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INTRODUCTION

The optical properties of semiconductors have been a major field of research both
in applied and fundamental physics for the last decades. They have led to various
important discoveries, such as light-emitting diodes (which were highlighted again
in 2014 by the Nobel Prize attribution to Kasaki, Amano and Nakamura for the in-
vention of the blue LED), solar cells and semiconductor laser diodes. The latter are
nowadays included in many daily technologies such as barcode readers, laser point-
ers, CD/DVD/Blu-ray Disc reading and writing, fiber optics communications, etc.
Amongst the various semiconductor laser technologies, the Vertical-Cavity-Surface-
Emitting-Lasers (VCSELs) offer the additionnal advantages of an improved light col-
lection, a more controllable fabrication process and an easier integration thanks to
their emission normal to the surface (hence their name). They are widely used in
fiber optics networks.

In these semiconductor lasers, the light and matter excitations must be both con-
fined to enable their interaction. Hence, the VCSEL laser resonator consists of a
monolithic semiconductor Fabry-Pérot-like microcavity. The mirrors are formed
by Distributed Bragg Reflectors (DBRs). A spacer with a typical thickness of several
hundreds of nanometers is placed between the DBRs and defines the accepted wave-
lengths of the Fabry-Pérot cavity. On the other hand, the active medium consists
of a thin quantum well (typically a few nanometers thick) placed at the antinode of
the electric field at the center of the cavity. The first excited state of such a quantum
well is an electron-hole pair bound by coulombic interaction, called exciton. In the
regime of weak light-matter coupling, where the light-matter interaction is well de-
scribed by the Fermi golden rule, a stimulated emission was observed, first at low
temperature in 1979 [Soda1979] and later up to room temperature [Koyama1989].

The progress of Molecular Beam Epitaxy (MBE) manufacturing techniques now
enable the growth of semiconductor layers at almost the atomic scale. This has
opened the door for high-quality DBRs manufacture. The resulting semiconductor
microcavities display a large quality factor (typically 105) and the light-matter in-
teraction can no longer be considered as a perturbative effect. Instead, the system
exhibits new eigenstates which are mixed light-matter quasi-particles called micro-
cavity exciton-polaritons. They result from the strong coupling between the excitons
confined in the quantum well and the photons confined inside the microcavity. An
upper and a lower polaritonic branch can be defined. They exhibit a quasi-parabolic
energy dispersion with the in-plane wavevector near the center of the Brillouin zone,
and are separated by a normal-mode energy splitting, often called Rabi coupling or
Rabi splitting in solid-state physics. The ratio between exciton and photon in a mi-
crocavity exciton-polariton depends on the energy difference between the excitonic
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INTRODUCTION

transition and the confined cavity mode (called exciton-photon detuning), as well as
its in-plane wavevector. A thickness wedge in the cavity medium is usually intro-
duced on purpose during the growth, so that the exciton-photon detuning can be
adjusted by shifting the excitation spot on the surface of the sample.

Such states were observed for the first time in 1992 by Weisbuch et al. [Weis-
buch1992]. In certain semiconductors such as GaN or ZnO, microcavity exciton-
polaritons can be detected up to room temperature [Christopoulos2007,Schmidt-Grund2008].
The strong light-matter coupling regime has also been reached in solid state physics
with other emitters such as cavity-embedded quantum dots [Reithmaier2014,Yoshie2004,
Peter2005], artificial atoms based on Josephson junctions in superconducting circuits
[Wallraff2004], phonons [Le Gall1997] or plasmons [Craig1983]. Exciton-polaritons also
exist in the bulk semiconductor [Fröhlich1971]. Hence, the concept of polariton is
very general in condensed matter physics. The excitons considered in this manuscript
are confined in quantum wells and the word “polariton” refers specifically to micro-
cavity exciton-polaritons.

Microcavity exciton-polaritons exhibit specific intriguing properties, which make
them unique for research in fundamental physics as well as for their applications in
photonics.

Photons confined in a cavity acquire a very small effective mass (typically 10–4 –
10–5 of the free electron mass). Polaritons inherit this small effective mass near the
center of the Brillouin zone. Furthermore, they obey to bosonic statistics in the
regime of weak excitation. The combination of these two remarkable properties
offers the possibility of creating a macroscopically occupied coherent state at rela-
tively large temperatures [Kasprzak2006], analogous to a Bose-Einstein condensate in
atomic physics. The superfluidity of such polariton condensates was predicted in
2004 [Carusotto2004] and observed a few years later [Amo2009]. Furthermore, it has
been proposed that polariton condensates would give rise to a low-threshold laser
emission [Imamog¯lu1996, Bajoni2008a]. A room temperature electrically injected laser
emission was thus recently demonstrated [Bhattacharya2014].

In addition, polaritons experience strong mutual interactions due to their ex-
citonic component, enabling the observation of Optical parametric amplification
(OPA) [Ciuti2000] and oscillation (OPO) [Ciuti2003] processes. In OPA and OPO
processes, pump polaritons with frequency ωp are coherently (and reversibly in the
case of OPO) converted in signal and idler polaritons with frequencies ωs and ωi,
provided phase-matching and energy conservation conditions are fulfilled (such as
ωs + ωi = 2ωp for example). This enables the miniaturization and integration of
OPOs, which are nowadays typically made with a non linear cristal such as Lithium
Niobiate in complex optical cavities and pumped by powerful laser light. Addition-
nally, this process produces in theory non-classical states such as quantum-correlated
signal and idler polaritons (or “twin polaritons”), raising interest for applications in
quantum cryptography and quantum information [Mertz1991].

Hence in 2000 the first experimental observation of stimulated parametric polariton-
polariton scattering [Savvidis2000,Stevenson2000] brought about intense research on this
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INTRODUCTION

topic. These experiments exploited one specific aspect of the polariton energy dis-
persion: at large in-plane wavevectors, the lower polariton branch is no longer a
parabola but exhibits an inflection point containing a large density of states with
longer lifetimes. This feature had been spotted earlier as it is responsible for a bot-
tleneck effect: polaritons accumulate in these modes and the phonon-assisted relax-
ations towards the center of the Brillouin zone are inhibited [Tassone1997,Müller2000].
Thanks to this inflection point, phase-matching conditions can be fulfilled if the
pump is sent at a specific large incidence angle (the so-called “Magic Angle”) and
parametric processes are possible.

However, the first implementations of micro-OPO using an optical pump at the
Magic Angle produced strongly intensity-unbalanced signal and idler beams, which
is a serious obstacle to the study of their quantum correlations. The use of a large
oblique angle is also a major drawback for an easy device integration. To overcome
these problems, our group at the Laboratoire Pierre Aigrain (LPA) has proposed to
engineer the microcavity dispersion so as to open new scattering channels and isolate
these from transitions towards the excitonic reservoir. This is possible when several
lower polariton branches are accessible. A degenerate interbranch OPO initiated by
a normally-incident pump producing intensity-balanced signal and idler beams has
first been observed on coupled microcavities2 [Diederichs2006], later in microwires
(1D-microcavities obtained by etching a planar microcavity) [Ardizzone2012] and in
micropillars (0D-microcavities) [Ferrier2010].

Indeed, when the dimensionnality is reduced, a quantization of the cavity mode
is induced and several lower polariton states are confined. In the work of Vincenzo
Ardizzone [Ardizzone2013a], the presence of a lifting of degeneracy between polariza-
tion parallel and perpendicular to the wires was exploited for the study of quantum
and classical correlations in a micro-OPO. In this manuscript, a detailed study of
this polarization-dependent lifting of degeneracy is presented. The origins of this
splitting are manifold and the splitting magnitude can be therefore engineered as
a function of various degrees of freedom such as the exciton-photon detuning, the
cavity mode index, the angle of the wire with respect to the crystalline axes, etc.

Another consequence of the strong polariton-polariton interactions is that they
can be assimilated to a fluid [Carusotto2013], exhibiting peculiar effects such as po-
lariton vortices [Lagoudakis2008]. Moreover, analogous to the formation of Rayleigh-
Bénard convection cells in hydrodynamics, a pattern formation process was experi-
mentally demonstrated by Vincenzo Ardizzone at the LPA in a double microcavity
[Ardizzone2013b], after the proposal of the teams of Stefan Schumacher in Paderborn
(Germany) and Rolf Binder in Tucson (USA) [Schumacher2009, Dawes2010, Luk2013].
These patterns are initiated by directional instabilities and stabilized by high-order

2The presence of a second lower polariton branch in a double microcavity also opens new allowed
optical transitions. We [Huppert2014b] have proposed a design for a double microcavity device able to
efficiently detect and potentially generate THz frequencies, taking advantage of bosonic stimulation
effects [Kavokin2010,De Liberato2013]. This work will not be treated in this manuscript. A detailed
discussion is available in the phD manuscript of Simon Huppert [Huppert2014a].
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INTRODUCTION

non linear processes. They are the optical analog of animal coat patterns such as
zebra stripes, or sand ripples, etc. They were first described theoretically by A. Tur-
ing in the context of chemical reactions and the biological process of morphogen-
esis (cellular differentiation) [Turing1952]. Other nonlinear optical systems, such as
atomic vapours [Maître1994] or macroscopic OPO devices [Ducci2001], display similar
behaviours.

The spontaneous breaking of spatial symmetry is worth studying from a funda-
mental point of view, but also from the perspective of applications in photonics. We
will show that the pattern formations can be controlled in many ways, from polar-
ization, to a slight tilt in the pump incidence, paving the way for the development of
ultrafast all-optical switches (since the polariton lifetime is typically a few picosec-
onds [Bloch1997]) and original photonic devices such as microscopic lighthouses.

Finally, polaritons can be attributed a pseudo-spin which is directly connected
to the polarization of light absorbed or emitted by the microcavity. This pseudo-
spin can be manipulated using several tools such as the presence of a momentum-
dependent TE-TM energy splitting, and the spin-dependence dynamics of polariton-
polariton interactions. This leads to a variety of phenomena such as the Optical Spin
Hall Effect [Kavokin2005,Leyder2007], the formation of polarization vortices [Liew2007]
and patterns [Schumacher2008], and skyrmions spin textures [Cilibrizzi2016].

All those exceptional properties open an interesting future for polaritonic devices
[Sanvitto2016]. Besides polariton lasers, twin-polaritons generation, and all-optical
switches, several theoretical proposals and experimental demonstrations have al-
ready been developed, such as electrically-injected light-emitting diodes up to room
temperature [Bajoni2008b, Khalifa2008, Tsintzos2008], all-optical gates [Ostatnický2010, Sol-
nyshkov2015,Gao2015], all-optical transistor [Ballarini2013], and exciton-polariton router
[Marsault2015].

This work focuses on some polarization-dependent aspects arising in structured
semiconductor microcavities, in the perspective of integrated optical devices.

After a detailed description of semiconductor microcavities and the derivation of
polariton eigenstates in the strong coupling regime, the first chapter describes the
consequences of the presence of a χ(3) susceptibility such as the blueshift of polariton
energies and optical parametric amplification and oscillation. Some polarization
effects such as the so-called “Optical Spin Hall Effect” and the spin-dependence of
polariton-polariton interactions are then introduced.

The second chapter is devoted to the description of the various experimental se-
tups and tools: imagery of the momentum space, of the real space, and observation
of angle-resolved energy dispersion. The properties of the excitation laser are dis-
cussed and compared to an alternative excitation source exhibiting better monochro-
maticity and stability in the continuous wave regime. The experimental polarization
control is exposed in detail.
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The third chapter presents the detailed study of a normal polarization-dependent
energy splitting arising in 1D-microcavities. This splitting exhibits a universal law
as a function of exciton-photon detuning. Various origins for this splitting are dis-
cussed. Then experimentally-induced parameters are compared to the results of me-
chanical calculations and simulations.

The fourth chapter is devoted to the experimental results obtained in various
regimes of excitation power sent on a double microcavity. An all-optical control
of the Optical Spin Hall Effect is demonstrated. The interplay between the TE-
TM splitting and spin-anisotropic polariton-polariton scattering is explored in the
regime of parametric amplification, by using pump-probe(s) scenarios. Lastly, at
large pumping powers, the “instability” threshold is reached and the optical para-
metric oscillation gives rise to unstable off-axis fields, which spontaneously organize
into patterns in the far and near field. Various experiments aiming at understanding
and controlling the orientation and stability of those patterns are presented.
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DBR Distributed Bragg Reflector

QW Quantum well

EG GaAs direct bandgap energy at the Γ point
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Ex/c/p
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0 – Ex
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mx/c/p Exciton/photon/polariton effective mass
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tric field inside the DBRs)
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OPA Optical Parametric Amplification (or parametric scattering)
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δEc j = 0 cavity mode energy splitting between polarizations perpendicular and
parallel to the wire long axis Y
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1
PROPERTIES OF
MICROCAVITY

EXCITON-POLARITONS

This first chapter introduces the nanostructures of interest and the main properties useful
for the next chapters. Planar semiconductor microcavities confine both light (in a Fabry-
Pérot-like cavity) and matter excitations (in a quantum well). In the strong coupling
regime, the elementary excitations are half light, half matter quasi-particles called micro-
cavity exciton-polaritons. Planar microcavities can be structured to tune the polariton
energy dispersion with momentum. First, the introduction of a wedge on the spacer layer
allows to modify the wavelength allowed in the cavity with respect to the energy of the
matter excitation. Second, the microcavity can be etched so as to form microwires and
the reduced dimensionnality gives rise to a quantification of the modes allowed in the 1D-
microcavity. Finally, multiple microcavities can be superimposed and coupled inducing
again new allowed cavity modes.

Thanks to their matter component, polaritons can mutually interact, giving rise
to nonlinear effects such as optical parametric scattering and oscillation, depending on
the optical power sent on the microcavity. Furthermore, polaritons can be attributed a
pseudo-spin directly linked to the polarization of their light component. This pseudo-spin
evolves during the polariton propagation by the presence of a momentum-dependent TE-
TM splitting. Intrinsic and extrinsic constraints or the reduction of dimensionnality can
also lead to polarization-dependent liftings of degeneracy. Finally, the polariton-polariton
interaction strength exhibits a pseudo-spin dependence as well.

All these properties are detailed in this first chapter, and are essential ingredients for
the understanding of various methods which will be used to manipulate polaritons and
their pseudo-spin.

The first section is dedicated to the presentation of polaritons in microcavities in the
strong coupling regime. The second section is devoted to the consequences of the third or-
der susceptibility in AlGaAs and GaAs, such as optical Kerr effect and parametric effects.
The third section presents various polarization-dependent effects, taking into account lin-
ear and nonlinear processes.
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1.1. EXCITONS-POLARITONS CONFINED IN STRUCTURED
SEMICONDUCTOR MICROCAVITIES

1.1 Excitons-polaritons confined in structured semi-
conductor microcavities

The semiconductor structures of interest in this manuscript are composed of Alu-
minium Gallium Arsenide with various proportions of Aluminium (x). The general
chemical formula is AlxGa1–xAs. These III-V semiconductor compounds crystallize
in a Zinc-Blende-like structure (cf. Fig. 1.1).

Figure 1.1: Crystalline structure of AlxGa1–xAs (Zinc-Blende like). The yellow
atoms designate the Gallium or Aluminium atoms (as a function of x the Aluminium
fraction) and the grey atoms represent the Arsenium atoms. From Wikimedia Com-
mons.

The refractive index of AlxGa1–xAs depends of the Aluminium fraction x, as well
as temperature and wavelength. At low temperature (6K) and in the near-infrared,
the refractive index vary approximately between 3 for AlAs (x = 1) and 3.58 for
GaAs (x = 0). Thanks to this property, the realization of efficient Distributed
Bragg Reflectors (DBRs) is possible (cf. Subsection 1.1.2).

At low temperature, the bandgap energy varies between approximately 1.52 eV
for GaAs and 3.04 eV for AlAs. For x < 0.4 [Adachi1985], Aluminium Gallium
Arsenide is a semiconductor with a direct bandgap, enabling the confinement of
direct excitons in quantum wells (cf. Subsection 1.1.1).

The lattice constant (typically 5Å) also varies quasi-linearly with x [Adachi1985].
The lattice mismatch between AlAs and GaAs is very small (less than 0.01Å [Adachi1985])
such that thin layers of both materials can be superimposed to form stable micrometers-
thick structures, containing a small amount of crystalline defects. However, we
will see in Chapter 3 that the lattice mismatch between several Aluminium Gal-
lium Arsenide layers having different proportion of Aluminium, despite its small
amplitude, plays a key-role for the polarization-anisotropic constraints induced in a
1D-microcavity.
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CHAPTER 1. PROPERTIES OF MICROCAVITY EXCITON-POLARITONS

1.1.1 Properties of excitons confined in quantum wells
1.1.1.1 Band structure of GaAs

GaAs is a semiconductor with a direct bandgap EG lying at the center of the Bril-
louin zone (the “Γ” point, cf. Fig. 1.2).

The conduction band contains electronic states of symmetry s, that is, of orbital
angular momentum l = 0. The valence band is formed by electronic states of type
p (orbital angular momentum l = 1). Due to spin-orbit coupling, the valence states
form two bands of total angular momentum Jh = 3

2 and Jh = 1
2 , split by an energy

∆SO. At ambiant temperature, EG ' 1.5 eV and ∆SO ' 0.3 eV for GaAs [Fishman].
The Jh = 3

2 valence band is itself split in two subbands. They are energy-
degenerated at the center of the Brillouin zone but do not have the same energy
dispersion with the in-plane wavevector k‖. We can attribute to each of them a dif-
ferent (negative) effective mass: 1

m = 1
h̄²

∂²E
∂ki∂kj

. The “heavy hole” band has a angular

momentum along z Jhhz = ±3
2 whereas the “light hole” band has angular momentum

along z Jlhz = ±1
2 .

Figure 1.2: Left panel: Complete band structure of GaAs [Fishman]. Right panel :
zoom of the GaAs band structure at the vicinity of the Γ point.

The effective mass for electrons in the conduction band is me = 0.0662m0, for
electrons in the “heavy hole” valence band mhh = –0.34m0 and in the light hole
valence band mlh = –0.094m0, where m0 =9.11× 10–31 kg is the free electron
mass [Madelung].

1.1.1.2 The concept of “hole” in a semiconductor

In a semiconductor or insulator, the valence band is completely filled with N elec-
trons. If a valence electron is excited, it fills an empty state of the conduction band
and leaves behind a “hole” in the valence band.

22



1.1. EXCITONS-POLARITONS CONFINED IN STRUCTURED
SEMICONDUCTOR MICROCAVITIES

The hole state is thus defined as the antisymmetric product of the N–1 remaining
electron states. It can however be easily manipulated using the Kramers conjugate
and considering the following properties for the quasi-particle:

1. The hole charge is the opposite of the one of the missing electron: it is there-
fore positive.

2. The hole effective mass is the opposite of the missing electron: it is positive.

3. The hole spin is the opposite to the spin of the missing electron, defined as the
z component of the total angular momentum Jez.

1.1.1.3 Excitons in quantum wells

An exciton is a quasi-particle formed by a conduction electron and a hole bound by
Coulomb interaction. The exciton energy is therefore the energy of the bandgap
EG to which the binding energy Eb is substracted. Two kinds of excitons are present
in the bulk of semiconductors: the Frenkel exciton, which Bohr radius is of the
order of magnitude of the lattice parameter, and the Mott-Wannier exciton, which is
delocalized over a few unit cells.

In this thesis, we study microstructures in which GaAs nanometers-thick layers
are surrounded by Al0.95Ga0.05As barriers, constituting a quantum well. The ex-
citons are confined inside the quantum well in the z direction, or growth axis (see
Fig. 1.3).

Figure 1.3: Schematic representation of a GaAs quantum well with length LQW. z
is the “growth axis”. The plane orthogonal to z is the “layer’s plane”.

In quantum wells, the confinement along z shifts the electron and hole energies
by a confinement energy Ee/h

conf. Due to their different effective masses, the value of
this confinement energy differs between light and heavy holes: consequently, it lifts
the degeneracy between them (typically several tens of meV). The binding energies
of light and heavy hole excitons also differ only by a few meV at most. The next two
paragraphs are devoted to calculating the total lifting of degeneracy between heavy
and light hole excitons ∆E, which will be useful in Chapter 4.
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Calculation of the confinement energy The confinement energy for electron and
holes can be calculated solving the finite quantum well problem [Fishman]. We will
consider for the calculation a GaAs quantum well of thickness LQW =7nm with
Al0.95Ga0.05As barriers. The carrier effective masses are mGaAs and mAlGaAs in
GaAs and Al0.95Ga0.05As, respectively.

The envelope wavefunction for confined electron or hole in the quantum well
has the form:

ξ(z) =

{
Cin cos(kz) for |z| < LQW/2
Cexte–K|z| for |z| > LQW/2

, (1.1)

where Cin and Cext are normalization constants. k (resp. K) is the wavevector
in the QW (the AlGaAs barrier).

The confinement energy reads:

Econf =
h̄2k2

2mGaAs
= Vconf –

h̄2K2

2mAlGaAs
, (1.2)

where Vconf is the height of the barrier as defined in Fig. 1.3.
Furthermore, ξ(z) and 1

m(z)ξ
′(z) must be continuous, which leads to the follow-

ing condition:

k tan(k
LQW

2
) = K

mGaAs
mAlGaAs

(1.3)

for the lowest energy state.

Light hole Heavy hole Electron Reference
Barrier height

Vconf
474meV 474meV 711meV [Bastard]

mGaAs,
Effective mass in

GaAs
0.094m0 0.34m0 0.0662m0 [Madelung]

mAlGaAs,
Effective mass in
Al0.95Ga0.05As

0.153m0 0.409m0 0.146m0 [Adachi1985]

Table 1.1: Confinement potential and effective masses for electron, light and heavy
holes. m0 is the free electron mass and x = 0.95 is the Aluminium fraction in the
barrier.

Combining eqs (1.2) and (1.3), Econf can be determined. Using the values ex-
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pressed in Table 1.1, we find:

Ee
conf ' 61meV

Elh
conf ' 46meV

Ehh
conf ' 17meV.

The light hole and heavy hole energies are therefore separated by ' 29meV due
to the confinement in the QW.

Order of magnitude for the binding energies In this paragraph, insight is given
on the order of magnitude of the binding energy of heavy and light hole excitons,
using Fig. 1.4.b. reproduced from [Bastard].

a) b)

Figure 1.4: a) Probability of presence ξ(z) of the heavy and light holes inside
the QW (colored in gray) and in the barriers, computed from eq. (1.1). b)
From [Greene1984, Bastard]. Binding energy of a GaAs QW inside various barriers
(Al0.15Ga0.85As, Al0.3Ga0.7As and infinite barriers) as a function of the QW length.
The red dots indicate the binding energy values for the infinite well for an effective
length Lhh

QW, eff = 8.071 nm for the heavy hole and Llh
QW, eff = 9.352 nm for the light

hole.

In Fig. 1.4.b., the finite quantum well is approximated by an infinite quantum
well, using effective quantum well thicknesses for the heavy and light holes which
take into account the wavefunction penetration in the barrier (Fig. 1.4.a.). This
effective thickness LQW, eff is determined such that the confinement energy for a
quantum well with infinite barrier potentials and of thickness LQW, eff is the same as
the confinement energy for a real quantum well of thickness LQW calculated in the

25



CHAPTER 1. PROPERTIES OF MICROCAVITY EXCITON-POLARITONS

previous paragraph. We find for the electron Le
QW, eff ' 9.6 nm, Lhh

QW, eff ' 8.1 nm

and Llh
QW, eff ' 9.4 nm for the heavy and light holes, respectively.

The binding energy between the electron and the hole is thus slightly different
(approximately 1meV according to the calculation shown in Fig. 1.4.b.). Note that a
more accurate calculation of the binding energies, taking into account the Luttinger
parameters, can be found in Ref. [Andreani1990].

Conclusion The main contribution to the exciton energy in the typical GaAs
quantum wells of interest is therefore the confinement which lifts the degeneracy
between light and heavy hole excitons by approximately 29meV. The difference in
the binding energy is only 1meV. In total, the energy splitting between heavy and
light hole excitons is ∆E = 28meV.

The ground state of a quantum well is therefore a 1s exciton formed by an elec-
tron in the conduction band and a heavy hole in the valence band. Its energy is
expressed by [Fishman]:

Ex
k‖

= Ex
0 +

h̄2k2
‖

2mx
,

where Ex
0 = Eg + Ee

conf + Ehh
conf – Eb, mx = me + mh ' 0.41m0 is the exciton

effective mass (mh = –mhh defined in Subsection 1.1.1.1) and k‖ is the exciton’s
in-plane wavevector.

The angular momentum of this first excited state along z is obtained by summing
the angular momenta along z of the heavy hole and of the conduction electron
(cf. Subsection 1.1.1.1):

Jexcz = Jez + Jhhz = ±1,±2.

1.1.1.4 Dipolar coupling

In the electric dipolar approximation, the interaction between an electron confined
in the quantum well and the electromagnetic field reads:

Hdip = –
e

m0
p ·A,

where p is the momentum of an electron with charge –e and mass m0. A is the
vector potential, defined with the gauge [p,A] = 0 [Fishman].

The probability of creating an exciton through photon absorption is propor-
tional to the matrix element 〈∅|p ·A|e〉, where |∅〉 is the fundamental state of the
crystal, without exciton, and |e〉 is the first excited state (the heavy hole exciton).
The following selection rules apply [Bastard]:

• For spatial symmetry reasons, the exciton must be of type “s” (which is the
case for the heavy hole exciton considered),
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• The optical excitation of Jexcz = ±2 states is forbidden since the angular mo-
mentum of a photon is ±1, corresponding to left and right circular polariza-
tion. The Jexcz = ±2 states are therefore called “dark states”.

• Due to translation invariance in the layer’s plane, the in-plane wavevector of
excitons must match the photon in-plane wavevector.

• The energy of the photon absorbed or emitted must match the exciton energy.

The radiative lifetime of free QW excitons, given by the Fermi Golden Rule, is ap-
proximately 10 ps [Deveaud1991]. The efficiency of the excitonic radiative coupling
can be described using an oscillator strength fosc proportionnal to the square modu-
lus of the matrix element of the dipolar interaction corresponding to the creation of
an exciton.

In this thesis we will concentrate our study on the bright heavy hole exciton of
angular momentum Jexcz = ±1 along z.

1.1.2 Properties of microcavities
The coupling between excitons and photons is obtained by inserting the quantum
well inside a semiconductor microcavity, the properties of which are detailed in this
section. These micrometers-thick monolithic structures are fabricated using Molec-
ular Beam Epitaxy (MBE). The resulting heterostructure has a high quality factor
(typically 105) and confines photons like a Fabry-Pérot resonator. An important
consequence of this confinement is that the photons acquire a (very small) effective
mass. The structuration of microcavities through various ways (etching, multiple
cavities) as well as the method used to simulate the structure and the fabrication
technique are briefly presented.

1.1.2.1 Distributed Bragg Reflectors

The first ingredient of large quality-factor Fabry-Pérot cavities consists of high qual-
ity mirrors. In solid-state physics, this is possible using Distributed Bragg Reflectors
(DBRs), formed by the alternance of two semiconducting layers with a large refrac-
tive index difference. The thickness of each layer is λ/(4ni), where λ is the wave-
length of the incoming light and ni the refractive index of the layer. Under these
conditions, an interference takes place which extinguishes transmission on a band of
frequencies called stopband, centered on λ.

The reflectivity of such mirrors increases with the refractive index contrast be-
tween the two layers and with the number of pairs. Fig. 1.5 presents the reflectivity
spectrum of a Bragg mirror with Al0.95Ga0.05As and Al0.2Ga0.8As layers, calculated
by the transfer-matrix method (see Subsection 1.1.2.5).
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Figure 1.5: Reflectivity spectrum at normal incidence for a Bragg Mirror centered at
1.6 eV with 20 pairs of Al0.95Ga0.05As/Al0.2Ga0.8As surrounded by air, calculated
by the transfer-matrix method.

1.1.2.2 Fabry-Pérot cavity
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Figure 1.6: a) Reflectivity spectrum at normal incidence of a cavity centered around
1.6 eV surrounded by 20 DBR pairs at each sides, calculated by the transfer-matrix
method. b) The corresponding cavity structure is shown in black. In red, the repar-
tition of the squared electric field in the structure. The main antinode is located at
the center of the cavity (in gray).

If a spacer of effective thickness λ/(2nc) (where nc is the refractive index of the
spacer) is inserted between two Bragg mirrors, the light of wavelength λ is allowed to
penetrate the structure, similarly to Fabry-Pérot cavities. Once inside the structure,
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the photons perform a large number of roundtrips (typically 105 in the samples
presented in this thesis) before being reflected or transmitted.

Fig. 1.6.a. shows an example of the reflectivity spectrum of such structure for
normally incident light. The distribution of the electric field intensity correspond-
ing to the cavity mode in the structure is shown in Fig. 1.6.b.

1.1.2.3 Photons effective mass

Due to the confinement along z in the microstructure, the light wavevector kz is
quantized such that kz,p = pπ

Leff
where p ∈ N∗ and with Leff the effective length of

the half-wavelength (p = 1) cavity (taking into account the field penetration into
the neighboring DBRs, see Fig. 1.6).

The energy of the admitted mode is therefore:

Ec
k‖

=
h̄c
nc

√
k2
‖ + (

π

Leff
)2, (1.4)

where k‖ is the projection of the wavevector in the layer’s plane. The typical
photons in-plane wavectors are small compared to π/Leff, so the cavity mode is a
quasi parabolic function of k‖. The photon acquires an effective mass mc ' nch̄π

cLeff
.

This effective mass is typically 10–5 of the free electron mass, which is several orders
of magnitude below the exciton effective mass (cf. paragraph 1.1.1.3).

The finesse (which corresponds to the mean number of roundtrips) and quality
factor of such half-wavelength cavities coincide:

F = Q =
Ec

0
γc

,

where γc corresponds to the linewidth of the cavity mode, or to the cavity losses.
The lifetime of the photons in the cavity is typically a few picoseconds.

A large number of DBR pairs reduces the theoretical γc, which increases the
finesse and the coupling of excitons and photons (see Subsection 1.1.3). However,
the number of defects such as dislocations and interface roughness is increased as
well, which in turn increases the real photonic losses. In any case, the total thickness
must not overcome ' 10 µm to ensure the heterostructure mechanical stability.

1.1.2.4 Equivalence between incidence angle and in-plane wavevector

Hence, the energy of the light admitted into the microcavity depends on the effective
cavity length Leff and the in-plane wavevector k‖ of the photons confined in the
microcavity.

The intracavity angle of the confined photons θc is obtained by the law of re-
fraction: nc sin θc = sin θ, where θ is the light incidence angle on the microstructure

29



CHAPTER 1. PROPERTIES OF MICROCAVITY EXCITON-POLARITONS

in the air (see Fig. 1.7.a.). For a resonant excitation, this implies that the photons
in-plane wavevector is conserved when entering the structure.

k‖ is related to θ by the following equation:

k‖ = kair sin θ '
Ec

0
h̄c

sin θ. (1.5)

Since the angles considered here are below 30°, sin θ can be approximated to θ, such
that a one-to-one correspondance between k‖ and θ is possible.

a) b)
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Figure 1.7: a) (x, y) is the “layer’s plane”, orthogonal to the growth direction z. The
angle of incidence of the incoming light, θ, is easily related to the in-plane wavevector
k‖. b) Cavity mode energy dispersion with either k‖ or θ.

Therefore, energy dispersions as a function of either θ or k‖ will be presented in
this thesis. An example is given in Fig. 1.7.b.

1.1.2.5 Simulation : transfer matrix method

The light acceptance of a 2D-microstructure can be computed using the transfer
matrix method [Born&Wolf].

The principle of this method is to calculate the electric and magnetic fields pene-
trating into the structure layer by layer. In the case of microcavities, this calculation
allows:

• To visualize, at a given incident angle, the reflectivity of the structure, and to
deduce the admitted wavelength (like in Figs. 1.5 and 1.6).

• By concatenating the reflectivity at several angles, to visualize the cavity angle
dispersion which is supposed to follow a quasi-parabolic law (see eq (1.4)). The
TE-TM splitting (see Subsection 1.3.1) can be also computed.
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• To visualize the electric field repartition in the structure (like in Fig. 1.6.b.).
In order to maximize the light-matter coupling, the quantum wells must be
placed at the antinodes of the electric field penetrating the structure.

Quantum wells layers can be added in the calculation and modelized as absorbers.
The bound exciton resonance is taken into account in the energy-dependent linear
susceptibility of the QW layer including an oscillator strength fosc [Khitrova1999]:

χ(1)(E) ∝
fosc · Ex2

0
Ex2

0 – E2 – iγxE
,

where Ex
0 is the exciton energy (assumed constant considering its large effective

mass), γx corresponds to excitonic losses.

1.1.2.6 Fabrication: growth by Molecular Beam Epitaxy

The samples are fabricated using Molecular Beam Epitaxy (MBE). This deposition
method is done in ultra-high vacuum, by varying the temperature of the Ga, As and
Al sources which are deposited on a GaAs wafer. The duration of deposition deter-
mines the thickness of each layer. All the samples presented in this manuscript have
been grown by Aristide Lemaître at the Laboratoire de Photonique et Nanostructures
(LPN) in Marcoussis.

For a uniform deposition on the substrate, the wafer can be rotated during the
growth. However, the wafer is often kept fixed during the growth of the spacer
so that a wedge on the spacer thickness Lc occurs. Consequently, the cavity mode
energy has a quasi-linear dependency on position.

The wedge also affects the quantum well thickness inside the spacer. However,
for a 7 nm-thick GaAs quantum well, the dominant contribution to the energy vari-
ation is the exciton confinement energy of about Econf = Ee

conf + Ehh
conf ' 80meV

(see Table 1.1), the exciton binding energy being only a few meV. For infinite bar-
riers, the confinement energy scales as 1/L2

QW, where LQW is the quantum well
thickness and the normal cavity mode energy Ec

0 varies as 1/Leff, where Leff is the
cavity effective thickness taking into account penetration of the electric field in the
neighboring antinodes.

Assuming a similar relative increase in the quantum well thickness and cavity
effective length due to the wedge, we deduce that the exciton energy variation com-
pared to the cavity energy variation scales as 2Econf/E

c
0, where Ec

0 '1.6 eV. This
variation is thus approximately 10% of the cavity energy variation and can be safely
neglected.

To increase the confined cavity mode energy variation even faster, the rotation
of the wafer can be also stopped during the growth of the Bragg mirrors to shift the
DBRs stopband as well.
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1.1.2.7 Structured microcavities

The structuration of microcavities enables the confinement of several optical modes.
Two possible methods are presented in this subsection.

1D microcavity
The microcavity can be engineered so as to break the rotation invariance in the

layer’s plane. This is possible by etching the 2D-microcavity so as to form narrow
wires. Chapter 3 is devoted to such 1D-microcavities, and the etching was done by
Isabelle Sagnes at the Laboratoire de Photonique et de Nanostructures.

This breaking of symmetry introduces new boundary conditions and gives rise
to a splitting of the 2D optical mode in several photonic modes labelled by j ∈ N.
The confinement along the short axis of the wire X induces boundary conditions
for the electric field, which then writesEX ∝ cos(kXX) or EX ∝ sin kXX, where
kX = π( j+1)

W and W is the effective wire width [Kuther1998]. The index j corresponds
therefore to the number of nodes of the electromagnetic field in the direction X. If j
is even (respectively odd), the electromagnetic field has a symmetric (resp. antisym-
metric) distribution along X.

With k2
‖ = k2

X + k2
Y, the new photonic mode energies write:

Ec,j
kY

=
h̄c
nc

√
k2
Y + (

π( j + 1)
W

)2 + (
π

Leff
)2.

Some cavity mode energy dependencies on kY and their corresponding electric
field distribution along the wire short axis, are represented on Fig. 1.8.

Figure 1.8: a) Energy dispersion for the various cavity modes of a 3 µm-large 1D-
microcavity as a function of kY (Y is the long axis of the wire). The energy disper-
sion of the cavity mode of a 2D-microcavity is shown as a plain line, as a function of
kY (equivalent to any other in-plane wavevector component in a 2D structure). b)
Corresponding electric field amplitude along X (short axis of the wire).
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Coupled 2D-microcavities
By superimposing two identical 2D-cavities separated by an intermediate Bragg

mirror, a coupling can occur between the two cavity modes. Two energy modes are
then admitted in the cavity, separated by an energy 2ΩC. The value of this splitting
depends on the number of layers constituting the intermediate Bragg mirror and can
be computed using the transfer-matrix method (see Subsection 1.1.2.5).

Fig. 1.9 shows the result of the simulations of a structure composed of two iden-
tical microcavities having a resonant cavity mode energy at 1.6 eV (such as the one
shown in Fig. 1.6). In Fig. 1.9.a., they are separated by 20 DBR pairs. Two opti-
cal modes are now allowed separated by 6meV. In Fig. 1.9.b., the number of DBR
pairs is reduced to 10, such that the cavity-cavity coupling increases: the two optical
modes are now separated by 25meV.

Figure 1.9: Reflectivity spectra of two superimposed microcavities identical to the
one of Fig. 1.6. a) Double microcavity with 20 intermediate DBR pairs. b) idem
with 10 intermediate DBR pairs.

A such double microcavity will be studied in Chapter 4.

1.1.3 Strong coupling regime
1.1.3.1 Light-matter coupling strength

We consider now the case of quantum wells that are inserted at the antinode of the
electric field (at the center of the cavity). When the light-matter coupling is larger
than the cavity and exciton losses, the strong coupling regime is achieved. A lifting
of degeneracy between the excitonic transition and the cavity mode energy takes
place with strength 2ΩR, where ΩR is the normal-mode splitting (also called Rabi
coupling or Rabi splitting in solid-state physics), proportionnal to the square root
of the oscillator strength fosc and to the overlap integral between the wavefunction
of the exciton and the cavity mode.

For N identical quantum vells, this Rabi coupling is increased by a factor
√

N.
In practice, the number of quantum wells coupled to an antinode of the electric
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field cannot be increased indefinitely due to its finite size. Moreover, the quantum
wells must be well separated so as to avoid any mutual coupling. Given those con-
straints, in order to increase the light-matter coupling, some quantum wells can also
be inserted into the neighboring antinodes of the cavity, that is, inside the first neigh-
boring Bragg mirrors from each side of the cavity.

In the structures presented in this thesis, four quantum wells are inserted in the
cavity spacer, and four on the neighboring Bragg mirrors on each side, such that the
oscillator strength fosc is increased by ' 12.

1.1.3.2 Microcavity polaritons

The eigenstates resulting from this strong coupling are mixed exciton-photon states
called microcavity excitons-polaritons, evidenced for the first time by Weisbuch et
al. [Weisbuch1992] in 1992. From a general point of view, the term polariton refers to
any quasi-particule mixing photon and an elementary excitation of matter, such as
phonon [Le Gall1997], plasmon [Craig1983], etc. Exciton-polaritons are also observed
and well-known in the bulk semiconductors [Fröhlich1971].

Eigenenergies
Let us denote c the cavity field, e the exciton field and Ψ the polariton field. The

indices and exponents x (respectively c) refer to excitons (respectively photons). For
simplicity, k = k‖ labels the wavevector of excitons and photons in the layer’s plane.

When 2ΩR is larger than γx (excitonic losses) and γc (cavity losses), the strong
coupling regime is achieved and the Schrödinger equation for the exciton and photon
fields reads:

īh
∂

∂t

(
ek
ck

)
=
[

Ex
k – iγx –ΩR
–ΩR Ec

k – iγc

]
·
(

ek
ck

)
, (1.6)

where Ex
k = Ex

0 +
h̄2k2

‖
2mx

is the exciton energy dispersion with k. Similarly, Ec
k =

Ec
0 +

h̄2k2
‖

2mC
is the cavity energy dispersion with k.

In this regime, the system can be studied by considering quasi particles half pho-
ton half excitons (polaritons) which are eigenstates of the above system of equations:

ΨLP
k = Xkek + Ckck (1.7)

ΨUP
k = –Ckek + Xkck, (1.8)

where Xk et Ck are the Hopfield coefficients [Hopfield1958], which determine the
exciton and photon weights in the upper (ΨUP) and lower (ΨLP) polariton modes.
At large in-plane wavevectors, the upper (resp. lower) polariton mode is close to the
photonic (resp. excitonic) mode.

The eigenenergies are solution of the two coupled oscillators equation (which
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corresponds to the determinant of the matrix 1.6):

(Ep – Ex
k + iγx)(Ep – Ec

k + iγc) = Ω2
R, (1.9)

such that:

Ep
LP(k) = Ex

k +
∆k
2

– iγp –
1
2

√
(∆k – i(γc – γx))2 + 4Ω2

R (1.10)

Ep
UP(k) = Ex

k +
∆k
2

– iγp +
1
2

√
(∆k – i(γc – γx))2 + 4Ω2

R, (1.11)

where ∆k = Ec
k–Ex

k is the exciton-photon detuning, and γp = γc+γx
2 corresponds to

polariton losses at null detuning. In this thesis, we will focus on the lower polariton
modes ΨLP

k with energy Ep
LP(k), which will be noted Ψk and Ep

k in the following.

The eigenenergies as a function of k = k‖ for various exciton photon detuning
at k‖ = 0, ∆ = ∆0, are represented on Fig. 1.10 (losses neglected).

In Fig. 1.10.a., the bare exciton and cavity dispersion as a function of in-plane
wavevector are displayed for vanishing exciton-photon detuning ∆ = 0. The exciton
energy is approximated constant considering its much larger effective mass.

In the strong coupling regime, a lifting of degeneracy takes place between the cav-
ity and exciton energy dispersion, leading to two polariton branches (Fig. 1.10.b.).
At normal incidence (k‖ = 0), the polariton modes up and down are 50% pho-
ton, 50% exciton. At large in-plane wavevectors, the lower polariton branch is very
close to the exciton one. This region is called excitonic reservoir since the density of
these quasi-excitonic states is large. In-between, the low polariton branch exhibits an
inflection point which enables the fulfilment of the phase-matching conditions for
nonlinear optical processes (see next section).

Fig. 1.10.c. shows the evolution of the normal cavity, exciton, and polariton
energies as a function of detuning. At large negative detuning, the lower polariton is
almost entirely photonic, whereas at positive detuning its tends towards the exciton.

Figs. 1.10.d. and e. show the polariton dispersion when the cavity energy is
shifted out of the exciton resonance. At negative detuning ∆ < 0, the minimum of
the lower polariton branch becomes more photonic. Inversely, at positive detuning
∆ > 0, the lower polariton branch is more excitonic, and its curvature is reduced.
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Figure 1.10: (a, b) Energy dispersions with in-plane wavevector k‖ for vanishing
exciton-photon detuning ∆ = Ec

0 – Ex
0 = 0. The cavity effective mass is much

smaller than the exciton’s. For this reason, the exciton dispersion is approximated by
a horizontal line. In b), the strong coupling between excitons and photons induces
a lifting of degeneracy of strength 2ΩR for k‖ = 0, resulting in “up” and “down”
polariton branches. The excitonic fraction |Xk|

2 (resp. |Ck|
2) for the low (resp.

up) polaritons (see eqs. (1.8) and (1.7)) is represented via a colorscale. c) Cavity,
exciton and polariton energies at k‖ = 0 as a function of exciton-photon detuning,
figuring an “anticrossing”. (d, e) Cavity, exciton and polariton energy dispersions
for ∆ = ±10meV.

1.1.3.3 Transition to the weak coupling regime

At null detuning, the lifting of degeneracy occurs only if |γc – γx| < 2ΩR. If
this first condition is fulfilled, then, the lifting of degeneracy is visible only if the
splitting strength ΩR overcomes the polariton loss γp = γc+γx

2 . Overall, the strong
coupling is effective when the photonic and excitonic losses are small compared to
2ΩR. The weak coupling regime is thus described by a perturbative treatment: the
cavity modifies the spontaneous emission properties of the quantum well excitons.
The exciton desexcites irreversably and its radiative lifetime is given by the Fermi
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Golden rule. The Vertical Cavity Surface Emitting Lasers (VCSEL) operate in this
regime at low density.

On the one hand, the Rabi coupling is maximized by using a large numbers of
high quality DBR layers, and by increasing the number of quantum wells in the
structure, but they are limited by the total size of the structure and the size of the
main antinodes of the electric field, as discussed in Subsection 1.1.2.3. On the other
hand, the sources of losses for the cavity and exciton are numerous:

• Inhomogeneous broadening due to structural defects, impurities, interface rough-
ness, inhomogeneities between the quantum wells or DBRs,

• Phonon-assisted relaxation. This source of loss is temperature-dependent, and
increases the exciton linewidth. For this reason, in this work, all experiments
are performed at 6K. This relaxation process is particularly efficient for the
upper polariton modes, which are typically located slightly above the excitonic
reservoir,

• At large polariton densities (above 1011 cm–2), saturation of the light-matter
coupling occurs (see Subsection 1.2.2.4), which leads to the loss of the strong
coupling regime.

Experimentally, the light-matter strong coupling is lost when either the optical
power or the temperature is increased. Typically, for III-V semiconductor micro-
cavities containing a single quantum well, the strong coupling is lost above 100K
and for excitation densities above 8 kW.cm–2 [Houdré1995].

1.2 Parametric effects in microcavities
In GaAs/AlGaAs-based semiconductor microcavities, large high-order nonlineari-
ties take place leading to various parametric phenomena analogous to four-wave-
mixing processes in nonlinear Optics. In this section the nonlinear equations are
presented, with a focus on the third order terms in the electric field. Various nonlin-
ear effects such as the Optical Kerr Effect, responsible for a blueshift of the polariton
energies, and the Optical Parametric Amplification are introduced. The second part
is devoted to the discussion of the Optical Parametric Oscillation (OPO).

1.2.1 Third-order susceptibility
1.2.1.1 Nonlinear dielectric polarization

The response of a material to an applied electric field is taken into account by a
susceptibility tensor χ(m), where m labels the order of the nonlinearity. The linear
susceptibility is related to the refractive index: n2 = Re(1+χ(1) ). This susceptibility
tensor takes into account anisotropies (for example structural anisotropies aligned
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with the crystalline axes of the material). When the optical power is sufficiently
strong, the polarization of the medium is a nonlinear function of the electric field
such that:

P = P(1) + P(2) + P(3) + ...,

where

P(m)(ω = ω1 +ω2 +...+ωm) = ε0χ
(m)(ω;ω1,ω2, ...,ωn)⊗E1(ω1)E2(ω2)...Em(ωm)

and ε0 is the vacuum permittivity.
Assuming an isotropic system, the propagation equation for the electric field

reads [Shen]:

∆E –
1
c2
∂2E
∂t2

=
1

ε0c2
∂2P(1)

∂t2
+

1
ε0c2

∂2P(NL)

∂t2
, (1.12)

where P(NL) is the nonlinear part of the polarization.
Assuming a plane wave propagating along z, the electric field reads: E(z, t) =

Re[
∑

j E(z,ωj)e
i(kjz–ωjt) ], where k2

j = ω2
j (1 + χ(1)(ωj))/c2. In the slow-varying

amplitude approximation, eq. (1.12) rewrites:

∑
j

2ikj
∂E(z,ωj)

∂z
ei(kjz–ωjt) =

1
ε0c2

∂2

∂t2
P(NL)(ωj, z), (1.13)

where P(NL) is the complex nonlinear polarization.
Due to its crystalline symmetry [Shen], the GaAs second-order susceptibility is

null on the growth axis z. Therefore, the following subsections focus on the third
order polarization which writes:

P(3)(z, t) =
∑
jkl

ε0χ
(3)
jklE(z,ωj)E

∗(z,ωk)E(z,ωl)e
i[(kj–kk+kl ).z–(ωj–ωk+ωl )t]

The linear susceptibility χ(1) is taken real, such that kj = n(ωj)ωj/c. The third-
order nonlinearity χ(3) is considered scalar for simplicity.

1.2.1.2 Optical Kerr Effect

Assuming a single incident pump field with wavevector kp and frequency ωp, and
keeping only the terms with same phase as the incident field, we get:

P(3)(ωp) =
3ε0χ(3)

4
|E(z,ωp)|2E(z,ωp)ei(kpz–ωpt).
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With |E(z,ω)|2 = I, the propagation equation (1.13) becomes:

∂E(z,ωp)
∂z

=
3iωpχ(3)

8nc
· I · E(z,ωp)

One possible solution is E(z,ωp) = E(0,ωp)eiφNL(z), where φNL(z) = 3ωpχ(3)

8nc · I ·
z. This nonlinear phase depends on the incident power I on the nonlinear medium,
phenomenon known as the optical Kerr effect. An effective refractive index n′ can
be defined : n′ = n + 3χ(3)

8n · I.
If the nonlinear medium is inserted in an optical resonator, the cavity resonant

energy is blueshifted. Experimentally, it implies that when the optical power sent
onto the microcavity is changed, the energy must be slightly shifted as well.

This phenomenon leads to a bistability: one can show [Lecomte2011] that the in-
tracavity intensity exhibits an hysteresis behaviour with the incident intensity close
to the resonance.

1.2.1.3 Optical Parametric Amplification

Let us consider now a second beam (signal) incident on the material with energy ωs
and wavevector ks. The nonlinear polarization rewrites:

P(3)(ω) =
ε0χ

(3)

8
(Epei(kpz–ωjt) + E∗pe–i(kpz–ωjt) + Esei(ksz–ωjt) + E∗s ei(ksz–ωjt) )3,

The term EpEpE∗s is responsible for the apparition of a beam with energy 2ωp–ωs,
called idler beam, which propagates with the wavevector 2kp–ks. This phenomenon
is a parametric conversion. Assuming a pump beam much more intense than the
signal and idler beams, the propagation equations for the signal and idler fields read:{dαs

dz = g · α∗i (z)
dαi
dz = g · α∗s (z)

,

with αi = Eieiφ
(3)(z), φ(3)(z) = 6iωχ(3)

8nc · I · z, I = |Ep|2, and

g = χ(3) 3iω
8nc

|Ep|2

is the parametric gain.
If αi(0) = 0, case where no idler beam is sent onto the material, this system can

be solved:

αs(z) = αs(0) cosh(gz) (1.14)
αi(z) = α∗s (0) sinh(gz)
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The signal beam is amplified by a factor | cosh(gz)|2. This is optical paramet-
ric amplification. An idler beam is furthermore created, with an energy fulfilling
ωidler = 2ωp – ωs. In terms of photons, this corresponds to a four-wave mixing
process: two pump photons are converted into one signal and one idler photon.

Note that this process can occur only if the following phase-matching conditions
are fulfilled:

• energy conservation: ωidler = 2ωp – ωs

• wavevector conservation: kidler = 2kp – ks.

Eq. (1.14) holds as long as |αs|, |αi| � |αp|. However, the amplification of the
signal and idler beams leads to a depletion of the pump beam, such that the pump
evolution with time cannot be neglected any longer. Thus, under certain conditions
described in the following subsection, a single pump beam can spontaneously and
reversibly generate signal and idler beams. This is called Optical Parametric Oscilla-
tion (OPO).

1.2.2 Optical Parametric Oscillation
1.2.2.1 Generalities

The nonlinear material is placed in a Fabry-Pérot cavity, resonant for one or several
frequencies. A resonant optical pump is sent onto the structure. When the para-
metric gain of the nonlinear medium is equal to the cavity losses, the system starts
to oscillate on the resonant modes. This parametric gain is a function of the pump
intensity, as seen in the previous paragraph. This phenomenon appears therefore
at large pump intensities (above the “OPO threshold”). When the signal and idler
beams intensities increase, the pump intensity decreases (since it is the source for
signal and idler beams) and the parametric gain saturates.

The Fabry-Pérot cavity can be resonant with a single mode (signal for example),
for two modes (such as signal and idler) or triply resonant (pump, idler and signal).
The advantage of doubly and triply resonant OPOs is that the OPO threshold is
lowered (from watts to a few milliwatts).

Commercial OPOs are used for the generation of new frequencies in laser cavi-
ties. The active medium is usually a nonlinear crystal such as KTP crystals, inserted
in complex optical cavities and pumped by an external laser. The advantage of these
macroscopic OPO is their tunability (505 - 750 nm range or 1 to 3 µm for the KTP
crystal). Besides, OPO devices are potential source of non-classical states such as
twin or squeezed states, with large applications in quantum cryptography, telepor-
tation, or information stockage [Heidmann1987, Mertz1991, Teja1998]. Phase-matching
or quasi phase-matching [Vodopyanov2004] is obtained using various strategies, such
as birefringence [Shen] or crystalline structuration [Myers1995,Vodopyanov2004,Baudrier-
Raybaut2004].
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In this manuscript, we will only consider degenerate microscopic OPOs created
in semiconductor microcavities, meaning that the signal, idler and pump beams all
have the same energy. Such OPO processes are the onset of spontaneous pattern for-
mation in a double microcavity, as will be shown in Chapter 4. In this section, the
strategies for obtaining the phase-matching for the OPO process in a microcavity are
presented. The coherence properties of the signal and idler beams have been exten-
sively studied in our group (V. Ardizzone, T. Lecomte and C. Diederichs) and a brief
summary of their work is given. The quantum treatment is presented, followed by a
discussion on the pattern formation in micro-OPOs, experimentally demonstrated
by V. Ardizzone in 2013 [Ardizzone2013b].

1.2.2.2 Phase-matching in microcavities

The first demonstration of OPO in microcavities was done at large oblique angle
for the pump. A pump light injects polaritons near the inflection point (called the
"magic angle") of the low energy polariton dispersion with k. Two pump polaritons
can be coherently scattered, giving rise to a signal polariton at ks = 0 and an idler
polariton at kidler = 2kp on the same polaritonic branch. This process is shown in
Fig. 1.11.a. Its first experimental demonstration in 2000 was an optical parametric
amplification, where an additionnal probe sent at ks = 0 is amplified by two orders
of magnitude [Savvidis2000]. Then, the OPO regime was reached [Stevenson2000,Baum-
berg2000].

The necessary ingredients for this phenomenon are:

1. large χ(3) nonlinearities,

2. the strong coupling regime to ensure the inflection of the polariton branch
and the fulfilment of the phase-matching conditions,

3. injection at a very specific angle which varies with exciton-photon detuning.
This is an important limitation in the perspective of integrated micro-OPOs.
For example, a VCSEL-type optical pumping is not possible.

Finally, since the idler beam is created on the lower polariton branch with a large
in-plane wavevector (see Fig. 1.11.a.), its photonic component is weak. Collecting
photons from this mode is particularly inefficient, not to mention the strong imbal-
ance between signal and idler optical intensities, which complicates the measurement
of the non-classicity of the emitted beams.

To overcome these limitations, our group at the Laboratoire Pierre Aigrain has
proposed to structure the microcavities :

• By using multiple microcavities

• By using 1D-microcavities.
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In both cases, several low polariton modes exist since several cavity modes can couple
to the excitonic transition (see Subsection 1.1.2.7), allowing for interbranch OPOs.
In Fig. 1.11.b. for example, the pump is sent at normal incidence resonant with an
intermediate low polariton branch, and the signal and idler beams are detected at
normal incidence on the neighboring low polariton branches. This process was first
demonstrated by C. Diederichs in a triple microcavity [Diederichs2005,Diederichs2006].

In this work we will focus on the degenerate process presented in Fig. 1.11.c.: the
pump is sent at normal incidence, and signal and idler beams are detected at opposite
angles. Therefore, signal and idler beams have the same Hopfield coefficients so they
are well balanced in intensities.

Note that these processes (b. and c.) involve energies situated below the excitonic
reservoir, such that the relaxation towards it are reduced.

Figure 1.11: Reproduced from [Ardizzone2013a]. a) OPO at the Magic Angle. This
process produces strongly intensity-unbalanced signal and idlers due to their differ-
ent Hopfield coefficients. b) Non-degenerate interbranch OPO at normal incidence
in a triple microcavity [Diederichs2005]. This process is not ideal for quantum infor-
mation applications, since signal and idler beams are not degenerate. However, it is
of interest in the prospect of micro-OPO devices. c) Degenerate interbranch OPO.

Note that, similarly to the optical Kerr effect (Subsection 1.2.1.2), the optical
parametric oscillation exhibits a bistable behaviour.

1.2.2.3 Coherence properties

In the process represented on Fig. 1.11.c. the signal and idler beams are produced
simultaneously, at the same frequency and with opposite angles. This horizontal
OPO process is therefore an excellent candidate for the generation of twin polari-
tons. Theoretically, twin polaritons should violate the following Cauchy-Swchartz
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inequality [Ardizzone2013a]: [
g(2)S,I (0)

]2
< g(2)S (0)g(2)I (0),

where g(2)S,I (0) is the cross-correlation between signal and idler beams, and g(2)S (0)

(g(2)I (0)) is the self-correlation of the signal (idler) beam at zero delay.
However, the violation of this inequality is exalted for small photon fluxes.

Indeed, at large powers, the parametric oscillation creates a transition towards a
laser-like emission statistics. But, at small powers, parasitic signal such as resonant
Rayleigh scattering (see paragraph 1.3.1.2) spoils the parametric signal.

Therefore, no quantum correlation has yet been experimentally demonstrated
between signal and idler. Vincenzo Ardizzone has reached in 2013 the classical limit
gS,I(0) ∼ gS(0) ∼ gI(0) and detailed in his manuscript the experimental reasons for
the saturation of the Cauchy-Schwartz inequality [Ardizzone2013a].

1.2.2.4 Quantum treatment

The third-order nonlinearity is essentially due to a repulsive coulombic interaction
between excitons, which can be written in the Hartree-Fock approximation VHF =
2π(1 – 315

4096π
2)(a3D0 )2Eb, where a3D0 is the exciton 3D Bohr radius and Eb is the

exciton binding energy.
Additionnally, the densities of excitons allowed in the structure saturates due

to Pauli-blocking fermionic phase-space filling αPSF = 4π
7 (a3D0 )2. The phase-space

filling implies that the density of polaritons saturate at a density nsat = |Ψsat|2 =
1/αPSF. Typically, nsat =20× 1010 cm–2.

Including those two nonlinear terms, and taking into account all the scattering
channels in the k-space, the Schrödinger equation for the exciton field ek rewrites as
a Gross-Pitaevskii equation [Schmitt-Rink1985]:

īh
∂ek
∂t

= (Ex
k – iγx)ek – ΩRck +

1
L2

∑
k′k′′

e∗k′+k′′–kek′αPSFΩRck′′

+
1
L2

∑
k′k′′

VHFe
∗
k′+k′′–kek′ek′′ ,

where L2 is a normalization factor.
The equation for the electric field still writes:

īh
∂ck
∂t

= (Ec
k – iγc)ck – ΩRek.

Therefore, for a microcavity in the strong coupling regime, the Gross-Pitaevskii
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equation for the lower polariton field rewrites:

īh
∂

∂t
Ψk = (Ep

k – iγp)Ψk + α
∑
k′k′′

Ψ∗k′+k′′–kΨk′Ψk′′ , (1.15)

where α ' 1
4(VHF + αPSFΩR) near null exciton-photon detuning (the depen-

dency of these terms with the Hopfield coefficients and with wavevector is ne-
glected).

The term k′ = k′′ = k in equation (1.15) can be assimilated to the Optical Kerr
Effect (Subsection 1.2.1.2). This term blueshifts the polariton resonance energy by
2α|Ψk|

2. In practice, to remain at resonance, the laser wavelength needs to be
adjusted each time the power is changed.

The other terms correspond to χ(3) nonlinearities due to polariton-polariton
interactions.

1.2.2.5 Pattern formation

OPO using χ(2) nonlinear crystals have been shown to exhibit pattern formation
[Vaupel1999, Ducci2001]. A pattern is a self-organized structure, spontaneously aris-
ing due to the combination of nonlinearities (to saturate the growth of the unsta-
ble modes of the pattern) and spatial coupling terms. Pattern formation is there-
fore very general in nonlinear physics, from morphogenesis [Turing1952] to hydro-
dynamics [Cross1993] and chemistry [Kapral&Showalter]. The similarities between the
hydrodynamical equations and pattern formation in Optics are detailed in refs. [Arec-
chi1995,Oppo2008].

Following a proposal from theoretician teams from Paderborn (Germany) and
Tucson (Arizona) [Schumacher2009, Dawes2010, Luk2013], V. Ardizzone demonstrated
in 2013 [Ardizzone2013b, Ardizzone2013a] the formation of hexagonal patterns in the
degenerate OPO regime (process c. of Fig. 1.11) in a double microcavity. Several
degrees of freedom for the pattern formation can be exploited such as the polariza-
tion, the energy and the (small) wavevector of the pump beam, use of an additionnal
probe beam. Microcavities are thus a unique laboratory for the understanding of the
pattern formation physics. From an application point of view, the control of pat-
tern formation offers an excellent candidate for fast all-optical switch devices, easily
integrable with other electro-optics components such as VCSELs.

In Chapter 4, I continue the work of V. Ardizzone by a systematic study of the
various available degrees of freedom. In particular, a rotation over 360° of a two-
point pattern is demonstrated by rotating the pump’s linear polarization, paving the
way to a potential microscopic lighthouse device.
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1.3 Polarization effects in microcavities
The polarization effects arising in semiconductor microcavities are numerous, and
Ref. [Shelykh2010] gives a detailed review on these aspects. In this thesis, we will
concentrate on the polarization effects which affect the propagation of polaritons in
various scattering regimes. We will not discuss the polarization effects arising in the
regime of Bose condensation.

In the regime of resonant elastic Rayleigh scattering, where the the interactions
between polaritons can be safely neglected, we first discuss a long-range spin-orbit
coupling effect, namely the cavity TE-TM splitting. It gives rise to the so-called
“Optical Spin Hall Effect”. Then short-range effects, arising from 1D-confinement
or mechanical constraints, are introduced. Finally, we discuss the spin-dependence
of exciton-exciton interactions in the nonlinear regime, that is, above the OPO or
OPA threshold discussed in the previous section.

1.3.1 Long-range polarization effect: the TE-TM splitting
In this section, the TE-TM splitting, a k-dependent polarization splitting vanishing at
k‖ = 0, is detailed. Its origin lies in the photonic, the excitonic or the exciton-photon
coupling term of the polariton. The Optical Spin Hall Effect (OSHE) derives from
this effect.

1.3.1.1 Origins of the TE-TM splitting

TE and TM polarizations are defined with respect to the direction of the in-plane
wavevector k‖ (see Fig. 1.12.a. and b.).

TE-TM splitting on the cavity mode In 2D microcavities, the TE polarization is
always in the layer’s plane, whereas the TM polarization projects with an angle θ in
the layer’s plane (see Fig. 1.12.a and b.). The penetration depth of the cavity mode
inside the DBRs is therefore different for TE and TM polarization [Panzarini1999].
This effect can be taken into account by a different effective cavity mass for the TM
and TE mode (see Fig 1.12.c.).

Ec,TE/TM
k = Ec

0 +
h̄2k2
‖

2mTE/TM
c
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TM TE

TM

TE
TM

TE

Figure 1.12: TE and TM polarizations for excitation (a) at normal incidence (k‖ =
0) and (b) at oblique incidence (k‖ 6= 0). In (a), TE and TM polarizations are both
in-plane, whereas in (b), the TM polarization has an angle θ with the layer’s plane
while the TE polarization remains in-plane. c) Energy dispersion with in-plane
wavevector. A TE-TM splitting is included here in the cavity mode (exaggerated
here with mTE/mTM = 1.25), and induces in return a TE-TM splitting on the
polariton branches. The so-called “elastic circle” at energy 1.596 eV is sketched on
the dispersion and represented in (d) in the in-plane wavevector space. φ is the
azimuthal angle along the elastic circle.

In the basis of circularly-polarized light, the equations for the electric and exci-
tonic field rewrite:

īh
d
dt
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e–
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c–

 =


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k
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k
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 (1.16)

with Ec
k = Ec

0 +
h̄2k2

‖
4 ( 1

mTE
c

+ 1
mTM

c
) the mean cavity dispersion and ∆c,±

k =

h̄4

4 ( 1
mTM

c
– 1

mTE
c

)(kx ∓ iky)2 including the cavity TE-TM splitting. This coupling
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results in a TE-TM splitting of the polariton modes (Fig. 1.12.c. and d.) on the
elastic circle.

N.B.: The losses are neglected in the eq. (1.16), but one can show [Panzarini1999]
that the cavity losses γc at finite k‖ also depend on the polarization. Additionnally,
for multiple microcavities, the cavity-cavity coupling Ωc defined in paragraph 1.1.2.7
exhibits the same behavior.

TE-TM splitting on the exciton energy There is also a TE-TM splitting of the
exciton ∆x,±

k at large k‖, coming from the long range part of electron hole exchange
interaction. However, its order of magnitude is only a few µeV inside the light cone
and can therefore be safely neglected [Shelykh2010].

TE-TM splitting on the exciton-photon coupling Due to the cos θ projection on
the layer’s plane for TM polarization, the exciton-photon coupling is larger for a TE
polarization than for a TM one for k‖ 6= 0 (see Fig. 1.12), such that

ΩTM
R,k ' ΩTE

R,k cos θc,

where θc is the intracavity angle (see Subsection 1.1.2.4) [Panzarini1999].

Conclusion: TE-TM splitting on the polariton energy Whatever the origin of
the TE-TM polarization splitting, the equation for the lower polariton in the circular
polarization basis close to null exciton-photon detuning can be written:

īh
∂

∂t
Ψ±k = (Ep

k – iγp)Ψ±k + ∆
p,±
k Ψ∓k , (1.17)

Ep
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2
1
2(

1
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p
+ 1

mTM
p

) is the mean polarization dispersion with k,

where mTE/TM
p ' 2mTE/TM

c is the polariton effective mass for TE or TM polariza-

tions. ∆
p,±
k = h̄2

4 ( 1
mTM

p
– 1

mTE
p

)(kx ∓ iky)2 takes into account the TE-TM splitting.

∆
p,±
k can be rewritten as ∆

p,TL
k e∓2iφ, where ∆

p,TL
k = h̄2

4 ( 1
mTM

p
– 1

mTE
p

)k2 and φ is

the azimuthal angle along the elastic circle as defined by Fig. 1.12.d.

1.3.1.2 Consequence: the Optical Spin Hall Effect

The Optical Spin Hall Effect is a direct application of this k-dependent TE-TM
splitting. Predicted by Kavokin et al. [Kavokin2005] and experimentally observed by
Leyder et al. in 2007 [Leyder2007], it is similar to the Rashba-Dresselhaus spin-orbit
coupling in semiconductors quantum wells. It results from the association of a scat-
tering mechanism (elastic Rayleigh scattering) with the long-range TE-TM splitting
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in semiconductors microcavities. In pure photonic cavities an analogue of this effect
has also been observed [Maragkou2011].

Consequently, the polariton polarization is rotated as a function of the direction
of its propagation, such that opposite polarizations are separated in space.

Resonant elastic Rayleigh scattering The Rayleigh scattering is an elastic scat-
tering on the microcavities defects. It allows to change the polariton wavevector
without affecting its energy (provided there is an available polariton state at the new
wavevector and energy).

Leyder et al. experiment In the original experiment by Leyder [Leyder2007], a
pump is sent at an oblique angle resonant with a polariton state. Its polarization
is linear. The pump polaritons are scattered by resonant elastic Rayleigh scattering
onto the other available states (the so-called elastic circle, see Fig. 1.12). Due to
the TE-TM splitting, some eigenstates on the elastic circle are not co-polarized to
the pump’s polarization. Therefore, the pump polaritons rotate their polarization
during propagation. Looking at the circular polarization degree S3 = |Ψ+|2 –
|Ψ–|2, the re-emitted light exhibits four quadrants as a function of polarization.

a) b)

Figure 1.13: First experimental demonstration of the “Optical Spin Hall Effect” from
[Leyder2007]. Degree of circular polarization in the far-field (a) and near-field (b) for a
“x” (or horizontally) polarized pump sent at oblique incidence and resonant with the
elastic circle (kx =1.56 µm–1). The TE-TM splitting strength is ∆

p,TL
k =0.05meV.

Direct calculation To account for the experimental result, an “x”-polarized pump
term ψx

pump is added in eq. (1.17), with resonant energy Epump = Ep
k (elasticRayleigh

scattering). Eq. (1.17) in the steady-state rewrites:(
–iγp ∆

p,TL
k e–2iφ

∆
p,TL
k e2iφ –iγp

)(
Ψ+
k

Ψ–
k

)
+
(
ψ+

pump
ψ–

pump

)
= 0, (1.18)
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where
(
ψ+

pump
ψ–

pump

)
= 1√

2

(
ψx

pump
ψx

pump

)
. Note that the pump term not only includes

the pump polaritons at kx (see Fig. 1.13) but also the x-polarized Rayleigh-scattered
polaritons along the whole elastic circle.

We find:
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k |2 – |Ψ–

k|
2

= –
2γp∆

p,TL
k |ψx

pump|2 sin 2φ

(γ2
p + (∆p,TL

k )2)2
. (1.19)

This sin 2φ dependency of the degree of circular polarization is indeed observable
in Fig. 1.13.a.

Pseudo-spin evolution Alternatively, the non diagonal terms in eq. (1.18) can be
written as the linear combination of the identity matrix and a spin-orbit interaction

1
2B · σ, where σ =

σx
σy
σz

 is the Pauli matrix vector σx =
(
0 1
1 0

)
, σy =
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)
and σz =

(
1 0
0 –1

)
. The modified effective magnetic field is
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p,TL
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∆
p,TL
k sin 2φ

0

 . (1.20)

Fig. 1.14 represents the effective magnetic field as a function of φ on the elastic
circle.

The polariton pseudo-spin is defined using the Stokes parameters:

Sk,i =
(
Ψ+∗ Ψ–∗) · σi ·

(
Ψ+

Ψ–

)

S1 = Ψ–Ψ+∗ + Ψ+Ψ–∗ = 2Re(Ψ+∗Ψ–)
S2 = –i(Ψ–Ψ+∗ – Ψ+Ψ–∗) = 2Im(Ψ+∗Ψ–)
S3 = |Ψ+|2 – |Ψ–|2

The evolution of the pseudo spin is given by eq. (1.21):

dSk
dt

=
1
h̄
Bk ∧ Sk –

Sk
τ

+
S0
τ1

, (1.21)
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where S0 is the pump polaritons pseudo-spin (proportionnal to
(
|ψx

pump|2, 0, 0
)
),

τ = h̄/γp is the polariton lifetime and τ1 is the Rayleigh scattering time constant.
The solution of eq. (1.21) gives the same form for S3 than eq. (1.19).

Figure 1.14: Adapted from Ref. [Kavokin2005]. a) Effective magnetic field induced
by the TE-TM splitting on the elastic circle. b) The pump location is shown by a
green circle, and the direction of its polarization by a green arrow. The Rayleigh-
scattered x-polarized pump polaritons are represented by the blue markers. When
the pseudo-spin (blue arrows) is not aligned with the direction of the magnetic field,
torque occurs on the pseudo-spin inducing its rotation on the Poincaré sphere.

The Optical Spin Hall Effect is therefore a spatial separation of polariton pseudo-
spin assisted by resonant elastic Rayleigh scattering, due to the TE-TM splitting and
the finite lifetime of polaritons. In Chapter 4, a full optical control of the OSHE is
proposed and demonstrated.

In the two next subsections, two possible origins for polarization splittings aris-
ing at k‖ = 0 are considered.

1.3.2 Constraints-induced normal polarization splitting
We consider in this subsection polarization splittings arising from mechanical con-
straints at normal incidence.

Constraints can indeed lead to polarization-anisotropic splitting for the cavity
modes via stress-induced birefringence in the microcavity, resulting in a splitting of
the bare photon mode into two orthogonally-polarized states [Dasbach2005,Diederichs2007].

An excitonic polarization splitting due to the short-range part of the electron-
hole exchange interaction takes also place in GaAs quantum wells and microcavities
[Dasbach2002].

Additionnally, under anisotropic constraints, a Pikus-Bir deformation Hamilto-
nian has to be considered, which mixes the heavy-hole and light-hole excitonic states.
The diagonalization of the resulting hamiltonian leads to a splitting of the exciton

50



1.3. POLARIZATION EFFECTS IN MICROCAVITIES

energy and a difference in the exciton-photon coupling strength of the new states.
Such effect has been observed by applying a tip on a microcavity in [Balili2010]. Note
that the heavy-light hole mixing is negligible in unstressed samples since light and
heavy hole excitons are separated by approximately 30meV in 7 nm GaAs quantum
wells (see Subsection 1.1.1.3).

1.3.3 Confinement-induced normal polarization splitting
In this subsection, we consider polarization splittings arising from additionnal 1D-
confinement (like in microwires, see Subsection 1.1.2.7) at normal incidence. The
confinement has an effect on the cavity mode and on the exciton-photon coupling
strength [Kuther1998].

First, let us define here the effective confinement angle θeff: the lateral confine-
ment implies that the cavity modes are plane waves in the lateral direction labelled
by the lateral mode index j = 0, 1, .... Neglecting the contribution of the evanescent
field outside of the wire, the lateral wavevector reads kX = π( j+1)

W , where W is the
wire width (cf. Subsection 1.1.2.7).

The internal wavevector is k = ncEc
0

h̄c , where nc is the cavity layer refractive index,
Ec

0 is the cavity mode energy, and c is the speed of light in the vacuum. We can then
define the effective confinement intracavity angle as:

sin θeff =
kX
k
' h̄cπ( j + 1)

WncEc
0

(1.22)

which is the angle with respect to the normal direction of the virtual propagating
plane-wave corresponding to the considered laterally confined mode. This effective
angle increases with j and decreases with W. It induces an energy splitting between
linear polarizations along X and Y for the cavity mode and for the normal exciton-
photon Rabi coupling, which increases with θeff [Panzarini1999].

1.3.4 Spin-dependent exciton-exciton interactions
Lastly, due to direct and exchange two-excitons correlations [Takayama2002], the exciton-
exciton interaction term presented in Subsection 1.2.2.4 is spin-dependent. They are
described by the energy-dependent parameters1 T++ and T+–, if the two excitons
have the same or opposite spins [Schumacher2007].

1The system is assumed spin-symmetric such that T++ = T–– and T+– = T–+, where “+” and
“-” refer to +1 and –1 exciton spins, which couple to left (“+”) and right (“-”) circularly polarized
light (see Subsection 1.1.1.4).
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In the polariton basis, the Gross-Pitaevski equation 1.15 rewrites:

īh
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∂t
Ψ±k = (Ep

k – iγp)Ψ±k + ∆
p,±
k Ψ∓k

+
∑
k,k′′
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Ψ±
k′
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k′′

+ α+–Ψ∓∗
k′+k′′–k

Ψ∓
k′

Ψ±
k′′

), (1.23)

where α++ ' 1
4(T

++ + αPSFΩR) and α+– ' –1
4T

+–. They can be written as a
function of the Hopfield coefficients, and depend therefore on detuning and k. They
are analogous to the polariton-polariton interaction potentials V1 and V2 sometimes
used in polariton theory and experiments [Vladimirova2010,Lecomte2014].

The spin-dependent exciton-exciton interaction parameters affect the efficiency
of χ(3) nonlinear processes. Typically, for the scattering processes and the negative
exciton-photon detuning used in this work, T++ > 0 and T+– ' –1

4T
++. For lin-

ear polarization pumping, this implies in particular that the colinear configuration
(signal and idler co-polarized to the pump), involving the sum of the two contri-
butions, is less efficient than the cross-polarized configuration, which involves their
difference.

Conclusion
In this chapter, the main theoretical tools and concepts have been introduced. Mi-
crocavity exciton-polaritons are quasi-particles arising from the strong coupling be-
tween quantum well excitons and photons confined in semiconductor microcavities.
In single planar microcavities, their energy dispersion with the in-plane wavevector
(or, equivalently, with the angle of the incident light, see Subsection 1.1.2.4) exhibit
two quasi-parabolic branches (the “lower” and “upper” polariton branches). Micro-
cavities can be structured so as to tune the polaritonic modes allowed in the cavity.

Due to their excitonic component, polaritons can interact. The large χ(3) sus-
ceptibility offered by GaAs/AlGaAs semiconductors induces a blueshift of the po-
lariton energies and leads to Optical Parametric Amplification and Oscillation pro-
cesses, where two pump polaritons are converted into one signal and one idler po-
laritons fulfilling phase-matching conditions, similarly to a four-wave mixing process
for photons.

Circularly-polarized light couples with excitons with a ±1 z-component of their
total angular momentum. A pseudo-spin corresponding to the Stokes parameter can
thus be attributed to polaritons. Various polarization-dependent energy splittings
occur, either at large in-plane wavevector, or close to zero incidence angle. Finally, in
the nonlinear regime, the polariton-polariton interactions are in fact spin-dependent.

The next chapter is devoted to the experimental tools used to probe the physical
phenomena arising in the structured microcavities of interest.
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2
EXPERIMENTAL METHODS

In this chapter, the various experimental setups used during this PhD thesis are detailed.
The setup is a confocal experiment specially designed for the observation of light emission
at large angles. Indeed, the quasi-parabolic polariton dispersion allows to define the so-
called elastic circle (see Fig. 2.1): to one excitation energy corresponds a cone of light
emission with a specific angle. The typical emission angles observed in this work are
between 20° and 30° (depending on the exciton-photon detuning).

°

Figure 2.1: a) Energy dispersion of a single microcavity. At fixed excitation energy
(' 1.605 eV) corresponds a fixed angle θx = θy, defining a cone of light emission depicted
in (b). The so-called “elastic circle” corresponds to the projection of this cone onto the
(x, y) plane.

The first section details the various possibilities for the excitation of the sample of
interest. The differences between two laser sources are described in detail (the “pump”), as
well as the optical path for additionnal probe beams and the possible ways to tune slightly
the angle of incidence of the excitation beam.

In the second section, the various setups used to image and analyze the emitted light
from the sample are described, with a specific focus on the polarization control of both
excitation beam and emitted light.
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2.1 Excitation setup
The sample is stuck with silver laque on a copper holder inside an Oxford cold
finger cryostat. A vacuum of ' 10–6 mbar is obtained using a turbo pump. The
sample is cooled down to 6K, using an Oxford transfer tube with circulating Helium.
An ITC503 temperature controller is used to maintain the desired temperature by
adjusting the helium flow or by heating the sample holder using a resistance. The
cryostat includes a 1 inch optical window for the excitation and collection of the
emitted light, and can be shifted along the three space directions.

2.1.1 Optical path for the pump
The optical setup for the excitation of the sample at normal incidence (the “pump”)
is shown in Fig. 2.2. The excitation source is a MIRA 900 laser, an infrared tunable
Titane:Sapphire laser which can operate either in continuous wave or deliver picosec-
ond or femtosecond pulses in the mode-locking regime. The laser is tunable between
700 and 1000 nm. In most applications, the laser wavelength used is around 775 nm.
More details on the laser properties are given in Subsection 2.1.4. The MIRA is
pumped by a VERDI laser, a continuous wave frequency doubled Nd:Vanadate laser
delivering up to 8W of 532 nm laser light (not represented on Fig. 2.2).
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Figure 2.2: Schematic top view of the optical setup for the excitation of the sample
with a pump at normal incidence.

The laser is p-polarized at the output (its polarization is “horizontal”, that is,
parallel to the optics table plane and perpendicular to the propagation direction).
The association of the half-wave plate P and the polarizer cube allows to finely tune
the outgoing excitation beam power (Fig. 2.2).

The Faraday isolator ensures that no backreflection from the optical components
or from the sample can reenter the MIRA cavity and perturb the laser emission. Its
attenuation is 40 dB. The beam-splitter cube is tilted so as to avoid parasitic back-
reflections and the lenses L1, L2 L3 and L4 are provided with an anti-reflection coat-
ing.

At the output of the Faraday isolator, the polarization of the beam is diagonally
linear. The next half-wave plate V rotates the polarization so that the outgoing
beam is s-polarized (or vertically-polarized, that is, normal to the optics table plane,
or along y). The plate is slightly tilted so as to compensate for a slight remaining
elliptical component of the outgoing beam.

The lenses L1, L2 L3 and L4 are placed in order to collimate the beam onto
Lf, resulting in a 50 µm excitation spot on the sample. The optical path has been
calculated using the software GaussianBeam developed by the C.E.A. [Lecomte2011].
The lens L3 is replaced by a cylindrical lens Lcyl for the study of microwires (in
Chapter 3). The excitation spot is thus elongated and matches the wire geometry.

The beam-splitter is a 50/50 cube. Half of the incoming beam is reflected and
excites the sample, whereas the other half is transmitted through the cube and used
to monitor the excitation beam power. The response of the cube under horizontal
or vertical polarization has been carefully calibrated and is reported in Table 2.1.
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The polarization after reflection and transmission is maintained at more than 95%
for both polarization channels.

Polarization of incoming beam Transmission Reflection Losses
Vertical 42% 57% 1%

Horizontal 43% 51% 6%

Table 2.1: Beam-Splitter cube efficiency as a function of the polarization.

The excitation/detection optics is an inverted Wide Scan Type III telescope oc-
ular. The use of a telescope ocular mounted upside-down allows to collect the light
emitted at large angles (the numerical aperture is 84°) with reduced aberrations,
and with a comfortable working distance (the focal length is 16mm). However,
the spherical aberrations remain quite large and are problematic for the real space
imaging, as detailed in Subsection 2.2.3.1.

2.1.2 Small pump tilt
For most measurements, the pump is normally incident onto the sample. To achieve
an exact alignment at normal incidence or to study the influence of a small incidence
angle, it is useful to be able to slightly modify the pump incidence angle.

Figure 2.3: Tuning the pump incidence (a) by rotating slightly the mirror M1, (b) by
rotating a glass plate (which thickness is strongly exaggerated for clarity) by an angle
θg,x. In both drawings, the pump optical path in the normal incident case (mirror
M1 not rotated (a) or θg,x = 0 (b)) is represented by a black dashed line. In (a), the
pump hits the sample at a different spot than when it is normally incident.

A first method consists in a slight rotation of mirror M1 (see Fig. 2.2). However,
this also changes slightly the position of the spot onto the sample. This is a problem
since a different position means a different exciton-photon detuning (due to the built-
in wedge, cf. Subsection 1.1.2.6), as well as a different defect environment, which
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both affect the reemission of light. A simple way to shift only the incidence of the
pump onto the sample is to use a glass plate between the beam-splitter cube and
the telescope ocular Lf. This way, the incoming beam on Lf is not deviated, but
only shifted out of the axis of Lf. Fig. 2.3 shows the difference between the two
techniques.

In order to scan the influence of a very small pump incidence angle, I have built
an automatic stage using two glass slides to vary either the angle along x (θx) or
along y (θy). To automatically rotate the slides, two AGPR100 Agilis Rotation Stage
have been used. However, the motor ensuring the automatic rotation is driven by
piezoelectrics. Therefore, the absolute position of the rotation stage is not guar-
anteed, and in particular, the number of steps for a clockwise rotation is different
from an anticlockwise rotation for the same angle. Therefore, two AVAGO optical
incremental encoders are added to the Agilis automatic rotation stages to precisely
monitor the glass plates rotation angles θg,x and θg,y (Fig. 2.4).
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Figure 2.4: Picture of the experimental setup used to vary the pump incidence an-
gle. (1) and (1’): glass plates rotated by angles θg,y and θg,x respectively, so that
the pump incidence is tilted by θy and θx. (2) and (2’): Agilis automatic rotation
stages connected to the Agilis Controller (3). The rotation angles θg,y and θg,x are
determined with precision using AVAGO optical incremental encoders (4) and (4’),
electronically controlled by the National Instrument PCI-6320 data acquisition de-
vice (5). (6) Beam-splitter cube. (7) Inverted Wide Scan Type III telescope ocular Lf.
(8) Oxford Cryostat in which the sample is inserted.

2.1.3 Optical path for the probe(s)
Besides tuning the pump’s incidence, one or two probes to seed the Optical Paramet-
ric Amplification (see Subsection 1.2.1.3) will be of use in Chapter 4. The optical
paths followed by the two probes are depicted in Fig. 2.5. A second polarizer is
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added after lens Lp to suppress any remaining circular component to the incoming
beam. Then, a beam-splitter divides the beam in two probe beams 1 and 2. Two
half-wave plates are inserted in the optical path of each beam to allow the control of
their polarization.

Figure 2.5: Top view for the two probes and pump setup. Mirrors Mp1 and Mp2
are used instead of beam-splitter plates in order to keep the pump power as large as
possible.

In order to maintain a large pump power, we chose not to use a beam-splitter
plate crossing the three beams but mirrors instead (Mp1 and Mp2 on Fig. 2.5). How-
ever, to reach a resonance condition with the elastic circle, the probes must be sent
with a specific incidence angle, and in practice, the respective probe optical paths
must be very close to the pump’s. Therefore, a delicate optical alignment is needed
since the probe beams must hit the very edge of the mirrors Mp1 and Mp2 (which,
in addition, are stuck on the edge of their optical mount so as to save space).

2.1.4 Properties of the optical pump
2.1.4.1 Intensity fluctuations of the MIRA laser

The MIRA laser is a mode-locked Ti:Sapphire laser able to deliver light pulses while
pumped by a VERDI laser. The laser optical cavity is different for the “femto pulsed
regime” (plain and dashed line in Fig. 2.6), and for the “pico pulsed regime” (plain
line in Fig. 2.6). The birefringent filter (BRF) is also different in the pico and femto
configurations. The pulses are obtained by closing the output slit and initiated
thanks to the oscillation of the starter.

The MIRA is therefore designed to be multimode, so the “continuous wave”
(cw) regime may not allow light emission at a stable wavelength and cannot be finely
tuned. To improve the properties of the cw emission, the laser cavity may be set in
an third alternative configuration: the “alignment” one, that is, the “pico cavity”,
where the mirror M10 is removed and the laser is reflected by mirror M9.
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Figure 2.6: Reproduced from the MIRA 900 operator’s manual. The solid line repre-
sents the picosecond operation. Solid and dashes lines correspond to a femtosecond
operation. The “alignment cavity” is obtained with the pico configuration (P1 is
removed) where M10 is removed and M9 reflects the laser onto M8.

In the experiments reported in the next two chapters, the MIRA was operated in
the cw mode. Since this is not the usual use of this laser, we have characterized the
laser emission in this mode using two techniques:

1. Recording of the voltage of the photodiode included inside the laser cavity,

2. Measurement the autocorrelation of the laser emission. If the laser intensity is
stable, the autocorrelation function should be flat.

Characterization with the laser photodiode
Some fluctuations (see Fig. 2.7) are observed on an oscilloscope screen recording

the voltage of the intracavity photodiode. These fluctuations appear only when the
laser hits the sample and their amplitude is even increased when the laser is in reso-
nance with the polariton branch. This indicates that, despite of all the experimental
efforts (Faraday isolator, anti-reflection coated lenses, beam-splitter cube tilt), the
backreflection from the sample towards the MIRA cavity is not completely sup-
pressed and has a measurable effect on the laser emission.
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Figure 2.7: Approximately 4 ns fluctuations of the laser emission recorded by the
intracavity photodiode. Done with the “pico” cavity. Note that the figure does
not show the real amplitude of those oscillations due to the finite photodiode time
response.

The absolute amplitude of these oscillations is meaningless since it is dependent
on the limited photodiode time response. However, it is direct evidence of the role
of the sample backreflection on the laser emission. An autocorrelation measurement
on the laser emission must be done so as to get a reliable estimation of the oscillation
amplitude and period.

Characterization by autocorrelation
Fig. 2.8 shows the typical autocorrelation setup used to study the MIRA laser

emission. The laser is sent to a fibered beamsplitter. Two rapid avalanche pho-
todiodes (ID100 single-photon detectors APD) detect the incoming photons and
the Time-Correlated Single Photon Counting PicoHarp module records the delay
between the detection of a photon by the two APDs. If the laser emission is con-
tinuous, a completely flat response is expected, since the probability of emitting a
photon is the same whatever the delay between APD1 and APD2. For other sources
such as a single photon source, an antibunching will occur around the zero delay,
and on the contrary a bunching in the case of a thermal source.

Figure 2.8: Setup for the observation of the MIRA intrinsic autocorrelations. The
laser-fiber coupling is achieved using an “Edmund Optics” microscope objective of
magnification x20 and working distance 3.3mm.
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Instead of observing a flat response, fast oscillations with period ' 1.45 ns are
observed (see Fig. 2.9). These oscillations are particularly intense when using the
pico cavity (60% of the total amplitude). The alignment cavity allowed to decrease
the oscillations to 20% of the total amplitude.
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Figure 2.9: Autocorrelation measurements with the MIRA a) for the pico-cavity. b)
for the alignment cavity.

These oscillations are present:

• Whatever the excitation intensity of the sample (from 5mW to 150mW, tuned
by rotating the half-wave plate P shown on Fig. 2.2),

• Whatever the power of the VERDI laser (from 6W to 8W),

• Even when a second Faraday isolator is set on the excitation path,

• Even when the laser is slightly disaligned, either by rotating its entrance mir-
rors (not represented on Fig. 2.6) or translating the output slit,

• Even when a pinhole is added at the laser output so as to make a spatial filter.

Those GHz oscillations corresponds to a distance of ' 45 cm in the air. This may be
the signature of the interference between two mirrors inside the MIRA cavity (see
Fig. 2.6). When the laser is resonant with a polariton branch, a secondary oscillation
which corresponds to the optical free path (13 ns) is added. This is a sign that the
light absorbed by the microcavity reenters the MIRA cavity.
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Figure 2.10: Autocorrelation measurements with the MIRA “alignment cavity”. a)
Laser out of resonance. b) Oscillations of period ' 13 ns are added when the laser is
resonant with the polariton branch.

In conclusion, the MIRA laser emission has been characterized using two differ-
ent measurements made by an intracavity photodiode and an autocorrelation setup.
The result show that the cw regime is unstable. No experimental method was yet
found to suppress or reduce the amplitude of those oscillations below 20%. Indeed,
the MIRA laser is not designed to produce a monomode emission, but a pulsed emis-
sion with a large spectrum based on the superposition of many longitudinal cavity
modes.

To check the influence of this non-ideal cw source, we have also occasionnally
used another cw tunable Ti:Sapphire laser source which can deliver a much more
stable intensity.

2.1.4.2 Alternative cw tunable laser: the SOLSTIS laser

The second laser we explored is the SolsTiS tunable cw Ti:Sapphire Laser. The main
differences between the two lasers are summarized in Table 2.2. Mainly, the SolsTiS
has a much narrower linewidth than the MIRA.

MIRA SolsTiS

Linewidth 10 to 40MHz 50 kHz

Free spectral range 13 ns 0.7GHz=1.4 ns

Tunability ' 0.5 nm < 0.1 nm

Table 2.2: Comparison between the SolsTis and the MIRA laser emission.

Etalon and cavity lock To achieve this narrow linewidth, an intracavity thin
etalon is added to the cavity. The etalon introduces a spectral loss into the cavity
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that is a much sharper function of the frequency than the birefringent filter. The
SolsTiS output frequency is tuned by electronically adjusting the etalon spacing.
Additionnally, an electronic servo locking of the intracavity etalon can be applied to
ensure the stability of the emitted wavelength on long period of time.

To obtain the narrowest possible linewidth, a high stability, high finesse, ref-
erence cavity can be added to the SolsTiS. By locking the SolsTiS cavity to this
reference cavity, the SolsTiS linewidth can be reduced to less than 50 kHz.

Figure 2.11: Solstis control panel. The “Etalon tune” button allows to finely tune
the emitted wavelength with a precision better than 0.1 nm when both etalon and
cavity lock are applied.

Experimental setup: high power coupled in a single mode fiber This Solstis
laser had been originally bought by our group for the study of carbon nanotubes
emission in microcavities [Jeantet2016]. To bring the Solstis laser emission to my
optics table, the laser is coupled into a 12m single mode 780HP fiber. The laser-fiber
coupling efficiency must be high in order to get sufficient power (typically 100mW)
onto the sample and observe various regimes of power. To avoid any damage on the
fiber end close to the Solstis laser, this very end is first exposed to light illumination,
but obliquely cleaved with an angle to deviate the back-reflection and inserted into
a ceramic ferrule so as to create a thermal screen shield and reduce any thermal
fluctuations. The laser is focused onto the input of the fiber using a Geltech aspheric
lens of focal length f = 8mm and numerical aperture NA = 0.5. At the output of
the fiber, a FC/PC collimator of focal length f = 4.6mm is used to modulate the
size and divergence of the outgoing beam. To achieve a 30% coupling between the
Solstis laser and the fiber, we use the “beam walking” method by rotating mirrors
Ms1 and Ms2 (see Fig. 2.12) and shifting slightly the distance of the aspheric lens and
the end of the fiber.
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Figure 2.12: Optical path for the SOLSTIS excitation.

Autocorrelation of the SOLSTIS laser Autocorrelation measurements (Fig. 2.8)
were also performed on the Solstis laser. If no lock is activated, oscillations with
a period of ' 1.29 ns, corresponding approximately to the laser cavity length, are
observed (Fig. 2.13.a.). Those oscillations disappear if both etalon and cavity lock
are activated (Fig. 2.13.b.). The cavity lock can be achieved only if optical densities
are present between Ms1 and Ms2 to attenuate and/or deviate the back-reflection.
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Figure 2.13: a) Autocorrelation measurement on the Solstis laser if no lock is acti-
vated. b) Cavity and etalon locked Solstis autocorrelation measurement.

Conclusion The Solstis laser is therefore a useful complementary tool to probe the
importance of monochromaticity and intensity fluctuations for the analysis of the
physical phenomena of interest. This will be of particular importance in Chapter 4.

2.2 Detection setup
In this section, the various setups used to characterize the light emitted by the sam-
ple are described. The detector may either be set to image the surface of the sam-
ple (Subsection 2.2.3), or coupled to the Fourier plane of the emitted light. The
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influence of the spherical aberrations due to the inverted telescope ocular Lf are
discussed. The second option allows to image the angular emission of the micro-
cavity (Subsection 2.2.1) and, by inserting a spectrometer in the optical detection
path, to directly image the energy dispersion with angle of the emitted light (Subsec-
tion 2.2.2). The experimental setup allowing for the simultaneous observation of the
momentum space and real space is detailed in Subsection 2.2.3.2. Finally, the tools
used to monitor the polarization of the excitation or emitted beams are detailed in
Subsection 2.2.4.

2.2.1 Momentum space
The far field of the emitted light is imaged in the focal plane of the ocular Lf, also
called Fourier plane. Indeed, each point in the Fourier plane is conjugated to one
direction of the emitted light, hence the Fourier plane also corresponds to the an-
gular space (or, equivalently, the momentum space or parallel wavevector space, see
Subsection 1.1.2.4).

To get an image of the far field at a convenient location, the Fourier plane is
imaged on a low noise Charge-Coupled Device (CCD) detector through a lens Lc.
The CCD detector (Sony ICX285AL) is composed of 1434×1050 6.45 µm square
pixels. The electronic control of the detector was conceived and realized by David
Darson at LPA.

e

Figure 2.14: Principle of the far field imaging (top view). The Fourier plane, image
of the far field emission, is obtained at the focal plane of Lf, and the CCD detector
is conjugated to the Fourier plane via the lens Lc.

The distance between Lf and the position of the CCD is fixed experimentally.
However, the position of Lc and the distance between the sample and Lf can be
slightly adjusted. This alignment is not easy since the precise Fourier plane position
is unknown. Indeed,

1. The exact position of Lf compared to the sample is difficult to measure pre-
cisely (it should be around 16mm, the focal length of Lf),
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2. The focal length of Lf varies with angle due to spherical aberrations (see Sub-
section 2.2.3.1),

3. The ocular Lf is a thick optical component: it is not easy to define its center.

The second observation implies in particular that the Fourier plane for the normally
incident and reflected pump is located at a different position than the Fourier plane
for the light emitted at large angles.

2.2.2 Angle-resolved energy dispersion
The energy dispersion as a function of the angle of emission is easily imaged using a
Czerny-Tuner type spectrometer which entrance slit is placed at the position of the
conjugate Fourier plane of Fig. 2.15).

Set at order 0 with the slit wide open, the grating is a mirror, and the spectrom-
eter simply couples the entrance slit with the output at which the CCD camera is
now placed with a 1:1 magnification.

Closing the entrance slit selects the light emitted on the vertical axis y. With the
1200 g/mm grating properly rotated, the portion of the light at a given ky entering
the spectrometer is dispersed by the grating as a function of the wavelength. Thus,
we get a picture where one axis corresponds to energy and the other to the angle of
emission along y (θy), or, equivalently the wavevector along y, ky.

Figure 2.15: Top view of the setup for the observation of the energy dispersion as
a function of ky (or, equivalently θy). The entrance slit (represented open on the
figure) must be closed to select the light emitted along y.

In this configuration the sample can be excited non resonantly with an blueshifted
excitation energy correponding to a node of the DBRs. Relaxations towards available
states at lower energies (photoluminescence or PL) populate the polariton branch(es),
and allows to image their dispersion.

Since the spectrometer has an anisotropic response in polarization [Lecomte2011],
a polarizer is placed upstream so that the light entering the spectrometer has always
the same polarization. The polarization that is best transmitted by the spectrometer
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is horizontal, and corresponds to the polarization perpendicular to the pump’s (ver-
tical). Therefore the analyzer is set to filtrate only horizontally polarized light. To
observe other linearly polarized light, the half-wave plate d can be rotated. However,
the stray light of the laser will not be cut anymore.

2.2.3 Real space
An image of the real space (sample surface or near field) allows to visualize the surface
defects, and, for a resonant excitation, the propagation of the polaritons.

A first and simple way to image the near field is to shift the position of the lens Lc
until defects (for the double microcavity sample) or wires (for the 1D - microcavities
sample) are well defined on the camera. If the sample is located at the focal plane,
then the distance between Lc and the entrance slit of the spectrometer must be fc
and the magnification is approximately – fc

ff
' –9.3.

The near-field image allows in principle to measure the spot size of the pump
and probes’ beams. For the pump, we find a spot size with full width half maximum
(FWHM) of about 50 µm± 10 µm. Note that the FWHM value is only indicative:
indeed, it is very sensitive to the distance between Lf and the sample since Lf is very
convergent.

The laser is a coherent light source which can produce interference patterns
(speckle). To avoid this effect, we can also use a red Light-Emitting Diode (LED)
source to illuminate the sample surface. A homemade electronic circuit is built to
monitor the excitation power. A red LED is preferable to a white light source since
its wavelength (635 nm) is close to the laser’s, such that the refractive indices of the
optical components are almost identical. The scheme for the observation of the near
field with the LED is shown on Fig. 2.16. We use a ToUcam Pro Philips webcam
to record the near field at the focal plane of the lens Lrs. The magnification is ap-
proximately – frs

ff
' –19. A pinhole can be placed at the vicinity of Lf to increase the

contrast.
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Figure 2.16: Real space imaging using a red LED excitation source.

2.2.3.1 Spherical aberrations of the ocular Lf

Despite the choice of an inverted ocular Lf, in principle corrected for spherical aber-
rations, the angles of interest in the experiment are so large (between 20 and 30°)
than spherical aberrations come into play nevertheless. Practically, it means that the
ocular does not have the same focal length for marginal beams (or large angles) and
paraxial beams (or small angles). Fig. 2.17 shows the effect of spherical aberrations
for various incoming beams.

Figure 2.17: (Adapted from Wikimedia Commons). a) Ideal convergent lens. b)
Convergent lens with spherical aberrations. Marginal beams (large t or θ) do not
have the same focal plane than paraxial beams (small t or θ).

To calibrate the spherical aberration for the ocular Lf, we have measured its
focal length as a function of incidence angle. The laser beam is first sent at normal
incidence and goes through the center of the ocular Lf. We choose a visible defect at
the surface of the sample. The ocular Lf is progressively shifted along x. The sample
is then shifted along z to compensate for the spherical aberration so that the defect
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is still well-defined. Due to a slight tilt of the cryostat, the sample may need to be
shifted also laterally.

However, for distances between the center of the ocular and the laser beam larger
than 2mm, the beam starts to deform along the horizontal axis and the exact z shift
necessary to compensate the spherical aberrations is difficult to determine. This
method is therefore limited to angles lower than 7°.

To explore larger angles, a second measurement is done, where the sample is
replaced by a mirror. Lf is shifted laterally and the distance between Lf and the po-
sition of the mirror is adjusted so that the reflected intensity is maximum, meaning
that the mirror is located at the focal plane of Lf. The experiment has been done for
incoming horizontal and vertical linear polarizations with no significant difference.

Both experiments are represented in Fig. 2.18, and fitted by a parabola:

ff(t) = 16 – 0.02 · t2

' 16 – 5.12 · tan2 θ

Figure 2.18: Red : Experiment #1. Blue : Experiment #2. The black plain line
represents the parabola fit.

The deformation of the beam along the x axis for a shift along x can be under-
stood in the light of Fig. 2.18. Indeed, for |t| >2mm, the focal length starts to
decrease almost linearly with t. Therefore, for a beam waist at the entrance of Lf
of about 400 µm (calculated using the GaussianBeam software), the focal length can
differ by more than 30 µm. The spot on the sample is therefore elongated in the x di-
rection, and undergoes further elongation after reflection and re-transmission by Lf.
This phenomenon, which appears only for large t, is present even if the focal length
is corrected to account for a mean spherical aberration. It could be also reinforced
by a coma aberration (due to a possible slight tilt of Lf).

The focal length for the pump and the elastic circles (or the probes resonant
with the elastic circle) are therefore different. This implies in particular that the
probe must be sent with a non-normal incidence (approximately 1° angle) onto the
ocular Lf, so that the pump and the probe hit the sample at the same point.
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Finally, the spherical aberrations strongly affect the near-field image. Indeed,
the focal length for the reflected probe beam (or the emitted light on the elastic
circle) beams is different from the pump’s. So the position of the near-field image for
the pump and probe is not the same, as can be seen in Fig. 2.19, where the optical
alignment is optimized for the (normally incident) pump. The pump and the probe
are not superposed.

Figure 2.19: Image of the sample surface obtained by shifting the lens Lc of fo-
cal length fc =127mm closer to the entrance slit of the spectrometer (first method
proposed in this subsection). The optical alignment is optimized for normally inci-
dent light (the pump). However, the probe is sent at oblique angle in the direction
indicated by the plain line (which is also the direction of the probe elongation, in
accordance with our interpretation). Pump and probe are superposed on the sample
but not in this image due to Lf spherical aberrations. The dashed line represents the
effective ring corresponding to the probe incidence angle

2.2.3.2 Setup for the simultaneous observation of the real space and the mo-
mentum space

To simultaneously observe the near and far fields created by a normally-incident
pump, a beam-splitter can be placed in the detection path, as shown in the scheme
of Fig. 2.16. However, the observation of the polaritons propagating with a large
in-plane wavector k‖ in the near field will be blurred by the pump’s bare reflection.
To hide the pump’s bare reflection, spatial filters, made by deposited gold onto glass
plates, must be added in an intermediate Fourier plane image located before the imag-
ing of the near field. Fig. 2.20 shows the corresponding optical setup.
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Figure 2.20: Full setup used to observe simultaneously the far and near fields, while
selecting the large angle emitted light through the use of a spatial filter in an in-
termediate Fourier space. The various lenses are positionned in more or less “4-f”
configurations.

The lenses Ld1, Ld2 are positionned so as to image the far field in the focal plane
of Ld2. Since the beams emitted at large angle and the pump reflection are parallel,
the pump reflection and the elastic circle are therefore well separated in space, and
the spatial filter can be placed with precision to hide only the pump spot. The
position of the spatial filter is directly visible on the CCD. The real space is imaged
on a webcam at the focal plane of lens Ld3.

2.2.4 Polarization control of the exciting and emitted light
In this subsection, the strategy chosen to control the linear polarization of the exci-
tation and reemitted beams are detailed. Table 2.3 summarizes the vocabulary used
in this thesis to describe the basis of the linear polarized states.

Vertical along y p
Horizontal In the the optics table’s plane s

Table 2.3: Table of correspondance for the linear polarization basis.

As already mentionned in Subsection 2.2.2, the intensity response of the spec-
trometer varies as a function of the light polarization. Therefore, the analyzer is
fixed to select horizontally-polarized light (cf Fig. 2.21), which corresponds to the
most efficient channel for the spectrometer.

71



CHAPTER 2. EXPERIMENTAL METHODS

As shown in Table 2.1, the beam-splitter also has a small anisotropy between ver-
tical and horizontal polarizations. Therefore, the pump is sent to the beam-splitter
with a fixed vertical polarization (selected using the half-wave plate V of Fig. 2.2).
This ensures that the power entering the microcavity sample is kept constant during
the experiment.

If no other plates are present, this means that the analyzer is by default cross-
polarized to the pump. This has several advantages such as avoiding being blinded
by the pump’s reflection onto the sample. This configuration also allows to observe
pattern formation in the far field of the double microcavity sample (Chapter 4).

If we want to image other linear polarization channels, the half-wave plate d of
Fig. 2.15 can be added and rotated out of its fast axis. However, the CCD detector
will be saturated by the pump’s reflection.

Figure 2.21: Use of an additionnal half-wave plate (λ/2e) to rotate the pump’s linear
polarization while imaging the pump’s cross-polarized channel. If necessary, the
λ/2d use can be rotated to image the pump’s co-polarized channel.

To excite the sample with a non-vertical linear polarization, a half-wave plate
(λ/2e) can be placed between the beam-splitter and the ocular Lf. This half wave
plate will rotate the polarization of excitation but also the polarization of the re-
emitted light in the detection path. However, thanks to the π rotation due to the
reflection onto the sample, the reflected pump light’s polarization is rotated back to
the vertical direction. An example of the rotation of polarization experienced by the
pump light when the λ/2e is rotated by an angle φpol, pump/2 is given in Table 2.4.

λ/2e angle

Pump
polarization on
the sample after

λ/2e

Pump
polarization

after reflection
on the sample

Reflected pump
polarization
after λ/2e

Fast axis Vertical Vertical Vertical

Fast axis +
φpol, pump

2 φpol, pump –φpol, pump Vertical
Slow axis Horizontal Horizontal Vertical

Table 2.4: Effect of λ/2e on the pump polarization.
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This allows to study the effect of the rotation of the pump’s linear polariza-
tion on the far-field emisson, while systematically probing the light emitted by the
sample cross-polarized to the pump. This avoids being blinded by the pump’s bare
reflection.

This configuration is also ideal for the study of polarization splitting in mi-
crowires between polarizations parallel and orthogonal to the wire axis. In that
case, the pump light is blueshifted so as to observe the photoluminescent polariton
branches. Whatever the polarization of the incoming pump, the pump polaritons
created relax towards both parallel and orthogonally polarized polariton branches.
The λ/2d could be used to observe both polarizations, but, even if the pump is
blueshifted, parasitic pump stray light can blur the branches signal at normal in-
cidence, which is exactly the region of interest for the study of the polarization
splitting. Therefore, the rotation of the λ/2e instead of the λ/2d allows to image ei-
ther the parallely polarized dispersion, either the orthogonally polarized dispersion,
while always cutting the pump’s reflection.

Conclusion
I have detailed in this chapter the various experimental methods used in this the-
sis. The confocal setup is very modular, and therefore can easily be adapted for a
large variety of studies: auto and cross-correlations, influence of the excitation beam
incidence, influence of the laser source, spontaneous pattern formation...

Three different imagery techniques are available: the momentum space, the real
space, and the energy dispersion as a function of angle θy, or, equivalently, as a
function of the wavevector along y ky. The momentum space corresponds to an
imaging of the far field emission of the microcavity and is very well suited to observe
the elastic circle defined in the introduction of this chapter. The real space is useful
in positionning the laser spot at the desired location (for example at the center of a
1D-microcavity). The spherical aberrations of the ocular Lf detailed in the present
chapter must be taken into account for the precise optical alignment of the real
space. This is crucial for the experimental observation of patterns in the near field as
discussed in Chapter 4. Finally, the control of the polarization of the pump, probes
and emitted beams is necessary for the study of polarization effects in structured
semiconductor microcavities.

The next chapter will focus on the study of the energy dispersion of microwires,
which exhibits a polarized normal energy splitting. The fourth and last chapter is
mainly devoted to the study the far field emission of a double microcavity in various
regimes of power.
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3
ORIGINS OF THE NORMAL

POLARIZATION
SPLITTING IN

MICROWIRES

In this chapter, we focus on a sample consisting in quasi 1D-microcavities. An energy
splitting at normal incidence between polarizations parallel and orthogonal to their long
axis is analyzed in detail. Such splitting has been previously observed in 1D-microcavities
and attributed to various causes: anisotropic mode confinement [Kuther1998], birefrin-
gence in the Bragg mirrors [Diederichs2007], exciton fine structure [Dasbach2002], anisotropic
Rabi coupling [Balili2010]. This study provides a comprehensive understanding of this lift-
ing of degeneracy. A model for the mechanical constraints is developed, accounting for
the experimental observations. This chapter is the continuation of the work of Vincenzo
Ardizzone published in his PhD thesis [Ardizzone2013a].
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3.1 Sample and excitation conditions
The 1D-microcavities of interest have been previously studied by T.Lecomte [Lecomte2011]
and V. Ardizzone [Ardizzone2013a] in their PhD, where a full characterization of the
sample can be found. We will in this first part quickly describe the main features of
the sample that will be useful to understand the origin of the lifting of degeneracy.

3.1.1 Sample description
The microwires are etched out of a 2D-microcavity grown at the Laboratoire de Pho-
tonique et Nanostructures (Marcoussis, France) by Aristide Lemaître. The Bragg mir-
rors are formed by 26 (30) periodic alternance of Al0.95Ga0.05As and Al0.2Ga0.8As
layers for the top (bottom) mirror. Three group of four 7 nm-thick GaAs quantum
wells are embedded in the cavity and in the DBRs at the antinodes of the electric
field. The complete growthsheet of the sample is available in Ref. [Wertz2010a].

During the MBE growth, the rotation of the wafer is interrupted in order to
introduce a wedge on the cavity thickness. As a consequence, it is possible to tune the
cavity mode energies with respect to the excitonic mode energy by simply shifting
the excitation spot onto the sample (see Section 1.1.2.6).

The 2D-microcavity has then been etched in 1mm-long microwires by Isabelle
Sagnes at the Laboratoire de Photonique et de Nanostructures. The etching was per-
formed down to at least 1 µm in the GaAs substrate, and corresponds to an etching
depth of at least 7 µm. The microwires’ widths range from 3 to 7 µm.

Figure 3.1: Scheme of the available wires on the wafer. The wires are etched perpen-
dicularly to the direction of the cavity wedge X.
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Fig. 3.1 displays a map of the final sample in a plane perpendicular to the growth
direction (z = Z axis). The wedge is along the X direction. The wires long axis is
along Y, orthogonal to X, to ensure that the cavity energy is the same all along the
wire. (X,Y) is oriented at about θw =39° relative to the GaAs crystalline axes (100)
and (010) labelled (x0, y0).

3.1.2 Photoluminescence spectrum
Due to the lateral confinement, the microwires exhibit several cavity modes (see
section 1.1.2.7). These cavity modes, which are labelled by the integer j, are either
symmetric or antisymmetric along the wire width. The distribution of the electric
field along X reads [Kuther1998]:

cos(
(j + 1)π

W
X) for j even (3.1)

and sin(
(j + 1)π

W
X) for j odd,

with W the lateral width of the wire, X varying between –W
2 and W

2 . For a given
mode j, kX,j =

( j+1)π
W represents the effective wavevector in the X direction.

Figure 3.2: Sketch of the mode distribution following Eq. (3.1) wire. The direction
of the emitted light selected by the vertical entrance slit of the spectrometer is shown
(i) by a blue plane when the sample crystalline axis y0 is parallel to the slit, and (ii)
by a red plane when the sample is tilted such that the long axis of the wire Y is. (a)
j = 0 mode. (b) j = 1 mode. (c) j = 2 mode.

To visualize the angle-resolved photoluminescence spectrum, we use the vertical
entrance slit of the spectrometer to select the light emitted in the vertical direction
y. The spectrometer disperses the vertically incoming light as a function of energy
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(see a detailed explanation in section 2.2.2). If the sample is oriented so that the
crystalline axis y0 is parallel to the slit (y0 = y), then the wires are not aligned
with the slit, as shown in Fig. 3.2. Due to the cavity mode symmetry, the energy
dispersions exhibits several elongated spots instead of a continuous energy branch
(Fig. 3.3.a.).

To avoid this situation, the sample is placed with the wires long axis Y parallel
to the vertical slit (Y = y). In this configuration, the energy dispersion is visualized
as a function of kY, the wavevector along Y or equivalently, as a function of θY,
the corresponding emission angle in the Y direction. This way, the emitted light is
collected more efficiently, especially for the mode j = 0. This will be particuliarly
useful for the measurement of the energy dispersion at positive detunings, where
the polariton branch linewidth is very large. The disadvantage is that to move from
one wire to its closest neighbor, the sample must be shifted in a (known) diagonal
direction θw (which is not very convenient for the experimentalist).

Figure 3.3: (a) From Ref. [Lecomte2011]. Photoluminescence spectrum of a 5 µm-
wide wire as a function of θy0 , that is, when the wire is not aligned to the slit. (b)
Photoluminescence spectrum of a 5 µm-wide wire as a function of θY when the wire
long axis is aligned with the slit. The even modes exhibit a full parabola. The j = 0
mode is very bright. The odd modes are also visible for θY < 0, meaning that the
spot is probably not exactly centered on θY = 0 but rather slightly shifted towards
negative angles.

3.2 Observation and characterization of the polariza-
tion splitting

As noticed by V. Ardizzone during his PhD, the polaritonic branches exhibit an
energy splitting between polarizations parallel and orthogonal to the wire. This
splitting, which can go up to about 1meV for the mode j = 0, changes its sign and
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magnitude as a function of temperature, cavity mode and detuning. In this section,
this polarization splitting is investigated using the degrees of freedom experimentally
accessible. We observe that the variation of this splitting as a function of cavity-
exciton detuning is completely reproducible regardless of the wire width.

3.2.1 Experimental setup and available degrees of freedom
The experimental setup is sketched on Fig. 3.4. A single wire is excited at normal
incidence by a laser spot elongated along Y (approximate size: 50 µm×5 µm) with
an energy lying in the first nodes of the Bragg mirrors (see Section 2.2.2). The
order of magnitude of the excitation power density is 0.4mW.µm–2. Due to non
polarization-free relaxation of the electronic excitations, both X- and Y-polarized
polaritonic branches are excited regardless of the polarization of the pump.

We record the photoluminescence spectrum for polarizations parallel (Y) or or-
thogonal (X) to the wire long axis, selected using the half-wave plate e and an ana-
lyzer (see Section 2.2.4 for the experimental details).

Figure 3.4: a) Schematic representation of the microwires microcavities. QWs in
the DBRs have been omitted by sake of simplicity. Wires are etched down to the
GaAs substrate in the direction parallel to the wire long axis Y. A single wire is
excited by an ellipsoidal laser spot in order to match as far as possible its geometry.
b) Scheme of the polarization-resolved photoluminescence (PL) setup. The sample
is excited non resonantly with laser light blue-shifted with regards to the polaritonic
transitions in the first transmission band of the DBR. By using a combination of
a half-wave plate and an analyzer, either the X-polarized branch or the Y-polarized
branch is selected while always extinguishing the reflection of the pump light.

We observe a splitting between the branches polarized parallel and orthogonal
to the long axis of the wire which goes up to 1.33meV for the mode j = 2 as shown
in Fig. 3.5.
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Figure 3.5: Photoluminescence (PL) at 6K of a 3 µm-large microwire under non
resonant excitation observed in the reciprocal space. The cavity-exciton detuning
is approximately –7meV. In this configuration, the dispersion curves of the lower
polarization branch of the 1D-confined microcavity polaritons with polarization (a)
parallel or (b) orthogonal to the wire axis can be directly observed. The splitting
magnitudes for modes j = 0 (j0) , j = 1 (j1) and j = 2 (j2) are respectively 0.72meV,
1.03meV and 1.16meV.

Let us now list the various degrees of freedom experimentally accessible to char-
acterize this splitting of degeneracy between the X- and Y-polarized branches:

• The sample exhibits several rows of wires with widths ranging from 3 to 7 µm
(see map of the sample in Fig. 3.1). Thus, the splitting can be investigated as a
function of wire width.

• On one row, the wedge introduced during the growth of the 2D-microcavity
varies quasi linearly. By recording the photoluminescence spectrum on the
same row, i.e. for the same wire width, the splitting can be measured for
various cavity-exciton detunings.

• The temperature control of the cryostat allows to vary the temperature of the
sample between 6K and up to room temperature.

• The splitting for the polaritonic modes with j > 0 can be investigated even
if their emission intensities are much lower than the one of the fundamental
j = 0 mode.

3.2.1.1 Splitting as a function of detuning

Since the regularly spaced microwires are etched out of a 2D microcavity possessing a
linear cavity energy dependency on the position due to the wedge introduced during
the growth step, the cavity-exciton detuning is therefore a linear function of the
position on the sample.
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We first concentrate on the lowest polariton branch (mode j = 0 or j0) which
shows the largest PL signal. Measurements have been performed on a set of 82
5 µm-wide wires. By carefully recording the energy minima of the lowest polariton
dispersion curve on each wire, the anticrossing curve between the cavity mode and
the excitonic mode can be obtained both for orthogonal and parallel polarization
(Fig. 3.6.a.). From these two sets of measurements, the polarization energy split-
ting is precisely deduced as a function of the cavity-exciton detuning using the data
analysis method detailed in AppendixA1.
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Figure 3.6: a) Energy of the θY = 0 lower polariton for parallel (red) and orthogonal
(blue) polarization with respect to the wires axis for 82 5 µm-wide wires, as a func-
tion of a horizontal shift x on the sample. We recognize a typical low-polariton anti-
crossing curve, confirming the linear relationship between position and detuning. b)
Corresponding polarization splitting. For x >11mm (gray points), measurements
are less accurate due to the broadening of the PL line: a different method of analysis
was used (detailed in AppendixA1).
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Experimental results Fig. 3.6 shows the result of the experiment as a function
of an arbitrary horizontal position x. Figure 3.6.b. represents the energy splitting
between parallel (Y) and orthogonal (X) polarized branches. For negative and null
detunings, the polarization splittings are large enough with respect to the polariton
branches spectral witdths and are obtained directly from the energy difference of
parallel and orthogonal polarized polariton branches of Fig. 3.6.a. For large positive
detuning the polaritonic branch is mainly excitonic and its linewidth becomes large
compared to the polarization splitting. In this case, the energy splitting is computed
with a second method (see AppendixA1).

Assuming a cavity energy Ec
0 varying linearly with position, the cavity-exciton

detuning reads:
∆ = Ec

0 – Ex
0 = a · (x – xref)

and we determine the constants a and x0 by fitting the energy averaged over the
polarization of Fig. 3.6.a. with the equation of the lower polariton branch:

Eave
0 = Ex

0 +
1
2

∆ –
1
2

√
∆2 + 4Ω2

R, (3.2)

which also gives a calibration for Ex
0 and ΩR.

We find:

Estimate Standard Error
Ex

0 (eV) 1.6097 0.0002
ΩR (meV) 8.3 0.2

a (meV.mm–1) 13.2 0.07
xref (mm) 9.88 0.01

Table 3.1: Results of the fit of Fig. 3.6.a. using Eq 3.2.

Using this method, the experimental results can be plotted as a function of the
cavity-exciton detuning ∆. This reference quantity is independent of the wires’
width and will therefore be used to compare different data sets in the following.

3.2.1.2 Influence of the wires width

Figure 3.7 shows the polarization splitting as a function of exciton-photon detuning
for various wire widths (3, 4, 5, 6 and 7 µm lateral sizes). No significant difference is
observed between the various wire sizes.
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Figure 3.7: Polarization splitting as a function of the cavity-exciton detuning for
various wire widths. Each experimental dot corresponds to the measurement of
a single wire located at a different position on the sample, i.e. at different cavity-
exciton detunings and wire width.

This observation imply that the observed polarization splitting results from local
properties of the 1D-microcavities and not from boundary conditions imposed by
the wire width.

3.2.1.3 Influence of the temperature

This set of data was recorded by V. Ardizzone. This time, only three wires with the
same width are investigated (3 µm). They are not located at the same position on
the sample, hence their cavity-exciton detunings are different: -63, -23 and –11meV
at 10K1. For each wire, the temperature is risen, starting from 10K.

Figure 3.8 displays the polarization splitting δEpol as a function of the tempera-
ture for those three wires. These data correspond to the three first lower polariton
branches j0 ( j = 0), j1 ( j = 1) and j2 ( j = 2).

1The detuning is computed for the j = 0 mode. The effective detunings for modes j = 1 and j = 2
are different since εc,j0 increases with j.
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Figure 3.8: Energy splitting as a function of the sample temperature for various
detunings at 10K for 3 µm-wide wires. Disks, squares and triangles refer to the three
lower polariton branches j0, j1 and j2 respectively.

The polarization splitting increases with temperature, mode index and detuning
(for ∆ < 0). This evolution can be simply understood in the light of the data
depicted in Fig. 3.7: when the temperature increases, the GaAs bandgap is reduced
and leads to a decrease in the exciton energy. If the cavity is negatively detuned from
the exciton energy at low temperature, at high temperature the detuning gets closer
to zero, in accordance with the observations of Fig. 3.8. Varying the temperature is
thus just another way to vary the cavity-exciton detuning, by shifting the exciton
energy instead of the cavity energy.

This interpretation is further confirmed by doing a quantitative comparison be-
tween both methods, shown in Fig. 3.9.

Indeed, under the following assumptions:

• the GaAs bandgap varying with temperature T following [Aspnes1976]:

EG(T) = 1.519 – 5.41 · 10–4 T2

T + 204
,

• the exciton energy Ex
0(T) varies like EG(T) (equivalent to assume constant

binding and confinement energies, see paragraph 1.1.1.3),

• the cavity energy Ec
0 is quasi constant with temperature,

we can define an equivalent low-temperature detuning for each measurement for the
lowest mode j = 0 :

∆eq(T) = ∆(10K) – (EG(T) – EG(10K))
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Using this equivalent detuning, the values of the j = 0 splitting with temperature
are compatible with the ones of Fig. 3.7:
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Figure 3.9: Black disks: Energy splitting as a function of detuning for 3 µm wires.
Black (resp. gray and light gray) squares: equivalent low-temperature detuning for
the reference detuning ∆(10K) = –63meV (resp. –23meV and –11meV).

Note on the influence of the cavity mode j
The different polaritonic modes j correspond to the polaritons arising from differ-

ent photonic modes. Consequently, at negative detuning, an increase of j is equiva-
lent to an increase of the cavity energy and thus to a reduction of the cavity-exciton
detuning. However, we can observe from Fig. 3.8 that the splitting for j > 0 goes
even beyond the highest reported splitting for j = 0 (nearly 1.5meV at the refer-
ence detuning of -11meV at 50K. This suggests that the splitting cannot be fully
described by an equivalent detuning. The confinement of the electric field along the
wire width, which depends on the mode j (see Fig. 3.2), should also come into play.

3.2.2 Interpretation
Gathering all experimental results, the evolution of the j = 0 polarization splitting
with detuning is highly reproducible. We define this polarization splitting by the
following relation:

δEpol = Ep,⊥
0 – Ep,‖

0

Photonic, excitonic and Rabi coupling splittings Let us now comment on the
evolution of the observed polarization splitting with the detuning. Polaritons arise
from the coupling between photons and excitons. Therefore, three contributions
may come into play to account for this polarization splitting: one due to the cavity
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mode, one to the the excitonic mode, and a last one affecting the exciton-photon
coupling strength.

At large negative detuning, the polariton state is mainly photonic and the nega-
tive observed splitting is a signature of the presence of a photonic contribution δEc.
At null detuning, the Rabi energy plays an important role in the polariton total en-
ergy and the polarization splitting reaches a maximum positive peak. This suggests
a contribution of the polarization Rabi splitting δΩR. Finally, an excitonic one δEx
can also be taken into account.

Each contribution is carefully extracted from experimental data and will con-
tribute to the polarization splitting to a varying degree depending on the cavity-
exciton detuning ∆.
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Figure 3.10: a) Data of Fig. 3.6.a. as a function of cavity-exciton detuning, fitted by
eq. (3.2) plotted as a plain line. b) Data of Fig. 3.6.b. as a function of cavity-exciton
detuning. The best non-linear fit using eq. (3.4) is plotted as a plain line.

The anticrossings observed in Fig. 3.6.a. can be accurately reproduced by the
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anticrossing relation:

E
p,⊥‖
0 =

1
2
(Ex

0 ±
δEx
2

) +
1
2
(δEc ±

δEc
2

)

–
1
2

√
(∆± δEc

2
∓ δEx

2
)2 + 4(ΩR ± δΩR)2 (3.3)

However, considering that the Rabi energy is large compared to the polariza-
tion splitting terms, we rather fit the mean anticrossing energy averaged over the
polarization (eq. 3.2).

Under the same assumption, the polarization splitting expression can be simpli-
fied, leading to the following expression:

δEpol '
1
2
(δEx + δEc) –

A
2
(δEc – δEx) – 2BδΩR (3.4)

where A = ∆√
∆2+4Ω2

R

and B = 2ΩR√
∆2+4Ω2

R

.

Data analysis The mean polariton energy Ep,ave
0 is first fitted using eq. (3.2) and

the obtained value ΩR is considered as a fixed parameter to fit the polarization split-
ting data with eq. (3.4). A multilinear fit of δEpol as a function of A and B terms of
eq. (3.4) allows to infer the values of the polarization splitting contributions. This
simple two-step fitting procedure allows to obtain realistic uncertainties on estimated
parameters. A rigorous and complex single-step fitting procedure using the original
polarization splitting expression (3.3) has also been used and leads to exactly the
same results.

Table 3.2 shows the various contributions to the polarization splitting δEpol in-
fered from the data fitting procedure.

Contribution Value (meV) Standard error (meV)
δEx -0.58 0.16
δEc -0.76 0.07
δΩR -1.62 0.12

Table 3.2: Resulting contribution in meV from the different splitting sources ob-
tained by fitting the data for 5 µm-wide wires with the model equation (3.4).

Justification of the data analysis method The relative uncertainty on ΩR ob-
tained by eq. (3.2) propagates on δΩR due to the induced uncertainty on B. As ΩR
is obtained with a typical 2% standard deviation (see Table 3.1), its effect on δΩR
is negligible compared to eq (3.4) fitting uncertainties a posteriori (about 7%). This
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justifies that the fitting procedures for ΩR (eq. (3.2)) and δEpol (eq. (3.4)) can be
done separately.

To estimate the fit quality, the residuals are analyzed (see Appendix A2):

1. Apart from the positive detuning region, residuals are randomely distributed
implying that the standard error is not underestimated.

2. p-values are below 1% meaning the null hypothesis for fitting parameters is
extremely unlikely.

3. For positive detunings, residuals are significantly larger meaning that the fit-
ting procedure is not able to capture the details of systematic effects of smaller
amplitude, probably secondary anticrossings with other levels (excitonic, traps,
etc... ).

This fitting procedure is done using five2 adjustable parameters (ΩR, Ex
0, δEx, δEc,

δΩR), and assuming that the detuning calibration has been previously made. By
incorporating the detuning calibration in the fitting procedure, the joint fit uses
seven adjustable parameters (the previous ones plus the two coefficients a and x0 of
the linear relationship between position on the sample and detuning). Despite this
large number, the results are identical to the simple “separate” fitting procedure both
in estimated values and error bars.

Conclusion and numerical results of the fitting procedure Table 3.3 gives the
fitting polarization splitting contributions obtained for the various wire widths. On
average, the polarization excitonic splitting is δEx '–0.54± 0.18meV the polariza-
tion photonic splitting δEc '–0.73± 0.07meV, and the polarization Rabi splitting
is δΩR '–1.55± 0.12meV. All values in Table 3.3 are compatible within the er-
ror bars, confirming that the wire width indeed has no measurable influence on the
various sources of splitting.

Wire width (µm) 3 4 5 6 7
δEx (meV) -0.56 -0.72 -0.58 -0.49 -0.35
δEc (meV) -0.74 -0.73 -0.76 -0.77 -0.66
δΩR (meV) -1.55 -1.61 -1.62 -1.52 -1.46

Table 3.3: Resulting contributions from the different splitting sources obtained by
fitting the data for the various wire widths. Typical standard deviations for δEx, δEc,
and δΩR are 0.20, 0.07 and 0.12meV respectively. As observed on Fig. 3.7, estimated
parameters are independent of the wire width.

2We have in fact 3 more adjustable parameters for the calibration of the spectrometer which has a
limited spectral range.
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3.3 Physical origins of the polarization splitting
Now that we have identified and calibrated the different sources of splitting at stake
for the final splitting δEpol, we want to find the physical origin for those liftings of
degeneracy.

Quite surprisingly, the splitting does not disappear when the sticking conditions
are changed, which is a novelty compared to previous 1D-microcavity samples stud-
ied in our group [Diederichs2007].

In fact, in this sample the etching is much deeper (down to 1 µm in the GaAs
substrate). We show that the mechanical constraints (whatever their origin) are
almost totally relaxed on the short axis X and totally preserved on the long axis Y,
resulting in a polarization splitting of degeneracy independent on the wire width.

However, the origin of the splitting must come from some mechanical con-
straints and we suggest here that the lattice mismatch between the GaAs substrate
and the microwire is involved. This hypothesis is developed in a mechanical model
and allows to infer an effective strain on the X axis compared to the Y axis due to
the GaAs substrate - induced constraints. Using this value and photoelastic coeffi-
cients for AlxGa1–xAs, we can then derive the induced photonic polarization split-
ting δEc. δEc and δΩR are then obtained by calculating the exchange and Pikus-Bir
interactions resulting from this strain (cf. Subsection 1.3.2).

3.3.1 Influence of the constraints linked to the sticking
Stress applied to the sample can induce a birefringent behavior of the microcav-
ity and possibly explain the appearance of a polarization splitting for polarization
branches. In Ref. [Diederichs2007] the polarization splitting was attributed to the
thermal stress applied to the sample by the copper sample holder at low temper-
ature. This origin was verified by observing that the polarization splitting disap-
peared when the sample stood free from holder in an immersion cryostat. We show
here that this external stress is not at stake in the present sample.

Figure 3.11 represents the polarization splitting of the lowest polariton branch (j0
or j = 0) measured on 4 µm-wide wires when the sample is stuck on the cryostat cold
finger via its whole surface or when it is stuck only on a small surface far away from
the region of interest. This distant sticking (comparable to the size of the sample)
ensures that the thermally induced stress is reduced. No substantial difference is
observed between the two sticking configurations implying that strain in the sample
due to thermal contraction of the sample holder does not significantly contribute to
the polarization splitting observed.
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Figure 3.11: Squares correspond to the measurement performed on 4 µm wires when
the sample is stuck far away from them to ensure that no thermal strain is induced.

3.3.2 Model of stress relaxation in microwires
In this section we account for the independency of the polarization splitting with
the wire widths. Assuming an initial strain at the bottom of the wire, we develop
a mechanical model of the stress relaxation in microwires allowing to derive the
typical stress relaxation heights HX and HY due to the constraints along X (short
axis of the wire) and Y (long axis of the wire). In the range of wires accessible on
the sample, we show that HX � H � HY, where H is the wire height (or etching
depth), and that this anisotropy is quasi-independent on the wire width.

Useful definitions Let us start by defining the useful mechanical quantities.
The stress tensor ~~σ (in N.m–2) is related to the strain tensor ~~ε (adimensionned)

by the Hooke’s law:
σij = Cijklεkl, (3.5)

where i, j, k, and l can take values x, y and z, Cijkl is the stress-strain tensor
(also called elastic stiffness tensor, in N.m–2) and Einstein summation conventions
are used.
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The displacement field ~u is the integral of the strain tensor, such that:

~~ε =



∂ux
∂x

∂ux
∂y

∂ux
∂z

∂uy
∂x

∂uy
∂y

∂uy
∂z

∂uz
∂x

∂uz
∂y

∂uz
∂z

 (3.6)

Mechanical equilibrium The mechanical equilibrium conditions are provided by
the Navier equation:

div~~σ = ~0, (3.7)

since there are no internal volumic forces.
AlxGa1–xAs is not an isotropic cristal but its stress-strain tensor can be approxi-

mately considered as such. Hence the particular form for Hooke’s law reads:

~~σ =
E

1 + ν
(~~ε+

ν

1 – 2ν
Tr(~~ε)~~I), (3.8)

where E is the Young’s modulus, ν is the Poisson’s ratio (ν < 0.5), and ~~I is the
identity tensor.

Considering an homogeneous wire we obtain the following mechanical equa-
tions: {

α∂2
PuP + β∇2uP = –α∂P∂zuz

α∂2
zuz + β∇2uz = –α∂P∂zux

(3.9)

where ~u is the displacement field, P = X or Y, α = Eν
(1+ν )(1–2ν ) and β = E

1+ν .

Boundary conditions W is the wire width, L the wire length, H the wire height,
Hsub the height of the substrate (typically a few hundreds of µm). The origin
(X = Y = z = 0) is placed at the bottom of the wire in its center. The bound-
ary conditions are:

1. a fixed stress field in the P direction CPP at the bottom of the substrate (Hsub):

~~σPP(±
D
2
, –Hsub) = CPP,

where D = W (resp. L) if P = X (resp. Y)

2. a vanishing stress on the free interfaces of the wire:{
~~σ(±D

2 , z > 0) = 0
~~σ(P, z = H) = 0
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which leads to {
∂PuP(±D

2 , z) = 0
∂PuP(P,H) = 0

.

Since uP(0,H) = 0 (the position of the unit cell located at P = 0 does not
change), we have: uP(P,H) = 0.
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Figure 3.12: (a, b, c): Constraint repartition (in color) in a 7 µm-wide wire. Only a
small part of the bulk is represented here. A lateral and longitudinal stresses Capp

XX =
Capp

YY = Capp are applied at the bottom of the bulk. (a) Stress repartition along
the wire length (Y). The stress is only relaxed at the very end of the wire (zoomed
in (b)). (c) Cut plane on the wire lateral axis (X). Contrarily to (a, b), the lateral
stress is completely relaxed on a short lengthscale (approximately 1 µm). (d) The
stress is plotted against the reduced vertical position z/W at the center of the wire
(X = 0, shown by a dashed line in c)) for three wire widths W =3, 5 and 7 µm.
The profiles superposition suggests a universal law linking the characteristic stress
relaxation height HX with the wire width.
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Result of the simulation The linear set of partial differential equations (3.9) is
solved using a finite element method performed by the software Cast3M3. The re-
sults are presented on Fig. 3.12.

The constraints are totally relaxed on a short lengthscale in the lateral direction
(Fig. 3.12.c.). On the contrary, they are mainly conserved in the longitudinal di-
rection (Fig. 3.12.a. and b.). A plot of the constraint along X as a function of z
(Fig. 3.12.d.) for three different wire widths suggests that the stress relaxation height
HX divided by the wire width W is a constant inferior to 1 (dashed vertical on
Fig. 3.12.d.). This statement is confirmed by an approximate analytical calculation
detailed in the next paragraph.

In the present sample, L ' 1mm, W ≤ 1 µm and L ' 7 µm. Therefore,

H
L
� 1 ≤ H

W
,

such that the constraints are completely relaxed in the lateral direction regardless
of the wire width, but not in the longitudinal direction. This explains why the
polarization splitting does not depend on W for this range of wire widths.

Analytical approximate result In this paragraph, an approximate analytical cal-
culation confirm the proportionnality between the stress relaxation height along X,
HX, and the wire width W. This method holds also in the Y direction and the result
can be therefore easily modified to relate HY and L.

For sake of simplicity, the substrate is assumed to be rigid, such that the bound-
ary condition (2) can be rewritten at first order:

∂XuX(±W
2

, 0) = εXX, (3.10)

where εXX is the strain along X at the bottom of the wire induced by the con-
straints at the bottom of the substrate. In reality, the stress is also partially released
in the substrate (see Fig. 3.12.c.). Integration of eq. (3.10) gives uX(X, 0) = εXX ·X.

The set of equations (3.9) is not easily solvable analytically near the connecting
edges of the wire due to the singularity of the displacement field. However, in the
wire volume the second member can be safely ignored:

γ2∂2
XuX + ∂2

zuX = 0 (3.11)

which is a Laplace equation in 2 dimensions with γ2 = α
β + 1 = 1–ν

1–2ν (γ2 > 0
since ν < 0.5). Assuming a solution in the form uX(X, z) = f(X) · g(z), eq. (3.11)
rewrites:

γ2g(z) · f′′(X) + f(X)g′′(z) = 0
3Cast3M is freely available at http://www-cast3m.cea.fr.
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If f(x) = 0 or g(z) = 0, we find the trivial solution uX(X, z) = 0. Therefore we
write:

f′′(X)
f(X)

= –
g′′(z)
γ2g(z)

= –Λ

with Λ a constant.If Λ ≤ 0, then the boundary conditions impose again the
trivial solution for uX(X, z). If Λ > 0, we can write Λ = λ2 and{

f(X) = Acos(λX) + B sin(λX)
g(z) = C cosh(λγz) + D sinh(λγz)

The boundary conditions impose then:
(–Aλ sin(±W

2 λ) + Bλ cos(±W
2 λ))g(z > 0) = 0

(A cos(λX) + B sin(λX))g(H) = 0
(A cos(λX) + B sin(λX))g(0) = εXX ·X

(3.12)

The third equation of the above system of equations imply that A = 0 and
C 6= 0.The second equation allows to relate C and D such that: tanh(λγH) = –C/D,
with D 6= 0. The first equation of (3.12) imposes then for λ the values λn = ±nπ

W ,
and n ∈ Z∗. Thus, the general solution uX(X, z) writes:

uX(X, z) =
∑
n∈Z∗

Bn sin(
nπ
W

X) · gn(z) =
∑
n∈N∗

2Bn sin(
nπ
W

X) · gn(z)

where gn(z) = Cn cosh( nπ
W γz)

(
1 – tanh( nπ

W γz)
tanh( nπ

W γH)

)
.

Finally, the third equation of system (3.12) imposes:∑
n∈N∗

2Bn sin(
nπ
W

X) · Cn = εXX ·X

Hence, 2BnCn are the sine Fourier series coefficients for εXX ·X, such that:

2BnCn = –
2εXXW

π

(–1)n

n

The final solution is:

uX(X, z) = –
2εXXW

π

∑
n∈N∗

(–1)n

n
sin(

nπ
W

X) · cosh( nπ
W
γz)

(
1 –

tanh( nπ
W γz)

tanh( nπ
W γH)

)
(3.13)
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The term n = 1 is the main contribution in uX(X, z):

2εXXW
π

sin(
π

W
X) · cosh( π

W
γz)

(
1 –

tanh( πWγz)
tanh( πWγH)

)
(3.14)

It is an increasing exponential fonction, null for z = H (no displacement at the top
of the wire, in accordance with the boundary conditions chosen).

For the discussion, we assume that H = H∞ � W, such that the constraints

induced by the GaAs substrate are completely relaxed at the top of the wire. We
thus have: tanh( πWγH) ≈ 1.

The typical lengthscale HX for the constraints relaxation is therefore

HX =
W
πγ

ln 2.

For GaAs ν = 0.31 so that γ ' 1.35. The maximum value of HX is 1.2 µm for
the range of widths explored here (3 to 7 µm).

The same calculation can be performed for the displacement field on the long
axis of the wire uY. The typical lengthscale on this axis reads

HY '
L
πγ

ln 2,

where L is the length of the wire (1 mm) so typically a lengthscale of more than
150 µm. We thus have HX < H� HY.

Fig. 3.13 shows the displacement fields uX and uY as a function of z (using
eq. (3.14)). HX and HY are marked by the red vertical line.

a) b)

Figure 3.13: Displacement fields (calculated with equation (3.14)) as a function of z
for a wire height of 2mm, along X (a) and Y (b). In each case, the lengthscale for the
relaxation of the constraints (HX and HY,respectively) is highlighted by the vertical
grey line. The black vertical line indicates the real height of the wire H =7 µm.
εXX = εYY = –850 ppm, W =7 µm, and L =1mm.
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Since the etching depth is about H =7 µm (approx. 1 µm down in the Bragg
mirrors), the constraints are well relaxed on the X axis, regardless of the wire width.
However, they are NOT relaxed in the Y direction and are totally relaxed in the X
direction regardless of the wire width.

In the sample studied in Ref. [Diederichs2007], the wires were obtained with a
much smaller etching depth (slightly below the quantum wells). The thermal con-
straints were effective because they were not completely relaxed in the lateral direc-
tion : changing the sticking procedure would influence the constraints in the lateral
direction, and therefore the observed splitting.

Conclusion Stress in the X direction is relaxed on short lengthscales (typically
0.49 µm for 3 µm wires and 1.15 µm for 7 µm wires, the wire height being about
7 µm).

However, along the Y direction, the relaxation length is much longer than the
wire height and therefore the bulk stress is preserved through the structure. It is this
constraint anisotropy between the directions parallel and perpendicular to the wire
axis which is the cause of the polarization splitting δEpol.

Figure 3.14: Sketch of the microwire. The constraints induced by the bulk GaAs are
relaxed on a very short lengthscale in the X direction. On the contrary, they are not
relaxed in the Y direction.

This explains why no difference is observed in our sample between wires of
various widths and with different sticking methods.

3.3.3 Lattice mismatch-induced constraints
If the sticking conditions do not matter here (see Subsection 3.3.1), another local
strain must be responsible for this polarization splitting. In this subsection, we as-
sume that this internal strain is due to the lattice mismatch between the different
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layers of Aluminium Gallium Arsenide with various proportion of Aluminum. A
mechanical model of the strain distribution in distributed Bragg reflector layers al-
lows to calculate the order of magnitude of this effect.

From the previous subsection we know that the lattice parameter along the wire’s
long axis Y will be fixed by the lattice parameter of the substrate (GaAs), whereas in
the X direction orthogonal to the wire, the average stress is released. Thus, the DBRs
lattice parameter is different in the X and Y directions, inducing a birefringence in
the cavity mode. Secondly, the lattice parameter of the semiconductor constituting
the quantum wells along X is fixed by the mean lattice parameters of the nearby
distributed Bragg reflectors, which induces an excitonic splitting. The effect of strain
on the Rabi splitting arises due to Pikus-Bir effect [Bir&Pikus].

3.3.3.1 Calculation of the lattice-mismatch induced strain

We assume that the polarization splitting is due to the lattice-mismatch induced con-
straints, and that those constraints are conserved in the Y direction such that εYY is
constant through the structure. On the contrary, the strain along X varies from εXX
at the bottom of the wire to 0 at the top (full constraints relaxation). We will con-
sider the strain coefficient ε = –εXX resulting from the relaxation of the constraints
induced by the GaAs substrate for z > HX. Since the GaAs (substrate) has a lower
unit cell size than the first DBR layer of AlGaAs, the constraints relaxation induces
a dilatation in the X direction (see Fig. 3.14), so we expect ε > 0.

Order of magnitude Before starting the full calculation, we want to derive an
order of magnitude for ε, the strain induced by the relaxation of the lattice-mismatch
constraints in the X direction.

In the following, we will refer to Al0.2Ga0.8As layers with index (1) and Al0.95Ga0.05As
(intracavity spacer and distributed Bragg reflector layer) with index (2). GaAs (quan-
tum well) will be labelled with index (0).

We define Λm as the relative change in lattice parameter between bulk GaAs and
the material of layer (m), such that

Λm =
a(m) – a(0)

a(0)
,

where a(m) is the lattice parameter of material (m). Using values (at room tem-
perature) of Ref. [Adachi1985], Λm is estimated to 270 and 1300 ppm for layers (1) and
(2) respectively.

We define H(m) as the total thickness of material (m), such that H(0) + H(1) +
H(2) = H.

Considering that the Poisson coefficient is null and an equal stiffness for the
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various materials, in a first approximation ε can be written:

ε =
H(0)Λ0 + H(1)Λ1 + H(2)Λ2

H

As H(1) ' H(2) � H(0), ε can be approximated as the average of Λ1 and Λ2, such
that the expected order of magnitude for ε is 800 ppm. This small value is expected
since the lattice parameter varies slowly with x (cf. the first paragraph of Section 1.1).

Note that, since the lattice-mismatch induced constraints follow the crystalline
axes x and y, the induced strain ε is a function of the angle θw between y and the
wire axis Y. Since x and y are interchangeable, ε(θ0 + 0) = ε(θ0 + π

2 ) and ε(θ) must
be a periodic function with period π/2.

Full calculation The full calculation takes into account the strain induced in each
layer by its underlying layer. This will also allow us to infer the dependency of ε on
the orientation of the wire with respect to the crystalline axes.

In the (X,Y, z) basis, the strain tensor ~~ε (0) imposed by the relaxation of the
constraints induced by the GaAs substrate onto the first layer of the wire reads:

~~ε (0) =

 ε 0 ε
(0)
Xz

0 0 0
ε
(0)
zX 0 ε

(0)
zz


The change of basis between (X,Y, z) and (x0, y0, z) is performed by the matrix

P :

P =

cos θw – sin θw 0
sin θw cos θw 0

0 0 1


Thus, in the (x0, y0, z) basis ~~ε(0) reads:

~~ε (0) =

 ε cos2 θw – ε2 sin 2θw ε
(0)
xz

– ε2 sin 2θw ε sin2 θw ε
(0)
yz

ε
(0)
zx ε

(0)
zy ε

(0)
zz

 ,

where the coefficients ε(0)i 6=j are θw-dependent. The strain due to the relative lattice
mismatch relaxation constraints at the interface change between layer (m) and layer
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(m – 1) reads, with l(m) = a(m)

a(0) ,

~~ε (m) = ~~ε (m–1) +

–(l(m) – l(m–1) ) 0 ε
(m)
xz – ε(m–1)

xz
0 –(l(m) – l(m–1) ) ε

(m)
yz – ε(m–1)

yz

ε
(m)
zx – ε(m–1)

zx ε
(m)
zy – ε(m–1)

zy ε
(m)
zz – ε(m–1)

zz

 .

Finally:

~~ε (m) = ~~ε (0) +

–(l(m) – l(0) ) 0 ε
(m)
x0z – ε(0)x0z

0 –(l(m) – l(0) ) ε
(m)
y0z – ε(0)y0z

ε
(m)
zx0 – ε(0)zx0 ε

(m)
zy – ε(0)zy ε

(m)
zz – ε(0)zz


The strain being invariant along the y and x direction, ε(m)

xz = ε
(m)
yz = ε

(m)
zx =

ε
(m)
zy = 0. With l(m) – l(0) = Λm, the final expression for ~~ε (m) in the (x0, y0, z) basis

is:

~~ε(m) =

Λm + ε cos2 θw – ε2 sin 2θw 0
– ε2 sin 2θw Λm + ε sin2 θw 0

0 0 ε
(m)
zz

 (3.15)

ε will be obtained in the following by minimizing the free energy of the crystal:

F = C(1)
ijklε

(1)
ij ε

(1)
kl h(1)/2 + C(2)

ijklε
(2)
ij ε

(2)
kl h(2)/2, (3.16)

where h(1) and h(2) are the respective thicknesses of the DBR layers. Since the
DBRs constitute the thickest part of the wire, we neglect the contribution of the
intracavity spacer and GaAs QWs in the expression of the crystal free energy (3.16).

The only missing parameters of eq. (3.16) are ε(m)
zz .

Calculation of ε(m)
zz The stiffness tensor for a cubic lattice reads:

Cijkl = C12δijδkl(1 – δik) + C11δijkl (3.17)
+C44(δikδjl + δilδkj)(1 – δij)(1 – δkl), (3.18)

with i, j, k, l standing for x, y or z.
The mechanical equilibrium of the (1)-(2) interface in the vertical direction gives

the condition:

C(1)
zzklε

(1)
kl + C(2)

zzklε
(2)
kl = 0 (3.19)
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The mechanical equilibrium at the edge of the wire in the X direction reads:

(C(1)
ijklε

(1)
kl h(1) + C(2)

ijklε
(2)
kl h(2) )XiXj = 0, (3.20)

h(1,2) are the respective thicknesses of the layers, X =
(
cos θw, – sin θw, 0

)
is

the unit vector orthogonal to the wire etching direction in the plane of the DBR,
and ε(1,2)ij defined by eq. (3.15).

These two conditions allow to express ε(m)
zz as a complex function of the other

parameters of the problem.

Calculation of ε Consequently, the free energy (eq. (3.16)) can be expressed as
a function of the C(m)

11 , C(m)
12 , C(m)

44 , Λm, ε and θw.
The minimization of F gives a complex function of those variables. This allows

to derive ε(θ) as a function of the form:

ε ' 1
A + B cos 4θw

.

ε is a periodic function with period π/2 as expected.
Using the room temperature values referenced in [Adachi1985], we obtain:

C(m)
11 = (11.88 + 0.14 · x(n) ) · 1011dyn/cm2

C(m)
12 = (5.38 + 0.32 · x(n) ) · 1011dyn/cm2

C(m)
44 = (5.94 + 0.05 · x(n) ) · 1011dyn/cm2

Λm =
0.0078 · x(n)

5.6533

The layer thicknesses are h(1) =566Å and h(2) =650Å [Wertz2010a] and x(1) =
0.2 and x(2) = 0.95.

For θw =39°, we find
ε ' 853ppm

in accordance with the order magnitude found in the previous paragraph, though
the full calculation also takes into account the stiffness tensor parameters C(m)

ijkl and
the orientation of the wire with respect to the crystalline axis θw in addition to the
relative lattice mismatches Λ(m).

The dependency of ε with θw can be seen in the following figure:
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Figure 3.15: ε as a function of θw, angle between the crystalline axis y0 and the wire
long axis Y. The red spot corresponds to the present situation θw =39°.

3.3.3.2 Stress-induced birefringence

The photonic contribution cannot come from the TE-TM splitting of the cavity
mode (refer to Subsection 1.3.1) since it vanishes at normal incidence. The boundary
conditions for the electromagnetic field inside the structure may also induce a lifting
of degeneracy for the polarization TE and TM of the cavity mode. However, this
effect is below 20 µeV for the j = 0 mode [Kuther1998].

Finally, under an anisotropic constraint, birefringence may take place in the
Bragg mirrors, leading to a cavity mode normal splitting which magnitude and po-
larization eigenbasis depends on the angle between the etching direction and the
crystalline axes.

We first calculate the strength and the principal axes of the birefringence-induced
photonic splitting, before presenting an experiment which strongly supports this
hypothesis.

Calculation of the induced birefringence energy splitting and axes For a given
applied strain, the variation of the dielectric impermeability δηij writes [Adachi1985]:

δη
(m)
ij =

∑
k,l

Pijklεkl

where Pijkl is the photoelastic tensor, with the same symmetry than Cijkl (eq. (3.17)).
Using Voigt notation for εkl and Pijkl, δηij is easily computed in the (x0, y0, z) basis
and reads:

~~δη (m) =

 δη
(m)
11 – ε2P

(m)
44 sin 2θw 0

– ε2P
(m)
44 sin 2θw δη

(m)
22 0

0 0 P(m)
12 (ε – 2Λm) + P(m)

11 ε
(m)
zz

 ,
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where δη(m)
11 = P(m)

12 ε
(m)
zz + P(m)

11 (–Λm + ε cos2 θw) + P(m)
12 (–Λm + ε sin2 θw) and

δη
(m)
22 = P(m)

12 ε
(m)
zz + P(m)

12 (–Λm + ε cos2 θw) + P(m)
11 (–Λm + ε sin2 θw).

The diagonalization of this matrix gives the eigenvalues and polarization basis of
the photonic splitting for the layer (m). We note that the z-axis is an eigenvector
for all layers. Since the induced birefringence is between polarization parallel and
perpendicular to the wire axis, the component along z is omitted in the following.
Secondly, this matrix being symmetric and real, the in-plane eigenvectors of the
induced birefringence are orthogonal and the eigenstates are linear polarizations.

The two eigenvalues of interest are

δη
(m)
± =

1
4

(
2ε(P(m)

11 + P(m)
12 ) + 4P(m)

12 ε
(m)
zz – 4Λm(P(m)

11 + P(m)
12 )

±
√

2ε
√

∆2
m + P(m)2

44 +
(

∆2
m – P(m)2

44

)
cos(4θw)

)
,

where ∆m = P(m)
11 – P(m)

12 .
The angle between the corresponding eigenvectors v(m)

± and y reads:

θ
(m)
± = – arctan

2∆m cos(2θw) ±
√

2
√

∆2
m + P(m)2

44 +
(

∆2
m – P(m)2

44

)
cos(4θw)

2P(m)
44 sin(2θw)


In general, if ∆m = P(m)

11 – P(m)
12 6= P(m)

44 (true for non isotropic materials),
the polarization basis for the photonic splitting is not colinear to the wire etching
direction, in accordance with experimental observations (see next paragraph and
Fig. 3.17).

Al0.2Ga0.8As Al0.95Ga0.05As
P11 – P12 0.025 -0.005

P44 -0.030 -0.011
P11 -0.051 -0.083

Table 3.4: Values of ∆m = P(m)
11 – P(m)

12 and P(m)
44 at 10K and 1.6 eV extrapolated

from [Adachi1985]. The value of P(m)
11 is then deduced from [Goni1990] (isotropic stress-

induced birefringence).

Using the values listed in Table 3.4, the deviation angles

ξ
(m)
± = θ

(m)
± – θw
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between the observed polarization basis and the wire etching basis are shown as a
function of θw in Fig. 3.16. Note that no deviation is expected for θw = 0, π/4
and π/2 (case where the etching is done along the crystalline axes or in a diagonal
direction).

Figure 3.16: Deviation angles θ(m)
± – θw as a function of θw. The vertical line shows

the experimental configuration (θw =39°).

The angle of etching is θw =39°, so we find θ(1)+ '43° and θ(2)+ '48°, which
corresponds to a deviation ξ(1)+ '4° and ξ(2)+ '9°.

Since the dielectric impermability η corresponds to the inverse of the dielectric
permittivity ε, the eigenvalues for the permittivity read:

δε
(m)
± = –n4

mδη
(m)
± , (3.21)

where nm ' 3.578 – 0.6 · x(m) is an empirical law linking the refractive index
of the unstressed material (m) at low temperature around 1.6 eV to its proportion
x(m)% of Aluminium.

We find:

δε
(1)
+ δε(1)– δε

(2)
+ δε(2)–

-0.0006 0.0030 0.0071 0.0079

Table 3.5: Correction of the dielectric permittivity due to the stress-induced bire-
fringence, computed using eq. (3.21).

The dielectric permittivity tensor of material (m), ~~δε (m), is diagonal in the v(m)
±

basis. In the (X,Y) basis, they read:

~~δε (m) =

δε(m)
+ cos2 ξ(m)

+ + δε(m)
– sin2 ξ

(m)
+

δε
(m)
+ –δε(m)

–
2 sin 2ξ(m)

+
δε

(m)
+ –δε(m)

–
2 sin 2ξ(m)

+ δε(m)
– cos2 ξ(m)

+ + δε
(m)
+ sin2 ξ

(m)
+


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The calculated birefringence ~~δε (m) lifts the energy degeneracy between polariza-
tions. For a symmetric cavity, the cavity mode energy is given by [Panzarini1999]:

Ec
0 =

LcEcav
0 + LDBREDBR

0
Lc + LDBR

, (3.22)

where LDBR = 2n2
1n

2
2

n2
cav(n2

1–n
2
2 )
(h(1) + h(2) ) is the cavity field penetration length

into the DBR, ncav = n2 is the cavity refractive index, Lc is the cavity spacer
thickness (' 122 nm according to Ref. [Wertz2010a]), Ecav

0 = h̄πc
ncavLc

and EDBR
0 =

h̄πc
2

n1+n2
(n2

1h
(1)+n2

2h
(2) )

is the energy of the center of the stopband.

The energy correction due to birefringence is obtained by using the perturbation
theory at first order on eq. (3.22), replacing nm by

√
ε(m):

δ
~~Ec =

∂Ec
0

2n1∂n1
δ~~ε (1) +

∂Ec
0

2n2∂n2
δ~~ε (2) +

∂Ec
0

2nc∂nc
δ~~ε (c),

where δ~~Ec is the energy matrix in the Stokes space (polarization along x0 and
y0).

The diagonalization of δ~~Ec gives two eigenvalues δE+
c =–378.3 µeV, δE–

c =–510.7 µeV,
detuned from (X,Y) by the deviation angle ξ+ =8°.

The strain-induced variation of dielectric permittivity is approximately δEc =
δE–

c – δE+
c =–0.13meV, reasonably close from the –0.73± 0.07meV photonic po-

larization splitting experimentally observed.

Experimental confirmation Hence, this model predicts that the cavity splitting
polarization axes are slightly detuned from the (X,Y) basis (typically 8°). There-
fore, since the photonic component of the polariton is dominant at large negative
detunings, we expect that the polarization axes for the observed splitting are not
exactly along X and Y (respectively orthogonal and parallel to the wire axis).

The polarization eigenbasis for the total splitting at low and large negative de-
tuning are compared in Fig. 3.17. A shift of about 21° is observed between the both.

In principle the polarization splitting expression (3.4) considered in Section 3.2.2
has to be corrected to take into account the various linearly polarization bases, but
in practice the precisions of the experimental data is insufficient to infer the extra
parameters introduced in the fitting model due to vanishingly small corrections.
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Figure 3.17: (a, b) 2D maps showing the PL intensity at normal incidence of the
mode j = 0 as a function of the polarization direction: 0° (resp. 90°) polarization
angle corresponds to polarization parallel (resp. perpendicular) to the wire’s long
axis. Measurements were taken each 8° and correspond to vertical stripes. From
these maps, the energy splitting is directly accessible and is for (a) δEpol = 0.77meV
and for (b) δEpol = –0.23meV. (a) The measurements were taken on a wire with
low negative exciton-photon detuning (-5meV). (b) idem at large negative exciton-
photon detuning (-50meV). c) Intensity profile along the horizontal white lines
drawn in (a) and (b) as a function of the polarization angle. The polarization basis at
large negative detuning (b) is shifted by an angle of 21° with respect to polarization
basis parallel and perpendicular to the wire axis. More generally, angular shifts varies
from 13° to 21° depending on the choice of energy cut.

3.3.3.3 Influence of strain on the exciton energy

After having estimated the origin of the photonic polarization splitting we will now
consider the excitonic splitting induced by the internal strain ε.

The Hamiltonian for the light and heavy hole exciton states is given by

H0 + Hexch + HPB

Here H0 is the exciton Hamiltonian which is diagonal in the heavy exciton -
light exciton basis and associates an energy Ehh (Elh) to heavy hole-excitons (light
hole-excitons respectively). It takes the form H0 = –1

2∆E(Jh2z – Jh2/3), where ∆E =
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Elh – Ehh > 0, and Jh are angular momentum operators acting on the hole states.
∆E ' 28meV results from the difference between the holes confinement energies
and binding energies and is estimated in Subsection 1.1.1.3.

Hexch is the short range exchange interaction between the electron and hole of
the exciton. We consider the uncoupled hole-electron basis,|3

2 , ↑〉, |3
2 , ↓〉, |1

2 , ↑〉,
|1
2 , ↓〉, | – 1

2 , ↑〉, | – 1
2 , ↓〉, | – 3

2 , ↑〉, | – 3
2 , ↓〉, where the first index is the magnetic

number of the hole state and the second one is the electron spin state in the ẑ basis.
Neglecting the cubic term in the exchange interaction, Hexch reads [Chen1988, Ma-
ialle1993]:

3
4

∆ESR
|φ3D(0)|2



0 0 0 0 0 0 0 0
0 Ihh – Ihl√

3
0 0 0 0 0

0 – Ihl√
3

Ill
3 0 0 0 0 0

0 0 0 2Ill
3

–2Ill
3 0 0 0

0 0 0 –2Ill
3

2Ill
3 0 0 0

0 0 0 0 0 Ill
3 – Ihl√

3
0

0 0 0 0 0 – Ihl√
3

Ihh 0
0 0 0 0 0 0 0 0


where ∆ESR is the short range exchange splitting in the bulk semiconductor [Ma-

ialle1993], φ3D(0) is the 3D hydrogenic exciton wave function at zero relative distance,
Ijj′ is a form factor defined by:

Ij′j = φ1s(j′ )(0)φ1s(j)(0)
∫

dz|ξ1c(z)|2ξ1j′h(z)ξ1jh(z), (3.23)

where φ1s are the 2D envelope wave-functions of the considered excitons, and
ξ1c (ξ1jh) is the conduction envelope wavefunction along the growth axis in the
conduction (respectively heavy, or light hole) subband.

Finally, HPB is the Pikus-Bir deformation Hamiltonian given by [Bir&Pikus]:

HPB = av(εxx + εyy + εzz) + b[(Jh2x – Jh2/3)εxx + c.p.]

+
2d√
3
[
1
2
(JhxJ

h
y + JhyJ

h
x )εxy + c.p.],

where av, b and d are deformation potentials, εij are the strain tensor components
of the GaAs quantum well material (0), and c.p. stands for cyclic permutations of
x, y and z.

Before diagonalizing this Hamiltonian, we first recall that only states with a total
magnetic number ±1 are optically active due to optical selection rules (see Sub-
section 1.1.1.4). Moreover, bright and dark excitons are not mixed either by the
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exchange interaction or the Pikus Bir deformation Hamiltonian since shear is ab-
sent. We can consequently restrict ourselves to the bright exciton subspace

(
|3
2 , ↓〉,

|1
2 , ↑〉, | – 1

2 , ↓〉, | – 3
2 , ↑〉

)
where the total Hamiltonian takes the following form in

the axial approximation [?]:

1
2


–A –B C 0
–B A 0 C
C 0 A –B
0 C –B –A

 ,

with

A = ∆E + bε+ (
Ill
3

– Ihh)
3
4

∆ESR
|φ3D(0)|2

B =
2√
3
Ihl

3
4

∆ESR
|φ3D(0)|2

C =
√

3bε.

The symmetry of this Hamiltonian allows to again reduce the dimensionality
of the problem by considering the linearly polarized basis |H,X〉, |L,X〉, |H,Y〉,
|L, Y〉. In this basis, the Hamiltonian can be written:

1
2


–A C – B 0 0

C – B A 0 0
0 0 –A –B – C
0 0 –B – C A

 , (3.24)

and the linearly polarized states are defined as

|H,X/Y〉 = | –
3
2
, ↑〉 ± |

3
2
, ↓〉

|L,X/Y〉 = |
1
2
, ↑〉 ± | –

1
2
, ↓〉

The eigenstates of those two subsystems correspond to linearly-polarized, mainly
heavy-hole excitons (|HB, X〉 and |HB, Y〉) and linearly-polarized, mainly light-hole
excitons (|LB, X〉 and |LB, Y〉).

We are interested in the mainly heavy-hole excitons which give rise to the polari-
tons. Their splitting is:

δEx '
BC
A

=
Ihl

3
2

∆ESR
|φ3D(0)|2bε

∆E + bε+ ( Ill
3 – Ihh) 34

∆ESR
|φ3D(0)|2

.
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Ihl value is found to be 1.18× 10–3 nm–3 using eq. (3.23). Ill and Ihh have similar
values 1.12× 10–3 nm–3 and 1.26× 10–3 nm–3. 1/|φ3D(0)|2 = πa∗30 ' 9518 nm3,
where a∗0 is the 3D Bohr radius of the GaAs exciton. The deformation potential b is -
1.7 eV for GaAs [Adachi1985]. Finally, following [Gilleo1968], we take ∆ESR =0.37meV.
Using these values, δEx reaches –0.38meV, compatible with the experimentally in-
fered value of –0.54± 0.18meV.

Note that experimental determination of the short range exchange energy is
difficult and experimental values span from 0.02meV according to Ekardt et al.
[Ekardt1979] to 0.37meV according to Gilleo et al. [Gilleo1968] (see [Chen1988] for a
more detailed discussion). However, more direct experimental determinations [Black-
wood1994,Amand1997] seem to converge towards a value around ' 100 µeV.

Inversely, the experimental determination of δEx obtained in this work can be
used to calibrate the bulk short range exchange energy, which would be estimated at
0.50± 0.20meV.

3.3.3.4 Influence of strain on the light-matter coupling

In this subsection, we evaluate the theoretical strength of the third contribution
δΩR.

Going back to the hamiltonian (3.24), we now express its full (unnormalized)
eigenstates at the lowest order in (B + C)2/A2:

|EB, X/Y〉 = 2A|H,X/Y〉 – (C∓ B)|L,X/Y〉 (3.25)

The electric dipole transition Dhh/lh for each state is related to the matrix ele-
ment 〈H/L,X/Y|p ·A|∅〉 (see Subsection 1.1.1.4) by [Fishman]:

〈H,X|p ·A|∅〉 = Dhh
〈H,Y|p ·A|∅〉 = iDhh
〈L,X|p ·A|∅〉 = Dlh
〈L,Y|p ·A|∅〉 = –iDlh

The Rabi splitting reads:

ΩX
R = K|〈EB, X|p ·A|∅〉| = K|2ADhh – (C – B)Dlh|

ΩY
R = K|〈EB, Y|p ·A|∅〉| = K|2AiDhh + i(C – B)Dlh|

where K is a common positive constant incorporating the enveloppe wave-function
contribution and the cavity characteristics. The Rabi polarization splitting obtained
is

δΩR ' 2ΩRC
1

2Dhh
Dlh

A – B
,
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where the heavy-hole light-hole exciton dipolar transition ratio Dhh/Dlh ∼
√

3 is
mainly determined by the Clebsch-Gordan coefficients for the heavy- and light-hole
composition (while form factors only result in a few percent correction).

As observed from this result, the polarization Rabi splitting does not involve
exchange interaction. We also note that the light exciton fraction is almost equal
in both eigenstates (3.25) such that δΩR does not result from the heavy hole-light
hole mixing [Balili2010] but rather from the interference between the light exciton
and heavy exciton dipoles.

For the 5 µm-wide wires ΩR '8meV, so that δΩR is expected to reach –0.5meV
relatively close from the infered experimental value δΩR =–1.55± 0.12meV.

3.3.3.5 Conclusion

The presence of a j = 0 polarization splitting is therefore consistently explained
by the anisotropic relaxation of lattice-mismatch induced constraints. The stress
relaxation on a short lengthscale on the short axis of the wire induces a dilatation
ε ' 850 ppm of the lattice parameter, whereas the stress is conserved on the long
axis, such that the lattice parameter is fixed by the bulk GaAs unit cell.

This anisotropic stress relaxation leads to birefringence in the Bragg mirrors,
accounting for a photonic contribution in δEpol. The presence of a strain ε also
leads to the emergence of the excitonic and Rabi contributions, through a Pikus-Bir
deformation effect. The order of magnitude found for these three contributions by
calculation is compatible with their experimental infered values, obtained by fitting
the total polarization splitting variation with exciton-photon detuning.

In the next Subsection, we comment on the magnitude of the splitting for modes
j > 0.

3.3.4 Anisotropic mode confinement
In this subsection, we focus on the polarization splittings observed for lateral modes
j > 0. We have seen that these polarization splittings can reach a large magnitude
(see for instance Figs. 3.5 or 3.8), beyond the maximal splitting of the j = 0 mode.

Figure 3.18 shows the polarization splitting δEpol for the lateral modes j =
0, 1, and 2 for various wire widths.
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Figure 3.18: Polarization splitting δEpol for wire widths W = 3, 5, and 7 µm and
for lateral modes j0, j1, and j2. Measures are done for a reference exciton-photon
detuning of the j0 lateral mode about –13meV. Note that the effective exciton-
photon detuning varies with the lateral mode index for a fixed wire width.

The polarization splitting is larger for narrow wires and large j. The largest po-
larization splitting observed is –1.36meV for j2 and W = 3 µm, while the maximum
value for j0 with the same wire at null detuning is ' –0.95meV (see Fig. 3.7).

These observations imply that the lateral 1D confinement produces an additional
polarization splitting for the modes j > 0 with an order of magnitude of –0.4meV.

We provide here an interpretation of this observation. The confinement along X
induces an effective angle incident along X (see Subsection 1.3.3): sin θeff = h̄cπ( j+1)

WncEc
0

,
where Ec

0 is the cavity mode energy, W the wire width and j the cavity mode index.
For 3 µm-wide wires, this angle vary from 2.5° for the cavity ground state (j = 0) to
7.5° for the mode j = 2.

This effective intracavity angle results in an additionnal polarization splitting in
the cavity mode [Panzarini1999]:

δEconf
c (θeff) ' LcLDBR(0)

L2
eff(0)

·
2 cos θeff sin2 θeff

1 – 2 sin2 θeff
(EDBR

0 (0) – Ecav
0 (0)),

where EDBR
0 is the energy of the center of the stopband, Ecav

0 the energy defined
by the thickness of the intracavity spacer, LTE/TM

eff (θ) is the effective cavity length
(LTE/TM

eff (θ) = Lc + LTE/TM
DBR (θ)), θc = sin–1( 1

nc
sin θ) = θeff is the angle inside

the cavity spacer layer, θ being the angle of the incoming field in the air. The
sign and magnitude of this contribution is very sensitive to the term EDBR

0 (0) –
Ecav

0 (0). A calculation using the formulas of eq. 3.22 gives a value of –126meV
for EDBR

0 (0) – Ecav
0 (0), which results in a photonic splitting contribution of approxi-

mately –0.46meV for the worst case scenario considered here (j = 2 and W = 3 µm).
This order of magnitude is comparable to our observation. However, the negative
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sign should result in a reduction instead of an increase of the total polarization split-
ting which, close to null detuning, is approximately equal to 1

2(δEx + δEc) – 2δΩR
(see eq. 3.4). However, we stress that the calculation of EDBR

0 (0)–Ecav
0 (0) is obtained

using parameters defined by transfer-matrix simulation (especially Lc the intracavity
spacer thickness, which is essential for the calculation of Ecav

0 (0)) and not from mea-
surements on the sample grown by MBE. Taking into account the real parameters
might reduce the real value of the photonic contribution or even change its sign.

On the other hand, this effective angle also affects the couplings between the
cavity modes TE (‖) and TM (⊥), and the excitonic mode [Panzarini1999] which read:

ΩTE(θ) = Ω

√
Leff(0)
LTE
eff (θ)

1
cos θc

,

ΩTM(θ) = Ω

√
Leff(0)
LTM
eff (θ)

,

This polarization splitting is negligible for the j0 lateral mode, but significant for
j > 1: we find δΩconf

R = –0.2meV for the mode j = 2 confined in the 3 µm-wide
wire. This contribution is consistent with the –0.4meV observed experimentally.

3.4 Discussion and conclusion
According to our experimental calibration, the polarization splitting arising in 1D-
microcavities for the ground state j = 0 results from three contributions:

A photonic contribution: δEexp
c = –0.73meV± 0.07meV

An excitonic contribution: δEexp
x = –0.54meV± 0.18meV

A Rabi contribution: δΩexp
R = –1.55meV± 0.12meV

The resulting polarization splitting δEpol exhibits a universal law as a function
of exciton-detuning, independent of the wire width and the sticking conditions on
the sample holder.

These three polarization splittings are interpreted as a result of lattice-mismatches
induced strain. The constraints induces a birefringence in the structure. Addition-
nally, the induced Pikus-Bir interaction enlarges the excitonic fine structure and pro-
duces a polarization splitting in the light-matter interaction. We find:

δEtheo
c = –0.1meV

δEtheo
x = –0.4meV

δΩtheo
R = –0.5meV
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The orders of magnitude of each contribution are compatible with the experi-
mental findings. The underestimation of δEc is probably due to the use of extrapo-
lated room temperature photoelastic coefficients for the DBR materials. As for the
excitonic and Rabi splittings, the discrepancy may come from the poor estimation
of the light hole-heavy hole exciton energy splitting which is extremely sensitive to
both composition and size of the quantum wells.

These contributions have been independently identified in previous works in
various contexts: in Ref. [Dasbach2005,Diederichs2007], a splitting of δEpol = –280 µeV
is reported in 5 µm-wide wires. It is attributed to a small birefringence induced
by thermal stress responsible for the energy splitting δEc of the photonic modes.
In Ref. [Dasbach2002], a splitting of –130 µeV is reported in 3 µm-wide wires and at-
tributed to a small excitonic polarization splitting δEx. The polarization splitting
values reported in both studies [Dasbach2005, Dasbach2002] have been obtained while
ignoring a possible Rabi polarization splitting. A posteriori, this is partly justified
because

1. the samples used in both works were etched from the same microcavity which
had a Rabi energy 2ΩR =3.8meV, whereas, in this work, a Rabi energy of
16.6± 0.4meV has been measured.

2. the wire etching in both works was done down to a layer located just below
the QW, such that the strain release induced by etching was moderate due
to the nearby influence of the bulk material. While the orders of magnitude
reported in both papers are compatible with the ones reported in this work, a
quantitative comparison is made difficult because of the critical dependence of
the polarization splitting values with sample composition and etching depth,
which are different from our sample (both samples used in the cited references
were based on InGaAs ternary alloys whereas the sample studied in this work
is made of AlGaAs ternary alloys).

The Rabi contribution has been identified in Ref. [Balili2010] where an external stress
is applied to a 2D microcavity by using a tip. This results in a heavy hole-light hole
mixing of the excitonic states. The mixed excitonic states (polarized respectively
perpendicular and parallel to the wire axis) have different oscillator strengths and
give rise to the polarization Rabi splitting δΩR. In Ref. [Balili2010], the resulting
splitting reached up to 700 µeV but it can hardly be compared to the present study
(1.55meV) due to the different origin of the strain.

For modes j > 0, in addition to these various sources of polarization splitting,
the 1D-confinement induces an extra splitting, which goes beyond the highest total
polarization splitting for the j = 0 mode (1meV). Indeed, the presence of a non-
vanishing confinement angle θeff results in an effective TE-TM splitting on the cavity
modes and exciton-photon coupling at normal incidence.

Fig. 3.19 summarizes the contribution to the total polarization splitting and their
various origins.
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Figure 3.19: Origins of the polarization splitting in microwires

This comprehensive understanding allows to envision an engineering of this
splitting magnitude, sign and orientation. The available degrees of freedom are nu-
merous: exciton-photon detuning, wire height, DBR materials, etching axis com-
pared to the crystalline axes and mode symmetry. In the perspective of integrated
polaritonics [Liew2008,Espinosa-Ortega2013], the essential building block will consist in
microcavity etched optical guides (see [Nguyen2013, Marsault2015] for example). The
rotation induced on the polariton pseudo-spin by the 1D-confinement and the in-
duced stress could be used to influence the performances of such devices. For ex-
ample, in Ref. [Sturm2014], this splitting is exploited to allow a control of the flow
of polaritons at the output of a cavity Mach-Zender interferometer. In Refs. [Ab-
barchi2011, Ardizzone2012], optical parametric oscillation processes are demonstrated
using cross-polarized polariton branches in a 1D-microcavity.

Furthermore, more complex microcavity geometries are currently under study
such as honeycomb lattices [Nalitov2015,Milićević2015]. In such samples, localized edge
states, potentially topologically protected, are confined and also exhibit a longitudinal-
transverse splitting that could be interpreted based on the model detailed in this
chapter.

In summary, the work presented here could be exploited to interpret and predict
the features of polariton propagation in microcavities with reduced dimensionnal-
ity. The microcavities can be now specifically designed so as to get the required
magnitude, sign and orientation of the splitting.
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4
SPIN-DEPENDENT

NONLINEAR EFFECTS IN A
DOUBLE MICROCAVITY

Multiple microcavities are ideal to study interactions between polaritons since phonon-
assisted relaxations towards the excitonic reservoir are nearly suppressed for the modes
located on the lower polariton branches (two in our case here). In this chapter, we study
various nonlinear spin-dependant interactions between polaritons, using the formalism
presented in Chapter 1. This chapter is divided in three parts, which correspond to three
different scattering regimes under a normally-incident resonant pumping.

First, we demonstrate an all-optical control of the Optical SpinHall Effect (an anisotropic
polarization-dependent polariton propagation) by tuning the pump power. At larger
pump powers and low cavity-exciton detuning, strong nonlinear processes occur leading
to the appearance of patterns in the far field cross-polarized to the linear polarization of
the pump beam. This is the topic of interest in Section 4.4. This regime corresponds to an
energy-degenerate Optical Parametric Oscillation (OPO), where two pump polaritons are
converted into two off-axis polaritons and vice-versa. The comprehensive understanding
of the mechanism leading to the formation of patterns and their orientation is crucial
in light of future applications applications such as all-optical switches or “lighthouse” de-
vices.

The intermediate regime of parametric scattering (or parametric amplification) de-
tailed in Section 4.3 is a unique laboratory to investigate nonlinearities involved in
pattern formation and orientation. In particular, it allows to probe the interplay be-
tween the TE-TM splitting and spin-dependent polariton-polariton interactions by pump-
probe(s) experiments.

In the first section, we start by introducing the microcavity of interest.
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4.1. THE DOUBLE MICROCAVITY SAMPLE

4.1 The double microcavity sample

4.1.1 Context
Our group at LPA was a pioneer for the design and study of multiple microcav-
ities in the Optical Parametric Oscillation regime (OPO). Interbranch OPO was
observed in a triple microcavity [Diederichs2007], in a configuration involving polari-
ton modes at the same energy but with opposite in-plane wavevectors (the so-called
“horizontal” process), and in a configuration at k‖ = 0 but with different ener-
gies (the so-called “vertical” process) [Diederichs2007]. Previous demonstrations of the
OPO in single microcavities preferred to use the so-called “Magic angle” (near the
inflexion point of the polariton dispersion) [Stevenson2000,Savvidis2000]. However, the
“horizontal” parametric process is a unique tool to probe the quantum correlations
between the off-axis polaritons, since both states have the same exciton-photon de-
tuning (since they are energy-degenerate and have opposite in-plane wavevectors).

Experiments involving intensity noise measurements [Diederichs2007, Lecomte2011]
and Hanbury and Twiss (HBT) setups with pulse laser excitation [Ardizzone2013a]
with various detectors have been conducted on triple, double and 1D-microcavities.
The conclusion to those experiments was that (i) the inherent optical losses are a
strong limitation to observe intensity correlations [Lecomte2011] and (ii) the quantum
correlations are enhanced for weak photon fluxes [Ardizzone2013a], which is hardly
compatible with the OPO regime arising at large pump powers.

The present sample was designed by Timothée Lecomte in 2011 and grown by
Aristide Lemaître at the Laboratoire de Photonique et Nanostructures. Thanks to
the improvement of the growth techniques, it is much less disordered than the mul-
tiple microcavities previously studied in our group [Ardizzone2013a]. The use of GaAs
instead of InGaAs for the QW material also diminishes the density of defects since
the lattice mismatch with the AlGaAs barrier is reduced. Finally, a larger number of
DBRs and of QWs were introduced so as to maximize the light-matter coupling.

The initial goal of this improved sample was to observe the generation of twin po-
laritons. However, no classic nor quantum correlation measurements are presented
in this chapter for several reasons:

1. I have mainly studied the OPO regime under cw MIRA excitation. The MIRA
laser intensity fluctuations in the cw mode presented in Subsection 2.1.4 pre-
vent any reliable HBT measurements.

2. No degenerate OPO process was achieved with the monomode Solstis excita-
tion (see Subsection 4.4.1.5).

4.1.2 Description
The sample of interest in this chapter is composed of two superimposed microcavi-
ties: two coupled λ/2 Ga0.05Al0.95As cavities embedded between three DBRs com-
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posed by Ga0.05Al0.95As and Ga0.8Al0.2As with 25 (back), 17.5 (middle), and 17.5
(front) pairs respectively. The back mirror is thicker to ensure a better reflectivity
of the total structure. The large number of DBR ensures a nominal Q factor around
105 [Ardizzone2013a]. The number of intermediate DBR pairs sets the cavity coupling
(see Subsection 1.1.2.7). In each cavity 3 sets of four 7 nm GaAs quantum wells are
inserted at the antinodes of the electric field. The detailed growthsheet of the sam-
ple is available in Appendix A3. A schematic of the sample structure is shown on
Fig. 4.1.

Figure 4.1: Schematic of the double microcavity (not at scale). The QWs inserted
inside the first DBR pairs are not represented for simplicity’s sake.

A full characterization of this double microcavity sample is available in Ref. [Ardiz-
zone2013a]. Its main properties are presented in the next subsection.

4.1.3 Characterization
4.1.3.1 Calibrations using the anticrossing curve

Due to the presence of two coupled identical cavities containing the same number of
quantum wells, the strong light-matter induces two upper and two lower polariton
branches. Fig. 4.2.a. shows a typical dispersion curve obtained by photolumines-
cence, where only the two lower polariton branches (labelled LPB1 and LPB2) are
visible. In this example, the pump is resonant with the minimum of LPB2.

The calibration of the main parameters (exciton energy, Rabi coupling, cavity-
cavity coupling, exciton-photon detuning) is obtained by following the method pre-
sented Chapter 3. The precise energy minima of LPB1 and LPB2 can be obtained by
fitting each branch with a fourth order polynomial curve (for more details on this
choice of procedure, consult AppendixA1). Then, thanks to the linear wedge intro-
duced during the growth of the sample, the anticrossing curve can be obtained by
recording the energy minima of LPB1 and LPB2 at several positions on the sample
(see Fig 4.2.b.). The points corresponding to the dispersion shown in Fig 4.2.a. are
indicated in green in Fig 4.2.b.
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a) b)

Figure 4.2: a) Typical energy dispersion as a function of ky for the double micro-
cavity. Only the two lower polaritons branches are visible (LPB1 and LPB2). The
pump is resonant with the minimum of LPB2. The white lines correspond to a
fourth order polynomial fit of the branches to obtain as precisely as possible the
energy minima of LPB1 and LPB2 (cf. Appendix A1). b) Reproduced from [Ardiz-
zone2013a]. Anticrossing curve obtained from photoluminescence spectra obtained
at various spots onto the sample. The two green points correspond to the position
of the energy minima of LPB1 and LPB2 branches of (a). The dashed black line
corresponds to the exciton energy dependence on their position on the sample. Blue
and red dashed lines correspond to the optical cavity modes’ energies as a function
of the position on the sample.

The energy dispersion (Fig. 4.2.a.) should allow to calibrate all the parameters
of interest (exciton-photon detuning, cavity-cavity coupling, Rabi coupling, exciton
energy). However, this method is not reliable since the states at large k cannot be de-
termined with enough precision due to possible optical misalignments and spherical
aberrations from the inverted telescope (see Chapter 2).

However, assuming a linearly varying wedge with position, the exciton energy
and the cavity modes modes also evolve linearly with position. Therefore, the ex-
perimental points of Fig. 4.2.b. allow to calibrate the Rabi coupling, exciton energy,
exciton-photon detuning and cavity-cavity coupling corresponding to the position
of Fig. 4.2.a, using eq. (1.10). The cavity energy varies quasi linearly with position
with a coefficient 3.6± 0.1meV.mm–1. Thus, we find:

fit value Standard error
Rabi coupling ΩR 6.4meV 0.8meV
Exciton energy Ex

0 1.606 eV 3meV
Cavity-cavity coupling Ωc 5.1meV 0.7meV

Exciton-photon detuning ∆ –5.8meV 3meV

Table 4.1: Parameter values obtained from Fig. 4.2.b. for the dispersion shown in
Fig. 4.2.a. using eq. (1.10).

119



CHAPTER 4. SPIN-DEPENDENT NONLINEAR EFFECTS IN A DOUBLE
MICROCAVITY

4.1.3.2 TE-TM splitting at large in-plane wavevector

The TE-TM splitting is a well-known phenomenon arising in microcavities at large
in-plane wavevector. A full theoretical explanation is given in Section 1.3.1. It con-
sists in a k‖-dependent energy splitting between TE and TM-polarized propagating
polaritons, and results in different energy dispersion relations for TE and TM polar-
izations and thus in different effective cavity masses for TE and TM polaritons. The
magnitude of mTE and mTM can be computed with a transfer-matrix calculation and
we find mTE/mTM ' 1.03.

A polarization-resolved photoluminescence experiment allows to distinguish the
two branches TE-TM as a function of ky, and get an experimental value. We find
mTE/mTM ' 1.037± 0.006, which is in fair agreement with the theoretical value.

Figure 4.3: Superposition of TE (blue) and TM (red) polariton dispersions. The
TE-TM splitting is well visible on the lowest polariton branch (LPB1). The TE-TM
splitting is hidden on LPB2 due to its larger linewidth and the TM LPB2 branch’s
smaller intensity.

Besides the anisotropic dispersion, the TE-TM splitting also induces anisotropic
polaritonic losses γp between polarizations TE and TM [Panzarini1999]. The experi-
mental calibration for ky =3.3 µm–1 gives γTM

p /γTE
p = 1.05.

4.1.3.3 Built-in normal energy splitting

Besides the TE-TM splitting, a small polarization splitting has been observed at nor-
mal incidence. To probe this splitting, a reflectivity experiment is performed. The
excitation laser is sent onto the sample at a fixed energy with either vertical and hor-
izontal polarization (selected by the half-wave plate e, see Fig. 4.4.a.). Thanks to the
wedge, the resonant energy can be varied simply by shifting the sample.

An analyzer is inserted in the detection path to cut the bare reflection of the
excitation beam. At low power (5mW), a drop in the reflectivity is clearly observed
for both polarizations (see Fig. 4.4.b.), split by an energy 140 µeV. This drop results
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from the absorption of light when the laser is resonant with the polariton branch. At
a larger power (50mW), a peak is observed for both polarizations (see Fig. 4.4.c.).
These peaks are probably due to the partial depolarization of the light reemitted
by the microcavity at resonance. Note that, for the same position on the sample,
the energies of the polariton branches are blueshifted at large powers next to the
resonance due to Coulomb interactions and saturation of the light-matter coupling
(cf. Subsection 1.2.2.4), effect which also partially reduces the observable splitting
below 60 µeV.

a)

b) c)

Figure 4.4: (a) Experimental scheme for the observation. (b) Reflectivity as a func-
tion of sample position for an excitation power of 5mW. The position on the sam-
ple can be directly related to the polariton energy thanks to Fig. 4.2. Black: vertical
polarization. Gray: horizontal polarization. (c) Idem for an excitation power of
50mW.

These experimental results show that there is a built-in polarization-dependent
normal energy splitting, whose order of magnitude is approximately 130 µeV. Note
that the polarization basis for this splitting is not necessarily the vertical and hor-
izontal polarizations. Its origin may lay in the presence of a built-in stress in the
structure.

This splitting is unobservable for pump powers larger than 50mW, due to a
polarization-anisotropic blueshift of the polariton branches, and can therefore be
neglected for most applications.

However, this shows that the sample is not purely rotationnally invariant, in
accordance with the experimental observations that will be presented in Subsec-
tion 4.4.1.4.
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4.1.4 Scattering processes

Figure 4.5: The three scattering regimes under a continuous normally incident exci-
tation resonant with the energy minimum of LPB2. (a) Elastic Rayleigh scattering
regime. (b) Optical parametric scattering regime. (c) Optical Parametric Oscillation
regime.

The main experiments detailed in this chapter involve a normally incident pump
resonant with the energy minimum of LPB2. Depending on the cavity-exciton de-
tuning (which varies the polariton-polariton interaction strength) and the pumping
power (which varies the polariton density), three scattering regimes are observed:

1. The linear regime of resonant elastic Rayleigh scattering. In this regime, the
pump polaritons are elastically scattered due to the presence of defects and
the cavity TE-TM splitting gives rise to the so-called Optical Spin Hall Effect.
However, if the pumping is sufficiently strong, we will show that nonlinear in-
teractions between pump polaritons induce a controllable shift of the Optical
Spin Hall Effect. This will be the topic of interest of Section 4.2.

2. The Optical Parametric Scattering (or Amplification) regime. This regime is
effective when the pumping and nonlinear interactions are sufficiently strong
to induce a four-wave mixing process (FWM) initiated by a probe beam sent
at oblique angle. We will study in detail the influence of pump/probe po-
larizations on the efficiency of this process in Section 4.3. A second-order
four-wave mixing experiment, involving two probes in an hexagonal geome-
try in addition to the normally incident pump will be also studied (not shown
on Fig. 4.5).

3. The Optical Parametric Oscillation (OPO) regime. In this regime, the nonlin-
ear interactions are so important that the degenerate off-axis signals on LPB1
become unstable above a certain threshold (the so-called “OPO threshold” or
“instability threshold”). Pump as well as off-axis modes are further amplified
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by Optical Parametric Oscillation. Due to spatial coupling terms, a pattern
arises in the Fourier space (not shown on Fig. 4.5). The phenomenology of
this pattern formation is complex and will be detailed in Section 4.4.

All those regimes have in common the scattering of pump polaritons towards off-axis
modes at the same energy (cf. Fig. 4.5).

Formally, these processes are described by the following system of equations for
the excitonic and cavity fields e and c, where third-order (χ(3) ) interactions are taken
into account [Solnyshkov2007]:

īh
dei,±k
dt

=

1︷ ︸︸ ︷
(Ex,i

k – iγi
x)e

i,±
k –
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where

• ± refers to left and right circular polarizations (or, equivalently, to polaritons
with pseudo-spin ±1),

• i, j refer to the cavity index (since the sample of interest is a double microcav-
ity),

• terms (1) and (1’) are the bare exciton and cavity dispersions,

• terms (2) and (2’) correspond to the exciton-photon coupling,

• term (3) corresponds to the saturation of the exciton-photon coupling (fermionic
phase-space filling αPSF, see Subsection 1.2.2.4),

• term (4) includes the polarization-dependent exciton-exciton interactions T++

and T+– in all scattering channels fulfilling the phase-matching conditions (cf.
Subsection 1.3.4),

• term (5) includes the TE-TM splitting at large k‖, which is here assumed to be
a pure cavity effect (cf. Subsection 1.3.1 for more details). We have: ∆c,±

k =
h̄4

4 ( 1
mTM

c
– 1

mTE
c

)(kx ∓ iky)2,
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• term (6) includes the cavity-cavity coupling Ωc.

An optical pump is included (C±pump).
In the pure elastic Rayleigh scattering regime, all nonlinear terms (3 and 4) are

neglected. In the parametric scattering regime, only scattering of kpump = 0 pump
polaritons towards ksignal = 2kpump –kprobe (or ksignal = kpump –kprobe1 –kprobe2)
are taken into account.

In the optical parametric regime (regime of pattern formation), all the terms of
eq. (4.2) are taken into account.

4.2 Spin- and power-dependent elastic Rayleigh scat-
tering

In this section we consider the regime where the polariton-polariton interactions are
not intense enough to give rise to parametric effects. In the linear regime, a resonant
elastic Rayleigh scattering takes place, and is the basis for the Optical Spin Hall
Effect (OSHE) [Kavokin2005, Leyder2007] (cf. Subsection 1.3.1.2). This phenomenon
consists in a spatial separation between “+” and “-” circularly polarized propagating
polaritons, similarly to a pseudo-spin-orbit coupling. The effective magnetic field
experienced by the propagating polaritons is solely induced by the cavity TE-TM
splitting and is confined to the 2D plane in the pseudo-spin space.

No control over the OSHE has been experimentally demonstrated so far, though
a theoretical article has recently suggested a control of the OSHE through the use
of an external magnetic field [Morina2013]. On the other hand, experimental and
theoretical works have shown evidence of the role of a spin-dependent blueshift in
polariton condensates [Kammann2012, Cilibrizzi2015,Gao2015, Solnyshkov2015] and in the
parametric regime [Shelykh2005,Glazov2005,Flayac2013].

In this chapter, we experimentally demonstrate an optical control over the OSHE.
We show that the effective magnetic field can be finely tuned using a strong optical
pump beam that induces spin-dependent blueshifts tilting the effective magnetic field
vector out of the 2D plane [Renucci2005]. The originality of our approach lies in the
fact that:

• The control of the OSHE is fully optical.

• The polariton-polariton spin-dependent interactions responsible for the spin-
dependent blueshifts occur independently from other forms of nonlinearities
such as parametric effects or condensate formation.

The first part of this section details the main experimental findings. The theoret-
ical description is given in the second part. Finally, other experiments show that
additionnal experimental parameters to the optical pump power must be taken into
account to fully control the OSHE.
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4.2.1 Experiment: influence of the optical pump power
The experiments presented in this section are similar to the historical one of Ley-
der et al. [Leyder2007]: a pump is sent on the microcavity and the polarization map
resulting from the Rayleigh scattering of pump polaritons is analyzed. The main
differences are:

1. The use of a double microcavity. The Rayleigh scattering regime can be ob-
tained by pumping on LPB2 at normal incidence rather than at oblique angle
on LPB1. This allows to spatially separate the pump-induced k‖ = 0 po-
laritons from the propagating polaritons and observe the full elastic circle in
the Fourier space. Moreover, the elastic circle considered has a twice larger
k‖ radius (or, equivalently, a larger angle of emission), such that the TE-TM
splitting magnitude is larger.

2. The polarization setup. In Ref. [Leyder2007], the pump is linearly polarized
and detection is set to observe the “+” and “-” circularly polarized emitted
light from the sample. Here, we do the opposite: pumping with circular po-
larization and observe the “x” and “y” linearly polarized emitted light. The
effect of the spin-dependent blueshifts is indeed more easily measurable in this
configuration than in Leyder’s (a theoretical justification will be given in Sub-
section 4.2.2).

4.2.1.1 Experimental setup

The polarization-resolved far-field spectroscopy is obtained by imaging the Fourier
plane of the detection objective on a cooled CCD camera. The pump beam is hidden
by a spatial filter (see Fig. 4.6). We have checked that the circular polarization of the
incoming pump was not affected by the reflection on the beam-splitter.

Figure 4.6: Experimental scheme for the observation of the controlled OSHE.

By rotating the half wave plate d, we can select the vertically-polarized (V), the
horizontally-polarized (H), right diagonal (rD) and left diagonal (lD) light com-
ponents of the Rayleigh-scattered polaritons (cf. paragraph 1.3.1.2) which evenly
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populate the elastic circle in the momentum space. The expected “linear polariza-
tion map” (solely resulting from TE-TM splitting) is obtained by performing the
operation H–V

H+V under a “+” circularly polarized excitation and shown in Fig. 4.7.b.
Note that an inner and outer elastic circle at slightly different in-plane wavevectors
are present due to the TE-TM splitting (Fig. 4.7.a), resulting in a slight polarization
overlap at 0°, 90°, 180° and 270°.

TM TE

Figure 4.7: (a) TM (inner) and TE (outer) elastic circles. (b) Expected polarization
map H–V

H+V for a “+” circularly-polarized excitation in the purely linear regime. The
degree of linear polarization along the elastic circle behaves as a sine curve, with its
first zero occuring at φ0 = φlin

0 = 90°. (c) With additionnal polariton-polariton
spin-dependent interactions, the polarization map rotates clockwise such that now
φ0 < φlin

0 .

Along the azimuthal angle φ (defined in Fig. 4.7.a.), the degree of linear polar-
ization along the mean elastic circle evolves as a sine curve, sin(2φ) in the purely
linear regime (Fig. 4.7.b.). We will see in Subsection 4.2.2 that due to additionnal
polariton-polariton spin-dependent interactions, the polarization map is expected to
rotate clockwise (resp. anticlockwise) for a “+” or left (resp. “-” or right) circu-
lar polarization (Fig. 4.7.c.). To measure the rotation of the polarization map, we
perform a precise analysis of the intensity and polarization as a function of φ. The
rotation of the polarization map is translated into a phase offset φ1 of the sine curve,
such that the linear polarization degree along the mean elastic circle is now:

sin(2φ+ φ1).

In all the experiments presented in this section, the effects of the polariton-
polariton spin-dependent interactions will be measured by the first zero of this func-
tion, labelled φ0 which is:

φ0 = φlin
0 –

φ1
2

,

where φlin
0 = 90° is the value of φ0 in the purely linear regime (i.e. polariton-

polariton interactions negligible, or φ1 = 0°).
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4.2.1.2 Analysis method

In this subsection, the analysis method used to measure the orientation of the polar-
ization map (the value of φ0) is detailed.

Let us consider a normally-incident 14mW “+” -circularly polarized excitation
(equivalent to “+” circularly polarized), and detection in the channels H (Fig. 4.8.a.)
and V (Fig. 4.8.b.).

a) b)

Figure 4.8: a) “+”-circular excitation, horizontally-polarized (H) channel in detec-
tion. b) “+”- circular excitation, vertically-polarized (V) channel in detection. The
pump (located at the center) is hidden by a spatial filter.

The elastic circles in Fig. 4.8 are populated by Rayleigh scattering. The granu-
larity observed along the elastic circle is a speckle effect due to the disorder in the
Bragg mirrors. Additionnally, dislocations or parametric scattering effects may cre-
ate couples of points separated by 180° [Abbarchi2012]. The angular autocorrelation
of the intensity along the elastic circle can be used to measure the efficiency of such
processes (discussed later in Subsection 4.2.1.3).

The experimental linear polarization map can be directly obtained with the H
and V acquisitions (Fig. 4.9).

Figure 4.9: Example: Polarization map obtained with the operation H–V
H+V with left-

circularly polarized pumping.
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A rotation of the polarization map may be directly observable to the naked eye.
A quantitative measurement of this rotation is obtained by the following method:

1. V and H rings are flattened. (see Fig. 4.10).

Figure 4.10: H acquisition after flattening.

2. Due to the TE-TM splitting, the result is not a flat line but varies between
k‖ ' 3.0 µm–1 and k‖ ' 3.3 µm–1. Therefore, for each angle, we sum the
intensities between a chosen k1 and k2 (here 2.54 µm–1 and 3.55 µm–1). Let’s
call V1 (resp. H1) the obtained data.

3. The degree of linear polarization H1–V1
H1+V1

is plotted as a function of the angle φ
defined in Fig. 4.7.b. The plot is shown on Fig. 4.11, and follows, as expected,
a sine curve.

4. The degree of linear polarization is fitted with the following function:

f(φ) = a sin(2φ+ φ1) + c sin(φ+ φ2) + d sin(4φ+ φ3) + b (4.3)

Figure 4.11: Degree of Linear Polarization as a function of φ of the momentum space
integrated between k1 =2.54 µm–1 and k2 =3.55 µm–1. The fit using eq. (4.3) is in
black. The vertical dashed line shows the position of φ0 (the first zero of function
sin(2φ+ φ1)).
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The first term is the main contribution, and others are corrections due to various
causes such as excitation and detection polarization miscalibration, optical misalign-
ment, or the presence of an additionnal polarization splitting due to built-in stresses
in the structure (see Subsection 4.1.3.3).

As mentionned previously, the parameter chosen to measure the OSHE polar-
ization pattern modification is φ0 = φlin

0 – φ1
2 , where φlin

0 = 90°.
In this example, the result of the fit is shown in Fig. 4.11. In this example, we get

φ0 = 82.4°±0.9°. The calculated error for φ0 is a combination of the standard error
for φ1 obtained from the fit (4.3) and the autocorrelation length of the fit residuals
(cf. AppendixA2 for details).

4.2.1.3 Results for various polarization configurations

To check of the effect of power on the degree of linear polarization, we performed
several experiments in various polarization configurations for two values of power
(labelled HP and LP in the following).

The pump can be switched between “+” and “-”-circular polarization. In this
case, the polarization map resulting solely from TE-TM splitting is analogous to
Fig. 4.7.b. with up and down reversed1.

The detection can also be done in the right diagonal and left diagonal channels.
In this case, the expected “diagonal linear polarization map”, obtained by perform-
ing rD–lD

rD+lD , is rotated by 45° compared to the one shown in Fig. 4.7.b. For this
configuration, the analysis method described above is maintained, except that the
phase in the purely linear regime is now φlin

0 = 135°.
Fig. 4.12 shows the result of eight measurements of φ0 in various excitation and

detection configurations.
As already mentionned in Subsection 4.2.1.1, a “+”-circularly polarized excita-

tion is expected to induce a shift to the left of the degree of linear polarization
(∆φ0 = φHP

0 – φLP
0 is negative) and for a “-”-circularly polarized excitation, the op-

posite (∆φ0 > 0). The same behaviour is expected for the degree of linear diagonal
polarization.

The shift ∆φ0 = φHP
0 – φLP

0 produced by a strong pump behaves as such in all
the various configurations of Fig. 4.12. This gives confidence in the interpretation
that this shift is indeed due to the pump polaritons spin-dependent interactions and
not induced by other nonlinear effects.

1Thanks to this geometric transformation, experiments performed with a “-”-circularly polarized
pump can easily be compared with simulations performed with a “+”-circularly polarized pump
term.

129



CHAPTER 4. SPIN-DEPENDENT NONLINEAR EFFECTS IN A DOUBLE
MICROCAVITY

Detection
configuration

“+” circularly polarized
excitation

“-” circularly polarized
excitation

Degree of linear
polarization

H1 – V1
H1 + V1

LP: 14mW
HP: 110mW 0° 90° 180° 270°
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0.2

φlin
0 = 90°
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0 = 82.4°± 0.9°
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0 = 72.5°± 1.0°

∆φ0 = –9.9°±1.3°

φLP
0 = 98.8°± 0.8°
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0 = 155.6°± 0.7°
∆φ0 = 4.8°± 1.0°

Figure 4.12: Experimental results for two incoming pump powers in various polar-
ization configurations for excitation and detection. The “low power” curves (LP)
are plotted in blue and the fit is a plain black line. The “high power” curves (HP)
are plotted in red and the fit is a plain red line. The vertical dashed lines indicate φ0
(φLP

0 in black, φHP
0 in red).

Indeed, parametric scattering of pump polaritons towards the elastic circle would
create pairs of polaritons separated by 180°. The sine curve should exhibit twin
peaks along certain directions that may influence the phase offset φ1 obtained by
the fit equation (4.3). However, this distortion would be nearly the same in all the
configurations presented in Fig. 4.12 such that ∆φ0 should have the same sign for
all configurations. Moreover, intensity correlations along the elastic circle is a direct
measure of the strength of parametric scattering. On Fig. 4.13, the autocorrelation
of the intensity distribution along the elastic circle is plotted (for more details on
autocorrelation calculations, refer to Appendix A2). Since the peak at 180° is rather
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weak even at large powers, the intervention of parametric scattering effects can be
safely discarded.

Figure 4.13: Autocorrelation of the intensity distribution (background substracted)
along the elastic circle (namely V1 + H1 as defined in the previous subsection) for a
“+”-circularly polarized pumping at 14mW (LP) and 110mW (HP). In both cases, a
small correlation is found for the speckle points at 180°. This may come from either
dislocations in the DBRs or parametric scattering [Abbarchi2012].

Other parasitic effects such as the presence of a built-in polarization splitting
mentionned in Subsection 4.1.3.3 or a small angle error on the pump polarization
are taken into account by the monopolar (sinφ) and octopolar (sin 4φ) terms of
the fit equation (4.3). One can show that they do not affect the quadrupolar term
(sin 2φ), so they also fail to account for the observations of Fig. 4.12.

4.2.1.4 Power-dependent OSHE

The pump power is now slightly tuned from approximately 6mW to approximately
40mW. We checked by a reflectivity measurement that on this power range, the
pump polariton density increases linearly with power. The pump is “-”-circularly
polarized. To compare the results with simulations done with a “+”-circularly po-
larized pumping term, the geometric transformation proposed in the last subsection
is applied. We therefore expect φHP

0 < φLP
0 .

The result of the experiment is shown on Fig. 4.14.a. We observe a decrease of
φ0 as a function of power from approximately 95° with a saturation at about 60°.
We note, additionnally, that the experiment shows no sign of bistable behaviour.
The first point at 6mW does not match the quasi-linear law followed by the other
points (before saturation). This may be an effect of the blueshift which is not strong
enough to achieve perfect resonance conditions.

131



CHAPTER 4. SPIN-DEPENDENT NONLINEAR EFFECTS IN A DOUBLE
MICROCAVITY

Figure 4.14: (a) Experimental angular orientation in terms of the zero-crossings φ0
vs. incident excitation power. The thin dashed curve is merely a guide for the eye.
(b) Theoretical angular orientation φ0 as a function of exciton density for a pump
spot spread all over space, in which case an analytic expression (eq. (4.6)) can be
derived (black line) and from numerical solutions of the 2-dimensional polariton
Gross-Pitaevskii equation for 50 (red) and 20 µm (green) spot sizes. Both methods
are detailed in the next subsection 4.2.2.

Fig. 4.14.b. shows the result of theoretical simulations and calculations that will
be described in the next subsection. An analytical result can be found if we suppose
a plane wave for the optical pump. However, in the experiment, this is not the case
and the pump spot size is approximately 50 µm. A direct calculation for the real-
istic case is not possible, but simulations have been performed by our theoretician
collaborators of Tucson, Arizona and Hong-Kong to reproduce the experimental
observations. They also find a quasi-linear decrease of φ0 at low exciton densities,
and then a saturation plateau close to 60°.

The exciton density in µm–2 can be converted into an optical pump power in
mW using the value of the recombination rate γrec (radiative and non-radiative de-
cay) of excitons. With a typical QW light-coupled exciton lifetime of ' 100 ps in a
microcavity [Bajoni2006,Bastard], the scales of Figs. 4.14.a. and b. agree.

4.2.2 Theoretical description
The theoretical description of this experiment was developed by our theoretician
collaborators of University of Paderborn, University of Arizona and from the Chi-
nese University of Hong Kong. I reproduce here the main results and relate them to
the usual formalism describing the OSHE [Kavokin2005].

Assuming a plane wave for the pump, an analytical form for the phase shift of
the sine curve can be derived. Otherwise, numerical methods can be used and will
be briefly presented.
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4.2.2.1 Analytical approximate description

In this subsection, we derive an equation linking the zero-crossings of the sine curve,
φ0, as a function of the “+”-circularly polarized pump polariton density |Ψ+

0 |2

which is assumed narrowly distributed around k = 0 (plane wave or in the limit of
very large spot sizes). To simplify the calculation, we assume here a single cavity and
a pump source term populating the elastic circle.

First method: Gross Pitaevskii equation Spinor-valued polaritons are represented
by wave functions Ψ± which obey a driven polaritonic Gross Pitaevskii equation.
Neglecting the phase space filling, we start with the following equation in the frame
rotating at the pump angular velocity ωpump:

īh
∂

∂t
Ψ±k = (Ep

k – iγp – h̄ωpump)Ψ±k + ∆
p,±
k Ψ∓k + ψ±pump (4.4)

+
∑
k′,k′′

(α++Ψ±∗
k′+k′′–k

Ψ±
k′

Ψ±
k′′

+ α+–Ψ∓∗
k′+k′′–k

Ψ∓
k′

Ψ±
k′′

),

where Ep
k = Ep

0 + h̄2k2

2M , γp = γc + γx and ∆
p,±
k = h̄2

2m(kx∓ iky)2 = ∆
p,TL
k e∓2iφ

(cf. Subsection 1.3.1.1), M = 1
2(

1
mTE

p
+ 1

mTM
p

)–1 and m = 1
2(

1
mTM

p
– 1

mTE
p

)–1. α++, α+–

are the interaction strengthes between polaritons with corresponding spins defined
in eq. (1.23).ωpump is the pump frequency.

For a strong normally incident pump and in the Rayleigh scattering regime, we
successively take (k′ = 0, k′′ = k) and (k′ = k, k′′ = 0) in the sum and trun-
cate eq. (4.4) below the terms showing a nonlinear dependance in Ψ±k6=0. Eq. (4.4)
rewrites:

īh
∂

∂t

(
Ψ+
k

Ψ–
k

)
=

(
∆E+

k – iγp ∆
p,TL
k e–2iφ + U+

∆
p,TL
k e2iφ + U– ∆E–

k – iγp

)(
Ψ+
k

Ψ–
k

)
+
(
ψ+

pump
ψ–

pump

)
(4.5)

where U± = α+–Ψ∓∗0 Ψ±0 , ∆E±k = (Ep
k–̄hωpump)+B± and B± = 2α++|Ψ±0 |2+

α+–|Ψ∓0 |2.
The stationary solutions of this equation can be easily computed by inversing

the above matrix.

For a “+” circularly polarized pump (Ψ–
0 = 0), the degree of linear polarization

is

S1 = |ψx|2 – |ψy|2 = 2Re(Ψ+∗
k Ψ–

k)
= K(∆E–

k cos 2φ – γp sin 2φ)

where K is a real constant depending on |ψpump|2, γp, ∆
p,TL
k and ∆E±k .
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If ∆
p,TL
k < γp, the elastic resonant Rayleigh scattering condition for “+” polar-

ized polaritons imposes ∆E+
k = Ep

k – h̄ωpump + 2α++|Ψ+
0 |2 = 0.

Finally
S1 = –K((2α++ – α+–)|Ψ+

0 |2 cos 2φ+ γp sin 2φ)

In order to reproduce the shift observed in the experiment, we can rewrite S1
as a function of sin(2φ + φ1). The pump power-induced shift of the sine curve is
therefore:

φ1 = arctan(
(2α++ – α+–)|Ψ+

0 |2

γp
), (4.6)

Since 2α++ – α+– > 0 (see Subsection 1.3.4), φ1 is positive. Hence the po-
larization map rotates clockwise. Alternatively, for a “-” circularly polarized pump,

φ1 = – arctan( (2α
++–α+– )|Ψ–

0|
2

γp
) and the polarization map rotates anticlockwise.

Second method: Equation on the pseudospin Alternatively, the hamiltonian
(4.5) can be written as the linear combination of identity matrix and a spin-orbit

interaction 1
2
~B · ~σ, where ~σ =

σx
σy
σz

 is the Pauli matrices vector σx =
(
0 1
1 0

)
and

σy =
(
0 –i
i 0

)
, σz =

(
1 0
0 –1

)
. The modified effective magnetic field is now:

~B =

2∆
p,TL
k cos 2φ+ 2α+–Re(Ψ+∗

0 Ψ–
0)

2∆
p,TL
k sin 2φ+ 2α+–Im(Ψ+∗

0 Ψ–
0)

(2α++ – α+–)(|Ψ+
0 |2 – |Ψ–

0|
2)

 (4.7)

For a “+” circular-polarized pump, the additionnal terms along x and y vanish.
Only B3 = (2α++–α+–)|Ψ+

0 |2 remains, and the equation on the pseudo-spin (1.21)
gives:

S1 =
2∆

p,TL
k τ2(B3τ cos 2φ+ h̄ sin 2φ)|Ψ+

0 |2

(h̄2 + (B2
3 + 4(∆p,TL

k )2)τ2)τ1
,

where τ is the polariton lifetime and τ1 is the Rayleigh scattering time constant.

S1 can be rewritten such as
2∆p,TL

k τ2 sin(2φ+φ1 ))

(h̄2+(B2
3+4(∆p,TL

k )2 )τ2 )τ1
. The found φ1 is identical to

the one found by the previous method (eq. (4.6)).
This shift can therefore be seen as the consequence of the effective magnetic field

third component in eq. (4.7) which does not exist in the linear case (see eq. (1.20)),
as shown in Fig. 4.15.
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Figure 4.15: Sketch of pseudo-spin space and torque action when ~B has a non zero
B3 component. Courtesy of R. Binder.

Justification of the polarization configuration chosen for the experiment Al-
ternatively, for a “x” linearly polarized pump ( [Leyder2007] configuration), the mod-
ified effective field is:

~B =

2∆
p,TL
k cos 2φ+ α+–|Ψx

0|
2

2∆
p,TL
k sin 2φ

0


The third component of the pseudo-spin S3, computed by eq (1.21):

S3 = –
2̄hτ2∆

p,TL
k |Ψx

0|
2 sin 2φ

(h̄2 + ((α+–|Ψx
0|

2)2 + 4(∆p,TL
k )2 + 4α+–|Ψx

0|
2∆

p,TL
k cos 2φ)τ2)τ1

We see that pumping with “+” circularized pump and observing S1 induces a
shift of the sine pattern, whereas doing the experiment in Leyder’s configuration
would induce a deformation of the sine, much more difficult to observe experimen-
tally as its signature as a function of φ would be more sensitive to perturbations.

4.2.2.2 Simulations for a finite pump spot size

However, this analytical solution has been found under the assumption that the
pump is a normally-incident plane wave (truncation of eq. (4.4)).

In order to take into account the finite spot size of the pump, simulations have
been made using a Gaussian beam profile (noted p+

LPB2
(r)) for the circularly (“+”)
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polarized source, and solving the following real space equations:

īh
∂

∂t
Ψ±LPB1

= H0
LPB1

Ψ±LPB1
+ H±LPB1

Ψ∓LPB1
+ N±LPB1

+ P±LPB1

īh
∂

∂t
Ψ+

LPB2
= H0

LPB2
Ψ+

LPB2
+ N+

LPB2
+ P+

LPB2
,

where LPB1/2 label the low polariton branches and ± is the circular polariza-
tion. The branch LPB2 is solely populated by a “+”-circular polarized pump, with
frequency ωpump. The branch LPB1 is populated by Rayleigh-scattered pump po-
laritons. The pumping term P is therefore P±LPB1

= p±LPB1
(r)e–iωpumpt for the LPB1

branch whereas P+
LPB2

= p+
LPB2

(r)e–iωpumpt and P–
LPB2

= 0 for the LPB2 branch.

H0
LPBj

= Ep
0,j –

h̄
4 (

1
mTM

p,,j
+ 1

mTE
p,,j

)∇2 – iγp is the energy dispersion of the polariton

branch LPBj, where Ep
0,j is the energy minimum of LPBj, mTM/TE

p,,j are the TE and
TM effective polariton masses of branch LPBj, and γp the polariton loss rate.

The term H±LPB1
= – h̄2

4 ( 1
mTM

p,,j
– 1

mTE
p,,j

)( ∂∂x ∓ i ∂∂y )2 includes the TE-TM splitting

of the LPB1 branch (negligible in LPB2 since we only consider states at vanishing
in-plane momentum).

The nonlinear polariton-polariton interactions are included via the terms N±LPB1,2

which depend on α++, α+– (taking into account Hopfield coefficients2) and Ψ±LPB1,2
(r, t).

mTM
p,1 mTE

p,1
6.56× 10–35 kg 1.023 mTE

p,2

mTM
p,2 mTE

p,2
6.90× 10–35 kg 1.031 mTE

p,2

Ep
0,2 – Ep

0,2 ΩR T++

7.54meV 6.35meV 5.69× 10–3 meV.µm–2

[Schumacher2007]

γp αPSF T+–

0.2meV 2.594× 10–4 µm–2

[Luk2013]
–T++/3 [Schumacher2007]

Table 4.2: Parameter values used for the simulation with finite pump spot sizes.

The simulations using realistic parameters, presented in Table 4.2, can be real-
2Note that the Hopfield coefficient differ for the phase-space filling term αPSFΩR and the

T++/T+– two excitons correlations included in α++ and α+– (cf. Subsection 1.3.4)
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ized with various gaussian spot sizes. The results for 50 µm (close to experimental
conditions) and 20 µm spot sizes are shown in Fig. 4.14.b. (red and green lines).

The simulation exhibits no hysteresis as a function of pump power, in accordance
with the experimental findings.

4.2.2.3 Discussion

The result of the model are shown in Fig. 4.14 and reproduces well the experimental
results presented in Subsection 4.2.1.4.a. The optical modificaton of the Optical Spin
Hall Effect is therefore demonstrated both theoretically and experimentally.

However, some differences remain between the experiment and the theoretical
predictions:

• Under certain conditions yet to be fully understood, the experiment can ex-
hibit Rayleigh scattering for power ranges that are above the OPO threshold
predicted by theory. One reason may be that the laser, resonant at low pump
powers, gets off resonance at large pump powers due to blueshift effects (cf.
Subsection 1.2.2.4). The exciton density effectively confined in the structure
does not reach the OPO threshold.

• The overlap region between polarizations H and V at φ = 0, π/2, π and 3π/2
is much larger in the experiment (see for example Fig. 4.9) than in theory
(Figs. 4.7.b. and c.). One possibility is that it is due to the laser intensity
instability seen in Subsection 2.1.4, which would result in different shift values
as a function of time. The observed polarization map is averaged over time,
hence the larger overlap.

In the next subsection, I show additionnal experiments in order to complete the
understanding of this phenomenon. These experiments confirm or go beyond the
model and simulations presented.

4.2.3 Influence of other experimental parameters
In this section, I show that even at fixed pump power, different shift values φ0 can be
obtained. Indeed, the detuning between the excitation laser energy and minimum
of LPB2 branch (neglected in the model and simulation previously presented) plays
a role, as well as the exciton-photon detuning. In the first case, the detuning from
resonance modifies the exciton density confined in the microcavity, hence the mod-
ification of φ0. Secondly, at large negative exciton-photon detuning, the polariton
is almost exclusively photonic, and the polariton-polariton interactions responsible
for the shift are thus much reduced.
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4.2.3.1 Pump resonance with LPB2

Two experiments have been conducted to check the significance of the resonant exci-
tation of the minimum of LPB2: ( i) the pump excitation energy is tuned, and (ii) the
sample shifted so that the energy of the minimum of LPB2 varies due to the built-in
wedge.

The first experiment is shown in Fig. 4.16.a. The alternative cw Ti:Sapph Solstis
laser described in Chapter 2 is used, since its wavelength can be tuned finely using
the intracavity etalon while every other parameter is kept fixed. We did the experi-
ment for a “-”-circular excitation on a roundtrip basis (decreasing and then increasing
the excitation energy) at two fixed excitation powers: 1 and 50mW. Note that the
polariton branch energy varies during the experiment due to blueshift effects (cf.
Subsection 1.2.2.4), which depends both on resonance and pump power. The phase
shifts behave as expected for a “-”-circularly polarized excitation: φ1mW

0 < φ50mW
0

(except, surprisingly, for the highest energy point). No hysteresis is observable in
accordance with previous experimental findings in either cases. φ50mW

0 values span
from 98° to more than 108° and exhibit a bell-shaped curve as a function of laser
energy. φ1mW

0 values are less dispersed (approximately 5° difference between the ex-
trema values) and evolves linearly with energy. These differences can be interpreted
as a result of the blueshift of the polariton branch, much more efficient at 50mW
than at 1mW. Further investigations have shown that the higher values for φ50mW

0
corresponds to the situation where the laser is slightly redshifted compared to the
LPB2 minimum (approximately -0.1meV). .

The result of the second experiment is shown on Fig. 4.16.b. The sample is
shifted to achieve different energy values for the minimum of the LPB2 polariton
branch while the laser excitation energy is kept fixed (thick vertical line) at a lower
value. The laser excitation power is switched between 12 and 100mW, and its polar-
ization is “+”-circular polarized, hence we expect φ100mW

0 < φ12mW
0 . The phase

shift at 100mW exhibits again a difference of about 10° between its two extrema.
Note that the energy of the polariton branch was measured under the 100mW exci-
tation, such that the position of the blue points in Fig. 4.16.b. are in reality slightly
redshifted.

These two experiments show that the pump-power induced phase shift exhibits
different even at fixed power, depending on the detuning between the pump energy
and the minimum of LPB2. This does not undermine the main experimental findings
shown in Fig. 4.14 since the laser excitation energy and the position of the sample
were kept fixed. However, for a full understanding of the φ0 value, this parameter
must not be neglected.
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a)

b)

Figure 4.16: a) φ0 as a function of the excitation laser energy at two different pump
powers and on a roundtrip basis. The laser is “-” circularly polarized, hence we have
φ50mW
0 > φ1mW

0 . b) φ0 as a function of the energy of the polariton branch, the
excitation energy being kept fixed for two values of the pump power. The laser is
“+” circularly polarized, hence we have φ100mW

0 < φ12mW
0 .

4.2.3.2 Exciton-photon detuning influence

To see the influence of exciton-photon detuning on the zero-crossing value φ0, ex-
periments have been performed at four different values of the exciton-photon de-
tunings for two excitation powers (12 and 100mW) and a “-”-circularly polarized
excitation. The excitation is resonant with the minimum of the LPB2, but may vary
slightly from one measurement to another (which corresponds to different spots on
the sample and to different excitation energies). The values found for φ0 at the dif-
ferent detunings must therefore be taken with caution. To simplify the discussion,
we will assume here that the excitation energy is optimized such that the peak value
of φ100mW

0 shown in Fig. 4.16.a. is obtained.
Fig. 4.17 displays the result of such experiment as a function of polariton-exciton

detuning (Ep
0,LPB2

–Ex
0 ). As expected for a “+”-circularly polarized pump, we observe

that φ100mW
0 < φ12mW

0 (though the reverse is obtained for the measurement below
-17meV but the phase difference is too small to be significant). The phase difference
|∆φ0| = |φ12mW

0 – φ100mW
0 | disappears when the polariton branch is far detuned

from the exciton. This can be easily interpreted since the shift comes from polariton-
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polariton interactions, which are a consequence of the matter (excitonic) component
of polaritons.

Figure 4.17: φ0 as a function of LPB2 position for high and low power. The pump
is “-”-circularly polarized.

This experiment shows that the optical control of the OSHE is optimized for low
exciton-photon detunings, in accordance with our expectations. A more complete
study, taking into account the laser detuning with respect to the polariton branch,
must be realized to further confirm this preliminary observation.

4.2.4 Conclusion
In conclusion, the optical control of the Optical Spin Hall Effect using a strong
optical pump beam is demonstrated in this section.

In the first part, we show that the optical pump power induces a rotation of the
OSHE polarization pattern resulting from the elastic Rayleigh scattering of pump
polaritons excited by a circularly-polarized pump beam, and a detection of the emit-
ted light in the linear polarization channels. This rotation is clockwise (anticlock-
wise) for a “+” or left- (“-” or right-) circularly pump. The rotation angle varies
linearly below 30 mW and then saturates at approximately 30°. No sign of bista-
bility is found. These experimental results are well reproduced by the inclusion of
quadratic nonlinear terms in the pump intensity, without the intervention of any
other nonlinear effects such as optical parametric scattering, condensate or pattern
formation.

A full experimental characterization of the rotation angle shift as a function of
power is yet to be conducted, taking into account other parameters such as the de-
tuning between the pump energy and the minimum of LPB2, the exciton-photon
detuning and the pump size beam, so that a robust correspondence between the in-
coming power on LPB2 and the value of the rotation angle is achieved. The two
first parameters have been experimentally probed in Subsection 4.2.3, but a more
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systematic study is needed. On the other hand, a strong influence of the pump beam
size is predicted theoretically: at a fixed exciton density, an increasing pump spot
size should corresponds to a larger rotation angle (see Fig. 4.14.b.).

This study opens the way towards polariton devices creating pseudo-spin textures
and currents that are fully controlled optically. The use of multiple beams and/or
sequences of short pulses may in the future allow for an on-demand generation of
such polarization patterns. Note that the use of a double microcavity is particularly
adequate in a device perspective, since one polariton branch (LPB1) is here exploited
as a signal channel, monitored by an optical pump beam resonant with the other
polariton branch (LPB2) which can thus be thought of as the control channel.

4.3 Spin-dependent parametric scattering
We have shown that the pump power on the LPB2 branch minimum influences the
propagation of polaritons such that the Optical Spin Hall Effect is fully controllable
by optical means.

In this section we go beyond this nonlinearity and study henceforth the influence
of the TE-TM splitting in the parametric scattering regime. This regime intervenes
when the four-wave mixing is activated, i.e. when a pump-probe beam scenario ful-
filling the phase-matching conditions leads to the apparition of an idler beam. This
regime is reached for sufficiently large pumping intensities (' 50mW), when the
polariton-polariton interactions are sufficiently efficient to involve several available
states on the elastic circle.

This study is motivated towards understanding the formation of formation of
spatial hexagonal patterns in the polariton density [Ardizzone2013a] on the elastic cir-
cle above the Optical Parametric Oscillation threshold, regime that will be explored
in the next section. Here we operate in the nonlinear optical regime, but slightly
below the pattern formation threshold so that the spatially homogenous fields are
still stable.

Three phase-matched processes are at stake in the hexagonal pattern formation
process (Fig. 4.18). The first two (Fig. 4.18.a. and b.) will be studied in this section.
The regime of parametric scattering is particularly well-suited to probe the favored
processes as well as the influence of linear and nonlinear polarization effects in the
patterns organisation mechanisms.
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Figure 4.18: Reproduced from [Ardizzone2013a]. Phase-matched processes at stake in
the hexagonal pattern formation mechanism involving the pump beam at normal
incidence and various states on the elastic circle.

The first scattering mechanism that we will consider involves two pump polari-
tons photocreated at zero in-plane momentum and two polaritonic states anywhere
on the elastic circle but separated by 180° (for example 1 and 1’ on Fig. 4.18.a.). Ex-
perimentally, a probe is sent at an oblique incidence resonant with the elastic circle,
and we study the idler beam, as shown on Fig. 4.19.a. We will refer to this process as
first-order four-wave mixing (FOFWM).

The second scattering mechanism involves one pump polariton and three po-
lariton states separated by 60° on the elastic circle (for example 1, 2 and 3 on
Fig. 4.18.b.). Experimentally, two probe polaritons separated by 120° are sent in res-
onance with the elastic circle, and the idler beam located in-between is investigated.
We will refer to this process as second-order four-wave-mixing (SOFWM), illustrated
in Fig. 4.19.b.

The third scattering mechanism represented on Fig. 4.18.c. could also in princi-
ple be probed using three beams located on the elastic circle (for example 1, 1’ and 3)
without the normally-incident pump beam. However, in this work, we will restrict
ourselves to the study of FOFWM and the SOFWM processes.

If we go back to eq. (4.2), the processes that are taken into account:

• now includes scattering towards –k states for the FOFWM,

• and includes as well scattering between k states separated by 60° for the SOFWM.

Both processes are studied as a function of the linear polarization direction of the
pump and probe(s), as represented on Fig. 4.19.
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Figure 4.19: Sketch of the two-dimensional transverse momentum space (k-space)
plane. The TE and TM elastic circles of LPB1 are indicated, with TE (TM) po-
larizations being tangential (orthogonal) to the elastic circle. The pump is nor-
mally incident and linearly polarized. In (a) the configuration used to study the
FOFWM is illustrated. Probe and FOFWM signals are located on the mean elas-
tic circle respectively at kprobe corresponding to φspatial and –kprobe corresponding
to φspatial +180°. The pump polarization plane φpol,pump is rotated during the ex-
periment. In (b), the configuration used to study the SOFWM is illustrated. The
azimuthal angle φspatial of probe 1 is fixed, and the relative angle between probe 1
and probe 2 is 120°, leading to a SOFWM signal at 90°. In both cases, the linear
polarization directions of the probe(s) and of the detection setup are indicated by
double arrows.

4.3.1 First order four-wave mixing
First we focus on those four-wave mixing processes that can be interpreted as off-
axis scattering of two pump-induced polaritons to finite and opposite momentum k
and –k on the elastic circle as indicated in Fig. 4.19.a. To selectively analyze these
processes, we perform a polarization-resolved pump and probe experiment. In a
four-wave mixing context, the dominant contribution to this process is only of linear
order in the off-axis probe intensity.

4.3.1.1 Experimental setup

Fig. 4.20 illustrates the optical pump-probe setup used to study the FOFWM: a cw-
pump excites the cavity at normal incidence (kpump = 0) resonantly on LPB2
and gives rise to a coherent polariton field. A cw-probe beam with the same fre-
quency is applied under oblique incidence, resonant on LPB1, carrying an in-plane
momentum kprobe. The pump and probe spots on the sample are around 50 µm
full-width-half-maximum (FWHM)3. For a sufficiently intense pump, the probe

3The probe spot is in reality elongated in real space due to the spherical aberrations induced by
the ocular Lf (cf. Subsection 2.2.3.1)
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beam at kprobe can stimulate a pairwise scattering of pump polaritons into a off-
axis mode. The two pump polaritons scatter phase-matched and resonant into the
modes kprobe(amplifying the probe) and kFOFWM = 2kpump – kprobe = –kprobe ,
triggering a FOFWM signal.

Figure 4.20: Sketch of the optical setup used to study FOFWM. Applying a
continuous-wave pump and a continuous-wave probe, the first-order four-wave mix-
ing signal is detected in a reflection geometry. The direction of the pump polar-
ization before entering the beam-splitter cube is indicated by a double arrow. The
probe polarization is set either parallel or orthogonal to it.

The pump and probe intensities are fixed during each measurement.
We fix the probe azimuthal angle φspatial and rotate the polarization plane of

the linearly polarized pump φpol,pump stepwise using the automatic half-wave plate
e. For each φpol,pump, the linear polarization of the probe φpol,probe is re-adjusted, ei-
ther copolarized (X, i.e. φpol,probe = φpol,pump) or cross-polarized (Y, i.e. φpol,probe =
φpol,pump+90°) to the pump by rotating the half-wave platep1 situated upstream
(not represented on Fig. 4.20, refer to Fig. 2.5). We then measure the intensity
of the FOFWM signal in X and Y polarization channel by rotating the half-wave
plate d. Since the probe polarization matches the TE or TM states only when
φpol,probe = φspatial (TM) or φpol,probe = φspatial+90° (TE), the relevant quantity
for this study is the relative angle between the direction of the pump polarization
and the azimuthal angle of the probe beam, namely

∆φ = φpol,pump – φspatial,

represented on Fig. 4.19.a.

4.3.1.2 Experimental results

The intensity of the FOFWM signal taken is shown as a function of the in-plane
momentum k and for each φ between 0 and 360°. Fig. 4.21 shows an example of a
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typical measurement in the momentum space. Here φspatial ' 155° and the pump
is polarized along the orthogonal direction (φpol,pump ' 65°), such that ∆φ =90°.
The probe and detection are cross-polarized to the pump. The TE and TM elastic
circles are indicated by a plain line and a dashed line.
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Figure 4.21: The pump at the center is polarized along the arrow, such that
∆φ =90°. The probe (large spot on the left) is cross-polarized (Y1) to the pump.
The detection is also done in the cross-polarized channel (Yd), so that the FOFWM
signal, surrounded by a red rectangle, is resonant with the TM elastic circle (dashed).
The TE circle is represented with the plain line. The red rectangle figures the typical
integration zone for Fig. 4.22.

The experimental and numerical results are shown in Fig 4.22 for four different
polarization configurations:

1. probe excitation and FOFWM detection both co-polarized to the pump (X1Xd,
a. and b.),

2. a co-polarized probe and a cross-polarized FOFWM detection to the pump
(X1Yd, c. and d.),

3. a cross-polarized probe and co-polarized FOFWM detection to the pump (Y1Xd,
e. and f. ),

4. a cross-polarized probe and cross-polarized FOFWM detection to the pump
(Y1Yd, g. and h.).

The FOFWM signal intensity is integrated along the direction orthogonal to φspatial
(red rectangle width on Fig. 4.21).
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Figure 4.22: Measured (first row) and computed (second row) first-order four-wave
mixing intensity in arbitrary units. Results are shown in the two-dimensional trans-
verse momentum space parametrized by the magnitude of the momentum k and
angle ∆φ which denotes the polar angle between the plane defined by the incident
probe and the pump polarization plane (refer to Fig. 4.19a). The X1Xd (probe and
detection co-polarized to the pump) and Y1Yd (probe and detection cross-polarized
to the pump) experimental pictures a. and g. are each composed of 44 measurements
(every 8°) corresponding to vertical stripes. 176 measurements (every 2°) are taken
for the experimental pictures Y1Xd (c.) and Y1Xd (e.) so that the resolution is large
enough to observe the “double-peak” feature expected by simulations. The position
of the TM and TE elastic circles is indicated by the dashed and plain white lines.

For each of the polarization configurations, the FOFWM signal exhibits distinct
features:

• In the X1Xd and Y1Yd excitation/detection-configuration (probe and detec-
tion either both co-polarized, either both cross-polarized to the pump), the
FOFWM is strongest if the pump polarization is parallel or orthogonal to the
position of the probe φspatial at angles ∆φ = 0, ∆φ = π/2 , ∆φ = π, and
∆φ = 3π/2.

• For X1Xd , the radius of the FOFWM signal is alternating between kFOFWM =
3.29 µm for parallel and kFOFWM =3.35 µm for perpendicular excitation (match-
ing the TM and TE elastic circles, respectively). For Y1Yd, the roles of parallel
and perpendicular excitation are interchanged. The radius reaches a minimum
(maximum) for perpendicular (parallel) excitation.

• In contrast, in the X1Yd and Y1Xd configurations the signal vanishes for an
excitation of the TE or TM-eigenmode at ∆φ = 0, ∆φ = π/2 , ∆φ = π,
and ∆φ = 3π/2 , but reaches its maximum for ∆φ = π/4 , 3π/4, 5π/4 and
7π/4. Here, the signals are mainly confined in between the TM and TE elastic
circle and the variation in radius with varying ∆φ is much less pronounced.
However, a double-peak structure is observed near each signal maximum.
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• Overall, the FOFWM signal is most intense for the Y1Yd-configuration, fol-
lowed by the X1Xd-configuration, and weakest for X1Yd and Y1Xd configu-
rations.

For all these features, an excellent agreement is found between experiment and the-
ory. The details of the double peak structure (Fig. 4.22.d and f) are not completely
identical in the experiment, but they are very sensitive to the exact parameter values
chosen for the simulation.

4.3.1.3 Discussion

Before going into the details of the theory, a qualitative understanding of the results
can easily be done for some of the features exhibited by Fig. 4.22.

Position of peaks as a function of ∆φ and k For angles where the probe po-
larization matches the TE or TM-eigenmode (∆φ = 0, π/2 , π, and 3π/2), the
polarization state of the FOFWM signal matches the probe polarization.

Hence, the configurations where the detection is co-polarized to the probe (X1Xd
and Y1Yd) exhibit resonance peaks at ∆φ = 0, π/2 , π, and 3π/2, at alternating radii
corresponding to the TE- and TM-eigenmodes, and no signal in X1Yd and Y1Xd at
angles ∆φ = 0, π/2 , π, and 3π/2 is detected.

Instead, the resonance peaks for these configurations are centered near ∆φ =
π/4, 3π/4, 5π/4 and 7π/4, where the TE-TM splitting leads to the strongest rota-
tion of the polarization. The peaks are located in-between the TE and TM elastic
circles. They result from a stimulated scattering of two pump polaritons towards
one state in the TE and one state in the TM-mode. The scattered polaritons undergo
a slight frequency shift (typically ±100 µeV) to fulfill resonance and phase-matching
conditions4. The involved LPB1 modes have a wavevector magnitude in-between
the ones of the TE and TM elastic circles, as shown on Fig. 4.23. Additionnally,
an amplification of the cross-polarized component occurs at the edges of the reso-
nance peaks. This induces a deformation and a slight splitting of these peaks both in
experiment and theory.

4This interpretation will be further confirmed by an experiment detailed in Subsection 4.4.2.2.
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Figure 4.23: Various scattering processes onto LPB1 involving two pump polaritons
photo-created on LPB2. The TE and TM elastic circles are represented by the plain
and dashed lines (the TE-TM splitting is exaggerated here). The fully horizontal
processes include scattering towards two opposite states on the TE-branch (blue ar-
rows), or on the TM-branch (green arrows). Additionnally, a scattering process of
two pump polaritons towards the TE-branch on one side and the TM-branch on the
other side (cyan arrows) is possible provided small frequency shifts occur so as to
fulfill resonance and phase-matching condition. The corresponding radii for each
process are indicated by vertical lines. Courtesy of P. Lewandowski.

Relative intensities The “X1Xd” process mainly conserves the pseudospin of po-
laritons (pump, probe and FOFWM signal have the same linear polarization). The
“Y1Yd” probes processes reverses the pseudospin of polaritons (two X polarized
pump polaritons vs Y-polarized probe and FOFWM signal). These two processes
are spin conservative.

On the contrary, X1Yd and Y1Xd experiment do not conserve the pseudo-spin
of polaritons. No signal would even be detected in those configurations if not for
the TE-TM splitting. This scattering channel is thus much less efficient than the two
others.

Overall, the most “efficient” parametric scattering configuration is the Y1Yd, the
process that reverses the linear polarization, in accordance with the expected values
of the spin-dependent polariton-polariton interactions (cf. Subsection 1.3.4).

4.3.1.4 Theoretical description

The simulations to analyze the features of the experiment have mainly been devel-
opped by Dr. Przemyslaw Lewandowski and Pr. Dr. Stefan Schumacher at Pader-
born Universität (Germany). I will present here the main theoretical results.

The angular, wavevector and polarization dependence of the FOFWM signal
shown in Fig. 4.22 is a consequence of the interplay between the TE-TM splitting
and a spatially anisotropic polariton amplification resulting from the spin-dependent
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exciton-exciton interactions for a linearly polarized pump. The former is present
even in the linear optical regime, the latter is a nonlinear optical effect.

The main features of Fig 4.22 can be reproduced using a simplified model to de-
scribe the evolution of the following quadruplet:(

Ψ+
kprobe

, Ψ–
kprobe

, Ψ+∗
kfofwm

, Ψ–∗
kfofwm

)
,

where Ψ±kprobe/kfofwm
are the polariton wavefunctions of the probe and FOFWM

signal. kprobe = –kfofwm is the in-plane wavevector of probe or FOFWM signal
polaritons. For simplicity, we use the “+” and “-” circular polarization basis (where
the polariton-polariton interactions α+± take a simple form).

Assuming a plane wave for the pump and in the rotating frame approximation,
the evolution of the quadruplet is given by the sum of three hamiltonians:

H = H0 + H±k + HNL.

The first term is a diagonal hamiltonian and reads:

H0 =


∆E+

probe 0 0 0
0 ∆E–

probe 0 0
0 0 –∆E+∗

fofwm 0
0 0 0 –∆E+∗

fofwm

 ,

where ∆E±probe/fofwm = Ep
0 +

h̄2k2
probe/fofwm

4 ( 1
mTE

p
+ 1

mTM
p

) – h̄ωpump – iγp is the

pump energy detuning with respect to the polariton energy at the in-plane wavevec-
tor kprobe/fofwm.

HTETM includes the TE-TM splitting, and following eq. (1.17), can be written:

H±k =


0 ∆

p+
kprobe

0 0

∆
p–
kprobe

0 0 0

0 0 0 –∆
p+∗
kfofwm

0 0 –∆
p–∗
kfofwm

0

 ,

where ∆
p+
kfofwm/probe

= ∆
p,TL
k e–2iφ.

Finally, HNL includes the nonlinear terms introduced in Subsection 1.3.4. Con-
trarily to the previous section (eq. (4.4)), the scattering processes towards –k are now
taken into account, such that HNL reads:
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HNL =


B+ U+ V+ W+

U– B– W– V–

–V+∗ –W+∗ –B+∗ –U+∗

–W–∗ –V–∗ –U–∗ –B–∗

 ,

where
B± = 2α++|Ψ±0 |2 + α+–|Ψ∓0 |2 includes the pump-induced blueshift of the

polariton energies, U± = α+–Ψ∓∗0 Ψ±0 is the coupling between counter-circularly
polarized polaritons with the same in-plane wavevector. V± = α++Ψ±2

0 and W± =
α+–Ψ±0 Ψ∓0 include the four-wave-mixing process coupling probe, pump and FOFWM
signal.

The variation of Ψ±kfofwm
as a function of the pump/probe polarizations, k, and

φ is easily computed, which must be transformed in the linear polarization basis to
reproduce the experimental configurations. The result from this simplified model
exhibit a fair agreement with the main features of the experiment.

The numerical results presented in Fig. 4.22, though, were computed with a full
theoretical analysis using separate equations for excitons and photons formulated in
the real space to take into account the finite pump spot size. The full model and the
simulation parameters are detailed in our article [Lewandowski2016].

4.3.2 Second order four-wave mixing
A full experimental and theoretical investigation on the pairwise scattering of two
pump polaritons into two off-axis modes (process FOFWM represented on Fig. 4.18.a.)
is extensively studied in the last subsection. We now study the second four-wave
mixing process shown on Fig. 4.18.b., involving three off-axis modes and one pump
polariton (second-order four-wave mixing or SOFWM process). Because of the
phase-matching conditions, this scattering mechanism occur only in an hexagonal
geometry, contrarily to the two other processes represented on Fig. 4.18.

Above the OPO threshold, the off-axis modes are unstable. They lead to the for-
mation and stabilization of patterns in the far field such as hexagons [Ardizzone2013b].
The SOFWM process is therefore worth studying to understand the hexagonal pat-
tern formation mechanism and its pseudo-spin selection rules.

4.3.2.1 Experimental setup

For the SOFWM, a second cw probe with same frequency, intensity, and polar an-
gle of incidence is sent on the cavity (refer to Fig. 4.19.b.). If the azimuthal angle
separating the two probes is 120°, phase matching conditions are fulfilled and the
two probes can stimulate scattering of one pump polariton into an off-axis mode at
kSOFWM = kprobe1 + kprobe2 – kpump, triggering a SOFWM signal on the elastic
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circle in-between the two probes. In order to conduct polarization-selective experi-
ments, we again stay below the OPO threshold.

In Fig. 4.24 the measurement configuration in the full momentum space is shown.
The pump at normal incidence is at the center of the far-field. The two probes are
sent at oblique angle so that they are resonant with the elastic circle. They are
separated by 120° on the elastic circle. If pump and probes are correctly aligned
and sufficiently intense (typically 50mW), three idler beams should spontaneously
be triggered: the FOFWM processes for pump and probe 1 and 2 each trigger a
FOFWM signal (called FOFWM 1 and 2 on the figure), and the SOFWM process
populates the elastic circle in-between the two probes (inside the white rectangle).
This latter signal only appears if both probes are strictly separated by an azimuthal
angle of 120° and vanishes abruptly even for small deviations from this geometry. It
disappears when either the pump or the probes are suppressed, giving confidence in
the validity of our interpretation in terms of SOFWM process.

Figure 4.24: Measured second-order four-wave mixing with a pump and two probe
beams for two Y-polarized probe beams in X-polarized detection (Y1Y2Xd). A
FOFWM process involving the pump and either probe 1 or probe 2 creates FOFWM
1 and FOFWM 2 signals. The SOFWM signal is surrounded by a white rectangle.

In Fig. 4.24, the pump is vertically polarized. The probes are horizontally-polarized
(so, cross-polarized to the pump, Y1Y2) and the detection is done in the vertical
polarization channel (Xd). The FOFWM for probe 1 and probe 2 are distinctly
brighter than the SOFWM since each of them involve two pump polaritons and
only one probe polariton5.

In contrast with the FOFWM experiments discussed in the previous section, the
pump’s polarization will be now fixed in the vertical direction.

5The probes are sent with a typical optical power and beam waists close to the pump’s. However,
the density of power on the sample is reduced due to spherical aberrations induced by the ocular Lf
(cf. 2.2.3.1).
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The probes polarizations can be either vertically polarized (i.e. X, copolarized
to the pump’s polarization) or horizontally polarized (i.e. Y, cross-polarized to the
pump’s polarization). We measure the polarization of the resulting SOFWM signal
in the X and Y directions.

4.3.2.2 Experimental and numerical results

Figure 4.25: Close-up of the k-space region of interest (white rectangle in Fig. 4.24)
for the SOFWM signal. Results are shown for the following excitation/detection
configurations. The left column (a, c, e) shows the detection in copolarized (Xd),
the right column (b, d, f) in cross-polarized (Yd) detection. Here, either both probes
are copolarized (a, b), one probe is co- and the second is cross-polarized (c, d), or
both probes are cross-polarized (e, f). Results from the simulations follow the same
labelling and are reported in the right panel.

Fig 4.25 shows the result of experiment (left panel) and simulation (right panel) in a
zoom in the k-space around the SOFWM signal, for six polarizations configurations:

1. Probe 1, Probe 2 and detection in the vertical polarization channel (X1X2Xd,
Figs. 4.25.a.),

2. Probe 1, Probe 2 in the vertical polarization channel and detection in the
horizontal polarization channel (X1X2Yd, Figs. 4.25.b.),

3. Probe 1 and detection in the vertical polarization channel and Probe 2 in the
horizontal polarization channel (X1Y2Xd, Figs. 4.25.c.),
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4. Probe 1 in the vertical polarization channel and Probe 2, detection in the
horizontal polarization channel (X1Y2Yd, Figs. 4.25.d.),

5. Detection in the vertical polarization channel and Probe 1, Probe 2 in the
horizontal polarization channel (Y1Y2Xd, Figs. 4.25.e.),

6. Probe 1, Probe 2 and detection in the horizontal polarization channel (Y1Y2Yd,
Figs. 4.25.f.),

the pump’s polarization being fixed in the vertical direction.

The position along ky of the SOFWM signal matches either the TM (at 3.29 µm–1)
or TE (at 3.35 µm–1) elastic circles. The same selection rules than the FOFWM are
found for the SOFWM:

• The processes which do not conserve polarization (X1X2Yd, X1Y2Xd and
Y1Y2Yd, represented on Figs. b., c. and f.) are the weakest.

• The processes that reverses the polarization of two off-axis fields (namely
X1Y2Yd and Y1Y2Xd, represented on Figs. d. and e.) are more efficient
than the one where the polarization is conserved for all fields (X1X2Xd, rep-
resented on Fig. a).

The above selection rules mainly arise from the excitonic part of the polariton field,
that is, the spin-dependent exciton-exciton interaction parameters T+± (cf. Subsec-
tion 1.3.4). In the linear polarization basis, the processes that reverse (conserve)
polarization involve the difference (sum) of the two contributions T++ and T+–.
Since T++–T+– > T+++T+–, the strongest signals are found in the configurations
X1Y2Y2 and Y1Y2Xd rather than in X1X2Xd.

However, due the presence of TE-TM splitting in the cavity field, these purely
excitonic selection rules are modified such that weaker SOFWM signals are also
found in the “forbidden” polarization channels (X1X2Yd, X1Y2Xd and X1Y2Yd).
The simulation presented in Fig. 4.25 are obtained using equation of motions for the
excitonic and cavity fields in the real space corresponding to the eight experimental
configurations [Lewandowski2016].

Again, the results of the simulation (right panel of Fig. 4.25) reproduce very well
the experimental findings. The double structure for the weak signal expected for the
Y1Y2Yd and X1X2Y2 configurations (Figs. b. and f.) are hidden in the experiment,
probably due to the presence of parasitic pump and probes stray light coming from
the pump and probes and/or to remaining elastic Rayleigh scattering effects from
the pump or probes towards the elastic circle.

4.3.3 Conclusion
A detailed analysis of the polarization dependence of four-wave mixing processes in
a spinor fluid of microcavity polaritons is presented. Numerical simulations per-
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formed by our theoretician collaborators well reproduce the experiments for first
and second order processes.

In the first order process, the FOFWM signal is largest when probe and detec-
tion are cross-polarized to the pump, which is consistent with the fact that exciton-
exciton interaction favors scattering of pump polaritons into linearly cross-polarized
states. The TE-TM splitting leads to different k-magnitudes for the scattered FOFWM
signals. The TE-TM splitting also induce a FOFWM signal in the detection channel
that is cross-polarized to the probe. Taken together, these two effects explain the
features presented in Fig. 4.22.

In the second order process, two probes separated by 120° on the elastic circle
in addition to the normally-incident pump yields a SOFWM signal on a location on
the elastic circle defined by the phase-matching conditions, proving that wave mixing
processes favoring 60° scattering on the elastic circle are present in the system. The
polarization selection rules for the SOFWM process are also investigated. Since the
numerical simulations based on two-exciton correlations reproduces well the data,
the addition of higher-order nonlinearities is not necessary, even though two-probe
experiments are in principle sensitive to them.

We note that these pump-probe(s) experiments offer an optical analogue of the
logical AND gate: the FOFWM (SOFWM) signals appears only if both pump and
probe 1 (and 2) beams are simultaneously sent to the sample.

To conclude, two FWM mechanisms are evidenced and characterized in this sec-
tion in the parametric scattering regime. They play a key role in the pattern forma-
tion mechanism emitted by a double microcavity above the OPO threshold, presented
in the following section.

4.4 Pattern formation in the Optical Parametric Os-
cillation regime

In the previous section, one or two probes have been use to seed parametric am-
plification processes. In this regime, off-axis signals on the elastic circle are ampli-
fied by resonant scattering of pump polaritons. When the amplification gain out-
weighs the polariton loss, exponential growth of off-axis signals happen, and the spa-
tially homogenous polariton field becomes unstable [Ardizzone2013b,Luk2013,Saito2013,
Egorov2014]. When this “instability threshold” is reached, the regime of Optical Para-
metric Oscillation is achieved (refer to Subsection 1.2.2). Furthermore, a sponta-
neous breaking of spatial symmetry arises, and the polariton fields self-organize to
form patterns in the far field and the near field.

Experimentally, this threshold is crossed at large pump powers (typically over
100mW) at a small negative exciton-photon detuning (typically -5meV). The pump
excitation energy must be resonant with the LPB2 branch blueshifted due to exciton-
exciton interactions and phase-space filling (cf. Subsection 1.2.2.4). Furthermore,
the pump must be linearly polarized and sent to a spot where the density of defects
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is reduced. As detailed in the previous section 4.3, the parametric effects that reverse
polarization are the most efficient. Therefore, we observe OPO patterns in the
channel cross-polarized to the pump. In the co-polarized channel, the pump stray
light blurs the signal on the elastic circle, hiding any potential pattern formation.

Fig. 4.26 shows various kinds of patterns experimentally obtained above the in-
stability threshold. The pairwise scattering of polaritons imposes indeed a sym-
metric even pattern such that two, four, six and eight points patterns are observed
depending on experimental conditions. The intensity of the off-axis fields forming
the pattern are typically a few tens of µW [Ardizzone2013a].

Figure 4.26: Examples of patterns formed by various polariton densities located on
the elastic circle obtained in the far field above the instability threshold. The pump,
linearly polarized, is at the center of each picture. The detection is done in the cross-
polarized channel to the pump. a) Two-points pattern observed in the horizontal
direction, b) Four-points pattern, c) Hexagonal pattern, d) Octagonal pattern.

This pattern formation process is formally similar to the formation of Turing
patterns on certain animal furs such as zebra or guepars, the convection rolls in
hydrodynamics or the famous Salar of Uyuni in Bolivia where the water evaporation
creates specific salt patterns on the ground (see Fig. 4.27).

Figure 4.27: In the desert of Uyuni (Bolivia), the evaporation of water in a salt desert
creates patterns on the ground.

In optics, similar phenomena have been observed in the far-field of atomic vapours
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[Maître1994] and optical parametric oscillators [Ducci2001]. The advantage of microcav-
ities is that they allow coupling between light and matter, such that quasi-particles
can indeed have non-linear interactions (which is not possible with bare photons).
Turing patterns have been predicted to arise in semiconductor microcavities [Schu-
macher2009, Dawes2010, Luk2013] and then experimentally demonstrated in our group
[Ardizzone2013b]. The control over these patterns has been demonstrated by Vin-
cenzo Ardizzone, either by slightly tilting the pump incidence angle, or by using
a second “control” beam (a probe beam resonant with the elastic circle) [Ardiz-
zone2013b].

In this section, I first present the various experiments realized to understand the
key parameters responsible for the selection of 2, 4, 6 and 8 points patterns. Until
now, only the hexagonal pattern formation mechanism is fully understood by the-
orists, so this first subsection is almost entirely experimental. The influence of the
pump polarization on the pattern orientation (defined by the direction formed by its
most intense points) is analyzed in detail. In the second part, I discuss the observa-
tion of the hexagonal pattern in the near field, and then the possible applications of
this pattern formation regime in the perspective of all-optical switch devices.

4.4.1 Key experimental parameters
The main experimental parameters allowing to switch from one pattern to another
are:

1. The exciton-photon detuning,

2. A small incident kpump (tilt of the pump out of normal incidence),

3. The energy mismatch between the pump photons and the minimum of LPB2,

4. The pump power,

5. The pump polarization,

6. The density and nature of defects.

The parameter space is therefore quite large and the various degrees of freedom are
not easily disentangled.

Additionnally, the nature of the excitation source has also revealed to be of par-
ticular importance for the observation of patterns. The MIRA laser being intrin-
sically multimode, we decided to use the cw Soltis laser as the excitation source.
Quite surprisingly, no degenerate OPO (necessary condition for the pattern for-
mation on the elastic circle) was observed. This experimental result is discussed in
Subsection 4.4.1.5.

The last parameter listed (density and nature of defects) is difficult to estimate
from an experimental point of view, but it certainly has a great great importance:
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the higher the defect density, the more efficient the Rayleigh scattering, which thus
compete with the pattern formation process, or can “pin” the OPO in certain direc-
tions [Abbarchi2012].

The other degrees of freedom listed above are discussed one by one in the follow-
ing.

4.4.1.1 Influence of the exciton-photon detuning

Figure 4.28: Competition between the “relaxation ring” and the pattern formation
at low exciton-photon detuning. (a, b) Energy dispersions as a function of in-plane
wavevector at t = 0 and t = 1 s. (c, d) Corresponding far-field images. Left panel (a,
c): At t = 0, the relaxation ring (white markers) is favored. No pattern is observable
on the elastic circle. Right panel (b, d): 1 s later, a pattern appears on the elastic circle
(indicated by the yellow arrows and circles) and the relaxation ring intensity is much
reduced. Note that the elastic circle is partially hidden by the spectrometer vertical
entrance slit.

The exciton-photon detuning (first parameter) plays a rather ambivalent role. A
low negative detuning ensures stronger polariton-polariton interactions (since the
excitonic fraction of the polariton is larger). However, phonon-assisted relaxations

157



CHAPTER 4. SPIN-DEPENDENT NONLINEAR EFFECTS IN A DOUBLE
MICROCAVITY

towards the bottleneck of the LPB1 branch [Müller2000] creates a relaxation ring, vis-
ible on the above Figs. 4.26.b., c. and d. This inelastic relaxation process is more
efficient at low negative detuning, and an oscillation at large timescales (typically
1 s) between the pattern on the elastic circle and the polaritonic population on the
relaxation ring is sometimes observable (see Fig. 4.28). The timescale suggests that
the oscillation is due to a warming effect.

4.4.1.2 Effect of a small pump tilt and resonant energy

The influence of a small incident kpump (second parameter) has been probed in the
(x, y) space using two glass slides automatically orientable around the x and y axis.
Indeed, a glass slide of thickness t and refractive index n tilted by an angle θg shifts
an optical beam by a distance d (refer to Subsection 2.1.2). The resulting incident
angle θ incident onto the sample after a lens of focal f is:

tan θ =
t
f
·
sin(θg – θr)

cos θr
,

where θr = arcsin sin θg
n is the refraction angle at the air/glass interface. At the

lowest order, we obtain θ ' t
f(

n–1
n )θg.

This experimental method allows to shift precisely the pump incidence, every
other parameters being fixed.

Fig. 4.29 shows the result of two experiments with the same laser energy with an
incoming power of 150mW and a fixed vertical polarization. The two glass slides
allow to vary θd,x and θd,y from –30° to 30° every 3° which corresponds to an angle
of incidence varying from –0.65° to +0.65° in the x and y direction (since t ' 1mm
and f ' 16mm), or an in-plane wavevector varying between ' -0.09 and 0.09 µm–1

(we recall that k‖ '
Ec

0
h̄c sin θ, cf. Subsection 1.1.2.4).

The sample position was slightly shifted between the two experiments so as to
tune the resonance conditions between the excitation energy and the energy of the
minimum of LPB2 (third parameter). In the left panel of Fig. 4.29, the minimum of
LPB2 is slightly redshifted (approximately 100 µeV) compared to the laser energy.
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0° 0.65°-0.65°

0°

-0.65°

0.65°

0° 0.65°-0.65°

0°

-0.65°

0.65°

Figure 4.29: The left panel (a, c, e) corresponds to the situation where the minimum
of LPB2 is slightly redshifted with respect to the laser energy, the right panel (b, d,
f) where the laser is resonant with the minimum of LPB2. (a, b) 21 × 21 images
of the k-space obtained for various values of the incidence angle of the pump θx
and θy. This map allows to visualize the intensity of the far-field emission and the
possible presence of patterns as a function of θx and θy. However, the characteristics
of the observed patterns are hardly visible at this scale. Therefore, the number of
points defining the patterns are reported on (c, d) and their orientation in (e, f), as a
function of θx and θy. Buggy acquisitions are hidden by red rectangles.
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Besides the intensity of the far-field emissions, the results presented in Fig. 4.29
give two more facts: the nature of the pattern (2, 4, 6, 8 points points), indicated by
a square in different grey levels, and its orientation, indicated by an arrow.

In Fig. 4.29.b., the patterns observed at θx ' θy ' 0 are the most intense, and
they are mainly oriented in the direction of the pump polarization (vertical). In
Fig. 4.29.a., no pattern is observed at θx ' θy ' 0: close to the normal incidence
angles, the excitation is not resonant with the polariton branch. If the excitation
beam is slightly tilted, the resonance condition is recovered and a pattern arises. For
small pump tilts, high order patterns (4, 6, 8 points) seems to be favored. At higher
pump tilts (close to 0.65°), two-points patterns are selected, mainly oriented in the
direction of the pump tilt.

Besides these general remarks, no simple and robust law linking the pattern na-
ture or orientation with the tilt angle is exhibited. In particular, the maps pre-
sented in Fig. 4.29 are not perfectly centro-symmetric. The fixed polarization of
the pump, the presence of a TE-TM splitting of LPB1 and also, for non-normal
incidences, of LPB2, as well as the presence of a built-in polarization splitting (cf.
Subsection 4.1.3.3) may cause anisotropies responsible for the breaking of rotational
invariance. In addition, other experiments suggest that the pattern formation pro-
cess depends also on the running direction of the experiment, signature of a bistable
behaviour.

4.4.1.3 Influence of the incident power

The incident excitation power (fourth parameter) is explored by shifting the pump
power from 29mW to 100mW, every other parameters (including the pump linear
polarization) being fixed. Since the pump spot has a size of approximately 50 µm,
this corresponds to excitation densities varying from 1160 to 4000W.cm–2.

Figure 4.30: Intensity of the far-field emission in arbitrary units for 5 values of the
pump power. The pump is on the center. A pattern progressively appears, from
two points at 52mW, to four at 65mW and six at 100mW. Each couple of points are
surounded by ellipses as guide to the eyes. At 100mW, the orientation of the pattern
(defined by the two most brilliant points) switches.

A two-points pattern first appears at a pumping power of 52mW (marked in
red in Fig. 4.30). A second and weaker couple of points appears at 65mW (marked
in yellow in Fig. 4.30). At 76mW, the intensity of the whole four-points pattern
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increases. At 100mW, the two most brilliant points are now the ones marked in
yellow, and a third weak couple of points appears in-between the two first directions
(marked in white).

Hence, the pattern switches from a two-point pattern to a hexagon within a
pump power of 29 and 100mW, and the two most brilliant points switches from
the ones surrounded in red to the ones surrounded in yellow. We conclude that
large pump powers tend to induce the formation of high-order patterns, as well as a
change in the orientation of the pattern.

4.4.1.4 Orientation of patterns with polarization

At pump powers over 100mW, the orientation of the pattern (defined by its two
most brilliant points) follows the direction of the pump polarization (fifth parame-
ter). This behavior is relatively new in microcavities, in which the OPO is usually
pinned to defects-induced specific axes (mainly, the crystalline axes which corre-
spond to favored directions for dislocations) [Lecomte2011,Abbarchi2012].

This new characteristic arises due the relatively low density of defects in our sam-
ple, such that it is now the TE-TM splitting which dictates the preferred directions
for the OPO. We have shown in Subsection 4.3.1 that the parametric scattering is
favored (i) for signal and idler cross-polarized to the pump, and (ii) in the azimuthal
directions corresponding either to the direction of the pump polarization or to the
direction orthogonal to it, since the states cross-polarized to the pump match either
the TE or TM elastic circle respectively in those directions. Theoretically, the pat-
tern orientation should hence be either in the direction of the pump polarization,
or orthogonal to it. Experimentally, in the range of' 100 to 150mW pump powers,
we will see that it is mainly the former possibility which is observed (though the lat-
ter may occur at lower or higher pump powers as suggested by the discussion in the
previous subsection). This experimental observation can be explained theoretically
if anisotropic TE-TM cavity losses are taken into account (see Subsections 1.3.1.1
and 4.1.3.2).

In this subsection, we first demonstrate the rotation of a two-points pattern with
the pump polarization over 360°. This is similar to a microscopic lighthouse device
without mechanical parts: the direction of the emitted light can be directly con-
trolled by a simple degree of freedom (the polarization of excitation). Then, the
influence of the pump polarization on higher-order patterns is discussed.

Two-point pattern rotation with polarization: the “Lighthouse” experiment
The pump is initially polarized in the vertical direction. The other experimental

parameters are chosen such that a stable two-points pattern is favored (see Subsec-
tion 4.4.1.2 and 4.4.1.3).

The pump linear polarization is then (automatically or manually) rotated. Fig. 4.31
shows the k-spaces corresponding to four different directions of the pump polariza-
tion.
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Figure 4.31: Far field image of the light emitted by a double microcavity resonantly
pumped on LPB2, and cross-polarized to the pump. A two-spot pattern is observed.
The orientation of those two points follows the polarization of the pump (white
arrow).

Pictures were taken regularly for a pump polarization direction varying between
0 and 360°. For each picture, the variation of the emission along the circumference
of the elastic circle is analyzed.

Figure 4.32: (a, b): k-space for two directions of the pump polarization (indicated
by the white arrows). (a’, b’) The elastic circle is opened starting from the direction
of the pump polarization, such that 0° corresponds to the direction of the pump
polarization. (a”) The intensity along the azimuthal angle of the flattened elastic
circle is plotted between chosen k1 and k2. The result does not display a straight
line due to the TE-TM splitting and possible optical misalignments, but this does
not matter since the intensity is then integrated between k1 and k2 such that one
single stripe (not represented) is obtained for one value of the pump polarization.

In order to represent the whole set of data in a compact way, for each picture
we “open” the elastic circle starting with the angle of the pump polarization angle
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(see Fig. 4.32), and then integrate its intensity between chosen k1 and k2 (see Sub-
section 4.2.1.2).

For each pump polarization such a stripe is obtained and we obtain a 2D map
of the microcavity emission. The horizontal axis corresponds to the polarization of
the pump φpol,pump, the vertical axis to the azimuthal angle ϕ along the elastic circle
where 0° correspond to the direction of the pump polarization.

The result for two different sets of experiments are shown in Fig. 4.33, below:

Figure 4.33: Result of two “lighthouse” experiments. The pump polarization is
rotated with steps of 8° in (a) and of 1° in (b). One measurement corresponds to a
vertical stripe. The continuous lines at 0° and 180° demonstrate that the two point
pattern indeed rotates with the pump polarization.

First, looking at the emission at 0° and 180°, we realize that the orientation
of the two point pattern follows well the direction of the pump polarization. The
rotation of the two-points pattern is therefore demonstrated over 360°.

Note that additional emission is also observed for well defined orientations of
the pump polarization in Fig. 4.33.a. Between 90° and 110°, and 250° and 320°,
two more spots appear in the direction orthogonal to the pump polarization: a four-
points pattern arises. This breaking of rotationnal symmetry indicates the presence
of an extrinsic anisotropy, which might either come from the emission from a defect,
the presence of a built-in energy splitting (see Subsection 4.1.3.3), or the presence
of anisotropic TE-TM cavity losses (see Subsection 4.1.3.2)... If the experimental
conditions are such that the pump is slightly tilted out of the normal incidence, a
secondary preferred direction for the light emission might also occur. The presence
of the two other points is also visible in Fig. 4.33.b.

In general, the direction of the two most brilliant points in both experiments is
parallel to the direction of the pump polarization. This behaviour and its possible
applications are discussed in the following paragraph.
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Towards a micro-lighthouse device? Such rotation of a two points pattern
with the pump polarization is, we believe, the first realization of a micro-lighthouse
device. Indeed, the continuous control of the light emission direction at the micro-
scopic scale requires three ingredients: (i) a rotationnal invariance, (ii) a local control
degree of freedom α, and (iii) a nonlinear process linking the emission intensity di-
rection I with α. Else, any linear combination of two different values of α would
result in a light emission in two different directions, which is incompatible with a
lighthouse effect.

The double microcavity resonantly pumped at normal incidence at a large power:

• is planar and therefore in principle rotational-invariant (if we neglect the built-
in energy splitting and the presence of various defects),

• reemits light in the direction of the pump’s polarization,

• hosts nonlinear processes due to the excitonic component of the polaritons.

This sample is therefore well-adapted for the realization of a microscopic lighthouse
device, with potential applications in telecommunications (as an ultra-fast optical
switch) or optical microscopy (as an ultra-fast scanning apparatus), provided the
time-scale for the pattern formation is indeed of the order of picoseconds as theoret-
ically expected [Ardizzone2013b]. Hence, by an ultra fast modulation of polarization
of an optical pump, such device could allow to get very precise temporal informa-
tions since the informations received at each time unit can be spatially separated.
The functioning is similar, in principle, to a streak camera.

Polarization influence on higher-order patterns Regarding the influence of the
pump polarization on higher-order patterns (4, 6 and 8 points patterns), an analo-
gous phenonmenon is observed: the two brightest point remain aligned with the
polarization of excitation (see Fig. 4.34). However, the pattern switches from an
octagonal pattern (visible on the first image of Fig. 4.34.a. which corresponds to a
vertical pump polarization) to a two-point pattern (24° pump polarization) and fi-
nally a four-point pattern (48° pump polarization). Fig. 4.34.b. shows the analyzed
set of experiments for pump polarization directions ranging from 0° (vertical po-
larization) to 180°. Apart from the two main points aligned in the direction of the
pump polarization (horizontal lines at 0° and 180°), some parallel diagonal lines are
apparent, corresponding to fixed angles (' 45° and 225° in plain line, '148° and
328° in dashed lines) angles which may be the signature of built-in dislocations [Ab-
barchi2012].
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a) b)

Figure 4.34: a) k-space images for 12 various pump polarization directions (steps of
8°) indicated by the white arrow. The two brightest points stay aligned with the
direction of the pump polarization. b) 2D-map showing the microcavity emission
along the elastic circle (y axis) for pump polarization directions varying between 0°
and 180° (x axis). The data analysis is detailed in the previous paragraph.

The control of the pattern orientation by the pump polarization seems therefore
quite robust, even if the nature of the pattern changes, probably because of various
built-in anisotropies.

4.4.1.5 Nature of the excitation source

In order to test the resonance between the pump energy with the minimum of
LPB2 (third parameter), we tried to use the Solstis laser instead of the usual MIRA,
which wavelength can be finely tuned. Additionnally, it exhibits a much better in-
tensity stability than the MIRA as well as a much smaller spectral width (see Subsec-
tion 2.1.4). Interestingly, with this laser, no degenerate OPO was observed on the
angle-resolved energy dispersion (and, as a result, no pattern in the k-space). The
OPO signal and idler beams appeared only when the pump was slightly tilted out of
normal incidence and when no feedback loop (ensuring the stability of the emitted
wavelength and a narrow spectral width) on the Solstis was activated.

This observation could be explained by two possible mechanisms:

1. The blueshift due to phase-space filling is so strong that a wide excitation spec-
trum is necessary to remain in resonance conditions.

2. The fast intensity oscillations of the MIRA laser introduce instabilities which
are necessary for the pattern formation.

Additionnally, when the optical excitation is provided by the MIRA laser, if the Fara-
day isolator (see Subsection 2.1.1) is removed on the optical path, the OPO threshold
goes down to a few mW (compared to the usual threshold around 100mW). This
seems to indicate that a multimode excitation might be requisite for the observation
of patterns. This is not included so far in the theory developed by our theoretican
collaborators and may need further experimental development to carefully under-
stand the exact process at stake.
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4.4.1.6 Conclusion

In conclusion, the comprehensive study of patterns, including the number of points
and their relative intensities, involve a large parameter space.

The pattern orientation for a normally-incident pump beam seems to depend
quasi entirely on the pump’s polarization direction, due to the large magnitude of
TE-TM splitting and the relatively small density of defects compared to the previous
samples. For usual pump powers (between 100 and 150mW), the pattern is oriented
in the direction of the polarization, such that a micro-lighthouse effect is achieved.
On the other hand, if the pump is slightly tilted while the polariton branch energy
is slightly tuned to achieve resonance conditions, the high-order pattern switches to
a two-point pattern mainly oriented in the direction of the tilt. The nature of the ex-
citation source is an important parameter as well. The degenerate OPO threshold is
reached only for a multimode fast-oscillating laser (the MIRA). This may be a result
of the strong blueshift or induced instabilities (the OPO threshold being reached
only momentarily for example).

Finally, the role of defects, however difficult to probe, may come into play in
the formation mechanism of eight and four point patterns. If this interpretation
is correct, it means that formally, the eight and four point patterns are not truly
Turing patterns, resulting from nonlinear interactions associated with a spatial cou-
pling term, but a combination of nonlinear interactions and defect-driven optical
parametric oscillation processes. Besides this defects influence, we note that the for-
mation of a hexagon is theoretically not favored if the “second-order” process shown
in Fig. 4.18.b. is suppressed. This may indeed be the case if additionnal selection
rules regarding the symmetries of the two involved cavity modes (which vary as a
function of detuning) are taken into account.

The next subsection is devoted to hexagonal patterns, which are well described
by the theory of Turing patterns developped by the theoreticians of Tucson, Pader-
born and Hong Kong.

4.4.2 Hexagonal pattern properties
The formation of hexagonal pattern is well understood theoretically as a result of a
competition between multiple unstable modes. The mechanism driving the hexagon
formation is induced by the hexagon-specific higher-order nonlinear interaction pro-
cess of polaritons illustrated in Fig. 4.18 in the introduction of Section 4.3.

Their formation process is described in detail and probed in references [Ardiz-
zone2013b, Lewandowski2015, Lewandowski2016]. In this manuscript, I focus on two as-
pects of the hexagonal pattern:

1. The observation of hexagonal patterns in the near-field,

2. The slight energy non-degeneracy of the four less intense points due to the
TE-TM splitting.
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4.4.2.1 Observation in the real space

A fully energy-degenerate hexagonal pattern in the k-space should result in a grid of
hexagonal spots in the real space (Fourier transform of the k-space). Due to spherical
aberrations inherent to our experimental setup, the real space is difficult to observe
and interpret (cf. the discussion in Chapter 2).

Nevertheless, we6 observed a pattern in the real space (using the experimental
setup shown in Fig. 2.20) that exhibits the correct features:

• it appears and disappears with the hexagon in the k-space (for example when
we shift the sample so as to get out of resonance, when the OPO ring is hidden
using a pinhole in the intermediate angular space or when the pump polariza-
tion is rotated inducing a pattern switch).

• it does not depend on other experimental parameters (e.g. the size of the
spatial filters used to hide the pump in the detection path),

• The size of the pattern in the real space has the relatively good order of mag-
nitude. Indeed, due to the properties of Fourier transform, we should get
∆k ·∆R = 2π, where ∆k (∆R) is the size of the hexagon in the k- (real) space
(see Fig. 4.35).

Figure 4.35: Courtesy of T. Champetier. a) Hexagon in the k-space b) Corre-
sponding pattern in the near-field. Due to the properties of the Fourier Trans-
form, ∆k ·∆R = 2π, where∆k ' 6.6 µm–1 d) Experimental near field. We measure
∆Rexp ' 2 µm.

However, due to TE-TM splitting, the hexagon is not fully degenerated as will
be shown in the next subsection. Therefore, the pattern is supposed to shift with
time [Egorov2014] on a nanosecond timescale. If the pattern observed is indeed result-
ing from the hexagonal pattern in the far field, there must be another mechanism
pinning the real-field pattern in time.

6This result was achieved by Tatiana Champetier during her master internship in 2013.
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4.4.2.2 Presence of a small energy non-degeneracy

The hexagonal pattern exhibits two points brighter than the four others, oriented in
the direction of the pump polarization7.

The four weaker spots are expected to be slightly detuned from the laser fre-
quency, following the interpretation of the results for the FOFWM process discussed
in Subsection 4.3.1.3. In the OPO regime, this statement can be easily tested by ob-
serving the energy dispersion of polaritons along y under a resonant pumping on
LPB2. Fig. 4.36 shows the evolution of the y-scattered pump polaritons onto LPB1
when the polarization of excitation and of detection are rotated together.

Figure 4.36: a) Energy dispersion as a function of in-plane wavevector. The polar-
ization of excitation is along the vertical direction and the detection is done in the
horizontal one. The pump is observed at ky = 0 and the two points of created by
Optical Parametric Oscillation are seen at ky = ± 3.3 µm–1 resonant with LPB1. b)
The polarization of excitation is diagonal and the detection is cross-polarized. Due to
the TE-TM splitting, the TE and TM degenerate modes are not populated. Instead,
the spots at ±3.3 µm–1 divide in two spots either on the TM- or the TE- branch,
slightly detuned from the pump energy. c) Zoom around the region ky =–3.3 µm
(white rectangle on Fig. a. and c.) and polarization of excitation varying between 0°
(vertical polarization) and 90° (horizontal polarization). Measurements are taken
every 8° and correspond to vertical stripes. The energy splitting is maximum for
the diagonal polarization.

7Yet, Vincenzo Ardizzone experimentally observed hexagons oriented in the direction orthog-
onal to the pump polarization during his phD [Ardizzone2013b,Ardizzone2013a]. This difference
may come from the use of a different excitation density. Indeed, the typical excitation powers were
kept below 150mW during this PhD (mainly because of the aging of the VERDI laser), whereas V.
Ardizzone had no such limitations and used excitation powers up to 200mW. The optical path for
the excitation has also slightly changed, although, according to our estimations, the pump spot size
does not differ.
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On Fig. 4.36.a., the pump polarization is vertical (along y) and the detection is
done in the cross-polarized channel (so, in the horizontal channel). Two spots cor-
responding the scattering of pump polaritons towards LPB1 are observable. They
match the TE eigenmode. All the states involved have the same energy. On Fig. 4.36.b.,
the pump polarization is diagonal, and the detection is in done in the opposite di-
agonal polarization channel. Two spots slightly detuned from the pump energy are
created at either side. They result from the scatterings of pump polaritons towards a
TM-mode (points at higher energy) and a TE-mode (points at lower energy). This
process fulfills phase-matching conditions (see Fig. 4.23).

By varying the pump and cross-polarized detection from 0° (vertical polarization
for the pump) to 90° (horizontal polarization) by steps of 8°, a more precise observa-
tion of this energy splitting is done. A zoom on the spot(s) emitted at ky ' 3.3 µm–1

is realized for each polarization angle. In Fig. 4.36.c., a 2D-map showing the en-
ergy of the OPO spot(s) as a function of the pump polarization direction is shown.
At 0° and 90°, the detection polarization matches the energy-degenerated TE and
TM mode respectively. In-between, the OPO spot splits in two. The blueshifted
(respectively redshifted) spot results from the OPO process converting two pump
polaritons into one polariton resonant with the TM-branch at +ky (resp. –ky) at
higher energy, and one polariton resonant with the TE-branch at –ky (resp. +ky)
and lower energy. Both processes are highlighted by the dashed and dotted yellow
lines on Fig. 4.36.b.

According to these observations, the four weaker points of the hexagonal pattern
should therefore be slightly detuned in energy, such that the hexagonal pattern in the
near field should not be stable. This disagreement between theory and experiment
in the real space suggest the intervention of another effect pinning the hexagon in the
real space. More experimental development is needed to understand this discrepancy.

4.4.3 Perspectives for further studies on the patterns
The formation of pattern in the far field results from nonlinear processes fulfilling
phase-matching conditions.

In the first part, we have shown that the polarization or a slight tilt of the
pump (and the addition of a resonant off-axis probe [Ardizzone2013a]) could be used
as control parameters. This result allow to envision various applications such as
microcavity-based optical switches and “micro-lighthouses” devices. In this perspec-
tive, however, the conversion efficiency from the pump into a far-field pattern in
the usual experimental conditions (MIRA laser, optical path described in Fig. 2.2 on
page 55), which is at most 0.1%, must be optimized. Several hints suggest that the
properties of the excitation source may play an important role. First, we have ob-
served that the OPO threshold was reached at much lower intensities (a few mW
instead of a hundred mW) when the multimodal character of the laser was increased
(by removing the Faraday isolator on the optical path). Furthermore, no energy-
degenerate patterns has been observed when the double microcavity was excited
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using the monochromatic and stable Solstis laser.
In the second part, we have discussed the hexagonal pattern properties. Its forma-

tion process can be further validated by looking at the classical correlations between
each point: classical correlations are expected between dots i and i’ (process (a) and
(c) of Fig. 4.18 on page 142), between dots 1 and 3 and their circular permutations
(process (b) of Fig. 4.18) but not between dots 1 and 2 (and their circular permuta-
tions). Besides hexagons, the other patterns formation mechanisms can be probed
by the same method, allowing to determine whether they arise from defect-induced
OPO or by higher-order correlations. Again, this study is possible only if the pump
intensity does not fluctuate in the continuous wave regime, to avoid the strong in-
duced correlation background.

To summarize, future studies on patterns will involve the improvement of the
light injection efficiency and the clarification of the role of the excitation beam prop-
erties in the pattern formation mechanism. If, as we suspect, the present limitations
are due to the presence of the bistable blueshift of the polariton branch, another
degree of freedom, such as a specific and controllable pump beam-shaping, may be
of use to stabilize the pattern formation at lower pump intensities. Finally, in order
to confirm the potential of double microcavities in the OPO regime as picosecond-
switchable device, we note that the pattern formation dynamics can be investigated
by a time-resolved probe experiment.

4.5 Conclusion
We have investigated the polariton-polariton interaction dependence in three differ-
ent regimes of resonant pumping: the elastic Rayleigh scattering regime, the pattern
formation regime, and the intermediate one, the parametric scattering regime which
is an excellent way to probe the interplay between the TE-TM splitting of the cav-
ity mode and the spin-dependence of polariton-polariton interactions. The use of
a double microcavity allows to perform several scattering mechanisms between the
two lower polariton branches LPB1 and LPB2.

In the regime of elastic Rayleigh scattering, the TE-TM splitting of the LPB1
polariton branch induces an Optical Spin Hall Effect (OSHE): a spatial separation
in the real and k- space of polaritons with opposite pseudo-spins. We have shown
that this phenomenon could be controlled using a strong optical pump beam reso-
nant with with LPB2 at its minimum since the spin-dependent interactions between
pump-polaritons come into play.

In the regime of parametric scattering, experiment involving one or two probe
beams have highlighted the important role of the TE-TM splitting to define pre-
ferred directions of the idler beam as a function of the polarization of each beam.
The first-order four-wave-mixing process (FOFWM) involve two pump polaritons,
one probe polariton at –k and one idler polariton at +k. The second-order four-
wave-mixing process (SOFWM) involve one pump polariton, two probe polaritons
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separated by 120° on the elastic circle, and one idler polariton in-between. This
geometry is specific to fulfil phase-matching conditions, and leads, in the regime of
optical parametric oscillation (OPO), to the formation of hexagonal patterns in the
far-field.

Besides hexagons, other patterns appear in the far-field such as two-points, four-
points and octagonal patterns. Various degrees of freedom allow to switch from one
pattern to another. The influence of the various experimental parameters accessible
are discussed. Amongst them, the direction of the pump polarization is a robust
parameter which dictates the orientation of the pattern. A rotation of a two-points
pattern following the pump polarization was hence demonstrated over 360°, similar
to a microscopic lighthouse effect.

This work was realized in collaboration with theoretician teams from Paderborn,
Tucson and Hong Kong. By extending our understanding and mastering of the
mechanisms listed above, it paves the way towards the development of improved
application-oriented concepts such as all-optical switches based on semiconductor
microcavities or lighthouse devices.
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This work focuses on the polarization properties of excitons-polaritons confined
in structured AlGaAs/GaAs microcavities. Microcavity exciton-polaritons are hy-
brid light-matter quasi-particles arising from the strong coupling between excitons
confined in quantum wells and photons confined in the microcavity. The two eigen-
states resulting from this light-matter interaction are separated by a normal mode
energy splitting of the order of tens of milli-electronvolts. Two kinds of microcavity
structuration are studied in this work. Both of them induce at least one additionnal
polariton branch located below the excitonic reservoir. Those polariton modes are
therefore well isolated from any relaxation mechanism involving the large density of
electronic states of this excitonic reservoir.

In Chapter 3, we have presented the study of the normal energy splitting exist-
ing in microwires (1D-microcavities) between polarizations parallel and orthogonal
to the wire axis. For the lowest polariton mode, the magnitude of this splitting can
reach up to 1meV, and increases even more with the polariton mode index. Contrar-
ily to previous studies [Diederichs2007], this splitting is found independent of the stick-
ing conditions on the sample holder. It does not depend either on the wire width and
its order of magnitude is too large to be solely attributed to an excitonic splitting due
to the short-range electron-hole exchange interaction. However, the splitting magni-
tude follows a universal law as a function of the exciton-photon detuning, which is
well reproduced taking into account the interplay of three contributions: a splitting
in the cavity mode, of magnitude –0.73meV± 0.07meV, in the exciton transition
(–0.54meV± 0.18meV) and in the light-matter coupling (–1.55meV± 0.12meV).

The origin of this splitting is the lattice mismatch between the various layers
of Aluminium-Gallium-Arsenide, inducing constraints that are relaxed on the short
axis of the wire, but not on the long one. Consequently, a cavity mode normal
splitting arises from constraints-induced birefringence in the Bragg mirrors. The
basis for this polarization splitting is not strictly along and across the wire axis, but
depends also on the crystalline axes, in accordance with the experimental findings.
The excitonic and light-matter coupling splittings comes from the combination of
the short range electron-hole exchange interaction and constraints-induced Pikus-
Bir interaction, which results in a mixing between the light and heavy-hole exciton.
Finally, the increase of total splitting magnitude with the polariton mode index is
well explained as a result of the presence of an effective confinement angle due to
boundary conditions along the wire width, impacting both the cavity mode and the
light-matter coupling splitting magnitudes. In each case, the theoretical evaluation
well matches the order of magnitude and sign of the three contributions, giving
confidence in the validity of this interpretation.
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The other structured microcavity presented in this work was a double micro-
cavity (Chapter 4), excited at normal incidence by an optical pump resonant with
the highest of the two lower polariton modes. This specific configuration allows an
elastic scattering of the pump polaritons towards the lowest polariton branch, either
by Rayleigh scattering or by parametric amplification and oscillation.

In the resonant elastic Rayleigh scattering regime, the Optical Spin Hall Effect
(OSHE) takes place. Indeed, since circularly-polarized light couples with an exciton
with a projection along z (growth direction) of its total angular momentum equal to
±1, a polariton pseudo-spin can be defined as a vector of the Poincaré sphere. The
presence of a wavevector-dependent TE-TM energy splitting in the polariton states
creates an effective magnetic field acting on the polariton pseudo-spin responsible for
the so-called OSHE, demonstrated both experimentally and theoretically ten years
ago [Kavokin2005, Leyder2007]. This work shows that the presence of spin-dependent
polariton-polariton interactions is responsible for a measurable rotation of the TE-
TM-induced OSHE polarization pattern. The efficiency of these polariton-polariton
interactions can be monitored using a single degree of freedom: the pump optical
power. In a device perspective, the lowest polariton branch (populated by Rayleigh-
scattered polaritons and splitted in polarization) would be exploited as a signal chan-
nel, and the highest (on which the pump is resonant) as a control channel. However
further studies are necessary to understand the role of exciton-photon detuning and
exact resonance of the pump with the polariton mode.

At larger pump intensities, a degenerate parametric scattering process where two
pump polaritons are converted into two polaritons at opposite angles is initiated. At
even larger intensities, an instability (or “OPO”) threshold is reached and the off-
axis signals become unstable. A stabilization process based on third order nonlinear
interactions leads to the emission of light at specific wavevectors forming a hexagon
in the k-space. To understand the mechanism responsible for this stabilization, mea-
surements have been performed in the Optical Parametric Amplification regime,
using one or two probe beams. The experimental results, which which well match
the simulations and calculations8, highlight the importance of the TE-TM splitting
in the formation of patterns as compared to spin-anisotropic polariton-polariton in-
teractions. Moreover, they hint at the mechanism responsible for the orientation of
the hexagonal pattern with polarization.

Finally, the far field of the double microcavity microcavity not only exhibits
hexagons, but also two points, four points and octagonal patterns. The parameter
space of this pattern formation is vast and is discussed in detail in the last part of
Chapter 4. Amongst the various degrees of freedom, the direction of the pump
linear polarization plays a key role in the pattern orientation mechanism. Hence,
the rotation over 360° of a two-point pattern monitored by the pump polarization

8This work and the demonstration of the optical control over OSHE were done in close col-
laboration with theoretician teams from Paderborn (Pr. Dr. Stefan Schumacher and Dr. Przem
Lewandowski), Tucson (Pr. Rolf Binder, Pr. Nai Kwong and Samuel Luk), and Hong Kong (Pr.
Pui-Tang Leung, Chris Chan).
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is demonstrated, paving the way towards a microscopic integrated lighthouse device,
with various potential applications such as ultra-fast scanning in optical microscopy
or optical switches. All the ingredients necessary for such a device (nonlinearity,
rotational invariance, light emission) are combined in their simplest form in this
double microcavity in the OPO regime.

These studies open various perspectives for further developments.
1D-microcavities are good candidates for the generation of twin polaritons via

Optical Parametric Oscillation, involving scatterings between cross-polarized po-
lariton modes [Abbarchi2011] and are widely used for the generation of polariton
condensates [Wertz2010b]. By unveiling the various origins of the normal polariza-
tion splitting, the analysis presented in Chapter 3 enables a precise engineering of
the 1D-microcavities so as to get the desired splitting magnitude and eigenvectors.
Several degrees of freedom are available: the ratios between wire width, length and
height, the etching angle relative to the crystalline axes, the exciton-photon detuning
and the polariton mode index.

In the double microcavity, if the hexagonal pattern formation mechanism is now
rather well understood, this is not the case for the other patterns (especially the oc-
tagons). Their stabilization process could be probed by measuring the correlations
between the various points forming the pattern. At the moment, this study was ham-
pered by the intrinsic intensity fluctuations of the laser in the continuous wave mode
which spoil the self- and cross-correlations signals. Using a stabilized, monochro-
matic and low-noise laser is thus necessary, but we have experimentally observed in
Chapter 4 that such excitation source could not excite any quasi-degenerate pattern
in the far field. If this is indeed due to the strong blueshift of the polariton energies
at large optical intensities, a specific beam shaping could allow to overcome this lim-
itation. Additionnally, the OPO threshold is expected to be reached at much lower
pump intensities.

Finally, the temporal dynamics of the pattern formation could eventually be
determined, using a femtosecond pulsed probe excitation to examine how fast the
pattern evolves when submitted to a controlled perturbation.

Both studies are essential to evaluate the potential of realistic ultra-fast all-optical
switches based on a semiconductor double microcavity operating in the OPO regime.
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A1 Angle-resolved energy dispersion: data analysis and
calibration

In this appendix, the method used to determine with precision the energy minimum
of a polariton branch is detailed. The precision offered by this method allows to
distinguish even very small normal energy splittings analyzed in detail in Chapter 3.
By recording the energy minima on different locations on the sample, and assuming a
wedge varying linearly with position, the exciton-cavity detuning, the exciton energy
and the normal mode energy splitting (Rabi coupling magnitude) can be determined
with precision. This method is used in Chapter 3 and 4.

Other calibration methods which take advantage the inflection of the polariton
branch are unreliable here due to the spherical aberrations of the excitation lens Lf
(see Subsection 2.2.3.1). Finally, the upper polariton branch(es) do not emit light
when excited by photoluminescence in both samples. This is probably due to the
fact that the excitonic fraction dominate close to normal incidence, in addition to
efficient phonon-assisted relaxations towards the exciton reservoir and lower polari-
ton branches. Therefore, calibrations based on the energy of the upper polariton
branch(es) are not possible either.

Precise determination of a polariton branch energy min-
imum
Energy dispersions are experimentally obtained using the setup described in Subsec-
tion 2.2.2. To obtain the energy minimum of the lowest polariton branch energy as
precisely as possible, we make use of all the polariton modes located at the vicinity
of normal incidence. Each energy spectrum at fixed polariton momentum ky is first
fitted using a free Lorentzian with a background varying linearly in energy. The
value of the polariton energy for each ky along with its uncertainty is obtained from
this fitting procedure. The quality of fit also allows to discard lines for which the
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parasitic light of the pump laser has been too important, corresponding to maximum
10 – 20% of the data points.

At small in-plane momentums, the polariton branch is a parabola to a good
approximation. The resulting data is then fitted using a fourth order polynomial (to
take into account possible asymmetries due to optical misalignments) and a weight
on data points proportional to the above deduced uncertainties. The caption of
Fig. 4.37 details each step of the data analysis.

Figure 4.37: Data analysis used to determine the energy minimum of the lowest
polariton branch. Two examples on 5 µm-large microwires with different exciton-
photon detunings are shown. 1.a) Raw energy dispersion image obtained on the
CCD corresponding to a microwire with a large negative detuning. The spectrom-
eter is centered around 785 nm. Parasitic light due to the optical excitation blur the
signal close to the minimum of the polariton branch. 1.b) Zone which is exploited
for the data analysis (zoom on the raw image). 1.c) The gray points are obtained by
200 lorentzian fits corresponding to each vertical stripe of Fig. 1.b). The points that
are too detuned from the polariton branch or have large uncertainties are automat-
ically removed before performing the fourth-order polynomial fit shown as a black
line. The y scale is then converted from pixels to wavelength and then electron-
volts (not shown), using a calibration of the spectrometer done beforehand. 2.a),
b), c): analogous to 1.a), b), c) but for a lower negative detuning. The spectrome-
ter is centered around 775 nm. The zone of interest b) is chosen carefully such that
the polariton branches at higher energy do not interfere with the analysis method
(especially the lorentzian fits).

In Chapter 3, this data analysis is done for energy dispersion images taken either
in the polarization channel parallel to the wire axis or perpendicular to it. Then the
energy splitting magnitude is determined simply by substracting the two obtained
energy minima. This method is valid and gives realistic error bars for polariton
branches at negative and zero exciton-photon detunings. For positive detunings,
another analysis method is used, as described in the following paragraph.
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Determination of the normal energy-splitting for mi-
crowires at positive detunings
Indeed, for positive detuning, the polariton branch spectral width becomes extremely
large (up to 8 times the polarization splitting of interest in Chapter 3) and its cur-
vature nearly vanishes. The error bars given by the fourth order polynomial fitting
are therefore highly underestimated. This does not much affect the calibrations of
the exciton energy and Rabi coupling since the polariton energy varies slowly with
detuning in this region.

However, in Chapter 3, the energy splittings at positive detuning mainly deter-
mine the strength of the excitonic contribution δEx to the total splitting as defined
by the model (3.4). The fit based on this model takes into account the uncertainties
of the energy splitting magnitudes determined by the data analysis detailed in the
previous paragraph.

Figure 4.38: a) Raw data obtained at positive detuning for the polarization parallel
to the wire axis. The spectrometer is centered at 785 nm. The polariton branch is
barely distinguishable, due to its large linewidth and small curvature. The intensity
of the twenty lines surrounded by the rectangle are integrated along the vertical axis
(energy) and is plotted in b) (gray points). The obtained data is then fitted by an
asymmetric lorentzian function shown as a plain line. The same data analysis is done
for the energy dispersion measured in the polarization orthogonal to the wire axis
(black points fitted by a plain black line). The position of the peaks is marked by
thick red and blue vertical lines.

Hence, in the positive detuning region, we follow a totally different approach
to obtain the energy splittings along with realistic error bars. To avoid the parasitic
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laser light sometimes apparent close to kY = 0 (see Fig. 4.37.1.a. for example), the 20
lines at kY > 0 are integrated and then fitted by an asymetric lorentzian function,
for each of the two polarized branches (see Fig. 4.38).

The energy splitting magnitude is found by substracting the position of the two
lorentzian peaks, and then converting to a electronvolt scale. The uncertainties
obtained by this method come from the result of the asymetric lorentzian fits and
are much more reasonable. Note that this method cannot be used to obtain the
energy values for the minimum of each branch since the integration zone is not
centered around ky = 0.
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A2 Correction of standard errors to take into account
heteroscedasticity

In linear regression models, the set of data is assumed homoscedastic: the (unknown)
errors on the observed measures are evenly distributed (or, in other words, the vari-
ance of each error εi is constant).

This hypothesis can be checked a posteriori by looking at the distribution of the
fit residuals, defined by the difference between the observed values (the data) and
their estimates. If the set of data is homoscedastic (and, of course, if the fit model is
well adapted), a random distribution of the residuals around 0 is expected. Fig. 4.39
shows the residuals corresponding to the sine fit done in Subsection 4.2.1.2.

Figure 4.39: Residuals corresponding to the sine fit shown in Fig. 4.11. φ is the
azimuthal angle along the circumference of the elastic circle.

The residuals as a function of φ form a list R of length RD. To analyze the
distribution of the fit residuals in Fig. 4.39, the autocorrelation of R, can be calculated
by the following operation:

Aj =

∑RD–1
i=0 Ri · R(i+j) mod RD∑RD–1

k=0 R2
k

,

Aj ( j ∈ Z) is the autocorrelation of the fit residuals. If the set of data is perfectly
homoscedastic, the fit residuals are totally uncorrelated and Aj6=0 = 0. For j =
0, there is mathematically a peak: A0 = 1. Fig. 4.40.a. shows the result of this
operation done on the fit residuals shown in Fig. 4.39. Apart from the zone close
to j = 0, the autocorrelation of the fit residuals is close to 0. A zoom on the j =
0 peak is then shown on Fig. 4.40.b. The full width half maximum (FWHM) of
this peak (highlighted by the red dashed lines) is the autocorrelation length of the
residuals. This measures the typical lengthscale on which each datapoint is correlated
with its neighbors. The autocorrelation length is not zero but 1.4°, indicating a
spatial correlation probably due to the granularity observed on the elastic circle
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and induced by elastic Rayleigh scattering (see Subsection 4.2.1.2). The dataset is
therefore slightly heteroscedastic.

a) b)

Figure 4.40: a) Autocorrelation of the fit residuals. A peak is observed at zero phase
delay. b) Zoom in Fig. a at the vicinity of the main peak. The gray dashed lines
mark the FWHM of the main peak and define the autocorrelation length of the fit
residuals.

To take into account heteroscedasticity, the standard errors obtained from the
sine fit model (4.3) must be corrected by a factor [White1980]

β =
φc
φd

,

where φc (' 1.4°) is the autocorrelation length of the residuals, and φd (' 0.6°) is
the discretization step angle of the data.
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A3 Growthsheet of the double microcavity

Repetition Material Thickness
(Å)

Comment

Al0.2Ga0.8As 561

Front DBR×16 Al0.95Ga0.05As 647
Al0.2Ga0.8As 561

Al0.95Ga0.05As 420

×4 GaAs 70
QWs in DBRAl0.95Ga0.05As 30

Al0.2Ga0.8As 365
Al0.95Ga0.05As 385 Cavity with wedge

×3 GaAs 70
QWs in cavityAl0.95Ga0.05As 30

GaAs 70
Al0.95Ga0.05As 385 Cavity with wedge
Al0.2Ga0.8As 365

QWs in DBRs×4 Al0.95Ga0.05As 30
GaAs 70

Al0.95Ga0.05As 420

Intermediate DBR×15 Al0.2Ga0.8As 561
Al0.95Ga0.05As 647
Al0.2Ga0.8As 561

Al0.95Ga0.05As 420

×4 GaAs 70
QWs in DBRsAl0.95Ga0.05As 30

Al0.2Ga0.8As 365
Al0.95Ga0.05As 385 Cavity with wedge

×3 GaAs 70
QWs in cavityAl0.95Ga0.05As 30

GaAs 70
Al0.95Ga0.05As 385 Cavity with wedge
Al0.2Ga0.8As 365

QWs in DBRs×4 Al0.95Ga0.05As 30
GaAs 70

Al0.95Ga0.05As 420
Back DBR×25 Al0.2Ga0.8As 561

Al0.95Ga0.05As 647
GaAs SUBSTRATE

Table 4.3: Growthsheet of the double microcavity sample of interest.
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Résumé 
 

En régime de couplage fort lumière-matière, 
les microcavités de semiconducteurs 
contenant des puits quantiques abritent des 
quasi-particules appelées exciton-polaritons 
de microcavité. Leur caractère hybride mi-
électronique, mi-photonique, leur confère des 
propriétés optiques non-linéaires 
remarquables. Nous nous intéressons dans 
cette thèse à des microcavités structurées qui 
permettent la coexistence de branches 
polaritoniques de symétrie et d'énergie 
différenciées. Une microcavité gravée en 
rubans de quelques micromètres de large est 
d'abord étudiée. Le confinement latéral lève 
la dégénerescence entre les modes polarisés 
parallèlement et orthogonalement à la 
direction du ruban. Nous montrons que ce 
dédoublement résulte de contraintes 
structurales intrinsèques, de sorte que son 
amplitude peut être décidée dès la 
conception du dispositif. Nous nous 
intéressons ensuite à une microcavité double. 
En régime de diffusion Rayleigh élastique, le 
dédoublement TE-TM conduit à une 
séparation spatiale et angulaire des 
polaritons de pseudo-spins différents. Nous 
montrons que ce phénomène, appelé "effet 
Hall optique de spin" peut être contrôlé par un 
faisceau de pompe intense. Dans le régime 
d'oscillation paramétrique optique, la lumière 
s'auto-organise pour former un motif dans le 
champ lointain. Les règles de sélection 
concernant l'orientation et la polarisation de 
ces motifs sont explorées dans le régime 
d'amplification paramétrique optique. Ces 
études ouvrent la voie de la conception de 
"dispositifs de microphares" (capables 
d'orienter continûment la lumière par un 
simple contrôle en polarisation) et 
d'interrupteurs tout-optique ultra-rapides.  
 
 
 

Mots Clés 
 

exciton-polaritons, pseudo-spin, microfil, 

motif, interrupteur optique, oscillation 

paramétrique optique 

Abstract 
 

Semiconductor microcavities with embedded 
quantum wells in the strong light-matter 
coupling regime host quasi-particles called 
microcavity exciton-polaritons. Their hybrid 
nature, half-electronic, half-photonic, brings 
about remarkable nonlinear optical properties. 
In this work, we focus on microcavities that 
are structured to enable the coexistence of 
polaritonic branches with various symmetries 
and energies. First, a microcavity etched to 
form micrometers-wide wires is studied. The 
lateral confinement lifts the degeneracy 
between the modes which are polarized 
parallel and orthogonal to the wire direction. 
We show that this splitting results from built-in 
constraints which make a precise engineering 
of the splitting magnitude possible. We then 
focus on a double microcavity. In the elastic 
Rayleigh scattering regime, the TE-TM 
splitting induces a spatial and angular 
separation of polaritons with different pseudo-
spins. We show that this phenomenon, called 
"Optical Spin Hall Effect", can be controlled 
by a strong optical pump beam. In the regime 
of Optical Parametric Oscillation, the light 
self-organizes to form patterns in the far field. 
The selection rules for the orientation and 
polarization of these patterns are explored in 
the regime of Optical Parametric 
Amplification. These studies pave the way for 
the realization of microscopic "lighthouse" 
devices (able to continuously orientate the 
light by a simple polarization control) and 
ultrafast all-optical switches. 
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