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Résumé

Les interactions non linéaires entre modes de pulsation, induisant des modulations d’ampli-
tude et de fréquence, sont difficiles à mettre en évidence avec les télescopes au sol en raison des
temps caractéristiques en jeu, de l’ordre de la semaine, du mois, ou même de l’année. L’avène-
ment des télescopes spatiaux comme KEPLER (opéré par la NASA) a considérablement changé
la donne en apportant de nouvelles données pour ce domaine de recherche. Dans cette thèse,
nous analysons les données photométriques obtenues avec KEPLER pour 24 étoiles compactes
pulsantes, incluant 18 étoiles sous-naines de type B (sdB) et 6 naines blanches. Nous établissons
que les modulations d’amplitude et de fréquence des modes d’oscillation sont un phénomène
courant dans ces étoiles. Nous étudions en particulier deux étoiles : KIC 0862602, une naine
blanche pulsante de type DB, et KIC 10139564, une étoile sdB variable à courtes périodes.
KIC 0862602 et KIC 10139564 ont été observées sans interruption par KEPLER en cadence ra-
pide pendant deux années pour la première et plus de trois ans pour la seconde. En analysant en
détail ces données photométriques de très haute précision, nous mettons en évidence différents
types de comportements affectant les composantes de triplets induits par la rotation stellaire.
Les fréquences et amplitudes de ces modes montrent des variations soi périodiques soi irrégu-
lières, ou demeurent constantes. Ces comportements peuvent être connectés à ceux prédits par
les équations d’amplitude dans le cas de couplages non linéaires résonants entre modes, en par-
ticulier pour les temps caractéristiques des modulations. De plus, nous montrons que les modes
en résonance constituant les triplets peuvent également interagir avec des modes extérieurs par
le biais d’autres formes de résonances telle que la résonance à trois modes ν0 ∼ ν1 + ν2, une
situation qui n’est pas prise en compte dans le cadre théorique existant. Ces études apportent
pour la première fois une preuve claire de l’existence de mécanismes de couplages non linéaires
entre modes d’oscillations dans les pulsateurs compacts. Cette découverte résonne comme un
avertissement pour les projets visant à mesurer les taux de changement des périodes dus à l’évo-
lution dans les étoiles compactes en général. Les modulations de fréquence d’origine non linéaire
peuvent potentiellement empêcher toute mesure fiable de ces taux, à moins de corriger ces ef-
fets auparavant. Les modulations observées caractérisées dans cette thèse apportent un regard
nouveau sur "l’astérosismologie non linéaire" et appellent à revisiter les méthodes d’analyse des
courbes de lumière pour en extraire les modes d’amplitude et de fréquence variables. Dans un
futur proche, nous anticipons davantage d’attention portée à ces phénomènes non linéaires dans
différents types d’étoiles pulsantes observées depuis l’espace, ainsi qu’un regain d’intérêt pour
la théorie non linéaire des oscillations stellaires en général.
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Abstract

Nonlinear mode interactions, inducing amplitude and frequency modulations, are difficult
to observe from ground-based telescopes as these typical timescales of the modulations are
of the order of weeks, months, or even years. The launch of space telescopes such as Kepler
(operated by NASA) has tremendously changed the situation by providing new data for this
research field. In this thesis, we analyze the Kepler photometric data observed for 24 compact
pulsators, including 18 hot B subdwarf (sdB) stars and six white dwarf stars. We find that it is
a common phenomenon that oscillation modes in these pulsating stars show amplitude and/or
frequency variations. We focus in particular on two stars, KIC 08626021, a DB white dwarf, and
KIC 10139564, a short period sdB star. KIC 08626021 and KIC 10139564 have been monitored
by Kepler in short-cadence mode for nearly two years and more than three years without
interruption, respectively. By analyzing in depth these high-quality photometric data, we find
that the modes within triplets induced by rotation clearly reveal different types of behaviors :
their frequency and amplitude may exhibit either periodic or irregular modulations, or remain
constant. These various behaviors can be linked to those predicted within the amplitude equation
formalism in the case of the nonlinear resonant mode coupling mechanism, particularly for
the modulation timescales. Furthermore, we find that the triplet resonance modes can also
interact with outside modes through other types of resonances such as the three-mode resonance
ν0 ∼ ν1 +ν2, which is not considered within the current nonlinear theoretical frameworks. These
findings constitute the first clear evidence of nonlinear resonant mode couplings occurring in
compact pulsators. This should resonate as a warning to projects aiming at measuring the
evolutionary change rate of pulsation periods in compact stars in general. Nonlinear modulations
of the frequencies can potentially jeopardize any attempt to measure reliably such rates, unless
they can be corrected beforehand. The observed modulations characterized in this thesis provide
new insights to "nonlinear asteroseismology" and call for new methods to process the signals of
variable modes from the observed light curves. We foresee that increasing attention will focus
on these nonlinear phenomena in various types of pulsating stars observed from space in the
near future, thus reviving interest in the nonlinear oscillation theory in general.
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Introduction générale

L’astérosismologie est une technique puissante pour sonder l’intérieur des étoiles pulsantes. Elle
offre l’opportunité de connaitre la composition et la structure des étoiles à partir de leur spectre
d’oscillation. Les pulsations observées ont généralement de très faibles amplitudes et peuvent
être décrites dans l’approximation des pertubations linéaires dans le cadre de la théorie de
l’hydrodynamique stellaire. Dans l’approximation linéaire, les oscillations prédites sont stables,
leurs amplitudes et leurs fréquences demeurant constantes. Pourtant, les observations au sol
montrent que pour certaines étoiles les oscillations peuvent avoir des variations d’amplitude et
de féquence au cours du temps, comme par exemple pour l’étoile variable de type GW Virginis
PG0122+200 (Vauclair et al. 2011) ou encore la naine blanche de type DB GD358 (Winget
et al. 1994). La théorie linéaire des pulsations stellaires ne peut pas rendre compte de ces
modulations et c’est vers une approche non linéaire que l’on doit se tourner pour interpréter
ces comportements.

Ces modes variables, comme le révèlent les observations, présentent des modulations sur
des temps caractéristiques se comptant en semaines, en mois, voire meme en années, soit bien
plus que les périodes d’oscillation typiques. En conséquence, il est très difficile avec les réseaux
de telescopes terrestres de suivre de façon continue ces phénomènes sur des bases de temps
aussi longues. La situation a cependant changé avec le lancement de telescopes spatiaux comme
CoRoT (Baglin et al. 2006) et Kepler (Borucki et al. 2010), permettant un suivi photométrique
des étoiles sur plusieurs mois, voire années, sans interruption. La qualité sans précédent des
données issues de ces missions permet un regard nouveau sur le mystère des modulations des
modes d’oscillation dans les étoiles pulsantes.

Dans cette thèse, je me focalise principalement sur les pulsateurs compacts, incluant les
étoiles sous-naines de type B (sdB) et les naines blanches (WD), observées par le satellite Kepler.
Les étoiles sdB et les naines blanches sont associées aux stades ultimes de l’évolution stellaire
pour les étoiles de masse initiale inférieure à huit masses solaires. Les étoiles sdB appartiennent
à la branche horizontale extrême (EHB) et sont les restes d’anciennes étoiles géantes rouges
ayant perdu la quasi totalité de leur enveloppe riche en hydrogène, laissant une étoile chaude
de masse ∼ 0.47 M� et de rayon ∼ 0.10− 0.25R�, brûlant de l’hélium dans le coeur. Les naines
blanches sont les restes en cours de refroidissement des étoiles dont le carburant nucléaire est
épuisé. La plupart d’entre elles ont une masse autour de 0.6M� et un rayon comparable à celui
de la Terre.

Les étoiles sdB et les naines blanches sont connues pour développer des oscillations non-
radiales multi-périodiques. Depuis 1997, deux groupes de pulsateurs sdB ont été identifiés : les
étoiles de type V361 Hya oscillent rapidement en ondes acoustiques (modes p) à des périodes
de l’ordre de quelques minutes et les étoiles de type V1093 Her montrent des oscillations plus
lentes associées à des modes de gravité (modes g) avec des périodes de ∼ 1−4 heures. Quelques
étoiles hybrides oscillant à la fois en modes p et en modes g sont également connues. Les naines
blanches comptent quatre bandes d’instabilité le long de leur séquence de refroidissement : les
étoiles de type GW Vir, très chaudes, ainsi que, par ordre de température effective décroissante,

1



les DBVs, les DQ chaudes, et les DAVs. Toutes les pulsations observées jusqu’à présent dans
les naines blanches sont associées à des modes g et leurs périodes s’échelonnent typiquement de
quelques minutes à une heure.

Le satellite Kepler a observé 18 sdB et 6 naines blanches pulsantes avant la perte de la
seconde roue inertielle en Mai 2013. La plupart d’entre elles, observées pendant approximative-
ment 3 ans, montrent des spectres d’oscillation dont les amplitudes des modes varient au cours
du temps. C’est la première fois que nous avons l’opportunité, grâce à Kepler, de caractériser
les comportements nonlinéaires des modes d’oscillation dans ces étoiles. Ces observations pour-
raient notamment encourager de nouveaux développements sur le front des théories nonlinéaires
des oscillations stellaires. Cette thèse est organisée comme suit :

Chapitre 1 — La théorie des oscillations stellaires est la théorie fondamentale pour étudier
les variations de luminosité intrinsèques dans les étoiles. Nous décrirons dans un premier temps
la théorie de perturbation linéaire et ses conditions limites permettant d’obtenir les valeurs
propres caractérisant les modes d’oscillation. La rotation stellaire et le magnétisme peuvent
également affecter ces modes propres, levant les dégénérescences et créant des multiplets sy-
métriques ou asymétriques. Toutefois, des nonlinéarités dans le comportement des modes sont
généralement à l’origine de combinaisons de fréquences régulièrement observées dans les spectres
de Fourier. Nous aborderons donc également dans ce contexte les théories nonlinéaires des oscil-
lations stellaires ou les modes peuvent aussi avoir un comportement variable au cours du temps,
dépendant des conditions de résonance et des coefficients de couplage tel que décrits par les
équations d’amplitude.

Chapitre 2 — L’astérosismologie des pulsateurs compacts est l’un des champs les plus actifs
de la recherche en physique stellaire. Les oscillations dans les étoiles sdB et naines blanches
sont respectivement générées par le mécanisme κ et la convection. L’astérosismologie permet
d’obtenir des contraintes précises sur les paramètres fondamentaux de ces étoiles, par exemple
leur masse, température effective, et gravité de surface. Les observations de naines blanches
pulsantes sur des décennies permettent également de mesurer des taux de changement des
périodes associés à l’évolution séculaire (refroidissement) de l’étoile. Toutefois, un grand nombre
de ces étoiles montrent des variations d’amplitude sur des échelles de temps allant de quelques
jours, semaines, mois à quelques années, i.e., bien plus courtes que les temps évolutifs. La
photométrie spatiale, par sa qualité propre et les longues bases de temps d’observation, apparait
alors très prometteuse pour identifier les mécanismes derrière ces variations.

Chapitre 3 — Dans ce chapitre, nous introduisons les méthodes utilisées pour exploiter
les données photométriques. La plupart des 24 pulsateurs compacts découverts dans le champ
Kepler ont été observées pendant plus de deux ans sans interruption. Ces données spatiales
diffèrent considérablement des données photométriques obtenues au sol en terme de précision et
de durée. Aussi, avant d’extraire les fréquences des courbes de lumière Kepler, nous effectuons
une série de tests statistiques avec le logiciel FELIX pour nous assurer de la fiabilité des mesures
d’incertitude sur les paramètres des modes (fréquences et amplitudes) et pour établir les seuils
de détection en évaluant les probabilités de "fausse alarme". Les étoiles les plus intéressantes
sont ensuite identifiées après une première analyse du spectre de fréquence de tous les pulsateurs
de l’échantillon selon des critères comprenant la durée des observations, la détection ou non de
multiplets, et la période de rotation des étoiles. L’utilisation de périodogrammes de Lomb-
Scargle glissants facilite grandement la recherche de modulations d’amplitude et de fréquence
dans les étoiles prioritaires. Nous nous concentrons en particulier sur le comportement des
modes dans les multiplets générés par la rotation, ainsi que sur les combinaisons linéaires qui
présentent les conditions pour différents types de résonances. Les comportements observés dans
les données sont alors comparés avec les prédictions théoriques décrivant les mécanismes de
couplages résonants nonlinéaires.
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Chapitre 4 — La naine blanche pulsante de type DB KIC 08626021 est la seule DBV sui-
vie par Kepler. Après l’analyse d’environ 2 années de données, nous présentons la preuve de
l’existance de modulations de fréquence et d’amplitude dans 3 triplets et nous identifions 3
combinaisons de fréquence dans cette étoile. Deux triplets se trouvent être dans le régime inter-
médiaire de la résonance entre leurs composantes et montrent des variations d’amplitude et de
fréquence manifestement périodiques, avec un temps caractéristique compatible avec la théorie.
Un troisième triplet présente un comportement différent, avec un verrouillage des fréquences et
des amplitudes modulées, associé à un régime transitoire de la résonance. Ces résultats montrent
ainsi que deux triplets peuvent se trouver dans deux régimes différents. Il s’agit de la première
signature claire d’interactions nonlinéaires identifiée dans une étoile naine blanche pulsante.

Chapitre 5 – L’étoile sdB pulsante KIC 10139564 est la seule étoile hybride dominée par
des modes p observée par Kepler. Après avoir analysé sa courbe de lumière couvrant 38 mois,
nous présentons la découverte intriguante de comportements variés au niveau des modes consti-
tuant plusieurs multiplets et combinaisons linéaires de fréquences. Trois multiplets montrent
clairement des modulations d’amplitude et de fréquence typiques du régime intermédiaire de
la résonance. Deux triplets montrent des modulations d’amplitude mais avec verrouillage des
fréquences correspondant au régime transitoire. Un autre triplet est quant à lui complètement
verrouillé, avec amplitudes et fréquences constantes sur la durée des observations. De plus, trois
fréquences à travers une relation de combinaison linéaire sont probablement dans une résonance
directe à trois modes. Il s’agit du premier cas clairement établi révélant des signatures d’in-
teractions non linéaires entre modes dans une étoile sdB, et le second cas identifié parmi les
pulsateurs compacts.

En conclusion, nous résumons brièvement les résultats et discutons les perspectives de ce
travail. Les interactions nonlinéaires entre modes peuvent se produire dans toutes les étoiles
pulsantes et les modulations observées sont parfois plus complexes que les prédictions théoriques.
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Introduction

Asteroseismology is a powerful technique to probe the interior of pulsating stars. It offers us the
opportunity to know the compositions and the structure of the stars, revealed by their oscillation
spectra. The observed oscillations typically have very small amplitudes and can be described
by the approximation of linear perturbations within the framework of stellar hydrodynamics
theory. In the linear theory domain, the predicted oscillations are stable over time, i.e., having
constant amplitudes and frequencies. However, some stars observed by ground-based telescopes
show that oscillation modes may have temporal amplitude and/or frequency variations, e.g.,
the GW Virginis variable star PG0122+200 (Vauclair et al. 2011) and the DB white dwarf
star GD358 (Winget et al. 1994). The linear theory of stellar pulsation can not account for
those mode modulations and one may need to consider the second order—nonlinear terms—of
perturbation theory to interpret the behaviors of mode modulations over time.

Those variable modes, as revealed by the observations, have modulations on timescales of
weeks, months, and even years, that is much longer than the period of pulsations. Therefore, it
is difficult for the ground-based telescopes to continuously monitor these phenomena as a result
of the difficulty in organizing network observations to cover such a long time. The situation has
tremendously changed with the launch of space telescopes like CoRoT (Baglin et al. 2006) and
Kepler (Borucki et al. 2010), which had the ability to observe stars for months and years without
interruption. The unprecedented high-quality photometric data gathered by these spacecrafts
shred new light on the mystery behind the behaviors of mode modulations in pulsating stars.

In this dissertation, I mainly focus on the compact pulsators, including hot B subdwarf
(sdB) and white dwarf (WD) stars, observed by the Kepler spacecraft. White dwarf and sdB
stars are related to the ultimate stages of evolution of stars which have an initial mass less than
eight solar masses. The sdB stars belong to the so-called Extreme Horizontal Branch (EHB)
and are the remnants of former red giants that have lost essentially all of their H-rich envelop,
leaving a hot star with mass ∼ 0.47 M� and of radius ∼ 0.10− 0.25R�, burning helium in the
core. The WD stars are the cooling remnants of stars after the nuclear reactions have fade out
and most of them have a mass around 0.6M� with a radius comparable to the radius of the
Earth.

Both sdB and WD stars are well known to develop nonradial multi-periodic oscillations.
There are two groups of identified sdB pulsators since 1997 : the V361 Hya stars that oscillate
rapidlly in acoustic modes (p-modes) with periods of a few minutes and the V1093 Her stars
that show slower oscillations due to gravity modes (g-modes) with periods of ∼ 1 − 4 hours,
as well as a few hybrid pulsators that show oscillations both in p- and g-modes. The WD stars
count four instability strips along their cooling sequence, i.e., the very hot GW Vir stars, as well
as, by order of decreasing effective temperature, the DBV, hot-DQ and DAV pulsating stars.
All the pulsations observed so far in white dwarf stars are associated with g-modes and their
periods typically range from a few minutes to one hour.

Kepler has observed eighteen pulsating sdB stars and six pulsating white dwarf stars before
it lost the second reaction wheel in May 2013. Most of them show varying amplitudes in their
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oscillation spectra and had been observed for around three years. This is the first time that
we have the opportunity, offered by Kepler, to characterize the nonlinear behaviors of the
oscillating modes excited in these stars. These observed nonlinear mode modulations would
particularly encourage new development on the front of nonlinear theory of stellar pulsations.
The dissertation is organized as follows :

Chapter 1 — Stellar oscillation theory is the fundamental theory to study the intrinsic
luminosity variations in stars. We will firstly describe the linear perturbation theory within
which the eigenvalues of oscillation modes can be obtained with the boundary conditions. Stellar
rotation and magnetism can affect the eigenvalues, lifting the degeneracy modes into symmetric
or asymmetric multiplets. However, strong nonlinearities of eigenmodes are at the origin of some
observed linear combination frequencies appearing in the Fourier spectra. We will then present
the nonlinear perturbation theory where the involved modes may have temporal behaviors,
depending on the resonance conditions and their coupling coefficients, predicted by numerical
explorations of the amplitude equations.

Chapter 2 — Asteroseismology of compact pulsators is one of the most intensive research
fields in stellar physics. The oscillations in hot B subdwarfs and white dwarfs are driven by
κ-mechanisms and convection, respectively. The technique of asteroseismology can provide ac-
curate constraints on the fundamental parameters for those stars : e.g., mass, effective tempera-
ture and surface gravity. Observations monitoring some white dwarf stars from decades can also
measure the rates of period change of pulsations, which is associated with evolutionary (cooling)
effects. Nevertheless, many of those stars exhibit amplitude variations on timescales of days,
weeks, months even years, that is much shorter than the evolution timescales. Promisingly, the
spaceborne photometry could uncover the mechanisms for the short timescale variations due to
its merits of high-quality and long-duration.

Chapter 3 — In this chapter, we provide the methods used to exploit the photometric data.
Most of the 24 compact pulsators discovered in the Kepler field have been observed continuously
for more than two years. The spaceborne data differs significantly from the ground-based pho-
tometric data in terms of precision and duration. Before we proceed to extract frequencies from
the Kepler light curves, we thus do statistical procedures, operated by the software FELIX, to
test error confidence and probability of false alarm signals with artificial data with a duration
and precision similar to those of Kepler photometry. The most interesting targets are sorted out
after obtaining the frequency contents of all the compact pulsators, based on their observatio-
nal durations, richness of multiplets and periods of rotation. The use of sliding Lomb-Scargle
periodograms greatly accelerates our search of amplitude and frequency variations of oscillation
modes in those priority targets. We concentrate on the mode behaviors of multiplet frequencies
as well as some linear combination frequencies because they are in the conditions of different
types of resonance. The observed mode behaviors are compared with the theoretical predictions
of nonlinear resonant coupling mechanisms.

Chapter 4 — The pulsating DB white dwarf star KIC 08626021 is the unique DBV star moni-
tored by Kepler. After analyzing the nearly two years of data, we present evidence of amplitude
and frequency modulations in three triplets as well as three linear combination frequencies in
that star. The two triplets, that are in the so-called intermediate regimes of triplet resonance,
show clearly periodic amplitude and frequency variations, with modulating timescales consistent
with the theoretical expectations. Another triplet show a different behavior, locked frequencies
and modulated amplitudes, linked to the narrow transitory regime. The results indicate that
two neighbor triplets can belong to different resonant regimes. This is the first clear signatures
of nonlinear mode interactions identified so far in a white dwarf star.

Chapter 5 — The pulsating hot B subdwarf star KIC 10139564 is the unique p-mode do-
minated hybrid star from Kepler photometry. After analyzing the contiguous 38-month data,
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we present the intriguing findings that various mode behaviors occur in different components
of multiplets and several linear combination frequencies. Three multiplets show clear amplitude
and frequency variations that are typically of the intermediate regime. Two triplets exhibit
amplitude modulations but have locked frequencies suggesting that they are in the transitory
regime. Another triplet appears in the frequency locked regime in which both amplitude and
frequency constant. Three frequencies through linear combination relationship are likely in a
three-mode direct resonance. This is the first clear signatures of nonlinear mode interactions
identified so far in a hot B subdwarf star and the second case in compact pulsators.

Finally, we summarize the results briefly and propose prospective for the further work. Non-
linear mode interactions can occur in pulsating stars independent of their types. The observed
mode modulations sometimes look more complex than the theoretical expectations.
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Chapter 1

Stellar oscillation theory

1.1 Linear stellar oscillation theory
The linear stellar oscillation theory is the current theory to investigate the intrinsic lumino-

sity variations of stars. In the very early times of the developing stellar oscillation theory, the
radial pulsation one was the chief attention to understand the stellar pulsations in Cepheids
(Eddington 1926). It is realized that more complicated pulsations should be considered in some
other types of pulsating stars, the nonradial pulsations, which may have been started from
the work of Ledoux (1951). Later observations revealed that nonradial pulsations are respon-
sible for the variations in some of the pulsating stars, including the epoch-making discovery of
five-minute oscillations in the Sun (Leighton et al. 1962) and the first white dwarf pulsators
(Landolt 1968). Along with those observational developments, much progress had been done on
the theoretical aspect of nonradial oscillations in the Sun and stars, e.g., the solutions to the
equations of linear nonradial oscillations for realistic stellar models (Osaki 1975; Saio & Cox
1980). A comprehensive review of linear stellar theory can be found in Unno et al. (1989), Cox
(1980) and Aerts et al. (2010).

In the section, we first introduce the basic equations to depict the equilibrium state of stars,
then the linear perturbations will be imposed on the equilibrium state to describe the stellar
oscillations. The boundary conditions for the adiabatic oscillations and nonadiabatic oscillations
are discussed in Section 1.1.3 and 1.1.4.

1.1.1 Basic hydrodynamics equations

Equations of hydrodynamics, that involves the physical quantities as functions of position
r and time t, are the basic equations to describe oscillations of a star. We begin with the
ideal model that the star is self-gravitationally, with physical properties, e.g., the local pressure
p(r, t), the local temperature T (r, t), the local density ρ(r, t), and the local velocity of fluid
v(r, t), without hydrodynamical treatment of convection in the stellar interior, and without
presence of magnetism on the surface. The first of these equations is the conservation of mass,
which is expressed by :

∂ρ

∂t
+∇ · (ρv) = 0. (1.1)

In the stellar interior, the viscosity in the gas is generally small and could be neglected. Then
equation of the conservation of momentum (a.k.a. the Euler equation) can be written as

ρ
( ∂
∂t

+ v · ∇
)
v = −∇p− ρ∇Φ. (1.2)
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Here the gradient of the gravitational potential Φ satisfies the Poisson equation and it is written
as

∇2Φ = 4πGρ, (1.3)

where G is the gravitational constant. Again, ignoring the small heat generation induced by
viscosity in stellar interior, the final equation is the conservation of energy, which can be written
as

ρT
( ∂
∂t

+ v · ∇
)
S = ρε−∇ · F, (1.4)

where S (ρ, T ) is the entropy and ε (ρ, T ) is the energy generation rate. The radiative flux is
given by the radiative diffusion equation

F = −K∇T = − 4ac
3κcρ

T 3∇T, (1.5)

where a is the radiation density constant, c is light velocity, and κc denotes the opacity.
The small perturbations of oscillations are superimposed on the equilibrium state of a star.

In the case of the equilibrium state of a non-rotating, non-magnetic star without convection,
the basic equations (1.1)–(1.5) can be written in the spherical polar coordinates as the standard
form equations of stellar structure :

dp

dr
= −ρg, with g ≡ GMr

r2 , (1.6)

dMr

dr
= 4πr2ρ (1.7)

dLr
dr

= 4πr2ρε (1.8)

and
dT

dr
= −3κρ

4ac
1
T 3

Lr
4πr2 (1.9)

where the radiative luminosity Lr = 4πr2F (may also contains the flux of convective energy
FC) is the energy flow per unit time andMr is the mass through and within the sphere of radius
r, respectively.

1.1.2 The linear perturbation theory

The oscillations in pulsating stars are typically small and can be treated as a system that
the "small" perturbations is superimposed upon the equilibrium state of a star. In the domain
of the linear pulsation theory, all perturbations are sufficiently small so that only the first-order
terms in perturbations are taken into consideration and the second and higher order term in
perturbations are neglected. However, the second and third order terms—nonlinear term—that
will be considered in the nonlinear amplitude equation formalism in Section 1.4.

A physical quantity x is expressed by either the Eulerian form of

x(r, t) = x0(r) + x′(r, t) (1.10)

or the Lagrangian form of
x(r, t) = x0(r0) + δx(r0, t). (1.11)

The above two forms of perturbations are related to each other as

δx(r, t) = x′(r, t) + ξ · ∇x0(r), with ξ ≡ r− r0. (1.12)
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Neglecting the high order terms, the linear perturbed version of the basic equations (1.1)–
(1.5), the conservation of mass, momentum and energy that are derived in the Eulerian forms,
are as follows :

∂ρ′

∂t
+∇ · (ρ0v′) = 0, with v′ = ∂ξ

∂t
, (1.13)

ρ0
∂v′

∂t
+∇p′ + ρ0∇Φ′ + ρ′∇Φ0 = 0, (1.14)

ρ0T0
∂

∂t
(S′ + ξ · ∇S0) = (ρε)′ −∇ · F′, (1.15)

∇2Φ′ = 4πGρ′, (1.16)

and
F′ = −K0∇T ′ −K ′∇T0. (1.17)

Now we separate the time t from the physical variables (e.g., ρ′, T ′, Φ′, v′, ...) and also
separate them into radial and angular parts, with the help of the time dependence factor exp(iωt)
and the spherical harmonics function Y (θ, φ) (see Appendix A.1 for the low-order ones). For
equilibrium quantities, the subscript 0 is omitted if there is no confusion.

With this separation of variables, a physical perturbation can be taken as the following
form :

p′(r, θ, φ, t) = p′(r)Y m
` (θ, φ)eiωt. (1.18)

The corresponding expression for the displacement vector ξ is written as

ξ = ξr + ξh =
[
ξr(r), ξh(r) ∂

∂θ
, ξh(r) ∂

sin θ∂φ
]
Y m
` (θ, φ)eiωt, (1.19)

where ξr and ξh is the radial and the tangential component of the displacement, respectively,
and ξh is given (see equation 13.38 in Unno et al. 1989) as,

ξh = 1
ω2r

(p′
ρ

+ Φ′
)
. (1.20)

Figure 1.1 shows some examples of oscillation modes at the stellar surface. The colors re-
present the temperature of the modes. Modes with azimuthal m = 0 are called zonal modes
and lines of latitude are the nodal lines of the spherical harmonics. While for the modes with
m = `, i.e., sectoral modes, are separated by the nodal lines of longitude. Other modes are
called tesseral modes and their nodal lines are both latitude and longitude.

With the given separation for physical quantities {ξr, p′, Φ′, δS, T ′, F ′r}, a set of ordinary
differential equations from equations (1.13)–(1.17) can be obtained as follows :

1
ρ

dp′

dr
+ g

ρc2 p
′ + (N2 − ω2)ξr + dΦ′

dt
= g∇ad

ρT

p
δS, (1.21)

1
r2

d

dr
(r2ξr) + 1

Γ1

d ln p
dr

ξr +
(
1− L2

`

ω2

) p′
ρc2 −

`(`+ 1)
ω2r2 Φ′ = ∇ad

ρT

p
δS, (1.22)

1
r2

d

dr

(
r2dΦ′

dr

)
− `(`+ 1)

r2 Φ′ − 4πGρ
( p′
ρc2 + N2

g
ξr
)

= −4πG∇ad
ρ2T

p
δS, (1.23)

K
dT ′

dr
= −F ′r −K ′

dT

dr
, (1.24)

and
iωρTδS = (ρε)′ − 1

r2
d(r2F ′r)
dr

+ `(`+ 1)
r2 KT ′, (1.25)
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Figure 1.1 – Examples of oscillation modes at the stellar surface, label by the radial order k,
degree ` and azimuthal order m (plotted by the software GLPulse3D).
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where c =
√

Γ1p/ρ is the sound velocity, Γ1 and ∇ad are the thermodynamic gradients defined
as

Γ1 ≡
(∂ ln p
∂ ln ρ

)
S

and ∇ad ≡
(∂ lnT
∂ ln p

)
S
. (1.26)

L` and N are the Lamb frequency and Brunt-Väisälä frequency, respectively, and defined by

L2
` = `(`+ 1)c2

r2 , (1.27)

and
N2 = g

( 1
Γ1

d ln p
dr
− d ln ρ

dr

)
. (1.28)

Equations (1.21)–(1.25) are basic equations of linear nonadiabatic nonradial oscillations. With
neglecting the right-hand side terms, equations (1.21)–(1.23) are reduced to be those of linear
adiabatic nonradial oscillations.

1.1.3 Adiabatic oscillations

In the adiabatic approximation of stellar oscillations, the thermal relaxation time is much
longer than the pulsation periods so that the specific entropy is conserved during the oscillations,
for such case, δS = 0. Then the reduced equations (1.21)–(1.23), with terms at right side set to
zero, for adiabatic approximation with proper boundary conditions give an eigenvalue problem
with an eigenvalue ω2. We consider the boundary conditions at the center (r = 0) and the
surface (p = 0) where the equations are singular. With the properties of the involving physical
quantities near the center (see, Section 14.1 of Unno et al. 1989 and Section 17.6 of Cox 1980,
for details), i.e., r ∼ 0, the reduced equations (1.21)–(1.23) at the center can be expressed by

dΦ′

dr
− `Φ′

r
= 0 (1.29)

and
ξr −

`

ω2r

(p′
ρ

+ Φ′
)

= 0. (1.30)

Since the reduced equations (1.21)–(1.23) are equivalent to a 4th-order differential equation with
a single variable, there are two other boundary conditions at the surface. Assuming that the
pressure p and the density ρ are zero at the surface r = R, we therefore have the zero-boundary
conditions,

δp = 0 (1.31)

and
dΦ′

dr
+ `+ 1

r
Φ′ = 0. (1.32)

The reduced equations (1.21)–(1.23) and the boundary conditions (1.29) –(1.32) pose an eigen-
value problem which has the solution for the eigenvalue ω2, independent on index m of the
spherical surface harmonics. The degeneracy in index m is lifted by rotation or magnetism (see
Section 1.2.1).

For the properties of oscillation eigenmodes in the case of adiabatic approximation and some
treatment of mode analysis, e.g., the Cowling (1941) approximation, the asymptotic method, and
the numerical method analysis, we suggest you to read books of Unno et al. (1989); Cox (1980);
Aerts et al. (2010) and a review of Helioseismology (adiabatic approximation for oscillations in
the Sun) by Christensen-Dalsgaard (2002) for details.
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1.1.4 Nonadiabatic oscillations

In most stars, the adiabatic approximation treatment can well describe oscillations. However,
oscillations in nature are inevitably nonadiabatic that means energy exchange among mass
elements during stellar oscillation. In mathematical term, the eigenfrequencies ω of oscillations
are complex in description of linear nonadiabatic oscillations. The real part of ω is the frequency
of oscillation mode and the imaginary part of ω is the linear growth rate of the mode. The
amplitude of oscillation mode grows if the imaginary part of ω is negative, i.e., excited mode.
While, if the imaginary part of ω is positive, oscillation mode is vibrationally stable and its
amplitude decreases, i.e., damped mode.

The energy conservation equation and the flux equation (1.24) and (1.25) have to be incor-
porated to solve the linear nonadiabatic oscillations. We note that it is more convenient to use
the Lagrangian perturbations of nuclear energy generation rate ε and radiative flux F although
they are in the Eulerian perturbation form in equations (1.24) and (1.25), without necessary to
consider the dependence of the physical quantities ε and the opacity κ on the chemical compo-
sition. The Lagrangian perturbations of these equations (1.24) and (1.25) can be seen in Unno
et al. (1989, equation 21.14 and 21.15). In addition to these equations, the thermodynamic
relation between δT and δS is also needed,

δS = cp
(δT
T
−∇ad

δp

p

)
, with cp ≡ T

(∂S
∂T

)
p
. (1.33)

The nonadiabatic oscillation involves sixth-order differential equations and six boundary
conditions which pose an eigenvalue problem with a complex eigenvalue ω. Four of the six
boundary conditions, two at the center r ∼ 0 and two at the surface r = R, are the same to the
adiabatic oscillations as discussed in last section, see equations (1.29)–(1.32), with assumptions
of the simple reflective boundary conditions in which the pressure and the density near the
stellar surface decreases rapidly outward. Another boundary condition at the center may be
chosen as

δS = 0. (1.34)

Another surface boundary condition could be the fact that there is no inward radiative flux at
the surface, i.e.,

δF

F
= δfE

fE
+ 4δT

T
, (1.35)

where fE is the Eddington factor. For simplicity, the perturbation of the Eddington factor δfE is
a really difficult problem and is usually not considered (Christensen-Dalsgaard & Frandsen
1983).

1.2 Stellar rotation effects
Some of real stars, in fact, rotate at certain speed, e.g., observation on the DB white dwarf

GD358 (Winget et al. 1994). Therefore, the influence of stellar rotation should be taken into
consideration to obtain the eigenvalues of oscillation modes. As the theory of rapid rotation is
very complicated, only is the effects of slow rotation considered in this thesis.

Assuming a star that is uniformly rotating with an angular velocity Ω, the linear perturba-
tions of equation (1.14), in the frame rotating with the star, must be replaced by

∂v′

∂t
+ (v · ∇)v′ + (v′ · ∇)v + 2Ω× v′ = −1

ρ
∇p′ −∇Φ′ − ρ′

ρ
∇Φ, (1.36)

where the fourth term in the left side represents the linear perturbations of the Coriolis force.
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Assuming that velocity fields affect the equilibrium state as small perturbations, equilibrium
quantity such as ρ, eigenfunctions ξ, and eigenfrequencies ω, are expanded up to second orders
as

ρ = ρ0 + ρ′1(Ω) + ρ′′2(Ω2) +O(Ω3), (1.37)

ξ = ξ0 + ξ′1(Ω) + ξ′′2(Ω2) +O(Ω3), (1.38)

and
ω = ω0 + ω′1(Ω) + ω′′2(Ω2) +O(Ω3). (1.39)

To obtain the corrections of the first and second order terms of rotation to eigenfrequencies,
we firstly introduce a linearized operator that represents for the linear adiabatic nonradial
oscillations (Lynden-Bell & Ostriker 1967; Cox 1980; Unno et al. 1989),

L (ξ) = ω2ξ, (1.40)

where the full expression of L (ξ) can be found in Appendix A.2.

1.2.1 The first order effect of stellar rotation on eigenfrequencies

With the help of this linear operator L , the first order effect of rotation on eigenfrequency
of oscillations can be given by (see details in Hansen et al. 1977; Unno et al. 1989),

∆ωn`m ≡ ω′1 = m

∫ R

0

∫ π

0
Kn`m(r, θ)Ω(r, θ)rdrdθ, (1.41)

where the rotational kernel function Kn`m(r, θ) is very complicated and can be found in Appen-
dix A.3. The kernel Kn`m(r, θ) can be calculated from the eigenfunctions for the nonrotating
stellar model and only depends on m2 (Hansen et al. 1977; Cuypers 1980). Now we could see
that the (2`+1)-degeneracy of eigenfrequency of each mode is lifted by stellar rotation, a similar
effect as Zeeman splitting in magnetic field. Therefore the eigenfrequencies depend on not only
the degree ` of but also the azimuthal index m of the spherical harmonics Y m

` (θ, φ).
In the simple case of a star with uniform rotation, with Ω constant, the frequency corrections

induced by rotation is simple as

∆ωn`m = −m(1− Cn`)Ω, (1.42)

where Cn` is the Ledoux constant (Ledoux 1951) which is expressed by

Cn` =
∫ R

0 [2ξrξh + ξ2
h]ρr2dr∫ R

0 [ξ2
r + `(`+ 1)ξ2

h]ρr2dr
. (1.43)

The rotation effect on frequency is proportional to the azimuthal order m and to the rotational
velocity Ω. For p-modes, as radial order n increases the radial displacement ξr dominates over
the horizontal displacement ξh and the quantity Cn` approaches to zero. While in the case of
g-modes, the horizontal displacement ξh becomes the dominant term as n increases in the outer
part of the star and Cn` trends to 1/`(`+ 1). We could easily see that the (2`+ 1) components
in an `-multiplet are well equally spaced from equation (1.42). It indicates that the components
in such as a triplet are in the exact resonance 2ω0 = ω+ + ω− where the ω+ and ω− are the
frequencies of the prograde and retrograde modes in the triplet, respectively, and ω0 is the
frequency of the central component, unperturbed eigenfrequency. These symmetrically spaced
components may be distorted, such as, by the second order perturbation of rotation effect (e.g.,
Dziembowski & Goode 1992), and will be discussed in next section.
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1.2.2 Frequency mismatch in multiplets induced by stellar rotation

The higher order terms of stellar rotation can distort the symmetrical components in a
multiplet. The second order corrections to eigenfrequencies due to slow rigid rotation is in a
more complicated form than in that of the first order and has a general expression as (see, e.g.,
Saio 1981; Soufi et al. 1998),

δωn`m ≡ ω′′2 = Dn` ω0
( Ω
ω0

)2
, (1.44)

where Dn` contains the corrections both from the Coriolis force and the distortion of spherical
symmetry of the star. The expression of Dn` is very complicated and will be not given here
(see details in, e.g., Saio 1981; Gough & Thompson 1990; Dziembowski & Goode 1992; Soufi
et al. 1998). In the case of g-modes, the quantity Dn` is typically on the same order of Cn`,
e.g., Dn` ∼ 4Cn` in Goupil et al. (1998). However, Dn` varies in a large range for p-modes, e.g.,
see values of Dn` in Saio (1981) and Dziembowski & Goode (1992). We note that the second
order corrections, δω, distort the symmetrically spaced components in a multiplet since δω is
always positive, i.e., all the eigenfrequencies will be shifted to the same direction in Fourier
amplitude spectra, a similar effect to the magnetism which will be discussed in the following.
This frequency mismatch could govern which kind of regime of the nonlinear mode resonance
the multiplet in, exhibiting amplitude and frequency variations or remaining stable, which will
be discussed in Section 1.4.3.

The third order term due to stellar rotation may be considered in the case of fast rotating
stars. However, in most sdB stars and white dwarfs, the rotation periods are far longer than
that of oscillations, ω � Ω. Therefore the contributions from the third order perturbations of
rotation can generally be ignored in our context (see, e.g., equation 61 in Soufi et al. 1998).

Magnetism effects

In this short section we will discuss the effect of magnetism on the eigenfrequencies of
oscillation modes, although the magnetic perturbations on eigenfrequencies are smaller than
that from rotation in most white dwarfs and almost all sdB stars. The correction induced by
magnetic effects δωmag could be deduced by the similar perturbation method of stellar rotation,
and the result shows that it is proportional to the square of the magnetic strength |B|2 as (Jones
et al. 1989),

δωmag ' Dmagm
2|B|2, (1.45)

where Dmag is a constant and depends on stellar models. Equation (1.45) shows that δωmag
depends on m2 instead of m and the degeneracy frequency will be lifted by the magnetism
into ` + 1 modes instead of 2` + 1 by stellar rotation. The magnetic effect on correction of
eigenfrequencies also lead the frequencies to shift in the same direction, a similar effect of
second order rotational perturbations, and could contribute to the frequency mismatch in a
multiplet.

1.3 Combination frequencies in the Fourier spectra induced by
strong nonlinearities

We have discussed the self-excited nonradial modes (eigenmodes) within the domain of
linear stellar oscillation theory in Section 1.1 before. However, the observable amplitude of
` ≥ 3 mode is reduced by geometric cancellation effects because we cannot resolve the stellar
disk spatially (Dziembowski 1977). We are only limited to observe the luminosity variations of
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low-degree (` = 1, 2) modes from the ground-based observations. Observations on some stars
present a richness of signals that are too numerous to be real self-excited eigenmodes, e.g.,
GD 358 (Winget et al. 1994). Some of the signals in Fourier spectra have relationships with
other oscillation modes through linear combinations, e.g., sum or difference frequencies.

Linear combination frequencies are observed in the Fourier spectra of many white dwarf and
sdB pulsating stars, e.g., multi-site observation on sdB star PG 1325+101 (Silvotti et al. 2006),
the Whole Earth Telescope (WET hereafter) observations on sdB star PG 0014+067 (Vučković
et al. 2006), ZZ Ceti star HL Tau 76 (Dolez et al. 2006), DB white dwarf GD 358 (Winget
et al. 1994), and hot pre-white dwarf RXJ 2117+3412 (Vauclair et al. 2002). They are too
numerous to be eigenmodes themselves and their amplitudes may have correlations with their
principal parent modes. There are two proposals that the origin of linear combination frequencies
involves strong nonlinear mixing of sinusoidal signals that are associated with eigenfrequencies of
oscillation modes : 1. The depth of convection zone at stellar surface varies when the star undergo
oscillations (Wu 2001) ; 2. The emergent flux changes due to the second order of temperature
perturbations at the stellar surface (Brassard et al. 1995). Both of those two interpretations
on the origin of linear combination frequencies predict that the amplitudes of the combination
frequencies depend somewhat on the inclination angle between the stellar rotation axis and
the observing sight and the amplitudes of those resulting frequencies are typically very small,
compared to the amplitudes of their principal parent modes.

We note that linear combination frequencies are also in the conditions of being resonant
with their principal parent modes, e.g., ω1 ∼ ω2 + ω3, where ω1, ω2 and ω3 are the frequencies
of the three involved modes. If the linear combination frequencies are indeed in a resonance,
their amplitudes could be substantial large, even larger than the amplitudes of their principal
parents (see, e.g., Breger & Montgomery 2014). The resonance of ω1 ∼ ω2 +ω3 will be discussed
in Section 1.4.4 in which the nonlinear perturbation theory should be addressed for stellar
oscillations.

1.3.1 The depth-varying surface convection zone

Brickhill firstly proposed that the linear combination frequencies result from nonlinear
mixing of eigenmodes in context of the surface convection in pulsating DA variable white dwarfs
(Brickhill 1992). The depth of the convection zone varies instantaneously during stellar pulsa-
tions and affect the photospheric flux variations. This process distorts the shape of the light
curve at the stellar photosphere and brings about the presence of the combination frequencies in
the Fourier power spectra. Based on this proposal, Wu (2001) developed the analytical expres-
sions for the amplitudes and phases of the combination frequencies with three assumptions : (1)
perturbations along neighboring angular directions do not affect each other ; (2) the radiative
interior cause little nonlinearity in the pulsation signals ; (3) equilibrium models adjacent in
effective temperature quantify the time-dependent nature of the convective zone.

The dimensionless amplitude ratio, Rc, between the observed amplitude of a combination
frequency and its principal modes is defined as (van Kerkwijk et al. 2000),

Rc ≡
Ai±j

nijAiAj
, (1.46)

where Ai±j is the amplitude of the combination frequency, Ai and Aj are the amplitudes of the
principal parent modes, and nij denotes the number of possible permutations : nij = 1 if i = j,
and nij = 2 if i 6= j. The theoretically expression for the observable Rc to be as (Wu 2001),

Rc = |2β + γ|(ωi ± ωj)τc0

4αV
√

1 + [(ωi ± ωj)τc0 ]2
G
mi±mj

`i`j

gmi
`i
g
mj

`j

, (1.47)
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where αV ∼ 0.4 for a ZZCeti star in the optical band, ωi and ωj are the frequencies of the
principal parent modes. The value of the convection zone thermal time constant, τc0 , ranges
from 20 s to 1300 s between the blue and red edge of the ZZCeti instability strip (Wu 2001).
The two dimensionless numbers, β and γ, quantify the deepening of the convection zone when
a white dwarf cools and |2β + γ| ∼ 12 for the pulsating white dwarfs. The expression for the
geometric factors that associate with the inclination angle, gmi

`i
, gmj

`j
and Gmi±mj

`i`j
, can be found

in Appendix A.5.
These formalism had been applied to two types of white dwarf variables, i.e., DB star GD 358

(Winget et al. 1994) and a cool ZZ Ceti G29-38 (Kleinman et al. 1998). In general, theoretical
considerations could reproduced most (∼ 90% for GD 358) linear combination frequencies in
both stars, with a few discrepancies which needs further discussion. In this formalism, the am-
plitude ratio Rc between linear combinations frequencies and their parents modes are typically
less than 10 for the (` = 1, ` = 1) and (` = 1, ` = 2) modes (see Eqn. 1.47). There are also some
open problems for this formalism that some types of variables do not present convection zone in
their surface, e.g., DO white dwarfs and hot B subdwarfs. In some of these types of stars, linear
combination frequencies also exit, e.g., pre-white dwarf star PG 1707+427 (Fontaine et al. 1991)
and sdB star Balloon 090100001 (Baran et al. 2008).

1.3.2 The temperature variations at stellar surface

Brassard et al. (1995) proposed that linear combination frequencies in ZZ Ceti stars can
be reproduced by the second order of local temperature perturbations at the stellar surface
induced by oscillations, based on the work by Robinson et al. (1982) in which the authors
proposed that the luminosity or color variations of the white dwarf stars are caused by the
temperature variations instead of geometry or gravity variations. These strong nonlinearities
can be explained in terms of the nonlinear response of the emergent flux to change of the local
temperature at stellar surface. In this formalism, the amplitude of an oscillation mode with
frequency ωi (in percentage in filter x) is expressed by

Ai = Ax`iεiT0Y
m
` (θ), (1.48)

where εi is the dimensionless amplitude of the temperature perturbation due to the oscillations
of mode i, T0 is the unperturbed effective temperature of the star, Ax`i is the frequency-integrated
quantity, and the real spherical harmonics function Y

m
` (θ) ≡ Y m

` (θ, φ)e−imφ and θ is the in-
clination angle (see Appendix A.5). The amplitude of the linear combination frequencies (in
percentage) , e.g., ωk = ωi + ωj , is given by

Ai+j = εiεjT
2
0

`i+`j∑
k=|`i−`j |

[`i,mi; `j ,mj ]kY
mi+mj

k (θ)Bx
k . (1.49)

Here subscript i, j denote two different mode i and j, Bx
k is a physical quantity in filter x

that depends on stellar model, and [`i,mi; `j ,mj ] is a rewritten form of the Clebsch-Gorden
coefficients between quantum numbers (Cohen-Tannoudji et al. 1977), which is defined as,

Y mi
`i

(θ, φ)Y mj

`j
(θ, φ) ≡

`i+`j∑
k=|`i−`j |

[`i,mi; `j ,mj ]kY
mi+mj

k (θ). (1.50)

Therefore the dimensionless amplitude ratio, Rc, in this formalism is given by

Rc =
∑`i+`j
k=|`i−`j |[`i,mi; `j ,mj ]kY

mi+mj

k (θ)Bx
k

nijAx`iA
x
`j
Y
m
`i (θ)Y m

`j (θ)
× 100. (1.51)
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From this equation (1.51) we note that Rc is independent on the temperature and its per-
turbation term εi. It only depends on the spherical harmonics function Y m

` and the physical
quantities Ax, Bx in filter x. Table 1–8 in Brassard et al. (1995) provide the calculated values
of quantities Ax`i and Bx

k for a series of stellar models in different filters. They also provide the
specific expressions of the low degree (` ≤ 4) of the real spherical harmonics functions Y m

` (θ)
and their relationships of equation (1.50) for low degree modes ` = 1 or ` = 2, in Appendix
(Brassard et al. 1995).

Now we apply this formalism to some real modes in a ZZ Ceti star, by adopting the values
provided by Brassard et al. (1995). Here we only give an example to the combination frequencies
of modes [` = 1,m = 0; ` = 1,m = ±1] in white filter that is the most similar filter in
Brassard et al. (1995) to the color of Kepler photometric data. In such case, Rc is reduced
to 50Bx

2/A
x
1A

x
1 . In the white filter, Ax1 is ∼ 10−2 and Bx

2 is ∼ 10−7 to 10−6, and Rc < 1.
That means the amplitudes of the linear combination frequencies between an (` = 1,m = 0)
and (` = 1,m = ±1) modes in white filter should be very small, comparing to amplitudes of
their principal parent modes. We note that the formalism of temperature perturbations are
independent on the presence of convection zone in stellar surface and could be applied to any
kind of pulsating stars.

1.4 Nonlinear resonant mode coupling mechanism
Linear stellar pulsation theory is in a fairly satisfactory state with the observations of oscilla-

tions in pulsating stars, where the eigenfrequencies are stable over time. However, observations
show that eigenmodes may have temporal variations in amplitude and frequency on timescales
much longer than oscillation periods themselves, which is beyond the scope of the linear theory
and lies in the domain of nonlinear pulsation theory. There are basically two approaches to
nonlinear stellar pulsations that are complementary in some ways, numerical hydrodynamics
and the amplitude equation formalism. The later one gained much attention since it reduces
the problem of involved modes from a partial differential equation system in time and space to
a simpler case, a system of ordinary differential equation only in time. The amplitude equations
formalism (hereafter AEs) is the only tool with which we can understand nonlinear nonradial
pulsations, in particular for mode interactions and resonance (Buchler 1993). Essentially, AEs is
limited to weakly nonadiabatic pulsators, e.g., white dwarf and hot B subdwarf stars (Buchler
1993, 1998).

In context of stellar physics, the theoretical derivation of AEs began around 1980’s. Dziem-
bowski (1982) applied AEs to the case of resonant mode coupling ω1 ∼ ω2+ω3 or ∼ 2ω2, followed
by which parametric resonance of an unstable p-mode with g-mode pairs was investigated to
explain the low-amplitude modes in δ Scuti stars (Dziembowski & Krolikowska 1985). In their
investigations, the nonadiabatic effects were only taken into account in the linear perturbation
terms and the nonlinear mode coupling was calculated in an adiabatic approximation. This type
of resonant mode coupling predicts periodic amplitude modulations under certain conditions in
pulsating stars (Moskalik 1985; Wu & Goldreich 2001) and the amplitude saturation of gravity
modes in ZZ Ceti stars (Wu & Goldreich 2001). We note that the most recent investigations of
AEs of this type was extended to give prediction on saturation of poloidal mode instability in
neutron star (Pnigouras & Kokkotas 2015), which could determine the amplitude of gravitatio-
nal wave signals (see the first direct detection in Abbott et al. 2016) emitted by that neutron
star.

Parallel to the adiabatic ones, the nonadiabatic treatment included by nonlinear AEs was
originally developed for the most simple case, radial pulsations in pulsating stars (Buchler &
Goupil 1984). It is remarkable that the solutions of AE agree pretty well with the exact nonlinear
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models for the classical Cepheids models (Buchler & Kovacs 1986). Then the radial AEs was
extended to the nonradial pulsations in the Eulerian form and also in the Lagrangian form
(Goupil & Buchler 1994; Van Hoolst 1994a). Buchler et al. (1995) applied AEs to a specific
case, i.e., nonradial modes in an ` = 1 triplet induced by slow stellar rotation. The results
of the solution to AEs of such case show that amplitudes and frequencies of the modes in
the considered triplet may exhibit periodic behaviors, constant or even chaotic modulations. It
must be stressed that resonant couplings exist only between certain nonradial modes that is
imposed by the selection rules of angular momentum constraints. The consequences of nonlinear
resonant couplings of nonradial modes and possible evidences of observations in several stars
are discussed by Buchler et al. (1997) and Goupil et al. (1998).

Nonlinear AEs predict that temporal behaviors of amplitude and frequency of oscillation
modes modulate on timescales of weeks, months even years, much longer than the pulsation per-
iods. This is difficult with ground-based observations to monitor continuously one cycle of such
modulations. Nevertheless, there are some possible hints from ground-based observations, e.g.,
in white dwarfs (see examples in Vauclair 2013), that amplitude and frequency variations are
significantly larger than the detection errors. To uncover clear evidences of nonlinear mode in-
teractions, launch of satellite telescopes are particularly needed (e.g., Dziembowski 1993). With
spaceborne data, nonlinear AEs may be better constrained by extracting nonlinear coefficients
from the observed modulations. Moreover, nonlinear stellar pulsation theory can provide new
tools for diagnostic of a more precise stellar interior.

This section is organized as follows : We first introduce the nonlinear nonadiabatic perturba-
tions theory of stellar oscillations ; then nonlinear AEs is applied to specific cases, particularly
for resonant mode couplings within an ` = 1 triplet, aligning to the first proposal of this thesis,
i.e., searching for the first evidences of triplet resonances ; following that, resonant mode cou-
pling of three modes ω1 ∼ ω2 + ω3 or ∼ 2ω2 is given but in an adiabatic approximation ; we
end up this section with the particular explorations on this three mode couplings.

1.4.1 Nonlinear perturbations

In this section, we extend the small linear perturbations to higher nonlinear perturbations
as involves higher orders terms in the Eulerian form which is mainly investigated by Goupil &
Buchler (1994), and see Van Hoolst (1994a,b) for the perturbations in the Lagrangian and Ha-
miltonian formalism. We do neither introduce the equilibrium state of hydrodynamics equations
for a nonrotating and non-magnetic star again nor the linear perturbations (see Section 1.1.2
for details). As the nuclear time scale of the evolution of chemical composition is much longer
than that of dynamical and thermal process, the treatment of the chemical composition in a
star is constant during oscillations, i.e., ∂µi/∂t = 0, thus the change of chemical composition
will not be involved in the linear and nonlinear perturbation operators, L and N .

The perturbation of physical quantities, {p, T,F, ...}, can be expressed as,

x′(r, t) =x(r, t)− x0(r)

=x′1(r, t) + x′′2(r, t) + x
(3)
3 (r, t) + ... ,

(1.52)

where x(i)
i is the Eulerian perturbation of the ith order of x(r, t), and it also can be expressed

in terms of the independent variable z. For a independent physical quantity x(µ) where µ =
(µ1, µ2, ..., µn), the perturbations in the Eulerian formalism are written as

x′1 =
∑
i

∂x

∂ui
u′i, (1.53)
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x′′2 = 1
2!
∑
i,j

∂2x

∂ui∂uj
u′iu
′
j , (1.54)

and
x

(3)
3 = 1

3!
∑
i,j,k

∂3x

∂ui∂uj∂uk
u′iu
′
ju
′
k. (1.55)

With inserting the nonlinear perturbations (equation 1.52), we derived the nonlinear equa-
tions into the general form as,

∂z
∂t
− Lz = Nz = N2z +N3z + ... , (1.56)

where z = (ρ′,v′, S′)t. The component of the linear operator L can be easily obtained by
rewritting the equations (1.13)–(1.17). Setting the partial differential with time t on the left
side, the rest terms on the right side are the linear operator L for density ρ, velocity v, and
entropy S, respectively. Now we consider the quadratic contributions N2 which are obtained for
density ρ, velocity v, and entropy S, respectively, as

N ρ
2 (z, z) = −∇ · (ρv′), (1.57)

N v
2 (z, z) = −(v′ · ∇)v′ −−1

ρ

(
∇p′′2 − ρ′∇p′1 − ρρ′2∇Φ

)
, (1.58)

N S
2 (z, z) = −v′ · ∇S′ − 1

ρT

(
∇ · F′′2 − (T

′
1
T

+ ρ′)∇ · F′1
)
. (1.59)

and the cubic operator N3 that are expressed by

N ρ
3 (z, z, z) = 0, (1.60)

N v
3 (z, z, z) = −1

ρ

(
∇p(3)

3 − ρ
′∇p′′2 + (ρ′)2∇p′1 + ρ(ρ′)3∇Φ

)
, (1.61)

N S
3 (z, z, z) = − 1

ρT

[
∇ · F(3)

3 − (T
′
1
T

+ ρ′)∇ · F′′2 +
(
(T
′
1
T

)2 − T ′′2
T

+ (ρ′)2 + ρ′
T ′1
T

)
∇ · F′1

]
. (1.62)

Equations (1.13)–(1.17) and (1.56) are the backbone for the derivation of the amplitude equa-
tions of various types of resonance. The linear operator provides the solutions of the eigenvectors
(see Section 1.1 for details) that form the vector-basis in which the nonlinear AEs formalism
could proceed.

1.4.2 Amplitude equations of nonlinear nonadiabatic nonradial resonance

In context of nonlinear system (see equation 1.56), amplitude equation formalism takes
advantage that only the dominant modes are considered since the vast majority of the oscillation
modes are strongly damped and could be eliminated as much as possible (Goupil & Buchler
1994). Therefore AEs are possible to describe the general behaviors of dominant modes by their
temporal amplitudes. These amplitudes are ordinary differential equations that solely depends
on the resonance conditions occurring among the dominant modes of the considered system.
A number of equivalent approaches of deriving such AEs can be found in, e.g., Guckenheimer
et al. (1984), Nayfeh (1973) and Buchler & Goupil (1984).

The stellar oscillations can be represented by temporal amplitudes as

z =
∑
j

1
2Aj(t)e

iωjtej + C +O, (1.63)
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where ej , ωj , and Aj(t) denote the linear nonadiabatic eigenvectors, eigenfrequency and the
temporal amplitude of mode j, respectively, C denotes complex conjugation and O represents
’higher order terms’. With the help of known Aj(t), that needs to solve the amplitude equations
a priori, the temporal behaviors of all the physical quantities such as density ρ and entropy S
can be finally determined.

Amplitude equations are applied in a few cases of special interest in stellar oscillations. The
first case concerns the no-existing resonance situation where the modes does not satisfy any
resonance conditions of the form

∑
j kjωj ≈ 0, with kj is small integer. For each mode j, AEs

is expressed by
dAj
dt

= (iωj + κj)Aj +Qjj |Aj |2Aj +
∑
k

Qjk|Ak|2Aj , (1.64)

where the nonlinear coupling coefficients Qjk are very complicated and will be not given here
(see Appendix B in Goupil & Buchler 1994, for the full expression of Qjk and the coupling
coefficients in the subsequent equations 1.65 and 1.66). It is note that there is no quadratic
terms in the nonresonant case and the cubic ones, which is at least and sufficient (Kovacs &
Buchler 1989), has to be considered to describe amplitude saturation by nonlinear effects. Now
taking AEs in the case of resonances where the nonlinear quadratic terms will arise, for example,
a resonant condition in which the two involved modes whose frequencies have the relationship
2ω1 ≈ ω2, the 2 : 1 resonance AEs are obtained as

dAj
dt

= (iωj + κj)Aj + PjAnj2A
∗
1 +

∑
k

Q′jk|Ak|2Aj , (1.65)

where j, k = 1, 2, the asterisk represents complex conjugation, Pj is the nonlinear quadratic
terms, and Q′jk differ from Qjk through the absence of the terms that became divgergent caused
by resonance. Finally, nonradial modes in the condition of 1 : 1 : 1 resonance within an ` = 1
triplet, i.e., ω1 ≈ ω2 ≈ ω3, or a general case ω1 + ω2 ≈ 2ω3, are particularly interesting. This
AEs saturates at cubic order as

dAj
dt

= (iωj + κj)Aj +
∑

RjlqkAlAqA
∗
k +

∑
k

Q′′jk|Ak|2Aj (1.66)

which has q, l, j, k = 1, 2, 3. Nonlinear coefficients Q′′jk again differ from Qjk in which the appro-
priate terms have been removed. The sum in the nonlinear coefficients R is over all those cubic
terms which do not already appear as Q terms.

It is noted that AEs do not depend on the details of the stellar structure under linear or
nonlinear treatment. The general forms of nonradial AEs are indeed the same to the radial
ones, only differing in the number of coupling coefficients (Buchler & Goupil 1984; Goupil &
Buchler 1994). The coupling coefficients, on the other hand, depend on the star and on the
type of considered modes. The number of couplings can be substantially reduced by angular
momentum selection rules, particularly for the triplet (1 : 1 : 1) resonance. The nonlinear
coupling coefficients all are constructed on the basis of the building blocks of 〈eq|N2(ej , ek)〉
and 〈eq|N3(el, ej , ek)〉 that represent the components of the spatial nonlinearities in the basis
of eigenfunctions of the star. Nonzero quadratic coefficients should obey the angular selection
rule that are simply |`k + `k| ≤ `q ≤ `k + `j , `q + `k + `j even, and mq + mk + mj = 0. For
the cubic terms one has the constraints mq + ml + mk + mj = 0, `q + `l + `k + `j even, and
max(|`k− `j |, |`q − `+ l|) ≤ min(`q + `l, `k + `j). The specific explorations of AEs for the above
resonances will be discussed next.
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1.4.3 Temporal amplitude behaviors of modes in an ` = 1 triplet

To derive the AEs for three components in an ` = 1 triplet, with amplitudes of A−, A0, A+
and frequencies ω−, ω0, ω+, some basic assumptions should be made (Buchler et al. 1995) :

a) the linear growth rates κm of modes are much smaller than their frequencies ωm, thus
the amplitudes Am(t) vary slowly compared to the phase ωmt ;

b) the nonlinear couplings are weak so that AEs can be truncated at the cubic terms ;
c) the triplet is considered as an isolated system so that the behaviors of the triplet modes

are not affected by other modes outside the triplet in the star.
In general, the first two assumptions are fundamental to derive AEs and are satisfied for most
nonradial pulsators. However, assumptions (c) is more difficult and needs observational testi-
fication. The amplitude equations for an ` = 1 triplet are obtained as (equation 1.66 is the
general form),

dA−
dt

= (κ− + i∆ω−)A− + γ−A
∗
+A

2
0 − β−−A−|A−|2 − β−0A−|A0|2 − β−+A−|A+|2, (1.67a)

dA0
dt

= κ0A0 + γ0A
∗
0A+A− − β0−A0|A−|2 − β00A0|A0|2 − β0+A0|A+|2, (1.67b)

dA+
dt

= (κ+ + i∆ω+)A+ + γ+A
∗
−A

2
0 − β+−A+|A−|2 − β+0A+|A0|2 − β++A+|A+|2, (1.67c)

where ∆ω± are the linear corrections induced by rotation (see equation 1.42), the nonlinear
coefficients βmm′ and γm can be seen in Buchler et al. (1995).

Slow stellar rotation does not affect the symmetrical spatial structure of the star, while, the
linear eigenvalues and eigenvectors are affected slightly. Neglecting of all effects of rotation on
the cubic couplings and assuming that the eigenvectors em are all same, the AEs for an ` = 1
triplet modes simplify to, with the help of symmetry among the coefficients βmm′ ,

dA−
dt

= (κ− + i∆ω−)A− + C1A
∗
+A

2
0 − 2C3A−|A−|2 − 2C3A−|A0|2 − 4C2A−|A+|2, (1.68a)

dA0
dt

= κ0A0 + 2C1A
∗
0A+A− − 2C3A0|A−|2 − 3C0A0|A0|2 − 2C2A0|A+|2, (1.68b)

dA+
dt

= (κ+ + i∆ω+)A+ + C1A
∗
−A

2
0 − 4C2A+|A−|2 − 2C3A+|A0|2 − 2C3A+|A+|2, (1.68c)

where the full expressions of the nonlinear complex coupling coefficients C are discussed in
Buchler et al. (1995). Before moving forward to searching the solutions to the above AEs (1.67)
and (1.68), the notation Em is introduced to represent the "kinetic energy" of mode m in the
triplet, i.e.,

Em = |Am|2, and Am(t) = |Am|eiφm .

Here |Am| denotes the real amplitude and φm is the phase of the nonlinear effect on mode m.
The fixed-point solutions are the simplest solutions to the AEs (1.67) or (1.68). These

solutions are characterized by constant amplitudes, and they can be single-mode, double-mode,
or triple-mode. In the three-mode fixed solutions, the nonlinear mode couplings will cause the
nonlinear phase-lock in which the amplitudes are constant and the frequencies are forced to
be equally spaced that, linearly, may not be the case due to stellar rotation involving higher
order terms (∆ω− 6= ∆ω+, see Section 1.2). It is also noted from the nonlinear AEs explorations
that the amplitude asymmetries in the triplet have an intrinsic nonlinear origin, contrary to
geometric effects which can also produce amplitude asymmetries in split triplet but the side
components maintain symmetry with respect to the central one (see, e.g., Pesnell 1985).
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Mathematically, the first and simple case is the fixed-point single-mode solutions in an ` = 1
triplet, i.e., e.g., E− 6= 0, E+ = E0 = 0, although it will not be encountered in the context of
observations. For the single-mode fixed-point solutions, e.g., d|A−|/dt = 0, the AEs then reduce
to

0 = (κ− + i∆ω−)A− − β−−A−|A−|2, (1.69)

which could be separated by real part and imaginary part. The integration of the latter one
introduce the nonlinear frequency correction ∆ω̃−. The stability of the solution is explored and
see details in Buchler et al. (1995).

Equations (1.67) or (1.68) suggests that a double-mode fixed-point with the case of either
E− = 0 or E+ = 0 is not possible, and the only possible case that one has a double-mode
fixed-point is with E0 = 0. For this double-mode fixed-point such as of equation (1.68) one finds

E− = 2CR3 κ− − 4CR2 κ+
−12CR0 CR1

, (1.70a)

E+ = 2CR3 κ+ − 4CR2 κ−
−12CR0 CR1

. (1.70b)

The necessary stability conditions of the above solutions are

CR0 C
R
1 < 0 and CR3 > 0.

Futher conditions must be set here for stability with respect to a perturbation with the central
mode (see Appendix B of Buchler et al. 1995).

Particular interest is paid on the three-mode fixed-point solutions in triplet resonance where
only the phase combination Φ = φ+ + φ− − 2φ0 appears in the AEs rather than the phases
φm themselves. The three-mode fixed-point solutions are complicated to obtain and must be
calculated numerically, except for some extremely simple cases. The numerical explorations of
fixed-point solutions will be discussed next. However, it should be firstly noted that once the
fixed-point solutions are obtained, the nonlinear effects will force the central component exactly
at the half-way between the two side-components in the Fourier amplitude spectra, whether the
triplet is linearly symmetric or not. In the case of triplet-mode fixed-points, the amplitudes are
constant in time and one has dΦ/dt = 0, therefore

ω̃0 = (ω̃− + ω̃+)/2, (1.71)

where ω̃m are the frequencies of mode m after nonlinear corrections.
The frequency-locked solutions can not only exist around the resonance center but also far

from the resonance. We here first summarize the condition for frequency locking in real stars
proposed by Buchler et al. (1997) : the locked frequencies eventually vanish as the rotation
become fast. When the frequency locked regime occurs in the triplet in stars with slow rotation,
the nonlinear effects are strong enough to force the triplet to be equally spaced, ∆ω− = ∆ω+,
which is not a condition that happens in the linear context due to the high order rotation
effects, δω ∝ Ω2/ω0. With rapid enough rotation, the nonlinear frequency lock can be broken as
the modes move far away from the resonance center. One first expects modulated amplitudes
and frequencies and the amplitude modulations become shallower and negligible as modes move
very far away from the resonance center. Finally, at extremely large Ω, one recovers the regime
of nonresonant pulsations in which nonlinear frequencies from the nonresonant AEs differ from
the linear predicted frequencies only in slight (fairly small) nonlinear corrections.

Quite generally, a resonant frequency locked solution can exist in the vicinity of the resonance
center, as

|δω|/ω . O(κ/ω). (1.72)
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This is a rough order-of-magnitude estimate with factors of ten possible on either side (Buchler
et al. 1997). However, the real value of the solutions of AEs depends obviously on the numerical
values of the linear and nonlinear coefficients. We note that equation (1.72) is also valid for
the case that the frequency mismatch is caused by the magnetism (see equation (1.45)). The
numerical explorations suggest that there are mainly three regimes when the considered modes
move away from the resonance center, i.e., when δω/κ increases : the frequency locked regime,
the intermediate regime and the nonresonant one. The specific properties of these three distinct
regimes will be given later.

In real stars, e.g., for δ Scuti stars, the rotational asymmetry splitting is in the range of
δω/ω0 ∼ 10−3 − 10−2 and the linear growth rates for most of the observed unstable modes are
κ/ω ∼ 10−7 − 10−4, thus the range of δω/κ is 10 − 105 (Dziembowski 1993). On the aspect of
white dwarf variables, they are slow rotators with δω/ω0 ∼ 10−8−10−6 and κ/ω ∼ 10−10−10−5

(see, e.g., Dolez & Vauclair 1981). Therefore the range of δω/κ is 10−3 − 104. Take an order of
magnitude, the condition of frequency lock is satisfied and it can occur for the unstable modes in
stars with slow rotation. The frequency lock regime also may occur in several of the multiplets
because the condition of the frequency lock depends on the linear growth rates of the modes
which may differ from mode to mode. These order of magnitude indicates that the frequency
lock is more likely to occur in white dwarfs, and possibly in slow δ Scuti stars, although the
linear growth rates of pulsation modes remain very uncertain in pulsating stars.

Theoretical extent of frequency locking in the case of 2 :1 resonance

Now we turn to the discussion on the theoretical explorations of what will happen to the
frequency lock solutions of AEs when the resonant modes move away from the resonance center,
i.e., technically, in terms of numerical calculation. We first introduce the numerical explorations
on the two modes resonance 2 : 1 which shows similar results to the triplet resonance but in
a easier way to explore (Buchler et al. 1997). All the nonlinear coefficients are set artificially
and not aim at to compare with their real values for a specific star. For convenience, the time
in AEs are rescaled by setting one of the unknown linear growth rates to be one, e.g., κ1 = 1,
which does not impact the generality of the numerical results (e.g., Buchler et al. 1997).

The appropriate AEs for the case of 2 : 1 resonance can be expressed as,

dA1
dt

= κ1A1 − q̃R11A
3
1 − q̃R12A1A

2
2 +R1A1A2

√
1− S2

1 , (1.73a)

dA2
dt

= κ2A2 − q̃R12A2A
2
1 − q̃R22A

3
2 +R2A

2
1

√
1− S2

2 , (1.73b)

dΦ
dt

= δω − (q̃I12A
2
1 − q̃I22A

2
2) + 2(q̃I11A

2
1 + q̃I12A

2
2) +R2S2

A2
1

A2
− 2R1S1A1. (1.73c)

where S1 = sin(Φ− δ1) and S2 = sin(Φ + δ2), respectively, the superscripts R and I denote the
real and imaginary parts, respectively, Φ = φ2 − 2φ1, and where rk = Rke

iδk , k = 1, 2.
The resonant AEs (1.73) cannot be analytically solved and the result of the numerical

explorations by Buchler et al. (1997) are given here. The parameters e.g., coupling coefficients,
whose values are set artificially and can be seen in Section 3.1 of Buchler et al. (1997). They
found that the stable fixed-point solutions exist only in the range of |δω| < δωbif ≈ 18.24. In the
domain 12.64 < δω < 18.24, four fixed-solutions could be found but three of them are unstable.
The numerical integration of the differential AEs leads to an oscillatory solutions in the domain
δω > 18.24 where no stable fixed-point exist any more.

Figure 1.2 shows the amplitude modulations of oscillation modes for several values of δω.
As the frequency mismatch δω increasing, the amplitude modulations firstly become sinusoidal
and then the amplitude modulations become evanescent. The amplitude modulations on the
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Figure 1.2 – The result of numerical explorations on the 2 : 1 resonance from Buchler et al.
(1997). Amplitude modulations are as a function of the related to the frequency mismatch δω
and the growth rate of κ1. The large and small amplitudes denotes mode 1 and 2, respectively.
Time is in unit of 1/δω. The two horizontal lines denote the amplitude of mode 1 and 2 of one
fixed-point solution.

δω ∼ 15.5 domain becomes very large and with a modulating time scale around 1/δω. It is noted
that the oscillatory solution coexists with the stable fixed-point solutions in the region 15.495 .
δω . 18.24 which indicates that in a real star the resonant modes could have modulating
amplitudes and stable frequencies.

The extent of frequency locking for 1 :1 :1 resonance

For an ` = 1 triplet, the nonlinear complex AEs (e.g., equation 1.68 ) of the three modes
are rewritten as an equivalent lower set,

dA−
dt

= κ−A− + R−A
2
0A+ cos(Φ− δ−) − A−(q11A

2
− + q12A

2
0 + q13A

2
+), (1.74a)

dA0
dt

= κ0A0 + R0A0A+A− cos(Φ + δ0) − A0(q21A
2
− + q22A

2
0 + q23A

2
+), (1.74b)

dA+
dt

= κ+A+ + R+A
2
0A− cos(Φ− δ+) − A+(q31A

2
− + q32A

2
0 + q33A

2
+), (1.74c)

dΦ
dt

= δω − 2R0A−A+ sin(Φ + δ0) +A0(R−
A+
A−

sin(Φ− δ−) +R+
A−
A+

sin(Φ− δ+)), (1.74d)

where Φ = φ+ + φ− − 2φ0.
Examples of numerical searching for fixed-point solutions for the case of triplet 1 : 1 : 1

resonance can be found in Buchler et al. (1997) where their results are very similar to the
2 : 1 resonance. In the resonance center, the resonant AEs have three-mode fixed-points, i.e.,

26



Figure 1.3 – Examples of different types of behaviors of amplitude modulations of resonant
modes in Buchler et al. (1995). Top panel : periodic modulations ; Middle panel : 2-periodic
modulations ; Bottom panel : chaotic cycles. Time is in unit of κ0t.

frequency lock. The amplitude modulations occurs at first with large excursions that later scale
as 1/δω and the timescale of the modulating periods is also about 1/δω. There also exists a
narrow transitory regime, as the above 2 : 1 resonance showing, in which the frequency locked
and the amplitude modulated solutions can coexist.

The fixed-point frequency lock is the easiest solutions to obtain for the nonlinear resonance
AEs, while, the particular interesting nonlinear phenomenon on observations of real stars must
be paid on the temporal modulations of amplitude of the resonant modes, which gives a different
prediction to the linear stellar pulsation theory. We thus introduce the example of numerical
explorations of this intermediate regime of nonlinear resonant mode couplings, i.e., modula-
ting amplitudes of oscillation modes, in which the modulations can be periodic (limit cycles),
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irregular, or even chaotic, that depends mainly on the coupling coefficients.
Figure 1.3 shows the typical examples of time-dependent solutions of nonlinear resonant AEs

in Buchler et al. (1995), i.e., periodic, double-periodic, and chaotic modulations. The timescale
of the amplitude modulations is governed by the linear growth rates of the resonant modes,
or specifically, central mode in the triplet, κ0, assuming that the slow stellar rotation cause
the growth rates of side components differ not too much from that of the central one (Carroll
& Hansen 1982). For the modulations in white dwarf stars, one expects that the modulating
timescale is ranging from weeks, months, even years, considering by the order of magnitude of
linear growth rates (Dolez & Vauclair 1981). The different characters of amplitude modulations
are sensitive to the parameters one chooses in searching for numerical solutions. For the above
examples as shown in Fig. 1.3, the parameters can be found in Section 4.2 of Buchler et al.
(1995). It is note that the frequencies should also have modulating behaviors in the interme-
diate regime where amplitude have periodic or irregular modulations since the phase equation,
e.g., equation (1.74d), depends on the amplitudes. Therefore the frequencies must be corrected
all the time by the nonlinear coupling effects from the temporal amplitudes.

In conclusion of the above numerical explorations of the frequency lock solutions, one can
distinguish roughly three nonlinear regimes of amplitude and frequency modulations when one
moves away from the resonance center (Buchler et al. 1995, 1997; Goupil et al. 1998) :

R1) the first regime is the nonlinear frequency lock. It often happens near the resonance
center (δω = 0) where a stable fixed-point solution can be found, i.e., frequency lock.
Therefore the nonlinear couplings between the involved modes force the frequencies of
the modes to be well equally spaced, i.e., the central component is at the exactly half
way of the two side components, whether they are linearly symmetric (2ω0 = ω− + ω+,
very slow rotation, with δω ≈ 0) or not (2ω0 ∼ ω−+ω+). In this regime, the amplitudes
are all constant since the nonlinear effects are strong enough to lock them. Even if the
involved modes are constant in amplitude and frequency, they somewhat differ from the
linear predictions, due to effects of nonlinear corrections.

R2) the second one is the intermediate regime. The fixed-point solutions eventually becomes
unstable or disappear as the modes move away from the resonance center, or in an order
of magnitude way, δω/κ increases. In this second regime, one find an oscillatory nature of
the numerical solutions, and giving rise to amplitude and frequency modulations of the
resonant modes. These modulations could be periodic, multi-periodic, irregular, or even
chaotic, which depends on the chosen parameters of the star. If the parameters (linear
and nonlinear coefficients) were found to be for the periodic amplitude modulations, the
period of the modulations is about the inverse of the linear frequency mismatch 1/δω,
which also has a link with several times of the inverse of the linear growth rate 1/κ. These
amplitude and frequency modulations cause the peaks in Fourier amplitude spectra to
form a more complex structure or closed side-lobes around the main peaks due to the
modulations.

R3) the nonresonant one is the third regime. Once the modes in the resonance move far away
from the resonance center, the nonlinear coupling effects are very slight and the nonlinear
correction on frequencies are very small. Therefore the modes recover steady pulsations
and their nonresonant values are very closed to the linear ones.

In addition to the above three main regimes, there exists a narrow transitory regime which is
between the first frequency lock and the intermediate regimes. In that regime, the frequency
locked and oscillatory solutions coexists, arising stable frequencies and modulating amplitudes
in the observed resonant modes.
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Although the nonlinear effects are very slight on the stellar pulsations, there are still some
observational hints that are possible connections to the nonlinear predictions of AEs. Those
observational results will be introduced in next chapter. In the next section, we will focus on
another nonlinear treatment within the formalism of AEs, i.e., the adiabatic approximation of
resonant mode coupling of the type ω1 ≈ ω2 + ω3 or 2ω3.

1.4.4 Nonlinear resonant mode coupling in the adiabatic approximation

In this section, the nonlinear adiabatic treatment on the resonant mode couplings within
the amplitude equations formalism is introduced, which was first investigated by Dziembowski
(1982). With the ignorance of nonadiabatic effects during the stellar oscillations, the nonlinear
equation for adiabatic pulsations is written in the form of

∂2v
∂t2

+ L v + N v = 0, (1.75)

where the linear operator of adiabatic oscillations L and the nonlinear operator N are provided
in Appendix A.2.

In the case of the three modes in the resonance condition ω1 ≈ ω2 + ω3, the final formal
solution of equation (1.75) can be obtained with amplitude equation forms as,

dA1
dt

= κ1A1 + iq

ω1I1
A2A3e

−iδωt, (1.76a)

dA2
dt

= κ2A2 + iq

ω2I2
A1A

∗
3e
−iδωt, (1.76b)

dA3
dt

= κ2A3 + iq

ω3I3
A1A

∗
2e
−iδωt. (1.76c)

where the frequency mismatch is δω = ω1−ω2−ω3, term Ij are the mode inertia, the nonlinear
coupling coefficient q is very complicated and will be not given here (see, e.g., Dziembowski 1982,
for its full expression). The derivation of the above AEs is also based on the same assumption
to the nonadiabatic AEs (Section 1.4.3). For the two-mode resonance ω1 ≈ 2ω2, equation (1.76)
will reduce to a set of two amplitude equations (Dziembowski 1982).

The three modes in the resonance condition ω1 ≈ ω2 + ω3 could involve two types of re-
sonance, the parametric resonance and the direct resonance. Parametric instability involves an
overstable parent mode that grows with the growth rate κ1 > 0 and two daughter modes that
linearly damped with κ2,3 < 0. While the direct resonance involves two unstable parent modes
with lower frequencies, with κ2,3 > 0, and the linearly damped daughter mode, with κ1 < 0.

To investigate behaviors of the resonant modes, equation (1.76) must be solved in various
initial conditions. Again, the same as the triplet resonance (Section 1.4.3), equilibrium solutions
are the easiest solutions to obtain for both the parametric and direct resonances. Then the
equilibrium solutions of AEs (1.76) could be easily obtained with dAj/dt = 0, and the solutions
are given by

|A1|2 = I2I3ω2ω3
q2 κ2κ3

[
1 +

( δω

κ1 + κ2 + κ3

)2]
, (1.77a)

|A2|2 = −I1I3ω1ω3
q2 κ1κ3

[
1 +

( δω

κ1 + κ2 + κ3

)2]
, (1.77b)

|A3|2 = −I1I2ω1ω2
q2 κ1κ2

[
1 +

( δω

κ1 + κ2 + κ3

)2]
, (1.77c)
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and with
cot(ϕ1 − ϕ2 − ϕ3 + δωt) = δω

κ1 + κ2 + κ3
, (1.78)

where the complex amplitude Aj may be written as the form of Aj = |Aj |eiϕj .
We now turn to analyze the stability of equilibrium solutions in the case of three modes

couplings. The coefficients of the linear perturbations around the equilibrium solutions (see,
e.g., Dziembowski 1982, for details) are,

a1 = −2κ, a2 = κ2[1 + (δω/κ)2]− 4(δω/κ)2(κ1κ2 + κ2κ3 + κ3κ1),

a3 = 4
∏
j

κj [1 + 3(δω/κ)2], a4 = −4[1 + (δω/κ)2]κ
∏
j

κj ,

where κ =
∑
j κj . The Routh-Hurwitz stability criteria are used for the case, which are given

by
W1 ≡ a1 > 0, W2 ≡ a1a2 − a3 > 0,

W3 ≡ a3W2 − a2
1a4 > 0, W4 ≡ a4W3 > 0.

From the above criteria, one would see that at least one of the first three conditions must
be less than zero in the case of direct resonance since the growth rate κ1 < 0. In the case
of parametric instability, the second and fourth criteria are redundant and follow from the
remaining ones. Therefore it is easy to find that the three-mode equilibrium is always unstable
in the direct resonance. While in the case of parametric resonance it is stable if the modes
satisfy the condition,

D > 0, (1.79)

where the expression of D that involves the frequency mismatch and the linear growth (damping)
rates of the mode can be found in Appendix A.4. The conditions imposed by the stability are
not difficult to meet in stellar pulsations where the damping rates of higher order modes are
much larger than the growth rate of the linearly unstable modes. In the next section we would
introduce the modulating behaviors of the resonant modes in some certain conditions, i.e., limit
cycles in parametric resonance.

1.4.5 Temporal amplitude behaviors induced by the adiabatic AEs

This section is dedicated to the amplitude modulations of parametric resonance modes,
which was investigated by Moskalik (1985), Wu & Goldreich (2001) and Pnigouras & Kokkotas
(2015). The three coupling modes would lead periodic modulations under certain conditions
which are related to the linear growth (damping) rates κj and the frequency mismatch δω. Note
that when κ2 = κ3 the three mode resonance would reduce to a simpler case, i.e., ω1 ≈ 2ω2.
Provided κ1 � −(κ2 + κ3)/2, the equilibrium state would be a stable system with δω >
−(κ2 + κ3)/2, otherwise unstable (refer to the criteria of equation 1.79).

Figure 1.4 shows examples of two different characters of mode behaviors in the parametric
resonance, stable amplitude and limit cycles (Wu & Goldreich 2001). The stable one is with
the parameters of δω = 2 × 10−5 s−1, κ1 = 10−7 s−1 and κ2 = κ3 = 10−6 s−1. While the
parameters for the case of limit cycle modulations are δω = ×10−6 s−1, κ1 = 10−7 s−1 and
κ2 = κ3 = 10−5 s−1. In the case of limit cycles, the amplitude of the parent mode firstly grows
on timescale κ−1

1 , after it reaches the maximum the amplitude drops rapidly on timescale κ−1
2,3.

The daughter mode whose amplitudes stay far below the equilibrium ones for most of the cycle
but the amplitudes grows to comparable to the amplitude of the parent mode for a short interval
κ−1

1 since the amplitude of the parent mode drops very rapidly after it reaches the maximum
value. During this brief interval, the accumulated energy by parent mode is transferred to and
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Figure 1.4 – Examples of different types of behaviors of amplitude modulations of parametric
resonance in Wu & Goldreich (2001). Top panel : steady state ; Middle panel : periodic modu-
lations ; Bottom panel : flux variations associated with the case of periodic modulations. The
solid lines denote the parent growing mode and the dashed lines denote the damping daughter
modes, assuming two identical daughter modes.

dissipated by the daughter modes. Therefore the equilibrium state defines the amplitude of the
parent mode.

The interval of the increasing and decreasing amplitude of the parent mode depends ob-
viously on the linear growth and damping rates of the involved modes, as shown in Fig. 1.4.
The shapes of amplitude modulations of these involved modes also depend on the quantity,
the value of the frequency mismatch δω. Given certain linear growth and damping rates that
leads to the unstable equilibrium state, the larger value of δω is, the shallower the amplitude
modulations appear (Moskalik 1985). As the amplitude of the involved mode modulating, the
nonlinear phases ϕj should also be affected by the nonlinear interactions between modes, thus
the frequencies ωj of the involved should have the nonlinear corrections, as

ω̃j = ωj + dϕj
dt

. (1.80)

Note that the variations of frequencies are in a more complicated ways, and in some extreme
conditions, the corresponding variations of the periods can be in the order of 10−2 ss−1 for
ZZ Ceti stars and 10−3 ss−1 for the δ Scuti stars (Moskalik 1985). Of course, there will be
some closed side-frequencies around the main peaks in the Fourier amplitude spectra due to
the amplitude and frequency modulations of the involved modes, which is very similar to the
triplet resonant modes discussed in Section 1.4.3.

To conclude Section 1.4, we introduce the nonlinear perturbations of the stellar oscillation
theory which can only be investigated by the amplitude equation formalism. In this formalism
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the amplitudes and frequencies of the oscillation modes may not be in a stable state any more.
Although in certain conditions the oscillation modes are stable, the nonlinear corrections on
frequencies should be taken into consideration. If the periodic amplitude modulations of the
resonant modes were found as predicted by the nonlinear AE formalism, this would be an
very important test of the nonlinear resonant mode coupling theory. It is interesting that the
observational periodic amplitude and frequency modulations may give the first determination
of the linear growth rates of the nonlinear interacting modes, as the predictions of the timescale
of these modulations have very closed relationship with the growth rates. This would lead new
diagnostic tools of the stellar interior.

The nonlinear AEs can only be solved numerically as a result of the complex nonlinear
equations. Only nonlinear coefficients of Cepheids are currently obtained. Nonlinear coefficients
of other types of pulsating stars may be extracted from the observed mode modulations. The
observed (amplitude) modulations from ground indeed suggest that the modulated timescale is
much longer than that of the periods of pulsations, as well as do the results in this thesis

1.5 Conclusion
In this Chapter, we first introduced the linear perturbation theory of stellar oscillations

for the nonrotating, non-magnetic stars with which one would obtain the eigenvalues of the
oscillation modes with the boundary conditions for both the adiabatic and nonadiabatic cases.
However, stellar rotation and magnetism lift the degeneracy modes to multiplets of 2`+ 1 and
` + 1 components with respect to azimuthal number m, respectively. These multiplets should
be equally spaced in frequency by the effect of the first order of stellar rotation. However, these
equidistant multiplets may be distorted by the higher order effects of rotation or by stellar
magnetism. The presence of a richness of frequencies from observations suggests that some
observed frequencies may not be eigenfrequencies because we are limited to observe the low-
degree (` = 1, 2) modes from ground due to the geometric cancellation effect. Two formalisms
that involves nonlinearities of linear eigenmodes may explain some observed frequencies that
are exact sums or differences of other frequencies, the variations of the depth of convection zone
and the variations of the temperature at stellar surface.

A particular attention has been paid on the nonlinear perturbation theory of stellar oscilla-
tions in which the amplitude and frequency of the oscillation mode may have temporal behavior.
The mode behaviors depend on the condition of resonance, and also depend on the nonlinear
coefficients of the interacting modes.

In the next chapter, we recall the background around the specific types of stars on which
this thesis will focus, white dwarf and hot B subdwarf stars. These stars are well studied by
asteroseismology based on the current linear oscillation theory. Some hints linked to nonlinear
AEs predictions in these two types of pulsating stars will also be described, which are all observed
from ground-based telescope networks. If these nonlinear phenomena of mode behaviors were
confirmed, that will pose new questions of the measurement of frequency changing of stellar
oscillations which may relate to stellar evolutionary effects.
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Chapter 2

Pulsating evolved compact stars and
Asteroseismology

Stellar pulsations are found through the entire H-R diagram, as shown in Figure 2.1 (a
detailed description of all kinds of pulsating stars can be found in Chapter 2 of Aerts et al.
2010). The stellar oscillation theory can well predict the behavior of a star when it pulsates,
swelling and contracting, heating and cooling. The driving mechanisms for a star to pulsate
are mainly of three different types : the κ-mechanism, stochastic driving, and the ε-mechanism.
The κ-mechanism is connected with the opacity of the gas inside the star and works for most
of pulsating stars seen in Figure 2.1. Most pulsations driven by the κ-mechanism are associated
with hydrogen and helium, e.g., in RR Lyrae stars, δ Scuti stars. Some are associated with the
ionization of Fe-group element, e.g., β Cephei stars, hot B subdwarf stars (see details later).
The stochastic driving is the mechanism that operates in the Sun and solar-like stars, as well
as in pulsating red giant stars, in which the heat-engine mechanism is not sufficient to drive
the oscillations. The ε-mechanism is the third identified mechanism that may drive pulsations
in some evolved massive stars.

Well below the main sequence are the evolved compact pulsating stars, regrouping pulsating
the white dwarf and hot subdwarf stars. The pulsating white dwarf stars have been one of
the earliest studied variables among all types of pulsating stars. Pulsating hot B subdwarf
(hereafter sdB) stars have also been well investigated using the technique of asteroseismology
although they were discovered more recently than white dwarf pulsators in general (Kilkenny
et al. 1997). Both white dwarf and sdB stars are compact stars, i.e., with surface gravity larger
than 105 cm s−2. Figure 2.2 shows a portion of the surface gravity–effective temperature plane
where the compact pulsators are found. There are nine different classes of compact pulsators,
six of those belong to pulsating white dwarf stars and the remaining three are hot subdwarf
stars. Those compact pulsators are formed through four typically evolutionary tracks followed
by four distinct post-phase stars, with masses from 0.200M� to 0.593M� and with rich or
deficient hydrogen. One group of pulsating hot subdwarf stars, the hot O subdwarfs (sdO), are
very rare (Woudt et al. 2006; Randall et al. 2011). Additionally, no pulsating sdO star was
found from Kepler photometry. Therefore we will not give further details about this family of
pulsators. The neutron stars, that cannot be observed by spectroscopy or photometry, are not
concerned in this thesis although they are very compact stars (Aerts et al. 2010). We will focus
on the different types of pulsating white dwarf stars, as well as sdB variables, in this thesis, as a
consequence of those pulsators benefit a lot from the long and continuous Kepler observations.

The detailed structure of this chapter is as follows : the detailed description of pulsating
white dwarf stars will be given in Section 2.1, followed by an introduction of the asteroseismo-
logy progress in the pulsating sdB stars in Section 2.2. Progresses in compact pulsators from
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Figure 2.1 – A pulsation H–R diagram for pulsating stars for which the technique of aste-
roseismology could be applied. Each type of pulsators is labeled by its official IAU name in
the diagram. Three typically evolutionary tracks from zero-age main-sequence stars are plotted
with different masses, 1M�, 4M� and 20M�, represented by the three solid curves. The dot-
ted curve infers the cooling track of pulsating white dwarf stars, the dashed curve the zero-age
main-sequence, and the two parallel dashed lines the classical instability strip.
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Figure 2.2 – The compact pulsators in the log g − log Teff diagram. Both the official name
and the discovery year of each families of the compact pulsators are indicated. Four typically
evolutionary tracks are plotted that show (1) the cooling track of a H-atmosphere white dwarf
(red solid curve at the left side) followed by a 0.593M� post-AGB, H-rich star, (2) the track
followed by a 0.584M� post AGB, H-deficient star, which becomes a He-atmosphere white
dwarf star (dashed blue curve), (3) the cooling track of a low-mass H-atmosphere white dwarf
(black curve) followed by a 0.478M� post-EHB star, and (4) the path followed by a 0.200M�
post-RGB star, which forms the extreme low-mass white dwarf star (red solid curve at the right
side).

space photometry will be discussed in Section 2.3, including some observational results of mode
behavior showing amplitude and frequency variations which are connected with the nonlinear
stellar pulsation theory (see Chapter 1). Finally, a brief conclusion of Chapter 2 will be given
in Section 2.4.

2.1 Pulsating white dwarf stars
White dwarf stars can provide a wide range of extreme conditions to test elementary physics,

which are far beyond the capability of the best terrestrial laboratory, such as extreme high
temperature and pressure. They are the end fates of stellar evolution for 98% of the stars in
our Galaxy and can be chronometers for measuring the age of the various stellar populations
(Fontaine et al. 2001). They are also the progenitors of type Ia supernovae which are the evidence
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for an accelerating universe. Asteroseismology can provide accurate masses and luminosities for
white dwarf pulsators, which could give a better understanding on stellar evolution. For a
detailed description of the pulsating white dwarf stars and precise asteroseismology of such
pulsators, see the reviews of Fontaine & Brassard (2008) and Winget & Kepler (2008).

The story of pulsating white dwarf asteroseismology really begins with the discovery of low-
amplitude variations of luminosity in the DA white dwarf star HL Tau 76 (Landolt 1968). Up
till now there are at least six sub-types of pulsating white dwarf stars, see their cooling tracks
and the distributions on the H-R diagram in Figure 2.1 and on the surface gravity–effective
temperature diagram of Figure 2.2. They are mainly in three major families : DOV, DBV and
DAV white dwarf stars, as the effective temperature descends. The other three families are new
comers into this field recently, discovered with the names of hot DQV, ELM and hot DAV
stars. These new coming pulsating white dwarf stars are rather rare in general and they will be
regarded as a whole in our consideration. In the following section we will discuss the details of
those different types of white dwarf families.

We mention there is a theoretical prediction oscillations driven in low-mass DAO white
dwarfs by Charpinet et al. (1997b), see the heavy part of the black cooling tracks in Figure 2.2,
although variable DAOVs have yet to be found. We also mention that the acoustic p-mode
oscillations had been predicted for quite a long time and Vauclair (1971) gave the first theoretical
studies of white dwarf stars and show that some of the acoustic modes should be excited on
a timescale of several seconds and the amplitude is very small, typically less than one percent
magnitude. Therefore the acoustic oscillations are very difficult to observe and we must use
very fast photometric device to detect them. Currently, the p-mode pulsation has still not been
found yet even through there are some attempts (e.g., Silvotti et al. 2011).

2.1.1 Classification of white dwarf pulsators

All white dwarf (hereafter WD) pulsators are found to pulsate in nonradial g-modes and
typically with multiperiodic pulsations on timescale of several minutes. Figure 2.3 shows repre-
sentative light curves of four distinct WD families, one each for each class of pulsator. White
dwarf pulsators are intrinsically faint objects and photon starvation should be an inescapable
observational constraint in this field. The brightest known pulsating WD star is the ZZ Ceti star
G226–29 with a magnitude in V band of 12.24, which is one of the lowest amplitude variables
in the whole group of pulsating stars. We will discuss these WD pulsators separately, almost
along the line with the time of the discovery year of the first pulsator in each family.

The DAV (or ZZ Ceti) is the first class of WD pulsators to be observed, with hydrogen
atmosphere, in a very narrow instability strip in the lower right corner of the H-R diagram
(see Figure 2.2). The first DAV pulsator is HL Tau 76 (mentioned above ; Landolt 1968), soon
afterward, followed by that oscillations in G44-32 and R 548 were found by Lasker & Hesser
(1969, 1971). We note that ZZ Ceti is the variable name of Ross 548 and the DA pulsator class
was not named after the prototype HL Tau 76. AT present there are around 200 DAV stars,
which constitutes ∼ 80% of all WD pulsators. The pulsations detected in DAV stars correspond
to low- to mid-order, low-degree g-modes. Dolez & Vauclair (1981) first found that nonradial g-
mode pulsations in DAV models are driven by the κ-mechanism in the helium partial ionization
zone, indicated by observations for some ZZ Ceti stars in different Stromgren colors (McGraw
1979). The exact mode excitation is sometimes referred to as convective driving, a mechanism
proposed by Brickhill (1991), while the culprit is the recombination of hydrogen in the envelope
as a cooling DAV star enters and then transits across a narrow strip (Fontaine et al. 2014).

The DBV (or V 777 Her) stars is the closely related family to the DAV stars, but with
He-atmosphere and higher effective temperature located at Teff ' 29 000 K to 22 000 K. The
DB stars are the cooling descendants of 20% post-asymptotic giant branch (AGB) stars which
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Figure 2.3 – Optical light curves for four representative families of pulsating white dwarf stars.
Those light light curves were obtained from the 3.6-m CFHT telescope (see details in Fontaine
& Brassard 2008).

had experienced a very late He flash in the stellar evolution. The pulsations in DBV stars was
first investigated theoretically by Winget et al. (1982b) who found that He-driving could contri-
bute the excitation of nonradial g-mode pulsations in the narrow instability strip at effective
temperature around 19 000 K corresponding to the DB white dwarf stars. The soon survey of
DB white dwarfs showed that the brightest DB star with the broadest He-I lines, GD 358 =
V 777 Her (the prototype of the DBV star), did indeed pulsate in nonradial g-modes, similar to
the large-amplitude DAV stars (Winget et al. 1982a, and see a part of light curve for that star
in Figure 2.3). We note that the DBVs comprise the first class of variable stars that is predicted
theoretically before the observations. The pulsations spectra in DBV in general show a great
amount of harmonics and combination frequencies, resulting either from a thick convection zone
distorting the eigenmodes at its base or from higher order temperature perturbation terms at
the stellar surface (see details in Section 1.3).

The DOV (a.k.a. PG 1159 stars, or GW Vir) pulsating stars are the hottest hot white
dwarfs which are found on the left side of Figure 2.2. They span a huge region in effective
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temperature and surface gravity, from ∼ 170 000 K to 75 000 K and log g = 5.7− 7.5. The first
DOV star was the prototype star PG 1159-035 discovered by McGraw et al. (1979), three year
earlier than the discovery of the first DBV star. Their atmosphere are mainly composed of He,
C and O, and may also have strong lines of N. The PG 1159 stars are the evolutionary remnants
of stars that has experienced a late He flash at their post-AGB phase (Althaus et al. 2007).
During the PG 1159 stars evolution into cooler white dwarfs, gravitational settling of C and O
produces almost pure He atmosphere, a DB spectral type, see the cooling tracks in Figure 2.2.
The pulsations in GW Vir stars are low- to mid-order, low degree g-modes. As the convection
is negligible in these very hot stars, the classical κ-mechanism associated with the C and O
partial ionization in the envelope is the excitation mechanism, which was originally proposed
by Starrfield et al. (1983) and confirmed by Bradley & Dziembowski (1996) and Quirion et al.
(2004).

Oscillations in the hot DQV, ELM (extremely low-mass) DA and hot DAV white dwarfs
are the most recent discoveries among pulsating stars in general. The hot DQV stars, around
20 000 K in effective temperature, are composed of C-atmosphere and with relatively high
surface gravities. The DQ white dwarf stars had been discovered by Dufour et al. (2007), and
its exact origin is uncertain and need to be classified. The pulsations observed in hot DQV
correspond to mid- to low-order low-degree g-modes. Convective driving that is associated with
the recombination of C in the envelope is the excitation mechanism for the oscillations in the
hot DQV stars (Fontaine et al. 2008). G-mode pulsations have been first detected in an ELM
DA white dwarf by Hermes et al. (2012). These relatively rare objects are post-red giant branch
(RGB) remnants and are composed with a relatively thick H-envelope. The detected pulsations
in ELM DAVs correspond again to the low- to mid-order low degree g-modes and the periods
are much longer compared to the other pulsating WD stars as a result of lower surface gravity.
The last class of pulsating white dwarf stars is the discovery of oscillations in DA white dwarfs
clustering around 30 000 K (Kurtz et al. 2013), which should be referred to as hot DAV white
dwarfs. The tentative explanation for the mode excitation is that these stars have very thin H
out layers based on a He mantle in which the driving region resides.

2.1.2 Progresses in white dwarf asteroseismology

To extract information from pulsating white dwarf stars, one obviously need to disclose the
amplitude power spectra of the oscillations. Therefore it is necessary to collect the photometric
data covering as long as thousands of period cycles. The Whole Earth Telescope (WET) network
came into astronomer’s vision with which the regular gaps caused by the diurnal cycle can be
avoided (Nather et al. 1990). The WET gathered very important photometric data and made
great progresses in white dwarf asteroseismology. More than 100 pulsations have been detected
in the prototype of DOV stars, PG 1159-035, by the WET observations (Winget et al. 1991).
With those data many fundamental parameters of PG 1159-035 are constrained, the precise
rotation period, the rotational inclination, the inner stratification and an upper limit of the
strength of magnetic field. Another example of the WET observations is the DBV prototype
GD 358 which had been observed many times by this network (e.g. Winget et al. 1994). The
frequency spectrum of GD 358 is very complex, the amplitudes exhibit temporal variations on
timescales of weeks while the frequencies turn out to be stable, further discussed in Section 2.1.4.

The investigation of pulsating white dwarfs inevitably depends on the accuracy of the deter-
mination of effective temperature and surface gravity from spectroscopy. The number of white
dwarf stars had increased to at least double as a result of data release from Sloan Digital Sky
Survey (SDSS, York et al. 2000). Kepler et al. (2007) made a detailed analysis of the distribution
of mass and effective temperature for DA and DB stars from SDSS data.

With the high signal-to-noise (S/N) spectra for the bright WD stars, a pure instability strip
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of DAVs are found (e.g., Bergeron et al. 2004; Gianninas et al. 2005)—all the stars within this
instability strip, with effective temperature from 12 270 K to 10 850 K, are observed to pulsate.
On the theoretical front to explain this pure instability strip, the time-dependent convection
(TDC) into nonadiabatic calculations was introduced to DAV pulsators (Van Grootel et al.
2012). Convective driving with TDC well predicts the blue edge of the instability strip, but it
fails at explaining the red edge. A semi-analytic criterion based on the comparison between the
thermal timescale at the base of the convection zone and the cutoff g-mode period was proposed
(Van Grootel et al. 2013b), which gives a good description of the red edge of DAV instability
strip. This is the first time that the theory agrees well on the observations on the instability
strip problem. We note that the three new discovered ELM DAVs fall within the extension of
the theoretical strip into the low-gravity region.

A coherent picture of the GW Vir instability strip problem was made recently by Quirion
et al. (2012) based on the examination that the existence of the GW Vir pulsators invokes the
competing actions of a residual stellar wind against the gravitational settling of carbon and
oxygen elements. Some hot PG 1159 WD pulsators rotate very slowly at the stellar surface,
which may indicate that most of the angular momentum may be stored beneath the surface.
Recent seismology analysis have successfully penetrated ∼ 99% of the mass of PG 1159-035
and a few other GW Vir stars. The seismic results reveal that the inner parts of PG 1159 stars
rotate at slow speed, thus cannot hide most of the angular momentum, which means that these
stars lost almost all their angular momentum (Charpinet et al. 2009c). This is a very important
clue to theories of angular momentum transfer between the radiative core and the convective
envelope in red giant phases which ultimately leads to the white dwarf phase in stellar evolution.

Up to present, it is hard to give a precise number of these various classes of white dwarf
pulsators as new discoveries of WD pulsators change very rapidly with the development of
the capability of facilities to obtain mass data on white dwarf stars both in photometry and
spectroscopy. The number of WD pulsator families becomes larger and larger, the discovery of an
ultra-massive one may be followed quickly by an extreme low mass one (Hermes et al. 2013a,b),
or see the newest pulsator joining the WD pulsating family very recently (e.g., Kilkenny 2016).
The launch of space missions, e.g., Kepler, provide a great opportunity to obtain exquisite
photometric data for white dwarf asteroseismology. For this specific WD pulsators from space
photometry, the discussion on it will be reserved for Section 2.3.

2.1.3 Change of pulsation period

As a white dwarf cools along the evolutionary track, the periods of oscillation modes change
as a result of the change of the internal structure of the star. Therefore the observations of
the period change of pulsations in WD pulsators could provide a direct measurement of the
evolutionary timescale of white dwarf stars. The pulsation periods of nonradial g-modes, P ,
changes are related to changes in the radius and temperature of the star, with the relation of,

Ṗ

P
= −aṪ

T
+ b

Ṙ

R
, (2.1)

where a and b are constants of order unity (Winget et al. 1983). To measure a sufficient accu-
racy in the periods of pulsations, all observational data must be on a uniform time-base, the
Barycentric Julian Coordinated Date scale, because the effect from the Earth’s motion must be
corrected since the effect often have a very long timescale, many years or even decades.

The rate of period change is typically small, we thus may expand the time of maximum light
of a pulsation, Tmax, in a Tylor series, dismissing terms higher than the quadratic, then

Tmax = T0 + P0E + 1
2 ṖPE

2, (2.2)

39



where E is the integer number of cycles after t = 0, P0 is the period of the mode at time t = 0
and P is the average period over the whole time interval. The observed times of maxima O
minus the calculated times of maxima C is

O − C = 1
2 ṖPE

2. (2.3)

We could use a parabolic fit to the O−C diagram, and finally obtain the rate of period change
for the pulsations, Ṗ . Equation (2.2) applies to the period change with slow rate, or specifically,
a period change with linear rate which may be caused by stellar evolution. The presence of
an orbital companion such as a Jupiter-like planet could contribute to the period change of
pulsation. This contribution repeats in the O − C diagram and is often fitted by sinusoidal
signals as,

Tmax = T0 + P0E + 1
2 ṖPE

2 +A sin(2π
Π E + φ), (2.4)

where A is the amplitude, Π the period and φ the phase of the sinusoidal variations.
The rate of period change Ṗ is extremely important to constraint the core composition of

a white dwarf pulsator because the composition determines the cooling rate of a white dwarf
evolution, e.g., calculations for DAVs stars (e.g., Brassard et al. 1992a), for DBV stars (e.g., Kim
et al. 2006) and DOVs (e.g., Althaus et al. 2008). The total rate of period change may contain
the contribution of the contraction rate, the cooling rate and the rate of reflex motion (see
equation 2.1, and, e.g., Winget & Kepler 2008). The cooling rate is the dominating term in the
period change of pulsation in a WD pulsator during its evolution, e.g., for a hot DOV, PG 1159-
35, the cooling rate Ṫ /T = −7.61× 10−11 s−1 which is much greater than the contraction rate
Ṙ/R = −0.89 × 10−11 s−1 (Costa & Kepler 2008), and for cool ZZ Ceti stars which cool at
nearly constant radius, Ṙ/R � Ṫ /T . In white dwarf evolution, the plasmon neutrinos are the
dominant form of energy loss. Thus measuring the cooling rate of WD evolution could constrain
the neutrino emission rate in hot white dwarfs, which may give us an unique way to test the
fundamental physics of weak interactions of elementary particles. The cooling rate of white
dwarf evolution depends sensitively on the effective temperature of that star. For the hottest
WD pulsators, DOVs, the rate of period change may be on the order of Ṗ = 10−10−10−12 ss−1,
see, e.g., the mode of 516.0 s in PG 1159-35 (Costa & Kepler 2008). The theoretical calculations
on DB white dwarf models obtain that the rate of period change due to the cooling effect are on
the order of Ṗ = 10−13 ss−1 down to the effective temperature of 25 000 K (Winget et al. 2004).
The cool DAV stars have the slowest cooling rate as they have the lowest effective temperature
in all WD stars. The rate of period change in a ZZ Ceti star, G 117-B15A, can be used as the
most stable optical clock currently known, with Ṗ = 3.57 ± 0.82 × 10−15 ss−1 for the 215.2 s
mode (Kepler et al. 2005). These above values of the rate of period change suggest that the
pulsation period has a variation in the range of 10−2 s over a time baseline of ten years even for
the hottest WD pulsators.

Another great advantage of the O − C diagram it that it can reveal the eventual presence
of a planet orbiting around the pulsators when we measure the rate of period change over
a long timescale, as indicated by equation (2.4). If the sinusoidal signals were found in WD
pulsators, one can obtain the exact period of the companions. Planetary objects or asteroids
indeed are believed to exist around white dwarf stars ; see the most recent report on white dwarf
WD 1145+017 (Vanderburg et al. 2015). The presence of planetary objects around a pulsating
white dwarf star has yet to be discovered by the technique of O − C diagram.

2.1.4 Hints of resonant mode couplings

In this section we discuss a phenomenon affecting oscillation modes in white dwarf pulsators,
amplitude and period variations on a much larger range than the slow secular rate of period
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change caused by stellar evolution as discussed in the last section. This phenomenon of amplitude
and period variations of pulsations also differs from the period change induced by the presence
of orbiting objects around white dwarfs in which all the modes have the same systematic trend.
This phenomenon are related to the nonlinear perturbations theory (see Section 1.4.1) which
predicts various behaviors of oscillation modes. We call the below examples as "hints" of such
nonlinear mechanism because the observed results from ground-based telescopes are inevitably
affected by the gaps in the data, thus there is no clear evidence that covers several continuous
modulating cycles of the inferred nonlinear phenomenon which is on the timescale of weeks,
months or even years. There are definitely some hints in other type of pulsating stars, we here
merely introduce several examples in the domain of pulsating white dwarf stars.

The first example is the ZZ Ceti star, GD 385, observed by Fontaine et al. (1980) and
Vauclair & Bonazzola (1981). Both their results show that the dominant mode of 256 s may
change abruptly on a timescale of days, with a behavior that the mode disappear on several
occasions during the observations. The role of simple beating phenomena was ruled out with the
complex abrupt amplitude variation. It is proposed that nonlinear couplings between nonradial
modes may account for such modulations occurring in GD 385. It is almost at the same epoch
that the nonlinear resonant mode couplings between oscillation modes was put forward and
developed (see, e.g., Dziembowski 1982; Buchler & Goupil 1984). Another case is the ZZ Ceti
star, G 191-16, whose frequencies are regularly spaced in the power spectrum (Vauclair et al.
1989). The presence of subharmonics of the primary frequency in G191-16 is difficult to explain
by a linear theory and suggest that a nonlinear mechanism may be needed to interpret it. The
observations on G191-16 show that the amplitude increased in the second observational run.

Such nonlinear phenomena in DB pulsators may have been revealed by the WET observa-
tions on the DBV star, GD 358 (Winget et al. 1994). The interesting features are that there are
large differences in amplitudes between consecutive triplets and between the components within
the same triplets, asymmetric amplitudes and frequencies within the same triplets, and varia-
tions occurring in some of the triplet modes. Numerical explorations for those modes can depict
the interesting features in GD 358 in general, based on nonlinear amplitude equations (Goupil
et al. 1998). The amplitude differences between consecutive triplets mainly reflect the behaviors
of linear growth rates of the modes which may vary in a very large range from mode to mode.
While the differences in amplitude within the triplet depend somewhat on the precise values
of the nonlinear coupling coefficients. Some triplets have amplitude (frequency) modulations
because the neighboring triplets may belong to different nonlinear regimes (frequency locked,
time dependent or nonresonant) that are related on how far the triplets are away from their
resonance center, see Section 1.4.3. We note that GD 358 were not continuously observed by
the WET network, thus the nonlinear AE explorations could not describe the exact behaviors
of the modes in that star.

In the case of DOV stars, PG 0122+200, the coolest GW Vir variable, amplitude and
frequency variations have been obtained for the first seven largest amplitude modes over a
time baseline of ∼ 22 years (Vauclair et al. 2011). Their results show that the frequencies of
the considered modes change in a much larger amplitude and in a much shorter timescale
than the theoretical predictions by the stellar models in which the frequency variations are
mainly induced by the cooling effect of neutrino emissions, as discussed in the last section. The
frequency variation of the largest amplitude 240 s mode can be well fitted by a combination
of two terms : a long-term one with a timescale of 5.4 × 104 years (the evolutionary cooling
timescale is ∼ 8 × 106 year) and a short one with a timescale of ∼ 200 days. The short-term
variations is probably a hint of a nonlinear mode coupling in the 1 : 1 : 1 resonance in which
the modes may have modulations with a timescale on weeks, months or years, depending on
the nonlinear parameters the involved modes have (Section 1.4.3).

41



There are also amplitude variations in some white dwarf pulsators, see Vauclair (2013)
and reference therein. From the theory of nonlinear AEs, the amplitude variations may have
nonlinear corrections on the frequencies of the modes, thus the observed frequencies had been
corrected by these nonlinear effects, which can jeopardize the attempt to measure the rates
of period change to constrain the evolutionary cooling that are mainly induced by neutrino
emission. In order to getting a secure measurement of those cooling rates, one needs to correct
the nonlinear effects beforehand. In the next section we will discuss another type of compact
pulsators, hot B subdwarf pulsating stars.

2.2 Pulsating hot B subdwarf stars
Hot subdwarf stars belong to the extreme horizontal branch (EHB) in H-R diagram, in-

cluding the O (sdO) and B (sdB) types, according to their colors on the relatively simple
classification. They are stars with helium buring in the core, a tiny hydrogen envelope, and
with a mass typically around ∼ 0.47M�. Their nature and fates are relatively well understood,
while the origin of EHB stars is wrapped in mystery. A significant fraction of sdB stars are found
in binary systems. Some of sdB stars are found having pulsations and are good candidates for
asteroseismology. For more details about such kind of stars we refer the very complete reviews
by Heber (2009, 2016).

2.2.1 Hot B subdwarf stars

Hot subdwarfs are the subluminous blue stars that were first discovered at high Galactic
latitudes in the late 1940s (Humason & Zwicky 1947). Their nature and evolution remained
unknown for decades until the first determination of effective temperature and surface gravity for
these faint blue stars, an attempt to place them in the Hertzsprung-Russell diagram (Greenstein
& Sargent 1974). The large samples of hot subdwarfs were first provided by the photometric
and objective prime surveys in 1980s (e.g., the Palomar-Green survey, Green et al. 1986).

Atmospheric parameters and abundances of subdwarf stars can be derived from spectrosco-
pic measurements by using appropriate model atmosphere. They typically fell into several groups
on the spectroscopic classification. The dominant and simplest nomenclature is to distinguish
between the hot subdwarfs of B and O type, sdB and sdO stars. SdB stars are characterized by
spectroscopy with the abnormally broad Balmer lines, weak He I lines, and form a homogeneous
class. While sdO stars, rarer in number compared with sdB, show more variety in their spectral
properties (see more details about sdO stars in Heber 2009, sdB stars as well). From now on
we focus in particular on sdB stars as the representative of hot subdwarfs in this thesis. Signi-
ficant efforts on the investigation of the properties for sdB stars were led by the computation
of local thermodynamic equilibrium (LTE) or non-LTE atmosphere models, with or without
metals. LTE is a good approximation for sdB stars with high gravity and low temperature,
while non-LTE model is more appropriate for the hot ones as effective temperature higher than
∼ 35 000 K (e.g., Napiwotzki 1997). The analysis of 207 sdB stars whose atmospheric para-
meters are derived from non-LTE H/He models shows that they cluster between 22 000 K to
40 000 K in temperature and between 5.2 to 6.4 in log g (see, Fig. 1 in Charpinet et al. 2009a).
Helium is highly deficient in the atmosphere of sdB stars. Many heavy elements of the iron
group and beyond have large overabundance, in particular for the hottest ones, based on the
Ultraviolet spectroscopy from HST and FUSE (O’Toole & Heber 2006; Blanchette et al. 2008).
These overabundance of heavier elements are believed to be the signature of diffusive effects
including gravitational settling and radiative levitation which can affect the selectively on the
chemical element distribution on the stellar envelope.
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A significant fraction of sdB stars are in binaries, as revealed by spectral observations (e.g.,
Maxted et al. 2001). The cool companions can be detected by the combination of optical and
infrared photometry since the sdB stars dominate the blue parts while the cool companions
dominate the infrared part of the spectrum. Many single sdB stars show variations of radial
velocity on short periods, which suggest the presence of invisible companions (e.g., Napiwotzki
et al. 2004). These invisible companions are expected to be either white dwarfs or low-mass main-
sequence stars. The sdB+WD binary can be a good candidate for SN Ia progenitor through the
double-degenerate formation channel, because total mass of the binary system can exceed the
Chandrasekhar limit (e.g., KPD 1930+2752 ; Maxted et al. 2000). SdB stars in eclipsing binaries
provide an accurate determination of the stellar masses. HW Vir stars consist of eclipsing
binaries of sdB+dM in short-period orbits (Wood et al. 1993). An example of one HW Vir
system, HS 0705+6700, shows that the mass derived from the radial velocity is very close to
that from the evolutionary model (Drechsel et al. 2001). We note that the NW Vir itself is very
important because it is one of the only two eclipsing binary with a pulsating sdB companion
(see Section 2.2.3).

Several scenarios have been developed to explain the evolution of sdB stars. Canonical EHB
models are characterized by a ∼ 0.5M� core mass and a tiny inert hydrogen rich envelope
(Dorman et al. 1993). In such scenario, the core mass is fixed at the onset of the helium core
flash at the tip of the RGB and descends slightly on metallicity and helium abundance, thus
the core mass is restricted to a very narrow range around ∼ 0.47M�. The mass of the envelope
is too low to let an EHB star ascend the AGB. The post-EHB stars then evolve toward higher
temperatures until they reach the cooling sequences of low-mass white dwarfs. Quantitative
spectroscopic investigations obviously demonstrated that sdB stars can naturally be associated
with EHB and post-EHB models, sdB stars forming a very homogeneous group in the H-R
diagram that fits with EHB models in the phase of core helium burning (e.g., Heber et al. 1984;
Heber 1986).

Although the nature and fate of sdB stars is relatively well understood, the formation channel
may still be uncertain. The long standing difficulty for a single star formation of sdB star has
been to understand how a star can lose all except a very tiny fraction of its H-rich envelope
before or during the He-flash for the star to settle down as an EHB and not as a typical HB
star. The formation through binary channels may play an important role for the origin of sdB
stars, as the observed high fraction of short period sdB binaries. Three channels for forming sdB
stars were proposed by Han et al. (2002, 2003) : the common-envelope (CE) ejection channel,
the stable Roche lobe overflow channel, and the double helium white dwarfs merger channel.
The population-synthesis of binary models give a prediction of a broader mass distribution in
the range of 0.3− 0.8M� peaking near at the canonical 0.47M� due to masses of the mergers.

2.2.2 Classification of hot B subdwarf pulsators

The discovery of nonradial oscillations in hot subdwarf stars provide new opportunities to
probe their interior structure with the technique of asteroseismology. There are two classes of
nonradial pulsators identified among sdB stars, officially named the V361 Hya and V1093 Her
stars. Figure 2.4 shows a global view of the location of these two groups of sdB pulsators in the
log g − Teff diagram.

The first discovery of low-amplitude multiperiodic luminosity variations with periods of a
few minutes was in the sdB star EC 14026 (or V 361 Hya) by Kilkenny et al. (1997) at almost
the same time when the theoretical prediction that nonradial pulsations should exist in sdB
stars (Charpinet et al. 1996). This type of pulsators show rapid multiperiodic pulsations with
periods in the range from 80 s to 600 s generally, identified to low-order, low degree acoustic (p-)
modes. The amplitude of these oscillations are typically very low (less than a percent of the mean
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Figure 2.4 – The instability strip of the two known families of sdB pulsators in log g − Teff
diagram. A sample of 28 short-period sdB pulsators (officially, V 361 Hya type) and 33 long-
period ones (officially, V 1093 Her) are shown in blue and red, respectively. Three stars are
hybrid pulsators with oscillations both in long- and short-period (blue filled circles within red
annuli). The typical 1σ error of the determination of the atmospheric parameters for the sdB
stars are shifted to the top left corner. The black open circles represent the constant sdB stars.

brightness of the star), while, occasionally, relatively large amplitude modes (a few percents of
the mean brightness) were found. Examples of several representative light curves of V 361 Hya
stars are shown in the upper part of Figure 2.5 (in blue). Such short period pulsations are
only detected among the hotter sdB stars (with a very low fraction) with effective temperature,
28 000 < Teff < 36 000 K, and surface gravity, 5.2 < log g < 6.1, typically, indicated by blue
symbols in Figure 2.4. The driving mechanism for the pulsations in V 361 Hya stars turns out to
be the opacity bump associated with iron ionization (Charpinet et al. 1996, 1997a). Radiative
levitation is particularly important to produces iron overabundances in the driving region. Once
this overabundance is sufficient locally in the Z-bump region zone of iron, low order p-mode
oscillations are excited (Charpinet et al. 1997a).

Green et al. (2003) discovered the second type of pulsating sdB stars, V 1093 Her, which
are cooler than the V 361 Hya stars, with effective temperatures in the range 22 000 < Teff <
30 000 K (red symbols in Figure 2.4). The pulsations in the V1093 Her stars have much longer
periods than those in the V 361 Hya stars, typically in the range of 45 − 120 minutes, cor-
responding to mid-order gravity (g-) modes. Examples of several representative light curves of
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Figure 2.5 – Representive light curves of two different types of sdB pulsators. The upper blue
ones are the segments of light curves for four rapid p-mode sdB pulsators with sampling of 10 s.
The lower red ones are for four slow g-mode sdB pulsators with sampling of ∼ 80 s. See details
in Charpinet et al. (2009a)

V 1093 Her stars are shown in the lower part of Figure 2.5 (in red). The g-mode oscillations have
noticeably lower amplitudes—less than one percent of the mean brightness. Thus the V 1093 Her
stars are much more challenging to observe with ground-based campaigns. However, asteroseis-
mic studies of the V 1093 Her stars have benefited from a lot of observations by space telescopes
(see Section 2.3). The same driving mechanism (κ-mechanism) as for the p-modes oscillations
is responsible for the excitation of g-mode pulsations in V 1093 Her stars (Fontaine et al. 2003).
Beyond iron, the enhancement of nickel on the opacity profile, as well as the opacity sources
themselves, also play a role (Jeffery & Saio 2006), in particular to explain all the excited modes
observed in g-mode sdB pulsators. Finally note that Figure 2.4 also shows the distribution of
three hybrid pulsating sdB stars with pulsations both in short period p-mode and long period
g-modes (blue filled circles within red annuli). The first hybrid stars was first found by Schuh
et al. (2006). They are found near the red edge of the V 361 Hya instability strip and the blue
edge of the V 1093 Her instability.

2.2.3 Asteroseismology of hot B subdwarfs

The pioneering work on the potential of sdB stars for asteroseismology comes from Brassard
et al. (2001) whose results agree well on the parameters determined from spectroscopy for the
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Figure 2.6 – The empirical mass distribution of 22 sdB stars in comparison with two theoretical
predictions. Histograms represent the mass of 15 sdB stars are derived from asteroseismology
and the others from binary determinations (Fontaine et al. 2012). The red lines are the (sharp)
upper and (fuzzy) lower boundaries of mass range from single star evolution (Dorman et al.
1993). The blue curve denotes the mass distribution from binary evolution models (Han et al.
2003) which is normalized here.

EC 14026 pulsator PG 0014+067. This seismic probing relied on stellar envelope models of the
so-called second generation (2G) for sdB stars. The 2G sdB models incorporate a nonuniform
abundance profile of iron that is predicted by equilibrium between radiative levitation and
gravitational settling (e.g., Charpinet et al. 2002a). These models are appropriate for the seismic
exploration of pure p-mode sdB pulsators whose pulsations are only sensitive to the details of
the outmost regions of the star. Third generation (3G) models have been developed to apply
the seismic investigation of g-mode pulsators (Brassard & Fontaine 2008). The 3G models are
complete stellar structures that incorporate a detailed description of the core region, and the
nonuniform abundance profiles of iron in the envelope (a detailed description can be found in
Van Grootel et al. 2013a).

Asteroseismology of sdB stars is based on the "forward modeling method" whose basic prin-
ciple is to simultaneously fit all of the observed pulsation periods with the theoretical ones
calculated from stellar models, in order to find the best match in the parameter space. The
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quality of a period match is evaluated through a merit function defined as

S2(x1, x2, ..., xn) =
n∑
i=1

(P io − P it
σi

)2
, (2.5)

where n is the number of observed pulsation periods, {x1, x2, ..., xn} is the parameter set, P io is
the observed period and P it the calculated one (Charpinet et al. 2009a).

After about a decade of efforts, 16 pulsating sdB stars have been analyzed by the foward
modeling method with 2G and 3G sdB models (Fontaine et al. 2012). In all cases, the solution
of a best-fit model match well with the atmospheric parameters of the star derived from spec-
troscopy, and, furthermore, all the observed periods are matched to driven modes according to
nonadiabatic calculations. For the p-mode pulsators, the typical average dispersion between the
observed and computed periods is ∆P/P ∼ 0.5% (e.g., PG 1325+101 ; Charpinet et al. 2006).
The optimal model for the long period g-mode pulsators can also reach such high precision,
e.g., the 3G model for KPD 1943+4058 have an average period dispersion of about 0.22% (Van
Grootel et al. 2010b). An important aspect of sdB asteroseismology is that the optimal seismic
models can provide an accurate mass for sdB pulsator. Figure 2.6 shows the empirical mass
distribution of 22 sdB stars—15 of the 16 sdB pulsators with seismic solutions and 7 sdB stars
in binary systems from light curve modeling and spectroscopy—compared with two theoretical
distributions (Fontaine et al. 2012). The empirical mass distribution determined by Fontaine
et al. (2012) is consistent with the expectations from the two different stellar evolutionary theo-
ries of single star channel (Dorman et al. 1993) and double star channels (Han et al. 2003). For
example, about 86% of the stars in the 22 star sample have masses falling right within the mass
range 0.40 − 0.52M� predicted by Dorman et al. (1993). However, the presence of low- and
high-mass wings in the mass distribution in Figure 2.6 are expected from the binary evolutio-
nary channels (Han et al. 2003). We also note that the average mass of the sample in Fontaine
et al. (2012) is 0.470M� which differ slightly from that of binary evolution of 0.499M�. At this
stage, however, the result is only suggestive because the sample is still small.

In exploiting asteroseismology for sdB stars, the case of NY Vir (=PG 1336+018) is par-
ticularly important. It is one of the only two eclipsing binary system (sdB+M) with the sdB
component displaying short-period oscillations (Kilkenny et al. 1998). It offers the opportunity
to determine the stellar parameters of the sdB component from independent methods, modeling
from the light curve of the binary system and modeling solution from the seismic exploration
(Charpinet et al. 2008). Based on the 25 detected pulsations in NY Vir, the best-fitting solution
of the foward modeling by Charpinet et al. (2008) agrees remarkably with one of the best-fitting
solutions from the eclipsing binary light curve by Vučković et al. (2007). Furthermore, NY Vir
can be the test bed for the new generation seismic models. The test of 3G seismic model obtains
the stellar parameters, mass M , radius R and surface gravity log g, within 1σ error of the so-
lution independently obtained from spectroscopy and light curve modeling (Van Grootel et al.
2013a), respectively.

The forward modeling method allows one to determine the basic stellar parameters with
high precision. However, there are some room left for improving further detailed description of
the stars in the models. In particular nonadiabatic asteroseismology (Charpinet et al. 2009b)
may help constrain the microscopic diffusive processes and their competitors, e.g., turbulent
mixing, stellar winds, thermohaline convection (e.g., Théado et al. 2009).

2.2.4 Frequency and amplitude variations in sdB pulsators

Like white dwarf pulsators, pulsating sdB stars may have sufficiently stable pulsation periods
to measure secular changes based on long time baseline observations. On the theoretical front,
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Figure 2.7 – The O−C diagram of the frequency f1 of sdB star V 391 Peg based on the obser-
vational time-length of seven years (Silvotti et al. 2007). The upper panel shows the parabolic
fit of the long-term trend (dashed) and an improved fit with an additional sinusoidal fitting
(dotted). The alone sinusoidal fitting component is shown in the lower panel.

the effects of stellar evolution on the oscillation eigenmodes of sdB models have been calculated
by Charpinet et al. (2002b). On the observational side, the observed rates of pulsation period
change can be derived from the O − C diagram for an sdB star (see details in Section 2.1.3).
However, suchO−C determinations need well resolved and constant frequencies in the amplitude
spectrum of oscillation modes. But some pulsations in sdB stars are found with amplitude
variations.

The pulsation periods P and the rates of period change Ṗ are related to the adjustments
of stellar structures that EHB stars undergo during evolution. The secular variations of the
surface gravity are the main factor to affect the acoustic modes (Charpinet et al. 2002b). The
average relative rate of period change for acoustic modes is Ṗ /P ∼ 5 × 10−3 Myr−1. During
the evolution of EHB stars, the sign of Ṗ /P changes between ∼ 87 and 92 Myr depending on
the exact sequence of a star. The gravity modes, however, whose periods change are related to
three main factors : the evolutionary effects on the surface gravity and effective temperature,
the onset and growth of a chemical discontinuity between the C-O-enriched nucleus and the
He-enriched mantle (Charpinet et al. 2002b). The average relative rate of period change for
gravity modes is Ṗ /P ∼ ×10−3 to 10−2 Myr−1 and its sign changes at ∼ 60 Myr, ∼ 25 Myr
earlier than that of the acoustic modes. These theoretical explorations of the pulsation periods
and their changing rates, in principle, could be determined by observations over a time baseline
of decades, using the O − C diagram.

The EHB star, V 391 Pegasi, is an example of the O − C method applied to determine the
rate of period change in sdB stars (Silvotti et al. 2007). Figure 2.7 shows the building O − C
diagram for the main frequency f1 of V 391 Peg spanning over a time baseline of about seven
years. As sdB pulsators have been discovered more recently than pulsating white dwarfs, the
time baseline of observations for one single sdB star is several times shorter than that of WD
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stars, about 7 years comparing to 20–30 years. The parabolic fit of the O − C measurements
infers that the main frequency whose period changes at a rate of Ṗ = 1.46± 0.07× 10−12 ss−1,
corresponding to 1 s in 22 000 years, which is rather consistent with theoretical expectations
from stellar model as discussed above. However, as shown in the upper and lower panels of
Figure 2.7, an additional sinusoidal fitting to the residuals significantly improves the fitting of
the O − C measurements. This cyclical signal is interpreted as the signature of the presence of
stellar and/or planetary companions around the pulsating star (see equation 2.4). Indeed, this
cyclical signal also occurs in the O − C diagram for the frequency f2, with the same period of
about three years. Silvotti et al. (2007) found that the best interpretation for such sinusoidal
signals in the O − C diagram is the presence of a Jupiter-like planet orbiting V 391 Pegasi,
with M sin i = 3.2Mjupiter, distant of 1.7 astronomical unit (AU) with an orbital period of 3.2
years. This discovery demonstrates that planets within an orbit of 2AU can survive after their
parent stars expanding at the red-giant phase, which has important implication to understand
the evolution of sdB star progenitors and their planets. Very closed orbiting planets can also
survive after the late phase of expansion of red giant stars, e.g., two earth-size planets have been
found around a Kepler sdB star (Charpinet et al. 2011a), which will be discussed in Section 2.3.1.

Kilkenny (2010) reported a number of sdB pulsating stars with amplitude variations over
seasons of observations, e.g., the prototype EC 14026, EC 09582 and V384 Pegasi. From their
results, it seems that amplitude modulations of the pulsation modes are a common phenomenon
in sdB pulsators. The timescales of the amplitude variations appear to be from a day to several
years (Kilkenny 2010). However, whether the frequencies of the oscillation modes are constant
or also change with time could not be resolved by Kilkenny (2010) because the observation
coverage was still not long enough for that measuring. Much longer time-coverage observations
are particularly needed to measure accurate frequency variations (see, e.g., frequency variations
in the pre-white dwarf PG 0122+200 from multi-site observations Vauclair et al. 2011). The
origin of these mode variations is still an open question, which we address in this thesis (see
Chapter 4 and 5).

2.3 Asteroseismology from space photometry
Observation from space has been a long awaited dream for who is particular eager of as-

teroseismology, providing high-quality long consecutive photometric data. The pioneering ob-
servations by space-based telescope for asteroseismology began with the contribution from the
Canadian space project MOST (The Microvariablity and Oscillations of Stars ; Walker et al.
2003). This small-aperture telescope however was designed to detect oscillations in bright stars
(V < 10, compact pulsators are typically fainter than this). Nevertheless, three independent
modes were detected in the long-period g-mode sdB star PG 0101+039 from the continuous
observations by MOST (Randall et al. 2005). A revolutionary situation in asteroseismology has
happened with the launch of the French-led space telescope CoRoT (Convection, Rotation, and
Planetary Transits ; Baglin et al. 2006). This 27-cm telescope, CoRoT, opened a new era in sdB
asteroseismology, in particular for the long-period g-mode V1093 Her stars (Charpinet et al.
2010). Kepler, the big cousin of CoRoT, was launched by NASA in 2009 to discover Earth-size
planets (Borucki et al. 2010), as well as providing extremely high-quality data for asteroseis-
mology (Gilliland et al. 2010). Kepler then turned into a new called mission K2 (the second
light of Kepler ; Howell et al. 2014) after losing the second reaction wheel in May 2013. A more
detailed description of the Kepler satellite will be given in Chapter 3. Future space missions
are planned, e.g., TESS (The Transiting Exoplanet Survey Satellite ; Ricker et al. 2014) and
PLATO (Rauer et al. 2014), which will continuous to provide high-quality photometric data for
asteroseismology in years to come.
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In this section, we will present the advancement of asteroseismology in compact pulsators
exploiting the emergent space-based observations. The photometric data from space gives a
sharper resolution for frequencies in Fourier amplitude spectra than ever before and lower the
detection threshold to a few ppm (parts per million), thus allowing one to detect much more
modes than ground-based observations. This is useful to obtain better seismic constraint for
stellar models. The space photometry definitely provide a new window to the study of temporal
behaviors of pulsating modes due to its long and uninterrupted observations.

2.3.1 Advancements in compact pulsators

Space missions finally overcome the aliasing problem that is inevitable from ground-based
observations, as a result of monitoring one specific observational field for a very long time,
months or even years. Therefore these long, uninterrupted, high-precision photometric data have
a heavy impetus on the understanding of long-period, low-amplitude pulsating stars, particularly
for the g-mode V1093 Her stars. Figure 2.8 shows comparison of amplitude spectra for three
different stars observed from the ground and from space with CoRoT and Kepler. Figure 2.8(a)
shows a portion of the LSP (p-mode dominated region) for the hybrid pulsating sdB star Feige 48
observed with the 1.54 m Kuiper Telescope on Mount Bigelow, Arizona, in 2009. The daily
aliases are clearly seen and the noise level is about one tenth ppt from the LSP. Figure 2.8(b)
shows that the 24 days of high-quality, uninterrupted photometric data from CoRoT permitted
the detection of 17 independent modes in the long-period sdB star KPD 0629-0016, with a noise
level about a few dozen ppm (Charpinet et al. 2010). This gave the first opportunity to probe
the deep internal structure of the g-mode sdB pulsators with great success by asteroseismology
(Van Grootel et al. 2010b). Figure 2.8(c) shows an example of amplitude spectrum of the long-
period sdB star KIC 02697388, obtained by Kepler with a duty time of ∼ one month (Charpinet
et al. 2011b). The frequency resolution, oscillation amplitudes and noise level are very similar
in both two cases, except 47 pulsation modes are found in the Kepler target KIC 02697388.
We note that the amplitude spectrum for Kepler target provided here is only for one-month
observation. A much sharper and larger number of low-amplitude modes can be found with
Kepler since some of the compact pulsators in its FOV (field of view) have been observed for
as long as ∼ 4 years.

The long observations (of the order of years) offered by Kepler are particularly important
to determine the rotational periods of these stars, because rotation in compact pulsators needs
sharp enough frequency structures to resolve the rotational splitting of affecting nonradial modes
(see Section 1.2). Most of Kepler sdB stars have slow rotation with a period from about one
month to several months. For example, KIC 10670103 has a slow rotation period of 88± 8 days
derived from the rotational splitting multiplets (Reed et al. 2014). The presence of splitting
multiplets also provide direct way to identify modes in compact pulsators, e.g., KIC 2991403
(Baran & Winans 2012). The g-mode periods turn out to be evenly spaced in sdB stars from
Kepler photometry (e.g, Reed et al. 2011), which indeed is a prediction of the asymptotic
pulsation theory. The high precision Kepler data also permits us to explore the low-amplitude
Doppler beaming effect which is an alternative and independent method to establish the binarity
of the stars (Rybicki & Lightman 1979). This method was applied to sdB stars and the results
are consistent with measurements of radial velocities (e.g., KIC 11558725 ; Telting et al. 2012).
We note that at least 8 of the 18 (∼ 45%) sdB stars continuously observed by Kepler are found
in binaries.

Two Earth-size planets have been discovered in very tight orbits around the isolated EHB
star KIC 05807616 monitored by the Kepler spacecraft (Charpinet et al. 2011a). These two
planets complete one orbit in 5.7625 and 8.2293 hours (2 : 3 resonance), respectively, placing
them at a distance of 0.0060 and 0.0076 AU, as revealed by two weak (but clearly significant)
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(a) Ground
(b) CoRoT

(c) Kepler

Figure 2.8 – Amplitude spectrum companion between ground-based observations, CoRoT, and
Kepler for three pulsating stars : (a) p-mode region in the hybrid pulsating sdB star Feige 48 from
ground-based observations ; (b) long-period sdB star KPD 0629-0016 from CoRoT (Charpinet
et al. 2010) ; (c) long-period sdB star KIC 02697388 from Kepler (Charpinet et al. 2011b). The
red vertical segment denotes the position where the signal is above the detection threshold, 4σ
typically.

signals in the amplitude spectrum, that are longer than the period of the cutoff frequency.
Silvotti et al. (2014a) discovered a second case suggesting that presence of small planets around
a post-red-giant EHB star from Kepler photometry. The star is KIC 10001893, whose Fourier
spectrum shows three weak peaks at very low frequencies similar to KIC 05807616, with orbital
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periods of P1 = 5.273, P2 = 7.807, and P3 = 19.48 h which are near the 2 : 3 and 2 : 5 resonance.
These interpretations, associating the low frequencies in these sdB pulsators with the presence
of companions, are the most plausible among known alternatives, but they particularly need
to be confirmed by other independent methods, e.g., radial velocity measurements or transit
detection (e.g., Silvotti et al. 2014b). These planetary candidates raise important questions that
planets could survive during the engulfment in their host stars at the red giant phase, and this
is a crucial implication to the formation of sdB stars.

Kepler also monitored several white dwarf pulsators, one hot DBV star, KIC 08626021
(see, Østensen et al. 2011a, which will be discussed in later chapters), and six ZZ Ceti stars
(e.g., Greiss et al. 2016). A few pulsations have been detected in these WD pulsators from the
long-term Kepler photometry, although all of them are very faint, typically Kp ∼ 18 (Kepler
magnitude), which is not suitable for ground-based observations. The high-quality, long-term
photometry offers a window to investigate the mode behaviors in WD pulsators and sdB stars.

2.3.2 Amplitude and frequency modulations related to nonlinear resonance

Some achievements to characterized the mode behaviors in some pulsating stars have been
reported recently (e.g., Breger & Montgomery 2014), by exploiting the long-term high-quality
photometric data from CoRoT and Kepler. Degroote et al. (2009) tentatively applied the non-
linear resonant mode couplings to interpret the high-quality photometric data obtained on the
β Cephei star HD 180642, as mode interactions may occur between 11 independent modes and
their 33 linear combination frequencies. Kepler is a more powerful instrument to study such
nonlinear behaviors of pulsation modes, compared to CoRoT, with bigger aperture in diameter,
longer observational duty. An example of the exploitation of Kepler photometry is the mode
behaviors in the δ Scuti star, KIC 5892969, which had been continuously observed by Kepler for
four years (Barceló Forteza et al. 2015). The three highest modes in that star accumulate energy
(amplitude growing) slowly then dissipate it (amplitude decreasing) rapidly, a phenomenon si-
milar to the modes in parametric resonance (illustrated in Figure 1.4). Furthermore, as more
than one thousand signals appear above the detection threshold, there are several different kinds
of linear combinations which have a relationship with those three highest amplitude frequencies,
e.g., ω1 ∼ ω2 + ω3. There are several other modes with amplitude high enough to investigate
using the same method to the three highest amplitude modes in that star. This could be the
signature of the parametric resonance ω1 ∼ ω2 +ω3 where the parent mode transfer energy into
the child modes (see, e.g., Moskalik 1985). The direct resonance of ω1 ∼ ω2 +ω3 was reported in
the fast rotating δ Scuti star KIC 8054146 with about 928 days Kepler data (Breger & Montgo-
mery 2014). They found that the amplitudes of some linear combination frequencies are at least
three order higher of magnitude than the "normal" ones, which may need nonlinear resonant
mode coupling to interpret such large amplitude ratios between the parent and child modes.
With the variations in amplitude and phase, they also distinguish which modes are parent and
child. All the above examples are related to the three modes resonance ω1 ∼ ω2 +ω3, adiabatic
resonant mode couplings (e.g., Dziembowski 1982).

The amplitude variations of pulsation modes also attracted the interest of the compact
pulsator community (KASC working group 11) 1. A prevailing method of sliding Fourier trans-
formation for the photometric light curves has been adopted, a method to illustrate amplitude
stability of oscillation mode in general, see, e.g., Figure 1 in Zong et al. (2015). Østensen et al.
(2014a) report irregular amplitude and phase variations in a short period sdB star KIC 2991276,
as shown in Figure 2.9. The near continuous light curves of ∼ 1000 days was divided into pieces
with time intervals of 20 days. The amplitudes sometimes increase up to 1.4% for a short time

1. KASC : Kepler Asteroseismic Science Consortium. Link : http ://astro.phys.au.dk/KASC
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Figure 2.9 – Example of continuous amplitude (upper) and phase (lower panels) variations of
two modes with highest amplitude in the sdB star KIC 2991276 with an time interval of 20
days (Østensen et al. 2014a).

(∼ 1 month) but they are below 0.7% for most of the observations. We note that the (seeming)
random phase variations may be less secure since the frequency resolution from 20 days of data
cannot be sharp enough to prove that the frequencies are stable during the observations, thus,
even a very tiny frequency variation could contaminate final measurements of phases over a
large number of period cycles. The long period sdB star KIC 10670103 also shows amplitude
variations for many significant modes, as revealed by the sliding Fourier transformation (Reed
et al. 2014). Photometric data from space indeed offers the opportunity to study the amplitude
variations of pulsation modes. However, the mechanisms for such amplitude variations are not
clear from the above studies.

2.4 Conclusion
Compact pulsators are one of the most intensively investigated type of pulsating stars with

the linear stellar oscillation theory. The κ-mechanisms drive the oscillations in both white dwarf
and hot B subdwarf stars. They can be well probed by the technique of asteroseismology, pro-
viding accurate fundamental parameters, e.g., mass, effective temperature and surface gravity.
Measuring rate of period change of pulsations could provide a chance to obtain the cooling
rate in white dwarf stars associated with neutrino emissions, based on observations over a time
baseline of decades. This method can also be applied to the sdB stars. However, many sdB
and WD stars seem to have amplitude variations on timescale of days, months, or even years.
The nonlinear resonant mode couplings may be the cause for such amplitude modulations, and
indeed it was proposed almost at the time when the nonlinear theories began and developed.
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Those amplitude modulations in oscillation modes may also have nonlinear contributions on the
frequencies of the modes, thus, a varying frequency could jeopardize any attempt to measure
the true rate of period change in compact pulsators. The problem whit testing the nonlinear
theories from the observations on compact pulsators is that the photometry from ground-based
telescopes can not cover a long enough time baseline due to time allocation, constraint from
weather conditions, and daily aliasing. The space missions fortunately offer new opportunities
for such research, as revealed by the merits of space-based observations, i.e., long and unin-
terrupted unprecedent high-precision. Some compact pulsators from Kepler photometry show
obvious amplitude variations.

In the next chapter, we will present details on the methods we use to analyze the Kepler
photometry. The attention will focus the compact pulsators, in particular some of them observed
by Kepler spacecraft for more than one year. Compact pulsators with rotation are our priority, in
searching for the periodic amplitude and frequency modulations within triplets, a phenomenon
predicted by the nonlinear nonadiabatic amplitude equation formalism. We, of course, also
consider the amplitude and frequency variations in oscillation modes with the linear relationship
near other type of resonance, e.g., ω1 ∼ ω2 + ω3.
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Chapter 3

Analysis of Kepler photometry :
Methods and Tools

3.1 The Kepler space telescope
The Kepler spacecraft was launched by NASA on March 7, 2009, with the primary goal to

discover Earth-size planets around other stars (Borucki et al. 2010). It also provides unprece-
dented high-quality photometric data that are well suitable for asteroseismology (Gilliland et al.
2010). Kepler was initially planned for 3.5 years, and extended with another 4 years, thanks to
the great success from its photometry. However, it lost a second reaction wheel on May 11, 2013,
which abruptly stopped its operation. Fortunately, a new operating mode named K2 (Kepler’s
Second Light) has been approved by NASA, using the two reaction wheels left on the telescope
with the help of light pressure to point the field of view (Howell et al. 2014).

Kepler mounts a Schmidt camera with a 0.95-meter lens feeding a 1.4-meter primary mirror.
Its focal plane is covered by an array of 42 CCDs each having 2200×1024 pixels, 95 megapixels
in total. The photometer use one broad bandpass, from 420 to 900 nm, containing most of the
optical spectrum. For a Sun-like star with mV = 12 (magnitude in V band), the photometric
precision is 20 ppm with a 6.5-hour integration for Kepler, aiming at stars with brightness in
the range of 9–16th magnitude. The spacecraft orbits the Sun in order to avoid the effects from
Earth such as Earth occultation, stray light and gravitational perturbations.

Kepler continuously pointed its field of view (FOV) fixed at a region in the Cygnus constel-
lation, centered on R.A.= 19h 22m40s and Dec.= +44◦ 30′ 00′′, except when the satellite down-
linked data to the ground-based control center. Figure 3.1 shows the Kepler FOV of each of the
21 CCD modules (each with two 2200× 1024 pixel CCDs) 1. Each module is 5 square degrees,
105 square degrees in total. In this region, the number of stars is large and the effects from the
Sun can be avoided, thus it allowed Kepler to continuously monitor more than 100 000 stars
simultaneously. Furthermore, this region can also be well studied with ground-based follow-up
observations. Note that about half of the 15 stars in the FOV brighter than mV = 6 fall in the
aligned gaps between the CCD modules.

There are two exposure modes for the Kepler photometric data, the short-cadence (SC)
mode, with exposure time of ∼ 1 minute, and the long-cadence (LC) mode, with exposure time
of ∼ 30 minutes. The data from the Kepler spacecraft are archived and publicly accessible in the
Multimission Archive at STScI (MAST) 2. These data are divided by quarters (Qn, or seasons)
because the spacecraft needed to roll on its pointing axis four times every Kepler year (372.5
days) to maintain its orientation. During the Kepler lifetime, it almost completed 17 quarters

1. http ://kepler.nasa.gov/Science/about/targetFieldOfView/
2. http ://archive.stsci.edu/kepler/
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Figure 3.1 – The Kepler FOV consists of 21 CCD modules with each module of 5 square
degrees, 105 square degrees in total. Credit : NASA/Kepler Mission.

of observations, and each quarter has a time length of about 90 days. The SC mode data are
also divided by sub-quarters (or month) as Qn.m where the subscript n ∈ (1, 2, ..., 17) and m ∈
(1, 2, 3). The Kepler Input Catalog (KIC) is the premary source of objects observed by the
spacecraft, containing photometric and physical information for the stars (Brown et al. 2011).
The "Kepler magnitude" (Kp) is used for the brightness of KIC stars through the wide Kepler
bandpass, which can be computed through the transformation of SDSS g and r band if these
values are available (e.g., Brown et al. 2011).
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Table 3.1 – Fundemetal informations of the Kepler compact pulsators.

KIC # Name R.A. (J2000) Dec. (J2000) Kp Quarter Type♣
02697388 J19091+3756 19h 09m7.14s +37 56′ 14.36′′ 15.391 Q2.3, Q5.1–Q17.2 V 1093 Her
02991276 J19271+3810 19h 27m9.14s +38 10′ 26.40′′ 17.423 Q2.1, Q6.1–Q11.3, Q13.1–Q17.2 V 361 Hya
02991403 J19272+3808 19h 27m15.88s +38 08′ 08.24′′ 17.136 Q1, Q5.1–Q17.2 V 1093 Her
03527751 2M1903+3836 19h 03m37.02s +38 36′ 12.64′′ 14.859 Q2.3, Q5.1–Q17.2 V 1093 Her
05807616 KPD 1943+4058 19h 45m25.48s +41 05′ 33.85′′ 15.019 Q2.3, Q5.1–Q17.2 V 1093 Her
07664467 J18561+4319 18h 56m07.07s +43 19′ 19.26′′ 16.446 Q2.3, Q5.1–Q11.3, Q13.1–Q17.2 V 1093 Her
07668647 J19051+4318 19h 05m6.38s +43 18′ 31.1′′ 15.402 Q3.1, Q6.1–Q17.2 V 1093 Her
08302197 J19310+4413 19h 31m3.37s +44 13′ 26.12′′ 16.432 Q3.3, Q5.1–Q11.3, Q13.1–Q17.2 V 1093 Her
09472174 2M1938+4603 19h 38m32.61s +46 03′ 59.15′′ 12.264 Q0, Q5.1–Q17.2 sdBV+dM?

10001893 2M1909+4659 19h 09m33.41s +46 59′ 04.16′′ 15.846 Q3.2, Q6.1–Q17.2 V 1093 Her
10139564 J19249+4707 19h 24m58.2s +47 07′ 54′′ 16.126 Q2.1, Q5.1–Q17.2 V 361 Hya
10553698 2M1953+4743 19h 53m8.39s +47 43′ 00.22′′ 15.134 Q4.1, Q8.1–Q10.3, Q12.1–Q14.3, V 1093 Her

Q16.1–Q17.2
10670103 2M1934+4758 19h 34m39.94s +47 58′ 11.7′′ 16.526 Q2.3, Q5.1–Q17.2 V 1093 Her
11179657 J19023+4850 19h 02m21.95s +48 50′ 52.59′′ 17.065 Q2.3, Q5.1–Q7.3, Q9.1–Q11.3, V 1093 Her

Q13.1–Q15.3, Q17.1–17.2
11558725 J19265+4930 19h 26m34.11s +49 30′ 29.68′′ 14.947 Q3.3, Q6.1–Q17.2 V 1093 Her
02437937 B5(NGC 6791) 19h 21m02.46s +37 47′ 09.2′′ 13.94 Q11.1 V 1093 Her
02438324 B4(NGC 6791) 19h 21m12.91s +37 45′ 51.3′′ 18.267 Q6.1–Q17.2 V 1093 Her
02569576 B3(NGC 6791) 19h 20m45.19s +37 49′ 31.54′′ 18.076 Q11.3, Q14.1–Q17.2 V 1093 Her
01718290 J19230+3715 19h 23m00.68s +37 15′ 04.48′′ 15.486 †Q1–Q17 BHB
04552982 WD J1916+3938 19h 16m43.83s +39 38′ 49.69′′ 17.853 Q11.1–Q17.2 DAV
04357037 J19171+3927 19h 17m19.19s +39 27′ 18.82′′ 17.979 Q16.2 DAV
07594781 J19083+4316 19h 08m35.88s +43 16′ 42.4′′ 18.21 Q16.3 DAV
08626021 WD J1929+4447 19h 29m04.6s +44 47′ 08′′ 18.46 Q7.2, Q10.1–Q17.2 DBV
10132702 J19134+4709 19h 13m40.89s +47 09′ 31.3′′ 18.759 Q15.1–15.3 DAV
11911480 J19202+5017 19h 20m24.90s +50 17′ 22.4′′ 17.631 Q12.1–12.3, Q16.1–Q17.2 DAV

Note. (♣)Dominating frequencies. (?)Eclipsing binary star with a long-period pulsating sdB star. (†)Only long-cadence data available.
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3.2 Kepler compact pulsators
During the survey phase for pulsating stars, a total of 113 compact pulsator candidates were

monitored by Kepler in order to search for oscillations in those stars (Østensen et al. 2010b,
2011b). From the survey results, one sdB candidate shows short-period, V 361 Hya type pulsa-
tions, and a total of fourteen sdB stars show long-period, V 1093 Her type oscillations, including
an eclipsing binary (sdB+dM) with the hot component showing rich pulsations (Østensen et al.
2010a). Three more long-period sdB pulsators have been identified in the open cluster NGC 6791
(Reed et al. 2012; Pablo et al. 2011). Short-period oscillations haven been detected in another
sdB star which was formerly identified as a short-period transient (Østensen et al. 2010b). The-
refore the total number of sdB pulsators reaches up to 18, at last. Quite notably, there was
no pulsating white dwarfs among these 113 compact candidates from the first survey phase of
Kepler. The first pulsating WD star, a DBV star, was discovered about two years after Kepler
launch (Østensen et al. 2011a). Additionally, a total of five DAV stars have been monitored by
Kepler afterward (see, Greiss et al. 2016, and references therein). Table 3.1 gives the full list
of compact pulsating stars observed by Kepler, including one blue horizontal branch (BHB)
star. The list provides the basic information about these compact pulsators : their KIC number,
name, right ascension (R.A.) and declination (Dec.) at the epoch of 2000, brightness in Kepler
band (Kp), observational runs (in quarter), and their variable type.

3.2.1 Eighteen sdB pulsating stars

Most of the 18 sdB pulsators have been continuously monitored by Kepler for more than two
years, except KIC 02437937 (one month) and KIC 02569576 (12 months). 3 In this section we
provide some the details for each star, except the three sdB stars in the open cluster NGC 6791.

KIC 02697388, or SDSS J190907.14+375614.2, with R.A. (J2000) = 19h 09m7.14s and
Dec. (J2000) = +37 56′ 14.36′′, has a mean brightness Kp = 15.391. It was found as a V1093 Her
star by the Kepler survey phase of Q2.3 (Østensen et al. 2010b), with near 40 significant fre-
quencies. The properties from spectroscopy suggest that KIC 02697388 is a cool sdB star, with
effective temperature Teff = 23 900 ± 300K and low gravity log g = 5.32 ± 0.03 dex. It is one
of the two sdB stars investigated with seismic models (Charpinet et al. 2011b). The optimal
seismic solutions for KIC 02697388 are very similar to the atmospheric parameters derived by
non-LTE models. Baran (2012) detected 148 pulsations with the extension of Q5.1–Q7.3 pho-
tometry for this star, among the pulsations a rotation period of about 45 days was obtained.
KIC 02697388 has been consecutively observed by Kepler since Q5.1, about 39 months in total
(including the survey phase Q2.3).

KIC 02991276, or SDSS J192709.14+381026.3, with R.A. (J2000) = 19h 27m9.14s and
Dec. (J2000) = +38 10′ 26.40′′, has a mean brightness Kp = 17.423, effective temperature Teff =
33 900± 200 K and surface gravity log g = 5.82± 0.04 dex. Only one single pulsation mode at
122 s was detected in KIC 02991276 over one month (Q2.1) data (Østensen et al. 2010b). It has
been further monitored by Kepler throughout Q6.1–Q11.3 and Q13.1–Q17.2, about 33 months
in total. The entire data for this target was exploited by Østensen et al. (2014a) whose results
show that two pulsation modes with the largest amplitudes display abrupt amplitude variations
on a timescale of about one month, increasing up to 1.4% and sometimes decreasing completely
in the noise.

KIC 02991403, or SDSS J192715.88+380808.2, with R.A. (J2000)=19h 27m15.88s and
Dec. (J2000) = +38 08′ 08.24′′, has a mean brightness Kp = 17.136. The spectroscopic para-

3. Here we only denote the observations of short-cadence mode for the compact pulsators. The Nyquist
frequency for the long-cadence (30 min) mode data is about 280 µHz which is lower than most pulsations detected
in compact pulsators, particularly in the V 361 Hya star and white dwarf pulsators.
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meters for this stars are Teff = 27 300 ± 200 K and log g = 5.43 ± 0.03 dex (Østensen et al.
2010b). The Kepler Q1 data for this star show 16 significant (g-mode) peaks and two peaks
with about 10 h period which is related to the irradiation effect generated by the hot sdB star
heating up the cool M-dwarf (Kawaler et al. 2010). With the extended 12-month data, Pablo
et al. (2012) found evidence of non-synchronization in KIC 02991403 whose rotation period is
10.3 d, much slower than the orbiting period of about 0.4 d. This star has been continuously
observed by Kepler from Q5.1 to Q17.2, 39 months in total.

KIC 03527751, or 2MASS J19033701+3836126, with R.A. (J2000)=19h 03m37.02s and
Dec. (J2000) = +38 36′ 12.64′′, has a mean brightness Kp = 14.859. This star was regarded as
a hybrid sdB pulsators with detection of 41 g- and 3 p-mode pulsations from the one month
Kepler survey data (Q2.3 ; Reed et al. 2010). The atmospheric parameters determined by Foster
et al. (2015) are : Teff = 27 818± 163 K and log g = 5.35± 0.03 dex. The full data set (∼ 1148
days) was studied and 251 periodicities were detected by Foster et al. (2015). From the detected
multiplets, KIC 03527751 implies a differential radial rotation with 15.3 days at surface and
42.6 days in the deep interior.

KIC 05807616, or KPD 1943+4058, with R.A. (J2000)=19h 45m25.48s and Dec. (J2000)
= +41 05′ 33.85′′, has a mean brightness Kp = 15.019. It was found as an V1093 Her star
from the one month survey data (Q2.3) and 18 observed periodicities were identified with
theoretical model (Van Grootel et al. 2010a). The seismic solutions provide effective temperature
Teff = 28 050± 470 K and log g = 5.52± 0.03 dex which are similar to that from spectroscopy,
Teff = 27 730 ± 270 K and log g = 5.552 ± 0.04. Interestingly, with the Q5.1–Q8.3 data, two
small Earth-size planets are revealed from two low frequencies (Charpinet et al. 2011a). The
entire data set, Q5.1–Q17.2, was exploited very recently by Krzesinski (2015) who suggested a
precise rotation period of 44.9± 1.1 days.

KIC 07664467, or 2MASS J18560707+4319192, with R.A. (J2000)=18h 56m07.07s and
Dec. (J2000) = +43 19′ 19.26′′, has a mean brightness Kp = 16.446. Baran et al. (2016) recently
derived the updated atmospheric parameters for this star, with Teff = 27 440 ± 120 K and
log g = 5.382±0.019 dex by non-LTE models. From the survey (Q2.3) data, a total of 11 g-mode
frequencies were detected in KIC 07664467 (Østensen et al. 2010b). It has been observed with
the spacecraft during Q5.1–Q11.3 and Q13.1–17.2. Baran et al. (2016) exploited the entire data
and found that it was in a binary with orbital period of ∼ 1.6 d. They also found a rotation
period of 35.1 ± 0.6 d from the well resolved multiplets, which suggests that the rotation in
KIC 07664467 is not synchronous with the orbit.

KIC 07668647, or 2MASS J19050638+4318310, with R.A. (J2000)=19h 05m06.39s and
Dec. (J2000) = +43 18′ 31.1′′, has a mean brightness Kp = 15.402. Spectroscopic observations
for this star provide : (1) effective temperature Teff = 27 700±300 K and log g = 5.50±0.03 dex
by LTE method ; and (2) an orbital period of 14.1742± 0.0042 d with a probably unseen white
dwarf companion (Telting et al. 2014). The long-period g-mode oscillations in KIC 07668647
were discovered by Østensen et al. (2011b) with the survey (Q3.1) data. It has been continuously
observed by Kepler from Q6.1–Q17.2, about 2.88 years in total. The entire photometric data
confirmed the binarity with a orbital period 14.1666± 0.0019 d (Telting et al. 2014). They also
derived a rotational period of about 47 d from the splitting multiplets.

KIC 08302197, or 2MASS J19310336+4413261, with R.A. (J2000)=19h 31m03.37s and
Dec. (J2000) = +44 13′ 26.12′′, has a mean brightness Kp = 16.432. Atmospheric parameters
form spectroscopy provide effective temperature Teff = 27 450 ± 200 K and surface gravity
log g = 5.438 ± 0.033 dex for this star (Baran et al. 2015a). It was identified as a V 1093 Her
star from the second half survey (Q3.3) data by Østensen et al. (2011b). KIC 08302197 has
been monitored by Kepler from Q5.1 to Q17.2, without data in Q12. The whole data set was
investigated recently by Baran et al. (2015a) to search for rotation and period distribution of
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pulsations. However, KIC 08302197 does not show any multiplet that may be due to either a
near pole on orientation of the pulsating axis or an extremely low rotation period (probably
longer than 1 000 d).

KIC 09472174, or 2MASS J19383260+4603591, with R.A. (J2000)=19h 38m32.61s and
Dec. (J2000) = +46 03′ 59.15′′, has a mean brightness Kp = 12.264. It was recognized as the
second eclipsing binary sdB+dM system (orbital period of 0.126 d) with the hot component
showing oscillations from the first month (Q0) data (Østensen et al. 2010b). Spectroscopic
determination of the sdB component provides Teff = 29 564±106 K and log g = 5.425±0.009 dex
with the LTE models (Østensen et al. 2010b). This star has been continuously monitored by
Kepler from Q5.1 to Q17.2, about 39 months in total. The entire data were studied by Baran
et al. (2015b) who found a strong signature of the presence of a third body which is probably
a Jupiter-mass planet with a period of 416 days at a 0.92 AU distance. They did not uncover
any splitting multiplets in the Fourier spectrum, due to the complicated frequency structures
or to a very long rotation period.

KIC 10001893, or 2MASS J19093340+4659041, with R.A. (J2000)=19h 09m33.41s and
Dec. (J2000) = +46 59′ 04.16′′, has a mean brightness Kp = 15.846. The best estimation of
atmospheric properties of KIC 10001893 is Teff = 27 500 ± 500 K and log g = 5.35 ± 0.05 dex
(Silvotti et al. 2014a). The long period g-mode pulsations were found in this star from the
Kepler survey (Q3.2) data (Østensen et al. 2011b). It has been continuously observed from Q6.1
to Q17.2, when Kepler lost its second reaction wheel. The entire data were exploited thoroughly
by Silvotti et al. (2014a) who found probably three small planets orbiting the sdB star, indicated
by the low frequency signals in the Fourier spectrum, which is similar to KIC 05807616. There
is no multiplet detected in KIC 10001893 that may be due to a very low inclination or to an
extremely long rotation period.

KIC 10139564, or J19245816+4707536, with R.A. (J2000)=19h 24m58.16s and Dec. (J2000)
= +47 07′ 53.6′′, has a mean brightness Kp = 16.126. It was discovered as a short-period
V361 Hya star from one month Q2.1 data. One low-amplitude g-mode oscillation was also
detected in its Fourier spectrum. The atmospheric parameters derived by Baran et al. (2012)
are Teff = 31 859 ± 126 K and log g = 5.673 ± 0.026 dex, and did not find any radial-velocity
variations, indicating KIC 10139564 is an isolate star. With extended observations of Kepler,
a total of 57 periodicities were detected by Baran et al. (2012) with the 15 month photometric
data (Q5.1–Q9.3), including many of multiplets. A rotation period of 25.6 ± 1.8 d was found
in KIC 10139564 from the common spacing both in g- and p-mode multiplets. This target has
been continuously observed from Q5.1 to Q17.2, about 39 months in total.

KIC 10553698, or 2MASS J19530839+4743002, with R.A. (J2000)=19h 53m08.39s and
Dec. (J2000) = +47 43′ 00.22′′, has a mean brightness Kp = 15.134. It was identified as a g-
mode pulsator in the survey phase (Q4.1) by Østensen et al. (2011b), and further monitored
by Kepler throughout Q8.1–Q17.2, but without data during Q11 and Q15 when the target
fell on CCD Module #3 which was dead in January 2010. Spectroscopy demonstrates that
KIC 10553698 is a sdB+WD binary with orbital period of 3.6 d, and the best fit atmospheric
parameters are Teff = 27 750±130 K and log g = 5.452±0.020 dex (Østensen et al. 2014b). They
confirmed the binarity and found a 3.387 ± 0.014 d period with the entire photometric data.
From the detected multiplets, a rotation with a 41 ± 3 d period was determined by Østensen
et al. (2014b).

KIC 10670103, or 2MASS J19343993+4758117, with R.A. (J2000)=19h 34m39.94s and
Dec. (J2000) = +47 58′ 11.73′′, has a mean brightness Kp = 16.526. A total of 28 g-mode pul-
sations were found in KIC 10670103 with the survey (Q2.3) data (Østensen et al. 2010b). Reed
et al. (2014) determined atmospheric parameters Teff = 21 485±540 K and log g = 5.14±0.05 dex
for KIC 10670103. With the 2.75 years Kepler (Q5.1–Q15.3) data, a very slow rotation period of
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88±8 d was derived from the multiplet modes (Reed et al. 2014). This star has been continuously
observed until Kepler lost the second reaction wheel.

KIC 11179657, or USNO-A2.0 1350-10140904, with R.A. (J2000)=19h 02m21.95s and
Dec. (J2000) = +48 50′ 52.59′′, has a mean brightness Kp = 17.065. Spectroscopic determination
for this star provides effective temperature Teff = 26 000 ± 800 K and log g = 5.14 ± 0.13 dex.
The one month (Q2.3) data of KIC 11179657 show a similar result to KIC 02991403, ∼ 10 h
luminosity variations in light curves (Kawaler et al. 2010). Non-synchronization was also disco-
vered in KIC 11179657 by Pablo et al. (2012) with 9 month extended Kepler data (Q5.1–Q7.3),
7.4 d rotation and 0.4 d orbit. It has been observed by Kepler with several segments, Q2.3,
Q5.1–Q7.3, Q9.1–Q11.3, Q13.1–Q15.3 and Q17.1–17.2, 30 months in total.

KIC 11558725, or 2MASS J19263411+4930296, with R.A. (J2000)=19h 26m34.11s and
Dec. (J2000) = +49 30′ 29.68′′, has a mean brightness Kp = 14.947. This star was classified as
V 1093 Her star from the one month survey Kepler (Q3.3) data (Østensen et al. 2011b). Its
atmospheric parameters are effective temperature Teff = 27 910 ± 210 K and log g = 5.41 ±
0.15 dex (Telting et al. 2012). These spectroscopic data suggest that KIC 11558725 is a binary
(sdB+WD) with period of 10.05 d and confirmed by 15 month Kepler data, Q6.1–Q10.3 (Telting
et al. 2012). They also derived a probable rotation period of ∼ 45 days for KIC 11558725. This
target has been continuously observed by Kepler since Q6.1 until the loss of its second reaction
wheel.

Three pulsating sdB stars have been detected in the open cluster NGC 6791 (Pablo et al.
2011; Reed et al. 2012) . They are KIC 02437937 (B5), KIC 02438324 (B4) and KIC 02569576
(B3) which are all long-period V 1093 Her type pulsators. B5, with R.A. (J2000)=19h 21m02.46s
and Dec. (J2000) = +37 47′ 09.2′′, has a mean brightness Kp = 13.94 and was just observed
for one month by Kepler, Q11.1. B4, with R.A. (J2000)=19h 21m12.91s and Dec. (J2000) =
+37 45′ 51.3′′, has a mean brightness Kp = 18.267, which was identified as a binary, while, no
pulsations has been detected in B4 until the realization of Kepler photometry (Pablo et al.
2011). With the six month Kepler data (Q6.1–Q7.3), Pablo et al. (2011) found an orbital period
of 0.3984944(35) d and a rotational period of ∼ 9.63 d, which means that tidal synchronization
has not been reached yet in this system. B4 has been consecutively observed by Kepler since
Q6.1 until Q17.2, 39 month in total. B3, with R.A. (J2000)=19h 20m45.19s and Dec. (J2000) =
+37 49′ 31.5′′, has a mean brightness Kp = 18.076. It was observed by Kepler during 12 months,
Q11.3, Q14.1–Q17.2. Reed et al. (2012) derived the spectroscopic properties for the three stars :
B3 with Teff = 24 250± 459 K and log g = 5.17± 0.05 dex, B4 with Teff = 24 786± 665 K and
log g = 5.30± 0.09 dex, and B5 with Teff = 23 844± 676 K and log g = 5.31± 0.09 dex

3.2.2 Six white dwarf pulsators

A total of six white dwarf pulsating stars have been observed by Kepler, including one DBV
and five DAV stars. Only two of them have the data longer than one year, KIC 04552982 (20
months) and KIC 08626021 (∼ 2 years).

KIC 04552982, or WD J1916+3938, with R.A. (J2000)=19h 16m43.83s and Dec. (J2000)
= +39 38′ 49.69′′, has a mean brightness Kp = 17.853. KIC 04552982 was first identified as a
ZZ Ceti from ground-based photometry and the follow-up spectroscopy confirmed that it was
exactly in the ZZ Ceti instability strip, with Teff = 11 129± 115 K and log g = 8.34± 0.06 dex
(Hermes et al. 2011). With the one month (Q11.1) data, seven pulsations between 800 and
1450 s were detected in KIC 04552982 (Hermes et al. 2011). It was continuously observed by
Kepler from Q11.1 to Q17.2, 20 months in total. Bell et al. (2015) investigated the entire data
set and suggests that this star probably has a rotation period of 17.47±0.04 hr. They also found
outbursts in the Kepler light curves of KIC 04552982, with significant brightness increases on a
timescale of hours to a day.
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Table 3.2 – Atmospheric parameters of the Kepler compact pulsators†.

KIC # log g Teff KIC # log g Teff
(dex) (1 000 K) (dex) (1 000 K)

02697388 5.32(3) 23.9(3) 11179657 5.14(13) 26.0(8)
02991276 5.82(4) 33.9(2) 11558725 5.41(15) 27.91(21)
02991403 5.43(3) 27.3(2) 02437937 5.31(9) 23.844(676)
03527751 5.35(3) 27.818(163) 02438324 5.30(9) 24.786(665)
?05807616 5.52(3) 28.05(47) 02569576 5.17(5) 24.250(459)
07664467 5.382(19) 27.44(12) 04552982 8.34(6) 11.129(115)
07668647 5.50(3) 27.7(3) 08626021 7.91(7) 24.90(75)
08302197 5.438(33) 27.45(20) 11911480 7.94(10) 12.16(25)
09472174 5.425(9) 29.564(106) 04357037 8.11(4) 10.95(13)
10001893 5.35(5) 27.5(5) 07594781 8.11(4) 11.73(14)
10139564 5.673(26) 31.859(126) 10132702 8.12(4) 11.94(38)
10553698 5.452(20) 27.75(13) a01718290 4.72(4) 22.100(344)
10670103 5.14(5) 21.485(540)
Note. (?)Seismic solutions. (†)See ref. in the context. (a)Østensen et al. (2012).

KIC 08626021, or WD J1929+4447, with R.A. (J2000)=19h 26m34.11s and Dec. (J2000) =
+49 30′ 29.68′′, has a mean brightness Kp = 18.46. The best fit of the spectrum of KIC 08626021
determines the parameters with Teff = 24 900 ± 750 K and log g = 7.91 ± 0.07 dex (Østensen
et al. 2011a). It is the first white dwarf pulsator discovered from the Kepler photometry, based
on one month (Q7.2) data (Østensen et al. 2011a). This star has been continuously observed by
Kepler from Q10.1–Q17.2, nearly two years in total. As a unique object, KIC 08626021 attracted
much attention by many groups (e.g., Bischoff-Kim et al. 2014). Two independent seismic models
obtained two different masses for the target, a mass about 0.55M� in Bischoff-Kim et al. (2014)
and a stellar mass in the range 0.6 .M . 0.87M� in Córsico et al. (2012). However, both the
two models suggest a hotter temperature determined from models than that from spectroscopy,
∼ 27 300 and ∼ 29 550 K, comparing to the spectroscopic one Teff = 24 900 ± 750 K. With
the nearly two year data, Bischoff-Kim et al. (2014) found a rotation period of 1.8 ± 0.4 days.
They also suggest that KIC 08626021 might be a very good candidate for measuring the rate
of period change of pulsations.

KIC 11911480, or KIS J19202+5017, with R.A. (J2000)=19h 20m24.90s and Dec. (J2000)
= +50 17′ 22.4′′, has a mean brightness Kp = 17.631. The atmospheric parameters determined
from the best fit of spectrum of KIC 11911480 are : Teff = 12 160 ± 250 K and log g = 7.94 ±
0.10 dex (Greiss et al. 2014). It was the second ZZ Ceti star in the Kepler field which was found
by (Greiss et al. 2014) with the two quarters SC-mode data Q12 and Q16. They also detected a
rotation period of 3.5± 0.5 days from the amplitude power spectra. An extended observations
of about 50 days was conducted by Kepler on KIC 11911480, Q17.1 and 17.2.

Greiss et al. (2016) recently reported the discovery of three new ZZ Ceti stars in the Kepler
FOV, which are KIC 04357037, KIC 07594781 and KIC 10132702. KIC 04357037, or SDSS
J191719.16+392718.8, with R.A. (J2000)=19h 17m19.167s and Dec. (J2000) = +39 27′ 18.82′′,
has a mean brightness Kp = 17.979. It was only observed by Kepler for one month Q16.2. The
atmospheric parameters for KIC 04357037 are : Teff = 10 950±130 K and log g = 8.11±0.04 dex
(Greiss et al. 2016). KIC 07594781, or KIS J1908+4316, with R.A. (J2000)=19h 08m35.91s
and Dec. (J2000) = +43 16′ 42.3′′, has a mean brightness Kp = 18.21. It was only observed
by Kepler for one month Q16.3. Greiss et al. (2016) determined the atmospheric parameters
for KIC 07594781, that are effective temperature Teff = 11 730 ± 140 K and surface gravity
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log g = 8.11±0.04 dex. KIC 10132702, or KIS J1913+4709, with R.A. (J2000)=19h 13m40.89s
and Dec. (J2000) = +47 09′ 31.3′′, has a mean brightness Kp = 18.759. It was only observed
by Kepler for three month Q15.1–15.3. The best fit of spectroscopy of KIC 10132702 obtained
atmospheric parameters with Teff = 11 940 ± 130 K and log g = 8.12 ± 0.04 dex (Greiss et al.
2016).

Table 3.2 lists the full set of atmospheric parameters of 24 compact pulsators from Kepler
photometry, including two short-period V361 Hya, 16 long-period V1093 Her, one DB and 5 DA
pulsating white dwarf stars, and additionally one BHB star. All the parameters are provided by
the latest spectroscopic determinations, except KIC 05807616 whose are provided by the seismic
solutions. In the next section, we describe the methods and tools to exploit these photometric
data, aiming at studying the mode behaviors in these stars.

3.3 Analysis of photometric data
Periodic functions, mathematically, can be written as a sum of infinite simple sinusoidal

waves, which is known as Fourier transform (FT). The definition of FT for an integrable function
f(t) is :

F (ω) =
∫ ∞
−∞

f(t)e−2πiωtdt, (3.1)

where transform variable ω is the frequency, and function F is the inverse transform. However,
technically, time-series photometric data cannot be obtained for an infinite time and only at
a discrete time. The Discrete Fourier Transform (DFT) developed by Deeming (1975) is a
straightforward method to calculate the periodogram of unequally spaced photometric data,
which is widely used in asteroseismology where the stellar oscillations cause periodic luminosity
variations in the light curves of pulsating stars. The DFT FN (ω) is defined as,

FN (ωj) =
N∑
k=1

Xk(t)ei2πωjtk , (3.2)

where Xk(t) in asteroseismology represents the magnitudes (or intensities) measured at the
times tk. With slight modification of periodogram as represented by equation (3.2), Scargle
(1982) report that the modified periodogram is equivalent to the least-squares fitting of sine
waves to the data. This new periodogram, now known as Lomb-Scargle (LS 4) periodogram, is
written as,

PX(ω) = 1
2
{ [
∑
kXk cosω(tk − τ)]2∑
k cos2 ω(tk − τ) + [

∑
kXk sinω(tk − τ)]2∑
k sin2 ω(tk − τ)

}
, (3.3)

where the time delay term τ is defined by

tan(2πτ) =
∑
k sin 2ωtk∑
k cos 2ωtk

. (3.4)

A dedicated software, FELIX 5, was used to extract frequency content of the light curves of
Kepler compact pulsators. The code FELIX is based on the standard prewhitening and nonlinear
least squares fitting methods as indicated by equation (3.2) and (3.3). FELIX greatly ease
and accelerate the application of this procedure for the spaceborne time-series photometry, see
examples of the application for this software on CoRoT and Kepler data (Charpinet et al. 2010,

4. Named after Lomb, N. R. and Scargle, J. F., for their independent contributions of developing this method,
see the references of Lomb (1976) and Scargle (1982).

5. Frequency Extraction for LIghtcurve eXploitation which was developed by Stéphane Charpinet.
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2011b). However, before proceeding with the extraction of the frequencies, statistical tests should
be done first, since the data used here have a particularly large number of measurements and
long time baseline than data from ground-based photometry. The tests are mainly focused on :
(1) the criterion of frequency detection threshold for the long consecutive Kepler photometric
data, and (2) the real errors in amplitude, frequency and phase when one extracts frequencies
from the light curves of these compact pulsators.

3.3.1 Defining a secure detection threshold

The ground-based observations of pulsating stars typically span over on a few days to weeks
in one observational season, consisting of data sets with ∼ 104 measurements (e.g., Vauclair et al.
2002). With such data sets, a prevailing rule of thumb was to consider the 4σ limit (4 times
the average local noise in the power spectrum or Fourier transform) as the detection threshold
above which a signal could safely be considered as real (see, e.g., Breger et al. 1993). However,
with observations from space, in particular with the Kepler telescope, it became increasingly
clear that this 4σ rule underestimates the risks of false detections resulting from statistical
noise fluctuations. The reason lies probably in the very large number of data points collected
during months (or years) of Kepler observations with a sampling time of 58.85 s in SC mode.
To be specific, more than half a million frequency bins are necessary to represent the Lomb-
Scargle Periodogram (LSP) of a Kepler SC light curve of about 2-year length. Some of the
compact targets are indeed monitored by Kepler with a observational duration much longer
than two years, e.g., KIC 10139564, 38 months, which has near a million frequency bins in its
LSP. Therefore, for the Kepler compact stars, noise fluctuations are very likely to occur at least
one time (and more) above a standard 4σ threshold in their LSPs. For this reason, the trend
has been to increase the threshold to higher S/N values in somewhat arbitrary ways to avoid
false detections for the Kepler photometry (e.g., the acceptable limit of 5σ was assumed by
Bischoff-Kim et al. 2014).

Instead of adopting an arbitrary value, we quantitatively estimate what should be an ac-
ceptable detection threshold with the following procedure. Adopting the same time sampling as
the observations of Kepler short-cadence, we randomly build 10 000 artificial light curves just
containing white gaussian noise (a random normal deviate is calculated at each time point) for a
representative light curves with a time length of about two years (specifically for KIC 08626021,
684 d). We then calculate the LS Periodograms of these artificial light curves, and the median
values of the noise in each resulting LSPs. Here, we define xσ as x times the median noise level.
For any given S/N threshold, we then find the number of times that at least n peaks in the LSP
(which by definition are just noise peaks) happen to be above the chosen limit. Then, dividing
by the number of tests (10 000 here), we obtain the false alarm probability Pn(x) that at least
n peaks above a given S/N threshold of xσ is due to noise fluctuations.

The results of this procedure for the probabilities P1 to P5 as functions of the S/N threshold
are shown in Figure 3.2 where the most interesting case is P1 (the probability that at least 1
peak due to noise is above the threshold). We clearly see that at the widely used 4σ limit, the
probability to have at least one false detection P1 is close to 1 (and ∼ 0.5 to have at least 5
false detections according to P5), confirming that the 4σ threshold is particularly unsafe in the
Kepler case. Nevertheless, with increasing S/N, P1 eventually decreases down to reach 0.1 (10%
chance) at S/N ∼ 4.58, 0.01 (1% chance) at S/N ∼ 4.92 (approximately the detection threshold
chosen by Bischoff-Kim et al. 2014), and less than 1 chance out of 10 000 at S/N = 5.56 that is
the limit above which not a single peak due to noise has been found among the 10 000 random
artificial light curves.

As the 24 compact pulsators have different data length, the same test was also performed
again on the white noise light curve, but this time with a time baseline of three years (repre-
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Figure 3.2 – False alarm probability Pn of having at least n peaks caused by noise above a
given signal-to-noise ratio (S/N) threshold in the Lomb-Scargle periodogram of a ∼ 2-year light
curve. In each of the five panels, the three vertical lines indicate, from left to right, color in
red, blue and green, the S/N value corresponding to Pn = 0.1, 0.01, and 0.0001, respectively.
The limit P1 = 0.0001, meaning that the risk of having a false detection above that threshold
is reduced to less than 1 event over 10 000, defines our adopted criterion which corresponds to
the limit of 5.6σ.

sentative of KIC 10139564 monitored during ∼ 1150 d). The results are very similar to that of
Figure 3.2, although the number of measurements has almost doubled. We have not done the
same tests for light curve of a few months only, since they are not our priority targets in this
thesis (see the details in Section 3.4). The normal 4σ limit is still valid for those stars monitored
in a few months. Based on these calculations, we adopt the conservative 5.6σ threshold as the
new detection criterion.
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3.3.2 Testing error estimates from our prewhitening procedure

In this section, we give a brief discussion on the quantitative evaluations of the robustness
of the measured uncertainties in frequency and amplitude that are provided by the standard
prewhithening and nonlinear least squares fitting techniques. Montgomery & Odonoghue (1999)
proposed a formalism for error estimation on frequency, amplitude and phase for least squares
fitting to time series photometric data, which is widely used nowadays. However, the errors,
particularly in frequency, calculated with this formalism may sometimes be underestimated for
ground-based data (Montgomery & Odonoghue 1999). Since error measurements are fundamen-
tal for our analysis, this propels us to test the difference between the measured errors and real
errors for the Kepler photometry. We have performed two types of Monte Carlo experiments :
the first one is injection of 1 000 peaks with constant amplitude and another one with random
amplitudes in artificial light curves including white gaussian noise.

In the tests, we first construct an artificial light curve with white gaussian noise, spanning
over 200 days with a sampling of 58.85 s (exposure time of the Kepler short-cadence mode),
which is chosen to be comparable to Kepler observations of about seven-month duration. This
200-d time length compromise between time resolution, frequency resolution and S/N for the
sliding LS periodograms (see, e.g., the case of KIC 08626021 in Zong et al. 2016, and next
chapter). Then we inject 1 000 sinusoidal signals, with constant amplitude (S/N ∼ 160), but
with increasing frequency separated by ∼ 8.2µHz from one another (in order to reduce the
number of harmonics and linear combinations, a few tenth µHz of random frequency shift is
performed around the 8.2µHz seeding step), into the artificial light curve. We then perform
automatically the prewhitening process of the artificial light curves with the software FELIX
to obtain the measured frequencies and their amplitudes. Now we have both the injected values
and the prewhitened values of the 1 000 injected signals. The normalized deviations in amplitude
and frequency are defined as

∆A = Apre −Ain
σA

, (3.5a)

∆f = fpre − fin
σf

, (3.5b)

where σ are the measured errors, the subscript represent the prewhitened value and the injected
one, respectively. A window around each frequency is chosen and the median value of the am-
plitudes in that frequency range defines σA. The formalism given in Montgomery & Odonoghue
(1999) is then used to compute the other errors, in particular σf . A variant of this test is also
conducted by again injecting 1000 sinusoidal signals, but this time with random amplitudes (not
a constant one) in the range of S/N ∈ (5, 60). This second test allow us to check the reliability
of error estimates as a function of amplitude since σf increases when S/N decreases.

Figure 3.3 shows the results of test for the constant amplitude case. We found that the
2-D distribution of frequency and amplitude deviations are well confined in the areas of 3σ.
The separated 1-D frequency and amplitude deviations are also consistent with the Normal
Distribution, N ∼ (0, 1), as indicated by the red solid curves in Fig. 3.3 where only one or
two data points are outside the [−3σ,+3σ] range (the normal distribution, N ∼ (0, 1), gives
99.73% within the [−3σ,+3σ] domain). The results of the test with random amplitudes are very
similar, as shown in Figure 3.4. The deviations are divided into three groups, according to their
amplitudes, specifically, S/N ∈ (5, 15], (15, 25] and (25, 60), respectively. We have not found any
tendency that the deviations depends on their amplitudes.

These tests suggest that the real errors are consistent with the values determined by least
squares fitting method for the near consecutive photometric data provided by Kepler, which,
therefore, can be considered robust.
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Figure 3.3 – The 2-D distribution of frequency and amplitude deviations between the prewhite-
ned and the injected ones of 1 000 constant artificial signals. The deviation has been normalized
by its 1σ error both in frequency and amplitude (see context for details). The 2-D distribu-
tion is projected into 1-D (frequency and amplitude) distribution in the top and right panels,
respectively, to be compared with the Normal Distribution, N ∼ (0, 1) (red solid curves).

3.3.3 Frequency contents

We obtained the light curves from either MAST or KASC, the latter archive the photometric
data of pulsating stars from Kepler observations. As is standard, these data were reduced
through the Kepler Science Processing Pipeline (Jenkins et al. 2010). In practice, we only
concentrate on the continuous data and leave the data in discovery phase alone for most stars
since those one month data usually present a large time gap in the assembled light curves.
There are three types of data available in the archive, the raw fluxes, the corrected fluxes and
the fluxes in pixels. The raw fluxes are just calibrated for instrumental effects, bias, flat field
and cosmic rays, the corrected fluxes also consider the on-board systematics and flux excesses
(contamination from nearby stars), and the pixel fluxes can be used to check for where the flux
modulations comes from, either from the target itself or from a nearby stars, when the field is
crowded (e.g., Charpinet et al. 2011a). Here we mainly consider the corrected data (and the raw
and pixel data if/when they are needed), which are sufficient for investigating the amplitude and
frequency variations of the pulsations. Tests show that the main difference between these raw
data and corrected data occur in the measured amplitudes, but has no noticeable incidence on
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Figure 3.4 – Same as Figure 3.3 but for 1000 modes with random amplitude. These injected
modes are divided into three groups of S/N in the ranges ∈ (5, 15], (15, 25] and (25, 60), respec-
tively (represented by three different symbols and colors, the latter are also adopted in the 1-D
distribution).

the extracted frequencies and the general trends of the amplitude modulations (the modulations
are variations relative to the mean amplitude).

Before we extract frequencies from the Fourier transform (prewhitening) on the obtained
light curves, we perform a six-order polynomial fit on each quarter light curve individually to
remove residual long-term trends whose effects may appear as very low frequencies (typically
< 1.5µHz) in the amplitude spectrum. We, of course, inspect every polynomial fits to avoid
removing the periodic signals such as that caused by beaming effects in binaries (an orbital
period of ∼ 10 d induces a stable ∼ 1µHz peak). These intrinsic physical signals are persistent
through different quarters, while, long-term trends by instrumental effects have various beha-
viors. Consequently, they are easily identified. Then a running 3σ clipping filter is applied to
the light curves in order to remove data points that differ significantly from the local standard
deviation. It is assumed that these few data points are caused by noise fluctuations. This later
operation decreases the overall noise level very slightly and affect only a few (∼ 10−100) points
among the ∼ 44 000 ones (for 30 d observations in short-cadence mode). After these procedures
are done, we perform frequency prewhitening on the obtained light curves.

The Lomb-Scargle Periodogram of KIC 07664467 is taken as representative example, as
shown in Figure 3.5. The ∼ 3-year observations give a resolution in frequency as sharp as
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Figure 3.5 – Lomb-Scargle Periodogram (Amplitude in percent of the residual of the mean
brightness v.s. frequency in µHz) of the Kepler light curve obtained on KIC 07664467. Top-
left panel : Two low frequencies. Top-right panel : The frequency region of 500–770µHz where
several pulsations are found. Bottom panel : The represented range where main peaks were
detected. The dashed horizontal lines denote our 5.6σ threshold.

0.01µHz and a noise level of ∼ 11 ppm (parts per million) on this Kp=16.45 star, that is far
beyond the ability of ground-based observations. We note that most Kepler sdB stars can reach
such a high precision and sharp resolution. The pulsations are all found in the g-mode region
80–780µHz, corresponding to pulsation periods of hours. The main frequencies are found in the
frequency region of 100–400µHz (see bottom panel of Figure 3.5), where the highest peak has
a very low amplitude of ∼ 0.6 ppt. Additional two low frequencies are found in the frequency
region of 2–8µHz, where the peak at ∼ 7.4µHz clearly represents the flux variations caused
by binarity, corresponding to a 1.56 d orbiting period. The signal near 2.84µHz shows a broad
structure and amplitude variations that can not be associated with the binarity effects. Baran
et al. (2016) suggest that this low frequency might be induced by instrumental effects.

During the prewhitening process, we adopt the 5.6σ detection threshold to extract frequen-
cies. In practice, we push the limit down to 5σ to include also suspected frequencies in the list.
Figure 3.6 shows 32 identified frequencies with amplitudes above 5.6σ noise from the 38-month
light curve of KIC 02991403. All the frequencies are found in the 80–400µHz frequency range,
which agrees well with the result of Pablo et al. (2012), except 4 low-amplitude frequencies
that were not detected in their analysis. We note that the data used here are about three
times larger than theirs. Five of their (low amplitude) peaks are not detected in our results.
This slight difference suggests that some the different frequencies migth be noise fluctuations
instead of intrinsic signals of the star. From the residual LSP curve in Figure 3.6, it is clear
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Figure 3.6 – Lomb-Scargle periodogram in the frequency range of 80–400µHz where the pul-
sations are found in KIC 02991403. The constructed LSP based on the 32 frequencies (indicated
by the red solid vertical segments) is shown upside down. The downward curve is the residual
LSP (so-called noise) after substracting all the 32 frequencies. Note that there are still several
peaks (outstanding in the noise) whose position are very close (on the order of the frequency
resolution 0.01µHz) to the substracted frequencies.

that there are still several outstanding peaks in the noise after frequency prewhitening. These
outstanding peaks are very near to the around substracted frequencies, with frequency spacing
of ∼ 0.01µHz. This suggests that some signals in the light curve can not be prewhitened by
pure sinusoidal waves, indicating their frequencies and amplitudes are varying. These side peaks
around the main prewhitened ones may contain important information on variations associated
with the main peaks. However, the frequencies, completely removed by one sinusoidal fitting,
have a stable behavior : constant amplitude and frequency. We finally mention that there are
some instrumental artefacts in the entire LSP (0–8500µHz), which are well documented and
can easily be recognized.
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3.3.4 Stellar rotation

Equally spaced frequencies are expected as a consequence of slow stellar rotation in a pul-
sating star. Rotation will lift an ` nonradial mode into 2` + 1 components (see Section 1.2
for details). The multiplet frequencies themselves are in condition of resonance, e.g., triplet
modes being the 2ω0 ∼ ω1 + ω2 resonance. Therefore, we naturally focus on the detection of
the rotational multiplets in these compact stars. Thanks to the high-quality and long-duration
observations offered by Kepler, the sharp frequency resolution and low-noise level in Fourier
transform make it possible to detect many multiplets in the Kepler compact stars. Figure 3.7
shows an example of rotational multiplets in KIC 11179657. We have detected four well formed
triplets with frequency spacing of ∼ 0.8µHz, indicating a rotation period of 7.4 days. They
are near 195.725, 284.629, 308.657 and 337.174µHz, and the retrograde component in the last
triplet has a 4.6σ amplitude (the prewhitened frequencies at the exactly right position). All the
triplets have been shifted to the position relative to the central components. The window aliases
in the LSP come from the fact that KIC 11179657 was observed by Kepler with a break time of
one quarter every three quarters, see the observation log in Table 3.1. Pablo et al. (2012) detec-
ted only two complete triplets with 9 months data, while, ours are based on about 2.25 years
data, with a lower noise level and sharper resolution. It is interesting that all the four triplets
show the same frequency mismatch, ∼ 0.02µHz (δω = 2ω0 − ω− − ω+), which is possibly the
effect induced by the second order of stellar rotation (e.g., Charpinet et al. 2008).

Table 3.3 lists the currently available information on stellar rotation and orbital periods
in Kepler compact pulsators. Rotational periods and orbital periods are derived based on the
entire Kepler photometry, typically from Q5.1 to Q17.2 (see exact observational duty for each
case in Table 3.1). Note that we take the rotational and orbital periods in the literature for the
stars formerly studied based on the (near) entire Kepler data set because those values are not
significantly different from ours. For most sdB stars, they rotate with periods of the order of days
to months, from ∼ 6 (KIC 02991403, the shortest) to ∼ 90 days (KIC 10670103, the longest).
Nine of them are rotating at periods of about one months, indicating that they are typically
slow rotators. Three of them, KIC 08302197, KIC 09472174 and KIC 10001893, are not detected
with multiplets in their LSPs, which indicates that these targets may have a very low inclination
angle or an extremely long rotation period (Prot & 1000 d). We have not found any multiplet
in B5 in NGC 6791 resulting that this star was monitored just with one month duration. We
have detected several "multiplets" in B3 but the frequency spacing ∼ 0.1µHz is just about
twice of the frequency resolution ∼ 0.04µHz, suggesting a possible rotation period of ∼ 110
days. We found that the rotation in white dwarfs are a bit faster than that in sdB stars, with
period on timescale of a day. Rotation has not been detected in the three newest WD pulsators,
KIC 04357037, KIC 07594781 and KIC 10132702, due to, possibly, the short observational time
baseline. Eight of 18 sdB stars are found in binary systems which is consistent with the high
binary fraction (e.g., Maxted et al. 2001). It is interesting that the orbital periods are all much
faster than the rotating period in these sdB stars if they are found in the binary system.

3.3.5 Sliding Lomb-Scargle periodogram method

This section discusses a prevailing method to analyze the Kepler photometry, sliding Fourier
transform (sFT, or time frequency dynamic diagram). One can analyze the time variability of
modes with the sliding periodogram, aiming at characterizing the amplitude and frequency
modulations. Our software FELIX can compute sliding Lomb-Scargle periodograms (sLSP, no
significant difference from sFT) of the entire Kepler photometry (e.g., Zong et al. 2016). This
technique consists of constructing time-frequency diagrams by filtering in only parts of the
entire light curve as a function of time. The sLSP shows the time-averaged values of any given
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Figure 3.7 – Rotationally splitting triplets in KIC 11179657. All the triplets are shifted to
the positions of central components and they are equally spaced with ∼ 0.8µHz. The dashed
horizontal (black) line represents the 5.6σ threshold. The vertical segments (blue) indicate the
prewhitened frequencies. The green vertical segment and dashed line denotes the component
with S/N of 4.6 (at the exactly right position).

Table 3.3 – Rotation and binarity of compact pulsators from Kepler photometry.

KIC # Prot Porb KIC # Prot Porb
(d) (d) (d) (d)

02697388 ∼ 45 · · · 11179657 7.37 0.394
02991276 6.3 · · · 11558725 ∼ 45 10.04
02991403 10.54 0.44 02437937 · · · · · ·
03527751 15.3–42.6? · · · 02438324 ∼ 9.63 0.4
05807616 44.9(1.1) · · · 02569576 · · · · · ·
07664467 35.1(0.6) ∼ 1.6 04552982 0.73 · · ·
07668647 ∼ 47 14.17 08626021 1.75 · · ·
08302197 · · · · · · 11911480 3.5(5) · · ·
09472174 · · · 0.126 04357037 · · · · · ·
10001893 · · · · · · 07594781 · · · · · ·
10139564 25.6 · · · 10132702 · · · · · ·
10553698 41(3) 3.387(14) †01718290 ∼ 100 · · ·
10670103 88(8) · · ·
Note. (?)Differntial rotation. (†)Østensen et al. (2012).

mode and gives an overall view of the amplitude and frequency variability. Therefore, the sLSP
greatly accelerates our search for some interesting mode behaviors in amplitude and frequency,
in particular for periodic mode modulations. In practice, for each given star, we choose a good
compromise between the width of filtering window and the length of time steps when the
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Figure 3.8 – Sliding LSPs of the 197.6µHz quintuplet and the 203.3µHz incomplete quintuplet
with different filtering windows in KIC 10670103. The color scale represents the amplitude and
the colorbar is shifted to the up side of each panels. As a comparison, the two top panels are
built with window width of 150 d and the two bottom panels are built with a wider window,
300 d, which, obviously, gives a different frequency resolution.
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filtering window is sled along the entire light curve, ensuring a good time resolution (to obtain
continuous amplitude and frequency modulations), frequency resolution (to resolve the close
peaks in each calculated LSP), and enough signal-to-noise (to insure a good detection of signals).
Once the interesting modulations have been spotted, we extract the frequencies (using the
standard techniques) in various parts of the light curve with a similar time length of the width of
the filtering window and time steps of one month. This latter approach provides a measurement
of the frequencies and amplitudes at a given time, along with the associated errors.

Figure 3.8 shows an example of sliding Lomb-Scargle periodogram that illustrates the re-
solution difference when the window width changing. The sLSP are concentrated on two mul-
tiplets, the quintuplet at ∼ 197.55µHz and the incomplete quintuplet at ∼ 203.26µHz, in
KIC 10670103. To resolve correctly the splitting quintuplets with frequency spacing ∆ω ∼
0.11µHz, we need a frequency resolution at least as sharp as ∆ω/1.5 corresponding to a time
length of about 130 days. Therefore we choose the filtering window with the width of 150 d
and time steps of 25 d, as a first step, and the results are shown in the two top panels of Fi-
gure 3.8. We clearly see the amplitude modulations in the components of the two quintuplets,
while, at this frequency resolution, the frequency modulations (typically very small, less than a
few percent µHz) can not be distinguished. Again, the amplitude modulations show long-term
variations that are longer than 1 000 days since the amplitude of different modes increase or
decrease during most of the observations. Thus, there is no confusion if we apply a wider filte-
ring window on the entire light curve to acquire a higher frequency resolution (the sLSP gives
an averaged LSP at a given time and the short timescale amplitude and frequency modulations
may have an cancellation effect in a very wide window). The two bottom panels of Figure 3.8
show the results of sLSP on the same two quintuplets but with a window width of 300 d. This
window definitely gives a shaper resolution and now we clearly see how the amplitude grows
and withers in the components.

3.4 The priority targets and some preliminary results
We have presented the procedures to analyze the Kepler data in the last section, now we

discuss our criteria to select the priority targets among the 18 sdB stars and 6 white dwarf
stars. Then, we provide several examples of amplitude and frequency variations in rotational
multiplet modes in three sdB stars. Various types of mode behaviors suggest that some modes
are stable and some are not, which is associated with the prediction of nonlinear mode coupling
mechanisms where the involving modes have three main regimes (see Section 1.4.2 for details).

3.4.1 Target classification

The 24 compact pulsators constitute a rather massive data set, in which one assembled light
curve may contain up to one million points for a star continuously monitored with a duration
of ∼ 2 years in short-cadence. A blind investigation of the 24 stars would cost a huge amount
of time. Thus, we first built a list to categorize three different groups of targets after extracting
the frequency contents from the assembled light curves : class A, the first priority targets ; class
B, targets with medium priority ; and class C, the least interesting stars. This categorization
is based on the length of continuous observations (enough time resolution), the number of
multiplets (to maximize chance to see various mode behaviors) and the rotation period (enough
frequency resolution).

Table 3.4 lists the three categories of Kepler compact stars, where there are eight pulsators
in each category. We first concentrate on the 8 class A stars in which 7 targets have been
observed more than two years, except KIC 08626021 (24 month). The 8 stars typically rotate
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Table 3.4 – The privilege of Kepler compact pulsators.

Class KIC #

A 02991403 03527751 07664467 07668647 10139564
11179657 02438324 08626021

B 02697388 05807616 10553698 10670103 11558725
02991276 04552982 01718290†

C 08302197 09472174 10001893 02437937 02569576
04357037 07594781 10132702

Note. (†)BHB, Østensen et al. (2012).

at a period on the order of days and present at least three multiplets. These properties and
observational conditions meet our criteria to be good candidates for the search of evidence of
nonlinear mode interactions occurring between multiplet modes. We also pay attention to the
modes with a relationship of linear combinations, that may indicate nonlinear resonance with
three mode coupling of ω1 ∼ ω2 + ω3. We provide examples of preliminary results for three
stars whose multiplet modes show amplitude and frequency modulations in the next section,
KIC 02438324, KIC 03527751 and KIC 07668647. Among these 8 class A stars, two stars are
particularly interesting after we have a general view on all the mode behaviors in these stars,
which are KIC 08626021 and KIC 10139564. The unique Kepler DBV star, KIC 08626021, will
be discussed in detail in Chapter 4. This star is also the longest observed white dwarf star
so far with a duration of about two years. Chapter 5 will be dedicated the interesting results
of KIC 10139564, a short-period pulsating star, which is also the longest observed p-mode
dominating pulsating sdB star so far with a duration of more than three years. Stars in class
B are found for the second priority targets since their rotation is either very slow (need for a
wide filtering window to resolve the splitting frequencies and this reduce the time resolution in
general), or they show only a few multiplets in their frequency spectra, or they have already been
studied by others, e.g., KIC 10670103 (Reed et al. 2014). The class C stars typically show no
rotational splitting multiplets, e.g., KIC 08302197, KIC 09472174, and KIC 10001893, or have
only short duration observations : KIC 02437937, KIC 02569576, KIC 04357037, KIC 07594781
and KIC 10132702. However, these may become important targets if their modes show short
timescale mode interactions, e.g., on a timescale of about a day. However, as time is limited, we
follow the order of the list in general.

3.4.2 Examples of some preliminary results

We provide some preliminary results for three stars whose multiplet modes show amplitude
and frequency modulations from the sliding LSP. These sLSPs only give us an overall view of
the behaviors occurring for a given mode. More precise amplitude and frequency variations can
be obtained with the technique of prewhitening parts of light curves (see, e.g., Chapter 4), which
has not been applied to these three stars yet. With these amplitude and frequency variations,
we can characterize the mode behaviors and associate them with the predicted regimes from the
nonlinear stellar pulsation theory : exhibit either periodic or irregular modulations, or remain
constant.

Figure 3.9 shows the amplitude and frequency modulations observed in two incomplete
quintuplets and three triplets in KIC 07668647. The sLSPs around each multiplets are provided

75



Frequency (µHz)

115.2 115.3 115.4 115.5 115.6 115.7 115.8 115.9 116

T
im

e
 (

B
J
D

 -
 2

4
5

5
0

0
0

)

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

0 50 100 150 200

Amplitude (ppm)

Frequency (µHz)

119.3 119.4 119.5 119.6 119.7 119.8 119.9 120 120.1

0 100 200 300 400 500

Amplitude (ppm)

Frequency (µHz)

240.9 241 241.1 241.2 241.3

T
im

e
 (

B
J
D

 -
 2

4
5

5
0

0
0

)

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

0 20 40 60 80

Amplitude (ppm)

Frequency (µHz)

294.8 294.9 295 295.1 295.2

0 50 100 150 200 250

Amplitude (ppm)

Frequency (µHz)

345.5 345.6 345.7 345.8 345.9

0 50 100 150

Amplitude (ppm)

Figure 3.9 – Amplitude and frequency modulations of multiplet modes in the pulsating sdB
star KIC 07668647. The filtering window of sLSP is chosen with a width of 270 d and time steps
of 30 d. Top panels : two incomplete quintuplets near 116µHz and 120µHz. Bottom panels :
three triplets near 241µHz, 295µHz and 346µHz. The color scale represents the amplitude of
the LSPs. The colorbars are different from each others and are shifted to the top of each panels.
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Figure 3.10 – Same as Figure 3.9 but for KIC 02438324. The filtering window of sLSP is chosen
with a width of 200 d and time steps of 20 d. Top panels : one triplet near 217 µHz, and two
doublets near 229.5µHz and 291µHz. Bottom panels : four doublets at 317.5µHz, 343µHz,
373µHz and 405.5µHz.
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Figure 3.11 – Same as Figure 3.9 but for seven KIC 03527751. The filtering window of sLSP
is chosen with a width of 200 d and time steps of 20 d. Top panels : three (possibly) incomplete
quintuplets near 92µHz, 114.4µHz and 253.2µHz. Bottom panels : another three (possibly)
incomplete quintuplets near 566.5µHz, 749µHz and 773.4µHz.
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in each panel, respectively. At this scale, we can clearly distinguish that the mode behaviors,
remain stable or show variations, from the sLSP with the optimal filtering window (here width
of 270 d and time steps of 30 d). The incomplete quintuplet near 116µHz, with two components
missing, show amplitude and frequency modulations, in particularly for the mode at 115.9µHz,
whose modulations may be periodic, with a period of ∼ 500 d. However, we cannot give the
precise period for the 115.9µHz mode modulations since we have not extracted frequencies by
parts of the entire assembled light curve. Amplitude and frequency variations also found in
the 200µHz incomplete quintuplet whose three components show coherent modulations, the
amplitude of 119.7µHz mode increases when amplitudes of the two other mode at 119.45µHz
and 119.98µHz decreases and vice versa, and the frequencies at 119.45µHz and 119.98µHz
sometime approach and sometime move away from the mode at 119.7µHz. The modulations
has a period around two years from inspecting the sLSP. We note that the amplitude of the
119.7µHz mode is very low (disappears in the noise) during the first year of observation. Two
of three components forming the triplet near 241µHz show amplitude and frequency variations,
while, the prograde mode looks relatively stable. From the sLSP near 295µHz, the triplet modes
remain stable both in amplitude and frequency during the 3-year observations. Note the central
component has a low amplitude but still can be clearly distinguished from the noise (blue
background). The triplet near 346µHz has the same behavior as seen in the 295µHz triplet,
stable amplitudes and frequencies. Again, amplitude of the prograde mode is low but can be
well recognized from the noise. Therefore, we observe different behaviors occurring between the
components of the five multiplets in KIC 07668647.

Figure 3.10 shows the amplitude and frequency modulations observed in seven triplets (only
one has a complete structure of three components) in KIC 02438324. The optimal filtering
window is chosen with a width of 200 d and time steps of 20 d that is well suitable to resolve
the 10 d rotational triplets and give a high time resolution. At this scale, we can definitely
discriminate the mode behaviors, whether their amplitude are stable or vary with time. The
amplitudes look stable for most of the time in the triplet at 217µHz, while, the amplitudes
of m = ±1 decrease and increase in a short time around time BJD=2455 1000. Amplitude
variations are also found in the six doublets, as revealed by the color variations in the other
six panels. We find that probably periodic amplitude modulations occur in the doublets near
229.5µHz, 317.5µHz, 343µHz and 373.5µHz. In these four doublets, one could clearly see the
cyclical color variations of the high amplitude components. However, at this stage, we can not
distinguish the frequency variations due to the frequency resolution. Therefore the extraction
of frequencies base on pieces of the entire light curve is particularly needed, in order to discover
the frequency variations in these multiplets.

Figure 3.11 shows amplitude and frequency variations in six multiplets (or, possibly quin-
tuplets) in the sdB star KIC 03527751. The optimal window is chosen to be the same as for
KIC 02438324. With the given sLSPs, we find clear signatures of amplitude and frequency mo-
dulations in these six quintuplets : frequency variations of a few percents of µHz for most of
the components. We discuss these interesting findings case by case. The amplitudes of the com-
ponents forming the incomplete quintuplet at 92µHz show coherent amplitude and frequency
modulations. When the amplitude of the prograde mode reaches its maximum, amplitudes of
the other two decreases to their minimum. We also find that the frequencies between the three
components converge and diverge during the ∼ 1000-d observations. The incomplete quintuplet
at 114.4µHz exhibit amplitude and frequency variations. The amplitude of the 114.6µHz com-
ponent experienced two maximums in the observations. The amplitude of the component near
114µHz decreases to its minimum when the 114.6µHz component reaches the first maximum
amplitude. The incomplete quintuplet near 253µHz shows an interesting frequency modulation
where a systematic variations happened in the 253 and 253.2µHz component and we obser-
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ved about one cycle of the frequency variations. We note that the low amplitude component
near 253.4µHz became visible from BJD=2455 0600 to 900 when the amplitude of the 253µHz
component is relatively large. The incomplete quintuplet near 566.5µHz misses two m±1 com-
ponents as suggested by the ∼ 0.5µHz frequency spacing. This quintuplet shows amplitude
and frequency variations of the three components, while, the frequencies vary in the smallest
range among the six considered multiplets. The incomplete quintuplet near 749µHz also shows
systematic frequency variations in the three components. During the entire observations, the
frequencies change on the order of a few tenth µHz. The amplitude of 749.2µHz completed at
least one period if the modulation is indeed periodic. The amplitude of the 749µHz component
is relatively stable although the frequency variations can be clearly distinguished. The ampli-
tude and frequency variations of the incomplete quintuplet near 773.4µHz are on a timescale
of ∼ 500 days. The amplitude of 773.8µHz component exhibits three maximums and two mini-
mums. We therefore find that the six incomplete quintuplets all show amplitude and frequency
variations in KIC 03527751 which is different from that of the triplets, e.g., in KIC 07668647.

We note that the sLSP can not provide precise values for the amplitudes and frequencies of
the considered modes. It merely gives us an overall view to accelerate the search for interesting
mode modulations. To get more precise information on the mode variations, one need to extract
frequencies from parts of the entire light curves. This technique will be used in Chapter 4 and
Chapter 5, for the modes studied in KIC 08626021 and KIC 10139564, respectively.

3.5 Conclusion
In this Chapter, we first described the details of the Kepler spacecraft, its FOV, and the

properties of the high-quality photometric data gathered by this telescope. There are 18 sdB
stars and 6 white dwarf stars that have been detected with pulsations among more than 100
candidates, including two V361 Hya, sixteen V1093 Her stars, one DBV and five DAV stars.
Most of the sdB stars (15 of 18) and one WD star has been observed for two years and more
by Kepler in short-cadence mode. Eight of the 18 (∼ 45%) sdB stars are found in the close
binary systems which is consistent with the binary fraction in Maxted et al. (2001). We use
a dedicated software FELIX, which is based on the standard prewhithening and nonlinear
squares fitting methods, to extract frequencies from the light curves of these compact stars. As
the spaceborne photometric data are very different from that from ground-based observations,
we discussed two statistical tests that aimed at calculating the appropriate detection threshold
and estimating the robustness of the error determinations before we proceed with prewhitening
frequencies. We used the corrected data, and first, detrended the light curves and clipped the
outlier data points. Then we provided our procedures to analyze the Kepler photometric data
with examples from several sdB stars. The Lomb-Scargle Periodogram (LSP) for a given star,
KIC 07664467, clearly show an extremely sharp frequency resolution and low noise level, which
enable us to detect many pulsations and slow rotation in sdB stars. After prewhitening the
frequencies in another star, KIC 02991403, there are still some outstanding peaks near some
prewhitened main frequencies in the residuals, indicating that these prewhitened frequencies
possibly exhibit amplitude and frequency variations. The sdB stars typically rotate slowly with
periods from 6 to 90 days, except for three stars that may have very long rotation periods.
Rotation in three white dwarfs are derived from the Kepler data and the periods are of the
order of a day. An interesting observation in rotational multiplets is that the same frequency
mismatch of ∼ 0.02µHz is detected in four triplets of KIC 11179657. The sliding LSP is used to
study the amplitude and frequency variations of the concerned frequencies. This method needs
an optimal filtering window to obtain a good compromise between frequency resolution, time
resolution and signal-to-noise.
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We selected eight stars from the whole 24 stars as first priority targets based on their
observational durations, number of multiplets and periods of rotation. The preliminary results
on amplitude and frequencies of the multiplet modes in three stars are provided in this chapter,
KIC 07668647, KIC 02438324 and KIC 03527751. The first target show modulated amplitude
and frequencies in two incomplete quintuplets and one triplet, and two triplets remain stable.
The second one show amplitude variations in its seven (incomplete) triplets, while, the frequency
variations may be in a small range that cannot be uncovered just by sLSP. All the six multiplets
in KIC 03527751 experienced large amplitude and frequency variations. The frequency variations
of some modes could be as large as a few tenth µHz. In order to obtain precise values of amplitude
and frequency, one needs to prewhiten the frequencies from pieces of the entire light curves.
This technique will be applied to two targets, KIC 08626021, a DBV star, and KIC 10139564,
a short-period sdB star. The analysis of these two stars is presented in the next two chapters.

81



82



Chapter 4

The pulsating DB white dwarf star
KIC 08626021

In this chapter, we discuss the pulsating DB white dwarf star KIC 08626021 in which
two-triplet and one-doublet modes show clear amplitude and frequency modulations 1. This is
the first evidence of nonlinear mode interactions that could be attributed to a resonant mode
coupling mechanism in a white dwarf star. We give a brief description of each sections in that
article, and one can see details in the following attached paper. KIC 08626021 is the only DBV
star observed by Kepler. The former studies on this star, in particular on its frequency content
and seismic modeling based on the Kepler data, in the literature are discussed in details in
Section 3.2 and also in the attached paper.

4.1 The frequency content revisited
We analyzed the nearly two years (∼ 684 days) data gathered on KIC 08626021 continuously

observed by Kepler, starting from BJD 2 455 740 and ending on BJD 2 456 424. Following the
analysis procedures provided in Section 3.3, we detected 13 independent frequencies and two
other linear combination (not independent) frequencies that come out well above the 5.6σ
detection threshold. Additionally two suspected frequencies are identified with S/N between 5σ
and 5.6σ. Our results agree well with Bischoff-Kim et al. (2014) in general, while, we found some
additional features in the frequency spectrum that somewhat differs from theirs. We conclude
that one frequency is an independent mode and the other two form the incomplete triplet in the
frequency region 3677–3686µHz, instead of a triplet near 3681µHz which was formerly identified
by Bischoff-Kim et al. (2014). Furthermore, both components forming the doublet near 3681µHz
show well resolved sidelobe frequencies with the same frequency separation of 0.044µHz. Since a
rotation period of∼ 1.8 d has been found, this small frequency separation indicates a modulating
phenomenon occurring on a timescale of ∼ 263 d in these two components, which is further
supported by the sliding LSPs.

4.2 Amplitude and frequency modulations
The sLSPs’s filtering window here is chosen to be 180-d wide with time steps of 7-d, which

is the best compromise found for the case of KIC 08626021. To obtain a precise value for the

1. The results have been published on Astronomy & Astrophysics , 585, A22, 2016 : Amplitude and frequency
variations of oscillation modes in the pulsating DB white dwarf star KIC 08626021. The likely signature of
nonlinear resonant mode coupling ; Zong, W. ; Charpinet, S. ; Vauclair, G. ; Giammichele, N. ; Van Grootel, V.
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amplitudes and frequencies, we also extracted frequencies in various parts of the entire light
curve, i.e., the 23-month data was divided into 20 time intervals, each including 6-month of
data except for the last three ones at the end of the observations. The results based on these
two procedures are shown in Fig. 7, 10, 11 and 12 in the attached article.

The three components forming the triplet f1 near 4310µHz show signatures of quasi-periodic
amplitude and frequency modulations with an averaged timescale of ∼ 600 days (Fig. 7). The
best fitting of a sine wave function suggests a period of 580 ± 23, 680 ± 10 and 610 ± 43 days
for the retrograde (m = −1), central (m = 0) and prograde (m = +1) component, respectively.
In addition, we note that the amplitude and frequency variations show clear correlations, as
both evolve in phase with the same period (∼ 600 d and zero phase Ph0 ∼ 0.84), for the side
components, and are antiphased (Ph0 = 0.34) with the central component. The other triplet
f2 near 5073µHz show clear amplitude variations, while, their frequencies appear to be stable
(Fig. 10). The amplitude modulations of the two side components seem to evolve in phase with
a quasi-periodic behavior of ∼ 700 days. However, the amplitude of the central mode exhibits
a more complex behavior and may follow a modulating pattern on a longer timescale. The
two components forming the doublet f3 near 3681µHz show signatures of correlated variations
both in amplitude and frequency (Fig. 11). The period of amplitude variations of both modes
is roughly 280 days as well as for the frequency modulations of the central mode, while, the
frequency modulations for the prograde is almost twice (∼ 550 d) to that of f3,0. Therefore,
the frequency separation of 0.044µHz provide a precise estimate of the modulating period, i.e.,
∼ 263 d. Note that the mode f7 near 3678µHz shows a constant amplitude and frequency
behavior, which further supports that f7 does not belong to the incomplete triplet f3.

For completeness, we also illustrate the intriguing behavior of three frequencies through a
linear combination, f8 ∼ f1,−+ f4 (see Table 1 in the attached paper). These three components
follow nearly the same trends in both frequency and amplitude. Note that one of the three
involved frequencies, f1,−, is also one of the components forming the triplet f1.

4.3 Connections with nonlinear resonant couplings
These observed modulations cannot be related to any evolutionary effects in white dwarfs,

the timescale is much longer than the observed modulations, to the presence of orbiting objects,
systematic frequency variations occur in all modes, and to the magnetic activities on the stellar
surface, all the modes appear to be globally affected following the same trends to various extent.
Instead, the nonlinear mode interactions could address the various observed modulations be-
cause resonant mode coupling mechanisms predict that various behaviors of modulations can
occur in different resonant modes : exhibiting variations in amplitude and frequency or remai-
ning stable (see details in Section 1.4.2).

The periodic modulations in the f1 triplet suggest that f1 is in the intermediate regime of
the triplet resonance. The theoretical calculations on the modulating period for f1 is found to
be on a timescale Pm(th) ∼ 620 d, which is consistent with the observed modulation period.
The slight difference in modulating period between side components and central one might be
an implication that the nonlinear mode interaction is more complex than the idealized case
predicted by the theory. The retrograde mode seems to be involved into two different types of
resonance as suggested by the observed modulation pattern, a case that has not been considered
by the nonlinear theory yet. The doublet f3 can be the second case of the intermediate regime of
triplet resonance. The theoretical modulation period is Pm(th) ∼ 518 d, which is comparable but
not strictly identical to the observed ones. The f2 triplet is in the configuration different from the
above two triplets, showing modulated amplitudes and locked frequencies. This configuration
could be associated with the narrow transitory hysteresis regime (Section 1.4.3).
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As the importance of the linear growth rates in these resonant mechanisms (a key factor
appears in the amplitude equations, e.g., equation 1.67 in Section 1.4.2), we also provide some
results of linear nonadiabatic pulsation calculations from a seismic model best representing the
star (Giammichele et al., in prep.). The computations on the theoretical linear growth rates
were done by using two different nonadiabatic pulsation codes, one still working in the frozen
convection (FC) approximation (Brassard et al. 1992b; Fontaine et al. 1994; Brassard & Fontaine
1997) and the other implementing a time-dependent convection (TDC) treatment (Dupret 2001;
Grigahcène et al. 2005). The modes of interest f2, f1 and f3 have growth rates that are in the
ranges 2× 10−13− 7× 10−12, 2× 10−12− 4× 10−11, and 1× 10−11− 2× 10−10 ss−1, respectively.
With these values, we obtain the parameter D (a key parameter that measures how far away
are the modes from the resonance center, Section 1.4.3) which lies in the range 3×103−6×104,
1× 104 − 5× 105 and 7× 102 − 1× 104 for the mode triplet f1, f2 and f3, respectively. These
values are significantly larger than those estimated by Goupil et al. (1998) and need further
investigations. Nevertheless, it suggests that the nonlinear coefficients could play an important
role in the determination of which regime the resonance will be in.

4.4 Summary and conclusion
We found amplitude and frequency modulations of oscillation modes in three splitting tri-

plets that are detected in the DBV star KIC 08626021, thanks to the opportunity offered
by Kepler high-quality and long-duration data. These interesting modulations show signatures
pointing toward nonlinear resonant coupling mechanisms which occur between the triplet modes.
This is the first time that such evidence is identified so clearly in a white dwarf star.

We analyzed the nearly two years Kepler data on KIC 08626021, following the procedures
provided in Section 3.3. Our frequency content agrees well with that of Bischoff-Kim et al. (2014)
in general, but with some slight difference, as we find eight independent modes (seven in theirs)
and small frequency separation in the doublet f3. The observed modulations whose periods are
consistent with the prediction by resonant coupling mechanisms. However, we found a difference
between the observed and theoretical D parameters in terms of the value of different regimes.
This particularly needs further investigations, e.g., to obtain the nonlinear coefficients in AEs
for the involved modes. Moreover, some of the involved modes seem to be able to participate
in different types of resonance, which is more complex than the theoretical treatment, i.e.,
considering the resonant modes as an isolate system (Section 1.4).

The uncovered frequency modulations can potentially impair any attempt to measure relia-
bly the evolutionary effects of the white dwarf on the pulsation periods. Therefore one should be
extremely careful of potential contamination of such nonlinear effects when conduct the project
of measure the changing rates of pulsation periods. We finally emphasize that the observed
periodic modulations occurring in the intermediate regime of triplet resonance may allow for
new asteroseismic diagnostics, providing in particular a way to measure for the first time linear
growth rates of pulsation modes in white dwarf stars. This prospect should motivate further
theoretical work on nonlinear resonant mode coupling physics and revive interest in nonlinear
stellar pulsation theory in general.

85



A&A 585, A22 (2016)
DOI: 10.1051/0004-6361/201526300
c© ESO 2015

Astronomy
&

Astrophysics

Amplitude and frequency variations of oscillation modes

in the pulsating DB white dwarf star KIC 08626021

The likely signature of nonlinear resonant mode coupling

W. Zong1,2, S. Charpinet1,2, G. Vauclair1,2, N. Giammichele3, and V. Van Grootel4

1 Université de Toulouse, UPS-OMP, IRAP, 31400 Toulouse, France
e-mail: weikai.zong@irap.omp.eu

2 CNRS, IRAP, 14 avenue Édouard Belin, 31400 Toulouse, France
3 Département de Physique, Université de Montréal, CP 6128, Succursale Centre-Ville, Montréal, QC H3C 3J7, Canada
4 Institut d’Astrophysique et de Géophysique, Quartier Agora, Allée du 6 Août 19c, 4000 Liège, Belgium

Received 12 April 2015 / Accepted 22 October 2015

ABSTRACT

Context. The signatures of nonlinear effects affecting stellar oscillations are difficult to observe from ground observatories because
of the lack of continuous high-precision photometric data spanning extended enough time baselines. The unprecedented photometric
quality and coverage provided by the Kepler spacecraft offers new opportunities to search for these phenomena.
Aims. We use the Kepler data accumulated on the pulsating DB white dwarf KIC 08626021 to explore in detail the stability of its
oscillation modes, searching, in particular, for evidence of nonlinear behaviors.
Methods. We analyze nearly two years of uninterrupted short-cadence data, concentrating on identified triplets that are caused by
stellar rotation and that show intriguing behaviors during the course of the observations.
Results. We find clear signatures of nonlinear effects that could be attributed to resonant mode coupling mechanisms. These couplings
occur between the components of the triplets and can induce different types of behaviors. We first notice that a structure at 3681 µHz,
identified as a triplet in previous published studies, is in fact forming a doublet, with the third component being an independent mode.
We find that a triplet at 4310 µHz and this doublet at 3681 µHz (most likely the two visible components of an incomplete triplet) have
clear periodic frequency and amplitude modulations, which are typical of the so-called intermediate regime of the resonance, with
timescales consistent with theoretical expectations. Another triplet at 5073 µHz is likely in a narrow transitory regime in which the
amplitudes are modulated while the frequencies are locked. Using nonadiabatic pulsation calculations, based on a model representative
of KIC 08626021 to evaluate the linear growth rates of the modes in the triplets, we also provide quantitative information that could
be useful for future comparisons with numerical solutions of the amplitude equations.
Conclusions. The observed modulations are the clearest hints of nonlinear resonant couplings occurring in white dwarf stars identified
so far. These should resonate as a warning to projects that aim at measuring the evolutionary cooling rate of KIC 08626021, and of
white dwarf stars in general. Nonlinear modulations of the frequencies can potentially jeopardize any attempt to measure such rates
reliably, unless they can be corrected beforehand. These results should motivate further theoretical work to develop the nonlinear
stellar pulsation theory.

Key words. white dwarfs – stars: individual: KIC 08626021 – techniques: photometric

1. Introduction

The temporal variations of the amplitude and frequency of os-
cillation modes often seen, or suspected, in pulsating stars can-
not be explained by the linear nonradial stellar oscillation theory
(Unno et al. 1989) and must be interpreted in the framework of a
nonlinear theory. It is believed that nonlinear mechanisms, such
as resonant mode couplings, could generate such modulations,
as, e.g., in the helium dominated atmosphere (DB) white dwarf
star GD 358 (Goupil et al. 1998). Resonant couplings are, for
instance, predicted to occur when slow stellar rotation produces
triplet structures whose component frequencies satisfy the rela-
tion ν++ν− ∼ 2ν0, where ν0 is the frequency of the central m = 0
mode. The theoretical exploration of these mechanisms was ex-
tensively developed in Buchler et al. (1995, 1997), but was al-
most interrupted more than a decade ago because of the lack
of clear observational evidence of such phenomena, as a result
of the difficulty in capturing amplitude or frequency variations

that occur on timescales of months to years from ground-based
observatories. Nevertheless, the presence of resonant couplings
within rotationally split mode triplets was proposed for the first
time as the explanation for the frequency and amplitude of long-
term variations observed in the GW Vir pulsator PG 0122+200
(Vauclair et al. 2011) from successive campaigns on this object.
This suggests that pulsating white dwarfs could be among the
best candidates to detect and test the nonlinear resonant coupling
theory.

White dwarfs constitute the ultimate evolutionary fate ex-
pected for ∼98% of the stars in our Galaxy. While cooling down,
they cross several instability strips in which they develop observ-
able nonradial g-mode oscillations. Among these, the helium at-
mosphere DB white dwarfs which represent ∼20% of all white
dwarfs, are found to pulsate in the effective temperature range
of 21 000 K to 28 000 K (Beauchamp et al. 1999; Fontaine &
Brassard 2008; Winget & Kepler 2008). All classes of pulsating
white dwarfs are particularly valuable for probing their interior
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with asteroseismology, but it has also been proposed that hot DB
pulsators with apparently stable modes could be used to mea-
sure their cooling rate, which is dominated by neutrino emission
(Winget et al. 2004). The secular rates of change for the pulsa-
tion periods in hot DB pulsators is expected to be ∼10−13 ss−1,
corresponding to a timescale of 3×105 years. However, this pos-
sibility could be seriously impaired by other phenomena affect-
ing the pulsation frequencies on shorter timescales. Such vari-
ations in amplitude and frequency have indeed been suspected
in several white dwarf stars (e.g., PG 0122+200, Vauclair et al.
2011; WD 0111+0018, Hermes et al. 2013; HS 0507+0434B,
Fu et al. 2013), as stellar evolution theory cannot explain the
variations with estimated timescales at least two orders of mag-
nitude shorter than the expected cooling rates. Nonlinear effects
on stellar pulsations, including resonant mode coupling mecha-
nisms could induce such modulations and need to be considered
carefully (Vauclair 2013).

In this context, observations from space of a multitude of
pulsating stars, including white dwarfs, has open up new hori-
zons. The Kepler spacecraft monitored a 105 deg2 field in the
Cygnus-Lyrae region for nearly four years without interruption,
obtaining unprecedented high quality photometric data for as-
teroseismology (Gilliland et al. 2010). These uninterrupted data
are particularly suited to searching for long-term temporal fre-
quency and amplitude modulations of the oscillation modes.

Among the six pulsating white dwarfs discovered in
the Kepler field, KIC 08626021 (aka WD J1929+4447 or
GALEX J192904.6+444708) is the only identified DB pulsator
(Østensen et al. 2011). Based on the first month of short cadence
(SC) Kepler data, Østensen et al. (2011) estimated that this star
has an average rotation period Prot ∼ 1.7 days, derived from
the observed frequency spacings of three groups of g-modes that
has been interpreted as triplets due to rotation. Subsequent in-
dependent efforts to isolate a seismic model for KIC 08626021
from Bischoff-Kim & Østensen (2011) and Córsico et al. (2012)
both suggest that the effective temperature of the star is signif-
icantly hotter than the value determined from the survey spec-
troscopy. However, the masses determined from these two mod-
els are not consistent with each other. More recently, a new
asteroseismic analysis based on the full Kepler data set pro-
vided by Bischoff-Kim et al. (2014), confirmed the former re-
sults found by Bischoff-Kim & Østensen (2011). We point out
that a new asteroseismic analysis of KIC 08626021 is discussed
in Giammichele et al. (in prep.).

KIC 08626021 has been observed by Kepler for nearly two
years in short cadence mode without interruption since the quar-
ter Q10. Thus, it is a suitable candidate to investigate the long-
term amplitude and frequency modulations of the oscillation
modes occurring in this star. In this paper, we present a new
thorough analysis of the Kepler light curve obtained on the DB
pulsator KIC 08626021, that emphasizes, in particular, the time
dependence of the amplitudes and frequencies of the modes as-
sociated with rotationally split triplets (Sect. 2). We provide ar-
guments that link the uncovered amplitude and frequency modu-
lations with the nonlinear mode coupling mechanisms (Sect. 3),
before summarizing and concluding (Sect. 4).

2. The frequency content of KIC 08626021 revisited

The pulsating white dwarf star KIC 08626021 has been continu-
ously observed by Kepler in short cadence (SC) mode from quar-
ter Q10.1 to Q17.2 (when the second inertial wheel of the satel-
lite failed). A light curve from Q7.2, well disconnected from the
main campaign, is also available for that star. Some analysis of

these data have already been reported in the literature (Østensen
et al. 2011; Córsico et al. 2012), including most recently the as-
teroseismic study of Bischoff-Kim et al. (2014, hereafter BK14)
which was based on the full Q10.1 – Q17.2 data set. We initially
considered using these published results as the starting point of
our present study, but we realized that important details were
lacking for our specific purposes. Consequently, we detail below,
as a necessary step, our own thorough analysis of the frequency
content of KIC 08626021.

2.1. The Kepler photometry

All the data gathered by Kepler for that star are now in the
public domain. We obtained the light curves from the Mikulski
Archive for Space Telescopes (MAST)1. As is standard, these
data were processed through the Kepler Science Processing
Pipeline (Jenkins et al 2010). In the following, we concentrate
on the consecutive data that covers Q10.1 to Q17.2, without
considering Q7.2 that would introduce a large time gap in the
assembled light curve. With this restriction, we are left with a
mere 23 months of high precision photometric data starting from
BJD 2 455 740 and ending on BJD 2 456 424 (∼684 days) with a
duty cycle of ∼87%.

We constructed the full light curve from each quarter cor-
rected light curves, which most notably include a correction for
the amplitude due to the contamination of the star by a closeby
object (this correction consider that only ∼47.3% of the light
comes from the DB white dwarf). Tests indicate that the main
differences between these corrected data and the raw data set
used by BK14 occur in the measured amplitudes of the light
variations, but has otherwise no noticeable incidence on the ex-
tracted frequencies. Each quarter light curve was then individu-
ally corrected to remove long-term residual trends (using sixth-
order polynomial fits) and data points that differ significantly
from the local standard deviation of the light curve were re-
moved by applying a running 3σ clipping filter. The later op-
eration just very slightly decreases the overall noise level.

The resulting ligth curve is shown in Fig. 1 and the cor-
responding Lomb-Scargle periodogram (LSP; Scargle 1982) is
given in Fig. 2. The low-amplitude multi-periodic modulations
are clearly seen with dominant periodicities of the order of a
few minutes, typical of g-mode oscillations observed in pulsat-
ing DB white dwarfs. The formal frequency resolution in the
LSP (defined as the inverse of the total time base line of the ob-
servations) reaches ∼0.017 µHz.

2.2. Defining a secure detection threshold

Before proceeding with the extraction of the frequencies, a brief
discussion of the criterion that is used to define the confidence
level of the detections is necessary. With ground-based observa-
tions of pulsating compact stars, a widely used rule of thumb was
to consider the limit of 4σ (4 times the average local noise in the
Fourier Transform) as the threshold above which a signal could
safely be considered as real. However, with space observations,
in particular with Kepler, it became increasingly clear that this
rule underestimates the risks of false detections resulting from
statistical noise fluctuations. The reason lies most probably in
the very large number of data points collected during months
(or years) of observations with a sampling time of only 58 s
in SC mode. In particular, more than half a million frequency
bins are necessary to represent the LSP of the 684 days Kepler

1 https://archive.stsci.edu/
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Fig. 1. Top panel: condensed representation of the full Kepler light
curve (Amplitude is the residual relative to the mean brightness in-
tensity of the star vs. time in Barycentric Julian Date) covering from
Q10.1 to Q17.2 (∼684 days) of KIC 08626021. Between quarters, scat-
ter sometime changes due to different levels of noise in the data (all
quarters are not equivalent in photometric quality). Bottom panel: close-
up view showing one day of the Kepler light curve by slices of 0.1 days.
At this scale, the oscillations are clearly apparent.

Fig. 2. Lomb-Scargle periodogram (LSP; amplitude in % of the mean
brightness vs. frequency in µHz) of the Kepler light curve. The repre-
sented range covers the frequency region where the pulsation modes
are detected (no significant signal is found outside these limits). Note
that some well known Kepler instrumental artefacts are within this fre-
quency range but can easily be recognized.

photometric data of KIC 08626021 and noise fluctuations are
very likely to occur at least one time (and more) above a stan-
dard 4σ threshold. For this reason, the trend has been to increase
the threshold to higher signal-to-noise (S/N) values in somewhat
arbitrary ways to avoid false detections (e.g., BK14 just assumes
that the acceptable limit is 5σ).

Instead of adopting an arbitrary value, we quantitatively esti-
mate what should be an acceptable threshold with the following
procedure. Using the same time sampling as the observations,
we randomly build 10 000 artificial light curves just containing
white gaussian noise (a random normal deviate is calculated at
each time point). The LSPs of these artificial light curves are
then calculated, as well as the median values of the noise in each

Fig. 3. False alarm probability Pn of having at least n peaks caused
by noise above a given S/N threshold in the LSP of KIC 08626021
(see text for details). In each panel, the three vertical lines indicate,
from left to right, the S/N value corresponding to Pn = 0.1, 0.01, and
0.0001, respectively. The limit P1 = 0.0001, meaning that the risk of
having a false detection above that threshold is reduced to less than 1
chance over 10 000, defines our adopted criterion. It corresponds to the
limit of 5.6σ.

resulting LSPs. For any given S/N threshold (xσ defined as x
times the median noise level) we then find the number of times
that at least n peaks in the LSP (which by definition are just noise
structures) happen to be above the chosen limit. Then, dividing
by the number of tests (10 000 here), we obtain the false alarm
probability Pn(x) that at least n peaks above a given S/N thresh-
old of xσ is due to noise.

Figure 3 shows the results of this procedure for the prob-
abilities P1 to P5 as functions of the S/N threshold. The most
interesting case is P1 (the probability that at least 1 peak due
to noise is above the threshold). We clearly see here that at the
usual 4σ limit, the probability to have at least one false detection
is close to 1 (and ∼0.5 to have at least 5 false detections accord-
ing to P5), confirming that this threshold is particularly unsafe in
our case. However, P1 eventually decreases with increasing S/N
to reach 0.1 (10% chance) at S/N ∼ 4.58, 0.01 (1% chance) at
S/N ∼ 4.92 (approximately the detection threshold chosen by
BK14), and less than 1 chance out of 10 000 at S/N = 5.56 (this
is the limit above which not a single peak due to noise has been
found among the 10 000 randomly generated light curves).

Based on these calculations, we adopt, in the following, the
conservative 5.6σ threshold as our limit of detection.

2.3. Extraction of the frequencies

We used a dedicated software, F (Frequency Extraction for
LIghtcurve eXploitation) that was developed by one of us (S.C.),
to first extract the frequency content of KIC 08626021 down to
our adopted detection threshold of 5.6σ (we, in practice, pushed
down the limit to ∼5σ; see below). The method used is based
on the standard prewhithening and nonlinear least square fitting
techniques (Deeming 1975) that works with no difficulty in the
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Table 1. List of frequencies detected in KIC 08626021.

Id. Frequency σ f Period σP Amplitude σA Phase σPh S/N Comment
(µHz) (µHz) (s) (s) (%) (%)

f1,− 4306.52304 0.00013 232.205886 0.000007 0.867 0.012 0.7987 0.0037 73.4 f1,− in BK14
f1,0 4309.91490 0.00014 232.023143 0.000007 0.804 0.012 0.5264 0.0040 68.1 f1,0 in BK14
f1,+ 4313.30642 0.00016 231.840705 0.000008 0.701 0.012 0.7885 0.0046 59.3 f1,+ in BK14

f2,− 5070.03081 0.00017 197.237460 0.000007 0.641 0.012 0.1521 0.0050 54.3 f2,− in BK14
f2,0 5073.23411 0.00016 197.112922 0.000006 0.705 0.012 0.0394 0.0046 59.8 f2,0 in BK14
f2,+ 5076.44385 0.00066 196.988291 0.000026 0.167 0.012 0.1462 0.0192 14.1 f2,+ in BK14

f3,0
† 3681.80286 0.00028 271.606068 0.000020 0.397 0.012 0.1347 0.0082 33.6 f3,0 in BK14

f3,+
† 3685.00937 0.00052 271.369731 0.000038 0.212 0.012 0.4066 0.0153 18.0 f3,+ in BK14

f4 2658.77740 0.00047 376.112721 0.000067 0.233 0.012 0.6147 0.0140 19.7 f5 in BK14
f5 4398.37230 0.00068 227.356834 0.000035 0.161 0.012 0.7598 0.0200 13.6 f7 in BK14
f6 3294.36928 0.00079 303.548241 0.000073 0.139 0.012 0.0934 0.0234 11.8 f4,0 in BK14
f7 3677.99373 0.00088 271.887358 0.000065 0.125 0.012 0.6773 0.0260 10.6 f3,− in BK14
f9 6981.26129 0.00139 143.240592 0.000028 0.079 0.012 0.0105 0.0404 6.7 f11 in BK14

Linear combination frequencies
f8 6965.30234 0.00090 143.568786 0.000019 0.121 0.012 0.8358 0.0264 10.3 f1,− + f4 ; f6 in O13a

f10 2667.95462 0.00164 374.818969 0.000230 0.067 0.012 0.7489 0.0484 5.7 f9 − f1,+

Frequencies above 5σ detection
f11
⋆ 2676.38212 0.00170 373.638725 0.000236 0.065 0.012 0.1443 0.0501 5.5

f12
⋆ 3290.24565 0.00176 303.928675 0.000163 0.063 0.012 0.0752 0.0519 5.3 f4,− in BK14

Notes. (†) The azimuthal order (m) identification proposed for the doublet comes from a model fit seismic solution (see Giammichele et al.,
in prep.); (⋆) these frequencies are below 5.6σ (although still higher than 5σ) and could be spurious; (a) Østensen (2013).

present case. The code F greatly eases and accelerates the
application of this procedure, especially for long and consecutive
time series photometry obtained from spacecrafts like CoRoT
and Kepler (Charpinet et al. 2010, 2011).

The list of extracted periodic signals is provided in Table 1
which gives their fitted attributes (frequency in µHz, period in
seconds, amplitude in % of the mean brightness, phase relative to
a reference t0 time, and S/N above the local median noise level)
along with their respective error estimates (σ f ,σP, σA, andσPh).
Figures 4–6 show zoomed-in views of all the identified peaks in
the LSP.

We find 13 very clear independent frequencies that come out
well above the detection threshold. Two additional lower am-
plitude peaks ( f8 and f10) appear as significant but are linked
to other frequencies through linear combinations and are there-
fore likely not independent pulsation modes. Two more frequen-
cies ( f11 and f12) can be identified above 5σ but below 5.6σ
which we mention for completeness, but that cannot be consid-
ered as secured detections. A comparison with the completely
independent analysis of BK14 shows that we agree on all the
relevant, well secured frequencies (i.e, with a sufficiently high
S/N). We point out, however, that some additional features of
the frequency spectrum are not discussed in BK14 and we differ
in how to interpret some of the mode associations (see below).

As reported in BK14, six of the extracted frequencies ( f1
and f2) form two very well defined, nearly symmetric triplets
with a frequency spacing of ∼3.392 µHz and ∼3.206 µHz
(Fig. 4). These are readily interpreted as rotationally split
triplets, thus giving an average rotation period of ∼1.75 days for
the star. However, we argue that the three frequencies shown in
Fig. 5 cannot correspond to the components of a triplet, as BK14
suggest. These frequencies form a clearly asymmetric structure
with the left component ( f7) being significantly more distant
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Fig. 4. Lomb-Scargle periodogram of the triplets at 4310 µHz (top
panel) and 5073 µHz (bottom panel) after nearly two years of Kepler
photometry gathered on KIC 08626021. The nearly equal frequency
spacings are marked in the two panels. The dashed red horizontal line
refers to the 5.6σ detection threshold of local noise level.

than the right component ( f3,+) from the central peak ( f3,0). We
note in this context that the frequency separation between f3,0
and f3,+ (3.208 µHz) is similar or very close to the frequency
splitting characterizing the f2 and f1 triplets. Our interpretation
is therefore that the middle ( f3,0) and right ( f3,+) peaks are two
components of a triplet whose third component is undetected,

A22, page 4 of 14



W. Zong et al.: Nonlinear resonant mode coupling in the DBV star KIC 08626021

3677 3678 3679 3680 3681 3682 3683 3684 3685 3686
0

0.1

0.2

0.3

0.4

0.5
f3

f7

3.808 3.208

A
m

p
lit

u
d

e
 (

%
)

Frequency (µHz)

3681.75 3681.8 3681.85 3681.9

0

0.1

0.2

0.3

0.4

0.5
0.044 0.044

3684.9 3684.95 3685 3685.05

0

0.1

0.2

0.3

0.4

0.5
0.044

Fig. 5. Lomb-Scargle periodogram in the 3677−3686 µHz frequency
range where a doublet and an independent frequency are above the 5.6σ
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Fig. 6. Lomb-Scargle periodogram of 8 frequencies after nearly two
years of Kepler photometry gathered on KIC 08626021. The two fre-
quencies f11 and f12 are with 5.0−5.5σ of local noise level. Frequency
f8 and f10 are linear combination frequencies.

while the left peak ( f7) is a completely independent mode. This
has some implications in finding an asteroseismic solution for
KIC 08626021 as attempted by BK14, since eight independent
periods should be considered and not seven (see Giammichele
et al., in prep.).

Furthermore, not reported in BK14, we show in Fig. 5 that
the two components of the incomplete triplet are in fact sur-
rounded by additional structures (not tabulated in Table 1). The
central peak ( f3,0) appears to have two resolved symmetric side-
lobes that are located 0.044 µHz away, while the right peak ( f3,+)
shows a sidelobe also separated by 0.044 µHz. These intrigu-
ing hyperfine structures cannot be associated with rotation since
a much larger rotational splitting signature has already been
found. Moreover, the very small frequency separation involved

would indicate a modulating phenomenon that occurs on a very
long timescale of ∼263 days.

This finding brings us to the main subject of the present pa-
per, which is to show that this hyperfine structure, along with
other behaviors that we discuss below, can be linked to long-term
amplitude and frequency modulations that are generated by non-
linear resonant coupling mechanisms between the components
of rotationally split triplets.

2.4. Amplitude and frequency modulations

From now on, we mainly focus our discussions on the two well
defined triplets f1 and f2, and on the doublet f3 (i.e., the two visi-
ble components of an incomplete triplet). In order to analyze the
temporal variability of these modes and their relationship, we
used our software F to compute the sliding Lomb-Scargle
periodogram (sLSP) of the data set. This technique consists of
building time-frequency diagrams by filtering in only parts of
the data as a function of time. In the present case, we chose a fil-
ter window that is 180-day wide sled along the entire light curve
by time steps of 7 days. This ensures a good compromise, for
our purposes, between time resolution, frequency resolution (to
resolve close structures in each LSP), and S/N. The sLSP gives
an overall view of the amplitude and frequency variability that
could occur for a given mode (see, e.g., the top left panel of
Fig. 7). We acknowledge that BK14 also provide a similar anal-
ysis, but they chose a sliding window that is only 14-day wide,
hence providing a much lower resolution in frequency. This has
strong consequences on the interpretation of these data that will
become obvious below. As a complementary (and more precise)
method, we also extracted the frequencies (through prewithening
and nonlinear least square fitting techniques) in various parts of
the light curve, i.e., the 23-month light curve of KIC 08626021
was divided into 20 time intervals, each containing six months of
data (for precision in the measurements) except for the last three
intervals at the end of the observations. This second approach
provides a measure of the (averaged) frequencies and amplitudes
at a given time, along with the associated errors (see, e.g., the
bottom left panel of Fig. 7).

2.4.1. The f1 triplet

Figure 7 shows the amplitude and frequency modulations ob-
served for the three components that form the f1 triplet near
4310 µHz. In this plot, views of the frequency variations with
time are illustrated from top to bottom-left panels. The top panel
first shows the sLSP of the triplet as a whole (similar to Fig. 2 of
BK14) where the signal appears, at this scale, stable in frequency
but varying in amplitude for at least the central component. Then
we provide increasingly expanded views (from middle-left to
bottom-left panel) around the average frequency of each com-
ponent. In addition, the bottom right panel shows how the am-
plitude of each component varies with time.

It is mentionned in BK14 that the modes, and these three
components in particular, are stable in frequency over the 2-year
duration of the observations. We clearly demonstrate here that
this is not the case. Their statement is based on a time-frequency
analysis involving a sliding Fourier Transform (sFT) that only
uses a 14-day-wide window, which clearly does not permit a
sufficient frequency resolution to uncover the modulations that
we report here. We find that both the amplitudes and frequen-
cies show very suggestive signatures of quasi-periodic modula-
tions with an average timescale that we can roughly estimate to
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Fig. 7. Frequency and amplitude modulations in the f1 triplet at 4310 µHz. The top panel shows the sLSP (giving the amplitude in % as a function
of frequency in µHz and time in days) of the triplet as a whole. The middle and bottom left panels show increasingly expanded views around the
average frequency (the solid vertical lines) of each component, with the bottom left panel obtained from prewhitening subsets of the data, thus
measuring precisely the frequencies, as a function of time. The lower right panel provides the measured amplitudes as a function of time obtained
for each subset of data (see text for details).

∼620 days. Figures 8 and 9 illustrate further this periodicity in
phase diagrams. Although very similar, we find that the modu-
lation period associated with the side components of the triplets
(∼600 d) could be slightly shorter than the modulation period of
the central component (∼680 d). Note that the modulating pe-
riods in this triplet were obtained by searching for the best fit
of a pure sine wave function to the amplitude variations. The
zero phase is relative to the time of the first data point (BJD =
2 455 739.836). The same procedure was not applied to the fre-
quency modulations since the patterns are clearly more complex
than a pure sine wave function. However, since Fig. 7 suggests a
cyclic behavior with roughly the same timescale, the folding pe-
riods used to construct Fig. 9 were chosen to be those derived for
the amplitude modulations. This allows us to check that indeed
at least two of the components (the m = +1 and m = −1 modes)
accomodate rather well these periodicities, as the curves con-
nect near phase 12. For the central (m = 0) component, a slightly
longer estimated periodicity does not permit to cover entirely
the suspected modulation cycle with the data, leaving a gap be-
tween phase 0.9 and 1 where the behavior is not monitored. We

2 Note that the two last data points with larger error bars are less se-
cure measurements due to the fact that the sliding Fourier transform
reaches the end of the data set and incorporates shorter portions of the
light curve. This affects the frequency resolution and consequently the
precision of the measurements.

cannot say in that case whether this curve would eventually con-
nect smoothly at phase 1 or if a discontinuity exists, suggesting
that either the chosen folding period is not appropriate or an ad-
ditional trend is affecting the frequency of this mode.

In addition, we note that the frequency and amplitude mod-
ulations show obvious correlations, as both evolve in phase with
the same period (with period of ∼600 days and zero phase of
∼0.84), for the side components, and are somewhat antiphased
with the central component (with zero phase of 0.34), as shown
in Figs. 8 and 9. We quantitatively checked this fact by com-
puting the correlation coefficients between, e.g., the amplitudes
of the m = +1 and m = −1 components (ρA+,A− = +0.93;
i.e., indicative of a strong correlation) and the amplitudes of
the m = +1 and m = 0 components (ρA+ ,A0 = −0.82; i.e., in-
dicative of a strong anti-correlation). Such correlated behavior
suggests that the modes involved are somehow connected, ei-
ther through a common cause that affects their amplitudes and
frequencies similarly or through direct interactions that occur
between the components of the triplet. This will be discussed
further in Sect. 3.

2.4.2. The f2 triplet

Figure 10 shows the modulations observed in the other triplet, f2,
at 5073µHz. The frequencies in this triplet appear to be stable
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Fig. 8. Amplitude modulations observed in the f1 triplet presented in
phase diagrams with a folding period of 580 and 610 days for the two
side components, and 680 days for the central component. These peri-
ods, and their associated formal errors, were estimated by fitting a sine
wave (red curve) to the amplitude variations.

during the nearly two years of Kepler observations, while the
amplitudes show clear modulations. Note that the amplitude of
the m = +1 component went down at some point below a signal-
to-noise ratio of 4σ and was essentially lost in the noise during
a portion of the last half of the observations. Four measurements
could not be obtained because of this and when it was still pos-
sible to spot this component, the errors remained large.

Again in this case, the amplitudes of the two side compo-
nents seem to evolve nearly in phase with a quasi-periodic be-
havior on a timescale that is probably slightly larger than the du-
ration of the observations and close to a timescale of ∼700 days.
However, contrary to the previous case, a connection with the
central component is less clear. The later seems to follow a varia-
tion pattern possibly occurring on a longer timescale. Therefore,
f2 behaves somewhat differently from f1, a feature that we will
discuss more in the next section.

2.4.3. The f3 doublet

The 3677−3686µHz frequency range is shown in Fig. 11 and
contains the independent frequency ( f7) and the two visible com-
ponents of the incomplete triplet f3 (thus forming a doublet).

Each component of this doublet shows clear signatures of
correlated variations for both amplitudes and frequencies. We
note in particular a periodic modulation that occurs on a some-
what shorter timescale than for the two previous cases. A very
quick look at Fig. 11 indicates a period of roughly 280 days for
the amplitude variations of both modes as well as for the fre-
quency modulation of f3,0, which in fact can readily be con-
nected to the hyperfine-structure sidelobes discussed in Sect. 2.3
and illustrated in Fig. 5. The frequency of f3,+, for its part,
seems to also follow a periodic trend but, quite interestingly, on
a timescale that could be around twice (∼550 days) the period of
the other components.
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Fig. 9. Same as Fig. 8 but for the frequency modulations observed in the
f1 triplet. Note that the adopted folding periods are the values derived
for the corresponding amplitude modulations.

It appears now clearly that a periodic frequency and ampli-
tude modulation process is responsible for the equidistant peaks
surrounding f3,0 and f3,+. In this context, the frequency sepa-
ration of 0.044µHz should provide a more precise estimate of
the period of this modulation, which is ∼263 days. Note that the
other two triplets discussed previously do not show similar hy-
perfine splitting structures around their components simply be-
cause the period of their modulations appear to be slightly longer
than the observational time baseline and those structures cannot
be resolved. In the case of f3, the observations are long enough
to resolve the modulation. We further note that the amplitudes of
the two components of f3 evolves in antiphase while the frequen-
cies are in phase during the first half of the run but then evolve in
antiphase during the last part of the observations, which reflects
the fact that the frequency variation of f3,+ has approximately
twice the period of the modulation seen in the frequency of f3,0.

In contrast, the mode f7 shows a totally different behavior as
both its frequency and amplitude appear stable throughout the
observing run. This could further support, if need be, the inter-
pretation that f7 and the f3 complex are not part of a same triplet
structure (as assumed by BK14). We indeed note that the theoret-
ical framework in which these modulations can possibly be un-
derstood (nonlinear resonant couplings, as discussed in Sect. 3)
forbids the possibility that the components of a triplet behave in
different regimes.

2.4.4. Other correlated modulations

For completeness, we also illustrate the interesting behavior
of three frequencies that are related by a linear combination.
Figure 12 shows the amplitude and frequency modulations of
f1,−, f4 and f8, that satisfy almost exactly (within 2σ of the for-
mal measurement errors) the relation f8 = f1,−+ f4 (see Table 1).

It is striking to see how the three components fol-
low nearly exactly the same trends in both frequency and
amplitude. These modulations could be related to the so-
called parents/child mode nonlinear interactions discussed by
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Fig. 10. Same as Fig. 7 but for the f2 triplet at 5073 µHz. Note that the component at 5076 µHz has a very low amplitude and plunges below the 4σ
detection threshold during the second half of the observations, making it difficult to follow (hence the 4 missing data points).

Breger & Montgomery (2014) or to other nonlinearities encoun-
tered in white dwarfs (e.g., Brassard et al. 1995; Wu 2001). In
this context, we note, again according to the values given in
Table 1, that the mean relative amplitude of f8 (A8 = 0.00121)
is ∼60 times larger than the product of the relative amplitudes
of f1,− (A1,− = 0.00867) and f4 (A4 = 0.00233) whose value
is 0.000020. Figure 13 shows that these relationships also hold
(within 2σ), both for frequencies and amplitudes, for each in-
dividual measurement done as a function of time illustrated in
Fig. 12. Interestingly, if this combination were to be related to
the mechanism of Wu (2001), the factor of 60 connecting A8
to A1,− · A4 would possibly imply that the inclination angle of
the star should be 50◦ < i < 60◦ (following Eq. (20) in Wu
2001). Alternately, f8 could result from a resonant mode cou-
pling phenomenon where f8 is a true eigenmode of the star (pos-
sibly of higher degree ℓ) whose amplitude is boosted above the
detection limit by the resonance following Eq. (5) of Breger &
Montgomery (2014, see also Dziembowski 1982). We indeed
find that our results, instead of using phase (we here use fre-
quency), are similar to the linear combination frequency fam-
ilies that are described in Breger & Montgomery (2014, e.g.,
comparing their Figs. 4, 5 to our Fig. 13). However, at this stage,
we cannot decipher which of these potential mechanisms could
explain the details of this combination of frequencies because of
the lack of further independent constraints (such as the inclina-
tion angle of KIC 08626021). Finally, we point out that one of
the frequencies involved in this relation, f1,−, is also involved as
one of the components of the f1 triplet discussed in Sect. 2.4.1
(and illustrated in Fig. 7).

Another similar linear combination has also been identified,
involving f1,+, f9 and f10, but the low amplitudes of f9 and f10
have prevented us from analyzing its frequency and amplitude
modulations. In the following, we concentrate on a possible the-
oretical interpretation of the frequency and amplitude modula-
tions observed in the triplets, and we do not discuss further the
properties of linear combination frequencies.

3. Links with nonlinear resonant couplings

The frequency and amplitude modulations that are observed
in the two triplets and the doublet of KIC 08626021 cannot
be related to any evolutionary effect, such as neutrino cooling,
because the timescale involved is several orders of magnitude
shorter than the cooling rate of DB white dwarfs (Winget et al.
2004). The signature of orbiting companions around the star is
also ruled out by the fact that the variations occurring in differ-
ent frequencies are not correlated in phase and do not have the
same amplitude modulations (Silvotti et al. 2007). We also con-
sidered possibilities that instrumental modulations could occur,
e.g., on a per quarter basis, such as a slightly varying contam-
ination from the nearby star that could modulate the amplitude
of the modes, but then all modes should be affected similarly,
which is not what is observed. Finally, the possibility was raised
that changes in the background state of the star, such as those
induced by magnetic cycles or through an hypothetical angu-
lar momentum redistribution mechanism, could be responsible
for the observed modulations. It is indeed well known that mag-
netic cycles have an impact on the frequencies of the p-modes
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Fig. 11. Same as Fig. 7 but for the doublet f3 at 3682 µHz and the nearby independent frequency f7 at 3678 µHz.
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observed in the Sun, which lead to small frequency drifts that
correlate well in time with tracers of the solar surface activity
(see, e.g., Salabert et al. 2015 and references therein). One could
imagine that such mechanisms may exist in white dwarfs as well.
We think, however, that such effects would be hardly compatible
with how the modes in KIC 08626021 are found to vary. In the
Sun, all the modes appear to be globally affected following the
same trends to some various extent, while in our case we see, for
instance, a triplet f1 that shows correlated changes in frequency,
and at the same time another triplet f2 whose frequencies appear
to be constant. We find a mode f7 that also does not change while
the two visible components of the doublet f3 nearby show cor-
related variations in frequency. This makes it difficult to connect
these behaviors to a common global cause (i.e., small changes of
the stellar structure). A cyclic redistribution of angular momen-
tum, for its part, would affect the frequencies of the m = +1 and
m = −1 components with an anti-correlation, while the central
m = 0 component should not be affected (and it is found to vary
in f1). All triplets should be affected nearly the same way, but f2,
showing constant frequencies, clearly is not and somewhat rules
out this possibility.

Instead, we prefer to fall back to a simpler possibility.
We develop in this section arguments that nonlinear resonant
mode coupling mechanisms, by which both the amplitudes and
frequencies of oscillation modes can be modulated on timescales

of weeks, months, and even years, appears as a natural explana-
tion for some of the observed behaviors.

3.1. The amplitude equations formalism

The amplitude equations (AEs) formalism is, to our knowledge,
the only existing theoretical tool to investigate mode couplings
for nonradial oscillation modes in pulsating stars. AEs in the
stellar context have been extensively studied since the 1980’s
for different types of couplings (Dziembowski 1982; Buchler
& Goupil 1984; Moskalik 1985; Dziembowski & Goode 1992;
Goupil & Buchler 1994; van Hoolst 1994; Buchler et al. 1995;
Goupil et al. 1998; Wu 2001; Wu & Goldreich 2001).

In the present context, we limit ourselves to the type of res-
onances that is discussed in Buchler et al. (1995, 1997) and
Goupil et al. (1998), which involves linear frequency combina-
tions such that ν1 +ν2 ∼ 2 ν0, and, more specifically, a particular
case in which a ℓ = 1 mode is split by slow rotation and form a
nearly symmetric triplet. This choice is obviously driven by the
specific configuration of the modes studied in KIC 08626021,
which, we recall, are all identified as ℓ = 1 rotationally split
g-mode triplets.

To clarify this further, we do not consider here other potential
coupling mechanisms described, e.g., in Wu & Goldreich (2001)
because they address a different problem, namely the problem of
mode amplitude saturation through a proposed mechanism that
indeed involves a nonlinear resonant mode coupling, but with
one parent mode that is overstable (thus gaining energy) and two
independent child modes that are damped (thus dissipating the
energy). In our case, we observe and focus on a different non-
linear resonant coupling that occurs within triplets of ℓ = 1 g-
modes which result from the slow rotation of the star. The three
modes in the triplets are overstable and nonlinearly interact with
each other because slow rotation induces a near resonance re-
lation between their frequencies (see below). Wu & Goldreich
(2001), Wu (2001), Montgomery (2005), and other related stud-
ies do not treat this case and therefore cannot be helpful to de-
scribe and interpret what is occurring inside a rotationally split
triplet. The only available framework for this is the Buchler et al.
(1995, 1997) and Goupil et al. (1998) papers that explicitely de-
veloped a theory to describe this kind of interaction and that
should not be confused with various other works on nonlinear
interactions between modes. We point out that it does not mean
that the Wu & Goldreich (2001) mechanism cannot also occur
in KIC 08626021, but considering the linear growth rates ex-
pected for the observed modes (see Sect. 3.3 and Table 2), even-
tual limit cycles that lead to cyclic amplitude variations would
have timescales much longer (∼1000 yrs) than what is seen. This
could hardly be connected to the observed features and would
most likely not be noticeable in the available data that only cover
a time baseline of two years.

Going back to the configuration of interest involving rota-
tionally split triplets, rotation when treated to first order approx-
imation would lead to a strictly symmetric triplet that exactly
satisfies the above mentionned relationship. However, terms of
higher order are never exactly zero and a small asymmetry, dom-
inated by the second order term, always exists. This asymmetry
is, in fact, essential for driving the various resonant coupling be-
haviors. The second order effect of rotational splitting, δνt, that
matters can be estimated following the equation given in Goupil
et al. (1998):

δνt = 4Ckℓ

Ω2

ν0
, (1)
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Table 2. Mode identification and linear nonadiabatic growth rates, κ0, from the best seismic model of KIC 08626021.

Id. Frequency ℓ k Ckℓ κ
†

0 δνt Pm(th) δνo Pm(obs) D Comment
(µHz) (µHz) (day) (µHz) (day)

f2,0 5073.23411 1 3 0.426 2 × 10−13−7 × 10−12 0.0148 780 0.0064 ∼700 1 × 104−5 × 105 Hysteresis regime⋆

f1,0 4309.91490 1 4 0.456 2 × 10−12−4 × 10−11 0.0187 620 0.00034 ∼620 3 × 103−6 × 104 Intermediate regime
f3,0 3681.80287 1 5 0.469 1 × 10−11−2 × 10−10 0.0223 518 ... 263 7 × 102−1 × 104 Intermediate regime

f6 3294.36928 1 6 0.467 2 × 10−11−4 × 10−10 ... ... ... ... ...
f9 6981.26129 2 4 0.121 7 × 10−12−7 × 10−11 ... ... ... ... ...
f5 4398.37230 2 8 0.152 4 × 10−10−5 × 10−9 ... ... ... ... ...
f7 3677.99373 2 10 0.154 2 × 10−9−4 × 10−8 ... ... ... ... ...
f4 2658.77740 2 15 0.161 1 × 10−7−6 × 10−7 ... ... ... ... ...

Notes. (†) A range of values is given for the growth rate, reflecting calculations using various treatments and hypotheses on the efficiency of
convection (see text); (⋆) the frequencies are locked but the amplitudes are still modulated.

where Ckℓ is the first order Ledoux constant (∼0.5 for dipole
g-modes) and Ω = 1/Prot is the rotation frequency of the star.
Prot is estimated from the first order average separation, ∆ν, be-
tween the components of the triplets and its value is ∼1.75 days
for KIC 08626021 (see Sect. 2). An asymmetry can also be
evaluated directly from the measured frequencies of each triplet
component, simply from the relation

δνo = ν− + ν+ − 2ν0. (2)

According to the resonant AEs from Buchler et al. (1995) in
which they ignored the slight interactions between modes with
different ℓ and k, for the components in the ℓ = 1 triplet with fre-
quencies ν−, ν0 and ν+, the corresponding amplitudes A−, A0 and
A+ and phases φ−, φ0 and φ+ should obey the following relations

dA−

dt
= κ−A− + R−A2

0A+ cos(Φ − δ−)

−A−
(

q11A2
− + q12A2

0 + q13A2
+

)

(3a)

dA0

dt
= κ0A0 + R0A0A+A− cos(Φ + δ0)

−A0

(

q21A2
− + q22A2

0 + q23A2
+

)

(3b)

dA+

dt
= κ+A+ + R+A2

0A− cos(Φ − δ+)

−A+
(

q31A2
− + q32A2

0 + q33A2
+

)

(3c)

dΦ
dt
= δν − 2R0A−A+ sin(Φ + δ0)

+A0

(

R−
A+

A−
sin(Φ − δ−) + R+

A−

A+
sin(Φ − δ+)

)

, (3d)

where R−,0,+ and q[(1,2,3)(1,2,3)] are the nonlinear coupling coeffi-
cients associated with each component. Their values depend on
complex integrals of the eigenfunctions of the modes involved in
the coupling. The quantities κ−, κ0, and κ+ are the linear growth
rates of the m = −1, 0,+1 components, respectively.

The numerical solutions of the AEs associated with this res-
onance identify three distinct regimes (see the example provided
in Buchler et al. 1997). In order of magnitude, the occurrence of
these three regimes can be roughly quantified by a parameter, D,
defined as

D ≡
2πδν
κ0
· (4)

But the ranges for this parameter that defines the boundaries of
the various regimes depends somewhat on the values of the non-
linear coefficients in the real star.

The first predicted situation is the nonlinear frequency lock
regime in which the observed frequencies appear in exact reso-
nance (δν = 0) and the amplitudes are constant. In the case of
the DB white dwarf star GD 358, numerical solutions of the AEs
indicated that the range of the D parameter that corresponds to
this regime was between 0 and 20 (Goupil et al. 1998). However,
these values are probably not universal and depend on the spe-
cific properties of the mode being considered, in particular on
the value of the linear growth rate, κ0, of the central component
of the considered triplet.

When the triplet components move away from the resonance
center (δν � 0), they enter the so-called intermediate regime
where their amplitudes and frequencies are no longer stable and
modulations can appear in the pulsations. In this regime, peri-
odic variations can be expected with a timescale of

Pmod ∼
1
δν
≃

2π
κ0

1
D
, (5)

i.e., roughly the timescale that is derived from the inverse of the
frequency asymmetry of the triplet (dominated by the second
order effect of stellar rotation), which is connected to the inverse
of the growth rate of the pulsating mode by the D parameter
(Goupil et al. 1998).

Far from the resonance condition, the modes recover the
regime of steady pulsations with nonresonant frequencies. In the
nonresonant regime, the nonlinear frequency shifts become very
small and the frequencies are close to the linear ones.

We finally point out that, in addition to the above three
regimes, there exits a narrow hysteresis (transitory) regime be-
tween the frequency lock and intermediate regimes where the
frequencies can be locked while the amplitudes still follow a
modulated behavior.

3.2. Connection with the observed triplets

In light of the theoretical framework summarized above, we
point out that some of the behaviors observed in the two triplets
f1 and f2 and in the doublet f3 (an incomplete triplet) can be
quite clearly connected to nonlinear resonant couplings that oc-
cur in different regimes. We discuss each case below, but since
the linear growth rate of the modes is an important ingredient
to these resonance mechanism, we provide first some results of
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linear nonadiabatic pulsation calculations specifically tuned for
a model representing best the DBV star KIC 08626021.

3.2.1. Nonadiabatic properties of the observed modes

Following our re-analysis of the data obtained for KIC 08626021
with Kepler, the recognition that eight independent periods have
to be considered for a detailed asteroseismic study (and not only
seven as used in BK14) coupled with our present need for a real-
istic seismic model representation of the star to carry out a nona-
diabatic study of the mode properties led us to attempt a new
asteroseismic analysis for this object. The details of this seismic
study – a subject by its own that deserves a specific attention
– are fully reported in Giammichele et al. (in prep.). The seis-
mic solution that is obtained by Giammichele et al. (in prep.) for
KIC 08626021 constitutes a major improvement over any of the
fits proposed so far for this star, considering that it reproduces
the eight independent periodicities to the actual precision of the
Kepler observations. It is, therefore, an excellent reference for
our purposes.

We used this specific seismic model to estimate the theo-
retical linear growth rates of the fitted pulsations modes. These
computations were done by using two different nonadiabatic pul-
sation codes, one still working in the frozen convection (FC) ap-
proximation (Brassard et al. 1992; Fontaine et al. 1994; Brassard
& Fontaine 1997) and the other implementing a more realis-
tic time-dependent convection (TDC) treatement (Dupret 2001;
Grigahcène et al. 2005). In DA and DB white dwarf pulsators,
the superficial convection layer has an important contribution to
the driving of modes (through the sometimes called convective
driving mechanism). The positions of the theoretical instability
strips, in particular the blue edges, are particularly sensitive to
the adopted treatment (TDC vs. FC) and to the efficiency of con-
vection itself that controls the depths of the convection zone (the
α parameter in the Mixing Length Theory; see Van Grootel et al.
2012). These can also affect the growth rate of each individual
mode. Unfortunately, the oscillation periods have essentially no
sensitivity to the α parameter, which is therefore not constrained
by seismology. In this context, we explored various combina-
tions of α values for the two different nonadiabatic treatments
of the convection perturbation to estimate the typical range of
values one would expect for the growth rate of the modes.

The results of these nonadiabatic calculations are summa-
rized in Table 2 for the triplet (and doublet) components f1, f2,
f3, and, to be complete, for the other fitted frequencies as well.
All these modes can effectively be driven in this star and the
value of the growth rate κ0 mostly depends on the radial order of
the mode, strongly increasing when k increases. For the modes
of interest, we find that κ0 lies in the ranges 2× 10−13−7× 10−12,
2×10−12−4×10−11, and 1×10−11−2×10−10 for f2, f1, f3, which,
from the seismic solution of Giammichele et al. (in prep.),
are successive dipole modes of radial order k = 3, 4, and 5,
respectively.

3.2.2. Triplets in the intermediate regime

The periodic amplitude and frequency modulations that are ob-
served in the triplet at 4310µHz ( f1) immediately suggest that
this triplet is in the intermediate regime of the resonance (see
Fig. 7 again). Both the prograde and retrograde components
show a modulation of frequency and amplitude with a period
of ∼600 d. The central (m = 0) component of f1 has a fre-
quency and amplitude modulation that is perhaps slightly longer
(∼680 d; precision is low here as this is about the same timescale
as the duration of the observing campaign), but remains of the

same order. For comparison purposes, we provide in Table 2
the modulation timescale Pm(th) ∼ 1/δνt (Eq. (5)) expected
from the asymmetry, δνt, that is caused by the second order
correction to the rotational splitting. The latter is computed
with the Ckℓ value obtained from the reference model and the
value Prot = 1.75 days for the rotation period of the star. With
Pm(th) ≃ 620 days, the value obtained is sufficiently consistent
with the observed modulation period to support the idea that we
have indeed uncovered the right explanation for the behavior of
the components in this triplet. Interestingly, the asymmetry can
also be derived directly from the measured frequencies. Using
directly the values given in Table 1, the quantity δνo represents
the asymmetry for the frequencies averaged over the observation
time baseline. We find it to be very small, i.e., much smaller than
δνt, suggesting that even in this intermediate regime the nonlin-
ear interactions may already have forced the frequencies of the
triplet components to a locked position (where δν→ 0), on aver-
age (since the frequencies are still varying with time, oscillating
around their mean value).

According to the nonlinear resonant coupling theory, all the
three components in a triplet should have the same modulations,
both in amplitude and frequency. The slight difference between
the side components and the central component in terms of the
modulation period might be that the interaction of the modes in
the DBV star is more complex than the idealized case described
by the theory. It might also be a suggestion that the growth rates
for each component of the triplet are not similar (as is assumed
in this theoretical framework). The shape of the amplitude mod-
ulations of the retrograde component f1,− is not as smooth as the
other two components. This might be caused by the additional
coupling of the mode with f4 at 2659µHz (see Sect. 2.4.4 and
Fig. 12). Such a coupling that occurs outside the triplet is not
considered by Buchler et al. (1995) who neglects other interac-
tions with independent modes (i.e, the triplet is considered as an
isolated system).

The second structure that can also be associated with the in-
termediate regime is the doublet f3. We recall that the best in-
terpretation for this doublet is that it belongs to a ℓ = 1 triplet
with one of the side components (the low frequency one, f3,−)
missing, most likely because its amplitude is below the detection
threshold. The two remaining components show clear periodic
modulations of both frequencies and amplitudes. All variations
occur on a somewhat shorter timescale of Pm(obs) ∼ 263 days
(which means that they are fully resolved in our data set, con-
trary to the modulations of f1; see Sect. 2.4.3 and Fig. 11), ex-
cept for the frequency of the f3,− component whose modulation
period appear to be approximately twice that value (Pm(obs) ∼
550 days). For this f3 mode, the second order rotational splitting
correction δνt also suggests a shorter modulation timescale of
Pm(th) ∼ 518 days, which is comparable but not strictly identi-
cal. It is not possible in this case to evaluate δνo because of the
missing third component.

3.2.3. A triplet in the transitory hysteresis regime

The case of the f2 triplet at 5073 µHz (see Sect. 2.4.2 and Fig. 10)
is slightly different in that the frequencies are clearly stabilized
while the amplitudes are modulated. This suggests that f2 is
in another configuration, in between the frequency lock regime
(where both amplitudes and frequencies are locked and therefore
non-variable) and the intermediate regime. This configuration
could be linked to the narrow transitory hysteresis regime briefly
mentionned in Sect. 3.1. This finding shows that two neighbor
triplets can belong to different resonant regimes (frequency lock,
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narrow transition, intermediate or nonresonant), as it was also
noticed for the white dwarf star GD 358 (Goupil et al. 1998).

3.3. Linear growth rates and the D parameter

Table 2 also provides the estimated values for the parameter D
derived from Eq. (4) and from the values of δνt (Eq. (1)) and
κ0 (obtained from the seismic model of KIC 08626021; see
Sect. 3.2.1). We find that D lies in the ranges 3 × 103−6 × 104,
1 × 104−5 × 105 and 7 × 102−1 × 104 for the triplet f1, f2 and
f3, respectively. These values are at least one order of magnitude
larger than the range given in Goupil et al. (1998) for the inter-
mediate regime (D ∼ 9−25 for the white dwarf star GD 358).
This large difference is clearly caused by the linear growth rates
(κ0) adopted for the modes. Our values come from a detailed lin-
ear nonadiabatic calculation based on the seismic model. Since
the three triplets are fitted to low radial order consecutive modes
(k = 3, 4, and 5), their corresponding linear growth rates are gen-
erally small and differ substantially from one mode to the other
(κ0 increases rapidly with k). In contrast, Goupil et al. (1998)
roughly scaled the growth rate of the modes according to the
relationship A2

k
/A2

k
′ ∼ κk/κ

′

k
, assuming that all the coupling co-

efficients qR are of the same order of magnitude, leading to es-
timated values of κ0 ∼ 10−8. Values comparable to Goupil et al.
(1998) for the growth rate could be obtained only if the three
triplets were assigned to higher radial orders (k between 10 and
15 instead of 3 to 5). This would require a huge shift compared
to the current seismic solution which is clearly not permitted on
the seismic modeling side.

In the AEs formalism of Buchler et al. (1997), the solutions
admit three distinct regimes and one narrow transitory regime.
Those regimes are related to the distance from the resonance
center (i.e., δν = 0). The parameter D in this transitory regime
should be slightly smaller than in the intermediate regime, as this
transitory regime is closer to the resonance center. This means
that D should be smaller for f2, which is in this transitory regime,
compared to f1 and f3 that are in the intermediate regime. The
ranges given for the D values in Table 2 still permit this con-
straint to be roughly satisfied, but the overall larger D values for
f2 could also lead to a contradiction here.

We think, at this stage, that further quantitative comparisons
between theoretical considerations and the observed properties
of the modulations would require to solve the amplitude equa-
tions specifically for this case. This is however beyond the scope
of this paper, as no specific modeling tools for these nonlinear
effects is available to us at present. We emphasize that with a de-
tailed numerical solution of the nonlinear amplitude equations,
the unknown coupling coefficients could, in principle, be deter-
mined from fitting the observed frequency and amplitude mod-
ulations. These coefficients, if known, would then allow us to
derive the D parameter which is strongly related to the different
regimes of the nonlinear resonances. With the determination of
this parameter, a measurement of the growth rate of the oscilla-
tion modes would then possibly follow, leading for the first time
to an independent estimation of the linear nonadiabatic growth
rates of the modes and a direct test of the nonadiabatic pulsation
calculations.

4. Summary and conclusion

Frequency and amplitude modulations of oscillation modes have
been found in several rotationally split triplets that are detected
in the DB pulsator KIC 08626021, thanks to the high-quality
and long-duration photometric data obtained with the Kepler
spacecraft. These modulations show signatures that point toward

nonlinear resonant coupling mechanisms which occur between
the triplet components. This is the first time that such signatures
are identified so clearly in white dwarf pulsating stars, although
hints of such effects had already been found from ground-based
campaigns in the past (e.g., Vauclair et al. 2011).

Reanalysing in detail the nearly two years of Kepler pho-
tometry obtained for this star, we have detected 13 very clear
independent frequencies above our estimated secure detection
threshold (5.6σ; see Sect. 2.2 and Table 1), two frequencies that
appear to be linear combinations of other independent modes,
and two additional, but significantly less secured, frequencies
emerging just above 5σ the mean noise level. Overall, we find
that our secured frequencies are consistent with those reported
in BK14, but we somewhat differ in the interpretation of some
structures in the frequency spectrum.

Most notably, we find that three frequencies in the
3677−3686 µHz range, formerly identified as the components
of a single triplet by BK14, cannot be interpreted like this. We
conclude instead that one of the frequencies ( f7 in Table 1) is an
independent mode while the other two ( f3,0 and f3,+) form the
visible components of an incomplete triplet whose third compo-
nent is not seen. This has some implications for the seismic mod-
eling which should in fact include eight independent frequencies
and not only seven as in BK14. A new detailed seismic analy-
sis of KIC 08626021 based on these eight modes is provided by
Giammichele et al. (in prep.). The frequency spacings (observed
between the two components of f3 and the components of other
two well identified triplets, f1 and f2) indicate an average rota-
tion period of ∼1.75 days for KIC 08626021, i.e., in agreement
with the value given by BK14.

Also differing from BK14, we find that the two compo-
nents of the f3 doublet have a hyperfine structure with side-
lobes separated by 0.044µHz, which indicates a modulating phe-
nomenon that occurs on a long timescale of ∼263 days. In ad-
dition, the components that form triplets show long-term and
quasi-periodic frequency and/or amplitude modulations which
appear to be correlated, as they evolve either in phase or an-
tiphase. The triplet at 4310µHz ( f1) show signs of periodic mod-
ulation of both the frequencies and amplitudes with a timescale
of roughly 600 days with the side components evolving in phase,
while the central mode is in antiphase. The timescale appears
somewhat shorter (263 days) for the f3 doublet while the triplet
f2 shows only modulations in amplitudes (the frequencies ap-
pear stable during the observations) with a probable timescale of
∼700 days.

We show that these behaviors can be related to the so-called
nonlinear resonant coupling mechanisms that is expected to oc-
cur within rotationnally split triplets. The amplitude equations
(Buchler et al. 1997; Goupil et al. 1998) predict three main
regimes in which the triplet components may behave differently.
It appears that f1 and f3 can be linked to the so-called interme-
diate regime of the resonance where both the amplitude and fre-
quency of the modes should experience a periodic modulation.
We find that the timescales expected from the theory are quite
consistent with the observed periodicities of the modulations.
The triplet f2 shows a different behavior that can be associated
with a narrow transitory hysteresis regime between the interme-
diate regime and the frequency locked regime in which locked
frequencies and modulated amplitude solutions can coexist.

We also found correlated frequency and amplitude modula-
tions in a linear combination of frequencies which involves the
modes f1,− and f4, and the frequency f8. This configuration may
be related to parents/child mode interactions in pulsating stars,
f8 being either a combination frequency resulting from strong
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nonlinearities or, because the amplitude ratio is large, an eigen-
mode whose amplitude has been significantly enhanced by a res-
onant coupling phenomenon (see Breger & Montgomery 2014).
Further investigations need to be carried out to evaluate which
explanation is the most plausible.

As an additional step toward comparing more quantitatively
observations to the theoretical expectations, we estimated theo-
retical linear growth rates (see Table 2) of the triplet central com-
ponents using the seismic model provided by Giammichele et al.
(in prep.). We used two different nonadiabatic pulsation codes
for these computations: one working in the frozen convection ap-
proximation (Brassard et al. 1992; Fontaine et al. 1994; Brassard
& Fontaine 1997) and the other implementing a time-dependent
convection treatement (Dupret 2001; Grigahcène et al. 2005).
The modes of interest f2, f1 and f3 have growth rates that are
in the ranges 2 × 10−13−7 × 10−12, 2 × 10−12−4 × 10−11, and
1 × 10−11−2 × 10−10, respectively. With these values, we finally
estimate the parameter D (a key parameter that measures how
far away is the mode from the resonance center) which is found
in the range 3×103−6×104, 1×104−5×105 and 7×102−1×104

for the mode triplet f1, f2 and f3, respectively. These values are
significantly larger than those estimated in Goupil et al. (1998)
and need further investigation, but going beyond this would re-
quire to solve the amplitude equations for the specific case of
KIC 08626021, which is currently not possible.

We also want to emphasize the fact that the uncovered fre-
quency modulations, which are related to nonlinear coupling
mechanisms and that occur on timesscales long enough to be
difficult to detect but short compared to the secular evolution
timescale, can potentially impair any attempt to measure reliably
the effects of the cooling of the white dwarf on the pulsation pe-
riods. Measuring the changing rate of the pulsation periods in
white dwarf stars could indeed offer an opportunity to constrain
the neutrino emission physics (Winget et al. 2004; Sullivan et al.
2008). However, one should be extremely careful of the poten-
tial contamination of nonlinear effects, which may need to be
corrected first. Some independent modes in KIC 08626021 that
seem to be stable in frequency over much longer timescales and
that do not apparently couple with other modes could be good
candidates for measuring period rates of change. But nonlinear
interactions could still be affecting them on longer timescales
that we cannot detect with Kepler.

Finally, the observed periodic frequency and amplitude mod-
ulations that occur in the intermediate regime of the resonance
may allow for new asteroseismic diagnostics, providing in par-
ticular a way to measure for the first time linear growth rates of
pulsation modes in white dwarf stars. This prospect should mo-
tivate further theoretical work on nonlinear resonant mode cou-
pling physics and revive interest in nonlinear stellar pulsation
theory in general.
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Chapter 5

The pulsating hot B subdwarf star
KIC 10139564

This chapter is dedicated to the pulsating hot B sudwarf star KIC 10139564 whose multiplet
modes show clear amplitude and frequency variations 1. Those mode modulations could be the
evidence of nonlinear mode interactions associated with resonant mode coupling mechanisms.
We give a brief summary of the content in that article, and one can see details in the following
attached paper. KIC 10139564 is the only p-mode dominated hybrid sdB star observed by
Kepler. The former studies on this star in the literature are discussed in details in Section 3.2
and also in the attached paper, in particular on its frequency content based on the Kepler data.

5.1 The frequency content revisited
We analyzed the 38-month (∼ 1 147.5 days) data gathered on KIC 10139564 continuously

observed by Kepler, starting from BJD 2 455 276.5 and ending on BJD 2 456 424, with a duty
cycle of ∼ 89%. Following the analysis procedures provided in Section 3.3, the Lomb-Scargle
periodogram (LSP) shows two distinct regions with significant signal corresponding to p-modes
at high frequencies (highest amplitude is around 1%) and g-modes at low frequencies (highest
amplitude is around 500 ppm). We have detected 60 independent frequencies that come out
above the 5.6σ detection threshold. Twenty nine of these frequencies form three triplets, one
doublet, one quintuplet and two incomplete (` > 2) multiplets. We also detected another three
frequencies that appear as significant but are related to other frequencies through linear com-
binations. Five additional "forests" of frequencies are detected in the 5400–6400µHz region,
each contains many close peaks in a very narrow frequency range (the formal frequency reso-
lution is ∼ 0.01µHz). Another 14 frequencies were also prewhitened from the light curve, with
amplitudes between 5.0σ and 5.6σ, which, we suspect, are real pulsations. Our well-secured
extracted frequencies agree well with the independent analysis of Baran & Østensen (2013), but
we detected a few more low-amplitude frequencies because the data that we considered here
span over about one more year. The complicated structures of five "forests" of frequencies were
not further investigated here, but were discussed in Baran et al. (2012). We point out that our
extracted frequencies may differ in amplitude compared with the work of Baran & Østensen
(2013) because some of these frequencies have variable amplitudes, as indicated by the broaden
structures of the frequencies in the LSP.

1. The results have been published on Astronomy & Astrophysics, 594, A46, 2016 : Signatures of nonlinear
mode interactions in the pulsating hot B subdwarf star KIC 10139564 ; Zong, W. ; Charpinet, S. ; Vauclair, G.
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5.2 Amplitude and frequency modulations
We concentrate on the six multiplets that include three triplets T1, T2 and T3, one doublet

D1, one quintuplet Q1 and a likely ` = 4 multiplet M1 (see Table 2 in the attached paper).
Interestingly, three of these multiplets (Q1, M1, and T1) are p-modes, while the others (T2, D1,
and T3) involve g-modes. We also examine three linear combination frequencies (C1) and their
large amplitude ratios. The sLSPs’s filtering window here is chosen to be 200-d wide with a
time step of 20 days, which is optimal for the case of KIC 10139564. The entire light curve
was divided into 32 time intervals, each containing 9-month of data except for the last three
intervals at the end of the observations. This allows us to obtain precise values for the averaged
amplitudes and frequencies in each interval.

The triplet T1 near 5760µHz shows clear amplitude and frequency variations (Fig. 4). We
find that the two side components in T1 show quasi-periodic modulations in frequency and
evolve in antiphase. Moreover, their frequencies gradually approach toward each other, as well
as toward to the central component. After extracting the long-term trend of the frequency va-
riations, we determined quasi-sinusoidal variations of the remaining modulations with a similar
period of ∼ 570 days for the three components (Fig. 5). The frequencies appear to be stable
in the triplet T2 near 316µHz, while, two components display amplitude variations (Fig. 6),
particularly for the largest amplitude (m = +1) component whose amplitude increases from
∼ 400 ppm to ∼ 600 ppm. The components forming the triplet T3 near 519µHz have stable
frequencies and amplitudes (Fig. 7), which is further illustrated in Fig. 8. The doublet D1 near
394µHz is very similar to the T2 triplet, stable frequencies and variable amplitudes (Fig. 9). We
determined a period of ∼ 1100 days for the amplitude modulations of the two components, as
illustrated by the best-fitting sinusoidal functions to the data. Moreover, the amplitude of the
two components evolve almost in antiphase. The quintuplet Q1 near 5287µHz whose compo-
nents show different kinds of amplitude and frequency variations (Fig. 10). The (m = 0, ± 2)
components show significant frequency variations, while, the other modes have rather stable fre-
quencies. In contrast, the amplitudes of all the five modes vary with patterns that cannot clearly
be connected to periodic modulations. We note that the frequency variations of the m = −2 and
m = +2 components and the amplitude modulations of the m = −2 and m = −1 components
are roughly in antiphase. The five components in the incomplete multiplet M1 near 5413µHz
show significant frequency and amplitude variations (Fig. 11). We find that a long-term drifted
trend occurs between the two side components, which may be comparable to that observed in
T1.

In addition to the above multiplets, we also focus on the interesting narrow frequency region
near 6076µHz where three structures (f23, f35 and f74) show amplitude and frequency modu-
lations (Fig. 12). These frequencies are in fact related to components of the T1 and T2 triplets
through linear combinations, f23 ∼ f1 + f11, f35 ∼ f3 + f21, and f74 ∼ f3 + f11. Interestingly,
we note that the frequency and amplitude variation pattern of f23 is similar to the variations
observed for the mode f1. This similarities also exist between the frequencies f35 and f2. The
peak f74, for its part, shows a rather large frequency variation covering up to ∼ 0.1µHz.

5.3 Connections with nonlinear resonant couplings
These observed modulations obviously cannot be related to any instrumental effects, the

evolutionary effects in sdB stars, the presence of orbiting companions, and the magnetic activi-
ties on the stellar surface, as mentioned in Section 4.3. Instead, we propose that nonlinear mode
interactions can account for the various observed modulations. The nonlinear theory has been
thoroughly discussed in Section 1.4.

102



The periodic modulations in the T1 triplet suggest that T1 is in the intermediate regime of
the triplet resonance. We recall that the periods ∼ 550 days and ∼ 600 days for the remained
short-term frequency variations of the side components and the central one, respectively, cor-
respond to a frequency mismatch of δω ∼ 0.02µHz in this triplet, which is comparable to the
maximum extent of the observed frequency asymmetry (from 33 measurements independently).
The quintuplet Q1 also shows amplitude and frequency variations that may be associated with
the intermediate regime. However, we cannot estimate timescales for the complex modulations
(possibly irregular patterns) in this multiplet. We also note that the connection of Q1 with
the intermediate regime is based on the assumption that nonlinear five-mode interactions has
mainly three distinct regimes, since no theoretical exploration has been done for this five-mode
case, yet. Another case may be connected with the intermediate regime : the multipletM1 which
also shows complex amplitude and frequency variations. The timescale cannot be determined
in this multiplet. This multiplet M1 could be the siege of even more complex resonant coupling
interactions than the quintuplet Q1, since there are six detected components, with at least three
components missing. The triplet T2 shows modulated amplitude and constant frequencies that
is the configuration linked to the narrow transitory hysteresis regime that is between the in-
termediate regime and frequency locked regime. The doublet D1 may also be in this regime as
it shows a configuration similar to T2. The case of T3, definitely different from the above mul-
tiplets, shows stable frequencies and amplitudes, which suggests T3 is in the frequency locked
regime where frequencies should also be equidistant. Indeed, we find that the observed frequency
asymmetry, δω = 0.0008µHz, that is less than the measured error 0.0011µHz, is consistent with
no asymmetry (exact resonance). In brief summary, we have found various mode behaviors oc-
curring in the multiplets in KIC 10139564. Those behaviors can be related to different regimes
expected from amplitude equations of triplet resonance.

The amplitude and frequency variations of C1 have strong correlations with that of the T1
components. The large frequency variations suggest that C1 may correspond to resonant mode
coupling rather than simple linear combination frequencies. Moreover, the amplitude ratios are
37 and 85 for f23 ∼ f1 + f11 and f35 ∼ f3 + f21, respectively, that is significantly higher than
the normal ratios in sdB stars. We note that the low amplitude frequency, f74, varies on a range
of ∼ 0.01µHz. This is possibly a real mode, with a frequency around 6076.58 − 6076.69µHz,
which first interacts with the frequency sum f2 + f39 ∼ 6076.59µHz, then with the frequency
sum f3 + f11 ∼ 6076.66µHz. We note that all the involved frequencies are the components of
triplets T1 and T2, expected to be overstable modes. Therefore, the amplitude and frequency
modulations of C1 are the results of nonlinear direct three-mode resonance. This finding suggests
that the components forming a triplet can also interact with the other mode outside the triplet
and the triplet resonant system cannot be simply treated as an isolated system, thus leading to
a more complex pattern of mode behaviors.

The D parameter is near zero for the locked triplet T3, as expected from the AEs (Sec-
tion 1.4.3). However, we find that the D-value for the other triplets T1 and T2 may reflects
more their linear growth rates. These two triplets have two different growth rates because that
rate for p- and g-modes is substantially different (Charpinet 1999; Fontaine et al. 2003). The
observed D-values for these two triplets differ somewhat from the prediction by the nonlinear
AEs exploration. We recall that this difference in D-values are also observed in the DBV star
KIC 08626021 (Chapter 4). This further suggests that the nonlinear behaviors not only depend
on the magnitude of D, but also on the specific coupling coefficients for each specific mode (Bu-
chler et al. 1995). The coupling coefficients, in principle, could be extracted from the observed
amplitude and frequency modulations (Buchler et al. 1995), which eventually provide a way to
measure the linear growth rates of these pulsation modes.
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5.4 Summary and conclusion
The sdB star KIC 10139564 is the second compact target that was thoroughly investigated

from the Kepler photometry within our project, aiming at uncovering the mechanisms res-
ponsible for amplitude and frequency modulations of the oscillation modes. In this star, six
multiplets show various characters of mode behaviors that suggests nonlinear mode interactions
occurring between the involved modes under resonant conditions. The observed modulations
whose periods are consistent with the predictions for resonant coupling mechanisms. However,
we found a difference between the observed and theoretical D parameters in terms of the value
corresponding different regimes. This particularly needs further investigations, e.g., to obtain
the nonlinear coefficients in AEs for the involved modes. Furthermore, some of the involved
modes seem to be able to participate in different types of resonance, which may lead to more
complex mode behaviors.

The observed frequency modulations likely induced by nonlinear mode interactions could
challenge any future attempts to measure the evolutionary effects on the pulsation periods in
pulsating sdB stars. To obtain a robust measurement of the rate of period change, the nonli-
near effects should be eliminated beforehand. We finally emphasize that the observed periodic
modulations occurring in the intermediate regime of the triplet resonance may allow for new
asteroseismic diagnostics, providing in particular a way to measure for the first time linear
growth rates of pulsation modes in hot B sudwarf stars. This prospect should motivate further
theoretical work on nonlinear resonant mode coupling physics and revive interest in nonlinear
stellar pulsation theory in general.
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ABSTRACT

Context. The unprecedented photometric quality and time coverage offered by the Kepler spacecraft has opened up new opportunities
to search for signatures of nonlinear effects that affect oscillation modes in pulsating stars.
Aims. The data accumulated on the pulsating hot B subdwarf KIC 10139564 are used to explore in detail the stability of its oscillation
modes, focusing in particular on evidences of nonlinear behaviors.
Methods. We analyzed 38 months of contiguous short-cadence data, concentrating on mode multiplets induced by the star rotation
and on frequencies forming linear combinations that show intriguing behaviors during the course of the observations.
Results. We find clear signatures that point toward nonlinear effects predicted by resonant mode coupling mechanisms. These cou-
plings can induce various mode behaviors for the components of multiplets and for frequencies related by linear relationships. We
find that a triplet at 5760 µHz, a quintuplet at 5287 µHz and a (ℓ > 2) multiplet at 5412 µHz, all induced by rotation, show clear
frequency and amplitude modulations which are typical of the so-called intermediate regime of a resonance between the components.
One triplet at 316 µHz and a doublet at 394 µHz show modulated amplitude and constant frequency which can be associated with a
narrow transitory regime of the resonance. Another triplet at 519 µHz appears to be in a frequency-locked regime where both fre-
quency and amplitude are constant. Additionally, three linear combinations of frequencies near 6076 µHz also show amplitude and
frequency modulations, which are likely related to a three-mode direct resonance of the type ν0 ∼ ν1 + ν2.
Conclusions. The identified frequency and amplitude modulations are the first clear-cut signatures of nonlinear resonant couplings
occurring in pulsating hot B subdwarf stars. However, the observed behaviors suggest that the resonances occurring in these stars usu-
ally follow more complicated patterns than the simple predictions from current nonlinear theoretical frameworks. These results should
therefore motivate further work to develop the theory of nonlinear stellar pulsations, considering that stars such as KIC 10139564 now
offer remarkable testbeds to do so.

Key words. techniques: photometric – stars: variables: general – stars: individual: KIC 10139564

1. Introduction

Hot B subdwarf (sdB) stars are helium core burning objects that
populate the so-called extreme horizontal branch (EHB). They
are expected to have a mass around 0.47 M⊙ and are character-
ized by a very thin hydrogen-rich residual envelope containing
at most ∼0.02 M⊙. For this reason, they remain hot and compact
throughout all their helium core burning evolution, with effec-
tive temperatures, Teff , and surface gravities, log g, ranging from
22 000 K to 40 000 K and from 5.2 to 6.2, respectively (Heber
2009; Fontaine et al. 2012).

The presence of pulsations in some sdB stars make them
good candidates for probing their interior with the technique
of asteroseismology. A first group of nonradial sdB pul-
sators with periods of a few minutes was theoretically pre-
dicted by Charpinet et al. (1996) and effectively discovered by
Kilkenny et al. (1997). These pulsators, now referred to as the
V361 Hya stars, show low-order, low-degree pressure (p-)modes
that are driven by a κ-mechanism induced by the partial ion-
ization of iron-group elements occurring in the “Z-bump” re-
gion and powered-up by radiative levitation (Charpinet et al.
1996, 1997). Long period oscillations of ∼1−4 h were later
discovered by Green et al. (2003), forming another group of

sdB pulsators known as the V1093 Her stars. The latter show
mid-order gravity (g-)modes driven by the same mechanism
(Fontaine et al. 2003). Hybrid pulsators that show both p- and
g-mode oscillations simultaneously have also been reported
(e.g., Schuh et al. 2006). Tight seismic constraints have indeed
been obtained from the measured frequencies using both types
of sdB pulsators, in particular based on high-quality photometric
data gathered from spaceborne telescopes (e.g., Charpinet et al.
2011; van Grootel et al. 2010). However, the reason behind the
apparent variability of some oscillation modes in sdB stars,
already noticed from repeated ground based campaigns (e.g.,
Kilkenny et al. 2007), has remained poorly understood.

The temporal variation of oscillation modes in pulsating sdB
stars is beyond the scope of the standard linear nonradial stel-
lar oscillation theory in which eigenmodes have a stable fre-
quency and amplitude (Unno et al. 1989). These behaviors must
be studied within a nonlinear framework to interpret the mod-
ulations. In particular nonlinear resonant mode coupling effects
are expected to affect some oscillation modes, as noted, for ex-
ample, in the helium dominated atmosphere white dwarf vari-
able (DBV) star GD 358 (Goupil et al. 1998). Different types
of resonant coupling have been investigated within the frame-
work of the amplitude equation (AE) formalism since the 1980’s

Article published by EDP Sciences A46, page 1 of 19



A&A 594, A46 (2016)

(e.g., Buchler & Goupil 1984), among them the ν0 ∼ ν1 + ν2 res-
onance (Dziembowski 1982; Moskalik 1985) and the 2:1 reso-
nance in Cepheid stars (Buchler & Kovacs 1986). The AE for-
malism was then extended to nonadiabatic nonradial pulsations
in Eulerian and Lagrangian formulations by Goupil & Buchler
(1994) and van Hoolst (1994), respectively. A theoretical explo-
ration of specific cases of nonradial resonances was developed
in Buchler et al. (1995, 1997), including notably the resonance
occurring in a mode triplet that is caused by slow stellar rotation
and which satisfies the relationship ν+ + ν− ∼ 2ν0, where ν0 is
the frequency of the central m = 0 component. However, these
theoretical developments based on AEs have since considerably
slowed down, in part due to the lack of clear observational data
to rely on.

The launch of instruments for ultra high precision photom-
etry from space has changed the situation, making it now pos-
sible to capture amplitude and/or frequency modulations occur-
ring on timescales of months or even years that were difficult
to identify from ground-based observatories. It is however from
ground based data that Vauclair et al. (2011) proposed for the
first time that resonant couplings within triplets could explain
the long-term variations, both in amplitude and frequency, seen
in several oscillation modes monitored in the GW Virginis pul-
sator PG 0122+200, through successive campaigns.

The observation of a multitude of pulsating stars, including
sdB and white dwarf stars, by the Kepler spacecraft has open up
new opportunities to identify and characterize the mechanisms
that could modulate the oscillation modes. Kepler monitored a
105 deg2 field in the Cygnus-Lyrae region for around four years
without interruption, thus obtaining unprecedented high qual-
ity photometric data for asteroseismology (Gilliland et al. 2010).
These uninterrupted data are particularly suited for searching
long-term temporal amplitude and frequency modulations. In the
context of white dwarf pulsators, for instance, Zong et al. (2016,
hereafter Z16) found that the DBV star KIC 08626021 shows
clear signatures of nonlinear effects attributed to resonant mode
couplings. In this star, three rotational multiplets show various
types of behaviors that can be related to different regimes of
the nonlinear resonant mode coupling mechanism. In particular
some amplitude and frequency modulation timescales are found
to be consistent with theoretical expectations. This finding sug-
gests that the variations of some oscillation modes in sdB stars
may also be related to nonlinear resonance effects. It is in this
context that we decided to search clues of similar nonlinear phe-
nomena involving mode interactions in pulsating sdB stars.

Eighteen sdB pulsators have been monitored with Kepler
(see Østensen et al. 2014 and references therein). In this paper,
we focus on one of them, the star KIC 10139564, which was
discovered in quarter Q2.1 and then continuously observed from
Q5.1 to Q17.2. A preliminary analysis based on one month of
short cadence data originally showed that KIC 10139564 is a
V361-Hya type (rapid, p-mode) sdB pulsator featuring also a
low-amplitude g-mode oscillation (Kawaler et al. 2010). With
extended data, Baran et al. (2012) detected up to 57 periodicities
including several multiplets attributed to the rotation of the star.
These multiplets are characterized by common frequency spac-
ings, both for the p- and g-modes, indicating that KIC 10139564
has a rotation period of 25.6 ± 1.8 d. These authors did not find
any radial-velocity variations from their dedicated spectroscopy
and derived the atmospheric parameter values Teff = 31 859 K
and log g = 5.673 for this star. An interesting finding concerning
KIC 10139564 is that two of the identified multiplets may have
degrees ℓ greater than two, a possibility further investigated by
Baran & Østensen (2013). The detection of several multiplets in

this star continuously monitored for more than three years makes
it a target of choice for studying eventual nonlinear resonant
mode couplings in sdB stars.

In this study, we show that several multiplets in
KIC 10139564 have indeed amplitude and frequency
modulations suggesting nonlinear resonant mode couplings,
which constitutes the first clear-cut case reported for sdB
pulsators, so far. In Sect. 2, we present the thorough analysis
of the frequency content of the Kepler photometry available
on KIC 10139564, including our analysis of the frequency and
amplitude modulations identified in several multiplets and linear
combination frequencies. In Sect. 3, we recall some theoretical
background related to nonlinear resonant mode couplings,
focusing mainly on two types of resonances. The interpretation
of the observed modulations which may relate to nonlinear
resonant mode couplings is discussed in Sect. 4. The summary
and conclusion are then given in Sect. 5.

2. The frequency content of KIC 10139564 revisited

2.1. The Kepler photometry

The pulsating sdB star KIC 10139564 was observed by Kepler
in short-cadence (hereafter SC) mode during quarter Q2.1 and
from Q5.1 to Q17.2 (i.e., until the spacecraft finally lost its sec-
ond inertia reaction wheel and stopped its operations). Results
based on parts of these data have already been published in the
literature (e.g., Baran et al. 2012; Baran & Østensen 2013). we
obtained the light curves through the Kepler Asteroseismic Sci-
ence Consortium (KASC)1. These data were processed through
the standard Kepler Science Processing Pipeline (Jenkins et al.
2010). For our purposes, we do not further consider the “short”
(one month) light curve of Q2.1 which is well disconnected from
the main campaign and would introduce a large and detrimental
gap for our upcoming analysis. This leaves us with a nearly con-
tiguous 38-month light curve starting from BJD 2 455 276.5 and
ending on BJD 2 456 424 (which spans ∼1147.5 days), with a
duty circle of ∼89%.

The full light curve was constructed from each quarter “cor-
rected” light curves, which most notably include a correction of
the amplitudes taking into account contamination by nearby ob-
jects (this correction estimates that ∼83.2% of the light comes
from KIC 10139564). Each quarter light curve was individually
detrended to correct for residual drifts by performing a sixth-
order polynomial fit. Then, data points that differ significantly
from the local standard deviation of the light curve were removed
by applying a running 3σ clipping filter. Note that the latter op-
eration decreases slightly the overall noise level in Fourier space,
but has no incidence on the measured frequencies.

The fully assembled light curve of KIC 10139564 is shown
in the top panel of Fig. 1 while the bottom panel expands
a 0.8-day portion of the data. Low-amplitude multi-periodic
oscillations dominated by periodicities of a few minutes are
clearly visible. Their presence is confirmed in the correspond-
ing Lomb-Scargle periodogram (LSP, Fig. 2; Scargle 1982). The
LSP shows two distinct regions with significant signal corre-
sponding to p-modes at high frequencies and g-modes at low
frequencies. This identifies KIC 10139564 as a hybrid pulsat-
ing sdB star (Schuh et al. 2006) whose oscillations are however
largely dominated by p-modes. The formal frequency resolution
achieved with these data is ∼0.010 µHz.

1 http://astro.phys.au.dk/KASC
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Fig. 1. Top panel: condensed representation of the full Kepler light
curve of KIC 10139564 (Amplitude as the residual relative to the mean
brightness intensity of the star vs time in Barycentric Julian Date) cov-
ering from Q5.1 to Q17.2 (∼1147.5 days). Bottom panel: close-up view
showing 0.8 days of the Kepler light curve by slices of 0.08 days. At
this scale the oscillations are clearly apparent.

2.2. Frequency extraction

A dedicated software, Felix (Frequency Extraction for
LIghtcurve eXploitation) developed by one of us (S.C.), was
used to first extract the frequency content of KIC 10139564
down to a chosen detection threshold. The latter was established
following the same method as in Z16 (see their Sect. 2.2), lead-
ing also in the present case to a conservative 5.6σ criterion (in
practice, we searched down to ∼5σ if a frequency is suspected
to be part of a multiplet; see below).

The extraction method is a standard prewhithening and non-
linear least square fitting technique (Deeming 1975), which
works with no difficulty in the present case. The code Felix
greatly accelerates and eases the application of this procedure,
especially for treating very long time-series obtained from space
such as CoRoT and Kepler (Charpinet et al. 2010, 2011).

We provide in Table A.1 (see Appendix) a list of all the ex-
tracted frequencies with their fitted attributes (frequency in µHz,
period in second, amplitude in percent of the mean brightness,
phase relative to a reference time t0, and signal-to-noise ratio)
and their respective error estimates (σf , σP, σA, and σPh). For
convenience, because in this study we focus on a particular sub-
set of the observed frequencies, we repeat some of these infor-
mation in Table 1 for the relevant modes. The “Id.” column in
both tables uniquely identify a detected frequency with the num-
ber indicating the rank by order of decreasing amplitude.

We have detected 60 clear independent frequencies that
comes out well above the 5.6σ detection threshold (Table A.1),
of which 29 frequencies consist of three triplets, one dou-
blet, one quintuplet and two incomplete multiplets with ℓ > 2
(Table 1). We also detect another three frequencies that appear
as significant but are linked to other frequencies through linear

combinations. Five additional “forests” of frequencies, each con-
taining many close peaks in a very narrow frequency range, are
detected in the 5400−6400 µHz region. We also prewhitened
14 frequencies whose amplitudes are above 5.0σ but below
5.6σ which, we suspect, are real pulsations. Our well-secured
extracted frequencies agree well with the independent analysis
of Baran & Østensen (2013), but we detect a few more low-
amplitude frequencies because the data that we consider here
cover about one more year. We do not investigate further these
“forests” of frequencies (G1–G5, see Table A.1) that show very
complicated structures. These were discussed in Baran et al.
(2012). We point out that our extracted frequencies may differ in
amplitude compared with the work of Baran & Østensen (2013)
because some of these frequencies have variable amplitudes.

2.3. Error estimates on frequencies and amplitudes

Before proceeding further in our analysis, we briefly discuss our
quantitative evaluation of the uncertainties associated with the
measured frequencies and amplitudes given in Tables 1 and A.1.
The reliability of these error estimates is particularly important
when it comes to discuss amplitude and frequency variations
with time, in particular to assess if these are significant or not.

With Felix, errors are estimated following the formalism
proposed by Montgomery & Odonoghue (1999), with the partic-
ularity, however, thatσA, the error on the amplitude of a mode, is
measured directly in the Lomb-Scargle periodogram. A window
around each frequency is chosen and the median value of the am-
plitudes in that frequency range defines σA. The relations given
in Montgomery & Odonoghue (1999) are then used to compute
the other errors, in particular σf , the error on the measured fre-
quency. In order to test that this procedure is correct and does
not largely under or overestimate the true errors, we conduct two
Monte Carlo experiments.

We first construct an artificial light curve covering about
200 days (similar to the time baseline of each light curve pieces
considered in the next subsection) with the same SC-mode sam-
pling provided by Kepler in which we add white random gaus-
sian noise. We further inject in this light curve 1000 sinusoidal
signals with the same amplitude (S/N ∼ 160) but of frequency
increasing by steps of ∼8.2 µHz per signal. In practice, a ran-
dom frequency shift of a few tenth µHz is performed on each
injected frequency in order to reduce the number of harmon-
ics and linear combinations. The generated time series is then
analyzed with our code Felix that extracts and measures each
signal and evaluates the uncertainties associated to the mea-
sured frequencies and amplitudes (σA and σf). Since the true
values of these quantities are perfectly known from the signals
we injected, the real distribution of the deviations between mea-
sured (prewhitenned) values and true values can be evaluated.
For that purpose, we define the frequency and amplitude devia-
tions normalized by their 1σ errors (as estimated with the code
Felix from the procedure described above), ∆ f = ( fpre− finj)/σf
and ∆A = (Apre − Ainj)/σA, where the subscripts indicate the
prewhitened value and the injected one, respectively. A variant
of this test is also performed by again injecting 1000 sinusoidal
signals, but this time with random amplitudes (instead of con-
stant ones) chosen in the S/N ∈ (5, 60) range. This second test
allows us to check also the reliability of our error estimates as a
function of amplitude, considering that σf in particular depends
on the mode S/N (σf increases when S/N decreases).

Figure 3 shows the results obtained in both cases. The
2D distributions of the frequency and amplitude devia-
tions are well confined within 3σ. Moreover, the associated
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Fig. 2. Lomb-Scargle periodogram (LSP; amplitude in % of the mean brightness vs frequency in µHz) of the Kepler light curve for KIC 10139564.
The represented range, up to the Nyquist frequency, covers the long-period g-mode and the short-period p-mode frequency domains. The region
between the two dashed vertical lines at 5200 and 6400 µHz is where peaks have the largest amplitudes. However, weaker peaks outside of this
particular region are present and are made visible by scaling up amplitudes by a factor of 20. The dashed horizontal line represents the 5.6σ
detection threshold (see text). Some well-known Kepler instrumental artefacts are present, but can easily be recognized.

Table 1. List of frequencies detected in KIC 10139564 on which we focus our analysis.

Id. Frequency σf Period σP Amplitude σA Phase σPh S /N † Comment
(µHz) (µHz) (s) (s) (%) (%)

Multiplet frequencies:
f39 315.579243 0.000566 3168.776214 0.005687 0.005851 0.000596 0.2492 0.0516 9.8 T2,−1
f21 315.820996 0.000219 3166.350599 0.002193 0.015155 0.000596 0.6107 0.0199 25.4 T2,0
f11 316.066440 0.000070 3163.891744 0.000702 0.047276 0.000596 0.2063 0.0064 79.3 T2,+1

f27 394.027385 0.000342 2537.894669 0.002202 0.009667 0.000594 0.2589 0.0312 16.3 D1,0
f32 394.289823 0.000397 2536.205455 0.002555 0.008323 0.000594 0.5123 0.0363 14.0 D1,+1

f34 518.900359 0.000437 1927.152262 0.001624 0.007526 0.000592 0.6648 0.0401 12.7 T3,−1
f28 519.151796 0.000352 1926.218898 0.001305 0.009351 0.000592 0.9059 0.0323 15.8 T3,0
f31 519.402391 0.000367 1925.289559 0.001360 0.008964 0.000592 0.5369 0.0337 15.2 T3,+1

f08 5286.149823 0.000053 189.173601 0.000002 0.064784 0.000614 0.6712 0.0047 105.4 Q1,−2
f10 5286.561766 0.000060 189.158861 0.000002 0.057105 0.000614 0.4356 0.0053 92.9 Q1,−1
f07 5286.976232 0.000038 189.144032 0.000001 0.088857 0.000614 0.1202 0.0034 144.6 Q1,0
f05 5287.391879 0.000019 189.129163 0.000001 0.179339 0.000615 0.3374 0.0017 291.8 Q1,+1
f06 5287.805883 0.000029 189.114355 0.000001 0.119329 0.000615 0.7941 0.0025 194.2 Q1,+2

f22 5410.701146 0.000234 184.818931 0.000008 0.014871 0.000627 0.9524 0.0203 23.7 M1,0
f67 5411.143448 0.000958 184.803824 0.000033 0.003637 0.000627 0.4591 0.0830 5.8 M1,0
f13 5411.597301 0.000136 184.788325 0.000005 0.025636 0.000627 0.6770 0.0118 40.9 M1,0
f15 5412.516444 0.000185 184.756944 0.000006 0.018812 0.000627 0.8925 0.0160 30.0 M1,0
f12 5413.389096 0.000084 184.727161 0.000003 0.041339 0.000627 0.4037 0.0073 65.9 M1,0
f19 5413.814342 0.000222 184.712651 0.000008 0.015718 0.000627 0.7225 0.0192 25.1 M1,0

f01 5760.167840 0.000005 173.606052 . . . 0.825132 0.000761 0.0744 0.0004 1084.9 T1,−1
f03 5760.586965 0.000008 173.593421 . . . 0.554646 0.000761 0.6388 0.0005 729.3 T1,0
f02 5761.008652 0.000007 173.580715 . . . 0.567034 0.000761 0.5845 0.0005 745.5 T1,+1

Linear combination frequencies C1:
f23 6076.234996 0.000252 164.575597 0.000007 0.014360 0.000650 0.7906 0.0210 22.1 f11 + f01
f35 6076.408232 0.000510 164.570905 0.000014 0.007091 0.000650 0.7821 0.0426 10.9 f21 + f03
f74 6076.650684 0.001120 164.564338 0.000030 0.003225 0.000650 0.5520 0.0937 5.0 f11 + f03

Notes. (†) The first subscript is the identity of the multiplet and the second one indicates the value of m. The m-values for the ℓ > 2 multiplet M1

are not provided, as the degree ℓ is not known.
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Fig. 3. Left panel: 2D distribution of the frequency and amplitude deviations between the prewhitened and the injected values for 1000 artificial
modes of constant amplitude. S/N denotes the signal-to-noise ratio of the injected signals and the deviations have been normalized by the 1σ error,
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for 1000 modes with random amplitudes. The injected modes are divided into three groups of S/N in the ranges [5, 15], (15, 25], and (25, 60],
respectively (represented by three different colors and symbols).

1D histograms show that for both quantities, the measured de-
viations closely follow the Normal Distribution, N(0, 1), plot-
ted as a red solid curve. Only a few data points fall outside the
[−3σ,+3σ] range (within which 99.73% of the measurements
should be for the normal distribution, N(0, 1)). This is the be-
havior we expect for an accurate determination of the error es-
timates, σA and σf , with the code Felix. Hence, these tests
demonstrate that error values derived in our frequency analysis
are robust.

2.4. Amplitude and frequency modulations

From now on, we concentrate our discussion on the six multi-
plets, which include three triplets T1, T2 and T3, one doublet
D1, one quintuplet Q1 and a likely ℓ = 4 multiplet M1 (see
again Table A.1). Interestingly, three of these multiplets (T2, D1,
and T3) involve g-modes, while the others (Q1, M1, and T1) are
p-modes. We also examine three linear combination frequencies
(C1). The fine structures of the multiplets are shown in the left
top panels of Figs. 4, 6, 7 and 9−11. The average frequency spac-
ing between the components of these well-defined, nearly sym-
metric multiplets is ∼0.25 µHz for the g-modes and 0.423 µHz
for the p-modes, thus suggesting that the g-modes are dipoles
(ℓ = 1) in a star rotating rigidly with a period of ∼26 days.

In order to investigate the time variability of these oscillation
modes and their relationships, we used our software Felix to
compute sliding Lomb-Scargle periodograms (sLSP) of the data
set. This method constructs time-frequency diagrams by filtering
in only parts of the data set as a function of time. We chose a fil-
ter window of 200-day width moved along the entire light curve
by time steps of 20 days. This ensures a good compromise, for
our purposes, between the frequency resolution (to resolve close
structures of peaks in each LSP), time resolution, and signal-
to-noise. The sLSP offers an overall view of the amplitude and
frequency variations that may occur for a given mode (see, e.g.,

the middle left panel of Fig. 4). As a complementary (and more
precise) technique, we also extracted the frequencies (through
prewhitening and nonlinear least square fitting) in various parts
of the light curve. The 38-month light curve of KIC 10139564
was divided into 32 time intervals, each containing nine months
of Kepler data (for the purposes of precision in the measure-
ments) except for the last three intervals at the end of the ob-
servations. This second approach provides a measure of the (av-
eraged) frequencies and amplitudes at a given time, along with
the associated errors (see, e.g., the right and bottom left panels
of Fig. 4).

Figure 4 shows the amplitude and frequency modulations
for the three components forming the triplet T1 near 5760 µHz.
As mentioned already, the top-left panel shows the triplet as
revealed by the full data set with components nearly equally
spaced in frequency. We note, however, that this spacing is not
strictly symmetric, with a difference (or “frequency mismatch”)
of 0.0026 µHz. Frequency variations with time are illustrated by
the sLSP diagram in the middle-left panel where the color scale
represents the amplitude of the modes. An expanded view cen-
tered on the average frequency of each component is then pro-
vided in the bottom-left panel while the amplitude behavior with
time for each component is shown in the right panel. The latter
two are obtained from prewhitening parts of the light curve as
described above.

From the sLSP diagram, we find that both the amplitudes and
frequencies have varied during the Kepler observations. These
variations are more clearly seen in the bottom-left and right pan-
els. The side components both show suggestions of a quasi-
periodic modulation in frequency and evolve in antiphase. We
also note a long timescale trend as the frequencies of the two side
components gradually approach toward each other, as well as to-
ward the central component. In order to filter out these trends, we
applied a parabolic fit to each component, leaving the remaining
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Fig. 4. Frequency and amplitude modulations in the T1 p-mode triplet near 5760 µHz. Top-left panel presents the fine structures of the well defined
triplet with near symmetric frequency spacings. The dashed horizontal line in red represents the 5.6σ detection threshold. Middle-left panel shows
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the measured amplitudes as a function of time obtained for each subset of data (see text for details). Note that the errors for each measurement is
smaller than the symbol itself.

signature of the quasi-periodic modulation of the frequencies
(see Fig. 5). In the process, we find that the two side components
had frequencies about 0.06 µHz closer to each other at the end of
the run compared to the beginning of the observations. Figure 5
shows that the data almost cover two cycles of the quasi-periodic
frequency variations. While clearly not strictly sinusoidal, al-
though not very far from it, if we fit the closest pure sine wave to
each curve, we find that all have a very similar (quasi-)period of
∼570 days. The variations for the side components (retrograde
and prograde modes) are clearly in antiphase. For the amplitude
variations, we also find suggestions of a quasi-periodic modu-
lation for the central and prograde components. The retrograde
mode for its part has a more regular amplitude evolution (in-
crease) during the course of the observations.

Figure 6 illustrates the amplitude and frequency modulations
for the g-mode triplet T2 near 316 µHz using the same presen-
tation as in Fig. 4. In this case, the triplet shows a very small
(but significant) asymmetry of 0.0036 µHz. The frequencies ap-
pear to be stable over the 38-month Kepler observations. The
amplitude is essentially constant for the retrograde (m = −1)
mode while the other two components display some variations.
The central one may show a small oscillatory behavior, but more
precise measurements would be needed to really confirm that
trend. The prograde (m = 1) mode has its amplitude rising con-
tinuously throughout the observations, from 400 ppm up to about
600 ppm.

The amplitude and frequency variations of the g-mode
triplet T3 near 519 µHz are shown in Fig. 7. In this triplet, which
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T1 triplet by applying a second-order polynomial fit. The solid curves
represent the best fits of one pure sine wave to the frequency modula-
tions. The associated formal errors for the periods and phases are also
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Fig. 6. Same as Fig. 4 but for the T2 g-mode triplet near 316 µHz.

is almost perfectly symmetric, the three components have stable
frequencies and amplitudes within the quoted uncertainties. This
stability is further illustrated with Fig. 8 that shows the scatter-
ing of the measured frequencies and amplitudes for these modes
from all the data chunks considered throughout the entire light
curve. Almost all measurements are indeed confined within 2σ
around their average values (and all are within 3σ). It is interest-
ing to note that the triplet T3 therefore has different characteris-
tics compared to the two triplets T1 and T2.

Figure 9 shows the amplitude and frequency modulations for
the g-mode doublet D1 near 394 µHz. The frequencies of each
component forming the doublet appear to be stable over the
38-month Kepler observations, while the amplitudes show very
suggestive indications of quasi-periodic variations. We find that
the amplitude modulations of the two components have very
similar periods, about 1100 days, as illustrated by the best-fit
sine waves to the data (the red solid curves in right panel of
Fig. 9). Hence the available Kepler data just cover about one cy-
cle of this variation, but it is remarkable that almost all the am-
plitude measurements match very closely the fitted sine curves.
This estimated period is almost twice the period of modulations
occurring in the main triplet T1. Moreover, we clearly see that
the amplitudes of the two components evolve almost in antiphase
during the observing run.

Figure 10 shows the amplitude and frequency modulations
for the p-mode quintuplet Q1 near 5287 µHz. In this complete
quintuplet, the m = ±2 modes and possibly the m = 0 cen-
tral component show significant frequency variations. The other
modes, with m = ±1, have frequencies which are rather stable
(with only marginal fluctuations) over the entire observation run.
In contrast, the amplitudes for all the modes in the quintuplet
vary with patterns that cannot clearly be connected to periodic
modulations, based on the available data. Of course, quasi peri-
odic modulations with a timescale longer than twice the present

Kepler observation cannot be ruled out. We also note that the
frequency variations of the m = −2 and m = +2 components and
the amplitude modulations of the m = −2 and m = −1 compo-
nents are roughly in antiphase during the observation.

Figure 11 shows the amplitude and frequency modulations
for the ℓ > 2 p-mode multiplet M1 near 5413 µHz. The ℓ-value
for this group of modes is not clearly assessed yet, but a plau-
sible interpretation is that it corresponds to an ℓ = 4 nonuplet
(Baran et al. 2012) with three undetected components and one
component barely visible in the LSP of the full data set (see top-
left panel of Fig. 11) but which is too low in amplitude to be stud-
ied in subsets of the light curve. Some of the frequencies and am-
plitudes of the five clearly visible modes in this multiplet show
significant variations during the 38 months of Kepler observa-
tion. In particular, the frequencies of the side components drifted
toward each other by ∼0.032 µHz from the beginning to the end
of the run. This trend may be comparable to that observed in
the side components of the T1 triplet (see Fig. 4). Moreover, the
same phenomenon also occurs for some modes observed in the
long-period-dominated sdB pulsator KIC 2697388 (M.D. Reed,
priv. comm.).

In addition to the six multiplets discussed above, we identi-
fied other possible multiplets in the data, such as six modes near
5571 µHz (see Table A.1), in which however most of the com-
ponents have amplitudes too low to be well studied in a time-
frequency analysis or by prewhitening shorter parts of the light
curve. We therefore do not consider them further in this work.

Beyond the multiplets generated by the rotation of the star,
we also focus on the interesting narrow frequency region near
6076 µHz where three structures ( f23, f35 and f74) show ampli-
tude and frequency modulations as illustrated in Fig. 12. These
frequencies are in fact related to components of the T1 and T2
triplets through linear combinations. We find that f23 ∼ f1 + f11,
f35 ∼ f3 + f21, and f74 ∼ f3 + f11. Interestingly, we note that
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Fig. 7. Same as Fig. 4 but for the T3 g-mode triplet near 519 µHz.
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the frequency and amplitude variation pattern of f23 is similar to
the variations observed for the mode f1. Similarities also exist
between the variations observed in f35 and f2. The peak f74, for
its part, shows a rather large frequency variation covering up to
∼0.1 µHz (the scales of these frequency variations are indicated
by the green shadowed region in the top panel of Fig. 12).

After this description of the various behaviors encountered,
we concentrate, in the following sections, on plausible theoret-
ical interpretations for the observed amplitude and frequency
modulations.

3. Resonant mode coupling and amplitude

equations

In this section, we recall the most natural theoretical back-
ground to understand the behavior of the modes forming the six
multiplets induced by stellar rotation. These are indeed prone to
develop nonlinear interactions through resonant mode couplings,

which is the mechanism that we ultimately support from our
present analysis. But before moving forward in discussing de-
tails on the nonlinear resonant coupling mechanism, we first
rule out several other possibilities as the cause of the observed
modulations, such as instrumental effects, binarity, stochastically
driven pulsations, or stellar “weather”.

Instrumental modulations can possibly occur, for example,
on a per quarter basis, such as a slightly varying contamination
from nearby stars that could affect the amplitude of the modes.
Such effects would however affect all frequencies similarly,
which is not what is observed with KIC 10139564 where the
modes show different types of behavior. Another effect related to
the instrument that could induce frequency and amplitude mod-
ulations is the slight shift of the Nyquist frequency associated
with the movement of the Kepler spacecraft in the Solar Sys-
tem barycentric reference frame. Fortunately, the multiplets that
we consider (with frequencies below 5761 µHz), are far away
from the Nyquist frequency limit (∼8496 µHz). Moreover, such
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Fig. 10. Same as Fig. 4 but for the Q1 p-mode quintuplet near 5287 µHz.

well-structured nearly equally spaced multiplets can obviously
not be the mirror reflected frequencies of signals occurring above
the Nyquist limit (Baran et al. 2012).

The presence of orbiting companions around compact stars
could also induce frequency variations. However, these should

occur in all frequencies and be correlated in phase, such as in the
sdB pulsator V391 Peg (Silvotti et al. 2007). The variations that
we find in several frequencies of KIC 10139564 are clearly not
correlated in phase. In addition, radial velocity measurements
from spectroscopy do not show any significant variation, thus
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Fig. 12. Frequency and amplitude modulations
of a group of linear combination frequencies C1
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of variation of these frequencies (see text for
details).

ruling out the presence of a stellar companion (Baran et al. 2012,
but for substellar objects, a higher precision would be needed to
exclude this possibility).

Stochastically driven pulsations by envelope convection have
long been observed in the Sun and solar-like stars. It has been
claimed in the past that stochastic oscillations could also occur

in some sdB pulsators, based on the observation that mode
amplitudes could vary from season to season (Kilkenny et al.
2010; Reed et al. 2007). Østensen et al. (2014) recently an-
nounced that stochastic pulsations were found in the sdB star
KIC 2991276, in which the amplitude and phase of the modes
vary substantially and irregularly on a timescale of a month.
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However, the mechanism responsible for the oscillations in sdB
stars, a well identified κ-effect involving iron-group elements
(Charpinet et al. 1997; Fontaine et al. 2003), is very different in
nature from the stochastic driving occurring in the convective
envelope of solar-like stars. Such a mechanism would indeed
hardly be efficient in sdB stars that have radiative envelopes, ex-
cept may be for a very narrow convective layer generated by
the accumulation of iron in the Z-bump region (the latter being
however extremely weak). Beyond these theoretical considera-
tions, we find in the case of KIC 10139564 that several mode
behaviors, for example, the frequencies in the triplet T1 and the
amplitudes in the doublet D1, show correlations that would be
difficult to account for with a stochastic driving mechanism and
that essentially rule out this interpretation.

Changes in the background physical state of the star such
as possibly induced by magnetic cycles could also be invoked
for explaining amplitude and frequency modulations. Magnetic
cycles indeed have an impact on the frequencies of p-modes ob-
served in the Sun and lead to small frequency drifts that corre-
late in time with tracers of the solar surface activity (see, e.g.,
Salabert et al. 2015, and references therein). However, there is
no clear observational evidence of stellar activity on the surface
of sdB stars which, again, have very stable radiative envelopes
and are not known to be magnetic. Cycles comparable to those
observed in solar-like stars are therefore unlikely to be found in
sdB stars. Moreover, such a mechanism, or more generally a phe-
nomenon modifying the physical state of the star on a timescale
of months could hardly account for the observed modulations
in KIC 10139564 that show very different modulation behaviors
from mode to mode, while a global change in the star would
affect all modes similarly. Consequently, we also rule out this
possibility in the present case.

3.1. Triplet resonance induced by slow stellar rotation

We hereafter propose that nonlinear resonant coupling mecha-
nisms could be a natural explanation for the observed modu-
lations in KIC 10139564. Resonant interactions between modes
may indeed result in amplitude and frequency variations occur-
ring on timescales of weeks, months, and even years.

In the present context, we limit ourselves to the type of res-
onances described in Buchler et al. (1995, 1997) involving lin-
ear frequency combinations ν1 + ν2 ∼ 2 ν0. More specifically,
we focus on a particular case where dipole (ℓ = 1) modes are
split by slow rotation and form a nearly symmetric triplet (thus
following the above relationship between the frequencies of the
components). We also consider the three-mode couplings of the
form ν1 + ν2 ∼ ν0, which corresponds to the so-called di-
rect resonances or parametric instabilities (Dziembowski 1982;
Wu & Goldreich 2001).

We first recall some basic theoretical background relative
to resonances in mode triplets created by stellar rotation. We
emphasize that our focus on this particular mechanism is ob-
viously motivated by the specific configuration of the modes ob-
served in KIC 10139564, most of which are identified as ℓ = 1
rotationally split triplets. We also point out that this type of non-
linear resonance has recently been strongly suggested to explain
the modulations of the g-modes triplets in the DB white dwarf
KIC 08626021 (Z16). It is therefore the most natural effect that
one could think of in the present case. The AEs formalism could
also, in principle, be extended to multiplets of degree ℓ > 1 at the
expense of solving a larger set of coupled amplitude equations

(Buchler et al. 1995). However, such development has yet to be
done, which is beyond the scope of our present paper. The latter
would be needed for KIC 10139564 in order to fully interpret the
several multiplets with ℓ > 1 that show variations. The behavior
for more complex ℓ > 1 multiplets may indeed differ from the
simpler (better documented) ℓ = 1 triplet case, although we ex-
pect some similarities in general.

Details on the theory of nonlinear resonant couplings for
three-mode interactions, such as in ℓ = 1 triplet, can be found
in (Buchler et al. 1995, 1997, Z16). We summarize below the
most relevant aspects (for our purposes) of the theory. In par-
ticular, The quantity δν (which we thereafter call the frequency
asymmetry), measuring the departure from exact resonance (that
would occur if, e.g., triplets were perfectly symmetric), is in fact
essential for driving the various resonant mode coupling behav-
iors. Contributions to the frequency asymmetry in a given triplet
generally involves higher order effects of stellar rotation on the
pulsation frequencies (Dziembowski & Goode 1992; Jones et al.
1989), but could also have additional origins, such as the pres-
ence of a weak magnetic field2. We do not however consider
further that possibility since no evidence of significant mag-
netism exists for sdB stars (Petit et al. 2012; Landstreet et al.
2012).

The rotationally split frequencies up to the second order,
which should be the main contribution to the frequency asym-
metry, are given by the formula

νm − ν0 = (1 −Ckℓ)mΩ + Dkℓ

m2Ω2

ν0
, (1)

where the Ckℓ coefficient is the well-known first order Ledoux
constant, Dkℓ involves a complex integration of the eigenfunc-
tions of the modes, and Ω = 1/Prot is the rotation frequency
of the star (expressed in Hertz). The value of Ckℓ is typi-
cally ∼0.5 for dipole g-modes when approaching the asymp-
totic regime, while it is usually very small (Ckℓ ≪ 1) for
p-modes. The second order coefficient Dkℓ is roughly 4Ckℓ

for dipole g-modes (Dziembowski & Goode 1992; Goupil et al.
1998) but can vary significantly from one p-mode to another
(Dziembowski & Goode 1992; Saio 1981). The rotation period
of KIC 10139564, Prot, can be estimated from the average of the
frequency separations between the components of the multiplets
using the first order approximation ∆ν = (1 − Ckℓ)Ω. We find
Prot ∼ 26 days for KIC 10139564 (see Sect. 2). An “observed”
frequency asymmetry can also be evaluated directly from the
measured frequency of each triplet component, simply from the
relation

δνo = ν− + ν+ − 2ν0. (2)

We note at this stage that δνo may actually differ from asym-
metries expected from linear developments (such as discussed
above) because nonlinear effects can modify the frequencies of
the modes.

The numerical solutions of the AEs for mode interactions in
triplets mainly reveal three distinct regimes of resonances (see,
e.g., Buchler et al. 1997, and in Z16). The first state is the “fre-
quency lock” regime where all the components in the triplet
have constant frequencies and amplitudes and the asymmetry
tend to be zero (triplets become perfectly symmetric). The op-
posite configuration is the nonresonant regime where the triplet

2 The asymmetry would be proportional to the strength of magnetic
field |B|2 and the frequency of each component of the triplet (except the
central, m = 0, one) would be shifted in the same direction (Jones et al.
1989).
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configuration is likely predicted by the linear theory of stellar
oscillations. Between the two, there is an intermediate regime in
which all the modes in the triplet show modulated frequencies
and amplitudes which can be periodic, irregular, or even chaotic.

In order of magnitude, the occurrence of these three regimes
is roughly linked to a parameter D defined as (see Goupil et al.
1998)

D ≡
2πδν
κ0
, (3)

where κ0 is the linear growth rate of the m = 0 mode in the triplet
(a nonadiabatic quantity). However, the ranges of values for this
parameter which define the different regimes depend somewhat
on the values of the nonlinear coefficients in the real star. D is
also a quantitative indicator that measures how far the triplet
modes are away from the exact resonance center (D = 0). We
nonetheless summarize some of the properties encountered in
previous studies as a function of D:

– In the frequency-locked regime (δν → 0), the D-parameter
roughly corresponds to values in the range ∼0−1 according
to the AEs formalism. However, in the case of the white
dwarf star GD 358, Goupil et al. (1998) found that D could
be up to 20 and still correspond to a frequency-locked situ-
ation. These ranges, therefore, are somewhat dependent on
the specific properties of the mode being considered, in par-
ticular on the scale of their linear growth rate, κ0.

– The intermediate regime occurs when the triplet components
move away from the resonance center (δν , 0). In this sit-
uation, if periodic variations indeed affect the considered
modes, these can be expected to have a modulation timescale
of

Pmod ∼
1
δν
≃

2π
κ0

1
D
, (4)

that is, roughly the timescale derived from the inverse of the
linear (i.e., unperturbed) frequency asymmetry of the triplet
dominated by the second order effect of stellar rotation (fol-
lowing Eq. (2)). This timescale is also connected to the in-
verse of the growth rate of the oscillation mode through the
D parameter (Goupil et al. 1998).

– The modes recover a configuration of steady pulsations with
the nonresonant regime when the involved frequencies are
such that the modes are now far from the resonance condition
(D ≫ 1). In this regime, the nonlinear interaction between
modes is very weak and nonlinear frequency shifts become
very small. Consequently, the mode frequencies are close to
the linear ones.

We finally point out that in addition to the above mentioned three
main regimes, a narrow hysteresis (transitory) regime exists be-
tween the frequency-locked and intermediate regimes in which
the frequencies can be locked (i.e., constant), while the ampli-
tudes still have a modulated behavior (Buchler et al. 1997).

3.2. Three mode resonance of the type ν0 ∼ ν1 + ν2

In this section, we recall some properties of nonlinear interac-
tions between oscillations modes not within triplets but whose
frequencies are close to a resonance condition such that ν0 ∼
ν1 + ν2. Frequencies with such a relationship could also result
from simple linear combination frequencies, that is, exact sum
or difference of frequencies (where the “child” frequency is not

a true eigenmode), which may be related to nonlinearities in
the mixing process affecting the depth of a convective zone in
the outer layer of a pulsating star (Wu 2001), or to nonlinear-
ities in the flux response induced by the surface geometrical
and temperature distortions triggered by the propagating waves
(Brassard et al. 1995).

A useful quantity, R, connecting the observed amplitude of
the combination frequency and the amplitudes of its “parent”
modes, has been defined as (van Kerkwijk et al. 2000; Wu 2001)

R =
A0

A1 · A2
, (5)

where the A0, A1, and A2 are the amplitudes of the frequen-
cies ν0, ν1, and ν2, respectively. This ratio R is typically less
than ten for simple linear combinations related, such as, to non-
linearities in the flux response. Consequently, in pulsating sdB
stars, the “child” frequency resulting from this effect usually
has a very low amplitude compared to its “parent” frequencies.
In the large amplitude and brightest known pulsating sdB star,
Balloon 090100001, where such linear combination frequencies
have been unambiguously observed, the amplitude ratios are 3.9,
3.7, 3.0 and 5.5 for the linear combination frequencies of four
p-modes and one g-mode f1 + f2, f1 + f3, f1 + f4 and f1 − fB

in B-band photometry (Baran et al. 2008), respectively. In the
present work, we however find that the identified linear combina-
tion frequencies C1 have amplitude ratios in the 10−100 range,
that is, one order of magnitude larger than typical linear com-
bination frequencies observed so far. One possible interpretation
for the high amplitude ratios is that the frequency sum/difference
is near the resonance condition of ν0 ∼ ν1+ν2 and its amplitude is
boosted significantly by the resonance (e.g., Dziembowski 1982;
Breger & Montgomery 2014).

The AEs formalism treating the ν0 ∼ ν1 + ν2 type of reso-
nance, including the parametric instability and the direct reso-
nance (see below), is similar to the case of a triplet resonance
(e.g., see the amplitude equations in Buchler et al. 1997, Z16).
According to Dziembowski (1982), the three-mode interactions
can be described by the following coupled system

dA0

dt
= κ0 A0 + i

q

2ν0I0
A1 A2 exp(−iδνt), (6a)

dA1

dt
= κ1 A1 + i

q

2ν1I1
A0 A∗

2
exp(−iδνt), (6b)

dA2

dt
= κ2 A2 + i

q

2ν2I2
A0 A∗

1
exp(−iδνt). (6c)

Where A∗
j

is the complex conjugate of the amplitude A j (A j =

A jeiφ j ), I j is the mode inertia, and κ j is the linear growth rate
for the three involved frequencies. The quantity q is a nonlinear
coupling coefficient, and δν is the frequency mismatch relative
to pure resonance defined by the relationship δν = ν0 − ν1 − ν2.

The nonlinear Eqs. (6a), (6b) and (6c) cannot be solved by
analytical methods, but solutions for the equilibrium state (all
time derivatives set to zero) can be obtained. In particular, the
equilibrium solution leads to an amplitude ratio

R =
q

2ν0κ0I0
≡

A0

A1 · A2
· (7)

The stability of the equilibrium-state depends on the growth
(damping) rates and the frequency mismatch (e.g., Dziembowski
1982).
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In a three-mode direct resonance, the child mode is damped
and has a frequency very close to the sum of frequencies of
its two parent modes which are linearly driven (unstable). The
child mode amplitude is very sensitive to its mode inertia, lin-
ear growth rate, and to the nonlinear coupling coefficient (see
Eq. (7)). This near resonance mode can grow up to a very large
amplitude if the quantity q/κ0I0 is sufficiently large. The cou-
pling coefficient q follows from a complex integration of the
coupled mode eigenvectors and its explicit form can be found
in Dziembowski (1982). It may be possible, in principle, to cal-
culate this coefficient provided that the mode eigenfunctions are
known. However, this would require that a precise seismic solu-
tion is found for KIC 10139564, which still has to be obtained.
To test the theory of a three-mode direct resonance, we would
also need to know the linear damping (growth) rate and the in-
ertia of the damped mode, eventually corrected by the effect
of slow stellar rotation (e.g, see Carroll & Hansen 1982). How-
ever, the situation could be simplified in the case of unstable
equilibrium state where the amplitude and frequency of the child
mode should exactly follow those of its parent modes, even if the
growth rates and coupling coefficients are unknown. Fortunately,
the equilibrium state of three-mode direct resonances seems al-
ways unstable because the growth (damping) rates cannot sat-
isfy the stability criteria of the Hurwitz theorem (Dziembowski
1982). Therefore, each frequency and amplitude measurement
could be used as one independent test of these particular nonlin-
ear couplings. Furthermore, this also provides a method to sepa-
rate the child mode from their parent modes according to the am-
plitude and frequency relationships (e.g., Breger & Montgomery
2014).

The parametric instability is another form of three-mode
resonant coupling that could destabilize a pair of stable
daughter modes from an overstable (driven) parent mode
(Wu & Goldreich 2001). In this mechanism, the overstable
parent mode gains energy through the driving engine (a
κ-mechanism in our case) and the two independent damped child
modes dissipate energy. This configuration would lead the sys-
tem to reach limit cycles under certain conditions (e.g., if δν < κ1
or κ2, Wu & Goldreich 2001; Moskalik 1985). During such limit
cycles, the amplitude of the parent mode first increases slowly
on a timescale of κ−1

0 , then decreases rapidly on a timescale of
κ−1

1,2. A the same time, the amplitude of the daughter modes fol-
low the opposite behavior. In sdB stars, we point out that the
linear growth rate of the parent mode κ0 would be usually far
smaller than the damping rate of the daughter modes κ1,2. We
further mention that the nonlinear interactions between the par-
ent/child modes would also affect their periods as a result of
phase variations. The nonlinear frequency shift could be of the
order of a few µHz in some extreme conditions (Wu & Goldreich
2001; Moskalik 1985). We point out that a parametric instabil-
ity can also occur in multiplets. In such circumstances, different
m components that forms the multiplet may share some com-
mon damped daughter modes. Having common daughter modes
involved in different parametric resonances, that is, involving
different parent overstable components, will obviously induce
more complex dynamic modulations than simple periodic vari-
ations that could be expected from pure three-mode only inter-
actions. We indeed point out that both the triplet resonance that
was explored by Buchler et al. (1995, 1997) and the three-mode
ν0 ∼ ν1 + ν2 resonances that were investigated by Dziembowski
(1982), Moskalik (1985) and Wu & Goldreich (2001) are treated
as isolated systems, i.e., assuming only interactions between
the three involved modes and ignoring the possible influence of

other modes. Modes with the highest amplitudes are more likely
to efficiently couple with different resonances, such as in a mul-
tiplet resonance and in a ν0 ∼ ν1 + ν2 resonance.

4. Connections with mode behaviors seen

in KIC 10139564

In light of the theoretical background summarized in the last sec-
tion, we tentatively interpret some of the behaviors described in
Sect. 2 for the frequencies listed in Table 1. These indeed show
striking similarities with patterns expected for nonlinear reso-
nant mode interactions that occur in various regimes.

4.1. Multiplets in the intermediate regime

The first connection is for the modes belonging to multiplets that
show quasi-periodic amplitude and frequency modulations. In
particular, the p-mode triplet near 5760 µHz (T1) shows indica-
tion that it could be evolving within the so-called intermediate
regime of a triplet resonance. We recall (see Sect. 2; Fig.5) that
the frequencies of the two side components in this triplet, be-
sides showing a long term drift, vary quasi-periodically in an-
tiphase with a timescale of ∼550 days. The central component
of T1, for its part, has a frequency modulation which also vary,
possibly with a slightly longer period of ∼600 days. For com-
parison purposes, the modulation timescale is expected to be re-
lated to the inverse of the linear (i.e., unperturbed) frequency
asymmetry in the triplet (see Eq. (4)), which therefore should be
δν ∼ 0.02 µHz. Assuming that this frequency asymmetry orig-
inally comes from the second order effect of slow rotation, and
given the average rotation frequency of the star (∼0.42 µHz, cor-
responding to ∼26 days), the Dkℓ coefficient in Eq. (1) can be
estimated to ∼200 for that mode. This value is plausible be-
cause the Dkℓ coefficient is found to vary over a large range
for dipole p-modes (Dziembowski & Goode 1992; Saio 1981).
However, to compute Dkl in this specific case and compare with
this value, a precise seismic solution for KIC 1013956 has to be
worked out, but is not available yet. It has to be noted that the
frequency asymmetry measured from the averaged frequencies
given in Table 1 is only 0.0026 µHz that is one order of mag-
nitude lower than the value derived from the modulation fre-
quency (∼0.02 µHz). We note, however, since the frequencies are
varying with time, that the maximum extent of the observed fre-
quency asymmetry is ∼0.02 µHz when considering the 33 mea-
surements independently (see Fig. 4). We point out that these
observed values (0.0026 µHz on average and ∼0.02 µHz for the
maximum asymmetry) are similar to those observed in the main
triplet of the DBV star KIC 08626021, which is also in the inter-
mediate regime (Z16). Nonlinear resonant interactions are bound
to perturb the linear frequencies of the modes, forcing them in
some cases to shift toward the exact resonance (obtained when
the system is locked). It is therefore not surprising to observe a
frequency asymmetry that can be significantly smaller than the
theoretical shift expected in the linear theory context.

In terms of amplitude modulations, the situation is bit less
clear as only the prograde component in T1 shows a quasi-
periodic modulation, with a timescale of ∼800 days, while, for
the other two components, particularly for the retrograde mode,
their amplitude variations appear somewhat irregular.

In addition to the frequency variations of T1 discussed above,
we note that the three components that form this triplet feature a
regular drift toward each other which, if nothing change, would
lead them to merge into one frequency on a timescale of ∼10 yr.
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Such a merging is of course not conceivable and what we ob-
serve is more likely a small fraction of a variation cycle occur-
ring on a timescale much longer than the duration of the Kepler
observations. This suggests that the triplet resonance is proba-
bly not the only mechanism that affects the stability of T1. This
added complexity may also explain the more erratic behavior of
the amplitude variations in this triplet. Quite notably, we indeed
find that all the components of T1 can be linked to other frequen-
cies forming linear combinations satisfying the conditions for a
three-mode resonance ν0 ∼ ν1+ν2. This will be further discussed
in Sect. 4.4.

The quintuplet Q1 also shows components with amplitude
and frequency variations (see Fig. 10) that may be associated to
the intermediate regime. In this case, however, we cannot esti-
mate timescales for the modulations which appear to have a more
complex behavior than the modulations detected in the T1 triplet
or, if we compare to other cases, in the triplets of the pulsat-
ing DB star KIC 08626021 (Z16). The averaged frequency mis-
match, δνo, for Q1 is about 0.0018 µHz. This could either be the
result of the nonlinear coupling mechanism locking the modu-
lated components close to the exact resonance, even if they are
in the intermediate regime (see the case of T1, as well as the
triplets in the DBV star KIC 08626021), or it could indicate that
the modulation timescale for Q1 is ∼17.6 yr (the inverse to δνo,
if their amplitudes have a periodic behavior). As there has been
no theoretical exploration of the nonlinear five-mode interaction
yet, the connection of Q1 with the intermediate regime is based
on the assumption that nonlinear five-mode interactions has also
mainly three distinct regimes. The coupled amplitude equations
for the five-mode resonance involve more terms in each AE and
the numerical solutions are more difficult to search for.

Another case may be connected with the intermediate
regime: the multiplet M1 which shows amplitude and frequency
variations (see Fig. 11). But, again, we cannot determine any
timescale for the complex modulations occurring in this mul-
tiplet. In that case, there is also a slow trend leading frequencies,
particularly for the most side components, to seemingly con-
verge. This trend is very similar to the slow variation observed in
the T1 triplet. It could possibly be a fraction of a variation cycle
with a much longer timescale than the duration of the observa-
tions, but more observations would be needed to confirm this
hypothesis. This multiplet M1 should be the siege of even more
complex resonant coupling interactions than the quintuplet Q1,
since there are six detected components, with at least three com-
ponents missing.

4.2. Triplets in the transitory regime

Another type of behavior encountered in our data can be linked
to the narrow transitory hysteresis regime which is between the
frequency lock and intermediate regimes. This state is character-
ized by stable frequencies but varying amplitudes. This is no-
tably observed in the g-mode triplet T2 (see Fig. 6). For this
triplet, the observed frequency mismatch is about 0.0036 µHz,
that is, very similar to the value measured for the T1 triplet (see
left-top panel of Figs. 4 and 6). We also point out that T2 may
couple with the p-mode triplet T1 through a three-mode reso-
nance ν0 ∼ ν1 + ν2, as discussed in Sect. 4.4.

The incomplete triplet D1 may also be associated to this tran-
sitory regime as it shows quasi-periodic amplitude modulations
and stable frequencies. Due to the missing component, we can-
not measure the frequency mismatch for this doublet. We note
that the AEs for the triplet resonance indicate that the modes
cannot be stable, i.e, there is no fixed-point solution, if one of

the visible modes forming the incomplete triplet is the central
(m = 0) component (Buchler et al. 1995). Thus, at this stage,
we may just fail to detect either the third component of the
triplet whose amplitude may be lower than the detection thresh-
old (meaning that the triplet is indeed in the narrow transitory
regime), or the nonlinear modulation of the frequencies, which
may be smaller in amplitude than our current precision (meaning
a doublet in the intermediate regime, as predicted by the AEs).

4.3. A triplet in the frequency-locked regime

The last case occurring in a different regime is the g-mode
triplet T3, which shows stable amplitudes and frequencies (see
Figs. 7 and 8). This suggests that T3 is in the configuration of the
frequency-locked regime where the triplet approaches the reso-
nance center, i.e., δν → 0 and both the frequencies and ampli-
tudes are constant. Indeed, we find that the observed frequency
asymmetry, δνo, is 0.0008 µHz (Fig. 7) for T3, which is less than
the measured error 0.0011 µHz. The triplet T3 is therefore ex-
actly (within measurement errors) at the resonance center, con-
trary to T1 and also T2 which has constant frequencies but a small
non-zero frequency mismatch.

In summary, the various behaviors encountered in the mul-
tiplets detected in KIC 10139564 seem to cover all the different
regimes expected in a context of resonant mode coupling in mul-
tiplets. This mechanism is therefore quite likely responsible, at
least in part, for the observed phenomena. In the following sec-
tion, we discuss another type of resonance, the ν0 ∼ ν1 + ν2
nonlinear interaction.

4.4. Three-mode resonance

In this section, we discuss the variations of a group of fre-
quencies C1, including f23, f35 and f74, that are involved in a
relationship ν0 ∼ ν1 + ν2. We find that the variations of these
frequencies have strong correlations with the variations of the
components in the triplet T1 (see Figs. 4 and 12). The large fre-
quency variations first suggest that the C1 frequencies corre-
spond to three-mode resonances rather than simple linear com-
bination frequencies. The result of prewhitening the frequencies
f23 and f35 (using the same method as for the multiplets) is
shown in Figs. 13 and 14, respectively. Most of the amplitude
and frequency measurements for f23 and f35 are exactly follow-
ing the variation of amplitude and frequency of the sums f1 + f11
and f3 + f21 within 1σ, respectively (see in particular the middle
and bottom panels of Figs. 13 and 14).

The amplitude ratio R is 37 and 85 for f23 ∼ f1 + f11 and
f35 ∼ f3 + f21, respectively. These values are significantly higher
than those observed for normal linear combination frequencies
in sdB stars (see the example given in Sect. 3.2). There is also
a possible true linear combination frequency in KIC 10139564
with the frequency f79 ∼ f1− f4 (see Table 2) which indeed has
a very low amplitude (signal-to-noise ratio of 5.1) and an ampli-
tude ratio R less than one. Thus, we propose that there should
be real pulsation modes near the position of the linear combina-
tion frequencies f1 + f11 and f3 + f21 and these modes had their
amplitudes boosted through a resonance. In the ν0 ∼ ν1 + ν2 res-
onance, the child mode indeed follows the behavior of its parent
modes (see, again, Figs. 13 and 14 and examples provided by
Breger & Montgomery 2014).

We note that another frequency, f74, is also in the region
near 6076 µHz, but has an amplitude too low to be monitored
over time using the prewhitening technique on subsets of the
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Fig. 13. Amplitude and frequency variations of the linear combination
frequency f23 = f1 + f11. Top panel: measured amplitudes as a function
of time obtained from each data subset (using the same method as for
multiplets). Middle panel: measured frequencies from each data subset
compared with the frequency sum f1 + f11, both as a function of time.
Bottom panel: observed amplitudes of f23 vs predicted amplitudes of
R× the product of f1 and f11 amplitudes (see Eq. (6) for the definition of
R). In both cases (frequency and amplitude comparisons), the measure-
ments are found to be within 1σ.

data. However, Fig. 12 still clearly shows that this frequency is
varying smoothly during the observation, from ∼6076.58 µHz
(the first half part of the run) to ∼6076.68 µHz (the second half
part). We speculate that there is possibly a real mode, with a fre-
quency around 6076.58−6076.69 µHz, which first interacts with
the frequency sum f2 + f39 ∼ 6076.59 µHz, then with the fre-
quency sum f3 + f11 ∼ 6076.66 µHz, because the influence from
the latter modes become stronger than the former ones during
the last half of the observation run, due to the amplitude of f3
increasing significantly in the second half of the Kepler time se-
ries. This, again, suggests that the C1 frequencies are really part
of ν0 ∼ ν1 + ν2 resonances instead of being simple linear combi-
nation frequencies.

All of the involved frequencies, f1,2,3,11,21,39, are the com-
ponents of the triplets T1 and T2. They are expected to be
overstable (driven) modes, thus meaning that they are involved
in a three-mode direct resonance and not a parametric resonance
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Fig. 14. Same as Fig. 13 but for the linear combination frequency f35 =

f3 + f21. Note that there are ten missing measurements for f21, including
the first nine data points, because the amplitudes were lower than 4σ.
The last data point is also not shown because of a large associated error,
this measurement being at the end of the data set.

which involves one overstable parent mode and two damped un-
stable daughter modes.

At this stage, it becomes natural to interpret the complex
variations observed in the components of T1 and T2 to be linked
with the fact that these modes are simultaneously involved in
two different types of resonances, that is, a triplet resonance and
ν0 ∼ ν1 + ν2 direct resonances. In this situation, the triplet res-
onance may be the dominating nonlinear interaction occurring
in the triplet, while the nonlinear coupling with the modes out-
side the triplet could strongly perturb the periodic amplitude and
frequency modulations expected if the triplets were pure iso-
lated systems. This shows that nonlinear mode interactions in
real stars are certainly more complex configurations than those
treated by current simplified theoretical approaches. Moreover,
since the T2 triplet is in the transitory regime, with frequencies
locked by the nonlinear coupling within the triplet, the nonlinear
interactions outside this triplet are therefore unable to destroy
this frequency locking, resulting in no long-term frequency vari-
ation as can be seen in the T1 triplet. Interestingly, the resonant
mode coupling theory predicts that a limit cycle (steady equilib-
rium state) may not be reached in the case of three-mode direct
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resonance (which is likely at work here as discussed above). The
evolution of this long-term frequency variation in T1, whether
the mode frequencies will further converge or eventually diverge,
and the evolution of T2, whether frequencies will remain con-
stant or the locked regime will eventually be broken, will need
further observation either from ground or by future space in-
struments currently in preparation such as TESS and PLATO
(Rauer et al. 2014; Ricker et al. 2014).

4.5. The D-parameter and further insight on the modulations

The value of the D-parameter, that defines how far the modes
are from the resonance center, is usually connected to the kind
of regime a multiplet is in when undergoing resonant mode in-
teractions. This D-value is in particular sensitive to the linear
growth rate of the oscillation modes (see again Sect. 3).

For the frequency-locked regime that is observed in
KIC 10139564 with the T3 triplet, D is near or exactly zero, as
predicted by the AEs (Buchler et al. 1995; Goupil et al. 1998).
The D-value for the other triplets T1 (δνo ∼ 0.0026 µHz) and
T2 (δνo ∼ 0.0036 µHz) may reflects more their linear growth
rates since, with very similar frequency mismatches, the two
triplets are found to be in different regimes. The growth rate val-
ues are indeed substantially different between p- and g-modes
(Charpinet 1999; Fontaine et al. 2003). Assuming the growth
rate for p-modes is of the order of 10−6 s−1 (Charpinet 1999),
the corresponding D value for the T1 triplet would be far less
than one, indicating that T1 should be in the frequency-locked
regime (Buchler et al. 1997; Goupil et al. 1998), but we find it to
be in the intermediate regime. We note however that this estimate
for the value of D is based on the measured frequency mismatch
which may not be representative of the unperturbed frequency
asymmetry that enters in the definition of D. The latter is likely
much larger (see Sect. 4.1), leading to a somewhat larger D-value
more in line with the observed regime of the resonance for T1.
The D-value for the g-mode triplet T2, for its part, could be much
larger than that of T1, considering the much smaller growth rates
of the ℓ = 1 g-modes (Fontaine et al. 2003). Extended ranges for
D were also found in the DBV star KIC 08626021 (Z16), where
the D-values for the triplets are at least two orders of magnitude
larger than those suggested in Goupil et al. (1998). This suggests
that the nonlinear behaviors not only depend on the magnitude of
D, but also on the specific coupling coefficients for each specific
mode (Buchler et al. 1995).

Further quantitative comparisons between the observed mod-
ulations and the theoretical framework would require to solve the
amplitude equations for the specific case of KIC 10139564. This
would require to calculate the coupling coefficients in the AEs,
which, in principle, could be extracted from the observed am-
plitude and frequency modulations (Buchler et al. 1995). With
these known coupling coefficients, one could then determine the
ranges of D-values related to each different regime of the nonlin-
ear resonance. A measurement of the growth rates of the oscil-
lation modes would then possibly follow with the determination
of this parameter, which may lead for the first time to an inde-
pendent estimation of the linear nonadiabatic growth rates of the
modes and a direct test of nonadiabatic pulsation calculations in
sdB stars.

5. Summary and conclusion

While studying the high-quality and long-duration photometric
data provided by the Kepler spacecraft on the pulsating sdB star

KIC 10139564, we have identified different patterns in the fre-
quency and amplitude modulations of the oscillation modes be-
longing to several rotationally split multiplets or linear combi-
nation frequencies. These modulations show signatures that can
be associated to nonlinear resonant mode coupling mechanisms
that could occur between the multiplet components themselves
and with other modes under certain conditions, that is, satisfy-
ing a ν0 ∼ ν1 + ν2 resonance relationship. This is the first time
that such signatures are quite clearly identified in pulsating hot B
subdwarf stars, and the second case reported so far for a compact
pulsator monitored with Kepler photometry (see Z16).

We first reanalyzed the 38-month of Kepler photometry ob-
tained for KIC 10139564, leading to the detection of 60 inde-
pendent frequencies above a secured detection threshold (5.6σ;
see Table A.1). Among these, 29 frequencies consist of three
triplets, one doublet, one quintuplet and two incomplete multi-
plets with ℓ > 2 (see Table 1). Another three detected frequencies
are linked to other frequencies through linear combinations. Five
additional groups of frequencies are found in the region between
5400 and 6400 µHz, which have very complicated structures. Fi-
naly, we also find 14 independent frequencies and two frequen-
cies satisfying linear combination relationships that could be real
as their amplitudes are between 5σ and 5.6σ above the noise. In
general, our well secured frequencies are in good agreement with
the former analysis from Baran et al. (2012). In this paper, we
particularly concentrated our study on six multiplets and three
linear combination frequencies observed near 6076 µHz.

We found different types of mode behaviors occurring in
the above mentioned frequencies. A “short timescale” quasi-
periodic amplitude and frequency modulations along with a slow
trend of the frequencies to convergence toward each other oc-
cur in the dominant p-mode triplet near 5760 µHz (T1). The
∼570-day quasi-periodic frequency modulation evolve in an-
tiphase between the two side components in this triplet. Mod-
ulated frequencies and amplitudes are also found in a quintu-
plet near 5287 µHz (Q1) and a (ℓ > 2) multiplet near 5412 µHz
(M1), but the modulations do not show a clear periodicity. One
triplet near 316 µHz (T2) has a distinct behavior from the above
mentioned multiplets, as it shows stable frequencies but vary-
ing amplitudes. A similar phenomenon occurs in a doublet
near 394 µHz (D1) which shows constant frequencies and an
∼1100 days periodic amplitude modulations. Another triplet at
518 µHz (T3) completely differs from all the above multiplets,
with constant amplitudes and frequencies throughout the whole
observation run. In addition, we also discovered amplitude and
frequency variations in three frequencies near 6076 µHz (C1)
that are linked to other independent frequencies through linear
combinations.

After ruling out various possible causes for the modulations,
we showed that these mode behaviors could be related to the dif-
ferent types of nonlinear resonances that should occur accord-
ing to the amplitude equation formalism. In particular, nonlin-
ear resonant couplings within a multiplet can lead to three main
regimes, all of which are possibly occurring in KIC 10139564.
The multiplets T1, Q1 and M1 can be associated with the in-
termediate regime of the resonance where the involved modes
have modulated amplitudes and frequencies. The triplet T2 and
doublet D1 have a different behavior that could be associated
to a narrow transitory regime in which the frequencies of the
modes can be locked (constant) while the amplitudes experience
modulations. The behavior of the triplet T3 is the unique case
found in this star that can be associated to the frequency lock
regime of the resonance, where both amplitudes and frequencies
are stable. In addition, the large amplitude ratios between the C1
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frequencies and their main parent modes, together with the large
variation of amplitude and frequency observed for these peaks,
suggest that C1 correspond to three-mode direct resonances. We
indeed found that the frequencies of C1 exactly follow the evolu-
tion of their main parent modes. Moreover, as the parent modes
of C1 are also the components of T1 and T2, we suggest part of
the complexity of the mode behaviors could be related to these
cross interactions between the various modes. In particular, the
slow variations occurring in T1 may be related to the ν0 ∼ ν1+ν2
resonance superimposed to the triplet resonance occurring be-
tween the components.

We emphasize that the observed frequency modulations
likely induced by nonlinear mode interactions could challenge
future attempts to measure the evolutionary effects on the os-
cillation mode periods in pulsating sdB stars. Compared to the
resonant variations taking place on timescales of years, the rate
of period change of the pulsations due to stellar evolution in
sdB stars is much longer, typically occurring on a timescale of
∼106 yr (Charpinet et al. 2002). Nonlinear modulations of the
frequencies can potentially jeopardize any attempt to measure
reliably such rates, unless they can be corrected beforehand.
These nonlinear modulations could also complicate the detec-
tion of exoplanets or stellar companions around sdB stars us-
ing the technique of measuring phase changes in the pulsations
(Silvotti et al. 2007). It should be possible however to distin-
guish between the two effects, considering that nonlinear cou-
plings may induce different behaviors on different modes, while
external causes such as an orbiting body should affect all modes
similarly.

Finally, we note that our analysis suggests that resonances
occurring in real stars, in which modes could be involved in two
or more types of different couplings, lead to more complicated
patterns than those predicted by current theoretical frameworks
which treat the modes only as isolated systems within one type of
resonance and ignore the nonlinear interactions that could occur
simultaneously outside of the system. This should motivate fur-
ther theoretical work to develop nonlinear stellar pulsation the-
ory for more precise predictions of the mode behaviors in pul-
sating stars in general.
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Appendix A: Additional table

Table A.1. List of frequencies detected in KIC 10139564.

Id. Frequency σf Period σP Amplitude σA Phase σPh S /N † Comment
(µHz) (µHz) (s) (s) (%) (%)

Multiplet frequencies:
f39 315.579243 0.000566 3168.776214 0.005687 0.005851 0.000596 0.2492 0.0516 9.8 T2,−1
f21 315.820996 0.000219 3166.350599 0.002193 0.015155 0.000596 0.6107 0.0199 25.4 T2,0
f11 316.066440 0.000070 3163.891744 0.000702 0.047276 0.000596 0.2063 0.0064 79.3 T2,+1

f27 394.027385 0.000342 2537.894669 0.002202 0.009667 0.000594 0.2589 0.0312 16.3 D1,0
f32 394.289823 0.000397 2536.205455 0.002555 0.008323 0.000594 0.5123 0.0363 14.0 D1,+1

f34 518.900359 0.000437 1927.152262 0.001624 0.007526 0.000592 0.6648 0.0401 12.7 T3,−1
f28 519.151796 0.000352 1926.218898 0.001305 0.009351 0.000592 0.9059 0.0323 15.8 T3,0
f31 519.402391 0.000367 1925.289559 0.001360 0.008964 0.000592 0.5369 0.0337 15.2 T3,+1

f08 5286.149823 0.000053 189.173601 0.000002 0.064784 0.000614 0.6712 0.0047 105.4 Q1,−2
f10 5286.561766 0.000060 189.158861 0.000002 0.057105 0.000614 0.4356 0.0053 92.9 Q1,−1
f07 5286.976232 0.000038 189.144032 0.000001 0.088857 0.000614 0.1202 0.0034 144.6 Q1,0
f05 5287.391879 0.000019 189.129163 0.000001 0.179339 0.000615 0.3374 0.0017 291.8 Q1,+1
f06 5287.805883 0.000029 189.114355 0.000001 0.119329 0.000615 0.7941 0.0025 194.2 Q1,+2

f22 5410.701146 0.000234 184.818931 0.000008 0.014871 0.000627 0.9524 0.0203 23.7 M1,0
f67 5411.143448 0.000958 184.803824 0.000033 0.003637 0.000627 0.4591 0.0830 5.8 M1,0
f13 5411.597301 0.000136 184.788325 0.000005 0.025636 0.000627 0.6770 0.0118 40.9 M1,0
f15 5412.516444 0.000185 184.756944 0.000006 0.018812 0.000627 0.8925 0.0160 30.0 M1,0
f12 5413.389096 0.000084 184.727161 0.000003 0.041339 0.000627 0.4037 0.0073 65.9 M1,0
f19 5413.814342 0.000222 184.712651 0.000008 0.015718 0.000627 0.7225 0.0192 25.1 M1,0

f25 5570.030091 0.000389 179.532244 0.000013 0.010056 0.000703 0.5938 0.0300 14.3 M2,0
f56 5570.484768 0.000964 179.517590 0.000031 0.004058 0.000703 0.8087 0.0744 5.8 M2,0
f61 5570.937140 0.001001 179.503013 0.000032 0.003913 0.000704 0.8254 0.0772 5.6 M2,0
f29 5571.393930 0.000421 179.488295 0.000014 0.009297 0.000705 0.5332 0.0325 13.2 M2,0
f43 5572.293674 0.000760 179.459314 0.000024 0.005168 0.000706 0.5854 0.0584 7.3 M2,0
f50 5572.728096 0.000902 179.445324 0.000029 0.004356 0.000707 0.5037 0.0693 6.2 M2,0
f45 5708.908076 0.000897 175.164845 0.000028 0.004648 0.000749 0.0571 0.0650 6.2 M2,0

f01 5760.167840 0.000005 173.606052 . . . 0.825132 0.000761 0.0744 0.0004 1084.9 T1,−1
f03 5760.586965 0.000008 173.593421 . . . 0.554646 0.000761 0.6388 0.0005 729.3 T1,0
f02 5761.008652 0.000007 173.580715 . . . 0.567034 0.000761 0.5845 0.0005 745.5 T1,+1

Independent frequencies:
f72 892.042910 0.000986 1121.022305 0.001239 0.003319 0.000588 0.6058 0.0909 5.6
f70 2212.606534 0.000942 451.955639 0.000192 0.003462 0.000586 0.0639 0.0872 5.9
f37 3540.459896 0.000514 282.449182 0.000041 0.006309 0.000583 0.3837 0.0478 10.8
f36 3541.431179 0.000477 282.371716 0.000038 0.006796 0.000583 0.4013 0.0444 11.7
f47 4064.355754 0.000719 246.041454 0.000044 0.004526 0.000585 0.4296 0.0667 7.7
f46 5048.744283 0.000729 198.069053 0.000029 0.004548 0.000596 0.9108 0.0664 7.6
f41 5049.709963 0.000610 198.031176 0.000024 0.005432 0.000596 0.6548 0.0556 9.1
f63 5052.604965 0.000879 197.917709 0.000034 0.003771 0.000596 0.5451 0.0800 6.3
f04 5472.861431 0.000007 182.719773 . . . 0.476915 0.000638 0.2824 0.0006 747.9
f42 5709.026672 0.000793 175.161207 0.000024 0.005254 0.000749 0.0777 0.0575 7.0
f53 5740.666960 0.001002 174.195787 0.000030 0.004168 0.000751 0.8817 0.0724 5.6
f49 5740.807435 0.000946 174.191525 0.000029 0.004411 0.000751 0.0263 0.0684 5.9
f50 5746.615392 0.000612 174.015474 0.000019 0.006881 0.000757 0.0989 0.0439 9.1
f18 5747.099099 0.000261 174.000828 0.000008 0.016157 0.000757 0.8738 0.0187 21.3
f17 5748.065581 0.000257 173.971571 0.000008 0.016414 0.000758 0.5427 0.0184 21.7
f16 5749.067189 0.000256 173.941262 0.000008 0.016476 0.000758 0.1319 0.0183 21.7

Notes. (†) The first subscript is the identity of the multiplet and the second one indicates the value of m. The m-values for two ℓ > 2 multiplets, M1

and M2, are not provided as the degree ℓ is not known.
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Table A.1. continued.

Id. Frequency σf Period σP Amplitude σA Phase σPh S /N † Comment
(µHz) (µHz) (s) (s) (%) (%)

f44 5840.820662 0.000903 171.208818 0.000026 0.004685 0.000761 0.7872 0.0645 6.2
f65 6057.645946 0.000970 165.080629 0.000026 0.003740 0.000652 0.2785 0.0815 5.7
f55 6057.688799 0.000876 165.079461 0.000024 0.004142 0.000652 0.9775 0.0736 6.3
f66 6106.662077 0.000977 163.755582 0.000026 0.003675 0.000646 0.6890 0.0822 5.7
f60 6757.710494 0.000838 147.979112 0.000018 0.003938 0.000594 0.1752 0.0767 6.6
f59 6758.215141 0.000835 147.968062 0.000018 0.003954 0.000594 0.1869 0.0764 6.7
f30 7633.720521 0.000360 130.997722 0.000006 0.009090 0.000589 0.1759 0.0332 15.4
f40 7634.190048 0.000592 130.989665 0.000010 0.005536 0.000589 0.3321 0.0546 9.4
f64 7634.677476 0.000873 130.981302 0.000015 0.003753 0.000589 0.1106 0.0805 6.4
f52 8118.752590 0.000768 123.171631 0.000012 0.004284 0.000591 0.3497 0.0705 7.2
f33 8119.248304 0.000436 123.164111 0.000007 0.007538 0.000591 0.4515 0.0400 12.7
f48 8496.107048 0.000733 117.700965 0.000010 0.004503 0.000594 0.8648 0.0744 7.6
f71 8496.293646 0.000973 117.698380 0.000013 0.003395 0.000594 0.0896 0.0934 5.7
f54 8615.236287 0.000795 116.073427 0.000011 0.004159 0.000594 0.5932 0.0727 7.0
f38 8616.169582 0.000539 116.060854 0.000007 0.006128 0.000594 0.7833 0.0498 10.3

Linear combination frequencies:
f23 6076.234996 0.000252 164.575597 0.000007 0.014360 0.000650 0.7906 0.0210 22.1 f11 + f01
f35 6076.408232 0.000510 164.570905 0.000014 0.007091 0.000650 0.7821 0.0426 10.9 f21 + f03
f74 6076.650684 0.001120 164.564338 0.000030 0.003225 0.000650 0.5520 0.0937 5.0 f11 + f03
f68 190.138219 0.000959 5259.331906 0.026527 0.003563 0.000614 0.2639 0.0847 5.8 f01 − f25
f79 287.306296 0.001081 3480.605932 0.013093 0.003075 0.000598 0.9190 0.0982 5.1 f01 − f04

Group frequencies:
f20 5471.730865 0.000230 182.757527 0.000008 0.015410 0.000637 0.9397 0.0196 24.2 G1
f14 5944.170986 0.000209 168.232038 0.000006 0.019127 0.000720 0.1222 0.0158 26.6 G2
f24 6001.472409 0.000273 166.625776 0.000008 0.013532 0.000664 0.2224 0.0223 20.4 G3
f26 6172.852132 0.000353 161.999669 0.000009 0.009980 0.000633 0.6961 0.0302 15.8 G4
f09 6234.713029 0.000058 160.392306 0.000001 0.062028 0.000648 0.9590 0.0072 95.7 G5
f51 6315.214679 0.000798 158.347744 0.000020 0.004312 0.000619 0.3510 0.0700 7.0 G6

Suspected frequencies:
f77 4061.893709 0.001051 246.190588 0.000064 0.003097 0.000585 0.9507 0.0974 5.3
f57 5838.962703 0.001063 171.263296 0.000031 0.003980 0.000761 0.6543 0.0758 5.2
f62 5841.187712 0.001114 171.198059 0.000033 0.003796 0.000761 0.7222 0.0796 5.0
f58 5841.581605 0.001068 171.186516 0.000031 0.003960 0.000761 0.1969 0.0762 5.2
f83 345.231189 0.001151 2896.609673 0.009656 0.002878 0.000596 0.8214 0.1050 4.8
f84 345.597339 0.001193 2893.540798 0.009988 0.002777 0.000596 0.3501 0.1088 4.7
f78 345.976695 0.001077 2890.368090 0.008999 0.003076 0.000596 0.4839 0.0982 5.2
f69 6106.245918 0.001014 163.766742 0.000027 0.003544 0.000646 0.6171 0.0852 5.5
f75 6418.164502 0.001068 155.807786 0.000026 0.003178 0.000610 0.7474 0.0950 5.2
f76 6758.687089 0.001049 147.957730 0.000023 0.003148 0.000594 0.5124 0.0959 5.3
f80 6997.352981 0.001084 142.911184 0.000022 0.003003 0.000586 0.5103 0.1005 5.1
f73 7633.957044 0.001007 130.993663 0.000017 0.003251 0.000589 0.2483 0.0930 5.5
f81 8117.287298 0.001114 123.193866 0.000017 0.002953 0.000591 0.7915 0.1022 5.0
f82 8377.175646 0.001119 119.371975 0.000016 0.002937 0.000591 0.8589 0.1040 5.0
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Conclusions and Perspectives

This thesis reports on a detailed investigation of the mode behaviors in compact pulsators
based on the unprecedented high-quality and contiguous photometric data from the Kepler
spacecraft. We identify the first clear-cut (quasi-) periodic amplitude and frequency modulations
in sdB and white dwarf pulsators. These cases are the first clear evidence of nonlinear resonant
mode couplings in compact pulsators that was proposed more than three decades ago (Vauclair &
Bonazzola 1981). The observed modulations provide new insight on nonlinear asteroseismology,
as well as new methods to process the signals of variable modes from the observed light curves.
We foresee that increasing attention will focus on amplitude and frequency modulations observed
from space in the near future, motivating further development of nonlinear oscillation theory in
general.

Summary of the results
Kepler monitored 24 compact pulsators in short-cadence exposure mode, including six white

dwarfs and 18 hot B subdwarfs. Most of them have been contiguously observed for more than
two years. The frequency contents suggest that those sdB pulsators are typically slow rotating
objects with periods from ∼ 6 to ∼ 90 days and white dwarf pulsators rotate with a period of the
order of days. We use a prevalent method—the sliding Lomb-Scargle periodogram—to search for
temporal mode behaviors in these compact pulsators. We find that it is a common phenomenon
that oscillation modes in compact pulsators show amplitude and/or frequency variations. The
most interesting results are found in two stars, KIC 08626021 and KIC 10139564.

KIC 08626021, the only DB white dwarf star in Kepler field, has been continuously observed
by Kepler for nearly two years. We mainly concentrate on the rotational splitting triplets as
well as on frequencies through linear combinations. These frequencies show intriguing amplitude
and frequency behaviors during the Kepler observations, which are clear signatures of nonlinear
effects that could be attributed to resonant mode coupling mechanisms. We first notice that a
structure at 3681µHz, identified as a triplet in previous published studies, is in fact forming a
doublet, with the third component being an independent mode. This doublet (an incomplete
triplet) and a triplet at 4310µHz have clear periodic frequency and amplitude modulations,
which are in the typically so-called intermediate regime of the triplet resonance, with timescales
consistent with theoretical expectations. Another triplet at 5073µHz is likely in a narrow tran-
sitory regime in which the amplitudes are modulated simultaneously with constant frequencies.
Using nonadiabatic pulsation calculations, based on a model representative of KIC 08626021
to evaluate the linear growth rates of the modes in the triplets, we also provide quantitative
information that could be useful for future comparisons with numerical solutions of the am-
plitude equations. The observed modulations are the clearest hints of nonlinear resonant mode
couplings occurring in white dwarf stars identified so far.

KIC 10139564, the only short-period dominated hybrid pulsating sdB star in the Kepler
field, has been observed contiguously by Kepler for 38 months. This star present many rotational
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multiplets as revealed from its frequency content. We, again, mainly focus on mode multiplets
and on frequencies forming linear combinations to investigate the intriguing amplitude and
frequency behaviors during the course of the observations. We find clear signatures that point
toward nonlinear effects predicted by resonant mode coupling mechanisms. We find that a
triplet at 5760µHz, a quintuplet at 5287µHz and a (` > 2) multiplet at 5412µHz show clear
frequency and amplitude modulations which are in the typically so-called intermediate regime of
a resonance between the multiplet components. One triplet at 316µHz and a doublet at 394µHz
show modulated amplitudes and constant frequencies which can be associated with a narrow
transitory regime of the resonance. We find that another triplet at 519µHz appears to be in
a frequency lock regime where both frequency and amplitude are constant. Additionally, three
linear combination of frequencies near 6076µHz also show amplitude and frequency modulations,
which are likely related to a three-mode direct resonance of the type ν0 ∼ ν1 +ν2. The identified
amplitude and frequency modulations are the first clear-cut signatures of nonlinear resonant
couplings occurring in pulsating hot B subdwarf stars

However, we find that the observed behaviors in both cases (KIC 08626021 and KIC 10139564)
suggest that the resonances occurring in these stars usually follow more complicated patterns
than the simple predictions from current nonlinear theoretical frameworks. Theoretically, the
resonant modes are only treated as isolated systems within one type of resonance and ignore
the nonlinear interactions (very slight) that could occur simultaneously outside of the system.
Observationally, we find that the triplet resonance modes can also be involved in other types of
resonance, e.g., three-mode resonance ν0 ∼ ν1 +ν2. We also mention that the observed values of
the key parameter D in the triplet resonance somewhat differ from the values predicted by the
nonlinear theory. This suggests that the nonlinear behaviors not only depend on the magnitude
of D, but also on the specific coupling coefficients for each specific mode (Buchler et al. 1995).

We finally emphasize that the observed frequency modulations likely induced by nonlinear
mode interactions could challenge any attempt to measure the evolutionary effects on oscillation
mode periods in pulsating sdB and white dwarf stars. The rates of period change of pulsations
due to stellar evolution in compact stars are much longer than that of the nonlinear effects,
e.g., a timescales of ∼ 105 years in DBV stars (Winget et al. 2004) and ∼ 106 years in sdB star
(Charpinet et al. 2002b), respectively. Measuring the changing rate of the pulsation periods in
pulsating stars can indeed offer some constraints on basic physics, e.g., in white dwarfs, it could
offer an opportunity to constrain the neutrino emission physics (Winget et al. 2004). However,
one should be extremely careful of the potential contamination from nonlinear effects when one
attempts to measure reliably such rates, which may need to be corrected beforehand. These
nonlinear modulations could also complicate the detection of exoplanets or stellar companions
around compact stars using the technique of measuring phase changes in the pulsations (e.g.,
Silvotti et al. 2007). Nevertheless, it should be possible to distinguish between the two effects,
considering that nonlinear couplings may induce different behaviors on different modes, while
external causes such as an orbiting body should affect all modes similarly.

Further perspectives
These intriguing observed amplitude and frequency modulations, induced by nonlinear mode

interactions, should bring significant constraints for further development of the nonlinear stellar
pulsation theory, for the development of new methods and techniques to prewhiten observed
light curves, for the application of nonlinear resonance to other types of pulsating stars, and for
the study resonant mode behaviors observed from future space missions as well as ground-based
telescopes.

The differences, between our observed modulations and the theoretical expectations, should
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motivate further theoretical work to develop nonlinear stellar pulsation theory for more precise
predictions of the mode behaviors in pulsating stars in general. We indeed observed that the
modes outside the isolated triplet resonance can be strong enough to interact with the triplet
modes. This and multiplet modes (` > 1) both involve more than three mode interactions,
which has not been currently explored theoretically. As more modes are involved, the amplitude
and frequency modulations may seem more complicated than those of three mode interactions.
The observed modulations may pave the way to extract nonlinear coupling coefficients in real
stars for the first time (Buchler et al. 1995), from which one then could determine the values
of the key parameter D, in different regimes of the triplet resonance, in real stars. The periodic
modulations, associated with the intermediate regime in the triplet resonance, may also provide
a way to measure the linear growth rates of oscillation modes, as the modulation timescales
have a very tight relationship with the inverse of the growth rates.

The modulations due to nonlinear effects induce hyperfine structures or very complex broa-
den structures in the Lomb-Scargle periodograms. Such signals cannot be well extracted from
light curves by the current standard prewhitening method which uses pure sinusoidal fittings.
After removing a high amplitude peak, there may be many other significant peaks around the
frequency position of that peak. We therefore propose a new method to prewhiten variable
frequencies considering that the sidelobes or complex broaden structures contain important
information on the amplitude and frequency variations in these variable signals. Many of sta-
tistical tests and simulations need to be conducted to check the reliability of the proposed
method in the near future. It will be incorporated in our current program FELIX after testing
its feasibility. With this new method at hand, it will greatly accelerate the speed and improve
the efficiency to characterize the mode behaviors in pulsating stars, particularly for the stars
observed by Kepler with a duration of ∼ 4 years.

We indeed also find interesting amplitude and frequency variations in other compact pul-
sators from the Kepler photometry. More work is needed to investigate the amplitude and
frequency behaviors thoroughly in these stars. As coupling coefficients may differ from each
resonant mode in each star, the resonant modes may have a variety of amplitude and frequency
behaviors. We think that a library of mode behaviors from the Kepler compact pulsators needs
to be constructed in which different kinds of mode behaviors could be conveniently found. Ma-
thematically, nonlinear amplitude equations are ubiquitously applicable to any type of pulsating
stars. It is particularly interesting to observe amplitude and frequency variations in other types
of pulsators in the Kepler field. Recently, Bowman et al. (2016) have studied a comprehensive set
of ∼ 1000 δ Scuti stars observed by Kepler with a duration of ∼ 4 years, mainly concentrating
on amplitude behaviors of oscillation modes.

We end up this thesis with the prospectives that oscillation mode behaviors can also be
observed from future space missions, e.g., TESS, since some bright compact pulsators exhibit
amplitude variations from ground-based observations. A full cycle of modulations with times-
cales of weeks or months may be discovered in these bright compact stars from the near future
missions. In many respects, nonlinear stellar oscillation theory can now develop on a new ob-
servational background, which may revive interest in these physical phenomena.
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Conclusion et perspectives

Cette thèse présente une investigation détaillée du comportement des modes dans les pul-
sateurs compacts basée sur les données continues et d’une qualité sans précédent fournies par
le satellite Kepler. Nous identifions clairement des modulations quasi-périodiques d’amplitude
et de fréquence dans les pulsateurs sdB et naines blanches. Les cas étudiés mettent en évidence
pour la première fois sans ambiguïté l’existence de couplages résonants nonlinéaires entre modes
dans ces pulsateurs compacts, des effets suspectés dans ces étoiles voilà plus de trois décennies
(Vauclair & Bonazzola 1981). Les modulations observées permettent un regard nouveau sur
l’astérosismologie nonlinéaire, et nécessitent de nouvelles méthodes pour analyser le signal de
ces modes variables dans les courbes de lumière. Nous estimons que dans les années à venir, un
intérêt grandissant pour l’étude des modulations d’amplitude et de fréquence à l’aide des don-
nées spatiales permettra des développements nouveaux en théorie nonlinéaire des oscillations
nonradiales.

Résumé des resultats
Le satellite Kepler a observé 24 pulsateurs compacts en mode cadence courte, incluant six

naines blanches et 18 sdB. La plupart ont été suivies continuellement pendant plus de deux
ans. Le contenu en fréquences suggère que ces étoiles sont typiquement des rotateurs lents
avec des périodes entre ∼ 6 et ∼ 90 jours, alors que la période de rotation pour les naines
blanches sont de l’ordre de la journée. Nous utilisons des périodogrammes de Lomb-Scargle
à fenêtre glissante pour identifier des variations temporelles des modes dans ces pulsateurs
compacts. Nous trouvons que les modes d’oscillation dans ces étoiles montrent communément
des modulations d’amplitude et de fréquence. Les résultats les plus intéressants concernent deux
étoiles : KIC 08626021 et KIC 10139564.

KIC 08626021, la seule naine blanche pulsante de type DB observée dans le champs Ke-
pler, a été continuellement suivie par le satellite pendant près de deux ans. Nous nous sommes
principalement concentrés sur les triplets engendrés par la rotation stellaire ainsi que sur les
fréquences liées au travers d’une relation de combinaison linéaire. Ces fréquences montrent des
modulations d’amplitude et de fréquence durant les observations Kepler que l’on peut clai-
rement associer à des effets non linéaires, en particulier de couplage résonnant entre modes.
Nous avons tout d’abord remarqué qu’une structure à 3681µHz, identifiée comme un triplet
dans une analyse préalablement publiée sur KIC 08626021, est en fait un doublet et un mode
indépendant. Ce doublet (un triplet incomplet) et un triplet à 4310µHz montrent clairement
une modulation périodique de l’amplitude et de la fréquence de chacune des composantes. Ce
comportement est typique du régime intermédiaire des couplages résonants entre modes et le
temps caractéristique des modulations est conforme avec les attentes théoriques. Un autre tri-
plet à 5073µHz est probablement dans un régime transitoire de la résonance dans lequel les
amplitudes sont modulées simultanément alors que les fréquences sont constantes. Sur la base
de calculs non adiabatiques appliqués sur un modèle sismique représentatif de KIC 08626021
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pour évaluer les taux de croissance linéaires des modes formant les triplets, nous apportons
également des informations quantitatives qui pourront être utiles pour des comparaisons avec
de futurs calculs numériques détaillés résolvant les équations d’amplitude. Les modulations ob-
servées dans KIC 08626021 sont le plus clair indice d’effets non linéaires liés à des couplages
résonnants entre modes identifiés à ce jour dans les naines blanches.

KIC 10139564, la seule étoile sdB pulsante hybride dominée par les modes p découverte dans
le champ Kepler, a été observée continuellement par le satellite pendant 38 mois. Cette étoile
présente de nombreux multiplets liés à la rotation comme le montre l’analyse des fréquences.
Encore une fois, nous nous sommes focalisé sur les multiplets de modes et sur les fréquences
formant des combinaisons linéaires pour étudier les intriguantes variations d’amplitude et de
fréquence observées durant ces observations. Nous trouvons à nouveau des signatures claires qui
pointent vers des effets non linéaires semblable à ceux prédits dans le cadre des mécanismes de
couplages résonnants. Nous trouvons qu’un triplet à 5760µHz, un quintuplet à 5287µHz et un
multiplet (` > 2) à 5412µHz montrent des modulations d’amplitude et de fréquence typiques du
régime intermédiaire d’une résonance entre les composantes. Un triplet à 316µHz et un doublet
à 394µHz montre des amplitudes modulées mais des fréquences constantes, une configuration
qui peut être associée à un régime transitoire de la résonance. Un autre triplet à 519µHz
semble être dans le régime vérouillé où les frequences et les amplitudes sont constantes. De plus,
trois combinaisons linéaires de frequences vers 6076µHz montrent également des modulations
d’amplitude et de frequence qui sont probablement reliées à une résonance directe à trois modes
du type ν0 ∼ ν1+ν2. Les modulations d’amplitude et de fréquence identifiées dans KIC 10139564
représentent le premier cas clairement établi de couplages non linéaires résonnants entre modes
dans une étoile sdB pulsante.

Néanmoins, nous trouvons dans les deux cas (KIC 08626021 et KIC 10139564) que les
comportements observés pour les résonnances se produisant dans ces étoiles suivent des schémas
plus complexes qui ceux prédits par les modèles théoriques nonlinéaires actuels. En effet, les
résonnances entre modes sont généralement traitées comme des systèmes isolés dans ces modèles
simplifiés et les interactions non linéaires (même faibles) pouvant se produire simultanément en
dehors du système sont ignorées. Or ces interactions multiples existes, lorsque l’on observe
notamment que les modes en résonance dans un triplet peuvent également être impliqués dans
un autre type de résonnance, par exemple une resonance à trois modes indépendants de type
ν0 ∼ ν1 + ν2. Nous trouvons par ailleurs que les valeurs estimées pour le paramètre D dans
la résonance entre composantes d’un triplet diffèrent sensiblement des valeurs prédites par
la théorie non linéaire. Ceci suggère que les comportements non linéaires ne dépendent pas
seulement de la valeur de D, mais aussi des coefficients de couplage spécifiques à chaque mode
(Buchler et al. 1995).

Finalement, nous insistons sur le fait que les modulations de fréquence observées induites
par les interactions non linéaires peuvent ruiner toute tentative de mesurer les effets évolutifs
sur les périodes des modes d’oscillation dans les étoiles sdB et naines blanches pulsantes. Les
temps caractéristiques de changement des périodes dus à l’évolution stellaire, e.g., ∼ 105 années
pour les étoiles DBV (Winget et al. 2004) et ∼ 106 années pour les étoiles sdB (Charpinet et al.
2002b), sont beaucoup plus longs que les temps caractéristiques des effets non linéaires. Mesurer
le taux de changement des périodes de pulsation peut en effet apporter des contraintes sur la
physique interne. Par exemple dans les naines blanches, cela offre l’opportunité de contraindre
le taux d’émission des neutrinos (Winget et al. 2004). Toutefois, nos résultats montrent qu’il
faut rester extrêmement prudent sur la contamination possible par des effets non linéaires, qu’il
faut préalablement corriger, si l’on veut mesurer ces taux de façon fiable. Ces modulations non
linéaires compliquent également la détection d’exoplanètes ou de compagnons stellaires autour
des étoiles compactes selon la technique des variations de phase des modes de pulsation (e.g.,
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Silvotti et al. 2007). Néanmoins, il demeure possible de distinguer entre ces deux effets puisque
les couplages non linéaires induisent généralement des comportements différents d’un mode à
l’autre alors que des causes externes, comme la présence d’un corps en orbite, affectent tous les
modes de la même façon.

Perspectives
Les modulations d’amplitude et de fréquence observées, induites par des interactions non

linéaires entre modes, devraient apporter des contraintes significatives au développement de la
théorie non linéaire des pulsations stellaires. Elles doivent inciter également le développement de
nouvelles méthodes d’analyse des données photométriques, notamment au niveau des techniques
de "prewhitenning". L’identification de résonnances non linéaires similaires dans d’autres types
d’étoiles pulsantes est une autre extension de cette thèse, ce qui permettra d’étudier plus avant le
comportement des modes dans ces régimes non linéaires, notamment grâce aux futures missions
spatiales et à des campagnes au sol dédiées.

Les divergences entre les modulations mises en évidence dans cette thèse et les calculs
théoriques doivent motiver des études plus poussées sur la théorie non linéaire des oscillations
stellaire pour des prédictions plus précises du comportement des modes dans les étoiles pul-
santes en général. Nous avons en effet observé que des résonnances externes aux résonnances se
produisant dans un triplet de modes peuvent être suffisamment fortes pour influencer le com-
portement global des modes. Ces cas, ainsi que les multiplets de modes (` > 1), impliquent des
interactions à plus de trois modes pour lesquelles il n’existe aucun modèle théorique pleinement
adapté actuellement. Comme plus de modes sont impliqués, les modulations d’amplitude et de
fréquence sont certainement plus complexes que dans le cas simple d’interactions à trois modes.
Les modulations observées pourraient permettre pour la première fois d’extraire les coefficients
de couplage non linéaires dans les étoiles (Buchler et al. 1995). De ces coefficients, il serait alors
possible de déterminer les valeurs du paramètre D dans différents régimes de résonnance. Les
modulations périodiques associées au régime intermédiaire pourraient aussi permettre d’éva-
luer le taux de croissance linéaire des modes d’oscillation, puisque le temps caractéristique des
modulations est intimement lié à ce taux.

Les modulations dues aux effets non linéaires induisent des structures hyperfines ou des
structures élargies dans les diagrammes de Lomb-Scargle. Ces signaux ne peuvent pas être ex-
traits proprement des courbes de lumière avec les techniques standard de "prewhitenning" qui
supposent des modulations purement sinusoïdales. Après l’extraction du pic principal de plus
grande amplitude, il reste alors des pics résiduels d’amplitude significative au voisinage de la
fréquence enlevée. Nous proposons de développer une nouvelle méthode pour extraire des fré-
quences modulées, utilisant le fait que les lobes secondaires ou les structures élargies contiennent
des informations importantes sur les variations d’amplitude et de fréquence des modes. Des tests
statistiques et des simulations permettront de vérifier la fiability des méthodes proposées dans
un avenir proche. Nous planifions d’incorporer ces approches dans le programme FELIX. Ces
nouvelles méthodes permettront d’améliorer l’efficacité de l’extraction des propriétés des modes
d’oscillation dans les étoiles pulsantes, particulièrement pour les étoiles observées par Kepler
pendant ∼ 4 years.

Nous trouvons en effet des variations d’amplitude et de fréquence intéressantes dans d’autres
pulsateurs compacts parmi l’échantillon Kepler. Plus de travail est nécessaire pour étudier en
détail le comportement des modes dans ces étoiles. Comme les coefficients de couplage diffèrent
d’un mode à l’autre et d’une étoile à l’autre, les modes résonnants peuvent développer une
multitude d’effets. Nous pensons qu’une bibliothèque recensant les différents comportements
de chaque mode identifié dans chaque pulsateur compact observé par Kepler sera utile pour
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classifier les différents effets. Mathématiquement, les équations d’amplitude sont applicables à
tout type d’étoile pulsante. Il sera alors particulièrement intéressant d’observer les modulations
d’amplitude et de fréquence dans d’autres types de pulsateurs du champ Kepler. Ainsi, récem-
ment, Bowman et al. (2016) ont étudié un ensemble de ∼ 1000 étoiles δ Scuti suivies par Kepler
pendant ∼ 4 ans, en se concentrant principalement sur les modulations d’amplitude des modes
d’ocillation.

Nous terminons cette thèse avec la perspective que le comportement à long terme des modes
d’oscillation puisse être observé avec les futures missions spatiales, comme avec TESS puisque
des pulsateurs compacts brillants connus pour montrer des changements d’amplitude des modes
seront parmi les cibles de cette mission. La couverture de cycles entiers de modulations d’ampli-
tude et de fréquence sur des échelles de temps de semaines ou mois pourraient ainsi être révélés
dans ces étoiles. Sur plusieurs aspects, la théorie non linéaire des oscillations stellaires peut à
présent se développer sur de nouvelles contraintes observationnelles, ce qui ne manquera pas de
raviver l’intérêt pour la physique de ces phénomènes.
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Appendix A

Physical terms in stellar oscillation
theory

A.1 Low-order associated Legendre functions
We list the first several associated Legendre functions Pm` (µ) with low degree ` 6 2 as

follows :
P 0

0 (µ) = 1, (A.1)
P 0

1 (µ) = µ, (A.2)
P 1

1 (µ) = −(1− µ2)1/2, (A.3)

P 0
2 (µ) = 1

2(3µ2 − 1), (A.4)

P 1
2 (µ) = −3µ(1− µ2)1/2, (A.5)
P 2

2 (µ) = −3(1− µ2)1/2, (A.6)
and for the negative one with the relationship of

P−m` (µ) = (−1)m (`−m)!
(`+m)!P

m
` (µ), (A.7)

and the spherical harmonic function Y m
` (θ, φ) with low degree ` 6 2,

Y m
` (θ, φ) = (−1)(m+|m|)/2

[2`+ 1
2π

(`− |m|)!
(`+ |m|)!

]1/2
Pm` (µ)eimφ. (A.8)

Y 0
0 (θ, φ) = 1

2
1√
π
, (A.9)

Y 0
1 (θ, φ) = 1

2

√
3
π

cos θ, (A.10)

Y ±1
1 (θ, φ) = ∓1

2

√
3

2π sin θ e±iφ, (A.11)

Y 0
2 (θ, φ) = 1

4

√
5
π

(3 cos 2θ − 1), (A.12)

Y ±1
2 (θ, φ) = ∓1

2

√
15
2π sin θ cos θ e±iφ, (A.13)

Y ±2
2 (θ, φ) = 1

4

√
15
2π sin2 θ e±2iφ. (A.14)
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A.2 The linear and nonlinear adiabatic operators
The linear operator for adiabatic nonradial oscillations is expressed as

L (ξ) ≡ 1
ρ2 (∇p)∇· (ρξ)− 1

ρ
∇(ξ ·∇p)− 1

ρ
∇(pΓ1)∇· ξ) +∇

{
G

∫
V

∇x · [ρ(x)ξ(x)]d3x
|x− r|

}
, (A.15)

where the last term is the partial differential of the gravitational potential,

∂Φ′

∂t
= G

∫
V

∇x · [ρ(x)ξ(x)]d3x
|x− r| . (A.16)

The quadratic operator one is given by (Dziembowski 1982),

N (v) = ∂

∂t

[
∇(v2

2 )− v× (∇× v)− ρ′

ρ2∇p
′ + 1

2ρ3 (ρ′)2∇p
]

+ ∇p
ρ

v · ∇(ρ
′

ρ
) + 1

ρ
∇{∇ · v[ξ · ∇(pΓ1)] + pΓ1χ∇ · ξ]− v · ∇p′}

+G∇
( ∫

V

∇x · [ρ′(x)v(x)]d3x
|x− r|

)
.

(A.17)

where χ = Γ1 + (∂Γ1/∂ ln p)ad.

A.3 The rotational Kernel function

Kn`m(r, θ) = ρr2
[
(−ξ2

r + 2ξhξr)(Pm` )2 + ξ2
h

(
2Pm`

dPm`
dθ

cos θ
sin θ −

(dPm`
dθ

)2 − m2

sin2 θ
(dPm` )2

)]
×
[ 2
2`+ 1

(`+ |m|)!
(`− |m|)!

∫ R

0
ρr2[ξ2

r + `(`+ 1)ξ2
h]dr

]−1

(A.18)

A.4 The stable criteria for parametric resonance

D =3{(ζ2 + ζ3 − 1)[(ζ2 − ζ3)2 + 2(ζ2 + ζ3)2 + 1]− 6ζ2ζ3}(δω/κ)4+
{(ζ2 + ζ3 − 1)[(ζ2 − ζ3)2 + (ζ2 + ζ3)2 + 2]− 12ζ2ζ3}(δω/κ)2+
{(ζ2 + ζ3 − 1)3 − 2ζ2ζ3 > 0,

(A.19)

where ζ2,3 = −κ2,3/κ1 > 0 in the case of parametric resonance.

A.5 Geometric factors for linear combination frequencies
The transformation between the spherical coordinate system (Θ,Φ) defined by the stellar

rotation axis and (θ, φ) that defined by the line of observing sight is as,

cos Θ = − sin Θ0 sin θ cosφ+ cos Θ0 cos θ, (A.20a)
sin Θ cos Φ = cos Θ0 sin θ cosφ+ sin Θ0 cos θ, (A.20b)
sin Θ sin Φ = sin θ sinφ, (A.20c)
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where Θ0 is the angle between the two coordinate systems. The geometric factors is defined as,

gm` (Θ0) ≡ 1
2π

∮ 2π

0
dφ

∫ 1

0
h(µ)µdµRe[Y m

` (Θ,Φ)], (A.21)

and the angular dependence of a linear combination frequency is described as,

G
mi±mj

`i`j
(Θ0) ≡ 1

2π

∮ 2π

0
dφ

∫ 1

0
h(µ)µdµ× Pmi

`i
(Θ)Pmj

`j
(Θ) cos[(mi ±mj)Φ]. (A.22)

Here µ = cos θ, and h(µ) is the limb-darkening function. One could easily calculate the geometric
ratio, Gmi±mj

`i`j
/gmi
`i
g
mj

`j
, for the low-degree modes without any difficulty.
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Abstract. The Kepler spacecraft provides new opportunities to search for long term
frequency and amplitude modulations of oscillation modes in pulsating stars. We ana-
lyzed nearly two years of uninterrupted data obtained with this instrument on the DBV
star KIC 08626021 and found clear signatures of nonlinear resonant mode coupling af-
fecting several triplets. The behavior and timescales of these amplitude and frequency
modulations show strong similarities with theoretical expectations. This may pave the
way to new asteroseismic diagnostics, providing in particular ways to measure for the
first time linear growth rates of pulsation modes in white dwarf stars.

1. Introduction

The Kepler spacecraft is a magnificent instrument to search for long term frequency and
amplitude modulations of oscillation modes in pulsating stars. Among the 6 pulsating
white dwarfs present in the Kepler field, KIC 08626021 is the unique DB pulsator. It
has a rotation period Prot ∼ 1.7 days, estimated from the observed frequency spacings
of 3 g-mode triplets (Østensen et al. 2011). It has been observed by Kepler for
23 months in short cadence (SC) mode without interruption. Thus, it is a suitable
candidate to investigate the resonant mode coupling mechanisms that could induce long
term amplitude and frequency modulations of the oscillation modes. Such resonant
couplings are predicted to occur in triplets where the rotationally shifted components
have frequencies ν1 and ν2 such that ν1 + ν2 ∼ 2 ν0, where ν0 is the frequency of the
central component. The theoretical exploration of those mechanisms was extensively
developed long before the era of space observations (Buchler et al. 1995, 1997) but was
almost interrupted more than a decade ago because of the lack of clear observational
evidence of such phenomena, due to the difficulty of capturing amplitude or frequency
variations that occur on months to years timescales from ground based observatories.
Resonant coupling within triplets was proposed for the first time as the explanation
for the frequency and amplitude long term variations observed in the GW Vir pulsator
PG 0122+200 (Vauclair et al. 2011). We present the analysis of KIC 08626021 in
which two triplets exhibit amplitude and frequency variations during the 23-month of
observation. Such time modulations pave the way to new asteroseismic diagnostics,
providing in particular ways to measure for the first time linear growth rates of pulsation
modes in white dwarf stars.
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2. Frequency and Amplitude Modulations

The white dwarf star KIC 08626021 has been continuously observed by Kepler since
quarter Q10.1 up to Q17.2. The high precision photometric data cover ∼ 684.2 days
(23 months), with a duty circle of ∼ 89 %. We used a dedicated software, FELIX, to
extract frequencies (details of the program can be found in Charpinet et al. 2010). In
this study, we concentrate on rotationally split triplets and investigate the variation of
amplitude and frequency between components of these triplets and their relationship.
We point out that the frequencies near 3682 µHz reported by Østensen et al. (2011)
were in fact resolved into several close peaks with the 23-month light curve. It is
therefore probably not a real triplet contrary to the other structures found at 4310 and
5073 µHz (see below). In order to study the variability with time of these modes, we
constructed a filter window covering 200 days and slid the filter window along the
whole light curve by time steps of 20 days, thus constructing a time-frequency diagram.
We also prewhithened the frequencies "chunk by chunk", i.e., the 23-month light curve
of KIC 08626021 was divided into 20 chunks, each containing 6-month of data except
the last 3 chunks being at the end of the observations. The results for the two triplets
are discussed below.

Figure 1. Frequency and amplitude modulations of the triplet at 4310 µHz. The
frequencies and amplitudes of the triplet show clear signatures of periodic modula-
tions, as shown in the left bottom panel and right panel. The grey scale in the upper
left panel represents the amplitude. The dashed line in the lower right panel is the
average value of the frequency (see text for details). Note that the frequency scales
(x axis) in the upper and lower left panels are different.

The amplitude and frequency modulations of the triplet near 4310 µHz are shown
in Figure 1 . The grey scale (or color scale for electronic version) in the upper left panel
represents the amplitude. The vertical dashed line in the lower left panel is the average
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Figure 2. Frequency and amplitude modulations as shown in Figure 1 but for the
triplet at 5073 µHz.The amplitudes of the triplet show clear signatures of periodic
modulations, as shown in the right panel. The frequencies of the triplet are relatively
stable during the observation.

value of the frequency over the entire run. The right panel shows the amplitude mod-
ulations of each component forming the triplet. Both the amplitudes and frequencies
show clear signatures of quasi periodic modulations with the same timescale of ∼ 750
days. The frequencies and amplitudes of the side components evolve in phase and are
antiphased with the central component. Figure 2 shows the modulations observed in the
other triplet at 5073 µHz. The frequencies in this triplet appear to be stable during the
nearly two years of monitoring, while the amplitudes show modulations. Note that the
amplitude of the m = -1 component went down below the 4σ detection threshold and
was essentially lost in the noise during the last half of the observations.

3. Discussion

The frequency and amplitude modulations observed in the triplets of KIC 086226021
can be related to nonlinear resonant mode coupling mechanisms. The first triplet at
4310 µHz (Figure 1) behaves like if it is in the intermediate regime of the resonance,
in which the oscillation modes undergo periodic amplitude and frequency modulations.
Theory suggests that the time scale of these modulations should be roughly a few times
the inverse of the growth rate of the pulsating mode (Goupil et al. 1998). Therefore
this periodicity could in principle be used to measure the growth rate. In addition if we
compare the second order effect of rotational splitting as estimated directly from the
measured mean frequencies :

δν = ν1 + ν2 − 2ν0 (1)
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with the estimated value following Dziembowski & Goode (1992),

δν = 4C
Ω2

ν0
(2)

where C is the first order Ledoux constant (∼ 0.5 for dipole g-modes) andΩ = 2π/Prot
is the angular frequency of the stellar rotation, i.e ., δν∼ 0.018 µHz, both are found to be
very similar. In the intermediate regime, the expected periodic modulation timescale is
Pmod ∼ 1/δν (Goupil et al. 1998), which with the values given above leads to Pmod ∼
650 days, i.e., very similar to the amplitude and frequency modulation timescale of 750
days roughly estimated from Figure 1. This further supports our interpretation that non-
linear resonant coupling is indeed at work in this star. The triplet at 5073 µHz (Figure 2)
would be in a different regime, likely in the nonresonant regime. The amplitude of the
components show clear modulations while the frequency are relatively stable during
the observation. This means the ratio of the real part over the imaginary part of the
coupling coefficients is large in that case. This ratio roughly measures nonlinear nona-
diabaticities in the star. Hence our result shows that two neighbor triplets can belong to
different resonant regimes (frequency lock, time dependent or nonresonant), as it was
also suggested in the white dwarf star GD 358 (Goupil et al. 1998).

4. Conclusion

Frequency and amplitude modulations of oscillation modes have been found in sev-
eral rotationally split multiplets detected in the DB pulsator KIC 08626021, thanks to
the high quality and long duration photometric data obtained with the Kepler space-
craft. These modulations show signatures pointing toward nonlinear resonant coupling
mechanisms occuring among the multiplet components. This is the first time that such
signatures are identified so clearly in white dwarf pulsating stars. Periodic modulations
of frequency and amplitude that occur in the intermediate resonant regime may allow
for new asteroseismic diagnostics, providing in particular a way to measure for the first
time linear growth rates of pulsation modes in white dwarf stars. Such results should
motivate further theoretical work on nonlinear resonant mode coupling mechanisms
and revive interest in nonlinear stellar pulsation theory in general. Finally, we mention
that similar modulations are also found in hot B subdwarf stars according to Kepler
data.

Acknowledgments. WKZ acknowledges the financial support from the China
Scholarship Council. This work was supported in part by the Programme National
de Physique Stellaire (PNPS, CNRS/INSU, France) and the Centre National d’Etudes
Spatiales (CNES, France).

References

Buchler, J. R., Goupil, M.-J. & Hansen, C. J. 1997, A&A, 321, 159
Buchler, J. R., Goupil, M.-J. & Serre, T. 1995, A&A, 296, 405
Charpinet, S., Green, E. M., Baglin, A., et al. 2010, A&A, 516, L6
Dziembowski, W. A. & Goode, Philip R. 1992, ApJ, 394, 670
Goupil, M. J., Dziembowski, W. A. & Fontaine, G. 1998, BaltA, 7, 21
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Evidence of Resonant Mode Coupling in the Hot B Subdwarf
Star KIC 10139564
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Abstract. The Kepler spacecraft provides new opportinuties to observe long term fre-

quency and amplitude modulations of oscillation modes in pulsating stars. We analyzed

more than three years of uninterrupted data obtained with this instrument on the hot

B subdwarf (sdB) star KIC 10139564 and found clear signatures of nonlinear resonant

mode coupling affecting several multiplets. The observed periodic frequency and ampli-

tude modulations may allow for new asteroseismic diagnostics, providing in particular

ways to measure linear growth rates of pulsation modes in hot subdwarf stars for the first

time.

1 Introduction

The Kepler spacecraft is a magnificent instrument to observe long term frequency and amplitude
modulations of oscillation modes in pulsating stars. Among the 18 oscillating sdB stars monitored in
the Kepler field, KIC 10139564 is the unique p-mode dominated (V361 Hya type) pulsator with low
amplitude g-mode oscillations. It has been observed by Kepler for 38 months in short cadence (SC)
mode without interruption. Its rotation period is ∼ 26 days according to several multiplets with com-
mon frequency spacings found in both the g- and p-mode regions. Thus, it is a well suited candidate
to investigate resonant mode coupling mechanisms that could affect amplitudes and frequencies of os-
cillation modes − in particular those in rotationally split multiplets − over long timescales. The theory
for these mechanisms has been investigated long before the era of space observations but suffered from
the lack of observational evidence and constraints due to the timescales involved. We present the anal-
ysis of KIC 10139564 showing that some multiplets (in particular triplets) clearly have amplitudes and
frequencies varying with time in a manner that can be related to nonlinear resonant mode coupling.
Some of these modes would be in the intermediate regime of a resonant coupling mechanism occuring
when linear frequencies follow the relation ν1 + ν2 ∼ 2 ν0, which generally happens for frequencies
split by slow stellar rotation [1]. The characterization of the induced modulations may offer new aster-
oseismic diagnostics, providing in particular ways to measure linear growth rates of pulsation modes
in hot subdwarf stars for the first time.

2 Results and Discussion

The sdB star KIC 10139464 has been continuously observed by Kepler since quarter Q5.1 up to
Q17.2. The high precision photometric data cover ∼ 1,147.5 days (38 months), with a duty circle of
∼ 89 %. We used a dedicated software, FELIX, to extract the frequencies from the lightcurve (details
of this program can be found in Ref [2]). We defined a filter window covering 200 days and slid the
filter window along the whole light curve by time steps of 20 days, thus constructing a time-frequency
diagram. We also extracted the frequencies chunk by chunk”, i.e Â., the 38-month light curve of

a e-mail: weikai.zong@irap.omp.eu
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Fig. 1. Frequency and amplitude modulations of the dominant triplet near 5760 µHz.

KIC 10139564 was divided into 33 chunks. Each chunk contains 9-month of SC mode data, except
the last three chunks being at the end of the Kepler observations.

The amplitude and frequency modulations of the dominant triplet at 5760 µHz are shown in Fig. 1.
The right panel shows the amplitude modulations of each component forming the triplet. The frequen-
cies in the two lower-left panels also show clear signatures of periodic modulations. These modula-
tions can be related to nonlinear resonant mode coupling mechanisms in pulsating stars. This triplet
at 5760 µHz at least qualitatively behaves like if it is in the intermediate regime of the resonance, in
which the oscillation modes undergo periodic amplitude and frequency modulations with a time scale
of roughly a few times the inverse of the growth rate of the pulsating mode [3]. Therefore periodic
modulations as found in the illustrated triplet could in principle be used to measure the growth rate.
Other multiplets detected in KIC 10139564 show similar behaviors not presented here due to space
constraints.

3 Conclusion

Frequency and amplitude modulations of oscillation modes have been found in several rotationally
split multiplets detected in the sdB pulsator KIC 10139564, thanks to the high quality and long dura-
tion photometric data obtained with the Kepler spacecraft. These modulations show signatures point-
ing toward nonlinear resonant coupling mechanisms occuring among the multiplet components. This
is the first time that such signatures are identified in sdB pulsating stars. Periodic modulations of fre-
quency and amplitude that occur in the intermediate resonant regime may allow for new asteroseismic
diagnostics, providing in particular a way to measure for the first time linear growth rates of pulsation
modes in sdB stars. These growth rates are directly linked to the mode driving engine, a κ-mechanism
involving the iron bump and powered up by radiative levitation. Such results should motivate further
theoritical work on nonlinear resonant mode coupling mechanisms and revive interest in nonlinear
stellar pulsation theory in general.
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Nonlinear asteroseismology: insight from amplitude and frequency modula-

tions of oscillation modes in compact pulsators from Kepler photometry

Weikai Zong1,2,⋆, Stéphane Charpinet1,2,⋆, Gérard Vauclair1,2,⋆, Noemi Giammichele1,2,3, and Valérie Van Grootel4
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4Institut d’Astrophysique et de Géophysique, Quartier Agora, Allée du 6 Août 19c, 4000 Liège, Belgium.

Abstract. Nonlinear mode interactions are difficult to observe from ground-based telescopes as the typical peri-

ods of the modulations induced by those nonlinear phenomena are on timescales of weeks, months, even years.

The launch of space telescopes, e.g., Kepler, has tremendously changed the situation and shredded new light

on this research field. We present results from Kepler photometry showing evidence that nonlinear interactions

between modes occur in the two compact pulsators KIC 8626021, a DB white dwarf, and KIC 10139564, a short

period hot B subdwarf. KIC 8626021 and KIC 10139564 had been monitored by Kepler in short-cadence for

nearly two years and more than three years without interruption, respectively. By analyzing these high-quality

photometric data, we found that the modes within the triplets induced by rotation clearly reveal different behav-

iors: their frequencies and amplitudes may exhibit either periodic or irregular modulations, or remain constant.

These various behaviors of the amplitude and of the frequency modulations of the oscillation modes observed

in these two stars are in good agreement with those predicted within the amplitude equation formalism in the

case of the nonlinear resonant mode coupling mechanism.

1 Introduction

Evolved compact pulsators, white dwarf and hot B subd-

warf (sdB) stars, have been well investigated by the tech-

nique of asteroseismology. White dwarf stars are the end

fates of stellar evolution for 98% of the stars in our Galaxy.

They span over quite a large region in the H-R diagram,

with effective temperature of ∼ 10 000 − 170 000 K and

surface gravity of ∼ 5.5 − 8.5 dex [1, 2]. SdB stars be-

long to the extreme horizontal branch in the H-R diagram,

with a mass typically of ∼ 0.47M⊙, effective temperature

of 22 000 − 40 000 K and surface gravity of ∼ 5.2 − 6.1

[3]. Observations from ground-based telescopes suggest

that pulsation modes in compact pulsating stars may ex-

hibit temporal variations in their amplitudes and/or fre-

quencies, e.g., the GW Virginis variable star PG 0122+200

[4]. However, it is difficult to observe one entire modula-

tion cycle from ground as the modulations are typically

much slower than the pulsation periods themselves [5].

The launch of space telescopes, such as Kepler, has

tremendously changed the situations of uncovering the

modulations of amplitude and frequency in pulsating stars.

There are 113 candidates of compact stars that had been

monitored by Kepler during its survey phase, aiming at

searching for compact pulsators [6]. In the original Kepler
mission, the final number of evolved compact pulsators

reaches 24, including 6 pulsating white dwarf star and 18

⋆e-mail: [weikai.zong,stephane.charpinet,gvauclair]@irap.omp.eu

pulsating sdB stars, see., e.g., Ref. [7]. Most of these 24

stars, in particular for sdB pulsators, have been observed

by Kepler for more than two years without interruption.

They are suitable candidates to observe the variability and

stability in their oscillation modes.

In this proceeding, we assemble the results of first ev-

idences of amplitude and frequency modulations of mul-

tiplet modes in two of these 24 compact stars, a Helium-

atmosphere white dwarf, KIC 8626021, and a short-period

V 361 Hya stars, KIC 10139654, pointing toward nonlin-

ear mode interactions. These findings suggest that Kepler
opens a new era to investigate nonlinear asteroseismology.

2 Nonlinear resonant mode couplings

The theoretical explorations of nonlinear asteroseismol-

ogy, described in the framework of the amplitude equation

(AE) formalism, began around 1980’s. It concerned the

mode resonance in the adiabatic and nonadiabatic cases

[8, 9]. A specific case of nonlinear AEs had been then ap-

plied to nonradial triplet modes that are induced by stellar

rotation [10].

Within nonlinear asteroseismology, the stellar oscilla-

tions can be represented by temporal amplitudes as

z =
∑

j

1

2
A j(t)e

iω jte j + C + O, (1)



where e j, ω j, and A j(t) denote the linear nonadiabatic

eigenvectors, eigenfrequency and the temporal amplitude

of mode j, respectively, C denotes complex conjugation

and O represents ’higher order terms’.

For an ℓ = 1 triplet, the nonlinear complex nonadia-

batic AEs of the three modes are rewritten as an set [10],

dA−

dt
= κ−A− + R−A2

0A+ cos(Φ − δ−)

− A−(q11A2
− + q12A2

0 + q13A2
+), (2a)

dA0

dt
= κ0A0 + R0A0A+A− cos(Φ + δ0)

− A0(q21A2
− + q22A2

0 + q23A2
+), (2b)

dA+

dt
= κ+A+ + R+A2

0A− cos(Φ − δ+)

− A+(q31A2
− + q32A2

0 + q33A2
+), (2c)

dΦ

dt
= δω − 2R0A−A+ sin(Φ + δ0)

+ A0(R−
A+

A−
sin(Φ − δ−) + R+

A−

A+
sin(Φ − δ+)), (2d)

where the combination phase Φ = ϕ+ + ϕ− − 2ϕ0, κi
denote the linear growth rates, qi j and Ri are the cou-

pling coefficients, the phase shifts δi with the relation

of ri = Ri exp(iδi), and the frequency mismatch δω =

ω+ + ω− − 2ω0.

The numeric explorations of the above AEs reveal

three distinct regimes of amplitude and frequency mod-

ulations of the interacting modes [10]:

a) The nonlinear frequency lock regime. The nonlinear

couplings force the frequencies to be well equally

spaced in the triplet modes, δω = 0. The amplitudes

are all constant and typically asymmetric, A− , A+.

b) The intermediate regime. The resonance modes

exhibit amplitude and frequency modulations that

can be periodic, multi-periodic, irregular, or even

chaotic, depending on the real parameters of the star.

When the periodic modulations occur, the period of

the modulations is about the inverse of the frequency

mismatch, 1/δω, or ∼ 1/κ.

c) The nonresonant regime. The nonlinear coupling ef-

fects are very small and the linear frequencies are

very close to the linear results.

In the case of the three-mode resonance condition

where ω1 ∼ ω2 + ω3, the amplitude equation within the

adiabatic approximation can be written as,

dA1

dt
= κ1A1 +

iq

ω1I1

A2A3e−iδωt, (3a)

dA2

dt
= κ2A2 +

iq

ω2I2

A1A∗3e−iδωt, (3b)

dA3

dt
= κ2A3 +

iq

ω3I3

A1A∗2e−iδωt. (3c)

where the frequency mismatch is δω = ω1 −ω2 −ω3, term

I j are the mode inertia, the nonlinear coupling coefficient

q is very complicated and can be found in [8].

The numerical results suggest that the involved modes

can be stable or modulate depending on the type of reso-

nance and parameters such as their linear growth (damp-

ing) rates and the frequency mismatch [8].

3 Amplitude and frequency modulations

We have observed clear amplitude and frequency varia-

tions in two compact pulsators with photometry from the

original Kepler mission. As space is limited, we only show

here the modulations in the primary triplets in the two

compact stars, KIC 8626021, a DB pulsating white dwarf,

and KIC 10139564, a short-period pulsating sdB star. One

can find more details and interesting mode behaviors in the

two recently published papers [11, 12].

KIC 8626021 had been continuously monitored by Ke-
pler in short-cadence for nearly two years, from quar-

ter Q10.1 to Q17.2. Figure 1 shows the observed ampli-

tude and frequency variations in the primary triplet near

4310 µHz in that star. The results suggest that both ampli-

tude and frequency have signatures of quasi-periodic pat-

terns which is further confirmed by the best sinusoidal fit-

ting by one pure sine wave. The derived periods are 580±

23, 680 ± 10 and 610 ± 43 days for the retrograde mode,

central mode and prograde mode, respectively. More in-

terestingly, we also observed that the two side components

seem to evolve nearly in phase with similar modulation pe-

riod of ∼ 600 d and nearly in anti-phase with the central

component (which exhibits a slightly longer modulation

period of ∼ 700 d) in this triplet.

KIC 10139564 had been contiguously observed by Ke-
pler in short-cadence for more than three years, from quar-

ter Q5.1 to Q17.2. Figure 2 shows the amplitude and fre-

quency modulations of the primary p-mode triplet near

5760 µHz in that star. We note that the hyperfine structures

of the triplet components are significantly broaden which

possibly indicate that the modes are unstable. This is fur-

ther illustrated by the results shown in the other panels. We

observed that the components show clear amplitude and

frequency modulations: quasi-periodic frequency varia-

tions in all components and quasi-periodic amplitude vari-

ations in two components. It is very suggestive that the fre-

quencies of the two side components evolve in anti-phase,

which becomes more evident after removing the long-term

trend of the frequency variations through quadratic fittings

[12].

4 Discussions

The observed periodic behaviors of the triplets discussed

here are pointing toward the intermediate regime of non-

linear mode couplings where nonlinear interacting modes

may have periodic amplitude and frequency modulations.

We discuss the two cases below. More details for different

mode behaviors observed in these two targets can be found

in Ref. [11, 12], where cases of frequency locked, regular

or irregular variations are observed.

For the triplet near 4310 µHz in KIC 8626021, all the

components show periodic amplitude and frequency vari-
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ations on the timescale of ∼ 620 d. This value is consis-

tent with the theoretical expectation of Pm(th) ∼ 1/δωt =

620 d. This support the idea that we uncovered the right

explanation for the mode behaviors in this triplet. How-

ever, as the coupling coefficients in the amplitude equa-

tions are unknown, we cannot conduct further quantitative

comparisons between theoretical explorations and the ob-

served modulations.

The triplet near 5760 µHz in KIC 10139564 shows

quasi-periodic frequency and amplitude modulations that

are also linked to the intermediate regime of nonlinear res-

onant mode couplings. The period of frequency variations

in all the three components is about 580 d after removing

the long-term trend [11]. This period should correspond

to a value of ∼ 0.02 µHz, the inverse of the frequency mis-

match δω in this triplet, which can be theoretically met

when we consider the rotation up to second order for the

p-modes [13]. The observed frequency asymmetry δωo

is only 0.0026 µHz (see Fig. 2). However, we note that

the maximum of the observed frequency mismatch of each

subset data is about 0.02 µHz. This result suggests that the

nonlinear mode interactions possibly force the frequencies

to vary around the near exact resonance.

5 Conclusions

The Kepler spacecraft provides unprecedented high-

quality and uninterrupted photometric data with a time

baseline over a couple of years, which is very crucial to

investigate behaviors of amplitude and frequency modu-

lations of oscillation modes in pulsating stars. We study

in depth the mode behaviors of triplet components in two

compact pulsators from Kepler photometry, KIC 8626021,

a DB white dwarf star, and KIC 10139564, a p-mode

dominated hot B subdwarf star. We find clear periodic

modulations of amplitude and frequency in two triplets in

those two stars, that can be associated with the interme-

diate regime of nonlinear resonant coupling mechanism.

The observed timescales of the modulations are consistent

with the predictions of nonlinear amplitude equation for-

malism. We also observed a variety of mode behaviors in

many multiplet modes in those two stars and more details

can be seen in Ref. [11, 12]. These results are the first evi-

dence of nonlinear mode interactions in pulsating compact

stars.

We emphasize that the frequency variations induced by

nonlinear effects could jeopardize any attempt to measure

the secular rates of the pulsation period changes induced

by evolutionary effect since the former one has a much

larger influence on the pulsation periods than that from the

latter one. To observe reliable change rates of the pulsa-

tion periods, one should be extremely careful in correctly

extracting the frequencies and remove the nonlinear cor-

rections beforehand.

These intriguing observed amplitude and frequency

modulations, induced by nonlinear mode interactions,

should bring significant constraints for further progress in

the nonlinear stellar pulsation theory, for the development

of new methods and techniques to prewhiten observed

light curves, for the application of nonlinear resonance to

other types of pulsating stars, and for the study of resonant

mode behaviors observed from future space missions as

well as ground-based telescopes, possibly, leading a new

way to the "nonlinear asteroseismology".
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