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remercie tout particulièrement mes rapporteurs, pour leur temps consacré à l’étude du manuscrit.
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Part I

Introduction





General presentation of the dissertation

Foreword

The present Habilitation Thesis is structured into four chapters (or “contributions”) that summa-

rize the material contained in the articles [1–5,7].

Introduction

My scientific activity is mainly dedicated to the mathematical study of models coming from com-

putational physics, and to a less extent, biology. These models are the following:

(i) Stochastically perturbed (thermostatted) Hamiltonian systems. Such systems are widely used

in classical molecular simulation. They are the subject of the papers [4,7], and of Chapter 1

of the present dissertation.

(ii) Fermionic Schrödinger operators, which describes non-relativistic systems of Fermionic (ex-

changeable) particles, and are central to computational chemistry (the particles are the elec-

trons of molecules). Related probabilistic interpretations are studied in the paper [5], and

are presented in Chapter 2.

(iii) Individual-based models of bacterial chemotaxis. Such models describe the random motion of

each bacterium depending on the chemical environment. They are studied in the papers [2,3],

and presented in Chapter 3.

(iv) Boltzmann’s kinetic theory of rarefied gases; with focus on the space homogeneous simplifi-

cation, as well as on the associated conservative N -particle system. It is the subject of the

article [1], and of Chapter 4 of the present thesis.

Although the material is mainly written in mathematical style, the physics of the considered

systems is a non-negligeable source of motivation and intuition. Some contributions are merely the-

oretical, with mathematical theorems analyzing some physically relevant features of the models.

Other contributions ar more applied, with suggestions of numerical methods and realistic numerical

tests.

Different standard mathematical tools are required in the basic analysis of the considered

problems. For instance, some concepts of differential geometry for Hamiltonian systems with con-

straints; the spectral theorem for Schrödinger operators; and usual stochastic calculus associated

with Markov processes in Rd in any case.

In the same way, the classical spectrum of probabilistic tools are used in the core of the

presented contributions. For instance, the reader which is not an expert in probability theory shall

not be completely unfamiliar with the following concepts: (i) changes of probability measures for

stochastic processes, (ii) tightness and convergence in (probability distribution) law for processes;
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(iii) basic Feynman-Kac representation of parabolic partial differential equations, probabilistic

interpretation of boundary conditions; (iv) Coupling methods, which may be summarized for

the unfamiliar reader with the aphorism: “the same random numbers are used to construct (or

simulate) and compare two similar systems, or models”.

Summary of chapters

Thermostatted molecular dynamics

Chapter 1 is devoted to classical Hamiltonian systems, with usual quadratic kinetic and potential

energy decomposition. In the Euclidean space defined by the kinetic energy, the latter decompo-

sition reads

H(q, p) =
1

2
|p|2 + V (q),

with standard notation (q, p) for position and momenta. For N particles in Euclidean space, we

have (q, p) ∈ T ∗R3N ' R3N × R3N , T ∗ denoting the co-tangent bundle. The latter is coupled to

a stochastic thermostat at a given temperature, resulting in a Markov diffusion process called

Langevin processes, which is widely used in molecular simulation. This Markov process has a

unique stationary probability distribution, called the canonical Gibbs probability distribution, de-

fined up to a normalizing constant by

e−βH(q,p)dqdp,

where dqdp is the phase-space (Liouville) measure which will be precised in Chapter 1. When

distributed according this stationary probability distribution, the process is also time reversible

upon momenta reversal p→ −p; so that the canonical Gibbs probability is also called equilibrium

stationary state in statistical mechanics.

In practical molecular systems, the typical vibration period of a molecular bond is the fem-

tosecond (10−15 seconds); while the physically interesting behaviors, like conformation changes in

proteins, are rare events happening on much larger time scales, at least of order 10−9s. Since the

time step stability of a direct numerical time integration of the system is limited by the fastest de-

grees of freedom, millions of iterations are required to simulate and compute interesting physically

phenomenons. This forms the timescale problem.

The main motivation of the contributions of Chapter 1 is to study some numerical methods

that help to overcome this timescale problem, either by accelerating the slowest timescales, or on

the contrary by slowing down the fastest ones.

Slow variables and free energy

Slow variables, also called “reaction coordinates”, or “collective variables”, are described mathe-

matically by smooth functions

ξslow(q) ∈ Rm

of the system position. In Chapter 1, illustrative simulations will be presented where ξslow is the

end-to-end length of a long atomic chain. We focus on methods relying on a prescribed constraint

on these precise slow variables. The basic idea is to reduce by this mean the time required by the

original dynamics to explore the different values of ξslow.

In particular, the computation of free energy, which in this context is simply the image

probability distribution of ξslow under the canonical distribution, is a central theme. When the con-

straint is time-dependent, such calculations can be formulated with the Crooks-Jarzynski relation.

The Crooks-Jarzynski relation is the explicit computation of the relative probability distribution
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between (i) a time-dependent stochastic dynamics with initial equilibrium distribution, and (ii)

looking backward in time the stochastic dynamics obtained by time-reversing the time-dependence.

I have been initiated to related topics during my PhD by G. Stoltz and T. Lelivre, while study-

ing the application of “Population (or Sequential) Monte-Carlo” methods to this field (see [12]). We

also analyzed the case of “over-damped” diffusions (see [11]) where the momenta instantaneously

equilibrated by the strong coupling with the thermostat, and state space of the process reduced

to the the position only. Subsequently, we worked on adaptive methods (see [8, 9]), which broadly

speaking adaptively compute an importance sampling biasing force (or drift). We then wrote a

book (see [10]) summarizing our current understanding of the available techniques to compute

free energy differences. We refer to the latter for a review of the associated computational physics

literature.

The main contribution presented in this dissertation can be found in [4]. It contains the rig-

orous analysis of the case of Langevin processes subject to a prescribed, perhaps time-dependent,

constraint on ξslow. This includes the rigorous mathematical justification of main identities (free

energy calculations, Jarzynski-Crooks relation), as well as a suggestion of variants of numerical

schemes, with some numerical analysis.

Fast variables and mass-penalization

Fast degrees of freedom are also described mathematically by smooths functions

ξfast(q) ∈ Rm

of the system position; typically for molecular systems, they are related to the co-valent interactions

between atoms. For instance in the case of a linear atomic chain: the so-called bond lengths, the

bond angles (formed by three consecutive atoms of a chain), and perhaps the torsion angles (formed

by the two consecutive planes spanned by four atoms in a chain). The main feature of such fast

degrees of freedom is their highly oscillatory nature, which constrain the time step resolution of

numerical schemes.

In [7] (initiated during my post-doc supervised by P. Plechac), I proposed an original method

based on implicit mass penalization, based on an extended Lagrangian formulation. This

idea generalizes ad hoc and explicit changes of the system mass matrix (see [11, 61]). Our

main contribution is the proposition of the latter new method, together with a systematic math-

ematical analysis, as well ad numerical analysis and numerical demonstration of efficiency.

The main advantage of mass penalization is to remove the highly oscillatory nature of fast

degrees of freedom. It does not modify the statistical behavior (here, the canonical distribution

of positions) as do the usual direct constraints on these fast variables. It can also be used to

construct consistant dynamical integrators with lower stiffness in a simple way, by using a time-

step dependent mass penalization.

Fermionic eigenstates

Chapter 2 is devoted to a probabilistic analysis related to skew-symmetric1 (or Fermionic) eigen-

functions of a standard Schrödinger operator, solutions of the eigenvalue problem

−∆
2
ψ∗ + V ψ∗ = E∗ψ∗.

In the above the symmetry constraint refers to an underlying finite symmetry group of the operator,

usually the particles permutations in the case of Fermions.

1 Functions whose sign is changed under odd (det = −1) symmetries
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As is well-known, the eigenfunction with minimal energy E∗ (the groundstate) with a plain (as

opposed to skew) symmetry constraint is a signed real valued function, and is amenable to proba-

bilistic representations (through the Feynman-Kac formula), and thus, to associated Monte-Carlo

numerical computations. This is the basic idea behind Quantum Monte-Carlo (QMC) calculations

of groundstates, and allows a great numerical accuracy.

In the case of Fermions, the skew-symmetric groundstate has no longer a sign, which forbids

any generic Monte-Carlo method. This is the so-called sign problem in computational physics.

The standard method method used in QMC calculations to overcome this problem is to enforce

the skew-symmetry with some Dirichlet boundary conditions given by an initially guessed skew-

symmetric function; the boundary being given by the 0-level set of the latter called the approximate

nodal domain. The fact that the latter approximate nodal domain is not the 0-level set of the

Fermionic groundstate introduces an error () the difference between the Dirichlet energy and the

true Fermionic energy) known as the Fixed Node Approximation (FNA).

I have been initiated to this topic after my PhD by E. Cancès, T. Lelièvre, M. Caffarel and

R. Assaraf while analyzing the application of “Population (or Sequential) Monte-Carlo” methods

to this field (also known as “Diffusion Monte-Carlo” by computational chemists, see [13]).

The main contribution presented in this chapter (see also [5]) has been to give an original

probabilistic characterization of non-vanishing Fixed Node Approximation, in terms of a lack

of symmetry of the distribution a weighted random process killed on the approximate

nodal boundary. In fact, we will show more by relating this lack of symmetry with the shape

derivative of a Dirichlet energy associated with the approximate nodes. This result can give

insight into the attempts of numerical improvements to this Fixed Node Approximation, which

however remains probably a very difficult task.

Bacteria with internal state

In Chapter 3, we consider the motion of flagellated bacteria. The latter consists of a sequence

of run phases, during which a bacterium moves in a straight line at constant speed; then the

bacterium changes direction, at random, in a tumble phase. To bias movement towards regions

with high concentration of chemoattractant, the turning rate of the bacterium is adjusted by an

internal variable, which acts as a memory. If the concentration used to be bigger, the bacterium’s

direction is more likely to change and the turning rate is higher. This leads to a Markov process

for the position, velocity and internal variables. The velocity variable follows a piecewise

constant jump process, whose rate of jump depend on the internal variables. The latter internal

variables obey in turn a position dependent ordinary differential equation.

I have been initiated to this topic by G. Samaey, and we thought it was an original example to

test (asymptotic) variance reduction for the simulation of stochastic particle systems (here, bacte-

ria) using a coupling method. The basic idea is the following: (i) perform deterministic numerical

computations of a simplified, lower dimensional model, (ii) use the obtained information to reduce

the statistical variance of the full Monte-Carlo particle simulation, and thus the computational

cost of the whole simulation. This led to the works [2, 3].

More precisely, we performed a probabilistic coupling, using the same random numbers

defining the random jump times and the new velocities of bacteria, of two different dynamics

of bacteria: (i) the dynamics with a model of internal state , of arbitrary high dimension;

and (ii) the dynamics with direct gradient sensing, where the turning rate is not driven by an

internal state, but directly by the gradient of the chemoattractant concentration. The state space

of the gradient sensing process is then typically of dimension 2d − 1 (d for position, d − 1 for

normalized velocity), and, say, for d = 1, 2 the probability density can be rather easily simulated

with a deterministic grid method (e.g. finite difference or finite volume). The latter deterministic

simulation can then be used as a control variate to reduce the variance of the simulation of

dynamics with internal state. The whole variance reduction method can be sketched by the formula:
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Xvariance reduced := Xinternal −Xgradient sensing︸ ︷︷ ︸
coupled

+ xgradient sensing︸ ︷︷ ︸
deterministic control variate

The first main contribution of the presented works is a preliminary theoretical asymptotic

analysis of processes. First, we consider an asymptotic regime defined by a small parameter ε:

the ratio between the timescale of the turning rate (fast), and the chemoattractant concentration

evolution felt by the bacterium (slow). We prove the pathwise convergence (in probability

distribution, when ε → 0) of the position evolution of both processes (both in the case with

internal state, and in the case with gradient sensing) towards the same drift-diffusion process

(with drift given by the chemoattractant gradient). This was missing in the literature.

The second main contribution consists of the analysis of the coupling which is shown to be

asymptotic in the sense that the difference between the positions of the two coupled processes, on

appropriate diffusive timescales, vanish with ε with an estimated rate. Moreover, variance reduced

numerical methods based on the latter coupling are proposed, and tested. In particular it is shown

that asymptotic variance reduction can be achieved, in the sense that the statistical variance

of the simulation vanishes with the small parameter ε→ 0. This implies that in the non-realistic

situation where the deterministic computation is infinitely cheap as compared to the Monte-Carlo

one, the theoretical gain of the method becomes infinite in the limit ε→ 0.

Markov coupling of Boltzmann collisions

In Chapter 4, we focus on the kinetic theory of collisional gases, in the simplified space homogeneous

case. The associated conservative stochastic Kac’s N -particle system is considered with Maxwell

collisions, and general scattering distribution. For the unfamiliar reader, the latter consists of N

(exchangeable) unit mass particles endowed with a velocity in Euclidean space. They perform at

a constant rate2 random two-body conservative collisions, where kinetic energy and momentum

are preserved.

I have been initiated to this topic during a stay in IPAM (invited by T. Goudon) on kinetic

theory. The main initial motivation was the following: in spite of a very large literature and

tradition on that subject, the quantitative use of the probabilistic Markov coupling method on

this model was lacking. Our initial motivation to study such couplings are the following: (i) the

coupling point of view may give new insight into the trend to equilibrium, which have already

been fully studied mainly by using entropy methods; (ii) the potential use of variance reduction

in DSMC (Direct Simulation Monte-Carlo), which are used to simulate plasmas and rarefied gases

with the stochastic, particle interpretation of kinetic equations (this aspect is still a research

perspective, and will be discussed in the last chapter only).

Let us recall that if t 7→ Vt ∈ E is a time homogeneous Markov process in Euclidean state

space E, then the time homogeneous Markov process t 7→ (Ut, Vt) is called an (symmetric) Markov

coupling if the marginal dynamics of t 7→ Vt and t 7→ Ut are both distributed according to the

same Markov dynamics of interest. We will be interested in the case where the latter is almost

surely weakly contractive (a kind of “dissipative” behavior) in the sense that for some appropriate

distance, here Euclidean, and any 0 6 t 6 t+ h, one has

|Ut+h − Vt+h| 6 |Ut − Vt| a.s.. (0.1)

Typical examples of such couplings are obtained by considering solutions with different initial

conditions but single given Brownian motion t 7→ Wt, of stochastic differential equations in Rd

of the form dUt = −∇V(Ut)dt +
√

2dWt, where V is a convex potential. If V is strongly convex

with constant c > 0, then (0.1) becomes a strict contraction, with constant e−h/c < 1. A similar

2 Independence with respect to positions defines space homogeneity, independence with respect to the
relative speed of two collisional particles defines precisely Maxwell collisions.
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phenomenon occurs for geometric Brownian motions on Riemannian manifolds with uniformly

positive Ricci curvature tensor; the latter playing the same role as the Hessian of V (both cases

are aggregated using the famous “Bakry-Emery” condition for general diffusions on manifolds).

To be more precise, we will focus on coupling creation functionals by computing, for instance

in the quadratic, L2 case,

C2(u, v)
def
= − d

dt

∣∣∣
t=0

EU0=u,V0=v |Ut − Vt|2 > 0.

It is then possible to define a quadratic uniform contraction inequality between coupling and

coupling creation, of the form

C2(u, v) > 2κ |u− v|2 ∀u, v ∈ E, (0.2)

for κ > 0. Then taking for the initial distribution of the process t 7→ Ut a stationary distribution

U0 ∼ π∞ immediately yields exponential trend to equilibrium with respect to the quadratic

Wasserstein distance in the sense that denoting,πt =def Law(Vt),

dW2
(πt, π∞) 6 e−κtdW2

(π0, π∞),

where the Wasserstein distance is defined by

dW2
(π1, π2)

def
= inf

π1=µ1,π2=µ2

(ˆ
|x− y|2 µ(dx× dy)

)1/2

, (0.3)

where µ is spanning all probabilities of E × E with first (resp. second) marginal π1 = µ1 (resp.

π2 = µ2).

The first contribution presented in Chapter 4 is the explicit construction of an almost surely

increasing symmetric Markov coupling of the conservative N -particle system with state space

E = (Rd)N with Maxwell collisions. The coupling is based on: (i) Simultaneous collisions, where

the same particles of the coupled systems perform each collision at the same time; (ii) Spherical

parallel coupling of each collision, a parallel coupling of isotropic random walks on spheres using

geometric parallel transport (a simple elementary rotation in the spherical case). In the present

case, the sphere of interest is Sd−1 and consists of the possible directions of the relative velocity

of two collisional particles. Since in dimension greater than 3, spheres are uniformly positively

curved, the whole coupling of the particle system is indeed weakly contractive. The associated

coupling creation functional is then explicitly computed and given up to a multiplicative constant

by the average (over all particles) of the following alignement functional

C2(u, v) =
d− 2

2d− 2
〈|u− u∗| |v − v∗| − (u− u∗) · (v − v∗)〉N , (0.4)

where (u, v) ∈ (Rd)N × (Rd)N is a coupled state of particle systems, but in the right hand side we

denote (with a slight abuse) (v, v∗) ∈ Rd ×Rd and (u, u∗) ∈ Rd ×Rd two coupled pair of particles

velocities, with 〈 〉N denoting averaging over the particles of the particle system.

The second contribution was to introduce a weakened form of the coupling - coupling creation

uniform inequality (0.2) in the case of the conservative N -particle system with Maxwell collisions.

The key ingredient is an original sharp inequality, which bounds from above the L2 coupling

distance of two normalized random variables with some sort of higher order relative alignement

average. In its simplest form, it satisfies〈
|u− v|2

〉
N

6 2
d

d− 1

〈
|u− u∗|2 |v − v∗|2 − ((u− u∗) · (v − v∗))2

〉
N
, (0.5)
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where (u, v) ∈ (Rd)N × (Rd)N are two centered and energy normalized states (
〈
|u|2
〉
N

=〈
|v|2
〉
N

= 1) with the positive correlation 〈u · v〉N > 0, and the isotropy of co-variance condition

〈(u⊗ u)〉N = 1
d Idd.

Using Hölder inequality to compare (0.4) with the right hand side of (0.5), a weak coupling

- coupling creation inequality is obtained. This yields our last, third contribution: for the Kac’s

N -particle system and with respect to an exchangeable version of the quadratic Wasserstein dis-

tance, we proved uniformly in N an “almost exponential” upper bound on the trend

to equilibrium, with a trade-off between power-law convergence, and higher moments (> 2) of

velocity distributions in constants.

The latter result may be compared to some famous examples, counter-examples and conjec-

tures in kinetic theory. Bobylev and Cercignani in [13], and Villani in [83] proved that moment

dependence and power law behavior are typically necessary and sufficient, when quantifiying re-

turn to equilibrium with the entropy dissipation method. Carlen and Lu in [24], using the

special Wild’s expansion for Maxwell molecules, proved that some form of higher (> 2) moment

dependence in the return to equilibrium is in fact inherent to the kinetic theory with Maxwell

molecules. In particular, the latter results strongly support the idea that in the context of our

result (Maxwell molecules and quantification of distance to equilibrium with a form of euclidean

Wasserstein distance), strict contractivity cannot be satisfied, and some sort of weakened version

should not come as a surprise.

In our study, we gave some counter-examples proving the sharpness of our result (using the

equality case in (0.5)) for the specific considered coupling3.
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[P11] T. Lelièvre, M. Rousset and G. Stoltz, Computation of free energy differences through

non-equilibrium stochastic dynamics: the reaction coordinate case, J. Comp. Phys., 222 (2),

p. 624-643, 2007.

[P12] M. Rousset and G. Stoltz, Equilibrium sampling from non-equilibrium dynamics, J.

Stat. Phys., 123 (6), 1251-1272, 2006.

[P13] M. Rousset, On the control of an interacting particle approximation of Schrödinger ground-

states, SIAM J. Math. Anal., 38 (3), 824-844, 2006.
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1.1 The framework

Foreword (On references)

The literature in computational physics related to numerical methods in molecular dynamics is

extremely vast. We refer to the monograph [57] (written by the author in collaboration with

T. Lelièvre and G. Stoltz) as a reasonable summary of relevant references. We however recall

mathematical references in the present dissertation.

1.1.1 Thermostatted classical systems

We consider a classical N -body (molecular) systems, with positions denoted q ∈ M lying in a

smooth manifold M. For simplicity, in the present exposition, the latter manifold is initially a

periodic 3 dimensional box M = T3N . Then mass-weighted coordinates are considered, that is

to say we measure lengths associated with each atom i = 1 · · ·N with a scale proportional to

the square root of their respective mass m
1/2
i . As a consequence, with such a convention, the

kinetic energy of the system is given by 1
2 |p|

2
where p ∈ R3N is the momentum; the standard

Euclidean norm and associated scalar product being respectively denoted as usual with (·, | |).
The interaction energy potential is supposed to be a given smooth function V : R3N → R. Finally,

the Hamiltonian of the system is thus of the form

H(q, p)
def
=

1

2
|p|2 + V (q),
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with phase-space the co-tangent bundle T ∗M' T3N×R3N . The associated (deterministic) Hamil-

ton’s equations of motion then readdQt = Pt dt = ∂pH(Qt, Pt) dt

dPt = −∇V (Qt) dt = −∂qH(Qt, Pt) dt
(1.1)

In practice, V may be computed either via an ab-initio calculation of the electronic structure of the

molecular system, or on the contrary, may be given as an effective potential (obtained from some

fitting, inductive procedure). Note that electronic structure calculations requires the expensive

numerical estimation of groundstates of Fermionic Schrdinger operators in R3M , where M is the

number of electrons.

Stochastic perturbations (of Gaussian type) are then considered. The latter are given, for each

q ∈ T3N , in the form of a linear diffusion on momenta (an Orstein-Uhlenbeck process) whose

stationary probability distribution is the kinetic Gaussian distribution ∝ e−β
1
2 |p|2 dp in R3N :

dPt = −γ(q)Pt + σ(q) dWt. (1.2)

In the above, γ(q) is assumed to be a strictly positive symmetric smooth tensor satisfying the

fluctuation-dissipation relation:

γ =
β

2
σσT . (1.3)

When stationary (Law(Pt) = Gauss(0, Id), ∀t), the probability distribution of the path (Pt)t>0

of process (1.2) is both (i) reversible, that is to say invariant by time reversal, (ii) invariant by

momenta reversal (Pt → −Pt).
The process (obtained by combining from the Hamilton’s equations (1.1) and the Gaussian

fluctuation-dissipation (1.2)) is often called a Langevin process and readsdQt = Pt dt

dPt = −∇V (Qt) dt− γ(Qt)Pt + σ(Qt) dWt.
(1.4)

It satisfies the following basic properties:

(i) It is ergodic1, in the sense that for any initial condition (Q0, P0) = (q0, p0) and bounded test

function ϕ:

lim
t→+∞

1

t

ˆ t

0

ϕ(Qt, Pt) dt =

ˆ
T∗M

ϕ(q, p)µ(dqdp) a.s.,

with respect to the unique stationary probability distribution given by the canonical distri-

bution:

µ
def
=

1

Z
e−βH(q,p) dqdp.

In the above, Z is the normalization constant required to obtain a probability, and dqdp is

the phase-space, or Liouville reference positive measure induced by the symplectic structure

of T ∗M (the Lebesgue measure in the chosen canonical (q, p) coordinates).

(ii) If stationary, the probability distribution of the whole process (in path space) is time re-

versible up to momenta reversal (p→ −p), which means that for any T > 0 the probability

distribution of (Qt, Pt)t∈[0,T ] and (QT−t,−PT−t)t∈[0,T ] are the same.

The proof of the latter assertion are a direct consequence of (i) Liouville’s property of phase-

space volume conservation, which follows from the symplecticity of Hamilton’s equations, (ii)

time reversibility up to momenta reversal of the Hamiltonian dynamics, which follows from the

1 Technical assumptions of regularity and growth at infinity of V and σ are required.
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invariance of the Hamiltonian 1
2 |p|

2
+ V (q) under momenta reversal, (iii) time reversibility up to

momenta reversal of stationary Orstein-Uhlenbeck processes.

1.1.2 Numerical motivation: the timescale problem

As already mentioned, the main difficulty in many numerical computations of realiostic molecular

systems is the presence of separated time scales. In this dissertation, we consider the case where

the fastest or the slowest degrees of freedom of the system have been identified, in the form of

smooth, independent (see next section for a definition) functions:

ξslow/fast :M→ Rm.

Such special degrees appear in practical situations in the following contexts:

(i) When ξslow is a given reaction coordinate (also called slow, or collective variables) parameter-

izing a transition between “states” of chemical or physical interest. For instance one can take

for ξslow (with m = 1) the distance between two extremal atoms of a long linear molecule. In

this context, an important information of interest is the computation of the ξslow-marginal

probability density (the “free energy”) defined as

F (z)
def
= − 1

β
ln

ˆ
R3N

e−βV (q)δξslow(q)−z(dq), (1.5)

where δξslow(q)−z(dq) is the conditional distribution2 defined by the chain rule:

δξslow(q)−z(dq) dz = dq,

dq being the (mass metric, here Euclidean) Lebesgue measure.

(ii) When ξfast is a given molecular constraint, such as covalent bonds, bond angles (formed by

three consecutive atoms of a chain), or even torsion angles (formed by the two consecutive

planes spanned by four atoms in a chain). These degrees of freedom are of vibrational nature

and generates a highly oscillatory dynamics. The direct numerical intergation of the latter

is thus very stiff, with time step resctricted to the timescale of the fastest vibrations.

A typical simple numerical treatment is to enforce a constraint of the form ξfast(q) = z0, where

z0 is the expected average value. The latter method may removes the stiffness by constraining

the position manifold of the system into the slower manifold {q ∈M|ξfast(q) = z0}, but by

changing the phase-space introduces incontrolled sources of approximation.

1.1.3 Constrained dynamics

Hamiltonian systems can be rather easily constrained by using some independent position con-

straints defined by:

ξ(q)
def
= (ξ1(q), . . . , ξm(q)) = z ∈ Rm,

The resulting system is again an Hamiltonian system with Hamiltonian H, with phase-space the

co-tangent bundle T ∗Σz where

T ∗Σz
def
=
{

(q, p) ∈ T3N × R3N
∣∣∣ ξ(q) = z, p · ∇ξ(q) = 0

}
, (1.6)

Σz being a sub-manifold of co-dimension m. The smoothness of the implicitly defined sub-manifold

Σz is ensured by the implicit funtcion theorem, as soon as the Gram tensor:

2 NB: the latter is well-defined under the invertibility condition of the Gram tensor defined in Sec-
tion 1.1.3.
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G(q)
def
= (∇qξa · ∇qξb)a,b=1···m ∈ Rm×m

is invertible for any configuration q ∈ Σz. Constrained Hamilton’s equations of motion associated

with the pair (H,T ∗Σz) can be derived (e.g. using the associated Lagrangian), and yields (we

refer to [4, 56] for mathematical textbooks dealing with constrained Hamiltonian dynamics):
dQt = Pt dt,

dPt = −∇V (Qt) dt+∇ξ(Qt) dΛt,

ξ(Qt) = z. (Cq)

(1.7)

In the above t 7→ Λt ∈ Rm is a uniquely defined Lagrange multiplier associated with the constraint

(Cq) and can be computed explicitly to be

dΛt = frgd(Qt, Pt) dt

where the constraining force reads (matrix product notation is implicitly used in Rm)

frgd(q, p) = G−1(q)∇ξ(q) · ∇V (q)−G−1(q)Hessq(ξ)(p, p) ∈ Rm. (1.8)

Deriving the constraint through time d
dtξ(Qt) yields the hidden momenta constraint

Pt · ∇ξ(Qt) = 0. (Cp)

The system (1.7) is usually simulated using the so-called RATTLE scheme, an extension of the

Störmer-Verlet scheme: with constraints:

Pn+1/2 = Pn − ∆t

2
∇V (Qn) +∇ξ(Qn)Λn+1/4,

Qn+1 = Qn +∆tPn+1/2,

Pn+1 = Pn+1/2 − ∆t

2
∇V (Qn+1) +∇ξ(Qn+1)Λn+3/4,

ξ(Qn+1) = z, Pn+1 · ∇ξ(Qn+1) = 0, (Cq, Cp)

(1.9)

where typically the (non-linear) position constraint (Cq) with associated Lagrange multiplier

Λn+1/4 is enforced using a Newton iterating procedure. This typically adds a restriction on the

time step size due to the non-linearity of ξ. The following facts are well established in the literature

(see Chapter VII.1 in [47], or Chapter 7 in [56] for more precisions and historical references):

Lemma 1.1. The RATTLE scheme (1.9) can be characterized by the following properties

(i) It is explicit with respect to force computations ∇qV ,

(ii) It is invariant by combined reversal of time (n ↔ n + 1) and momenta (P ↔ −P ) (time

symmetry),

(iii) Its flow defines a symplectic map on T ∗Σz, which is variational with discrete Lagrangian

L∆t(qn, qn+1)
def
=

∣∣qn − qn+1
∣∣2

2∆t2
− 1

2
V (qn)− 1

2
V (qn+1), ξ(qn) = ξ(qn+1) = z,

and momentum map set by

pn = ∇qnL∆t(qn−1, qn) +∇ξ(qn)Λn−1/4

= −∇qnL∆t(qn, qn+1)−∇ξ(qn)Λn+1/4. (1.10)
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The latter properties explain the overwhelming practical sucess of this scheme. Let us recall that

by “variational” it is meant that the positions evolution (qn−1, qn) → (qn, qn+1) can be exactly

written as the Euler-Lagrange equations extremizing the above discrete Lagrangian. Then the

momenta solution of (1.7) defines a discrete version of the Legendre transformation from the

Lagrangian viewpoint to the Haimltonian viewpoint. Because of this structure, such schemes are

generically “symplectic”, meaning that the numerical flow on the phase-space T ∗Σz preserves

the natural symplectic form induced by the cotangent structure. This has the consequence that

the Liouville phase-space measure3 (induced by the symplectic differential form) on T ∗Σz, and

denoted

σT∗Σz (dqdp)

is also conserved by the latter numerical flow. Let us denote by Φ the numerical flow of the RATTLE

scheme (1.9). The time-symmetry and volume conservation yields the so-called “detailed balance

condition” up to momenta reversal:

σT∗Σz (dq
ndpn)δΦ(qn,−pn)

(
dqn+1dpn+1

)
= σT∗Σz

(
dqn+1dpn+1

)
δΦ(qn+1,−pn+1) (dqndpn) . (1.11)

To obtain stochastic thermostatting with mechanical constraints, it is useful to consider con-

strained stochastic Gaussian processes as follows:

dPt = −γP (q)Pt dt+ σP (q) dWt, (1.12)

where the tensors (γP , σP ) of the submanifols Σz: (i) still satisfy the fluctuation/dissipation rela-

tion (1.3); (i) have their images in the co-tangent space Im(σP (q)) ⊂ T ∗qΣz for any q ∈ Σz.
The resulting process (obtained by combining from the constrained Hamilton’s equations (1.7)

and the constrained Gaussian perturbation (1.12)) can be called a constrained Langevin process

and reads 
dQt = Pt dt,

dPt = −∇V (Qt) dt+∇ξ(Qt) dΛt − γP (Qt)Pt dt+ σP (Qt) dWt,

ξ(Qt) = z. (Cq)

(1.13)

Again, t 7→ Λt ∈ Rm is a Lagrange multiplier adapted with the filtration of the Brownian motion,

and associated with (Cq). The associated stationary probability distribution is now given by

µz
def
=

1

Zz
e−βH(q,p) σT∗Σz (dqdp), (1.14)

where Zz is the normalization constant. When the process (1.13) is stationary, the probability

distribution of its trajectories satisfy the same invariance under combined time and momenta

reversal.

Note that the constrained fluctuation dissipation part (1.12) can be easily discretized using a

mid-point scheme, which can be shown to still be reversible (both in the plain sense and up to

momenta reversal) with respect to the (kinetic part of the) canonical distribution (1.14). Typi-

cal numerical schemes for langevin processes with constraints can be thus constructed from the

above discussion with splitting procedures between the Hamiltonian part (1.9), and the fluctua-

tion/disspation part (1.12).

3 In the present context, the phase-space measure identifies with the product of the Riemann volumes
induced by the (mass) metric on positions, as well as momenta.
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Remark 1.1 (Metropolis acceptance-rejection). It is (at least in principle) interesting to

keep in mind that the detailed balance condition (1.11) enables to construct Metropolis accep-

tion/rejectance rules out of Langevin processes constructed from the RATTLE scheme (we refer

to [43, 50, 59] for historical references on Metropolis for Hamiltonian systems). The latter rule

works as follows, using the notation of (1.9):

(i) Accept (Qn+1, Pn+1) from (1.9) with probability min
(

1, e−β(H(Qn+1,Pn+1)−H(Qn,Pn))
)

,

(ii) Otherwise reject and reverse momenta by setting (Qn+1, Pn+1) = (Qn,−Pn).

The resulting random transition (Qn, Pn) → (Qn+1, Pn+1) now satisifies “detailed balance” (up

to momenta reversal) with respect to the exact, canonical probability distribution (1.14), and lead

to schemes without time step bias.

However, global Metropolization of large systems suffer from two distinct drawbacks: (i) the

acceptance rate drastically vanishes with the number of degrees of freedom, due to the fluctuations in

the Metropolis weight; (ii) the global momenta reversal in the rejection step removes the potentially

positive effect of inertia on mixing times.

1.2 Slow degrees of freedom and free energy calculation

We consider independent slow degrees of freedom ξslow :M→ Rm, as described in the last section.

The main goal in the present section is to analyze some numerical methods calculating the

free energy (1.5) (that is to say, essentially, the equilibrium marginal distribution) associated

with the slow degree of freedom ξslow.

1.2.1 Free energy calculation and constrained canonical distributions

The free energy F : Rm → R defined in (1.5) by the ξ-marginal probability density can in fact be

calculated from the normalization Zz of the constrained canonical distribution (1.14). It is given

through the co-area(-like) formula:

F (z1)− F (z0) = − 1

β
ln
Zz1
Zz0
− 1

β
ln

ˆ
T∗Σz

(detG)−1/2dµz0ˆ
T∗Σz

(detG)−1/2dµz1

. (1.15)

As a consequence, we will focus on the computation of ratios of the form
Zz1
Zz0

, keeping in

mind that differences of free energy F (z1)− F (z0) can be obtained by evaluating (1.15).

1.2.2 Jarzynski-Crooks identity and ‘Thermodynamic Integration” (TI)

In the present section, we will lay the emphasis on the so-called Jarzynski-Crooks identity. The

latter may be interpreted as a time-dependent generalization of the time reversibility for Langevin

processes as (1.4). In a sense, the other topics (the time-independent “thermodynamic integration”

method to calculate free energy, the physical concepts of work, free energy) can be deduced from

it.

We first recall that the reversibility property of a random process can be written as follows for

any time T :

Eµ (Ψ0→T (Q,P )) = Eµ (ΨT→0(Q,−P )) ,

where in the above:
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1. t 7→ (Qt, Pt) is a Langevin process as (1.4) or (1.13) (reversible up to momenta reversal) with

stationary probability distribution µ.

2. Eµ implicitly define the initial probability distribution (Q0, P0) ∼ µ.

3. Ψ0→T is an appropriate functional on path space, for instance in the finite dimensional case:

Ψ0→T (x) = Ψ(x0, xt1 , xt2 , · · · , xtn , xT ),

where 0 6 t1 6 · · · 6 tn 6 T is some time ladder.

A more abstract way to state reversibility is to consider the relative probability of a stationary

trajectory, and of the trajectory obtained by combined momenta and time reversal. It yields:

ln
Lawµ

(
(QT−t,−PT−t)t∈[0,T ]

)
Lawµ

(
(Qt, Pt)t∈[0,T ]

) = 0

The most direct way to state Jarzynski-Crooks identity is to assume that the potential energy

Vz(q) depends on an external parameter z ∈ Rm, and to consider the time-dependent Langevin

process dQt = Pt dt,

dPt = −∇Vz(t)(Qt) dt− γ(Qt)Pt + σ(Qt) dWt.
(1.16)

Until the end of this section only, we will abuse notation and denote, as in the constrained

case,

µz(dqdp) =
1

Zz
e−Hz(q,p)dqdp

the canonical distribution with normalization Zz, and associated with the Hamiltonian Hz(q, p) =

|p|2 /2 + Vz(q).

The Jarzynski-Crooks identity then reads, for any θ ∈ [0, 1]:

Eµz(0)

(
Ψ0→T (Q,P ) e−θβW0→T (Q,P )

)
=
Zz(T )

Zz(0)
Eµz(T )

(
ΨT→0

(
Qb,−P b

)
e−(1−θ)βWT→0(Qb,Pb)

)
. (1.17)

In the above:

(i) Eµ indicates the initial distribution of the process.

(ii) t 7→ (Qb
t , P

b
t ) is solution of (1.16), but with backward time dependence, zb(t) = z(T − t), t ∈

[0, T ] replacing z(t), t ∈ [0, T ].

(iii) The work functional W0→T is actually the energy brought to the system by the time-

dependance in the Hamiltonian, and is defined by

Wt0→t1(q, p)
def
=

ˆ t1

t0

(∂zHz)z=z(t) (qt, pt) ż(t)dt.

It satisfies the symmetry conditions

Wt0→t1(q, p) =Wt0→t1(q,−p)
= −Wt1→t0(q, p).

It may be very enlightening to rewrite (1.17) (taking θ = 1) as the relative probability of trajec-

tories between, (i) the process (1.16) with backward time dependence zb(t) = z(T − t), t ∈ [0, T ],

and transformed by combined momenta and time reversal, (ii) the original time-dependent pro-

cess (1.16). It yields
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ln
Lawµz(T )

(
(Qb

T−t,−P b
T−t)t∈[0,T ]

)
Lawµz(0)

(
(Qt, Pt)t∈[0,T ]

) (q, p) = − ln
Zz(T )

Zz(0)
− βW0→T (q, p). (1.18)

Note that ratios of normalizations of canonical distributions can then be computed
Zz(T )

Zz(0)
using

the identity (1.17) for Ψ0→T ≡ 1.

Remark 1.2 (Second law of thermodynamics). By applying Jensen inequality in (1.17), one

obtains the “free energy version” of the second law of thermodynamics for any thermostatted Hamil-

tonian systems, namely:

E (W0→T (Q,P )) > − 1

β
ln
Zz(T )

Zz(0)
. (1.19)

The latter amounts to say that the expected dissipated work is always greater than the “free energy”

variation defined by

∆F
def
= − 1

β
ln
Zz(T )

Zz(0)
.

To relate the latter with the usual second law of thermodynamics, one can then assume that the

time-dependence is stopped at T and set z(T + h) = z(T ), h > 0. Then, we can define the random

heat received by the system from the thermostat by using conservation of energy:

Q0→T+h(Q,P )
def
=
(
Hz(T )(QT+h, PT+h)−Hz(0)(Q0, P0)

)
−W0→T (Q,P ) ;

and the random entropy received by the system from the thermostat is identified as in classical

thermodynamics (up to the Boltzmann constant) with the exchanged heat:

Sexch,0→T+h(Q,P )
def
= βQ0→T+h(Q,P ).

Then (i) averaging, (ii) taking the limit h→ +∞ using the mixing property of Langevin processes,

and (iii) using the inequality (1.19) yields

E (Sexch,0→+∞) 6 β (∆U −∆F )
def
= ∆S,

where the energy is defined as the average energy under canonical distribution U(z) =def Eµz (Hz(Q,P )).

Thus Jarzynski relation can be interpreted as a quantitative and stochastic version (and also valid

for small systems) of the usual second law of thermodynamics applied to equilibrium Gibbs states.

Jarzynski’s identity can also be seen as a time-dependent version of the thermodynamic inte-

gration method (TI), which amounts here to the direct differential identity

d

dz

(
− 1

β
lnZz

)
=

ˆ
T∗M

(∂zHz) (q, p)µz(dqdp), (1.20)

which simply states that the derivative of free energy is the canonical average of the associated

virtual work exerted on the system by a change of the considered parameters dz.

Sketch of proof of (1.17)

Since it can be explained very quickly, we detail the idea behind Jarzynski-Crooks formula. We

assume for simplicity that the system is isolated (no thermostat ), and that time is discrete.

Denote by Φz
n+ 1

2

the Hamiltonian flow of (1.16) between time tn and time tn+1 with parameter

zn+1/2 (kept fixed). Consider the “detailed balance” (1.11) of Hamiltonian flows which can be

rewritten here with energy conservation
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e
−βHzn+1/2

(qn,pn)
dqndpnδΦzn+1/2

(qn,−pn)(dq
n+1dpn+1) =

e
−βHzn+1/2

(qn+1,pn+1)
dqn+1dpn+1δΦzn+1/2

(qn+1,−pn+1)(dq
ndpn).

then defining the physical work to be

Wn,n+1 = Hzn+1/2
(qn, pn)−Hzn(qn, pn) +Hzn+1

(qn+1, pn+1)−Hzn+1/2
(qn+1, pn+1),

we exactly obtain a discrete, one step version of the Jarzynski-Crooks relation (1.17). The time

continuous case is obtained formally by taking ∆t → 0. The case with thermostat coupling is

obtained by using the detailed balance relation satisfied by the Orstein-Uhlenbeck process (1.2)

on momenta.

1.2.3 Results

Assume now that the constrained Langevin process (1.13), is modified using a time dependent

mechanical constraint of the form:
dQt = Pt dt,

dPt = −∇V (Qt) dt+∇ξslow(Qt) dΛt − γP (Qt)Pt dt+ σP (Qt) dWt,

ξslow(Qt) = z(t), (Cq)

(1.21)

the Lagrange multiplier t 7→ Λt being similarly associated to the constraint (Cq). In order to

simplify the presentation of the results, we assume that

ż(0) = ż(T ) = 0. (1.22)

The first main contribution is the rigorous proof of Jarzynski-Crooks relation (1.17) for

the process with constraints (1.21). The proof is based on the generalization of time symmetry

by momenta reversal and symplecticity in the case of time-dependent position constraints. The

time-independent case (“thermodynamic integration”) is also considered.

Result 1.1 (Jarzynski-Crooks and TI).

(i) Consider the time-dependent constrained Langevin process defined by (1.21), as well as the

constrained canonical distribution (1.14). Then (assuming 1.22) the Jarzynski-Crooks rela-

tion (1.17) holds true with the following two (equivalent) definitions of the work

Wz(0)→z(T ) (Q,P )
def
=

ˆ T

0

ż(t) dΛt, (1.23)

=

ˆ T

0

d

dh
H (Φt,t+h(Qt, Pt)) dt, (1.24)

where Φt,t+h denotes the deterministic flow obtained by considering an isolated system (taking

(γP , σP ) = (0, 0) in (1.21)). Note that (1.23) can be interpreted as the variation of the

reaction coordinate ξslow times the associated “exerted force” given by the Lagrange multiplier;

while (1.24) can be interpreted as the virtual energy variation obtained by isolating the system

from the thermostat.

(ii) For time-independent constraints (z(t) = cte in (1.21), or equivalently (1.7)-(1.12)), we have

for any T > 0

d

dz

(
− 1

β
lnZz

)
= Eµz

(
1

T

ˆ T

0

dΛt

)
= lim
T→+∞

1

T

ˆ T

0

dΛt a.s..
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The second main contribution was to focus on the associated numerical schemes (based on

the RATTLE scheme (1.7)).

Result 1.2 (Numerical schemes).

(i) Consider the time-dependent constrained Langevin (1.21), discretized using a splitting of the

form:

Hamiltonian part with RATTLE (1.7)

+

Gaussian fluctuation-dissipation part (1.12)

(e.g. with mid-point)

Then, a discretization of the work based on the energy (1.24) (using the notation of (1.7)),

Wn,n+1
def
= H

(
Qn+1, Pn+1

)
−H (Qn, Pn)

yields an exact (no time-step discretization error) discrete Jarzynski-Crooks relation (1.17).

A discretization of the work based on force, or Lagrange multipliers (1.23) (using the notation

of (1.7)),

Wn,n+1
def
= (z(tn+1)− z(tn))

(
Λn+1/4 + Λn+3/4

)
has an order 2 time-step discretization error.

(ii) In the time-independent case (z(t) = cte), only the discretization based on force, or Lagrange

multipliers (1.23) is stable. Up to the use of a Metropolis acceptance-rejection correction4, it

yields an exact (at the cost of computing Hess(ξslow) in the formula (1.8) for frgd), or a (time

step) second order estimate:

d

dz

(
− 1

β
lnZz

)
= Eµz (frgd(Q,P ))

= Eµz
(
Λn+1/4 + Λn+3/4

)
+O(∆t2). (1.25)

Finally, the last contribution was to remark that the above setting contains as a special case

the “overdamped” limit dynamics. The so-called “overdamped” dynamics with constraints

is solution to the stochastic differential equation:dQt = −∇V (Qt) dt+

√
2

β
dWt +∇ξ(Qt) dΛod

t ,

ξ(Qt) = z(t),

(1.26)

where Λod
t is an adapted stochastic process (explicitly computable) such that ξ(Qt) = z(t).

Result 1.3 (Overdamped limit). Consider the constrained Langevin process (1.21) (in the limit

γP → +∞), discretized using a splitting of the form:

Hamiltonian part with RATTLE (1.7)

+

Indepedent sampling of momenta at equilibrium.

It yields the explicit Euler discretization of (1.26) with new time-step ∆s=def ∆t2/2, and with

associated new numerical properties:

(i) Proof of the Jarzynski-Crooks relation without time-step discretization error (time-dependent

case);

4 Time-step bias of discretization has to be added otherwise.
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(ii) Proof of the Jarzynski-Crooks relation with variance reduced work estimator based on the

Lagrange multipliers (1.25) of the RATTLE scheme (time-dependent case);

(iii) TI relation with variance reduced work estimator (1.25) based on the Lagrange multipli-

ers (1.25) of RATTLE (time-independent case);

(iv) Exact sampling of constrained canonical distributions (1.14) using the Metropolis acceptance-

rejection rule defined in Remark 1.1 (time-independent case).

1.3 Mass penalization of fast degrees of freedom

The main idea of mass penalization is to remove the highly oscillatory nature of fast degrees

of freedom, leading to larger stable time-steps and faster numerical computation, but without

modifying the statistical behavior (here, the canonical distribution of positions). Indeed,

usual, direct constraints on these fast variables do change the phase-space and thus introduce an

uncontrolled source of approximation. Mass-penalization can also be used to construct in a simple

way consistent integrators of Hamiltonian dynamics, with lower stiffness, by using a time-step

dependent mass penalization.

In [7], we have proposed a method, based on an artificial mass penalization, to simulate molec-

ular systems with known fast degrees of freedom denoted:

ξ ≡ ξfast ∈ Rm.

This method extends in a systematic way the idea of modifying the mass-tensor of a physical

system in order to slow down its highly oscillatory components (see the previous works [11,61]).

1.3.1 Presentation

We consider a classical (molecular) system in the framework of Section 1.1. The mass-metric of

the system is then penalized with a tensor modification given by

Mν(q)
def
= Id3N + ν2

m∑
a=1

∇qξa,fast ⊗∇qξa,fast, (1.27)

where ν > 0 denotes the penalty intensity. Intuitively, and by design, the latter modification does

impact the part of momenta orthogonal to the fast degrees of freedom.

When analyzing the associated canonical distribution, the position dependence of the mass-

penalization (hence of the kinetic energy) introduces a bias. This bias is corrected by introducing

an effective potential

Vfix,ν(q)
def
=

1

2β
ln (det(Mν(q))) . (1.28)

The latter can be interpreted as a perturbation near ν = +∞ (large penalty) of an effective po-

tential originally introduced by Fixman to model thermostatted highly oscillatory systems around

a slow manifold, and given by

Vfix(q)
def
=

1

2β
ln (G(q)) . (1.29)

It can be shown with a determinant identity that Vfix,ν → Vfix when ν → +∞ up to a constant.

Definition 1.1. The mass-penalized Hamiltonian dynamics in T ∗M is equivalently defined by its

Hamiltonian or its Lagrangian:{
LIMP(q, v) = 1

2v
TMν(q)v − V (q)− Vfix,ν(q)

HIMP(q, p) = 1
2p
TM−1

ν (q)p+ V (q) + Vfix,ν(q)
(1.30)
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Moreover, we have the consistent position marginal probability distribution

ˆ
T∗qM

e−βHIMP(q,p)dqdp ∝ e−βV (q)dq.

To avoid difficulties related to the (geometric) integration of non-separable Hamiltonians, the

key point here is to use an implicit representation of the mass-penalty using the extended phase-

space T ∗ (M× Rm) together with m position constraints. The extended Lagrangian of the dy-

namics is thus a function of the extended tangent space, and reads for (q, z, v, vz) ∈ T (M× Rm)

{
LIMP(v, vz, q, z) = 1

2 |v|
2

+ 1
2 |vz|

2 − V (q)− Vfix,ν(q),

ξν(q, z) = 0, (Cν)
(1.31)

where in the above we have defined

ξν(q, z) = ξfast(q)−
z

ν
.

The constraints (Cν) are applied in order to identify the auxiliary variables and the fast degrees

of freedom ξfast with a coupling intensity tuned by ν. The position constraint (Cν) also implies

that the velocities satisfy v · ∇ξfast(q) = 1
ν vz, so that the Lagrangian (1.31) is equivalent to the

Lagrangian (1.30) in original tangent space T (M).

In the same way, the original mass-penalized Hamiltonian (1.30) can be interpreted as a con-

strained Hamilonian system in co-tangent space T ∗ {(q, z) ∈M× Rm|ξν(q, z) = 0} which reads{
HIMP(p, pz, q, z) = 1

2 |p|
2

+ 1
2 |pz|

2
+ V (q) + Vfix,ν(q),

ξν(q, z) = 0. (Cν)
(1.32)

The extended Hamilonian system with constraints obtained by this mean, can then be coupled

to a thermostat, using a Langevin equation of the form (1.7)-(1.12), which yields a stochastically

perturbed dynamics that samples the equilibrium canonical distribution (with marginal in position

independent of the penalty ν). It is defined by the following equations of motion

dQt = Ptdt

dZt = Pz,t

dPt = −∇V (Qt)dt−∇Vfix,ν(Qt)dt− γPtdt+ σdWt −∇ξfast(Qt) dΛt

dPz,t = −γzPz,tdt+ σzdWz,t + 1
ν dΛt

ξfast(Qt) = Zt
ν (Cν)

(1.33)

The process t 7→ (Wt,Wz,t) ∈ R3N+m is a standard multi-dimensional Brownian motion, γ (resp.

γz) a 3N × 3N (resp. m×m) non-negative symmetric dissipation matrix, assumed to be position

independent for simplicity. The fluctuation- dissipation is supposed to hold: σσT = 2
β γ (resp.

σzσ
T
z = 2

β γz). The processes t 7→ Λt ∈ Rm are Lagrange multipliers associated with the con-

straints (Cν) and adapted with the noise filtration. It can be checked that the stochastic process

with constraints (1.33) is equivalent to a Langevin diffusion in T ∗M with the mass-penalized

Hamiltonian (1.30), and a dissipation tensor given by

γν(q) = γ + ν2∇ξfast(q) γz∇T ξfast(q).
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The typical time scale of the fast degrees of freedom is thus enforced using the penalty ν.

1.3.2 Results

The main contributions of the present section consist then in proving the following facts:

(i) In the limit of vanishing penalization (ν = 0), the original dynamics enables the construction

of dynamically consistent smoothed numerical schemes by taking a time-step dependent

penalization, for instance satisfying ν(∆t) = O∆t(1).

(ii) In the limit of infinite penalization, the fast degrees of freedom are frozen, and the

dynamics is a standard effective constrained dynamics on the ”slow” manifold Σξfast(Q0) =

{q|ξfast(q) = ξfast(Q0)} prescribed by the initial condition.

(iii) For “stiff” potentials with stiffness parameter 1/ε, a penalization of order O( 1
ε ) yields an

effective dynamics on the associated slow manifold.

(iv) Numerical integrators can be obtained through a simple modification of the standard RAT-

TLE integrator (1.9) for constrained Hamiltonian systems, with equivalent computational

complexity. The latter is then asymptotically stable, in the sense that setting ν = 0

or ν = +∞ yield consistent and stable discretization of the respective continuous limiting

dynamics.

(v) Numerical tests on large alkane molecules (with penalized covalent bonds, bond angles, and

torsion angles) illustrates the forementioned properties.

The first main result is the fact that the method yields an interpolated dynamics between the

original, exact one, and the constrained one.

Result 1.4 (Exact/Constrained Interpolation).

(i) Consider the constrained Langevin process (1.33). When ν → 0, the process {Pt, Qt}t>0 ∈
T ∗M converges in the sense of probability distributions on continuous paths towards the

original constrained Langevin process (1.13).

When ν → +∞; if the initial condition satisfies

lim
ν→+∞

|ν (ξfast(Qt=0)− z0)| < +∞, (1.34)

and the Gram tensor G is invertible in a neighborhood of Σz0 , then the process converges

in the sense of probability distributions on continuous paths towards a decoupled constrained

Langevin dynamics:

dQt = Ptdt

dZt = Pz,t

dPt = −∇V (Qt)dt−∇Vfix(Qt)dt− γPtdt+ σdWt −∇ξfast(Qt) dΛt

dPz,t = −γzPz,tdt+ σzdWz,t

ξfast(Qt) = z0. (Cq)

(1.35)

In particular, the process {Pt, Qt}t>0 ∈ T ∗Σz0 is a constrained Langevin process on co-tangent

space T ∗Σz0 with effective Hamiltonian 1
2 |p|

2
+ V (q) + Vfix(q).

(ii) Numerical schemes constructed from a RATTLE discretization (1.9) of the Hamiltonian part

and splitting with the thermostat part are “asymptotic preserving” in the two limits ν → 0

and ν → +∞, in the sense that they approach the limiting continuous processes without

stability restriction on ν .
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We have then extend the study in the case where the potential energy V has the highly oscillatory

form

Vε(q) = U(q,
ξfast(q)− z0

ε
), (1.36)

with a confining assumption for instance of power-law form (c1, c2, α > 0)

inf
q∈Rd

U(q, y) > c1 + c2 |y|α
y→+∞−−−−−→ +∞.

The infinite stiffness limit (ε → 0) of highly oscillatory dynamics has been studied in a series of

papers [16,68, 69,71,75,75,81]. The limiting dynamics can be fully characterized in special cases,

for instance through adiabatic effective potentials. When the system is thermostatted, one can

postulate an “ad hoc” effective dynamics (see [69]) that we have recovered in the result below. We

obtain:

Result 1.5 (Highly oscillatory limit).

(i) Consider a constrained Langevin process (1.35), with highly oscillatory potential (1.36) and

initial condition of the form (1.34). Setting a ε-dependent penalization

ν = ν(ε) ∼
ε→0

1

ε
,

the latter process converges to an effective Langevin process on T ∗(Σz0 × Rm) with effective

Hamiltonian {
Heff(p, pz, q, z) = 1

2 |p|
2

+ 1
2 |pz|

2
+ U(q, z) + Vfix(q)

ξfast(q) = z0. (C)
(1.37)

Explicitly:

dQt = Ptdt

dZt = Pz,t

dPt = −∇1U(Qt, Zt)dt−∇Vfix(Qt)dt− γPtdt+ σdWt −∇ξfast(Qt) dΛt

dPz,t = −∇2U(Qt, Zt)dt− γzPz,tdt+ σzdWz,t

ξfast(Qt) = z0. (Cq)

(1.38)

(ii) The long time stationary distribution of the process t 7→ Qt is the ε→ 0 limit of the canonical

distribution ∝ e−βVε(q)dq associated with the highly oscillatory potential (1.36) (with support

on the slow manifold).

(iii) Consider a numerical scheme constructed from a RATTLE discretization (1.9) of the Hamil-

tonian part. Then the latter is asymptotic preserving (no stability restriction) in the limit

ε→ 0 with ν ∼ε→0
1
ε .

1.3.3 Example of numerical simulations

The method is simulated for the N -alkane model in dimension 3 (a linear chain of N -atoms with

effective short range 2-body and 3-body potentials). The penalized fast degrees of freedom ξfast

are the interatomic distances, the bond angles, and the torsion angles.

Exact sampling for butane (N = 4)

Exact sampling of the equilibrium distribution on very large times, whatever the value of the mass

penalization, is shown in fig. 1.1. In the latter figure, the distribution of the butane length for
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constrained bond angles is clearly distorted. Then mixing time to equilibrium is studied with a

time-step defined by a 95% acceptance rate in a Metropolis acception-rejection rule. The auto-

correlation function of the length evolution in terms of iteration steps is given in fig.1.1, and the

faster convergence of the IMMP method is demonstrated. In the latter figure, the decorrelation

time is enhanced by a factor ∼ 2 using the mass penalization method.

Dynamics and mixing for a large molecule

The dynamics of the end-to-end length for a larger molecule is shown in fig. 1.2, and the associated

frquency is not perturbed by the IMMP method. One can observe a small group of fast oscillations

in the middle of the Verlet dynamics plot in fig. 1.2 which is not present in the IMMP case. This

translates in the top of spectral plots in fig. 1.3 where a cut-off of the fastest oscillatory scales for

the IMMP case occurs.

Finally, the precise ratio of the l2 decorrelation time between the mass-penalized integrator

and the Verlet one is given in fig. 1.4 for different system sizes, with the use of the Metropolis

acception/rejection step (with a reference acceptance rate ∼ 95%). It increases again more than

linearly in N , in fact exponentially here; this shows that in the present case, the mass penaliza-

tion method heals the decrease of the Metropolis rejection rate of for large systems (see

also [53]).
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Fig. 1.1. Left: Equilibrium probability density of the end-to-end length of the butane molecule with a
Metropolis step, using Verlet and IMMP integrator (penalty ν) on the one end, and direct constraints on
bonds/angle bonds (with RATTLE integrator) on the other hand. Note that the constrained integrator
do not sample the appropriate measure. Right: The autocorrelation function in terms of iteration steps
comparing the IMMP and the Verlet integrator. The gain in l2 decorrelation time is 1.8.
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Fig. 1.2. The trajectory of the N = 20-alkane dynamics for the Verlet scheme and the IMMP scheme.
Note that the IMMP penalty do not modify substantially the slow frequency/varying components.
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Fig. 1.3. Spectral densities of the end-to-en length trajectories of the alkane for N = 5, 10, 15, 20. Note
that the IMMP penalty do not modify substantially the slow frequencies/varying components.
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Fig. 1.4. Decorrelation time of the end-to-end alkane length in terms of Monte-Carlo iteration steps.
The ratio between the Verlet integration and the IMMP integration is given. Note that the y-axis is in
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2.1 Presentation

2.1.1 Fermionic groundstates

In this chapter, we consider a self-adjoint1 Schrödinger operator in the Hilbert space L2(R3N )

associated with N identical particles of the form:

H = −∆
2

+ V, (2.1)

where V : R3N → R is a potential function assumed to be invariant under the permutation group

SN . The operator (2.1) can be defined on the sub-Hilbert space of skew-symmetric functions:

L2
skew(R3N )

def
=
{
ψ ∈ L2(R3N ), ψ ◦ S = det(S)ψ ∀S ∈ SN

}
,

where det(S) ∈ {1,−1} denotes the parity of permutation S (odd for transpositions). This precisely

defines the Hamiltonian of N quantum particles in the usual three dimensional Euclidean space,

obeying the so-called Fermi statistics, and thus called “Fermions”.

We are interested in Fermionic groundstates (ψ∗F, E
∗
F), solutions to the minimization problem:

E∗F =def inf


ˆ

R3N

ψH (ψ)
ˆ

R3N

ψ2
, ψ ∈ L2

skew(R3N ) ⊂ L2(R3N )


=

ˆ
Nθ
ψ∗FH (ψ∗F)

ˆ
Nθ

(ψ∗F)2
,

1 as standardly defined by the spectral theory of Hilbertian unbounded operators.
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and defining the quantum state of minimal energy. This state is by far the most common state of

the N -electronic structure found in everyday molecular systems, and can be used to describe the

vast majority of associated chemical processes (quantum chemistry).

Introducing a standard Wiener process (Brownian motion)

t 7→Wt ∈ R3N ,

with a given initial distribution Law(W0) that may vary through the section. We recall that the

semi-group e−tH associated with the operator (2.1) on the Hilbert space L2(R3N )

PVt
def
= e−tH

has a Feynman-Kac representation formula given by (ϕ is a measurable test function, say with

compact support):

PVt (ϕ)(x)
def
= EW0=x

(
ϕ (Wt) e−

´ t
0
V (Ws) ds

)
. (2.2)

The well-posedness of the latter Feynman-Kac formula, as well as the self-adjointness of H,

are the basic minimal assumptions necessary to work in such a context, and fortunately are valid

for a large class of potentials which includes the physical Coulombian ones. For instance, if V =

V + − V −, both properties can be justified for instance for V + ∈ L2
loc(R3N ), and V − ∈ L2(R3N ) +

L∞(R3N ); see e.g. [74].

Remark 2.1 (The sign problem). Computing directly (ψ∗F , E
∗
F ) using Monte-Carlo methods is

one instance of untractable problems of computational physics known as the sign problems. The

latter can be summarized as follows. Assuming discreteness of the spectrum of H, and indexing

the eigenvalues with the countable index set I, symmetry implies that the associated eigenfunctions

of H in L2(R3N ), denoted (E(n), ψ(n))n∈I , are either symmetric or skew-symmetric functions.

Computing (2.2) by a probabilistic method is in principle possible as follows. Consider

(i) a non-symmetric positive initial distribution W0 ∼ ψinit(x)dx > 0 in L2(R3N ) with´
R3N ψinit = 1,

(ii) a skew-symmetric (say, continuous) test functions denoted by ψskew ∈ L2
skew(R3N ) ∩

C(R3N ),

and compute with some Monte-Carlo method the average

E
(
ψskew(WT )e−

´ T
0
V (Ws)ds

)
=
∑
n∈I

e−E
(n)T

ˆ
R3N

ψ(n)ψinit

ˆ
R3N

ψ(n)ψskew. (2.3)

Since ψskew is skew-symmetric,
´

R3N ψ
(n)ψskew = 0 for symmetric eigenstates ψ(n). As a

consequence, for large times, the dominant term in (2.3) is exactly given by the Fermionic ground-

state(s) as defined by (2.2). Comparing the result obtained for different test function ψskew enables

in principle to extract all the information on the Fermionic groundstate.

Unfortunately, it is obvious that the average typical error in the latter calculation, given by

E
(
|ψskew(WT )| e−

´ T
0
V (Ws)ds

)
, is now dominated by the symmetric or Bosonic groundstate,

which identifies with the full groundstate with energy E∗B < E∗F, since |ψskew| is a symmetric

function.

Thus one is compelled when computing (2.3) with Monte-Carlo estimators, to generate some

spurious variance associated with the symmetric eigenfunctions of the bottom of the spectrum.

These terms have vanishing bias but an exponentially dominating variance when T is large.

Worse than that, a simple classical computation shows that the ratio
E∗B
EF

vanishes with the

number N of particles, for instance linearly in the case of the harmonic oscillator. As a conse-
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quence, the exponential explosion of the relative variance has a stronger rate for larger systems

and quickly gets out of range of any reasonable computer simulation. This forms the sign problem.

2.1.2 Fixed nodal domains

In practice, (ψ∗F, E
∗
F) is computed using an analytical parametrization of skew-symmetric

functions, and a numerical optimization procedure associated to the minimization problem (2.2).

For instance, the parametrization is given as a finite sum of physically meaningful determinants2

multiplied by a strictly positive symmetric function (called the Jastrow factor). Such optimization

problems are central to computational Quantum Chemistry, which forms a huge scientific field.

We refer to [20] for a mathematical introduction with a consequent bibliography. See also the

following two typical papers [79, 80] involving wave function optimization using a Monte-Carlo

method. Monte Carlo methods in computational Quantum Chemistry are usually referred to as

Quantum Monte Carlo (QMC) methods.

We thus now assume given a family of skew-symmetric functions{
ψI
θ

}
θ∈Rp

,

with an explicit analytical expression, which includes ψI
θ0

(the trial wave function) obtained with

a preliminary optimization scheme.

The latter are used to define the nodal domain

Nθ
def
= N+

θ ∪N
−
θ ,

where: 
N+
θ

def
=
{
x ∈ R3N |ψI

θ(x) > 0
}

N−θ
def
=
{
x ∈ R3N |ψI

θ(x) < 0
}

∂Nθ =
{
x ∈ R3N |ψI

θ(x) = 0
}
.

(2.4)

We will assume that Nθ satisfy the tiling property for θ in a neighborhood of θ0, which means

that the set Nθ/SN obtained by identifying points using the symmetric group SN is a connected

open set. Fortunately, it can be shown that the nodal domain of Fermionic groundstates indeed

do satisfy the tiling property under mild assumptions [19].

The Fixed Node Approximation (FNA) then consists in computing with a Monte-Carlo method

the Dirichlet groundstate (ψ∗θ , E
∗
θ ) of the variational problem associated with the Hamiltonian H,

but with Dirichlet boundary conditions on ∂Nθ. The latter operator will be denoted

−1

2
∆Nθ + V,

and assumed to be self-adjoint on the Hilbert space L2
skew(R3N ). The associated energy minimiza-

tion problem then reads

2 called Slater determinants, especially when constructed from explicit eigenfunctions.
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E∗θ
def
= inf


ˆ

R3N

ψH (ψ)
ˆ

R3N

ψ2
, ψ|∂Nθ = 0, ψ ∈ L2

skew(R3N )


=

ˆ
R3N

ψθH (ψ∗θ)
ˆ

R3N

(ψ∗θ)2

> E∗F ,

(2.5)

where the last inequality follows from the fact that E∗F is solution to the variational problem

without Dirichlet boundary condition.

2.1.3 Stopped Feynman-Kac formula and long time behavior

We will now recall some classical extension of the Feynman-Kac formula. We first denote the first

exit time of the domain Nθ by

τ
def
= inf (t > 0|Wt ∈ ∂Nθ) . (2.6)

Lemma 2.1. Assume that: (i) Nθ define a regular3 domain, (ii) V is smooth and going to infinity

at infinity, − 1
2∆Nθ+V is self-adjoint in L2

skew(R3N ). Let ϕ be a smooth function with compact sup-

port, and λ ∈ R. The classical solution (t, x) 7→ ht(x) of the parabolic problem with inhomogeneous

Dirichlet conditions ∂tht(ϕ) =

(
1

2
∆− V + λ

)
(ht(ϕ)) = 0

ht(ϕ)|∂Nθ = ϕ|∂Nθ .
(2.7)

has the probabilistic representation

ht(ϕ)(x) = Ex
(
ϕ(Wt∧τ )e−

´ t∧τ
0

(V (Ws)−λ)ds
)
. (2.8)

If λ < E∗θ then the following stationary representation holds

h∞(ϕ)(x) = Ex
(
ϕ(Wτ )e−

´ τ
0

(V (Ws)−λ)ds
)
. (2.9)

The above assumptions are not optimal, but the proof in [5] is classical, and does not require

advanced potential theory. See [54] for the classical treatment, and e.g. [74] for possible general-

izations.

On the other hand, the Feynman-Kac formula for the operator − 1
2∆∂Nθ + V can be easily

derived by interpreting the Dirichlet boundary conditions as an infinite potential V = +∞ outside

the domain ∂Nθ. This leads to a Feynman-Kac representation similar to (2.2):

P θ,Vt (ϕ)(x) = Ex
(
ϕ (Wt) e−

´ t
0
V (Ws) dsllt6τ

)
,

if

P θ,Vt = e−t(−
1
2∆∂Nθ+V ),

and as soon as Nθ is sufficiently regular. Here again see [74] for some possible generalizations.

It is then possible to study the long-time behavior of the latter semi-group, as a direct conse-

quence of the spectral theorem for self-adjoint operators:

3 with some usual cone condition (no cusp) enabling to define traces of functions, integration by parts,
and so on.
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Lemma 2.2. Assume that Nθ satisfy the tiling property, − 1
2∆∂Nθ +V has a spectral gap, and that

the signed groundstate ψ∗θ ∈ L2(R3N ) is integrable (ψ∗θ ∈ L1(R3N )). Then, for any initial distri-

bution Law(W0) with support in N+
θ , the long time probability distribution of the Feynman-Kac

semi-group conditioned to remain in the domain N+
θ (the so-called Quasi-Stationary Distribution

(QSD) ), has a probability density function exactly given by ψ∗θ :

lim
T→+∞

E
(
ϕ(WT )llT6τe−

´ T
0
V (Ws)ds

)
E
(

llT6τe−
´ T
0
V (Ws)ds

) =

ˆ
N+
θ

ϕψ∗θdx

ˆ
N+
θ

ψ∗θdx

. (2.10)

The exponential rate of the evolution of the weighted extinction probability yields the groundstate

energy:

lim
T→+∞

− 1

T
ln E

(
llT6τe−

´ T
0
V (Ws)ds

)
= E∗θ . (2.11)

Remark 2.2 (Variants with drift, Population Monte-Carlo). The probabilistic interpreta-

tions (2.10)-(2.11) may be modified using a change of probability (sometimes called Doob’s transfor-

mations). In the latter case, a drift is added to the Wiener process, and the range of the potential in

the Feynman-Kac weight e−
´ T
0
V (Ws)ds may be reduced. These transformations may be interpreted

within spectral theory of self-adjoint operators as unitary transformations obtained by products

with functions: for a strictly positive SN -symmetric function ψB ∈ L2
sym(R3N ), ψB > 0, we can

consider the unitary mapping:(
H =

∆

2
+ V,L2

(
R3N , dx

))
'
(
ψ−1

B H(ψB . ), L
2
(
R3N , ψ2

B(x)dx
))
, (2.12)

and all the discussion of this chapter still holds:

(i) by replacing the Brownian motion t 7→ Wt ∈ R3N (Markov process with generator ∆
2 ); by a

drifted diffusion t 7→ Xt with generator of the form L=def ∆
2 +∇ lnψB · ∇;

(ii) replacing the potential V by the new potential U =def V − ψ−1
B

∆
2 (ψB).

A different case appears when the importance function is chosen with skew-symmetry (the

latter is now denoted ψI
θ), and vanishes on the fixed nodal domain ∂Nθ := (ψI

θ)
−1({0}). It generates

a singular drift on the nodal boundary ∂Nθ, and under some technical conditions on the (nicely

bounded) behavior of new potential U (see [19]), the mapping similar to (2.12) is unitary but with

added Dirichlet conditions(
HNθ =

∆Nθ
2

+ V,L2
(
R3N , dx

))
'
(
(ψI
θ)
−1H(ψI

θ . ), L
2
(
R3N , (ψI

θ)
2(x)dx

))
, (2.13)

In any case, the latter methods may leads to Monte-Carlo methods with some importance

sampling variance reduction defined by the addition of a drift which can efficiently compute the

Bosonic groundstate (ψ∗B, E
∗
B) with (2.12), or the Fixed Node groundstate (ψ∗θ , E

∗
θ ) with (2.13).

This method has been widely used and studied in many fields. In chemistry, this is the essence of

for instance of the so-called Diffusion Monte-Carlo (DMC) method under the Fixed Node Approx-

imation (see [5, 7, 19, 26, 28, 48]).

In such methods, a set of “replicas” (or “clones”, or “particles”) of the considered process are

simulated, and a selection, birth-death step has to be carried out at regular time intervals, ac-

cording to the Feynman-Kac weights associated with each replica. The latter step enables to avoid

the degeneracy of the weights. We refer the reader to [41, 42] for applications in Bayesian statis-

tics (referred to as “Sequential Monte-Carlo” methods), and to [19, 32–34, 70] for the associated

mathematical analysis.



36 2 Fermionic eigenstates

2.2 Nodal shape derivation of the Fixed Node energy

2.2.1 Context in computational chemistry

The issue of optimizing the nodes ∂Nθ of the trial wave function ψI
θ with respect to the

parameters θ ∈ Rp in the fixed node approximation in order to minimize the Dirichlet energy

E∗θ in (2.5) was pointed out in [27], where a long discussion on the structure of Fermion nodes

and appropriate (from this perspective) trial wave functions is provided. This problem remains a

partly unsolved problem and motivates the material presented in this dissertation.

Note however that methods to approximately compute the gradient ∇θE∗θ were already sug-

gested in the literature in the more general context of the calculation of physical properties (or

“forces”), (see e.g. [6, 8, 9, 25,78]).

2.2.2 Shape derivation

The computation of the shape derivative of the fixed node groundstate

∇θE∗θ . (2.14)

is given by standard calculus of variations enable to compute the shape derivative of the ground-

state energy through the formula:

∇θE∗θ = − 1

2
´

R3N (ψ∗θ)2

ˆ
∂Nθ

(∣∣∇+ψ∗θ
∣∣2 − ∣∣∇−ψ∗θ ∣∣2) r+

θ dσ, (2.15)

where in the above ∇+ (resp. ∇−) denotes the trace on ∂Nθ of the gradient in N+
θ (resp. N−θ ),

σ is the usual surface measure induced by the Euclidean structure R3N , and r+
θ is the shape

derivative as seen from N+
θ . Shape derivatives are given by a smooth, compactly supported field

r+
θ : ∂Nθ → Rp such that formally the boundary variation writes down:

∂Nθ+dθ =
{
x+ n+(x)r+

θ (x) · dθ |x ∈ ∂Nθ
}
,

where n+(x) is the exterior normal vector at x ∈ ∂Nθ, pointing in N−θ .

2.3 Results

An exact probabilistic representation of the shape derivative (2.15) leading to a purely

Monte-Carlo estimation is probably impossible. However, and this is main contribution of the

present chapter, it possible to give an approximate probabilistic representation, with nonetheless

the correct sign of the shape derivative of the Fixed Node energy. This will lead to the

following characterization: the approximate nodal domain Nθ0 is in fact the exact nodal domain

of a Fermionic eigenstate on the full space R3N if and only if the probably distribution of a certain

weighted process killed on the boundary is fully SN -symmetric. In the latter case, ∇θE∗θ |θ=θ0 = 0

for any reasonable parametrization.

The key point consists in considering the elliptic differential equation satisfied by the Feynman-

Kac formula (2.9), and then integrate by parts with a careful handling of the symmetry. By this

mean we relate: (i) the weighted distribution of the Wiener process at the hitting time τ , when

the process is initially distributed according to the Dirichlet groundstate , (ii) the trace

of gradient of the Dirichlet groundstate ∇+ψ∗θ on the nodal boundary ∂Nθ.

Result 2.1. Under the assumptions of Section 2.1.3, the following identity holds true, for any

λ < E∗θ , and any odd permutation podd ∈ SN :
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E
(

(ϕ(Wτ )− ϕ ◦ podd(Wτ )) e−
´ τ
0

(V (Ws)−λ)ds |Law(W0) ∝ ψ∗θ llN+
θ

)
=

1

2(E∗θ − λ)

ˆ
N+
θ

ψ∗θ

ˆ
∂Nθ

ϕ
(∣∣∇+ψ∗θ

∣∣− ∣∣∇−ψ∗θ ∣∣)dσ. (2.16)

In particular the sign of the real valued measure defined by the hitting distribution difference (2.16)

is the same as the Dirichlet energy shape derivative (2.15).

Approximations4 of ∇θE∗θ with Monte-Carlo methods can then be, in principle, carried out by

relating the formulations (2.15) and (2.16) using a (deterministic) approximation of the symmetric

part of the Dirichlet groundstate gradient on the nodal boundary Nθ.
The claimed characterization of exact Fermionic nodal domains is then the following.

Result 2.2. Assume the assumptions of Section 2.1.3 hold true. Then we have the following equiv-

alent assertions:

(i) The hitting distribution difference (2.16) on the boundary ∂Nθ vanishes (i.e. the weighted

hitting distribution is invariant by the action of the full permutation SN , and not the alternate

sub-group only).

(ii) The trace of the gradient of the (“fixed node”) Dirichlet groundstate ∇+ψ∗θ on ∂N+
θ and

∇−ψ∗θ on ∂N−θ are identical (continuity): ∇+ψ∗θ = ∇−ψ∗θ .

(iii) The (“fixed node”) Dirichlet goundstate ψ∗θ is a skew-symmetric eigenfunction of H on the

whole space R3N .

(iv) The nodal domain Nθ is critical for the “fixed node” Dirichlet energy: ∇θE∗θ = 0 for any

(smooth) shape perturbation of the domain.

4 There is no known direct probabilistic expressions for ∇θE∗
θ . This is a general fact, that holds for any

“force” (energy derivative with respect to some parameter).
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3.1 Context

We consider a hierarchy of three models describing the motion of a bacterium influenced by a

chemical environment (motion called “chemotaxis”). The concentration of the different chemi-

cal species (usually called “chemoattractants” in the case of attractive chemicals) influences the

orientation of the bacterium. The main objective is to model and simulate the motion of bacteria.

The internal state model

The motion of flagellated bacteria typically consists of a sequence of running phases, during which

a bacterium moves in a straight line at constant speed. The bacterium changes direction in a

tumbling phase, which takes much less time than the run phase and acts as a reorientation. To

bias the movement towards regions with high concentration of chemoattractants, the bacterium

adjusts its turning rate to increase, resp. decrease, the probability of tumbling when moving in an

unfavorable, resp. favorable, direction [2,73]. Since many species are unable to sense chemoattrac-

tant gradients reliably due to their small size, this adjustment is often done via an intracellular

mechanism that allows the bacterium to retain information on the history of the chemoattractant

concentrations along its path [18]. The resulting model can be formulated as a velocity-jump pro-

cess, combined with an ordinary differential equation (ODE) that describes the evolution of an

internal state that incorporates this memory effect [44,45]. Some recent studies have assessed the

biological relevance of such a model through experimental validation of travelling pulses [72]. This

model will be called the model with internal state.
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In [44,45,86], such models have been shown to formally converge (under appropriate timescale

separation, see below) to a drift-diffusion equation (satisfied by the density of bacteria in space),

the parameters of internal dynamics appearing in the expression for the chemotactic sensitivity.

Existence/long time behavior results when the model is coupled to a mean-field production of

chemo-attractants are also available [17,46].

The gradient sensing model

Several works have also considered the motion of a bacterium to be governed by a velocity-jump

process with a gradient sensing rate [1,65,67]. These models have a drift-diffusion limit similar to

the internal state model, see e.g. [31, 49,66].

The drift-diffusion model

In chemotaxis, the most standard description is obtained by neglecting velocity and internal vari-

ables, and considering the bacterial position density on large space and time scales. One then

postulates an advection-diffusion equation for this bacterial position density, in which a chemo-

tactic sensitivity coefficient incorporates the effect of chemoattractant concentrations gradients

on the density fluxes. When coupled to a model for chemoattractant production by the bacteria,

this assumption leads to the classical (non-linear) Keller–Segel drift-diffusion equations (see [55],

and [51,52] for numerous historical references).

3.2 Models

The precise mathematical description of the three models mentioned above are given in the present

section.

3.2.1 Dimensional analysis

We consider the following two dimensional parameters of the problem:

(i) A typical length ls > 0 of the chemoattractant concentration variations (which we assume

similar for all the different species of chemoattractants);

(ii) A typical time tλ > 0 between two changes of the bacterium velocity direction (tumbling).

The speed v0 > 0 of a bacterium being assumed to be constant, it is possible to consider the

adimensional parameter

ε :=
tλv0

ls
. (3.1)

We will focus on the asymptotic regime where the latter is a small parameter (ε� 1); this amounts

to assume that the typical time between two velocity changes (reorientation) is much smaller than

the typical time on which we can observe the macroscopic motion of the bacteria (diffusive regime).

The models below will be presented directly in dimensionless form. The position and (rescaled

to unity) velocity of bacteria are denoted with adimensional variables

(x, v) ∈ Rd × Sd−1,

where d > 1 is the space dimension, and Sd−1 is the associated unit sphere.

The probability distribution of new jumps after reorientation is denotedM(dv), it is the same

for the internal state and the gradient sensing model, and it is assumed to be centered

ˆ
Sd−1

vM(dv) = 0.
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The necessary information on the concentrations of the different chemoattractants at a space

point x ∈ Rd is described by fields. For the internal state model, it is given by a smooth field:

S : Rd → Rn

for some n > 1; and for the gradient sensing and drift-diffusion models by another smooth field

A : Rd → Rd.

The consistency between the two descriptions in the regime ε→ 0 will be given below in (3.10).

3.2.2 Internal state kinetic model

The evolution of each bacterium is given by a pure jump Markov process denoted

t 7→ (Xt, Vt, Yt) ∈ Rd × Sd−1 × Rn (position, velocity, internal state) .

The velocity of each bacterium is modified (tumbling) at random jump times (Tn)n>1 that are

generated via a Poisson process with a time dependent rate; the resulting stochastic evolution is

then described by the pure jump Markov process:

dXt

dt
= εVt

dYt
dt

= τ−1
ε (S(Xt)− Yt)

ˆ Tn+1

Tn

λ(S(Xt)− Yt)dt = Θn+1 (∼ Exp(1))

Vt = Vn (∼M(dv)) for t ∈ [Tn, Tn+1[ .

(3.2)

with initial condition X0, V0 ∈ Rd, Y0 ∈ Rn and T0 = 0. In the above:

(i) The internal state is linearly1 attracted by the function S : Rd → Rn; the (exponential) rates

of convergence being given by τε ∈ Rn×n, a symmetric positive matrix that satisfies (in the

sense of symmetric matrices), for some C, δ > 0:

τε 6 Cεδ−1.

(ii) The tumbling rate z 7→ λ(z) > 0 is a smooth positive function bounded above and below,

with Taylor expansion

λ(z) = λ0 − b · z +O
(
|z|k
)
, (3.3)

with k > 2 and b ∈ Rn.

(iii) (Θn)n>1 are i.i.d. with normalized exponential distribution Exp(1).

(iv) The new velocities (Vn)n>1 are i.i.d. with probability distribution M(dv) of Sd−1.

Remark 3.1. We thus consider three different time scales:

• A fast time scale of order O(1) given by the rate of change of the velocity direction;

• Some at least intermediate time scales of order O(εδ−1) with any δ − 1 > −1 given by the

internal state evolution;

• A slow time scale O(ε−1) given by the evolution of the chemoattractant concentration as seen

from the bacteria.

1 In [3], a technical non-linear generalization with a non-symmetric linear part τε is provided.
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The probability density of the velocity-jump process then evolves according to a kinetic equation,

in which, besides position and velocity, the internal state appears as additional variables. The

associated operator is given by the adjoint of the following Markov generator of (3.2), defined for

test functions ϕ ∈ C∞c
(
Rd × Sd−1 × Rn

)
by:

Lεϕ
def
= εv · ∇xϕ+

(
τ−1
ε (S(x))− y

)
· ∇yϕ+ λ (S(x)− y)

(ˆ
Sd−1

ϕdM(dv)− ϕ
)
. (3.4)

Remark 3.2. Except for small n and d = 1, 2 a direct deterministic simulation of the density

distribution of all the variables of the model is therefore prohibitively expensive. Hence, it is of

interest to study the relation of this model with simplified, coarse-level descriptions of the bacteria

dynamics.

3.2.3 Gradient sensing kinetic model

We now turn to a simplified model, in which the internal state process (3.2), and the corresponding

state variables, are eliminated. Instead, the turning rate depends directly on the chemoattractant

gradient. The process with direct gradient sensing is a Markov process in position-velocity variables

t 7→ (Xc
t , V

c
t ) ∈ Rd × Sd−1 (position,velocity) ;

the velocity of each bacterium being here again switched at random jump times (T cn)n>1 that are

generated via a Poisson process with a time dependent rate. The latter satisfies for any n > 1:

dXc
t

dt
= εV ct ,

ˆ T cn+1

T cn

λcε(X
c
t , V

c
t )dt = Θn+1 (∼ Exp(1)) ,

V ct = Vn (∼M(dv)) ∀t ∈ [T cn, T
c
n+1[,

(3.5)

with initial condition X0,V0 ∈ Rd. In the above:

(i) The rate z 7→ λcε(x, v) is a smooth positive function bounded from above and below, satisfying

λcε(x, v) := λ0 − εA(x) · v +O
(
ε2
)
, (3.6)

for some ”gradient sensing” vector field A : Rd → Rd that may depend on ∇S, usually as a

linear combination of the columns of ∇S(x) ∈ Rd×n.

(ii) (Θn)n>1 are i.i.d. with normalized exponential distribution Exp(1),

(iii) The new velocities (Vn)n>1 are i.i.d. with centered probability distribution M(dv) of Sd−1.

The model (3.6) describes a large bacterium that is able to directly sense chemoattractant gradi-

ents. The associated Markov generator acts on test functions ϕ ∈ C∞c
(
Rd × Sd

)
:

Lcε(ϕ)
def
= εv · ∇xϕ+ λcε(x, v)

(ˆ
Sd−1

ϕdM(dv)− ϕ
)
. (3.7)

3.2.4 Advection-diffusion model

The time parameter at diffusive time scale is denoted

t̄ := tε2.



3.3 Results 43

The drift-diffusion equation of chemotaxis is represented with a stochastic differential equation

(SDE), in the following form:

dX0
t̄ =

(
DA(X0

t̄ )

λ0
dt̄+

(
2D

λ0

)1/2

dWt̄

)
, (3.8)

where in the above t̄ 7→ Wt̄ is a standard Brownian motion, D ∈ Rd×d is the positive symmetric

matrix defined by:

D
def
=

ˆ
Sd−1

v ⊗ vM(dv) ∈ Rd×d.

and A : Rd → Rd is the smooth vector field defined in (3.6). The associated Markov generator is

given by (ϕ ∈ C∞c (Rd)):

L0ϕ
def
= (A(x) +∇x) · D

λ0
∇xϕ. (3.9)

3.3 Results

3.3.1 Diffusion approximation

The first contribution of the present chapter, is to rigorously prove, using explicit probabilistic

arguments, the convergence with respect to pathwise probability distribution (a.k.a. convergence

in distribution for stochastic processes) of the position variable of two velocity-jump processes

described above ((3.5)-(3.2)) towards the stochastic differential equation (3.8).

The two proofs are based on an asymptotic expansion of the jump times with respect to ε > 0

(the time between two tumble phases), and a comparison with a simpler random walk (a standard

diffusion approximation).

Result 3.1. Assume that the parameters of the internal state dynamics (3.2) satisfy

(i) 1
k > δ (tamed non-linearity of the rate).

(ii) Uniformly on compact sets (consistency between the two chemoattractants field description

A(x) ∈ Rd and S(x) ∈ Rn):

b · lim
ε→0

τε
λ0τε + 1

∂xiS = Ai(x) i = 1 . . . d, (3.10)

(iii) The initial condition satisfies:

|S(X0)− Y0| = O(εδ),

Then, the position process t̄ 7→ Xε
t̄ = Xt/ε2 at the diffusive timescale converges in distribution (for

the uniform convergence topology) towards t̄ 7→ X0
t̄ solution to the SDE (3.8). The same results

hold for the gradient sensing dynamics t̄ 7→ Xc,ε
t̄ = Xc

t/ε2 .

3.3.2 Asymptotically stable coupling

We then have estimated the coupling distance between the two velocity-jump processes, when the

same random variables are used: (i) the same exponentially distributed seeds (Θn)n>1 defining

jump times, (ii) the same random reorientations (in Sd−1) (Vn)n>1 of velocities.

Result 3.2. Under the assumptions of Result 3.1, the difference, at the diffusive timescale, between

the process with internal state (3.2) and the coupled gradient sensing process (3.5) defined with the

same random numbers (Θn,Vn)n>1 satisfies (∀p ≥ 1, t̄ > 0)
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E
((
Xt̄/ε2 −Xc

t̄/ε2

)p)1/p

= O(ε+ εδ + εkδ−1). (3.11)

The coupling is thus “asymptotic” in the sense that the Lp-distance between the two processes

vanishes with ε → 0 on diffusive time scales. It requires that 0 > 1
k > δ which implies that the

time scale of the ordinary differential equation of the internal state in (3.2) is sufficiently fast, with

a constraint coming from the non-linearity of the tumbling rate λ(S(x)− y).

Remark 3.3. The latter result may interpreted together with Result 3.1. Indeed, assuming ad-

ditional convergence of p-moments in Result 3.1, we obtain the respective convergence in p-

Wasserstein distance (denoted dWp
) when ε→ 0 of the two probability distributions

dWp

(
Law(Xt̄/ε2),Law(X0

t̄ )
)
−−−→
ε→0

0, dWp

(
Law(Xt̄/ε2),Law(X0

t̄ )
)
−−−→
ε→0

0.

towards the same solution of the drift-diffusion equation. Result 3.2 yields by explicit coupling a

quantitative upper bound on the speed:

dWp

(
Law(Xt̄/ε2),Law(Xc

t̄/ε2)
)

= O(ε+ εδ + εkδ−1).

The question wether a lower bound with a similar scale (ε + εδ + εkδ−1) holds remains an open

problem.

3.3.3 Application: asymptotic variance reduction of simulations

Due to the possibly high number of dimensions of the kinetic model with internal state, the

evolution of the bacterial density away from the diffusive limit may rather be simulated using a

stochastic particle method. However, a direct stochastic particle-based simulation suffers from a

large statistical variance, raising the important issue of variance reduced simulation.

In this section, we will present a numerical method based on the coupling presented in Re-

sult 3.2, between the fine-scale model for bacteria with internal dynamics and the simpler, coarse

model for bacteria with direct gradient sensing. We then show that Result 3.2 implies that the

variance reduction is asymptotic, in the sense that the statistical variance of the method vanishes

asymptotically, with upper bound on the speed.

Let us first assume that we are able to numerically compute the exact solution of the kinetic

equation for the control, gradient sensing process (3.7), with infinite precision in space and time.

The associated semi-group evolution on probability measures will be denoted:

µ0 7→
(

et̄/ε
2Lcε
)∗
µ0 ∈ P(Rd × Sd−1), (3.12)

where µ0(dxdv) is the initial distribution. The latter will be used to as a control variate.

The algorithm of asymptotic variance reduction is then based on an ensemble of replicas (or

“particles”)
{
Xi
t , V

i
t , Y

i
t

}
16i6N,t>0

evolving according to the process with internal state (3.2), with

empirical distribution of positions and velocities denoted:

µNt̄ (dxdv) =
1

N

N∑
i=1

δXi
t̄/ε2

,V i
t̄/ε2

(dxdv) .

In the same way, an ensemble of replicas of the control process (3.5) is considered, with empirical

distribution of positions and velocities denoted:
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µc,Nt̄ (dxdv) =
1

N

N∑
i=1

δXc,i
t̄/ε2

,V c,i
t̄/ε2

(dxdv) .

The coupling between the two ensembles is obtained by ensuring that both simulations use the

same random numbers (Θn)n≥1 and (Vn)n≥0.

We also denote by µNt̄ the variance reduced measure, which will be defined by the algorithm

below. Since, with increasing diffusive time, the variance of the algorithm increases due to a loss of

coupling between the particles with internal state and the control particles, the variance reduced

algorithm will also make use of a reinitialization time step δt. The corresponding time instances

are denoted as t̄n = nδt.

We then use the following algorithm to advance from t̄n to t̄n+1, (see also Figure 3.1) :

0 t0 2t0 3t0

Diffusive time

M
e
a
s
u
re

−
v
a
lu

e
d
 s

o
lu

ti
o
n

Variance reduction with reinitialization

 

 

Particles with internal variables

Particles with gradient sensing

Deterministic grid−based simulation: gradient sensing

Variance reduced simulation

Fig. 3.1. A schematic description of Algorithm 3.1. The dashed line represent the evolution of N bac-
teria with internal state. The dotted line represent the coupled evolution of N bacteria with gradient
sensing, subject to regular reinitializations. The dashed-dotted line is computed according to a determin-
istic method simulating the density of the model with gradient sensing, and subject to reinitializations at
regular time intervals. The solid line is the variance reduced simulation of the internal state dynamics,
and is computed by comparison.

Algorithm 3.1 To advance from time t̄n to t̄n+1, we perform the following steps :

(i) Evolve the particles
{
Xi
t , V

i
t , Y

i
t

}N
i=1

from tn to tn+1, according to (3.2),

(ii) Evolve the particles
{
Xi,c
t , V i,ct

}N
i=1

from tn to tn+1, according to (3.5), using the same

random numbers as for the process with internal state,

(iii) Compute the variance reduced evolution according to

µNt̄n+1
:= µNt̄n+1

− µc,Nt̄n+1
+
(

eδt/ε
2Lcε
)∗
µNt̄n (3.13)

(iv) Reinitialize the control particles by setting

Xi,c
tn+1

= Xi
tn+1

, V i,ctn+1
= V itn+1

, i = 1, . . . , N,
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i.e., we set the state of the control particles to be identical to the state of the particles with

internal state.

By construction, the variance of the algorithm is controlled by the coupling difference between the

two processes so that

var(µNt̄n(ϕ)) 6
n∑
k=1

‖∇ϕ‖2∞
N

E

(∣∣∣Xt̄k/ε2 −X
c
t̄k/ε2

∣∣∣2) ,
and thus, from Result 3.2:

Result 3.3. Algorithm 3.1 satisfies asymptotic variance reduction, in the sense that the variance

on diffusive timescales vanishes with ε for a fixed number of particles N :

var1/2(µNt̄n(ϕ)) 6 C ‖∇ϕ‖∞
√
n
ε+ εδ + εkδ−1

√
N

, (3.14)

where in the last line, C is independent of n, ε, and N .

3.4 Example of simulation

Simulations are performed in dimension d = 1, with a single chemoattractant concentration, with

bi-modal distribution. The simulation time is sufficiently large so that the computed distribution

may be considered as a (meta-stable) stationary distribution.

3.4.1 Simulation without variance reduction.

First, we simulate both stochastic processes, and estimate the density of each of these processes,

without variance reduction. The density is obtained via binning in a histogram, in which the grid

points of the deterministic simulation are the centers of the bins. Figure 3.2 (left) shows the results
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Fig. 3.2. Bacterial density as a function of space at without variance reduction. Left: one realization.
Right: mean over 100 realizations and 95% confidence interval. The solid line is the estimated density from
a particle simulation using the process with internal state; the dashed line is estimated from a particle
simulation using the control process. Both used N = 5000 particles. The dotted line is the solution of the
deterministic evolution (3.12).

for a single realization. We see that, given the fluctuations on the obtained density, it is impossible

to conclude on differences between the two models. The mean densities are shown in figure 3.2

(right), which also reveals that the mean density of the control process is (almost) within the 95%

confidence interval of the process with internal state. Both figures also show the density that is

computed using the continuum description, which coincides with the mean of the density of the

control particles.
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3.4.2 Simulation with variance reduction.

Next, we compare the variance reduced estimation (3.13) with the density of the control PDE.

We reinitialize the control particles after each coarse-scale step, i.e., each k steps of the particle

scheme, where kδt = δtpde, (here k = 1). The results are shown in figure 3.3. We see that, using

0
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Fig. 3.3. Bacterial density as a function of space with variance reduction and reinitialization. Left:
variance reduced density estimation of one realization with N = 5000 particles (solid) and deterministic
solution for the control process (3.12) (dashed). Right: mean over 100 realization and 95% confidence
interval (solid) and the deterministic solution for the control process (3.12) (dashed).

this reinitialization, the difference between the behaviour of the two processes is visually clear from

one realization (left figure). Also, the resulting variance is such that the density of the gradient-

sensing evolution is no longer within the 95% confidence interval of the variance reduced density

estimation (right figure).

Remark 3.4 (Modeling interpretation). We see that there is a significant difference between

both models: the density corresponding to the control process is more peaked, indicating that bacteria

that follow the control, gradient sensing process are more sensitive to sudden changes in

chemoattractant gradient. This difference can be interpreted from the fact that the bacteria with

internal state do not adjust themselves instantaneously to their environment, but instead with a

delay.
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Coupling of Boltzmann collisions (and trend to equilibrium)

4.1 Presentation

4.1.1 Random collisions

A classical (non-relativistic) elastic collision of two particles can be parametrized as follows. The

pre-collisional velocities of a pair of particles are usually denoted (v, v∗) ∈ Rd × Rd, and the post-

collisional velocities (v′, v′∗) ∈ Rd × Rd. The latter are related through a (one-to-one) conservative

collision mapping, which conserves kinetic energy and total momentum, and thus exactly

amount to a change of direction of two particles velocity difference, and is denoted{
v′ = 1

2 (v + v∗) + 1
2 |v − v∗|n

′
v,

v′∗ = 1
2 (v + v∗)− 1

2 |v − v∗|n
′
v.

(4.1)

In the above, (nv, n
′
v) =

(
v−v∗
|v−v∗| ,

v′−v′∗
|v′−v′∗|

)
∈ Sd−1 × Sd−1 denote the pre-collisional and post-

collisional directions of velocity differences. The scattering or deviation angle θ ∈ [0, π] of the col-

lision is then uniquely defined as the half-line angle between the collisional and the post-collisional

direction:

cos θ
def
= n′v · nv

(
=

v′ − v′∗
|v′ − v′∗|

· v − v∗
|v − v∗|

)
.

Physical Galilean invariance implies that any two-body random collision is necessarily an

isotropic random step of angle θ on the Euclidean sphere of possible collisional directions. This

yields to the definition of an isotropic probability transition on the sphere Sd−1 with scattering

angle θ ∈ [0, π] as the unique probability transition

unifθ(nv,dn
′
v)

def
= Unif{n′v∈Sd−1 |nv·n′v=cos θ} (dn′v) . (4.2)

Then, the angular collision kernel β(dθ) is defined as a positive Levy measure on [0, π] (generating

the random steps of the scattering angle), with normalization

ˆ
[0,π]

sin2 θ β(dθ) = 1. (4.3)

The latter objects enable to construct Galilean invariant collision Levy processes for two particles

in Rd × Rd, which conserve total energy and momentum. These are Markov processes with the

following generator on Rd × Rd:

L(ϕ)(v, v∗)
def
=

ˆ
Sd−1×[0,π]

(ϕ(v′, v′∗)− ϕ(v, v∗)) unifθ(nv,dn
′
v)β(dθ). (4.4)
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Note that the generator of the isotropic diffusion on the sphere (called “Landau generator”), and

obtained as a limit from (4.4), can also be considered (it is not done for notational simplicity). The

reader may consider here only the simpler case of angular cut-off (i.e. bounded jump generator

L):

b0 :=

ˆ π

0

β(dθ) < +∞. (4.5)

In kinetic theory, the general full kernel is usually denoted

b(v − v∗,dn′v) ≡ unifθ(nv,dn
′
v)β(|v − v∗| ,dθ),

and is called the Boltzmann collision kernel.

Remark 4.1 (Maxwell collisions). Throughout the present chapter, Galilean invariance allows

that β may depend on the system state (v, v∗) through the absolute collision speed |v − v∗| (a

conserved quantity). We will only consider here the case where collision rate β is in fact independent

of |v − v∗| and thus constant, which is exactly what is called Maxwell collisions in kinetic theory.

4.1.2 Space homogenous kinetic theory and particle systems

The space homogenous kinetic theory is a simplification obtained by looking at random collisions

between physical particles without considering their evolution in space. It is then possible to focus

on the associated Kac’s conservative stochastic N -particle system. The latter is a Markov process

denoted

t 7→ Vt = (Vt,(1), . . . , Vt,(N)) ∈
(
Rd
)N

, (4.6)

with distribution

πt
def
= Law(Vt),

and satisfying the conservation laws (momenta and energy), for any t > 0:

〈Vt〉N = 0 a.s.,
〈
|Vt|2

〉
N

= 1 a.s.. (4.7)

In the above, the bracket denotes the averaging over particles (〈 . 〉N ≡
1
N

∑N
n=1). The Markov

dynamics of (4.6) is specified by using , for each pair particle (n,m), a two-body collision generator

L(n,m) of (Levy jump) type (4.4); the full particle system generator then reads

LN
def
=

1

2N

∑
16n 6=m6N

L(n,m). (4.8)

and we have (the following can be proven by a simple tensorization argument in the product space

(Rd)N ):

Lemma 4.1. The particle system with generator (4.8) is reversible with respect to the invariant

uniform probability distribution

π∞ = unifSdN−d−1
def
= unif

{
v ∈

(
Rd
)N ∣∣∣ (4.7) holds

}
.

Finally, the particle system can be explicitly constructed using Grad’s angular cut-off (4.5) as

follows:

(i) Each particle perform a collision with a fixed rate b0, and with a uniformly randomly chosen

other particle.

(ii) The scattering angle of each two-body collision is independently distributed according to the

probability
β(dθ)
b0

.
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(iii) The random post-collisional directions n′v (with scattering angle prescribed by (ii)) are sam-

pled using the isotropic probability transition on sphere unifθ.

The general case of Levy (grazing) collisions can then be considered as limits of the latter.

4.1.3 Kinetic equation

Under propagation of chaos1, the limit of the one body distribution πt ∈ P(Rd) of the particle

system satisfies formally an evolution equation in closed form (here, with a quadratic non-linearity)

given by (ϕ is a test function of Rd):

d

dt

ˆ
Rd
ϕdπt =

ˆ
Rd×Rd

L (ϕ⊗ ll) dπt ⊗ πt, (4.9)

When L is the collision operator (4.4), then the non-linear equation (4.9) is exactly the Boltzmann

equation2 in Rd with Maxwell collision operator. The usual expression on the particle velocity

density, denoted πt(dv) = ft(v)dv, is then:

d

dt
ft(v) =

ˆ
Rd×Sd−1×[0,π]

(ft(v
′)ft(v

′
∗)− ft(v)ft(v∗)) dv∗ unifθ(nv,dn

′
v)β(dθ). (4.10)

In the above, the collision mapping (4.1) is used implicitly, and detailed balance has been used

to remove test functions.

4.2 Context

The main objective is then to quantify the speed of the large time convergence of πt
towards its equilibrium limit π∞.

4.2.1 Convergence to equilibrium

First, let us recall standard strategies to study convergence to equilibrium for probability flows so-

lutions of evolution (linear or non-linear) equations defined by a reversible Markovian mechanism.

(i) The (relative) entropy dissipation method. Denote t 7→ πt a probability flow with state space

E, expected to converge to π∞. The entropy method computes the variation of the relative

entropy
d

dt

ˆ
E

dπt
dπ∞

ln
dπt
dπ∞

dπ∞︸ ︷︷ ︸
E(πt)

= −D(πt) 6 0,

and try to obtain exponential convergence to equilibrium by obtaining a so-called modified

log-Sobolev inequality of the form

E(π) 6
1

2cls
D(π) ∀π ∈ P(E), (4.11)

for some constant cls > 0. When t 7→ πt is the distribution flow of a reversible diffusion on a

Riemannian manifold, the famous curvature condition CD(ccd,∞) of Bakry and Emery (a

1 For a permutation symmetric N -particle system, we say that propagation of chaos holds if the marginal
distribution of k-particles (k being fixed) is converging (in law) to a product measure when N → +∞

2 the general Boltzmann equation can then be derived formally by adding position dependence ft(x, v),
transport v · ∇x from velocity, and relative velocity dependence in the collision kernel b.
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mixture of strong convexity of the diffusion drift’s potential, and uniform positive curvature

of the metric, with lower bound ccd > 0, see [10] and references therein) yields such an

exponential convergence by proving the inequality 0 < ccd 6 cls by deriving entropy two

times with respect to time. This topic has received considerable interest recently, due to Otto’s

gradient’s flow interpretation: the probability flow of a reversible diffusion on a manifold is

in fact the gradient flow of the relative entropy E(π) with respect to the probability metric

given by the quadratic Wasserstein distance W2 (see the monographs [3, 84]). This has led

to the interpretation of ccd has a uniform displacement convexity constant, and yielded a

conceptual explanation for the inequality 0 < ccd 6 cls.

(ii) The weaker (0 < cls 6 csg) spectral gap method which computes

d

dt

ˆ
E

(
1− dπt

dπ∞

)2

dπ∞︸ ︷︷ ︸
E2(πt)

= −D2(πt) 6 0,

and try to obtain exponential convergence to equilibrium by obtaining a so-called spectral

gap inequality of the form

E2(π) 6
1

csg
D2(π) ∀π ∈ P(E).

When t 7→ πt is the flow of a reversible Markov process, the latter is indeed the spectral gap

of D2 (the so-called Dirichlet form) seen as a self-adjoint operator in L2(E, π∞).

(iii) The Markov coupling method, which amount to construct an explicit Markov coupling, a

probabilistic coupling of two copies of the Markov process of interest which is itself again

Markov:

t 7→ (Ut, Vt) ∈ E × E.

If the latter coupling contracts with respect to some distance in an average Lp sense:

d

dt
E (d(Ut, Vt)

p)
1/p 6 −cp E (d(Ut, Vt)

p)
1/p

for any initial condition, then the method yields an upper bound on the contractivity (with

constant cwp > cp > 0) with respect to the related probability Wasserstein distance Wp. Ex-

ponential trend to equilibrium follows by taking t 7→ Ut in a stationary state: Law(Ut) = π∞.

Here again, for reversible diffusion on a manifold, the curvature condition CD(ccd,∞) is typ-

ically required to obtain a contractive coupling, obtained using the parallel transport

along geodesics defined by the underlying metric. Using again the gradient’s flow interpreta-

tion, it can be shown that the CD(ccd,∞) condition is essentially equivalent to contractivity

in quadratic Wasserstein distance ccd = cw2
, (see for instance [3, 85]).

Remark 4.2. In practice, some more or less weakened versions of the above inequalities, es-

pecially of the modified log-Sobolev (“entropy / entropy dissipation”) inequality can be obtained.

They are of the form:

E(π)1+1/δ 6
1

2cls,δ(π)
D(π) ∀π ∈ P(E), (4.12)

and yields algebraic or power law trends of order t−δ, for δ ∈]0,+∞] (δ = +∞ formally

stands for the exponential case). cls,δ(π) is typically dependent on moments and regularity

of π. In particular, in kinetic theory, “Cercignani’s conjecture” refers to the exponential case

cls,δ=+∞(π) > 0, where the type of dependence with respect to π (moments, regularity) is known to

be propagated by the probability flow. Usually, probabilists speak of modified log-Sobolev inequalities

when cls is unconditionally bounded below (independent of π).
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4.2.2 Literature

The mathematical literature studying the convergence to equilibrium of the space homogenous

Boltzmann kinetic equation, and its related Kac’s conservative N -particle system is extremely

vast, and we refer to the classical reviews [29, 82]. In the same way, the use of explicit coupling

methods to study the trend to equilibrium of Markov processes (or Markov chains) is now a

classical topic on its own, especially for discrete models (see e.g. [58]). It is also a well-established

topic for continuous models, as well as for non-linear partial differential equations that have an

interpretation in terms of Markovian particles. Let us mention some classical papers more closely

related to the present study, with a sample of more recent references.

In kinetic theory, several types of collision rates and jumps give rise to different large time

behavior. From physical scattering theory, the case (of interest here) of constant collision rate is

called “Maxwell molecules”, the case where collisions with higher relative speed are more likely is

often called “hard potential case”, while the case where collisions with higher relative speed are

less likely is called ”soft potential case”. The latter case is the most badly behaved as far as large

time convergence is concerned. For the type of collisional jumps the two extreme cases are the

case of bounded jump kernels which is called “angular cut-off”, while the purely diffusive case is

called the “Landau case”.

Entropy method, N < +∞. First, the most studied method for trend to equilibrium in kinetic

theory is by far the entropy method, in the case of the kinetic (N = +∞) equation. Some famous

counterexamples (see [12, 13, 83]) have shown that a weak entropy-entropy dissipation inequality

of the form (4.12) (called “Cercignani’s conjecture” in kinetic theory) cannot not hold for δ =

+∞ (i.e. cls,δ=+∞(π) = 0), even when restricting to reasonable conditions on π (moments,

regularity,...). This counter-example contains several physically realistic collisions which includes

Maxwell collisions in the angular cut-off case, of interest here.

On the other hand, a modified log-Sobolev inequality has been shown to hold for several

other models, for instance for the diffusive case with Maxwell collisions in [36], or the particle

system with a quadratically enhanced (by energetic collisions) collisions rate in [83]. It has been

conjectured in [35] from rigorous proofs in meaningful particular examples, that a necessary and

sufficient criteria for a modified log-Sobolev inequality to hold is given by a joint contribution of

(i) a high probability of high energy collisions (the more likely, the faster), and (ii) the singularity

of the angular kernels β (the closer to diffusion, the faster). For Maxwell molecules, modified

log-Sobolev inequality hold for the diffusive case only.

Meanwhile, many studies have been developed in the cases where exponential entropy conver-

gence is known to fail, say cls = 0. Some weakened versions of the “entropy / entropy dissipation”

analysis of the form (4.12) (here is a sample: [13, 21, 30, 77, 83]) in order to obtain algebraic or

power law trends with some a priori estimates on π that has to be obtained separately.

Spectral gap and Wild’s expansion, N = +∞. For the case of interest in the present paper

(Maxwell molecules), an expansion method, known as Wild’s expansion, enables to give precise

estimates using some refined form of the central limit theorem. It has been shown in [24], that

arbitrary high moments of a velocity distribution necessarily lead to arbitrary slow decay to

equilibrium (in L1). In [24,38–40] a full theory of convergence to equilibrium for Maxwell molecules

is then developed using Wild’s method, showing that the convergence is essentially exponential

with rate given by the spectral gap, but requires some moment and regularity condition on the

initial condition, and a constant which is sub-optimal for short time. In [63], the case of hard

potentials is treated with a spectral method that essentially prove exponential convergence with

rate given by the spectral gap of the linearized near equilibrium equation, and rely on moment

creation in the case of hard potentials.

Spectral gap and entropy method N < +∞. Direct studies of the trend of equilibrium of the

Kac’s N -particle system have been undertaken [22, 23, 37, 64]. The main striking feature of the

latter list is the difficulty to achieve the so-called “Kac’s program” for large time
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behavior (see [62] ): obtaining a scalable (N-uniform) analysis of the trend to equilibrium

of the N -particle system. A famous result (see [22, 23]) exactly computes the spectral gap for

Maxwell molecules, and proves that the latter is N -uniform (limN→+∞ cN,sg > 0). However, the

L2((Rd)N , π∞)-norm used in the spectral gap case, is usually thought to be an unsatisfactory N -

scalable measure of trend to equilibrium (see [62], or the last section of [83] for longer discussions).

By extensivity of entropy, the modified log-Sobolev constant cN,ls is believed to be a more reliable

quantity. According to [83], it is conjectured (and proven in the case of Kac’s caricature) that

the modified log-Sobolev constant of Kac’s N -particle system with Maxwell molecules is of order

cN,ls ∼ N−1, and thus not N -scalable.

Coupling method, N 6 +∞. The use of explicit coupling methods to study the trend to equi-

librium of Markov processes (or Markov chains) is now a classical topic on its own, especially for

discrete models (see e.g. the classical textbook [58]). It is also a well-established topic for contin-

uous models, as well as for non-linear partial differential equations that have an interpretation in

terms of a Markovian mechanism. For the granular media equation (diffusive particles interacting

through a smooth pairwise potential), and its related N -particle system, Markov coupling can

give exponential trend to equilibrium, by using a “strong coupling/coupling creation inequality”

(see for instance [14, 15, 60], using CD(cN,cd,∞)-type convexity assumptions on potentials, with

limN→+∞ cN,cd > 0). For the Kac’s N -particle system of kinetic theory, the only paper known to

us quantitatively using a Markov coupling is in [64]. In the latter, the (almost optimal, and not

N -uniform) estimate (cN,w2 ∼ 1/(N lnN)) is obtained for Kac’s caricature, in accordance

with the result cited in [83]: cN,ls ∼ 1/N .

4.2.3 Motivation of the presented results

The main contribution described in the present chapter have been to study the contractivity

of the latter coupling, uniformly in the number of particles N . We have developped on the Kac’s

particle system with Maxwell molecules a “weak approach” of the (quadratic) coupling

method, uniformly in the number of particles N . The latter results extend in spirit the

classical paper by Tanaka [76], where the quadratic Wasserstein distance between the solution

of the kinetic equation with Maxwell collisions and the equilibrium Gaussian distribution (the

Maxwellian) is shown to be decreasing through time, with a similar coupling argument, but without

quantitative analysis. In a sense, the analysis in the present paper makes Tanaka’s argument

quantitative (with respect to time), and available for the Kac’s N -particle system.

More precisely, we will obtain power law trends to equilibrium with respect to a permutation

invariant version of the quadratic Wasserstein distance, and upon estimates on higher moments of

the velocity distribution. Up to our knowledge, this is the first time this type of estimate

is obtained directly on the Kac’s particle system. Moreover, the counterexamples of Cercig-

nani’s conjecture for the entropy method in the angular’s cut-off case, motivates the moment

dependence and power law behavior which are obtained in the present manuscript.

The lower bounds obtained using the Wild’s expansion method support the idea that moment

dependence is necessary, but that power law behavior is sub-optimal for long times.

4.3 Results

4.3.1 The Markov coupling

We have introduced an explicit symmetric Markov coupling (i.e. a probabilistic coupling of two

copies of a Markov process which is itself again Markov) denoted

t 7→ (Ut, Vt) ≡ (Ut,(1), Vt,(1), . . . , Ut,(N), Vt,(N)) ∈
(
Rd × Rd

)N
, (4.13)
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such that both processes (Ut)t>0 and (Vt)t>0 evolve according to the generator of the Kac’s

system (4.4)-(4.8), with collisions coupled using the following set of rules:

Definition 4.1 (Simultaneous parallel coupling). The Simultaneous Parallel Coupling be-

tween t 7→ Ut and t 7→ Vt is obtained by the following set of rules:

(i) Collision times and collisional particles are the same (simultaneous collisions).

(ii) For each collision, the scattering angles θ ∈ [0, π] of are the same.

(iii) For each coupled collision, the post-collisional directions n′u ∈ Sd−1 and n′v ∈ Sd−1 are

parallelly coupled: they can be obtained from each other using the elementary rotation along

the great circle (the geodesic) of Sd−1 joining nu and nv. The resulting coupled probability is

denoted

unifc,θ (nu, nv; dn′udn′v) .

The sphere being a strictly positively curved manifold in dimension d > 3, the latter

coupling is bound to be almost surely decreasing.

We give a more explicit expression (in spherical coordinates) of the spherical parallel coupling

of collisional directions used in (iii).

Lemma 4.2. Let (nu, nv) ∈ Sd−1×Sd−1 be given. A pair (n′u, n
′
v) ∈ Sd−1×Sd−1 of post-collisional

directions is spherically coupled if and only if, using spherical coordinates,{
n′u = cos θ nu + sin θ cosϕmu + sin θ sinϕ l,

n′v = cos θ nv + sin θ cosϕmv + sin θ sinϕ l,
(4.14)

where in the above (nu,mu, l) and (nv,mv, l) are identically oriented orthonormal sets of vectors

such that (nu,mu) and (nv,mv) are spanning the same plane. Then, the image of the probability

distribution

sind−3 ϕ
dϕ

wd−3
unif(nv,mv)⊥∩Sd−1(dl), (4.15)

(wd−3 denotes the Wallis integral normalization) by (4.14) yields the coupled probability unifc,θ
introduced in Definition 4.1.

4.3.2 The coupling creation functional

We summarize below the (elementary) computation of the “coupling creation” of (4.13). In the

above, and in the rest of the chapter, the following notation is used for (u, v) ∈ (Rd)N × (Rd)N :

〈o (u, v, u∗, v∗)〉N
def
=

1

N2

N∑
n1,n2=1

o(u(n1), u(n1), u(n2), v(n2)),

in order to account for averages over particles of a two-body observable o :
(
Rd × Rd

)2 → R.

Result 4.1. Consider the coupled collisions process (4.13) as defined in Section 4.3.1. For any

initial condition and 0 6 t 6 t+ h, the L2-coupling distance is almost surely decreasing〈
|Ut+h − Vt+h|2

〉
N

6
〈
|Ut − Vt|2

〉
N

a.s.. (4.16)

Moreover the average coupling creation

d

dt
E
〈
|Ut − Vt|2

〉
N

= −EC2 (Ut, Vt) 6 0, (4.17)
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is given by the following functional (the average of alignements between the velocity difference of

pairs v − v∗ ∈ Rd, and their coupled counterpart u− u∗ ∈ Rd:)

C2(u, v) =
d− 2

2d− 2
〈|u− u∗| |v − v∗| − (u− u∗) · (v − v∗)〉N > 0. (4.18)

In order to relate the coupling and the coupling creation, we will introduce in the present paper

an original general sharp inequality holding for any couple of centered and normalized random

variables in Rd.

Result 4.2. Let (U, V ) ∈ Rd × Rd a couple of centered and normalized (E |U |2 = E |V |2 = 1)

random variables in Euclidean space. Let (U∗, V∗) ∈ Rd×Rd be an i.i.d. copy. Assume the positive

correlation condition EU · V > 0. Then we have:

1

2
E |U − V |2 6 min

(
κE(U⊗U), κE(V⊗V )

)
× E

(
|U − U∗|2 |V − V∗|2 − ((U − U∗) · (V − V∗))2

)
, (4.19)

where in the above

κS = (1− λmax (S))
−1 ∈ [d/(d− 1),+∞]

is a condition number for a symmetric positive matrix S of trace 1 and maximal eigenvalue λmax (S)

(it is finite if and only if S is of rank at least 2). Moreover, a sufficient condition for the equality

case in (4.19) is given by the following isotropy and co-linear coupling conditions

(i) U
|U | = V

|V | a.s..

(ii) Either E (U ⊗ V ) = E (U ⊗ U) = 1
d1 or E (U ⊗ V ) = E (V ⊗ V ) = 1

d1.

In what follows, the inequality (4.19) will be used with respect to particle averaging, that is to

say in the form

1

2

〈
|u− v|2

〉
N

6min
(
κ〈u⊗u〉N , κ〈v⊗v〉N

)
×
〈
|u− u∗|2 |v − v∗|2 − ((u− u∗) · (v − v∗))2

〉
N
, (4.20)

for any vectors u ∈ (Rd)N and v ∈ (Rd)N both satisfying the conservation laws (4.7) and such that

〈u · v〉N > 0.

It is then of interest to compare that the alignement functional in the right hand side of (4.19)

(which is a sharp upper bound of the square coupling distance), and the coupling creation func-

tional (4.18). They differ by a weight of the form |u− u∗| |v − v∗| which forbids any strong “cou-

pling/coupling creation” inequality of the form

C2(u, v)〈
|u− v|2

〉
N

> 2κ > 0

for some universal constant κ > 0 independent of N and of the the pair (u, v) ∈ (Rd × Rd)N both

satisfying the conservation laws (4.7).

Using Hölder inequality, and taking Law(Ut) = π∞ = unifSNd−N−1 (equilibrium), we can

however obtain some weaker power law versions for any δ ∈]0,+∞[. For this purpose, we define

Definition 4.2. The “two-step” or “symmetric” quadratic Wasserstein distance on exchangeable

(permutation symmetric) probabilities, denoted dW2,sym, is defined as the usual quadratic Wasser-

stein distance (0.3) on the quotient space (Rd)N/SymN (SymN is the permutation group) endowed

with the quotient distance associated with d(u, v) =
〈
|u− v|2

〉
N

. The latter quotient distance is
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also the restriction of the Euclidean quadratic Wasserstein distance on Rd on empirical distribu-

tions formed by the particle system3.

And obtain:

Result 4.3. Let t 7→ Vt ∈
(
Rd
)N

a Kac’s conservative particle system with Maxwell molecules and

normalization conditions (4.7)-(4.3). Denote πt =def Law(Vt). For any δ > 0, q > 1, the following

trend to equilibrium holds:

d+

dt
dW2,sym(πt, π∞) 6 −cδ,q,N (πt) dW2,sym(πt, π∞)1+1/δ,

where in the above

cδ,q,N (πt) = kδ,qE
(〈
|Vt|2q(1+δ)

〉
N

)−1/2qδ

> 0.

with kδ,q a numerical constant (independent of the initial condition and of the angular kernel).

The moment can be explicitly estimated, uniformly in N , in the case of order 4 moments.

Result 4.4. Consider the case 0 < δ < 1, 2q(1 + δ) = 4, in Result 4.3. We have the upper bound

estimate:

dW2,sym (πt, π∞) 6
(
dW2,sym (π0, π∞)

−1/δ
+ cδ (t− t∗)+

)−δ
.

where the cut-off time depends logarithmically on the initial radial order-4 moment and is defined

by:

t∗ = 2

(
ln

(
d

d+ 2
E
〈
|V0|4

〉
N
− 1

))+

.

and cδ > 0 is a numerical constant (independent of N , of the initial condition and of the angular

kernel). For instance, denoting cδ,N the constant for a given particle system size N , we found

lim
δ→1

lim
d→+∞

lim
N→+∞

cδ,N > 10−3,

which although sub-optimal is physically meaningful.

Finally let us mention that we have suggested an analysis of the sharpness of the obtained

estimates, in the form of counter-examples. They provide information on the limitation of the

specific choice of the coupling (the simultaneous parallel coupling), but not directly on the trend

to equilibrium of the model. Here are the counterexamples:

(i) Velocity distributions with sufficiently heavy tails can make the coupling creation vanish.

This first counterexample shows that the obtained “coupling/coupling creation inequality”

must involve some higher order (say, > 2) velocity distribution moments.

(ii) There exists a continuous perturbation of the identity coupling at equilibrium for which

however the coupling creation is sub-linearly smaller than the coupling itself. This second

type of counterexample shows that even with moment restrictions, a sub-exponential trend

is unavoidable.

3 hence the appellation “two-steps”
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I present in this chapter a small sample of some of the research tracks I intend to explore (or

propose) in the near future, and that can be thought as sequels of the different chapters of the

present dissertation. Here is the list: (i) analysis and numerical simulation of Hamiltonian systems

with path-integral potential (Section 5.1), (ii) analysis of Fermion Monte-Carlo particle methods

(Section 5.2), (iii) asymptotic variance reduction for numerical particle methods (Section 5.3), (iv)

coupling methods for convergence to equilibrium of conservative particle systems (Section 5.4).

5.1 Classical molecular simulation with ab initio potentials

5.1.1 Path-integral potentials

Path integral molecular dynamics (PIMD) is a class of methods incorporating quantum mechan-

ics into the classical molecular dynamics simulations of nuclei using the Feynman path-integral

formulation. In principle, this is motivated for usual temperatures and molecular systems by the

fact that the vibrational shortest timescales of covalent bonds compare with the semi-classical

parameter.

The resulting model is nonetheless a classical Hamiltonian describing the classical dynamics

of the nuclei of atoms. The latter Hamiltonian consists in the sum of the usual classical kinetic

energy and of an effective potential energy, constructed as follows:

(i) An ab-initio electronic structure calculation (e.g. the standard Hartree-Fock method) yields

a ”raw” potential energy Vel.

(ii) The nuclei of atoms are considered as non-exchangeable quantum particles.

(iii) The effective, path-integral, potential Vpi,β is expressed using an average of Vel over small1

random loops (with probability distribution given by “Brownian bridges”). The latter effec-

tive potential is precisely a “free energy” in the sense that it is defined as the probability

1 with respect to a semi-classical parameter, i.e. an adimensional Planck constant
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distribution of the nuclei positions observables when the system is assumed to be in a quan-

tum Gibbs state2. The path integral potential can then be discretized by using a ring of M

replicas of the system where neighbors in the “ring” are coupled by stiff harmonic potentials,

the stiffness depending on the semi-classical parameter.

(iv) The system dimension is now R3NM if N is the number of nuclei, and 3 the space dimension.

Note that at this level, the only source of errors due to modeling on the canonical distribution of

the system positions is the Born-Oppenheimer approximation (the decoupling assumption between

electrons and nuclei).

The molecular dynamics methods based on such principles are thus potentially very accurate

methods, particularly useful for studying nuclear quantum effects in light atoms and molecules.

They can also very efficiently be used in short time simulations in order to accurately fit effective

classical potentials for larger molecular systems.

5.1.2 Analysis and numerical issues

The overall objective is then to extend the mass-penalization method described in Section 1.3 to

path-integral potentials. One of the main difficulty is the increasing number of force computations

when M becomes large. However, we would like to investigate several topics:

(i) The formulation of general method penalizing at the same time the fast degrees of freedom

of the molecular vibrations and the stiff harmonic interactions introduced by the ring formu-

lation of the path-integral potential. This will require the use of a preliminary guess of the

fast degrees of freedom (the covalent structure), but in principle, the accuracy of the method

is robust on errors on the latter.

(ii) The formal asymptotic analysis when a stiffness parameter is introduced, with a ”slow mani-

fold” given by some molecular structure. The semi-classical parameter is taken simultaneously

to 0, and has an influence on the description of the effective system dynamics on the slow

manifold.

(iii) When M is finite, and not too large, a bias is introduced in the path-integral effective

potential. However, it may be possible to use the asymptotic analysis of (ii) above to decrease

the bias, or at least to understand the associated error, without increasing M , or computing

higher derivatives of Vel.

5.2 Fermion Monte-Carlo methods

The Schrödinger operator for N Fermions can be computed in a complete basis of Slater deter-

minants3; the operator does no longer possess a sign structure, and the groundstate calculation

problem amounts to compute the bottom eigenelements of a very large symmetric matrix without

any special structure.

Then, a stochastic representation is obtained but using a population of random processes that

evolve in the discrete state space consisting of the labels of each vector of the latter Hilbert basis.

Since the matrix lacks a sign structure, walkers may also hold weights with opposite signs and may

annihilate when they are in the same state. This is the idea behind Fermion Monte-Carlo (see

[BooTho,CleBoo] where numerical results are exhibited).

However, there is currently no rigorous mathematical understanding of the details of the

Fermion Monte-Carlo (FMC) method. In particular, the stabilization of the population size, and

the annihilation step need to be understood. The results in [BooTho] indicate that the FMC al-

gorithm exhibits very original behaviors, such as the stabilization of the population size due to

2 with given temperature and fixed number of particles
3 the alternate tensor basis obtained from an explicit 1-body Hilbert basis
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the annihilation step in a stationary regime, or the phase separation between processes holding

different signs. Such behaviors currently lack an appropriate mathematical understanding.

More down-to-earth topics to be tackled in the first place are probably: (i) prove the consistency

of the method; (ii) understand the possibility (or impossibility) of effective variance reduction

methods for the method, especially when an approximate deterministic solution is available and

can be used as an initial guess. The existence of such an asymptotic variance reduction technique

in this context (in the sense that the Monte-Carlo error scales with the quality of the ) might be

considered as an important breakthrough.

5.3 Coupling and variance reduction for particle simulations

5.3.1 Moment equations

Consider a particle model, say in phase-space (position and velocity), and subjected to a collisional

mechanism. When the collisional mechanisms are important, the velocities are in “local equilib-

rium”, and the first moments of the velocity distribution satisfy a diffusive (if the collisions are

non conservative) and/or hyperbolic (if the collisions are conservative) partial differential evolu-

tion equation in closed form. Within this point of view, the latter is usually called the moment

equation. Two classic examples are the following:

(i) The transport of independent particles whose velocities are subjected to damping and random

fluctuations (non conservation law). This is the standard Langevin model of Chapter 1. When

the damping and fluctuation become large, the probability density of the position of the

particles satisfies an (“overdamped”) diffusion equation (order 0 moment equation).

(ii) In the case of kinetic equations of Boltzmann type, the particles model is the stochastic parti-

cle description of the Boltzmann kinetic equation, where particles are transported according

to their velocity, and are subjected to local (in space) conservative (momentum and energy)

collisions. The moment equation (order 0, 1, 2: particle density, local mean velocity, local ki-

netic temperature) is the so-called hydrodynamical limit, the Euler system of compressible

gas dynamics.

5.3.2 Variance reduction

The overall objective is to study, in a systematic way, coupling methods associated with such

particle models that uses the moment equation as a control variate. Or, in other (less technical)

words, we want to use as much as possible the deterministic information of this moment equations

to decrease the statistical error of the simulated particle model evolution.

Chapter 3 is related to this program, the associated moment equation being the described

advection-diffusion equation (the chemotaxis equation). However, the control variate is not the

moment equation, but another (simplified, kinetic) model.

Anyway, two cases will have to be considered:

(i) The first case is the simplest: it occurs when it is possible to couple directly the collisional

process with its equilibrium distribution. This happens for instance in the case (i) of the last

section: Langevin processes. The collision mechanism is indeed a Orstein-Uhlenbeck Gaussian

process that have an explicit expression as a linear combination of the initial condition and

a normalized normal distribution. One can then use the latter expression as the common

representation in the coupling.

(ii) The second case happens when such a direct coupling is not explicitly possible, as for Kac’s

conservative particle system studied in Chapter 4. One then can resort on an additional

collisional mechanism on the control variable to enforce equilibrium, which requires some

additional parameters to tune, and probably a bias versus variance trade-off.
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5.4 Trend to equilibrium and coupling of conservative collisions

The Markov coupling described in Chapter 4 is based on simultaneous coupling of collisions,

which yield a symmetric and Markov coupling (the two coupled copies have the same marginal

distribution, and are jointly Markovian). This deeply rely on the fact that the rate of collisions is

constant (Maxwell collisions).

We would like to investigate more general couplings to more general conservative collision

processes. In particular, some results in kinetic theory [35, 36, 83] suggests that for certain type

of collisions (like diffusive collision with Maxwell constant rate, or bounded jump collisions with

super-quadratic rates) a modified log-Sobolev does hold, and exponential entropic convergence

holds. This suggests that a more intrinsic geometric coupling of the Kac’s particle system (without

imposing simultaneous coupling) may lead to Wasserstein contractivity for these special cases.

A possible first route is to consider the diffusive Kac’s system (“Landau case”) generator as a

Riemannian metric on the sphere defined by collision invariants SdN−N−1, and try to compare

it to the usual uniform metric. This should lead to inequality analysis very close to the special

inequality in Result 4.2.
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