu,v ≺ X2Dciu,νu ≺ XDciu+1,1 ≺
XDciu′,v′ , hence X

aciu,v ≺ Xbciu′,v′ . Similarly, if u′ < u then b + siu′,v′ < a + siu,v and
Xbciu′,v′ ≺ Xaciu,v .

Finally, assume that u = u′. First, if Xaciu,v ≺ Xbciu,v′ then by definition of s we have
Xa+siu,v−siu,1ciu,1 � Xaciu,v ≺ Xbciu,v′ ≺ X

b+1+siu,v′
−siu,1ciu,1 , hence a + siu,v 6 b + siu,v′ .

On the other hand, a + siu,v < b + siu,v′ implies that Xaciu,v ≺ Xa+1+siu,v−siu,1ciu,1 �

49

Chapter 1. Generating sets of modules over polynomial rings

X
b+siu,v′

−siu,1ciu,1 � Xbciu,v′ . Thus, it remains to show that if a + siu,v = b + siu,v′ , then
Xaciu,v ≺ Xbciu,v′ ⇔ π−1(iu,v) < π−1(iu,v′). By definition of π, π−1(iu,v) < π−1(iu,v′) ⇔
Xµ−siu,vciu,v ≺ X

µ−siu,v′ ciu,v′ , where µ = max(s); then, multiplying by Xa+siu,v = X
b+siu,v′

yields Xµ−siu,vciu,v ≺ X
µ−siu,v′ ciu,v′ ⇔ Xµ+aciu,v ≺ Xµ+bciu,v′ , hence the equivalence.

Thus, when we restrict to comparing monomials of degree less than D, apart from
having fixed π to be the identity permutation, shifted TOP orders in Definition 1.36
represent all possible monomial orders. Similarly, we fixed a permutation to be the identity
when we defined the notion of s-pivot of a polynomial vector in Definition 1.13. Indeed,
we defined the pivot as the largest index in {1, . . . ,m} satisfying some property. This
corresponds to ensuring the ordering in Eq. (1.5), via the link between pivots and <s-top-
initial terms detailed in Example 1.40.

The straightforward generalization of shifted TOP orders involving the permutation
π then corresponds to the similar generalization of s-pivots, involving a permutation of
{1, . . . ,m} which specifies which is the s-pivot among several monomials having the same
s-degree, instead of requiring that this always be the one with largest index.

This leads us to the next result, which gives an explicit correspondence between Gröb-
ner bases of submodules of K[X]m and their bases in specific reduced forms that we defined
in Section 1.1. In this lemma, Xµ−s = diag(Xµ−s1 , . . . , Xµ−sm) is the shift matrix from
Section 1.1.2.

Lemma 1.49. LetM be a K[X]-submodule of K[X]1×m of rank ρ, and let ≺ be a mono-
mial order on K[X]1×m, and let D ∈ Z>0 be some degree bound. Let s ∈ Zm>0 and π
be defined from ≺ and D as in Lemma 1.48; we see π as the m × m permutation ma-
trix such that the rows of Xµ−sπ are ≺-increasing. Let {p1, . . . ,pρ} ⊂ K[X]1×m and let
P ∈ K[X]ρ×m be the matrix whose row i is pi. We assume that deg(P) < D. Then,

1. {p1, . . . ,pρ} is a ≺-Gröbner basis ofM if and only if P is a basis ofM such that
Pπ is in sπ-weak Popov form;

2. {p1, . . . ,pρ} is the reduced ≺-Gröbner basis ofM if and only if P is the basis ofM
such that Pπ is in sπ-Popov form, up to permutation of its rows.

Proof. This follows from the definitions of Gröbner bases and shifted (weak) Popov forms,
seeing ≺ as a π-permuted s-TOP order as in Lemma 1.48, and using the link between
shifted TOP orders and shifted pivots as written in Example 1.40.

Concerning the first item, we note that any ≺-Gröbner basis consisting of ρ elements
is a minimal ≺-Gröbner basis, up to making the ≺-leading terms of these elements monic.

1.3.5 Modules of finite (co)dimension and multiplication matrices

We now come back to the multivariate case, with K[X] = K[X1, . . . , Xr]. In this doc-
ument, we will often encounter K[X]-modules that have finite dimension or finite codi-
mension when considered as a K-vector space. In this section, we focus on this case and
introduce some tools for computations in such modules.

50

1.3. Gröbner bases of modules over multivariate polynomial rings

Multiplication matrices. A K[X]-module is in particular a K-vector space; besides,
the variables induce morphisms ϕk = (M → M; f 7→ Xkf) for 1 6 k 6 r which are
pairwise commuting, that is, ϕj ◦ϕk = ϕk◦ϕj for all j, k. In fact, there is a correspondence

{
M a K[X1, . . . , Xr]-module

}
←→

M a K-vector space

and
pairwise commuting morphisms

ϕk :M→M, 1 6 k 6 r

(see for example [DF04, Section 10.1] for more details in the case of one variable).

These morphisms give the action of the variables onM seen as a K-vector space. Now,
ifM has finite dimension D as a K-vector space, and up to the choice of a vector space
basis E = {ε1, . . . , εD}, the morphisms {ϕk, 1 6 k 6 r} can be represented by matrices
{Mk ∈ KD×D, 1 6 k 6 r}, which are therefore pairwise commuting. In what follows, we
call these matrices the multiplication matrices of the variables X1, . . . , Xr with respect to
the moduleM and the basis E .

As a consequence, for a polynomial f ∈ M whose coefficients on the basis E form a
row vector f ∈ K1×D, then the coefficients of ϕk(f) = Xkf on the same basis are given
by f Mk ∈ K1×D. Here is a basic example.
Example 1.50. For I = 〈X, Y 〉 of K[X, Y], the quotientM = K[X, Y]/I is isomorphic to
K, and thus has dimension D = 1 as a vector space. For f ∈ M, we have fX = 0 and
fY = 0, and hence the multiplication matrices of X and Y are both 0 ∈ K1×1. b

This illustrates the typical situation whereM is the quotientM = K[X]/I for some
ideal I, or more generallyM = K[X]m/N for some module N , with I or N having finite
codimension as a K-vector space. We now give more details about this case, followed by
an example.

Finite codimension. For some m ∈ Z>0, let N be a K[X]-submodule of K[X]m of
finite codimension D, that is, the module M = K[X]m/N has finite dimension D as a
K-vector space. Equivalently, for all 1 6 k 6 r and 1 6 i 6 m, there exists a nonzero
univariate polynomial f ∈ K[Xk] such that f(Xk)ci ∈ N .

Our goal here is to summarize some basic properties about reduced Gröbner bases of
N , about the shape of the monomial bases ofM, and about the multiplication matrices
inM. For more details, the reader may for example refer to [MMM93, Section 3].

Let ≺ be a monomial order on K[X]1×m. Then, we choose the ≺-monomial basis of
M as its vector space basis (see Section 1.3.2), which we denote by E = {ε1, . . . , εD}.
Besides, we denote by G the ≺-reduced Gröbner basis of N , and by M1, . . . ,Mr the
multiplication matrices inM with respect to E .

Then, we consider the set of monomials that are obtained from those in E by multi-
plication by a variable:

S = {Xkεj, 1 6 k 6 r, 1 6 j 6 D} ∪ {ci, 1 6 i 6 m | ci 6∈ E}.

This set is of particular interest since the ≺-normal forms of its monomials form the rows
of the multiplication matrices. More precisely, for 1 6 k 6 r, the row j of Mk is given by
the coefficients of the normal form nf≺(Xkεj) in the basis E .

51

Chapter 1. Generating sets of modules over polynomial rings

Another useful set of monomials is the border B = S − E . It is a generating set of
the monomial module in≺(N), and the polynomials {f −nf≺(f), f ∈ B} form a canonical
generating set of N which is commonly called a border basis of N .

Included in this border is the minimal generating set of in≺(N). It actually corresponds
to the set of monomials that are leading terms of polynomials in G, which we denote by

L = {in≺(g),g ∈ G} ⊆ B;

in particular, we have G = {f − nf≺(f), f ∈ L}. From the knowledge of the monomial
basis E , one can determine L by first computing B and then removing elements from B
until obtaining a set of irredundant monomials.

The size of these sets will play a role in our algorithms. We have the trivial upper
bound Card(B) 6 Card(S) 6 rD + m, and thus Card(L) = Card(G) 6 rD + m as well.
In constrast, we recall that in the univariate case we always have Card(L) = m.

Example. Following Examples 1.30, 1.42 and 1.45, we know that the ideal

I = {Q ∈ K[X, Y1, . . . , Yr] | Q(xj, yj,1, . . . , yj,r) = 0 for all 1 6 j 6 D}
= 〈M(X), Y1 − L1(X), . . . , Yr − Lr(X)〉

is such that the ≺lex-monomial basis ofM = K[X, Y1, . . . , Yr]/I is E = {1, X, . . . , XD−1},
for any lexicographic order ≺lex with X ≺lex Yk for all k.

As a consequence, we have

S = {X, . . . , XD} ∪ {Yk, YkX, . . . , YkXD−1, 1 6 k 6 r};

hence the border is

B = {XD} ∪ {Yk, YkX, . . . , YkXD−1, 1 6 k 6 r}

and the minimal generating set of in≺lex
(I) is

L = {XD} ∪ {Y1, . . . , Yr}.

Then, writing the coefficients M = M (0) + M (1)X + · · · + M (D−1)XD−1 + XD, the
multiplication matrix of X is the companion matrix

MX =

0 1

.
0 1

−M (0) −M (1) · · · −M (D−1)

 ∈ KD×D.

Furthermore, for 1 6 k 6 r, MYk is the Krylov matrix

MYk =

vk

vkMX

vkM
2
X

...
vkM

D−1
X

 ∈ KD×D,

52

1.3. Gröbner bases of modules over multivariate polynomial rings

where vk is given by the coefficients of Lk = L
(0)
k + L

(1)
k X + · · ·+ L

(D−1)
k XD−1 as

vk =
[
L

(0)
k L

(1)
k · · · L

(D−1)
k

]
∈ K1×D.

We remark that we never used the points defining I in this process: in fact, this
derivation of the multiplication matrices holds in general for an ideal of the form I =
〈M(X), Y1 − L1(X), . . . , Yr − Lr(X)〉, independently of our knowing the roots of M(X).
Yet, using this additional knowledge we can give another vector space basis ofM which
leads to other multiplication matrices. Another basis ofM is the Lagrange basis

{L0,i(X), 1 6 i 6 D} where L0,i =
∏
j 6=i

X − xj
xi − xj

;

we recall that the points x1, . . . , xD are pairwise distinct. The coordinates of a polynomial
f(X, Y1, . . . , Yr) ∈ M on this basis are the evaluations {f(xi, 0, . . . , 0), 1 6 i 6 D}. It
follows that the multiplication matrix of the variable X is the diagonal

MX =

x1

x2

. . .
xD

 ∈ KD×D.

Besides, as above, we have

MYk =

vk

vkMX

vkM
2
X

...
vkM

D−1
X

 ∈ KD×D

for 1 6 k 6 r, where vk is now given by the evaluations of Lk at the points x1, . . . , xD,
that is,

vk =
[
y1k y2k · · · yDk

]
∈ K1×D

by definition of Lk.

Computing with multiplication matrices. Working in a finite-dimensional module
M = K[X]1×m/N with a known ≺-monomial basis E = {εi, 1 6 i 6 D}, one can rely on
linear algebra to perform operations in M. When it comes to multiplying polynomials
in this quotient N , one may then pre-compute some specific multiplications to speed-up
further operations.

One possibility is to compute the multiplication table of M, that is, all products
{εiεj, 1 6 i, j 6 D} [BPR06, Section 12.2]. This table is used for example in the main
results of [BSS03]. If we do not take into account some possible structure of these products,
this table is represented using about D3 field elements.

53

Chapter 1. Generating sets of modules over polynomial rings

Often, like in the context of algorithms for the change of monomial order, one rather
pre-computes the multiplication matrices M1, . . . ,Mr with respect to X1, . . . , Xr and E .
As detailed above, the row j of Mk contains the coefficients of nf≺(Xkεj) in E . Then, a
dense representation of these matrices uses rD2 field elements, which is significantly less
than D3 in the interesting cases, where it is usually considered that r ∈ o(D).

Similarly, for our problems, we will rely on the knowledge of multiplication matrices.
In univariate contexts, we will focus on the design of efficient algorithms both for a dense
multiplication matrix and for structured ones, namely, when it is block-diagonal with
Jordan or companion blocks. In multivariate contexts, we will always consider that the
multiplication matrices are arbitrary, dense, pairwise commuting matrices. Then, we will
aim at cost bounds in O (̃rDω), which is close to the number of field elements in the
representation these matrices.

54

2

Fast computation of relation bases

In this chapter, we first present the central problem in this thesis, which asks to compute
generating sets for modules of relations, also known as syzygies, among elements of a
finite-dimensional module given through its multiplication matrices. Then, we give an
overview of our algorithm to solve this problem using fast linear algebra over K, and how
it can be used to perform fast change of monomial order for zero-dimensional ideals.

After this general solution, we focus on specific situations, with a single multiplication
matrix which exhibits some structure. Those include the computation of Hermite-Padé
approximants, of some type of vector interpolants, and more generally of solutions to
systems of linear modular equations over K[X]. We detail these problems, previous work
on efficient algorithms to solve them, and our contributions. These algorithms exploit the
particularities of the multiplication matrix to design divide-and-conquer strategies which
allow us to take advantage of fast arithmetic in K[X]; at the base case of the recursion,
we rely on our solution to the general case based on fast dense linear algebra.

Some of the consequences of the results presented in this chapter will be detailed in
Chapter 3, concerning algorithms for multivariate interpolation and list-decoding (Sec-
tion 3.1), and for computing normal forms of polynomial matrices (Section 3.2).

2.1 Relations or syzygies in finite-dimensional modules

In this section, we first introduce the notion of relations between elements of a module, also
known as syzygies. Here, we focus on the case of a module which is finite-dimensional as a
vector space. Then, we detail our framework for the problem of computing such relations,
namely, we discuss the specification of the module in input of the problem. Finally, we
give a short summary of our contributions on fast algorithms to solve this problem in
general and particular cases. A more detailed overview of these contributions is given in
Sections 2.2 to 2.5, while the full algorithms and proofs can be found in Parts II to IV.

2.1.1 Gröbner bases of multivariate modules of relations

Syzygy modules. Here, as an introduction to our main problem, we discuss the notion
of syzygies and syzygy modules. For a detailed exposition the reader may refer to [Eis05];

55

Chapter 2. Fast computation of relation bases

in this reference, we find the following comment.

“The use of ‘syzygy’ in this context seems to go back to Sylvester [Syl53].
The word entered the language of modern science in the seventeenth century,
with the same astronomical meaning it had in ancient Greek: the conjunction
or opposition of heavenly bodies.”

The Sylvester matrix was also introduced in [Syl53]; a generalized form of this matrix will
be central in our algorithm to compute syzygies.

Let K[X] = K[X1, . . . , Xr] and let M be a K[X]-module. We are interested in the
computation of relations between elements ofM, also known as syzygies. Formally, given
some elements f1, . . . , fm ∈M we define

SyzM(f1, . . . , fm) = {(p1, . . . , pm) ∈ K[X]m | p1f1 + · · ·+ pmfm = 0};

note that these relations hold in M. This set is a K[X]-submodule of K[X]m which is
called the syzygy module of {f1, . . . , fm}. Equivalently, SyzM(f1, . . . , fm) can be defined
as the kernel of the module morphism

ϕ : K[X]m → M
(p1, . . . , pm) 7→ p1f1 + · · ·+ pmfm.

As a consequence, the quotient K[X]m/SyzM(f1, . . . , fm) is isomorphic to ϕ(K[X]m).
Our main problem is to compute generating sets of such modules of relations. We first

give it in an abstract form, voluntarily overlooking the details of how the input module
and polynomials are represented so as to cover the whole generality of the question. We
will then discuss these details below.

Problem 1 – Gröbner basis of a syzygy module
Input:
• a K[X1, . . . , Xr]-moduleM,
• elements f1, . . . , fm ∈M,
• a monomial order ≺ on K[X1, . . . , Xr]

m.

Output:
• a ≺-Gröbner basis of SyzM(f1, . . . , fm).

To highlight some important specific cases of this problem, let us come back to some
examples that we encountered in the previous chapter.
Example 2.1. We start with univariate polynomials. For some n ∈ Z>0, letM = K[X]n

and consider elements fi = (fi,1, . . . , fi,n) ∈M for 1 6 i 6 m. Then, SyzM(f1, . . . , fm) is
precisely the kernel of the polynomial matrix F = [fij]16i6m,16j6n ∈ K[X]m×n. b

Example 2.2. Concerning Hermite-Padé approximation as in Example 1.5, we haveM =
K[X]/〈XD〉 and polynomials (f1, . . . , fm) ∈Mm, and we look for relations in

SyzM(f1, . . . , fm) = {(p1, . . . , pm) ∈ K[X]m | p1f1 + · · ·+ pmfm = 0}.

56

2.1. Relations or syzygies in finite-dimensional modules

More generally, in the preamble we considered the same relations inM = K[X]/〈m〉, that
is, modulo an arbitrary nonzero polynomial m ∈ K[X]. b

Example 2.3. Now, we turn to the multivariate polynomial ring K[X] = K[X1, . . . , Xr].
Let I be a zero-dimensional ideal in K[X] andM = K[X]/I. Then, taking m = 1 and
f1 = 1 ∈M, we have

SyzM(1) = {p ∈ K[X] | p 1 = 0} = {p ∈ K[X] | p ∈ I} = I.

Thus, Problem 1 includes the problem of computing a ≺-Gröbner basis of I, having as
input a convenient representation of K[X]/I and a monomial order ≺.

In Example 1.32, we were given M as above and an element g ∈ M. We then
considered the module

{(p1, p2) ∈ K[X]2 | p1 + p2g = 0},

which is SyzM(1, g). b

In the last two examples, we work with an input moduleM which is finite-dimensional
as a K-vector space. Then, as explained in Section 1.3.5, it is customary to adopt linear
algebra point of view via the use of multiplication matrices. This leads us to specifying
Problem 1 with these matrices known as an input; this is the central problem in this
thesis, which we detail in the next paragraph.

Relations in finite-dimensional modules. In what follows, we assume thatM has
finite dimension D as a K-vector space. Then, choosing a vector space basis E ofM allows
us to identify M with KD. Furthermore, we denote by M1, . . . ,Mr the multiplication
matrices with respect to this basis E ; we recall that they are pairwise commuting.

From the discussion in Section 1.3.5, the data formed by this basis and these matrices
completely define the input moduleM of Problem 1, and thus can be used to represent it.
Indeed, the module structure ofM is as follows: for p ∈ K[X], and for f ∈M represented
by the vector f ∈ K1×D of its coefficients on the basis E , the coefficients of pf ∈ M on
the basis E are f p(M1, . . . ,Mr) ∈ K1×D; in what follows, this vector is denoted by p · f .

Following this K-linear algebra point of view, we will assume that the input elements
f1, . . . , fm ∈ M are known through the vectors f1, . . . , fm ∈ K1×D of their coefficients on
the basis E . In this context, syzygy modules can be described as follows.

Definition 2.4. For some D ∈ Z>0, let M = (M1, . . . ,Mr) be pairwise commuting
matrices in KD×D, and let F ∈ Km×D. Denoting by F1,∗, . . . ,Fm,∗ the rows of F, for any
polynomial p = (p1, . . . , pm) ∈ K[X]1×m we write p ·F = p1 ·F1,∗+ · · ·+pm ·Fm,∗ ∈ K1×D.
Then, we define the set

SyzM(F) = {p ∈ K[X]1×m | p · F = 0}, (2.1)

whose elements are called relations of SyzM(F).

The correspondence between SyzM(F) and SyzM(f1, . . . , fm) directly follows from the
discussion above. Furthermore, we have seen that the quotientK[X]1×m/SyzM(f1, . . . , fm)
is isomorphic to a submodule ofM, hence the next result.

57

Chapter 2. Fast computation of relation bases

Lemma 2.5. SyzM(F) is a K[X]-submodule of K[X]1×m, and the dimension of the quo-
tient module K[X]1×m/ SyzM(F) as a K-vector space is at most D.

Remark 2.6. Concerning terminology, in the specific case ofm = 1, one would equivalently
say that the ideal SyzM(F) is zero-dimensional and of degree at most D. K

In many situations, one wants to compute a generating set of this module which has
good properties, such as a Gröbner basis. For a given monomial order ≺ over K[X]1×m,
a set of polynomials in K[X]1×m is said to be a ≺-Gröbner relation basis of SyzM(F) if it
is a ≺-Gröbner basis of the module SyzM(F).

The central problem in this thesis, in the multivariate case, is the following.

Problem 2 – Gröbner relation basis
Input:
• pairwise commuting matrices M = (M1, . . . ,Mr) in KD×D,
• a matrix F ∈ Km×D,
• a monomial order ≺ on K[X1, . . . , Xr]

m.

Output:
• a ≺-Gröbner relation basis of SyzM(F).

To reduce an instance of Problem 1 for a finite-dimensional moduleM to an instance
of Problem 2, one needs to compute a vector space basis ofM, the corresponding multi-
plication matrices, and the coefficients of the input elements ofM on this basis.

For an example where the multiplication matrices are not known a priori, one may
consider the problem of change of monomial order. Interestingly, the most efficient algo-
rithms for this problem do compute the multiplication matrices and use them to obtain
the sought Gröbner basis as a solution to an instance of Problem 2 [FGLM93, FGHR13].
We give more details about this specific problem in Section 2.2.3 and Chapter 5.

Interpolation and relations in a module given by a dual basis. Another situation
where the multiplication matrices are not known a priori is when considering multivariate
interpolation as in Example 1.30, and more generally, when the moduleM is described
by a dual basis. We give below the basic tools that we will use concerning this duality;
more details can be found in [MMM93] and [Mor09].

Let K[X] = K[X1, . . . , Xr] and n ∈ Z>0. In what follows, we call linear functional on
K[X]n any morphism ` : K[X]n → K of K-vector spaces. Then, let

{`i : K[X]n → K, 1 6 i 6 D}

be a set of such linear functionals that are furthermore K-linearly independent. Defining
the morphism

ψ : K[X]n → KD

f 7→ (`1(f), . . . , `D(f)),

58

2.1. Relations or syzygies in finite-dimensional modules

of K-vector spaces, we denote its kernel by

ker(ψ) =
⋂

16i6D

ker(`i(f)).

Then, the quotient K[X]n/ ker(ψ) is isomorphic to ψ(K[X]n) = KD, so that ker(ψ) is
a K-vector space of finite codimension D. However ker(ψ) is not a K[X]-submodule of
K[X]n in general, and we have the following characterization:

ker(ψ) is a K[X]-module
⇐⇒ for all i, k, the functional f 7→ `i(Xkf) is a K-linear combination of {`1, . . . , `D}.

For a proof, we refer the reader to [MMM93, Proposition 1.3]. Thus, in this case, we
can consider the moduleM = K[X]n/ ker(ψ); as a vector space, it has dimension D and
admits {`1, . . . , `D} as a basis of its dual.

Having a description of M provided by {`1, . . . , `D}, we may consider the computa-
tion of Gröbner bases of syzygy modules as in Problem 1. Here, to match this repre-
sentation of M, the input elements f1, . . . , fm ∈ M are given through their evaluations
{ψ(f1), . . . , ψ(fm)} by the linear functionals, which form m vectors in KD. This specific
case of Problem 1 is summarized in Problem 3.

Problem 3 – Gröbner basis of a syzygy module defined by a dual basis
Input:
• linear functionals {`i : K[X1, . . . , Xr]

n → K, 1 6 i 6 D},
• vectors f1, . . . , fm in KD,
• a monomial order ≺ on K[X1, . . . , Xr]

m.

Assumptions:
• {`1, . . . , `D} are K-linearly independent,
• for all i and k, f 7→ `i(Xkf) is a K-linear combination of {`1, . . . , `D}.

Output:
• a ≺-Gröbner basis of the submodule

SyzM(f1, . . . , fm) ⊆ K[X1, . . . , Xr]
m,

where fi is the unique element of K[X1, . . . , Xr]
n/ ∩16j6D ker(`j) such

that fi = (`1(fi), . . . , `D(fi)).

This problem can be reduced to Problem 2 via the computation of the multiplication
matrices for M. In this context, these can be described as follows: the multiplication
matrix Mk for Xk is the matrix in KD×D whose row i ∈ {1, . . . , D} is formed by the coef-
ficients of the linear combination which expresses f 7→ `i(Xkf) on the basis {`1, . . . , `D}.

The cost of this reduction from Problem 3 to Problem 2 will depend on how efficiently
we can compute these multiplication matrices. As we have seen in Section 1.3.5, in some
situations we have explicit formulas which allow fast computation of these matrices.

59

Chapter 2. Fast computation of relation bases

2.1.2 Univariate case: minimal relation bases

Here, we specialize the above notions to the case of univariate modules and the associated
terminology. For D ∈ Z>0, having a matrix M ∈ KD×D allows us to define a K[X]-
module structure on M = K1×D by p · f = f p(M), for p ∈ K[X] and f ∈ M. As
above, for F ∈ Km×D and a row vector p = [p1, . . . , pm] ∈ K[X]1×m, we write p · F =
p1 ·F1,∗+ · · ·+pm ·Fm,∗ ∈ K1×D. If p ·F = 0, then we say that p is a relation of SyzM(F).

This general notion of univariate relations was studied in [BL00] in the context of
rational interpolation (for computational reasons, in this reference it is required that M
be upper triangular). Let us now show how some examples in the previous chapter cast
into this setting.

Example 2.7. In Example 1.5, this is straightforward: F contains the coefficients of the
input polynomials f1, . . . , fm, while the multiplication matrix is the upper shift matrix

Z =

0 1

.
0 1

0

 , (2.2)

which is a nilpotent Jordan block. More generally, if the modulus XD in this example is
replaced by an arbitrary monic polynomial m = c0 + c1X + · · · + cD−1X

D−1 + XD, then
F is built similarly while the multiplication matrix is the companion matrix

C =

0 1

.
0 1

−c0 −c1 · · · −cD−1

 .
Now, note that Example 1.4 is a bivariate problem that has been linearized into a problem
in K[X]1×m by requiring that the solutions satisfy degY (Q) < m. Here, we consider the
diagonal multiplication matrix

M =

x1

x2

. . .
xD

 .
Then, for a polynomial p ∈ K[X] and a vector f = [e1, . . . , eD] ∈M which is thought of as
the evaluations of some bivariate polynomial at the points {(x1, y1), . . . , (xD, yD)}, we have
p · f = [p(x1)e1, . . . , p(xD)eD]. In this case, to solve the bivariate interpolation problem,
we start from the tuple of bivariate polynomials (1, Y, . . . , Y m−1); their evaluations F =
(f1, . . . , fm) in Mm are the vectors fi = [yi1, . . . , y

i
D]. Then, for p = [p1, . . . , pm], the

relation p · F = 0 precisely means that Q(X, Y) = p1 + p2Y + · · · + pmY
m−1 vanishes at

all points {(x1, y1), . . . , (xD, yD)}. b

60

2.1. Relations or syzygies in finite-dimensional modules

The main results in this thesis about the computation of univariate relations deal with
several situations which generalize these examples; each situation gives access to different
techniques and leads to different algorithms. The first one holds in the general case with
no assumption on M; it is used in particular in all other situations when D is small with
respect to m, thus providing a fast unified solution in this case. The second result requires
that M be block-diagonal with companion blocks, which roughly amounts to knowing the
invariant factors of the moduleM. The third one assumes that M is a Jordan matrix, and
the fourth one that M is a nilpotent Jordan matrix; these both mean that the invariant
factors ofM split over K and that we further know their roots and multiplicities.

Let us come back to our general context. As we have seen above, for M ∈ KD×D and
F ∈ Km×D, the set of relations

SyzM(F) = {p ∈ K[X]1×m | p · F = 0}
is a K[X]-submodule of K[X]1×m. Furthermore, SyzM(F) contains πM(X)K[X]1×m, where
πM ∈ K[X] is any nonzero polynomial which annihilates M. Then, SyzM(F) is free of
rank m according to Lemma 1.1, hence the following definition.

Definition 2.8 (Relation basis). For M ∈ KD×D and F ∈ Km×D, a matrix P ∈ K[X]m×m

is a relation basis of SyzM(F) if its rows form a basis of the K[X]-module SyzM(F).

In terms of notation, if a matrix P ∈ K[X]k×m has rows p1, . . . ,pk, we write P ·F for
the matrix in Kk×D whose rows are p1 · F, . . . ,pk · F. In particular, if k = m and P is a
relation basis of SyzM(F), then P · F = 0.

In many situations, one wants to compute a relation with degree constraints; in fact, as
we will observe in the next sections when discussing previous work, most known algorithms
for finding univariate relations compute a relation basis in shifted reduced form.

Definition 2.9 (Shifted minimal relation basis). Let M ∈ KD×D, F ∈ Km×D, and s ∈ Zm.
Then, a matrix P ∈ K[X]m×m is said to be an s-minimal relation basis of SyzM(F) if

• P is a relation basis of SyzM(F), and

• P is s-reduced.

From Chapter 1, we know that a row of P of minimal s-row degree also has minimal
s-row degree among all relations of SyzM(F); furthermore, there is a unique relation basis
which is in s-Popov form, called the s-Popov relation basis of SyzM(F).

This leads us to Problem 4, which is the central problem of this thesis in univariate
contexts.

We state here a preliminary result which is at the core of the cost analyses of algorithms
solving Problem 4. It gives the bound D on the degree of the determinant of any relation
basis, which as explained in Section 1.2.2 also provides us with bounds for average row
(resp. column) degrees of shifted minimal (resp. Popov) relation bases.

Lemma 2.10. Let M ∈ KD×D, let F ∈Mm, and let P ∈ K[X]m×m be a relation basis of
SyzM(F). Then, deg(det(P)) 6 D.

Proof. From the discussion following Definition 1.22, we know that deg(det(P)) is the
dimension of K[X]1×m/ SyzM(F) as a K-vector space. According to Lemma 2.5, this
dimension is at most D.

61

Chapter 2. Fast computation of relation bases

Problem 4 – Minimal relation basis
Input:
• a matrix M ∈ KD×D,
• a matrix F ∈ Km×D,
• a shift s ∈ Zm.

Output:
• an s-minimal relation basis P ∈ K[X]m×m for SyzM(F).

2.1.3 Overview of our results

We present in Section 2.2 our algorithm to deal with the most general case of our main
problem: Problem 2 with arbitrary multiplication matrices and monomial order. Detailed
in Chapter 4, this algorithm relies on a complete linearization of the problem, the main
computational task being to find the row rank profile of some structured matrix called
a multi-Krylov matrix. Exploiting several techniques from fast linear algebra over K, it
computes the reduced Gröbner relation basis in O (̃rDω) operations.

As a particular case, when working with univariate polynomials, this algorithm com-
putes the shifted Popov relation basis in O (̃Dω) field operations for an arbitrary multi-
plication matrix and an arbitrary shift. In many univariate contexts, one has information
on the structure of the input module, which translates as M having some particular struc-
ture, such as these observed in Example 2.7. Then, focusing on the univariate case, we
will present in Sections 2.3 to 2.5 algorithms that solve Problem 4 for several families of
multiplication matrices M. These algorithms all rely on the general algorithm in O (̃Dω)
for the base cases of their recursion.

Concerning the case of a nilpotent Jordan matrix M (Section 2.4 and Chapter 7), the
corresponding relation bases are also known as approximant bases or order bases. In this
context, a product of the form P · F is simply a product of polynomial matrices. We
obtain the cost bound O (̃mω−1D) for computing the shifted Popov basis for arbitrary
shifts, while this cost was previously obtained under restrictive assumptions on the shift
and for returning a minimal basis which was not normalized. This improvement is based
on the strategy mentioned in Section 1.2.1: we first recursively find information on the
degrees in the shifted Popov basis, and then use this additional knowledge to rely on fast
algorithms specialized for almost uniform shifts.

Then, we turn to the case of a Jordan matrix M (Section 2.4 and Chapter 14). For
this specific triangular form, which can be represented by O(D) field elements, we manage
to design an efficient algorithm for computing products P ·F. Using the above-mentioned
divide-and-conquer approach along with a new ingredient to control the degrees in the
recursion, namely a fast change of shift, we obtain an algorithm in O (̃mω−1D) to compute
a minimal basis for almost uniform shifts. Building on this, we obtain a similarly fast
algorithm which returns the shifted Popov basis for an arbitrary shift.

Finally, we study the case of a companion-block diagonal matrix M (Section 2.5
and Chapter 8), which has only O(D) nonzero coefficients in K as well. We will re-
late this to the computation of bases of solutions to systems of linear modular equations;

62

2.2. Fast algorithms for dense multiplication matrices

as such, this situation generalizes the previous case of a Jordan matrix. We also obtain
the cost bound O (̃mω−1D) for an arbitrary shift and for returning the shifted Popov
basis, under the assumption that the number of blocks is in O(m); furthermore, this as-
sumption implies that there is a simple and efficient algorithm to compute products of
the form P · F. However, since M is not triangular we do not have recurrence equations
that would lead to an iterative algorithm such as those in [Bec92, VBB92, BL94, BL00].
Then, relying on kernel basis and approximant basis computations is a natural approach
that we use in our algorithm, while also introducing a new ingredient to handle arbitrary
shifts.

Remark 2.11. More generally, having M upper triangular like in [BL00] leads to a situation
which bears computational similarities to that of a nilpotent Jordan matrix. Precisely,
it provides us with recurrence equations [BL00, Theorem 6.1] which yield an iterative
algorithm [BL00, Algorithm FFFG], recalled here in Section 6.4. This iteration can be
turned into a divide-and-conquer algorithm, for example using the leading and trailing
principal submatrices of M for the recursive calls.

For approximation problems, such iterative algorithms have been given in [Bec92,
VBB92, BL94], and more specifically for approximant basis computation such divide-
and-conquer algorithms can be found in [BL94, GJV03]. Yet, for an arbitrary triangular
M, we cannot obtain an algorithm with cost quasi-linear in D as simply representing M
requires Θ(D2) coefficients in K; in this case, the fastest known approach is our algorithm
in O (̃Dω) for a dense matrix M, thus ignoring its triangular shape. K

2.2 Fast algorithms for dense multiplication matrices

Here, we give a detailed overview of our most general result, concerning the computation
of multivariate relation bases (Problem 2). In this case, for r variables and an input
module of vector space dimension D, we obtain a deterministic algorithm whose cost
is essentially that of performing fast linear algebra operations with r scalar matrices of
dimensions D × D. Here, we detail this result in the univariate and multivariate cases,
we compare it to previous work, and we give an overview of our algorithm.

2.2.1 Results

Univariate case. We start with the case of one variable, that is, Problem 4. Here, we
have a single multiplication matrix M ∈ KD×D. Our algorithm performs an iteration on
the degree of the sought relations, up to a specified degree bound β that we discuss in the
next paragraph. In our framework, multiplication of a scalar vector by X corresponds
to its multiplication by M, and as a consequence the main computational task in our
algorithm is to compute powers of M. With an idea already used in [KG85], we restrict
to computing powers of the form M2e , for e between 0 and log2(min(β,∆ + 1)).

This number of steps is parameterized by two integers. First, β ∈ Z>0 is a user-chosen
bound on the degree of the sought s-Popov relation basis P for SyzM(F). If we denote
by δ = (δ1, . . . , δm) the diagonal degrees of P, we equivalently require that β > max(δ).

63

Chapter 2. Fast computation of relation bases

Remark however that δ is unknown a priori; if no context-specific bound β is known, one
may always choose β = D + 1 since

max(δ) 6 δ1 + · · ·+ δm = deg(det(P)) 6 D

according to Lemma 2.10. Besides, any bound on the degree of the minimal polynomial
of M also provides a valid bound β.

The second parameter is the quantity ∆ = δ1 + · · · + δm, which is the dimension of
K[X]1×m/ SyzM(F) as a K-vector space (see Section 1.1.3) and is unknown a priori. If no
good bound β is known, the algorithm will still stop after dealing with the power ∆ of
M by detecting that no relations of higher degree will be found, which is the case since
deg(P) 6 deg(det(P)) = ∆.

The next result follows from Section 4.3.2, and in particular Algorithm 3.

Theorem 2.12. Let M ∈ KD×D, F ∈ Km×D, and s ∈ Zm. Let P ∈ K[X]m×m be the s-
Popov relation basis of SyzM(F), and let ∆ = deg(det(P)). Suppose that a bound β ∈ Z>0

such that β > deg(P) is known a priori; by default, one may choose β = D + 1. Then,
there is a deterministic algorithm which solves Problem 4 using

O(mDω−1 +Dω log(min(β,∆ + 1)))

⊆ O(mDω−1 +Dω log(D))

operations in K and returns the s-Popov basis P.

This cost can be compared to the size of the manipulated objects: here, representing
the input of the problem uses Θ(mD+D2) field elements. It may however strike the reader
that when D = O(1), the cost bound above is linear in m while the dense representation
of the output m ×m polynomial matrix will use at least m2 field elements. To explain
this, we refer to Section 4.3: we will see that when D < m, at least m − D columns of
the basis in s-Popov form are coordinate column vectors with 1 on the diagonal. In the
algorithm, these columns are described without involving any arithmetic operation, and
hence the actual computation is restricted to an m×D submatrix of the output basis.

In this thesis, we will often use this result for the base case of our recursive algorithms
for multiplication matrices that have specific structures. In this situation, the dimension
D will be betweenm/2 andm, and therefore the cost bound above becomesO(mω log(m)).

An overview of results related to Problem 4 can be found in [Kai80, Chapter 6];
algorithms based on Gaussian elimination are presented for the Hermite and Popov forms.
In [Vil96, Section 4], the Hermite form of a matrix in Popov form is computed by relying
on an instance of Problem 4, using ideas from [KG85] for more efficiency.

In the context of rational interpolation, Problem 4 was considered for arbitrary shifts
in [BL00], focusing on the design of a fraction-free algorithm for an upper triangular
multiplication matrix M. As explained in Remark 2.11, this assumption implies that one
can use recurrence equations which leads to find the shifted Popov relation basis via an
iteration on the columns of F [BL00, Algorithm FFFG].

In Section 6.4, we present the latter algorithm rewritten with our notation, and we
observe that for an arbitrary triangular matrix, it uses O(mD2+D3) field operations. As a
comparison, our algorithm supporting Theorem 2.12 is faster as soon as one uses subcubic
matrix multiplication (ω < 3), and works for non-triangular multiplication matrices.

64

2.2. Fast algorithms for dense multiplication matrices

Multivariate case. When working with several variables, we have several correspond-
ing multiplication matrices M1, . . . ,Mr. Our algorithm to solve Problem 2 deals with one
multiplication matrix after another, allowing us to rely on an approach that is similar to
that above for the univariate case. This also helps us to introduce fast matrix multipli-
cation, by avoiding the computation of many vector-matrix products involving each time
a different matrix Mk, and instead grouping these operations into some matrix-matrix
products involving M1, then some others involving M2, etc.

A detailed overview of our algorithm is given in Section 2.2.2. Its most expensive
computational task is to repeatedly square D × D matrices. As above, the number of
such squarings will depend on the dimension ∆ ∈ Z>0 of the quotient K[X]1×m/ SyzM(F),
as well as on degree bounds β = (β1, . . . , βr) ∈ Zr>0 specified by the user and which satisfy
the assumption

Hβ : βk > max
16j6s

degXk(pj) for 1 6 k 6 r,

where {p1, . . . ,ps} ⊂ K[X]1×m is the sought≺-reduced Gröbner relation basis of SyzM(F).
Since ∆ 6 D according to Lemma 2.5, the choice β = (D + 1, . . . , D + 1) ensures Hβ.

The following result follows from Proposition 4.19 and the corresponding Algorithm 4.

Theorem 2.13. Let M = (M1, . . . ,Mr) be pairwise commuting matrices in KD×D, let
F ∈ Km×D, let ≺ be a monomial order on K[X]1×m, and let β ∈ Zr>0 be such that Hβ; by
default, one may choose β = (D+ 1, . . . , D+ 1). Then, there is a deterministic algorithm
which solves Problem 2 using

O
(
mDω−1 +Dω log

(
2r
∏

16k6r min(βk,∆ + 1)
))

⊆ O
(
mDω−1 + rDω log(D)

)
operations in K and returns the ≺-reduced Gröbner basis. In this cost bound, ∆ ∈ Z>0

stands for the dimension of K[X]1×m/ SyzM(F) as a K-vector space.

This cost bound can be compared to the size of the representation of the input and
output of the problem. The size of the input matrices M and F is in Θ(mD+ rD2). The
output reduced Gröbner basis can be represented via s vectors in K∆, each of them giving
the coefficients of the normal form of one of the minimal generators of the initial module
of SyzM(F). Then, representing this Gröbner basis uses O(s∆) ⊆ O(rD2) field elements.

Commonly encountered situations involve m 6 D. In this case, mDω−1 ∈ O(Dω)
and the cost bound can be simplified as O(rDω log(D)). A typical example is if one
uses this result to perform a change of monomial order for an ideal, via the preliminary
computation of the multiplication matrices: then, we have m = 1.

2.2.2 Overview of our algorithm

Linear algebra viewpoint. To introduce matrix multiplication in our solution to Prob-
lem 2, we rely on a linearization of the problem into questions of linear algebra over K.
From M and F, we build a matrix over K whose nullspace corresponds to a set of rela-
tions of SyzM(F). This matrix is called a multi-Krylov matrix, in reference to its specific
structure which exhibits a collection of Krylov subspaces of KD.

65

Chapter 2. Fast computation of relation bases

The multi-Krylov matrix is a generalization to several variables and to an arbitrary
monomial order of the Krylov matrices, or striped-Krylov matrices, considered for example
in [Kai80, BL00]. We note that its construction is similar to the Sylvester matrix and
more generally to the Macaulay matrix [Syl53, Mac02, Mac16], which are commonly used
when adopting a linear algebra viewpoint while dealing with operations on univariate and
multivariate polynomials.

The construction of the multi-Krylov matrix is based on the multiplicationXeci ·F =
Fi,∗M

e, for a monomial Xeci ∈ K[X]1×m. Since a polynomial in K[X]1×m is a K-
linear combination of monomials, this identity means that a relation of SyzM(F) may be
interpreted as a K-linear relation between row vectors of the form Fi,∗M

e.
Choosing some degree bounds β ∈ Zr>0, this matrix is formed by all such rows Fi,∗M

e

for 1 6 i 6 m and 0 6 e 6 β. This construction is detailed in Section 4.1, where we also
show that the left nullspace of this matrix corresponds to the set of relations of SyzM(F)
whose degree in Xk does not exceed βk, for 1 6 k 6 r.

Choosing sufficiently large bounds β (namely, ones that satisfy Hβ) implies that the
≺-reduced Gröbner relation basis can be retrieved from specific rows in this nullspace;
yet, we do not know which rows a priori. Ordering the rows in the multi-Krylov matrix
according to the input monomial order ≺, we show in Section 4.2 that the row rank profile
of this matrix corresponds to the ≺-monomial basis of the quotient K[X]1×m/ SyzM(F).

As explained in Section 1.3.5, from the monomial basis one can easily find the set of
minimal generators for the initial module of SyzM(F). Being monomials, these generators
thus indicate a submatrix of the multi-Krylov matrix; the left nullspace of this submatrix,
computed in reduced echelon form, gives us the ≺-reduced Gröbner relation basis.

Previous work. In terms of computation, an immediate remark is that the number of
field entries of the multi-Krylov matrix ismβ1 · · · βrD ∈ O(mDr+1), which largely exceeds
our target cost. Exploiting the structure of this matrix is therefore a common thread in
all efficient algorithms.

As noted above, the algorithms in [BL00] are designed for upper triangular multiplica-
tion matrices, and use this assumption to solve the problem by an iteration on the columns
of F. This situation was generalized to the case of several variables in [Fit97, OF02] by
requiring specific assumptions on the input, in [Fit97, Eqn. (4.1)] and [OF02, Eqn. (5)].
These assumptions imply that one can solve the problem by finding iteratively Gröbner
bases for a sequence of approximating solution modules which decrease towards the target
solution module (see [Fit97, Algorithm 4.7] and [OF02, Algorithm 3.2]). It seems that
such an iterative approach cannot be applied to the general case of Problem 2, where the
input module has no other property than being finite-dimensional.

Previous algorithms dealing with similar problems can be found in [FGLM93, MMM93]
and [Fit97, Section 2]. The algorithms of [FGLM93, Fit97] are specialized to the situation
of the change of monomial order for ideals or modules, with a cost bound in O(rD3). In
[MMM93], several situations generalizing [MB82, FGLM93] are studied; the comparison
to our result is unclear for the moment.

For the lexicographic order ≺lex, and under the strong assumption that the ideal is
in Shape Position, fast matrix multiplication was exploited by [FGHR14]. This specific

66

2.2. Fast algorithms for dense multiplication matrices

situation implies that only Mr is needed; then, [FGHR14] gives a probabilistic algo-
rithm to compute the ≺lex-Gröbner relation basis within the cost bound O(Dω log(D) +
rM(D) log(D)) ([FGHR14, Proposition 3]). Besides ideas from [FM11, FM17], this uses
repeating squaring as in [KG85]. More details about the context of the change of mono-
mial order are given in Section 2.2.3.

Here, we manage to incorporate fast scalar matrix multiplication without assumption
on the module, and for an arbitrary order.

Overview of our algorithm. Above, we described our algorithm as a two-step strat-
egy, where we first compute the row rank profile of the multi-Krylov matrix to obtain the
monomial basis, and we then use this information to identify a specific submatrix whose
left nullspace gives us the Gröbner relation basis.

Let us first focus on the computation of the row rank profile. Adapting the ideas in
the algorithms of [FGLM93, MMM93, Fit97] to our framework, one obtains an approach
that we summarize as follows. One iteratively considers the rows of the matrix, ordered
by the monomial order ≺, looking for a linear relation with the previous rows by Gaussian
elimination. When such a linear relation is found, the corresponding row will not be in the
row rank profile and can be discarded. Now, the multi-Krylov structure further permits
to discard all the rows that correspond to monomial multiples of the leading term of the
discovered relation, even before computing these rows. At some point, the set of rows to
be considered is exhausted, and the row rank profile is formed by the rows corresponding
to an iteration that did not yield a linear relation.

Note that, in this approach, a row of the multi-Krylov matrix is computed only when
arriving at the first iteration in which it is involved; it is obtained by multiplying one of
the already computed rows by one of the multiplication matrices. This results in many
vector-matrix products, with possibly different matrices each time: this is a first obstacle
towards incorporating fast matrix multiplication. We circumvent this by introducing the
variables one after another, thus seemingly not respecting the order of the rows specified
by the monomial order. Yet, we manage to ensure that this order is respected in the end,
by constantly inserting the rows at their right respective positions.

Then, when dealing with one variable Xk, we process successive powers M2e

k in the
style of Keller-Gehrig’s algorithm [KG85], using a logarithmic number of iterations. Our
stopping criterion is either when we have reached the prescribed exponent bound βk for
Xk, or when we detect that no new relation was found in an iteration, and thus that all
the remaining rows to be inserted with this variable have to be linear combinations of
the rows already processed. The latter case occurs in particular when we are considering
exponents 2e beyond the dimension ∆ of the monomial basis. As a consequence, the
number of steps is at most log2(min(βk,∆ + 1)), where at each step the most expensive
operation is the squaring in O(Dω) to obtain M2e+1

k from M2e

k .
As said above, we conclude by a nullspace computation. Having found the row rank

profile of the multi-Krylov matrix allows us to deduce its submatrix corresponding to
minimal generators of the initial module of SyzM(F). Then, the reduced Gröbner relation
basis is efficiently computed as being the left nullspace in some reduced echelon form of
this submatrix, which can be computed efficiently by matrix inversion and multiplication.

67

Chapter 2. Fast computation of relation bases

2.2.3 Change of monomial order for zero-dimensional ideals

The problem of change of monomial order is a specific kind of Gröbner basis computation
where one already knows a Gröbner basis of the considered ideal, for another monomial
order than the target one. This is formalized in Problem 5.

Problem 5 – Change of monomial order
Input:
• monomial orders ≺1 and ≺2 on K[X1, . . . , Xr],
• a ≺1-reduced Gröbner basis {f1, . . . , fs} defining a zero-dimensional

ideal I = 〈f1, . . . , fs〉 of K[X1, . . . , Xr].

Output:
• the ≺2-reduced Gröbner basis of I.

The main motivation for studying this problem is that it is a key component of the
current fast algorithms for finding the solutions to a given system of multivariate polyno-
mial equations. The polynomials defining these equations form an ideal I ⊆ K[X], and
it is assumed that the number of solutions is finite, which means that the dimension of
K[X]/I as a K-vector space is finite. For solving such a system, it turns out that it is
convenient to have a ≺lex-Gröbner basis of I. For example, in some cases it directly yields
a univariate representation of the solutions [Rou99], in particular if the conditions of the
Shape Lemma hold [KR00, Theorem 3.7.25].

For efficiency reasons, such a ≺lex-Gröbner basis is usually obtained by first comput-
ing a ≺drl-Gröbner basis and then resorting to a change of monomial order toward the
lexicographic order. Concerning this problem, the fastest known algorithms [FGLM93,
FM11, FGHR13, FGHR14, FM17] rely on a two-step strategy which is summarized in
[FGHR13, Algorithm 2]. As a first step, one uses the known Gröbner basis to compute
the multiplication matrices M = (M1, . . . ,Mr) of the quotient K[X]/I. Denoting by D
the dimension of this quotient, these are r pairwise commuting matrices in KD×D. Fur-
thermore, we remark that, defining the vector F = [1 0 · · · 0] ∈ K1×D corresponding
to the monomial 1 in K[X]/I, then I is precisely the ideal of relations SyzM(F) (see
Example 2.3). Thus, the second step consists in solving an instance of Problem 2 with
input M, F, and the monomial order ≺lex.

A first realization of this strategy lies in the FGLM algorithm [FGLM93], which solves
Problem 5 in O(rD3) field operations for arbitrary orders ≺1 and ≺2. In our algorithm
for Problem 2, we have managed to incorporate fast linear algebra into the second step,
with a result in Theorem 2.13 which can be summarized as follows in the situation here:
once the multiplication matrices are known, one can find the ≺2-reduced Gröbner basis
in O(rDω log(D)) operations; in the specific case of the lexicographic order, this is done
slightly faster, in O(rDω log(D/r)) operations (see Remark 4.15).

We now present our results about incorporating fast linear algebra into the computa-
tion of the multiplication matrices (Problem 6).

To obtain a fast algorithm, we will require that K be of characteristic zero and that
the initial ideal J = in≺(I) be Borel-fixed. We give some preliminaries about Borel-fixed

68

2.2. Fast algorithms for dense multiplication matrices

Problem 6 – Computing the multiplication matrices
Input:
• a monomial order ≺ on K[X1, . . . , Xr],
• a ≺-reduced Gröbner basis {f1, . . . , fs} defining a zero-

dimensional ideal I = 〈f1, . . . , fs〉 of K[X1, . . . , Xr].

Output:
• the multiplication matrices (M1, . . . ,Mr) of the variables

in K[X1, . . . , Xr]/I with respect to its ≺-monomial basis.

ideals in Section 5.1; here, we simply mention a theorem of Galligo and Bayer-Stillman
which implies that for an order ≺ which refines the degree, the generic initial ideal of I
is Borel-fixed [Eis95, Theorem 15.20].

Theorem 2.14. Assuming that K is a field of characteristic 0, and that in≺(I) is Borel-
fixed, there is a deterministic algorithm which solves Problem 6 using O(rDω log(D))
operations in K.

For more details, we refer the reader to Proposition 5.7 and Algorithm 7. This leads
to the following result concerning the change of monomial order.

Corollary 2.15. With the notations in Problem 5, assuming that K is a field of charac-
teristic 0, and that in≺(I) is Borel-fixed, there is a deterministic algorithm which solves
Problem 5 using O(rDω log(D)) operations in K.

As mentioned above, for polynomial system solving an interesting particular case is
that of ≺1 being the degree-reverse lexicographic order and ≺2 being the lexicographic
order. Fast algorithms for this case have been studied in [FGHR14].

In this reference, it is assumed that the ideal I is in Shape Position. In this context,
one does not need to compute all multiplication matrices for the change of monomial
order: the matrix Mr suffices. A first result in [FGHR14] is that, under the Moreno-
Socias conjecture [MS91, MS03a] and in the case of a generic ideal, the matrix Mr can
be read off from the given ≺drl-Gröbner basis. Then, a second result in this reference
states that this holds more generally up to a random linear change of coordinates. To
prove this, [FGHR14] uses a property of Borel-fixedness of the ≺drl-initial ideal of I (see
Section 5.1 for more details). Here, we elaborate over this to efficiently compute all the
multiplication matrices when this property is satisfied; concerning the change of monomial
order, this allows us to also incorporate matrix multiplication for ideals which are not in
Shape Position.

In [FGHR13], an algorithm is designed to compute the multiplication matrices from a
≺drl-Gröbner basis in O(βrωDω), where β is the maximum total degree of the elements of
the input Gröbner basis. This is obtained by iterating over the total degree: the normal
forms of all monomials of the same degree are dealt with using only one call to Gaussian
elimination. While this does not require an assumption on the initial ideal, it is unclear
to us how to remove the dependency in β in general.

69

Chapter 2. Fast computation of relation bases

In [FM11, FM17], the authors give faster, probabilistic algorithms for the change of
order by means of sparse linear algebra. They do not consider the computation of the
multiplication matrices, which are assumed to be known. This approach is not studied in
this document, since we do not make any assumption on the multiplication matrices and
thus we represent them as dense matrices. For the sake of comparison, we still summarize
this approach below; we note however that the cost bounds related to it or the assumptions
that one should require to ensure correctness are not clear to us for the moment.

Noticing that the multiplication matrices arising in actual computations are often
sparse, [FM11, FM17] tackle Problem 2 from a point of view similar to the Wiedemann
algorithm. Choosing some linear functionals to evaluate the monomials in K[X]/I allows
one to build a multi-dimensional recurrent sequence which admits I as its ideal of relations
(this is only true for some type of ideals I). In terms of the multi-Krylov matrices we are
considering in Chapter 4 concerning Problem 2, this is similar to introducing an additional
projection on the right of the multiplication matrices to take advantage of the sparsity
by using a black-box point of view. Then, recovering a ≺lex-Gröbner basis of this ideal of
relations can be done via the Berlekamp-Massey-Sakata algorithm [Sak90], or the recent
improvements in [BBF15, BBF17, BF16].

2.3 Multiplication matrix in nilpotent Jordan form

We now consider the specific case of Problem 4 for a multiplication matrix M = Z which
is block diagonal with nilpotent Jordan blocks, that is, Z = diag(Z1, . . . ,Zn) ∈ KD×D

with

Zi =

0 1

.
0 1

0

 ∈ KDi×Di

for 1 6 i 6 n, and D = D1 + · · ·+Dn. We first give an explicit link between this situation
and a generalized form of Hermite-Padé approximation.

2.3.1 Link with minimal approximant bases

We are going to show that finding relation bases for such multiplication matrices corre-
sponds to computing shifted minimal approximant bases, which are also known as σ-bases
or order bases [VBB91, BL94, GJV03, ZL12], and which we specify now in Problem 7.

Hereafter, an element of the module SyzD(F) in Problem 7 is called an approximant
of SyzD(F), and a basis of this module is called an approximant basis of SyzD(F).

We now detail the link between Problem 7 and Problem 4 for a multiplication matrix
Z = diag(Z1, . . . ,Zn) as above. We first note that this particular case of Problem 4 is of
special interest: it is at the core of almost all fast algorithms for operations on polynomial
matrices. Furthermore, the two other particular cases of Problem 4 that we study in this
thesis, and which are presented in Sections 2.4 and 2.5, are two different generalizations of

70

2.3. Multiplication matrix in nilpotent Jordan form

Problem 7 – Minimal approximant basis
Input:
• positive integers D = (D1, . . . , Dn) ∈ Zn>0,
• matrix F in K[X]m×n with cdeg(F) < D,
• shift s ∈ Zm.

Output:
• a matrix P in K[X]m×m such that

◦ the rows of P form a basis of the K[X]-module

SyzD(F) = {p ∈ K[X]1×m | pF∗,j = 0 mod XDj for 1 6 j 6 n},

◦ P is s-reduced.

Problem 7, where each nilpotent Jordan block is replaced either with an arbitrary Jordan
matrix or with a companion matrix.

Since D = D1 + · · ·+Dn, one may identifyM = KD with the product of residue class
rings

F = K[X]/(XD1)× · · · ×K[X]/(XDn),

by mapping a vector f = (f1, . . . , fn) ∈ F to the vector e ∈ M made from the concate-
nation of the coefficient vectors of f1, . . . , fn. Over F , the K[X]-module structure onM
given by p · e = e p(Z) becomes

p · f = (pf1 mod XD1 , . . . , pfn mod XDn).

More generally, let p ∈ K[X]1×m be a polynomial vector and let E ∈ Km×D, whose rows
are denoted by e1, . . . , em ∈ M. By the aforementioned correspondence betweenM and
F , we associate with E the matrix F ∈ K[X]m×n whose rows are f1, . . . , fm ∈ F . Then
the product p ·E is the truncated polynomial matrix product pF, where the column j is
taken modulo XDj . As a consequence, the relation p1 · e1 + · · · + pm · em = 0 precisely
means that pF∗,j = 0 mod XDj for 1 6 j 6 n.

Thus, we have that a row vector in K[X]1×m is a relation of (Z,E) if and only if it is
an approximant of SyzD(F), hence the link with Problem 4.

2.3.2 Overview of previous work

The parameter D = D1 + · · · + Dn, which is the dimension of the input moduleM as a
K-vector space, is central in the cost bounds of algorithms which solve this problem (see
Lemma 2.10 and Section 1.2.2).

First algorithms for Problem 7 with a cost quadratic in D were given in [Ser87, Pas87]
in the case of Hermite-Padé approximation (n = 1), assuming a type of genericity of
F and outputting a single approximant p ∈ K[X]1×m which satisfies some prescribed
degree constraints. For n = 1, van Barel and Bultheel have proposed in [VBB91] an al-
gorithm which uses O(m2D2) operations to compute an s-minimal basis of approximants

71

Chapter 2. Fast computation of relation bases

for F at order D, for any F and s. This iterative solution was then generalized by Beck-
ermann and Labahn [BL94, Algorithm FPHPS] [BL00, Algorithm FFFG] to eventually
deal with Problem 4 for any triangular multiplication matrix. We detail Algorithm FFFG
in Section 6.4; it computes the s-Popov approximant basis in O(mD2) operations (see Al-
gorithm 8 and Proposition 6.5). In this algorithm, computing the s-Popov basis is a key
towards a better control of the degrees in the matrices, which explains the improvement
from O(m2D2) to O(mD2).

For D1 = · · · = Dn = D/n, in [BL94] the authors also propose a divide-and-conquer
algorithm using O (̃mωD) operations in K; the base case of the recursion deals with a
scalar column vector using Gaussian elimination. Then, Giorgi et al. [GJV03] followed a
similar divide-and-conquer approach, however introducing a base case which has matrix
dimensions m×n and solving it efficiently via fast Gaussian elimination. This leads to an
algorithm with cost bound O(mωM(D/n) log(D/n)), which reaches our target cost bound
O(mω−1D) when n ∈ Θ(m).

On the other hand, in the case of Hermite-Padé approximation (n = 1 � m) it was
noticed by Lecerf [Lec01] that the cost bound O (̃mωD) is pessimistic, at least when some
type of genericity is assumed concerning the input F, and that in this case there is hope
to achieve O (̃mω−1D). This cost bound was then obtained by Storjohann [Sto06], for
computing the small degree rows of an s-minimal approximant basis. This relies on the
algorithm of [GJV03] via reducing the case of small n and order D1 = · · · = Dn = D/n
to a situation with larger column dimension n′ ≈ m and smaller order D′ ≈ D/m.

For efficiency, this reduction requires us to make either of the following assumptions
on the shift: Hs,1 : |s − min(s)| ∈ O(D) and Hs,2 : |max(s) − s| ∈ O(D). As explained
in Section 1.2.2, these assumptions imply in particular that any s-minimal basis has size
in O(mD). Then, building upon the reduction technique of [Sto06], Zhou and Labahn
designed an algorithm to efficiently compute a full s-minimal basis [Zho12, ZL12].

Proposition 2.16 ([ZL12, Theorems 5.3 and 6.14]). Let d ∈ Z>0, F ∈ K[X]m×n be of
degree less than d, and s ∈ Zm. Let D = (d, . . . , d) ∈ Zn>0 and D = nd. Assuming that
n 6 m, m 6 nd, and that Hs,1 or Hs,2 holds, an s-minimal approximant basis of SyzD(F)
can be computed deterministically using

O(mωM(nd/m) log(d)) = O(mωM(D/m) log(D/n))

operations in K. In this cost bound, it is assumed that M(δ) ∈ O(δω−1).

In the next section we present the minimal approximant basis algorithm proposed in
this thesis, which improves upon this result in several ways. Within the same cost bound
O (̃mω−1D), it returns the unique approximant basis in s-Popov form and covers the
general case of Problem 7, that is, it works for arbitrary orders D and shift s.

2.3.3 Computing shifted Popov approximant bases

The next result focuses on the usual case m ∈ O(D) and follows from Proposition 7.10
and the corresponding Algorithm 14. We recall the notation D = D1 + · · ·+Dn.

72

2.3. Multiplication matrix in nilpotent Jordan form

Theorem 2.17. For m ∈ O(D), there is a deterministic algorithm which solves Problem 7
using

O(mωM(D/m) log(D/m)2 +mω−1D log(m))

operations in K and returns the basis in s-Popov form.

The second term in this cost bound comes from the D/m leaves of the recursion. Each
of them uses mω log(m) operations, by relying on linear algebra (Section 2.2). This term
is here to account for the logarithmic factor log(m) which arises in the cost bound when D
is close to m, such as when D ∈ Θ(m) or D ∈ Θ(m log(m)). As soon as D is significantly
larger than m, this term is negligible in front of the first one.

As said above, when D ∈ O(m), one may rely on the fast algorithm based on linear
algebra which was presented in Section 2.2. Since in the context here the degree of the
minimal polynomial of the multiplication matrix Z = diag(Z1, . . . ,Zn) is max(D), the
s-Popov approximant basis can be computed in O(mDω−1 +Dω log(max(D))) operations
in K, according to Theorem 2.12.

We note that the case n 6 D 6 m was studied in [Zho12, Section 3.6], where Zhou
gives an algorithm whose announced cost bound is O (̃mω−1D); however a more precise
analysis shows that the cost is O(Dω−1m + Dω log(D/n)) as in the previous paragraph.
However, this algorithm only works in the case of the uniform shift and identical orders
D1 = · · · = Dn = D/n.

Coming back to m ∈ O(D), we have seen in Proposition 2.16 that slightly faster al-
gorithms exist in the literature, with one less logarithm factor. Still, these algorithms
assume identical orders D and a shift s such that Hs,1 or Hs,2; besides, for most inputs,
they do not return a basis in shifted Popov form. Yet, having the shifted Popov basis
is convenient for many reasons (see Sections 1.1.3 and 1.2.2); for example, it has been
exploited in [RS16, Theorem 12]. Furthermore, there are known situations where one is
interested in dealing with arbitrary orders D = (D1, . . . , Dn), for example in the com-
putation of kernel bases with information on the output degrees, as in [GS11, Section 3]
and Section 8.1. Finally, the assumptions Hs,1 and Hs,2 on the shift are quite restrictive;
notably, removing this assumption allows us to cover the computation of approximant
bases in Hermite form.

Overview of our algorithm. In short, our fast shifted Popov approximant basis al-
gorithm combines our strategy to find and use the s-minimal degree based on the divide-
and-conquer approach of [BL94] (see Section 1.2.1) with the partial linearization of [Sto06]
to reduce to a case where the degrees are well controlled. We now give more details.

In our fast algorithm for Problem 7, we use a slightly modified version of the algorithm
[GJV03, PM-Basis] which we present in details in Section 7.1. This is efficient in the case
of identical orders and m ∈ O(n), and our modified version ensures that the computed
basis is in shifted ordered weak Popov form, instead of being simply s-reduced. The
advantage of an ordered weak Popov form is that it allows us to directly read the s-pivot
degrees. In Section 7.2, we use this modified [GJV03, PM-Basis] to design an algorithm
which, from an arbitrary instance of Problem 7 with n > m, computes an approximant
basis for sufficiently many of the n equations so that it essentially remains to solve an
instance of Problem 7 with n < m.

73

Chapter 2. Fast computation of relation bases

Then, in Section 7.3, we consider solving Problem 7, and more precisely computing
the s-Popov approximant basis, when the s-minimal degree δ ∈ Zm>0 of SyzD(F) is known
a priori. We recall from Definition 1.22 that δ corresponds to the s-pivot degree of the
s-Popov approximant basis of SyzD(F). As explained in Section 1.2.1, knowing δ allows
us to rather consider the shift −δ, for which −δ-minimal approximant bases have good
properties. In particular, they have column degree δ and therefore size in O(mD), and
the sought s-Popov basis can be easily retrieved from any −δ-minimal basis.

Thus, we focus on computing a −δ-minimal approximant basis; in this case, thanks to
the knowledge of the column degree δ of the output, we will be able to efficiently use the
partial linearization techniques of [Sto06]. To summarize, knowing δ essentially leads us
to partially linearize the arbitrary instance of Problem 7 into an instance with identical
orders and dimensions n ∈ Θ(m). In the latter situation, the algorithm of [GJV03] can
be used to efficiently compute a shifted minimal approximant basis.

Finally, our main algorithm relies on adapting the divide-and-conquer approach of
[BL94, GJV03] to efficiently find the s-minimal degree δ. The base case of the recursion
is when D = D1 + · · ·+Dn ∈ O(m): then, we can efficiently compute the s-Popov basis
via linear algebra as in Theorem 2.12, and this basis gives us δ. Then, when D > m,
we split the problem into two subproblems of similar size as in Example 1.27: roughly,
we deal with the lower D/2 coefficients of the input F in the first subproblem, and with
the higher D/2 coefficients in the second. Then, we recursively compute shifted Popov
approximant bases P(1) and P(2) for these subproblems.

Following [BL94, GJV03], one would then compute and return the product P(2)P(1),
which is an s-minimal approximant basis. However, in general its degrees may be too
large for efficient computation, as we show in Example 7.5. Thus, instead of computing
this product, we rely on the item (iv) of Theorem 1.28 to deduce δ as being the sum of
the diagonal degrees of P(1) and P(2). Then, we compute the global s-Popov approximant
basis from scratch, using the original instance of Problem 7 along with the additional
knowledge of δ.

Remark 2.18. Here is a natural question, which is not tackled in this thesis: for identical
orders and a shift s such that Hs,1 orHs,2, how to compute the s-Popov approximant basis
with a cost bound similar to that of the algorithms of [ZL12] recalled in Proposition 2.16,
that is, with only one logarithm factor?

One approach is to first compute an s-minimal approximant basis P using the algo-
rithm in [ZL12], and then normalize it into s-Popov form using the algorithm in [SS11].
Yet, this would not lead to the desired complexity as such, since the row degrees in P
may be unbalanced, leading to a worst-case cost bound exceeding the target O (̃mω−1D).
It is not clear whether the algorithm in [SS11] can be extended to take into account the
unbalancedness of the row degrees in the input.

Another approach is to rely on the a priori knowledge of the s-minimal degree δ of
SyzD(F). If δ is known, then Algorithm 13 uses O(mωM(D/m) log(D/m)) operations to
compute the s-Popov basis, according to Proposition 7.9. Judging from the material in
Chapter 7, it seems reasonable to expect that with a minor modification, the algorithms
in [ZL12] would return an approximant basis P in s-ordered weak Popov form. In this
case, we would directly obtain δ by reading the degrees of the diagonal entries of P. K

74

2.4. Multiplication matrix in Jordan form

2.4 Multiplication matrix in Jordan form
In this section, we deal with the case of a multiplication matrix M = J in Jordan form.
We first detail the correspondence between relations for such a multiplication matrix
and some type of interpolants. Then, we present previous work and our results on the
computation of these interpolants.

2.4.1 Link with minimal interpolant bases

Here, we show that in the context of a multiplication matrix in Jordan form, the no-
tion of relation is directly related to the notion of M-Padé approximant, sometimes also
called interpolants. The problem of computing M-Padé approximants was studied in
[Lüb83, Bec90, Bec92, VBB92] and named after the work of Mahler, including in partic-
ular [Mah32, Mah53, Mah68]. We also refer the reader to [Coa66, Coa67, Jag64].

Let J ∈ KD×D be a Jordan matrix with n diagonal Jordan blocks of respective sizes
D1, . . . , Dn and with respective eigenvalues x1, . . . , xn. Following the ideas in Section 2.3.1,
one may identifyM = KD with

F = K[X]/(XD1)× · · · ×K[X]/(XDn),

by mapping a vector f = (f1, . . . , fn) in F to the vector e ∈ M made from the concate-
nation of the coefficient vectors of f1, . . . , fn. Then, over F , the K[X]-module structure
onM given by p · e = e p(J) becomes

p · f = (p(X + x1)f1 mod XD1 , . . . , p(X + xn)fn mod XDn).

Now, if (e1, . . . , em) in Mm is associated to (f1, . . . , fm) in Fm, with fi = (fi,1, . . . , fi,n)
and fi,j in K[X]/(XDj) for all i, j, the relation p1 · e1 + · · ·+ pm · em = 0 means that for
all j in {1, . . . , n}, we have

p1(X + xj)f1,j + · · ·+ pm(X + xj)fm,j = 0 mod XDj ;

applying a translation by −xj, this is equivalent to

p1f1,j(X − xj) + · · ·+ pmfm,j(X − xj) = 0 mod (X − xj)Dj .

Thus, in terms of vector M-Padé approximation as in [VBB92], (p1, . . . , pm) is an inter-
polant for (f1, . . . , fm), x1, . . . , xn, and D1, . . . , Dn.

Then, the problem of computing relation bases for a multiplication matrix in Jordan
form can be rewritten as follows.

Let us write D = (D1, . . . , Dn), and let D = D1 + · · · + Dn. Then, the data of the
points x1, . . . , xn and of the integers D directly define the Jordan multiplication matrix
J ∈ KD×D, as explained above. In what follows, the module in Problem 8 is denoted
by SyzJ(F); an element p ∈ SyzJ(F) is called an interpolant for SyzJ(F), and a matrix
P ∈ K[X]m×m whose rows form a basis of SyzJ(F) is called an interpolant basis of SyzJ(F).

Our main results concerning the case of a Jordan multiplication matrix, stated in
Theorems 2.19 and 2.20, can be summarized as follows: there is a deterministic algorithm
which solves Problem 8 and returns the s-Popov basis using O (̃mω−1D) operations in K.

75

Chapter 2. Fast computation of relation bases

Problem 8 – Minimal interpolant basis
Input:
• points x1, . . . , xn in K,
• positive integers D ∈ Zn>0,
• matrix F in K[X]m×n such that cdeg(F) < D,
• shift s ∈ Zm.

Output:
• a matrix P in K[X]m×m such that

◦ the rows of P form a basis of the K[X]-module

{p ∈ K[X]1×m | pF∗,j = 0 mod (X − xj)Dj for 1 6 j 6 n},

◦ P is s-reduced.

Previous work on this problem includes [Bec92, VBB92, BL00]. We note that in [Bec92],
the input consists of a single column F in K[X]m×1 of degree less than D: to form the
input of our problem, we compute F̂ = [F mod (X − x1)D1| · · · |F mod (X − xn)Dn].

For an arbitrary shift, the algorithms in [Bec92, VBB92] have a cost of O(m2D2)
operations and return a shifted minimal interpolant basis. In [BL00, Algorithm FFFG],
the degrees are better controlled by ensuring that the bases computed at each iteration of
the algorithm are in shifted Popov form; this leads to the cost bound O(mD2) to compute
the s-Popov interpolant basis. To the best of our knowledge, no algorithm with a cost
quasi-linear in D had been given in the literature prior to our work.

As we observe from our review of previous work on interpolant bases and the more
specific approximant bases, the design of fast algorithms mainly focused on the latter.
Here, relying on the general framework of relation bases developed in [BL00], we manage
to give fast algorithms for the general case of interpolant basis computation. The cost
bounds for these algorithms match, up to logarithmic factors, those of fast algorithms for
approximant bases presented in Section 2.3.

2.4.2 Algorithm for almost uniform shifts

Here, we present our fast algorithm in O (̃mω−1(D+ ξ)) for computing s-minimal relation
bases with a multiplication matrix in Jordan form, where ξ = |s−min(s)|. We recall from
Section 1.2.2 and Lemma 2.10 that this quantity ξ provides an a priori upper bound on
the sum of the row degrees of these s-minimal bases.

Result. If J ∈ KD×D is a Jordan matrix with n diagonal blocks of respective sizes
D1, . . . , Dn and with respective eigenvalues x1, . . . , xn, we will write it in a compact man-
ner by specifying only those sizes and eigenvalues. More precisely, we will assume that J
is given to us as the form

J = ((x1, D1,1), . . . , (x1, D1,r1), . . . , (xt, Dt,1), . . . , (xt, Dt,rt)), (2.3)

76

2.4. Multiplication matrix in Jordan form

for some pairwise distinct x1, . . . , xt, with r1 > · · · > rt and Di,1 > · · · > Di,ri for
all i; we will say that this representation is standard. If J is given as an arbitrary list
((x1, D1), . . . , (xn, Dn)), we can reorder it (and from that, permute the columns of F
accordingly) to bring it to the above form in time O(M(D) log(D)3) using the algorithm in
[BJS08, Proposition 12]; ifK is equipped with an order, and if we assume that comparisons
take unit time, it is of course enough to sort the xi’s.

Then, our first algorithm for the case of a multiplication matrix in Jordan form achieves
the following result, which focuses on the usual case m ∈ O(D). Concerning the case
D ∈ O(m), we rely on the solution based on linear algebra presented in Section 2.2 and
the corresponding cost bound can be found in Theorem 2.12. Besides, the reader interested
in the logarithmic factors may refer to the more precise cost bound in Proposition 13.3.

Theorem 2.19. Let J ∈ KD×D be a Jordan matrix given by a standard representation.
Then, there is a deterministic algorithm which solves Problem 4 with M = J using

O(mω−1M(D) log(D) log(D/m) +mω−1M(ξ) log(ξ/m))

operations in K, where ξ = |s−min(s)|.

We remark that under the assumption Hs,1 : ξ ∈ O(D) which states that the shift is
almost uniform around its minimal value, this cost bound becomes O(mω−1M(D) log(D)),
which is in O (̃mω−1D).

In general, masking logarithmic factors, this cost bound is O (̃mω−1(D + ξ)). On the
other hand, following the discussion in Section 1.2.2, the bound of Lemma 2.10 on the
degree of the determinant of s-minimal interpolant bases implies that the sum of row
degrees of the output basis is in O(D + ξ), and thus its size is in O(m(D + ξ)).

To give a worst-case cost bound independently of the shift, we recall from Section 1.2.2
that one may assume without loss of generality that min(s) = 0, max(s) ∈ O(mD),
and |s| ∈ O(m2D). We also introduced there the shift h = (0, D, 2D, . . . , (m − 1)D),
for which these bounds are reached and the h-Popov interpolant basis is actually the
interpolant basis in Hermite form. This is thus a worst-case situation for the cost bound
O (̃mω−1(D + ξ)), which with ξ = |h| becomes O (̃mω+1D).

As detailed in Section 2.3.2, the cost bound O (̃mω−1D) has been achieved in the spe-
cific case of a nilpotent Jordan matrix J, with identical block sizes and under assumptions
on s in [GJV03, ZL12], and in the general case here (Theorem 2.17). However, we are
not aware of a previous cost bound that would be similar to the result above, for example
that would be quasi-linear in D, for the question of Problem 4 with an arbitrary Jordan
matrix.

An interesting case which involves a non-nilpotent Jordan matrix can be found in
applications of Problem 4 to multivariate interpolation and list-decoding algorithms, as
detailed in Section 3.1.

In fact, it was left as an open problem in [ZL12, Section 7] to obtain algorithms with
cost bound O (̃mω−1D) for arbitrary shifts s and in such a general interpolation context.
With the result above and the one to follow in Section 2.4.3 about arbitrary shifts, we
solve this open problem.

77

Chapter 2. Fast computation of relation bases

Overview of the algorithm. Our divide-and-conquer algorithm is given in Section 13.2.
The idea is to use a Knuth-Schönhage-Moenck half-gcd approach [Knu70, Sch71, Moe73],
previously carried over to the particular case of minimal approximant bases in [BL94,
GJV03]. This approach consists in reducing a problem in size D to a first subproblem
in size D/2, the computation of the so-called residual, a second subproblem in size D/2,
and finally a recombination of the results of both subproblems via polynomial matrix
multiplication. The shift to be used in the second recursive call is essentially the s-row
degree of the outcome of the first recursive call.

The main difficulty is to control the degrees in the interpolant bases that are obtained
recursively. We have at hand the bound O(D+ ξ) on the sum of row degrees: it depends
on the input shift. Yet, in our algorithm, we cannot make any assumption on the shifts
that will appear in recursive calls, since they are related to the degrees of the entries of
the previously computed bases. Hence, even in the case of a uniform input shift for which
the output basis is of size O(mD), there may be recursive calls with essentially arbitrary
shifts, which may output bases that have a size too large with respect to our target cost.

Our workaround is to perform all recursive calls with the uniform shift s = 0, and
resort to a change of shift that will be studied in Section 14.1. This strategy is an
alternative to the partial linearization approach that was used in [Sto06, ZL12] in the
case of approximant bases, whose generalization to interpolant bases is not clear to us.
To clarify the word “alternative”, we note that our change of shift uses a kernel basis
algorithm which itself relies on approximant basis computations; yet, with the dimensions
involved here, this approximation problem is solved efficiently without resorting to [ZL12].

Another difficulty which was not solved prior to this work is to deal with instances
where D is small. Our bound on the size of the output in Section 1.2.2 states that when
D 6 m and the shift is uniform, the average degree of the entries of a minimal interpolant
basis is at most 1. Thus, in this case our focus is not anymore on using fast polynomial
arithmetic but rather on exploiting efficient linear algebra over K: the divide-and-conquer
process stops when reaching D 6 m, and invokes instead the algorithm based on linear
algebra discussed above in Section 2.2 and detailed in Chapter 4.

The last ingredient is the fast computation of the residual, that is, a matrix in Km×D/2

for restarting the process after having found a basis P(1) for the first subproblem of size
D/2. This boils down to computing P(1) ·F and discarding the first D/2 columns, which
are known to be zero. In Section 14.2, we design a general procedure for computing this
kind of product, using Hermite interpolation and evaluation to reduce it to multiplying
polynomial matrices.

Concerning the multiplication of the bases obtained recursively, to handle the fact
that they may have unbalanced row degrees, we use the approach in [ZLS12, Section 3.6];
we give a detailed algorithm and cost analysis in Section 12.2.

2.4.3 Computing shifted Popov interpolant bases

Now, we present our second algorithm for the case of a multiplication matrix in Jordan
form. It uses the one presented in the previous section as a building block, and offers two
key new features: it supports arbitrary shifts with a cost O (̃mω−1D), and it computes
the basis in s-Popov form.

78

2.4. Multiplication matrix in Jordan form

Result. Again, for small values of D, namely D ∈ O(m), these features are already
obtained by the approach based on linear algebra presented in Section 2.2, with a cost
bound that is satisfactory. Hence, here, we focus on the case m ∈ O(D).

Theorem 2.20. Let J ∈ KD×D be a Jordan matrix given by a standard representation.
Then, there is a deterministic algorithm which solves Problem 4 with M = J using

O(mω−1M(D) log(D) log(D/m)2)

operations in K and returns the basis in s-Popov form.

Since the worst-case of the cost bound of Theorem 2.19 for the shift-dependent algo-
rithm was O (̃mω+1D), in general the result here offers a speedup factor of up to m2. As
discussed above in Sections 2.3 and 2.4.1, to the best of our knowledge, no algorithm for
this problem with cost O (̃mω−1D) was known previously for arbitrary shifts, even in the
specific case of approximant bases.

Overview of our approach. Several previous algorithms for approximant basis com-
putation, such as those in [BL94, GJV03], follow a divide-and-conquer scheme inspired by
the Knuth-Schönhage-Moenck algorithm [Knu70, Sch71, Moe73]. The result here builds
on the algorithm presented in Section 2.4.2, where we extended this recursive approach
to more general interpolation problems involving a general Jordan matrix J, yet without
handling arbitrary shifts with a satisfactory complexity.

An immediate challenge is that for an arbitrary shift s, the sum of the row degrees
an s-minimal interpolant basis is in O(D + ξ) where ξ = |s − min(s)|, and thus its size
in O(m(D + ξ)) may be beyond our target cost when ξ is large. However, a first remark
is that this bound O(D + ξ) is pessimistic if we restrict our view to the bases actually
computed by the above-mentioned divide-and-conquer approach, which we describe in
more precise terms now.

Let F, J, and s be our input, and write J(1) and J(2) for the D/2×D/2 leading and
trailing principal submatrices of J. First, compute an s-minimal interpolant basis P(1)

for J(1) and the first D/2 columns of F; then, compute the last D/2 columns F(2) of the
residual P(1) · F; then, compute a t-minimal interpolant basis P(2) for (F(2),J(2)) with
t = rdegs(P

(1)); finally, return the matrix product P(2)P(1).
In the case of Hermite-Padé approximation, this is exactly the divide-and-conquer

algorithm in [BL94]; our algorithm presented in Section 2.4.2 introduces an additional
change of shift technique to obtain efficiency for almost uniform shifts. An s-minimal
basis computed by this method has degree at most D and thus size in O(m2D), which is
less than O(m(D+ξ)) when ξ is large. Using our fast algorithm for residual computation,
this approach allows us to solve Problem 4 using O (̃mωD) operations for an arbitrary
shift (see Section 13.1), which improves upon our algorithm of Section 2.4.2 when ξ is
large.

However, this approach has intrinsic limitations, since there are instances of Problem 4
for which the size of the basis it outputs reaches Θ(m2D): this is beyond our target
cost O (̃mω−1D). We detail this in Example 7.5, with an instance of approximant basis
computation such that ξ = Θ(mD).

79

Chapter 2. Fast computation of relation bases

In Section 2.4.2, focusing on the case where ξ is small compared to D, and preserv-
ing such a property in recursive calls via changes of shifts, we obtained the cost bound
O (̃mω−1(D + ξ)). For ξ in O(D), this matches our target cost. The fundamental reason
for this kind of improvement over O (̃mωD), already seen with [ZL12], is that one controls
the average row degree of the bases P(2) and P(1) and of their product P(2)P(1).

From the discussion in Section 1.2.2, we know that we have no such control of the
average row degree for an arbitrary shift s. Still, the bound Lemma 2.10 implies that the
s-Popov interpolant basis P for SyzJ(F) has average column degree at most D/m, and
thus its size is in O(mD). Therefore, our answer to the difficulty that bases may have size
in Θ(m2D) is to compute a basis in s-Popov form. This clarifies our claim in Section 1.1
that our motivation for computing a basis in shifted Popov form is not only because of
the obvious interest of having a canonical form, but also because it helps us to better
control the degrees in the manipulated matrices and thus to give faster algorithms.

Then, similarly to our Popov approximant basis algorithm in Section 2.3, we will
adapt the above divide-and-conquer strategy to find the s-minimal degree δ of SyzJ(F);
this is detailed in Section 13.3. With this additional knowledge, we will rely on the case of
almost uniform shifts to efficiently compute the sought s-Popov basis. This follows ideas
that we exposed in Section 1.2.1 and which we recall now.

Suppose that we have computed recursively the bases P(2) and P(1) in s- and t-Popov
form; we want to output the s-Popov form P of P(2)P(1). In general, this product is not
normalized and may have size Θ(m2D): its computation is beyond our target cost. Thus,
one main idea is that we will not rely on polynomial matrix multiplication to combine
the bases obtained recursively. Instead, we use P(1) and P(2) to find δ as the sum of
their diagonal degrees (see the item (iv) of Theorem 1.28), and then we obtain P from a
minimal interpolant basis computation for the shift −δ.

The latter situation, namely the problem of computing the s-Popov interpolant basis
P for SyzJ(F) having the s-minimal degree δ as an additional input, is studied in Sec-
tion 14.3. According to Lemma 1.26, this reduces to the computation of a −δ-minimal
interpolant basis R. The properties of this shift −δ allow us first to compute R in
O (̃mω−1D) operations using the partial linearization framework from [Sto06, Section 3]
and the minimal interpolant basis algorithm from Section 2.4.2, and second to easily
retrieve P from R.

We stop the recursion as soon as D 6 m, in which case we do not need δ to achieve
efficiency: the algorithm presented in Section 2.2 computes the s-Popov interpolant basis
in O (̃Dω−1m) operations for any s according to Theorem 2.12.

2.5 Companion-block diagonal multiplication matrix

We now consider the computation of relation bases with a multiplication matrix M = C
which is block diagonal with companion blocks. We first establish a correspondence
between this problem and that of finding solutions to systems of linear modular equations;
as a consequence, approximant bases and more generally interpolant bases can be seen as
a particular case of this situation. Then, we discuss previous work and we give our main
result and an overview of our algorithm. Finally, we discuss another algorithm based

80

2.5. Companion-block diagonal multiplication matrix

on structured K-linear algebra, which obtains slightly better efficiency by focusing on
returning only one solution which satisfies degree constraints.

2.5.1 Link with systems of linear modular equations

Let us first define precisely what we mean by systems of linear modular equations. In
what follows, K[X] 6=0 stands for the set of nonzero polynomials in K[X], and we denote
by M = (m1, . . . ,mn) ∈ K[X]n6=0 a tuple of polynomials that will play the role of moduli.
Then, for A,B ∈ K[X]m×n we write A = B mod M if there exists Q ∈ K[X]m×n such
that A = B + Qdiag(M). This means that the column j of A is equal to the column
j of B up to multiples of mj. Then, given a matrix F ∈ K[X]m×n which specifies the
equations, we consider the module

SyzM(F) = {p ∈ K[X]1×m | pF = 0 mod M}.

An element of SyzM(F) is called a solution of SyzM(F)).
Example 2.21. Consider the case where mj = XD/n for 1 6 j 6 n. Then for any
F ∈ K[X]m×n, p is a solution of SyzM(F) if and only if pF = 0 mod XD/n.

More generally, when the moduli in M are powers of the variable X, the notion of
solution of SyzM(F) coincides with the notion of approximant of SyzD(F), where the
orders D are given by these powers. b

Since the set SyzM(F) is a K[X]-submodule of K[X]1×m which contains the submodule
lcm(m1, . . . ,mn)K[X]1×m, SyzM(F) is free of rank m according to Lemma 1.1. Then, we
may represent any basis of this module as the rows of a matrix P ∈ K[X]m×m, called a
solution basis of SyzM(F). Such a basis P which is s-reduced is said to be an s-minimal
solution basis of SyzM(F), and if it is furthermore in s-Popov form, then P is called the
s-Popov solution basis of SyzM(F).

The problem of computing minimal bases of solutions to such systems of linear modular
equations is stated in Problem 9. Our interest in computing a whole basis in shifted
reduced form, and not simply a single solution with degree constraints, lies for example in
the application to the computation of shifted normal forms of polynomial matrices; this
situation is described in detail in Section 3.2.2. Still, in some contexts we are satisfied
with a single small degree solution; we discuss this point in Section 2.5.3.

Problem 9 – Minimal solution basis
Input:
• polynomials M = (m1, . . . ,mn) ∈ K[X]n6=0,
• a matrix F ∈ K[X]m×n such that deg(F∗,j) < deg(mj),
• a shift s ∈ Zm.

Output:
• an s-minimal solution basis of SyzM(F).

Well-known specific cases of Problem 9 are Hermite-Padé approximation with a single
equation modulo some power of X. More generally, for D = (D1, . . . , Dn) ∈ Z>0, an

81

Chapter 2. Fast computation of relation bases

s-minimal approximant basis of SyzD(F) as in Problem 7 is an s-minimal solution basis of
SyzM(F) with M = (XD1 , . . . , XDn). Even more generally, computing interpolant bases
as in Problem 8 also amounts to solving Problem 9, in the specific case of moduli that
are products of known linear factors.

Now, let C ∈ KD×D be a companion-block diagonal matrix with n diagonal blocks.
Explicitly,

C = diag(C1, . . . ,Cn) with Cj =

0 1

.
0 1

−c(0)
j −c(1)

j · · · −c(Dj−1)
j

 ∈ KDj×Dj , (2.4)

for 1 6 j 6 n. We have in particular D = D1 + · · ·+Dn.
Then, defining the monic polynomial mj = c

(0)
j + c

(1)
j X + · · ·+ c

(Dj−1)
j XDj−1 +XDj for

1 6 j 6 n, one may identifyM = KD with the product of residue class rings

F = K[X]/(m1)× · · · ×K[X]/(mn),

by mapping a vector f = (f1, . . . , fn) in F to the vector e ∈ M made from the concate-
nation of the coefficient vectors of f1, . . . , fn. Then, over F , the K[X]-module structure
onM given by p · e = e p(C) becomes

p · f = (pf1 mod m1, . . . , pfn mod mn).

If vectors e1, . . . , em of M, which form the rows of a matrix E ∈ Km×D, are associated
with polynomials f1, . . . , fm in F , which form the rows of a matrix F ∈ K[X]m×n with
cdeg(F∗,j) < deg(mj), then the relation p1 · e1 + · · ·+ pm · em = 0 precisely means that

pF∗,j = 0 mod mj for 1 6 j 6 n.

Thus, defining M = (m1, . . . ,mn), a row vector p ∈ K[X]1×m is a relation of SyzC(E) if
and only if p is a solution of SyzM(F).

Seen the other way, if M and F are as in the input of Problem 9, we let Dj = deg(mj),
D = D1 + · · · + Dn, and we assume without loss of generality that mj is monic. Then
p is a solution of SyzM(F) if and only if p is a relation of SyzC(E), where C ∈ KD×D is
diag(C1, . . . ,Cn) with Cj the companion matrix associated with mj, and E ∈ Km×D is
[E1| · · · |En] where the column k of the matrix Ej ∈ Km×Dj is the column vector in Km×1

formed by the coefficients of F∗,j of degree k.
In particular, the multiplication p ·F defined by C as in Definition 2.4 corresponds to

the modular product p ·F = pF mod M. In our algorithms, this will allow us to compute
residuals by simply computing pF and reducing its entries modulo M; this is efficient
thanks to the assumption n ∈ O(m).

2.5.2 Computing shifted Popov solution bases

An overview of known fast algorithms for Problem 9 is given in Table 2.1. Concern-
ing interpolant bases and approximant bases where the multiplication matrix is in Jor-
dan form, we have seen above in Theorems 2.17 and 2.20 that there are determinis-
tic algorithms to compute the s-Popov basis using O (̃mω−1D) operations, with D =

82

2.5. Companion-block diagonal multiplication matrix

Table 2.1: Fast algorithms for systems of linear modular equations over K[X] (Problems 9
and 10). In this table, n ∈ O(m); partial s-min. = returns small degree rows of an s-
minimal solution basis; split = product of known linear factors; Hs,1 : |s−min(s)| 6 D;
Hs,2 : |max(s)− s| 6 D.

Reference Cost bound Moduli Output Assumptions
Beckermann [Bec92] O(m2D2) split s-minimal n = 1

Van Barel-Bultheel [VBB92] O(m2D2) split s-minimal
Beckermann-Labahn [BL94] O(m2D2) XD/n s-minimal
Beckermann-Labahn [BL94] O (̃mωD) XD/n s-minimal
Beckermann-Labahn [BL00] O(mD2) split s-Popov

Giorgi et al. [GJV03] O (̃mωD/n) XD/n s-minimal
Storjohann [Sto06] O (̃mωdD/me) XD/n partial s-min. Hs,1

Zhou-Labahn [ZL12] O (̃mωdD/me) XD/n s-minimal Hs,1 or Hs,2

Theorem 2.25 and [CJN+15] O (̃mω−1D),
probabilistic

any small solution
vector

Theorem 2.19 and [JNSV17] O (̃mω−1D) split s-minimal Hs,1

Theorem 2.12 and [JNSV17] O (̃mDω−1) any s-Popov D ∈ O(m)

Theorem 2.20 and [JNSV16] O (̃mω−1D) split s-Popov
Theorem 2.22 and [Nei16] O (̃mω−1D) any s-Popov

deg(m1) + · · · + deg(mn). Here, we extend this result to arbitrary moduli, up to the as-
sumption that the number of equations is not much larger than the number of unknowns.
The next result follows from Proposition 8.17 and the corresponding Algorithm 18.

Theorem 2.22. Assuming n ∈ O(m), there is a deterministic algorithm which solves
Problem 9 using O (̃mω−1D) operations in K and returns the s-Popov solution basis of
SyzM(F), where D = deg(m1) + · · ·+ deg(mn).

In the particular cases of approximant and interpolant bases, we managed to avoid
such an assumption on n and m; more insight into this difference will be given below in
the overview of our algorithm. Although this assumption will always be satisfied in this
thesis, where we will rely on solution bases to compute shifted normal forms of polynomial
matrices and in the Coppersmith technique over K[X] (see Sections 3.1.5 and 3.2.2), it
might be a hindrance in some cases. We remark for example that in Section 3.1.3, we
will see some multivariate interpolation problems which reduce to interpolant bases with
possibly significantly more equations than unknowns.

In terms of the computation of relation bases as in Problem 4, this directly translates
as the following result.

Corollary 2.23. Let C ∈ KD×D be a companion-block diagonal matrix with n blocks as in
Eq. (2.4). Assuming n ∈ O(m), there is a deterministic algorithm which solves Problem 4
with M = C using O (̃mω−1D) operations in K, and returns the basis in s-Popov form.

83

Chapter 2. Fast computation of relation bases

We note that this follows directly from Theorem 2.12 when D ∈ O(m). If some of
the moduli have small degree, or in other words some of the diagonal blocks have small
dimension, we use this result for base cases of our recursive algorithm.

As we have discussed in Section 2.1.3, compared to interpolant bases, where the multi-
plication matrix is in Jordan form, the situation here is quite different in terms of compu-
tations since the multiplication matrix C is not in upper triangular form. We recall that
having an arbitrary upper triangular matrix implies that one can then rely on recurrence
equations to solve the problem iteratively, using [BL00, Algorithm FFFG] that we recall
with our notation in Algorithm 8. This recurrence is used for example in the iterative al-
gorithms of [VBB91, Bec92, VBB92, BL94] for approximant or interpolant bases. Beyond
the techniques used to achieve efficiency, the fast algorithms in [BL94, GJV03, ZL12], as
well as ours presented in Sections 2.3 and 2.4, are essentially divide-and-conquer versions
of this iterative solution and are thus based on the same recurrence equations.

However, for a multiplication matrix that has companion blocks and thus is not upper
triangular, there is no such recurrence in general. To give a simple illustration of this
difficulty, let us consider the case of one equation modulo XD − 1, that is, the case of the
companion multiplication matrix

C =

0 1

.
0 1

1 0 · · · 0

 .
It is not clear how one could split this matrix into submatrices that would correspond to
well-defined subproblems that ask to compute relation bases for a multiplication matrix in
companion form. In terms of polynomial equations, if our input is F ∈ K[X]m×1 of degree
less than D, it is not clear either what subproblem could be considered whose solutions
would represent some progress towards vanishing modulo XD − 1.

Then, a natural idea is to relate solution bases to kernel bases, which leads us to
introduce an additional unknown: the matrix of quotients. Indeed, Problem 9 asks to
find P ∈ K[X]m×m for which there is some quotient matrix Q ∈ K[X]m×n such that

[
P Q

]
V = 0, where V =

[
F

−diag(M)

]
∈ K[X](m+n)×n.

More precisely, we will show in Section 8.1 that
[
P Q

]
can be obtained as a u-Popov

kernel basis for V for the shift u = (s−min(s),0) ∈ Zm+n
>0 . To the best of our knowledge,

it is not known how to compute such a kernel basis efficiently; the algorithms in [ZLS12,
ZL13] are only efficient for specific families of shifts satisfying assumptions similar to Hs,1

and Hs,2, and they do not return the shifted Popov basis. In fact, an immediate difficulty
lies in the degrees in Q, which may be so large that the size of Q exceeds our target cost;
we recall that we are only interested in the part P of the kernel

[
P Q

]
.

Yet, when the s-minimal degree of SyzM(F) is known, this kernel basis point of view
is fruitful. It helps us to reduce Problem 9 with known δ to the computation of shifted
Popov kernel bases with known information on the output pivot degrees and indices;

84

2.5. Companion-block diagonal multiplication matrix

in Section 8.1, we use our results on the computation of approximant bases to give a
fast algorithm for finding a kernel basis when such information is available. For further
efficiency, the fact that we are not interested in Q allows us to use partial linearization
so as to reduce the degrees in the computed kernel basis. We thus obtain the desired
cost bound when δ is known; we note that this is a slight generalization of results already
obtained in [GS11, Section 3] in the context of Hermite form computation.

Then, for n > 1, our algorithm in Section 8.3 uses a divide-and-conquer approach
on the number n of equations, based on the transitivity result in Theorem 1.28. To
summarize, this consists in computing a solution basis P(1) for the first n/2 equations;
then computing the last n/2 columns of the residual G = P(1)F mod M; and finally
computing a solution basis P(2) for G and the second half of the moduli. As discussed
for approximant and interpolant bases above, if one computes P(1) and P(2) recursively
in shifted Popov form, their product P(2)P(1) is an s-minimal solution basis of SyzM(F)
which is usually not in s-Popov form and which may have size beyond our target cost.
Thus, we avoid the computation of this product by using P(2) and P(1) to deduce the
s-minimal degree δ, from which we efficiently find the sought s-Popov solution basis as
sketched in the previous paragraph.

The main remaining difficulty is to deal with the base case n = 1 of the recursion. If
this corresponds to an equation whose modulus has small degree, as explained above we
can directly rely on the general relation basis algorithm presented in Section 2.2. However,
in the case of a single equation whose modulus has large degree D compared tom, it seems
that new ingredients are needed. In Section 8.2, we develop the ingredients presented in
the next paragraphs, leading to an O (̃mω−1D) algorithm to solve this base case and thus
completing our fast algorithm for Problem 9.

When n = 1, we have one equation F ∈ K[X]m×1 of degree less than D, and a
modulus m ∈ K[X]6=0 of degree D. From the discussion above, computing the s-Popov
solution basis P for Syzm(F) amounts to computing the u-Popov kernel basis

[
P Q

]
of

the column V = [FT m]T, where deg(F) < deg(m) and the last entry of u is min(u). Our
ingredients give a central role to a quantity that we have called the amplitude of the shift
u and which is defined as amp(u) = max(u)−min(u).

First, when amp(u) ∈ O(D) we show that the u-Popov kernel basis
[
P Q

]
can be

efficiently obtained as a submatrix of the u-Popov approximant basis for the matrix V
and an order in O(D). Then, when amp(u) is large compared to D and assuming that u
is sorted non-decreasingly, P has a lower block triangular shape. We show how the size
of these blocks can be revealed, along with the s-pivot degree of P, using a divide-and-
conquer approach which splits u into two shifts of amplitude about max(u)/2.

Remark 2.24. In our algorithm, the assumption n ∈ O(m) is required for the efficiency
of two operations.

In the situation where we know the s-minimal degree δ, we rely on the computation
of a kernel basis for the (m+ n)× n matrix V, for which our target cost currently seems
out of reach when n� m. To solve this, one may try to exploit the structure of V, whose
bottom part is an n × n diagonal matrix, or to find another way to solve the problem
when δ is known.

Our algorithm to compute the residual G = P(1)F mod M is not efficient when M

85

Chapter 2. Fast computation of relation bases

contains many polynomials of small degree, that is, n � m. In the case of interpolant
bases, we have solved this in Section 14.2 by using the known linear factors of the moduli,
which allow us to group together small degree equations into fewer equations of larger
degree via Hermite interpolation and evaluation. Generalizing this to arbitrary moduli,
using in particular Chinese remainder evaluation and interpolation, might lead to the
desired cost bound but has not been studied in this thesis. K

2.5.3 Computing a solution via structured linear algebra

In several situations, such as applications to list-decoding algorithms (see Section 3.1.2),
one is not interested in computing a basis of solutions which is minimal for the shifted
degree, but rather in finding one solution of sufficiently small shifted degree.

More precisely, given the moduli M, the system matrix F, and prescribed degree
constraints specified by m positive integers N1, . . . , Nm, one looks for a solution p = [pj]j
for SyzM(F) such that deg(pj) < Nj for all j. We formalize this question in Problem 10.

Problem 10 – Small solution vector
Input:
• polynomials M = (m1, . . . ,mn) ∈ K[X]n6=0,
• a matrix F ∈ K[X]m×n such that deg(F∗,j) < deg(mj),
• positive integers N1, . . . , Nm.

Output:
• a row vector p = [p1, . . . , pm] ∈ K[X]1×m such that

◦ p is a solution of SyzM(F),
◦ deg(pj) < Nj for all 1 6 j 6 m.

We recall from Remark 1.9 that degree constraints are directly related to shifted
degrees, since deg(pj) < Nj for 1 6 j 6 m is equivalent to rdeg−N(p) < 0 with N the
shift N = (N1, . . . , Nm) ∈ Zm>0. Therefore, to solve this problem one may directly apply
a solution basis algorithm and return one of the rows of the output basis which satisfy
rdeg−N(p) < 0; if there is no such row, this means that there is no solution to the given
instance of Problem 10.

Another approach is proposed in Chapter 9, where we give two algorithms which solve
Problem 10 relying on structured K-linear algebra. Using the currently fastest known
algorithms for solving structured linear systems, this provides a solution to Problem 10
with fewer logarithmic terms in the cost bound than relying on our solution basis algorithm
presented in Section 2.5.2.

Theorem 2.25. There is a probabilistic algorithm that either computes a solution to
Problem 10, or determines that none exists, using

O((m+ n)ω−1M(D) log(D))

operations in K, where D = deg(m1) + · · ·+ deg(mn). Both Algorithms 19 and 20 achieve
this result. These algorithms choose O(D) elements in K; if these elements are chosen

86

2.5. Companion-block diagonal multiplication matrix

uniformly at random in a subset Γ ⊆ K of cardinality at least 6(D+1)2, then the probability
of success is at least 1/2.

Our algorithms involve two different linearizations of the system of linear modular
equations overK[X] into a homogeneous linear system overK. DefiningN = N1+· · ·+Nm,
both systems have D equations in N unknowns. Furthermore, the structure of the latter
systems allows us to solve them efficiently using the algorithms in [BJS08, BJMS16]3.
While it is customary to make the assumption N > D to ensure that our problem admits
a solution, here we do not need and thus do not make this assumption, since the algorithm
will detect whether no solution exists.

Our first algorithm, detailed in Section 9.2, first rewrites the equations with arbitrary
moduli into equations with moduli that are powers of X, by means of reversing the
order of the coefficients of the involved polynomials. This transforms the problem into
an approximant basis problem, with the number of unknowns being increased from m to
m+n and the sum of the degrees of the moduli being now D+n(max(N)−1). According
to Section 2.3, computing a minimal approximant basis for such input dimensions can be
done in O (̃(m + n)ω−1(D + nmax(N))) operations with the fastest known algorithms;
for some N this exceeds the cost in the theorem above. Here, noticing that we are
not interested in computing the n unknowns that were added in the transformation, we
manage to derive a structured K-linear system which can be solved in O (̃(m+ n)ω−1D)
operations. The matrix of the system is mosaic-Hankel, meaning that it is formed by
Hankel blocks of various dimensions.

This transformation to an approximant basis problem was inspired by, and generalizes,
the derivation of the extended key equations in the context of decoding algorithms in
coding theory. These equations extend the key equation designed for the decoding of
BCH and Reed-Solomon codes [Ber68, Ch. 7] (see also [Fit95]), to the more general list-
decoding of Reed-Solomon codes. They were first introduced by Roth and Ruckenstein in
[RR00] in the context of the Sudan algorithm [Sud97], and then in a more general form
by Zeh, Gentner, and Augot [ZGA11] for the Guruswami-Sudan algorithm [GS99]. In our
first algorithm, the derivation of the key equation follows that in [ZGA11].

In our second algorithm, detailed in Section 9.3, the homogeneous linear system over
K is directly obtained from the polynomial system matrix F and the degree contraints N.
This linearization is a slight variation of the striped Krylov linearization in [BL00] and
Section 4.1 in the case of a companion-block diagonal multiplication matrix. In this case,
the structure of the system is less eye-catching than in the case of mosaic-Hankel matrices
in the sense that one cannot straightforwardly observe it by just reading the coefficients.
Yet, we prove that, thanks to the fact that the multiplication matrix is companion-block
diagonal, the system has a Toeplitz-like structure with displacement rank m + n (these
notions are recalled in Section 9.1). Furthermore, we can efficiently compute generators
that give us a compact representation of the system. This again allows us to find a solution
in O (̃(m+ n)ω−1D) operations, by resorting to the algorithm of [BJS08, BJMS16].

In short, both points of view lead to the same complexity result, stated in Theorem 2.25
above. In this result, the probability analysis is a standard consequence of the Zippel-

3At the time of writing this document, [BJMS16] has not yet been published. In short, for the uses
we make of it, the main difference with [BJS08] is that it removes a logarithm factor in the cost bound.

87

Chapter 2. Fast computation of relation bases

Schwartz lemma; as usual, the probability of success can be made arbitrarily close to one
by increasing the size of the subset Γ. If the field K has fewer than 6(D + 1)2 elements,
then a probability of success at least 1/2 can still be achieved by using a field extension
L of degree d ∈ O(logCard(K)(D)), up to a cost increase by a factor in O(M(d) log(d)).

Specifically, one can proceed in three steps. First, we take L = K[X]/〈f〉 with f ∈
K[X] irreducible of degree d; such an f can be set up using an expected number of
O (̃d2) ⊆ O(D) operations in K [GG13, Section 14.9]. Then we solve Problem 10 over L
by means of the algorithm of Theorem 2.25, thus using O(ρω−1M(D) log(D) ·M(d) log(d))
operations in K. Finally, from this solution over L one can deduce a solution over K
using O(Dd) operations in K. This last point comes from the fact that, as said above,
Problem 10 amounts to finding a nonzero vector u over K such that Au = 0 for some
matrix A ∈ KD×(D+1): once we have obtained a solution v over L, it thus suffices to
rewrite it as v =

∑
06i<d vix

i 6= 0 (where x is the image of X in L) and, noting that
Avi = 0 for all i, to find a nonzero vi in O(Dd) comparisons with zero and return it as
a solution over K.

88

3

Impact on related problems

3.1 Multivariate interpolation and list-decoding algo-
rithms

In this section, we apply our algorithms for solution bases and interpolant bases (Sec-
tions 2.4 and 2.5) to efficiently solve problems of constrained multivariate interpolation
with multiplicities. These problems arise in particular in coding theory, and more specif-
ically in list-decoding algorithms. Our contributions lead to the best known cost bound
we are aware of for bivariate interpolation problems, such as those appearing in the list-
decoding [Sud97, GS98] and the soft-decoding [KV03a, Sec. III] of Reed-Solomon codes;
and for multivariate interpolation problems, such as those appearing in the list-decoding of
folded Reed-Solomon codes [GR08] and in robust Private Information Retrieval [DGH12].

In some of these contexts, the input points have a property that allows us to reduce
the interpolation problem to a system of linear modular equations which involves less
equations than unknowns. Such a system can be solved efficiently with our algorithm for
finding solutions with degrees constraints (Section 2.5.3). This interpolation problem and
the corresponding list-decoding contexts are presented in Sections 3.1.1 and 3.1.2.

In other situations, this property may not be satisfied. After reduction, the system
may have significantly more equations than unknowns, which makes the algorithm of Sec-
tion 2.5.3 inefficient. To solve this issue, we rather rely on our algorithms for interpolant
bases (Section 2.4): while slightly slower, they make no requirement on the input points.
In Section 3.1.3, we present this more general multivariate interpolation and the reduction
to interpolant bases; consequences for decoding algorithms are given in Section 3.1.4.

Finally, in Section 3.1.5 we focus on the Coppersmith technique over K[X], which is a
generalization of the list-decoding problem for Reed-Solomon codes. Extending our work
on the Guruswami-Sudan algorithm, we show that the interpolation step of this technique
can be efficiently reduced to a system of linear modular equations.

3.1.1 Multivariate interpolant with degree constraints

Here, we consider a multivariate interpolation problem with multiplicities and degree
constraints (Problem 11 below). As mentioned above, one motivation for studying this

89

Chapter 3. Impact on related problems

problem lies in its applications to list-decoding algorithms. In this context, the parameters
r, λ, ν, b of the problem are respectively known as the number of variables, list size, code
length or number of interpolation points, and as an agreement parameter. Furthermore,
the integers µ1, . . . , µν are known as multiplicities associated with each of the ν points,
and the r variables are associated with some weights w1, . . . , wr.

For example, in the application to the list-decoding of Reed-Solomon codes detailed
in Section 3.1.2, we have r = 1, all the multiplicities are equal to a same value µ, ν − b/µ
is an upper bound on the number of errors allowed on a received word, and the weight
w := w1 is such that w + 1 is the dimension of the code.

We stress that here we do not address the issue of choosing the parameters r, λ,
µ1, . . . , µν with respect to ν, b, w1, . . . , wr, as is often done: in our context, these are
all input parameters. Similarly, although we will mention them, we do not make some
usual assumptions on these parameters; in particular, we do not make any assumption
that ensures that our problem admits a solution: the algorithm will detect whether no
solution exists.

In what follows, we have r variables Y1, . . . , Yr and our problem asks to find a poly-
nomial in K[X, Y1, . . . , Yr]. We write degY1,...,Yr for the total degree with respect to these
variables Y1, . . . , Yr. Furthermore, wdegw1,...,wr stands for the weighted degree with respect
to weights w1, . . . , wr ∈ Z on variables Y1, . . . , Yr, respectively; that is, for a polynomial
Q =

∑
j1,...,jr

Qj1,...,jr(X)Y j1
1 · · ·Y jr

r ,

wdegw1,...,wr(Q) = max
j1,...,jr

(
deg(Qj1,...,jr) + j1w1 + · · ·+ jrwr

)
.

Problem 11 – Constrained multivariate interpolation
Input:
• points {(xk, yk,1, . . . , yk,r) ∈ Kr+1, 1 6 k 6 ν} with pairwise distinct xk,
• multiplicities µ1, . . . , µν ∈ Z>0,
• degree constraints λ ∈ Z>0 and b ∈ Z,
• weights w1, . . . , wr ∈ Z.

Output:
• a nonzero polynomial Q ∈ K[X, Y1, . . . , Yr] such that

(i) degY1,...,Yr(Q) 6 λ,
(ii) wdegw1,...,wr(Q) < b,
(iii) Q(xi, yi,1, . . . , yi,r) = 0 with multiplicity at least µi for 1 6 i 6 ν.

We call conditions (i), (ii), and (iii) the list-size condition, the weighted degree con-
dition, and the vanishing condition. Hereafter, a point (x, y1, . . . , yr) is said to be a zero
of Q with multiplicity at least µ if the shifted polynomial Q(X + x, Y1 + y1, . . . , Yr + yr)
has no monomial of total degree less than µ; in characteristic zero or larger than µ, this
is equivalent to requiring that all the derivatives of Q of order up to µ − 1 vanish at
(x, y1, . . . , yr).

90

3.1. Multivariate interpolation and list-decoding algorithms

By linearizing condition (iii) under the assumption that conditions (i) and (ii) are
satisfied, it is easily seen that solving Problem 11 amounts to computing a nonzero solution
to a D×N homogeneous linear system over K. Here, the number D of equations derives
from condition (iii) and thus depends on r, ν, µ1, . . . , µν , while the number N of unknowns
derives from conditions (i) and (ii) and thus depends on r, λ, b, w1, . . . , wr. It is customary
to assume D < N in order to guarantee the existence of a nonzero solution; however, as
said above, we do not make this assumption, since our algorithms do not require it.

Problem 11 is a generalization of the interpolation step of the Guruswami-Sudan algo-
rithm [Sud97, GS99] to r variables Y1, . . . , Yr, distinct multiplicities, and distinct weights.
The multivariate case r > 1 occurs for instance in the list-decodings of Parvaresh-Vardy
codes [PV05] and folded Reed-Solomon codes [GR08]. We will discuss these specific con-
texts in Section 3.1.2. The case of distinct multiplicities occur in the interpolation step in
soft-decoding of Reed-Solomon codes [KV03a]; however, this context differs from Prob-
lem 11 in that the xi are not necessarily pairwise distinct, a situation that we will thus
study separately in Sections 3.1.3 and 11.2.4.

Our solution to Problem 11 relies on a reduction to the problem of solving a system of
linear modular equations over K[X] (Problem 10). This is detailed in Section 11.1 and is
essentially based on a rewriting of the vanishing condition as a set of divisibility properties
of the successive Hasse derivatives of the sought multivariate polynomial, extending to
the multivariate case r > 1 results that can be found in [ZGA11] and [Zeh13, Chapters 4
and 5]. In this reduction, the assumption that x1, . . . , xν are distinct is a key to obtain an
instance of Problem 10 that we know how to solve efficiently (Theorem 2.25). Then, we
immediately deduce the following cost bound for Problem 11; in this result, m corresponds
to the number of polynomial unknowns of the obtained instance of Problem 10, while n
corresponds to the number of equations.

Corollary 3.1. Let

S =
{

(j1, . . . , jr) ∈ Zr>0

∣∣ j1 + · · ·+ jr 6 λ and j1w1 + · · ·+ jrwr < b
}
,

and let µ = max16i6ν µi, m = Card(S), n =
(
r+µ−1

r

)
, and D =

∑
16i6ν

(
r+µi
r+1

)
. There exists

a probabilistic algorithm that either computes a solution to Problem 11, or determines that
none exists, using

O((m+ n)ω−1M(D) log(D)) ⊆ O (̃(m+ n)ω−1D)

operations in K. This can be achieved using Algorithm 23 followed by Algorithm 19 or 20.
These algorithms choose O(D) elements in K; if these elements are chosen uniformly at
random in a subset of K of cardinality at least 6(D + 1)2, then the probability of success
is at least 1/2.

If K has fewer than 6(D + 1)2 elements, the remarks made after Theorem 2.25 about
working in a field extension of K still apply here. Furthermore, since in Problem 11 the
points xi are assumed to be distinct, we have already Card(K) > ν and then we can take
an extension of degree d = O(logν(D)). In all the applications to error-correcting codes

91

Chapter 3. Impact on related problems

we will consider (see Section 3.1.2), D is polynomial in ν so that we can take d = O(1),
and therefore in this context the cost bound in Corollary 3.1 holds for any field K.

If one is concerned about the probabilistic aspect of this result, we note that another
algorithm is proposed in Corollary 3.2; while slower by some logarithmic factors, it is
deterministic and returns a whole shifted reduced basis of interpolants in the slightly
more general context of Problem 12.

For a comparison with previous work, since Problem 11 directly reduces to Problems 8
to 10, we refer the reader to the discussions in the corresponding Sections 2.4 and 2.5.
In the next section, we give more details about previous work on the specific case of the
interpolation steps in list-decoding algorithms for Reed-Solomon and folded Reed-Solomon
codes.

We will often refer to the two following assumptions on the input parameters:

Hint,1: µ 6 λ,

Hint,2: b > 0 and b > λ ·max16j6r wj.

Regarding Hint,1, we prove in Section 11.4 that the case µ > λ can be reduced to the case
µ = λ, so that this assumption can be made without loss of generality. Besides, it is easily
verified that Hint,2 is equivalent to having S = {(j1, . . . , jr) ∈ Zr>0 | j1 + · · · + jr 6 λ};
when wj > 0 for some j, Hint,2 means that we do not take λ uselessly large. In particular,
assuming Hint,1 and Hint,2 implies that m = Card(S) =

(
r+λ
r

)
> n.

3.1.2 List-decoding of (folded) Reed-Solomon codes

We now focus on the specific context of the interpolation steps of the Guruswami-Sudan
algorithm [Sud97, GS99] for the list-decoding of Reed-Solomon codes, and the Guruswami-
Rudra algorithm [GR08] for the list-decoding of folded Reed-Solomon codes. We compare
our results with algorithms designed for these situations; for a broader overview of previous
work, we refer the reader to the introductive section of [BB10] and to [Nie13, Section 3.6].

In the case of the Guruswami-Sudan interpolation step, we have r = 1 and the as-
sumptions Hint,1 and Hint,2 are satisfied as well as

Hint,3: 0 6 w < ν where w := w1,

Hint,4: µ1 = · · · = µν = µ.

The assumption Hint,3 corresponds to the coding theory context, where w + 1 is the
dimension of the code; then w + 1 must be positive and at most ν, which is the length
of the received word. To support this assumption independently from any application
context, we show in Section 11.5 that if w > ν, then Problem 11 has either a trivial
solution or no solution at all.

Under the assumptions Hint,1, Hint,2, Hint,3, and Hint,4, the quantities defined in Corol-
lary 3.1 are m = Card(S) = λ+ 1, n = µ, and D = µ(µ+1)

2
ν.

Our contributions to this decoding problem are detailed in Section 11.2; in short, we
will show the following consequences of Corollary 3.1:

92

3.1. Multivariate interpolation and list-decoding algorithms

• the interpolation step of the Guruswami-Sudan algorithm [GS99] can be performed
in O (̃λω−1µ2

GSν) operations, where µGS is the multiplicity parameter used in this
algorithm;

• the interpolation step of theWu algorithm [Wu08] can be performed inO (̃λω−1µ2
Wuν)

operations, where µWu is the multiplicity parameter used in this algorithm;

• the re-encoding technique [WB86, KV03b] can be used in conjunction with our
algorithm in order to reduce the cost of the interpolation step of the Guruswami-
Sudan algorithm to O (̃λω−1µ2

GS(ν − w)) operations.

To the best of our knowledge, these are the best known cost bounds for these tasks.
If the probabilistic aspect of the algorithm is an issue, the same cost bounds can be
obtained, up to an additional logarithmic factor, by the deterministic algorithm presented
in Section 3.1.3 (see Corollary 3.2).

Furthermore, our result can also be adapted to the context of the interpolation step of
the Kötter-Vardy algorithm for the soft-decoding of Reed-Solomon codes [KV03a]. Still,
in this context the field elements x1, . . . , xν are generally not pairwise distinct, implying
that after our reduction we obtain an instance of Problem 10 which we may not know
how to solve efficiently; the reason is that the number n of polynomial equations may be
too large compared to the number m of unknowns. For this particular situation as well,
we refer the reader Section 3.1.3 for a fast algorithm.

Previous results focus mostly on the Guruswami-Sudan case (r = 1, µ > 1) and some
of them more specifically on the Sudan case (r = µ = 1); we summarize these results in
Table 3.1. We also include in this table the cost bounds of the algorithms in [VBB92,
Bec92] which solve Problem 8, since they can be used via the aforementioned reduction.
In some cases, such as in [Rei03, Ale05, Ber11, CH15], the cost bounds were not stated
quite exactly in our terms but the translation is straightforward.

In the second column of that table, we give the cost with respect to the interpolation
parameters λ, µ, ν, assuming further µ = νO(1) and λ = νO(1) to simplify the logarithmic
factors. The most significant part of the running time is its dependency with respect to
ν, with results being either cubic, quadratic, or quasi-linear. Then, under the assumption
Hint,1, the second most important parameter is λ, followed by µ. In particular, our result
compares favorably to the cost O (̃λωµν) obtained by Cohn and Heninger [CH15] which
was, to our knowledge, the best previous bound for this problem.

In the third column, we give the cost with respect to the Reed-Solomon code param-
eters ν and w, using worst-case parameter choices that are made to ensure the existence
of a solution: µ = O(νw) and λ = O(ν3/2w1/2) in the Guruswami-Sudan case [GS99],
and λ = O(ν1/2w−1/2) in the Sudan case [Sud97]. With these parameter choices, our
algorithms present a speedup (ν/w)1/2 over the algorithm in [CH15].

Most previous algorithms rely on linear algebra, either over K or over K[X]. When
working over K, a natural idea is to rely on cubic-time general linear system solvers, as
in Sudan’s and Guruswami-Sudan’s original papers.

Another line of work uses faster linear system solvers which are specialized for systems
that have specific structures. The algorithms in [RR00, ZGA11] rely on Feng and Tzeng’s

93

Chapter 3. Impact on related problems

Table 3.1: Fast algorithms for the interpolation step of Guruswami-Sudan list-decoding
(Problem 11 with r = 1 and under the assumptions Hint,1, Hint,2, Hint,3, Hint,4). The
symbol ? indicates a probabilistic algorithm.

Sudan case (µ = 1)
Beckermann [Bec92] O(λν2) O(ν

5
2w

−1
2)

Sudan [Sud97] O(ν3) O(ν3)

Olshevsky-Shokrollahi [OS99] O(λν2) O(ν
5
2w

−1
2)

Roth-Ruckenstein [RR00] O(λν2) O(ν
5
2w

−1
2)

Cohn-Heninger [CH11, CH15] O(λωM(ν) log(ν)) O (̃ν
ω+3
2 w

−ω
2) ?

Chapter 11 and Corollary 3.1 O(λω−1M(ν) log(ν)) O (̃ν
ω+1
2 w

1−ω
2) ?

Chapter 13 and Corollary 3.2 O(λω−1M(ν) log(ν)2) O (̃ν
ω+1
2 w

1−ω
2)

Guruswami-Sudan case (µ > 1)
Van Barel-Bultheel [VBB92] O(λµ4ν2) O(ν

15
2 w

9
2)

Guruswami-Sudan [GS99] O(µ6ν3) O(ν9w6)

Olshevsky-Shokrollahi [OS99] O(λµ4ν2) O(ν
15
2 w

9
2)

Zeh-Gentner-Augot [ZGA11] O(λµ4ν2) O(ν
15
2 w

9
2)

Kötter, Nielsen-Høholdt, McEliece
[Köt96, NH00, McE03]

O(λµ4ν2) O(ν
15
2 w

9
2)

Reinhard [Rei03] O(λ3µ2ν2) O(ν
17
2 w

7
2)

Lee-O’Sullivan [LO08] O(λ4µν2) O(ν9w3)

Trifonov [Tri10] (heuristic) O(µ3ν2) O(ν5w3)

Alekhnovich [Ale05] O(λ4µ4M(ν) log(ν)) O (̃ν11w6)

Beelen-Brander [BB10] O(λ3M(λµν) log(ν)) O (̃ν8w3)

Bernstein [Ber11] O(λωM(λν) log(ν)) O (̃ν
3ω+5

2 w
ω+1
2) ?

Cohn-Heninger [CH11, CH15] O(λωM(µν) log(ν)) O (̃ν
3ω+4

2 w
ω+2
2) ?

Chapter 11 and Corollary 3.1 O(λω−1M(µ2ν) log(ν)) O (̃ν
3ω+3

2 w
ω+3
2) ?

Chapter 13 and Corollary 3.2 O(λω−1M(µ2ν) log(ν)2) O (̃ν
3ω+3

2 w
ω+3
2)

94

3.1. Multivariate interpolation and list-decoding algorithms

linear system solver [FT91], combined with a reformulation in terms of syndromes and
key equations. Here, we use (and generalize to the case r > 1) some of these results in
Section 9.2, and we rely on the more efficient structured linear system solver of [BJS08,
BJMS16]4. Prior to our work, Olshevsky and Shokrollahi also used structured linear
algebra techniques [OS99], but it is unclear to us whether their encoding of the problem
could lead to similar results as ours.

As said above, another approach rephrases the problem of computing Q in terms of
polynomial matrix computations. This is based on the fact that the set of polynomials
which satisfy the conditions (i) and (iii) of Problem 11 form a free K[X]-module of finite
rank; precisely, this rank is the quantity m = Card(S) defined in Corollary 3.1. In the
context here we have m = λ+ 1, and there are essentially two approaches.

First, the incremental algorithms of [Köt96, NH00] and [McE03, Section 7], which are
often referred to as Kötter’s algorithm in coding theory, compute a shifted reduced basis
of the module by an iteration over the points and over the multiplicity constraints. In fact,
these algorithms can be interpreted as particular instances of iterative algorithms for M-
Padé approximation, by Beckermann [Bec92] when µ = 1 and by Van Barel and Bultheel
when µ > 1 [VBB92]. More insight into this remark will be given Sections 3.1.3 and 3.1.4,
where we also show that in this decoding context the input shift is sufficiently balanced
so that this type of algorithms uses O(λµ4ν2) operations. (According to Section 2.4.1,
for worst-case shifts this approach could use O(λ2µ4ν2) operations, unless one normalizes
the bases at each iteration as in [BL00, Algorithm FFFG]; see also Section 6.4.)

A second approach consists in starting from known generators of the module and then
computing a shifted reduced basis of it; this is the analogue of the Coppersmith technique
over K[X] [Rei03, CH15] (see also Section 3.1.5). The algorithms in [Ale02, Rei03, LO08,
Bus08, BB10, Bra10, Ber11, CH11] follow this scheme, which yields a vector which satisfies
the degree constraints of condition (ii) of Problem 11, unless there is no solution. Here,
the entries of the shift are small enough not to impact the cost bound of the fastest known
row reduction algorithms, which are designed for the uniform shift. To achieve quasi-linear
time in ν, the algorithms in [BB10, Bra10] use a reduction subroutine due to Alekhnovich
[Ale05], while those in [Ber11, CH11, CH15] rely on the faster, randomized algorithm in
[GJV03]. Up to additional logarithmic factors, or the assumption that M(d) ∈ O(dω−1),
a similarly fast and deterministic algorithm was given in [GSSV12].

The case r > 1 is used for example in the interpolation steps of the list-decoding
of Parvaresh-Vardy codes [PV05] and folded Reed-Solomon codes [GR08], as well as for
robustness issues in Private Information Retrieval [DGH12]. In these contexts, one deals
with Problem 11 for some r > 1, identical positive weights w1 = · · · = wr, and with list-
size and multiplicity parameters λ and µ = µ1 = · · · = µν such that the main quantities
in the cost bound of Corollary 3.1 are

S = {j ∈ Zr>0 | |j| < λ}, m =

(
r + λ

r

)
, n 6 m, and D =

(
r + µ

r + 1

)
ν.

Two algorithms were first given for this case, both having cost bound O(rD3): the first
4At the time of writing this document, [BJMS16] has not yet been published. In short, for the uses

we make of it, the main difference with [BJS08] is that it removes a logarithm factor in the cost bound.

95

Chapter 3. Impact on related problems

one generalizes the incremental solution of [Bec92, VBB92] to this multivariate context
(see [Fit97, Section 4], [OF02]), while the other one relies on an extension of the FGLM
algorithm [FGLM93] to the case of modules of finite codimension (see [Fit97, Sections 2
and 3]).

Then, the approach based on the computation of a reduced basis of a K[X]-module
was extended to the multivariate case r > 1 in [Bus08, Bra10, CH12]. We give more
details about this in Section 11.3; in short, by relying on fast row reduction [GSSV12],
this gives a deterministic algorithm which uses O (̃mωµν) operations. To the best of our
knowledge, this is the previously best known cost bound for this multivariate context. Our
cost bound O (̃mω−1D) in Corollary 3.1 improves upon it, since here we have mµν > D.

Finally, a problem similar to Problem 11 is solved in [GR06], except that it is not
assumed that x1, . . . , xν are distinct. For simple roots and under some genericity assump-
tion on the points {(xi, yi,1, . . . , yi,r)}16i6ν , this algorithm uses O(ν2+1/r) operations to
compute a polynomial Q which satisfies (i), (ii), and (iii) with µ = 1. However, the cost
analysis is not clear to us in the general case with multiple roots (µ > 1).

3.1.3 Computing shifted Popov bases of multivariate interpolants

Here we study a slightly more general multivariate interpolation problem, Problem 12
below, motivated in particular by the interpolation step of the soft-decoding of Reed-
Solomon codes [KV03a, Section III], where x1, . . . , xν are not distinct, and by robustness of
Private Information Retrieval [DGH12], where one wants a complete shifted reduced basis
of interpolants. The points where Problem 12 generalizes Problem 11 are the following:

• the points x1, . . . , xν do not have to be pairwise distinct;

• it supports a more general degree measure for interpolants, via the use of any shifted
degree instead of the weighted degree;

• it asks for a whole shifted reduced basis of interpolants, allowing in particular to
retrieve interpolants that satisfy degree constraints as explained in Remark 1.9;

• it offers more flexibility on the structure of the multiplicities of the roots, since
any monomial set which is stable under division is allowed while Problem 11 only
accepts sets defined by some total degree bound.

We will obtain an efficient algorithm thanks to a direct reduction to the problem of
computing minimal interpolant bases (Problem 4 with a Jordan multiplication matrix),
without considering solution bases (Problem 9). We recall that, while our algorithms for
solution bases are efficient only when the number of polynomial equations n is controlled
with respect to the number of unknowns m, our cost bounds concerning interpolant bases
in Theorems 2.19 and 2.20 do not involve such a restriction.

Problem. As before, we want to find a multivariate polynomial Q ∈ K[X, Y1, . . . , Yr]
which vanishes at some given points {(xk, yk,1, yk,2, . . . , yk,r), 1 6 k 6 ν}. Here, we do not
require that the xk be pairwise distinct, and the points are not associated with integer
multiplicities but with prescribed supports {µk, 1 6 k 6 ν} ⊂ Zr+1

>0 .

96

3.1. Multivariate interpolation and list-decoding algorithms

In this context, for a point (x, y1, . . . , yr) ∈ Kr+1 and a finite exponent set µ ⊂ Zr+1
>0 , we

say that a polynomial Q vanishes at (x, y1, . . . , yr) with support µ if the shifted polynomial
Q(X + x, Y1 + y1, . . . , Yr + yr) has no monomial with exponent in µ. When the support
has the specific form µ = {(i, j1, . . . , jr) ∈ Zr+1

>0 | i + j1 + · · · + jr < µ} for some positive
integer µ, then this notion of vanishing with support µ coincides with the definition of
having a zero with multiplicity µ given in Section 3.1.1.

Besides, in coding theory applications, the solution Q(X, Y1, . . . , Yr) should also have
sufficiently small weighted degree wdegw1,...,wr(Q) for some given weights (w1, . . . , wr) ∈
Zr. Here, we will focus on a more general type of degree minimization.

To make this situation fit in the framework of shifted reduced bases of K[X]-modules,
we first require that we are given an exponent set S ⊆ Zr>0 such that any monomial
X iY j1

1 · · ·Y jr
r appearing in a solution Q should satisfy (j1, . . . , jr) ∈ S. As a consequence,

we can write Q =
∑

(j1,...,jr)∈S pj1,...,jr(X)Y j1
1 · · ·Y jr

r , and having chosen an arbitrary or-
dering of the elements in S, we can identify Q with p = [pj1,...,jr](j1,...,jr)∈S ∈ K[X]1×m,
where m is the cardinality of S.

Furthermore, since Q(X,Xw1Y1, · · · , XwrYr) =
∑

(j1,...,jr)∈S X
w1j1+···+wrjrpj(X)Y j, by

definition the weighted degree wdegw1,...,wr(Q) is precisely the s-degree of p for the shift
s = (w1j1 + · · ·+ wrjr)(j1,...,jr)∈S .

Our goal will be to express the multivariate interpolation problem studied in this
section, which we are still defining, as a shifted minimal interpolant basis problem. The
link is almost complete, except for an additional assumption to ensure that the set of
solutions is a K[X]-module. We require that each considered support µ satisfy

if (i, j1, . . . , jr) ∈ µ and i > 0, then (i− 1, j1, . . . , jr) ∈ µ. (3.1)

Then, the set

Mint =

{
p = [pj1,...,jr](j1,...,jr)∈S ∈ K[X]1×m

∣∣∣ ∑
(j1,...,jr)∈S

pj1,...,jr(X)Y j1
1 · · ·Y jr

r

vanishes at (xk, yk,1, . . . , yk,r) with support µk for 1 6 k 6 ν

}
is a K[X]-module, as can be seen from the equality

(XQ)(X + x, Y1 + y1, . . . , Yr + yr) = (X + x)Q(X + x, Y + y1, . . . , Yr + yr). (3.2)

This leads us to Problem 12.
In particular, since an s-reduced basis ofMint contains a row whose s-degree is minimal

among all elements of Mint, one may compute an interpolant with sufficiently small
weighted degree from such a basis for a shift chosen as above. Besides, we note that in
some cases it is important to return a whole basis of interpolants and not only a single
one of small degree (see for example [DGH12]).

Reduction. We now show that this problem is a relation basis problem with the input
module being defined by a dual basis (see Section 2.1.1); as such, and since the correspond-
ing multiplication matrix of X is a Jordan matrix, it can be embedded in the framework

97

Chapter 3. Impact on related problems

Problem 12 – Minimal basis of multivariate interpolants
Input:
• pairwise distinct points {(xk, yk,1, . . . , yk,r) ∈ Kr+1, 1 6 k 6 ν},
• supports {µk ⊂ Zr+1

>0 , 1 6 k 6 ν} which all satisfy Eq. (3.1),
• exponent set S ⊂ Zr>0 of cardinality m,
• shift s ∈ Zm.

Output:
• a matrix P ∈ K[X]m×m such that

◦ the rows of P form a basis of the K[X]-moduleMint,

◦ P is s-reduced.

of minimal interpolant bases (Section 2.4). We consider the multivariate polynomial ring
K[X,Y] = K[X, Y1, . . . , Yr] and the K-linear functionals

{`i,j1,...,jr,k : K[X,Y]→ K, (i, j1, . . . , jr) ∈ µk, 1 6 k 6 ν},

where for all Q ∈ K[X,Y], `i,j1,...,jr,k(Q) is the coefficient of the monomial X iY j1
1 · · ·Y jr

r

in the shifted polynomial Q(X+xk, Y1 +yk,1, . . . , Yr +yk,r). These functionals are linearly
independent, and the intersection K of their kernels is the set of polynomials in K[X,Y]
vanishing at (xk, yk,1, . . . , yk,r) with support µk for all k. The quotient K[X,Y]/K is a
K-vector space of dimension D = D1 + · · · + Dν where Dk is the cardinality of µk; it is
thus isomorphic to KD, with a basis of the dual space being given by the functionals.

Our assumption on the supports implies that K[X,Y]/K is a K[X]-module; we now
describe the corresponding multiplication matrix J ∈ KD×D. For a given k, let us order
the functionals in such a way that, for any (i, j1, . . . , jr) such that (i + 1, j1, . . . , jr) is in
µk, the successor of `i,j1,...,jr,k is `i+1,j1,...,jr,k. Equation (3.2) implies that

`i,j1,...,jr,k(XQ) = `i−1,j1,...,jr,k(Q) + xk`i,j1,...,jr,k(Q) (3.3)

holds for all Q ∈ K[X,Y], all k ∈ {1, . . . , ν}, and all (i, j1, . . . , jr) ∈ µk with i > 0.
Hence, J is block diagonal with diagonal blocks J1, . . . ,Jν , where Jk is a Dk × Dk

Jordan matrix with only eigenvalue xk and block dimensions given by the support µk.
More precisely, defining

Λk = {(j1, . . . , jr) ∈ Zr>0 | (i, j1, . . . , jr) ∈ µk for some i}

and
Dk,j1,...,jr = max{i ∈ Z>0 | (i, j1, . . . , jr) ∈ µk},

for each (j1, . . . , jr) ∈ Λk, we have the disjoint union

µk =
⋃

(j1,...,jr)∈Λk

{
(i, j1, . . . , jr), 0 6 i 6 Dk,j1,...,jr

}
.

Then, Jk is block diagonal with Card(Λk) blocks: to each (j1, . . . , jr) ∈ Λk corresponds a
Dk,j1,...,jr×Dk,j1,...,jr Jordan block with eigenvalue xk. It is reasonable to consider x1, . . . , xν

98

3.1. Multivariate interpolation and list-decoding algorithms

ordered as we would like for a standard representation of J. For example, in problems
coming from coding theory, these points are part of the code itself, so the reordering can
be done as a pre-computation as soon as the code is fixed.

To complete the reduction to Problem 4, it remains to construct the input matrix of
evaluations F ∈ Km×D. For each exponent (γ1, . . . , γr) ∈ S we consider the monomial
Y γ1

1 · · ·Y γr
r and take its image in K[X,Y]/K: this is the vector fγ1,...,γr ∈ KD having

for entries the evaluations of the functionals `i,j1,...,jr,k at Y γ1
1 · · ·Y γr

r . Let then F be
the matrix in Km×D with rows (fγ1,...,γr)(γ1,...,γr)∈S : our construction shows that a row
p = [pγ1,...,γr](γ1,...,γr)∈S ∈ K[X]1×m is inMint if and only if it is an interpolant of SyzJ(F).

Result. To make the above reduction to Problem 4 efficient, we make the assumption
that the exponent sets S and µk are stable under division. This means that if some
exponent (j1, . . . , jr) is in S then all (j′1, . . . , j

′
r) such that j′1 6 j1, . . . , j

′
r 6 jr also belong

to S; and similarly if (i, j1, . . . , jr) is in a support µk, then all (i′, j′1, . . . , j
′
r) such that

i′ 6 i, j′1 6 j1, . . . , j
′
r 6 jr belong to µk.

This assumption is satisfied in all the particular cases we will consider, where S and
the µk are often given through a bound on the total degree of their elements, as in
Sections 3.1.1 and 3.1.2. For example, in applications to list-decoding algorithms we
typically have S = {(j1, . . . , jr) ∈ Zr>0 | j1 + · · ·+ jr 6 λ} for some positive integer λ; in
this context, we thus have m =

(
r+λ
r

)
, and the parameter D = Card(µ1) + · · ·+ Card(µν)

is sometimes called the cost [KV03a, Section III]. As a side note, we also remark that this
assumption also implies that K is a zero-dimensional ideal of K[X,Y].

Most importantly, using the straightforward extension of Eq. (3.3) to multiplication
by Y1, . . . , Yr, it allows us to compute all entries `i,j1,...,jr,k(Y

γ1
1 · · ·Y γr

r) of the matrix F
inductively in O(mD) operations, which is negligible compared to the cost of solving the
resulting instance of Problem 4.

We then get the following result as a corollary of Theorems 2.19 and 2.20. We refer
to Theorem 2.12 concerning the case where D = Card(µ1) + · · · + Card(µν) is in O(m),
where m = Card(S).

Corollary 3.2. Let D be the sum of the cardinalities of the multiplicity supports, let m be
the cardinality of S, and assume that S and µ1, . . . ,µν are stable under division. There
is a deterministic algorithm which solves Problem 12 using

O(mω−1M(D) log(D) log(D/m) +mω−1M(ξ) log(ξ/m))

operations in K, where ξ = |s−min(s)|. Furthermore, for an arbitrary shift s, there is a
deterministic algorithm which solves Problem 12 using

O(mω−1M(D) log(D) log(D/m)2)

operations in K and which returns the s-Popov basis ofMint.

The term O(mω−1M(ξ) log(ξ/m)) in the first cost bound can be neglected if ξ ∈ O(D);
this is for example the case in the contexts of bivariate interpolation for soft- or list-
decoding of Reed-Solomon codes, as detailed below in Section 3.1.4. Thus, in these
contexts, the logarithmic factor in the cost is in O(log(D)2), as we claimed in Table 3.1.

99

Chapter 3. Impact on related problems

However, we do not have such a bound on ξ in the list-decoding of Parvaresh-Vardy
codes and folded Reed-Solomon codes. Thus, in these cases we rely on the second al-
gorithm, and the logarithmic factor in the cost bound is log(D)3. To the best of our
knowledge, this is the best known cost bound for a deterministic algorithm for these
list-decoding problems, improving upon [Bus08, Bra10, CH12]. For this particular case,
a slightly faster, but probabilistic, algorithm was presented in Section 3.1.1, with cost
bound O(mω−1M(D) log(D)) (see Corollary 3.1).

The algorithm of Section 3.1.1 does not cover the same generality, as summarized at
the beginning of this section. In particular, it requires x1, . . . , xν to be distinct and it
returns a single interpolant which satisfies prescribed degree constraints. It is sometimes
important, for example in the use of list-decoding algorithms for Private Information
Retrieval [DGH12], to return the whole basis of interpolants. To the best of our knowledge,
our algorithm is the first one which costs O (̃mω−1D) for this task; this improves in
particular on the approach of [Bus08, Bra10, CH12] based on row reduction, which we
presented in Section 3.1.2. There are also interesting situations where x1, . . . , xν are not
distinct, as we detail now in the next section.

3.1.4 Soft-decoding of Reed-Solomon codes

Kötter and Vardy developed an extension of the Guruswami-Sudan algorithm to the con-
text of soft-decoding of Reed-Solomon codes, where one has reliability information on the
symbols of the received word. This algorithm involves the soft-interpolation step [KV03a,
Section III] which deals with Problem 12 with r = 1 and S = {0, . . . ,m − 1}; here, the
points x1, . . . , xν are not necessarily pairwise distinct, and to each xk for 1 6 k 6 ν is asso-
ciated a multiplicity parameter µk and a corresponding support µk = {(i, j) | i+ j < µk}.
In [KV03a], the quantity D =

∑
16k6ν

(
µk+1

2

)
is called the cost ; we recall that it corre-

sponds to the number of linear equations over K that one obtains after linearizing the
condition of belonging to the interpolant moduleMint.

As explained above, here the shift s takes the form s = (0, w, 2w, . . . , (m− 1)w), with
w + 1 being the message length of the considered Reed-Solomon code. In this context,
one chooses for m the smallest integer such that the number of linear unknowns in the
linearized problem is more than D. Because this number of unknowns is directly linked to
|s|, this leads to the bound |s| ∈ O(D), which can be proven for example using [KV03a,
Lemma 1 and Equations (10) and (11)]. Thus, from Corollary 3.2, our algorithm solves
the soft-interpolation step using O(mω−1M(D) log(D) log(D/m)) operations in K. To the
best of our knowledge, this is the best known cost bound to solve this problem.

The iterative algorithms in [Bec92, VBB92, Köt96, NH00, McE03], which we men-
tioned in Section 3.1.2 concerning the Guruswami-Sudan interpolation step, also work
in this more general situation. They use O(mD2) operations in K, since the considered
input shift satisfies |s−min(s)| ∈ O(D). Based on the same recurrence relations, our fast
Algorithm 28 can be seen as a divide-and-conquer version of these algorithms.

A previous divide-and-conquer algorithm can be found in [Nie14], focusing on the
case of identical multiplicities µ = µ1 = · · · = µν . The recursion is on the number of
points ν, and using fast multiplication of the bases obtained recursively, this algorithm
has cost bound O(m2Dµ)+O (̃mωD/µ) [Nie14, Proposition 3]. Both terms in this bound

100

3.1. Multivariate interpolation and list-decoding algorithms

are larger than the cost O (̃mω−1D) obtained here; we note that in [Nie14], the bases
computed recursively may have size as large as Θ(m2D/µ), with µ < m, while in our
algorithm their size is always bounded by O(mD) (in this case with |s−min(s)| ∈ O(D)).
While the algorithm of [Nie14] can be adapted to the case of distinct multiplicities, it is
not clear to us what cost bound this would lead to.

The approach based on row reduction of a polynomial matrix, mentioned in Sec-
tion 3.1.2, was also developed for this more general interpolation problem in [Ale02,
Ale05, LO06]. It consists in first building a basis A ∈ K[X]m×m of the K[X]-module
of interpolants Mint, and in then reducing this basis for the given shift s to obtain a
s-minimal basis of interpolants. The maximal degree in A is

β =
∑

16k6ν

max{µi | 1 6 i 6 ν and xi = xk}
Card({1 6 i 6 ν | xi = xk})

;

one can check using µk < m for all k that

D =
∑

16k6ν

µk(µk + 1)

2
6
m

2

∑
16k6ν

µk 6
mβ

2
.

Using the fast deterministic reduction algorithm in [GSSV12], this approach has cost
bound O(mωM(β)(log(m)2 + log(β))); the cost bound of our algorithm is thus smaller by
a factor O (̃mβ/D).

In [Zeh13, Section 5.1] the so-called key equations commonly used in the decod-
ing of Reed-Solomon codes were generalized to this soft-interpolation step. We de-
tail in Section 11.2.4 how to adapt our results based on fast structured linear alge-
bra (Theorem 2.25 and Corollary 3.1), in order to solve these equations efficiently. In
this approach, the set of points {(xk, yk), 1 6 k 6 ν} is partitioned as P1 ∪ · · · ∪ Pq,
where in each set Ph the points have pairwise distinct x-coordinates. We further write
µ(h) = max{µk | 1 6 i 6 ν and (xk, yk) ∈ Ph} for each h, and n =

∑
16h6q µ

(h). Then,
the cost bound of this approach is O((m + n)ω−1M(D) log(D)), with a probabilistic al-
gorithm. We note that n may be significantly larger than m. Our algorithm supporting
Corollary 3.2 is deterministic and has a better cost.

All the mentioned algorithms for the interpolation step of list- or soft-decoding of Reed-
Solomon codes, including the ones presented in this thesis, can be used in conjunction
with the re-encoding technique [WB86, KV03b] for the decoding problem (see for example
Section 11.2.2).

3.1.5 General Coppersmith technique over K[X]

The Coppersmith technique [Hås86, GTV90, Cop96, HG01] primarily refers to a lattice-
based method to compute small modular roots of a polynomial F (Y) over the integers Z.
It has been largely studied in the last twenty years, in particular for its applications in
cryptography, and extends to polynomials over several other domains [CH15].

Here, we focus on the case of a polynomial F (Y) over the univariate polynomials K[X].
We will see that the list-decoding problem for Reed-Solomon codes [GS99] precisely asks

101

Chapter 3. Impact on related problems

to compute a small modular root, and therefore that the Guruswami-Sudan algorithm
can be interpreted as an instance of the Coppersmith technique [Ber11, CH11].

We will present the Coppersmith technique over K[X] and then focus on its first
step, called the interpolation step. We show that this step can be efficiently reduced to
a system of linear modular equations over K[X]; solving the latter with the algorithms
presented above leads to an improvement upon previous algorithms, which rely on fast row
reduction. The problem reduction we give can be seen as a generalization of the derivation
of extended key equations in the reduction of the Guruswami-Sudan interpolation step to
a system of modular equations [RR00, ZGA11] (see also Section 11.1).

In what follows, K[X][Y] stands for the set of univariate polynomials in Y over K[X].
While this is essentially the set of bivariate polynomials in X and Y , in the context here
we will most often see its elements as univariate polynomials.

Small modular roots. In its version over K[X], the Coppersmith technique solves
Problem 13.

Problem 13 – Small modular roots
Input:
• positive integers d and ν,
• nonnegative integers w and t,
• M ∈ K[X] of degree ν,
• F ∈ K[X][Y] monic of degree d with coefficients of degree < ν.

Output:
• all polynomials p ∈ K[X] such that

◦ deg(gcd(F (p),M)) > t;

◦ deg(p) 6 w.

We note that one may consider M monic without loss of generality. The size of the
input, in terms of the number of field elements used to represent it, is at most dν for F
and ν for M . The size of the output is not obvious to analyze: the number of solutions
depends on the four parameters d, ν, w and t, and may be exponential in d or ν.

Under the assumption t2 > wνd, the K[X] version of the Coppersmith technique solves
Problem 13 in time polynomial in d and ν, with two main steps:

• the interpolation step which builds a polynomialQ ∈ K[X][Y] that satisfiesQ(p) = 0
for all p that are solutions to Problem 13;

• the root-finding step which computes the roots of Q(Y) in K[X] and returns those
that are actual solutions to Problem 13.

For more details, we refer to the discussion after Problem 14, and to [CH11, CH15].
The decoding of Reed-Solomon codes can be seen as a particular case of this problem.

In that context, w + 1 is the message length (or dimension of the code) and ν − t is an

102

3.1. Multivariate interpolation and list-decoding algorithms

upper bound on the number of errors that can be corrected by the decoder. We have
as input the code evaluation points x1, . . . , xν , which are pairwise distinct in K, as well
as a received word (y1, . . . , yν) ∈ Kν . Then, the goal is to find all p ∈ K[X] such that
deg(p) 6 w and p(xi) = yi for at least t values of i ∈ {1, . . . , ν}; the number of such i’s is
the number of correct locations, called the agreement.

Let us define L as the Lagrange polynomial such that L(xi) = yi for all i, as well as
M = (X − x1) · · · (X − xν) and F = Y − L. Then, by construction deg(gcd(F (p),M))
counts the number of indices i for which p(xi) = yi: it measures the agreement, for a
given p ∈ K[X]. As a result, for this particular input M and F , Problem 13 precisely
corresponds to the decoding problem. Depending on the parameters, it can be solved
by unique decoders such as the Welch-Berlekamp algorithm [WB86], or by list-decoders
such as the Guruswami-Sudan algorithm [GS99], or it can have an exponential number of
solutions (only if t2 6 wν).
Remark 3.3. Most previous works on the latter algorithm focus on reducing the cost
of the interpolation step; we refer to Section 3.1.2 for an overview. Algorithms for the
root-finding step have been discussed for example in [RR00, Ale05, Rot07, Ber11]. While
this second step has been considered until now as negligible in terms of efficiency, recent
progress on the first step is closing the gap between the two, at least from a theoretical
point of view. Therefore, it seems that a proper study should be conducted with regards
to possible improvements on the root-finding step. K

The interpolation step. In this document, we focus on the interpolation step, which
can be formalized as follows (Problem 14).

Problem 14 – Interpolation step
Input:
• positive integers d and ν,
• nonnegative integers w and t,
• M ∈ K[X] of degree ν,
• F ∈ K[X][Y] monic of degree d with coefficients of degree < ν.
• positive integer µ.

Output:
• a nonzero polynomial Q ∈ K[X][Y] such that

◦ Q belongs to the ideal

I = 〈M,F 〉µ = 〈Mµ,Mµ−1F, . . . ,MF µ−1, F µ〉;

◦ degX(Q(XwY)) < µt.

Writing Q = Q0 +Q1Y +Q2Y
2 + · · · , the second item requires that deg(Qj) < µt−jw

for all j 6 degY (Q). One may note that this corresponds to requiring that, seeing Q
as a bivariate polynomial, its w-weighted degree be less than µt. In particular, degY (Q)
cannot grow arbitrarily large: it is bounded from above by µt/w.

103

Chapter 3. Impact on related problems

As in list-decoding algorithms, the integer µ is called the multiplicity parameter and is
introduced to make the technique work in more cases. For example, the Sudan algorithm
[Sud97] is with µ = 1 and is able to correct up to about ν −

√
2wν errors, while the

Guruswami-Sudan algorithm [GS99] improves this bound to ν −
√
wν by using µ > 1.

To briefly justify this interpolation step, suppose that we have computed a solution Q
to Problem 14. Then, every solution p to Problem 13 satisfies

• deg(gcd(F (p),M)) > t and thus deg(gcd(Q(p),Mµ)) > µt since Q belongs to I,

• deg(p) 6 w and thus deg(Q(p)) 6 degX(Q(XwY)) < µt,

which together imply Q(p) = 0. Therefore, having Q, to solve Problem 13, it remains to
compute its roots over K[X] and to verify which of them are solutions to Problem 13.

The choice of the parameter µ > 1 can be done by counting how many linear unknowns
and linear equations we have in the K-linear system corresponding to the given instance
of Problem 14, and by taking µ sufficiently large so that there are more unknowns than
equations. This is only feasible under some assumption on the parameters ν, d, w, t.

Namely, assuming that t2 > wνd, one may choose

µ =

⌊
w(νd− t)
t2 − wνd

⌋
+ 1 and λ =

⌊
µ
t

w

⌋
, (3.4)

which are such that there is a solution Q to Problem 14 with degY (Q) 6 λ. Indeed, this
choice implies the inequality∑

j6λ

(µt− jw) >
∑
i<µ

(µ− i)νd , (3.5)

which precisely states that there are more unknowns than equations in the linearized
problem. (We will also derive this inequality from the reduction-based approach in Sec-
tion 10.1.) We remark that λ is called the list-size parameter, since it also bounds the
number of solutions to Problem 13. We deduce that this number is at most λ < 2tνd.

Result. In the case of Reed-Solomon list-decoding, in Section 3.1.2 we mentioned algo-
rithms based on a linearization into a structured system over K, others using a top-down
approach relying on row reduction, and finally those following a bottom-up, incremental
procedure. Some of these algorithms exploit the known roots ofM , such as the bottom-up
ones and the one in [OS99] which involves block-Vandermonde matrices. In general, these
roots are unknown and may not be in K.

On the other hand, the top-down approach can be seen as the polynomial counterpart
of the CRT list-decoding in [Bon02], as stated in [Rei03], and directly generalizes to any
inputs M and F . As such, it is the analogue of the general Coppersmith technique over
the integers; we present it in more detail in Section 10.1, following [CH15]. This solves
Problem 14 using O (̃λωµν) operations in K.

Then, we extend our improvement of the interpolation step in the Guruswami-Sudan
algorithm (Section 3.1.2) to the more general context here. We show how the first require-
ment on Q in Problem 14, that it belongs to I, can be efficiently rewritten as a system

104

3.2. Computing shifted Popov forms of polynomial matrices

of linear modular equations over K[X] (Section 10.2). Using our fast algorithms for such
systems, this allows us to solve Problem 14 using O (̃λω−1µ2νd) field operations. This is
a speed-up factor of λ/(µd) with respect to the previously fastest known algorithm; we
have λ > µd by choice of the parameters.

Compared to the generalization of the extended key equation of [RR00, ZGA11] to
several variables and more general constraints (Sections 3.1.2 and 11.1), which was based
on Hasse derivatives, here we perform the reduction to a system of equations without
requiring the knowledge of roots and multiplicities of the modulus M . While we present
it only in the case of one variable Y , we expect that this extends to several variables.

Remark 3.4. Multivariate extensions of Problem 13 arise in list-decoding problems, namely
for Parvaresh-Vardy codes and folded Reed-Solomon codes [PV05, GR08], and in questions
related to robustness in Private Information Retrieval [DGH12]. With several variables,
the root-finding step becomes more involved. Besides, in [DGH12] the interpolation step
should output several independent Q in order to be able to find the roots; a single one is
sufficient in list-decoding contexts because there are others that we know by construction.

Another issue in multivariate extensions of Problem 13 is the choice of parameters: in
this case as well, it is made so that some well-identified inequality is satisfied, yet we do
not have a nice closed-form expression, to the best of our knowledge. K

3.2 Computing shifted Popov forms of polynomial ma-
trices

In this section, we present our results concerning the computation of shifted Popov forms
of polynomial matrices. We give three main contributions. First, we adapt a technique
from [GSSV12] to give a reduction of the degrees in the input matrix which behaves well
regarding shifted Popov form computation; while it only slightly increases the dimensions,
it also ensures that the degree is at most the average column and row degrees of the original
matrix. Second, we give a fast, Las Vegas randomized algorithm to compute shifted Popov
forms for an arbitrary shift, relying on Smith form computations [Sto03, GS11, Gup11]
and on our result on fast shifted Popov solution basis from Section 2.5. Finally, we
design a similarly fast, yet deterministic algorithm for the particular case of Hermite
form computation. The latter algorithm starts by computing the diagonal entries of the
Hermite form, which may be modified to deterministically yield the determinant of a
polynomial matrix.

3.2.1 Overview

Our problem asks to find canonical forms of polynomial matrices: given a polynomial
matrix A and a shift s, we want to compute the s-Popov form of A. This situation differs
from those studied above in this document, for the following reason. In the computation of
relation bases and its variants presented in Chapter 2, the module of which we wanted to
compute a shifted Popov basis was given to us implicitly, essentially via a set of equations.

105

Chapter 3. Impact on related problems

Here, we are interested in the K[X]-moduleM generated by the rows of the input matrix
A, also called the row space of A: it is is described explicitly, by a generating set.

As in most previous work on fast algorithms for this kind of question, we will focus on
computing shifted Popov forms of square nonsingular matrices. The general case of an
input matrix which is rectangular or does not necessarily have full rank has been studied
in [BLV06]; a fast solution would require further developments. In terms of modules,
assuming that A has full rank means that the rows of A form a basis of its row spaceM,
and we want to unimodularly transform this basis ofM into the one in s-Popov form. At
the same time, assuming that A is square means that we focus on the case of a module
M of finite codimension deg(det(A)). Being in this situation will in particular help us to
better control the degrees in the matrices that we manipulate during the computation.

Problem 15 – Shifted Popov form
Input:
• a nonsingular matrix A ∈ K[X]m×m,
• a shift s ∈ Zm.

Output:
• the s-Popov form of A.

Two particularly interesting specific cases of Problem 15 are the computation of the
Popov form [Pop72, Kai80] for the uniform shift s = 0, and of the Hermite form [Her51,
Kai80] for the shift h = (0, δ, 2δ, . . . , (m − 1)δ) ∈ Zm>0 where δ = m deg(A). As we
have discussed in Chapter 1, in addition to some normalization property, the Popov form
essentially asks that the row degrees be minimal, while the Hermite form asks that the
matrix be triangular. For a broader perspective on the computation of shifted reduced
forms, we refer the reader to [BLV99, BLV06].

Problem 16 – Hermite form
Input:
• a nonsingular matrix A ∈ K[X]m×m.

Output:
• the Hermite form of A.

During the past decade, there has been a goal to design algorithms that perform
various K[X]-linear algebra operations in about the time that it takes to multiply two
polynomial matrices having the same dimensions and degree as the input matrix, namely
at a cost O (̃mωd). Probabilistic algorithms with such a cost already exist for a number of
polynomial matrix problems, for example for linear system solving [Sto03], Smith normal
form computation [Sto03], row reduction [GJV03], and small kernel bases computation
[SV05]. Concerning polynomial matrix inversion, the algorithm in [JV05] costs O (̃m3d),
which is quasi-linear in the number of field elements used to represent the inverse. Re-

106

3.2. Computing shifted Popov forms of polynomial matrices

cently, deterministic fast algorithms have been given for linear system solving [GSSV12],
minimal kernel bases [ZLS12], and matrix inversion [ZLS15].

For Hermite form computation, Gupta and Storjohann [GS11] gave a Las Vegas ran-
domized algorithm with expected cost O (̃m3d), later improved to O (̃mωd) in [Gup11].
Their algorithm was the first for this task to be both softly cubic inm and softly linear in d.
Furthermore, a deterministic algorithm in O (̃mωd) has been given for the computation
of 0-reduced forms and the normalization into 0-Popov form [GSSV12, SS11].

In this document, to the best of our knowledge, we give the first algorithm with
cost bound O (̃mωd) to solve Problem 15 for an arbitrary input shift; this algorithm is
presented in Section 3.2.2 and is probabilistic. Furthermore, we design a deterministic
algorithm in O (̃mωd) for the specific case of Hermite form computation, by exploiting its
triangular shape; this is presented in Section 3.2.3.

Yet, in some cases, the cost bound O (̃mωd) may be unsatisfactory, namely if the
degree d is significantly larger than the average degree of the entries of the matrix A.
Recently, it has been a goal to obtain cost bounds that take into account some types
of average degrees of the matrices rather than their maximum degree. This has already
been achieved for the computation of order bases [Sto06, ZL12], kernel bases [ZLS12],
and matrix inversion [ZLS15]. We also achieve this here for the computation of relation
bases, since our results summarized in Chapter 2 involve the average column degree of
the output in the cost bounds.

Here, we obtain a similar improvement for the computation of shifted Popov forms
of a matrix. For this, we make use of the partial linearization framework in [GSSV12,
Section 6] and the related generic determinant bound DA for a matrix A ∈ K[X]m×m; we
introduce this quantity in our cost bounds. Details about DA are given in Section 15.1,
where we also give more insight into our interest in expressing our cost bounds with DA,
rather than deg(A) for example. This can be summarized into the fact that DA better
reflects the distribution of the degrees in A than deg(A); in particular, DA/m is upper
bounded by both the average row degree and the average column degree of A.

We will prove the following statement, which shows that for any instance of Problem 15
or Problem 16 one may always reduce the degrees in the input matrix so that it is not
much larger than DA/m. Furthermore, this is done with only a moderate increase of the
dimensions of the matrix.

Theorem 3.5. Let A ∈ K[X]m×m be nonsingular, and let s ∈ Zm. Using no operation
in K, one can build a matrix Â ∈ K[X]m̂×m̂ and a shift ŝ ∈ Zm̂ such that

(i) m 6 m̂ < 4m and deg(Â) < 3(1 +DA/m),

(ii) the s-Popov form of A is the leading principal submatrix of the ŝ-Popov form of Â,

(iii) the Hermite form of A is the leading principal submatrix of the Hermite form of Â.

We give a summary of the cost bounds of known fast algorithms for the computation
of shifted Popov forms in Table 3.2.
Remark 3.6. From Theorem 3.5, we deduce that any algorithm which computes the Her-
mite form of A in O (̃mω deg(A)) operations can be transformed into an algorithm which
computes the Hermite form of A in O (̃mωdDA/me) operations.

107

Chapter 3. Impact on related problems

However, the same remark does not hold for an algorithm that would focus on the
uniform shift s = 0. Indeed, the corresponding transformed shift ŝ is not uniform anymore,
and will actually have amplitude max(̂s)−min(̂s) at least deg(A). In other words, with
this technique to take average degrees into account, computing a 0-Popov form reduces
to computing a shifted Popov form for a non-uniform shift. This is a further motivation
for studying the computation of shifted Popov forms for arbitrary shifts.

In particular, although a deterministic O (̃mω deg(A)) algorithm for the 0-Popov form
is known [GSSV12, SS11], the degree reduction in Theorem 3.5 does not imply that we
can compute the 0-Popov form deterministically in O (̃mωdDA/me) operations; to the
best of our knowledge, how to do this is still an open question. K

Table 3.2: Fast algorithms for shifted reduced forms and shifted Popov forms of a poly-
nomial matrix (d = deg(A); ? = probabilistic; amp(s) = max(s)−min(s)).

Algorithm Problem Cost bound
Hafner-McCurley [HM91] Hermite form O (̃m4d)

Storjohann-Labahn [SL96] Hermite form O (̃mω+1d)

Villard [Vil96] Popov & Hermite forms O (̃mω+1d+ (md)ω)

Alekhnovich [Ale02, Ale05] weak Popov form O (̃mω+1d)

Mulders-Storjohann [MS03b] Popov & Hermite forms O(m3d2)

Giorgi et al. [GJV03] 0-reduction O (̃mωd) ?

Sarkar-Storjohann [SS11] Popov form of 0-reduced O (̃mωd)

Gupta-Storjohann [GS11] Hermite form O (̃mωd) ?

Gupta et al. [GSSV12] 0-reduction O (̃mωd)

Folklore, using [GSSV12, SS11] s-Popov form for any s O (̃mω(d+ amp(s)))

Zhou-Labahn [Zho12, ZL16] Hermite form O (̃mωd)

Theorem 3.7 and Chapter 15 s-Popov form for any s O (̃mωdDA/me) ?

Theorem 3.9 and Chapter 16 Hermite form for any s O (̃mωdDA/me)

Let us give some more details about the case of an arbitrary shift s. First, in [BLV06],
shifted Popov forms are computed for arbitrary shifts, via the computation of kernel
bases and relying in particular on [BL00, Algorithm FFFG]; the number of operations is,
depending on s, at least quintic in m and quadratic in deg(A). However we note that
comparing this cost to ours would be unfair, since one of the focuses in [BLV06] is to obtain
a fraction-free approach, and furthermore the algorithm also returns a transformation from
A to its normal form.

Second, for an arbitrary shift s, there is a folklore reduction to the uniform case, which
is based on the fact that a matrix Q is in s-Popov form if and only if QXs−min(s) is in
0-Popov form. Then, given A, one would first compute the 0-Popov form P of AXs−min(s)

using [GSSV12, SS11] and then return PXmin(s)−s . This technique is used for example in
the list-decoding of Reed-Solomon codes via the reduction of a K[X]-module basis, as in
[Ale05, Nie13, CH15].

108

3.2. Computing shifted Popov forms of polynomial matrices

Yet, this approach is not efficient when the amplitude amp(s) = max(s) − min(s)
of the shift is large, since the reduction leads to compute a 0-reduced form of a matrix
AXs−min(s) with large degrees. In general, this solves Problem 15 in O (̃mω(d+ amp(s)))
field operations; for example, this cost is O (̃mω+2d) if one wants to compute the Hermite
form of A as in Problem 16, thus choosing the shift h given above. This is in fact a
worst-case situation: as we have seen in Section 1.2.2, one can assume without loss of
generality that amp(s) ∈ O(m deg(det(A))) ⊆ O(m2d).

3.2.2 Computing shifted Popov forms for arbitrary shifts

We obtain the following result, which is a consequence of Proposition 15.9 and the corre-
sponding Algorithm 36.

Theorem 3.7. Problem 15 can be solved by a Las Vegas randomized algorithm which uses
an expected number of

O (̃mωdDA/me) ⊆ O (̃mω deg(A))

operations in K, assuming that the cardinality of K is at least 8(4m)3(3 + 3DA/m) for the
left-hand cost bound, and at least 8m3 deg(A) for the right-hand cost bound.

In this cost bound, the ceiling function indicates that the cost is O (̃mω) when DA is
small compared to m. We note that, in this case DA ∈ O(m), the matrix A has mostly
constant entries, and usually, one is rather interested in situations where m ∈ O(DA).
Then, the cost bound above may be written O (̃mω−1DA); in terms of average row or
column degrees, this is both in O (̃mω−1|rdeg(A)|) and in O (̃mω−1|cdeg(A)|).

The cost bound that we obtain here is, to the best of our knowledge, the best known
cost bound for an arbitrary shift s. Compared to the folklore solution mentioned above,
it removes the dependency in amp(s), which means in some cases a cost bound smaller by
a factor m2. Besides, computing shifted forms for arbitrary shifts also allows us to obtain
an improvement for the specific case of the uniform shift when A has unbalanced degrees.
Indeed, to the best of our knowledge, no previously known algorithm computes the 0-
Popov form of A using O (̃mω−1DA) operations, or within a similar bound taking into
account the average row or column degree. Interestingly, as mentioned in Remark 3.6,
we achieve this here by relying on the computation of a shifted Popov form of some
transformation of A.

One of the main difficulties in row reduction algorithms is to control the size of the
manipulated matrices, that is, the number of coefficients from K needed for their dense
representation. A major issue when dealing with arbitrary shifts is that the size of an s-
reduced form of A may be beyond our target cost, as explained in Section 1.2.2. This gives
a further motivation for focusing on the computation of the s-Popov form of A, besides
the fact that it is canonical: by definition, the sum of its column degrees is deg(det(A)),
and therefore its size is at most m2 +m deg(det(A)), independently of s.

As a simple example, consider A =
[

I 0
0 B

]
for any 0-reduced B ∈ K[X]m×m. Then,

taking s = (0, . . . , 0, d, . . . , d) with d > 0,
[

I 0
C B

]
is an s-reduced form of A for any

109

Chapter 3. Impact on related problems

C ∈ K[X]m×m with deg(C) 6 d; for some C it has size Θ(m2d), with d arbitrary large
independently of deg(A).

Another important obstacle, this one independent of the shift, is that the size of the
unimodular transformation leading from A to P may be beyond the target cost bound.
This is the main reason why fast algorithms for 0-reduction and Hermite form computation
do not directly perform unimodular transformations on A to reduce the degrees of its
entries. Instead, they proceed in two steps: first, they work on A to find some equations
which describe its row space, and then from these equations they reconstruct a basis
of solutions to these equations in 0-reduced form or Hermite form. One may note the
similarity with the two-step strategy that we outlined in Section 2.2.3 concerning the
change of monomial order for a zero-dimensional ideal.

Here, we will follow a similar path to solve Problem 15 for an arbitrary shift. Yet, it
seems that some new ingredient is needed, since for both Popov form and Hermite form
computations, the fastest known algorithms use shift-specific properties at some point of
the process. Namely, they exploit the facts that a 0-reduced form of A has degree at most
deg(A) and, on the other hand, that the Hermite form of A is triangular. In the general
case, the s-Popov form of A is not necessarily triangular, and it can have degree as large
as m deg(A).

As the first step, to find the equations we follow the idea of [GS11]: we first compute
the Smith form S of A and a corresponding right unimodular transformation F with its
columns reduced modulo the entries of S; this is where the probabilistic aspect of the
algorithm comes from. These matrices S and F give a description of the row space of A
as the set of row vectors p ∈ K[X]1×m such that pF = qS for some q ∈ K[X]1×m. In
other words, the row space of A is {p ∈ K[X]1×m | pF = 0 mod S}; since S is diagonal,
this can be seen as a system of linear modular equations as in Problem 9. Then, as the
second step, we efficiently find the s-Popov solution basis for this system by relying on
our algorithm for Problem 9, which is our new ingredient.

3.2.3 Deterministic computation of Hermite forms and determi-
nants

Now, we discuss our algorithms for the fast, deterministic computation of the determinant
and Hermite form of a nonsingular polynomial matrix. These results were obtained in a
joint work with George Labahn and Wei Zhou [LNZ16].

Diagonal entries and determinant. The common thread in both algorithms is a
method for the fast computation of the diagonal entries of a matrix triangularization; a
preliminary version of this method was described in [Zho12, ZL14a]. The product of these
entries gives, at least up to a constant, the determinant. Concerning the Hermite form,
the degrees of the diagonal entries correspond to the shifted minimal degree of the sought
matrix, which we use to design a new reduction to the problem of 0-row reduction, as
detailed in Theorem 3.10 below.

In the case of determinant computation, there has been a number of efforts directed to
obtaining algorithms whose complexities are given in terms of the exponent ω of matrix

110

3.2. Computing shifted Popov forms of polynomial matrices

multiplication. Interestingly enough, in the case of matrices over a field, it was showed in
[BH74] that if there exists an algorithm for matrix multiplication for some exponent ω,
then there also exists an algorithm for determinant computation with the same exponent.

In the case of the determinant of a polynomial matrix A with deg(A) = d, a recur-
sive deterministic algorithm was given in [Sto00] making use of fraction-free Gaussian
elimination with a cost of O (̃mω+1d) operations. A deterministic O(m3d2) algorithm was
later given in [MS03b], modifying an algorithm therein for weak Popov form computation.
Using low rank perturbations, a probabilistic determinant algorithm using O (̃m2+ω/2d)
field operations was proposed in [EGV00]. Later, [Sto03] used high order lifting to give a
probabilistic algorithm which computes the determinant using O (̃mωd) field operations.
The algorithm in [GJV03] has a similar cost but only works on a class of generic input
matrices, matrices that are well behaved in the computation.

Similarly, there has been considerable progress in the efficient computation of the
Hermite form of a polynomial matrix. Algorithms with a complexity bound of O (̃m4d)
operations fromK were given in [HM91] and [Ili89], where d = deg(A). In these references,
the size of the matrices encountered during the computation is controlled by working mod-
ulo the determinant. Using matrix multiplication, the algorithms in [HM91, SL96, Vil96]
reduce the cost to O (̃mω+1d) operations where ω is the exponent of matrix multiplication.
The algorithm in [SL96] worked with integer matrices but the results directly carry over
to polynomial matrices. In [MS03b], an iterative algorithm having complexity O(m3d2)
was given, thus reducing the exponent of m but at the cost of increasing that of d.

Our approach relies on an efficient method for determining the diagonal elements of a
triangularization of the input matrix A. We do this by determining a partition

UA =

[
Uu

Ud

] [
A` Ar

]
=

[
B1 0
∗ B2

]
= B,

where U is a unimodular matrix, A` has m/2 columns, Uu has m/2 rows, and B1 has
dimensions (m/2)× (m/2). (The subscripts for A and U are meant to denote up, down,
left, and right.) Similar transformations were used for example in algorithms for inversion
[JV05, ZLS15]. Since A is nonsingular, Ar has full rank and hence Uu is a kernel basis
for Ar; furthermore, B1 is nonsingular and is therefore a basis of the row space of A`.

Then, computing such partitions for the two matrices B1 and B2 having half the
dimension of A, and continuing the process recursively until reaching dimension m = 1,
we obtain the diagonal entries of a triangular form of A. Up to making them monic, these
are the diagonal entries of the sought Hermite form of A.

Unfortunately, as described above, such a recursion is not necessarily efficient for our
applications. In the case of determinants, UA being lower triangular implies that we
need both the product of its diagonal entries and also the determinant of the unimodular
multiplier U. For the case of Hermite form computation, a sensible approach would be
to first determine a complete triangular form of A and then reduce the lower triangular
elements using the diagonal entries with unimodular operations. In both applications
it appears that we would need to know U. However the degrees in such a unimodular
multiplier can be too large for efficient computation. Indeed there are examples where
the sum of the degrees in U is Θ(m3d) (see Section 16.2), in which case computing U is
beyond our target cost O (̃mωd).

111

Chapter 3. Impact on related problems

In order to achieve the desired efficiency, our triangularization computations need to be
done without actually determining the entire unimodular matrix U. We accomplish this
by making use of shifted minimal kernel bases and column bases of polynomial matrices,
whose computations can be done efficiently using algorithms from [ZLS12] and [ZL13].
Here, shifts basically help us to control the computations using row degrees rather than
the degree of the polynomial matrix. Using the degree becomes an issue for efficiency
when the degrees in the input matrix vary considerably from row to row. We remark
that shifted minimal kernel bases and column bases, used in the context of fast block
elimination, have also been used for deterministic algorithms for inversion [ZLS15] and
unimodular completion [ZL14b] of polynomial matrices.

Fast algorithms for computing shifted minimal kernel bases [ZLS12] and column bases
[ZL13] imply that we can deterministically find the diagonals in O (̃mωdse) field opera-
tions, where s is the average row degree of A. We recall that the ceiling function indicates
that for matrices with very low average row degree s ∈ o(1), this cost is still O (̃mω). By
modifying this algorithm slightly we can also compute the determinant of the unimodular
multiplier, giving our first contribution. Here DA 6 s is the generic determinant bound
as above (see Section 15.1 for more details).

Theorem 3.8. Let A be a nonsingular matrix in K[X]m×m. There is a deterministic
algorithm which computes the determinant of A using

O (̃mωdDA/me) ⊆ O (̃mω deg(A))

operations in K.

Hermite form. Applying our fast diagonal entry algorithm to the computation of the
Hermite form involves more technical challenges. It solves the difficulty related to the
unpredictability of the degrees in the Hermite form H of A. Indeed, we know that the
sum of the diagonal degrees in H is deg(det(A)) 6 md, and since these bound the column
degrees, the sum of the degrees in H is O(m2d). On the other hand, the best known a
priori bound for the degree of the i-th diagonal entry is (m− i+ 1)d and hence the sum
of these bounds is O(m2d), a factor of m larger than the actual sum. Still, having the
diagonal degrees, it remains a major task: that of computing the remaining entries of H.

The probabilistic algorithm of Gupta and Storjohann [GS11, Gup11] solves the Her-
mite form problem using two steps, which both make use of the Smith normal form S
of A and partial information on a left multiplier V for this Smith form. The matrices
S and V can be computed with a Las Vegas randomized algorithm using an expected
number of O (̃mωd) field operations [GS11, Gup11], relying in particular on high-order
lifting [Sto03, Section 17]. The first step of their algorithm consists of computing the
diagonal entries of H by triangularization of a 2m × 2m matrix involving S and V, a
computation done in O (̃mωd) operations [Gup11]. The second step sets up a system of
linear modular equations which admits A as a basis of solutions: the matrix of the system
is V and the moduli are the diagonal entries of S. The degrees of the diagonal entries
obtained in the first step are then used to find H as another basis of solutions of this
system, computed in O (̃mωd) [GS11] using in particular fast minimal approximant basis
and partial linearization techniques [Sto06, ZL12].

112

3.2. Computing shifted Popov forms of polynomial matrices

The algorithm presented here for Hermite forms follows a two-step process similar
to the algorithm of Gupta and Storjohann, but it avoids using the Smith form of A,
whose deterministic computation in O (̃mωd) still remains an open problem. Instead, as
explained above, we compute the diagonal entries of H deterministically using O (̃mωdse)
field operations, where s is the average of the column degrees of A. As for the second
step, we note that the tuple of diagonal degrees of H also coincide with the h-minimal
degree of the row space of A, where h is the Hermite shift described above. Knowing this
minimal degree, we use the ideas in Section 1.2.1 as well as partial linearization techniques
from [GSSV12, Section 6] to show that H can then be computed via a single call to fast
deterministic row reduction [GSSV12] using O (̃mωd) field operations. This new problem
reduction illustrates the folklore fact that knowing in advance the degree shape of reduced
or normal forms makes their computation much easier, something already observed and
exploited in [GS11, Zho12] and Section 1.2.1 and Chapter 2.

This approach results in a deterministic O (̃mωd) algorithm for Hermite form com-
putation, which is satisfactory for matrices A that have most entries of similar degree
d = deg(A). Using the input degree reduction summarized in Theorem 3.5, we obtain
the following result.

Theorem 3.9. Let A be a nonsingular matrix in K[X]m×m. There is a deterministic
algorithm which computes the Hermite form of A using

O (̃mωdDA/me) ⊆ O (̃mω deg(A))

operations in K.

Concerning the computation of the Hermite form with known diagonal degrees, our
results can be straightforwardly generalized to the case of shifted Popov form computation,
with only a few minor modifications. Formally, this leads to the following result (the
hidden logarithmic factors in the cost bound are exactly those in [GSSV12, Theorem 18]).

Theorem 3.10. Let A be a nonsingular matrix in K[X]m×m, and let s ∈ Zm. Let δ ∈ Zm>0

denote the s-minimal degree of the row space of A, which is also the tuple of diagonal
degrees of the s-Popov form of A. If δ is known, then one can compute the s-Popov form
of A deterministically using O (̃mω deg(A)) operations in K.

We note however that, as of today and to the best of our knowledge, the Hermite form
is the only case of shifted Popov forms for which there is a known algorithm to efficiently
compute the degrees of the diagonal entries separately from the computation of the whole
form.

113

Chapter 3. Impact on related problems

114

Part II

Relation bases for arbitrary
multiplication matrices

115

Contents

Chapter 4 Computing relation bases via linear algebra 119

4.1 The linear algebra viewpoint . 120

4.1.1 Linearization: viewing polynomial relations as scalar relations . 120

4.1.2 Bounded-degree relations and nullspace of multi-Krylov matrices 122

4.1.3 Multi-Krylov matrices in the univariate case 125

4.2 Fast computation of the monomial basis 126

4.2.1 Row rank profile and monomial basis 127

4.2.2 Structure and row rank profile of a multi-Krylov matrix 128

4.2.3 Computing the row rank profile of a multi-Krylov matrix 129

4.3 Fast computation of the relation basis 134

4.3.1 Simultaneous computation of normal forms of monomials 134

4.3.2 Univariate case: computing shifted Popov relation bases 136

4.3.3 Computing reduced Gröbner relation bases 138

Chapter 5 Computing multiplication matrices from a Gröbner basis 141

5.1 Structural properties of the monomial basis 141

5.2 The case of two variables . 142

5.3 Computing rows of a Krylov matrix . 144

5.4 Computing the multiplication matrices 144

118

4

Computing relation bases via linear
algebra

In this chapter, we use techniques from linear algebra over K to solve Problems 2 and 4
efficiently. The basic tool is a linearization of the problem, referring to an interpretation
of operations on polynomials as operations from K-linear algebra. In this framework, a
polynomial is seen as a coefficient vector, and multiplication by a variable corresponds to
multiplying this coefficient vector by the multiplication matrix of this variable. Concerning
the computation of generating sets of relation modules as in Problem 2, the input is already
in linearized form, yet the output is not. Here, we will first complete the linearization in
Section 4.1, leading to a correspondence between relations of bounded degree and vectors
in the nullspace of some structured matrix which is called a multi-Krylov matrix.

Linearization is a ubiquitous tool in computations with polynomials. For example, a
well-known particular case of the above property is that, for two polynomials f, g ∈ K[X],
the solutions p, q ∈ K[X] to the Bézout equation pf + qg = 0 with deg(p) < deg(g) and
deg(q) < deg(f) precisely correspond to the nullspace of the Sylvester matrix [Syl53] of
f and g. Concerning multivariate polynomials, many algorithms adopt a linear algebra
point of view to rely on computations with Macaulay matrices [Mac02, Mac16]. Krylov
matrices were used to compute Popov and Hermite bases of relations in [Kai80, Chapter 6];
besides, one can interpret the change of monomial order algorithm of [FGLM93] as the
search of a specific collection of vectors in the nullspace of a multi-Krylov matrix.

To identify this collection, we will order the rows of the latter matrix according to
the monomial order in input of Problem 2. Then, the polynomials in the sought Gröbner
relation basis involve in priority the first rows of the matrix. More precisely, in Section 4.2
we show that the row rank profile of the multi-Krylov matrix correspond to the monomial
basis of the quotient module. To compute this monomial basis efficiently, we extend ideas
from [KG85] to this more general context. This can be seen as a way of both introducing
matrix multiplication in the algorithm and taking into account some structure of the
matrix by constantly considering only a small subset of its rows.

Finally, we exploit the knowledge of the monomial basis to compute the reduced
Gröbner relation basis. Our algorithm is efficient for arbitrary multiplication matrices and
an arbitrary monomial order. In univariate contexts, this translates as a fast algorithm
for computing the shifted Popov relation basis for any multiplication matrix and shift.

119

Chapter 4. Computing relation bases via linear algebra

4.1 The linear algebra viewpoint
In this section, we explain how polynomial relations as in Definition 2.4 can be interpreted
in terms of linear algebra. We rely on a linearization of the relations: having fixed some
degree bounds, these polynomials are seen as finite lists of coefficients, or in other words,
row vectors over K. Then, we will show how, from matrices M and F as in the input of
Problem 2, one can build a matrix over K whose left nullspace contains all relations of
SyzM(F) up to the chosen degree bounds.

4.1.1 Linearization: viewing polynomial relations as scalar rela-
tions

As an introduction to linearization techniques, we first describe a specific linearization of
relations in the univariate case, as in Problem 4. Let M ∈ KD×D and F ∈ Km×D, and fix
some degree bound β ∈ Z>0. In what follows, we let K[X]<β denote the set of polynomials
in K[X] of degree less than β, and we focus on relations of SyzM(F) which have degree
less than β; thus, these are row vectors in K[X]1×m<β .

First, the operation of expansion allows us to see a polynomial vector of bounded
degree as a scalar vector formed by its coefficients in the field. Given p ∈ K[X]1×m<β , we
write it as a polynomial of vectors: p = p0 + p1X + · · · + pβ−1X

β−1 where each pj is
a scalar vector in K1×m. Then, the expansion of p in degree β is the vector formed by
concatenation as Eβ(p) = [p0 | p1 | · · · | pβ−1] ∈ K1×mβ.

The reciprocal operation is called compression, and allows us to transform back a
scalar vector into a polynomial one. Given a vector v ∈ K1×mβ, we write it with blocks
v = [v0 | v1 | · · · | vβ−1] where each vj is in K1×m, and then we define its compression in
degree β as Cβ(v) = v0 + v1X + · · ·+ vβ−1X

β−1 ∈ K[X]1×m<β .
Now, given some matrices M ∈ KD×D and F ∈ Km×D, our problem asks to find vectors

p ∈ K[X]1×m such that, in particular, p ·F = 0. Assuming that deg(p) < β, and writing
p = p0 + p1X + · · ·+ pβ−1X

β−1, we recall that p ·F = p0F + p1FM + · · ·+ pβ−1FMβ−1.
Then, in accordance to the expansion of p, the input (M,F) is expanded as follows:

Kβ(M,F) =

F

FM
...

FMβ−1

 ∈ Kmβ×D (4.1)

so as to ensure that p · F = Eβ(p)Kβ(M,F) for any p ∈ K[X]1×m<β . In particular, p is a
relation of SyzM(F) if and only if Eβ(p)Kβ(M,F) = 0, that is, its expansion Eβ(p) is in
the left nullspace of Kβ(M,F).

Example 4.1. In this example, we have m = D = 3 and the base field is the finite field
with 97 elements; the input matrices are

F =

27 49 29
50 58 0
77 10 29

 and Z =

0 1 0
0 0 1
0 0 0

 .
120

4.1. The linear algebra viewpoint

Since the minimal polynomial of Z is X3, we choose β = 4, thus ensuring that all relations
in the Popov basis will have degree less than β. Then, we have

Kβ(Z,F) =

27 49 29
50 58 0
77 10 29
0 27 49
0 50 58
0 77 10
0 0 27
0 0 50
0 0 77
0 0 0
0 0 0
0 0 0

.

It is easily checked that p1 = [−1 − 1 1] ∈ K[X]1×m is a relation of SyzZ(F), since
F3,∗ = F1,∗ + F2,∗. Other relations are for example p2 = [3X + 13 X + 57 0] which has
row degree 1, p3 = [X2 + 40X + 82 76 0] which has row degree 2, and p4 = [X3 0 0]
which has row degree 3. We have

E(p1) = [96 96 1 | 0 0 0 | 0 0 0 | 0 0 0]
E(p2) = [13 57 0 | 3 1 0 | 0 0 0 | 0 0 0]
E(p3) = [82 76 0 | 40 0 0 | 1 0 0 | 0 0 0]
E(p4) = [0 0 0 | 0 0 0 | 0 0 0 | 1 0 0].

Besides, one can verify, for example using a computer algebra system, that the matrix

P =

p3

p2

p1

 =

X2 + 40X + 82 76 0
3X + 13 X + 57 0

96 96 1

 ,
is the Popov relation basis of SyzZ(F); note that the latter is the module of Hermite-Padé
approximants of order 3 for

F

 1
X
X2

 =

29X2 + 49X + 27
58X + 50

29X2 + 10X + 77

 . b

Now, having built a matrix over K whose left nullspace corresponds to relations, we
would like tools to interpret in this linearized framework the shifted degree minimality
of the sought relation bases. Observing Example 4.1, we see that p1 has 0-degree 0,
which makes it a perfect candidate to appear in a 0-minimal relation basis such as P;
conversely, p4 has 0-degree 3, and no row has degree more than 2 in P. On the other
hand, if we consider the shift s = (0, 3, 6), then the s-degree of p4 is 3 while the one of p1

is 6. Therefore, if one is looking for the rows of an s-minimal relation basis, p4 is a better
candidate than p1.

121

Chapter 4. Computing relation bases via linear algebra

We see through this example that the uniform shift 0 leads to look for elements of the
nullspace of Kβ(Z,F) which involve in priority the first rows of the matrix, while the shift
s = (0, 3, 6) leads to look for elements of the nullspace which involve in priority the rows
F1,∗, F1,∗Z, F1,∗Z

2, and F1,∗Z
3, before considering any of the rows F2,∗Z

j and F3,∗Z
j for

0 6 j < β.
Thus, to take the shift into account, we will define below a permutation of the rows

of Kβ(M,F) such that a basis of its nullspace which involve in priority its first rows
correspond to a shifted minimal relation basis of SyzM(F). This permutation is naturally
linked to the monomial order on K[X]1×m induced by the shift. In the next section, we
present the linearization framework with more generality and in the multivariate context,
proving some assertions that have been made here without details. Then, we will come
back to the univariate case in Section 4.1.3 to give the details of the construction of
Kβ(M,F) when one is given a shift rather than a monomial order.

4.1.2 Bounded-degree relations and nullspace of multi-Krylov ma-
trices

Here, we generalize the construction of the striped Krylov matrix above to several variables
and to an arbitrary monomial order. This results in a type of matrix with several layers of
structure that we call multi-Krylov. Then, we give a precise link between left nullspaces
of such matrices and relations of bounded degree.

Let r ∈ Z>0 and consider the polynomial ring K[X] = K[X1, . . . , Xr]. We fix an
interger m ∈ Z>0, and we see elements of K[X]m as row vectors in K[X]1×m.

We first describe the expansion and compression operation, to convert polynomials of
bounded degrees into their coefficient vectors and vice versa. These operations naturally
depend on the choice of a monomial order, to choose in which order one should concatenate
the coefficients of a polynomial so as to obtain its coefficient vector.

For example, we made such a choice implicitly in Section 4.1.1 when defining the
expansion Eβ(p) of a univariate row vector p: we concatenated the constant terms of p
first, then its terms of degree 1, etc. Thus, the terms of p were implicitly arranged in
Eβ(p) according to the term-over-position order.

Then, let ≺ be a monomial order on K[X]1×m, and let β = (β1, . . . , βr) ∈ Zr>0 be
some degree bounds. To define and use the linearization operations, it will be convenient
to rely on the following indexing function.

Definition 4.2 ((≺,β)-indexing). Let β = (β1, . . . , βr) ∈ Zm>0 and let ≺ be a monomial
order on K[X]1×m. Then, we define the (≺,β)-indexing function as the unique bijection

φ≺,β : {Xeci,0 6 e < β, 1 6 i 6 m} → {1, . . . ,mβ1 · · · βr}

which is increasing for ≺, that is,Xeci ≺Xe′ci′ if and only if φ≺,β(Xeci) < φ≺,β(Xe′ci′).

We now define the expansion and compression operations, and then we give an example
with the lexicographic term-over-position order in two variables.

122

4.1. The linear algebra viewpoint

In what follows, we denote by K[X]<β the set of polynomials p ∈ K[X] such that
degXk(p) < βk for 1 6 k 6 r. Then, we have a correspondence between bounded-degree
polynomials and row vectors, as follows:

expansion−−−−−−−→polynomial p ∈ K[X]1×m<β vector v = [vk]k ∈ K1×mβ1···βr with
p =

∑
j ujX

ejcij with uj 6= 0 vk = uj for k = φ≺,β(Xejcij).←−−−−−−−−
compression

That is, for a polynomial p ∈ K[X]1×m<β , the expansion of p in degree β and with
respect to ≺ is the vector E≺,β(p) ∈ K1×mβ1···βr whose entry at index φ≺,β(Xeci) is the
coefficient of the term involving Xeci in p. Conversely, given a vector v ∈ K1×mβ1···βr ,
we define its compression in degree β and with respect to ≺ as being the polynomial
C≺,β(v) ∈ K[X]1×m<β such that the coefficient of its term involving the monomial φ−1

≺,β(k)
is the entry at index k of v.
Example 4.3. Let us consider bivariate polynomials in K[X, Y], where K is the finite field
with 97 elements. Let ≺lex be the lexicographic order on K[X, Y] with Y ≺lex X, and
let ≺ = ≺top

lex be the ≺lex-term over position order on K[X, Y]1×2. We choose the degree
bounds β = (2, 3).

Following Definition 4.2, we order the monomials

{XjY kci,0 6 (j, k) < (2, 3), 1 6 i 6 2}

increasingly according to ≺top
lex , which yields

Monomial Index
XjY kci φ≺top

lex ,(2,3)(X
jY kci)[

1 0
]

1[
0 1

]
2[

Y 0
]

3[
0 Y

]
4[

Y 2 0
]

5[
0 Y 2

]
6[

X 0
]

7[
0 X

]
8[

XY 0
]

9[
0 XY

]
10[

XY 2 0
]

11[
0 XY 2

]
12

Let p be the polynomial in K[X, Y]1×2
<(2,3) and v be the vector in K1×12 defined by

p = [46 + 95Y + 75X + 10XY , 36 + 18Y + 38Y 2 + 77X + 83XY + 35XY 2]

v =
[

86 0 32 83 54 26 0 68 86 0 54 22
]

123

Chapter 4. Computing relation bases via linear algebra

In this case, the expansion of p and the compression of v are given by

E≺,β(p) =
[

46 36 95 18 0 38 75 77 10 83 0 35
]

C≺,β(v) = [86 + 32Y + 54Y 2 + 86XY + 54XY 2 , 83Y + 26Y 2 + 68X + 22XY 2] . b

Now, we detail the construction of the multi-Krylov matrix. Let M = (M1, . . . ,Mr)
be pairwise commuting matrices in KD×D, and let F ∈ Km×D. From the module struc-
ture induced by the multiplication matrices as described in Sections 1.3.5 and 2.1, for a
polynomial p = [p1, . . . , pm] ∈ K[X]1×m we have

p · F = p1 · F1,∗ + · · ·+ pm · Fm,∗

= F1,∗p1(M) + · · ·+ Fm,∗pm(M),

where we write pi(M) for pi(M1, . . . ,Mr). As a result, p being a relation of SyzM(F)
means that the coefficients of p form a K-linear combination of vectors of the form Fi,∗M

e

which is zero. If furthermore p is nonzero and has its degrees in each variable bounded by
(β1, . . . , βr), then it corresponds to a nontrivial K-linear relation between the row vectors

{Fi,∗M
e, 0 6 e < β, 1 6 i 6 m}.

This leads us to consider the following matrices, formed by these row vectors ordered
according to φ≺,β.

Definition 4.4 (Multi-Krylov matrix). Let M = (M1, . . . ,Mr) ∈ KD×D be pairwise
commuting matrices, let F ∈ Km×D, let β = (β1, . . . , βr) ∈ Zr>0, and let ≺ be a monomial
order on K[X]1×m. The (≺,β)-multi-Krylov matrix for (M,F), denoted by K≺,β(M,F),
is defined as the matrix in Kmβ1···βr×D whose row at index φ≺,β(Xeci) is Fi,∗M

e.

Example 4.5. We place ourselves in the situation of Example 4.3, with two variables X
and Y , the dimension m = 2, the ≺lex-TOP order on K[X, Y]1×2 with Y ≺lex X, and
degree bounds β = (2, 3).

We further consider the vector space dimension D = 3. Then, let M = (MX ,MY) be
matrices in K3×3 such that MXMY = MY MX , and let F be some matrix in K2×3.

In this case, from the indexing function φ≺top
lex ,(2,3) described in Example 4.1 it follows

that the multi-Krylov matrix for (M,F) is

K≺top
lex ,(2,3)(M,F) =

F

FMY

FM2
Y

FMX

FMY MX

FM2
Y MX

 ∈ K12×3. b

By construction, we have the following result which relates the left nullspace of the
multi-Krylov matrix with the set of bounded-degree relations.

Lemma 4.6. If v ∈ K1×mβ1···βr is in the left nullspace of K≺,β(M,F), then C≺,β(v) ∈
K[X]1×m<β is a relation of SyzM(F). Conversely, if p ∈ K[X]1×m<β is a relation of SyzM(F),
then E≺,β(p) ∈ K1×mβ1···βr is in the left nullspace of K≺,β(M,F).

124

4.1. The linear algebra viewpoint

4.1.3 Multi-Krylov matrices in the univariate case

Going back to the univariate case, we show how to construct the indexing function and
thus the multi-Krylov matrix when the monomial order is given by a shift. Here, we have
one multiplication matrix M ∈ KD×D, a matrix F ∈ Km×D, a shift s ∈ Zm, and a degree
bound β ∈ Z>0.

We have seen in Example 1.38 and Section 1.3.4 that s defines a monomial order <s-top

on K[X]1×m, which we called a shifted term-over-position order. This directly allows one
to use the definition of multi-Krylov matrices in the previous section. Still, for the sake
of clarity, we detail here how the indexing function of Definition 4.2 can be deduced from
the shift s.

In Section 4.1.1, we defined a specific multi-Krylov matrix Kβ(M,F) in Eq. (4.1). Its
rows are Fi,∗M

e for 0 6 e < β and 1 6 i 6 m, ordered by lexicographically increasing
pairs (e, i). More generally, when an arbitrary shift is given in input, we would like the
multi-Krylov matrix to be some permutation of these rows so as to reflect their priority,
which is induced by the shift.

This priority is as follows. Let v ∈ K1×mβ be any linear relation between the rows of
Kβ(M,F) involving the row Fi,∗M

e; this means that Cβ(v) = p0+p1X+· · ·+pβ−1X
β−1 is

a relation of SyzM(F) and the coefficient in column i of pe is nonzero. Then, this implies
that the s-degree of p is at least si + e. As a consequence, since the s-degree is precisely
what we want to minimize in order to obtain an s-minimal relation basis, the priority of
the rows of Kβ(M,F) can be measured by the function (e, i) 7→ si + e.

Our goal is to define an indexing function φs,β(e, i) which we will use to specify the
order of the rows Fi,∗M

e in the multi-Krylov matrix Ks,β(M,F). Then, the previous
paragraph indicates that this function should be such that φs,β(e, i) < φs,β(e′, i′) whenever
si + e < si′ + e′. This is not enough to define φs,β: we still need to break ties for pairs
(e, i) 6= (e′, i′) which are such that si+e = si′+e′. In the latter case, we arbitrarily choose
that φs,β(e, i) < φs,β(e′, i′) if i < i′.

To summarize, in this univariate context the indexing function is the unique bijection

φs,β : {0, . . . , β − 1} × {1, . . . ,m} → {1, . . . ,mβ}

such that

(i) if si + e < si′ + e′ then φs,β(e, i) < φs,β(e′, i′);

(ii) if si + e = si′ + e′ and i < i′ then φs,β(e, i) < φs,β(e′, i′).

for all 0 6 e, e′ < β and 1 6 i, i′ 6 m.

Remark 4.7. This is naturally the indexing function that one would obtain using Def-
inition 4.2 along with the remarks in Example 1.38 and Section 1.3.4 concerning the
monomial order <s-top corresponding to the shift s. We note also that the arbitrary tie-
breaking above is consistent with the shifted TOP order, and also with the choice made in
the definition of s-pivots where one considers as a leading term the rightmost one among
those which have the highest s-degree. K

125

Chapter 4. Computing relation bases via linear algebra

Then, the linearization operations are as follows. For a polynomial p = [pi]i ∈
K[X]1×m<β , the shifted expansion Es,β(p) is the vector in K1×mβ whose column φs,β(i, e)
is formed by the coefficient of degree e in pi, for all 0 6 e < β and 1 6 i 6 m. For a scalar
vector v ∈ K1×mβ, the shifted compression Cs,β(v) is the polynomial vector in K[X]1×m<β

obtained by the inverse operation.
Furthermore, the multi-Krylov matrix Ks,β(M,F) is the matrix in Kmβ×D whose row

φs,β(e, i) is Fi,∗M
e for all 0 6 e < β and 1 6 i 6 m. This is a specific case of the multi-

Krylov matrices of Definition 4.4, so that all properties that are given for the general
multi-Krylov matrices will also hold for the ones defined from a shift as presented here.
For example, Lemma 4.6 states that the left nullspace of Ks,β(M,F) corresponds to the
set of relations of SyzM(F) which have degree less than β.

In the specific case of the uniform shift s = 0, we have φ0,β(e, i) = i + me, and using
notation from Section 4.1.1, we have the identities K0,β(M,F) = Kβ(M,F), C0,β(M) =
Cβ(M), E0,β(P) = Eβ(P).
Example 4.8 (Example 4.1 continued). In the context of Example 4.1, if we consider the
shifts s = (0, 3, 6) and t = (3, 0, 2), we have

Ks,β(Z,F) =

27 49 29
0 27 49
0 0 27
0 0 0
50 58 0
0 50 58
0 0 50
0 0 0
77 10 29
0 77 10
0 0 77
0 0 0

and Kt,β(Z,F) =

50 58 0
0 50 58
0 0 50
77 10 29
27 49 29
0 0 0
0 77 10
0 27 49
0 0 77
0 0 27
0 0 0
0 0 0

.

Besides, one can check that the shifted expansions of the relations p1, p2, p3, and p4 with
respect to s and t are

Es,β(p1) = [96 0 0 0 96 0 0 0 1 0 0 0]
Et,β(p1) = [96 0 0 1 96 0 0 0 0 0 0 0]
Es,β(p2) = [13 3 0 0 57 1 0 0 0 0 0 0]
Et,β(p2) = [57 1 0 0 13 0 0 3 0 0 0 0]
Es,β(p3) = [82 40 1 0 76 0 0 0 0 0 0 0]
Et,β(p3) = [76 0 0 0 82 0 0 40 0 1 0 0]
Es,β(p4) = [0 0 0 1 0 0 0 0 0 0 0 0]
Et,β(p4) = [0 0 0 0 0 0 0 0 0 0 0 1]. b

4.2 Fast computation of the monomial basis
Let M be a tuple of r pairwise commuting matrices in KD×D, let F ∈ Km×D, and let ≺ be
a monomial order on K[X]1×m. Our goal is to solve Problem 2, that is, find a ≺-Gröbner

126

4.2. Fast computation of the monomial basis

basis of relations of SyzM(F). In this section, we first show that the ≺-monomial basis of
the quotient K[X]1×m/ SyzM(F) corresponds to the row rank profile of the multi-Krylov
matrix. Then, we give some properties about the structure of this matrix, and finally we
exploit this structure to design an algorithm to compute this row rank profile efficiently.

4.2.1 Row rank profile and monomial basis

From our discussion about the left nullspace of the multi-Krylov matrix, we know that we
will only be able to consider relations of bounded degree. Thus, although we have defined
the multi-Krylov matrix for an arbitrary tuple β, in the context of solving Problem 2 we
must make sure that these bounds are chosen sufficiently large so that they allow us to
retrieve a whole generating set of relations.

To be more precise, our aim is to compute the ≺-reduced Gröbner basis G for SyzM(F).
Therefore, we are particularly interested in the case where these integers are a priori upper
bounds on the degrees of the generators in G, which means that β is large enough so that
the nullspace of K≺,β(M,F) contains the expansions of all the polynomials in G. Formally,
we will often consider the following assumption on β.

Definition 4.9 (AssumptionHβ). Let {p1, . . . ,ps} ∈ K[X]1×m be the ≺-reduced Gröbner
relation basis of SyzM(F). Then, the assumption Hβ on β = (β1, . . . , βr) ∈ Zr>0 is the
assertion that βk > max16j6s degXk(pj) for 1 6 k 6 r.

One may have context-specific such bounds β; if not, one can take for βk a bound
on the degree of the minimal polynomial of the multiplication matrix Mk. In particular,
β = (D + 1, . . . , D + 1) is always a valid choice.

We recall that, for a matrix A ∈ Kµ×ν , the row rank profile of A is the lexicographically
smallest subsequence (ρ1, . . . , ρ∆) of (1, . . . , µ) such that ∆ = rank(A) and the rows
(ρ1, . . . , ρ∆) of A have rank ∆.

Theorem 4.10. Let M = (M1, . . . ,Mr) be pairwise commuting matrices in KD×D, let
F ∈ Km×D, let ≺ be a monomial order on K[X]1×m, and let β = (β1, . . . , βr) ∈ Zr>0 be
such that Hβ. Let further (ρ1, . . . , ρ∆) ∈ Z∆

>0 be the row rank profile of K≺,β(M,F) and
write ρj = φ≺,β(Xejcij) for 1 6 j 6 ∆. Then, {Xejcij , 1 6 j 6 ∆} is the ≺-monomial
basis of K[X]1×m/ SyzM(F).

Proof. We want to prove that the ≺-initial module of SyzM(F) is the set of monomials
not in {Xejcij , 1 6 j 6 ∆}.

First, consider any monomial Xeci for 1 6 i 6 m and e ∈ Zr>0 such that e 6< β. Such
a monomial cannot be in {Xejcij , 1 6 j 6 ∆} since by construction of K≺,β(M,F) we
have ej < β for all j. On the other hand, from the assumption Hβ, Xeci cannot either
be in the ≺-monomial basis of K[X]1×m/ SyzM(F), and thus Xeci ∈ in≺(SyzM(F)).

Now, let Xeci ∈ in≺(SyzM(F)) such that e < β. Then, there is a relation p ∈
K[X]1×m for SyzM(F) such that in≺(p) = Xeci, and Lemma 4.6 implies that E≺,β(p) is
in the left nullspace of K≺,β(M,F). Furthermore, by construction, the rightmost nonzero
entry of E≺,β(p) is 1 at index φ≺,β(Xeci). In other words, E≺,β(p) expresses the row of
K≺,β(M,F) with index φ≺,β(Xeci) as a K-linear combination of the rows with smaller

127

Chapter 4. Computing relation bases via linear algebra

index. By definition of the row rank profile, this implies that φ≺,β(Xeci) 6∈ {ρ1, . . . , ρ∆},
and therefore Xeci 6∈ {Xejcij , 1 6 j 6 ∆}.

Conversely, let Xeci 6∈ {Xejcij , 1 6 j 6 ∆} be a monomial such that e < β. Then,
φ≺,β(Xeci) 6∈ {ρ1, . . . , ρ∆}. Thus, by definition of the row rank profile, there is a vector
v ∈ K1×mβ1···βr such that v is in the left nullspace of K≺,β(M,F) and the rightmost
nonzero entry of v is 1 at index φ≺,β(Xeci). Then, in≺(C≺,β(v)) = Xeci, and according
to Lemma 4.6, C≺,β(v) is a relation of SyzM(F), hence in≺(C≺,β(v)) ∈ in≺(SyzM(F)).

As a direct consequence, we get the following refinement of Lemma 2.5 about the
dimension of the quotient K[X]1×m/ SyzM(F).

Corollary 4.11. Let M = (M1, . . . ,Mr) be pairwise commuting matrices in KD×D, let
F ∈ Km×D, let ≺ be a monomial order on K[X]1×m, and let β = (β1, . . . , βr) ∈ Zr>0 be
degree bounds such that Hβ. Then, the dimension of K[X]1×m/ SyzM(F) as a K-vector
space is equal to the rank of the multi-Krylov matrix K≺,β(M,F).

4.2.2 Structure and row rank profile of a multi-Krylov matrix

We note that the dense representation of K≺,β(M,F) uses mβ1 · · · βrD field elements.
Taking the a priori bounds β1 = · · · = βr = D + 1, this is in Θ(mDr+1), while our target
cost bound O (̃mDω−1 + rDω), stated precisely in Theorem 2.13, is sub-cubic in D. In
fact, we will never compute the full dense representation of this matrix, like previous
algorithms dealing with similar situations [MB82, KG85, FGLM93, MMM93]. Roughly,
the idea is that once some monomial is found not to be in the monomial basis of the
quotient, it can be discarded along with all its multiples.

The multi-Krylov matrix is succinctly described by M, F, ≺, and β, whose represen-
tation uses O(mD+ rD2) field elements altogether. Yet, it is not straightforward how to
deduce the row rank profile from this data. In the next section, we design an algorithm
which uses in particular ideas from [KG85] for efficiency, and which only deals with sub-
matrices of the multi-Krylov matrix that are represented using a number of field elements
which remains within the bound above. (Hereafter, when we mention a submatrix, it is
always assumed that the order of the rows in the original matrix is preserved.)

In this section, we discuss the property of structure of the multi-Krylov matrix that
we exploit in this algorithm to avoid relying on its dense representation. When β satisfies
Hβ, this property can be summarized as being the mere translation in this linear algebra
framework of the module structure of in≺(SyzM(F)): once it is found that some monomial
belongs to this initial module, then so do all its monomial multiples.

In the lemma below, we give details about this property, and we also give a similar
property which holds without assuming Hβ, and which still leads to an efficient algorithm
to find the row rank profile of the multi-Krylov matrix. In linear algebra terms and in a
nutshell, this structure indicates that we may discard a part of the rows that have not yet
been computed and which correspond to right-multiples of rows that have already been
found not to be in the row rank profile.

Lemma 4.12. Let M = (M1, . . . ,Mr) be pairwise commuting matrices in KD×D, let
F ∈ Km×D, let ≺ be a monomial order on K[X]1×m, let β = (β1, . . . , βr) ∈ Zr>0, and let

128

4.2. Fast computation of the monomial basis

ρ ∈ Z∆
>0 denote the row rank profile of K≺,β(M,F). Then, for any monomial Xeci in

K[X]1×m such that φ≺,β(Xeci) is not in ρ, the following properties hold.

(i) If β satisfies the assumption Hβ of Definition 4.9, then φ≺,β(Xe+e′ci) does not
belong to ρ for any exponent e′ such that e + e′ < β.

(ii) Let {(ej, ij), 1 6 j 6 s} be such that 0 6 ej < β, 1 6 ij 6 m, and φ≺,β(Xejcij) <
φ≺,β(Xeci) for 1 6 j 6 s, and such that the row φ≺,β(Xeci) of K≺,β(M,F) is a
linear combination of the rows {φ≺,β(Xejcij), 1 6 j 6 s}. Then, φ≺,β(Xe+e′ci)
does not belong to ρ for any e′ such that e + e′ < β and ej + e′ < β for 1 6 j 6 s.

Proof. The item (i) directly follows from Theorem 4.10: the assumption ensures that ρ
corresponds to the ≺-monomial basis of in≺(SyzM(F)). Thus, the monomial Xeci is in
in≺(SyzM(F)), and any multiple Xe+e′ci of it is in in≺(SyzM(F)) as well. It follows that
φ≺,β(Xe+e′ci) does not belong to ρ.

Concerning the item (ii), it essentially follows from the construction of K≺,β(M,F),
and in particular from the ordering of its rows according to the indexing function φ≺,β
which is increasing with respect to the monomial order ≺.

The row φ≺,β(Xeci) of K≺,β(M,F) is the row Fi,∗M
e, which is assumed to be a linear

combination of the rows Fij ,∗M
ej for 1 6 j 6 s, with φ≺,β(Xejcij) < φ≺,β(Xeci). Then,

having e + e′ < β and ej + e′ < β implies that the rows Fi,∗M
e+e′ and Fij ,∗M

ej+e′ are
among the rows of K≺,β(M,F), for 1 6 j 6 s; since these are precisely the rows mentioned
above after right-multiplication by Me′ , we have that Fi,∗M

e+e′ is a linear combination
of the rows Fij ,∗M

ej+e′ .
We have proved that the row φ≺,β(Xe+e′ci) of K≺,β(M,F) is a linear combination of

its rows φ≺,β(Xej+e′cij) for 1 6 j 6 s. Having φ≺,β(Xejcij) < φ≺,β(Xeci) means that
Xejcij ≺Xeci; this impliesXej+e′cij ≺Xe+e′ci, hence φ≺,β(Xej+e′cij) < φ≺,β(Xe+e′ci).
As a result, the row φ≺,β(Xe+e′ci) of K≺,β(M,F) is a linear combination of the rows with
smaller index, hence the conclusion: φ≺,β(Xe+e′ci) does not belong to ρ.

4.2.3 Computing the row rank profile of a multi-Krylov matrix

Now, we give a fast algorithm to compute the row rank profile of K≺,β(M,F). We exploit
the structure of the matrix, and in particular the item (ii) of Lemma 4.12. For further
efficiency, the algorithm below resorts to fast linear algebra techniques.

In particular, our algorithm relies on fast matrix multiplication by following a strategy
in the style of Keller-Gehrig [KG85]. In short, this can be thought of as precomputing
powers of the multiplication matrices of the form M2e

j , which then allow us to group
many vector-matrix products into fewer matrix-matrix products. In order to effectively
group these products, we work iteratively on the variables; this way, we first focus on all
operations involving M1, then those involving M2, etc.

We remark that the order of the rows specified by the monomial order ≺ is not
respected in the process, since at a fixed stage of the algorithm we will only have considered
a submatrix of the multi-Krylov matrix which does not involve any of the last variables.
Yet, by constantly re-ordering, according to ≺, the rows that have been processed and
the ones that we introduce, we manage to respect the monomial order in the end.

129

Chapter 4. Computing relation bases via linear algebra

A key building block is a procedure RowRankProfile which computes the row rank
profile of any matrix in Kµ×ν of rank ρ in O(ρω−2µν) operations in K. Such an algorithm
can be found in [Sto00, Section 2.2], with a cost bound given in [Sto00, Theorem 2.10].

For simplicity of presentation, and since this is sufficient for our needs, in Algorithm 1
we assume that the degree bounds in β are powers of 2. If need be, one may easily adapt
the algorithm to work with arbitrary bounds β: one would simply have to discard some
of the rows of BP at Step 7.b.(vi) at the last iteration of the While loop for each variable.

Proposition 4.13. Algorithm 1 is correct and uses

O
(
ρω−2mD +Dω log

(∏
16k6r min(βk,∆ + 1)

))
⊆ O

(
mDω−1 + rDω log(∆ + 1)

)
operations in K, where ρ is the rank of F and ∆ is the dimension of K[X]1×m/ SyzM(F)
as a K-vector space.

Proof. For 1 6 k 6 r and 0 6 e 6 log2(βk), let us consider the set of monomials

Sk,e = {Xeci, 1 6 i 6 m, 0 6 e < (β1, . . . , βk−1, 2
e, 1, . . . , 1)}.

Then, we denote by Ck,e ∈ Kmβ1···βk−12e×D the submatrix of K≺,β(M,F) formed by its rows
in φ≺,β(Sk,e). Notice that the redundancy Ck,log2(βk) = Ck+1,0 is voluntarily introduced in
order to simplify the exposition of the proof.

Then, C1,0 is the submatrix of K≺,β(M,F) with rows in {φ≺,β(c1), . . . , φ≺,β(cm)};
therefore, by choice of the permutation π at Step 2, we have C1,0 = πF. Thus, after
performing Step 6, the matrix B is formed by the rows corresponding to the row rank
profile of C1,0, and (ρ1, . . . , ρδ) are the indices of these rows in K≺,β(M,F).

Then, let k ∈ {1, . . . , r} and 0 6 e < log2(βk), and assume that B is formed by the
rows corresponding to the row rank profile of Ck,e, and that (ρ1, . . . , ρδ) are the indices
of these rows in K≺,β(M,F). (We just proved that this holds when k = 1 and e = 0.)
We place ourselves at the beginning of the iteration (k, e) of the For and While loops, and
we are going to prove that this iteration preserves the above property; this will directly
imply the correctness of the algorithm, which precisely asks that this property holds for
k = r and e = log2(βr).

Let us denote ρ = {ρ1, . . . , ρδ} and ρ̂ = {ρ̂1, . . . , ρ̂δ}, where ρ̂j = φ≺,β(X2e

k φ
−1
≺,β(ρj))

for 1 6 j 6 δ are the indices computed at Step 7.b.(i). Let also (γ1, . . . , γν) be the indices
of the rows of K≺,β(M,F) corresponding to the row rank profile of its submatrix Ck,e+1.
Then, we claim that:

• Fact 1: (γ1, . . . , γν) forms a subsequence of the tuple t, or in other words, {γ1, . . . , γν}
is a subset of ρ ∪ ρ̂;

• Fact 2: if we have equality {γ1, . . . , γν} = ρ, then ρ is the set of indices of the rows
of K≺,β(M,F) corresponding to the row rank profile of Ck,log2(βk).

In particular, Fact 2 explains why, when break is set to True then the While loop can be
exited, and if k < r then we can turn to the next variable Xk+1, noting that the transition
is ensured by Ck,log2(βk) = Ck+1,0.

130

4.2. Fast computation of the monomial basis

Algorithm 1 – KrylovRankProf
(Row rank profile of a multi-Krylov matrix)
Input:
• pairwise commuting matrices M = (M1, . . . ,Mr) in KD×D,
• matrix F ∈ Km×D,
• monomial order ≺ on K[X1, . . . , Xr]

1×m,
• degree bounds β = (β1, . . . , βr) ∈ Zr>0 which are powers of 2.

Output:
• the row rank profile of K≺,β(M,F),
• the submatrix of K≺,β(M,F) formed by the corresponding rows.

1. φ≺,β ← the indexing function in Definition 4.2

2. π ← the permutation matrix in {0, 1}m×m such that the tuple t =
π[φ≺,β(c1), . . . , φ≺,β(cm)]T is increasing

3. B← πF

4. δ, (i1, . . . , iδ)← RowRankProfile(B)

5. (ρ1, . . . , ρδ)← the subtuple of t with its entries (i1, . . . , iδ)

6. B← the submatrix of B with its rows (i1, . . . , iδ)

7. For k from 1 to r // iterate over the variables

a. P←Mk; e← 0; break← False

b. While e < log2(βk) and (not break)

(i) ρ̂j ← φ≺,β(X2e

k φ
−1
≺,β(ρj)) for 1 6 j 6 δ

(ii) π ← permutation matrix in {0, 1}2δ×2δ such that the tuple
t = π[ρ1, . . . , ρδ, ρ̂1, . . . , ρ̂δ]

T is increasing

(iii) B← π

[
B

BP

]
(iv) δ̂, (i1, . . . , iδ̂)← RowRankProfile(B)

(v) If (ρ1, . . . , ρδ) = subtuple of t with its entries (i1, . . . , iδ̂)

• break← True
(vi) Else

• (ρ1, . . . , ρδ̂)← subtuple of t with its entries (i1, . . . , iδ̂)

• B← submatrix of B with its rows (i1, . . . , iδ̂)

• δ ← δ̂; P← P2; e← e+ 1

8. Return (ρ1, . . . , ρδ) and B

131

Chapter 4. Computing relation bases via linear algebra

Proof of Fact 1. Let 1 6 j 6 ν and let us prove that γj ∈ ρ ∪ ρ̂. By assumption,
ρ are the indices of the rows in K≺,β(M,F) corresponding to the row rank profile of its
submatrix Ck,e. Then, the item (ii) of Lemma 4.12 implies that the monomial φ−1

≺,β(γj)

is not a multiple of a monomial in φ−1
≺,β(φ≺,β(Sk,e)− ρ) = Sk,e − φ−1

≺,β(ρ).
If φ−1

≺,β(γj) ∈ Sk,e, this implies γj ∈ ρ. Now, we assume that φ−1
≺,β(γj) ∈ Sk,e+1 − Sk,e,

and we prove that γj ∈ ρ̂, or in other words, that φ−1
≺,β(γj) ∈ {X2e

k φ
−1
≺,β(ρj), 1 6 j 6 δ}.

Since φ−1
≺,β(γj) ∈ Sk,e+1 − Sk,e, we can write φ−1

≺,β(γj) = X2e

k f for some f ∈ Sk,e. Then,
X2e

k f not being a multiple of a monomial in Sk,e−φ−1
≺,β(ρ) implies that f ∈ φ−1

≺,β(ρ), hence
the conclusion.

Proof of Fact 2. Any monomial in Sk,log2(βk) − Sk,e is a multiple of a monomial in
Sk,e+1−Sk,e. On the other hand, by assumption, all monomials corresponding to the row
rank profile of Ck,e+1 are in Sk,e. Therefore Sk,e+1−Sk,e only contains rows of K≺,β(M,F)
which are not in its row rank profile, and the conclusion follows from Lemma 4.12.

Then, knowing that (γ1, . . . , γν) is a subsequence of t, at the end of the iteration (k, e)
we have that B is formed by the rows corresponding to the row rank profile of Ck,e+1,
and (ρ1, . . . , ρδ) are the indices of these rows in K≺,β(M,F). Furthermore, if the variable
break has been set to True during this iteration, then B corresponds to the row rank
profile of Ck,log2(βk). This concludes the proof of correctness.

Concerning the cost bound, according to [Sto00, Theorem 2.10], the row rank profile
computation at Step 4 can be done in O(ρω−2mD) operations, where ρ = rank(F).

Let us now focus on the iteration (k, e) and show that it uses in O(Dω) operations.
First, the computation of BP at Step 7.b.(iii), where the matrix P has dimensions D×D
and B has D columns and δ 6 D rows, can be performed in O(Dω) operations. Then,
since B at Step 7.b.(iv) has 2δ 6 2D rows and D columns, its row rank profile can be
computed in O(Dω) operations. Finally, squaring the D ×D matrix P at Step 7.b.(vi)
is also done in O(Dω) operations.

To conclude the proof of the cost bound, we claim that in the iteration k of the For
loop, the number of iterations of the While loop cannot exceed 1 + log2(∆ + 1). From
Theorem 4.10, we know that the rank of K≺,β(M,F) is at most ∆. Then, once we
introduce rows of K≺,β(M,F) involving powers of the variable Xk greater than ∆, that
is, in iteration e > log2(∆) of the While loop, then these rows are linear combinations of
the previously introduced rows with 0 6 e 6 log2(∆). As a result, break will be set to
true and the While loop is exited.

We note that in most interesting cases we have ∆ > 1 and m ∈ O(D). This implies
that log(∆ + 1) = Θ(log(∆)), and that the first term O(ρω−2mD) in the cost bound is in
O(Dω) and is thus dominated by the second term. In this case, the cost bound can be
simplified as O(rDω log(∆)).

Combining this algorithm with Theorem 4.10, we obtain the following result.

Corollary 4.14. Let M = (M1, . . . ,Mr) be pairwise commuting matrices in KD×D, let
F ∈ Km×D, and let ≺ be a monomial order on K[X]1×m. Let further β ∈ Z>0 be a priori
degree bounds such that Hβ and β 6 (D + 1, . . . , D + 1). Then, there is an algorithm

132

4.2. Fast computation of the monomial basis

which computes the ≺-monomial basis of K[X]1×m/ SyzM(F) using

O
(
ρω−2mD +Dω log

(∏
16k6r min(βk,∆ + 1)

))
⊆ O(mDω−1 + rDω log(∆ + 1))

operations in K, where ρ is the rank of F and ∆ is the dimension of K[X]1×m/ SyzM(F)
as a K-vector space.

Proof. According to Theorem 4.10, the ≺-monomial basis can directly be computed by
Algorithm 1, up to the choice of degree bounds that satisfy Hβ and which are powers of
2. By default, since (D + 1, . . . , D + 1) satisfies Hβ, one may for example take the tuple
β = (2dlog2(D+1)e, . . . , 2dlog2(D+1)e). The cost bound follows from Proposition 4.13.

Remark 4.15. The order in which the For and While loops introduce the new monomials to
be processed precisely corresponds to the≺lex-term over position order≺top

lex overK[X]1×m.
As a result, the behaviour and the cost bound of the algorithm can be described with
more precision if the input monomial order is ≺ = ≺top

lex .
In this case, we are processing the rows of K≺,β(M,F) in the order they are in the

matrix. In particular, the permutation π at Steps 2 and 7.b.(ii) is always the identity
matrix, and the tuple (ρ1, . . . , ρδ) at Step 5 or inside the loops consists of the first δ entries
of the actual row rank profile of K≺,β(M,F).

Furthermore, the fact that we are processing the rows in their actual order has a small
impact on the cost bound, as follows. Let us denote by G the ≺-reduced Gröbner relation
basis for SyzM(F), and let β̂ = (β̂1, . . . , β̂r) be the tuple of maximum degrees in G, that
is, β̂k = maxp∈G degXk(p) for 1 6 k 6 r. We assume Hβ, which states that β̂ < β.

Then, at the iteration k of the For loop, the While loop does O(log2(β̂k+1)) iterations.
Indeed, once we introduce powers of the variable Xk greater than β̂k, the partial row rank
profile (ρ1, . . . , ρδ) will not be modified anymore, and break will be set to true. Therefore
the total number of iterations is O(

∑
16k6r log(β̂k + 1)).

The arithmetic mean-geometric mean inequality gives

∑
16k6r

log(β̂k + 1) 6 r log

(
β̂1 + · · ·+ β̂r

r
+ 1

)
.

Besides we have β̂1 + · · ·+ β̂r 6 ∆ + r − 1 since the ≺-monomial basis, of cardinality ∆,
contains the 1+β̂1+· · ·+β̂r−r distinct elements {1}∪{Xe

k, 1 6 e < β̂k, 1 6 k 6 r}. Then,
the number of iterations can be bounded as O(

∑
16k6r log(β̂k + 1)) ⊆ O(r log(2 + ∆/r)).

To summarize, when the input order is ≺ = ≺top
lex , and under the assumption Hβ,

Algorithm 1 uses

O
(
ρω−2mD + rDω log

(
∆

r
+ 2

))
operations in K. K

133

Chapter 4. Computing relation bases via linear algebra

4.3 Fast computation of the relation basis
In this section, we present our fast algorithm to compute the reduced Gröbner relation
basis of SyzM(F). By definition, it can be described by the minimal generators of the
initial module of SyzM(F) along with the associated normal forms. We first show how to
use the knowledge of the monomial basis to compute such normal forms efficiently.

4.3.1 Simultaneous computation of normal forms of monomials

Let M = (M1, . . . ,Mr) be pairwise commuting matrices in KD×D, let F ∈ Km×D, and let
≺ be a monomial order onK[X]1×m. Given some monomials {Xejcij , 1 6 j 6 s}, we want
to compute their ≺-normal forms with respect to the module SyzM(F). More precisely, for
1 6 j 6 s, the monomial Xejcij considered modulo SyzM(F) can be uniquely written as
a K-linear combination of the monomials in the ≺-monomial basis of K[X]1×m/ SyzM(F);
we will focus on computing the coefficients of this combination.

In the linearized viewpoint, these monomials correspond to a matrix T ∈ Ks×D, whose
row j is Fij ,∗M

ej . Similarly, the monomials in the≺-monomial basis ofK[X]1×m/ SyzM(F)
form the rows of a matrix B ∈ K∆×D. According to Theorem 4.10, if we are given degree
bounds β = (β1, . . . , βr) ∈ Zr>0 such that Hβ, then B is the submatrix of K≺,β(M,F)
formed by the rows in its row rank profile ρ = (ρ1, . . . , ρ∆) ∈ Z∆

>0.
Then, the rows of T are K-linear combinations of the rows of B; these combinations

may be gathered in a matrix N ∈ Ks×∆ such that T = NB. (The notation T stands for
terms, while B stands for basis, and N for normal forms.) Our goal is to find this matrix
N; here, the fact that it is unique can be seen from the fact that B has full row rank.

Explicitly, N can be computed as follows from T and B. If B is square, then we
directly have N = TB−1. More generally, let (ρ̂1, . . . , ρ̂∆) denote the column rank profile
of B, and let B̂ ∈ K∆×∆ and T̂ ∈ Ks×∆ be the submatrices of B and T formed by their
columns {ρ̂1, . . . , ρ̂∆}. Then, we have T̂ = NB̂ and B̂ is invertible, so that N = T̂B̂−1.

Finally, to obtain the sought normal forms it remains to compress back the linear
relations given by the rows of N into polynomials in K[X]1×m. By construction, N is
seen as the submatrix formed by the columns (ρ1, . . . , ρ∆) of a matrix N̂ ∈ Ks×β1···βrm,
whose other columns are zero. Then, the ≺-normal forms of {Xejcij , 1 6 j 6 s} are
obtained as the compressions C≺,β(N̂j,∗) for 1 6 j 6 s.

Proposition 4.16. Algorithm 2 is correct and uses

O(∆ω−1(D + s))

operations in K.

Proof. The correctness follows from the discussion above. Concerning the cost bound, we
first remark that Steps 2, 3, 5, 6, 7 do not use field operations.

Then, Step 1 uses O(∆ω−1D) field operations according to [Sto00, Theorem 2.10].
At Step 4, the inversion of B̂ uses O(∆ω) operations. Then, the multiplication T̂B̂−1

uses O(s∆ω−1) operations if s > ∆, and O(∆ω) otherwise. Since ∆ 6 D we obtain the
announced bound.

134

4.3. Fast computation of the relation basis

Algorithm 2 – LinNormalForm
(Normal forms via linear algebra)
Input:
• pairwise commuting matrices M = (M1, . . . ,Mr) in KD×D,
• matrix F ∈ Km×D,
• matrix T ∈ Ks×D whose row j is Fij ,∗M

ej for 1 6 j 6 s,
• monomial order ≺ on K[X1, . . . , Xr]

1×m,
• degree bounds β = (β1, . . . , βr) ∈ Zr>0 such that Hβ,
• submatrix B ∈ K∆×D of K≺,β(M,F) formed by its rows corresponding

to its row rank profile ρ = (ρ1, . . . , ρ∆) ∈ Z∆
>0.

Output: matrix in K[X1, . . . , Xr]
s×m such that, for 1 6 j 6 s, its row j is

the ≺-normal form nf≺(Xejcij) with respect to SyzM(F).

1. (ρ̂1, . . . , ρ̂∆)← the column rank profile of B

2. B̂← submatrix of B formed by its columns {ρ̂1, . . . , ρ̂∆}
3. T̂← submatrix of T formed by its columns {ρ̂1, . . . , ρ̂∆}
4. N← T̂B̂−1

5. N̂← zero matrix in Ks×D

6. N̂∗,ρk ← N∗,k for k from 1 to ∆

7. Return the matrix in K[X1, . . . , Xr]
s×m whose row j is C≺,β(N̂j,∗)

135

Chapter 4. Computing relation bases via linear algebra

Remark 4.17. It is in fact not necessary to assume that the degree bounds β satisfy the
assumption Hβ in order to perform normal form computation with Algorithm 2. Indeed,
all we need is that the ≺-normal forms of the input monomials be K-linear combinations
of the monomials in φ−1

≺,β(ρ).
For example, by definition of the row rank profile, this is the case if the input monomi-

als all have degree bounded by β, or in other words, if T is the submatrix of K≺,β(M,F)
formed by its rows {φ≺,β(Xejcij), 1 6 j 6 s}. Still, in what follows, Hβ will be satis-
fied, since our goal is to rely on this normal form computation to compute the ≺-reduced
Gröbner basis of SyzM(F). K

4.3.2 Univariate case: computing shifted Popov relation bases

To introduce our fast relation basis algorithm, we first focus on the univariate case. Let
M ∈ KD×D, F ∈ Km×D, and s ∈ Zm. Previous work using such a linear algebra viewpoint
to compute Popov and Hermite bases includes [Kai80, Vil96].

Then, let δ = (δ1, . . . , δm) ∈ Zm>0 be the s-minimal degree of SyzM(F). We have seen
in Section 1.1.3 and Example 1.40 that the <s-top-monomial basis of K[X]1×m/ SyzM(F)
is given by δ as ∪16i6m{Xeci, 0 6 e < δi}. We also recall that, as a consequence, the
dimension of K[X]1×m/ SyzM(F) as a K-vector space is ∆ = δ1 + · · ·+ δm.

Furthermore, from Section 4.2, we know that this monomial basis can be obtained
from the row rank profile of the multi-Krylov matrix. More precisely, suppose that we
have an a priori bound β ∈ Z>0 on the degree of the s-Popov relation basis of SyzM(F),
that is, β > max(δ). Then, let (ρ1, . . . , ρ∆) ∈ Z∆

>0 be the row rank profile of Ks,β(M,F)
and write ρj = φs,β(Xejcij) for 1 6 j 6 ∆. Theorem 4.10 states that the <s-top-monomial
basis of K[X]1×m/ SyzM(F) is {Xejcij , 1 6 j 6 ∆}.

As a consequence, the s-minimal degree δ can be obtained as

δi =

{
1 + max{ej | 1 6 j 6 ∆ and ij = i} if the set is nonempty,

0 if it is empty.

Then, knowing δ, the sought s-Popov relation basis can be computed as the matrix whose
row i is Xδici − nf<s-top(Xδici), as explained in Section 1.3.5.

These m normal forms can be computed efficiently using Algorithm 2, up to the
preliminary computation of the submatrix T of Ks,β(M,F) formed by the rows with
indices in {φs,β(Xδ1c1), . . . , φs,β(Xδmcm)}.
Proposition 4.18. Algorithm 3 is correct and uses

O(mDω−1 +Dω log(min(β,∆))) ⊆ O(mDω−1 +Dω log(D))

operations in K, where ∆ = δ1 + · · ·+ δm is the sum of the s-minimal degrees of SyzM(F).
Proof. The correctness of the algorithm follows from the discussion above.

According to Corollary 4.14, the computation of the row rank profile and of the sub-
matrix B at Step 1 uses O(mDω−1+Dω log(min(β,∆))) field operations. Then, at Step 2,
the submatrix of T of its rows i such that δi > 0 has at most min(m,∆) 6 D rows since
δ1 + · · · + δm = ∆. Thus, right-multiplying this submatrix by the D × D matrix M
can be done in O(Dω) operations. Finally, the normal forms at Step 3 are computed in
O(∆ω−1(D +m)) ⊆ O(mDω−1 +Dω) operations according to Proposition 4.16.

136

4.3. Fast computation of the relation basis

Algorithm 3 – LinPopovRelBas
(Shifted Popov relation bases via linear algebra)
Input:
• matrix M ∈ KD×D,
• matrix F ∈ Km×D,
• shift s ∈ Zm,
• bound β ∈ Z>0 on the degree of the s-Popov relation basis of SyzM(F)

(defaults to β = D + 1).

Output: the s-Popov relation basis of SyzM(F).

1. /* Compute monomial basis and multi-Krylov submatrix */

<s-top ← monomial order on K[X]1×m as in Example 1.38
φs,β ← indexing function as in Definition 4.2 and Section 4.1.3
(ρ1, . . . , ρ∆),B← KrylovRankProf(M,F, <s-top, 2dlog2(β)e)

Xejcij ← φ−1
s,β(ρj) for j from 1 to ∆

2. /* Compute linearization of the m leading monomials */

T← zero matrix in Km×D

For i from 1 to m
a. Si ← {ej | 1 6 j 6 ∆ and ij = i}
b. If Si = ∅:

(i) δi ← 0

(ii) Ti,∗ ← Fi,∗

c. Else:

(i) δi ← 1 + max(Si)
(ii) Ti,∗ ← Bρj ,∗ where j is the integer such that ej = max(Si)

Right-multiply by M the submatrix of T of its rows i such that δi > 0

3. /* Compute normal forms of the m leading monomials */

N ∈ K[X]m×m ← LinNormalForm(M,F,T, <s-top, β,B)

4. Return diag(Xδ1 , . . . , Xδm)−N

137

Chapter 4. Computing relation bases via linear algebra

4.3.3 Computing reduced Gröbner relation bases

Now, we give the general algorithm for the multivariate case, with K[X] = K[X1, . . . , Xr].
Let M = (M1, . . . ,Mr) be pairwise commuting matrices in KD×D, let F ∈ Km×D, and let
≺ be a monomial order on K[X]1×m. In what follows, we use some tools introduced in
Section 1.3.5, concerning the border of the ≺-monomial basis of K[X]1×m/ SyzM(F) and
the minimal generators of the monomial submodule in≺(SyzM(F)).

Our approach to compute the ≺-reduced Gröbner relation basis G of SyzM(F) is the
same as in the univariate case. Namely, since Algorithms 1 and 2 provide us with efficient
methods to compute the ≺-monomial basis E and ≺-normal forms modulo SyzM(F), we
use E to find the set L formed by the ≺-leading terms of the polynomials in G, and then
we deduce G as G = {f − nf≺(f), f ∈ L}.

In the algorithm below, the computation of

L = {in≺(p),p ∈ G} = {Xδj , 1 6 j 6 s}

can be done from E = {ε1, . . . , ε∆} as explained in Section 1.3.5. In short, we first compute
the set of multiples S = {Xkεj, 1 6 k 6 r, 1 6 j 6 ∆} ∪ {ci, 1 6 i 6 m | ci 6∈ E}, from
which we then deduce the border B = S − E . The latter is a set of generating monomials
for the monomial submodule in≺(SyzM(F)). Since L is the set of minimal generators of
in≺(SyzM(F)), it can be found from B by removing all monomials in B which are divisible
by another monomial in B. We recall that a monomial Xeci divides another monomial
Xe′ci′ if i = i′ and Xe divides Xe′ .

Unlike in the univariate case, in this context the number of generators s is not known
in advance; while it is at least m, it may also be much larger. We have the bound
s 6 r∆ + m, which follows for example from the computation of L above since L ⊆ S
with Card(S) 6 r∆ +m; in the cost analysis below, we will use a similar argument. The
s normal forms of the monomials in L can be computed efficiently using Algorithm 2, up
to the preliminary computation of the submatrix T of Ks,β(M,F) formed by the rows
with indices in {φ≺,β(f), f ∈ L}.

Proposition 4.19. Algorithm 4 is correct and uses

O
(
mDω−1 +Dω log

(
2r
∏

16k6r min(βk,∆)
))

⊆ O(mDω−1 + rDω log(∆))

operations in K.

Proof. Concerning correctness, the construction of B ensures that after Step 2.d, the rows
of Tk are the rows φ≺,β(X−1

k X
ek,jcik,j) of K≺,β(M,F). Therefore, by definition of the lat-

ter matrix, after Step 2.e the rows of Tk are the rows Fik,j ,∗M
ek,j . Then, Proposition 4.16

implies that the row j of Nk computed at Step 3 is the normal form nf≺(Xek,jcik,j) with
respect to the module SyzM(F). This shows the correctness of the algorithm since, as
explained above, the ≺-reduced Gröbner relation basis is {f − nf≺(f), f ∈ L}.

Concerning the cost bound, Step 1 uses O
(
mDω−1 +Dω log

(∏
16k6r min(βk,∆)

))
op-

erations, according to Proposition 4.13. Then, at the iteration k of the For loop, the
multiplication at Step 2.e involves the sk × D matrix Tk and the D × D matrix Mk.

138

4.3. Fast computation of the relation basis

Algorithm 4 – LinRelBas
(Reduced Gröbner relation bases via linear algebra)
Input:
• pairwise commuting matrices M = (M1, . . . ,Mr) in KD×D,
• matrix F ∈ Km×D,
• monomial order ≺ on K[X1, . . . , Xr]

1×m,
• degree bounds β = (β1, . . . , βr) ∈ Zr>0 such that Hβ (defaults to β =

(D + 1, . . . , D + 1)).

Output: the ≺-reduced Gröbner relation basis of SyzM(F).

1. /* Compute monomial basis and multi-Krylov submatrix */

φ≺,β ← indexing function as in Definition 4.2
β̂ ← (2dlog2(β1)e, . . . , 2dlog2(βr)e)
(ρ1, . . . , ρ∆),B← KrylovRankProf(M,F,≺, β̂)

E ← the ≺-monomial basis {φ−1
≺,β(ρk), 1 6 k 6 ∆}

2. /* Compute leading monomials and their linearizations */

L ← minimal generating set for in≺(SyzM(F)) deduced from E
L0 ← L∩ {ci, 1 6 i 6 m}
write L0 = {ci0,j , 1 6 j 6 s0}
For k from 1 to r
a. Lk ← {f ∈ L − (L0 ∪ · · · ∪ Lk−1) | Xk divides f and X−1

k f ∈ E}
b. write Lk = {Xek,jcik,j , 1 6 j 6 sk}

c. For j from 1 to sk: µj ← index such that ρµj = φ≺,β(X−1
k X

ek,jcik,j)

d. Tk ← matrix formed by the rows µ1, . . . , µsk of B, in this order

e. Tk ← TkMk

T← [TT
0 | TT

1 | · · · | TT
r]T

3. /* Compute normal forms of the s leading monomials */

N ∈ K[X1, . . . , Xr]
s×m ← LinNormalForm(M,F,T,≺,β,B)

write N = [NT
0 | NT

1 | · · · | NT
r]T with Nk ∈ K[X1, . . . , Xr]

sk×m

4. Denote by Nk,j,∗ the row j of Nk // normal form of Xek,jcik,j

Return
⋃

06k6r{Xek,jcik,j −Nk,j,∗, 1 6 j 6 sk}

139

Chapter 4. Computing relation bases via linear algebra

Since we have by definition sk = Card(Lk) 6 Card(E) = ∆ 6 D, this multiplica-
tion is performed in O(Dω) operations; over the r iterations, this leads to a total of
O(rDω) = O(Dω log(2r)) operations. Finally, the cost for computing normal forms at
Step 3 is in O(∆ω−1(D + s)) ⊆ O(mDω−1 +Dω) according to Proposition 4.16.

140

5

Computing multiplication matrices
from a Gröbner basis

In this chapter, we give the details of a fast algorithm to compute multiplication matrices
from a Gröbner basis (Problem 6). For this, we make an assumption on the input ideal,
which is detailed in Section 5.1. We stated our result and gave a comparison with existing
algorithms in Section 2.2.3.

5.1 Structural properties of the monomial basis

In this section, we consider the multivariate polynomial ring K[X] = K[X1, . . . , Xr], and
a zero-dimensional ideal I of K[X] of degree D. Using the terminology in Section 1.3.5,
this means that I has finite codimension D as a K-vector subspace of K[X].

For a given monomial order ≺ on K[X], our goal in this section is to present basic
properties about the shape of the ≺-monomial basis of K[X]/I, and their consequences
on the computation of the multiplication matrices from a Gröbner basis. To obtain a fast
algorithm, we will use additional properties which derive from the assumption that the
generic initial ideal of I is Borel-fixed; this is stated formally at the end of this section.

Let us denote by E = {ε1, . . . , εD} the≺-monomial basis ofK[X]/I (see Section 1.3.2).
As in Section 1.3.5, we consider the set of monomials that are obtained from those in E
by multiplication by one of the variables:

S = {Xkεj, 1 6 k 6 r, 1 6 j 6 D}.

Then, if M = (M1, . . . ,Mr) are the sought multiplication matrices, for 1 6 k 6 r the
row j of Mk is given by the coefficients of the ≺-normal form nf≺(Xkεj) in the basis E .

Assume that we are given the ≺-reduced Gröbner basis G of I, which is a convenient
tool to compute such ≺-normal forms and thus the matrices M. Among the ≺-normal
forms of the monomials in S, some are easier to handle than others.

More precisely, the monomials in S can be divided into three disjoint categories:

S = (S − B) ∪ L ∪ (B − L),

141

Chapter 5. Computing multiplication matrices from a Gröbner basis

where B = S − E is the border (see Section 1.3.5) and L = {in≺(g),g ∈ G} ⊆ B are the
minimal generators of in≺(I).

We first remark that S − B is included in E ; in fact, we have E = {1} ∪ (S − B). As
a result, the monomials in S − B are their own ≺-normal forms, and the corresponding
rows of the multiplication matrices are coordinate rows that are obtained for free.

Besides, the monomials in the second set L are the ≺-initial terms of the generators
in G. As such, we have G = {f − nf≺(f), f ∈ L} and thus the ≺-normal forms of the
monomials in L can be computed from G using at most DCard(S) 6 rD2 computations
of opposites in K. By opposite we mean having on input α ∈ K and computing −α.

We conclude that, to obtain the multiplication matrices, the main computational work
is the computation of the ≺-normal forms of the monomials in B − L.

To the best of our knowledge, it is currently unknown how to achieve efficient compu-
tation of these normal forms with a sub-subic complexity, unless some assumptions are
made to obtain additional properties about the structure of the monomial basis.

In [FGHR14], it is showed how the Moreno-Socias conjecture for generic ideals [MS91,
MS03a] yields such a property [FGHR14, Proposition 7], leading to the efficient computa-
tion of the multiplication matrix of the smallest variable Xr. We remark that [FGHR14]
focuses on the case of Shape Position ideals, and in this context one does not have to
compute the other multiplication matrices.

In this reference, the non-generic case is also dealt with [FGHR14, Section 4.2], using a
generalization of [FGHR14, Proposition 7] which is known as a property of Borel-fixedness
of the initial ideal (see Lemma 5.1). This property holds after a random linear change
of variables; indeed, a theorem of Galligo and Bayer-Stillman states that, if the order ≺
refines the degree, then the generic ≺-initial ideal of I is Borel-fixed (see for example
[Eis95, Section 15.9] for more details). We note that the latter result is not conjectural.

Following this line of work, we will make the assumption that the ≺-initial ideal of I is
Borel-fixed. We refer to [MS05, Chapter 2] for a definition; here, we are mainly interested
in the characterization stated in Lemma 5.1 below. It gives a structural property which
is the key behind the efficiency of our algorithms.

Lemma 5.1 ([MS05, Proposition 2.3]). Assume that the characteristic of K is zero. Then,
a monomial ideal J ⊂ K[X] is Borel-fixed if and only if for any f ∈ J that is divisible
by Xj then Xi

Xj
f ∈ J for all i < j.

For an illustration, we note that the monomial ideal in Fig. 1.2 has this property. The
following sections extend the work in [FGHR14] concerning the computation of Mr, by
exploiting the Borel-fixed property to further compute all other multiplication matrices
efficiently.

5.2 The case of two variables

In this section, we focus on the case of two variables, with I being an ideal of K[X, Y].
In what follows, we use notation from the previous section. Furthermore, for any set

of monomials A ⊂ K[X, Y], we write nf≺(A) to denote the set of ≺-normal forms of the

142

5.2. The case of two variables

monomials in A. Then, our goal is to compute nf≺(B − L), where

B = ({Xεj, 1 6 j 6 D} ∪ {Y εj, 1 6 j 6 D})− {εj, 1 6 j 6 D}.

In our algorithm, we will first compute the multiplication matrix MY , and then MX . We
have the following result.

Lemma 5.2. Let ≺ be a monomial order on K[X, Y], and let G be a ≺-reduced Gröbner
basis defining a zero-dimensional ideal I ∈ K[X, Y] of degree D. Then,

(i) knowing MY , one can compute MX using O(Dω log(D)) operations in K;

(ii) assuming K has characteristic zero and that in≺(I) is Borel-fixed, then

{Y εj, 1 6 j 6 D} ⊂ E ∪ L,

and MY can be obtained via the computation of O(D2) opposites of field elements.

Proof. (i) According to Section 5.1, the rows of MX corresponding to normal forms in
nf≺(E ∪ L) are obtained in O(D2) operations in K. It remains to compute its rows that
are given by nf≺(BX), where

BX = {Xεj, 1 6 j 6 D} − {εj, 1 6 j 6 D};

for this, we give details on the structure of BX .
We write L = {XαjY βj , 1 6 j 6 s} with (αj+1, βj+1) ≺lex (αj, βj) for 1 6 j 6 s; notice

that (αj) is strictly decreasing with αs = 0, and (βj) is strictly increasing with β1 = 0.
Then, we have

BX = {XαjY βj+k, 1 6 k < βj+1 − βj, 1 6 j 6 s− 1}.

Now let vj ∈ K1×D be the vector which gives the coefficients of nf≺(XαjY βj) in the
basis E , for 1 6 j 6 s. Since {v1, . . . ,vs} corresponds to nf≺(L), these vectors are among
the first set of rows of MX that have already been computed. Then, the normal forms
nf≺(BX) can be obtain from the fact that

nf≺(XαjY βj+k) is given by vjM
k
Y for 1 6 k < βj+1 − βj, 1 6 j 6 s− 1.

We will study this kind of computation separately below in Section 5.3. In short, the
cost bound in Lemma 5.3 and the inequality

∑
16j6s−1 βj+1 − βj = βs 6 D ensure that

nf≺(BX) can be computed using O(Dω log(D)) operations in K.

(ii) This item is proved in [FGHR13, Section 7], although under slightly different
assumptions; we still give a proof here for completeness.

Assume that for some j we have Y εj 6∈ E ∪ L. First, Y εj 6∈ E implies that Y εj ∈
in≺(I). Then, Y εj is a multiple of some f ∈ L: there are exponents α, β > 0 such that
Y εj = fXαY β. The fact that Y εj 6∈ L implies that either α > 0 or β > 0.

If β > 0 then we would have εj = fXαY β−1 ∈ in≺(I), which is not the case since
εj ∈ E . Hence Y εj = fXα with α > 0. Then, fXα−1 ∈ in≺(I), and since by assumption
K is of characteristic zero and in≺(I) is Borel-fixed, Lemma 5.1 implies that X

Y
fXα−1 =

f
Y
Xα = εj ∈ in≺(I). Again, this is a contradiction since εj ∈ E . Therefore there is no

such j, and we have the announced inclusion.

143

Chapter 5. Computing multiplication matrices from a Gröbner basis

As a consequence, if K has characteristic zero and in≺(I) is Borel-fixed, then the
multiplication matrices MX and MY can be computed from the ≺-reduced Gröbner basis
G using O(Dω log(D)) operations in K.

5.3 Computing rows of a Krylov matrix

In this section, we detail a simple method for the computation of a collection of vector-
matrix products of the form vMe (Algorithm 5), obtaining efficiency via the use of re-
peated squaring of the matrix M.

In this algorithm we use the following notation: for a matrix N ∈ Km×D whose rows
are indexed by a set P of cardinality m, then for any subset P ′ ⊂ P , the notation
Submatrix(N,P ′) stands for the submatrix of N with the rows whose indices are in P ′.
Furthermore, when we write an assignment operation Submatrix(N,P ′) ← A for some
matrix A ∈ KCard(P ′)×D, this does modify the entries of N.

Lemma 5.3. Let M ∈ KD×D, let v1, . . . ,vn ∈ K1×D, and let γ1, . . . , γn ∈ Z>0, for some
n ∈ Z>0. Then, Algorithm 5 computes the row vectors ∪16j6n{vjMe, 1 6 e 6 γj} using

O
(
Dω log(1 + µ) +Dω−1d log(1 + µn/d)

)
operations in K, where d = γ1 + · · ·+ γn and µ = max16i6n γi.

Proof. Here, we use notation from the algorithm, and we also denote by δ = d/n the
average of γ1, . . . , γn. The product at Step 5 uses O(Dω−1(D + n)) ⊆ O(Dω + Dω−1n)
field operations. Over all iterations of the While loop, Step 6.a O(Dω log(µ)) operations.
Concerning Step 6.c, we have the following bounds:

• For 1 6 i 6 log2(δ), we are multiplying an Card(P i−1) × D matrix and a D × D
matrix, with Card(P i−1) 6 2i−1n. This costs O(Dω−1(D+ 2in)) for one i, and thus
O(Dω−1(D log(δ) + d)) overall.

• For iterations with log(δ) < i 6 dlog(µ)e, we have a similar multiplication with
the left-hand side having Card(P i−1) 6 Card(P) = d rows. Overall, this uses
O(Dω−1(D + d) log(µ/δ)) field operations.

Summing these bounds leads to the announced cost, noting that the ones in the logarithms
are added to take into account the cost of Step 5 when γ1 = · · · = γn = 1.

5.4 Computing the multiplication matrices

In this section, we generalize our results of Section 5.2 to the case of r variables. We
follow a similar strategy, computing iteratively the matrices Mr,Mr−1, . . . ,M1.

Assuming that in≺(I) is Borel-fixed and using the same ideas as in Section 5.2, we
can indeed obtain Mr by computing the normal forms of the monomials in E ∪L, and we
can also obtain Mr−1 by iterating Mr on these normal forms.

144

5.4. Computing the multiplication matrices

Algorithm 5 – KrylovEval
(Computing rows of a Krylov matrix)
Input:
• a matrix M ∈ KD×D for some D ∈ Z>0,
• row vectors v1, . . . ,vn ∈ K1×D for some n ∈ Z>0,
• bounds γ1, . . . , γn ∈ Z>0.

Output: the matrix N ∈ K(γ1+···+γn)×D whose row γ1 + · · ·+γj−1 + e is equal
to vjM

e, for 1 6 e 6 γj, and for 1 6 j 6 n.

1. P ← {(e, j), 1 6 e 6 γj, 1 6 j 6 n}
2. N ← 0 ∈ K(γ1+···+γn)×D with its rows being indexed by P sorted in

lexicographic order

3. M(0) ←M

4. P0 ← {(1, j), 1 6 j 6 n}

5. Submatrix(N,P0)←

v1
...

vn

M(0)

6. For i from 1 to dlog2(maxi γi)e:

a. If i = 1 then M(1) ←M else M(i) ←M(i−1) ·M(i−1)

b. Pi ← {(e, j), 2i−1 < e 6 2i, 1 6 j 6 n}
c. P i−1 = P∩(P0∪· · ·∪Pi−1) = P∩{(e, j), 1 6 e 6 2i−1, 1 6 j 6 n}
d. P̂i−1 = {(e+ 2i−1, j), (e, j) ∈ P i−1} // (P ∩ Pi) ⊂ P̂i−1 ⊂ Pi
e. N(i) ← Submatrix(N,P i−1) M(i) with the rows of N(i) being in-

dexed by P̂(i−1) sorted in lexicographic order

f. Submatrix(N,P ∩ Pi)← Submatrix(N(i),P ∩ Pi)

7. Return N

145

Chapter 5. Computing multiplication matrices from a Gröbner basis

However, Mr−2 cannot be obtained by simply iterating Mr−1 on the normal forms in
nf≺(E ∪ L) and those given by the rows of Mr−1. The reason is that some of the normal
forms which constitute the rows of Mr−2 are actually obtained by iterating Mr on the
normal forms in nf≺(L).

Thus we will change our focus, from the computation of the multiplication matrices,
to that of the normal forms which we can obtain from the known multiplication matrices.
Roughly, our algorithm is as follows. We start from Sr = E∪L, for which we have seen how
to efficiently compute nf≺(Sr). The Borel-fixed property ensures that these normal forms
contains those giving Mr. Then, we consider the monomials Sr−1 that can be obtained by
iterating Xr on E∪L, and using Mr we compute their normal forms nf≺(Sr−1). Thanks to
the Borel-fixed property again, this gives in particular Mr−1, but also additional normal
forms which give some rows of multiplication matrices Mi for i < r−1. Then, we continue
this process until i = 1: at this stage, we have covered the whole set of monomials S and
we thus have all the normal forms in nf≺(S). We recall that nf≺(S) precisely corresponds
to the rows of the multiplication matrices M1, . . . ,Mr.

More precisely, we consider the following subsets of S ∪ {1} = E ∪ B, of which we will
compute the normal forms iteratively:

• for i = r, the set of monomials

Ŝr = E ∪ L ⊂ E ∪ B ,

whose normal forms are trivial or directly obtained from the ≺-reduced Gröbner
basis G;

• for 1 6 i < r, the set of monomials in E ∪B which are obtained from E ∪L through
multiplication by a monomial in the variables Xi+1, . . . , Xr:

Ŝi = {Xei+1

i+1 · · ·Xer
r f, ei+1, . . . , er > 0, f ∈ E ∪ L} ∩ (E ∪ B),

whose normal forms can thus be obtained from those in nf≺(E ∪ L) through multi-
plication by powers of Mi+1, . . . ,Mr, in the case where these matrices are known.

Then, we define Sr = Ŝr = E ∪L for i = r, and Si = Ŝi− Ŝi+1 for 1 6 i < r. Therefore Ŝi
is the disjoint union Si∪ · · · ∪Sr, and Si is the set of monomials in B− Ŝi+1 which can be
obtained from E ∪ L through multiplication by a monomial in the variables Xi+1, . . . , Xr

which does involve the variable Xi+1. That is, we can describe Si as follows,

Si = {Xei+1

i+1 · · ·Xer
r f, ei+1 > 0, ei+2, . . . , er > 0, f ∈ E ∪ L} ∩ (B − Ŝi+1)

= {Xe
i+1f, e > 0, f ∈ Ŝi+1} ∩ (B − Ŝi+1)

= {f ∈ B − Ŝi+1 | ∃e > 0, X−ei+1f ∈ Ŝi+1}.

In particular, nf≺(Si) can be deduced from nf≺(Ŝi+1) through multiplication by powers
of Mi+1, if the latter matrix is known.

We have

B − L = S1 ∪ · · · ∪ Sr−1,

and S ∪ {1} = E ∪ B = E ∪ L ∪ (B − L) = S1 ∪ · · · ∪ Sr,

146

5.4. Computing the multiplication matrices

so that nf≺(S) can be obtained by iteratively computing nf≺(Si) for i from r to 1. Our
goal is to show that this strategy yields an efficient algorithm when in≺(I) is Borel-fixed.
Remark 5.4. One first question is whether the sets of monomials (Si)16i6r can be efficiently
determined. For example, this can be done while building B from G, or afterwards by
an iteration for i from r to 1 as in Algorithm 6. In any case, this does not involve field
operations, but only integer comparisons, so that here the time for finding (Si)16i6r is not
taken into account in our cost bounds. K

Algorithm 6 – NextExpSet
(Computing the next exponent set Si)
Input:
• the border B,
• the exponent set Ŝi+1 = Si+1 ∪ · · · ∪ Sr for some 1 6 i < r.

Output: the exponent set Si.

1. Write Ŝi+1 = {f1, . . . , fN}
2. For j from 1 to N :

a. e← 0

b. While Xe+1
i+1 fj ∈ B − Ŝi+1:

(i) e← e+ 1

c. If e > 0:

(i) Si ← Si ∪ {Xi+1fj, . . . , X
e
i+1fj}

3. Return Si

Now, we focus on the computation of the normal forms nf≺(S). The efficiency of our
iterative algorithm is based on the following fact. As a consequence of in≺(I) being Borel-
fixed, the structure of S is such that the knowledge of the normal forms nf≺(Si∪ · · · ∪Sr)
directly gives the multiplication matrices Mi, . . . ,Mr. We first detail this claim in the
following lemma.

Lemma 5.5. Let ≺ be a monomial order on K[X1, . . . , Xr], and let G be a ≺-reduced
Gröbner basis defining a zero-dimensional ideal I ∈ K[X1, . . . , Xr] of degree D. Let us
assume that K has characteristic zero and that in≺(I) is Borel-fixed. Then, we have

{Xiεj, 1 6 j 6 D} ⊂ Ŝi for all 1 6 i 6 r;

in particular, the multiplication matrices Mi, . . . ,Mr can be read off from nf≺(Ŝi).

Proof. This proof uses arguments similar to those in the proof of Lemma 5.2. For i = r,
this inclusion is already proved in [FGHR13, Section 7]. For i = 1, the property is trivial
since Ŝ1 = S ∪ {1} = E ∪ B.

147

Chapter 5. Computing multiplication matrices from a Gröbner basis

Let i ∈ {1, . . . , r}. Then, for all i′ ∈ {i+ 1, . . . , r}, the fact that {Xi′εj, 1 6 j 6 D} ⊂
Ŝi′−1 ⊂ Ŝi implies that Mi′ can be read off from nf≺(Ŝi). Now let us fix j ∈ {1, . . . , D}.
As above we have Xiεj ∈ Ŝi−1, but our goal is to use the fact that in≺(I) is Borel-fixed,
to prove that we actually have Xiεj ∈ Ŝi, or in other words, Xiεj 6∈ Si−1.

If Xiεj ∈ E ∪ L = Sr, then the conclusion follows from Sr ∈ Ŝi. Let us now consider
the case Xiεj 6∈ E ∪L. Thus Xiεj ∈ in≺(I), and therefore there exist exponents (αk)16k6r

not all zero and a generating monomial f ∈ L such that Xiεj = Xα1
1 · · ·Xαr

r f .
Suppose that there exists k ∈ {1, . . . , i} such that αk > 0. If k = i then from αi > 0

we have that εj is a multiple of f and thus εj ∈ in≺(I), which is not the case; hence
k < i. If i = 1, there is no such k; otherwise, we have Xi

εj
Xk
∈ in≺(I), and by Lemma 5.1

this also leads to Xk
Xi
Xi

εj
Xk

= εj ∈ in≺(I). In any case, there is no such k, that is, we
have α1 = · · · = αi = 0. If i = r this contradicts the definition of (αk)16k6r and therefore
Xiεj ∈ E∪L; otherwise this gives the conclusionXiεj = X

αi+1

i+1 · · ·Xαr
r f ∈ Ŝi−(E∪L).

Next we show how one can efficiently compute nf≺(Si) from nf≺(Ŝi+1) when Mi+1 is
known. The cost bound we give for our approach depends on a parameter ηi, which is
defined as follows. For i ∈ {1, . . . , r − 1}, it is the largest exponent e such that there is a
monomial f ∈ B satisfying Xe

i+1f ∈ B:

ηi = max{e ∈ Z>0 | Xe
i+1f ∈ B for some f ∈ B}. (5.1)

Note that we do not allow f to be in the monomial basis E .

Lemma 5.6. Let ≺ be a monomial order on K[X1, . . . , Xr], and let G be a ≺-reduced
Gröbner basis defining a zero-dimensional ideal I ∈ K[X1, . . . , Xr] of degree D. Given
i ∈ {1, . . . , r− 1}, Ŝi+1, and nf≺(Ŝi+1), there is a deterministic algorithm which computes
Si and nf≺(Si) using O((Dω +Dω−1Ci) log(ηi)) operations in K, where Ci = Card(Si).

Proof. First, from Lemma 5.5 we know that the normal forms in nf≺(Ŝi+1) contain all
those that define the multiplication matrix Mi+1, which we thus have without performing
any additional field operation.

Then, Si can be determined from Ŝi+1 without field operation as shown in Algorithm 6
(see also Remark 5.4). More precisely, we obtain Si in the following form:

Si =
⋃

16j6N

{Xe
i+1fj, 1 6 e 6 ej}, (5.2)

where e1, . . . , eN > 0 and {fj, 1 6 j 6 N} ⊂ Ŝi+1. More precisely, {fj, 1 6 j 6 N} is the
subset of the monomials fj ∈ Ŝi+1 that are such that Xej

i+1fj ∈ B − Ŝi+1. Remark that
e1 + · · ·+ eN = Card(Si) = Ci.

Going to the normal forms, this directly gives

nf≺(Si) =
⋃

16j6N

{vjMe
i+1, 1 6 e 6 ej}, (5.3)

where vj ∈ K1×D is the coefficient vector of fj in the basis E . Therefore, according to
Lemma 5.3, nf≺(Si) can be computed using

O((Dω +Dω−1(e1 + · · ·+ eN)) log(max
i
ei)) ⊂ O((Dω +Dω−1Ci) log(ηi))

148

5.4. Computing the multiplication matrices

operations in K.

Algorithm 7 – MulMat
(Multiplication matrices from reduced Gröbner basis)
Input:
• a monomial order ≺ on K[X1, . . . , Xr],
• a ≺-reduced Gröbner basis G defining a zero-dimensional ideal I

Output: the multiplication matrices M1, . . . ,Mr in K[X1, . . . , Xr]/I.

1. Read L and E = {ε1, . . . , εD} from G
2. S ← {Xkεj, 1 6 k 6 r, 1 6 j 6 D}; B ← S − E

3. Ŝ ← E ∪ L; N ← nf≺(Ŝ)

4. For i from r − 1 to 1:

a. Read Mi+1 from Ŝ
b. Compute Si =

⋃
16j6N{Xe

i+1fj, 1 6 e 6 ej} as in Eq. (5.2), using
Algorithm 6 on input B and Ŝ

c. Compute nf≺(Si) =
⋃

16j6N{vjMe
i+1, 1 6 e 6 ej} as in Eq. (5.3),

using Algorithm 5 on input Mi+1, (v1, . . . ,vN), and (e1, . . . , eN)

d. Ŝ ← Si ∪ Ŝ; N ← nf≺(Si) ∪N

5. Read M1 from Ŝ
6. Return M1, . . . ,Mr

The correctness of Algorithm 7 follows from the results and discussions in this section.
The next proposition implies Theorem 2.14, and gives a more precise cost bound.

Proposition 5.7. Let ≺ be a monomial order on K[X1, . . . , Xr], and let G be a ≺-reduced
Gröbner basis defining a zero-dimensional ideal I ∈ K[X1, . . . , Xr] of degree D. If K is
of characteristic 0, and if in≺(I) is Borel-fixed, then Algorithm 7 solves Problem 6 using
O(Dω−1Card(S) log(η)) ⊆ O(rDω log(η)) operations in K, where

η = max{e ∈ Z>0 | Xe
i f ∈ B for some f ∈ B and some 2 6 i 6 r}.

Proof. First, we compute Ŝr = Sr = E ∪ L and nf≺(Ŝr) from G, using O(rD2) computa-
tions of opposites of field elements. Then, we iteratively apply Lemma 5.6 to obtain the
remaining matrices. The overall cost bound is O(

∑
16i6r−1(Dω + Dω−1Ci) log(ηi)), with

Ci = Card(Si). Using the upper bound C1 + · · · + Cr−1 6 Card(S) 6 rD and the fact
that maxi ηi = η, we obtain that the claimed cost bound.

149

Chapter 5. Computing multiplication matrices from a Gröbner basis

150

Part III

Systems of linear modular univariate
equations

151

Contents

Chapter 6 Preliminaries and ingredients 155

6.1 Multiplication time functions for polynomials and polynomial matrices 155

6.2 Using the minimal degree to ensure uniform shift and output degrees . 156

6.3 Computing residuals for systems of linear modular equations 158

6.4 Iterative relation basis for a triangular multiplication matrix [BL00] . . 160

Chapter 7 Computing shifted Popov approximant bases 165

7.1 Fast algorithms for almost uniform orders [GJV03] 166

7.2 Arbitrary orders: reduction to the case n ∈ O(m) 172

7.3 Fast approximant bases in Popov form with known minimal degree . . 175

7.4 Fast approximant bases in Popov form for arbitrary shifts 181

Chapter 8 Computing shifted Popov solution bases 185

8.1 Fast algorithm via kernel bases when the minimal degree is known . . . 186

8.2 The case of one equation . 190

8.2.1 Amplitude, splitting indices, and block triangular shape 192

8.2.2 Fast algorithm for a single equation 194

8.3 Fast solution bases in Popov form for arbitrary shifts 198

Chapter 9 Computing a solution via structured linear algebra 201

9.1 Solving structured homogeneous linear systems 201

9.2 Reducing to solving a mosaic-Hankel linear system 204

9.3 Directly computing a solution via a Toeplitz-like system 208

Chapter 10 Coppersmith technique over the univariate polynomials 215

10.1 The approach based on row reduction 215

10.2 Reducing to a system of linear modular equations 218

10.2.1 Introduction: the specific case d = 1 218

10.2.2 The general case d > 1 . 220

154

6

Preliminaries and ingredients

6.1 Multiplication time functions for polynomials and
polynomial matrices

In what follows, we use the time function d 7→ M(d) for polynomial multiplication over a
field K, as in [GG13, Section 8.3]: M(·) is such that, for any positive real number d, two
polynomials of degree at most d in K[X] can be multiplied using M(d) operations in K.

Concerning assumptions on M(d), we will mainly restrict ourselves to the most widely
used one, called the superlinearity property :

HM(·) : M(d) + M(d′) 6 M(d+ d′) for any d, d′ > 0. (6.1)

One may of course consider that M(·) is at most quadratic, that is, M(d) ∈ O(d2). Fur-
thermore, it follows from the algorithms in [Sch77, Nus80] that M(d) can be taken in
O(d log(d) log(log(d))).

In some situations, it may be helpful for better cost bounds to require the stronger
bound M(d) ∈ O(dω−1). It was done for example in [GSSV12] for the reduction of polyno-
mial matrices and in [ZL12] for the computation of approximant bases. Since we assume
ω > 2 and there are known quasi-linear algorithms for polynomial multiplication, this is
not an unreasonable assumption; yet, we will only use it sporadically, and always recall
it explicitly.

In this thesis, we also use time functions related to the multiplication of univariate
polynomial matrices. The multiplication time function (m, d) 7→ MM(m, d) concerning
m×m matrices of degree d is used for example in [Sto03, GJV03]. Like in these references,
we also define a related quantity (see also Definition 12.1) that typically arises in divide-
and-conquer computations.

Definition 6.1. Let m and d be two positive real numbers. Then, (m, d) 7→ MM(m, d)
is such that two matrices of degree at most d in K[X]m̄×m̄ with m̄ 6 m can be multiplied
using MM(m, d) operations in K. Furthermore, we define

MM′′(m, d) =
∑

06i6log(d)

2iMM(m, 2−id).

155

Chapter 6. Preliminaries and ingredients

It follows from [CK91] that one can always consider that MM(m, d) ∈ O(mωM(d)). In
some situations, if the fieldK has sufficiently many elements, one may use an interpolation-
evaluation schemes which yield better bounds such as O(mωd+m2M(d) log(d)); for more
details, we refer to [Tho01, Tho02, BS05]. Here, unless indicated, we will not make such
assumptions on K; we will only use the following assumption on MM(·, ·) which extends
the super-linearity in Eq. (6.1) to polynomial matrices:

HMM(·,·) : MM(m, d) + MM(m, d′) 6 MM(m, d+ d′) for any m, d, d′ > 0. (6.2)

It follows from this assumption that we have the upper bound

MM′′(m, d) ∈ O(MM(m, d) log(d)) ⊆ O(mωM(d) log(d)). (6.3)

We note that, in the case where one chooses for MM(m, d) some constant multiple of
mωM(d) or of mωd+m2M(d) log(d), then HMM(·,·) is a direct consequence of HM(·).

6.2 Using the minimal degree to ensure uniform shift
and output degrees

In this section, we consider the general case of univariate relation basis computation. For
an arbitrary instance of Problem 4, we explain how the knowledge of the shifted minimal
degree of the output module can be exploited in order to transform this instance into
another one for which the input shift is almost uniform and any shifted minimal basis is
known to have almost uniform degrees. This reduction is used in our fast algorithms for
approximant bases (Chapter 7), for solution bases (Chapter 8), and for interpolant bases
(Chapter 14), and combines ideas from Section 1.2.1 with partial linearization techniques
from [Sto06].

Let M, F, and s be the input of Problem 4. We study the situation where the s-
minimal degree δ ∈ Zm>0 of SyzM(F) is known. In this context, we first recall from
Lemma 1.26 that the relation basis of SyzM(F) in −δ-Popov form is actually equal to
that in s-Popov form.

Furthermore, this result also states the two following interesting properties. First,
from any −δ-minimal relation basis R of SyzM(F), the s-Popov basis can be retrieved
with a simple constant unimodular transformation: it is lm−δ(R)−1R.

Besides, R has column degree cdeg(R) = δ, precisely like the sought s-Popov basis;
thus the sum of the column degrees of R is at most D according to Lemma 2.10, and
its size is in O(m2 + mD). A remaining difficulty may be the unbalancedness of these
column degrees: while the sum of the entries of δ is at most D, the amplitude of δ may
be large, for example when δ = (D, 0, . . . , 0).

Let us study the unbalancedness of the shift d = −δ in terms of the quantities dis-
cussed in Section 1.2.2 concerning assumption Hs,1 and Hs,2. First, the sum |d−min(d)|
may be as large as Θ(mD). However, we have |max(d) − d| 6 |δ| 6 D, so that d satis-
fies Hs,2. Techniques relying on the partial linearization in [Sto06, Section 3] have been
already used to deal with such shifts in specific situations, namely for the computation of
approximant bases [ZL12, Algorithm 2].

156

6.2. Using the minimal degree to ensure uniform shift and output degrees

Furthermore, here we know the column degrees δ of the output basis. Then this partial
linearization leads to transforming our instance (M,F, s) into another one, with slightly
larger dimension m but with an almost uniform shift and with the guarantee that the
degrees in the output basis are almost uniform.

Lemma 6.2. Let M ∈ KD×D, F ∈ Km×D, and s ∈ Zm, and let δ = (δ1, . . . , δm) denote
the s-minimal degree of SyzM(F).

Then, let δ = dD/me > 1, and for i ∈ {1, . . . ,m} write δi = (αi − 1)δ + βi with
αi = dδi/δe and 1 6 βi 6 δ if δi > 0, and with αi = 1 and βi = 0 if δi = 0. Let further
m̃ = α1 + · · ·+ αm, and define δ̃ ∈ Zm̃>0 as

δ̃ = (δ, . . . , δ, β1︸ ︷︷ ︸
α1

, . . . , δ, . . . , δ, βm︸ ︷︷ ︸
αm

) (6.4)

and the expansion-compression matrix E ∈ K[X]m̃×m as

E =

1
Xδ

...
X(α1−1)δ

. . .
1
Xδ

...
X(αm−1)δ

. (6.5)

Let d = −δ̃ ∈ Zm̃ and R ∈ K[X]m̃×m̃ be a d-minimal relation basis of SyzM(E · F).
Then, the s-Popov relation basis of SyzM(F) is the submatrix of lmd(R)−1RE formed by
its rows at indices α1 + · · ·+ αi for 1 6 i 6 m.

Furthermore, we have m 6 m̃ 6 2m and max(d)−min(d) 6 dD/me.

Proof. We start by proving the inequalities on m̃ and the amplitude of d. We have
αi 6 1 + δi/δ 6 1 + mδi/D for all i. Thus, since |δ| 6 D according to Lemma 2.10, we
obtain m̃ = α1 + · · · + αm 6 m +

∑
16i6mmδi/D 6 2m. The remark on d follows from

the fact that all its entries are in {−δ, . . . , 0} with δ = dD/me.
Let P denote the s-Popov relation basis of SyzM(F); P has column degree δ. First, we

partially linearize the columns of P in degree δ to obtain P ∈ K[X]m×m̃; more precisely,
P is a matrix of degree at most δ and such that P = PE . Then, we define P̃ ∈ K[X]m̃×m̃

as follows:

• for 1 6 i 6 m, the row α1 + · · ·+ αi of P̃ is the row i of P;

• for 0 6 i 6 m − 1 and 1 6 j 6 αi+1 − 1, the row α1 + · · · + αi + j of P̃ is
the row [0, · · · , 0, Xδ,−1, 0, · · · , 0] ∈ K[X]1×m̃ with the entry Xδ at column index
α1 + · · ·+ αi + j.

157

Chapter 6. Preliminaries and ingredients

Since P is in s-Popov form with column degree δ, it is in −δ-Popov form by Lemma 1.26.
Then, one can check that P̃ is in d-Popov form and has d-row degree (0, . . . , 0).

By construction, every row of P̃ is a relation of SyzM(E · F). In particular, since R

is a relation basis of SyzM(E · F), there is a matrix U ∈ K[X]m̃×m̃ such that P̃ = UR.
Besides, there is no relation p̃ ∈ K[X]1×m̃ for SyzM(E · F) which has d-degree less than
0: otherwise, p̃E would be a relation of SyzM(F), and it is easily checked that it would
have −δ-degree less than 0, which is impossible.

Thus every row of R has d-degree at least 0, and the predictable degree property in
Theorem 1.11 shows that U is a constant matrix, and therefore unimodular. Then, P̃ is
a relation basis of SyzM(E ·F), and since it is in d-Popov form, by Lemma 1.26 we obtain
that P̃ = lmd(R)−1R. The conclusion follows.

6.3 Computing residuals for systems of linear modular
equations

In the framework of relation bases, the case of linear modular systems corresponds to a
multiplication matrix M in companion-block diagonal form; our fast algorithms to solve
Problem 4 in this case use divide-and-conquer approaches sketched in Sections 2.3 and 2.5.
They involve in particular the computation of residuals which, for matrices P ∈ K[X]m×m

and E ∈ Km×D, are products of the form P ·E as defined in Section 2.1.2. We showed in
Section 2.5.1 that the multiplication matrix induces moduli M = (m1, . . . ,mn) ∈ K[X]n6=0

and E induces a matrix F ∈ K[X]m×n which are such that P · E corresponds to the
modular polynomial matrix product PF mod M, meaning that the column j is computed
modulo mj. In this section, we focus on the efficient computation of such residuals.

Let us describe the degree profiles of P and F. The columns of F are considered modulo
M, so that its column j has degree less than deg(mj). Since we make no assumption on
the degrees of the moduli, the column degrees of F may be unbalanced: all we know is
a bound on their sum, |cdeg(F)| < deg(m1) + · · · + deg(mn) = D. On the other hand,
in our algorithms, the matrix P is the outcome of a previous recursive call, and therefore
is in shifted Popov form. Thus, we have a control over the degree of its determinant via
Lemma 2.10, or in other words, over the sum of its column degrees, which will typically
be close to D. To summarize, a good parameter to model the degrees of P and F is given
by an integer d ∈ Z>0 for which |cdeg(P)| 6 d and |cdeg(F)| 6 d.

We compute such a modular product PF mod M with unbalanced column degrees in
two steps. The first one involves a partial linearization of the columns of P, following
ideas similar to those used in Lemma 6.2. This essentially helps us to reduce to the case
of P having almost uniform column degrees, that is, deg(P) ∈ O(d/m).

Having such degrees for P, in the second step, it remains to multiply P and F, knowing
that |cdeg(F)| 6 d. For this, we also use a partial linearization technique, which is a
simplified version of the one in [GSSV12, Section 6] for the purpose of multiplication.
This technique consists in expanding the high-degree columns of F so as to obtain a
matrix F̂ with more columns but degree at most d/m, then computing the product PF̂,
and finally retrieving the actual product PF by grouping together the columns that have

158

6.3. Computing residuals for systems of linear modular equations

been expanded. Formally, we have the following result.

Lemma 6.3. Let P ∈ K[X]m×m and F ∈ K[X]m×n. Let d ∈ Z>0 be such that d > m,
deg(P) 6 d/m, and |cdeg(F)| 6 d. Then, assuming n ∈ O(m), the product PF can be
computed using O(MM(m, d/m)) operations in K.

Proof. We write (d1, . . . , dn) = cdeg(F), and we let δ = bd/mc. For 1 6 j 6 n, the column
F∗,j of degree dj is expanded into αj = 1 + bdj/(δ + 1)c columns F̂∗,(j,0), . . . , F̂∗,(j,αj−1)

each of degree at most δ, related by the identity

F∗,j = F̂∗,(j,0) +Xδ+1F̂∗,(j,1) + · · ·+X(αj−1)(δ+1)F̂∗,(j,αj−1). (6.6)

The expanded matrix F̂ has α1 + · · ·+ αn 6 n+ d
δ+1
6 n+m columns F̂∗,(j,i). Assuming

n ∈ O(m), the product PF̂ can then be computed using O(MM(m, d/m)) operations in
K. It remains to perform the inverse operation, called partial compression: the column
j of the product PF is obtained from the columns (j, 0), . . . , (j, αj − 1) of PF̂ using the
formula in Eq. (6.6).

We now state our result concerning the computation of residuals. As in the lemma
above, for efficiency we require that n be not much larger than m.

Lemma 6.4. Let M = (mj)j ∈ K[X]n6=0 and define D = (Dj)j ∈ Zn>0 by Dj = deg(mj)
for 1 6 j 6 n. Let P ∈ K[X]m×m, F ∈ K[X]m×n with cdeg(F) < D, and let d > m be
such that d > D1 + · · ·+Dn and |cdeg(P)| 6 d. Then, assuming n ∈ O(m), the modular
product PF mod M can be computed in O(MM(m, d/m) +mM(d)) operations.

Proof. We start by using the partial linearization technique in Lemma 6.2 to make the
column degrees of P almost uniform.

We use Lemma 6.2 with δ = cdeg(P) and δ = dd/me to build a matrix E ∈ K[X]m̃×m

as in Eq. (6.5); since |δ| 6 d, we have m 6 m̃ 6 2m. Then, the columns of P can be
expanded into a matrix P̃ ∈ K[X]m×m̃ of smaller degree; precisely, it is such that P = P̃E
and deg(P̃) 6 dd/me. We note that E and P̃ are obtained without field operation.

Let us then define F̃ = EF mod M. We will first compute F̃, and we will see that after
that the sought modular product can be computed efficiently by relying on the identity
PF mod M = P̃ F̃ mod M.

We use notation from Lemma 6.2, denoting by αi the number of powers of X in the
column i of E , for 1 6 i 6 m. We recall that E has m̃ = α1 + · · · + αm 6 2m rows.
Now, we write F = [fij]ij and we let j ∈ {1, . . . , n}. The column F̃∗,j = EF∗,j mod mj

is formed by the m subcolumns [Xkδfij mod mj]
T
06k<αi for each i ∈ {1, . . . ,m}, where

δ = dd/me as above. The entries of the i-th subcolumn are computed iteratively in a
total of O(αi(M(Dj)+M(d/m))) operations using fast polynomial division with remainder
[GG13, Chapter 9]. With the super-linearity property HM(·), summing these costs over i
and j implies that F̃ can be computed in O((m+n)M(d)) ⊆ O(mM(d)) operations under
the assumption n ∈ O(m).

Now, we have deg(P̃) 6 2d/m, as well as cdeg(F̃) < D which implies |cdeg(F̃)| < d.
Then, according to Lemma 6.3, the product P̃F̃ can be computed in O(MM(m, d/m))

159

Chapter 6. Preliminaries and ingredients

field operations, assuming n ∈ O(m). The j-th column of P̃ F̃ has m̃ 6 2m entries, each
of degree at most Dj + 2d/m: this column can be reduced modulo mj in O(m(M(Dj) +
M(d/m))) operations [GG13, Chapter 9]. Summing over 1 6 j 6 n, and assuming
n ∈ O(m), this is in O((m+ n)M(d)) ⊆ O(mM(d)).

6.4 Computing shifted Popov relation bases iteratively
for a triangular multiplication matrix [BL00]

In this section, we present in detail the iterative algorithm of [BL00, Algorithm FFFG],
designed to compute relation bases as in Problem 4 when the multiplication matrix is
upper triangular. The focus in [BL00] is on the design of a fraction-free algorithm, and
therefore the cost bounds announced in this reference are pessimistic if one wants to apply
this algorithm in a context such as ours here.

Below, we translate this algorithm into our framework, and we study its complexity in
two cases: when the multiplication matrix is upper triangular, and more specifically when
it is in Jordan form. The main difference between these two cases is that multiplying
the Jordan matrix by a vector is linear in the dimension, while for a triangular matrix
it is quadratic in general. If one has some motivations leading to consider intermediate
situations between Jordan and triangular, then one may easily generalize the cost analysis
so as to make the cost bound depend on the cost of vector-matrix products.

Proposition 6.5. Algorithm 8 is correct and uses O(mD2 +D3) operations in K. If the
multiplication matrix M is in Jordan form, then it uses O(mD2) operations in K.

Proof. Let us denote by M(j) ∈ Kj×j the leading principal j × j submatrix of M, and by
F(j) ∈ Km×j the submatrix of F formed by its first j columns. To show the correctness
of the algorithm, we prove the following loop invariant: at the end of the iteration j, the
matrix P is the s-Popov relation basis of SyzM(j)(F(j)), and we have t = rdegs(P) as well
as G = P · F.

Concerning the initialization at Step 1, the identity matrix is the s-Popov basis of the
whole module K[X]1×m, t = s = rdegs(Im), and G = F = Im · F.

Then, let j > 1 and assume that at the beginning of iteration j, the matrix P is the
s-Popov relation basis of SyzM(j−1)(F(j−1)), t = rdegs(P), and G = P · F. The fact that
M is upper triangular implies that we have solved a first part of the problem: indeed, P
being the s-Popov relation basis of SyzM(j−1)(F(j−1)), it is precisely the s-Popov basis of
the module

M(1) = {p ∈ K[X]1×m | the j − 1 first columns of p · F are zero}.

Aiming now at having the s-Popov relation basis of SyzM(j)(F(j)), we follow the strategy
indicated in Theorem 1.28, which leads us to consider the module

M(2) = {λ ∈ K[X]1×m | λP is a relation of SyzM(j)(F(j))}
= {λ ∈ K[X]1×m | the first j columns of (λP) · F are zero}
= {λ ∈ K[X]1×m | the column j of λ ·G is zero}.

160

6.4. Iterative relation basis for a triangular multiplication matrix [BL00]

Algorithm 8 – IterRelBas
(Iterative relation basis for triangular mult. mat.)
Input:
• matrix M ∈ KD×D upper triangular,
• matrix F ∈ Km×D,
• shift s ∈ Zm.

Output:
• the s-Popov relation basis of SyzM(F).

1. P← Im; t = (t1, . . . , tm)← copy(s); G = [gij]i,j ← copy(F)

2. (x1, . . . , xD)← the diagonal entries of M

3. For j from 1 to D:

If G∗,j 6= 0:

a. π ← min{i ∈ {1, . . . ,m} | gi,j 6= 0 and ti = min(t)}

b. f (1) ← −1

gπ,j

 g1,j
...

gπ−1,j

 and f (2) ← −1

gπ,j

gπ+1,j
...

gm,j

c. P(j) ←

Iπ−1 f (1)

X − xj
f (2) Im−π

d. P← P(j)P

e. compute the residual G← P(j) ·G as follows:

• G←

Iπ−1 f (1)

1
f (2) Im−π

G

• Gπ,∗ ← Gπ,∗(M− xjID)

f. t← rdegt(P
(j)) = (t1, . . . , tπ−1, tπ + 1, tπ+1, . . . , tm)

g. δ ← t− s with componentwise addition

h.
[
p(1) 1 p(2)

]
← row π of lm−δ(P)

i. U(j) ← lm−δ(P)−1 =

 Iπ−1

−p(1) 1 −p(2)

Im−π

j. P← U(j)P; G← U(j)G

4. Return P

161

Chapter 6. Preliminaries and ingredients

The last identity holds because the first j−1 columns of P·F = G are zero by assumption,
and thus since M is upper triangular the first j − 1 columns of λ ·G are zero for any λ.

If the column G∗,j is zero, then the t-Popov basis of M(2) is the identity matrix;
without changing P, t, and G we directly obtain that P is the s-Popov relation basis of
SyzM(j)(F(j)). In this case, the iteration j of Algorithm 8 does not perform any operation.

Now suppose that G∗,j 6= 0, and let us use the notation π, f (1), f (2), and P(j) from the
algorithm. It is easily verified that P(j) is the t-Popov basis of M(2). (Notice that the
specific choice of π plays a role in this property: choosing another π such that tπ = min(t),
if one exists, leads to a basis P(j) which is t-reduced but not t-Popov.)

As a consequence, according to the item (iii) of Theorem 1.28, the product P← P(j)P
is an s-ordered weak Popov relation basis of SyzM(j)(F(j)). It remains to normalize this
updated P into s-Popov form.

At Step 3.f, we compute t← rdegt(P
(j)) which is thus t = rdegs(P). Then, the tuple

δ computed at Step 3.g is the s-pivot degree of P, and thus the s-minimal degree of
SyzM(j)(F(j)) by Lemma 1.25. By construction of P, this matrix has column degree δ and
its −δ-leading matrix has the special shape

lm−δ(P) =

 Iπ−1

−p(1) 1 −p(2)

Im−π

 ,
which comes from the fact that all rows of P except the row π are already normalized. In
particular, P is in −δ-reduced form, and thus from Lemma 1.26 it follows that its s-Popov
form is equal to lm−δ(P)−1P. These remarks explain how we compute the s-Popov basis
in Steps 3.h to 3.j.

Finally, since the combination of Steps 3.e and 3.j computes G← (U(j)P(j)) ·G, we
have G = P · F.

Let us now focus on the cost bound. We consider the iteration j of the For loop.
First, computing P(j) and U(j) involves O(m) field operations. Indeed, P(j) is com-

puted at Step 3.b with less than m divisions, while for U(j) one simply has to read the
coefficients [p(1) 1 p(2)] of degree δ of the row Pπ,∗ (Step 3.h), and to compute their
opposites (Step 3.i).

Concerning the residual G ∈ Km×D, the first multiplication at Step 3.e and the one at
Step 3.j use both O(mD) field operations thanks to the specific form of the left-operands.
Then, the vector-matrix product Gπ,∗(M − xjID) at Step 3.e uses O(D2) operations in
general, and O(mD) operations if M is in Jordan form, since in the latter case M− xjID
has at most two nonzero elements per column.

It remains to study the computations related to P at Steps 3.d and 3.j. At the
beginning of the iteration j, P is the s-Popov relation basis of SyzM(j−1)(F(j−1)) and is
thus such that |cdeg(P)| 6 j − 1 by Lemma 2.10. Then, Step 3.d can be efficiently done
by first left-multiplying the row π of P by the column π of P(j), and then adding the
other rows; that is, we use the formula

P← P(j)P =

 f (1)

X − xj
f (2)

Pπ,∗ +

Iπ−1

0
Im−π

P.

162

6.4. Iterative relation basis for a triangular multiplication matrix [BL00]

Since |cdeg(P)| 6 j− 1 and P is in s-Popov form, it has at most j− 1 columns which are
not coordinate column vectors; as a result, P(j)P is computed in O(mj) field operations.
Furthermore, we have explained above that the obtained P after this operation has sum
of column degrees at most j, and although it is not necessarily in s-Popov form, only
its row π is not normalized. Then, similarly, the product [−p(1) 1 − p(2)]P can be
computed in O(mj) operations, hence an overall cost of O(mj) ⊆ O(mD) operations for
the computations related to P at iteration j.

Altogether, the iteration j uses O(mD+D2) operations in general, and O(mD) for a
Jordan matrix M. Summing over 1 6 j 6 D leads to the announced cost bound.

We note that the cost bound still holds when D is small compared to m, although the
output is an m ×m matrix. The reason is that in this case, at least m −D columns of
the output basis P are coordinate vectors, which thus do not play a role in the cost of
the computation.

For a triangular matrix, this cost bound O(mD2 + D3) can be compared to the cost
O(mDω−1 + Dω log(D)) of our algorithm based on fast K-linear algebra, presented in
Section 2.2 and Chapter 4. The latter supports an arbitrary multiplication matrix, and
is more efficient as soon as one uses sub-cubic matrix multiplication, that is, ω < 3.

However, the iterative algorithm above manages to use the sparsity of the multiplica-
tion matrix, as long as it is triangular, obtaining for example the cost bound O(mD2) in
the case of a Jordan matrix. When D > m, our general algorithm works in O(Dω log(D)),
which is slower than O(mD2). Furthermore, this iteration can be turned into an efficient
divide-and-conquer approach, as we develop in Chapter 14.

We note that, both in the iterative algorithm above and in our general algorithm of
Chapter 4, computing P in s-Popov form is an important ingredient to obtain an efficient
algorithm since it gives us control over the column degrees of the output basis. For a
nilpotent Jordan multiplication matrix, we will see in Example 7.5 that if one runs the
iterative algorithm above without normalizing the bases at each iteration, then the sum
of the column degrees of the output may be in Θ(mD). Thus, the size of the manipulated
bases may be in Θ(m2D), and over the D iterations this situation leads to a cost bound
of O(m2D2) operations.

163

Chapter 6. Preliminaries and ingredients

164

7

Computing shifted Popov approximant
bases

In this chapter, we give fast algorithms to efficiently solve the general case of Problem 7,
with arbitrary orders D = (D1, . . . , Dn) and an arbitrary shift s. Furthermore, we put
emphasis on computing the unique approximant basis in s-Popov form.

A first solution to this problem is given by the quadratic iterative algorithms of
[VBB91, BL94]. This approach was extended to solve Problem 8 in [VBB92] and then to
solve Problem 4 with a triangular multiplication matrix in [BL00], the algorithm in the
latter reference returning the shifted Popov basis. We presented this iterative solution in
Section 6.4, with the following result (Proposition 6.5): there is an algorithm which solves
Problem 7 in O(mD2) operations in K and returns the basis in shifted Popov form, where
D = D1 + · · ·+Dn.

As soon as D is large compared to m, this is faster than the general O(Dω log(D))
algorithm of Part II. Computing the basis in shifted Popov form is at the core of the
efficiency of this approach, by allowing us to control the degree growth in the bases that
are manipulated in the process. The iterative algorithms in [VBB92, BL94] do not resort
to normalized bases, and as a result their worst case cost bound is O(m2D2); we show
such a worst case in Example 7.5 where the manipulated bases have size O(m2D).

Further improvements are obtained by incorporating fast K-linear algebra techniques
and fast polynomial matrix multiplication into this iterative solution. Most previous
results along this line focus on the case where all equations are modulo the same power
of the variable, that is, Problem 7 with D1 = · · · = Dn = D/n; for a global overview of
previous algorithms for approximant basis computation, we refer the reader to Section 2.3.
We first study this situation in Section 7.1, presenting the algorithms of [BL94, GJV03]
which are very efficient when m ∈ O(n). Then, for arbitrary orders D1, . . . , Dn, we show
in Section 7.2 how these algorithms can be used to efficiently reduce the case m ∈ O(n)
to the case n ∈ O(m).

In the latter situation, when n is small compared to m, a major difficulty is to control
the degrees in the computed bases: they may be too large if the shift has a large amplitude,
and they may be unbalanced for any shift. Assuming that the shift is close to uniform and
that D1 = · · · = Dn, a fast solution was designed in [Sto06, ZL12] (see Proposition 2.16),
controlling the unbalanced degrees by resorting to partial linearization techniques.

165

Chapter 7. Computing shifted Popov approximant bases

In Section 7.3, we use such techniques to give an efficient solution to the general case
of Problem 7 when we have a priori information on the shifted minimal degree of the
module of approximants. This chapter culminates with Section 7.4 where we design a
divide-and-conquer algorithm to find this minimal degree, yielding a fast algorithm for
Problem 7 for arbitrary shifts, arbitrary orders, and returning the shifted Popov basis.

7.1 Fast algorithms for almost uniform orders [GJV03]

In this section, we focus on the case D1 = · · · = Dn = D/n; for simplicity we denote this
order by d and we write approximant basis of Syzd(F) to refer to an approximant basis of
SyzD(F) with D = (d, . . . , d) ∈ Zn>0. Of course, a fast algorithm for such identical orders
can also be applied to efficiently solve situations with almost uniform orders, for example
if all of D1, . . . , Dn are within a factor 2 of (D1 + · · ·+Dn)/n.

We remark that, working with the orders (d, . . . , d), we will only compute bases that
have degree at most d. Thus, one can hope for a cost bound which is quasi-linear in d.
This was first achieved by [BL94, Algorithm SPHPS] which uses O(mωM(nd) log(nd))
field operations, and starts by transforming an instance of Problem 7 with n equations
at order d to an instance with a single equation at order nd. For n > 1 equations, this
algorithm was then improved in [GJV03, PM-Basis] by avoiding this transformation and
incorporating fast K-linear algebra to efficiently solve the case of n equations at order 1,
which is the base case of the recursion. We now describe in details the approximant basis
algorithms of [GJV03], which rely on the following particular case of Theorem 1.28.

Lemma 7.1. Let d ∈ Z>0, let F ∈ K[X]m×n with deg(F) < d, and let s ∈ Zm. For some
integers d(1) ∈ {0, . . . , d− 1} and d(2) = d− d(1), let P(1) ∈ K[X]m×m be an approximant
basis of Syzd(1)(F mod Xd(1)), let G = (X−d

(1)
P(1)F) mod Xd(2), and let P(2) ∈ K[X]m×m

be an approximant basis of Syzd(2)(G). Then, P(2)P(1) is an approximant basis of Syzd(F).
Furthermore, defining t = rdegs(P

(1)), if P(1) and P(2) are s- and t-reduced then P(2)P(1)

is s-reduced; and if P(1) and P(2) are in s- and t-ordered weak Popov form, then P(2)P(1)

is in s-ordered weak Popov form.

Note that in this result and hereafter, we use the convention that any vector is an
approximant of Syz0(F); or in other words, a matrix in K[X]m×m is an approximant basis
of Syz0(F) if and only if it is unimodular.

First, we present the algorithm [GJV03, MBasis]. It uses the above result iteratively
with d(1) = 1 and d(2) = d− 1, that is, increasing the order d by one at each iteration.

The improvement over the quadratic iterative Algorithm 8 is obtained by incorporat-
ing fast K-linear algebra at the base case, which amounts to computing an s-minimal
approximant basis for a constant matrix F ∈ Km×n at order d = 1. We detail this in
Algorithm 9 below, which is a modified version of [GL14, Algorithm 1] or of the base case
of [GJV03, Algorithm M-Basis] to ensure that the output is in s-Popov form.

We remark that this instance at order 1 can be interpreted as the computation of a
relation basis as in Problem 4, with as input the zero multiplication matrix M = 0 ∈ Kn×n,
the matrix F ∈ Km×n, and the shift s. In particular, since the output is of degree 1 and

166

7.1. Fast algorithms for almost uniform orders [GJV03]

thus close to a constant matrix, this can be solved efficiently by linearizing the problem
over K as in Part II. With this point of view, Algorithm 9 can be seen as a simplified
version of Algorithm 3, by exploiting the fact that M = 0.

To give an idea of this simplification, we remark that in this case the degree bound for
linearization can be taken as β = 1; thus, the striped Krylov matrix of Definition 4.4 is
essentially a row permutation of F to reflect the priority of the rows induced by the shift
(see Section 4.1). Thus, to find the s-Popov approximant basis, the main computational
task is to find the row and column rank profiles of this permuted F, which uses O(ρω−2mn)
operations with ρ the rank of F [Sto00, Section 2.2].

Algorithm 9 – LinAppBas
(Approximant basis with identical orders: base case [GJV03])
Input:
• scalar matrix F ∈ Km×n,
• shift s ∈ Zm.

Output: the s-Popov approximant basis of Syz1(F).

1. πs ← m × m permutation matrix such that [(s1, 1) · · · (sm,m)]πs is
lexicographically increasing

2. (i1, . . . , iρ), (j1, . . . , jρ)← row and column rank profiles of πsF

3. (k1, . . . , km−ρ)← {1, . . . ,m} − {i1, . . . , iρ} sorted increasingly

4. F1 ← submatrix of πsF with indices in {i1, . . . , iρ} × {j1, . . . , jρ}
5. F2 ← submatrix of πsF with indices in {k1, . . . , km−ρ} × {j1, . . . , jρ}
6. π ← permutation such that [i1 · · · iρ k1 · · · km−ρ]π = [1 · · · m]

7. Return π−1
s π−1

[
XIρ 0
−F2F

−1
1 Im−ρ

]
ππs

Proposition 7.2. Algorithm 9 is correct and uses O(ρω−2mn) operations in K, where ρ
is the rank of F.

Proof. Step 1 corresponds to ordering the rows of F to follow the pivoting strategy given
by s, as we did in the more general construction of the multi-Krylov matrix in Section 4.1.

In this proof, we use the notation

ŝ = sπs, F̂ = πsF, and P̂ = π−1

[
XIρ 0
−F2F

−1
1 Im−ρ

]
π,

and we show that P̂ is in ŝ-Popov form, that all its rows are approximants of Syz1(F̂),
and that they generate the module of such approximants.

167

Chapter 7. Computing shifted Popov approximant bases

We obviously have that [XIρ 0] π F̂ = 0 mod X. Now, by definition of π we have

π

 1
...
m

 =

i1
...
iρ
k1
...

km−ρ

, and therefore πF̂ =

[
F1

F2

]
.

This gives [−F2F
−1
1 Im−ρ] π F̂ = 0, and thus all rows of P̂ are approximants of Syz1(F̂).

Besides, by definition of the row rank profile, the rightmost nonzero entry in the row
i of [−F2F

−1
1 Im−ρ] π is the 1 at index ki; in other words, this matrix is a basis of the left

nullspace of F̂ which is in a type of lower reduced echelon form. This implies that P̂ is
lower triangular. Besides, ŝ is non-decreasing, the entries on the diagonal of P̂ are all 1
or X, and its non-diagonal entries are of degree less than the diagonal entry in the same
column: P̂ is in ŝ-Popov form.

The rows of π−1
s P̂πs are approximants of Syz1(F). Furthermore, since πs performs a

stable sort of s, we have that π−1
s P̂πs is in s-Popov form. It remains to prove that this

matrix generates the set of approximants of Syz1(F). This follows from Lemma 1.8, since
the degree of its determinant is deg(det(P̂)) = ρ, which is also equal to the sum of the
s-minimal degree of Syz1(F) according to Corollary 4.11.

Using this base case in an iterative fashion results in Algorithm 10, which is [GJV03,
Algorithm M-Basis].

A cost bound for this algorithm is given below and roughly follows from the fact that
an approximant basis at order d is an m×m matrix of degree at most d. Note that there
is an additional term compared to the cost reported in [GJV03, Lemma 2.2] because this
reference makes the assumption n 6 m, which we do not make here.

Proposition 7.3. Algorithm 10 solves Problem 7 with d = D1 = · · · = Dn = D/n using
O(mω−1(m+ n)d2) operations in K and returns a basis in s-ordered weak Popov form.

Proof. From Lemma 7.1 and Proposition 7.2, we have the following invariant: at the end
of iteration j, P is an s-ordered weak Popov approximant basis of Syzj(F), and we have
G = (X−jPF) mod Xd−j and t = rdegs(P). Hence the correctness.

According to Proposition 7.2, Step 3.a uses O(mω−1n) operations in K. At Step 3.b,
the product P(j)P involves twom×m matrices of degrees at most 1 and d−1, respectively,
and hence can be computed in O(mωd) operations. At Step 3.c, one computes P(j)G,
with P(j) a m×m matrix of degree at most 1 and G a m× n matrix of degree at most
d− j + 1; this is done in O(mω−1(m+ n)d) operations. The announced cost follows.

Comparing this to the cost O(m(nd)2) from Proposition 6.5 concerning the iterative
Algorithm 8, we conclude that Algorithm 10 is faster in some cases, including in particular
when m ∈ O(n). This can be explained as follows: Algorithm 10 takes advantage of fast
K-linear algebra by working on m × n constant matrices at the base case but it ignores
possibly unbalanced degrees in the output, while Algorithm 8 takes the average column

168

7.1. Fast algorithms for almost uniform orders [GJV03]

Algorithm 10 – IterAppBas
(Iterative approximant basis with identical orders [GJV03])
Input:
• positive integer d ∈ Z>0,
• matrix F ∈ K[X]m×n of degree less than d,
• shift s ∈ Zm.

Output: an s-ordered weak Popov approximant basis of Syzd(F).

1. P← Im // s-Popov basis of Syz0(F)

2. G← copy(F); t← copy(s)

3. For j from 1 to d:

a. P(j) ← LinAppBas(G mod X, t) // t-Popov basis of Syz1(G)

b. P← P(j)P // s-ordered weak Popov basis of Syzj(F)

c. G← (X−1P(j)G) mod Xd−j; t← rdegt(P
(j)) = rdegs(P)

4. Return P

degree of the output into account but uses only naïve linear algebra. It turns out that
the case m ∈ O(n) is particularly in favor of Algorithm 10 since it both minimizes the
output degree unbalancedness and maximizes the efficiency of fast linear algebra.

Now, we study [GJV03, PM-Basis], which uses a divide-and-conquer approach, relying
on Lemma 7.1 with d(1) = d(2) = d/2. This allows us to incorporate fast polynomial
multiplication: instead of multiplying two matrices of respective degrees 1 and d− 1, we
will multiply two matrices of degree about d/2.

Proposition 7.4. Algorithm 11 solves Problem 7 with d = D1 = · · · = Dn = D/n using

O
((

1 +
n

m

)
MM′′(m, d)

)
⊆ O

((
1 +

n

m

)
MM(m, d) log(d)

)
⊆ O(mω−1(m+ n)M(d) log(d))

operations in K and returns a basis in s-ordered weak Popov form.

Proof. First, the basis computed at Step 1 is in shifted Popov form according to Propo-
sition 7.2. Then, the facts that Algorithm 11 is correct and that it returns a basis in
s-ordered weak Popov form both follow from Lemma 7.1.

For the cost analysis, we assume that d is a power of 2. As explained above, the base
case of the recursion at Step 1 uses O(mω−1n) operations, which is in O(n

m
MM(m, 1)).

Then, we have two recursive calls at Steps 2.b and 2.d, with the same dimension m and
at order d/2.

The residual G at Step 2.c is obtained from the product P(1)F, where P(1) is an m×m
matrix of degree at most d/2, and F is an m×n matrix of degree at most d. This product

169

Chapter 7. Computing shifted Popov approximant bases

Algorithm 11 – DaCAppBas
(Divide-and-conquer app. basis with identical orders [GJV03])
Input:
• positive integer d ∈ Z>0,
• matrix F ∈ K[X]m×n of degree less than d,
• shift s ∈ Zm.

Output: an s-ordered weak Popov approximant basis P for Syzd(F).

1. If d = 1 then return LinAppBas(F, s)

2. Else:

a. d(1) ← dd/2e, d(2) ← d− d(1)

b. P(1) ← DaCAppBas(d(1),F mod Xd(1) , s)

c. G← (X−d
(1)

P(1)F) mod Xd(2) ; t← rdegs(P
(1))

d. P(2) ← DaCAppBas(d(2),G, t)

e. Return P(2)P(1)

is done in O(MM(m, d)) operations if n 6 m, and in O(n
m
MM(m, d)) operations if m 6 n.

The multiplication at Step 2.e involves two m ×m matrices of degree at most d/2, and
hence is done in O(MM(m, d)) operations in K. Using Eq. (6.3), the announced bound
follows.

From Lemma 2.10, the degree of the determinant of an approximant basis of Syzd(F) is
at most D = nd, and the discussion in Section 1.2.2 indicates that we can set O (̃mω−1nd)
as a target cost. This target is achieved by Algorithm 11 when m ∈ O(n). However, the
situation is less satisfactory when n is negligible compared to m, and in particular for
n = 1. Indeed, in the latter case, Algorithm 11 costs O (̃mωd) operations while there is
hope to achieve O (̃mω−1d).

In the next sections, we will design algorithms that will eventually allow us to reach
this target cost bound O (̃mω−1D) in Section 7.4 for Problem 7 in its full generality.
Previously, similarly fast algorithms had only been provided for identical orders and for
shifts that are close to uniform [Sto06, ZL12], as summarized in Proposition 2.16.

The main difficulty that arises when dealing with small n and arbitrary shifts is that,
although we have control over the degree of the determinant of an approximant basis,
we lose control over the actual degrees of its entries which are not anymore uniformly
distributed even for bases in shifted ordered weak Popov form. We now highlight this
through an example where the size of the approximant basis computed by Algorithm 10
is beyond our target cost. We also illustrate the fact, explained in Section 1.2.2, that
considering the more specific shifted Popov basis gives us control over the average column
degree; this will thus be a central idea in our algorithms.

Example 7.5. We focus on a Hermite-Padé approximation problem, that is, n = 1. We

170

7.1. Fast algorithms for almost uniform orders [GJV03]

consider a specific input F of dimension 2m× 1 described below, an order D ∈ Z>0 with
D > m, and the shift s = (0, . . . , 0, D, . . . , D) ∈ Z2m

>0 with m entries 0 and m entries D.
Let f be a polynomial in X with nonzero constant coefficient, and let f1, . . . , fm be

generic polynomials in X of degree less than D. Then, we consider the following vector
with all entries truncated modulo XD:

F =

f
f +Xf

X(f +Xf)
...

Xm−2(f +Xf)
f1
...
fm

.

After m loop iterations, Algorithm 10 has computed an s-ordered weak Popov basis
P(m) of approximant of Syzm(F), which is such that t = rdegs(P

(m)) = (1, . . . , 1, D, . . . , D)
and

P(m)F =

0
...
0

Xmf
Xmg1

...
Xmgm

mod XD

for some polynomials g1, . . . , gm.
Now, continuing the loop until reaching order D, since the coefficient of degree m of

Xmf is nonzero and because of the specific shift t, the obtained approximant basis P of
SyzD(F) has degree profile

P =

[1] [0]
...

[1] · · · [1] [0]
[δ + 1] · · · [δ + 1] [δ + 1]

[δ] · · · [δ] [δ] [0]
... · · · ...

... . . .
[δ] · · · [δ] [δ] [0]

,

where δ = D −m, [i] denotes an entry of degree i, the entries left blank correspond to
the zero polynomial, and the entries [δ + 1] are on the row m of P. In particular, P
has size Θ(m2D). Note that P is in s-ordered weak Popov form; however, the s-Popov

171

Chapter 7. Computing shifted Popov approximant bases

approximant basis of SyzD(F) has degrees

[1] [0]
...

[0] · · · [1] [0]
[0] · · · [0] [δ + 1]
[0] · · · [0] [δ] [0]
... · · · ...

... . . .
[0] · · · [0] [δ] [0]

;

in particular, this basis has average column degree D/m and size in O(mD). b

7.2 Arbitrary orders: reduction to the case n ∈ O(m)

Here, as a first building block of our fast algorithm, we deal with the case of n > m
equations with arbitrary orders, relying on the above divide-and-conquer Algorithm 11.
More precisely, we give an efficient reduction, which partly solves the approximation
equations and leaves us with an approximant basis problem with less than m equations.

Let us consider an input for Problem 7: we have positive integers D = (D1, . . . , Dn),
a matrix F ∈ K[X]m×n with cdeg(F) < D componentwise, and a shift s ∈ Zm. We let
D = |D| = D1 + · · ·+Dn and we assume that n > m.

First, for ease of presentation, we reduce to the case where all orders are powers of
two. This can be done by considering for each j the power of two immediately larger than
Dj, giving us new orders D̃ = (D̃1, . . . , D̃n) defined as D̃j = 2dlog2(Dj)e for 1 6 j 6 n.
Denoting by D̃ −D the componentwise difference, the matrix F̃ = FXD̃−D has column
degree bounded by D̃ componentwise, and it is easily verified that the set of approximant
of SyzD(F) is equal to the set of approximant of SyzD̃(F̃). In this process, the sum of
orders does not incur more than a twofold increase: D̃ = |D̃| 6 2D, which is an important
fact with regard to complexity bounds.

Besides, up to reordering the equations, we assume that D̃1 > · · · > D̃n without loss
of generality. Then denoting by ` the integer such that D̃m = 2`, we define

νi = Card({j ∈ {1, . . . , n} | D̃j = 2i})

for 0 6 i 6 `, as well as ν`+1 = n− ν0 − · · · − ν`. This means that

(D̃1, . . . , D̃n) = (> 2`, . . . , > 2`︸ ︷︷ ︸
ν`+1

, 2`, . . . , 2`︸ ︷︷ ︸
ν`

, 2`−1, . . . , 2`−1︸ ︷︷ ︸
ν`−1

, . . . , 1, . . . , 1︸ ︷︷ ︸
ν0

). (7.1)

We also define µi = ν`+1 + ν` + · · ·+ νi = max{j | D̃j = 2i} for all 0 6 i 6 `, which is the
number of equations whose associated order is at least 2i.

Let us sketch our algorithm, based on this decomposition of D̃. It will first compute
a basis P(0) for all µ0 = n equations at order 20 = 1. After this step, we are left with
the residual equations G = X−1P(0)F and the associated orders D̃1 − 1, . . . , D̃n − 1; the
last ν0 orders are zero. Thus, we continue by computing an approximant basis P(1) for

172

7.2. Arbitrary orders: reduction to the case n ∈ O(m)

these µ1 = n − ν0 equations at order 21 − 20 = 1, giving an approximant basis P(1)P(0)

for F at order 21 = 2. Then we compute an approximant basis P(2) at order 22 − 21 = 2
for the µ2 residual equations given by G = X−2P(1)P(0)F, giving the approximant basis
P(2)P(1)P(0) for F at order 22 = 4. Continuing this process iteratively until reaching the
order 2`, we are finally left with ν`+1 = µ`+1 equations, with µ`+1 < m.

This procedure is formalized in Algorithm 12, with a cost bound and correctness given
in the next proposition. Besides, we remark that in this context with n > m, we have
D = D1 + · · ·+Dn > m as well.

Algorithm 12 – ReduceNbEqAppBas
(Approximant basis: reduction to n ∈ O(m))
Input:
• positive integers D = (D1, . . . , Dn) ∈ Zn>0 with D1 > · · · > Dn,
• matrix F ∈ K[X]m×n with cdeg(F) < D componentwise and n > m,
• shift s ∈ Zm.

Output:
• P an s-ordered weak Popov approximant basis at order D−(D̂, 0, . . . , 0)

for F,
• D̂ = (D1 −Dm, . . . , Dν −Dm) ∈ Zν>0, where ν = max{j | Dj > Dm},
• F̂ = X−Dm [(PF∗,1) mod XD1| · · · |(PF∗,ν) mod XDν] ∈ K[X]m×ν ,
• ŝ = rdegs(P) ∈ Zm.

1. D̃j ← 2dlog2(Dj)e for m 6 j 6 n

2. D̃j ← Dj + D̃m −Dm for 1 6 j < m

3. `← log2(D̃m)

4. µi ← max{j | D̃j > 2i} for 1 6 i 6 `

5. ν ← max{j | D̃j > 2`}

6. F̃← FXD̃−D where D̃ = (D̃1, . . . , D̃n)

7. P← LinAppBas(F̃ mod X, s)

8. For i from 1 to `:

a. G← (X−2i−1
P[F̃∗,1| · · · |F̃∗,µi]) mod X2i−1

b. P(i) ← DaCAppBas(G, 2i−1, rdegs(P))

c. P← P(i)P

9. D̂← (D1 −Dm, . . . , Dν −Dm); ŝ← rdegs(P)

10. F̂← X−Dm [(PF∗,1) mod XD1 | · · · |(PF∗,ν) mod XDν]

11. Return (P, D̂, F̂, ŝ)

173

Chapter 7. Computing shifted Popov approximant bases

Proposition 7.6. Algorithm 12 is correct and uses

O(MM(m,D/m) log(D/m)) ⊆ O(mωM(D/m) log(D/m))

operations in K, where D = D1 + · · ·+Dm. Furthermore, the output (P, D̂, F̂, ŝ) is such
that F̂ has m rows and ν < m columns, |D̂| 6 D, ŝ = rdegs(P), deg(P) 6 2D/m, and
for any approximant basis Q of SyzD̂(F̂), then QP is an approximant basis of SyzD(F).

Proof. Steps 1 to 6 compute the parameters described above as well as the matrix F̃.
Step 7 computes an s-Popov approximant basis P at order (1, . . . , 1) ∈ Zn>0 for F̃. Then,
thanks to Theorem 1.28 we have the following loop invariant: at the end of iteration i, P
is an s-ordered weak Popov approximant basis at order (2i, . . . , 2i, D̃µi+1, . . . , D̃n) for F̃.

Thus, when arriving at Step 9 the matrix P is an s-ordered weak Popov approximant
basis at order (2`, . . . , 2`, D̃µ`+1, . . . , D̃n) for F̃; since µ` > m, the latter tuple can also be
written

(D̃m, . . . , D̃m, D̃m+1, . . . , D̃n) = D̃− (D̂, 0, . . . , 0)

where the difference is taken componentwise. By choice of F̃ = FXD̃−D , we obtain that
P is an approximant basis at order

D− (D̂, 0, . . . , 0) = (Dm, . . . , Dm, Dm+1, . . . , Dn)

for F. In particular, the fact that QP is an approximant basis of SyzD(F) follows from
Theorem 1.28.

Now, let us prove the cost bound. As detailed in Section 7.1, Step 7 uses O(mω−1n)
operations since n > m. Thanks to the super-linearity property HMM(·,·) of Eq. (6.2), this
is in O(n

m
MM(m, 1)) ⊆ O(MM(m,n/m)) , and thus fits into the announced bound since

n 6 D. The resulting approximant basis P has degree at most 1.
The computation at Step 8.a can be done by first computing P[F̃∗,1| · · · |F̃∗,µi] mod

X2i . Since F is a m × µi matrix with µi > m, this product is done in O(µi
m
MM(m, 2i))

operations. Then, according to Proposition 7.4, Step 8.b uses O(µi
m
MM(m, 2i−1) log(2i−1))

operations. Furthermore, the output P(i) has degree at most 2i−1, and thus at Step 9.c
we multiply two m × m matrices of degree at most 2i−1; this is done in O(MM(m, 2i))
operations. Altogether, the loop at Step 8 uses

O

(∑̀
i=1

µi
m
MM(m, 2i−1) log(2i)

)
⊆ O

(
MM

(
m,
∑̀
i=1

µi2
i−1

m

)
log(2`)

)
⊆ O(MM(m,D/m) log(D/m))

field operations. The first inclusion relies on the super-linearity property HMM(·,·) stated
in Eq. (6.2), while the second inclusion follows from the following remarks. On the one
hand, since D > D1 + · · ·+Dm and D1 > · · · > Dm > D̃m/2 = 2`−1, we have 2` 6 2D/m
and thus log(2`) ∈ O(log(D/m)). On the other hand, as shown in Eq. (7.1), we have by
construction

2D > |D̃| = D̃1 + · · ·+ D̃ν + ν`2
` + · · ·+ ν121 + ν020

> µ`(2
` − 2`−1) + · · ·+ µ2(22 − 21) + µ1(21 − 20) + µ020,

174

7.3. Fast approximant bases in Popov form with known minimal degree

and thus in particular
∑`

i=1 µi2
i−1 ∈ O(D).

The matrix F̂ at Step 11 can be directly obtained from the product P[F∗,1| · · · |F∗,ν].
Since P has degree at most 2D/m, and since these ν < m columns have degree less
than D1, . . . , Dν respectively, with D1 + · · ·+Dν < D, this product can be computed in
O(MM(m,D/m)) operations in K according to Lemma 6.3.

7.3 Fast approximant bases in Popov form with known
minimal degree

We now study the situation where we know a priori the shifted minimal degree of the
considered module of approximants, or in other words, the diagonal degrees of the shifted
Popov approximant basis. This additional information allows us to design a fast algorithm
for the general case Problem 7, that is, with cost bound O (̃mω−1D) for any dimensions m
and n, for arbitrary orders D1, . . . , Dn, and arbitrary shift s. Furthermore, our algorithm
returns the s-Popov approximant basis.

From Section 7.2, we know that the main remaining difficulty is to deal with F having
fewer columns than rows. As noted in Section 7.1, this may result in unbalanced degrees
in the computed bases. Such non-uniform degrees are commonly handled by resorting to
partial linearization techniques; in this context, knowing the shifted minimal degree will
help us to make these techniques particularly efficient.

We will use two types of partial linearization, adapted from those of [Sto06]. The first
one was presented in Section 6.2 and ensures that the shift is almost uniform and that the
output matrix has low degrees. Here we detail the second one, which takes advantage of
the results of the first one to further transform the instance so as to ensure that the orders
D1, . . . , Dn are all of the same magnitude and that the dimensions m and n are roughly
the same. Then, this obtained approximant basis problem can be solved efficiently with
the divide-and-conquer algorithm designed for identical orders, namely Algorithm 11.

To give an overview of the main idea behind this reduction, let us consider the case
of one column. The input is D ∈ Z>0, F ∈ K[X]m×1 with deg(F) < D, s ∈ Zm, and
the s-minimal degree δ ∈ Zm>0 of SyzD(F). For our construction, we choose any integer
δ > max(δ). Note that in general we may have max(δ) as large as D, in which case the
partial linearization below is useless; however, the underlying idea is that one will first
apply the partial linearization of Section 6.2, which reduces to the case max(δ) 6 dD/me.
Thus, one may read the next paragraphs bearing in mind that the integer we have chosen
is such that δ ≈ D/m.

Then, a type of column partial linearization of F is defined in [Sto06] as follows. Writ-
ing D = αδ+β with α =

⌈
D
δ
− 1
⌉
and 1 6 β 6 δ, we consider the Xδ-adic representation

F = F(0) + F(1)Xδ + · · ·+ F(α)Xαδ with deg(F(j)) < δ for j < α and deg(F(α)) < β,

175

Chapter 7. Computing shifted Popov approximant bases

and the expanded matrix

Lab
D,δ(F) =

F(0) + F(1)Xδ F(1) + F(2)Xδ · · · F(α−1) + F(α)Xδ

0 1 · · · 0
...

...
0 0 · · · 1

 .

The main point is that approximants of SyzD(F) are related to approximants at order
(2δ, . . . , 2δ, δ + β) for Lab

D,δ(F). This construction thus gives us a new approximant basis
problem with more equations and smaller orders: if δ ≈ D/m, we have α ≈ m equations
with associated orders 2δ ≈ 2D/m. Furthermore, Proposition 7.4 shows that such an
instance of Problem 7 can be solved efficiently, in O (̃mω−1D) field operations.

We sketch the link between the approximants as follows. Let p ∈ K[X]1×m be such
that deg(p) 6 δ and p is an approximant of SyzD(F). Then, by construction [p q] is an
approximant at order (2δ, . . . , 2δ, δ+β) for Lab

D,δ(F), where q = [q1, . . . , qα−1] ∈ K[X]1×α−1

is defined by qj = X−jδp(F(0) + · · · + F(j−1)X(j−1)δ), or in other words, qj is formed by
the part of X−δpF(j−1) of nonnegative degree. We remark that deg(q) < deg(p).

In fact, we are also interested is the converse property, since we would like to obtain
an approximant basis of SyzD(F) from the computation of an approximant basis at order
(2δ, . . . , 2δ, δ+ β) for Lab

D,δ(F). As seen in the paragraph above, degree constraints on the
approximants play a role in the link between these two instances of Problem 7, and actually
only some specific shifts will allow us to recover an approximant basis of SyzD(F) from
an approximant basis for the transformed problem. This is where the a priori knowledge
of the shifted minimal degree of the sought approximant basis is brought into play: it
precisely tells us how to choose such a shift.

We now give the details of this partial linearization in general; it was introduced in
[Sto06, Section 2] and used previously in [GS11, ZL12]. In [Sto06, ZL12] one does not
assume the knowledge of the shifted minimal degree, yet this transformation still succeeds
thanks to assumptions on the shift which constrain the degrees in the approximant basis;
namely, these are the assumptions Hs,1 and Hs,2 (see Section 1.2.2).

Definition 7.7. Let D ∈ Zn>0, F ∈ K[X]m×n with cdeg(F) < D and n < m, s ∈ Zm,
and let δ ∈ Zm>0 be the s-minimal degree of SyzD(F). Let further δ ∈ Z>0 be such that
δ > max(δ), and for 1 6 i 6 n, Di = αiδ + βi with αi =

⌈
Di
δ
− 1
⌉
and 1 6 βi 6 δ.

Writing the Xδ-adic representation

F∗,i = F
(0)
∗,i + F

(1)
∗,iX

δ + · · ·+ F
(αi)
∗,i X

αiδ with deg(F
(j)
∗,i) < δ for j < αi and deg(F

(αi)
∗,i) < βi,

we consider the expanded matrix

F̃∗,i =
[
F

(0)
∗,i + F

(1)
∗,iX

δ F
(1)
∗,i + F

(2)
∗,iX

δ · · · F
(αi−1)
∗,i + F

(αi)
∗,i X

δ
]
∈ K[X]m×αi

and the matrix Ei =
[
0 Iαi−1

]
∈ K[X]αi−1×αi if αi > 1, and otherwise F̃∗,i = F∗,i and

176

7.3. Fast approximant bases in Popov form with known minimal degree

Ei ∈ K[X]0×1. Then, we define the partial linearization of F as

Lab
D,δ(F) =

F̃∗,1 F̃∗,2 · · · F̃∗,n
E1

E2

. . .
En

 ∈ K[X](m+ñ)×(n+ñ),

where the number of additional columns is ñ = max(α1− 1, 0) + · · ·+ max(αn− 1, 0). We
also expand Di as D̃i = (2δ, . . . , 2δ, δ + βi) ∈ Zαi>0 if αi > 1 and D̃i = Di otherwise, and
we define Lab

D,δ(D) = (D̃1, . . . , D̃n) ∈ Zñ>0.

This transformation only induces a moderate increase of the dimensions of the problem,
as long as δ is not chosen too small. Indeed, we transform an m × n instance into an
(m+ ñ)× (n+ ñ) instance, where ñ 6 α1 + · · ·+ αn < D/δ.

On the other hand, when δ is known, we have seen in Section 6.2 how to ensure that
max(δ) 6 d2D/me via partial linearization techniques. Thus, in this situation, we can
choose δ = d2D/me, and we have ñ < D/δ 6 m/2. While adding at most m/2 to the
dimensions m and n, this transformation allows us to consider small and almost uniform
orders since Lab

D,δ(D) has all its entries between 0 and 2δ ∈ O(D/m).
As a consequence, Algorithm 11 efficiently computes an approximant basis for the

transformed instance (Lab
D,δ(D),Lab

D,δ(F)). We now give a precise link between approxi-
mants for the latter instance, and approximants for the original instance (D,F).

Lemma 7.8. Let D ∈ Zn>0, F ∈ K[X]m×n with cdeg(F) < D and n < m, s ∈ Zm, δ ∈ Zm>0

be the s-minimal degree for (D,F), and δ > max(δ). Let P̃ be a (−δ,−δ, . . . ,−δ)-ordered
weak Popov approximant basis at order Lab

D,δ(D) for Lab
D,δ(F). Then, the leading principal

submatrix R ∈ K[X]m×m of P̃ is a −δ-ordered weak Popov approximant basis of SyzD(F),
and lm−δ(R)−1R is the s-Popov approximant basis of SyzD(F).

Proof. We write d for the shift d = (−δ,−δ, . . . ,−δ) ∈ Zm+ñ.
Let p ∈ K[X]1×m be an approximant of SyzD(F) such that rdeg−δ(p) = 0; remark that

all approximant of SyzD(F) have nonnegative −δ-degree (see the paragraph after Defini-
tion 1.22). We are going to show that this induces an approximant [p q] ∈ K[X]1×(m+ñ)

at order Lab
D,δ(D) for Lab

D,δ(F) with deg(q) < deg(p) and thus rdegd([p q]) = 0.
First, we consider i ∈ {1, . . . , n} such that αi ∈ {0, 1}. Then, F̃∗,i = F∗,i, D̃i = Di, and

Ei ∈ K[X]0×1. Defining qi as an empty vector in K[X]1×0, the identity pF∗,i = 0 mod XDi

can be rewritten as
[
p qi

] [F̃∗,i
Ei

]
= 0 mod XD̃i . Now, we consider i such that αi > 1

and we define qi = [q1,i, . . . , qαi−1,i] ∈ K[X]1×(αi−1) by

qj,i = X−jδp(F
(0)
∗,i + · · ·+ F

(j−1)
∗,i X(j−1)δ). (7.2)

In other words, since deg(p) 6 δ and deg(F
(k)
∗,i) < δ for all k, qj,i is formed by the part

of X−δpF
(j−1)
∗,i of nonnegative degree, and in particular deg(qi) < deg(p). Then, we

177

Chapter 7. Computing shifted Popov approximant bases

have p(F
(0)
∗,i + · · ·+ F

(j+1)
∗,i X(j+1)δ) = 0 mod X(j+2)δ for j < αi − 1, hence by construction

qj,iX
jδ + p(F

(j)
∗,iX

jδ + F
(j+1)
∗,i X(j+1)δ) = 0 mod X(j+2)δ, and it immediately follows that

F
(j)
∗,i + F

(j+1)
∗,i Xδ + qj,i = 0 mod X2δ. The same arguments for j = αi− 1 yield the identity

F
(αi−1)
∗,i + F

(αi)
∗,i X

δ + qj,i = 0 mod Xδ+βi . In short, we have

[
p qi

] [F̃∗,i
Ei

]
= 0 mod (X2δ, . . . , X2δ, Xδ+βi). (7.3)

Thus, by construction of Lab
D,δ(F) and Lab

D,δ(D), this implies that [p q] is an approxi-
mant at order Lab

D,δ(D) for Lab
D,δ(F), where q = [q1 · · · qn] is such that deg(q) < deg(p).

More generally, let P ∈ K[X]m×m be a −δ-ordered weak Popov approximant basis of
SyzD(F); then rdeg−δ(P) = 0 by Lemma 1.26. According to the above discussion, there
is a matrix Q ∈ K[X]m×(n+ñ) such that all rows of [P Q] are approximants at order
Lab

D,δ(D) for Lab
D,δ(F), and rdeg(Q) < rdeg(P). Then, [P Q] is in d-ordered weak Popov

form with all d-pivots in P, since we have lmd([P Q]) = [lm−δ(P) 0] with lm−δ(P)
lower triangular by assumption.

Now, let us show conversely that if [p q] ∈ K[X]1×(m+ñ) is an approximant at order
Lab

D,δ(D) for Lab
D,δ(F) with deg(q) < δ and deg(p) 6 δ, then p is an approximant of

SyzD(F). Let us write q = [q1 · · · qn] with qi ∈ K[X]1×0 if αi ∈ {0, 1} and qi =
[q1,i, . . . , qαi−1,i] ∈ K[X]1×αi−1 if αi > 1. Our goal is to prove that pF∗,i = 0 mod XDi for
all i ∈ {1, . . . , n}; this is obvious for i such that αi ∈ {0, 1}.

Let i ∈ {1, . . . , n} be such that αi > 1, and let us consider the identities given by

[
p qi

] [F̃∗,i
Ei

]
= 0 mod (X2δ, . . . , X2δ, Xδ+βi).

The first column gives the relation p(F
(0)
∗,i +F

(1)
∗,iX

δ) = 0 mod X2δ, while the other columns
yield p(F

(j)
∗,i + F

(j+1)
∗,i Xδ) = −qj,i mod X2δ for 1 6 j 6 αi − 2 and p(F

(αi−1)
∗,i + F

(αi)
∗,i X

δ) =

−qαi−1,i mod Xδ+βi . Using our assumption on deg(q) and deg(p), these identities for
j = 0 and j = 1 imply that the terms of degree less than 2δ of p(F

(0)
∗,i + F

(1)
∗,iX

δ + F
(2)
∗,iX

2δ)

are 0 = pF
(0)
∗,i − q1,iX

δ. Therefore, we obtain both q1,i = X−δF
(0)
∗,i and pF∗,i = 0 mod X3δ.

This process can be continued with j = 2, up to j = αi − 1, to eventually obtain that
pF∗,i = 0 mod XDi . (We remark that this also implies that q is given by p as in Eq. (7.2).)

To conclude the proof, let P̃ ∈ K[X](m+ñ)×(m+ñ) be a d-ordered weak Popov approxi-
mant basis at order Lab

D,δ(D) for Lab
D,δ(F). We write

P̃ =

[
R P̃(12)

P̃(21) P̃(22)

]
with R ∈ K[X]m×m and P̃(22) ∈ K[X]ñ×ñ,

the other dimensions being defined implicitly.
First, since R contains the d-pivots of [R P̃(12)] and d = (−δ,−δ, . . . ,−δ), by min-

imality of P̃ we have that the −δ-pivot degree of R is at most δ componentwise. This
implies in particular that deg(R) 6 max(δ) = δ and deg(P̃(12)) < δ. Then, from the dis-
cussion above applied to each of the first m rows of P̃, we obtain that RF = 0 mod XD .

178

7.3. Fast approximant bases in Popov form with known minimal degree

As a consequence, by minimality of δ, the −δ-pivot degree of R is at least δ componen-
twise, and hence is equal to δ. Thus, R is a −δ-ordered weak Popov approximant basis
of SyzD(F). Then, according to Lemma 1.26, lm−δ(R)−1R is the s-Popov approximant
basis of SyzD(F).

Algorithm 13 – MinDegAppBas
(Approximant basis with known minimal degree)
Input:
• positive integers D = (D1, . . . , Dn) ∈ Zn>0,
• matrix F ∈ K[X]m×n with cdeg(F) < D and D1 + · · ·+Dn > m,
• shift s ∈ Zm,
• the s-minimal degree δ = (δ1, . . . , δm) ∈ Zm>0 of SyzD(F).

Output: the s-Popov approximant basis of SyzD(F).

1. /* Reduce to almost uniform shift and output degrees */
δ ← d(D1 + · · ·+Dn)/me,
αi ← max(1, dδi/δe) for 1 6 i 6 m,
m̃← α1 + · · ·+ αm
δ̃ ∈ Zm̃>0 as in Eq. (6.4)
E ∈ K[X]m̃×m as in Eq. (6.5) and F̃← EF mod XD

2. /* Reduce to less equations than unknowns */

(R(1), D̂, F̂,−δ̂)←

{
ReduceNbEqAppBas(D, F̃,−δ̃) if n > m̃

(Im̃,D, F̃,−δ̃) if n < m̃

ν ← the number of columns of F̂ ∈ K[X]m̃×ν // ν < m̃

3. /* Reduce to almost uniform orders */
Lab

D̂,δ
(D̂) ∈ Zm̃+ν̃

>0 and Lab
D̂,δ

(F̂) ∈ K[X](m̃+ν̃)×(ν+ν̃) as in Definition 7.7

d← (−δ̂,−δ, . . . ,−δ)
4. /* Compute approximant basis */

d̂← max(D̂); ∆← (d̂, . . . , d̂)− Lab
D̂,δ

(D̂)

P̃← DaCAppBas(d̂,Lab
D̂,δ

(F̂)X∆ ,d)

R(2) ← leading principal m̃× m̃ submatrix of P̃
R← R(2)R(1) // −δ̃-ordered weak Popov of SyzD(F̃)

5. Return the submatrix of lm−δ̃(R)−1RE formed by its rows at indices
α1 + · · ·+ αi for 1 6 i 6 m

Proposition 7.9. Algorithm 13 is correct and uses

O(MM(m,D/m) log(D/m)) ⊆ O(mωM(D/m) log(D/m))

operations in K, where D = D1 + · · ·+Dn and we assume that D > m.

179

Chapter 7. Computing shifted Popov approximant bases

Proof. We claim that Steps 2 to 4 correctly compute a −δ̃-minimal approximant basis
R of SyzD(F̃). Then, from Lemma 6.2, we know that the s-Popov approximant basis of
SyzD(F) is the submatrix of lm−δ̃(R)−1RE formed by its rows at indices α1 + · · ·+αi for
1 6 i 6 m, hence the correctness of the algorithm.

To prove our claim, it is enough to show that R(2) is an −δ̂-minimal approximant
basis of SyzD̂(F̂). Indeed, according to Proposition 7.6, this implies that R = R(2)R(1)

is an approximant basis of SyzD(F̃); furthermore, since −δ̂ = rdeg−δ̃(R
(1)) and R(1) is

−δ̃-reduced, this basis R is −δ̃-reduced according to the second item of Theorem 1.28.

Then, the fact that R(2) is an −δ̂-minimal approximant basis of SyzD̂(F̂) follows
from Lemma 7.8, and from the facts that δ̂ is the −δ̂-minimal degree of SyzD̂(F̂) and
δ = dD/me > max(δ̂). Indeed, from Lemma 6.2 we know that the −δ̃-minimal degree of
SyzD(F̃) is δ̃; and if we denote by δ(1) and δ(2) the −δ̃- and −δ̂-pivot degrees of R(1) and
R(2), we have δ̃ = δ(1) + δ(2) according to the fourth item of Theorem 1.28. On the other
hand, −δ̂ = rdeg−δ̃(R

(1)) = δ(1)− δ̃ yields δ̃ = δ̂+δ(1) and thus δ(2) = δ̂. In addition, this
implies that δ̂ 6 δ̃ and therefore max(δ̂) 6 max(δ̃), the latter being at most δ = dD/me
by construction (see Eq. (6.4)).

Remark also that at Step 4, Algorithm 11 returns a basis in shifted ordered weak
Popov form according to Proposition 7.4; besides, this algorithm only accepts identical
orders, hence the use of d̂ = max(D̂) and the corresponding scaling of Lab

D̂,δ
(F̂) by powers

of X.

Concerning the cost bound, Steps 1 and 3 do not involve field operations. Proposi-
tion 7.6 indicates that Step 2 uses O(MM(m̃,D/m̃) log(D/m̃)) operations, which is within
the announced bound since m 6 m̃ < 2m according to Lemma 6.2.

The expanded matrix Lab
D̂,δ

(F̂) has m̃ + ν̃ rows and ν + ν̃ < m̃ + ν̃ columns, with
ν̃ < |D̂|/δ. From Proposition 7.6, we have |D̂| 6 D, hence ν̃ < D/dD/me < m. As a
consequence, m̃ + ν̃ < 3m. Furthermore, the orders in Lab

D̂,δ
(D̂) are all between δ and 2δ

by definition, hence d̂ 6 2dD/me is in Θ(D/m). (Note that we are allowed to discard
the ceiling because we have assumed D > m). Then, according to Proposition 7.4, the
computation of P̃ at Step 4 is within the announced bound.

Now, by Proposition 7.6 the degree of R(1) is at most 2D/m̃ 6 2D/m. Besides,
R(2) has −δ̂-pivot degree δ̂ as mentioned above, and thus the column degree of R(2) is
precisely δ̂; this implies that deg(R(2)) 6 max(δ̂) 6 δ 6 1 +D/m. Thus the computation
of R = R(2)R(1) at Step 4 can be done in O(MM(m,D/m)) operations.

Finally, the computation of lm−δ̃(R)−1 at Step 5 uses O(m̃ω) operations. Further-
more, since cdeg(R) = δ̃ and |δ̃| = |δ| 6 D by Lemma 2.10, we can partially linearize
the columns of R to obtain a matrix of row dimension m̃, column dimension in O(m̃),
and degree in O(D/m̃); then we left-multiply this expanded matrix by lm−δ̃(R)−1 and
compress back the columns. Having m̃ ∈ Θ(m), and since right-multiplying by E does
not involve field operations, Step 5 is done in O(MM(m,D/m)) field operations.

180

7.4. Fast approximant bases in Popov form for arbitrary shifts

7.4 Fast approximant bases in Popov form for arbitrary
shifts

Here, we give a fast algorithm for solving the general case of Problem 7: it supports
arbitrary dimensions m and n, orders D ∈ Zn>0, and shift s ∈ Zm, and it returns the
shifted Popov approximant basis. Our approach is to rely on the algorithm of the previous
section, thanks to a recursive procedure to find the shifted minimal degree of the module
of approximants. This allows us to achieve our target cost O (̃mω−1D) with D being the
sum of the orders in D.

Proposition 7.10. Algorithm 14 is correct and uses

O(MM(m,D/m) log(D/m)2 +mω−1D log(m))

⊆ O(mωM(D/m) log(D/m)2 +mω−1D log(m)).

operations in K, where D = D1 + · · ·+Dn.

Proof. Concerning the base case of the recursion at Step 1, Theorem 2.12 shows that it
correctly computes the s-Popov approximant basis of SyzD(F) using O(mω log(m)) field
operations (for the choice of E and Z, see Section 2.3). When D > m, this base case is
done less than 2D/m times in the overall computation, thus leading to a contribution of
O(mω−1D log(m)) in the cost bound.

Let us now study Step 3, where D > m and n < m. The instance (D,F) is first
split into two instances (D(1),F(1)) and (D(2),F(2)) such that D(1) = |D(1)| = bD/2c and
D(2) = |D(2)| = D − |D(1)| = dD/2e. We have cdeg(F(1)) < D(1) and cdeg(F(2)) < D(2).
Furthermore, since n < m, the column dimension is less than the row dimension for both
F(1) and F(2), so that the recursive calls at Steps 3.e and 3.h will never lead to performing
Step 2. We note that when d = Di0 the first entry of D(2) is zero; then, one can discard
this entry and the corresponding zero column of F(2).

At Step 3.g, the residual G can be computed in O(MM(m,D/m)) field operations, by
a minor variation of Lemma 6.4. Let us recall that, according to Lemma 2.10, the sum
of the column degrees of P(1) is at most D(1) = bD/2c. On the other hand, the sum of
the entries of D(2) is D(2) = dD/2e. Our claimed cost for computing G, slightly different
from that in Lemma 2.10, then follows by the remark that in the proof of this lemma all
operations that are polynomial divisions with remainder are done for free here since the
moduli are powers of X.

Let us denote by t ∈ Zm the shift t = rdegs(P
(1)) = s + δ(1). Assuming that the

two recursive calls correctly compute the s- and t-Popov approximant bases P(1) and P(2)

of SyzD(1)(F(1)) and SyzD(2)(F(2)), then the s-minimal degree of SyzD(F) is δ(1) + δ(2)

according to the item (iv) of Theorem 1.28. Then, by Proposition 7.9, Step 3.j computes
the sought approximant basis in O(MM(m,D/m) log(D/m)) field operations.

Since the two recursive calls at Steps 3.e and 3.h are with the same dimension m
and half the total order D/2, the announced cost bound follows using the super-linearity
property HMM(·,·,) of Eq. (6.2).

Finally, Step 2 deals with the case n > m. According to the above discussion, this
if statement can only be entered once at the initial call to the algorithm; after that, we

181

Chapter 7. Computing shifted Popov approximant bases

Algorithm 14 – FastPopovAppBas
(Shifted Popov approximant basis)
Input:
• positive integers D = (D1, . . . , Dn) ∈ Zn>0,
• matrix F ∈ K[X]m×n with cdeg(F) < D,
• shift s ∈ Zm.

Output: the s-Popov approximant basis of SyzD(F).

1. If D = D1 + · · ·+Dn 6 m then: // Base case

a. For i from 1 to n:

(i) write F∗,i = f
(0)
i + f

(1)
i X + · · ·+ f

(Di−1)
i XDi−1

(ii) Ei ←
[
f

(0)
i f

(1)
i · · · f

(Di−1)
i

]
∈ Km×Di

(iii) Zi ←

[
0 1
.

0 1
0

]
∈ KDi×Di

b. E←
[
E1 · · · En

]
∈ Km×D; Z← diag(Z1, . . . ,Zn) ∈ KD×D

c. Return LinPopovRelBas(E,Z, s,max(D))

2. Else if n > m: // Entered at most once at initial call

a. (P(1), D̂, F̂, ŝ)← ReduceNbEqAppBas(D,F, s)

b. P(2) ← FastPopovAppBas(D̂, F̂, ŝ)

c. δ(1) ← diagonal degrees of P(1); δ(2) ← diagonal degrees of P(2)

d. Return MinDegAppBas(D,F, s, δ(1) + δ(2))

3. Else: // Divide and conquer

a. 1 6 i0 6 n and 1 6 d 6 Di0 such that D1+· · ·+Di0−1+d = bD/2c
b. f (1) = F∗,i0 mod Xd; f (2) = X−d(F∗,i0 − f (1))

c. D(1) ← (D1, . . . , Di0−1, d); F(1) ← [F∗,1| · · · |F∗,i0−1|f (1)]

d. D(2) ← (Di0 − d,Di0+1, . . . , Dn); F(2) ← [f (2)|F∗,i0+1| · · · |F∗,n]

e. P(1) ← FastPopovAppBas(D(1),F(1), s)

f. δ(1) ← diagonal degrees of P(1)

g. G← P(1)F(2) mod XD(2)

h. P(2) ← FastPopovAppBas(D(2),G, s + δ(1))

i. δ(2) ← diagonal degrees of P(2)

j. Return MinDegAppBas(D,F, s, δ(1) + δ(2))

182

7.4. Fast approximant bases in Popov form for arbitrary shifts

always have n < m in the recursive calls induced by Step 2.b. If it is the case that n > m
at the initial call, this step relies on Algorithm 12 to reduce the number of equations and
then deal with the remaining equations recursively. The correctness and cost bound then
follow from Proposition 7.6 and the same arguments as those used above concerning the
correctness and cost bound of Step 3.

183

Chapter 7. Computing shifted Popov approximant bases

184

8

Computing shifted Popov solution
bases

In this chapter, we give a fast algorithm to compute solution bases as in Problem 9.
Under the assumption that the number of equations is not much larger than the number
of unknowns, our algorithm computes the shifted Popov basis for arbitrary shifts and
arbitrary moduli with the same cost bound as for approximant bases (Algorithm 14), up
to logarithmic factors. We recall that in the specific case of approximants, all moduli are
powers of the variable.

In Section 8.1, we first give details of a link between solution bases and kernel bases in
shifted Popov forms. Using the fast approximant basis algorithm developed in Chapter 7,
we show how to compute such shifted Popov kernel bases efficiently. Then, combining
this with partial linearization to ensure that the degrees in the ouput basis are uniformly
small, this gives us a fast algorithm to compute solution bases when the shifted minimal
degree is known a priori.

To find this minimal degree, we then follow a divide-and-conquer approach similar to
that in Algorithm 14, presented in Section 8.3. However, here we have no access to factors
of the moduli, which are arbitrary polynomials given by their coefficients; as a result, we
will only split the instance according to the number of such moduli, that is, the number
of equations.

At the base case of this recursion, we are thus faced with the case of one equation.
This question is studied in Section 8.2, where we propose a new efficient strategy based
on the following ideas. As mentioned above, we may rewrite the problem as a kernel basis
problem; here, the matrix in input is a column vector. When the shift in input has small
entries, such a kernel basis can be computed with efficiently via a single call to a fast
approximant basis algorithm. On the other hand, we remark that when the entries of the
shift have a large amplitude, the output must have some block triangular shape which, if
known, can be used to divide the problem into smaller subproblems. We then design a
recursive approach which splits the shift into two subshifts of half the amplitude, rely on
a first recursive call to reveal a part of this block triangular shape, then use this shape to
define the second subproblem which we solve by a second recursive call, and finally gather
the results by deducing the shifted minimal degree and computing the solution basis from
the known minimal degree.

185

Chapter 8. Computing shifted Popov solution bases

8.1 Fast algorithm via kernel bases when the minimal
degree is known

This section summarizes and extends results from [GS11, Section 3]. We first show that
the s-Popov solution basis of SyzM(F) is the principal m×m submatrix of the u-Popov
kernel basis of [FT diag(M)]T for some shift u ∈ Zm+n. While it is not known how to
perform such kernel computations efficiently in general, this link will still lead us to a fast
algorithm for computing solution bases when the s-minimal degree of SyzM(F) is known.

We start by recalling the notion of kernel bases for polynomial matrices.

Definition 8.1 (Kernel). Let V ∈ K[X]m×n be some polynomial matrix of rank ρ. Then,
the kernel of V is the K[X]-module

{p ∈ K[X]1×m | pV = 0}

of rank m − ρ, and a kernel basis for V is a matrix N ∈ K[X]ρ×m whose rows form a
basis of the kernel of V.

Then, we have the following relationship between solution bases and kernel bases.

Lemma 8.2. Let M = (m1, . . . ,mn) ∈ K[X]n6=0, let F ∈ K[X]m×n be such that deg(F∗,j) <
deg(mj) for 1 6 j 6 n, let s ∈ Zm. Let further P ∈ K[X]m×m, let w ∈ Zn be any shift
such that max(w) 6 min(s), and let u = (s,w) ∈ Zm+n.

Then, P is the s-Popov solution basis of SyzM(F) if and only if

[
P Q

]
is the u-Popov kernel basis for

[
F

diag(M)

]
for some Q ∈ K[X]m×n;

in this case, deg(Q) < deg(P) and [P Q] has s-pivot index (1, 2, . . . ,m).

Proof. Let D = diag(M), and let V = [FT D]T ∈ K[X](m+n)×n. We first verify that P is
a solution basis of SyzM(F) if and only if there is some Q ∈ K[X]m×n such that [P Q] is
a kernel basis for V.

First assume that P is a solution basis of SyzM(F). Then, Q = −PFD−1 ∈ K[X]m×n

is such that [P Q]V = 0. Let us consider [p q] ∈ K[X]1×(m+n) in the kernel of V and
show that it is a K[X]-linear combination of the rows of [P Q]. Indeed, p is a solution of
SyzM(F), so that p = λP for some λ ∈ K[X]1×m. Then, −qD = pF = λPF = −λQD
yields q = λQ, hence [p q] = λ[P Q].

Now, assume that there exists Q ∈ K[X]m×n such that [P Q] is a kernel basis for
V. Then, in particular, PF = 0 mod M. We consider a solution p of SyzM(F) and show
that it is a K[X]-linear combination of the rows of P. Defining q = −pFD−1, we have
[p q]V = 0, hence [p q] = λ[P Q] for some λ ∈ K[X]1×m, and therefore p = λP.

Finally, having deg(F∗,j) < deg(mj) implies that any [p q] ∈ K[X]1×(m+n) in the
kernel of V satisfies deg(q) < deg(p), and thus from max(w) 6 min(s) we obtain that
rdegw(q) < rdegs(p). In particular, for any matrix [P Q] ∈ K[X]m×(m+n) such that
[P Q]V = 0, we have lmu([P Q]) = [lms(P) 0]. This implies that P is in s-Popov form
if and only if [P Q] is in u-Popov form with s-pivot index (1, . . . ,m).

186

8.1. Fast algorithm via kernel bases when the minimal degree is known

While this provides an algorithm to compute solution bases via kernel bases, to the
best of our knowledge, there is currently no known algorithm which would compute kernel
bases in shifted Popov form for arbitrary shifts within a number of operations that matches
our target cost bound O (̃mω−1D), where D = deg(m1) + · · ·+ deg(mn).

Even if we had such an algorithm, an obstacle of this approach is that it increases the
matrix dimension of the problem: instead of considering F with m rows, we consider V
with m + n rows. In fact, we will not manage to overcome this issue; this is one of the
reasons why we obtain the cost bound O (̃mω−1D) only under the assumption n ∈ O(m).
(This is not the only reason: our main algorithm in Section 8.3 computes a residual as in
Lemma 6.4, and in this lemma we also required n ∈ O(m) for efficiency.)

Another immediate difficulty is that this method does not compute only the solution
basis P but also the matrix Q ∈ K[X]m×n formed by the quotients Q = −PF/diag(M).
Yet, Q may have size O(mnD) when P has columns of large degree as we show in the
next example; this size is beyond our target cost bound O (̃mω−1D).
Example 8.3. Here, we work over the finite field K = F997 and with the matrix dimensions
m = n = 4. With a computer algebra system, we choose at random monic moduli
(m1,m2,m3,m4) of respective degrees (5, 10, 3, 19), as well as a matrix F ∈ K[X]4×4 of
column degree cdeg(F) < (5, 10, 3, 19). We thus have D = 5 + 10 + 3 + 19 = 37.

Then, we define the matrix V ∈ K[X]8×4 as

V =

[
F

diag(M)

]
=

[4] [9] [2] [18]
[4] [9] [2] [18]
[4] [9] [2] [18]
[4] [9] [2] [18]
(5)

(10)
(3)

(19)

,

where [d] indicates an entry of degree at most d, (d) indicates a monic entry of degree d,
and blank entries denote the zero polynomial.

Now, we compute the (0, 37, 74, 111, 0, 0, 0, 0)-Popov kernel basis for V, obtaining the
matrix [P Q] ∈ K[X]4×8, whose degrees are

[
P Q

]
=

(37) [36] [36] [36] [36]
[36] (0) [35] [35] [35] [35]
[36] (0) [35] [35] [35] [35]
[36] (0) [35] [35] [35] [35]

 .
In this case, we note that P is the Hermite solution basis of SyzM(F). Furthermore, the
sum of column degrees of P is |cdeg(P)| = deg(det(P)) = 37 = D, as one could expect
from Lemma 2.10. However, P has a column of large degree; by large, we mean compared
to the average 37/4. As a consequence, the quotients in Q all have degree close to D.

Generalizing this example to arbitrary dimensions m = n and D, we get instances
where the quotient matrix Q has size in Θ(m2D), and thus cannot be computed in
O(mω−1D) field operations. b

187

Chapter 8. Computing shifted Popov solution bases

Still, these quotients are not part of our specification of Problem 9: they are not
wanted in our context. Thanks to this remark, there is a specific situation in which we
are able to circumvent this difficulty concerning the size of Q, and to take advantage of
this interpretation of solution bases as submatrices of kernel bases.

Namely, let us now place ourselves in the case where the s-minimal degree of SyzM(F) is
known a priori. Then, partial linearization techniques can be used to reduce to the case of
almost uniform column degrees in the output. This has been presented for relation bases
in general in Section 6.2, and we give below a slightly modified version of Lemma 6.2
specialized to the particular case of solution bases.

Corollary 8.4. Let M ∈ K[X]n6=0 with its entries having degrees (D1, . . . , Dn), let F ∈
K[X]m×n be such that cdeg(F) < (D1, . . . , Dn), and let s ∈ Zm. Furthermore, let δ =
(δ1, . . . , δm) denote the s-minimal degree of SyzM(F).

Let δ = d(D1 + · · · + Dn)/me > 1, and for i ∈ {1, . . . ,m} write δi = (αi − 1)δ + βi
with αi = dδi/δe and 1 6 βi 6 δ if δi > 0, and with αi = 1 and βi = 0 if δi = 0. Then, let
let m̃ = α1 + · · ·+ αm, and define δ̃ ∈ Zm̃>0 as in Eq. (6.4),

δ̃ = (δ, . . . , δ, β1︸ ︷︷ ︸
α1

, . . . , δ, . . . , δ, βm︸ ︷︷ ︸
αm

)

and the expansion-compression matrix E ∈ K[X]m̃×m as in Eq. (6.5),

E =

1
Xδ

...
X(α1−1)δ

. . .
1
Xδ

...
X(αm−1)δ

.

Let d = −δ̃ ∈ Zm̃ and P̃ ∈ K[X]m̃×m̃ be the d-Popov solution basis of SyzM(EF mod M).
Then, P̃ has d-pivot degree δ̃ and the s-Popov solution basis of SyzM(F) is the submatrix
of P̃E formed by its rows at indices {α1 + · · · + αi, 1 6 i 6 m}. Furthermore, we have
m 6 m̃ 6 2m and max(d)−min(d) 6 δ.

In terms of algorithm, this result leads us to perform a transformation of the input
and to compute a solution basis which is a partially linearized version of the sought one.
Computing this linearized basis via a kernel basis, we will at the same time compute a
corresponding quotient matrix which, unlike the solution basis, does not directly yield
the actual quotient matrix. This is not a problem since our aim is only to compute the
solution basis.

Thus, to compute solution bases with known minimal degree, we will resort to an
efficient procedure to compute shifted Popov kernel bases when information on the pivot

188

8.1. Fast algorithm via kernel bases when the minimal degree is known

entries of the output is available. The next result indicates that this can be done via an
approximant basis computation.

Lemma 8.5. Let V ∈ K[X](m+n)×n have full rank and s ∈ Zm+n. Let N ∈ K[X]m×(m+n)

be the s-Popov kernel basis for V, let (π1, . . . , πm) be its s-pivot index, (δ1, . . . , δm) be its
s-pivot degree, and β > deg(N) be a degree bound. Let further v = (v1, . . . , vm+n) ∈ Zm+n

60

be defined by

vj =

{
−β − 1 if j 6∈ {π1, . . . , πm},
−δi if j = πi.

Then, let τ = cdeg(V)+(β+1, . . . , β+1) ∈ Zn>0, and A be the v-Popov approximant basis
of Syzτ (V). Then, N is the submatrix of A formed by its rows at indices {π1, . . . , πm}.

Proof. First, N is in v-Popov form with rdegv(N) = 0. Define B ∈ K[X](m+n)×(m+n)

whose i-th row is Nj,∗ if i = πj and Ai,∗ if i 6∈ {π1, . . . , πm}: we want to prove B = A.
Writing (d1, . . . , dn) for the column degree of V, we have τ = [τj]j with τj = dj +β+1

for 1 6 j 6 n.
Let p = [pj]j ∈ K[X]1×(m+n) be a row of A, and assume rdegv(p) < 0. This means

deg(pj) < −vj for all j, so that deg(p) < max(−v) = β+ 1. Then, we have deg(pV∗,j) <
dj+β+1 = τj for all 1 6 j 6 n, and from pV∗,j = 0 mod Xτj we obtain pV∗,j = 0, which
is absurd by minimality of N. As a result, rdegv(A) > 0 = rdegv(N) componentwise.

Besides, BF = 0 mod (Xτ1 , . . . , Xτn) and since B has its v-pivot entries on the diag-
onal, it is v-reduced: by minimality of A, we obtain rdegv(A) = rdegv(B). Then, it is
easily verified that B is in v-Popov form, hence B = A.

In particular, using Algorithm 14, one can efficiently compute the shifted Popov kernel
basis for V if a degree bound β, the shifted pivot index, and the shifted pivot degree are
known a priori.

Proposition 8.6. Algorithm 15 is correct and uses O (̃mω−1(d + nβ)) operations in K,
where d = |cdeg(V)| is the sum of the column degrees of V.

Proof. The correctness of Algorithm 15 follows from Lemma 8.5. Besides, the approxi-
mant basis computation at Step 3 can be performed in O (̃mω−1(D + nβ)) according to
Proposition 7.10.

In the context of the computation of solution bases with known minimal degree δ, the
kernel basis is [P Q] and we have deg(Q) < deg(P) (see Lemma 8.2). Therefore we would
choose β = max(δ) > deg([P Q]). As noted above, when δ has some large entries we
may have β = Θ(D) and this kernel basis algorithm has cost bound O (̃mω−1(D + nD)),
which exceeds our target O (̃mω−1D). Yet, thanks to Corollary 8.4 we can make δ close
to uniform and thus solve this issue, leading us to Algorithm 16.

Proposition 8.7. Algorithm 16 is correct and uses O (̃mω−1D) operations in K, where
D = deg(m1) + · · ·+ deg(mn) and it is assumed that D > m and n ∈ O(m).

189

Chapter 8. Computing shifted Popov solution bases

Algorithm 15 – PivDegKerBas
(Shifted Popov kernel basis with known pivot degree)
Input:
• a matrix V ∈ K[X](m+n)×n with full rank,
• a shift s ∈ Zm+n,
• the s-pivot index (π1, . . . , πm) of the s-Popov kernel basis for V,
• the s-pivot degree (δ1, . . . , δm) of the s-Popov kernel basis for V,
• a bound β ∈ Z>0 at least the degree of the s-Popov kernel basis for V.

Output: the s-Popov kernel basis for V.

1. v ← (v1, . . . , vm+n) ∈ Zm+n with vj = −β − 1 if j 6∈ {π1, . . . , πm} and
vj = −δi if j = πi.

2. τ ← cdeg(V) + (β + 1, . . . , β + 1) ∈ Zn>0

3. A← FastPopovAppBas(τ ,V,v)

4. Return the submatrix of A formed by its rows {π1, . . . , πm}

Proof. First, since we have chosen u = (−δ̃,−δ, . . . ,−δ) with −δ = min(−δ̃), it follows
from Lemma 8.2 that the u-Popov kernel basis N for [F̃T diag(M)]T can be written as
[P̃ Q̃] where P̃ is the −δ̃-Popov solution basis of SyzM(F̃). This lemma also ensures that
N has u-pivot index π = (1, . . . ,m) and u-pivot degree δ̃; and since deg(Q̃) < deg(P̃),
we have deg(N) 6 deg(P̃) = max(δ̃) = δ.

Then, Proposition 8.6 states that this kernel basis N is correctly computed at Step 3,
and Corollary 8.4 ensures that the submatrix at Step 4 is the sought s-Popov solution
basis of SyzM(F).

Concerning the cost bound, we recall from the proof of Lemma 6.4 that EF mod M
at Step 2 can be computed in O (̃mD) operations, assuming n ∈ O(m). Now, according
to Proposition 8.6, the kernel basis computation at Step 3 uses

O (̃mω−1(|cdeg(V)|+ nδ)) ⊆ O (̃mω−1D)

operations in K. In this bound, the inclusion follows first from the identity |cdeg(V)| =
deg(m1)+ · · ·+deg(mn) = D, and second from the inequality nδ = ndD/me < n+nD/m,
with n+ nD/m ∈ O(D) since by assumption n ∈ O(m) and m 6 D.

We remark that when D 6 m, one may rely on our algorithm based on fast linear
algebra (Algorithm 3 in Section 4.3.2) to compute the shifted Popov solution basis in
O (̃mDω−1) operations, without requiring that the shifted minimal degree be known.

8.2 The case of one equation
We now present the main new ingredients which allow us to efficiently deal with arbitrary
moduli, instead of powers of X as in Chapter 7. These ingredients concern the case of a

190

8.2. The case of one equation

Algorithm 16 – MinDegSolBas
(Solution basis with known minimal degree)
Input:
• polynomials M = (m1, . . . ,mn) ∈ K[X]n6=0,
• a matrix F ∈ K[X]m×n with deg(F∗,j) < deg(mj),
• a shift s ∈ Zm,
• δ = (δ1, . . . , δm) the s-minimal degree of SyzM(F).

Output: the s-Popov solution basis of SyzM(F).

1. /* Partial linearization parameters */
δ ← d(deg(m1) + · · ·+ deg(mn))/me,
αi ← bδi/δc+ 1 for 1 6 i 6 m,
m̃← α1 + · · ·+ αm,
δ̃ ← tuple as in Eq. (6.4),
E ← matrix as in Eq. (6.5)

2. /* Partially linearize the equations */
F̃← EF mod M

3. /* Reduce to kernel basis */
V← [F̃T diag(M)]T

u← (−δ̃,−δ, . . . ,−δ) ∈ Zm̃+n

π ← (1, . . . ,m)

N← PivDegKerBas(V,u,π, δ̃, δ)

4. /* Retrieve the expanded basis and compress back */
Write N = [P̃ Q̃] with P̃ ∈ K[X]m̃×m̃

Return the submatrix of P̃E formed by its rows {α1+· · ·+αi, 1 6 i 6 m}

191

Chapter 8. Computing shifted Popov solution bases

single equation, that is, n = 1, for which they lead to an efficient algorithm to find the
shifted Popov solution basis. Then, we show in Section 8.3 how to rely on this as the base
case of a divide-and-conquer scheme on the number of equations.

8.2.1 Amplitude, splitting indices, and block triangular shape

First, we show that when the shift s has a small amplitude amp(s) = max(s) − min(s),
one can solve Problem 9 via an approximant basis computation at small order.

Lemma 8.8. Let m ∈ K[X] 6=0 be of degree D, let F ∈ K[X]m×1 with deg(F) < D,
and let s ∈ Zm. Consider the shift u = (s,min(s)) ∈ Zm+1 and the polynomial vector
V = [FT m]T ∈ K[X](m+1)×1. For any τ > amp(s) + 2D, the s-Popov solution basis of
Syzm(F) is the principal m×m submatrix of the u-Popov approximant basis of Syzτ (V).

Proof. Let us denote by A =
[

P q
p q

]
∈ K[X](m+1)×(m+1) the u-Popov approximant basis of

Syzτ (V), where P ∈ K[X]m×m and q ∈ K[X], and let B = [P̄ q̄] ∈ K[X]m×(m+1) be the
u-Popov kernel basis for V. Then, by Lemma 8.2, it is enough to prove that B = [P q].

First, since the smallest entry of u is its last one, and since A is in u-Popov form,
we have rdeg(p) 6 deg(q). This implies that qm 6= 0, and using deg(F) < D = deg(m)
we obtain that deg(pF + qm) = deg(q) +D. Since pF + qm = 0 mod Xτ , this yields the
inequality deg(q) +D > τ .

Furthermore, since we have BV = 0, the same arguments also prove that the u-pivot
entries of B are located in P̄.

Now, since the sum of the u-pivot degrees of A is at most τ by Lemma 2.10, then the
sum of the s-pivot degrees of P is at most D. With [P q] in u-Popov form, this implies
that deg(q) < D+ amp(s) 6 τ −D. We obtain deg(PF + qm) < τ , hence PF + qm = 0.
Thus, the minimality of B and A gives the conclusion.

When amp(s) ∈ O(D), this gives a fast solution to our problem. In what follows, we
present a divide-and-conquer approach on amp(s), with base case amp(s) ∈ O(D).

We first give an overview of this approach, assuming that s is non-decreasing. A key
ingredient is that when amp(s) is large compared toD, then P has a lower block triangular
shape, since it is in s-Popov form with sum of s-pivot degrees |δ| 6 D. Typically, having
si+1 − si > D for some i implies that

P =

[
P(1) 0
∗ P(2)

]
with P(1) ∈ K[X]i×i and P(2) ∈ K[X](m−i)×(m−i). In general, even though the block sizes
are unknown a priori, we are going to show that they can be revealed efficiently, along
with the s-minimal degree δ of Syzm(F), by a divide-and-conquer algorithm that we sketch
in the next paragraphs.

First, we use a recursive call with the first j entries s(0) of s and F(0) of F, where j
is such that amp(s(0)) is about half of amp(s). Computing the s-Popov solution basis
of Syzm(F(0)) reveals the first i 6 j entries δ(1) of δ and the first i rows [P(1) 0] of P,
with P(1) ∈ K[X]i×i. A central property is that amp(s(2)) is about half of amp(s) as well,

192

8.2. The case of one equation

where s(2) is the tail of s starting at the entry i + 1. Note that this is not obvious, since
we have i 6 j with i unknown a priori.

Then, knowing the degrees δ(1) allows us to set up an approximant basis computation
that yields a residual, that is, a column G ∈ K[X](m−i)×1 and a modulus n such that
we can continue the computation of P using a second recursive call which consists in
computing the s(2)-Popov solution basis of Syzn(G). From these two calls we obtain δ,
and then P can be recovered efficiently using Algorithm 16.

Now we present the details of this approach and of its correctness. Let F ∈ K[X]m×1,
m ∈ K[X] 6=0 with D = deg(m) > deg(F), s ∈ Zm, P be the s-Popov solution basis of
Syzm(F), and δ be the s-minimal degree of Syzm(F). In what follows, πs = (π1, . . . , πm)
is any permutation of {1, . . . ,m} such that (sπ1 , . . . , sπm) is non-decreasing.

Then, for t = (t1, . . . , tm) ∈ Zm we write t[i:j] for the subtuple of t formed by its
entries at indices {πi, . . . , πj}, and for a matrix A ∈ K[X]m×m we write A[i:j,k:l] for the
submatrix of A formed by its rows at indices {πi, πi+1, . . . , πj} and columns at indices
{πk, πk+1, . . . , πl}. The main ideas in this section can be understood by focusing on the
case of a non-decreasing s, taking πi = i for all i: then we have t[i:j] = (ti, ti+1, . . . , tj) and
A[i:j,k:l] = (Au,v)i6u6j,k6v6l.

Remark 8.9. We recall that, by subtuple or submatrix we always mean that the respective
positions of the rows are unchanged. For example, the subtuple of (3, 7, 8) formed by its
entries at indices {3, 1} is (3, 8).

Furthermore, one may wonder why we do not simply sort the shift s in non-decreasing
order from the beginning, and permute the entries of F accordingly. The reason is that,
if we find the shifted Popov basis for this permuted instance, then permuting back the
columns of this basis do not necessarily yield the sought s-Popov basis P; while it does
yield an s-minimal basis, it is not clear how to deduce P efficiently from the latter. K

We now introduce the notion of splitting index, with the aim of helping us to locate
zero blocks in the block-triangular shape of P.

Definition 8.10 (Splitting index). Let d = (di)i ∈ Zm>0, t ∈ Zm, and write (µi)i ∈ Zm>0

the entries of πt. Then, an integer i in {1, . . . ,m− 1} is said to be a splitting index for
(d, t) if we have dµj + tµj − tµi+1

< 0 for all j ∈ {1, . . . , i}.

We will see below in Lemma 8.12 that if i is a splitting index for (δ, s), then the
s-Popov solution basis has a block triangular shape. Our algorithm first looks for such
a splitting index, and then uses this shape to split the problem into two subproblems
concerning the two diagonal blocks, which have of dimensions i and m − i. To find a
splitting index, we rely on the following property.

Lemma 8.11. Let d ∈ Zm>0 and t ∈ Zm. If (d, t) does not admit any splitting index, then
we have |d| > amp(t).

Proof. Let us write (µi)i ∈ Zm>0 the entries of πt and (di)i ∈ Zm>0 the entries of d. Since
m − 1 not a splitting index for (d, t), there exists j1 ∈ {1, . . . ,m − 1} such that dµj1 +
tµj1 − tµm > 0. Then, if j1 = 1, we have tµj1 − tµm = −amp(t) and the property is proved;
otherwise, since j1 − 1 is not a splitting index, there exists j2 ∈ {1, . . . , j1 − 1} such that

193

Chapter 8. Computing shifted Popov solution bases

dµj2 +tµj2−tµj1 > 0. This way, we build j1 > j2 > · · · > jr = 1 with dµjk +tµjk−tµjk−1
> 0

for 1 6 k 6 r (where we write j0 = m): summing these inequalities gives the result.

In the next result, we show that if i is a splitting index for (δ, s), then the s-Popov
solution basis P has a block triangular shape up to row and column permutations:[

P[:i,:i] P[:i,i+1:]

P[i+1:,:i] P[i+1:,i+1:]

]
=

[
P[:i,:i] 0

P[i+1:,:i] P[i+1:,i+1:]

]
;

in Section 8.2.2, we will exploit this shape to consider subproblems related to the diagonal
blocks.

Lemma 8.12. If i is a splitting index for (δ, s), then [P[:i,:i] P[:i,i+1:]] = [P[:i,:i] 0].

Proof. Here, P = [pij]i,j is in s-Popov form with diagonal degrees δ = (δ1, . . . , δm). This
implies that the s-pivot of the row i of P is on the diagonal and of degree δi. Thus,
for all j, we have rdegs(Pi,∗) = δi + si > deg(pij) + sj. Moreover, πs = (πi)i is such
that (sπ1 , . . . , sπm) is non-decreasing. Now, since i is a splitting index for (δ, s), we have
δπj + sπj − sπi+1

< 0 for all 1 6 j 6 i. Then, for k > i+ 1, from the inequality above and
sπk > sπi+1

we obtain that deg(pπj ,πk) 6 δπj+sπj−sπi+1
< 0, and therefore pπj ,πk = 0. This

concludes the proof since P[:i,i+1:] is precisely the submatrix of P formed by its coefficients
at indices (πj, πk) for j 6 i and i+ 1 6 k.

8.2.2 Fast algorithm for a single equation

Using the result above allows us to partition s into ` subtuples which all contain a splitting
index, as follows.

Given α ∈ Z>0, we let ` = 1 + bamp(s)/αc and we consider the subtuples s1, . . . , s` of
s where sk consists of the entries of s in {min(s) + (k − 1)α, . . . ,min(s) + kα − 1}; this
gives a subroutine Partition(s, α) = (s1, . . . , s`). Now we take α > 2D and we assume
sπi+1

− sπi 6 D for 1 6 i < m without loss of generality (see the end of Section 1.2.2).
Then, for 1 6 k < `, since |δ| 6 D according to Lemma 2.10, and since by construction
amp(t) > D with t = (sk,min(sk+1)), by the above remark sk contains a splitting index
for (δ, s).

Still, we do not know in advance which entries of sk correspond to splitting indices for
(δ, s). Thus we recursively compute the s-Popov solution basis P(0) for s1, . . . , s`/2, and we
are now going to prove that this gives us a splitting index which divides the computation
into two subproblems, the first of which has been already solved by computing P(0).

Lemma 8.13. Let j ∈ {2, . . . ,m}, let s(0) = s[:j], let P(0) be the s(0)-Popov solution basis
of Syzm(F[:j]), and let δ(0) be its s(0)-pivot degree. We assume that there is a splitting index
i for (δ(0), s(0)) such that i 6 j. Let P(1) ∈ K[X]i×i be the s(1)-Popov solution basis of
Syzm(F[:i]) with s(1) = s[:i], and let δ(1) be its s(1)-pivot degree. Then i is a splitting index
for (δ, s) and we have P[:i,:i] = P(1) = P

(0)
[:i,:i]; in particular, δ[:i] = δ(1) = δ

(0)
[:i] . In these

identities, the entries of P(0) and δ(0) are indexed by {π1, . . . , πj} sorted increasingly.

194

8.2. The case of one equation

Proof. Since i is a splitting index for (δ(0), s(0)) we have [P
(0)
[:i,:i] P

(0)
[:i,i+1:]] = [Q 0] for

some Q ∈ K[X]i×i. Now, for any B ∈ K[X]m×m with [B[:i,:i] B[:i,i+1:]] = [P(1) 0], the
submatrix B[:i,:] is in s-Popov form with its rows being solutions of Syzm(F). Then, by
minimality of P, P[:i,:] has s-pivot degree at most δ(1) componentwise, so that i is also a
splitting index for (δ, s), and in particular [P[:i,:i] P[:i,i+1:]] = [R 0] for some R ∈ K[X]i×i.
It remains to prove that Q = R = P(1).

Since RF[:i] = 0 mod m and R = P[:i,:i] is in s(1)-Popov form, proving that all solutions
p ∈ K[X]1×i of Syzm(F[:i]) are in the row space of R is enough to obtain R = P(1). Since
q ∈ K[X]1×m defined by [q[:i] q[i+1:]] = [p 0] is a solution of Syzm(F), q = λP for some
λ ∈ K[X]1×m. Now P is nonsingular, thus P[:i,i+1:] = 0 implies that [λ[:i] λ[i+1:]] = [µ 0]
with µ ∈ K[X]1×i, hence p = q[:i] = λ[:i]P[:i,:i] + λ[i+1:]P[i+1:,:i] = µQ. Similar arguments
give Q = P(1).

The next two lemmas show that knowing δ(1), which is δ[:i], allows us to compute a
so-called residual (n,G) from which we can complete the computation of δ and P.

Lemma 8.14. Let s(2) = s[i+1:], let d = −δ(1) + min(s(2))− 2D ∈ Zi, let v ∈ Zm be such
that [v[:i] v[i+1:]] = [d s(2)], and let u = (v,min(d)) ∈ Zm+1. Besides, let

[
A q
p q

]
denote the

u-Popov approximant basis at order 2D for [FT m]T, where A ∈ K[X]m×m and q ∈ K[X].
Then, we have deg(q) > D, A[:i,i+1:] = 0, p[i+1:] = 0, and [A[:i,:i] q[:i]] = [P(1) q(1)], where
q(1) = −P(1)F[:i]/m.

Proof. Since u = (v,min(v)) we have deg(p) 6 deg(q), and since deg(F) < deg(m) the
degree of pF + qm is deg(q) +D; then pF + qm = 0 mod X2D implies deg(q) +D > 2D.
Now, since A is in v-Popov form and deg(A) 6 2D − deg(q) < 2D, from min(s(2)) >
max(d) + 2D we get A[:i,i+1:] = 0. Besides, p[i+1:] = 0 since either deg(q) < 2D and then
min(s(2)) > min(d) + deg(q), or A is the identity matrix and then p = 0.

Furthermore, by Lemma 8.2 [P(1) q(1)] is the (d,min(d))-Popov kernel basis for
[FT

[:i] m]T, with (d,min(d))-pivot index {1, . . . , i}, (d,min(d))-pivot degree δ(1) and de-
gree at most max(δ(1)). Then, following the arguments in the proof of Lemma 8.5, one
can show that [A[:i,:i] q[:i]] = [P(1) q(1)].

Thus, up to row and column permutations this approximant basis is

[
A q
p q

]
=

P(1) 0 q(1)

∗ P(2) ∗
∗ 0 q

with P(2) = A[i+1:,i+1:] ∈ K[X](m−i)×(m−i) in s(2)-Popov form.

Lemma 8.15. Let us denote by δ(2) ∈ Zm−i>0 the s(2)-pivot degree of P(2) = A[i+1:,i+1:], let
n = X−2D(p[:i]F[:i] + qm) ∈ K[X], and let G = X−2D(A[i+1:,:]F + q[i+1:]m) ∈ K[X](m−i)×1.
Then, deg(G) < deg(n) 6 D−|δ(1)|−|δ(2)|. Furthermore, let P(3) be the t-Popov solution
basis of Syzn(G), where t = rdegs(2)(P

(2)), and denote by δ(3) its t-pivot degree. Then,
(δ[:i], δ[i+1:]) = (δ(1), δ(2) + δ(3)).

195

Chapter 8. Computing shifted Popov solution bases

Proof. From Lemma 2.10, the sum |δ(1)|+ |δ(2)|+ deg(q) of the u-pivot degrees of
[

A q
p q

]
is at most the order 2D. As a consequence, deg(n) = deg(q) − D 6 D − |δ(1)| − |δ(2)|,
deg(A[i+1:,:i]) < |δ(1)| 6 D, deg(A[i+1:,i+1:]) 6 |δ(2)| 6 D, and deg(q[i+1:]) < deg(q). This
implies deg(G) < deg(q)−D = deg(n).

Let q(3) = −P(3)G/n and t = rdegu([p q]) = deg(q) + min(d) 6 min(s(2)) 6 min(t).
By Lemma 8.2, [P(3) q(3)] is the (t, t)-Popov kernel basis for [GT n]T. Then, defining
B ∈ K[X]m×m and c ∈ K[X]m×1 by[

B[:i,:i] B[:i,i+1:] c[:i]

B[i+1:,:i] B[i+1:,i+1:] c[i+1:]

]
=

[
I 0 0
0 P(3) q(3)

]
,

we have that the product [
B c

] [A q
p q

]
is a u-minimal kernel basis for [FT m]T, according to [ZLS12, Theorem 3.9]. As a result,
Lemma 8.2 implies that

P̄ =
[
B c

] [A
p

]
is a v-minimal solution basis of Syzm(F).

It is easily checked that P is in v-Popov form, so that the v-Popov form of P̄ is P
and the v-pivot degree of P̄ is δ. Besides,[

P̄[:i,:i] P̄[:i,i+1:]

P̄[i+1:,:i] P̄[i+1:,i+1:]

]
=

[
P(1) 0

P(3)A2,1 + q(3)A3,1 P(3)P(2)

]
;

thus the item (iv) of Theorem 1.28 implies that (δ[:i], δ[i+1:]) = (δ(1), δ(2) + δ(3)).

These results lead us to Algorithm 17. It takes as input the parameter α which dictates
the amplitude of the subtuples that partition s; as mentioned above, the initial call can
be made with α = 2D.

Proposition 8.16. Algorithm 17 is correct, and if the input parameter is initially set to
α = 2D, it uses O (̃mω−1D) operations in K.

Proof. The correctness follows from the results in this section.
At each base case of the recursion, we have in Step 1 the computation of the shifted

Popov approximant basis of a column at order O(α). By Proposition 7.10, denoting by
m the dimension at this base case, this uses O (̃mω−1α) operations.

Running the algorithm with initial input α = 2D, then the recursive tree has depth
O(log(`)) = O(log(1+amp(s)/2D)), with amp(s)/2D ∈ O(m2) (we recall that the entries
of an arbitrary shift can be reduced a priori thanks to the bound D on the degree of the
determinant of the output basis, see Section 1.2.2). All recursive calls are for a modulus of
degree D < α. The approximant basis computation at Step 2.b then uses O (̃mω−1D) op-
erations. Besides, the computation of G and n at Step 2.c can be done in timeO (̃mω−1D)
using partial linearization as in Lemma 6.4, and Step 2.e uses O (̃mω−1D) operations by
Proposition 8.7.

196

8.2. The case of one equation

Algorithm 17 – FastPopovSolBasOneEq
(Solution basis for a single equation)
Input:
• a polynomial m ∈ K[X] 6=0 of degree D,
• a column F ∈ K[X]m×1 with deg(F) < D,
• a shift s ∈ Zm,
• a parameter α ∈ Z>0 with α > 2D.

Output: the s-Popov solution basis of Syzm(F).

1. If amp(s) 6 2α:

a. A ← FastPopovAppBas(2α + 2D, [FT m]T, (s,min(s)))

b. Return the principal m×m submatrix of A

2. Else: /* ` = 1 + bamp(s)/αc > 3 */

a. (s1, . . . , s`)← Partition(s, α),
j ← sum of the lengths of s1, . . . , sd`/2e, s(0) ← s[:j],
P(0) ← FastPopovSolBasOneEq(m,F[:j], s

(0), α)
δ(0) ← diagonal degrees of P(0)

b. i← the largest splitting index for (δ(0), s(0)), δ(1) ← δ
(0)
[:i] ,

s(2) ← s[i+1:], d← −δ(1) + min(s(2))− 2D,
v ∈ Zm with [v[:i] v[i+1:]]← [d s(2)], u← (v,min(d))[
A q
p q

]
← FastPopovAppBas(2D, [FT m]T,u)

c. δ(2) ← the s(2)-pivot degree of A[i+1:,i+1:]

G← X−2D(A[i+1:,:]F + q[i+1:]m)
n← X−2D(p[:i]F[:i] + qm)

d. t← s(2) + δ(2) = rdegs(2)(A[i+1:,i+1:])
P(3) ← FastPopovSolBasOneEq(n,G, t, α)
δ(3) ← diagonal degrees of P(3)

e. δ ∈ Zm>0 with (δ[:i], δ[i+1:])← (δ(1), δ(2) + δ(3))
Return MinDegSolBas(m,F, s, δ)

197

Chapter 8. Computing shifted Popov solution bases

On a given level of the tree, the sum of the dimensions of the column vector in input
of each subproblem is in O(m). Since aω−1 + bω−1 6 (a+ b)ω−1 for all a, b > 0, each level
of the tree uses a total of O (̃mω−1α) operations.

8.3 Fast solution bases in Popov form for arbitrary
shifts

Now that we have an efficient algorithm for the case of one equation n = 1, our main algo-
rithm uses a divide-and-conquer approach on n. For efficiency, we follow ideas described
in Section 1.2.1 and already used above in Algorithm 14: from the two bases obtained
recursively, we deduce the s-minimal degree δ; then, knowing δ, we compute the sought
solution basis via Algorithm 16.

When the dimension D = deg(m1) + · · · + deg(mn) is small, namely at most m, we
rely on the general relation basis algorithm detailed in Section 2.2 and Chapter 4. For
the computation of the residual G at Step 3.c, we use partial linearization as detailed in
Lemma 6.4 in Section 6.3.

Proposition 8.17. Algorithm 18 is correct; assuming n ∈ O(m), it uses O (̃mω−1D)
operations in K.

Proof. The correctness and the cost O (̃mω−1D) for Steps 1 and 2 follow from Proposi-
tion 4.18 and Proposition 8.16. With the costs of Steps 3.c and 3.e given in Proposition 8.7
and Lemma 6.4, we obtain the announced cost bound.

Concerning the correctness Step 3, we use Theorem 1.28 with the module M(1) of
solutions of SyzM(1)(F(1)) and the module M(2) of solutions of SyzM(2)(F(2)). The item
(iv) of this theorem implies that the s-minimal degree of SyzM(F) is the sum δ(1) + δ(2),
and therefore Step 3.h computes the s-Popov solution basis of SyzM(F) according to
Proposition 8.7.

As for a cost bound, we have two recursive calls at Steps 3.c and 3.f, the computation
of the residual at Step 3.e, and the computation of the output basis at Step 3.h. The
first recursive call involves the first bn/2c equations F(1) modulo M(1), with the sum of
the degrees of the moduli being D(1) = D1 + · · ·+Dbn/2c, while the second recursive call is
for the updated remaining dn/2e equations G modulo M(2), with the sum of the degrees
of the moduli being D(2) = D1 + · · ·+Ddn/2e. Although D(1) and D(2) may be unbalanced,
we have D = D(1) + D(2): if the cost of Steps 3.e and 3.h is in O (̃mω−1D), then this
implies that the overall cost is in O (̃mω−1D) as well.

Proposition 8.7 states that the call to MinDegSolBas at Step 3.h uses O (̃mω−1D).
Besides, according to Lemma 6.4, the same cost bound holds concerning the computation
of G at Step 3.e. Indeed, by Lemma 2.10 the sum of column degrees of P(1) is at most
D(1) 6 D, the sum of the degrees of the moduli in M(2) is at most D(2) 6 D, we have
m 6 D, and n ∈ O(m) by assumption.

198

8.3. Fast solution bases in Popov form for arbitrary shifts

Algorithm 18 – FastPopovSolBas
(Shifted Popov solution basis)
Input:
• polynomials M = (m1, . . . ,mn) ∈ K[X]n6=0 of degrees (D1, . . . , Dn),
• a matrix F ∈ K[X]m×n with deg(F∗,j) < Dj for 1 6 j 6 n,
• a shift s ∈ Zm.

Output: the s-Popov solution basis of SyzM(F).

1. If D = D1 + · · ·+Dn 6 m:

a. For j from 1 to n:

(i) write F∗,j = f
(0)
j + f

(1)
j X + · · ·+ f

(Dj−1)
j XDj−1

and mj = c
(0)
j + c

(1)
j X + · · ·+ c

(Dj−1)
j XDj−1 +XDj

(ii) Ej ←
[
f

(0)
j f

(1)
j · · · f

(Dj−1)
j

]
∈ Km×Dj

(iii) Cj ←

 0 1
.

0 1

−c(0)j −c(1)j ··· −c
(Dj−1)

j

 ∈ KDj×Dj

b. E←
[
E1 · · · En

]
∈ Km×D; C← diag(C1, . . . ,Cn) ∈ KD×D

c. Return LinPopovRelBas(C,E, s)

2. Else if n = 1 then return FastPopovSolBasOneEq(m1,F, s, 2D)

3. Else:

a. M(1) ← (m1, . . . ,mbn/2c); F(1) ← F∗,1...bn/2c

b. M(2) ← (mbn/2c+1, . . . ,mn); F(2) ← F∗,bn/2c+1...n

c. P(1) ← FastPopovSolBas(M(1),F(1), s)

d. δ(1) ← diagonal degrees of P(1)

e. G← P(1)F(2) mod M(2)

f. P(2) ← FastPopovSolBas(M(2),G, s + δ(1))

g. δ(2) ← diagonal degrees of P(2)

h. Return MinDegSolBas(M,F, s, δ(1) + δ(2))

199

Chapter 8. Computing shifted Popov solution bases

200

9

Computing a solution via structured
linear algebra

In this chapter, we focus on Problem 10, which asks to compute a degree-constrained
solution to a system of linear modular equations over K[X]. A natural approach is to
rely on the algorithm in Chapter 8, and retrieve a degree-constrained solution as being
the row with smallest degree in a full shifted minimal basis of solutions. Here, using fast
algorithms for solving structured linear systems over K, we give a probabilistic approach
which is slightly faster. A detailed overview of this approach and a comparison with
previous work were presented in Section 2.5.

We start by summarizing some general aspects of solving structured linear systems
(Section 9.1). Then, in Section 9.2, we will present a first solution based on a reduction to
the case of moduli that are powers of X, leading to the consideration of a mosaic-Hankel
system over K. Finally, in Section 9.3 we give another solution, which directly rewrites
the modular equations over K[X] as a linear system over K with a Toeplitz-like structure.

9.1 Solving structured homogeneous linear systems

Our two solutions to Problem 10 rely on fast algorithms for solving linear systems of the
form Au = 0 with A a structured matrix over K. In this section, we briefly review useful
concepts and results related to displacement rank techniques. While these techniques
can handle systems with several kinds of structure, we will only need (and discuss) those
related to Toeplitz-like and Hankel-like systems; for a more comprehensive treatment, the
reader may consult [Pan01].

Let m be a positive integer and let Zm ∈ Km×m be the square matrix with ones on
the subdiagonal and zeros elsewhere:

Zm =

0 0 · · · 0 0
1 0 · · · 0 0
0 1 0 · · · 0
...
0 · · · 0 1 0

 ∈ Km×m.

201

Chapter 9. Computing a solution via structured linear algebra

Given two integers m and n, consider the following operators:

∆m,n : Km×n → Km×n

A 7→ A− ZmAZT
n

and
∆′m,n : Km×n → Km×n

A 7→ A− ZmAZn,

which subtract from A its translate one place along the diagonal and the anti-diagonal,
respectively.

Let us discuss ∆m,n first. If A is a Toeplitz matrix, that is, invariant along diagonals,
∆m,n(A) has rank at most two. As it turns out, Toeplitz systems can be solved much faster
than general linear systems, in quasi-linear time inm+n. The main idea behind algorithms
for structured matrices is to extend these algorithmic properties to those matrices A for
which the rank of ∆m,n(A) is small, in which case we say that A is Toeplitz-like. Below,
this rank will be called the displacement rank of A (with respect to ∆m,n).

A pair of matrices (V,W) in Km×α ×Kα×n will be called a generator of length α for
A with respect to ∆m,n if ∆m,n(A) = VW. For the structure we are considering, one
can recover A from its generator; in particular, one can use a generator of length α as a
way to represent A using α(m+ n) field elements. One of the main aspects of structured
linear algebra algorithms is to use generators as a compact data structure throughout the
whole process.

Up to now, we only discussed the Toeplitz structure. Hankel-like matrices are those
which have a small displacement rank with respect to ∆′m,n, that is, those matrices A for
which the rank of ∆′m,n(A) is small. As far as solving the system Au = 0 is concerned,
this case can easily be reduced to the Toeplitz-like case. Define B = AJn, where Jn is the
reversal matrix of size n, all entries of which are zero, except the anti-diagonal which is
set to one. Then, one easily checks that the displacement rank of A with respect to ∆′m,n
is the same as the displacement rank of B with respect to ∆m,n, and that if (V,W) is a
generator for A with respect to ∆′m,n, then (V,WJn) is a generator for B with respect
to ∆m,n. Using the algorithm for Toeplitz-like matrices gives us a solution v to Bv = 0,
from which we deduce that u = Jnv is a solution to Au = 0.

In this thesis, we will not enter the details of algorithms for solving such structured
systems. The main result we will rely on is the next proposition; this result can be found
in [BJS08, BJMS16], which features the best known complexity for this kind of task, to
the best of our knowledge. This algorithm is based on previous work of Bitmead and
Anderson [BA80], Morf [Mor80], Kaltofen [Kal94], and Pan [Pan01], and is probabilistic
(it depends on the choice of some parameters in the base field K, and success is ensured
provided these parameters avoid a hypersurface of the parameter space).

The proof of the following proposition occupies the rest of this section. Remark that
some aspects of this statement could be improved (for instance, we could reduce the cost
so that it only depends on m, not max(m,n)), but that would be inconsequential for the
applications we make of it.

Proposition 9.1. Given a generator (V,W) of length α for a matrix A ∈ Km×n, with
respect to either ∆m,n or ∆′m,n, one can find a nonzero element in the right nullspace of A,

202

9.1. Solving structured homogeneous linear systems

or determine that none exists, by a probabilistic algorithm that uses O(αω−1M(D) log(D))
operations in K, with D = max(m,n). The algorithm chooses O(D) elements in K; if
these elements are chosen uniformly at random in a subset of K of cardinality at least
6D2, the probability of success is at least 1/2.

Square matrices. In all that follows, we consider only the operator ∆m,n, since we
already pointed out that the case of ∆′m,n can be reduced to it for no extra cost.

When m = n, we use directly the main results of [BJS08, BJMS16], which give the
running time reported above. However, they do not explicitly state which solution we
obtain, as they are written for general non-homogeneous systems. Here, we want to make
sure that we obtain a nonzero element in the right nullspace (if one exists), so slightly
more details are needed.

The algorithm in that theorem chooses 3m−2 elements in K, the first 2m−2 of which
are used to precondition A by giving it generic rank profile; this is the case when these
parameters avoid a hypersurface of K2m−2 of degree at most m2 +m.

Assume this is the case. Then, following [KS91], the output vector u is obtained in a
parametric form as u = `(u′), where u′ consists of another set of m parameters chosen
in K and ` is a surjective linear mapping with image the right nullspace ker(A) of A.
If ker(A) is trivial, the algorithm returns the zero vector in any case, which is correct.
Otherwise, the set of vectors u′ such that `(u′) = 0 is contained in a hyperplane of Km,
so it is enough to choose u′ outside of that hyperplane to ensure success.

To conclude we rely on the Zippel-Schwartz lemma [DL78, Zip79, Sch80], which can
be summarized as follows: if a nonzero polynomial over K of total degree at most d is
evaluated by assigning each of its indeterminates a value chosen uniformly at random in a
subset S of K, then the probability that the resulting polynomial value be zero is at most
d/Card(S). Thus, applying that result to the polynomial of degree d := m2 +m+1 6 3m2

corresponding to the hypersurface and the hyperplane mentioned above, we see that if we
choose all parameters uniformly at random in a subset S ⊆ K of cardinality Card(S) >
6m2, the algorithm succeeds with probability at least 1/2.

Wide matrices. Suppose now that m < n, so that the system is underdetermined. We
add n−m zero rows on top of A, obtaining an n× n matrix B. Applying the algorithm
for the square case to B, we will obtain a right nullspace element u for B and thus for A,
since these nullspaces are the same. In order to do so, we need to construct a generator
for B from the generator (V,W) we have for A: one simply takes (V̂,W), where V̂ is
the matrix in Kn×α obtained by adding n−m zero rows on top of V.

Tall matrices. Suppose finally that m > n. This time, we build the matrix B ∈ Km×m

by adjoining m − n zero columns to A on the left. The generator (V,W) of A can be
turned into a generator of B by simply adjoining m − n zero columns to W on the left.
We then solve the system Bv = 0, and return the vector u obtained by discarding the
first m− n entries of v.

The cost of this algorithm fits into the requested bound; all that remains to see is that
we obtain a nonzero vector in the right nullspace ker(A) of A with nonzero probability.

203

Chapter 9. Computing a solution via structured linear algebra

Indeed, the nullspaces of A and B are now related by the equality ker(B) = Km−n ×
ker(A). We mentioned earlier that in the algorithm for the square case, the solution v
to Bv = 0 is obtained in parametric form, as v = `(v′) for v′ ∈ Km, with ` a surjective
mapping Km → ker(B). Composing with the projection π : ker(B)→ ker(A), we obtain
a parametrization of ker(A) as u = (π ◦ `)(v′). The error probability analysis is then the
same as in the square case.

9.2 Reducing to solving a mosaic-Hankel linear system
In this section, we give our first solution to Problem 10, thereby proving Theorem 2.25;
this solution is outlined in Algorithm 19. It consists in first deriving equations modulo
powers of X as in Lemma 9.3 below, and then linearizing them to obtain a mosaic-Hankel
linear system which can be solved using the approach recalled in Section 9.1.

The derivation of the equations in Lemma 9.3 generalizes ideas from [RR00, ZGA11,
Zeh13]. In these references, one focuses on solving the multivariate interpolation problem
Problem 11 using the reduction to Problem 10 given in Section 11.1; in this context, these
modular equations are some type of extended key equations [RR00, ZGA11, Zeh13].

We first recall Problem 10. We have in input some moduli M = (m0, . . . ,mn−1) ∈
K[X]n6=0, and a matrix F ∈ K[X]n×m. Denoting by Di the degree of mi, we assume that
the entries of the row Fi,∗ have degree less than Di, for 0 6 i < n.

Remark 9.2. In this chapter, we consider the equations as being given by the rows of F,
and not by its columns as we did until now; this is because we will base our algorithms
on structured linear system solving, for which it is more common to see the unknown as
a column vector on the right of the system matrix. Furthermore, in this chapter the row
and column indices of matrices will be numbered starting from 0. K

Then, given degree bounds forming a shift N = (−N0, . . . ,−Nm−1) ∈ Zm<0, we look for
a column vector p ∈ K[X]m×1 such that the following holds:

(a) p is nonzero,

(b) cdegN(p) < 0,

(c) Fp = 0 mod M.

We recall that, writing p = [pj]16j6m, the item (b) is equivalent to having deg(pj) < Nj

for all 0 6 j < m, while (c) is equivalent to having Fi,∗ p = 0 mod mi for all 0 6 i < n.
In this section, without loss of generality, we assume that the moduli in M are monic.

Our goal here is to linearize the condition (c) into a homogeneous linear system over
K involving D linear equations with N unknowns, where D = D0 + · · · + Dn−1 and
N = N0 + · · ·+Nm−1. Without loss of generality, we will assume that

N 6 D + 1. (9.1)

Indeed, if N > D + 1, then the instance of Problem 10 we are considering has more
unknowns than equations and we may set the last N − (D + 1) unknowns to zero while
keeping the system underdetermined. This simply amounts to replacing the degree bounds

204

9.2. Reducing to solving a mosaic-Hankel linear system

N0, . . . , Nm−1 by N0, . . . , Nm′−2, N
′
m′−1, for m′ 6 m and N ′m′−1 6 Nm′−1 such that N0 +

· · ·+Nm′−2 +N ′m′−1 = D + 1. In particular, m may only decrease through this process.
In what follows, we write F = [Fi,j]i,j and we will work with the reversals of the input

and output polynomials, defined by

mi = XDimi(X
−1),

Fi,j = XDi−1Fi,j(X
−1),

pj = XNj−1pj(X
−1).

Let also β = maxh<mNh and, for 0 6 i < n and 0 6 j < m,

δi = Di + β − 1 and γj = β −Nj.

In particular, δi > 0 and γj > 0; recalling that mi is monic, we can define further the
polynomials Si,j in K[X] as

Si,j =
XγjFi,j

mi

mod Xδi

for 0 6 i < n and 0 6 j < m. (Those polynomials can be seen as a generalization of the
ones that are usually called syndrome polynomials in the context of coding theory; see for
example [ZGA11].) By using these polynomials, we can now reformulate the approxima-
tion condition of Problem 10 in terms of a set of extended key equations [ZGA11]:

Lemma 9.3. Let p = [pj]j ∈ K[X]m×1 satisfy the degree constraints in (b). Then, p
satisfies the condition (c) if and only if for all i ∈ {0, . . . , n−1}, there exists a polynomial
Ti ∈ K[X] such that∑

06j<m

Si,jpj = Ti mod Xδi and deg(Ti) < β − 1. (9.2)

Proof. The condition (c) holds if and only if for all i in {0, . . . , n − 1}, there exists a
polynomial Bi ∈ K[X] such that ∑

06j<m

Fi,jpj = Bimi. (9.3)

For all i, j, the summand Fi,jpj has degree less thanDi+Nj−1, so the left-hand term above
has degree less than δi. Since mi has degree Di, this implies that whenever a polynomial
Bi as above exists, we must have deg(Bi) < δi −Di = β − 1. Now, by substituting 1/X
for X and multiplying by Xδi−1 we can rewrite the identity in (9.3) as∑

06j<m

Fi,jpjX
γj = Timi, (9.4)

where Ti is the polynomial of degree less than β − 1 given by Ti = Xβ−2Bi(X
−1). Since

the degrees of both sides of (9.4) are less than δi, one can consider the above identity
modulo Xδi without loss of generality, and since mi(0) = 1 one can further divide by mi

modulo Xδi . This shows that Eq. (9.4) is equivalent to the identity in Eq. (9.2), and the
proof is complete.

205

Chapter 9. Computing a solution via structured linear algebra

Following [RR00, ZGA11], we are going to rewrite the conditions in Eq. (9.2) as
a linear system in the coefficients of the polynomials p0, . . . , pm−1, eliminating the un-
knowns Ti from the outset. We first define the coefficient vector of a solution p =
[p0, . . . , pm−1] to Problem 10 as the vector in KN×1 obtained by concatenating the vectors[
p

(0)
j , p

(1)
j , . . . , p

(Nj−1)
j

]T of the coefficients of pj, for 0 6 j < m. Furthermore, we set up
the block matrix

H =
[
Hi,j

]
06i<n,06j<m

∈ KD×N ,

whose block (i, j) is the Hankel matrix

Hi,j =
[
S

(u+v+γj)
i,j

]
06u<Di,06v<Nj

∈ KDi×Nj ,

where S(0)
i,j , S

(1)
i,j , . . . , S

(δi−1)
i,j denote the δi > 1 coefficients of the polynomial Si,j.

Lemma 9.4. A nonzero vector of KN×1 is in the right nullspace of H if and only if it is
the coefficient vector of a solution p = [p0, . . . , pm−1] to Problem 10.

Proof. It is sufficient to consider a column vector p = [p0, . . . , pm−1] that satisfies (b).
Then, looking at the high-degree terms in the identities in Eq. (9.2), we see that the
condition (c) is equivalent to the following homogeneous system of linear equations over
K: for all i in {0, . . . , n− 1} and all δ in {δi −Di, . . . , δi − 1},∑

06j<m

∑
06k<Nj

S
(δ−k)
i,j p

(Nj−1−k)
j = 0.

The matrix obtained by considering all these equations is precisely the matrix H.

We will use the approach recalled in Section 9.1 to find a nonzero nullspace element
for H, with respect to the displacement operator ∆′D,N . To make sure that this approach
is efficient, we need to prove that the displacement rank of H with respect to ∆′D,N is
bounded by a value α which is not too large. In addition, we also have to efficiently com-
pute a generator of length α for H, that is, a pair of matrices (V,W) ∈ KD×α × Kα×N

such that H− ZDHZN = VW. We will see that here, computing such a generator boils
down to computing the coefficients of the polynomials Si,j. The cost incurred by comput-
ing this generator is summarized in the following lemma; combined with Proposition 9.1
and Lemma 9.4, this proves Theorem 2.25.

Lemma 9.5. The displacement rank of H with respect to ∆′D,N is at most m + n.
Furthermore, one can compute a corresponding generator of length m + n for H using
O((m+ n)M(D)) operations in K.

Proof. We are going to exhibit two matrices V ∈ KD×(m+n) and W ∈ K(m+n)×N such
that H−ZDHZN = VW. Because of the structure of H, at most n rows and m columns
of the matrix H − ZDHZN are nonzero. More precisely, only the first row and the last
column of each Di×Nj block of this matrix can be nonzero. Indexing the rows (resp. the
columns) of H−ZDHZN from 0 to D− 1 (resp. from 0 to N − 1), only the n rows with
indices of the form ri = D0 + · · ·+Di−1 for i = 0, . . . , n− 1 can be nonzero, and only the

206

9.2. Reducing to solving a mosaic-Hankel linear system

m columns with indices of the form cj = N0 + · · · + Nj − 1 for j = 0, . . . ,m − 1 can be
nonzero.

For two integers i,K with 0 6 i < K, define ci,K = [0 · · · 0 1 0 · · · 0]T ∈ KK×1 the
coordinate vector with 1 at position i, and

c(V) = [cri,D]06i<n ∈ KD×n,

c(W) =
[
ccj ,N

]T
06j<m

∈ Km×N .

For given i in {0, . . . , n−1} and j in {0, . . . ,m−1}, we will consider vi,j = [v
(k)
i,j]06k<Di in

KDi×1 and wi,j = [w
(k)
i,j]06k<Nj in K1×Nj , which are respectively the last column and the

first row of the block (i, j) in H− ZDHZN , up to a minor point: the first entry of vi,j is
set to zero. The coefficients v(k)

i,j and w(k)
i,j can then be expressed in terms of the entries

H
(u,v)
i,j = S

(u+v+γj)
i,j of the Hankel matrix Hi,j = [H

(u,v)
i,j]06u<Di,06v<Nj as follows:

v
(k)
i,j =

{
0 if k = 0,

H
(k,Nj−1)
i,j −H

(k−1,0)
(i,j+1) if 1 6 k < Di,

(9.5)

w
(k)
i,j =

{
H

(0,k)
i,j −H

(Di−1−1,k+1)
i−1,j if k < Nj − 1,

H
(0,Nj−1)
i,j −H

(Di−1−1,0)
i−1,j+1 if k = Nj − 1.

(9.6)

Note that here, we use the convention that an indexed object is zero when the index is
out of the allowed bounds for this object.

Then, we define Vj and Wi as

Vj =

 v0,j
...

vn−1,j

 ∈ KD×1 and

Wi = [wi,0 · · · wi,m−1] ∈ K1×N ,

and we define V′ and W′ as

V′ =
[
V0 · · · Vm−1

]
∈ KD×m and

W′ =

 W0
...

Wn−1

 ∈ Kn×N .

Now, one can easily verify that the matrices

V =
[
V′ c(V)

]
∈ KD×(m+n) (9.7a)

and
W =

[
c(W)

W′

]
∈ K(m+n)×N (9.7b)

207

Chapter 9. Computing a solution via structured linear algebra

are generators for H, that is, H− ZMHZN = VW.
We notice that all we need in order to compute the generators V and W are the last

Di + Nj − 1 coefficients of Si,j(X) = S
(0)
i,j + S

(1)
i,j X + · · ·+ S

(δi−1)
i,j Xδi−1 for 0 6 i < n and

0 6 j < m. Now, recall that

Si,j =
XγjFi,j

mi

mod Xδi =
Xδi−(Di+Nj−1)Fi,j

mi

mod Xδi .

Thus, the first δi − (Di + Nj − 1) coefficients of Si,j are zero, and the last Di + Nj − 1
coefficients of Si,j are the coefficients of

S?i,j =
Fi,j
mi

mod XDi+Nj−1, (9.8)

which can be computed in O(M(Di +Nj)) operations in K by fast power series division.
By expanding products, we see that M(Di + Nj) = O(M(Di) + M(Nj)). Summing the
costs, we obtain an upper bound of the form

O

(∑
06i<n

∑
06j<m

M(Di) + M(Nj)

)
,

which is in O((mM(D) + nM(N)) using the super-linearity of M(·). Since we assumed
in Eq. (9.1) that N 6 D + 1, this is in O((n+m)M(D)).

9.3 Directly computing a solution via a Toeplitz-like
system

In this section, we propose an alternative approach to Problem 10, outlined in Algo-
rithm 20 below, which leads to the same asymptotic running time as the algorithm of
the previous section, but follows a more direct solution path by avoiding the derivation
of extended key equations as in Lemma 9.3. As recalled above, our input consists of the
monic moduli M and the matrix F, and we look for a column vector p such that the
following conditions hold: (a) p is nonzero, (b) cdegN(p) < 0, and (c) Fp = 0 mod M.

In addition, for k > 0, we denote by F (k)
i,j and m

(k)
i the coefficients of degree k of Fi,j

and mi, respectively, and we denote by Ci the companion matrix of mi; explicitly,

Ci =

0 0 · · · 0 −m(0)

i

1 0 · · · 0 −m(1)
i

0 1 · · · 0 −m(2)
i

...
...

...
0 0 · · · 1 −m(Di−1)

i

 ∈ KDi×Di .

In particular, if p is a polynomial of degree less than Di with coefficient vector v ∈ KDi×1,
then the product Civ ∈ KDi×1 is the coefficient vector of the polynomial Xp mod mi.

208

9.3. Directly computing a solution via a Toeplitz-like system

Algorithm 19 – SolVecViaHankel
(Small solution vector via a mosaic-Hankel system)
Input:
• positive integers n, m, D0, . . . , Dn−1, N0, . . . , Nm−1,
• polynomial tuples {(mi, Fi,0, . . . , Fi,m−1)}06i<n in K[X]m+1 such that for

all i, mi is monic of degree Di and deg(Fi,j) < Di for all j.

Output: polynomials p0, . . . , pm−1 in K[X] such that (a), (b), (c).

1. Compute the coefficients S(γj+r)
i,j for r < Di +Nj−1, i < n, and j < m;

that is, the coefficients of S?i,j as defined in Eq. (9.8)

2. vi,j and wi,j, for i < n and j < m ← as defined in Eq. (9.5) and
Eq. (9.6)

3. ri ← D0 + · · ·+Di−1 for i < n; cj ← N0 + · · ·+Nj − 1 for j < m

4. V and W ← generators as defined in Eq. (9.7)

5. Run the algorithm of Proposition 9.1 with input V and W; if there is
no solution then exit with no solution, otherwise retrieve the coefficients
of the ouput as polynomials p0, . . . , pm−1

6. Return p = [pj]j ∈ K[X]m×1

We are going to see that solving Problem 10 is equivalent to finding a nonzero solution
to a homogeneous linear system whose matrix is T = [Ti,j]06i<n,06j<m ∈ KD×N , where for
i < n and j < m, Ti,j ∈ KDi×Nj is a matrix which depends on the coefficients of Fi,j and
mi. We make the same assumption as in the previous section: N 6 D+ 1 holds, without
loss of generality.

For i, j as above and for k ∈ Z>0, let α
(k)
i,j ∈ KDi×1 be the coefficient vector of the

polynomial XkFi,j mod mi, so that these vectors are given by

α
(0)
i,j =

 F
(0)
i,j
...

F
(Di−1)
i,j

 and α
(k+1)
i,j = Ciα

(k)
i,j .

Let then T = [Ti,j]06i<n,06j<m ∈ KD×N(Ti,j), where for every i < n and j < m, the block
Ti,j ∈ KDi×Nj is defined by

Ti,j =
[
α

(0)
i,j · · · α

(Nj−1)
i,j

]
.

Lemma 9.6. A nonzero vector of KN×1 is in the right nullspace of T if and only if it is
the coefficient vector of a solution p = [pj]j to Problem 10.

Proof. By definition Ti,j is the Di × Nj matrix of the mapping p 7→ Fi,jp mod mi, for p
in K[X] of degree less than Nj. Thus, if p satisfies the degree constraint in the condition

209

Chapter 9. Computing a solution via structured linear algebra

(b), by applying T to the coefficient vector of this p we obtain the coefficients of the
remainders

∑
06j<m Fi,jpj mod mi for i = 0, . . . , n − 1. The claimed equivalence follows

immediately.

The following lemma shows that T possesses a Toeplitz-like structure, with displace-
ment rank at most m+ n.

Lemma 9.7. The displacement rank of T with respect to ∆D,N is at most m + n.
Furthermore, one can compute a corresponding generator of length m + n for T using
O((m+ n)M(D)) operations in K.

Proof. We begin by giving two matrices P ∈ KD×(n+m) and Q ∈ K(n+m)×N such that
∆D,N(T) is equal to the product PQ. Define first the matrix

C =

C0 0 · · · 0
0 C1 · · · 0
...

...
0 0 · · · Cn−1

 ∈ KD×D.

Up to n columns, C coincides with ZD; we make this explicit as follows. For 0 6 i < n,
we define

vi =

 m
(0)
i
...

m
(Di−1)
i

 ∈ KDi×1, (9.9a)

Vi =

0
...
0
vi
1
0
...
0

∈ KD×1, Wi =

0
...
0
1
0
0
...
0

∈ KD×D, (9.9b)

where the last entry of vi in Vi and the coefficient 1 in Wi have the same index, namely
D0 + · · ·+Di− 1. (Hence the last vector Vn−1 only contains Vn−1, without a 1 after it.)
Then, defining V = [V0 · · · Vn−1] ∈ KD×n and W = [W0 · · · Wn−1] ∈ KD×n, we obtain

C = ZD −V0W
T
0 − · · · −Vn−1W

T
n−1 = ZD −VWT.

As before, we use the convention that an indexed object is zero when the index is out of
the allowed bounds for this object. For 0 6 j < m, let us further define

V′j =

 α
(0)
0,j
...

α
(0)
n−1,j

 −
 α

(Nj−1)
0,j−1
...

α
(Nj−1)
n−1,j−1

 ∈ KD×1 (9.10a)

210

9.3. Directly computing a solution via a Toeplitz-like system

and

W′
j =

0
...
0
1
0
...
0

∈ KN×1, (9.10b)

with the coefficient 1 in W′
j at index N0 + · · ·+Nj−1, and the compound matrices

V′ =
[
V′0 · · · V′m−1

]
∈ KD×m,

W′ =
[
W′

0 · · · W′
m−1

]
∈ KN×m.

Then, we claim that the matrices

M =
[
−V V′

]
∈ KD×(m+n) (9.11a)

and

N =

[
WTTZT

N

W′T

]
∈ K(m+n)×N (9.11b)

are generators for T for the Toeplitz-like displacement structure, that is,

T− ZDTZT
N = MN.

By construction, we have CT = (Pi,j)i<n,j<m ∈ KD×N , with the block Pi,j being given by

Pi,j = CiTi,j =
[
α

(1)
i,j · · · α

(Nj−1)
i,j α

(Nj)
i,j

]
∈ KDi×Nj .

As a consequence, T−CTZT
N = V′W′T, so finally we get, as claimed,

T− ZDTZT
N = T− (C + VWT)TZT

N

= T−CTZT
N −VWTTZT

N

= V′W′T −VWTAZT
N

= MN.

To compute Y and Z, the only non-trivial steps are those giving V′ and WTT. For
the former, we have to compute the coefficients of XNjFi,j mod mi for every i < n and
j < m− 1. For fixed i and j, this can be done using fast Euclidean division in O(M(Di +
Nj)) operations in K, which is in O(M(Di) + M(Nj)). Summing over the indices i < n
and j < m − 1, this gives a total cost of O(mM(D) + nM(N)) operations. This is in
O((n+m)M(D)), since by assumption N 6 D + 1.

Finally, we show that WTT can be computed usingO((n+m)M(D)) operations as well.
Computing this matrix amounts to computing the rows of T of indices D0 + · · ·+Di− 1,
for i < n. By construction of T, this means that we want to compute the coefficients of

211

Chapter 9. Computing a solution via structured linear algebra

degree Di − 1 of XkFi,j mod mi for k = 0, . . . , Nj − 1 and for all i, j. Unfortunately, the
naive approach leads to a cost proportional to DN operations, which is not acceptable.
However, for i and j fixed, Lemma 9.8 below shows how to do this computation using
only O(M(Di) + M(Nj)) operations, which leads to the announced cost by summing over
i and j.

Together with Proposition 9.1 and Lemma 9.6, this result completes our second proof
of Theorem 2.25, and leads to following Algorithm 20.

Algorithm 20 – SolVecViaToeplitz
(Small solution vector via a Toeplitz-like system)
Input:
• positive integers n, m, D0, . . . , Dn−1, N0, . . . , Nm−1,
• polynomial tuples {(mi, Fi,0, . . . , Fi,m−1)}06i<n in K[X]m+1 such that for

all i, mi is monic of degree Di and deg(Fi,j) < Di for all j.

Output: polynomials p0, . . . , pm−1 in K[X] such that (a), (b), (c).

1. vi and Vi, for i < n ← as defined in Eq. (9.9); V← [V0 · · · Vn−1]

2. W′
j, for j < m ← as defined in Eq. (9.10); W′ ← [W′

0 · · · W′
m−1]

3. α(Nj)
i,j , for i < n, j < m− 1 ← the coefficients of XNjFi,j mod mi

4. V′j, for j < n ← as defined in Eq. (9.10); V′ ← [V′0 · · · V′m−1]

5. WTT← for each i < n, its row of index i is the row of index D0 + · · ·+
Di − 1 of T, that is, the coefficients of degree Di − 1 of XkFi,j mod mi

for k < Nj and j < m (see Lemma 9.8 for fast computation)

6. M and N ← generators as defined in Eq. (9.11)

7. Run the algorithm of Proposition 9.1 with input M and N
 if there is no solution then exit with no solution, otherwise retrieve
the coefficients of the output as polynomials p0, . . . , pm−1

8. Return p = [pj]j ∈ K[X]m×1

Lemma 9.8. Let m ∈ K[X] be monic of degree D, let F ∈ K[X] be of degree less than
D, and for i > 0 let ci denote the coefficient of degree D − 1 of X iF mod m. Then, for
d > 1 one can compute c0, . . . , cd−1 using O(M(D) + M(d)) operations in K.

Proof. Writing F =
∑

06j<D fjX
j we haveX iF mod m =

∑
06j<D fj(X

i+j mod m). Hence
ci =

∑
06j<D fjbi+j, with bi denoting the coefficient of degree D − 1 of X i mod m. Since

b0 = · · · = bD−2 = 0 and bD−1 = 1, we can deduce c0, . . . , cd−1 from bD−1, bD, . . . , bD+d−2

in time O(M(d)) by multiplication by the lower triangular Toeplitz matrix [fD+j−i−1]i,j of
order d− 1.

Thus, we are left with the question of computing the d− 1 coefficients bD, . . . , bD+d−2.
Writing m as m = XD +

∑
06j<D pjX

j and using the fact that X im mod m = 0 for all

212

9.3. Directly computing a solution via a Toeplitz-like system

i > 0, we see that the bi are generated by a linear recurrence of order D with constant
coefficients:

bi+D +
∑

06j<D

pjbi+j = 0 for all i > 0.

Consequently, bD, . . . , bD+d−2 can be deduced from b0, . . . , bD−1 in time O(d
D
M(D)), which

is in O(M(D) +M(d)), by dd−1
D
e calls to Shoup’s algorithm for extending a linearly recur-

rent sequence [Sho91, Theorem 3.1].

213

Chapter 9. Computing a solution via structured linear algebra

214

10

Coppersmith technique over the
univariate polynomials

In this chapter, we reduce the interpolation step of the Coppersmith technique over the
univariate polynomials (Problem 14) to a system of linear modular equation (Problem 9).
Following the original Coppersmith technique over Z [Cop96], we first present the solution
based on row reduction, from [CH15]; it uses O (̃λωµν) field operations. Our reduction to
Problem 9, for which we gave fast algorithms in both preceding Chapters 8 and 9, leads
to a faster solution. Precisely, we will prove the following result, which uses notation from
Section 3.1.5.

Proposition 10.1. Problem 14 can be solved using O (̃λω−1µ2νd) operations in K.

In both the approaches of [CH15] and ours, the list-size parameter λ is used to identify
the sought Q ∈ K[X][Y] of Y -degree at most λ with the vector [Q0, Q1, . . . , Qλ] such that
Q = Q0+Q1Y +· · ·+QλY

λ. This is a linearization of the problem with respect to the vari-
able Y : instead of considering bivariate polynomials, we will work with K[X]-submodules
of K[X]λ+1, allowing us to benefit from the tools available for these submodules.

10.1 The approach based on row reduction
The strategy here is to first build a known basis of the module of all [Q0 · · · Qλ] such
that Q belongs to the ideal I. Then, the degree constraint on Q will be satisfied through
the computation of a shifted reduced form of this basis, with the shift being induced by
the weight w in Problem 14.

Building the basis. This construction, detailed in [CH11], is analogous to a construc-
tion encountered in Howgrave-Graham’s version of the Coppersmith technique over the
integers [HG01]. The same construction was used in algorithms based on row reduction
for the Guruswami-Sudan algorithm [Ale02, Rei03, LO08, BB10, Ber11].

The condition that Q belongs to the ideal I = 〈F,M〉µ, with the degree constraint
degY (Q) 6 λ, is equivalent to having Q in the K[X]-module generated by the basis

E = {Mµ−iY kF i, i < µ, k < d, id+ k 6 λ} ∪ {Y kF µ, k 6 λ− µd}. (10.1)

215

Chapter 10. Coppersmith technique over the univariate polynomials

This basis is represented as a matrix B ∈ K[X](λ+1)×(λ+1), which is shown in Fig. 10.1. We
observe that B inherits some structure from the bivariate nature of the original problem:
this is however not exploited by the fastest known algorithms.

Figure 10.1: The basis B of the K[X]-module, represented as a square (λ + 1)× (λ + 1)
polynomial matrix. Each Ti is a trapezoidal Toeplitz block with the shape given above,
where [Ti,0, . . . , Ti,id] is the vector of the coefficients in X of Mµ−iF (Y)i. The last block
T µ is formed by the upper d rows of Tµ, where d = (λ+ 1) rem d.

This matrix B is lower triangular with diagonal entries

Mµ, . . . ,Mµ︸ ︷︷ ︸
d

,Mµ−1, . . . ,Mµ−1︸ ︷︷ ︸
d

, . . . ,M, . . . ,M︸ ︷︷ ︸
d

, 1, . . . , 1︸ ︷︷ ︸
λ+1−µd

.

To obtain the polynomials in E , it is enough to compute Mµ,Mµ−1F, . . . ,MF µ−1, F µ;
this can be done using a total of O (̃µ3νd) operations in K.

216

10.1. The approach based on row reduction

The entries of B can be computed modulo Mµ (except for the top-left entry which is
Mµ itself) without loss of generality. Thus, the maximum degree of the entries of B is
µν, and the dense representation of B uses O(λµ2νd) elements from K, a bound that is
reached generically.

Note that, in this bound, we use the fact that on each row of B, there are at most µν
nonzero entries. Yet, currently known fast reduction algorithms will ignore this banded
shape of B: it is considered as an (λ + 1) × (λ + 1) matrix of degree µν. Such a matrix
has size O(λ2µν), which is beyond our target cost O (̃λω−1µ2νd).

Reducing the basis. To solve Problem 14, we will then compute a shifted reduced
form of B. In order to reflect the constraint degX(Q(XwY)) < µt, we choose the shift
s = (0, w, . . . , λw). Since the fastest known 0-reduction algorithms are designed for the
uniform shift [GJV03, GSSV12], we take s into account by computing a 0-reduced form
of BXs . We have seen that the largest degree of the entries of B is µν = deg(Mµ).
Multiplying the columns of B by the powers 1, Xw, . . . , Xλw does not impact this bound:
since we have λw 6 µt 6 µν by choice of the parameters, then the degree of the new
matrix BXs remains in O(µν).

Then, using one of the algorithms in [GJV03, GSSV12], we find a 0-reduced form of
BXs using O (̃λωµν) operations in K. Since row reduction operates with left-unimodular
operations, this reduced form still has Xs as a right factor, and can be written PXs .
Having the latter matrix 0-reduced means that P is s-reduced, and therefore P is a s-
reduced form of B. Then, among the rows of P, it is guaranteed that there is one with
minimal s-degree. Writing it [Q0 · · · Qλ], it corresponds to Q = Q0 +Q1Y + · · ·+QλY

λ

that solves Problem 14 (unless no solution exists, in which case either t2 6 wνd or the
parameters µ and λ have not been chosen properly).

Besides, it is known that such a row with minimal degree satisfies

max
06j6λ

deg(QjX
jw) 6

deg(det(BXs))

λ+ 1
,

that is,

deg(Q(XwY)) 6
1
2
λ(λ+ 1)w + 1

2
µ(µ+ 1)νd

λ+ 1
.

Thus, to ensure the existence of a solution, we require that

µt >
1
2
λ(λ+ 1)w + 1

2
µ(µ+ 1)νd

λ+ 1
,

which is equivalent to Eq. (3.5).

Remarks. Here, the problem is not exactly the one of finding a reduced basis, but rather
of finding a vector of sufficiently small degree in the module. First, the degree bound is
so that we are close to looking for a vector of minimal degree in the module. Second, to
the best of our knowledge, it is currently unknown whether and how one could compute
a single vector of minimal degree faster than by computing a whole reduced basis, except
in very specific situations.

217

Chapter 10. Coppersmith technique over the univariate polynomials

Besides, one may rather want to build the basis which is in Hermite form, that is,
with the shape

[
T 0
A I

]
with T the principal µd × µd submatrix of B. Then, since the

first µd columns of this matrix have degree at most µν and its remaining columns are
constant, the average of its column degrees is µ2νd/(λ+1). This fact may be exploited to
obtain more efficiently the reduced basis, or a vector of sufficiently small degree, relying
on some partial linearization techniques to make the column degrees more uniform. Such
techniques, in the context of row reduction, are presented in Section 15.2.

We note in particular that our shifted Popov form algorithm in Section 3.2.2 and Chap-
ter 15 computes the sought reduced form in O (̃λω−1µ2νd) operations, by taking this
average column degree into account. However, it would start by the probabilistic compu-
tation of the Smith form of B and of a corresponding right-multiplier, in order to set up a
system of linear modular equations. In the next section, we exploit the particularities of
the considered module to circumvent the Smith form computation, and to rather directly
construct the system of modular equations that describes the module.

10.2 Reducing to a system of linear modular equations
In this section, we present a reduction of the interpolation step Problem 14 to a system
of linear modular equations Problem 9. Fast algorithms for such systems were presented
in Section 2.5 and Chapter 8.

10.2.1 Introduction: the specific case d = 1

Here, we first present this reduction in a simple case, but nonetheless important: when
d = deg(F) = 1, which includes the Guruswami-Sudan algorithm. Although we follow a
different presentation, to ease the transition to the general case in the next subsection, the
material here is close to the derivation of extended key equations in [RR00, ZGA11, Zeh13]
(see also Section 11.1).

In what follows, we write F = Y − L for some L ∈ K[X] of degree less than ν.
Assuming that µ = 1, the reduction is as follows: we have Q ∈ I = 〈Y − L,M〉 if
and only if Q(L) = 0 mod M , which is rewritten as the single linear modular equation
Q0 +Q1L+ · · ·+QλL

λ = 0 mod M (such an equation was used in [RR00] to speed-up the
Sudan algorithm). Now, when µ > 1, this was generalized in [ZGA11, Proposition 3] using
the notion of Hasse derivative: roughly, Q ∈ I = 〈Y − L,M〉µ if and only if some type
of derivatives of Q(Y) at order 0, . . . , µ− 1 vanish at L modulo Mµ, . . . ,M , respectively.
We refer to these references and to Section 11.1 for more details on this point of view.

Here, we study the latter property involving derivatives, reformulated as a change of
basis which can be computed via some Taylor expansions. We are looking for Q ∈ K[X][Y]
which belongs to the ideal I of K[X][Y] generated by

Mµ,Mµ−1(Y − L), . . . ,M(Y − L)µ−1, (Y − L)µ.

This is equivalent to

Q = Q̂0M
µ + Q̂1M

µ−1(Y − L) + · · ·+ Q̂µ−1M(Y − L)µ−1 + Q̂(Y)(Y − L)µ

218

10.2. Reducing to a system of linear modular equations

for some Q̂0, . . . , Q̂µ−1 ∈ K[X] and some Q̂ ∈ K[X][Y]. Adding the constraint deg(Q) 6 λ,
this is equivalent to Q belonging to the moduleM = I ∩K[X][Y]6λ of dimension λ + 1
with basis

E = {Mµ,Mµ−1(Y − L), . . . ,M(Y − L)µ−1, (Y − L)µ, Y (Y − L)µ, . . . , Y λ−µ(Y − L)µ}.

In order to transform this property of belonging to M into a property of satisfying
modular equations, one first rewrites Q = Q0 + · · ·+QλY

λ in the basis

E ′ = {1, Y − L, . . . , (Y − L)µ−1, (Y − L)µ, Y (Y − L)µ, . . . , Y λ−µ(Y − L)µ}

of K[X][Y]6λ, that is,

Q = Q̂0 + Q̂1(Y − L) + · · ·+ Q̂µ−1(Y − L)µ−1 + Q̂(Y)(Y − L)µ

for some Q̂0, . . . , Q̂µ−1 ∈ K[X] and some Q̂ ∈ K[X][Y] of degree at most λ−µ. We remark
that the coefficients Q̂i of Q written in E are unique: ensuring that Q is in M is thus
equivalent to ensuring the modular equations

Mµ−i divides Q̂i for i < µ. (10.2)

This is the linear system of modular equations over K[X] that we are going to focus on.
It remains to show that we can compute the Q̂i’s efficiently as K[X]-linear combinations
of the unknown Qi’s.

In the case here with F = Y − L, the computation of the Q̂i’s is straightforward
since explicit formula are known for the change of basis from {1, Y, . . . , Y λ} to E ′, namely
thanks to the Taylor formula

Q =
∑
j6λ

Qj(Y − L+ L)j =
∑
i6λ

(∑
j>i

(
j

i

)
QjL

j−i

)
(Y − L)i.

This gives a formula for the coefficients [Q̂i]i of Q in the basis E ′, as linear combinations
with explicit coefficients in K[X] of the coefficients [Qj]j in the basis E ; namely,

Q̂i =
∑
j6λ

fijQj with fij =

(
j

i

)
Lj−i.

We have fij = 0 for i > j and fjj = 1. From the divisibility conditions in Eq. (10.2), we
thus obtain the system of linear modular equations∑

j6λ

fijQj = 0 mod Mµ−i for i < µ.

In particular, due to the nature of these equations, the coefficients fij’s can be computed
modulo Mµ without loss of generality.

This set of equations, along with the degree constraints on the coefficients Qj given by
the second condition in Problem 14, precisely gives us an instance of Problem 10, which
can also be tackled by choosing the shift s mentioned above and considering Problem 9.

219

Chapter 10. Coppersmith technique over the univariate polynomials

10.2.2 The general case d > 1

For F = Y −L, the reduction presented above can be summarized as follows: first, decom-
pose Q in the basis {1, F, . . . , F µ, Y F, . . . , Y λ−µF µ} of K[X][Y]6λ, and second, express the
fact that the coefficients in this decomposition must vanish modulo some powers of M ,
so that Q is actually in the module generated by {Mµ,Mµ−1F, . . . ,MF µ−1, F µ}. In this
section, we extend this reduction to the general case d > 1.

Eq. (10.1) suggests that the change of basis is now from the basis {1, Y, . . . , Y λ} of
K[X][Y]6λ to its basis

E ′ = {Y kF i, k < d, i < µ} ∪ {Y kF µ, k 6 λ− µ}.
In this more general context, we will not rely on an explicit formula for the coefficients
[Q̂i]i of Q in E ′. Rather, we will express them as linear combinations of [Qj]j, and show
that the coefficients in these combinations can be computed efficiently. Let us make this
more precise by properly defining the problem we are faced with (Problem 17).

Problem 17 – Change of basis
Input:
• M ∈ K[X] of degree ν,
• F ∈ K[X][Y] monic of degree d with coefficients in K[X] of degree < ν,
• λ, µ positive integers,

Output:
• polynomials {f (k)

ij ∈ K[X]/〈Mµ〉, i < µ, j 6 λ, k < d} such that for
each j 6 λ, the vector [f

(k)
ij]i,k gives the first µd coefficients in the

decomposition of Y j in the basis E ′:

Y j =
∑
i<µ

∑
k<d

f
(k)
ij Y

kF i + f̂jF
µ for some f̂j ∈ K[X]/〈Mµ〉[Y] . (10.3)

Before working on solving Problem 17 efficiently, we explain our interest in this prob-
lem: its solution helps us to rewrite the fact that Q belongs to the ideal I into a set of
divisibility properties involving the coefficients Q̂i for i < µ. These divisibility properties
give us the approximation equations we are looking for.
Lemma 10.2. Let Q = Q0 +Q1Y + · · ·+QλY

λ in K[X]/〈Mµ〉[Y]. Then, the polynomials
Q̂0, Q̂1, . . . , Q̂µ−1 defined for all i < µ by Q̂i =

∑
k<d

∑
j6λ f

(k)
ij QjY

k satisfy

Q = Q̂0 + Q̂1F + · · ·+ Q̂µ−1F
µ−1 + Q̂F µ

in K[X]/〈Mµ〉[Y], for some Q̂ ∈ K[X]/〈Mµ〉[Y].
Besides, Q is in the ideal I generated by {Mµ,Mµ−1F, . . . ,MF µ−1, F µ} if and only if

for every i < µ and k < d, Mµ−i divides Q̂(k)
i . Equivalently, writing Q̂(k)

i =
∑

j6λ f
(k)
ij Qj

for all i < µ and k < d, then Q satisfies the system of linear modular equations∑
j6λ

f
(k)
ij Qj = 0 mod Mµ−i for all i < µ and k < d.

220

10.2. Reducing to a system of linear modular equations

We note that here we are working moduloMµ. This is sufficient for our purpose, since
all approximation equations we are going to focus on are modulo powers of M which
do not exceed µ. Besides, this helps us to keep control of the size of all elements of
K[X] that we manipulate. In the rest of this section, we show how to solve Problem 17
efficiently, namely in a cost bound that is quasi-linear in the number of field elements
used to represent the output {f (k)

ij , i < µ, j 6 λ, k < d}.
Proposition 10.3 (Change of basis). Problem 17 can be solved using O (̃λµ2νd) opera-
tions in K.

Remark 10.4. Our goal is to apply this change of basis to solve Problem 14. In this
context, the coefficients Qj’s of Q are unknowns: this is why we focus on computing the
coefficients f (k)

ij ’s of the linear combinations Q̂i. In the case where the Qj’s are known,
one may directly compute the Q̂i’s as well as Q̂ using O (̃λµν) operations in K.

Furthermore, here we are not interested in computing the polynomial Q̂ in Lemma 10.2,
although Algorithm 22 could be adapted to include this computation. One reason is that
the mere representation of all coefficients f (k)

ij , if also computing Q̂, uses O (̃λ2µν) field
elements, which is beyond our target cost boundO (̃λω−1µ2νd) for solving Problem 14. K

We will use the definition of the sought coefficients f (k)
ij to compute them incrementally

for j ∈ {0, . . . , λ}, using the relations between the decomposition of Y j and Y j+1 = Y ·Y j.
Thus, we first focus on how to use the knowledge of the decomposition of some P ∈
K[X]/〈Mµ〉[Y]<µd in E ′ to compute the decomposition of Y P in E ′.
Lemma 10.5. Write F = F0 + · · ·+Fd−1Y

d−1 +Y d, with the coefficients F0, F1, . . . , Fd−1

of degree less than ν. Let P ∈ K[X]/〈Mµ〉[Y] of degree less than µd with coefficients
P

(k)
i ∈ K[X]/〈Mµ〉 in E ′, that is,

P =
∑
i<µ

∑
k<d

P
(k)
i Y kF i.

Then, Algorithm 21 computes {g(k)
i , i < µ, k < d} in K[X]/〈Mµ〉 such that

Y P =
∑
i<µ

∑
k<d

g
(k)
i Y kF i + ĝF µ for some ĝ ∈ K[X]/〈Mµ〉 (10.4)

using O (̃µ2νd) operations in K.

Proof. Using Y d = F − F0 − F1Y − · · · − Fd−1Y
d−1, we have

Y P =
∑
i<µ

(
P

(d−1)
i Y d +

∑
0<k<d

P
(k−1)
i Y k

)
F i

=
∑
i<µ

(
P

(d−1)
i (F − F0 − · · · − Fd−1Y

d−1) +
∑

0<k<d

P
(k−1)
i Y k

)
F i

=
∑
i<µ

(
−F0P

(d−1)
i +

∑
0<k<d

(P
(k−1)
i − FkP (d−1)

i)Y k

)
F i

+
∑

0<i<µ

P
(d−1)
i−1 F i + P

(d−1)
µ−1 F µ,

221

Chapter 10. Coppersmith technique over the univariate polynomials

which gives the correctness of Algorithm 21. Now, for each i < µ and k < d the compu-
tation of g(k)

i involves one subtraction and one multiplication in K[X]/〈Mµ〉. Altogether
Step 1 to Step 3 do at most µd subtractions and µd multiplications in K[X]/〈Mµ〉, which
can be done using O (̃µ2νd) operations in K.

Algorithm 21 – ChangeBasisOneStep
(Change of basis in Coppersmith: from P to Y P)
Input:
• M ∈ K[X] of degree ν,
• F = F0 + · · ·+ Fd−1Y

d−1 + Y d in K[X][Y] with deg(Fk) < ν for all k,
• positive integer µ,
• P =

∑
i<µ

∑
k<d P

(k)
i Y kF i in K[X]/〈Mµ〉[Y].

Output: {g(k)
i , i < µ, k < d} in K[X]/〈Mµ〉 such that Eq. (10.4).

1. g(0)
0 ← −F0P

(d−1)
0 ; g(0)

i ← P
(d−1)
i−1 − F0P

(d−1)
i for 0 < i < µ

2. g(k)
i ← P

(k−1)
i − FkP (d−1)

i for 0 < k < d, 0 < i < µ

3. Return {g(k)
i , i < µ, k < d}

We now have all the tools to give our main algorithm, which proves Proposition 10.3.

Proof (Proposition 10.3). Algorithm 22 finds the polynomials {f (k)
ij , j 6 λ, i < µ, k < d},

starting from the F (k)
0i ’s that are known and using λ calls to Algorithm 21. Its cost is thus

bounded by O (̃λµ2νd), and its correctness follows from that of Algorithm 21.

222

10.2. Reducing to a system of linear modular equations

Algorithm 22 – ChangeBasis
(Change of basis in Coppersmith technique)
Input:
• M ∈ K[X] of degree ν,
• F ∈ K[X][Y] monic of degree d with coefficients of degree less than ν,
• positive integers µ, λ.

Output: {f (k)
ij , j 6 λ, i < µ, k < d} in K[X]/〈Mµ〉 as in Eq. (10.3) for j 6 λ.

1. Set F (0)
00 ← 1 and F (k)

0i ← 0 for i > 0 or k > 0

2. For j from 1 to λ do

a. Define P =
∑

i<µ

∑
k<d F

(k)
j−1,iY

k

b. {f (k)
ij , i < µ, k < d} ← Algorithm 21 on input M,F, µ, P

3. Return {f (k)
ij , j 6 λ, i < µ, k < d}

223

Chapter 10. Coppersmith technique over the univariate polynomials

224

Part IV

Interpolant bases and multivariate
interpolation

225

Contents

Chapter 11 Multivariate interpolation and list-decoding 229

11.1 Reducing Problem 11 to Problem 10 229

11.2 Impact on decoding algorithms for Reed-Solomon codes 234

11.2.1 Interpolation step of the Guruswami-Sudan algorithm 234

11.2.2 Re-encoding technique . 235

11.2.3 Interpolation step in the Wu algorithm 237

11.2.4 Slowdown due to repeating points in the soft-decoding 239

11.3 The approach based on row reduction 240

11.4 On assumption Hint,1 . 242

11.5 On assumption Hint,3 . 243

Chapter 12 Some tools for computing with polynomial matrices 245

12.1 More time functions for polynomial matrices 245

12.2 Multiplying matrices with unbalanced row degrees [ZLS12] 248

12.3 Detailed cost bound for the kernel basis algorithm of [ZLS12] 249

Chapter 13 Computing shifted Popov interpolant bases 255

13.1 Divide-and-conquer approach for a triangular multiplication matrix . . 255

13.2 Fast interpolant bases in reduced form for almost uniform shifts 257

13.3 Fast interpolant bases in Popov form for arbitrary shifts 261

Chapter 14 Details of new ingredients for interpolant bases 265

14.1 Fast shifted reduction of a reduced matrix 265

14.2 Computing residuals for interpolant bases 267

14.2.1 Residuals and Chinese remaindering 268

14.2.2 Main algorithm . 270

14.2.3 Computing the residual by shifting P 272

14.2.4 Computing the residual by Chinese remaindering 274

14.3 Computing interpolant bases with known minimal degree 277

228

11

Multivariate interpolation and
list-decoding

In this chapter, we tackle the first of our two problems of multivariate interpolation (Prob-
lem 11). It essentially asks to compute a single multivariate interpolant with prescribed
multiplicities and degree constraints, under the assumption that the X-coordinates of the
points are pairwise distinct.

We start by reducing this problem to a system of linear modular equation; the as-
sumption on the points ensures that the number of polynomial equations is at most the
number of unknowns. In this situation, we can rely on our results exposed above (The-
orems 2.22 and 2.25) to find the sought interpolant efficiently. Then, we give details of
consequences on list-decoding algorithms for Reed-Solomon codes: we discuss the original
Guruswami-Sudan algorithm, the Wu algorithm, and the use of the re-encoding technique
in combination with our algorithms.

After this, we observe that the assumption on the points is not satisfied in the context
of the soft-decoding of Reed-Solomon codes. This implies that the system of modular
equations obtained after reduction may involve significantly more equations than un-
knowns, a case that our results do not cover with the target efficiency.

This is one of our motivations for studying interpolant bases, in Chapters 12 to 14.
We recall that interpolant bases correspond to systems of modular equations where we
know the roots and multiplicities of the moduli: in this case, our results do not involve
any requirement on these roots (Theorems 2.19 and 2.20).

11.1 Reducing Problem 11 to Problem 10

In this section, we show how instances of Problem 11 can be reduced to instances of Prob-
lem 10; Algorithm 23 gives an overview of this reduction. The main technical ingredient,
stated in Lemma 11.2 below, generalizes to any r > 1 and (possibly) distinct multiplicities
the result given for r = 1 by Zeh, Gentner, and Augot in [ZGA11, Proposition 3]. To
prove it, we use the same steps as in [ZGA11]; we rely on the notion of Hasse derivatives,
which allows us to write Taylor expansions in positive characteristic (see Hasse [Has36]
or Roth [Rot07, pp. 87, 276]).

229

Chapter 11. Multivariate interpolation and list-decoding

For better readability, in what follows we use italicized boldface letters to denote r-
tuples of objects that are related to Y variables: Y i = Y i1

1 · · ·Y ir
r , w = (w1, . . . , wr), etc.

In the special case of r-tuples of integers, we also write |w| = w1+· · ·+wr. Comparison and
addition of multi-indices in Zr>0 are defined componentwise. For example, writing i 6 j is
equivalent to having i1 6 j1, . . . , ir 6 jr simultaneously, i−j denotes (i1− j1, . . . , ir− jr),
and for a = (a1, . . . , ar) ∈ K[X]r we let (Y −a)i = (Y1− a1)i1 · · · (Yr − ar)ir . Besides, for
products of binomial coefficients, we use the notation(

j

i

)
=

(
j1

i1

)
· · ·
(
jr
ir

)
;

note that this integer is zero when i 66 j.
If R is any commutative ring with unity and R[Y] denotes the ring of polynomials in

Y1, . . . , Yr over R, then for a polynomial Q(Y) =
∑
j QjY

j ∈ R[Y] and a multi-index i
in Zr>0, the order-i Hasse derivative of Q is the polynomial Q[i] in R[Y] defined by

Q[i] =
∑
j>i

(
j

i

)
QjY

j−i.

The Hasse derivative satisfies the following property (Taylor expansion): for all a in Rr,

Q(Y) =
∑
i

Q[i](a)(Y − a)i.

The next lemma shows how Hasse derivatives help rephrase the vanishing condition (iii)
of Problem 11 for one of the points {(xk,yk)}16k6ν .

Lemma 11.1. Let (x, y1, . . . , yr) be a point in Kr+1 and L = (L1, . . . , Lr) ∈ K[X]r be
such that Lj(x) = yj for 1 6 j 6 r. Then, for any polynomial Q in K[X,Y], Q(x,y) = 0
with multiplicity at least µ if and only if for all i in Zr>0 such that |i| < µ,

Q[i](X,L) = 0 mod (X − x)µ−|i|.

Proof. Up to a shift, one can assume that the point is (x, y1, . . . , yr) = (0,0); in other
words, it suffices to show that for L(0) = 0 ∈ Kr, we have Q(0,0) = 0 with multiplicity
at least µ if and only if, for all i in Zr>0 such that |i| < µ, Xµ−|i| divides Q[i](X,L).

Assume first that (0,0) ∈ Kr+1 is a root of Q of multiplicity at least µ. Then,
Q(X,Y) =

∑
j QjY

j has only monomials of total degree at least µ, so that for j > i, each
nonzero QjY j−i has only monomials of total degree at least µ− |i|. Now, L(0) = 0 ∈ Kr

implies that X divides each component of L. Consequently, Xµ−|i| divides QjLj−i for
each j > i, and thus Q[i](X,L) as well.

Conversely, let us assume that for all i in Zr>0 such that |i| < µ, Xµ−|i| divides
Q[i](X,L), and show that Q has no monomial of total degree less than µ. Writing the
Taylor expansion of Q with K[X] = K[X] and a = L, we obtain

Q(X,Y) =
∑
i

Q[i](X,L)(Y −L)i.

230

11.1. Reducing Problem 11 to Problem 10

Each component of L being a multiple of X, we deduce that for the multi-indices i such
that |i| > µ every nonzero monomial in Q[i](X,L)(Y − L)i has total degree at least
µ. Using our assumption, the same conclusion follows for the multi-indices such that
|i| < µ.

Thus, for each of the points {(xk,yk)}16k6ν in Problem 11, such a rewriting of the
vanishing condition (iii) for this point holds. Now the fact that the xi are distinct in-
tervenes: the polynomials (X − xu)

α and (X − xv)
β are coprime for u 6= v, so that

simultaneous divisibility by both those polynomials is equivalent to divisibility by their
product (X − xu)α(X − xv)β. Using the r-tuple L = (L1, . . . , Lr) ∈ K[X]r of Lagrange
interpolation polynomials, defined by the conditions

deg(Lj) < ν and Lj(xi) = yi,j for 1 6 i 6 ν and 1 6 j 6 r, (11.1)

we can then combine Lemma 11.1 for all points so as to rewrite the vanishing condition
of Problem 11 as a set of modular equations in K[X] as in Lemma 11.2 below. In what
follows, we use the notation from Problem 11 and Corollary 3.1.

Lemma 11.2. For any polynomial Q in K[X,Y], Q satisfies the condition (iii) of Prob-
lem 11 if and only if for all i in Zr>0 such that |i| < µ,

Q[i](X,L) = 0 mod
∏

16k6ν:
µk>|i|

(X − xk)µk−|i|.

Proof. This result follows from Lemma 11.1 since the xk are pairwise distinct.

Note that when all multiplicities are equal, that is, µ = µ1 = · · · = µν , for every |i|
the modulus takes the simpler form Mµ−|i|, where M =

∏
16k6ν(X − xk).

Writing j ·w = j1w1 + · · ·+ jswr, recall from the statement of Corollary 3.1 that S is
the set of all j in Zs>0 such that |j| 6 λ and j ·w < b. Then, defining the positive integers

Nj = b− j ·w

for all j in S, we immediately obtain the following reformulation of the list-size and
weighted-degree conditions of our interpolation problem:

Lemma 11.3. For any polynomial Q in K[X,Y], Q satisfies the conditions (i) and (ii)
of Problem 11 if and only if it has the form

Q(X,Y) =
∑
j∈S

Qj(X)Y j with deg(Qj) < Nj.

For i ∈ Zr>0 with |i| < µ and j ∈ S, let us now define the polynomials mi, Fi,j ∈ K[X]
as

mi =
∏

16k6ν:
µk>|i|

(X − xk)µk−|i| (11.2a)

231

Chapter 11. Multivariate interpolation and list-decoding

and

Fi,j =

(
j

i

)
Lj−i mod mi. (11.2b)

It then follows from Lemmas 11.2 and 11.3 that Q ∈ K[X,Y] satisfies the conditions
(i), (ii), and (iii) of Problem 11 if and only if Q =

∑
j∈S QjY

j for some polynomials
Qj ∈ K[X] such that

• deg(Qj) < Nj for all j in S,

•
∑
j∈S Fi,jQj = 0 mod mi for all |i| < µ.

Let now Di be the positive integers given by

Di =
∑

16k6ν: µk>|i|

(µk − |i|),

for all |i| < µ. Since the mi are monic polynomials of degree Di and since degFi,j < Di,
the latter conditions express the problem of finding such a Q as an instance of Problem 10.
In order to make the reduction completely explicit, define further

D =
∑
|i|<µ

Di ,

n =

(
s+ µ− 1

s

)
, m = Card(S), ρ = max(n,m);

then choose arbitrary orders on the sets of indices {i ∈ Zs>0 | |i| < µ} and S, that is,
bijections

φ : {0, . . . , n− 1} → {i ∈ Zs>0 | |i| < µ} (11.3a)

and
ψ : {0, . . . ,m− 1} → S; (11.3b)

finally, for i in {0, . . . , n − 1} and j in {0, . . . ,m − 1}, associate D′i = Dφ(i), N ′j =
Nψ(j), m′i = mφ(i) and F ′i,j = Fφ(i),ψ(j). At this stage, we have showed that the set of
solutions to Problem 11 with input parameters r, λ, ν, µ1, . . . , µν , b, w1, . . . , wr and points
{(xk, yk,1, . . . , yk,r)}16k6ν is exactly the set of solutions to Problem 10 with as input the
moduli (m′i)06i<n, the matrix F ∈ K[X]m×n whose columns are [F ′i,0, . . . , F

′
i,m−1]T for

0 6 i < n, and the degree constraints Nψ(0), . . . , Nψ(m−1). This proves the correctness of
Algorithm 23.

Proposition 11.4. Algorithm 23 is correct and uses

O((m+ n)M(D) log(D))

operations in K.

232

11.1. Reducing Problem 11 to Problem 10

Algorithm 23 – MultiIntViaSolVec
(Finding multivariate interpolants as solution vectors)
Input:
• r, λ, ν, µ1, . . . , µν in Z>0,
• b, w1, . . . , wr in Z,
• points {(xk, yk,1, . . . , yk,r)}16k6ν in Kr+1 with the xk pairwise distinct.

Output: an instance (M,F,N) of Problem 10, such that the set of solutions
to this instance is exactly the set of solutions to Problem 11 with parameters
the input of this algorithm.

1. Compute S = {j ∈ Zr>0 | |j| 6 λ and b − j · w > 0}, n =
(
r+µ−1

r

)
,

m = Card(S), and bijections φ and ψ as in Eq. (11.3)

2. Compute Di =
∑

16k6ν: µk>|i|(µk − |i|) and Nj = b− j ·w for j ∈ S

3. Compute mi and Fi,j for |i| < µ, j ∈ S as in Eq. (11.2)

4. Return the moduli (mφ(i))06i<n, the matrix F ∈ K[X]m×n whose
columns are [Fφ(i),ψ(0), . . . , Fφ(i),ψ(m−1)]

T for 0 6 i < n, and the degree
constraints Nψ(0), . . . , Nψ(m−1)

Proof. The only thing left to do is the complexity analysis; more precisely, giving an upper
bound on the number of operations in K performed in Step 3.

First, we need to compute mi as in (11.2a) for every i ∈ Zr>0 such that |i| < µ. This
involves only µ different polynomials mi0 , . . . ,miµ−1 where we have chosen any indices ij
such that |ij| = j. We note that, defining nj =

∏
16k6ν: µk>j

(X − xk) for j < µ, we have
miµ−1 = nµ−1 and mij = mij+1

nj for j < µ−1. The polynomials n0, . . . , nµ−1 have degree at
most ν and can be computed using O(µM(ν) log(ν)) operations in K; for ρ = max(m,n),
this is in O(ρM(D) log(D)) since ρ >

(
r+µ−1

r

)
> µ and D =

∑
16k6ν

(
r+µk
r+1

)
> ν. Then

mi0 , . . . ,miµ−1 can be computed iteratively using O(
∑

j<µM(deg(mij))) operations in K;
using the super-linearity of M(·) in Eq. (6.1), this is in O(M(D)) since deg(mij) = Dij
and

∑
j<µDij 6 D.

Then, we have to compute (some of) the interpolation polynomials L1, . . . , Lr. Due to
Lemma 11.2, the only values of i ∈ {1, . . . , r} for which Li is needed are those such that
the indeterminate Yi may actually appear in Q(X,Y) =

∑
j∈S Qj(X)Y j . The latter will

not occur unless the ith unit r-tuple (0, . . . , 0, 1, 0, . . . , 0) belongs to S. Hence, at most
Card(S) polynomials Li must be computed, each at a cost of O(M(ν) log(ν)) operations
in K. Overall, the cost of the interpolation step is thus in O(Card(S)M(ν) log(ν)) ⊆
O(ρM(D) log(D)).

Finally, we compute Fi,j as in (11.2b) for every i, j. This is done by fixing i and
computing all products Fi,j incrementally, starting from L1, . . . , Lr. Since we compute
modulo mi, each product takes O(M(Di)) operations in K. Summing over all j leads to a
cost of O(Card(S)M(Di)) per index i. Summing over all i and using the super-linearity
of M(·) leads to a total cost of O(Card(S)M(D)), which is O(ρM(D)).

233

Chapter 11. Multivariate interpolation and list-decoding

The reduction above is deterministic and its cost is negligible compared to the cost in
O((m + n)ω−1M(D) log(D)) that follows from Theorem 2.25 with D =

∑
06i<nDi = D.

Noting that D =
∑
|i|<µDi =

∑
16k6ν

(
r+µk
r+1

)
, we conclude that Theorem 2.25 implies

Corollary 3.1.

11.2 Impact on decoding algorithms for Reed-Solomon
codes

In this section, we discuss Corollary 3.1 in specific contexts related to the decoding of
Reed-Solomon codes; in particular, we always have r = 1. First, we give our complexity
result in the case of list-decoding via the Guruswami-Sudan algorithm [GS99]; then we
show how the re-encoding technique [KV03b, KMV11] can be used in our setting; then,
we discuss the interpolation step of the Wu algorithm [Wu08]; and finally we present the
application of our results to the interpolation step of the soft-decoding [KV03a]. In these
contexts of applications, we will use some of the assumptions on the parameters Hint,1,
Hint,2, Hint,3, Hint,4 given in Section 3.1.1. Note that in the context of soft-decoding, the
xi in the input of Problem 11 are not necessarily pairwise distinct: we will explain how
to adapt our algorithms to this case. Besides, still in this context, the number of points
ν is no longer equal to the length of the code and may actually be much larger, unlike in
hard-decision (list-)decoding.

11.2.1 Interpolation step of the Guruswami-Sudan algorithm

We study here the specific context of the interpolation step of the Guruswami-Sudan list-
decoding algorithm for Reed-Solomon codes. This interpolation step is precisely Prob-
lem 11 where we have r = 1 and we make assumptions Hint,1, Hint,2, Hint,3, Hint,4. Under
Hint,2, the set S introduced in Corollary 3.1 reduces to {j ∈ Z>0 : j 6 λ} = {0, . . . , λ},
so that Card(S) = λ + 1. Thus, assumption Hint,1 ensures that the parameter ρ in that
theorem is ρ = λ + 1; because of Hint,4 all multiplicities are equal so that we further
have D =

(
µ+1

2

)
ν = µ(µ+1)

2
ν. From Corollary 3.1, we obtain the following result, which

substantiates our claimed cost bound in Section 3.1.1, Table 3.1.

Corollary 11.5. Taking r = 1, if the parameters λ, ν, µ := µ1 = · · · = µν, b, and
w := w1 satisfy Hint,1, Hint,2, Hint,3, Hint,4, then there exists a probabilistic algorithm that
computes a solution to Problem 11 using

O(λω−1M(µ2ν) log(µν)) ⊆ O (̃λω−1µ2ν)

operations in K, with probability of success at least 1/2.

We note that the probability analysis in Corollary 3.1 is simplified in this context. In-
deed, to ensure probability of success at least 1/2, the algorithm chooses O(µ2ν) elements
uniformly at random in a subset of K of cardinality at least 24µ4ν2; if Card(K) < 24µ4ν2,
one can use the remarks following Corollary 3.1 in Section 3.1.1 about solving the prob-
lem over an extension of K and retrieving a solution over K. Here, the base field K

234

11.2. Impact on decoding algorithms for Reed-Solomon codes

must be of cardinality at least ν since the xi are pairwise distinct; then, an extension de-
gree d = O(logν(µ)) suffices and the cost bound above becomes O(λω−1M(µ2ν) log(µν) ·
M(d) log(d)). Besides, in the list-decoding of Reed-Solomon codes we have µ = O(ν2), so
that d = O(1) and the cost bound and probability of success in Corollary 11.5 hold for
any field K (of cardinality at least ν).

11.2.2 Re-encoding technique

The re-encoding technique, introduced by Welch and Berlekamp [WB86] and later ex-
tended by Koetter and Vardy [KV03b, KMV11], leads to a reduction of the cost of the
interpolation step in list- and soft-decoding of Reed-Solomon codes. Here, for the sake
of clarity, we present this technique only in the context of Reed-Solomon list-decoding
via the Guruswami-Sudan algorithm, using the same notation and assumptions as in Sec-
tion 11.2.1 above: r = 1 and we have Hint,1, Hint,2, Hint,3, Hint,4. Under some additional
assumption on the input points in Problem 11, by means of partially pre-solving the prob-
lem one obtains an interpolation problem whose linearization has smaller dimensions. The
idea at the core of this technique is summarized in the next lemma [KV03b, Lemma 4].

Lemma 11.6. Let µ be a positive integer, x be an element in K, and Q =
∑

j Qj(X)Y j

be a polynomial in K[X, Y]. Then, Q(x, 0) = 0 with multiplicity at least µ if and only if
(X − x)µ−j divides Qj for all j < µ.

Proof. By definition, Q(x, 0) = 0 with multiplicity at least µ if and only if Q(X + x, Y)
has no monomial of total degree less than µ. Since Q(X + x, Y) =

∑
j Qj(X + x)Y j, this

is equivalent to the fact that Xµ−j divides Qj(X + x) for each j < µ.

This property can be generalized to the case of several roots of the form (x, 0). More
precisely, the re-encoding technique is based on a shift of the received word by a well-
chosen code word, which allows us to ensure the following assumption on the points
{(xk, yk)}16k6ν : for some integer ν0 > w + 1,

y1 = · · · = yν0 = 0 and yν0+1 6= 0, . . . , yν 6= 0. (11.4)

We now define the polynomial M0 =
∏

16k6ν0
(X − xk) which vanishes at xk when yk = 0,

and Lemma 11.6 can be rewritten as follows: Q(xk, 0) = 0 with multiplicity at least µ
for 1 6 k 6 ν0 if and only if Mµ−j

0 divides Qj for each j < µ. Thus, we know how to
solve the vanishing condition for the ν0 points for which yk = 0: by setting each of the µ
polynomials Q0, . . . , Qµ−1 as the product of a power of M0 and an unknown polynomial.
Combining this with the polynomial approximation problem corresponding to the points
{(xk, yk)}ν0+16k6ν , there remains to solve a smaller approximation problem.

Indeed, under the previously mentioned assumptions r = 1 and Hint,1, Hint,2, Hint,3,
Hint,4, it has been shown in Section 11.1 that the vanishing condition (iii) of Problem 11
restricted to points {(xk, yk)}ν0+16k6ν is equivalent to the simultaneous polynomial ap-
proximations ∑

i6j6λ

(
j

i

)
Lj−iQj = 0 mod Mm−i for i < µ,

235

Chapter 11. Multivariate interpolation and list-decoding

where M =
∏

ν0+16k6ν(X−xk) and L is the interpolation polynomial such that deg(L) <
ν − ν0 and L(xk) = yk for ν0 + 1 6 k 6 ν. On the other hand, we have seen that the
vanishing condition for the points {(xk, yk)}16k6ν0 is equivalent to Qj = Mµ−j

0 Q?
j for each

j < µ, for some unknown polynomials Q?
0, . . . , Q

?
µ−1. Combining both equivalences, we

obtain for i < µ ∑
i6j<µ

Fi,j Q
?
j +

∑
µ6j6λ

Fi,j Qj = 0 mod Mµ−i (11.5)

with

Fi,j =

(
j

i

)
Lj−iMµ−j

0 mod Mµ−i for i 6 j < µ,(
j

i

)
Lj−i mod Mµ−i for µ 6 j 6 λ.

(11.6)

Obviously, the degree constraints on Q0, . . . , Qµ−1 directly correspond to degree con-
straints on Q?

0, . . . , Q
?
µ−1 while those on Qµ, . . . , Qλ are unchanged. The number of equa-

tions obtained when linearizing Eq. (11.5) is D =
∑

i<µ deg(Mµ−i) = µ(µ+1)
2

(ν − ν0),
while the number of unknowns is N =

∑
j<µ(b − jw − (µ − j)ν0) +

∑
µ6j6λ(b − jw) =∑

j6λ(b − jw) − µ(µ+1)
2

ν0. In other words, we have reduced the number of (linear) un-
knowns as well as the number of (linear) equations by the same quantity µ(µ+1)

2
ν0, which

is the number of linear equations used to express the vanishing condition for the ν0 points
(x1, 0), . . . , (xν0 , 0). (Note that if we were in the more general context of possibly dis-
tinct multiplicities, we would have set yi = 0 for the ν0 points which have the highest
multiplicities, in order to maximize the benefit of the re-encoding technique.)

This re-encoding technique is summarized in Algorithm 24. Assuming that Step 4
is done using Algorithm 19 or Algorithm 20, we obtain the following result about the
list-decoding of Reed-Solomon codes using this technique.

Corollary 11.7. Take r = 1 and assume the parameters λ, ν, µ := µ1 = · · · = µν,
b, and w := w1 satisfy Hint,1, Hint,2, Hint,3, and Hint,4. Assume further that the points
{(xk, yk)}16k6ν satisfy Eq. (11.4) for some ν0 > w + 1. Then there exists a probabilistic
algorithm that computes a solution to Problem 11 using

O(λω−1M(µ2(ν − ν0)) log(ν − ν0) + µM(µν0) + M(ν0) log(ν0))

⊆ O (̃λω−1µ2(ν − ν0) + µ2ν0)

operations in K with probability of success at least 1/2.

Proof. For Steps 1, 2, and 3, the complexity analysis is similar to the one in the proof of
Proposition 11.4; we still note that we have to compute M0, so that these steps use
O(λM(µ2(ν − ν0)) log(ν − ν0) + M(ν0) log(ν0)) operations in K. According to Theo-
rem 2.25, Step 4 uses O(λω−1M(µ2(ν − ν0)) log(ν − ν0)2) operations in K. Step 5 uses
O(µM(µν0)+M(µ2(ν−ν0))) operations in K. Indeed, we first computeM0, . . . ,M

µ
0 using

O(µM(µν0)) operations and then the products Mµ−j
0 Qj for j < µ are computed using

O(µM(µν0) + M(µ2(ν − ν0))) operations: for each j < µ, the product Mµ−j
0 Qj can be

computed using O(M(µν0) +M(deg(Qj))) operations since Mµ−j
0 has degree at most µν0;

236

11.2. Impact on decoding algorithms for Reed-Solomon codes

Algorithm 24 – GurSudIntReenc
(Guruswami-Sudan interpolation step with re-encoding)
Input:
• λ, ν, µ, b, w in Z>0 and satisfying Hint,1, Hint,2, Hint,3, Hint,4,
• points {(xk, yk)}16k6ν in K2 with the xk pairwise distinct and the yk

satisfying Eq. (11.4).

Output: Q0, . . . , Qλ inK[X] such that
∑

j6λQjY
j is a solution to Problem 11

with input r = 1, λ, ν, µ = µ1 = · · · = µν , b, w and {(xk, yk)}16k6ν .

1. Compute n = µ,m = λ+1, Di = (µ−i)(ν−ν0), Nj = b−jw−ν0(µ−j)
for j < µ and Nj = b− jw for µ 6 j 6 λ

2. Compute M0 =
∏

16k6ν0
(X − xk) and mi =

(∏
ν0+16k6ν(X − xk)

)µ−i
for i < µ

3. Compute the Fi,j for i < µ and j 6 λ as in Eq. (11.6)

4. Compute a solution Q0, . . . , Qλ to Problem 10 on input n,m,
D0, . . . , Dn−1, N0, . . . , Nm−1, and {(mi, Fi,0, . . . , Fi,m−1)}06i<n

5. Return Mµ
0 Q0,M

µ−1
0 Q1, . . . ,M0Qµ−1, Qµ, . . . , Qλ, or report “no solu-

tion” if Step 4 did

and from Algorithms 19 and 20 we know that deg(Q0) + · · ·+ deg(Qµ−1) 6 (
∑

i<µDi) + 1

(see Eq. (9.1) in Section 9.2), with here
∑

i<µDi = µ(µ+1)
2

(ν − ν0).

Similarly to the remarks following Corollary 11.5, if Card(K) < 24µ2(ν − ν0) then K
does not contain enough elements to ensure a probability of success at least 1/2 using our
algorithms, but one can solve the problem over an extension of degree O(1) and retrieve
a solution over K without impacting the cost bound.

11.2.3 Interpolation step in the Wu algorithm

Our goal now is to show that our algorithms can also be used to efficiently solve the
interpolation step in the Wu algorithm. In this context, we have r = 1 and we make
assumptions Hint,1, Hint,2, and Hint,4 on input parameters to Problem 11. We note that
here the weight w is no longer related to the dimension of the code; besides, we may have
w 6 0.

Roughly, the Wu algorithm [Wu08] works as follows. It first uses the Berlekamp-
Massey algorithm to reduce the problem of list-decoding a Reed-Solomon code to a prob-
lem of rational reconstruction which focuses on the error locations (while the Guruswami-
Sudan algorithm directly relies on a problem of polynomial reconstruction which focuses
on the correct locations). Then, it solves this problem using an interpolation step and a
root-finding step which are very similar to the ones in the Guruswami-Sudan algorithm.

237

Chapter 11. Multivariate interpolation and list-decoding

Here we focus on the interpolation step, which differs from the one in the Guruswami-
Sudan algorithm by mainly one feature: the points {(xk, yk)}16k6ν lie in K× (K ∪ {∞}),
that is, some yk may take the special value ∞. For a point (x,∞), a polynomial Q in
K[X, Y] and a parameter λ such that degY (Q) 6 λ, Wu defines in [Wu08] the vanishing
condition Q(x,∞) = 0 with multiplicity at least µ as the vanishing condition Q(x, 0) = 0
with multiplicity at least µ, where Q = Y λQ(X, Y −1) is the reversal of Q with respect
to the variable Y and the parameter λ. Thus, we have the following direct adaptation of
Lemma 11.6.

Lemma 11.8. Let λ, µ be positive integers, x be an element in K, and Q =
∑

j6λQj(X)Y j

be a polynomial in K[X, Y] with degY (Q) 6 λ. Then, Q(x,∞) = 0 with multiplicity at
least µ if and only if (X − x)µ−j divides Qλ−j for each j < µ.

As in the re-encoding technique, up to reordering the points so that y1 = · · · = yν∞ =
∞ and yk 6= ∞ for k > ν∞ for some ν∞ > 0, the vanishing condition of Problem 11
restricted to the points {(xk, yk)}16k6ν∞ is equivalent to having Qλ−j = Mµ−j

∞ Q?
λ−j for all

j < µ, for some unknown polynomials Q?
λ−µ+1, . . . , Q

?
λ and whereM∞ =

∏
16k6ν∞

(X−xk).
The degree constraints on Qλ−µ+1, . . . , Qλ directly correspond to degree constraints on
Q?
λ−µ+1, . . . , Q

?
λ, while those of Q0, . . . , Qλ−µ are unchanged.

This means that in the interpolation problem we are faced with, we can deal with the
points of the form (x,∞) the same way we dealt with the points of the form (x, 0) in the
case of the re-encoding technique: we can pre-solve the corresponding equations efficiently,
and we are left with an approximation problem whose dimensions are smaller than if no
special attention had been paid when dealing with the points of the form (x,∞). More
precisely, let M =

∏
ν∞+16k6ν(X − xk) and let L be of degree less than ν − ν∞ such that

L(xk) = yk for each k > ν∞. Define further

Fi,j =

(
j

i

)
Lj−i for i 6 j 6 λ− µ,(

j

i

)
Lj−iM j−λ+µ

∞ for λ− µ < j 6 λ;

then we obtain the following simultaneous polynomial approximations: for i < µ,∑
i6j6λ−µ

Fi,j Qj +
∑

λ−µ<j6λ

Fi,j Q
?
j = 0 mod Mµ−i.

Pre-solving the equations for the points of the form (x,∞) has led to reduce the number
of (linear) unknowns as well as the number of (linear) equations by the same quantity
µ(µ+1)

2
ν∞, which is the number of linear equations used to express the vanishing condition

for the ν∞ points (x1,∞), . . . , (xν∞ ,∞). We have the following result.

Corollary 11.9. Take r = 1 and assume that the parameters λ, ν, µ := µ1 = · · · =
µν, b, and w := w1 satisfy Hint,1, Hint,2, and Hint,4. Assume further that each of the
points {(xk, yk)}16k6ν is allowed to have the special value yk = ∞. Then there exists a
probabilistic algorithm that computes a solution to Problem 11 using

O(λω−1M(µ2ν) log(ν)) ⊆ O (̃λω−1µ2ν)

operations in K with probability of success at least 1/2.

238

11.2. Impact on decoding algorithms for Reed-Solomon codes

As above, if Card(K) < 24µ2(ν − ν∞) then in order to ensure a probability of success
at least 1/2 using our algorithms, one can solve the problem over an extension of degree
O(1) and retrieve a solution over K, without impacting the cost bound.

We note that unlike in the re-encoding technique where the focus was on a reduced cost
involving ν − ν0, here we are not interested in writing the detailed cost involving ν − ν∞.
The reason is that ν∞ is expected to be close to 0 in practice. The main advantage of the
Wu algorithm over the Guruswami-Sudan algorithm is that it uses a smaller multiplicity
µ, at least for practical code parameters; details about the choice of parameters µ and λ
in the context of the Wu algorithm can be found in [BHNW13, Section IV.C].

11.2.4 Slowdown due to repeating points in the soft-decoding

As a last application, we briefly sketch how to adapt our results, and particularly the
reduction in Section 11.1, to the context of soft-decoding. Here, we still have r = 1;
the interpolation step in the soft-decoding of Reed-Solomon codes [KV03a] differs from
Problem 11 because there is no assumption ensuring that the xk are pairwise distinct
among the points {(xk, yk)}16k6ν . Regarding our algorithms, this is not a minor issue
since this assumption is at the core of the reduction in Section 11.1.

We will see that we can still rely on Problem 10 in this context. However, although
the number of linear equations

∑
16k6ν

µk(µk+1)
2

imposed by the vanishing condition is not
changed by the fact that several xk can be the same field element, the reduction leads
to instances of Problem 10 that are solved less efficiently than before. The reason is
that there can be significantly more polynomial equations than unknowns in the obtained
system of modular equations. In the context of our Algorithms 19 and 20, this means
that the displacement rank of the structured matrix may be much larger than if the xk
were pairwise distinct.

To measure to which extent we are far from the situation where the xk are pairwise
distinct, we use the parameter

q = max
x∈K

Card({k ∈ {1, . . . , ν} | xk = x}) .

For example, q = 1 corresponds to pairwise distinct xk, while q = ν corresponds to
x1 = · · · = xν ; we always have q 6 ν and, if K is a finite field, q 6 Card(K)r with r = 1 in
our context here. Then, we can write the set of points P = {(xk, yk)}16k6ν as the disjoint
union of q sets P = P1 ∪ · · · ∪ Pq where each set Ph = {(xh,k, yh,k)}16k6νh is such that
the xh,k are pairwise distinct; we denote µh,k the multiplicity associated with the point
(xh,k, yh,k) in the input of Problem 11. Now, the vanishing condition (iii) asks that the
q vanishing conditions restricted to each Ph hold simultaneously. Indeed, Q(xk, yk) = 0
with multiplicity at least µk for all points (xk, yk) in P if and only if for each set Ph,
Q(xh,k, yh,k) = 0 with multiplicity at least µh,k for all points (xh,k, yh,k) in Ph.

We have seen in Section 11.1 how to rewrite the vanishing condition as simultaneous
polynomial approximations when the xk are pairwise distinct. This reduction extends
to this case: by simultaneously rewriting the vanishing condition for each set Ph, one
obtains a problem of simultaneous polynomial approximations whose solutions exactly
correspond to the solutions of the instance of (extended) Problem 11 we are considering.

239

Chapter 11. Multivariate interpolation and list-decoding

Here, we do not give details about this reduction; they can be found in [Zeh13, Section
5.1.1]. Now, let µ(h) be the largest multiplicity among those of the points in Ph; in this
reduction to Problem 10, the number of polynomial equations we obtain is

∑
16h6q µ

(h).
Thus, according to Theorem 2.25, for solving this instance of Problem 10, Algorithms 19
and 20 use O (̃ρω−1D) operations in K, where ρ = max(λ + 1,

∑
16h6q µ

(h)) and D =∑
16k6ν

µr(µr+1)
2

. We see in this cost bound that the distribution of the points into disjoint
sets P = P1∪· · ·∪Pq has an impact on the number of polynomial equations in the instance
of Problem 10 we get: when choosing this distribution, multiplicities could be taken into
account in order to minimize this impact.

11.3 The approach based on row reduction
In this section, we summarize the approach for solving Problem 11 via the computation
of a reduced polynomial lattice basis; this is a generalization to several variables of the
reduction-based approach for the interpolation step of the Coppersmith technique, as
presented in Section 10.1. Our main goal here is to give details about our comparison in
Section 3.1.2 between the cost bounds for this approach and ours.

Here, r > 1 and for simplicity, we assume that w := w1 = · · · = ws as in the list-
decoding of folded Reed-Solomon codes. Besides, we make the assumptions Hint,1, Hint,2,
Hint,3, and Hint,4 as presented in the introduction. Two main lattice constructions exist
in the literature; following [Bus08, §4.5], we present them directly in the case r > 1, and
then give the cost bound that can be obtained using polynomial lattice reduction to find
a short vector in the lattice.

Let M =
∏

16k6ν(X −xk) and L1, . . . , Lr ∈ K[X] such that deg(Lj) < ν and Lj(xi) =
yi,j for every j ∈ {1, . . . , r} and i ∈ {1, . . . , ν}. In the first construction, the lattice is
generated by the polynomials{

M i

r∏
k=1

(Yk − Lk)jk
∣∣∣ i > 0, i+ |j| = µ

}
⋃ { r∏

k=1

(Yk − Lk)jkY Jk
k

∣∣∣ |j| = µ, |J | 6 λ− µ
}

;

this construction may be called banded due to the shape of these generators when r = 1.
In the second construction, which may be called triangular, the lattice is generated by
the polynomials {

M i

r∏
k=1

(Yk − Lk)jk
∣∣∣ i > 0, i+ |j| = µ

}
⋃ { r∏

k=1

(Yk − Lk)jk
∣∣∣µ 6 |j| 6 λ

}
.

When r = 1, the first construction is used in [BB10, Remark 16] and [LO08, CH15],
and the second one is used in [BB10, Ber11]; when r > 1, the former can be found in

240

11.3. The approach based on row reduction

[Bus08] while the latter appears in [Bra10, CH12]. In both cases the actual lattice bases
are the coefficient vectors (in Y) of the polynomials h(X,XwY1, . . . , X

wYr), for h in either
of the sets above; these Xw are introduced to account for the weighted-degree condition
(ii) in Problem 11.

In this context, for a lattice of dimension m given by generators of degree at most
d, the algorithm in [GJV03] computes a shortest vector in the lattice in expected time
O(mωM(d) log(md)), as detailed below. For a deterministic solution, see the algorithm of
Gupta, Sarkar, Storjohann, and Valeriote [GSSV12], whose cost is O(mωM(d)(log(m)2 +
log(d))).

For the banded basis, its dimension mB and degree dB can be taken as follows:

mB =

(
r + µ− 1

r

)
+

(
r + µ− 1

r − 1

)(
r + λ− µ

r

)
and

dB = O(µν).

The dimension formula is given explicitly in [Bus08, p. 75], while the degree bound is
easily obtained when assuming that the parameters µ, ν, b of Problem 11 satisfy b 6 µν;
such an assumption is not restrictive, since when b > µν the polynomial Q = Mµ is a
trivial solution. Then, the arithmetic cost for constructing the lattice matrix with the
given generators is O

((
r+µ
r

)2
M(µν)

)
, which is O(m2

B M(µν)). Similarly, in the triangular
case,

mT =

(
r + λ

r

)
and dT = O(λν),

and the cost for constructing the lattice matrix is O(m2
T M(λν)).

Under our assumption Hint,1: µ 6 λ, we always have mB > mT and dB 6 dT ; when
r = 1, we get mB = mT = λ+ 1.

To bound the cost of reducing these two polynomial lattice bases, recall that the
algorithm of [GJV03] works as follows. Given a basis of a lattice of dimension m and
degree d, if x0 ∈ K is given such that the determinant of the lattice does not vanish
at X = x0, then the basis will be reduced deterministically using O(mωM(d) log(md))
operations in K. Otherwise, such an x0 is picked at random in K or, if the cardinality
Card(K) is too small to ensure success with probability at least 1/2, in a field extension
L of K. In general, L should be taken of degree O(log(md)) over K; however, here
degree 2 will suffice. Indeed, following [Ber11, p. 206] we note that for the two lattice
constructions above the determinants have the special form M(X)i1X i2 for some i1, i2 ∈
Z>0. Since M(X) = (X − x1) · · · (X − xν) with x1, . . . , xν ∈ K pairwise distinct, x0

can be found deterministically in time O(M(ν) log(ν)) as soon as Card(K) > ν + 1,
by evaluating M at ν + 2 arbitrary elements of K; else, Card(K) is either ν or ν + 1,
and x0 can be found in an extension L of K of degree 2. Such an extension can be
computed with probability of success at least 1/2 in time O(log(n)) (see for example
[GG13, Section 14.9]). Then, with the algorithm of [GJV03] we obtain a reduced basis
over L[X] using O(mωM(d) log(md)) operations in L; since the degree of L over K is O(1),
this is O(mωM(d) log(md)) operations in K. Eventually, one can use [SS11, Theorems 13

241

Chapter 11. Multivariate interpolation and list-decoding

and 20] to transform this basis into a reduced basis over K[X] without impacting the cost
bound; or more directly, since here we are only looking for a sufficiently short vector in
the lattice, this vector can be extracted from a shortest vector in the reduced basis over
L[X]. Therefore, by applying the algorithm of [GJV03] to reduce the banded basis and
triangular basis shown above, we will always obtain a polynomialQ solution to Problem 11
(assuming one exists) in expected time

O(mω
BM(µν) log(mBµν)) and O(mω

TM(λν) log(mTλν)),

respectively. In the case r = 1, Hint,1 implies that these costs are O(λωM(µν) log(λν))
and O(λωM(λν) log(λν)), respectively, as reported in [CH11, Ber11]. For r > 1, the costs
obtained in [Bus08, Bra10] are worse, but only because the short vector algorithms used
in those references are slower than the ones we refer to; no cost bound is explicitly given
in [CH12]. The result in Corollary 3.1 is an improvement over those of both [Bus08] and
[Bra10]. To see this, remark that the cost in our theorem is quasi-linear in

(
r+λ
r

)ω−1(r+µ
r+1

)
ν,

whereas the costs in [Bus08, Bra10] are at least
(
r+λ
r

)ω
µν; a simplification proves our claim.

11.4 On assumption Hint,1

In this section, we discuss the relevance of the assumption Hint,1 introduced previously
for Problem 11. In the introduction, we did not make any assumption on µ = max16i6ν µi
and λ, but we mentioned that the assumption Hint,1, that is, µ 6 λ is mostly harmless.
The following lemma substantiates this claim, by showing that the case µ > λ can be
reduced to the case µ = λ.

Lemma 11.10. Let r, λ, ν, µ1, . . . , µν , b,w be parameters for Problem 11, and suppose
that µ > λ. Define P =

∏
16i6ν: µi>λ

(X − xi)µi−λ and d = deg(P). The solutions to this
problem are the polynomials of the form Q = Q? P with Q? a solution for the parameters
r, λ, ν, µ′1, . . . , µ

′
ν , b− d,w, where µ′i = λ if µi > λ and µ′i = µi otherwise.

Proof. Assume a solution exists, sayQ, and letQi(X,Y) = Q(X+xi, Y1+yi,1, . . . , Yr+yi,r)
for i = 1, . . . , ν. Every monomial of Qi has the form XhY j with h > µi−λ, since |j| 6 λ
by condition (i) and h + |j| > µi by condition (iii). Therefore, if µi > λ then Xµi−λ

divides Qi and, shifting back the coordinates for each i, we deduce that P divides Q.
Let us now consider the polynomial Q? = Q/P and show that it solves Problem 11 for

the parameters r, λ, ν, µ′1, . . . , µ′ν , b−d,w. First, Q? clearly satisfies conditions (i) and (i).
Furthermore, writing Q =

∑
j Qj(X)Y j and Q? =

∑
j Q

?
j(X)Y j , we have Q?

j = Qj/P
for all j, so that

wdegw(Q?) = max
j

(deg(Qj)− d+ w1j1 + · · ·+ wrjr)

= wdegw(Q)− d
< b− d,

so that condition (ii) holds for Q? with b replaced by b− d. Finally, Q? satisfies condition
(iii) with each µi > λ replaced by µ′i = λ: writing Q?

i (X,Y) = Q?(X+xi, Y1+yi,1, . . . , Yr+

242

11.5. On assumption Hint,3

yi,r) for i ∈ {1, . . . , ν} such that µi > λ, we have

Q?
i (X,Y) =

Qi(X,Y)

Xµi−λ Pi(X)
,

where
Pi(X) =

∏
h6=i: µh>λ

(X + xi − xh)µh−λ.

All the monomials of Qi(X,Y)/Xµi−λ have the formXhY j with h+|j| > µi−(µi−λ) = λ
and, since Pi(0) 6= 0, the same holds for Q?

i (X,Y).
Conversely, let Q′ be any solution to Problem 11 with parameters r, λ, ν, µ′1, . . . , µ′ν , b−

d,w. Proceeding as in the previous paragraph, one easily verifies that the product Q′ P
is a solution to Problem 11 with parameters r, λ, ν, µ1, . . . , µν , b,w.

11.5 On assumption Hint,3

In this section, we show the relevance of the assumption “wj < ν for some j ∈ {1, . . . , r}”
when considering Problem 11; in particular when r = 1 or when we assume that w1 =
· · · = wr =: w, this shows the relevance of the assumption Hint,3: 0 6 w < ν. More
precisely, when wj > ν for every j, Lemma 11.11 below gives an explicit solution to
Problem 11.

Lemma 11.11. Let r, λ, ν,µ, b,w be parameters for Problem 11 and suppose that wj > ν
for all j ∈ {1, . . . , r}. Define P =

∏
16i6ν(X − xi)

µi and d = deg(P) =
∑

16i6ν µi. If
b 6 d then this problem has no solution. Otherwise, a solution is given by the polynomial
P , considered as an element of K[X,Y].

Proof. If b > d then it is easily checked that P satisfies conditions (i)–(iii) and thus solves
Problem 11. Now, let us show that if Problem 11 admits a solution Q, then b > d must
hold. Let dY = degY Q. If dY > µ = maxi µi, then the weighted-degree condition (ii)
gives b > wdegw(Q) > dY (minj wj) > µν > d. Let us then assume dY < µ. Following
the proof of Lemma 11.10, we can write Q = P ?Q? where P ? =

∏
16i6ν: µi>dY

(X −
xi)

µi−dY , for some Q? in K[X,Y] such that degY Q
? = dY . Then, the weighted-degree

condition gives b >
∑

16i6ν: µi>dY
(µi−dY)+wdegw(Q?) >

∑
16i6ν: µi>dY

(µi−dY)+dY ν >∑
16i6ν: µi>dY

µi +
∑

16i6ν: µi6dY
dY > d.

243

Chapter 11. Multivariate interpolation and list-decoding

244

12

Some tools for computing with
polynomial matrices

In this section, we present some tools that will be used in algorithms for interpolant bases.
In particular, we give a detailed cost analysis with logarithmic factors for the algorithms in
[ZLS12] for computing products of bases with unbalanced row degrees and minimal kernel
bases. To derive cost bounds, it will be convenient to use additional time functions.

12.1 More time functions for polynomial matrices
In Section 6.1, we defined time functions MM(m, d) and MM′′(m, d) related to multiplica-
tion of polynomial matrices and divide-and-conquer computations splitting some degree
in two halves. In the next chapters, to simplify the cost analyses it will be convenient
to have at hand additional such functions, that we define now and which typically arise
when dealing with matrices that have non-uniform degrees and in divide-and-conquer
computations involving these. We remark that similar functions were already used, for
example in [Sto03, GJV03].

Definition 12.1. Let m and d be two positive real numbers. Then, we define

• MM′(m, d) =
∑

06i6log(m) 2iMM(2−im, 2id),

• MM′(m, d) =
∑

06i6log(m) 2iMM′(2−im, 2id),

• MM′′(m, d) =
∑

06i6log(m) 2iMM′′(2−im, 2id).

We now give some upper bounds for these quantities, since once the cost bounds
are obtained using these functions, it will also be convenient to know how these can be
estimated. The reader not interested in these technical details may of course skip this
section. (For similar bounds in the case ω = 2, we refer to [JNSV17, Appendix A].)

Lemma 12.2. We have the upper bound

MM′(m, d) ∈ O(mω−1M(md)).

245

Chapter 12. Some tools for computing with polynomial matrices

Proof. It is enough to show this bound for m and d powers of 2. Using the super-linearity
HM(·) we obtain M(2−imd) 6 2−iM(md), hence

MM′(m, d) =
∑

06i6log(m)2
−imMM(2i, 2−imd) ∈ O

(∑
06i6log(m)2

i(ω−2)mM(md)
)
.

This implies the result since, using ω > 2, we have
∑

06i6log(m) 2i(ω−2) ∈ Θ(mω−2).

Lemma 12.3. We have the upper bounds

MM′(m, d) ∈ O(mω−1M(md)),

MM′′(m, d) ∈ O(mω−1M(md) +mωM(d) log(d)).

Proof. It is enough to show these bounds for m and d powers of 2.
The first one is obtained from Lemma 12.2, which implies that

log(m)∑
i=0

2iMM′(2−im, 2id) ∈ O

log(m)∑
i=0

2i(2−ω)mω−1M(md)

 ,

and from the fact that
∑

06i6log(m) 2i(2−ω) is upper bounded by a constant since ω > 2.
Now, we focus on the second bound. By definition,

MM′′(m, d) ∈ O

log(m)∑
i=0

2i
log(2id)∑
j=0

2j(2−im)ωM(2i−jd)

 .

In the inner sum, j goes from 0 to log(2id) = i+ log(d): we will separately study the first
terms with j 6 i and the remaining terms with j > i.

First, using the super-linearity property M(2i−jd) 6 2i−jM(md)/m, we obtain

log(m)∑
i=0

2i
i∑

j=0

2j(2−im)ωM(2i−jd) ∈ O

log(m)∑
i=0

(i+ 1)2i(2−ω)mω−1M(md)

∈ O(mω−1M(md)),

since the sum
∑

06i6log(m)(i+ 1)2i(2−ω) is less than its limit (1− 22−ω)−2 when m→∞.
Then, using the super-linearity property M(2i−jd) 6 2i−jM(d) when j > i, we obtain

log(m)∑
i=0

2i
i+log(d)∑
j=i+1

2j(2−im)ωM(2i−jd) 6
log(m)∑
i=0

2i(2−ω)mωM(d) log(d)

∈ O(mωM(d) log(d)),

which concludes the proof.

In some cost analyses, we will also encounter the following quantities.

246

12.1. More time functions for polynomial matrices

Lemma 12.4. We have the upper bounds∑
06i6log(d) 2iMM′(m, 2−id) ∈ O(mω−1M(md) +mωM(d) log(d)),∑
06i6log(d) 2iMM′′(m, 2−id) ∈ O(mω−1M(md) +mωM(d) log(d)2).

Proof. It is enough to show these bounds for m and d powers of 2.
Let us study the first bound. By definition,

log(d)∑
i=0

2iMM′(m, 2−id) =

log(d)∑
i=0

2i
log(m)∑
j=0

2j
log(m)−j∑
k=0

2kMM(2−j−km, 2j+k−id)

=

log(m)∑
j=0

log(m)−j∑
k=0

log(d)∑
i=0

2i+j+kMM(2−j−km, 2j+k−id).

Considering the terms with i 6 j + k, we use M(2j+k−id) 6 2j+k−iM(md)/m to obtain

log(m)∑
j=0

log(m)−j∑
k=0

j+k∑
i=0

2i+j+kMM(2−j−km, 2j+k−id)

∈ O

log(m)∑
j=0

log(m)−j∑
k=0

(j + k + 1)2(j+k)(2−ω)mω−1M(md)

 ,

from which we conclude, since the sum
∑

06j6log(m)

∑
06k6log(m)−j(j + k + 1)2(j+k)(2−ω) is

bounded by a constant.
Now, considering the terms with i > j+ k, we use M(2j+k−id) 6 2j+k−iM(d) to obtain

log(m)∑
j=0

log(m)−j∑
k=0

log(d)∑
i=j+k+1

2i+j+kMM(2−j−km, 2j+k−id)

∈ O

log(m)∑
j=0

log(m)−j∑
k=0

2(j+k)(2−ω)mωM(d) log(d)

 ,

where again the sum on j and k is O(1) since ω > 2.
Then, we study the second bound. By definition,

log(d)∑
i=0

2iMM′′(m, 2−id) =

log(d)∑
i=0

2i
log(m)∑
j=0

2j
log(d)+j−i∑

k=0

2kMM(2−jm, 2j−i−kd)

=

log(m)∑
j=0

log(d)∑
i=0

log(d)+j−i∑
k=0

2i+j+kMM(2−jm, 2j−i−kd).

Considering the terms with k > j − i, we use M(2j−i−kd) 6 2j−i−kM(d) to obtain

log(m)∑
j=0

log(d)∑
i=0

log(d)+j−i∑
k=max(0,1+j−i)

2i+j+kMM(2−jm, 2j−i−kd) ∈ O

log(m)∑
j=0

2j(2−ω)mωM(d) log(d)2

 ;

247

Chapter 12. Some tools for computing with polynomial matrices

this is O(mωM(d) log(d)2) since ω > 2.
Now, considering the terms with 0 6 k 6 j− i, and thus also i 6 j, the super-linearity

property yields M(2j−i−kd) 6 2j−i−kM(md)/m and therefore

log(m)∑
j=0

j∑
i=0

j−i∑
k=0

2i+j+kMM(2−jm, 2j−i−kd) ∈ O

log(m)∑
j=0

(j + 1)22j(2−ω)mω−1M(md)

 .

This gives the conclusion, since ω > 2 implies that
∑log(m)

j=0 (j + 1)22j(2−ω) is in O(1).

12.2 Multiplying matrices with unbalanced row degrees
In this section, we give a detailed complexity analysis concerning the fast algorithm
from [ZLS12, Section 3.6] for the multiplication of matrices with controlled, yet possi-
bly unbalanced, row degrees. For the sake of exposition, it is recalled as Algorithm 25.
It will be a central building block in our algorithm for interpolant bases (Algorithm 28),
which computes the sought basis as the product of two interpolant bases obtained recur-
sively. It is also used for the multiplication of kernel bases that occur in the algorithm
of [ZLS12], which we will rely on to perform a change of shift.

In order to multiply matrices with unbalanced row degrees, we use a technique based
on partial linearization, similarly to ideas used in Section 6.3. This can be seen as a
simplified version of the one in [GSSV12, Section 6] for the purpose of multiplication. For
a matrix B with sum of row degrees ξ, meant to be the left operand in a product BA for
some A ∈ K[X]m×m, this technique consists in expanding the high-degree rows of B so
as to obtain a matrix B̃ with O(m) rows and degree at most ξ/m, then computing the
product B̃A, and finally retrieving the actual product BA by grouping together the rows
that have been expanded (this inverse operation is called partial compression in what
follows).

More precisely, let B ∈ K[X]k×m for some k and m, with rdeg(B) = (d1, . . . , dk) and
write ξ = d1 + · · · + dk. We are given a target degree bound d. For each i, the row Bi,∗

of degree di is expanded into αi = 1 + bdi/(d + 1)c rows B̃(i,0),∗, . . . , B̃(i,αi−1),∗ of degree
at most d, related by the identity

Bi,∗ = B̃(i,0),∗ +Xd+1B̃(i,1),∗ + · · ·+X(αi−1)(d+1)B̃(i,αi−1),∗. (12.1)

Then, the expanded matrix B̃ has
∑

16i6k αi 6 k+ ξ/(d+ 1) rows B̃(i,j),∗. We will mainly
use this technique for k 6 m and d = bξ/mc or d = dξ/me, in which case B̃ has fewer
than 2m rows. The partial compression is the computation of the row i of the product
BA from the rows (i, 0), . . . , (i, αi − 1) of B̃A using the formula in Eq. (12.1).

Proposition 12.5. Let A and B in K[X]m×m, and d = rdeg(A). Let ξ ∈ Z>0 be such
that ξ > m, |d| 6 ξ, and |rdegd(B)| 6 ξ. Then, the product BA can be computed using

O(MM′(m, ξ/m)) ⊆ O(mω−1M(ξ))

operations in K.

248

12.3. Detailed cost bound for the kernel basis algorithm of [ZLS12]

Proof. In this proof, we use notation from Algorithm 25. The correctness of this algorithm
follows from the identity BA = B̂Â = B0A0 + B1A1 + · · · + B`A`. In what follows we
focus on proving the cost bound O(MM′(m, ξ/m)); the announced upper bounds on this
quantity follow from Equation (6.3) and Lemma 12.2.

We start with Step 6, which adds the m × m matrices Pi = BiAi obtained after
the first five steps. For each i in {0, . . . , `}, we have rdeg(Pi) 6 rdeg(BA) 6 rdegd(B)
componentwise, hence |rdeg(Pi)| 6 ξ. Recalling that ` = dlog(m)e, the sum at Step 6
thus uses O(mξ`) = O(mξ log(m)) additions in K. On the other hand, by definition of
MM′(·, ·), the trivial lower bound MM(n, d) > n2d for any n, d implies that mξ log(m) ∈
O(MM′(m, ξ/m)).

Now we study the for loop. We remark that only Step 5.c involves arithmetic oper-
ations in K. Therefore the main task is to give bounds on the dimensions and degrees
of the matrices we multiply at Step 5.c. For i in {0, . . . , `}, the column dimension of Ai

is m and the row dimension of B∅i is ki. We further denote by mi the row dimension of
Ai (and column dimension of B̃∅i), and we write [dπ(1), . . . , dπ(m)] = [d0| · · · |d`] where the
sizes of d0, . . . ,d` correspond to those of the blocks of B̂ as in Step 4 of the algorithm.

First, let i = 0. Then, A0 is m0 × m of degree at most ξ/m and B0 is k0 × m0

with m0 6 m and k0 6 m (we note that for i = 0 these may be equalities and thus
one does not need to discard the zero rows of B0 to obtain efficiency). Besides, we have
the componentwise inequality rdeg(B0) 6 rdegd0

(B0) 6 rdegd(B), so that |rdeg(B0)| 6
|rdegd(B)| 6 ξ. Then, B∅0 can be partially linearized into a matrix B̃∅0 which has at
most 2m rows and degree at most ξ/m, and the computation at Step 5.c for i = 0 uses
O(MM(m, ξ/m)) operations.

Now, let i ∈ {1, . . . , `}. By assumption, the sum of the row degrees of A does not ex-
ceed ξ: since all rows in Ai have degree more than 2i−1ξ/m, this implies thatmi < m/2i−1.
Besides, since min(di) > 2i−1ξ/m, we obtain that every nonzero row of Bi has di-row de-
gree more than 2i−1ξ/m. Then, ξ > |rdegd(B)| > |rdegdi

(B∅i)| > ki2
i−1ξ/m implies

that ki < m/2i−1. Furthermore, since we have |rdeg(B∅i)| = |rdeg(Bi)| 6 ξ, the par-
tial linearization at Step 5.b can be done by at most doubling the number of rows of
B∅i , producing B̃∅i with fewer than 2m/2i−1 rows and of degree at most 2i−1ξ/m. To
summarize: Ai has m columns, mi < m/2i−1 rows, and degree at most 2iξ/m; B̃∅i
has fewer than 2m/2i−1 rows, and degree less than 2iξ/m. Then, the computation
of P̃∅i uses O(2iMM(m/2i−1, 2iξ/m)) operations in K. Thus, overall the for loop uses
O(MM′(m, ξ/m)) operations in K.

12.3 Detailed cost bound for the kernel basis algorithm
of [ZLS12]

Here, we give a detailed cost analysis for the minimal kernel basis algorithm in [ZLS12].
We rewrite it in Algorithm 26, using our convention here that basis vectors are rows of
the basis matrix (whereas in the above reference they are its columns), and furthermore
assuming that the input matrix has full rank. This simplifies the cost analysis by allowing

249

Chapter 12. Some tools for computing with polynomial matrices

Algorithm 25 – RDegPolMatMul
(Multiplication with unbalanced row degrees [ZLS12])
Input:
• polynomial matrices A and B in K[X]m×m,
• an integer ξ with ξ > m, |rdeg(A)| 6 ξ, and |rdegd(B)| 6 ξ.

Output: the product P = BA.

1. (d1, . . . , dm)← rdeg(A)

2. π ← a permutation of {1, . . . ,m} such that (dπ(1), . . . , dπ(m)) is non-
decreasing

3. Â← πA and B̂← Bπ−1

4. define ` = dlog(m)e and the row blocks Â = [AT
0 AT

1 · · · AT
`]T,

where the rows in A0 have row degree at most ξ/m and for i = 1, . . . , `
the rows in Ai have row degree in {2i−1ξ/m+ 1, . . . , 2iξ/m}

5. define B̂ = [B0 B1 · · · B`] the corresponding column blocks of B̂

6. For i from 0 to `:

a. Read r1, . . . , rki the indices of the nonzero rows in Bi and define
B∅i the submatrix of Bi obtained by removing the zero rows

b. B̃∅i ← partial linearization of B∅i with deg(B̃∅i) 6 2iξ/m

c. P̃∅i ← B̃∅iAi

d. Perform the partial compression P∅i ← P̃∅i

e. Re-introduce the zero rows to obtain Pi, which is BiAi (its rows
at indices r1, . . . , rki are those of P∅i , its other rows are zero)

7. Return P = P0 + P1 + · · ·+ P`

250

12.3. Detailed cost bound for the kernel basis algorithm of [ZLS12]

us to better control the dimensions of the matrices encountered in the computations: in
the recursive calls, we always have input matrices with more rows than columns.
Remark 12.6. We defined kernel bases in Definition 8.1. In [ZLS12], the same bases
were called nullspace bases; however, the authors later switched to kernel basis in [ZL13].
They explain this change by the desire to avoid possible ambiguity: the term “nullspace” is
more commonly used for matrices over a field, and would thus refer to nullspace elements
that form a vector space over the fractions K(X), while here we are interested in kernel
elements that form a module over the polynomials K[X]. K

We have seen in Section 7.1 that the quantityMM′′(m, d) =
∑

06j6log(d) 2jMM(m, 2−jd)
from Definition 6.1 arises in the cost analysis of fast algorithms for the computation of
approximant bases [BL94, GJV03], whose divide-and-conquer strategy consists in find-
ing two subproblems which split the order d in two halves. The kernel basis algorithm
in [ZLS12] follows a divide-and-conquer approach on the dimension of the input matrix,
and computes at each node of the recursion some products of matrices with unbalanced
row degrees as well as a minimal approximant basis. In particular, its cost will be ex-
pressed using the quantities MM′(m, d) and MM′′(m, d) introduced in Definition 12.1.

The following result refines the cost analysis in [ZLS12, Theorem 4.1], counting the
logarithmic factors.

Proposition 12.7. Algorithm 26 is correct. Let us assume that m ∈ O(n), and let ξ be
an integer such that ξ > m and |s| 6 ξ. Then, Algorithm 26 uses

O(MM′(m, ξ/m) + MM′′(m, ξ/m))

⊆ O(mω−1M(ξ) +mωM(ξ/m) log(ξ/m))

operations in K.

Proof. The proof of correctness can be found in [ZLS12]. Here, we prove the cost bound
following the algorithm step by step.

Step 1: since ρ 6 |s| 6 ξ, we have λ 6 dξ/ne.
Step 2: according to Proposition 7.4 (or [GJV03, Theorem 2.4]), P can be com-

puted using O(MM′′(m,λ)) operations in K. Since λ 6 dξ/ne and m ∈ O(n), this step
uses O(MM′′(n, ξ/n)) operations. Besides, from Theorem 1.11 and Lemma 2.10, we have
|rdegs(P)| = deg(det(P)) + |s| 6 3nλ+ ξ 6 3(ρ+m) + ξ 6 7ξ.

Step 3: finding P1 and P2 can be done by computing PF. The matrix F is m × n
with row degree w = rdeg(F) 6 s; in particular, |w| 6 ξ. Besides, P is an m × m
matrix and |rdegw(P)| 6 |rdegs(P)| 6 7ξ. Then, one can augment F with m − n zero
columns and use Algorithm 25 to compute PF; according to Proposition 12.5, this uses
O(MM′(m, ξ/m)) ⊆ O(MM′(n, ξ/n)) operations.

Steps 5.a and 5.b: Computing G involves no arithmetic operation since the product
PF has already been computed in Step 3; G has row degree bounded by t (component-
wise). Let us denote m̂ the number of rows of P2. Because both P and F have full rank
and P1F = 0, G has full rank and at least n rows in P are not in the kernel of F, which
means n 6 m̂. Furthermore, according to [ZLS12, Theorem 3.6], we have m̂ 6 3n/2.
Then, G is an m̂× n matrix with n 6 m̂ 6 3n/2 and with row degree bounded by t. In
addition, we have t 6 s [ZLS12, Lemma 3.12], and thus in particular |t| 6 ξ.

251

Chapter 12. Some tools for computing with polynomial matrices

Algorithm 26 – MinKerBas
(Shifted minimal kernel basis [ZLS12])
Input:
• matrix F ∈ K[X]m×n with full rank and m > n,
• a non-decreasing shift s ∈ Zm such that rdeg(F) 6 s.

Output:
• an s-minimal kernel basis N for F,
• the s-row degree of N.

1. ρ←
∑m

i=m−n+1 si and λ← dρ/ne
2. P← DaCAppBas((3λ, . . . , 3λ),F, s)

P← permute the rows of P so that rdegs(P) is non-decreasing

3. Write P = [PT
1 PT

2]T where P1 consists of all rows p of P satisfying
pF = 0

4. If n = 1 then return (P1, rdegs(P1))

5. Else:

a. t← rdegs(P2)− (3λ, . . . , 3λ)

b. G← X−3λP2F

c. Write G = [G1 G2] where G1 has bn/2c columns and G2 has
dn/2e columns

d. (N1,u)←MinKerBas(G1, t)

e. (N2,v)←MinKerBas(N1G2,u)

f. N← [PT
1 (N2N1P2)T]T

g. Return (N, (rdegs(P1),v))

252

12.3. Detailed cost bound for the kernel basis algorithm of [ZLS12]

Step 5.c: for the recursive calls of Steps 5.d and 5.e, we will need to check that our
assumptions on the dimensions, the degrees, and the rank of the input are maintained.
Here, we first remark that G1 and G2 have full rank and respective dimensions m̂×bn/2c
and m̂× dn/2e, with m̂ > dn/2e > bn/2c. Their row degrees are bounded by t, which is
in non-decreasing order and satisfies |t| 6 ξ.

Step 5.d: N1 is a t-minimal kernel basis of G1 and therefore it has m̂−bn/2c rows and
m̂ columns. Besides, u = rdegt(N1) and by [ZLS12, Theorem 3.4], we have |u| 6 |t| 6 ξ.

Step 5.e: we remark that N1G2 has dn/2e columns and m̂−bn/2c > dn/2e rows. We
now show that it has full rank. Let us consider N̂2 any u-minimal kernel basis for N1G2.
Then N̂2 has m̂−bn/2c− r rows, where r is the rank of N1G2. Our goal is to prove that
r = dn/2e. The matrix N̂ = [PT

1 |(N̂2N1P2)T]T is an s-minimal kernel basis for F [ZLS12,
Theorems 3.9 and 3.15]. In particular, since F has full rank, N̂ has m − n rows. Since
P1 has m− m̂ rows, this gives m− n = m− m̂+ m̂− bn/2c − r = m− bn/2c − r. Thus
n = bn/2c+ r, and r = dn/2e.

Furthermore, rdeg(G2) 6 t and rdegt(N1) = u, hence

rdeg(N1G2) 6 rdegrdeg(G2)(N1) 6 rdegt(N1) = u.

We have |t| 6 ξ and |u| 6 ξ. Augmenting N1 and G2 with zero entries so that their
dimensions are m̂ × m̂, by Proposition 12.5 the product N1G2 can be computed using
O(MM′(m̂, ξ/m̂)) ⊆ O(MM′(n, ξ/n)) operations. Then, N2 is a t-minimal kernel basis
for N1G2; it has m̂− n rows and m̂− dn/2e columns, its u-row degree is v = rdegu(N2),
and we have |v| 6 |u| 6 ξ [ZLS12, Theorem 3.4].

Step 5.f : using the previously given dimensions and degree bounds for N1 and N2,
one can easily check that the product N2N1 can be computed by Algorithm 25 using
O(MM′(m̂, ξ/m̂)) ⊆ O(MM′(n, ξ/n)) operations. Now, P2 is m̂ × m with m > m̂, and
denoting w′ = t + (3λ, . . . , 3λ), P2 has its row degree bounded by rdegs(P2) = w′, with
|w′| = |rdegs(P2)| 6 |rdegs(P)| 6 7ξ. Besides, |rdegw′(N2N1)| 6 |rdegt(N2N1)|+ 3(m̂−
n)λ 6 |v|+3nλ/2 6 4ξ. Then, the product N2N1P2 can be computed with Algorithm 25
using O(m/m̂MM′(m̂, ξ/m̂)) ⊆ O(MM′(n, ξ/n)) operations, since m ∈ O(n) and n 6 m̂.

Thus, we have two recursive calls with half the column dimension and the same bound
ξ, and additional O(MM′(n, ξ/n) +MM′′(n, ξ/n)) operations for the matrix products and
the computation of a minimal basis of Hermite-Padé approximants. Overall Algorithm 26
usesO(MM′(n, ξ/n)+MM′′(n, ξ/n)) operations: since n ∈ Θ(m), we obtain the announced
cost estimate; the upper bound is a direct consequence of Lemma 12.3.

253

Chapter 12. Some tools for computing with polynomial matrices

254

13

Computing shifted Popov interpolant
bases

In this chapter, we detail our fast algorithms for computing interpolant bases, which are
relation bases as in Problem 4 in the case of a Jordan multiplication matrix. We have seen
in Section 2.4.1 that this problem can be rewritten as a system of n modular equations
in m unknowns. As such, it may be seen as a specific case of Problem 9 for moduli which
are known through their roots and multiplicities, which correspond to the diagonal entries
and block sizes of the Jordan matrix.

In Chapter 8, we gave an algorithm for Problem 9 with cost bound O (̃mω−1D), under
the assumption that n ∈ O(m) and where D is the dimension of the multiplication matrix.
In our context here, we manage to remove this assumption, in particular by exploiting
the knowledge of the roots and multiplicities of the moduli in the residual computation,
and by introducing a change of shift technique to control the degrees in the recursion.

In this chapter, we only present the global structure of our algorithms, leaving the
details of some technical procedures to the next Chapter 14.

13.1 Divide-and-conquer approach for a triangular mul-
tiplication matrix

In Section 6.4, we presented an algorithm from [BL00] which iteratively computes relation
bases in shifted Popov form when the multiplication matrix is triangular. In this section,
we show how this can be turned into a divide-and-conquer algorithm, which can be seen
as an generalization of [BL94, Algorithm SPHPS].

Our goal here is only to present this approach and its correctness; we are not interested
in its efficiency, since for an arbitrary triangular multiplication matrix it is not as efficient
as our general algorithm based on linear algebra in Chapter 4. In Chapters 13 and 14,
we will study the specific case of a multiplication matrix in Jordan form, for which we
use the same divide-and-conquer scheme along with some additional ingredients to obtain
fast algorithms.

255

Chapter 13. Computing shifted Popov interpolant bases

Algorithm 27 – DaCRelBas
(Divide-and-conquer relation basis for triangular mult. mat.)
Input:
• an upper triangular matrix M ∈ KD×D,
• a matrix F ∈ Km×D,
• a shift s ∈ Zm.

Output: an s-ordered weak Popov relation basis of SyzM(F).

1. If D = 1 then return IterRelBas(M,F, s)

2. Else:

a. M(1) ← leading principal bD/2c × bD/2c submatrix of M

b. F(1) ← first bD/2c columns of F

c. P(1) ← DaCRelBas(M(1),F(1), s)

d. G← last dD/2e columns of P(1) · F
e. M(2) ← trailing principal dD/2e × dD/2e submatrix of M

f. P(2) ← DaCRelBas(M(2),G, rdegs(P
(1)))

g. Return P(2)P(1)

Proposition 13.1. Assuming that M ∈ KD×D is an upper triangular matrix, Algo-
rithm 27 solves Problem 4 and returns a relation basis in s-ordered weak Popov form.

Proof. For the correctness of the base case of the recursion at Step 1, we refer to Proposi-
tion 6.5. Note that the basis returned by Step 1 is in s-Popov form, and thus in particular
in s-ordered weak Popov form.

Concerning the recursion, our proof of correctness fundamentally relies on Theo-
rem 1.28. Using notation from that theorem, here, we consider the module of relations
M = SyzM(F) for which we want to find a basis, and the moduleM(1) = SyzM(1)(F(1)).
Since M is upper triangular, we haveM⊆M(1).

Let us assume that P(1) and P(2), as computed by the recursive calls at Step 2.c
and 2.f, are s- and t-ordered weak Popov relation basis of SyzM(1)(F(1)) and SyzM(2)(G),
respectively, where t = rdegs(P

(1)).

We write the input F as F = [F(1) ∗], with F(1) consisting of the first bD/2c columns
of F as in Step 2. Since M is upper triangular, from the fact that the rows of P(1) are
relations of SyzM(1)(F(1)) we obtain that P(1) · F = [0 ∗]. Then, by construction of G at
Step 2.d, we have P(1) · F = [0 G].

256

13.2. Fast interpolant bases in reduced form for almost uniform shifts

As a consequence, the moduleM(2) as defined in Theorem 1.28 is

M(2) = {λ ∈ K[X]1×m | λP(1) ∈M}
= {λ ∈ K[X]1×m | λP(1) · F = 0}
= {λ ∈ K[X]1×m | λ · [0 G] = 0}
= SyzM(2)(G),

where again the last equality follows from the fact that M is upper triangular. Thus, P(2)

is a basis ofM(2).
To summarize, P(1) is a s-ordered weak Popov basis ofM(1), and P(2) is a t-ordered

weak Popov basis ofM(2). Then, from the items (i) and (iii) of Theorem 1.28, it follows
that P(2)P(1) is a 0-ordered weak Popov basis ofM. Hence the correctness.

13.2 Fast interpolant bases in reduced form for almost
uniform shifts

In this section, we provide a description of our divide-and-conquer algorithm to compute
minimal interpolant for the case of a shift whose entries are close to uniform. As sum-
marized in Section 2.4.2, we obtain an algorithm in O (̃mω−1D) by using several new
ingredients.

Instead of resorting to kernel bases as for Problem 9, we directly follow the divide-
and-conquer approach presented above in Algorithm 27. For efficiency, we do not stop
the recursion at D = 1 but rather at D ≈ m, in which case we solve the problem via the
algorithm of Chapter 4 based on fast dense linear algebra. Furthermore, to ensure that
shifts stay almost uniform in recursive calls, we resort to changes of shifts at each node
of the recursion; and we rely on a fast algorithm for computing residuals in this context,
using techniques involving Chinese remainder evaluation and interpolation.

As a parenthesis, regarding the introduction of this chapter, we recall that in the
case of systems of linear modular equations, the efficient use of kernel bases and the fast
computation of residuals were two components that pushed us to require that the number
of equations be not much larger than the number of unknowns (see Sections 6.3 and 8.1).

In this section, we assume that J ∈ KD×D is a Jordan matrix given by means of a
standard representation as in Eq. (2.3). Our algorithm relies on two subroutines for which
cost estimates are given in Chapter 14 and are taken for granted here:

• in Section 14.1, the change of shift : given an s-minimal interpolant basis P and
some shift t, compute an (s + t)-minimal interpolant basis;

• in Section 14.2, the fast computation of a residual, that is, a product of the form
P · F defined by the multiplication matrix as in Section 2.1.2.

It also uses algorithms that have been given previously in this document:

• in Chapter 4, the computation of an s-minimal interpolant basis using linear algebra,
which is used here for the base case of the recursion;

257

Chapter 13. Computing shifted Popov interpolant bases

• in Section 12.2, the fast multiplication of two polynomial matrices with respect to
the average row degree of the operands and of the result.

Algorithm 28 – MinIntBas
(Minimal interpolant basis)
Input:
• a Jordan matrix J ∈ KD×D in standard representation,
• a matrix F ∈ Km×D.

Output: a 0-minimal interpolant basis of SyzJ(F).

1. If D 6 m then return LinPopovRelBas(J,F,0)

2. Else:

a. J(1) ← leading principal bD/2c × bD/2c submatrix of J

b. F(1) ← first bD/2c columns of F

c. P(1) ←MinIntBas(J(1),F(1))

d. G← last dD/2e columns of P(1) · F = JordanMul(J,P(1),F)

e. J(2) ← trailing principal dD/2e × dD/2e submatrix of J

f. P(2) ←MinIntBas(J(2),G)

g. R← ChangeShift(P(2),0, rdeg(P(1)))

h. Return RDegPolMatMul(P(1),R, D)

Using notation in Algorithm 28, we remark that the leading and trailing principal
submatrices J(1) and J(2) are still in Jordan canonical form, albeit not necessarily in
standard representation; this can however be restored by a single pass through the array.

Proposition 13.2. Algorithm 28 is correct, and for D > m it uses

O(mω−1M(D) +mωM(D/m) log(D/m)2 +mω−1D log(m) +mM(D) log(D) log(D/m))

⊆ O(mω−1M(D) log(D) log(D/m))

operations in K. If D 6 m, it uses O(mDω−1 +Dω log(D)) operations in K.

Proof. Concerning the base case D 6 m, the correctness and the cost bound both follow
from Proposition 4.18 and the corresponding Algorithm 3.

Let us consider the case of D > m. For the correctness of the recursive procedure,
our proof relies on Theorem 1.28 and is also close to the proof of Proposition 13.1. We
consider the modules M = SyzJ(F) and M(1) = SyzJ(1)(F(1)). We assume that P(1), as
computed by the first recursive call, is a 0-minimal interpolant basis of SyzJ(1)(F(1)).

Writing the input F as F = [F(1) ∗], since J is upper triangular, the fact that the rows
P(1) are interpolants of SyzJ(1)(F(1)) implies that P(1) ·F = [0 ∗]. Then, by construction
of G at Step 2.d, we have P(1) · F = [0 G].

258

13.2. Fast interpolant bases in reduced form for almost uniform shifts

As a consequence, the moduleM(2) as defined in Theorem 1.28 is

M(2) = {λ ∈ K[X]1×m | λP(1) ∈ SyzJ(F)}
= {λ ∈ K[X]1×m | λP(1) · F = 0}
= {λ ∈ K[X]1×m | λ · [0 G] = 0}
= SyzJ(2)(G),

where again the last equality follows from the fact that J is upper triangular.
Let us then denote by P(2) the matrix computed by the second recursive call, which is

a 0-minimal interpolant basis of SyzJ(2)(G) by construction. From the identity above, P(2)

is a 0-reduced basis ofM(2). Moreover, Proposition 14.2 indicates that R is a t-reduced
form of P(2), where t = rdeg(P(1)).

To summarize, P(1) is a 0-reduced basis ofM(1), and R is a t-reduced basis ofM(2).
Then, from Theorem 1.28, it follows that RP(1) is a 0-reduced basis of M, or in other
words, a 0-minimal interpolant basis of SyzJ(F). The correctness follows, since RP(1) is
the product computed at Step 2.h.

Let us now prove the announced cost bound for D > m. Without loss of generality,
we assume that D/m is a power of 2. Each of Steps 2.c and 2.f calls the algorithm
recursively on an instance of Problem 4 with dimensions m and D/2.

Let us first give some remarks on the degrees in the manipulated matrices. From
Lemma 2.10, we obtain

deg(det(P)) 6 D, deg(det(P(1))) 6 D/2, and deg(det(P(2))) 6 D/2.

According to the item (v) of Theorem 1.11, the sum of the row degrees of a 0-reduced
matrix equals the degree of its determinant, hence

|rdeg(P)| 6 D, |rdeg(P(2))| 6 D/2, and |d| = |rdeg(P(1))| 6 D/2.

Then, we analyze the contribution of each step to the total cost.

• The leaves of the recursion are for the dimensions m/2 6 D 6 m, and therefore
by Proposition 4.18 each of them uses O(mω log(m)) operations. For D > m, with
D/m a power of 2, the recursion leads to D/m leaves, which thus yield a total cost
of O(mω−1D log(m)) operations.

• According to Proposition 14.3, Step 2.d uses

O(MM(m,D/m) log(D/m) +mM(D) log(D))

operations. Using the super-linearity property HMM(·,·) of Eq. (6.2), this contributes
to the total cost as O(MM(m,D/m) log(D/m)2 +mM(D) log(D) log(D/m)) opera-
tions.

• For Step 2.g, we use Proposition 14.2 with ξ = D, remarking that both the sum
of the entries of t = rdeg(P(1)) and that of rdeg(P(2)) are at most D/2. Then, the

259

Chapter 13. Computing shifted Popov interpolant bases

change of shift is performed using O(MM′(m,D/m) + MM′′(m,D/m)) operations.
Thus, altogether the time spent in this step is

O

 ∑
06i6log(D/m)

2i
(
MM′(m, 2−iD/m) + MM′′(m, 2−iD/m)

)
operations; we give an upper bound for this quantity in Lemma 12.4.

• From Proposition 14.2 we obtain that rdegt(R) 6 |rdeg(P(2))| + |t| 6 D. Then,
using Proposition 12.5 with ξ = D, the polynomial matrix multiplication in Step 2.f
can be done in timeO(MM′(m,D/m)). Besides, it is easily verified that by definition
MM′(m,D/m) 6 MM′(m,D/m), so that the cost for this step is dominated by the
cost for the change of shift.

Adding these costs and using the bounds in Section 6.1 leads to the conclusion.

Now, if the shift in input is not uniform, we can always resort to this divide-and-
conquer approach with the uniform shift and eventually perform a change of shift to
obtain the sought shifted minimal interpolant basis.

Algorithm 29 – ShiftMinIntBas
(Shifted minimal interpolant basis)
Input:
• a Jordan matrix J ∈ KD×D in standard representation,
• a matrix F ∈ Km×D,
• a shift s ∈ Zm.

Output: an s-minimal interpolant basis of SyzJ(F).

1. If D 6 m then return LinPopovRelBas(J,F, s)

2. Else:

a. P←MinIntBas(J,F)

b. Return ChangeShift(P,0, s−min(s))

We now prove the following cost bound, which refines that in Theorem 2.19.

Proposition 13.3. Let ξ = |s−min(s)|. Algorithm 29 is correct, and for D > m it uses

O(mω−1M(D) +mωM(D/m) log(D/m)2 +mω−1D log(m) +mM(D) log(D) log(D/m)

+mω−1M(ξ) +mωM(ξ/m) log(ξ/m))

⊆ O(mω−1M(D) log(D) log(D/m) +mω−1M(ξ) +mωM(ξ/m) log(ξ/m))

operations in K. If D 6 m, it uses O(mDω−1 +Dω log(D)) operations in K.

260

13.3. Fast interpolant bases in Popov form for arbitrary shifts

Proof. The correctness of Algorithm 29 follows from the correctness of Algorithms 3, 28
and 31. We remark that at Step 2.b we use the shift s−min(s) instead of s, in order to
ensure the requirement of ChangeShift that the input shift should have nonnegative
entries.

Concerning the cost bound when D > m, Proposition 13.2 gives the number of op-
erations used by Step 2.a to produce P, which satisfies |rdeg(P)| = deg(det(P)) 6 D
according to Lemma 2.10. As a consequence, we have |rdeg(P)| + |s−min(s)| 6 D + ξ:
Proposition 14.2 states that Step 2.b can be performed using

O(MM′(m, (D + ξ)/m) + MM′′(m, (D + ξ)/m))

field operations. The cost bound then follows from the bounds in Lemma 12.3.

13.3 Fast interpolant bases in Popov form for arbitrary
shifts

In the previous section, we have given an algorithm in O (̃mω−1D) for almost uniform
shifts. Still, the situation is not yet completely satisfactory: for worst case shifts, the cost
bound for this algorithm is far from our target cost.

For example, for a shift s that has a large amplitude max(s) − min(s), such as the
Hermite shift that we discussed in Section 1.2.2, the cost bound may become as large as
O (̃mω+1D). The main reason behind this high cost is that performing a change of shift
is costly for such shifts. As a comparison, even the simple divide-and-conquer approach
of Section 13.1 is more efficient in this case: assuming that the residual matrix G is
computed efficiently (using for example the algorithm of Section 14.2), Algorithm 27 uses
O (̃mωD) operations for an arbitrary shift.

Here, we design an algorithm which computes the interpolant basis in shifted Popov
form using O (̃mω−1D) for an arbitrary shift. To achieve this, we use our strategy revolv-
ing around the knowledge of the minimal degree, which was summarized in general terms
in Section 1.2.1 and used in our fast algorithms for approximant bases and solution bases.
More explicitly, we follow a divide-and-conquer scheme similar to that of Algorithm 27 to
find the shifted minimal degree of SyzM(F), using this additional knowledge to consider
another shift with good properties that allow us to solve the problem efficiently by relying
on the fast algorithm of the previous section.

More precisely, our algorithm relies on two subroutines presented in Chapter 14, the
second one being the key new ingredient for dealing with arbitrary shifts:

• JordanMul, detailed in Section 14.2, with an additional pre-processing given in
Corollary 14.4 and at the end of Section 14.3, which computes the residual P(1) · F
from a basis P(1) obtained recursively;

• MinDegIntBas, detailed in Section 14.3, which computes the s-Popov interpolant
basis when the s-minimal degree of SyzJ(F) is known.

We temporarily take for granted the results in Propositions 14.3 and 14.11 concerning
these subroutines.

261

Chapter 13. Computing shifted Popov interpolant bases

Algorithm 30 – FastPopovIntBas
(Shifted Popov interpolant basis)
Input:
• a Jordan matrix J ∈ KD×D in standard representation,
• a matrix F ∈ Km×D,
• a shift s ∈ Zm.

Output: the s-Popov interpolant basis of SyzJ(F).

1. If D 6 m then return LinPopovRelBas(J,F, s)

2. Else:

a. J(1) ← leading principal bD/2c × bD/2c submatrix of J

b. F(1) ← first bD/2c columns of F

c. P(1) ← FastPopovIntBas(J(1),F(1), s)

d. δ(1) ← diagonal degrees of P(1)

e. G← last dD/2e columns of P(1) · F // using JordanMul

f. J(2) ← trailing principal dD/2e × dD/2e submatrix of J

g. P(2) ← FastPopovIntBas(J(2),G, s + δ(1))

h. δ(2) ← diagonal degrees of P(2)

i. Return MinDegIntBas(J,F, s, δ(1) + δ(2))

262

13.3. Fast interpolant bases in Popov form for arbitrary shifts

We obtain the following result; note that the cost bound is essentially that of Propo-
sition 13.2 multiplied by the depth O(log(D/m)).

Proposition 13.4. Algorithm 30 is correct, and if D > m it uses

O(mω−1M(D) log(D/m) +mωM(D/m) log(D/m)3

+mω−1D log(m) log(D/m) +mM(D) log(D) log(D/m)2)

⊆ O(mω−1M(D) log(D) log(D/m)2)

operations in K. If D 6 m, it uses O(mDω−1 +Dω log(D)) operations in K.

Proof. For the case D 6 m, the correctness and the cost bound of the base case at
Step 1 both follow from Proposition 4.18: it uses O(mDω−1+Dω log(D)) ⊆ O(mω log(m))
operations.

Now, we consider the case D > m. Using the notation in the algorithm, assume that
P(1) is the s-Popov interpolant basis for SyzJ(1)(F(1)), and P(2) is the t-Popov interpolant
basis of SyzJ(2)(F(2)), where t = s + δ(1) = rdegs(P

(1)), and δ(1) and δ(2) are the s- and
t-minimal degrees of SyzJ(1)(F(1)) and SyzJ(2)(F(2)), respectively.

Then, we can rely on Theorem 1.28 exactly like in the proof of Proposition 13.1.
The item (iv) of this theorem states that the s-minimal degree of SyzJ(F) is the sum
δ(1) + δ(2). As a result, Proposition 14.11 states that Step 2.i correctly computes and
returns the s-Popov interpolant basis of SyzJ(F).

Concerning the cost bound, the recursion stops when D 6 m, and thus the algorithm
uses O(mω log(m)) operations. The depth of the recursion is O(log(D/m)); we have two
recursive calls in dimensions m × D/2, and two calls to subroutines with cost bounds
given in Proposition 14.3 and Corollary 14.4 concerning the computation of the residual
at Step 2.e, and Proposition 14.11 concerning Step 2.i. The conclusion follows from the
super-linearity property HM(·) in Eq. (6.1)

263

Chapter 13. Computing shifted Popov interpolant bases

264

14

Details of new ingredients for
interpolant bases

In this chapter, we detail the three main technical tools that we introduced in order
to design our fast interpolant basis algorithms described in Chapter 13. For the first
algorithm for almost uniform shift, we relied on a change of shift at each node of the
recursive tree so as to control the degrees in the bases computed recursively. For both
algorithms, an essential tool is the computation of residuals, that is, products of the form
P · F for P ∈ K[X]m×m and F ∈ Km×D, as defined in Section 2.1. Finally, for dealing
with arbitrary shifts, we use partial linearization techniques to efficiently compute the
interpolant basis when the minimal degree is known.

14.1 Fast shifted reduction of a reduced matrix

In Algorithm 29, a key ingredient to achieve efficiency is to control the size of the inter-
mediate interpolant bases that are computed in recursive calls. For this, we compute all
minimal bases for the uniform shift and then recover the shifted minimal basis using what
we call a change of shift, that we detail in this section. More precisely, we are interested
in the problem of transforming an s-reduced matrix P ∈ K[X]m×m with full rank into a
unimodularly equivalent matrix that is (s + t)-reduced for some given shift t ∈ Zm>0.

Compared to a general row reduction algorithm such as the one in [GSSV12], our algo-
rithm achieves efficient computation with regards to the average row degree of the input
P rather than the maximum degree of the entries of P. The main consequence of having
an s-reduced input P is that no high-degree cancellation can occur when performing uni-
modular transformations on the rows of P, which is formalized as the predictable-degree
property (see Theorem 1.11). In particular, the unimodular transformation between P
and an (s+ t)-reduced equivalent matrix has small row degree, and the proposition below
shows how to exploit this to solve our problem via the computation of a shifted minimal
kernel basis for some 2m × m polynomial matrix (for a definition of kernel bases, see
Definition 8.1).

Minimal kernel bases have often been used in the computation of reduced or normal
forms of polynomial matrices, such as in [BvdHP88, BLV99, GJV03, BLV06, GS11].

265

Chapter 14. Details of new ingredients for interpolant bases

Lemma 14.1. Let s ∈ Zm>0 and t ∈ Zm>0, let P ∈ K[X]m×m be s-reduced and nonsingular,
and define d = rdegs(P). Then R ∈ K[X]m×m is an (s + t)-reduced form of P with
unimodular transformation U = RP−1 ∈ K[X]m×m if and only if [U RXs] is a (d, t)-
minimal kernel basis of [Xs PT − Im]T.

Proof. We first assume that the result holds for the uniform shift s = 0 ∈ Zm>0, and we
show that the general case s ∈ Zm>0 follows. Indeed, considering the 0-reduced matrix
PXs we have d = rdegs(P) = rdeg(PXs). Hence [U R] is a (d, t)-minimal kernel
basis of [Xs PT − Im]T if and only if R is a t-reduced form of PXs with unimodular
transformation U such that UPXs = R; that is, if and only if RX−s ∈ K[X]m×m is a
(s + t)-reduced form of P with unimodular transformation U such that UP = RX−s .

Let us now prove the proposition for the uniform shift s = 0. First, we assume
that R ∈ K[X]m×m is a t-reduced form of P with unimodular transformation U. From
UP = R it follows that the rows of [U R] are in the kernel of [PT −Im]T. Writing [N ∗]
with N ∈ K[X]m×m to denote an arbitrary basis of that kernel, we have [U R] = V[N ∗]
for some V ∈ K[X]m×m and thus U = VN. Since U is unimodular, V is unimodular
too and [U R] is a basis of the kernel of [PT − Im]T. It remains to check that [U R]
is (d, t)-reduced. Since P is reduced, we have rdegd (U) = rdeg(UP) = rdeg(R) by the
predictable-degree property in Theorem 1.11 and, using t > 0, we obtain rdegd (U) 6
rdegt (R). Hence rdeg(d,t)([U R]) = rdegt (R) and, since R is t-reduced, this implies
that [U R] is (d, t)-reduced.

Now, let [U R] be a (d, t)-minimal kernel basis for [PT − Im]T. First, we note
that U satisfies U = RP−1. It remains to check that U is unimodular and that R is
t-reduced. To do this, let R̂ denote an arbitrary t-reduced form of P and let Û = R̂P−1

be the associated unimodular transformation. From the previous paragraph, we know
that [Û R̂] is a basis of the kernel of [PT − Im]T, and since by definition [U R] is also
such a basis, we have [U R] = W[Û R̂] for some unimodular matrix W ∈ K[X]m×m.
In particular, U = WÛ is unimodular. Furthermore, the two unimodularly equivalent
matrices [U R] and [Û R̂] are (d, t)-reduced, so that by definition they share the same
shifted row degree up to permutation. Now, from the previous paragraph, we know that
rdeg(d,t)([Û R̂]) = rdegt (R̂), and similarly, having P reduced, UP = R, and t > 0

imply that rdeg(d,t)([U R]) = rdegt (R). Thus rdegt (R) and rdegt (R̂) are equal up to
permutation, and combining this with the fact that R = WR̂ where R̂ is t-reduced and
W is unimodular, we conclude that R is t-reduced.

This leads to Algorithm 31; for efficient computation, it relies on the minimal kernel
basis algorithm of [ZLS12], which we recalled as Algorithm 26.

Proposition 14.2. Let s ∈ Zm>0 and t ∈ Zm>0, let P ∈ K[X]m×m have full rank and be
s-reduced, and define d = rdegs(P). We write ξ to denote a parameter such that ξ > m
and |d|+|t| 6 ξ. Then, an (s+t)-reduced form R ∈ K[X]m×m of P and the corresponding
unimodular transformation U = RP−1 ∈ K[X]m×m can be computed using

O(MM′(m, ξ/m) + MM′′(m, ξ/m))

⊆ O(mω−1M(ξ) +mωM(ξ/m) log(ξ/m))

operations in K. Besides, we have |rdegs+t(R)| = |d|+ |t|.

266

14.2. Computing residuals for interpolant bases

Algorithm 31 – ChangeShift
(Shifted reduced form of a reduced matrix)
Input:
• a nonsingular matrix P ∈ K[X]m×m,
• a nonnegative shift s ∈ Zm>0 such that P is s-reduced,
• a nonnegative shift t ∈ Zm>0.

Output: an (s + t)-reduced form of P.

1. d← rdegs(P)

2. [U R]← MinKerBas
([

PXs

−Im

]
, (d, t)

)
3. Return RX−s

Proof. Write u = (d, t) and Q = [Xs PT −Im]T. According to Lemma 14.1, Algorithm 31
is correct: it computes [U R] a u-minimal kernel basis for Q, and returns RX−s which is
an (s+t)-reduced form of P. For a fast solution, the minimal kernel basis can be computed
using [ZLS12, Algorithm 1], which we have rewritten in Section 12.3 (Algorithm 26) along
with a detailed cost analysis.

Here, we show that the requirements of this algorithm on its input are fulfilled in our
context. Concerning the input matrix, we note that Q has more rows than columns, and
Q has full rank since by assumption P has full rank. Now, considering the requirement
on the input shift, first, each element of the shift u bounds the corresponding row degree
of Q; and second, the rows of Q can be permuted before the kernel computation so as to
have u non-decreasing, and then the columns of the obtained kernel basis can be permuted
back to the original order. In details, we first compute v being the tuple u sorted in non-
decreasing order together with the corresponding permutation matrix π ∈ K2m×2m such
that, when v and u are seen as column vectors in Z2m×1

>0 , we have v = πu. Now that
v is non-decreasing and bounds the corresponding row degree of πQ, we compute N a
v-minimal kernel basis for πQ using Algorithm 26, then, Nπ is a u-minimal kernel basis
for Q. Since by assumption |v| = |d|+ |t| 6 ξ, the announced cost bound follows directly
from Proposition 12.7.

Finally, we prove the bound on the sum of the (s + t)-row degrees of R. Since P is
s-reduced and R is (s + t)-reduced, and they are unimodularly equivalent, from item (v)
of Theorem 1.11 we have |rdegs+t(R)| = deg(det(R)) + |s + t| = deg(det(P)) + |s|+ |t| =
|rdegd(P)|+ |t| = |d|+ |t|.

14.2 Computing residuals for interpolant bases

Let J ∈ KD×D be as in Section 2.4.2; in particular, we suppose that J is a Jordan matrix,
given by a standard representation as in Eq. (2.3). Given a matrix F ∈ Km×D and a
polynomial matrix P ∈ K[X]m×m, we show how to compute the product P · F ∈ Km×D,

267

Chapter 14. Details of new ingredients for interpolant bases

as defined in Section 2.1.2. We will often call the result residual, as this is the role this
matrix plays in our algorithms for interpolant bases presented in Chapter 13.

We announce here the two main results that we will obtain concerning the computa-
tion of these products. The first one concerns the case where one has control over the row
degrees of the matrix P, while the second one focuses on the case of controlled column
degrees. These are the two situations that we encounter in our interpolant basis algo-
rithms: as explained in Section 1.2.2, having almost uniform shifts implies that the sum
of the row degrees is controlled, whereas focusing on shifted Popov bases implies that the
sum of the column degrees is controlled. The algorithm JordanMul mentioned in the
following proposition will be detailed in Algorithm 32.

Proposition 14.3. Let J ∈ KD×D be a Jordan matrix given by a standard representation,
let P ∈ K[X]m×m, and let F ∈ Km×D. There is an algorithm JordanMul that computes
the product P · F ∈ Km×D; if D > m and if the sum of the row degrees of P is in O(D),
this algorithm uses O(MM(m,D/m) log(D/m) +mM(D) log(D)) operations in K.

The case of controlled column degrees follows as a consequence; the proof will be given
at the end of Section 14.3.

Corollary 14.4. Let J ∈ KD×D be a Jordan matrix given by a standard representation, let
P ∈ K[X]m×m, and let F ∈ Km×D. If D > m, and if the sum of the column degrees of P is
at most D, then P·F can be computed using O(MM(m,D/m) log(D/m)+mM(D) log(D))
operations in K.

Remark that when D > m and the sum of the row or of the column degrees of P is
in O(D), storing P requires O(mD) elements in K, so that representing the input and
output of this computation involves Θ(mD) field elements. At best, one could thus hope
for an algorithm of cost O(mD). Our result is close, as we get a cost of O (̃m1.38D) with
the best known value of ω.

14.2.1 Residuals and Chinese remaindering

The following lemma writes the output in a more precise manner. The proof is a straight-
forward consequence of the discussion in Section 2.4.1.

Lemma 14.5. Suppose that J has the form ((x1, D1), . . . , (xn, Dn)). Let P ∈ K[X]m×m

and F ∈ Km×D, and write F = [F1 · · · Fn] with Fj in Km×Dj for 1 6 j 6 n. For
1 6 j 6 n, define the following matrices:

• Fj,poly = Fj [1, X, . . . , XDj−1]T ∈ K[X]m×1 is the column vector with polynomial
entries built from the columns of Fj,

• Gj,poly = P(X + xj) Fj,poly mod XD ∈ K[X]m×1,

• Gj = [Gj,0, . . . ,Gj,Dj−1] ∈ Km×Dj is the matrix whose columns are the coefficients
of Gj,poly of degrees 0, . . . , Dj − 1.

Then, P · F = G with G = [G1 · · · Gn] ∈ Km×D.

268

14.2. Computing residuals for interpolant bases

To give an idea of our algorithm’s behaviour, let us first consider the case where J is
the upper shift matrix Z as in Eq. (2.2), that is, there is only one Jordan block whose
eigenvalue is 0. This corresponds to having n = 1 in the previous lemma, which thus says
that we can turn the input F into a vector ofm polynomials of degree at most D, and that
we simply have to left-multiply this vector by P. Suppose furthermore that all entries in
P have degree O(D/m): this is the most natural situation ensuring that the sum of its
row degrees is O(D), as assumed in Proposition 14.3. Then, we have to multiply anm×m
matrix with entries of degree O(D/m) by an m× 1 vector with entries of degree at most
D. To do this efficiently, we have seen in Lemma 6.3 how to rely on partial linearization
techniques: we expand the right-hand side into an m×m polynomial matrix with entries
of degree O(D/m), we multiply it by P, and we recombine the entries of the result. This
is thus done using O(MM(m,D/m)) field operations.

On the other side of the spectrum, we also encountered the case of a diagonal ma-
trix J, with diagonal entries x1, . . . , xD (so all Di’s are equal to 1); suppose further-
more that these entries are pairwise distinct. In this case, if F∗,1, . . . ,F∗,D denote the
columns of F, Lemma 14.5 shows that the output is the matrix whose columns are
P(x1)F∗,1, . . . ,P(xD)F∗,D. Evaluating P at all xi’s would be too costly, as simply repre-
senting all the evaluations requires m2D field elements; instead, we interpolate a column
vector of m polynomials [f1, . . . , fm]T of degree less than D from the rows of F, do the
same matrix-vector product as in the previous paragraph, and evaluate the output at the
xi’s; the total cost is O(MM(m,D/m) +mM(D) log(D)).

Our main algorithm generalizes these two particular processes. We now state a few
basic results that will be needed for this kind of calculation, around problems related to
polynomial modular reduction and Chinese remaindering.

Lemma 14.6. The following cost estimates hold:

• Given p of degree d in K[X], and x in K, one can compute p(X+x) in O(M(d) log(d))
operations in K.

• Given moduli q1, . . . , qs in K[X], whose sum of degrees is e, and given p of degree
d + e, then one can compute the modular products p mod q1, . . . , p mod qs using
O(M(d) + M(e) log(e)) operations in K.

• Conversely, Chinese remaindering modulo polynomials with sum of degrees d can be
done in O(M(d) log(d)) operations in K.

Proof. For the first and third point, we refer the reader to [GG13, Chapters 9 and 10].
For the second point, we first compute q = q1 · · · qs in time O(M(e) log(e)), reduce p
modulo q in time O(M(d + e)), and use the simultaneous modular reduction algorithm
of [GG13, Corollary 10.17], which takes time O(M(e) log(e)). We conclude by remarking
that M(d + e) + M(e) log(e) ∈ O(M(d) + M(e) log(e)), as can be seen by considering the
cases d 6 e and d > e.

269

Chapter 14. Details of new ingredients for interpolant bases

14.2.2 Main algorithm

For a Jordan matrix J ∈ KD×D given in standard representation, and for any x in K,
we will denote by rep(x,J) the number of pairs (x, s) appearing in that representation,
counting repetitions. In particular,

∑
x∈K rep(x,J) = D.

For an integer k ∈ {0, . . . , dlog(D)e}, we select from the representation of J all those
pairs (x, s) with s in {2k, . . . , 2k+1 − 1}, obtaining a set J(k). Since J is in standard
representation, we can compute all J(k) by a single pass through the array J, and we can
ensure for free that all J(k) themselves are in standard representation. We decompose J(k)

further into two classes J(k,>m), where all pairs (x, s) are such that rep(x,J(k)) is greater
than m, and J(k,6m), which contains all other pairs. As above, this decomposition can be
done in linear time, and we can ensure for no extra cost that J(k,>m) and J(k,6m) are in
standard representation. Explicitly, these sequences will be written as

J(k,>m) = ((x
(k)
1 , s

(k)
1,1), . . . , (x

(k)
1 , s

(k)

1,r
(k)
1

), . . . , (x
(k)

t(k)
, s

(k)

t(k),1
), . . . , (x

(k)

t(k)
, s

(k)

t(k),r
(k)

t(k)

)),

with (r
(k)
i)i = (rep(x

(k)
i ,J(k)))i non-increasing, and where for i in {1, . . . , t(k)}, r(k)

i > m

and (s
(k)
i,j)j is a non-increasing sequence of elements in {2k, . . . , 2k+1−1}. The correspond-

ing sets of columns in the input matrix F and the output G will be written

F(k,>m) = (F
(k,>m)
i,j)

16i6t(k),16j6r(k)i

and
G(k,>m) = (G

(k,>m)
i,j)

16i6t(k),16j6r(k)i
;

they will be treated using a direct application of Lemma 14.5. Similarly, we write

J(k,6m) = ((ξ
(k)
1 , D

(k)
1,1), . . . , (ξ

(k)
1 , D

(k)

1,ρ
(k)
1

), . . . , (ξ
(k)

τ (k)
, D

(k)

τ (k),1
), . . . , (ξ

(k)

τ (k)
, D

(k)

τ (k),ρ
(k)

τ(k)

)),

with (ρ
(k)
i)i = (rep(ξ

(k)
i ,J(k)))i non-increasing, and where for i in {1, . . . , τ (k)}, ρ(k)

i 6 m

and (D
(k)
i,j)j is a non-increasing sequence of elements in {2k, . . . , 2k+1 − 1}. The corre-

sponding sets of columns in the input matrix F and the output G will be written F(k,6m)

and G(k,6m); more precisely, they take the form

F(k,6m) = (F
(k,6m)
i,j)

16i6τ (k),16j6ρ(k)i

and
G(k,6m) = (G

(k,6m)
i,j)

16i6τ (k),16j6ρ(k)i
,

and will be treated using a Chinese remaindering approach.
In the main loop, the index k will range from 0 to blog(D/m)c. After that stage, all

entries (x, s) in J that were not processed yet are such that s > D/m. In particular, if we
call J(∞,6m) the set of these remaining entries, we deduce that this set has cardinality at
most m; thus rep(x,J(∞,6m)) 6 m holds for all x and we process these entries using the
Chinese remaindering approach.

Algorithm JordanMul constructs all these sets J(k,>m), J(k,6m), and J(∞,6m), then
extracts the corresponding columns from F (via the subroutine ExtractColumns), and
processes these subsets of columns, before merging all the results.

270

14.2. Computing residuals for interpolant bases

Algorithm 32 – JordanMul
(Residuals for a multiplication matrix in Jordan form)
Input:
• a Jordan matrix J in KD×D in standard representation,
• a matrix P ∈ K[X]m×m,
• a matrix F ∈ Km×D.

Output: the product G = P · F ∈ Km×D.

1. For k from 0 to blog(D/m)c

a. J(k) ← ((x, s) ∈ J | 2k 6 s < 2k+1)

b. J(k,>m) ← ((x, s) ∈ J(k) | rep(x,J(k)) > m)

c. F(k,>m) ← ExtractColumns(F,J(k,>m))

d. G(k,>m) ← JordanMulByShiftingP(J(k,>m),P,F(k,>m))

e. J(k,6m) ← ((x, s) ∈ J(k) | rep(x,J(k)) 6 m)

f. F(k,6m) ← ExtractColumns(F,J(k,6m))

g. G(k,6m) ← JordanMulByCRT(J(k,6m),P,F(k,6m))

2. J(∞,6m) ← ((x, s) ∈ J | 2blog(D/m)c+1 6 s)

3. F(∞,6m) ← ExtractColumns(F,J(∞,6m))

4. G(∞,6m) ← JordanMulByCRT(J(∞,6m),P,F(∞,6m))

5. Return Merge((G(k,>m))06k6blog(D/m)c, (G
(k,6m))06k6blog(D/m)c,G

(∞,6m))

271

Chapter 14. Details of new ingredients for interpolant bases

14.2.3 Computing the residual by shifting P

We start with the case of the sets J(k,>m), for which we follow a direct approach. Below,
recall that we write

J(k,>m) = ((x
(k)
1 , s

(k)
1,1), . . . , (x

(k)
1 , s

(k)

1,r
(k)
1

), . . . , (x
(k)

t(k)
, s

(k)

t(k),1
), . . . , (x

(k)

t(k)
, s

(k)

t(k),r
(k)

t(k)

)),

with s(k)
i,1 > s

(k)
i,j for any k, i, and j. For a fixed k, we compute P

(k)
i = P(X + x

(k)
i) mod

Xs
(k)
i,1 , for i in {1, . . . , t(k)}, and do the corresponding matrix products. This is described

in Algorithm 33; we give below a bound on the total time spent in this algorithm, that
is, for all k in {0, . . . , blog(D/m)c}. Before that, we give two lemmas: the first one will
allow us to control the cost of the calculations in this case; in the second one, we explain
how to efficiently compute the polynomial matrices P

(k)
i .

Lemma 14.7. The following bound holds:

blog(D/m)c∑
k=0

t(k)∑
i=1

r
(k)
i s

(k)
i,1 ∈ O(D).

Proof. By construction, we have the estimate

blog(D/m)c∑
k=0

t(k)∑
i=1

r
(k)
i∑
j=1

s
(k)
i,j 6 D,

since this represents the total size of all blocks contained in the sequences J(k,>m). Now,
for fixed k and i, the construction of J(k) implies that the inequality s(k)

i,1 6 2s
(k)
i,j holds for

all j. This shows that we have

r
(k)
i s

(k)
i,1 6 2

r
(k)
i∑
j=1

s
(k)
i,j ,

and the conclusion follows by summing over all k and i.

In the following lemma, we explain how to compute the polynomial matrices P
(k)
i in

an efficient manner, for i in {1, . . . , t(k)} and for all the values of k we need.

Lemma 14.8. Suppose that the sum of the row degrees of P is O(D). Then one can
compute the matrices P

(k)
i for all k in {0, . . . , blog(D/m)c} and i in {1, . . . , t(k)} using

O(mM(D) log(D)) operations in K.

Proof. We use the second item in Lemma 14.6 to first compute P mod (X − x(k)
i)s

(k)
i,1 , for

all k and i as in the statement of the lemma. Here, the sum of the degrees is

S =
∑
k,i

s
(k)
i,1 ,

272

14.2. Computing residuals for interpolant bases

so we get a total cost of O(M(d) + M(S) log(S)) for an entry of P of degree d. Summing
over all entries, and using the fact that the sum of the row degrees of P is O(D), we
obtain a total cost of

O(mM(D) +m2M(S) log(S)).

Now, because we consider here J(k,>m), we have r(k)
i > m for all k and i. Hence, using the

super-linearity of M(·), the term m2M(S) log(S) admits the upper bound

mM

(∑
k,i

r
(k)
i s

(k)
i,1

)
log(S),

which is in O(mM(D) log(D)) in view of Lemma 14.7.
Then we apply a variable shift to all these polynomials to replace X by X+x

(k)
i . Using

the first item in Lemma 14.6, for fixed k and i, the cost is O(m2M(s
(k)
i,1) log(s

(k)
i,1)). Hence,

the total time is again O(m2M(S) log(S)), so the same overall bound as above holds.

Algorithm 33 – JordanMulByShifting
(Jordan residual via shifting)
Input:
• the Jordan matrix J(k,>m) given by the standard representation

((x
(k)
1 , s

(k)
1,1), . . . , (x

(k)
1 , s

(k)

1,r
(k)
1

), . . . , (x
(k)

t(k)
, s

(k)

t(k),1
), . . . , (x

(k)

t(k)
, s

(k)

t(k),r
(k)

t(k)

)),

• a matrix P ∈ K[X]m×m,
• a matrix F(k,>m) = [F

(k,>m)
1,1 · · · F

(k,>m)

t(k),r
(k)

t(k)

] ∈ Km×
∑
i,j s

(k)
i,j

with F
(k,>m)
i,j ∈ Km×s(k)i,j for all i, j.

Output: the product P · F(k,>m) ∈ Km×
∑
i,j s

(k)
i,j .

1. (P
(k)
i)16i6t(k) ← (P(X + xi) mod Xs

(k)
i,1)16i6t(k)

2. For i from 1 to t(k):

a. (F
(k,>m)
i,j,poly)

16j6r(k)i
← (F

(k,>m)
i,j [1, X, . . . , Xs

(k)
i,j −1]T)

16j6r(k)i

b. [G
(k,>m)
i,1,poly · · · G

(k,>m)

i,r
(k)
i ,poly

]← P
(k)
i [F

(k,>m)
i,1,poly · · · F

(k,>m)

i,r
(k)
i ,poly

]

c. For j from 1 to r(k)
i : G

(k,>m)
i,j ← (coeff(G

(k,>m)
i,j,poly , `))06`<s(k)i,j

3. Return [G
(k,>m)
1,1 · · · G

(k,>m)

t(k),r
(k)

t(k)

]

Lemma 14.9. Algorithm 33 is correct. Given the polynomial matrices computed in
Lemma 14.8, the total time spent in this algorithm for all k in {0, . . . , blog(D/m)c} is
O(MM(m,D/m)) operations in K.

273

Chapter 14. Details of new ingredients for interpolant bases

Proof. Correctness of the algorithm follows from Lemma 14.5, so we focus on the cost
analysis.

Lemma 14.8 gives the cost of computing all polynomial matrices needed at Step 1.
The only other arithmetic operations are those done in the matrix products at Step 2.b:
we multiply matrices of respective sizes m ×m and m × r(k)

i , with entries of degree less
than s(k)

i,1 . For given k and i, since we have m < r
(k)
i , the cost is O(MM(m, s

(k)
i,1)r

(k)
i /m);

using the super-linearity HMM(·,·) of Eq. (6.2), this is in O(MM(m, r
(k)
i s

(k)
i,1 /m)). Applying

again Lemma 14.7, we deduce that the sum over all k and i is O(MM(m,D/m)).

14.2.4 Computing the residual by Chinese remaindering

The second case to consider is J(k,6m). Recall that for a given index k, we write this
sequence as

J(k,6m) = ((ξ
(k)
1 , D

(k)
1,1), . . . , (ξ

(k)
1 , D

(k)

1,ρ
(k)
1

), . . . , (ξ
(k)

τ (k)
, D

(k)

τ (k),1
), . . . , (ξ

(k)

τ (k)
, D

(k)

τ (k),ρ
(k)

τ(k)

)),

with ρ(k)

τ (k)
6 · · · 6 ρ

(k)
1 6 m for all i in {1, . . . , τ (k)}. In this case, τ (k) may be large so the

previous approach may lead us to compute too many matrices P
(k)
i . Instead, for fixed k

and j, we use Chinese remaindering to transform the corresponding submatrices F
(k,6m)
i,j

into a polynomial matrix F
(k,6m)
j of small column dimension; this allows us to efficiently

perform matrix multiplication by P on the left, and we eventually get P · F(k,6m)
i,j by

computing the first coefficients in a Taylor expansion of this product around every ξ(k)
i .

To simplify the notation in the algorithm, we also suppose that for a fixed k, the points
ξ

(k)
1 , . . . , ξ

(k)

τ (k)
all appear the same number of times in J(k,6m). This is done by replacing

ρ
(k)
1 , . . . , ρ

(k)

τ (k)
by their maximum ρ

(k)
1 (simply written ρ(k) in the pseudo-code) and adding

suitable blocks (ξ
(k)
i , D

(k)
i,j), with all new D

(k)
i,j set to zero.

Lemma 14.10. Algorithm 34 is correct. If the sum of the row degrees of P is in O(D),
the total time spent in this algorithm for all k in {0, . . . , blog(D/m)c,∞} is

O(MM(m,D/m) log(D/m) +mM(D) log(D))

operations in K.

Proof. Proving correctness amounts to verifying that we compute the quantities described
in Lemma 14.5. Indeed, the formulas in the algorithm show that for all k, i, j, we have
G

(k,6m)
i,j,shifted = P F

(k,6m)
i,j,shifted mod (X−ξ(k)

i)D
(k)
i,j ; the link with Lemma 14.5 is made by observing

that F
(k,6m)
i,j,shifted = F

(k,6m)
i,j,poly(X − ξ(k)

i) and G
(k,6m)
i,j,shifted = G

(k,6m)
i,j,poly(X − ξ(k)

i).
In terms of complexity, the first item in Lemma 14.6 shows that for a given index k,

Step 1.a can be done in time

O

(
m
∑
i,j

M
(
D

(k)
i,j

)
log
(
D

(k)
i,j

))
,

274

14.2. Computing residuals for interpolant bases

Algorithm 34 – JordanMulByCRT
(Jordan residual via Chinese remaindering)
Input:
• the Jordan matrix J(k,6m) given by the standard representation

((ξ
(k)
1 , D

(k)
1,1), . . . , (ξ

(k)
1 , D

(k)

1,ρ(k)
), . . . , (ξ

(k)

τ (k)
, D

(k)

τ (k),1
), . . . , (ξ

(k)

τ (k)
, D

(k)

τ (k),ρ(k)
)),

• a matrix P ∈ K[X]m×m,
• a matrix F(k,6m) = [F

(k,6m)
1,1 · · · F

(k,6m)

τ (k),ρ(k)
] ∈ Km×

∑
i,j D

(k)
i,j

with F
(k,6m)
i,j ∈ Km×D(k)

i,j for all i, j.

Output: the product P · F(k,6m) ∈ Km×
∑
i,j D

(k)
i,j .

1. For j from 1 to ρ(k):

a. (F
(k,6m)
i,j,shifted)16i6τ (k)←(F

(k,6m)
i,j [1, X−ξ(k)

i , . . . , (X−ξ(k)
i)D

(k)
i,j −1]T)16i6τ (k)

b. F
(k,6m)
j,shifted ← CRT((F

(k,6m)
i,j,shifted)16i6τ (k) , ((X − ξ

(k)
i)D

(k)
i,j)16i6τ (k))

2. [G
(k,6m)
1,shifted · · · G

(k,6m)

ρ(k),shifted
]← P[F

(k,6m)
1,shifted · · · F

(k,6m)

ρ(k),shifted
]

3. For j from 1 to ρ(k)

a. (G
(k,6m)
i,j,shifted)16i6τ (k) ← (G

(k,6m)
j,shifted mod (X − ξ(k)

i)D
(k)
i,j)16i6τ (k)

b. G
(k,6m)
i,j ← (coeff(G

(k,6m)
i,j,shifted(X + ξ

(k,6m)
i), `))

06`<D(k)
i,j

4. Return [G
(k,6m)
1,1 · · · G

(k,6m)

τ (k),ρ(k)
]

275

Chapter 14. Details of new ingredients for interpolant bases

for a total cost of O(mM(D) log(D)). Step 1.b can be done in quasi-linear time as well:
for each k and j, we can compute each of the m entries of the polynomial vector F

(k,6m)
j,shifted

by fast Chinese remaindering (third item in Lemma 14.6), using

O
(
M
(
S

(k)
j

)
log
(
S

(k)
j

))
operations in K, with S(k)

j =
∑

iD
(k)
i,j . Taking all rows into account, and summing over

all indices k and j, we obtain again a total cost of O(mM(D) log(D)).
The next step to examine is the polynomial matrix product at Step 2. The matrix P

has size m×m, and the sum of its row degrees is by assumption O(D); using the partial
linearization technique presented in Section 12.2, we can replace P by a matrix of size
O(m)×m with entries of degree at most D/m.

For a fixed choice of k, the right-hand side has size m × ρ(k), and its columns have
respective degrees less than S(k)

1 , . . . , S
(k)

ρ(k)
. We split each of its columns into new columns

of degree at most D/m, so that the jth column is split into O(1 + S
(k)
j m/D) columns

(the constant term 1 dominates when S(k)
j 6 D/m). Thus, the new right-hand side has

O(ρ(k) + (S
(k)
1 + · · ·+ S

(k)

ρ(k)
)m/D) columns and degree at most D/m.

Now, taking all k into account, we remark that the left-hand side remains the same;
thus, we are led to do one matrix product with degrees D/m, with left-hand side of size
O(m)×m, and right-hand side having column dimension at most

∑
k∈{0,...,blog(D/m)c}∪{∞}

ρ(k) +
(S

(k)
1 + · · ·+ S

(k)

ρ(k)
)m

D
.

Since all ρ(k) are at mostm, the first term sums up toO(m log(D/m)); by construction, the
second one adds up to O(m). Hence, by the super-linearity property HMM(·,·) of Eq. (6.2),
the matrix product we are considering can be done in time O(MM(m,D/m) log(D/m)).

For a given k, G
(k,6m)
1,shifted, . . . ,G

(k,6m)

ρ(k),shifted
are vectors of size m. Furthermore, for each j

the entries of G
(k,6m)
j,shifted have degree less than S(k)

1 + d1, . . . , S
(k)
m + dm respectively, where

d1, . . . , dm are the degrees of the rows of P. In particular, for a fixed k, the reductions at
Step 3.a can be done in time

O

ρ(k)(M(d1 + · · ·+ dm)) +m

ρ(k)∑
j=1

M(S
(k)
j) log(S

(k)
j)

using fast multiple reduction, by means of the second item in Lemma 14.6. Using our
assumption on P, and the fact that ρ(k) 6 m, we see that the first term is O(mM(D)),
which adds up to O(mM(D) log(D/m)) if we sum over k. The second term adds up to
O(mM(D) log(D)), as was the case for Step 1.b.

The same analysis is used for the shifts taking place at Step 3.b as for those in Step 1.a:
for fixed k and j, the cost is O(mM(S

(k)
j) log(S

(k)
j)), and we conclude as above.

276

14.3. Computing interpolant bases with known minimal degree

14.3 Computing interpolant bases with known minimal
degree

In this section, we design a fast algorithm for computing the shifted Popov interpolant
basis when the shifted minimal degree is known, relying on our fast minimal interpolant
basis algorithm for almost uniform shift.

Let J be a Jordan matrix given by a standard representation, let F ∈ Km×D, let
s ∈ Zm, and let δ ∈ Zm>0 denote the s-minimal degree of SyzJ(F). Then, denote by P the
s-Popov interpolant basis of SyzJ(F); we suppose that δ is known a priori, and we want
to find P.

We recall from Section 1.2.1 that the shift d = −δ leads to the same d-Popov inter-
polant basis P as the initial shift s, and furthermore that P can be easily recovered from
any interpolant basis which is simply d-reduced.

More precisely, Lemma 1.26 indicates that any d-minimal interpolant basis R for
SyzJ(F) has column degree δ, and thus size at most m2 + m|δ|, which for D > m is in
O(mD). Yet, the fast algorithm in Section 13.2 for almost uniform shifts cannot directly
be used to compute such an R efficiently, since |d−min(d)| can be as large as Θ(mD), for
example when δ = (D, 0, . . . , 0). In this case, according to Proposition 13.3, Algorithm 29
uses O (̃mωD) operations in K to find R.

However, by Lemma 2.10, d = −δ satisfies

|max(d)− d| 6 |δ| = deg(det(P)) 6 D.

In other words, the shift d = −δ is almost uniform around its maximum value; notice
that Algorithm 29 is efficient for shifts that are almost uniform around their minimum
value. We solve this difficulty by relying on the partial linearization technique detailed
in Section 6.2 and Lemma 6.2, and used before in Algorithms 14 and 18 for computing
approximant bases in solution bases when the shifted minimal degree is known. This leads
us to Algorithm 35.

Proposition 14.11. Algorithm 35 is correct, and if D > m it uses

O(mω−1M(D) +mωM(D/m) log(D/m)2 +mω−1D log(m) +mM(D) log(D) log(D/m))

⊆ O(mω−1M(D) log(D) log(D/m))

operations in K.

Proof. We focus on the case D > m; otherwise, a better cost bound can be achieved even
without knowing δ using dense linear algebra (see Proposition 4.18). The correctness of
the algorithm follows from Lemma 6.2.

Let us now prove the cost bound. First, according to Lemma 6.2 we have max(d) −
min(d) 6 dD/me, hence |d−min(d)| ∈ O(D). Then, from Proposition 13.3, we directly
obtain that Step 4 is done within the above cost bound.

Besides, Step 3 can be done in O(mM(D) log(D)) field operations via Algorithm 32
for computing residuals, as explained in Lemma 14.12 below.

277

Chapter 14. Details of new ingredients for interpolant bases

Algorithm 35 – MinDegIntBas
(Interpolant basis with known minimal degree)
Input:
• a Jordan matrix J ∈ KD×D in standard representation,
• a matrix F ∈ Km×D,
• a shift s ∈ Zm,
• the s-minimal degree δ = (δ1, . . . , δm) ∈ Zm>0 of SyzJ(F).

Output: the s-Popov interpolant basis of SyzJ(F).

1. δ ← dD/me,
αi ← max(1, dδi/δe) for 1 6 i 6 m,
m̃← α1 + · · ·+ αm

2. δ̃ ∈ Zm̃>0 as in Eq. (6.4)
d← −δ̃ ∈ Zm̃>0

3. E ∈ K[X]m̃×m as in Eq. (6.5)
F̃← E · F // using JordanMul

4. R← ShiftMinIntBas(F̃,J,d)

5. Return the submatrix of lmd(R)−1RE formed by the rows at indices
α1 + · · ·+ αi for 1 6 i 6 m

278

14.3. Computing interpolant bases with known minimal degree

Lemma 1.26 proves that the sum of the column degrees of R is |δ̃|, which is equal to
|δ| by construction (see Eq. (6.4)). Then, Lemma 2.10 implies that |δ̃| 6 D. As a conse-
quence, the product lmd(R)−1R at Step 5 can be done in O(mω−1D) operations, by first
linearizing the columns of R into a m̃×(m̃+ |δ̃|) matrix over K, then left-multiplying this
matrix by lmd(R)−1 (itself computed using O(mω) operations), and finally compressing
back the columns to obtain the result. Because of the degrees in P̃ and the definition of
E (see Eq. (6.5)), the output in Step 5 can be formed from this product without using
any arithmetic operation.

The efficient computation of E · F can be done with the algorithm JordanMul for
computing residuals detailed in Section 14.2.

Lemma 14.12. The product E · F at Step 3 of Algorithm 35 can be computed using
O(mM(D) log(D)) operations in K.

Proof. This matrix E ·F has m̃ rows, with m̃ 6 2m according to Lemma 6.2. Besides, by
definition of E , each row of E · F is a product of the form X iδ · Fj,∗, where 0 6 i 6 m,
1 6 j 6 m, Fj,∗ denotes the row j of F, and δ = dD/me as in Lemma 6.2. In particular,
iδ 6 2D: then, according to Proposition 14.3, each of these m̃ products can be computed
using O(M(D) log(D)) operations in K.

This lemma and the partial linearization technique in Lemma 6.2 can also be used to
compute the residual at Step 2.c of Algorithm 30, that is, a product of the form P · F
with the sum of the column degrees of P bounded by D. First, we expand the high-degree
columns of P to obtain P̃ ∈ K[X]m×m̃ of degree less than dD/me such that P = P̃E ; then,
we compute F̃ = E · F; and finally we rely on the algorithm supporting Proposition 14.3
to compute P · F = P̃ · F̃ efficiently. This proves Corollary 14.4.

279

Chapter 14. Details of new ingredients for interpolant bases

280

Part V

Normal forms of polynomial matrices

281

Contents

Chapter 15 Shifted Popov forms 285

15.1 The generic determinant degree bound 285

15.2 Reducing to almost uniform input degrees 286

15.2.1 Column partial linearization . 287

15.2.2 Row partial linearization . 291

15.2.3 Reducing the degrees in shifted Popov form computation 292

15.3 Fast, probabilistic computation of the shifted Popov form 293

Chapter 16 Hermite form and determinant 297

16.1 Preliminaries: column bases . 298

16.2 Computing the diagonal entries of a triangular form 299

16.2.1 Fast block elimination . 300

16.2.2 Computational cost and example 300

16.3 Fast computation of the determinant of a polynomial matrix 303

16.4 Fast Hermite form algorithm with known minimal degree 309

16.4.1 Hermite form via shifted column reduction 309

16.4.2 Reducing the amplitude of the minimal degree 310

16.4.3 Algorithm and computational cost 314

16.4.4 Proof of Lemma 16.19 . 317

16.5 Reduction to almost uniform input degrees 319

CONTENTS

284

15

Shifted Popov forms

In this chapter, we consider the problem of computing the shifted Popov form of a non-
singular polynomial matrix A ∈ K[X]m×m (Problem 15 and Section 3.2).

After explaining our interest in cost bounds involving the generic determinant bound
DA, we give the details of how we exploit partial linearization [GSSV12] to reduce the
degree of the input matrix to being at most DA (Theorem 3.5). As a consequence, any
algorithm with cost bound O (̃mω deg(A)) for Problem 15 can be modified to obtain the
cost bound O (̃mωdDA/me).

Then, we show how Smith form computations leads to reducing shifted Popov form
computation to systems of linear modular equations. This reduction is efficient thanks to
algorithms in [Sto03, Gup11], leading to the first algorithm which computes the shifted
Popov form of A in O (̃mω deg(A)) for an arbitrary shift.

15.1 The generic determinant degree bound

Here, we recall the definition of the generic determinant bound [GSSV12]. Concerning the
computation of normal forms of polynomial matrices, we also detail why we are interested
in having cost bounds that are quasi-linear in this parameter, rather than in the degree
or the average column degree of the input matrix.

For a nonsingular m ×m matrix A ∈ K[X]m×m, the degree of the determinant of A
provides a good measure of the size of the output P in the case of shifted Popov form
computation. Indeed, if we denote by δ = (δ1, . . . , δm) the degrees of the diagonal entries
of P, then we have deg(det(A)) = deg(det(P)) = δ1 + · · · + δm. In what follows, we
write |δ| for the sum of the entries of a tuple δ ∈ Zm>0 with nonnegative entries. Since the
diagonal entries are those of largest degree in their respective columns, we directly obtain
that P can be represented using m2 +m|δ| = m2 +m deg(det(A)) field elements.

The size of the input A can be measured in several ways; those below all involve an
upper bound on deg(det(A)). A first, coarse bound is given by the maximum degree of the
entries of the matrix: A can be represented bym2+m2 deg(A) field elements. On the other
hand, by definition of the determinant we have that deg(det(A)) 6 m deg(A). A second,
finer bound can be obtained using the average of the row degrees and of the column de-
grees: the size of A in terms of field elements is at mostm2+mmin(|rdeg(A)|, |cdeg(A)|);

285

Chapter 15. Shifted Popov forms

again we have the related bound

deg(det(A)) 6 min(|rdeg(A)|, |cdeg(A)|).

An even finer bound on the size of A is given by the generic determinant bound. This
notion was introduced in [GSSV12, Section 6] in conjunction with partial linearization for
the purpose of managing the non-uniformity of the degrees in the manipulated matrices.
For A = [ai,j]i,j ∈ K[X]m×m, this quantity is defined as

DA = max
π∈Sm

∑
16i6m

deg(ai,πi) (15.1)

where Sm is the set of permutations of {1, . . . ,m}, and where

deg(p) =

{
0 if p = 0

deg(p) if p 6= 0
.

By definition, we have the inequalities

deg(det(A)) 6 DA 6 min(|rdeg(A)|, |cdeg(A)|) 6 m deg(A),

and it is easily verified that A can be represented using m2 + 2mDA field elements.
Thus, in shifted Popov form computation as in Problem 15, both the input and the

output have average degree in O(DA/m) and can be represented using O(m2dDA/me)
field elements. Furthermore DA gives a more precise account of the degrees in A than
the average row and column degrees, and an algorithm with cost bound O (̃mωdDA/me)
is always faster, sometimes significantly, than an algorithm with cost bound O (̃mωdse)
where s is the average column degree or the average row degree, let alone s = deg(A).
Remark 15.1. Let us justify why this can sometimes be significantly faster. We have seen
that DA/m is bounded from above by both the average column degree and the average
row degree of A. It turns out that, in some important cases DA/m may be substantially
smaller than these averages. For example, consider A with one row and one column of
uniformly large degree d and all other entries of degree 0:

A =

[d] [d] · · · [d]
[d] [0] · · · [0]
...

...
[d] [0] · · · [0]

 ∈ K[X]m×m.

In this example the average row degree and the average column degree are both exactly
d while the generic determinant bound is d as well. Here, DA/m = d/m is much smaller
than d = deg(A) = |rdeg(A)|/m = |cdeg(A)|/m. K

15.2 Reducing to almost uniform input degrees
We have explained in Section 15.1 our interest in obtaining a cost bound which involves
the generic determinant bound, to take into account the fact that the degrees of the input

286

15.2. Reducing to almost uniform input degrees

matrix are possibly unbalanced. The goal of this section is to give a reduction from the
general case of shifted Popov form computation to the case where the degree of the input
matrix A is in O(dDA/me). For this, we make use of the partial linearization techniques
in [GSSV12, Section 6], leading to Theorem 3.5.

To get a rough idea of how partial linearization works and how it benefits normal form
computation, consider the matrix

A =

[
1 X39 +X
X X41 + 1

]
.

In this case the column degrees of the matrix are quite unbalanced as 1 and 41 have an
average column degree of 21. However we can create a second matrix, of slightly larger
dimension, as

Lc
δ(A) =

 1 X X17

X 1 X19

0 −X22 1

which shares some nice properties with A (here, the superscript “c” is used to indicate
that we are doing column partial linearization). This matrix is constructed by dividing
the second column into its two X22-adic coefficients (rows 1 and 2) and then including an
additional row (row 3) which provides the single column operation which would undo the
division. Thus by construction this matrix is left-unimodularly equivalent to 1 X39 +X 0

X X41 + 1 0
0 −X22 1

and it is easily seen that the Hermite form of A will be given by the 2×2 leading submatrix
of the Hermite form of Lc

δ(A). As such we rely on the computation of the Hermite form
of a matrix, not much larger than the original matrix, but having the nice property that
the degrees are much more uniformly distributed.

15.2.1 Column partial linearization

Column partial linearization of A transforms the columns of large degree into several
columns of lower degree, and for each new column it also augments A with some type of
elementary rows. The latter rows allow us to preserve properties of the matrix, including
for example its determinant, its Smith form, and most importantly for us its shifted Popov
form, up to the use of a well-chosen shift. We first describe the elementary rows. In the
definition below, δ is typically, but not necessarily, the column degree of A.

Definition 15.2. Let δ = (δ1, . . . , δm) ∈ Zm>0 and δ = 1 + b(δ1 + · · · + δm)/mc. For
each i ∈ {1, . . . ,m}, write δi = (αi − 1)δ + βi with αi > 1 and 0 6 βi < δ, and let

287

Chapter 15. Shifted Popov forms

m̃ = α1 + · · ·+ αm. Define the expansion-compression matrix E ∈ K[X]m̃×m as

E =

1
. . .

1
Xδ

...
X(α1−1)δ

. . .
Xδ

...
X(αm−1)δ

(15.2)

and the matrix T δ ∈ K[X](m̃−m)×m̃ as follows:

(i) for 1 6 i 6 m such that αi > 1, the row (α1 − 1) + · · ·+ (αi−1 − 1) + 1 of T δ is[
0 · · · 0 −Xδ 0 · · · 0 1 0 · · · 0

]
with the entry 1 at index m+ (α1 − 1) + · · ·+ (αi−1 − 1) + 1 and the entry −Xδ at
index i,

(ii) for 1 6 i 6 m and 2 6 j 6 αi − 1, the row (α1 − 1) + · · ·+ (αi−1 − 1) + j of T δ is[
0 · · · 0 −Xδ 1 0 · · · 0

]
with the entry 1 at index m+ (α1 − 1) + · · ·+ (αi−1 − 1) + j.

By construction the (m̃ − m) × (m̃ − m) submatrix of T δ formed by its rightmost
m̃−m columns is lower triangular with 1 on the diagonal, and hence is unimodular. This
will play an important role in the properties of the partial linearization of A. Notice also
that T δ E = 0.

The column partial linearization of a matrix A is formed by this block T δ of elementary
rows, and by another block of m rows containing the expanded columns of A. The i-th
column of A is expanded into αi columns, all having degree at most δ except possibly the
one which contains the highest degree entries, whose index is denoted by ρi.

Definition 15.3. Let A ∈ K[X]m×m and δ = (δ1, . . . , δm) ∈ Zm>0. Using the notation in
Definition 15.2, let ρ1, . . . , ρm with

ρi =

{
i if αi = 1,
m+ (α1 − 1) + · · ·+ (αi − 1) if αi > 1.

(15.3)

The column partial linearization of A is the matrix Lc
δ(A) ∈ K[X]m̃×m̃ defined by:

(i) the last m̃−m rows of Lc
δ(A) are T δ,

288

15.2. Reducing to almost uniform input degrees

(ii) the first m rows of Lc
δ(A) form the unique matrix Ã ∈ K[X]m×m̃ such that A =

ÃE and Ã has all columns of degree less than δ except possibly those at indices
ρ1, . . . , ρm.

Example 15.4 (Column partial linearization). Let K be the finite field with 97 elements.
Using a computer algebra system, we choose A ∈ K[X]4×4 with prescribed degrees and
random coefficients from K. Instead of showing the entire matrix let us only consider the
degree profile which in this case is

A =

[2] [10] [63] [5]
[75] [51] [95] [69]
[4] [5] [48] [7]
[10] [54] [75] [6]

 ,
where [d] for d ∈ Z>0 indicates an entry of degree d. We take δ = (2, 54, 95, 7) rather than
the column degrees of A, for reasons that we make clear below, in Section 15.2.3 and Ex-
ample 15.7. Then the degree of linearization is δ = 40, and we have (α1, α2, α3, α4) =
(1, 2, 3, 1). This implies that columns 1 and 4 of A will not be expanded, column 2 of A
will be expanded into 2 columns, and column 3 of A will be expanded into 3 columns.
Thus, m̃ = 7 and the indices of the columns containing the high-degree entries for each
column of A are (ρ1, ρ2, ρ3, ρ4) = (1, 5, 7, 4). Then

Lc
δ(A) =

[2] [10] [39] [5] 0 [23] 0
[75] [39] [39] [69] [11] [39] [15]
[4] [5] [39] [7] 0 [8] 0
[10] [39] [39] [6] [14] [35] 0
0 −X40 0 0 1 0 0
0 0 −X40 0 0 1 0
0 0 0 0 0 −X40 1

. b

The key observations now are that the dimensions of Lc
δ(A) are not much larger than

that of A, and that shifted Popov forms of A can be retrieved as the trailing submatrix
of shifted Popov forms of Lc

δ(A).

Lemma 15.5. Let A ∈ K[X]m×m be nonsingular, let s ∈ Zm, and let P ∈ K[X]m×m and
H ∈ K[X]m×m be the s-Popov form and the Hermite form of A. Let further δ ∈ Zm>0, and

let E =

[
I
E

]
and T δ ∈ K[X](m̃−m)×m̃ be as in Definition 15.2. Then,

(i) m 6 m̃ < 2m;

(ii) if cdeg(A) 6 δ componentwise then deg(Lc
δ(A)) 6 δ = 1 + b|δ|/mc;

(iii) for any t ∈ Zm̃−m, the (s, t)-Popov form of Lc
δ(A)

[
I 0
E I

]
is
[
P 0
0 I

]
;

(iv) for any t ∈ Zm̃−m, if min(t) > max(s)+deg(P) then the (s, t)-Popov form of Lc
δ(A)

is
[
P 0
R I

]
where R is the remainder of −E modulo P;

289

Chapter 15. Shifted Popov forms

(v) the Hermite form of Lc
δ(A) is

[
H 0
R I

]
, where R is the remainder of −E modulo H.

Proof. Using the notation in Definition 15.2, we have δ = 1 + b|δ|/mc, as well as αi =
1 + bδi/δc < 1 +mδi/|δ| for all i. Hence

m̃ = α1 + · · ·+ αm <
∑

16i6m

(1 +mδi/|δ|) = 2m

which gives part (i).
Part (ii) directly follows from the construction of Lc

δ(A): the i-th column of A is split
into αi columns in Lc

δ(A), all of degree at most δ except possibly one, which has degree
at most βi < δ if we have δ > cdeg(A) componentwise.

Concerning (iii), the matrix
[
P 0
0 I

]
is obviously in (s, t)-Popov form; it remains to

prove that it is left-unimodularly equivalent to Lc
δ(A)

[
I 0
E I

]
.

Let T denote the (m̃−m)×(m̃−m) submatrix of T δ formed by its rightmost columns.
Since T is unit lower triangular, it is unimodular. Let also U be the unimodular matrix
such that UP = A. Then, by construction of Lc

δ(A) and since T δ E = 0, we have

Lc
δ(A)

[
I 0
E I

]
=

[
A ∗
0 T

]
=

[
U ∗
0 T

] [
P 0
0 I

]
,

with
[
U ∗
0 T

]
being a unimodular matrix.

Now, we prove (iii). From (ii), Lc
δ(A) is left-unimodularly equivalent to[

P 0
0 I

] [
I 0
E I

]−1

=

[
P 0
0 I

] [
I 0
−E I

]
=

[
P 0
−E I

]
.

Then, let R be the remainder of −E modulo P, that is, the unique matrix in K[X](m̃−m)×m

which has column degree bounded by the column degree of P and such that −E = QP+R
for some matrix Q (see Lemma 1.24). Then,[

I 0
−Q I

] [
P 0
−E I

]
=

[
P 0
R I

]
is left-unimodularly equivalent to Lc

δ(A). Now, since deg(R) < deg(P), the right-hand
side is in (s, t)-ordered weak Popov form by choice of t; since furthermore cdeg(R) <
cdeg(P), this right-hand side is in (s, t)-Popov form.

The item (v) follows from (iv) since the Hermite form of A is its h-Popov form for the
shift h = (0,m deg(A), . . . ,m(m − 1) deg(A)). Then, (iv) shows that for a well-chosen

shift t, the matrix
[
H 0
R I

]
is in (h, t)-Popov form and left-unimodularly equivalent to

Lc
δ(A); since it is in Hermite form, the conclusion follows.

To use the item (iv) in the usual case where deg(P) is unknown, one may choose the
shift t by relying on the inequalities deg(P) 6 deg(det(P)) = deg(det(A)) 6 m deg(A).

290

15.2. Reducing to almost uniform input degrees

15.2.2 Row partial linearization

The previous section shows how to reduce the non-uniformity of the degrees of the columns
of A, at least if one takes the linearization parameters as δ = cdeg(A). Now, we perform
a similar action on the rows of A.

For a matrix A ∈ K[X]m×m and a tuple δ ∈ Zm>0, one defines the row partial lineariza-
tion Lr

δ(A) of A in a similar way as its column partial linearization. Precisely, these
linearizations are linked by the identity Lr

δ(A) = Lc
δ(A

T)T. However, we cannot directly
rely on the results above as we are interested in left-unimodular equivalence (that is, using
row operations) and not right-unimodular equivalence (that is, using column operations)
we cannot simply make use of the results from the previous section. Instead here we give
properties of the row partial linearization of A related to left-unimodular equivalence.

Lemma 15.6. Let A ∈ K[X]m×m be nonsingular, let s ∈ Zm, and let P ∈ K[X]m×m and
H ∈ K[X]m×m be the s-Popov form and the Hermite form of A. Let further δ ∈ Zm>0.
Then,

(i) for any shift t ∈ Zm̃−m such that min(t) > max(s) + deg(P), the (s, t)-Popov form

of Lr
δ(A) has the form

[
P 0
∗ I

]
;

(ii) the Hermite form of Lr
δ(A) has the form

[
H 0
∗ I

]
.

Proof. Let E =

[
I
E

]
and T δ ∈ K[X](m̃−m)×m̃ be as in Definition 15.2. Let then T denote

the transpose of the (m̃−m)×(m̃−m) submatrix of T δ formed by its rightmost columns.
Since T is unimodular, and since ETT T

δ = 0, we have by construction[
I ET

0 T−1

]
Lr
δ(A) =

[
A 0
B I

]
where B ∈ K[X](m̃−m)×m is the bottom-left block of Lr

δ(A) left-multiplied by T−1.
Now, let R ∈ K[X](m̃−m)×m be the remainder of B modulo P (see Lemma 1.24), let

Q be the matrix such that B = QP + R, and let U denote the unimodular matrix such
that P = UA. Then, [

U 0
−QU I

] [
A 0
B I

]
=

[
P 0
R I

]
is left-unimodularly equivalent to Lr

δ(A). Finally, since deg(R) < deg(P) and cdeg(R) <

cdeg(P), the choice of t implies that
[
P 0
R I

]
is in (s, t)-Popov form.

Concerning the case of the Hermite form, the exact same arguments as in the proof
of Lemma 15.5 give the conclusion.

291

Chapter 15. Shifted Popov forms

15.2.3 Reducing the degrees in shifted Popov form computation

The properties of row and column partial linearizations given above imply that, for any
tuples δ and γ and for well-chosen shifts t,u, the s-Popov form of A appears as a sub-
matrix of the (s, t,u)-Popov form of Â = Lr

γ(Lc
δ(A)). Furthermore, from part (i) of

Lemma 15.5 we also know that Â is m̂ × m̂ with m 6 m̂ < 4m. Thus, to obtain The-
orem 3.5, it remains to give a choice of δ and γ such that the degree of Â is at most
2(1 +DA/m). For this, we use ideas from [GSSV12, Section 6].

Let π1, π2 ∈ Km×m be permutation matrices such that π1Aπ2 = [ãij]i,j satisfies

deg(ãii) > deg(ãi′j′) for all 1 6 i 6 m and i 6 i′, j′ 6 m. (15.4)

Of course these permutations (π1, π2) may not be unique: in what follows, we fix any such
pair of permutations. It can be found in O (̃m2) integer comparisons by sorting the m2

triples {(deg(aij), i, j), 1 6 i, j 6 m} in non-increasing order, where aij is the coefficient
of A at index (i, j).

If we define d = (d1, . . . , dm) ∈ Zm>0 by

di =

{
deg(ãii) if ãii 6= 0,
0 otherwise. (15.5)

then d1 + · · · + dm 6 DA by definition of DA in Eq. (15.1). Set δ = dπ−1
2 , where d is

seen as a row vector. Then γ = rdeg(Lr
δ(A)) leads to the desired degree property. Before

proving this, let us first observe it on the matrix of Example 15.4.

Example 15.7 (Reducing the input degrees). Let A be the matrix from Example 15.4.
One can verify that DA = 199 = 75 + 54 + 63 + 7. Also

π1Aπ2 =

0 1 0 0
0 0 0 1
0 0 1 0
1 0 0 0

[2] [10] [63] [5]
[75] [51] [95] [69]
[4] [5] [48] [7]
[10] [54] [75] [6]

0 0 0 1
0 1 0 0
1 0 0 0
0 0 1 0

=

[95] [51] [69] [75]
[75] [54] [6] [10]
[48] [5] [7] [4]
[63] [10] [5] [2]

 .

This gives d = (95, 54, 7, 2) and δ = (2, 54, 95, 7), with 95 + 54 + 7 + 2 = 158 6 DA. The
matrix Lc

δ(A) has its degrees as shown in Example 15.4, and in particular we have

γ = rdeg(Lc
δ(A)) = (39, 75, 39, 39, 40, 40, 40).

292

15.3. Fast, probabilistic computation of the shifted Popov form

Thus, we obtain

Lr
γ(Lc

δ(A)) =

[2] [10] [39] [5] 0 [23] 0 0
[44] [39] [39] [44] [11] [39] [15] −X45

[4] [5] [39] [7] 0 [8] 0 0
[10] [39] [39] [6] [14] [35] 0 0
0 −X40 0 0 1 0 0 0
0 0 −X40 0 0 1 0 0
0 0 0 0 0 −X40 1 0

[30] 0 0 [24] 0 0 0 1

,

which has degree 45 = d|γ|/7e. This is less than 50 = dDA/4e. b

Coming back to the general case, we want to prove that Lr
γ(Lc

δ(A)) ∈ K[X]m̂×m̂ has
degree at most 3(1 +DA/m). First, we show that the sum of the components of γ is less
than 2m+ 3DA. Indeed, writing m̃ for the dimension of Lc

δ(A), by construction the last
m̃−m rows of Lc

δ(A) have degree at most 1 + |d|/m and its first m rows have degree at
most [max(1 + |d|/m, (π−1

1 d)i)]16i6m componentwise, where d is considered as a column
vector and (π−1

1 d)i stands for the i-th entry of π−1
1 d. Therefore,

|γ| 6 m̃(1 + |d|/m) + |π−1
1 d| < 2m+ 3|d| 6 2m+ 3DA.

Then, since γ = rdeg(Lr
δ(A)) the result in item (ii) of Lemma 15.5 translated for row

partial linearization ensures that the degree of the matrix Lr
γ(Lc

δ(A)) is at most

1 + b|γ|/mc < 1 +
2m+ 3DA

m
= 3(1 +DA/m).

15.3 Fast, probabilistic computation of the shifted Popov
form

Now, we present our fast algorithm to compute the shifted Popov form of polynomial
matrix. It combines the partial linearization above with two main tools: known algorithms
related to Smith form computation, and the fast algorithm of Chapter 8 for finding shifted
Popov solution bases.

We first put aside the partial linearization, and show the correctness of the following
two-step approach for computing the s-Popov form of a nonsingular A ∈ K[X]m×m:

• Compute the Smith form of A, giving the moduli M, and compute a corresponding
right unimodular transformation, giving the equations F;

• Return the s-Popov solution basis of SyzM(F).

Lemma 15.8. Let A ∈ K[X]m×m be nonsingular and let S = UAV be the Smith form of
A, where U and V are unimodular matrices. Then, let M ∈ K[X]m6=0 and F ∈ K[X]m×m

be such that S = diag(M) and F = V mod M. Then SyzM(F) is the row space of A.

293

Chapter 15. Shifted Popov forms

Proof. Equivalently, we want to prove that A is a solution basis of SyzM(F). Consider
a polynomial vector p ∈ K[X]1×m. If p is in the row space of A, then p is a solution
of SyzM(F) since AV = U−1diag(M) with U−1 over K[X]. On the other hand, if pF =
0 mod M, then pV = qS for some q, and therefore p = qUA, which is in the row space
of A.

Concerning the cost of the first step, the Smith factors M and the reduced right-
unimodular transformation F can be obtained in expected O (̃mω deg(A)) operations
[Gup11, Theorem 4.8]. To summarize, this is done by computing

a. R a row reduced form of A [GSSV12, Theorem 18],

b. diag(M) the Smith form of R [Sto03, Algorithm 12],

c. (∗,F) a reduced Smith transform for R [Gup11, Figure 3.2];

we remark that Steps b. and c. should be performed in conjunction with the precondi-
tioning techniques detailed in [KKS90] (see for example the proof of [Gup11, Theorem 4.8]
and the algorithm in [Gup11, Figure 6.1]). Of course, one may take for M only the non-
trivial Smith factors, and for F only the nonzero columns of the reduced transform.

Since the product of the moduli in M is det(A), up to multiplication by a nonzero con-
stant from K, the sum of their degrees is deg(det(A)). Then, according to Theorem 2.22,
the algorithm outlined above costs allow us to compute the shifted Popov form of A
in expected O (̃mω deg(A)) field operations. Introducing back the preliminary partial
linearization of A, we now give the details of the full algorithm.

Proposition 15.9. Algorithm 36 is correct. If the cardinality of the field K is at least
8(4m)3(3 + 3DA/m), then this algorithm computes the s-Popov form of A in a Las Vegas
fashion, using an expected number of O (̃mωdDA/me) operations in K.

Proof. We use notation from the algorithm. According to Lemma 15.5, the s-Popov form
P of A is the principal m × m submatrix of the u-Popov form of the matrix Ã. This
result also ensures that the u-Popov form of Ã has degree at most deg(P) 6 m deg(A).
As a consequence, the choice of v is such that, according to Lemma 15.6, the u-Popov
form of Ã is the principal m̃× m̃ submatrix of the v-Popov form Q of Â. Thus, P is the
principal m×m submatrix of Q.

On the other hand, Lemma 15.8 implies that the v-Popov solution basis P̂ of SyzM(F)
computed at Step 3 is also the v-Popov form of Â, that is, P̂ = Q, hence the correctness.

Let us now prove the cost bound. Steps 1 and 4 do not use field operations. From the
discussion in Section 15.2.3, we have that Â is as in Theorem 3.5: its degree deg(Â) is less
than 3(1 +DA/m), and its dimension m̂ is less than 4m. Then, the computation of S and
F in Step 2 can be done in a Las Vegas fashion in an expected number of O (̃mωdDA/me)
operations in K [Gup11, Theorem 4.8] (the preconditioning is detailed in the proof of that
result, as well as in [Gup11, Figure 6.1]). This relies in particular on [Sto03, Algorithm 12]
for Smith form computation.

On the other hand, we have

deg(m1) + · · ·+ deg(mn) = deg(det(S)) = deg(det(Â)) = deg(det(A));

294

15.3. Fast, probabilistic computation of the shifted Popov form

Algorithm 36 – SPopovForm
(Shifted Popov form of a polynomial matrix)
Input:
• a nonsingular matrix A ∈ K[X]m×m,
• a shift s ∈ Zm.

Output: the s-Popov form of A.

1. /* Partial linearization */

π1, π2 ∈ Km×m ← permutations such that π1Aπ2 satisfies Eq. (15.4)
d ∈ Zm>0 ← nonnegative diagonal degrees of π1Aπ2 as in Eq. (15.5)

Ã ∈ K[X]m̃×m̃ ← Lc
dπ−1

2

(A)

u ∈ Zm̃ ← (s,max(s) +m deg(A), . . . ,max(s) +m deg(A))

Â ∈ K[X]m̂×m̂ ← Lr
rdeg(Ã)

(Ã)

v ∈ Zm̂ ← (u,max(s) + 2m deg(A), . . . ,max(s) + 2m deg(A))

2. /* Reduced Smith transform – details in [Gup11, Theorem 4.8] */

S← the Smith form of A

G← matrix such that G = V mod S for a right Smith transform V

M← nontrivial factors (m1, . . . ,mn) of S // S = diag(1, . . . , 1,M)

F ∈ K[X]m̂×n ← nontrivial columns of G // G = [0 F]

3. /* Solution basis computation */

P̂← FastPopovSolBas(M,F,v) // Algorithm 18

4. Return the principal m×m submatrix of P̂

295

Chapter 15. Shifted Popov forms

hence, according to Proposition 8.17, Step 3 uses O (̃mω−1 deg(det(A))) operations. Since
deg(det(A)) 6 DA, the conclusion follows.

We remark that, if one is satisfied with an algorithm with cost bound O(mω deg(A)),
then the partial linearization at Step 1 can be skipped, and the condition on the size of
the base field can be relaxed (see [Gup11, Theorem 4.8]): it is enough if its cardinality is
at least 8m3 deg(A).

296

16

Hermite form and determinant

The material presented in this chapter is the result of a joint work with George Labahn
and Wei Zhou [LNZ16].

For a given nonsingular polynomial matrix A in K[X]m×m, one can unimodularly
transform A into a triangular form. Triangularizing a matrix is useful for solving linear
systems and computing matrix operations such as determinants or normal forms. In the
latter case, the best-known example is the Hermite normal form, first defined by Hermite
in 1851 in the context of triangularizing integer matrices [Her51]. Here,

H =

h11

h21 h22
...

... . . .
hm1 · · · · · · hmm

with the added properties that each hii is monic and deg(hij) < deg(hii) for all j < i.
Classical variations of triangularization include specifying row rather than column forms,
in which case the unimodular matrix multiplies on the left rather than the right, and
specifying upper rather than lower triangular forms.
Remark 16.1. In this chapter, unlike in many others in this document, we work with
column spaces of the matrices rather than row spaces: we study the computation of
Hermite forms for right-unimodular equivalence, thus focusing on the module generated
by the columns of the input matrices. K

In this chapter, we give efficient algorithms to compute the Hermite form and the
determinant of a nonsingular polynomial matrix. Since the Hermite form is a particular
shifted Popov form for a specific shift, it can be computed efficiently by the algorithm
given in Chapter 15. However this algorithm is probabilistic; our goal here is to exploit
the triangular shape of the Hermite form to compute it efficiently and deterministically.
From such a triangular form, it is natural to ask the question of retrieving the determinant
of the matrix, which is the product of the diagonal entries up to some constant factor
that remains to be determined. We show how this can be done via a modification of our
triangularization algorithm.

In Section 16.1 we give preliminary information on column bases of polynomial matri-
ces. Section 16.2 contains our fast algorithm for finding the diagonal entries of a triangular

297

Chapter 16. Hermite form and determinant

form, followed in Section 16.3 by a modification in order to find the determinant. The
computation of the whole Hermite form is then given in Section 16.4; it exploits the known
diagonal degrees of the Hermite form to solve the problem via fast deterministic column
reduction.

16.1 Preliminaries: column bases
Here, we present one of the building blocks used in our algorithms, namely the concept
of column basis for a polynomial matrix.

A column basis of a matrix A ∈ K[X]m×n is a basis of the column space of the matrix
A. We recall that the column space of A is the K[X]-module {Ap,p ∈ K[X]n×1}, which
is free of rank ρ 6 min(m,n). Such a basis can be represented as a full rank matrix in
K[X]m×ρ whose columns are the basis elements. As detailed in Section 1.1.1, any column
basis right-multiplied by a unimodular matrix gives another column basis.

Example 16.2. Let

A =

[
6X + 1 2X3 +X2 + 6X + 1 3

4X5 + 5X4 + 4X2 +X 6X5 + 5X4 + 2X3 + 4 X4 + 5X3 + 6X2 + 5X

]
be a 2× 3 matrix over Z7[X] having column degree s = (5, 5, 4). Then a column basis B,
and a kernel basis N, of A are given by

B =

[
5X + 5 1

3 1

]
and N =

 6X6 + 4X5 + 5X4 + 3X3 + 4X2 + 1
4X4 + 5X3 +X2 + 6X

4X7 + 4X6 + 4X5 + 4X3 + 5X2 + 3X + 2

 .
For example, if b1 and b2 denote the columns of B, then the third column of A, denoted
by a3, is given by

a3 = (4X3 + 3X2 + 6X + 5) b1 + (X4 + 4X2 +X + 6) b2.

Here cdegs(N) = (11). Besides, the shifted leading matrix

lms(N) =

6
0
4

has full rank, hence we have that N is an s-minimal kernel basis of A. b

Fast algorithms for kernel basis computation and column basis computation are given
in [ZLS12] and in [ZL13], respectively. In both cases they make use of fast methods from
[BL94, GJV03, ZL12] for computing approximant bases, and they admit the following
cost bounds.

Theorem 16.3. Let A ∈ K[X]m×n with m 6 n and m ∈ Θ(n), and let s = cdeg(A).
Then, there exist deterministic algorithms which compute

(i) an s-minimal kernel basis for A using O (̃nωdse) field operations,

298

16.2. Computing the diagonal entries of a triangular form

(ii) a column basis of A using O (̃nωdse) field operations,

where s = |s|/n is the average column degree of A.

For more details, we refer the reader to [ZLS12, Theorem 4.1] and [ZL13, Theorem 5.6].
We remark that, whereas we gave in Section 12.3 a detailed cost bound with logarithmic
factors concerning kernel basis computation, we do not yet have such a detailed cost for
column basis computation. Therefore, in this chapter, we will omit logarithmic factors in
the costs.

16.2 Computing the diagonal entries of a triangular
form

In this section we show how to determine the diagonal entries of a triangular form of a
nonsingular matrix A ∈ K[X]n×n with A having column degree s. Our algorithm makes
use of fast kernel and column bases computations.

As mentioned in Section 3.2.3, we consider unimodularly transforming A to

AU = B =

[
B1 0
∗ B2

]
(16.1)

which eliminates a top right block and gives two square diagonal blocks B1 and B2 in B.
After this block triangularization step, the matrix is now closer to being in triangular form.
Applying this procedure recursively to B1 and B2, until the matrices reach dimension 1,
gives the diagonal entries of a triangular form of A. These entries are unique up to
multiplication by a nonzero constant from K, and in particular making them monic yields
the diagonal entries of the Hermite form of A.

In this procedure, a major problem is that the degrees in the unimodular multiplier
U can be too large for efficient computation. For example, the matrix

A =

1 0 0 · · · 0
−Xd 1 0 · · · 0

0 −Xd 1 · · · 0
... 0
0 · · · 0 −Xd 1

 ∈ K[X]n×n

of degree d > 0 is unimodular and hence its Hermite form is the identity. However the
corresponding unimodular multiplier is

U =

1 0 0 · · · 0
Xd 1 0 · · · 0
X2d Xd 1 · · · 0
... 0

X(n−1)d · · · X2d Xd 1

 ,

with the sum of the degrees in U being in Θ(n3d), beyond our target cost O(nωd).

299

Chapter 16. Hermite form and determinant

16.2.1 Fast block elimination

Our approach is to use fast kernel and column basis methods to efficiently compute the
diagonal blocks B1 and B2 while at the same time avoiding the computation of all of U.

Partition A =

[
Au

Ad

]
, with Au and Ad consisting of the upper dn/2e and lower bn/2c

rows of A, respectively. Then both upper and lower parts have full rank since A is
assumed to be nonsingular. By partitioning U =

[
U` Ur

]
, where the column dimension

of U` matches the row dimension of Au, then AU = B becomes[
Au

Ad

] [
U` Ur

]
=

[
B1 0
∗ B2

]
.

Notice that the matrix B1 is nonsingular and is therefore a column basis of Au. As such
this can be efficiently computed as mentioned in Theorem 16.3. Then, in order to compute
B2 = AdUr, notice that the matrix Ur is a right kernel basis for Au, which makes the
top right block of B zero.

The following lemma states that the kernel basis Ur can be replaced by any other
kernel basis for Au thus giving another unimodular matrix that also works.

Lemma 16.4. Partition A =

[
Au

Ad

]
and suppose B1 is a column basis of Au and N a

kernel basis for Au. Then there is a unimodular matrix U =
[
∗ N

]
such that

AU =

[
B1 0
∗ B2

]
,

where B2 = AdN. If A is square and nonsingular, then B1 and B2 are also square and
nonsingular.

Proof. This follows from [ZL13, Lemma 3.1].

Note that we do not compute the blocks represented by the symbol ∗. Thus Lemma 16.4
allows us to determine B1 and B2 independently without considering the computation of
the unimodular matrix. This procedure for computing the diagonal entries is presented
in Algorithm 37. The cost of this algorithm is given below in Proposition 16.6.

16.2.2 Computational cost and example

Before giving a cost bound for our algorithm, let us observe its correctness on an example.

Example 16.5. Let us consider the matrix

A =

 6X + 1 2X3 +X2 + 6X + 1 3
4X5 + 5X4 + 4X2 +X 6X5 + 5X4 + 2X3 + 4 X4 + 5X3 + 6X2 + 5X

2 2X5 + 5X4 + 5X3 + 6X2 6

 ,
300

16.2. Computing the diagonal entries of a triangular form

Algorithm 37 – HermiteDiag
(Diagonal entries of the Hermite form)
Input: a nonsingular matrix A ∈ K[X]n×n.
Output: the list d ∈ K[X]n of diagonal entries of the Hermite form of A.

1. If n = 1:

a. write A = λd with λ ∈ K and d ∈ K[X] monic

b. Return d

2. Else:

a. write A =

[
Au

Ad

]
, where Au consists of the top dn/2e rows of A

b. B1 ← ColumnBasis(Au) // [ZL13, Algorithm 2]

c. N←MinKerBas(Au, cdeg(A)) // using Algorithm 26

d. B2 ← AdN // using Algorithm 25

e. d1 ← HermiteDiag(B1)

f. d2 ← HermiteDiag(B2)

g. Return [d1,d2]

301

Chapter 16. Hermite form and determinant

working over Z7[X]. Considering the matrix Au formed by the top two rows of A, then
a column basis B1 and kernel basis N of Au were given in Example 16.2. If Ad denotes
the bottom row of A, then this gives diagonal blocks

B1 =

[
5X + 5 1

3 1

]
and

B2 = AdN =
[
X9 + 2X8 +X7 + 4X6 + 6X5 + 4X4 + 3X3 + 3X2 + 4X

]
.

Recursively computing with B1, we obtain a column basis and kernel basis of the top row
B1,u of B1, as

B̃1 =
[
1
]

and Ñ =

[
1

2X + 2

]
.

If B1,d denote the bottom row of B1, we get B̃2 = B1,d Ñ =
[
2X + 5

]
, which gives the

second diagonal block from B1. Thus we have the diagonal entries of a triangular form
of B1. On the other hand, since B2 is already a 1 × 1 matrix we do not need to do any
extra work. As a result we have that A is unimodularly equivalent to1

∗ 2X + 5
∗ ∗ X9 + 2X8 +X7 + 4X6 + 6X5 + 4X4 + 3X3 + 3X2 + 4X

 ,
giving, up to making them monic, the diagonal entries of the Hermite form of A. b

Proposition 16.6. Algorithm 37 is correct and uses O (̃nωdse) operations in K, where
s = |cdeg(A)|/n is the average column degree of A.

Proof. The correctness follows from the material in Section 16.2.1.
Concerning the cost bound, the three main operations are computing a column basis

of Au, computing a kernel basis N of Au, and multiplying the matrices AdN. We recall
that s = cdeg(A), and we set ξ = |s|, an integer used to measure size for our problem.

For the column basis computation, by Theorem 16.3 we know that a column basis B1 of
Au can be computed in O (̃nωdse) operations. By [ZL13, Lemma 5.1] the column degrees
of the column basis B1 are also bounded by the original column degrees s. Similarly, from
Theorem 16.3, computing a s-minimal kernel basis N of Au costs O (̃nωdse) operations,
and by [ZLS12, Theorem 3.4] the sum of the s-column degrees of the output kernel basis
N is bounded by ξ.

For the matrix multiplication AdN, we have that the sum of the column degrees of
Ad and the sum of the s-column degrees of N are both bounded by ξ, with cdeg(Ad) 6 s.
Therefore, up to inserting zero rows in Ad and zero columns in N to make them square,
Proposition 12.5 applies and the multiplication can be done with a cost of O (̃nωdse)
using Algorithm 25. (To be more precise, one would run this algorithm on the transposed
matrices and take the transpose of the result.)

As a result, if we let the cost of Algorithm 37 be g(n) for an input of dimension n then

g(n) ∈ O (̃nωdse) + g(dn/2e) + g(bn/2c).

302

16.3. Fast computation of the determinant of a polynomial matrix

As s = ξ/n depends on n we use O (̃nωdse) = O (̃nω(s + 1)) = O (̃nω−1ξ + nω) with ξ
not depending on n. Then we solve the recurrence relation as

g(n) ∈ O (̃nω−1ξ + nω) + g(dn/2e) + g(bn/2c)
⊆ O (̃nω−1ξ + nω) + 2g(dn/2e)
⊆ O (̃nω−1ξ + nω) = O (̃nωdse).

16.3 Fast computation of the determinant of a polyno-
mial matrix

In this section, we show how to recursively and efficiently compute the determinant of
a nonsingular matrix A ∈ K[X]n×n having column degree s = cdeg(A). Our algorithm
follows a strategy similar to the recursive block triangularization in Section 16.2, making
use of fast kernel basis and column basis computation.

Indeed, after unimodularly transforming A to

AU = B =

[
B1 0
∗ B2

]
as in Eq. (16.1), the determinant of A can be computed as

det(A) =
det(B)

det(U)
=

det(B1) det(B2)

det(U)
, (16.2)

which requires us to first compute det(B1), det(B2), and det(U). The same procedure can
then be applied to compute the determinant of B1 and the determinant of B2. However,
as U is unimodular we will handle its determinant differently. This can be repeated
recursively until the dimension becomes 1.

One major obstacle for efficiency of this approach is that we do want to compute the
scalar det(U), and as noted in Section 16.2, the degrees of the unimodular matrix U can
be too large for efficient computation. To sidestep this issue, we will show that det(U)
can be computed with only partial knowledge of the matrix U. Combining this with the
method of Section 16.2 to compute the matrices B1 and B2 without computing all of B
and U, we obtain an efficient recursive algorithm.

Remark 16.7. In some cases, the computation of the determinant is easily done from
the diagonal entries of a triangular form. Indeed, let A ∈ K[X]n×n be nonsingular and
assume that we have computed the diagonal entries h11, . . . , hnn of its Hermite form.
Then, det(A) = λh11 · · ·hnn for some nonzero constant λ ∈ K. If the constant coefficient
of h11 · · ·hnn is nonzero, we can retrieve λ by computing the constant coefficient of det(A),
which is found by K-linear algebra using O(nω) operations since det(A)(0) = det(A(0)).
More generally, if we know α ∈ K such that h11(α) · · ·hnn(α) 6= 0, then we can deduce
det(A) efficiently. However, this does not lead to a fast deterministic algorithm in general
since it may happen that det(A)(α) = 0 for all field elements α, or that finding α with
h11(α) · · ·hnn(α) 6= 0 is a difficult task. K

303

Chapter 16. Hermite form and determinant

We now focus on computing the determinant of U, or equivalently, the determinant of
V = U−1. The column basis computation from [ZL13] for computing the m×m diagonal
block B1 also gives Ur, the matrix consisting of the right (n −m) columns of U, which
is a right kernel basis for Au. In fact, this column basis computation also gives a right
factor multiplied with the column basis B1 to give Au. The following lemma shows that
this right factor coincides with the matrix Vu consisting of the top m rows of V. The
column basis computation therefore gives both Ur and Vu with no additional work.

Lemma 16.8. Let m denote the dimension of B1. Then, a matrix Vu ∈ K[X]m×n satisfies
B1Vu = Au if and only if Vu is the submatrix of V = U−1 formed by its top m rows.

Proof. The proof follows directly from

BV =

[
B1 0
∗ B2

] [
Vu

Vd

]
=

[
Au

Ad

]
= A .

While the determinant of V or the determinant of U is needed to compute the de-
terminant of A, a major problem is that we do not know U` or Vd, which may not be
efficiently computed due to their possibly large degrees. This means we need to compute
the determinant of V or U without knowing the complete matrix V or U. The following
lemma shows how this can be done using just Ur and Vu, which are obtained from the
computation of the column basis B1.

Lemma 16.9. Let U =
[
U` Ur

]
and A satisfy, as before,

AU =

[
Au

Ad

] [
U` Ur

]
=

[
B1 0
∗ B2

]
= B,

where the row dimension of Au, the column dimension of U`, and the dimension of B1

are m. Let V =

[
Vu

Vd

]
be the inverse of U with m rows in Vu and U∗` ∈ K[X]n×m be a

matrix such that U∗ =
[
U∗` Ur

]
is unimodular. Then VuU

∗
` is unimodular and

det(A) =
det(B) det(VuU

∗
`)

det(U∗)
.

Proof. Since det(A) = det(B) det(V), it is enough to show that

det(V) = det(VuU
∗
`)/ det(U∗).

This follows from

det(V) det(U∗) = det(VU∗)

= det

([
Vu

Vd

] [
U∗` Ur

])
= det

([
VuU

∗
` 0

∗ I

])
= det(VuU

∗
`).

In particular det(VuU
∗
`) is a nonzero constant and thus VuU

∗
` is unimodular.

304

16.3. Fast computation of the determinant of a polynomial matrix

Lemma 16.9 shows that the determinant of V can be computed using Vu, Ur, and
a unimodular completion U∗ of Ur. In fact, this can be made still more efficient by
noticing that since we are looking for a constant determinant, the higher degree parts of
the matrices do not affect the computation.

Lemma 16.10. If U ∈ K[X]n×n is unimodular, then

det(U) = det(U mod X) = det(U(0)).

Proof. Note that det(U(α)) = det(U)(α) for any α ∈ K, that is, the result is the same
whether we do evaluation before or after computing the determinant. Then, taking α = 0
concludes the proof.

Lemma 16.10 allows us to use just the degree zero coefficient matrices in the compu-
tation. Hence Lemma 16.9 can be improved as follows.

Lemma 16.11. Let A, U =
[
U` Ur

]
, and V =

[
Vu

Vd

]
be as before. Let Ur = Ur mod X

and Vu = Vu mod X be the constant matrices of Ur and Vu, respectively. Let U∗` ∈ Kn×m

be a matrix such that U∗ =
[
U∗` Ur

]
is nonsingular. Then

det(A) =
det(B) det(VuU

∗
`)

det(U∗)
.

Proof. Suppose we have a matrix U∗` ∈ K[X]n×m such that U∗` = U∗` mod X and U∗ =[
U∗` Ur

]
is unimodular. Using Lemma 16.9 and Lemma 16.10, we have that VuU

∗
` is

unimodular with VuU∗` = VuU
∗
` mod X and thus

det(A) = det(B) det(VuU
∗
`)/ det(U∗) = det(B) det(VuU

∗
`)/ det(U∗).

Let us now show how to construct such a matrix U∗` . Let W∗
` ∈ K[X]n×m be any

matrix such that W∗ =
[
W∗

` Ur

]
is unimodular and let W ∗

` denote its constant term

W ∗
` = W∗

` mod X. It is easily verified that
[
W ∗
` Ur

]−1 [
U∗` Ur

]
=

[
Tu 0
Td I

]
for some

nonsingular Tu ∈ Km×m and some Td ∈ Kn−m×m. Then define the matrix U∗` = W∗
`

[
Tu
Td

]
in K[X]n×m. On the one hand, we have that U∗ =

[
U∗` Ur

]
= W∗

[
Tu 0
Td I

]
is unimodu-

lar. On the other hand, by construction we have that U∗` mod X = W ∗
`

[
Tu
Td

]
= U∗` .

Thus Lemma 16.11 requires us to compute U∗` ∈ Kn×m a matrix such that U∗ =[
U∗` Ur

]
is nonsingular. This can be obtained from the nonsingular matrix that trans-

forms Vu to its reduced column echelon form computed using the Gauss Jordan transform
algorithm from [Sto00] with a cost of O(nmω−1) field operations.

We now have all the ingredients needed for computing the determinant of A. A
recursive algorithm is given in Algorithm 38, which computes the determinant of A as
the product of the determinant of V and the determinant of B. The determinant of B is
computed by recursively computing the determinants of its diagonal blocks B1 and B2.

305

Chapter 16. Hermite form and determinant

Algorithm 38 – Determinant
(Determinant of a nonsingular polynomial matrix)
Input: a nonsingular matrix A ∈ K[X]n×n.
Output: the determinant of A.

1. If n = 1 then return A

2. Else:

a. write A =

[
Au

Ad

]
, with Au consisting of the top dn/2e rows of A

b. B1,Ur,Vu ← ColumnBasis(Au) // [ZL13, Algorithm 2]
/* Here ColumnBasis also returns the kernel basis Ur

and the right factor Vu such that Au = B1Vu. */

c. B2 ← AdUr

d. Ur ← Ur mod X

e. Vu ← Vu mod X

f. Compute U∗` ∈ Kn×dn/2e such that U∗ =
[
U∗` Ur

]
is nonsingular

g. dV ← det(VuU
∗
`)/ det(U∗) // element of K

h. dB ← Determinant(B1)Determinant(B2)

i. Return dV dB

306

16.3. Fast computation of the determinant of a polynomial matrix

Proposition 16.12. Algorithm 38 is correct and uses O (̃nωdse) operations in K, where
s = |cdeg(A)|/n is the average column degree of A.

Proof. The correctness follows from the material in this section.
From Lemma 16.4 and Proposition 16.6 the computation of the two diagonal blocks

B1 and B2 costs O (̃nωdse) operations. As mentioned above, computing U∗l at Step 6 of
the algorithm uses O(nω) operations. Step 7 involves only constant matrices so that dV
can be computed in O(nω). Finally, det(B1) and det(B2) are computed recursively and
multiplied. Since these are two univariate polynomials of degree at most deg(det(A)) 6
ξ = ns, their product dB is obtained in O (̃ξ) ⊂ O (̃nωdse) operations.

Therefore, the recurrence relation for the cost of the Algorithm 38 is the same as that
in the proof of Proposition 16.6, and the total cost is O (̃nωdse).

For an input matrix A which has non-uniform degrees, Proposition 16.12 can be further
improved using partial linearization techniques, and in particular with the following result
from [GSSV12, Corollary 3] .

Lemma 16.13. Let A ∈ K[X]n×n be nonsingular. Using no operation in K, one can
build a matrix Â ∈ K[X]n̂×n̂ such that

(i) n 6 n̂ < 3n and deg(Â) 6 dDA/ne,

(ii) the determinant of A is equal to the determinant of Â.

Combining this with our algorithm, this proves the result announced in Theorem 3.8.
Example 16.14. In order to observe the correctness of the algorithm, let

A =

−X + 2 −2X − 3 3X3 +X2 −X + 2 −3X5 −X4

−X −2 3X3 −X −3X5

−2 X + 3 2 −2 −2X2

0 1 −3X2 − 2 −2X2 − 1 X4 +X2

0 2 3 −3X2 −2X4 − 3X2 + 3

working over Z7[X]. If Au denotes the top three rows of A, then we have a column basis

B1 =

−X + 2 −2X − 3 3X3 +X2

−X −2 3X3

−2 X + 3 2

and a minimal kernel basis

Ur =

3 0
0 0
0 X2

−3 0
0 1

for Au. The second block diagonal is then given by

AdUr =

[
X2 − 3 −2X4 −X2

−2X2 −2X4 + 3

]
.

307

Chapter 16. Hermite form and determinant

The computation of the column basis B1 also gives the right factor

Vu =

1 0 0 1 0
0 1 0 0 0
0 0 1 0 −X2

and so the constant term matrices are then

Ur =

3 0
0 0
0 0
−3 0
0 1

 and Vu =

1 0 0 1 0
0 1 0 0 0
0 0 1 0 0

with Gaussian-Jordan elimination used to find a nonsingular completion of Ur as

U∗` =

1 0 0
0 1 0
0 0 1
0 0 0
0 0 0

 .

The determinant of U is then computed as

dV =
det(VuU

∗
`)

det(U∗)
= −1

3
= 2.

The determinants of B1 and B2 are computed recursively. In the case of B1 a minimal
kernel basis and column basis are given by

Ur,1 =

3X2

0
1

 , B1,1 =

[
−X + 2 0
−X 2X − 2

]
, and Vu,1 =

[
1 2 −3X2

0 1 0

]
.

This gives the remaining diagonal block as B1,2 =
[
X2 + 2

]
. The corresponding constant

term matrices Ur,1 and Vu,1 and nonsingular completion U∗`,1 are then given by

Ur,1 =

0
0
1

 , Vu,1 =

[
1 2 0
0 1 0

]
, and U∗`,1 =

1 0
0 1
0 0

 ,
which gives dV1 = 1. Hence det(B1) = (−X + 2)(2X − 2)(X2 + 2). A similar argument
gives det(B2) = (X2 − 3)(X4 + 3) and hence

det(A) = dV det(B1) det(B2)

= 3X10 − 2X9 + 3X8 + 2X7 −X6 −X5 +X4 −X3 − 2X2 +X − 3. b

308

16.4. Fast Hermite form algorithm with known minimal degree

16.4 Fast Hermite form algorithm with known minimal
degree

In Section 16.2, we have shown how to efficiently determine the diagonal entries of the
Hermite form H of a nonsingular input matrix A ∈ K[X]n×n. One then still needs to
compute the remaining entries of H.

We start this section by showing how knowing the diagonal degrees helps to obtain H
via shifted column reduction for a well-chosen shift. This follows ideas in Section 1.2.1,
noting that the diagonal degrees give in particular the diagonal entries of H, which cor-
respond to the shifted minimal degree of the module for the Hermite shift. However,
this leads to a Hermite form algorithm that is not yet satisfactory in terms of efficiency.
Namely, when the degrees of the diagonal entries have a large amplitude, the shifted
column reduction step may cost O (̃nω+1 deg(A)) field operations.

Then, knowing the diagonal degrees of H allows us to rely on partial linearization
techniques similar to that in Section 6.2; they allow us to reduce to the case of computing
a column reduced form of A for an almost uniform shift. Along with the algorithm in
Section 16.2, this gives an algorithm to compute the Hermite form of A in O (̃nω deg(A))
field operations using fast deterministic column reduction [GSSV12].

16.4.1 Hermite form via shifted column reduction

It is known that the Hermite form H of A is a shifted reduced form of A for a whole
range of shifts. Without further information on the degrees in H, one appropriate shift
is

h = (n(n− 1)d, n(n− 2)d, . . . , nd, 0) (16.3)

where d = deg(A) (see [BLV06, Lemma 2.6]). We note that this shift has a large ampli-
tude, namely max(h) −min(h) ∈ Θ(n2d). Unfortunately, there does not appear to be a
deterministic shifted reduction algorithm that would compute an h-reduced form of A in
O (̃nωd) field operations.

Now, let us consider the degrees δ = (δ1, . . . , δn) of the diagonal entries of H. Then
we have that H is a −δ-column reduced form of A and, in addition, that H can be easily
recovered from any −δ-column reduced form of A. More precisely, suppose that we know
δ, for example thanks to the algorithm in Section 16.2. Then, we claim that H can be
computed as follows, where µ = (max(δ), . . . ,max(δ)) ∈ Zn>0:

Xµ−δA
reduction−−−−−−→ Xµ−δR

normalization−−−−−−−−−→ H = R lm−δ(R)−1

where R is any −δ-column reduced form of A. To show this, we will rely on the following
consequences of [SS11, Lemma 17].

Lemma 16.15. Let A and B be column reduced matrices in K[X]n×n with uniform column
degree (d, . . . , d), for some d ∈ Z>0. If A and B are right-unimodularly equivalent then

A lm0(A)−1 = B lm0(B)−1.

309

Chapter 16. Hermite form and determinant

Proof. The matrix A is column reduced with uniform column degree (d, . . . , d). As such
A lm0(A)−1 is its Popov form according to [SS11, Lemma 17] (i.e. its leading coefficient
matrix is the identity). Similarly, B lm0(B)−1 is the Popov form of B in this case. We
recall that the Popov form is a canonical form under right-unimodular equivalence for
nonsingular matrices in K[X]n×n; for a general definition we refer the reader to [Kai80].
Thus, since A and B are right-unimodularly equivalent, the uniqueness of the Popov form
implies A lm0(A)−1 = B lm0(B)−1.

As we often wish to apply Lemma 16.15 with shifts we also include the following.

Corollary 16.16. Let s ∈ Zm be a shift, and let A and B be s-column reduced matrices
in K[X]n×n with uniform s-column degree (d, . . . , d), for some d ∈ Z. If A and B are
right-unimodularly equivalent then

A lms(A)−1 = B lms(B)−1.

Proof. We simply replace A and B by Xs A and Xs B in the previous proof.

We remark that this result is directly related to those mentioned in Section 1.2.1, and
in particular Lemma 1.26. Yet, for better readability we recall this since here we are
working with right unimodular equivalence.

Thus we can start with the matrix Xµ−δA, column reduce this matrix and then
normalize it to get our normal form. However Xµ−δA may have some entries of large
degree. Indeed, max(δ) may be as large as deg(det(A)) while having min(δ) = 0, in
which case the degree of Xµ−δA is at least deg(det(A)). For efficient deterministic shifted
column reduction we would need the degree of Xµ−δA to be in O(deg(A)).

16.4.2 Reducing the amplitude of the minimal degree

In the strategy presented in the previous subsection, the main obstacle to obtaining an
efficient algorithm is that the diagonal degrees of H might have a large amplitude. In this
subsection, we will show how partial linearization techniques allow us to build a matrix
Lr
δ(A) such that H can be obtained from a −d-reduced form of Lr

δ(A) for a shift d that
has a small amplitude.

A key fact is that the average of the degrees δ is controlled. Namely, denoting by δ
the average of δ, we have that δ 6 deg(A). Indeed, the product of the diagonal entries
of H is det(H) which, up to a constant multiplier, is the same as det(A) and thus the
degree of this product is

nδ = δ1 + · · ·+ δn = deg(det(A)) 6 n deg(A).

In order to reduce the amplitude of δ, one can split the entries that are larger than δ into
several entries each at most δ. From this we obtain another tuple d = (d1, . . . , dñ) with
max(d)−min(d) 6 δ 6 deg(A) and having length ñ less than 2n.

Most importantly for our purpose, there is a corresponding transformation of matrices
which behaves well with regards to shifted reduction. Namely, this transformation is a
type of row partial linearization, similar to those introduced in [GSSV12, Section 6]. Let

310

16.4. Fast Hermite form algorithm with known minimal degree

us describe this linearization in the particular case of the Hermite form H of A. For each i,
we focus on the row i of H. If its degree δi is larger than δ then the row is expanded into αi
rows of degree at most δ. This yields a ñ×n matrix H̃ of degree at most δ. Furthermore,
certain elementary columns are inserted into H̃ resulting in a square nonsingular matrix
Lr
δ(H) which preserves fundamental properties of H (for example, its Smith factors and

its determinant). Namely, Lr
δ(H) has dimension ñ × ñ and degree at most δ, which in

this case is the average row degree of H.
For example, suppose that H is a 4× 4 matrix in Hermite form with diagonal entries

having degrees (2, 37, 7, 18). Such a matrix has degree profile

H =

(2)
[36] (37)
[6] [6] (7)
[17] [17] [17] (18)

 ,
where [d] stands for an entry of degree at most d and (d) stands for a monic entry of
degree exactly d. Here H has row degree δ = (2, 37, 7, 18).

Let us now construct the row partial linearization Lr
δ(H). Considering the upper

bound δ = 1 + b(2 + 37 + 7 + 18)/4c = 17 on the average row degree of H, we will split
the high-degree rows of H in several rows having degree less than δ. The first row is
unchanged; the second row is expanded in two rows of degree 16 and one row of degree
3; the third row is unchanged; and finally the last row is expanded in one row of degree
16 and one row of degree 1. Then, the matrix with expanded rows is

H̃ =

(2)
[16] [16]
[16] [16]
[2] (3)
[6] [6] (7)
[16] [16] [16] [16]
[0] [0] [0] (1)

.

Note that H and H̃ are related by the identity EH̃ = H, where E is the expansion-
compression matrix

E =

1 0 0 0 0 0 0
0 1 X17 X34 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 X17

 .
We can insert elementary columns in H̃ by

Lr
δ(H) =

(2)
[16] X17 [16]
[16] −1 X17 [16]
[2] −1 (3)
[6] [6] (7)
[16] [16] [16] X17 [16]
[0] [0] [0] −1 (1)

311

Chapter 16. Hermite form and determinant

which indicate the row operations needed to keep track of the structure of the original
rows of H. Now the reduced tuple of row degrees d = (2, 17, 17, 3, 7, 17, 1) has as its
largest entry the average row degree δ = 17 of H. Furthermore, H can be reconstructed
from Lr

δ(H), without field operations, as a submatrix of ELr
δ(H).

Remark 16.17. Because the purpose is different, the partial linearization used in this
section is defined in a way that is slightly different from what was done in Section 15.2.
It would be possible to use the same linearizations, but at the cost that the proofs would
involve permutation matrices and would be considerably more difficult to follow. K

Formally we define the partial linearization for a matrix A and a tuple δ, with the
latter not necessarily related to rdeg(A). Indeed, we will apply this in a situation where
the tuple δ is formed by the diagonal degrees of the Hermite form of A.

Definition 16.18. Let A ∈ K[X]n×n, δ = (δ1, . . . , δn) ∈ Zn>0 and set

δ = 1 +

⌊
(δ1 + · · ·+ δn)

n

⌋
.

For any i ∈ {1, . . . , n} write δi = (αi− 1)δ+ βi with αi = dδi/δe and 1 6 βi 6 δ if δi > 0,
while αi = 1 and βi = 0 if δi = 0. Set ñ = α1 + · · ·+ αn and define d ∈ Zñ>0 as

d = (δ, . . . , δ, β1︸ ︷︷ ︸
α1

, . . . , δ, . . . , δ, βn︸ ︷︷ ︸
αn

) (16.4)

as well as the row expansion-compression matrix E ∈ K[X]n×ñ as

E =

1 Xδ · · · X(α1−1)δ

. . .
1 Xδ · · · X(αn−1)δ

 . (16.5)

Let Ã ∈ K[X]ñ×n be such that A = EÃ with all the rows of Ã having degree at most δ
except possibly at indices {α1 + · · ·+ αi, 1 6 i 6 n}. Define Lr

δ(A) ∈ K[X]ñ×ñ as:

(i) for 1 6 i 6 n, the column α1 + · · ·+ αi of Lr
δ(A) is the column i of Ã;

(ii) for 0 6 i 6 n − 1 and 1 6 j 6 αi+1 − 1, the column α1 + · · · + αi + j of Lr
δ(A) is

the column [
0 · · · 0 Xδ −1 0 · · · 0

]T ∈ K[X]ñ×1

with the entry Xδ at row index α1 + · · ·+ αi + j.

It follows from this construction that any matrix A ∈ K[X]n×n is the submatrix of
E Lr

δ(A) formed by its columns at indices {α1 + · · ·+ αi, 1 6 i 6 n}.
It is important to note that this transformation has good properties regarding the

computation of −δ-shifted reduced forms of A, where δ is the tuple of diagonal degrees
of the Hermite form of A. Indeed, it transforms any −δ-reduced form R of A into a

312

16.4. Fast Hermite form algorithm with known minimal degree

−d-reduced form Lr
δ(R) of the transformed Lr

δ(A). In other words, we have the following
diagram:

Xµ−δA
reduction−−−−−−→ −δ-reduced form of A

| |
partial linearization partial linearization

↓ ↓
Xm−dLr

δ(A)
reduction−−−−−−→ −d-reduced form of Lr

δ(A)

,

where m is the uniform tuple (max(d), . . . ,max(d)) of length ñ. In terms of efficiency,
it is more interesting to perform the reduction step on Xm−dLr

δ(A) with the shift −d,
rather than on A with the shift −δ. Indeed, using the fastest known deterministic re-
duction algorithm [GSSV12], the latter computation uses O (̃nω(deg(A) + max(δ))) field
operations. On the other hand, the former is in O (̃nω(deg(A) + δ)), since max(d) 6 δ
and deg(Lr

δ(A)) 6 deg(A). We recall that δ is close to the average of δ.
We state this formally in the following lemma. For the sake of presentation we post-

pone the proof until later in Section 16.4.4.

Lemma 16.19. Let δ = (δ1, . . . , δn) ∈ Zn>0, and define d as in Eq. (16.4).

(i) If a matrix R ∈ K[X]n×n is −δ-reduced with −δ-column degree 0, then Lr
δ(R) is

−d-reduced with −d-column degree 0.

(ii) If two matrices A and B in K[X]n×n are right unimodularly equivalent, then Lr
δ(A)

and Lr
δ(B) are also right unimodularly equivalent.

(iii) If A ∈ K[X]n×n is nonsingular, R is a −δ-reduced form of A, and R has −δ-column
degree 0, then Lr

δ(R) is a −d-reduced form of Lr
δ(A) and the −d-column degree of

Lr
δ(R) is 0.

Our algorithm will first build Lr
δ(A) and then find a −d-reduced form R̂ for this new

matrix. We note that, for any −δ-reduced form R of A, the matrix R̂ = Lr
δ(R) is a

suitable reduced form and, as remarked earlier, has the property that it is easy to recover
R. However, it is not the case that any R̂ computed by shifted reduction from Lr

δ(A)

will have the form R̂ = Lr
δ(R). In order to solve this issue, we will rely on normalization

as in Corollary 16.16. This allows us to deduce Lr
δ(H) from R̂, and then the entries of H

can be read off from those of Lr
δ(H). Diagrammatically we have

Xµ−δA
reduction−−−−−−→ Xµ−δR

normalization−−−−−−−−−→ H = R lm−δ(R)−1

| |
partial linearization partial linearization

↓ ↓
Xm−dLr

δ(A)
reduction−−−−−−→ Xm−d R̂

normalization−−−−−−−−−→ Lr
δ(H) = R̂ lm−d(R̂)−1

.

Corollary 16.20. Let A ∈ K[X]n×n be nonsingular and let δ = (δ1, . . . , δn) ∈ Zn>0 denote
the degrees of the diagonal entries of the Hermite form H of A. Using the notation from
Definition 16.18, we have that

313

Chapter 16. Hermite form and determinant

(i) lm−d(Lr
δ(H)) is the identity matrix,

(ii) if R̂ ∈ K[X]ñ×ñ is a −d-reduced form of Lr
δ(A), then Lr

δ(H) = R̂ lm−d(R̂)−1.

Proof. (i) follows from the construction of Lr
δ(H). From Lemma 16.19 we have that

Lr
δ(H) is a −d-reduced form of A, so that (ii) follows from (i) and Corollary 16.16.

In particular, H can be recovered as being the submatrix of E R̂ lm−d(R̂)−1 formed
by its columns {α1 + · · ·+ αi, 1 6 i 6 n}.
Example 16.21 (Reducing the diagonal degrees). Consider a matrix A ∈ K[X]4×4 such
that its Hermite form H has diagonal degrees δ = (2, 37, 7, 18). As shown earlier,

Lr
δ(H) =

(2)
[16] X17 [16]
[16] −1 X17 [16]
[2] −1 (3)
[6] [6] (7)
[16] [16] [16] X17 [16]
[0] [0] [0] −1 (1)

.

We see that d = (2, 17, 17, 3, 7, 17, 1) corresponds to the row degree of Lr
δ(H), that this

matrix has −d-column degree 0 and that its −d-leading matrix is the identity. In par-
ticular, it is −d-reduced. In addition, from (ii) of Lemma 16.19, Lr

δ(H) and Lr
δ(A) are

right-unimodularly equivalent. As a result, Lr
δ(H) is a −d-reduced form of Lr

δ(A).
Let R̂ be any −d-reduced form of Lr

δ(A). Then R̂ also has −d-column degree 0, its
−d-leading matrix is invertible, and its degree profile is

R̂ =

[2] [2] [2] [2] [2] [2] [2]
[17] [17] [17] [17] [17] [17] [17]
[17] [17] [17] [17] [17] [17] [17]
[3] [3] [3] [3] [3] [3] [3]
[7] [7] [7] [7] [7] [7] [7]
[17] [17] [17] [17] [17] [17] [17]
[1] [1] [1] [1] [1] [1] [1]

.

While R̂ is generally not of the form Lr
δ(R) for R some −δ-reduced form of A, it still

follows from Corollary 16.16 that Lr
δ(H) = R̂ lm−d(R̂)−1. b

16.4.3 Algorithm and computational cost

The results in the previous subsection lead to Algorithm 39 for the computation of the
Hermite form H from A and δ. Its main computational task is to compute a column
reduced form of a matrix of dimension O(n) and degree O(deg(A)) (Step 6). This can
be done efficiently and deterministically with the algorithm in [GSSV12, Section 8].

Proposition 16.22. Let A ∈ K[X]n×n be nonsingular, and let δ ∈ Zn>0 be the degrees of
the diagonal entries of the Hermite form of A. On input A and δ, Algorithm 39 computes
the Hermite form of A using O (̃nω deg(A)) field operations.

314

16.4. Fast Hermite form algorithm with known minimal degree

Proof. The correctness of the algorithm follows directly from Corollary 16.20 and from
the remark that a matrix R ∈ K[X]ñ×ñ is −d-column reduced if and only if DR is column
reduced (for the uniform shift), where D is the diagonal matrix at Step 5.

Furthermore, we have deg(D) 6 δ and deg(Lr
δ(A)) 6 max(deg(A), δ). Since δ =

1 + b|δ|/nc, and as H is in Hermite form and δ are the degrees of its diagonal entries,
we have |δ| = deg(det(H)) = deg(det(A)) 6 n deg(A). Thus, δ 6 1 + deg(A) and the
degrees of D and Lr

δ(A) are both at most 1 + deg(A). Their product DLr
δ(A) therefore

has degree at most 2 + 2 deg(A). On the other hand, these matrices have dimension

ñ =
n∑
i=1

αi 6
n∑
i=1

(1 + δi/δ) = n+
|δ|

1 + b|δ|/nc
< 2n.

As a result, Step 6 uses O (̃nω deg(A)) field operations [GSSV12, Theorem 18].
Concerning Step 7, from Corollary 16.20 the matrix R̂ has row degree d. Thus, since

lm−d(R̂) is a constant matrix, the computation of R̂lm−d(R̂)−1 can be performed via
complete linearization of the rows of R̂, using O(nωd|d|/ne) operations. This concludes
the proof since |d| = |δ| = deg(det(H)) = deg(det(A)) 6 n deg(A).

Algorithm 39 – MinDegHermite
(Hermite form with known minimal degree)
Input:
• a nonsingular matrix A ∈ K[X]n×n,
• the diagonal degrees δ = (δ1, . . . , δn) ∈ Zn>0 of the Hermite form of A.

Output: the Hermite form of A.

1. δ ← 1 + b(δ1 + · · ·+ δn)/nc
2. For i from 1 to n

a. If δi > 0: αi ← dδ/δie; βi ← δi − (αi − 1)δ

b. Else: αi ← 1; βi ← 0;

3. ñ← α1 + · · ·+ αn and E ∈ Kñ×n as in Eq. (16.5)

4. d← (d1, . . . , dñ) as in Eq. (16.4)

5. D← Diag(Xδ−d1 , . . . , Xδ−dñ)

6. DR̂← ColumnReduce(DLr
δ(A)) // algorithm [GSSV12, Fig.7]

7. Ĥ← E R̂ lm−d(R̂)−1

8. H← the submatrix of Ĥ formed by its columns {α1+· · ·+αi, 1 6 i 6 n}
9. Return H

Combining Algorithms 37 and 39 results in a deterministic algorithm for computing
the Hermite form of a nonsingular matrix A in O (̃nω deg(A)) field operations. This is

315

Chapter 16. Hermite form and determinant

the main step towards the proof of our result announced in Theorem 3.9; it remains to
deal with the possible non-uniformity of the degrees in A.
Remark 16.23. At the time of writing, detailed cost bounds with logarithmic factors
are available for all operations in the algorithm except the column basis computation at
Step 2.b of Algorithm 37. Analyzing this cost would directly yield a cost bound with
logarithmic factors for Hermite form and determinant computation. K

Example 16.24. Let K = Z7 be the field with 7 elements, and consider the matrix A ∈
K[X]3×3 from Example 16.5:

A =

 6X + 1 2X3 +X2 + 6X + 1 3
4X5 + 5X4 + 4X2 +X 6X5 + 5X4 + 2X3 + 4 X4 + 5X3 + 6X2 + 5X

2 2X5 + 5X4 + 5X3 + 6X2 6

 .
According to Example 16.5 the diagonal entries of the Hermite form of A have degrees
δ = (0, 1, 9). Note that δ is non-uniform, and max(δ)−min(δ) = deg(det(A))− 1.

Using the column reduction algorithm in [GSSV12] to compute a −δ-reduced form
of A would imply working on the matrix Xµ−δA = X(9,8,0) A, which has degree 13 =
deg(det(A)) + deg(A) − 2. In this case partial linearization gives us a 5 × 5 matrix
Lr
δ(A) and a shift d such that deg(Lr

δ(A)) 6 deg(A) and max(d)−min(d) 6 deg(A). In
particular, the matrix Xm−dLr

δ(A) to be reduced has degree 8 6 2 deg(A).
To see this, Definition 16.18 gives the parameters δ = 4, α = (1, 1, 3), β = (0, 1, 1),

d = (0, 1, 4, 4, 1), the expansion-compression matrix

E =

1 0 0 0 0
0 1 0 0 0
0 0 1 X4 X8

 ,
and finally

Lr
δ(A) =

6X + 1 2X3 +X2 + 6X + 1 0 0 3

4X5 + 5X4 + 4X2 +X 6X5 + 5X4 + 2X3 + 4 0 0 X4 + 5X3 + 6X2 + 5X
2 5X3 + 6X2 X4 0 6
0 2X + 5 6 X4 0
0 0 0 6 0

.
Computing a −d-reduced form for Lr

δ(A) gives

R̂ =

 5 1 0 1 2
5 4X + 4 0 3X + 5 6X + 3

X3 + 6X2 + 4 3X4 +X3 + 6X2 X4 X3 + 5X2 + 4X + 3 6X4 + 2X3 + 3X2 +X + 6
3X3 + 4X2 + 6 4X4 + 4X3 + 4X + 5 6 X3 + 2X + 4 5X4 + 2X3 + 4X + 2

6 X 0 6 0

.
Note that rdeg(R) = d, and more precisely,

lm−d(R) =

5 1 0 1 2
0 4 0 3 6
0 3 1 0 6
0 4 0 0 5
0 1 0 0 0

 .

316

16.4. Fast Hermite form algorithm with known minimal degree

Normalizing R̂ via R̂lm−d(R)−1 gives

Lr
δ(H) =

1 0 0 0 0
1 X + 6 0 0 0

3X3 + 4X2 + 5 4X3 + 5X2 + 6X + 4 X4 0 3X3 + 3X2 + 4X
2X3 + 5X2 + 4 2X3 + 3X2 + 3X 6 X4 X3 + 4X2 + 6X + 4

4 3 0 6 X + 2

 .

Performing the inverse linearization, by taking columns (1, 2, 5) of ELr
δ(H), directly gives

the entries in the Hermite form of A:

H =

 1 0 0
1 X + 6 0
h31 h32 X9 + 2X8 +X7 + 4X6 + 6X5 + 4X4 + 3X3 + 3X2 + 4X

with

h31 = 4x8 + 2x7 + 5x6 + 4x4 + 3x3 + 4x2 + 5,

h32 = 3x8 + 2x7 + 3x6 + 3x5 + 4x3 + 5x2 + 6x+ 4. b

16.4.4 Proof of Lemma 16.19

Let us now give the detailed proof of Lemma 16.19.
(i) Since R ∈ K[X]n×n is −δ-reduced with −δ-column degree 0, it has row degree

δ since otherwise the invertible matrix lm−δ(R) would have a zero row. We show that

lm−d(Lr
δ(R)) is a permutation of the rows and columns of

[
lm−δ(R) 0

0 I

]
∈ Kñ×ñ. In

particular, lm−d(Lr
δ(R)) is invertible and thus Lr

δ(R) is −d-reduced.
Let us first observe it on an example. We consider the case δ = (2, 37, 7, 18). Then R

has the following degree profile,

R =

[2] [2] [2] [2]
[37] [37] [37] [37]
[7] [7] [7] [7]
[18] [18] [18] [18]

with invertible −δ-leading matrix. Following the construction in Definition 16.18, we have
d = (2, 17, 17, 3, 7, 17, 1) and

Lr
δ(R) =

[2] [2] [2] [2]
[16] X17 [16] [16] [16]
[16] −1 X17 [16] [16] [16]
[3] −1 [3] [3] [3]
[7] [7] [7] [7]
[16] [16] [16] X17 [16]
[1] [1] [1] −1 [1]

.

317

Chapter 16. Hermite form and determinant

Observe that R has −d-column degree at most 0 componentwise, and that its −d-leading
matrix is

lm−d(Lr
δ(R)) =

`11 `12 `13 `14

1
1

`21 `22 `23 `24

`31 `32 `33 `34

1
`41 `42 `42 `42

,

where (`ij)16i,j64 = lm−δ(R). Since lm−δ(R) is invertible, lm−d(Lr
δ(R)) is invertible as

well. Furthermore Lr
δ(R) is −d-reduced and that it has −d-column degree 0.

In the general case, by construction of Lr
δ(R) one can check that lm−d(Lr

δ(R)) is a
matrix in Kñ×ñ such that

• its n × n submatrix with row and column indices in {α1 + · · · + αi, 1 6 i 6 n} is
equal to lm−δ(R),

• its (ñ− n)× (ñ− n) submatrix with row and column indices in {1, . . . , ñ} − {α1 +
· · ·+ αi, 1 6 i 6 n} is equal to the identity matrix,

• its other entries are all zero.

This directly implies that lm−d(Lr
δ(R)) is invertible. In addition by construction Lr

δ(R)
has −d-column degree at most 0 componentwise. The fact that lm−d(Lr

δ(R)) is invertible
also implies that Lr

δ(R) has −d-column degree exactly 0.
(ii) Denote by T δ ∈ K[X]ñ×(ñ−n) the submatrix of Lr

δ(A) formed by its columns at
indices {α1 + · · · + αi + j, 1 6 j 6 αi+1 − 1, 0 6 i 6 n − 1}. Up to a permutation of its
columns, Lr

δ(A) is then [T δ Ã]. In particular, E Lr
δ(A) is right-unimodularly equivalent

to E [T δ Ã] = [0 A]. For the remainder of this proof we will use the shorthand notation
E Lr

δ(A) ≡ [0 A].
Define the matrix E ∈ K(ñ−n)×ñ whose row α1 + · · ·+αi+j− i is the coordinate vector

with 1 at index α1 + · · ·+ αi + j + 1, for all 1 6 j 6 αi+1 − 1 and 0 6 i 6 n− 1. That is,
we have

[
E
E

]
=

0 1
. . .

1
. . .

0 1
. . .

1
1 Xδ · · · X(α1−1)δ

. . .
1 Xδ · · · X(αn−1)δ

.

318

16.5. Reduction to almost uniform input degrees

By construction, the matrix U = ET δ is upper triangular with diagonal entries −1, and
thus unimodular. As a result,[

E
E

]
Lr
δ(A) ≡

[
E
E

] [
T δ Ã

]
=

[
U ∗
0 A

]
≡

[
I 0
0 A

]
.

Similarly, we have that
[
E
E

]
Lr
δ(B) ≡

[
I 0
0 B

]
.

Since A ≡ B by assumption, we obtain
[
E
E

]
Lr
δ(A) ≡

[
E
E

]
Lr
δ(B). This implies that

Lr
δ(A) ≡ Lr

δ(B) since the matrix
[
E
E

]
is invertible (more precisely, its determinant is 1).

(iii) is a direct consequence of (i) and (ii).

16.5 Reduction to almost uniform input degrees

We have already explained in Section 15.1 our interest in obtaining a cost bound which
involves the generic determinant bound. In Section 16.2 we showed how to compute the
diagonal entries of H in O (̃nωdse) operations, with s the average column degree of the
input matrix. However, this does not take into account the fact that the degrees of its
rows are possibly unbalanced. Besides, in Section 16.4, we were only able to obtain the
cost bound O (̃nω deg(A)) for computing the remaining entries of H.

The results in Section 15.2 allow us to reduce from the general case of Hermite form
computation to the case where the degree of the input matrix A is inO(dDA/ne), while the
dimension of the matrix A remains in O(n). Combined with Propositions 16.6 and 16.22,
this proves Theorem 3.9.

We remark that Hermite forms in Section 15.2 are under left-unimodular equivalence,
while here we work with right-unimodular equivalence. Furthermore, it is not only a
matter of transposing matrices, since despite not being for the same kind of unimodular
equivalences, both in Section 15.2 and here the Hermite form refers to a lower triangular
form. Of course, the partial linearization techniques can still be applied, but this requires
a slight modification of the definitions in order to adapt the results of Section 15.2 to the
context here. Roughly, one will permute positions of the blocks of rows and columns so
that the sought Hermite form appears as the trailing principal submatrix, instead of the
leading one. The complete details of these modified definitions can be found in [LNZ16,
Section 5]; we only show it on an example below.

Example 16.25. Let K = Z7 be the field with 7 elements, and consider the matrix A ∈
K[X]3×3 from Example 16.5:

A =

 6X + 1 2X3 +X2 + 6X + 1 3
4X5 + 5X4 + 4X2 +X 6X5 + 5X4 + 2X3 + 4 X4 + 5X3 + 6X2 + 5X

2 2X5 + 5X4 + 5X3 + 6X2 6

 .
319

Chapter 16. Hermite form and determinant

After sorting the triples we obtain the linearization degrees δ = (1, 5, 0) resulting in

Lc
δ(A) =

 1 0 6X3 0
2 6X + 1 X2 + 6X + 1 3

6X2 + 5X + 2 4X5 + 5X4 + 4X2 +X 4 X4 + 5X3 + 6X2 + 5X
2X2 + 5X + 5 2 6X2 6

 ,
and γ = rdeg(Lc

δ(A)) = (3, 2, 5, 2) giving

Lr
γ(Lc

δ(A)) =

1 0 4x+ 5 0 1
0 1 0 6x3 0
0 2 6x+ 1 x2 + 6x+ 1 3

6x4 6x2 + 5x+ 2 4x2 + x 4 5x3 + 6x2 + 5x
0 2x2 + 5x+ 5 2 6x2 6

 .
Computing the diagonal entries of the Hermite form of Lr

γ(Lc
δ(A)) as in Section 16.2,

we obtain their degrees (0, 0, 0, 1, 9). Proceeding as in Section 16.4 we can to compute the
complete Hermite form using the knowledge of these degrees giving[

I 0
R H

]
with

R =

[
0 0
6 4

X7 + 4X6 + 2X4 + 3X3 + 5X2 + 3X + 4 4X8 + 2X7 + 4X6 + 5X5 + 5X4 + 2X3 + 6X2 +X

]

and H the Hermite form of A as given in Example 16.24. b

320

Perspectives

We conclude this document by presenting some of our perspectives for future work on the
problems tackled in this thesis.

? ? ?

Fast change of monomial order

Our results in Chapters 4 and 5 lead to a fast change of monomial order algorithm for
zero-dimensional ideals in K[X1, . . . , Xr], under the assumption that the initial ideal is
Borel-fixed (see Section 2.2.3). This is achieved by following a two-step approach: we
first determine the multiplication matrices from the input Gröbner basis, and then we use
them to compute the Gröbner relation basis for the target monomial order. For an ideal
of degree D, we obtained the cost bound O (̃rDω) (Theorem 2.14).

A first extension of this result would be to support the case of a module which has
finite codimension D as a K-vector space, with a similar cost bound. We remark that
the second step already deals with this more general situation (see Sections 2.1 and 2.2).
Then, it remains to study whether some Borel-fixedness property of the initial module
would allow us to use an approach similar to that in Chapter 5 to efficiently retrieve the
multiplication matrices from the input Gröbner basis.

Another, more significant improvement would be to remove the assumption that the
initial ideal is Borel-fixed. We note that we only use this assumption in the first step of
our algorithm. Hence the question: how to compute the multiplication matrices, without
assumption on the ideal, using O (̃rDω) operations? To the best of our knowledge, this is
not known as of today, even for specific monomial orders. The case of the degree-reverse
lexicographic order has been studied in [FGHR13], with a cost bound of O (̃δrωDω)
operations, where δ is related to the degrees in the input Gröbner basis; how to remove
this factor δ is unclear to us.

Finally, we would like to study more in depth how our results for the computation of
Gröbner relation bases compare to the different situations that are handled in [MMM93].

? ? ?

Systems of linear modular equations

In the computation of shifted Popov solution bases for systems of linear modular univariate
equations, we assumed that the number of equations was bounded from above by the
number of unknowns; let H denote this assumption, namely n ∈ O(m) (Theorem 2.22).

On the other hand, in the specific case where the moduli split and are given by their
roots and multiplicities, we managed to remove this assumption (Theorem 2.20). One

321

Perspectives

motivation was that H was not satisfied in the application to multivariate interpolation
problems arising in the soft-decoding of Reed-Solomon codes. Then, a natural perspective
is to aim at a similar result when the moduli are arbitrary polynomials given by their
coefficients; or in other words, at removing the assumption H in Theorem 2.22.

The two main uses of H were in the computations of the residual and of the solution
basis when we have a priori degree information. Concerning the former, we expect that
H can be avoided without impacting the cost beyond logarithmic factors, by following
an approach based on Chinese remaindering techniques similar to the computation of
the residual for moduli which split with known roots (Section 14.2). As for finding the
solution basis when the minimal degree is known, for the moment it is not clear to us how
to remove the assumption H; an obstacle with our current approach is that it resorts to
computing a left kernel basis of a polynomial matrix which has m+ n rows.

? ? ?

Kernel bases of polynomial matrices

The above-mentioned algorithm for solution bases led us to design an efficient algorithm
for computing the shifted Popov kernel basis of a polynomial matrix, when information
about pivots is known a priori (Proposition 8.6). In this context, and unlike most of this
thesis, we are considering rectangular shifted Popov forms, corresponding to submodules
of K[X]m of rank strictly less than m; in addition to knowing the degrees of the pivots,
we also require the knowledge of the indices of the columns containing the pivots.

During a research internship of Vũ Thi. Xuân, co-supervised with Claude-Pierre Jean-
nerod, we explored further the question of computing shifted Popov kernel bases for
arbitrary shifts. We showed that, with one call to our solution basis algorithm for a single
modular equation and to our approximant basis algorithm, one can compute the shifted
Popov kernel basis of a m×1 column vector of degree D in O (̃mω−1D) operations. Com-
pared to [ZLS12], where a similar cost bound was achieved, this new algorithm supports
arbitrary shifts and returns the basis in normal form.

Furthermore, Xuân proved a generalization of Theorem 1.28 in the rectangular case;
for kernel bases, this means that one can directly retrieve pivot information of the sought
basis by reading the degrees and indices of the pivots of two bases computed recursively,
for example in a divide-and-conquer scheme on the columns of the inputm×nmatrix as in
[ZLS12]. Having this information, the basis can be obtained efficiently (Proposition 8.6).

Thus, we have a divide-and-conquer scheme with a fast base case for a column vector,
and an efficient way of combining the results of recursive calls. Yet, as such, these ingre-
dients do not lead to a fast algorithm for shifted Popov kernel bases in general, because of
degree growth in the computation of residuals. We will continue to work on this project.

? ? ?

Normal forms of polynomial matrices

We have given a fast algorithm for computing the shifted Popov normal form of a polyno-
mial matrix, for an arbitrary shift (Theorem 3.7). This algorithm is probabilistic, requires
that the matrix be square and nonsingular, and uses O (̃mωd) field operations where m
and d are the row dimension and the degree of the input matrix.

322

We would like to find a similarly efficient algorithm which is deterministic. A solution
is to design a deterministic Smith form algorithm in O (̃mωd), whereas here we rely on the
probabilistic one of [Sto03]. Another one is to compute the diagonal degrees of the shifted
Popov form without finding the whole matrix; then, Theorem 3.10 gives a reduction to the
case of the uniform shift, which is dealt with deterministically in [SS11, GSSV12]. While
this approach was successful for the Hermite form (Chapter 16), where we exploited its
triangular shape, it is unclear to us how to proceed for an arbitrary shift.

Focusing on the important case of the uniform shift, could we rely on [SS11, GSSV12]
to deterministically compute the Popov form in O (̃mωdD/me) operations, where D is the
generic determinant bound? Until now, this cost bound involving average degrees has been
obtained for the probabilistic computation of shifted Popov forms and for the deterministic
computation of the Hermite form. For this question, we also refer to Remark 3.6.

Furthermore, we would like to study the case of shifted Popov forms of matrices that
are rectangular with an arbitrary rank. In this context, the row space basis algorithm of
[ZL13] can be used to reduce to the case of full row rank. Then, in the latter case, how
to efficiently compute the shifted Popov form? Is there a way to efficiently find, without
computing the whole form, which columns contain pivots and what their degrees are?

? ? ?

Multivariate problems and multi-level structure

In this thesis, we have studied systems of linear modular equations for arbitrary system
matrices F ∈ K[X]m×n and normal forms of arbitrary nonsingular matrices A ∈ Km×m.
However, when one faces these questions in specific contexts, these matrices often bear
some type of structure which might be exploited for further efficiency.

Hereafter, for the sake of presentation, we focus on the interpolation step of the Su-
dan list-decoding algorithm for Reed-Solomon codes. Similar remarks hold for the more
general list-decoding algorithms and the Coppersmith technique over K[X] mentioned in
this document, and also for other applications that we did not study here such as the use
of Hermite-Padé approximation for guessing linear differential equations.

In the Sudan decoding, we are given points {(x1, y1), . . . , (xD, yD)} with distinct xi’s,
a degree bound m, and we look for an element of small shifted degree in the K[X]-module
of polynomials Q ∈ K[X, Y] such that degY (Q) < m and Q(xi, yi) = 0 for 1 6 i 6 D.

Writing Q = Q0(X) + Q1(X)Y + · · ·+ Qm−1(X)Y m−1, this can be done by finding a
shifted reduced solution basis for the linear modular equation

Q0 +Q1L+ · · ·+Qm−1L
m−1 = 0 mod M

where L is the interpolant of degree less than D such that L(xi) = yi for all i, andM is the
product

∏
i(X−xi). Note that the left-hand side is Q(X,L(X)). Here, the system matrix

is F = [1 L · · · Lm−1]T. In the lattice-based approach (see Sections 3.1 and 11.3), one
rather computes a shifted reduced form of a basis of the module, chosen as

A =

M
−L 1
... . . .

−Lm−1 1

 or A =

M
−L 1

.
−L 1

 .
323

Perspectives

Both F and A have some structure, which results from the bivariate nature of the
initial problem. Note in particular that these matrices can be represented concisely with
O(D) field elements; furthermore, we seek a single small shifted degree vector Q whose
dense representation uses O(D) elements. The fastest known algorithms do not exploit
this structure, and their cost bound is O (̃mω−1D) while one might hope for O (̃D).

To put this in perspective, we remark that this question is close to the tasks of
computing bivariate evaluation and modular composition, which have been studied in
[NZ04, KU11], and for which no algorithm with quasi-linear cost bound over an abstract
field are known, to the best of our knowledge. More precisely, verifying that some bivari-
ate polynomial Q is a solution to our problem is equivalent to verifying that the bivariate
evaluations Q(xi, yi) are zero for all i; since the xi’s are distinct, this is also equivalent to
verifying that the modular identity Q(X,L(X)) = 0 mod M holds.

In this context, a natural question is whether we could take advantage of the algorithms
in [NZ04, KU11] to exploit the above-mentioned structure. In addition, we would like to
establish problem reductions in order to better identify the conceptual difficulties towards
further improvements over the existing fast algorithms.

From a linear algebra viewpoint, this bivariate interpolation problem can be seen as
a linear system over K. Considering the multiplication matrices MX = diag(x1, . . . , xD)
and MY = diag(y1, . . . , yD), finding Q amounts to computing a vector in the left nullspace
of the multi-Krylov matrix whose rows are [1 · · · 1]Mi

XMj
Y , where 0 6 j < m and the

range of the exponent i depends on the degree constraints specified by the shift. Thus,
here the multi-Krylov matrix has a two-level Vandermonde structure.

More generally, problems of interpolation with multiplicities in r variables can be
reduced to a linear system over K, where the matrix of the system has an r-level block-
Vandermonde structure. In this thesis, we solved such interpolation problems by reducing
them to problems about modules over the univariate polynomials, and we ignored the
structure of the input in the obtained instances of the latter problems. In other words,
we have used and designed algorithms that only consider a single level of structure.

To the best of our knowledge, it is currently unknown how to solve such multi-level
structured linear systems faster than by considering them as structured systems with a
single level, ignoring the others. Again, multivariate evaluation corresponds to computing
a matrix-vector product for a multi-level Vandermonde matrix: may the work of [NZ04,
KU11] be used to speed up the solving of multi-level Vandermonde linear systems?

This question is not confined to multivariate interpolation and a structure of the
Vandermonde type. For example, a similar situation occurs in multivariate generalizations
of the Berlekamp-Massey algorithm [Sak88, Sak90]: in [BBF15, BBF17], only one level of
structure of the multi-Hankel matrix arising in this context is exploited.

324

Index

Mathematical notations can be found at the end of this index.

approximant, 70
approximant basis, 8, 70
assumption
Hint,1, 92
Hint,2, 92
Hint,3, 92
Hint,4, 92
Hβ, 65, 127
HMM(·,·), 156
HM(·), 155
Hs,1, 37
Hs,2, 37

Beckermann-Labahn algorithm [BL94], 5, 78
Berlekamp-Massey algorithm, 2
Berlekamp-Massey-Sakata algorithm, 324
bivariate interpolation, 22, 323
border (of monomial basis), 52, 142
Borel-fixed, 69, 142

Cauchy interpolation, 2
change of monomial order, 54, 68
change of shift, 9, 265
characteristic polynomial, 5
Chinese remaindering, 8, 269
column basis, 298
coordinate vector, 31, 41
Coppersmith technique, 101
Coppersmith technique over K[X], 102

interpolation step, 103

degree
column degree, 23
of a matrix, 23
of a vector, 23
row degree, 23

shifted column degree, 23
shifted row degree, 23

degree reverse lexicographic order, 43
division with remainder, 31, 46

Euclidean algorithm, 2
extended key equations, 87, 205

FGLM algorithm, 7, 68
folded Reed-Solomon code, 91
full rank (polynomial matrix), 22

generic determinant bound, 107, 286
generic initial ideal, 142
Goppa codes decoding, 2
Gröbner basis, 7, 20, 39, 46

minimal, 47
reduced, 20, 39, 47

Gröbner relation basis, 58
Guruswami-Rudra algorithm, 92
Guruswami-Sudan algorithm, 91–93

Half-gcd algorithm, 3, 78
Hasse derivative, 91, 230
Hermite form, 5, 20, 27, 29, 106
Hermite-Padé approximation, 22, 70
Hilbert Basis Theorem, 38, 40
hypothesis, see assumption

ideal, 20
identity matrix, 21
indexing function, 122
initial module, 44
initial term, 44
interpolant, 75
interpolant basis, 75
interpolation step, 102, 103

325

Index

Kötter’s algorithm, 95
Kötter-Vardy algorithm, 93
Keller-Gehrig algorithm, 5
kernel (of a polynomial matrix), 22, 186
kernel basis, 186
key equation, 2, 87
Knuth-Schönhage-Moenck algorithm, 3
Krylov matrix, 4

Lagrange interpolation, 8
leading matrix, 24
s-leading matrix, 24
lexicographic order, 43
linear functional, 59, 98
linear modular equation, 2
linearization, 119, 120
linearly recurrent sequence, 2, 324
list-decoding

folded Reed-Solomon codes, 89, 92, 95
Parvaresh-Vardy codes, 91, 95
Reed-Solomon codes, 89, 92

list-size condition, 90

M-Padé approximant, 75
M-Padé approximation, 95
minimal degree, 19, 30

s-minimal degree, 30
shifted minimal degree, 30

minimal Gröbner basis, see Gröbner basis
module, 19

finite codimension, 31, 39, 51
finite-dimensional, 20, 31, 39, 51
free, 20
Gröbner basis, 19
rank, 20

K[X]-module, 19
K[X]-module, 38
monomial, 41

divisible, 41
monomial basis, 31, 41, 45
monomial ideal, 41
monomial order, 20, 39, 43
monomial submodule, 41

minimal generating set, 41
multi-Krylov matrix, 65, 119, 124

multiplication matrix, 3, 20, 39, 51
multiplication table, 53
multiplicity, see root with mult., 90
multipoint Padé approximation, 2
multivariate interpolation, 89

with multiplicities, 90, 96

Newton Padé approximation, 2
nonsingular, 22
normal form nf≺(f), 46

order basis, 70
ordered weak Popov

s-ordered weak Popov form, 27
shifted ordered weak Popov form, 27

ordered weak Popov form, 27

Padé approximation, 2
Parvaresh-Vardy code, 91
pivot

s-pivot degree, 27, 28
s-pivot entry, 27
s-pivot index, 27, 28

PM-Basis algorithm [GJV03], 78
polynomial matrix, 20, 21
Popov basis, see also Popov form, 29

s-Popov basis, 29
Popov form, 5, 19, 20, 27, 29

s-Popov form, 29
shifted Popov form, 19, 29

position-over-term, 43
POT order, 44
predictable degree property, 25
Private Information Retrieval, 89, 95

quasi Popov, see ordered weak Popov
quotient module, 31

rank, 20, 22
rational function reconstruction, 2
multivariate rational reconstruction, 40
Re-encoding technique, 93, 101, 235
reduced form, 19, 20, 24

shifted reduced form, 19, 24
reduced Gröbner basis, see Gröbner basis
Reed-Solomon code, 91

326

Reed-Solomon codes, 2
relation, 7, 57, 60
relation basis, 58, 61
residual, 3, 5, 78, 158, 268
root with multiplicity, 90
root with support, 97
root-finding step, 102
row rank profile, 127
row space, 21, 22

shift, 5, 19, 20, 23
uniform shift, 23

shift matrix, 24
shifted degree, 20, 23
s-degree, 23
shifted minimal relation basis, 61
shifted Popov form, 27, 106
shifted Popov relation basis, 61
s-row degree, 23
shifted TOP order, 44, 49
σ-basis, 70
soft-decoding, 89, 91, 93, 96
solution, 81
solution basis, 81
standard representation (Jordan matrix), 77
Sudan list-decoding, 93, 323
support, see root with support
system of linear modular equations, 81, 91
syzygy, 7, 39, 56
syzygy module, 7, 56

term, 41
divisible, 41

term-over-position, 43
TOP order, 44

uniform shift, 9
unimodular matrix, 21
unimodularly equivalent, 21

vanish with multiplicity, see root with mult.
vanish with support, see root with support
vanishing condition, 90

weak Popov
s-weak Popov form, 27

shifted weak Popov form, 27
weak Popov form, 27
weight, 90
weighted degree, 90
weighted degree condition, 90
Welch-Berlekamp decoding, 2
Wu algorithm, 93

zero with multiplicity, see root with mult.
zero with support, see root with support
Notations:
H·, see assumption
O(·),O (̃·): asymptotic bounds,
ω: exponent of matrix multiplication, 4
HMM(·,·): super-linearity assumption, 156
HM(·): super-linearity assumption, 155
MM′: multiplication time, 245
MM: mult. time over K[X]m×m, 155
M: multiplication time over K[X], 155
MM′′: multiplication time, 245
MM′: multiplication time, 245
cj: coordinate vector, 31, 41
diag(a1, . . . , am): diagonal matrix,
Im: identity m×m matrix,
lms(A): s-leading matrix, 24
A∗,j: column j of a matrix,
Ai,∗: row i of a matrix,
rank(A): rank of a matrix A,
AT: transpose of a matrix A,
rep(x,J): repetition of x in J, 270
L: leading terms of Gröbner basis, 52
E = {ε1, . . . , εD}: monomial basis, 45
B: border (of monomial basis), 52
S: set of exponents,
G: Gröbner basis,
〈· · ·〉: ideal specified by generators,
in≺(M): ≺-initial module, 44
in≺(f): ≺-initial term of f , 44
µ: often the multiplicity of a root, 90
nf≺(f): ≺-normal form of f , 46
≺: monomial order, 43
≺drl: degree reverse lex. order, 43
≺lex: lexicographic order, 43
≺pot: ≺-POT order, 44
≺top: ≺-TOP order, 44

327

Index

<s-top: shifted TOP order, 44
µ: multiplicity support of a root, 96
wdegw1,...,wr(Q): weighted degree of mul-

tivariate polynomials, 90
amp(s): amplitude max(s)−min(s), 85
cdegs(A): s-col. deg. of a matrix, 23
cdeg(A): column degree of a matrix, 23
DA: generic bound on deg(det(A)), 286
H: often a Hermite form, 29
P: often an s-(weak) Popov form, 29
rdegs(A): s-row degree of a matrix, 23
rdeg(A): row degree of a matrix, 23
R: often an s-reduced form, 24
Xs : shift matrix diag(Xs1 , . . . , Xsm), 24
s + c: add a constant to a tuple, 24
s, t: shifts (tuples of integers),
h: Hermite shift, 38
A[i:j,k:l]: permuted submatrix of A, 193
t[i:j]: permuted subtuple of t, 193
|s|: sum of the entries of s ∈ Zm,
0: uniform shift (0, . . . , 0),
Lc
δ(A): column partial lin. of A, 289
E : expansion-compression mat., 157, 288
Lr
δ(A): row partial lin. of A, 291
T δ: partial linearization matrix, 288
Lab

D,δ(·): Storjohann’s transformation, 177
E≺,β(p)/C≺,β(v): expansion/compression

of polynomial/scalar vectors, 123
K≺,β(M,F): multi-Krylov matrix, 124
SyzJ(F): module of interpolants, 75
SyzM(F): module of solutions, 81
SyzD(F): module of approximants, 70
SyzM(F): module of relations, 57
φ≺,β: indexing function, 122
p · F: module scalar product, 57
p · f : module product, 57
Z>0: nonnegative integers,
Z: integers,
Z>0: positive integers,
Card(·): cardinality,
K: base field,
L: field extension,
I: ideal,
Rm×n: matrices over a ring R,
M: module,

K[X]: polynomials in X over K,
K[X] 6=0: nonzero polynomials in X,
K[X] orK[X1, . . . , Xr]: multivariate poly-

nomials over K,

328

Bibliography

[AL94] W. W. Adams and P. Loustaunau. An introduction to Gröbner bases.
Graduate studies in mathematics. American Mathematical Society, 1994.
doi:10.1090/gsm/003.

[Ale02] M. Alekhnovich. Linear Diophantine equations over polynomials and soft
decoding of Reed-Solomon codes. In FOCS’02, pages 439–448. IEEE, 2002.
doi:10.1109/SFCS.2002.1181968.

[Ale05] M. Alekhnovich. Linear Diophantine equations over polynomials and soft
decoding of Reed-Solomon codes. IEEE Trans. Inf. Theory, 51(7):2257–2265,
July 2005. doi:10.1109/TIT.2005.850097.

[BA80] R. R. Bitmead and B. D. O. Anderson. Asymptotically fast solution of
Toeplitz and related systems of linear equations. Linear Algebra Appl.,
34:103–116, 1980. doi:10.1016/0024-3795(80)90161-5.

[Bak75] G. A. J. Baker. Essentials of Padé Approximants. Elsevier Science, 1975.

[BB10] P. Beelen and K. Brander. Key equations for list decoding of Reed-Solomon
codes and how to solve them. J. Symbolic Comput., 45(7):773–786, 2010.
doi:10.1016/j.jsc.2010.03.010.

[BBF15] J. Berthomieu, B. Boyer, and J.-C. Faugère. Linear algebra for computing
gröbner bases of linear recursive multidimensional sequences. In ISSAC’15,
pages 61–68, New York, NY, USA, 2015. ACM. doi:10.1145/2755996.
2756673.

[BBF17] J. Berthomieu, B. Boyer, and J.-C. Faugère. Linear Algebra for Computing
Gröbner Bases of Linear Recursive Multidimensional Sequences. J. Symbolic
Comput., (in press):?–?, 2017. doi:10.1016/j.jsc.2016.11.005.

[Bec90] B. Beckermann. Zur Interpolation mit polynomialen Linearkombinationen be-
liebiger Funktionen. PhD thesis, Department of Applied Mathematics, Uni-
versity of Hannover, Germany, 1990.

[Bec92] B. Beckermann. A reliable method for computing M-Padé approximants on
arbitrary staircases. J. Comput. Appl. Math., 40(1):19–42, 1992. doi:10.
1016/0377-0427(92)90039-Z.

329

http://dx.doi.org/10.1090/gsm/003
http://dx.doi.org/10.1109/SFCS.2002.1181968
http://dx.doi.org/10.1109/TIT.2005.850097
http://dx.doi.org/10.1016/0024-3795(80)90161-5
http://dx.doi.org/10.1016/j.jsc.2010.03.010
http://dx.doi.org/10.1145/2755996.2756673
http://dx.doi.org/10.1145/2755996.2756673
http://dx.doi.org/10.1016/j.jsc.2016.11.005
http://dx.doi.org/10.1016/0377-0427(92)90039-Z
http://dx.doi.org/10.1016/0377-0427(92)90039-Z

Bibliography

[Ber68] E. R. Berlekamp. Algebraic Coding Theory - Revised edition. World Scientific
Publishing Co., Inc., River Edge, NJ, USA, 2015; first edition 1968.

[Ber11] D. J. Bernstein. Simplified high-speed high-distance list decoding for alternant
codes. In PQCrypto’11, volume 7071 of LNCS, pages 200–216. Springer, 2011.
doi:10.1007/978-3-642-25405-5_13.

[BF16] J. Berthomieu and J.-C. Faugère. Guessing linear recurrence relations of
sequence tuples and p-recursive sequences with linear algebra. In ISSAC’16,
pages 95–102, New York, NY, USA, 2016. ACM. doi:10.1145/2930889.
2930926.

[BGM96] G. A. Baker and P. R. Graves-Morris. Padé Approximants. Encyclopedia of
Mathematics and its Applications. Cambridge University Press, 1996.

[BGY80] R. P. Brent, F. G. Gustavson, and D. Y. Y. Yun. Fast solution of Toeplitz
systems of equations and computation of Padé approximants. Journal of
Algorithms, 1(3):259–295, 1980. doi:10.1016/0196-6774(80)90013-9.

[BH74] J. R. Bunch and J. E. Hopcroft. Triangular factorization and inversion by
fast matrix multiplication. Mathematics of Computation, 28(125):231–236,
1974. doi:10.2307/2005828.

[BHNW13] P. Beelen, T. Høholdt, J. S. R. Nielsen, and Y. Wu. On rational interpolation-
based list-decoding and list-decoding binary goppa codes. IEEE Trans. Inf.
Theory, 59(6):3269–3281, 2013. doi:10.1109/TIT.2013.2243800.

[BJMS16] A. Bostan, C.-P. Jeannerod, C. Mouilleron, and É. Schost. On matrices
with displacement structure: generalized operators and faster algorithms.
Manuscript, 2016.

[BJS08] A. Bostan, C.-P. Jeannerod, and É. Schost. Solving structured linear systems
with large displacement rank. Theor. Comput. Sci., 407(1-3):155–181, 2008.
doi:10.1016/j.tcs.2008.05.014.

[BL94] B. Beckermann and G. Labahn. A uniform approach for the fast computation
of matrix-type Padé approximants. SIAM J. Matrix Anal. Appl., 15(3):804–
823, July 1994. doi:10.1137/S0895479892230031.

[BL00] B. Beckermann and G. Labahn. Fraction-free computation of matrix rational
interpolants and matrix gcds. SIAM J. Matrix Anal. Appl., 22(1):114–144,
2000. doi:10.1137/S0895479897326912.

[BLV99] B. Beckermann, G. Labahn, and G. Villard. Shifted normal forms of poly-
nomial matrices. In ISSAC’99, pages 189–196. ACM, 1999. doi:10.1145/
309831.309929.

330

http://dx.doi.org/10.1007/978-3-642-25405-5_13
http://dx.doi.org/10.1145/2930889.2930926
http://dx.doi.org/10.1145/2930889.2930926
http://dx.doi.org/10.1016/0196-6774(80)90013-9
http://dx.doi.org/10.2307/2005828
http://dx.doi.org/10.1109/TIT.2013.2243800
http://dx.doi.org/10.1016/j.tcs.2008.05.014
http://dx.doi.org/10.1137/S0895479892230031
http://dx.doi.org/10.1137/S0895479897326912
http://dx.doi.org/10.1145/309831.309929
http://dx.doi.org/10.1145/309831.309929

[BLV06] B. Beckermann, G. Labahn, and G. Villard. Normal forms for general
polynomial matrices. J. Symbolic Comput., 41(6):708–737, 2006. doi:
10.1016/j.jsc.2006.02.001.

[Bon02] Dan Boneh. Finding smooth integers in short intervals using CRT decoding.
J. Comput. Syst. Sci., 64(4):768–784, June 2002. doi:10.1006/jcss.2002.
1827.

[BPR06] S. Basu, R. Pollack, and M.-F. Roy. Algorithms in Real Algebraic Geometry.
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006. doi:10.1007/
3-540-33099-2.

[Bra10] K. Brander. Interpolation and List Decoding of Algebraic Codes. PhD thesis,
Technical University of Denmark, 2010.

[BS05] A. Bostan and É. Schost. Polynomial evaluation and interpolation on special
sets of points. J. Complexity, 21(4):420–446, 2005. doi:10.1016/j.jco.
2004.09.009.

[BSS03] A. Bostan, B. Salvy, and É. Schost. Fast algorithms for zero-dimensional
polynomial systems using duality. Appl. Algebra Engrg. Comm. Comput.,
14(4):239–272, 2003. doi:10.1007/s00200-003-0133-5.

[Buc76] B. Buchberger. A theoretical basis for the reduction of polynomials to
canonical forms. ACM SIGSAM Bull., 10(3):19–29, August 1976. doi:
10.1145/1088216.1088219.

[Bus08] P. Busse. Multivariate List Decoding of Evaluation Codes with a Gröbner
Basis Perspective. PhD thesis, University of Kentucky, 2008.

[BvdHP88] Th. G. J. Beelen, G. J. van den Hurk, and C. Praagman. A new method
for computing a column reduced polynomial matrix. Systems and Control
Letters, 10(4):217–224, 1988. doi:10.1016/0167-6911(88)90010-2.

[Cau21] A. Cauchy. Cours d’analyse de l’École Royale Polytechnique (Analyse al-
gébrique) – Sur la formule de Lagrange relative à l’interpolation. Imprimerie
royale, Paris, 1821.

[CC86] S. Cabay and D.-K. Choi. Algebraic computations of scaled Padé fractions.
SIAM J. Comput., 15(1):243–270, 1986. doi:10.1137/0215018.

[CH11] H. Cohn and N. Heninger. Ideal forms of Coppersmith’s theorem and
Guruswami-Sudan list decoding. In Innovations in Computer Science, pages
298–308. Tsinghua University Press, 2011.

[CH12] H. Cohn and N. Heninger. Approximate common divisors via lattices. In
Tenth Algorithmic Number Theory Symposium, pages 271–293. Mathematical
Sciences Publishers (MSP), 2012. doi:10.2140/obs.2013.1.271.

331

http://dx.doi.org/10.1016/j.jsc.2006.02.001
http://dx.doi.org/10.1016/j.jsc.2006.02.001
http://dx.doi.org/10.1006/jcss.2002.1827
http://dx.doi.org/10.1006/jcss.2002.1827
http://dx.doi.org/10.1007/3-540-33099-2
http://dx.doi.org/10.1007/3-540-33099-2
http://dx.doi.org/10.1016/j.jco.2004.09.009
http://dx.doi.org/10.1016/j.jco.2004.09.009
http://dx.doi.org/10.1007/s00200-003-0133-5
http://dx.doi.org/10.1145/1088216.1088219
http://dx.doi.org/10.1145/1088216.1088219
http://dx.doi.org/10.1016/0167-6911(88)90010-2
http://dx.doi.org/10.1137/0215018
http://dx.doi.org/10.2140/obs.2013.1.271

Bibliography

[CH15] H. Cohn and N. Heninger. Ideal forms of Coppersmith’s theorem and
Guruswami-Sudan list decoding. Advances in Mathematics of Communica-
tions, 9(3):311–339, 2015. doi:10.3934/amc.2015.9.311.

[Che84] U. Cheng. On the continued fraction and Berlekamp’s algorithm (corresp.).
IEEE Trans. Inf. Theory, 30(3):541–544, May 1984. doi:10.1109/TIT.1984.
1056906.

[CJN+15] M. Chowdhury, C.-P. Jeannerod, V. Neiger, É. Schost, and G. Villard. Faster
algorithms for multivariate interpolation with multiplicities and simultaneous
polynomial approximations. IEEE Trans. Inf. Theory, 61(5):2370–2387, 2015.
doi:10.1109/TIT.2015.2416068.

[CK91] D. G. Cantor and E. Kaltofen. On fast multiplication of polynomials
over arbitrary algebras. Acta Inform., 28(7):693–701, 1991. doi:10.1007/
BF01178683.

[Cla75] G. Claessens. A new look at the Padé table and the different methods for
computing its elements. J. Comput. Appl. Math., 1(3):141–152, 1975. doi:
10.1016/0771-050X(75)90032-7.

[CLO05] D. Cox, J. Little, and D. O’Shea. Using Algebraic Geometry (second edition).
Springer-Verlag New-York, 2005. doi:10.1007/b138611.

[CLO07] D. A. Cox, J. Little, and D. O’Shea. Ideals, Varieties, and Algo-
rithms (third edition). Springer-Verlag New-York, 2007. doi:10.1007/
978-0-387-35651-8.

[Coa66] J. Coates. On the algebraic approximation of functions, I–III. Indag. Math.,
69:421–461, 1966. doi:10.1016/S1385-7258(66)50049-X.

[Coa67] J. Coates. On the algebraic approximation of functions, IV. Indag. Math.,
70:205–212, 1967. doi:10.1016/S1385-7258(67)50033-1.

[Cop96] Don Coppersmith. Finding a small root of a univariate modular equation.
In Ueli Maurer, editor, Advances in Cryptology — EUROCRYPT’96, volume
1070 of Lecture Notes in Computer Science, pages 155–165. Springer Berlin
/ Heidelberg, 1996. doi:10.1007/3-540-68339-9_14.

[CW90] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic
progressions. J. Symbolic Comput., 9(3):251–280, 1990. doi:10.1016/
S0747-7171(08)80013-2.

[Dan37] A. M. Danilevskii. The numerical solution of the secular equation. Matem.
Sbornik, 44(2):169–171, 1937. In Russian.

[DF04] D. S. Dummit and R. M. Foote. Abstract Algebra. John Wiley & Sons, 2004.

332

http://dx.doi.org/10.3934/amc.2015.9.311
http://dx.doi.org/10.1109/TIT.1984.1056906
http://dx.doi.org/10.1109/TIT.1984.1056906
http://dx.doi.org/10.1109/TIT.2015.2416068
http://dx.doi.org/10.1007/BF01178683
http://dx.doi.org/10.1007/BF01178683
http://dx.doi.org/10.1016/0771-050X(75)90032-7
http://dx.doi.org/10.1016/0771-050X(75)90032-7
http://dx.doi.org/10.1007/b138611
http://dx.doi.org/10.1007/978-0-387-35651-8
http://dx.doi.org/10.1007/978-0-387-35651-8
http://dx.doi.org/10.1016/S1385-7258(66)50049-X
http://dx.doi.org/10.1016/S1385-7258(67)50033-1
http://dx.doi.org/10.1007/3-540-68339-9_14
http://dx.doi.org/10.1016/S0747-7171(08)80013-2
http://dx.doi.org/10.1016/S0747-7171(08)80013-2

[DGH12] C. Devet, I. Goldberg, and N. Heninger. Optimally robust private information
retrieval. In USENIX Security 12, pages 269–283. USENIX, 2012.

[DL78] R. A. DeMillo and R. J. Lipton. A probabilistic remark on algebraic pro-
gram testing. Inform. Process. Lett., 7(4):193–195, 1978. doi:10.1016/
0020-0190(78)90067-4.

[Dor87] J. L. Dornstetter. On the equivalence between Berlekamp’s and Euclid’s
algorithms. IEEE Trans. Inf. Theory, 33(3):428–431, May 1987. doi:10.
1109/TIT.1987.1057299.

[EGV00] W. Eberly, M. Giesbrecht, and G. Villard. On computing the determinant and
smith form of an integer matrix. In FOCS’00, pages 675–687, Washington,
DC, USA, 2000. IEEE Computer Society. doi:10.1109/SFCS.2000.892335.

[Eis95] D. Eisenbud. Commutative Algebra: with a View Toward Algebraic Geometry.
Graduate Texts in Mathematics. Springer, New York, Berlin, Heildelberg,
1995. doi:10.1007/978-1-4612-5350-1.

[Eis05] D. Eisenbud. The Geometry of Syzygies. Graduate Texts in Mathematics.
Springer, New York, Berlin, Heildelberg, 2005. doi:10.1007/b137572.

[FF92] P. Fitzpatrick and J. Flynn. A Gröbner basis technique for Padé ap-
proximation. J. Symbolic Comput., 13(2):133–138, 1992. doi:10.1016/
S0747-7171(08)80087-9.

[FG06] J. B. Farr and S. Gao. Gröbner bases and generalized Padé approxima-
tion. Mathematics of Computation, 74(253):461–473, 1 2006. doi:10.1090/
S0025-5718-05-01790-4.

[FGHR13] J.-C. Faugère, P. Gaudry, L. Huot, and G. Renault. Polynomial systems
solving by fast linear algebra. CoRR, abs/1304.6039, 2013. URL: http:
//arxiv.org/abs/1304.6039.

[FGHR14] J.-C. Faugère, P. Gaudry, L. Huot, and G. Renault. Sub-cubic change of
ordering for Gröbner basis: a probabilistic approach. In ISSAC’14, pages
170–177, New York, NY, USA, 2014. ACM. doi:10.1145/2608628.2608669.

[FGLM93] J.-C. Faugère, P. Gianni, D. Lazard, and T. Mora. Efficient computation of
zero-dimensional Gröbner bases by change of ordering. Journal of Symbolic
Computation, 16(4):329–344, 1993. doi:10.1006/jsco.1993.1051.

[Fit95] P. Fitzpatrick. On the key equation. IEEE Trans. Inf. Theory, 41(5):1290–
1302, 1995. doi:10.1109/18.412677.

[Fit97] P. Fitzpatrick. Solving a Multivariable Congruence by Change of Term Order.
J. Symbolic Comput., 24(5):575–589, 1997. doi:10.1006/jsco.1997.0153.

333

http://dx.doi.org/10.1016/0020-0190(78)90067-4
http://dx.doi.org/10.1016/0020-0190(78)90067-4
http://dx.doi.org/10.1109/TIT.1987.1057299
http://dx.doi.org/10.1109/TIT.1987.1057299
http://dx.doi.org/10.1109/SFCS.2000.892335
http://dx.doi.org/10.1007/978-1-4612-5350-1
http://dx.doi.org/10.1007/b137572
http://dx.doi.org/10.1016/S0747-7171(08)80087-9
http://dx.doi.org/10.1016/S0747-7171(08)80087-9
http://dx.doi.org/10.1090/S0025-5718-05-01790-4
http://dx.doi.org/10.1090/S0025-5718-05-01790-4
http://arxiv.org/abs/1304.6039
http://arxiv.org/abs/1304.6039
http://dx.doi.org/10.1145/2608628.2608669
http://dx.doi.org/10.1006/jsco.1993.1051
http://dx.doi.org/10.1109/18.412677
http://dx.doi.org/10.1006/jsco.1997.0153

Bibliography

[FM11] J.-C. Faugère and C. Mou. Fast algorithm for change of ordering of zero-
dimensional gröbner bases with sparse multiplication matrices. In ISSAC’11,
pages 115–122, New York, NY, USA, 2011. ACM. doi:10.1145/1993886.
1993908.

[FM17] J.-C. Faugère and C. Mou. Sparse FGLM algorithms. J. Symbolic Comput.,
80, Part 3:538–569, 2017. doi:10.1016/j.jsc.2016.07.025.

[For75] G. D. Forney, Jr. Minimal Bases of Rational Vector Spaces, with Applications
to Multivariable Linear Systems. SIAM Journal on Control, 13(3):493–520,
1975. doi:10.1137/0313029.

[FT91] G. L. Feng and K. K. Tzeng. A generalization of the Berlekamp-Massey
algorithm for multisequence shift-register synthesis with applications to de-
coding cyclic codes. IEEE Trans. Inf. Theory, 37(5):1274–1287, 1991. doi:
10.1109/18.133246.

[Ged73] K. O. Geddes. Algorithms for Analytic Approximation (to a Formal Power-
series). PhD thesis, University of Toronto, Canada, 1973.

[Ged79] K. O. Geddes. Symbolic computation of Padé approximants. ACM Trans.
Math. Softw., 5(2):218–233, June 1979. doi:10.1145/355826.355835.

[GG13] J. von zur Gathen and J. Gerhard. Modern Computer Algebra (third edition).
Cambridge University Press, 2013. doi:10.1017/CBO9781139856065.

[GJV03] P. Giorgi, C.-P. Jeannerod, and G. Villard. On the complexity of polynomial
matrix computations. In ISSAC’03, pages 135–142. ACM, 2003. doi:10.
1145/860854.860889.

[GL14] P. Giorgi and R. Lebreton. Online order basis algorithm and its impact on
the block Wiedemann algorithm. In ISSAC’14, pages 202–209, New York,
NY, USA, 2014. ACM. doi:10.1145/2608628.2608647.

[GR06] P. Gaborit and O. Ruatta. Improved Hermite multivariate polynomial inter-
polation. In ISIT’06, pages 143–147. IEEE, 2006. doi:10.1109/ISIT.2006.
261691.

[GR08] V. Guruswami and A. Rudra. Explicit codes achieving list decoding capac-
ity: Error-correction with optimal redundancy. IEEE Trans. Inf. Theory,
54(1):135–150, 2008. doi:10.1109/TIT.2007.911222.

[GS98] V. Guruswami and M. Sudan. Improved decoding of Reed-Solomon and
algebraic-geometric codes. In FOCS’98, pages 28–39, November 1998. doi:
10.1109/SFCS.1998.743426.

[GS99] V. Guruswami and M. Sudan. Improved decoding of Reed-Solomon and
algebraic-geometry codes. IEEE Trans. Inf. Theory, 45(6):1757–1767, 1999.
doi:10.1109/18.782097.

334

http://dx.doi.org/10.1145/1993886.1993908
http://dx.doi.org/10.1145/1993886.1993908
http://dx.doi.org/10.1016/j.jsc.2016.07.025
http://dx.doi.org/10.1137/0313029
http://dx.doi.org/10.1109/18.133246
http://dx.doi.org/10.1109/18.133246
http://dx.doi.org/10.1145/355826.355835
http://dx.doi.org/10.1017/CBO9781139856065
http://dx.doi.org/10.1145/860854.860889
http://dx.doi.org/10.1145/860854.860889
http://dx.doi.org/10.1145/2608628.2608647
http://dx.doi.org/10.1109/ISIT.2006.261691
http://dx.doi.org/10.1109/ISIT.2006.261691
http://dx.doi.org/10.1109/TIT.2007.911222
http://dx.doi.org/10.1109/SFCS.1998.743426
http://dx.doi.org/10.1109/SFCS.1998.743426
http://dx.doi.org/10.1109/18.782097

[GS11] S. Gupta and A. Storjohann. Computing Hermite forms of polynomial ma-
trices. In ISSAC’11, pages 155–162. ACM, 2011. doi:10.1145/1993886.
1993913.

[GSSV12] S. Gupta, S. Sarkar, A. Storjohann, and J. Valeriote. Triangular x-basis
decompositions and derandomization of linear algebra algorithms over K[x].
J. Symbolic Comput., 47(4):422–453, 2012. doi:10.1016/j.jsc.2011.09.
006.

[GTV90] M. Girault, P. Toffin, and B. Vallée. Computation of approximate L-th roots
modulo n and application to cryptography. In CRYPTO ’88, pages 100–117,
New York, NY, USA, 1990. Springer-Verlag New York, Inc. doi:10.1007/
0-387-34799-2_9.

[Gup11] S. Gupta. Hermite forms of polynomial matrices. Master’s thesis, University
of Waterloo, Canada, 2011.

[GY79] F. G. Gustavson and D. Y. Y. Yun. Fast algorithms for rational Hermite
approximation and solution of Toeplitz systems. IEEE Trans. Circuits Syst.,
26(9):750–755, 1979. doi:10.1109/TCS.1979.1084696.

[Has36] H. Hasse. Theorie der höheren Differentiale in einem algebraischen Funktio-
nenkörper mit vollkommenem Konstantenkörper bei beliebiger Charakteris-
tik. J. Reine Angew. Math., 175:50–54, 1936. doi:10.1515/crll.1936.175.
50.

[Hås86] Johan Håstad. On using RSA with low exponent in a public key network.
In Lecture Notes in Computer Sciences; 218 on Advances in Cryptology—
CRYPTO’85, pages 403–408, New York, NY, USA, 1986. Springer-Verlag
New York, Inc. doi:10.1007/3-540-39799-X_29.

[Her51] C. Hermite. Sur l’introduction des variables continues dans la théorie des
nombres. Journal für die reine und angewandte Mathematik, 41:191–216,
1851. doi:10.1515/crll.1851.41.191.

[Her93] C. Hermite. Sur la généralisation des fractions continues algébriques. Annali
di Matematica Pura ed Applicata (1867-1897), 21(1):289–308, 1893. doi:
10.1007/BF02420446.

[HG01] N. Howgrave-Graham. Approximate integer common divisors. In
CaLC’01, pages 51–66, London, UK, 2001. Springer-Verlag. doi:10.1007/
3-540-44670-2_6.

[HM91] J. L. Hafner and K. McCurley. Asymptotically fast triangularization of
matrices over rings. SIAM Journal on Computing, 20(6):1068–1083, 1991.
doi:10.1137/0220067.

335

http://dx.doi.org/10.1145/1993886.1993913
http://dx.doi.org/10.1145/1993886.1993913
http://dx.doi.org/10.1016/j.jsc.2011.09.006
http://dx.doi.org/10.1016/j.jsc.2011.09.006
http://dx.doi.org/10.1007/0-387-34799-2_9
http://dx.doi.org/10.1007/0-387-34799-2_9
http://dx.doi.org/10.1109/TCS.1979.1084696
http://dx.doi.org/10.1515/crll.1936.175.50
http://dx.doi.org/10.1515/crll.1936.175.50
http://dx.doi.org/10.1007/3-540-39799-X_29
http://dx.doi.org/10.1515/crll.1851.41.191
http://dx.doi.org/10.1007/BF02420446
http://dx.doi.org/10.1007/BF02420446
http://dx.doi.org/10.1007/3-540-44670-2_6
http://dx.doi.org/10.1007/3-540-44670-2_6
http://dx.doi.org/10.1137/0220067

Bibliography

[Ili89] C. S. Iliopoulos. Worst-case complexity bounds on algorithms for computing
the canonical structure of finite abelian groups and the Hermite and Smith
normal forms of an integer matrix. SIAM J. Comput., 18(4):658–669, August
1989. doi:10.1137/0218045.

[IMH82] O. H. Ibarra, S. Moran, and R. Hui. A generalization of the fast LUP matrix
decomposition algorithm and applications. Journal of Algorithms, 3(1):45–56,
1982. doi:10.1016/0196-6774(82)90007-4.

[Jag64] H. Jager. A multidimensional generalization of the Padé table, I–VI. Indag.
Math., 67:193–249, 1964. doi:10.1016/S1385-7258(64)50023-2.

[JNSV16] C.-P. Jeannerod, V. Neiger, É. Schost, and G. Villard. Fast computation of
minimal interpolation bases in Popov form for arbitrary shifts. In ISSAC’16,
pages 295–302. ACM, 2016. doi:10.1145/2930889.2930928.

[JNSV17] C.-P. Jeannerod, V. Neiger, É. Schost, and G. Villard. Computing minimal
interpolation bases, 2017. doi:10.1016/j.jsc.2016.11.015.

[JV05] C.-P. Jeannerod and G. Villard. Essentially optimal computation of the
inverse of generic polynomial matrices. J. Complexity, 21(1):72–86, 2005.
doi:10.1016/j.jco.2004.03.005.

[Kai80] T. Kailath. Linear Systems. Prentice-Hall, 1980.

[Kal94] E. Kaltofen. Asymptotically fast solution of Toeplitz-like singular linear
systems. In ISSAC’94, pages 297–304. ACM, 1994. doi:10.1145/190347.
190431.

[KG85] W. Keller-Gehrig. Fast algorithms for the characteristic polynomial. The-
oretical Computer Science, 36:309–317, 1985. doi:10.1016/0304-3975(85)
90049-0.

[KKS90] E. Kaltofen, M.S. Krishnamoorthy, and D. Saunders. Parallel algorithms
for matrix normal forms. Linear Algebra Appl., 136:189–208, 1990. doi:
10.1016/0024-3795(90)90028-B.

[KMV11] R. Kötter, J. Ma, and A. Vardy. The re-encoding transformation in algebraic
list-decoding of Reed-Solomon codes. IEEE Trans. Inf. Theory, 57(2):633–
647, 2011. doi:10.1109/TIT.2010.2096034.

[Knu70] D. E. Knuth. The analysis of algorithms. In Congrès int. Math., Nice, France,
volume 3, pages 269–274, 1970.

[Köt96] R. Kötter. Fast generalized minimum-distance decoding of algebraic-geometry
and Reed-Solomon codes. IEEE Trans. Inf. Theory, 42(3):721–737, 1996.
doi:10.1109/18.490540.

336

http://dx.doi.org/10.1137/0218045
http://dx.doi.org/10.1016/0196-6774(82)90007-4
http://dx.doi.org/10.1016/S1385-7258(64)50023-2
http://dx.doi.org/10.1145/2930889.2930928
http://dx.doi.org/10.1016/j.jsc.2016.11.015
http://dx.doi.org/10.1016/j.jco.2004.03.005
http://dx.doi.org/10.1145/190347.190431
http://dx.doi.org/10.1145/190347.190431
http://dx.doi.org/10.1016/0304-3975(85)90049-0
http://dx.doi.org/10.1016/0304-3975(85)90049-0
http://dx.doi.org/10.1016/0024-3795(90)90028-B
http://dx.doi.org/10.1016/0024-3795(90)90028-B
http://dx.doi.org/10.1109/TIT.2010.2096034
http://dx.doi.org/10.1109/18.490540

[KR00] M. Kreuzer and L. Robbiano. Computational Commutative Algebra 1.
Springer Berlin Heidelberg, 2000. doi:10.1007/978-3-540-70628-1.

[Kry31] A. N. Krylov. On the numerical solution of the equation by which, in technical
questions, frequencies of small oscillations of material systems are determined.
Izvestiya Akademii Nauk SSSR, 7(4):491–539, 1931. In Russian. URL: http:
//mi.mathnet.ru/izv5215.

[KS91] E. Kaltofen and D. Saunders. On Wiedemann’s method of solving sparse
linear systems. In AAECC-9, volume 539 of LNCS, pages 29–38. Springer,
1991. doi:10.1007/3-540-54522-0_93.

[KU11] K. S. Kedlaya and C. Umans. Fast polynomial factorization and modu-
lar composition. SIAM J. Comput., 40(6):1767–1802, 2011. doi:10.1137/
08073408X.

[KV03a] R. Kötter and A. Vardy. Algebraic soft-decision decoding of Reed-Solomon
codes. IEEE Trans. Inf. Theory, 49(11):2809–2825, 2003. doi:10.1109/TIT.
2003.819332.

[KV03b] R. Kötter and A. Vardy. A complexity reducing transformation in algebraic
list decoding of Reed-Solomon codes. In ITW2003, pages 10–13. IEEE, 2003.
doi:10.1109/ITW.2003.1216682.

[Lec01] G. Lecerf. Private communication to É. Schost, 2001.

[LG14] F. Le Gall. Powers of tensors and fast matrix multiplication. In ISSAC’14,
pages 296–303. ACM, 2014. doi:10.1145/2608628.2608664.

[LNZ16] G. Labahn, V. Neiger, and W. Zhou. Fast, deterministic computation of the
Hermite normal form and determinant of a polynomial matrix, 2016. URL:
http://arxiv.org/abs/1607.04176.

[LO06] K. Lee and M. E. O’Sullivan. An interpolation algorithm using Gröbner
bases for soft-decision decoding of Reed-Solomon codes. In ISIT’06, pages
2032–2036, July 2006. doi:10.1109/ISIT.2006.261906.

[LO08] K. Lee and M. E. O’Sullivan. List decoding of Reed-Solomon codes from a
Gröbner basis perspective. J. Symbolic Comput., 43(9):645–658, 2008. doi:
10.1016/j.jsc.2008.01.002.

[Lüb83] W. Lübbe. Über ein allgemeines Interpolationsproblem — lineare Identitäten
zwischen benachbarten Lösungssystemen. PhD thesis, Department of Applied
Mathematics, University of Hannover, Germany, 1983.

[Mac02] F. S. Macaulay. Some formulae in elimination. Proceedings of the London
Mathematical Society, s1-35(1):3–27, 1902. doi:10.1112/plms/s1-35.1.3.

337

http://dx.doi.org/10.1007/978-3-540-70628-1
http://mi.mathnet.ru/izv5215
http://mi.mathnet.ru/izv5215
http://dx.doi.org/10.1007/3-540-54522-0_93
http://dx.doi.org/10.1137/08073408X
http://dx.doi.org/10.1137/08073408X
http://dx.doi.org/10.1109/TIT.2003.819332
http://dx.doi.org/10.1109/TIT.2003.819332
http://dx.doi.org/10.1109/ITW.2003.1216682
http://dx.doi.org/10.1145/2608628.2608664
http://arxiv.org/abs/1607.04176
http://dx.doi.org/10.1109/ISIT.2006.261906
http://dx.doi.org/10.1016/j.jsc.2008.01.002
http://dx.doi.org/10.1016/j.jsc.2008.01.002
http://dx.doi.org/10.1112/plms/s1-35.1.3

Bibliography

[Mac16] F. S. Macaulay. The Algebraic Theory of Modular Systems. Cambridge
Tracts in Mathematics and Mathematical Physics. Cambridge University
Press, 1916.

[Mah32] K. Mahler. Zur approximation der Exponentialfunktion und des Logarithmus.
I–II. Journal für die reine und angewandte Mathematik, 166:118–150, 1932.
doi:10.1515/crll.1932.166.118.

[Mah53] K. Mahler. On the approximation of logarithms of algebraic numbers. Philo-
sophical Transactions of the Royal Society of London, Series A, 245(898):371–
398, 1953. doi:10.1098/rsta.1953.0001.

[Mah68] K. Mahler. Perfect systems. Composit. Math., 19(2):95–166, 1968.

[Mas69] James L. Massey. Shift-register synthesis and BCH decoding. IEEE Trans.
Inf. Theory, 15(1):122–127, January 1969. doi:10.1109/TIT.1969.1054260.

[MB82] H. M. Möller and B. Buchberger. The construction of multivariate polyno-
mials with preassigned zeros. In EUROCAM’82, volume 144 of LNCS, pages
24–31. Springer, 1982. doi:10.1007/3-540-11607-9_3.

[McE03] R. J. McEliece. The Guruswami-Sudan decoding algorithm for Reed-Solomon
codes, 2003. IPN Progress Report 42-153.

[Mid11] J. Middeke. A computational view on normal forms of matrices of Ore poly-
nomials. Risc technical report 11-10, Research Institute for Symbolic Com-
putation (RISC), July 2011.

[Mil75] W. H. Mills. Continued fractions and linear recurrences. Mathe-
matics of Computation, 29(129):173–180, January 1975. doi:10.1090/
S0025-5718-1975-0369276-7.

[MMM93] M. G. Marinari, H. M. Möller, and T. Mora. Gröbner bases of ideals defined
by functionals with an application to ideals of projective points. Appl. Algebra
Engrg. Comm. Comput., 4(2):103–145, 1993. doi:10.1007/BF01386834.

[Moe73] R. T. Moenck. Fast computation of GCDs. In Proc. 5th ACM Symp. Theory
Comp., pages 142–151, 1973. doi:10.1145/800125.804045.

[Mor80] M. Morf. Doubling algorithms for Toeplitz and related equations. In IEEE
Conference on Acoustics, Speech, and Signal Processing, pages 954–959.
IEEE, 1980. doi:10.1109/ICASSP.1980.1171074.

[Mor09] T. Mora. The FGLM problem and Möller’s algorithm on zero-dimensional
ideals. In M. Sala, S. Sakata, T. Mora, C. Traverso, and L. Perret, editors,
Gröbner Bases, Coding, and Cryptography, pages 27–45, Berlin, Heidelberg,
2009. Springer Berlin Heidelberg. doi:10.1007/978-3-540-93806-4_3.

338

http://dx.doi.org/10.1515/crll.1932.166.118
http://dx.doi.org/10.1098/rsta.1953.0001
http://dx.doi.org/10.1109/TIT.1969.1054260
http://dx.doi.org/10.1007/3-540-11607-9_3
http://dx.doi.org/10.1090/S0025-5718-1975-0369276-7
http://dx.doi.org/10.1090/S0025-5718-1975-0369276-7
http://dx.doi.org/10.1007/BF01386834
http://dx.doi.org/10.1145/800125.804045
http://dx.doi.org/10.1109/ICASSP.1980.1171074
http://dx.doi.org/10.1007/978-3-540-93806-4_3

[MS78] R. J. McEliece and J. B. Shearer. A property of Euclid’s algorithm and an
application to Padé approximation. SIAM J. Appl. Math., 34(4):611–615,
1978. doi:10.1137/0134048.

[MS91] G. Moreno-Socias. Autour de la fonction de Hilbert-Samuel (escaliers d’idéaux
polynomiaux). PhD thesis, École Polytechnique, France, 1991. URL: http:
//www.theses.fr/1991EPXX0034.

[MS03a] G. Moreno-Socias. Degrevlex Gröbner bases of generic complete intersections.
Journal of Pure and Applied Algebra, 180(3):263–283, 2003. doi:10.1016/
S0022-4049(02)00297-9.

[MS03b] T. Mulders and A. Storjohann. On lattice reduction for polynomial matri-
ces. J. Symbolic Comput., 35:377–401, 2003. doi:10.1016/S0747-7171(02)
00139-6.

[MS05] E. Miller and B. Sturmfels. Combinatorial Commutative Algebra. Graduate
texts in mathematics. Springer, New York, 2005. doi:10.1007/b138602.

[Nei16] V. Neiger. Fast computation of shifted Popov forms of polynomial matrices
via systems of modular polynomial equations. In ISSAC’16, pages 365–372.
ACM, 2016. doi:10.1145/2930889.2930936.

[NH00] R. R. Nielsen and T. Høholdt. Decoding Reed-Solomon codes beyond half
the minimum distance. In Coding Theory, Cryptography and Related Areas,
pages 221–236. Springer, 2000. doi:10.1007/978-3-642-57189-3_20.

[Nie13] J. S. R. Nielsen. List Decoding of Algebraic Codes. PhD thesis, Technical
University of Denmark, 2013.

[Nie14] J. S. R. Nielsen. Fast Kötter-Nielsen-Høholdt interpolation in the Guruswami-
Sudan algorithm. In ACCT’14, 2014. URL: http://arxiv.org/abs/1406.
0053.

[Nus80] H. Nussbaumer. Fast polynomial transform algorithms for digital convolution.
IEEE Transactions on Acoustics, Speech, and Signal Processing, 28(2):205–
215, 1980. doi:10.1109/TASSP.1980.1163372.

[NZ04] M. Nüsken and M. Ziegler. Fast multipoint evaluation of bivariate polynomi-
als. In Algorithms – ESA 2004, pages 544–555. Springer Berlin Heidelberg,
2004. doi:10.1007/978-3-540-30140-0_49.

[OF02] H. O’Keeffe and P. Fitzpatrick. Gröbner basis solutions of constrained
interpolation problems. Linear Algebra Appl., 351:533–551, 2002. doi:
10.1016/S0024-3795(01)00509-2.

[OF07] H. O’Keeffe and P. Fitzpatrick. Gröbner basis approach to list decoding of
algebraic geometry codes. Appl. Algebra Engrg. Comm. Comput., 18(5):445–
466, 2007. doi:10.1007/s00200-007-0048-7.

339

http://dx.doi.org/10.1137/0134048
http://www.theses.fr/1991EPXX0034
http://www.theses.fr/1991EPXX0034
http://dx.doi.org/10.1016/S0022-4049(02)00297-9
http://dx.doi.org/10.1016/S0022-4049(02)00297-9
http://dx.doi.org/10.1016/S0747-7171(02)00139-6
http://dx.doi.org/10.1016/S0747-7171(02)00139-6
http://dx.doi.org/10.1007/b138602
http://dx.doi.org/10.1145/2930889.2930936
http://dx.doi.org/10.1007/978-3-642-57189-3_20
http://arxiv.org/abs/1406.0053
http://arxiv.org/abs/1406.0053
http://dx.doi.org/10.1109/TASSP.1980.1163372
http://dx.doi.org/10.1007/978-3-540-30140-0_49
http://dx.doi.org/10.1016/S0024-3795(01)00509-2
http://dx.doi.org/10.1016/S0024-3795(01)00509-2
http://dx.doi.org/10.1007/s00200-007-0048-7

Bibliography

[OS99] V. Olshevsky and M. A. Shokrollahi. A displacement approach to efficient
decoding of algebraic-geometric codes. In STOC’99, pages 235–244. ACM,
1999. doi:10.1145/301250.301311.

[Pad94] H. Padé. Sur la généralisation des fractions continues algébriques. Journal de
Mathématiques Pures et Appliquées, pages 291–330, 1894.

[Pan01] V. Y. Pan. Structured Matrices and Polynomials. Birkhäuser/Springer,
Boston/New York, 2001. doi:10.1007/978-1-4612-0129-8.

[Pap94] C. H. Papadimitriou. Computational Complexity. Theoretical Computer Sci-
ence. Addison-Wesley, 1994.

[Pas87] S. Paszkowski. Recurrence relations in Padé-Hermite approximation. J. Com-
put. Appl. Math., 19(1):99–107, July 1987. doi:10.1016/0377-0427(87)
90177-4.

[Pop72] V. M. Popov. Invariant description of linear, time-invariant controllable
systems. SIAM Journal on Control, 10(2):252–264, 1972. doi:10.1137/
0310020.

[PV05] F. Parvaresh and A. Vardy. Correcting errors beyond the Guruswami-Sudan
radius in polynomial time. In FOCS’05, pages 285–294. IEEE, 2005. doi:
10.1109/SFCS.2005.29.

[Rei03] J.-R. Reinhard. Algorithme LLL polynomial et applications. Master’s thesis,
École Polytechnique, Paris, France, 2003. URL: https://hal.inria.fr/
hal-01101550.

[Rob86] L. Robbiano. On the theory of graded structures. J. Symbolic Comput.,
2(2):139–170, 1986. doi:10.1016/S0747-7171(86)80019-0.

[Rot07] R. M. Roth. Introduction to Coding Theory. Cambridge University Press,
2007. doi:10.1017/CBO9780511808968.

[Rou99] F. Rouillier. Solving zero-dimensional systems through the rational univariate
representation. Appl. Algebra Engrg. Comm. Comput., 9(5):433–461, 1999.
doi:10.1007/s002000050114.

[RR00] R. M. Roth and G. Ruckenstein. Efficient decoding of Reed-Solomon codes
beyond half the minimum distance. IEEE Trans. Inf. Theory, 46(1):246–257,
2000. doi:10.1109/18.817522.

[RS16] J. Rosenkilde and A. Storjohann. Algorithms for simultaneous Padé approx-
imations. In ISSAC’16, pages 405–412, New York, NY, USA, 2016. ACM.
doi:10.1145/2930889.2930933.

[Sak88] S. Sakata. Finding a minimal set of linear recurring relations capable of gener-
ating a given finite two-dimensional array. J. Symbolic Comput., 5(3):321–337,
1988. doi:10.1016/S0747-7171(88)80033-6.

340

http://dx.doi.org/10.1145/301250.301311
http://dx.doi.org/10.1007/978-1-4612-0129-8
http://dx.doi.org/10.1016/0377-0427(87)90177-4
http://dx.doi.org/10.1016/0377-0427(87)90177-4
http://dx.doi.org/10.1137/0310020
http://dx.doi.org/10.1137/0310020
http://dx.doi.org/10.1109/SFCS.2005.29
http://dx.doi.org/10.1109/SFCS.2005.29
https://hal.inria.fr/hal-01101550
https://hal.inria.fr/hal-01101550
http://dx.doi.org/10.1016/S0747-7171(86)80019-0
http://dx.doi.org/10.1017/CBO9780511808968
http://dx.doi.org/10.1007/s002000050114
http://dx.doi.org/10.1109/18.817522
http://dx.doi.org/10.1145/2930889.2930933
http://dx.doi.org/10.1016/S0747-7171(88)80033-6

[Sak90] S. Sakata. Extension of the berlekamp-massey algorithm to n dimensions.
Inform. and Comput., 84(2):207–239, 1990. doi:10.1016/0890-5401(90)
90039-K.

[Sch71] A. Schönhage. Schnelle Berechnung von Kettenbruchentwicklungen. Acta
Inform., 1:139–144, 1971. In German. doi:10.1007/BF00289520.

[Sch77] A. Schönhage. Fast multiplication of polynomials over fields of characteristic
2. Acta Inform., 7(4):395–398, 1977. doi:10.1007/BF00289470.

[Sch80] J. T. Schwartz. Fast probabilistic algorithms for verification of polynomial
identities. J. ACM, 27(4):701–717, 1980. doi:10.1145/322217.322225.

[Ser87] A. V. Sergeyev. A recursive algorithm for Padé-Hermite approximations.
USSR Comput. Math. Math. Phys., 26(2):17–22, July 1987. doi:10.1016/
0041-5553(86)90003-0.

[Sho91] V. Shoup. A fast deterministic algorithm for factoring polynomials over finite
fields of small characteristic. In ISSAC’91, pages 14–21. ACM, 1991. doi:
10.1145/120694.120697.

[SKHN75] Y. Sugiyama, M. Kasahara, S. Hirasawa, and T. Namekawa. A method for
solving key equation for decoding Goppa codes. Information and Control,
27(1):87–99, 1975. doi:10.1016/S0019-9958(75)90090-X.

[SL96] A. Storjohann and G. Labahn. Asymptotically fast computation of Hermite
normal forms of integer matrices. In ISSAC’96, pages 259–266. ACM, 1996.
doi:10.1145/236869.237083.

[SS11] S. Sarkar and A. Storjohann. Normalization of row reduced matrices. In
ISSAC’11, pages 297–304. ACM, 2011. doi:10.1145/1993886.1993931.

[Sto00] A. Storjohann. Algorithms for Matrix Canonical Forms. PhD thesis, Swiss
Federal Institute of Technology – ETH, 2000.

[Sto03] A. Storjohann. High-order lifting and integrality certification. J. Symbolic
Comput., 36(3-4):613–648, 2003. doi:10.1016/S0747-7171(03)00097-X.

[Sto06] A. Storjohann. Notes on computing minimal approximant bases. In Chal-
lenges in Symbolic Computation Software, Dagstuhl Seminar Proceedings,
2006. URL: http://drops.dagstuhl.de/opus/volltexte/2006/776.

[Sud97] M. Sudan. Decoding of Reed-Solomon codes beyond the error-correction
bound. J. Complexity, 13(1):180–193, 1997. doi:10.1006/jcom.1997.0439.

[SV05] A. Storjohann and G. Villard. Computing the rank and a small nullspace
basis of a polynomial matrix. In ISSAC’05, pages 309–316, New York, NY,
USA, 2005. ACM. doi:10.1145/1073884.1073927.

341

http://dx.doi.org/10.1016/0890-5401(90)90039-K
http://dx.doi.org/10.1016/0890-5401(90)90039-K
http://dx.doi.org/10.1007/BF00289520
http://dx.doi.org/10.1007/BF00289470
http://dx.doi.org/10.1145/322217.322225
http://dx.doi.org/10.1016/0041-5553(86)90003-0
http://dx.doi.org/10.1016/0041-5553(86)90003-0
http://dx.doi.org/10.1145/120694.120697
http://dx.doi.org/10.1145/120694.120697
http://dx.doi.org/10.1016/S0019-9958(75)90090-X
http://dx.doi.org/10.1145/236869.237083
http://dx.doi.org/10.1145/1993886.1993931
http://dx.doi.org/10.1016/S0747-7171(03)00097-X
http://drops.dagstuhl.de/opus/volltexte/2006/776
http://dx.doi.org/10.1006/jcom.1997.0439
http://dx.doi.org/10.1145/1073884.1073927

Bibliography

[Syl53] J. J. Sylvester. On a Theory of the Syzygetic Relations of Two Rational
Integral Functions, Comprising an Application to the Theory of Sturm’s
Functions, and That of the Greatest Algebraical Common Measure. Philo-
sophical Transactions of the Royal Society of London, 143:407–548, 1853.
doi:10.1098/rstl.1853.0018.

[Tho01] E. Thomé. Fast computation of linear generators for matrix sequences and
application to the block Wiedemann algorithm. In ISSAC’01, pages 323–331,
New York, NY, USA, 2001. ACM. doi:10.1145/384101.384145.

[Tho02] E. Thomé. Subquadratic computation of vector generating polynomials and
improvement of the block Wiedemann algorithm. J. Symbolic Comput.,
33(5):757–775, 2002. doi:10.1006/jsco.2002.0533.

[Tri10] P. V. Trifonov. Efficient interpolation in the Guruswami-Sudan algorithm.
IEEE Trans. Inf. Theory, 56(9):4341–4349, 2010. doi:10.1109/TIT.2010.
2053901.

[VBB91] M. Van Barel and A. Bultheel. The computation of non-perfect Padé-
Hermite approximants. Numer. Algorithms, 1(3):285–304, 1991. doi:10.
1007/BF02142327.

[VBB92] M. Van Barel and A. Bultheel. A general module theoretic framework for
vector M-Padé and matrix rational interpolation. Numer. Algorithms, 3:451–
462, 1992. doi:10.1007/BF02141952.

[Vil96] G. Villard. Computing Popov and Hermite forms of polynomial matrices. In
ISSAC’96, pages 250–258. ACM, 1996. doi:10.1145/236869.237082.

[War74] D. D. Warner. Hermite interpolation with rational functions. PhD thesis,
University of California, San Diego, 1974.

[War76] D. D. Warner. Kronecker’s algorithm for Hermite interpolation with an ap-
plication to sphere drag in a fluid-filled tube. In Proceedings of a Workshop
on Padé Approximation, eds. D. Bessis, J. Gilewicz and P. Mery, CNRS
Marseille, pages 48–71, 1976.

[WB86] L. R. Welch and E. R. Berlekamp. Error correction for algebraic block codes,
December 30 1986. US Patent 4,633,470.

[Wol74] W. A. Wolovich. Linear Multivariable Systems, volume 11 of Applied
Mathematical Sciences. Springer-Verlag New-York, 1974. doi:10.1007/
978-1-4612-6392-0.

[WS79] L. Welch and R. Scholtz. Continued fractions and Berlekamp’s algorithm.
IEEE Trans. Inf. Theory, 25(1):19–27, Jan 1979. doi:10.1109/TIT.1979.
1055987.

342

http://dx.doi.org/10.1098/rstl.1853.0018
http://dx.doi.org/10.1145/384101.384145
http://dx.doi.org/10.1006/jsco.2002.0533
http://dx.doi.org/10.1109/TIT.2010.2053901
http://dx.doi.org/10.1109/TIT.2010.2053901
http://dx.doi.org/10.1007/BF02142327
http://dx.doi.org/10.1007/BF02142327
http://dx.doi.org/10.1007/BF02141952
http://dx.doi.org/10.1145/236869.237082
http://dx.doi.org/10.1007/978-1-4612-6392-0
http://dx.doi.org/10.1007/978-1-4612-6392-0
http://dx.doi.org/10.1109/TIT.1979.1055987
http://dx.doi.org/10.1109/TIT.1979.1055987

[Wu08] Y. Wu. New list decoding algorithms for Reed-Solomon and BCH codes. IEEE
Trans. Inf. Theory, 54(8):3611 –3630, August 2008. doi:10.1109/TIT.2008.
926355.

[Zeh13] A. Zeh. Algebraic Soft- and Hard-Decision Decoding of Generalized Reed–
Solomon and Cyclic Codes. PhD thesis, École Polytechnique, 2013.

[ZGA11] A. Zeh, C. Gentner, and D. Augot. An interpolation procedure for list de-
coding Reed-Solomon codes based on generalized key equations. IEEE Trans.
Inf. Theory, 57(9):5946–5959, 2011. doi:10.1109/TIT.2011.2162160.

[Zho12] W. Zhou. Fast Order Basis and Kernel Basis Computation and Related Prob-
lems. PhD thesis, University of Waterloo, 2012.

[Zie68] N. Zierler. Linear recurring sequences and error-correcting codes. In H. B.
Mann, editor, Error Correcting Codes (Proc. Sympos. Math. Res. Center,
Madison, Wis., 1968), pages 47–59. Wiley, 1968.

[Zip79] R. Zippel. Probabilistic algorithms for sparse polynomials. In EUROSAM’79,
volume 72 of LNCS, pages 216–226. Springer, 1979.

[ZL12] W. Zhou and G. Labahn. Efficient algorithms for order basis computation. J.
Symbolic Comput., 47(7):793–819, 2012. doi:10.1016/j.jsc.2011.12.009.

[ZL13] W. Zhou and G. Labahn. Computing column bases of polynomial matrices.
In ISSAC’13, pages 379–386, New York, NY, USA, 2013. ACM. doi:10.
1145/2465506.2465947.

[ZL14a] W. Zhou and G. Labahn. Fast and deterministic computation of the deter-
minant of a polynomial matrix, 2014. URL: http://arxiv.org/abs/1409.
5462.

[ZL14b] W. Zhou and G. Labahn. Unimodular completion of polynomial matrices. In
ISSAC’14, pages 413–420, New York, NY, USA, 2014. ACM. doi:10.1145/
2608628.2608640.

[ZL16] W. Zhou and G. Labahn. A fast, deterministic algorithm for computing a
Hermite normal form of a polynomial matrix, 2016. URL: http://arxiv.
org/abs/1602.02049.

[ZLS12] W. Zhou, G. Labahn, and A. Storjohann. Computing minimal nullspace bases.
In ISSAC’12, pages 366–373. ACM, 2012. doi:10.1145/2442829.2442881.

[ZLS15] W. Zhou, G. Labahn, and A. Storjohann. A deterministic algorithm for
inverting a polynomial matrix. J. Complexity, 31(2):162–173, 2015. doi:
10.1016/j.jco.2014.09.004.

343

http://dx.doi.org/10.1109/TIT.2008.926355
http://dx.doi.org/10.1109/TIT.2008.926355
http://dx.doi.org/10.1109/TIT.2011.2162160
http://dx.doi.org/10.1016/j.jsc.2011.12.009
http://dx.doi.org/10.1145/2465506.2465947
http://dx.doi.org/10.1145/2465506.2465947
http://arxiv.org/abs/1409.5462
http://arxiv.org/abs/1409.5462
http://dx.doi.org/10.1145/2608628.2608640
http://dx.doi.org/10.1145/2608628.2608640
http://arxiv.org/abs/1602.02049
http://arxiv.org/abs/1602.02049
http://dx.doi.org/10.1145/2442829.2442881
http://dx.doi.org/10.1016/j.jco.2014.09.004
http://dx.doi.org/10.1016/j.jco.2014.09.004

Bibliography

344

Résumé
Dans cette thèse, nous étudions des algorithmes pour un problème de recherche de rela-
tions à une ou plusieurs variables. Il généralise celui de calculer une solution à un système
d’équations linéaires modulaires sur un anneau de polynômes, et inclut par exemple le
calcul d’approximants de Hermite-Padé ou d’interpolants bivariés. Plutôt qu’une seule so-
lution, nous nous attacherons à calculer un ensemble de générateurs possédant de bonnes
propriétés.

Précisément, l’entrée de notre problème consiste en un module de dimension finie
spécifié par l’action des variables sur ses éléments, et en un certain nombre d’éléments
de ce module ; il s’agit de calculer une base de Gröbner du module des relations entre
ces éléments. En termes d’algèbre linéaire, l’entrée décrit une matrice avec une structure
de type Krylov, et il s’agit de calculer sous forme compacte une base du noyau de cette
matrice.

Nous proposons plusieurs algorithmes en fonction de la forme des matrices de multipli-
cation qui représentent l’action des variables. Dans le cas d’une matrice de Jordan, nous
accélérons le calcul d’interpolants multivariés sous certaines contraintes de degré ; nos ré-
sultats pour une forme de Frobenius permettent d’accélérer le calcul de formes normales
de matrices polynomiales univariées. Enfin, dans le cas de plusieurs matrices denses,
nous accélérons le changement d’ordre pour des bases de Gröbner d’idéaux multivariés
zéro-dimensionnels.

Abstract
In this thesis, we study algorithms for a problem of finding relations in one or several

variables. It generalizes that of computing a solution to a system of linear modular
equations over a polynomial ring, including in particular the computation of Hermite-
Padé approximants and bivariate interpolants. Rather than a single solution, we aim at
computing generators of the solution set which have good properties.

Precisely, the input of our problem consists of a finite-dimensional module given by
the action of the variables on its elements, and of some elements of this module; the goal
is to compute a Gröbner basis of the module of syzygies between these elements. In terms
of linear algebra, the input describes a matrix with a type of Krylov structure, and the
goal is to compute a compact representation of a basis of the nullspace of this matrix.

We propose several algorithms in accordance with the structure of the multiplication
matrices which specify the action of the variables. In the case of a Jordan matrix, we
accelerate the computation of multivariate interpolants under degree constraints; our
result for a Frobenius matrix leads to a faster algorithm for computing normal forms of
univariate polynomial matrices. In the case of several dense matrices, we accelerate the
change of monomial order for Gröbner bases of multivariate zero-dimensional ideals.

345

346

	Couverture
	Remerciements
	Dédicace
	Contents
	List of Tables
	List of Figures
	Preamble
	Part I Problems and overview of contributions
	Generating sets of modules over polynomial rings
	Popov bases of modules over univariate polynomial rings
	Bases and polynomial matrices
	Row degrees and shifted reduced forms
	Pivots and shifted Popov forms

	Designing fast algorithms for shifted Popov bases
	Finding and using the minimal degree
	Size of bases and target costs

	Gröbner bases of modules over multivariate polynomial rings
	Generating sets of ideals and modules
	Monomial orders and initial module
	Gröbner bases
	Link with shifted Popov bases
	Modules of finite (co)dimension and multiplication matrices

	Fast computation of relation bases
	Relations or syzygies in finite-dimensional modules
	Gröbner bases of multivariate modules of relations
	Univariate case: minimal relation bases
	Overview of our results

	Fast algorithms for dense multiplication matrices
	Results
	Overview of our algorithm
	Change of monomial order for zero-dimensional ideals

	Multiplication matrix in nilpotent Jordan form
	Link with minimal approximant bases
	Overview of previous work
	Computing shifted Popov approximant bases

	Multiplication matrix in Jordan form
	Link with minimal interpolant bases
	Algorithm for almost uniform shifts
	Computing shifted Popov interpolant bases

	Companion-block diagonal multiplication matrix
	Link with systems of linear modular equations
	Computing shifted Popov solution bases
	Computing a solution via structured linear algebra

	Impact on related problems
	Multivariate interpolation and list-decoding algorithms
	Multivariate interpolant with degree constraints
	List-decoding of (folded) Reed-Solomon codes
	Computing shifted Popov bases of multivariate interpolants
	Soft-decoding of Reed-Solomon codes
	General Coppersmith technique over K[X]

	Computing shifted Popov forms of polynomial matrices
	Overview
	Computing shifted Popov forms for arbitrary shifts
	Deterministic computation of Hermite forms and determinants

	Part II Relation bases for arbitrary multiplication matrices
	Computing relation bases via linear algebra
	The linear algebra viewpoint
	Linearization: viewing polynomial relations as scalar relations
	Bounded-degree relations and nullspace of multi-Krylov matrices
	Multi-Krylov matrices in the univariate case

	Fast computation of the monomial basis
	Row rank profile and monomial basis
	Structure and row rank profile of a multi-Krylov matrix
	Computing the row rank profile of a multi-Krylov matrix

	Fast computation of the relation basis
	Simultaneous computation of normal forms of monomials
	Univariate case: computing shifted Popov relation bases
	Computing reduced Gröbner relation bases

	Computing multiplication matrices from a Gröbner basis
	Structural properties of the monomial basis
	The case of two variables
	Computing rows of a Krylov matrix
	Computing the multiplication matrices

	Part III Systems of linear modular univariate equations
	Preliminaries and ingredients
	Multiplication time functions for polynomials and polynomial matrices
	Using the minimal degree to ensure uniform shift and output degrees
	Computing residuals for systems of linear modular equations
	Iterative relation basis for a triangular multiplication matrix BecLab00

	Computing shifted Popov approximant bases
	Fast algorithms for almost uniform orders (Giorgi et al.)
	Arbitrary orders: reduction to the case n in O(m)
	Fast approximant bases in Popov form with known minimal degree
	Fast approximant bases in Popov form for arbitrary shifts

	Computing shifted Popov solution bases
	Fast algorithm via kernel bases when the minimal degree is known
	The case of one equation
	Amplitude, splitting indices, and block triangular shape
	Fast algorithm for a single equation

	Fast solution bases in Popov form for arbitrary shifts

	Computing a solution via structured linear algebra
	Solving structured homogeneous linear systems
	Reducing to solving a mosaic-Hankel linear system
	Directly computing a solution via a Toeplitz-like system

	Coppersmith technique over the univariate polynomials
	The approach based on row reduction
	Reducing to a system of linear modular equations
	Introduction: the specific case d=1
	The general case d at least 1

	Part IV Interpolant bases and multivariate interpolation
	Multivariate interpolation and list-decoding
	Reducing Problem 11 to Problem 10
	Impact on decoding algorithms for Reed-Solomon codes
	Interpolation step of the Guruswami-Sudan algorithm
	Re-encoding technique
	Interpolation step in the Wu algorithm
	Slowdown due to repeating points in the soft-decoding

	The approach based on row reduction
	On assumption Hint,1
	On assumption Hint,3

	Some tools for computing with polynomial matrices
	More time functions for polynomial matrices
	Multiplying matrices with unbalanced row degrees (Zhou et al.)
	Detailed cost bound for the kernel basis algorithm of Zhou et al.

	Computing shifted Popov interpolant bases
	Divide-and-conquer approach for a triangular multiplication matrix
	Fast interpolant bases in reduced form for almost uniform shifts
	Fast interpolant bases in Popov form for arbitrary shifts

	Details of new ingredients for interpolant bases
	Fast shifted reduction of a reduced matrix
	Computing residuals for interpolant bases
	Residuals and Chinese remaindering
	Main algorithm
	Computing the residual by shifting P
	Computing the residual by Chinese remaindering

	Computing interpolant bases with known minimal degree

	Part V Normal forms of polynomial matrices
	Shifted Popov forms
	The generic determinant degree bound
	Reducing to almost uniform input degrees
	Column partial linearization
	Row partial linearization
	Reducing the degrees in shifted Popov form computation

	Fast, probabilistic computation of the shifted Popov form

	Hermite form and determinant
	Preliminaries: column bases
	Computing the diagonal entries of a triangular form
	Fast block elimination
	Computational cost and example

	Fast computation of the determinant of a polynomial matrix
	Fast Hermite form algorithm with known minimal degree
	Hermite form via shifted column reduction
	Reducing the amplitude of the minimal degree
	Algorithm and computational cost
	Proof of Lemma 16.19

	Reduction to almost uniform input degrees

	Perspectives
	Index
	Bibliography
	Résumé
	Abstract

