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Introduction

Les groupes de tresses ont été introduits par Hurwitz [42] en 1891 comme groupes fonda-
mentaux des espaces des configurations de n points dans le plan complexe. Cependant,
ils doivent leur nom à Artin [3] : il les considérait en termes d’automorphismes de Fn, les
groupes libres de rang n, mais aussi en termes géométriques. L’interprétation géométrique
est sans doute la plus intuitive et mieux connue, en particulier grâce à son utilisation
dans la théorie des nœuds. Magnus [60] considéra les groupes de tresses d’un point de vue
de classes d’un groupe modulaire, tandis que Markov [62] introduisait ces groupes d’un
point de vue purement relatif à la théorie des groupes. Il est connu depuis longtemps
que tous ces points de vue sont équivalents [84]. Chacune de ces définitions porte à une
différente généralisation : par exemple, on peut voir les groupes de tresses comme des cas
particuliers de groupes d’Artin-Tits, de groupes de Garside, de groupes modulaire, de
groupes de tresses sur surfaces. Peu de ces généralisations partagent avec les groupes de
tresses leur propriété principale : une grande famille de définitions équivalentes.

Les groupes de tresses de cercles sont une exception remarquable à ce fait. Leur étude
a été largement développée au cours des vingt dernières années. Le premier fait curieux
est qu’elles apparaissent en littérature avec un grand nombre de noms différents. Ici on
choisit d’adopter la terminologie introduite par Baez, Wise, et Crans [8], parce que leur
définition de groupes de tresses de cercles en termes de groupes modulaires convient aux
propos de cette thèse. On donnera bientôt une idée de cette définition : tout d’abord on
remarque qu’il ne s’agit ni de la première appellation, ni de la première interprétation
des tresses de cercles qui serait apparue au fil du temps

Le concept qui se trouve derrière la genèse des tresses de cercles est celui demouvements
[angl. : motions] d’un sous-espace compacte N dans une variété M : pour avoir une idée
de cette notion on peut penser aux différentes manières de bouger N dans M de sorte
qu’à la fin du mouvement N soit revenu en position d’origine. Le premier pas vers les
mouvements est dû à Fox et Neuwirth [34]. En 1962 ils donnent une nouvelle preuve de
la présentation d’Artin pour les groupes de tresses, en termes de groupes fondamentaux
d’espaces des configurations de n points non-ordonnés sur un plan. La même année
Dahm, dans sa thèse de doctorat, généralise ce concept aux variétés quelconques. Il
applique cette construction à une collection de n cercles non noués et non entrelacés
dans l’espace à 3 dimensions : ces mouvements représentent la première apparition du
groupe de tresses de cercles et ses résultats sont publiés et étendus dans [37]. Avec des
termes plus modernes, au lieu de parler de groupes de mouvements, on parlera plutôt
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de groupes modulaires [angl. : mapping class groups]. En effet, on peut donner une
définition informelle de nos protagonistes comme suit.
Définition Informelle. Fixons n ≥ 1, le groupe de tresses de cercles avec n composantes
est le groupe modulaire de n cercles non noués et non entrelacés dans l’espace de
dimension 3.

Une définition formelle sera donnée dans le Chapitre 1 (Définition 1.1.5). En 1986
McCool [64] considère les tresses de cercles comme automorphismes de conjugaison de
base [angl. : basis-conjugationg automorphisms] et en 1996 Savushkina [73] les considère
comme automorphismes de permutation et conjugaison [angl. : permutation-conjugacy
automorphisms] de Fn. Les tresses de cercles sont aussi connues dans la littérature comme
tresses soudées [angl.welded braids], suivant la nomenclature avec laquelle elles ont été
introduites par Fenn, Rimány et Rourke [30]. Celle-ci est peut être la plus connue des
notations. Elle est associée à des diagrammes de chemins monotones dans l’espace de
dimension 2, très similaires aux diagrammes qu’on utilise pour représenter les tresses
usuelles. Plus récemment, Brendle et Hatcher [21] ont proposé une interprétation de
ces groupes comme groupes fondamentaux des espaces des configurations de n cercles
euclidiens. De plus, on peut donner une interprétation topologique des tresses de cercles :
grosso modo, on peut les voir comme des immersions dans l’espace de dimension 4 de n
copies disjointes de la couronne orientée S1 × I avec les composantes de bord fixées. Les
tresses de cercles peuvent aussi être codées par des diagrammes de Gauss pour tresses :
cette dernière est une interprétation combinatoire, utilisée implicitement dans [10]. Cette
interprétation peut aussi être vue comme un cas particulier des objets considérés dans [5].
Elle représente également un point de vue qui permet de considérer les groupes de tresses
de cercles comme des quotients des groupes de tresses virtuelles. Le Chapitre 1 sera dédié
à la présentation de tous ces formalismes et à la démonstration de leur équivalence.

Dans le Chapitre 1 on considère aussi les groupes de tresses de cercles étendus, une
généralisation des groupes de tresses de cercles. Dans la littérature, ces groupes ont
été moins étudiés, mais comme il apparaîtra au cours de ce travail, ils sont encore plus
intéressants que les groupes de tresses de cercles, et émergent d’une façon plus naturelle
quand on considère les objets analogues aux tresses usuelles dans l’espace de dimension 4.

En plus d’apparaître dans tellement de contextes, les groupes de tresses de cercles
sont des objets intéressants en eux-mêmes. Tout d’abord, plusieurs calculs et conjectures
à propos des algèbres de cohomologie des groupes de tresses de cercles purs, des sous-
groupes des groupes de tresses de cercles, ont émergé dans la littérature. L’étude des
propriétés de ces algèbres, par exemple en relation avec les variétés de résonance et les
rangs des suites centrales descendantes, nous permet de comparer les groupes de tresses
de cercles avec les groupes de tresses, et avec d’autres généralisations des groupes de
tresses. Dans la Section 1.7 on donne des références à propos de ce thème.

Dans cette thèse on se concentrera en particulier sur les aspects topologiques et les
applications des groupes de tresses de cercles. Du point de vue de la topologie, les groupes
de tresses de cercles peuvent être vus comme la contrepartie tressée d’un type particulier
d’objet noué : les tores-entrelacs ruban [angl. : ribbon torus-links]. On va les définir dans
le Chapitre 2 (Définition 2.1.3). Pour le moment on en donne juste une idée :



3

Définition Informelle. Pour n ≥ 1, un tore-entrelacs ruban avec n composantes est
un plongement de n tores orientés S1 × S1 dans l’espace de dimension 4.

Dans la théorie classique de tresses et entrelacs, le théorème d’Alexander nous permet
de représenter tout entrelacs comme la clôture d’une tresse. De plus, le théorème de
Markov établit que deux tresses, qui peuvent avoir un nombre différent de brins, ont
des clôtures isotopes dans l’espace de dimension 3 si et seulement si une peut être
obtenue de l’autre avec un nombre fini de mouvements de Markov, appelés conjugaison
et stabilisation. Ce théorème permet de décrire toutes les tresses avec clôtures isotopes
comme entrelacs dans l’espace de dimension 3. Ces deux théorèmes nous permettent
de retrouver certains invariants d’entrelacs comme traces de Markov, des traces sur les
algèbres de groupe des groupes de tresses. Pour ce qui concerne les tresses de cercles, on
a un théorème de type Alexander et un théorème de type Markov [47] pour les tresses
soudées, l’interprétation diagrammatique des tresses de cercles. Toutefois, on n’en a
pas une version topologique. Inspirés par ce fait, dans le Chapitre 2, on propose un
premier pas vers un théorème de Markov topologique pour les tresses de cercles et les
tores-entrelacs ruban.

Une autre application des groupes de tresses de cercles peut être trouvée dans la théorie
de Lie, par exemple dans le travail de Bar Natan [9–11]. Cette application concerne un
troisième type d’objets noués qui dérivent des tresses de cercles : les enchevêtrements ruban
[angl. ribbon tangles], que Bar Natan formalise en tant qu’enchevêtrements soudés [angl.
welded tangles].Les enchevêtrements ruban sont la notion analogue des enchevêtrements
usuels, mais en termes de couronnes et tores plongés dans l’espace de dimension 4. La
définition formelle de ces objets est donnée dans le Chapitre 3 (Définition 3.1.1) ; pour le
moment on propose une version informelle.

Définition Informelle. Un enchevêtrement ruban est un plongement d’une union
disjointe de tores orientés S1 × S1 et de couronnes orientées S1 × I dans l’espace de
dimension 4.

On traitera d’entrelacs ruban dans le Chapitre 3 pour définir une généralisation du
polyôme d’Alexander.

De plus, il ne faut pas oublier de mentionner la théorie des représentations des groupes
de tresses de cercles. Les représentation de Burau s’étendent trivialement aux groupes de
tresses de cercles en utilisant l’expansion de Magnus et les dérivées de Fox [14], mais la
linéarité ou non des groupes de tresses de cercles n’a pas encore été déterminée. Certains
nouveaux résultats sur les représentations locales des groupes de tresses de cercles, qui
apparaissent comme extensions des représentations des groupes de tresses, peuvent être
trouvés en [45] et [22]. Cependant l’étude des quotients de dimension finie des algèbres
des groupes de tresses de cercles n’est pas encore présente dans la littérature. Dans [45]
les auteurs s’intéressent également à certains quotients remarquables des groupes de
tresses de cercles : les groupes de tresses de cercles symétriques[angl. : symmetric loop
braid groups], aussi connus comme tresses soudées symétriques [angl. : unrestricted virtual
braid groups] [53]. On traitera la structure de ces groupes dans le Chapitre 4, et ensuite
on décrira quelques applications aux entrelacs «fused».
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Dans la suite on propose un aperçu de chaque chapitre :

Groupes de tresses de cercles

Plusieurs formulations parallèles et plusieurs notations ont été utilisées pour les groupes
de tresses de cercles, de la part de chercheurs qui travaillent dans des domaines différents.
Bien que l’équivalence de certaines de ces formulations ait déjà été démontrée, ou au
moins énoncée, dans la littérature, par exemple dans [10, Section 2, Théorème 2.6], toutes
n’ont pas été explicitement reliées. Le propos de ce chapitre est de donner une collection
de ces formalismes. De plus, on propose une preuve complète de l’équivalence de ces
formulations. Cela nous met dans un cadre théorique clair et bien établi pour les groupes
de tresses de cercles, comme celui qu’on a dans le cas des groupes de tresses classiques.

Dans la première partie du Chapitre 1 on donne la définition des groupes de tresses de
cercles, notés LBn, comme étant les groupes de classes d’isotopie des homéomorphismes
de la 3-boule B3 dans elle même qui :
• fixent ponctuellement le bord de B3 ;
• fixent globalement une collection de cercles disjoints, non noués, non entrelacés et

orientés dans l’intérieur de B3 ;
• préservent l’orientation de B3 et de la collection des cercles.

On définit aussi les groupes de tresses de cercles étendus, notés LBext
n , comme les groupes

d’isotopie des classes de ce type d’homéomorphismes sans la condition de préserver
l’orientation de la collection de cercles.

Ensuite on introduit deux familles d’espaces de configurations de cercles dans la
3-boule B3. Les premiers sont les espaces de configurations de n cercles euclidiens, non
ordonnés, disjoints et non entrelacés dans la 3-boule B3 : ces espaces sont notés Rn. Les
seconds sont les espaces de configurations d’une collection de cercles avec les susdites
caractéristiques, avec en plus la propriété que les cercles soient situés sur des plans
parallèles. Ces espaces de configurations sont notés URn. Leurs groupes fondamentaux
sont respectivement appelés groupes d’anneaux [angl. ring groups] et groupe d’anneaux
parallèles [angl. untwisted ring groups] et sont respectivement notés avec les symboles Rn
et URn. Le premier résultat important de ce chapitre établit que les groupes d’anneaux Rn
sont isomorphes aux groupes de tresses de cercles étendus LBext

n . On en énonce ici une
version simplifiée :

Théorème 1.2.11. Pour n ≥ 1, il existe un isomorphisme naturel entre le groupe
d’anneaux Rn et le groupe de tresses de cercles étendu LBext

n .

Ce théorème nous permet de démontrer un résultat analogue pour les versions non-
ordonnées de ces groupes. De plus, il représente une première motivation pour considérer
les groupes de tresses de cercles étendus.

Proposition 1.2.12. Pour n ≥ 1, il existe un isomorphisme naturel entre le groupe
d’anneaux parallèles URn et le groupe de tresses de cercles LBn.
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De plus, Brendle et Hatcher donnent des présentations pour les groupes d’anneaux Rn
et pour les groupes d’anneaux parallèles URn. La correspondance des groupes d’anneaux
(parallèles) avec les groupes de tresses de cercles (étendus) nous permet d’énoncer les
résultats qui suivent.
Corollaire 1.2.15, (voir aussi [21]). Pour n ≥ 1, le groupe LBn admet la présentation
donnée par les générateurs {σi, ρi | i = 1, . . . , n− 1}, soumis aux relations :

σiσj = σjσi pour |i− j|> 1
σiσi+1σi = σi+1σiσi+1 pour i = 1, . . . , n− 2
ρiρj = ρjρi pour |i− j|> 1
ρiρi+1ρi = ρi+1ρiρi+1 pour i = 1, . . . , n− 2
ρ2
i = 1 pour i = 1, . . . , n− 1
ρiσj = σjρi pour |i− j|> 1
ρi+1ρiσi+1 = σiρi+1ρi pour i = 1, . . . , n− 2
σi+1σiρi+1 = ρiσi+1σi pour i = 1, . . . , n− 2.

Corollaire 1.2.17, (voir aussi [21]). Pour n ≥ 1, le groupe LBext
n admet la présenta-

tion donnée par les générateurs {σi, ρi | i = 1, . . . , n− 1}, et {τi | i = 1, . . . , n}, soumis
aux relations : 

σiσj = σjσi pour |i− j|> 1
σiσi+1σi = σi+1σiσi+1 pour i = 1, . . . , n− 2
ρiρj = ρjρi pour |i− j|> 1
ρiρi+1ρi = ρi+1ρiρi+1 pour i = 1, . . . , n− 2
ρ2
i = 1 pour i = 1, . . . , n− 1
ρiσj = σjρi pour |i− j|> 1
ρi+1ρiσi+1 = σiρi+1ρi pour i = 1, . . . , n− 2
σi+1σiρi+1 = ρiσi+1σi pour i = 1, . . . , n− 2
τiτj = τjτi pour i 6= j

τ2
i = 1 pour i = 1, . . . , n
σiτj = τjσi pour |i− j|> 1
ρiτj = τjρi pour |i− j|> 1
τiρi = ρiτi+1 pour i = 1, . . . , n− 1
τiσi = σiτi+1 pour i = 1, . . . , n− 1
τi+1σi = ρiσ

−1
i ρiτi pour i = 1, . . . , n− 1.

Dans la Figure 1 on montre l’interprétation des générateurs qui apparaissent dans ces
présentations comme des éléments des groupes d’anneaux parallèles URn et des groupes
d’anneaux Rn.

On passe à une interprétation des tresses de cercles comme automorphismes de Fn, le
groupe libre de rang n. On introduit les sous-groupes des automorphismes de permutation-
conjugaison PC∗n de Fn, et on rappelle un résultat de Dahm, publié par Goldsmith, qui
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i i+ 1 i i+ 1 i

σi ρi τi

Figure 1: Élements σi, ρi et τi.

énonce que les groupes de tresses de cercles sont isomorphes aux groupes PC∗n [37]. Ce
résultat offre aussi une caractérisation des tresses de cercles comme automorphismes
d’une façon similaire à la caractérisation d’Artin des tresses. À présent, on va donner une
présentation pour les sous-groupes purs des groupes de tresses de cercles étendus LBext

n ,
qu’on note PLBext

n .

Proposition 1.3.8. Pour n ≥ 1, le groupe PLBext
n admet la présentation donnée par

les générateurs {αij | 1 ≤ i 6= j ≤ n} et {τi | i = 1, . . . n} soumis aux relations :

αijαkl = αklαij

αijαkj = αkjαij

(αijαkj)αik = αik(αijαkj)
τ2
i = 1
τiαij = αijτi

τiαjk = αjkτi

τiαjiτi = α−1
ji

où des lettres différentes indiquent des indices différents.

αi,j

i i+ 1 j

Figure 2: Éléments αij .

Dans la Figure 2 on montre l’interprétation des générateurs de PLBext
n comme

éléments du groupe d’anneaux Rn.
Dans la suite on passe à un point de vue plus topologique sur les tresses de cercles, vues

comme des classes particulières de couronnes nouées dans B4, la boule de dimension 4. On
appelle ces objets tresses ruban (étendues) [angl. : (extended) ribbon braids]. Pour n ≥ 1,
on note le groupe de tresses ruban avec le symbole rBn, et le groupe de tresses ruban
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étendu avec rBext
n . Les résultats principaux de cette partie établissent des isomorphismes

entre groupes de tresses ruban (étendus) et groupes de tresses de cercles (étendus) :

Théorème 1.4.11 et Théorème 1.4.18. Pour n ≥ 1, il y a des isomorphismes entre
le groupe de tresses ruban rBn et le groupe de tresses de cercles LBn, et entre leurs
versions étendues rBext

n et LBext
n .

Dans le contexte des tresses ruban, avec les isomorphismes précédents, on peut aussi
démontrer que la notion d’isotopie qu’on a choisie pour les tresses ruban coïncide avec
la notion d’isotopie de la 4-boule dans laquelle les tresses ruban sont plongées. En
particulier, on a le résultat suivant.

Théorème 1.4.5. Toute isotopie d’une tresse ruban géométrique dans B3 × I s’étend à
une isotopie de B3 × I dans lui-même qui est l’identité sur le bord.

On décrit aussi deux types de représentations graphiques en dimension 3 et 2 des
tresses de cercles. On introduit les surfaces cassées [angl. : broken surfaces], et les
diagrammes soudés [angl. : welded diagrams]. Les surfaces cassées sont des projections en
position générale des tresses de cercles dans l’espace de dimension 3. Dans la Figure 3 on
peut voir des surfaces cassées équivalentes entre elles. Les diagrammes soudés sont des
diagrammes en dimension 2, introduits dans [30].

Figure 3: Surfaces cassées.

Enfin on traite d’une description combinatoire des tresses de cercles à travers les
diagrammes de Gauss. Ces diagrammes, dans le sens de [69], codent l’information d’un
objet noué. On utilise les résultats de Cisneros à propos des diagrammes de Gauss pour
tresses virtuelles [25] afin de démontrer l’existence d’un isomorphisme entre des quotients
de l’ensemble des diagrammes de Gauss et les diagrammes des tresses soudées.

Pour terminer cet aperçu sur les groupes de tresses de cercles, on donne une brève
exposition de l’histoire de ces objets, et d’autres références à propos des applications
topologiques et de la théorie de représentations de ces groupes.
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Une application topologique : vers une version topologique
du théorème de Markov pour les tresses de cercles

Dans le Chapitre 2, on effectue les premiers pas pour adapter des résultats classiques
dans la théorie des nœuds aux tores-entrelacs ruban, la contrepartie nouée des tresses
de cercles. Pour cette raison, on considère les tresses de cercles comme tresses ruban
(Théorème 1.4.11). Dans le cas classique, le théorème d’Alexander énonce que tout
entrelacs peut être représenté comme la clôture d’une tresse. Ce résultat a déjà été
démontré pour les diagrammes de tresses soudées et leur contrepartie nouée par Ka-
mada [47]. L’isomorphisme entre diagrammes de tresses soudées et tresses ruban, décrit
dans le Chapitre 1, garantit que le théorème d’Alexander reste valide quand on passe
aux tresses ruban et aux tores-entrelacs ruban.

Le théorème de Markov présente plus de difficultés, à cause du manque d’une corre-
spondance biunivoque entre tores-entrelacs ruban et diagrammes d’entrelacs soudés. Dans
la théorie classique de tresses et nœuds ce théorème énonce que deux tresses, pouvant
avoir un nombre différent de brins, ont des clôtures isotopes dans R3 si et seulement
si l’une peut être obtenue de l’autre avec un nombre fini de mouvements de Markov,
appelés conjugaison et stabilisation. Ce théorème permet de décrire toutes les tresses
avec clôtures isotopes comme entrelacs dans R3. Concernant les tresses de cercles vues
comme diagrammes de tresses soudées, une démonstration combinatoire de ce théorème
peut être trouvée dans [47]. Dans cette thèse on démontre une version du théorème de
Markov pour les tresses de cercles avec clôture dans l’analogue d’un tore solide dans R4,
qu’on énonce tout de suite. On rappelle qu’on note rBn les groupes de tresses ruban,
et rBext

n les groupes de tresses ruban étendus.

Théorème 2.3.1. Soit n ≥ 1 et β, β′ ∈ rBn une paire de tresses ruban. Les tresses
ruban clôturées β̂, β̂′ sont isotopes dans B3×S1 si et seulement si β et β′ sont conjuguées
dans rBext

n .

On remarque que pour avoir le même type d’énoncé qu’on a pour le cas classique, il
faut passer aux groupes étendus, dans le cas desquels on a :

Théorème 2.3.3. Soit n ≥ 1 et β, β′ ∈ rBext
n une paire de tresses ruban étendues. Les

tresses ruban étendues clôturées β̂, β̂′ sont isotopes dans B3 × S1 si et seulement si β et
β′ sont conjuguées dans rBext

n .

Pour étendre le résultat dans tout l’espace de dimension 4, et pas seulement dans
le tore solide, il faut démontrer l’invariance de la classe d’isotopie d’une tresse ruban
(étendue) clôturée par rapport à l’opération de stabilisation sur les tresses ruban (étendues).
L’approche qu’on a suivi pour la conjugaison ne nous permet pas de le faire sans passer
à une interprétation diagrammatique. Pour cette raison l’exploration d’autres approches
fait partie des projets futurs.
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Une généralisation du polynôme d’Alexander : l’invariant
d’Alexander pour les enchevêtrements ruban

Le Chapitre 3 concerne un travail en commun avec Vincent Florens [29]. Dans cette partie
on considère un troisième type d’objets noués : les enchevêtrements ruban. Dans ce travail
on introduit un invariant de type Alexander pour les enchevêtrements ruban, où, quand
on dit “de type Alexander” on entend qu’il partage la technique de construction avec le
polynôme d’Alexander de la théorie de nœuds classique. On considère un enchevêtrement
ruban T dans la 4-boule B4. Les composantes de bord des couronnes qui composent
T sont les composantes d’un entrelacs trivial L dans S3, le bord de B4. On fixe un
groupe libre abélien G, et on dit qu’on colore avec G l’enchevêtrements ruban T quand
on choisit un homomorphisme de groupes ϕ défini sur le premier groupe d’homologie du
complément de T dans B4 à valeurs dans G.

On construit un invariant d’Alexander A(T ) de l’enchevêtrement colorié T comme
un élément de l’algèbre extérieure du Z[G]-module d’homologie Hϕ

1 (S3 \ L), tordue par
le morphisme induit par ϕ. On note ce module H∂ .

Ensuite on change de formalisme et on introduit une généralisation fonctorielle
du polynôme d’Alexander, inspirée par [19] et [33], qui va de la catégorie RibG des
cobordismes ruban à la catégorie des modules gradués. On l’appelle le foncteur de Burau,
et on le note par ρ. Dans ce contexte on voit les enchevêtrements ruban plongés dans
B3 × I, le cylindre de dimension 4, avec les composantes de bord dans les intérieurs
des 3-boules B3 × {0} et B3 × {1}. Les objets de la catégorie des cobordismes ruban
sont des suites de signes associées aux composantes de bord des enchevêtrements ruban,
alors que les morphismes sont les enchevêtrements ruban eux-mêmes, vus comme des
morphismes qui vont des composantes de bord de la 3-boule supérieure, aux composantes
de bord dans la 3-boule inférieure. Le foncteur de Burau associe aux séquences de signes
de l’algèbre extérieure des modules gradués M0 et M1. Aux enchevêtrements ruban il
associe une somme d’applications linéaires entre les algèbres extérieures de M0 et M1.
Informellement, étant donné un enchevêtrement ruban dans la 4-boule B4 comme dans
le premier formalisme, on peut séparer ses composantes de bord, en déformant la 4-boule
B4 dans un cylindre en dimension 4, et en envoyant certaines composantes de bord dans
la boule supérieure et les autres dans la boule inférieure. On démontre que le foncteur
de Burau n’est qu’un changement de formalismes pour l’invariant d’Alexander A. Plus
précisément, on montre :

Théorème 3.1.19. Soit (T, ϕ) un enchevêtrement ruban G-colorié, et soit (T̃ , ϕ) une
séparation de (T , ϕ) dans RibG. Il existe un isomorphisme, défini à une unité de Z[G]
près,

∧nH∂ −→ Hom(∧M0,∧M1)

qui envoie A(T, ϕ) dans ⊕k(−1)k(n0−k)ρk(T̃ , ϕ), où n est le nombre de couronnes plongées,
k est la déficience de la présentation du module d’Alexander de (T, ϕ), n0 est le nombre
de composantes de bord de (T̃ , ϕ) qui se trouvent à l’intérieur de la boule B3 × {0}, et
ρk est la kème composante de ρ.
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Quand on considère les tresses ruban comme un cas particulier des enchevêtrements
ruban, on a une autre analogie entre l’invariant d’Alexander et le polynôme d’Alexander,
via l’équivalence avec le foncteur de Burau. On l’énonce ici dans une forme simplifiée.

Proposition 3.1.17. Soit (S, ϕ) une tresse ruban G-coloriée. La somme des applica-
tions linéaires de modules gradués ρ(S, ϕ) coïncide avec les puissances extérieures de la
représentation de Burau.

?

x1

x2

x3

x4
x5

x6
a

e

f

b

c

d

Figure 4: Un diagramme d’enchevêtrement soudé τ .

On peut encore avancer d’un pas en donnant une méthode combinatoire pour calculer
l’invariant A. Cela peut se faire grâce à une relation entre l’invariant A et un invariant
défini par Archibald pour les diagrammes d’enchevêtrement virtuels, qui sont des objets
proches des diagrammes d’enchevêtrements soudés [2]. En effet, on étend cet invariant
diagrammatique aux diagrammes d’enchevêtrements soudés. En particulier, on démontre
que pour calculer l’invariant d’Alexander A(T ) d’un enchevêtrement ruban T associé à un
diagramme d’enchevêtrement soudé τ , il suffit de calculer l’invariant diagrammatique de τ .
Ce dernier se calcule à l’aide de règles simples pour construire une matrice d’Alexander
avec des étiquettes qu’on place sur le diagramme, puis calculer certains mineurs de cette
matrice.

?

c

d

x5

x6

?
?

?

x1

x2

x6

x5

x4

x3

?

x1 x2

x4x3

a b

ef

Figure 5: Un diagramme de circuit Q et deux diagrammes d’enchevêtrement soudés σ
et β.

On peut simplifier encore plus la façon combinatoire de calculer l’invariant d’Alexander.
On le fait en montrant qu’on peut définir des structures d’algèbres de circuit sur l’ensemble
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des enchevêtrements ruban et sur l’ensemble des diagrammes d’enchevêtrements soudés.
Ces structures, inspirées par les algèbres planaires de Jones [44], sont respectées par
l’invariant d’Alexander A pour les enchevêtrements ruban, et par l’invariant diagram-
matique pour les diagrammes d’enchevêtrements soudés. Cela a l’avantage de nous
permettre de faire des calculs locaux sur les diagrammes d’enchevêtrements soudés pour
calculer l’invariant d’Alexander A du enchevêtrement ruban associé. Cela signifie que,
pour calculer l’invariant d’Alexander A(T ), où T est l’enchevêtrement ruban associé au
diagramme d’enchevêtrement soudé τ dans la Figure 4, il suffit de calculer les invariants
diagrammatiques des diagrammes d’enchevêtrements soudés σ et β à droite dans la
Figure 5, puis de les composer avec les règles imposées par le diagramme de circuit Q à
gauche dans la Figure 5.

Un quotient remarquable : les tresses soudées symétriques,
et leur relation avec les entrelacs «fused»

On a mentionné précédemment qu’il y une théorie des représentations des groupes de
tresses de cercles. Kadar, Martin, Rowell, et Wang ont exploré les représentations des
groupes de tresses qui peuvent s’étendre aux groupes de tresses de cercles LBn, mais qui
ne s’étendent pas à une famille de quotients des groupes de tresses de cercles appelés
groupes de tresses de cercles symétriques [angl. :symmetric loop braid groups], notés avec
le symbole SLBn [45]. Si on passe des groupes de tresses de cercles à leur interprétation
diagrammatique, les groupes de tresses soudés (à travers l’isomorphisme décrit dans
le Chapitre 1), on a que ces quotients sont isomorphes aux groupes de tresses soudées
symétriques [angl. : unrestricted virtual braid groups], notés UV Bn. Les groupes de
tresses soudées symétriques ont été introduits par Kauffman et Lambropoulou, en tant
que contreparties tressées des entrelacs «fused» [52]. Les auteurs ont aussi étendu le
travail de Kamada [47] en présentant une version des théorèmes d’Alexander et Markov
pour ces objets [53].

Dans le Chapitre 4 on présente une partie d’un travail en commun avec Valeriy
G. Bardakov et Paolo Bellingeri [16] qui concerne ces objets. Les éléments du groupe
de tresses soudées symétriques sont des classes d’équivalence de diagrammes de tresses
soudées modulo la relation donnée par l’addition d’un mouvement de Reidemeister de
plus, le mouvement interdit (F2)(voir Figure 6). Il a été démontré que tous les nœuds

(F2)(F1)

Figure 6: Mouvements interdits de type (F1) (à la gauche) et mouvements interdits de
type (F2) (à la droite).

«fused» sont équivalents au nœud trivial [48, 67]. De plus, la preuve de Nelson dans [67]
du fait que tout nœud virtuel se dénoue quand on permet les mouvements interdits, peut
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être adapté verbatim aux entrelacs avec plusieurs composantes. On remarque que pour
obtenir son résultat Nelson utilise les diagrammes de Gauss pour les entrelacs «fused».
Alors, tout entrelacs «fused» est «fused» isotope à un diagramme d’entrelacs qui n’a que
des croisements (classiques ou virtuels) entre composantes différentes. D’autre part, il
existe des entrelacs «fused» non-triviaux, et leur classification n’est pas complètement
triviale [32]. En particulier, dans [31], Fish et Keyman démontrent que les entrelacs «fused»
qui n’ont que des croisements classiques sont caractérisés par les nombres d’enlacements
classiques des composantes. Cependant, ce résultat ne se généralise pas aux entrelacs qui
ont aussi des croisements virtuels. En effet, il est facile de trouver des entrelacs «fused»
non-équivalents qui ont les mêmes nombres d’enlacements classiques (voir Remarque 4.2.6).
Ce fait répond à une question de [31, Remark 1], où Fish et Keyman demandent si les
nombres d’enlacements classiques des composantes d’un entrelacs «fused» composent un
invariant complet pour les entrelacs «fused». On décrit les tresses soudées symétriques et
on compare des invariants plus ou moins connus pour les entrelacs «fused».

Le résultat principal de cette partie donne la description de la structure des groupes
des tresses soudées symétriqes UV Bn, en répondant à une remarque de Kauffman et
Lambropoulou [53] à propos de la non trivialité de ces groupes qui méritent donc d’être
étudiés. On reporte ici le résultat.

Théorème 4.1.4. Pour n ≥ 1, soit Xn un groupe d’Artin à angle droit engendré par xi,j ,
pour 1 ≤ i 6= j ≤ n, où tous les générateurs commutent à part pour les paires xi,j et
xj,i pour 1 ≤ i 6= j ≤ n. Le groupe UV Bn est isomorphe à Xn o Sn où Sn agit par
permutation sur les indices des générateurs de Xn.

On propose aussi une application du Théorème 4.1.4 qui montre que tout entrelacs
«fused» admet comme représentant la clôture d’une tresse soudée symétrique pure :

Théorème 4.2.3. Tout entrelacs «fused» est «fused» isotope à la clôture d’une tresse
soudée symétrique pure.

Ce résultat améliore la version du théorème d’Alexander donnée par Kauffman et
Lambropoulou, parce qu’elle implique que : étant donné un entrelacs «fused», on peut
trouver une tresse soudée symétrique avec clôture isotope à l’entrelacs «fused», et qui a
le même nombre de brins que le nombre de composantes de l’entrelacs «fused». Comme
corollaire on en déduit une preuve simple du théorème principale de [31], qui donne une
classification des entrelacs «fused» dotés uniquement de croisements classiques.

Pour n 6= 1, on définit aussi une représentation nilpotente pour UV Bn, qui est une
représentation dans Aut(Nn), le groupe des automorphismes du groupe libre nilpotent
de pas 2 et rang n (Proposition 4.3.4). On remarque que cette représentation, une fois
restreinte au sous-groupe pur de UV Bn, coïncide avec l’application d’abélianisation.

À l’aide de cette représentation on définit une notion de groupe d’entrelacs «fused»,
et on vérifie que c’est un invariant pour les entrelacs «fused». On passe ensuite à
comparer cet invariant avec les nombres d’enlacement virtuels. On termine ce chapitre
en considérant une famille de quotients des groupes de tresses soudées par rapport à une
autre relation, différente de (F2). On obtient les groupes des tresses soudées plates notés
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avec FWBn. On utilise les techniques déjà utilisées dans la preuve du Théorème 4.1.4
pour en décrire la structure.

Proposition 4.4.2. Soit n ≥ 1, et Zn(n−1)/2 le groupe abélien libre de rang n(n− 1)/2.
On note par xi,j , pour 1 ≤ i 6= j ≤ n un système de générateurs pour Zn(n−1)/2. Le
groupe FWBn est isomorphe à Zn(n−1)/2oSn, où Sn agit par permutation sur les indices
des générateurs de Zn(n−1)/2 (en posant xj,i := x−1

i,j , pour 1 ≤ i < j ≤ n).





Introduction

Braid groups were introduced by Hurwitz [42] in 1891 as fundamental groups of configura-
tion spaces of n points in the complex plane. However, they owe their name to Artin [3]:
he considered them in terms of braid automorphisms of Fn, the free group of rank n, but
also in geometric terms. The geometric interpretation certainly is the most intuitive and
best known, in particular because of its use in knot theory. Then, Magnus [60] considered
braid groups from the point of view of mapping classes, while Markov [62] introduced
these groups from a purely group-theoretic point of view. All these points of view have
long been known to be equivalent [84]. We can then say that braid groups are ubiquitous
objects. Any different definition carries a possible generalization; for instance, we can
see braid groups as particular case of Artin-Tits groups, Garside groups, mapping class
groups and surface braid groups. Few of these generalizations share with braid groups
their principal property: a large family of different equivalent definitions.

Loop braid groups are a remarkable exception to this fact. Their study has been
widely developed during the last twenty years. The first curious fact about these groups
is that they appear in the literature with a large number of different names. We choose
adopt the terminology intro- duced by Baez, Wise, and Crans [8], because their definition
of loop braid groups in terms of mapping classes fits particularly well the purpose of this
thesis. We will soon give an idea of it; however, let us first remark that this is not the
first name and interpretation of loop braids that have appeared in the course of time.

The concept that stands behind the genesis of loop braids is the one of motions of a
compact subspace N in a manifold M : these can be understood as the different ways
of continuously moving N in M so that at the end of the motion N has returned in
its starting position. The first step towards motions is due to Fox and Neuwirth [34].
In 1962 they give a new proof of the standard presentation of the Artin braid groups,
in terms of fundamental groups of the configuration spaces of n unordered points in
the plane, considering these groups as groups of continuous movements of n points on
a plane. The same year Dahm, in his Ph.D thesis, generalizes this concept to general
manifolds. He applies this construction to a collection of n unknotted, unlinked circles in
the 3-dimensional space: these motions represent the first appearance of the loop braid
groups, and his results are published and extended by Goldsmith [37]. In more modern
terms, we would speak of mapping class groups, rather than groups of motions. Indeed,
we can give an informal definition of our protagonist in the following way.

Informal definition. Let n be greater or equal to 1. The loop braid group on n compo-
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nents is the mapping class group of n unknotted, unlinked circles in the 3-dimensional
space.

A formal definition will be given in Chapter 1 (Definition 1.1.5). In 1986 McCool [64]
considers loop braids as basis-conjugating automorphisms and in 1996 Savushkina [73]
considers them as permutation conjugacy automorphisms of Fn. Loop braids are also
known in the literature as welded braids, as defined by Fenn, Rimány and Rourke [30].
This may be the most widely known of the notations, and comes with the interpretation
in terms of diagrams made of monotone paths in the 2-dimensional space, similar to
usual braid diagrams. More recently, Brendle and Hatcher [21] propose an interpretation
of these groups as the fundamental groups of the configuration spaces of n unlinked
Euclidean circles. Moreover, one could give a topological interpretation of loop braids:
roughly speaking, they can be seen as immersions in the 4-dimensional space of n disjoint
copies of the oriented annulus S1 × I with fixed boundary components. Loop braids
can also be encoded as Gauss braid diagrams: this is a combinatorial interpretation,
implicitly used in [10]. This interpretation can also be seen as a particular case of the
objects considered in [5], and represents a point of view that allows us to consider loop
braid groups as quotients of virtual braid groups. Chapter 1 will be devoted to collecting
these formalisms and proving their equivalence.

In Chapter 1 we also consider extended loop braid groups, a generalization of loop
braid groups. In the literature these groups have been less studied, but, as it will appear
throughout this work, they are even more interesting, and arising in a more natural way as
analogues of classical braids, when considering corresponding objects in the 4-dimensional
space.

In addition to appearing in so many contexts, loop braid groups are interesting object
of study on their own. For instance, several computations and conjectures about the
cohomology algebras of the pure loop braid groups, certain subgroups of the loop braid
groups, have appeared in the literature. Investigating the properties of these algebras,
for example in relation with resonance varieties and lower central series ranks, allows
us to compare loop braid groups to braid groups and to other generalizations of braid
groups. In Section 1.7 we give references for this topic.

In this thesis we will particularly focus on topological aspects and applications of
loop braid groups. From the topological point of view, loop braid groups can be seen
as the braid counterpart of a particular kind of knotted objects: ribbon torus-links. We
define them in Chapter 2 (Definition 2.1.3). For the moment let us just give an idea.

Informal definition. For n ≥ 1, a ribbon torus-link with n components is the embedding
of a disjoint union of n oriented tori S1 × S1 in the 4-dimensional space.

We recall that in the theory of classical braids and links, Alexander’s theorem allows
us to represent every link as the closure of a braid. In addition Markov’s theorem states
that two braids (possibly with different numbers of strings) have isotopic closures in
the 3-dimensional space if and only if one can be obtained from the other by a finite
number of Markov moves, called conjugation and stabilization. This theorem allows us
to describe all braids with isotopic closures as links in the 3-dimensional space. These
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two theorems allow us to recover certain link invariants as Markov traces, i.e., traces
on the group algebras of braid groups. For the diagrammatical interpretation of loop
braids given in [30] we dispose of theorems of Alexander’s and Markov’s type [47], but
a topological version is still missing. Inspired by this, in Chapter 2, we do a first step
towards a topological Markov’s theorem for loop braids and ribbon torus-links.

Another application can be found in Lie theory, for example in Bar Natan’s work [9–11].
It involves a third kind of knotted objects that we derive from loop braids: ribbon tangles,
which Bar Natan considers in the interpretation as welded tangles. This is the analogous
notion of tangles in terms of annuli and tori embedded in the 4-dimensional space. The
formal definition of these objects is given in Chapter 3 (Definition 3.1.1); for the moment
we propose an informal version.

Informal definition. A ribbon tangle is an embedding of a disjoint union of oriented
tori S1 × S1, and oriented annuli S1 × I in the 4-dimensional space.

We will discuss ribbon tangles in Chapter 3 in order to define a generalization of the
Alexander polynomial.

In addition, we shall not forget the theory of representations of loop braid groups.
Burau representations extend trivially to loop braid groups using Magnus expansion and
Fox derivatives [14], but it is still unknown if loop braid groups are linear. Some new
results on local representations of loop braid groups, rising as extensions of representations
of braid groups, can be found in [45] and [22]. However the study of finite dimensional
quotients of algebras of loop braid groups is yet to be found in the literature. In [45]
the authors show interest also in certain remarkable quotients of loop braid groups: the
symmetric loop braid groups (also known as unrestricted virtual braid groups [53]). We
will discuss the structure of these groups in Chapter 4 and give some applications to
fused links.

In the following we propose an overview of each chapter.

Loop Braid Groups
Several parallel formulations and notations are being used for loop braid groups, by re-
searchers working in different fields. Although the equivalence of some of the formulations
has already been proved or at least stated in the literature, for example in [10, Section 2,
Theorem 2.6], we did not find the explicit relationships for all of them. The purpose of
this chapter is to give a collection of these formalisms. Moreover we propose a complete
proof of the equivalence of these formulations. This provides a clear and well-established
theoretical setting for loop braid groups, as the one that we have in the case of braid
groups.

In the first part of Chapter 1 we give the definition of the loop braid groups, denoted
by LBn, as the groups of isotopy classes of self-homeomorphisms of the 3-ball B3 that:
• fix pointwise the boundary of B3;
• fix globally a collection of disjoint, unknotted, oriented, unlinked circles in the

interior of B3;
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• preserve the orientations both on B3 and on the collection of circles.
We also define the extended loop braid groups, denoted by LBext

n , as the groups of isotopy
classes of such homeomorphisms without the condition of preserving the orientation on
the collection of circles.

Then we introduce some configuration spaces of circles in the 3-ball B3. The first ones
are the spaces of configurations of n Euclidean, unordered, disjoint, unlinked circles in a
3-ball B3, which are denoted by Rn. The second ones are the spaces of configurations
of a collection of circles with the above characteristics, with the added property of
the circles lying on parallel planes. These configuration spaces are denoted by URn.
Their fundamental groups are called respectively the ring groups and the untwisted
ring groups and are respectively denoted by Rn and URn. The first main result of this
chapter establishes that the ring groups Rn are isomorphic to the extended loop braid
groups LBext

n . We state it here in a simplified version.

Theorem 1.2.11. For n ≥ 1, there is a natural isomorphism between the ring group Rn
and the extended loop braid group LBext

n .

This theorem allows us to prove the analogous result for the unordered version of
these groups, and is a first motivation to consider extended loop braid groups.

Proposition 1.2.12. For n ≥ 1, there is a natural isomorphism between the untwisted
ring group URn and the loop braid group LBn.

These results provide a second interpretation of loop braids. In addition, Brendle and
Hatcher give presentations for the ring groups Rn and for the untwisted ring groups URn.
The correspondence of (untwisted) ring groups and (extended) loop braid groups allows
us to state the following:

Corollary 1.2.15, (see also [21]). The group LBn admits the presentation given by
generators {σi, ρi | i = 1, . . . , n− 1}, subject to relations:



σiσj = σjσi for |i− j|> 1
σiσi+1σi = σi+1σiσi+1 for i = 1, . . . , n− 2
ρiρj = ρjρi for |i− j|> 1
ρiρi+1ρi = ρi+1ρiρi+1 for i = 1, . . . , n− 2
ρ2
i = 1 for i = 1, . . . , n− 1
ρiσj = σjρi for |i− j|> 1
ρi+1ρiσi+1 = σiρi+1ρi for i = 1, . . . , n− 2
σi+1σiρi+1 = ρiσi+1σi for i = 1, . . . , n− 2.

Corollary 1.2.17, (see also [21]). The group LBext
n admits the presentation given by
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generators {σi, ρi | i = 1, . . . , n− 1}, and {τi | i = 1, . . . , n}, subject to relations:



σiσj = σjσi for |i− j|> 1
σiσi+1σi = σi+1σiσi+1 for i = 1, . . . , n− 2
ρiρj = ρjρi for |i− j|> 1
ρiρi+1ρi = ρi+1ρiρi+1 for i = 1, . . . , n− 2
ρ2
i = 1 for i = 1, . . . , n− 1
ρiσj = σjρi for |i− j|> 1
ρi+1ρiσi+1 = σiρi+1ρi for i = 1, . . . , n− 2
σi+1σiρi+1 = ρiσi+1σi for i = 1, . . . , n− 2
τiτj = τjτi for i 6= j

τ2
i = 1 for i = 1, . . . , n
σiτj = τjσi for |i− j|> 1
ρiτj = τjρi for |i− j|> 1
τiρi = ρiτi+1 for i = 1, . . . , n− 1
τiσi = σiτi+1 for i = 1, . . . , n− 1
τi+1σi = ρiσ

−1
i ρiτi for i = 1, . . . , n− 1.

In Figure 7 we show the interpretation of the generators of these presentations as
elements of the untwisted ring groups URn and the ring groups Rn.

i i+ 1 i i+ 1 i

σi ρi τi

Figure 7: Elements σi, ρi and τi.

We move on to an interpretation of loop braids as automorphisms of Fn, the free group
of rank n. We introduce subgroups of permutation-conjugacy automorphisms PC∗n of Fn,
and recall a result of Dahm, published by Goldsmith, stating that the extended loop braid
groups are isomorphic to the groups PC∗n [37]. This result also offers a characterization
of loop braids as automorphisms similar to Artin’s characterization of braids. At this
point we also give a presentation for pure subgroups of extended loop braid groups LBext

n ,
that we denote by PLBext

n .

Proposition 1.3.8. For n ≥ 1, the group PLBext
n admits the presentation given by
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generators {αij | 1 ≤ i 6= j ≤ n} and {τi | i = 1, . . . n} subject to relations:

αijαkl = αklαij

αijαkj = αkjαij

(αijαkj)αik = αik(αijαkj)
τ2
i = 1
τiαij = αijτi

τiαjk = αjkτi

τiαjiτi = α−1
ji

where distinct letters stand for distinct indices.

αi,j

i i+ 1 j

Figure 8: Elements αij .

In Figure 8 we show the interpretation of the generators of PLBext
n as elements of

the ring group Rn.
Next we pass to a more topological viewpoint on loop braids, as particular classes of

braided annuli in a 4-dimensional ball B4, that we call (extended) ribbon braids. For n ≥ 1,
we denote the group of ribbon braids by rBn, and the group of extended ribbon braids
by rBext

n . The main results of this part establish isomorphisms between (extended)
ribbon braid groups and (extended) loop braid groups:

Theorem 1.4.11 and Theorem 1.4.18. For n ≥ 1, there are isomorphisms between
the group of ribbon braids rBn and the loop braid group LBn, and between their extended
versions rBext

n and LBext
n .

In the context of ribbon braids, using the preceding isomorphisms, we are also able
to prove that the isotopy notion we chose for ribbon braids coincides with the notion
of ambient isotopy of the 4-ball in which ribbon braids are immersed. In particular, we
have the following result.

Theorem 1.4.5. Every isotopy of a geometric ribbon braid in B3 × I extends to an
isotopy of B3 × I in itself constant on the boundary.

We also describe two kind of representations in dimension 3 and 2 of loop braids. We
introduce broken surfaces as well as welded diagrams. Broken surfaces are projections in
general position of loop braids in the 3-dimensional space. See Figure 9 for a representation



21

Figure 9: Broken surfaces.

of equivalent broken surfaces. Welded diagrams are 2-dimensional diagrams, introduced
in [30].

Finally we discuss a combinatorial description of loop braids through Gauss diagrams.
These are diagrams, in the spirit of [69], encoding information about a knotted object.
We use Cisneros’ results on Gauss diagrams for virtual braids from [25] to prove an
isomorphism between a quotient of Gauss diagrams and welded braid diagrams.

To close this overview on loop braid groups, we give a brief exposition of the history
of these objects, and some other references to find about topological applications and
what is known about a representation theory for these groups.

A topological application: towards a topological Markov’s
theorem for loop braids

In Chapter 2 we take the first steps in adapting some classical results of knot theory to
ribbon torus-links, the knotted counterpart of loop braids. For this reason we consider
loop braids as ribbon braids (Theorem 1.4.11). In the classical case, Alexander’s theorem
states that every link can be represented as the closure of a braid. This result has already
been proved for welded braid diagrams and their knotted counterpart by Kamada [47].
The isomorphism between welded braid diagrams and ribbon braids described in Chapter 1
guarantees that Alexander’s theorem still holds when passing to ribbon braids and ribbon
torus-links.

Markov’s theorem presents more difficulties, because of the lack of a one-to-one
correspondence between ribbon torus-links and welded link diagrams. In classical braid
and knot theory this theorem states that two braids (possibly with different numbers of
strings) have isotopic closures in R3 if and only if one can be obtained from the other by
a finite number of Markov moves, called conjugation and stabilization. This theorem
allows us to describe all braids with isotopic closures as links in R3. Concerning loop
braids seen as welded braid diagrams, a combinatorial proof also for this theorem can be
found in [47]. We have been able to prove a version of Markov’s theorem for loop braids
with closure in a solid torus in R4, which we state here. We recall that we denote by rBn
the groups of ribbon braids, and by rBext

n the groups of extended ribbon braids.
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Theorem 2.3.1. Let n ≥ 1 and β, β′ ∈ rBn a pair of ribbon braids. The closed ribbon
braids β̂, β̂′ are isotopic in B3 × S1 if and only if β and β′ are conjugate in rBext

n .

We remark that to have the same kind of statement that we have in the classical case,
one shall pass to the extended groups, in which case we have:

Theorem 2.3.3. Let n ≥ 1 and β, β′ ∈ rBext
n a pair of ribbon braids. The closed

extended ribbon braids β̂, β̂′ are isotopic in B3× S1 if and only if β and β′ are conjugate
as elements in rBext

n .

To extend the result in the 4-dimensional space, and not only in the solid torus, we
should prove the invariance of the isotopy class of a closed (extended) ribbon braid under
the operation known as stabilisation on (extended) ribbon braids. The approach we
followed for conjugation does not allow us to do this without passing to a diagrammatical
interpretation. This is why in future we plan to follow other approaches.

Generalizing the Alexander polynomial: Alexander invari-
ants for ribbon tangles
In Chapter 3 we discuss an expanded version of a joint work with Vincent Florens [29].
Here we consider the third kind of knotted objects that we discuss in this thesis: ribbon
tangles. This work concerns the introduction of an invariant of Alexander type for ribbon
tangles, where, when we say “of Alexander type”, we mean that it shares the construction
technique of the Alexander polynomial in classical knot theory. We take a ribbon tangle
T in the 4-ball B4. The boundary components of the annuli of T are the components of
a trivial link L in S3, the boundary of B4. We fix a free abelian group G, and we say
that we G-color the ribbon tangle T when we chose a group homomorphism ϕ from the
first homology group of the complement of T in B4 to G. We construct an Alexander
invariant A(T ) of the colored ribbon tangle T as an element of the exterior algebra of the
homology Z[G]-module Hϕ

1 (S3 \ L), twisted by the morphism induced by ϕ. We denote
this module by H∂ .

Then we change formalism and we introduce a functorial generalization of the Alexan-
der polynomial, inspired by [19] and [33], which goes from the category RibG of ribbon
cobordisms to the category of graded modules. We call it the Burau functor, and denote it
by ρ. In this context we see ribbon tangles embedded in a 4-dimensional cylinder B3 × I,
with boundary components only in the interiors of the 3-balls B3 × {0} and B3 × {1}.
The objects of the category of ribbon cobordisms are sequences of signs associated to
the boundary components of ribbon tangles, while the morphisms are the ribbon tangles
themselves, seen as morphisms from the boundary components in the upper ball to the
boundary components in the lower ball. The Burau functor associates to the sequences
of signs the exterior algebras of some graded modules M0 and M1. To ribbon tangles
it associates a sum of linear mappings between the exterior algebras of M0 and M1.
Informally, given a ribbon tangle in the 4-ball B4 as in the first formalism, we can split
it by squeezing the 4-ball B4 into the 4-dimensional cylinder, sending some boundary
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components to the upper ball, and others to the lower ball. We prove that the Burau
functor is indeed just a change of formalism for the Alexander invariant A. More precisely,
we show:

Theorem 3.1.19. Let (T, ϕ) be a G-colored ribbon tangle, and let (T̃ , ϕ) be a splitting
of (T , ϕ) in RibG. There is an isomorphism, defined up to a unit of Z[G],

∧nH∂ −→ Hom(∧M0,∧M1)

sending A(T, ϕ) to ⊕k(−1)k(n0−k)ρk(T̃ , ϕ), where n is the number of embedded annuli, k
is the deficiency of the presentation of the Alexander module of (T, ϕ), n0 is the number
of boundary components of (T̃ , ϕ) that lie in the interior of the ball B3 × {0}, and ρk is
the k-component of ρ.

When considering ribbon braids as a particular case of ribbon tangles, we have one
more analogy between the Alexander invariant and the the Alexander polynomial, passing
through the equivalence with the Burau functor. We state it here in a simplified form.

Proposition 3.1.17. For any G-colored ribbon braid (S, ϕ), the sum of linear ap-
plications of graded modules ρ(S, ϕ) coincides with the exterior powers of the Burau
representation.

?
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Figure 10: A welded tangle diagram τ .

We make a step further giving a combinatorial way of computing the invariant A, by
making a relation with a diagrammatical invariant defined by Archibald on virtual tangle
diagrams, which are close relatives to welded tangle diagrams [2]. In fact, we extend
this diagrammatical invariant to welded tangle diagrams. In particular, we prove that
in order to compute the Alexander invariant A(T ) of a ribbon tangle T associated to a
welded tangle diagram τ , it is enough to compute the diagrammatical invariant of τ . The
latter invariant is computed by following simple rules for building an Alexander matrix
using the labels of the diagram, and then computing certain minors of the matrix.

Finally we simplify this combinatorial way of computing by proving that we can
define circuit algebras structures both on ribbon tangles and on welded tangle diagrams.
These structures, inspired by Jones’ planar algebras [44], are respected by the Alexander
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Figure 11: A circuit diagram Q and two welded tangle diagrams σ and β.

invariant A on ribbon tangles and by the diagrammatical invariant on welded tangle
diagrams. This brings the advantage of allowing local computations on a welded tangle
diagram to compute the Alexander invariant A of the associated ribbon tangle. This
means that, to compute the Alexander invariant A(T ), where T is the ribbon tangle
associated to the welded tangle diagram τ in Figure 10, it is enough to compute the
diagrammatical invariants of the welded tangle diagrams σ and β on the right hand side
of Figure 11, and then compose them with the rules given by the circuit diagram Q on
the left hand side of Figure 11.

A remarkable quotient: unrestricted virtual braids - and
their relation to fused links

We mentioned earlier that there is a theory of representations of loop braid groups:
Kadar, Martin, Rowell, and Wang have explored representations of braid groups that can
be extended to loop braid groups LBn, but do not extend to a family of quotients of the
loop braid groups called symmetric loop braid groups, and denoted by SLBn [45]. If we
pass from loop braid groups to their diagrammatic interpretation, welded braid groups
(through the isomorphism described in Chapter 1), we have that these quotients are
isomorphic to unrestricted virtual braids groups, that we denote by UV Bn. Unrestricted
virtual braid groups have been introduced by Kauffman and Lambropoulou, as braided
counterparts of fused links [52]. The authors also extended Kamada’s work [47] by
presenting a version of Alexander’s and Markov’s theorems for these objects [53].

In Chapter 4 we present parts of a work with Valeriy G. Bardakov and Paolo
Bellingeri [16] concerning these objects. The elements of the group of unrestricted virtual
braids are equivalence classes of welded braid diagrams under the relation given by
the addition of one more kind of Reidemeister moves, the forbidden moves (F2) (see
Figure 12).

It has been shown that all fused knots are equivalent to the unknot [48,67]. Moreover,
Nelson’s proof in [67] of the fact that every virtual knot unknots when allowing forbidden
moves, can be adapted verbatim to links with several components. We remark that to
achieve this result Nelson passes to Gauss diagrams for fused knots. So, every fused link
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(F2)(F1)

Figure 12: Forbidden moves of type (F1) (on the left) and forbidden moves of type (F2)
(on the right).

diagram is fused isotopic to a link diagram where the only crossings (classical or virtual)
are the ones involving different components.

On the other hand, there are non-trivial fused links, and their classification is not
(completely) trivial [32]. In particular, in [31], Fish and Keyman prove that fused links
that have only classical crossings are characterized by the (classical) linking numbers of
their components. However, this result does not generalize to links with virtual crossings.
In fact it is easy to find non-equivalent fused links with the same (classical) linking
numbers (see Remark 4.2.6). This answers a question from [31, Remark 1], where Fish
and Keyman ask whether the classical linking numbers of the components of a fused
link are a complete invariant for fused links. We describe unrestricted virtual braids and
compare more or less known invariants for fused links.

The main result that allows us to do so gives a description of the structure of the
groups of unrestricted virtual braids UV Bn, addressing a remark of Kauffman and
Lambropoulou [53] about these groups not being trivial and deserving to be studied. We
report here our main result.

Theorem 4.1.4. For n ≥ 1, let Xn be the right-angled Artin group generated by xi,j ,
for 1 ≤ i 6= j ≤ n, where all generators commute except the pairs xi,j and xj,i for 1 ≤
i 6= j ≤ n. The group UV Bn is isomorphic to Xn o Sn where Sn acts by permutation on
the indices of generators of Xn.

We provide an application of Theorem 4.1.7 showing that any fused link admits as a
representative the closure of a pure unrestricted virtual braid:

Theorem 4.2.3. Any fused link is fused isotopic to the closure of an unrestricted virtual
pure braid.

This result improves Kauffman and Lambropoulou’s version of Alexander’s theorem,
because it implies that: given a fused link, we can find an unrestricted virtual braid
whose closure is isotopic to the fused link, and which has the same number of strands as
the number of components of the fused link. As a corollary we deduce an easy proof of
the main theorem of [31], which gives a classification of fused links with only classical
crossings.

We also construct a nilpotent representation for UV Bn, which is a representation
in Aut(Nn), the group of automorphisms of the free 2-step nilpotent group of rank n
(Proposition 4.3.4). We remark that this representation, when restricted to the pure
subgroups of UV Bn, coincides with the abelianization map.
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Using this representation we define a notion of group of fused links, and prove that
this is an invariant for fused links. We proceed then to compare this invariant to the
virtual linking numbers. We close this chapter by considering a family of quotients of the
welded braid groups by another relation, different from (F2). We obtain the groups of
flat welded braids, denoted by FWBn. Using the techniques employed in the proof of
Theorem 4.1.4, we are able to describe the structure of these groups:

Proposition 4.4.2. For n ≥, let Zn(n−1)/2 be the free abelian group of rank n(n− 1)/2.
Let us denote by xi,j , for 1 ≤ i 6= j ≤ n a set of generators of Zn(n−1)/2. The group
FWBn is isomorphic to Zn(n−1)/2 o Sn, where Sn acts by permutation on the indices of
generators of Zn(n−1)/2 (setting xj,i := x−1

i,j , for 1 ≤ i < j ≤ n).



Chapter 1

Loop Braid Groups

In this chapter we introduce several interpretations of loop braid groups, and provide
a complete proof of the equivalence of these formulations. This provides a clear and
well-established theoretical setting, as the one we have in the case of braid groups Bn.
We will use the equivalence of these formulations in Chapter 2 to give some topological
applications. Although the equivalence of some of the formulations has already been
proved or at least stated in the literature, for example in [10, Section 2, Theorem 2.6],
we did not find the explicit isomorphisms between all of them.

A second reason for working on the equivalence of these definitions is unifying the
several parallel notations that are being used for loop braid groups, by researchers working
in different fields.

The third purpose of this section is to introduce extended loop braid groups LBext
n , a

generalization of loop braid groups. In the literature these groups have been less studied,
but, as it will appear throughout Chapters 1 and 2, they are even more interesting and
rising in a more natural way than the groups LBn. For this reason we develop in a
parallel fashion:

a) the theory of loop braids, for the sake of unifying and completing existent literature;

b) the theory of extended loop braids, because they appear to be the most natural
analogue of classical braids, when considering corresponding objects in the 4-
dimensional space.

This Chapter is organized as follows. In Section 1.1 we give a first definition of loop
braid groups in terms of mapping classes.

In Section 1.2 we introduce some configuration spaces of circles in the 3-ball B3, and
show that their fundamental groups are isomorphic to LBext

n and to LBn (Theorem 1.2.11
and Proposition 1.2.12). This provides a second interpretation of loop braids. We also
recall the presentations given in [21] for LBn and LBext

n , and for the pure subgroups of
the first family of groups.

In Section 1.3 we introduce subgroups of permutation-conjugacy automorphisms PC∗n
of the group of automorphisms of Fn, the free group of rank n, and recall a result of
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Dahm [27], published by Goldsmith [37], stating that extended loop braid groups are
isomorphic to PC∗n (Theorem 1.3.1). This gives us a third interpretation of LBext

n and
LBn, in terms of automorphisms of Fn, and also a characterization of loop braids as
automorphisms similar to Artin’s characterization of braids. At this point we also give a
presentation for the pure subgroups of the groups LBext

n (Proposition 1.3.8).
Section 1.4 brings a more topological viewpoint on loop braids, as particular classes

of braided surfaces in a 4-dimensional ball B4 that we call (extended) ribbon braids.
We establish an isomorphism between the groups of (extended) ribbon braids and
the (extended) loop braid groups (Theorems 1.4.11 and 1.4.18). This is the fourth
interpretation of loop braids that we consider. Sections 1.5 is devoted to representations
in dimension 3 and 2 of loop braids. Here we introduce broken surfaces as well as
welded diagrams. Broken surfaces are projections in general position of loop braids in the
3-dimensional space. Welded diagrams are 2-dimensional diagrams, introduced in [30]:
passing through broken surfaces and using results of [21] we introduce an isomorphism
between the groups of these diagrams and the loop braid groups, seen as groups of ribbon
braids (Theorem 1.5.9).

In Section 1.6 we discuss a combinatorial description of loop braids through Gauss
diagrams. These are diagrams, in the spirit of [69], encoding information about a knotted
object. This point of view allows us to see loop braid groups as quotients of the groups of
virtual braids. This is done using the isomorphisms between loop braid groups and welded
braid groups. Though Gauss diagrams has already been used as an equivalent formulation
of welded objects (see for example [7,10,20]), to formally prove the isomorphism between
the groups of welded Gauss diagrams and welded braid diagrams we need to use results
from [25] on virtual braids.

Finally Section 1.7 contains a brief history of these objects, and some other references
to find about topological applications and what is known about a representation theory
for loop braid groups.

1.1 Mapping class groups of a trivial link of unknotted
circles in B3

In this section we introduce the mapping class group of a 3-manifold with respect to a
submanifold. Then we present a first definition for loop braid groups in terms of mapping
classes of a 3-ball with n circles that are left setwise invariant in its interior. We also
introduce three relatives of these groups. To introduce the main tools we follow [37]
and [51].

Let M be a compact, connected, orientable 3-manifold, possibly with boundary, and
N an orientable submanifold contained in the interior of M , not necessarily connected or
non-empty. A self-homeomorphism of the pair of manifolds (M,N) is an homeomorphism
f :M →M that fixes ∂M pointwise, preserves orientation on M , and globally fixes N .
Every self-homeomorphism of (M,N) induces a permutation on the connected components
of N in the natural way.

We denote by Homeo(M ;N) the group of self-homeomorphisms of (M,N) that
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preserve orientation on both M and N . The multiplication in Homeo(M ;N) is given by
the usual composition. We denote by Homeo(M) the group Homeo(M ; ∅). Moreover we
denote by PHomeo(M ;N) the subgroup of self-homeomorphisms of (M,N) that send
each connected component of N to itself.

We remark that Homeo(M ;N) is a topological group when equipped with the compact-
open topology. The embedding of Homeo(M ;N) into Homeo(M) makes Homeo(M ;N)
a closed subgroup of the topological group Homeo(M).

Let I be the unit interval. Two self-homeomorphisms f0, f1 of (M,N) are said to be
isotopic if they can be extended to a family {ft}t∈I of self-homeomorphisms of (M,N)
such that the mapM×I →M , sending (x, t)→ ft(x), is continuous. The isotopy relation
is an equivalence relation and isotopic self-isomorphisms induce the same permutation
on the connected components of N .
Definition 1.1.1. The mapping class group of a 3-manifold M with respect to a subman-
ifold N , denoted by MCG(M,N), is the group of isotopy classes of self-homeomorphisms
of Homeo(M ;N), with multiplication determined by composition. We denote by MCG(M)
the mapping class group MCG(M, ∅).

The pure mapping class group of a 3-manifold M with respect to a submanifold N ,
denoted by PMCG(M,N), is the subgroup of elements of MCG(M,N) that send each
connected component of N to itself.
Remark 1.1.2. It is known ([55]) that a map f from a topological spaceX to Homeo(M ;N)
is continuous if and only if the map X ×M →M sending (x, y) 7→ f(x)(y) is continuous.
Taking X equal to the unit interval I, we have that two self-homeomorphisms are isotopic
if and only if they are connected by a path in Homeo(M ;N). Therefore MCG(M,N) =
π0(Homeo(M ;N)). In a similar way we have that PMCG(M,N) = π0(PHomeo(M ;N)).

We consider now a bigger class of self-homomorphisms of the pair (M,N), removing the
condition of preserving orientation onN . We add an “∗” to the notation of the submanifold
to indicate this. We denote by Homeo(M ;N∗) the group of self-homeomorphisms
of (M,N). The multiplication in Homeo(M ;N∗) is given by the usual composition.
Also this group is a closed subgroup of the topological group Homeo(M). The isotopy
relation considered remains the same. We denote by PHomeo(M ;N∗) the subgroup of
Homeo(M ;N∗) of self-homeomorphisms that send each connected component of N to
itself.
Definition 1.1.3. The extended mapping class group of a 3-manifold M with respect
to a submanifold N , denoted by MCG(M,N∗), is the group of isotopy classes of self-
homeomorphisms of Homeo(M ;N∗), with multiplication determined by composition.

The pure extended mapping class group of a 3-manifold M with respect to a submani-
fold N , denoted by PMCG(M,N∗), is the subgroup of MCG(M,N∗) of elements that
send each connected component of N to itself.

As in Remark 1.1.2, we have an equivalent definition of the groups MCG(M,N∗)
and PMCG(M,N∗) in terms of connected components of subgroups of Homeo(M).
We have that MCG(M,N) can be defined as π0(Homeo(M ;N∗)), and PMCG(M,N∗)
as π0(PHomeo(M ;N∗)).
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Example 1.1.4. Fix n ≥ 1. Let us take M to be the disk D2, and N to be a set
of n distinct points P = {p1, . . . , pn} in the interior of D2. In this case we have that
PMCG(D2, P ) and PMCG(D2, P ∗) are isomorphic, since there is no choice on the
orientation of a point. For the same reason MCG(D2, P ) is isomorphic to MCG(D2, P ∗).
Then the group PMCG(D2, P ) is isomorphic to Pn, the pure braid group on n strands,
and MCG(D2, P ) is isomorphic to Bn, the braid group on n strands, as defined, for
example, in [38] or [51, Chapter 1.6].

We conclude this section with the definition of the main objects we are interested in:
the loop braid group, the extended loop braid group, and their respective pure subgroups.

Definition 1.1.5. Let us fix n ≥ 1, and let C = C1t· · ·tCn be a collection of n disjoint,
unknotted, oriented circles, that form a trivial link of n components in R3. The exact
position of C is irrelevant because of [37, Corollary 3.8]. So in the following we assume that
C is contained in the xy-plane in the 3-ball B3. The loop braid group on n components,
denoted by LBn, is the mapping class group MCG(B3, C). The pure loop braid group on
n components, denoted by PLBn, is the pure mapping class group PMCG(B3, C). In a
similar way the extended loop braid group, denoted by LBext

n , is the extended mapping
class group MCG(B3, C∗). The pure extended loop braid group, denoted by PLBext

n , is
the pure extended mapping class group PMCG(B3, C∗).

This definition appears in [37], in terms of motion groups, which we have reformulated
in terms of mapping class groups. We note in particular that the groups LBext

n coincide
with the motion groups of a trivial unlink defined in [37]. However the nomenclature
“loop braid groups” is due to Baez, Crans, and Wise [8].

1.2 The configuration spaces of a trivial link of unknotted
circles

The second interpretation of loop braid groups LBn that we give is in terms of configura-
tion spaces, and has been introduced in [21] . We recall some notions and results about
configuration space. Then we exhibit the isomorphism from the fundamental groups of
certain configuration spaces to the loop braid groups LBn. At the end of this section we
will give presentations for the groups LBn and LBext

n .

Definition 1.2.1. Let n ≥ 1, and let Rn be the space of configurations of n Euclidean,
unordered, disjoint, unlinked circles in B3. The ring group Rn is its fundamental group.
Let URn be the space of configurations of n Euclidean, unordered, disjoint, unlinked
circles in B3 lying on planes parallel to a fixed one. The untwisted ring group URn is its
fundamental group.

Similarly, let PRn be the space of configurations of n Euclidean ordered, disjoint,
unlinked circles. The pure ring group PRn is its fundamental group. Finally, let PURn
be the space of configurations of n Euclidean, ordered, disjoint, unlinked circles lying on
planes parallel to a fixed one. The pure untwisted ring group PURn is its fundamental
group.
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Remark 1.2.2. The topology on Rn can be described considering its covering space
consisting of ordered n-tuples of disjoint oriented circles in B3. This covering space can
be identified with an open subset of R6n, since each circle can be uniquely determined by
its center and a vector orthogonal to the plane of the circle. Circles of configurations
of Rn are unordered, so one has to factor out the free action of the signed permutation
group on this space. More details can be found in [21, Section 2].

Also, in [21, Section 2], the path connectedness of the groups Rn is proved, using a
"shrinking circles" argument from [36]. The authors define a canonical way of shrinking
circles simultaneously. Starting with a configuration which is in general position, in
the sense that no circle has its center on the disk bounded by another circle, then this
shrinking process produces a configuration of circles lying in disjoint balls.

Let Sn be the group of permutations of an n-elements set, and p the orbit projection
PRn → Rn that forgets the order of the circles. We observe that p is a regular n!-sheeted
cover (see Remark 1.2.2), with Sn as group of deck transformations. This covering is
associated to p∗(π1(PRn)). From this follows that PRn is a subgroup of Rn, and we
have the short exact sequence

1 −−−−→ PRn −−−−→ Rn −−−−→ Sn −−−−→ 1.

Similarly, for PURn and URn we can consider the short exact sequence

1 −−−−→ PURn −−−−→ URn −−−−→ Sn −−−−→ 1.

Remark 1.2.3. Let Mn be the configuration space of n ordered distinct points in the
complex plane C, i.e., the set of n-tuples (z1, . . . , zn) such that zi 6= zj for i 6= j. It is
easy to show that its fundamental group is isomorphic to the pure braid group on n
strands Pn, see for instance [51, Chapter 1.4]. In the same way, the fundamental group
of the configuration space of n unordered distinct points in C, meaning the fundamental
group of the quotient ofMn by the action of Sn, is one definition of the braid group on
n strands Bn.

The following result of Brendle and Hatcher shows the relation between the untwisted
ring groups URn and the ring groups Rn.

Proposition 1.2.4 ([21, Proposition 2.2]). For n ≥ 1, the natural map URn → Rn
induced by the inclusion URn → Rn is injective.

In order to prove that the groups Rn are isomorphic to the loop braid groups LBn,
seen as the mapping class groups MCG(B3, C∗), we need some results that we will list
below.

Theorem 1.2.5 ([21, Theorem 1]). For n ≥ 1, the inclusion of Rn into the space of
configurations of all smooth trivial links of n components in R3, denoted by Ln, is a
homotopy equivalence.
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The result allows us to consider the fundamental group of the configuration space of
smooth trivial links as isomorphic to Rn. Let PLn be the space of configurations of all
smooth trivial links of n ordered components in R3. From Theorem 1.2.5 we can deduce
the following corollary about ordered condifuration spaces.

Corollary 1.2.6. For n ≥ 1, the inclusion of PRn into the space of configurations of
all ordered smooth trivial links of n components in R3, denoted by PLn, is a homotopy
equivalence.

Proof. We remark that the proof of Theorem 1.2.5 is carried on locally, by considering
each component in a sphere, disjoint from the other component’s spheres, and rounding
each component of the configuration. Then, attaching the order information on the
components is left unaffected by the transformation.

Remark 1.2.7. In Section 1.1 we defined the loop braid group LBn (and the pure, extended,
and pure extended versions) as the topological mapping class group of a 3-ball B3 with
respect to a collection C of n disjoint, unknotted, oriented circles, that form a trivial
link of n components. This means that we defined it in terms of self-homeomorphisms.

However, as Wilson recalls in [80], it follows from two results of Wattenberg [79][Lemma
1.4 and Lemma 2.4] that the topological mapping class group of the 3-space with respect
to a collection of n disjoint, unknotted, oriented circles, that form a trivial link, is
isomorphic to the C∞ mapping class group, defined in terms of diffeomorphisms.

A self-diffeomorphism of the pair of manifolds (B3, C) is a diffeomorphism f :B3 → B3

that fixes ∂B3 pointwise, preserves orientation on B3, and fixes setwise C.
We denote by Diffeo(B3;C) the group of self-diffeomorphisms of (B3, C) that preserve

orientation on bothB3 and C. We denote by Diffeo(B3) the group Diffeo(B3; ∅). Moreover
we denote by PDiffeo(B3;C) the subgroup of self-diffeomorphisms of (B3, C) that send
each connected component of C to itself. In the same spirit of Section 1.1, we can define
Diffeo(B3;C∗) and its subgroup PDiffeo(B3;C∗).

Relying on the results of Wattenberg, we have that

π0(Homeo(B3;C)) ∼= π0(Diffeo(B3;C)) and π0(Homeo(B3;C∗)) ∼= π0(Diffeo(B3;C∗)).

Remark 1.2.8. In this part we use a bold font to denote a n-tuple of disjoint, unlinked,
trivial knots, and a normal font to denote a single trivial knot. To be consistent with the
notation of Section 1.1, an exception will be made when writing PHomeo(B3;C∗), which
is the subgroup of self-homeomorphisms of B3 with respect with the subset C, that send
each connected component of C to itself.

We take C = (C1, . . . , Cn) to be an ordered tuple of n disjoint, unlinked, trivial
circles living in B3. We consider the space of configurations of ordered smooth trivial
links of n components PLn with the topology induced by the distance defined as follows.
Each trivial knot of the configuration can be seen in a 3-ball B3, and bring smooth, it
admits parametrizations. Let us fix a distance d on B3. Then taken two trivial knots
C1 and C2 in B3, we denote by d(C1, C2) the min{max{d(p1(t), p2(t))}}, where the min
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is considered on the parametrizations pi:S1 → B3 with i = 1, 2 for C1 and C2, and the
max is considered on the parameter t ∈ S1.

We define an evaluation map

ε: Diffeo(B3) −→ PLn (1.1)

sending a self-diffeomorphism f to f(C). Remark that f(C) is an ordered tuple of n
disjoint, unlinked, trivial, smooth knots living in B3, since the diffeomorphism could
have deformed the circles of C. This map is surjective and continuous for construction.

Lemma 1.2.9. For n ≥ 1, the evaluation map ε: Diffeo(B3)→ PLn is a locally trivial
fibration, with fibre PDiffeo(B3;C∗).

Proof. Let us consider a point C0 = (C0
1 , . . . , C

0
n) in PLn, i.e., an ordered tuple of n

disjoint, smooth, unlinked, trivial knots living in B3. Note that:

ε−1(C0) = {f ∈ Diffeo(B3) | f(C0
i ) = C0

i for i = 1, . . . , n} ∼= PDiffeo(B3;C0∗).

Moreover, for any C in PLn there is an isomorphism between the groups PDiffeo(B3;C0∗)
and PDiffeo(B3;C∗). This means that PDiffeo(B3;C∗) is the fibre of the fibration.

We have already remarked that ε is surjective. For ε to be a locally trivial fibration we
need to prove that for every point C ∈ PLn there is a neighbourhood UC ⊂ PLn together
with a homeomorphism from UC × PDiffeo(B3;C∗) to ε−1(UC) whose composition with
ε is the projection to the first factor UC × PDiffeo(B3;C∗) → UC. This can be done
concretely constructing the local product structure.

However an alternative proof of this Lemma consists in the following remark. The
topological group Diffeo(B3) acts transitively on the disc in the sense that: if (C1, . . . , Cn)
is a collection of n circles with the usual conditions, and (γ1, . . . , γn) is another collection
with the same conditions, then there is a diffeomorphism h of Diffeo(B3) such that
h(Ci) = γi for all i ∈ {1, . . . , n}. As already remarked, if h is an element of Diffeo(B3;C∗),
then h(Ci) = Ci for all i ∈ {1, . . . , n}, and if h, h′ are such that ε(h) = ε(h′), then they are
in the same left coset of Diffeo(B3;C∗) in Diffeo(B3). This means that PDiffeo(B3;C∗)
has a local cross-section in Diffeo(B3) with respect to ε. Then, for [74][Section 7.4], we
have the result.

To prove the next theorem, we also need a result from Hatcher on the group Diffeo(B3).

Theorem 1.2.10 ([41][Appendix]). The group Diffeo(B3) is contractible.

Theorem 1.2.11. For n ≥ 1, there are natural isomorphisms between the pure ring
group PRn and the pure extended loop braid group PLBext

n , and between their respective
unordered versions Rn and LBext

n .

Proof. Let ε be the evaluation map (1.1). For Lemma 1.2.9, we have the short exact
sequence

1 −−−−→ PDiffeo(B3;C∗) i−−−−→ Diffeo(B3) ε−−−−→ PLn −−−−→ 1.
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This induces a long exact sequence of homotopy groups:

· · · −→ π1( Diffeo(B3)) ε?−→ π1(PLn) ∂−→ π0( PDiffeo(B3;C∗)) i?−→
i?−→ π0( Diffeo(B3)) −→ · · ·

Both the groups π1( Diffeo(B3)) and π0( Diffeo(B3)) are trivial: both of these state-
ments follow from Theorem 1.2.10. We recall that π1(PLn) is isomorphic to PRn and
π0( PDiffeo(B3;C∗)) is isomorphic to PLBext

n . Then we have an isomorphism between
PRn and PLBext

n .
Let us now consider Rn. We can construct the following commutative diagram:

1 −−−−→ PLBext
n −−−−→ LBext

n −−−−→ Sn −−−−→ 1
∼=
y y ∥∥∥

1 −−−−→ PRn −−−−→ Rn −−−−→ Sn −−−−→ 1.

The bijectivity of the central homomorphism follows from the five lemma.

Proposition 1.2.12. For n ≥ 1, there are natural isomorphisms between pure untwisted
ring group PURn and the pure loop braid group PLBn, and between their respective
unordered versions URn and LBn.

Proof. The group PLBn injects as a normal subgroup in the group PLBext
n . In particular,

we recall that PLBn is the subgroup of elements of the mapping class group PLBext
n that

preserve orientation on the n connected components of the submanifold C of B3. It is the
kernel of the map PLBext

n → Zn2 sending an homeomorphism reversing the orientation
on the ith component of C, and preserving the orientation on all the other components,
to (0, . . . , 1, . . . , 0), where the non-zero entry is in position i. We have the following short
exact sequence.

1 PLBn PLBext
n Zn

2 1 (1.2)

On the other hand, from [21, Proposition 2.2], we have the short exact sequence

1 PURn PRn Zn
2 1i

p

s

(1.3)

which has an obvious splitting s, obtained by rotating the circles within disjoint balls.
From the isomorphism between PRn and PLBext

n (Theorem 1.2.11) we get the diagram:

1 −−−−→ PLBn −−−−→ PLBext
n −−−−→ Zn2 −−−−→ 1y ∼=

y ∥∥∥
1 −−−−→ PURn −−−−→ PRn −−−−→ Zn2 −−−−→ 1.

For the universal property of the kernel, the first vertical arrow is an isomorphism, which
proves the first part of the statement. To prove the second isomorphism, we consider the
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commutative diagram

1 −−−−→ PLBn −−−−→ LBn −−−−→ Sn −−−−→ 1
∼=
y y ∥∥∥

1 −−−−→ PURn −−−−→ URn −−−−→ Sn −−−−→ 1.

The bijectivity of the central homomorphism follows from the five lemma.

Remark 1.2.13. Note that to prove the isomorphism of Proposition 1.2.12 for loop braids
we need to prove the result on extended loop braids first. This is because the first one
relies on the fibration on PLn of Lemma 1.2.9. Indeed, in the context of configuration
spaces, we cannot define a notion of “preserving orientation on the circles” when working
with a single configuration of n circles as a point in the topological space of configurations.

Brendle and Hatcher, in [21, Proposition 3.3], also give a presentation for the untwisted
ring groups URn, which are isomorphic to the loop braid groups LBn.

Proposition 1.2.14. For n ≥ 1, the group URn admits a presentation given by genera-
tors {σi, ρi | i = 1, . . . , n− 1}, subject to relations:



σiσj = σjσi for |i− j|> 1
σiσi+1σi = σi+1σiσi+1 for i = 1, . . . , n− 2
ρiρj = ρjρi for |i− j|> 1
ρiρi+1ρi = ρi+1ρiρi+1 for i = 1, . . . , n− 2
ρ2
i = 1 for i = 1, . . . , n− 1
ρiσj = σjρi for |i− j|> 1
ρi+1ρiσi+1 = σiρi+1ρi for i = 1, . . . , n− 2
σi+1σiρi+1 = ρiσi+1σi for i = 1, . . . , n− 2.

(1.4)

From this proposition it follows:

Corollary 1.2.15. For n ≥ 1, the group LBn admits the presentation given in Proposi-
tion 1.2.14.

In [21, Proposition 3.7] they also obtain a presentation for Rn, adding to the presen-
tation in Proposition 1.2.14 generators {τi | i = 1, . . . , n}, and some relations.

Proposition 1.2.16. For n ≥ 1, the group Rn admits a presentation given by generators
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{σi, ρi | i = 1, . . . , n− 1} and {τi | i = 1, . . . , n}, subject to relations:

τiτj = τjτi for i 6= j

τ2
i = 1 for i = 1, . . . , n
σiτj = τjσi for |i− j|> 1
ρiτj = τjρi for |i− j|> 1
τiρi = ρiτi+1 for i = 1, . . . , n− 1
τiσi = σiτi+1 for i = 1, . . . , n− 1
τi+1σi = ρiσ

−1
i ρiτi for i = 1, . . . , n− 1.

(1.5)

From this proposition it follows:

Corollary 1.2.17. For n ≥ 1, the group LBext
n admits the presentation given in Propo-

sition 1.2.16.

The elements σi, ρi, and τi of the presentation represent the following loops in Rn: if
we place the n rings in a standard position in the yz-plane with centers along the y-axis,
then the σi is the loop that permutes the i-th and the (i+ 1)-st circles by passing the
i-th circle through the (i+ 1)-st; ρi permutes them passing the i-th around the (i+ 1)-st,
and τi changes the orientation (“flips”) the i-th circle, see Figure 1.11.

i i+ 1 i i+ 1 i

σi ρi τi

Figure 1.1: Elements σi, ρi and τi.

Let αij be the elements of PURn, representing the movement of the i-th circle passing
throug the j-th circle and going back to its position (see Figure 1.2). Brendle and Hatcher
also give a presentation for PURn, the pure subgroups of the groups URn.

αi,j

i i+ 1 j

Figure 1.2: Elements αij .

1We reverse the notations used in [21] for σi and ρi, see also, for example, notations used in [15,30,37]
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Proposition 1.2.18. For n ≥ 1, the group PURn admits a presentation with generators
αij for 1 ≤ i 6= j ≤ n and relations:

αijαkl = αklαij

αikαjk = αjkαik

αij(αikαjk) = (αikαjk)αij .
(1.6)

Corollary 1.2.19. For n ≥ 1, the group PLBn admits the presentation given in Propo-
sition 1.2.18.

In Corollaries 1.2.15, 1.2.17, and 1.2.19 we showed presentations for the loop braid
groups LBn, the extended loop braid groups LBext

n , and the pure loop braid groups PLBn.
At the end of next section we will also give a presentation for the pure extended loop
braid groups PLBext

n .

1.3 Conjugating automorphisms of the free group

In this section we give an interpretation of LBn and LBext
n in terms of automorphisms

of Fn, the free groups of rank n. Fixing n ≥ 1, we consider automorphisms that send each
generator of Fn to a conjugate of some generator: these are in bijection with elements
of LBn. When considering automorphisms that send each generator to a conjugate of
some generator, or of the inverse of some generator, we have a bijection with elements
of LBext

n . Finally, when considering automorphisms that send a generator of Fn to a
conjugate of itself, we have a bijection with elements of the pure loop braid group PLBn,
and if a generator is sent to the conjugate of itself or its inverse, then we have a bijection
with elements of PLBext

n . We start from a result of Dahm’s unpublished thesis [27],
that appears in the last section of Goldsmith’s paper [37]. We remark that the result is
established for LBext

n , and that the result for LBn is a consequence of it.

Theorem 1.3.1 ([37, Theorem 5.3]). For n ≥ 1, there is an injective map from the
extended loop braid group LBext

n into Aut(Fn), where Fn is the free group on n generators
{x1, . . . , xn}, and its image is the subgroup PC∗n, consisting of all automorphisms of the
form α:xi 7→ w−1

i x±1
π(i)wi where π is a permutation and wi is a word in Fn. Moreover, the

group PC∗n is generated by the automorphisms {σ1, . . . σn−1, ρ1, . . . ρn−1, τ1, . . . , τn} defined
as:

σi :


xi 7→ xi+1;
xi+1 7→ x−1

i+1xixi+1;
xj 7→ xj , for j 6= i, i+ 1.

(1.7)

ρi :


xi 7→ xi+1;
xi+1 7→ xi;
xj 7→ xj , for j 6= i, i+ 1.

(1.8)
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τi :
{
xi 7→ x−1

i ;
xj 7→ xj , for j 6= i.

(1.9)

Sketch of the proof. The main ingredient of the proof is the Dahm homomorphism. This
is a map

D: MCG(M,N∗) −→ Aut(π1(M \N))

where M and N are a 3-manifold and a finite subset as in Section 1.1. Consider [f ] ∈
MCG(M,N∗). Dahm homomorphism sends an element [f ] of the mapping class group,
represented by a family gt for t ∈ [0, 1], to the automorphism induced by g1 on π1(M \N).
Applying Dahm homomorphism to M = B3 and N = C, we have a map

D:LBext
n −→ Aut(π1(Fn))

where Fn is the free group of rank n. This homomorphism is injective ([37, Theorem 5.2]).
The possible self-homomorphisms of B3 which move the circles C are generated by “flips”
of the circles, exchanges of two circles, and pulling one circle through another circle. The
respective elements of LBext

n are sent by the Dahm homomorphism to the automorphisms
in (1.9), (1.8), and (1.7). In [37, Theorem 5.3] it is proved that these automorphisms
generate PC∗n.

Remark 1.3.2. The correspondence between the elements of the mapping class group
representing the movements σi, ρi and τi in Rn, and the automorphisms of PC∗n with the
same names justifies the abuse of notation.

The following result, which is a consequence of Theorem 1.3.1, establishes an iso-
morphism between LBn and PCn, the groups of permutation-conjugacy automorphisms.
These groups consist of all automorphisms of the form α:xi 7→ w−1

i xπ(i)wi where π is a
permutation and wi is a word in Fn.

Corollary 1.3.3. For n ≥ 1, there is an injection from LBn to Aut(Fn), where Fn is the
free group on n generators {x1, . . . , xn}, and its image is the subgroup PCn. Moreover,
the group PCn is generated by automorphisms (1.7) and (1.8).

Remark 1.3.4. The elements σi in PCn generate the braid subgroup Bn of Aut(Fn) which
is well known to be isomorphic to the classical braid group on n strings, and the elements
ρi generate the permutation subgroup S̄n of Aut(Fn) which is a copy of the symmetric
group Sn. Moreover Artin provided (see for instance [40, Theorem 5.1]) a characterization
of usual braids as automorphisms of free groups of which Theorem 1.3.1 is the analogue.
Let us recall it: an automorphism β ∈ Aut(Fn) lies in Bn if and only if β satisfies the
following conditions:

i) β(xi) = ai xπ(i) a
−1
i , 1 ≤ i ≤ n ;

ii) β(x1x2 . . . xn) = x1x2 . . . xn ,

where π ∈ Sn and ai ∈ Fn.
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Remark 1.3.5. Fenn, Rimányi and Rourke, in [30], consider the subgroups BPn of Aut(Fn)
generated by both sets of elements {σi | i = 1, . . . n− 1} and {ρi | i = 1, . . . n− 1}. They
call these groups the braid-permutation groups, and they prove independently from Dahm
and Goldsmith that they are isomorphic to the permutation-conjugacy groups PCn, and
that they admit the presentation given in Proposition 1.2.14.
Remark 1.3.6. The presentation given in Proposition 1.2.18 coincides with the presentation
given by McCool in [64] for the groups of basis-conjugating automorphisms of the free
group. Fixed an n ≥ 1, this is the group generated by the automorphisms:

αij :
{
xi 7→ x−1

j xixj ;
xk 7→ xk, for k 6= i, j.

(1.10)

Remark 1.3.7. In [73] Savushkina proves that the centers of the groups PLBn are
trivial, and gives a presentation for the groups of permutation-conjugacy automorphisms,
isomorphic to the loop braid groups LBn.

To complete the picture we use the conjugating automorphisms point of view to give a
presentation for PLBext

n , the pure subgroups of the groups of extended loop braids LBext
n .

Proposition 1.3.8. For n ≥ 1, the group PLBext
n admits the following presentation:〈

{αij | 1 ≤ i 6= j ≤ n} ∪ {τi | i = 1, . . . n} | R′
〉

(1.11)

where R′ is the set of relations:

αijαkl = αklαij

αijαkj = αkjαij

(αijαkj)αik = αik(αijαkj)
τ2
i = 1
τiαij = αijτi

τiαjk = αjkτi

τiαjiτi = α−1
ji

(1.12)

where different letters stand for different indices, and αij and τi correspond to the
automorphisms (1.10) and (1.9).

Proof. By the split short exact sequence (1.3), and the isomorphism between PRn
and PLBext

n , we have that PLBext
n is isomorphic to the semidirect product PLBnoϕ Zn2 ,

where ϕ:Zn2 → Aut(PLBn) is the map defined by:

ϕ(x) = ϕx: g −→ i−1(s(x)i(g)s(x−1)).

Considering the presentation 〈{τi | i = 1, . . . n} | τ2
i = 1〉 for Zn2 we have that PLBext

n

admits the following presentation:〈
(αij)1≤i 6=j≤n}) ∪ (τi)1≤i≤n}) | R,S, {τiαjlτ−1

i = ϕτi(αjl)}
〉

(1.13)
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where the αij are generators of PLBn, the τi are generators of Zn2 , and R and S are the
respective sets of relations.

The groups PLBn and Zn2 can be seen as subgroups of Aut(Fn). Then ϕ is the action
of Zn2 on PLBn, so to understand the mixed relation between the αij and the τk it is
sufficient to see how τk act on αij , for 1 ≤ i 6= j ≤ n and k = 1, . . . n.

Both families of automorphisms are defined on generators xi of Fn. In particular,
xl with l 6= i, j, k, is left unvaried by both automorphisms. Hence it is sufficient to
consider the cases where l is equal to i or j, and/or k. In other words, we are only
to consider the mutual positions of three indices. To simplify the calculation we can
take i, j, k, l ∈ {1, 2, 3}. We make a list of all the cases to consider in Table 1.1.

Table 1.1: All the cases we need to consider to write the mixed relations.

αij ’s indices τk’s index i, j, k, l ∈ {1, 2, 3}
i < j k = i < j τ1α12τ1 = α12

i < j = k τ2α12τ2 = α−1
12

k < i < j τ1α23τ1 = α23
i < k < j τ2α13τ2 = α13
i < j < k τ3α12τ3 = α12

j < i k = j < i τ1α21τ1 = α−1
21

j < i = k τ2α21τ2 = α21
k < j < i τ1α32τ1 = α32
j < k < i τ2α31τ2 = α31
i < j < k τ3α12τ3 = α12

Let us see the explicit computation for the second case in the table:

τ2α12τ2(x1) = τ2α12(x1) = τ2(x−1
2 x1x2) = x2x1x

−1
2 = α−1

12 (x1);
τ2α12τ2(x2) = τ2α12(x−1

2 ) = τ2(x−1
2 ) = x2 = α−1

12 (x2);
τ2α12τ2(x3) = τ2α12(x3) = τ2(x3) = x3 = α−1

12 (x3).

So τ2α12τ2 = α−1
12 . Doing the calculation for all the other cases, we obtain the mixed

relations: τiαjiτi = α−1
ji , τiαjk = αjkτi and τiαij = αijτi.

1.4 Ribbon braids and flying rings

We now introduce ribbon braids and extended ribbon braids. Using the results from
Section 1.2, we establish isomorphisms between the groups of (extended) ribbon braids
and the (extended) loop braid groups. These isomorphisms give us another interpretation
of loop braids as topological knotted objects. We also prove that every isotopy of a
ribbon braid in B3 × I extends to an isotopy of B3 × I itself constant on the boundary.
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Let n ≥ 1. We recall and adapt notations and definitions from [4] and [5]. Let
D1, . . . , Dn be a collection of disks in the 2-ball B2. Let Ci = ∂Di be the oriented
boundary of Di. Let us consider the 4-ball B4 ∼= B3× I, where I is the unit interval. For
any submanifold X ⊂ Bm ∼= Bm−1 × I, with m = 3, 4, we use the following dictionary.
To keep the notation readable, here we denote the interior of a topological space by
"int( )", whereas anywhere else it is denoted by "̊ ".

• ∂εX = X ∩ (Bm−1 × {ε}), with ε ∈ {0, 1};

• ∂∗X = ∂X \
(
int(∂0X) t int(∂1X)

)
;

•
∗
X = X \ ∂∗X.

The image of an immersion Y ⊂ X is said to be locally flat if and only if it is locally
homeomorphic to a linear subspace Rk in Rm for some k ≤ m, except on ∂X and/or ∂Y ,
where one of the R summands should be replaced by R+. Let Y1, Y2 be two submanifolds
of Bm. The intersection Y1 ∩ Y2 ⊂ X is called flatly transverse if and only if it is locally
homeomorphic to the transverse intersection of two linear subspaces Rk1 and Rk2 in Rm
for some positive integers k1, k2 ≤ m except on ∂X, ∂Y1 and/or ∂Y2, where one of the R
summands should be replaced by R+. In the next definition we introduce the kind of
singularities we consider.

Definition 1.4.1. Ribbon disks are intersections D = Y1 ∩ Y2 ⊂ R4 that are isomorphic
to the 2-dimensional disk, such that D ⊂ Y̊1, D̊ ⊂ Y̊2 and ∂D is an essential curve in ∂Y2.

These singularities are the 4-dimensional analogues of the classical notion of ribbon
singularities introduces by Fox in [35].

Definition 1.4.2. Let A1, . . . , An be locally flat embeddings in
∗
B4 of n disjoint copies

of the oriented annulus S1 × I. We say that

b =
⊔

i∈{1,...,n}
Ai

is a geometric ribbon braid if:

1. the boundary of each annulus ∂Ai is a disjoint union Ci t Cj , for Ci ∈ ∂0B
4 and

for some Cj ∈ ∂1B
4. The orientation induced by Ai on ∂Ai coincides with the one

of the two boundary circles Ci and Cj ;

2. the annuli Ai are fillable, in the sense that they bound immersed 3-balls ⊂ R4

whose singular points consist in a finite number of ribbon disks;

3. it is transverse to the lamination ⋃t∈I B3 × {t} of B4, that is: at each parameter t,
the intersection between b and B3 × t is a collection of exactly n circles;

4. the orientations of the circles are concordant, at each parameter t, to the orientations
of the circles that compose the boundary of the annulus.
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The group of ribbon braids, denoted by rBn is the group of equivalence classes of
geometric ribbon braids up to continuous deformations through the class of geometric
ribbon braids fixing the boundary circles, equipped with the natural product given by
stacking and reparametrizing. The unit element for this product is the trivial ribbon
braid U = ⊔

i∈{1,...,n}Ci × [0, 1].

Remark 1.4.3. Let us consider I in B4 = B3 × I as a time parameter. If one of the n
circles that we have at each time t makes a half-turn, we have what is called a wen on
the corresponding component. One can think of a wen as an embedding in 4-space of
a Klein bottle cut along a meridional circle. The last condition of the definition makes
sure that there are no wens on the components of a geometric ribbon braid. A detailed
treatment of wens can be found in [50].
Remark 1.4.4. We recall that also the braid group Bn can be defined in an analogous
way, as equivalence classes of geometric braids, see [51, Chapter 1.2].

The following theorem shows that when two ribbon braids are equivalent in the sense
of Definition 1.4.2, there is an ambient isotopy of R4 bringing one to the other.

Theorem 1.4.5. Every relative isotopy of a geometric ribbon braid in B3 × I extends to
an isotopy of B3 × I in itself constant on the boundary.

Proof. We follow step by step the proof given for the case of usual braids in [51]. Let
b ⊂ B4 ∼= B3 × I be a geometric ribbon braid with n components, and let us call T the
product B3 × I. Let

F : b× I −→ T

be an isotopy of b. Thus, for each s ∈ I, the map

Fs: b −→ T

x 7→ F (x, s)

is an embedding whose image is a geometric ribbon braid, and F0 = idb.
We want to define another continuous map G:T × I → T such that for each s ∈ I

the map Gs:T → T sending x ∈ T to G(x, s) is a homeomorphism fixing ∂T pointwise
and extending Fs, and such that G0 = idT .

The first step to construct it is to consider a set C = {C1, . . . , Cn} of n disjoint,
oriented, unlinked, unknotted circles in the interior of B3, and another 3-ball D3 such
that: C is contained in D̊3, and D̊3 is contained in B̊3. Moreover, let F (b × I) be
contained into D̊3 × I. Remark that C × {0, 1} is the disjoint union of the circles that
compose the boundary components of b and of Fs(b) for all s ∈ I.

For any (s, t) ∈ I2, denote by f(s, t) the unique subset of n circles of D̊3 such that

Fs(b) ∩ (D3 × {t}) = f(s, t)× {t}.

In other words, f(s, t) is composed by the n circles of the ribbon braid Fs(b) at the
coordinate {t} of the foliation D3 × I = ⋃

i∈I D
3 × {t}.
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So we have a continuous map

f : I2 −→ ULn ⊂ Ln

where ULn is the configuration space of n disjoint, oriented, unlinked, unknotted circles
that lie on parallel planes.

By definition f(s, 0) = f(s, 1) = C for all s ∈ I and b = ⋃
t∈I f(0, t) × {t}. Let us

consider now the loop

f0: I −→ D3

t 7→ f(0, t)

that sends the parameter t to the circles composing b at the coordinate t.
Consider the evaluation fibration ε: Diffeo(D3)→ PLn from Lemma 1.2.9. Composing

ε with the covering map PLn → Ln, seeing Ln as the orbit space with of the action of
the symmetric group of PLn, we define a locally trivial fibration

ε̃: Diffeo(D3) −→ Ln.

By the homotopy lifting property of ε̃, the loop f0 lifts to a path f̂0 as in the following
diagram.

Diffeo(B3)

I Ln

ε̃

f0

f̂0

The lifted map is such that f̂0(1) = idD3 and f̂0(0) is an element of Diffeo(D3;C∗).
Remark that ε̃ ◦ f̂0(0) = C = f0(0), ε̃ ◦ f̂0(1) = C = f0(1). By the homotopy lifting
property of ε, considering the topological pair (I, ∂I), the latter path extends to a lift

f̂ : I × I −→ Diffeo(D3)

such that f̂(s, 1) = idD3 and f̂(s, 0) = f̂(0, 0) for all s ∈ I. We define a homeomorphism

g(s, t):B3 −→ B3

defined by

g(s, t) =
{

idB3 on B3 \D3,

f̂(s, t) ◦ (f̂(0, t))−1 on x ∈ D3.

This is a continuous function on (s, t) ∈ I2 and

g(0, t) = g(s, 0) = g(s, 1) = idB3 .

Moreover
g(s, t)(f(0, t)) = g(s, t)(f̂(0, t)(C)) = f̂(s, t)(C) = f(s, t).
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Let us define

G:T × I −→ T

(x, t, s) 7→ (g(s, t)(x), t)

for x ∈ B3, (t, s) ∈ I × I. For each s ∈ I we have a homeomorphisms

Gs:T −→ T

that fixes ∂T pointwise, extends Fs, and G0 = idB3 .

Remark 1.4.6. This result is true also for surface links, which are closed surfaces locally
flatly embedded in R4. This is proved with different methods in [46, Theorem 6.7].

Definition 1.4.7. A pure geometric ribbon braid is a geometric braid as in Definition 1.4.2,
for which condition (1) is replaced with

(1)′ ∂Ai = Ci × {0, 1} for all i ∈ {1, . . . , n} and the orientation induced by Ai on ∂Ai
coincides with that of Ci.

The group of pure ribbon braids, denoted by PrBn, is the group of equivalence classes
of pure geometric ribbon braids up to continuous deformations through the class of
geometric ribbon braids fixing the boundary circles, equipped with the natural product
given by stacking and reparametrizing.

Remark 1.4.8. The group PrBn coincides with the kernel of the homomorphism from
the group rBn to the group of permutation Sn that associates to a ribbon braid the
permutation induced on the boundary circles.
Remark 1.4.9. Taken b a geometric ribbon braid, the transversality forces b ∩ (B3 × {t})
to be the disjoint union of n circles, for all t ∈ I. We can though think to a ribbon
braid as a trajectory β = (C1(t), . . . , Cn(t)) of circles in B3 × I. This interpretation
corresponds, in the classical case, to the interpretation of braids as particle dance. A
visual idea of this can be found in Dalvit’s website [28]. This formulation gives rise to
the name groups of flying rings, denoted by FLn and used in [10].

We prove now that, for each n ≥ 1, PrBn and rBn are respectively isomorphic to
PLBn and LBn.

Proposition 1.4.10. For n ≥ 1, there is an isomorphism between the pure ribbon braid
group PrBn and the pure loop braid group PLBn.

Proof. Let β = (C1(t), . . . , Cn(t)) be an element of PrBn described by a parametrization
as in Remark 1.4.9, and set

ϕ(β): [0, 1] −→ PLBn

as the morphism defined by t 7→ (C1(t), . . . , Cn(t)). By definition, ϕ(β) is a loop in the
configuration space PURn (Definition 1.2.1), and corresponds to an element of PLBn
through the isomorphism in Proposition 1.2.12. This map induces a bijection

ϕ?:PrBn −→ PLBn.
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Indeed, two pure geometric braids β′ and β′′ are equivalent if and only if there is an
ambient isotopy of R3 × [0, 1] from the identity map to a self-homeomorphism that
maps β′ to β′′. That by construction would be an isotopy (so in particular a homotopy)
between the two associated loops in PLBn. Moreover products are preserved, so ϕ? is a
isomorphism.

Theorem 1.4.11. For n ≥ 1, there is an isomorphism between the ribbon braid group
rBn and the loop braid group LBn.

Proof. We recall that the untwisted ring group URn (Definition 1.2.1) is the fundamental
group of URn, which is the quotient of PURn by the symmetric group on n components.
As in Proposition 1.4.10 we fix an element β = (C1(t), . . . , Cn(t)) of rBn and define a
map:

ϕ̂(β): [0, 1] −→ LBext
n

by t 7→ [C1(t), . . . , Cn(t)]. The element ϕ̂(β) is a loop in the configuration space URn.
This loop corresponds to an element of LBn through the isomorphism from Proposi-
tion 1.2.12. Then ϕ̂ induces an homomorphism

ϕ̂?: rBn −→ LBn.

We consider the following diagram:

1 −−−−→ PrBn −−−−→ rBn −−−−→ Sn −−−−→ 1
∼=
yϕ? yϕ̂? ∥∥∥

1 −−−−→ PLBn −−−−→ LBn −−−−→ Sn −−−−→ 1.

It is commutative by construction of ϕ and ϕ̂. By applying the five lemma, the statement
is proved.

Let C ⊂ B̊3 be a collection of n unordered, disjoint, unknotted, unlinked circles. An
isotopy {ft:B3 → B3}t∈I in the class of self-diffeomorphisms of B3 is normal with respect
to C if f0(C) = C and f1 = idB3 . In other words a normal isotopy is a path in Diffeo(B3)
leading from a point of Diffeo(B3;C) to the identity diffeomorphism idB3 in Diffeo(B3).
It is clear that, for any normal isotopy {ft:B3 → B3}t∈I , the set

⋃
t∈I (ft(C), t) ⊂ B3× I

is a geometric ribbon braid on n components. We say that {ft}t∈I parametrizes the
geometric ribbon braid.

In the spirit of the definition of geometric ribbon braids as flying rings (Remark 1.4.9),
we prove that given a geometric ribbon braid b and its set of starting circles C ⊂ B̊3, we
can find a normal isotopy parametrizing it.

Lemma 1.4.12. Let n ≥ 1. For every geometric ribbon braid b ⊂ B4 on n components,
there is a normal isotopy parametrizing b.



46 Chapter 1. Loop Braid Groups

Proof. We consider the evaluation map

ε̃: Diffeo(B3) −→ Ln
constructed in the proof of Theorem 1.4.5, sending f to f(C). The ribbon braid b,
through the isomorphism between rBn and URn used in Theorem 1.4.11, gives rise to a
loop f b: I → PLn ⊂ Ln sending t ∈ I into the unique n-circles set bt such that

b ∩ (B3 × I) = bt × {t}.

This loop begins and ends at the point ε̃(idB3) ∈ Ln represented by C. Being ε̃ a
fibration, we apply the homotopy lifting property, and lift f b to a path f̂ b: I → Diffeo(B3)
beginning at ε̃−1(C) = Diffeo(B3;C∗), which in particular, being b a geometric ribbon
braid, is in Diffeo(B3;C), and ending at idB3 . The path f̂ b is a normal isotopy. The
commutativity ε̃ ◦ f̂ b = f b means that this isotopy parametrizes b.

1.4.1 Extended ribbon braids

We introduce a new topological object, that is the topological realization of extended
loop braids.

Definition 1.4.13. Let n ≥ 1. An extended geometric ribbon braid is a geometric ribbon
braid, with condition (4) from Definition 1.4.2 removed, and condition (1) replaced by:
(1)′′ the boundary of each annulus ∂Ai is a disjoint union Ci t Cj , for Ci ∈ ∂0B

4 and
for some Cj ∈ ∂1B

4.
The group of extended ribbon braids, denoted by rBext

n , is the group of equivalence
classes of geometric ribbon braids up to continuous deformations through the class of
extended geometric ribbon braids fixing the boundary circles, equipped with the natural
product given by stacking and reparametrizing. The unit element for this product is the
trivial ribbon braid U = ⊔

i∈{1,...,n}Ci × [0, 1].

Definition 1.4.14. The group of extended pure ribbon braids, denoted by PrBext
n , is the

group of equivalence classes of pure geometric extended ribbon braids, defined as pure
geometric ribbon braids (Definition 1.4.7) with condition (4) removed and condition (1)′
replaced by
(1)′′′ ∂Ai = Ci × {0, 1} for all i ∈ {1, . . . , n} .
Remark 1.4.15. Theorem 1.4.5 extends to extended ribbon braid groups rBext

n : in fact
the proof uses the evaluation filtration ε̃: Diffeo(B3) → Ln. We recall that, for n ≥ 1
fixed, Ln is the space of configurations of n unordered, disjoint, unlinked trivial links
in B3, that are not restrained of parallel planes, i.e., can make 180◦ flips.
Remark 1.4.16. The monotony condition allows us to consider the interval I in B4 = B3×I
as a time parameter, and to think of an extended ribbon braid as a trajectory β =
(C1(t), . . . , Cn(t)) of circles in B3 × I. This trajectory corresponds to a parametrization
of the extended ribbon braid. That corresponds to an interpretation in terms of flying
rings allowed to “flip”.
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The following statements, proved for the case of ribbon braids, hold also in the
extended case.

Proposition 1.4.17. For n ≥ 1, there is an isomorphism between the pure extended
ribbon braid group PrBext

n and the pure extended loop braid group PLBext
n .

Proof. To prove this statement it is enough to follow the proof of Proposition 1.4.10, replac-
ing PURn with PRn, and considering the isomorphism between and PRn and PLBext

n .

Theorem 1.4.18. For n ≥ 1, there is an isomorphism between the extended ribbon braid
group rBext

n and the extended loop braid group LBext
n .

Proof. To prove this statement it is enough to follow the proof of Theorem 1.4.11,
replacing URn with Rn, and considering the isomorphism between Rn and LBext

n .

1.5 Welded diagrams and broken surfaces
There are two kind of projections of loop braids, seen as ribbon braids: the first one is a 2-
dimensional diagrammatical representation, while the second one will be a representation
through 3-dimensional surfaces.

1.5.1 Welded diagrams

Definition 1.5.1. A strand diagram on n strings is a set of oriented arcs in R2, monotone
with respect to the second coordinate, from the points (0, 1), . . . , (0, n) to (1, 1), . . . , (1, n).
The arcs are allowed to have double points of three kinds, called classical positive, classical
negative and welded as in Figure 1.3.

c)a) b)

Figure 1.3: a) Classical positive crossing, b) Classical negative crossing, c) Welded
crossing.

Let us assume that the double points occur at different x-coordinates. Then a strand
diagram determines a word in the elementary diagrams illustrated in Figure 1.3. We call
σi the elementary diagram representing the (i+ 1)-th strand passing over the i-th strand,
and ρi the welded crossing of the strands i and (i+ 1). The set of strand diagrams on n
strings will be denoted by Dn.

Definition 1.5.2. A welded braid is an equivalence class of strand diagrams under the
equivalence relation given by planar isotopy and the following moves:

• Reidemester moves: Figure 1.5;
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1 i i+ 1 n 1 i i+ 1 n

Figure 1.4: The elementary diagrams σi and ρi.

• virtual Reidemeister moves: Figure 1.6;

• mixed Reidemeister moves: Figure 1.7;

• welded Reidemeister moves: Figure 1.8.

This equivalence relation is called welded Reidemeister equivalence. We denote classes
by representatives. For n ≥ 1, the group of welded braids or welded braid group on n
strands, denoted byWBn is the group of equivalence classes of strand diagrams by welded
Reidemeister equivalence. The group structure on these objects is given by: stacking and
rescaling as product, mirror image as inverse, and the trivial diagram as identity.

(R2) (R3)

Figure 1.5: Classical Reidemeister moves for braid-like objects.

(V 2) (V 3)

Figure 1.6: Virtual Reidemeister moves for braid-like objects.

Remark 1.5.3. We adopt the convention of reading the diagrams from top to bottom, and
the corresponding braid words from left to right. Welded braids have been introduced
in [30] as a graphic representation of presentation (1.4), given in their paper as a presen-
tation of the braid-permutation groups BPn. Then notation used here for elementary
diagrams does not carry any ambiguity with the notation used for the presentation (1.4)
of URn in Section 1.2, and for the automorphisms of the free group in Section 1.3.

1.5.2 Broken surfaces

A diagram of a classical braid is a projection in general position of the braid on the plane,
with crossing information specified by deleting a neighbourhood of the underpassing arcs.
We introduce similar diagrams for geometric ribbon braids, which are surfaces in the
4-dimensional space: these diagrams are projections in general position of ribbon braids
in the 3-dimensional space, and are called broken surface diagrams. This representation
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(M)

Figure 1.7: Mixed Reidemeister move.

(F1)

Figure 1.8: Welded Reidemeister move.

has first been introduced for the group of motions of a collection of n unknotted, unlinked,
oriented circle in [8]. They have defined broken surfaces adapting a drawing style from
Carter and Saito’s work on surfaces in dimension 4 [23]. We use notations introduced at
the beginning of Section 1.4.

Definition 1.5.4. Let A1, . . . , An be locally flat embeddings in
∗
B3 of n disjoint copies

of the oriented annulus S1 × I. We say that

S =
⋃

i∈{1,...,n}
Ai

is a braid broken surface diagram if:

1. for each i ∈ {1, . . . , n}, the oriented boundary ∂Ai is the disjoint union Ci t Cj ,
for Ci in ∂0B

3 and for some Cj in ∂1B
3. The orientation induced by Ai on ∂Ai

coincides with the orientation of one of the two boundary circles Ci and Cj ;

2. it is transverse to the lamination ⋃t∈I B2 × {t} of B3, that is: at each parameter t,
the intersection between S and B2 × t is a collection of exactly n circles, not
necessarily disjoint;

3. the set of connected components of singular points in S, denoted by Σ(S), consists
of flatly transverse disjoint circles in (∪ni=1Åi).

Moreover, for each element of Σ(S), a local ordering is given on the two circle preimages.
By convention this ordering is specified on the diagram by erasing a small neighbourhood
of the lower preimage in the interior of the annulus it belongs to. Note that this is the
same convention used for classical braid diagrams. Moreover a broken surface diagram is
said to be symmetric if it is locally homeomorphic to the surfaces in Figure 1.9, which
means that, for each pair of preimage circles, the following properties are satisfied:

1. one of the preimage circles is essential in ⋃ni=1 Åi and the other is not;

2. there is a pairing of the elements of Σ(S) = ⊔
r{cr1, cr2} such that, for each r, the

essential preimages of cr1 and cr2
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(a) are respectively lower and higher than their non essential counterparts with
respect to the associated order ;

(b) bound an annulus in ⋃ni=1 Åi;
(c) this annulus avoids Σ(S).

t > 0t = 0t < 0
x

y

z

Figure 1.9: Symmetric broken surfaces are locally homeomorphic to a cylinder, or to a
crossing with decoration that indicates the order on the preimages of the singularities.

Let b be a ribbon braid, and consider a projection B4 → B3 in general position of b:
the following result allows us to consider braid broken surface diagrams as 3-dimensional
representations of ribbon braids.

Lemma 1.5.5. Any generic projection of a ribbon braid from B4 to B3 is a braid broken
surface diagram. Conversely any braid broken surface diagram is the projection of a
ribbon braid.

Proof. This statement is proved in [83] for locally flat embedding of 2-spheres in R4. In
[5] it is noted that the arguments, which are local, apply to the case of ribbon tubes.
Since ribbon tubes and ribbon braids locally behave the same way, the arguments of [83]
applies to our case.

Moreover, we have the following result:

Lemma 1.5.6. Any ribbon braid can be represented by a symmetric broken surface
diagram.

Proof. This statement is proved in [5, Lemma 2.13] for ribbon tubes, adapting results
from [50] and [82]. The proof for ribbon tubes adapts without modifications to ribbon
braids.

Remark 1.5.7. If two symmetric braid broken surface diagrams differ by one of the
“broken Reidemeister moves” in Figure 1.10, then the associated ribbon braids are
isotopic [5, Remark 2.15].
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Figure 1.10: Broken Reidemeister moves.

Passing through symmetric braid broken surfaces, 4-dimensional ribbon braids can
be described using 2-dimensional welded braids. Let b be a welded braid. We associate
to it a symmetric braid broken surface diagram in the following way (see for details [71]
and [81]). Consider B2 and embed it as B2×{1

2} into B3. Taken a tubular neighbourhood
N(b) of b, we have that ∂εN(b) = ti∈{1,...,n}Di × εi where εi ∈ {0, 1}. Each crossing is
sent to a 4-punctured sphere. Then, according to the partial order defined on the double
points of welded braid diagrams, we modify the sphere into the broken surfaces shown in
Figure 1.11).

Figure 1.11: Punctured sphere associated to a crossing of the welded braid.

Definition 1.5.8. We define a map Tube:WBn → rBn that associates to a welded
braid b, the ribbon braid associated to the symmetric broken surface resulting from the
preceding construction.
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For general ribbon knotted objects, such as ribbon tangles (see Chapter 3), ribbon
tubes [5] and knotted spheres [83], the Tube map is well defined and surjective. For these
more general objects, it is still unproved if the Tube map is injective [10]. However, Brendle
and Hatcher proved that URn is isomorphic to the presented group (1.4), represented by
WBn [21]. Through the isomorphism between URn and LBn (Proposition 1.2.12) and
the isomorphism between LBn and rBn (Theorem 1.4.11), we have the following result,
that gives us a graphical interpretation of loop braids.

Theorem 1.5.9. The map Tube:WBn → rBn is an isomorphism.

Let T̃ ube the composition of Tube with the isomorphism between rBn and LBn. We
have:

Corollary 1.5.10. The map T̃ ube:WBn → LBn is an isomorphism.

1.5.3 Extended welded diagrams and broken surfaces

We introduce new kind of local elementary diagrams, called τi, for I = 1, . . . , n as in
Figure 1.12,

Definition 1.5.11. An extended welded braid is an equivalence class of strand diagrams
under the equivalence relation given by planar isotopy and the following moves:

• usual Reidemeister moves: Figure 1.5;

• virtual Reidemeister moves: Figure 1.6;

• mixed Reidemeister moves: Figure 1.7;

• welded Reidemeister moves: Figure 1.8;

• extended Reidemester moves: Figure 1.13.

This equivalence relation is called extended welded Reidemeister equivalence. We denote
classes by representatives. The group of extended welded braids or extended welded braid
group, denoted by WBext

n is the group of equivalence classes of strand diagrams by
extended welded Reidemeister equivalence. The group structure on these objects is given
by: stacking and rescaling as product, mirror image as inverse, and the trivial diagram
as identity.

1 i n

Figure 1.12: The elementary diagram τi.

The Tube map can be extended to WBext
n , associating to elementary diagrams τi

a tube with a wen (Figure 1.14). Brendle and Hatcher proved that Rn is isomorphic
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Figure 1.13: Extended Reidemeister moves for braid-like objects.

to the presented group (1.5), this second one represented by WBext
n [21]. Through the

isomorphism between Rn and LBext
n (Theorem 1.2.11), and the isomorphism between

LBext
n and rBext

n (Theorem 1.4.18), we have the following result, that gives us a graphical
interpretation of extended loop braids.

Figure 1.14: The behaviour of the Tube map when applied to wens.

Theorem 1.5.12. The map Tube:WBext
n → rBext

n is an isomorphism.

As before, let T̃ ube be the extension of the map from Corollary 1.5.10, i.e., the
composition of Tube with the isomorphism between rBext

n and LBext
n . We have:

Corollary 1.5.13. The map T̃ ube:WBext
n → LBext

n is an isomorphism.

1.6 Gauss diagrams
In this section we give a combinatorial description of loop braids through Gauss diagrams.

Definition 1.6.1. Let n ≥ 1. A Gauss diagram is a set of signed and oriented arrows
on n ordered and oriented horizontal intervals, together with a permutation σ ∈ Sn (see
Figure 1.15). The endpoints of the arrows are divided in two sets: the set of heads and
the set of tails, defined by the orientation of the arrow. The right extremity of the ith
horizontal interval is labelled with σ(i).
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Figure 1.15: Examples of Gauss diagrams.

To make the link between Gauss diagrams and the group of welded braids, we
introduce the group of virtual braids. This allows us to see the welded braid group as a
quotient of virtual braids. Generally speaking, Gauss diagrams turn out to be a useful
tool to investigate properties of various remarkable quotients of the virtual braid group
(see for example [6, 7]). Recall Definition 1.5.1 of strand diagrams.

Definition 1.6.2. Two strand diagrams on n strands are virtual equivalent if they are
related by planar isotopy and a finite number of the following moves:

• virtual Reidemeister moves: (V 2) and (V 3), Figure 1.6;

• mixed Reidemeister moves: (M), Figure 1.7.

Two strand diagrams on n strands are welded equivalent if they are related by planar
isotopy and a finite number of the following moves:

• virtual Reidemeister moves: (V 2) and (V 3), Figure 1.6;

• mixed Reidemeister moves: (M), Figure 1.7;

• welded Reidemeister moves: (F1), Figure 1.8.

Two strand diagrams on n strands are virtual Reidemeister equivalent if they are related
by planar isotopy and a finite number of the following moves:

• Reidemester moves: (R2) and (R3), Figure 1.5;

• virtual Reidemeister moves: (V 2) and (V 3), Figure 1.6;

• mixed Reidemeister moves: (M), Figure 1.7.

We recall that adding welded Reidemeister moves to virtual Reidemeister equivalence,
one obtains welded Reidemeister equivalence (Definition 1.5.2).

Definition 1.6.3. For n ≥ 1, the virtual braid group V Bn is the group of equiva-
lence classes of strand diagrams on n strands with respect to the virtual Reidemeister
equivalence. We call virtual braid diagram an element of this group.

Other equivalent definitions of virtual braid groups have been introduced for instance
in [10,47,78].
Remark 1.6.4. For n ≥ 1, the welded braid group WBn is a quotient of the virtual braid
group V Bn under the relation given by moves of type (F1).
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To every virtual braid diagram β we can associate a Gauss diagram with the following
construction. Let β be a strand diagram on n strands. The Gauss diagram associated to β,
denoted by G(β), is a Gauss diagram on n intervals satisfying the following properties:

1. for each strand of β there is an associated interval of G(β);

2. the endpoints of the arrows of G(β) correspond to the preimages of the classical
(positive and negative) crossings of β;

3. the order of the endpoints of the arrows on an interval of G(β) correspond to the
order that the preimages associated to the endpoints on the strand of β;

4. the arrows are pointing from the overpassing strand to the underpassing strand,
when considering the usual convention on strand diagrams of drawing a break on
the underpassing strand;

5. the permutation of G(β) corresponds to the permutation defined by β.

Remark 1.6.5. We remark that the Gauss diagram associated to a strand diagram has
pairwise distinct arrows, and each arrow connects different intervals. By reparametrizing
the intervals, the arrows can always be drawn to be vertical and at different t coordinates,
for t ∈ I, where t is the horizontal coordinate.

Definition 1.6.6. Gauss diagrams respecting the conditions given in Remark 1.6.5 are
called braid Gauss diagrams. Their set will be denoted by bGDn.

The following result is proved by Cisneros in [25]. We give an example in Figure 1.17.

Theorem 1.6.7 ( [25, Theorem 2.10]). The following statements hold:

(i) For each braid Gauss diagram g there exists a braid β ∈ Dn such that G(β) = g.

(ii) Given two virtual braids β1 and β2 in V Bn, G(β1) = G(β2) if and only if β1 and
β2 are virtual equivalent.

Sketch of proof. Part (i) is proved in [25, Lemma 2.11] with the data of an algorithm
that recovers a strand diagram from a braid Gauss diagram. We give the algorithm.
Point (ii) is proved verifying that movements (V 2), (V 3),and (M) do not change the
braid Gauss diagram associated to a strand diagram. We recall the algorithm.

Let g be a braid Gauss diagram, and A = {c1, . . . , ck} its set of arrows. Set a
parametrization of the intervals so that its arrows are vertical and at different parameters
t ∈ I. This induces an order in A given by ci < cj if pi < pj , where pi ∈ I is the endpoint
of ci. Label the crossings so that ci < cj if i < j

For j = 1, . . . , k let dj be the point ( j
k+1 ,

1
2) and consider the disk Dj centered in

dj and sufficiently small radius for the disks to be disjoint. Draw a crossing inside Dj

according to the sign of cj , and label the intersection of the crossing components with
the boundary of Dj as in Figure 1.16.

Let σ ∈ Sn be the permutation associated to g. Fix i ∈ {1, . . . , n}: to draw the i-th
strand of the strand diagram through the disks Dj , we consider the set Ai = {ci1 , . . . , cim}
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Dj when cj has a positive sign Dj + cj has a positive sign

dj(1)

dj(2)

dj
(2)

dj
(1)

dj(1)

dj(2)

dj
(2)

dj
(1)

Figure 1.16: How to label crossings in the disks Di when recovering a strand diagram
from a braid Gauss diagram.

of the arrows starting and ending on the i-th interval of the braid Gauss diagram. Then
for s = 0, . . . ,m we define points os and ts + 1 as follows:

1. the starting point of the i-th strand will be oi = ai, and the terminal point will be
tm+1 = bσ(i);

2. for l = 1, . . . ,m, let ol = (dil)(ε) and tl = (dil)(ε) where:

(i) if cil is a positive arrow starting, or a negative arrow ending at the i-th interval,
then ε = 2;

(ii) if cil is a negative arrow starting, or a positive arrow ending at the i-th interval,
then ε = 1.

Considering the double points outside the disks as virtual crossings, we have drawn a
strand diagram whose associated Gauss diagram is g as in Figure 1.17.

Defining equivalence relations on bGDn, Cisneros proves the existence of a bijection
between a quotient of bGDn and V Bn [25, Proposition 2.24]. This can be extended
to WBn, giving us the last isomorphism of this paper.

Definition 1.6.8. Let g and g′ be two Gauss diagrams. A Gauss embedding is an
embedding φ: g′ → g that sends each interval of g′ to a subinterval of g, and which sends
each arrow of g′ to an arrow of g respecting orientation and sign. Note that there is no
condition on the permutations associated to g and g′.

Definition 1.6.9. Two braid Gauss diagram are Reidemeister equivalent if they are
related by a finite sequence of moves (Ω2) and (Ω3) as in Figure 1.18. They are
wReidemeister equivalent if they are related by (Ω2), (Ω3), and Tail Commute moves
(TC) as in Figure 1.19. For n ≥ 1, the group of welded Gauss diagrams, denoted by wGn,
the group of equivalence classes of bGDn with respect to wReidemeister equivalence.

Remark 1.6.10. Performing one of the moves described in Definition 1.6.9 on a braid
Gauss diagram g means choosing a Gauss embedding in g of the braid Gauss diagram
depicted on one hand of the equivalences in Figures 1.18 and 1.19, and replacing it
with the braid Gauss diagram on the other hand. Since there is no condition on the
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Figure 1.17: From a braid Gauss diagram to a strand diagram.

permutation associated, when embedding a Gauss diagram, this means that in performing
the moves the strands can be vertically permuted.

The following result gives us an interpretation of LBn in terms of Gauss diagrams,
recalling that LBn is isomorphic to WBn.

ε −ε
(Ω2)

ε

ε

ε

(Ω3)
ε

ε ε

Figure 1.18: Equivalence moves on braid Gauss diagrams, where the ε is the sign of the
arrows.

Theorem 1.6.11. For n ≥ 1, there is a bijective correspondence between the group of
welded Gauss diagrams wGn and the welded braid group WBn.

Proof. By Theorem 1.6.7 we know that there is a bijective correspondence between
virtual equivalent braids and braid Gauss diagrams. Therefore we need to prove that if
two strand diagrams are related by a classical Reidemeister move (R2), (R3), or a welded
Reidemeister move (F1), then their braid Gauss diagram are wReidemeister equivalent
via moves (Ω2), (Ω3) and (TC), and viceversa.
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Moves (Ω1) and (Ω2) are treated in [25, Proposition 2.24]. Let β and β′ be two welded
braids that differ by an (F1) move, and suppose that the strands involved are a, b and c
in {1, . . . , n}. Then, up to isotopy, we can deform the two braids so that they coincide
outside of a portion of the braid diagram which only contains the involved crossings. In
this portion the diagrams look like in Figure 1.18, and the Gauss diagrams associated
differ by a (TC) move.

Let g and g′ be two Gauss diagrams and let a, b and c in {1, . . . , n} be pairwise
different. Assume they differ by a (TC) move. Then there exists a sub-portion of the
diagram that contains only the arrows involved in the (TC) move. For Theorem 1.6.7
there exists a strand diagram β that looks like the right or the left handside of move
(F1), in Figure 4.1. Performing a (F1) move on β, one obtains a strand diagram β′

whose associated braid Gauss diagram is g′.

ε1

ε2

ε1
(TC)

ε2

Figure 1.19: Tail Commute move where the εi are the signs of the arrows.

1.7 A historical note and other references

Loop braids have first been considered as motions of n unknotted, unlinked circles in R3,
as seen in Section 1.1, a notion that can be translated in terms of mapping classes. More
in detail, Fox and Neuwirth give in 1962 a new proof of the standard presentation of the
Artin braid groups Bn, in terms of fundamental groups of the spaces of configurations
of n unordered points in the plane. From this, the interpretation of braids as motions
on n points on a plane arises. The same year Dahm, in his Ph.D thesis [27], generalises
this concept defining the group of motions of a compact subspace N in a manifold M .
He applies this construction to a collection of n unknotted, unlinked circles in R3, and
proves the resulting mapping class groups to be isomorphic to particular subgroups of the
groups of automorphisms of the free group Aut(Fn). This result appears in [37]. Some
insight on the link between motion groups and mapping class groups can be found in
Bellingeri-Cattabriga’s work [17, Section 5].

In 1986 McCool [64] considers the subgroups of basis-conjugating automorphisms of
the groups Aut(Fn) and gives a presentation for them. We have seen in Section 1.3 that
these are isomorphic to the pure loop braid groups PLBn. A decade later Savushkina [73]
studies the groups of permutation-conjugacy automorphisms, isomorphic to the loop braid
groups LBn. She gives a presentation for these and investigates many properties of these
groups.

Loops braids are introduced then as welded braids, as defined by Fenn-Rimányi-
Rourke [30], in the form of a presented group, with diagrams representing its generators,
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and ten years later Baez-Crans-Wise [8] establish an isomorphism between the motion
groups of n non-flipping circles and the groups of welded braids.

More recently, in [21], we find an interpretation of these groups in terms of fundamental
groups of the configuration spaces of n unlinked Euclidean circles. About the topological
interpretation of loop braids in terms of braided ribbon tubes, one can find details in [46]:
this interpretation is also widely used in [5]. Finally, as explained in [10], they have also
an interpretation in terms of Gauss braid diagrams: a point of view that allows us to
consider the loop braid groups as quotients of the virtual braid groups.

Several computations and conjectures about the cohomology algebras of the pure
loop braid groups appear in the literature. Investigating the properties of these algebra,
for example in relation with resonance varieties and lower central series ranks, allows us
to compare the loop braid groups to the braid groups, and to other generalizations of the
braid groups. About this topic we refer to [26,43,75,77].

A word should be said about the theory of representations of the loop braid groups,
which appears to be an upcoming topic. Burau representation extends trivially to loop
braid groups using Magnus expansion and Fox derivatives [14], however it is still unknown
if the loop braid groups are linear. Some new results on local representations of loop
braid groups, rising as extensions of braid groups representations, can be found in [45]
and [22]. However the study of finite dimensional quotients of algebras of loop braid
groups is yet to be found in the literature. In [45] the authors show interest also in
certain remarkable quotients of loop braid groups, the symmetric loop braid groups (also
known as unrestricted virtual braid groups [53]). We will discuss the structure of these
groups in Chapter 4, along with giving some applications to fused links.





Chapter 2

Towards a topological Markov’s
theorem for loop braids

In this chapter we consider loop braids as ribbon braids (Theorem 1.4.11), and their
relationship with ribbon torus-links. This is the beginning of the adaptation of a classical
result of braid theory: Markov’s theorem. This theorem states that two braids (possibly
with different numbers of strings) have isotopic closures in the R3 if and only if one can
be obtained from the other with a finite number of Markov moves, called conjugation and
stabilization. This theorem allows us to describe all braids with isotopic closures as knots
in R3. In the classical case many proofs are known: some of them are combinatorial,
other topological, and these last ones use all of the isomorphisms among the different
definitions of braid groups. Concerning loop braids seen as welded braid diagrams, a
combinatorial proof of this theorem can be found in [47]. We prove here a version of
Markov’s theorem for loop braids with closure in a solid torus in R4.

2.1 Ribbon torus-links

We introduce some notions from knot theory of 2-dimensional objects in the 4-dimensional
space, for which classical references are [46,54]. In particular we define ribbon torus-knots
and links, introduced under this name in [81].

Definition 2.1.1. A geometric ribbon torus-knot is an embedded oriented torus S1×S1 ⊂
R4 which is fillable, in the sense that it bounds a ribbon torus, i.e., an oriented immersed
solid torus D2×S1 ⊂ R4 whose singular points consist in a finite number of ribbon disks.
We denote RK the set of ribbon torus-knots, equivalence classes of geometric ribbon
torus-knots defined up to ambient isotopy.

Remark 2.1.2. Wens (Remark 1.4.3) can appear on portions of a ribbon knot, but since
all ribbon disk ends can be oriented coherently using the co-orientation, there are an
even number of them on each component and, they cancel pairwise, as proven in [4].
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Definition 2.1.3. A geometric ribbon torus-link with n components is the embedding
of a disjoint union of n oriented fillable tori. The set of ribbon torus-links is the set of
equivalence classes of geometric ribbon torus-knots defined up to ambient isotopy. We
denote it by RL.

2.1.1 Welded diagrams and broken surfaces for ribbon torus-links

In Chapter 1 we described ribbon braids with two kind of projections: a 2-dimensional
diagrammatical representation through welded diagrams and a 3-dimensional representa-
tion through broken surfaces. Here we do the same thing for ribbon torus-links, starting
from welded links. We recall that welded braids were introduced in Section 1.5.1.

Definition 2.1.4. A strand link diagram is the immersion in R2 of a collection of disjoint,
closed, oriented 1-manifolds such that all multiple points are transverse double points.
Double points are decorated with the following information: they can be classical positive,
classical negative or welded as in Figure 1.3. We assume that strand link diagrams are
the same if they are isotopic in R2.

Definition 2.1.5. A welded link is an equivalence class of strand link diagrams under the
equivalence relation given by planar isotopy, moves from Definition 1.5.2, and by classical
and virtual Reidemeister moves of type I (Figure 2.1). This equivalence relation is called
welded isotopy. We denote classes by representatives. Moreover we denote by WL the
set of welded links.

(V 1)(R1)

Figure 2.1: Reidemeister moves of type I.

In a parallel fashion with respect to Section 1.5.2, we introduce broken surfaces for
ribbon torus-links.

Definition 2.1.6. A broken torus diagram is a torus immersed in R3 whose singular set
is a finite number of transverse singular circles, each of which is equipped with an order
on its two preimages (Definition 1.5.4). A symmetric broken torus diagram comes with
an obvious solid torus filling which is naturally oriented by the ambient space.

As in the ribbon braids case, two broken surface diagrams will be considered equivalent
if they differ by one of the braid-like broken Reidemeister moves (Figure 1.10), or by the
type I move (Figure 2.2).

The Tube map defined locally in Definition 1.5.8 can be applied also to welded links.
On link-like objects there is no result stating that the map is an isomorphism, however,
passing through broken tori diagrams, we have the following result:
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Figure 2.2: Broken Reidemeister move of type I.

Proposition 2.1.7 ( [4, Proposition 2.5]). The map Tube:WL → RL is a well-defined
surjective map.

A proof and a detailed disquisition on the question of the Tube map injectivity can
also be found in [4].

2.2 Closed ribbon braids in V = B3 × S1

We introduce a particular kind of ribbon torus-links in B3 × S1.

Definition 2.2.1. A torus-link L in V = B3 × S1 is called a closed n-ribbon braid with
n ≥ 1 if L meets each ball B3 × {t}, t ∈ S1 transversely in n circles.

Remark 2.2.2. Two closed ribbon braids in V are isotopic if they are isotopic as oriented
torus-links. This implies that the tubes don’t necessarily stay transverse to the lamination
during the isotopy.
Remark 2.2.3. In general a torus-link in V is not isotopic to a closed ribbon braid in V .
For instance a torus link lying inside a small 4-ball in V is never isotopic to a closed
braid.

Definition 2.2.4. Given an n-ribbon braid β, its tube closure is the ribbon torus-knot
β̂ obtained by gluing a copy of the trivial ribbon braid U along β, identifying the pair
(B3 × {0}, ∂0β) with (B3 × {1}, ∂1U) and (B3 × {1}, ∂1β) with (B3 × {0}, ∂0U).

A welded link diagram for β̂ in S1 × I is obtained by closing a diagram for β (see
Figure 2.3).

β

Figure 2.3: Closure of a welded braid diagram.
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2.3 Conjugation: result in the analogous of the solid torus

In classical braid theory closed braids in the solid torus are classified up to isotopy by
the conjugacy classes of braids in Bn. We give here a classification of this kind for
closed ribbon braids: their closures will be classified, up to isotopy in B3 × S1, by the
conjugacy classes of the ribbon braids in the extended ribbon braid group. To do this
we use the isomorphism between rBext

n and the group of extended loop braids LBext
n

(Theorem 1.4.18), and the isomorphism between LBext
n and the extended permutation-

conjugation group PC∗n (Theorem 1.3.1). The proof is inspired by the one given for the
classical case in [51], which follows in turn [76].

Theorem 2.3.1. Let n ≥ 1 and β, β′ ∈ rBn a pair of ribbon braids. The closed ribbon
braids β̂, β̂′ are isotopic in B3 × S1 if and only if β and β′ are conjugate in rBext

n .

Proof. We begin with the "if" part. Suppose first the case that β and β′ are conjugate
in rBn. We recall that rBn is isomorphic to the group of welded braid diagrams WBn.
We call with the same name an element in rBn and its image inWBn. Conjugate elements
of WBn give rise to isotopic closed welded braid diagrams, which correspond to isotopic
closed braids. This means that, since β and β′ are conjugate in WBn, β′ = αβα−1 with
α ∈WBn, and we have that α̂βα−1 = β̂. To see this, it is enough to stack the diagrams
of α, β and α−1, close the composed welded braid diagram, and push the upper diagram
representing α along the parallel strands until α and α−1 are stacked one next to the
other at the bottom of the diagram.

Consider now the case that β and β′ are conjugate in rBext
n . This means that

β′ = αβα−1 with α ∈ rBext
n . Then passing throught the isomorphism between rBext

n

and WBext
n , we have that α is in WBext

n : doing the same operation of stacking the
diagrams, closing them and pushing α along the strands, one has α̂βα−1 = β̂.

Let us now prove the converse, which is: any pair of ribbon braids with isotopic
closures in V = B3×S1 are conjugate in rBext

n . Passing through the isomorphism between
rBn and PCn, and rBext

n and PC∗n, it will be enough to prove the following: any pair of
ribbon braids with isotopic closures in V = B3 × S1 have associated automorphisms of
PCn that are conjugate in PC∗n. Set V = B3 × R. Considering the cartesian product of
(B3, idB3) and the universal covering (R, p) of S1 given by

p:R −→ S1

t 7 −→ exp(2πit)

we obtain a universal covering (V , idB3×p) of V . Denote by T the covering transformation

T :V −→ V

(x, t) 7 −→ (x, t+ 1)

for all x ∈ B3 and t ∈ R. If L is a closed n-ribbon braid in V , then its preimage L ⊂ V
is a 2-dimensional manifold meeting each 3-ball B3 × {t}, for t ∈ R, transversely in n
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disjoint pairwise unlinked circles. This implies that L consists of n fillable components
homeomorphic to S1 × R.

Being L a closed ribbon braid, we can present it as a closure of a geometric ribbon
braid b ⊂ B4 = B3 × I where we identify ∂0B

4 with ∂1B
4. Then L = ⋃

m∈Z T
m(b), i.e.,

we can see L as a tiling of an infinite number of copies of b.
For n ≥ 1, let C = (C1, . . . , Cn) be a family of n disjoint, pairwise unlinked, euclidean

circles in B̊3, lying on parallel planes. We consider a parametrization for b, i.e., a
family {αt:B3 → B3}t∈I such that α0(C) = C, α1 = idB3 , all αt fix ∂B3 pointwise,
and b = ⋃

t∈I(αt(C), t) (see Lemma 1.4.12).
We take the self-homeomorphism of V = B3 × R given by

(x, t) 7 −→ (αt−btcα
−btc
0 (x), t)

where x ∈ B3, t ∈ R, and btc is the greatest integer less than or equal to t. This
homeomorphism fixes ∂V = S2×R pointwise and sends C ×R onto L, see Figure 2.4 for
an intuitive (although necessarily imprecise) idea.

b

b

∼=

b

b

Figure 2.4: A homeomorphism between (B3 × R, C × R) and (B3 × R, L).

The induced homeomorphism (B3\C)×R ∼= V \L shows that B3\C = (B3\C)×{0} ⊂
V \L is a deformation retract of V \L. Pick a point d ∈ ∂0B

4 = B3 and set d = (d, 0) ∈ V ;
them the inclusion homomorphism

i:π1(B3 \ C, d) −→ π1(V \ L, d)

is an isomorphism.
By definition the image of d by the covering transformation T is T (d) = (d, 1); the

covering transformation T restricted to V \ L induces an isomorphism π1(V \ L, d) →
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π1(V \ L, T (d)). Let T∗ be the composition of this isomorphism with the isomorphism
π1(V \L, T (d))→ π1(V \L, d) obtained by conjugating the loops by the path d× [0, 1] ⊂
∂B3 × R ⊂ V \ L. Then T∗ is an automorphism of π1(V \ L, d). Therefore the following
diagram commutes:

π1(B3 \ C, d) i−−−−→ π1(V \ L, d)

β̃

y yT∗
π1(B3 \ C, d) i−−−−→ π1(V \ L, d)

where β̃ is the automorphism induced by the restriction of α0 to B3 \C. The isomorphism
between rBn and MCG(B3, C) allows us to send the ribbon braid β, represented by b,
to the isotopy class of α0.

Identifying π1(B3 \ C, d) with the free group Fn with generators x1, x2, . . . , xn, we
conclude that the automorphism β̃ is equal to ν(b), where ν: rBn → BPn is the isomor-
phism between the group of ribbon braids rBn and BPn, the braid-permutation subgroup
of Aut(Fn) (see Remark 1.3.5). Then it is the automorphism of Fn corresponding to β,
the ribbon braid class represented by b. Thus i−1T∗i = β̃.

Suppose now that β, β′ ∈ rBn are two ribbon braids with isotopic closures in V , and
that b and b′ ⊂ B4 = B3 × I are two geometric ribbon braids that represent them. Let L
and L′ ⊂ V = B3 × S1 be their respective closures.

Then there is a homeomorphism g:V → V such that g maps L onto L′, preserving
their canonical orientation along the annuli, but possibly reversing the orientation of
the circles at some instant (for example when Reideiester moves of type I occur (see
Remark 1.4.6). Note that a Reidemeister move of type I is isotopic to the composition
of two wens [4, Corollary 3.3], so globally the orientation of the circles at the starting
and ending time parameter is preserved). In fact the orientation of the ambient V is
preserved by g, but when considering a section B3×{t} the orientation of the circles can
be concordant or not concordant with the one induced by V . In addition the restriction
of g to ∂V is isotopic to the identity idV . This fact, plus the isomorphism of the map
induced by the inclusion π1(∂V ) = π1(S2×S1)→ π1(V ) = π1(B3×S1) ∼= Z implies that
g induces an identity automorphism of π1(V ). Therefore g lifts to a homeomorphism
g:V → V such that g is isotopic to the identity on ∂V , gT = Tg, and g(L) = L′.

Hence g induces an isomorphism

g∗:π1(V \ L, d) −→ π1(V \ L′, d)

commuting with T∗. The following diagram commutes:

π1(B3 \ C, d) i−−−−→ π1(V \ L, d)
ϕ
y yg∗

π1(B3 \ C, d) i′−−−−→ π1(V \ L′, d).

Consider the automorphism ϕ = (i′)−1g∗i of Fn = π1(B3 \ C, d), where:

i:π1(B3 \ C, d) −→ π1(V \ L, d) and
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i′:π1(B3 \ C, d) −→ π1(V \ L′, d)

are the inclusion isomorphisms.
Applying the same arguments to β′, we have β̃′ = (i′)−1T∗i

′, and from the preceding
commutative diagram we have:

ϕβ̃ϕ−1 = ((i′)−1g∗i) (i−1T∗i) (i−1g∗
−1i′) = (i′)−1T∗i

′ = β̃′

We claim that ϕ is an element of the subgroup of Aut(Fn) consisting of all auto-
morphisms of the form xi 7→ qix

±1
j(i)q

−1
i , where i = 1, . . . , n, j(i) is some permutation of

the numbers 1, . . . , n, and qi a word in x1, . . . , xn. Then the isomorphism between this
subgroup and rBext

n ([37]) implies that β and β′ are conjugate in rBext
n .

We prove this claim. The conjugacy classes of the generators x1, x2, . . . , xn in Fn =
π1(B3 \ C, d) are represented by loops encircling the circles Ci. The inclusion B3 \ C =
(B3 \ C) × {0} ⊂ V \ L maps these loops to some loops in V \ L encircling at each
parameter t the rings that form the components of L. The homeomorphism g:V → V
transforms these loops into loops in V \ L′ encircling the components of L′. The latter
represent the conjugacy classes of the images of x1, . . . , xn under the inclusion B3 \ C =
(B3 \ C)× {0} ⊂ V \ L′.

The automorphism ϕ transforms the conjugacy classes of x1, . . . , xn into themselves,
up to permutation and orientation changes. This verifies the condition. The possible
orientation changes are due to the fact that the isotopy of closed braid is not monotone
with respect to the time parameter as ribbon braid isotopy is, thus Reidemeister moves of
type I can occur. Note that a Reidemeister move of type I is isotopic to the composition
of two wens [4, Corollary 3.3].

When one ribbon braid is a conjugate in rBext
n of another ribbon braid, we can

describe its form.

Lemma 2.3.2. Let n ≥ 1 and β, β′ ∈ rBn a pair of ribbon braids. They are conjugates
in rBext

n if and only if β′ = πταβα
−1π−1

τ , where πτ only composed by wens. Equivalently,
πτ is represented by a word in the τi generators of presentation (1.5), and α ∈ rBn.

Proof. Take β and β′ in rBn conjugate by an element in rBext
n . Then there exists an

element γ in rBext
n such that β = γβ′γ−1. Consider γ as an element of the configuration

space of n circles Rn. We can use relations from presentation (1.5) to push to the right
of the word the generators τi, to obtain an equivalent element γ′ = πτα, where πτ is a
word in the τis and α only contains generators σi and ρi. This means that α is in fact an
element of rBn. Finally, when considering γ−1 for the conjugacy, we remark that π−1

τ is
just the mirror image word of πτ .

The proof of Theorem 2.3.1 adapts to the extended loop braid group with the following
statement:

Theorem 2.3.3. Let n ≥ 1 and β, β′ ∈ rBext
n a pair of ribbon braids. The closed

extended ribbon braids β̂, β̂′ are isotopic in B3 × S1 if and only if β and β′ are conjugate
as elements in rBext

n .
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Here closed extended ribbon braids are realised by tube closure (Definition 2.2.4)
demanding that the orientation on the border components of the annuli is coherent.
Remark 2.3.4. Although loop braids appear to be more present in literature, it is extended
loop braids that allow us to have a result analogous to the one we have in the classical
case. This could be expected, since wens are natural phenomena in R4, suggesting that
not considering them as allowed movements is not the most natural choice.
Remark 2.3.5. We remark that a change of orientation of the ambient space does not
affect the lamination. So we have that the result holds if we replace V = B3 × S1 with
the solid Klein bottle.

2.4 Stabilisation: further developments
To extend the result in R4, outside the solid torus, we shall prove the invariance of
the isotopy class of a closed (extended) ribbon braid under the operation known as
stabilisation on (extended) ribbon braids.

To follow the approach of [51] would mean to use the diagrammatic description of
loop braids given by [54]. However this would not cast a light on the topological structure.
Besides, it shall be noted that for welded braid diagrams and welded links there already
is a combinatorial version of Markov’s theorem, due to Kamada [47]. So in my future
plans I will consider Bennequin’s proof and use contact structures to prove a complete
topological version of Markov’s theorem for loop braids and extended loop braids.



Chapter 3

Alexander invariants for ribbon
tangles

In this chapter we discuss an expanded version of a joint work with Vincent Florens [29].
After considering ribbon braids in Section 1.4 and ribbon torus-links in Section 2.1,
we introduce here ribbon tangles. These are proper embeddings of disjoint tori and
annuli in the ball B4, whose singular sets are finite numbers of ribbon disks as in
Definition 1.4.1. The intersection of a ribbon tangle T and ∂B4 = S3 is a trivial
link L. For a given free abelian group G, ribbon tangles are colored with a group
homomorphism ϕ:H1(B4 \ T )→ G.

We construct an Alexander invariant A of colored ribbon tangles, lying in the exterior
algebra of the homology Z[G]-module Hϕ

1 (S3 \ L), twisted by the morphism induced
by ϕ, see Definition 3.1.5. This invariant corresponds to the Alexander polynomial
of long ribbon torus-knots when applied to ribbon tangles with only two boundary
components, see Proposition 3.1.9. The construction of A is based on the Alexander
function introduced by Lescop [59]. The proof of the invariance and the main properties
follow from algebraic and homological arguments developed in a paper by the second
author and Massuyeau [33].

Colored ribbon tangles can be split into morphisms in a category RibG. We show
that the invariant A induces a functor from RibG to the category of Z[G]-graded modules,
see Theorem 3.1.19. In the case of ribbon braids, this functor coincides with the exterior
powers of the ad-hoc colored Burau-Gassner representation, multiplied by a certain
relative Alexander polynomial, see Proposition 3.1.17.

The multiplicativity of A naturally fits in the context of circuit algebras, an extension
of the planar algebras introduced by Jones [44]. We construct a circuit algebra CobG
over the colored ball cobordisms circuit operad, see Theorem 3.2.9. Ball cobordisms
are smooth cylinders in B4 with a finite collection of disjoint internal balls removed,
and the compositions are given by identification of some boundary components. We
observe that ball cobordisms act on ribbon tangles and that A commutes with this action,
see Theorem 3.2.10.

As we have seen in Sections 1.5 and 2.1, ribbon knotted objects admit representations
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through broken surfaces and welded diagrams. This offers two perspectives: ribbon
knotted objects provide topological realizations of welded diagrams, and diagrams al-
low combinatorial computations of invariants of ribbon knotted objects. Moreover, a
presentation of the group of ribbon knotted objects is obtained from the diagrams by a
Wirtinger type algorithm, see [5].

We give a diagrammatic description of the invariant A (Theorem 3.3.6) and show
that it extends the multivariable Alexander polynomial of virtual tangles developed
by Archibald [2]. For further details on these objects see also [12, 68]. The circuit
algebra CobG appears as a topological incarnation of a circuit algebra of diagrams Weldµ.
The compatibility of A with these structures allows local calculations on the diagrams. If
the diagrams do not have any welded crossing, the construction holds for usual knotted
objects, and we obtain a purely local description of the usual Alexander polynomial. This
extends the construction of the Alexander representation by Bigelow, Cattabriga, and
Florens [19].

Our construction arises in the context of defining generalizations of Alexander polyno-
mials to tangle-like objects. The literature about this topic includes: [19] concerning usual
tangles, the works of Archibald [2] and Polyak [68] concerning virtual tangles, the works of
Cimasoni and Turaev [24] that use Lagrangian categories, Bigelow [18] and Kennedy [56]
who studied diagrammatical invariants of usual tangles, Sartori [70], who defined quantum
invariants of framed tangles, and Zibrowius [85]. This last one in particular defines an
invariant for usual tangles which consists of a finite set of Laurent polynomials, and
states, without explicit calculation, that on usual tangles one can calculate Archibald’s
invariant from his set of invariants, and vice versa. However, nothing seems to appear in
the literature about the 4-dimensional case of ribbon tangles.

In Section 3.1 we recall the definitions of ribbon tangles and construct the invariant A.
Section 3.2 is devoted to the circuit algebra CobG over the ball cobordisms circuit operad,
and the properties of A with respect to the action of ball cobordisms on ribbon tangles.
In Section 3.3 we describe the diagrammatic construction of A and a circuit algebra
Weldµ related to CobG. In Section 3.4 we compute some examples.

3.1 The Alexander invariant A

In this section G is a free abelian group, and R is the group ring Z[G].

3.1.1 Ribbon tangles

We use notations from Section 1.4.

Definition 3.1.1. Let L be an oriented trivial link with 2n components in S3 = ∂B4.
Consider A1, . . . , An disjoint copies of the oriented annulus S1×I and E1, . . . , Em disjoint
copies of the torus S1 × S1. A ribbon tangle T is a locally flat proper immersion in B4

T = (
⊔

i∈{1,...,n}
Ai) t (

⊔
i∈{1,...,m}

Ei)
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satisfying the following properties:

1. For j = 1, . . . ,m there exist locally flat immersed solid tori Fj such that ∂Fj = Ej .

2. The oriented boundary of each annulus ∂Ai is the disjoint union of two components
of L. Moreover the orientation induced by Ai on ∂Ai coincides with the orientation
of the two components of L.

3. There exist n locally flat immersed 3-balls Bi ' B2 × I such that, for all i ∈
{1, . . . , n}:

∂Bi = Ai ∪∂ (B2 × {0, 1}).

4. The singular set of the fillings Bi and Fj is composed by a finite number of ribbon
disks.

A G-colored ribbon tangle is a pair (T, ϕ) where T is a ribbon tangle with comple-
ment XT = B4 \ T , equipped with a group homomorphism ϕ:H1(XT )→ G.

3.1.2 Definition of the Alexander invariant A

Let (X,Y ) be a pair of topological spaces. Denote by p: X̂ → X the maximal abelian
cover. For a ring homomorphism ϕ:Z[H1(X)]→ R, we define the twisted chain complex

Cϕ(X,Y ) = C(X̂, p−1(Y ))⊗Z[H1(X)] R

whose homology is denoted by Hϕ
∗ (X,Y ;R), or simply Hϕ

∗ (X,Y ).
Let (T, ϕ) be a G-colored ribbon tangle. The homomorphism ϕ extends to a ring

homomorphism ϕ:Z[H1(XT )]→ R. For the rest of this section, we set H = Hϕ
1 (XT , ∗).

Proposition 3.1.2. The R-module H admits a presentation with deficiency n.

We postpone the proof of Proposition 3.1.2 to the end of Section 3.3.1. Consider a
presentation of H of the form

H = 〈γ1, . . . , γn+q | r1, . . . , rq〉.

Let Γ be the free R-module generated by 〈γ1, . . . , γn+q〉. The relators {r1, . . . , rq} are
words in these generators in Γ. Let us denote by r = r1 ∧ · · · ∧ rq and γ = γ1 ∧ · · · ∧ γn+q.

Definition 3.1.3. The Alexander function AϕT :∧nH → R is the R-linear application
defined by

r ∧ ũ = AϕT (u) · γ

for all u = u1 ∧ · · · ∧ un ∈ ∧nH, where ũ1, · · · , ũn are arbitrary lifts in Γ of u1, · · · , un,
and ũ = ũ1 ∧ · · · ∧ ũn. Different n-deficient presentations will give rise to Alexander
functions that differ only by multiplication by a unit in R. Note that if H is free of
rank n, then AϕT is a volume form.



72 Chapter 3. Alexander invariants for ribbon tangles

To understand how the Alexander function is concretely computed, let us consider the
q × (q + n)-matrix defined by the presentation of H. If one adds to this matrix the row
vectors giving u1, . . . , un in the generators {γ1, . . . , γq+n}, then AϕT (u) is the determinant
of the resulting (q + n)× (q + n)-matrix.

Example 3.1.4. Take G to be the free abelian group of rank 2 generated by t1 and t2.
Consider the module H, associated to some ribbon tangle T , whose presentation has
generators {γ1, . . . , γ4} and two relations given by the matrix(

−1 0 1 0
0 −1 1− t1 t2

)
.

Then H admits a presentation of deficiency 2. To determine the Alexander function AT ,
one needs to compute its values on a chosen basis for ∧2H. Let us consider the basis {γ1∧
γ2, γ1 ∧ γ3, . . . , γ3 ∧ γ4}.

The values of the Alexander function A:∧2H → R are computed by adding to
the presentation matrix the lines corresponding to the considered generator in terms
of {γ1, . . . , γ4}, and then computing the determinant.

Take first (γ1 ∧ γ2). Then we have:

AT (γ1 ∧ γ2) = det


−1 0 1 0
0 −1 1− t1 t2
1 0 0 0
0 1 0 0

 = t2

We remark that adding the lines corresponding to the element γ1 ∧ γ2 in terms
of {γ1, . . . , γ4} is the same as considering the minor of the presentation matrix obtained
removing the columns corresponding to γ1 and γ2. Carrying on the computation on the
other elements of the basis, one obtains

AT (γ1 ∧ γ3) = 0, AT (γ1 ∧ γ4) = 1,
AT (γ2 ∧ γ3) = −t2, AT (γ2 ∧ γ4) = t1 − 1, AT (γ3 ∧ γ4) = 1.

Recall that ∂T = L. Let H∂ = Hϕ
1 (S3 \ L, ∗), which is the free R-module of

rank 2n, generated by the meridians of L. Let m∂ :H∂ → H be induced by the inclusion
map S3\L ↪→ XT . For short, for a given z ∈ ∧nH∂ , we use the notationm∂z for ∧nm∂(z).

Definition 3.1.5. The element A(T, ϕ) of ∧nH∂ is defined by the following property:

∀z ∈ ∧nH∂ , AϕT (m∂z) = ω∂(A(T, ϕ) ∧ z) (3.1)

where ω∂ is a volume form on H∂ .

By construction of A we have the following.

Proposition 3.1.6. Let (T, ϕ) be a colored ribbon tangle. Then A(T, ϕ) is a colored
isotopy invariant.

Remark 3.1.7. The Alexander invariant A is defined up to a unit of R because it depends
on the choice of the presentation matrix used to compute the Alexander function AϕT .
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3.1.3 The Alexander polynomial of a (1− 1)-ribbon tangle

Given a finitely generated R-module H, and k ≥ 0, the k-th Alexander polynomial of H
is the greatest common divisor of all minors of order (m− k) in a (q ×m) presentation
matrix of H. This invariant of H, denoted by ∆k(H) ∈ R, is defined up to multiplication
by a unit of R.

Definition 3.1.8. The Alexander polynomial ∆ϕ(T ) ∈ R of a G-colored ribbon tangle
(T, ϕ) is ∆0 (Hϕ

1 (XT )).

Similarly to classical knot theory, T is a (1 − 1)-ribbon tangle if n, the number of
embedded annuli, is equal to 1. The components of T in B4 consist of m tori and a
cylinder whose boundary is a 2-component trivial link L in S3 = ∂B4. Let x1 and x2 be
the meridians of the components of L. Note that in XT , both x1 and −x2 are homologous
to the meridian x of the cylinder. We use the same notations x1 and x2 for the homology
classes of their lifts in Hϕ

1 (S3 \ L, ∗).

Proposition 3.1.9. Let (T, ϕ) be a G-colored (1− 1)-ribbon tangle, such that ϕ is not
trivial. Denote ϕ(x) by t, and let s be the rank of ϕ(H1(XT )) as Z[H1(XT )] module.
Then the element A(T, ϕ) of H∂ is given by

A(T, ϕ) =
{

(t− 1)∆ϕ(T ) · (x1 − x2) if s ≥ 2,
∆ϕ(T ) · (x1 − x2) if s = 1.

It is worth noticing that, up to a unit in R, the result is independent of the order
chosen on the components of L. For the reader’s convenience, we give a short proof of
Proposition 3.1.9. More detailed arguments can be found in [33, Section 3].

Proof. Denote Hϕ
1 (XT , ∗) by H. From the long exact sequence of the pair (XT , ∗):

0 −−−−→ Hϕ
1 (XT ) −−−−→ H −−−−→ Hϕ

0 (∗) −−−−→ Hϕ
0 (XT ) −−−−→ 0

we deduce that TorsHϕ
1 (XT ) ' TorsH. Moreover, rkH = rkHϕ

1 (XT )+1. This implies
that

∆ϕ(T ) = ∆1(H).

Let A be the matrix of a presentation of H = 〈γ1, . . . , γq+1 | r1, . . . , rq〉, and Aϕ be the
related Alexander function. We have

∀z1, . . . , zq+1 ∈ R, Aϕ(z1γ1 + · · ·+ zq+1γq+1) =
q+1∑
i=1

det(Ai)zi,

where Ai is A with the i-th column removed. Hence,

∆1(H) = gcdAϕ(H) = gcd{Aϕ(h) : h ∈ H}.

If Aϕ = 0, then ∆ϕ(T ) = 0, and the result holds trivially. Consider now the connecting
homomorphism ∂∗:H → Hϕ

0 (∗) ' R. If Aϕ 6= 0, then rank (H) = 1 and any two linear
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maps H ⊗R QR→ QR are linearly dependent, where QR is the fraction field of R. Then
there exist elements P,Q in R such that for each h ∈ H, Aϕ(h) = (P/Q)∂∗(h). Hence

Aϕ(h) = ∆ϕ(T ) · ∂∗(h)
gcd ∂∗(H) .

For a loop γ based in ∗ with lift γ̂, one has ∂∗γ̂ = ϕ(γ)− 1. Hence, gcd ∂∗(H) is equal to
1 if s ≥ 2 and is equal to t− 1 if s = 1. We deduce that for all h ∈ H

Aϕ(h) =
{

(t− 1)∆ϕ(T ) if s ≥ 2,
∆ϕ(T ) if s = 1.

Let ω∂ be the volume form on H∂ relative to the choice of the meridians x1, x2. By
definition, A(T, ϕ) verifies AϕT (m∂z) = ω∂(A(T, ϕ) ∧ z). Since m∂(x1) = x and m∂(x2) =
−x, we obtain the result from

Aϕ(x) = ω∂(A(T, ϕ) ∧ x1) = −ω∂(A(T, ϕ) ∧ x2).

3.1.4 The Burau functor

We begin with defining ribbon cobordisms. We recall we are using notations from
Section 1.4.

Definition 3.1.10. Let L0 and L1 be two trivial links respectively in ∂0B
4 and ∂1B

4,
of n0 and n1 components. Assign to each link a sequence of signs ε0 and ε1, of respective
lengths n0 and n1. A ribbon cobordism from ε0 to ε1 is a collection S of ribbon annuli and
tori in B4 ' B3 × I whose boundaries are the components of L0 and L1, with according
signs. Two cobordisms are equivalent if there is an ambient isotopy fixing the boundary
circles L0 and L1. The degree of the ribbon cobordism S is δ = (n1 − n0)/2.

We can now introduce the category of ribbon cobordisms.

Definition 3.1.11. The category Rib of ribbon cobordisms is the category whose:

– objects are sequences ε of signs ±1 of length n, and correspond to trivial links with
n components in B3, such that a sign is affected to each component;

– morphisms ε0 → ε1 are the equivalence classes of ribbon cobordisms between two
trivial links L0 and L1.

The composition S ◦S′ of two ribbon cobordisms S and S′ in Rib is defined by identifying
(B3 × {1}, S′) to (B3 × {0}, S), when components and signs are compatible.

The category Rib can be refined to the category of colored ribbon cobordisms.

Definition 3.1.12. Let us consider a homomorphism ϕ:H1(B3 \L)→ G. The category
RibG of colored ribbon cobordisms is the category whose:
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– objects are pairs (ε, ϕ), where ε is like in Definition 3.1.11.

– morphisms (ε0, ϕ0)→ (ε1, ϕ1) are pairs (S, ϕ) such that S is like in Definition 3.1.11,
and ϕ is such that, for i = 0, 1:

ϕ ◦mi = ϕi

where the maps mi are induced by the inclusions XLi ↪→ XS , XLi = (B3×{i}) \Li
and XS = (B3 × I) \ S.

Composition of colored ribbon cobordisms is defined as in Definition 3.1.11, with the
added condition of the morphisms being composable.

Let grModG be the category of Z-graded R-modules, whose morphisms are graded
R-linear maps of arbitrary degree, up to multiplication by an element of ±G. We define
a map

ρ:RibG −→ grModG

that we will prove to be a functor, and will be called Burau functor. Given a trivial link
L with n components in the interior of B3, and a homomorphism ϕ:H1(B3 \L)→ G, we
denote by M the free R-module of Hϕ

1 (XL, ∗;R), of rank n. In particular, taken L0 and
L1 as before on ∂0B

4 and ∂1B
4, we denote by M0 the free R-module Hϕ0

1 (XL0 , ∗0;R)
of rank n0, and by M1 the free R-module Hϕ1

1 (XL1 , ∗1;R) of rank n1, where ∗0 and ∗1
are base points respectively in ∂B3 × {0} and in ∂B3 × {1}. Let J be the interval in
∂B3 × I, which connects the base points of the bottom and top balls ∂0B

4 and ∂1B
4.

We consider the R-module Hϕ
1 (XS , J ;R). Remark that by Proposition 3.1.2, it admits a

presentation with deficiency d = (n0 + n1)/2.

Definition 3.1.13. The map ρ:RibG → grModG is defined by the following data. Let
(ε, ϕ) be an object of RibG, corresponding to a trivial link L. The image by ρ of (ε, ϕ) is

ρ(ε, ϕ) = ∧M
the exterior algebra of the free R-moduleM . Let us consider a morphism (S, ϕ): (ε0, ϕ0)→
(ε1, ϕ1). We associate to it a R-linear map

ρ(S, ϕ):∧M0 −→ ∧M1,

of degree δ as follows. Denote by AϕS the Alexander function ∧dHϕ
1 (XS , J ;R) → R.

For any integer k ≥ 0, the homomorphism ρk(S, ϕ)(x):∧kM0 → ∧k+δM1 is defined, for
any x ∈ ∧kM0, by the following property:

∀y ∈ ∧d−kM1, AϕS(∧km0(x) ∧ ∧d−km1(y)) = ω1 (ρ(S, ϕ)(x) ∧ y) ,

where ω1 is a volume form onM1. Then ρ(S, ϕ) = ⊕kρk(S, ϕ), defined up to multiplication
by a unit of R.

Theorem 3.1.14. The map ρ is a degree preserving functor RibG → grModG.

Proof. The proof of Theorem 3.1.14 follows word by word the proof of [33, Theorem
I]. Note that the deficiency of the presentation of Hϕ

1 (XS , J ;R) depends only on n0
and n1.
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An equivalent definition for the Burau functor

The Burau functor ρ can be equivalently defined in a more explicit way. Recall that M1
is free of rank n1. Then, choosing a generator w1, ∧n1M1 is isomorphic to Rw1. Fixed
such generator w1, for j ∈ {0, . . . , n1} consider the isomorphism

θj :∧jM1 −→ Hom(∧n1−jM1, R)

defined by w1(θj(x)(y)) = w1(x ∧ y) for any elements x ∈ ∧rM1 and y ∈ ∧n1−rM1.
Moreover recall that there exists a presentation of deficiency d = n1+n0

2 for the
R-module Hϕ

1 (XS , J ;R). For any k ∈ {0, . . . , d} the choice of generators γ for ∧d+qR
and r for ∧qR induce isomorphisms

AϕSk:∧
kHϕ

1 (XS , J ;R) −→ Hom (∧d−kHϕ
1 (XS , J ;R), R)

defined by (AϕSk(x)(y)) = AϕS(x ∧ y) for any elements x ∈ ∧kHϕ
1 (XS , J ;R) and y ∈

∧d−kHϕ
1 (XS , J ;R).

Then, for any integer k ≥ 0, the homomorphism ρk(S, ϕ)(x):∧kM0 → ∧k+δM1 is
defined by the composition

∧kM0
∧km0−−−−→ ∧kHϕ

1 (XS , J ;R)
AϕSk−−−−→ Hom(∧d−kHϕ

1 (XS , J ;R), R)
(∧d−km1)∗−−−−−−−→ Hom(∧d−kM1, R)

θ−1
k+δ−−−→ ∧k+δM1.

Remark 3.1.15. Let us follow an element u0 in ∧kM0 through the said composition,
to see how the various isomorphisms act on it. Consider a presentation matrix A for
the module Hϕ

1 (XS , J ;R) with deficiency d = n0+n1
2 . For some k ∈ {0, . . . , d}, take an

element u0 = u01 ∧ . . . ∧ u0k ∈ ∧kM0. To simplify notation, we call u0 its image by the
inclusion in ∧kHϕ

1 (XS , J ;R). The application AϕSk will send u0 to the sum of linear
application in Hom(∧d−kHϕ

1 (XS , J ;R), R) which take the elements yj of the chosen
basis of ∧d−kHϕ

1 (XS , J ;R) and send them to the value AϕS(u0 ∧ yj) of the Alexander
function of the wedge product of u0 and yj . As we remarked in Example 3.1.4,the
value AϕS(u0 ∧ yj) can be calculated using the presentation matrix A. First one has to
add the lines corresponding to u0 ∧ yj (or a reordering of their components if they do
not respect the order on the generating system of Hϕ

1 (XS , J ;R), eventually storing the
negative sign that can appear, that will be applied to the result). Then, having added
d rows with all 0 entries and one 1 entry, one has to compute the determinant. This is
equivalent to calculate A’s minor Aû0,yj obtained by removing the columns relative to
the entries u01 , . . . , u0k , yj1 , . . . , yjd−k . So we have that

∑
j∈{1,..., (d−k)(d−k−1)

2 }

AϕSk(u0)(yj) =
∑

j∈{1,..., (d−k)(d−k−1)
2 }

(−1)sjAû0,yj

where sj is the sign of the permutation of the indices of u01 , . . . , u0k , yj1 , . . . , yjd−k .
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Next step is the application induced by the inclusion ofM1 intoHϕ
1 (XS , J ;R). Writing

yj ∈ ∧d−kHϕ
1 (XS , J ;R) as m1(w) for some w ∈ ∧d−kM1, we have that u0 is sent to∑

w∈∧d−kM1

(−1)swAû0,w

where sw is the sign of the permutation of the indices of u01 , . . . , u0k , w1, . . . , wd−k. Finally,
considering θ−1

k+δ, we have that

ρk(u0) =
∑

w∈∧d−kM1

Aû,w ? (w)

where ? is the isomorphism ∧d−kM1 → ∧kM1 such that taken an ordered basis x1, . . . , xn1

for M1, ?(1) = x1∧ . . .∧xn1 , ?(x1∧ . . .∧xn1) = 1, ?(xi) = (−1)i−1x1∧ . . .∧ x̂i∧ . . .∧xn1

and in general ?(xl1 ∧ . . . ∧ xlj ) = (±1)xlj+1 ∧ . . . ∧ xjk+
where the sign (±1) depends on

the sign of the permutation (1, . . . , k+) → (l1, . . . , lk+). This isomorphism is called, in
other contexts, the Hodge dual of ∧d−kM1, see [65] for an exhaustive description.

A G-colored ribbon tube (S, ϕ) is a morphism such that the applications m0 and
m1 induced by the inclusions are isomorphisms in homology (with integer coefficients).
Ribbon tubes are analogous to string links [5]; the links L0 and L1 have the same number
of components, and S has no toric component. For a fixed ϕ, let us denote by Tϕ the set
of G-colored ribbon tubes. Following [57, Proposition 2.1], one proves that m0 and m1
induce isomorphisms

(mi)∗:Hϕ(XLi ;QR) −→ Hϕ(XS ;QR), for i = 0, 1

where QR is the quotient field of R. Set Hϕ to be Hϕ(XL0 ;QR) = Hϕ(XL1 ;QR).
Set L = L0 = L1. Both B3 × {0} \ L0 and B3 × {1} \ L1 are balls with n trivial links
removed, and are canonically identified via the homeomorphism (x, 0) → (x, 1). The
composition m−1

1 ◦m0 is an automorphism of Hϕ(XL;QR).

Definition 3.1.16. The colored Burau representation is the monoid homomorphism

rϕ: Tϕ −→ Aut(Hϕ).

Let us consider ∆ϕ(XT , XL) = ∆0 (Hϕ
1 (XT , XL;R)), the Alexander polynomial of

the pair (XT , XL), as defined in Section 3.1.3.

Proposition 3.1.17. For any G-colored ribbon tube (S, ϕ) ∈ Tϕ, we have

ρ(S, ϕ) = ∆ϕ(XT , XL) · ∧rϕ(S) :∧Hϕ −→ ∧Hϕ.

In the case of ribbon braids (which are monotone ribbon tubes), ∆ϕ(XT , XL) = 1
and ρ(S, ϕ) coincide with the exterior powers of rϕ(S). The proof of Proposition 3.1.17
can be obtained similarly to [33, Proposition 7.2], or in the monotone case, to [19, Section
3.1].

We see now how to obtain a morphism in the category of RibG as the splitting colored
ribbon tangle (T, ϕ).
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Definition 3.1.18. Let (T, ϕ) be a G-colored ribbon tangle in B4. Let L = L0∪L1 be a
splitting of L into two disjoint (trivial) links, and let B0 and B1 be two 3-balls such that

S3 = B0 ∪S2×{0} (S2 × [0; 1]) ∪S2×{1} B1

and Li ⊂ Bi for i = 1, 2. Let ϕi be induced by ϕ on H1(Bi \ Li), and εi be sequences
of signs according to the co-orientations of the components of T . Then the morphism
(T̃ , ϕ): (ε0, ϕ0)→ (ε1, ϕ1) is a splitting of (T, ϕ). Note that 2n = n0 + n1.

Theorem 3.1.19. Let (T, ϕ) be a G-colored ribbon tangle, and (T̃ , ϕ): (ε0, ϕ0)→ (ε1, ϕ1)
be a splitting of (T , ϕ) in RibG. There is an isomorphism, well-defined up to a unit in R,

∧nH∂ −→ HomR(∧M0,∧M1)

sending A(T, ϕ) to ⊕k(−1)k(n0−k)ρk(T̃ , ϕ), where ρk is the k-component of ρ.

An explicit example is given in Remark 3.4.1.

Proof. The decomposition H∂ = M0 ⊕M1 induces a natural isomorphism

∧nH∂ '
n⊕
k=0

(∧kM0 ⊗ ∧n−kM1).

The element A(T, ϕ) ∈ ∧nH∂ decomposes as ∑k Ak(T, ϕ), where Ak(T, ϕ) ∈ ∧kM0 ⊗
∧n−kM1. Suppose now that k is fixed; the element Ak(T, ϕ) might not be decomposable.
There exist a finite sequence of element Al0 ∈ ∧kM0 and Al1 ∈ ∧n−kM1 (depending on
k, and (T, ϕ)) such that Ak(T, ϕ) = ∑

lA
l
0 ⊗Al1. Let ω0 be a volume form ∧n0M0 → R.

There is an isomorphism

∧kM0 ⊗ ∧n−kM1 ' HomR(∧n0−kM0,∧n−kM1)

sending Ak(T, ϕ) to
x 7→

∑
l

ω0
(
x ∧Al0

)
·Al1.

We now show that this morphism coincides with ρn0−k(T̃ , ϕ). Let x ∈ ∧n0−kM0. Note
that we have n0 − k + δ = n − k and the morphism has degree δ. Consider a volume
form ω1:∧n1M1 → R and the sum ω∂ = ω0 ⊗ ω1:∧nH∂ → R. Let Aϕ be the Alexander
function related to a presentation of Hϕ

1 (XT , ∗;R) of deficiency n. Since m∂ = m0 ⊕m1
we have, for all y in ∧k+δM1,

Aϕ(∧n0−km0(x) ∧ ∧k+δm1(y)) = ω∂(A(T, ϕ) ∧ x ∧ y)
= ω∂(Ak(T, ϕ) ∧ x ∧ y)
=
∑
l

ω0(Al0 ∧ x) · ω1(Al1 ∧ y)

= ω1(
∑
l

ω0(Al0 ∧ x) ·Al1 ∧ y).

Hence ∑l ω0(x ∧Al0) ·Al1 = (−1)k(n0−k)ρn0−k(T̃ , ϕ)(x).
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3.2 The circuit algebra of colored ball cobordisms
In this section we introduce the circuit algebra CobG of ball cobordisms over the diffeo-
morphism classes of ball cobordisms in a 4-ball.Circuit algebras are algebraic structures
inspired by [44,68], see also [2, 56].

The literature about planar and circuit algebras borrows the categorical language
of operads. However, it does so in a non-categorical context, defining structures that
can be seen as having partial operad characteristics. For the definition of an operad in
a monoidal symmetric category we refer to [63]. We propose here a definition that fits
with our framework.

Definition 3.2.1. A circuit operad is a collection of objects C(j), for j ∈ N, and product
morphisms

γ: C(ji1)⊗ . . .⊗ C(jik) −→ C(
ik∑
l=i1

jl)

for ik ≥ 1 and ji ≥ 0 for all i ∈ {i1, . . . ik}. The product morphisms are compatible with
the composition of the objects, when composition is defined.

Example 3.2.2. Let HomG be the collection of R-multilinear applications of tensor
powers of R-modules, considered up to an element of ±G. Take the composition in
HomG to be the usual composition of maps. Then HomG is a circuit operad.

Definition 3.2.3. A ball cobordism consists of the following data:

• A 4-ball B = B0 and B1, . . . , Bp disjoint 4-balls in the interior of B. For every i ∈
{0, . . . , p}, let Li (with L = L0) be a trivial oriented link with 2ni (n = n0)
components in S3

i = ∂Bi (with S3 = S3
0).

• A disjoint union C of oriented locally flat proper embedded annuli in B\{B̊1, . . . B̊p},
whose boundary are the links Li, with the conditions of Definition 3.1.1 but without
singularities.

The complement XC of a ball cobordism is defined as B4 \ (C tB1, . . . tBp). Under
a certain condition on the borders, ball cobordisms can be composed.

Definition 3.2.4. Let C ′ and C ′′ be two cobordisms such that B′i is a ball of C ′
with n′i = n′′. The composition C ′ ◦i C ′′ is the cobordism obtained with the identification
of B′′ = B′′0 with B′i.

As in the previous section, G is a fixed free abelian group with group ring R. We can
define a colouring on a ball cobordism.

Definition 3.2.5. A G-colored ball cobordism is a pair (C,ϕ) where C is a ball cobordism
with complement XC , equipped with a group homomorphism ϕ:H1(XC)→ G.

Definition 3.2.6. The ball cobordism circuit operad CG is the collection of orientation-
preserving diffeomorphism classes of G-colored ball cobordisms with composition of
compatible ball cobordisms.
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We can give her our definition of circuit algebra.

Definition 3.2.7. A circuit algebra is a morphism of circuit operads.

In our context, we are interested in morphisms which take values in the circuit operad
HomG introduced in Example 3.2.2. Giving a circuit algebra structure is equivalent to
give the data of a sequence of R-modules {Ni}i∈N together with a representation

Φ: CG −→ HomG.

This means that to a ball cobordism C one associates a multilinear map

Φ(C):
p⊗
i=1

Ni −→ Nn

such that, taken two ball cobordisms C and D, we have the compatibility

Φ(C ◦D) = Φ(C) ◦ Φ(D)

where the composition on the left hand side is the composition from Definition 3.2.4, and
the composition on the right hand side is the usual composition of linear maps.
Remark 3.2.8. We recall a construction that we used in the previous sections. Let (L,ψ) be
a G-colored oriented trivial link with k components in S3 = ∂B4, with complement XL =
S3 \ L. The group homomorphism ψ:H1(S3 \ L) → G induces a ring homomorphism
denoted by ψ:Z[H1(S3 \ L)] → R too. Let ∗ be a base point on S3. The R-module
Hψ

1 (S3 \ L, ∗;R) is free of rank k, generated by the meridians of L.
We construct the circuit algebra CobG. Let (C,ϕ) be a G-colored ball cobordism,

with complement XC . Let ∗ be again a base point in S3 = ∂B4. For i = 1, . . . , p, let ∗i
be base points in the boundary of Bi and Ji be intervals (whose interiors are disjoint,
and disjoint from C) connecting ∗ to ∗i. Note that the union of the Ji is contractible.
The homomorphism ϕ induces a ring homomorphism Z[H1(XC)]→ R denoted by ϕ too.

The inclusion mi:S3
i \ Li ↪→ XC induces ϕi:Z[H1(S3

i \ Li)] → R. Set H =
Hϕ

1 (XC , J ;R), H∂ = Hϕ
1 (S3 \ L, ∗;R), and H∂i = Hϕi

1 (S3 \ Li, ∗i;R) for i = 1, . . . , p.
Note that H is free of rank r = n+ n1 + · · ·+ np and H∂i are free of rank 2ni.

Let ωϕC be a volume form ωϕC :∧rH → R, and ω∂ :∧2nH∂ → R. For i = 1, . . . , p, we
denote again by mi:H∂i → H the maps induced by the inclusion. Let

m:⊗i(∧niH∂i)→ ∧n1+···+npH

be defined as m = (∧n1m1) ∧ · · · ∧ (∧npmp).
To the ball cobordism (C,ϕ) we associate

ΥC,ϕ:
p⊗
i=1
∧niH∂i −→ ∧nH∂

such that, for x ∈ ⊗i(∧niH∂i),

ωϕC(m(x) ∧m∂(y)) = ω∂(ΥC,ϕ(x) ∧ y), ∀y ∈ ∧nH∂ . (3.2)

We denote by CobG the data of:
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• a sequence of freely generated R-modules {H∂i}i∈N of rank ni, associated the pairs
of colored trivial links (Li, φi), where Li has ni components;

• R-multinear maps ΥC,ϕ associated to each pair (C,ϕ).

Theorem 3.2.9. CobG is a circuit algebra.

Proof. To prove that CobG is a circuit algebra, we need to prove the compatibility of the
applications. We show that ΥC,ϕ commutes with the composition of ball cobordisms. Let
(C ′, ϕ′) and (C ′′, ϕ′′) be two ball cobordisms with

ΥC′,ϕ′ :
p′⊗
k=1
∧k′iH∂′

k
−→ ∧n′H ′∂ , and ΥC′′,ϕ′′ :

p′′⊗
l=1
∧n′′l H∂′′

l
−→ ∧n′′H∂′′ .

Let ϕ be the coloring induced by ϕ′ and ϕ′′ on C ′ ◦i C ′′. Then, we have to prove that
for all uk ∈ ∧kiH∂′

k
with k = 1, . . . , p′ and k 6= i and all vl for l = 1, . . . , p′′,

ΥC′◦iC′′,ϕ(u1 ⊗ · · · ⊗ (⊗p
′′

1 vl)⊗ · · · ⊗ up′) = ΥC′,ϕ′(u1 ⊗ · · · ⊗ΥC′′,ϕ′′(⊗p
′′

1 vl)⊗ · · · ⊗ up′).

Let H ′ = Hϕ′

1 (XC′ , J
′) and H ′′ = Hϕ′′

1 (XC′′ , J
′′) be the (free) homology modules of

the exteriors of the ball cobordisms. Let α1, . . . , α2n′′ be a basis of H∂′′ ' H∂′i
. Consider

presentations of H ′ and H ′′:

H ′′ = 〈m∂′′α1, . . . ,m∂′′α2n′′ , β1, . . . , βk | ρ1, . . . , ρs〉,
H ′ = 〈m′iα1, . . . ,m

′
iα2n′′ , ζ1, . . . , ζl | r1, . . . , rt〉.

Applying Mayer-Vietoris theorem to XC = XC′ ∪XC′′ , we obtain that the (free) module
H is generated by

m∂′′α1, . . . ,m∂′′α2n′′ ,m
′
iα1, . . . ,m

′
iα2n′′ , β1, . . . , βk, ζ1, . . . , ζl (3.3)

subject to the relations ρ1, . . . , ρs, r1, . . . , rt,m∂′′α1 −m′iα1, . . . ,m∂′′α2n′′ −m′iα2n′′ . Let
ω′ and ω′′ be volume forms on H ′ and H ′′, and ω∂′ be the form on H∂′ . Let ω be the
form on H induced by ω′ and ω′′. For the computation below, we introduce the notation

u ∧i v = u1 ∧ · · · ∧ ui−1 ∧ (v1 ∧ · · · ∧ vp′′) ∧ ui+1 ∧ · · · ∧ up′ .

We want to show that, for all y ∈ ∧n′H∂′ ,

ω∂′(ΥC′◦C′′(u1 ⊗ · · · ⊗ (⊗p
′′

1 vl)⊗ · · · ⊗ up′) ∧ y)
= ω∂′(ΥC′(u1 ⊗ · · · ⊗ΥC′′(⊗p

′′

1 vl)⊗ · · · ⊗ up′) ∧ y).

We have

ω∂′(ΥC′◦C′′(u1 ⊗ · · · ⊗ (⊗p
′′

1 vl)⊗ · · · ⊗ up′) ∧ y) ·m∂′′α ∧ β ∧m′iα ∧ ζ
= ω((m′u ∧i m′′v) ∧m∂′y) ·m∂′′α ∧ β ∧m′iα ∧ ζ
= ρ ∧ r ∧ (m∂′′α−m′iα) ∧ (m′u ∧i m′′v) ∧m∂′y

=
∑
Q

(−1)|Q|εQ · ρ ∧ r ∧m∂′′αQ ∧m′iαQ̄ ∧ (m′u ∧i m′′v) ∧m∂′y,
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where the sum is taken over all subsets Q ⊂ {1, . . . , 2n′′} of cardinal n′′. The number t
of relations ri can be chosen arbitrarily to be even and m∂′′αQ ∧m′iαQ̄ ∧ (m′u ∧i m′′v)
coincides with m∂′′αQ ∧m′′v ∧ (m′u ∧im′iαQ̄) up to a sign εQ depending only on p′′ and
the n′i. The sum coincides, up to a sign, with∑

Q

(−1)|Q|εQ · (ρ ∧m∂′′αQ ∧m′′v) ∧ (r ∧ (m′u ∧i m′iαQ̄) ∧m∂′y)

whose summands are equal to

(−1)|Q|εQ · ω′′(m∂′′αQ ∧m′′v) · ω′((m′u ∧i m′iαQ̄) ∧m∂′y) · (m∂′′α ∧ β ∧m′iα ∧ ζ).

It follows that, up to a sign,

ω∂′(ΥC′◦C′′(u1 ⊗ · · · ⊗ (⊗p
′′

1 vl)⊗ · · · ⊗ up′) ∧ y)
=
∑
Q

(−1)|Q|εQ · ω′′(m∂′′αQ ∧m′′v) · ω′((m′u ∧i m′iαQ̄) ∧m∂′y)

= ω′(
∑
Q

(−1)|Q|εQ · ω′′(m∂′′αQ ∧m′′v) · (m′u ∧i m′iαQ̄) ∧m∂′y)

= ω′(
∑
Q

(−1)|Q|εQ · ω∂′′(ΥC′′(v1 ⊗ · · · ⊗ vp′′) ∧ αQ) · (m′u ∧i m′iαQ̄) ∧m∂′y)

= ω′((m′u ∧i [
∑
Q

(−1)|Q|εQ · ω∂′′(ΥC′′(v1 ⊗ · · · ⊗ vp′′) ∧ αQ)]m′iαQ̄) ∧m∂′y)

= ω′((m′u ∧i m′i(ΥC′′(v1 ⊗ · · · ⊗ vp′′))) ∧m′∂y)
= ω∂′(ΥC′(u1 ⊗ · · · ⊗ΥC′′(⊗p

′′

1 vl)⊗ · · · ⊗ up′) ∧ y).

3.2.1 Action of ball cobordisms on ribbon tangles

Given a ball cobordism C and a collection of ribbon tangles T1, · · · , Tp, one may create a
new ribbon tangle, if the number of boundary components n(Ti) of Ti is equal to ni, for
all i = 1, . . . , p, by gluing each Ti into the internal ball Bi of C. The action of G-colored
ball cobordisms on G-colored ribbon tangles is defined once the colorings coincide on the
boundary components. The following theorem states that the invariant A respects the
structure of circuit algebra CobG.

Theorem 3.2.10. Let (T, ψ) be the G-colored ribbon tangle obtained by gluing the G-
colored ribbon tangles (T1, ϕ1), · · · , (Tp, ϕp) to a G-colored ball cobordism (C,ϕ). The
following equality holds

A(T, ψ) = ΥC,ϕ(A(T1, ϕ1)⊗ · · · ⊗ A(Tp, ϕp)) ∈ ∧nH∂ .

Proof. For i = 1, · · · , p, consider a presentation of HTi = Hϕi
1 (XTi , ∗i) of the form

HTi = 〈m∂iγ
i
1, . . . ,m∂iγ

i
2ni , β

i
1, . . . , β

i
ki | ρ

i
1, . . . , ρ

i
si〉
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and let AϕiTi be the Alexander function related to this presentation. Let HC = Hϕ
1 (XC , J)

be the free module, with volume form ωϕC associated to the presentation

HC = 〈m1γ
1
1 , . . . ,m1γ

1
2n1 , . . . ,mpγ

p
1 , . . . ,mpγ

p
2np , α1, . . . , αl | r1, . . . , rt〉.

By successive Mayer-Vietoris arguments, the module HT = Hϕ
1 (XT , ∗) admits a presen-

tation with generators of the form m∂iγ
i
j , miγ

i
j , for j = 1, . . . , 2ni and i = 1, . . . , p, and

βi1, . . . , β
i
ki
, α1, . . . , αl. They are subject to the relations m∂iγ

i
j −miγ

i
j , for j = 1, . . . , 2ni

and i = 1, . . . , p, and ρi1, . . . , ρ
i
si for i = 1, . . . , p and r1, . . . , rt. One has A(T, ψ) =

ΥC,ϕ(A(T1, ϕ1)⊗ · · · ⊗ A(Tp, ϕp)) if and only if

∀z ∈ ∧nH∂ , A(T, ψ) ∧ z = ΥC,ϕ(A(T1, ϕ1)⊗ · · · ⊗ A(Tp, ϕp)) ∧ z

By Equation (3.1), ω∂(A(T, ψ) ∧ z) = AψT (m∂z). For short, we write A(Ti) for A(Ti, ϕi),
for i = 1, . . . , p. By definition of the Alexander function AψT ,

AψT (m∂z) ·m∂∗γ ∧m∗γ ∧ β ∧ α = ρ ∧ r ∧ (mi
∂i −miγ

i) ∧m∂z

=
∑

Q1,...,Qp

(−1)|Q|εQ · ρ ∧ r ∧m∂1γ
1
Q1 ∧ · · · ∧m∂pγ

p
Qp
∧m1γ

1
Q̄1
∧ · · · ∧mpγ

p

Q̄p
∧m∂z,

(3.4)

where the sum is taken over the subsets Qi ⊂ {1, . . . , 2ni} of cardinal ni (the other terms
vanish). We denote by Q̄i the complement of Qi, |Q|= n1 + · · ·+np and εQ the signature
of the permutation Q1 · · ·QpQ̄1 · · · Q̄p, where the elements of Q1 · · ·Qp in increasing order
are followed by the elements of Q̄1 · · · Q̄p in increasing order. Moreover, we can decide
arbitrarily that the number t of relations in the presentation of HC is even, and get (3.4)
to be equal to:∑
Q1,...,Qp

(−1)|Q|εQ · (ρ ∧m∂1γ
1
Q1 ∧ · · · ∧m∂pγ

p
Qp

) ∧ (r ∧m1γ
1
Q̄1
∧ · · · ∧mpγ

p

Q̄p
∧m∂z)

=
∑

(−1)|Q|εQ · (ρ∧m∂1γ
1
Q1 ∧· · ·∧m∂pγ

p
Qp

) ·ωϕC(m1γ
1
Q̄1
∧· · ·∧mpγ

p

Q̄p
∧m∂z) · (m∗γ∧α).

Moreover, since s1, . . . , sp can also be supposed even,

ρ ∧m∂1γ
1
Q1 ∧ · · · ∧m∂pγ

p
Qp

= (ρ1 ∧m∂1γ
1
Q1) ∧ · · · ∧ (ρp ∧m∂pγ

p
Qp

)
= Aϕ1

T1
(m∂1γ

1
Q1) · · ·AϕpTp (m∂pγ

p
Qp

) ·m∂∗γ ∧ β
= ω∂1(A(T1) ∧ γ1

Q1) · · ·ω∂p(A(Tp) ∧ γpQp) ·m∂∗γ ∧ β

Then AψT (m∂z) coincides with the sum over Q1 · · ·Qp of the summands

(−1)|Q|εQ · ω∂1(A(T1) ∧ γ1
Q1) · · ·ω∂p(A(Tp) ∧ γpQp) · ω

ϕ
C(mQ̄1

γ1
Q̄1
∧ · · · ∧mQ̄p

γp
Q̄p
∧m∂z)

=ωϕC(
∑

(−1)|Q|εQ ·ω∂1(A(T1)∧γ1
Q1) · · ·ω∂p(A(Tp)∧γpQp)·mQ̄1

γ1
Q̄1
∧· · ·∧mQ̄p

γp
Q̄p
∧m∂z).
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Note that for all i = 1, . . . , p and x ∈ ∧niH∂i , we have

x =
∑
|Qi|=ni

εQ̄ω∂i(x ∧ γiQi) · γ
i
Q̄i

=
∑
|Qi|=ni

(−1)|Qi|εQiω∂i(x ∧ γiQi) · γ
i
Q̄i
.

Moreover, (−1)|Q| = (−1)|Q1| · · · (−1)|Qp| and εQεQ1 · · · εQp do not depend on Q1, . . . , Qp
but only on n1 = |Q1|, . . . , np = |Qp|. Hence, up to a sign

AψT (m∂z) = ωϕC(m1A(T1) ∧ · · · ∧mpA(Tp) ∧m∂z)
= ωϕC(m(AC(Υ(T1)⊗ · · · ⊗ A(Tp)) ∧m∂z)
= ω∂(ΥC(A(T1)⊗ · · · ⊗ A(Tp)) ∧ z).

3.3 A diagrammatic description

We recall from Section 1.5.2 and 2.1.1 that broken surfaces are locally flat immersions in
the 3-ball B3 of disjoint annuli and tori, whose singularities consist of a finite number
of circles. We can extend the definitions of broken surfaces for ribbon braids and for
ribbon torus-links to ribbon tangles in the natural way. Any ribbon tangle in B4 can be
projected onto a broken surface in a suitable sense (Lemma 1.5.5). These projections
can be viewed as a way to represent ribbon tangles similarly to diagrams in usual knot
theory. Conversely, every broken surface is the projection of a ribbon tangle. This gives
a correspondence between ribbon tangles and broken surfaces.

In the same way welded diagrams have been introduced for braid-like ribbon objects
in Section 1.5.1 and for ribbon torus links in Section 2.1.1. We can also consider welded
tangle diagrams as a natural extension of the two previous cases. The map Tube was
defined locally in Definition 1.5.8, and adapts to welded tangle diagrams and ribbon
tangles: to each welded tangle one may associate a symmetric broken surface diagram.
This define a map Tube sending any welded tangle to the ribbon tangle associated to the
symmetric broken surface resulting from the preceding construction.

We recall that the Tube map is well defined and surjective, but its injectivity is still an
open question [10]. However, we already know from Chapter 1 that there is isomorphisms
on ribbon braids and extended ribbon braids.

A combinatorial fundamental group can be defined for welded tangle diagrams, with
the Wirtinger method (welded crossing are simply ignored). This group coincides with
the fundamental group of the complement of an associated ribbon tangle in B4 [5, 71,82].
Then, two welded tangle representing the same ribbon tangle have isomorphic fundamental
groups (and this isomorphism sends meridian to meridian).

Let D be the unit disk in C, and for any positive integer n, let x1, . . . , x2n be a fixed
ordered set of points in ∂D.

Definition 3.3.1. Let n be a positive integer. A welded tangle on n-strands, or welded
n-tangle is a proper immersion τ of an oriented 1-manifold in D. It consists of some
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copies of the circle and n copies of the unit interval whose boundary are {x1, . . . , x2n}.
The singular set of τ is a finite number of transversal double points decorated with the
following information: they can be classical positive, classical negative or welded as in
Figure 1.3.

Let µ be a positive integer. A µ-colored welded tangle is a pair (τ, ψ) where τ is a
welded tangle and ψ is a map from the set of strands and circles to the set {t1, . . . , tµ}.
Two welded colored tangles are equivalent if they are related by generalized Reidemeister
moves (see Definition 2.1.5), respecting the coloring.

3.3.1 Computation of the Alexander invariant A

Let G be the free abelian group generated by t1, . . . , tµ, and R = ZG. Let (τ, ψ) be
a µ-colored welded tangle. It decomposes into a finite union of disjoint oriented arcs.
Label the crossings with (formal) letters. Then label each arc with the same letter as the
crossing it begins at. If an arc connects points on the boundary of τ without meeting
any crossing, we use the convention of Figure 3.2. We construct a matrix Mψ(τ) with
coefficients in R where the rows are indexed by crossings (positive, negative and welded)
and points interrupting arcs, and the columns by the arcs.

• Fill row corresponding to each positive and negative crossing as shown in Figure 3.1,

c b

a

a b

c

tj

ti tj

c

c

−1

a

1

c

ti

1− ti

b

tj

c

−tj

a

ti − 1

b

Figure 3.1: The rule to fill the matrixMψ(T ), where ti and tj are not necessarily different.
If b = a or b = c we add the contributions.

• At each point on the diagram, fill the row as shown in Figure 3.2.

a

a

b

1

a

−1

b

Figure 3.2: Rule for arcs that don’t begin at crossings.
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The other entries of the rows are zero. Welded crossings can be ignored or considered as
divided arcs. Notice that, after some Reidemeister moves of type I, one might suppose
that every arc begins at a crossing, and the receipt of Figure 3.2 becomes useless to
construct the matrix Mψ(τ).
Remark 3.3.2. Let p be the number of internal arcs of τ . These are the uninterrupted
arcs whose extremities are boundary components of the welded tangle. Since τ has 2n
arcs connected to the boundary, the total number of arcs is 2n+ p. One easily observes
that the matrix Mψ(τ) has size (p+ n)× (p+ 2n).

Definition 3.3.3. Let (τ, ψ) be a µ-colored welded n-tangle and H∂ be the module of
rank 2n freely generated by the set of marked points {x1, . . . , x2n} . The invariant α is
defined to be

α(τ, ψ) =
∑
I

|Mψ(τ)I | · xI ∈ ∧nH∂ ,

where the sum is taken for all subset I ⊂ {1, . . . , 2n} of n elements, |Mψ(τ)I | is the
determinant of the (n + p)-minor of Mψ(τ) corresponding to the columns indexed by
the internal arcs and the columns relative to the arcs indexed by I, and xI is the wedge
product of the generators xi with i ∈ I.

A computation shows that α(τ, ψ) is invariant by generalized Reidemeister moves,
up to multiplication by a unit. Otherwise the invariance is simply a consequence of
Theorem 3.3.6 below.

Example 3.3.4. Consider the welded tangle τ given by one positive crossing, see
Figure 1.3, a). The matrix Mψ(τ) coincides with the matrix of Example 3.1.4. The
module H∂ is generated by x1, . . . , x4 and

α(τ, ψ) = t2x3 ∧ x4 + x2 ∧ x3 − t2x1 ∧ x4 + (t1 − 1)x1 ∧ x3 + x1 ∧ x2 ∈ ∧2H∂ .

Let τ be a welded tangle. We denote by π(τ) the group defined by the Wirtinger
method (ignoring the welded crossings). Then, there is a system of generators of π(τ)
in one-to-one correspondance with the arcs of τ . In particular, a µ-coloring of a welded
tangle τ can be viewed as a group homomorphism ψ from π(τ) to the abelian group
freely generated by t1, . . . , tµ.

The following proposition follows directly from the results of Satoh and Yajima [71,82].

Proposition 3.3.5. Let τ be a welded tangle. For any ribbon tangle T such that T is
the image of τ by the Tube map, there is an isomophism

π(τ) ' π1(B4 \ T )

sending arcs of τ to meridians of T .

Theorem 3.3.6. Let µ be a positive integer and G be a free abelian group of rank µ. Let
(τ, ψ) be a µ-welded tangle and (T, ϕ) be a G-colored ribbon tangle, such that T is the
image of τ by the Tube map. Suppose that there are generators t1, . . . , tµ of G such that
the following diagram commutes:



3.3. A diagrammatic description 87

π1(B4 \ T ) ϕ−−−−→ G

'
y y'

π(τ) ψ−−−−→ 〈t1, . . . , tµ〉

Then,
A(T, ϕ) = α(τ, ψ) ∈ ∧nH∂ .

Proof. The points of τ ∩ ∂B2 are in one-to-one correspondence with the component of
the trivial link L in T ∩ ∂B4, and H∂ is generated by x1, . . . , x2n. By Proposition 3.3.5
and Fox calculus, the matrix Mψ(τ) is a presentation matrix of the R-module Hϕ

1 (XT , ∗),
viewed as a Z[t±1

1 , . . . , t±1
µ ]-module through the choice of generators of G. Then Mψ(τ)

is used to compute Aϕ. By definition, for all I ⊂ {1, . . . , 2n} with cardinal n:

ω∂(A(T, ϕ) ∧ xI) = Aϕ(m∂xI).

To calculate Aϕ(m∂xI), we consider the matrix Mψ(τ), add n row vectors giving the
element mxi1 , . . . ,mxin and compute the determinant of the resulting square matrix.
Hence adding mxij corresponds to add the p+ n+ jth row (0, . . . , 0, 1, 0, . . . , 0) where 1
is at position p+ j. We obtain Aϕ(m∂xI) = εĪ |Mψ(τ)Ī |, where Ī is the complement of
I and εĪ is the signature of the permutation IĪ (where the elements of I in increasing
order are followed by the elements of Ī in increasing order). Finally, we get

A(T, ϕ) =
∑
I

εĪ · ω∂(A(T, ϕ) ∧ xI) · xĪ =
∑
I

|Mψ(τ)Ī | · xĪ = α(τ, ψ).

Remark 3.3.7. Welded string links are string links that can have welded crossings; for
details on these last ones see [57]. Through the Tube map, ribbon tubes can be described
by welded string links, see [5, Section 3.3]. By Theorem 3.1.19, Proposition 3.1.17
and Theorem 3.3.6, the invariant α induces the usual (generalisation of) colored Burau
representation - or Gassner, if the coloring is maximal - on (welded) string links [14].
Remark 3.3.8. The invariant α (Definition 3.3.3) coincides up to a unit with the invariant
of virtual tangles introduced by Archibald [2]. It is worth mentioning that using a specific
canonical choice for the marked points xi, her construction is well-defined, not only up
to multiplication by a unit (through the multiplication by a correction term that keeps
track of the order), up to generalized Reidemeister moves with the exception of moves of
type I (see Figure 2.1).

Proof. of Proposition 3.1.2. As observed in the proof of Theorem 3.3.6, the matrixMψ(τ)
is a presentation matrix of Hϕ

1 (XT , ∗), whose size is (p+ n)× (p+ 2n), see Remark 3.3.2.
We get a presentation of deficiency n.
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3.3.2 The circuit algebra Weldµ
Definition 3.3.9. A circuit diagram consists of the following data:

• the unit disk D = D0 in C together with a finite set of disjoint subdisks D1, . . . , Dp

in the interior of D. For every i in {0, . . . , p}, each Di have 2ni distinct marked
points with sign on its boundary (with n = n0), and a base point ∗ on the boundary
of each disk.

• a finite set of embedded oriented arcs whose boundary are marked points in the Di.
They may cross each other along welded crossings only. Each marked point is the
boundary point of some string -which meets the corresponding disk transversally-
and the sign is coherent with the orientation.

We consider circuit diagrams up to equivalence given by the fact that they only encode
the matching of marked points, and not the exact position of the arcs, as shown in
Figure 3.3.

Figure 3.3: Two equivalent circuit diagrams.

Definition 3.3.10. Consider a circuit p′-diagram P ′ and a circuit p′′-diagram P ′′ such
that D′i is a disk of P ′ with n′i = n′′, for some i ∈ {1, . . . , p′}. If the signs of the marked
points match, we define the diagram P = P ′ ◦i P ′′ by rescaling via isotopy the diagram
P ′′ so that the boundary of D′′ is identified with the boundary of D′i, and making its
marked and base points coincide to those of D′i. Then D′i is removed to obtain P ′ ◦i P ′′.
This operation is well defined since the starting points eliminate any rotational ambiguity.

A µ-colored circuit diagram is a pair (P,ψ) where P is a circuit diagram and ψ is a
map from the set of arcs of P to the set {t1, · · · , tµ}. Two µ-colored circuit diagrams can
be composed once the coloring match on the boundary components.

Definition 3.3.11. The circuit operad of circuit diagrams Dµ is the circuit operad of
equivalence classes µ-colored circuit diagrams.

Let S = Z[t±1
1 , . . . , t±1

µ ] be the Laurent polynomial ring. Let Homµ be the circuit
operad of tensor products of S-modules and S-linear maps. The circuit algebra Weldµ is
constructed as a morphism from the circuit operad Dµ to Homµ as follows.
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Consider the unit circle with a base point and a set of marked pointsX = {x1, . . . , x2k},
for k ≥ 0 (with a sign). To this data, we associate the module ∧kH∂ , where H∂ is the
free S-module of rank 2k generated by X. Let (P,ψ) be a µ-colored circuit diagram,
and M = {c1, . . . , cq} be the set of curves of P . Consider the free module H generated
by M , and the volume form ω:∧qH → S related to this basis. For i = 1, . . . , p, denote
by H∂i the module associated to the boundary circle ∂Di and H∂ he module associated
to ∂D. Let mi:H∂i → H be the morphims defined by mi(xj) = sign(xj)cj if xj ∈ ∂cj .
The mophism m∂ is defined similarly. Let ω∂i be the volume form on H∂i related to
the generating system of points of the circle ∂Di. Set m = ⊗i (∧nim∂i). To the colored
diagram (P,ψ) we associate

γP,ψ:
p⊗
i=1
∧niH∂i −→ ∧nH∂

such that, for x ∈ ⊗i(∧niH∂i),

ωϕC(m(x) ∧m∂(y)) = ω∂(γP,ψ(x) ∧ y), ∀y ∈ ∧nH∂ .

Then, we can prove Proposition 3.3.12 below, by repeating the arguments of the proof of
Theorem 3.2.9.

Proposition 3.3.12. Weldµ is a circuit algebra.

Note that Weldµ is similar to half densities introduced by Archibald, see [2] for the
definition of half densities.

The morphism γP,ψ could be written as the interior product relative to a subset
corresponding to interior arcs of P .

The Tube map and the choice of a set of generators {t1, . . . , tµ} of G induce a surjective
morphism of algebras

Weldµ −→ CobG.

Given a colored circuit diagram P and a collection of colored welded tangle diagrams
τ1, . . . , τp, one may create a new tangle, if the data on the boundaries and the colorings
match, by gluing τi into the internal disk Di of P . Similarly to Theorem 3.2.10, the
invariant α commutes with this action of µ-colored circuit diagrams on µ-colored welded
tangles. Indeed, one has the following proposition.

Proposition 3.3.13. Let (τ, ψ) be the µ-colored welded tangle obtained by gluing the
µ-colored welded tangles (τ1, ψ1), · · · , (τp, ψp) to a µ-colored circuit diagram (P, χ). The
following equality holds

α(τ, ψ) = γP,χ(α(τ1, ψ1)⊗ · · · ⊗ α(τp, ψp)) ∈ ∧nH∂ .
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3.4 Examples
Consider the welded tangle diagram τ , given in Figure 3.4. We let G = Z =< t > and ψ
be the coloring sending all arcs of τ to t. In this section, we compute α(τ, ψ) in different
ways. By Theorem 3.3.6, this computes the value of A(T, ϕ) the image of (τ, ψ) by the
Tube map.

?

x1

x2

x3

x4
x5

x6
a

e

f

b

c

d

Figure 3.4: A welded tangle τ .

First, we compute α(τ, ψ) directly. Label the arcs of τ with letters a to f as in
Figure 3.4. We obtain the matrix

Mψ(τ) =


a b c d e f

0 0 −1 1 0 0
−1 0 0 0 1 0

1− t −1 0 0 0 t


The Z[t±1]-module H∂ is free, generated by x1, . . . , x6 and α(τ, ψ) ∈ ∧3H∂ is given by

α(τ, ψ) = −x1 ∧ x2 ∧ x5 + x1 ∧ x2 ∧ x6 + x2 ∧ x5 ∧ x4 + (t− 1)x1 ∧ x5 ∧ x4− tx1 ∧ x5 ∧ x3
+(1− t)x1∧x6∧x4 + tx1∧x6∧x3 + tx6∧x4∧x3−x2∧x6∧x4− tx5∧x4∧x3.

We now consider (τ, ψ) as the composition of the circuit diagram (P,ψ) with (σ, ψ),
see Figure 3.5. We have to compute γP,ψ:∧2H∂1 → ∧3H∂ (here p = 1). Let H

x1

x2

x3

a

e
f

b

x4

?

?

x5

x6

c

d?

Figure 3.5: A welded tangle σ and a circuit diagram P .

be the free module generated by the curves of σ, labelled a, b, e, f . We have that
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H∂1 = 〈x1, . . . , x4〉 and H∂ = 〈x1, . . . , x6〉. Using the volume form on H related to the
choice of the basis a, b, c, e, d, f , and the maps induced by the inclusions m1:H∂1 → H
and m∂ :H∂ → H, we obtain

γC,ψ(xi ∧ xj) = xi ∧ xj ∧ (x6 − x5), ∀ i, j = 1, . . . , 4,

and

Mψ(σ) =
( a b e f

−1 0 1 0
0 −1 1− t t

)
We get

α(σ, ψ) = x1 ∧ x2 + (t− 1)x1 ∧ x4 − tx1 ∧ x3 + x2 ∧ x4 − tx3 ∧ x4.

The composition α(τ, ψ) = γP,ψ(α(σ, ψ)) gives the result. Finally, we consider τ as the
composition of the welded tangle σ ⊗ β with the circuit Q, see Figure 3.6. Here p = 2,

?

c

d

x5

x6

?
?

?

x1

x2

x6

x5

x4

x3

?

x1 x2

x4x3

a b

ef

Figure 3.6: A circuit diagram Q representing a ball cobordism and two welded tangles σ
and β.

and
γQ,ψ:∧2H∂1 ⊗H∂2 −→ ∧3H∂ .

As previously α(σ, ψ) = x1 ∧ x2 + (t− 1)x1 ∧ x4 − tx1 ∧ x3 + x2 ∧ x4 − tx3 ∧ x4 ∈ ∧2H∂1

and γ(β) = x6 − x5 ∈ H∂2 . The composition α(τ, ψ) = γQ,ψ (α(σ, ψ)⊗ α(β, ψ)) gives the
result again.
Remark 3.4.1. In the sense of Subsection 3.1.4, there is a splitting of the welded tangle σ
to an (oriented) braid σ1 in B2. We have

M0 = 〈x1, x2〉 and M1 = 〈x3, x4〉,

and α(σ, ψ) ∈ ∧2H∂1 ' ∧2(M0 ⊕M1) '⊕2
k=0∧kM0 ⊗ ∧2−kM1, similarly to the proof

of Theorem 3.1.19. Then α(σ, ψ) decomposes as:

(− tx3 ∧ x4)⊕ ((t− 1)x1 ⊗ x4 − tx1 ⊗ x3 + x2 ⊗ x4)⊕ (x1 ∧ x2).
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Let ω0: Λ2M0 → R be the volume form related to the basis 〈x1, x2〉. For k = 1, the
element (t− 1)x1⊗ x4− tx1⊗ x3 + x2⊗ x4 ∈M0⊗M1 induces the morphism M0 →M1:

x 7→ (t− 1)ω0(x ∧ x1) · x4 − t ω0(x ∧ x1) · x3 + ω0(x ∧ x2) · x4.

The image of x1 is x4 and the image of x2 is (1 − t)x4 + tx3. This corresponds to the
Burau representation. Similarly, the other values of k give kth-exterior powers of Burau,
up to a sign.

3.5 Fixing the multiplicative unit indeterminacy
Theorem 3.3.6 allows us to compute the Alexander invariant A of a ribbon tangle T by
computing the α invariant of a welded tangle τ whose image through the Tube map is T .
The Alexander invariant is defined up to a multiplicative unit of Z[G] (Section 3.1). This
is due to the fact that it depends on the choice of a presentation matrix to compute the
Alexander function (Definition 3.1.3).

A first step to eliminate the ambiguity is to compute the invariant α using a chosen
form for the presentation matrix, which is the one constructed in Subsection 3.3.1.
However an ambiguity still remains, as the computation of α depends on the choice of
the order given by the labelling, that changes the order of the columns and the rows of
the matrix.

As mentioned in Remark 3.3.8, Archibald in [2] defines a stronger form of α, which
we translate in our formalism.

Definition 3.5.1. Let (τ, ψ) be a µ-colored welded n-tangle and H∂ be the module of
rank 2n freely generated by the set of ordered marked points {x1, . . . , x2n}. Let M̃ψ(τ)
the matrix constructed as in Subsection 3.3.1, where the additional rule:

• order of the rows of the matrix in concordance with the order of the arcs whose
orientation goes towards the exterior of the diagram ("outgoing arcs").

The invariant α̃ is defined to be

α̃(τ, ψ) =
∏
µ

t
s(µ)

2
µ

∑
I

|Mψ(τ)I | · xI ∈ ∧nH∂ ,

where s(µ) is the number of times that the component colored with tµ is the over strand
in a crossing, and everything else is as in Definition 3.3.3.

Then we have that the invariant α̃ is well defined for welded tangles under generalized
Reidemeister equivalence with the exception of moves of type I (Figure 2.1).



Chapter 4

Unrestricted virtual braids and
fused links

In this chapter we present a work with Valeriy G. Bardakov and Paolo Bellingeri [16]1.
We introduce certain remarkable quotients of loop braid groups, and their relation with
fused links. Fused links were introduced by L. H. Kauffman and S. Lambropoulou in [52].
Afterwards, the same authors introduced their “braided” counterpart: the unrestricted
virtual braids, and extended S. Kamada’s work [47] (already mentioned in Chapter 2)
by presenting a version of Alexander’s and Markov’s theorems for these objects [53]. In
the groups of unrestricted virtual braids, denoted by UV Bn, we consider strand diagrams
(Definition 1.5.1) where the equivalence relation is given by the welded Reidemeister
equivalence from Definition 1.5.2 with the addition of one more forbidden move (F2) (see
Figure 4.1).

The group UV Bn appears also in [45], where it is called symmetric loop braid
group SLBn, being isomorphic to a quotient of the loop braid group LBn that we
presented in Chapter 1.

(F2)(F1)

Figure 4.1: Welded Reidemeister moves, in the following called forbidden moves of
type (F1) (on the left) and forbidden moves of type (F2) (on the right).

It has been shown that all fused knots are equivalent to the unknot ([48,67]). Moreover,
Nelson’s proof in [67] of the fact that every virtual knot unknots when allowing forbidden
moves, can be adapted verbatim to links with several components. We remark that to
achieve this result Nelson passes to Gauss diagrams for fused knots. So, every fused link
diagram is fused isotopic to a link diagram where the only crossings (classical or virtual)
are the ones involving different components.

1Sections 5.1 and 5.3 will not be discussed since they are not pertinent with the rest of this thesis.
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On the other hand, there are non-trivial fused links and their classification is not
(completely) trivial [32]. In particular in [31], A. Fish and E. Keyman proved that
fused links that have only classical crossings are characterized by their (classical) linking
numbers. However, this result does not generalize to links with virtual crossings. In fact
it is easy to find non-equivalent fused links with the same (classical) linking number (see
Remark 4.2.6). This answers a question from [31, Remark 1], where Fish and Keyman
ask whether the classical linking number is a complete invariant for fused links. We
describe unrestricted virtual braids and compare more or less known invariants for fused
links.

In Section 4.1 we give a description of the structure of the groups of unrestricted
virtual braids UV Bn (Theorems 4.1.4 and 4.1.7), answering a question of Kauffman and
Lambropoulou [53]. In Section 4.2 we provide an application of Theorem 4.1.7 showing
that any fused link admits as a representative the closure of a pure unrestricted virtual
braid (Theorem 4.2.3). As a corollary we deduce an easy proof of the main theorem
of [31]. In Section 4.3 we construct a representation for UV Bn in Aut(Nn), the groups of
automorphisms of the free 2-step nilpotent group of rank n (Proposition 4.3.4). Using this
representation we define a notion of group of fused links and we compare this invariant
to other known invariants (Proposition 4.3.9 and Remark 4.3.10). Finally, in Section 4.4
we describe the structure of the flat welded braid groups (Proposition 4.4.2).

4.1 Unrestricted virtual braid groups

In Chapter 1 we introduced the virtual braid groups as the groups of isotopy classes of
strand diagrams under virtual Reidemeister equivalence (Definition 1.6.3). In an equiva-
lent way we give a definition for the virtual braid groups as abstract presented groups.
Once more generators σi and ρi correspond to elementary diagrams from Figure 1.4.

Definition 4.1.1. For n ≥ 1, the virtual braid group, denoted by V Bn, is the group
defined by the group presentation

〈 {σi, ρi | i = 1, . . . , n− 1} | R 〉

where R is the set of relations:

σiσi+1σi = σi+1σiσi+1, for i = 1, . . . , n− 2; (R1)
σiσj = σjσi, for |i− j|≥ 2; (R2)

ρiρi+1ρi = ρi+1ρiρi+1, for i = 1, . . . , n− 2; (R3)
ρiρj = ρjρi, for |i− j|≥ 2; (R4)
ρ2
i = 1, for i = 1, . . . , n− 1; (R5)

σiρj = ρjσi, for |i− j|≥ 2; (R6)
ρiρi+1σi = σi+1ρiρi+1, for i = 1, . . . , n− 2. (M)
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Fixing n ≥ 1, the virtual pure braid group on n strands, denoted by V Pn, is the kernel
of the map V Bn → Sn sending generators σi and ρi to (i, i+1), for every i = 1, 2, . . . , n−1.
A presentation for V Pn is given in [13]; it will be recalled in the proof of Theorem 4.1.7.

As already noted in another context (see Rermark 1.6.4), the welded braid groups
WBn are quotients of V Bn by the normal subgroups generated by relations

ρiσi+1σi = σi+1σiρi+1, for i = 1, . . . , n− 2. (F1)

Remark 4.1.2. We will see in Section 4.2 that the symmetrical relations

ρi+1σiσi+1 = σiσi+1ρi, for i = 1, . . . , n− 2 (F2)

do not hold in WBn.

Definition 4.1.3. For n ≥ 1, the group of unrestricted virtual braids, denoted by UV Bn,
is the group defined by the group presentation

〈 {σi, ρi | i = 1, . . . , n− 1} | R′ 〉

where R′ is the set of relations (R1), (R2), (R3), (R4), (R5), (R6), (M), (F1), (F2).

The main result of this section is to prove that UV Bn can be described as a semi-direct
product of a right-angled Artin group and the symmetric group Sn. This way we answer
a question posed in [53] about the (non-trivial) structure of UV Bn.

Theorem 4.1.4. For n ≥ 1, let Xn be the right-angled Artin group generated by xi,j, for
1 ≤ i 6= j ≤ n, where all generators commute except the pairs xi,j and xj,i for 1 ≤ i 6=
j ≤ n. The group UV Bn is isomorphic to Xn o Sn where Sn acts by permutation on the
indices of generators of Xn.

Before proving Theorem 4.1.4, we introduce some objects and results that we will use
in the proof. Let ν:UV Bn → Sn be the map defined as follows:

ν(σi) = ν(ρi) = (i, i+ 1), for i = 1, 2, . . . , n− 1.

We will call the kernel of ν unrestricted virtual pure braid group and we will denote it
by UV Pn. Since ν admits a natural section, we have that UV Bn = UV Pn o Sn.

j

j − 1

i+ 1

i

j

j − 1

i+ 1

i

Figure 4.2: Elements λi,j on the left and λj,i on the right. Here we adopt the convention
of drawing braids from left to right.
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For i = 1, . . . , n− 1, we define the following elements of UV Pn (see Figure 4.2):

λi,i+1 = ρiσ
−1
i ,

λi+1,i = ρiλi,i+1ρi = σ−1
i ρi.

(4.1)

Then, for 1 ≤ i < j − 1 ≤ n− 1:

λi,j = ρj−1ρj−2 . . . ρi+1λi,i+1ρi+1 . . . ρj−2ρj−1,

λj,i = ρj−1ρj−2 . . . ρi+1λi+1,iρi+1 . . . ρj−2ρj−1.
(4.2)

The next lemma was proved in [13] for the corresponding elements in V Bn, and
therefore is also true in the quotient UV Bn.

Lemma 4.1.5. The following conjugating rule is fulfilled in UV Bn: for all 1 ≤ i 6= j ≤ n
and s ∈ Sn,

ι(s)λi,jι(s)−1 = λs(i),s(j)

where ι:Sn → UV Bn is the natural section of the map ν defined in Theorem 4.1.4.

Corollary 4.1.6. For n ≥ 1, the symmetric group Sn acts by conjugation on the set
{λk,l |1 ≤ k 6= l ≤ n}. This action is transitive.

We prove that the groups generated by {λk,l | 1 ≤ k 6= l ≤ n} coincides with UV Pn,
and then we will find the defining relations. This will show that the groups UV Pn are a
right-angled Artin groups.

Theorem 4.1.7. For n ≥ 1, the group UV Pn admits a presentation with generators λk,l
for 1 ≤ k 6= l ≤ n, and defining relations: λi,j commutes with λk,l if and only if k 6= j
or l 6= i. In particular UV Pn is a right-angled Artin group.

Proof. Since UV Pn is a finite index subgroup of UV Bn one can apply the Reidemeister–
Schreier method (see, for example, [61, Ch. 2.2]) and check that the given set of relations
is complete. Remark that most of the relations were already proven in this way in [13]
for the case of the virtual pure braid group V Pn.
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An easier approach is provided by the following commutative diagram:

1 1y y
kerπ|V Pn −−−−→ kerπy y

1 −−−−→ V Pn −−−−→ V Bn −−−−→ Sn −−−−→ 1yπ|V Pn yπ ∥∥∥
1 −−−−→ UV Pn −−−−→ UV Bn −−−−→ Sn −−−−→ 1y y

1 1
where π is the canonical projection of V Bn onto UV Bn and π|V Pn its restriction to V Pn.
By definition, kerπ is normally generated by the elements σiσjρiσ−1

j σ−1
i ρj for |i− j|= 1

(we will write kerπ =� σiσjρiσ
−1
j σ−1

i ρj | for |i− j|= 1 �). Since σiσjρiσ−1
j σ−1

i ρj belongs
to V Pn, and that V Pn is normal in V Bn, we deduce that kerπV Pn coincides with kerπ.

As stated in [13], V Pn is generated by elements (4.1) and (4.2), and has the following
set of defining relations:

λi,jλk,l = λk,lλi,j (RS1)

λk,i(λk,jλi,j) = (λi,jλk,j)λk,i. (RS2)

Moreover, V Bn can be seen as a semidirect product V Pn o Sn, where the symmetric
group Sn acts by permutations of indices on λi,j ’s (Lemma 4.1.5).

One can easily verify that relators of type (F1), i.e., ρiσi+1σiρi+1σ
−1
i σ−1

i+1, can be
rewritten as:

(ρi λ−1
i+1,i+2 ρi)(ρi ρi+1 λ

−1
i,i+1 ρi+1 ρi)(ρi+1 λi,i+1 ρi+1)λi+1,i+2

and using the conjugating rule given above, we get, for i = 1, . . . , n− 2,

ρiσi+1σiρi+1σ
−1
i σ−1

i+1 = λ−1
i,i+2 λ

−1
i+1,i+2 λi,i+2 λi+1,i+2.

On the other hand one can similarly check that relators of type (F2), which are of
the form ρi+1σiσi+1ρiσ

−1
i+1σ

−1
i , can be rewritten as λ−1

i,i+1λ
−1
i,i+2λi,i+1λi,i+2.

From these facts and from above description of V Bn as semidirect product V PnoSn,
it follows that any generator of kerV Pn is of the form g[λi,j , λk,j ]g−1 or g[λi,j , λi,k]g−1, for
some g ∈ V Pn and i, j, k distinct indices. The group UV Pn has therefore the following
complete set of relations:

λi,jλk,l = λk,lλi,j (RS1)
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λk,i(λk,jλi,j) = (λi,jλk,j)λk,i (RS2)

λi,jλk,j = λk,jλi,j (RS3)

λi,jλi,k = λi,kλi,j . (RS4)

Using (RS3) and (RS4) we can rewrite relation (RS2) in the form

λk,j(λk,iλi,j) = λk,j(λi,jλk,i). (4.3)

After cancelation we have that we can replace relation (RS2) with

λk,iλi,j = λi,jλk,i (RS5)

This completes the proof.

Proof of Theorem 4.1.4. The groupXn is evidently isomorphic to UV Pn (sending any xi,j
into the corresponding λi,j). Recall that UV Pn is the kernel of the map ν:UV Bn → Sn
defined as ν(σi) = ν(ρi) = (i, i+ 1) for i = 1, . . . , n− 1. Recall also that ν has a natural
section ι:Sn → UV Bn, defined as ι((i, i+ 1)) = ρi for i = 1, . . . , n− 1. Therefore UV Bn
is isomorphic to UV Pn o Sn, where Sn acts by permutation on the indices of generators
of UV Pn (Corollary 4.1.6).

We recall that, fixed an n ≥ 1, the pure braid group Pn, first mentioned in Ex-
ample 1.1.4, is the kernel of the homomorphism from Bn to the symmetric group Sn
sending every generator σi to the permutation (i, i + 1). It is generated by the set
{aij | 1 ≤ i < j ≤ n}, where

ai,i+1 = σ2
i ,

ai,j = σj−1σj−2 · · ·σi+1σ
2
i σ
−1
i+1 · · ·σ

−1
j−2σ

−1
j−1, for i+ 1 < j ≤ n.

Corollary 4.1.8. For n ≥ 1, let p:Pn → UV Pn be the canonical map of the pure braid
group Pn in UV Pn. Then p(Pn) is isomorphic to the abelianization of Pn.

Proof. As remarked in [13, page 6], generators ai,j of Pn can be written in V Pn as

ai,i+1 = λ−1
i,i+1λ

−1
i+1,i, for i = 1, . . . , n− 1,

ai,j = λ−1
j−1,jλ

−1
j−2,j · · ·λ

−1
i+1,j(λ−1

i,j λ
−1
j,i )λi+1,j · · ·λj−2,jλj−1,j , for 2 ≤ i+ 1 < j ≤ n.

Therefore in UV Pn we have:

p(ai,i+1) = λ−1
i,i+1λ

−1
i+1,i, for i = 1, . . . , n− 1,

p(ai,j) = λ−1
j−1,jλ

−1
j−2,j · · ·λ

−1
i+1,j(λ−1

i,j λ
−1
j,i )λi+1,j · · ·λj−2,jλj−1,j , for 2 ≤ i+ 1 < j ≤ n.

According to Theorem 4.1.7, UV Pn is the cartesian product of the free groups of
rank 2 Fi,j = 〈λi,j , λj,i〉 for 1 ≤ i < j ≤ n.

For every generator ai,j of Pn, for 1 ≤ i < j ≤ n, we have that its image is in Fi,j .
Moreover, it is not trivial:in fact, p(ai,j) = λ−1

i,j λ
−1
j,i . So p(Pn) is isomorphic to Zn(n−1)/2.

Therefore the statement follows readily since the abelianized of Pn is Zn(n−1)/2.
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4.2 Unrestricted virtual braids and fused links
We introduce here fused links, relying on the definition of strand link diagrams in
Chapter 2 (see Definition 2.1.4).

Definition 4.2.1. A fused link is an equivalence class of strand link diagrams under the
equivalence relation given by welded isotopy (Definition 2.1.5) with the addition of the
forbidden move (F2). This equivalence relation is called fused isotopy.

In Chapter 2 we discussed Alexander’s and Markov’s theorems for loop braids and
ribbon torus links. When considering unrestricted virtual braids, we have that the
diagrammatical version of the classical Alexander’s theorem generalizes to virtual braids
and links, and it directly implies that every oriented fused link can be represented by an
unrestricted virtual braid, whose Alexander closure is isotopic to the original link. Two
braiding algorithms are given in [47] and [52].

Similarly we have a diagrammatical version of Markov’s theorem for unrestricted
virtual braids and fused links. Before stating it, we recall that the natural map UV Bn →
UV Bn+1, that adds one strand on the right of an element of UV Bn, with the convention
of considering braids going from the top to the bottom, is an inclusion.

Theorem 4.2.2 ([53]). Two oriented fused links are isotopic if and only if any two
corresponding unrestricted virtual braids differ by moves defined by braid relations in
UV B∞ (braid moves) and a finite sequence of the following moves (extended Markov
moves):

• virtual and classical conjugation: ρiβρi ∼ β ∼ σ−1
i βσi ∼ σiβσ

−1
i ;

• right virtual and classical stabilization: βρn ∼ β ∼ βσ±1
n ;

where UV B∞ is defined as
⋃∞
n=2 UV Bn, β is a braid in UV Bn, σi, ρi for i = 1, . . . , n− 1

are generators of UV Bn, and σn, ρn are in UV Bn+1.

Here we give an application to fused links of Theorem 4.1.4.

Theorem 4.2.3. Any fused link is fused isotopic to the closure of an unrestricted virtual
pure braid.

Proof. Let us start remarking that the case of knots is trivial because knots are fused
isotopic to the unknot (see [48, 67]). Let L be a fused link with n > 1 components; then
there is an unrestricted virtual braid α ∈ UV Bm such that α̂ is fused isotopic to L. Let
skl = ρk−1 ρk−2 . . . ρl for l < k and skl = 1 in other cases. We define the set

Λn =
{

n∏
k=2

sk,jk |1 ≤ jk ≤ k
}
.

This can be seen as the “virtual part” of UV Bn, since it coincides with the set of
canonical forms of elements in ι(Sn), where ι is the map from Lemma 4.1.5. Then using
Theorem 4.1.4 we can write α as

α = l1,2l1,3l2,3 · · · lm−1,mπ
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where li,j ∈ 〈λi,j , λj,i〉 and π = s2,j2 · · · sm,jm ∈ Λn (see Figure 4.3).

sm,jm

s3,j3s2,j2

lm−1,m

l2,ml1,m
l2,3l1,3l1,2

Figure 4.3: The braid α.

Using Lemma 4.1.5, we can write α in another way:

α = L2s2,j2L3s3,j3 · · ·Lmsm,jm ,

where Li ∈ 〈λ1,i, λi,1〉 × · · · × 〈λi−1,i, λi,i−1〉.

sm,jm

s3,j3s2,j2

l′m−1,m

l′2,ml′1,m
L′
3L′

2

Figure 4.4: The rewriting of the braid α, with L′i ∈ 〈λ1,i, λi,1〉 × · · · × 〈λi−1,i, λi,i−1〉.

Then again we can reorder terms in the Lis:

α = l′1,2s2,j2 l
′
1,3l
′
2,3s3,j3 · · · l′m−1,msm,jm

with l′i,j ∈ 〈λi,j , λj,i〉, see Figure 4.4.
If si,ji = 1 for i = 2, . . . ,m, then α is a pure braid and m = n.
Suppose then that there is a sk,jk 6= 1 for some k, and that si,ji = 1 for each i > k.

Conjugating α for sm−km,1 , we obtain a braid α1 = sk−mm,1 αs
m−k
m,1 whose closure is fused

isotopic to L where the k-th strand of α is the m-th strand of α1. We write α1 as:

α1 = γ l′′1,ml
′′
2,m · · · l′′m−1,m sm,km

where γ = l′′s2,j2 · · · l′′m−2,m−1sm−1,km−1 , so it does not involve the m-th strand, and
l′′1,ml

′′
2,m · · · l′′m−1,m is pure. For definition sm,km = ρm−1sm−1,km . The m-th strand and

the other strand involved in this occurrence of ρm−1 that we have just isolated, belong to
the same component of L1 = α̂1 (see Figure 4.5). Hence also all the crossings in l′′m−1,m
belong to that same component.

We virtualize all classical crossings of l′′m−1,m using Kanenobu’s technique ([48, Proof
of Theorem 1]): it consists in deforming the understrand of one classical crossing at a
time, considered in the closure of the link, with a sequence of generalized Reidemeister
moves, pushing it along the whole component. At the end of the process, there is a new
classical crossing instead of the original one, and 2j new virtual crossings, where j is
the number of crossings the understrand has been pushed through. With generalized
Reidemeister moves of braid type, one can change the original classical crossing with a
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γ
l′′1,m · · · l′′m−2,m

l′′m−1,m

sm−1,km

Figure 4.5: The form of α1.

virtual one and remove the new classical crossing with a Reidemeister move of type I.
Since our crossings are on the top strand, this Reidemeister move of type I is equivalent to
a Markov’s classical stabilisation: we obtain a new link L′1, fused isotopic to L, associated
to a braid α′1 who is identical to α1 except that it has a virtual crossing at the place of
the classical crossing considered. This is done for each classical crossing in l′′m−1,m.

Since l′′m−1,m has an even total number of generators σm−1 and ρm−1, after virtualizing
l′′m−1,mρm−1 becomes a word composed by an odd number of ρm−1. Applying the relation
associated with the virtual Reidemeister move of type II we obtain a new link L2, fused
isotopic to L, associated to α2 = γ l′′1,ml

′′
2,m · · · l′′m−2,m ρm−1 sm−1,km .

Applying once more Lemma 4.1.5, α2 becomes γρm−1 l1,m l2,m . . . lm−2,m sm−1,km ,
where li,m is a word in 〈λm−1,i, λi,m−1〉.

In α2 there is only one (virtual) crossing on the m-th strand, so, using Markov moves
(conjugation and virtual stabilisation) we obtain a new braid α3, whose closure is again
fused isotopic to L and has (m− 1) strands. In other words, the braid α3 is obtained
removing from α2 the only virtual crossing on the m-th strand, and due to Markov’s
theorem its closure is fused isotopic to L.

If we continue this process, eventually we will get to a braid β in UV Bn whose
closure is fused isotopic to L. At this point, each strand of β corresponds to a different
component of L, so β must be a pure braid.

The technique used in the proof of Theorem 4.2.3 was used, associated with braid
decomposition in Bn, by A. Fish and E. Keyman to prove the following result about
fused links.

Theorem 4.2.4 ([31]). For n ≥ 1, a fused link L with n components and with only
classical crossings is completely determined by the linking numbers of each pair of
components under fused isotopy.

The proof in [31] is quite technical: it involves several computations on generators of
the pure braid group and their images in UV Pn. The previous result allows us to give
an easier proof. The advantage is that no preliminary lemma on the properties of the
generators of the pure braid groups is necessary.

Proof (of Theorem 4.2.4). We consider a fused link L with n components and with only
classical crossings: when applying Kanenobu’s technique to obtain α2 (see the proof
of Theorem 4.2.3), we get a braid with only one virtual crossing on the m-strand, and
remove it, so that the resulting braid α3 only has classical crossings. So, continuing the
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process, we get that L is fused isotopic to the closure of an n-string unrestricted virtual
pure braid β which only has classical crossings.

Even though Bm and Pm are not subgroups of UV Bm, since β̂ has only classical
crossings, we can consider Bm and Pm’s images in UV Bm. We write the pure braid β in
terms of ai,j generators, and defining a group homomorphism δi,j : Pn → Z by

as,t 7→
{

1 if s = i and t = j;
0 otherwise

which is the classical linking number lki,j of L’s i-th and j-th components of L. Any
fused link with only classical crossings with n components can be obtained as a closure of
a pure braid β = x2 · · ·xn where each xi can be written in the form xi = a

δ1,i
1,i · · · a

δi−1,i
i−1,i

(Corollary 4.1.8). This shows that β only depends on the linking number of the components.

Remark 4.2.5. In [39, Section 1] a virtual version of the linking number is defined in the
following way: to a 2-component link we associate a couple of integers (vlk1,2, vlk2,1),
where vlk1,2 is the sum of signs of classical crossings where the first component passes
over the second one, while vlk2,1 is computed by exchanging the components in the
definition of vlk1,2. We call this the virtual linking number. Clearly the classical linking
number lk1,2 is equal to half the sum of vlk1,2 and vlk2,1.

Using this definition of virtual linking number, we could be tempted to extend Fish
and Keyman’s results, claiming that a fused link L is completely determined by the
virtual linking numbers of each pair of components under fused isotopy.

However for the unrestricted case the previous argument cannot be straightforwardly
applied: the virtual linking number is able to distinguish λi,j from λj,i, but it is still
an application from UV Pn to (Z2)n(n−1)/2 = Zn(n−1) that counts the exponents (i.e.,
the number of appearances) of the generators. Since UV Pn is not abelian, this is not
sufficient to completely determine the braid.
Remark 4.2.6. Fish and Keynman in [31] suggest that their theorem cannot be extended
to links with virtual crossings between different components. They consider the unlink
on two components U2 and L = α̂, where α = σ1ρ1σ

−1
1 ρ1. They remark that the classical

linking number of both these links is 0, but they conjecture that they are not fused isotopic.
In fact, considering the virtual linking number we can see that (vlk1,2, vlk2,1)(U2) = (0, 0),
while (vlk1,2, vlk2,1)(L) = (−1, 1).

4.3 The fused link group

4.3.1 A representation for the unrestricted virtual braid group

We recall that the groups of automorphisms of permutation-conjugacy type, denoted
by PCn and introduced in Section 1.3, are the group of automorphisms of the form
α:xi 7→ w−1

i xπ(i)wi where π is a permutation and wi is a word in Fn.
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For n ≥ 1, we have thatWBn is isomorphic to PCn passing through the isomorphisms
described in Theorem 1.5.9, Theorem 1.4.11, and Corollary 1.3.3. To each generator σi of
WBn , for i = 1, 2, . . . , n− 1, we associate the corresponding automorphism (1.7), and
to each generator ρi, for i = 1, 2, . . . , n− 1, we associate automorphism (1.8). We have
thus a faithful representation ψ:WBn → Aut(Fn). Equivalently, we can use another
convention, exchanging the roles of the generators and their inverses. In this chapter we
will use this second convention, to be consistent with the convention used in the article
resulted from this work. This convention associates to each generator σi and ρi of WBn,
for i = 1, 2, . . . , n− 1 the following automorphisms.

σi :


xi 7 −→ xi xi+1 x

−1
i ;

xi+1 7 −→ xi,

xj 7 −→ xj , for j 6= i, i+ 1.

ρi :


xi 7 −→ xi+1;
xi+1 7 −→ xi;
xj 7 −→ xj , for j 6= i, i+ 1.

Remark 4.3.1. Kamada [47] remarks that the classical braid groups Bn embed in V Bn
through the canonical epimorpism V Bn → WBn. It can be seen via an argument
in [30] that, for a fixed n ≥ 1, Bn is isomorphic to the subgroup of V Bn generated
by {σ1, . . . , σn}.
Remark 4.3.2. As a consequence to the isomorphism between WBn and PCn, we can
show that relation (F2) does not hold in WBn. In fact applying ρi+1σiσi+1 one gets

ρi+1σiσi+1 :


xi 7 −→ xi 7 −→ xixi+1x

−1
i 7 −→ xixi+1xi+2x

−1
i+1x

−1
i ,

xi+1 7 −→ xi+2 7 −→ xi+2 7 −→ xi+1,
xi+2 7 −→ xi+1 7 −→ xi 7 −→ xi;

while applying σiσi+1ρi one gets

σiσi+1ρi :


xi 7 −→ xixi+1x

−1
i 7 −→ xixi+1xi+2x

−1
i+1x

−1
i 7 −→ xi+1xixi+2x

−1
i x−1

i+1,
xi+1 7 −→ xi 7 −→ xi 7 −→ xi+1,
xi+2 7 −→ xi+2 7 −→ xi+1 7 −→ xi.

Since xixi+1xi+2x
−1
i+1x

−1
i 6= xi+1xixi+2x

−1
i x−1

i+1 in Fn,we deduce that relation (F2) does
not hold in WBn.

Our aim is to find a representation for unrestricted virtual braids as automorphisms
of a group G. Since the map ψ:WBn → Aut(Fn) does not factor through the quotient
UV Bn (Remark 4.3.2) we need to find a representation in the group of automorphisms
of a quotient of Fn in which relation (F2) is preserved.
Remark 4.3.3. In [45] the authors look for representations of the braid groups Bn that
can be extended to the loop braid groups LBn, but do not factor through SLBn, which
are isomorphic to UV Bn. On the contrary, we look for a representation that does factor.
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For n ≥ 1, let Fn = γ1Fn ⊇ γ2Fn ⊇ · · · be the lower central series of Fn, the free group
of rank n, where γi+1Fn = [Fn, γiFn]. Let us consider its third term, γ3Fn = [Fn, [Fn, Fn]].
The free 2-step nilpotent group Nn of rank n is defined to be the quotient Fn�γ3Fn.

There is an epimorphism from Fn to Nn that induces an epimorphism from Aut(Fn)
to Aut(Nn) (see [1]). Then, let φ:UV Bn → Aut(Nn) be the composition of ϕ:UV Bn →
Aut(Fn) and Aut(Fn)→ Aut(Nn).

Proposition 4.3.4. The map φ:UV Bn → Aut(Nn) is a representation for UV Bn.

Proof. We use the convention [x, y] = x−1y−1xy. In Nn we have that [[xi, xi+1], xi+2] = 1,
for i = 1, . . . , n− 2. This means that xixi+1xi+2x

−1
i+1x

−1
i = xi+1xixi+2x

−1
i x−1

i+1. So, the
relation (F2) is preserved.

Proposition 4.3.5. The image of the representation φ:UV Pn → Aut(Nn) is a free
abelian group of rank n(n− 1).

Proof. From Theorem 4.1.4 we have that the only generators that do not commute in
UV Pn are λi,j and λj,i, for 1 ≤ i 6= j ≤ n. Recalling the expressions of λi,j and λj,i in
terms of generators σi and ρi, we see that the automorphisms associated to λi,j and λj,i
are

φ(λi,j) :
{
xi 7 −→ x−1

j xixj = xi[xi, xj ];
xk 7 −→ xk, for k 6= i;

φ(λj,i) :
{
xj 7 −→ x−1

i xjxi = xj [xj , xi] = xj [xi, xj ]−1;
xk 7 −→ xk, for k 6= i.

It is then easy to check that the automorphisms associated to λi,jλj,i and to λj,iλi,j
coincide:

φ(λi,jλj,i) = φ(λj,iλi,j) :
{
xi 7 −→ xi[xi, xj ];
xj 7 −→ xj [xi, xj ]−1.

To see that in φ(UV Pn) there is no torsion, let us consider a generic element w in UV Pn.
It has the form w = l1,2l1,3 · · · ln−1,n, where li,j is a product of generators λi,j and λj,i [58].
Generalizing the calculation done above, we have that

φ(l1,2l1,3 · · · ln,n−1) = φ(λε1,2
1,2 λ

ε2,1
2,1 · · ·λ

εn−1,n
n−1,n λ

εn,n−1
n,n−1 ),

where εi,j is the total number of appearances of λi,j in li,j . With another easy calculation
(check out also Remark 4.3.10) we have that

φ(λε1,2
1,2 λ

ε2,1
2,1 · · ·λ

εn−1,n
n−1,n λ

εn,n−1
n,n−1 ) :


x1 7 −→ x1[x1, x2]ε12 [x1, x3]ε13 · · · [x1, xn]ε1n ;
x2 7 −→ x2[x2, x1]ε21 [x2, x3]ε23 · · · [x2, xn]ε2n ;
...
xn 7 −→ xn[xn, x1]εn1 [xn, x2]εn2 · · · [xn, xn−1]εn,n−1 .
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So the condition for φ(w) to be 1 is equivalent to all exponents being equal to 0,
hence w = 1.

Remark 4.3.6. As a consequence of the previous calculation, the homomorphism φ
coincides on UV Pn with the abelianization map.

As a consequence to Proposition 4.3.5, the representation φ is not faithful. However,
according to the characterization of WBn as subgroups of Aut(Fn) (see Section 1.3), it
is natural to ask if we can give a characterization of automorphisms of Aut(Nn) that
belong to φ(UV Bn).

Proposition 4.3.7. For n ≥ 1, let β be an element of Aut(Nn), then β ∈ φ(UV Bn) if
and only if β satisfies the condition β(xi) = a−1

i xπ(i)ai, for 1 ≤ i ≤ n, where π ∈ Sn
and ai ∈ Nn.

Proof. Let us denote by UV B(Nn) the subgroup of Aut(Nn) such that any element
β ∈ UV B(Nn) has the form β(xi) = g−1

i xπ(i)gi, denoted by xgiπ(i), with 1 ≤ i ≤ n, where
π ∈ Sn and gi ∈ Nn. We want to prove that φ:UV Bn → UV B(Nn) is an epimorphism.
Let β be an element of UV B(Nn). Since Sn is both isomorphic to the subgroup of
UV Bn generated by the ρi generators, and to the subgroup of UV B(Nn) generated by
the permutation automorphisms, we can assume that for β the permutation is trivial,
meaning that β(xi) = xgii . We define εi,j to be φ(λi,j), as in Proposition 4.3.5, and we
prove that β is a product of such automorphisms. We recall that xyz = xzy for any
x, y, z ∈ Nn, therefore

β(xi) = x
x
ai,1
1 ···x

ai,n
n

i

where ai,i = 0 for all i. In particular, we can assume that

β(x1) = x
x
a1,2
2 ···x

a1,n
n

1 .

We define a new automorphism β1 multiplying β by ε
−a1,2
1,2 · · · ε−a1,n

1,n . We have that
β1(x1) = x1, and β1(xj) = β(xj) for j 6= 1. Then again we define a new automorphism
β2 = β1 ε

−a2,1
1,2 ε

−a2,3
2,3 · · · ε−a2,n

2,n that fixes x1 and x2. Carrying on in this way for n steps
we get to an automorphism

βn = βn−1 ε
−an,1
n,1 · · · ε−an,n−1

n,n−1 = β
n∏
j=1

ε
−a1,j
n,j

n∏
j=1

ε
−a2,j
n−1,j · · ·

n∏
j=1

ε
−an,j
1,j

where εi,i = 1. The automorphism βn is the identity automorphism. Then β is a product
of εi,j automorphisms. Hence it has a pre-image in UV Bn.
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4.3.2 The fused link group

Let L be a fused link. Then there exists an unrestricted virtual braid β such that its
closure β̂ is equivalent to L. We use this relation between fused links and unrestricted
virtual braids to define a group associated to the fused link. We will see that it is a fused
link invariant.

Definition 4.3.8. The fused link group G(L) is the group given by the presentation〈
x1, . . . , xn

∣∣∣∣ φ(β)(xi) = xi for i ∈ {1, . . . , n},
[xi, [xk, xl]] = 1 for i, k, l not necessarily distinct

〉
,

where φ:UV Bn → Aut(Nn) is the map from Proposition 4.3.4.

Proposition 4.3.9. The fused link group is invariant under fused isotopy.

Proof. We recall from [53] two unrestricted virtual braids have fused isotopic closures if
and only if they are related by braid moves and extended Markov moves. We should check
that, under these moves, the fused link group G(L) of a fused link L does not change.
This is the case. However a quicker strategy to verify the invariance of this group is to
remark that it is a projection of the welded link group defined in [15, Section 5]. This
last one being an invariant for welded links, we only have to do the verification for the
second forbidden braid move, coming from relation (F2). This invariance is guaranteed
by the fact that φ preserves relation (F2), as seen in Proposition 4.3.4.

H = σ̂2
1U2 = îd H1 = σ̂1ρ1

Figure 4.6: The fused link group distinguishes the unlink U2 from the Hopf link H.
However, it does not distinguish the Hopf link with two classical crossings H from the one
with a classical and a virtual crossing H1. In fact: G(U2) = N2, while G(H) = G(H1) =
Z2. We remark however that H and H1 are distinguished by the virtual linking number.

Remark 4.3.10. Let us recall, from Theorem 4.2.3, that a fused link L with n ≥ 1
components, admits as a representative the closure of an element of UV Pn, say βL.
Following the proof of Proposition 4.3.7, we deduce that

φ(β(xi)) = x
x
ai,1
1 ···x

ai,n
n

i ,

where ai,i = 0 and ai,j = vlki,j , for i 6= j. Since the virtual linking number is a fused
invariant, we get another easy proof of Proposition 4.3.9. However, it means also that
the link group is determined by the virtual linking numbers of the components. Actually,
as shown in Figure 4.6, the link group is weaker than the virtual linking number as an
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invariant. The relation between the virtual linking number and the link group can be
nicely described in the case n = 2 as follows. Let us consider λα1,2λ

β
2,1 and λγ1,2, where γ

is the greatest common divisor of α and β, and therefore of vlk1,2 and vlk2,1. The
automorphisms associated to them are

φ(λα1,2λ
β
2,1) :

{
x1 7 −→ x1[x1, x2[x1, x2]−β]α = x1[x1, [x1, x2]−β]α[x1, x2]α = x1[x1, x2]α,
x2 7 −→ x2[x1, x2]−β;

φ(λγ1,2) :
{
x1 7 −→ x1[x1, x2]γ ,
x2 7 −→ x2.

Then

G(λα1,2λ
β
2,1) = G(λγ1,2) = 〈x1, x2 | [x1, x2]γ = 1, [xi, [xk, xl]] = 1 for i, k, l ∈ {1, 2}〉

= 〈x1, x2, t | [x1, x2] = t, tγ = 1, t central〉.

This latter group presentation allows us to distinguish the groups for different γ ∈ N.
This is because γ is the order of the central element t of these Heisenberg-like groups,
setting that γ = 0 means that t has infinite order. In particular, we can set Gγ := G(λγ1,2).
For instance, the two links considered in [32], L = ̂σ1ρ1σ

−1
1 ρ1 and U2, have corresponding

groups G1 = Z2 and G0 = N2. Therefore they are distinguished by Gγ , while, as we saw
above, they have the same classical linking number.

4.4 Flat welded braids
Several other quotients of virtual braid groups have been studied in the literature. Among
these there are the groups of flat welded braids. In particular, these groups are also
quotients of the welded braid groups.

Definition 4.4.1. For n ≥ 1, the flat welded braid group, denoted by FWBn, is the
quotient of WBn obtained by adding relations

σ2
i = 1, for i = 1, . . . , n− 1. (4.4)

Let us consider the natural projection map g:V Bn → FWBn. Set g(ρi) = ρi
and g(σi) = si, for i = 1, . . . , n− 1. In FWBn we have relations (4.5) and (4.6) coming
from the mixed relations, and relations (4.7) coming from the forbidden relations (F1):

siρj = ρjsi, for |i− j|≥ 2, (4.5)
ρiρi+1si = si+1ρiρi+1, for i = 1, . . . , n− 2, (4.6)
si+1siρi+1 = ρisi+1si, for i = 1, . . . , n− 1. (4.7)

In FWBn, relations (4.4) and (4.7) imply that also relations of type (F2) hold.
This is because from ρisi+1si = si+1siρi+1 one gets sisi+1ρi = ρi+1sisi+1. Adapting
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Theorem 4.1.7 to this case, one can easily verify that its pure subgroup FWPn is
isomorphic to Zn(n−1)/2. As a straightforward consequence to Theorem 4.1.4, we can
describe the structure of FWBn.

Proposition 4.4.2. For n ≥ 1, let Zn(n−1)/2 be the free abelian group of rank n(n− 1)/2.
Let us denote by xi,j, for 1 ≤ i 6= j ≤ n a set of generators of Zn(n−1)/2. The group
FWBn is isomorphic to Zn(n−1)/2 o Sn, where Sn acts by permutation on the indices of
generators of Zn(n−1)/2 (setting xj,i := x−1

i,j , for 1 ≤ i < j ≤ n).

Proof. Let us recall how elements λi,j in UV Bn were defined. For i = 1, . . . , n− 1,

λi,i+1 = ρiσ
−1
i ,

λi+1,i = ρiλi,i+1ρi = σ−1
i ρi,

and for 1 ≤ i < j − 1 ≤ n− 1:

λi,j = ρj−1ρj−2 . . . ρi+1λi,i+1ρi+1 . . . ρj−2ρj−1,

λj,i = ρj−1ρj−2 . . . ρi+1λi+1,iρi+1 . . . ρj−2ρj−1.

Relations (4.4) are therefore equivalent to relations λi,jλj,i = 1. Adding these relations
and following verbatim the proof of Theorem 4.1.7, we get the proof of the statement.

4.5 Classifying fused links and other remarkable quotients
of the welded braid group: state of the art

Theorem 4.2.4 gives a classification of fused links containing only classical crossings with
the linking number of their components. We suggested that the virtual linking number
could be used for a classification of all fused links. However Fish and Keyman’s argument
(and thus the version here used) could not be straightforwardly extended using this
invariant (see Remark 4.2.5).

Some months after this work was done, Nasybullov [66], and Audoux, Bellingeri,
Meilhan and Wagner [6], independently found the classification of fused links. Nasybullov
considers an unrestricted virtual braid whose closure is isotopic to a fixed fused link,
and extends the argument here exposed considering case by case what form did the
unrestricted virtual braid take. Audoux, Bellingeri, Meilhan and Wagner prove that every
fused link is completely determined by the virtual linking numbers of its components.
The technique they used was to pass to Gauss diagrams.

In the same paper Audoux, Bellingeri, Meilhan and Wagner consider the quotient
of welded links up to forbidden moves, and showed some partial result comparing it
with the quotient classical links to ∆-moves [72], see Figure 4.7. In the same period
Satoh [72] proved that ∆-moves are unknotting operations on welded knots. We recall
that the fact that ∆-moves are unknotting operations on usual knots was already proved
in [49]. In this article Kanenobu also considers an operation on 2-knots, called the
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HC-move, and proves a relation between the ∆-unkotting number for a usual knot and
the HC-uknotting number of its spun 2-knot.

The study of local moves on virtual and welded knotted objects has been useful to
many results in relation to finite type invariants, and to the understanding of relations
between various quotients of the virtual braid groups, the virtual string links groups and
the set of virtual knots. It is thus interesting to consider other remarkable quotients
of the welded braid groups, for example the quotient of the welded braid groups up to
∆-moves.

Figure 4.7: ∆-move
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La topologie des groupes de tresses de cercles : applications et quotients
remarquables

Résumé : Dans cette thèse nous étudions les groupes de tresses de cercles, nous explorons leurs
applications topologiques et certains quotients remarquables. La thèse comporte quatre parties :
- Unification des formalismes pour les groupes de tresses de cercles. Plusieurs formulations ont
été utilisées pour les groupes de tresses de cercles en différents domaines ; nous présentons ces
interprétations et prouvons leur équivalence.

- Une version topologique du théorème de Markov pour les entrelacs de tores ruban. Avec
l’interprétation des tresses de cercles comme objets noués dans l’espace de dimension 4, nous
présentons une version du Théorème de Markov pour les groupes de tresses de cercles avec
clôture dans l’analogue du tore solide dans l’espace de dimension 4.

- Invariants d’Alexander pour enchevêtrements ruban et algèbres de circuit. Nous définissons un
invariant d’Alexander pour enchevêtrements ruban. De cela nous extrayons une généralisation
fonctorielle du polynôme d’Alexander. Cet invariant a une signification topologique profonde,
mais n’est pas simplement calculable. Nous établissons une correspondance avec le polynôme
d’Alexander en plusieurs variables pour enchevêtrements introduit par Archibald pour résoudre
ce problème.

- Quotients des groupes de tresses virtuelles. Nous étudions les groupes de tresses de cercles
symétriques, et nous en décrivons la structure. Comme conséquence nous montrons que tout
entrelacs «fused » admets un représentant comme clôture d’une tresse de cercles symétrique
pure.

The topology of loop braid groups: applications and remarquable quotients

Abstract: In this thesis we study loop braid groups, we explore some of their topological
applications and some remarquable quotients. The thesis is composed by four parts:
- Unifying the different approaches to loop braid groups. Several formulations are being used by
researchers working with loop braid groups in different fields; we present these interpretations
and prove their equivalence.

- A topological version of Markov’s theorem for ribbon torus-links. Using the understanding
of the interpretation of loop braids as knotted objects in the 4-dimensional space, we give a
topological proof of a version of Markov theorem for loop braids with closure in a solid torus
in the 4-dimensional space.

- Alexander invariants for ribbon tangles. We define an Alexander invariant on ribbon tangles.
From this invariant we extract a functorial generalization of the Alexander polynomial. This
invariant has a deep topological meaning, but lacks a simple way of computation. To overcome
this problem we establish a correspondence with Archibal’s multivariable Alexander polynomial
for tangles.

- Quotients of the virtual braid group. We study the groups of unrestricted virtual braids, a
family of quotients of the loop braid groups, and describe their structure. As a consequence we
show that any fused link admits as a representative the closure of a pure unrestricted virtual
braid.

Mots-Clés indexation RAMEAU : Topologie de basse dimension ; Tresses, Théorie de :
Nœuds, Théorie des ; Invariants ; Groupes modulaires.
Mots-Clés indexation libre : Tresses soudés ; Tresses de cercles.
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