
HAL Id: tel-01431433
https://theses.hal.science/tel-01431433

Submitted on 10 Jan 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Coherent manipulation of Andreev Bound States in an
atomic contact

Camille Janvier

To cite this version:
Camille Janvier. Coherent manipulation of Andreev Bound States in an atomic contact. Superconduc-
tivity [cond-mat.supr-con]. Université Paris Saclay (COmUE), 2016. English. �NNT : 2016SACLS217�.
�tel-01431433�

https://theses.hal.science/tel-01431433
https://hal.archives-ouvertes.fr


 

 

 

 
NNT : 2016SACLS217  
 
 

THESE DE DOCTORAT 

DE   

L’UNIVERSITE PARIS-SACLAY 

PREPAREE A  

L’UNIVERSITE PARIS-SUD 
 
 
 

ECOLE DOCTORALE N° 564 
Physique en Ile-de-France 

Spécialité de doctorat : Physique 
 

 

Par 

 

M. Camille Janvier 

 
au sein du groupe Quantronique, SPEC, CEA-Saclay & CNRS 

 
 
 

Coherent manipulation of Andreev bound states 

in a superconducting atomic contact 
 

 

 

Thèse soutenue au CEA-Saclay le 22 septembre 2016 

 

Composition du Jury : 

 

Dr. Hélène Bouchiat, Université Paris-Sud  Présidente du jury 

Dr. Jean-Philippe Brantut, ETH Zürich Examinateur 

Dr. Gianluigi Catelani, Forschungszentrum Jülich Examinateur 

Prof. Per Delsing, Chalmers University of Technology Rapporteur 

Prof. Alfredo Levy Yeyati, Universidad Autónoma de Madrid Rapporteur 

Dr. Hugues Pothier, CEA Saclay Directeur de thèse 
  

 

 



ii



“ Je veux rendre toute puissante l’influence du clergé, parce que je
compte sur lui pour propager cette bonne philosophie qui apprend à l’homme
qu’il est ici-bas pour souffrir et non cette autre philosophie qui dit au con-
traire à l’homme : « Jouis ».”
Adolphe Thiers

“The Total Perspective Vortex derives its picture of the whole Universe on
the principle of extrapolated matter analyses. To explain : since every piece
of matter in the Universe is in some way affected by every other piece of
matter in the Universe, it is in theory possible to extrapolate the whole of
creation, every sun, every planet, their orbits, their composition and their
economic and social history from, say, one small piece of fairy cake. [. . . ]
The man who invented the Total Perspective Vortex did so basically in order
to annoy his wife.”
The hitchiker guide to the galaxy : The Restaurant at the End of the Uni-
verse . Douglas Adams

“ N’ayez jamais peur de la vie, n’ayez jamais peur de l’aventure, faites con-
fiance au hasard, à la chance, à la destinée. Partez, allez conquérir d’autres
espaces, d’autres espérances. Le reste vous sera donné de surcroît.”
Henry de Monfreid

iii



iv



Remerciements

« Et maintenant appelons les protagonistes... Puisque c’est la nuit du 24
avril et que nous sommes sur ”l’escalier des rencontres”. »
Corto Maltèse, Fable de Venise. Hugo Pratt.

Le travail de thèse présenté ici est le résultat de trois ans de travail au
sein du groupe Quantronique. Le résultat scientifique de ce travail est l’objet
du reste de ce manuscrit, ces quelques pages en revanche sont l’endroit où
je me penche sur l’aspect humain de cette thèse et où je remercie toutes les
personnes qui ont contribué, de près ou de loin, à la réussite de cette thèse.

En premier lieu je souhaiterais remercier Hugues et Cristián, mes deux
« papas » de thèse, comme ils se sont eux-mêmes désignés lors d’une de nos
premières rencontres. Avec vous j’ai appris de la physique bien-sûr, mais
surtout j’ai appris à faire de la physique, à faire de la science de qualité.
Vous m’avez appris (à mon corps défendant!) à ne pas tomber dans les
écueils de la facilité, et que dans le plus petit signal se trouve souvent une
vraie information. Merci aussi pour m’avoir apporté votre soutien dans les
moments difficiles que j’ai pu traverser durant cette thèse. Cela a compté.

Hugues, tu m’as supporté en première ligne pendant trois années, merci.
Merci aussi de m’avoir inculqué un peu de ton sens de la perfection. J’espère
qu’un jour tu trouveras un remplaçant digne de Testpoint !

Cristián, « viejo diablo », en plus de m’avoir appris d’excellents proverbes,
tu m’as appris beaucoup sur la physique, la communication, et la vie en
général. Merci de ta patience. Merci aussi d’être venu si souvent faire le
plein du frigo à ma place !

De grands mercis aussi à Marcelo, pour son immense contribution aux

v



expériences présentées dans cette thèse, pour sa bonne humeur permanente,
et surtout pour ses talents de chanteur sous hélium.

Je vous souhaite à tous les trois une bonne continuation, puissent les
nanofils et les modèles de Markov cachés vous porter chance, et vous aider
à faire de la belle physique.

Merci au groupe Quantronique dans son ensemble qui entretient une
qualité scientifique impressionnante, tout en ne négligeant pas ses qualités
humaines. Les discussions sont passionnées sur tous les sujets, la politique,
la culture, le sport . . . et bien évidemment la physique qui n’est jamais loin !
Les réunions de groupe aussi resteront gravées dans ma mémoire : écouter
une présentation scientifique tout en dégustant un bon fromage avec un
verre de raisin fermenté est un plaisir tout à fait raffiné. Au sein du groupe
je souhaite en particulier remercier :

• Daniel pour m’avoir appris de « ne pas me contenter d’un seul échec »,
et pour tout le travail qu’il fournit pour faire vivre ce groupe scien-
tifiquement et même administrativement.

• Denis pour ses explications toujours claires, et d’avoir partagé ses
connaissances physiques et techniques. Merci d’avoir, avec Michaël et
Vivien, mis en place en temps record la chaîne micro-onde nécessaire
à la première manipulation des états d’Andreev.

• Pief pour être quelqu’un exceptionnel, tout simplement.

• Pascal, qui a conçu une grande partie des pièces mécaniques de l’expér-
ience. Merci aussi de m’avoir appris à me servir d’un tour et d’une
fraiseuse, ce qui manquait clairement à ma formation technique.

Je veux aussi remercier tous les étudiants et post-docs du groupe (élargi)
que j’ai pu côtoyer : Vivien, Olivier (un jour nous reparleront de ce fameux
spectacle de danse malaisienne!), Benoît (qui n’est pas le fils caché de
Patrice), Sebastian avec qui j’ai pu partager ma passion de la voile et qui
m’a fait découvrir d’excellentes bières allemandes. Du côté de l’Allemagne
toujours, merci à Marc pour sa bonne humeur et les discussions sur les
sujets relativement pointus que sont les détecteurs supraconducteurs pour
la radioastronomie, et l’administration française. Un grand merci aussi à
Leandro qui a réalisé le premier échantillon sur lequel j’ai pu travailler, et

vi



dont le dynamisme m’a toujours impressionné, et aussi parce que c’est un
bon camarade. Thanks to Simon, you fucking twat for the fun of discussing
with you. Merci à Maelle, François et Ramiro d’avoir rempli ma playlist de
rédaction avec de l’excellente musique.

Parmi les étudiants je souhaiterais remercier spécialement Audrey, Chloé,
Kiddy, Matthieu et Pierre qui sont en quelque sorte mes frères et sœurs de
thèse. Les derniers mois de rédaction notamment, sont passé beaucoup
plus facilement grâce à vous. Je vous souhaite beaucoup de bonheur pour
la suite de vos carrières. Une dédicace spéciale à Audrey pour m’avoir si
souvent ramené sur Paris après une longue journée de rédaction avec sa 106
Benny Collinet, mais aussi pour sa gentillesse, et pour son talent pour la
physique. Merci à Chloé qui a réussi à garder le sourire alors même que
son frigo fuyait, ou qu’elle trouvait encore une poussière sur son résonateur.
Matthieu, nous avons fait notre formation de nouveaux arrivants ensemble,
cela créé des liens, c’est indéniable. Les quelques poulets du dimanche midi
aussi. Merci d’avoir été là quand ça n’allait vraiment pas. Thanks Kiddy
for your friendship and your outsider views on French society. Quant à
Pierre ce fut un plaisir de partager mon bureau avec toi lors de ces derniers
mois et de déconner quand le besoin s’en faisait sentir.

Merci à Çağlar, pour les discussions scientifiques et de m’avoir hébergé
à maintes reprises au Collège de France.

Je souhaite remercier Yannick Dappe pour les simulations qu’il a réal-
isées et qui m’ont donné une meilleure intuition de ce qu’il se passait dans
nos contacts atomiques.

Je voudrais rendre hommage à tous les professeurs de physique qui m’ont
permis d’arriver jusqu’ici. Que ce soit par leurs cours mais aussi par leurs
conseils et leur écoute. Parmi eux je remercie en particulier Ségolène Callard
et Göran Johansson.

Au sein du laboratoire je souhaite remercier le chef du SPEC : François
Daviaud ; le personnel administratif : Martine, Nathalie, Corinne, pour le
travail qu’elles font et qui facilite vraiment la vie. Merci aussi aux com-
pagnons de l’atelier, Dominique, Vincent, et Jean-Claude sans qui les ex-
périences marcheraient beaucoup moins bien ou même pas du tout. Mon
frigo ayant relativement bien fonctionné durant ces trois années, je n’ai que
peu eu recourt aux services de P.P. , Philippe et Matthieu, mais je les remer-
cie de leurs bons conseils. Merci aussi à Pierre Janvier, au magasin, pour
avoir toujours réussi à nous dégoter une bouteille d’hélium quand on s’y

vii



prenait au dernier moment. Merci à tout le reste du SPEC, qui a contribué
de près ou de loin à cette thèse.

Hors du laboratoire je remercie les sponsors officiels de cette thèse Maxime
et les grumeaux (Elise et Clément), pour m’avoir offert des bières, des repas,
pour m’avoir soutenu dans les moments les plus durs, et m’avoir fait sor-
tir de chez moi. Merci aux amis de toujours, Henri, Valentin, Antoine,
Quentin et les autres. Merci à Emmanuel pour avoir apporté une certaine
fraîcheur dans le groupe au moment où tous les thésards se mettaient à
rédiger. Merci à S.A. et A.R. pour l’aide précieuse qu’elles m’ont apporté.
Merci à Camilla, Anil, Pierre, Adèle, Jean, Indranil, Matthias, pour m’avoir
rappelé que, non, je ne suis pas le seul à faire une thèse. Merci à Raphaëlle
pour les discussions et les parties de squash. Merci à tous les amis qui de
près ou de loin ont participé à cette aventure de trois ans.

Enfin merci à ma famille qui a organisé un pot mémorable et surtout
pour être encore là malgré les épreuves de ces dernières années. Merci de
m’avoir soutenu jusqu’au bout.

viii



Contents

Remerciements v

Acronyms xiii

1 Introduction 1
1.1 The internal degree of freedom of Josephson junctions . . . . 1
1.2 From the Andreev dot to the Andreev qubit . . . . . . . . . . 3
1.3 Obtaining Andreev dots . . . . . . . . . . . . . . . . . . . . . 4
1.4 Andreev dots in a cQED architecture . . . . . . . . . . . . . . 5
1.5 Probing the coherence of Andreev qubits . . . . . . . . . . . . 8
1.6 Probing the resonator using the Andreev qubit . . . . . . . . 11
1.7 Observation of quantum and parity jumps in an Andreev dot 11

2 The Andreev dot 15
2.1 Andreev bound states . . . . . . . . . . . . . . . . . . . . . . 15

2.1.1 Foreword on representations . . . . . . . . . . . . . . . 15
2.1.2 A weak-link between two superconductors . . . . . . . 16
2.1.3 Experimental evidences of the Andreev bound states . 20
2.1.4 Odd states . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2 The Andreev qubit . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2.1 The Andreev Hamiltonian . . . . . . . . . . . . . . . . 26
2.2.2 A word on the odd states . . . . . . . . . . . . . . . . 27
2.2.3 Phase biasing a superconducting weak link: the atomic

rf SQUID . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3 Comparison of the Andreev qubit with other superconduct-

ing qubits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

ix



3 Measuring the state of an Andreev dot 33
3.1 Circuit QED . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1.1 Measuring the state of a qubit with a cavity . . . . . . 34
3.1.2 The classical quarter-wavelength transmission line res-

onator . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.1.3 Coupling a resonator to the Andreev qubit . . . . . . 39

3.2 Mechanically controllable break junctions . . . . . . . . . . . 51
3.2.1 General presentation . . . . . . . . . . . . . . . . . . . 51
3.2.2 The microfabricated MCBJ . . . . . . . . . . . . . . . 52
3.2.3 Reduction factor . . . . . . . . . . . . . . . . . . . . . 52
3.2.4 Implementation of the MCBJ technique in a dilution

fridge . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.3 Chip design and fabrication . . . . . . . . . . . . . . . . . . . 58

3.3.1 Designing a microwave resonator . . . . . . . . . . . . 58
3.3.2 Fine tuning of the design . . . . . . . . . . . . . . . . 60
3.3.3 Fabrication . . . . . . . . . . . . . . . . . . . . . . . . 64

3.4 Microwave setup . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.4.1 Cold setup . . . . . . . . . . . . . . . . . . . . . . . . 67
3.4.2 Chip holder and sample environment . . . . . . . . . . 69

3.5 Obtaining an atomic contact . . . . . . . . . . . . . . . . . . 70
3.5.1 Coarse tuning . . . . . . . . . . . . . . . . . . . . . . . 71
3.5.2 From big contacts to single-atom contacts . . . . . . . 72
3.5.3 Examples of contacts . . . . . . . . . . . . . . . . . . . 74

4 Characterization of Andreev qubits 77
4.1 Detecting the coupling between the resonator and the An-

dreev qubit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.1.1 Measurement setup and resonator characterization . . 77
4.1.2 Measuring the coupling between the Andreev qubit

and the resonator . . . . . . . . . . . . . . . . . . . . . 79
4.2 Measuring the state of the Andreev qubit . . . . . . . . . . . 80

4.2.1 Continuous wave measurements . . . . . . . . . . . . . 80
4.2.2 Pulsed measurements: clouds in the IQ-plane . . . . . 81

4.3 Exciting the Andreev qubit . . . . . . . . . . . . . . . . . . . 86
4.3.1 Two-tone spectroscopy . . . . . . . . . . . . . . . . . . 86
4.3.2 Comment on the clouds . . . . . . . . . . . . . . . . . 88

4.4 Characterization of the Andreev qubit at the sweet spot . . . 89

x



4.4.1 Rabi oscillations . . . . . . . . . . . . . . . . . . . . . 90
4.4.2 Lifetime of the excited state . . . . . . . . . . . . . . . 92
4.4.3 Coherence times . . . . . . . . . . . . . . . . . . . . . 95
4.4.4 Evaluation of the noise power density using CPMG

sequences . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.4.5 Dispersion of the characteristic times . . . . . . . . . . 104

4.5 Phase dependence of the lifetimes and coherence times . . . . 107
4.5.1 Relaxation rate of the excited state . . . . . . . . . . . 107
4.5.2 Linewidth of the spectroscopy line . . . . . . . . . . . 108

4.6 Low frequency measurements of transmission fluctuations . . 109
4.6.1 Spectroscopic measurements . . . . . . . . . . . . . . . 110
4.6.2 Method using Ramsey fringes . . . . . . . . . . . . . . 111
4.6.3 Summing up on the transmission noise . . . . . . . . . 115

5 Measuring the number of photons in the resonator 119
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
5.2 Experimental implementation and results . . . . . . . . . . . 123

5.2.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
5.2.2 Experimental results and numerical simulations . . . . 124

5.3 Conclusion on 3-tone spectroscopy . . . . . . . . . . . . . . . 134

6 Quantum and parity jumps 135
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
6.2 Measurement setup . . . . . . . . . . . . . . . . . . . . . . . . 136
6.3 Jumping rates at δ = π . . . . . . . . . . . . . . . . . . . . . 141

6.3.1 Influence of the measurement power . . . . . . . . . . 141
6.3.2 Relation between the transition rates and T1 . . . . . 144

6.4 Energy dependence of the jumping rates . . . . . . . . . . . . 145
6.5 Relaxation rate of the excited state . . . . . . . . . . . . . . . 146
6.6 Statistics of the depoisoning events . . . . . . . . . . . . . . . 148
6.7 Conclusion on continuous measurements . . . . . . . . . . . . 150

7 Conclusion 151

Appendices 155

A The rotating wave approximation 157

xi



B The dispersive limit 161

C Coupling between two conduction channels 165

D Evidence for the coupling of Andreev qubits with a mechan-
ical mode 169

E Qutip code for simulating 3-tone spectroscopy 173

F Processing of the continuous measurement traces 179
F.1 Hidden Markov Models . . . . . . . . . . . . . . . . . . . . . 179
F.2 SMART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

G Synthèse en français 185
G.1 Le degré de liberté interne des jonctions Josephson . . . . . . 185
G.2 Du doublet d’Andreev au qubit d’Andreev . . . . . . . . . . . 187
G.3 Réalisation d’une boîte d’Andreev . . . . . . . . . . . . . . . 188
G.4 Une architecture de cQED pour mesurer une boîte d’Andreev 189
G.5 Caractériser la cohérence du qubit d’Andreev . . . . . . . . . 192
G.6 Sonder le résonateur grâce au qubit d’Andreev . . . . . . . . 195
G.7 Observation de sauts quantiques et de sauts de parités dans

une boîte d’Andreev . . . . . . . . . . . . . . . . . . . . . . . 196

H Publications 199

Bibliography 239

xii



Acronyms

2DEG: Two-Dimensional Electron Gas
ABS: Andreev Bound States
ADC: Analog to Digital Converter
AFG: Arbitrary Function Generator
CPMG: Carr-Purcell-Meiboom-Gill
CPR: Current Phase Relation
CPW: Coplanar Waveguide
CQED: Cavity Quantum Electrodynamics
cQED: circuit Quantum Electrodynamics
CW: Continuous Wave
DOS: Density Of States
FWHM: Full Width at Half Maximum
HMM: Hidden Markov Model
I,Q: In phase quadrature (I) and out of phase quadrature (Q)
MCBJ: Mechanically Controllable Break Junction
PID: Proportional–Integral–Derivative controller
PSD: Power Spectral Density
RWA: Rotating Wave Approximation
VNA: Vector Network Analyzer

xiii



Chapter 1

Introduction

1.1 The internal degree of freedom of Josephson
junctions

Superconducting electronic devices - like the well-known SQUID - are nowa-
days used in a variety of fields, ranging from astrophysics to medical ap-
plications, which exploit their extreme sensitivity to magnetic fields and
microwave fields. Future technologies may use rapid single-flux quantum
circuits for low-energy or high speed computation [1], and superconducting
qubits for quantum processors [2] or quantum simulators [3]. All supercon-
ducting circuits, with the notable exceptions of kinetic inductance detectors
[4] and superconducting single-photon detectors [5], rely on a fundamental
phenomenon: the Josephson effect.

The first theory of this effect was established by Brian Josephson in 1962
[6]. He predicted that a non-dissipative current of Cooper pairs could flow
through an insulating barrier between two superconducting electrodes, when
a superconducting phase difference is applied between them. Moreover, he
predicted that under a voltage bias, the supercurrent oscillates in time.
These subtle and rich phenomena are surprisingly described with just two
simple equations, the famous Josephson equations.

In fact, Josephson supercurrents arise not only through insulating tunnel
barriers but also through any weak link between superconductors —like
semiconducting and normal metal nanowires, or magnetic layers —provided
it is short enough for the electrons to keep their quantum coherence all

1



1 – Introduction

along. The mesoscopic theory of the Josephson effect [7, 8], developed in
the nineties, provided a unified description treating all weak links on the
same footing, and showed that there is more to the Josephson effect than the
Josephson equations. In this framework the supercurrent is carried through
a set of discrete quasiparticle states localized at the weak link. The energy
of these “Andreev states” is within the superconducting energy gap of the
bulk, and is governed by the superconducting phase difference and by the
electron transmission probability through the weak link. In the simplest
case of a single-conduction-channel weak link, short with respect to the
superconducting coherence length, the Andreev set reduces to a two-level
system. The link between Andreev states and supercurrent has already
been explored with experiments on atomic contacts [9, 10, 11, 12].

The Andreev two-level system can be viewed as an internal degree of
freedom of the Josephson weak link, and it has been proposed as a new
kind of superconducting qubit [13, 14, 15]. This internal degree of freedom
has been probed through spectroscopy, which has been achieved in atomic
contacts [16] and in carbon nanotubes [17, 18]. Moreover, measurements
of the AC-response of a superconducting ring hosting a normal metal weak
link showed that its susceptibility at high frequencies could be understood
in terms of the dynamics of Andreev states [19, 20].

The goal of my thesis work was to observe and quantify the coherence of
Andreev two-level systems. In this aim, two experimental requirements had
to be fulfilled. On the one hand, one needed a simple system hosting only
a few, and preferably just one, conduction channels: this was achieved by
creating atomic contacts between two superconducting electrodes [21] us-
ing the microfabricated mechanically controllable break junction technique
(MCBJ) [21]. On the other hand, one needed means to manipulate and
read-out the state of the Andreev two-level system. This was achieved by
coupling the Andreev system to a microwave resonator (or cavity), and us-
ing the well-developed techniques of cavity [22] and circuit [23] quantum
electrodynamics (cQED). Essentially, the state of the system is probed by
detecting a shift in the resonance frequency of the resonator. This basic
principle has by now been successfully applied to probe many different sys-
tems: superconducting qubit [24, 25], spins [26, 27, 28], quantum dots [29],
nano-mechanical oscillators [30]. It was therefore natural to turn ourselves
to cQED and to combine it with the MCBJ technique to achieve the coher-
ent manipulation of Andrev bound states.

2



1.2 – From the Andreev dot to the Andreev qubit

1.2 From the Andreev dot to the Andreev qubit
When a phase bias is applied to a Josephson weak link, superconductivity
is locally frustrated. As a response, localized energy levels appear within
the superconducting gap in the excitation spectrum. When the junction
is constituted by a short, single conduction channel weak link of normal
state transmission probability τ , a single energy level appears at an energy
EA < ∆sc, the Andreev energy:

EA = ∆sc

√
1− τ sin2(δ/2), (1.1)

with ∆sc the superconducting gap energy of the electrodes and δ the phase
difference across the weak link. Because this energy level lies within the su-
perconducting gap, the corresponding states cannot propagate into the elec-
trodes and are localized at the weak link. By analogy with semi-conducting
circuits where electrons are localized with electrostatic barriers in “quantum
dots”, the weak link can be seen as an “Andreev dot” [31]. This picture
accounts for the physics at subgap energies, but it should be kept in mind
that the propagating states at energies larger than the gap are delocalized
across the weak link. The phase gradient across the weak link only localizes
subgap states, which spatially overlap with higher energy states. The An-
dreev level in the Andreev dot can be occupied by 0, 1 or 2 quasiparticles,
which corresponds, taking into account the 2 spin directions, to 4 states,
see Fig. 1.1:

• The ground state |g〉 with no quasiparticle in the Andreev level;

• The two “odd states” |o ↑〉 and |o ↓〉 with a single quasiparticle of
either spin in the Andreev level;

• The even excited state |e〉 with two quasiparticles with opposite spin
in the Andreev level.

The two-level system constituted by the even states |g〉 and |e〉 was
proposed as a qubit by Zazunov et al. [13]. This qubit is markedly different
from the other superconducting qubits in two respects:

• It is of microscopic nature. All other superconducting qubits (histor-
ically classified into charge, flux or phase qubits [33]) rely on electro-
magnetic modes of a circuit containing one or a few tunnel Josephson
junctions, the Josephson junction acting as a non-linear inductor.

3



1 – Introduction

Δsc

eg o o

Figure 1.1: Low-energy excitation spectrum of an Andreev dot in a short
weak link. In blue and red are the even states, which correspond to the
states of a single superconducting pair localized at the weak link. They
constitute a two-level system, the “Andreev qubit”. The two odd states
(green) correspond to the single occupancy of the spin-degenerate Andreev
level. Note that in presence of subgap Andreev states, the DOS N(E) is
also modified at E > ∆sc [32].

• It is a “true” two-level system. In other superconducting qubits, which
are anharmonic oscillators, the Josephson junction is responsible for
unevenly spaced energy levels, which allows to address separately the
two lowest ones. Depending on the anharmonicity introduced by the
junction, higher energy levels can also be accessed. In the Andreev
qubit, the closest excitation above the Andreev level is either that
of another Andreev level (if several channels are present), or the su-
perconducting gap, typically at an energy ten times larger than the
Andreev energy in our experiments.

1.3 Obtaining Andreev dots

In order to implement experimentally the model described above, we used
single atom contacts between two superconducting electrodes made of alu-
minium. Such atomic contacts have been shown [34] to support a few
conduction channels with transmission that can be higher 0.99. Several
techniques exist to produce such contacts [35, 36]. The one used on the
experiments presented in this thesis is the microfabricated mechanically
controllable break junction (MCBJ) technique [37, 38, 21]. It makes use of
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1.4 – Andreev dots in a cQED architecture

a suspended bridge microfabricated on a flexible substrate (see Fig. 1.2).
When the substrate is bent, the bridge elongates and ultimately breaks.
Subsequent fine tuning enables achieving a single-atom contact. Moreover,
it has been shown [34] that the strain on the contact modulates its transmis-
sion. Different Andreev qubits with various transition energies can therefore
be explored by adjusting the bending of the substrate.

Figure 1.2: Side view of a mechanically controllable break junction. The
substrate of the chip (in brown) is firmly clamped on its left end and in
contact with a pushing rod on its right end. The pushing rod can moves up
and down to adjust the bending of the substrate. On top of the substrate
is a microfabricated bridge with a constriction. As the substrate is bent,
the bridge elongates, the strain being concentrated at the constriction. The
bridge ultimately breaks but can be reformed (under high vacuum condi-
tions) for fine tuning.

1.4 Andreev dots in a cQED architecture

The circuit QED (cQED) architecture is now widely used to measure super-
conducting qubits. It consists in coupling a qubit to a microwave resonator.
The resonance frequency of the resonator —which is easily detected— de-
pends on the state of the qubit. The theoretical description of this archi-
tecture for superconducting qubits is due to Blais et al. [23]. It was later
adapted to Andreev dots by Romero et al. [39], who considered a half-
wavelength microwave resonator galvanically coupled to the qubit. In our
experiments, we use a quarter-wavelength resonator inductively coupled to
the Andreev dot. The whole circuit is realized on a plastic substrate be-
cause of the mechanically controllable break junction technique used to

5
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obtain weak links. A micrograph of a sample is shown in Fig. 1.3.

100µm

Figure 1.3: Micrograph of one of the samples used in this work (BR3). Dark
regions are insulating, clear regions are superconducting. The resonator is
constituted by a superconducting (Nb) quarter-wavelength meander line
at the end of which is placed a superconducting loop (Al) in which the
break junction is embedded (top left). The resonator is coupled to the
measurement line through an interdigitated capacitor visible at the bottom
of the picture.

The coupling between the resonator and the qubit is characterized using
single-tone spectroscopy. The reflection coefficient S11 of microwaves with
a frequency close to that of the uncoupled (“bare”) resonator frequency is
measured as a function of the superconducting phase difference δ across
the weak link. The qubit and resonator frequencies coincide, an avoided
crossing is observed, see Fig. 1.5. The fit of this avoided crossing gives access
to the coupling between the qubit and the resonator, here ≈ 80 MHz. The
resonance of the uncoupled resonator is also faintly observed at all phases.
This is a first indication that the Andreev dot is often found in one of the
odd states.

When the qubit is detuned from the resonator, the state of the qubit
is inferred from the shift of the resonator frequency. In practice, one sends
microwave pulses at the frequency of the bare resonator. The in-phase (I)
and in-quadrature (Q) amplitudes of the reflected signal are represented,
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Figure 1.4: Two-tone spectroscopy of the Andreev transition. The dashed
line is a fit using Eq. 1.1 obtained for a transmission of the conduction
channel τ = 0.99217.

for each pulse, by a point in the (I,Q) plane. A histogram of the results of
≈ 104 pulses is shown in Fig. 1.6.

The data gather in three clusters of points that correspond to the dot
being in one of its three states |g〉, |e〉 and |o〉. The large separation between
clusters is remarkable because it was achieved without a quantum-limited
amplifier as it is normally required for other superconducting qubits. The
number of points in each cluster normalized by the number of measurements,
corresponds to the population of the states of the Andreev dot, revealing
in particular the fact that the Andreev dot is about half of the time in an
odd state.

The first application of this pulsed measurement procedure is the spec-
troscopy of the Andreev transition. Figure 1.4 shows the amplitude of the
in-phase quadrature as a function of the superconducting phase difference
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Figure 1.5: Amplitude of the reflection coefficient S11 of the resonator as
a function of the phase difference δ across the contact and the microwave
frequency f0. The Andreev transition frequency is represented with the
thick black line, which at this scales appears vertical. An avoided crossing
is observed, fitted with dashed red line. The bare resonance is also observed
at all phases, which shows that the Andreev dot spends a significant fraction
of time in an odd state, in which the resonator is unaffected by the qubit.

across the weak link and the frequency of a microwave pump pulse applied
just before the resonator is probed. The superconducting phase depen-
dence of the Andreev transition is fitted with the theoretical prediction
fA = 2EA/h, with EA given by Eq. 1.1. At δ = π, the spectroscopy line
has linewidth of 16 MHz, which is 2 orders of magnitude smaller than what
was previously reported [16].

1.5 Probing the coherence of Andreev qubits

The main contribution of this thesis is the experimental demonstration and
characterization of the coherence of Andreev qubits. Figure 1.7 shows re-
sults obtained on one of the the Andreev qubits that we have measured.
Rabi oscillations (panel A) are obtained by measuring the populations of
the qubit after a driving pulse of varying length. The observation of these
oscillations constitutes the first signature of the quantum coherence of the
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Figure 1.6: Histogram in the (I,Q) plane of the signal reflected by the
resonator. I and Q are the in-phase and in-quadrature amplitudes of a
microwave pulse reflected by the resonator. The data gather in three well
separated clusters that can be identified as corresponding to the different
states of the Andreev dot.

Andreev qubit. The decay of the amplitude of these oscillations is linked
to the lifetime of the excited state T1 and to the dephasing time of the
qubit T ∗2 . In order to quantify these two quantities independently, two
other experiments are performed. In the first one, populations of |g〉 and
|e〉 are inverted using a “π-pulse”, and the relaxation to equilibrium is ob-
served by measuring the populations after a delay. An exponential decay is
observed with a characteristic time T1 of the order of a few microseconds
(here 1.3 µs). This time is comparable to other superconducting qubits but
is significantly smaller than predicted theoretically, as it will be discussed
in chapter 4. The dephasing time is measured using a Ramsey sequence;
a first a “π/2” microwave pulse sets the qubit in an equal superposition
of ground and excited state. After a varying delay a second π/2-pulse is
applied and the populations are measured. From the Gaussian envelope
of the population oscillations, one deduces the dephasing time T ∗2 which is
typically between 10 ns and 200 ns (here 188 ns). This time is small com-
pared to other superconducting qubits [40, 41]. More information on the
source of dephasing of the Andreev qubit is provided by a Hahn-echo se-
quence. It consists in a Ramsey sequence with a π-pulse applied midway
between the π/2-pulses. This sequence filters-out the low frequency noise
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Figure 1.7: Characterization of the Andreev qubit obtained for a contact
with a transmission τ = 0.99806. Green dots represent the population of
the odd states, blue dots the population of the ground state and red dots
population of the excited state. The pulse sequence associated to each
experiment is represented below with the qubit driving pulse represented
in magenta and measurement pulse in brown. (A) Rabi oscillations; (B)
Relaxation of the excited state; (C) Ramsey fringes (note the gaussian decay
of the oscillations); (D) Hahn-echo. This dataset shows the longest ramsey
decay time observed during this thesis.

to which the Ramsey sequence is mainly sensitive to. A much larger de-
cay time is observed, here T2E =780 ns, which suggests that low frequency
(lower than T−1

2E ≈ 2 MHz) noise is the main source of decoherence for the
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1.6 – Probing the resonator using the Andreev qubit

Andreev qubit. As discussed in chapter 4, the decoherence results mainly
from transmission fluctuations of the weak link, although the source of these
fluctuations remains to be determined.

1.6 Probing the resonator using the Andreev qubit

Estimating the number of photons in the resonator for a given microwave
power at the input of the microwave lines is important to quantify the mea-
surement strength [42]. This relation can be estimated from a calibration of
the attenuation of the microwave lines in the refrigerator, at room temper-
ature. Because this attenuation varies when cooling down to low tempera-
tures, in situ calibration techniques are to be preferred. Experiments that
exploit the dispersive coupling between the qubit and the resonator can be
used to access the photon population of the resonator [43]. However these
experiments have stringent requirements in terms of dephasing time of the
qubit. Here, we found that the number of photons in the resonator could
be accessed through the spectroscopy of the Andreev qubit performed in
presence of a second microwave tone at a frequency close to the resonator
frequency. The spectroscopy line of the Andreev qubit is strongly affected
by the frequency and power of this microwave tone, as shown in Fig. 1.8.
Steady state population inversions and cooling of the qubit are observed.
By comparing the result of these experiments with simulations, we showed
that the frequency at which they are observed gives access to the photon
population in the resonator (see chapter 5).

1.7 Observation of quantum and parity jumps in
an Andreev dot

The dynamics of quasiparticles in an Andreev dot was already accessed in
a previous work by using the switching current measurements of an atomic
contact [44]. However, the even excited state of the Andreev dot could not
be observed in these experiments. The effects of single [45, 46, 47], or a
few [48, 49] quasiparticles were detected in other superconducting devices.
Moreover it has been observed that out-of-equilibrium quasiparticles are
present below 100 mK in aluminium [50, 51, 52].
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Figure 1.8: Three-tone spectroscopy in presence of a cavity drive at the
frequency of the resonator when the qubit is in the ground state. Dots are
experimental data and full lines the result of simulations. The blue (red)
dots represent the renormalized population of the ground (excited) state
so the population of the odd states is not taken into account. The qubit
is cooled down when the qubit driving frequency is close to the natural
Andreev transition frequency (crosses); at a lower frequency that depends
on the photon number, the population of the qubit is inverted.

In experiments where the state of the Andreev dot was continuously
monitored, quantum jumps between the ground and excited states as well
as parity jumps due to the trapping or un-trapping of a single quasiparticle
in the dot were observed. This was performed by measuring continuously
the signal reflected by the resonator for durations much longer than the
characteristic lifetimes of the different configurations of the Andreev states.
This signal was then reconstructed using a Bayesian statistics model known
has a hidden Markov model (HMM) [53, 54]. Figure 1.9 shows the result
of such a continuous measurement along with the evolution of the state of
the dot inferred by the HMM algorithm. The rates extracted from this
reconstruction provide information on the influence of the measurement
power and the phase difference on the dynamics of the Andreev dot.
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Chapter 2

The Andreev dot

In all generality a Josephson junction is constituted by two superconducting
electrodes separated by a weak link. The mesoscopic description of the
Josephson effect was provided by Beenakker [8]. It relies on the description
of the weak link in terms of conduction channels and the apparition of
subgap states in each channel: the Andreev bound states (ABS). Because
these states are localized by Andreev reflection, one cites of an “Andreev
dot” [31].

In this chapter, we give a short theoretical description of the Andreev
bound states, and an overview of their experimental manifestations. We
then show how these states can be used to define a qubit, the Andreev
qubit. Finally the Andreev qubit is compared with the other types of su-
perconducting qubits.

2.1 Andreev bound states

2.1.1 Foreword on representations

In the following discussion two representations are used to describe the en-
ergy spectrum superconducting structures. The first one is the one most
commonly used in mesoscopic superconductivity papers and is called the
“one-particle picture” or semiconductor picture. It is particularly conve-
nient to describe transport experiments. The second one, the “excitation
picture”, is more adapted to discuss the Andreev qubit. In order to facili-
tate the understanding for readers used to the semiconductor picture, both
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2 – The Andreev dot

representations are used in parallel in the following discussion. However,
only the excitation picture is used in the rest of the thesis. In a nutshell,
the one-particle picture represents states that are, in the ground state, all
filled up to the Fermi energy and excitations either with empty states below
EF or occupied states above EF . In contrast, the excitation picture only
represents quasiparticle excitations [16].

2.1.2 A weak-link between two superconductors

Bulk superconductors The ground state of a bulk superconducting elec-
trode is a BCS condensate of delocalized pairs characterized by a complex
superconducting order parameter ∆ = ∆sce

iφ. If no current or magnetic
field is applied the phase φ is homogeneous in the electrode. In the semicon-
ductor picture, the density of states (DOS) consists in two bands symmetric
with respect to the Fermi energy and separated by an energy 2∆sc. The
excitation spectrum is shown in Fig. 2.1. The lowest energy excitation con-
sists in adding a single quasiparticle (either a quasielectron in the empty,
positive energy band, or a quasihole in the filled, negative energy band),
which requires at least an energy ∆sc. This excitation having an odd num-
ber of quasiparticles, it has a parity different from that of the ground state.
In contrast, excitations can be obtained without parity change, for example
by absorption of photons. The lowest energy excitation of even parity re-
sults in the breaking of a pair into 2 quasiparticles. This excitation requires
a photon with an energy hν ≥ 2∆sc.

Two electrodes separated by a single conduction channel When
two electrodes are coupled through a weak-link a phase difference δ =
φL−φR can be sustained by the system, see Fig. 2.2. This phase difference
frustrates superconductivity at the weak link. The condensate accommo-
dates this frustration by the apparition of pairs of subgap states localized
at the weak link, the Andreev bound states.

Here, we consider the case of a short weak link with a single conduction
channel. We adopt a mesoscopic description of electrical transport through
this channel, the sole parameter being τ , the normal state transmission
probability of electrons through the channel (see Fig 2.2). In this situation,
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B

A ν=2Δ

C

Figure 2.1: Ground state and lowest energy excitations of a superconducting
electrode. A: Illustration of the electrode. B: Lowest energy excitations
in the single-particle representation. C: Lowest energy excitations in the
excitation picture. Vertical axis is the energy, horizontal axis is the DOS.
From left to right: ground state, lowest energy odd excitation, lowest energy
even excitation.

a single pair of energy levels appear within the gap at energies given by [8]:

EA = ±∆sc

√
1− τ sin (δ/2). (2.1)

The ground state |g〉 of this system is still a condensate of pairs, all of
them being delocalized but one, which is localized at the contact and has an
energy −EA. The semiconductor representation illustrates best the phase
dependence of the energy of the ground state (−EA), which is at the origin
of the Josephson supercurrent. Note that in the absence of frustration (i.e.
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L R

δ

Figure 2.2: Two superconducting electrodes separated by a short weak link
accommodating a single channel of transmission τ .

when δ = 0), EA(0, τ) = ∆ and the state of the dot is the same as in the
single electrode case with a modified density of states in the continuum.

The excitations are of the same nature as in the single electrode case.
The lowest energy excitations with odd parity, |o ↑〉, and |o ↓〉 have a single
quasiparticle. In the semiconducting picture, they are represented as an
electron-like quasiparticle in the level at energy +EA or a hole-like quasi-
particle in the level at energy −EA. The ground state energy being −EA,
|o ↑〉 and |o ↓〉 have zero energy. In the excitation picture, they correspond
to the presence of a quasiparticle of either spin in the level at energy +EA,
as shown in Fig. 2.3. The lowest energy excitation with even parity, |e〉,
consists in exciting a Cooper pair. In the semiconducting picture, this is
represented as a transition from levels −EA to +EA, and requires a photon
of energy hν = 2EA. In the excitation representation, the Andreev level
gets occupied with two quasiparticles (one of each spin). Since this double
excitation has a subgap energy, it cannot decay as easily as two quasipar-
ticles in the continuum, and it remains localized at the weak link. In this
particular situation, the photon has not “broken” a pair, it has only excited
it.

The Andreev qubit [13] is the two-level system constituted by
the ground state |g〉 of the Andreev dot and its lowest energy even
excitation |e〉.

The energy of the states of the Andreev dot as a function of the phase
difference δ across the weak link is shown in Fig. 2.4. The transition en-
ergy between |e〉 and |g〉 reaches its minimum value 2∆sc

√
1− τ at δ = π.

The supercurrent carried by the states |g〉 and |e〉, shown in Fig. 2.5, is
proportional to the first derivative of the Andreev energy and is given by
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ν=2ΔA

Δsc

Figure 2.3: Lowest energy excitations of the Andreev dot. A: illustration
of the weak link. B: single-particle representation. C: excitation represen-
tation. The ground state is still a condensate of pairs. The single-particle
representation illustrates that its energy is −EA. The lowest energy ex-
citations of odd parity result from the addition of a single quasi-particle.
The lowest energy excitation with even parity has two quasiparticles in the
Andreev levels. It can be seen as the excitation of a Cooper pair localized
at the contact, with an energy 2EA.

[8]:

IA(δ, τ) = ±∆sc

4φ0

τ sin (δ)√
1− τ sin2 (δ/2)

. (2.2)
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Figure 2.4: Energy of the states of the Andreev dot (in frequency units) as
a function of the phase difference δ across the contact, taking for ∆sc the
gap of aluminum h × 45 GHz, and a transmission τ = 0.99. Dashed lines:
τ = 1.

2.1.3 Experimental evidences of the Andreev bound states

Since the microscopic description of the Josephson effect relies on the An-
dreev bound states, one could argue that any observation of the Josephson
effect is an evidence of Andreev bound states. Nevertheless the supercur-
rent in tunnel junctions can also be described using perturbative theories
(as Josephson did), and ABS do not need to be invoked. We focus here
on the most direct and quantitative evidences before this work without the
pretension of exhaustiveness.

Evidences for the phase-dependent energy of the ground state

At equilibrium, Andreev bound states are revealed by the current-phase
relation (CPR) of weak links (see Fig. 2.5), in particular when the weak link
contains few conduction channels. The first measurement of the CPR of few-
channel weak links was performed by Koops et al. [55] but the weak links
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Figure 2.5: Current carried by the even state |g〉 (blue) and |e〉 (red)
as a function of the phase difference δ across the contact. Thick lines :
aluminium weak link with ∆sc/h = 45 GHz, and transmission τ = 0.99.
Dashed lines: aluminium weak link, τ = 1.

could not be characterized independently. In order to characterize the weak
links, Della Rocca et al. [56] placed an atomic contact in a superconducting
loop in parallel with a Josephson junction having large critical current.
From a fit of the I-V characteristic of the circuit with the theory of Multiple
Andreev Reflections (MAR), the number of conduction channels and their
transmissions could be determined precisely. The CPR of the weak link
was revealed by the modulation of the switching current of the circuit.
Quantitative agreement between measurements and theory was found.

Refined SQUID geometries were used to access the current-phase rela-
tions of carbon nanotubes weak links [57]. The results were consistent with
a model in which two degenerate channels contribute to the supercurrent.
Competition between superconductivity and Kondo effect was investigated
by measuring the CPR on a similar setup [58]. Recently, similar measure-
ments were performed on bismuth nanowires [59] in which the interplay
between the Andreev bound states with spin-orbit interaction is expected
to alter significantly the CPR [60].
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Fig. 1.3. Scheme of the atomic contact experiment. A superconducting loop encloses
the atomic contact and a Josephson junction. The junction is biased by a current
source Ib and the voltage V across is monitored.

junction can sustain a dissipationless current at zero voltage as long as the
current is smaller than a so-called critical current I0 (at zero temperature),
allowing hence for a phase bias of the atomic contact. Ideally, as soon as
the current increases beyond I0, the junction "switches" and a �nite voltage
develops. By measuring the switching current Iswb as a function of the magnetic
�eld in the loop, one directly measures the I(δ) relation, only shifted by a
constant current. Moreover, at �nite voltages V below twice the gap ∆ of the
superconductor, the tunnel junction acts ideally as an open circuit, thus the
current is just that of the atomic contact alone.
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Fig. 1.4. Dots: Measured switching current Iswb depending on the reduced �ux
ϕ = φ/φ0 in the loop for two atomic contacts denoted by AC1 and AC2. Data
have been shifted from their average value 〈Iswb 〉 which corresponds to the switching
current of the Josephson junction alone. Grayed bands: Theoretical prediction for
the same current at �nite temperature using current-phase relation Eq. (1.4) with
the PIN {τi} deduced from the I-V characteristics (see Fig. 5.23). The width of the
band comes from the uncertainty in the measurement of the PIN. The PIN of AC1
is {τi} = {0.62 ± 0.01; 0.12 ± 0.015; 0.115 ± 0.01; 0.11 ± 0.01; 0.11 ± 0.01} and for
AC2, {τi} = {0.957± 0.01; 0.185± 0.05}.

Figure 2.6: Current-phase relation of an atomic contact (from [11]). Dots:
measured switching current as a function of the phase difference across the
weak link. Gray line: Theoretical prediction at finite temperature for two
conduction channels of transmissions τ1 = 0.95 and τ2 = 0.185.

Probing the excited state

Multiple Andreev Reflection The first phenomenon that reveals tran-
sitions between the ground and excited Andreev states is related to the
finite-voltage current in a weak link. At subgap voltages, it is well estab-
lished that the current is due to multiple Andreev reflections (MAR), which
correspond to electron- or hole-like quasiparticles bouncing back and forth
between the two electrodes [61]. MAR were used in Scheer et al. [34] to
characterize the transmissions of channels in atomic contacts. The picture of
Andreev bound states revealed powerful to describe the low-voltage regime,
at the transition between the supercurrent and MAR. When the voltage is
very small, a weak link can be described with Andreev levels, the phase δ
increasing linearly with time: δ̇ = Vbias

φ0
. An AC current is associated with

the corresponding variations of the supercurrent. A finite DC current is as-
sociated to Landau-Zener [62, 63] transitions (see Fig. 2.7) from the ground
state to the excited state near δ = π, as described in Ref. [64].

Quasiparticle injection spectroscopy In recent years, several exper-
iments performed Andreev states spectroscopy by tunneling: on carbon
nanotubes [17] (see Fig. 2.8), nanowires [65], graphene [66], or quantum
dots [67]. Tunneling spectroscopy relies on the fact that the differential
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Figure 25: Supercurrent peak of contact #4 (containing a highly transmitting channel). 
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The theory describes quite well the experimental results. We attribute the small 

discrepancy to the purely ohmic environment assumed for the calculation. The actual 

electromagnetic environment is not a simple resistor r  but, as already mentioned, rather 

the ( )( )//r r R C+ +  combination (see Table 2). 
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Figure 2.7: Supercurrent peak of a contact containing a high transmission
channel. Open circles are experimental data. Dashed lines represent the
MAR current, dotted line the current due to Landau-Zener transitions at
125 mK, and the thick line the result of the combination of the two. Taken
from [10].

conductance between a normal electrode and a system of interest is propor-
tional to the density of states of the latter. Since quasiparticles are injected
by tunneling, this type of spectroscopy probes transitions between odd and
even states.

Josephson spectrometer The first photon spectroscopy of ABS was
performed by Bretheauet al. [68] using a Josephson spectrometer [69]. The
method relies on dynamical Coulomb blockade [70], which in this case cor-
responds to inelastic tunneling of Cooper pairs. When a Josephson junction
is biased at a voltage V such that eVbias < 2∆sc, Cooper pairs can tunnel
inelastically through the junction only if a photon at an energy 2eVbias can
be absorbed by the environment of the junction. This gives rise to a net
subgap current in the I-V characteristic of the junction. In the case of the
experiments performed by Bretheau et al., Andreev bound states localized
a single-atom contact containing a few conduction channels were part of the
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Figure 2 | Flux dependence of the ABS. a, Differential conductance of the
tunnel probe at a fixed gate voltage as a function of the bias voltage V of
the probe junction (vertical axis) and of the current in a coil (top axis) that
controls the flux Φ through the loop. The sharp resonances are the
signature of the ABS, and the periodicity of the pattern demonstrates that
ABS coherently connect the two end contacts and are sensitive to their
superconducting phase difference ϕ (bottom axis). The solid colour traces
correspond to cross-sections of the data at the flux indicated by the dashed
line. G0= 2e2/h denotes the conductance quantum. b, DOS in the CNT as
deconvolved from the data in a, assuming a Bardeen–Cooper–Schrieffer
DOS in the tunnel probe. The device can be operated as a d.c.-current
SQUID magnetometer by biasing it at a point that maximizes ∂ I/∂Φ, as
indicated by a red circle. The fact that the phase is not zero at zero current
in the coil is due to a residual magnetic field in our set-up.

play a central role in mesoscopic superconductivity and can be seen
as the superconducting counterpart of the Landauer channels for
the normal state: in both cases, only a handful of them suffices to ac-
count for all of the transport properties of complex many-electron
systems such as atomic contacts or CNTs. In effect, the ABS concept
quantitatively explains the Josephson effect in atomic contacts10; it
also explains tunnelling spectroscopy of vortex cores and surface
states in some superconductors11. However, there has been so far
no detailed direct spectroscopic observation of individual ABS.
Interest in such spectroscopy has increased with recent proposals
for using ABS as quantum bits8, and Andreev reflection as a source
of entangled spin states6.

Nanotubes are particularly good candidates for the observation
of ABS. First, CNT–superconductor hybrid systems are expected
to show a small number of ABS, and the typical millielectronvolt
energy scales involved in nanotube devices are comparable
to conventional superconducting gaps. These are favourable
conditions for a well-resolved spectroscopy experiment. Second,
given the length of CNTs, it is possible to introduce a tunnel
probe that enables straightforward tunnelling spectroscopy12.

Furthermore, CNTs are of fundamental interest as nearly ideal,
tunable one-dimensional systems in which a wealth of phenomena
(for example Luttinger-liquid behaviour13, Kondo effects3,14 and
spin–orbit coupling15) has been observed and the rich interplay
of these effects with superconducting coupling has attracted
a lot of interest16–22.

Our sample is described in Fig. 1. A CNT is well connected
to two superconducting metallic contacts 0.7 µm apart, leaving
enough space to place aweakly coupled tunnel electrode in between.
The electrodes are made of aluminium with a few nanometres
of titanium as a sticking layer (see Supplementary Information
for details); they become superconducting below ∼1K. The two
outer contacts are reconnected, forming a loop. A magnetic
flux Φ threaded through the loop produces a superconducting
phase difference ϕ = (2e/h̄)Φ across the tube. By measuring the
differential conductance of the tunnel contact at low temperature
(T ∼ 40mK) we observe (see Figs 2a and 3a) well-defined
resonances inside the superconducting gap. The energies of these
resonances strongly depend on the voltage applied on the backgate
of the device, and vary periodically with the phase difference
across the CNT, a signature of ABS. From the raw measurement
of the differential conductance between the tunnel probe and
the loop we can extract the density of states (DOS) in the tube
(see for example Fig. 2b) through a straightforward deconvolution
procedure (see Supplementary Information). Figure 2 shows the
dependence of the ABS spectrum on the flux in the loop at a fixed
gate voltage. By d.c.-biasing this device at a point that maximizes
∂I/∂Φ (see Fig. 2a), it can be used as a SQUID magnetometer that
combines the advantages of refs 23 and 3. Being nanotube-based,
our SQUID should be able to detect the reversal of magnetic
moments of only a few Bohr magnetons3. At the same time, the
present device can be read out with a d.c. current measurement
(similar to ref. 23) and requires a single gate voltage, making it
easier to operate than ref. 3. The gate-voltage dependence of the
DOS shows a pattern of resonance lines (Fig. 3b) that is more or
less intricate depending on the strength of the coupling to the leads
(see Supplementary Information).

We now show that the ABS observed in this device arise from
the discrete molecular levels in the CNT. For this we describe
our nanotube phenomenologically as a quantum dot coupled
to superconducting leads (see Supplementary Information for a
detailed discussion of the model). The essential physics of ABS
in this system is already captured when one considers a single
orbital of the quantum dot filled with either one or two electrons.
Owing to the Pauli exclusion principle, these two electrons have
opposite spins and can thus be coupled by Andreev reflection.
Furthermore, the doubly occupied state is higher in energy by
an effective charging energy Ũ that can be determined from the
experimental data. Hence, the minimal effective model consists of
a spin-split pair of levels (SSPL), the parameters of which are the
splitting Ũ , the mean position E of the SSPL relative to the Fermi
level (which is controlled by the gate voltage) and the coupling
to the leads (see Supplementary Fig. S1a). Previous theoretical
work24,25 has shown that there can be up to four ABS, symmetric (in
position, but not in intensity) about the Fermi Level. For sufficiently
large Ũ (respectively, E), however, the two outer (respectively,
all) ABS merge with the continuum and are no longer visible
in the spectrum24–26.

We now discuss the dependence of the ABS energies on the gate
voltageVg. TheABS appear as facing pairs of bell-shaped resonances
centred at E(Vg)= 0 and with their bases resting against opposite
edges of the superconducting gap (see the green dashed curves
in Fig. 3b.) For large enough Ũ the inner resonances cross at the
Fermi energy, forming a loop (Fig. 3b). Such loops are a distinct
signature of SSPL in this model (spin-degenerate levels (Ũ = 0)
cannot give loops). Most of the features observed in Fig. 3b can
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Figure 2.8: Tunnel spectroscopy of a carbon nanotube connected to alu-
minium contacts. The differential conductance of the tunnel probe as a
function of the phase difference φ across the weak link and the bias voltage
of the probe. The ABS are clearly visible as bright 2π-periodic lines. Taken
from Ref. [17]

environment of the junction and were revealed as current peaks at voltages
corresponding the Andreev transition frequency, see Fig. 2.9. Such a spec-
troscopy gives access to energies as high as 4∆sc. A difficulty is that the
requirement to measure the I-V characteristic of the junction coupled to
the Andreev levels gives rise in practice to an electromagnetic environment
hard to control, which results in a poor lifetime of the excited state and to
decoherence. As a result, the linewidth of the spectroscopy lines was large,
about 1 GHz.

Very recent experiments used the same setup to perform the spec-
troscopy of ABS in semiconductor nanowires that exhibit spin-orbit inter-
action effects [71].

Experiments of diffusive wires Signatures of the dynamics of ABS
in diffusive weak links with a large number of channels were observed by
Dassoneville et al. [20]. The weak links consisted in short metallic gold
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2.1 – Andreev bound states
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Figure 2.9: Spectrum of Andreev bound states for two different contacts.
The current of the Josephson spectrometer is plotted as a function of the
phase difference across the contact ϕ and the voltage VJ across the spec-
trometer junction. Andreev transitions are clearly observed. Dotted lines
are fits (other lines correspond to excitation of a plasma mode of the parallel
Joesphson junction and to combined excitations). Taken from Ref. [16].

wires contacted at both ends to a superconducting electrode forming a loop,
which was connected to a multimode superconducting resonator. The flux
modulation of the frequency and quality factor of the different harmonics of
this resonator give access to the real and imaginary part of the susceptibility
χ(ω) = δI/δΦ = χ′ + iχ′′ where δΦ is the oscillating flux in the loop
generated by the resonator. This susceptibility was measured at various
frequencies ranging from 0.2 to 2 GHz. These results are interpreted in
terms of transitions between states and relaxation of the states’ populations.

2.1.4 Odd states

Direct evidence for quasiparticle trapping in Andreev bound states (“quasi-
particle poisoning”) have been provided by only few experiments. The
most detailed results were obtained with switching current measurements of
SQUIDs formed by an atomic contact and a large critical current Josephson
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2 – The Andreev dot

junction [44]. The switching current of the SQUID being dependent on the
current through the atomic contact, poisoning could be observed and the
rate of poisoning deduced from time-resolved measurements. The poisoning
rates where found to be phase-dependent, and reach values as low as 5 kHz.
A theoretical modeling [72] is in qualitative agreement with the data.

Quasiparticle trapping in Andreev bound states was also observed in an
aluminium nanowire used as the inductor of a lumped element resonator
[73]. The high quality factor of the resonator made it possible to detect the
shift of the resonance frequency of the device associated with the poisoning
of a single conduction channel out of the ≈ 1000 channels of the nanowire.

More recently, quasiparticle trapping was investigated in semiconduct-
ing nano-wires [74]. In these experiments, a nanowire probed by tunneling
from normal electrodes is partly covered with a thin superconducting is-
land. The rate of poisoning was found to be in the 1-Hz range. This low
rate was attributed to the geometry of the device which presumably limits
quasiparticle production in the superconducting electrode.

2.2 The Andreev qubit

2.2.1 The Andreev Hamiltonian

The effective Andreev Hamiltonian describing the Andreev qubit is due to
Zazunov et al. [14]. It is given in the basis of the ballistic states by:

HA = ∆sce
−iσx

√
1−τδ/2(cos(δ/2)σz +

√
1− τ sin (δ/2)σy), (2.3)

where σx, σy and σz are the Pauli matrices:

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σx =

(
1 0
0 −1

)
. (2.4)

This Hamiltonian can be diagonalized in the phase-dependent basis of
Andreev states {|g〉 ; |e〉} and is equivalent to that of a spin 1/2 in a magnetic
field:

HA = −EA(δ, τ)σz, (2.5)

with a transition energy given by:

hfA = 2EA (2.6)
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2.2 – The Andreev qubit

As mentioned earlier, the Andreev states carry a supercurrent through
the weak link, and one can define a current operator [14]. Importantly, this
operator is not diagonal in the Andreev states basis and is given by:

ÎA(δ, τ) = IA(δ, τ)[σz +
√

1− τ tan (δ/2)σx]. (2.7)

Non diagonal terms in IA allow for transitions between |g〉 and |e〉. As
shown in Chapter 3, the current operator enters in the description of the
coupling between the resonator used to measure the state of the Andreev
qubit and the qubit itself.

2.2.2 A word on the odd states

The Andreev qubit Hamiltonian only considers the even states |g〉 and |e〉.
The states with odd parity |o ↑〉 and |o ↓〉 are the basis states of another
Hilbert space, and do not interact with the even states. Since they have a
different parity, they can only be accessed if a quasiparticle enters or leaves
the Andreev dot. Moreover these states do not carry any supercurrent.
As a consequence, they constitute dark states for our experiments and do
not affect coherence as long as the parity jump rate is small compared to
the coherence time. The dynamics of this poisoning by single quasiparticle
probed by switching experiments [44] showed that the characteristic poison-
ing time was of a few hundreds of µs when the Andreev energy was much
smaller than the gap. As it will be shown, this time is much larger than the
relaxation and coherence times of the Andreev qubits.

2.2.3 Phase biasing a superconducting weak link: the atomic
rf SQUID

Experimentally the phase biasing of a weak link is realized by inserting it
in a superconducting loop and applying a perpendicular magnetic field. We
now discuss phase biasing of weak links in this rf SQUID geometry [75, 76].

The rf SQUID

We consider the situation sketched in Fig. 2.10. A superconducting loop
containing a weak link is placed in a magnetic field that threads a flux Φext

in the loop. The junction length is assumed to be very short compared to
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2 – The Andreev dot

the loop circumference C and we define two close points P and Q on each
side of the contact.

Figure 2.10: rf SQUID: a superconducting loop containing a weak link is
placed in a magnetic field Bext that threads a flux Φext in the loop. A current
I is circulating in the loop, so that the total flux in the loop is Φ /= Φext.
The phase difference δ across the break junction is taken between points P
and Q.

The gauge-invariant phase difference across the contact is:

δ = ϕP − ϕQ −
2e
~

∫ P

Q

−→
Ad−→s , (2.8)

where ϕP and ϕQ are the superconducting phases at P and Q, respectively.
−→
A is the vector potential, and −→s the curvilinear coordinate along the cir-
cumference of the loop. In the diffusive superconductive wire forming the
loop, the supercurrent density −→j is related to the gauge-invariant phase ϕ
by [77] −→j = π

2
σ∆sc
e

(−→
∇ϕ− 2e

~
−→
A
)
, where σ is the normal state conductivity.

Integrating from P to Q around the loop, one obtains:

2e
πσS∆sc

∫ Q

P
I(δ)ds = ϕQ − ϕP −

2e
~

∫ Q

P

−→
Ad−→s (2.9)

with S the section of the wire constituting the loop. Since the loop current
I(δ) is the same everywhere and since P and Q are very close one to another,∫Q
P I(δ)ds ≈ I(δ)C. Summing Eq.(2.8) and Eq.(2.9), one obtains:

δ + 2π
Φ0
LKI(δ) = 2e

~

∮ −→
Ad−→s = 2π Φ

Φ0
, (2.10)
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2.2 – The Andreev qubit

where Φ0 = h/2e is the magnetic flux quantum, LK = ~R
π∆sc

is the kinetic
inductance of the loop, expressed as a function of the normal state resistance
of the loop R = C

σS . The total flux Φ being partially screened by the loop
current Φ = Φext − LgI(δ), with Lg ≈ µ0C the geometrical inductance of
the loop, one finaly obtains:

δ = Φext

Φ0
− πβm

I(δ)
I0

, (2.11)

where βm = 2(LK+Lg)I0
Φ0

is the “screening parameter” [76], with I0 the critical
current of the weak link, i.e. the maximum value of I(δ). Note that in our
case, the contribution of the kinetic inductance can be neglected: the ratio
of the kinetic and geometric inductances depends on the sheet resistance
R� and on the width w of the film forming the loop: LK

Lg
= ~R�

µ0w∆sc
� 1.

Equation (2.11) can be solved graphically, see Fig. 2.11.
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Figure 2.11: Left: Φext as a function of the phase δ across the contact, using
Eq. (2.11) and assuming for simplicity I(δ)/I0 = sin δ. Right: reversed
plot: δ as a function of the experimental parameter Φext. Brown: βm = 1

π .
Green: βm = 0.2

π . Note the hysteresis for the largest βm and the remaining
non-linearity for the smallest one.

• If βm � 1, the phase across the contact is proportional to Φext.

• If the βm ≈ 1, the flux generated by the current in the loop has a
significant influence on the the phase difference across the weak link.
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2 – The Andreev dot

This leads to a strongly non-linear relation between the phase and the
applied flux.

In order to have a linear phase bias across the contact and to be able
to reach δ = π, βm should be kept much smaller than 1 when a one-atom
contact is formed. For aluminum contacts with a transmission close to 1,
I0 ≈ 50 nA. This leads to the constraint Lg � 5 nH, or C � 5 mm.

In our samples, the loop inductance was 110 pH. This is small enough
to obtain a good phase biasing for single-atom contacts. But in the process
of getting such contacts, weak links that accommodate many conduction
channels are formed and an hysteretic response is observed, see Section
3.5.2.

2.3 Comparison of the Andreev qubit with other
superconducting qubits

In the previous section we chose to present the Andreev two-level system
as the “Andreev qubit”, following the proposal by Zazunov et al. [13]. How
far is the Andreev qubit more than one more superconducting qubit?

Two types of superconducting qubits are nowadays1 used in quantum
information experiments: charge qubits [79, 80, 25], and flux qubits [81, 82,
41].

The prototype of the charge qubit is the Cooper-pair box. It relies on
the quantization of the charge in a superconducting island connected to a
superconducting reservoir through a Josephson junction. The electrostatic
potential of the island is tuned through a capacitor. This was the first
superconducting qubit, demonstrated by Nakamura et al. in 1999 [79]. The
dimension of the states space is not bounded to two levels: the circuit can
be used as a qubit only if the anharmonicity2 is sufficiently large, so that
the two lowest energy states can be addressed separately from the others.
In its original configuration, the charge qubit was very sensitive to charge

1Another type of qubit was developed in the early days: the phase qubit [78]. However
it seems abandoned today.

2The difference in transition energy between the two lowest pairs of levels.
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2.3 – Comparison of the Andreev qubit with other superconducting qubits

noise. The charge sensitivity was significantly reduced in the Quantronium
[80], which can be seen as a split Cooper pair box, and the readout method
was more efficient leading to improved lifetime and coherence. A further
increase in the ratio of the Josephson energy to the charging energy lead
to an exponentially reduced [83] charge sensitivity at the price of a smaller
anharmonicity of a few 100 MHz. This new device, integrated in a circuit
QED architecture, was called the transmon. It has proven very successful
in the last years [40, 84, 85], with coherence times and lifetimes close to
100 µs.

The prototype of the flux qubit is an rf SQUID. As shown in the pre-
vious section, if the geometrical inductance of the rf SQUID becomes too
large, the flux bias of the SQUID becomes hysteretic. In the hysteresis zone,
for a given applied flux Φext, the flux in the SQUID can have two values
depending on the current direction. These two states of current constitute
the ground and excited state of the qubit. The main source of decoherence
of this type of qubit is flux noise. In order to reduce the size of the biasing
loop, and therefore the sensitivity to magnetic noise, a three-junctions con-
figuration was developed [81]. Yet, this type of qubit must be operated at
its sweetspot where its transition energy is insensitive to first order to flux
noise. Like the charge qubit, the state space of the qubit is not bounded to
two levels. However the anharmonicity is much larger, exceeding 10 GHz
[82]. The coherence times in flux qubits have reached 10 µs and lifetimes
18 µs [41].

These superconducting qubits are all based on Josephson junctions.
Most of the realizations have used tunnel junctions; a few recent experi-
ments have used more weak links made of semiconducting nanowires [86, 87].
All these realisations have in common the fact that they only exploit the
non-linear inductance associated to the weak link. Microscopically, this in-
ductance is related to the phase dependence of the energy of the ground
state of each Andreev dot associated to the weak link channels. As a re-
sult, they all rely on the quantization of an electromagnetic, macroscopic
variable in an anharmonic potential.

The Andreev qubit is markedly different. First, it relies on a localized
microscopic excitation of the BCS condensate and not a collective excitation
of the circuit in which the condensate remains in its ground state. Second,
its state space is bounded to two levels, making it a true two-level system.
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Chapter 3

Measuring the state of an
Andreev dot

This chapter presents the theoretical and practical backgrounds needed to
realize the experiments presented in this thesis.

As mentioned in the introduction, we measure the state of the qubit by
coupling it to microwave resonator (or cavity). After presenting the classi-
cal treatment of a transmission line resonator, we show how the state of the
qubit affects the resonance frequency of the resonator and how this can be
detected.

In our experiments, the Andreev dot is obtained with a single-atom con-
tact between superconducting electrodes. The mechanically controllable
break junction (MCBJ) technique is used to obtain such a contact. The
technique and its implementation in our experiments is presented in Sec-
tion 2.

Section 3 presents the samples design and fabrication. A first estima-
tion of the coupling between the Andreev qubit and the resonator is also
presented. The microwave setup is described in Section 4.

In previous works, I-V characteristics were used to characterize atomic
contacts. In our experiments, all the DC-lines used to measure these charac-
teristics were removed in order to simplify the electromagnetic environment
to which the Andreev dot is sensitive. New techniques were developed to
characterize atomic contacts. They are presented in section 5.
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3 – Measuring the state of an Andreev dot

3.1 Circuit QED

3.1.1 Measuring the state of a qubit with a cavity

During the last decade circuit QED techniques have proven to be well
adapted to the measurement of the quantum state of solid-state qubits
[88, 89, 28]. At the origin of these techniques is the proposal by Blais et al.
[23] to use high-quality factor resonators/cavities as probes for the quantum
state of qubits in a similar way to what had been done in the Cavity-QED
field [90]. In the following section we describe the tools taken from the
circuit QED toolbox that have been used in the present work to probe the
Andreev bound states.

3.1.2 The classical quarter-wavelength transmission line res-
onator

At the heart of a circuit-QED setup is a resonator, in our case a quarter-
wavelength transmission line resonator. In order to derive its classical re-
sponse, we first consider an isolated lossy resonator, then a resonator ca-
pacitively coupled to a 50 Ω measurement line. The complex1 reflection
coefficient is calculated, the internal and external quality factors are intro-
duced with estimations of their values for resonators fabricated on a kapton
substrate.

Uncoupled case

As a first approach to a transmission line resonator, we consider the uncou-
pled case as sketched on Fig. 3.1. The input impedance of a lossy short-
circuited transmission line with characteristic impedance ZR is given by
[91]:

Zin(l) = ZR
1− j tanh (αl) cot (βl)
tanh (αl)− j cot (βl) , (3.1)

1A microwave signal is described in terms of amplitude and phase (with respect to a
reference signal). The phase and amplitude can be treated together by using complex
amplitudes of the form: A = |A|eiφ
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l

Figure 3.1: A quarter wavelength transmission line resonator is composed
by a shunted transmission line of characteristic impedance ZR and length
l.

where β = 2π
λ(ω) is the wavenumber of the microwave with wavelength λ(ω),

l is the length of the transmission line, and α the attenuation. We are here
interested in the case where ω ≈ ω0 such that l = λ(ω0)/4. Introducing the
reduced frequency x′ = ω−ω0

ω0
, we have:

βl = π

2 (1 + x′). (3.2)

Replacing in Eq. (3.1):

Zin = ZR
1 + j tanh (αl) tan (π2x

′)
tanh (αl) + j tan (π2x′)

. (3.3)

Assuming low losses (αl� 1) and considering only small detuning (x′ � 1):

Zin = ZR
αl + j π2x

′ (3.4)

= 2
π

ZR
1

2Qint + jx′
, (3.5)

with Qint = π
4αl the internal quality factor. The attenuation α can be

decomposed as:
α = αc + αd, (3.6)

where αc and αd are the resistive and dielectric contribution of the losses
respectively. The dielectric losses are given by:

αd = β

2 tan (δ), (3.7)
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3 – Measuring the state of an Andreev dot

where tan (δ) is the loss tangent2 of the dielectric. The loss tangent3 for
kapton at 4 K is 2.10−4 which would give, alone, an internal quality factor
Qint = 5000. Since quality factors of several millions [92] have been achieved
with aluminum resonators on low dielectric-losses substrates, we will assume
that resistive losses are negligible compared to the dielectric losses for a
resonator on kapton.

Therefore, using Eq. 3.7, a simple expression for the internal quality
factor is found:

Qint = 1
tan δ . (3.8)

Coupled case

We consider now the case of a resonator coupled through a capacitor of
capacitance C to a measurement line of impedance Z0, as shown on Fig. 3.2.

C

Figure 3.2: Resonator coupled through a capacitor C to a measurement line
of impedance Z0

Resonance condition The first step is to find the resonance condition
in this new configuration. We introduce the normalized impedance z(x′) =

2The dielectric permittivity ε is complex in lossy materials. The loss tangent is defined
as tan (δ) = Im(ε)

Re(ε)
3This value for the dielectric losses was obtained from two different measurements:

measuring the losses of a transmission line fabricated on a kapton substrate, or measuring
the losses of a 3D-cavity containing a kapton foil

36



3.1 – Circuit QED

Z(x′)
Z0

. Seen from the input line:

z(x′) = −j
b(1 + x′) +

2γ
π

1
2Qint + jx′

, (3.9)

with γ = ZR
Z0

, and b = Z0Cω0. The resonance condition4 is found from the
complex solution of z(xR) = 0. Re{xR} gives the position of the resonance,
whereas Re[xR]

2 Im[xR] is the internal quality factor. Recalling that x′ � 1, one
gets:

xR = −2γ
π
b+ j

2Qint
. (3.10)

Compared to the uncoupled case where Re{x′R} = 0, the resonance has
been shifted by 2γ

π b. This can be understood with an analogy with a RLC
circuit in which the total capacitance of the circuit would be modified by the
series coupling capacitor. The normalized impedance can now be written
using a Taylor expansion:

z(x′) = (x′ − xR) dz
dx′

∣∣∣
x′=xR

(3.11)

Introducing Qext = π
4γb2 , recalling again x′ � 1 and using the resonance

condition:

dz

dx′

∣∣∣
x′=xR

= −jπ2γ Z2
in (3.12)

= −jπ2γ
(j
b

)2
(3.13)

= 2jQext, (3.14)

yielding:

z(x) =
2jx+ 1

Qint
1

Qext

, (3.15)

where x is the reduced frequency centered on the shifted reduced resonance
frequency, x = x′ + 2γ

π b.

4The resonance condition for a circuit is found for either Z(ωR) = 0 or Y (ωR) = 0 [93]
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In order to give a first estimation of the coupling capacitor needed for
the experiments, its capacitance can be written using Qext

C =
√

π

Z0ZRQext

1
2ω0

(3.16)

For the uncoupled case according to Eq. (3.8), the internal quality factor for
a resonator on kapton is Qint = 5000. Assuming a resonance frequency of
10 GHz, a resonator impedance ZR =70 Ω, critical coupling (Qint = Qext,
see below) is obtained for a coupling capacitor of 3.4 fF.

Reflected signal The reflection coefficient is given by [91] :

S11(x) = z(x)− 1
z(x) + 1 . (3.17)

Using Eq. (3.15), and introducing the total quality factor : 1
Qtot

= 1
Qext

+ 1
Qint

and the differential quality factor 1
Q∗ = 1

Qext
− 1

Qint
:

S11(x) =
2jx− 1

Q∗

2jx+ 1
Qtot

. (3.18)

In this expression, Qint and Qext contribute in a similar way, which justifies
a posteriori the definition for Qext. The full width at half minimum of |S11|2
gives ∆x = 1

Qtot
. The expression Eq. 3.18 can be re-written:

S11(θ) = 1− 1
1 + Qext

Qint

(1 + eiθ), (3.19)

with θ = −2 arctan (2Qtotx). One recognizes in Eq. (3.19) the equation of
a circle of radius 1

1+Qext
Qint

in the complex plane5.

It is plotted on Fig. 3.3 (left panel) along with the reflection amplitude
in dB and phase in degrees, as a function of the reduced frequency x. Three

5Also called IQ-plane. This term originates from a homodyne demodulation technique
in which a microwave signal is decomposed into its “In-phase” and “Quadrature” com-
ponents. The “In-phase” (“Quadrature”) component is the real (imaginary) part of the
complex amplitude of the demodulated signal.
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Figure 3.3: Reflection coefficient S11(x) for different quality factors. Left
panel: S11 represented in the complex plane. The transition from the un-
dercoupled regime to the overcoupled regime occurs when the origin is in
the circle. Right panel: amplitude in dB and the phase in degrees of S11 as
it would be displayed by a vectorial network analyser. Note that the phase
origin is different for the undercoupled case compared to the two others in
order to emphasize the fact that the phase undergoes no discontinuity at
resonance.

cases are considered: undercoupled (Qext > Qint), critically coupled (Qint =
Qext) and overcoupled (Qext < Qint). In the undercoupled case most of the
microwave is reflected by the input capacitor, the drop in phase and dip
in amplitude are small. In the overcoupled regime, the amplitude of the
reflected signal is almost not affected but the drop in phase is maximal. At
critical coupling, the phase jumps by π at resonance.

3.1.3 Coupling a resonator to the Andreev qubit

Experimentally we measure the state of the qubit by probing the resonator
to which it has been coupled to. In this section we describe the quantum
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3 – Measuring the state of an Andreev dot

treatment of the qubit-resonator coupling.

General description

The description of a two-level system coupled to a electromagnetic field is
due to Jaynes and Cummings [94]. It was first applied to the case of qubits
coupled to superconducting resonators by Blais et al. [23]. The Hamilto-
nian of an Andreev qubit galvanically coupled to a resonator was derived
by Romero et al. [39]. Here we consider the case of an inductive coupling
between a microwave resonator and a superconducting loop containing a
quantum point contact supporting a single conduction channel of transmis-
sion τ , see Fig. 3.4. The inductance of the loop itself is assumed to be
negligible compared to that of the contact.

C

M
Φ

δ

Figure 3.4: The Andreev qubit consists in a superconducting quantum point
contact placed in a superconducting loop. This loop is used to phase bias
the quantum point contact with a flux Φ and couples inductively the contact
to the resonator with a mutual inductance M.

The Hamiltonian of the system is decomposed in three parts:

H = HR +HA +Hg, (3.20)

where
HR = ~ωR

(
a†a+ 1

2

)
, (3.21)

is the Hamiltonian of the resonator with resonance frequency ωR/2π. It is
here described as a harmonic oscillator, with a and a† the annihilation and
creation operator, respectively. The second part is:

HA = −EA(δ, τ)σz = −~ωA(δ, τ)
2 σz, (3.22)
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3.1 – Circuit QED

and describes the isolated Andreev two-level system in the instantaneous
Andreev states basis (|g〉,|e〉) [13], with EA(δ, τ) is the Andreev energy, and
σz the z-axis Pauli matrix. Finally,

Hg = MÎRÎA (3.23)

describes the coupling between the Andreev qubit and the resonator. Here,
ÎA and ÎR are the current operators for the Andreev system and the res-
onator respectively. M is the mutual inductance between the resonator and
the superconducting loop containing the superconducting quantum point
contact.

We now focus on the coupling part of the Hamiltonian. The resonator
current operator can be written [95]:

ÎR =

√
~ω2

R

2ZR
(a† + a), (3.24)

where ZR is the characteristic impedance of the resonator. The current
operator of the Andreev system is given by [14]:

ÎA = IA(δ, τ)(σz +
√

1− τ tan (δ/2)σx), (3.25)

where IA(δ, τ) is given by:

IA(δ, τ) = ∆sc

4φ0

τ sin (δ)√
1− τ sin2 (δ/2)

, (3.26)

with φ0 = ~/2e the reduced flux quantum, ∆sc the superconducting gap
energy, τ the transmission of the conduction channel, and δ the phase dif-
ference applied on the channel. The coupling Hamiltonian can then be
written:

Hg = g(a† + a)( 1√
1− τ tan (δ/2)

σz + σx), (3.27)

where the coupling factor g can be expressed using Eq. (3.24) and Eq. (3.25):

g(δ, τ) =
√
z
EA(π)

2
( ∆sc

EA(δ, τ) −
EA(δ, τ)

∆sc

)
. (3.28)
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3 – Measuring the state of an Andreev dot

The prefactor z is given by:

z = π
M2ZR
L2RQ

= π
M2ω2

R

ZRRQ
, (3.29)

where ZR is the characteristic impedance of the resonator, and RQ = h
4e2 .

The coupling factor g is plotted in Fig. 3.5 as a function of the phase dif-
ference across the contact for different values of the transmission τ of the
conduction channel. The coupling factor is highly peaked at a phase differ-
ence of π across the contact. The higher the transmission, the narrower the
peak.
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Figure 3.5: Coupling factor g as a function of the phase difference across
the contact, for different transmission coefficients. The parameters chosen
for this calculation are M = 0.02L, ZR=80 Ω, and ∆sc/h =45 GHz.

Finally the Jaynes-Cummings Hamiltonian is obtained from Eq. (3.27),
Eq. (3.21) and Eq. (3.22) by going to the rotating frame (see Appendix A)
and neglecting fast rotating terms, assuming that |ωA−ωR| � ωA+ωR and
|ωA−ωR| � ωA. This procedure is called the rotating wave approximation
and is discussed in appendix A.

H = ~ωR(a†a+ 1
2)− EAσz + ~g(aσ+ + a†σ−), (3.30)
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where σ+ = |e〉 〈g| and σ− = |g〉 〈e|. The coupling term can be under-
stood as the transfer of a single excitation from the two-level system to the
oscillator (a†σ−) or from the oscillator to the two-level system (aσ+).

The coupling between the resonator and the Andreev qubit gives rise
to an avoided crossing between the Andreev two-level system and the res-
onator, as shown in Fig. 3.6. It has been calculated both by diagonalizing
numerically the full Hamiltonian Eq. (3.20), and by using the energies found
with the exact diagonalization [23] of the Jaynes-Cummings Hamiltonian
given by:

E±,n = ~ωR(n+ 1)± ~
2

√
4(n+ 1)g2 + ∆2, (3.31)

with ∆ = ωA − ωR, and n the number of photons in the resonator. When
the qubit and the resonator are in their respective ground states, there is
no coupling. Therefore the ground state energy is given by:

E−,0 = −~∆
2 (3.32)

The results of the two models are in good agreement when the Andreev
transition energy is higher than the bare-resonator transition energy, but
slightly disagree when the Andreev transition energy is lower. This is due
both to the breakdown of the rotating wave approximation (when ωA � ωR
or ωA � ωR it is no longer possible to assume |ωR − ωA| � ωR + ωA) and
to the fact that the coupling factor g is peaked at δ = π. Nonetheless the
Jaynes-Cummings Hamiltonian still gives a good insight to understand the
coupling between the qubit and the resonator, and therefore we are going
to push further the description of our system using this Hamiltonian.

Since we want to use the cavity as a non-demolition6 detection device,
the exchange of energy between the cavity and the Andreev qubit should be
as small as possible. With this aim, the transition energy of the qubit and
the cavity are strongly detuned (|ωR − ωA| � g. This condition is called
the dispersive limit and is the subject of the next section.

6That is to say that the measurement projects qubit to one of its eigen state but does
not destruct this state. In other words, two measurements performed one just after the
other should give the same results.
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Figure 3.6: Transition energies as a function of the phase difference of the
Andreev qubit-resonator system close to the resonance frequency of the res-
onator. The transition energies are plotted using the exact diagonalization
of the Jaynes-Cummings model (dashed red) and the numerical diagonal-
ization of the full Hamiltonian using 25 modes for the resonator (full blue
line). The black thin lines represent the energies of the uncoupled resonator
and qubit. The differencies between the two calculations close to π reveal
the breakdown of the rotating wave approximation. Parameters used for
these calculations: τ = 0.997 (fA(π) = 4.92 GHz), fR = 10 GHz, others
like in Fig. 3.5

Dispersive limit

The dispersive limit corresponds to the situation when

g
√
n

|∆| � 1. (3.33)

The dispersive Hamiltonian is obtained from the Jaynes-Cummings Hamil-
tonian (3.30), using the unitary transformation:

U = e
g
∆ (aσ+−a†σ−), (3.34)
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and developing the result to second order in g
∆ [23]. Using again the

Baker–Campbell–Hausdorff relation7, the result is:

Hdisp

~
=
(
ωR − χσz

)
a†a− 1

2
(
ωA − χ

)
σz, (3.35)

where χ = g2

∆ . This Hamiltonian can be seen as creating an AC-Stark shift
of the Andreev two-level system and a cavity shift of the resonator by the
Andreev levels which depends on the state of the latter. This is shown in
Fig. 3.7 where we have represented the energy states of the bare resonator
and the ones of the dispersively coupled resonator when the qubit is the
ground or excited state. The “ladder” spacing is shifted by −χ with respect
to the uncoupled resonator when the qubit is its ground state and by +χ
when the qubit is the excited state.

This dispersive shift is used to measure the state of the qubit. It should
be noted that the odd configuration of the Andreev states carry no current
and therefore does not couple to the resonator, leaving it in its bare state.

Effect of the dispersive shift in the IQ-plane

In order to apprehend how the measurement of the qubit is performed
in our experiments, we now describe the effect of the dispersive shift on
the resonator reflected signal in the IQ-plane and establish a few design
constraints for realistic parameters. As expressed by Eq. (3.35), the shift in
frequency of the resonator compared to its bare frequency is:

• −χ when the Andreev dot is in the ground state.

• +χ when the Andreev dot is in the exited state.

Using Eq. (3.19), the dispersive shift corresponds in the IQ-plane to a ro-
tation of S11 a x by an angle:

θχ = ± arctan (2Qtot
χ

ωR
). (3.36)

Moreover, there is no shift when the Andreev dot is in the odd states since
they do not couple to the resonator.

7See the appendix B for more details.
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Figure 3.7: Energy levels of the system in the dispersive regime (dashed
lines) compared to the uncoupled case (thick lines). On the left the Andreev
dot is in its ground state, the resonator transition energy is shifted by −χ.
On the right the Andreev dot is in its excited state, the resonator transition
energy is shifted by +χ.

Effect of the measurement amplitude In an experimental situation,
what is actually measured is not S11 but the reflected signal which is :

Aout = S11(θ)Ain, (3.37)

where Ain is the amplitude of the signal send to the resonator. In a (hy-
potethical as we shall see) noiseless system probed at a given frequency, one
would get three possible points in the IQ-plane corresponding to each one
of the states. This situation is represented by the arrows in Fig. 3.8. How-
ever, the reflected signal Aout has to be amplified. This amplification adds
noise which can be averaged by reducing the bandwidth of the acquisition.
However for the measurement to be relevant this bandwidth must be larger
than the relaxation rate of the qubit, which sets an intrinsic limit to the
averaged noise. The effect of this noise in the IQ-plane is to scatter the
measurements around the noiseless positions. For many measurements one
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obtain three clusters of points represented as circles in Fig. 3.8.
Two measurement amplitudes Ain are shown in Fig. 3.8, the first one is

too small to reliably discriminate the three states (the uncertainty circles
overlap), the second amplitude is on the other hand large enough to resolve
the three states (no overlap). In this last situation thresholds can be im-
plemented to determine the state of the system in a single measurement.
When a single measurement allows to discriminate between states, it is said
to be a “single shot measurement” [96, 85].

0

Ain1

Ain2

e

o

g

θR

I

Q

Ain|S11|

Figure 3.8: Measured signal in the IQ-plane when performed at the fre-
quency of the bare resonator fmeas = fR for two different measurement
amplitudes. The blue (red) arrows represent the signal that would be mea-
sured at low (high) measurement power, for the qubit being in one of its
three state without measurement noise. The circles represent the dispersion
of the measured points due to the averaged noise. At high power the circles
do not overlap and it is possible to implement thresholds to achieve single
shot measurements.
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Effect of the external quality factor This discussion suggests that in
order to reduce the impact of noise on the measurement a solution is to
increase the measurement power. However this strategy is limited since a
large number of photons in the resonator can significantly affect the state
of the qubit. To take this constraint into account, one has to optimize
the separation in the IQ-plane of the three states for a given number of
photons in the resonator8. Since the internal quality factor is fixed and
the cavity shift is confined to a narrow range, the only parameter left for
this optimisation is the external quality factor Qext. Namely, one needs
to maximize the distance between the pairs of points corresponding to the
different states with respect to Qext:

∆Age(θχ, Qext, Qint) = |S11(−θχ, Qext, Qint)− S11(θχ, Qext, Qint)|Ain,
(3.38)

for the distance between the ground and excited states, and between the
even and odd states:

∆Ago(θχ, Qext, Qint) = |S11(0, Qext, Qint)− S11(θχ, Qext, Qint)|Ain, (3.39)

where θχ = −2 arctan (2Qtotxχ) and xχ = χ/ωR. In this discussion Qint, g,
and ∆ are fixed. The number of photons in the resonator is given by [97]:

n̄ = 4Qext
~ωR(1 + Qext

Qint
)2
Pin, (3.40)

where Pin = |Ain|2/50 Ω is the power of the input signal delivered through
a 50 Ω line. Using, Eq. (3.40),Eq. (3.19) and Eq. (3.38) or Eq. (3.39), one
obtain respectively:

∆Age(θχ, Qext, Qint) = A0
4Qtot|xχ|√

Qext(1 + 4Q2
totx

2
χ)
, (3.41)

and:
∆Ago(θχ, Qext, Qint) = A0

2Qtot|xχ|√
Qext(1 + 4Q2

totx
2
χ)
, (3.42)

where A0 =
√
n̄~ωR50 Ω.

8Similar calculations were performed by Gambetta et al. but for a two-level system
coupled to a resonator [42]

48



3.1 – Circuit QED

-0.05 -0.04 -0.03 -0.02 -0.01 -0.00 0.01 0.02

I

-0.02

-0.01

0.00

0.01

0.02

Q

Qext=100

Qext=300 Qext =1000
Qext=1560
Qext=2500

Qext=10000

Qext=Qint

Figure 3.9: Position in the IQ-plane of the reflected signal for each state
(black lines) as a function of Qext and with a constant number of photons in
the resonator. The a cavity shift is xχ = 0.0003 and Qint = 4400. The arcs
represent the resonator response for different values of Qext. The maximum
distance between states is obtained for Qext =1560. I and Q are in units of√
n̄ωR 50 Ω

Figure 3.9 shows the position of center of the three clusters of points
in the IQ-plane as defined in Fig. 3.8 when Qext varies and for a constant
number of photons in the resonator. This figure is done for a relative cavity
shift xχ = 0.0003, and for Qint = 4400, which are relevant for our experi-
ments. Moreover the reflected signal of the bare resonator as a function of
the frequency is shown for different values of Qext. For high Qext the input
amplitude has to be small (see Fig. 3.10a) and the resonator is undercou-
pled, the three clusters are very close. At critical coupling the input power
is the smallest (see Fig. 3.10a) but the resonance is also the finest. For
lower Qext the input power increases again (see Fig. 3.10a) and the clusters
are more separated up to an optimal point where Qext ≈ 1560. When Qext
is further reduced the linewidth of the resonator becomes large and the
increasing power can’t compensate the smaller separation in phase. Note
that the distance between the centers of the clusters presents a rather soft
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maximum as shown in Fig. 3.10b.

1000 10000

Qext

0.00

0.05

0.10

0.15

100

A
in

√
R
5
0
n̄
ω
R

(a)

100 1000 10000
Qext

0.005

0.01

0.015

QintA
g
o

(b)

Figure 3.10: Left: optimal Qext for a given cavity pull and an internal qual-
ity factor of 4400. For low cavity pull, it is preferable to have Qint = Qext
and for large cavity pulls it is preferable to increase the external coupling
of the resonator. Right: distance in the IQ-plane between the ground-state
cluster and the odd-states cluster as a function of Qext in log scale. The
maximum is found for Qext =1560

The optimization is performed numerically, and the result as a function
of the cavity shift is shown Fig. 3.11 for parameters relevant to our exper-
iments. For small shifts it is preferable to have a resonator close to the
critical coupling (Qext = Qint) since it results in a more peaked resonance
even though the measurement amplitude has to stay low. As the cavity pull
increases, it becomes preferable to decrease the external quality factor (i.e.
to increase the external coupling of the resonator), which enables increasing
the measurement power without increasing the actual number of photons in
the resonator. This is done at the cost of a larger width of the resonance.

This results shows that it is preferable to design the resonator as over-
coupled in order to obtain the best separation between the clusters and
therefore a better signal-to-noise ratio.
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Figure 3.11: Optimal external quality factor as a function of the relative
cavity shift xχ. For low cavity shift, it is better to take advantage of the
small linewidth ob tained at critical coupling. As xχ becomes larger, Qext
can be decreased to obtain a larger reflected signal.

3.2 Mechanically controllable break junctions

3.2.1 General presentation

The single-atom contacts used in our experiments are obtained using the
mechanically controllable break junctions (MCBJ). Such a junction is con-
stituted of a wire suspended on top of a flexible substrate, see Fig. 3.12.
When the substrate is bent, the suspended region of the wire elogates, and
ultimately breaks. subsequent fine tuning enables to obtain single-atoms
contacts [21].

The technique is originally due to Moreland and Ekin [98] who used
it to measure I-V characteristics of tunnel junctions made of Nb-Sn wire.
It was later used in many mesoscopic physics experiments that have been
reviewed by Agrait et al. [21].

Although the principle of the MCBJ has remained the same, several
evolutions or configurations have been used. The first realisations were us-
ing glass or phosphore-bronze as a substrate, notched wires connected using
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h s

Figure 3.12: A MCBJ in a two-point configuration. The flexible substrate is
clamped on the left and a deformation is imposed on the right by a pusher.
On top of the substrate is a metallic wire suspended at a height h over a
length s. A constriction has been made at one point of this suspended part.

silver paint, and piezo-electric actuators [21]. Later, the use of microfab-
ricated junctions enabled an even greater stability and their integration in
on-chip circuits. This is the technique used in the experiments presented in
this thesis.

3.2.2 The microfabricated MCBJ

Microfabricated MCBJ [37, 38] take advantage of microfabrication tech-
niques in order to increase even more the demultiplication factor of the
technique (see next section). The wire is patterned using e-beam lithogra-
phy, which enables to reduce the width and the thickness of the constriction
to a few hundreds of nanometers. The suspension of the wire is done with
plasma etching (see Section 3.3.3), which enables to reduce the suspended
length to about one micrometer. The use of microfabrication techniques
not only improves the reproducibility compared to hand-made samples, but
also allows the integration of single-atom contacts in more complex circuits
and a better controlled environment (see [99] and references therein).

3.2.3 Reduction factor

The principal asset of the MCBJ technique is that it enables to produce
sub-nanometric displacements from micrometric ones. We now derive the
reduction factor for a two-point bending mechanism, which is the geometry
used in our experiments. The chip is modelled as a cantilever of thickness 2t
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clamped at one end, and with a vertical displacement d imposed at the other
end, see Fig. 3.13. The wire is suspended at height h above the surface of the
cantilever and over a length s, see Fig. 3.12. All the elongation concentrates
at a constriction in the suspended part of the wire.

t d

l
x

z
w(x)

h s

Figure 3.13: The clamped cantilever model used to calculate the reduction
factor factor of a MCBJ. A displacement d is imposed on the substrate at a
distance l from the clamp, the vertical displacement of the cantilever along
the x-axis is w(x) and the thickness of the cantilever is 2t.

The vertical displacement w(x) of the cantilever along x, is given in the
Euler-Bernouilly theory by [100]:

w(x) = d

2
x2

l2
(3− x

l
). (3.43)

Still in the Euler-Bernouilli limit, the strain can be found by taking a small
element of undeformed length dx. Since the sections of the cantilever remain
perpendicular to the neutral axis, the deformation of the small element can
be reduced to a circle, see Fig. 3.14. The length dx′(z) of the element at a
position z along one of its section is given by :

dx′(z) = (r + z)dθ, (3.44)

where r = d2w
dx2 is the curvature radius. Therefore, the strain along the beam

at position z is given by :

εxx = z
d2w

dx2 . (3.45)
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Figure 3.14: A small element dx of the deformed cantilever. The neutral
axis is not elongated and the sections of the cantilever are perpendicular
to this axis, by hypothesis of the Euler-Bernouilly theory. The curvature
radius is r and the length of the surface of the element is dx′

We can now calculate the strain on the wire :

εxx(x) = 3d
l2

(h+ t)(1− x

l
) ≈ 3td

l2
(1− x

l
) (3.46)

From Eq. (3.46) one obtains the reduction factor:

u(x) = εxxs

d
≈ 3ts

l2
(1− x

l
). (3.47)

Since the strain is maximal at the clamp, an upper bound for the reduc-
tion factor9 is given by u(0). For a suspended length s =2 µm, a thickness
2t ≈450 µm and a beam length l =15 mm, which are common parameters
for microfabricated MCBJs, one find u(0) ≈ 7.10−6. This shows the high
reduction factor of this technique. An elongation of the junction by 1 Å
can be achieved by displacing the free-end of the cantilever by 15 µm. Dis-
placements at this scale can be finely controlled using a micrometer screw.

9We want here to have a reduction factor as small as possible in order to be able to
tune the contact as finely as possible. Therefore this upper bound constitute a worse case
scenario.
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3.2.4 Implementation of the MCBJ technique in a dilution
fridge

The chips in the experiments presented in this thesis are 15− 17 mm long,
8.5 mm wide, and 400− 500 µm thick. They are made on a kapton sub-
strate which has a room temperature young modulus of 2.5 GPa, and re-
mains flexible at cryogenic temperatures. Another valuable characteristic
of kapton is that its thermal coefficient of expansion is close to the one of
aluminium [101], which prevents from differential contraction effects. Two
bending mechanisms have been used in our experiments:

• For the experiments presented in Chapters 4 and 5 (unless mentionned
differently), the pusher was a copper plate actuated by a micrometer
screw (see Fig. 3.15) with a thread of 250 µm per turn.

• For the experiments presented in chapter 6, the mechanical setup has
been stiffened, in order to improve mechanical stability. This has been
done by replacing the pusher with a solid copper piece sliding on two
brass columns and actuated by a differential screw (see Fig. 3.16) with
a thread of 300 µm per turn. The screw was actuated by a prismatic
joint.

Figure 3.15: Mechanical setup used for the runs before BR3e. The chip is
clamped against a SMA-launcher on the left using a small copper plate and
two screws. On the right the chip is in contact with the “pusher” made of
a thin copper plate and a copper rod connected to a micrometer screw.
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Figure 3.16: Second mechanical setup implemented for the run BR3f in
order to improve mechanical stability. Left: Front view of the setup (CAD
rendering). Right: sideview of the setup. The chip holder is the same but
the “pusher” is now made of a solid copper piece actioned by a differential
screw and guided by two brass rods.

In both cases, the actuation was performed by a DC-motor placed at
room temperature through the following elements (see Fig. 3.17):

• A planetary gear-box with a reduction factor of 97;

• A vacuum rotating feedthrough;

• A second planetary gear reducer with a reduction factor of 9.3, ther-
malized at the 1 K pot of the dilution refrigerator. This reducer has
been carefully degreased in order to avoid jamming due to frozen lu-
bricant;

• A fiberglass axle connected to the gear-box at its top end and the
micrometer screw, or the sliding joint at its bottom end. Fiberglass
was used for its thermal insulation properties since the axle connects
directly the 1K-pot and the mixing chamber of the refrigerator. It
is connected to the gear box through a universal joint, and to the
micrometer screw through an helical coupling. This joint reduce the
effects of differential contraction.
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1K

300K
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Reducer 97:1

Vacuum joint

Reducer 9:1

fiberglass axle

Bending 
mechanism

DC-Motor

Figure 3.17: Overview of the mechanical setup. The DC-motor is placed
at room temperature along with a first stage of reduction. A vacuum
feedthrough transmits the rotation. A second stage of reduction is placed
at 1 K, finally the bending mechanism is placed at 30 mK
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3 – Measuring the state of an Andreev dot

3.3 Chip design and fabrication

3.3.1 Designing a microwave resonator

Design of the chip

As explained in section 3.1, a convenient implementation of a microwave
resonator for circuit-QED is the transmission line resonator. Among the
different implementations of planar transmission lines, the coplanar waveg-
uide (CPW) has been chosen for this work. As a first approximation, the
CPW can be seen as a planar version of a coaxial cable. It is composed of
three parallel conductors on top of a dielectric (see Fig. 3.18). The mode
supported by the CPW is a quasi-TEM mode [102] and can therefore be
easily coupled to the TEM mode of the coaxial cables used to carry the
microwave signal to the chip. The impedance of the mode is determined by
the relative dielectric constant of the substrate εR and the aspect-ratio a/b
(see Fig. 3.18)

2a

2b

R

Figure 3.18: Schematics of a CPW. In grey are the conducting part of the
waveguide and in brown the insulating substrate of relative permeability
εR. The width of the center line is 2a and the width of the line is 2b.

The field generated by the CPW is confined over distances � λ, which
avoids radiative losses and the coupling with the surrounding electromag-
netic environment. The characteristics mentioned above make the CPW
transmission line suitable for making high-Q resonators (confined field),
that can be easily implemented and coupled to a µm-size circuit (miniatur-
ization is possible) and to commercial microwave components (possibility to
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3.3 – Chip design and fabrication

couple it to a coaxial transmission line). Since the proposal of A. Blais et al.
[23] and the first realization by Schoelkopf et al. [25], CPW resonators have
been thoroughly used in cQED architectures and constitute the majority of
two-dimensional implementation, although other geometries have also been
used [88, 103].

In order to avoid the coupling to a whip-antenna mode of the ground
plane, the CPW is folded into a meander so that the length of the resonator
is distinct from the length of the ground plane. Moreover, the meander is
disposed so that its length —and therefore the resonator frequency —does
not change too rapidly when the chip is bent.

Figure 3.19: Design of the chip. Black regions are made of niobium. Top
right: zoom on the meander line of the resonator. Bottom center: inter-
digitated capacitor. Bottom right: openings in the ground plane to fit
aluminium the break-junction and the biasing loop (in blue).

The dimensions of the CPW in our design are a = 5 µm and b = 8 µm.
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3 – Measuring the state of an Andreev dot

These dimensions have been chosen as a compromise between the reliability
of the fabrication based on optical lithography, and the need to keep the
impedance of the resonator low to achieve a good coupling with the Andreev
dot. These dimensions result in an impedance ZR ≈ 70 Ω. The developed
length of the resonator is 5.14 mm, which gives a resonance frequency of
ωR/2π ≈ 10 GHz given the dielectric constant of the substrate of εR = 3.2.

The resonator is coupled to the coaxial line through a 50 Ω CPW line
and a coupling capacitor (more below). Two openings in the gap are placed
at the shunted end of the CPW, see Fig. 3.19. One of them is used to
place the rf-SQUID loop at the position where the current is maximal in
the resonator, so as to achieve a maximal coupling. The other one is there
to keep the CPW symmetric.

We discuss in the following paragraphs the dimensions of the coupling
capacitor needed to obtain a critical coupling of the resonator with the
measurement line. We also discuss the size of the loop containing the atomic
contact in order to obtain a sizeable coupling between the resonator and the
Andreev qubit.

3.3.2 Fine tuning of the design

Design of the coupling capacitor

2r

qend

2q l

Figure 3.20: Top view of an
interdigitated capacitor. The
fingers have a width 2r, a lat-
eral separation 2q and an over-
lap length of l. The distance
between the tip of a finger and
the terminals is qend

As discussed in paragraph 3.1.2, for re-
alistic parameters a capacitance of about
3.4 fF leads to critical coupling of the res-
onator to its measurement line. We saw in
section 1.3.3 that the best signal over noise
ratio should be obtained in our experiments
for an overcoupled resonator. For this rea-
son we now to calculate the design param-
eters for a capacitance of 5 fF.

This capacitance is obtained using an
interdigitated capacitor. Such a capacitor
is shown in Fig. 3.20 with the relevant pa-
rameters. An analytical calculation of the
capacitance of such a capacitor is found in
Ref. [104]. A numerical calculation with a
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3.3 – Chip design and fabrication

As designed Obtained on BR3
l 50 µm 48 µm

2r 4 µm 3 µm
2q 4 µm 5 µm
qend 10 µm 12 µm
C 5 fF 3.9 fF

Table 3.1: Parameters used for the coupling capacitor of the resonator.
The designed capaciance is 5 fF on a kapton substrate. The capacitance on
chip BR3 is 3.9 fF. It was calculated from the measurement of the external
quality factor of the resonator.

film thickness of 100 nm, a substrate rel-
ative dielectric constant εR = 3.2, and 5
fingers, leads to the design parameters of
our coupling capacitor shown Table. 3.1.

Although the design parameters should result in a 5 fF capacitance,
imperfections in the fabrication lead to thinner fingers in chip BR3 (see
Table 3.1). This resulted in a slightly smaller capacitance of 3.9 fF.

Estimation of the mutual inductance

The coupling between the Andreev qubit and the resonator mode depends
on the mutual inductance between the resonator and the loop containing the
atomic contact (see Eq.( 3.29)). Considering a resonator with an impedance
ZR = 70 Ω, a resonance frequency fR = 10 GHz and an Andreev transition
energy fA =8 GHz at δ = π, a coupling factor g = 100 MHz is obtained for
a mutual inductance M = 27 pH.

A first estimation of the mutual inductance can be obtained by assuming
that most of the coupling comes from the center line of the CPW where the
current density is the highest. The mutual inductance, between an infinite
wire and a rectangular loop has an analytical form:

M = µ0
2πL ln

(
s+ w

s

)
, (3.48)

where µ0 is the vacuum permeability, and L, s and w are geometrical factors
shown on Fig. 3.21.
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L

s

w

I1
I2

Figure 3.21: Loop coupled to a wire. The dimensions L, s and w enter in
the expression of the mutual inductance (Eq. (3.48)).

In order to keep the geometrical inductance of the loop small, we limit
the length of the loop to 100 µm. Moreover limitations of the fabrica-
tion process impose that s should be larger than a few micrometers. With
these constraints in mind, a design for the loop is proposed: L = 75 µm,
w = 15 µm, and s = 3 µm.

A better estimate is obtained through numerical calculations that ac-
count for the effect of the return current through the ground plane and
calculate the full current distribution. Using the simulation software Son-
net (see Fig. 3.22), one obtains M = 26 pH for a L = 90 µm, w = 22 µm,
and s = 1 µm. This is the geometry of BR3.

Estimation of the resonator shift at the breaking of the loop

In order to obtain single atom contacts one has to detect when the bridge
breaks. In principle, this breaking should result in a sudden jump in fre-
quency of the resonator. We now evaluate the order of magnitude of this
jump using a simple electrical model shown in Fig. 3.23. The resonator is
modeled as an LC-oscillator coupled inductively to an inductor Lloop, its
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3.3 – Chip design and fabrication

Figure 3.22: Geometrical configuration used in the Sonnet simulations. The
loop has been slightly shifted in order to take into account a misalignment
on the chip BR3 for which this simulation has been designed.

M

L

C Lloop

Figure 3.23: Model used to calculate the shift resulting from the breaking
of the contact. The loop is modeled as a pure inductance, and the resonator
as an LC-circuit. The coupling between the two is described by a mutual
inductance M

resonance frequency is (assuming M2

LloopL
� 1):

ωR
2π = ω0

2π

(
1 + 1

2
M2ω0
LloopZR

)
. (3.49)

When the contact is broken, no current circulates in the loop so that the
resonance frequency is ω0

2π . Hence the frequency shift expected when the
contact breaks is given by:

∆f = M2ω2
0

4πLloopZR
, (3.50)
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3 – Measuring the state of an Andreev dot

which gives a shift ∆f ≈ 30 MHz for the values of inductance and mu-
tual inductance calculated previously. This shift is much larger than the
linewidth ∆ω = ωR/Qtot ≈ 5 MHz of the resonator, therefore the breaking
of the contact is easily detected.

3.3.3 Fabrication

Wafer fabrication

Kapton wafers are not available commercially and thus have to be custom
made. A 50 mm disk is cut out of a 0.5 mm-thick kapton sheet. One
surface of the disk is then polished to allow subsequent optical and e-beam
lithography. The wafer is glued to a steel flat cylinder using double-sided
tape; the cylinder presses the wafer against the rotating polishing sheet of a
polishing machine; friction causes the cylinder to rotate, which ensures that
the polishing is isotropic. The process is repeated with polishing sheets of
decreasing grain size:

• Large scratches are removed using a wet 1200-grit polishing sand pa-
per. This step is short (less than 30 s).

• Medium-size scratches are removed using nylon sheets impregnated
with 9 µm and then 6 µm diamond particles. These steps are usually
between 3 and 5 minutes long. Visual control is used to determine
when the step is finished.

• Mirror aspect of the wafer is obtained using velvet sheets impregnated
with 3 µm and then 1 µm diamond particles. These steps are usually
5 minutes long.

Once the wafer is polished, two successive layers of polyimide PI2610
are deposited, spun at 2000 rpm during 60 s, and soft baked at 180 ◦C
during 3 min on a hot plate. These layers further planarize the surface of
the wafer and form a homogeneous medium that is going to be partially
etched in order to suspend the constriction of the MCBJ. The wafer is then
baked in a vacuum oven at a pressure ≈ 10−6 mbar 350 ◦C for 1 h. After
this preparation the wafer has thickness around 400− 450 µm. Finally a
150 nm film of niobium is deposited at 2 nm/s on the substrate using a
DC-magnetron sputtering machine.
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3.3 – Chip design and fabrication

Resonator fabrication

The resonators are patterned on this Nb layer using optical lithography. A
layer of MicroChem S1813 resist is spun at 4500 rpm during 60 s and soft-
baked at 110 ◦C on a hot plate during 1 min. A Karl-Süss MJB3 or MJB4
optical aligner is used to expose the resist. The resist is then developed in
Micoposit MF319 during 50 s and rinsed in deionized water. The niobium
is then dry etched in a Plassys MG200 reactive ion etching machine using a
flow of 20 sccm of CF4 and 10 sccm of Ar at a pressure of 5.10−2 mbar and a
self-polarization voltage of 200 V (power ≈ 50 W). The etching is monitored
by measuring the reflection of a laser-beam on a part of the niobium which
is not protected by the resist. The plasma is stopped one minute after the
minimum of reflectivity is reached, typically after 6 min. A chip is shown
Fig. 3.24 at the end of this step.

Figure 3.24: Micrograph of a niobium resonator.
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3 – Measuring the state of an Andreev dot

Aluminum-loop patterning

The next step is to create the aluminum loop with its constriction that is
needed to produce the atomic contact. The geometry is defined by electron-
beam lithography. For this purpose a bi-layer of MAA-PMMA is first de-
posited:

• A 500 nm thick layer of MAA EL10 is spun at 2000 rpm during 1 min
and baked 2 min at 170 ◦C on a hot plate.

• A 300 nm thick layer of PMMA A6 950K is spun at 5000 rpm during
1 min and baked 2 min at 170 ◦C on a hot plate.

Because the substrate is insulating, an additional metallic layer is needed
on the resist to evacuate the charges during e-beam lithography. For this
purpose a layer of 7 nm of aluminum is deposited on top of the resist in an
electron-gun evaporator. The wafer is then cut into individual chips using
office scissors or an office paper guillotine.

The loop and constriction are exposed using a Philips XL 30 scanning
electron microscope. A dose of 250 µC/cm2 is used with an acceleration
voltage of 25 kV. The dose is increased by a factor 1.3 at the constriction.
The top layer of aluminum is removed in 10 s in a KOH solution, the chip
is then rinsed in deionized water, developed in MIBK:IPA (1:3) during 45 s
and finally rinsed in IPA or ethanol during 15 s. A visual control of the
development is done at this stage using an optical microscope. The depo-
sition of 100 nm of aluminium is done in a Plassys MEB 550S electron-gun
evaporator at a rate of 1 nm/s. The unwanted aluminium is removed by
dissolving the resist in 60 ◦C acetone or preferably N-Methyl-2-pyrrolidone
in order to avoid residues on the chip. Finally the constriction is suspended
by dry-etching the kapton sacrificial layer. This process is done with the
chip on a aluminium block that has been pre-heated to 170 ◦C. To ensure
an isotropic etching, which is needed to suspend the constriction, a high
pressure plasma (0.3 mbar) is used. It is constituted by 50 sccm of O2 and
2 sccm of SF6. The auto-polarization voltage is 45 V. In order to have a
reproducible process with a suspension of about 2 µm, the following timing
is strictly followed:

• At t=0’: chip is placed in the chamber on the hot block and the
chamber is pumped.
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3.4 – Microwave setup

• At t=5’: gas valves are opened and the flow rates set.

• At t=7’: plasma is turned on

• At t=9’30": plasma is turned off.

The chip is then ready. A control with a scanning electron microscope
can be performed in order to check the integrity of the constriction and the
size of the suspended region.

Figure 3.25: Scanning electron microscope image of a suspended bridge
observed with a 25 kV acceleration voltage. The darker regions corresponds
to the kapton substrate. The brighter region to the aluminium bridge. By
transparency one can discriminate the suspended regions (brighter) of the
bridge from the regions still in contact with the substrate.

3.4 Microwave setup

3.4.1 Cold setup

All the experiments of this thesis were carried out in an Oxford kelvinox 300
wet dilution refrigerator. The microwave setup used for the chips BR3 and
VR2 is shown Fig. 3.26. The red line on the graph represents the coaxial
line that carries the microwave tone used to excite the Andreev transition.
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Figure 3.26: Schematics of the microwave cabling within the refrigerator.

It is heavily attenuated using lumped element XMA-attenuators, and lossy
Cu-Ni cables from CoaxCo. This attenuation damps the Johnson-Nyquist
noise from the room temperature components while only re-emitting noise
at their own temperature (from 4 K to 25 mK). The line is connected to
the coupling port of a 20dB directional coupler (Clear Microwave C20218).
The green line on the graph represents the coaxial line that carries the
microwave tone used to probe the resonator. It is connected to a double
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3.4 – Microwave setup

circulator Quinstar QCY-100400XM20 and reaches the chip through the
direct port of the directional coupler. The reflected signal goes through the
double circulator followed by a Microtronics microwave filter, and reaches
through superconducting lines a HEMT amplifier (Caltech CIT2-4434-020
with a noise temperature of 7 K at 10 GHz) thermalized at 1.5 K. The
Microtronics filter was a custom 9.6-10.6 GHz bandpass filter for runs BR3c
to VR2b and an 8-12 GHz for runs BR3a and BR3b. Its role is to filter out
the microwave signal that is used to excite the Andreev transition, which
could saturate the amplifier. The signal is further amplified by 80 dB at
room temperature.

3.4.2 Chip holder and sample environment

The chip holder has two roles: it keeps the chip in place when it is bent and
ensures a good connection to the microwave lines. For these purposes, the
chip is firmly pressed against a SMA launcher, the pin of which has been
milled to a half cylinder (see Fig. 3.27). The chip holder has been designed
close to the pin to reduce the impedance mismatch with the coaxial line.
On its other side, the chip is pressed against the pushing rod of the bending
mechanism (see Sec. 3.2). The chip holder, and the bending mechanism
are anchored to the mixing chamber of the dilution refrigerator and placed
inside several shields. From the outermost to the innermost:

• A copper shield that acts as a Faraday cage;

• A cryoperm magnetic shield ;

• A superconducting aluminum shield for further magnetic shielding;

The last shield is coated on its inner surface with a thick microwave absorber
in order to avoid standing waves inside the superconducting shield. This
material has been made by mixing 15 g of part A of Stycast 1266 with 4 g
of part B, 55 g of bronze powder (grain size < 50 µm) and 1 g of carbon
powder.
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Figure 3.27: A: front view of the chip holder without chip. B: front view
with a chip. C: cross-section of the chip holder and the pusher. The chip is
clamped using a copper plate and screws. The length of the copper plate
has been adjusted so the the maximal deformation of the chip occurs at
the position of the atomic contact. The connection is done using a SMA
launcher, the pin of which has been milled.

3.5 Obtaining an atomic contact

In previous experiments on superconducting atomic contacts, DC measure-
ments were performed to monitor the size of the contacts and of their chan-
nels content [34]. To better control the electromagnetic environment, DC
connections were removed in our experiments.

With the setup used during this thesis, all the information available on
the size of the contact is obtained through the coupling with the resonator.
This section discusses the steps followed to obtain a single-atom contact
with this setup.
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3.5 – Obtaining an atomic contact

3.5.1 Coarse tuning

The first step to obtain an atomic contact is to look for the position of the
pusher for which the contact breaks. This position is not the same for every
chip because it depends on the distance on which the bridge is suspended
and on the exact positioning of the chip in the chip holder.
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Figure 3.28: Typical evolution of the single-tone spectrum obtained when
breaking the contact. The horizontal axis is the displacement of the pusher,
the vertical axis the frequency of the pump probe and the color-scale is the
amplitude of the reflected signal. Inset: are plotted two vertical cuts of the
color-map. The one labeled A shows the resonance before breaking, the
second one labeled B shows the resonance after the breaking.

As seen in the previous section, a sudden jump of the frequency of the
resonator occurs when the bridge opens. In Fig. 3.28 is shown the typical
evolution of the resonance frequency of the resonator10 (black line) as a
function of the displacement of the pusher. The resonance frequency is
relatively stable for small bendings. It then decreases rapidly, stepwise, and
finally reaches a stable value 28 MHz smaller than the initial one. At this
point the contact is broken. A contact is recovered by withdrawing the

10The measurement method is described in details in Section 4.1.
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pusher. Once the contact is reformed, a fine tuning of the position of the
pusher allows to find a one-atom contact.
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Figure 3.29: Close-up view of the evolution of the resonance frequency up
to the complete opening of the bridge.

As shown in Fig. 3.29, just before breaking the frequency of the resonator
evolves stepwise, corresponding to jumps between different arrangements of
the atoms near the contact [34]. The final tuning requires to observe the flux
modulation of the resonance frequency as explained in the next paragraph.

3.5.2 From big contacts to single-atom contacts

As the contact gets smaller, its critical current decreases and it becomes
possible to phase-bias the rf-atomic SQUID. For big contacts the flux-
modulation is hysteretic, see Section 2.2.3. Such a modulation is shown
Fig. 3.30a and 3.30b for two scanning direction of the flux. The phase jump
and the hysteretic behavior appears clearly.

For smaller contacts, the hysteresis loop is reduced and finally disap-
pears. However, even when the modulation is non-hysteretic the contact
can contain many channels and the relation between phase accross the con-
tact and the applied flux can still be non-linear. This results in a sharp
minimum of the resonance frequency at δ = π, see Fig. 3.31.

The final steps aims at obtaining a contact with only one conduction
channel well coupled to the resonator. This means that the Andreev transi-
tion frequency 2EA/~ should be close to the resonator frequency, which sets
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Figure 3.30: Flux modulation of the resonator frequency obtained for big
contacts. The left figure shows the modulation when the flux is swept
rightwards while the flux is swept leftwards on the right figure. Notice how
the jumps occurs at different flux biases.
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Figure 3.31: Modulation of contact for which the flux bias induces a mod-
ulation that is not hysteretic. Note how the resonator is affected far from
π

a constraint on the transmission of the channel τ > 0.97. An aluminum sin-
gle atom contact accomodates only three channels [34], with only one with a
transmission high enough to be coupled to the resonator. This the situation
that is aimed to.

If the transmission of a channel is high enough so the Andreev transition
frequency at δ = π is lower than the resonator frequency, it is possible to
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Figure 3.32: Contact with only one Andreev transition that crosses the
resonator frequency. However the fading of the resonance close to δ = π
shows the presence of at least one other channel coupled to the resonator.

observe an avoided crossing such as the one presented in Fig. 3.6. However
an avoided crossing can also be observed for contacts with more than one
highly transmitted channel, as in Fig. 3.32. In this figure, only one channel
has a transmission large enough to produce an avoided crossing with the
resonator, however an other channel is also coupled to it. The presence of
this second channel is signaled by the fading of the resonance around δ = π
(compare with Fig. 3.33. This fading is due to the parity jumps in the second
channel that modulates the frequency of the resonator when the cavity shift
χ is large enough. Finally, with a fine tuning one obtains a clear anticrossing
with only one set of lines such as the one shown in Fig. 3.33, the resonance
is well defined for all phases except at the anti-crossings. Moreover for a
contact with such a high transmission, the resonance is constant except
close to the anticrossing.

3.5.3 Examples of contacts

In this section we present a “familly album” of single-tone spectra such as
the ones shown above, with the characteristics of the contact inferred from
data taken by other means11.

11For further detail see chapter 4.
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Figure 3.33: A one-atom contact with high transmission: the avoided cross-
ing has a single set of lines that are well defined at all phases.
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Chapter 4

Characterization of Andreev
qubits

4.1 Detecting the coupling between the resonator
and the Andreev qubit

In chapter 3 we presented the design of our chips and estimated the quality
factor of the resonator as well as the coupling factor between the resonator
and the qubit. In this section we present experiments that provide mea-
surements of these two quantities and validate the proposed design.

4.1.1 Measurement setup and resonator characterization

In order to characterize the resonator and measure its coupling to the An-
dreev qubit, single continuous microwave tone is used to probe the system.
The reflection coefficient S11 is measured as a function of the frequency of
the microwave. This frequency is here swept close to the resonator reso-
nance frequency of fR.

The experimental setup for this measurement is shown in Fig. 4.1. The
first port of a Vector Network Analyser (VNA) is connected to the sample
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4 – Characterization of Andreev qubits

through the measurement line1 of the refrigerator, the second port is con-
nected to the output line of the refrigerator through a chain of two room
temperature amplifiers with a 40 dB gain each.

Sample

CryostatVNA

40 dB 40 dB

Figure 4.1: Setup used for single tone spectroscopy. A VNA (keysight
PNA-L 5232A) is connected to the measurement and output lines of the
refrigerator, two amplifiers (Miteq JS41-0010200-33) are used to further
amplify the signal at the output of the fridge.

In order to characterize the bare resonator response, the phase across
the contact must be set so that the cavity shift due to the qubit is negligible
compared to the linewidth κ of the resonator: κ� χ = g2/(ωA − ωR). We
have shown in Chapter 3 that the coupling factor, g, is maximum at δ = π.
The resonator is hence characterized at a phase far from δ = π which also
leads to large detunings. In Fig. 4.2 The reflection coefficient S11(ω) is
shown for δ = 0.9π which leads to a cavity shift of χ = 0.4 MHz � κ.
Fits of the amplitude and the phase of S11 using Eq. 3.18 give the total
quality factor Qtot = 2200 as well as the external and internal quality factors
Qext = 4800 and Qint = 4060. The resonator is therefore close to the critical
couplingQext ≈ Qint although slightly undercoupled, which scarcely reduces
the SNR of the measurement as discussed in Section 3.1.3.

1The refrigerator lines are described in section 3.4.1
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Figure 4.2: Characterization of the resonator. Symbols: Amplitude (left)
and phase (right) of the reflected signal as a function of the measurement
tone frequency. Solid line: fit using Eq. 3.18.

4.1.2 Measuring the coupling between the Andreev qubit
and the resonator

In what follows, we present data taken on an atomic contact that had
a channel with transmission τ > 0.99. With such a high transmission,
the transition frequency at δ = π, 2Ea(π), is smaller than the resonator
frequency fr.

The coupling between the resonator and the qubit reveals itself by an
avoided crossing between the Andreev transition and the resonator fre-
quency (see Section 3.1.3), which is observed in Fig. 4.3. On this figure, the
amplitude of the reflected signal is shown as a function of the microwave
frequency and the phase difference across the contact. The avoided cross-
ing is fitted using the Jaynes-Cummings model (Eq. 3.30), which yields a
coupling factor g(π)/2π ≈ 100 MHz, as well as a first estimation of the
transmission τ = 0.992.

Note that this avoided crossing presents an unusual feature: the bare
resonator response at fR is visible at all phases. As we shall discuss later,
this reveals the existence of the odd state. In this state there is no coupling
between the Andreev dot and the resonator, therefore the latter responds
at its bare frequency independently of δ.
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Figure 4.3: Single tone spectroscopy showing the avoided crossing of the
Andreev transition with the resonator. The amplitude |S11| of the reflection
coefficient is plotted as a function of the frequency f0 of the measurement
microwave tone and the phase difference δ across the contact. In the left half
of the figure, is represented the bare frequency of the resonator fR (black
dashed line), the bare Andreev transition energy 2EA/h (thick black line)
and a fit using the Jaynes-Cummings Hamiltonian with g(δ = π)/2π =
100 MHz (red dashed lines). The power of the microwave used for this
measurement was Pin = −120 dBm at the input of the resonator. The
bandwidth was BW = 10 Hz

4.2 Measuring the state of the Andreev qubit
In the previous section we confirmed experimentally that the qubit is cou-
pled to the resonator. We now show how this coupling is used in practice
to measure the state of the Andreev qubit.

4.2.1 Continuous wave measurements

The qubit spontaneously jumps between states because of parity and quan-
tum jumps. It is possible to capture this dynamics by measuring the reso-
nance as it was done in Fig. 4.2 but at a point in phase where the coupling
is large (here δ = π) and with a very large bandwidth. The result is shown
in Fig. 4.4. Under these conditions, one measurement point is taken faster
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4.2 – Measuring the state of the Andreev qubit

than the characteristic lifetime of anyone of the three states of the Andreev
dot. This allows to observe the dispersive shift of the resonator (see chapter
3) due to each individual state separately.

Three superimposed resonances are observed and identified using Eq. 3.35.
Since we are in a situation so 2EA < fr, χ = g2

ωA−ωR is negative. The left-
most resonance corresponds to the qubit being in its excited state while
the highest one corresponds to the qubit being in its ground state. The
central resonance is the bare resonator which can be observed when the
Andreev dot is in one of its odd states and therefore not coupled to the
resonator. The cavity shift is χ = 3 MHz which gives, together with the
estimated transmission, a smaller coupling factor g(π) ≈ 80 MHz than the
one found by fitting the avoided crossing. This difference is probably due
to the imprecision of the fitting of the avoided crossing.

This figure reveals that the Andreev dot is in its odd state a significant
fraction of the time.

The bandwidth necessary to observe three separated resonances is in
this case 600 kHz, which sets a higher bound for the rates of quantum and
parity jumps of the dot.

4.2.2 Pulsed measurements: clouds in the IQ-plane

The previous results were obtained with CW measurements: The sample
is continuously irradiated by a microwave tone and the reflected signal is
integrated to produce one data-point. In order to manipulate the Andreev
qubit, pulsed measurements and synchronised excitation of the qubit are
needed. For this purpose, we have implemented the microwave setup shown
in Fig. 4.5. The setup can be divided in three parts:

• A measurement part, in green in Fig. 4.5. This microwave circuit
shapes the microwave pulses used to probe the resonator.

• An excitation part, in red in Fig. 4.5. This part is used to produce
microwave-pulse sequences used to manipulate the quantum state of
the qubit.

• An acquisition chain, positioned on the right of Fig. 4.5. This chain
demodulates, filters, and acquires the signal reflected by the resonator.

81



4 – Characterization of Andreev qubits

-15

-5

|S
11

|

10.13710.13410.13110.128
f0 (GHz)

30
25
20
15
10
5
0

counts

e
go

Figure 4.4: Vector network analyser (VNA) measurements of the resonator
for the contact with τ ≈ 0.992 described previously. |S11| measured at
δ = π. Image in the background is a two-dimensional histogram of 32000
data points taken in a single frequency sweep with a 600 kHz bandwidth,
and a larger power ( n̄ ≈ 40 photons in the resonator at resonance). Brown
symbols are the resonance of the bare resonator measured at δ = 0.9π (same
data as Fig. 4.2). Black line is taken at low power ( n̄ ≈ 0.1 photon in the
resonator) and a 10 Hz acquisition bandwidth (corresponds to a vertical cut
in the middle of Fig. 4.3). The central resonance corresponds to the bare
resonance that is observed when the Andreev dot is in the odd state |o〉.
Two replicas of the bare resonance are observed: the rightmost corresponds
to the dot being in |g〉 and the leftmost to the dot being in |e〉.

The first element of the measurement chain is a microwave source that
produces a continuous microwave tone at a frequency close to the resonator
frequency. This tone is then splitted in two: half of the microwave signal
is sent to the acquisition chain to serve as a reference signal for the homo-
dyne detection. The other half is shaped by two mixers2 and sent to the
resonator. These mixers can be seen as voltage-controlled switches. An ar-
bitrary function generator (AFG) generates square voltage pulses that are

2Two mixers are used instead of a single one in order to obtain a better on/off contrast
at their output. Microwave leakage can perturb the evolution of the Andreev qubit.
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Figure 4.5: Setup used for pulsed measurements. The left part shows the
excitation chain and the right part the acquisition chain. The green line
is dedicated to the measurement pulse shaping; the red line to the qubit
drive pulses shaping. The microwave sources are Anritsu MG3694B; the
AFG is a Tektronix AFG3252; the black splitters are MiniCircuit ZFR-
SC42S+; the green splitter is a Miteq 20238; the variable attenuators are
Pulsar microwave AAT-23-479S; the IQ-mixer is a Hittite HMC-C042; the
low pass filters are from MiniCircuits; the DC amplifiers are Femto HVA-
500M-20B; the acquisition card is an Acqiris U1071A.

splitted and send to both mixers on their IF input to let the microwave
pass through. Another component is placed on this measurement chain: a
voltage controlled attenuator is used to finely tune the measurement power.

The acquisition chain contains the same room-temperature microwave
amplifiers that were used for the single-tone experiment, followed by an
IQ-mixer used as an homodyne demodulator. In this operation mode the
IQ-mixer delivers at its two outputs (or quadratures) the amplitudes of
the in-phase (I) and out-of-phase (Q) components of the reflected signal
(applied at its RF input) with respect to the reference signal applied at its
LO input. Several stages of low-pass filters and a DC-500 MHz amplifier
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are placed at each output of the IQ-mixer. Each quadrature of the signal is
finally digitized by a fast-ADC acquisition card (8-bits, 1Gs/s).

Figure 4.6 shows the time evolution of the signal of one quadrature when
a 1 µs-long measurement pulse is applied, recorded with a 10 ns sampling
time. The transient parts of the signal correspond to the photon-loading
and unloading of the cavity. An exponential fit yields κ = 1.7 MHz close to
the determination done using the linewidth κ = fr/(πQtot) = 1.5 MHz. In
the following experiments, these transient parts are not acquired. Only the
signal in the time interval indicated by the green arrow is kept. It is averaged
by the acquisition card to produce, together with the corresponding average
on the Q quadrature, a single point in the IQ-plane.

0.10

0.00

-0.10

I (
V

)

1.51.00.50.0

Time (µs)

Figure 4.6: In-phase signal acquired by the acquisition card, for a 1 µs-long
measurement pulse. The green arrow represents the points that are actually
acquired and averaged to obtain one point in the IQ-plane. The beginning
and the end of the microwave pulse are indicated by the double-dashed lines.

Clouds in the IQ-plane In Fig. 4.7 are represented in the IQ-plane the
histogram of 8000 measurements obtained for the measurement tone at the
bare resonator frequency. Three clusters of points (or clouds) are observed.
They correspond to the three possible states of the qubit, associated with
different values of the resonator frequency (discussed in the previous sec-
tion). In order to identify the state associated to each cluster, we use the
fact that, at the measurement frequency, the reflected amplitude is minimal
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Figure 4.7: Density plots of I and Q quadratures at δ = π illustrate single-
shot resolution of the quantum state of the dot. (a) No drive at f1; (b) after
a long driving pulse at f1 pulse transferring population from |g〉 to |e〉.

when the odd state is occupied. Therefore the cloud corresponding to the
odd state is the one centered at the origin of the plot. The cloud correspond-
ing to the excited state has to be the less populated of the two remaining
clouds. The last cloud corresponds to the qubit being in the ground state.

In the following experiments, each measurement results in an image like
Fig. 4.7, which can be treated using two protocols:

• The image is analyzed in terms of populations of the three states using
a Gaussian mixture model algorithm3 that fits the three clusters and
returns their position and weights. However this procedure is rather
slow and not very robust to noise.

• All the points are averaged to obtain a mean value in each quadrature.
This procedure is very fast and robust but requires a calibration to
obtain the population of each state.

3The Python toolbox scikit.learn was used for this task. The "gmm" (Gaussian mixture
model) function was used to fit the clusters with three 2-dimensional Gaussian "clouds"
and return their positions and relative weights. The weights are then interpreted in terms
of populations.
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4.3 Exciting the Andreev qubit

4.3.1 Two-tone spectroscopy

time

time

tdelay

1 µs

f1

f0

Figure 4.8: Sequence of pulses used for the two-tone spectroscopy. The
red microwave pulse corresponds to the qubit driving tone, the blue pulse
corresponds to the measurement pulse at f0 = fr.

Compared to the previous experiments in which no excitation of the
qubit was performed, two-tone spectroscopy involves a driving microwave
pulse at a frequency f1 different from that of the measurement tone f0. This
microwave tone f1 is used to excite the qubit when its frequency matches
the Andreev transition frequency f1 = fA(δ, τ). It is shaped in a 13 µs-long
square pulse (see Fig. 4.8) by the excitation part of the microwave setup
shown in Fig. 4.5. Then a measurement pulse is sent to the resonator in
order to probe the state of the Andreev qubit using the averaging method
discussed in section 4.2.2.

Figure 4.9 shows the result of a two-tone spectroscopy of the contact
discussed in section 4.1. The Andreev transition appears clearly and is
fitted with a very good agreement with expression Eq. (2.6) for the Andreev
transition energy. Figure 4.10 shows the spectroscopy line at δ = π in terms
of populations. It is fitted with a lorentzian function with a full-width-
at-half-maximum FWHM = 16 MHz. For low power4 this width is only

4In order to access the coherence time of the qubit from its spectroscopy line, one has
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Figure 4.9: Pulsed two-tone spectroscopy: color-coded amplitude A of one
quadrature of the reflected signal as a function of δ and f1. The dashed black
line shows the theoretical fit of Andreev transition frequency fA = 2EA/h
with τ = 0.99217. A parasitic line, corresponding to a two-photon process
2f1 = fR + fA(τ, δ), is visible just below 10 GHz. The line of the resonator
is also clearly visible between the avoided crossings. This line is attributed
to population inversions observed when large photon numbers are reached
in the resonator. These effects are discussed in chapter 5.

given by the dephasing time T ∗2 = (πFWHM)−1 [105]. Here, one obtains
T ∗2 ≈ 20 ns.

This type of spectroscopy was performed on many different contacts.
Figure 4.11 shows the result of a 2-tone spectroscopy done on different
contacts with transition frequency (8.69 GHz) at δ = π higher or lower
(2.85 GHz) than in Fig. 4.9.

Finally we remark that the coupling between the Andreev qubit and

to be in the linear response regime. This is achieved when the rabi frequency (determined
by the amplitude of the driving pulse) is lower than the dephasing rate of the qubit [105].
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Figure 4.10: Spectroscopy at δ = π of the same contact as shown in Fig. 4.9.
The populations are plotted as functions of the frequency f1 of the satu-
rating drive pulse. Blue dots represent the population of the ground state,
red dots the population of the excited state and green dots the population
of the odd states. Full lines are lorentzian fits. (FWHM, full width at half
maximum)

the resonator makes possible multiphoton excitations of the qubit and the
resonator at strong driving power. This is illustrated Fig. 4.12, where the
spectrum of the same contact is shown at two different driving powers.

4.3.2 Comment on the clouds

The 2-D histogram presented in Fig. 4.7 showed the equilibrium populations
of the Andreev qubit. Now that we can drive the transition between the
ground and excited state of the qubit we can validate the identification of
the clouds by performing the same measurement but after a driving pulse at
fA. The result of this experiment is shown in Fig. 4.13B. The 2-D histogram
in absence of excitations is recalled on Fig. 4.13A for comparison.

The population transfer from |g〉 to |e〉 is clearly visible, whereas the
population of the cloud corresponding to |o〉 remains unaffected.
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Figure 4.11: Two-tone spectroscopy of two different contacts. Left: the
Andreev transition frequency is at δ = π at 8.69 GHz. The sidebands
clearly visible close to π are discussed in Appendix D. Right: A contact
with a much higher transmission (τ ≈ 0.999) and a transition frequency of
2.85 GHz at δ = π.

4.4 Characterization of the Andreev qubit at the
sweet spot

This section presents the coherent manipulation of the Andreev qubit. All
the results presented here were obtained at δ = π, a “sweetspot” where
the qubit is sensitive to flux noise only to second order. Although this
characterization was performed on many different contacts, we detail here
the coherent manipulation of a single contact. The contact on which the
experiments described in this section were performed (with the exception
of the CPMG and the characterization of the transmission noise) was the
same as the one on which the spectroscopy data of Fig. 4.9 were taken. The
microwave setup used to perform the experiments presented in this section
was also the same as for the two-tone spectroscopy (except for the CPMG
measurements).
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Figure 4.12: Two-tone spectroscopies of a contact with a transition fre-
quency at δ = π of 4.64 GHz. Left: Lower driving power spectroscopy, a
multiphoton excitation is already visible close to the resonator frequency.
Right: Strong power spectroscopy performed with a larger span. The An-
dreev transition appears larger, and more multi-photon transitions are visi-
ble. The multi-photon transitions of the qubit alone appear at sub-multiples
of the Andreev transition. Four lines are visible implying transitions of the
dressed system. Two of them ((fA + fR)/2 and (fA + fR)/4) consist in a
transition between |g, n〉 and |g, n+ 1〉 (with n the number of photons in the
resonator) with 2 or 4 photons. The other two ((fR − fA) and (2fR − fA))
are transition from |e, n〉 to |g, n+ 1〉 or |g, n+ 2〉 respectively.

4.4.1 Rabi oscillations

When a two-level system is irradiated by a resonant driving field, it oscillates
coherently between its ground and excited state at a frequency proportional
to the drive amplitude [106]. In order to capture this oscillation, the popu-
lation of the qubit is measured just after a driving pulse of variable duration
tdrive, as sketched in Fig. 4.14.

The result of this procedure is shown in Fig. 4.15. The populations of
the ground and excited states oscillate while the population of the odd state
remains constant. The oscillation is damped with a characteristic time of
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Figure 4.13: Density plots of I and Q quadratures at δ = π illustrate single-
shot resolution of the quantum state of the dot. (a) No drive at f1; (b) after
a long driving pulse at f1 pulse transferring population from |g〉 to |e〉.
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f1
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Figure 4.14: Sequence of pulses used to measure Rabi oscillations.

595 ns. This time depends both on the rate of relaxation of the excited
state and on dephasing at the Rabi frequency [105].

In order to measure these rates separately, other pulse sequences are
used. For this purpose, two particular pulses are defined using the Rabi
oscillations. The "π-pulse" sets the qubit into its maximally excited state.
Its duration for the driving power used in Fig. 4.15 is tdrive = 16 ns. The
"π/2-pulse" is a pulse that drives the system from its ground state to an
equal weight superposition of ground and excited state. Its duration is half
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Figure 4.15: Rabi oscillations: populations as a function of the driving-pulse
duration. Red dots: population of the excited state. Blue dots: population
of the ground state. Green dots: population of the odd states. Thick line:
Fit of the Rabi oscillation using an exponentially decaying sine function,
with a frequency of ≈ 30 MHz and a decay time of 595 ns.

that of a π-pulse.

4.4.2 Lifetime of the excited state

To access the lifetime of the excited state, the qubit is driven to its maxi-
mally excited state using a π-pulse, and the state of the qubit is measured
after a delay, as shown in Fig. 4.16. As the delay is increased, the population
of the excited state decreases because it relaxes to the ground state. For
this contact, this decay is exponential with a characteristic time T1 = 4 µs,
as shown in Fig. 4.17.

The corresponding rate Γ1 = 250 kHz has to be compared with the
theoretical prediction. Relaxation arises from processes in which energy
is transferred from the qubit to the environment in the form of phonons,
photons, or to out-of-equilibrium quasi-particles.

The relaxation rate due to the coupling to phonons is given, for EA �
∆sc, by [14]:

Γph(δ, τ) ≈ κph
∆sc(1− τ)
EA(δ, τ)

(
EA(δτ)
kB

)3
(4.1)
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Figure 4.16: Sequence of pulses used for the T1 measurements. The qubit
driving pulse is shown in red, it is resonant with the Andreev transition
frequency: f1 = 2EA/h. After a delay, the measurement pulse is sent to
the resonator.
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Figure 4.17: Relaxation of populations of the even states after a π-pulse.
Red dots: population of the excited state. Blue dots: population of the
ground state. Green dots: population of the odd states. Full lines: fit with
an exponential decay, with a characteristic time of 4 µs.

where κph ≈ 3 MHz/K3 [77]. At δ = π, and for the contact considered
here, this rate is Γph(π,0.992) ≈ 2 kHz, which is too small to account for
the measured rates, as already observed in previous experiments (Ref. [16],
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pp. 88-91).
The expected relaxation rate due to the emission of a photon into the

electromagnetic environment (Purcell effect) was derived by Desposito and
Levy-Yeyati [107, 16]. It is given by:

Γν = π∆sc

2~
Re[Zenv]
RQ

(1− τ)(τ sin2 (δ/2))2

(1− τ sin2 (δ/2))3/2 , (4.2)

where RQ = h
4e2 is the resistance quantum and Zenv the environment

impedance as seen from the atomic contact. If we consider that the contact
only see the dissipative environment through the resonator, we get:

Re[Zenv] = zRQ
π

Qtot

1 +
(
Qtot

1−(ω/ω0)2

ω/ω0

)2 , (4.3)

where z = 1.9.10−5 is given by Eq. (3.29) and is extracted from the coupling
factor g obtained from the fit of the anticrossing. Using Qtot = 2200, one
obtains at δ = π Γν ≈ 60 kHz, which is much larger than the phonon
relaxation rate, yet a factor 4 too low to account for the observed relaxation
rate.

The origin of the fast relaxation of the Andreev qubit is still unclear.
Three explanations can be invoked for the discrepancy observed:

• A secondary relaxation channel exists through the odd states. As
will be discussed in chapter 6, this channel does contribute to the
relaxation but is not sufficient to account for the rates observed.

• The coupling to the phonon bath might be underestimated. The de-
pendence of the Andreev energy to the strain of the contact through
the transmission [34] might be at the source of a stronger coupling
to the mechanical modes of the electrodes than the regular electron-
phonon coupling.

• The actual electromagnetic environment is more complex than it was
designed to be. In particular, in other microwave experiments the
sample is usually placed in a tight casing that rejects all environmental
modes to high frequencies. Although not impossible, it would be
quite difficult to implement such strategy with the current setup in
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which the sample has to be bent. In order to compensate for this
absence of casing, microwave absorbent has been placed inside the
magnetic shields. This absorbent could be responsible for a higher
impedance seen from the contact. An other solution to circumvent
this problem would be to redesign the experiment from scratch and
use of a 3D microwave cavity with an embedded bending mechanism.
The electromagnetic environment would then only be constituted by
this simple cavity.

4.4.3 Coherence times

We now present the experiments performed to quantify the coherence prop-
erties of the Andreev qubit at δ = π. The coherence of a qubit can be
limited by two phenomena:

• Pure relaxation, with a characteristic time T1.

• Pure dephasing, characteristic time Tφ, which is due to fluctuations
of the Andreev transition energy. This is the subject of this section.

time

time

tdelay

f0

1 µs

f1

t 2/ t 2/

Figure 4.18: Sequence of pulses used for the T ∗2 measurements. The qubit
driving pulse is shown in red, it is detuned the Andreev transition frequency
in order to obtain the oscillatory behaviour observed in Fig. 4.19.

The dephasing time of the qubit is obtained using a Ramsey sequence.
Such a sequence consists in two π/2-pulses separated by a delay as shown
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in Fig. 4.18. The state of the qubit is measured right after the second pulse.
The effect of the first pulse is to drive the qubit to an equal superposition
of ground and excited state. If no dephasing occurs during the delay the
second pulse drives the qubit to the excited state. If dephasing occurs and
the phase of the qubit is randomly distributed, the second pulse drives the
qubit to a random state. What is then measured is a random mixture of
ground and excited state.

When the dephasing noise is white, an exponential decay of the excited
state population is observed as a function of the delay between the pulses.
This decay occurs with a time scale T ∗2 which is linked to the dephasing and
relaxation times by [105]:

1
T ∗2

= 1
2T1

+ 1
Tφ
. (4.4)

A Ramsey experiment is extremely sensitive to the detuning between
the qubit transition energy and the driving tone. Such a detuning results
in an oscillation of the populations of the excited and ground states at the
detuning frequency, with the same decaying envelope as at zero detuning.
It is therefore preferable to have a detuning larger than the dephasing rate
so that both the detuning and the decay can be fitted accurately. Figure
4.19 shows the result of such a Ramsey experiment.

The best fit is obtained using a Gaussian envelope for the decay, which
suggests a 1/fα noise5 with α ≥ 1 [105] rather than a white noise that
produces an exponential envelope. Moreover the characteristic time of decay
T ∗2 = 38 ns being much lower than T1, Tφ ≈ T ∗2 .

Two parameters in the Andreev energy can fluctuate and induce dephas-
ing: the phase difference δ, and the transmission τ .

At the sweet spot, the main source of dephasing noise are the trans-
mission fluctuations, which are the results of fluctuations of the electronic

5The decay function of a Ramsey sequence in the presence of 1/fα noise is given in
Ref. [105] by
fλ(t) = exp

(
−t2D2

λt
α−1 ∫∞

ωir

Aλ
(ωt)α sinc

2(ωt/2)d(ωt)
)
≈ exp

(
− t

2AλD
2
λ

ωα−1
ir

)
, where Aλ is the

noise power of a parameter λ that couples to the transition frequency, andDλ = 2 ∂EA(τ,π)
∂λ
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Figure 4.19: Ramsey oscillations: populations as a function of delay between
the two detuned π/2-pulses. Red dots: population of the excited state.
Blue dots: population of the ground state. Green dots: population of the
odd states. Full lines: Fit using sine function with a gaussian decay. The
detuning frequency is 51 MHz and the decay time is 38 ns

configuration close to the contact. These fluctuations may have different
origins:

• Macroscopic vibrations: since the transmission depends on the strain
[34] on the contact, any vibration of the mechanical setup induces
fluctuation of the transmission.

• Mesoscopic vibrations: the suspended bridge of the MCBJ has eigen-
modes and create fluctuations of the strain in the contact and there-
fore transmission fluctuations (more in Appendix D). Creep in the
substrate would also lead to strain fluctuations in the bridge.

• Microscopic reconfigurations: vacancies or atoms close to the contact
can jump between adjacent sites and modify the local electronic con-
figuration and therefore the channel transmission.

Further insight on the origin of dephasing noise is obtained using a Hahn
echo sequence. This sequence of pulses is made of a Ramsey sequence in
the middle of which a π-pulse has been added, as shown in Fig. 4.20. The
effect of this π-pulse is to filter-out the noise which has a frequency lower
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time

tdelay

t 2/

1 µs

tt 2/

Figure 4.20: Sequence of pulses used for the T2E measurements. The qubit
driving pulses are shown in red, they are resonant with the Andreev tran-
sition frequency: f1 = 2EA/h.

than 1/tdelay [105, 89], where tdelay is the time between the two π/2-pulses.
The decay time observed with this sequence is much longer than the one
observed for the Ramsey sequence, see Fig. 4.21. An exponential fit gives
a characteristic time T2E =565 ns. The echo decay time can be related to
the Ramsey decay time in presence of 1/f or 1/f2 noise. For 1/f noise, one
obtains [105, 41]:

T ∗2
T2E

=
√

ln(2)/ ln(ωirt) ≈ 0.2,

where ωir is a cutoff pulsation related to the time needed to take a sin-
gle point (here ωir = 2π×2 Hz). This ratio is not in agreement with the
experimental value T ∗2

T2E
= 0.07. For 1/f2 noise, one obtains [105]:

(T ∗2 )2

(T2E)3 = π

12ωir
≈ 3 Hz.

Again this theoretical value is not in agreement with the experimental one
(T ∗2 )2

(T2E)3 ≈ 8 kHz. This indicates that the frequency dependence of the noise
does not follow the same power law below and over 1 MHz.
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Figure 4.21: Hahn echo: populations as a function of delay between the
two π/2-pulses with a π-pulse in between. Red dots: population of the
excited state. Blue dots: population of the ground state. Green dots:
population of the odd states. Full lines: Fit using an exponential decay
with a characteristic time of 565 ns.

4.4.4 Evaluation of the noise power density using CPMG
sequences

Background: The Carr-Purcell-Meiboom-Gill (CPMG) sequence is a pulse
sequence designed by Carr and Purcell [108] and improved by Meiboom and
Gill [109] in order to maintain the coherence of a nuclear spins ensemble
by decoupling them dynamically from the noise of their environment. It
was later proposed to use the filtering properties of this type of sequence
to sample the noise power spectrum of the environment [110, 111]. This
idea was first implemented for a superconducting qubit by Bylander et al.
[89]. We now present the results obtained on the Andreev qubit with this
technique. The CPMG sequence is an echo sequence in which the π-pulse
around the x axis has been replaced by a series of π-pulses alternatively
around the x-axis and the y-axis, as shown in Fig. 4.22. During a CPMG
sequence the dephasing noise is integrated with a filtering window that is
defined by the number N of π-pulses and the duration of the sequence. For
long enough sequences, the filter function can be approximated as a delta
function that samples the noise at it center frequency ≈ N

TCPMG
for N � 1.
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Figure 4.22: Sequence of pulses of a CPMG sequence.

This noise sampling is then used to reconstruct the noise spectrum [89].

Experimental setup: The experimental setup for the CPMG measure-
ments is similar to the one used for previous pulsed experiments except for
the pump-pulse shaping part. The two Marki mixers have been replaced by
a single IQ-mixer (Marki IQ-1545). A dedicated pulse generator (Tektronix
AFG3252) is used to control the output of the IQ-mixer that produces pulses
that are in-phase or in quadrature with the LO signal input. An in-phase
pump pulse induces a rotation of the qubit around the x-axis and a pump
pulse in quadrature induces a rotation of the qubit around the y-axis. The
modified setup is shown in Fig. 4.23.

A critical issue for the CPMG sequence is the calibration of the π-pulses,
because the pulse errors accumulate and become sizable for large numbers
of pulses. The calibration was done by fixing a pulse duration tπ = 16 ns
and sweeping the pump power (hence the Rabi frequency) with the voltage-
controlled attenuator labeled ’Att-2’ in Fig. 4.23, in order to determine for
which power a single pulse produces a rotation by π. In the absence of
dephasing, an odd number of π-pulses drives the system to its excited state
independently of the number of pulses6. The exact power that produces a

6In the calibration only π-pulses are used. The final state is therefore the opposite of
what would be obtained with a CPMG sequence containing the same number of pulses.
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Figure 4.23: Setup used to perform the CPMG experiments. It differs from
the setup previously used (Fig. 4.5) by the replacement of the two mixers
on the pump line by a single IQ-mixer and the use of a dedicated arbitrary
function generator to produce the rotations of the qubit around the x-axis
and y-axis.

π-pulse for tπ = 16 ns is found by measuring the state of the Andreev qubit
after different odd numbers of pulses, and as a function of the measurement
power as shown in Fig. 4.24. A dead time of 10 ns was left between the
pulses in order to take into account the imperfections of a single pulse such
as ripples, in the calibration.

The measurement presented below was performed at δ = π for a contact
with a minimum transition energy 2EA(τ, π)/h = 3.49 GHz (τ = 0.9984).
The relaxation time of the excited state was T1 = 11 µs and the dephasing
time was T ∗2 = 30 ns.
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Figure 4.24: I-quadrature as a function of the driving amplitude (normalized
by the power corresponding to a π-pulse in 16 ns), for 16 and 26 pulses.
When the driving power is such that ΩRabi × Tπ = π, the final state of the
qubit does not depends on the number of pulses.
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Figure 4.25: Three CPMG decays obtained for N=3, 39, and 85 pulses,
respectively (dots) and the associated Gaussian fit (thick lines).

Results and interpretation: Figure 4.25 shows the result of CPMG
sequences performed for odd numbers7 of pulses from 1 to 85. The signal to

7Only odd numbers of pulses were used in order to always have the qubit in its ground
state for no dephasing.
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4.4 – Characterization of the Andreev qubit at the sweet spot

noise ratio is too low in this data to perform reliably the same analysis as
in Bylander et al. [89]. Instead we treat the data assuming three different
type of noise:

• White noise with a PSD Aτ,α=1. It is a very common type of noise
and is expected to dominate ultimately at high frequency.

• 1/f noise with a PSD at 1 Hz Aτ,α=2. Again it is a very common type
of noise usually attributed to two-levels fluctuators.

• 1/f2 noise with a PSD at 1 Hz Aτ,α=3, for reasons that will be appar-
ent in section 4.6.

The decay of the CPMG sequences in presence of these three type of noises
is given by [89]:

fN,α(t) = exp
(
−tαD2

τAτ,α

∫ ∞
0

gN (u)
uα−1 du

)
, (4.5)

where α = 1,2,3, Dτ = 2∂EA(τ,π)
∂τ and gN (u) is a filter function associated

to the CPMG sequence. It can be shown that the argument of the integral
converges in zero for N > 1. The data is therefore fitted with three different
types of decay: an exponential decay, a Gaussian decay and e decay in
e−(Γ×t)3 . The PSD at 1 Hz for each type of noise is extracted from the
rates ΓCPMG,α obtained with these fits:

Aτ,α = (ΓCPMG,α)α

IN,αD2
τ

, (4.6)

where IN,α is integral in Eq. 4.5 which integration is performed numerically.
The noise in the data is too high to properly discriminate between three
types of decay. We therefore report here the PSD at 1 Hz obtained for the
three noises:

• For white noise: Aτ,α=1 =6.10−21 ± 5.10−21 Hz−1

• For 1/f noise: Aτ,α=2 =1.5.10−13 ± 4.10−14 Hz−1

• For 1/f2 noise: Aτ,α=3 =4.10−6 ± 2.10−6 Hz−1

Remarkably these values give a similar noise density around 10 MHz, which
is the range of frequencies the CPMG sequence is sensitive to. We further
comment these values in section 4.6.3.
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4 – Characterization of Andreev qubits

4.4.5 Dispersion of the characteristic times

An important advantage of the experimental setup is the possibility to
change in situ the contact and explore different transmissions. Here, we
recapitulate the values of T1, T

∗
2 , T2E for approximately 30 different con-

tacts, as a function of the Andreev transition energy between 3.125 GHz
and 12 GHz.
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Figure 4.26: T1 as a function of fA(δ = π) measured for approximately 30
different contacts. Solid line: prediction for the Purcell limited T1 when
only considering the mode of the resonator.

Figure 4.26 shows the measured T1 at δ = π as a function of the Andreev
transition frequency. The arrow indicates the position of the resonator fre-
quency fR. At lower energies, a larger dispersion is observed as well as
larger maximum relaxation times. The expected Purcell-limited T1 calcu-
lated using Eq. (4.2) is shown as a comparison. The maximum T1 was
measured for a contact at energy 2EA(τ, π)/h = 3.51 GHz (τ = 0.99843)
with T1 = 15.7 µs. The shortest relaxation time measured was found for
a contact having an energy 2EA(τ, π)/h = 11.25 GHz (τ = 0.98388), with
T1 = 0.73 µs.

Figure 4.27 shows the measured T ∗2 at δ = π as a function of the An-
dreev transition frequency. On the majority of the contacts, the dephas-
ing times were lower than 100 ns. However, for about 5 different contacts
on two different samples the measured T ∗2 was above 100 ns (maximum:
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Figure 4.27: T ∗2 as a function of fA(δ = π) measured for approximately 30
different contacts.

T ∗2 = 188 ns). The dispersion of the Ramsey decay times is rather large
(standard deviation of 40 ns) and no clear dependence on the transmission
can be observed from this data. Therefore this survey seems to point to-
wards a contact-dependent source of decoherence that would be independent
of the transmission itself.

Figure 4.28 shows the measured T2E at δ = π as a function of the An-
dreev transition energy. Here also, no clear trend appears. The average
value is 〈T2E〉 = 960 ns, with a standard deviation of 310 ns. No corre-
lation between the transmission and T2E , is observed which suggests that
the higher frequency noise to which the echo sequence is sensitive is also
independent of the transmission and the contact. Moreover, the absence
of correlation between T ∗2 and T2E , see Fig. 4.29, suggests that the low
frequency noise has a source different from the high frequency noise.

This systematic survey of the relaxation and coherence properties of the
different contacts does not provide a clear picture of the sources of relaxation
and decoherence. The relaxation times are too short and too dispersed to
be attributed solely to photon relaxation in the resonator. The absence of
correlation between the echo decay time and the dephasing time shows that
at least two independent sources of decoherence exist, one at low frequency
and the other at high (& 1 MHz) frequencies.
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Figure 4.28: T2E as a function of fA(δ = π) measured for approximately 30
different contacts.
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Figure 4.29: T2E as a function of T ∗2 for approximately 30 different contacts.
No correlation between the two quantities is observed.
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4.5 Phase dependence of the lifetimes and coher-
ence times

We now present the phase dependence of the characteristic times T1 and T ∗2
on one contact.

4.5.1 Relaxation rate of the excited state

0.1

1

Γ 1
 (

M
H

z)

1.051.000.95
δ/π

Figure 4.30: Phase dependence of relaxation rate Γ1 = 1/T1. Circles rep-
resent experimental data. The orange curve is the sum of the expected
Purcell rate (light blue line) and an empirical phase-independent rate (180
kHz). Vertical dotted lines indicate degeneracy points fA = fR. Error bars
on circles denote uncertainties of the fits.

Figure 4.30 shows the measured relaxation rate Γ1 = 1/T1 as a function
of the phase δ. The Purcell relaxation rate calculated from the expected dis-
sipative impedance seen by the atomic contact (dashed blue line) matches
the experimental results only close to the degeneracy points where fA = fR
(vertical dotted lines) but is about five times smaller at δ = π, as already
observed for the contacts survey. Empirically, we fit the data in Fig. 4.30 us-
ing an additional phase-independent relaxation mechanism, which remains
to be identified.
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4.5.2 Linewidth of the spectroscopy line

Because the Andreev qubit is very sensitive to flux noise when the phase
is different from π, the dephasing times T ∗2 becomes rapidly too short to
be measured using a Ramsey sequence. Therefore it is deduced from the
linewidth of the spectroscopy line measured at a power so low that the Rabi
frequency is much smaller than the decoherence rate. In this regime, the
driving tone does not affect the width of the spectral line [105]. In order
to make sure that the driving power is small enough8, the spectroscopy
is done for decreasing driving power until the linewidth saturates to its
minimal value.
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Figure 4.31: Phase dependence of the linewidth (FWHM) of the spectral
line. Symbols correspond to the result of a Lorentzian fit of the experi-
mental resonances. The brown curve is the best fit to the data, including
the contributions of 1/f transmission noise (light blue line) and both 1/f
(orange line) and white flux noise (orange dashed line).Vertical dotted lines
indicate degeneracy points fA = fR.

Flux noise in our experiment can arise from two sources: 1/f -noise
known to have a weak dependence9 on the size of SQUID loops [113], and

8The microwave power that reaches the Andreev dot varies with its frequency due to
the resonator that acts as a band-pass filter.

9This point was clarified recently by identifying magnetic adsorbates as the primary
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white noise due to leaky magnetic shielding which leads to a flux noise
proportional to the SQUID loop area. Since our SQUID loop is large
(1000 µm2), white noise is expected to dominate rapidly outside the optimal
point. The experimental data were thus fitted with Lorentzian functions ap-
propriate for white noise. The FWHM obtained from this fit is shown with
symbols in Fig. 4.31. In order to compare with theory three noise sources
are combined to obtain the best fit:

• 1/f transmission noise, which is supposed to dominate close to the
sweet-spot δ = π.

• 1/f flux noise.

• White flux noise.

The combination of these three contributions leads to a lineshape that is
a convolution of a Lorentzian and a Gaussian function. However, in order
to compare with experiment, we proceeded as for the experimental data
and extracted a linewidth from a fit of the calculated resonance with a
Lorentzian function on a 300 MHz interval.

The amplitude of the 1/f transmission noise, 2.5×10−6 Hz−1/2 at 1 Hz,
was adjusted to fit the measurement at δ = π. The amplitudes of the
white and 1/f flux noise were then obtained from a best fit of the phase
dependence of the linewidth. The 1/f noise amplitude extracted from the
fit (5 µφ0.Hz−1/2 at 1 Hz) is a typical value for superconducting devices
and has a negligible effect to second order [114]. The source of the apparent
white flux noise (48nφ0.Hz−1/2 at 1 Hz) has not been identified.

4.6 Low frequency measurements of transmission
fluctuations

In order to access the low frequency noise and confirm the presence of 1/f
transmission noise, the low frequency variations of the Andreev energy was
monitored with two different protocols that are discussed in the following
paragraphs.

source of this flux noise [112].
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4.6.1 Spectroscopic measurements

Method: A two-tone spectroscopy is performed at constant pump fre-
quency as a function of the flux applied on the loop (green line in Fig. 4.32).
The two spectroscopy lines are then fitted with Lorentzians in order to ex-
tract the position of their minima. As shown in Fig. 4.32, if the transmission
changes, the distance in flux between the two minima changes. If the flux
changes, the distance between the minima remains the same but the average
position of the two lines changes. This procedure is then repeated to obtain
the value of the transmission and the shift in flux as a function of time.
Since the acquisition of the two spectral lines takes ≈ 80 s, this procedure
only gives access to very low frequency noise.

fA fA

Pg Pg

Variations of Variations of 

f1 f1

Figure 4.32: Effect of a transmission variation (left) and of a flux varia-
tion (right) on a 2-tone spectroscopy measured at constant pump frequency
f1. When τ is reduced the Andreev transition frequency increases at all
phases, which pull closer in phase the two resonances measured at constant
frequency. On the other hand a variation in flux translates the whole spec-
trum in flux. The flux variation is described here as a constant bias flux Φb

and a parasitic flux Φp.
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4.6 – Low frequency measurements of transmission fluctuations

Result and discussion: The transmission and flux noise of a contact
with a transmission τ ≈ 0.9979 (fA ≈ 4.1 GHz) has been monitored for
40 hours with a 2-tone spectroscopy at constant frequency f1 =4.5 GHz.
The result is shown in Fig. 4.33. The flux undergoes a continuous drift for
15 hours and then stops drifting. This drift could be due to mechanical
relaxation of magnetic parts (in stainless steel or in brass) in the vicinity
of the sample. The transmission on the other hand drifts in discrete jumps
suggesting rearrangement of the contact configuration.
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Figure 4.33: Transmission (bottom), and parasitic flux Φp (top) noise mea-
sured as a function of time.

The extracted transmission noise power spectrum is shown in Fig. 4.34.
It is compatible with a 1/f2 noise with a noise power at 1 Hz P (1 Hz) ≈
2.10−14 Hz−1 which is significantly smaller than the transmission noise ob-
tained with the flux dependence of the linewidth of the Andreev transition.

4.6.2 Method using Ramsey fringes

Method: This protocol is inspired by the frequency locking used in atomic
clocks [115]. In a first step, one acquires the result of Ramsey sequences with
a fixed delay tdelay between the π/2-pulses, as a function of the frequency
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Figure 4.34: Power noise spectrum of transmission fluctuations extracted
from the trace Fig. 4.33 (bottom).

detuning fA − f1. The resulting pattern is shown in Fig. 4.35 is called
Ramsey fringes [115], and has a beating frequency given by 1/tdelay.
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Figure 4.35: I-quadrature obtained for a Ramsey sequence with
Tdelay = 20 ns as a function of the detuning.

The position of the central fringe does not change with tdelay and cor-
responds to a zero detuning (f1 = fA) Ramsey sequence. Following the
position in frequency of this fringe therefore gives access to the variations
of fA. In practice, the signal (I-quadrature) is measured at f1 = fA+∆f and
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4.6 – Low frequency measurements of transmission fluctuations

f1 = fA−∆f , and a PID-controller ensures that the difference between the
two measurements remains close to zero by changing the central frequency
fA(t). The advantage compared to the first protocol is that it can be per-
formed at higher repetition rate and therefore an increased bandwidth. A
drawback is that it does not allow discriminating between transmission and
flux noise. However, as already mentioned, the sensitivity to flux noise is
quadratic at δ = π and is going to be neglected in the following.
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1614121086420
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0.997345

320300280
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Figure 4.36: Transmission fluctuations of a single contact (fA ≈ 4.635 GHz)
as a function of time.

Result and discussion: Figure 4.36 shows an example of the variations
of the transmission over 16 hours using this method with a delay of 50 ns.
The bandwidth is here 0.5 Hz but can be different from contact to con-
tact depending on its coherence time and how the measurement setup has
been optimised. Noise on the transition frequency is observed with discrete
jumps. A big jump observed after 4.5 hours is actually made of several dis-
crete jumps, as shown in the inset. Note that the frequency excursion spans
over ≈10 MHz, which is smaller than the period of the Ramsey fringes and
therefore rules out jumps of the PID-controller by one fringe.

The noise in transmission is obtained using τ = 1 − (EA/∆sc)2 and
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Figure 4.37: Transmission noise power spectrum obtained for three different
contacts obtained on two different samples. A 20-point box average has been
applied to smooth the data. A 1/f2 dependence is shown in black, with a
power spectral density at 1 Hz of 2.10−12Hz−1.

taking the square of the Fourier transform to access the power spectrum.
Figure 4.37 shows the power spectrum obtained for three different contacts
obtained with two different samples made on different substrate (Kapton
and Vespel10). The different datasets were obtained with different settings
for the bandwidth and the duration of the Ramsey sequences, which ex-
plains the different spans. A 20-points box average was applied to the
spectrum to reduce the noise. No strong differences between the spectra
are observed although the characteristics of the contacts were different, as
shown in Table 4.1. The slope of the spectra corresponds to a 1/f2 of the
noise.
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fA substrate T1 T ∗2 Remarks
3.51 GHz kapton 11 µs 30 ns Same contact that was

used for CPMG study,
characteristic times
measured before the
stability measurements

6.55 GHz kapton 8 µs 50 ns Characteristic times
measured after the
stability measurements

4.63 GHz vespel 9 µs 80 ns T1 measured after the
stability measurements,
T ∗2 measured before and
after with the same result

Table 4.1: Characteristics of the contacts used to measure the data in
Fig. 4.37.

4.6.3 Summing up on the transmission noise

We have presented different methods to measure the transmission noise
over low and high frequency domains (see Fig. 4.38). The CPMG sequences
that provide information on the high frequency noise (0.1 MHz to 100 MHz)
seem compatible with white, 1/f , and 1/f2 noise. On the other hand, the
low frequency noise probed by following the Andreev transition frequency
at δ = π shows a clear dependence in 1/f2 of the transmission fluctuations
PSD11, with a noise power of 2.10−12 Hz−1 at 1 Hz. The flux scanning
method provides also information at low frequencies.

Although the results of this method do confirm a 1/f2 decay of the
transmission noise, the noise level measured is two orders of magnitude
smaller. The origin of this difference is unclear. It must however be noted

10Trade name of non-laminated polyimide
11In Ref. [40] the authors monitored the low frequency fluctuation of the transition en-

ergy of a transmon qubit and found a 1/f2 dependence of these fluctuations. These fluc-
tuations were attributed to “single atomic rearrangements in the tunnel junction barrier”.
Single atomic rearrangements could also be the source of the transmission fluctuations in
an atomic contact.
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Figure 4.38: Transmission noise spectra obtained with different techniques,
contacts and samples. The CPMG sequence is sensitive to noise in the
0.1 MHz to 100 MHz range, the method using Ramsey fringes in the
0.1 mHz to 0.2 Hz range, the flux scanning in the 0.15 mHz to 6 mHz
range. Note that the transmission fluctuations of the same contact with
fA(π) =6.55 GHz were captured both with Ramsey (red line) and CPMG.

that the flux scanning data and the first Ramsey data were never taken on
the same contact.

These measurements being extremely time consuming (at least a full
day), only few measurements of that type could be performed during this
thesis. This low statistics prevents to test the correlation between the PSD
measured and the Ramsey decay times.

By comparing the low and high frequency measurements see Fig. 4.38,
it appears that the low and high frequency measurements reveals two dif-
ferent sources of noise. If the low frequency noise is clearly identified as
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4.6 – Low frequency measurements of transmission fluctuations

1/f2 noise, the frequency dependence of the high frequency noise is less
clear. If one assume 1/f2 at high frequency, the PSD at 1 Hz is 6 orders of
magnitude higher than the one measured with the low frequency measure-
ments. Therefore this hypothesis is highly improbable. White noise and
1/f noise seem equally plausible because, with the PSD found, both would
have minor influence at low frequency where they are not observed.

The insight provided by the absence of correlation between the echo de-
cay times and the Ramsey decay times during the systematic survey seems
to be confirmed here: two different sources of noise are present, one dom-
inant at low frequency decaying as 1/f2, the other dominant at high fre-
quency with a lower noise power at 1 Hz.

In order to be conclusive on the high frequency noise, one would have
to observe the intermediate frequency regime. For that, new techniques
have to be developed to measure the noise spectrum in the 1 Hz to 100 kHz
range, which has remained inaccessible so far.
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Chapter 5

Measuring the number of
photons in the resonator

5.1 Introduction

In this chapter we describe experiments that give access to the number of
photons in the resonator and to the cavity pull1 χ . They rely on the fact
that, in the dispersive regime, the resonator frequency depends on the qubit
state and the transition frequency of the qubit depends on the number of
photons in the resonator. The resonator frequency is fr,g = fr − χ when
the qubit is in |g〉, and fr,e = fr +χ when the qubit is in |e〉. The transition
frequency from |g, n〉 to |e, n〉 is fA,n = fA + 2nχ. The experiments consist
in the spectroscopy of the Andreev transition at a given phase difference δ
in presence of a tone at a frequency close to the resonator frequency. Three
tones are therefore involved (see Fig. 5.1). Two are applied simultaneously:
the “qubit drive” at a frequency f1 near the Andreev frequency fA, and the
“cavity drive” at a frequency f2 near the resonator frequency fr. The third
tone is applied immediately after and is the measurement tone. It has a
frequency f0 ≈ fr. The cavity drive at f2 populates the resonator with a

1The cavity pull could already be determined using high measurement power, high
bandwidth single-tone spectroscopy as presented in chapter 4. However the measurement
power needed to perform these measurements is likely to perturb the system and provide
a biased determination of χ.
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5 – Measuring the number of photons in the resonator

f1

timef0

1 µs

13 µs

f2

Figure 5.1: Pulse sequence used for the 3-tone spectroscopy experiments.

number of photons that depends on its frequency, its amplitude and on the
qubit state. The qubit drive at f1 drives the transition between states |g, n〉
and |e, n〉 if f1 = fA,n, if either of these states is populated. The length of
the two pulses is long enough to reach a steady state. The tone at f0 then
probes the occupation of |g〉 and |e〉 .

The quantitative description of the steady state requires a simulation
of the evolution of the quantum system. A qualitative understanding can
nevertheless be reached with a semi-classical description that only considers
the effects of the driving pulses and relaxation in the photon number, and
assumes that it is possible to populate the cavity with a perfect selectivity
on the state of the qubit (|fr,g − fr,e| � κ).

We first recall the case of an isolated cavity driven by a microwave
field with a power leading, in average, to an average of nd photons in the
cavity. The state of this cavity is a coherent state [116] with a probability
of detecting n photons in the cavity given by P (n) = e−nd nd

n

n! . For photon
numbers much larger than 1, this probability is well approximated by a
Gaussian function as shown in Fig. 5.2.

We now discuss the cavity with the qubit, in a situation when the cavity
drive is resonant with fr,g. It drives transitions in the resonator towards a
coherent state with n photons on average, only if the qubit is in state |g〉 .
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Figure 5.2: Photon number probability in a driven cavity (without qubit)
for two different driving powers. Orange: the average photon number in
the cavity is nd = 55. Green: the average photon number in the cavity is
nd = 2.

The effect of the qubit drive depends on its frequency as follows:

• When the qubit drive is at f1 = fA,0, (see right hand side of Fig. 5.3),
it drives Rabi oscillations between |g,0〉 and |e,0〉 , which, after a time
long compared to the coherence time, tends to equilibrate the popu-
lations of the two states. Combined with the effect of the cavity drive
that depopulates |g,0〉 , the net effect is to transfer population from
|e,0〉 to |g, n〉 with n ≈ n. In a steady state, the population of |e〉 is
reduced: the qubit is cooled down. This protocol was investigated in
details in Ref. [117], where it was named DDROP for “double drive
reset of population”.

• When the qubit drive is at f1 = fA,n, (see left-hand side of Fig. 5.3) it
drives Rabi oscillations between |g, n〉 and |e, n〉 , which, after a time
long compared to the coherence time, tend to equilibrate the pop-
ulations in the two states. Combined with the effect of the cavity
relaxation that relaxes the population from |e, n〉 towards |e,0〉 , the
net effect is to transfer population from |g, n〉 to |e,0〉. In a steady
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Figure 5.3: Steady state dressed cavity in presence of a cavity drive at fr,g.
The probability of a given photon number in the resonator is plotted for the
qubit in |g〉 (blue line) and for the qubit in |e〉 (red line). A) the qubit drive
is at fA,n, the qubit transition frequency for n photons in the resonator. B)
the qubit driving tone is applied at its bare transition frequency fA,0. The
green arrows represent cavity relaxation. The yellow arrows represent the
drive of the cavity (the relaxation of the cavity is not represented in this
case for clarity). The full line transverse arrows represent the drive at fA,n
(orange) or fA,0 (blue). The dashed arrows represent relaxation or thermal
excitation of the qubit.

state, the population is transfered from |g〉 to |e〉 , resulting in popu-
lation inversion.

The values of the qubit drive f1 at which the two opposite effects occur
differ by 2nχ. Reverse effects are obtained when the cavity drive f2 = fr,e
(see Fig. 5.4): population inversion is obtained when f1 = fA,0, and cooling
at f1 = fA,n. One therefore obtains χ from half the difference in the cavity
drive frequencies f2 at which the effects are maximal.
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Figure 5.4: Steady-state dressed cavity in presence of a cavity drive at fr,e.
The probability of a given photon number in the resonator is plotted for the
qubit in |g〉 (blue line) and for the qubit in |e〉 (red line). A) the qubit drive
is at fA,n, the qubit transition frequency for n photons in the resonator. B)
the qubit driving tone is applied at its bare transition frequency fA,0. The
green arrows represent cavity relaxation. The yellow arrows represent the
drive of the cavity (the relaxation of the cavity is not represented in this
case for clarity). The full line transverse arrows represent the drive at fA,n
(orange) or fA,0 (blue). The dashed arrows represent relaxation or thermal
excitation of the qubit.

5.2 Experimental implementation and results

5.2.1 Setup

The setup is the same as in the two-tone spectroscopy experiments except
that a third microwave source has been added to drive the resonator, see
Fig. 5.5. The signal from this source is combined with the pump signal at
the input of the fridge lines. Since these experiments use only long pulses
(Tpulse ≈ 13 µs � T1, T

∗
2 ), the time resolution of the pulse shape does not

need to be as accurate as for coherent manipulations. Therefore, instead of
using mixers, the cavity drive pulse is shaped using the gated mode of the
microwave source controlled by an arbitrary function generator.
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Figure 5.5: Microwave setup used for 3-tone spectroscopy experiments. The
microwave tone from the source f2 is shaped using the gated mode of the
source.

We recall here the main characteristics of the resonator: the bare res-
onance frequency is fr = 10.1357 GHz, and the total quality factor is
Qtot = 2200, corresponding to an energy relaxation rate of the cavity
κ = 4.7 MHz. The characteristics of the contact that was used for these
experiments are summed up in Table 5.1.

5.2.2 Experimental results and numerical simulations

3-tone spectroscopy at a fixed cavity drive frequency

Figure 5.6 compares the result of a 2-tone spectroscopy (without cavity
drive) and a 3-tone spectroscopy taken at f2 ≈ fr,g2.fr,g =10.1374 GHz was

2In this section, odd states are disregarded, and all figures show the populations of
the even states |g〉 and |e〉 only, normalized.
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5.2 – Experimental implementation and results

frequency at δ = π 6.547 GHz
τ 0.9947
T1 8 µs
T ∗2 72 ns

Populations at Pg = 0.87, Pe = 0.13
equilibrium

Table 5.1: Main characteristics of the contact used for the 3-tone spec-
troscopy experiments. The population of the ground and excited states
have been re-normalized as the odd state does not interfere with the follow-
ing experiments and is not accounted for in the simulations.

estimated from the high-bandwidth single-tone spectroscopy like the one
presented in Fig. 4.4, which corresponds to χ =1.7 MHz.
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Figure 5.6: Populations of the ground (in blue) and excited states (in red)
as a function of the frequency of the qubit driving tone (odd population
is ignored). Markers: experimental data, with third tone at a frequency
f2 = fr,g (circles) and without third tone (crosses). Full lines: simulation
obtained with QuTiP. The Andreev frequencies for the different photon
numbers in the resonator are marked by the vertical dashed lines.

Slightly below the natural transition frequency of the qubit, at drive
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5 – Measuring the number of photons in the resonator

frequency f1 ≈ 6.49 GHz, the population of the excited state decreases.
This net cooling of the qubit with respect to the equilibrium case, corre-
sponds to the situation described on the panel B of Fig. 5.3. In Fig. 5.6,
this cooling happens at f1 smaller than fA,0. This signals that the cavity
drive also populates the resonator when the qubit is in state |e〉. This is
due to the fact that the value of κ is of the same order as χ, leading to some
excitation of the resonator even when the qubit is in |e〉. In the following,
we note ng and ne the average number of photons when the qubit is in |g〉
and |e〉, respectively. Cooling occurs when f1 = fA,ne .

At f1 ≈ 6.34 GHz, a population inversion is observed. This corresponds
to the situation of the left-hand side of Fig. 5.3, when f1 = fA,ng .

From fA,ne = 6.49 GHz and fA,ng = 6.35 GHz one obtains, using χ =
1.7 MHz, ng = 58 and ne = 17 at the cavity drive power used for this
dataset.
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Figure 5.7: Simulated probability of the photon number in the cavity for the
qubit being in |g〉 (in blue) or |e〉 (in red). Dashed lines represent the data
when no qubit tone is applied (Gaussian fits yield ng = 57.8 and ne = 16.7).
A) thick line: qubit drive at f1 = fA,ng = 6.36 GHz, population is inverted.
B) thick line: qubit drive applied at f1 = fA,ne = 6.49 GHz, cooling occurs.
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In order to quantitatively account for the data, we simulated the quan-
tum dynamics of the system with the Python toolbox QuTip [118, 119], the
Andreev dot being described with the dispersive Jaynes-Cummings Hamil-
tonian (see chapter 3, section 3.1.3 ). The code used for the simulation is
presented in Appendix E. Simulation parameters are the dispersive shift χ,
the amplitudes of the cavity and qubit drives, the relaxation times of the
qubit and the cavity and the dephasing time of the qubit.

The result of a simulation performed with QuTiP, is also plotted on
Fig. 5.6. The parameters for this simulation are presented in Table. 5.2.
The agreement between simulation and data is satisfactory, although the
qubit driving power is slightly larger than expected from a comparison with
the Rabi oscillations period. The corresponding distributions of the photon
number in the resonator when the qubit is in |g〉 or |e〉 are shown in Fig. 5.7
as full lines. The dotted lines are the photon number distributions in the
absence of qubit drive, and correspond to ne = 16.7 and ng = 57.8. These
values are in good agreement with those deduced from the mere position in
f1 of the maximum population inversion and maximum cooling described
previously.

Measured Simulation
frequency at π 6.547 GHz 6.547 GHz

T1 8 µs 8 µs
T ∗2 72 ns 72 ns

Resonator fr,o = 10.1357 GHz fr = 10.1357 GHz
frequencies fr,g = 10.1374 GHz fr,g = 10.1374 GHz

fr,e = 10.1338 GHz
κ fr/Q = 4.6 MHz idem

Qubit drive
power expressed as 7.3 MHz 8.3 MHz
Rabi frequency
Populations Pg = 0.87 Pg = 0.88

at equilibrium Pe = 0.13 Pe = 0.12

Table 5.2: Parameters of the experimental system and the ones used for the
simulations.

When fitting the data at a single value of the cavity drive frequency,
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5 – Measuring the number of photons in the resonator

the numbers of photons that are obtained depend on the value of χ that
had to be deduced from an independent measurement. We now show that
a determination of χ is obtained when similar data are taken as a function
of f2.

Three-tone spectroscopy as a function of the cavity drive fre-
quency

Measurements of the populations of state |e〉 as a function of both drive
frequencies f1 and f2, for the same cavity drive power as in Fig. 5.6, are
shown in the left pannel of Fig. 5.8. The right panel shows the result of
the QuTip simulations using the same parameters as for the curve shown
in Fig. 5.6. Agreement between theory and experiment is quantitative.
Population inversion appears in red (Pe ≈ 0.8), cooling in dark blue (Pe ≈
0). The qubit drive frequency f1 at which population inversion takes place
is f1 = fA,ng , whereas cooling means f1 = fA,ne . The average number of
photons ng and ne vary with the detuning between the cavity drive f2 and
the resonator frequencies fr,g and fr,e, with a maximum at zero detuning.
This is seen in the data as a minimum in the frequency f1 for cooling when
f2 = fr,e, and a minimum in the frequency f1 for population inversion when
f2 = fr,g.
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Figure 5.8: Populations of the excited state as a function of the cavity drive
frequency f2 and the qubit drive frequency f1. Left: experimental data.
Right: Simulated data.
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In an attempt to read out directly from the data the value of χ, proceed
as follows: For each cavity drive frequency f2, the position of the two reso-
nances expected at f1 = fA,ng and f1 = fA,ne are extracted from a fit of the
data with a sum of two Gaussian functions with positive (population in-
version) and negative (cooling) amplitudes. To validate the procedure, this
analysis was carried out both for the experimental data and the results of
QuTip, resulting in the red and blue dots in Fig. 5.8. The f2-dependence of
the f1-position of the extracted frequencies were then fitted with Lorentzian
functions that correspond to the shape of the cavity resonance at fr,g (blue
line) or fr,e (red line) . The center value of these two Lorentzians are
fr,g = 10.137 GHz and fr,e = 10.134 GHz for the experimental data and
fr,g = 10.137 GHz and fr,e = 10.135 GHz for the simulated data. These
values are to be compared with fr,g = 10.1374 GHz and fr,e = 10.134 GHz
used to produce the simulated data: the agreement is reasonable but χ
is systematically underestimated. This is because of the small contrast at
cooling (less than 10% in population) and the small shift in frequency of the
two effects. This procedure is not very robust at this number of photons,
neither for the experimental data nor for the simulations results.

In order to determine fr,g and fr,e more precisely, we increased the
power of cavity drive by 5 dB, which corresponds to a threefold increase of
the photon number in the resonator. The result is shown in Fig. 5.9. As
expected, larger shifts of the Andreev transition are observed. The width of
the transitions also becomes larger when the cavity drive is resonant with
fr,e or fr,g. A striking feature of these data that was not observed at lower
power is the global population inversion when the cavity drive is close to
fr,g independently of the qubit drive frequency f1. For completeness, we
show the population of the odd states in Fig. 5.10. It shows a slight decrease
of the population of the odd state when the qubit drive is resonant with
fA,ng . This decrease is not directly related to the populations of |g〉 and
|e〉 since the population of the odd state is not affected by the population
inversion observed when the f2 ≈ fr,g. It is more likely an artifact from the
determination of the populations.

The result of QuTiP simulations is shown in the right panel of Fig. 5.9.
All parameters but the cavity drive power are the same as before and al-
ready presented in Table.5.2. The positions of the cooling and population
inversion peaks are well reproduced by the simulation. We used the same
fitting procedure as for the low power measurements. As anticipated, the
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Figure 5.9: Renormalized populations of the excited state as a function of
the cavity driving frequency and the qubit driving frequency for a cavity
drive power three times larger as in Fig. 5.8. Left: experimental data.
Right: Simulated data. The red zones of the figure correspond to population
inversion and follows the photon number in fr,g. The darker blue region
corresponds to cooling of the qubit and follows the photon number in fr,e.
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Figure 5.10: Population of the odd states in the same experiment as in
Fig. 5.9. The population variations are smaller than 3% but visible.

fit is more reliable than for low power measurements, at least when the
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frequencies where cooling and inversion occur are far apart (edges and cen-
ter of the figure are more problematic). The frequencies fr,e and fr,g are
obtained by fitting the position of the cooling peak and the population in-
version peak with a Lorentzian as shown in Fig. 5.9. The results are shown
in Table 5.3, and compared with the parameters of the simulation:

Fit from Fit from Simulation
experiment simulation parameters

fr,e (GHz) 10.13403± 4× 10−5 10.13397± 2× 10−5 10.1340
fr,g (GHz) 10.13721± 4× 10−5 10.13729± 6× 10−6 10.1374
χ (MHz) 1.6± 8× 10−2 1.65± 0.03 1.7

Table 5.3: Comparison between the actual parameters used in the simu-
lation and the resonator frequencies obtained by fitting with experimental
and simulated data (see text) .

The positions of the peaks are determined with good accuracy3, and
lead to a determination of the cavity pull χ within better than 10%.

However, there are also disagreements between experiment and simula-
tion. The linewidth of the cooling and population inversion peaks is only
well accounted for by the simulation when the cavity drive is far from fr,e
and fr,g, as shown in Fig. 5.11. In addition, the global population inversion
observed for all values of the qubit drive f1 at f2 ≈ fr,g is not reproduced
by the simulations. This might be related to the breakdown of either the
dispersive approximation or of the rotating wave approximation, which are
both used in the simulation. Further work would be necessary to conclude
on this issue.

We now focus on the photon population in the resonator for f2 = fr,e
(red data in Fig. 5.11). The photon population when the qubit is in |g〉
and |e〉 are shown in Fig. 5.12 for three qubit driving frequencies: fA,ne
(f1 = 5.95 GHz), fA,ng (f1 = 6.36 GHz), and without qubit drive. The
population of the resonator when the qubit is not driven are ng = 55 when
the qubit is in |g〉 and ne = 180 when the qubit is in |e〉. When the qubit
drive is applied at fA,ne , the qubit is cooled down and the probability for the

3The uncertainties are the ones of the Lorentzian fit.
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Figure 5.11: Populations of the excited state as a function of the frequency
of the qubit drive for f2 = fr,e = 10.134 GHz (red) and f2 = 10.132 GHz
(blue). Markers: experimental data. Lines: QuTiP simulations. The
linewidth of the cooling and population inversion peaks is well reproduced
for the blue curve when f2 /= fr,g, fr,e. It is not the case for f2 = fr,e.
Moreover one can observe on the baseline of both curves precursors of the
global population inversion occurring at f2 = fr,g

resonator frequency to be fr,e is strongly reduced. The probability of a given
photon number P (n) is also broader. On the other hand, the probability
for the resonator frequency to be fr,g increases and P (n) becomes sharper
around ng. A reversed behavior is observed when the qubit drive is applied
at fA,ng .

We now evaluate the number of photons in the resonator from the fits
shown in Fig. 5.9. From these fits, we obtain χ (see Table 5.3) and determine
fA,ne and fA,ng for f2 = fr,e. We therefore have the number of photons in
the resonator when the qubit is in |g〉: ng = (fA,0 − fA,ng)/(2χ), and when
the qubit is in |e〉: ne = (fA,0 − fA,ne)/(2χ). In order to estimate the
accuracy of this method we compare the results obtained with this method
on the simulated data to the true photon numbers that are extracted from
Fig. 5.12.

The combined uncertainties on χ and fA,n lead to a final uncertainty

132



5.2 – Experimental implementation and results

0.040.020.00

250

200

150

100

50

0.04 0.02 0.00 0.040.020.00
0

fA,ne

P(|e,n )P(|g,n )P(|g,n ) P(|e,n )

fA,ng

250

200

150

100

0
0.04 0.02 0.00

A) B)

nph nph

Figure 5.12: Simulated probability of the photon number in the cavity for
the qubit being in |g〉 (in blue) or |e〉 (in red) for a cavity drive applied at
f2 = fr,e. Dashed lines represent the data when no qubit tone is applied
(Gaussian fits yield ng = 55.3 and ne = 179.7). A) thick line: qubit drive at
f1 = fA,ne = 5.95 GHz, cooling occurs. B) thick line: qubit drive applied at
f1 = fA,ng = 6.36 GHz, population is inverted. The yellow arrows signal on
which state the cavity drive is applied. The green arrows signal on which
state the cavity relaxation is used.

on the photon number at this cavity drive frequency of about 10% for ne
and 20% for ng. The uncertainty for ng can be reduced by using the same
procedure for f2 = fr,g. We note that the 5 dB increase of the cavity drive
power compared to Fig. 5.8 has indeed lead to a threefold increase of the
photon number in the resonator.
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Fit from Fit from From
experiment simulation simulated P(n)
(Fig. 5.9) (Fig. 5.9) (Fig. 5.12)

fA,ne 5.922 GHz 5.933 GHz 5.935 GHz
ne 195 186 180
fA,ne 6.337 GHz 6.349 GHz 6.36 GHz
ng 65 60 55

Table 5.4: Comparison of the photon number obtained from the fit of the
experimental and simulated data to the one directly extracted from the
simulations. We observe a good agreement with an error below 10%.

5.3 Conclusion on 3-tone spectroscopy
Using experimental data and numerical simulations, we have shown that
3-tone spectroscopy can be used to obtain a full calibration of the pho-
ton number in the resonator as a function of the cavity driving power. A
precision of about 10% on the photon number could be achieved.

The comparison with simulations also demonstrates how far the Andreev
qubit could be described with the dispersive Hamiltonian, even when the
cavity drive was strong. A global population inversion between |g〉 and |e〉
when the cavity was driven strongly at fr,g was observed in the experiments,
an unexpected effect that is not found in the simulations, which could be
explained by the breakdown of the dispersive limit [120] even though the
photon number is still lower than the critical number ncrit ≈ 500.
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Chapter 6

Quantum and parity jumps

6.1 Introduction

In this chapter we present continuous measurements of the state of the An-
dreev dot. Jumps between the states of the Andreev dot are observed, which
can be classified in two categories: quantum and parity jumps. Quantum
jumps are random jumps between the states of a quantum system. They
have been observed in a few different systems [121, 122], including super-
conducting qubits [123]. Parity jumps are jumps in electronic parity due to
the addition or the removal of a single quasiparticle to or from the system.
Parity jumps between the even and odd states of an Andreev dots [44] have
been already observed using switching current measurements. The rates at
which these parity jumps occur are directly linked to the density of unpaired
quasiparticles in the superconductor [72] which is known to be anomalously
high in most superconducting devices below 100 mK [50, 51, 52, 49]. Re-
cently Vool et al. have reported bursts in the quasiparticle density of a
fluxonium superconducting qubit with non-Poissonian statistics [47] .

Here, we present measurements in which we continuously tracked these
jumps to access the dynamics of the population of the Andreev dot. The
motivation is threefold: to quantify the influence of the measurement pulses
power on the dynamics of the occupation of the dot; to reach a better
understanding of the lifetime of the excited state and of the influence of
odd states; and to compare the (de)poisoning statistics of the Andreev dot
with measurements performed by Vool et al. [47].
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6 – Quantum and parity jumps

The relaxation and excitation processes of the even excited state of the
Andreev dot were discussed in Chapter 4. They consist in the emission
(absorption) of photons or phonons into (from) the environment. The pro-
cesses leading to the trapping or un-trapping of a single quasiparticle in
the Andreev dot (called “poisoning” and “unpoisoning” because in general
single quasiparticles are detrimental for superconducting devices) are more
complex since they require a simultaneous exchange of energy and of a quasi-
particle with the environment. Figure 6.1 shows the different processes at
stake. Two processes can cause the system jump from the ground state into
the odd states of the Andreev dot. If a single quasiparticle is present in the
continuum, it can get trapped in the dot by releasing an energy ∆−EA to
the environment (either by emitting a photon or a phonon), see Fig. 6.1A.
The second process consists in breaking a Cooper pair in the ground state
and adding one of the quasiparticles to the Andreev dot and the other one to
the continuum. An energy ∆+EA needs to be provided by the environment
in this process, see Fig. 6.1B. Starting from the excited Andreev state, the
odd state is reached either by recombining one quasiparticle in the Andreev
level with one quasiparticle from the continuum (Fig. 6.1C) or exciting to
the continuum one quasiparticle in the Andreev level (Fig. 6.1D). Reverse
mechanisms lead to transitions from the odd state to the ground or excited
state (Fig. 6.1 E,F,G,H).

The energy dependence of these rates was theoretically described in the
presence of an electromagnetic mode in Refs. [72, 124]. However, only weak
coupling between the Andreev states and the mode was treated. Moreover
the electromagnetic mode was treated in a thermal state which is not the
case of our microwave resonator during measurement.

6.2 Measurement setup

The setup for these experiments differs from the one used for the two-
tone experiments (see chapter 4) only by the fact that the mixers in the
measurement lines are DC-biased instead of being pulsed. The DC voltage
corresponds to the pulse height in the two-tone experiments, so that the
microwave power can be quantified using the photon number calibration
described in the previous chapter. The measurement frequency f0 is set at
the frequency of the bare resonator, in order not to induce an asymetry in
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Figure 6.1: Poisoning and depoisoning processes of the Andreev dot in
the excitation representation. A),B) Poisoning processes from the ground
state. C),D) Poisoning processes from the even excited state. E),F),G),H)
Depoisoning processes.

the average number of photons nph in the resonator when the dot is in the
even states. The number of photons in the odd states is 60% larger1.

Whereas pulsed measurements use the average value of 80 data points
sampled every 10 ns, for continuous measurements segments of 1.2 × 106

data points (one every 50 ns) are recorded. The number of points is limited
by the memory of the acquisition board. To further smooth the data, 5 suc-
cessive points are replaced by their average all along the trace (five-points
box-average). Longer traces, obtained in practice with 6 successive acquisi-
tions, are used to achieve a better estimation of the jumping rates. A short
part of a representative trace, which contains both I and Q quadratures
of the reflected signal, is shown in Fig. 6.3. The data is noisy, but jumps
can be distinguished. In order to extract transition rates, the full trace

1When the Andreev dot changes parity, the number of photons in the resonator changes
at a rate of 7 MHz, which is much larger than the jumping rates. Transients can therefore
be ignored.
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Figure 6.2: Setup used for the experiments presented in this chapter. The
measurement mixers are biased at V = 4.5 V, which is the same voltage as
at during the pulses of the AFG in the 2-tone spectroscopy. The excitation
line was not used in this experiment.

is analyzed using a Hidden Markov Model (HMM) toolbox, SMART [53].
Given the number of states involved, three in our case (states |g〉, |o〉, |e〉),
SMART determines the set of parameters that have the maximal likelihood
to correspond to the data: values of I and Q for the three states (i.e.: the
position of the clusters in the IQ-plane), and most importantly transition
rates between all pairs of states (6 rates for 3 states), see Fig. 6.4 left. (for
more details see Appendix F).

The states are identified using the following protocol. Since we are mea-
suring at the frequency of the resonator when the dot is in the odd state, the
cluster associated to |o〉 is always found as the same position. This position
can be determined by pulsed measurements. On the other hand, the posi-
tion of the clusters of |g〉 and |e〉 move with nph and fA. The ground state
is then identified as the one of the two remaining states having the largest
population. The remaining state is the excited state. This identification is
then validated by observing the position of the states given by SMART in
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6.2 – Measurement setup

the IQ-plane as a function of the varying parameter (measurement power or
phase) and making sure that no contradiction appears in the identification
of the states.
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Figure 6.3: First 2.5 ms of a trace used to extract the jumping rates be-
tween the states of the Andreev dot (nph ≈ 15 in the even states). The
data is shown for three different strength of smoothing. Top: raw data.
Middle: 5-points box average. This shows the data as it is processed by
SMART. Bottom: 50-points box average for readability. Both quadratures
are recorded and used by the HMM algorithm, the in-phase amplitude is
shown in blue and the out-of-phase quadrature in brown. The state of the
Andreev dot inferred by the algorithm is shown in color-code on top of the
bottom graph: blue for |g〉, green for |o〉, and red for |e〉.
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6 – Quantum and parity jumps

Because of the spin-degeneracy, the two odd states |o ↑〉 and |o ↓〉 can-
not be distinguished. In order to obtain the rates to and from each of
them, one must “unfold” the diagram on the left of Fig. 6.4 with appro-
priate 1/2 factors (as pointed out to us by G. Catelani): the rate from
|e〉 to |o〉 corresponds to the sum of the rates to |o ↓〉 and |o ↑〉, therefore
Γe→o↑ = Γe→o↓ = 1

2Γe→o. In contrast, transitions from |o〉 to |e〉 corre-
spond to transitions from either of the two states |o ↓〉 and |o ↑〉 , therefore
Γo↑→e = Γo↓→e = Γo→e. Using these equations and their equivalents for
transitions between |g〉 and |o〉, one obtains the diagram on the right-hand
side of Fig. 6.4.

e

g

o

g

e

o↑o↓

Figure 6.4: Left: States resolved by the experiment and rates obtained
at the output of the HMM algorithm. Right: Rates with the lifted spin
degeneracy of the odd states.

The data presented hereafter were taken on a different sample from that
of chapters 4 and 5. It was fabricated on a bulk polyimide substrate (DuPont
Vespel) instead of layered polyimide (DuPont Kapton). The resonator had
a slightly higher resonance frequency fr = 10.310 GHz, the atomic contact
had an Andreev transition frequency at π of fA = 4.73 GHz, and the cavity
pull at δ = π was χ = 2 MHz. The characteristics of the contact are summed
up in Table 6.1.
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6.3 – Jumping rates at δ = π

frequency at π 4.73 GHz
τ 0.997
T1 10 µs
T ∗2 70 ns

Populations at P|g〉 = 0.5, P|e〉 = 0.06,
thermal equilibrium P|o〉 = 0.44

Table 6.1: Main characteristics of the contact used for the experiments
presented in this chapter, obtained from pulsed experiments.

6.3 Jumping rates at δ = π

6.3.1 Influence of the measurement power

We first present the rates obtained at δ = π as a function of the measure-
ment power2 in order to quantify the influence of the measurement tone on
the rates. In chapter 5, we already showed that it influences strongly the
populations of the qubit. The number of photons in the resonator nph when
the dot is in an even state is estimated using the calibration described in
Chapter 5.

Figure 6.5 shows the transition rates and average populations calculated
by the algorithm as a function of the measurement power. Two datasets are
shown, which do not exactly overlap. We explain this discrepancies by the
fact that the low power dataset was taken 2 weeks after the other one. In
the meantime, undocumented modifications of the microwave setup (cable
modification for instance) could have lead to a slightly different calibration
of the photon number. The minimal measurement power at which the
signal to noise ratio is sufficient for SMART to converge corresponds to
n ≈ 8 photons.

Even at high photon numbers, all rates remain below 200 kHz, which
indicates that the pulsed measurements were performed in satisfactory con-
ditions: the duration of the measurement pulse, 1 µs, was sufficiently short
for the populations not to be severly affected by the measurement.

2The amplitude of the measurement tone is set using a voltage-controlled attenuator,
see Fig. 6.2.
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Figure 6.5: Jumping rates and populations as a function of the measurement
power. Two datasets taken two weeks apart are shown. The first one
explores the high-power region (dashed) the second one a low-power region
(thick line). A) jumping rates between |e〉 and |g〉. B) Populations of the
Andreev states. C) jumping rates between |e〉 and |oσ〉. D) jumping rates
between |oσ〉 and |g〉.

The rates related to the odd states (panels C and D) are very sensitive to
the measurement power. An increase by more than one order of magnitude
is observed on the range explored. The Γoσ↔g rate increase monotonously
with the measurement power. On contrary, Γoσ↔e first decreases sharply
for nph < 10, then present a plateau between 10 and 30 photons and finaly
presents a sharp increase close to 35 photons.

142



6.3 – Jumping rates at δ = π

50403020100

nph

6

10

2

4
6

100

2

4
R

at
es

 (
kH

z)

50403020100

nph

A) B)

Figure 6.6: Same data as in Fig. 6.5 presented so the rates of adding (re-
moving) Γin (Γout) a single quasiparticle to the dot can be compared more
easily. A) Rates for adding a single quasiparticle to the dot from the ground
state (green) and from the odd state (dark red). B) Rates for removing a
single quasiparticle from the dot from the excited state (yellow) and from
the odd state (green).

The steady increase of Γoσ↔g with power could suggest that the energy
injected in the system by the measurement tone produces quasiparticles
in the SQUID loop. However this should also result in a steady increase
of Γoσ↔e, which is not observed. Another striking feature of the data is
the fact that the two rates corresponding to the trapping (respectively the
untrapping) of a single quasiparticle in the Andreev dot Γg→oσ and Γoσ→e
(respectively Γe→oσ and Γoσ→g) are not equal as one would expect [72], see
Fig. 6.6. The rates coupling the odd states to the excited state (ground
state) Γoσ↔e (Γoσ↔g) show similar variations, as seen in panel C (panel D).

The direct relaxation rate of the excited state to the ground state Γe→g
(A) is quite stable with the photon number, while the excitation rate Γg→e
increases, until it becomes equal to the relaxation rate for nph & 50. This
shows that the qubit gets heated up by the resonator.

The evolution of the populations (B) with the measurement power reflect
the evolution of the rates. The population Pg of |g〉 decreases monotonously
as the rate Γg→e increases (the qubit becomes hotter). The excited state
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6 – Quantum and parity jumps

population Pe remains stable around 10% below nph = 30 as all the rates
to reach this excited state remain small compared to its relaxation rate to
the ground state. Above, Γoσ→e increases sharply and reaches a maximum
at nph = 40 leading to the balance of the populations in |o〉 and |e〉. It
then decreases and become close to Γe→oσ which results in an increase of
the population of |o〉.

Overall, this analysis indicates that the photon population in the res-
onator strongly influences the transition rates between the states of the
Andreev dot. Theoretical work is needed to describe these effects. In what
follows, we discuss more in details the results obtained with nph ≈ 15 (see
Fig. 6.7), which is a compromise between the reliability of the data pro-
cessing and the changes induced by the measurement power.

16

g

e

o↑o↓
7 7

12 12

7 7

70 10

16

Figure 6.7: Rates measured for nph ≈ 15 at δ = π. The dominant rate is
the direct relaxation rate of the excited state Γe→g. The other rates are
close to 10 kHz. Note that Γe→oσ /= Γoσ→g, and Γg→oσ /= Γoσ→e

.

6.3.2 Relation between the transition rates and T1

The lifetime T1 of the excited state is determined by three relaxation chan-
nels: the direct relaxation from |e〉 to |g〉 , and two indirect channels through
the odd states. Relaxation through the odd channels occurs at a rate Γ1,odd
given by:

Γ1,odd = Γe→oΓo→g
Γo→g + Γe→o

≈ 4.9 kHz, (6.1)
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6.4 – Energy dependence of the jumping rates

which is much smaller than the rate of direct relaxation Γe→g = 70 kHz.
This value is itself much larger than what one estimated from Purcell re-
laxation (see chapter 4, section 4.4.2), calculated with the impedance of the
resonator: ΓP (4.7 GHz)= 6 Hz. The lifetime of the excited state deduced
from the combination of all rates is T1 = 14.3 µs, which is reasonably close
to the one measured using pulsed experiments T1 = 10 µs.

6.4 Energy dependence of the jumping rates

We now focus on how the jumping rates depend on the Andreev energy.
The Andreev energy is tuned by controlling the phase across the contact.
The energy range that was accessed in the experiments presented here is
EA(δ, τ)/h =4.73 GHz to 11 GHz. Higher energies could not be accessed
because the coupling between the Andreev dot and the resonator decreases
rapidly away from δ = π and the SNR becomes too low to detect the
jumps. The result of these measurement is shown in Fig. 6.8, along with
the population of each state.

Quantum jump rates: The rates between the even states exhibit two
sharp resonances at 5.5 GHz and 10 GHz. The resonance at 10 GHz corre-
sponds to Andreev transition energies close to the resonator transition. As
fA gets close to fR the qubit can easily absorb and emit photons (Purcell
effect). The two systems are in “speaking terms”. The similar resonance
at 5.5 GHz is unexpected. It might be due to a parasitic resonance in the
electromagnetic environment, although we could not find a reason for it.

Parity jump rates: At low energy, the parity jump rates show strong,
reproducible fluctuations. They occur in the same region as the first peak
in the even states rates, close to 5.5 GHz. Between 6 GHz and 8 GHz, a
plateau is observed where the equality of the rates to add (remove) a single
quasiparticle to the Andreev dot is essentially respected. Finally, as the
Andreev transition energy gets closer to the resonator all rates increase.
All these rates are well above what is predicted by theory [72]: the rates
of parity jumps due to phonons are expected close to 1 kHz; the rates of
parity jumps due to photons present in a single mode resonator should be
negligible at energies lower than ∆sc − hfr which is here on the order of
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Figure 6.8: Jumping rates and populations as a function of the transition
energy between the even states. A) jumping rates between the even states
and the odd states. B) jumping rates between |e〉 and |g〉. C) Populations
of the Andreev states.

35 GHz for the λ/4 mode of the resonator, and 15 GHz for the 3λ/4 mode
of the resonator.

6.5 Relaxation rate of the excited state

We now compare the relaxation rates of the even excited state Γ1 obtained
with continuous measurement and with pulsed measurements such as those
discussed in chapter 4. The goal of this comparison is twofold: first, it is a
consistency check; second, the continuous measurement allows to decompose
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6.5 – Relaxation rate of the excited state

the relaxation rate into its different channels and to identify the dominating
ones at each frequency.

Pulsed experiments to determine Γ1 = 1/T1 were here performed with
a 13 µs saturating pulse, which sets the qubit in a random mixture of |g〉
and |e〉, instead of a π-pulse because Rabi oscillations are not observed at
all values of the Andreev energy due to dephasing. The contrast is halfed,
but the rate is the same as for a π-pulse. The relaxation is then fitted with
an exponential decay.

In order to remain as close as possible to the procedure used in the
pulsed experiments to determine Γ1, the rates obtained with the continuous
measurements presented above were used in the master equation to simulate
a relaxation experiment. This relaxation is then fitted with an exponential
decay in the same way as for the pulsed experiments. The result of this
procedure is shown in Fig. 6.9
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Figure 6.9: Relaxation rate of the even excited state as a function of the
Andreev transition energy. Green: Γ1 as measured using pulsed experi-
ments. Yellow: relaxation rate determined using the continuous measure-
ments. Black: estimation of the Purcell limited Γ1 due to the resonator only.
Dashed gray: estimation of the Purcell limited Γ1 due to the resonator and
a second electromagnetic mode at 5.4 GHz.
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Two peaks in Γ1 are observed, with a plateau in-between. The peak close
to 10 GHz corresponds to transition energies close to the resonator mode.
The peak close to 5.5 GHz was already observed in the rates presented in
the previous section. In Fig. 6.9 is also plotted the calculated Purcell lim-
ited Γ1 for the resonator alone and for the resonator plus a second mode at
5.4 GHz with a total quality factor Qtot2 = 1300 for a best fit. The predic-
tion for Purcell limited Γ1 describes qualitatively the trend observed in the
experimental data for this second case, at Andreev transition energies close
(less than 1 GHz) to the resonances of the environment. Between 6 GHz
and 9 GHz, the relaxation rate remains close to 100 kHz which is consis-
tent with the data presented in chapter 4. This plateau is not explained
by the secondary relaxation channel through the odd states (see Fig. 6.8).
However it could be due to an electromagnetic environment seen by the dot
more complex than expected, which is already suggested by the resonance
at 5.4 GHz. Finally, the agreement between the two techniques is good,
except at the center of the resonances at 5.5 GHz and 10.3 GHz.

6.6 Statistics of the depoisoning events
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Figure 6.10: Histograms with logarithmic binning of the duration between
depoisoning events τ , scaled by the duration τ . Circles: experimental data
obtained from the reconstructed trace outputed by SMART. Dashed lines:
fit using the Poissonian prediction.
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In Ref. [47] the tunneling of single quasiparticles through the junction
of a fluxonium qubit [125] was observed. This tunneling induces transitions
in the fluxonium qubit which are observed using a similar procedure as the
one presented in this chapter. A striking feature of these measurements was
the fact that for some periods of time (of the order of a few minutes), the
statistics of these tunneling events became non-Poissonian. This was shown
by measuring the probability of having a time τ between two tunneling
events. Here, we reproduce the same data processing on the depoisoning
events, that is to say we measure the probability to stay for a duration τ in
the |o〉 state. We compare this probability to a fitted Poissonian model [126]
as shown in Fig. 6.10 for four different values of the measurement power.

Figure 6.11: Data taken in a fluxonium qubit (from [47]): histograms with
logarithmic binning of the duration between depoisoning events τ , scaled
by the duration τ . Note the similar distribution in the “noisy” moments to
what was found when nph = 52.

At low measurement power, the distribution of time between jumps
is centered close to 100 µs. This is consistent with the rates presented
above, which are close to 10 kHz. The Poisson model fits the data well
except for a shoulder for time between jumps close to 10 µs. However, for
larger measurement powers, the distribution of time between jumps diverges
clearly from the Poisson distribution. Again, the distribution of duration
between the depoisoning events is consistent with the rates presented in
Fig. 6.5.
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6 – Quantum and parity jumps

The distribution of the time between jumps in large nph regime is similar
to what was found by Vool et al. in the “noisy” intervals, see Fig. 6.11. In
the fluxonium experiments these noisy intervals were understood as period
of time during which the quasiparticle density in the continuum was signif-
icantly increased by an intermittent source. Similarly, the non-poissonian
distribution of times between jumps that we observe could be related to
a large quasiparticle density created by the photons of the resonator, by
a mechanism that remains to be understood. We did not analyze enough
traces to tell if noisy intervals are found when nph is small.

6.7 Conclusion on continuous measurements
In this chapter we described the results of continuous monitoring of the state
of the Andreev dot. With the rates extracted from these measurements, we
quantified the influence of the photon population in the resonator and ob-
served that even at low photon numbers (nph ≈ 10) this influence is sizeable.
Concerning the energy dependence of the jumping rates, we observed the
influence of the resonator transition as well as a parasitic resonance. Only a
few features of the data presented in this chapter are presently understood.
More measurements on different contacts could provide a better insight.
The addition of a quantum limited amplifier [127] would enable to measure
at even lower photon number in the resonator while ruling out artifacts due
to the processing algorithm.
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Chapter 7

Conclusion

The main result of this thesis work is the demonstration of the coherence
properties of Andreev qubits. Using atomic contacts in a circuit-QED ar-
chitecture, we showed that the state of Andreev dots could be accessed in
a single shot. Spectroscopy of the Andreev transition and measurements
of the coherence time and lifetime of many different Andreev qubits were
obtained from pulsed measurements. Our experiments, which constitute an
additional example of the use of circuit QED to probe a mesoscopic system
[128, 28, 129], are the realization of a 10-year-old proposal by Zazunov et
al. [13]. We now discuss the perspectives associated to the questions that
remain unsettled.

Lifetime of the excited state

Only when the Andreev frequency approaches that of the resonator (by less
than 1 GHz) was the lifetime T1 of the Andreev qubits found to be limited
by the interaction with the resonator (Purcell limit). At the optimal point,
corresponding to the minimum transition energy, T1 does not exceed a few
microseconds, almost an order of magnitude less than the Purcell limit. Us-
ing continuous measurements, we showed that the relaxation through the
odd states does not contribute significantly to T1. The source for excess
relaxation is most probably an insufficient control over the electromagnetic
environment of the qubit. In our experiments, the constraint that the sub-
strate needs to be bent to obtain Andreev dots makes it difficult to employ
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7 – Conclusion

tight shields similar to those used in other superconducting qubits experi-
ments [130]. It might be more favorable to use 3D-cavities instead of a 2D
resonator [40, 41]. Such cavities offer in general a better control over the
environment, but combining them with moving elements necessary for the
break junction technique is an experimental challenge.

Coherence properties of the Andreev qubit

At δ = π, the coherence times of Andreev qubits is limited by transmis-
sion noise. A large dispersion was observed on both the Ramsey (15 ns
to 188 ns) and echo decay times (450 ns to 1.9 µs). Large Ramsey decay
times (T ∗2 ) were found to be uncorrelated with large echo decay times (T2e),
suggesting that two independent sources of noises are at work, one at low
frequency limiting the T ∗2 and one at high frequency limiting the T2e. The
low frequency transmission noise was probed by measurements of the fluc-
tuations of the Andreev transition frequency for long periods of time. The
power spectrum of these fluctuations decays as 1/f2. This dependence on
the frequency f is that of Brown noise, which is related to a Brownian mo-
tion, or to telegraphic noise associated to a single fluctuator. Transmission
fluctuations can have (at least) three origins:

• A microscopic origin: Vacancies close to the contact, at the surface of
the electrodes, can move even at milli-Kelvin temperatures (by tun-
neling between neighboring atomic sites), which changes the electronic
configuration close to the contact and therefore the transmission co-
efficient τ [131]. The transmission noise generated by such displace-
ments could be the source of the observed low frequency Brown noise;

• A mesoscopic origin: The large stress applied to the chip could re-
sult in creep of the plastic substrate. Another source of transmission
fluctuations are vibrations of the suspended bridge. Evidence of the
coupling between this micro-mechanical oscillator and the Andreev
qubit are presented in Appendix D.

• A macroscopic origin: Vibrations of the dilution refrigerator are trans-
mitted to the suspended bridge through the mechanical setup. Due
to the size of the mechanical setup, only the low frequency noise is
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decoupled from the bending of the bridge. Hence, this macroscopic
noise could be at the origin of the high frequency noise observed.

Quasiparticle poisoning

The transition rates between the states of Andreev dots, extracted from
the parity jumps observed in continuous measurements, revealed the strong
influence of the microwave resonator and of the measurement power on
the quasiparticle poisoning dynamics. The underlying physical processes
remain unknown but measurements on more contacts could provide more
insight. In order to perform these continuous measurements at a power low
enough not to perturb the dynamics, experiments using a quantum limited
amplifier (a Josephson parametric converter) [127] are in progress.

Perspectives: wires and 2D-gases

Although atomic contacts and break junctions are remarkable tools to in-
vestigate Andreev physics and have been successfully used as such during
the last twenty years, this work has also shown their limits. The first limit
is the relatively loose control over the transmission of these contacts: not
only is it cumbersome to obtain a contact with a desired transmission (and
impossible with an accuracy greater than 0.005), but the break junction
technique makes the atomic contact very sensitive to its mechanical envi-
ronment, which is hard to control. In addition, break junctions do not allow
to obtain multi-terminals junction devices, which have been recently been
predicted to give access to topological effects [132].

In order to circumvent these limitations, new weak links have to be used.
Two candidates are proposed: nanowires and 2-dimensional electron gases
(2DEGs). Nanowires [133] can be directly used as a Josephson weak link.
Gates can be used to control electrically the transmission of semiconducting
nanowires [134], with a good accuracy. The presence of stationary points
in the voltage-dependence of the transmission [71] could solve the problem
of transmission noise as a limitation of the coherence of Andreev qubits.
Alternatively, one could use Bismuth nanowires, which have been shown to
exhibit edge states with unity transmission under high magnetic fields [135].
In order to obtain multi-terminal junctions, a versatile solution would be
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7 – Conclusion

to proximize 2DEGs with superconducting electrodes. Electrostatic gates
are then used to deplete locally the gas and create quantum point contacts
[136]. After several decades of work in this direction, very recent results
[137] suggest that good contacts can now be obtained to 2DEGs.

A further motivation pushes to the investigation of the weak links pre-
sented here-above: all of them also present high spin-orbit interaction. This
interaction is expected to enrich the physics of Andreev bound states, by
lifting the spin degeneracy of odd states [138, 139] and giving rise to topo-
logically protected states at finite magnetic fields [140, 141].
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Appendix A

The rotating wave
approximation

This appendix contains a detailed derivation of the Jaynes-Cummings Hamil-
tonian (Eq. 3.30), starting from Eq. (3.20):

H = ~ωR(N̂ + 1
2)− ~ωA

2 σz + ~g(a† + a)(σx + 1√
1− τ tan (δ/2)

σz). (A.1)

Using
σx = σ+ + σ−, (A.2)

where σ+ = |e〉 〈g| and σ− = |g〉 〈e|, and reintroducingHA andHR, Eq. (A.1)
reads:

H =HA +HR

+~ga†(σ+ + σ−) + ~ga(σ+ + σ−)

+ ~g√
1− τ tan (δ/2)

(a† + a)σz.

The Hamiltonian is then written in the interaction picture, using the unitary
operator:

U = e−i(HA+HR)t/~ = αe−iωRN̂teiωAσzt/2, (A.3)

with α = e−iωRt/2.
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A – The rotating wave approximation

We use the Baker-Campbell-Hausdorff lemma which states for any her-
mitian operators U and H [22]:

eiUλHe−iUλ = H+(iλ) [U,H]+(iλ)2

2! [U, [U,H]]+...+(iλ)n

n! [H, [..., [U,H] ...]]
(A.4)

The relevant commutators that appear in the calculation are:

[
N̂ , a

]
= −a (A.5)[

N̂ , a†
]

= a† (A.6)[
a, a†

]
= 1 (A.7)[

σz, σ
+
]

= −2σ+ (A.8)[
σz, σ

−] = 2σ− (A.9)

All operators from the resonator subspace commute with the operators from
the qubit subspace. The effect of the unitary transformation on each of the
operators is evaluated as follows:

U †aU = α∗e−iωAσzt/2eiωRN̂tae−iωRN̂teiσztα (A.10)

= eiωRN̂tae−iωRN̂t (A.11)

= a+ (iωRt)
[
N̂ , a

]
+ (iωRt)2

2!
[
N̂ ,
[
N̂ , a

]]
+ ... (A.12)

= a+ (−iωRt)a+ (−iωRt)2

2! a+ ... (A.13)

= e−iωRta. (A.14)

Likewise :

U †a†U = eiωRta† (A.15)

and

U †N̂U = N̂ . (A.16)
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Now for the qubit operators:

U †σ+U = e−iωAσzt/2σ+eiωAσzt/2 (A.17)

= σ+ + (−iωAt/2)(−2σ+) + (−iωAt/2)2

2! (4σ+) + ... (A.18)

= (1 + iωAt+ (iωAt)2 + ...)σ+ (A.19)
= eiωAtσ+. (A.20)

Likewise,
U †σ−U = e−iωAtσ−, (A.21)

and:
U †σzU = σz. (A.22)

Therefore
U †(HA +HR)U = HA +HR. (A.23)

In the coupling Hamiltonian, the unitary transformation gives phase factors:

• a†σ+ → a†σ+ei(ωR+ωA)t

• a†σ− → a†σ−ei(ωR−ωA)t

• aσ+ → aσ+e−i(ωR−ωA)t

• aσ− → aσ−e−i(ωR+ωA)t

• a†σz → a†σze
iωRt

• aσz → aσze
−iωRt

The rotating wave approximation (RWA) consists in neglecting all the
fast rotating terms, assuming that |ωA−ωR| � ωR. One obtains the Jaynes-
Cummings Hamiltonian:

H = ~ωR(a†a+ 1
2)− EAσz + ~g(aσ+ + a†σ−). (A.24)
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Appendix B

The dispersive limit

The following derivation follows the indications in Blais et al. [23]. The
Jaynes-Cummings Hamiltonian

H = ~ωR(a†a+ 1
2)− EAσz + ~g(aσ+ + a†σ−) (B.1)

= HR +HA +Hg (B.2)

takes a simpler form when g � |EA − ~ωR|. It is obtained by performing a
unitary transformation with the operator:

U = e
g
∆ (aσ+−a†σ−), (B.3)

and developing it to second order in g
∆ . As in Appendix A, we make use

of the Baker-Campbell-Hausdorff lemma. Using the following commutation
relations, [

aσ+, a†a
]

= aσ+ (B.4)[
a†σ−, a†a

]
= −a†σ− (B.5)[

aσ+, σz
]

= 2aσ+ (B.6)[
a†σ−, σz

]
= −2a†σ− (B.7)[

a†σ−, aσ+
]

= a†aσz + σ+σ− (B.8)
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B – The dispersive limit

one calculates to second order in g
∆ :

H̃R = UHRU
†

= HR + ~gωR
∆

([
aσ+, a†a

]
−
[
a†σ−, a†a

])
+ ~ωR

2

(
g

∆

)2 [
aσ+ − a†σ−,

([
aσ+, a†a

]
−
[
a†σ−, a†a

])]
= HR +Ha

R +Hb
R

with

Ha
R = ~gωR

∆
(
aσ+ + a†σ−

)
(B.9)

Hb
R = ~ωR

2

(
g

∆

)2 [
aσ+ − a†σ−, aσ+ + a†σ−

]
. (B.10)

Now for the atomic part:

H̃A = UHAU
†

= HA −
~gωA
2∆

([
aσ+, σz

]
−
[
a†σ−, σz

])
− ~ωA

4

(
g

∆

)2 [
aσ+ − a†σ−,

([
aσ+, σz

]
−
[
a†σ−, σz

])]
= HA +Ha

A +Hb
A

with:

Ha
A = −~gωA

∆
(
aσ+ + a†σ−

)
(B.11)

Hb
A = −~ωA

2

(
g

∆

)2 [
aσ+ − a†σ−, aσ+ + a†σ−

]
. (B.12)

Finally for the coupling part:

H̃g = UHgU
†

= Hg +Ha
g

with:
Ha
g = ~g2

∆
[
aσ+ − a†σ−, aσ+ + a†σ−

]
. (B.13)
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Since,
Ha
R +Ha

A = ~g
∆
(
aσ+ + a†σ−

)
(ωR − ωA) = −Hg (B.14)

these three terms cancel. Moreover:

Hb
R +Hb

A = ~
ωR − ωA

2

(
g

∆

)2 [
aσ+ − a†σ−, aσ+ + a†σ−

]
= −

Ha
g

2 (B.15)

so that :

H̃ −HR −HA =
Ha
g

2 (B.16)

= ~g2

2∆
[
aσ+ − a†σ−, aσ+ + a†σ−

]
(B.17)

= ~g2

∆
[
a†σ−, aσ+

]
(B.18)

= ~g2

∆
(
a†aσz + σ+σ−

)
(B.19)

Finally, using σ+σ− = 1
2(σz+1), and removing an energy offset, one obtains:

H̃ = ~
(
ωR + g2

∆σz

)
a†a− ~

2

(
ωA −

g2

∆

)
σz (B.20)

which is simply interpreted in terms of a shift of the resonator that depends
on the state of the two-level system and a shift of the two-level system
depending on the number of photons in the resonator.
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Appendix C

Coupling between two
conduction channels

In the Landauer-Büttiker formalism, transport between reservoirs occurs
through independent transmission channels. In our experiments, due to the
finite loop inductance and the relevance of the superconducting phase, the
two electrodes on both sides of the atomic contact are not good “reservoirs”,
and the channels are not strictly independent. As shown in chapter 2, the
phase across the contact, which is shared by all the channels, depends on
the loop current. This current depends on the state of all the Andreev dots
associated to all the channels. If the current in one channel is modified (be-
cause the Andreev dot changes state), the phase across the contact changes
for all dots, leading to an effective coupling between the channels. The
coupling between two Andreev dots in a few-atoms contact is evidenced in
the high power spectroscopy shown in Fig. C.1 (see Fig. C.2, for the iden-
tification of the transitions). Several subharmonics of the transitions are
visible as well as a splitting of the spectroscopy lines. The splitting corre-
sponds to the fact that the phase across the contact can take several values
at a given applied magnetic field, as explained above. When the applied
flux corresponds to half a flux quantum, the phase across the contact is
δ = π and the current is zero in all states, therefore this splitting vanishes.
The dynamical coupling between channels labelled 1 and 2 is observed as a
spectroscopy line at f1 = fA1 + fA2 (in the upper part of the figure), which
corresponds to a simultaneous excitation of two Andreev qubits. Since the

165



C – Coupling between two conduction channels

current vanishes at δ = π, this coupling disappear close to this point.
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Figure C.1: High-power two-tone spectroscopy of a few-atom contact. Four
Andreev transitions are visible, as well as subharmonics due to multiphoton
excitations. See Fig. C.2 for the identification of the lines.
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Figure C.2: Same data as in Fig. C.1, along with fits of the visible tran-
sitions. Full lines: Andreev qubit transitions, labelled fA1 to fA4. Dashed
lines: multiphoton excitations of the Andreev transitions with the same
color code as for the direct excitations. The long dash corresponds to
2-photons excitations, the shorter dash to 3-photons excitations and the
shortest dash to the 4-photons excitations. The dot-dash line corresponds
to the combined excitation of the Andreev qubits supported by two channels
which have the highest transmissions, 1 and 2.

167



168



Appendix D

Evidence for the coupling of
Andreev qubits with a
mechanical mode

As shown in chapter 4, transmission fluctuations are the main source of
dephasing of the Andreev qubit at its optimal point. The transmission fluc-
tuations observed in that chapter were assumed to be the result of stochastic
processes and therefore incoherent. Here, we show data suggesting that the
Andreev transition is also coupled to coherent modes, which could be me-
chanical modes associated to the suspended bridge.

In several experiments, most of them on the Vespel chip, sidebands
were observed in the spectroscopy of Andreev qubits, as shown in Fig. D.1.
Sidebands at fA ± f0 signal the coupling between the qubit and another
degree of freedom with frequency f0. In the data of Fig. D.1, a single pair
of sidebands is observed, corresponding to a frequency of 80 MHz.

The detuning of these sidebands varies slightly with the contact but
remains close to 80 MHz. However, the strength of the coupling and the
number of sidebands observed varies strongly from contact to contact. Up to
three pairs of sidebands were observed, as shown in Fig. D.2a and Fig. D.2b.
The detuning of the sidebands with respect to the central Andreev transition
is not affected by the phase across the contact (see left panel of Fig. 4.11).
This suggests that the degree of freedom responsible for the sidebands cou-
ples through the transmission of the contact and is only slightly affected by
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Figure D.1: Spectroscopy of an Andreev qubit at δ = π: population of the
excited state as a function of the drive frequency f1. One pair of sidebands
is visible, with a detuning of 80 MHz. Dots: experimental data. Full lines:
lorentzian fits.

the contact. We interpret these data as the coupling between the Andreev
transition and the bridge modes. These modes induce strain fluctuations
on the atomic contact, which lead to transmission fluctuations [34]. Be-
cause the stiffness of a contact may vary with its microscopic arrangement,
it affects slightly the frequencies of the bridge modes. Moreover this micro-
scopic configuration could also be responsible of the varying sensitivity of
the Andreev transition to the bridge mode.

We now derive a mechanical description of the suspended bridge sup-
porting the contact in order to estimate the mode frequencies of the bridge.
In a rough approximation, the bridge is modelled as a doubly clamped
beam of constant section. Following Ref. [100], the eigenfrequencies fMn of
the flexural modes of the beam are given by the Euler-Bernouilly theory:

fMn = 1
2π

√
EIy
ρA

(
γn
l

)2
, (D.1)

where E is the Young modulus of the material constituting the beam, ρ its
density, Iy is the bending moment of the beam along the bending axis, A the
beam cross-section area, and l its length. The γn coefficients are constants
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Figure D.2: Spectroscopy of the Andreev transition shown for two different
contacts. a) Spectroscopy line in terms of population of the excited state.
3 pairs of sidebands are clearly visible at the following detunings: 56 MHz,
84 MHz, and 150 MHz. b) Spectroscopy line measured using the average of
the I quadrature. 2 pairs of sidebands are clearly observed at detunings of:
56 MHz and 90 MHz. Note the asymmetry on the height of the sidebands.

that can be calculated numerically1 : γ1 ≈ 4.73, γ2 ≈ 7.85, γ3 ≈ 11.0, ....
The other parameters of our model are summed up in Table D.1:

E 6.9× 1010 Pa
ρ 2.7× 103 kg/m3

Iy 8.3× 10−29 m4

A 10−13 m2

l 2.5× 10−6 m

Table D.1

The first flexural mode of such a beam is at a frequency fM1 = 83 MHz,
which is of the same order of magnitude as the modes observed here. It
is therefore likely that the sidebands found in the data are associated with
the mechanical modes of the suspended bridge. A better modeling of the

1These coefficients[100] are solutions of the equation cos (γn) cosh (γn) − 1 = 0 which
arises from the boundary conditions of the problem
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D – Evidence for the coupling of Andreev qubits with a mechanical mode

bridge would be needed to take into account the triangular shape of the
beam, the elasticity associated with the one-atom contact, and the actual
boundary conditions of the system. Experimentally, further work is needed
to find out for which bridge geometries the sidebands are observed, and if
the suspended length of the bridge has an effect on the frequency of the
sidebands.
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Appendix E

Qutip code for simulating
3-tone spectroscopy

We here present as an exemple the Python code used to obtain the data
shown in Fig. 5.9 in chapter 5, which makes use of the Qutip package.

# -*- coding: utf-8 -*-
"""
Created on Mon 11 04 2016
@author: cjanvier
"""
# importation of the toolboxes
from qutip import* # get qutip
from matplotlib.pyplot import * # get matplotlib if you want to plot something
import time, itertools # used to measure the duration of a calculation
from numpy import * # numpy for everything else

# INTRODUCTION
#
# We consider the system made of:
# - a harmonic oscillator with frequency w0, and anihilation operator a,
# and superrelaxation operator sqrt(kappa) a
# - a two level system (2LS) with frequencies wge = w0 + Delta, anihilation
# opearator sm, and superrelaxation operator sqrt(gamma1a) sm;
#
# The resonator is driven at wd=w0+delta (not to be confused with Delta)
# along a+a.dag
#
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E – Qutip code for simulating 3-tone spectroscopy

# The qubit is driven at wdq=wge - beta in sx (sigma x)
#
# All parameters are expressed in w0 units => w0=1 and (hbar =1).
#
# The goal is to obtain the steady state of the system under this double drive
# and relaxation of both subsystems
#
# We use the dispersive, time independant Jaynes-Cummings hamiltonian.

#-------System parameters (all frequencies and rates in f0 units) --------------
f0 = 10135.7 # frequency of the bare resonator in MHz
fg=10137.4 # frequency of the resonator when the qubit i

# s in the ground state in MHz
fq = 6547. # frequency of the Andreev transition in MHz

Delta0 = -(f0-fq)/f0 # Delta0=chi/f0
g0 = sqrt((f0-fg)*Delta0*f0)/f0 # Coupling parameter
betaCenter=g0**2/Delta0 # The frequency of the qubit is shifted

# by chi without photons

kapaR = 0.45e-3 # cavity energy relaxation rate kappa in units of f0
gamma1 = (1/8.)/f0 # 2LS relaxation rate , T1=8µs
gamma2 = (1/0.072)/f0 # Dephasing rate of the qubit, T2*=72ns
drive0 = 1.*kapaR # reduced drive of the cavity yielding 1 phton inside

# a harmonic oscillator
driveq0= 1.*gamma2 # reduced drive of the qubit
gamma_temp=0.000002 # rate of thermal excitation. Adjusted to fit the data.
#------------------------------------------------------------------------------

#--------------------------------------- Define the operators -----------------
def aOp(N): return tensor(destroy(N),qeye(2)) # a in the full hilbert space
def nOp(N): return aOp(N).dag()*aOp(N) # n in the full hilbert space
#------------------------------------------------------------------------------

#-------------------------- operators sm, sx, sz ------------------------------
# sigma_m in the full hilbert space
def smOp(N): return tensor(qeye(N),destroy(2))
# sigmax in the full hilbert space
def sxOp(N): return tensor(qeye(N),sigmax())
# sigmaz in the full hilbert space

def szOp(N): return tensor(qeye(N),sigmaz())
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# at.a.sigmaz
def sznOp(N): return tensor(destroy(N).dag()*destroy(N),sigmaz())
#------------------------------------------------------------------------------

#-------------- Dispersive Hamiltonian (see introduction above) ---------------
def H0(N,Delta,beta,g,delta):

return beta/2*szOp(N) + delta*nOp(N) + g**2/Delta*sznOp(N)
#------------------------------------------------------------------------------

#-------------------- Hamiltonian with the driving part -----------------------
def H(N,Delta,beta,g,delta,ad0,adq):

return H0(N,Delta,beta,g,delta) + ad0/2*(aOp(N)+aOp(N).dag()) +adq/2*sxOp(N)
#------------------------------------------------------------------------------

#--- ------------------------collapses operators ------------------------------
def c_ops(N):

return [sqrt(gamma)*decayOp
for gamma,decayOp in zip([kapaR,gamma1,gamma2,gamma_temp],
[aOp(N),smOp(N),smOp(N).dag()*smOp(N),sxOp(N)]) if gamma!=0 ]

#------------------------------------------------------------------------------
#------------------------------------------------------------------------------

#-------------------------- Simulation parameters -----------------------------
# list of frequencies of the cavity drive to which the calculation is performed
# here the calculation is done from 10.13GHz to 10.133GHz with a step of 250kHz
deltas = arange((10130-f0),(10133-f0),0.25)/f0
# list of frequencies of the qubit drive to which the calculation is performed
# here the caclulation is done from fq to 5.647Ghz with a step of 50MHz
betas = betaCenter+arange(0,(fq-5647),50)/f0

# List of powers of the drive cavity to which the calculation is performed
drivek0s = array([7.7*1.75]) # here only one power
# List of powers of the drive qubit to which the calculation is performed
drivekqs = array([.6]) # here only one power

N0=25 # SIZE OF THE PHOTON SPACE need 64 bits to go above 120 photons
#------------------------------------------------------------------------------

#---------------------------------- Simulation loops --------------------------
it=0 # increment initialisation (for file naming)
doSavePofn=False # Save the Pofn only for simulations at 1 cavity drive frequ-

# ency. It returns N0.len(betas) percavity drive frequency

175



E – Qutip code for simulating 3-tone spectroscopy

for delta in deltas: # for each cavity drive frequency

#-------------- (re-)initialize the list of P(n) --------------------------
pofnListsg=zeros([len(betas),N0]) # P(n) when the qubit is in g
pofnListse=zeros([len(betas),N0]) # P(n) when the qubit is in e
#--------------------------------------------------------------------------

#--------- make the file name----------------------------------------------
pre=’C:\Myfolder/simu_’
num=’%05d’ %(it) # get the right number of file
fin=’.txt’ #postfix
filename=pre+num+fin # combine everything
#--------------------------------------------------------------------------

for k0,kq in zip(drivek0s,drivekqs): # for each powers in qubit and drive
popEx=[] # initialize the list used to store the population of e
i=0 # increment initialisation (used to adress properly the lists)

for beta in betas: # for each frequency of the qubit drive

# calculate the steady state of the system with the
# hamiltonian defined before and the collapse operators:
rho_ss = steadystate(H(N0,Delta0,beta,g0,delta,k0*drive0,
kq*driveq0), c_ops(N0), method = ’direct’, use_precond = True)
#------------------------------------------------------------------

#--------get the diagonal elements of the density matrix: ---------
diago=rho_ss.diag()
#------------------------------------------------------------------

#--get the expected value of the population of the excited state --
pex=expect(0.5*(qeye(2)-sigmaz()),rho_ss.ptrace(1))
#------------------------------------------------------------------

#--- store the value obtained at this frequency in the list-------
popEx.append(pex)
#------------------------------------------------------------------

if doSavePofn==True: # if one wants to save P(n)

#--------------- store the P(n) for this resonator frequency---
pofn_tot=rho_ss.diag()
# take the population of the resonator when qubit is in g
pofnListsg[i,0:N0]=pofn_tot[0:2*N0:2]
# take the population of the resonator when qubit is in e
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pofnListse[i,0:N0]=pofn_tot[1:2*N0:2]
#--------------------------------------------------------------

#------------- more naming -----------------
numb=’%05d’ %(i+1)
inter=’Pofn’
pofname=pre+num+inter+numb+fin
#-------------------------------------------

#Save P(n)
savetxt(pofname, c_[pofnListsg[i,0:N0], pofnListse[i,0:N0]],
delimiter=’\t’, newline=’\n’)

i+=1 # increment i

it+=1
# save the excited state population for each cavity drive frequency.
savetxt(filename,c_[(fq-betas*f0)/1000,popEx], delimiter=’\t’, newline=’\n’)

#------------------------------------------------------------------------------
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Appendix F

Processing of the continuous
measurement traces

F.1 Hidden Markov Models

In order to process the data from the continuous measurements presented
in chapter 6, we used an algorithm [53] relying on hidden Markov models
(HMM) [142]. The goal of this appendix is to present a brief introduction
in HMM inspired by Refs. [142, 143].

A HMM describes the dynamics of a system like the Andreev dot as a
Markov process. The key hypothesis of a Markov process is that there is no
memory in the system: the rate of jumping to a given state at a given time
is only determined by the state in which the system is. As a consequence,
the system dynamics is governed by a given set of probabilities to jump
from one to another, see Fig. F.1.

The term “hidden” in Hidden Markov Models refers to situations where
the system is observed through a second random process. As an example,
in Fig. F.1, we consider a 3-states Markov model with 5 observable states.
The system can jump between the states S1, S2, and S3 with probabilities
ai,j . If the system is in state S1, the observation will either be V1 or
V2 with probabilities b1(V 1) or b1(V 2) respectively. In our experimental
situation, the states are discrete (g, e and o), but the observable is a paire
of continuous ones: the voltages on the I and Q quadratures, with a normal
distribution due to noise.
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Figure F.1: Exemple of a hidden Markov model. Three states are available
to the system: S1, S2, S3. Five observables are available: V1, V2, V3,
V4 and V5. Note that one variable can correspond to several states, for
exemple V2 can be observed if the system is in S1 or S2.

In the language of HMM, the observable variables are called ’alphabet’,
and the model is defined by the number of states, the probabilities linking
them, the probabilities linking them to the alphabet and an initial state.
An observation is the list of values taken by the observable variables in
time. Using conditional probabilities it is possible to compute the most
likely state of a system given an observation and a model, but it is also
possible from an observation and knowing the number of states to estimate
the most probable model according to the observation. It is this last point
that is relevant for us. It makes use of the Baum-Welsch algorithm [142].

We now describe the Baum-Welsch algorithm in the case of a discrete
alphabet ofK values for more simplicity. We assume that we have a Markov
process with N = 3 states and that the state of the process is described by
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a discrete random variable Xt. We define the transition matrix:

A = {aij} = P (Xt = j|Xt−1 = i). (F.1)

The matrix element aij is therefore the probability for the system to jump
to the state j at time t if it was at time t−1 in the state i. The observations
are described by a second discrete random variable Yt. We define the K×N
observation matrix:

B = {bj(yt)} = P (Yt = yt|Xt = j). (F.2)

Each element of this matrix is the probability of observing the value yt of
Yt if the system is in state j. Finally we define the initial state by a 1×N
vector with coefficients:

πi = P (X1 = i). (F.3)

The goal of the algorithm is to calculate the model θ = {A,B, π} that
maximizes the probability P (θ|O) where O = {y1, ..., yT } is the set of T
observations of Yt, O = {Yt}. The algorithm starts with an initial model
θ0, which can be chosen randomly or estimated with the prior knowledge
on the system. The algorithm then computes two estimators that will then
be used to update the model. The forward estimator is defined by αi(t) =
P (Y1 = y1, ..., Yt = yt, Xt = i|θ0), that is to say the probability to have the
series of observation {y1, ..., yt} and that the system is in state i, given the
model θ0. This estimator can be calculated iteratively using the data:

αj(t+ 1) = bj(yt+1)
N∑
i=1

αi(t)aij , (F.4)

and αi(1) = πibi(y1). The second estimator calculates the same proba-
bility but going backward in the data, βi(t) = P (Yt+1 = yt+1, ..., YT =
yT , Xt+1 = i|θ0), that is to say the probability to have the series of obser-
vation {yt+1, ..., yT } and that the system is in state i, given the model θ0.
This estimator can be calculated iteratively using the data:

βj(t) = bj(yt+1)
N∑
i=1

βi(t+ 1)aij , (F.5)

and βj(T ) = 1.
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It is now possible to re-estimate the parameters of the model. For his
purpose two temporary variables are used. The first one is the probability
of the system of being in state i at a time t given all the observations and
the model γi(t) = P (Xt = i|O, θ0). It is calculated from β and α using
Bayes’ theorem:

γi(t) = αi(t)βi(t)∑N
j=1 αj(t)βj(t)

. (F.6)

Likewise we define ξi,j(t) = P (Xt = i,Xt+1 = j|O, θ0), which is the proba-
bility of the state being in state i at a time t and in state j at a time t+ 1
given the observations O and θ0. Then the new model θ∗ is given by:

• π∗i = P (X1 = i|O, θ0) = γi(1)

• a∗ij =
∑T−1

t=1 ξij(t)∑T−1
t=1 γi(t)

• b∗i (vk) =
∑T

t=1,yt=vk
γi(t)∑T

t=1 γi(t)

This model can then be used as the new input model for the algorithm.
The model is therefore calculated iteratively until a convergence criterion
is reached.

F.2 SMART
In the case of our data the Markov model has a three states. The observables
are the measured voltage on I and Q which are continuous observables
with Gaussian distributions. The SMART toolbox [53], which is written
in MATLAB, performs the Baum-Welch algorithm described above for this
model. The workflow of the data processing is presented in Fig. F.2.

The data is first smoothed to reduce the noise, and undersampled to
remove correlation between points which would lead to the breakdown of
the Markov model hypothesis. The data is then directly processed by the
SMART toolbox using the “TrainPostDec” function. This function takes a
set of parameters such as the number of states (3), the number of channels
(here 2: I and Q), the distribution of the noise in the observables, and a
convergence threshold. This function returns the matrix A and the recon-
structed state of the system as a function of time, the position and size of
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Experiment
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Parameters:
-Nstates=3
-Nchannels=2
-Gaussian noise
-Convergence 
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 trajectory,
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Figure F.2: Workflow of the data processing of the continuous monitoring
of the Andreev dot. All steps presented here are done in Matlab.

the clusters, etc. In order to obtain the rates we use the function “DiscTo-
ContA” of the toolbox. Finally, the states are identified using the protocol
described in the main text.
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Appendix G

Synthèse en français

G.1 Le degré de liberté interne des jonctions Joseph-
son

Bien que limités à des applications de niches, les circuits supraconducteurs
sont aujourd’hui utilisés dans domaines variés allant de l’astrophysique à
la médecine. Le développement de nouveaux types de circuits permettra
peut-être à l’avenir d’obtenir des supercalculateurs ayant des consomma-
tions énergétiques plus faibles en utilisant la technologie RSFQ [1], et même
de créer un ordinateur quantique [2]. Tous ces circuits, à l’exception des
détecteurs à inductance cinétique [4], ainsi que des détecteurs de photons
uniques supraconducteurs [5], reposent sur l’utilisation de l’effet Josephson.

La première description théorique de cet effet a été proposée par Brian
Josephson en 1962 [6]. Cette théorie prédit qu’un courant non-dissipatif
de paires de Cooper peut circuler à travers une jonction constituée d’une
barrière isolante entre deux supraconducteurs, lorsque cette dernière est
soumise à une différence de phase. Par ailleurs si une tension est appliquée
aux bornes de cette jonction le supercourant oscille dans le temps. Ad-
mirablement, la richesse de cet effet tient dans deux équations, les équations
Josephson.

Si la théorie de Josephson a été établie pour des jonctions tunnel, elle
se généralise à toutes les jonctions constituées d’un lien faible entre deux
électrodes supraconductrices. Ce lien faible peut être de nature variée :

185



G – Synthèse en français

nanofil métallique ou semi-conducteur, couche magnétique, etc. à la con-
dition qu’il soit suffisamment court pour que les électrons conservent leur
cohérence quantique lors de leur passage à travers ce lien faible. La théorie
mésoscopique de l’effet Josephson [7, 8] a permis d’unifier la description de
l’effet Josephson en traitant tous les liens faibles comme une assemblée de
canaux de transport. Cette théorie montre que l’effet Josephson est plus
riche que ce que laisse penser la théorie de Josephson. En effet, dans le
cadre de cette description le courant Josephson est porté par deux états
de quasiparticules localisés au niveau du lien faible. Ces “états d’Andreev”
ont une énergie plus faible que l’énergie de gap des électrodes et qui dépend
de la différence de phase appliquée sur la jonction et de la probabilité de
transmission des électrons à travers le lien faible. Dans le cas simple où
le lien faible est constitué d’un seul canal de conduction de longueur faible
comparée à la longueur de cohérence supraconductrice, les états d’Andreev
se réduisent à un système à deux niveaux. Le lien entre ces états et le su-
percourant dans les jonctions Josephson a été étudié en détail en utilisant
des contacts à un seul atome entre deux supraconducteurs [9, 10, 11, 12].

Le doublet d’Andreev constitue un degré de liberté interne commun à
tous les liens faibles Josephson, qui pourrait être utilisé comme un nou-
veau type de bit quantique supraconducteur [13, 14, 15]. Il a été sondé
par spectroscopie dans les contacts atomiques [16], et les nanotubes de car-
bone [17, 18]. Enfin, des mesures de la susceptibilité à haute fréquence
d’anneaux supraconducteurs contenant un lien faible en métal normal ont
mis en évidence la dynamique de ces états [19, 20].

Le but de cette thèse a été d’observer et de quantifier les propriétés de
cohérence quantique du doublet d’Andreev. Pour y parvenir, il nous a fallu
combiner la technique des jonctions à cassure contrôlées mécaniquement
(MCBJ) [21], avec les techniques issues de l’électrodynamique quantique
des circuits (cQED) [23]. Les technique des MCBJ nous a permis d’obtenir
des lien faibles courts ne contenant que quelques canaux de conduction.
Les techniques de cQED nous ont, quant à elles, permis d’isoler le doublet
d’Andreev ainsi que de mesurer et de manipuler son état quantique.
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G.2 Du doublet d’Andreev au qubit d’Andreev
Lorsqu’une différence de phase est appliquée aux bornes d’un lien faible
Josephson, la supraconductivité est frustrée localement. En réaction, des
niveaux d’énergie localisés apparaissent au sein du gap supraconducteur.
Lorsque le lien faible est constitué d’un unique canal de conduction court, un
unique niveau apparaît dans le spectre d’excitation à une énergie EA < ∆sc,
l’énergie d’Andreev :

EA = ∆sc

√
1− τ sin2(δ/2), (G.1)

où τ est la probabilité de transmission d’un électron à travers le canal
de conduction lorsqu’il est dans l’état normal. ∆sc est l’énergie de gap
du supraconducteur, et δ la différence de phase aux bornes du lien faible.
Puisque ce niveau d’énergie se situe à l’intérieur du gap du supraconducteur,
il ne peut pas se propager au sein des électrodes qui contactent le lien
faible : ce niveau d’énergie est donc bien localisé. Par analogie avec les
circuits semi-conducteurs où les électrons sont confinés à l’aide de barrières
électrostatiques au sein de “boîtes quantiques”, le lien faible peut ici être vu
comme une “ boîte d’Andreev ” (“Andreev dot”, [31]). Cette image permet
de rendre compte de la physique aux énergies plus basses que celle du gap
des électrodes, mais il faut noter que les états ayant des énergies supérieures
au gap sont délocalisés à travers le lien faible. Le gradient de la phase ne
localise que les états situés sous le gap.

Le niveau d’énergie d’Andreev de la boite d’Andreev peut être occupé
par 0, 1, ou 2 quasi-particules, ce qui correspond en prenant en compte le
spin, à 4 états, voir Fig. G.1:

• L’état fondamental |g〉 sans quasi-particule dans le niveau d’Andreev;

• Deux “états impairs” |o ↑〉 et |o ↓〉 avec une seule quasi-particule, de
spin vers le haut ou vers le bas, dans le niveau d’Andreev;

• L’état excité pair (ou simplement état excité dans la suite de ce
texte) |e〉 avec deux quasi-particules de spin opposés dans le niveau
d’Andreev.

Zazunov et al. [13] ont proposé d’utiliser le système à deux niveaux
constitué des deux états pairs |g〉 et |e〉 comme base pour un nouveau type
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Figure G.1: Spectre d’excitation à basse énergie d’une boite d’Andreev
pour un lien faible court contenant un seul canal de conduction. Les états
pairs sont représentés en bleu (|g〉) et en rouge (|e〉) et correspondent à
l’état d’une seule paire de Cooper localisée au niveau du lien faible. Ces
états constituent le “ qubit d’Andreev ”. Les deux états impairs, en vert,
correspondent à une situation ou une seule quasi-particule occupe la boite.
Par ailleurs, la densité d’états au dessus du gap est aussi affectée [32].

de qubit supraconducteur. Ce qubit se différencie des autres qubits supra-
conducteurs par deux aspects :

• Il s’agit d’un qubit basé sur une excitation microscopique. Les autres
qubits supraconducteurs reposent sur des modes électromagnétiques
de circuits contenant une ou plusieurs jonctions Josephson;

• Il s’agit d’un véritable système à deux niveaux. Les autres qubits
supraconducteurs se comportent comme des oscillateurs anharmoniques:
la jonction Josephson introduit la non-linéarité qui crée l’anharmonicité.
Dans ces systèmes l’anharmonicité permet de réduire l’oscillateur à un
système à deux niveaux, mais les niveaux supérieurs peuvent néan-
moins être adressés. Dans le cas du qubit d’Andreev, la première
excitation après celle du qubit consiste à exciter une quasi-particule
dans le continuum et se fait à une énergie proche de l’énergie de gap.

G.3 Réalisation d’une boîte d’Andreev

Pour cette thèse, le modèle présenté ci-dessus a été implémenté à l’aide
de contacts atomiques obtenus entre deux électrodes supraconductrices en
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aluminium. Il a été prouvé expérimentalement [34] que ce type de con-
tacts ne contient que quelques canaux de conduction avec des transmissions
pouvant dépasser 0.99. Plusieurs techniques existent pour obtenir de tels
contacts [35, 36]. Pour les travaux présentés ici, les contacts atomiques ont
été obtenus à l’aide de jonctions à cassures microfabriquées et contrôlées
mécaniquement [37, 38, 21]. Ces jonctions utilisent un pont suspendu mi-
crofabriqué sur un substrat flexible (voir Fig. G.2). Lorsque le substrat
est plié, le pont s’allonge et fini par casser. Un réglage fin du pliage du
substrat permet d’obtenir un contact à un seul atome. Par ailleurs il a été
montré qu’une variation de contrainte sur le contact entraîne une variation
de la transmission de ce dernier [34]. Cet effet est utilisé affin d’obtenir de
multiples qubits d’Andreev avec des énergies de transition différentes.

Figure G.2: Vue de côté d’une jonction à cassure contrôlée mécaniquement.
Le substrat de l’échantillon (en marron) est fermement fixé à gauche, et en
contact avec un pousseur à droite. Le pousseur peut monter et descendre
afin d’ajuster le pliage du substrat. Sur le substrat le pont suspendu avec sa
constriction. Lorsque le substrat est plié, le pont s’allonge, et l’élongation
se concentre au niveau de la constriction. Le pont fini par casser mais peut
être reformé (si réalisé sous vide) pour un réglage fin de la transmission.

G.4 Une architecture de cQED pour mesurer une
boîte d’Andreev

L’électrodynamique quantique des circuits (cQED) est aujourd’hui large-
ment utilisée pour mesurer et manipuler l’état de qubits supraconducteurs.
L’architecture typique de ces circuits consiste en un qubit couplé à un ré-
sonateur micro-onde. La fréquence de résonance du résonateur dépend alors
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de l’état du qubit. Ces variations de fréquence sont facilement détectées en
mesurant la réponse du résonateur à fréquence fixe en amplitude et en phase.
La description théorique de cette architecture a été fournie par Blais et al.
[23] pour les qubits supraconducteurs et adaptée aux boites d’Andreev par
Romero et al. [39]. Ce dernier a considéré le cas d’un résonateur demi-onde
couplé galvaniquement au qubit. Pour nos expériences, en revanche, nous
avons opté pour un résonateur quart-d’onde couplé inductivement au qubit
d’Andreev. L’ensemble du circuit est réalisé sur un substrat plastique (Kap-
ton) pour être compatible avec la technique de la MCBJ. Une micrographie
est présentée Fig. G.3.

100µm

Figure G.3: Micrographie de l’un des échantillons utilisés dans ce travail.
Les régions sombres sont isolantes, les régions claires supraconductrices. Le
résonateur est constitué d’une ligne de transmission supraconductrice (Nb)
en méandre qui forme un résonateur quart-d’onde au bout duquel est placé
une boucle supraconductrice (Al) contenant la jonction à cassure (en haut
à gauche). Le résonateur est couplé à la ligne de mesure par une capacité
interdigitée (en bas au centre).

Le couplage entre le résonateur et le qubit est caractérisé à l’aide d’une
spectroscopie à un ton, c’est à dire utilisant un seul signal micro-onde pour
l’excitation du qubit et la mesure du résonateur. Le coefficient de réflexion
du résonateur est mesuré en fonction de la différence de phase supraconduc-
trice δ aux bornes du lien faible. Lorsque la fréquence de transition du qubit

190



G.4 – Une architecture de cQED pour mesurer une boîte d’Andreev

devient résonante avec celle du résonateur un anticroisement est observé,
voir Fig. G.4. Le fit de cet anticroisement permet d’obtenir la valeur du
couplage entre le résonateur et le qubit, qui est ici de 80 MHz. La signature
du résonateur non-couplé est aussi visible au milieu de cet anticroisement:
ceci constitue la première indiction que la boîte d’Andreev est souvent dans
son état impair qui n’est pas couplé au résonateur.
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Figure G.4: Amplitude du coefficient de réflexion S11 du résonateur en
fonction de la différence de phase δ aux bornes du contact atomique et
de la fréquence du signal micro-onde utilisé pour sonder le résonateur.
La fréquence de transition du qubit d’Andreev isolé est représentée par
une ligne noire qui apparaît verticale à cette échelle. L’anticroisement est
fitté et est représenté avec une ligne pointillée rouge. La fréquence du ré-
sonateur seul est aussi observée à toutes les phases ce qui indique que la
boîte d’Andreev est souvent dans son état impair.

Lorsque le qubit est désaccordé avec le résonateur, son état peut être
déduit grâce au déplacement en fréquence du résonateur. En pratique, on
envoie vers le résonateur des pulses micro-onde à la fréquence du résonateur
isolé. Les amplitudes des composantes en phase (I) et en quadrature (Q)
du signal réfléchi sont ensuite mesurés et peuvent être représentées pour
chaque pulse par un point dans le plan (I,Q). Un histogramme de ces points
réalisé pour ≈ 104 pulses est présenté Fig. G.5. On observe que les points
se rassemblent en trois groupes qui peuvent être associés à chacun des états
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occupés par la boîte d’Andreev. Le fait que ces groupes soient nettement

-0.2

-0.1

0.0

Q
 (

V
)

-0.10 0.00

I (V)

15

10

5

0

C
ounts

g

e o

Figure G.5: Histogramme dans le plan (I,Q) du signal réfléchi par le ré-
sonateur. Les données se regroupent en trois “nuages” bien séparés qui
peuvent être attribués à chacun des états de la boîte d’Andreev.

séparés est remarquable car ce résultat a été obtenu sans amplificateur limité
quantiquement ce qui est généralement le cas dans les expériences de qubits
supraconducteurs. Le nombre de points dans chaque groupe normalisé par
le nombre de mesures donne la population de chaque état. On observe
notamment que l’état impair est occupé environ la moitié du temps.

Ce type de mesure pulsée est ensuite utilisé afin de réaliser la spectro-
scopie de la transition d’Andreev. La figure G.6 présente l’amplitude du
signal réfléchi par le résonateur en fonction de la différence de phase aux
bornes du lien faible ainsi que de la fréquence d’un pulse d’excitation envoyé
vers le résonateur juste avant le pulse de mesure. La transition d’Andreev
est clairement observée et sa dépendance en phase est en accord quantitatif
avec la prédiction théorique : fA = 2EA/h, avec EA donnée par Eq. G.1. À
δ = π, la raie spectroscopique a une largeur de 16 MHz, ce qui est plus fin
de deux ordres de grandeur comparé aux résultats précédemment rapportés
[16].

G.5 Caractériser la cohérence du qubit d’Andreev
La principale contribution de cette thèse est la démonstration expérimen-
tale de la cohérence du qubit d’Andreev. Figure G.7 montre les résultats
obtenus sur l’un des qubits d’Andreev que nous avons pu mesurer. Des
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Figure G.6: Spectroscopie deux-tons de la transition d’Andreev. La ligne
pointillée est un fit utilisant Eq. G.1 avec une transmission τ = 0.99217.

oscillations de Rabi (panneau A) sont observées en mesurant les popula-
tions des différents états de la boîte après un pulse d’excitation de longueur
variable. L’observation de ces oscillations a constitué la première signature
de la cohérence quantique du qubit. La décroissance de ces oscillations est
liée au temps de vie de l’état excité T1, ainsi qu’au temps caractéristique
de déphasage du qubit T ∗2 . Afin de quantifier précisément chaque contribu-
tion, d’autres expériences sont nécessaires. Le temps de vie est mesuré à
l’aide d’un pulse d’excitation appelé pulse π dont la durée est choisie afin
d’inverser les populations de |g〉 et |e〉. Les populations sont mesurées après
un délai variable. On observe une décroissance exponentielle de la popula-
tion de l’état excité en fonction de ce délai, avec un temps caractéristique
T1 ≈ 1.3 µs, pour le qubit présenté figure G.7. Le temps de déphasage
est quant à lui mesuré à l’aide d’une séquence de Ramsey qui est consti-
tuée de deux pulses π/2 (des demi-pulses π) séparés par un délai variable.
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Figure G.7: Caractérisation d’un qubit d’Andreev obtenu avec un contact
atomique avec une transmission τ = 0.99806. Les points verts représentent
la population des états impairs, les points bleus la population de l’état
fondamental et les points rouges la population de l’état excité de la boîte.
La séquence de pulses associée à chaque expérience est représentée sous
chaque figure avec le pulse d’excitation en magenta et le pulse de mesure
en marron. (A) Oscillations de Rabi; (B) Relaxation de l’état excité; (C)
Franges de Ramsey (noter la décroissance gaussienne des oscillations); (D)
Écho de Hahn. Ce jeu de données montre le plus long temps de déphasage
(temps Ramsey) qui ait été observé pendant cette thèse.

On observe alors des oscillations avec une enveloppe gaussienne ayant un
temps caractéristique T ∗2 qui varie de 10 ns à 200 ns (ici 188 ns). Afin de
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mieux caractériser le bruit à l’origine du déphasage du qubit d’Andreev on
utilise une séquence dite "d’écho de Hahn" qui consiste en une séquence de
Ramsey au milieu de laquelle est placé un pulse π. Cette séquence a pour
propriété de filtrer le bruit dont la fréquence est inférieure à 1/TE où TE est
l’intervalle de temps entre les deux pulses π/2. On observe une décroissance
exponentielle avec un temps caractéristique nettement plus grand que pour
la séquence de Ramsey, ce temps est ici de 780 ns. On en déduit que le bruit
à l’origine du déphasage du qubit d’Andreev a une fréquence caractéristique
plus basse que ≈ 2 MHz. Ce bruit est principalement dû aux fluctuations
de transmission du lien faible et est discutée en détail dans le chapitre 4.

G.6 Sonder le résonateur grâce au qubit d’Andreev

Un paramètre important pour estimer la “force” de la mesure de l’état de la
boîte d’Andreev par le résonateur est le nombre de photons présents dans ce
dernier durant la mesure [42]. Ce nombre peut être estimé en connaissant la
puissance du signal à l’entrée de la chaîne micro-onde ainsi que l’atténuation
de cette micro-onde jusqu’au résonateur. L’estimation de cette atténuation
peut cependant s’avérer délicate et peu fiable. Afin de remédier à cela, des
méthodes de calibration in situ utilisant le couplage entre le résonateur et
le qubit ont été développées [43]. Cependant ces expériences requièrent de
longs temps de cohérence pour le qubit. Dans les travaux présentés ici nous
avons montré que le nombre de photons dans le résonateur peut être estimé à
l’aide d’une spectroscopie réalisée en présence d’un deuxième signal micro-
onde à une fréquence proche de celle du résonateur pendant l’excitation
du qubit. La raie de la transition d’Andreev est fortement affectée par la
puissance et la fréquence de ce deuxième signal, comme montré figure G.8.
En régime permanent, un refroidissement ou une inversion de population du
qubit peuvent être observés. En comparant ces résultats à des simulations
il nous a été possible de remonter au nombre de photon moyen dans le
résonateur, voir chapitre 5.
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Figure G.8: Spectroscopie trois-tons en présence d’un signal d’excitation à
le fréquence du résonateur lorsque le qubit est dans son état fondamental.
Les données expérimentales sont représentées par des points et les résultats
des simulations par des lignes. Les points bleus (rouges) représentent la
population normalisée de l’état fondamental (excité) quand l’état impair
n’est pas pris en compte. Le qubit est refroidi quand le signal d’excitation
du qubit est proche de la fréquence de transition naturelle du qubit (croix);
à une fréquence plus basse qui dépend du nombre de photons dans le ré-
sonateur, la population du qubit est inversée.

G.7 Observation de sauts quantiques et de sauts
de parités dans une boîte d’Andreev

La dynamique des quasi-particules dans une boîte d’Andreev a déjà été
étudiée dans de précédents travaux utilisant des mesures de courant de
switching dans un contact atomique [44]. Cependant, l’état excité de la
boîte d’Andreev n’avait alors pas pu être observé. Par ailleurs l’influence
de quasi-particules a déjà pu être observé dans différents systèmes supra-
conducteurs [45, 46, 47, 48, 49]. Enfin il a été observé que la densité de
quasi-particules sature sous 100 mK dans l’aluminium [50, 51, 52].

Le dernier volet de cette thèse présente une série d’expériences au cours
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Figure G.9: Évolution des amplitudes en phase et en quadrature du sig-
nal réfléchi par le résonateur pendant une durée de 2.5 ms. Des sauts sont
observés et analysés en utilisant un algorithme utilisant la théorie des mod-
èles de Markov cachés. La barre en haut du graphe représente en code de
couleur l’état de la boîte en fonction du temps, tel qu’il a été calculé par
l’algorithme.

desquelles l’état de la boîte d’Andreev a été mesuré en continu grâce au
résonateur. Des sauts quantiques ainsi que des sauts de parités dus au
piégeage et dépiégeage de quasi-particules uniques dans la boîte ont pu
être identifiés dans le signal réfléchi par le résonateur. Ce signal a été
analysé en utilisant une technique basée sur les probabilités conditionnelles
connue sous le nom de modèle de Markov caché (HMM) [53, 54]. Figure G.9
montre le résultat de ces mesures continues ainsi que l’évolution de l’état
de la boîte telle que calculée par l’algorithme de HMM. Les taux extraits de
cette reconstruction permettent d’obtenir des informations sur l’influence
de la puissance du signal de mesure et de la différence de phase δ sur la
dynamique d’une boîte d’Andreev.
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Appendix H

Publications

The following pages present the preprint of the two papers published during
this thesis by the author. The published versions are available in:

• Superconducting atomic contacts inductively coupled to a microwave
resonator, Journal of Physics: Condensed Matter, Vol. 26, Number
47, p. 474208 (2014).

• Coherent manipulation of Andreev states in superconducting atomic
contacts, Science, Vol. 349, Issue 6253, p. 1199 (2015).

199

http://iopscience.iop.org/article/10.1088/0953-8984/26/47/474208/pdf
http://iopscience.iop.org/article/10.1088/0953-8984/26/47/474208/pdf
http://science.sciencemag.org/content/349/6253/1199
http://science.sciencemag.org/content/349/6253/1199


Superconducting Atomic Contacts inductively coupled
to a microwave resonator
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1Quantronics Group, Service de Physique de l’État Condensé (CNRS, URA 2464),
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Abstract. We describe and characterize a microwave setup to probe the Andreev
levels of a superconducting atomic contact. The contact is part of a superconducting
loop inductively coupled to a superconducting coplanar resonator. By monitoring the
resonator reflection coefficient close to its resonance frequency as a function of both
flux through the loop and frequency of a second tone we perform spectroscopy of the
transition between two Andreev levels of highly transmitting channels of the contact.
The results indicate how to perform coherent manipulation of these states.

Keywords : break junctions, atomic contacts, superconductivity, Josephson effect,
Andreev states.

ar
X

iv
:1

40
9.

80
65

v1
  [

co
nd

-m
at

.s
up

r-
co

n]
  2

9 
Se

p 
20

14



Superconducting Atomic Contacts inductively coupled to a microwave resonator 2

1. Introduction

Atomic-size contacts between metallic electrodes are routinely obtained using either
scanning tunneling microscopes or break-junctions [1]. From the electrical transport
point of view, atomic contacts are simple systems. First, as for any good metal, electron-
electron interactions are strongly screened. Second, because their transverse dimensions
are of the order of the Fermi wavelength (typically 0.2 nm) they accommodate only a
small number of conduction channels. Moreover, as the transmission probability τi for
electrons through each conduction channel can be adjusted and measured in-situ [2],
atomic contacts provide a test-bed to explore mesoscopic electronic transport [3, 4, 5].
In particular, when the metal is a superconductor atomic-contacts constitute elementary
Josephson weak-links that allow probing the foundations of the Josephson effect [6].

Josephson supercurrents [7] will flow through any barrier weakly coupling
two superconductors, including a tunnel junction, a constriction, a molecule, or a
normal metal [8]. Microscopically, weak links differ in their local quasiparticle excitation
spectrum. For a non-interacting system, this spectrum is determined by the length of
the weak link, compared to the superconducting coherence length, and its configuration
of conduction channels as characterized by the set of transmission probabilities {τi}.
The excitation spectrum of a short single-channel weak link of arbitrary transmission τ
contains, besides the continuum of states at energies larger than the superconducting gap
∆, a sub-gap spin-degenerate level, known as the Andreev doublet (Figure 1). Its energy
EA = ∆

√
1− τ sin2 (δ/2) [9, 10] is a 2π−periodic function of the superconducting phase

difference δ across the weak link. It is precisely this phase dependence that gives rise to
the Josephson supercurrent. In the widespread case of Josephson tunnel junctions, for
which all τi � 1, EAi ∼ ∆ and the lowest-lying excitations conserving electron parity
have a threshold energy only slightly lower than 2∆. By absorbing energy & 2∆ a pair
can be broken and two quasiparticles created at essentially the gap energy ∆, like in a
bulk superconductor.

Two different spectroscopy experiments have recently probed this excitation
spectrum for superconducting atomic contacts containing channels of high transmisssion.
The first experiment [11, 12] spotlighted the lowest energy excitation that conserves
electron parity, the “Andreev transition” of energy 2EA, which leaves two quasiparticles
in the Andreev level (red double arrow in Figure 1a). The second experiment [13]
revealed a second type of excitation, with minimum energy EA + ∆. In this case, a
localized Andreev pair is broken into one quasiparticle in the Andreev level and one in
the continuum (green arrows in Figure 1a) [14, 15, 16], thus leaving the system in an
“odd” state. These odd states had been previously detected through the spontaneous
trapping of a single out-of-equilibrium quasiparticle in the Andreev doublet [17]. This
ensemble of results firmly support the description of the Josephson effect in terms of
Andreev bound states.

If parity is conserved, the ground state and the even excited state constitute
a two-level system [18] that has been proposed as the basis for a new class of
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(a) 

EA(d) 

D
 

ground  

state 

-EA(d) 

odd states 

0 0 

even  

excited state 

EA(d) 

(b) 

2EA 

EA+D
 

-EA+D
 

Figure 1. (a) The single particle excitation spectrum for each channel of a short
Josephson weak link consists of a doubly-degenerate Andreev level at energy EA (δ) ,

and a continuum of states at energies larger than the superconducting gap ∆. Arrows
indicate transitions that can be induced by microwave absorption. The four possible
occupations of the Andreev level are shown in (b): they correspond to the ground
state (Andreev level empty), the two odd states (a single quasiparticle in the Andreev
level), and the excited pair state (doubly occupied Andreev level), with energies −EA,

0 and EA respectively.

superconducting qubits [19, 20, 21, 22]. What is particularly interesting and novel
is that in contrast with all other superconducting qubits based on Josephson junction
circuits [23] an Andreev qubit is a microscopic two-level system akin to spin qubits
in semiconducting quantum dots. Also, if one considers the odd states, despite the
absence of actual barriers the system can be viewed as a superconducting “quantum
dot” allowing manipulation of the spin degree of freedom of a single quasiparticle
[24, 25, 26]. The coherence properties of Andreev doublets [20, 22] are still to be
addressed experimentally. The relaxation time of the excited state and the dephasing
time of quantum superpositions of the two states have to be measured, understood, and
if possible, controlled.

Both relaxation and dephasing mechanisms contribute in principle to the
linewidth of the Andreev transition. In order to achieve coherent manipulation of
these Andreev states one would need much narrower lines than those observed in the
aforementioned experiments, where they were typically larger than 500MHz. This
was most probably due to large superconducting phase fluctuations imposed by the
dissipative measurement lines that were necessary to measure the current-voltage
characteristics of the contacts, a key piece of information from which the {τi} are
extracted. Here, to isolate efficiently the contact from external perturbations, we follow a
strategy that has been implemented successfully for superconducting qubits [27, 28]. The
idea is to include an atomic contact in a small superconducting loop to form an rf-SQUID
inductively coupled to the electromagnetic field of a coplanar microwave resonator. The
latter should act as a narrow-band filter to allow probing the Andreev transition at
2EA without excessive broadening. A similar setup was analyzed theoretically in [29],
although here we have in addition avoided any galvanic connection of the SQUID loop
with the rest of the circuit in order to minimize the probability of trapping out-of-
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equilibrium quasiparticles in the contact [17]. By varying the flux threading the SQUID
loop the Andreev transition frequency can be brought into resonance with the resonator
mode. This will result in hybridization of the Andreev levels and the cavity mode (see
Figure 2). The goal of the experiment presented here is to perform spectroscopy of
the Andreev levels of the contact as a first step towards coherent manipulation of the
two-level system.
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0.550.500.45

 φ/φ0

Hybridized system ( g=120MHz ) 

 Bare Andreev transition τ=0.99
 Bare resonator ( f=10.22GHz )

(b)

Figure 2. (a) An atomic rf-SQUID (in green) inductively coupled to a microwave
resonator, represented here by a LC circuit (in red). The double triangle symbol
represents the atomic contact. The spectrum of the combined system is probed
through microwave reflectometry by weakly coupling the resonator to the external
setup through a small capacitor. (b) example of the expected spectrum (blue full lines)
as a function of the magnetic flux threading the SQUID loop. The resonance frequency
of the bare resonator (red dashed line) is here 10.1 GHz; the Andreev frequency (green
dashed line) corresponds to a channel with τ = 0.991; and the SQUID-resonator
coupling energy is h × (120 MHz). The anti-crossing results from the hybridization
of the two quantum systems.

2. Experimental Methods

2.1. Sample fabrication

The samples are fabricated on a flexible 500 µm-thick Kapton substrate (εr ' 3.2,
tan δ ∼ 1 × 10−4 at 30 mK ), 50 mm in diameter. In a first step, a series of λ/4 Nb
resonators is fabricated. The substrate is then cut into 7 mm× 16 mm chips which are
individually processed afterward to fabricate the atomic SQUID.

2.1.1. The microwave resonator A 200 nm thick Nb layer sputtered over the whole
substrate is patterned via optical lithography, and then structured using reactive
ion etching into a series of quarter-wave (λ/4) resonators in a coplanar waveguide
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geometry (see Figure 3). The total length of the 36 µm wide inner conductor is
5 mm. The gap between the inner conductor and the ground plane is 18 µm. The
impedance of the coplanar waveguide is Zr ∼ 80 Ω. The resonator is coupled through
an interdigitated capacitor C ∼ 5 fF to a 50 Ω line to measure its reflection coefficient
S11 ≡ 20 log (Vout/Vin) . For the 5 fF coupling capacitor the external losses should dominate
over the internal ones (arising essentially from dielectric losses in the kapton substrate)
leading to a global quality factor on the order of 1000.

Nb

Nb

Nb

Al

5 mm

Kapton

Kapton

100 µm

Al

Kapton

1µm50 µm

(d) (a) (b) (c)

Figure 3. (a) Microphotograph of a coplanar quarter-wave Nb resonator. (b)
Zoom on the shorted-end of the microwave Nb resonator (light gray). The 36 µm-
wide center line contains some small holes intended as pinning centers for eventual
vortices trapped in the superconducting film. The aluminum loop (white), with a
suspended microbridge in one arm, is placed within the 18 µm gap (black). (c)
Scanning electron microscope image of suspended microbridge with a 300 nm-wide
constriction. The bright v-shaped ridges on both sides correspond to the border of
the underlying polyimide layer which was etched to free the bridge over ∼ 2 µm. (d)
interdigitated coupling capacitor of the resonator.

2.1.2. The atomic rf-SQUID. Using electron beam lithography we fabricate a 100 nm-
thick aluminum superconducting loop containing in one arm a micro-bridge, suspended
over approximately 2 µm by reactive ion etching of a sacrificial polyimide layer (Figure 3).
The bridge has a 300 nm constriction at the center. The width and the inner dimensions
of the loop are 5 µm and 4 µm×90 µm, respectively, which lead to a geometrical
inductance of around 100 pH , much smaller than the Josephson inductance of a typical
atomic contact (a few nH). A magnetic flux φ through the loop is then used to impose
a superconducting phase difference δ ∼= 2πφ/φ0 across the contact, where φ0 = h/2e is the
flux quantum. This allows adjusting the phase-dependent energy of the Andreev levels.

2.2. Setup

Figure 4 shows the break-junction setup. The ensemble is attached to the mixing
chamber of a dilution refrigerator. A precision screw (not shown), driven by a room
temperature dc motor, controls the vertical displacement of a spindle. A copper slab
attached to the spindle pushes the free end of the sample, which is firmly clamped on
the opposite side against a microwave SMA launcher. The elongation of the upper face
of the substrate as it bends leads eventually to the bridge rupturing. Afterward, the
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distance between the two resulting electrodes varies by a few tens of picometers for every
micrometer of vertical displacement of the pusher. The temperature of the ensemble is
below 100 mK, and the cryogenic vacuum ensures that there is no contamination of the
freshly exposed electrodes. The electrodes are gently brought back together, reforming
the bridge and creating an atomic-size contact. Contacts can be made repeatedly
in order to vary the number of channels and/or the transmission probabilities. An
important feature of the microfabricated break junctions [30] is that a given contact can
be maintained for weeks with changes in transmission below one part in a thousand.

The sample holder is enclosed in a set of three cylindrical shields (Al,
Cryoperm and Cu, innermost to outermost) attached to the mixing chamber of a dilution
refrigerator. All shields are capped at both ends. The inside diameter of the Al shield is
76 mm. The intermediate Cryoperm shield diverts the ambient magnetic field to reduce
flux fluctuations through the SQUID loop as well as to minimize the number of vortices
trapped in the Nb superconducting film. The inner walls of the Al shield are covered
with a 3 mm thick layer of epoxy loaded with bronze and carbon powder to damp cavity
resonances and adsorb spurious infrared radiation [31, 32]. A small superconducting
coil, placed 2 mm above the sample inside a copper shield, allows controlling the flux
through the loop.

pusher

Kapton substrate

coil

SMA

launcher

Figure 4. Break junction setup: a Kapton substrate is attached to SMA launcher
(right side). The threaded spindle on the left side actuates the pusher vertically on
the free end of the substrate with micrometer precision. The central cylindrical copper
shield hosts a small superconducting coil that controls the flux through the SQUID
loop. The whole system is enclosed in a set of three shields and anchored to the mixing
chamber of a dilution refrigerator.

A single coaxial line enters this set of shields and connects to the SMA
launcher. The overall microwave setup is sketched in Figure 5. There are two 8-12GHz
circulators (Pamtech XTE0812KCSD) and one 0.1− 18 GHz directional-coupler (Clear
Microwaves C20218) placed at the same temperature (25 mK) as the sample but outside
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the shields. A first microwave tone, injected at one circulator, probes the response of the
resonator at a frequency close to ν0. The reflected signal from the resonator goes through
the two circulators into a cryogenic amplifier (0.5-11 GHz LNA #265D from Caltech,
gain 28 dB) placed at 1K. To minimize losses in the return signal a superconducting
coaxial cable (Coax-Co SC-086-50-NbTi-NbTi) is used between the second circulator
and the cryogenic amplifier. The output line from the cryogenic amplifier to room
temperature is a CuNi coax, with a silver cladded inner conductor (CoaX-Co SC-086/50-
SCN-CN). The two circulators prevent noise from the amplifier reaching the sample.
A second tone at frequency ν1 can be injected through the directional-coupler (-20dB
coupling) to drive the transition between the Andreev levels at the atomic contact. Each
line has a series of attenuators placed at different stages of the refrigerator to prevent
external noise from reaching the sample. The total attenuation of each of the two input
lines (including losses in the cables) is 90dB.

 

1K 25mK0.7K 0.1K

OUT

6dB 6dB6dB 20dB 20dB

NbTi

Sample

28dB

2
0
d
B

 c
o
u
p
le

r

Figure 5. Microwave setup: A first tone of frequency ν0 is used to probe the resonator.
The two circulators divert the reflected signal towards a 28dB amplifier placed at 1K.
A second tone of frequency ν1 is used to drive the Andreev transition of the atomic
contact.

3. Results

3.1. One-tone spectroscopy

After an additional 78dB room temperature amplification of the reflected signal, the
reflection coefficient is directly measured using a vector network analyzer. As shown in
Figure 6, three resonances appear in S11 below 10K in the range 8 − 10 GHz. Below
the superconducting transition of aluminum, only the two lowest frequency lines (#1
and #2) depend on temperature and bending of the substrate, and are thus associated
with on-chip modes. The coplanar mode resonance is the one at νR ∼ 10.24 GHz, with
a quality factor Q ∼ 300. This is three times lower than expected. The measurements
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clearly indicate an undercoupled regime with only 40° phase shift at resonance instead
of the full 360°. We interpret this result as arising from the coupling of the coplanar
resonator mode with a parasitic mode of the on-chip ground plane which is itself heavily
damped by radiation to the enclosing dissipative cavity ‡.
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Figure 6. Amplitude (a) and phase (b) of reflection coefficient of resonator as a
function of frequency, measured at 30 mK. The coplanar mode resonance is the one
at νR ∼ 10.24GHz (labeled #1). There are two parasitic resonances, at 9.16 GHz and
10.45 GHz. Only resonances #1 and #2 change with temperature below 1K and when
bending the substrate and are thus associated to on-chip modes. (c) and (d): zooms
around coplanar mode resonance.

Despite the low quality factor, it is still possible to probe the atomic
SQUID. Figure 7a shows the evolution of the resonance frequency of the resonator
as the substrate is slowly bent at low temperature. As the coplanar resonator
elongates, its resonance frequency decreases with the pusher vertical position at a rate
of approximately 50 kHz/µm. The sharp frequency drop observed around a vertical
deflection of 400 µm signals the last stage of rupture of the break junction. The frequency
shift is in agreement with the change in inductance expected when opening the SQUID
loop. As the vertical displacement of the pusher is actually not measured in-situ, but

‡ Because the sample must bent, the two outer electrodes of the coplanar resonator are actually
grounded only at one end. As a result the ground plane behaves as an antenna. After carrying out
the measurements we understood, through detailed electromagnetic simulations, that for the actual
geometry of the resonator the quarter-wavelength mode had a similar resonance frequency than the
antenna mode of the ground plane. The two modes hybridize and the resonator mode is also affected
by radiation damping. Hybridization could be avoided by redesigning the resonator as a meander line
(thus making the length of the ground plane electrode much smaller than the length of the resonator).
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deduced from the measured number of turns of the motor and the pitch of the screw, the
backlash of the mechanical driving setup leads to a hysteresis of around 25 µm between
opening and closing directions. However, the position at which the abrupt frequency
shift occurs is reproducible within a few microns for successive openings. In the region
of this frequency drop the contact has atomic dimensions and its Josephson inductance
becomes much larger than the geometrical inductance of the loop. In this limit, the
resonator frequency evolves periodically with the magnetic flux threading the Al loop,
as shown in Figure 7b. If the substrate is bent further, the loop opens completely and
the flux modulation disappears.
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Figure 7. (a) Resonance frequency of resonator νR as a function of pusher position.
Red (blue) curve correspond to the opening (closing) of the microbridge. (b) Phase
of reflection signal as a function of the flux threading the SQUID loop (in reduced
units) at the pusher position signaled by the blue dot in right panel. The modulation
disappears when the microbridge is broken.

Figure 8 displays a spectrum of the reflection coefficient S11 as a function
of the probe frequency and the flux threading the loop. An anti-crossing between the
resonator and an Andreev transition in the contact is clearly observed. As shown, the
shape of the spectrum can be described, at least qualitatively, by considering a single
channel of transmission (τ ∼ 0.995) coupled (g ∼ 120 MHz) to the coplanar resonator
harmonic oscillator [29].

3.2. Two-tone spectroscopy

The spectrum can be explored over a much wider frequency range by using a two-tone
technique. In this case the resonator is constantly probed at a fixed frequency ν0 close
to its resonance νR, while sweeping the frequency ν1 of a second tone that is applied
through the directional coupler (see Figure 5). The amplitude of this second tone is
chopped at an audio frequency νa. The reflected signal at ν0 is homodyne detected
yielding the two quadratures I and Q which are then measured by lock-in amplifiers at
νa (see Figure 9).
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Figure 8. One-tone spectrum as a function of probe frequency (vertical axis) and
phase across contact (horizontal). The gray level encodes the amplitude of the reflection
coefficient. The dotted lines correspond to the bare frequencies for the resonator (red)
and the Andreev transition of a single-channel of transmission τ ∼ 0.995 (white). The
blue line is the prediction for the coupled system (coupling constant g ∼ 120MHz).
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Figure 9. Room temperature setup for the two-tone spectroscopy: The pump signal at
ν1 is chopped at audio frequency. The reflected signal at ν0 coming out of the cryostat
is amplified and homodyne detected in a IQ mixer. The two phases are detected by
the two lock-ins at the audio frequency at which the pump signal at ν1 is chopped.

The spectra of the reflected signal as a function of the flux through the loop
(horizontal axis) and the frequency ν1 of the second tone (vertical axis) is shown in
Figure 10 for two different contacts. Also shown in the figure are vertical cuts of each of
the spectra at half flux quantum (δ = π), which are fitted using two lorentzian peaks, all
with linewidths below 60MHz. By fitting the spectra using the analytical expression for
the Andreev transition frequency 2EA/h, one can extract the gap ∆ of the aluminum
film and the transmission of the channels. Despite the apparently similar shapes of
the multiple lines, the spectra do not correspond to contacts with several channels of
slightly different transmissions, as shown by the continuous lines in 10(b). Instead, the
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appearance of several peaks is attributed to the high microwave power injected in order
to acquire sufficient signal.
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Figure 10. (a) and (b): Greyscale coded amplitude of the reflected signal at
ν0, as a function of flux through the SQUID loop (horizontal) and frequency ν1 of
second tone (vertical) for two different contacts. Fits like red dashed line in (b) using
the analytical expression for the Andreev transition frequency 2EA/h determine the
channel transmissions (τ = 0.9906 in (a) and τ = 0.9934 in (b)). The white dashed
line in (b) illustrates the fact that the additional features of the spectrum cannot be
attributed to Andreev transitions of other channels with slightly different transmission
coefficients. (c) Measured amplitude (black) of reflected signal at a flux φ = 0.5φ0
for contact of panel (a). Red line: fit of measured data using two lorentzians of
widths 17 MHz and 28 MHz. (d) Measured amplitude (black) of reflected signal at
a flux φ = 0.5φ0 for contact of panel (b). Red line: fit of measured data using two
lorentzians of widths 61 MHz and 65 MHz.
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4. Conclusions

We have presented the first evidence for the efficient inductive coupling of a
superconducting atomic contact to the electromagnetic field of a coplanar resonator.
Using a two-tone setup, we have performed spectroscopy of the Andreev levels in the
contact over several gigahertz. The observed linewidths are one order of magnitude
smaller than in previous experiments and provide a lower bound of 10 ns for the
coherence of the Andreev states. Although this is still too short for coherent
manipulation of the Andreev doublet, we have identified a parasitic heavily damped
resonance that loads the coplanar mode in the present design. A redesign of the resonator
geometry to avoid this spurious resonance is expected to improve the lifetime by an order
of magnitude. Pulsed pump and probe experiments should then allow performing Rabi
oscillations of the state of the Andreev system.
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Abstract:  

 

Coherent control of quantum states has been demonstrated in a variety of superconducting 

devices. In all these devices, the variables that are manipulated are collective electromagnetic 

degrees of freedom: charge, superconducting phase, or flux. Here, we demonstrate the 

coherent manipulation of a quantum system based on Andreev bound states, which are 

microscopic quasiparticle states inherent to superconducting weak links. Using a circuit 

quantum electrodynamics setup we perform single-shot readout of this “Andreev qubit”. We 

determine its excited state lifetime and coherence time to be in the microsecond range. 

Quantum jumps and parity switchings are observed in continuous measurements. In addition 

to possible quantum information applications, such Andreev qubits are a testbed for the 

physics of single elementary excitations in superconductors. 

 

 

 

 



2 

 

The ground state of a uniform superconductor is a many-body coherent state. Microscopic 

excitations of this superconducting condensate, which can be created for example by the 

absorption of photons of high enough energy, are delocalized and incoherent because they 

have energies in a continuum of states. Localized states arise in situations where the 

superconducting gap Δ or the superconducting phase undergo strong spatial variations: 

examples include Shiba states around magnetic impurities (1), Andreev states in vortices (2) 

or in weak links between two superconductors (3). Because they have discrete energies 

within the gap, Andreev states are expected to be amenable to coherent manipulation 

(4,5,6,7,8). In the simplest weak link, a single conduction channel shorter than the 

superconducting coherence length  , there are only two Andreev levels 

  2, 1 sin ( / 2)AE        , governed by the transmission probability   of electrons 

through the channel and the phase difference   between the two superconducting 

condensates (3). Despite the absence of actual barriers, quasiparticles (bogoliubons) 

occupying these Andreev levels are localized over a distance   around the weak link by the 

gradient of the superconducting phase, and the system can be considered an “Andreev 

quantum dot” (5,6). Figure 1 shows the energies  iE   of the different states of this dot. In 

the spin-singlet ground state g  only the negative energy Andreev level is occupied and 

 g AE E . If a single quasiparticle is added, the dot reaches a spin-degenerate odd-parity 

state o  with 0oE  (9-12). Adding a second quasiparticle of opposite spin to the dot in 

state o  brings it to a spin-singlet even-parity excited state e  with  e AE E  (13,14). The 

e  state can also be reached directly from g  by absorption of a photon of energy 2 .AE  

Here we demonstrate experimentally the manipulation of coherent superpositions of states 

g  and ,e  even if parasitic transitions to o  are also observed. 
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Atomic-size contacts are suitable systems to address the Andreev physics because 

they accommodate a small number of short conduction channels (15). We create them using 

the microfabricated break-junction technique (16). Figure 2 presents the sample used in the 

experiment. An aluminum loop with a narrow suspended constriction (Fig. 2C) is fabricated 

on a polyimide flexible substrate mounted on a bending mechanism cooled down to 30mK  

(17). The substrate is first bent until the bridge breaks. Subsequent fine-tuning of the bending 

allows creating different atomic contacts and adjusting the transmission probability of their 

channels. The magnetic flux   threading the loop controls the phase drop 02    

across the contact and thereby the Andreev transition frequency ( , ) 2 /A Af E h    ( 0  is the 

flux quantum, h Plank’s constant). To excite and probe the Andreev dot, the loop is 

inductively coupled to a niobium quarter-wavelength microwave resonator (17) (Fig. 2B) in a 

circuit quantum electrodynamics architecture (18,19). The resonator is probed by 

reflectometry at frequency 0f  close to its bare resonance frequency 10.134GHzRf . The 

actual resonator frequency is different for each one of the three Andreev dot states: in the odd 

state, the resonance frequency is unaltered while the two even states lead to opposite shifts 

around Rf  (20). The Andreev transition g e  is driven using a second tone of frequency 

1f . Details of the setup are shown in figures S1 and S2 (20). 

Here we present data obtained on a representative atomic contact containing only one 

high transmission channel. Data from other contacts is shown in figures S6-S8. First, a two-

tone spectroscopy is performed by applying a 13 µs driving pulse of variable frequency, 

immediately followed by a 1 µs-long measurement pulse  0 10.1337 GHzf  probing the 

resonator with an amplitude corresponding to an average number of photons 30n  (see 

Fig. 3A). Apart from the signal at 1 0f f , the spectrum displays a resonance corresponding 
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to the Andreev transition. The spectrum is periodic in flux, with period 0 , which allows 

calibrating the value of   across the contact (Fig. S3). Fits of the measured lines for different 

contacts with the analytical form of ( , )Af    provide the transmission probability   of highly 

transmitting channels with up to five significant digits, as well as the superconducting gap 

/ 44.3 GHzh  of the aluminum electrodes. 

The coupling between the resonator and the Andreev dot is evident from the avoided 

crossing between the two modes observed in single-tone continuous-wave spectroscopy 

(Fig. 3B). Fitting the data with the predictions of a Jaynes-Cummings model (19,20), yields 

the coupling strength / 2 74MHz g  at the two degeneracy points where A Rf f . 

Remarkably, the resonance of the bare resonator is also visible for all values of the phase, 

signaling that on the time scale of the measurement the Andreev dot is frequently in the odd 

state o  (10,12,21). 

Figure 3C shows the histograms of the reflected signal quadratures I,Q for a sequence 

of 8000 measurement pulses taken at  , without and with a  driving pulse. The results 

gather in three separate clouds of points demonstrating that a single measurement pulse 

allows discriminating the dot state. The normalized number of points in each cloud is a direct 

measurement of the populations of the three states. The two panels of Fig 3C show the 

population transfer between the two even states induced by the driving pulse. Continuous 

measurement of the state of the Andreev dot in absence of drive, reveals the quantum jumps 

(22) between the two even states and the changes of parity corresponding to the trapping and 

untrapping of quasiparticles in the dot (Fig. 3D). The analysis (23) of this real-time trace 

yields a parity switching rate of 50kHz  (20). 
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The coherent manipulation at   of the two-level system formed by g  and e  is 

illustrated in Fig. 4. Figure 4A shows the Rabi oscillations between g  and e  obtained by 

varying the duration of a driving pulse at frequency 1 ( , )Af f    (Movie S1). Figure 4B 

shows how the populations of g  and e  change when the driving pulse frequency 1f  is 

swept across the Andreev frequency ( , )Af   . After a  -pulse the populations relax 

exponentially back to equilibrium with a relaxation time  1 4 µsT    (Fig. 4D). The 

Gaussian decay by 1/e of detuned Ramsey fringes (Fig. 4F) provides a measurement of the 

coherence time  2 38ns T   . This short coherence time is mainly due to low-frequency 

(<MHz) fluctuations of the Andreev energy ( , )AE   , as shown by the much longer decay 

time  2 2565ns T T   of a Hahn echo (Fig. 4G). Measurements at    on other 

contacts with the same sample, with transmissions corresponding to a minimal Andreev 

frequency 3GHz ( , ) 8GHzAf    , give 1T  mostly around 4 µs (up to 8.5 µs), 2T 
 around 

40 ns (up to 180 ns) and 2T  around 1 µs (up to 1.8 µs), but no clear dependence of the 

characteristic times on   is observed (Fig. S7 and S8). 

Figure 4E shows the measured relaxation rate 1 11 T   as a function of the phase .  

The expected Purcell relaxation rate arising from the dissipative impedance seen by the 

atomic contact (dotted line in Fig. 4E) matches the experimental results only close to the 

degeneracy points where A Rf f , but is about five times smaller at   . Based on 

existing models we estimate that relaxation rates due to quasiparticles (24-28) and to phonons 

(7,8,21) are negligible. Empirically, we fit the data at    by considering an additional 

phase-independent relaxation mechanism, which remains to be identified. 
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The linewidth of the spectroscopy line, which is a measure of the decoherence rate, 

shows a minimum at    (Fig. 4C). The Gaussian decay of the Ramsey oscillations points 

to 1/f transmission fluctuations as the main source of decoherence at   , where the 

system is insensitive to first order to flux noise (28). Fluctuations of   can arise from 

vibrations in the mechanical setup and from motion of atoms close to the contact. Figure 4C 

also shows the linewidths calculated assuming 1/f transmission noise and both white and 1/f 

flux noise (20). The amplitude of the 1/f transmission noise, 6 -1/22.5 10 Hz  at 1 Hz, was 

adjusted to fit the measurement at   . The amplitudes of the white and 1/f flux noise were 

then obtained from a best fit of the linewidth phase dependence. The extracted 1/f noise 

amplitude (
-1/2

05µ Hz  at 1 Hz) is a typical value for superconducting devices and has a 

negligible effect to second order (29). The source of the apparent white flux noise 

 -1/2

048n Hz  is not yet identified. 

The Andreev quantum dot has been proposed as a new kind of superconducting qubit 

(5,6), which differs markedly from existing ones (30). In qubits based on charge, flux, or 

phase (30) the states encoding quantum information correspond to collective electromagnetic 

modes, while in Andreev qubits they correspond to microscopic degrees of freedom of the 

superconducting condensate. Our results are a proof of concept of this new type of qubit.  

Further work is needed to understand fully the sources of decoherence and to couple several 

qubits in multi-channel contacts (5,8). The Andreev quantum dot, with its parity sensitivity, is 

also a powerful tool to investigate quasiparticle-related limitations on the performance of 

superconducting qubits (28,31,32) and detectors (33). Furthermore, our experimental strategy 

could be used to explore hybrid superconducting devices in the regime where Andreev states 

evolve into Majorana states (33,35,36). 
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Fig.1 Single channel Andreev quantum dot. (A) Energy levels: Two discrete Andreev 

bound levels detach symmetrically from the upper and lower continua of states (light grey 

regions for  E ). Photons of energy 2 AE  can induce transitions between the two Andreev 

levels (magenta arrows). (B) Andreev levels occupation in the four possible quantum states of 

the Andreev dot. Only the lower Andreev level is occupied in the ground state g  (blue 

box). In the excited state e  (red box) only the upper Andreev bound level is occupied. In the 

doubly degenerate odd state o  both Andreev levels are either occupied or empty. (C) 

Energy of the four Andreev dot states for a channel of transmission probability 0.98  , as a 

function of the phase difference   across the weak link. 
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Fig.2. Measurement setup of a superconducting atomic contact in a microwave 

resonator. (A): Simplified 2-tone microwave setup. The measurement (frequency 0f ) and 

drive (frequency 1f ) signals are coupled to the resonator through the same port. After 

amplification the reflected signal at 0f  is homodyne detected by an IQ mixer and its two 

quadratures (I and Q) are digitized. (B): Optical micrograph of the / 4  niobium coplanar 

meander resonator with an interdigitated capacitor 3fFC  at the coupling port. At the 

shorted end an aluminum loop is inductively coupled to the resonator field. The resonator has 

resonance frequency 10.134GHzRf , with total quality factor 2200Q  , close to critical 

coupling (see Fig S4). (C): Detailed view of the aluminum loop. Upon bending the substrate 

the loop breaks at the narrow constriction to create an atomic contact.  
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Fig. 3. Spectroscopy and quantum jumps. (A) Pulsed two-tone spectroscopy: color coded 

amplitude A of one quadrature of reflected signal as a function of   and 1f . Dashed black 

line: theoretical fit of Andreev transition frequency 2 /A Af E h  with 0.99217  . A 

parasitic line, corresponding to a two photon process ( 12 ( , )R Af f f    ), is visible just 

below 10 GHz. (B) Single-tone continuous-wave spectroscopy using a vector network 

analyzer (average number of photons in resonator 0.1n ): resonator reflection amplitude R  

as a function of   and 0f . Red dashed curves: fits of the anti-crossings (20). Data aligned 

with black dashed line correspond to the Andreev dot in state o . (C) Histograms of I, Q 

quadratures at    illustrate single-shot resolution of the quantum state of the dot. Left 

panel: no drive at 1f . Right panel: pulse transfering population from g  to e . (D) 
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Continuous measurement at   , with 100n  and no driving signal. Brown (cyan) time 

trace corresponds to I (Q) quadrature. The color (blue, green, red) of the horizontal bar 

represents an estimate of the state (g, o, e) found using a hidden Markov Model toolbox (23). 

 

 

 
 

Fig. 4. Coherent manipulation of Andreev quantum dot states at   . Color dots show 

measured populations: ground (blue), excited (red) and odd (green) states. Lines are 

theoretical fits. Sketches of pulse sequences for each type of measurement are shown in each 

panel (magenta: drive; black: measurement). (A) Rabi oscillations: populations as a function 
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of the driving pulse duration. (B) Spectroscopy: populations as a function of driving pulse 

frequency 1f . (C) Phase dependence of linewidth (FWHM) of the spectral line. Dots: as 

extracted from a lorentzian fit of the experimental resonances (20). Black curve is best fit to 

the data, including the contributions of 1/f transmission noise (cyan line), and both 1/f 

(orange line) and white flux noise (orange dashed-line). Vertical dotted lines indicate phases 

for which A Rf f . (D) Relaxation of populations after a   driving pulse. (E) Phase 

dependence of relaxation rate 
1 11/T  . Dots: experimental data. Continuous curve is the 

sum of the expected Purcell rate (dotted line) and an empirical phase independent rate 

(180 kHz). (F) Ramsey fringes: populations as a function of delay between the two 2 -

pulses detuned at 1 ( , ) 51MHzAf f    . (G) Hahn echo: populations as a function of delay 

between the two 2 -pulses with a  -pulse in between. 
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Supplementary Materials 

 
Materials and Methods 

 

Theoretical description of the system 

The Hamiltonian of the system can be written as   A R ARH H H H , where the first 

term, the Andreev Hamiltonian, describes the atomic contact; the second one 

describes the electromagnetic resonator; and the third one accounts for the coupling 

between them. The Andreev Hamiltonian in the Andreev basis (5) is given by  

 

ˆ( ) ( )A A zH E     

 

where ˆ
z is a Pauli matrix acting in the | , | g e  space. The electromagnetic resonator 

is treated as a discrete single-mode oscillator described by 
†( 1/ 2) R RH a a  

where 
†( )a a  are the creation (annihilation) photon operators. The term describing the 

coupling between the atomic contact and the resonator (up to first order) is given by 

 

ˆ ˆ ( )AR R AH M I I   

 

where M  is the loop-resonator mutual inductance,  †

0
ˆ / 2 RI L a a is the 

transmission line current operator at the position of the atomic contact loop and ˆ ( )AI  

is the Andreev current operator 

 

 ˆ ˆ ˆ( ) ( , ) 1 tan / 2A A z xI I         
 

 

 

with 
1

0( , ) ( , ) /A AI E         . As a result, in the region close to the degeneracy 

2R Ahf E , where the rotating-wave approximation holds,  the coupling Hamiltonian 

can be reduced to a Jaynes-Cummings model (3) 

 †ˆ ˆ( )ARH g a a      

where | |   e g  and | |   g e . The phase dependent coupling energy  g   is 

given by 

 2( )
( ) sin / 2

2 ( )

A

A

E
g z

E


  




  

 

with  
2

0/ / Qz M L Z R  a constant coupling parameter. Fitting the anti-crossing 

depicted in Fig. 3B we obtain ( ) / 2 95.6 MHz  g  and 
51.910z . 
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Relaxation rate through the resonator (Purcell effect)  

 

Following Desposito and Yeyati (4) the relaxation rate due to the coupling to the 

environment can be estimated by using the expression 

 

    

  

2
2

1 3/ 2
2

(1 ) sin / 2Re ( 2 ( )
.

2 1 sin / 2

   

 


 



env A

Q

Z E

R
 

 

In the phase region were 1T   was measured, the real part of the impedance seen from 

the atomic contact can be approximated by 

 
 

2
2

0

0

Re

1 /
1

/


  

 

  
 

  
 
 

Q

env

z R Q
Z

Q

 

where 0 and Q are the total quality factor and the resonant frequency of the 

resonator far from the anti-crossing. 

 

Fit of the resonances 

In Fig. 4C, we compare with theory the measured linewidth of the Andreev resonance 

as a function of the phase. The experimental data were fitted with Lorentzian 

functions appropriate for white noise. However, for 1/f noise theory predicts Gaussian 

resonances. The combination of the contributions of the three considered noise 

sources (1/f transmission noise, white and 1/f flux noise) leads to a lineshape which is 

a convolution of a Lorentzian and a Gaussian function. In order to compare with 

experiment, we proceeded as for the experimental data and fitted the calculated 

resonance with a Lorentzian function on a 300 MHz interval, to extract a linewidth.   
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Fig. S1: Microwave setup at room temperature. There are two lines to inject driving 

(“µwave1”) and measurement (“µwave0”) pulses, and one line (“µwaveOUT”) that 

carries the reflected signal at the measurement frequency. Microwave pulses are 

shaped by mixing continuous waves from the microwave sources with DC pulses 

from a 2-port arbitrary function generator. The latter and the acquisition board (ADC) 

are synchronized and triggered by an arbitrary waveform generator (Agilent AWG 

33250, not represented). In order to improve the ON-OFF contrast of the microwave 

pulses, a second AWG (not represented) is used to pulse the 1f  microwave source 

itself. 
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Fig. S2: Low temperature wiring. The three lines “µwave1”, “µwave0” and 

“µwaveOUT” correspond to those of Fig. S1. The sample is enclosed in four shields: 

the inner one is made out of epoxy loaded with brass and carbon powder, the 2
nd

 one 

out of aluminum, the 3
rd

 one out of Cryoperm, the 4
th

 one out of copper. The sample 

and the shields are thermally anchored to the mixing chamber of base temperature 

30 mK. The cryogenic microwave amplifier is a commercial HEMT (CITCRYO1-

12A-1 from Caltech) with nominal gain 32 dB and noise temperature 7 K at 10 GHz. 

A DC magnetic field is applied perpendicular to the chip using a small 

superconducting coil placed a few mm above the aluminum loop containing the 

atomic contact. Biasing is performed using a voltage source (iTest BILT BE2102) in 

series with a 200 k resistor. Filtering is provided partly by a 1  resistor placed at 

0.7 K in parallel with the coil. 
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Fig. S3: Periodicity of VNA measurements with flux. Modulus R  of reflected 

signal as a function of the current coilI  through the superconducting coil for a contact 

with several channels. The period allows calibrating the current associated with one 

flux quantum in the aluminum loop, i.e. with a 2  change in the phase   across the 

contact. The currents at which the resonance frequency (dark) presents broad maxima 

correspond to 0   modulo 2 . 



 

 

20 

 

 

 

Fig. S4: Vector network analyser (VNA) measurements of the resonator for the 

contact with 0.99217  described in the manuscript. (A) Amplitude R  of reflexion 

coefficient as a function of the probe frequency 0f  when the resonator and the 

Andreev doublet are far detuned ( 0.9  , 15.9GHzAf ), corresponding to a 

vertical cut on the left edge of Fig. 3B.  Symbols: measurement acquired at low 

power, corresponding to 0.1n  photons in the resonator and a 10Hz  acquisition 

bandwidth. Solid line: fit using 
1

2

2

1
R 1

/ 4

q

Qx q


 


 with 0 / 1Rx f f   and 

/extq Q Q . The dip signals the resonance frequency 10.134GHzRf , with total 

quality factor 2200Q   and external quality factor 4800extQ   associated with the 

coupling capacitor. (B) R  measured at   . Black curve is taken at low power (

0.1n  photons in resonator) and a 10Hz  acquisition bandwidth (corresponds to a 

cut in the middle of Fig. 3B). Image in the background is a two-dimensional 

histogram of 32000 data points taken in a single frequency sweep with a 600kHz  

bandwidth, and a larger power ( 40n  at resonance). We observe three replicas of 

the resonance as measured at 0.9   (brown symbols, same data as (A)). The 

central one corresponds to odd state o , the rightmost to g  and the leftmost (barely 

visible) to e . 
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Fig. S5: Time-resolved response of the resonator to a 2 µs-long probe pulse. Black: 

0.1 GHz-detuned pulse: complete reflection. Red: pulse at resonance frequency. After 

a loading time 2/  of the cavity, wave exiting the cavity interferes destructively 

with reflected wave. The negative signal after t=2µs corresponds to photons exiting 

the cavity after the end of the pulse. Blue: exponential fit, with decay time 

2/ 69 ns  . Total quality factor of the cavity is / 2200  Q  in agreement 

with fit of cavity resonance (see Fig. S4A). 
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Fig. S6: Data for an atomic contact different from the one in the main text. (A) Pulsed 

two-tone spectroscopy: color coded amplitude A of one quadrature of reflected signal 

as a function of   and 1f . Dashed black line: theoretical fit of Andreev transition 

frequency 2 /A Af E h  with 0.99806  . Two-photon processes (dash-dotted line 

labelled fA/2) are observed because a higher excitation power than the one used for 

Fig. 3. (B) Single-tone continuous-wave spectroscopy using a vector network analyzer 

( 0.1n ): resonator reflection amplitude R  as a function of   and 0f . Red dashed 

curves: fits of the anti-crossings using ( ) / 2 72 MHz  g . Compared to Fig. 3, this 

data was taken on a different cool-down of the sample, and the bare resonator 

frequency was 10.121 GHz. (C) Density plots of I, Q quadratures at    illustrate 

single-shot resolution of the quantum state of the dot. Top panel: no drive at 1f . 

Bottom panel: pulse results in a population transfer from g  to e .  
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Fig. S7: Data for same contact as in Fig. S6, to be compared with Fig. 4. (A) 

Spectroscopy. (B) relaxation after a -pulse. (C) Rabi oscillations (note break and 

change in scale of x-axis). (D) Ramsey fringes with 50 MHz detuning. (E) Hahn echo. 
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Fig. S8: Data for contact with channel transmission 0.99647  , to be compared 

with Fig. 4. (A) Spectroscopy. (B) relaxation after a -pulse. (C) Ramsey fringes with 

95 MHz detuning. (D) Hahn echo. 
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Fig.  S9 (snapshot from Movie S1): (Left) Density plot of I and Q quadratures for a 

380 ns-long Rabi pulse. (Right) Evolution of the populations of states g  (blue), e  

(red) and o  (green) for Rabi pulse lengths up to 380 ns. 

 

 

Movie S1: (animated Gif image, available on the Science website) Rabi oscillations 

seen in the I,Q plane, and corresponding evolution of the populations: the populations 

of the ground state ( g ) and the excited state ( e ) swap, whereas the population of 

the odd state ( o ) remains constant. Data correspond to Fig. 3C of paper, with a 

rotation in the I,Q plane. 
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Titre : Manipulation cohérente des états d’Andreev dans un contact atomique 

Mots clés : Physique, mécanique quantique, supraconductivité, physique mésoscopique 

Résumé : 
Des états électroniques localisés apparaissent 

dans les liens faibles entre électrodes 

supraconductrices : les états d’Andreev. Les 

expériences présentées dans cette thèse explorent 

les propriétés de cohérence quantique de ces 

états, en utilisant comme liens faibles des 

contacts à un atome entre des électrodes 

d’aluminium. Les contacts atomiques sont 

intégrés dans une cavité microonde qui permet à 

la fois de les isoler et de les sonder.  

Dans une première série d’expériences, il est 

montré qu’on peut utiliser les états d’Andreev 

pour définir un bit quantique, le « qubit 

d’Andreev », qu’on contrôle à l’aide 

d’impulsions micro-onde.  

 

Les mesures des temps de vie de cohérence de ce 

qubit sont analysées en détail.  

Dans une deuxième série d’expérience, 

l’interaction entre le qubit d’Andreev et le 

résonateur micro-onde est utilisée pour quantifier 

le nombre de photons présents dans le résonateur 

en fonction de la puissance d’impulsions 

microonde à sa fréquence propre.  

Enfin, des sauts quantiques et des sauts de parité 

sont observés dans des mesures continues de 

l’état du qubit d’Andreev. 

 

 

 

Title: Coherent manipulation of Andreev bound states in an atomic contact 

Keywords: Physics, quantum mechanics, superconductivity, mesoscopic physics 

Abstract:  
Localized electronic states, called Andreev 

bound states, appear in weak-links placed 

between superconducting electrodes. The 

experiments presented in this thesis explore the 

coherence properties of these states. Single atom 

contacts between aluminum electrodes are used 

as weak links. In order to isolate and probe these 

states, the atomic contacts are integrated in a 

microwave cavity. 

 

In a first series of experiments, it is shown that 

Andreev states can be used to define a quantum 

bit, “the Andreev qubit”, which is controlled 

using microwave pulses. 

 

 

Measurements of the lifetime and coherence 

time of this qubit are thoroughly analyzed. 

 

In a second series of experiments, the interaction 

between the Andreev qubit and the microwave 

cavity are used to determine the number of 

photons present in the cavity as a function of the 

power of microwave pulses at its 

eigenfrequency. 

 

Finally, quantum and parity jumps are observed 

in continuous measurements of the state of the 

Andreev dot. 
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