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The Scrib1 Interactome and its relevance for synaptic plasticity & neurodevelopmental disorders 

 

 

The brain is made up of billions of nerve cells, or neurons, which can communicate with each other through 

functionally distinct structures - the axon and the dendrite. We focused our study on the development and 

maintenance of dendritic spines, whose changes in morphology are intimately correlated with synaptic plas-

ticity, or the ability to respond to synaptic activity. Dendritic spines originate from motile dendritic filopodia, 

which mature into spines following axonal contact. However, the spatial and temporal coordination of all the 

molecular components throughout the formation and maturation of a synapse remains unclear.  

Scribble1 is planar cell polarity protein (PCP) classically implicated in the homeostasis of epithelial tissues 

and tumour growth. In the mammalian brain, Scrib1 is a critical scaffold protein in brain development and 

function. The main goal of this work was to investigate the molecular mechanisms underlying Scrib1 role in 

synapse formation and maintenance. Firstly, we depict the importance of Scrib1 PDZ-dependent interactions 

on glutamate receptors trafficking as well as bidirectional plasticity signalling pathway underying spatial 

memory. Secondly, we focus on the functional consequences of a recently identified autism spectrum disor-

der (ASD) mutation of Scrib1 on neuronal morpholgy and function. We demonstrated that Scrib1 regulates 

dendritic arborization, spine formation and functional maintenance via an actin-dependent mechanism. 

Taken altogether, this thesis highlights the PCP protein Scrib1 as key scaffold protein in brain development 

and function, playing a plethora of roles from the subcelular to the cognitive level. 

 

 

 

Keywords: Scrib1, autism spectrum disorders, hippocampal neurons, synaptic plasticity, dendritic 

spine, glutamate receptors traffic, actin dynamics. 
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L’interactome de Scrib1 et son importance pour la plasticitè synaptique & les troubles de neurodéve-

loppement 

 

Le cerveau contient environ cent milliards de neurones, qui communiquent entre eux par des structures fonc-

tionnellement distinctes – l’axone et la dendrite  Notre étude s’est intéressée au développement et au main-

tien des épines dendritiques, dont les changements morphologiques sont intimement liés à la plasticité sy-

naptique. Ces épines ont pour origine les filopodes qui évoluent en épines lors du contact axonal. Cette tran-

sition implique une myriade de molécules, dont la coordination spatiale et temporelle reste largement mé-

connue. 

Scribble1 est une protéine de polarité cellulaire classiquement impliquée dans l’homéostasie de tissues épi-

théliaux, la croissance et progression des tumeurs. Scrib1 est aussi une protéine d’échafaudage critique 

pour le développement et le bon fonctionnement du cerveau. Notre objectif c’est été l’étude des mécanismes 

moléculaires sous-jacents à un rôle potentiel de Scrib1 dans la formation et le maintien des synapses. On a 

décrit l’importance d’interactions dépendantes des domaines PDZ sur le trafic des récepteurs glutamater-

giques et sur la voie de signalisation de plasticité synaptique. Ensuite, nous avons évalué les conséquences 

fonctionnelles d’une mutation de Scrib1 récemment identifiée chez un patient humain atteint des troubles du 

spectre autistique dans la morphologie et fonction des neurones. L’ensemble de ce travail demontre que 

Scrib1, protéine d’échafaudage clé dans le développement et la fonction du cerveau, joue une multitude de 

rôle du niveau subcellulaire au niveau cognitif. 

 

 

 

Mots clés: Scrib1, troubles du spectre autistique, neurones hippocampiques, plasticité synaptique, épine 

dendritique, trafic des récepteurs glutamatergiques, dynamique du cytosquelette d'actine. 
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Résumé 

 

 

 Le cerveau contient environ cent milliards de cellules nerveuses, ou 

neurones. Ces neurones communiquent entre eux par des structures fonc-

tionnellement distinctes – l’axone et la dendrite –  capables d’émettre et rece-

voir des signaux électriques ou chimiques à partir d’un compartiment présy-

naptique vers un compartiment, dit post-synaptique. Nous avons focalisé 

notre étude sur les synapses des neurones hippocampiques, qu’on estime 

responsables de fonctions cérébrales dites supérieures, comme la mémoire 

et l’apprentissage. Plus particulièrement, on s’est intéressé au développe-

ment et au maintien des épines dendritiques, dont les changements morpho-

logiques sont intimement liés à la plasticité synaptique, autrement dit, capaci-

té de réponse à l’activité synaptique.  

 

 Les épines dendritiques ont pour origine les filopodes qui évoluent en 

épines lors du contact axonal. La transition entre filopode et épine implique 

une myriade de molécules, dont des récepteurs glutamatergiques, des pro-

téines d’échafaudage et du cytosquelette d’actine capables de recevoir, 

transmettre et intégrer le signal présynaptique. Cependant, la coordination 
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spatiale et temporelle de tous ces composants moléculaires au long de la 

formation et maturation d’une synapse reste largement méconnue. 

 

 Scribble1 (Scrib1) est une protéine de polarité cellulaire (PCP) classi-

quement impliquée dans l’homéostasie de tissues épithéliaux ainsi que dans 

la croissance et progression des tumeurs. Scrib1 est aussi une protéine 

d’échafaudage critique pour le développement et le bon fonctionnement du 

cerveau. Notamment, notre équipe a demontré que Scrib1 pourrait jouer un 

rôle major dans les troubles du spectre autistique (TSA) chez les souris (Mo-

reau et al., J Neurosci 2010). 

 

 L’objectif de cette étude a donc été d’étudier les mécanismes molécu-

laires sous-jacents à un rôle potentiel de Scrib1 dans la formation et le main-

tien des synapses des neurones hippocampiques.  

 

 Dans un premier temps, on a décrit l’importance d’interactions dépen-

dantes des domaines PDZ sur: (a) le trafic des récepteurs glutamatergiques 

de type NMDA, en décrivant une nouvelle complex composé par Scrib1, des 

subunités NR2 et la proteine adaptatrice AP-2; et (b) la voie de signalisation 
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de plasticité synaptique sous-jacente à la mémoire spatiale implicant des 

phosphatases de type PP2A .  

 

 Dans un second temps, nous avons évalué les conséquences fonction-

nelles d’une mutation de Scrib1 récemment identifiée chez un patient humain 

atteint des troubles du spectre autistique dans la morphologie et fonction des 

neurones. Notamment, cette mutation (P592S) est proche des un motif puta-

tive de liason à l'actine (KK611) ainsi que des deux sites putatives de liason 

au complex de nucleation d'actine Arp2/3 (W203 et W386). 

 En utilisant des cultures des neurones hippocampiques, on a pu dé-

montrer que Scrib1 régule l’arborisation dendritique ainsi que la formation et 

le maintien fonctionnel des épines dendritiques via un mécanisme dépendent 

du cytosquelette d’actine. Enfin, le dérèglement de ces mécanismes pourrait 

être à l’origine du phénotype TSA.  

 

 L’ensemble de ce travail met en évidence que Scrib1, protéine 

d’échafaudage clé dans le développement et la fonction du cerveau, joue une 

multitude de rôle du niveau subcellulaire au niveau cognitif. 
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Mots clés: Scrib1, troubles du spectre autistique, neurones hippocampiques, 

plasticité synaptique, épine dendritique, trafic des récepteurs glutamater-

giques, dynamique du cytosquelette d'actine. 
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TARP or Cacng, transmembrane AMPAR regulatory protein calcium channel  
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Chapter I 

INTRODUCTION 

 

 

I.1 General Introduction 

 

Most, if not all, cell types and tissues exhibit several aspects of polarization. Spatial differences in their shape 

and/or structure allow a given cell or tissue to carry out specialized functions. Classical examples of cell po-

larity include epithelial cells with apical-basal polarity or neurons releasing neurotransmitters from pre-

synaptic axons to post-synaptic dendrites. Scribble1 (Scrib1) is an apico-basal determinant classically impli-

cated in the homeostasis of epithelial tissues and tumour growth. This LAP (LRR and PDZ domains) family 

member was, however, lately found to be a critical regulator of brain development and synaptic function as 

well. Indeed, Scrib1 and other cell polarity proteins have been pointed out as molecular determinants of au-

tism spectrum disorders (ASD) etiopathology in the last few years. Therefore, the study of the molecular 

mechanisms underlying cell polarity establishment and maintenance in the mammalian brain context emerg-

es as a powerful tool to better understand and develop therapies for brain disorders. 

This thesis will start with a brief overview over the LAP family. Next, I will introduce the cell-autonomous api-

co-basal polarity as well as the planar cell polarity pathway, focusing on Scrib1 role as an apico-basal deter-

minant, tumour suppressor gene and PCP (planar cell polarity) gene, respectively. I will then focus on excita-

tory synapses of the mammalian brain, and in particular on the development and maintenance of dendritic 

spines. Scrib1 role in synaptic plasticity and brain function will then be outlined, followed an overview of the 

current state of the art of ASD etiopathology. Finally, I will present a review on AMPA receptor trafficking. 

 

 

I.2 The LAP member Scribble has a conserved gene structure 

 

Scribble encodes a large cytoplasmic, multidomain scaffold protein from the exclusive LAP family of adaptor 

proteins. All LAP members - Lano, LET-413, Densin-180, Erbin and Scrib - possess a conserved domain 

structure, containing 16 (LET-413 and Scrib) or 17 (Lano, Densin-180 and Erbin) N-terminal (Nter) leucine 

rich repeats (LRRs) and a C-terminal (Cter) PDZ (named after post-synaptic density protein, PSD-95; Dro-

sophila disc large tumour suppressor, Dlg1; and zonula occludens-1 protein, ZO-1) binding domain (PDZbd) 

(LAP0; Lano) or one (LAP1; LET-413, Densin-180, Erbin) to four PDZ domains (LAP4; Scrib) (Fig. 1 a). 

Such multidomain structure was well preserved throughout evolution (Santoni et al., 2002), having a corre-

spondent orthologue from Drosophila to human (Fig. 1 b). LRR domains, common to all LAPs, are believed 

to be responsible for their subcellular localization, restricted to the epithelium basolateral membrane or the 

pre- and post-synaptic compartment in neurons. On the other hand, the distinct Cter PDZ domains (Fig. 1 c) 
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allow each LAP member to be part of a particular multi-protein complex and hence to play distinct roles – 

Table 1.  

 

Figure 1: LRR and PDZ domain family members kept its conserved structure throughout evolution. LAP family elements are 
typically composed of 16-17 Nter LRRs (light blue) and a Cter PDZ binding domain (PDZbd) or one to four PDZ domains (red). (b) Scrib 
protein structure shown in several species. (c) Multiple alignment between the PDZ domains of LAP1 and LAP4 elements using Fast 
Fourier transform (Katoh et al., 2002). Branch lengths are proportional to the genetic distance between the given sequences. Aligned 
sequences (Uniprot): LET413_CAEEL, O61967; LRRC7_MOUSE, Q80TE7; LAP2_MOUSE, Q80TH2; SCRIB_MOUSE, Q80U72. 

 

Table 1: Relevant interaction, localization and function of LAP0 and LAP1 elements. 
 

LAP protein Relevant interactions Localization Function Ref. 

Lano PDZ-dependent interaction with hDlg 
and Erbin 

Epithelial basolateral cell mem-
brane 

Homeostasis of epithelial 
tissues and tumour growth 

 

[1] 

LET-413 - Epithelial basolateral cell mem-
brane 

Adherens junctions assem-
bly; adaptor in polarizing 
protein trafficking in epithe-
lial cells 
 

[2-4] 

Densin-180 PDZ-dependent interaction with α-
actinin/CAMKII and δ-catenin/ 
NPRAP (N-cadherin); Shank1-3; 
DISC1 and mGluR5 
 

Synapses in hippocampal neu-
rons; synaptic density (PSD) 

Normal synaptic spine 
architecture and function 
(LTD) 

[5-10] 

Erbin PDZ-dependent interaction with 
Erbb2/ Her2,PSD-95,MuSK; eBPAG1 
and Cter of Itgb4(Erbb2); δ-catenin 
and ARVCF; PDZ-independent inter-
action with TARP γ-2 

Basolateral cell membrane; myo-
tubes; postsynaptic membranes of 
NMJ; dendritic shafts in cortical 
and hippocampal neurons; synap-
tosomes; parvalbumin-positive 
interneurons 

Recruitment of receptors or 
complexes to the basolat-
eral membrane and conse-
quent signalling pathway 
regulation 

[11-16] 

1. Saito et al., 2001; 2. Legouis et al., 2000; 3. Legouis et al., 2003; 4. Bossinger et al., 2004; 5. Apperson et al., 1996; 6. Strack et al., 
2000; 7. Walikonis et al., 2001; 8. Izawa et al., 2002; 9. Quitsch et al., 2005; 10. Carlisle et al., 2011; 11. Borg et al., 2000; 12. Favre et al., 
2001; 13. Huang et al., 2001b; 14. Laura et al., 2002; 15. Tao et al., 2013; 16. Simeone et al., 2010. 

 

LAP family members were firstly studied on epithelial cells. These cells are distinctly polarized, being com-

posed by an apical and a basolateral domain separated by specialized junctional complexes (Fig. 2). La-

bouesse and colleagues (Legouis et al., 2000) were the first to show that the genetic loss of the basolateral 

LET-413 protein in C. elegans leads to a disorganization of the epithelial architecture and consequentially to 

morphogenetic defects. In Drosophila, so did the genetic loss of Scrib, normally located in the septate junc-

tions, lead to similar abnormalities (Bilder & Perrimon, 2000), suggesting that LAP proteins create a barrier 

that restricts apical and basolateral determinants to the respective apical and basolateral domains. Indeed, in 



 

27 

the last years, several studies have shown that LAP elements can efficiently regulate epithelial cell homeo-

stasis by trafficking proteins to the basolateral cell membrane (Borg et al., 2000; Favre et al., 2001; Saito et 

al., 2001; Laura et al., 2002; Legouis et al., 2003; Bossinger et al., 2004; Yang et al., 2011). Moreover, fol-

lowing the first purification of a LAP member from the postsynaptic density fraction of rat forebrain (Apperson 

et al., 1996), a growing body of evidences suggest that LAP family proteins can recruit crucial synaptic ele-

ments to regulate synaptic architecture and/or function (Apperson et al., 1996 :Strack et al., 2000; Huang et 

al., 2001b; Walikonis et al., 2001; Izawa et al., 2002; Laura et al., 2002; Quitsch et al., 2005; Simeone et al., 

2010; Carlisle et al., 2011; Tao et al., 2013).  

  

 

Figure 2: Epithelial cell architecture. Arthropods and vertebrates share a similar distribution of apical and basolateral domains. Both 
top and bottom are sketched by apical microvilli (AM) and basal lamina (BL), respectively. Adherens junctions (AJ) contain the majority 
of cell-cell adhesion molecules as well as proteins involved in cell-cell signalling, whereas PDZ-containing proteins and their transmem-
brane partners are mainly located in tight junctions (TJs). SJ, septate junctions. Taken from Bryant & Huwe, 2000. 

 

 
 

I.3 Scribble and the apico-basal polarity  

 

I.3.1 The cell-autonomous apico-basal polarity 

Scrib was firstly identified through the distinctive ‘giant larvae’ phenotype of zygotic mutant animals in Dro-

sophila melanogaster together with lethal giant larvae (Llg) and discs large (Dlg) as neoplastic tumour-

suppression mutations (Bilder & Perrimon, 2000; Bilder et al., 2000; Brumby & Richardson, 2003; Pagliarini 

& Xu, 2003). These three proteins – Scrib, Lgl and Dlg, are believed to play a key role in the regulation of 

polarity at a single cell level (Fig. 3). Together they form a signalling complex capable to define and stabilize 

the basolateral membrane, by mutually antagonizing the apical junctional Par3-Par6-aPKC complex (Bilder 

et al., 2003; Tanentzapf & Tepass, 2003). Conversely, the Par complex genetically interacts and stabilizes 

the apical Crb-Std-Patj complex (Roh & Margolis, 2003) (Fig. 3 a). This signalling triad is subsequently 

thought to play a crucial role on the phosphoinositide distribution, actin polymerization and vesicle trafficking 

(Arimura & Kaibuchi, 2005). Par3 is known to directly bind PTEN regulating local phospholipid synthesis, 

whereas the direct Par6-Cdc42(GTP) and the indirect Par3-Lgl-Rac1(GTP)-PI3K interactions contribute to 

the apical PtdIns(3,4)P2 or basolateral PtdIns(3,4)P3 membrane distribution, respectively (Gassama-Diagne 

et al., 2006; Martin-Belmonte et al., 2007) (Fig. 3 b). Such phosphoinositide asymmetry seems to be crucial 

to successfully polarize the docking and fusion of Golgi and endosome-derived transport vesicles in such 

compartments. Moreover, the associated Rho GTPases Cdc42 and Rac1 can also regulate actin polymeriza-

tion locally, through the activation of the WASP or Arp2/3 (Nishimura et al., 2005; Ridley, 2006) (Fig. 3 c). 
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On what seems to be a rather redundant process, so does the Scrib complex modulate actin polymerization, 

this time through the βPix/GIT complex (Zhao et al., 2000; Audebert et al., 2004; Iden & Collard, 2008). 

 

 

Figure 3: Scribble takes part on the definition and stabilization of a cell-autonomous asymmetry. The basolateral membrane is 
defined by Scrib-DLG-LGL complex, which mutually antagonizes the apical PAR6-PAR3-aPKC complex. In turn, this will interact and 
stabilize the other apical Crumbs-STD-PATJ complex (a). These signalling complexes can control the phosphoinositide distribution (b) 
and vesicle trafficking (c) through complex interactions with PTEN, Rho GTPases and the actin polymerization machinery (see text). 
CRB, Crumbs; PATJ, Pals1-asscoiated tight junction protein; PALS1, protein associated with LIN-7 1; STD, stardust; PAR, partitioning 
defective; aPKC, atypical protein kinase C; LGL, lethal giant larvae; DLG, disc large tumour suppressor protein; SCRB, Scribble; 
CDC42, cell division control protein 42; Rac1, p21-Rac1; PTEN, phosphatase and tensin homologue; PtdIns(3,4)P2, phosphatidyl inosi-
tol-(3,4)-bisphosphate; PtdIns(3,4,5)P3, phosphatidylinositol-3,4,5-trisphosphate; PI3K, phosphoinositide 3-kinase; βPIX, PAK-
interacting exchange-factor-β; GIT, G protein-coupled receptor kinase-interactor; WASP, Wiskott–Aldrich syndrome protein; ARP2/3, 
actin-related protein-2/3. Taken from Mellman & Nelson, 2008. 

 

I.3.2 Role of Scribble in apico-basal polarity  

In the past decade, numerous studies underscored Scrib as an apico-basal polarity determinant, as it was 

discovered to be involved in several cell polarity events in multicellular structures. The large majority of such 

complexes rely on protein-protein interactions, dependent on Scrib LRR domain (Eastburn et al., 2012) but 

mostly on its PDZ domains. The 4 PDZ domains allow Scrib to preferentially interact with proteins containing 

PDZ domains or Cter PDZbd of proteins involved in a plethora of different cell polarity events in different cell 

types - Table 2. In Drosophila neuroblasts, dividing cells precursors of neurons during the embryonic devel-

opment, Scrib can form a complex with either Dlg/Lgl or LKB1/AMPK to regulate cortical polarity, cell size 

and mitotic spindle asymmetries (Albertson & Doe, 2003; Albertson et al., 2004; Andersen et al., 2012), 

whereas in the neural tube of Zebrafish embryos it was found to be implicated in oriented cell division to-

gether with α-catenin (Zigman et al., 2011). It is also known that Scrib plays a key role in the establishment 

of the anterior-posterior axis, the most ancient of the embryonic axes, interacting with Dlg to regulate Dro-

sophila oogenesis (Li et al., 2009) or with the zyxin-related protein LPP at cell-cell junctions to control the 

conversion-extension of Zebrafish embryonic cells (Petit et al., 2005; Vervenne et al., 2008). In addition, a 

great number of studies convincingly showed that Scrib is able to form a complex and recruit several proteins 

to cell-cell junctions from epithelial cells to synaptic sites in neurons. As expected, the cell-autonomous ele-

ments Crb and Dlg cooperate with Scrib to maintain cell adhesion (Bilder & Perrimon, 2000; Mathew et al., 

2002; Ludford- Menting et al., 2005), as well as interactions with MAGUKs - such as the single PDZ calci-

um/calmodulin dependent serine protein kinase CASK (Lozovatsky et al., 2009) and the tight junction pro-

teins ZO-1 (Ivanov et al., 2010) and ZO-2 (Métais et al., 2005), or single PDZ proteins - like the human T-cell  
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Table 2: Relavant interaction, function and type of cells in which Scrib plays a preponderant role as a PCP gene. 
 

Cell polarity 
events 

Relevant  
interaction  

PDZ or 
PDZbd  

Function Type of cells Ref. 

Asymmetric 
cell division 

α-catenin 

 

-MDSI 

 

Clustering of α-catenin during oriented cell division 
independent of canonical apico-basal and PCP path-
ways; relevant for cross-midline cell divisions and 
neural tube morphogenesis 

Zebrafish 
neural tube 

[1] 

 Dlg/Lgl  
(LKB1/AMPK) 

MAGUK  Regulation of cortical polarity, cell size and mitotic 
spindle asymmetries 

Drosophila 
neuroblasts 

[2-4] 

      
Anterior-
posterior  
patterning 

Dlg 
 

MAGUK Genetic interaction involving the regulation of EGFR, 
JAK and Notch signalling; relevant for oogenesis  

Drosophila 
oocytes 

[5] 

LPP 
 

-STDL PDZ-dependent interaction at cell-cell junctions; rele-
vant for conversion and extension during development 

Zebrafish  
embryo 
 

[6,7] 

Cellular 
trafficking 
and cell 
adhesion 
maintenance 

AP-2 - Scrib module mutants show defective AP-2 dependent 
endocytosis; strong genetic interaction between Scrib 
and retromer components 

Drosophila 
eye dics and 
follicule cells 

[8] 

APC -VTSV 
 

PDZ1/4-dependent interaction and co-localization at 
synaptic sites and at the tip of epithelial membrane 
protrusions  

Mammalian 
epithelial 
cells 

[9] 

βPIX/GIT1(ARF6)  
TSHR 

-ETNL 
-QTAL 

PDZ-dependent interaction involved in the vesicle 
trafficking, receptor endocytosis and recycling 

Epithelial, 
neuronal and 
thyroid cells 

[10,11] 

CASK MAGUK Interaction involved in the proper localization of LIN7c 
and Dlg1/Scrib complex  

Mammalian 
epithelial 
cells 

[12] 

Crtam -ESIV Anchoring and coordination of a signalling complex 
following activation; relevant for the regulation of a late 
phase of T cell polarity 

Mouse T 
cells 

[13] 

 Crb - 
 
 

Leads to the loss of Scrib function and consequently to 
the misdistribution of apical proteins and adherens 
junctions to the basolateral cell surface 

Drosophila 
embryonic 
epithelia 

[14] 

 Ctnnb1 
(Cdh1,Cdh2/ZO-1) 

-DTDL Phosphorylation-dependent recruitment and complex 
formation at cell-cell junctions; relevant for cell adhe-
sion, proliferation and proliferation in the neural retina 
and cardiomyocyte organization 

Mammalian 
epithelial 
cells 

[15-19] 

 Dlg 
(GUKH) 
 

MAGUK PDZ2-dependent interaction with GUKH, which inter-
acts with the GUK domain of Dlg, implicated in the 
regulation of synaptic bouton budding; regulation of T 
cell polarity, morphology during migration and immu-
nological synapse formation 

Drosophila 
synapses 
and human T 
cells 

[20,21] 

 Sec24b - Genetic interaction; Vangl2 transport; relevant for NTD 
and organization of mechanosensory cells in the inner 
ear 

Mouse em-
bryos and 
inner ears; 
cultured 
primary cells 

[22] 

 Hsp90/Sgt1 
(βPIX-PAK) 

-MDTV LRR-dependent localization following HGF stimulation; 
Sgt1 and HSP90 ensure proper Scrib1 levels; Scrib1-
βPIX-PAK complex relevant for epithelial morphogen-
esis 

Mammalian 
epithelial 
cells 

[23] 

 Tax PDZ 
 

PDZ-dependent interaction involved in Tax cytoplas-
mic localization and NFAT signalling regulation 

T cells [24] 

 TRIP6  -TTDC PDZ3-dependent interaction and co-localization at cell-
cell junctions; regulation of the pathway between cell 
adhesion sites and nucleus shuttle 

Mammalian 
epithelial 
cells 

[25] 

 Vangl2  
(βcatenin/Rho) 
 

-ETSV Genetic interaction; PDZ-dependent localization, 
anchoring and complex formation at the basolateral 
plasma membrane; relevant for lung morphogenesis 

Mouse em-
bryos and 
inner ear 
cells; mam-
malian epi-
thelial cells 

[26-30] 

 ZO-1 MAGUK Complex formation and recruitment to cell-cell junc-
tions 

Human 
intestinal 
epithelium 

[31] 

 ZO-2 MAGUK/ 
-DTEL 

PDZ3/4-dependent interaction and LRR-dependent 
complex localization at cell-cell junctions 
 

Drosophila 
epithelial 
cells 

[32] 
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Directional 
migration 

βPIX/GIT/PAK 
(Cdc42/Rac1) 

-ETNL 
 

Recruitment of Scrib complex to the leading edge; 
polarized distribution of active Rac and Cdc42; regula-
tion of GTPase activity; relevant for lamelipodia and 
filopodia formation 
 

Mammalian 
epithelial 
cells and 
Drosophila 
embryos 

[33-37] 

 MCC (βcatenin) 
NHERF1/2 (Ezrin) 
 

-ETSL 
2PDZs/ 
-FSNL/F 

PDZ-dependent complex formation and co-localization 
at the cell membrane; relevant for cell migration inde-
pendently of Rac1, Cdc42 and PAK activation 

Mammalian 
epithelial 
cells 

[38] 

 Vim 
 

-DDLE PDZ-dependent interaction and localization during the 
establishment of cell-cell contacts, directional move-
ment and cell aggregation; relevant for Golgi polariza-
tion  
 

Mammalian 
epithelial 
cells  and 
endothelial 
human cells 

[39] 

Neuronal  
migration 

Nhsl1b 

 

- Physical and genetic interaction; co-localization at 
membrane protrusions; involvement of the Wnt-
dependent JNK and ROCK signalling pathway; rele-
vant for neuronal migration 

Facial bra-
chiomotor 
neurons of 
Zebrafish 

[40, 41] 

1. Zigman et al., 2011; 2. Albertson & Doe, 2003; 3. Albertson et al., 2004; 4. Andersen et al., 2012; 5. Li et al., 2009; 6. Petit et al., 
2005; 7. Vervenne et al., 2008; 8. De Vreede et al., 2014; 9. Takizawa et al., 2006; 10. Audebert et al., 2004; 11. Lahuna et al., 2005; 
12. Lozovatsky et al., 2009; 13. Yeh et al., 2008; 14. Bilder & Perrimon, 2000; 15. Navarro et al., 2005; 16. Qin et al., 2005; 17. Yoshiha-
ra et al., 2011; 18. Nguyen et al 2005; 19. Phillips et al., 2007; 20. Mathew et al., 2002; 21. Ludford-Menting et al., 2005; 22. Wanslee-
ben et al., 2010; 23. Eastburn et al., 2012; 24. Arpin-André & Mesnard, 2007; 25. Petit et al., 2005; 26. Montcouquiol et al., 2003; 27. 
Montcouquiol et al., 2006; 28. Kallay et al., 2006; 29. Courbard et al., 2009; 30. Yates et al., 2013; 31. Ivanov et al., 2010; 32. Métais et 
al., 2005; 33. Osmani et al., 2006; 34. Dow et al., 2007; 35. Nola et al., 2008; 36. Bahri et al., 2010; 37. Wigerius et al., 2010; 38. Ar-
naud et al., 2009; 39. Phua et al., 2009; 40. Vivancos et al., 2009; 41. Walsh et al., 2011. Uniprot ref. for PDZbd: P26231, Q61315, 
Q9ES28, Q68FF6, P47750, Q149L7, Q02248, Q80ZX0, Q9CZP7, Q9DBG9, Q9Z1Y4, P39447, Q9Z0U1, E9PWI3, Q9JHL1, P20152 

 

leukemia virus 1 trans-activating transcriptional regulatory protein Tax (Arpin-André & Mesnard, 2007). On 

the other hand, Scrib recognizes several Cter PDZbd-containing proteins, whose classification depends on 

their last Cter four amino acids content. Scrib binds canonical or class I PDZbd (X-S/T-X-L/V, being (x) any 

amino acid) like the tumour adenomateous polyposis coli protein APC (Takizawa et al., 2006), the GTPase 

activating protein complex βPix/GIT1 (Audebert et al., 2004; Lahuna et al., 2005), the thyroid-stimulating 

hormone receptor TSHR (Audebert et al., 2004; Lahuna et al., 2005), the single pass transmembrane nectin 

member Crtam (Yeh et al., 2008), the calcium-dependent cell adhesion Ctnnnb1/Cdhs (Navarro et al., 2005; 

Nguyen et al., 2005; Qin et al., 2005; Phillips et al., 2007; Yoshihara et al., 2011), the transmembrane protein 

Vangl2 (Montcouquiol et al., 2003; Montcouquiol et al., 2006; Kallay et al., 2006; Courbard et al., 2009; Yates 

et al., 2013) or the PDZ domain ZO-2 (Métais et al., 2005). Scrib can also interact with class II PDZbd con-

taining proteins (X-ϕ-X-ϕ, being (ϕ) any hydrophobic amino acid), such as the co-chaperone Hsp90 protein 

(Eastburn et al., 2012) and the cell adhesion/nuclear shuttle thyroid receptor-interacting protein TRIP6 (Petit 

et al., 2005). Lastly, it can also interact genetically with the endocytic adaptor protein AP-2 (de Vreede et al., 

2014) or the secretory machinery elements like Sec24b to regulate Vangl2 transport (Wansleeben et al., 

2010). Taking part in such an intricate network, Scrib plays unsurprisingly a multifaceted role in a wide range 

of molecular mechanisms, from regulating vesicle trafficking, receptor endocytosis and recycling in neurons 

and thyroid cells (Audebert et al., 2004; Lahuna et al., 2005) to coordinating signalling complexes in epithelial 

and T cells (Ludford-Menting et al., 2005; Arpin-André & Mesnard, 2007; Yeh et al., 2008), participating in 

the organization of multicellular structures and morphogenesis of different tissues, from mechanosensory 

cells in the inner ear, neural retina in eyes, cardiomycoytes to lungs or even the immune system (Montcou-

quiol et al., 2003, 2006; Nguyen et al., 2005; Phillips et al., 2007; Courbard et al., 2009; Wansleeben et al., 

2010; Pike et al., 2011; Eastburn et al., 2012; Yates et al., 2013). Scrib is also a main coordinator of direc-
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tional migration in polarized cells, by recruiting several proteins involved in the cytoskeleton dynamics. As 

mentioned, Scrib can interact and form a complex with GTPases activating proteins, such as the Rho gua-

nine nucleotide exchange factor 7 βPIX or the serine/threonine-protein kinase PAK. The recruited complex 

can be selectively targeted to focal adhesion sites, where βPIX and PAK can regulate Cdc42 and Rac1 activ-

ity and promote the formation of lamelipodia and filopodia (Osmani et al., 2006; Wigerius et al., 2010; Dow et 

al., 2007; Nola et al., 2008; Bahri et al., 2010). Scrib can be equally engaged in cell migration events inde-

pendently of Rac1, Cdc42 and PAK activation, by interacting with the colorectal mutant cancer protein MCC 

in a PDZ-dependent manner (Arnaud et al., 2009). MCC, a former tumour suppressor gene involved in β-

catenin-dependent transcription repression (Fukuyama et al., 2008), is also known to bind other PDZ domain 

containing scaffold proteins NHERF1 and NHERF2. In turn, these Na
+
/H

+
 exchange regulatory co-factors 

interact with members of the plasma membrane/cytoskeleton interface FERM family, such as Ezrin. Interest-

ingly, MCC interactions appear to be strengthened upon Wnt stimulation (Fukuyama et al., 2008; Arnaud et 

al., 2009). An additional PDZ-dependent interaction was shown to be crucial in linking Scrib to the cytoskele-

ton dynamics, this time regarding the type III intermediate filament protein Vimentin (Vim). Vim is long known 

to support and anchor organelles in the cytosol (Katsumoto et al., 1990), being recently involved in Golgi 

polarization together with Scrib during the establishment of cell-cell contacts, directional movement and cell 

aggregation (Phua et al., 2009). Finally, the latest physical and genetic interaction revealed between Scrib 

and the Nance-Horan syndrome-like 1b protein (Nhsl1b) in Zebrafish underscores an enthralling role of Scrib 

in neuronal migration (Wada et al., 2005; Vivancos et al., 2009; Walsh et al., 2011). During early stages of 

development, post-mitotic neurons migrate away from their birthplace to settle in their final destination. 

Nhsl1b encodes a WAVE-homology domain-containing protein related to human Nance-Horan syndrome 

protein and Drosophila GUK-holder (Gukh). In facial brachiomotor neurons, Nhsl1b co-localizes with Scrib at 

the membrane protrusions, acting as a neuronal effector of PCP signalling between the epithelium and the 

migrating neurons. 
 

 

I.3.3 Scribble is a tumour suppressor gene  

Cancer can be defined as a complex, multistep process that includes an uncontrolled proliferation of abnor-

mal cells, a failure to resume cell differentiation, invasion and formation of new metastasis (Fig. 4). Loss of 

polarized cell architecture is becoming a well-established hallmark of epithelial cancers, strongly favoring the 

involvement of cell polarity regulators in suppressing tumourigenesis (reviewed by Dow & Humbert, 2007). It 

is then with no surprise that already over 30 years ago both Lgl and Dlg were addressed as tumour suppres-

sor proteins in Drosophila (Gateff, 1978). Scrib downregulation due to the high risk human papillomavirus 

(Nakagawa & Huibregtse, 2000) or human epithelial tissues (HPV)-derived E6 oncoprotein overexpression 

(Dow et al., 2003) was correlated to a loss of apico-basal polarity, pointing the potential link between polarity 

and tumour progression. Interestingly, the ubiquitin-mediated degradation of PDZ-containing tumour sup-

pressors such as hScrib and hDlg have been long proven to be essential to be determinant in several forms 

of carcinogenesis, growth of neoplastic lesions and malignant metastasis progression (Gardiol et al., 1999; 

Nakagawa & Huibregtse, 2000; Nguyen et al., 2003a,b; Grifoni et al., 2004; Nakagawa et al., 2004; Massimi  
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Figure 4: The cancer cascade. Cancer is a complex, multistep process that includes (a) the acquisition of invasive phenotype by a 
given cell; (b) an uncontrolled proliferation of such abnormal cells into the surrounding matrix and generally towards blood vessels; (c) 
physical translocation of cancer cells (CTCs) from the primary tumour to a distant organ; (d) invasion of the foreign tissue microenvi-
ronment; (e) survival to the innate immune response; and (f) formation of new metastasis. Taken from Chaffer & Weinberg, 2011. 

 

et al.,  2004; Navarro et al., 2005; Thomas et al., 2005; Gardiol et al., 2006; Kamei et al., 2007; Wodarz & 

Nathke, 2007; Vieira et al., 2008; Yamanaka & Ohno, 2008; Wu et al., 2010; Nicolaides et al., 2011).  Like-

wise, PDZ-motifs of the human T cell leukaemia virus type 4 (HTLV-1) derived Tax (Lee et al., 1997; Suzuki 

et al., 1999; Okajima et al., 2008; Arpin-Andre & Mesnard, 2007), the neurovirulent lethal encephalitis virus 

NS5 (Werme et al., 2008) or the avian influenza virus NS1 are able bind hScrib and/or hDlg, affecting their 

localization, activity and function (Liu et al., 2010; Golebiewski et al., 2011). In primates, so does the Rhesus 

papillomavirus (RhPV) E7 oncoprotein contain a PDZ-binding motif able to target Par3 (Tomaić et al., 2009). 

The use of an evolutionarily conserved PDZ-dependent mechanism able to target apico-basal complexes by 

such a broad array of virus does underscore the importance of cell polarity maintenance in tumourigenesis 

progression. Numerous studies have been trying to elucidate the exact molecular mechanisms underlying 

Scrib role as a tumour suppressor gene (reviewed by Humbert et al., 2008) - Table 3. Overexpression of 

hScrib was shown to inhibit cell-cycle progression from G1 to S phase in a LRR- and PDZ1-dependent man-

ner (Nagasaka et al., 2006). The consequent cell proliferation blockage might be due to hScrib ability to up- 

and down-regulate the expression levels of APC and cyclins A and D1, respectively. Conversely, the de-

creased expression levels and mislocalization of hScrib has been associated with the progression of several 

cancers, by acting on the proper targeting and expression levels of membranar proteins like E-cadherin 

(Nakagawa et al., 2004; Ouyang et al., 2010), β-catenin (Kamei et al., 2007), PHLPP1 (Li et al., 2011b) and 

integrin α5 (Michaelis et al., 2013). Scrib was also shown to play a determinant role in the renewel of cancer 

stem cells by regulating Taz protein levels and activity (Cordenonsi et al., 2011). Taz is a Hippo signalling 

transducer under the inhibition of hScrib. hScrib loss or inactivation upon the induction of epithelial-

mesenchymal transition allow Taz to be activated and accumulated in stem-like progenitor cells, resulting in 

more aggressive tumours. A recent proteomic analysis of human Hippo pathway revealed that Scrib inter-

acts, among others, with PAK, GIT and ArhGEF family members as well as NOS1AP, all known to cooperate 

with Scrib in cell polarity events (see Chapters I.3.1 and I.3.2) (Wang et al., 2014). hScrib was also shown to 

interact with the cell migration hDlg/Hugl1/syntaxin 4 complex (Massimi et al., 2008). Taken together, these  
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Table 3: Relevant direct or complex interaction, function and biological processes that Scrib is involved in. 
 

Type of 
interaction 

Relevant interaction Function Implicated process Ref. 

Direct APC, cyclin A and 
cyclin D 

Regulation of protein expression relevant for cell 
cycle progression from G1 to S phase 

Cell-cycle progression 
and proliferation control 

[1] 

 β-catenin Cytoplasmic accumulation of β-catenin  Colon carcinogenesis [2] 

E-cadherin Recruitment and co-localization at adherent junc-
tions 

Prevention of cancer 
development 

[3-5] 

Hippo pathway Core kinase cascade able to control the transcip-
tion of key tumour supressor genes 

Cell proliferation and 
apoptosis 

[6] 

Integrin α5 Turnover and sorting regulation into and from the 
plasma membrane 

Directed endothelial cell 
migration and angiogene-
sis 

[7] 

PHLPP1 PHLPP1 recruitment to the membrane and Akt 
phosphorylation 

Proliferation of human 
embryonic kidney cells 

[8] 

Taz  Regulates inhibitory association between TAZ with 
core Hippo signalling kinases 

Self-renewal and tumour-
initiation in breast cancer 
stem cells 

[9] 

    
Complex ArhGEF/GIT/PAK 

and NOS1AP/Vangl 
Co-localization with NOS1AP and Vangl along 
cellular protrusions in metastic cells; prevents the 
establishment of leading-trailing polarity with 
NOS1AP 

Human breast cancer 
relapse 

[6,10] 

hDlg/NOS1AP Vesicle transport pathway in mammalian cells Tumour suppressor 
complex formation and 
localization  
 

[11] 

Oncogenic 
cooperation 

c-myc Cooperate to  regulating apoptosis Mammary neoplasia [12] 

 miR-296 Regulates Scrib1 gene transcription and protein 
localization 

Angiogenesis  [13] 

 Raf, Ras Act upstream ERK, MAPK, Hippo, Notch and TFN 
signalling pathways 

Cell proliferation and 
tumour dysplasia 

[12, 14-19] 

 RasV12 or Stat  Competition over JNK and JAK/STAT signalling  Neoplasia [20-22] 

1. Nagasaka et al., 2006; 2. Kamei et al., 2007; 3. Nakagawa et al., 2004; 4. Navarro et al., 2005; 5. Ouyang et al., 2010; 6. Wang et al., 
2014 ; 7. Michaelis et al., 2013; 8. Li et al.,, 2011; 9.Cordenonsi et al., 2011; 10. Anastas et al., 2012; 11. Massimi et al., 2008; 12. Zhan 
et al., 2008; 13. Vaira et al., 2012; 14. Brumby & Richardson, 2003; 15. Dow et al., 2008; 16. Cordero et al, 2010; 17. Vidal, 2010; 18. 
Nagasaka et al., 2010; 19. Doggett et al., 2011; 20.  Pagliarini & Xu, 2003; 21. Wu et al., 2010; 22. Schroeder et al., 2012. 

  

data suggests that Scrib expression levels, localization and activity play a key role in the maintenance of 

tissue architecture. Finally, it is becoming clear that, as a tumour suppressor gene, Scrib can also cooperate 

with other oncogenes to regulate several signalling pathways involved in cancer progression. Epithelial tu-

mours of Scrib/Dlg/Lgl Drosophila mutants are long known to exhibit all the hallmarks of cancer (Gateff, 

1978; Woodhouse et al., 1998; Bilder et al., 2000; Brumby & Richardson, 2005; Grzeschik et al., 2007; Zhao 

et al., 2008), whereas the same does not necessarily hold true if the mutants are generated in wild type tis-

sues (Brumby & Richardson, 2003; Pagliarini et al., 2003). Moreover, Scrib has been shown to cooperate 

with several oncogenes, known to be key players throughout cancer progression. Most studies feature a 

strong oncogenic cooperation between Scrib and several members of the small GTPase Ras family. In both 

Drosophila and human epithelial cells, Scrib and Ras or Raf were shown to act on ERK, MAPK, Hippo, Notch 

and TNF signalling pathways to promote cell proliferation and tumour dysplasia (Brumby & Richardson, 

2003; Dow et al., 2008; Zhan et al., 2008; Cordero et al, 2010; Nagasaka et al., 2010; Vidal, 2010; Doggett et 

al., 2011; Enamoto & Igaki, 2011). Conversely, Scrib appears to be involved in neoplasia events such as 

tumour overgrowth and oncogenic cell elimination failure by cooperating with RasV12 (Pagliarini & Xu, 2003; 
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Wu et al., 2010) or competing with Stat (Schroeder et al., 2012) over JNK and JAK/STAT signalling regula-

tion. Scrib has also been reported to regulate apoptosis by co-acting with the transcription factor c-myc in 

mammary neoplasia (Zhan et al., 2008). Finally, a recent study shows that Scrib gene transcription and pro-

tein localization can be regulated by miR-296, a microRNA also named “angiomiR” due to its role in angio-

genesis regulation (Vaira et al., 2012). Altogether, these studies suggest that a synergy between a given 

apico-basal dysfunction and a perturbed oncogenic signalling within a propitious tumour microenvironment 

might be crucial throughout cancer progression. 

 

 

I.4 Scribble and the planar cell polarity pathway 

 

I.4.1 The planar cell polarity pathway 

Most, if not all, cell types and tissues exhibit several aspects of polarization. In addition to the ubiquitous 

cellular asymmetry seen along the apical-basolateral axis, many tissues and organs are also polarized within 

the tissue plane. Planar cell polarity (PCP; or historically, tissue polarity) thus refers to the establishment of 

such cellular asymmetries (reviewed by Goodrich & Strutt, 2011; Gray et al., 2011; Bayly & Axelrod, 2011). 

PCP can be observed in a vast array of developmental processes, from collective cell movements to tissue 

organization, and its disruption can lead to uncontrolled cellular proliferation and invasion or entail severed 

development defects - Fig. 5. Moreover, recent studies in the central nervous system have shed light into the 

importance of ‘‘planar polarity’’ genes in such fundamental aspects as neuronal migration, neuronal polarity, 

axon guidance, and dendrite morphogenesis (reviewed by Goodrich, 2008), raising the enthralling possibility 

that PCP can chisel cell morphology in all dimensions.  

 

 

Figure 5:  Examples of planar polarity events at the cell and tissue level. Cell polarirty contemplates spatial differences in shape, 
structure, and function; while planar cell polarity refers to the polarization at the tissue level. The asymmetric cell division, done within an 
apico-basal axis, gives rise to two daughter cells with different cellular fates. The anterior-posterior patterning during Drosophila mor-
phogenesis is based on a pair-rule graded signalling of genes required for alternative body segments. The cellular trafficking in epithelial 
cells, essential to the spatial segregation of apico-basal compartments as well as for the cell adhesion maintenance between neighbour-
ing cells. The hair cell positioning, well described in Drosophila’s wing, ciliogenesis and the mammalian auditory sensory organ, is es-
sential to such functions as fly, directing fluid flows or ear properly. The directional migration can be observed in a broad range of differ-
ent cells, from bacteria to immune system cells. In the particular case of neuronal migration, neurons travel from their birthplace to their 
final destinantion.  

 

Pioneer genetic and molecular studies in Drosophila provided the first models to unravel PCP and its com-

ponents. PCP is believed to be composed of three key functional modules – a core module, a global direc-

tional cue module and an asymmetric core protein localization module - Fig. 6. The first module amplifies 

asymmetry and coordinates polarization between neighbour cells through transmembranar or membrane-
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adjoining proteins such as: the seven-transmembrane atypical cadherin Flamingo (Fmi), the serpentine re-

ceptor Frizzled (Fz), the four-pass transmembrane protein Van Gogh (Vang; also known as Strabismus, or 

Stbm), the multidomain protein Dishvelled (Dsh), the ankyrin repeat protein Diego (Dgo), and the LIM domain 

protein Prickle (Pk). The core module proteins assemble in oppositely oriented complexes between the prox-

imal and distal sides of the adjacent cells, mutually antagonizing each other and thus generating a first local 

polarized plan (reviewed by Zallen, 2007) (Fig. 6 a). The second module provides global directional infor-

mation in response to both global and core modules signals. This module is believed to be driven by the 

atypical cadherins Fat (Ft) and Dachsous (Ds), and the Golgi-resident Four-jointed protein (Fj). Ft and Ds are 

able to form opposite heterodimers at neighbouring cell membranes; while the Fj ectokinase controls their 

graded expression, being ultimately responsible for the activation of distinct downstream effector modules 

that set tissue-specific polarization events (Fig. 6 b). Finally, the asymmetric core protein localization is 

made by proximal and distal proteins on opposite sides of cells, leading to a morphological polarity. Such 

event is classically exemplified by the distally orientated actin polymerisation seen in hair formation during 

Drosophila’s wing development (Adler, 2002) (Fig. 6 c). During polarization, the complex Stbm-Pk is mainly 

found at the proximal side, while the Fz/Dsh/Dgo complex becomes enriched at the distal side, where an 

actin-based hair will be positioned. Several other studies of vertebrate PCP pathways involved in conversion 

and extension during neural tube closure and hair cell positioning of the inner ear further reinforce the role of 

the PCP pathway in generating molecular asymmetries and ensuring polarization in neighbouring cells. Fi-

nally, recent work froum our group identified a new set of proteins composed of the GTP-binding protein 

alpha-I subunit 3 (Gαi3) and the mammalian Partner of inscuteable (mPins) (Ezan et al., 2013). Gα i3/mPins 

are expressed in an opposite and complementary fashion regarding the aPKC/Par-3/Par-6b domain, control-

ling cell-autonomous translational polarity through a G-protein-dependent signalling. 

 

Figure 6: The three key functional modules of the PCP pathway: (a) the core module, capable of amplifying asymmetry and coordi-
nating polarization between neighbour cells; (b) the global directional cue module, responsible for activating distinct downstream effec-
tor modules; and (c) the asymmetric core protein localization module, which leads to the so called morphological polarity, typically ex-
emplified by the hair formation during the wing formation of the Drosophila. Fmi, Flamingo; Fz, Frizzled; Vang, Vang Gogh; Dsh, Dish-
velled; Dgo, Diego; PK, Prickle; Ft, Fat; Ds, Dachsous; Fj, Four-jointed. Taken from Bayly & Axelrod, 2011. 

 

  I.4.2 Scribble mutants display PCP defects 

In metazoans, both apico-basal polarity and PCP are required for the development, morphogenesis and 

function of the large majority of tissues and organs. The failure to establish one or the other are associated 

with a vast array of genetic diseases (reviewed by Simons & Mlodzik, 2008). Defects in PCP establishment 
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were first described in Drosophila external structures, being the distal orientation of wing hairs, the posterior 

orientation of cellular hairs and the arrangement of ommatidia in the eye the best examples (Adler, 2002; 

Strutt, 2003; Klein & Mlodzik, 2005). During PCP establishment, all PCP factors are found apically, where 

they can be engaged in regulatory interactions with apico-basal determinants that dictate the first detectable 

asymmetries. Montcouquiol and colleagues (2003) were the first to show that Scrib can interact genetically 

and physically with the core PCP component Stbm/Vang through its third PDZ domain. In addition, scrib5 

mutants lacking the two last PDZ domains fail to establish PCP in Drosophila eye and wing (Coubard et al., 

2009) (Fig. 7), pinpointing Scribble role as a PCP associated gene. 

 

 

Figure 7: Scribble mutants fail to establish PCP in Drosophila’s eye and wing: (a) schematic representation of wild-type Scrib 
(Scrib

WT
) and scrib5 mutants, missing the two last PDZ domains. (b) Adult eye section of scrib5 mutants. The asymmetric ommatidial 

structure is lost (yellow arrows). (c-e) Adult wing of scrib5 mutants. Larger wing area (c) magnified to show characteristic PCP misorien-
tations (d) and higher magnifications displaying cells with multiple wing hair phenotype (black arrowheads). Taken from Coubard et al., 
2009. 

 

Disruption of the PCP pathway has been strongly linked to developmental defects in animals and human 

pathologies as well. Analogous to the events long elucidated in Drosophila, the disorganization of the hair 

cells in the inner ear and neural tube defects are the best studied events of disturbed PCP signalling in 

mammals. In the apical surface of each hair cell there is a staircase array of asymmetrically actin-based ste-

reocilia. The hair cell is localized on one side of the cell only, being able to perceive the mechanical deflec-

tion of the bundle and subsequently produce an electrical signal capable of regulating hearing and balance 

(Ezan & Montcouquiol, 2014). Mutations of core PCP proteins were first associated with misorientated stere-

ociliary bundles in the cochleae of Vangl2
Lp/Lp

 mouse mutants (Montcouquiol et al., 2003). This spontaneous 

mouse mutant arises from a destabilization and loss of function of the protein, caused by a missense muta-

tion in Vangl2 Cter domain (Kibar et al., 2001; Montcouquiol et al., 2006). Ever since, mutations in other core 

PCP genes – the flamingo homolog Celsr1 (Curtin et al., 2003), Fz3/Fz6, the homologs of Disheveled Dvl1-3 

(Wang et al., 2006a; Etheridge et al., 2008) and Vangl1 (Torban et al., 2008), were shown to display similar 

phenotypes. Remarkably, all the aforementioned mutants exhibit neural tube defects as well. Such defects 

usually occur when apical cells fail to proper integrate the neural epithelium after cell division, forming an 

ectopic cluster of cells instead. Therefore, the discovery of mice carrying a spontaneous mutation of Scrib1 - 

circletail (Scrib1
crc

) (Murdoch et al., 2003), which lacks the last 2 PDZ domains - exhibiting severe neural 

tube defects (NTD) came to strengthen the role of Scrib as an effector during PCP establishment. Crc mu-

tants result from a single base insertion whose subsequent frameshift leads to a truncated form of Scrib1 
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protein without its two last PDZ domains (Fig. 8 a). As a consequence, Scrib
crc

 mutants not only fail to fully 

complete the neural tube closure process (Fig. 8 b) as they also exhibit misorientated actin hair bundles in 

the inner ear (Montcouquiol et al., 2003) (Fig. 8 c). The very same phenotype can be observed in mutations 

of other PCP proteins like Vangl2, Celsr1 or the single transmembrane domain protein tyrosine kinase Ptk7 

(reviewed by Doudney et al., 2005; Wansleeben & Meijlink, 2011), known to genetically interact with Scrib 

(Rachel et al., 2000; Murdoch et al., 2001a,b; Montcouquiol et al., 2003; Kallay et al., 2006; Savory et al., 

2011; Robinson et al., 2012). Moreover, the rare putative mutations in Scrib1, Vangl2 and Celsr1 are re-

sponsible for over 20% of craniorachischisis cases in humans (Juriloff & Harris, 2012). Put together, these 

data strongly suggests the existence of a candidate gene pathway for NTD, possibly reminiscent in other 

PCP signalling pathways such as the one implicated in the hair cell orientation in the inner ear. Lastly, a sin-

gle aminoacid substitution in the third LRR domain of Scrib1, leading to the replacement of a hydrophobic 

isoleucine by a charged lysine in the linker region between the LRR’s two β-sheets, was found to be enough 

to disrupt cortical development (Zarbalis et al., 2004). Homozygous mice for this mutation – also known as 

line-90, also display craniorachischis, but not the dominant tail defect seen in crc mutants (Fig. 8 a, b’’). 

Such remark pinpoints the importance of both LRR and PDZ domains of Scrib1 in the establishment of planal 

cell polarity. 

 

 
 

Figure 8: Scrib1 mutants display severe developmental defects. (a) Schematic representation of the normal (1665 aa) and mutated 
Scrib1 forms – Scrib

crc
 and line-90). The spontaneous circletail (crc) mutation results from a single base insertion whose frameshift leads 

to a truncated form of Scrib1 without two PDZ domains (971 aa in total). Line-90 results from a single aminoacid mutation (Ile-Lys) in the 
third Nter LRR domain. (b’) Circletail mice present craniorachischisis, the most severe form of neural tube defect (NTD), failing to close 
the cephalic neural tube from the midbrain throughout the spine. (b’’) Line-90 mice also display craniorachischisis, but not the dominant 
tail defect. (c) Alike Vangl2 homozygous, crc/crc mutants display a misorientation of actin hair bundles in the inner ear, a PCP defect. 
LRR, leucine rich repeats; PDZ, PSD-95, Dlg, ZO-1 domain; OHC, outer hair cell; IHC, inner hair cell. (a) adapted from Moreau et al., 
2010; (b) taken from Zarbalis et al., 2004; and (c) from Montcouquiol et al., 2003. 

 

I.5 Scribble and the central nervous system  

 

I.5.1 Structure and connexion of neurons: Ramón y Cajal’s heritage 

More than 100 years ago, Santiago Ramón y Cajal received the Nobel Prize for Physiology and Medicine 

(1906) “in recognition of his meritorious work on the structure of the nervous system”. Ramón y Cajal started 

by studying the structure of epithelial cells and tissues while in the Universities of Zaragoza and Valencia 

(López-Muñoz et al., 2006). It was only when he later moved to the University of Barcelona in 1887 that he 

focused on the study of the central nervous system (Fig. 9 a). By using the Golgi staining technique, he ob-

tained detailed descriptions of several cell types associated with neural structures (Fig. 9 b). He was the first 
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to show that nerve cells relate to each other not by continuity – as postulated by Gerlach’s reticular theory 

(the nerve centres are composed by a diffuse protoplasmic network of grey matter), but rather by contiguity. 

Such discovery became the foundation for the so called “neuron doctrine”: (a) neurons are the basic units of 

the nervous system, (b) composed of specialized features such as a cell body, dendrites and an axon (Fig. 9 

c), and (c) able to communicate with each other to allow transmission. This theory was further consolidated 

in the following 10 years by the neurohistological work of A. von Kölliker, C. Golgi, F. Nissl, A. H. Waldeyer-

Hartz, among others, being later reaffirmed by new technologies such as the electron microscopy (Fig. 9 d) 

and kept barely untouched until today. 

 

 

Figure 9: Neuron theory, the cornerstone of neuroscience. (a) Santiago Ramón y Cajal in the early 1920’s, when the neuron theory 
was recognized. Cajal’s drawings showing (b) a detailed description of the visual cortex of the cat, and (c) the development of a mature 
neuron, from an immature symmetric cell to a final polarized neuron containing a cell body, an axon and dendrites. (d) Electron micros-
copy of a synapse between an axon and a dendrite of the anterior horn of the human spinal cord. Taken from López-Muñoz et al., 2006. 

 

I.5.2 General view of excitatory synapses in the mammalian brain 

Following up Ramón y Cajal’s work, it is now well accepted that the billions of neurons in by the mammalian 

brain are able to form synapses (from Greek synapsis "conjunction") through distinctive and highly polarized 

cell junctions – the pre-synaptic axons and the post-synaptic dendrites. A major part of these synapses occur 

by the propagation of an electrical signal to the post-synaptic cell through the release of glutamate as the 

excitatory neurotransmitter. Most of these excitatory synapses are received by dendritic spines, small – 0.5-2 

µm in length, protrusions located throughout dendrites (Sheng & Hoogenraad, 2007) (Fig. 10 a). Dendritic 

spines are typically composed of a thin spine neck, connected to the parent dendrite, and a bulbous head, 

containing its own organelles involved in protein synthesis, membrane trafficking, ATP and calcium metabo-

lism, dendritic spines bestow synapse-specific biochemical microcompartments (Kennedy et al., 2005) (Fig. 

10 b). Moreover, these highly heterogeneous and dynamic structures are controlled by neuronal activity, 

being their shape – commonly characterized as “mushroom,” “thin,” or “stubby,” a good reflection of different 

developmental stages and/or synaptic strength changes (Yuste & Bonhoeffer, 2001; Hayashi & Majewska, 

2005; Kasai et al., 2003). Excitatory (glutamatergic) synapses in particular are characterized by the presence 

of a prominent electron-dense,∼200–800 nm wide and ∼30–50 nm thick postsynaptic membrane directly 

opposing the active zone (Fig. 10 a), also known as the PSD (post-synaptic density). This outstanding fea-

ture is due to the PSD composition itself - a large-scale and dynamic complex of glutamate receptors, asso-

ciated signalling proteins, and cytoskeletal elements, all assembled by an abundant multiplicity of scaffold 
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proteins (Siekevitz,1985; Sheng & Kim, 2002; Kasai et al., 2003). Given their abundance in the brain tissue 

and the fact that it can be fairly easily extracted out of synaptosome preparations, the biochemical composi-

tion of PSD started to be determined 30 years ago (Carlin et al., 1980). In recent years, via several other 

biochemical techniques (Hunt et al., 1996; Kim & Sheng, 2004; Funke et al., 2005), large proteomic studies 

(Husi et al., 2000; Walikonis et al., 2000; Husi & Grant, 2001; Satoh et al., 2002; Peng et al., 2004; Jordan et 

al., 2004; Yoshimura et al., 2004; Chen et al., 2005; Sugiyama et al., 2005; Cheng et al., 2006), 3D structure 

rendering of individual PSDs (Petersen et al., 2003; Nakagawa et al., 2005), we have a more comprehensive 

view of this exceptional and yet still puzzling structure that is the PSD. As expected, the great number of 

identified PSD proteins is involved in a multitude of cellular functions, such as cellular communication and 

signal transduction (adhesion molecules, surface receptors and channels, GTPases, and kinase/phos-

phatases), cellular organization (cytoskeleton elements, scaffold, membrane traffic, and motor proteins), 

energy (mitochondria and metabolism), or even protein synthesis and processing (translation and chaper-

ones). From all these proteins, only a small fraction is now well described in both biochemical and functional 

terms (Fig.10 c). 

 

 

Figure 10: Morphology and composition of an excitatory synapse. (a) Electron microscopy of an excitatory synapse. The presynap-
tic terminal loaded with synaptic vesicles (SVs) containing glutamate faces the postsynaptic density (PSD). (b) Representation of a 
mushroom-shaped spine, containing a bulbous head and a spine neck. The spine head hosts the (1) PSD; (2) the actin cytoskeleton, 
which determines spine structure and motility; and (3) the endocytic zone (EZ), where clathrin-coated vesicles (CCV) and recycling 
endosomes (RE) can be found. Conversely, the spine neck receives several organelles coming from the dendritic shaft, namely the 
smooth endoplasmic reticulum (SER), the spine apparatus (SA), polyribosomes (PR) engaged in mRNA translation and mitochondria 
(M). (c) Schematic diagram of the major family members and certain classes of proteins present in excitatory synapses. The pre- and 
postsynaptic cells are classically coupled by the presence of adhesion molecules, such as the neurexin and the neuroligin, respectively. 
The synaptically released glutamate can activate the NMDAR and the AMPAR located in the PSD, or the extrasynaptic mGluR. Surface 
receptors, adhesion and transmembrane auxiliary proteins such as TARPs can all interact with scaffold proteins, like Shank1/2/3, SAP-
97/102, PSD93/95, or GRIP. These can by their turn interact in several degrees with other scaffold proteins (like SAPAP1/2/3/4, 
Homer1/2/3, or Cortactin), membrane-bound proteins (such as AKAP), or actin cytoskeleton elements (N-WASP, for example), therefore 
orchestrating a complex and dynamic network. AMPAR, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor; NMDAR, N-
methyl D-aspartate receptor; mGluR, metabotropic glutamate receptor; TARP, transmembrane AMPAR regulatory protein; SAP-97/102, 
synapse-associated protein 97/102; PSD93/95, postsynaptic density protein 93/95; GRIP, glutamate receptor-interacting protein; 
SAPAP1/2/3/4, disks large-associated protein 1/2/3/4; AKAP, A-kinase anchor protein; N-WASP, neural Wiskott-Aldrich syndrome 
protein. (a) and (b) taken from Sheng & Hoogenraad, 2007; (c) taken from Ting et al., 2012. 

 

I.5.3 Synaptic plasticity: Donald Hebb’s legacy  

From an evolutionary-biological point of view, the primary function of the brain is to provide coherent control 

over the actions of an individual. To do so, the brain needs to (1) extract information from the surrounding 
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environment, (2) process it accordingly to the current needs and memory of past circumstances, and (3) 

generate a suitable response for the individual’s welfare. All these steps require a fine-tuned wiring of the 

appropriate neural circuits, which essentially dependent on changes in the strength of synaptic contacts. 

Even tough the connection of one neuron to another – or synapse, was thought for a long time to be a rela-

tively static structure, Donald Hebb postulated a theory explaining how neurons adapt during the learning 

process. According to him, the repeated and persistent stimulation of the post-synaptic cell by the pre-

synaptic shall lead to an increase of synaptic strength (Hebb, 1949). In other words, the Hebbian theory in-

troduces the concept of synaptic plasticity, admitting for the first time that a synapse has the ability to change 

its response capacity to a given stimulus. The concept of synaptic plasticity has quite evolved since Hebb’s 

postulate, being nowadays referred as long-term potentiation (LTP) and long-term depression (LTD) the two 

major cellular mechanisms believed to underlie learning and memory in the adult brain (Malenka & Nicoll, 

1999). LTP refers to a persistent increase in the efficiency of synaptic transmission after inducing a short 

period of high-frequency synaptic stimulation (HFS); whereas LTD comprehends a decrease of synaptic 

strength following low-frequency stimulation (LFS; for further reading, see Song & Huganir, 2002; Bredt & 

Nicoll, 2003; Collingridge et al., 2004). Hippocampal brain slices, composed of stereotyped regions – CA1, 

CA3 and DG, are classically used to perform electrical recordings and study synaptic activity (Fig.11 a). 

Usually, a stimulating electrode is placed in the region of axons coming from the CA3 region, while a record-

ing electrode is located in a field of activated synapses in the CA1 region. Examples of typical LTP and LTD  

 

 

Figure 11: Synaptic plasticity: functional and structural consequences of long-term potentiation and depression. (a) The hippo-
campus, a highly organized structure, is used to perform electrical recording from its well defined regions. A stimulating electrode is 
placed in the axons coming from the CA3 region, while a recording electrode located in the CA1 region measures the voltage drop due 
to ions flowing from the electrode to open ion channels in the cell population (also called “field recording”). (b) Typical LTP and LTD 
response to high-frequency stimulation (HFS; for example, stimulating a population of presynaptic axons 100 times over one second) or 
low-frequency stimulation (LFS; for example, stimulating 900 times over 15 min). The amplitude or slope of the fEPSP (circles) is meas-
ured once every minute. (c) Following NMDA receptor (in orange) activation, Ca

2+
 is allowed to go inside the cell and regulate AMPA 

receptors (in yellow) traffic to the membrane. LTD (left) and LTP (right) trigger the removal or insertion of AMPA receptors by scaffold 
proteins (in blue) from and to the membrane, respectively. Such functional changes are followed by actin-dependent (black dots) 
changes of the spine architecture, leading to spine pruning or enlargement, correspondingly. Arrows show the direction of insertion of 
removal of receptors from the membrane; thin grey and thick black represent slow and fast trafficking, respectively. Examples of field 
excitatory postsynaptic potentials (fEPSPs) measured from depressed, basal or potentiated synapses are shown above. Adapted from 
Fleming & England, 2010. 



experiments induced after brief HFS and LFS, respectively, are shown in Fig.11 b. At the post-synaptic level, 

synaptic plasticity is predominantly mediated by two subtypes of glutamate-gated ion channels concentrated 

at post-synaptic sites - AMPA and NMDA receptors. The rapid excitatory synaptic transmission is ensured by 

AMPARs, while NMDARs regulate the slower component of neuronal activity. NMDARs are blocked by Mg
2+

 

at resting membrane potentials, opening when a sufficient number of AMPARs are activated to depolarize 

the membrane potential. Once at a positive membrane potential, the Mg
2+

 blockade is relieved, allowing Ca
2+

 

to flow into the cell through NMDARs. The intracellular Ca
2+

 can now trigger various signalling cascades that 

in turn regulate AMPAR trafficking to and from the synaptic membrane, resulting in a potentiated or de-

pressed synapse. Such functional events are believed to be closely linked to actin-dependent changes of the 

architecture of the spine itself, leading to spine enlargement or pruning, respectively (Fig.11 c). 

 

I.5.4 The dendritic spine as the structural and functional output of synaptic plasticity 

The establishment of neuronal circuitry after birth well matches the time course of molecular and physiologi-

cal stages of synaptic postnatal development - Fig. 12. Synaptic partner selection starts early in develop-

ment, in which most of the existing synapses are located on dendritic shafts or filopodia (Fiala et al., 1998; 

Nagerl et al., 2007; Zito et al., 2009; Kwon & Sabatini, 2011) (Fig. 12 a). The cellular recognition mecha-

nisms are then believed to be independent of neuronal activity (Lohmann & Bonhoeffer, 2008; Lohmann, 

2009). The predominant spontaneous network activity is mainly mediated by gap junctions, which allow the 

developing neurons to properly synchronyze their transcription activities (Kandler & Katz, 1995; Khazipov & 

Luhmann, 2006; Niculescu & Lohmann, 2013). Molecularly, this major period of synaptogenesis coincides 

with the maximal expression of spontaneous activity-driven GluA4-containing AMPARs trafficking to 

synpases (Fig. 12c). Remarkably, mice lacking GluA4 display schizophrenia-like behaviour (Sagata et al., 

2010). Polymorphisms in the GluA4 human gene were also reported to increase susceptibility for schizo-

phrenia (Makino et al., 2003), strongly suggesting that disruptions of early developmental plasticity mecha-

nisms can lead to long-lasting consequences in brain function. During synaptic network formation, there is a 

gradual increase of the synaptic density (De Felipe et al., 1997; Steward & Falk, 1991), allowing the brain to 

better interpret and respond to the surrounding environment (Fig. 12 a, b). In the case of rodents, this stage 

coincides with the time when they open their eyes and start hearing. Interestingly, GABAergic transmission 

shifts its role from depolarizing to hyperpolarizing agent (Rivera et al., 1999; Khazipov & Luhmann, 2006; 

Ben Ari et al., 2007; Allene & Cossart, 2010). The GABAergic gradual hyperpolariziation coincides with a 

decrease of silent synapses as well as an increase in the expression of key protein kinases and non GluA4-

containing AMPAR subunits (Fig. 12 b, c).Following the activation of sensory inputs, synaptic density suffers 

a fast increase until reaching a steady state level in the cortex and in the hippocampus, being only a small 

proportion of excitatory synapses located on shafts (<10%) and even less in filopodia (Harris et al., 1992). 

Once the axo-dendritic contact is well established, new spines can turn into functional electro-chemical post-

synaptic compartments (Muller & Connor, 1991; Koch et al., 1992; Koch & Zador, 1993; Yuste & Denk, 1995; 

Sabatini et al., 2002; Chklovskii, 2004; Araya et al., 2006a, b; Grunditz et al., 2008; Bloodgood et al., 2009; 

Yuste, 2011; Gulledge et al., 2012; Harnett et al., 2012). The majority of synapses is now preferentially lo-
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cated on NMDAR-dependent dendritic spines (Boyer et al., 1998; Ultanir et al., 2007) (Fig. 12 d), better suit-

ed to process and encode all this new information. During this stage, there is a switch from GluN2A- to 

GluN2B-containing NMDARs, suggesting that GluN2B promotes synaptic stability (Gambrill & Barria, 2011; 

Gray et al., 2011). In addition, the protein kinases PKC and CAMKII, as well as the phosphatase calcineurin 

(PP2B) increase within spines (Boyer et al., 1998; Ultanir et al., 2007) (Fig. 12 e, f). Such molecular changes 

are responsible for the decrease of long C-tailed GluA2-containing AMPAR synaptic targeting (Nabavi et al., 

2013) (Fig. 12 c). Finally, in the mature brain, overall synaptic efficacy, spine density and spine size remain 

constant or suffer a slight reduction over time (Holtmaat et al., 2005; Loewenstein et al., 2011) (Fig. 12 a). 

This is tought to be mainly due to an increase of individual synapses GluN2A to GluN2B ratio (Fig. 12 d). 

Synaptic structures can nevertheless be quite dynamic while an individual learns, adapts his/her behvaiour 

and/or creates new memories.  

 

 
 

Figure 12: Spine formation and stabilization during the cellular, network and behavioural development of the brain. (a) Postna-
tal development of synapses throughout time. Following the initial induction of a synapse by a filopodium, atypical or “protosynpases” 
appears, but their ultimate fate is unclear. Filopodia rectract and the so called “synapse” can be stabilized at the dendrite shaft level. 
Synaptic protrusion can then overgrow and give place to a mature spine. (b-f) All these events occur during the cellular, network and 
behavioural development of the brain (b). Such structural plasticity is believed be closely followed by changes in the dynamics of key 
postsynaptic molecules, such as the ionotropic glutamate AMPAR (c) and NMDA (d) receptors, as well as kinases (e) and phosphatases 
(f). Curves represent the maximal density or expression level percentage (see main text). Taken from Lohmann & Kessels, 2014. 

 

I.5.5 Actin cytoskeleton: the missing link between structural and functional plasticity? 

Actin is one of the major cytoskeleton proteins whose presence in the neurons is long known (Kelly & Cot-

man, 1978; Fifkova & Delay, 1982; Drenckhahn & Kaiser, 1983; Kaech et al., 1997). Moreover, actin is highly 

concentrated in postsynaptic dendritic spines (Matus et al., 1982; Cohen et al., 1985; Fifkova, 1985). Within 

spines, actin is present as a soluble pool of monomeric G-actin and as polymerized F-actin filaments. The 

transition between actin polymerization and depolymerisation is responsible for the highly dynamic actin 

organization in dendritic spines, which is subject to a tight regulation by several actin-binding proteins 

(Fischer et al., 2000; Matus et al., 2000; Smart & Halpain, 2000; Star et al., 2002) (Fig. 13 a). The first func-

tional link between postsynaptic actin filaments and synaptic plasticity dates from 1991, when Pavlik & 

Moshkov saw for the first time actin bundles formation following a tetanus-induced LTP. Soon after, F-actin 
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dynamics inhibition was correlated to a decrease in the total number of NMDAR and AMPAR clusters (Alli-

son et al., 1998). Ever since, actin polymerization and depolymerization were repeatedly associated with 

synaptic plasticity events; whereas disturbing actin dynamics was shown to impact AMPAR-mediated synap-

tic plasticity and memory formation as well as to be involved in neurological disease ethiopathology (re-

viewed by Hering & Sheng, 2001; Ethell & Pasquale, 2005; Bellot et al., 2014; Sala & Segal, 2014) (Fig. 13 

b). In the next sections we will review actin role in dendritic spine development and maintenance as well as 

on clathrin-mediated endocytosis, two major events linking structural to functional synaptic plasticity. 

 

 

Figure 13: Regulation of actin polymerization in health and disease. (a) Actin dynamics is tightly regulated by a wide range of actin-
binding proteins. The Arp2/3 complex, Cdk5 and WAVE promote bracing activity (light green), whereas contractibility and/or stability are 
mediated by GIT/PAK, myosin II and AMPAR, for example (blue). Neurabin I/II, myosin, Ras and drebrin A, among others (red), also 
stabilize actin filaments. Instead, polymerization is regulated by Shank, PSD-95, Abi1-3, Rac1, CaMKII, cortactin, or VASP (yellow). At 
last, capping activity is endured by Actin-CP and Eps8 (dark green). (b) Actin-dependent spine morphology deregulation is a central 
molecular mechanism underlying neurological diseases such as Alzheimer’s disease (in green), schizophrenia (in blue) or intellectual 
disability and autism spectrum disorders (in red). For more details see Sala & Segal, 2014. 

 

I.5.5.1 Role of actin cytoskeleton in dendritic spine development and maintenance 

Spines are characterized by a high degree of morphological plasticity (reviewed by Edwards, 1995; Muller, 

1997; Harris, 1999; Segal et al., 2000; Luscher et al., 2000) – Fig. 14. During the early stages of synapto-

genesis, filopodia are formed at the dendritic shaft level, often from a small collection of branched actin or 

lamelipodia (Korobova & Svitkina, 2010) (Fig. 14 a). These structures, precursors of dendritic spines, are 

highly motile, being able to rapidly protrude and retract until they find a pre-synaptic partner (Ziv & Smith, 

1996). Once that happens, glutamate release by the pre-synaptic terminal is believed to induce filopodia 

enlogation, which is NMDA-sensitive and Ca
2+

-dependent (Maletic-Savatic et al.,1999) (Fig. 14 b). Fascin 

binds filaments generated by the actin nulcleator Arp2/3 complex to initiate the filament lenghting process, 

whereas Formin or WASP might participate in the polymerization of actin filaments. After enlogation, 

filopodia might be stabilized and exhibit a PSD (Prange & Murphy, 2001; Marrs et al., 2001). Recently 

formed spines are characterized by a thin and long neck with small heads, being its presence associated 

with high frequency stimulation, pre-synapic glutamate release or spillover (Engert & Bonhoeffer, 1999; 
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Know & Sabatini, 2011) (Fig. 14 c). Whereas spine neck is tought to be mainly regulated by myosin II; spine 

head growth occurs essentially through the Arp2/3 complex (Mullins et al., 1998; Welch et al., 1998; Klein, 

2009). Arp2/3 branching activity is in turn tighly regulated by Arp2/3 activators, such as cortactin, WAVE or 

WASP, as well as by inhibitors like cofilin or PICK1 (Hering & Sheng, 2003; Kim et al., 2006). Most of the 

mature synapses display a single, continuous (simple) PSD per spine, which hosts glutamate receptors and 

adhesion proteins among other scaffold and signalling proteins crucial to synaptic plasticity events (Fig. 14 

d). Several electron microscopy (EM) studies suggest that PSD size and spine stability are positively 

correlated (Harris & Stevens, 1989; Takumi et al, 1999; Holtmaat et al, 2005; Knott et al., 2006), a theory 

later confirmed by electrophysiology and imaging studies both in vitro and in vivo (Matsuzaki et al, 2001; Zito 

et al, 2004; Cane et al., 2014). On the other hand, early EM studies showed that some PSDs can be 

discontinous or perforated, exhibiting completely adjacent PSD segments, which are able to invaginate 

disctinct pre-synaptic axon terminals (Geinisman, 1993) (Fig. 14 e). Perforated PSDs display larger spine 

heads and PSD area, a higher proportion of SEM, spine apparatus and coated vesicles as well as an 

excessive number of surface AMPA receptors, which can contribute to changes in synaptic efficacy (Spacek 

& Harris, 1997; Geinisman et al, 1993, 1996; Toni et al, 2001; Ganeshina et al, 2004). In fact, perforated  
 

 

Figure 14: Actin dynamics during dendritic spine development and maintenance (see text). Adapted from Yang & Svitkina, 2011b 
and Soria Fregozo & Perez Vega, 2014. 



synapses are believed to be exceptionally efficacious, since this type of spatial arrangment may limit 

glutamate spillover to adjacent PSD segments and/or prevent glutamate receptors desensitization. 

Furthermore, as the proportion of perforated spines rises during development and under increased neuronal 

activity events (Greenough et al., 1978 Nietro-Sampedro, 1982; Carlin & Siekievitz, 1983; Geinisman et al., 

1991,1992; Buchs & Muller, 1996; Weeks et al, 1999; Neuhoff et al, 1999), these synapses are tought to 

precede the formation of newly immature spines (Fig. 14 f).   

 

I.5.5.2 Role of actin cytoskeleton on clathrin-mediated endocytosis  

Another important factor during synaptic plasticity events is the surface turnover of glutamate receptors, 

which can dictate synaptic efficiency and consequently lead to morphological changes. Actin dynamics has 

been considered for long as a crucial factor to drive endocytosis in several cell types (reviewed by Engqvist-

Goldstein & Drubin, 2003; Merrifield, 2004; Kaksonen et al., 2006). In mammalian cells, the clathrin-

dependent endocytosis constitutes the major pathway for internalization of lipids and proteins from the plas-

ma membrane, including glutamate receptors such as the AMPARs (Carrol et al., 1999; Beattie et al., 2000; 

Ehlers 2000; Lin et al., 200; Man et al., 2000; Wang & Linden, 2000) - Fig. 15. Moreover, several EM studies 

have shown the existence of clathrin-coated pits, vesicles and proteins mediating endocytsosis within den-

dritic spines (Spacek & Harris, 1997; Cooney et al., 2002; Petralia et al., 2003; Racz et al., 2004). Nowadays, 

it is believed that there is an endocytic zone segregated from the PSD within dendritic spines, where synaptic 

proteins can be internalized and recycled, maintaining an available pool of mobile AMPAR required for tuning 

synaptic transmission (Blanpied et al., 2002; Petrini et al., 2009; Kennedy et al., 2010). Interestingly, clathrin-

mediated endocytosis machinery (Fig. 15) recruits actin cytoskeleton elements previously implicated in spine 

development and maintenance (Fig. 14), such as actin itself, capping proteins as well as the Arp2/3 complex 

machinery. Such remark strongly suggests that the regulation of actin cytoskeleton dynamics is crucial for 

structural and functional plasticity events. 

 

 

Figure 15: Clathrin-mediated endocytosis. (a) Clathrin-mediated endocytosis is initiated by the recruitment of AP-2 to the plasma 
membrane, thus promoting clatherin assembly. (b) Once formed, clatherin lattices can be invaginated, giving rise to clathrin-coated pits 
(CCP). (c) Those pits can be further invaginated, forcing the plasma membrane to be pinched off through large GTPases like dynamin.  
Dynamin is composed by a GTPase domain, a phospholipid-binding pleckstrin-homology domain, a GTPase effector domain and a 
proline-rich domain (PRD). The PRD domain allows dynamin to interact with several SH3-containing domains like endophilin, Abp1 or 
cortactin which in turn can directly or indirectly bind the actin cytoskeleton. (d) Following the membrane pinch off, the now clathrin-
coated vescicles (CCVs) can move away from the plama membrane and (e) outbuild their coat and be properly sorted into recycling 
vesicles or follow the degradation pathway. 
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I.5.6 Scrib1 role in synaptic plasticity and brain function 

The starting point to unravel Scrib role in the regulation of synaptic plasticity were the same genetic null mu-

tants that featured Scrib1 as a cell polarity determinant and tumour suppression in Drosophila (Bilder & Per-

rimon, 2000). Looking at the NMJ of flies, where Scrib had previously been localized (Mathew et al., 2002), 

Budnik and collaborators (Roche et al., 2002) observed an abnormal thick basal lamina in Scrib mutant 

spines containing a higher number of synaptic vesicles but less active zones. Such ultrastructural defects 

translated into a loss of facilitation and post-tetanic potentiation, as well as a faster synaptic depression. 

These results underscore Scrib as a critical regulator of short-term synaptic plasticity by promoting the re-

cruitment and recycling of synaptic vesicles at their release sites in Drosophila. As interestingly rose by the 

authors, Scrib and Dlg levels display opposite effects at synapses, unlike the functional parallelism seen as 

apico-basal determinants, suggesting that the PCP signalling pathway in the synaptic context might be ruled 

differently. Nevertheless, the molecular mechanisms underlying Scrib1 role in mammalian synaptic plasticity 

started to be unravelled only recently - Table 4; Fig: 16. Scrib1 was initially implicated in the coordination of 

actin-mediated recruitment of synaptic vesicles together with the βPIX/β-catenin/cadherin complex. At first, 

β-catenin affords a PDZ-dependent recruitment of Scrib1 to the synapse (Sun et al., 2009). Once there, 

Scrib can bridge the β-catenin/cadherin complex to the Rac/Cdc42 guanine nucleotide exchange factor 

(GEF) βPIX signalling (Sun & Bamji, 2011), allowing the proper localization of synaptic vesicles at their re-

lease site. Scrib1 was then shown to associate the neuronal nitric oxide synthase (nNOS) adaptor protein 

NOS1AP (or CAPON) both in pre-and post-synapses (Richier et al., 2010; Wang et al., 2014). This associa-

tion is specifically mediated by the fourth PDZ domain of Scrib1 and the phosphotyrosine-binding (PTB) do-

main of NOS1AP, allowing Scrib1 to bridge NOS1AP signalling to the βPIX/PAK/Git1 complex (Richier et al., 

2010). The PTB domain of NOS1AP alone is able to afford dendritic spine development through Rac activa-

tion, suggesting that Scrib1 can regulate actin dynamics by recruiting NOS1AP to the synapse. Interestingly, 

the contribution of Scrib liaisons with β-catenin, βPIX and NOS1AP to PCP establishment (Chapter I.3) and 

tumour homeostasis maintenance (Chapter I.3.3) has been long been established in several cell types and 

tissues, indicating that this PCP signalling pathway was favoured throughout evolution. Scrib1 role in brain 

function was first asserted by our group using heterozygote Scrib1
crc/+

 mice mutants, which display anatomi-

cal and functional deficits in the hippocampal region (Moreau et al., 2010). As aforementioned, homozygote 

Scrib1
crc/crc 

mice die at birth (Murdoch et al., 2003; Chapter I.4.2), whereas Scrib1
crc/+ 

mice, expressing 50%  

 

Table 4: PDZ-dependent interactions of Scrib1 in glutamatergic synapses. 
 

1. Sun et al., 2009; 2. Sun & Bamji, 2011; 3. Moreau et al., 2010; 4. Richier et al., 2010 

Protein PDZbd Localization  Function Ref. 

β-catenin -DTDL Pre-synapse PDZ-dependent recruitment of Scrib1 to the pre-synapse 

 

[1]  

βPIX -ETNL Pre- and post- 
synapse 

PDZ-dependent macro-complex between Scrib1, β-catenin/cadherin and 
βPIX signalling modulates actin-dependent synaptic recruitment; PDZ123-
dependent Scrib1 interaction with βPIX/PAK/GIT1 implicated in cytoskele-
ton-driven spine morphology. 
 

[2,3] 

NOS1AP -EIAV Pre- and post-
synapse 

PTB-PDZ3 dependent interaction involved in Rac1-induced dendritic spine 
development 

[4] 
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of full length protein and 50% of a truncated form missing the last two PDZ domains in the brain, are viable 

(Moreau et al., 2010). Scrib1
crc/+ 

mutants contain lower protein levels of βPIX, GIT and CaMKII, but a two-fold 

increase in the activated form of Rac1, impairing activity-dependent actin polymerization. In the hippocam-

pus, Scrib1
crc/+ 

mutants show an increase of synaptic pruning, displaying less but bigger spines. Functionally, 

the resulting altered basal pyramidal neuronal morphology was correlated with a reduced basal synaptic 

transmission and impaired LTP, suggesting that Scrib1 controls the number of functional synapses in the 

CA1 region. At the cognitive level, Scrib1
crc/+ 

mutants exhibit enhanced learning and memory abilities and 

impaired social behaviour, commonly linked to ASD. Remarkably, a genetic and an exonic de novo SCRIB1 

mutation were recently implicated in human autism (Pinto et al., 2010; Neale et al., 2012), strongly suggest-

ing Scrib1 as a potential actor in ASD etiopathology. 

 

 
 

Figure 16: Role of Scrib1 interactions in glutamatergic synapses. (a) The PCP protein Scrib1 is present in glutamatergic synapses. 
EM labeling of Scrib1 in the stratum radiatim of CA1. Note the presence of labelling in the PSD of dendritic spines (s, arrowheads), and 
within dendrites (d). Scale, 260nm. (b) Scrib1 interactions at pre- and post-synpatic compartments. At the pre-synapse, Scrib1 regulates 
the actin-dependent synaptic vesicle (SV) recuitment by associating with the βPIX/β-catenin/cadherin complex in a PDZ-depdenent 
manner (i). At the post-synapse, Scrib1 is implicated in cytoskeleton-dependent spine development events, coupling NOS1AP/Rac1 
signalling via its PDZ4 to the βPIX/PAK/GIT complex (iii). (a) taken from Moreau et al., 2010. 

 

I.5.7 Autism Spectrum Disorders  

ASD cover classical idiopathic autism, Asperger’s syndrome, Rett’s syndrome as well as other associated 

genetic disorders, such as schizophrenia, Down syndrome, Fragile X, mental retardation and tuberous scle-

rosis (Lord et al., 2000; Pardo & Eberhart, 2007). ASD typically develop before 2-3 years of age, affecting the 

late phase of brain development, when synaptic formation and maturation is taking place (Courchesne et al., 

2007; Schmitz & Rezaie, 2008) (Fig. 17 a). Thus, akin to other cognitive disorders, ASD are characterized by 

dendritic dysmorphologies (Fig.17 b), which will affect brain function. ASD commonly feature sociability diffi-

culties, language impairments, a constrained pattern of interests, and/or stereotypic and repetitive behav-

iours. Others, like epilepsy, learning disabilities or conversely specialized abilities for music or mathematics, 

for example, can also be observed. About 80% of ASD cases are heritable, strengthening the genetic com-
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ponent of such disease. The best characterized mutations in human genes patients occur in genes encoding 

the cell adhesion complex made of the pre-synaptic neuroxin Nrxn1 (Feng et al., 2006; Szatmari et al., 2007; 

Kim et al., 2008; Yan et al., 2008; Zahir et al., 2008), and the post-synaptic neuroligin Nlg1, Nlg3 and/or Nlg4 

(Jamain et al., 2003; Laumonnier et al., 2004; Yan et al., 2005; Talebizadeh et al., 2006; Tabuchi et al., 

2007; Blundell et al., 2010). Moreover, so were exonic deletions, or copy number variations (CNVs), of the 

NLG4 locus detected in autistic patients (Chocholska et al., 2006; Macarov et al., 2007; Marshall, 2008; 

Glessner et al., 2009). Remarkably, linkage studies have correlated mutations in NRXs and NLGs to Tou-

rette’s syndrome, learning disability, schizophrenia and even to addiction (Hishimoto et al., 2007; Lachman et 

al., 2007; Kirov et al., 2008; Walsh et al., 2008; Lawson-Yuen et al., 2008), pinpointing the couple Nrx/Nlg as 

a hotspot for human cognitive diseases. Conversely, so were multiple mutations and CNVs in autistic pa-

tients detected in the gene encoding the intracellular scaffold Shank3 protein (Wilson et al., 2003; Manning et 

al., 2004; Jeffries et al., 2005; Durand et al., 2007; Moessner et al., 2007; Okamoto et al., 2007a; Marshall, 

2008; Waga et al., 2011). Altough Shank3 is known to directly interact with Latrophilins - calcium-

independent alpha-latrotoxin receptors (CIRLs) similar to Nrx (Tobaben et al., 2000) and to indirectly bind 

Nlg through other scaffold proteins (Sheng & Hoogenraad, 2007), the molecular mechanisms underlying 

ASD are still unclear.  

 

 
 

Figure 17: Formation and maintenance of dendrites in ASD. (a) Putative dendritic spine number lifetime in ASD (pink), schizophre-
nia (SZ, green) or Alzheimer’s disease (AD, blue) compared to normal subjects (black). Top bars represent the symptomatic period. In 
ASD, there is an excess of spine number early in childhood, whereas an exaggerated spine pruning occurs during late childhood or 
adolescence in SZ. Finally, AD is characterized by a rapid spine loss in late adulthood. (b) Representation of dendritic dysmorphologies 
typically observed in ASD, Rett syndrome, Fragile X syndrome, Down syndrome, schizophrenia, Alzheimer’s disease or stress and 
anxiety. Color code represents the same period of emergence of symptoms as (a). (a) taken from Penzes et al., 2011; (b) adapted from 
Kulkarni & Firestein, 2012. 

 

I.5.7.1 Molecular determinants of ASD ethiopathology 

In the past few years, a crescent number of studies have been linking clinical to in vitro studies, soughing to 

explain how the trans-synaptic cell adhesion complex could trigger pre- and post-synaptic signal transduction 

events that potentially shape synaptic plasticity. Crystal structures provided the first insights on how 

Nrx1/Nlg1 complex are formed, by showing that the extracellular LNS (laminin, Nrx, sex-hormone-binding 

globulin) domains of Nrx1 attach in a Ca
2+

-dependent manner to the lateral sides of Nlg extracellular ester-

ase-homology domains (Araç et al., 2007; Fabrichny et al., 2007; Chen et al., 2008). On the other hand, the 
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intracellular Cter domains of Nrx and Nlg, composed of distinct PDZbd, are responsible for the polarized 

targeting and specific interactions at the synapse - Table 5, Fig. 18. At the pre-synaptic compartment, class 

II PDZbd-containing Nrxs bind multidomain scaffold proteins like the calcium/calmodulin-dependent serine 

protein kinase CASK (Hata et al., 1996). CASK is known to impair synaptic function, being its deletion lethal 

in mice (Atasoy et al., 2007). It takes part in the macro-complex CASK/VELI/MINT (Butz et al., 1998; Borg et 

al., 1999), interacting with actin nucleators such as 4.1 protein and transmembrane proteins like the contac-

tin-associated proteins Cntnaps (or Casprs) (Biederer & Südhof, 2001). Interestingly, rare mutations in CNT-

NAP2 and CNTNAP5 genes have been recently linked to ASD and ASD-RD (Strauss et al., 2006; Zweier et 

al., 2009; Pagnamenta et al., 2010; Anderson et al., 2012; Prasad et al., 2012; Vaags et al., 2012; Rodenas-

Cuadrado et al., 2013). Caspr proteins belong to the superfamily of Nrx composed of several extracellular 

domains and an intracellular Cter bearing Nrx-like class II PDZbd. So far the exact molecular interactions 

that Caspr elements are engaged to are not well known. Nevertheless, a similar PDZbd was also found in 

CADM1 (RA175/SynCAM1), suggesting that Nrx, Casprs and CADM1 might play similar roles in brain func-

tion. CADM1 is an ASD-related immunoglobulin adhesion molecule able to control synapse number and 

impact LTD-like synaptic plasticity as well as hippocampal-dependent learning (Robbins et al., 2010). In the 

cerebellum, CADM1 can interact with the multiple PDZ domain protein MUPP (PDZ1-5), which in turn an-

chors anchor gamma-aminobutyric acid type B receptors (GABBR2; PDZ13) at the synapse (Fujita et al., 

2012). At the post-synaptic level, PDZ-dependent interactions rule Nlg partnerships as well. The rapid accu-

mulation of Nlg1 after a given axo-dendritic contact was shown to induce the recruitment of NMDAR to the 

synapse, followed by an independent accumulation of PSD-95 (Barrow et al., 2009). PSD-95 over gephryn 

recruitment was later described as being dependent on Nlg1 Y783 phosphorylation (Giannone et al., 2013). 

PSD-95-related signal transduction was recently implicated in ASD and Angelman syndrome (Tsai et al., 

2012; Cao et al., 2013). Moreover, as a scaffold protein, PSD-95 and related proteins like SAP-102 can in-

teract and form macro-complexes with several other proteins, like the Shank family (Sheng & Hoogenraad 

2007). Shank1-3 can directly bind GKAP and Homer, potentially bridging NMDAR/PSD-95/GKAP to the 

mGluR/Homer complex at the synaptic level (Naisbitt et al., 1999; Tu et al., 1999; Bertaso et al., 2010; Jiang 

& Ehlers, 2013). Shank1-deficient mice exhibit smaller dendritic spines, decreased basal synaptic transmis-

sion but enhanced spatial learning (Hung et al., 2008). Recent work in our lab showed that ASD-related mu-

tations of Shank3 strongly affect synaptic development, morphology and function, impacting growth cone 

motility and synaptic transmission in mature neurons (Durand et al., 2012). Rare missense variants or muta-

tions correlated with ASD were also found in genes encoding other PDZ-domains containing proteins like the 

glutamate receptor interacting protein GRIP1 (Meijas et al., 2011) or the LRR-containing cell adhesion pro-

tein SALM5 (Xu et al., 2009; de Bruijn et al., 2010; Mitchell, 2010). While GRIP1 is known to impact GluA2/3-

containing AMPARs recycling and surface distribution in neurons, SALM5 appears to affect neurite out-

growth and synapse formation. Strinkily, the loss of the LAP member Densin-180, containing both LRR and 

PDZ domains, was recently correlated with autism and schizophrenia endophenotypes (Carlisle et al., 2011). 

Densin loss leads to mGluR5 and DISC1 mislocalization in the PSD, impacting mGluR- and NMDAR-
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dependent LTD as well as spine morphology. Such results ressemble Scrib
crc/+ 

mutant phenotype translated 

into a functional similarity. Moreover, the implication of well-established binders of Scrib1 in ASD – like the 

key pre- and post-synaptic coordinator APC (Raedle et al., 2001; Zhou et al., 2007; Rosenberg et al., 2010) 

and NOS1AP (Delorme et al., 2010), further strengthen Scrib1 potential role as a spine molecular determi-

nant involved in ASD. 

 

Table 5: PDZ related proteins implicated in autism-spectrum disorders (ASD). 

Protein Clinical studies  In vitro studies In vitro model Ref. 

PDZ-domain containing proteins 
   

Densin-180 Schizophrenia and 
ASD-like endophe-
notype  

↓ α-actinin; ↓ mGluR5 and DISC1 localization in the PSD; 
impairment of mGluR- and NMDAR-dependent LTD; 
change in spine morphology 

Mouse forebrain, 
inc. hippocam-
pus 

[1] 
 

GRIP Autism 
 

GRIP variants (PDZ4-6) associated with altered interac-
tions with GluA2/3; faster AMPARs recycling and ↑ surface 
distribution 

Dissociated 
hippocampal 
neurons 

[2] 
 
 

PSD-95 
(Dlg4) 

ASD and Angelman 
syndrome  
 

PSD-95 and NMDAR recruitment following NLGN1 accu-
mulation; involved in proteasomal degradation of multiple 
autism-linked genes; implicated in TrkB-dependent induc-
tion and maintenance of LTP 

Mouse hippo-
campus 

[3-5] 
 

Shank1-3 
 

Autism, intellectual 
disability, language 
disabilities and/or 
social communica-
tion disorders and 
schizophrenia 

Altered PSD protein composition; altered growth cone 
motility; actin-dependent modification of dendritic spine 
development and morphology; ↓ basal synaptic transmis-
sion; ↑  anxiety and impaired contextual fear memory; ↑  
performance in a spatial kearning task impaired long-term 
memory retention; social communication deficits 

Mouse hippo-
campus  

[6-14]  

   
Cter PDZ-binding domain containing proteins   
APC 
-VTSV 

ASD 
 

↓ postsynaptic accumulation of S-SCAM and NLG synaptic 
clusters; ↓ in NRX and active zone proteins; presynaptic 
terminals are less mature structural and functionally 

Chicken ciliary 
ganglion neu-
rons an brain 

[15-17] 

CADM1 (or 
SynCAM1) 
-EYFI 

ASD 
 

↓ excitatory synapses; regulates LTD and spatial learning; 
destabilization leads to an ↑ GABBR2; ↓ cerebella with ↓ 
number of synapse of Purkinje cells; impaired ultrasonic 
vocalization 

Mouse hippo-
campus and 
cerebellum 

[18,19] 

Caspr2 
-EWLI 

ASD, schizophrenia , 
intellectual disability, 
dyslexia, ADHD, 
developmental delay, 
and language im-
pairment 

Ectopic neurons in subcortical white matter (corpus cal-
lousum) and mislocalization of neurons within the six-layer 
cortex; ↓ number of GABAergic interneurons; ↓ of syn-
chronicy of neuronal firing; mice display ASD-like behav-
iour 

Cortex, hippo-
campus and 
striatum of cKO 
mice 

[20] 

Caspr5 
-EYFI 

Autism and dyslexia - - [21] 

NOS1AP 
-EIAV 

ASD, schizophrenia, 
and OCD 

- - [22] 

Nrx/Nlg 
-EYYV/-TTRV 

ASD, Tourette’s 
syndrome, learning 
disability and/or 
schizophrenia 

Nlg1 regulates excitatory and inhibitory scaffold assembly 
during synapse formation and stabilization; Nlg3 gain-of-
function leads to moderate social interactions impairment, 
↑ spatial learning capability and ↑ inhibitory synaptic 
transmission; Nlg4 loss-of-function leads to selective 
deficits in reciprocal social interactions and communica-
tion; impaired LTD and associative fear memory  

Mouse hippo-
campal cultures, 
somatosensory 
cortex or amyg-
dala  

[23-29] 

SALM5 
-LESI 

Severe progressive 
Autism, mental 
retardation and 
familial schizophre-
nia  

- - [30,31] 

1. Carlisle et al., 2011; 2. Meijas et al., 2011; 3. Tsai et al., 2012a; 4. Cao et al., 2013; 5. Barrow et al., 2009; 6. Durand et al., 2007; 7. 
Moessner et al., 2007; 8. Gauthier et al., 2010; 9. Hung et al., 2008; 10. Wöhr et al., 2011; 11. Durand et al., 2012; 12. Lennertz et al., 
2012; 13. Sato et al., 2012; 14. Chilian et al., 2013; 15. Raedle et al., 2001; 16. Zhou et al., 2007; 17. Rosenberg et al., 2010; 18. Rob-
bins et al., 2010; 19. Fujita et al., 2012; 20. Penagarikano et al., 2011; 21. Pagnamenta et al., 2010 ; 22. Delorme et al., 2010; 23. Gian-
none et al., 2013; 24. Tabuchi et al., 2007; 25. Jamain et al., 2008; 26. Südhof, 2008 ; 27. Glessner et al., 2009 ; 28. Kim et al., 2009; 
29. Blundell et al., 2010; 30. Xu et al., 2009; 31. de Bruijn et al., 2010.  

http://www.jneurosci.org.gate2.inist.fr/content/30/33/11073.long#ref-49
http://www.jneurosci.org.gate2.inist.fr/content/30/33/11073.long#ref-66
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Figure 18: Molecular determinants of ASD. The formation of a NRXN/NLGN-like trans-syanptic macro-complex drives the recruitment 
of asymmetrically distributed synaptic adaptor proteins to the each side of the synaptic junction. In turn, these scaffold proteins coordi-
nate pre- and post-synaptic signal transduction pathways capable of modeling synaptic architecture, function and wiring. As a conse-
quence, small changes in any of the trans-synaptic macrocomplex localization and /or function lead to massive changes in the neural 
network and consequently to brain dysfunction.  

 

I.5.7.2 Cell Polarity proteins as novel ASD molecular determinants 

In the past two decades, an increasing amount of studies have linked cell polarity proteins to ASD – Table 6. 

The first report correlating autism-like features and failure in PCP establishment was provided by Wynsham-

Boris and collaborators (Lijam et al., 1997) describing abnormal social behavior and sensorimotor gating 

deficits in mice lacking Dvl1, one of the three homologs of Drosophila Dsh (Chapter I.4.1). Subsequent stud-

ies revealed that disruption of Dvl genes can be implicated in several developmental defects (Wynshaw- 

Boris, 2012) as well as in 1p36 deletion (also known as monosomy 1p36), one of the most common terminal 

deletions observed in humans characterized by special facial features, mental retardation, heart defects, 

development delay and epilepsy (Zhu et al., 2013). Moreover, two distinct variants of Pk2, another core PCP 

gene, were recently found in ASD patients (Sowers et al., 2013). In mouse hippocampal neurons, Pk2 dis-

ruption leads to morphological and functional abnormalities. Likewise, apico-basal polarity determinants like 

Scrib1 were also implicated in ASD etiopathology (Chapter I.5.4.2). Mutations in Dlg3 and Dlg4 genes were 

correlated to ASD like non-syndromic X-linked mental retardation and Angelman syndrome (Tarpey et al., 

2004; Barrow et al., 2009; Gilman et al., 2011; Kantojärvi et al., 2011; Tsai et al., 2012a; Cao et al., 2013). 

The resulting proteins – SAP-102 and PSD-95, respectively, are MAGUKs involved in NMDAR targeting and 

coordination of several signalling pathways relevant for synaptic plasticity and proper brain function. Deletion 

of the tumour suppressor phosphatase with tensin homology PTEN, key negative regulator of the PI3K 

pathway, was also found to cause defects in synaptic architecture, transmission and plasticity (Fraser et al., 
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2008; Chapter I.3.1) Similar phenotypes were associated to other cell polarity proteins like the key polarity 

determinant Par-1 protein kinase MARK1 (Maussion et al., 2008) or the tuberous sclerosis protein TSC2 

(Choi et al., 2008). Finally, PCP effector genes like Nhs (Burdon et al., 2003; Chapter I.3.2) or the ERK1/2 

pathway (Fernandez et al., 2010; Levitt & Campbell., 2009) were lately implicated in ASD and related dele-

tion syndromes. Recent work in our lab suggests that a misregulation of the ERK pathway in the hippocam-

pus of Scrib1
crc

 mutant mice might underlie the observed ASD-like behaviour (Moreau et al., in preparation) 

(Chapter I.5.4.2). Remarkably, the systemic administration of an ERK phosphorylation blocker was able to 

reverse the social deficits in these mice, identifying the scrib gene as a potential novel therapeutic target for 

ASD-like behaviour. 

 

Table 6: Cell polarity proteins implicated in autism-spectrum disorders (ASD).  
 

Protein Clinical studies  In vitro studies In vitro model Ref. 

Apico-basal polarity determinants (-Cter PDZ binding domain)   
Dlg1-4 
(MAGUKs) 

ASD, Angelman syn-
drome, non-syndromic X-
linked mental retardation 

Disruption of NMDAR targeting and signalling; impair-
ment of TrkB signalling; disturbed proteasomal degrada-
tion 

Mouse hippo-
campus 

[1-6] 

Scrib1 ASD  ↓ βPIX, PAK, GIT, CaMKII; ↑ Rac1-GTP; ↑ c-Fos activity; 
↑ ERK1/2 phosphorylation; impaired activity-dependent 
actin polymerization; ↑ synaptic pruning; altered basal 
neuronal morphology; ↓ basal synaptic transmission; 
impaired LTP; enhanced  learning and memory; im-
paired social behaviour 

Mouse hippo-
campal neurons 
and slices 

[7-10]  

PTEN  
-ITKV 

Autism, chromosome 10 
deficiency, Lhermitte-
Duclos disease, seizures, 
ataxia, diabetes, and 
cancer predisposition 
 

↑ soma size; ↑ neuronal projections calibre; ↑ dendritic 
spine density; ↑ synaptic structures; myelination defects 
in the corpus callosum; ↓ synaptic transmission and 
synaptic plasticity impairment 
 

Mouse cerebel-
lum, cortex, and 
hippocampus  

[11] 

PCP genes    
Dvl1-2 ASD, 1p36 deletion syn-

drome and developmental 
defects 

Defective development, abnormal social behaviour and 
sensorimotor gating  

Mouse [3,12-14] 

Pk2 
 

ASD ↓dendritic branching, synapse number and PSD size; ↓ 
frequency and size of spontaneous mEPSCs; altered 
social interactions, learning abnormalities and behav-
ioural inflexibility 

Mouse hippo-
campal neurons 
and slices 

[15] 

     
Effector genes    
ERK1/2 
 

ASD, 16p11.2 and 
22q11.2 deletion syn-
dromes 

↑ c-Fos activity and ↑ ERK1/2 phosphorylation in the 
CA3 and DG of Scrib1

crc
 mice 

Mouse hippo-
campal neurons 
and slices 

[10,16,17] 

Nhs Severe congenital cata-
ract, dysmorphic features, 
and mental retardation 
 

- - [18] 

Others (-Cter PDZ binding domain)    
MARK1 Autism  ↓dendrite length; modified dendritic transport speed Mouse neocorti-

cal neurons  
[19] 

TSC2 
-TEFV 

Autism, epilepsy, mental 
retardation, and tumour 
predisposition 

Lack leads to ectopic axons; overexpression to axon 
formation suppression; inactivation via upregulation of 
neuronal polarity SAD kinase 

Mouse brain  [20] 

1. Tarpey et al., 2004; 2. Barrow et al., 2009; 3. Gilman, et al., 2011; 4. Kantojärvi et al., 2011; 5. Tsai et al., 2012b; 6. Cao et al., 2013; 
7. Moreau et al., 2010; 8. Pinto et al 2010; 9. Neale et al., 2012; 10. Moreau et al., in  preparation; 11. Fraser et al., 2008; 12. Lijam et 
al., 1997; 13. Wynshaw-Boris, 2012; 14. Zhu et al., 2013; 15. Sowers et al., 2013; 16. Fernandez et al., 2010; 17. Campbell et al., 2009; 
18. Burdon et al., 2003 ; 19. Maussion et al., 2008; 20. Choi et al., 2008. 
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I.6 Reviewing AMPA receptor trafficking: the Who, What, Why, When, Where & How 

 

I.6.1. Structure, composition and properties of AMPA receptors 

α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors are tetrameric structures that 

combine homologous subunits GluA1 to GluA4 in different stoichiometries to form receptor subtypes with 

distinct properties (reviewed by Wisden & Seeburg, 1993; Hollmann & Heinmann, 1994; Mano & Teichberg, 

1998; Rosenmund et al., 1998). Each monomer contains 900 amino acids that share between 68 and 74% of 

sequence homology (Collingridge et al., 2004). A typical AMPAR subunit is composed of a large extracellular 

Nter, four hydrophobic domains and an intracellular Cter (Fig. 19 a). The homologous Nter domain hosts the 

glutamate binding site, which induces conformation changes to the TM segments and triggers opening of the 

channel upon ligand binding (Gouaux, 2004; Mayer, 2005). Instead, the extracellular loop between TM3 and 

TM4 contains a flip/flop region shaped by alternative RNA splicing (R/G), creating receptors with different de 

sensitization and endoplasmic reticulum (ER) export kinetics (Sommer et al., 1990; Mosbacher et al., 1994 

Coleman et al., 2006). The four hydrophobic domains include three transmembrane domains (TM1, TM3, 

and TM4) and a specific membrane inserted hydrophobic amino-acid sequence (Q/R) prone to RNA editing 

that dictates the permeability of the channel pore. The intracellular Cter is quite distinct among different sub-

units, containing a few phosphorylation sites and a PDZ binding domains, both crucial to the regulation of 

AMPAR subunit function and protein-protein interactions. Moreover, some subunits, like the GluA1, GluA4 or 

the alternative splice form of GluA2L have longer, homologous and similar Cter tails, while other, such as the 

predominant splice form of GluA2, GluA3 and an alternative splice form of GluA4 have shorter cytoplasmic 

tails with high homology. The majority of AMPARs are a combination of GluA1, GluA3, and GluA4 with 

GluA2 subunit, responsible for the prototypical calcium-impermeability (Fig. 19 b, first) and the linear current-

voltage (I-V) profile (Fig. 19 c, in orange). Nevertheless, there are some AMPAR that either contain an uned-

ited GluA(Q) subunit (Fig. 19 b, middle) or do not possess GluA2 subunits at all (Fig. 19 b, last). These

 

 
Figure 19: AMPAR structure, regulation and diversity. (a) An individual AMPAR subunit is composed of a large extracellular Nter, 
containing the glutamate binding site and the flip/flop region; three transmembrane domains; a hydrophobic loop that determines the 
channel permeability to calcium; and an intracellular Cter containing phosphorylation sites and a PDZ binding domain. In addition, the 
Cter can have either a conserved long (GluA1, GluA2L and GluA4) and short (GluA2, GluA3 and GluA4c) tail, prone to be regulated by 
the same kinases and scaffold proteins. (b) AMPAR assemble as a combination of four subunits –three GluA1/3/4 (in blue) and (1) 
typically one GluA2 (orange), forming a calcium-impermeable pore; or (2) a unedited GluA2(Q) (in clear blue), or (3) lacking GluA2, 
being the corresponding AMPAR of both calcium-permeable. (c) Current-voltage (I-V) relationship for AMPAR lacking (in blue) or con-
taining (in orange) GluA2 subunits either rectifying or linear, respectively. 



are permeable to calcium and display a rectifying I–V relationship (Fig. 19 c, in blue). Interestingly, several 

studies have been showing that AMPAR composition can be rapidly altered in response to certain inputs and 

therefore modulate the functional properties of a synapse (Liu & Cull-Candy, 2000, 2002; Bagal et al., 2005; 

Plant et al., 2006; Goel et al., 2006; Bellone & Luscher, 2006). 

 

I.6.2 AMPAR distribution in the brain 

A widespread distribution of AMPAR in the brain was revealed in early studies using in situ hybridization, 

receptor autoradiography of 
[3H]

AMPA and 
[3H]

glutamate as ligands, and immunocytochemistry of all four 

GluA subunits. In particular, GluA1-GluA3 subunits are abundant in the hippocampus, outer layers of the 

cerebral cortex, amygdala, basal ganglia, olfactory regions and lateral septum (Keinanen et al., 1990; Ben-

eyto & Meador-Woodruff, 2004). Conversely, GluA4 subunit is poorly expressed throughout the CNS, being 

only enriched in the reticular thalamic nuclei and the cerebellum (Petralia & Wenthold, 1992; Martin et al., 

1993; Spreafico et al., 1994). AMPAR can be equally found in glial cells (Gallo & Russell, 1995; Janssens & 

Lesage, 2001; Lin & Bergles, 2004). Regulation of receptor subunit expression occurs during development 

(Petralia et al., 1999; Palmer et al., 2005; Talos et al., 2006). AMPAR mRNA can be detected at early stages 

of development. In embryonic rat brain, GluA2 is ubiquitously expressed, while the other subunits are differ-

entially expressed (Monyer et al., 1991). Meanwhile, GluA1 protein can be found at E15.5 in rat brain and 

GluA4 at E11 in mouse brain (Durand & Zukin, 1993; Martin et al., 1998). Protein levels of all GluA subunits 

gradually increase until the third postnatal week (Insel et al., 1990; Pellegrini-Giampietro et al., 1991; Stand-

ley et al., 1995; Arai et al., 1997). It is believed that the first step of AMPAR incorporation into the plasma 

membrane occurs during neonatal development, when GluA1-containing AMPARs cluster at potential 

postsynaptic sites. Furthermore, splicing of AMPARs changes during development (Tonnes et al., 1999), as 

well as the kinetics of channel opening (Koike-Tani et al., 2005; Wall et al., 2002). Unsurprisingly, the subunit 

composition of AMPAR varies with cell type, development and brain region. In hippocampal pyramidal cells, 

GluA1/2 and GluA2/3 heteromers are predominant (Wenthold et al., 1996), while Purkinje cells in the cere-

bellum mainly contain GluA2/3 complexes (Esclapez et al., 1994). A quantitative fluorescence in situ hybridi-

sation revealed that proximal and distal dendrites of hippocampal cultured neurons contain endogenous 

mRNAs encoding GluA1 and GluA2 subunits, including clusters of GluA2 mRNA in a significant fraction of 

synaptic sites (Grooms et al., 2006). All four GluA subunit mRNAs have also been found in the apical den-

drites of pyramidal cells in hippocampal and cortical tissue (Muddashetty et al., 2007; Cajigas et al., 2012; 

Cox & Racca, 2013) as well as in the dendrites of hippocampal GABAergic interneurons (Cox & Racca, 

2013). Given that dendrites possess the necessary machine for protein synthesis, these data suggest that 

local synthesis of AMPAR subunits can afford local regulation of receptor abundance and composition 

(Steward & Levy, 1982; Kacharmina et al., 2000; Tang & Schuman, 2002; Asaki et al., 2003; Muddashetty et 

al., 2007; Cajigas et al., 2012; Cox & Racca, 2013). Additionally, acute activation of mGluR1, a general de-

polarization with KCl (Ju et al., 2004), or dopamine receptor activation (Smith et al., 2005) in hippocampal 

neurons are able to promote GluA1 and GluA2 protein synthesis in dendrites, suggesting that both mRNA 

transport and dendritic translation are activity-dependent events. 
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I.6.3 Role of AMPARs in synaptic plasticity 

Long-term potentiation (LTP) and long-term depression (LTD) are nowadays the two major cellular mecha-

nisms believed to underlie learning and memory (reviewed by Malenka et al., 1999). LTP refers to a persis-

tent increase in the efficiency of synaptic transmission after inducing a short period of high-frequency synap-

tic stimulation; whereas LTD comprehends a reduction in synaptic strength following low-frequency stimula-

tion (reviwed by Song & Huganir, 2002; Bredt & Nicoll, 2003; Collingridge et al., 2004) (Fig. 20). Synaptic 

plasticity is predominantly mediated by two subtypes of glutamate-gated ion channels concentrated at 

postsynaptic sites - AMPAR and NMDAR (reviewed by Citri & Malenka, 2008). The rapid excitatory synaptic 

transmission is ensured by AMPAR, while NMDA receptors regulate the slower component of neuronal activ-

ity. NMDA are blocked by Mg
2+

 at resting membrane potential, but when a sufficient number of AMPAR are 

activated taking the membrane potential to more positive values, the Mg
2+

 blockade is relieved, allowing Ca
2+ 

to flow into the cell through NMDAR. Intracellular Ca
2+

 can now trigger various signalling cascades that in 

turn regulate AMPAR trafficking to and from the synaptic membrane, resulting in a potentiated or depressed 

synapse, respectively. How, where and when AMPA receptors are inserted or removed will be next dis-

cussed. 

 

 
Figure 20: AMPAR role in synaptic plasticity. LTP and LTD trigger the insertion and removal of AMPA receptors at synapses, respec-
tively. Examples of field excitatory postsynaptic potentials (fEPSPs) measured from basal (i), potentiated (ii) and depressed (iii) synap-
ses.  

 

I.6.4 Untangling AMPAR traffic: from the cell soma to the synapse 

The traffic of AMPAR in and out synapses is a key, fine-tuned and tightly regulated mechanism in both 

synaptic development and maturation. Following its biosynthesis and assembly in the cell soma, AMPA re-

ceptors are transported to dendrites and later trafficked to the postsynaptic membranes, where AMPAR 

proper content and composition define synaptic strength – Fig. 21. 

 

I.6.4.1 AMPARs biosynthesis & assembly 

The biosynthesis of oligomeric transmembrane proteins usually takes place at the ER membrane - Fig. 21 i. 

Typically, there is a first step of co-translation insertion of the nascent polypeptide chain through the Sec61  
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Figure 21: AMPA receptors trafficking: from the cell soma to the synapse. Following AMPAR biosynthesis and assembly in the ER, 
GluA1/2 and GluA2/3 can associate with other proteins, like SAP-97 (in green) and ABP/GRIP (in blue), respectively (i). The complex 
can be endo/exocytosed to the plasma membrane and diffuse laterally and/or move throughout the microtubules (ii) and trafficked into 
the plasma membrane (iii). GluA2/3 complex can continuously cycle in and out of the synaptic membrane, maintaining synaptic strength 
despite protein turnover, whereas the GluA1/GluA2 regulated pathway is transiently set upon induction of synaptic activity. 

 

channel (Clemons et al., 2004), followed by protein folding and sequential assembly in three distinct physico-

chemical environments: the cytosol, the RER (rough endoplasmic reticulum) lipid bilayer, and the ER lumem 

(Netzer & Hartl, 1997). Similarly to K
+
 channels (Tu & Deutsch, 1999), AMPAR are believed to be formed as 

dimers of dimers (Tichelaar et al., 2004; Ayalon & Stern-Bach, 2001; Ayalon et al., 2005). The dimer for-

mation is mostly mediated by the Nter of AMPAR subunits, and the subsequent tetramerization requires the 

extracellular S2 loop and the TM domains, including the pore loop. Interestingly, these regions are prone to 

both RNA splicing and editing. The splicing of mutually exclusive exons in all four GluA subunits within the 

ligand-binding domain is believed to influence desensitization kinetics (Sommer et al., 1990, Seeburg et al., 

1998; Lomeli et al., 1994; Grosskreutz et al., 2003). On the other end, RNA editing, Q/R586 at the apex of 

the pore loop of GluA2 subunits, and the R/G743 in the flip/flop region of all four GluA subunits intimately 

impact receptor assembly (Greger et al., 2003, 2006). In particular, unedited GluA2 (Q586) forms homo-

mers,while the edited subunit (R586) restricts GluA2 self-assembly, implying that only fully edited GluA2 

(R586/G743) produce hetero-tetramers. Remarkably, it was shown that this RNA processing is regulated 

during development. Furthermore, different tetramer combinations of AMPA subunits can be selectively tar-

geted to specific dendritic subdomains (Toth & McBain, 1998; Rubio & Wenthold, 1997; Gardner et al., 

2001), and in response to altered activity patterns (reviewed by Cull-Candy et al., 2006). Following the subu-

nit folding and receptor assembly in the ER membrane, AMPAR are sensed by the quality control machinery 

at the ER exit (Ellgaard & Helenius, 2003; Grunwald & Kaplan, 2003; Valluru et al., 2005; Mah et al., 2005). 

The efficiency of all these processes within the ER and its exit will impact on AMPAR export kinetics and 

consequent number of available channels for synaptic expression. It is believed that the assembled AMPAR 
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associate with other proteins, like SAP-97 or ABP/GRIP, facilitating both ER export and traffic of AMPAR to 

the dendritic spine. 

 

I.6.4.2 AMPAR traffic to and in the synapse 

Following biosynthesis and assembly, AMPAR are targeted to a specialized dendritic membrane that consti-

tutes the postsynaptic terminal - Fig. 21 ii. Exocytosis of de novo AMPAR is not only a requirement during 

basal conditions as it is during LTP (Lledo et al., 1998; Park et al., 2004). Initial studies suggested that AM-

PAR could be mobilized from dendritic recycling endosomes and be inserted along the dendritic shaft or 

directly into the PSD itself (Passafaro et al., 2001; Gerges et al., 2006). However, the turnover rate of synap-

tic receptors within intracellular pools was proven to be too slow for such a scenario compared to exocytosed 

receptors at the soma that travel until the synapse by lateral diffusion (Adesnk et al., 2005). Technical ad-

vances in the optical field in the last decade or so allowed to better track down the dendritic movement of 

AMPAR, suggesting the existence of two segregated compartments in a synapse containing distinct popula-

tion of AMPARs: (1) extrasynaptic AMPARs, which appear to be highly mobile; and (2) synaptic AMPARs, 

displaying confined movements within microdomains of about 300nm dynamically organized by scaffold pro-

teins (Lee et al., 2002b; Borgdorf & Choquet, 2002; Tardin et al., 2003; Asbhy et al., 2004; Sekine-Aizawa & 

Huganir, 2004). High-density superresolution imaging came to prove that AMPARs can be exchanged be-

tween synapses through lateral diffusion and be trapped in the PSD by interacting with several other proteins 

(Czőndőr et al., 2012; Hoze et al., 2012; Nair et al., 2013). On the other hand, single-molecule tracking 

proved to be better to determine how fast do receptors diffuse at the synapse. Several reports confirmed that 

receptors are constantly moving, displaying low (below 10
-4

 μm
2
/s) to high (10

-1
-10

-2
 μm

2
/s) diffusion rates 

depending where they are trapped or not in the PSD, respectively (Meier et al., 2001; Sergé et al., 2002). In 

addition, surface mobility of postsynaptic AMPAR, but not NMDAR, was proven to be strongly affected by 

neuronal activity, being the extrasynaptic population the most affected (Howarth et al., 2005; Chambers et 

al., 2004). In particular, synaptic activity was reported to restrict AMPAR mobility on a submicron scale within 

individual synapses, preventing diffusional exchange of GluA1-containing complexes between synaptic and 

extrasynaptic domains (Ehlers et al., 2007). At last, Heine and collaborators elegantly showed that AMPAR 

lateral diffusion allows a fast exchange of desensitized receptors for naïve functional ones within the PSD or 

nearby, thus allowing to fine tune synaptic transmission in the tens of milliseconds range (Heine et al., 2008). 

One important aspect of lateral diffusion is that it is dependent on spine morphology, being restricted at the 

spine neck. Synapse specificity is therefore believed to be guaranteed by spine structure, which directly 

compartmentalizes lateral diffusion, allowing the receptors to spend less or more time in specific synapses 

(Ashby et al., 2006). Interestingly, LTP-induced actin polymerization was shown to retain AMPAR at perisyn-

aptic sites, which are removed following low-frequency stimulation (Yang et al., 2008). Tracking of individual 

actin molecules in live spines further corroborated its role as a dynamic element well suited to regulate spa-

tially distinct disctinct events throughout several subdomains of the spine (Frost et al., 2010). 
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I.6.4.3 Constitutive and activity-dependent targeting of AMPARs to the synapse 

The final step of receptor insertion at the synaptic membrane is a tightly regulated event, being dependent on 

both the receptor composition and specific signals contained in the Cter of the different GluA subunits - Fig. 

21 iii. Endogenous AMPARs consist mostly on GluA1/2 and GluA2/3 complexes. Surface insertion of indi-

vidual long-tailed GluA1 and GluA4 occurs slowly in basal conditions, being stimulated by neuronal activity 

and NMDAR activation (Hayashi et al., 2000). Conversely, the short tailed GluA2 subunit is inserted in rapid 

and constitutive manner under basal conditions (Passafaro et al., 2001; Shi et al., 2001). When GluA1/2 

heteromeric channels are expressed, the activity-dependent GluA1 trafficking signal dominates, while 

GluA2/3 complex behaves like GluA2 homomers, constitutively trafficking to the synapse. As aforemen-

tioned, the differential trafficking of AMPAR subunits depends as well on their Cter tails. In particular, GluA1 

Cter has a class I PDZ binding domain able to interact with SAP-97 early in the secretory pathway (Leonard 

et al., 1998). This interaction is essential for the ER exit but once at the plasma membrane, SAP-97 dissoci-

ates from the complex (Sans et al., 2001). Other proteins, like RIL (reversion-induced LIM; Schulz et al., 

2004) or 4.1N (Shen et al., 2000), may be involved in actin-dependent trafficking and surface expression of 

GluA1. Conversely, GluA2, GluA3, and GluA4c contain a class II PDZ binding domain. Several studies 

showed that GluA2 and GluA3 are also engaged in protein-protein interactions with PDZ domain containing 

proteins like GRIP (glutamate receptor-interacting protein), ABP (AMPA receptor-binding protein or PICK1 

(protein interacting with C kinase) (Dong et al., 1997; Srivastava et al., 1998; Dev et al., 1999; Xia et al., 

1999). Furthermore, post-translation modifications within the PDZ binding region of GluA2 are known to pre-

vent its association with GRIP and ABP, but not with PICK1 (Matsuda et al., 1999, 2000; Chung et al., 2000). 

Altogether, these evidences point to a non-stochastic but rather tuned regulation of AMPAR assembly, traffic 

and delivery to the synaptic membrane, where they play an essential role in synaptic plasticity. 

 

I.6.4.4 Post-translational modifications of AMPAR Cter can dictate AMPAR delivery rules  

Calcium influx through the NMDAR is essential for synaptic plasticity and results in the activation of a wide 

variety of intracellular signalling pathways including several enzymes. On the other hand, the Cter tails of 

AMPAR subunits contain several phosphorylation, palmitoylation, glycosylation and ubiquitination residues, 

suggesting that post-translational modifications can be engaged in the regulation of synaptic plasticity – Ta-

ble 7; Fig. 22. The modulation of post-translational events depends not only on the previous history of the 

synapse, but also on the type of stimulus that the synapse receives. For example, stimulation of naïve syn-

apses leads to an increase of Ser831 phosphorylation, while in previously depressed synapses Ser845 

phosphorylation predominates (Lee et al., 1998, 2000). Instead, following a HFS-dependent activation of 

CaMKII, PKA increases GluA1 phosphorylation to produce LTP (Fig. 22 a); whereas LFS activates protein 

phosphatases like PP1/2A, capable of dephosphorylate Ser845 and reduce the number of GluA1 synaptic 

clusters, thus promoting LTD (Fig. 22 b) (Carroll et al., 1999; Heynen et al., 2000; Huang et al., 2001a; Hu et 

al., 2007). On the other hand, the same residue can be bidirectionally modulated by the same post-

translational modification, be targeted by another type of enzyme or even be primed by a previous modifica-

tion, suggesting a fine tune regulation of several converging signalling pathways. As a final outcome, post-
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translational modifications can facilitate or disturb interactions with other proteins, orient AMPAR traffic to-

wards internalization, recycling or degradation pathways, ultimately affecting AMPAR surface expression and 

synaptic transmission. 

 

Table 7: Functional effect of the main AMPAR post-translational modifications in AMPAR traffic. 

Subunit Residue Enzyme Functional effect Ref. 

GluA1 Cys610 Palmitoyl acycl 
transferase family 

Modulates PKC phosphorylation and interaction with 4.1N [1,2] 

 Ser816 PKC Promotes interaction with 4.1N, facilitating AMPAR insertion [2] 

 Ser818 PKC 

 

Promotes interaction with 4.1N; essential for LTP-induced AMPAR 
recruitment to the PSD 

[3] 

 

  OGT/OGNase Predicted to be modified during hippocampal LTD [4,5] 

 Ser831 PKC, CaMKII  

 

PP1  

OGT/OGNase 

Higher channel conductance; promotes synaptic incorporation of 
receptors following LTP  

Facilitates LTD by reducing AMPAR surface expression  

Predicted to be modified during hippocampal LTD 

[6-9] 

 

[10] 

[4,5] 

 Thr840 PKC, p70S6  

PP1/2A  

Predicted in vitro PKC site; p70S6 might have a role in LTD 

Decreased phosphorylation following chemLTD protocol  

[11,12] 

[11] 

 Ser845 PKA  

 

Higher channel open probability; primes AMPAR for CAMKII(Ser831)-
dependent synaptic incorporation and efficient LTP 

[8,13-15] 

 

  PP1/2A  Reduces AMPAR surface expression and promotes LTD  [10,16,17] 

  OGT/OGNase Predicted to be modified during hippocampal LTD [4,5] 
 Lysine E3 ubiquitin ligases Regulates GluA1 degradation via the proteasome or the lysosome  [18,19] 

 

GluA2 Cys811 Palmitoyl acycl 
transferase family 

Modulates interaction with 4.1N [1,2] 

 Cys836 Palmitoyl acycl 
transferase family 

Modulates interaction with 4.1N [1,2] 

 Ser856 OGT/OGNase Predicted to be modified during cerebellar LTP [4,5] 

 Ser863 PKC  Unknown [20,21] 

 Tyr876 Src family  Modulates interaction with GRIP and PICK as well as AMPA- and 
NMDA-induced internalization of GluA2  

[22] 

 Ser880 PKC  

 

PP1  

Modulates GluA2 internalization and  

interaction with GRIP and PICK1  

Stabilizes basal transmission by antagonizing PKC action  

[23-25] 

 

[10] 

 

GluA2L Thr912 JNK1 Controls GluA2L reinsertion following NMDA-dependent internalization [26] 

 

GluA4 Thr830 PKC  Unknown [27] 

 Ser842 PKC, PKA, CaMKII PKC leads to increased surface expression; PKA relieves retention 
signal and modulates surface expression  

[8,16,27-29] 

 Tyr876 Src Modulates interaction with BRAG2 and subsequent activation of Arf6; 
involved in internalization during LTD 

[30] 

 Ser880 PKC Favours PICK binding over GRIP; involved in LTD [31] 

1. Hayashi et al., 2005; 2. Lin et al., 2009; 3. Boehm et al., 2006; 4. Din et al., 2010; 5. Kanno et al., 2010; 6. Mammen et al., 1997; 7. 
Barria et al., 1997; 8. Derkach et al., 1999; 9. Hayashi et al., 2000; 10. Hu et al., 2007; 1. Delgado et al., 2007; 12. Lee et al., 2007; 13. 
Roche et al., 1996; 14. Banke et al., 2000; 15. Oh et al., 2006; 16. Esteban et al., 2003; 17. Lee et al., 2000; 18. Schwarz et al., 2010; 
19. Fu et al., 2011; 20. McDonald et al., 2001; 21. Hirai et al., 2000; 22. Hayashi & Huganir, 2004; 23. Matsuda et al., 1999; 24. Chung 
et al., 2000; 25. Perez et al., 2001; 26. Thomas et al., 2008; 27. Carvalho et al., 1999; 28. Correia et al., 2003; 29. Gomes et al., 2004; 
30. Scholz et al., 2010; 31. Seidenman et al., 2003.  OGT, O-GlcNAc transferase; OGNase, O-GlcNAcase; O-GlcNAc, O-linked N-
acetylglucosamine. 
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Figure 22: AMPAR endocytosis and exocytosis dependent on phosphorylation. (a) Following NMDA activation, the Ca
2+ 

influx can 
activate protein kinases like PKC, PKA or CaMKII and consequent phosphorylation of AMPA receptors containing long tailed GluA1 
subunits. They now move to the PSD and increase synaptic strength (LTP). Conversely, if phosphatase actions predominate, AMPAR 
can be endocytosed, decreasing the synaptic strength (LTD). Once inside the cell, they can recycle back to the membrane or be de-
graded. (b) Following synthesis, AMPA receptors containing GluA2 subunits can be anchored at the synaptic membrane by interacting 
with PDZ domain-containing proteins like GRIP. Following a LTD stimulus, PKC is activated and phosphorylates GluA2 short tailed Cter. 
The interaction between GluA2 and GRIP is disrupted, promoting AMPAR endocytosis. PICK1, insensible to phosphorylation changes,  
can now bind and stabilize the newly internalized AMPAR receptors. 

 

I.6.4.5 Molecular determinants of AMPAR synaptic traffic 

Targeting, trafficking and insertion of AMPARs into synapses is largely mediated through interactions of the 

highly complex and specific Cter of each AMPA subunit (Fig. 19 a) with multiple proteins that can either be 

cytoplasmic, such as PSD-95; transmembrane proteins as stargazing; or even secreted proteins like Narp - 

Table 8. As aforementioned, some of these interactions can be affected by post-translational modifications, 

pinpointing to the existence of a tightly regulated and fine-tuned mechanism orchestrated by several players 

at each step of the AMPAR traffic from the receptor biosynthesis at the soma until the delivery and surface 

expression at a specific site and time point. 

 

I.6.4.5.1 Cytosolic proteins 

I.6.4.5.1.1 PDZ-containing proteins 

The first PDZ domain-containing proteins - the PSD-95/SAP-90 protein, the Drosophila discs large tumour 

suppressor gene Dlg-A, and the epithelial tight junction protein ZO-1 (Woods & Bryant, 1991; Cho et al., 

1992; Itoh et al., 1993) - are responsible for the denomination of this family of proteins that typically is in-

volved in the assembly of supra-molecular complexes. PDZ domains are modular protein interaction motifs 

that can bind to other PDZ domains or to specific sequences in the Cter of several proteins that contain the 

so called PDZ-binding motifs (reviewed by Sheng & Sala, 2001; Hung & Sheng, 2002). PDZ domains can be 

classified according to the recognized specific consensus sequence of the last four amino acids of the Cter 

ligand. Class I PDZ domains recognize the sequence X-S/T-X-L/V (x-any amino acid); whereas Class II PDZ 

domains identify X-ϕ-X-ϕ (ϕ-hydrophobic amino acid). PDZ-containing proteins implicated in AMPAR traffick-

ing represented in Fig. 23 and further described below. 
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Table 8: AMPAR-interacting proteins capable of controlling AMPAR synaptic traffic. 

Protein Interaction Function Ref. 

Cytoplasmic proteins 

PDZ domain containing proteins 

 

GRIP/ABP 
 

GluA2/3, GluA4(c)  Membrane surface and intracellular receptor stabilization; implicated 
mAChR- and mGluR-dependent LTD; and indirectly involved in LTP 

[1-9] 

PICK1 GluA2/3, GluA4(c)  Receptor clustering, NMDA-induced AMPAR downregulation and inter-
nalization; present in recycling endosomes; affects spine dynamics; 
involved in cerebellar and hippocampal LTD; critical role in bidirectional 
LTP/LTD switch 

[2,10-24] 

MAGUKs 
   SAP-97 
 
 
   PSD-95 

 
GluA1  
 
 
Via Stgz  

 
Regulates AMPAR functional number at the synapse and occludes LTP; 
and α- and βSAP-97 differentially regulate GluA1 sub-synaptic localiza-
tion 
Promotes synaptic clustering AMPARs, as well as AMPAR-mediated 
currents; anchors AMPAR at the post-synapse by interacting with Stgz; 
promotes synaptic stability through CaMKII 

 
[25-27] 
 
 
[28-30] 

mLin-10 GluA1  Directs AMPAR localization; and it might regulate AMPA receptor traf-
ficking  

[31-32] 

SemaF GluA2  Unknown [33] 
Syntenin GluA1, GluA2(c), 

GluA3c, GluA4 
Unknown [2] 

Non PDZ domain containing proteins  
 

4.1N GluA1, GluA4  Modulates actin cytoskeleton-dependent AMPA trafficking; involved in 
cerebellar synaptogenesis; and possibly in LTP expression  

[34-37] 

AKAP79/150 MAGUK/AMPAR Anchors PKA and CaN to MAGUK/AMPAR complexes in spines; chem-
LTP-induced recruitment promotes Rab11-regulated endosome recycling 
of AMPARs and spine enlargement  

[38,39] 

AP2 GluA2 NMDA-induced AMPAR internalization; mediates LTD in the visual and 
perihinal cortex 

[40-42] 

Arf1 PICK/AMPAR Binds PICK1, limiting its action on Arp2/3 activity, synaptic AMPAR 
internalization and spine shrinkage 

[43] 

Arp2/3 PICK/AMPAR Binds PICK; critical for NMDA-induced AMPAR internalization  [44] 

Cofilin Actin/AMPAR Links dendritic spine morphology changes to synaptic-related AMPAR 
trafficking  

[45,46] 

DbnI Actin/AMPAR Contributes to AMPA-mediated spine morphogenesis by organizing F-
actin in dendritic spines during synaptic plasticity; relevant for neuro-
cognitive diseases and neurodevelopmental disorders 

[47-56] 

Dynamin GluA2 Drive the lateral diffusion of newly exocytosed GluA2 and NMDA-evoked 
GluA2 internalization. 

[57] 

KIBRA GluA1/2  Binds the PICK/AMPAR complex, regulating NMDA-dependent AMPAR 
recycling; implicated in long-term synaptic plasticity and memory reten-
tion  

[58-61] 

Lyn GluA1, GluA2/3, 
GluA4c  

Activation of MAPK and ERK1/2-CREB signalling pathways  [62,63] 

NSF GluA2  Targeting of receptors to the synaptic membrane; mediates GluA2-
dependent LTP; and fear memory consolidation in the lateral amygdala  

[64-73] 

MyoVI SAP-97/AMPAR Binds the SAP-97/AMPAR complex; relevant for AMPAR-mediated 
synaptic transmission 

[74,75] 

MyoVa/b Scaffold/Rab11/ 
AMPAR 

MyoVa and MyoVb drive AMPAR, scaffold proteins and Rab11 from the 
dendritic shaft or recycling endosomes, respectively, into spines; critical 
in AMPAR’s directional transport during activity-dependent synaptic 
plasticity 

[76-79] 

PACSIN1-3 GluA1/2  PACSIN members interact with the PICK1/AMPAR complex; implicated 
in PICK1-dependent AMPAR internalization and cerebellar LTD  

[80] 

PKCγ GluA4  Facilitates PKC-driven phosphorylation and membrane targeting of 
GluA4; involved in LTP, learning, memory and neuropathic pain  

[81-85] 

Rap2b Native GluAs  Counterbalances Ras-induced AMPAR delivery during synaptic events; 
activated in LTD, promoting dendritic pruning and reducing synaptic 
density  

[86-88] 

Transmembrane domain proteins 
 

ADAM22/LGI1 Indirect? 
-ETSI :: ? 

LGI1 specifically binds ADAM22 at the synapse, promoting the recruit-
ment of new AMPAR to the synaptic surface and increasing the AMPAR-
mediated neurotransmission; both implicated in epilepsy  

[89-92] 
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Cntnap1 GluA1 Promotes GluA1 traffic and synaptic content  [93] 

Cornichon 
  CINH2/3 
 

 
Native GluAs  
 

 
Increase surface expression of AMPARs by assisting the receptor bio-
synthesis and trafficking from the ER to the neuronal cell surface; slow 
deactivation and desensitization kinetics; can functionally interact with 
TARPs and regulate their number within an AMPA receptor complex 

 
[88,94-110] 

CPT-1C & PORCN Native GluAs  Unknown [88] 

GSG1L GluA2, inc. native  Unlike TARPs, it slows the recovery from the desensitized state  [88,102] 

LRRTMs 
  LRRTM2 
 
   

 
Indirect? 
-ECEV :: PSD-95  
 

 
Regulates the expression of AMPARs and modulates the strength of 
evoked excitatory synaptic currents; induces presynaptic differentiation 
by interacting with NRX; and it specifically promotes synaptogenesis 
excitatory neurons 

 
[88,103] 

  LRRTM4 Native GluA2 Unknown. [88] 
N-cadherin GluA2 Promotes the synaptic recruitment of GluA2 and consequent syanptc 

transmission; implicated in recognition mechanisms and regulation of 
dendritic spine density 

[104-106] 

NETO 
  Neto1 

 
GluN2A, GluN2B  
-TTRV :: PSD-95  

 
Involved in the synaptic delivery and/or stability of GluN2AB; implicated 
in spatial learning and LTP  

 
[107] 
 

  Neto2 GluK2  Involved in kainate-mediated neurotransmission. [108] 

NLGN Indirect? 
-TTRV :: PSD-95 

Mediates synapse formation by interacting with pre-synaptic neurexins; 
potentiates NMDAR/AMPAR rations; implicated in autism and other 
cognitive disorders  

[109-114] 

Shisa 
  CKAMP44 
 

 
GluAs, inc. native 
-EVTV :: ? 

 
Associates with AMPAR complexes in synaptic spines; decreases AM-
PAR responses by increasing the receptor desensitization without affect-
ing its surface expression; also involved in short-term facilitation  

 
[88,98,115] 
 

   CKAMP52 Native GluAs  
-EVTV :: ? 

Unknown [88] 

SynDIG1 GluA1, GluA2  Modulation of GluA1/2 number and function in developing excitatory 
synapses 

[116] 

PRRT1,2 Native GluA1 Unknown [88] 
TARPs 
  Stgz 

GluA1, GluA2, 
GluA4, inc. native  
-TTPV :: PSD-95 

Regulation of AMPA receptors expression levels, synaptic target-
ing/stabilization and subsequent synaptic strength; substrate for bidirec-
tional control of synaptic strength via phosphorylation and palmitoylation  

[26,28,88, 
117-126] 

Membranar protein 
 

Neuritin Native GluAs  Unknown [88] 

Secreted proteins 
 

Brorin & Brorin-2l Native GluA2  Unknown [88 

Corticosterone GluA2 Increases GluA2 surface mobility and synaptic content; mediates AM-
PAR-dependent synaptic transmission via intracellular glucocorticoid 
receptors 

[127-130] 

Leptin GluA1 Promotes NMDA-dependent GluA1 cell surface expression through the 
inhibition of PTEN; relevant for activity-dependent synaptic plasticity in 
the hippocampus  

[131,132] 

Narp GluA1-3 AMPA receptor clustering and excitatory synapse formation; might be 
involved in enduring forms of neuronal plasticity  

[133-137] 

Olfm1 GluAs, inc. natives 
-SDEL :: ? 

Unknown [88,99] 

ECM AMPARs Restricts AMPAR mobility and the availability of naïve receptors at the 
synaptic, regulating AMPAR-mediated short-term synaptic transmission; 
crucial to stabilize and maintain synaptic networks in the adult CNS 

[138-140] 

1. Dong et al., 1997; 2. Hirbec et al., 2002; 3. Braithwaite et al., 2002; 4. DeSouza et al., 2002; 5. Takamiya et al., 2008; 6. Dickinson et 
al., 2009; 7. Casimiro et al., 2011; 8. Contractor et al., 2002; 9. Hoogenraad & van der Sluijs, 2010; 10. Dev et al., 1999; 11. Xia et al., 
1999; 12. Iwakura et al., 2001; 13. Perez et al., 2001; 14. Lee et al., 2001; 15. Nakamura et al., 2011; 16. Matsuda et al., 1999; 17. 
Matsuda et al., 2000; 18. Chung et al., 2000; 19. Xia et al., 2000; 20. Kim et al., 2001; 21. Seidenman et al., 2003; 22. Citri et al., 2010; 
23. Terashima et al., 2008; 24. Xue et al., 2010; 25. Leonard et al., 1998; 26. Rumbaugh et al., 2003; 27. Li et al., 2011a; 28. Chen et 
al., 2000; 29. Schnell et al., 2002; 30. Taft & Turrigiano, 2013; 31. Stricker & Huganir, 2003; 32. Glodowski et al., 2005; 33. Mayer et al, 
2004; 34. Shen et al., 2000; 35. Coleman et al., 2003; 36. Douyard et al., 2007; 37. Lin et al., 2009; 38. Dell’Acqua et al., 2006; 39. Keith 
et al., 2012; 40. Lee et al., 2002b; 41. Yoon et al., 2009; 42. Griffiths et al., 2008;  43. Rocca et al., 2013; 44. Rocca et al., 2008; 45. Gu 
et al., 2010; 46. Rust et al., 2010; 47. Harigaya et al., 1996; 48. Hatanpää et al., 1999; 49. Hayashi & Shirao, 1999; 50. Shim & Lubec, 
2002; 51. Kobayashi et al., 2004; 52. Aoki et al., 2009; 53. Takahashi et al., 2009; 54. Kojima et al., 2010; 55. Counts et al., 2012; 56. 
Lee & Aoki, 2012; 57. Jaskolski et al., 2009; 58. Makuch et al., 2011; 59. Sacktor et al., 1993; 60. Drier et al., 2002; 61. Büther et al., 
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2004; 62. Hayashi et al., 1999; 63. Zhang et al., 2010; 64. Osten et al., 1998; 65. Song et al., 1998; 66. Braithwaite et al., 2002; 67. Noel 
et al., 1999; 68. Ralph et al., 2001; 69. Araki et al., 2010; 70. Beretta et al., 2005; 71. Steinberg et al., 2004; 72. Yang et al., 2010; 73. 
Joels & Lamprecht, 2010; 74. Osterweil et al., 2005; 75. Nash et al., 2010; 76. Lise et al., 2006; 77. Correia et al., 2008; 78. Wang et al., 
2008; 79. Yoshii et al., 2013; 80. Angonno et al., 2013; 81. Correia et al., 2003; 82. Gomes et al., 2007; 83. Abeliovich et al., 1993a; 84. 
Abeliovich et al., 1993b; 85 .Malmberg et al., 1997; 86. Zhu et al., 2002; 87. Fu et al., 2007; 88. Schwenk et al., 2012; 89. Fukata et al., 
2006; 90. Fukata et al., 2010; 91. Sagane et al., 2005; 92. Steinlein, 2004; 93. Santos et al., 2013; 94. Milstein & Nicoll, 2008; 95. Gre-
ger et al., 2007; 96. Shi et al., 2010; 97. Harmel et al., 2012; 98. Milstein et al., 2007; 99. Kato et al., 2010; 100. Schober et al., 2011; 
110. Gill et al., 2012; 102. Shanks et al., 2012; 103. De Wit et al., 2009; 104. Cavallaro et al., 2001; 105. Saglietti et al., 2007; 106. 
Yasuda et al., 2007; 107. Ng et al., 2009; 108. Zhang et al., 2009a; 109. Irie et al., 1997; 110. Meyer et al., 2004; 111. Ichtchenko et al., 
1995; 112. Nguyen & Südhof, 1997; 113. Chubykin et al., 2005; 114. Südhof, 2008; 115. von Engelhardt et al., 2010; 116. Kalashnikova 
et al., 2010; 117. Chetkovich et al., 2002; 118. Choi et al., 2002; 119. El-Husseini et al., 2002; 120. Dakoji et al., 2003; 121. Tomita et 
al., 2005; 122. Deng et al., 2006; 123. Bats et al., 2007; 124. Kessels et al., 2009; 125. Opazo et al., 2010; 126. Sainlos et al., 2011; 
127. Kim et al., 2002; 128. Karst & Joels, 2005; 129. Wiegert et al., 2006; 130. Groc et al., 2008; 131. Moult et al., 2009; 132. Moult et 
al., 2010; 133. O'Brien et al., 1999; 134. Reti & Baraban, 2000; 135. Pacchioni & Kalivas, 2009; 136. Pacchioni et al., 2009; 137. Chang 
et al., 2010; 138. Celio & Blumcke, 1994; 139. Pizzorusso et al., 2002; 140. Frischknecht et al., 2009 :: interaction; italic, indirectly linked 
to AMPAR;  

 

 

Figure 23: Cytosolic PDZ domain-containing proteins known to regulate AMPAR trafficking (see text). 

 

GRIP/ABP. The GRIP/ABP group of proteins includes the multiple PDZ domain-containing glutamate recep-

tor-interacting proteins (GRIP1, GRIP2) and its relatives AMPAR receptor binding proteins (ABP-L and ABP-

S). GRIP/ABP can bind the Cter PDZ-binding motif ES(V/I)KI of GluA2/3 and 4c AMPAR subunits (PDZ4,5   

for GRIP and PDZ3, 5,6 for ABP (Dong et al., 1997; Srivastava et al., 1998), in the exact same binding site 

as PICK1. Moreover, GRIP/ABP can form homo- or hetero-multimers via their PDZ domains (Fu et al., 

2003). Time-dependent surface accumulation, but not the synaptic targeting, of GluA2-containing AMPA 

receptors is believed to be due to their interaction with GRIP/ABP. Conversely, the interaction of GRIP/ABP 

with GluA4 seems to play a role in receptor stabilization. Mutations of GluA2 PDZ-binding motif decrease 

AMPA receptor accumulation without affecting PICK1 binding, suggesting that PICK1 and GRIP might have 

segregated roles in regulating AMPA receptors traffic to the synapse. Additionally, when PKC phosphory-

lates GluA2 (Ser880), GRIP interact-ion, but not PICK1, is disrupted, pointing to phosphorylation as a signal 

to recruit PICK1 (Matsuda et al., 1999; Osten et al., 2000; Lu & Ziff, 2005). It is also known that different 

splice variants of ABP can dictate a different (sub)localization of GluA2 receptors through post-translation 

modification. For example, the long ABP (ABP-L) contains seven PDZ domains and can be palmitoylated to 

facilitate GluA2 membrane association (DeSouza et al., 2002). ABP on intracellular membranes can bind 

and retain internalized GluA2, preventing Ser880 phosphorylation to stabilize the interaction (Fu et al., 2003). 

On the other hand, GRIP as well exists as a variety of splice variants (Wyszynski et al., 1998; Hanley & Hen-
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ley, 2010), being some of them, like GRIP1-a and –b, targets of palmitoylation, thus capable of membrane 

and protein interactions (Yamazaki et al., 2001). GRIP is enriched in post-synaptic densities and it can be 

found associated with the rough endoplasmic reticulum, the Golgi apparatus and recycling endosomes (Bu-

rette et al., 1999; Lee et al., 2001), pointing to a key role in AMPA receptor traffic to dendrites. Moreover, as 

a scaffold protein it can interact with many other proteins, including other scaffold proteins, thus building a 

complex and dynamic network in the PSD. Through Shank2, GRIP links AMPARs to mGluRs in the cerebel-

lum (Uemura et al., 2004); while through liprin, GluR2/3 complexes can signal receptor tyrosine phosphatas-

es, GTPases, and motor proteins, ultimately modulating synaptic maturation (Wyszynski et al., 2002; Ko et 

al., 2003). Also, GRIP-associated proteins allow AMPAR to associate with activity-dependent Ras signalling 

(Ye et al., 2000), and GRIP itself was shown to interact with the kinesin heavy chain and microtubule-

associated protein-1B (Setou et al., 2002; Seog, 2004), further supporting the involvement of GRIP in AM-

PAR trafficking. The functional consequence of such regulation in terms of synaptic plasticity remains un-

clear. Some reports suggest that GRIP might be implicated in LTP events, either in the mossy fibres through 

its binding to the EphB receptor (Contractor et al., 2002); or indirectly via a neuron-specific effector of the 

small GTPase Rab4 – the coiled-coil protein GRIP-associated protein-1 (GRASP-1), key component in both 

the AMPA receptor recycling and maintenance of spine morphology (Hoogenraad & van der Sluijs, 2010). 

On the other hand, a first study using GRIP1/2 double knock-out Purkinje cells showed that the resulting 

blocked LTD expression was fully rescued by GRIP1 and partially by GRIP2 (Takamiya et al., 2008), sug-

gesting that the GRIP family can play a role in cerebellar LTD. In addition, the muscarinic acetylcholine re-

ceptor-dependent LTD (mAChR-LTD) is known to be driven by the activation of protein tyrosine phosphatase 

(PTP) and subsequent AMPA receptor endocytosis, whose modulation lies on GluA2, GRIP and liprin-alpha 

interactions (Dickinson et al., 2009). Finally, in CA1 hippocampal neurons, the activation of NMDRAs is 

known to endorse endocytosis of rapidly cycling surface AMPARs not directly associated with GRIP1/2, 

whereas mGluR activation with DHPG induces the endocytosis of non-cycling GRIP-bound surface AMPARs 

(Casimiro et al., 2011), suggesting that GRIP interactions can play a role in the segregation of the two recep-

tors pathways by driving the endocytosis of distinct populations of AMPARs. 

 

PICK1. Protein interacting with C kinase (PICK1) possesses a unique PDZ domain capable of binding to 

GluA2/3, GluA4c, or GluA4 (Dev et al., 1999; Hirbec et al., 2002), like GRIP/ABP. PICK1 was firstly de-

scribed as a binder of the catalytic domain of PKC alpha and a substrate for PKC (Staudinger et al., 1997), 

although their interaction is independent on PICK1 phosphorylation. Instead, the same PICK1 domains inter-

act with both PKC and GluA2 (Xia et al., 1999). At excitatory synapses, PICK1 can homo-oligomerize via its 

PDZ domain, allowing PKC to crosslink with GluA2/3 and thus conferring specificity on AMPA receptor phos-

phorylation. NMDAR-dependent PKC activation increases Ser880 phosphorylation, releasing GluA2 from 

GRIP binding while inducing PICK1 to traffic to synapses (Chung et al., 2000; Iwakura et al., 2001; Dev et 

al., 2004). Importantly, the interaction between PICK1 and several other proteins, including NSF, can poten-

tially disrupt its binding to GluA2 (Hanley et al., 2002; Meyer et al., 2004) as well as the NMDA-dependent 

GluA2 recycling (Lin & Huganir, 2007). In fact, PICK1 was shown to be located in recycling endosomes (Lee 
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et al., 2001), possibly explaining the role of PKC-dependent internalization of GluA2-containing AMPAR re-

ceptors in cerebellar and hippocampal LTD (Matsuda et al., 1999, 2000; Xia et al., 2000; Kim et al., 2001; 

Perez et al., 2001; Seidenman et al., 2003; Citri et al., 2010). PICK1 was also suggested as a novel regulator 

of both structural and functional plasticity, coupling the regulation of AMPAR trafficking to the spine dynamics 

via its interaction with the Arp2/3 complex (Nakamura et al., 2011). In particular, the induced spine shrinkage 

following NMDA receptor activation is blocked by knocking down PICK1 or overexpressing a mutant form 

unable to bind Arp2/3. Nevertheless, a recent study from the same group pointed out a possible involvement 

of PICK1 in the early stages of LTP. Jaafari and colleagues (2012) showed that, in contrast to the rapid in-

sertion of GluA1 immediately after LTP induction, GluA2 subunits are restricted from trafficking to the cell 

surface via their interaction with PICK1. However, such interaction can be disrupted after 5-20 min of elevate 

glycine stimulation, allowing GluA2-containing AMPARs to be inserted into the synaptic plasma membrane. 

Therefore, PICK1 seems to regulate both the total number of AMPARs at the synapse as well as the transi-

ent switch to calcium-permeable AMPARs in the early phase of LTP. Results from other groups further sup-

port the scenario were PICK1 plays a critical role in bidirectional LTP/LTD switch, which is believed to rely on 

its PDZ domain (Terashima et al., 2008; Thorsen et al., 2010; Xue et al., 2010). 

 

MAGUKs 

PSD-MAGUKs are mammalian homologs of the Drosophila protein discs large tumour suppressor protein 

(Dlg), known regulators of epithelial cell polarity and tumourigenesis Scribble/Dlg/Lgl polarity module (see 

Humbert et al., 2008 for a review), which are present at excitatory synapses, and particularly at the PSD 

micro-domain. The PSD-95-like subfamily of MAGUKs (PSD-MAGUKs) includes SAP-97 (Dlg1), PSD-93 

(Dlg2 or chapsyn-110) and SAP-102 (Dlg3). All of them share a common domain structure containing three 

Nter PDZ (PSD-95/discs large/zona occluden-1) domains, a Src-homology 3 (SH3) domain, and a Cter en-

zymatically inactive guanylate kinase (GK) domain.  

SAP-97. Synapse-associated protein-97 (SAP-97) contains an extra Nter L27 domain (Lin et al., 1997) 

and within the brain, it can be found at the PSD but also in the cytoplasm and the pre-synaptic compartment 

(Aoki et al., 2001). SAP-97 is readily extracted by Triton X-100 like AMPARs, contrasting other MAGUKs and 

NMDARs (Leonard et al., 1998). It is not surprisingly then that SAP-97 is the only MAGUK that can interact 

directly with the class I PDZ binding motif (-ATGL) of GluA1 via its second PDZ domain (Cai et al., 2002). 

Nevertheless, it is still unclear how this occurs, since deflecting the PDZ domain of GluA1 does not affect 

AMPAR-mediated synaptic transmission (Kim et al., 2005). GluA1-containing AMPA receptors can then as-

sociate with several other proteins recruited by the multiple interaction domains of SAP-97, such as the ki-

nases PKA, PKC and CaMKII, the phosphatase calcineurin (Paarmann et al., 2002), the ionotropic glutamate 

receptors NMDA and kainite receptors (Bassand et  al., 1999; Mehta et al., 2001; Gardoni et al., 2003), the 

transmembrane AMPAR regulatory protein stargazin (Ives et al., 2004), the A-kinase  anchoring  protein 

AKAP79/150 (Colledge et al., 2000), and the actin-based motor myosin VI (Wu et al., 2002; Hasson, 2003). 

These multiple interactions support the idea of SAP-97 as an anchoring protein (Karnak et al., 2002; Lee et 

al., 2002a; Feng et al., 2004), capable of controlling synaptic targeting of AMPARs. Indeed, SAP-97-GluA1 
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interaction is believed to take place early in the secretory pathway (Sans et al., 2001), with the CaMKII-

dependent synaptic targeting of SAP-97 (Mauceri et al., 2004) promoting the stabilization and synaptic inser-

tion of GluA1-containing AMPA receptors (Valtschanoff et al., 2000; Nakagawa et al., 2004). Overexpression 

of SAP-97 increases the functional number of AMPARs at the synapse and occludes LTP (Rumbaugh et al., 

2003). However, SAP-97 does not seem to be implicated in NMDA-dependent internalization of GluA1 (Sans 

et al., 2001). Instead, the interaction between SAP-97 and AKAP79 leads to a basal phosphorylation of 

GluA1 Ser845 via PKA; the same residue can be the target of LTD-dependent activated phosphatases (Tav-

alin et al., 2002). Finally, a recent study suggests that the alternative splicing forms of SAP-97 - the pal-

mitoylated αSAP-97 and the L27-domain containing βSAP-97 can differentially regulate the sub-synaptic 

localization of GluA1 subunits of AMPA receptors and subsequent capacity to experience synaptic plasticity 

(Li et al., 2011a). Recordings from pairs of synaptically coupled hippocampal neurons showed that αSAP-97 

can occlude LTP by increasing the synaptic pool of AMPAR; whereas βSAP-97 blocks LTP, possibly by reg-

ulating the extra-synaptic pool of both AMPA and NMDA receptors.  

PSD-95. The postsynaptic density protein 95, also known as synapse associated protein 90 (SAP-90) or 

disk large homolog 4 (Dlg4) is the prototypical scaffold present at excitatory synapses (Elias & Nicoll, 2007). 

The high abundance of PSD-95 in the PSD, corresponding to ~2% of the total PSD mass (Chen et al., 

2005b), ensures plenty of slots to bind numerous partners, such as the NMDARs, NLGN, or 

TARPs/AMPARs. Even though PSD-95 does not directly interact with AMPA receptors, its overexpression in 

cultured hippocampal neurons was reported to promote synaptic clustering of AMPARs, but not NMDAs, as 

well as increasing both the frequency and the amplitude of AMPAR-mediated currents (Schnell et al., 2002). 

This may occur through the interaction of PDZ1 and PDZ2 domains of PSD-95 with the Cter PDZ binding 

domain of Stargazin, which directly anchors AMPAR at the post-synapse (Chen et al., 2000; reviewed by 

Opazo et al., 2012). Conversely, knockdown of PSD-95 or PSD93 leads to a significant decrease (~50%) in 

the synaptic transmission mediated by AMPAR, without affecting the NMDAR-mediated one (Elias et al., 

2006; Schlüter et al., 2006). Interestingly, PSD-95/PSD93 double knockout mice show an even stronger 

reduction (~75%) of AMPAR-mediated currents, in a presynaptic-independent manner, suggesting that AM-

PAR are excluded from the synapse in the absence of these two PSD-MAGUKs. On the other hand, SAP-97 

and SAP102 were proven to rescue AMPAR-mediated synaptic transmission caused by knockdown of PSD-

95 or PSD93, suggesting that MAGUKs can compensate each other in the PSD (Howard et al., 2010).  

These results are in good agreement with PSD-MAGUK role as synaptic organizers, making use of distinct 

PPIs to regulate a homeostatic pool of synaptic AMPA receptors at the PSD (Sun & Turrigiano, 2011), in a 

particular synapse and in a determined developmental stage (Sans et al., 2000; Beique et al., 2006; Elias et 

al., 2008). 

 

mLin-10. The mammalian homolog of the C. elegans receptor targeting protein LIN-10 is also known as 

amyloid beta A4 precursor protein-binding family A member 1 (APBA1), neuron specific adapter protein 

X11alpha (X11) or neuronal Munc18-1-interacting protein 1 (Mint1). Lin-10 belongs to the MAGUK family, 

containing: an Nter that binds Munc18-1 and Lin2/CASK (Okamoto & Sudhof, 1997; Tabuchi et al., 2002), 
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playing a role in polarized protein localization pathways in both neurons and epithelia (Rongo et al., 1998); a 

phosphotyrosine-binding domain (PID/PTB) that mediates the interaction with the Cter of beta-amyloid pre-

cursor protein (APP), being responsible for APP’s trafficking and processing in neurons (Borg et al., 1998); 

and two PDZ domains that are believed to anchor proteins to the plasma membrane. mLin-10 is enriched in 

the trans-Golgi network and it can be found in dendrites and spines, suggesting an active role in protein sort-

ing and synaptic delivery (Stricker & Huganir, 2003). Indeed, mLin-10 was first shown to bind to the motor 

protein KIF17 via its PDZ domains (Setou et al., 2000). Importantly, this interaction took place within a large 

scaffolding protein complex that also contained NR2B subunits of the NMDA receptor. And recently, mLin-10 

was reported to directly bind GluA1 through a PDZ domain interaction as well, possibly directing GluA1-

containing AMPA receptors trafficking and proper localization in neurons (Glodowski et al., 2005). 

 

SemaF. SemaF is a synapse-associated E3 ubiquitin-protein ligase also known as semaphorin cytoplasmic 

domain-associated protein 3 (SEMACAP3) or PDZ domain-containing RING finger protein 3 (PDZRN3). It 

contains a RING-finger motif in its Nter, two PDZ domains in its central region and a consensus PDZ binding 

motif at its Cter (Katoh & Katoh, 2004). It was first identified in silico as a homolog of the ubiquitin ligase 

LNX1 (or SEMCAP1) that binds the membrane protein Semaphorin 4C. A yeast two-hybrid screen identified 

SemaF as a potential binder of GluA2 Cter (Meyer et al., 2004), though the functional implications of such 

interaction remain unknown. Nevertheless, SemaF was reported to regulate the surface expression of MuSK 

(muscle-specific receptor tyrosine kinase), the key organizer of postsynaptic development at the mammalian 

NMJ, by accelerating its endocytosis (Lu et al., 2007a). Also, a phage screen of brain cDNA products 

showed that the first PDZ domain of D. rerio Pdzrn3 can bind Kidins220/ARMS (Kinase D-interacting sub-

strate of 220 kDa/Ankyrin Repeat-rich Membrane Spanning), an adaptor of neurotrophin receptors, thus  

suggesting that SemaF might play a role in neurogenesis (Andreazzoli et al., 2012). 

 

Syntenin. The adaptor protein syntenin contains 2 PDZ domains that recognize class I, II and non-

conserved PDZbds, as well as dimerize (Koroll et al., 2001). It is also known to interact with GluA1, GluA2(c), 

GluA4 and GluA3c, although its function is still not clear (Hirbec et al., 2002). Moreover, syntenin can directly 

bind the phosphatidylinositol biphosphate component of the plasma membrane (Zimmermann et al., 2002), 

and syndecans (Grootjans et al., 1997; Zimmermann et al., 2001), suggesting that it might play a role in the 

developmental regulation of neuronal membrane architecture (Hirbec et al., 2005). Also, syntenin PDZ2 was 

shown to regulate the plasma membrane insertion of the glycine transporter subtype 2, thus contributing to 

its trafficking and/or presynaptic localization in glycinergic neurons (Ohno et al., 2004). 

 

I.6.4.5.1.2 Non-PDZ domain–containing proteins 

In the recent years, a vast array of other type of proteins containing distinct structural domains were related 

to the regulation of AMPAR trafficking. Interestingly, the large majority is either a cytoskeleton member or do 

play a role in cytoskeleton-mediated events - Fig. 24.   
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  Figure 24: Cytosolic non PDZ domain-containing proteins known to regulate AMPAR trafficking (see text).

 

4.1N. Protein band 4.1 was first isolated as a cell actin cytoskeleton protein in erythrocytes. The neuronal 

homolog - 4.1N - was then identified, existing as several splice variants and it can be detected in the PSD of 

some neurons (Walensky et al., 1999). 4.1N contains an Nter FERM domain, typically involved in the protein 

proper localization, a spectrin-actin binding region, and a Cter domain known to interact with GluA1 and 

GluA4 Cter membrane proximal domain (Shen et al., 2000; Coleman et al., 2003). Moreover, the 4.1N/GluA1 

interaction was proven to be essential in the actin cytoskeleton-dependent AMPA trafficking. The same 

group also showed that the 4.1N/GluA1 interaction can be regulated by post-translation modifications of 

GluA1 Cter. While GluA1 Cter palmitoylation decreases 4.1N/GluA1 interaction, promoting AMPA receptors 

internalization (Hayashi et al., 2005), PKC phosphorylation of GluA1 Ser816 and Ser818 residues enhances 

such interaction, facilitating GluA1 insertion at the plasma membrane (Lin et al., 2009). Moreover, pal-

mitoylation of GluA1 C811 was proven to modulate PKC-dependent AMPAR trafficking and possibly LTP 

expression. Nevertheless, the role of 4.1N in synaptic plasticity remains controversial, since mice containing 

only 12% of 4.1G/4.1N protein levels in the hippocampus present no changes in basic glutamatergic synaptic 

transmission and LTP (Wozny et al., 2009). On the other hand, 4.1N together with SAP-97 might be determi-

nant components of rat cerebellar synaptogenesis, by differentially regulating GluA1 traffic and insertion in 

neurons and Bergmann glia cells (Douyard et al., 2007). Lastly, a similar protein band4.1-like 3 (4.1B), is 

known to recruit NMDARs to SynCAM1 (synaptic cell adhesion molecule 1) adhesion sites, promoting an 

increase in the frequency of NMDAR-mediated mEPSCs (Hoy et al., 2009). In the same study, 4.1N was 

also shown to interact with SynCAM1 in COS7 cells, specifically affecting AMPAR recruitment. 

 

AKAP79/150. A-kinase anchor proteins (AKAPs) are a group of structurally diverse proteins, whose common 

feature is the ability of binding the regulatory subunit of protein kinase A (PKA), thus confining the holo- 



 

69 

enzyme to discrete locations within the cell. AKAP79/150 in particular can anchor both PKA and CaN to 

MAGUK/AMPAR complexes in spines (Dell’Acqua et al., 2006). The Nter of AKAP79/150 was proven to be 

essential in the proteins’ dendritic targeting, allowing it to form a complex with phosphatidylinositol-4,5-

bisphosphate (PIP2), F-actin, and actin-linked cadherin adhesion molecules. In addition, chemLTP-induced 

recruitment of AKAP79/150 to dendritic spines was related to an increase of Rab11-regulated endosome 

recycling of AMPARs as well as spine enlargement (Keith et al., 2012) 

 

AP2. The clathrin adaptor complex AP2 is known to play a pivotal role in many vesicle trafficking events 

within the cell. A first study reported that NMDAR-dependent activated AMPARs co-localize with AP2 (Carroll 

et al., 1999), suggesting that the endocytic membrane trafficking mechanism could modulate synaptic neuro-

transmission. Shortly after, AP2 was reported to bind GluA2 within a region that overlaps the NSF binding 

site (Lee et al., 2002b). Using specific blocking peptides for each interaction, the same group found that AP2 

is involved in NMDAR-induced, but not ligand-dependent, internalization of AMPA receptors and is essential 

for hippocampal LTD. In fact, AP2 can form a complex with the neuronal Ca
2+

 sensor hippocalcin, coupling 

NMDAR-dependent activation to regulated GluA2-containing AMPAR endocytosis following LTD (Palmer et 

al., 2005). Finally, the use of blocking peptides disrupting AP2 binding to GluA2 further confirmed that such 

interaction was   responsible for the AMPAR internalization events underlying the loss of synaptic strength 

upon sensory deprivation in the visual cortex (Yoon et al., 2009) or the expression of LTD responsible for 

visual recognition memory in the perihinal cortex (Griffiths et al., 2008). 

 

Arf1. The small GTPase ADP-ribosylation factor 1 (Arf1) is a GTP-binding protein involved in the modulation  

of vesicle budding and uncoating within the Golgi complex. Arf1 was recently found to bind PICK1 as well, 

limiting its action on Arp2/3 activity and, consequently, affect synaptic AMPAR internalization and spine 

shrinkage (Rocca et al., 2013). This study strenghtens, once more, the link between scaffold PDZ protein 

domains and the vesicle trafficking machinery in the modulation of structural and functional plasticity. 

 

Arp2/3. The actin polymerization promoter Arp2/3 complex promotes actin polymerization by creating a new 

nucleation core, which constitutes the first step in the formation of F-actin. Actin nucleation is activated by the 

Wiskott-Aldrich syndrome family protein members (WASP, N-WASP, WAVE and WASH). In the last years, 

Arp2/3 was shown to be inhibited by the F-actin binding PICK1 protein during AMPAR-mediated LTD and 

spine morphogenesis events (Rocca et al., 2008; Nakamura et al., 2011). In particular, PICK1 can inhibit 

actin polymerization by competing with the N-WASP complex over Arp2/3 binding. Arp2/3 interaction is 

based on a single residue on PICK1 Cter (W413), which was proven to be critical for NMDAR-induced AM-

PAR internalization (Rocca et al., 2008).  

 

Cofilin. The actin depolymerisation factor (ADF) domain containing protein cofilin severs F-actin and binds 

actin monomers (Fig.4). Cofilin was recently related to AMPAR trafficking during synaptic potentiation, linking 

dendritic spine morphology changes to functional-related postsynaptic parameters (Gu et al., 2010; Rust et 
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al., 2010). Cofilin is inactivated by LIM kinase and reactivated by the Slingshot phosphatase (Agnew et al., 

1995; Huang et al., 2006). Dephosphorylated cofilin can bind and sever F-actin, promoting actin depolymeri-

sation. Interestingly, LIMK has been linked to abnormal spine morphology, impaired synaptic plasticity and 

mental retardation (Meng et al., 2002), whereas Slingshot was recently showed to impact AMPAR-mediated 

synaptic plasticity and surface expression of AMPAR at synapses (Yuen et al., 2010).  

 

Dbn1. The developmental-regulated brain protein Drebrin (DbnI) contains an ADF domain like cofilin. This F- 

actin-binding protein is known to couple microtubule to F-actin in growth cone filopodia by interacting with the 

EB3 protein, thus playing an important role in neuronal migration and neuritogenesis (Geraldo et al., 2008; 

Mizui et al., 2009; Dun et al., 2012). It has also been involved the organization of F-actin arrangement in 

dendritic spines during synaptic plasticity (Hayashi & Shirao, 1999; Aoki et al., 2009), contributing to AM-

PAR-mediated spine morphogenesis as well (Takahashi et al., 2009). DbnI has been long implicated in sev-

eral neurocognitive diseases and neurodevelopmental disorders, such as Alzheimer’s disease or Down’s 

syndrome (Harigaya et al., 1996; Hatanpää et al., 1999; Shim & Lubec, 2002; Kobayashi et al., 2004; Kojima 

et al., 2010; Counts et al., 2012; Lee & Aoki, 2012) suggesting that it does play a key role in brain function. 

 

Dynamin. Dynamin is a microtubule-associated force-producing protein involved in vesicular trafficking pro-

cesses such as the receptor-mediated endocytosis. It is composed by a PH (Pleckstrin homology) domain 

and a GED (GTPase effector domain) and domain, capable of binding inositol phosphates present in the 

plasma membrane, self-assembling into ‘collars’ at the necks of invaginated coated pits. Jaskolski and col-

leagues have shown (2009) that the dynamin GTPase activity is required not only to drive the lateral diffusion 

of newly exocytosed GluA2-containing AMPAR complexes at the dendritic shaft membrane, but also during 

NMDAR-evoked GluA2 internalization. 

 

KIBRA. The kidney and brain protein KIBRA is highly expressed in kidney and in memory-related brain re-

gions (Kremerskothen et al., 2003; Papassotiropoulos et al., 2006; Johannsen et al., 2008). It can interact 

with the polarity protein PATJ, contributing to the regulation of directional migration in podocytes (Duning et 

al., 2008). KIBRA can also play a role in the Hippo signalling pathway together with Merlin (Baumgartner et 

al., 2010; Genevet et al., 2010; Yu et al., 2010) as well as to participate in intracellular trafficking by interact-

ing with the dynein light chain 1 (Rayala et al., 2006; Rosse et al., 2009; Traer et al., 2007). In mammals, 

KIBRA has been implicated in long-term synaptic plasticity and memory retention (Sacktor et al., 1993; Drier 

et al., 2002; Büther et al., 2004). KIBRA was recently found to bind the PICK/AMPAR complex, being crucial 

in NMDAR-dependent AMPAR recycling (Makuch et al., 2011). Moreover, KIBRA deficient mice display im-

paired LTP and LTD, as well as deficits in contextual fear learning and memory, pinpointing KIBRA as a key 

regulator of AMPAR trafficking and synaptic plasticity. 

 

Lyn. The src tyrosine kinase Lyn contains an Nter SH3 domain, followed by a SH2 domain and a Cter pro-

tein kinase domain. Initial studies showed that Lyn can immunoprecipitate with GluA1, GluR2/3, and GluR4c 
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AMPA receptor subunits through its SH3 domain in the cerebellum (Hayashi et al., 1999). Following AMPAR 

stimulation, these interactions are believed to enable Lyn activation and subsequent trigger of the MAPK 

pathway, which would ultimately result in increased levels of BDNF mRNA, suggesting that Lyn can play a 

role in synaptic plasticity by regulating BDNF expression levels. In addition, a positive modulation of AMPA 

receptors was shown to prevent downregulation of GluA2 expression and activate the Lyn-ERK1/2-CREB 

signalling pathway in rat brain ischemia, suggesting that Lyn can be involved in neuro-protective events 

(Zhang et al., 2010). 

 

Myosins. Myosins are actin-based motor molecules with ATPase activity, being the so called unconven-

tional myosins involved in intracellular movements. Myosin VI (MyoVI) was the first to be directly linked to 

synaptic plasticity events. Myo6-deficient mice display a decreased number of hippocampal synapses, 

abnormally short dendritic spines and astrogliosis (Osterweil et al., 2005). Moreover, these mice display a 

significant deficit in AMPAR, but not NMDAR, internalization possibly due to the disruption of the MyoVI 

interaction with the AMPAR/SAP-97 complex (Nash et al., 2010). On the other hand, the Ca
2+

-sensitive 

myosin motors Va and Vb were shown to drive AMPAR traffic from the dendritic shaft or recycling 

endosomes, respectively, into spines (Lise et al., 2006; Correia et al., 2008; Wang et al., 2008). MyoV 

motors can bind both the cargo binding domains of AMPAR, scaffold proteins like PSD-95 or GKAP, and the 

small GTPase Rab11, catalyzing AMPAR directional transport during activity-dependent synaptic plasticity. 

Lastly, MyoVa mutant mice display impaired glutamate synaptic development and disrupted mature plasticity 

in visual cortex (Yoshii et al., 2013), strongly suggesting that MyoVa plays a pivotal role on localizing and  

organizing mature glutamate synapses. 

 

NrbI. The F-actin binding protein neurabin I (NrbI or Pp1r9a) was shown to control AMPAR surface 

expression at specific PSD microdomains by targeting the protein phosphatase 1 (PP1) (Hu et al., 2007). 

During basal synaptic transmission, NrbI interferes with the consensus PKC phosphorylation site Ser880 of 

GluA2 Cter, known to favor GluA2 interaction with PICK1 over ABP/GRIP (Lu & Ziff, 2005). On the other 

hand, NrbI-targeted PP1 seems to facilitate LTD by dephosphorylating Ser845 and Ser831 of GluA1, without 

affecting GluA2. These results suggest that NrbI can fine tune the traffic of specific AMPAR subunits in re-

sponse to distinct synaptic activities.  

 

NSF. N-ethylmaleimide-sensitive factor (NSF) is an AAA ATPase typically involved in intracellular membrane 

fusion events. NSF functions as a SNAP receptors (SNARE) chaperone, binding SNARE complexes though 

soluble NSF attachment proteins (SNAPs). It then uses the energy of ATP hydrolysis to disassemble them 

thus facilitating SNARE recycling (reviewed by Zhao et al., 2007). NSF was also demonstrated to interact 

with the residues lying in between Lys844 and Gln853 of rat GluA2 (Nishimune et al., 1998; Osten et al., 

1998).The use of blocking peptides of such interaction resulted in a diminished AMPA receptor-mediated 

synaptic transmission, a rapid decrease of the amplitude of mEPSCs (Song et al., 1998), as well as a dra-

matic reduction in surface expression of AMPA receptors (Noel et al., 1999; Ralph et al., 2001), strongly 
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suggesting that NSF regulates AMPA receptor function. Moreover, GluA2-containing AMPA receptors inca-

pable of binding NSF were endocytosed in a greater extent than wild-type ones following AMPAR- or 

NMDAR stimulation (Braithwaite et al., 2002). In the same study, GluA2 mutants incapable of binding 

GRIP/ABP suggested that while the PDZ proteins can afford an intracellular pool of activity-dependent inter-

nalized receptors, NSF stabilizes them at the synapse by disrupting such interactions. Also, PICK1, but not 

NSF, was shown to regulate the formation of extra-synaptic plasma membrane pools of GluA2, which are 

prone to lateral translocation into synapses upon Ca
2+

-dependent AMPA receptor plasticity (Gardner et al., 

2005; Hanley, 2007). Conversely, BDNF stimulation induces a rapid surface translocation of AMPA receptors 

to the synapse, as well as an enhanced GluA2-NSF interaction in a Ca
2+

-dependent manner (Narisawa-Saito 

et al., 2002). The use of pHIuorin-tagged GluA2 subunits further confirmed that GluA2 insertion at the plas-

ma membrane requires the NSF binding site (Araki et al., 2010). In addition, the NSF/GluA2 interaction was 

proven to be required and sufficient for synaptic, but not extra-synaptic, incorporation of GluA2-containing 

AMPA receptors (Beretta et al., 2005), as well as their competence to undergo LTD (Steinberg et al., 2004). 

On the other hand, the clathrin adaptor complex AP2 was reported to bind GluA2 within a region that over-

laps NSF binding site (Lee et al., 2002b). Using specific blocking peptides for each interaction, the same 

group found that NSF is required to maintain synaptic AMPA receptors responses, but not to mediate NMDA 

receptor-mediated internalization of AMPARs and LTD. Instead, the NSF/GluA2 interaction seems to be 

essential for the GluA2-containing AMPAR-mediated LTP (Yang et al., 2010), and it was also suggested to 

be a target of PKMzeta, an autonomously active protein kinase C isoform known to maintain late-LTP by 

favouring AMPA receptor insertion at active synapses (Yao et al., 2008). Finally, GluA2/NSF interaction was 

implicated in lateral amygdala fear memory consolidation, but not retrieval or persistence (Joels & Lam-

precht, 2010). 

 

PACSIN family. The three members of the protein kinase C and casein kinase II substrate in neurons 

(PACSIN1-3) were recently shown to interact with the PICK1/AMPAR complex (Anggono et al., 2013). Such 

interaction relies on the phosphorylation state of the variable region of PACSIN members. Phosphorylation of 

the neuronal-specific PACSIN1 is required for modulating PICK1-dependent AMPAR internalization. On the 

other hand, PACSIN2, highly expressed in Purkinje cells, was proven to be crucial to cerebellar LTD. 

 

PKCγ. The gamma isoform of the calcium-phospholipid-dependent protein kinase C (PKCγ) is widely distrib-

uted throughout the CNS. It was originally involved in both long-term potentiation (LTP) and learning and 

memory (Abeliovich et al., 1993a,b) as well as in neuropathic pain (Malmberg et al., 1997), strongly suggest-

ing it can have a determinant role in synaptic plasticity. More recently, PKCγ was co-immuno-precipitated 

with the Cter of GluA4 AMPAR subunit (Correia et al., 2003). Early in development, GluA4 is known to be 

highly expressed in the hippocampus; being its number dynamically regulated during synapse maturation. In 

rat hippocampal slices, GluA4 delivery to synapses requires the phosphorylation of Ser842 by PKA or PKC, 

which promotes GluA4 surface expression. PKCγ is believed to assure PKC-driven phosphorylation and 

membrane targeting of GluA4 (Gomes et al., 2007). PKCγ activation was also implicated in the activity-
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dependent trafficking of AMPARs in embryonic zebrafish (Patten & Ali, 2009). Importantly, PKCγ-driven AM-

PAR traffic requires AMPA receptors to associate with both PICK1 and NSF in an NMDAR- and SNARE-

dependent manner. 

 

Rap2b. This small GTPase is a member of the Ras oncogene family, being composed of a Ras domain re-

sponsible for its role in signalling transduction inside the cell. An early study suggested that Rap can coun-

terbalance the Ras-induced AMPAR delivery during synaptic events (Zhu et al., 2002). While Ras mediates 

the NMDAR and CAMKII signalling during the synaptic insertion of AMPAR in LTP, Rap relays their removal 

during LTD. In addition, activated Rap2 has been found to promote dendritic pruning as well as reduce syn-

aptic density (Zhu et al., 2005; Fu et al., 2007). Rap2-mediated AMPAR removal is believed to be reversed 

by the MINK (Misshapen/NIKs (Nck-interacting kinases)-related kinase), but not by its closely related TNIK 

(TRAF2/Nck-interacting kinase) (Hussain et al., 2010). Both these kinases are therefore thought to be re-

quired for normal dendritic arborisation and surface expression of AMPA receptors. Finally, it is interesting to 

note that Rap2b was recently reported as a potential biomarker candidate for schizophrenia (Martins-de-

Souza et al., 2010). 

 

VASP. The vasodilator-stimulated phosphoprotein (VASP) promotes actin filament elongation by protecting 

the barbed end of growing F-actin from capping proteins, allowing profilin-bounded actin monomers to be 

added. In dendritic spines, VASP can couple morphological changes to PSD-scaffolding proteins and AMPA 

receptors organization, eventually affecting synaptic transmission (Lin et al., 2010). 

 

I.6.4.5.2. Transmembrane proteins 

At the membrane level, so are some proteins involved in AMPAR trafficking. The composition of membrane 

and transmembrane proteins capable of regulating AMPAR surface expression are represented in Fig. 25. 

 

ADAM22/LGI1. This complex was originally found alongside with Stgz to associate with PSD-95 in rat brain 

extracts (Fukata et al., 2006). Interestingly, the three proteins were previously implicated in epilepsy (Sagane 

et al., 2005; Steinlein, 2004; Nicoll et al., 2006). ADAM22 (disintegrin and metalloproteinase domain-

containing protein 22) is a neuronal membrane protein composed by a large extracellular domain composed 

of a peptidase M12B domain, a desintegrin domain, a Cys-rich region and a EGF-like domain, followed by a 

transmembrane domain, and finally an intracellular Cter containing a class II Cter PDZbd (-ETSI). On the 

other hand, LGI1 (leucine-rich glioma-inactivated protein 1) is a secreted neuronal protein made by one 

LRRNT (leucine-rich repeat Nter) domain, 3 LRR repeats, one LRRCT and 7EAR (epilepsy-associated re-

peats). Fukata and colleagues (2006, 2010) showed that LGI1 can specifically bind to ADAM22 at the syn-

apse and increase the AMPAR-mediated neurotransmission. It does so by possibly recruiting new AMPAR to 

the synaptic surface in a GRIP/PICK1 similar way. The epilepsy-related ADAM22/LGI complex is therefore 

the first description of secreted protein released by the pre-synaptic terminal that can bind a post-synaptic 

receptor and influence AMPAR trafficking. As such, the role of the relatively large-sized LGI1 (about 60 kDa)  
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as a neurotransmitter or neuromodulator remains rather controversial. 

 

Figure 25: Transmembrane (and membranar) proteins known to regulate AMPAR trafficking (see text). 

 

 

Cntnap1. The contactin-associated protein 1 (Cntap1 or Caspr1), also known as neurexin-4 or paranodin,  

was first implicated in the formation of functional distinct domains within the axo-glial junction of myelinated 

nerve fibres (Bhat et al., 2001). In particular, Cntap1 interacts with contactin to properly target potassium 

channels from the juxta- paranodalinto the paranodal domain. Mice lacking Cntap1 exhibit tremor and ataxia, 

arguing for a pivotal role of Cntap1 in the regulation of peripheral nerve conduction. A recent study showed 

that Cntap1 is also present in synapses, where it can interact with GluA1, promoting its traffic and synaptic 

content (Santos et al., 2013). 

 

Cornichon. Cornichon proteins are typically composed of a cytoplasmic Nter and three transmembrane do-

mains. They were first studied in D. melanogaster, where they act as a cargo receptor recruiting the protein 

Gurken into COPII vesicles to the oocyte surface (Bökel et al., 2006). In yeast, the cornichon-related Erv14 

protein is also involved with the ER export of the majority of transmembrane proteins (Castillon et al., 2009), 

whereas in the vertebrate CNS, cornichon is known to contribute to both transport and secretion of ErbB4 

ligands (Hoshino et al., 2007). The cornichon homologs CNIH2 and CNIH3 were found by proteomic analysis 

of native AMPAR complexes (Schwenk et al., 2009). The same work showed that CNIH2/3 are present in 

both synaptic and extra-synaptic sites of the postsynaptic neuron, where they are believed to regulate AM-

PAR targeting to the synapse as well as their gating properties, alike TARPs. CNIH2/3 are expressed 
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throughout the rat central nervous system, apart from the cerebellar granule cells, where AMPAR regulation 

is carried out by Stgz (Chen et al., 2000). Schwenk and colleagues reported that ~70% of AMPARs are co-

assembled with CNIH2/3 rather than with TARPs. This percentage is in good agreement with previous stud-

ies suggesting that not all AMPARs associate TARPs and that agonist binding can indeed prompt TRAP-

AMPAR dissociation (Tomita et al., 2004; Morimoto-Tomita et al., 2009). Similarly to TARPs, cornichons are 

thought to increase surface expression of AMPARs by assisting the receptor biosynthesis and trafficking 

from the ER to the neuronal cell surface (Milstein & Nicoll, 2008; Greger et al., 2007; Schwenk et al., 2009; 

Shi et al., 2010; Harmel et al., 2012). Nevertheless, TARPs and cornichons are structurally distinct, with 

TARPs intracellular Cter playing a key role in AMPAR synaptic stabilization, as aforementioned. Conversely, 

although TARPs and cornichons slow AMPAR gating, the last are more effective than the first ones (Milstein 

et al., 2007). In particular, TARPs promote the recovery from desensitization and increase the response to 

kainate, whereas CNIH2/3 slow deactivation and desensitization kinetics. CNIH-induced AMPAR desensiti-

zation was reported to occur in glia cells as well (Coombs et al., 2012). Recently, cornichon proteins were 

proven to functionally interact with TARPs (Kato et al., 2010; Schober et al., 2011; Gill et al., 2012) and even 

regulate the number of TARPs within an AMPA receptor complex (Gill et al., 2011), thus modulating the re-

ceptor gating and pharmacology. Nevertheless, the AMPA receptors number capable of co-assembling with 

one and/or the other accessory proteins as well as the molecular determinants that regulate such mecha-

nism are still unclear. 

 

CPT-1C & PORCN. The carnitine O-palmitoyl-trans-ferase 1C (CPT-1C) and the protein-cysteine N-

palmitoyltransferase porcupine (PORCN) are multi-pass transmembrane proteins found to interact with na-

tive AMPARs (Schwenk et al., 2012). Both of them possess enzymatic activities involved in palmitoylation of 

cysteine residues, a post-translational modification previously shown to be important in AMPAR trafficking 

regulations (Hayashi et al., 2005). CPTC-1 is composed by 2 transmembrane domains and intracellular Nter  

and Cter, being located in the mitochondrial outer membrane where it can influence lipid metabolism and 

transport. A recent study underscored the importance CPT-1C in regulating the ceramide levels in hippo-

campal neurons and consequently modulating spine morphology (Carrasco et al., 2012). In particular, CPT-

1C KO mice display a greater number of immature filopodia and less mature mushroom and stubby spines. 

Notably, treatment of cultured neurons with exogenous application of ceramide or overexpression of CPT-1C 

is enough to reverse this phenotype. CPT-1C KO mice also show a strong impaired spatial learning in the 

Morris water maze test, pinpointing the role of CPT-1C in dendritic maturation and proper spatial learning. 

Instead, PORCN can be found in the ER membrane, containing 8 TM domains and intracellular Nter- and 

Cter as well. Interestingly, PORCN was previously implicated in the serine palmitoylation of Wnt family mem-

bers, being capable of modulating all Wnt ligand activity (Tanaka et al., 2000; Galli & Burrus, 2001; Proffitt & 

Virshup, 2012).  

 

Gsg1l. The germ cell-specific gene 1-like protein (Gsg1l) is a newly identified binding protein and unique 

modulator of AMPAR gating found through proteomic studies to bind GluA2 subunits (Shanks et al., 2012; 
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Schwenk et al., 2012). Akin to its tetraspanning relatives, Gsg1l is composed of four TM domains and intra-

cellular Nter and Cter, being an evolutionarily distant member of the claudin family. However, unlike TARPs, 

Gsg1l slows the recovery from the desensitized state in a similar way to CKAMP44 (von Engelhardt et al., 

2010). This functional difference between structurally similar proteins might reside in the extracellular loop 1 

of Gsg1l, known to be essential for the ion channel modulation (Menuz et al., 2008; Tomita et al., 2005), 

being substantially longer (~50%) and less conserved than Stgz/TARP. Of interest, Gsg1l was also pinpoint-

ed as a major candidate present in genetic loci predisposing to colon carcinogenesis in mice (Liu et al., 

2012). 

 

LRRTMs. The leucine-rich repeat transmembrane protein (LRRTM1-4) family members are single pass 

transmembrane proteins containing 10 extracellular Nter LRRs, which are highly and dynamically regulated 

during mouse development (Haines & Rigby, 2007). They are expressed in distinct tissues, especially in the 

neural tube where each gene is expressed in a unique domain, and they exhibit synaptogenic activity, be-

having like synaptic cell-adhesion molecules (reviewed by Wright & Washbourne, 2011). LRRTMs localize to 

excitatory synapses, being capable of inducing presynaptic differentiation in contacting axons as well as 

mediate postsynaptic differentiation (Linhoff et al., 2009). Moreover, LRRTMs were reported to bind the 

same presynaptic receptor - neurexins (NRXs) - as neuroligins (NLGNs), likely in a synergistic manner (Ko et 

al., 2009; Siddiqui et al., 2010). This functional redundancy is thought to occur only during early synapse 

development, being both LRRTM and NLGN functionally divergent upon synapse maturation (Soler-Llavina 

et al., 2011). Dual LRRMT/NLGN regulation of synapse formation is believed to be dependent on synaptic 

activity and mediated by a postsynaptic Ca
2+

/CaM-dependent signalling pathway (Ko et al., 2011). Important-

ly, LRRTM2 was shown to specifically regulate excitatory synaptogenesis and to interact with the scaffold 

PSD-95 protein through its class II Cter PDZ binding domain (-ECEV) (De Wit et al., 2009). LRRTM2 regu-

lates AMPA receptors expression, modulating the strength of evoked excitatory synaptic currents. Structure-

function studies suggest that LRRTM2 can induce presynaptic differentiation via its binding to NRX1 through 

the extracellular LRR domains. A similar role is expected for LRRTM4, a newly identified associate of native 

GluA2-containing AMPA receptors (Schwenk et al., 2012). LRRTM4 is the largest of the four LRRTM mem-

bers and akin to LRRTM2, its mRNA can be detected from E15, whose expression levels pick at P1 and 

persist into adulthood (Lauren et al., 2003). In the hippocampus, LRRTM4 protein is highly abundant in the 

granule cell layer neuron of the DG, and is the only LRTTM member present in neurons of the CA3 pyrami-

dal layer. Of note, human LRRTM1-3 members, but not LRRTM4, are located within introns of α-catenin 

genes, suggesting that those LRRTMs can share a common mechanism with such adhesion proteins. 

 

N-cadherin. Cadherins are calcium-dependent cell adhesion proteins associated with neuronal recognition 

mechanisms and the regulation of dendritic spine density (Yasuda et al., 2007). The overexpression of N-

cadherin increases the frequency of mEPSCs, possibly through the synaptic recruitment of GluA2-containing 

AMPA receptors (Saglietti et al., Neuron 2007). The post-synaptic N-cadherin/GluA2 complex is believed to 

stimulate presynaptic development and function while promoting dendritic spine formation. 
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Neto. A genetic screen of C. elegans containing the lurcher mutation allowed Zheng and collaborators 

(2004) to find new AMPAR auxiliary proteins. The suppressor of lurcher (Sol1), a single pass transmembrane 

protein containing four extracellular CUB domains, was able to co-immunoprecipitate and co-localize with the 

GluA1 AMPAR at the cell surface. Furthermore, Sol1 mutants were reported to lack endogenous glutama-

tergic synaptic currents (Zheng et al., 2006), endorsing Sol1 role as a modulator of GluA1 gating properties. 

Besides the Sol1/GluA1 complex, the glutamate-gated currents are believed to be dependent on Stgz1, a C. 

elegans Stgz-like protein (Walker et al., 2006), or on a newly identified auxiliary protein - Sol2, another CUB-

domain protein (Wang et al., 2012). Interestingly, Sol2 mutants exhibit a disrupted glutamatergic transmis-

sion like Sol1 mutants, with decreased GluA1-mediated currents and modified desensitization as well as 

pharmacology. Moreover, Sol2 expression seems to be required for the rescue of Sol1 mutant phenotype, 

pointing to a possible functional redundancy. Recently, the mammalian relatives of Sol1 and Sol2, named 

neuropilin tolloid-like 1 (Neto1) and 2 (Neto2) were identified in mice. Unlike its nematode homologues, they 

contain only two CUB domains and an LDLa (low-density lipoprotein receptor class A) domain (Stoohr et al., 

2002; Michishita et al., 2003). Neto1 was found to co-immunoprecipitate with GluN2A and GluN2B, as well 

as PSD-95 in the hippocampal CA1 region, possibly via its Cter PDZ binding domain (-TTRV) (Ng et al., 

2009). Neto1 is thought to be involved in the synaptic delivery and/or stability of these NMDA receptor subu-

nits.  Additionally, Neto1 KO mice display impaired spatial learning and LTP, further proving Neto1 role in 

NMDAR-mediated signalling. Conversely, Neto2 was shown to associate with GluK2, but not GluA1 recep-

tors in cerebellar extracts (Zhang et al., 2009a). The cerebellum of GluK2 KO mice exhibit 60% less Neto2, 

strengthening the causal link between Neto2 and kainate-type glutamate receptors. Contrasting with Sol1 

and Sol2, Neto1 and Neto2 seem to finely tune distinct glutamatergic currents – NMDAR and kainite recep-

tor-mediated, respectively.  Their involvement in the regulation of AMPA receptors is still not clear, although 

a previous study in C. elegans demonstrated that Sol1 and Sol2 can play a role in the adult nervous system 

to control AMPAR-mediated currents (Wang et al., 2012). 

 

NLGNs. The neuroligin family is composed of four postsynaptic cell-adhesion molecules - NLGN1-4. All of 

them contain a large extracellular esterase-homology domain, capable of establishing contact with presynap-

tic NRXs (Ichtchenko et al., 1995; Nguyen & Südhof, 1997), a transmembrane domain, and an intracellular 

Cter, containing a class I PDZ binding domain (-TTRV) able to interact with PDZ domain-containing proteins 

(Irie et al., 1997; Meyer et al., 2004). NLGNs were first identified in excitatory synapses (Song et al., 1999), 

promoting both differentiation and assembly of contacting presynaptic terminals (Scheiffele et al., 2000; 

Dean et al., 2003) and consequently mediating synapse formation (reviewed by Dean & Dresbach, 2006; 

Lisé & El-Husseini, 2006; Craig & Kang, 2007). In humans, genetic alterations of NRXs or NLGNs have been 

implicated in autism and other cognitive disorders (Chubykin et al., 2005; Südhof, 2008), as well as in angio-

genesis (Bottos et al., 2009), pinpointing the crucial role of these transmembrane proteins in brain develop-

ment and cognition. Importantly, NLGN1 overexpression was shown to potentiate NMDAR/AMPAR ratios 

(Chubykin et al., 2007). Conversely, NLGN1 KO mice exhibit a destabilized excitatory synapse organization 

(Zeidan & Ziv, 2012), as well as decreased levels of synaptic AMPAR and AMPAR-dependent synaptic 
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transmission (Mondin et al., 2011). On the other hand, NLGN2 overexpression increased inhibitory synaptic 

responses, suggesting that different NLGNs can specify and validate distinct types of synapses via an activi-

ty-dependent mechanism (Chubykin et al., 2007). A recent study further supports this idea, by showing that a 

Cter mutation of NLGN1 (E740N) significantly reduces the enhancement of AMPAR-mediated EPSCs, 

whereas a mutation of the homologous residue in NLGN3 (E747N) decreases both AMPAR and NMDAR 

responses (Shipman et al., 2011). Moreover, this Cter residue seems to specifically modulate excitatory syn-

aptic transmission, since an equivalent mutation of NLGN2 (E740N) has no effect. Notably, an autism-linked 

point mutation in the Cter of NLGN3 (R704C) was reported to selectively impair AMPAR-mediated synaptic 

transmission in hippocampus (Etherton et al., 2011). Indeed, AMPA receptors were shown to be recruited 

into mature synapses and trapped at PSD-95 clusters lying at nascent NRX-NLGN complexes in primary 

hippocampal neurons (Heine et al., 2008; Mondin et al., 2011). Such enlistment occurs in a rapid and activi-

ty-independent manner, allowing calcium to entry in the newly formed synapses through the inserted AM-

PAR. This result is in good agreement with the fact that NRX-NLGN1 trans-synaptic adhesions induce an 

initial NMDAR-independent transient morphological stabilization, while persistent and mature synapses re-

quire NMDAR activity (Chen et al., 2010a). Finally, NRX-NLGN adhesion complexes appear to be a product 

of surface insertion and internalization arrest of these proteins in the pre- and post-synapse, respectively 

(Thyagarajan & Ting, 2010).  

 

Shisa. The Shisa family was originally composed of single-transmembrane proteins that possess an Nter 

cysteine-rich domain and a proline-rich Cter region. But recently, distantly related Shisa homologs were 

found in vertebrates, giving rise to a new superfamily named STMC6 (single-transmembrane proteins with 

conserved six cysteines) (Pei & Grishin, 2012). STMC6 proteins - Shisa/Shisa-like, FAM159, KIAA1644, 

WBP1/VOPP1, CX, DUF2650, TMEM92, and CYYR1 - are frequently composed of PY motifs, known to in-

teract with WW-domain-containing proteins such as NEDD4 family E3 ubiquitin ligases. The Xenopus Shisa 

was the first member to be described, promoting head formation by inhibiting Wnt and FGF signalling path-

ways through the regulation of Frizzle and FGF receptor maturation in the ER (Yamamoto et al., 2005). Sev-

eral other studies in different species withstand Shisa role in modulating these two PCP pathways (He, 2005; 

Schlesinger & Shilo, 2005; Katoh & Katoh, 2005; Silva et al., 2006; Filipe et al., 2006; Nagano et al., 2006; 

Furushima et al., 2007; Hedge & Mason, 2008; Zhu et al., 2008). More recently, a mouse brain-specific Shi-

sa protein containing eight highly conserved Nter cysteines and a Cter PDZ binding motif (-EVTV) was found 

to associate with AMPA receptor complexes in synaptic spines (von Engelhardt et al., 2010). Within the 

brain, CKAMP44 (cystine-knot AMPA receptor modulating protein with a predicted mass of 44 kD; also 

known as mouse shisa homolog 9) is most abundant in the hippocampus, especially in the dentate gyrus 

granule cell layer. Unlike TARPs, CKAMP44 is believed to decrease AMPAR responses like GSG1L does, 

increasing the receptor desensitization without affecting its surface expression. Moreover, removing 

CKAMP44 in the DG enhances short-term facilitation, suggesting that this Shisa protein may set the extent of 

short-term plasticity. Another cystine-knot AMPAR modulating protein (52kDa) – CKAMP52, was recently 

suggested to be able to interact with native AMPARs (Schwenk et al., 2012). Also known as protein shisa-6, 
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CKAMP52 is more closely related to each of the Shisa6-9 members than other Shisa subfamilies, namely 

Shisa1-3 and 4-5 (Pei and Grishin, 2012). Shisa6-9 proteins main distinctive feature is the lack of cysteines 

in the juxtaposed TM Cter, suggesting a loss of lipid modification sites. Notably, only Shisa2 and Shisa6-9 

proteins possess a Cter PDZ binding motifs (-AVTV and -EVTV, respectively). Indeed, STMC6 members are 

believed to act as transmembrane adaptors, regulating the surface expression of membrane proteins, like 

cell surface receptors, through PDZ or PY domain interactions. 

 

SynDIG1. The synapse differentially induced gene 1 (SynDIG1), also known as DSPC2 (dispanin subfamily  

C member 2) or Tmem90b (transmembrane protein 90B), is a single transmembrane protein containing a 

cytoplasmic Nter and an extracellular Cter. SynDIG1 was found to interact with both GluA1- and GluA2-

containing AMPA receptors at developing synapses in dissociated rat hippocampal neurons (Kalashnikova et 

al., 2010). Furthermore, SynDIG1 levels were shown to modulate both AMPA receptors number and function 

in developing excitatory synapses. SynDIG1-mediated synapse development is believed to be regulated by 

neuronal activity and to depend on the interactions of its extracellular Cter with the AMPA receptors. Syn-

DIG1-dependent synaptic AMPAR targeting is believed to occur either by a direct SynDIG1/AMPA interaction 

that would promote their traffic to the synapses or, alternatively, by a more indirect role of SynDIG1, capable 

of priming newly formed synapses to receive AMPARs through other auxiliary proteins, like TARPs (reviewed 

by Diaz, 2012). Of note, two structurally related proteins were recently found in a high resolution proteomic 

study. The proline-rich transmembrane proteins 1 and 2 (PRRT1/2), also known as SynDIG4 or DSPD1 (dis-

panin subfamily D member 1), associates specifically with native GluA1-containing AMPA receptors 

(Schwenk et al., 2012). PRRT1/2 are composed of two transmembrane and domains, with both extracellular  

Nter and Cter. Their involvement in AMPAR regulation is still unknown. 

 

TARPs. The neuronal voltage-dependent calcium channel γ-2 subunit (also known as stargazing, Stgz) is a 

member of the extended family of transmembrane AMPAR regulatory proteins (TARP). Stgz was the first 

isolated transmembrane protein found to interact with GluA1, GluA2, and GluaA4 AMPAR subunits (Chen et 

al., 2000). The Stgz mutant mouse, or stargazer, is characterized by absence seizures and cerebellar ataxia, 

endorsed by the lack of functional AMPARs in cerebellar granule cells (Schnell et al., 2002). Together with γ-

3, γ-4 and γ-8, Stgz is a type I TARP, as it can rescue AMPAR-mediated currents. On the contrary, type II 

TARPs - γ-1, γ-5, γ-7, and claudin-1 - fail to do so (Tomita et al., 2003). TARPs are widely expressed in the 

CNS (Burgess et al., 1999, 2001; Klugbauer et al., 2000; Moss et al., 2002), although the different members 

are strictly segregated in terms of time and place of expression, suggesting distinct roles for TARPs isoforms 

(Tomita et al., 2003; Fukata et al., 2005; Lein et al., 2007). For example, Stgz occurs mainly in the cerebel-

lum, γ-3 in the cerebral cortex, γ-4 in the olfactory bulb, and γ-8 is dramatically enriched in the hippocampus. 

In addition, γ-4 is expressed in both neuronal and glia cells; while γ-8 is strictly present in neurons. Also, 

while γ-2, γ-3, and γ-8 reach high expression levels in adulthood, γ-4 peaks at P6, decreasing with time (see 

Jackson & Nicoll, 2011 for a complete review). TARPs are typically composed by, regardless of the type, a 

rather conserved intracellular Nter, four transmembrane domains and a variable intracellular Cter. In fact, this 
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last feature is responsible for the temporal and spatial specificity of the family members as well as their traffic 

and gating properties of AMPA-selective glutamate receptors (Tomita et al. 2004, 2005b, Turetsky et al., 

2005, Bedoukian et al., 2006; Sager et al., 2009; Milstein & Nicoll, 2009).  Type I TARPs possess a rather 

conserved Cter class I PDZ binding motif (-RR/KTTPV), able to bind to several PSD abundant scaffold pro-

teins like the PDZ domain-containing protein PSD-95 or related members of the MAGUK family (Dakoji et al., 

2003; Deng et al., 2006). Moreover, all these proteins are known to regulate AMPAR trafficking (Kim & 

Sheng, 2004; Elias & Nicoll, 2007), but they cannot directly bind to AMPARs, strengthening TARPs interme-

diary role in anchoring and stabilizing synaptic targeted tetrameric AMPA receptors. Further, other AMPAR 

Cter-interacting proteins, like GRIP, PICK1 or NSF, were undetectable in native AMPAR complexes, sug-

gesting that such interactions are less stable and/or more transitory than the bona fide AMPAR auxiliary 

subunit Stgz (Vandenberghe et al., 2005a). The Stgz/PSD-95 interaction is by far the best characterized 

regulator of AMPAR clustering at the synapse, being its modulation finely tuned through posttranslational 

modifications. PKA phosphorylation of Stgz Thr321 residue within the PDZ binding motif prevents Stgz bind-

ing to PSD-95, inducing a loss of synaptic AMPAR clusters (Chetkovich et al., 2002; Choi et al., 2002). Con-

versely, synaptic NMDAR activity can trigger Stgz phosphorylation via CaMKII and PKC or de-

phosphorylation through the PP1/PP2B pathway, thus inducing a bidirectional control over LTP or LTD, re-

spectively (Kessels & Malinow, 2009; Opazo et al., 2010). On the other hand, PSD-95 de-palmitoylation is 

required for a rapid glutamate-mediate AMPA receptor internalization, regulating synaptic strength as well 

(El-Husseini et al., 2002). Indeed, growing evidences support the idea in which the Stgz/PSD-95 complex 

transiently stabilizes laterally diffusing AMPARs in the PSD (Bats et al., 2007; Sainlos et al., 2011).  

 

I.6.4.5.3 Membrane-associated protein 

Neuritin. Initially it was identified as CPG15 (candidate plasticity gene 15) in a screen for plasticity-related 

genes in the hippocampus (Nedivi et al., 1993). This activity-regulated gene encodes a glycosylphosphatidyl-

inositol (GPI)-linked protein able to promote dendritic arbour growth of neighbouring neurons via an intercel-

lular signalling mechanism both in development and adulthood. (Nedivi et al., 1998; Corriveau et al., 1999; 

Javaherian & Cline, 2005). It was recently proved to associate with native AMPA receptors (Schwenk et al., 

2012). This finding is in good agreement with a previous study, where CPG15 was shown to stimulate synap-

tic maturation by recruiting AMPARs to the post-synapse, coordinating both the number and the strength of 

synaptic contacts (Cantallops et al., 2000). It does so by acting like an immediate early gene, being induced 

by the Ca
2+

 influx through activated NMDA receptors and L-type voltage-sensitive calcium channels and 

requiring the activation of both CaMK and MAPK pathways (Fujino et al., 2003). Finally, CPG15 KO mice 

exhibit delayed developmental maturation of both axonal and dendritic arbors (Fujino et al., 2011). Loss of 

CPG15 reflects in hindered synaptic maturation and ultimately in poor learning, but sustained memory. 

 

I.6.4.5.4 Secreted proteins and ECM 

Recent studies are bringing to light a possible role of newly described secreted proteins, known hormones or 

even the extracellular matrix in the regulation of AMPAR trafficking – Fig. 26.  
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Figure 26: Secreted proteins known to regulate AMPAR trafficking (see text). 

 

Brorin & Brorin-2l. The brain-specific chordin-like protein (Brorin) or CR (chordin-like cysteine-rich) domain-

containing adhesive protein or von Willebrand factor C domain-containing protein 2 (Vwc2) and its close 

relative Brorin-2l (Vwc2l) were recently found to interact with native GluA2- containing AMPA receptors 

(Schwenk et al., 2012). Both these secreted protein contain 2 Cter VWFC domains, which are usually pre-

sent in blood plasma proteins like the complement factors or collagen. The best known so far is Brorin, pre-

dominantly expressed in the brain, being present only in neurons but not in glial cells (Koike et al., 2007). 

Firstly described as bone morphogenetic antagonists, both are believed to play a role in neural development 

as well (Miwa et al., 2009; Ohyama et al., 2012). 

 

Corticosterone. The stress hormone corticosterone is a corticosteroid known to regulate excitatory trans-

mission and synaptic plasticity (Karst et al., 2005; Wiegert et al., 2006).  Within hours, it is able to preferen-

tially increase AMPAR-mediated transmission via intracellular glucocorticoid receptors, impairing synaptic 

potentiation (Kim et al., 2002; Karst & Joels, 2005). Single quantum-dot imaging in live rat hippocampal neu-

rons revealed that corticosterone promotes the surface mobility of GluA2-containing AMPAR as well as its 

synaptic content in an activity-dependent manner (Groc et al., 2008). 

 

Leptin. Leptin is a hormone that can cross the blood-brain barrier and influence several brain functions, in-

cluding activity-dependent synaptic plasticity in the hippocampus (Harvey, 2007; Shanley et al., 2001; Dura-

koglugil et al., 2005; Moult et al., 2009). Leptin was recently reported to promote GluA1 cell surface expres-

sion through a mechanism that requires NMDAR activation and subsequent inhibition of the lipid phospha-

tase PTEN (Moult et al., 2010). 

 

Narp. The neuronal activity-regulated pentraxin (Narp) is a secreted immediate-early gene whose expression 

is regulated by synaptic activity (Tsiu et al., 1996). Narp contains a Cter pentaxin domain, belonging to the 

pentraxin family, whose elements are known to self-multimerize and form pentamers and/or decamers. Narp 

was initially shown to immunoprecipitate with GluA1-3 AMPA receptor subunits in HEK 293T cells (O’Brien et 

al., 1999). In neurons, presynaptic Narp expression promoted the clustering of post-synaptic AMPA recep-

tors (O’Brien et al., 2002). Moreover, Narp overexpression significantly increased the number of excitatory 

synapses. Remarkably, Narp secretion by hippocampal axons selectively targeted the aggregation of AM-

PARs in interneurons (Mi et al., 2002). Recent studies suggest that Narp might be involved in enduring forms 
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of neuronal plasticity (Reti & Baraban, 2000; Pacchioni & Kalivas, 2009; Pacchioni et al., 2009; Chang et al., 

2010). 

 

Olfm1. The neuronal olfactomedin-related ER localized protein (Olfm1), also known as pancortin-1 or noelin 

was recently co-purified with AMPARs (von Engelhardt et al., 2010; Schwenk et al., 2012). Olfm1 belongs to 

the Pancortin family, whose elements (1-4) are differentially expressed in the brain and during development, 

suggesting that they might perform different functions in neural development (Nagano et al., 1998, 2000). 

Indeed, even though all the member of the Pancortin family possess a Cter olfactomedin-like domain, only 

Olfm1 seems to contain a class I PDZ binding domain (-SDEL). Interestingly, Olfm1 was shown to regulate 

the retinal axon growth in zebrafish, acting like a Nogo A receptor (NgR1) ligand (Nakaya et al., 2012), and 

modulating the Wnt signalling pathway (Nakaya et al., 2008). 

 

ECM. Once the mature synaptic circuitry is established, most of the synapses are wrapped by a dense extra-

cellular matrix (ECM) mainly composed by glycoproteins and proteoglycans (Köppe et al., 1997; John et al., 

2006). ECM is believed to play a key role in stabilizing and maintaining synaptic networks in the adult CNS 

(Celio & Blumcke, 1994; Pizzorusso et al., 2002). Frischknecht and colleagues (2009) elegantly showed that, 

due to its net-like structure, ECM is able to compartmentalize the neuronal surface, restricting AMPAR mobil-

ity and in particular the availability of naïve receptors at the synaptic surface. Moreover, the enzymatic re-

moval of ECM could not only increase the extra-synaptic diffusion and synaptic exchange of AMPARs, but 

also increase AMPAR-mediated short-term synaptic transmission.  
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Chapter II 

AIM OF THE STUDY & PROJECT OUTLOOK 
 

 

 

Aim of the study  

 

Scribble is a large multidomain scaffold protein from the LAP family, composed by 16 Nter LRRs (leucine-

rich repeats) and 4 Cter PDZ (PSD-95/Discs-large/ZO-1) domains. Scrib is a well-established key regulator 

of apico-basal polarity, presynaptic architecture and short-term synaptic plasticity in Drosophila (Bilder & 

Perrimon, 2000). Its mammalian homolog Scrib1 has been shown to play a crucial role in both developing 

and adult central nervous system (Murdoch et al., 2003; Moreau et al., 2010). Heterozygous transgenic mice 

in which 50% of expressed Scrib1 lacks PDZ3 and PDZ4, have aberrant hippocampal dendritic spines and 

deficits in synaptic plasticity and behavior that have been linked to ASD (Moreau et al., 2010). The main goal 

of my work was to further investigate the molecular mechanisms underlying Scrib1 role in synaptic formation 

and maintenance. 

 

 

Project outlook 

 

I started by identify and validate potential specific protein interactions of the missing Scrib1
crc/+ 

PDZ3 and 

PDZ4 domains that could, at the molecular level, explain the Scrib1-dependent autistic phenotype (Chapter 

III). I present two works in which PDZ3 and PDZ4 domains interactions were involved, respectively, in NMDA 

receptors trafficking (Chapter IV) and bidirectional plasticity signalling pathway underying spatial memory 

(Chapter V). As my main project, I assessed the structural genomic consequences of the recently identified 

Scrib1 de novo mutation c.1774C>T in human austim (Neale et al., 2012) (Chapter VI). I showed that 

disruption of Scrib1-mediated actin regulation impacts neuronal complexity, dendritic spine formation and 

maintenance. Since Scrib1 can bind AMPA receptors through transmembrane auxiliary proteins (TARPs), I 

show preliminary results regarding Scrib1 role in subunit-specific AMPAR endo- and exocytosis as well 

(Chapter VII). Taken altogether, this thesis highlights the PCP protein Scrib1 as key scaffold protein in brain 

development and function, playing a plethora of roles from the subcelular to the cognitive level. 
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Chapter III 

Protein-protein interactions of Scrib1 PDZ3 and PDZ4 domains 

 

 

III.1 Context and problematic 

Circletail (Scrib1
crc/crc

) mice, expressing a truncated form of Scrib1 lacking PDZ3 and PDZ4 domains, display 

neural tube defects (NTD), a lethal form of PCP defect (Murdoch et al., 2003) (Chapter I.3.3). On the other 

hand, previous work in our lab showed that heterozygous mice (Scrib1
crc/+

), expressing only 50% of this trun-

cated protein form exhibit ASD-like deficits (Moreau et al., 2010) (Chapter I 5.4.2). We started then by identi-

fy and validate potential protein interactions of the missing Scrib1
crc

 PDZ3 and PDZ4 domains that could, at 

the molecular level, explain the Scrib1
PDZ3/PDZ4

-dependent NTD, PCP and ASD phenotypes. PDZ domains 

were originally identified as small regions (80-90 aminoacids) of sequence homology found in diverse signal-

ling proteins (Cho et al., 1992; Wood & Bryant, 1993; Kim et al., 1995). PDZ consists of 6 β-strands and 2 α-

helices folded into a compact globular manner, having its N- and Cter close to each other (reviewed by Har-

ris & Kim, 2001). Distinct sequence variations in the residues that line within the PDZ pocket dictate its size, 

shape, and consequently its preference for specific PDZ binding domains or other PDZ domain (reviewed by 

Lim & Harris, 2001; Sheng & Sala, 2001; Kim & Sheng, 2004; Subbaiah et al., 2011). Given the great 

diversity of PDZ binding specificities, PDZ-based protein complexes are highly specialized, enhancing the 

rate and fidelity of signal transduction within the complex. The characterization of our final selected Scrib1 

interacting candidates will be further described in the following Chapters. 

 

 

III.2 Material and Methods 

Yeast two-hybrid (Y2H) screen. Scrib1 PDZ3 or PDZ4 domains (990-1079 aa and 1086-1180 aa, respective-

ly from Q80U72-3) were subcloned into a pGBTK7 vector (Clontech) in-frame with the DNA-binding domain 

of GAL4 and used as a bait for the screening as previously described (Sans et al., 2003). Y2H screening was 

performed accordingly to the Matchmaker™ Gold Yeast Two-Hybrid System protocol (Clontech). AH109 

cells expressing Scrib1
PDZ3

 or Scrib1
PDZ4

 were combined with Y187 cells expressing a P10 mouse brain 

cDNA library. The mating mixture was plated on SD/Ade
-
/Trp

-
/Leu

-
/His

-
 (4DO media) plates. A total of 3.5 x 

10
3
 (Scrib1

PDZ3
) and 1.5 x 10

3
 (Scrib1

PDZ4
) colonies obtained 5 days after transformation were rescued ac-

cording to the manufacturer’s instructions (RPM® yeast plasmid isolation kit, MP Biomedicals), amplified 

(PuReTaq Ready-To-Go PCR, GE Healthcare), sequenced (BigDye® Terminator v1.1, Applied Biosystems) 

and identified through the bioinformatic tools BLAST and Expasy translation. From those, only 98 (Table 9) 

and 56 (Table 10) candidates, respectively, were confirmed to be positive interactions.   
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TABLE 9: General characterization of the final yeast-two hybrid candidate interactions of Scrib1 PDZ3 domain: function, cellular 

localization, presence of PDZ binding domains (PDZbd) or PDZ domains, relevance for neural tube defect (NTD), planar cell polarity 

(PCP), autism spectrum disorders (ASD) or ASD related disorders (ASD-RD). 

Protein  Protein name Function Localization PDZbd or 
PDZ domain 

NTD, PCP, 
ASD, ASD-RD 

Aamp Angio-associated migratory protein  Other Other - - 

Abcb8 ATP-binding cassette, sub-family B 
(MDR/TAP), member 8  

Transmembrane 
transporter 

Mitochondria - - 

Abhd11 Abhydrolase domain containing 11  Other Mitochondria - - 

Actb Actin, beta, cytoplasmic  Cytoskeleton 
organization 

Axon - ASD-RD 

Aldh9a1 Aldehyde dehydrogenase 9, subfamily A1 Cellular  
metabolism 

Mitochondria - ASD-RD 

Alkbh4 AlkB, alkylation repair homolog 4 (E. coli)  Cellular  
metabolism 

Nucleus - - 

Ankrd50 Ankrin repeat domain 50  Other Other - - 

Anks1b Ankyrin repeat and sterile alpha motif 
domain containing 1B  

Receptor  
binding 

PSD membrane - - 

Ap2m1 Adaptor protein complex AP-2, mu1  Protein traffic 
and transport 

Recycling vesicle - - 

Apba1 Amyloid beta (A4) precursor protein  
binding, family A, member 1  

Cell signaling Intracellular Class I PDZbd - 

Arcn1 Archain 1  Protein traffic 
and transport 

Recycling vesicle - - 

Arf5 ADP-ribosylation factor 5  Cytoskeleton 
organization 

Intracellular Internal PDZ - 

Arhgef7 Rho guanine nucleotide exchange factor 
(GEF7)  

Cytoskeleton 
organization 

Cell junction - PCP, ASD-RD 

Asb6 Ankyrin repeat and SOCS box-containing 
protein 6   

Cell signaling Intracellular - - 

Atp1b1 ATPase, Na+/K+ transporting, beta 1 
polypeptide  

Transmembrane 
transporter 

Apico/basal  
membrane 

Class I PDZbd - 

Atp2b1 ATPase, Ca++ transporting, plasma 
membrane 1 

Cell signaling Apico/basal  
membrane 

Class I PDZbd - 

Atrn Attractin  Receptor activity Transmembrane - - 

B4galt2 UDP-Gal:betaGlcNAc beta 1,4- 
galactosyltransferase, polypeptide 2  

Cellular  
metabolism 

Transmembrane - - 

C1qc Complement component 1, q  
subcomponent, C chain  

Other Other - - 

Cacng4 Calcium channel, voltage-dependent, 
gamma subunit 4  

Transmembrane 
transporter 

PSD membrane Class I PDZbd - 

Cdk5 Cyclin-dependent kinase 5  Receptor  
binding 

Cell junction - NTD 

Centa1 Centaurin, alpha 1  Cytoskeleton 
organization 

Intracellular - - 

Chst1 Carbohydrate (keratan sulfate Gal-6) 
sulfotransferase 1  

Cellular  
metabolism 

Transmembrane - ASD-RD 

Clptm1 Cleft lip and palate associated  
transmembrane protein  1  

Other Extracellular - - 

Clstn1 Calsyntenin 1 Cell adhesion Cell junction Class I PDZbd - 

Cltc Clathrin, heavy polypeptide Protein traffic 
and transport 

Recycling vesicle - - 

Cnp   2',3'-cyclic-nucleotide 3'-
phosphodiesterase isoform 1 

Kinase Intracellular - ASD-RD 

Cnrip1 Cannabinoid receptor interacting protein 1 Other  Other - - 

Commd3 COMM domain containing 3 Other Other - ASD-RD 

Cst3 Cystatin C Other Other - - 

Ctnnb1 Catenin (cadherin associated protein), 
beta 1  

Cell adhesion Cell junction Class I PDZbd ASD-RD 

Ctnnd2 Catenin (cadherin associated protein), 
delta 2  

Cell adhesion Cell junction - ASD-RD 

Ctsd Cathepsin D  Cellular  
metabolism 

Extracellular - ASD-RD 
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Dmwd Dystrophia myotonica-containing WD 
repeat motif  

Other Other - ASD-RD 

Dnm1l Dynamin 1-like  Cytoskeleton 
organization 

Intracellular - ASD-RD 

Dscr3 Down syndrome critical region gene 3  Other Nucleus - ASD-RD 

Eif3i Eukaryotic translation initiation factor 3, 
subunit I  

mRNA  Intracellular - - 

Eno1 Enolase 1, alpha non-neuron  Cellular  
metabolism 

Extracellular - - 

Gabarapl1 Gamma-aminobutyric acid (GABA) A 
receptor-associated protein-like 1  

Receptor  
binding 

Dendrite - - 

GAPDH Glyceraldehyde-3-phosphate dehydrogen-
ase  

Cellular  
metabolism 

Mitochondria - - 

GluN2A Glutamate receptor, ionotropic, NMDA2A 
(epsilon 1)  

Receptor activity Transmembrane Class I PDZbd ASD, ASD-RD 

Grina Glutamate receptor, ionotropic, N-methyl 
D-aspartate-associated protein 1 (gluta-
mate binding) 

Other Transmembrane - - 

Gusb Glucuronidase, beta  Cellular 
metabolism 

Lysosome - ASD-RD 

Inpp5j Inositol polyphosphate 5-phosphatase J  Phosphatase Cell junction - NTD, PCP 

Itgb1bp1 Integrin beta 1 binding protein 1  Cell adhesion Intracellular Class I PDZbd - 

Itm2a Integral membrane protein 2A  Other Transmembrane - - 

Klhl20 Kelch-like 20 (Drosophila)  Protein  
degradation 

Intracellular - - 

Klhl5 Kelch-like 5 (Drosophila)  Other Other - - 

Ldha Lactate dehydrogenase A Cellular  
metabolism 

Mitochondria - - 

Lphn2 Latrophilin 2 Cell signaling Transmembrane Class I PDZbd - 

Lphn3 Latrophilin 3  Cell signaling Transmembrane - - 

Lss Lanosterol synthase  Cellular  
metabolism 

Endoplasmic 
reticulum 

- - 

Mapk12 Mitogen-activated protein kinase 12 Kinase  Intracellular - - 

Metap2 Methionine aminopeptidase 2 Other Intracellular - ASD-RD 

Mink1 Misshapen-like kinase 1 (zebrafish)  Kinase  Cell junction - PCP, ASD-RD 

Mmd2 Monocyte to macrophage 
 differentiation-associated 2 

Receptor activity Transmembrane - - 

Morn4 MORN repeat containing 4  Other Other - - 

N6amt1 N-6 adenine-specific DNA  
methyltransferase 1 (putative)  

Other Other - - 

Narfl Nuclear prelamin A recognition factor-like  DNA Other - - 

Ndrg3 N-myc downstream regulated gene 3  Other Other - - 

Nfyc Nuclear transcription factor-Y gamma  DNA Nucleus - - 

Nob1 NIN1/RPN12 binding protein 1 homolog 
(S. cerevisiae)  

RNA Nucleus - - 

Npdc1 Neural proliferation, differentiation and 
control gene 1  

Other Transmembrane - - 

Pdk2 Pyruvate dehydrogenase kinase,  
isoenzyme 2 

Cellular  
metabolism 

Mitochondria - - 

Phb2 Prohibitin 2  Receptor activity Mitochondria - - 

Pik3r2 Phosphatidylinositol 3-kinase, regulatory 
subunit, polypeptide 2 (p85 beta) 

Cell signaling Intracellular - - 

Plek Pleckstrin  Cell signaling Intracellular - ASD-RD 

Polr2c Polymerase (RNA) II (DNA directed) 
polypeptide C  

DNA Nucleus - - 

Pp1r12c Protein phosphatase 1, regulatory  
(inhibitor) subunit 12C  

Phosphatase Intracellular - - 

Psap Prosaposin  Cell signaling Other - ASD-RD 
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Ptbp2 Polypyrimidine tract binding protein 2  RNA Nucleus - - 

Pycrl Pyrroline-5-carboxylate reductase-like  Cellular  
metabolism 

Other - - 

Rab11b RAB11B, member RAS oncogene family  Protein traffic 
and transport 

Recycling vesicle - - 

Rps6ka1 Ribosomal protein S6 kinase polypeptide 1   Kinase Intracellular - ASD-RD 

Rpusd1 RNA pseudouridylate synthase domain 
containing 1  

RNA  Other - - 

Sdhb Succinate dehydrogenase complex,  
subunit B, iron sulfur (Ip)  

Cellular  
metabolism 

Mitochondria - - 

Sh2d3c SH2 domain containing 3C  Cell signaling Intracellular - - 

Sin3b Transcriptional regulator, SIN3B (yeast)  DNA Nucleus - - 

Sirt3 Sirtuin 3 (silent mating type information 
regulation 2, homolog) 3 (S. cerevisiae)  

Other Mitochondria - - 

Slc7a5 Solute carrier family 7 (cationic amino acid 
transporter, y+ system), member 5 

Transmembrane 
transporter 

Transmembrane - ASD, ASD-RD 

Src Rous sarcoma oncogene ,  Cell signaling PSD membrane - NTD, ASD-RD 

Stard7 START domain containing 7 Other Mitochondria - - 

Suclg1 Succinate-CoA ligase, GDP-forming, alpha 
subunit  

Cellular metabo-
lism 

Mitochondria - - 

Syf2 SYF2 homolog, RNA splicing factor  
(S. cerevisiae)  

RNA Spliceosome Class I PDZbd - 

Syt11 Synaptotagmin XI  Cell signaling Cell junction - ASD-RD 

Syt2 Synaptotagmin II Cell signaling Cell junction - - 

Tcf25 Transcription factor 25 (basic helix-loop-
helix)  

DNA Nucleus - - 

Tgfb1i1 Transforming growth factor beta 1 induced 
transcript 1  

Cell signaling Cell junction - - 

Timm17b Translocase of inner mitochondrial  
membrane 17b  

Transmembrane 
transporter 

Mitochondria - ASD-RD 

Tle3 Transducin-like enhancer of split 3,  
homolog of Drosophila E(spl)  

DNA Nucleus - - 

Tmed4 Transmembrane emp24 protein transport 
domain containing 4  

Cell signaling Endoplasmic 
reticulum 

- - 

Tmem63b Transmembrane protein 63b  Other Transmembrane - - 

Trim35 Tripartite motif-containing 35  Other Intracellular - - 

Trim9 Tripartite motif protein 9  Cell signaling Dendrite - - 

Tubb2a Tubulin, beta 2a  Cytoskeleton 
organization 

Intracellular - ASD-RD 

Uhmk1 U2AF homology motif (UHM) kinase 1  Kinase  Cell junction Class I PDZbd PCP, ASD-RD 

Uqcrc1 Ubiquinol-cytochrome c reductase core 
protein 1  

Transmembrane 
transporter 

Mitochondria - ASD-RD 

Yif1a Yip1 interacting factor homolog A  
(S. cerevisiae)  

Protein traffic 
and transport 

Endoplasmic 
reticulum 

- - 

Zfp282 Zinc finger protein 282  Other Other - - 

 

 
TABLE 10: General characterization of the final yeast-two hybrid candidate interactions of Scrib1 PDZ4 domain: function, cellular 

localization, presence of PDZ binding domains (PDZbd) or PDZ domains, relevance for neural tube defect (NTD), planar cell polarity 
(PCP), autism spectrum disorders (ASD) or ASD related disorders (ASD-RD). 

 

Protein  Protein name Function Localization PDZbd or 
PDZ domain 

NTD, PCP, ASD 
or ASD-RD 

4933434E20Rik  RIKEN cDNA 4933434E20 
gene  

Cellular  
metabolism 

Transmembrane Class I PDZbd  

Abr  Active BCR-related gene  Cytoskeleton 
organization 

Intracellular - ASD-RD 

Actb  Actin, beta  Cytoskeleton 
organization 

Axon - ASD-RD 
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Actg1  Actin, gamma, cytoplasmic 1  Cytoskeleton 
organization 

Intracellular - ASD-RD 

Alg2  Asparagine-linked glycosylation 
2 homolog (yeast, alpha-1,3-
mannosyltransferase) 

Cell signaling Intracellular - - 

Aptx  Aprataxin  DNA Nucleus - - 

Arhgap44  Rho GTPase activating  
protein 44 

Cell signaling Intracellular Class I PDZbd - 

Arv1  ARV1 homolog (yeast)  Cellular  
metabolism 

Transmembrane - - 

Atp1b1  ATPase, Na+/K+ transporting, 
beta 1 polypeptide  

Transmembrane 
transporter 

Apico/basal 
membrane 

Class I PDZbd -  

Atp2b3  ATPase, Ca++ transporting, 
plasma membrane 3  

Transmembrane 
transporter 

Transmembrane Class I PDZbd ASD-RD 

Atp5a1  ATP synthase, H+ transporting, 
mitochondrial F1 complex, alpha 
subunit 1  

Transmembrane 
transporter 

Mitochondria - ASD-RD 

Atp6v1a  ATPase, H+ transporting,  
lysosomal V1 subunit A  

Transmembrane 
transporter 

Apical mem-
brane 

- ASD-RD 

Ccdc163  Coiled-coil domain containing 
163 

Other Other Unknown PDZbd - 

Clip3  CAP-GLY domain containing 
linker protein 3 

Protein traffic 
and transport 

Recycling  
vesicle 

- - 

Cnn2  Calponin 2  Cytoskeleton 
organization 

Cell junction - NTD, ASD-RD 

Cnp  2',3'-cyclic nucleotide 3'  
phosphodiesterase  

Kinase  Intracellular - ASD-RD 

Caspr5a  Contactin associated  
protein-like 5A  

Cell adhesion Transmembrane Class II PDZbd ASD, ASD-RD 

Cox7a2  Cytochrome c oxidase, subunit 
VIIa 2  

Cellular  
metabolism 

Mitochondria - - 

Cpt1c  Carnitine palmitoyltransferase 
1c  

Cellular  
metabolism 

Mitochondria - - 

Crtc1  CREB regulated transcription 
coactivator 1 

DNA Nucleus - ASD-RD 

Cst3  Cystatin C  Other Other - - 

Ctsk  Cathepsin K  Other Other - ASD-RD 

Dpysl2  Dihydropyrimidinase-like 2  Other Cell junction Unknown PDZbd  NTD, ASD-RD 

Eif1b  Eukaryotic translation initiation 
factor 1B  

RNA Spliceosome - - 

Eif3i  Eukaryotic translation initiation 
factor 3, subunit I   

RNA Spliceosome - - 

Fech  Ferrochelatase Other Mitochondria - - 

Galk1  Galactokinase 1 Kinase  Intracellular - ASD-RD 

Lamtor1  RIKEN cDNA 2400001E08 
gene  

Protein traffic 
and transport 

Recycling vesi-
cle 

- - 

Ldha  Lactate dehydrogenase A  Cellular  
metabolism 

Mitochondria - - 

Morn4  MORN repeat containing 4  Other Other - - 

Npc2  Niemann Pick type C2  Protein traffic 
and transport 

Lysosome - - 

Nudt13  Nudix (nucleoside diphosphate 
linked moiety X)-type motif 13  

Other Mitochondria - - 

Pctk1  PCTAIRE-motif protein kinase 1  Kinase  Other - - 

Pink1  PTEN induced putative kinase 1  Kinase  Mitochondria - ASD-RD 

Pkp4  Plakophilin 4 Cell adhesion Cell junction Class I PDZbd ASD-RD 

Polr2c  Polymerase (RNA) II (DNA 
directed) polypeptide 

DNA Nucleus - - 

Ppp2ca  Protein phosphatase 2A, cata-
lytic subunit, alpha isoform  

Phosphatase Intracellular Class II PDZbd ASD-RD 

Psap  Prosaposin  Cell signaling Other - ASD-RD 
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Reln  Reelin Other Cell junction - ASD, ASD-RD 

Rit1  Ras-like without CAAX 1  Cytoskeleton 
organization 

Intracellular Unknown PDZbd PCP 

Rnd2  Rho family GTPase 2  Cytoskeleton 
organization 

Recycling vesi-
cle 

- - 

Rnf114  Ring finger protein 114  Other Intracellular - - 

Rpl18a  Ribosomal protein L18A  RNA Intracellular - - 

Scarb1  Scavenger receptor class B, 
member 1  

Cell adhesion Transmembrane Class I PDZbd  - 

Smad7  MAD homolog 7 (Drosophila) Cell signaling Nucleus - PCP, ASD-RD 

Solh  Small optic lobes homolog 
(Drosophila)  

Other Intracellular - - 

Spcs2  Signal peptidase complex sub-
unit 2 homolog (S. cerevisiae)  

Other Endoplasmic 
reticulum 

- - 

Ssbp3  Single-stranded DNA binding 
protein 3  

DNA Nucleus - - 

Stxbp1  Syntaxin binding protein 1  Protein traffic 
and transport 

Membrane - ASD-RD 

Tecpr1  Tectonin beta-propeller repeat 
containing 1  

Other Transmembrane - - 

Trf  Transferrin  Protein traffick-
ing & transport 

Apico/basal 
membrane 

- - 

Trp53  Transformation related protein 
53  

DNA Nucleus - NTD, PCP 

Tst  Thiosulfate sulfurtransferase, 
mitochondrial  

Other Mitochondria - - 

Vdac1  Voltage-dependent anion  
channel 1  

Transmembrane 
transporter 

Mitochondria - ASD-RD 

Vtn Vitronectin  Cell adhesion Extracellular - - 

 

 

III.3 General characterization of Scrib1
PDZ3

 and Scrib1
PDZ4

 protein interactions  

A Yeast Two-Hybrid screen was used to look for potential proteins that could interact with Scrib1
PDZ3

 or 

Scrib1
PDZ4

 (bait) from a cDNA library of P10 mouse brain (prey). The two-fold difference between the ob-

tained mating colonies (Table 11) might be explain by a greater phylogenetic homology shared by the Scrib1 

PDZ3 domain with its first two PDZ domains as well as with Erbin and Densin-180 (Chapter I.2) when com-

pared to the Scrib1 PDZ4 domain (Fig. 27). Although PDZ3 is highly conserved among different species (Cai 

et al., 2014), Sidhu and colleagues showed that Scrib1 PDZ1-3 domains are highly promiscuous (Zhang et 

al., 2006). Interestingly, the same study obtained no specific binding clone for Scrib1 PDZ4, potentially due 

to its less stable nature. We also classify Scrib1 PDZ3 and PDZ4 positive interactions according to their func-

tion or localization based on the available curated NCBI database (Fig. 28). Both PDZ domains seem to 

interact with proteins displaying similar functions (Fig. 28 a) and localization (Fig. 28 b).  

 

Table 11: Scrib1
PDZ3

 and Scrib1
PDZ4 

Y2H screening throughout the selection criteria process. Identified proteins following high 
stringency conditions are further described in Table 8 and 9, respectively. Proteins containing PDZbd or PDZ domains are in Table 10.  

 
 
 
 
 

Selection criteria Scrib1
PDZ3

 Scrib1
PDZ4

 

Large scale (total in 4DO media) ~ 3.5 x 10
3
 ~ 1.5 x 10

3
 

Positive interactions 98 56 
Proteins containing PDZbd or PDZ domains 12 8 
Final selection (presented in this thesis) 2 1 
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Figure 27: The three first PDZ domains of Scrib1 share a greater homology than PDZ4 domain. Multiple alignment between 
Scrib1 PDZ domains using MAFFT (Multiple Alignment using Fast Fourier Transformation) Branch lengths are proportional to the genet-
ic distance between the given sequences. Aligned sequences (Uniprot): SCRIB_MOUSE, Q80U72. 

 

 

 
Figure 28: Function (a) and localization (b) of Scrib1

PDZ3
 and Scrib1

PDZ4
 interacting proteins. Highlighted are the proteins choosen 

for this project.  

 

III.4 Scrib1
PDZ3

 and Scrib1
PDZ4

 protein interactions implicated in NTD, PCP, ASD and ASD-RD 

PDZ domains are known to specifically recognize short Cter peptide motifs (the so called canonical PDZ-

binding domains or PDZbd), internal sequences that structurally mimic a terminus or other PDZ domains. 

This first criteria allowed us to narrow down our 98 (Table 9) and 56 (Table 10) candidate lists to 12 and 8 

Scrib1
PDZ3

 and Scrib1
PDZ4

 interacting proteins containing PDZbd or PDZ domains, respectively - Table 12. 

Interestingly, 2 out of 12 Scrib1
PDZ3

 domain interaction candidate proteins contain PDZ domains (Apba1 and 

Psap), whereas Scrib1
PDZ4

 candidates display no PDZ domain. All Scrib1
PDZ3

 screen candidates owning a 

Cter PDZbd are classified as canonical or class I (X-S/T-X-L/V, being (x) any amino acid), including Scrib1 

known partner Ctnnb1 (Navarro et al., 2005; Nguyen et al 2005; Qin et al., 2005; Phillips et al., 2007; Yoshi-

hara et al., 2011). Conversely, even if the majority of Scrib1
PDZ4

 screen candidates exhibit a class I PDZbd 
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Cter, 2 out of 8 (Caspr5a and Ppp2ca) are class II PDZbd (X-ϕ-X-ϕ, being (ϕ) any hydrophobic aminoacid). 

Such results support the initial argument in which Scrib1 PDZ4 domain shares the lesser phylogenetic ho-

mology with the remaining Scrib1 PDZ domains (Fig. 27). In addition, the majority of Scrib1
PDZ3 

(8/10) and 

Scrib1
PDZ4 

(7/8) interaction candidates own a potential phosphoryable residue in their Cter PDZbd -2 position 

(underlined in Table 12). PDZ-peptide interactions are known to be modulated by phosphorylation events 

(reviewed by Sheng & Sala, 2001), suggesting that Scrib1 might serve a post-translation multi-complex plat-

form, capable of assembling kinases and/or phosphatases close to their substrates at a given time and 

space, suitable for reversible PDZ-dependent interactions. Finally, as the lack of Scrib1 PDZ3 and PDZ4 

domains was previously implicated in NTD (Chapter I 3.3) as well as in ASD (Chapter I 5.4.2), we decided 

to narrow our final selection to proteins implicated in NTD (DeGreene et al, 2009; Copp & DeGreene, 2010), 

PCP (Gerdes et al, 2007; Simons & Mlodzik, 2008; Harris & Juriloff, 2010), ASD (NIMH Project) and/or ASD-

related diseases (ASD-RD), such as attention deficit hyperactivity disorder and attention (ADHD), bipolar 

disorder, Down syndrome, epilepsy, Fragile X, mental retardation, Rett syndrome and schizophrenia (Geno-

tator) (Table 12; light and dark grey). Remarkably, the same percentage of Scrib1
PDZ3

 (3 out of 12; Cacng4, 

GluN2A and Umhk1) and Scrib1
PDZ4

 (2 out of 8; Caspr5a and Ppp2ca) interacting proteins are involved in 

NTD, PCP, ASD and ASD-RD. The chosen candidates (Table 12; dark grey) will be presented in the follow-

ing Chapters – the Scrib1
PDZ3

 interacting proteins containing class I PDZbd glutamate ionotropic receptor 

subunits GluN2 (Chapter IV) and AMPA auxiliary protein Cacng4 (Chapter VI), as well as the Scrib1
PDZ4

 

interacting protein containing class II PDZbd, the catalytic subunit of protein phosphatase Ppp2ca (Chapter 

V).  

 

TABLE 12: Final Scrib1
PDZ3 

and Scrib1
PDZ4

 domain interaction candidates:  
protein name, Cter, PDZbd class or PDZ domain and known PDZ interactions.  

 

P
D

Z
3
 

Protein name Cter PDZbd/domain Known PDZ interactions 

Apba1 Amyloid beta precursor pro., family A, member 1  PDZ domain  SAP-97-CASK-Veli-Kir2 

Atp2b1 ATPase, Ca++ transporting, plasma membrane 1  PLHSLETSL Class I   Anks4b, Slc4a7, SAP102 

Atp1b1 ATPase, Na+/K+ transporting, beta 1 polypeptide RFDVKIEIKS Class I  MAGI1 

Cnrip1 CB1 cannabinoid receptor-interacting protein 1 MWVNKESFL Class I - 

Cacng4 Calcium channel, voltage-dep., gamma subunit 4  SMLNRRTTPV Class  I  MAGI1 

Ctnnb1 Catenin (cadherin associated protein), beta 1  NQLAWFDTDL Class I  PSD-95, Scrib 

GluN2A Glut.receptor, ionotropic, NMDA2A (epsilon 1)  KKMPSIESDV Class I  PSD-95, SAP102, PKC… 

Itgb1bp1 Integrin beta 1 binding protein 1 FDSVLTSDKS Class I  Slc9a3r1/2 (internal PDZ) 

Lphn2 Latrophilin 2 EGQMQLVTSL Class I  Anks4b 

Psap Prosapsin   PDZ domain - 

Syf SYF2 hom., RNA splicing factor (S. cerevisiae)  KQNLERGTAV Class I  Prr7 

Uhmk1  U2AF homology motif (UHM) kinase 1  YKRGYLYQTLL Class I  Igsf9, MPDZ  

P
D

Z
4
 

     

Abr Active BCR-related gene  RNTLYFSTDV Class I  Arhgef16,Kcne3,PSD-95 

Atp2b3 ATPase, Ca2+ transp., plasma membrane 3 SPLHSMETSL Class I   Anks4b, Slc4a7, SAP102 

Arhgap44 Rho GTPase activating protein 44  SEEESESTAL Class I  Tshr 

Ccdc163 Coiled-coil domain containing 163 EGPTIFQSDL Class I - 

Caspr5a Contactin associated protein-like 5A  ATECKREYFI Class II   Erytrocyte p55, MAGI 

Pkp4 Plakophilin-4  QYPGSPDSWV Class I  MAGI1, Erbin 

Ppp2ca Protein phosphatase 2, catalytic sub. α isoform VTRRTPDYFL Class II - 

Scarb1 Scavenger receptor class B, member 1  KGTVLQEAKL Class I  Slc9a3r1, PDZK1 
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Chapter IV 

Scribble1/AP2 Complex Coordinates NMDA Receptor Endo-
cytic Recycling 

 

 

IV.1 Context and problematic 

 

N-methyl D-aspartate receptors (NMDARs) are major excitatory neurotransmitter receptors widely distributed 

in the brain, where they are believed to play a crucial role in synapse development, synaptic transmission 

and plasticity (Montgomery et al., 2005). NMDARs are tetramers made of two GluN1 subunits and two 

switchable GluN2 (A-D) and/or GluN3 (A or B) subunits. In the hippocampus, NMDAR are mainly composed 

by GluN2B subunits at early stages and a complex of GluN2A and GluN2B subunits at mature stages 

(Traynelis et al., 2010). In addition, NMDARs can also be differently composed accordingly to their specific 

location. GluN2A subunits are more stable and can be preferentially found within synapses, whereas GluN2B 

subunits are more mobile and are usually located at extra-synaptic sites (Rumbaugh & Vicini, 1999; Tovar & 

Westbrook, 1999; Prybylowski et al., 2002; Groc et al., 2006; Thomas et al., 2006; Zhao et al., 2008). The 

cellular trafficking of NMDARs from their synthesis in the cell body up to a distant specific synaptic mem-

brane is therefore critical in the modulation of synaptic changes underlying information acquisition and stor-

age in the brain. Traffic of glutamatergic receptors has been long related to PDZ proteins, especially 

MAGUKs like PSD-95 or SAP-102, the major synaptic scaffold protein anchoring NMDAR at glutamatergic 

synapses (reviewed by Groc & Choquet, 2006; Sheng & Hoogenraad, 2007; Elias & Nicoll, 2007). The main 

goal of this study was then to investigate if the PCP protein Scrib1, containing 4 PDZ domains and previously 

implicated in the cellular traffic of numerous proteins (Chapter I.3.2) was able to modulate NMDARs cellular 

traffic. 

 

 

IV.2 Results summary 

 

We first showed that there is a spatio-temporal co-localization of Scrib1 and NMDARs in the brain. Scrib1 

and NMDARs were found to be highly expressed in hippocampal pyramidal neurons, and particularly in den-

dritic spines. Next, Scrib1 was found to bind the Cter class I PDZbds of both GluN2A and GluN2B subunits in 

a PDZ-dependent manner. In particular, Scrib1 prevents GluN2A from lysosomal trafficking and degradation, 

increasing its recycling to the plasma membrane upon stimulation. Thus, alike other PDZ proteins (Losi et al., 

2003; Sans et al., 2003; Chung et al., 2004; Mauceri et al., 2007; Howard et al., 2010) Scrib1 is able to mod-

ulate GluN2A/GluN2B ratio at the synapse. Moreover, the PSDs of Scrib
crc/+

 mice, expressing 50% of a trun-

cated form of Scrib1 missing PDZ3 and PDZ4 domains, possess less surface GluN2A-, but not GluN2B-

containing NMDARs, pinpointing Scrib1’s role in fine-tuning excitatory synapses. Finally, Scrib1 was shown 
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to interact with the adaptor protein AP2 through the specific motif YxxxR. Taken together, our data proposes 

that the newly described Scrib1-AP2 complex signalling plays a crucial role in regulating NMDARs levels and 

composition at the synaptic membrane. 

 

 

IV.3 My contribution 

 

Through a Yeast Two-Hybrid screen, I found the glutamate ionotropic receptor subunits GluN2 as a potential 

interacting protein of Scrib1
PDZ3

 domain, as well as the adaptor protein AP-2 (Chapter III). I used a directed 

yeast two-hybrid assay with GluN2A, GluN2B, and Scrib1 contructs (Fig. 1 A) to confirm the first interaction. 
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Chapter V 

Scribble 1 scaffolds protein phosphatases 1 and 2A to regulate 
bidirectional plasticity underlying spatial memory 
 

 

V.1 Context and problematic 

 

Spatial memory formation is a complex process that transforms newly-acquired information into long-lasting 

memories by an encoding followed by a consolidation phase. At the cellular level, memory formation is be-

lieved to rely on a fine balance between two forms of synaptic plasticity: one referring to a persistent increase 

in the efficiency of synaptic transmission after inducing a short period of high-frequency synaptic stimulation 

(HFS) - long-term potentiation (LTP); and another concerning a decrease of synaptic strength following low-

frequency stimulation (LFS) - long-term depression (LTD) (Chapter I.5.3). At the molecular level, both events 

require the activation of NMDARs (Citri & Malenka, 2008; Collingridge et al., 2010). Nevertheless, LTP and 

LTD signalling pathways differ by entailing the preferential activation of kinases, such as CaMKII and PKA, or 

phosphatases, such as calcineurin and PP1/PP2A, respectively (Lüscher & Malenka, 2012). The appropriate 

activation of either signalling pathway is known to be orchestrated by scaffold proteins, able to couple gluta-

mate receptors to downstream signalling molecules (Sheng & Kim, 2011). The following study aims to exam-

ine the role of Scrib1, a PDZ-based scaffold protein located in the PSD of excitatory synapses, in bidirection-

al synaptic plasticity and spatial memory formation. 

 

 

V.2 Results summary 

 

We have previously showed that Scrib1 does play an interesting role in the morphology and function of glu-

tamatergic synapses (Moreau et al., 2010). Nonetheless, this study was conducted using heterozygote 

Scrib1
crc/+

 mice, in which Scrib1 levels are reduced by 50% in both excitatory and inhibitory neurons as well 

as in glial cells. As a result, we generated conditional Scrib1 knock-out mice (CaMK-Scrib1
-/-

), targeting the 

postnatal excitatory neurons of the hippocampus. First, we showed that Scrib1 loss not only affects the matu-

ration of hippocampal glutamatergic synapses, as it also impacts hippocampus-dependent long-term 

memory consolidation. CaMK-Scrib1
-/-

 mice displayed a reduced synaptic transmission and a compromised 

CA3-CA1-dependent bidirectional plasticity. We found as well that Scrib1 interacted directly with PP1/PP2A 

phosphatases, known to take part in the bidirectional plasticity signalling. Finally, we were able to re-

establish abnormal bidirectional plasticity and spatial memory due to loss of Scrib1 by exposing CaMK-

Scrib1
-/- 

mice to enriched environment (EE). Altogether, our data pinpoints Scrib1 as a key PSD-based scaf-

fold protein linking functional maturation of hippocampal synapses with their capacity of expressing bidirec-

tional plasticity necessary for memory formation. 
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V.3 My contribution 

 

Through a Yeast Two-Hybrid screen, I found the catalytic subunit of phosphatase PP2A (Ppp2ca) as a po-

tential interacting protein of Scrib1
PDZ4

 domain (Chapter III). I used a directed yeast two-hybrid assay with 

Ppp2ca and Scrib1 contructs (Fig. 6 A) to confirm such interaction. I also use COS-7 cells to follow Pp1c and 

Ppp2ca co-localization with Scrib1 (Fig. 6 C, D). Finally, I participated in the preparation of endogenous CoIP 

of Scrib1, Pp1 and Ppp2ca from hippocampal tissue from WT and CaMK-Scrib1
-/-

 mice (Fig. 6 H) as well as 

in the preparation of PSD fractions (Fig. 6 H, I). 
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SUMMARY 

Spatial memory formation is a complex process that depends on bidirectional synaptic plasticity in the hippo-

campus. Underlying molecular mechanisms require specific pathways involving complex interactions be-

tween receptors, enzymes and scaffold proteins at excitatory synapses. In the present study, we examined 

the role of Scribble1 (Scrib1), a member of the planar cell polarity pathway belonging to the LAP (LRR And 

PDZ domain) protein family that plays crucial roles in regulating hippocampus-dependent memory in both 

developing and adult central nervous system. Using a conditional genetic approach combined with morpho-

logical, molecular, and electrophysiological analyses, we showed that loss of Scrib1 in CA1 hippocampal 

pyramidal neurons led to impaired spatial memory consolidation associated with functionally immature syn-

apses and altered bidirectional plasticity. Molecularly, we revealed a direct interaction between Scrib1 and 

PP1/PP2A phosphatases that are central for synaptic plasticity. Finally, we showed that environmental en-

richment exposure rescues synaptic transmission and bidirectional plasticity, which restores memory for-

mation in CaMK-Scrib1
-/- 

mice. Our study identifies Scrib1 as a key scaffold protein linking functional matura-

tion of hippocampal synapses with their capacity to express bidirectional plasticity necessary for memory 

formation. 

 

 

HIGHLIGHTS 

 Maturation of hippocampal glutamatergic synapses depends on Scrib1 

 Scrib1 scaffolds PP1/PP2A phosphatases to ensure bidirectional plasticity expression 

 Scrib1 modulates spatial memory consolidation 

 Enriched environment rescues abnormal bidirectional plasticity and spatial memory due to loss of 

Scrib1  
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INTRODUCTION  

Spatial memory formation is a complex process that transforms newly acquired information into long-lasting 

memories by, first, an encoding and then, a consolidation phase. At the cellular level, memory formation 

relies on a fine balance between different forms of synaptic plasticity processes such as long-term potentia-

tion (LTP) and long-term depression (LTD), which are believed to represent the prototypic forms of synaptic 

plasticity at glutamatergic synapses in the hippocampus (Griffiths et al., 2008, Citri and Malenka, 2008; Col-

lingridge et al., 2010, Nabavi et al., 2014). In NMDA receptor (NMDAR)-dependent forms of LTP and LTD, 

LTP signaling pathway entails activation of kinases such as CaMKII and PKA, while phosphatases such as 

calcineurin and PP1/PP2A are activated during LTD (Lüscher and Malenka, 2012). Appropriate activation of 

either signaling pathways involves scaffold proteins that couple glutamate receptors to downstream signaling 

molecules (Sheng and Kim, 2011).  

Scribble1 (Scrib1) is a scaffold protein that belongs to the LAP (LRR And PDZ domain) protein family that 

combines both LRR (Leucine Rich Repeats) at their N-terminus and one to four PDZ (PSD-95/Dlg/ZO-1) 

domains in their structure (Bilder et al., 2000). Beside Scrib1, the LAP family also comprises Densin-180, 

Erbin and Lano (Apperson et al., 1996; Murdoch et al., 2003; Saito et al., 2001). Most members of this family 

are found in the postsynaptic density (PSD), a highly organised cytoskeletal structure found adjacent to the 

postsynaptic membrane of excitatory synapses. For instance, Densin-180 was among the first scaffold pro-

teins identified in the PSD and has been shown to bind directly to CaMKII, Shank, and NR2B subunit 

(Apperson et al., 1996). Through these protein-protein interactions, Densin-180 has been shown to regulate 

dendritic arborisation, spine morphology and LTD in hippocampal pyramidal neurons (Quitsch et al., 2005; 

Robison et al., 2005; Carlisle et al., 2011). Erbin has been shown to be enriched in cortical inhibitory neurons 

where it regulates synaptic transmission through the control of the Transmembrane AMPAR regulatory pro-

tein (TARP) γ-2 levels and AMPAR (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors) sur-

face expression (Tao et al., 2013). Recently, we unraveled a regulatory role for Scrib1 in dendritic arborisa-

tion, spinogenesis and synaptic function of hippocampal neurons by studying a spontaneous mutant for 

Scrib1 (Moreau et al., 2010). The truncation of Scrib1 after its second PDZ domain gives rise to the circletail 

mutant mouse (Scrib1
crc

) (Murdoch et al., 2003). Homozygote Scrib1
crc/crc

 mice die at birth, whereas hetero-

zygote scrib1
crc/+

 mice have a 50% reduction in the level of Scrib1 in the brain, and anatomical and functional 

deficits in the hippocampus. Unexpectedly, we showed that Scrib1
crc/+

 mice exhibit enhanced learning and 

memory abilities (Moreau et al., 2010). Recently, we suggested that the truncated form of Scrib1 in this ani-

mal is a dominant negative form of the protein (Moreau & Sans, unpublished). Thus, these enhanced per-

formances of scrib1
crc

 mutants were not the simple reflection of Scrib1 loss of function in the adult brain, but 

the integrated results of a mix of Scrib1 proteins (full length and truncated) and compensatory mechanisms. 

In this study, we developed conditional knock-out mice for Scrib1 (CaMK-Scrib1
-/-

) that target postnatal excit-

atory neurons of the hippocampus. Using these CaMK-Scrib1
-/- 

mice, we investigated the consequences of 

the loss of Scrib1 on spatial memory formation and morpho-functional changes in postmitotic CA1 pyramidal 

neurons. We found that absence of Scrib1 at excitatory hippocampal neurons led to impaired hippocampus-

dependent long-term memory. Functionally, synaptic transmission was reduced and bidirectional plasticity 
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was compromised at CA3-CA1 synapses in CaMK-Scrib1
-/-

 mutants. At the molecular level, we unveiled a 

direct interaction at the PSD between Scrib1 and PP1/PP2A phosphatases that are involved in bidirectional 

plasticity signalling. Interestingly, exposure to enriched environment (EE) re-established memory formation in 

CaMK-Scrib1
-/- 

mice by recovering normal synaptic function and plasticity. Taken together, this study reveals 

a scaffolding role for the polarity protein Scrib1 in the glutamatergic synaptic function underlying spatial 

memory formation in the hippocampus. 

 

 

RESULTS 

Postnatal Scrib1 deficiency causes no gross defect in hippocampus morphology  

To prevent the lethality and brain damage observed in Scrib1
crc/crc

 mice, we created conditional knock-out 

mice for scrib1 gene. Using the cre-loxP system, we restricted the excision of scrib1 to CaMKII-expressing 

neurons of the postnatal forebrain, specifically to the CA1 pyramidal cell layer in the hippocampus. The gen-

eration of conditional knock-out allele is detailed in Figure S1A (also see, Yamben et al., 2013). Scrib1
f/f
 

control and Scrib1
f/f,CaMKII-cre 

(CaMK-Scrib1
-/-

) mice developed normally and were able to breed. The CaMK-

Scrib1
-/-

 mice did not exhibit any gross abnormalities in the morphology of young (data not shown) and adult 

brains stained with cresyl violet, although a slight lateral ventricle enlargement was observed along the ros-

trocaudal axis (Figure 1A). Scrib1
f/f
 gene was detected by PCR at all ages (2, 5, and 10 weeks) and in all 

tissues (tail, cortex and hippocampus) of Scrib1
f/f
 control and CaMK-Scrib1

-/-
 mice (Figure S1C). In contrast, 

Cre-recombinase and Scrib1
Δf/f

 were detected, as early as 2 weeks, only in CaMK-Scrib1
-/-

 forebrain struc-

tures (Figure S1C). Both intact Scrib1
f/f
 and excised Scrib1

Δf/f
 were detected in CaMK-Scrib1

-/-
 hippocampus 

and cortex because excision of scrib1 takes place only in CaMKII positive neurons. The spatial pattern of 

Cre/loxP recombination in the CaMK-Scrib1
-/-

 mouse line was examined by crossing this line with an Ai6 

ZsGreen1 reporter mouse (Madisen et al., 2010) and brain sections from the progeny were stained with 

DAPI and NeuroTrace Fluorescent Nissl Stains. The Cre/loxP recombination was first detected at 2/3 weeks 

in the DG, CA3 and CA1 area of the hippocampus (data not shown). At 10 weeks of age, strong green fluo-

rescence certifying the recombination occurred in virtually all pyramidal cells in the hippocampus (Figure 

1B). As a result, Scrib1 protein levels decreased in the hippocampus of CaMK-Scrib1
-/-

 mice as early as 2 

weeks postnatally (n = 4, p < 0.05) (Figure S1C), and by 5 weeks old (5 w), Scrib1 was reduced by 70% 

compared to control littermate, and up to 80% decrease at 10 weeks (p < 0.05). Residual Scrib1 (~20%) 

detected in the hippocampus could be mainly due to the expression of Scrib1 in interneurons, glia and endo-

thelial cells in which Scrib1 down-regulation does not occur. In regions outside the forebrain, like the cerebel-

lum, where CaMKII-cre is not expressed, no decrease of Scrib1 was observed (n = 3, p > 0.10) (Figure 

S1D). We used immunohistochemistry staining with an antibody against Scrib1 (Montcouquiol et al., 2006) to 

localize Scrib1 in the hippocampus and confirmed the selective deletion of the scrib1 gene in the hippocam-

pus of the CaMK-Scrib1
-/- 

mice resulting in loss of the Scrib1 protein (Figure 1C). In summary, we generated 

a mouse model in which Scrib1 is specifically eliminated in the excitatory neurons of the hippocampus. 
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Normal short-term but impaired long-term spatial memory in CaMK-Scrib1
-/- 

mice  

In order to determine whether the loss of Scrib1 affects hippocampal-dependent spatial learning, we investi-

gated the behavioural phenotype of CaMK-Scrib1
-/- 

mice. We first investigated locomotor activity and emo-

tional state of CaMK-Scrib1
-/- 

mice to avoid biased interpretations of their performances during memory tests 

(Figure S2). Scrib1
f/f
 controls and CaMK-Scrib1

-/- 
mice displayed normal locomotor activities in photocell-

based chambers that were adequately correlated to circadian cycle (Scrib1
f/f
: n = 6 and CaMK-Scrib1

-/-
:
 
n = 9, 

genotype effect p = 0.64) (Figure S2A). Anxiety levels were measured in elevated plus maze (Dawson & 

Tricklebank 1995) in which time spent in open arms did not differ between Scrib1
f/f
 controls (53.2±9.2, n = 

13) and CaMK-Scrib1
-/- 

mice (52.9±8.9, n = 14, p = 0.97) (Figure S2B). Using spontaneous arm alternation 

measures in the Y-maze paradigm, spatial working memory was found to be normal in CaMK-Scrib1
-/- 

mice
 

(62.5±4.4%, n = 6) compared to Scrib1
f/f
 controls (62.4±2.3%, n = 7, p = 0.70) (Figure S2C). Altogether 

these data show that simple form of spatial recognition is preserved in CaMK-Scrib1
-/- 

mice. Then, we pro-

ceeded to evaluate hippocampus-dependent short-term and long-term spatial reference memory in CaMK-

Scrib1
-/- 

mice using Morris water maze test (Figure 2A). Acquisition of the spatial task during the training 

phase showed that both Scrib1
f/f
 and CaMK-Scrib1

-/- 
mice learned the task (n = 12 and n = 17 respectively, 

days effect p < 0.001). However, CaMK-Scrib1
-/- 

mice had slower spatial learning compared to Scrib1
f/f
 mice 

revealed by their significantly different latencies to find the hidden platform over the 8-day acquisition phase 

(genotype effect p < 0.01) (Figure 2B). Similar genotype effect was also found by analysing the distance 

travelled before reaching the platform (p = 0.01, Figure S3A). Scrib1
f/f
 controls improved their performances 

by decreasing the latency to find the platform in day 8 (D8), (14.6±2.1 sec) compared to D1 (44.0±4.5 sec, p 

< 0.0001). Similarly, CaMK-Scrib1
-/- 

mice exhibited spatial learning reflected in the reduction of latency to find 

the platform in D8 (20.8±2.8 sec) compared to D1 (49.9±2.9 sec, p < 0.0001). Importantly, performances of 

both groups were equivalent by the end of the acquisition phase (D7; p = 0.15 and D8; p = 0.41). The veloci-

ty of the animals in the water maze during the training phase was not significantly different (genotype effect p 

= 0.84) (Figure S3B). Both groups performed equally well in the visible platform task that requires the com-

prehension of the water-maze rule (find a refuge platform) as well as normal sensorimotor abilities (genotype 

effect p = 0.84) (Figure S3C). Short-term retrieval probe test was conducted on half of the trained animals at 

one hour (1h) after the last session of acquisition (D8). Scrib1
f/f
 and CaMK-Scrib1

-/- 
mice spent equivalent 

time in target quadrant (Scrib1
f/f
: 49.8±3.7%, n = 6, and CaMK-Scrib1

-/-
:
 
45.9±3.7%, n = 9, p = 0.27) (Figure 

2C) and the number of annulus crossings was similar (Scrib1
f/f
: 4±0.7 and CaMK-Scrib1

-/-
: 3.8±0.7, p = 0.84) 

(Figure 2D) reflecting precise localisation of the platform in both groups. However, when these same ani-

mals were tested with a probe test at 24h post-training, CaMK-Scrib1
-/- 

mice displayed impaired long-term 

memory. This was apparent in the time spent in the target quadrant, which was significantly decreased in 

CaMK-Scrib1
-/- 

mice
 
(40.2±5%, n = 8) compared to Scrib1

f/f
 control littermate (58.4±4.3%, n = 6, p < 0.05) 

(Figure 2E). A significant decrease in the number of annulus crossings was also observed for CaMK-Scrib1
-/-  

(2.1±0.2) compared to Scrib1
f/f
 controls (4.3±0.7, p < 0.01)

 
(Figure 2F). Absence of the platform during the 

probe test at 1h can initiate a new phase of memory extinction in which animals “learn” that the platform is no 

longer present. Thus, accelerated memory extinction in CaMK-Scrib1
-/- 

mice due to the probe test at 1h can 
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also be translated in impaired performances at 24h probe test. To exclude this possibility, we directly tested 

the second half of the trained animals at 24h post-training of acquisition. CaMK-Scrib1
-/- 

mice exhibited simi-

lar decrease in time spent in the target quadrant (44.8±7.4%, n = 8) compared to Scrib1
f/f
 controls 

(67.5±3.7%, n = 6, p < 0.05) (Figure S3D). A similar difference was observed for the number of platform 

crossings (CaMK-Scrib1
-/-

:
 
1.9±0.4 and Scrib1

f/f
: 5.8±0.6, p < 0.001) (Figure S3E). Taken together, these 

experiments reveal impairment in long-term, but not short-term, spatial memory in CaMK-Scrib1
-/- 

mice that is 

not due to altered sensorimotor abilities or anxiety levels.  

 

Increased dendritic arborisation and immature synapses in the stratum radiatum of CaMK-Scrib1
-/-

 

pyramidal neurons  

To analyse the cellular mechanisms underlying this spatial memory impairment, we examined whether the 

deletion of Scrib1 in pyramidal neurons alters their neuronal morphology and function. For that, we focused 

on CA1 region which has been firmly established to play an important role in the acquisition and retention of 

spatial reference memory (Martin and Clark, 2007). For morphological analysis, apical and basal dendritic 

arbours of Scrib1
f/f
 and CaMK-Scrib1

-/-
 CA1 pyramidal neurons stained using Golgi Cox stain were recon-

structed as shown in Figure 3A. Basal dendrites displayed equal complexity reflected by total intersections 

(Scrib1
f/f
: n = 9/3 mice and CaMK-Scrib1

-/-
: n = 12/3 mice, p = 0.84) and dendritic length (p = 0.90) in both 

genotypes (Figure 3B and 3C, respectively). In contrast, total apical dendritic intersections was increased by 

~37% (p < 0.001) and apical length by ~35% (p < 0.01) in CaMK-Scrib1
-/- 

CA1 neurons compared to Scrib1
f/f 

controls (Figure 3D and 3E, respectively). Distributions of length and intersections according to distance 

from soma revealed that the medial region of CA1 apical dendrites laying in the stratum radiatum was mostly 

affected in CaMK-Scrib1
-/-

mice. Electron microscopy was used to investigate whether spinogenesis in CA1 

stratum radiatum was also affected by the deletion of scrib1 gene (Figure 3F and 3H). The spine density 

expressed as the number of spines / µm² on apical dendrites of Scrib1
f/f 

CA1 pyramidal neurons was similar 

in Scrib1
f/f
 controls (0.542±0.018 spines/µm

2
) and CaMK-Scrib1

-/-
 neurons (0.614±0.025 spines/µm

2
, n = 

1892/4, p = 0.06). We also measured PSD size in stratum radiatum of CA1 neurons that displayed shifted 

cumulative probability curve toward lower PSD thickness (Scrib1
f/f
 controls: 41.950±0.904 nm and CaMK-

Scrib1
-/-

: 41.051±1.1428 nm, n = 1892/4, p = 0.001) and PSD length values (Scrib1
f/f
 controls: 216.142±3.026 

nm and CaMK-Scrib1
-/-

: 204.022±2.825 nm, n = 1892/4, p = 0.01) (Figure 3G and 3I, respectively). Specifi-

cally, PSDs of CaMK-Scrib1
-/-

 CA1 neurons showed an increased probability (38.9%) of being shorter than 

170 nm compared to those of Scrib1
f/f
 CA1 neurons (33.6%). These data indicate that although the spine 

density is similar in both genotypes, CaMK-Scrib1
-/-

 CA1 neurons display a larger portion of small immature 

PSDs in the stratum radiatum.  

 

Reduced number of active CA3-CA1 synapses in CaMK-Scrib1
-/-

 mice 

Small PSDs (less than 170 nm) have been previously described as deprived from AMPARs (Takumi et al., 

1999). This points towards an increased population of synapses that are non-functional during basal synaptic 

transmission in CaMK-Scrib1
-/- 

CA1 neurons. If this is the case, both basal synaptic transmission at CA3-CA1 
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synapses and the number of active synapses should be both reduced in CaMK-Scrib1
-/-

 CA1 neurons. To 

test this possibility, field excitatory postsynaptic potentials (fEPSPs) were measured to evaluate CA3-CA1 

basal glutamatergic transmission. Input-output relationship was found to be altered in CaMK-Scrib1
-/- 

slices in 

comparison to Scrib1
f/f
, with a maximal slope of fEPSPs ~65% smaller (n = 12/6 mice; p < 0.001) (Figure 

4A). This severe decrease in glutamatergic transmission could be due to distinct pre- and/or postsynaptic 

processes including a reduction in the probability of glutamate release (p) and/or in quantal size (q). To test 

whether a change in p could account for the reduction in synaptic transmission, we examined short-term 

facilitation at CA3-CA1 synapses at four different intervals of 25, 50, 100 and 200 ms. For all these intervals, 

paired pulse ratio (PPR) was found to be similar in Scrib1
f/f
 controls

 
and CaMK-Scrib1

-/- 
acute slices (n = 6, p 

> 0.35 for all four intervals) (Figure 4B). These data indicate that the probability of glutamate release (p) at 

CA3-CA1 synapses is not altered in CaMK-Scrib1
-/- 

mice. Thus, reduced input-output relation can be due to a 

decrease in quantal size (q) or quantal content (n.p). We hence measured AMPARs-mediated miniature 

excitatory postsynaptic currents (mEPSCs) using whole-cell patch clamp recordings in the presence of TTX 

(Figure 4C). Average amplitudes of mEPSCs in CA1 neurons was similar in Scrib1
f/f
 controls

 
and CaMK-

Scrib1
-/- 

mice indicating normal quantal size (13.38±0.76 and 11.88±0.42 pA, respectively, n = 5, p = 0.22) 

(Figure 4D). Importantly, mEPSC frequency was reduced by more than 70% in CaMK-Scrib1
-/- 

 (0.33±0.06 

Hz) compared to Scrib1
f/f 

littermate (0.97±0.23 Hz, n = 5, p < 0.05) (Figure 4E). Decrease in quantal content 

shown by mEPSCs frequency can be due to a change in the probability of release (p) and/or the number of 

active synapses (n). PPR analysis revealed (p) to be unaltered in CaMK-Scrib1
-/- 

synapses, indicating that 

the number of active synapses (n) must be decreased in CaMK-Scrib1
-/- 

CA1 neurons. Since the spine densi-

ty was similar in both genotypes, we conclude that decrease in (n) is due to an increase in the number of 

inactive or immature synapses in CaMK-Scrib1
-/- 

neurons. This is in agreement with our morphological anal-

ysis revealing an increased population of immature synapses in the stratum radiatum of CaMK-Scrib1
-/-  

CA1 

neurons (Figure 3F to 3I).  

 

Enhanced LTP and abolished LTD in CaMK-Scrib1
-/-

 synapses 

We next investigated whether the overall decrease in synaptic transmission due to the loss of Scrib1 impact-

ed long-term synaptic plasticity in the hippocampus. We examined NMDAR-dependent LTP at the Schaffer 

collaterals using a high frequency stimulation (HFS) consisting of 2 trains at 100 Hz. This yielded a signifi-

cant increase in LTP amplitudes at CaMK-Scrib1
-/- 

synapses (145±0.6%, n = 6/5 mice) compared to Scrib1
f/f 

synapses (121.1±0.7%, n = 5, p < 0.05) (Figure 5A). Application of D-AP5, a specific NMDAR antagonist, 

completely blocked LTP induction, indicating that it was NMDAR-dependent (107±1.37%, n = 6, p = 0.44) 

(data not shown). Since the threshold to induce LTP seemed to be affected in CaMK-Scrib1
-/- 

mice, LTD was 

also examined using low frequency stimulation (LFS) protocol of 15 minutes at 1 Hz. Synaptic strength was 

significantly depressed to 85.6±1.1% of initial baseline following LTD induction in Scrib1
f/f
 slices (n = 6/5 

mice, p < 0.05) (Figure 5B). This LTD was NMDAR-dependent as it was completely blocked by APV (102.5 

± 0.85 %, n = 4, p = 0.12) (data not shown). Surprisingly, rather than inducing LTD, LFS of Schaffer collat-

erals yielded significant LTP at CaMK-Scrib1
-/- 

CA3-CA1 synapses (112.2±1.5%; n = 7/6 mice, p = 0.01). 



 

142 

Also, a weaker stimulation protocol at 0.5 Hz did not induce any change in Scrib1
f/f
 or CaMK-Scrib1

-/- 
mice 

(103.4±0.6%, n = 5, p = 0.31 and 110±0.8%, n = 4, p = 0.13, respectively) (Figure 5C). Long-term depotenti-

ation, which is a form of LTD induced by LFS at potentiated synapses, was also impaired in CaMK-Scrib1
-/- 

compared to Scrib1
f/f
 synapses (Figure 5D). Indeed, in response to LFS, potentiated Scrib1

f/f
 synapses were 

depotentiated (101.6±7.5%, n = 6, p < 0.05) whereas CaMK-Scrib1
-/- 

synapses remained potentiated 

(128.9±8.7%, n = 6, p = 0.84). In conclusion, we found that LTP was enhanced whereas LTD and depoten-

tiation were both abolished at CaMK-Scrib1
-/-

 CA3-CA1 synapses. 

 

Scrib1 scaffolds PP1/PP2A at the PSD for appropriate LTD-signaling 

CaMK-Scrib1
-/- 

synapses not only did not express LTD but instead exhibited LTP following LTD-inducing 

protocol (LFS) as shown in Figure 5B. To identify potential interacting partners of Scrib1 that could mediate 

this inappropriate intracellular signaling, portions of Scrib1 were used as baits to screen for potential binding 

partners in a P10 brain library using yeast two-hybrid screening. We focused on PDZ3 and PDZ4 (aa 990-

1079 and aa 1086-1180, respectively of Q80U72-3), as they are lost in the circletail mutant that displays 

dramatic brain phenotypes (Moreau et al., 2010). One of the 53 clones identified as interacting with Scrib1 

encoded a portion of the catalytic subunit of protein phosphatase/PP2 (Ppp2ca). Because phosphatases are 

important for LTD expression (Mansuy & Shenolikar 2006), we further investigated into the interactions of 

Scrib1 with members of this phosphoprotein phosphatase family. We analysed the binding properties of 

Ppp2ca in a yeast two-hybrid assay and found that it was indeed interacting with PDZ4 (Figure 6A). In addi-

tion, independent yeast two-hybrid screens of a human mammary gland epithelial library using Scrib1 (Fig-

ure 6B), Erbin or LANO (Borg & Santoni unpublished) as baits, identified Pp1 alpha, beta and gamma as 

partners of all members of the LAP family. Interestingly, in a secondary screen we observed that the interac-

tion between LAP family members and Pp1 proteins was conserved during evolution. Indeed, Scribble from 

Drosophila or LET-413 (Erbin homologue) from C. elegans were able to interact with PP1 (Borg & Santoni 

unpublished). To assess whether Scrib1 and putative interacting phosphatases colocalize in heterologous 

cells, we expressed a green fluorescent protein (GFP)-tagged Scrib1 and a Myc-tagged Pp1γ or Ppp2ca. We 

observed in COS7 cells colocalization of both phosphatases with Scrib1 at the membrane and in intracellular 

structures (Figure 6C and 6D). Then, biochemical approaches were undertaken to ascertain the Pp1-Scrib1 

interaction. First, we produced recombinant GST-Pp1 fusion proteins and performed GST pull down assays. 

We expressed either full or truncated HA-tagged versions ([aa 1-724] NH2- and [aa 717-1630] carboxy-

terminal) of Scrib1 in COS7 cells and assayed their binding to recombinant GST-Pp1. Bound proteins were 

revealed with specific anti-HA antibodies. Scrib1 full length interacted with GST-Pp1, but neither with GST 

alone nor GST-C-terminal. We identified the NH2-terminal of Scrib1 region as responsible for the interaction 

with PP1 (Figure 6E). Second, we decided to map the regions within Pp1 proteins involved in this interac-

tion. PP1 was truncated or mutated within its catalytic domain at sites shown to decrease or abrogate its 

phosphatase activity (Y272A, Y272Delta:Y272D) or involved in the binding to I2 (M290K-C291A), an inhibitor 

of Pp1, or implicated in the binding with PNUTS and spinophilin (Y272Delta: Y272D), two Pp1 binding part-

ners (Watanabe et al., 2001). We also introduced a point mutation analogous to a mutation know to affect 



 

143 

the role of glc-7-10 (the yeast Pp1 homologue) in cell polarity processes (mutant F136L; Andrews and Stark, 

2000) (Figure 6F). Loss of binding was obvious with the mutants affecting the catalytic activity of Pp1 while a 

small carboxy-terminal truncation (N302Delta: N302D) had no effect on PP1 binding to Scrib1. The Y272A 

mutation that decreases the phosphatase activity of PP1 did not affect the interaction with hScrib1 (Figure 

6F). Based on these results, the Pp1-Scrib1 interaction was narrowed down to a PDZ-binding domain – PDZ 

domain interaction. We used modelling to assess important amino-acids involved in the interaction. In the 

Scrib1-PP2A complex model, the C-terminus of Ppp2ca is fixed in the hydrophobic pocket formed between 

helix B and strand B of Scrib1 PDZ4 domain (Figure 6G) as is commonly the case between PDZ domains 

and their targets (Lee and Zheng, 2010). Also, the residue D306 of PP2A C-terminal is favourably posi-

tioned to form a salt bridge with R1102 and/or K1124 residues of Scrib1. Hence, both hydrophobic interac-

tion and a salt bridge should allow the interaction between the two partners. The generated model with the 

NetPhos 2.0 server (Blom et al., 1999) showed the presence of two serines at the contact zone, one of 

which (S1100) can potentially be phosphorylable, although this remains to be confirmed. This serine, S1100, 

is ideally positioned to disrupt the interaction between Scrib1 and Ppp2ca, as the steric bulk of the added 

phosphate could prevent the formation of a salt bridge between D306 (PP2A) and R1102/K1124 (Scrib1). 

We further demonstrated that both endogenous PP1 and Ppp2ca interacted with Scrib1 in hippocampal ly-

sates by coimmunoprecipitation using an antibody against Scrib1 (Figure 6H). Taken together, these data 

suggest that Scrib1 acts as a scaffold protein for PP1 and PP2A at the synapse and led us to investigate 

their expression levels in the PSDs of CaMK-Scrib1
-/- 

synapses lacking Scrib1. Pp1 and Ppp2ca levels were 

found to be decreased by ~15 and 40%, respectively, at CaMK-Scrib1
-/-

 PSDs compared to Scrib1
f/f
 control 

synapses (n = 3, p < 0.05) (Figure 6I). On the other hand, levels of the kinase CaMKII were slightly in-

creased in CaMK-Scrib1
-/-

 mice compared to Scrib1
f/f
 controls (n = 4, p = 0.63) (Figure 6I). In other words, 

Scrib1 interacts directly with PP1 and PP2A phosphatases to ensure their proper localisation at the synapse.  

In the absence of Scrib1, reduced levels of PP1/PP2A entail a decrease in LTD signaling pathway following 

LFS, which would favor the competing pathway downstream of CaMKII resulting in LTP induction instead of 

LTD. If this is the case, we should be able to rescue this phenotype by saturating the competing LTP path-

way to enhance the probability of recruiting PP1/PP2A-dependent pathway during LTD. In agreement with 

this hypothesis, previous work in mutant mice has reported that high (saturated) levels of active CaMKII 

(phosphorylated T286) prevent LTP and favor LTD (Bejar et al., 2002). To saturate the LTP signaling path-

way, we induced three strong consecutive HFS at 2x100 Hz, and then delivered the LTD-inducing protocol 

(LFS) at 1 Hz for 15 minutes. Under these conditions, saturated CaMK-Scrib1
-/- 

CA3-CA1 synapses were 

able to express long-term depotentiation similarly to Scrib1
f/f 

synapses (81.2±0.4% and 82.5±0.6% respec-

tively, n = 5, p = 0.94) (Figure S4). Hence, by saturating the LTP signaling pathway, we were able to rescue 

long-term depotentiation in CaMK-Scrib1
-/- 

synapses.  

 

Exposure to enriched environment rescues synaptic function and memory consolidation in CaMK-

Scrib1
-/-

 mice 

Finally, we aimed at achieving a more physiological rescue of LTD and spatial memory using enriched envi 
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ronment (EE) exposure (Figure 7A). Indeed, EE has been documented to increase synaptic transmission, 

enhance synaptic plasticity and improve spatial memory (Chancey et al., 2013; Foster and Dumas, 2001; 

van Praag et al., 2000). Importantly, EE exposure restored basal glutamatergic transmission illustrated by 

normal input-output relationship in EE CaMK-Scrib1
-/-

 mice compared to EE Scrib1
f/f
 mice (n = 5 and n = 6 

respectively, p = 0.51) (Figure 7B). Following EE exposure we were also able to induce LTD using LFS in 

EE CaMK-Scrib1
-/-  

CA3-CA1 synapses (90.4±3%, n = 7/6 mice, p < 0.05) that was not different from LTD at 

EE Scrib1
f/f
 synapses (93.5±5.8%, n = 7/6 mice, p = 0.60) (Figure 7C). This correlated with a cognitive res-

cue of spatial learning in Morris water maze revealed by equivalent latencies to find the hidden platform ob-

served in EE Scrib1
f/f
 and EE CaMK-Scrib1

-/- 
mice (n = 15, genotype effect p = 0.08) (Figure S5A and 7D). 

Both genotypes improved their performances by decreasing the latency to find the platform (Day effect p < 

0.001) and similar results were found by analysing the distance travelled to reach the platform (genotype 

effect, p = 0.15, Day effect p < 0.0001, Figure S5B). As expected, at short-term (1h) probe-test, no differ-

ence was observed in the time spent in the target zone (p = 0.25) (Figure S5C) and the number of platform 

crossings (p = 0.76) (Figure S5D) between EE Scrib1
f/f
 mice (41.3±2.8% and 2.7±0.25, respectively) and EE 

CaMK-Scrib1
-/-

 mice (46.6±3.5% and 2.8±0.35, respectively). More strikingly, long-term memory impairment 

observed at 24-hour probe-test was recovered in EE CaMK-Scrib1
-/-

 mice. Indeed, similar time spent in tar-

get zone was found in both genotypes (EE Scrib1
f/f
: 45.1±3.8% and EE CaMK-Scrib1

-/-
: 45.9±4.5% p = 0.90) 

(Figure 7E) as well as equal number of platform crossings (EE Scrib1
f/f
: 3.7±0.5 and EE CaMK-Scrib1

-/-
: 

3.4±0.45, p = 0.63) (Figure 7F). In summary, exposure to EE restores synaptic transmission as well as LTD 

expression leading to a rescue in spatial learning and memory formation in CaMK-Scrib1
-/-

 mice.   

 

 

DISCUSSION 

Elucidating the identity and role of proteins involved in synaptic plasticity is fundamental for understanding 

the neurobiology of memory formation and memory impairment. In this study, we were able to identify some 

of the cellular mechanisms at excitatory hippocampal neurons by which Scrib1 regulates hippocampus-

dependent memory, using new conditional knock-out mice. According to our data, Scrib1 is required for func-

tional and morphological synaptic maturation of CA1 pyramidal neurons. Molecularly, Scrib1 scaffolds 

PP1/PP2A phosphatases at the PSD of these synapses to ensure proper bidirectional plasticity signaling. 

Importantly, by rescuing glutamatergic synaptic function and plasticity using EE exposure, we were able to 

restore the capacity of normal spatial memory formation and functionally compensate Scrib1 absence. In 

summary, this study identifies Scrib1 as one of the fundamental scaffold proteins that enable the hippocam-

pal glutamatergic synapse to mature and to express bidirectional plasticity required for memory formation 

process.  

 

Functional maturation of hippocampal synapses depends on Scrib1 

Apical dendritic arborisation in the stratum radiatum region was increased in CaMK-Scrib1
-/- 

CA1 region, a 

result consistent with previous data showing significant perturbation of the cytoskeleton in other tissues from 
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circletail (Scrib
crc

) mutants (Montcouquiol et al., 2003; Moreau et al., 2010; Yates et al., 2013). Also, basal 

glutamatergic synaptic transmission was dramatically reduced at CA3-CA1 synapses, despite normal AM-

PARs-mediated miniature currents in CaMK-Scrib1
-/-

 CA1 neurons. These data are consistent with our recent 

findings reporting no impact of acute knock-down of Scrib1 on AMPARs EPSCs in transfected CA1 neurons 

(Piguel et al., 2014). Rather, the decrease in basal synaptic transmission observed in CaMK-Scrib1
-/-

 CA1 

synapses was due to a significant increase in the number of immature synapses that do not participate in 

basal synaptic transmission (Isaac et al., 1995; Liao et al., 1995). Interestingly, we recently revealed that 

Scrib1 is involved in the NMDAR-subunit switch that is associated with synapse maturation (Piguel et al., 

2014, Yashiro & Philpot, 2008). We hence suggest that Scrib1 is necessary for appropriate connectivity and 

morpho-functional maturation of glutamatergic synapses through a mechanism that involves both cytoskele-

ton remodelling and an NMDAR-subunit switch (Yao et al., 2006). Similarly, the scaffold protein PSD-95, 

whose mutation in mice leads to a deficit in the NMDAR-subunit switch, has been reported to convert imma-

ture silent synapses into functional ones (Beique et al., 2006, Sanz-Clemente et al., 2013, Stein et al., 2003). 

Finally, new silent synapses formed following synaptic inactivity in CA1 neurons have been shown to be 

recruited during LTP induction leading to enhanced potentiation (Arendt et al., 2013). We can hypothesize 

then that the observed enhanced LTP at CaMK-Scrib1
-/-

 CA3-CA1 synapses is due to the increased imma-

ture synapses population that is potentially recruited during LTP induction. These results, together with our 

previous studies, highlight the importance of a regulation of Scrib1 levels, not only during development, for 

dendritic arborisation, but also in mature neurons, for functional synapses.  

 

Scrib1-dependent bidirectional plasticity at hippocampal synapses  

In our study, loss of Scrib1 not only abolished LTD expression, but it generated significant LTP following 

LTD-inducing protocol and enhanced LTP at CA3-CA1 synapses. Our search for interacting partners of 

Scrib1 that could mediate such a phenotype in the absence of Scrib1 led to the identification of PP1/PP2A 

phosphatases. We notably show that Scrib1 directly interacts with PP1 and PP2A, and, also, that in its ab-

sence, PP1 and PP2A levels are strongly reduced at the synapse. This original interaction in mammalian 

neurons is in agreement with previous work demonstrating a direct interaction between hScrib and PP1 in 

heterologous cells (Nagasaka et al., 2013). PP1/PP2A has been reported to be necessary for both LTD and 

long-term depotentiation expression at CA3-CA1 synapses in mice, and partial inhibition of PP1 alters bidi-

rectional plasticity by inducing a shift that favours potentiation in the hippocampus (Jouvenceau et al., 2003, 

2006). Interestingly, altered bidirectional plasticity similar to the one observed in CaMK-Scrib1
-/-

 mice was 

obtained in Neurogranin knock-out mice (Krucker et al., 2002). Neurogranin regulates the equilibrium be-

tween kinases and phosphatases activities by binding available Ca
2+

/calmodulin at basal levels. In normal 

conditions, a modest increase of Ca
2+ 

activates preferentially calcineurin instead of CaMKII and, consequent-

ly, PP1/PP2A initiates a series of substrate-specific dephosphorylations and triggers LTD. If PP1/PP2A lev-

els are reduced at the synapse, as it is the case in our mutants, the resulting dephosphorylation process is 

slowed down compared to the competing phosphorylation process by CaMKII (Xia & Storm 2005, Lisman & 

Zhabotinsky 2001). This leads to the activation of LTP-signaling pathway instead of LTD at modest Ca
2+ 

lev-



 

146 

els, as observed in CaMK-Scrib1
-/-

 mice. Consistent with this model, we were able to rescue long-term depo-

tentiation expression at CaMK-Scrib1
-/-

 CA3-CA1 synapses by in vitro saturation of LTP signaling pathway. 

Altogether, these results are consistent with a model where Scrib1 ensures bidirectional plasticity at hippo-

campal synapses by localising PP1/PP2A phosphatases in the immediate vicinity of NMDARs. This hypothe-

sis is supported by recent data from our group demonstrating a direct interaction between Scrib1 and 

NMDAR-subunits in hippocampal neurons (Piguel et al., 2014). Based on these findings, we suggest that 

Scrib1 acts as a scaffold protein, bridging the calcium influx of NMDARs to specific downstream signaling 

phosphatases necessary for synaptic plasticity.Other proteins with multiple PDZ domain, such as the scaffold 

protein PSD-95, have also been reported to regulate bidirectional plasticity in a way that favours LTP induc-

tion (Migaud et al., 1998), while, another LAP protein, the scaffold protein Densin-180, binds directly to 

CaMKII to contribute to its basal targeting to spines and regulates LTD at CA3-CA1 synapses (Robison et 

al., 2005; Hell, 2014; Carlisle et al., 2011).  

 

Spatial memory consolidation requires Scrib1 at hippocampal excitatory neurons  

Loss of Scrib1 in excitatory hippocampal neurons led to an impairment in long-term, but not short-term, spa-

tial memory. These results argue for an important role of Scrib1 in regulating hippocampus-dependent spatial 

memory consolidation. Learning and memory processes have been reported to be regulated by PP1 and 

PP2A phosphatases (Mansuy and Shenolikar, 2006). PP2A has been shown to be necessary specifically in 

the consolidation phase starting 50 minutes after the learning session in chicken (Bennett et al., 2001). Also, 

pharmacological administration of an inhibitor of PP1/PP2A results in impaired LTD as well as spatial refer-

ence memory in rodents (He et al., 2001). Moreover, inhibiting LTD expression by blocking AMPARs endocy-

tosis results in impairment in early consolidation (> 1h post-training) of spatial reference memory (Ge et al., 

2010). Finally, down-regulation of protein phosphatases as the one observed in CaMK-Scrib1
-/-

 mice is often 

associated with cognitive decline and dementia such as in Alzheimer’s disease (Tian et al., 2002). These 

observations suggest that deficits in spatial memory consolidation in CaMK-Scrib1
-/-

 mice involve LTD im-

pairment due to an alteration in Scrib1-PP1/PP2A interaction and their downstream targets. In favour of this 

hypothesis, rescue of LTD expression at CaMK-Scrib1
-/-

 CA3-CA1 synapses by EE exposure led to the re-

covery of normal spatial memory consolidation. Our results are consistent with the postulate that PSD pro-

teins mutations disrupting synapse development and function are associated with cognitive defects or mental 

disorders in humans (Durand et al., 2007; Bayés et al., 2011). Moreover, our findings among others highlight 

the importance of LAP proteins at the PSD in regulating signaling pathways underlying normal cognitive 

function. Indeed, knock-out of the LAP protein Densin-180 in mice leads to abnormal behaviours often con-

sidered as phenotypes of schizophrenia and autism spectrum mouse models (ADD REF.). Also, Scrib1 

spontaneous mutation in Scrib
crc

 mice leads to emotional and cognitive phenotype related to autism spec-

trum disorder (Moreau et al., 2010). In this study, we report specific alterations in spatial memory formation in 

Scrib1 conditional knock-out mice that might be considered as a mouse model for intellectual disabilities 

present in certain patients with autism (Seese et al., 2014).  
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Beneficiary effect of environmental enrichment during development 

In this study, we were able to overcome the absence of Scrib1 at hippocampal synapses using EE exposure, 

which yielded the rescue of synaptic basal transmission as well as LTD expression at CA3-CA1 synapses. 

EE has been documented to increase synaptic transmission, enhance synaptic plasticity and improve spatial 

memory (Chancey et al., 2013; Foster and Dumas, 2001; van Praag et al., 2000). In CaMK-Scrib1
-/-

 mice, EE 

exposure that rescued glutamatergic synaptic function also restored memory formation, suggesting a causal 

link between altered synaptic plasticity and memory impairment observed in the absence of Scrib1. Other 

studies have also reported reversed learning and memory impairments by EE exposure in different memory-

deficient animal models (Dahlqvist et al., 2004, Frick & Fernandez 2003, Need et al., 2003). EE rescue in 

CaMK-Scrib1
-/-

 mice is independent of Scrib1 expression, and likely involves compensatory phenomena to 

overcome synaptic dysfunction and memory impairment. EE exposure has been reported to modulate the 

expression of several genes involved in synaptic plasticity and signaling pathways in the hippocampus 

(Rampon et al., 2000). For instance, expression of the scaffold protein PSD-95 is increased following 2 

weeks of EE exposure. Since disruption of either Scrib1 or PSD-95 leads to similar alterations in synaptic 

function, a possible mechanism for the rescue by EE exposure in CaMK-Scrib1
-/-

 mice can be an up-

regulation of other proteins to compensate for the loss of Scrib1. In conclusion, our study demonstrates that 

EE exposure is a powerful tool sufficient to prevent and treat synaptic dysfunction associated with memory 

impairment caused by a genetic mutation. 

 

Conclusions  

In this study, we were able to unravel cellular mechanisms by which Scrib1 at excitatory hippocampal neu-

rons regulates hippocampus-dependent memory. We show that loss of Scrib1 leads to impaired spatial 

memory consolidation by generating immature glutamatergic synapses and abolished bidirectional plasticity 

at CA3-CA1 synapses. Early exposure to an enriched environment rescued spatial memory formation by 

restoring synaptic function and plasticity despite the genetic mutation of Scrib1. This work highlights the im-

portance of the LAP protein Scrib1 as a key scaffold protein that ensures normal synaptic maturation and 

synaptic plasticity required for hippocampus-dependent memory formation.  

 

EXPERIMENTAL PROCEDURES 

Yeast two-hybrid screening. The PDZ3 and PDZ4 portion of rat Scrib1 (aa 990-1070 and 1086-1180, respec-

tively) were subcloned into pGBTK7 vector (Clontech) in-frame with the DNA-binding domain of GAL4 and 

used as a bait for the screening as previously described (Sans et al., 2003). Yeast two-hybrid screening and 

assays were performed accordingly to the Matchmaker™ Gold Yeast Two-Hybrid System protocol (Clon-

tech). AH109 cells expressing Scrib1
PDZ3 

and
 
Scrib1

PDZ4
 were combined with Y187 cells expressing a P10 

mouse brain cDNA library (Yi Z et al., 2007). The mating mixture was plated on SD/Ade
-
/Trp

-
/Leu

-
/His

-
 

plates. From 1.5 x 10
3
 colonies obtained 5 days after transformation, 56 passed high stringency conditions. 

Library plasmids from those colonies were rescued, amplified by PCR and sequenced, including Ppp2ca. 

Interactions between Pp1c and Ppp2ca phosphatases and Scrib1 constructs transfected into the haploid 
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yeast strain AH109 were tested through mating of the two yeast strains. For additional yeast two-hybrid 

screens, baits were cloned in pBTM116 to express proteins fused to LexA-BD which carries Trp1. A human 

mammary gland epithelial library cloned in pACT2 (Clontech) which carries Leu2 as a selection marker, was 

screened with Scrib1, Erbin or LANO as baits. L40 Trp
+
Leu

+
 cotransformants were grown on plates with 

supplemented minimum medium that lacked tryptophan, leucine, histidine and contained 10 mM 3-

aminotriazole (3-AT) and then tested for the b-galactosidase activity by the filter method. 

 

COS-7 cell culture, transfection and immunocytochemistry. Cells were cultured in DMEM, supplemented with 

10% (v/v) fetal calf serum (Invitrogen), 2 mM L-glutamine, and penicillin/streptomycin (50 U/mL) and trans-

fected as previously described (Sans et al. 2005). hScrib1 GFP (green fluorescent protein) and HA-tagged 

PPp1c or Ppp2ca cDNA samples were generously provided by I. Macara and David Brautigan (University of 

Virginia, Charlottesville, VA, USA), respectively. 48h after transfection, cells were fixed with 4% PFA, washed 

and permeabilized with 0.25% Triton X-100. After blocking, cells were incubated with the following primary 

antibodies: anti-green fluorescent protein (GFP) (1/1000; JL-8, Clontech), anti-HA (1/1000; MMS-101P, Co-

vance). Following washout, cells were incubated with Alexa Fluor 488, 568 and phalloidin-A647 conjugated 

antibodies (Invitrogen). Images were obtained by the Zeiss AxioImager Z1 microscope.  

 

Pulldown. For GST pull down assays, either full or truncated HA-tagged versions (NH2- and carboxy-

terminal) of hScrib were expressed in COS7 cells and assayed for binding to recombinant GST-PP1 fusion 

proteins. Cells were washed twice with cold PBS and lysed in lysis buffer (50 mM HEPES [pH 7.5], 10% 

glycerol, 150 mM NaCl, 1% Triton X-100, 1.5 mM MgCl2, and 1 mM EGTA) supplemented with 1 mM phe-

nylmethylsulphonylfluoride [PMSF], 10 μg/ml aprotinin, and 10 μg/ml leupeptin. After preclearing, cellular 

lysates were incubated with the appropriate GST-tagged proteins bound to agarose beads for 2 hr. Protein 

complexes bound to beads were recovered and washed once with lysis buffer and twice with HNTG buffer 

(same as lysis buffer with 0.1% Triton X-100 final). Beads containing complexes were boiled in 1x sample 

buffer, separated on 7.5% SDS-PAGE and transferred on nitrocellulose for Western blot analysis with the 

appropriated antibody. GST pull down performed with wild type and different mutant PP1 were done as men-

tioned above using CaCo2 cell lysate. Anti-HA 3F10 monoclonal and anti-Scrib (C20) antibodies are from 

Roche Molecular Biochemicals and Santa Cruz Biotechnology respectively. The hScrib constructions are 

described in Audebert et al. (2004). PP1 mutations were done with the Quick Change Kit (Stratagene) ac-

cording to the manufacturer’s instructions.  

 

Interaction model. The PDZ domains are small domains whose structure is highly conserved. There are  

many structures in the PDB showing an interaction between a PDZ domain and the C-terminal peptide of a 

partner. In these known structures, the C-terminal of the target peptide comes to be fixed to a hydrophobic 

pocket. To build an interaction model between residues 1082 to 1179 of Scrib1 (PDZ4 domain) and 304 to 

309 of Ppp2ca, we used the known structure of the Scrib1 PDZ4 domain (PDB: 1UJU). We searched the 

structure of a PDZ domain in complex whose the protein sequence is most similar to Scrib1 PDZ4 domain, 
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and found the PDB 1MFG (Birrane et al., 2003). We aligned the two PDZ domain structures one on the oth-

er, and residues 304 to 309 of the peptide Ppp2ca on the peptide of the PDB 1MFG. The C-terminal residues 

of Ppp2ca are thus placed in the hydrophobic pocket of Scrib1 PDZ4 domain. This new PDB file was used as 

the basis for this interaction model. We used Coot (Emsley & Cowtan, 2004) to build the model and MolPro-

bity (Chen et al., 2010) to test its quality. The final model did not show clashes between PP2a peptide and 

the Scrib1 PDZ4 domain. I used PyMOL to prepare the figures (DeLano, 2002). 

 

Animals. Scrib1 conditional knock-out (cKOs) mice were generated by crossing Scrib1
f/f 

mice that carry a 

floxed Scribble1 gene and CaMKIIα
Cre/+

 mice that express Cre recombinase in principal neurons of the brain 

(Casanova et al., 2001). To generate the Scrib1 flox line a mouse BAC containing 11994 bp of Scrib1 ge-

nomic DNA was identified by screening a 129-based BAC library (CJ7 ES cell DNA, CITB, Research Genet-

ics). After generating an intermediate targeting allele (TA) with loxP sites upstream of Scrib1 exon 2 and 

downstream of exon 8, and frt sites that flank a positive selection neomycin (NEO) marker, mice containing 

the TA were mated to mice expressing Flpase, which removed the neo marker and generated the floxed (f/f) 

allele. In Figure S1, arrows indicate locations of PCR primers F (forward), R1 (reverse 1) and R2 (reverse 2). 

Scrib1 mutant mice were genotyped by PCR using the following primers: F-gcacactgggtatcatggcta; R1-

gcaatctccagagccttacaga; R2-cccttggaaacctacatcccaa. The amplified products were 437 bp for WT 

band (F+R1), 541 bp for flox band (F+Wt); 193 bp for cKO band (F+R1) used to identify if exons2–8 had 

been deleted (Figure xx). Cre genotyping was done using the following primers: F-

CGGCATGGTGCAAGTTGAATA; R-GCGATCGCTATTTTCCATGAG. The resultant band was 300 bp (Fig-

ure S1A). To profile CaMKIIa-Cre-directed gene expression throughout the mouse brain, we crossed homo-

zygote B6.Cg-Gt(ROSA)26Sortm6(CAG-ZsGreen1)Hze/J (thereafter called Ai6 mice) with CaMKIIα-Cre/+ 

mice, in order to obtain a compound Ai6f/+,CaMKIIα-Cre/+. Adult Scrib1
f/f
 and CaMK-Scrib1

-/-
 male mice 

were housed collectively in groups of five to eight in polypropylene cages for biochemical experiments and 

enriched environment behavioral experiment and in individual cages for others behavioral experiments. 

Room temperature (RT) was set at 23 ± 1°C, lights were on from 7:00 a.m. to 7:00 p.m. and food and water 

were available ad libitum. Male mice littermates were used in all experiments. This study was performed in 

full accordance with recommendations of the European Communities Council Directives (86/609/EEC), the 

French national Committee (87/848) and the requirements of the United Kingdom Animals (Scientific Proce-

dures) Act 1986, AWERB Newcastle University (ID: 374). 

 

Coimmunoprecipitation. For coimmunoprecipitation experiments, one month old Sprague Dawley rat hippo-

campal tissues were used. Soluble extracts of 0.5-1 ml were incubated with 25 µl of PPI or 10 µl of anti-

Scrib1 rabbit antibody (Montcouquiol et al., 2006). Samples were immobilized on Protein A/G agarose beads 

and beads were then pelleted by centrifugation and resuspended in 2X SDS sample buffer (Sans et al., 

2003, 2005). Samples were finally analyzed by SDS/PAGE and immunoblotted using 1/500 Scrib1anti-rabbit 

polyclonal antibody; 1/100 anti-PP2A (BD Biosciences), 1/400 anti-PP1 (Santa-cruz). 
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PSD preparation. Ten male mice of each genotype were used for the preparation of subcellular and PSD 

fractionation. Detailed procedure performed at 4C is presented in Moreau et al., 2010.  Western blots were 

performed essentially as described in Sans et al. (2000). Rabbit polyclonal antibody Scrib1 was diluted at 

1/500, mouse monoclonal CaMKII (C265, Sigma-Aldrich) at 1/5000, PP2A at 1/250 and PP1 at 1/400. Each 

experiment was repeated three times, and representative blots are shown.  

 

Histology & Immunohistochemistry. Mice were anesthetized using a Phenobarbital i.p injection (lethal dose) 

Physiological saline followed by paraformaldehyde 4% in 0.1M PBS at pH 7.4 was next perfused transcardi-

ally and fixed brains were removed and stored in paraformaldehyde 4% at 4°C for one week. Serial brain 

sections of 40 µm were obtained using a vibratome and stained with cresyl violet. Cre-recombinase expres-

sion in the hippocampus was detected using AI-6 transgenic mice. Fixed adult-brain sections of 40 µm were 

accordingly to the manufacturer’s instructions in the BrainStain Imaging kit (Life Technologies). Neuronal 

staining was obtained using NeuroTrace 530/615 red fluorescent Nissl stain (1/300; Life Technologies) and 

was coupled with DAPI (4',6-diamidino-2-phenylindole) a nucleic acid stain (1/300). For Scrib1 immunofluo-

rescence staining, non-specific sites were blocked with 3% normal goat serum (NGS) / 0.3% Triton X-100 in 

PBS for 2 hours at RT. Anti-Scrib1 rabbit polyclonal antibody (Montcouquiol et al., 2006, 1/300) was incubat-

ed with brain sections for 48 hours at 4°C. Following washing, secondary Alexa Fluor 488-coupled anti-rabbit 

(1/500; Life Technologies) and DAPI (1/10000) in 0.2% Triton X-100 / 5% NGS in PBS were applied for 2 

hours at RT. Labelled brain sections were mounted on slides using Prolong Gold Antifade (Life Technolo-

gies) and conserved at 4°C for analysis with fluorescence microscope (Zeiss). No fluorescence was found in 

control experiments in which primary antibody was omitted.  

 

Golgi Cox impregnation method. Adult mouse brains fixed with 2% paraformaldehyde and 2.5% glutaralde-

hyde in 0.1 M PBS, pH 7.4 were removed and stored in the same fixative for 2 h before slicing 100-µm thick 

coronal sections. Brain sections were first treated for 30 min with PB containing 1% osmium tetroxide then 

incubated overnight in 3.5% potassium dichromate, followed by 2% silver nitrate solution for 6 h. After grad-

ual dehydration in alcohol, sections were infiltrated with Entellan and mounted. For morphological analysis, 

neurons were reconstructed by a trained experimenter blind to the conditions and analyzed using camera 

lucida at a magnification of x100 (DMLS Microscope, Leica). Neurons within the CA1 region used for analy-

sis were chosen from slices that were between 1.58-1.82 anterior to Bregma. For each neuron, all branches 

of basal and apical dendritic trees were reconstructed. Dendritic length and dendritic complexity were meas-

ured by Sholl analysis with respect to growing distance from the cell body. Dendritic complexity was quanti-

fied by counting the intersection number between virtual concentric rings of 10 µm and dendritic branches.  

Electron microscopy analysis of CA1 hippocampal synapses. Adult male mice were terminally anesthetized 

by a brief inhalation of isoflurane (0.05% in air) and intramuscular injection of ketamine (100mg/kg) and 

xylazine (10 mg/kg), and then transcardially perfused with 4% PFA and 2% glutaraldehyde in 0.1 M PBS, pH 

7.2. The brains were dissected and stored in 4% PFA in PBS, at 4C, overnight. Vibratome sections of 100 

µm thick were cut, collected in PBS, postfixed in 1% osmium tetroxide, dehydrated in ascending scale of 
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ethanol, infiltrated, and flat embedded in Durcupan epoxy resin as previously described (Moreau et al., 

2010). CA1 hippocampi were trimmed and embedded in resin blocks for further semithin and ultrathin sec-

tioning with a Leica UC6 ultramicrotome. Ultrathin sections (70–90 nm) were counter-colored with uranyl 

acetate and lead citrate, and visualized with a Philips CM100 transmission electron microscope (FEI) at 100 

kV. The images were captured with an AMT XR40 4 megapixel side mounted CCD camera at a magnifica-

tion between 7,900 and 92,000x. Only identified synapses on dendritic spines of apical dendrites of pyrami-

dal cells in CA1 stratum radiatum were included in the analysis. No tangentially cut synapses were analyzed. 

To determine the spine density (number of spine/µm2), we utilized 14-17 images per animal (7,900x magnifi-

cation, single image area = 176.95 µm2) in which we identified the spines as in Fiala and Harris (Fiala and 

Harris, 1999), and, then, quantified them using the cell counter tool in ImageJ (http://rsb.info.nih.gov/ij) 

(Sfakianos et al., 2007). The average thickness of the PSDs was measured as described by Dosemeci et al. 

(2001). Results in Scrib1
f/f
 and mutant animals are presented as the mean ± SEM. The measurements were 

all performed by experimenters blind to the genotype. 

 

Electrophysiological recordings. Littermate male mice between postnatal day 29 and P34 were used for all 

electrophysiological recordings. To record activity of CA3-CA1 synapses, we electrically stimulated Schaffer 

collateral fibers and recorded CA1 field excitatory postsynaptic potentials (fEPSPs). Basal transmission was 

evaluated by increasing the intensity of stimulation from 0 to 10mV in 1 mV steps. Paired-pulse ratio was 

examined by delivering two stimulations at the same intensity separated by 25, 50, 100 or 200 ms. LTP pro-

tocols consisted of 2 or 3 trains at 100 Hz for 1 second and LTD protocol consisted of 900 pulses delivered 

every second at 1 Hz during 15 minutes. Averages of the last 10 min were compared between Scrib1
f/f
 and 

CaMK-Scrib1
-/- 

mice, unless mentioned otherwise. During extracellular field recordings, at least 20 minutes of 

stable fEPSP slopes (baseline) were recorded before starting any experiment. aCSF contained the following 

drugs: 10 µM strychnine, 100 µM picrotoxin, and 100 µM RS-MCPG (α-methyl-4-carboxyphenylglycine). D-

AP5 was used when indicated to test LTP dependence on NMDARs. For AMPAR-mediated miniature EP-

SCs experiments, CA1 cells were voltage clamped at -70 mV in the presence of TTX (0.5 µM). Amplitude 

and frequency of at least 200 continuous mEPSC events per cell were analyzed. Recorded data were ampli-

fied by Multiclamp 700B (Axon instruments) and recorded on the hard disk using pClamp9 (Axon instru-

ments). All drugs were purchased from Tocris Bioscience. All experiments were performed without prior 

knowledge of mice genotype. 

 

Behavioural testing. Behavioural experiments were conducted on adult Scrib1
f/f
 and CaMK-Scrib1

-/-
 male 

mice littermates. All animals had been weighed twice a week from 8 to 18 weeks of age. Mice were tested in 

activity cages for their locomotor activity (see Moreau et al, 2010), in the Plus maze test to measure anxiety-

like behavior as well as in the Y maze to tested spontaneous alternation. All behavioral tracking images were 

analyzed with Viewpoint video tracking. During the plus maze test, mice were placed in the center of the 

maze and allowed free access to all arms for 5 min (60 lux in the center). The percentage time spent in the 

open arms was computed. During the Y-maze test, mice were placed at the end of one of the arms of the 
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maze and allowed free access to three arms for 5 min (60 lux in the center). The sequence of arms entries, 

the total number of arm entries and the number of triads are recorded in order to calculate the percentage of 

alternation. Morris water maze testing took place in a circular pool (diameter, 150 cm) filled with water (19-

20°C) rendered opaque by a nontoxic white cosmetic adjuvant. Mice were trained to locate a submerged 

platform to escape from the water (14 cm diameter, 1.5 cm below the water surface) using spatial cues 

placed on the walls. Three daily trials with 5 minute inter-trial interval and a cutoff at 60 seconds were con-

ducted during training phase. Each subject was placed by the tail into the water, immediately facing the pe-

rimeter, at one of the cardinal compass points. Mice were released from a different starting point at each trial, 

and sequence of these starting points was randomized from day to day. One or 24 hours after the last ses-

sion of acquisition, a probe test for spatial discrimination was conducted. For that, the hidden platform was 

removed and each subject was placed into the water diagonally opposite to the target quadrant. Time spent 

in the target quadrant (% of total time, chance level = 25%) in addition to the number of the platform location 

crossings (where the platform was located during training) were measured over 60 seconds. Visible platform 

task was also performed in the same water maze using a 15-minute inter-trial interval and a total of 6 trials. 

 

Enriched environment. Environment enrichment started during prenatal period and continued postnatally for 

at least 4 weeks before the onset of experiments. Enriched cages consisted of large (46 x 37 x 21 cm) cages 

that contained at least 5 mice per cage and equipped with running wheels, small houses and several toys. 

Position of running wheels and small houses changed on a daily basis whereas toys were daily rearranged 

and some replaced with new ones of different shapes, textures and colours and to stimulate animals' explor-

atory behaviour. All mice received standard lab chow and water ad libitum. The experimenters were blind to 

genotype throughout electrophysiological and behavioural testing. 

 

Statistical analysis. Statistical analyses performed for each experiment are summarized in Table S1 that 

indicates chosen statistical test, n and p values, as well as degree of freedom and F/t values. Data were 

tested for normality using D'Agostino & Pearson omnibus normality test where appropriate and all graphs 

represent mean ± SEM. GraphPad prism software was used for statistical analysis and p < 0.05 was consid-

ered as statistically significant. 
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FIGURE LEGENDS 

Figure 1. Generation of Scrib1 conditional knock-out mouse: CaMK-Scrib1
-/-

. (A) Coronal slices stained 

with cresyl violet showing normal brain gross anatomy in Scrib1
f/f 

and CaMK-Scrib1
-/- 

mice (scale bar, 1mm). 

(B) Neurostain visualized with Cy3 (red) and DAPI staining showing expression in a 10-week-old 

Ai6f/+,CaMKIIα-Cre/+ doubletransgenic mouse in vibratome coronal sections (Ba) with a higher magnification 

of CA1 pyramidal layer (Bb). (scale bar, 40µm) (C) Scrib1 expression in dorsal hippocampus of adult Scrib1
f/f 

(Ca) and CaMK-Scrib1
-/- 

(Cb) mice. ** p < 0.01. (scale bar, 50µm) 

 

Figure 2. CaMK-Scrib1
-/-

 mice exhibit normal short-term but impaired long-term spatial memory. (A) 

Experimental timeline of hidden platform water maze test showing an 8-day training phase followed by two 

probe tests at 1 and 24 hours after the last training session. (B) Slower spatial learning in CaMK-Scrib1
-/- 

(red; n = 17) compared to Scrib1
f/f 

mice (black; n = 12) revealed by mean latency to reach the hidden plat-

form in Morris water maze over 8 days of training (p < 0.001). (C) Equivalent time spent searching in each 

quadrant during a 60-second probe trial performed without the platform at 1h (n = 6 and 9). (D) Same num-

ber of platform crossings and representative swim trace patterns during probe test at 1h for Scrib1
f/f 

(up) and 

CaMK-Scrib1
-/- 

(down); a circle marks target location. (E) Time spent searching in target quadrant during 

probe test at 24h was decreased in CaMK-Scrib1
-/- 

(red; n = 8)
 
compared to Scrib1

f/f 
mice (black; n = 6). (F) 

Fewer platform crossings were counted for CaMK-Scrib1
-/- 

mice indicating imprecise localisation of the hid-

den platform and representative swim trace patterns during probe test at 24h for Scrib1
f/f 

(up) and CaMK-

Scrib1
-/-  

(down); a circle marks target location. * p < 0.05, ** p < 0.01. 

 

Figure 3. Increased dendritic arborisation and immature synapses in the stratum radiatum of CaMK-

Scrib1
-/-

 pyramidal neurons. (A) Representative reconstructions of dendritic arborisation of Scrib1
f/f 

(black) 

and CaMK-Scrib1
-/- 

(red) CA1 pyramidal neurons. (B and C) Sholl analysis of basal dendrites revealed equal 

total number of intersections (B) and similar total length (C) in CA1 CaMK-Scrib1
-/- 

neurons (red; n = 12/3 

mice) and Scrib1
f/f 

neurons (black; n = 9/3 mice). (D and E) Sholl analysis of apical dendrites showed in-

creased total number of intersections (D) and total length (E) in particular in the median region of CA1 

CaMK-Scrib1
-/- 

neurons compared to Scrib1
f/f 

neurons. (F and H) Representative electron micrographs of 

hippocampal CA1 stratum radiatum region of Scrib
f/f
 (F) and CaMK-Scrib1

-/- 
(H) mice and a higher magnifica-

tion of a spinous synapse in each (Fi and Hi, respectively). (G and I) Shifted distribution of PSD thickness 

(G) and PSD length (I) towards smaller PSDs (less than 200 nm) in the stratum radiatum of CaMK-Scrib1
-/- 

(red) compared to controls (black) (n = 946/2 mice). ** p < 0.01, *** p < 0.001. 

 

Figure 4. CaMK-Scrib1
-/-

 mice display reduced number of active CA3-CA1 synapses. (A) Input-output 

relationship was reduced in CaMK-Scrib1
-/- 

slices (red) with respect to Scrib
f/f
 (black) (n = 12/6) (p < 0.0001). 

(B) Similar paired-pulse ratios at 25, 50, 100 or 200 ms in Scrib
f/f
 and CaMK-Scrib1

-/-
 slices (n = 6). (C) Rep-

resentative mEPSCs traces from Scrib
f/f
 (C) and CaMK-Scrib1

-/-
 (Ci) CA1 neurons. (D) Similar average am-
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plitudes of mEPSCs at Scrib1
f/f 

and CaMK-Scrib1
-/- 

CA3-CA1 synapses (n = 5). (E) Average frequency of 

mEPSCs was decreased in CaMK-Scrib1
-/- 

compared to Scrib1
f/f 

CA3-CA1 synapses (p < 0.05). 

 

Figure 5. Loss of Scrib1 Enhances LTP and abolishes LTD in CaMK-Scrib1
-/-

 synapses. (A) Enhanced 

LTP induced by HFS consisting of 2 trains at 100 Hz at CA3-CA1 CaMK-Scrib1
-/-

 synapses (red; n = 6/5) 

compared to Scrib1
f/f 

synapses (black; n = 5) (p < 0.01).  (B) Abolished LTD in CA3-CA1 CaMK-Scrib1
-/-

 syn-

apses (n = 6/5) that generated LTP following LFS at 1 Hz stimulation in contrast to Scrib1
f/f
 synapses (n = 

7/6) that induced LTD (p < 0.001). (C) A weaker stimulation protocol at 0.5 Hz did not induce any change in 

Scrib1
f/f
 (n = 5, p = 0.31) or CaMK-Scrib1

-/- 
mice (n = 4, p = 0.13). (D) Long-term depotentiation at CA3-CA1 

synapses, potentiated with HFS consisting of 3 trains at 100 Hz followed by LFS at 1 Hz delivery, was found 

to be impaired in CaMK-Scrib1
-/-

 n = 5) compared to Scrib1
f/f 

mice (n = 6) (p < 0.05). (E) Saturation of LTP 

pathway rescues long-term depotentiation in CaMK-Scrib1
-/-

 synapses. Three strong protocols of LTP con-

sisting of 3 trains at 100 Hz were delivered to saturate synapses and followed by LFS to induce long-term 

depotentiation, which was similar in Scrib1
f/
 and CaMK-Scrib1

-/-
 slices (n = 5). p= 0.94 

 

Figure 6. Scrib1 scaffolds PP1 and PP2 phosphatases. (A) Directed yeast two-hybrid assays with Scrib1 

and PP2A catalytic subunit (Ppp2ca) constructs. Schematic domain structures of Scrib1
PDZ

, Scrib1
PDZ3

 and 

Scrib1
PDZ4

 used as baits. Ppp2ca binds Scrib1
PDZ

 and Scrib1
PDZ4

, but not Scrib1
PDZ3

. An empty bait plasmid 

or a pGAD-Scrib1 contructs were used as negative control. (B) Directed yeast two-hybrid assays with Scrib1 

and PP1 constructs. Pp1a,b,c can bind Scrib1. (C, D) Scrib1
WT

 co-localizes with Pp1c (C) and Ppp2ca (D) 

catalytic subunits. COS-7 cells transiently co-transfected with hScrib1-GFP (green) and HA-tagged Pp1c 

(red) (C) or hScrib1-GFP (green) and Ppp2ca (red) (D). Phalloidin is shown in blue. Bottom white rectangles 

show in higher magnification individual or merged staining at the plasma membrane and cytoplasm level. 

Scale bars, 15µm. (E) Three N-terminal HA-tagged constructs that contain either the full length (Full), N-

terminal (N-term) or C-terminal (C-term) truncated form of Scrib were expressed in COS cells.  Lysates from 

the different transfected cell populations were pulled-down with GST alone (GST) or GST-PP1 (PP1) and 

submitted to SDS-PAGE and western blot analysis with an anti-HA antibody.  The input of each experiment 

was also loaded (TL). (F) Schematic representation of PP1: with the catalytic core domain spanning from 

amino-acid residue 42 to 269 and the binding domain from 270 to 330. The different point mutations (F136L, 

Y272A, M290K, C291A) and truncations (Y272Delta: Y272D, N302Delta: N302D) are mentioned with theirs 

corresponding positions. CaCo2 cell lysate was used for GSTpull-down experiments with wild type or mutant 

versions of PP1 indicated GST fusion protein or GST alone as a negative control. Resulting complexes were 

analyzed by anti-Scrib antibody western blot. (G) Model of the interaction of Scrib1-PDZ4 K1124 (red) and 

R1102 (orange) residues with the T304 to L309 residues from Ppp2ca C-term (green) and overall view of the 

model of the interaction (top right) between the alpha helix B (blue) and Beta strand B (red) of Scrib1-PDZ4 

(Gray) and Ppp2ca C-terminus (green). The residue S1110 (yellow) is adequately positioned to prevent in-

teraction between PP2a and Scrib1-PDZ4 when phosphorylated. (H) Endogenous CoIP of Scrib1, Pp1 and 



 

158 

Ppp2ca from the hippocampus. The 100,000 x g detergent supernatants were immunoprecipitated with 

Scrib1 antibodies. The precipitates show positive immunoblotting for Pp1 and Ppp2ca subunits. (I) Immunob-

lot analysis of PSD fractions from Scrib1f/f controls and CaMK-Scrib
-/-

 mice and quantitation of the various 

proteins as indicated on the left the blots normalized to WT on the right (100%; black histograms).  

 

Figure 7. Exposure to enriched environment rescues synaptic function and memory consolidation in 

CaMK-Scrib
-/-

 mice. (A) Example of enriched environment (EE) cage. (B) Input-output relationship was re-

stored in EE CaMK-Scrib1
-/- 

(n = 5) with respect to EE Scrib
f/f 

slices (n = 6). (C) Normal LTD expression fol-

lowing LFS at 1 Hz stimulation in both EE CaMK-Scrib1
-/-

 (red) and EE Scrib1
f/f
 CA3-CA1 synapses (black) 

(n = 7/6). (D) Spatial learning was normal in EE Scrib1
f/f 

and EE CaMK-Scrib1
-/- 

mice revealed by mean la-

tency to reach the hidden platform in Morris water maze over 9 days of training. (E) Equivalent time spent 

searching in each quadrant during long-term probe test performed at 24h after the last session of training (n 

= 15). (F) Same number of platform crossings and representative swim trace patterns during probe test at 

24h for EE Scrib1
f/f 

(up) and EE CaMK-Scrib1
-/- 

mice (down); a circle marks target location. 

 

Figure S1 (related to Figure 1): Generation of Scrib1 conditional knock-out mouse. (A) The BAC DNA 

construct used for generation of a conditional Scrib1 allele was made by recombining technique as described 

in Yamben et al., 2013. (B) DNA fragments were detected by PCR in hippocampus, cortex and tail fractions 

of 2, 5, and 9 weeks old Scrib1
f/f
 (a) and Scrib1

f/f,CaMKII-cre 
(b) mice. The excised Scrib1 fragment (Scrib1

Δf/f
) 

was only observed in structures expressing the Cre-recombinase of Scrib1
f/f,CaMKII-cre 

mice (hippocampus and 

cortex). Interleukin and β Actin were used as control genes. (C) Histograms show the relative amount of 

protein (in percent of 2W CaMK-Scrib1
-/-

). Levels were measured by densitometric scanning of Western 

blots. In the hippocampus of 5 and 10 weeks old mice, Scrib1 levels were reduced by ~80% (n =4). (D) No 

difference in Scrib1 levels was detected in the cerebellum of 2, 5 and 10 weeks old mice (n = 3). 

 

Figure S2: Normal locomotor activity, anxiety levels and spatial working memory in CaMK-Scrib1
-/-

 

mice. (A) Activity episodes in photocell-based chambers, recorded in bouts of 1 hour during 72 hours re-

vealed normal locomotor activity in control (black; n = 6)  and CaMK-Scrib1
-/-

 mice (red; n = 9). (B) Similar 

anxiety levels in control (n = 13) and CaMK-Scrib1
-/-

 mice (n = 14) demonstrated by equivalent time spent in 

anxiogenic open arms of the elevated plus-maze. (C) Equal spontaneous arm alternations for control mice (n 

= 7) and CaMK-Scrib1
-/- 

mice (n = 6) suggesting normal spatial working memory in the Y-maze. 

 

Figure S3 (related to Figure 2): CaMK-Scrib1
-/-

 mice exhibit normal short-term but impaired long-term 

spatial memory. (A) Distance travelled to reach the hidden platform in Morris water maze over 8 days of 

acquisition revealed slower spatial learning in CaMK-Scrib1
-/-

 (red; n = 17) compared to control (black; n = 

12). (B) Swim speed measures over the 8-day training phase were similar in control and CaMK-Scrib1
-/- 

mice. (C) Normal sensory-motor and visual functions in CaMK-Scrib1
-/- 

mice during the visible platform Morris 

water maze training over 6 trials. (D) Probe test at 24h (without probe test at 1h) showed a decrease in the 
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time spent searching in target quadrant in CaMK-Scrib1
-/-

 (n = 8)  compared to Scrib1
f/f
 mice (n = 6). (E) De-

creased number of platform crossings in CaMK-Scrib1
-/- 

and representative swim trace patterns during probe 

test at 24h for control (top) and CaMK-Scrib1
-/- 

(bottom); a small circle marks target location. * p < 0.05, ** p 

< 0.01, *** p < 0,001.  

 

Figure S4 (related to Figure 8): Exposure to enriched environment rescues spatial learning in CaMK-

Scrib1
-/- 

mice. (A) Experimental timeline of hidden platform water maze test showing a 9-day training phase 

followed by two probe tests at 1 and 24 hours after the last training session. (B) Distance travelled to reach 

the hidden platform in Morris water maze over 9 days of acquisition depicted normal spatial learning in EE 

CaMK-Scrib1
-/-

 (red) and EE control (black) (n = 15). (C) Probe test at 1h showed equivalent time spent 

searching in target quadrant in EE CaMK-Scrib1
-/-

 compared to EE control mice. (D) Similar number of plat-

form crossings in EE CaMK-Scrib1
-/- 

and representative swim trace patterns during probe test at 1h for EE 

control (top) and EE CaMK-Scrib1
-/-

 (bottom); a small circle marks target location.  

 

Table S1: Summary of statistical analysis performed for each experiment.  

Single n values represent the same value for each group (control and CaMK-Scrib1
-/-

). Different n values are 

represented in black for control and in red for CaMK-Scrib1
-/-

 group. 
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SUPPLEMENTARY TABLE 1 

 

P VALUE
DEGREE OF 

FREEDOM & F/t 

VALUE

FIGURE NUMBER WHICH TEST ? PAGE EXACT VALUE DEFINED VALUE VALUE

Figure S1C Mann Whitney test 4 4 batches p = 0.03

Figure S1C Mann Whitney test 4 4 batches p = 0.03

Figure S1C Mann Whitney test 4 4 batches p = 0.03

Figure S1D Mann Whitney test 5 3 batches p = 0,90

Figure S1D Mann Whitney test 5 3 batches p = 0,10

Figure S1D Mann Whitney test 5 3 batches p = 0,10

Figure S2A Two-way ANOVA 5 6 and 9 mice p = 0.64 F(1,299) = 0.23

Figure S2B Mann Whitney test 5 13 and 14 mice p = 0.97 U=90

Figure S2C Mann Whitney test 5 7 and 6 mice p = 0.70 U=18

Figure 2B Two-way ANOVA 5 12 and 17 mice p < 0.001 F(7,189) = 33.4

Figure 2B Two-way ANOVA 5 12 and 17 mice p =0.004 F(1,27) = 9.76

Figure  S3A Two-way ANOVA 5 12 and 17 mice p =0.01 F(1,30) = 6.9

Figure 2B paired t-test 5 12
mice

p < 0.0001 t(11) = 6.26

Figure  2B paired t-test 5 17
mice

p < 0.0001 t(16) = 7.92

Figure 2B Unpaired t-test 5 12 and 17 mice p = 0.15 t(27) = 1.48

Figure 2B Unpaired t-test 5 12 and 17 mice p = 0.41 t(27) = 0.83 

Figure S3B Two-way ANOVA 5 12 and 17 mice p = 0.84 F(1,28) = 0.04

Figure S3C Two-way ANOVA 6 12 and 17 mice p = 0.84 F(1,12) = 0.04

Figure 2C Unpaired t-test 6 6 and 9 mice p = 0.27 t(13) = 1.15 

Figure 2D Unpaired t-test 6 6 and 9 mice p = 0.84 t(13) = 0.20 

Figure 2E Unpaired t-test 6 6 and 8 mice p = 0.04 t(12) = 2.27

Figure 2F Unpaired t-test 6 6 and 8 mice p = 0.008 t(12) = 3.15

Figure S3D Unpaired t-test 6 6 and 8 mice p = 0.03 t(12) = 2.46

Figure S3E Unpaired t-test 6 6 and 8 mice p = 0.0002 t(12) = 5.17

Figure 3B Mann Whitney test 7 9 and 12 neurons from 3 mice p = 0.84 U=51

Figure 3C Mann Whitney test 7 9 and 12 neurons from 3 mice p = 0.90 U=52

Figure 3D Mann Whitney test 7 9 and 12 neurons from 3 mice p < 0.0005 U=3

Figure 3E Mann Whitney test 7 9 and 12 neurons from 3 mice p < 0.002 U=8

DNS Mann Whitney test 7 946 spines from 2 mice p = 0.06 U=383

Figure 3G Mann Whitney test 7 946 synapses from 2 mice p =0.001 ?

Figure 3I Mann Whitney test 7 946 synapses from 2 mice p =0.003 ?

Figure 4A Two-way ANOVA 7 12 slices from 6 mice p < 0.001 F(7,160)=6.16

Figure 4B Mann Whitney test 7 6 mice p > 0.35 U>7

Figure 4D Mann Whitney test 8 5 mice p = 0.22 U=6

Figure 4E Mann Whitney test 8 5 mice p = 0.02 U=1

Figure 5A Mann Whitney test 8 5 and 6 slices from 5 mice p = 0. 01 U=1

TEST USED n
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TEST USED n P VALUE
DEGREE OF 

FREEDOM & F/t 

FIGURE NUMBER WHICH TEST ? PAGE EXACT VALUE DEFINED VALUE VALUE

DNS Wilcoxon matched-pairs test 8 5 mice p =0.06

Figure 5B Wilcoxon matched-pairs test 8 6 and 7
slices from 5 and 7 

mice
p =0.001

DNS Wilcoxon matched-pairs test 8 4 mice p =0.12

Figure 5B Wilcoxon matched-pairs test 8 7 slices from 6 mice p =0.01

Figure 5C Wilcoxon matched-pairs test 8 5 mice p =0.31

Figure 5C Wilcoxon matched-pairs test 8 4 mice p =0.13

Figure 5D Wilcoxon matched-pairs test 9 6 mice p = 0.03

Figure 5D Wilcoxon matched-pairs test 9 6 mice p =0.84

Figure 5E Mann Whitney test 9 5 mice p = 0.94 U=12

Figure 8B Two-way ANOVA 10 6 and 5 slices from 6 mice p =0.51 F(1,72)=0.43

Figure 8C Wilcoxon matched-pairs test 10 7 slices from 6 mice p 0.03

Figure 8C Mann Whitney test 10 7 slices from 6 mice p =0.60 U=20

Figure 8D Two-way ANOVA 10 15 mice p = 0.08 F(1,28) = 3.26

Figure 8D Two-way ANOVA 10 15 mice p < 0.001 F(7,196) = 14.61

Figure  S4B Two-way ANOVA 10 15 mice p = 0.15 F(1,28) = 2.14

Figure  S4B Two-way ANOVA 10 15 mice p < 0.0001 F(7,196) = 16.95

Figure S4C Unpaired t-test 10 15 mice p = 0.25 t(28) = 1.16 

Figure S4D Unpaired t-test 10 15 mice p = 0.76 t(28) = 0.31 

Figure 8E Unpaired t-test 10 15 mice p = 0.90 t(28) = 0.13

Figure 8F Unpaired t-test 10 15 mice p = 0.63 t(28) = 0.48
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INTRODUCTION  

Autism spectrum disorders (ASD) cover a plethora of heterogeneous neurodevelopmental disorders diag-

nosed such as the classical idiopathic autism, Asperger’s syndrome or the Fragile X syndrome (Lord et al., 

2000; Pardo & Eberhart, 2007). ASD commonly feature sociability difficulties, language impairments, a con-

strained pattern of interests, and/or stereotypic and repetitive behaviours. About 80% of ASD cases are her-

itable, being typically developed before 2-3 years of age and mainly affecting the late phase of brain devel-

opment, when synaptic formation and maturation is taking place (Courchesne et al., 2007; Schmitz & Rezaie, 

2008). In the last years, a growing number of molecular determinants of ASD etiopathology has been identi-

fied, ranging from cell adhesion complexes like neuroligins and neurexins (Südhof, 2008), to intracellular 

scaffold proteins like PSD-95 (Cao et al., 2013), Shank3 (Durand et al., 2007) or the recently identified 

Scribble1 (Scrib1) (Pinto et al., 2010; Neale et al., 2012). Scrib1 is a multidomain protein composed by 16 

Nter leucine-rich repeats (LRRs) and 4 PDZ domains. Scrib1 belongs to the LAP (LRR and PDZ domains) 

family, whose members were previously implicated in the homeostasis of epithelial tissues and tumour 

growth (Saito et al., 2001; Legouis et al., 2003), cellular trafficking (Borg et al., 2000; Tao et al., 2013) as well 

as synaptic architecture and function (Apperson et al., 1996; Quitsch et al., 2005; Carlisle et al., 2011). 

Scrib1 has been described as an apico-basal determinant, playing a pivotal role in establishing and maintain-

ing planar cell polarity (PCP) from invertebrates to mammals (Bilder & Perrimon, 2000; Murdoch et al, 2003; 

Montcouquiol et al., 2003, 2006). In the past years, our group has shown that Scrib1 plays a critical role in 

brain development and function (Moreau et al., 2010; Hilal et al., in preparation). In dendritic spines, Scrib1 

can recruit PCP downstream signalling complexes (Moreau et al., 2010) and polarize NMDAR transport 

(Piguel et al., 2014). Herein, we assess for the first time the functional consequences of the newly identified 

Scrib1 de novo mutation c.1774C>T (Neale et al., 2012). Such missense mutation results into a Scrib1 

protein form bearing a serine instead of a proline (Scrib1
P592S

) nearby a putative actin-binding motif and two 

Arp2/3 binding sites. We used an overexpression approach in cultured cells to investigate the molecular 

mechanisms underlying Scrib1 role in synapse formation and maintenance. Our results show that Scrib1 

regulates dendritic arborization, spinogenesis, spine architecture and synaptic content via an actin-

dependent mechanism, whose disruption might underlie the ASD Scrib1
P592S

 mutant phenotype.  

 

EXPERIMENTAL PROCEDURES 

DNA constructs. hScrib1 GFP (green fluorescent protein) or HA-tagged cDNA samples were generously 

provided by I. Macara (University of Virginia, Charlottesville, VA, USA) and J. P. Borg (Centre de Recherche 

en Cancérologie de Marseille, Marseille, France), respectively. HA-Scrib1
crc

 was previously described (Mo-

reau et al., 2010). Mutated forms of GFP-Scrib1 were generated using the QuickChange site-directed muta-

genesis kit (Stratagen, La Jolla, CA, USA). Stgz-GFP, myc-tagged GluA1 and GluA2, and the red fluorescent 

protein (RFP)–actin constructs were kindly provided by S. Tomita & D. Bredt (Yale University School of Med-

icine, CT, USA), P. Osten (Cold Spring Harbor Laboratory, NY, USA), and C. Gauthier-Rouvière (Centre de 

Recherche en Biochimie Macromoléculaire, Centre National de la Recherche Scientifique Montpellier, 

France), respectively. 
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Antibodies. The following primary antibodies were used in this study: anti-Scrib1 (C20, Santa Cruz Biotech-

nology) and non-commercial anti-Scrib1 (Montcouquiol et al., 2006); anti-PSD-95 (MA 1-046, Thermo Fisch-

er Scientific); anti-GluA1 Nter (MAB2263, Millipore); anti-GluA2/3 extracellular (MAB397, Millipore); anti-

synapsin 1/2 (106103, Synaptic Systems); anti-Cacng2 (Stgz) Cter (07-577, Millipore); anti-green fluorescent 

protein (GFP) (JL-8, Clontech); anti-DsRed (Clontech); anti-myc mouse 9E11 (Covance); anti-HA (MMS-

101P, Covance); and anti-GST (Chemicon). Secondary antibodies used as follows: Alexa Fluor 488, 532, 

568 and 647 and Atto647N-conjugated phalloidin antibodies (Invitrogen); and HRP conjugated antibodies 

(GE Healthcare).  

 

Cell cultures. Immortalized MEF (Giannone et al., 2004), HEK-293 and COS-7 cells (Sans et al. 2005) were 

cultured in DMEM with 10% FBS. Mixed (Sans et al., 2003, 2005) or Banker cultures (Kaech & Banker, 

2006) of hippocampal neurons were obtained from E18.5 rat embryos. MEF and HEK-293 were transiently 

transfected with nucleofection (Lonza) or 1 μg/μL PEI (Polysciences), respectively. COS-7 and mixed or 

Banker hippocampal neurons were transfected using the calcium phosphate method (Sans et al. 2005) or 

following Effectene’s manufacture protocol (Qiagen) (Nair et al., 2013), respectively. MEF spreading essays 

were performed on 10 mg/ml fibronectin as previously described (Dubin-Thaler et al., 2004).  

 

Immunocytochemistry. For surface staining, mixed hippocampal neurons were briefly fixed with 0.5% PFA 

and incubated with native AMPAR or anti-myc primary antibodies, respectively. Excess antibodies were re-

moved by consecutively washing neurons with warmed neurobasal medium and PBS, and fixed for 5min with 

4% PFA in PBS. After blocking, neurons were incubated with secondary antibodies. For intracellular staining, 

cells were fixed for 15min with 4% PFA (MEF, COS-7 and mixed neurons) or PFA 4% sucrose in PBS 

(Banker neurons), washed and permeabilized with 0.25% Triton X-100. After blocking, cells were incubated 

with primary antibodies. Following washout and incubation with secondary antibodies, coverslips were con-

served at 4°C in PBS or mounted on ProLong® Gold Antifade Reagent.  

 

Low-resolution microcopy and quantitative analysis. Cells were observed on the 2D stage inverted motorized 

microscope (Nikon Eclipse TiE) equipped with a 100X/1.45 NA PL-APO objective and a perfect focus sys-

tem. Atto647 and GFP-expressing cells were detected using a mercury lamp (Nikon Xcite) and the following 

filter sets (SemROCK). Neuronal and spine morphology analysis as well as AMPAR surface number experi-

ments were done on 16-17 DIV neurons 4d after transfection as previously described (Moreau et al., 2010; 

Durand et al., 2012). For neuronal morphology, at least 9 neurons per condition were acquired by a Zeiss 

AxioImager Z1 equipped with an AxioCam MRm camera, using a 40 X magnification. For each neuron, the 

dendritic tree, including all branches, was reconstructed using Neurolucida software (MBF). The dendritic 

surface was quantified by counting the number of branches at each order from the cell body by Scholl analy-

sis and by counting the number of ring intersections using an overlay of concentric rings (30 μm between 

rings). Spine morphology images were acquired with a Leica DMR TCS SP2 AOBS confocal microscope 

(Leica, France), using the 60 X objective. Each image was a z-series projection taken at 0.02 μm deep inter-
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vals. Spine morphology measurements were done using Velocity analysis software (Perkin Elmer, MA, 

USA). Spine density was measured by averaging 6 different 10 µm length regions per neuron. Spine length 

was measured by taking the distance from the base of the neck to the spine head. Spine width corresponded 

to the maximal width of the spine head perpendicular to the length. Images of surface AMPAR and COS-7 

cells were acquired by the Zeiss AxioImager Z1 microscope using a 63 X oil-immersion on and analysed by 

MetaMorph 7.5 software (Universal Imaging). Surface AMPA receptors were quantified by counting the num-

ber of puncta and the average intensity from 5 different 20 µm length regions per neuron on isolated den-

drites. All conditions in individual experiments used identical acquisition parameters and value thresholds. 

Each experiment was performed on at least four independent neuronal preparations. Images from endoge-

nous Scrib1/Stgz/AMPAR complex were obtained by the Zeiss AxioImager Z1 microscope using a 40 X 

magnification. 

 

Dual colour dSTORM and dispersion analysis. dSTORM images of native PSD-95 and endogenous or GFP-

transfected Scrib1 were obtained from 18 DIV Banker hippocampal neurons. Imaging was performed in an 

extracellular solution containing reducing agents and oxygen scavengers at pH 7.2-7.5. Dual-colour sequen-

tial dSTORM images were acquired by an inverted Leica SR GSD 3D microscope equipped with a special 

160x objective and a sensitive EMCCD iXon ANDOR camera (Evolve, Photometric). As described (Nair et 

al., 2013), ensemble fluorescence of Alexa647 was first converted into dark state using a 642 nm laser at 50-

100 kW/cm
2
 intensity. Once the ensemble fluorescence converted into the desired density of single mole-

cules per image, the laser power was reduced to 15-30 kW/cm
2
 and streaming acquisition was performed at 

50-100 Hz for 20,000-40,000 frames. Laser powers were constantly adjusted to keep a specific optimal level 

of stochastically activated molecules. The same protocol is done for the fluorophore Alexa532 using a 532 

nm laser. The totality of the fluorescence was collected by an ensemble of double dichroic cubes (405+488 / 

405+532 / 405+642). The acquisition and localization sequences were driven by Metamorph software Mo-

lecular Devices). We used multicolor fluorescent micro-beads (Tetraspeck, Invitrogen) as fiduciary markers 

to register long-term acquisitions and correct for lateral and chromatic shifts. Each acquisition leads to sets of 

20,000-40,000 images (LASAF software, Leica), which were next analysed by the dedicated custom-made 

image analysis Palm-Tracer Metamorph software (Molecular Devices). A super-resolution time-lapse se-

quence (frame rate 5s, 500 images) was generated from which high density zones of localizations were iden-

tified using wavelet-based segmentation method (Racine at al., 2007; Izeddin et al., 2012; Kechkar et al., 

2013). For each spine, the distance between endogenous or GFP-labelled Scrib1 high density zones was 

quantified with respect to the centroid of PSD-95-A647 zones. The same analysis was done by comparing 

the distance of each molecule to its own centroid. Each experiment was performed on at least four inde-

pendent neuronal preparations. 

 

Yeast two-hybrid screen and assay. Scrib1
PDZ3

 (990-1079 aa, Q80U72-3) was subcloned into pGBTK7 vec-

tor (Clontech) in-frame with the DNA-binding domain of GAL4 and used as a bait for the screening as previ-

ously described (Sans et al., 2003). Yeast two-hybrid screening and assays were performed accordingly to 
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the Matchmaker™ Gold Yeast Two-Hybrid System protocol (Clontech). AH109 cells expressing Scrib1
PDZ3

 

were combined with Y187 cells expressing a P10 mouse brain cDNA library. The mating mixture was plated 

on SD/Ade
-
/Trp

-
/Leu

-
/His

-
 plates. From 3.5 x 10

3
 colonies obtained 5 days after transformation, 98 passed 

high stringency conditions. Library plasmids from those colonies were rescued, amplified by PCR and se-

quenced, including γ-4 TARP. Interactions between γ-4 TARP and each PDZ domain transfected into the 

haploid yeast strain AH109 were tested through mating of the two yeast strains. 

 

Immunoprecipitation and GST binding assays. For immunoprecipitation experiments, antibodies were immo-

bilized on Protein A/G agarose beads and incubated with either P35 rat brain extracts or with cleared trans-

fected HEK-293 cell extracts overnight at 4°C (Sans et al., 2003, 2005). Washed beads were eluted with 

sample buffer. Experiments were done more than 3 times. Samples were analyzed by SDS/PAGE and im-

munoblotting. For GST binding assays, Scrib1-GST fusion proteins containing PDZ1 (714-801), PDZ2 (848-

936), PDZ3 (990-1079), PDZ4 (1086-1180), PDZ1-2 (714-936), PDZ3-4 (990-1180), and PDZ1-4 (714-1180) 

were expressed in BL21-strain E. coli using pGEX-4T-1 and purified directly from bacterial extract on gluta-

thione–Sepharose-4B beads. A pull-down assay was performed with S-protein-tagged myc-GluA1 or Stgz-

GFP overexpressed in E. coli. 10 µg of immobilized GST or specific Scrib1-GST fusion proteins were incu-

bated with recombinant S-protein-tagged myc-GluA1, -GluA2 or Stgz-GFP for 2h at 4 °C. After extensive 

washes with binding buffer, the bead pellets were resuspended in SDS sample buffer. Samples were ana-

lysed by SDS/PAGE and immunoblotting.  

 

Data representation and statistical analysis. All data is represented as mean ± SEM. Statistical analyses 

were performed using Sigmaplot11 (Systat Software) by two way ANOVA (MEF and neuronal morphology), 

one way ANOVA followed by Dunnettt's Multiple Comparison Test (spine number and morphplogy; number 

of surface AMPARs) or unpaired Student t-test (dSTORM dispersion analysis). All data is referred in the text 

as mean ± SEM; * p <0.05, ** p <0.01, and *** p <0.001 were considered statistically significant. 

 

RESULTS 

ASD Scrib1 mutant loses Scrib1-mediated localization at the lamellipodia 

Previous work from our group implicating Scrib1 involvement in ASD suggested a link between this PCP 

protein and the actin dynamics regulation (Moreau et al., 2010). We started this study by establishing Scrib1 

presence in lamellipodia, cytoskeletal enriched actin projections on the mobile edge of cells (Pollard, 2003)   

(Fig. 1). GFP-coupled control (C3) or Scrib1
WT

 plasmids were transfected in mouse embryonic fibroblasts 

(MEF) cells, which were fixed 1h30 after a spreading assay (Fig. 1 A). Using phalloidin to stain F-actin, we 

obtained a ratio GFP/phalloidin starting from outside towards the interior of the cell, including the described 

leading lamellipodia dendritic bush of about 1 μm width (Svitkina & Borisy, 1999; Giannone et al., 2004) (Fig. 

1 B). Compared to the control, Scrib1
WT

 is particularly enriched within this region (C3, 0.54 ± 0.03, 13 meas-

urements from 8 different cells; Scrib1
WT

,
 
0.87 ± 0.11, 7/4; **, p <0.01, One Way ANOVA, Dunnett’s Multiple 

Comparison Test) (Fig. 1 C). Moreover, Scrib1
WT

 maximal expression is located within the leading edge (C3, 
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2.51 ± 0.24 μm; Scrib1
WT

,
 
1.73 ± 0.04 μm; *, p <0.05) (Fig. 1 D), pinpointing Scrib1 as a potential cytoskele-

ton modulator. Next, we sought to evaluate the recent discovered human ASD Scrib1
P592S

 mutant (Neale et 

al., 2012). Unlike Scrib1
WT

, the ASD Scrib1
P592S

 mutant does not accumulate in lamellipodia (Scrib1
P592S

,
 

0.56 ± 0.07, 7/4; ns/°, p >0.05 vs. C3 and p <0.05 vs. Scrib1
WT

, respectively) (Fig. 1 A-C). Instead, 

Scrib1
P592S

 is preferentially placed outside the lamellipodia (Scrib1
P592S

,
 
3.54 ± 0.28 μm; **/°°°, p <0.01 vs. C3 

and p <0.001 vs. Scrib1
WT

) (Fig. 1 D), suggesting that a disruption in actin dynamics might underlie 

Scrib1
P592S

-mediated ASD etiopathology. 

 

Scrib1 lamellipodial localization depends on its binding to the Arp2/3 complex and actin  

The leading edge of lamellipodia is characterized by a dense network of actin filaments (Svitkina & Borisy, 

1999). Lamellipodia initiation involves side branching and recruitment of actin nucleation and elongation fac-

tors like the Arp2/3 complex and VASP, respectively (Henson et al., 2002; Lai et al., 2008; Vinzenz et al., 

2012). We looked for potential actin-, Arp2/3- and/or VASP- binding motifs in Scrib1 sequence (Fig. 2). 

Through a in silico screen, we found one WH2-like motif (Scrib1
KK611,612

) (Fig. 2 A) and two putative Arp2/3 

binding sites (Scrib1
W203

 and Scrib1
W386

) (Fig. 2 B), previously found in actin monomer-binding proteins 

and/or regulators of the Arp2/3 complex, respectively. We mutated these putative actin- (Scrib1
KK611EE

) and 

Arp2/3- (Scrib1
W203A

 and Scrib1
W386A

) binding sites to evaluate their role on Scrib1-mediated localization at 

the lamellipodia (Fig. 2 C). In contrast to Scrib1
WT

, none of the three mutants is enriched in the lamellipodia 

(Fig. 2 D), indicating that Scrib1 localization in lamellipodia depends on its ability to bind actin and the Arp2/3 

complex. Moreover, actin- (Scrib1
KK611EE

, 0.55 ± 0.03, 7/7; °°, p <0.01, One Way ANOVA, Dunnett’s Multiple 

Comparison Test) and both Arp2/3-binding mutants (Scrib1
W203A

, 0.58 ± 0.06, 9/4; Scrib1
W386A

, 0.62 ± 0.02, 

7/5; °, p <0.01 for both) display a reduced lamellipodial GFP/phalloidin ratio (Fig. 2 F) similar to Scrib1
P592S 

(Fig. 2 E). Taken together, these results suggest that Scrib1
 
enrichment in the leading edge of lamellipodia 

depends on its ability to bind actin and Arp2/3. 

 

ASD and actin Scrib1 mutants display aberrant dendritic trees 

Neuronal complexity, specifically dendritic branching and morphology, consents individual neurons to ac-

complish specialized brain functions and cognitive behaviours. Dendritic arborisation is known to be depend-

ent on cytoskeleton dynamics (Jan & Jan, 2010). We decided then to evaluate Scrib1 role in dendritic com-

plexity and length by transfecting hippocampal neurons at 16-17 DIV (Fig. 3). Compared to the control, 

Scrib1
WT

 neurons exhibit dendrites with a higher number of intersections (C3, n=26; Scrib1
WT

, n=22; ***, p 

<0.001 for interaction, distance, and genotype, Two Way ANOVA) (Fig. 3 A, B), but similar total length (C3, 

1214 ± 131.6 μm; Scrib1
WT

, 1166 ± 79.93 μm; ns, p >0.05, One Way ANOVA, Dunnett’s Multiple Compari-

son Test) (Fig. 3 C). Instead, Scrib1
P592S

 mutant displays a significant low dendritic intersection number 

(Scrib1
P592S

, n=21, **/°°° p <0.01 vs. C3 and p <0.001 vs. Scrib1
WT

) (Fig. 3 A, B) and length (Scrib1
P592S

, 

744.1 ± 50.23 μm; **/°°° p <0.01 and p <0.001) (Fig. 23 C). PCP downstream effectors, such as the actin 

polymerization activating signalling cascade composed by Rac1, Pak1, N-WASP and Arp2/3 was previously 

implicated in neurite outgrowth and remodelling (Rashid et al., 2001; Ng et al., 2002; Sin et al., 2002; Ka-
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kimoto et al., 2006; Hayashi et al., 2007; Pinyol et al., 2007). We assessed then the impact of Scrib1 actin- 

and Arp2/3- binding mutants on dendritic morphology (Fig. 3 D-F). Scrib1-mediated dendritic complexity is 

dependent on its binding to actin (Scrib1
KK611EE

, n=20; °°° p <0.001), but not to the Arp2/3 complex 

(Scrib1
W203A

, n=15; Scrib1
W386A

, n=19; ns, p >0.05 for both) (Fig. 3 D, E). Moreover, Scrib1 actin 

(Scrib1
KK611EE

, 684.2 ± 63.80 μm; °° p <0.01), but not Arp2/3-binding mutants (Scrib1
W203A

, 1069 ± 99.61 μm; 

Scrib1
W386A

, 1051 ± 116.5 μm; ns, p >0.05 for both) display a reduced dendritic length (Fig. 3 D, F). Taken 

together, this data set suggests that Scrib1
P592S

-mediated aberrant dendritic complexity might be due to a 

disrupted Scrib1 interaction with actin. 

 

Scrib1 mutants show aberrant filopodia and dendritic spine morphogenesis 

Scrib1 was previously found inside dendritic spines (Moreau et al., 2010; Piguel et al., 2014), whose for-

mation, maturation and elimination is long known to be dependent on actin dynamics (Caceres et al., 1983; 

Tada & Sheng, 2006). To examine the potential role of Scrib1 in spine formation and morphology, hippo-

campal neurons were transiently co-transfected with the different Scrib1 constructs together with mRFP-

actin, to visualize such dendritic structures (Fig. 4). We started by investigating Scrib1 role on filopodia num-

ber and length (Fig. 4 B, C). Compared to the control, Scrib1
WT 

overexpression decreased filopodia number 

(C3, 1.37 ± 0.12, 147/17; Scrib1
WT

, 0.97 ± 0.10, 134/29; One Way ANOVA, Dunnettt’s Multiple Comparison 

Test, * p <0.05) (Fig. 4 B) and length (C3, 2.14 ± 0.11 μm, 184/17; Scrib1
WT

, 1.44 ± 0.07 μm, 196/29; ** p 

<0.01) (Fig. 4 C). Regarding spine number and morphology, Scrib1
WT

 induced more (C3, 7.67 ± 0.27, 

144/17; Scrib1
WT

, 8.96 ± 0.36, 132/29; ** p <0.01) (Fig. 4 D) and wider spines (C3, 0.81 ± 0.008 μm, 

1100/17; Scrib1
WT

, 0.88 ± 0.01, 1126/29; ** p <0.01) (Fig. 4 E), without changing spine length (C3, 1.28 ± 

0.02 μm, 1100/17; Scrib1
WT

, 1.31 ± 0.02, 1126/29; ns, p >0.05) (Fig. 4 F). In contrast, the ASD Scrib1
P592S

 

mutant displayed more (1.30 ± 1.59, 161/27; °, p <0.05 vs. Scrib1
WT

) (Fig. 4 B) and longer filopodia (2.37 ± 

0.13 μm, 211/27; °°°, p <0.001) (Fig. 4 C). Furthermore, Scrib1
P592S

 induced less (3.35 ± 0.21; 162/27; **/°°°, 

p <0.01 vs. C3 and p <0.001 vs. Scrib1
WT

) (Fig. 4 D), but wider (1.06 ± 0.03; 542/27; **/°°°, p <0.01 vs. C3 

and p <0.001 vs. Scrib1
WT

) (Fig. 4 E) and longer (1.59 ± 0.04; 542/27; **/°°°, p <0.01 vs. C3 and p <0.001 vs. 

Scrib1
WT

) (Fig. 4 F) dendritic spines. Since ASD and actin mutants showed a similar aberrant dendritic tree 

arborisation (Fig. 3), we evaluated the effect of Scrib1 binding to actin and Arp2/3 complex in spinogenesis 

as well (Fig. 4 H-N). Compared to Scrib1
WT

, Scrib1 actin- and Arp2/3- mutants display more (Scrib1
KK611EE

, 

1.78 ± 0.16, 113/19; Scrib1
W203A

, 1.67 ± 0.16, 95/16; Scrib1
W386A

, 1.89 ± 0.15, 149/25; °°, p <0.01 for all) (Fig. 

4 I) and longer filopodia (Scrib1
KK611EE

, 1.85 ± 0.08 μm, 202/19; Scrib1
W203A

, 1.90 ± 0.09 μm, 207/16; 

Scrib1
W386A

, 1.81 ± 0.08 μm, 291/25; °°, p <0.01 for all) (Fig. 4 J). Mutating Scrib1 actin- and Arp2/3-binding 

sites induced fewer spines (Scrib1
KK611EE

, 5.28 ± 0.32, 113/19; Scrib1
W203A

, 7.14 ± 0.39, 96/16; Scrib1
W386A

, 

7.28 ± 0.34, 150/25; °°, p <0.01 for all) (Fig. 4 K) as well. Interestingly, mutating Scrib1
KK611

 and Scrib1
W203 

residues (Scrib1
KK611EE

, 0.82 ± 0.01 μm, 617/19; Scrib1
W203A

, 0.82 ± 0.01 μm, 860/16; °°, p <0.01 for both), 

but not Scrib1
W386 

(Scrib1
W386A

, 0.88 ± 0.01 μm, 1091/25; ns, p >0.05), resulted into smaller spines (Fig. 4 L). 

Instead, Scrib1
KK611EE

 and Scrib1
W386A

 mutants (Scrib1
KK611EE

, 1.41 ± 0.03 μm, 617/19; Scrib1
W386A

, 1.40 ± 

0.02 μm, 1091/25; °°, p <0.01 for both), but not Scrib1
W203A

 (1.31 ± 0.02 μm, 860/16; ns, p >0.05) showed 
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longer spines (Fig. 4 M). Taken altogether, these data suggests that Scrib1 plays a key role in filopodia-to-

spine transition by binding to actin and the Arp2/3 complex (Fig. 4 N). In particular, Scrib1-mediated Arp2/3-

dependent actin nucleation is necessary for filopodia formation, elongation and spine formation. Moreover, 

the two different Scrib1 Arp2/3-binding sites seem to be specifically employed to regulate spine width and 

length. Accordingly, disrupting Scrib1-mediated actin regulation might lead to abnormal spinogenesis (Fig. 4 

G). 

 

Scrib1 ASD mutant exhibits a fragmented PSD  

Abnormal spine number and/or architecture in synaptic pathologies are often followed by a disturbed re-

cruitment of proteins to the PSD (Kulkarni & Firestein, 2012). As Scrib1 seems to be a critical regulator of 

dendritic spine morphology, we wanted to unravel the precise Scrib1 localization within that structure (Fig. 

5). Given the micrometric size of dendritic spines, we used dSTORM (direct stochastic optical reconstruction 

microscopy), a super-resolution microscopy technique capable of detecting single particle molecules at a ~ 

20 nm resolution (van de Linde, 2011) (Fig. 5 A). We started by analysing the endogenous localization of 

Scrib1 taking the localization of PSD-95, the most abundance post-synaptic scaffold protein in the post-

synaptic density (PSD), as landmark (Fig. 5 B). The obtained images in confocal microscopy suggested a 

co-localization between Scrib1 and PSD-95 within the dendritic spine (Fig. 5 B’). The use of dSTORM al-

lowed however a more detailed nanometric organization (Fig. 5 B’’). First, Scrib1 and PSD-95 did not co-

localize. Second, Scrib1 presented a more homogeneous puncta-like localization within the dendritic spine 

compared to the central clusterised PSD-95 (PSD-95, 206.2 ± 10.90 nm; Scrib1, 323.3 ± 14.68 nm; n=24 

spines; unpaired t test ***, p <0.001) (Fig. 5 C, D). Next, we evaluated the impact of Scrib1 mutations into 

the nano-architecture of dendritic spines (Fig. 5 E-J). We started by comparing the endogenous distribution 

of PSD-95 to overexpressed GFP-Scrib1
WT

 (Fig. 5 E, G). Super resolution images of dendritic spines 

showed a central cluster of PSD-95 surrounded by a more homogenous punctiform Scrib1
WT

 (PSD-95, 243.3  

± 17.68 nm; Scrib1
WT

, 309.6 ± 15.96 nm; n=16; unpaired t test ** p <0.01) (Fig. 5 E’’, G). Scrib1
WT

 dispersion 

values are analogous to the native condition, thus validating the use of this super-resolution microscopy 

technique to study the nano-architecture of transfected dendritic spines. As previously, Scrib1
P592S 

overex-

pression resulted into bigger spines, visible in both confocal (Fig. 5 F, F’) and dSTORM images (Fig. 5 F’’). 

The dispersion analysis showed again a less dispersed PSD-95 compared to Scrib1
P592S

 (PSD-95, 249.5 ± 

15.14 nm; Scrib1
P592S

, 360.3 ± 17.64 nm; n=14; unpaired t test *** p <0.001) (Fig. 5 H). On the other hand, 

the average distance of Scrib1
P592S

 regarding its own centroid is significantly higher than that of Scrib1
WT 

(Scrib1
WT

, 309.6 ± 15.96 nm; Scrib1
P592S

, 360.3 ± 17.64 nm; unpaired t test *** p <0.001) (Fig. 5 I), indicating 

that the ASD form of Scrib1 affects its distribution within the spine. We then wonder if the ASD mutant form 

could affect PSD-95 distribution as well. Altought both conditions present similar mean values of PSD-95 

average distance reported to its centroid, super resolved images clearly show that PSD-95 is no longer cen-

tred in a single cluster but rather fragmented in Scrib1
P592S

 transfected spines (Fig. 5 F’’). Indeed, while the 

majority (84%) of native spines contained PSD-95 distributed in a unique cluster, Scrib1
WT

 overexpression 

resulted into a hyper-clusterisation (100%) of PSD-95 (Fig. 5 J). Instead, only 21% of Scrib1
P592S

 transfected 
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spines showed a PSD-95 organized into a single cluster, highlighting Scrib1 as a key organizer of the den-

dritic spine nano-architecture. We are currently performing the same analysis on Scrib1 actin- and Arp2/3-

binding mutants. 

 

Scrib1 forms a PDZ-dependent complex with TARP/AMPARs 

PSD-95 enriched domains were recently shown to concentrate synaptic AMPARs clusters (Nair et al., 2013). 

Targeting, trafficking and insertion of AMPARs into the synaptic membrane are known to be largely mediated 

by PDZ-dependent interactions of AMPAR Cter tails. We probed the missing PDZ domains of the Scrib1
crc

 

mutant, previously implicated in ASD (Moreau et al., 2010), searching for potential AMPAR traffic regulators 

(Fig. 6). We found that the transmembrane auxiliary regulatory protein (TARP) γ-4 was able to interact with 

Scrib1 PDZ3 domain in a yeast two hybrid screen using a P10 mouse cDNA library as prey (Fig. 6 A). Type I 

TARPs like γ-4 or Stargazin (Stgz or γ-2), its best known member, possess a conserved Cter class I PDZ-

binding domain (PDZbd: -RR/KTTPV) (Fig. 6 B). Given the high similarity between Cter PDZbd of γ-4 and 

Stgz, we looked for an association between native Scrib1, Stgz and AMPAR in brain extracts. Using hippo-

campal lysates from P35 rats, we were able to co-immunoprecipite Stgz with Scrib1 and GluA1 (Fig. 6 C). 

Scrib1 and Stgz direct interaction was further confirmed by immunoprecipitating overexpressed tagged HA-

Scrib1 and Stgz-GFP in HEK-293 cells (Fig. 6 D). Instead, HA tag was unable to immunoprecipitate with 

myc-GluA1 (Fig. 6 E), suggesting that Stgz mediates the interaction between Scrib1 and AMPAR (Fig. 6 F). 

We followed then the spatial localization of the individual components of this complex by immunostaining 

COS-7 cells (Fig. 6 G-L). When expressed alone, Scrib1 was uniformly distributed in the Golgi, ER, cyto-

plasm and plasma membrane, while Stgz was mainly confined to the Golgi, ER and plasma membrane (Fig. 

6 G). Instead, GluA1 (Fig. 6 G) and GluA2 (not shown) staining was present in the ER and the Golgi. As 

expected, Stgz and both GluA subunits (Fig. 6 H) perfectly co-localized within large clusters at the ER and 

Golgi level. When co-expressed with Scrib1, Stgz was redistributed to large clusters containing Scrib1 at the 

cell body and within the plasma membrane (Fig. 6 I). Scrib1 was able to alter the distribution pattern of 

GluA1 (Fig. 6 J) and GluA2 (not shown). In particular, GluA1 became uniformly distributed within cytoplasmic 

clusters, which sparsely co-localize with Scrib1 (Fig. 6 J), whereas GluA2 was distributed at the cytoplasm 

level, being rather concentrated at the ER, Golgi and plasma membrane (not shown). This difference in 

Scrib1-dependent redistribution and co-localization argues in favour of Scrib1 playing a distinct role on the 

traffic regulation of different AMPAR subunits. Finally, we wondered if the missing PDZ domains of the 

Scrib1
crc

 mutant form could affect Scrib1 co-localization with the AMPAR/Stgz complex (Fig. 6 K, L). In COS-

7 cells co-transfected with Scrib1, Stgz and GluA1 (Fig. 6 K) or GluA2 (not shown), we observed a perfect 

co-localization of the complex into large ER, Golgi and cytoplasmic clusters. However, when co-transfected 

with the ASD-associated Scrib1
crc

 mutant, such co-localization was completely lost (Fig. 6 L), pinpointing 

Scrib1 as an active component of the AMPAR trafficking by forming a PDZ-dependent complex with type I 

TARPs. The native immunolabelling of mature hippocampal neurons revealed that the Scrib1/TARP complex 

can indeed co-localize with both GluA1- (Fig. 6 M) and GluA2-containing AMPARs (Fig. 6 N).  
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Scrib1 mutants show aberrant AMPAR synaptic targeting 

Since Scrib1 is able to form a complex with TARP and AMPA receptors (Fig. 6), we evaluated its potential 

role as AMPAR traffic modulator. Four days after hipocampal neuron transfection, we stained native GluA1- 

(Fig. 7 A) and GluA2-containing AMPA receptors (Fig. 7 B), using synapsin as a pre-synaptic marker. 

Compared to control conditions, Scrib1
WT

 overexpression does not change GluA1 nor GluA2 average inten-

sity (C3, 13.95 ± 0.91, n=22; Scrib1
WT

, 14.49 ± 1.54, n=19; and C3, 15.75 ± 1.14, n=15; Scrib1
WT

, 16.02 ± 

1.34, n=15, respectively; One Way ANOVA, Dunnett’s Multiple Comparison Test, ns, p >0.05 for both) (Fig. 

7 E, K), total surface number (C3, 15.46 ± 0.76; Scrib1
WT

, 15.91 ± 0.98; and C3, 15.17 ± 0.75; Scrib1
WT

, 

14.87 ± 0.86, respectively; ns, p >0.05) (Fig. 7 F, L), or synaptic ratio (C3, 0.66 ± 0.03; Scrib1
WT

, 0.69 ± 0.03; 

and C3, 0.57 ± 0.03; Scrib1
WT

, 0.62 ± 0.02, respectively; ns, p >0.05) (Fig. 7 G, M). Overexpressing the ASD 

Scrib1
P592S

 mutant resulted in no difference in AMPAR average intensity (14.42 ± 1.19 and16.20 ± 1.39, re-

spectively; ns, p >0.05) (Fig. 7 E, K) nor total surface number either (15.93 ± 1.32 and 15.53 ± 0.65, respec-

tively; ns, p >0.05) (Fig. 7 F, L). Nonetheless, it induced a significant increase of GluA1 (Scrib1
P592S

, 0.77 ± 

0.03, n=19; */° p <0.05 vs. C3 and Scrib1
WT

) (Fig. 7 G), but not GluA2 synaptic ratio (Scrib1
P592S

, 0.48 ± 

0.03, n=19; ns, p >0.05) (Fig. 7 M), suggesting that a subunit-specific mistargeting of AMPA receptors might 

play a role in ASD. Actin cytoskeleton modulators, including Arp2/3, were previously implicated in AMPAR 

traffic as well (Rocca et al., 2008, 2013; Gu et al., 2010; Rust et al., 2010). We evaluated then the effect of 

Scrib1 actin- or Arp2/3-binding mutants on AMPAR traffic to the cell surface and to the synapse (Fig. 7 B, D, 

H-P). Compared to Scrib1
WT

, none of the three mutants affected AMPAR average intensity (Scrib1
KK611EE

, 

14.52 ± 1.08, n=20; Scrib1
W203A

, 15.35 ± 1.36, n=18; Scrib1
W386A

, 14.34 ± 1.21, n=19; and Scrib1
KK611EE

, 

15.69 ± 0.76, n=15; Scrib1
W203A

, 15.20 ± 1.09, n=19; Scrib1
W386A

, 15.66 ± 1.59, n=15, respectively; ns, p 

>0.05 for all) (Fig. 7 H, N) nor its total number at the cell surface (Scrib1
KK611EE

, 14.64 ± 0.53; Scrib1
W203A

, 

16.34 ± 1.05; Scrib1
W386A

, 15.37 ± 1.19; and Scrib1
KK611EE

, 14.28 ± 0.74; Scrib1
W203A

, 15.54 ± 0.95; 

Scrib1
W386A

, 16.60 ± 0.80, respectively; ns, p >0.05 for all) (Fig. 7 I, O). On the other hand, mutating Scrib1 

actin- (Scrib1
KK611EE

, 0.50 ± 0.03; °° p <0.01 vs. Scrib1
WT

), but not Arp2/3-binding sites (Scrib1
W203A

, 0.65 ± 

0.03; Scrib1
W386A

, 0.66 ± 0.03; ns, p >0.05) (Fig. 7 J), induced a significant decrease of synaptic GluA1-

containing AMPARs. Instead, GluA2 synaptic targeting is reduced in Scrib1
W386A

 (0.48 ± 0.03; °° p <0.01), 

but not Scrib1
KK611EE

 (0.54 ± 0.02; ns, p >0.05) nor Scrib1
W203A 

(0.56 ± 0.03; ns, p >0.05) (Fig. 7 P), strongly 

suggesting that AMPAR targeting to the synapse is done in a subunit-specific manner. 

 

DISCUSSION 

Here, we described for the first time the molecular mechanism underlying ASD-related Scrib1
P592S 

mutation 

effect on synapse formation and maintenance. Our results show that the PCP protein Scrib1 is able to regu-

late dendritic spine structure and neuronal function via a coordinated Arp2/3-mediated actin nucleation and 

the formation of a Cter PDZ-dependent complex with TARP/AMPAR. 

 

Scrib1 regulates actin dynamics via the Arp2/3 complex 

Actin dynamics is known to be tightly regulated by a plethora of proteins able to bind, cross link, nucleate,  
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cap or sever actin (Pollard, 2003). Our data on MEF cells show that Scrib1 is preferentially accumulated in 

the lamellipodia due to its ability to bind actin and the Arp2/3 complex. The Arp2/3 is a 220 kDA complex 

composed by seven subunits, including the nucleating Arp2 and Arp3 subunits (Martin et al., 2005). These 

subunits display an intrinsic weak nucleation activity due to their distance within the inactive complex. Arp2/3 

activity depends on conformational changes induced by nucleation promoting factor (NPFs) such as 

WAVE/Scar and WASP (Kelly et al., 2006; Boczkowska et al., 2008), stabilizers like Cortactin (Hering & 

Sheng, 2003), or inhibitory proteins as the BAR-PDZ PICK1 protein (Rocca et al., 2008; Nakamura et al., 

2011), the trans-Golgi network/endosomally localized adaptor protein (AP)-1-associated adaptor protein 

Gadkin (Maritzen et al., 2012) or Arpin (Dang et al., 2013). Unlike the aforementioned Arp2/3 regulators, 

Scrib1 displays one actin-binding motif and two Arp2/3-binding sites. One or both residues might bind Arp2 

and/or Arp3 nucleation subunits (Padrick et al., 2011; Ti et al., 2011; Xu et al., 2012), potentially enhancing 

actin assembly through its dimerization (Wang et al., 2014). Alternatively, Scrib1
W203 

and Scrib1
W386

 might 

compete over Arp2/3 binding like N-WASP and Cortactin (Weaver et al., 2002), possibly underlying distinct 

Scrib1-mediated actin assembly roles. Additional structural and/or biochemical studies will be needed to 

elucidate how does Scrib1 bind the Arp2/3 complex and what is its effect on actin dynamics. 

 

The PCP Scrib1 promotes neuronal complexity via an actin-dependent mechanism 

Neuronal complexity, specifically dendritic branching and morphology, consents individual neurons to ac-

complish specialized brain functions and cognitive behaviours. In the last years, an increasing number of 

evidences suggest that PCP genes play a crucial role in establishing neuronal cell polarization (Shima et al., 

2004; Rosso et al., 2005; Goodrich, 2008). We show for the first time that the recently identified ASD-related 

Scrib1
P592S

 mutant displays a decreased dendritic branching. This result is in good agreement with one of the 

earliest reports of pathological changes in autism (Raymond et al., 1996) as well as to previous work in our 

group regarding ASD-related Scrib1
crc 

(Moreau et al., 2010) or Scrib1 loss (Hilal et al., in preparation), depict-

ing Scrib1 as a key player in dendritic morphogenesis regulation. As Scrib1, Densin-180 and Erbin increase 

dendritic branching of hippocampal neurons (Quitsch et al., 2005; Arikkath et al., 2008), suggesting that the 

LAP family fosters dendritic complexity. We show that Scrib1 mediates dendritic branching complexity via an 

actin-dependent mechanism. Interestingly, Scrib1
KK611EE

 prevents Scrib1-mediated dendritic complexity in a 

similar way as PICK1
KK251EE

 precludes PICK1 knockdown effect (Rocca et al., 2008), suggesting that Scrib1 

and PICK1 exert antagonizing roles. Scrib1 effect on actin-dependent dendritic morphology seems, however, 

to be independent on its ability to bind the Arp2/3 complex. Indeed, dendritic formation and arborisation in-

volves the coordination of several neuronal cytoskeleton actors (Jan & Jan, 2010). Besides actin, microtu-

bule dynamics can also shape the dendritic arbour (Georges et al., 2008). Scrib1 has been repeatedly corre-

lated to microtubules through genetic interactions (Schlüter et al., 2009; Cho et al., 2011; Andersen et al., 

2012; Mohseni et al., 2014), as well as to microtubule-binding proteins like APC (Zumbrunn et al., 2001; Kita 

et al., 2006) and dynein-based microtubule motors (Wang et al., 2013). Additional studies will be needed to 

decipher Scrib1 potential role on microtubule-dependent neuronal arborisation. 
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Scrib1 promotes spine maturation through Arp2/3-mediated actin nucleation 

Scrib was originally discovered in Drosophila basolateral junctions (Bilder & Perrimon, 2000). In mammals, 

Scrib1 has been shown to be involved in the actin-mediated recruitment of synaptic vesicles via the βPIX/β-

catenin/cadherin complex (Sun et al., 2009; Sun & Bamji, 2011). Together with a previous report from our 

group (Moreau et al., 2010), we show that Scrib1 mutations related to ASD lead to an altered spine number 

and morphology, further highlighting Scrib1 as a key player in spinogenesis. During the early stages of syn-

aptogenesis, filopodia arise at the dendritic shaft level from a small collection of Rac-dependent Arp2/3-

mediated branched actin (Korobova & Svitkina, 2010). Ensuing Arp2/3 recruitment, elongation factors like 

formins and Ena/VASP are gradually enriched at the filopodia tip (Hotulainen et al., 2009; Lee et al., 2010; 

Goh et al., 2012; Disanza et al., 2013). Concurring, we showed that mutations of Scrib1 actin and Arp2/3-

binding sites reverse Scrib1 effect on filopodia formation and elongation. Following axonal contact, dendritic 

filopodia can transform into morphologically mature spines. Live imaging studies found that the filopodia-to-

spine transition requires the swelling and shortening of the fillopodia tip (Marrs et al., 2001; Yoshihara et al., 

2009). Whereas spine head expansion most likely involves Arp2/3 complex-dependent actin filament branch-

ing (Mullins et al., 1998; Welch et al., 1998; Hering & Sheng, 2003; Klein et al., 2009), filopodia shortening 

depends on spine neck-enriched myosin II (Ryu et al., 2006; Korobova & Svitkina, 2010). Accordingly, we 

show that Scrib1-mediated spine enlargement depends on Scrib1
KK611

 and Scrib1
W203 

binding to actin and 

Arp2/3 complex, respectively. Strikingly, PICK1-induced spine width restriction is blocked in neurons ex-

pressing PICK1
W413A

 mutation, pinpointing Scrib1
W203 

and PICK1
W413

 as key antagonistic residues in Arp2/3-

mediated spine remodelling. Other Arp2/3 complex regulators are known to compete over Arp3 binding, re-

sulting into distinctive Arp2/3 activities (Weaver et al., 2002). Unlike Cortactin and actin-binding protein 

(Abp1) (Hering & Sheng, 2003; Haeckel et al., 2008), Scrib1 has no effect per se on spine longitudinal 

growth. Nevertheless, mutating Scrib1
KK611

 and Scrib1
W386

 residues result into longer spines, implying the 

involvement of Scrib1
W386

-mediated Arp2/3 complex nucleation into the filopodia-to-spine transition. In fact, 

actin cytoskeleton in spine head and neck were previously shown to be differently structured (Frost et al., 

2010; Korobova & Svitkina, 2010). While the first is supported by an axial bundle of short actin filaments, 

reminiscent of dendritic patches; spine neck is composed by a longitudinal stretched network of branched 

and roughly aligned linear filaments of different length. It is tempting to speculate that a synaptic network 

made of shorter actin filaments might optimize both the temporal and spatial response to neural activity (Star 

et al., 2002; Okamoto et al., 2004; Cingolani & Goda, 2008; Penzes et al., 2008). As Scrib1 W203 and W386 

residues are preferentially engaged in spine widening or spine lengthening, respectively, we hypothesize that 

Scrib1 coordinates the assembly of spine head or neck actin filaments via distinct Arp2/3–binding sites. 

 

Scrib1 ensures PSD nano-architecture and function 

Synaptopathologies underlying abnormal spine number and/or morphology are often associated to a disrupt-

ed recruiment of critical proteins to the PSD as well as to an inability to structurally respond to synaptic activi-

ty (Kulkarni & Firestein, 2012). As previous works from our group regarding Scrib1 loss (Hilal et al., in prepa-

ration) or truncation (Moreau et al., 2010), we show that Scrib1 ASD mutants display an aberrant PSD struc-
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ture and composition, identifying Scrib1 as a key player in PSD architecture and function. Furthermore, we 

show that Scrib1 effect on spine number and enlargement is linked to a hyper-clusterisation of PSD-95, a 

fiduciary effective marker of the PSD structure (Okabe et al., 1999). PSD-95 clusters were previously shown 

to make their first appearance in dendritic shafts or dynamic spine precursors, before migrating to their ulti-

mate position in mature spine heads (Friedman et al., 2000; Marrs et al., 2001; Okabe et al., 2001). Although 

PSD acquisition can increase the survival rate of new spines in vivo, spine stability is mainly correlated to the 

PSD size (Cane et al., 2014). Consistent with Scrib1 playing a role in spine stabilization, our group showed 

that Scrib1 truncation (Moreau et al., 2010) or loss (Hilal et al., in preparation) resulted into reduced basal 

transmission and impaired expression of long-term potentiation (LTP) or long-term depression (LTD). These 

two major cellular mechanisms are believed to underlie learning and memory in the adult brain (Malenka & 

Nicoll, 1999), being mainly mediated by NMDA and AMPA receptors. We showed recently that Scrib1 can 

bind and modulate the traffic of GluN2-containing NMDARs (Piguel et al., 2014). Herein, we found that 

Scrib1 can bind transmembrane auxiliary regulatory proteins (TARPs), known to regulate AMPAR expression 

levels, synaptic targeting, stabilization as well as synaptic strength (Chen et al., 2000). In agreement with a 

recent work from our group showing that Scrib1 does not affect the amplitude of pharmacologically isolated 

AMPAR-mediated EPSCs (Piguel et al., 2014), we found no difference in the total surface number of AMPA 

receptors at the cell surface or at the synapse following Scrib1 overexpression. This data reflects a dynamic 

and coordinated reorganization of existing constituent scaffold proteins and receptors inside the PSD 

(Blanpied et al., 2008). Nonetheless, we did found that the ASD Scrib1
P592S

 mutant displays a higher content 

of GluA1-containing AMPARs at the synapse. Strikingly, an excessive number of surface AMPA receptors 

was previously associated to a segmented PSD configuration (Ganeshina et al, 2004). As these spines are 

believed to have a greater synaptic efficacy (Spacek & Harris, 1997; Geinisman et al, 1993, 1996; Toni et al, 

2001; Ganeshina et al, 2004), we are currently investigating if the ASD Scrib1
P592S

 mutantion contribute to 

changes in basal transmission. On the other hand, mutating Scrib1 actin- or W386-mediated Arp2/3-binding 

sites lead to a significant decrease of synaptic GluA1 or GluA2 subunits, respectively. Although latrunculin 

has been shown to slowly reduce synaptic AMPAR number (Allison et al., 1998; Kim & Lisman, 1999), EM 

and high-resolution imaging studies show that actin filaments are rather sparse inside the PSD (Fifkova & 

Delay, 1982; Capani et al., 2001; Frost et al., 2010). Accordingly, AMPARs are believed to link actin through 

a variety of intermediates, from cell adhesion (Südhof, 2008) or transmembrane proteins (Chen et al., 2000) 

to scaffold (Dong et al., 1997) or actin-binding proteins (Shen et al., 2000; Lin et al., 2010), including the 

Arp2/3 complex (Rocca et al., 2008). AMPAR involvement with such intricated network might explain the 

difference between ASD and actin-related Scrib1 mutants, as Pro592Ser-mediated conformational changes 

potentially affect more than one interaction. Taken altogether, our data favours a model whereby Scrib1-

mediated actin dynamics regulation participates in the distribution of subunit-specific AMPA receptors at the 

synapse.  

 

CONCLUDING REMARKS 

Despite the high heritability observed in ASD, disease-causing mutations involve a limited number of genes  
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(Persico & Bourgeron, 2006). On the other hand, loss or disruption of PCP genes (Lijam et al., 1997; Fraser 

et al., 2008; Wynshaw-Boris, 2012; Sowers et al., 2013; Zhu et al., 2013) or PDZ-dependent protein-protein 

interactions (Südhof, 2008; Carlisle et al., 2011; Durand et al., 2012; Cao et al., 2013), including Scrib1 (Mo-

reau et al., 2010; Hilal et al., in preparation), have been previously linked to abnormal dendritic complexity, 

mistargeting of proteins and/or inability to properly from a synapse, strongly favoring an overlap in the genet-

ic etiopathology in ASD. We show that disrupting Scrib1-mediated actin dynamics regulation impacts neu-

ronal complexity as well as dendritic spine maturation and function, highlighting the importance of structural 

genomic rearrangements in ASD etiopathology. 
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FIGURE LEGENDS 

Figure 1: The ASD Scrib1
P592S

 mutant loses Scrib1
WT

-mediated localization at the lamellipodia. (A) 

MEF cells transfected with C3, Scrib1
WT

 and Scrib1
P592S 

GFP-coupled plasmids (green) and phalloidin (red). 

Scale bar, 5 μm. On the bottom side, magnification of selected lamellipodia. (B) GFP/phalloidin intensity ratio 

plotted along the lamellipodia. Grey area highlights Scrib1
WT

 enriched domain. (C) Average lamelilipodial 

GFP/phalloidin intensity ratio. Scrib1
WT

 is strongly expressed within the lamellipodia, while the Scrib1
P592S

 

mutant displays a ratio similar to control. (D) Coordinates of maximal GFP/phalloidin ratio. Scrib1
WT

 is prefer-

entially located near the lamellipodia, whereas the ASD mutant concentrates further way. ***, p <0.001; **, p 

<0.01; *, p <0.05. One Way ANOVA, Dunnett’s Multiple Comparison Test vs. C3 (*) or Scrib1
WT 

(°) corre-

sponding to 7-14 measurements from 4-8 different cells. 

 

Figure 2: Scrib1 localization at the lamellipodia depends on its ability to bind actin and the Arp2/3 

complex. (A) Sequence alignment of Scrib1
KK611,612

 with known WH2-like motif-containing proteins. Con-

served Lys (K) and Arg (R) residues are shown in red. ASD-related Scrib1P592 is highlighted and underlined 

in green. (B) Sequence alignment of Scrib1
W203

 and Scrib1
W386 

with known Arp2/3 regulators. Conserved Trp 

(W) residues are shown in orange. (C) MEF cells transfected with Scrib1
KK611EE

, Scrib1
W203A

 and Scrib1
W386A 

GFP-coupled plasmids (green) and phalloidin (red). Scale bar, 5 μm. On the bottom side, magnification of 

selected lamellipodia. (D) GFP/phalloidin intensity ratio ploted along the lamellipodia. Grey area highlights 

Scrib1
WT

 enriched domain. (E) Average lamelilipodial GFP/phalloidin intensity ratio vs. Scrib1
WT

. Dotted line 

represents Scrib1
WT

. The three mutants are no longer enriched within the lamellipodia. °°, p <0.01; °, p 

<0.05. One Way ANOVA, Dunnett’s Multiple Comparison Test vs. Scrib1
WT

 corresponding to 7-9 measure-

ments from 4-7 different cells. 

 

Figure 3: Scrib1 ASD and actin mutants display aberrant dendritic trees. (A, D) Representative recon-

struction of neuronal morphology of control, Scrib1
WT

 and Scrib1
P592S

 (A) or Scrib1
KK611EE

, Scrib1
W203A

 and 

Scrib1
W386A  

(D) transfected neurons using the software Neurolucida. (B, E) Scholl analysis showing the cor-

responding number of dendritic intersections according to the distance from the soma. Compared to the con-

trol, Scrib1
WT 

show an increase neuronal morphology, which is lost upon Scrib1
P592S

 (B) and Scrib1
KK611EE

 (E) 

expression. (C, F) Total dendritic length (μm). Scrib1
WT 

does not change the neuronal dendritic length. In-

stead, Scrib1
P592S

 (C) and Scrib1
KK611EE

 (F) mutants display a reduced dendritic tree length. Dotted line rep-

resents Scrib1
WT

. ***, p <0.001; **, p <0.01. Two Way ANOVA vs. C3 (*) or Scrib1
WT 

(°) corresponding corre-

sponding to the genotype variation of 21-26 neurons from 4 independent experiments (interaction and dis-

tance: ***, p <0,001 for all the represented conditions).  

 

Figure 4: Scrib1-mediated actin regulation plays a key role in spinogenesis. (A, H) Hippocampal neu-

rons were transiently co-transfected at 16-17 days in vitro (DIV) with actin coupled to red fluorescent protein 

(mRFP) and green-fluorescent protein (GFP) alone (C3) or coupled to Scrib1 variants. At DIV 21, neurons 

were stained with anti-GFP (green) and anti-DsRED (red). Scale bar, 15 μm. On the bottom side, magnifica-
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tion of 10 μm dendrite transfected with each construct. (B, I) Average number of filopodia per 10 μm of den-

dritic length in each condition. (C, J) Average filopodia length (μm). Scrib1-mediated decrease in filopodia 

number and length is lost in ASD mutant (B, C) and actin-related mutants (I, J). (G) Example of filopodia 

(top) and spines (bottom) from transfected neurons with Scrib1
WT 

and
 
Scrib1

P592S
. Scale bar, 0.75 μm. (D, K) 

Average dendritic spine number per 10 μm of dendritic length in each condition. Scrib1
WT

 increases spine 

number through a Arp2/3-mediated actin polymerization mechanism (K), which might be impaired in ASD 

(D). (E, L) Average spine width (μm) and (F, M) average spine length (μm). Scrib1-mediated
 
actin-dependent 

spine enlargement and elongation is dependent on W203 (L) and W386 (M) residues, respectively. The dis-

ruption of such mechanism might underlie ASD aberrant spine morphology (E F). Dotted line represents 

Scrib1
WT

. ***, p <0.001; **, p <0.01; *, p <0.05; One Way ANOVA, Dunnett’s Multiple Comparison Test vs. C3 

(*) or vs. Scrib1
WT 

(°) corresponding to 16-27 neurons from 4 independent experiments. 

 

Figure 5: Scrib1 is a key organizer of the post-synaptic structure. (A) Direct Stochastic Reconstruction 

Microscopy (dSTORM) principle. The super-resolution microscopy dSTORM technique relies on a fluophore 

coupled to a given protein of interest; this fluorophore will be spontaneously quenched from its triplet state to 

a stable non-fluorescent reduced state (dark state); thus allowing the precise localization and ulterior recon-

struction of single particle molecules. The final super-resolution image is obtained by repeating in an iterative 

and stochastic manner this approach over time (t). (B) Hippocampal neurons at DIV 18 were immunolab-

beled with endogenous PSD-95 (red) and Scrib1 (green). Scale bar, 1 μm. White squares show selected 

spines, magnified in confocal microscopy (B’) or dSTORM (B’’). Scale bar, 500 nm. (C) Schematic represen-

tation of average distance quantification for individual molecules (PSD-95 in red and Scrib1 in green) in x 

and y (in nm) relative to a reference molecule centroid. Withe cross represents PSD-95 centroid. (D) Aver-

age distance of endogenous PSD-95 and Scrib1 relative to PSD-95 centroid (in nm). Native Scrib1 display a 

higher dipersion compared to the centralized PSD-95. (E, F) Hippocampal neurons at DIV 8 were transfected 

with Scrib1
WT 

(E) or Scrib1
P592S 

(F). At DIV 18 they were immunolabelled with endogenous PSD-95 (red) and 

anti-GFP (green) antibodies. Scale bar, 1 μm. White squares show selected spines, magnified in low (E’, F’) 

or super resolution (E’’, F’’). Scale bar, 500 nm. (G, H) Average distance of Scrib1
WT

 (G) or Scrib1
P592S

 (G) 

relative to PSD-95 centroid (in nm). Both Scrib1 forms display similar dispersion values as the native condi-

tion. (I) Average distance of Scrib1 in Scrib1
WT

 or Scrib1
P592S

 conditions. Scrib1
P592S

 has a higher dispersion 

than Scrib1
WT

. (J) Percentage (%) of dendritic spines containing a cluster- (black) or fragmented-like (spotted 

grey) PSD-95 organization in native (Scrib), Scrib1
WT

 or Scrib1
P592S

 conditions. Scrib1
WT 

overexpression in-

duces a hyperclusterisation of PSD-95, whereas Scrib1
P592S

 promotes PSD-95 fragmentation. ***, p < 0.001; 

**, p < 0.01 *, p < 0.05 unpaired t test corresponding to 14-24 dendritic spines from 2-5 neurons from inde-

pendent experiments. 

 

Figure 6: Scrib1 forms a PDZ-dependent complex with AMPAR via type I TARPs. (A) Yeast two hybrid 

assay between two genetically engineered yeast strains containing a DNA-binding domain (BD or bait) or an 

activating domain (AD or prey) coupled to the Scrib1
PDZ3

 and a P10 mouse brain cDNA library, respectively. 
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If the bait and the prey proteins are able to interact, the AD will be in close proximity to the BD, which in turn 

will activate the transcription of the reporter gene producing a change in the cell phenotype. The transmem-

brane auxiliary regulatory protein (TARP) γ-4 was found to bind Scrib1 PDZ3 domain. (B) Dendogram and 

bar diagrams illustrating the approximate phylogenetic relationships between type I and type II TARPs. 

TARPs are composed by four transmembrane domains, one to several N-glycosylation sites, one phosphory-

lation site and a Cter PDZ binding domain (PDZ-BD). Sequence alignment showing that the Cter of type I 

TARPs, including Stargazin (Stgz or γ-2) and γ-4 share a great homology. (*) identical amino acids; (:) con-

served substitutions; (.) semi-conserved substitutions. Dendogram and alignments done by ClustalW2 using 

the following Uniprot sequences: O88602, Q9JJV5, Q9JJV4, Q8VHW2, Q544Q4, and P62956. (C) Co-

immunoprecipitation of endogenous Scrib1 and GluA1 with Pan-Stgz antibody from P35 rat hippocampal 

lysates after Triton-X-100 solubilisation. (D, E) Immunoprecipitation of Scrib1, Stgz and GluA1. Lysates from 

HEK-293 cells, showing that Scrib1 immunoprecipitates Stgz-GFP (D), but not myc-GluA1 (E). Scrib1 forms 

a complex with AMPAR through Stgz (F). (G-L) COS-7 cells transiently co-transfected with HA-Scrib1, Stgz-

GFP, and myc-GluA1 display a perfect co-localization along the shown line draw (K). Such co-localization is 

lost when Stgz and GluA2 are co-expressed with Scrib1
crc

 form missing the Cter PDZ3 and PDZ4 domains 

(L). Plots represent intensity (x axis) vs. position (y axis). Scale bars, 15µm. (M, N) Scrib1 and Stgz co-

localize with GluA1- (M) and GluA2-containing AMPAR (N) in hippocampal neurons. 21 DIV dissociated neu-

rons were immunolabelled with endogenous antibodies against Scrib1 (green), Stgz (or γ-2, red), and GluA1 

or GluA2 (blue). White rectangle show separated channels in higher magnification at the right. Scale bar, 15 

μm. Full and empty arrows indicate full or partial co-localization of Scrib1 with Stgz and AMPA receptors in 

inside dendritic spines, respectively.  

 

Figure 7: Scrib1 mutants show aberrant AMPAR synaptic targeting. (A-D) Hippocampal neurons were 

transiently transfected at 16-17 DIV with green-fluorescent protein (GFP) alone (C3) or coupled to Scrib1 

variants. Four days after, native Cter GluA1- (A, B) or GluA2-containing AMPA receptors (C, D) were stained 

using synapsin as a pre-synaptic marker. Scale bar, 15 μm. Bottom white rectangles show in higher magnifi-

cation surface receptors (red), synapsin (blue) and dendrites (green) from the selected area. (E, H, K, N) 

Average intensity, (F, I, L, O) average surface number and (G, J, M, P) respective synaptic ratio of GluA1 or 

-GluA2 subunits. Dotted black line represents Scrib1
WT

. Scrib1
WT

 does not change AMPAR surface number 

nor its taregting towards the synapse. Instead, ASD (G) and actin (M) or W386-mediated Arp2/3 binding (P) 

mutants show an altered synaptic content of GluA1 or GluA2 subunits, respectively. **, p <0.01; *, p <0.05; 

One Way ANOVA, Dunnett's Multiple Comparison Test vs. C3 (*) or vs. Scrib1
WT 

(°) corresponding to 15-22 

neurons from 4 independent experiments. 
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Chapter VII  

Supplementary Experiments: Scribble1 regulates GluA1-, but 
not GluA2-containing AMPAR endo- and exocytosis 
 

 

VII.1 Context and Problematic 

Together with NMDA, AMPA receptors are main players within the main CNS excitatory neurotransmitter 

circuit. AMPARs are tetramers composed of four GluA1-4 subunits, being their composition dependent on 

the cell type, development and brain region. In hippocampus, GluA1/2 and GluA2/3 heteromers are predom-

inant (Wenthold et al., 1996). Even though both are composed by GluA2 subunits, GluA2/3 complexes are 

constrictively trafficked to and from the cell membrane, while GluA1/A2 complex is trafficked in an activity-

dependent manner. The differential trafficking of AMPARs subunits is dictated by the distinct AMPAR-

interacting proteins capable of controlling AMPAR targeting to the synapse (Chapter I.6). Previously, we 

showed that Scrib1 can form a PDZ-dependent complex with type I transmembrane AMPAR regulatory pro-

teins (TARPs) (Chapter VI). TARPs are critical regulators of AMPA endocytosis and exocytosis, key events 

in cellular mechanisms underlying learning and memory (Chen et al., 2000). Moreover, since Scrib1 was 

recently implicated in an AP-2 dependent NMDAR traffic mechanism (Piguel et al., 2014), we investigated if 

Scrib1 could modulate AMPAR endo- or exocytosis as well. 

 

 

VII.2 Material and Methods 

DNA constructs and antibodies. hScrib1 GFP-tagged (green fluorescent protein) and myc-tagged GluA1 and 

GluA2 cDNA samples were generously provided by I. Macara (University of Virginia, Charlottesville, VA, 

USA) and P. Osten (Cold Spring Harbor Laboratory, NY, USA), respectively. The following primary antibod-

ies were used in this study: anti-green fluorescent protein (GFP) (JL-8, Clontech), anti-myc mouse 9E11 

(Covance) and anti-synapsin 1/2 (106103, Synaptic Systems). Secondary antibodies used as follows: Alexa 

Fluor 488, 568 and 647 conjugated antibodies (Invitrogen). 

 

Neuron cell culture, transfection and immunocytochemistry. Hippocampal neurons were obtained from E18.5 

rat embryos and transfected using the previously described calcium phosphate method (Sans et al. 2005). 

Internalization and recycling assays of AMPA receptors were done by adapting protocols from previous stud-

ies (Suh et al., 2010; Piguel et al., 2014).  

 

Quantitative analysis and data representation. AMPAR trafficking experiments were done on 14-16 DIV neu-

rons 2d after transfection. Images were acquired by the Zeiss AxioImager Z1 microscope using a 63 X oil-

immersion on and analysed by MetaMorph 7.5 software (Universal Imaging). Surface, internalized and recy-

cled AMPA receptors were quantified by counting the number of puncta and the average intensity from 5 
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different 20 µm length regions per neuron on isolated dendrites. All conditions in individual experiments used 

identical acquisition parameters and value thresholds. Each experiment was performed on at least four inde-

pendent neuronal preparations. All data is represented as box and whiskers plots to put into evidence the 

median, lowest and highest limits. Statistical analyses were performed using Sigmaplot11 (Systat Software) 

by unpaired Student t-test. All data is referred in the text as mean ± SEM; * p <0.05, ** and *** p <0.001 were 

considered statistically significant. 

 

 

VII.3 Preliminary Results 

To investigate whether Scrib1 could mediate AMPAR endo- and/or exocytosis, we used a similar protocol as 

Piguel et al. (2014) to follow surface expressed myc-tagged GluA1 or GluA2 subunits in the presence or 

absence of Scrib1 (Fig. Suplm. Exp. 1). 13-14 DIV transfected hippocampal neurons tagged with a primary 

anti-myc antibody were incubated for 30min at 37°C, during which AMPAR were allowed to internalize (Fig. 

Suplm. Exp. 1 A). A ratio of surface/internalized receptors was obtained by staining surface myc-tagged 

receptors after fixation and myc-tagged internalized receptors following a subsequent permeabilisation step 

(Fig. Suplm. Exp. 1 B-I). Under basal conditions, overexpressing Scrib1 led to a significant decrease of the 

surface/internalized myc-GluA1 ratio compared to C3 (C3, 2.07 ± 0.13,  n=32; Scrib1, 1.55 ± 0.17, n=24; 

unpaired t-test *, p <0.05) (Fig. Suplm. Exp. 1 B, D), whereas downregulating Scrib1 had the reverse effect 

(shCTR, 1.88 ± 0.10, n=37; shScrib1, 2.28 ± 0.14 n=25; unpaired t-test *, p <0.05) (Fig. Suplm. Exp. 1 C, 

E), suggesting that Scrib1 does play an active role in GluA1-containing AMPAR endocytosis. Conversely, up- 

(C3, 2.59 ± 0.11, n=26; Scrib1, 2.64 ± 0.15, n=20; unpaired t-test p >0.05) (Fig. Suplm. Exp. 1 F, H) or 

down-regulating (shCTR, 2.46 ± 0.17, n=19; shScrib1, 2.77 ± 0.20, n=22; unpaired t-test p >0.05) (Fig. 

Suplm. Exp. 1 G, I) Scrib1 had no effect on the surface to internalized myc-GluA2 ratio. To study Scrib1 

effect on AMPARs recycling, we started by saturating surface expressed myc-tagged subunits with FAB 

fragments (Fig. Suplm. Exp. 1 J), allowing AMPARs to be endocytosed and recycle back to the membrane 

during 1h at 37°C. This time, a ratio of recycled/internalized myc-tagged receptors was done by labelling 

newly recycled AMPARs after fixation (Fig. Suplm. Exp. 1 K-R). As previously, GluA1 recycling rate was 

dependent on Scrib1 levels, with its up- or downregulation resulting in a substantial increase (C3, 1.26 ± 

0.12, n=31; Scrib1, 1.74 ± 0.14, n=25; unpaired t-test *, p <0.05) (Fig. Suplm. Exp. 1 K, M) or decrease 

(shCTR, 1.26 ± 0.10; n=16; shScrib1, 0.66 ± 0.08, n=19; unpaired t-test ***, p <0.001) (Fig. Suplm. Exp. 1 

L, N) ratio of recycled/intracellular GluA1 subunits, respectively. Instead, Scrib1 presence (C3, 2.62 ± 0.33; 

n=14; Scrib1, 3.11 ± 0.31, n=14; unpaired t-test p >0.05) (Fig. Suplm. Exp. 1 O, Q) or absence (shCTR, 

2.37 ± 0.22; n=23; shScrib1, 2.68 ± 0.23, n=22; unpaired t-test p >0.05) (Fig. Suplm. Exp. 1 P, R) had no 

effect on GluA2 recycling rate. Taken together, these results suggest that Scrib1 is a key player in GluA1, but 

not GluA2, endo- and exocytosis under basal condition 



 

203 

 

Figure Suplementary Experiments 1: Scrib1 levels modulate endo- and exocytosis of GluA1-, but not GluA2-containing 
AMPARs. (A, J) Timeline of endocytosis (A) and recycling (J) experiments. Myc-tagged GluA1 or GluA2 transfected neurons were 
incubated with a primary anti-myc antibody for 30min at 37°C, during which some receptors undergo endocytosis. (A) Endocytosis was 
evaluated by labeling surface receptors following fixation and internalized receptors after permeabilisation. (J) Recycling was assessed 
by saturating myc-tagged AMPARs with FAB fragments before incubating the neurons for 1h at 37°C, during which some receptors are 
internalized an recycled back to the membrane. Recycled receptors are labeled after fixation. (B-I) Surface and internalized or (K-R) 
recycled and internalized myc-GluA1 (B-E; K-N) and -GluA2 (F-I; O-R) subunits when co-transfected with pEGFP control (C3) or cou-
pled to Scrib1 (Scrib1), shRNA scramble (shCtr) or a specific shRNA against Scrib1 (shScrib1) in primary hippocampal neuron cultures 
under basal conditions. Bottom white rectangles show in higher magnification surface or recycled receptors (red), internalized receptors 
(blue) and dendrites (green) from the selected area. Scale bar, 15 μm. (D, E) Ratio of surface to internalized or (M, N) recycled to inter-
nalized myc-GluA1 or (H, I; Q, R) myc-GluA2 receptor puncta.  Scrib1 regulates GluA1, but not GluA2, endo- and exocytosis. *, p < 
0.05; unpaired t test corresponding to 14-37 neurons from 4 independent experiments. 
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Chapter VIII 

GENERAL DISCUSSION & PERSPECTIVES 
 

 

VIII.1 Scrib1 and neuronal complexity  

 

Neuronal complexity, specifically dendritic branching and morphology, consents individual neurons to ac-

complish specialized brain functions and cognitive behaviours. Abnormal dendritic tree arborisation and the 

consequent altered functional capabilities are therefore common hallmarks for many neuropsychiatric disor-

ders, such as ASD and schizophrenia (Kulkarni & Firestein, 2012). We show that Scrib1
WT

 overexpression
 

increased the dendritic complexity in vitro, whereas Scrib1 loss (Chapter V) or disruption (Moreau et al., 

2010; Chapter VI) leads to a selective increase of the apical or basal dendritic branching, respectively, de-

picting Scrib1 as a key player in neuronal cell polarization. In the last years, an increasing number of evi-

dences suggest that ‘‘planar polarity’’ genes play a crucial role in establishing neuronal cell asymmetries 

(Goodrich, 2008). In the hippocampus, at least one homologue of PCP core gene is present throughout the 

different development stages (Tissir & Goffinet, 2006), including Scrib1 (Piguel et al., 2014). Furthermore, 

PCP proteins and downstream effectors have been repeatedly implicated in neurite outgrowth and remodel-

ling (Rashid et al., 2001; Ng et al., 2002; Sin et al., 2002; Shima et al., 2004; Rosso et al., 2005; Kakimoto et 

al., 2006; Hayashi et al., 2007; Pinyol et al., 2007). Unpublished data from our lab show that Vangl2
Lp/Lp

 mu-

tants display altered growth cone and actin dynamics, possibly due to a decrease in Pak1 protein levels 

(Landmann, Piguel & Moncouquiol, personal communication), strengthening the importance of PCP signal-

ling pathway in neuronal morphology. LAP family and other PDZ domain-containing proteins have been 

shown to affect dendritic arborisation as well (Quitsch et al., 2005; Charych et al., 2006; Vessey & Karra, 

2007; Arikkath et al., 2008; Rocca et al., 2008). Strikingly, Scrib1 overexpression (Chapter VI) and PICK1 

downregulation (Rocca et al., 2008) induced an increase in projections near the cell body and proximal den-

drites as well as a reduction of neurite length, favouring an antagonizing relationship as Densin-180 and 

Shank (Quitsch et al., 2005) or PSD-95 and cypin (Charych et al., 2006). Moreover, mutating Scrib1 actin-

binding site (Scrib1
KK611EE

) prevented Scrib1-mediated dendritic branching complexity in a similar way as 

PICK1
KK251EE 

precluded PICK1 knockdown effect (Rocca et al., 2008). Altogether, our data favours a model 

whereby Scrib1 and PICK1 exert opposite roles on dendritic morphology.  

 

 

VIII.2 Scrib1 and dendritic spine morphogenesis 

 

Previous reports from our group highlighted Scrib1 presence within dendritic spines (Moreau et al., 2010; 

Piguel et al., 2014), whose formation, maturation and elimination is long known to be dependent on actin 

dynamics (Chapter I.5.5.1). During the early stages of synaptogenesis, filopodia arise from a small collection 
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of Arp2/3-mediated branched actin at the dendritic shaft level (Korobova & Svitkina, 2010). We found that 

Scrib1 plays a negative role in filopodia formation and elongation through its interaction with actin and Arp2/3 

complex (Moreau et al., 2010; Chapter VI). Moreover, we show that Scrib1-mediated filopodia number and 

length reduction was abrogated in ASD-related Scrib1
P592S 

mutated form. Interestingly, Scrib1 partner (Chap-

ter I.3.2) and ASD-implicated (Chapter I.5.7.1) APC was recently shown to play a critical role in filopodia 

formation and elongation (Breitsprecher et al., 2012). Preliminary data from our lab suggests that Vangl2, 

another PCP protein known to interact with Scrib1 (Chapter I.3.2), might be involved in filopodia formation as 

well (Carvalho dos Santos & Montcouquiol, personal communication). Additional studies will be needed to 

unravel the exact molecular mechanisms underlying PCP signalling pathway in filopodia morphogenesis. 

Several proteins involved in actin dynamics regulation have been linked to spine formation and maturation as 

well (Chapter I.5.5.1). These include actin binding (Cortactin, Hering & Sheng, 2003; Dbr, Kobayashi et al., 

2007), cross-link (α-Actinin-2, Hodges et al., 2014) or capping proteins (Eps8, Menna et al., 2013; Stama-

takou et al., 2013), NPFs (WAVE, Grove et al., 2004; Abi, Kim et al., 2006; Soderling et al., 2007) or the 

Arp2/3 complex (Mullins et al., 1998; Welch et al., 1998; Hering & Sheng, 2003; Klein, 2009). Together with a 

previous work from our group (Moreau et al., 2010), we found a positive correlation between Scrib1 and 

dendritic spine morphogenesis (Chapter VI). We also show that disrupting Scrib1 binding to actin and the 

Arp2/3 complex phenocopies ASD-mediated spine loss. Although histological examinations of ASD patients, 

Fragile X or FMR1 mouse models show an increase in spine density (Comery et al., 1997; Irwin et al., 2000; 

Hustler et al., 2007), spine loss was formerly observed in schizophrenic patients and in a mouse model of 

Angelman syndrome (Law et al., 2004; Kolomeets et al., 2005; Dindot et al., 2008). These data suggests that 

Scrib1
crc/+ 

(Moreau et al., 2010) and Scrib1
P592S 

(Chapter VI) forms induce an intermediary phenotype be-

tween ASD and other ASD-RD, such as schizophrenia. Finally, Scrib1
P592S 

spines display an aberrant large 

head and long neck (Chapter VI). The same phenotype was previously linked to an abnormal activity-

dependent actin polymerization and irregular Rac activity at the PSD of Scrib1
crc/+

 mice (Moreau et al., 2010), 

as well as to constitutively active forms of Rac1 and Pak1 (Hayashi et al., 2004; Tashiro & Yuste, 2004). 

Altogether, these results pinpoint Scrib1 as a key hub protein acting upstream the Rac1 signalling pathway, 

whose malfunction might underlie aberrant spine formation and maturation in the ASD etiopathology. 

 

 

VIII.3 Scrib1 and PSD functional architecture 

 

Abnormal spine morphology in brain disorders is often linked to a mistargeting of critical proteins to the PSD 

and, consequently, to a failure to correctly form synapses (Kulkarni & Firestein, 2012). Our group has shown 

that Scrib1 loss (Chapter V) or disruption (Moreau et al., 2010; Chapter VI) results into altered PSD struc-

ture, composition and function, pinpointing Scrib1 as a key player in establishing synaptic transmission. In 

the past few years, the advent of super-resolution light microscopy helped to elucidate how neurotransmitter 

receptors, scaffold proteins and actin regulatory proteins are held within in the PSD within a 10–100 nanome-

ter range (Dani & Huang 2010; Fukata et al., 2013; MacGillarvy et al., 2013; Maglione & Sigrist, 2013; Nair et 
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al., 2013; Chazeau et al., 2014). PSD is currently seen as a rather dynamic structure, whose individual com-

ponents are continuously repositioned and exchanged (Kuriu et al., 2006; Blanpied et al., 2008; Sturgill et al., 

2009; Kerr & Blanpied, 2012). Unlike PSD-95, which accumulates in dense, subsynaptic clusters (DeGiorgis 

et al., 2006; Swulius et al., 2010), Scrib1 presents a homogeneous puncta-like distribution within the dendrit-

ic spine (Chapter VI). Moreover, Scrib1 and PSD-95 staining do not overlap, supporting the existence of a 

well-structured pattern of scaffold-cytoskeleton element modules inside the spine (MacGillarvy et al., 2013). 

Nonetheless, Scrib1
WT

 overexpression induces a PSD-95 hyperclusterisation, whereas ASD-related 

Scrib1
P592S

 mutant shows a robust fragmentation of PSD-95 clusters (Chapter VI). Interestingly, overexpres-

sion of a constitutively active form of Rac1 induced a similar effect (Chazeau et al., 2014). Furthermore, 

fragmented or perforated PSDs are believed to precede the formation of newly immature spines (Chapter 

I.5.5.1), strongly suggesting that Scrib1-mediated Rac1 signalling pathway is a key player in dendritic spine 

remodelling. On the other hand, PSD-95 enriched domains are known to concentrate synaptic AMPARs 

clusters (Ehlers et al., 2007; Heine et al., 2008; Kerr & Blanpied, 2012; MacGillarvy et al., 2013; Nair et al., 

2013). Subsynaptical AMPAR positioning relies on AMPARs interaction with, among many others, PSD-95 

via TARPs (Chen et al., 2000; Schnell ey al., 2002; Bats et al., 2007). We found that Scrib1 can form a PDZ-

dependent complex with AMPAR via type I TARPs (Chapter VI). Such interaction is lost upon Scrib1
crc

 over-

expression, suggesting that AMPARs synaptic mistargeting might underlie ASD abnormal synaptic transmis-

sion. Indeed, although Scrib1 upregulation does not change AMPAR synaptic content per se (Piguel et al., 

2014; Chapter VI), the ASD Scrib1
P592S

 mutant displays abnormally high levels of synaptic GluA1-containing 

AMPARs. An excessive number of AMPAR was previously reported by EM studies to be linked to larger 

spine heads and segmented PSDs (Chapter I.5.5.1), further strenghting Scrib1 role in spine development 

and maintenance.  

 

 

VIII.4 Scrib1 and glutamate receptors traffic 

 

Dendritic spines are known to contain spatially diverse subdomains of actin and actin-binding proteins (Racz 

& Weinberg, 2008; Frost et al., 2010; Urban et al., 2011; Willig et al., 2014). Whereas the PSD is seen as a 

confinement zone, bringing in close proximity receptors, regulating scaffold proteins and actin cytoskeleton; 

the perisynaptic area is thought to allow spine distortion during structural rearrangements as well as to posi-

tion receptor traffic machinery (Blanpied et al., 2002, 2008; Kennedy et al., 2010). Besides the PSD, we also 

found Scrib1 in endocytic zones (EZs) (Piguel et al., 2014), suggesting that Scrib1 might play a role in gluta-

mate receptors traffic. The majority of hippocampal dendritic spines contain the full set of endocytic machin-

ery (Blanpied et al., 2002; Racz et al., 2004; Lu et al., 2007b). Glutamate receptors are known to be endocy-

tosed through a dynamin-dependent pathway (Carroll et al., 1999; Luscher et al., 1999). Our Y2H screen 

revealed a potential link between Scrib1 and the adaptor complex AP-2 (Table 9; Chapter III), recently im-

plicated in Scrib1-dependent recycling regulation in Drosophila (De Vreede et al., 2014). We showed that 

Scrib1 can stabilize GluN2A-containing NMDARs at the synapse during basal conditions, whereas it favours 
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GluN2A over GluNB recycling upon activation through a direct interaction with the AP-2 binding motif YEKL 

(Piguel et al., 2014). YEKL was previously shown to regulate synaptic GluN2-containing NMDARs (Scott et 

al., 2004; Prybylowski et al., 2005). A similar AP-2 binding motif, YHEL, is used by the PCP protein Dishev-

elled to engage Frizzled receptor’s internalization upon Wnt activation as well (Yu et al., 2007), favouring the 

involvement of canonical apico-basal polarity genes in the regulation of endocytic traffic (Shivas et al., 2010; 

Dukes et al., 2011; Zeigerer et al., 2012; De Vreede et al., 2014).  

Instead, Scrib1 involvement in AMPAR traffic is less clear. We show that Scrib1 is able to form a complex 

with AMPARs via type I TARPs (Chapter VI). Type I TARPs possess a conserved Cter class I PDZbd able to 

bind several PDZ domain-containing proteins present in the PSD (Chapter I.6). Even tough all these proteins 

are able to regulate AMPAR traffic (Kim & Sheng, 2004; Elias & Nicoll, 2007), they are undetectable in native 

AMPAR complexes (Vandenberghe et al., 2005a), suggesting a less stable and/or more transitory interaction 

with AMPARs than the bona fide AMPAR auxiliary TARP subunits. Our preliminary data shows that Scrib1 

levels specifically affect GluA1, but not GluA2 endo- and exocytosis under basal conditions (Chapter VII). 

Instead, Scrib1 upregulation has no effect on AMPAR total or synaptic number (Piguel et al., 2014; Chapter 

VI), suggesting that Scrib1 might regulate AMPAR subunit-specific endocytic traffic in a similar way as it reg-

ulates NMDAR (Piguel et al., 2014). On the other hand, mutating Scrib1 actin- or W386-mediated Arp2/3-

binding sites significantly decreases the synaptic targeting of GluA1- or GluA2-containing AMPARs, respec-

tively (Chapter VI). These data suggest that Scrib1-mediated actin dynamics regulation might participate in 

the synaptic insertion of subunit-specific AMPARs. Actin cytoskeleton was previously reported to promote 

glutamate receptors positioning without directly anchoring them at the plasma membrane (Kerr & Blanpied, 

2012). Consistent with a model whereby PSD is a highly dynamic matrix, yet composed by a preserved to-

pology (Blanpied et al., 2008), our data suggests that Scrib1 links structural to functional plasticity by bridging 

the AMPAR/TARP complex signalling to the downstream actin cytoskeleton. Additional studies are needed, 

however, to unravel at what level of the secretory pathway does Scrib1 and/or TARP bind GluA1 or GluA2 

subunits. Is the complex formation dependent on synaptic activity and in particular on NMDAR activation 

and/or Scrib1-mediated AMPAR Cter post-translational modifications? Where are AMPAR inserted and/or 

removed; directly at the PSD or rather at the EZ, being laterally diffused to the PSD after? Are the different 

AMPAR subunits differently inserted, stabilized and/or removed at/from the synapse? To what extent do 

other Scrib1 Y2H screen candidates, involved in protein traffic or receptor binding (Chapter III), affect iono-

tropic glutamate receptors traffic as well? 

 

 

VIII.5 Scrib1 and synaptic plasticity 

 

Synaptopathologies associated to a failure to correctly form synapses are further characterized by an inabil-

ity to structurally respond to synaptic activity (Kulkarni & Firestein, 2012). As expected, reduced basal trans-

mission in both Scrib1
crc/+

 (Moreau et al., 2010) and CaMK-Scrib1
-/- 

(Chapter V) mice models was further 

linked to a failure to properly express synaptic plasticity, most likely due to altered levels of CaMKII and PP1/ 
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PP2A. LTP and LTD signalling pathway is well-known to induce spine head enlargement and shrinkage, 

respectively (Matsuzaki et al., 2004; Okamoto et al., 2004; Zhou et al., 2004). The densely packed PSD ar-

chitecture (Sheng & Hoogenraad, 2007) is believed to act as a physical barrier forcing F-actin barbed ends to 

grow away. Accordingly, a recent study proposed PSD as a convergent zone where proteins involved in 

branching F-actin meet with a high probability, whereas F-actin elongation occurs at the tips of transient 

membrane protrusions away from the PSD (Chazeau et al., 2014) (Fig. 29). Indeed, membrane juxtaposed 

to the PSD can retain WAVE  complex elements and IRSp53, which directly or indirectly interact with PSD 

components, such as PSD-95, Shank and CaMKII (Hering & Sheng, 2003; Bockmann et al., 2002; Choi et 

al., 2005; Proepper et al., 2007; Park et al., 2012). Arp2/3 complex, on the other hand, is immobilized in the 

PSD domain upon Rac1 activation, representing the final step of a serie of well synchronized events occur-

ring at the membrane and involving prenylated Rac1-GTP, PIP3, the WAVE complex and IRSp53 (Miki et al., 

2000; Lebensohn & Kirschner, 2009; Chen et al., 2010b; Chazeau et al., 2014). We therefore favour a model 

whereby Scrib1 ensures bidirectional plasticity expression by localizing the appropriate intracellular signalling 

in the immediate vicinity of NMDARs, entailing the correspondent spine morphology changes by coordinating 

a transient nanoscale re-localization of branched F-actin regulators (Fig. 29 a). Following enhanced synaptic 

activity, NMDAR activation triggers CaMKII, releasing WAVE elements that are now available to activate 

Arp2/3 (Park et al., 2012). On the other hand, Scrib1 can activate Rac1 through the βPIX/GIT complex (Mo-

reau et al., 2010), potentially allowing Arp2/3 complex immobilization and consequent WAVE- and IRSp53-

mediated activation in the PSD (Fig. 29 b). Long lasting Rac1 enhancement can then delocalize the WAVE 

complex from the PSD, allowing spine enlargement. It is tempting to speculate that at low levels of gluta-

mate, PP1/PP2A signalling is preferentially activated, probably consenting WAVE sequestration by CaMKII. 

Inactive CaMKII bundles and stabilizes F-actin, precluding F-actin remodelling (Okamoto et al., 2007b; Lin & 

Redmond, 2008). Concomitantly, low levels of activated Rac1 and/or high levels of RhoA might allow cofilin 

 

 
Figure 29: Scrib1 links structural to functional plasticity. (a) The PSD is seen as a confinement zone, bringing in close proximity 
receptors, regulating scaffold proteins and actin cytoskeleton elements, which together promote F-actin nucleation. Instead, the perisyn-
aptic area endorses spine distortion during structural rearrangements, by allowing F-actin elongation at the tip of the membrane protru-
sions. (b) Inside the PSD, a serious of events are needed to properly active F-actin nucleation, including the recruitment and sequential 
activation of Rac1 and Arp2/3 complex. Unlike PSD-95, Scrib1 presents a more homogenous distribution inside the dendritic spine, 
having a closer distribution to VASP or Arp2/3. Moreover, Scrib1 is known to activate Rac1 via the βPIX/GIT1 complex. We therefore 
hypothesize that Scrib1 is freely diffusing in the cytosol as/with Arp2/3, being recruited to the PSD upon synaptic activation. (a, b) taken 
from Chazeau et al., 2014. 
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activation through LIM-K (Luo, 2000), promoting F-actin actin severing and depolymerisation activation. Addi-

tional studies need to be done to understand whether Scrib1 is freely diffuse in the cytosol together with 

Arp2/3 complex and/or if both are similarly recruited to the PSD upon synaptic plasticity events. 

 

 

VIII.6 Scrib1 and brain function 

 

In the last years, our group has outlined the consequences of Scrib1 mutation or loss in the context of brain 

function (Table 13). Both Scrib1
crc/+

 (Moreau et al., 2010) and CaMK-Scrib1
-/-

 (Chapter V) mouse models 

share an altered long-term spatial learning and memory, strongly suggesting that Scrib1 plays an important 

role in spatial memory formation. The early stabilization of long-term spatial memory is known to depend on 

NMDAR activity and downstream effectors (McDonald et al., 2005); whereas the consolidation phase re-

quires a coordination of early PP1/PP2A activity and CaMKII-mediated gene transcription (Bennett et al., 

2001; Von Hertzen & Giese, 2005; Irvine et al., 2006). Interestingly, block of AMPAR endocytosis or pharma-

cological inhibition of PP1/PP2A was shown to hinder LTD expression as well to impair spatial memory (Ge 

et al., 2010; He et al., 2001), both prone to be rescued by enriched environment (EE) exposure (van Praag et 

al., 2000; Foster & Dumas, 2001; Chancey et al., 2013). We showed that EE can induce higher Scrib1 levels 

and alter NMDAR subunit expression (Piguel et al., 2014), as well as to rescue CaMK-Scrib1
-/-

-mediated LTD 

impairment and memory formation (Chapter V). Taken altogether, our findings stress the importance of PCP 

signalling pathway in normal cognitive function. Previous work in our lab showed that Scrib1
crc/+

 mice display 

ASD-like behaviour, featuring enhanced learning and memory but an impaired social behaviour (Moreau et 

al., 2010). These findings were further corroborated by two recent genetic studies implicating Scrib1 in hu-

man ASD (Pinto et al., 2010; Neale et al., 2012). Several PDZ-dependent protein-protein interactions (Chap-

ter I.5.7.1) and PCP signalling pathway proteins (Chapter I.5.7.2) were previously implicated in ASD and 

ASD-RD, strongly favouring an overlap in the genetic etiopathology of several neurological disorders. For 

instance, disruption of the PCP protein Pk2 leads to autism-like behaviours and hippocampal synaptic dys- 

 

Table 13: Mice models used by our lab to dissect Scrib1 role in brain development and function from the cellular to the cognitive level. 

 Scrib1
crc/+

 (Moreau et al., 2010;* Chapter VI) CaMK-Scrib1
-/- 

(Chapter V) 
 

Mouse model 

 

50% full-lenght vs. truncated Scrib1 lacking PDZ3-4; 
No temporal or local specificity; 

 

Full excision at 5 weeks old;  
Specific for major neurons of the postnatal 
forebrain; 

Level 
     Cognitive  

 
Enhanced  learning and memory;  
Impaired social behaviour. 

 
Slower and inflexible spatial learning;  
Impaired long-term consolidation. 
 

     Functional ↓ basal synaptic transmission;  
Impaired LTP; 

↓ basal synaptic transmission;  
Enhanced LTP and impaired LTD; 
 

     Cellular  ↑ synaptic pruning (larger PSDs);  
↓ synapse density and number; 
Altered basal neuronal morphology; 

↑ small immature PSDs; 
= synapse density and number;  
Altered apical neuronal morphology; 
 

     Molecular  ↓ βPIX, GIT, CaMKII levels at the PSD;  
↑ Rac1-GTP activity;  
Impaired activity-dependent actin polymerization;  
Loss of co-localization with the TARP/AMPAR complex*. 

↓PP2A and PP1 levels. 
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function (Sowers et al., 2013). Instead, abnormal behaviours often considered as phenotypes of ASD and 

schizophrenia were similarly found in mice lacking Densin-180, another LAP member (Carlisle et al., 2011). 

Strinkly, small-molecule inhibitor of Pak1, a downstream effector of Scrib1, was recently reported to to ame-

liorate schizophrenia-associated dendritic spine deterioration (Hayashi-Takagi et al., 2014). ASD and schizo-

phrenia share indeed common features, such as impaired social cognition and failure to communicate, key 

higher-order functions dependent on the human neocortex. Miswiring of neocortical circuits often lead to 

anomalous inter-hemispheric connections (reviewed by Kwan, 2013; Chance, 2014) and consequently to 

changes in the corpus callousum area, known to harbour millions of contralateral axonal projections (Bram-

billa et al., 2003; Hrdlicka, 2008). Recent work in our lab showed that Scrib1 loss leads not only to a mistar-

geting of key determinants of neocortical circuit assembly, but also to corpus callosum agenesis (Ezan et al., 

in preparation). Other PCP proteins, such as Fz3 and Celsr3, show similar cortical disorganization and axon 

guidance defects (Tissir et al., 2005; Wang et al., 2006b). In addition, Cdk5, a neuron-specific Rac1 effector 

found in our Y2H screen (Table 9; Chapter III) was also linked to neuronal migration and the laminar config-

uration of the cerebral cortex (Nikolic et al., 1998), stressing PCP pathway role in brain development. Note-

worthy, altered physiological traffic and localization of NMDARs represent a common event in several CNS 

disorders, like Parkinson’s disease or neuropathic pain (reviewed by Mellone & Gardoni, 2013), whereas 

down regulation of protein phosphatases are often associated with cognitive decline and dementia (Tian et 

al., 2002). PP2A, for instance, seems to play a crucial role in the onset of Alzheimer’s disease (reviewed by 

Braithwaite et al., 2012). A key residue of PP2A catalytic subunit (Ppp2ca) Cter PDZbd (Tyr307) binding to 

Scrib1 PDZ4 (Chapter V) was recently linked to the abnormal hyper-phosphorylation of tau in brains of pa-

tients with Parkinsonism-dementia of Guam, a neurodegenerative disease with Parkinsonism and early-

onset Alzheimer-like dementia (Arif et al., 2014). Since Scrib1 binds both NMDAR subunits (Piguel et al., 

2014) and Ppp2ca (Chapter V), it will be interesting to investigate if Scrib1 could be involved in other neuro-

pathological diseases, like Parkinson or Alzheimer’s disease.  

 

 

VIII.7 The importance of targeting Scrib1 PDZome: making protein-protein interactions druggable 

 

VIII.7.1 Scrib1 PDZ domains: tell me who you go with and I'll tell you who you are 

In the first part of this study, we identify specific ligands for Scrib1 PDZ3 and PDZ4 domains (Chapter III). 

PDZ domains are often found together with other functional domains, like the SH3 and GuK domains in 

MAGUKs, or LRR in the case of the LAP family members. Extensive data from epithelial cells long suggest-

ed a common functional pathway shared by MAGUK and LAP members, both crucial in the establishment of 

cellular architecture (Chapter I.4) and gatekeeping malignancy (Chapter I.3.3). Scrib itself was originally 

found alongside with Dlg to be a neoplastic tumour-suppressor gene in Drosophila (Bilder et al., 2000). In 

mammalian cells, several studies have been suggesting the existence of a common signalling pathway 

shared by MAGUK and LAP members. For instance, Erbin can bind PSD-95 and Stgz (Huang et al., 2001b; 

http://www.ncbi.nlm.nih.gov.gate2.inist.fr/pubmed?term=Kwan%20KY%5BAuthor%5D&cauthor=true&cauthor_uid=24290386
http://www.ncbi.nlm.nih.gov.gate2.inist.fr/pubmed?term=Chance%20SA%5BAuthor%5D&cauthor=true&cauthor_uid=25126082
http://www.ncbi.nlm.nih.gov.gate2.inist.fr/pubmed?term=Hrdlicka%20M%5BAuthor%5D&cauthor=true&cauthor_uid=18580841
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Tao et al., 2013). As PSD-95, the MAGUK protein par excellence, Scrib1 binds to NMDAR (Piguel et al., 

2014) and AMPAR through type I TARPs like Stgz as well (Chapter VI). In addition, both PSD-95 and Scrib1 

are known to be involved in the nNOS signalling pathway (Brenman et al., 1996; Richier et al., 2010). Finally, 

PSD-95 and Densin-180 can form a complex with CaMKII in dendrites, thus regulating the signalling trans-

duction pathway downstream NMDARs (Gardoni et al., 2006; Walikonis et al., 2001). Strikingly, disruption of 

MAGUK- or LAP-mediated cell signalling has been repeatedly implicated in ASD and ASD-RD like mental 

retardation or schizophrenia (Tarpey et al., 2004; Hayashi et al., 2007; Barrow et al., 2009; Delorme et al., 

2010; Moreau et al., 2010; Pinto et al 2010; Carlisle et al., 2011; Gilman, et al., 2011; Kantojärvi et al., 2011; 

Neale et al., 2012; Tsai et al., 2012b; Cao et al., 2013; Hayashi-Takagi et al., 2014), strongly favouring an 

evolutive link between the two families in establishing brain development and function. On the other hand, a 

recent hypothesis favours a scenario whereby intramoleular combination or cooperation of PDZ domains can 

function synergically (Grootjans et al., 2000; Raghuram et al., 2001; Zhang et al., 2001). Indeed, 18% of the 

human PDZ-domain containing proteins possess three or more tandem PDZ domains. Unpublished data 

from our group concerning isothermal titration calorimetry experiments between Scrib1 and some of its Y2H 

potential interactors show a higher affinity of most the ligands towards a tandem PDZ34 when compared to 

the isolated PDZ domains (Pinheiro, Blanc & Sans). The strong phenotype induced by the Scrib1
crc

 mutation 

in mice (Murdoch et al., 2003; Moreau et al., 2010) or the loss of Scrib1/TARP/AMPAR interaction in COS-7 

when Scrib1
crc

 form is overexpressed (Chapter VI) pinpoints the importance of Scrib1 tandem PDZ3-4 do-

mains. 

 

VIII.7.2 Making Scrib1 interactions druggable: a potential solution for NTD and ASD? 

The modulation of protein-protein interactions (PPIs) involved in disease pathways has become an attractive 

strategy for developing drugs in the last decades. Hitting more than one disease-related pathway simultane-

ously could be proven more efficacious simply by targeting a single type of protein interaction, rather than a 

single type of protein. PDZ domains, engaged in numerous PPIs with so many and distinct proteins in such a 

variety of cellular contexts, constitute, therefore, auspicious targets for developing novel treatments. In addi-

tion, disruption of PDZ-dependent interactions is a common strategy employed by viruses to enhance their 

viral activity (Javier & Rice, 2011), indicating that this strategy is biologically feasible. The present work has 

highlighted Scrib1 role in several biological contexts, from epithelial cell polarity lost in the tumourogeneis 

context to its function in the proper brain development and maturation. Modulating Scrib1 PDZ domain-

mediated interactions can therefore constitute a novel window of therapeutical treatment of PCP defects, 

including tumorigenesis, NTD, ASD and ASD-related diseases, such as mental retardation or schizophrenia. 

Nonetheless, this promising strategy is based on the well-defined nature of PDZ domain binding sites (re-

viewed by Grillo-Bosch et al., 2013) (Fig. 30 a). So far, only three out of four Scrib1 PDZ domain structures 

are known (Protein Data Bank, RCSB), either by solution NMR (hScrib1 PDZ1, 1X5Q; hScrib1 PDZ2, 1WHA; 

hScrib1 PDZ4 1UJU) or x-ray diffraction (hScrib1 PDZ1, 2W4F) (Fig. 30 b). High-throughput screens like our 

Y2H are therefore helpful in establishing Scrib1 specific PDZ-dependent interactions, possibly contributing to 

the rational design development of Scrib1 PDZ-mediated interaction inhibitors. Even so, much work concern-
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ing known PDZ-dependent Scrib1 interactions highlights the potential therapeutic use of such approach. For 

example, the use of TAT-coupled sequences successfully occluded the effect of PDZ-dependent GluN2 in-

teractions on NMDAR traffic (Gardoni et al., 2009; Bard et al., 2010) and spine morphology regulation 

(Vastagh et al., 2012). On the other hand, competing peptide-based ligands able to prevent NMDAR-

dependent neurotoxicity without blocking the receptor activity (Aarts et al., 2002) were used in primates as a 

potential stroke treatment (Cook et al., 2012) (Fig. 30 b5). Likewise, tumorigenesis-mediated Wnt signalling 

pathway was efficiently inhibited by a peptide-based ligand approach targeting Dvl2 PDZ domain (Zhang et 

al., 2009b), highlighting the potential therapeutic range of disrupting PDZ-mediated interactions. Finally, 

small, potent plasma-stable peptidomimetic compounds like N-cyclohe-xylethyl-ETA(S)V were shown to spe-

cifically disrupt the NMDAR/PSD-95 interaction (Bach et al., 2011) (Fig. 30 b6), signposting the possibility of 

further and more clinically suitable PDZ domain mediated-interactions inhibitors. 

 

 

Figure 30: Potential modulation of Scrib1 PDZ domain interactions. (a) Example of how to modulate a PDZ-mediated receptor 
activity. Besides the traditional approaches, such as the extracellular binding of an agonist or antagonist to the ligand binding site (1) or 
an allosteric site of the receptor (2), intracellular inhibition of PDZ domain-mediated interactions might be proven efficient. Blocking 
peptides (3) or drugs (4) are able to inhibit the receptor’s PDZbd. Cter peptide-based ligands (5) can mask and/or alter the PDZbd con-
formation. Natural or synthetic molecules that allosterically bind the PDZ domain (6) can alter its conformation and interaction proper-
ties. (b) Solution NMR structures of Scrib1 PDZ1, PDZ2, and PDZ4 domains. Protein Data Bank numbers (RCSB database): 1X5Q, 
1WHA, and 1UJU, respectively. (a) adapted from Dev et al., 2004. 
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Chapter IX 

CONCLUDING REMARKS 

 

 

In this study, we depicted Scrib1 role in hippocampal morphology and function. We found that Scrib1 is a key 

player in establishing neuronal complexity as well as in dendritic spine development and maintenance. We 

further strengthen Scrib1 role in PSD architecture and function, emphasizing the importance of Scrib1-

mediated interactions and signalling in synaptic plasticity. Finally, our Scrib1 PDZome study opens up thrill-

ing new potential roles for Scrib1 in other brain functions and disorders. Ultimately, our work reinforces the 

upcoming idea that studying the molecular mechanisms underlying cell polarity establishment and mainte-

nance in the mammalian brain context is a powerful tool to better understand and develop therapies for brain 

disorders. 
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