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PRÉSENTATION v

Présentation

Ce mémoire présente les travaux que j’ai effectués depuis ma thèse. J’ai choisi de ne
présenter en détail que certains travaux qui s’appliquent (ou tout du moins qu’on espère
appliquer) à la théorie des représentations des groupes algébriques réductifs (et des objets
associés) définis sur un corps de caractéristique positive. Mes autres travaux sont briève-
ment résumés dans un appendice.

Plus précisément, je présente trois ensembles d’articles :

(1) Le premier, écrit en collaboration avec Pramod Achar, Anthony Henderson et Daniel
Juteau, construit une correspondance de Springer généralisée modulaire, c’est-à-dire
un analogue en caractéristique positive de la correspondance de Springer généralisée
de Lusztig. Cet énoncé est d’intérêt essentiellement géométrique, mais on espère
qu’il aura des applications en théorie des représentations modulaires des groupes
finis de type Lie.

(2) Le second, écrit en collaboration avec Pramod Achar, concerne la dualité de Koszul
géométrique. On y construit un analogue en caractéristique positive d’une équiva-
lence de catégories due à Bezrukavnikov–Yun reliant les catégories dérivées construc-
tibles d’une variété de drapeaux et de la variété de drapeaux duale. (Cette construc-
tion a elle-même ses racines dans des travaux antérieurs de Bĕılinson–Ginzburg–
Soergel.) Ces travaux s’inscrivent dans la continuité de travaux effectués précédem-
ment en collaboration avec Wolfgang Soergel et Geordie Williamson. Encore une
fois, il s’agit d’un énoncé géométrique, mais nous espérons l’utiliser (ou plus pré-
cisément en utiliser une généralisation) pour étudier la théorie des représentations
des groupes algébriques réductifs en caractéristique positive.

(3) Enfin, le troisième ensemble d’articles, qui comprend des collaborations avec Carl
Mautner, avec Geordie Williamson, et avec Pramod Achar, concerne la géométrie
qui sous-tend la théorie des représentations des groupes algébriques réductifs en
caractéristique positive. On y construit certaines équivalences de catégories qui
devraient permettre de donner des formules de caractères pour les représentations
simples et les représentations basculantes. (Ces formules de caractères ont déjà
été démontrées d’une manière très différente et plus directe, dans les travaux avec
Geordie Williamson, dans le cas particulier du groupe linéaire GLn(k).)

Ce mémoire se termine par trois appendices. Le premier rassemble des résultats “bien
connus” (mais non disponibles dans la littérature dans ce cadre, à ma connaissance) sur
les catégories de plus haut poids, en suivant un point de vue dû à Bĕılinson–Ginzburg–
Soergel. Le second donne une liste de mes publications. Enfin, le troisième propose un bref
résumé de chacun de mes articles, et quelques commentaires sur les liens entre ces différents
articles.
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1. Introduction

1.1. Presentation. This report gives an exposition of my main contributions since
my PhD thesis. I have chosen to concentrate on three results that I believe are the most
significant:

(1) the construction of the modular generalized Springer correspondence (obtained
in [AHJR2, AHJR3, AHJR4, AHJR5, AHJR6]);

(2) a geometric Koszul duality for constructible sheaves on flag varieties (obtained
in [AR3, AR4, AR5], building on earlier work in [AR1, RSW]);

(3) a new (partly conjectural) geometric approach to the modular representation theory
of connected reductive groups (developed in [MaR2, RW, AR6] building on earlier
work in [R1, BR, R3, MaR1]).

My other articles are summarized more briefly in Section 9.

1.2. Geometric Representation Theory: motivating examples. The guiding
principle of Geometric Representation Theory is that in order to solve some problems in
Representation Theory, one should first translate them into geometric problems, and then
try to solve this new problem using some tools from Geometry. Two of the most notable
applications of this idea are:

(1) the proof, by Bĕılinson–Bernstein [BB] and Brylinsky–Kashiwara [BK], of the
Kazhdan–Lusztig conjecture [KL1] on multiplicities of simple modules in Verma
modules in a regular block of category O of a complex semisimple Lie algebra;

(2) Lusztig’s theory of character sheaves [Lu3], which provides a geometric way to
compute characters of complex representations of finite groups of Lie type.

In both of these examples, the representations under consideration are over a field k of
characteristic 0, and the geometry used to obtain the representation-theoretic information
takes the form of perverse sheaves with coefficients in k. In this report we present works
which provide first steps towards analogues of the results in (1) and (2) above in the set-
ting of positive-characteristic representation theory, involving perverse (or more generally
constructible) sheaves with coefficients in a field k of positive characteristic (but also, as
an intermediate step, coherent sheaves on some algebraic varieties over k).

As a “modular analogue” of (1), we have obtained (in a joint work with Geordie
Williamson [RW]) a conjectural character formula for indecomposable tilting represen-
tations in regular blocks of the category of finite-dimensional algebraic representations of
a connected reductive algebraic group G defined over an algebraically closed field k of
positive characteristic p > h, where h is the Coxeter number of G. (As is well known,
from such a character formula one can deduce also a character formula for simple modules
if p ≥ 2h − 2). We have also proved this formula in the case of the group GLn(k) (see
again [RW]), and made a first important step in the direction of a general proof (in a joint
work with Pramod Achar [AR6]).

Concerning (2), our results are admittedly less satisfactory so far. We have only
obtained (in joint works with Pramod Achar, Anthony Henderson and Daniel Juteau,
see [AHJR2, AHJR3, AHJR4]) a modular analogue of a theory which is a preliminary
step to the theory of character sheaves, namely Lusztig’s theory of the generalized Springer
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correspondence [Lu2]. We hope this will lead to a theory of “modular character sheaves,”
but certain important and subtle questions remain to be understood; see [AHJR6] for
more comments on this question.

1.3. Geometric Representation Theory in the modular setting. As explained
above, the most spectacular results obtained in Geometric Representation Theory so far
concern problems over fields of characteristic 0, and use some categories of sheaves with
coefficients in characteristic 0. More recently, some authors have started to use geometric
methods to study representation theory over fields of positive characteristic. Important
examples include:

(1) the Geometric Satake Equivalence of Mirković–Vilonen [MV];
(2) Juteau’s modular Springer correspondence [Ju2];
(3) the “localization theory in positive characteristic" of Bezrukavnikov–Mirković–Ru-

mynin [BMR, BMR2, BM].
In (1) and (2), the geometry takes the form of perverse sheaves on a complex algebraic

variety, with coefficients in a field of positive characteristic. These results are of course very
important from the theoretical point of view, but it is difficult to extract from them con-
crete information of representation-theoretic interest; in particular, the Geometric Satake
Equivalence cannot be used to say anything about the characters of modules of interest
over a connected reductive algebraic group.

On the other hand, in (3) the geometry involved concerns coherent sheaves on an alge-
braic variety over a base field of positive characteristic. This theory can be used to provide
new combinatorial information on the representation theory of reductive Lie algebras in
positive characteristic, see [BM]; however for the most interesting information this uses
comparison with a characteristic-0 setting, hence can only be applied in “sufficiently large”
characteristic (with no explicit bound).

Some new tools introduced recently by Juteau–Mautner–Williamson [JMW1] and
Elias–Williamson [EW] make it now conceivable to extract combinatorial information from
geometry without leaving the positive-characteristic setting; in this way one can hope to
obtain results valid under more reasonable assumptions on the characteristic. This idea
can be considered a guiding principle of my recent works. Some concrete evidence for this
philosophy is provided by the results presented in §1.8.

1.4. Modular generalized Springer correspondence. Now we start presenting
our results more concretely, starting with those concerned with the modular generalized
Springer correspondence.

Let G be a complex connected reductive algebraic group, with nilpotent cone NG and
Weyl group Wf . The Springer correspondence is an injective map

(1.1) Irr(Rep(Wf ,C)) ↪→ Irr(PervG(NG,C))

from the set of isomorphism classes of simple objects in the category Rep(Wf ,C) of finite-
dimensional representations ofWf over C, to the set of isomorphism classes of simple objects
in the category PervG(NG,C) of G-equivariant perverse sheaves on NG, with coefficients
in C. This construction, which generalizes the well-known bijection between isomorphism
classes of simple complex representations of the symmetric group Sn and the nilpotent
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orbits for GLn(k) (through the parametrization of both of these sets by partitions of n),
is intially due to Springer [Sp1], and was reformulated in many different ways by several
authors.

Lusztig’s generalized Springer correspondence [Lu2] is a way to “complete” the left-
hand side in (1.1) in order to obtain a bijection rather than an injection. For this one
has to add to Wf a family of “relative Weyl groups” associated with Levi subgroups which
support a “cuspidal pair.” This result was the starting point for the theory of character
sheaves [Lu3].

The Springer correspondence (1.1) was generalized in a different direction in Juteau’s
thesis, replacing the field of coefficients C by a field F of possibly positive characteristic,
to obtain the modular Springer correspondence, which takes the form of an injection

Irr(Rep(Wf ,F)) ↪→ Irr(PervG(NG,F))

(where the meaning of the notation should be clear).
In a series of joint works with Pramod Achar, Anthony Henderson and Daniel Juteau,

we show that Lusztig’s generalized Springer correspondence can also be formulated to work
in this setting of positive-characteristic coefficients. Here also we have to consider some
relative Weyl groups associated with Levi subgroups supporting a cuspidal pair; see §§2.4–
2.5 for precise statements. The theory needed for this generalization was developed in
three steps. First, in [AHJR2] we proved what was necessary to construct the bijection
in the case G = GLn(C). (Several simplifications appear in this setting, but some im-
portant differences with Lusztig’s setting are already visible in this “easier” case.) Then,
in [AHJR3], we developed the theory further to be able to treat all classical groups. Fi-
nally, in [AHJR4] we found some general proof, which in particular applies to exceptional
groups.

In Section 2 we have tried to present this general proof in logical (rather than historical)
order. We have also tried to emphasize the “canonicity” of this construction.

1.5. “Constructible” Koszul duality. Fundamental work of Bĕılinson–Ginzburg–
Soergel allows to construct a “Koszul duality” equivalence relating Bruhat-constructible
Q`-sheaves on the flag variety of a complex connected reductive group G and Bruhat-
constructible Q`-sheaves on the flag variety of the Langlands dual group G∨. This con-
struction was generalized in [BY] to all Kac–Moody groups. An important ingredient of
this generalization is the idea (suggested in [BG]) that, in order to obtain a more favorable
duality, one should compose the original duality from [BGS] with a Ringel duality, so as to
obtain a “Ringel–Koszul” duality exchanging simple perverse sheaves and indecomposable
tilting perverse sheaves.

In a series of joint works with Pramod Achar [AR3, AR4, AR5], we have started to
generalize the constructions from [BY] to the case of positive characteristic coefficients.
In this setting, one should not consider simple perverse sheaves, but rather the parity
sheaves of [JMW1]. (This idea was suggested by [So4], and already used in [RSW].)
The other diffculty one has to overcome is to understand the concept of “mixed perverse
sheaves” in this setting. Indeed Deligne’s notion of mixed perverse sheaves, which was used
in [BGS], does not make sense for positive characteristic coefficients. In [AR4] we propose
a new point of view on the construction of mixed perverse sheaves, which does not rely
of eigenvalues of the Frobenius, but uses parity sheaves instead. This allows to construct



4 Table des matières

an appropriate Koszul duality equivalence in the case of reductive groups, as explained in
Section 3. We expect similar constructions to be possible for general Kac–Moody groups,
see §3.4 for details.

1.6. Towards character formulas in the modular representation theory of
reductive algebraic groups. Finally, we consider our results concerned with the modular
representation theory of reductive algebraic groups.

Let G be now a connected reductive algebraic group over an algebraically closed field k
of characteristic p (assumed to be bigger than the Coxeter number h of G). Classical works
of Jantzen and Andersen (among others) show that most of the combinatorial information
on the category Rep(G) of finite-dimensional algebraic representations of G (in particular,
characters of simple objects and indecomposable tilting objects) can be derived from the
similar information in the “principal block” Rep0(G). (See Part 2 for more details on the
definitions and notation.) Until recently, the main conjectures describing this combinatorial
information were:

(1) Lusztig’s conjecture [Lu1] giving multiplicities of simple modules in induced mod-
ules in a certain region, from which one can derive character formulas for all simple
modules;

(2) Andersen’s conjecture [An] giving multiplicities of induced modules in indecom-
posable tilting modules in a certain region, from which one can derive character
formulas for many (but not all) indecomposable tilting modules.

Lusztig’s conjecture was proved in 1995/96, under the assumption that p is “big
enough” (with no explicit bound), by a combination of works by Kashiwara–Tanisaki [KT],
Kazhdan–Lusztig [KL2], Lusztig [Lu5], and Andersen–Jantzen–Soergel [AJS]. Later,
Fiebig [Fi] obtained a bound for the validity of this conjecture. (This bound is difficult
to compute explicitly, and in any case several orders of magnitude larger than h.) It is
known that Andersen’s conjecture implies Lusztig’s conjecture (if p ≥ 2h − 2), but as far
as we know no proof of this conjecture (under any assumptions) is available unless G has
semisimple rank 1.

On the other hand, in [Wi], G. Williamson has shown that Lusztig’s conjecture does
not hold for all p > h, and even that there cannot exist any general polynomial bound
in h which guarantees the validity of this conjecture. In view of this, Lusztig’s conjecture
(and also Andersen’s conjecture) should rather be considered as “asymptotic” character
formulas (when p is very large), and a finer point of view should be adopted in order
to obtain formulas valid under reasonable bounds on p. Our main contributions in this
direction so far are:

• a conjectural description of this “finer” point of view (obtained in joint work with
Geordie Williamson);
• a proof of these character formulas in the case G = GLn(k) (also joint with Geordie
Williamson);
• and some steps towards a general proof of the character formula (obtained in joint
works with Carl Mautner and Pramod Achar).

More precisely, our conjecture takes the form of a correction to Andersen’s conjecture,
which we expect to hold for all indecomposable tilting modules in Rep0(G). Our formula
involves the p-canonical basis of the affine Hecke algebra, introduced in two different forms
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Figure 1. Bezrukavnikov’s geometric framework for representations of
quantum groups at roots of unity.

by Juteau–Mautner–Williamson [JMW1] and Williamson [JW]. (The fact that these two
definitions are equivalent is proved in [RW].)

1.7. The case of quantum groups (after Bezrukavnikov et al.) Our point of
view on the geometry underlying the representation theory of reductive algebraic groups
over fields of positive characteristic has been suggested by the results of Bezrukavnikov and
his collaborators in the early 2000’s on the geometry underlying the representation theory
of Lusztig’s quantum groups at a root of unity. These results can be roughly summarized
in the diagram of Figure 1.

Here Uζ is Lusztig’s quantum group at a root of unity attached to a semisimple complex
algebraic group GC of adjoint type, Rep0(Uζ) is the principal block of the category of
finite-dimensional Uζ-modules, ÑC is the Springer resolution of GC, F l and Gr are the
affine flag variety and the affine Grassmannian of the Langlands dual group G∨C, and the
symbols “(Iw)” and IW mean “Iwahori constructible” and “Iwahori–Whittaker” conditions
on perverse sheaves (whose coefficients are in the field C of complex numbers). The arrows
labelled (1) and (2) are the main results of [ABG]; taken together they allow to prove an
equivalence of abelian (highest weight) categories corresponding to the dotted arrow, which
provides the natural quantum group analogue of a conjecture of Finkelberg–Mirković [FM].
The arrow labelled (3) is the main result of [AB]; finally, the arrow labelled (4) follows
from the results of [BY].

At the time when these results were obtained, most of the combinatorial information on
the category Rep0(Uζ) was already understood. In particular, the characters of simple mod-
ules were obtained from the works of Kashiwara–Tanisaki [KT], Kazhdan–Lusztig [KL2]
and Lusztig [Lu5] (following a conjecture of Lusztig), and the characters of tilting modules
were obtained (in most cases) by Soergel [So2]. But these results can be used to obtain
more direct proofs of the simple character formula and, in combination with later work
of Yun [Yu], of the tilting character formula, which bypass the comparison with affine
Kac–Moody algebras.

1.8. Counterpart for reductive groups. Our “modular counterpart” of the dia-
gram of Figure 1 is depicted in Figure 2. Here G is a connected reductive algebraic group
with simply-connected derived subgroup over an algebraically closed field k of positive
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Figure 2. Geometric framework for modular representations of reductive groups.

characteristic p (assumed to be bigger than the Coxeter number h), Rep0(G) is the prin-
cipal block of the category of finite-dimensional algebraic G-modules, Ñ is the Springer
resolution of G, F l and Gr are as above the affine flag variety and affine Grassmannian of
the complex Langlands dual group, but now we consider perverse sheaves with coefficients
in k.

The motivation for building this diagram comes from a conjectural formula for the mul-
tiplicities of costandard G-modules in indecomposable tilting modules in Rep0(G) in terms
of parity complexes on F l formulated in [RW] and corresponding to the arrow labelled
(3); see §4.4 below for a precise statement. Following work of Jantzen, Donkin and An-
dersen, this formula would imply character formulas for simple modules in Rep0(G), hence
can be considered as a replacement for Lusztig’s conjecture [Lu1] considered in §1.6. The
combinatorial data concerning parity complexes in this conjectural formula is encoded in
the “p-canonical basis” of the affine Hecke algebra, which can be computed algorithmically
using the “Soergel calculus” of [EW]; see [JW] for details. In [RW] we prove this con-
jectural formula in the case G = GLn(k), but there is no hope to generalize our methods
beyond classical groups.

The arrows labelled (1), (2) and (4) provide a plan of proof of this conjecture for
a general reductive group G as above. First, the arrow labelled (1) is the main result
of [AR6]. It provides a modular analogue of the first part of [ABG]; see §5.5 for details.
The arrow labelled (2) is the main result of [MaR2] (and is also proved independently
in [ARd2]). It provides a modular analogue of the second part of [ABG]; see §5.4 for
details. Taken together, these results allow us to prove a “graded version” of the Finkelberg–
Mirković conjecture mentioned in §1.7; see §5.6.

Finally, the dashed arrow labelled (4) would follow from a conjectural modular gener-
alization of the “Koszul duality” of [BY], discussed in §3.4. (As explained in §1.5, we have
already obtained a modular version of this duality in the case of finite flag varieties. But the
crucial case here is that of affine Kac–Moody algebras.) This generalization is the subject
of a work in progress with Pramod Achar, Shotaro Makisumi and Geordie Williamson; a
more detailed discussion of the expected application to the conjecture from [RW] is given
in Section 6.

1.9. Comments on Koszul duality. A unifying theme of my research so far is
Koszul duality. The importance of this construction in Representation Theory was dis-
covered in [BGS]. There, Koszul duality was defined as an equivalence of triangulated
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categories between some derived categories of modules over two rings which are “Koszul
dual,” this construction generalizing the celebrated equivalence between the bounded de-
rived categories of graded finitely-generated modules over the symmetric algebra S(V ) of
a finite-dimensional vector space V and the exterior algebra

∧
V ∗ of the dual vector space.

A central property of this equivalence is that it exchanges simple modules over a ring with
projective (or injective, depending on the conventions) modules over the dual ring. As
explained in §1.5, in Lie-theoretic contexts it is sometimes more convenient to compose
such a duality with a Ringel duality, to obtain a Ringel–Koszul duality exchanging simple
modules and tilting modules.

Since then, this idea has been generalized in many directions. In this report, what
we mean by a “Koszul duality” is an equivalence which is either based on the same kind
of constructions as for the duality between S(V ) and

∧
V ∗, or which exchanges some

simple objects with some tilting objects. As explained in §1.5, in a modular context, one
sometimes wants to replace “simple objects” by “parity objects.” From this point of view,
Koszul duality equivalences are ubiquitous in my work, see in particular:

(1) the “linear Koszul duality” (from some coherent sheaves to some coherent sheaves)
of [MR1, MR2], which has found applications to the modular representation
theory of reductive Lie algebras [R2] and to a categorification of the Iwahori–
Matsumoto involution [MR3, MR4];

(2) a “constructible” Ringel–Koszul duality for sheaves on flag varieties, see §1.5;

(3) the equivalence constructed in [MaR2], which is also a Ringel–Koszul duality, see
Remark 5.7(2);

(4) the equivalence constructed in [AR6], which we can once again think of as a Ringel–
Koszul duality.

If one considers Koszul duality to be of the same nature as Fourier transforms (as
suggested in particular in [MR4, §0.1], and as illustrated by the main result of [MR4]),
then one can also add to this list the results of [AHJR2, AHJR3, AHJR4, AHJR5],
which rely in a crucial way on the use of the Fourier–Sato transform.

1.10. Contents of the report. In Part 1 we present two of our contributions which
are of more geometric interest. First, in Section 2 we give a detailed account of our present
understanding of the modular generalized Springer correspondence (see §1.4). Then, in
Section 3 we consider a generalization of the Bezrukavnikov–Yun geometric Koszul du-
ality [BY] (which itself stems from the Bĕılinson–Ginzburg–Soergel Koszul duality for
category O of a complex semisimple Lie algebra [BGS]) to the case of coefficients in pos-
itive characteristic. This generalization uses the concept of the “mixed derived category”
of sheaves on a (nice) algebraic variety, which we believe is of independent interest, and
plays a key role also in the results of Part 2.

In Part 2 we give a detailed account on our results evoked in §1.8. First, in Section 4
we state the conjecture on tilting characters from [RW]. Then, in Section 5 we present the
main results of [MaR2] and [AR6], which provide steps towards a general proof of this
character formula. (These constructions rely in an important way on the results previously
obtained in [R1, BR, R3, MaR1].) Finally, in Section 6 we explain how we expect to
complete this proof using a modular version of the results from [BY].



8 Table des matières

The report finishes with three appendices. In Section 7 we provide definitions and
proofs or references for some “well known” results on highest weight categories, which are
sometimes not available in the literature in the form we want to use. Section 8 contains
a list of my publications so far. Finally, Section 9 contains summaries of all my articles,
together with some comments on the relations between certain of these articles.
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Geometry
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In this part, G denotes a complex connected reductive algebraic group, and F is a field
of characteristic p.

2. Modular generalized Springer correspondence

In this section we explain our joint work with Pramod Achar, Anthony Henderson
and Daniel Juteau on the modular generalized Springer correspondence: see [AHJR2,
AHJR3, AHJR4], and some complements in [AHJR5]. See also [AHJR6] for a different
overview of these results (with an emphasis on the possible application to modular character
sheaves).

2.1. Notations. We will denote by g the Lie algebra of G, and by NG ⊂ g the
nilpotent cone (i.e. the cone consisting of elements x ∈ g such that the endomorphism
y 7→ [x, y] of g is nilpotent). We will consider NG as a complex algebraic variety, endowed
with an action of the group G induced by the adjoint action. We fix a non-degenerate
G-invariant symmetric bilinear form on g; this allows to identify the G-modules g and g∗.
For any Levi subgroup 1 L of G, with Lie algebra l, this form restricts to a non-degenerate
L-invariant symmetric bilinear form on l, which also allows to identify the L-modules l and
l∗.

Our main object of study in this section is the category PervG(NG,F) of G-equivariant
F-perverse sheaves on NG. This category is the heart of the perverse t-structure on
the equivariant derived category Db

G(NG,F). More precisely, the main goal of the se-
ries [AHJR2, AHJR3, AHJR4] is to give a “representation-theoretic” parametrization
of simple objects in PervG(NG,F), adapting known results in the case of `-adic sheaves
(on the analogue of NG over an algebraically closed field of positive characteristic differ-
ent from `) due to Lusztig [Lu2]. In [AHJR5] we use this information to deduce some
structural properties of PervG(NG,F) and Db

G(NG,F).
We will denote by NG,F the quotient of the set of pairs (O, E) where O ⊂ NG is a

G-orbit and E is an irreductible G-equivariant F-local system on O, by the relation

(O, E) ∼ (O ′, E ′) ⇔ O = O ′ and E ∼= E ′.

(By abuse, we will often write (O, E) ∈ NG,F to mean that O is a G-orbit in NG and that
E is an irreducible G-equivariant local system on O.)

The general theory of perverse sheaves [BBD] ensures that the map (O, E) 7→ IC(O, E)
induces a bijection between NG,F and the set of isomorphism classes of simple objects in
the abelian category PervG(NG,F). On the other hand, the theory of local systems ensures
that, if we fix for any G-orbit O ⊂ NG a point xO ∈ O and set AG(O) = GxO/(GxO)◦

(where GxO is the centralizer of xO in G, and (−)◦ means the connected component of the
identity), then the set NG,F is in natural bijection with the set of equivalence classes of
pairs (O, V ) where O ⊂ NG is a G-orbit and V is a simple F-representation of AG(xO).

For any Levi subgroup L of G we can likewise consider the set NL,F. In the whole
section we will make the following assumption on our field F: for any Levi subgroup L ⊂ G
and any pair (OL, EL) in NL,F, the local system EL is absolutely irreducible. It is clear
that this condition is satisfied if F is algebraically closed. In fact it is satisfied under

1. By Levi subgroup we mean a Levi factor of a parabolic subgroup.
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much weaker assumptions: see [AHJR4, Proposition 3.2] for an explicit characterization
of when this condition holds in many important cases.

2.2. Cuspidal pairs and triples. For any parabolic subgroup P ⊂ G and Levi factor
L ⊂ P , as above we can consider the nilpotent cones NP and NL in the Lie algebras of P
and L respectively, and the associated categories Db

P (NP ,F), PervP (NP ,F), Db
L(NL,F),

PervL(NL,F). We have natural maps

NG NP
iL⊂Poo pL⊂P // NL

where iL⊂P is induced by the embedding P ↪→ G, and pL⊂P is induced by the projection
P � L, where we identify L with the quotient of P by its unipotent radical. In this way
we can define two “restriction” functors

RG
L⊂P := (pL⊂P )∗ ◦ (iL⊂P )! : Db

G(NG,F)→ Db
L(NL,F)

′RG
L⊂P := (pL⊂P )! ◦ (iL⊂P )∗ : Db

G(NG,F)→ Db
L(NL,F)

and an “induction” functor

IGL⊂P := γGP ◦ (iL⊂P )! ◦ (pL⊂P )∗ : Db
L(NL,F)→ Db

G(NG,F),

where γGP is the left adjoint to the forgetful functor Db
G(NG,F) → Db

P (NG,F) (see [BL,
Theorem 3.7.1]). It follows from the usual theory of derived functors for sheaves that these
functors form adjoint pairs (′RG

L⊂P , I
G
L⊂P ) and (IGL⊂P ,R

G
L⊂P ). Moreover, it is known that

they are exact for the perverse t-structures, hence restrict to exact functors

RG
L⊂P : PervG(NG,F)→ PervL(NL,F),

′RG
L⊂P : PervG(NG,F)→ PervL(NL,F),

IGL⊂P : PervL(NL,F)→ PervG(NG,F);

see [AHJR2, §2.1] for references.
The following lemma is an application of Braden’s hyperbolic localization theorem;

see [AHJR2, Proposition 2.1] for details.

Lemma 2.1. Let F be a simple object in PervG(NG,F). Then the following conditions
are equivalent:

(1) for any pair (L,P ) as above with P ( G, we have RG
L⊂P (F) = 0;

(2) for any pair (L,P ) as above with P ( G, we have ′RG
L⊂P (F) = 0;

(3) for any pair (L,P ) as above with P ( G, and any G in PervL(NL,F), F does not
appear in the head of IGL⊂P (G);

(4) for any pair (L,P ) as above with P ( G, and any G in PervL(NL,F), F does not
appear in the socle of IGL⊂P (G).

The simple perverse sheaves which satisfy the conditions of Lemma 2.1 are called cus-
pidal. A pair (O, E) is called cuspidal if IC(O, E) is cuspidal; the subset of NG,F consisting
of classes of cuspidal pairs will be denoted Ncusp

G,F . Similarly, for any Levi subgroup L ⊂ G
we can consider the subset Ncusp

L,F of NL,F. A triple (L,OL, EL) where L is a Levi subgroup
of G and (OL, EL) ∈ Ncusp

L,F will be called a cuspidal triple for G. The set of cuspidal triples
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for G admits a natural action of G by conjugation, and we denote by MG,F the set of orbits
for this action. If (L,OL, EL) is a cuspidal triple, we will write [L,OL, EL] ∈MG,F for the
corresponding G-orbit.

For any Levi subgroup L ⊂ G, we denote by NG(L) the normalizer of L in G. For any
L-orbit OL ⊂ NL, we denote by NG(L,OL) the subgroup of NG(L) consisting of elements
g such that gOLg

−1 = OL. This group acts naturally on the set of isomorphism classes
of L-equivariant local systems on OL. The following result is based on the observation
that cuspidal pairs are supported on distinguished orbits (see [AHJR3, Proposition 2.6])
and then on an explicit verification in each type; see [AHJR3, Lemma 2.9] and [AHJR4,
Proposition 3.1].

Lemma 2.2. If L ⊂ G is a Levi subgroup and if (OL, EL) ∈ Ncusp
L,F , then we have

NG(L,OL) = NG(L). Moreover, the action of this group on the set of isomorphism classes
of L-equivariant local systems on OL is trivial.

If L is a set of pairwise non-conjugate representatives of conjugacy classes of Levi
subgroups of G, then Lemma 2.2 implies that the natural map

(2.1)
⊔
L∈L

Ncusp
L,F →MG,F

is a bijection.

2.3. Induction series. If (L,OL, EL) is a cuspidal triple, and if P ⊂ G is a parabolic
subgroup having L as a Levi factor, then we can consider the perverse sheaf

IGL⊂P
(
IC(OL, EL)

)
.

Since we have identified g and g∗, we can consider the Fourier–Sato transform Tg as an
auto-equivalence of the abelian category of conical G-equivariant F-perverse sheaves on g.
(Note that any G-equivariant perverse sheaf on g which is supported on NG is conical,
as follows e.g. from [Ja2, Lemma 2.10].) Using a geometric analysis due to Lusztig (but
explained in more detail by Letellier [Le]), we check in [AHJR2, §2.6] that there exists a
canonical isomorphism

(2.2) Tg

(
IGL⊂P

(
IC(OL, EL)

)) ∼= IC (Y(L,O′L), ($(L,O′L))∗Ẽ ′L
)

for some pair (O ′L, E ′L) ∈ Ncusp
L,F which might potentially be different from (OL, EL) (although

we do not know any example where this actually occurs), and which is characterized by
the fact that

Tl

(
IC(OL, EL)

) ∼= IC(O ′L + zL, E ′L � FzL
),

where zL is the center of the Lie algebra l of L and Tl is the Fourier–Sato transform on l.
In (2.2) we have used the notation

Y(L,O′L) := G · (O ′L + z◦L) ⊂ g, where z◦L = {z ∈ zL | G◦z = L},
and

$(L,O′L) : G×L (O ′L + z◦L)→ Y(L,O′L)

is the natural morphism, which is known to be a Galois covering with groupNG(L,OL)/L =

NG(L)/L (see Lemma 2.2). Finally, Ẽ ′L is the unique local system on G×L (O ′L+z◦L) whose
pullback to G× (O ′L + z◦L) is FG � (E ′L � Fz◦L

).
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From (2.2) we see that the perverse sheaf IGL⊂P
(
IC(OL, EL)

)
is independent of P up

to isomorphism, and in fact that it only depends on the G-conjugacy class of (L,OL, EL).
Hence we can define N

[L,OL,EL]
G,k ⊂ NG,k as the subset consisting of classes of pairs (O, E)

such that IC(O, E) is isomorphic to a quotient of IGL⊂P
(
IC(OL, EL)

)
. This subset is called

the induction series attached to the class [L,OL, EL].

Remark 2.3. (1) We insist that N[L,OL,EL]
G,k is the set of pairs associated with quo-

tients of IGL⊂P
(
IC(OL, EL)

)
, and not with all subquotients of this perverse sheaf.

If p = 0, then it follows from the Decomposition Theorem that IGL⊂P
(
IC(OL, EL)

)
is semisimple; so the two sets coincide. However, if p > 0, in general there exist
much more simple subquotients of this object than quotients. For instance when
G = GLn(C), L is a maximal torus, and (OL, EL) is the unique pair inNL,F, then the
simple subquotients of IGL⊂P

(
IC(OL, EL)

)
correspond to all the pairs (O,FO) with

O ⊂ NG a G-orbit, see [AHJR2, Remark 3.2]. In particular, they are parametrized
by all partitions of n. On the other hand, the simple quotients of IGL⊂P

(
IC(OL, EL)

)
are in bijection with simple F-representations of the Weyl group Sn of G (via
Juteau’s modular Springer correspondence [Ju2]), hence with the set of partitions
of n which are p-restricted (in other words whose transpose is p-regular, in the sense
that no part appears at least p times in this transposed partition).

(2) The pairs (O, E) such that IC(O, E) does not occur as a subquotient of a nontrivially
induced perverse sheaf are called supercuspidal. They are closely related to the
cuspidal pairs appearing in characteristic 0, see [AHJR5, Theorem 1.6].

(3) There seems to be a choice in our conventions since we could have considered simple
subobjects of IGL⊂P

(
IC(OL, EL)

)
rather than simple quotients. However the set of

isomorphism classes of simple subobjects of this perverse sheaf coincides with the
set of isomorphism classes of its simple quotients; see [AHJR3, Lemma 2.3].

2.4. Generalized Springer correspondence – Part 1. We can now state the first
part of the (modular) generalized Springer correspondence.

Theorem 2.4. We have

NG,F =
⊔

[L,OL,EL]∈MG,F

N
[L,OL,EL]
G,F .

The fact that NG,F is the union of the induction series follows from the definitions
and an easy induction on the semisimple rank of G; see [AHJR2, Corollary 2.7]. The
real content of Theorem 2.4 is the fact that the distinct induction series are disjoint. The
general proof of this property uses a “Mackey formula” for our geometric induction and
restriction functors; see [AHJR4, Theorem 2.2] for the statement of this Mackey formula,
and [AHJR4, Theorem 2.5] for the application to the disjointness of induction series.

In [AHJR2, AHJR3] we use a different approach to prove disjointness in some special
cases. For this we remark that from (2.2) we can deduce that the series N

[L,OL,EL]
G,F and

N
[M,OM ,EM ]
G,F are disjoint unless there exists g ∈ G such that g · (L,OL) = (M,OM ) and

such that the L-equivariant local systems EL and (Adg)
∗EM on OL have the same central
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character. 2 Hence, a sufficient condition for disjointness of all induction series attached to
non-conjugate cuspidal triples is that for any Levi subgroup L ( G, there does not exist
two distinct cuspidal pairs in NL,F which are supported on the same L-orbit and which
have the same central character. In the case of classical groups, we are able to check this
condition by explicitly classifying cuspidal pairs (by induction on the rank). In the case
of exceptional groups, in general we do not know (nor have a conjecture for) the precise
description of cuspidal pairs; hence we cannot even try to apply such ideas.

Remark 2.5. Using the bijection (2.1) one can write the disjoint union in Theorem 2.4
also as a disjoint union over a fixed set of pairwise non-conjugate representatives of con-
jugacy classes of Levi subgroups, and then over cuspidal pairs for these Levi subgroups.
This is the way this result was stated in [AHJR2, AHJR3].

2.5. Generalized Springer correspondence – Part 2. For any Levi subgroup L ⊂
G, we consider the set Irr(F[NG(L)/L]) of isomorphism classes of simple F-representations
of the finite group NG(L)/L. If L andM are two Levi subgroups of G which are conjugate,
then there exists a canonical bijection

ıL,M : Irr(F[NG(L)/L])
∼−→ Irr(F[NG(M)/M ]).

Indeed, for any g ∈ G such that gLg−1 = M we have a group isomorphism

(2.3) NG(L)/L
∼−→ NG(M)/M

induced by the morphism h 7→ ghg−1. Using this isomorphism one can identify the set
Irr(F[NG(L)/L]) with Irr(F[NG(M)/M ]). This identification does not depend on the choice
of g since changing g only replaces (2.3) by a composition with an inner automorphism of
NG(L)/L, and inner automorphisms fix isomorphism classes of simple representations.

Now we can state the second part of the generalized Springer correspondence.

Theorem 2.6. For any cuspidal triple (L,OL, EL), there exists a canonical bijection

ϕ(L,OL,EL) : N
[L,OL,EL]
G,F ←→ Irr(F[NG(L)/L]).

This bijection is invariant under conjugation, in the sense that for any g ∈ G the diagram

Irr(F[NG(L)/L])

ıL,gLg−1

��

N
[L,OL,EL]
G,F

rr
ϕ(L,OL,EL)

22

ll
ϕg·(L,OL,EL)

,,
Irr(F[NG(gLg−1)/gLg−1])

commutes.

To prove Theorem 2.6 we use some constructions due to Bonnafé [Bo]. Let us fix some
cuspidal triple (L,OL, EL), and recall the pair (O ′L, E ′L) associated with (OL, EL) as in §2.3.
Then, using geometric constructions copied from [Bo], in [AHJR3, Theorem 3.1] we prove
that

2. Here, the central character of a simple L-equivariant local system EL on an L-orbit OL = L ·x ⊂ NL

is the character of Z(L) on the stalk (EL)x, where Z(L) acts via the natural morphism Z(L)→ Gx/(Gx)◦.
(This character does not depend on the choice of x.)
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(1) there exists (up to isomorphism) a unique direct summand of the local system
($(L,O′L))∗Ẽ ′L whose IC-extension has a nonzero restriction to the induced orbit
IndGL (OL);

(2) the head E ′L of this direct summand is absolutely irreducible;

(3) there exists (up to scalar) a unique nonzero morphism ($(L,O′L))∗Ẽ ′L → E ′L;

(4) the morphism Ẽ ′L → ($(L,O′L))
∗E ′L obtained by adjunction from any such morphism

is an isomorphism.
By the projection formula we deduce a canonical isomorphism

($(L,O′L))∗Ẽ ′L
∼−→ E ′L ⊗F ($(L,O′L))∗FG×L(O′L+z◦L),

and finally that, under this isomorphism, the simple quotients of ($(L,O′L))∗Ẽ ′L correspond
to the local systems of the form E ′L ⊗ L, where L is a simple quotient of the local sys-
tem ($(L,O′L))∗FG×L(O′L+z◦L). Since $(L,O′L) is a Galois covering of Galois group NG(L)/L

(see §2.3), the latter simple quotients are in bijection with Irr(F[NG(L)/L]), and we finally
obtain the bijection ϕ(L,OL,EL).

The invariance by conjugation of ϕ(L,OL,EL) is clear from the characterization of the
local system E ′L and the construction of the bijection.

Remark 2.7. In Lusztig’s characteristic-0 setting, the groups NG(L)/L which appear
in Theorem 2.6 are Coxeter groups; see [Lu2, Theorem 9.2]. In our setting this is not
always the case; see [AHJR3, Remark 3.5] for an explicit example.

2.6. Summary. Combining Theorems 2.4 and 2.6, we obtain a canonical decomposi-
tion of the set NG,F as a disjoint union of subsets, each of which is in a canonical bijection
with the set of isomorphism classes of simple representations of a certain finite group. In
this decomposition, the subset corresponding to the case where the Levi subgroup L = T is
a maximal torus (and (OL, EL) is the unique pair in NL,k), and its bijection with Irr(F[Wf ])
whereWf = NG(T )/T is the Weyl group, is the celebrated Springer correspondence. In the
case p = 0, one recovers Lusztig’s generalized Springer correspondence from [Lu2] (with
the difference that we work with usual complexes of sheaves on the complex version of NG,
while Lusztig works in the étale setting, over the version of NG over a field of positive
characteristic; but essential differences occur only when this positive characteristic is bad
for G).

Although the construction of this correspondence is based on geometry, the set NG,F
has a combinatorial description in all cases (e.g. in terms of various types of partitions in
the case of classical groups). The groups NG(L)/L for Levi subgroups L ⊂ G, together
with their simple representations, can also be described combinatorially. In this way, the
generalized Springer correspondence becomes a bijection between two finite sets, which one
can try to describe explicitly.

A first step towards this is the classification of the conjugacy classes of cuspidal triples
(L,OL, EL), or in other words of the cuspidal pairs of each Levi subgroup of G. This step
was accomplished for classical groups in [AHJR3], and in some cases for exceptional groups
in [AHJR4, Appendix A]. But even when this step is understood, the actual description
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of the correspondence is still a difficult problem. The cases where this description is known
are the following:

(1) G arbitrary, with p not dividing #Wf , see [AHJR4, §7.1] (in this case the cor-
respondence is the same as in characteristic 0, in which case it was computed by
Lusztig and Spaltenstein);

(2) G = SLn(C), with p arbitrary, see [AHJR3, Theorem 9.1];

(3) G = SpN (C) or SON (C) with p = 2, see [AHJR3, Theorem 9.5];

(4) G quasi-simple of type G2 with p arbitrary, see [AHJR4, §7.3].

2.7. Remarks on cleanness. In [AHJR5] we study some aspects of the generalized
Springer correspondence in the case where p is rather good for G, i.e. good for G and not
dividing #(Z(G)/Z(G)◦). In this case there exists a canonical bijection NG,F ↔ NG,C.
It is known that under this bijection the set Ncusp

G,C is a subset of Ncusp
G,F , see [AHJR2,

Proposition 2.22]. Carl Mautner conjectured (in unpublished work) that for all pairs
(O, E) ∈ NG,F whose image in NG,C belongs to Ncusp

G,C , the local system E is clean; in
other words, for any such pair (O, E), we have

IC(O, E) = (jO)!E [dim(O)] = (jO)∗E [dim(O)],

where jO : O ↪→ NG is the embedding. In the case p = 0, this fact is a well-known observa-
tion of Lusztig. In [AHJR5, Theorem 1.3] we proved this conjecture in a number of cases,
including the case when p does not divide #Wf , and the case when G has only simple fac-
tors of exceptional type. We also observed that this conjecture has a number of interesting
consequences, including an orthogonal decomposition of the category Db

G(NG, k) which
generalizes a result of Lusztig in the characteristic-0 setting; see [AHJR5, Theorem 1.6].

3. Mixed derived categories and Koszul duality

This section is concerned with joint work with Pramod Achar [AR3, AR4, AR5] on
the construction of a geometric “Koszul duality” equivalence for constructible sheaves on
flag varieties. These constructions were inspired by earlier work with Wolfgang Soergel
and Geordie Williamson [RSW] (based on more “traditional” techniques) and subsequent
discussions with Geordie Williamson, and rely on the use of the new notion of mixed
derived category. (We believe this notion is of independent interest; it has also found other
applications in [R3, MaR2, ARd2, AR6].)

3.1. Reminder on parity complexes. Let us consider some complex algebraic va-
riety X endowed with an algebraic stratification

(3.1) X =
⊔
s∈S

Xs

(in the sense of [CG, Definition 3.2.23]) such that each Xs is isomorphic to an affine space.
We denote by Db

S (X,F) the derived category of F-sheaves which are constructible with
respect to the stratification (3.1). We will denote by DX : Db

S (X,F)op ∼−→ Db
S (X,F) the

Verdier duality functor.
The following definition is due to Juteau–Mautner–Williamson [JMW1].
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Definition 3.1. An object F in Db
S (X,F) is called even if it satisfies

Hi(F) = Hi(DX(F)) = 0 unless i is even.

An object F is called a parity complex if F ∼= G ⊕ G′[1] for some even objects G and G′.

We will denote by ParityS (X,F) the full additive subcategory of Db
S (X,F) consisting

of parity complexes. This subcategory is stable under direct summands and under the
cohomological shift [1]. For some reason that will appear in §3.2 below, we will denote
by {1} the restriction of [1] to the subcategory ParityS (X,F). It is known that the cat-
egory Db

S (X,F), as well as its subcategory ParityS (X,F), are Krull–Schmidt categories;
see [JMW1, §2.1].

For the following result, see [JMW1, Theorem 2.12 and Corollary 2.28].

Theorem 3.2. For any s ∈ S , there exists a unique indecomposable parity complex Es
in Db

S (X,F) which is supported on Xs and whose restriction to Xs is FXs [dim(Xs)]. More-
over, any indecomposable object in ParityS (X,F) is isomorphic to Es[i] for some unique
s ∈ S and i ∈ Z.

Remark 3.3. Standard arguments allow to generalize the theory of parity complexes
from the case of an algebraic variety with a finite stratification to the case of an ind-
variety X which can be written as an increasing union of closed subvarieties endowed with
compatible finite stratifications satisfying the conditions above, see e.g. [JMW1, §2.7].
This comment also applies to the various constructions considered in the remainder of this
section.

3.2. Mixed derived category and mixed perverse sheaves. In [AR4] we defined
the mixed derived category of X as the triangulated category

Dmix
S (X,F) := KbParityS (X,F).

Any object of ParityS (X,F) can be considered as a complex concentrated in degree 0,
hence as an object of Dmix

S (X,F). In particular, for s ∈ S , we will denote by Emix
s the

image of Es in Dmix
S (X,F).

We consider this construction to be a replacement for the notion of mixed sheaves (in
the sense of [BBD, §5.1]) for coefficient fields of positive characteristic, which is suitable
at least in some situations of interest in Representation Theory (in particular for flag
varieties and their generalizations). To support this idea, we next explain the analogues in
this setting of some basic constructions for mixed sheaves.

First we explain the definition of the “Tate twist” autoequivalence

〈1〉 : Dmix
S (X,F)

∼−→ Dmix
S (X,F).

As explained in §3.1, the category ParityS (X,F) admits an autoequivalence {1}. We will
denote similarly the induced autoequivalence ofKbParityS (X,F). On the other hand, since
Dmix

S (X,F) is a triangulated category, it also has a “cohomological shift” autoequivalence
[1]. We define the Tate twist as

〈1〉 := {−1}[1].

In [AR4, §2.4–2.5], we explain that for any locally closed inclusion of strata h : Y → X
one can define functors

h∗, h! : Dmix
S (X,F)→ Dmix

S (Y,F), h∗, h! : Dmix
S (Y,F)→ Dmix

S (X,F)
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such that
(1) there exist canonical adjunctions (h∗, h∗) and (h!, h

!); moreover the adjunction mor-
phisms h∗h∗ → id and id→ h!h! are isomorphisms;

(2) if h is a closed embedding then h∗ = h! and this functors is induced by the natural
functor h∗ : ParityS (Y,F)→ ParityS (X,F);

(3) if h is an open embedding then h∗ = h! and this functor is induced by the natural
functor h∗ : ParityS (X,F)→ ParityS (Y,F);

(4) if h is an open embedding and k is the embedding of the (closed) complement, then
for any F in Dmix

S (X,F) there exist functorial distinguished triangles

h!h
∗F → F → k∗k

∗F [1]−→ and k∗k
!F → F → h∗h

∗F [1]−→
where the first and second morphisms are induced by adjunction.

In particular, consider some s ∈ S . Then the constant sheaf FXs is obviously a parity
complex on Xs, hence it defines an object in Dmix

{s} (Xs,F) which we also denote FXs . Then,
if we denote by is : Xs → X the embedding, we can consider the objects

∆mix
s := (is)!FXs{dim(Xs)}, ∇mix

s := (is)∗FXs{dim(Xs)}

in Dmix
S (X,F). These objects satisfy

HomDmix
S (X,F)(∆

mix
s ,∇mix

t 〈i〉[j]) =

{
F if s = t and i = j = 0;
0 otherwise;

see [AR4, Lemma 3.2].
Using the gluing formalism from [BBD, §1.4], we can then prove the following result;

see [AR4, §3.1]. (Here, given a triangulated category D and a collection X of objects,
we denote by 〈〈 X 〉〉 the strictly full subcategory of D generated under extensions by the
objects in X .)

Theorem 3.4. Set
pDmix

S (X,F)≤0 := 〈〈∆mix
s 〈i〉[j], s ∈ S , i ∈ Z, j ∈ Z≥0 〉〉;

pDmix
S (X,F)≥0 := 〈〈∇mix

s 〈i〉[j], s ∈ S , i ∈ Z, j ∈ Z≤0 〉〉.

Then (pDmix
S (X,F)≤0, pDmix

S (X,F)≥0) is a t-structure on on Dmix
S (X,F).

This t-structure is called the perverse t-structure. Its heart is called the category of
mixed perverse sheaves onX, and will be denoted Pervmix

S (X,F). It follows from the general
gluing formalism that this category is a finite-length abelian category, and that its simple
objects are the perverse sheaves ICmix

s 〈j〉, where ICmix
s is the image of the unique (up to

scalar) nonzero morphism pH0(∆mix
s )→ pH0(∇mix

s ).
To proceed further, we need to make the following assumption:

for any s ∈ S , the objects ∆mix
s and ∇mix

s belong to Pervmix
S (X,F).

In the case of ordinary perverse sheaves, the analogous property follows from the fact
that the morphism is is affine. We were not able to show that it holds in general in our
setting; however in [AR4, Theorem 4.7] we proved that it is satisfied if X is a partial flag
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variety of a Kac–Moody group, stratified by orbits of a Borel subgroup (i.e. by the Bruhat
decomposition).

Under these assumptions, we check in [AR4, §3.2] that Pervmix
S (X,F) is a graded

highest weight category with weight poset (S ,�) (where � is the partial order on S
induced by inclusions of closures of strata), standard objects ∆mix

s , and costandard objects
∇mix
s . (See Definition 7.1 and Remark 7.2(3) for these notions.) In particular we can

consider the tilting objects in this category; see §7.5. We will denote by Tiltmix
S (X,F)

the full subcategory of Pervmix
S (X,F) whose objects are the tilting objects, and for F in

Tiltmix
S (X,F) we will denote by

(F : ∇mix
s 〈i〉), resp. (F : ∆mix〈i〉),

the multiplicity of ∇mix
s 〈i〉, resp. ∆mix

s 〈i〉, in a costandard, resp. standard, filtration of F
(see §7.1). The general theory of graded highest weight categories ensures that the category
Tiltmix

S (X,F) is Krull–Schmidt, and that its indecomposable objects are parametrized by
S ×Z. More precisely, for any s ∈ S there exists a unique indecomposable tilting object
Tmix
s such that

(Tmix
s : ∇mix

s ) = 1 and
(
(Tmix

s : ∇mix
t 〈i〉) 6= 0 ⇒ t � s

)
.

Then the isomorphism classes of indecomposable objects in Tiltmix
S (X,F) are the isomor-

phism classes of the objects Tmix
s 〈i〉 for s ∈ S and i ∈ Z.

Remark 3.5. (1) If X is a partial flag variety and F = Q`, then one can deduce
from the results of [AR1] that the category Pervmix

S (X,F) is equivalent to the
category considered in [BGS, §4.4]. (This category is a certain subcategory of
the category of Deligne’s mixed perverse sheaves on the version of X over a finite
field.) More generally, this comment applies to varieties endowed with an affine
even stratification in the sense of [AR1, Definition 7.1] and which are defined over
a localization of Z (so that we can compare the constructible derived categories in
the étale sense for the scheme XFq over a finite field Fq with the ordinary derived
category Db

S (X,Q`) considered here using the principles of [BBD, §6.1]). In fact,
in this setting there exists an equivalence of categories between the category denoted
Pure(XFq) in [AR1] and the category ParityS (X,Q`).

(2) The definition of the mixed derived category makes sense as soon as the category
of parity complexes makes reasonable sense; see [JMW1, §2.1] for the required
conditions. In particular, we can consider an equivariant setting, see [AR4, §3.5],
or more general stratifications, see [ARd2, Appendix A]. In both of these cases one
also has a perverse t-structure; however its heart will not be graded highest weight
in general.

(3) One should keep in mind the fact that from the general theory it is not clear that
there exists any “forgetful functor” from Dmix

S (X,F) to Db
S (X,F), contrary to the

situation for Deligne’s mixed perverse sheaves. The existence of such a functor is
an important question; see Remark 3.7(5) below.

(4) One can consider onDmix
S (X,F) several notions which play a role similar to Deligne’s

theory of weights for ordinary mixed sheaves, see [AR5]. However, in general these
notions do not have a behavior as favorable as in the Q`-setting.
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3.3. Application to Koszul duality. Our first application of the theory of §3.2 is
an adaptation to the modular setting of the Bezrukavnikov–Yun geometric Koszul duality
from [BY]. More precisely, we consider a complex connected reductive algebraic group
G, we choose a Borel subgroup B ⊂ G and a maximal torus T ⊂ G, and denote by G∨
the Langlands dual complex connected reductive group, with maximal torus T∨ such that
X∗(T∨) = X∗(T ), and denote by B∨ ⊂ G∨ the Borel subgroup containing T∨ whose roots
are the coroots of B. The Weyl group Wf of (G,T ) identifies canonically with the Weyl
group of (G∨, T∨), so that if we set

B := G/B, B∨ := B∨\G∨,
we have the Bruhat decompositions

B =
⊔

w∈Wf

Bw, B∨ :=
⊔

w∈Wf

B∨w

where, for w ∈Wf , we have set

Bw = BwB/B, B∨w = B∨\B∨wB∨.
Each of these strata is isomorphic to an affine space, so that we can consider the categories
defined in §§3.1–3.2, which we denote

Db
(B)(B,F), Parity(B)(B,F), Dmix

(B) (B,F), Tiltmix
(B)(B,F)

and
Db

(B∨)(B
∨,F), Parity(B∨)(B

∨,F), Dmix
(B∨)(B

∨,F), Tiltmix
(B∨)(B

∨,F)

respectively. For w ∈ W , we will denote by ∆mix
w , ∇mix

w , Tmix
w , Emix

w the objects of the
category Dmix

(B) (B,F) attached to w, and by ∆∨,mix
w , ∇∨,mix

w , T∨,mix
w , E∨,mix

w the objects of
the category Dmix

(B∨)(B
∨,F) attached to w.

The following result is equivalent to [AR4, Theorem 5.4].

Theorem 3.6. Assume that F is finite, char(F) is good for G, and that F 6= F2. There
exists an equivalence of triangulated categories

κ : Dmix
(B) (B,F)

∼−→ Dmix
(B∨)(B

∨,F)

such that κ ◦ 〈1〉 ∼= 〈−1〉[1] ◦ κ and

κ(∆mix
w ) ∼= ∆∨,mix

w , κ(∇mix
w ) ∼= ∇∨,mix

w , κ(Tmix
w ) ∼= E∨,mix

w , κ(Emix
w ) ∼= T∨,mix

w

for all w ∈W .

Remark 3.7. (1) In [AR4], the theorem is stated for the variety G∨/B∨ rather
than B∨\G∨. Each version is deduced from the other via the equivalence induced
by the isomorphism G∨/B∨

∼−→ B∨\G∨ sending gB∨ to B∨g−1, which exchanges
the orbits of w and w−1.

(2) We believe this statement should hold without any assumption on F. (A more
general statement, covering all fields except those of characteristic 2 in some cases,
should follow from the methods considered in §3.4 below.) Under the assumptions
of the theorem, it follows from its proof that the categories Parity(B)(B,F) and
Parity(B∨)(G

∨/B∨,F) are equivalent, hence the same holds for the mixed derived
categories. This fact is known to be false in general.
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(3) In the characteristic-0 setting, an equivalence as in Theorem 3.6 was obtained pre-
viously by Bezrukavnikov–Yun in [BY]. These authors work with ordinary étale
derived categories, and not with our mixed derived categories; however their con-
structions would also apply in our setting. Their construction has its roots in the
work of Bĕılinson–Ginzburg–Soergel [BGS] on category O for a complex semisimple
Lie algebra. A fundamental idea used in [BY] (and suggested earlier in [BG]) is
that, in order to obtain a more favorable Koszul duality equivalence (in particular,
valid for all Kac–Moody groups), one should compose the original Koszul duality
of [BGS] with Ringel duality, hence work with tilting objects instead of projective
objects.

(4) The main difference between our Theorem 3.6 and the characteristic-0 setting con-
sidered in (3) is that the duals of tilting objects are parity complexes and not
semisimple complexes. (In the characteristic-0 setting the two classes of objects
coincide, but not in the modular setting in general.) This idea was already used
crucially in [RSW].

(5) At the same time as proving Theorem 3.6, we also construct a “forgetful” t-exact
functor Dmix

(B) (B,F)→ Db
(B)(B,F) sending standard, costandard, simple, indecom-

posable tilting mixed perverse sheaves to standard, costandard, simple, indecom-
posable tilting ordinary perverse sheaves.

Our proof of Theorem 3.6 is analogous to the proof of Bezrukavnikov–Yun in the
characteristic-0 setting. The main step is accomplished in [AR3], where we relate the
additive category Tilt(B)(B,F) of (ordinary) tilting perverse sheaves on B to the additive
category Parity(B∨)(B

∨,F), by describing both sides in terms of some “Soergel modules”
over the coinvariant algebra of the Lie algebra of T . The functor from parity complexes to
Soergel modules is provided by total cohomology (as usual), while the functor from tilting
perverse sheaves to Soergel modules is constructed using the “logarithm of the monodromy.”
(In fact, the main new ideas required for our proof are those used to make sense of this
notion of logarithm of the monodromy in a positive-characteristic setting.)

Once this step is established, we can consider the functor

ν : Dmix
(B∨)(B

∨,F) = KbParity(B∨)(B
∨,F)→ KbTilt(B)(B,F) ∼= Db

(B)(B,F).

(See Proposition 7.17 for the equivalence on the right-hand side.) We observe that this
functor restricts to an equivalence between the additive subcategories Tiltmix

(B∨)(B
∨,F) and

Parity(B)(B,F), and use this induced equivalence to construct the functor κ.

Remark 3.8. In [AR3] we use the construction of the equivalence κ to prove that if
p is bigger than the Coxeter number of G, then Soergel’s modular category O associated
with the split simply-connected semisimple F-algebraic group with the same root system
as G, as defined in [So4], is equivalent, as a highest weight category, to Perv(B)(B,F).
This result can be considered as a “finite analogue” of the Finkelberg–Mirković conjecture
considered in §5.6 below.

3.4. A conjectural generalization to Kac–Moody groups. We expect Theo-
rem 3.6 to admit the following generalization. Let A = (ai,j)i,j∈I be a generalized Cartan
matrix, with rows and columns parametrized by a finite set I, and let (Λ, {αi : i ∈ I}, {α∨i :
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i ∈ I}), be an associated Kac–Moody root datum. In other words, Λ is a finitely generated
free Z-module, {αi : i ∈ I} is a collection of elements of Λ, {α∨i : i ∈ I} is a collection of
elements of HomZ(Λ,Z), and we assume that ai,j = 〈α∨i , αj〉. To such a datum one can
associate following Mathieu [Ma] 3 a Z-group scheme. We denote by G the set of C-points
of this group scheme. We also denote by B ⊂ G the (C-points of the) standard Borel
subgroup, and by T ⊂ B the (C-points of the) standard maximal torus. Then the group
of (algebraic) characters of T is Λ. We let

B := G/B
be the associated flag (ind-)variety. As in the case of reductive groups we have a Weyl
group W (a Coxeter group which is not finite in general), and a Bruhat decomposition

B =
⊔
w∈W

Bw

(see [Ro, §3.16]), and we can consider the associated categories

Db
(B)(B,F), Parity(B)(B,F), Dmix

(B) (B,F), Tiltmix
(B) (B,F).

Similarly, the transposed matrix tA is a generalized Cartan matrix, and the triple
(HomZ(Λ,Z), {α∨i : i ∈ I}, {αi : i ∈ I}) is an associated Kac–Moody root datum. Hence
we can consider the “Langlands dual” Kac–Moody group G∨ with its Borel subgroup B∨,
and the flag variety

B∨ := B∨\G∨.
The Weyl group of G∨ identifies naturally withW, and we have the Bruhat decomposition

B∨ =
⊔
w∈W

B∨w,

so that we can consider the associated categories

Db
(B∨)(B

∨,F), Parity(B∨)(B
∨,F), Dmix

(B∨)(B
∨,F), Tiltmix

(B∨)(B
∨,F).

As for reductive groups, for w ∈ W we will denote by ∆mix
w , ∇mix

w , Tmix
w , Emix

w the ob-
jects of Dmix

(B) (B,F) attached to w, and by ∆∨,mix
w , ∇∨,mix

w , T∨,mix
w , E∨,mix

w the objects of
Dmix

(B∨)(B
∨,F) attached to w.

We expect the following generalization of Theorem 3.6 to hold.

Conjecture 3.9. Assume that the “Demazure surjectivity” condition of [EW] holds
over F, i.e. that the morphisms α∨i : F ⊗Z Λ → F and αi : F ⊗Z HomZ(Λ,Z) → F are
surjective for any i ∈ I. 4 There exists an equivalence of triangulated categories

κ : Dmix
(B) (B,F)

∼−→ Dmix
(B∨)(B

∨,F)

such that κ ◦ 〈1〉 ∼= 〈−1〉[1] ◦ κ and

κ(∆mix
w ) ∼= ∆∨,mix

w , κ(∇mix
w ) ∼= ∇∨,mix

w , κ(Tmix
w ) ∼= E∨,mix

w , κ(Emix
w ) ∼= T∨,mix

w

for all w ∈ W.

3. To be more precise, Mathieu works under some technical conditions on the Kac–Moody root datum;
see [Ti, §6.5] or [Ro, Remarque 3.5]. See [Ti, §6.8] for a sketch of an argument explaining how to generalize
this construction to general Kac–Moody root data, and [Ro, §3.19] for more details.

4. Note that this condition is always satisfied if p 6= 2.
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Remark 3.10. In a joint project involving Pramod Achar, Shotaro Makisumi and
Geordie Williamson, we expect to prove Conjecture 3.9 using a strategy similar to the
one used to prove Theorem 3.6, but this time using a “diagrammatic” version of Soergel
modules instead of the “actual” Soergel modules considered in [AR3]. In fact, already the
first half of this proof (relating parity complexes to diagrammatic Soergel modules) can
be deduced from [RW, Theorems 10.5–6]. It remains to obtain the second half, i.e. to
describe the category of mixed tilting perverse sheaves in terms of these diagrammatic
Soergel modules.



Part 2

Representation Theory
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In this part we let k be an algebraically closed field of characteristic p > 0, and G be
a connected reductive algebraic group over k with simply-connected derived subgroup.

4. A new approach to character formulas for reductive algebraic groups in
positive characteristic

This section is devoted to my joint work [RW] with Geordie Williamson, where we
propose a new point on view on the modular representation theory of reductive algebraic
groups based on the use of the p-canonical basis of the affine Hecke algebra. Here we have
chosen to concentrate on the combinatorial aspects of our conjectures and results. See [RW]
for more precise categorical considerations related to diagrammatic Soergel bimodules.

4.1. Notations. We fix a Borel subgroup B ⊂ G and a maximal torus T ⊂ G. We
will denote by g, b, t the respective Lie algebras of G, B, T , and by h the Coxeter number
of G.

We let X be the lattice of characters of T , Φ ⊂ X be the set of roots of G relative to
T , and Wf be the corresponding Weyl group. For γ ∈ Φ, we will denote the corresponding
reflection by sγ . We denote by Φ+ ⊂ Φ the subset of positive roots consisting of the
T -weights in g/b, by Φs ⊂ Φ+ the corresponding set of simple roots, by Sf ⊂ Wf the
corresponding set of simple reflections, and by X+ ⊂ X the corresponding set of dominant
weights. As usual we set

ρ =
1

2

∑
α∈Φ+

α ∈ Q⊗Z X.

We also denote by Φ∨ the system of coroots of (G,T ). For α ∈ Φ we will denote by α∨
the associated coroot. Then we set Φ∨+ = {α∨ : α ∈ Φ+}.

We consider the affine Weyl group

W := Wf n ZΦ.

For µ ∈ ZΦ, we will denote by tµ the image of µ in W . This group acts on X via the
“dot-action” defined by

(tλv) ·p µ = v(µ+ ρ)− ρ+ p · λ
for λ ∈ ZΦ, v ∈Wf and µ ∈ X. The group W has a natural Coxeter group structure with
simple reflections S consisting of Sf together with the elements tγsγ where γ runs over
maximal short roots in Φ. We will denote by fW the subset of W consisting of elements w
which are minimal in their coset Wfw.

For any λ ∈ X, we denote by dom(λ) the unique dominant weight in the Wf -orbit of
λ, and by vλ the unique element in Wf of minimal length such that vλ(λ) = dom(λ). Then
it is well known that if p ≥ h (so that 0 is a regular weight) we have bijections

(4.1) ZΦ
∼−→ fW

∼−→ X+ ∩ {w ·p 0 : w ∈W}

defined by
µ 7→ tdom(µ) · vµ and w 7→ w ·p 0

for µ ∈ ZΦ and w ∈ W . (For the first bijection, see e.g. [MaR1, Lemma 2.4]; of course
the condition p ≥ h is not necessary for this part.)
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We will denote by Rep(G) the abelian category of finite-dimensional algebraic G-
modules. For any λ ∈ X+ we set

N(λ) := IndGB(λ), M(λ) :=
(
IndGB(−w0(λ))

)∗
(where w0 ∈ Wf is the longest element). We denote by L(λ) the image of the only (up to
scalar) nonzero morphism from M(λ) to N(λ). Then L(λ) is a simple G-module of highest
weight λ. It is well known that the category Rep(G) is a highest weight category in the
sense of Section 7, with standard objects M(λ) and costandard objects N(λ) for λ ∈ X+

(see Remark 7.7). Hence for any λ ∈ X+ we can consider the indecomposable tilting
G-module T(λ) with highest weight λ, see §7.5.

If p ≥ h, we will also denote by Rep0(G) the “principal block” of Rep(G), i.e. the
Serre subcategory generated by the simple objects L(µ) with µ ∈ X+ ∩ {w ·p 0 : w ∈ W}.
(The bijections (4.1) show that these dominant weights are in a natural bijection with ZΦ
and with fW .) The “linkage principle” implies that Rep0(G) is a direct factor in Rep(G),
and using translation functors it is well known that most of the combinatorial information
on the category Rep(G) (in particular, characters of simple and indecomposable tilting
modules) can be derived from the corresponding combinatorial information in Rep0(G).
Therefore, understanding the category Rep0(G) is the major problem in the representation
theory of G.

4.2. The affine Hecke algebra and the p-canonical basis. We will denote by
H the Hecke algebra of (W,S), i.e. the Z[v, v−1]-algebra generated by elements Hw for
w ∈W , with relations

(Hs + v)(Hs − v−1) = 0 for s ∈ S,
Hv ·Hw = Hvw for v, w ∈W such that `(vw) = `(v) + `(w).

It is well known that the elements {Hw : w ∈W} form a Z[v, v−1]-basis of this algebra.
One can define a “geometric” basis of this algebra, called the p-canonical basis, as

follows. Consider the complex connected reductive group G∧ with maximal torus T∧ whose
root datum is (HomZ(ZΦ,Z),Φ∨,ZΦ,Φ). Then G∧ is semisimple and simply-connected,
and we have an identification X∗(T

∧) = ZΦ. Moreover, the Weyl group of (G∧, T∧)
identifies canonically with Wf . Let also B∧ ⊂ G∧ be the Borel subgroup of G∧ containing
T∧ whose set of roots is −Φ∨+. We set

K := C((z)), O := C[[z]],

denote by I∧ ⊂ G∧(O) the inverse image of B∧ under the morphism G∧(O)→ G∧ induced
by z 7→ 0, and consider the affine flag variety

F l∧ := G∧(K )/I∧.

Any λ ∈ ZΦ = X∗(T
∧) defines a point zλ ∈ T∧(K ). If v ∈Wf , and w = vtλ, we set

F l∧w := I∧ · ṽzλ · I∧/I∧,

where ṽ is any lift of v in NG∧(T∧). Then we have a “Bruhat decomposition”

(4.2) F l∧w =
⊔
w∈W

F l∧w,
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and each F l∧w is isomorphic to an affine space of dimension `(w). For w ∈ W , we denote
by iw : F l∧w → F l∧ the embedding.

Using the stratification (4.2) one can consider the associated constructible derived
category Db

(I∧)(F l∧,k) of sheaves of k-vector spaces, and the full additive subcategory
ParityI∧(F l∧,k) of parity complexes (see §3.1). As usual, we will denote by Ew the parity
complex associated with the stratum F l∧w.

Following Springer (see [Sp2, §2.5]), given an object F in Db
(I∧)(F l∧, k), we define an

element ch(F) in H by the following formula:

ch(F) =
∑
w∈W
i∈Z

dimk
(
H−`(w)−i(F l∧w, i

∗
wF)

)
· viHw.

For w ∈W , we also set

chw(F) =
∑
i∈Z

dimk
(
H−`(w)−i(F l∧w, i

∗
wF)

)
· vi ∈ Z[v, v−1].

In this way we have ch(F) =
∑

w∈W chw(F) ·Hw.

Definition 4.1. (1) The p-canonical basis of H is the Z[v, v−1]-basis {pHw : w ∈
W} defined by pHw := ch(Ew).

(2) The associated p-Kazhdan–Lusztig polynomials are defined by phy,w := chy(Ew), so
that pHw =

∑
y∈W

phy,w ·Hy.

Remark 4.2. (1) Standard arguments show that the elements pHw only depend on
the characteristic of k, and not on the choice of field with this characteristic. This
justifies the name of the basis.

(2) In [JW], the authors give a different definition for the p-canonical basis, in terms
of an Elias–Williamson category of diagrammatic Soergel bimodules. The fact that
the two definitions coincide can be easily deduced from the results of [RW, §11].
In particular, this means that the algorithm for computing this basis presented
in [JW] applies.

(3) The same construction also makes sense for a field of characteristic 0, and it is
known that the basis of H obtained in this way coincides with the usual Kazhdan–
Lusztig (or canonical) basis {Hw : w ∈ W}, see [Sp2, Theorem 2.8]. In general, it
is known that the coefficients of pHw in the Kazhdan–Lusztig basis are polynomials
in v with non-negative coefficients, which are invariant under v ↔ v−1. It is also
known that for every w ∈W there exists N(w) ∈ Z≥0 such that pHw = Hw as soon
as p ≥ N(w).

4.3. The antispherical module and its p-canonical basis. We will denote by Hf

the Hecke algebra of the Coxeter group (Wf , Sf), which coincides with the subalgebra of
H generated by the elements Hw with w ∈ Wf . We let sgn be the “sign module” of Hf ,
i.e. the right module given by Z[v, v−1], with Hw acting by multiplication by (−v)`(w). The
anti-spherical module of H is the right H-module

Masph := sgn⊗Hf
H.
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For w ∈ fW we set Nw := 1⊗Hw. These elements form a Z[v, v−1]-basis ofMasph. Then
we define the p-canonical basis ofMasph by the formula

pNw := 1⊗ pHw

for w ∈ fW . The associated p-Kazhdan–Lusztig polynomials pny,w ∈ Z[v, v−1] are defined
by the formula

pNw =
∑
y∈fW

pny,w ·Ny.

Remark 4.3. (1) In the analogous situation in characteristic 0, the basis defined
by Nw := 1 ⊗Hw is the Kazhdan–Lusztig basis ofMasph considered in [So1, §3];
see [So1, Proof of Proposition 3.4(2)].

(2) The same arguments as in [So1, Proof of Proposition 3.4(2)] show that the poly-
nomials pny,w are related to the polynomials phz,w by the formula

(4.3) pny,w =
∑
x∈Wf

(−v)`(x) · phxy,w

for y, w ∈ fW .

4.4. Relation with representation theory. From now on we assume that p > h. 5

The relation of these constructions with the principal block is as follows. The Grothendieck
group [Rep0(G)] has a basis (as a Z-module) given by the classes [N(λ)] for λ ∈ X+∩{w·p0 :
w ∈W}. In view of (4.1), we therefore have an isomorphism of Z-modules

(4.4) Z⊗Z[v,v−1]Masph ∼= [Rep0(G)]
1⊗Nw ↔ [N(w ·p 0)]

(where here w ∈ fW , and the morphism Z[v, v−1] → Z is induced by v 7→ 1). It follows
from the well-known combinatorics of translations functors (see [Ja1, §§II.7.11–12]) that
this isomorphism is actually an isomorphism of W -modules, where s ∈ S acts on the left-
hand side via the action of Hs ∈ H, and on the right-hand side via [Ξs]−1, where Ξs is the
composition of a translation functor from 0 to a weight on the s-wall of the fundamental
alcove, and a translation functor back to 0.

In [RW] we formulate the following conjecture.

Conjecture 4.4. Under the isomorphism (4.4), the class [T(w ·p 0)] corresponds to
1⊗ pNw. In other words, for any y, w ∈W we have

(T(w ·p 0) : N(y ·p 0)) = pny,w(1).

Remark 4.5. (1) This conjecture is inspired by the earlier conjecture of Ander-
sen [An] considered in §1.6 (which itself was inspired by earlier work of Soergel on
tilting modules for Lusztig’s quantum groups at roots of unity, see [So1, So2, So3]).
The main differences between his conjecture and ours are that our formula is ex-
pected to be valid for all indecomposable tilting modules, and that it is formulated
in terms of the p-canonical basis rather than the ordinary Kazhdan–Lusztig basis.

5. This condition is equivalent to requiring that p ≥ h and p is very good for G.
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(2) In [RW] we show that this conjecture follows from a “categorical” conjecture on some
properties of translation functors, and we prove this stronger conjecture in the case
of the group G = GLn(k) (if n ≥ 3) using the Khovanov–Lauda–Rouquier theory
of categorical actions of Lie algebras. In particular, this means that Conjecture 4.4
holds in these cases.

(3) It follows from works of Jantzen, Donkin and Andersen (see [RW, §1.8]) that,
if p ≥ 2h − 2, from the knowledge of the multiplicities (T(w ·p 0) : N(y ·p 0))
one can obtain the multiplicities [M(x ·p 0) : L(y ·p 0)] for any x ∈ W such that
〈x ·p 0, α∨〉 < p(h− 1) for all α ∈ Φ+. From this one can deduce character formulas
for the simple modules L(x ·p 0) (for x satisfying the same condition). Since these
weights include all the restricted weights in the (W, ·p)-orbit of 0, this is sufficient
(using Steinberg’s tensor product theorem and Jantzen’s translation functors) to
deduce character formulas for all simple modules.

(4) If p < h, then our approach does not make sense since regular weights do not exist.
However from the characters of tilting modules with regular highest weight one
can deduce characters of tilting modules with singular highest weight, see [RW,
Conjecture 1.6] for an explicit formula. This formula also makes sense for p ≤ h,
and we conjecture that it holds also in this setting.

5. A geometric framework for the modular representation theory of reductive
algebraic groups

This section is devoted to my joint works with Carl Mautner [MaR2] and with Pramod
Achar [AR6], where we adapt some constructions due to Arkhipov–Bezrukavnikov–Ginz-
burg [ABG] to obtain a geometric description of the principal block of a connected re-
ductive algebraic group defined over an algebraically closed field of positive characteristic.
These works build on the earlier works [R1, BR, R3, MaR1]. We expect to use these
results to obtain a proof of Conjecture 4.4 valid in full generality; see Section 6 for details.

5.1. Notations. We continue with the notation of Section 4 (but not assuming that
p > h at this point.) We also denote by U the unipotent radical of B, and by u its Lie
algebra. The natural bijections between Φs and Sf will be denoted

α 7→ sα and s 7→ αs

respectively. For any s ∈ S we choose ςs ∈ X such that for t ∈ S we have

〈ςs, α∨t 〉 =

{
1 if s = t;
0 otherwise.

(Such weights exist thanks to our assumption that the derived subgroup of G is simply-
connected.)

For any subset I ⊂ S, we denote by PI the standard parabolic subgroup of G associated
with I, by UI the unipotent radical of PI , by pI the Lie algebra of PI , and by uI the Lie
algebra of UI .

We will also denote by Ġ, Ḃ, Ṫ , U̇ , ṖI , U̇I the Frobenius twists of G, B, T , U , PI , UI ,
and by ġ, ḃ, ṫ, u̇, ṗI , u̇I their respective Lie algebras.
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For any I ⊂ S, we will consider the partial flag variety PI , the Grothendieck resolution
g̃I and the Springer resolution ÑI defined as

PI := Ġ/ṖI , g̃I := Ġ×ṖI (ġ/u̇I)
∗, ÑI := Ġ×ṖI (ġ/ṗI)

∗.

If J ⊂ I, then there exists a natural morphism πJ,I : g̃J → g̃I . These varieties are naturally
endowed with actions of Ġ × Gm, where t ∈ Gm acts by multiplication by t−2 along the
fibers of the projection to PI .

We will identify the lattice of weights of Ṫ with X, in such a way that the inverse
image under the Frobenius morphism T → Ṫ induces the morphism X → X given by
multiplication by p. Then for any λ ∈ X which satisfies 〈λ, α∨s 〉 = 0 for all s ∈ I, we have
an associated line bundle OPI

(λ) on PI . We denote by O
ÑI

(λ) the pullback of this line

bundle under the projection ÑI →PI .

5.2. Braid group action. To the Coxeter group (Wf , Sf) one can associate the braid
group Bf , which can be defined as the group generated by elements T ◦w for w ∈ Wf , with
relations

T ◦v · T ◦w = T ◦vw if `(vw) = `(v) + `(w).
In this subsection we recall the construction of an action 6 of this group on the category
DbCohĠ×Gm(Ñ∅).

Let s ∈ S, and consider the fiber product of schemes g̃∅ ×g̃{s}
g̃∅. One can check

by explicit computation in coordinates (see [R1, §1.4]) that this scheme is reduced, and
has two connected components: one is the diagonal copy of g̃∅, and the other one will be
denoted Zs. Then we define Z ′s as the (scheme-theoretic) intersection of Zs with Ñ∅×Ñ∅ ⊂
g̃∅ × g̃∅. Once again, this scheme is reduced; see [R1, Remark 4.2]. By definition Z ′s is a
closed subscheme of Ñ∅ × Ñ∅, hence it is endowed with natural (proper) projections

Z ′s ps2
**

ps1
tt

Ñ∅ Ñ∅.

We consider the functors

Fs,Gs : DbCohĠ×Gm(Ñ∅)→ DbCohĠ×Gm(Ñ∅)

defined by

Fs(F) := R(ps2)∗L(ps1)∗(F)〈−1〉,
Gs(G) := R(ps2)∗

(
L(ps1)∗(G)⊗OZ′s OZ′s(−ςs, ςs − αs)

)
〈−1〉.

Here, OZ′s(−ςs, ςs−αs) is the line bundle on Z ′s obtained by pullback from the line bundle
OP∅(−ςs) � OP∅(ςs − αs) on P∅ ×P∅. (In this formula, ςs can be replaced by any
weight whose pairing with α∨s is 1 without changing the functor Gs up to isomorphism,
see [R1, Lemma 1.5.1]; in particular Gs does not depend on the choice of ςs.) The following
statement can also be checked by explicit computation; see [R1, Proof of Corollary 4.4].

Lemma 5.1. The functors Fs and Gs are quasi-inverse equivalences of triangulated
categories.

6. Here by an action of a group on a category we mean a weak action, i.e. a group morphism from the
given group to the group of isomorphism classes of autoequivalences of the given category.
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Using these functors one can describe the desired action of the group Bf on the category
DbCohĠ×Gm(Ñ∅), whose existence was proved in full generality in [BR].

Theorem 5.2. There exists a unique right action of Bf on DbCohĠ×Gm(Ñ∅) such that
for any s ∈ S, the element T ◦s acts via the functor Fs.

Remark 5.3. (1) In [R1, BR] we consider instead a left action of Bf . When
writing [MaR1] we realized that it is more convenient to work with a right version
of this action. In any case the two constructions are equivalent, see the comments
at the beginning of [MaR1, §3.3].

(2) The statement also holds in characteristic 0. In fact, in [BR] we construct sev-
eral variations of this action: for g̃∅ instead of Ñ∅, with different equivariance
conditions, over rings instead of fields, etc.

(3) In [BR] we also show that this action can be extended to an action of the affine
braid group. For simplicity, we do not consider this extension here.

(4) Theorem 5.2 can be considered as a “categorical upgrade” of the Kazhdan–Lusztig–
Ginzburg description of the affine Hecke algebra H̃ (defined as in §4.2, but using the
lattice X instead of ZΦ) in the following sense. The functor Fs is the Fourier–Mukai
transform with kernel OZ′s〈−1〉. Theorem 5.2 (and its proof) imply in particular
that the assignment

Ts 7→ [OZ′s〈−1〉] ∈ KĠ×Gm(Ñ∅ ×ġ∗ Ñ∅)

extends to an algebra morphism from the Hecke algebra Hf of Wf (see §4.3) to
KĠ×Gm(Ñ∅ ×ġ∗ Ñ∅), where the latter is endowed with the convolution product.
Now Ñ∅ ×ġ∗ Ñ∅ is the Steinberg variety of Ġ, and the morphism so constructed is
(at least in the characteristic-0 setting, see (2)) the restriction to Hf of the algebra
isomorphism H̃ ∼−→ KĠ×Gm(Ñ∅×ġ∗ Ñ∅) due to Kazhdan–Lusztig and Ginzburg, in
the version of Lusztig in [Lu6, §8]; see [R1, §6] for details. 7

(5) The construction of the action considered in Theorem 5.2 stems from the Bezru-
kavnikov–Mirković–Rumynin localization theory. Namely, this theory provides (if
p > h) equivalences of categories between certain full subcategories of DbCoh(Ñ∅)
and certain derived categories of modules over U(g). Under these equivalences
(suitably normalized), the non-equivariant version of the action of Theorem 5.2
corresponds to an action on the representation-theoretic side constructed in terms
of some wall-crossing functors; see [R1, §5] for details. This was my original mo-
tivation for studying this action, and this construction played an important role
in [R2] and in [BM].

(6) Using the representation-theoretic description of the action evoked in (5), in [BR,
§2] we prove that if either p > h or p = 0, 8 the action of the elements T ◦w with
w ∈ Wf can be described as follows. Consider the open subvariety ġ∗reg ⊂ ġ∗

consisting of regular elements (see [BR, §1.8]), and the inverse image g̃reg of ġ∗reg

7. In [R1, §6] I incorrectly suggest that the constructions in [CG] and in [Lu6] coincide; in fact they
use different normalizations.

8. We expect these restrictions to be unnecessary.
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under the natural morphism g̃ → g∗. Then there exists a well-known action of Wf

on g̃reg, see [BR, §1.9]. If Zw is the closure (in g̃× g̃) of the graph of the action of
w, then T ◦w acts via the Fourier–Mukai transform with kernel

O
Zw−1∩(Ñ∅×Ñ∅)

〈−`(w)〉,

where we consider the scheme-theoretic intersection.

To prove the theorem it is more convenient to first consider the variant of the action
for g̃∅ instead of Ñ∅ (see Remark 5.3(2)), and then deduce the case of Ñ∅; see [R1, §4].

A first proof of Theorem 5.2 is given (under the assumptions that G is semisimple,
that p 6= 2 if G is not simply laced, and that G has no component of type G2) in [R1].
This proof is based on explicit computations in coordinates. In fact what one has to prove
is that the kernels OZ′s〈−1〉 satisfy some braid relations, which only involve two different
simple reflections. Hence they can be proved by some computations which are essentially
“rank 2” computations. We are able to make this computation in types A1 ×A1 and A2

(in full generality) and in type B2 (if p 6= 2), which is sufficient to imply the theorem in
the stated generality.

In [BR] we give a second proof of Theorem 5.2. This proof is based on the analysis
of the image of line bundles under the functors Fs and Gs. It applies for any connected
reductive group with simply-connected derived subgroup (although the theorem is stated
only for semisimple groups in [BR]).

For w ∈ Wf , we will denote by Fw the action of T ◦w on DbCohĠ×Gm(Ñ∅), and by Gw
the action of (T ◦w)−1. (These functors are well defined up to isomorphism.)

5.3. The exotic t-structure. Recall the notation introduced in §4.1. For λ ∈ X we
set

N∅(λ) := G(vλ)−1

(
O

Ñ∅
(dom(λ))

)
,

M∅(λ) := G(v−λ)−1

(
O

Ñ∅
(−dom(−λ))

)
〈−`(v−λ)− `(vλ)〉.

In the following statement we use the notation 〈〈X 〉〉 introduced in §3.2. We also consider
the notion of highest weight category reviewed in Section 7 (see in particular Remarks 7.2(3)
and 7.7).

Theorem 5.4. (1) There exists a unique t-structure (eD≤0, eD≥0) on the category
DbCohĠ×Gm(Ñ∅) such that

eD≤0 = 〈〈M∅(λ)〈n〉[m], λ ∈ X, n ∈ Z,m ∈ Z≥0 〉〉,
eD≥0 = 〈〈N∅(λ)〈n〉[m], λ ∈ X, n ∈ Z,m ∈ Z≤0 〉〉.

(2) The heart EĠ×Gm(Ñ∅) of this t-structure is a graded highest weight category, with
standard objectsM∅(λ) and costandard objects N∅(λ).

(3) If we denote by TiltĠ×Gm(Ñ∅) the category of tilting objects in EĠ×Gm(Ñ∅), then
the natural functors

KbTiltĠ×Gm(Ñ∅)→ DbEĠ×Gm(Ñ∅)→ DbCohĠ×Gm(Ñ∅)
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are equivalences of triangulated categories (where the second functor is the realiza-
tion functor, see [BBD, §3.1]).

This theorem is proved in [MaR1]; see in particular [MaR1, Proposition 3.8 and §3.5]. 9
The proof uses a very different description of the objectsM∅(λ) and N∅(λ), in terms of
mutation of exceptional sequences. The obvious analogue of part (1) in the characteristic-0
setting is due to Bezrukavnikov [Be], and the generalization to arbitrary characteristic is
not difficult. The relation with the braid group action is made explicit in [BM]. Part (2) is
suggested in Bezrukavnikov’s work, but not explicitly stated. (The crucial fact one has to
prove is that the objectsM∅(λ) and N∅(λ) belong to EĠ×Gm(Ñ∅); then the result follows
from basic properties of exceptional sequences.) Finally, part (3) is an easy consequence
of (2) and general properties of exceptional sequences.

The general theory of (graded) highest weight categories shows that the indecomposable
objects in the category TiltĠ×Gm(Ñ∅) are parametrized byX×Z (see §7.5 for the analogous
ungraded setting). We will denote by T (λ) the indecomposable object attached to (λ, 0);
then the object attached to (λ, n) is T (λ)〈n〉. It is an interesting question to try to describe
the objects T (λ) explicitly. In [MaR1, §4.2] (following earlier ideas of Bezrukavnikov–
Mirković [BM] and Dodd [Do]) we give a “Bott–Samelson type” way of generating these
objects. We also prove the following fact in [MaR1, Corollary 4.8 and Corollary 4.16].

Proposition 5.5. Assume that p is a good prime for Ġ, and that ġ admits a non
degenerate Ġ-invariant symmetric bilinear form.

(1) For any λ ∈ X, the complex T (λ) is concentrated in degree 0.

(2) If λ ∈ X+, then we have T (λ) ∼= Ṫ(λ) ⊗ O
Ñ
, where Ṫ(λ) is the indecomposable

tilting Ġ-module of highest weight λ.

In [AR6, §9] we begin the study of some analogues of these constructions for “partial”
Springer resolutions ÑI , which we will consider below.

For any I ⊂ S we set
ςI =

∑
s∈I

ςs.

We define
Ñ∅,I := Ġ×Ḃ (ġ/ṗI)

∗.

Then we have natural morphisms

Ñ∅,I µI
**

eI
tt

Ñ∅ ÑI

where µI is proper and eI is a closed embedding. Hence we can consider the functor

ΠI : DbCohĠ×Gm(Ñ∅)→ DbCohĠ×Gm(ÑI)

defined by
ΠI(F) = R(µI)∗L(eI)

∗(F ⊗O
Ñ∅

(−ςI)).

9. Here we follow the notation of [AR6]. In [MaR1], the object M∅(λ) is denoted ∆λ

Ñ
, and the

object N∅(λ) is denoted ∇λ
Ñ

.
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We set
X+,reg
I := {λ ∈ X | ∀s ∈ I, 〈λ, α∨s 〉 ≥ 1}.

Then for λ ∈ X+,reg
I we set

(5.1) NI(λ) = ΠI(N∅(λ))〈|Φ+
I |〉[|Φ

+
I |], MI(λ) = ΠI(M∅(λ))〈−|Φ+

I |〉[−|Φ
+
I |],

where Φ+
I = Φ ∩ (

∑
s∈I Z · αs). Then it follows from [AR6, Proposition 9.24] that these

objects satisfy

(5.2) Hom
DbCohĠ×Gm (ÑI)

(MI(λ),NI(µ)〈n〉[m]) =

{
k if λ = µ and n = m = 0;
0 otherwise.

As for the objects M∅(λ) and N∅(λ), these objects admit a description in terms of mu-
tations of exceptional sequences, and the Hom-vanishing statement is clear from this con-
struction. What is not so clear (and is proved in [AR6, §9]) is that these objects con-
structed from an exceptional sequence satisfy (5.1).

5.4. Relating exotic sheaves to parity complexes on affine Grassmannians.
In this subsection we assume that G is a product of simply connected quasi-simple groups
and of general linear groups, and that p is very good for each quasi-simple factor of G.
(We do not have to impose any condition related to the factors which are general linear
groups.)

We denote by Ġ∨ the complex connected reductive algebraic group with maximal torus
Ṫ∨ whose root datum is dual to that of Ġ. (In particular X, which we identified with the
lattice of characters of Ṫ , now gets identified further with the lattice of coweights of Ṫ∨.)
We also denote by Ḃ∨+ the Borel subgroup of Ġ∨ containing Ṫ∨ whose roots are the positive
coroots of (Ġ, Ṫ ). As in §4.2 we set

K := C((z)), O := C[[z]],

and we consider the affine Grassmannian

Gr := Ġ∨(K )/Ġ∨(O).

Any λ ∈ X = X∗(Ṫ
∨) defines an element zλ ∈ Ṫ∨(K ), hence a point Lλ := zλĠ∨(O) in

Gr.
We define the Iwahori subgroup Iw ⊂ Ġ∨(O) as the inverse image of Ḃ∨+ under the

morphism Ġ∨(O) → Ġ∨ induced by the assignment z 7→ 0. For λ ∈ X we denote by Grλ
the Iw-orbit of Lλ. Then we have a “Bruhat decomposition”

(5.3) Gr =
⊔
λ∈X
Grλ,

and each Grλ is isomorphic to an affine space of dimension

dim(Grλ) = 〈dom(λ), 2ρ∨〉 − `(vλ),

where 2ρ∨ is the sum of positive coroots of (Ġ, Ṫ ). (To obtain this formula, compare [AR6,
Remark 11.3(2)] and [MaR1, Lemma 2.4].) In particular, it makes sense to consider the
derived category Db

(Iw)(Gr,k) of k-sheaves on Gr which are constructible with respect to
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the stratification (5.3), its subcategory Parity(Iw)(Gr,k) of parity complexes, and the mixed
derived category

Dmix
(Iw)(Gr, k) := KbParity(Iw)(Gr,k).

As in §3.2, we denote by ∆mix
λ , ∇mix

λ the standard and costandard mixed perverse sheaves
attached to the stratum Grλ, and by Eλ the indecomposable object in Parity(Iw)(Gr,k)

labelled by λ (for λ ∈ X).
The following theorem is proved in [MaR2] (see also [AR6, Remark 11.3(2)] and §6.3

below for the difference of conventions between this statement and that of [MaR2]).

Theorem 5.6. There exists an equivalence of additive categories

P : Parity(Iw)(Gr,k)
∼−→ TiltĠ×Gm(Ñ∅)

which intertwines the “shift functors” {1} and 〈−1〉, and satisfies

(5.4) P (Eλ) ∼= T (λ)

for all λ ∈ X. The induced equivalence

P : Dmix
(Iw)(Gr,k) = KbParity(Iw)(Gr, k)

Kb(P )−−−−→
∼

KbTiltĠ×Gm(Ñ∅)

Theorem 5.4−−−−−−−→
∼

DbCohĠ×Gm(Ñ∅)

satisfies P ◦ 〈1〉 ∼= 〈1〉[1] ◦ P, and

P(∆mix
λ ) ∼=M∅(λ), P(∇mix

λ ) ∼= N∅(λ)

for all λ ∈ X.

Remark 5.7. (1) The theorem also holds in the characteristic-0 setting. In this
case, a different construction of the equivalence P is due to Arkhipov–Bezrukavni-
kov–Ginzburg [ABG]. The exotic t-structure does not play any role in their ap-
proach.

(2) The property (5.4) shows that the functor P is a Koszul–Ringel duality in the sense
of §1.9: it relates parity objects to tilting objects.

(3) These results were also independently obtained by Achar–Rider in [ARd2]. Their
approach is closer to the one in [ABG], although they also notice the relation with
the exotic t-structure. One bonus of their construction is that it is compatible with
the Geometric Satake Equivalence [MV] in the suitable sense (which is not clear
from our approach). The drawback, however, is that it requires to know from the
beginning that the parity complexes Eλ with λ ∈ X+ are perverse. This fact was
proved in [JMW2] under certain conditions on p. The most general proof of this
property, however, is obtained as a consequence of Theorem 5.6; see part (4) of this
remark.

(4) Apart from the application to the modular representation theory of reductive al-
gebraic groups presented below, another motivation for Theorem 5.6 is the appli-
cation to the Mirković–Vilonen conjecture, see [MV, Conjecture 6.3]. This con-
jecture asserts that the cohomology objects of the stalks of the perverse sheaves
p(jλ)!ZGrλ [dim(Grλ)] (for λ ∈ X+) are free over Z. Here Grλ := Ġ∨(O) · Lλ, and
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jλ : Grλ ↪→ Gr is the embedding. It was noticed by Juteau [Ju1] that this conjecture
is false, and more precisely that these stalks can have p-torsion if p is a bad prime.
On the other hand, it was proved recently by Achar–Rider [ARd1] that if, for some
given prime p, the parity sheaves Eλ as above for a field of coefficients of character-
istic p are perverse for all λ ∈ X+, then the stalks in question have no p-torsion. As
explained in part (3) of this remark, this fact was known under certain assumptions
on p thanks to [JMW2]. As a consequence of Theorem 5.6 and the description of
the “dominant” tilting exotic sheaves in Proposition 5.5(2), we proved this fact for
any good p, see [MaR2, Corollary 1.6]. The combination of these results settles
the question raised by the Mirković–Vilonen conjecture completely.

The approach to Theorem 5.6 developed in [MaR2] uses some kind of “Soergel theory.”
Namely, we describe both sides of the desired equivalence P in “combinatorial terms,” and
more precisely in terms of “Bott–Samelson type” modules over the algebra O(ṫ∗ ×ṫ∗/W

T(ṫ∗/W )) (where T(−) denotes the tangent bundle), and identify the two descriptions.
The description of the left-hand side is based on standard techniques using the global

cohomology functor, and a description of the equivariant cohomology H•Iw(Gr;Q) in terms
of the characteristic-0 analogue of the algebra O(ṫ∗×ṫ∗/W T(ṫ∗/W )) which can be deduced
from results of Bezrukavnikov–Finkelberg, see [BF, Theorem 1].

The description of the right-hand side adapts some ideas of Dodd [Do] (which were
introduced in the characteristic-0 setting): we “deform” the coherent sheaves on Ñ∅ to
coherent sheaves on g̃∅, and then use a “Kostant–Whittaker reduction functor” to obtain
modules over the desired algebra. For this we use a result of [R3] (which adapts another
result of [BF] to the positive characteristic setting) identifying the Lie algebra of the
universal centralizer of Ġ (the group-scheme over the regular part ġreg ⊂ ġ whose fiber
over x ∈ ġreg is the centralizer Ġx) with

ġreg ×ṫ/W T∗(ṫ/W ).

(To compare the two descriptions, we identify ġ with ġ∗ by choosing a non-degenerate
Ġ-invariant symmetric bilinear form on ġ.)

To be more precise, we in fact run this strategy over a localization of Z rather than
over k (in order to be able to ignore the difference between the algebras H•Iw(Gr;k) and
O(ṫ∗×ṫ∗/W T(ṫ∗/W )), which are not isomorphic in the positive characteristic setting). Our
technical assumptions are due to a lack of reference for certain technical results on split
reductive groups over Z which are used in [R3].

Remark 5.8. The equivalence of Theorem 5.6 has some “equivariant variants” as fol-
lows. First, in [MaR2, Theorem 1.4] we use similar methods to construct (under the same
assumptions) an equivalence of categories

Dmix
Iw (Gr,k)

∼−→ DbCohĠ×Gm(g̃∅)

with properties similar to those of P, where the left-hand side is defined as the bounded
homotopy category of the category of Iw-equivariant parity complexes on Gr. (In this
setting however, no analogue of the exotic t-structure is known.) Secondly, in [R3, §5]
we use a similar strategy (which, this time, does not require to work over the integers) to
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construct an equivalence of triangulated categories

Dmix
Ġ∨(O)

(Gr,k)
∼−→ DbCohĠ×Gm(ġ)

(under the assumption that G is quasi-simple of adjoint type and that p is very good for
G) which is a “mixed modular” counterpart of the main result of [BF]. Here the left-hand
side is defined as the bounded homotopy category of the category of Ġ∨(O)-equivariant
k-parity complexes on Gr.

5.5. Relation to the representation theory of G. In this section we come back
to the assumptions of §5.1 on G, assuming in addition that p > h (where h is the Coxeter
number of G).

Recall the G-modules M(λ), L(λ), N(λ), T(λ) defined in §4.1. Recall also that these
objects satisfy

(5.5) HomDbRep(G)(M(λ),N(µ)[n]) =

{
k if λ = µ and n = 0;
0 otherwise

(see [Ja1, Proposition II.4.13]).
Let I ⊂ S be a subset, and recall the weight ςI considered in §5.3. We denote by

RepI(G) the Serre subcategory of the category Rep(G) of finite-dimensional algebraic G-
modules generated by the simple modules L(λ) with λ ∈ X+ of the form v(−ςI+ρ)−ρ+pµ
with v ∈Wf and µ ∈ X. The linkage principle ensures that RepI(G) is a direct summand
in the category Rep(G).

The following theorem is the main result of [AR6].

Theorem 5.9. There exists a functor

ΥI : DbCohĠ×Gm(ÑI)→ DbRepI(G)

and an isomorphism ε : ΥI ◦ 〈1〉[1]
∼−→ ΥI such that:

(1) for any F ,G in DbCohĠ×Gm(ÑI), the functor ΥI and the isomorphism ε induce an
isomorphism⊕

n∈Z
Hom

DbCohĠ×Gm (ÑI)
(F ,G〈n〉[n])

∼−→ HomDbRepI(G)(ΥI(F),ΥI(G));

(2) for any λ ∈ X+,reg
I we have

ΥI

(
MI(λ)

) ∼= M
(
vλ(−ςI + ρ)− ρ+ p · dom(λ)

)
,

ΥI

(
NI(λ)

) ∼= N
(
vλ(−ςI + ρ)− ρ+ p · dom(λ)

)
;

(3) for any V in Rep(Ġ) and F in DbCohĠ×Gm(ÑI), we have a bifunctorial isomor-
phism

ΥI(V ⊗F) ∼= ΥI(F)⊗ Fr∗(V ),

where Fr : G→ Ġ is the Frobenius morphism.



40

Remark 5.10. (1) In the case I = ∅, an analogue of Theorem 5.9 in the setting
of Lusztig’s quantum groups at a root of unity was obtained in 2004 by Arkhipov–
Bezrukavnikov–Ginzburg [ABG]. In their case, Rep∅(G) is replaced by the princi-
pal block of the category of finite dimensional representations of the given quantum
group, and the Springer resolution is considered over a field of characteristic 0.

(2) The property of ΥI stated in (1) can be formulated as saying that this functor
is a degrading functor with respect to the autoequivalence 〈1〉[1]. Instead of a
degrading functor, our methods can be used to obtain an equivalence of categories
between DbRepI(G) and a “dg-version” of the category DbCohĠ(ÑI); namely, a
certain derived category of equivariant dg-modules over the symmetric algebra of
the tangent field of PI placed in degree 2, with trivial differential. However, this
version is less interesting because it cannot be combined with the constructions
of §5.4.

As explained in Remark 5.10(1), Theorem 5.9 has a characteristic-0 predecessor due
to Arkhipov–Bezrukavnikov–Ginzburg, and our proof follows the same general strategy as
theirs. Namely, we use as an “intermediate step” betweenDbCohĠ×Gm(ÑI) andDbRepI(G)
the triangulated category Db

Stein(PI), defined as the full triangulated subcategory of the
category DbRep(PI) generated by the objects of the form StI ⊗ Fr∗(V ) for V in Rep(ṖI),
where StI = IndPIB ((p − 1)ςI), and Fr : PI → ṖI is the Frobenius morphism. We first
construct a degrading functor

(5.6) DbCohĠ×Gm(ÑI)→ Db
Stein(PI),

and then show that the functor

(5.7) R IndGPI : Db
Stein(PI)→ DbRepI(G)

is an equivalence of categories.
In the case I = ∅, the functor (5.6) can be considered as a “categorification” of a

well-known isomorphism of Ḃ-equivariant algebras

Ext•B1
(k, k) ∼= Sym(u̇∗∅)

due to Friedlander–Parshall [FP], where B1 is the (first) Frobenius kernel of B. The main
new idea of our construction compared to what is done in [ABG] is to use the following
diagram of dg-algebras and dg-algebra morphisms:

(5.8)
∧•(u̇I) ∧•(u̇I)⊗ U(uI) //oo Dist(UI,1).

Here the middle term is endowed with a Koszul-type differential, and the left-hand mor-
phism is induced by the augmentation morphism U(uI) → k. On the other hand, UI,1 is
the Frobenius kernel of UI , Dist(UI,1) is identified with the restricted enveloping algebra
of uI , and the right-hand morphism is the natural quasi-isomorphism. The diagram (5.8)
allows to relate dg-modules over

∧•(u̇I) (which, via Koszul duality, are derived-equivalent
to Sym(u̇∗I)-dg-modules) to UI,1-modules. Taking further equivariance conditions into ac-
count, from this we construct the degrading functor (5.6).

Our proof that (5.7) is an equivalence is very different from the corresponding proof
in [ABG]. In fact the crucial step is to show that the composition of (5.6) and (5.7)
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satisfies statement (2) of Theorem 5.9. Then, comparing (5.2) and (5.5), it is not difficult
to prove that the functor (5.7) is fully faithful, and finally to deduce Theorem 5.9.

Remark 5.11. (1) By construction, the functor (5.6) sends the structure sheaf to
StI . Now, consider the case I = S; in this case we have DbCohĠ×Gm(ÑS) =

DbRep(Ġ×Gm), and for any λ ∈ X+,reg
S we have

MS(λ) = M(λ− ςS)〈−|Φ+|〉[−|Φ+|], NS(λ) = N(λ− ςS)〈−|Φ+|〉[−|Φ+|].

Hence parts (2) and (3) of Theorem 5.9 say in this case that for λ ∈ X+,reg
S

N
(
(p− 1) · ςS

)
⊗ Fr∗

(
N(λ− ςS)

) ∼= N(−ςS + p · λ),

and similarly for Weyl modules. This isomorphism is well known, see [Ja1, §II.3.19].

(2) In [HKS], the authors provide an alternative proof of the fact that the functor (5.7)
is an equivalence of categories in the case I = ∅. (Their proof is closer to the
corresponding proof in [ABG].)

5.6. A graded analogue of a conjecture of Finkelberg–Mirković. In this sub-
section we restrict our attention to the case I = ∅. We assume that the conditions of §5.4
are satisfied, and moreover that p > h.

Theorem 5.9 gives a “geometric model” for the category Rep∅(G). However, this model
might not be very easy to work with because it is not clear how to describe the inverse
image under this equivalence of the tautological t-structure on DbRep∅(G). In particular,
this t-structure is neither the tautological t-structure nor the exotic t-structure. (With
respect to the exotic t-structure on DbCohĠ×Gm(Ñ∅) and the tautological t-structure on
DbRep∅(G), the functor Υ∅ should be thought of as some kind of Koszul–Ringel duality,
exchanging tilting objects and parity objects.) But this construction can be combined with
those of §5.4 to provide a relation between constructible sheaves on Gr and the category
Rep∅(G). Since both of these constructions are Koszul–Ringel dualities, combining them
should provide a t-exact equivalence. This is indeed the case, and we deduce the following
result (see [AR6, Theorem 11.7]), where for λ ∈ X we denote by Tmix

λ the indecomposable
tilting mixed perverse sheaf on Gr associated with the stratum Grλ.

Theorem 5.12. There exists an exact functor

Q : Pervmix
(Iw)(Gr,k)→ Rep∅(G)

and an isomorphism ε : Q→ Q ◦ 〈1〉 such that:

(1) for any F ,G in Pervmix
(Iw)(Gr,k) and any n ∈ Z, Q and ε induce an isomorphism⊕

m∈Z
Extn

Pervmix
(Iw)(Gr,k)

(F ,G〈m〉) ∼−→ ExtnRep∅(G)(Q(F),Q(G));

(2) for any λ ∈ X we have

Q(∆mix
λ ) ∼= M

(
vλ(ρ)− ρ+ p · dom(λ)

)
, Q(∇mix

λ ) ∼= N
(
vλ(ρ)− ρ+ p · dom(λ)

)
,

Q(ICmix
λ ) ∼= L

(
vλ(ρ)− ρ+ p · dom(λ)

)
, Q(Tmix

λ ) ∼= T
(
vλ(ρ)− ρ+ p · dom(λ)

)
.
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Remark 5.13. (1) Theorem 5.12 proves a “graded version” of a conjecture of Fin-
kelberg–Mirković, see [FM, §1.5]. (This conjecture predicts an equivalence of high-
est weight categories between Perv(Iw)(Gr, k) and Rep∅(G).) Our version might be
more suited to the computation of combinatorial data in Rep∅(G) than the original
conjecture, since it would be possible to combine it with the conjectural statement
in §3.4; see Section 6 for details.

(2) Theorem 5.12 should have analogues for singular blocks RepI(G) (involving Iwaho-
ri–Whittaker sheaves on Gr), which would follow from singular analogues of the
constructions of §5.4. We plan to consider this in a future publication.

(3) If one uses the version of Theorem 5.9 from [ARd2] instead of that from [MaR2],
one gets a functor Q which, in addition, is compatible with the Geometric Satake
Equivalence in the suitable sense; see [AR6, Theorem 11.7(2)].

6. Comparison between Sections 4 and 5

We consider Theorem 5.12 as a first step towards a proof of Conjecture 4.4 for a
general reductive group. In fact, recall the bijections (4.1). For µ ∈ ZΦ, we denote by
wµ = tdom(µ)vµ the image of µ in fW . Then from Theorem 5.12 we deduce that we have

(T(wλ ·p 0),N(wµ ·p 0)) =
∑
i∈Z

(Tmix
λ ,∇mix

µ 〈i〉).

Hence what remains in order to prove Conjecture 4.4 is the equality∑
i∈Z

(Tmix
λ ,∇mix

µ 〈i〉) = pnwµ,wλ(1).

In view of (4.3), an equivalent formulation of this equality is given by

(6.1)
∑
i∈Z

(Tmix
λ ,∇mix

µ 〈i〉) =
∑
x∈Wf

(−1)`(x) · phx·wµ,wλ(1).

In this section we explain how this equality would follow from a special case of the conjec-
tural statements in §3.4.

6.1. Koszul duality for affine Kac–Moody groups. Recall that in §4.2 we defined
the connected reductive group G∧ with maximal torus T∧ such that the root datum of
(G∧, T∧) is (HomZ(ZΦ,Z),Φ∨,ZΦ,Φ). On the other hand, the root datum of (Ġ∨, Ṫ∨) is
(HomZ(X,Z),Φ∨,X,Φ). The morphism HomZ(X,Z)→ HomZ(ZΦ,Z) induced by restric-
tion is a homomorphism from the root datum (HomZ(ZΦ,Z),Φ∨,ZΦ,Φ) to the root datum
(HomZ(X,Z),Φ∨,X,Φ). Hence there exists an algebraic group morphism G∧ → Ġ∨ send-
ing T∧ into Ṫ∨ and inducing this morphism of root data (see [Ja1, §II.1.13–15]). In fact,
this morphism identifies G∧ with the simply-connected cover of the derived subgroup of
Ġ∨. Consider the ind-varieties

′F l∧ = I∧\G∧(K ), ′Gr∧ = G∧(O)\G∧(K ), Gr∧ = G∧(K )/G∧(O).

Then there exists a natural morphism π∧ : ′F l∧ → ′Gr∧, and Gr∧ identifies with the
connected component of Gr containing the base point L0. As for F l (and as in §3.4) we
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have a Bruhat decomposition
′F l∧ =

⊔
w∈W

′F l∧w

into orbits of I∧ (for the action induced by multiplication on the right on G∧(K )), and
we can consider the associated categories Db

(I∧)(
′F l∧, k), Parity(I∧)(

′F l∧,k), Dmix
(I∧)(

′F l∧,k),
Pervmix

(I∧)(
′F l∧,k), and finally Tiltmix

(I∧)(
′F l∧,k). We will denote by ′∇mix

w , resp. by ′Tmix
w , the

costandard, resp. indecomposable tilting, mixed perverse sheaf associated with w ∈ W .
Similarly we have a Bruhat decomposition

′Gr∧ =
⊔
λ∈ZΦ

′Gr∧λ

into orbits of I∧, and we can consider the category Tiltmix
(I∧)(

′Gr∧,k). We will denote by
′Tmix
λ the indecomposable object associated with λ.
The functor (π∧)∗ : Db

(I∧)(
′F l∧, k) → Db

(I∧)(
′Gr∧, k) sends parity complexes to parity

complexes, hence induces a functor from Dmix
(I∧)(

′F l∧,k) to Dmix
(I∧)(

′Gr∧,k), see [AR4, §2.6].
This functor is not t-exact, but the same arguments as in [Yu, Proposition 2.4.1] show
that it sends tilting mixed perverse sheaves to tilting mixed perverse sheaves.

We expect the following statement to hold.

Conjecture 6.1. Assume that G∧ is quasi-simple, and that p is very good for G.

(1) There exists an equivalence of additive categories

κ : Tiltmix
(I∧)(

′F l∧,k)
∼−→ Parity(I∧)(F l∧,k)

which satisfies

κ ◦ 〈1〉 ∼= {1} ◦ κ, κ(′Tmix
w ) ∼= Ew for all w ∈W ,

and moreover
chy(κ(F)) =

∑
i∈Z

(F , ′∇mix
y 〈i〉) · vi

for any y ∈W and F in Tiltmix
(I∧)(

′F l∧,k).

(2) For any λ ∈ ZΦ, we have

(π∧)∗(
′Tmix
wλ

) ∼= ′Tmix
λ .

In §6.2 we discuss the relation between this conjecture and Conjecture 3.9, and in §6.3
we explain how to deduce (6.1) from this conjecture.

6.2. Relation between Conjecture 6.1 and Conjecture 3.9. First, we claim that
part (1) of Conjecture 6.1 would follow from Conjecture 3.9. Indeed, this conjecture easily
reduces to the case where G∧ is quasi-simple, which we will assume from now on. In
this case, let A be the affine Cartan matrix associated with G∧, and let (Λ, {α̃i : i =
0, · · · , r},HomZ(Λ,Z), {α̃i : i = 0, · · · , r}) be the realization of A as considered in [RW,
Remark 11.2]. (Note that the roots α̃1, · · · , α̃r are the simple roots of G∧, which are also
the simple coroots of G.) Let G be the associated Kac–Moody group. Then F l∧ is the flag
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variety associated with G (denoted B in §3.4). 10 If B∨ is the Langlands dual flag variety
as defined in §3.4, to prove that indeed part (1) follows from Conjecture 3.9, it remains to
construct an equivalence of categories

(6.2) Parity(I∧)(
′F l∧, k) ∼= Parity(B∨)(B

∨,k)

compatible with the labeling of indecomposable objects by W , and with characters.
The equivalence (6.2) can be deduced from the results of [RW, Part 3]. Indeed, from

the results of [RW, §11.1] one obtains a description 11 of the category Parity(B∨)(B
∨, k) in

terms of the Elias–Williamson diagrammatic category DBS associated with the realization
of W with underlying vector space k⊗Z Λ (see [RW, §10.1 & §11.1] for details). Similarly,
the same results provide a description of the category Parity(I∧)(

′F l∧, k) in terms of the
diagrammatic category D′BS associated with the realization with underlying vector space
k ⊗Z HomZ(Λ,Z). Now, following [Ku, Proposition 1.5.2] we define a symmetric W -
invariant bilinear form on HomZ(Λ,Z) by setting

〈d, d〉 = 0, 〈h, α̃∨i 〉 = 〈α̃∨i , h〉 = α̃i(h)εi

for any h ∈ HomZ(Λ,Z) and i ∈ {0, · · · , r}. (Here, D = diag(ε0, · · · , εr) is a minimal
matrix such that D−1A is symmetric, as in [Ku, §1.5].) Writing the matrix of this form
in the basis (d, α̃∨0 , · · · , α̃∨r ), we see that under the assumption that p is very good for G
this form induces a non-degenerate form on k⊗Z hZ, hence a W -equivariant isomorphism

ϕ : k⊗Z HomZ(Λ,Z)
∼−→ Homk(k⊗Z HomZ(Λ,Z), k) = k⊗Z Λ,

which satisfies, for any i ∈ {0, · · · , r},

ϕ(α̃∨i ) = εi · α̃i.

If we denote by ı : O(k⊗Z hZ)
∼−→ O(k⊗Z h∨Z) the isomorphism induced by ϕ, we can

then define an equivalence of categories DBS
∼−→ D′BS which is the identity on objects, and

10. This fact is well known using e.g. the construction of Kac–Moody groups as in [Ku]. In our conven-
tions (i.e. those of [Ma]), we were not able to find a reference for this fact. However we do not really need
this property: one can observe (as in [RW, Section 11]) that the same constructions as for Kac–Moody
groups work without modification for the group scheme G∧(K ).
11. More precisely, the results of [RW] provide a description of the category of equivariant parity com-

plexes. To pass from equivariant parity complexes to constructible parity complexes one simply quotients
by the augmentation ideal of H•B∨(pt, k); see e.g. [MaR2, Lemma 2.2].
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which is induced on morphisms by the assignment

f 7→ ı(f)

•
i
7→ •

i

•
i 7→ 1

εi •
i

i

i i

7→
i

i i

i

ii

7→ εi

i

ii

s

s

· · ·t

t · · ·

7→
s

s

· · ·t

t · · ·

(In fact, the only thing that has to be checked is that this assignment indeed defines a
functor, i.e. that it is compatible with the relations defining DBS and D′BS. This can
be done either directly, or by remarking that the functor is defined over a localization
of Z, so that it is enough to check the relations over Q; in this setting one can invoke
the equivalence between the diagrammatic categories and the corresponding categories of
Soergel bimodules and simply observe that our functor corresponds to the equivalence on
Soergel bimodules induced by ı.)

In the characteristic-0 setting, part (2) of Conjecture 6.1 follows from [Yu, Proposi-
tion 3.4.1] (see also [BY, Corollary 5.5.2(2)]). In the modular setting, we expect to prove
this property as follows. As explained above, we know that (π∧)∗(

′Tmix
wλ

) is a tilting mixed
perverse sheaf, and it is not difficult to show that it is supported on ′Gr∧λ with appropriate
restriction to ′Gr∧λ . Hence all that remains to be proved is indecomposability. This prop-
erty should follow from the “Koszul dual” statement proved in [RW, Proposition 11.12].
(In fact, a similar result should hold in the general setting of §3.4, for any projection on a
partial flag variety.)

6.3. Application to (6.1). Consider now the Grothendieck groups [Dmix
(I∧)(

′F l∧, k)]

and [Dmix
(I∧)(

′Gr∧, k)] (in the sense of triangulated categories), and the morphism

[(π∧)∗] : [Dmix
(I∧)(

′F l∧,k)]→ [Dmix
(I∧)(

′Gr∧, k)]

induced by the functor (π∧)∗. Then it follows from [AR4, Lemma 3.7] that for any x ∈Wf

and λ ∈ ZΦ we have

(6.3) [(π∧)∗]
(
[′∇mix

xwλ
〈i〉]
)

= (−1)`(x) · [′∇mix
λ 〈i− `(x)〉].
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(Here we denote by ′∇mix
λ the costandard mixed perverse sheaves on ′Gr∧.) Now by defini-

tion, for λ ∈ ZΦ we have

[′Tmix
wλ

] =
∑
µ∈ZΦ
x∈Wf

∑
i∈Z

(′Tmix
wλ

, ′∇mix
xwµ〈i〉) · [

′∇mix
xwµ〈i〉].

Hence from Conjecture 6.1(2) and (6.3) we deduce that

[′Tmix
λ ] =

∑
µ∈ZΦ
x∈Wf

∑
i∈Z

(−1)`(x) · (′Tmix
wλ

, ′∇mix
xwµ〈i〉) · [

′∇mix
µ 〈i− `(x)〉],

hence in particular that∑
i∈Z

(′Tmix
λ , ′∇mix

µ 〈i〉) =
∑
x∈Wf

(−1)`(x) ·

∑
j∈Z

(′Tmix
wλ

, ′∇mix
xwµ〈j〉)

 .

On the other hand, from Conjecture 6.1(1) and the definitions we deduce that for λ, µ ∈ ZΦ
and x ∈Wf we have∑

j∈Z
(′Tmix

wλ
, ′∇mix

xwµ〈j〉) = chxwµ(Ewλ)(1) = phxwµ,wλ(1).

Hence we finally deduce that

(6.4)
∑
i∈Z

(′Tmix
λ , ′∇mix

µ 〈i〉) =
∑
x∈Wf

(−1)`(x) · phxwµ,wλ(1).

To compare the tilting mixed perverse sheaves ′Tmix
λ on ′Gr∧ (which are defined using

the Iwahori subgroup I∧ associated with the negative Borel subgroup of G∧) with the cor-
responding objects Tmix

λ on Gr (which are defined using the Iwahori subgroup Iw of Ġ∨(K )

associated with the positive Borel subgroup of Ġ∨), one considers an antiautomorphism τ
of G∧ such that τ|T∧ = idT∧ and which sends each root subgroup U∧α ⊂ B∧ associated with
a negative root α to the root subgroup U∧−α (see [Ja1, Corollary II.1.16]). Then τ(B∧) is
the Borel subgroup whose roots are Φ∨+. This antiautomorphism induces an isomorphism
′Gr∧

∼−→ Gr∧. Identifying Gr∧ with the connected component of the base point in Gr, we
obtain an injective morphism

ϑ : ′Gr∧ → Gr

which satisfies ϑ(′Gr∧λ) = Grλ for any λ ∈ ZΦ. This morphism induces a fully-faithful
functor

ϑ∗ : Dmix
(I∧)(

′Gr∧, k)→ Dmix
(Iw)(Gr,k)

which satisfies
ϑ∗(
′Tmix
λ ) ∼= Tmix

λ , ϑ∗(
′∇mix

µ ) ∼= ∇mix
µ

for any λ, µ ∈ ZΦ. In particular, we deduce that∑
i∈Z

(′Tmix
λ , ′∇mix

µ 〈i〉) =
∑
i∈Z

(Tmix
λ ,∇mix

µ 〈i〉).

Comparing with (6.4), we finally obtain the desired equality (6.1).



Part 3

Appendices





7. COMPLEMENTS ON HIGHEST WEIGHT CATEGORIES 49

7. Complements on highest weight categories

The theory of highest weight categories was initially studied by Cline–Parshall–Scott
in connection with the theory of quasi-hereditary algebras, see [CPS]. However we prefer
to use a different, more “categorical,” point of view introduced in [BGS, §3.2]. In this
appendix we gather references or proofs for some standard results on these categories
using this point of view. (These results are sometimes available in the literature only in
the Cline–Parshall–Scott setting, which seems to justify a complete treatment from the
Bĕılinson–Ginzburg–Soergel perspective.)

7.1. Definitions. Throughout the appendix, k will be a field, and A will be a finite-
length k-linear abelian category such that HomA(M,N) is finite-dimensional for any M ,
N in A. Note that such a category is Krull–Schmidt, see [CYZ, Remark A.2].

Let S be the set of isomorphism classes of irreducible objects of A. Assume that S
is equipped with a partial order ≤, and that for each s ∈ S we have a fixed representative
simple object Ls. Assume also we are given, for any s ∈ S , objects ∆s and ∇s, and
morphisms ∆s → Ls and Ls → ∇s. For T ⊂ S , we denote by AT the Serre subcategory
of A generated by the objects Lt for t ∈ T . We write A≤s for A{t∈S |t≤s}, and similarly
for A<s. Finally, recall that an ideal of S is a subset T ⊂ S such that if t ∈ T and
s ∈ S are such that s ≤ t, then s ∈ T .

Definition 7.1. The category A (together with the above data) is said to be a highest
weight category if the following conditions hold:

(1) for any s ∈ S , the set {t ∈ S | t ≤ s} is finite;
(2) for each s ∈ S , we have HomA(Ls, Ls) = k;
(3) for any s ∈ S and any ideal T ⊂ S such that s ∈ T is maximal, ∆s → Ls is a

projective cover in AT and Ls → ∇s is an injective envelope in AT ;
(4) the kernel of ∆s → Ls and the cokernel of Ls → ∇s belong to A<s;
(5) we have Ext2

A(∆s,∇t) = 0 for all s, t ∈ S .
In this case, the poset (S ,≤) is called the weight poset of A.

If A satisfies Definition 7.1, the objects ∆s are called standard objects, and the objects
∇s are called costandard objects. We say that an object M admits a ∆-filtration, resp. ad-
mits a ∇-filtration, if there exists a finite filtration of M whose subquotients are standard
objects, resp. costandard objects.

From the axioms (3) and (4) we see in particular that

(7.1) ∆s and ∇s belong to A≤s and satisfy [∆s : Ls] = [∇s : Ls] = 1.

Remark 7.2. (1) The axioms in Definition 7.1 are exactly those in [BGS, §3.2],
except that we replace the condition that S is finite by the weaker condition (1).

(2) In [AR4] we used the term quasihereditary category instead of highest weight cat-
egory. We now believe that the latter term is more appropriate than the former,
and we changed our terminology in [MaR1, AR6].

(3) The axioms in Definition 7.1 can be easily modified to define a graded highest weight
category, where we consider in addition a “shift” autoequivalence 〈1〉 ofA; see [AR4,
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Appendix A] for details. All the statements below have analogues in this context,
but for simplicity we will not state them explicitly.

We start with the following observations.

Lemma 7.3. Let A be a highest weight category, with weight poset (S ,≤), standard
objects {∆s : s ∈ S } and costandard objects {∇s : s ∈ S }.

(1) The category Aop is a highest weight category, with weight poset (S ,≤), standard
objects {∇s : s ∈ S }, and costandard objects {∆s : s ∈ S }.

(2) If T ⊂ S is an ideal, then AT is a highest weight category with weight poset
(T ,≤), standard objects {∆t : t ∈ T } and costandard objects {∇t : t ∈ T }.

Proof. Part (1) is clear. In part (2), the only axiom which might not be clear
is (5). However, this axiom for AT follows from the similar axiom for A using [BGS,
Lemma 3.2.3]. �

Lemma 7.4. For any s, t ∈ S , we have

HomA(∆s,∇t) =

{
k if s = t;
0 otherwise

and
Ext1

A(∆s,∇t) = {0}.

Proof. If s 6< t, then s is maximal in the ideal T = {u ∈ S | u ≤ s or u ≤ t}, and
both ∆s and ∇t belong to AT by (7.1). Then we have HomA(∆s,∇t) = HomAT

(∆s,∇t)
and Ext1

A(∆s,∇t) = Ext1
AT

(∆s,∇t), and the claim follows from axiom (3) and (7.1).
If s < t, then t is maximal in the ideal T = {u ∈ S | u ≤ t}, and both ∆s and ∇t

belong to AT by (7.1); then the claim follows again from axiom (3) and (7.1). �

From Lemma 7.4 we see that if M is an object of A which admits a ∆-filtration,
then the number of times ∆s appears as a subquotient in such a filtration is equal to
dimk(HomA(M,∇s)). In particular this number does not depend on the filtration, and
will be denoted (M : ∆s). Similarly, if M admits a ∇-filtration, then the number of
times ∇s appears as a subquotient in such a filtration is well defined, and will be denoted
(M : ∇s).

7.2. Existence of projectives and some consequences. The following result is
proved in [BGS, Theorem 3.2.1 & Remarks following the theorem].

Theorem 7.5. Let A be a highest weight category with weight poset (S ,≤) and assume
that S is finite. Then A has enough projective objects, and any projective object admits a
∆-fitration. Moreover, if Ps is the projective cover of Ls, we have

(7.2) (Ps : ∆t) = [∇t : Ls].

Applying Theorem 7.5 to the category Aop (see Lemma 7.3(1)), we see that if S is
finite, then A also has enough injective objects, and any injective object admits a ∇-
filtration.
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Corollary 7.6. Let A be a highest weight category with weight poset (S ,≤). Then
for any s, t ∈ S we have

ExtiA(∆s,∇t) =

{
k if s = t and i = 0;
{0} otherwise.

Proof. The case when i ∈ {0, 1} is proved in Lemma 7.4, and we only have to prove
the vanishing when i ≥ 2.

First, we assume that S is finite, and prove the claim by descending induction on s.
If s is maximal in S , then ∆s is a projective cover of Ls in A by axiom (3), and the claim
follows. In general, consider the projective cover Ps of Ls. By Theorem 7.5, this object
admits a ∆-filtration. Moreover, the last term in such a filtration must be ∆s, since the
top of Ps is Ls. In particular, we have an exact sequence

ker ↪→ Ps � ∆s

where ker admits a ∆-filtration. Moreover, (7.2) and (7.1) imply that if (ker : ∆t) 6= 0,
then t > s. Then the desired vanishing follows from induction and a long exact sequence
consideration.

Now we prove the general case. Let i ≥ 2, and consider a morphism f : ∆s → ∇t[i]
in Db(A). This morphism is represented by a fraction g

h , where M is a bounded complex

of objects of A, h : M
qis−→ ∆s is a quasi-isomorphism of complexes, and g : M → ∇t[i]

is a morphism of complexes. Choose a finite ideal S ′ ⊂ S which contains s, t, and the
isomorphism classes of all composition factors of nonzero terms of M . (Such an ideal
exists thanks to axiom (1).) Then g

h defines a morphism in Db(AS ′), which must be the 0
morphism by Lemma 7.3(2) and the case of finite weight posets. We deduce that f is also
0 in Db(A), which concludes the proof. �

Remark 7.7. Let A be a highest weight category with weight poset (S ,≤). Let � be
the preorder generated by the relation

s � t if [∆t : Ls] 6= 0 or [∇t : Ls] 6= 0.

Then (7.1) implies that � is an order such that ≤ refines �. We claim that A is also a
highest weight category for the poset (S ,�). Indeed, the only axiom which might not
be clear is (3). However, as in the proof of Corollary 7.6, to check this axiom we can
assume that S is finite. Then A has enough projective objects by Theorem 7.5, and the
reciprocity formula (7.2) ensures that, if Pt is the projective cover of Lt in A, then we have
an exact sequence

(7.3) ker ↪→ Pt � ∆t

where ker admits a ∆-filtration such that if (ker : ∆s) 6= 0, then s � t. Now if u ∈ S ,
considering the long exact sequence associated with (7.3) we obtain a surjection

HomA(ker, Lu) � Ext1
A(∆t, Lu).

Hence if Ext1
A(∆t, Lu) 6= {0} then HomA(ker, Lu) 6= {0}, so that there exists s ∈ S such

that (ker : ∆s) 6= 0 and HomA(∆s, Lu) 6= {0}. Then u = s, so that u � t. From this it is
easy to see that if T is an ideal in (S ,�) in which t is maximal, then ∆t is projective in
AT , hence the projective cover of Lt.
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This remark shows that it makes sense to say that a category is highest weight without
specifying the order ≤ (if one specifies the standard and costandard objects).

7.3. Ideals and associated subcategories and quotients. The following results
show that highest weight categories satisfy some “gluing” formalism which turns out to be
very useful to run inductive arguments.

Lemma 7.8. Let A be a highest weight category, with weight poset (S ,≤), standard
objects {∆s : s ∈ S } and costandard objects {∇s : s ∈ S }. If T ⊂ S is an ideal, then the
Serre quotient A/AT is a highest weight category with weight poset (S rT ,≤), standard
objects {πT (∆s) : s ∈ S r T }, and costandard objects {πT (∇s) : s ∈ S r T }, where
πT : A → A/AT is the quotient functor.

Proof. It is clear that the category A/AT satisfies axioms (1), (2) and (4).
Now we check axiom (3) in the case of ∆s; the case of ∇s is similar. First, we claim

that for any s ∈ S r T and N in A, the morphism

(7.4) HomA(∆s, N)→ HomA/AT
(πT (∆s), πT (N))

induced by πT is an isomorphism. Indeed, consider a morphism f : πT (∆s) → πT (N).
By definition, this morphism is represented by a morphism f ′ : M ′ → N/N ′ in A, where
M ′ ⊂ ∆s and N ′ ⊂ N are subobjects such that ∆s/M

′ and N ′ belong to AT . Since the
head of ∆s is Ls and s /∈ T , we have necessarilyM ′ = ∆s. And since Ext1

A(∆s, N
′) = {0},

the morphism f ′ factors through a morphism f ′′ : ∆s → N . These arguments show
that (7.4) is surjective. Since the image of any nonzero morphism from ∆s to N contains
Ls as a composition factor, its image under πT is nonzero, hence the image of the morphism
itself is nonzero. This shows that (7.4) is also injective, hence an isomorphism.

Now, let U ⊂ S rT be an ideal, and let s ∈ U be maximal. The isomorphisms (7.4)
show that the top of πT (∆s) is πT (Ls). It remains to prove that this object is projective.
If f : πT (M) → πT (N) is a surjection with πT (M) and πT (N) in (A/AT )U , then M
and N belong to AU tT , and f is represented by a morphism f ′ : M ′ → N/N ′ in A whose
cokernel C belongs to AT , where M ′ ⊂ M and N ′ ⊂ N are subobjects such that M/M ′

and N ′ belong to AT . Then using isomorphisms (7.4) we see that we have

HomA/AT
(πT (∆s), πT (M)) ∼= HomA/AT

(πT (∆s), πT (M ′)) ∼= HomA(∆s,M
′)

and

HomA/AT
(πT (∆s), πT (N)) ∼= HomA/AT

(πT (∆s), πT (N/N ′)) ∼= HomA(∆s, N/N
′),

and that the morphism

HomA/AT
(πT (∆s), πT (M))→ HomA/AT

(πT (∆s), πT (N))

induced by f coincides with the morphism

HomA(∆s,M
′)→ HomA(∆s, N/N

′)

induced by f ′. Hence the desired surjectivity follows from the facts that ∆s is projective
in AU tT and that HomA(∆s, C) = {0}.

Finally, we need to check axiom (5). For this we first assume that S is finite. Then
A has enough projective objects by Theorem 7.5. Moreover, the proof of Corollary 7.6
shows that to prove the desired vanishing it suffices to prove that for any s ∈ S rT there
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exists a projective object P in A/AT and a surjection P � πT (∆s) whose kernel admits a
filtration with subquotients πT (∆t) with t > s. We claim that P = πT (Ps) satisfies these
properties. In fact, the only property which is not clear is that P is projective. If this were
not the case, there would exist a non-split and non-trivial surjection f : πT (M)→ πT (Ps)
for some M in A. This morphism is represented by a morphism f ′ : M ′ → Ps/N

′ whose
cokernel D belongs to AT , where M ′ ⊂ M and N ′ ⊂ Ps are subobjects such that M/M ′

and N ′ belong to AT . Now D is a quotient of Ps; hence if it belongs to AT it must be 0,
so that f ′ is surjective. Since Ps is projective, there exists a morphism g′ : Ps →M ′ such
that f ′ ◦g′ is the quotient morphism Ps � Ps/N

′. Then πT (f ′)◦πT (g′) is an isomorphism
in A/AT , so that πT (f ′) is split. This is absurd, and finishes the proof of axiom (5) in
the case S is finite.

Property (5) in the general case follows from the same property for finite weight posets
using the same arguments as in the proof of Corollary 7.6. �

Proposition 7.9. Let A be a highest weight category with weight poset (S ,≤) and let
T ⊂ S be an ideal.

(1) The functor ıT : Db(AT ) → Db(A) induced by the embedding AT → A is fully
faithful.

(2) The quotient functor πT : A → A/AT induces an equivalence of categories

Db(A)/Db(AT )
∼−→ Db(A/AT ),

where Db(A)/Db(AT ) is the Verdier quotient.

(3) The functor ıT and the quotient functor ΠT : Db(A) → Db(A)/Db(AT ) admit
(triangulated) left and right adjoints ıLT , ıRT and ΠL

T , ΠR
T respectively. Moreover,

we have isomorphisms

ıRT ◦ ıT ∼= idDb(AT )
∼= ıLT ◦ ıT

and ΠT ◦ΠR
T
∼= idDb(A)/Db(AT )

∼= ΠT ◦ΠL
T ,

for any s ∈ S r T we have

ΠL
T ◦ΠT (∆s) ∼= ∆s, ΠR

T ◦ΠT (∇s) ∼= ∇s,
and for any M in Db(A) there exist functorial distinguished triangles

ΠL
T ◦ΠT (M)→M → ıT ◦ ıLT (M)

[1]−→

and ıT ◦ ıRT (M)→M → ΠR
T ◦ΠT (M)

[1]−→
where the first and second morphisms are induced by adjunction.

Proof. This result is proved in [AR5, Lemma 2.2]. Here we explain the construction
in more detail.

For part (1), we remark that the category Db(AT ) is generated (as a triangulated
category) by the objects {∆t : t ∈ T } as well as by the objects {∇t : t ∈ T }. Hence to
prove the claim if suffices to prove that for s, t ∈ T the morphism

ExtiAT
(∆s,∇t)→ ExtiA(∆s,∇t)

induced by ıT is an isomorphism. This follows from Corollary 7.6 (applied to A and AT ).
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Then we prove part (3). Consider the full triangulated subcategory D∇SrT of Db(A)

generated by the objects ∇s with s ∈ S r T . Then for M in Db(AT ) and N in D∇SrT ,
by Corollary 7.6 we have HomDb(A)(M,N) = 0. From this one can deduce that for any M
in Db(A) and N in D∇SrT , the morphism

HomDb(A)(M,N)→ HomDb(A)/Db(AT )(ΠT (M),ΠT (N))

induced by ΠT is an isomorphism.
Now the category Db(A) is generated, as a triangulated category, by (the essential

image of) Db(AT ) and by D∇SrT . Using the octahedral axiom, we deduce that for any M
in Db(A) there exists a distinguished triangle

(7.5) M ′ →M →M ′′
[1]−→

where M ′ belongs to Db(AT ) and M ′′ belongs to D∇SrT . Moreover, [BBD, Proposi-
tion 1.1.9] implies that this triangle is unique and functorial.

These facts show that the restriction of ΠT to D∇SrT is an equivalence, and that if
we define ΠR

T : Db(A) → Db(A)/Db(AT ) as the composition of the inverse equivalence
with the embedding D∇SrT → Db(A), then ΠR

T is right adjoint to ΠT . (In more concrete
terms, ΠR

T sends an object M to the object M ′′ in (7.5).)
Finally we define the functor ıRT as the functor sending an object M to the object

M ′ in (7.5). Again, it is easily checked that this functor is right adjoint to ıT . The
isomorphisms ıRT ◦ ıT ∼= idDb(AT ), ΠT ◦ ΠR

T
∼= idDb(A)/Db(AT ), and ΠR

T ◦ ΠT (∇s) ∼= ∇s,

and the existence of the functorial triangles ıT ◦ ıRT (M) → M → ΠR
T ◦ ΠT (M)

[1]−→, are
clear from the construction of ΠR

T and ıRT .
The construction of the functors ΠL

T and ıLT is completely similar, using the full tri-
angulated subcategory D∆

SrT generated by the objects ∆s with s ∈ S r T instead of
D∇SrT .

Finally we prove part (2). The universal property of the Verdier quotient guarantees
the existence of a natural functor Db(A)/Db(AT ) → Db(A/AT ), and what we have
to prove is that this functor is an equivalence of categories. Both Db(A)/Db(AT ) and
Db(A/AT ) are generated, as triangulated categories, by the images of the objects ∆s with
s ∈ S r T , as well as by the images of the objects ∇s with s ∈ S r T . Hence what we
have to prove is that for any s, t ∈ S r T the induced morphism

HomDb(A)/Db(AT )(ΠT (∆s),ΠT (∇t)[i])→ HomDb(A/AT )(πT (∆s), πT (∇t)[i])

is an isomorphism. However we have

HomDb(A)/Db(AT )(ΠT (∆s),ΠT (∇t)[i]) ∼= HomDb(A)(∆s,Π
R
T ◦ΠT (∇t)[i])
∼= HomDb(A)(∆s,∇t[i]),

and then the claim follows from Corollary 7.6 applied to the highest weight categories A
and A/AT , see Lemma 7.8. �
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7.4. Criterion for the existence of ∇-filtrations.
Proposition 7.10. Let A be a highest weight category with weight poset (S ,≤), and

let M be in A. Then the following conditions are equivalent:
(1) M admits a ∇-filtration;
(2) for any s ∈ S and i ∈ Z>0, we have ExtiA(∆s,M) = {0};
(3) for any s ∈ S , we have Ext1

A(∆s,M) = {0}.
Remark 7.11. It follows in particular from Proposition 7.10 that a direct summand

of an object which admits a ∇-filtration also admits a ∇-filtration.

Proof. The fact that (1)⇒ (2) follows from Corollary 7.6, and the implication (2)⇒
(3) is clear. It remains to prove that (3) ⇒ (1). For this we can assume that S is finite,
and argue by induction on #S , the case #S = 1 being obvious.

Assume that #S > 1, let t ∈ S be a minimal element, and let T = {t}. Let M be
an object in A such that Ext1

A(∆s,M) = 0 for all s ∈ S . Then for any s ∈ S rT , using
Proposition 7.9 we see that

Ext1
A/AT

(πT (∆s), πT (M)) ∼= HomDb(A)/Db(AT )(ΠT (∆s),ΠT (M)[1])

∼= HomDb(A)(Π
L
T ◦ΠT (∆s),M [1]) ∼= Ext1

A(∆s,M) = {0}.
Hence, by induction, πT (M) admits a ∇-filtration in the highest weight category A/AT .
Using again Proposition 7.9, it follows that ΠR

T ◦ ΠT (M) belongs to A, and admits a
∇-filtration.

Consider now the distinguished triangle

(7.6) ıT ◦ ıRT (M)→M → ΠR
T ◦ΠT (M)

[1]−→
provided once again by Proposition 7.9. Since the second and third terms belong to A,
the first term can have nonzero cohomology objects only in degrees 0 and 1. Moreover, we
have

HomDb(A)(∆t, ıT ◦ ıRT (M)[1]) ∼= HomDb(AT )(ı
L
T ◦ ıT (∆t), ı

R
T (M)[1])

∼= HomDb(AT )(∆t, ı
R
T (M)[1]) ∼= HomDb(A)(∆t,M [1]),

hence

(7.7) HomDb(A)(∆t, ıT ◦ ıRT (M)[1]) = {0}.

We claim that ıT ◦ ıRT (M) belongs to A. Indeed, consider the truncation distinguished
triangle

H0(ıT ◦ ıRT (M))→ ıT ◦ ıRT (M)→ H1(ıT ◦ ıRT (M))[−1]
[1]−→ .

Since the category AT is semisimple, this triangle is split. Hence if H1(ıT ◦ ıRT (M))

were nonzero there would exist a nonzero morphism ∆t[−1] → ıT ◦ ıRT (M), which would
contradict (7.7).

Finally, since the functor ıT is exact and does not kill any object (since it is fully-
faithful), we deduce that ıRT (M) belongs to AT , hence that ıT ◦ ıRT (M) is a direct sum of
copies of ∇t. Then the distinguished triangle (7.6) is an exact sequence in A, and shows
that M admits a ∇-filtration. �
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Applying Proposition 7.10 to the opposite category Aop, we obtain the following “dual”
statement.

Proposition 7.12. Let A be a highest weight category with weight poset (S ,≤), and
let M be in A. Then the following conditions are equivalent:

(1) M admits a ∆-filtration;

(2) for any s ∈ S and i ∈ Z>0, we have ExtiA(M,∇s) = {0};
(3) for any s ∈ S , we have Ext1

A(M,∇s) = {0}.

7.5. Tilting objects. In this subsection we fix a highest weight category A with
weight poset (S ,≤).

Definition 7.13. An object M in A is said to be tilting if admits both a ∆-filtration
and a ∇-filtration.

In this subsection we prove the following theorem.

Theorem 7.14. For any s ∈ S , there exists (up to isomorphism) a unique indecom-
posable tilting object Ts such that

(7.8) [Ts : Ls] = 1 and [Ts : Lt] 6= 0 ⇒ t ≤ s.

Moreover there exists an embedding ∆s ↪→ Ts whose cokernel admits a ∆-filtration, and a
surjection Ts � ∇s whose kernel admits a ∇-filtration. Finally, any indecomposable tilting
object is isomorphic to Ts for a unique s ∈ S .

Our proof is inspired by the proof of [So3, Proposition 3.1] (where the author considers
a much more general setting). We begin with the following preliminary result.

Lemma 7.15. For any s ∈ S , there exists a tilting object T endowed with an embedding
∆s ↪→ T whose cokernel admits a ∆-filtration with subquotients ∆t with t < s.

Proof. We proceed by induction on #{t ∈ S | t ≤ s}. If s is minimal then we
can take T = ∆s = ∇s. Otherwise, consider some minimal t ∈ S with t < s. We set
T = {t}. By induction, we have an object M in A/AT with the desired properties, and
we consider M ′ := ΠL

T (M). Using Proposition 7.9, we see that there exists an embedding
from ∆s = ΠL

T ◦ ΠT (∆s) to M ′, whose cokernel admits a ∆-filtration with subquotients
∆u with u < s. Moreover, for any u 6= t we have

Ext1
A(∆u,M

′) ∼= HomDb(A)(Π
L
T ◦ΠT (∆u),M ′[1])

∼= HomDb(A)/Db(AT )(ΠT (∆u),ΠT (M ′)[1])

∼= HomDb(A)/Db(AT )(ΠT (∆u),M [1]) = {0}.

Now, let E := Ext1
A(∆t,M

′). Consider the image of idE in

Homk(E,E) ∼= E∗ ⊗k E ∼= Ext1
A(E ⊗k ∆t,M

′).

This element corresponds to a short exact sequence

(7.9) M ′ ↪→ T � E ⊗k ∆t.
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Clearly, there exists an embedding ∆s ↪→ T whose cokernel admits a ∆-filtration with
subquotients ∆u with u < s. Hence to conclude our construction we only have to prove
that T also admits a ∇-filtration. By Proposition 7.10, for this it suffices to prove that

Ext1
A(∆u, T ) = {0}

for any u ∈ S . If u 6= t, this property follows from the similar vanishing for M ′ proved
above and the fact that Ext1

A(∆u,∆t) = Ext1
A(∆u,∇t) = {0}. And to prove it for u = t we

consider the following part of the long exact sequence obtained by applying HomA(∆t,−)
to (7.9):

HomA(∆t, E ⊗k ∆t)→ Ext1
A(∆t,M

′)→ Ext1
A(∆t, T )→ Ext1

A(∆t, E ⊗k ∆t).

Here by construction the first morphism is the identity of E, and the fourth term vanishes;
hence the third term vanishes also, as desired. �

Now we prove Theorem 7.14.

Proof of Theorem 7.14. For any s ∈ S there exists an indecomposable tilting
object Ts endowed with an embedding ∆s ↪→ Ts whose cokernel admits a ∆-filtration
with subquotients ∆t with t < s. Indeed, Lemma 7.15 provides an object T with such
properties, which is not necessarily indecomposable. But then T admits an indecomposable
direct summand Ts with (Ts : ∆s) = 1. The composition ∆s ↪→ T � Ts is still injective,
and its cokernel still admits the required filtration, since there exists no nonzero morphism
from ∆s to any other direct summand of T .

We fix such objects (and the corresponding embeddings), and now prove that any
indecomposable tilting object is isomorphic to Ts for some s ∈ S . Indeed, let T be
an indecomposable tilting object, and choose t ∈ S and an embedding ∆t ↪→ T whose
cokernel admits a ∆-filtration. Consider the diagram

∆t
� � // T

��

// // coker

∆t
� � // Tt // // coker′.

Since coker admits a ∆-filtration and Tt is tilting, we have Ext1
A(coker,Tt) = 0. Hence

there exists a morphism ϕ : Tt → T which restricts to the identity on ∆t. Similarly, there
exists ψ : T → Tt which restricts to the identity on ∆t. Then ϕ ◦ ψ is an element of the
artinian local ring EndA(T ) which is not nilpotent, hence invertible by Fitting’s lemma.
Similarly ψ ◦ ϕ is invertible, hence ϕ and ψ are isomorphisms.

We have proved that the objects {Ts : s ∈ S } constructed above provide represen-
tatives for all isomorphism classes of indecomposable tilting objects in A. Among these
objects, it is clear that Ts is characterized by (7.8). Hence to conclude it suffices to prove
that there exists a surjection Ts � ∇s whose kernel admits a ∇-filtration. However,
Lemma 7.15 applied to Aop guarantees the existence, for any s ∈ S , of a tilting object
T′s with a surjection T′s � ∇s whose kernel admits a ∇-filtration with subquotients of the
form ∇t with t < s. Moreover, as above this object can be assumed to be indecomposable.
This object satisfies the conditions (7.8); hence it must be isomorphic to Ts. �
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Remark 7.16. The proof of Theorem 7.14 shows also that if T is an indecomposable
tilting object in A, then the first term in any ∆-filtration of T is ∆s, where s is the (unique)
maximal element of S such that [T : Ls] 6= 0. In particular this first term does not depend
on the chosen ∆-filtration, and characterizes T up to isomorphism.

We denote by Tilt(A) the additive full subcategory of A whose objects are the tilting
objects. The following is an easy but very useful observation.

Proposition 7.17. The natural functor

KbTilt(A)→ Db(A)

is an equivalence of triangulated categories.

Proof. The category Db(A) is generated as a triangulated category by the objects
∆s for s ∈ S , hence also (using Theorem 7.14) by the tilting objects. So, to prove the
proposition it suffices to prove that our functor is fully-faithful. However, this follows
directly from the observation that

ExtiA(T, T ′) = 0 for all i > 0

if T and T ′ are tilting objects, as follows from Corollary 7.6. �
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9. Summaries of the articles

In this section I give a summary of each of my articles, gathered by themes.

9.1. Linear Koszul duality. The following articles are all based on the “linear Koszul
duality” formalism, and are either part of my PhD thesis or continuations of work started
during the preparation of my thesis.

9.1.1. Computations for sl(3) (with R. Bezrukavnikov), [BMR]. This article is part of
my PhD thesis. We describe explicitly the complexes of coherent sheaves corresponding,
under some equivalences proved in the main body of the paper [BMR], to some simple
and projective modules over the enveloping algebra of the Lie algebra sl3(k), for k an
algebraically closed field of positive characteristic. These computations provided some
evidence for the theory developed in [R2].

9.1.2. Koszul duality and modular representations of semi-simple Lie algebras, [R2].
This article is part of my PhD thesis. If G is a simply connected semisimple algebraic group
over an algebraically closed field k, with Lie algebra g, we use the Bezrukavnikov–Mirković–
Rumynin localization theory to construct (in a geometric way) a “Koszul duality” relating
two different derived categories of U(g)-modules. We prove that, if p is large enough so
that Lusztig’s conjecture [Lu1] holds, then this duality exchanges projective and simple
restricted U(g)-modules, and deduce that the restricted enveloping algebra U0(g) admits a
Koszul grading (under the same assumption). The latter statement generalizes a result of
Andersen–Jantzen–Soergel [AJS], who treated the case of regular blocks of U0(g).

9.1.3. Linear Koszul duality (with I. Mirković), [MR1]. This article is part of my
PhD thesis. Given a noetherian, integral, separated, regular scheme X, a vector bundle
E over X, and two subbundles F1, F2 ⊂ E, we construct an equivalence of triangulated
categories between the derived categories of Gm-equivariant coherent dg-sheaves on the
dg-schemes F1

R∩EF2 and F⊥1
R∩E∗F⊥2 (where Gm acts by dilation along the fibers of the

projection E → X). This construction generalizes the standard Koszul duality between
graded modules over the symmetric algebra of a vector space V and over the exterior
algebra of the dual vector space V ∗.

This construction was later generalized in [MR2].
9.1.4. Linear Koszul duality II – Coherent sheaves on perfect sheaves (with I. Mirković),

[MR2]. We generalize the construction of the “linear Koszul duality” of [MR1] by weaken-
ing the assumptions on the base scheme X, now only required to be separated, noetherian,
of finite Krull dimension, and admitting a dualizing complex. For this we use ideas due to
Positselski [Po] which allow to replace some considerations in [MR1] needed to ensure the
convergence of some spectral sequences by much simpler arguments. We also show that
this construction is compatible (in the natural sense) with base change and morphisms of
vector bundles.

9.1.5. Iwahori–Matsumoto involution and linear Koszul duality (with I. Mirković),
[MR3]. We generalize the constructions of [MR1, MR2] to the setting of equivariant co-
herent (dg-)sheaves, and use it to construct a “categorification” of the Iwahori–Matsumoto
involution of the affine Hecke algebra H of a reductive group, i.e. an equivalence between
certain triangulated categories whose Grothendieck group is naturally isomorphic to H,
such that the induced automorphism of H is the Iwahori–Matsumoto involution (up to a
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correction factor). This construction uses the Kazhdan–Lusztig–Ginzburg description of
H in terms of the equivariant K-theory of the Steinberg variety of G.

9.1.6. Linear Koszul duality and Fourier transform for convolution algebras (with I.
Mirković), [MR4]. We show that, under certain technical assumptions, a certain isomor-
phism in K-theory induced by the linear Koszul duality of [MR1, MR2] and a similar
isomorphism in Borel–Moore homology induced by a Fourier–Sato transform are related
via the Chern character. In a specific geometric situation, this statement explains the rela-
tion between the main result of [MR3] and a construction for graded affine Hecke algebras
in [EM].

9.2. Braid group action. The following articles are devoted to the construction of
the “categorical” braid group action considered in §5.2.

9.2.1. Geometric braid group action on derived categories of coherent sheaves (with an
appendix joint with R. Bezrukavnikov), [R1]. This article is part of my PhD thesis. If
G is a simply connected semisimple algebraic group over an algebraically closed field k
with no factor of type G2 (and assuming that char(k) 6= 2 if G is not simply-laced), and
if Ñ and g̃ are the Springer and Grothendieck resolutions of G, we construct an action
of the (extended affine) braid group associated with G on the categories DbCoh(Ñ∅) and
DbCoh(g̃∅) (and the equivariant versions), as considered in §5.2.

This action originates in the Bezrukavnikov–Mirković–Rumynin localization theory
(see in particular [BMR2]), and can also be considered as a categorical upgrade of
the Kazhdan–Lusztig–Ginzburg description of the affine Hecke algebra in terms of the
K-theory of the Steinberg variety. It plays an important technical role in particular
in [BM, R2, MaR1]. We later generalized this construction in [BR].

9.2.2. Affine braid group actions on Springer resolutions (with R. Bezrukavnikov),
[BR]. In this paper we generalize the results of [R1], removing the assumptions on G
(still assumed to be semisimple and simply-connected) and p. We also develop the theory
of dg-sheaves on dg-schemes (originally due to Ciocan-Fontanine–Kapranov [CK]), and
use some base change constructions to generalize the action also to the derived categories
of more general schemes.

9.3. Koszul duality for constructible sheaves on flag varieties. The following
articles are concerned with variations on and extensions of the Bĕılinson–Ginzburg–Soergel
Koszul duality for constructible sheaves on flag varieties.

9.3.1. Koszul duality and semisimplicity of Frobenius (with P. Achar), [AR1]. The
starting point of this paper is the fact, due to Bĕılinson–Ginzburg–Soergel [BGS], that ifX
is an algebraic variety over a finite field, endowed with a stratification S and satisfying cer-
tain assumptions (verified in particular if X is a partial flag variety of a Kac–Moody group
stratified by the Bruhat decomposition), then a certain full subcategory Pervmix

S (X,Q`) of
the category of Deligne’s mixed Q`-perverse sheaves on X is a Koszul category. We develop
various tools to adapt the construction of the usual functors for constructible sheaves (in
particular, !- and ∗-extension and restriction for a locally closed inclusion of a union of
strata) to the setting of the derived category DbPervmix

S (X,Q`).
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An observation contained in this paper, and which is crucial for the later work [AR4],
is that the triangulated category DbPervmix

S (X,Q`) is equivalent to the bounded homotopy
category of the additive category of pure (semisimple) objects of weight 0.

9.3.2. Modular Koszul duality (with W. Soergel and G. Williamson), [RSW]. Given a
split connected reductive algebraic group G over a finite field F, we construct a “Koszul
duality” equivalence relating the derived category of Soergel’s modular category O attached
to G (defined as a certain subquotient of the regular block Rep0(G) “around the Steinberg
weight”) and the bounded derived category of Bruhat-constructible F-sheaves on the flag
variety of the Langlands dual complex reductive group, under the assumption that the
characteristic of F is at least the number of roots of G plus 2.

The key technical statement is a “formality” result for this constructible derived cate-
gory, describing it in terms of dg-modules over the dg-algebra of extensions between certain
parity complexes. This formality result is obtained using a classical trick (usually attrib-
uted to Deligne) involving the study of eigenvalues of a certain Frobenius action. The
classical setting for this trick is that of Q`-sheaves; but here we adapt it to the setting
of Z`- and F`-sheaves. In [AR4] we generalize this formality result to the case when the
characteristic of F is good for G, using a completely different approach.

This article is the first concrete example of the idea (which is suggested by [So4])
that, in a “Koszul duality” equivalence in a modular context, the role usually played by
simple modules (or perverse sheaves) should be played by some parity objects (or par-
ity complexes) instead. This idea is crucial for the constructions in [AR4, MaR2] in
particular.

9.3.3. Modular perverse sheaves on flag varieties I: tilting and parity sheaves (with
P. Achar), [AR3]. We construct a “degrading functor” from the category of Bruhat-
constructible F-parity complexes on the flag variety of a complex connected reductive
algebraic group to the category of tilting F-perverse sheaves on the flag variety of the
Langlands dual group, where F is as in Theorem 3.6. The bridge between these two cat-
egories is provided by usual Soergel modules (with coefficients in F). As applications, we
show that the multiplicities of simple perverse sheaves in standard perverse sheaves can
be computed in terms of the Langlands dual p-canonical basis (generalizing the Kazhdan–
Lusztig inversion formula for Kazhdan–Lusztig polynomials), and we show that Soergel’s
modular category O is equivalent to a category of Bruhat-constructible perverse sheaves
on a flag variety. This result can be considered as a “finite analogue” of the Finkelberg–
Mirković conjecture considered in §5.6.

9.3.4. Modular perverse sheaves on flag varieties II: Koszul duality and formality (with
P. Achar), [AR4]. We develop the theory of the mixed derived category as presented
in §3.2. (The starting point of this approach is that the description of the category
DbPervmix

S (X,Q`) in terms of pure objects as explained in §9.3.1 makes sense for arbi-
trary coefficients, if one understands “pure objects of weight 0” as “parity complexes.”)
Then we build on the results of [AR3] to construct a Koszul duality equivalence as pre-
sented in §3.3. We also use this construction to generalize the “formality” results of [RSW]
(see §9.3.2) to coefficients of good characteristic.

9.3.5. Modular perverse sheaves on flag varieties III: positivity conditions (with P.
Achar), [AR5]. We continue the study of the mixed derived category of sheaves on the
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flag variety of a complex connected reductive algebraic group, begun in [AR5]. In par-
ticular, we study some analogues of Deligne’s notion of weights for usual mixed perverse
sheaves. We use these tools to try to determine when the category Pervmix

(B)(B,F) satisfies
some forms of Koszul properties. In particular we prove that this category is Koszul iff the
parity complexes Ew are the simple perverse sheaves, and that this category is positively
graded iff the parity complexes E∨w (on B∨) are perverse. (However, we are not able to
give any condition on p which ensures that these properties are satisfied.)

9.3.6. Complements on mixed modular derived categories (with P. Achar and L. Rider),
[ARd2]. We prove some complements on the theory of mixed derived categories of §3.2,
considering in particular more general stratifications. These results are used by Achar–
Rider in the main body of [ARd2].

9.4. Variations on the Geometric Satake Equivalence. The following articles
study some aspects of the Geometric Satake Equivalence. The articles [AR2] and [GR]
are concerned with characteristic-0 coefficients, and can be considered as preparatory
for [MaR2] (in the sense that I learnt important tools for the constructions in [MaR2]
when working on these articles), and [AHR] can be considered as preparatory for the work
on the generalized Springer correspondence.

9.4.1. Constructible sheaves on affine Grassmannians and coherent sheaves on the
dual nilpotent cone (with P. Achar), [AR2]. Following ideas of Ginzburg and Arkhipov–
Bezrukavnikov–Ginzburg, we construct an equivalence of categories between the G(O)-
constructible derived category of sheaves on GrG (where G is a connected complex reduc-
tive group, and we consider sheaves with coefficients in a field k of characteristic 0) and
some derived category of equivariant coherent sheaves on the nilpotent cone of the Lang-
lands dual reductive group over k. We also study the compatibility of this construction
with restriction to a Levi subgroup.

9.4.2. Differential operators on G/U and the affine Grassmannian (with V. Ginzburg),
[GR]. We describe, in terms of the geometry of the Langlands dual group, the corestriction
to torus-fixed points of the affine Grassmannian GrG of a complex connected reductive
group G of the G(O)-equivariant C-perverse sheaves on GrG. This allows us in particular
to obtain a cleaner proof of the description (due to Ginzburg) of the Brylinski–Kostant
filtration in terms of the Geometric Satake Equivalence.

9.4.3. Geometric Satake, Springer correspondence, and small representations II (with
P. Achar and A. Henderson), [AHR]. We study the relation between the Geometric Sa-
take Equivalence and the Springer correspondence. More precisely, we show that the func-
tor sending a “small” representation of a reductive group to its 0-weight space (considered
as a representation of the Weyl group) can be realized geometrically in terms of perverse
sheaves on the affine Grassmannian and the nilpotent cone of the Langlands dual group.
This result generalizes to arbitrary coefficients a previous result of Achar–Henderson [AH]
for characteristic-0 coefficients.

9.5. Springer correspondence and generalizations. The following articles are
concerned with the Springer correspondence and the generalized Springer correspondence.

9.5.1. Weyl group actions on the Springer sheaf (with P. Achar, A. Henderson and D.
Juteau), [AHJR1]. We show that two Weyl group actions on the Springer sheaf with arbi-
trary coefficients, one defined “by Fourier transform” and one defined “by restriction,” agree
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up to a twist by the sign character. These actions arise in two possible definitions of the
Springer correspondence. This result generalizes a familiar fact from the characteristic-0
setting. We also define a Springer correspondence for coefficients in any noetherian com-
mutative ring of finite global dimension, and using results of [AHR] and [Ju2] we identify
the 0-weight spaces of “small” representations in terms of this Springer correspondence.

9.5.2. Modular generalized Springer correspondence I: the general linear group (with
P. Achar, A. Henderson and D. Juteau), [AHJR2]. We begin the study of the modular
generalized Springer correspondence, see Section 2. In this article we construct and describe
explicitly the correspondence in the special case of the group G = GLn(C). We also use
this study to prove that, in this case, the category PervG(NG,F) can be obtained by
‘gluing’ from the categories of F-representations of the relative Weyl groups arising in this
correspondence.

9.5.3. Modular generalized Springer correspondence II: classical groups (with P. Achar,
A. Henderson and D. Juteau), [AHJR3]. We continue the study of the modular gener-
alized Springer correspondence, see Section 2. In this article we push the theory further
to treat all classical groups. In this case we construct the correspondence, describe the
cuspidal pairs in all cases (the case char(F) = 2 being radically different from the case
char(F) 6= 2), and describe the correspondence explicitly in some cases.

9.5.4. Modular generalized Springer correspondence III: exceptional groups (with P.
Achar, A. Henderson and D. Juteau), [AHJR4]. We continue the study of the modular
generalized Springer correspondence, see Section 2. In this article we obtain a general proof
of the correspondence (valid for any group G), and study the case of exceptional groups in
more detail.

9.5.5. Constructible sheaves on nilpotent cones in rather good characteristic (with P.
Achar, A. Henderson and D. Juteau), [AHJR5]. We study some aspects of the modular
generalized Springer theory of Section 2 in the case when p is rather good for G, i.e. is
good and does not divide the order of the component group of the centre of G. Under
this assumption the set NG,F of §2.1 is in a natural bijection with the corresponding set
NG,C, and we prove that the partition of this set given by the mod-p generalized Springer
correspondence is a refinement of the partition given by the characteristic-0 correspondence.
We also consider Mautner’s “cleanness conjecture” (see §2.7). We prove this conjecture in
some cases and deduce some consequences, including a classification of supercuspidal pairs
(see Remark 2.3) and an orthogonal decomposition of the category Db

G(NG,F), see §2.7.
9.5.6. Modular generalized Springer correspondence: an overview (with P. Achar, A.

Henderson and D. Juteau), [AHJR6]. We give an overview of our results on the modular
generalized Springer correspondence, see Section 2. In particular, we discuss the motivating
idea of modular character sheaves.

9.6. Towards a geometric framework for modular representation theory of
reductive groups. These articles allow to construct a geometric framework for the mod-
ular representation theory of reductive algebraic groups, as presented in Part 2.

9.6.1. On the exotic t-structure in positive characteristic (with C. Mautner), [MaR1].
We generalize to arbitrary characteristic a construction (originally due to Bezrukavni-
kov [Be]), of an “exotic” t-structure on the category DbCohG×Gm(Ñ ), where G is a con-
nected reductive group with simply-connected derived subgroup, and Ñ is its Springer
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resolution. We emphasize in particular the role of the braid group action from [R1, BR]
in this construction, which was implicit in [Be] (and mentioned more explicitly in [BM]
and [Do]). We show that the heart of this t-structure is a graded highest weight category,
and study the corresponding tilting objects; see §5.3 for more details. These results are
used in a crucial way in [MaR2], and also in [AR6].

9.6.2. Kostant section, universal centralizer, and a modular derived Satake equivalence,
[R3]. We generalize to the positive characteristic setting (and also to some rings of inte-
gers) some fundamental results of Kostant on regular elements in the Lie algebra of a
connected reductive algebraic group and their centralizers. These results play an im-
portant technical role in [MaR2], which was our main motivation. As a more direct
application, we also give a “mixed modular” analogue of a “derived Satake equivalence”
due to Bezrukavnikov–Finkelberg [BF], describing the equivariant mixed derived category
Dmix
G∨(O)(GrG∨ ,F) (defined as the bounded homotopy category of the category of equivari-

ant parity complexes) in terms of coherent sheaves on the Lie algebra of G. (Here, G is a
connected reductive algebraic group over a field of positive characteristic, satisfying some
technical assumptions, and G∨ is the Langlands dual group.)

9.6.3. Exotic tilting sheaves, parity sheaves on affine Grassmannians, and the Mirković–
Vilonen conjecture (with C. Mautner), [MaR2]. We construct the equivalence of categories
stated in §5.4, and use it to complete the proof of the Mirković–Vilonen conjecture, as ex-
plained in Remark 5.7(4). A surprising feature of our approach is that it does not rely
on the Geometric Satake Equivalence; instead we use a “Soergel approach” involving some
kinds of Soergel bimodules.

9.6.4. Tilting modules and the p-canonical basis (with G. Williamson), [RW]. We con-
jecture that a certain diagrammatic category of Soergel bimodules acts on the principal
block Rep0(G) of a connected reductive group G as in Section 4. We observe that this
conjecture has as a consequence a character formula for tilting and simple modules (as
stated here in §4.4), and we prove our conjecture in the case of the group GLn(k) using
a categorical action of the Lie algebra ĝlp on the category of representations of GLn(k)
constructed by Chuang–Rouquier, and an adaptation of results of Mackaay (and some col-
laborators) relating the 2-Kac–Moody algebra associated with ĝlp to an Elias–Williamson
diagrammatic category. Finally, we describe the category of parity complexes on the flag
variety of a Kac–Moody groups in terms of diagrammatic Soergel bimodules.

9.6.5. Reductive groups, the loop Grassmannian, and the Springer resolution (with P.
Achar), [AR6]. We adapt the main results of Part 1 of [ABG] to the setting of modular
representations of reductive groups, as presented in §§5.5–5.6.

9.7. Other. The following article is not directly connected with the rest of my work.
9.7.1. Hopf algebras having a dense big cell (with J. Bichon), [BiR]. We study some

axioms on a general (possibly noncommutative) Hopf algebra which ensure that its simple
comodules admit a Borel–Weil classification in terms of highest weights. We illustrate this
theory on the example of the universal cosovereign Hopf algebras, for which the weight
group is the free group on two generators.
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