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Présentation

Ce mémoire présente les travaux que j’ai effectués depuis ma theése. J’ai choisi de ne
présenter en détail que certains travaux qui s’appliquent (ou tout du moins qu’on espére
appliquer) a la théorie des représentations des groupes algébriques réductifs (et des objets
associés) définis sur un corps de caractéristique positive. Mes autres travaux sont briéve-
ment résumés dans un appendice.

Plus précisément, je présente trois ensembles d’articles :

(1)

Le premier, écrit en collaboration avec Pramod Achar, Anthony Henderson et Daniel
Juteau, construit une correspondance de Springer généralisée modulaire, c’est-a-dire
un analogue en caractéristique positive de la correspondance de Springer généralisée
de Lusztig. Cet énoncé est d’intérét essentiellement géométrique, mais on espére
qu’il aura des applications en théorie des représentations modulaires des groupes
finis de type Lie.

Le second, écrit en collaboration avec Pramod Achar, concerne la dualité de Koszul
géométrique. On y construit un analogue en caractéristique positive d’une équiva-
lence de catégories due a Bezrukavnikov—Yun reliant les catégories dérivées construc-
tibles d’une variété de drapeaux et de la variété de drapeaux duale. (Cette construc-
tion a elle-méme ses racines dans des travaux antérieurs de Beilinson—Ginzburg—
Soergel.) Ces travaux s’inscrivent dans la continuité de travaux effectués précédem-
ment en collaboration avec Wolfgang Soergel et Geordie Williamson. Encore une
fois, il s’agit d’'un énoncé géométrique, mais nous espérons l'utiliser (ou plus pré-
cisément en utiliser une généralisation) pour étudier la théorie des représentations
des groupes algébriques réductifs en caractéristique positive.

Enfin, le troisiéme ensemble d’articles, qui comprend des collaborations avec Carl
Mautner, avec Geordie Williamson, et avec Pramod Achar, concerne la géométrie
qui sous-tend la théorie des représentations des groupes algébriques réductifs en
caractéristique positive. On y construit certaines équivalences de catégories qui
devraient permettre de donner des formules de caractéres pour les représentations
simples et les représentations basculantes. (Ces formules de caractéres ont déja
été démontrées d’une maniére trés différente et plus directe, dans les travaux avec
Geordie Williamson, dans le cas particulier du groupe linéaire GL,,(k).)

Ce mémoire se termine par trois appendices. Le premier rassemble des résultats “bien
connus”’ (mais non disponibles dans la littérature dans ce cadre, & ma connaissance) sur
les catégories de plus haut poids, en suivant un point de vue di & Beilinson—-Ginzburg-
Soergel. Le second donne une liste de mes publications. Enfin, le troisiéme propose un bref
résumé de chacun de mes articles, et quelques commentaires sur les liens entre ces différents
articles.
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1. Introduction

1.1. Presentation. This report gives an exposition of my main contributions since
my PhD thesis. I have chosen to concentrate on three results that I believe are the most
significant:

(1) the construction of the modular generalized Springer correspondence (obtained

in [ s ’ ’ ’ ])7

(2) a geometric Koszul duality for constructible sheaves on flag varieties (obtained
in | , , |, building on earlier work in | , D;

(3) anew (partly conjectural) geometric approach to the modular representation theory
of connected reductive groups (developed in | , , | building on earlier
work in [R1, , R3, D).

My other articles are summarized more briefly in Section 9.

1.2. Geometric Representation Theory: motivating examples. The guiding
principle of Geometric Representation Theory is that in order to solve some problems in
Representation Theory, one should first translate them into geometric problems, and then
try to solve this new problem using some tools from Geometry. Two of the most notable
applications of this idea are:

(1) the proof, by Beilinson—Bernstein [BB]| and Brylinsky—Kashiwara |[BIK], of the
Kazhdan-Lusztig conjecture | | on multiplicities of simple modules in Verma
modules in a regular block of category O of a complex semisimple Lie algebra;

(2) Lusztig’s theory of character sheaves [Lu3], which provides a geometric way to
compute characters of complex representations of finite groups of Lie type.

In both of these examples, the representations under consideration are over a field k of
characteristic 0, and the geometry used to obtain the representation-theoretic information
takes the form of perverse sheaves with coefficients in k. In this report we present works
which provide first steps towards analogues of the results in (1) and (2) above in the set-
ting of positive-characteristic representation theory, involving perverse (or more generally
constructible) sheaves with coefficients in a field k of positive characteristic (but also, as
an intermediate step, coherent sheaves on some algebraic varieties over k).

As a “modular analogue” of (1), we have obtained (in a joint work with Geordie
Williamson | |) a conjectural character formula for indecomposable tilting represen-
tations in regular blocks of the category of finite-dimensional algebraic representations of
a connected reductive algebraic group G defined over an algebraically closed field k of
positive characteristic p > h, where h is the Coxeter number of G. (As is well known,
from such a character formula one can deduce also a character formula for simple modules
if p > 2h — 2). We have also proved this formula in the case of the group GL, (k) (see
again [RW]), and made a first important step in the direction of a general proof (in a joint
work with Pramod Achar | D-

Concerning (2), our results are admittedly less satisfactory so far. We have only
obtained (in joint works with Pramod Achar, Anthony Henderson and Daniel Juteau,
see | , , |) @ modular analogue of a theory which is a preliminary
step to the theory of character sheaves, namely Lusztig’s theory of the generalized Springer
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correspondence | |. We hope this will lead to a theory of “modular character sheaves,”
but certain important and subtle questions remain to be understood; see | | for
more comments on this question.

1.3. Geometric Representation Theory in the modular setting. As explained
above, the most spectacular results obtained in Geometric Representation Theory so far
concern problems over fields of characteristic 0, and use some categories of sheaves with
coeflicients in characteristic 0. More recently, some authors have started to use geometric
methods to study representation theory over fields of positive characteristic. Important
examples include:

(1) the Geometric Satake Equivalence of Mirkovi¢—Vilonen | l;
(2) Juteau’s modular Springer correspondence [Ju2];

(3) the “localization theory in positive characteristic" of Bezrukavnikov—-Mirkovié-Ru-
mynin [ ’ ’ ]

In (1) and (2), the geometry takes the form of perverse sheaves on a complex algebraic
variety, with coefficients in a field of positive characteristic. These results are of course very
important from the theoretical point of view, but it is difficult to extract from them con-
crete information of representation-theoretic interest; in particular, the Geometric Satake
Equivalence cannot be used to say anything about the characters of modules of interest
over a connected reductive algebraic group.

On the other hand, in (3) the geometry involved concerns coherent sheaves on an alge-
braic variety over a base field of positive characteristic. This theory can be used to provide
new combinatorial information on the representation theory of reductive Lie algebras in
positive characteristic, see | |; however for the most interesting information this uses
comparison with a characteristic-0 setting, hence can only be applied in “sufficiently large”
characteristic (with no explicit bound).

Some new tools introduced recently by Juteau-Mautner-Williamson | | and
Elias-Williamson | | make it now conceivable to extract combinatorial information from
geometry without leaving the positive-characteristic setting; in this way one can hope to
obtain results valid under more reasonable assumptions on the characteristic. This idea
can be considered a guiding principle of my recent works. Some concrete evidence for this
philosophy is provided by the results presented in §1.8.

1.4. Modular generalized Springer correspondence. Now we start presenting
our results more concretely, starting with those concerned with the modular generalized
Springer correspondence.

Let G be a compler connected reductive algebraic group, with nilpotent cone .4 and
Weyl group Wt. The Springer correspondence is an injective map

(1.1) Irr(Rep(Wt, C)) < lrr(Pervg (A6, C))

from the set of isomorphism classes of simple objects in the category Rep(Wt, C) of finite-
dimensional representations of Wy over C, to the set of isomorphism classes of simple objects
in the category Pervg (A5, C) of G-equivariant perverse sheaves on A, with coefficients
in C. This construction, which generalizes the well-known bijection between isomorphism
classes of simple complex representations of the symmetric group S, and the nilpotent
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orbits for GL, (k) (through the parametrization of both of these sets by partitions of n),

is intially due to Springer | |, and was reformulated in many different ways by several
authors.
Lusztig’s generalized Springer correspondence | | is a way to “complete” the left-

hand side in (1.1) in order to obtain a bijection rather than an injection. For this one
has to add to Wt a family of “relative Weyl groups” associated with Levi subgroups which
support a “cuspidal pair.” This result was the starting point for the theory of character
sheaves [Lu3].

The Springer correspondence (1.1) was generalized in a different direction in Juteau’s
thesis, replacing the field of coefficients C by a field F of possibly positive characteristic,
to obtain the modular Springer correspondence, which takes the form of an injection

Irr(Rep(W, F)) < Irr(Pervg (A6, TF))

(where the meaning of the notation should be clear).

In a series of joint works with Pramod Achar, Anthony Henderson and Daniel Juteau,
we show that Lusztig’s generalized Springer correspondence can also be formulated to work
in this setting of positive-characteristic coefficients. Here also we have to consider some
relative Weyl groups associated with Levi subgroups supporting a cuspidal pair; see §§2.4—
2.5 for precise statements. The theory needed for this generalization was developed in
three steps. First, in | | we proved what was necessary to construct the bijection
in the case G = GL,(C). (Several simplifications appear in this setting, but some im-
portant differences with Lusztig’s setting are already visible in this “easier” case.) Then,

in | |, we developed the theory further to be able to treat all classical groups. Fi-
nally, in | | we found some general proof, which in particular applies to exceptional
groups.

In Section 2 we have tried to present this general proof in logical (rather than historical)
order. We have also tried to emphasize the “canonicity” of this construction.

1.5. “Constructible” Koszul duality. Fundamental work of Beilinson-Ginzburg—
Soergel allows to construct a “Koszul duality” equivalence relating Bruhat-constructible
Q¢-sheaves on the flag variety of a complex connected reductive group G and Bruhat-
constructible Q-sheaves on the flag variety of the Langlands dual group GY. This con-

struction was generalized in [BY] to all Kac-Moody groups. An important ingredient of
this generalization is the idea (suggested in [B(G]) that, in order to obtain a more favorable
duality, one should compose the original duality from | | with a Ringel duality, so as to

obtain a “Ringel-Koszul” duality exchanging simple perverse sheaves and indecomposable
tilting perverse sheaves.

In a series of joint works with Pramod Achar | , , |, we have started to
generalize the constructions from [BY] to the case of positive characteristic coefficients.
In this setting, one should not consider simple perverse sheaves, but rather the parity
sheaves of | |]. (This idea was suggested by [So4], and already used in | 1)
The other diffculty one has to overcome is to understand the concept of “mixed perverse
sheaves” in this setting. Indeed Deligne’s notion of mixed perverse sheaves, which was used
in | |, does not make sense for positive characteristic coefficients. In | | we propose
a new point of view on the construction of mixed perverse sheaves, which does not rely
of eigenvalues of the Frobenius, but uses parity sheaves instead. This allows to construct
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an appropriate Koszul duality equivalence in the case of reductive groups, as explained in
Section 3. We expect similar constructions to be possible for general Kac—-Moody groups,
see §3.4 for details.

1.6. Towards character formulas in the modular representation theory of
reductive algebraic groups. Finally, we consider our results concerned with the modular
representation theory of reductive algebraic groups.

Let G be now a connected reductive algebraic group over an algebraically closed field k
of characteristic p (assumed to be bigger than the Coxeter number h of ). Classical works
of Jantzen and Andersen (among others) show that most of the combinatorial information
on the category Rep(G) of finite-dimensional algebraic representations of G (in particular,
characters of simple objects and indecomposable tilting objects) can be derived from the
similar information in the “principal block” Repy(G). (See Part 2 for more details on the
definitions and notation.) Until recently, the main conjectures describing this combinatorial
information were:

(1) Lusztig’s conjecture | | giving multiplicities of simple modules in induced mod-
ules in a certain region, from which one can derive character formulas for all simple
modules;

(2) Andersen’s conjecture |An| giving multiplicities of induced modules in indecom-

posable tilting modules in a certain region, from which one can derive character
formulas for many (but not all) indecomposable tilting modules.

Lusztig’s conjecture was proved in 1995/96, under the assumption that p is “big
enough” (with no explicit bound), by a combination of works by Kashiwara—Tanisaki [T,
Kazhdan-Lusztig | |, Lusztig [Lu5], and Andersen—Jantzen—Soergel | |. Later,
Fiebig [F'i] obtained a bound for the validity of this conjecture. (This bound is difficult
to compute explicitly, and in any case several orders of magnitude larger than h.) It is
known that Andersen’s conjecture implies Lusztig’s conjecture (if p > 2h — 2), but as far
as we know no proof of this conjecture (under any assumptions) is available unless G' has
semisimple rank 1.

On the other hand, in [Wi|, G. Williamson has shown that Lusztig’s conjecture does
not hold for all p > h, and even that there cannot exist any general polynomial bound
in h which guarantees the validity of this conjecture. In view of this, Lusztig’s conjecture
(and also Andersen’s conjecture) should rather be considered as “asymptotic” character
formulas (when p is very large), and a finer point of view should be adopted in order
to obtain formulas valid under reasonable bounds on p. Our main contributions in this
direction so far are:

e a conjectural description of this “finer” point of view (obtained in joint work with
Geordie Williamson);
e a proof of these character formulas in the case G = GL, (k) (also joint with Geordie
Williamson);
e and some steps towards a general proof of the character formula (obtained in joint
works with Carl Mautner and Pramod Achar).
More precisely, our conjecture takes the form of a correction to Andersen’s conjecture,
which we expect to hold for all indecomposable tilting modules in Repy(G). Our formula
involves the p-canonical basis of the affine Hecke algebra, introduced in two different forms
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FIGURE 1. Bezrukavnikov’s geometric framework for representations of
quantum groups at roots of unity.

by Juteau-Mautner—Williamson | | and Williamson [JW]. (The fact that these two
definitions are equivalent is proved in [RW].)

1.7. The case of quantum groups (after Bezrukavnikov et al.) Our point of
view on the geometry underlying the representation theory of reductive algebraic groups
over fields of positive characteristic has been suggested by the results of Bezrukavnikov and
his collaborators in the early 2000’s on the geometry underlying the representation theory
of Lusztig’s quantum groups at a root of unity. These results can be roughly summarized
in the diagram of Figure 1.

Here U¢ is Lusztig’s quantum group at a root of unity attached to a semisimple complex
algebraic group G¢ of adjoint type, Repy(U¢) is the principal block of the category of
finite-dimensional Us-modules, 4¢ is the Springer resolution of G¢, F1 and Gr are the
affine flag variety and the affine Grassmannian of the Langlands dual group G, and the
symbols “(Iw)” and ZW mean “Iwahori constructible” and “Iwahori-Whittaker” conditions
on perverse sheaves (whose coefficients are in the field C of complex numbers). The arrows
labelled (1) and (2) are the main results of | |; taken together they allow to prove an
equivalence of abelian (highest weight) categories corresponding to the dotted arrow, which
provides the natural quantum group analogue of a conjecture of Finkelberg—Mirkovié | ].
The arrow labelled (3) is the main result of [AB]; finally, the arrow labelled (4) follows
from the results of [BY].

At the time when these results were obtained, most of the combinatorial information on
the category Repy(U¢) was already understood. In particular, the characters of simple mod-
ules were obtained from the works of Kashiwara—Tanisaki [K'T|, Kazhdan—Lusztig | |
and Lusztig | | (following a conjecture of Lusztig), and the characters of tilting modules
were obtained (in most cases) by Soergel [So2]. But these results can be used to obtain
more direct proofs of the simple character formula and, in combination with later work
of Yun [Yu], of the tilting character formula, which bypass the comparison with affine
Kac—Moody algebras.

1.8. Counterpart for reductive groups. Our “modular counterpart” of the dia-
gram of Figure 1 is depicted in Figure 2. Here G is a connected reductive algebraic group
with simply-connected derived subgroup over an algebraically closed field k of positive
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FIGURE 2. Geometric framework for modular representations of reductive groups.

characteristic p (assumed to be bigger than the Coxeter number h), Repy(G) is the prin-

cipal block of the category of finite-dimensional algebraic G-modules, .4 is the Springer
resolution of G, F1 and Gr are as above the affine flag variety and affine Grassmannian of
the complex Langlands dual group, but now we consider perverse sheaves with coeflicients
in k.

The motivation for building this diagram comes from a conjectural formula for the mul-
tiplicities of costandard G-modules in indecomposable tilting modules in Repy(G) in terms
of parity complexes on F1 formulated in | | and corresponding to the arrow labelled
(3); see §4.4 below for a precise statement. Following work of Jantzen, Donkin and An-
dersen, this formula would imply character formulas for simple modules in Repy(G), hence
can be considered as a replacement for Lusztig’s conjecture | | considered in §1.6. The
combinatorial data concerning parity complexes in this conjectural formula is encoded in
the “p-canonical basis” of the affine Hecke algebra, which can be computed algorithmically
using the “Soergel calculus” of [EW]; see [JW] for details. In [RW] we prove this con-
jectural formula in the case G = GL,(k), but there is no hope to generalize our methods
beyond classical groups.

The arrows labelled (1), (2) and (4) provide a plan of proof of this conjecture for
a general reductive group G as above. First, the arrow labelled (1) is the main result

of | |. It provides a modular analogue of the first part of | |; see §5.5 for details.
The arrow labelled (2) is the main result of | | (and is also proved independently
in | |). It provides a modular analogue of the second part of | |; see §5.4 for

details. Taken together, these results allow us to prove a “graded version” of the Finkelberg—
Mirkovié¢ conjecture mentioned in §1.7; see §5.6.

Finally, the dashed arrow labelled (4) would follow from a conjectural modular gener-
alization of the “Koszul duality” of [BY], discussed in §3.4. (As explained in §1.5, we have
already obtained a modular version of this duality in the case of finite flag varieties. But the
crucial case here is that of affine Kac-Moody algebras.) This generalization is the subject
of a work in progress with Pramod Achar, Shotaro Makisumi and Geordie Williamson; a
more detailed discussion of the expected application to the conjecture from | | is given
in Section 6.

1.9. Comments on Koszul duality. A unifying theme of my research so far is
Koszul duality. The importance of this construction in Representation Theory was dis-
covered in | |. There, Koszul duality was defined as an equivalence of triangulated
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categories between some derived categories of modules over two rings which are “Koszul
dual,” this construction generalizing the celebrated equivalence between the bounded de-
rived categories of graded finitely-generated modules over the symmetric algebra S(V') of
a finite-dimensional vector space V' and the exterior algebra A V* of the dual vector space.
A central property of this equivalence is that it exchanges simple modules over a ring with
projective (or injective, depending on the conventions) modules over the dual ring. As
explained in §1.5, in Lie-theoretic contexts it is sometimes more convenient to compose
such a duality with a Ringel duality, to obtain a Ringel-Koszul duality exchanging simple
modules and tilting modules.

Since then, this idea has been generalized in many directions. In this report, what
we mean by a “Koszul duality” is an equivalence which is either based on the same kind
of constructions as for the duality between S(V) and A V™, or which exchanges some
simple objects with some tilting objects. As explained in §1.5, in a modular context, one
sometimes wants to replace “simple objects” by “parity objects.” From this point of view,
Koszul duality equivalences are ubiquitous in my work, see in particular:

(1) the “linear Koszul duality” (from some coherent sheaves to some coherent sheaves)
of | , |, which has found applications to the modular representation
theory of reductive Lie algebras [R2] and to a categorification of the Iwahori—
Matsumoto involution | , |;

(2) a “constructible” Ringel-Koszul duality for sheaves on flag varieties, see §1.5;

(3) the equivalence constructed in | |, which is also a Ringel-Koszul duality, see
Remark 5.7(2);
(4) the equivalence constructed in | |, which we can once again think of as a Ringel-

Koszul duality.

If one considers Koszul duality to be of the same nature as Fourier transforms (as
suggested in particular in | , §0.1], and as illustrated by the main result of | D
then one can also add to this list the results of | , , , ],
which rely in a crucial way on the use of the Fourier—Sato transform.

1.10. Contents of the report. In Part 1 we present two of our contributions which
are of more geometric interest. First, in Section 2 we give a detailed account of our present
understanding of the modular generalized Springer correspondence (see §1.4). Then, in
Section 3 we consider a generalization of the Bezrukavnikov—Yun geometric Koszul du-
ality [BY] (which itself stems from the Beilinson—Ginzburg-Soergel Koszul duality for
category O of a complex semisimple Lie algebra | |) to the case of coefficients in pos-
itive characteristic. This generalization uses the concept of the “mixed derived category”
of sheaves on a (nice) algebraic variety, which we believe is of independent interest, and
plays a key role also in the results of Part 2.

In Part 2 we give a detailed account on our results evoked in §1.8. First, in Section 4
we state the conjecture on tilting characters from | |. Then, in Section 5 we present the
main results of | | and | |, which provide steps towards a general proof of this
character formula. (These constructions rely in an important way on the results previously
obtained in [R1, , , |.) Finally, in Section 6 we explain how we expect to
complete this proof using a modular version of the results from [BY].



8 Table des matiéres

The report finishes with three appendices. In Section 7 we provide definitions and
proofs or references for some “well known” results on highest weight categories, which are
sometimes not available in the literature in the form we want to use. Section 8 contains
a list of my publications so far. Finally, Section 9 contains summaries of all my articles,
together with some comments on the relations between certain of these articles.



Part 1

Geometry
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In this part, G denotes a complex connected reductive algebraic group, and F is a field
of characteristic p.

2. Modular generalized Springer correspondence

In this section we explain our joint work with Pramod Achar, Anthony Henderson
and Daniel Juteau on the modular generalized Springer correspondence: see | s
, |, and some complements in | |. See also | | for a different
overview of these results (with an emphasis on the possible application to modular character
sheaves).

2.1. Notations. We will denote by g the Lie algebra of G, and by 45 C g the
nilpotent cone (i.e. the cone consisting of elements z € g such that the endomorphism
y — [z, y] of g is nilpotent). We will consider .45 as a complex algebraic variety, endowed
with an action of the group G induced by the adjoint action. We fix a non-degenerate
G-invariant symmetric bilinear form on g; this allows to identify the G-modules g and g*.
For any Levi subgroup ' L of G, with Lie algebra [, this form restricts to a non-degenerate
L-invariant symmetric bilinear form on [, which also allows to identify the L-modules [ and
[,

Our main object of study in this section is the category Pervg (4G, F) of G-equivariant
F-perverse sheaves on 4. This category is the heart of the perverse t-structure on
the equivariant derived category Dg(dl/(;,IF‘). More precisely, the main goal of the se-
ries | , , | is to give a “representation-theoretic” parametrization
of simple objects in Pervg (45, F), adapting known results in the case of f-adic sheaves
(on the analogue of ¢ over an algebraically closed field of positive characteristic differ-
ent from ¢) due to Lusztig [Lu2]. In | | we use this information to deduce some
structural properties of Pervg (A6, F) and D2(A,F).

We will denote by Mg the quotient of the set of pairs (&,€) where & C g is a
G-orbit and £ is an irreductible G-equivariant F-local system on &, by the relation

(0,6~ (0,€) & 6=0 andE=E.

(By abuse, we will often write (&,€) € Mg r to mean that ¢ is a G-orbit in 45 and that
€ is an irreducible G-equivariant local system on &.)

The general theory of perverse sheaves | | ensures that the map (0,&) — ZC(0,E)
induces a bijection between 9lg r and the set of isomorphism classes of simple objects in
the abelian category Pervg (46, F). On the other hand, the theory of local systems ensures
that, if we fix for any G-orbit & C Ag a point z¢ € O and set Ag(0) = G, /(Gz,)°
(where G, is the centralizer of 5 in G, and (—)° means the connected component of the
identity), then the set 91y is in natural bijection with the set of equivalence classes of
pairs (0, V) where & C A is a G-orbit and V' is a simple F-representation of Ag(zg).

For any Levi subgroup L of G we can likewise consider the set 9 y. In the whole
section we will make the following assumption on our field F: for any Levi subgroup L C G
and any pair (Op, &) in N p, the local system £ is absolutely irreducible. It is clear
that this condition is satisfied if F is algebraically closed. In fact it is satisfied under

1. By Levi subgroup we mean a Levi factor of a parabolic subgroup.
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much weaker assumptions: see | , Proposition 3.2] for an explicit characterization
of when this condition holds in many important cases.

2.2. Cuspidal pairs and triples. For any parabolic subgroup P C G and Levi factor
L C P, as above we can consider the nilpotent cones .#p and .47 in the Lie algebras of P
and L respectively, and the associated categories D%(%,F), Pervp(Ap,TF), DE(JVL,FL
Pervy (A7, F). We have natural maps

PLcp

N~ v

where ircp is induced by the embedding P — G, and prcp is induced by the projection
P — L, where we identify L with the quotient of P by its unipotent radical. In this way
we can define two “restriction” functors

RYp = (prcp)« o (icp) : D&(ANG, F) = Dp(A,F)
'Ricp = (prcp)io (icp)” : Dg(Ae,F) = Dp(AL,F)
and an “induction” functor
I p =78 o (ircp)io (prep)” : DY(AL,F) — Dg (e, F),

where 7§ is the left adjoint to the forgetful functor D2 (AG,F) — D% (A5, F) (see [BL,
Theorem 3.7.1]). It follows from the usual theory of derived functors for sheaves that these
functors form adjoint pairs ('R$_p,I¢ p) and (I p, RY-p). Moreover, it is known that
they are exact for the perverse t-structures, hence restrict to exact functors

RS p : Pervg (e, F) — Pervr (A7, F),
’R%'Cp : Pervg (A6, F) — Pervy (A7, F),
1Y p : Pervy (A7, F) — Pervg(A6, F);

see | , §2.1] for references.

The following lemma is an application of Braden’s hyperbolic localization theorem:;
see | , Proposition 2.1] for details.

LEMMA 2.1. Let F be a simple object in Pervg(AG,F). Then the following conditions
are equivalent:

(1) for any pair (L, P) as above with P C G, we have RS- p(F) = 0;

(2) for any pair (L, P) as above with P C G, we have 'RY_p(F) = 0;

(3) for any pair (L, P) as above with P C G, and any G in Pervy (A1, F), F does not
appear in the head of Igcp(g);

(4) for any pair (L, P) as above with P C G, and any G in Pervy (A1, F), F does not
appear in the socle of Igcp(g),

The simple perverse sheaves which satisfy the conditions of Lemma 2.1 are called cus-
pidal. A pair (0,€) is called cuspidal if ZC(0, £) is cuspidal; the subset of Mg r consisting

cusp

of classes of cuspidal pairs will be denoted 91, . Similarly, for any Levi subgroup L C G

we can consider the subset M7 3P of My . A triple (L, Or, Er) where L is a Levi subgroup

of G and (0r,&r) € NG 7 will be called a cuspidal triple for G. The set of cuspidal triples
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for G’ admits a natural action of G' by conjugation, and we denote by M r the set of orbits
for this action. If (L, 07, &) is a cuspidal triple, we will write [L, 0p,EL] € Mg r for the
corresponding G-orbit.

For any Levi subgroup L C G, we denote by N¢ (L) the normalizer of L in G. For any
L-orbit Oy, C A7, we denote by Ng(L, 0r,) the subgroup of Ng(L) consisting of elements
g such that ¢g@rg~! = €r. This group acts naturally on the set of isomorphism classes
of L-equivariant local systems on €. The following result is based on the observation
that cuspidal pairs are supported on distinguished orbits (see | , Proposition 2.6])
and then on an explicit verification in each type; see | , Lemma 2.9| and | )
Proposition 3.1].

LEMMA 22. If L C G is a Levi subgroup and if (Or,Er) € Ny, then we have
Ng(L, 0r) = Ng(L). Moreover, the action of this group on the set of isomorphism classes
of L-equivariant local systems on Oy, is trivial.

If £ is a set of pairwise non-conjugate representatives of conjugacy classes of Levi
subgroups of GG, then Lemma 2.2 implies that the natural map

(2.1) | | M5 = M
Leg
is a bijection.

2.3. Induction series. If (L, 01, &) is a cuspidal triple, and if P C G is a parabolic

subgroup having L as a Levi factor, then we can consider the perverse sheaf
Ifcp(ZC(O1.€L)).

Since we have identified g and g*, we can consider the Fourier-Sato transform Ty as an
auto-equivalence of the abelian category of conical G-equivariant F-perverse sheaves on g.
(Note that any G-equivariant perverse sheaf on g which is supported on A¢ is conical,
as follows e.g. from | , Lemma 2.10].) Using a geometric analysis due to Lusztig (but
explained in more detail by Letellier [Le|), we check in | , §2.6] that there exists a
canonical isomorphism

(2.2) To (e p (TC(01,€1)) ) = TC (Yiv.op), (B(1.07))+E})

cusp

for some pair (07, £7) € M} " which might potentially be different from (&, £1,) (although
we do not know any example where this actually occurs), and which is characterized by
the fact that

Ti(ZC(Or.€r)) = IC(O), + 51, £ K E;) ),
where 37, is the center of the Lie algebra [ of L and T is the Fourier-Sato transform on [.
In (2.2) we have used the notation

Yoy =G (0 +51) Cg, where 37 ={z€;0|G.=L},
and
D(Lor): GX" (O, +357) = VLo
is the natural morphism, which is known to be a Galois covering with group Ng(L, 01)/L =

Ng(L)/L (see Lemma 2.2). Finally, éz is the unique local system on G x% (€7, +3%) whose
pullback to G x (O +57) is Fq W (€] K EF,. ).
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From (2.2) we see that the perverse sheaf I¢_,(ZC(0,€r)) is independent of P up
to isomorphism, and in fact that it only depends on the G-conjugacy class of (L, 0, Er).

Hence we can define ‘ﬁ[é fL €l - Nk as the subset consisting of classes of pairs (&, &)

such that ZC(0, ) is isomorphic to a quotient of I%c p (IC (01, & L)) This subset is called
the induction series attached to the class [L, O, Er].

REMARK 2.3. (1) We insist that ‘ﬁ[GL fL €2l i3 the set of pairs associated with quo-

tients of I%CP (IC(ﬁL, EL)), and not with all subquotients of this perverse sheaf.
If p =0, then it follows from the Decomposition Theorem that Igc P (ZC (O, & L))
is semisimple; so the two sets coincide. However, if p > 0, in general there exist
much more simple subquotients of this object than quotients. For instance when
G = GL,(C), L is a maximal torus, and (O, £r) is the unique pair in My, g, then the
simple subquotients of I%cP (IC(@’L, SL)) correspond to all the pairs (0, F,) with