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Résumé

Cette thèse présente trois contributions indépendantes appartenant au domaine de la modélisation

stochastique et des mathématiques financières, avec des applications dans le contexte de la gestion de

portefeuille.

La première partie de la thèse se concentre sur la modélisation mathématique et l’estimation em-

pirique de la moyenne conditionnelle des rendements du marché actions, aussi appelée rendement espéré

du marché, ce qui constitue un problème de premier ordre en finance quantitative. En effet, selon de

nombreuses recherches, les rendements espérés, qui sont inobservables en pratique, sont persistants avec

un phénomène de retour à la moyenne, et sont donc souvent modélisés à l’aide d’un processus autoré-

gressif AR(1). Cependant, des études empiriques montrent que lors de mauvaises périodes économiques

(récessions) la prédictibilité des rendements est plus élevée, i.e., la variance de la moyenne conditionnelle

augmente. Étant donné que le modèle AR(1) exclut par construction cette propriété, nous proposons

d’utiliser un modèle CIR discrétisé pour les rendements espérés. Ce dernier conserve le coefficient de

dérive de l’AR(1) mais introduit une variance variable au cours du temps qui augmente avec le niveau

du processus. Les implications de cette spécification sont étudiées dans le cadre flexible d’un modèle

espace-état bayésien.

La deuxième partie de la thèse est dédiée à l’étude et la modélisation de la dynamique jointe de la

volatilité des actions et des volumes de transaction. La relation empirique entre ces deux quantités a

été justifiée par des modèles théoriques, tels que l’hypothèse de mélange de distribution (MDH). Cette

spécification souligne que l’activité transactionnelle et la volatilité des actions sont étroitement liées au

taux latent d’arrivée d’information, impliquant une dynamique jointe. Cependant, ce cadre de mod-

élisation ne capture notamment pas la persistance évidente de la variance des actions, à la différence

des spécifications GARCH. Nous proposons un modèle de volatilité à deux facteurs combinant les deux

approches. Contrairement aux modèles MDH standards, la variance conditionnelle est gouvernée par le

processus stochastique d’arrivée d’information, ainsi que par une composante GARCH persistante et avec

un retour à la moyenne, afin de dissocier les variations de volatilité court terme et long terme. Le modèle

révèle plusieurs régularités importantes sur la relation volume-volatilité en ligne avec les observations

empiriques.

La troisième partie de la thèse s’intéresse à l’analyse des stratégies d’investissement optimales sous la

contrainte que la valeur du portefeuille ne descende pas en dessous d’une fraction fixée de son maximum

courant. Le problème étudié est celui de la maximisation d’utilité à horizon fini pour différentes fonc-

tions d’utilité (concave et asymétrique). Nous calculons les stratégies optimales en résolvant l’équation

de Hamilton-Jacobi-Bellman, qui caractérise le principe de programmation dynamique relié au problème

de contrôle stochastique. Le problème est résolu numériquement avec une condition de bord qui car-

actérise la contrainte de perte. En se basant sur un large panel d’expérimentations numériques, nous

obtenons numériquement les allocations optimales et nous analysons leurs divergences, en faisant varier

les paramètres du modèle de marché et les profils d’utilité des investisseurs.

Mots clés : marché financier, modèle espace-état, filtre de Kalman, analyse bayésienne, volatilité stochas-

tique, modèle GARCH, optimisation de portefeuille, contrôle stochastique, finance comportementale.
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Stochastic modeling of financial markets and portfolio

optimization

Abstract

This PhD thesis presents three independent contributions related to stochastic modeling and financial

mathematics, with applications within the context of portfolio management.

The first part of the thesis is concentrated on the mathematical modeling and the empirical esti-

mation of the conditional mean of stock market returns, also called expected market return, which is

a first order issue in quantitative finance. Indeed, a large body of research supports the view that the

unobservable expected return process is persistent and mean-reverting, and therefore often modeled as

an Auto-Regressive process of order one: AR(1). However, empirical studies have found that during

bad times (economic recessions) return predictability is higher, i.e., the variance of the conditional mean

increases. Given that the AR(1) model excludes by construction this property, we propose to use instead

a discretized CIR model for expected returns. The latter preserves the same drift as the AR(1), but

induces a time-varying variance which increases with the level of the process. The implications of this

specification are studied within a flexible Bayesian state-space model.

The second part of this dissertation is dedicated to the study and modeling of the joint dynamics of

stocks volatility and trading volume. The empirical relationship between these two quantities has been

justified by theoretical models, such as the Mixture of Distribution Hypothesis (MDH). This specification

predicts that both trading activity and equity volatility are closely linked to the latent information arrival

rate, implying a joint dynamics. However, this framework notably fails to capture the obvious persistence

in stock variance, unlike GARCH specifications. We propose a two-factor model of volatility combining

both approaches. Unlike typical MDH models, the conditional variance is governed by the stochastic

information arrival as well as a persistent mean-reverting GARCH component, in order to disentangle

short-run from long-run volatility variations. The model reveals several important regularities on the

volume-volatility relationship, in line with empirical observations.

The third part of the thesis is concerned with the analysis of optimal investment strategies under the

drawdown constraint that the wealth process never falls below a fixed fraction of its running maximum.

The finite horizon expectation maximization problem is studied for different types of utility functions

(concave, i.e., power utility, and asymmetric, i.e., S-shape). We compute the optimal investments strate-

gies, by solving the Hamilton–Jacobi–Bellman equation, that characterizes the dynamic programming

principle related to the stochastic control problem. The problem is numerically solved with a boundary

condition that characterizes the drawdown constraint. Based on a large panel of numerical experiments,

we compute numerically optimal allocation programs and analyze their divergences, making the market

model parameters and investor utility profiles vary.

Keywords : stock market, state-space model, Kalman filter, Bayesian analysis, stochastic volatility,

GARCH model, portfolio optimization, stochastic control, behavioral finance.
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Introduction générale

Cette introduction générale a pour but de présenter la thématique des travaux de recherche

de la thèse, ainsi que sa structure composée de trois contributions indépendantes.

La complexité et l’incertitude autour de l’interaction des agents et de l’environnement

économique ont amené la finance à être étudiée dans un cadre qui requiert des outils

analytiques et mathématiques sophistiqués1. Il existe, plus ou moins distinctement, deux

branches de recherche en mathématiques financières avec des objectifs et des outils de

modélisation différents2. La première, initiée par les travaux de Bachelier (1900), est

principalement concentrée sur la modélisation de processus en temps continu. À l’aide

d’outils tels que le calcul d’Itô et les équations aux dérivées partielles, cette branche

conduit à des résultats concernant notamment l’évaluation des produits dérivés et même

des résultats mathématiques s’inscrivant dans un cadre plus général tel que la théorie

des probabilités et l’optimisation. La deuxième branche est majoritairement focalisée

sur l’estimation des risques et la gestion de portefeuille. Cette approche fait appel à

des notions appartenant aux statistiques et à l’économétrie, et utilise le plus souvent une

modélisation discrète basée sur les séries temporelles. Cette thèse se situe à la frontière des

deux domaines décrits ci-dessus. En effet, bien que ces deux branches soient effectivement

distinctes, notamment en termes de publications et de littérature, il n’en reste pas moins

que les processus stochastiques et les méthodes numériques constituent les briques de

modélisation communes aux deux approches. En ce sens, cette thèse traite trois sujets de

recherche qui constituent des travaux motivés par des applications pratiques futures en

finance. Les contributions s’inscrivent donc dans une littérature tournée vers la finance

quantitative directement applicable dans le cadre de la gestion d’investissements, plutôt

que vers des résultats mathématiques fondamentaux dans un cadre plus général.

La motivation initiale de cette thèse était celle d’explorer des notions alternatives au

cadre standard de modélisation et d’estimation utilisé en finance. Les travaux résultants

sont ainsi caractérisés par l’étude de systèmes stochastiques sous des hypothèses nouvelles,

avec pour but de répondre à plusieurs problématiques. Quelles sont les implications que

peuvent avoir des hypothèses alternatives sur les processus générateurs habituellement

utilisés dans les modèles financiers ? Comment réconcilier deux familles de modèles qui

décrivent différemment l’évolution d’un même type de processus ? Les résultats empiriques

décrits par des recherches en finance se vérifient-ils dans un cadre d’optimalité au sens

mathématique ?

1Voir par exemple Merton (1995) sur ce sujet.
2Meucci (2011) fournit un aperçu d’un point de vue pratique de cette distinction.

1
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Cette thèse se compose de trois contributions indépendantes, faisant chacune l’objet

d’un chapitre dans ce manuscrit, décrits successivement ci-après. Les deux premiers

chapitres ont pour but de contribuer à la compréhension de la distribution et des carac-

téristiques de la dynamique des rendements des actions. On s’intéresse à ce type d’actif,

primordial en finance, à travers la modélisation du processus correspondant au premier

moment dans le premier chapitre (moyenne conditionnelle ou rendement espéré), puis du

processus correspondant au second moment (variance conditionnelle) dans le deuxième

chapitre. Le troisième et dernier chapitre est, quant à lui, focalisé sur la thématique de

l’optimisation de portefeuille sous contraintes de pertes maximales.

Modélisation et estimation des rendements espérés du marché

actions

Le premier chapitre de la thèse est focalisé sur une question de premier ordre en finance

quantitative : comment modéliser et estimer la moyenne conditionnelle des rendements

des actions (non observable en pratique), aussi appelée rendement espéré des actions et

dénotée µt ci-après ? Cette question est importante car elle est directement liée à la

notion de prédictibilité dans le marché actions : une moyenne conditionnelle constante est

synonyme de marche aléatoire, alors qu’une moyenne conditionnelle variable implique un

niveau de prédictibilité non nul. La question de la modélisation des rendements espérés

a été en premier lieu traitée dans le cadre de la régression prédictive. Ce cas consiste

à utiliser plusieurs variables économiques comme prédicteurs linéaires des rendements

futurs. Plusieurs modèles de régression ont été proposés mais le fait que la régression

admette une corrélation parfaite entre les prédicteurs et les rendements espérés est une

limitation importante. Pástor and Stambaugh (2009) ont proposé un cadre différent,

appelé système prédictif, correspondant à un modèle espace-état. Dans ce système on

admet que les rendements espérés constituent une variable latente, suivant un processus

autorégressif d’ordre un AR(1) inobservable dont les innovations sont potentiellement

corrélées à celles des variables prédictives observables. Ce système, beaucoup plus flexible

que la régression linéaire, permet d’estimer µt à l’aide d’un filtre de Kalman en capturant

l’idée que les rendements espérés sont persistants avec un retour à la moyenne.

Cependant le modèle AR(1) exclut par construction une variance variable pour le ren-

dement espéré, et donc un degré de prédictibilité variable au cours du temps ne peut pas

être modélisé par ce modèle. Étant donné que plusieurs études empiriques supportent

l’hypothèse d’un niveau de prédictibilité variable, nous proposons d’utiliser un modèle

alternatif dans le cadre du système espace-état pour représenter le processus inobservable

des rendements espérés. Ainsi, nous utilisons à la place du modèle AR(1), le modèle CIR

discrétisé. Ce dernier conserve le même coefficient de dérive que le processus AR(1), per-

mettant de capturer le caractère persistant avec retour à la moyenne, mais introduit une

variance variable au cours du temps qui augmente avec le niveau du processus. En con-

séquence, selon ce modèle, si les rendements espérés sont plus élevés pendant les périodes

de récession (contracyclicité) ils sont également plus volatils et les rendements réalisés plus
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prévisibles. En se basant sur cette nouvelle modélisation, nous estimons µt à l’aide d’un

filtre de Kalman étendu. La contribution du premier chapitre est l’étude de ce nouveau

système et de ses implications sur la dynamique des actions.

Le système CIR introduit est examiné en plusieurs étapes. En premier lieu, le nouveau

modèle espace-état est étudié de manière analytique, en mettant en avant ses différences

structurelles avec le modèle AR(1). Notamment, le système CIR induit une autocovariance

variable au cours du temps pour les rendements, proportionnelle au niveau de µt. Ainsi,

durant les phases de récessions, les espérances de rendements sont plus élevées, les ren-

dements plus fortement autocorrélés et prévisibles. Nous présentons également les autres

conséquences et propriétés du modèle impliquées notamment par l’hétéroscédasticité du

processus CIR.

Nous nous focalisons ensuite sur une analyse empirique utilisant les données du marché

actions américain sur plusieurs décennies avec une fréquence trimestrielle, c’est-à-dire un

horizon relativement long avec une basse fréquence. Nous montrons d’abord comment le

système CIR, sans aucun prédicteur, est capable de reproduire naturellement le comporte-

ment de certains estimateurs de rendements espérés utilisant la régression prédictive. Nous

étudions ensuite le système hors-échantillon à l’aide d’une méthode d’estimation bayési-

enne. Le système CIR génère des prédictions de rendement significativement meilleures

par rapport à une moyenne d’échantillon, et améliore également la performance par rap-

port au modèle AR(1) et à la régression prédictive utilisant le taux de dividende. De

plus, notre étude empirique met en avant l’évolution temporelle de certains paramètres

majeurs du modèle à travers leur distribution postérieure bayésienne au cours du temps.

L’estimation révèle que le paramètre de persistance des rendements espérés a diminué au

cours des deux dernières décennies, de même que l’autocorrélation empirique des rende-

ments réalisés, ce qui cöıncide avec une diminution du niveau de prédictibilité.

Le papier de recherche correspondant à ce premier chapitre est le suivant :

Bonelli, M., et Mantilla-Garcia, D. (2016). An Alternative Model of Expected Returns and

its Implications for Return Predictability. Disponible sur SSRN.

Il a été présenté aux conférences internationales suivantes avec comité de sélection avant

acceptation :

• Annual Meeting European Financial Management Association (EFMA) 2015

(nominé pour le conference best paper award),

• International Conference of the Financial Engineering and Banking Society (FEBS)

2015,

• International Conference of the French Finance Association (AFFI) 2015,

• International Forecasting Financial Markets Conference (FFM) 2015,

• International Conference on Computational and Financial Econometrics (CFE) 2014.

http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2441323
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Modélisation de la volatilité des actions et de sa relation avec les

volumes de transaction

Le deuxième chapitre se concentre sur l’étude de la dynamique de la volatilité des ren-

dements des actions, et plus précisément sur sa relation avec les volumes de transaction,

i.e., le nombre de titres échangés chaque jour. Plusieurs modèles ont été proposés afin

de justifier théoriquement le lien empirique observé entre les mouvements des prix et les

volumes. En particulier, les modèles de mélange de distribution (MDH) avancent que la

volatilité des actions et la quantité de titres échangés sont liées au taux latent d’arrivée

d’information, ce qui engendre une dynamique jointe. Cependant ce type de modélisation

ne capture pas certaines caractéristiques importantes de la volatilité, en particulier sa

persistance. Ainsi, nous proposons un modèle à deux composantes dans le but de dis-

socier les mouvements court terme de volatilité potentiellement dus à l’arrivée de nouvelles

informations des mouvements long terme et persistants de la volatilité.

La modélisation introduite ici est paramétrique et implique que la volatilité des ren-

dements est gouvernée à la fois par le flux stochastique d’arrivée d’information (identifiée

par une fonction non linéaire des volumes) et par une composante de type GARCH per-

sistante sans rapport avec les volumes de transaction. Le modèle permet ainsi d’avoir une

partie de la persistance de la volatilité explicitement non liée à celle du taux d’arrivée

d’information. De cette manière le modèle est capable d’expliquer conjointement la per-

sistance de la volatilité et sa relation avec les volumes. Sur ce dernier point, la composante

volume du modèle est décomposée en une partie attendue et une partie inattendue (in-

novations). Cette séparation permet de montrer que la composante stochastique de la

volatilité est étroitement liée aux innovations des volumes de transaction. Notons par

ailleurs que la spécification globale introduite implique une distribution conditionnelle

normale log-normale asymétrique avec queues épaisses pour les rendements.

La contribution de ce deuxième chapitre est l’analyse du modèle ainsi que de ses con-

séquences à l’aide d’une estimation empirique basée sur le maximum de vraisemblance. En

utilisant les données journalières d’actions américaines sur les vingt dernières années, nous

montrons que les volumes attendus et inattendus ont chacun un effet opposé, réduisant

et augmentant respectivement la volatilité. Par ailleurs, on obtient que la persistance de

la volatilité (mise en avant par les modèles de type GARCH) n’est pas réduite dans notre

modèle : le caractère persistant de la volatilité est principalement sans rapport avec la

composante volume. Enfin, pour la plupart des titres étudiés, le modèle révèle qu’une

grande partie des variations de la volatilité est due à la composante volume et plus spé-

cifiquement aux innovations dans les volumes. La majorité des variations restantes sont

expliquées par la composante GARCH persistante et donc sans rapport avec les volumes

de transaction.

Le papier de recherche correspondant à ce deuxième chapitre est le suivant :

Bonelli, M. (2016). Stock Market Volatility Dynamics: A Volume Filtered-GARCH Model.

Disponible sur SSRN.

http://papers.ssrn.com/sol3/Papers.cfm?abstract_id=2743170
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Il a été présenté aux conférences internationales suivantes avec comité de sélection avant

acceptation :

• International Conference of the French Finance Association (AFFI) 2016,

• European Winter Meetings of the Econometric Society 2015.

Analyse de stratégies optimales sous contrainte de pertes cu-

mulées

Le troisième chapitre de la thèse est focalisé sur l’analyse de stratégies d’investissement

optimales dans le cadre de l’assurance de portefeuille. Spécifiquement, on considère le

problème de maximisation d’utilité à horizon fini sous la contrainte que la richesse ne

tombe jamais en dessous d’une certaine fraction de son maximum courant. L’objectif est

d’analyser les comportements impliqués par les allocations optimales et surtout d’étudier

la préférence pour ce type de contraintes par différents investisseurs.

Les stratégies dites d’assurance de portefeuille peuvent apparâıtre attractives car elles

sont conçues pour protéger les actifs sous gestion et en même temps permettre de par-

ticiper aux phases de hausses des actifs risqués tels que les actions. Plusieurs auteurs

ont étudié la popularité de ces produits et le profil des investisseurs qui pourraient en

bénéficier. Cependant étant donné la difficulté de justifier à partir de la théorie d’utilité

standard (i.e., fonction d’utilité concave) la popularité de l’assurance de portefeuille ob-

servée en pratique, plusieurs études ont proposé de répondre à cette problématique dans

le cadre de la finance comportementale. Le résultat est que les investisseurs avec une fonc-

tion d’utilité asymétrique entre les gains et les pertes par rapport à un point de référence

(“S-shape”) pourraient potentiellement préférer les assurances de portefeuille plutôt que

d’autres stratégies standards, en terme de maximisation d’utilité. Cependant ces études

ne considèrent pas les stratégies dynamiques optimales du point de vue de l’objectif de

la maximisation d’utilité. En effet, les contrôles constants utilisés (paramètre clé de la

stratégie) peuvent diverger des contrôles optimaux variables au cours du temps. Ainsi, les

résultats obtenus à l’aide de ces derniers pourraient être différents de ceux précédemment

cités.

Nous analysons les programmes optimaux d’allocation sous la contrainte de perte

cumulée, dite contrainte “drawdown”. Pour cela, nous nous basons sur un large panel

d’expérimentations numériques produites à partir de la formulation du problème de con-

trôle stochastique correspondant. Le problème considéré est celui de la maximisation de

l’utilité espérée à horizon fini pour deux types d’investisseurs, l’un avec fonction d’utilité

concave, l’autre avec fonction d’utilité asymétrique. Les stratégies optimales sont dérivées

en résolvant l’équation de Hamilton-Jacobi-Bellman caractérisant le principe de program-

mation dynamique relié à notre problème. L’équation aux dérivées partielles résultante

est résolue numériquement sur un espace discrétisé, en faisant varier les paramètres du

modèle de marché financier et les profils d’utilité.

A l’aide de simulations stochastiques, nous montrons que, d’un point de vue optimal,
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une explication claire sur l’attractivité des stratégies d’assurance de portefeuille ne peut

pas être tirée en se basant sur l’investisseur avec utilité asymétrique. D’une part, pour

l’investisseur standard (utilité concave), la préférence pour la stratégie optimale avec

la contrainte drawdown plutôt que la stratégie optimale sans protection dépend forte-

ment des paramètres de la dynamique de l’actif risqué. D’autre part, nous trouvons que

l’investisseur avec utilité asymétrique préfère la stratégie optimale sans contrainte. Ce

résultat peut être expliqué par la présence du point de référence dans la fonction d’utilité

asymétrique, qui agit comme une protection implicite. Ceci implique que la contrainte

n’est pas nécessairement utile pour ce type d’utilité. Les seules configurations où la con-

trainte de perte se révèle profitable pour cet investisseur correspondent aux situations

où nous imposons une erreur d’estimation sur les paramètres du modèle. Dans ces cas

spécifiques, la limitation des pertes à travers la contrainte peut jouer le rôle d’assurance

contre le risque d’estimation du modèle.

Le papier de recherche correspondant à ce troisième chapitre est le suivant :

Bonelli, M., et Bossy, M. (2016). Portfolio Management with Drawdown Constraint: An

Analysis of Optimal Investment. En préparation.



Chapter 1

An Alternative Model of Expected

Returns and its Implications for

Return Predictability

Empirical research on financial markets has found that the conditional mean of the market

return process (a.k.a., expected return) is persistent and mean-reverting, and therefore

often modeled as an autoregressive process of order one: AR(1). However, several recent

studies suggest that during bad times return predictability is higher. Thus, variation in

the conditional expected return process should be relatively higher as economic conditions

worsen. Hence, we propose instead to model expected returns as a CIR process, which

is a parsimonious specification that captures the countercyclical dynamics of stock return

predictability. The implications of the model are studied within a flexible Bayesian state-

space system. In our empirical tests, the estimates from the proposed model of expected

return present lower prediction errors than the historical mean, and than the predictive

regression using the dividend yield (which is a well known economic predictor). Further-

more, according to posterior distributions, the persistence parameter of expected returns

presents long-term dynamics similar to the autocorrelation of realized returns.

Keywords: return predictability, Kalman filter, Bayesian analysis.
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1.1 Introduction

How should we model and estimate the expected excess return of stocks1? This question

has primarily been addressed within the linear predictive regression framework (early

examples are Keim and Stambaugh, 1986; Stambaugh, 1986; Ferson and Harvey, 1991;

Pesaran and Timmermann, 1995; Stambaugh, 1999). Several economic predictors have

been investigated using the predictive regression, including the dividend yield (Fama and

French, 1988; Campbell and Shiller, 1988; Goyal and Welch, 2003; Ang and Bekaert, 2007;

Lettau and van Nieuwerburgh, 2008; Cochrane, 2008), the interest rates (e.g. Campbell,

1987), the term and default spreads (Campbell, 1987; Fama and French, 1989), variables

including information of corporate payout and financing activity (e.g. Baker and Wurgler,

2000), the consumption-wealth ratio (Lettau and Ludvigson, 2001), and combinations of

these (Goyal and Welch, 2008; Rapach, Strauss, and Zhou, 2010).

The idea that high valuation ratios, such as dividend-price and earnings-price ratios

should predict high subsequent returns dates back to the tradition of value investors of

Graham, Dodd, and Cottle (1934). Since then, the most pervasive predictor found in the

literature is the dividend yield, backed also by the famous log linearization of the dividend-

price ratio in Campbell and Shiller (1988), which implies a positive linear relationship

between expected returns and the ratio. The dividend-price ratio is a relatively stable2,

persistent, approximately mean-reverting quantity that is naturally counter-cyclical, i.e.,

it is high when prices are historically low and vice-versa. Arguably, the direct relation

with the valuation ratio has to some extent led many financial economists to hold the view

that expected returns should have those characteristics: stable, persistent, mean-reverting

and counter-cyclical.

Advanced regression models have been proposed in the literature to analyze expected

returns (see Dangl and Halling, 2012; Johannes, Korteweg, and Polson, 2014; Pettenuzzo

and Ravazzolo, 2014), but the regression approach has some limits, including the fact that

it assumes a perfect correlation between the predictor(s) and expected returns. Pástor

and Stambaugh (2009) introduced a predictive system that allows for imperfect correla-

tions between predictors and expected returns, as well as amongst past realized returns

and expected returns. Pástor and Stambaugh (2009) modeled expected returns as an au-

toregressive process (AR) of order one3, under a set of informative priors that reflects the

belief that they should have those characteristics: stability, persistence, mean-reversion

and counter-cyclicality.

However other characteristics supported by empirical observations and economic the-

ory are absent in the AR(1)-based system. In particular, this model excludes by construc-

tion a time-varying degree of return predictability. Therefore, we propose to use instead

a discretization of the Cox, Ingersoll Jr, and Ross (1985) (CIR) process to model the

1Unless explicitly stated otherwise, we use the term expected returns as shorthand for expected excess returns
of the stock market over the risk-free rate or equity risk premium. Similarly, realized returns stands for realized
excess market returns.

2Relatively stable meaning less variable than realized returns.
3Binsbergen, Jules, and Koijen (2010), Pástor and Stambaugh (2012), and Carvalho, Lopes, and McCulloch

(2015) also consider this specification.
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dynamics of expected returns within the predictive system. This model keeps the four

AR(1) relevant features mentioned but captures some additional important characteristics

of expected returns. Notably, the CIR system yields a countercyclical predictive power,

it implies a time-varying conditional autocovariance of returns (higher in absolute value

during bad times) and a positive relation between expected returns and return variance.

The CIR dynamics induce a continuously changing conditional variance for expected

returns, which increases with the level of expected returns during market downturns. A

time-varying variance in expected returns is motivated by the fact that the predictability

of returns increases during economic recessions (see Rapach et al., 2010; Henkel, Martin,

and Nardari, 2011; Cujean and Hasler, 2014). Return predictability is measured as the

fraction of the variance in realized returns explained by variations in expected returns,

i.e., the R2 of the regression of realized returns on expected returns. It follows that the

variance of expected returns must increase during economic recessions, to account for the

increase in R2 during these periods4. We find that the conditional heteroscedasticity of

expected returns in the CIR system (without any predictor) reproduces the countercyclical

predictability of the dividend yield in the predictive regression documented in former

studies such as Rapach et al. (2010), Mantilla-Garcia and Vaidyanathan (2011), and

Henkel et al. (2011). Other models featuring time-varying variance for expected returns

are studied in Pástor and Stambaugh (2012); Bollerslev, Xu, and Zhou (2015); Piatti

and Trojani (2015), however our approach has the advantage to be a very parsimonious

departure from the AR(1) assumption, without any additional parameter.

Furthermore, the CIR system implies a time-varying conditional covariance between

expected and realized returns. The strength of this relationship depends as well on the

level of the expected return. For countercyclical expected returns, the CIR system implies

that the covariance is higher (in absolute value) when the expected return is high, i.e.,

during bad times.

Similarly, the CIR model introduces a time-varying conditional autocovariance of re-

turns. The conditional autocovariance of returns is proportional in absolute value to the

level of expected returns. Thus, during recessions when return expectations are high and

highly volatile, returns are more strongly autocorrelated and predictable. In contrast,

when the expected return level and their volatility are low, returns are conditionally less

autocorrelated, thus locally less persistent, as the mean reversion of expected returns is

stronger.

Most standard asset pricing models imply a positive relation between expected returns

and return variance. Unlike the AR(1), the CIR model for expected returns incorporates a

positive relationship between its level and its conditional variance, which in turn implies a

positive relation between the level of expected returns and the expected variance of realized

returns. Furthermore, the CIR-based expected return process has a negligible probability

of being negative. This additional feature is compatible with economic intuition: risk-

4Even if during market downturns the variance of realized returns increases (see Schwert, 1989; Hamilton and
Lin, 1996; Ait-Sahalia and Kimmel, 2007), the variance of expected returns must increase to compensate for the
variance rise of realized returns combined with a higher R2.
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averse investors would not hold stocks if the equity premium was negative5. The positivity

of the system is also in line with empirical results by Campbell and Thompson (2008), and

Pettenuzzo, Timmermann, and Valkanov (2014) who find that restricting expected return

estimates to be positive improves their robustness out-of-sample, within the predictive

regression framework6.

In our empirical analysis we find that the CIR predictive system without any predictors

(i.e., using only past realized returns) can produce return forecasts out-of-sample that

are significantly better than the historical average and the predictive regression using

the dividend yield as the predictor, if economically motivated priors are used for the

parameters of the system. The CIR system produces better forecasts under the priors

that expected returns are countercyclical and display a relatively low variance (i.e., stable),

which is consistent with widely held beliefs about expected returns. On the other hand, in

line with Kelly and Pruitt (2013), according to the CIR system the persistence parameter

of expected returns is lower, i.e., less close to 1, than suggested by the AR system and

previous studies. We find that its value in the CIR system has been declining over the

last thirty years in tandem with the sample autocorrelation of realized returns, which

contrasts with the high and stable persistence parameter estimate of the AR system.

1.2 A predictive system with heteroscedastic expected returns

In this section we present a short summary of common predictive systems in the literature

and then introduce our model along with its theoretical implications.

1.2.1 Modeling expected returns

The discrete dynamics for the realized return r at time t+ 1 can be decomposed as

rt+1 = µt + ut+1, (1.1)

where µt is the expected return at time t, and the innovation ut+1 is the “unexpected

return”, which is a random shock with zero mean and variance σ2
u.

In the classic random walk model, expected returns are assumed to be a constant,

and the estimate of µ is usually the sample average of all the history of returns available.

The random walk model is the no-predictability benchmark that a predictive system with

time-varying expected returns has to outperform in terms of forecasting error.

The most common predictive system in the literature is the predictive regression, in

which the expected return process µ is assumed to be a linear function of a set of predictors

x,

µt = a+ b′xt (1.2)

5Merton (1980) estimates instantaneous expected return on the market and concludes that: “in estimating
models of the expected market return, the non-negativity restriction of the expected excess return should be explicitly
included as part of the specification” (Merton, 1980, p. 323).

6In the CIR system, the positivity condition is not imposed as a constraint but it is a result of the dynamics
of the expected returns process.
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for constants a and b with suitable dimensions. Notice that the dynamics of µ in this

model are completely determined by the dynamics in the predictor variables.

The expected return process µ is generally believed to be a mean-reverting process,

varying along its long-term average Er. For example the predictive system of Pástor and

Stambaugh (2009) is a state-space model in which the latent expected return process

follows a first-order autoregressive AR(1) equation:

µt+1 = (1− β)Er + βµt + wt+1, (1.3)

where Er denotes the unconditional expectation of r, which is equal to the unconditional

expectation of µ and is constant over time; β is a constant persistence parameter assumed

to be within (0, 1) so that µ is stationary, and wt+1 is the innovation in the expected

return. We refer to the predictive system introduced by Pástor and Stambaugh (2009) as

the AR (autoregressive) system.

In addition, Pástor and Stambaugh (2009) also consider a set of stationary (observable)

predictors xt following a first-order vector autoregressive VAR(1) process,

xt+1 = (I − A)Ex + Axt + vt+1, (1.4)

where Ex is the unconditional expectation of x, A is a matrix with suitable dimensions

containing the autoregressive coefficients and with eigenvalues lying inside the unit circle,

and v is gaussian noise. Furthermore, the three innovation processes above are assumed

to be correlated white-noise, independent and identically distributed across t as, ut
vt
wt

 ∼ N

 0

0

0

 ,
 σ2

u σuv σuw
σvu Σvv σvw
σwu σwv σ2

w


 . (1.5)

Denote the covariance matrix in (1.5) as Σ. Notice that the interaction between predic-

tors and expected returns happens trough the correlation between their corresponding

innovations v and w.

While in the standard predictive regression the correlation between the predictor(s)

and expected returns is assumed to be perfect, the predictive system (1.1), (1.3), (1.4),

(1.5) allows for“imperfect predictors”presenting a correlation with expected returns lower

than 1 in magnitude.

Pástor and Stambaugh (2009) showed that the standard predictive regression is a

particular case of the predictive system in which the correlation between the innovation

in the predictor x and innovation in µ is assumed to be perfect, i.e., ρvw = ±1, and the

autoregressive coefficient of µ and x are equal, e.g., β = A if we consider one predictor.

Another distinctive characteristic of this predictive system is that expected returns are

also linked with past realized returns through the correlation between their innovations,

i.e., ρuw. This correlation has an impact on the relationship between expected returns

and past realized returns, and on the relative importance of what Pástor and Stambaugh

(2009) called the level effect and the change effect in the system. The level effect captures
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the procyclicality of expected returns, i.e., the extent to which observing relatively higher

(lower) realized returns is a signal of higher (lower) expected returns, while the change

effect captures the extent to which observing relatively higher (lower) realized returns is

a signal of lower (higher) expected returns (countercyclicality). For the change effect to

dominate, ρuw must be sufficiently negative. If the change effect prevails then expected

returns are countercyclical. Pástor and Stambaugh (2009) argue that the change effect

should dominate the level effect and other studies such as Campbell (1991), Campbell

and Ammer (1993) and Binsbergen et al. (2010) point in the same direction.

Equations (1.1), (1.3), (1.4) and (1.5) constitute a state-space model7 in which we

have E(µt|Dt) = E(rt+1|Dt), where Dt denotes the information set available at time t of

observable quantities r and x. Hence, a linear Kalman filter can be used to estimate the

unobservable expected return process8 µ.

In the Bayesian empirical analysis of their predictive system, Pástor and Stambaugh

(2009) used prior distributions of the input parameters of the system reflecting “the prior

belief that the conditional expected return µt is stable and persistent” (Pástor and Stam-

baugh, 2009, p. 1606). To capture the belief that µt is stable, they imposed a prior that

the predictive R2 from the regression of rt+1 on µt is not very large, which is equivalent

to the belief that the total variance of µt is not very large relative to the variance of

realized returns. To capture the belief that µt is persistent, they impose a prior that β,

the slope of the AR(1) process for µt, is smaller than 1 but not by much. Furthermore,

they favor sufficiently negative values of ρuw to reflect the prior that expected returns are

countercyclical.

1.2.2 The CIR predictive system

Empirical evidence by Henkel et al. (2011) and others shows that return predictability

is markedly countercyclical, i.e., it is much stronger during economic recessions. Higher

predictability means that the percentage of the variance of realized returns explained by

variations in expected returns is higher. Hence, this evidence suggests that the variance

of expected returns should increase during recessions and therefore be time-varying.

On the other hand, the conditional variance of the AR(1) process used in the pre-

dictive system of Pástor and Stambaugh (2009) to model expected returns is constant

over time and therefore excludes by construction a countercyclical degree of predictabil-

ity. We propose a parsimonious departure from the AR system that does not introduce

any additional parameters, but instead modifies the governing equation of the latent ex-

pected return process in a way that integrates the aforementioned economically motivated

features, as well as additional important implications described below.

Suppose that the true unobservable process µ follows a Cox et al. (1985) (CIR) model,

7Other studies on return predictability using state-space models include Conrad and Kaul (1988); Lamoureux
and Zhou (1996); Ang and Piazzesi (2003); Brandt and Kang (2004); Duffee (2007); Rytchkov (2012); Piatti and
Trojani (2014).

8Pástor and Stambaugh (2012) presents an alternative state-space representation of the predictive system
where rt and xt follow a VAR process with an unobserved additional predictor but as they explain this alternative
representation is well suited for exploring the role of predictor imperfection which is not our aim in this paper.
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which is a continuous-time mean-reverting process given by the Stochastic Differential

Equation (SDE):

dµt = κ(θ − µt)dt+ σ
√
µtdWt, (1.6)

where the constant κ is the (positive) speed of mean reversion, θ the long-term mean of

µ, σ the standard deviation of the diffusion term and W is a standard Brownian motion.

For our purposes, it is of primary importance to notice that the diffusion factor, σ
√
µt,

induces a process with a level-dependent time-varying volatility that increases whenever

the level of µ increases. Thus, the µ in the CIR model is an heteroscedastic process whose

conditional variance varies in tandem with its level. Interestingly, if the dynamics of µ

are countercyclical (i.e., increases during recessions), then its variance as well.

Another interesting difference between the AR and the CIR system, is that the latter is

much less likely to produce negative values for expected returns. Indeed, the CIR process

rules out negative values of µ if its parameters satisfy the condition κθ ≥ σ2

2
, along

with µ0 > 0 (see Feller, 1951). This characteristic is in line with some interpretations

of standard equilibrium models with risk-averse investors that predict positive expected

returns (see for instance Merton, 1980, 1993), as well as with the empirical findings by

Campbell and Thompson (2008) and Pettenuzzo et al. (2014) who find that restricting

expected return estimates to be positive improves the forecasting power of the predictive

regression.

In order to develop the economic intuition and implications, we work with a direct

Euler discretization of equation (1.6) under the assumption that the former realization of

µt is positive, that is:

µt+1 = (1− β)Er + βµt +
√
µtwt+1 given that µt ≥ 0, (1.7)

where Er = θ is the constant long-term mean, β = (1 − κ∆t) is the auto-regressive con-

stant, w is gaussian innovation with variance σ2
w = σ2∆t and ∆t is the time step chosen

in the discretization, i.e., the elapsed time between t and t+ 1 in the time series notation.

We chose the above discretization of the CIR model over the exact distribution of the in-

crements of the CIR process (non-central chi-squared, see Gouriéroux and Jasiak, 2006),

to avoid using non-Gaussian copulas to model the joint distribution of the innovations

ut, wt, vt. The discretization above allows us to use correlated Gaussian increments in

the discretized dynamics as in Brigo and Alfonsi (2005) and similar to Pástor and Stam-

baugh (2009) AR system, keeping a flexible and tractable model to explore the economic

implications of the CIR assumption.

Appendix 1.A and 1.B present the mild technical conditions needed for the discretiza-

tion (1.7) to have a negligible probability to yield negative values for µ. In Appendix 1.C

we derive the expressions of the extended Kalman Filter algorithm for a general function

g(µt) on the diffusion term, instead of the particular case g(.) = (.)(1/2) of equation (1.7).9

Notice that the AR(1) system is nested in the general system derived in the Appendix

9The derivation in appendix 1.C includes the case g(.) =
√
|.|, which is well defined for µt < 0, unlike equation

(1.7). However, for simplicity of exposure we develop the economic intuition of the model in the simpler case of
equation (1.7) (refer to appendix 1.A for a detailed discussion).
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with g(.) = (.)(0).

Our version of the predictive system is similar to Pástor and Stambaugh (2009)’s AR(1)

system (discussed above), but uses the state equation (1.7) for µ instead of equation (1.3),

while the realized return equation (1.1) as well as the joint distribution of innovations

[ut wt]
′ in equation (1.5) are kept the same, i.e., [ut wt]

′ is multivariate Gaussian, i.i.d.

across t, with zero mean and variance-covariance matrix denoted Σ11.

We refer to this new model as the CIR system throughout the rest of the paper.

We do not intend to focus on the selection and the analysis of the predictive power of

a particular predictor, thus we concentrate our study on the predictive system without

predictors, isolating the effect and the implications of the modified equation for µ. In that

sense, our analysis remains valid regardless of the predictors that could be integrated into

the system, as our results concern the relation between r and µ and are not dependent

on a given predictor. In Appendix 1.C we present the equations of the general system

including the possible interaction with external predictors.

In what follows we explore the theoretical implications of the CIR predictive system

and perform an empirical analysis using quarterly returns of the value-weighted index of

all NYSE, Amex, and Nasdaq stocks in excess of the quarterly return on 1-month T-bills

obtained from the Center for Research in Security Prices (CRSP). Following Pástor and

Stambaugh (2009) and other studies we begin our sample in 1952-Q1 after the Fed was

allowed to pursue an independent monetary policy. Our sample ends in 2012-Q4. In

Section 1.2.4 we compare the outputs of the system with a predictive regression using the

dividend-price ratio as the predictor variable. The latter is computed as the sum of total

dividends paid over the last 12 months divided by the current price, using monthly stock

returns with and without dividend on the value-weighted index from CRSP.

1.2.3 Structural differences between the CIR and AR systems

Assuming µt follows the dynamics in equation (1.7) has several key implications, including

the way in which past realized returns impact changes in expected returns. The implica-

tions follow from the mechanics of CIR-type processes10, in which the diffusion term of µ

becomes negligible and its mean reverting strength preponderant whenever µ approaches

zero. To see this, notice that from equation (1.7), it follows that,

µt+1 − µt = (1− β)(Er − µt) +
√
µtwt+1. (1.8)

Hence, whenever µt approaches zero, its diffusion term as well, making µt+1 much more

likely to increase driven by the mean-reversion term (1− β)(Er −µt). Notice as well that

the speed of mean reversion decreases with the level of the persistence parameter β, thus

being two competing effects on the dynamics of expected returns.

Using the Wold representation MA(∞) of the AR(1) process, Pástor and Stambaugh

(2009) explore the interesting temporal dependence of returns in the predictive system11.

10Similar processes such as Constant Elasticity of Variance (CEV), considered in the general derivation of the
Kalman Filter in Appendix 1.C, present the same type of mechanics.

11For the Wold representation of an AR(1) process see for instance Engle and Granger (1987), Anderson (2011),
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A similar representation can be done for the CIR-type process applying backward iteration

of equation (1.7) and assuming the positivity of the trajectory, which yields:

µt = Er +
∞∑
i=0

βiwt−i
√
µt−1−i. (1.9)

Equation (1.9) shows that, unlike the AR system, in our setting past innovations on

expected returns occurring at times when the level of µ is relatively higher, have a higher

impact in future expected returns than innovations occurring at times of low µ, everything

else being equal. In other words, the key mechanism is that, unlike with an AR(1), µt is

now a weighted function of both past expected returns and the corresponding shocks.

As discussed in section 1.2.4, this dependence on the level of µt implies variations in

the conditional variance of expected returns, and such variance variations are correlated

with variations in the level of expected returns. If the change effect prevails over the level

effect (as expected), these model predictions are in line with the empirically established

countercyclical property of the degree of return predictability. These effects are absent in

the AR system, in which the filtered conditional variances of expected returns are constant

over time.

Using equations (1.1) and (1.9), the return k periods ahead can be written as:

rt+k = Er +
∞∑
i=0

βiwt+k−1−i
√
µt+k−2−i + ut+k. (1.10)

Using equation (1.10) it can be shown that the autocovariance of rt is equal to (cf. Ap-

pendix 1.B for the derivation):

Cov(rt+k, rt) = βk−1

 βσ2
µ︸︷︷︸

level effect

+σuwE(
√
µt−1)︸ ︷︷ ︸

change effect

 , (1.11)

where σ2
µ is the unconditional variance of µ and is given by:

σ2
µ =

σ2
wEr

1− β2
. (1.12)

In the AR predictive system the expressions for the autocovariance of rt and the variance

of µ are equal to equations (1.11) and (1.12), except that the unconditional expectation

terms, E(
√
µt−1) in (1.11) and Er in (1.12), do not appear. As we will see, equations

(1.11) and (1.12) have important implications for the predictive system.

The R2 of the regression of rt+1 on µt captures the fraction of variance in rt+1 explained

by variations in µt. Hence it measures the level of predictability of returns and is defined

as,

R2 =
σ2
µ

σ2
r

= 1− σ2
u

σ2
r

, (1.13)

Cochrane (2005) chapter 6.
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then, a lower variance for µ implies a lower R2. From the corresponding expressions for

σµ for the AR and CIR systems, we have,

R2
ar =

σ2
w,ar

σ2
r(1− β2

ar)
, (1.14)

R2
cir =

σ2
w,cirEr

σ2
r(1− β2

cir)
, (1.15)

where the ar and cir subscripts indicate the system considered. In what follows we discuss

two opposite cases to analyze the theoretical implications of the CIR system. First, we

keep σw, β and ρuw equal in both systems, which yields differences on R2 and on the

relative importance of the change and level effects. Second, we assume that both models

have the same R2, β and ρuw, in which case the change and level effects have the same

relative weights in both systems and the parameter adjustment to get the same R2 is done

trough σw.

On the one hand, notice that equations (1.11) and (1.12) imply that, if E(
√
µt−1) < 1

and Er < 1 (a very mild assumption given historical returns), in the CIR system the

variance of expected returns and the autocovariance of returns would be lower than in

the AR system, everything else equal, that is, assuming σw, β, ρuw are equal for both

models. Intuitively, this result steams from the fact in the CIR system µt must vary in a

limited space of feasible values, unlike in the AR system for which µt can take negative

values. Mechanically, we can see that expected returns innovations w are weighted by the

previous value of
√
µ in equation (1.8) and thus, the size of the random shock in µt+1 is

much smaller in the CIR system when µt approaches zero, everything else being equal.

Notice that the level and change effects can be “mapped” into the autocovariance of r.

For ρuw < 0, whenever βσ2
µ < −σuwE(

√
µt−1) returns have a negative autocovariance, and

the change effect prevails. Hence, ρuw needs to be sufficiently negative for this to happen.

Setting σw, β, ρuw in the CIR system equal to the corresponding parameters of the AR

system induces a change in the relative weight of the two terms reflecting the change and

level effects in equation (1.11) with respect to the AR system, through the E(
√
µt−1) and

Er terms in the variance and autocovariance expressions. Assuming E(
√
µt−1) ≈

√
Er,

and Er < 1 then Er <
√
Er; thus the change effect would have a larger relative weight in

the return autocovariance of the CIR system (1.11) relative to AR system, keeping σw,

ρuw and β constant (regardless of the level of Er as long as Er < 1).

Indeed, in the CIR system, the knife-edge value of ρuw, i.e., the value such that the

change and level effects exactly offset each other in (1.11) is:

k-e ρuw =
−βcir σw,cir
σu(1− β2

cir)
× Er

E(
√
µt−1)

. (1.16)

This expression is equal to the knife-edge of the AR system, except for the ratio Er
E(
√
µt−1)

(which is absent in the AR system). As a consequence, for equal σw, β, ρuw, the knife-edge

value of ρuw for the CIR system would be closer to zero (i.e., less negative) than for the

AR system as Er
E(
√
µt−1)

< 1. This would imply a less restrictive condition on the level of
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ρuw for the change effect to prevail.

On the other hand, notice that the autocorrelation at k lags of returns in the CIR

model can be written as a function of R2, β and ρuw,

Corr(rt+k, rt) = βk−1
cir

(
βcirR

2
cir + ρuw

√
(1−R2

cir)R
2
cir(1− β2

cir)
E(
√
µt−1)
√
Er

)
, (1.17)

which follows from equation (1.11) and noticing that σ2
µ = R2σ2

r , σ
2
u = (1 − R2)σ2

r and

σ2
w,cir =

R2
cirσ

2
r(1−β2

cir)

Er
. The autocorrelation expression (1.17) is equal to the autocorrelation

of the AR system (see Pástor and Stambaugh, 2012, equation 22) except for the ratio
E(
√
µt−1)√
Er

. Assuming E(
√
µt−1) ≈

√
Er, the term cancels out12 in (1.17), thus if the two

systems have equal R2, β and ρuw then the level and change effects have the same relative

weight in both systems. Another way to see this, is equating (1.14) and (1.15), i.e., if

R2
ar = R2

cir then σ2
w,ar = σ2

w,cirEr and the extra ratio in the knife-edge formula (1.16)

disappears, yielding the same expression in both systems.

Equation (1.15) shows that R2
ar and R2

cir are likely to diverge whenever Er is relatively

close to zero, while they should tend to be closer as Er is further from zero (more on this

in section 1.3.1). Thus, the difference in R2 between the two systems is likely to be more

accentuated for higher return frequencies (e.g., Er is closer to zero for quarterly than for

yearly return).

Investors may have priors on R2 (as in Pástor and Stambaugh, 2009; Kvašňáková,

2013) or β (as in Pástor and Stambaugh, 2009), while intuition for σ2
w is less clear and

σ2
r is almost observable and strictly equal for both models. Thus, in our out-of-sample

Bayesian analysis (section 1.3.3) we use the same priors as in Pástor and Stambaugh

(2009) for β and ρuw in both systems, and choose prior distributions for σ2
w,ar and σ2

w,cir

such that the prior distribution of R2 is equal in both systems. As we will see from the

posterior distributions of β (Panels A and B of Figure 1.9), βcir tends to be smaller than

βar, and to steadily decrease over time from 1975 to 2012. Hence, µt tends to be less

persistent in the CIR system. This result is consistent with the discussion of equation

(1.8) above, since µ should have a higher speed of mean reversion (lower β) whenever it

approaches zero; an effect absent in the AR system. The result indicates that, while most

of the adjustment in parameters to obtain the same R2 happens through σw, some of it

is due to differences in β. Notice that the relative weight of the term reflecting the level

effect in equation (1.11) increases with the level of β. Thus, the more persistent expected

returns are, the more important the level effect is. Conversely, the lower the variance of

expected returns, σ2
µ, the weaker the level effect relative to the change effect, indicating

that the change effect can be even more likely to prevail in the CIR system.

Another variation of the widely used AR(1) representation for expected returns has

been introduced in Van Binsbergen and Koijen (2011). In their specification, when µt gets

closer to zero, its value is also more likely to be pushed back to its long-term mean rather

12The square root of the sample average (unbiased estimator of the expected value) is a consistent although
biased estimator of the expected value of the square root of the sample average (see for instance Barreto and

Howland, 2006, p. 396). In our in-sample analysis of section 1.2.4, we find empirically that the ratio
E(
√
µt−1)
√
Er

ranges between 0.99 and 1.00 for the R2 and ρuw considered.
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than decrease, as in the CIR system. In Van Binsbergen and Koijen (2011), this effect is

due to the time-varying autoregressive parameter but the conditional heteroscedasticity

of µ introduced in our predictive system is not present in their model.

The state-space representation of the system illustrates other angles of structural fea-

tures of the CIR model. Using the Kalman filter, the conditional expected return can

be written as the unconditional expected return mean plus linear combinations of past

return forecast errors13, where forecast error for the return in each period is defined as

εt = rt − E(µt|Dt−1). Then the expected return conditional on the history of returns can

be written as

E(µt|Dt) = Er +
∞∑
s=0

λsεt−s, (1.18)

where λs = βsm, and m is a steady-state filter parameter. Similar to the AR(1) predictive

system of Pástor and Stambaugh (2009), whenever the change effect is greater than the

level effect, i.e., the covariance term in the autocovariance (1.11) is larger than βσ2
µ, then

m < 0 for sufficiently negative ρuw (see Appendix 1.C).

The conditional expected return can also be written as a function of past returns

instead of past forecast errors as follows:

E(µt|Dt) = Er +
∞∑
s=0

ωs(rt−s − Er), (1.19)

where, in steady state,

ωs = (β −m)sm. (1.20)

Equations (1.18) and (1.19) have the same structure than the equivalent expression in the

AR predictive system, but the coefficient m is modified, leading to different predictions,

induced by a more time-varying behavior of the λ and ω coefficients. The expressions for

the finite sample value of mt (equation 1.60) and the steady-sate value of m (equation

1.72) in the CIR system are derived in the Appendix 1.C. We refer the reader to the

appendix in Pástor and Stambaugh (2009) to see the corresponding expressions in the

AR system.

The conditional expected return depends on the true unconditional mean, Er. Using

the sample mean to estimate Er in equation (1.19) and truncating the summation in the

right-hand side to s = t− 1, yields an estimate of the expected return E(µt|Dt) equal to

a weighted average of past returns, i.e.,

E(µt|Dt) =
t−1∑
s=0

κsrt−s, (1.21)

13In the case where predictors are used, an additional term containing innovations in the predictors is added to
equations (1.18), (1.19) and (1.21), for details, see Appendix 1.C.
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where

κs =
1

t

(
1−

t−1∑
l=0

ωl

)
+ ωs, (1.22)

and
∑t−1

s=0 κs = 1. This expression has the same form than in the AR system. However,

the ωs are functions of m, which has a different expression in the CIR system that depend

on the values of µ (See equation (1.72) of Appendix 1.C).

In order to illustrate the implications of the differences between the CIR and AR

models, such as the differences in the coefficients of the model representations above,

in what follows we perform an in-sample comparison of the two systems for the same

stock market series. In section II.B, Pástor and Stambaugh (2009) tested different values

for ρuw to see its impact on the predictive system outputs. Their analysis is performed

assuming β = 0.9, R2 = 5% and using the sample estimates for σr and Er in the system

without predictors. In that case, all other parameters needed to estimate µ are functions

of the parameters mentioned. The last row of Table 1.1 presents the numerical values

of the parameters used in Pástor and Stambaugh (2009) section II.B, adjusted using

the updated sample estimates for Er and σr. In the Internet Appendix we explore the

implications for the CIR system of setting σw,cir = σw,ar (leading to different R2 for each

system), which corresponds to the first row in Table 1.1 for the CIR system and the last

row for the AR system. As shown in the table, keeping the same value of σw yields an

R2 of 5% and 0.09% for the AR and CIR systems respectively. However, it is common to

have prior estimates about the level of R2, while we do not have prior beliefs about the

level of σw. Thus we focus the analysis here for the two systems with the same level of

R2 = 5% and maintain β, σr and Er equal (the resulting parameters of both systems are

reported in the last row of Table 1.1). As mentioned above, if R2 and β are equal in both

models, then the knife-edge value of ρuw is the same in both systems as well (using the

approximation E(
√
µt−1) ≈

√
Er), equal here to -0.47.

We find that, while the finite-sample estimates of mt converge fast to the steady-state

value in the AR system, this is not the case for the CIR system. In effect, given its depen-

dence on the current level of µ, the finite-sample values of mt present significant variations

over time around the steady-state value. This feature has important implications for the

conditional variance of µ which also implies a time-varying predictability of returns.

For example the changing dynamics of µ in the CIR system can be mapped in the

dynamics of the coefficients connecting the realized returns and expected return esti-

mates of the system. As Figure 1.1 shows for several values of ρuw (below or equal to

the knife-hedge value), unlike the AR system, the CIR system has a conditional mem-

ory (conditional on the phase of the market) reflected for instance in the κ coefficients,

capturing the potential long-lasting effects of past shocks on future expected returns. In

effect, the lagged κ’s and similarly λ, ω (unreported for space consideration) of the CIR

system are different, whether they are calculated after a series of positive realized returns

or after a series of negative realized returns. In order to illustrate the conditional memory

of the CIR system we zoom in two particular sub-periods in the sample, i.e., 1952Q1 to

1999Q4 (end of the bull market of the IT bubble), and 1952Q1 to 2002Q4 (end of the bear
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market after the IT bubble bursts). Figure 1.1 presents the corresponding values of the

finite-sample coefficients κ (the behavior of λ and ω coefficients is similar), for both sys-

tems calculated at the end of the two sub-periods. From the figure we see that, when the

change effect dominates, in the CIR system the latest observations have a larger impact

in expected returns following a falling market than after a rising market, that is, expected

return estimates depend more on the most recent returns during bad times (through a

more negative relation with the latter). This effect is induced by the proximity of µt to

its lower bound (zero) after a long bull market, as further positive returns cannot push µt
much further down.

In Figure 1.1 we observe a remarkable difference in the shape of the corresponding

coefficients curves for the two systems. Indeed, the rise from the most negative values of

the coefficients corresponding to the lower lags (i.e., most recent values) toward zero of

the curve of κ, is much sharper in the CIR system. This implies that the latest return will

induce a larger (relative) correction of the estimate of µt in the CIR system relative to the

AR system. To see this, consider any two lag indices l1 and l2 such that 0 < l1 < l2 < 20

(notice that the lower lag l1 refers to a more recent observation than l2) in Figure 1.1, and

remark that14 |κ
cir
l1
|

|κcirl2 |
>
|κarl1 |
|κarl2 |

. The coefficients of the lower lags are also larger in absolute

terms for the CIR system, i.e., |κcir1 | > |κar1 |. Thus, the CIR system gives more (negative)

weight to the latest observations than the AR system. This effect is due to a higher

time dependence of mt with respect to the corresponding terms in the AR system (cf.

Appendix 1.C), and it is also observed in the weights calculated at the end of the total

sample, 2012Q4 (unreported for space considerations).

Panels A and B of Figure 1.2 present the filtered equity premium, E(rt+1|Dt), for the

two systems on the overall sample period when their R2 is set to 5%. We observe in

particular that the level of µ reaches larger maximum values in the CIR system (Panel

B) than in the AR system (Panel A), while it tends to slow its variations much faster as

it approaches zero as suggested by the dynamics of the CIR model.

1.2.4 Economic Implications

Remarkable implications of using the CIR-discretization to model expected returns arise

from the relationship it implies between the level of expected return and important quan-

tities such as the conditional covariance between expected and realized returns, the con-

ditional autocovariance of returns, and ultimately the conditional degree of return pre-

dictability.

Following Campbell (1991), the unexpected return can be decomposed as the sum of

a cash flow shock nC,t+1, and a discount rate shock nE,t+1:

ut+1 = nC,t+1 − nE,t+1. (1.23)

Under the CIR assumption for the dynamics of expected return µt, the discount rate shock

14We also observe
|λcir

l1
|

|λcir
l2
| >

|λar
l1
|

|λar
l2
| and

|ωcir
l1
|

|ωcir
l2
| >

|ωar
l1
|

|ωar
l2
| , unreported here.
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is equal to15 √µtwt+1. This is a key observation which implies the following conditional

properties of the CIR system:

Var(nE,t+1|D∗t ) = Var(µt+1|D∗t ) = µtσ
2
w, (1.24)

Cov(rt+1, µt+1|D∗t ) = Cov(ut+1,
√
µtwt+1|D∗t ) =

√
µtσuσwρuw (1.25)

Cov(rt+1, rt+k|D∗t ) = Cov(ut+1, µt+k|D∗t ) = βk−2σuσwρuw
√
µt. (1.26)

where D∗t = {rt, µt, rt−1, µt−1, ..., r1, µ1} represents the history of realized and expected

returns16 at time t.

First, equation (1.24), shows that in the CIR model the conditional variance of ex-

pected returns is time-varying and proportional to the level of µt. Hence, during bad times,

when expected returns are higher (i.e., assuming ρuw is sufficiently negative), the variance

of the discount rate shock is higher. Second, equation (1.25) shows that the strength of the

relationship between realized and expected return is time-varying, depending on the level

of µt. For ρuw < 0, it implies an empirically plausible negative time-varying conditional

covariance between realized and expected returns, that is higher (in absolute terms) when

µt is high, i.e., during bad times. Third, the conditional auto-covariance of returns (1.26)

is time-varying, exponentially decreasing and proportional in absolute value to
√
µt. It

follows that returns are more persistent during bad times. These last three implications

all imply a higher return predictability during recessions. This feature of the model is

in line with the economic intuition that investors demand higher risk premiums in bad

times, when volatility is higher as well, as “overall adjustments to discount rates per unit

of change in economic state are larger in bad times”, Henkel et al. (2011).

Henkel et al. (2011) also notice that price-dividend ratios become more volatile and

prices more sensitive to changing expectations as conditions worsen. The fact that the

variance of the dividend yield is larger during bad economic times is quite intuitive. As

noted by Goetzmann and Jorion (1993), given the persistence of dividend payments,

the variations in dividend yields are essentially driven by price changes, which are more

volatile during recessions. At the same time, return predictability and variations of the

dividend yield are tightly linked (see Cochrane, 2008).

Henkel et al. (2011) find empirically that the predictive power of the dividend yield is

significant during economic contractions but nonexistent during expansions. In order to

illustrate this point empirically with our model, in Panel A of Figure 1.3 we present the fil-

tered conditional volatility of expected returns for the CIR system (without predictors) in

finite-sample, with a prior for ρuw set to −0.85 (the conditional volatility of the AR system

is also presented). Moreover, Panel A of Figure 1.3 also presents the conditional variance

of fitted values from a standard OLS predictive regression using a rolling window with

the latest 30 years of data (as in Fama and French, 1989) using the dividend-price ratio

15This result can be derived using the Wold-type representation of the CIR process and well as the decomposition
of Campbell (1991).

16In practice, the past values of expected returns are filtered using the Kalman filter algorithm presented in
Appendix 1.C.
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as the predictor variable x. For the regression, the conditional variance of µ is calculated

as the squared slope b2, multiplied by the variance of x (i.e., the dividend-price ratio),

both estimated using the latest 30 years of data. We observe that the conditional variance

of µ for the CIR system increases significantly during economics recessions (grayed areas

in the figure) as reported by the National Bureau of Economics Research. Interestingly,

similar increases are observed for the predictive regression using the dividend-price ratio,

while the conditional variance of µ in the AR system is constant over time.

The degree of return predictability conditional on the information set D∗t−1 can be

measured as the fraction of the variance in returns explained by variations in expected

returns for the CIR model as:

R2(rt+1, µt|D∗t−1) =
Var(µt|D∗t−1)

Var(rt+1|D∗t−1)
=

µt−1σ
2
w

µt−1σ2
w + σ2

u

=
1

1 + σ2
u

µt−1σ2
w

. (1.27)

Together with assumption ρuw < 0, equation (1.27) yields an empirically plausible degree

of predictability that concentrates in bad times, when realized returns are low and per-

sistent and when at the same time expected returns are high and highly volatile. This is

in line with Henkel et al. (2011) who find that the conditional R2 of a predictive Regime-

Switching Vector Autoregressive model presents significant variations across the business

cycle, using several predictors including the dividend yield. In order to illustrate this

point empirically, we compute a time-conditional R2 in our rolling predictive regression

using the dividend yield:

R2(t+ 1|Dt) =
σ2
µ(t|Dt)

σ2
r(t+ 1|Dt)

, (1.28)

where σ2
µ(t|Dt) corresponding to the conditional variance of µ, is calculated as explained

above, and σ2
r(t+1|Dt), the conditional variance of returns, is estimated using the sample

estimate for the variance of r with the latest 30 years of data. Notice that the term (1.28)

is similar in spirit to to the conditional R2 considered in Henkel et al. (2011).

Similarly, we calculate the conditional R2 of the CIR (and AR) predictive system as

given by the right-hand side of (1.28), using the corresponding filtered values for σ2
µ(t|Dt)

and σ2
r(t + 1|Dt) which correspond to the quantities Qt and the first component of St+1

respectively, for which expressions are provided in the Kalman Filter derivation of the

system in Appendix 1.C. Panel B of Figure 1.3 presents the conditional R2 of equation

(1.28), i.e., the ratio of the conditional variances of µt and rt+1 for both systems and for

the (rolling) predictive regression using the dividend yield.

The time series of the conditional R2 of the CIR system without predictors and the

corresponding series of the predictive regression present remarkably similar dynamics,

increasing and decreasing over time in tandem. Moreover, the conditional R2 increases

during economic recessions. We find a qualitatively equivalent result when using the same

conditional variance estimate of returns used in the predictive regression instead of the first

component of St+1 in the formula of the conditional R2 of the CIR system (unreported).

This result confirms the counter-cyclicality of the predictability of the dividend yield

documented by Henkel et al. (2011). More importantly, it shows that the CIR predictive
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system without predictors naturally reproduces the countercyclical dynamics of return

predictability (an effect absent in the AR system which presents a constant conditional

R2 as shown in Figure 1.3 Panel B). Interestingly, in both panels of Figure 1.3, we note

that after the year 2000, the curves corresponding to the CIR system and dividend-yield

regression start to diverge significantly in terms of level. Goyal and Welch (2003) highlight

an instability of dividend price ratio autoregression coefficient, which has increased from

about 0.4 in 1945 to about 0.9 in 2000 according to their estimation procedure. This

observation may explain the behavior of the predictive regression curves in Figure 1.3 as

an increasing autoregression coefficient implies a lower conditional variance in dividend

yield and thus a lower conditional R2. This post-2000 effect is absent in the CIR system

as the autoregressive parameter used in this illustration is constant over time.

Finally, the CIR system implies a natural risk-return relation that holds both for

unconditional an conditional estimates of expected returns and volatility. To see this,

from equation (1.12), it follows that the unconditional variance of realized returns is

σ2
r = σ2

µ + σ2
u =

σ2
wEr

1− β2
+ σ2

u (1.29)

thus there is a positive relationship between the unconditional variance of realized returns

and the unconditional level of expected returns in the CIR model, which is absent in

the AR system. In other words, the CIR implies an unconditional positive risk-return

tradeoff.

In order to test whether there is a relationship between the conditional expected returns

and the conditional volatility of realized returns according to the systems, we regress the

conditional estimates for expected returns and volatility from the Kalman filter for the

CIR and AR models, as follows:

E(rt+1|Dt) = a+ b
√

Var(rt+1|Dt) + et (1.30)

where E(rt+1|Dt) = E(µt|Dt) is the filtered expected return from the predictive systems,

and Var(rt+1|Dt) is the expected variance of returns estimated by the systems. Table 1.2

presents the result of the regressions (1.30) for three levels of ρuw, which correspond to

the knife-edge value and two values consistent with the prior that expected returns are

counter-cyclical. For the knife-edge value of ρuw, the change and level effects cancel each

other, yielding a constant µ and thus no relation with the conditional variance in both

systems. On the other hand, for the other values of ρuw, the results show that the condi-

tional estimates of the CIR model have a positive relationship, while the estimates from

the AR have a negative and insignificant relationship, confirming the result in equation

(1.29).

1.3 Empirical analysis

In this section we present an out-of-sample analysis of return predictability using both

the predictive system and the predictive regression on the dividend yield. We employ a
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Bayesian approach for estimating the predictive system and ordinary least squares (OLS)

for estimating the regression. First, we discuss the implications of using the CIR system,

on the priors of the parameters distributions. Then we conduct an exploratory analysis

using point estimate parameters for implementing the systems. Finally, we present our

Bayesian analysis and out-of-sample results.

1.3.1 What are plausible values for R2, β and Er?

The empirical implementation and estimation of the predictive system in a Bayesian

setting needs a set of priors on the distribution of the parameters involved. These priors

should represent a plausible parameter set, compatible with the hypotheses behind the

system. Unlike the AR system, one of the implications of using the CIR system is the

assumption that the expected return process is unlikely to be negative. Hence, the priors

used to implement the CIR system should be compatible with this hypothesis. In this

section we discuss the plausible values for the R2 of the regression of rt+1 on µt, the

persistence parameter β and the long-term mean Er using the same stock market index

and sample period as in Pástor and Stambaugh (2009).

The CIR continuous time model ensures the non-negativity of the process µ in equa-

tion (1.6) if the parameters respect the condition κθ ≥ σ2

2
(Feller, 1951), which can be

translated in terms of the parameters of the discretized process as :

(1− β)Er ≥
σ2
w

2
. (1.31)

By definition of σµ, condition (1.31) also implies an upper bound for σ2
µ in the CIR model:

σ2
µ =

σ2
wEr

1− β2
≤ 2(1− β)E2

r

1− β2
. (1.32)

Furthermore, using an estimate for the variance of realized returns σ2
r , this condition also

provides an upper bound for the R2 from the regression of rt+1 on µt since by definition

(1.13) it follows that,

R2 =
σ2
µ

σ2
r

≤ 2(1− β)E2
r

(1− β2)σ2
r

. (1.33)

This means that, for a given set of plausible values for Er and β, the CIR positivity

condition (1.31) restrains the possible value set for σµ, and for R2 for a given estimate of

σr. On the other hand, there is no such internal coherence restriction in the AR system

as there is no positivity constraint. From condition (1.31) and equation (1.33), it follows

that to estimate the upper bound of R2 for the CIR system, we need to get: 1) E∗r : the

highest plausible value of Er, and 2) β∗: the lowest value for β. Considering the return

sample used in Pástor and Stambaugh (2009), to estimate the highest plausible value of

Er, we calculate max(Êr(1, ..s0)) for a sample of size s0 for s0 = {80, 81, ...208}, where 80

points corresponds to a minimum sample period of 20 years and 208 is the total sample

size of quarterly data from 1952-Q1 to 2003-Q4 used in Pástor and Stambaugh (2009),

which yields E∗r = max(Êr(1, ..s0)) = 0.0226 (9% p.a.). Second, we use the 5% quantile
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of the prior distribution of β in Pástor and Stambaugh (2009), i.e., β ∼ N (0.99, 0.152),

hence β∗ = 0.99 + 0.15× z(5%) = 0.743, where z(5%) denotes the 5% quantile of a random

variable with standard normal distribution. These two estimates for E∗r and β∗ within

condition (1.31) together with the sample estimate of σ̂r = 0.0837 yields an upper bound

for the R2 in the CIR system of 8.37%. This upper bound is in line with Pástor and

Stambaugh (2009)’s statement that a plausible prior distribution of R2 would have most

of its mass being below 5% and a mode around 1% for the US stock market quarterly

data sample considered.

Note that, using the knife-edge formula of ρuw, it is possible to derive bounds for the

persistence parameter β in order to have a plausible knife-edge value, for both, the AR and

CIR systems for a given value of R2. Considering a knife-edge value within the interval

[-1, 0] is equivalent to not excluding the possibility that the change effect dominates over

the level effect. Notice that, if ρuw > 0 there is no change effect at all. If the knife-edge

value of ρuw of the AR system is between -1 and 0 then,

|k-e ρuw| =
∣∣∣∣ −βσwσu(1− β2)

∣∣∣∣ < 1. (1.34)

From the definition of R2 and σµ for the AR system, notice that, σ2
w = (1− β2)R2σ2

r and

σ2
u = (1−R2)σ2

r . Replacing these in inequality (1.34) and squaring yields

R2β2

(1−R2)(1− β2)
< 1

|β| <
√

C

1 + C
(1.35)

where C = (1−R2)
R2 , which simplifies to |β| <

√
1−R2. For instance, if R2 = 5% the upper

bound of β is 0.97. A similar calculation using the knife-edge value for the CIR system

(equation 1.16) yields the bounds for β in the CIR model which are given by (1.35) but

with C = (1−R2)
R2Er

. The consistency condition (1.35) implies an inverse relationship between

R2 and the maximum feasible persistence parameter of µ. If one believes that µ is very

persistent and we do not preclude the possibility that the change effect dominates over

the level effect then the R2 cannot be very high and viceversa.

The positivity condition (1.31) implies a long-term mean strictly positive, i.e., Er > 0.

Pástor and Stambaugh (2009)’s prior distribution for Er is Gaussian with a “large” 1%

standard deviation around its sample mean, denoted Êr (see p. 9 of the internet appendix

in Pástor and Stambaugh, 2009). In effect, the 1% quantile of such distribution is a

negative number, which is incompatible with the CIR model assumption, especially if we

consider that the presumably positive process µ should vary around Er. Indeed, assuming

that expected returns are non-negative implies that the long-run average of µ, Er should

be“far enough” from zero. Thus, a plausible value for the variance of the prior distribution

of Er should be lower than 1% for the CIR system. For instance, given that the prior

for the distribution of Er is symmetric, one may assume that the distance between the

sample mean Êr = 0.0185 and its highest plausible value of E∗r = 0.0226 (see calculation
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above), is the same distance between Êr and a low quantile of its distribution. We deduce

σEr as follows. Assume Êr + σErz(5%) = Êr − (E∗r − Êr), hence

σEr =
(Êr − E∗r )
z(5%)

,

which is 0.25% for the sample estimates mentioned above, thus four times smaller than

the prior standard deviation of 1% used in Pástor and Stambaugh (2009) for the AR

model. This choice ensures a positive 1% quantile for the prior distribution of Er.

1.3.2 Out-of-sample return prediction using point estimate parameters

In what follows we present the results of an exploratory analysis which consists in an out-

of-sample return prediction exercise of quarterly returns of the value-weighted CRSP US

aggregate stock market index in excess of the quarterly return on 1-month T-bills obtained

from the Center for Research in Security Prices (CRSP). We begin our sample in 1952,

as in our in-sample analysis of section 1.2.4. In order to address concerns regarding the

dependence of predictability evidence on the oil price shocks period 1973 − 1974, we set

our out-of-sample period to 1975-2012 for this first analysis. We also consider additional

out-of-sample periods in the Bayesian analysis of section 1.3.3.

In order to estimate µ, we use both the CIR and AR predictive systems without

predictors, with fixed values for the models parameters. Every quarter we estimate Er
and σr using the prevailing sample estimates at each point in time and we set the R2 of the

regression of rt+1 on µt equal in both models, with R2 = 0.5%, 1%, 2%, 3%, 4%, 5%. We

consider two plausible values for the persistence parameter of β = 0.9 and then β = 0.8

(kept constant throughout the entire period). Furthermore, we perform predictions using

several values of ρuw, i.e., from -0.95 to 0.95 with a step of 0.05. All other parameter values

in the systems follow from their corresponding definitions. We also estimate µ using the

OLS predictive regression on the dividend yield. The latter is defined as in section 1.2.4.

The regression is re-estimated every quarter using available data. We compute predictions

at each point in time using the updated parameters.

Following former studies such as Goyal and Welch (2008), we assess out-of-sample

predictive power with the out-of-sample (OS) R2
OS introduced by Campbell and Thompson

(2008),

R2
OS = 1− MSEpred

MSEmean
, (1.36)

where MSEpred is the mean squared error of the model predictions and MSEmean is

the mean squared error of using the prevailing return’s historical average as estimate

of expected return. This metric evaluates weather a given system produces more accu-

rate predictions than the no-predictability random walk benchmark, i.e., the prevailing

historical average.

The R2
OS for the predictive regression is negative and is equal to -0.012, i.e., the regres-

sion does not produce better predictions than the historical average. The overall results

for the predictive systems are presented in Figure 1.4 for β = 0.9, and Figure 1.5 for
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β = 0.8. The two figures present the R2
OS for each system, as a function of ρuw, when set-

ting the R2 of the regression of rt+1 on µt to a given value in {0.5%, 1%, 2%, 3%, 4%, 5%}.
The grayed areas in both figures correspond to values of ρuw implying a dominant change

effect.

First, we observe that the highest R2
OS for each system are positive, i.e., both pre-

dictive systems manage to produce better forecasts than the historical average, as well

as the regression on the dividend yield. For each system, the larger R2
OS are obtained

with different priors on R2 and β. The highest R2
OS across all parameter combinations

considered corresponds to the CIR system (3.39%), with β = 0.8 and R2 = 2%. On the

other hand, the highest R2
OS for the AR system is 3.00% and corresponds to β = 0.9,

and R2 = 4% (where ρuw = −0.95 in both cases). This result is consistent with the intu-

ition that the CIR system is more suited for lower levels of R2 (as µ would have a lower

variance) and thus with a less a stringent condition on ρuw to yield a dominant change

effect. Furthermore, it also suggests that the CIR system may imply an expected return

process with lower persistence, a result confirmed by the posterior distribution of β of the

Bayesian analysis of the next section (1.3.3).

Also, we note that for most values considered for the R2 of the regression of rt+1 on

µt, for both AR and CIR systems, the R2
OS are positive when ρuw is below its knife-edge

value (except the case β = 0.8; R2 = 4%, 5%; ρuw = −0.95 for the CIR system). Table

1.3 presents a summary of the highest and lowest R2
OS obtained for each system as well as

the corresponding parameters set. For both systems, the highest R2
OS are obtained with

ρuw = −0.95, whereas the lowest R2
OS are obtained for ρuw = 0.95. This result indicates

that Pástor and Stambaugh (2009)’s believe that the change effect should dominate, is also

consistent with the CIR system. It is also interesting to notice that in all configurations

with ρuw ≥ 0 (only level effect) the less negative R2
OS are obtained with the CIR system

for all priors of R2 considered.

In the next section, we explore the performance of the predictive system, consider-

ing different out-of-sample periods and different priors on the parameters. The results

presented thereafter confirm the conclusions above.

1.3.3 Out-of-sample return prediction using Bayesian parameters estimates

Using the same data as in section 1.3.2, we conduct now an out-of-sample analysis using

both predictive systems estimated with a Bayesian methodology, as well as the OLS re-

gression on the dividend yield. As in section 1.3.2, the predictive regression is re-estimated

every quarter using available data and predictions are calculated at each point in time

using the updated parameters. The Bayesian parameter estimation procedure is similar

to that of Pástor and Stambaugh (2009) for estimating the predictive systems. This pro-

cedure allows incorporating parameter uncertainty and specifying less informative prior

distributions. Posterior distributions for the parameters are obtained using Gibbs sam-

pling (see for instance Kim and Nelson, 1999). Following Pástor and Stambaugh (2009),

we estimate the predictive systems parameters by simulating 76000 posterior draws, drop-

ping the first 1000 as a “burn-in” period and take every third draw from the rest to obtain
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25000 posterior draws. The overall Markov Chain Monte Carlo (MCMC) procedure and

the posterior distributions for the AR system are described in the internet appendix of

Pástor and Stambaugh (2009). We refer the reader to Appendix 1.D for further details on

the Bayesian parameter estimation procedure and the posterior distributions in the CIR

system.

The predictive systems parameters are re-estimated on the first available date of each

year in the sample, while predictions (estimates of µ) are computed each quarter using

the data available at each point in time (thus running the filter with the same parameters

over the year).

For the AR system, the priors distributions used are identical (except for Er as ex-

plained below) to those described in section B.5 of the internet appendix of Pástor and

Stambaugh (2009). We thus refer to their initial paper for more details and provide only

a brief description of the distributions. The prior for β, plotted in Panel B of Figure 1.7,

is chosen to capture the belief that µ is persistent, i.e., β is smaller than one but not

by much17 β ∼ N (0.99, 0.152) × Iβ∈(0,1). The prior on Er is slightly modified in order to

use the same prior as the CIR system18: Er ∼ N (r̄, σ2
Er

), where r̄ denotes the mean of

the returns {rt} available at the date of estimation and σEr is choosen as described in

section 1.3.1. We consider three prior distributions for σw, plotted in Panel B, D and F of

Figure 1.6. The submatrix Σ11 =

[
σ2
u σuw

σwu σ2
w

]
has, for each prior, an inverted Wishart

distribution: Σ11 ∼ IW (T0Σ̂11,0, T0), where T0 is equal to one fifth of the available return

sample size. The prior mean E(Σ11) is set according to: 1) a prior value R̄2 for its diagonal

elements, and 2) our priors on ρuw (see below) for the non-diagonal elements19. The three

different priors on σw, corresponding to different priors on the R2 (and the variance of µ),

are obtained by setting E(σ2
µ) equal to a given percentage of the prevailing sample return

variance σ̂r
2, i.e., E(σ2

µ) = R̄2σ̂r
2 and E(σ2

u) = (1 − R̄2)σ̂r
2 for R̄2 equal to 2.5% (less

predictability prior), 5% (prior used in Pástor and Stambaugh, 2009, denoted hereafter

benchmark prior) and 10% (more predictability prior). The corresponding prior distribu-

tions of the R2 are presented respectively in Panel A, C and E of Figure 1.6. Moreover,

we consider two priors on ρuw used in Pástor and Stambaugh (2009), which are presented

in Panel A of Figure 1.7: noninformative (flat between -0.9 and 0.9) and more informative

prior (most of the mass below -0.71).

The priors used for the CIR system are the same for ρuw, β and R2. The latter implies

a prior distribution with higher levels of σw as shown in Panels B, D and F of Figure 1.6

and explained in section 1.2.3. As described in detail in section 1.3.1, the prior distribution

of Er used here for both the CIR and AR systems, is slightly different from the prior used

in Pástor and Stambaugh (2009); thought we use the same method to estimate the mean,

we use a lower variance, in order to preclude negative value draws for the long-term mean

17Iβ∈(0,1) denotes here the indicator function equal to 1 if β ∈ (0, 1) and 0 otherwise. In our case, this corresponds
to retain only draws of β satisfying the condition.

18We also tried to use the initial prior for Er used in Pástor and Stambaugh (2009) for the AR system, i.e.,
Er ∼ N (r̄, 0.012), but the out-of-sample results were poorer, i.e., negative R2

OS for the AR system.
19We refer to page 9 of the internet Appendix of Pástor and Stambaugh (2009) for a description of the prior

draw procedure of the non-diagonal elements.
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of expected returns Er.

Again, we use the R2
OS, described in section 1.3.2, to assess the out-of-sample pre-

dictability of the systems20 and the regression. The statistical significance of R2
OS is

assessed using the FMSE statistic proposed by McCracken (2007), which tests for equal

MSE of the historical mean and system’s conditional forecasts. It is given by:

FMSE = (T − s0)
(MSEmean −MSEpred)

MSEpred
, (1.37)

where T stands for the total size of the sample periods and s0 for the initial calibration

sample. In our tables we use ∗, ∗∗ and ∗ ∗ ∗ to indicate statistical significance at 10%, 5%

and 1% levels respectively.

In addition to this asymptotic testing approach, we assess the systems’ prediction

performance using the log predictive score LPS. This metric is calculated as:

LPS =
1

(T − s0)

T−1∑
t=s0

log p(rt+1|D∗t ), (1.38)

where p(rt+1|D∗t ) is the predictive density of rt+1 given realized and (estimated) expected

returns available at time t. The latter is available in closed form for both predictive

systems and predictive regression, since each return model is conditionally Gaussian

N (µt, σ
2
r).

The out-of-sample predictive performance statistics R2
OS and the LPS are presented in

Tables 1.4 and 1.5 for the two predictive systems respectively. The results of the regression

are given in Table 1.6. We consider four out-of-sample periods. The first one is the longest

and is the same period considered in section 1.3.2 with point estimates: 1975-2012. We

also consider three additional out-of-sample periods of 25 years, with starting dates spaced

by 5 years: 1975-2000, 1980-2005, 1985-2010.

There are four clear conclusions from the results regarding the predictive system, 1)

the more informative prior on ρuw that corresponds to a dominant change effect improves

out-of-sample return forecasts for both systems, 2) for all periods and predictability priors

considered, using the more informative prior on ρuw, the CIR system yields better out-of-

sample estimates than the AR system, 3) in both systems the prior on the predictability

level (i.e. R2 of the regression of rt+1 on µt) that yielded the highest R2
OS and LPS

numbers was different in each of the out-of-sample periods considered, which suggests a

varying level of predictability, 4) the CIR system using the more informative prior on ρuw
yields significantly better out-of-sample predictions than the prevailing historical average

for all out-of-sample periods considered, for at least one R2 prior. In fact, the R2
OS is

significant in 10 out of the 12 combinations of priors and sample periods considered.

Indeed, a comparison of the R2
OS and LPS obtained with the noninformative prior and

the more informative prior on ρuw for each system suggests that ρuw is more likely to be

negative. For instance, in the longest out-of-sample period 1975-2012 (first panel of Table

20Gneiting (2011) showed that the MSE is a consistent performance measure when the point prediction equals
the mean of the predictive distribution.
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1.4), the results obtained with the less predictability prior (prior on R2 leading to the best

results for both systems on this period), for the AR system, using the more informative

prior on ρuw instead of the noninformative, leads to an increase of the R2
OS from -1.03%

to 0.28%. Although the sign of the latter R2
OS is positive, the AR system predictions do

not outperform significantly the prevailing historical average in terms of MSE. Regarding

the CIR system, the noninformative prior on ρuw yields an R2
OS of -0.30%, less negative

than the AR system in this configuration but implying prediction errors still greater than

the historical mean. On the other hand, using the more informative prior leads to a

positive R2
OS of 1.21%, significant at the 5% level. Consequently using the CIR system

with the more informative prior on ρuw produces significantly more accurate predictions

than the historical mean of returns, which is not the case when using the AR system in

this case. The conclusions regarding the benefits of using the more informative prior on

ρuw are confirmed by the results obtained for each out-of-sample sub period considered,

and for each prior on R2. Regarding Table 1.5, the conclusions are very similar. The

LPS obtained with the more informative prior on ρuw are always greater than the LPS

obtained with noninformative prior. In addition, for all out-of-sample periods, considering

the more informative prior, the LPS of the CIR system is higher than the LPS of the

AR system.

Table 1.6 presents the corresponding out-of-sample prediction error metrics from the

forecasts of a one period ahead predictive regression using the dividend yield as a predictor.

For the regression, the R2
OS are negative for all periods. Furthermore, in every period

considered the LPS predictability performance metric of the two predictive systems is

better than for the regression in all configurations except for the AR system on the period

1975-2012.

We also observe on Tables 1.4 and 1.5 that, the highest R2
OS and LPS for the CIR

system is systematically greater than those of the AR system (for all periods), confirming

results of section 1.3.2. This suggests there exist benefits in terms of out-of-sample predic-

tion in using the CIR system instead of the AR system and the regression on the dividend

yield. Hence, the new features of the CIR system are consistent with the dynamic of the

unobservable expected return process in our sample.

Moreover, for both systems, we note that the prior on the degree of return predictability

(R2) leading to the highest R2
OS and LPS is different for most out-of-sample periods

considered. In other words, assuming that return predictability is lower or higher implies

better out-of-sample estimates, depending on the period. This result suggests that the

predictability of returns is in fact time-varying, which is in line with the CIR system and

with findings in Rapach et al. (2010) and Henkel et al. (2011). This result also suggest

that the outperformance of the CIR system with respect to the AR system in our Bayesian

analysis may be explained by the fact that the CIR system incorporates expected returns

heteroscedasticity.

Additionally, for all out-of-sample periods considered, using the more informative prior

on ρuw leads to positive R2
OS for both models for at least two of the priors on R2. How-

ever, the significant R2
OS are obtained for all periods for the CIR system (with different
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predictability priors on R2), but only for two out-of-sample periods for the AR system

(1975-2000 and 1980-2005).

To illustrate the dynamics of expected returns produced by the different systems, the

out-of-sample forecasts over the longest period are presented in Figure 1.8. The priors

for the predictive systems correspond to more predictability for R2 and more informative

for ρuw. The range of fluctuations of expected returns are very different between the

predictive systems and the regression. For the latter, the forecasts range from -1.47% to

6.14% per quarter. For the predictive systems, the estimates are much more concentrated

and more plausible. Expected returns lie between 1.89% and 3.95%, and between 0.38%

and 2.88% for the CIR and AR respectively. The CIR estimates appear to exhibit larger

variations during economic recessions than the AR, as suggested by the model. Inter-

estingly, in Figure 1.8 we also observe that both the CIR system and the dividend yield

regression produce increasing forecasts at the end of the recession period 2000-2012, while

the AR system generates decreasing estimate values. Note that the considerable diver-

gence between the two predictive systems at the beginning of the period can be explained

in particular by the difference in posterior mean for the parameter Er at this first date:

2.80% for the CIR versus 1.30% for the AR. We discuss below the disparities between

parameter estimates between the two systems. In addition to the structural differences

implied by the models, these parameter divergences contribute to the differences between

the expected return time series over the sample.

Figure 1.9 presents the evolution of the posterior mean of the parameters β and ρuw for

the longest out-of-sample period 1975-2012 (re-estimated on the first available date of each

year in the sample) using the less predictability prior21 on R2 and the more informative on

ρuw. We observe first that the average levels of these parameters differ for the AR and the

CIR systems, and second that the posterior means are stable throughout the out-of-sample

period for the AR system whereas they vary over time for the CIR system. We notice on

Panels A and B of Figure 1.9 that the posterior mean of β for the CIR system (ranging

from about 0.8 to 0.4) is always lower than its equivalent in the AR system (which is

stable around 0.9). This observation is in line with Kelly and Pruitt (2013)’s findings,

and suggests a less persistent expected return process for the CIR system, confirming the

results obtained using point estimate parameters in section 1.3.2. Moreover, unlike for

the AR system, the posterior mean of β for the CIR system is obviously not constant

over time: β is stable around 0.6 from 1975 to 1982, increases to 0.7 by 1986, and then

declines smoothly to 0.4 by 2012. This decrease in the level of β explains the progressively

lower R2
OS observed in the latest two sub periods (1980-2005 and 1985-2010). To see this,

notice that according to equation (1.15), the lower β, the lower the proportion of returns

variance explained by expected returns.

Furthermore, Figure 1.10 presents the evolution of the sample autocorrelation of re-

turns at lag 1, using the available returns sample at each point in time. The similarity with

the Panel B of Figure 1.9 is striking, as both the sample autocorrelation and the estimated

value of β show very similar variation, particularly visible in the recent decline on their

21Conclusions are similar using the benchmark prior and more predictability priors on R2 (unreported).
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value. This suggests that the estimation of CIR system captures the fact that returns

autocorrelation is not constant over time through the parameter β. Indeed, as observed

in equation (1.17) above, there exists an analytic relation between the auto-correlation of

returns and the persistence parameter β. A decrease in the latter is related to a decrease

in the persistence parameter of expected returns, which is empirically observed only in

our estimation of the CIR system.

Another divergence between the systems is observed on Panels C and D of Figure 1.9,

where the posterior mean of ρuw is more negative for the AR system: between -0.6 and

-0.8, than for the CIR system: between -0.2 and -0.5. This observation also confirms the

results obtained in section 1.3.2: the value of ρuw should be closer to zero if we adopt

the CIR system as the predictive model. Interestingly, similarly to the parameter β,

the posterior mean of ρuw is relatively constant over time for the AR system while it is

time-varying for the CIR system. Indeed, for the latter, the variations of ρuw in Panel

D are virtually the mirror image of the variations of β in Panel B (sample correlation of

-0.86 between the posteriors of β and ρuw), meaning that empirically, as β decreases, the

correlation between expected and unexpected returns becomes less negative.

These conclusions are confirmed by Figure 1.11, which presents the posterior distri-

butions of parameters ρuw and β, corresponding to the estimations for 1992 and twenty

years later in 2012 (last estimation). While the posterior distributions for the AR system

are substantially the same, there exist clear differences for the CIR system between the

two dates of estimation. Posteriors for ρuw are shifted to zero (less negative) between 1992

and 2012, as well as posteriors for β (much less close to one). Indeed, for the CIR system,

in 1992, most of the mass of the distribution is below zero for ρuw, and between 0.6 and

1 for β. This is no longer the case in 2012, when the distribution of ρuw is much more

neutral (less clearly negative, although the negative part is still heavier than the positive

one), and posterior values of β are spread from 0 to 1 with a mode around 0.5.

In summary, the evolution of the posterior distributions and posterior means of the CIR

system parameters highlight two differences with the AR system. First, the shape of the

posterior distribution of β actually changes over the period studied, and the persistence

of expected return steadily decreases during the last thirty years of our sample. This

behavior is consistent with the autocorrelation of realized returns (at lag 1) which presents

a similar decreasing trend over the period, as expected given equation (1.17). Second, the

posterior distribution of ρuw also varies throughout the sample, and it gradually becomes

less negative toward the end of the sample.

Conclusion

A widely held prior belief about the unobservable expected return of the stock market

is that it should have similar features to economically motivated predictors such as the

dividend yield, thus being a stable quantity moving around its long-term mean in a per-

sistent and counter-cyclical way. Consequently, expected returns are often modeled as an

autoregressive process of order one with counter-cyclical variations with respect to market
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returns.

Empirical studies using economic predictors such as Rapach et al. (2010), and Henkel

et al. (2011) have found that return predictability in the stock market is stronger during

recessions. The latter finding implies that the conditional variance of expected returns

must increase in economic downturns. This fact contrasts with the constant conditional

variance of the standard autoregressive process (AR) of order one often used to model

expected returns.

In this paper we explore the implications of modeling expected returns with a dis-

cretized CIR process within a predictive system framework. The CIR model induces a

continuously changing conditional variance for expected returns, increasing during mar-

ket downturns, which implies a countercyclical degree of return predictability. Indeed, the

CIR system without predictors reproduces the counter-cyclical variations in the predictive

power of the dividend-price ratio documented by Rapach et al. (2010), and Henkel et al.

(2011), without any additional parameters relative to the AR model. The CIR model

also implies a natural positive relationship between expected returns and the expected

variance of realized returns, i.e., a positive risk-return tradeoff, which is absent in the AR

model.

Additional theoretical and empirical implications of the CIR system are that the ex-

pected returns are unlikely to be negative (consistent with the results of empirical studies

such as Campbell and Thompson, 2008; Pettenuzzo et al., 2014), and that the conditional

covariance between expected and realized returns is time-varying (higher in absolute value

during bad times). In addition, the CIR system implies a time-varying conditional au-

tocovariance of realized returns that is higher during recessions (when expected returns

are high), and lower during expansions (when expected returns are low). Furthermore,

in out-of-sample tests we find that the CIR system without any predictor can produce

significantly better return predictions than the historical average, and improvements in

forecasts relative to both the predictive regression using the dividend yield, and the AR

predictive system without predictors.

In our Bayesian parameter estimation of the CIR system, we also find that the persis-

tence of expected returns is lower than suggested by previous studies, and is not constant

over time. It has steadily decreased for the last two decades, in tandem with the sample

autocorrelation of realized returns.
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Tables and Figures

R2 Er σr β k-e ρuw σµ σw,ar σw,cir σu

0.09% 1.77% 8.38% 0.90 −0.06 0.25% 0.11% 0.82% 8.38%

5% 1.77% 8.38% 0.90 −0.47 1.87% 0.82% 6.14% 8.17%

Table 1.1: Point estimate parameters for different levels of the R2 of the regression of rt+1 on µt. Er and σr
correspond to mean and standard deviation sample estimates for quarterly returns of the CRSP aggregate US
market index from 1952 to 2012, and β is taken as in Pástor and Stambaugh (2009) section II.B. The following
columns follow from the respective definitions in the text which are functions of the first four columns; k-e ρuw
stands for knife-edge value of ρuw. Given a value for R2 and assuming E(

√
µt−1) ≈

√
Er, the knife-hedge value

of ρuw is the same for both systems.

ρuw = −0.47 Intercept Slope R2

CIR system 0.0177 - 0.00

AR system 0.0177 - 0.00

ρuw = −0.66 Intercept Slope R2

CIR system -0.597 7.35 0.470

(-14.2) (14.6)

AR system 1.65 -19.5 0.00312

(0.879) (-0.870)

ρuw = −0.85 Intercept Slope R2

CIR system -0.598 7.39 0.460

(-13.9) (14.3)

AR system 1.37 -16.2 0.0120

(1.73) (-1.71)

Table 1.2: Results of the regression of expected returns on expected volatility of returns. This table summarizes
the results from regressions: E(rt+1|Dt) = a+ b

√
Var(rt+1|Dt) + et, where E(rt+1|Dt) = E(µt|Dt) is the filtered

expected return from the predictive systems, and Var(rt+1|Dt) is the expected variance of returns estimated by
the systems. The table reports the intercept, the slope of the regression and the (unadjusted) R2 for several
values of ρuw (the correlation between expected and unexpected returns). t-statistics are given in parentheses.
The case ρuw = −0.47 corresponds to historical average as estimate of expected returns. For the Kalman filtering
procedure, the (unconditional) variance of µ is set to 5% of the variance of r.

1975-2012 R2
OS β R2 ρuw

AR system

Best configuration 3.00% 0.9 4% -0.95

Worst configuration -5.81% 0.9 5% 0.95

CIR system

Best configuration 3.39% 0.8 2% -0.95

Worst configuration -5.62% 0.8 5% 0.95

Table 1.3: Out-of-sample results summary with point estimate parameters. Each line presents the highest (or
lowest) R2

OS obtained for each predictive system (AR or CIR), as well as the corresponding parameter set.
Predictions are computed on quarterly returns on the value-weighted portfolio of all NYSE, Amex, and Nasdaq
stocks in excess of the quarterly return on a 1-month T-bill obtained from CRSP. The sample begins in 1952 and
the out-of-sample period is 1975-2012. We use the prevailing returns average for Er.
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1975-2012 Less predictability

Prior on ρuw Noninf. More inf.

CIR R2
OS (%) -0.30 1.21**

AR R2
OS (%) -1.03 0.28

Benchmark prior

Noninf. More inf.

-0.73 1.07**

-1.54 0.13

More predictability

Noninf. More inf.

-1.26 0.71*

-2.23 -0.23

1975-2000 Less predictability

Prior on ρuw Noninf. More inf.

CIR R2
OS (%) -0.02 2.64***

AR R2
OS (%) -1.41 0.69*

Benchmark prior

Noninf. More inf.

-0.29 2.93***

-2.14 0.61*

More predictability

Noninf. More inf.

-0.66 3.01***

-3.13 0.18

1980-2005 Less predictability

Prior on ρuw Noninf. More inf.

CIR R2
OS (%) 0.41 1.48**

AR R2
OS (%) -0.12 0.52

Benchmark prior

Noninf. More inf.

0.11 1.51**

-0.34 0.62*

More predictability

Noninf. More inf.

-0.29 1.34**

-0.72 0.66*

1985-2010 Less predictability

Prior on ρuw Noninf. More inf.

CIR R2
OS (%) 0.04 0.80*

AR R2
OS (%) -0.20 0.04

Benchmark prior

Noninf. More inf.

-0.41 0.67

-0.39 0.04

More predictability

Noninf. More inf.

-0.96 0.30

-0.73 0.02

Table 1.4: Out-of-sample results of the predictive systems using the Bayesian procedure. For each out-of-sample
period, for both predictive systems, three priors on the R2 of the regression of rt+1 on µt (less predictability,
benchmark prior and more predictability) and two priors on ρuw (noninformative and more informative) are
applied. Predictions are computed on quarterly returns on the value-weighted portfolio of all NYSE, Amex, and
Nasdaq stocks in excess of the quarterly return on a 1-month T-bill obtained from CRSP. Our sample begins
in 1952-Q1. The predictive systems parameters are re-estimated on the first available date of each year in the
sample. Predictions are computed each new quarter using the data available at each point in time.

1975-2012 Less predictability

Prior on ρuw Noninf. More inf.

CIR LPS 1.01 1.019

AR LPS 1.006 1.014

Benchmark prior

Noninf. More inf.

1.007 1.018

1.002 1.012

More predictability

Noninf. More inf.

1.004 1.015

0.997 1.007

1975-2000 Less predictability

Prior on ρuw Noninf. More inf.

CIR LPS 1.062 1.076

AR LPS 1.054 1.065

Benchmark prior

Noninf. More inf.

1.060 1.077

1.049 1.063

More predictability

Noninf. More inf.

1.058 1.078

1.043 1.059

1980-2005 Less predictability

Prior on ρuw Noninf. More inf.

CIR LPS 1.041 1.046

AR LPS 1.038 1.041

Benchmark prior

Noninf. More inf.

1.039 1.046

1.036 1.041

More predictability

Noninf. More inf.

1.036 1.045

1.033 1.040

1985-2010 Less predictability

Prior on ρuw Noninf. More inf.

CIR LPS 1.007 1.012

AR LPS 1.007 1.008

Benchmark prior

Noninf. More inf.

1.004 1.011

1.005 1.007

More predictability

Noninf. More inf.

1.001 1.008

1.002 1.006

Table 1.5: Log predictive scores (LPR) of the predictive systems using the Bayesian procedure. For each out-of-
sample period, for both predictive systems, three priors on the R2 of the regression of rt+1 on µt (less predictability,
benchmark prior and more predictability) and two priors on ρuw (noninformative and more informative) are
applied. Predictions are computed on quarterly returns on the value-weighted portfolio of all NYSE, Amex, and
Nasdaq stocks in excess of the quarterly return on a 1-month T-bill obtained from CRSP. Our sample begins
in 1952-Q1. The predictive systems parameters are re-estimated on the first available date of each year in the
sample. Predictions are computed each new quarter using the data available at each point in time.
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Div. Yield 1975-2012

R2
OS (%) -0.012

LPS 1.003

1975-2000

-0.036

1.04

1980-2005

-0.045

1.011

1985-2010

-0.041

0.982

Table 1.6: Out-of-sample results of the predictive regression using the dividend yield. Predictions are computed
on quarterly returns on the value-weighted portfolio of all NYSE, Amex, and Nasdaq stocks in excess of the
quarterly return on a 1-month T-bill obtained from CRSP. Our sample begins in 1952-Q1. We use a growing
window. The predictive regression parameters are re-estimated each new quarter and predictions are computed
using the data available at each point in time.
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Figure 1.1: The effect of lagged returns on E(rt+1|Dt) when no predictors are used. This figure plots finite-sample
values of κs, the weights on lagged total returns in E(rt+1|Dt). The samples considered are 1952Q1-1999Q4 for
Panels A and C, and 1952Q1-2002Q4 for Panels B and D. The autoregressive coefficient is set to β = 0.9 and the
unconditional mean return Er is estimated by the sample mean over the quarters since 1952Q1. In both Panels,
the predictive R2 corresponding to the fraction of variation in rt+1 that can be explained by µt is set to 0.05.



37

−
0.

01
0.

02
0.

05
Panel A: Expected excess return, AR (R2 = 5%)

 

1952 1962 1972 1982 1992 2002 2012

ρuw = −0.47
ρuw = −0.66
ρuw = −0.85

−
0.

01
0.

02
0.

05

Panel B: Expected excess return, CIR (R2 = 5%)

1952 1962 1972 1982 1992 2002 2012

ρuw = −0.47
ρuw = −0.66
ρuw = −0.85

Figure 1.2: Panel A presents the equity premium E(rt+1|Dt) = E(µt|Dt) from Pastor and Stambaugh’s AR(1)
predictive system, and Panel B the expected excess returns from our CIR-type predictive system. This figure
displays the time series of quarterly US stock market premium from 1952Q1 to 2012Q4 estimated for different
values of ρuw (the flat line corresponds to the knife-hedge value of ρuw, i.e., historical average as estimate of
expected return). The autoregressive coefficient is set to β = 0.9 and the unconditional mean return Er is
estimated by the sample mean over the whole sample. In both panels, the R2 corresponding to the fraction of
variation in rt+1 that can be explained by µt is set to 5%.
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Figure 1.3: Panel A plots the square root of estimates of Var(µt|Dt), where µt denotes the expected stock return
from time t to time t+1 and Dt denotes the information set observed through time t. The conditional variance of
µ is presented for the CIR system and the AR system without predictors and for the predictive regression using
the dividend price-ratio as predictor. The sample considered is 1952Q1-2012Q4. The parameters used for the
predictive systems corresponds to R2 = 5%, ρuw = −0.85 and β = 0.9. The unconditional mean Er is estimated
with the sample mean over the whole period. Panel B presents the ratio of the conditional variances of µt and rt+1

for both systems and the predictive regression. The grayed areas correspond to economic recessions as reported
by NBER.
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Figure 1.4: Out-of-sample results with point estimate parameters. Each Panel presents the R2
OS as a function of

ρuw when the R2 of the regression of rt+1 on µt is set to a given value. Predictions are computed on quarterly
returns on the value-weighted portfolio of all NYSE, Amex, and Nasdaq stocks in excess of the quarterly return
on a 1-month T-bill obtained from CRSP. The sample begins in 1952 and the out-of-sample period is 1975-2012.
We use a constant β of 0.9 and the prevailing returns average for Er. The grayed areas correspond to values of
ρuw implying a dominant change effect (countercyclical expected returns).
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Figure 1.5: Out-of-sample results with point estimate parameters. Each Panel presents the R2
OS as a function of

ρuw when the R2 of the regression of rt+1 on µt is set to a given value. Predictions are computed on quarterly
returns on the value-weighted portfolio of all NYSE, Amex, and Nasdaq stocks in excess of the quarterly return
on a 1-month T-bill obtained from CRSP. The sample begins in 1952 and the out-of-sample period is 1975-2012.
We use a constant β of 0.8 and the prevailing returns average for Er. The grayed areas correspond to values of
ρuw implying a dominant change effect (countercyclical expected returns).
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Figure 1.6: The prior distributions for R2 and σw used in the Bayesian analysis. Panels A and B plot the prior on
the R2 from the regression of rt+1 on µt and the corresponding prior on σw for both AR system and CIR system,
corresponding to less predictability prior. Panels C and D plot the distributions corresponding to the benchmark
prior. Panels E and F plot the more predictability prior distributions.
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Figure 1.7: The prior distributions for ρuw, β and the implied priors of ρ2
uw used in the Bayesian analysis. Panel A

plots the two prior distributions for ρuw: noninformative (flat between -0.9 and 0.9) and more informative (most
of the mass below -0.71). Panel B plots the prior on the autoregressive coefficient β in the dynamics of µ.
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Figure 1.8: The expected excess returns. The figure plots the out-of-sample quarterly expected returns estimated
by the CIR predictive system, the OLS predictive regression using the dividend yield, and the AR system.
Predictions are computed on quarterly returns on the value-weighted portfolio of all NYSE, Amex, and Nasdaq
stocks in excess of the quarterly return on a 1-month T-bill obtained from CRSP. The sample begins in 1952 and
the out-of-sample period is 1975-2012. The grayed areas correspond to economic recessions as reported by NBER.
Priors for the predictive systems correspond to more predictability for R2 and more informative for ρuw.
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Figure 1.9: Evolution of the mean of the posterior distributions of β, ρuw, and ρ2
uw for the AR and CIR predictive

systems. The priors are more informative on ρuw and correspond to less predictability prior on R2. The considered
out-of-sample period is 1975Q1-2012Q4. Predictive systems are re-estimated on the first available date of each
year in the sample.
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Figure 1.10: Evolution of the autocorrelation at lag 1 of returns. Our sample begins in 1952 and corresponds to
quarterly returns on the value-weighted portfolio of all NYSE, Amex, and Nasdaq stocks in excess of the quarterly
return on a 1-month T-bill obtained from CRSP. Each quarter, we re-estimate the autocorrelation at lag 1 using
the available returns.
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Figure 1.11: Posterior distributions of β and ρuw for the AR and CIR predictive systems. The priors are more
informative on ρuw and correspond to less predictability prior on R2. The posterior distributions are obtained
from systems estimation in 1992-Q1 and 2012-Q1.
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Appendix

1.A Discretization of CIR process

The Cox et al. (1985) (CIR) model is defined by the following Stochastic Differential

Equation (SDE):

dXt = κ(θ −Xt)dt+ σ
√
XtdWt, X0 ≥ 0, (1.39)

where κ, θ and σ are constants, and W is a standard Brownian motion. This SDE has a

level dependent diffusion term (σ
√
Xt) implying a conditional heteroscedasticity for the

process X. Furthermore, the model can rule out negative values for X. Indeed, given

that κ is a Lipschitz constant for the drift term of (1.39), Feller’s test (c.f. Feller, 1951)

for univariate stochastic process ensures that the following condition κθ ≥ σ2

2
implies

P(τx0 = ∞) = 1, where τx0 = inf {t ≥ 0 : Xt = 0} and x refers to the case X0 = x ≥ 0.

Details are given in Berkaoui, Bossy, Diop, et al. (2008).

Although the exact non-central chi-squared distribution of the increments of the CIR

equation (1.39) could be used in a discrete time framework (as in Gouriéroux and Jasiak,

2006), the study of the correlation structure between this distribution and the Gaussian

innovations of realized returns would require a non-Gaussian copula and/or numerical

methods, which is inconvenient to develop the economic intuition of the model. A direct

Euler discretization with time step ∆t of (1.39) is:

µt+∆t = µt + κ(θ − µt)∆t+ σ
√
µt(Wt+∆t −Wt). (1.40)

However process (1.40) does not have a strictly zero probability of being negative as the

Gaussian increment is not bounded from below and it is important to notice that the term
√
µt is not defined for a given µt < 0. Hence in our numerical filtering procedures (appli-

cation of algorithm described in section 1.C), we use instead the following discretization:

µt+∆t = µt + κ(θ − µt)∆t+ σ
√
|µt|(Wt+∆t −Wt). (1.41)

Berkaoui et al. (2008) show that for the process defined by (1.41), for all t given µη(t) = x,

where x is a positive value and η(t) is the closest previous step of discretization, the

following probability inequality applies

Pxcir = P(µt ≤ 0 | µη(t) = x) ≤ 1

2
exp

(
− x

8σ2∆t

)
; (1.42)

thus, x being sufficiently above zero and/or taking time steps ∆t sufficiently small, greatly

lowers the chance of µt of becoming negative. Notice that, for the AR system, the value of

the conditional probability P(µt ≤ 0 | µt−1 = x) has the following expression if we assume

that µ has the AR(1) dynamics given by equation (1.3) in the text:

Pxar = P (wt ≤ −(1− β)Er − βx) = Φ

(
−(1− β)Er − βx

σw,ar

)
, (1.43)
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where Φ stands for the cumulative distribution function of a standard Gaussian random

variable.

Throughout our economical analysis we assume that actual realizations of the process

µ, given by equation (1.40), are non-negative. This is a reasonable assumption given the

fact that µ is an unobservable process and that the non-negativity assumption is one of

the motivations for using a discretized CIR process instead of the AR(1) process. On the

other hand, if the aim would be to simulate the CIR-type process µt (instead of estimating

it), a more adapted equation for this purpose would be for instance the symmetrized Euler

scheme of (1.39), studied by Bossy, Diop, et al. (2007):

µ̂t+∆t =
∣∣∣µ̂t + κ(θ − µ̂t)∆t+ σ

√
µ̂t(Wt+∆t −Wt)

∣∣∣ , (1.44)

which ensures the positivity of the discretized process22. However discretization (1.44)

does not allow to explore all the economic implications of the model, as we are unable to

derive closed-form solutions for the autocovariance of returns (equation 1.11 in the text)

and the variance of µ, for instance. Thus, in order to develop the economic implications

of the expected return positivity condition on the predictive system we work with the

CIR discretization (1.40) and assume that any actual path of µ remains positive in our

analysis.

1.B Autocovariance of returns

In this section we derive the autocovariance of returns using equation (1.1) in the text.

We assume first the following (more general) dynamics for µ:

µt+1 = (1− β)Er + βµt + g(µt)wt+1, (1.45)

where g is a general function including the case g(.) =
√

(.) or g(.) =
√
|.|.

Notice that the autocovariance of returns at lag k ≥ 0 is:

Cov(rt+k, rt) = Cov(µt+k−1 + ut+k, µt−1 + ut)

= Cov(µt+k−1, µt−1) + Cov(µt+k−1, ut). (1.46)

The first term on the right hand side of equation (1.46) is the autocovariance of expected

returns at lag k. Using equation (1.9) (with
√

(.) expressed as g(.)) the autocovariance

22Alfonsi (2005) discusses several discretization schemes for the simulation of the CIR process.
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of µ is equal to:

Cov(µt+k, µt) = Cov

(
∞∑
j=0

βjwt+k−jg(µt+k−1−j),
∞∑
i=0

βiwt−ig(µt−1−i)

)

=
∞∑
j=0

∞∑
i=0

βi+jCov (wt+k−jg(µt+k−1−j), wt−ig(µt−1−i))

=
∞∑
j=0

∞∑
i=0

βi+jE [wt+k−jg(µt+k−1−j) wt−ig(µt−1−i)] .

To see this notice that the product of expectations is zero in the covariance due to the

lag between the noise terms and the terms containing g(µ) (which are independent).

Moreover, the only nonzero terms in the sums are when j = i+ k. Thus we obtain:

Cov(µt+k, µt) =
∞∑
i=0

β2i+kσ2
wE
[
g(µt−1−i)

2
]

= βkσ2
w

∞∑
i=0

β2iE
[
g(µt−1−i)

2
]
. (1.47)

Equation (1.47) easily simplifies to βk
(
σ2
wEr

1−β2

)
and allows us to compute the variance of

µ when g(.) =
√

(.) as in section 1.2.3 of the text. Note that this result is valid if the

trajectory of µ stays positive at all time such that the term
√
µt is well defined for all t.

However, as explained above, using a discretization of a CIR process (with a Gaussian

noise) introduces a bias that could lead to eventual negative values (with low probability,

cf. Appendix 1.A) forcing us to consider the case g(.) =
√
|.|. In order to check that

the use of this function g(.) (defined for all real numbers) in our empirical analysis does

not alter the analytical properties of the model, we derive here the autocovariance in this

particular case which has to be linked with equations (1.11) and (1.12) of the text. The

derivation of the second term of the right hand side of (1.46) yields to:

Cov(µt+k−1, ut) = Cov

(
∞∑
i=0

βiwt+k−1−i
√
|µt+k−2−i|, ut

)

=
∞∑
i=0

βiCov(wt+k−1−i
√
|µt+k−2−i|, ut)

=
∞∑
i=0

βiE[wt+k−1−i
√
|µt+k−2−i| ut],

where the only nonzero term is obtained when i = k − 1. Thereby,

Cov(µt+k−1, ut) = βk−1E[wt
√
|µt−1| ut] = βk−1σuwE[

√
|µt−1|]. (1.48)
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The autocovariance of µ is now:

Cov(µt+k, µt) =
∞∑
i=0

β2i+kσ2
wE|µt−1−i| = βkσ2

w

∞∑
i=0

β2i {E(µt−1−i) + E (|µt−1−i| − µt−1−i)}

= βk
(
σ2
wEr

1− β2

)
+ βkε, (1.49)

where ε = σ2
w

∑∞
i=0 β

2iE (|µt−1−i| − µt−1−i) represents the negligeable imperfection error

(cf. Proposition 1 below). This leads to:

Cov(rt+k, rt) = βk−1

{
β

(
σ2
wEr

1− β2

)
+ σuwE(

√
|µt−1|)

}
+ βkε. (1.50)

Proposition 1 Let the expected return process follow the equation,

µt+1 = (1− β)Er + βµt +
√
|µt|wt+1,

where wt ∼ N (0, σw), Er > 0 and β ∈ (0, 1). The following result holds

ε = σ2
w

∞∑
i=0

β2iE (|µt−1−i| − µt−1−i)→ 0

as ∆t → 0, with n → ∞ and n∆t → ∞, where the time index t + k (in the time series

notation) corresponds to the time (n + k)∆t, for k ∈ {0, 1, 2...}. Moreover, the term βk

factor of ε in (1.50) further increases the convergence to zero.

Proof:

ε = σ2
w

∞∑
i=0

β2iE
(
|µ(n−1−i)∆t| − µ(n−1−i)∆t

)
= −2σ2

w

∞∑
i=0

β2iE
(
µ(n−1−i)∆t

)−
= −2β2nσ2

n−1∑
i=−∞

∆tβ−2(i+1)E (µi∆t)
− ,

where we use the fact that σ2
w = σ2∆t. This is of the form:

κE[〈νn−1, f〉],

where f(x) = (x)− and

νm(ω, dx) =
1

Hm

m∑
i=−∞

β−2(i+1)I{µi∆t(ω)∈dx}

with

Hm =
m∑

i=−∞

β−2(i+1) = β−2(m+1)

∞∑
i=0

β2i =
β−2(m+1)

1− β2
=

β−2(m+1)

2κ∆t− κ2∆t2
≤ β−2(m+1)

κ∆t
,
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where we have used the equality β = (1− κ∆t). Assume ∆t = α(n)→ 0, with n→ +∞
and n∆t → +∞. Combining the weak convergence Theorem 2 of Pages, Panloup, et al.

(2009) with the estimation of strong convergence of the symetrized Euler scheme using µ

for X in Berkaoui et al. (2008), we get that for any continuous bounded function f

1

Hn

n∑
i=−∞

β−2(i+1)f(µi∆t)
n→+∞−−−−→

∫
R+

f(x)ν0(dx) = 0, a.s.,

where ν0 is the unique invariant measure of the CIR process (Gamma-type law). Due to

the fact that the support of the function f(x) = (x)− is R−, and the support of a Gamma

law is (0,∞), the integral and thus the limit of ε is equal to zero. �

On the other hand, assuming the positivity of the previous value of µ and removing

the absolute value within the square root, the derivation of the autocovariance of returns

is simpler and yields to:

Cov(rt+k, rt) = βk−1

{
β

(
σ2
wEr

1− β2

)
+ σuwE(

√
µt−1)

}
. (1.51)

According to Proposition 1, the autocovariance of the process with g(.) =
√
|.| boils down

to equation (1.51) for µt−1 ≥ 0, which is equation (1.11) in the text.

1.C The Kalman filter

As mentioned in the text, in this paper our analysis is performed without predictors, given

that we focus on the implications arising from a modified interaction between past returns

and expected returns. In this section we describe the (more general) procedure to estimate

the unobservable process µ based on observations of both r and x, respectively the realized

returns and predictor(s). The configuration investigated in the text corresponds simply

to not consider the terms related to x in this section. In the next paragraph we present

the algorithm for a state process {µt} with general dynamics described by equation (1.45)

above. To do this, we use an extended version of the Kalman filter (see Anderson and

Moore, 2012, Chap. 8), to which we add the predictors {xt} in order to present the

estimation procedure of the full system including eventual predictors. The Kalman filter

theory relies on the assumption that, conditional to the information available at time

t − 1, denoted here Dt−1, i.e., Dt−1 = (r1, x1, r2, x2, ..., rt−1, xt−1), the state variable µt
has a Gaussian distribution. This assumption must also hold conditioned on Dt. In the

configuration described above, using the extended Kalman filter consists in linearizing the

function g around our last estimation of µ, i.e., replacing the term g(µt) by g (E(µt|Dt))

in our procedure.
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1.C.1 The algorithm

Following Pastor and Stambaugh (2009), we use the following notations:

zt =

[
rt
xt

]
, at = E(µt|Dt−1), bt = E(µt|Dt), ft = E(zt|Dt−1), Pt = Var(µt|Dt−1),

Qt = Var(µt|Dt), Rt = Var(zt|µt, Dt−1), St = Var(zt|Dt−1), Gt = Cov(zt, µt|Dt−1).

Initialization We assume conditioning on the (unknown) parameters even if not explic-

itly specified and that D0 denotes the null information.

Assuming that µ1 ∼ N (Er, Vµ) and r1 ∼ N (Er, Vr), given Vx, Vrx, Vrµ, Vxµ, we have first

a1 = Er, P1 = Vµ, f1 = [Er Ex]
′, S1 =

[
Vr Vrx
Vrx Vx

]
, G1 = [Vrµ Vxµ]′,

R1 = S1 −G1P
−1
1 G′1,

Q1 = P1(P1 +G′1R
−1
1 G1)−1P1,

b1 = a1 + P1(P1 +G′1R
−1
1 G1)−1G′1R

−1
1 (z1 − f1).

Iteration We use the extended Kalman filter algorithm to derive, for t = 2, ..., T ,

at = (1− β)Er + βE(µt−1|Dt−1) + E(g(bt−1)wt|Dt−1) = (1− β)Er + βbt−1. (1.52)

Pt = Var((1− β)Er + βµt−1 + g(bt−1)wt|Dt−1)

= β2Var(µt−1|Dt−1) + Var(g(bt−1)wt|Dt−1) + 2βCov(µt−1, g(bt−1)wt|Dt−1)

= β2Qt−1 + g(bt−1)2σ2
w. (1.53)

We have:

St =

[
Var(rt|Dt−1) Cov(xt, rt|Dt−1)

Cov(rt, xt|Dt−1) Var(xt|Dt−1)

]
=

[
Qt−1 + σ2

u σuv

σvu Σvv

]
(1.54)

Gt =

[
G1
t

G2
t

]
,

with

G1
t = Cov(µt−1 + ut, (1− β)Er + βµt−1 + g(bt−1)wt|Dt−1)

= βQt−1 + Cov(µt−1, g(bt−1)wt|Dt−1)

+ βCov(ut, µt−1|Dt−1) + Cov(ut, g(bt−1)wt|Dt−1)

= βQt−1 + g(bt−1)σuw,
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and

G2
t = Cov((I − A)Ex + Axt−1 + vt, (1− β)Er + βµt−1 + g(bt−1)wt|Dt−1)

= Cov(vt, g(bt−1)wt|Dt−1)

= g(bt−1)σvw.

Finally,

Gt =

[
βQt−1 + g(bt−1)σuw

g(bt−1)σvw

]
. (1.55)

The last terms are functions of those previously computed:

Rt = St −GtP
−1
t G′t, (1.56)

Qt = Pt(Pt +G′tR
−1
t Gt)

−1Pt, (1.57)

ft =

[
E(µt−1|Dt−1)

(I − A)Ex + Axt−1

]
=

[
bt−1

(I − A)Ex + Axt−1

]
. (1.58)

The filtering term bt is given by

bt = at + Pt(Pt +G′tR
−1
t Gt)

−1G′tR
−1
t (zt − ft) = at +G′tS

−1
t (zt − ft). (1.59)

Following the notation in Pástor and Stambaugh (2009), denote

[mt n
′
t] = Pt(Pt +G′tR

−1
t Gt)

−1G′tR
−1
t = G′tS

−1
t

= Cov(z′t, µt|Dt−1)[Var(zt|Dt−1)]−1

= [βQt−1 + g(bt−1)σuw g(bt−1)σvw]

[
Qt−1 + σ2

u σuv
σvu Σvv

]−1

. (1.60)

Notice that the terms defining mt (and nt) depend on g(bt−1), which suggests a higher

time dependence with respect to the terms in Pástor and Stambaugh (2009) setting. This

implies that the level and change effect might have a more variable relative importance

over time in our setting relative to the AR system.

From equation (1.59), we derive

bt = at + [mt n
′
t](zt − ft) (1.61)

= (1− β)Er + βbt−1 + [mt n
′
t]

[
rt − bt−1

xt − (I − A)Ex − Axt−1

]
(1.62)

= (1− β)Er + (β −mt)bt−1 +mtrt + n′tvt. (1.63)

By repeated substitutions of the lagged values of (bt−Er) in equation (1.63) we obtain:

bt = Er +
t∑

s=1

λs(rs − bs−1) +
t∑

s=1

φ′svs, (1.64)
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where λs = msβ
t−s and φs = nsβ

t−s and (rs − bs−1) = rt − E(rt|Dt−1) is the forecast

error. Equation (1.64) has the same structure than the equivalent expression in the AR

predictive system of Pástor and Stambaugh (2009), but the coefficients ms and ns are

modified, leading to different predictions. Equation (1.64) can be rewritten as a function

of past returns instead of past forecast errors as follows

bt = Er +
t∑

s=1

ωs(rs − Er) +
t∑

s=1

δ′svs, (1.65)

where,

ωs =

(β −mt)(β −mt−1) . . . (β −ms+1)ms , for s < t

ms , for s = t.

and

δs =

(β −mt)(β −mt−1) . . . (β −ms+1)ns , for s < t

ns , for s = t.

If Er is replaced by the sample mean in equation (1.65), it can be shown that the estimate

of bt is

b̂t =
t∑

s=1

κsrs +
t∑

s=1

δ′svs, (1.66)

where

κs =
1

t

(
1−

t∑
l=1

ωl

)
+ ωs, (1.67)

and
∑t

s=1 κs = 1. This expression has the same form than in the AR predictive system

of Pástor and Stambaugh (2009), but the ωs are functions of ms, which has a different

expression in our setting that depends on the level of µs. To see this, develop equation

(1.63), add and subtract mtEr, rearrange terms and do backward substitution of (bt−Er).

1.C.2 Steady state

Important results can be obtained assuming the system reach a steady state on the long

run. Note that the results of Pages et al. (2009) ensure the existence of a steady state

in the CIR discretization case, i.e., g(.) =
√
|.|. The expressions of the different elements

defined at the beginning of section 1.C can be derived, at the equilibrium, removing the

subscripts t and t − 1 of equations (1.53) to (1.57). We obtain the following system to
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solve for Q, the steady-state value of Qt:

P = β2Q+ g(b)2σ2
w, S =

[
Q+ σ2

u σuv
σvu Σvv

]
,

G =

[
βQ+ g(b)σuw

g(b)σvw

]
, R = S −GP−1G′,

Q = P (P +G′R−1G)−1P.

After rearranging terms, this gives us the following quadratic equation for Q:

Q2 + ξ1Q+ ξ2 = 0, (1.68)

where

ξ1 = (1− β2)(σ2
u − σuvΣ−1

vv σvu) + 2g(b)β(σuw − σwvΣ−1
vv σvu)− g(b)2(σ2

w − σwvΣ−1
vv σvw)

= (1− β2)Var(u | v) + 2g(b)βCov(u,w | v)− g(b)2Var(w | v), (1.69)

and

ξ2 = g(b)2
(
(σuw − σwvΣ−1

vv σvu)
2 − (σ2

u − σuvΣ−1
vv σvu)(σ

2
w − σwvΣ−1

vv σvw)
)

= g(b)2
(
Cov(u,w | v)2 − Var(u | v)Var(w | v)

)
. (1.70)

The solution is thus the positive root of (1.68):

Q =

√
ξ2

1 − 4ξ2 − ξ1

2
. (1.71)

Moreover, using the value of Q given by (1.71) and equation (1.60), we obtain the steady-

state expressions of m and n:

m = (βQ+ g(b)Cov(u,w | v))(Q+ Var(u | v))−1, (1.72)

n′ = (g(b)σwv −mσuv)Σ−1
vv . (1.73)

1.D Bayesian procedure

This section describes the Bayesian analysis of the CIR predictive system. As in Appendix

1.C, we provide a description of the procedure for the full system, i.e., with eventual

predictors. As Pástor and Stambaugh (2009), we use an MCMC procedure to obtain the

posterior distribution of µ and θ the set of parameters, based on D the data available to

the investor. We alternate between drawing µ from the posterior distribution p(µ|θ,D)

and drawing the parameters θ from the posterior p(θ|µ,D).
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1.D.1 Drawing µt

Given a set of parameters, we draw the time series of {µt} using the forward filtering,

backward sampling approach of Carter and Kohn (1994) and Frühwirth-Schnatter (1994).

The first stage consists in applying the Kalman filter procedure described above in section

1.C, with the current set of parameters. The sampling stage is the same as described in

section B3.2. of the internet appendix of Pástor and Stambaugh (2009). However, given

that one of the motivations to use a modified version of the AR predictive system is the

belief that µt > 0, we choose to use a rejection sampling methodology, i.e., we impose

to each draw of µt to be positive at all times. Our procedure is the following, at each

time step µt is drawn using the distribution µt|µt+1, Dt which is Gaussian (due to the

use of the extended Kalman filter) and thus can lead to eventual negative values (though

rare, we have to consider this eventuality due to the discretization imperfection). In the

case where a negative value is drawn at a specific time step t∗ for µt∗ , we redraw µt∗

using the same distribution until a positive values is obtained, i.e., we draw µt using an

acceptance-rejection method23.

1.D.2 Prior distributions

As mentioned in the text, the priors used in the case of the CIR system are very similar

to those in the AR system used by Pástor and Stambaugh (2009). Thus, we refer to its

internet appendix for a detailed description of the prior distributions. A brief description,

and a discussion of the slight modifications of Er prior due to the specification of the CIR

system, are done in sections 1.3.1 and 1.3.3 of the text.

1.D.3 Posterior distributions

Conditional on the current draw of {µt}, the posterior distributions of the parameters are

the same as describe in section B5.2. of the internet appendix of Pástor and Stambaugh

(2009), except the terms affected by the new dynamics of µ described below, the oth-

ers remain unchanged. In this section we denote as K the number of predictors (notice

that in the results presented in the text K = 0 as no predictors are used) and T the

last period at which returns are available for the estimation period of concern. We use

Exµ0 and Vxµ0 as notations for the prior mean and variance of the vector [Ex Er]
′. Let

Σ(vw) =

[
Σvv σvw

σwv σ2
w

]
and qt =

[
xt

µt

]
for t ∈ {1, 2, ..., T}.

23In the case where after a maximum number of 500 trials µt∗ is still negative we reject the set of parameters
and the current draw of µ. We draw a new set of parameters to sample a whole new time series of µt. The
percentage of parameters rejection is relatively small in all configurations we tested.
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Posterior of Ex and Er The posterior for Exµ = [Ex Er]
′ is still normal Exµ ∼

N (Ẽxµ, Ṽxµ) but with24

Ṽxµ =

(
V −1
xµ0

+
T−1∑
t=1

L′2Σ
g(µt)
(vw) L2

)−1

and Ẽxµ = Ṽxµ

(
V −1
xµ0
Exµ0 + L′2

T−1∑
t=1

Σ
g(µt)
(vw) (qt+1 − L1qt)

)
,

where L1 =

[
A 0

0 β

]
, L2 =

[
IK − A 0

0 1− β

]
and Σ

g(µt)
(vw) = Σ(vw)◦

[
1K×K g(µt)1K×1

g(µt)11×K g(µt)
2

]
.

Posterior of A and β The posterior of b = [vec(A′) β]′ is still the Gaussian distribution

described in section B.5.2.1. of internet appendix of Pástor and Stambaugh (2009). Using

the same notation we have:

z = Zb + errors,

but the covariance matrix of the error terms is instead(
Σ(vw) ⊗ IT−1

)
◦ Λ1,T−1,

where Λ1,T−1 is the following [(T − 1)(K + 1)]× [(T − 1)(K + 1)] matrix:


g(µ1) 1

. . .

1 g(µT−1)



1K(T−1)×K(T−1)
...


g(µ1) 1

. . .

1 g(µT−1)



g(µ1) 1

. . .

1 g(µT−1)

 . . .


g(µ1) 1

. . .

1 g(µT−1)



g(µ1)2 1

. . .

1 g(µT−1)2





,

which is equal to the matrix of the AR system except for the terms involving µ (i.e.,

bottom and right block of the matrix above).

Posterior of Σ We apply here the decomposition of Pástor and Stambaugh (2009)

by changing variables from Σ =

 σ2
u σuv σuw

σvu Σvv σvw

σwu σwv σ2
w

 to the set of (Σ11, C,Ω), where

Σ11 =

[
σ2
u σuw

σwu σ2
w

]
and C and Ω are the slope and the residual covariance matrix of the

regression of v on (u,w). The procedure to draw (Σ11, C,Ω) remains the same, except that

given a draw of the time series of {µt}, and conditional on (Ex, A,Er, β), the sample of

24The operator ◦ denotes the Hadamard product, also known as the element-wise product. IK is the identity
matrix with dimension K ×K. For integers m and n, 1m×n denotes a matrix with m rows and n columns whose
all entries are 1.
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residuals of {wt, t = 2, ..., T} is no longer the time series {µt−(1−β)Er−βµt−1, t = 2, ..., T}
but

{
µt−(1−β)Er−βµt−1

g(µt−1)
, t = 2, ..., T

}
. Thus using g(.) =

√
|.| can lead to very large obser-

vations of w in magnitude when the current value of µt−1 is close to zero. Thereby to

avoid using biased estimators of variances and covariances involving w, we use a robust

estimator to measure these terms. Specifically, let X denote the (T − 1) × 2 matrix

of [ut, wt] for t = 2, ..., T . Instead of using the classical estimator of variance for Σ11:

Σ̂11 = 1
T−1

(X ′X), we use the robust and widely used Minimum Covariance Determinant

Estimator (Fast MCD) of Rousseeuw and Driessen (1999) to compute Σ̂11. This method

gives a weight vector ω of size (T − 1)× 1 with entries 0 or 1 for each observation based

on a Mahalanobis distance criterium. Hence, in order to compute the parameters of the

regression of v on (u,w) and derive the posterior distributions parameters of (Σ11, C,Ω)

described in section B5.2.2. of the internet appendix of Pástor and Stambaugh (2009),

we use the corresponding reweighted vector [ω ω] ◦X instead of X.



Chapter 2

Stock Market Volatility Dynamics:

A Volume Filtered-GARCH Model

We present a two-factor volatility model to study the impact of news arrival and trading

volume on stock returns variance. The model can explicitly account for the association

between volatility and volume, as well as the persistence in equity variance. Unlike the

standard “Mixture of Distribution Hypothesis”, the conditional variance is governed by

the stochastic information arrival and adds a persistent GARCH component, in order to

disentangle transient from persistent volatility variations. The common observation that

large volumes are associated with high volatility is explained by the fact that unexpected

shocks in volume increase volatility, which is not the case for expected volumes. Further-

more, the persistence of volatility is essentially unrelated to volume implying that the

latter does not explain ARCH effect. Finally, we find that unexpected shocks in trading

volume and the persistent GARCH component are both main drivers of volatility dynam-

ics.

Keywords: Mixture of Distribution, stochastic volatility, GARCH, trading volume.
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2.1 Introduction

The financial literature has documented a number of theoretical arguments to explain

the empirical relationship between stock price movements and trading volumes (see Kar-

poff, 1987, for a survey). In particular, mixture of distribution models predict that both

trading activity and equity volatility are closely linked to the latent information arrival

rate, implying a joint dynamics for these variables (see Clark, 1973; Epps and Epps, 1976;

Tauchen and Pitts, 1983; Andersen, 1996). These specifications provide a theoretical

framework justifying the empirical evidence that large price changes are accompanied by

high volume. Hence, volume is likely to be related to short-term fluctuations of volatility.

However, on the other hand, these theoretical specifications cannot jointly capture major

stylized features of volatility and stock returns (see Gallant, Rossi, and Tauchen, 1992).

In particular, several studies highlight that mixture models cannot account for the per-

vasive persistence in stock price changes variance (see Lamoureux and Lastrapes, 1994;

Liesenfeld, 1998; Watanabe, 2000). In the same vein, Andersen, Bollerslev, and Diebold

(2007) suggest that separating the jump moves of volatility associated with specific news

announcements from the smooth continuous moves results in significant volatility fore-

cast improvements. In addition, recent studies shedding light on the link between stock

variance and economic activity also suggest that stock market volatility can be governed

by two components, one that is slowly varying (see for instance Engle and Rangel, 2008;

Engle, Ghysels, and Sohn, 2013). From a perspective focusing on news arrival and trading

volume, this paper proposes a model to disentangle the sources of changing variance dy-

namics, in order to reconcile the empirical properties of volatility with theoretical models

incorporating volume.

We introduce a parametric framework for the return generating process and we model

endogenously its interactions with trading volume. The proposed specification implies

a two-factor volatility model, governed by the stochastic information flow modeled by a

non-linear function of volume, as well as an additional persistent mean-reverting GARCH

component unrelated to trading activity. This study complements the existing literature

on the relationship between price changes and volume, with an informative parametric

model where some fraction of the persistence in volatility can be explicitly unrelated to

the autocorrelation of information arrival. Therefore, the model captures both strong

empirical evidences that volatility is persistent and is related to volume.

The strength of the relationship between stock price variations and trading volume is

evidenced by several papers. In particular, Hiemstra and Jones (1994) document a non-

linear causality between returns and volume. Campbell, Grossman, and Wang (1993) and

Avramov, Chordia, and Goyal (2006) study return reversals caused by high volume1, while

Wang (1994), Cooper (1999), and Llorente, Michaely, Saar, and Wang (2002) examine

price continuation following large volume, depending on information asymmetry. Our

paper concentrates on the impact of volumes on stock return heteroskedasticity. Regarding

this specific issue, an old and pervasive observation at the origin of several models is

1Especially for illiquid stocks, see for instance Pastor and Stambaugh (2003), Acharya and Pedersen (2005),
and Da, Liu, and Schaumburg (2013) on return reversals and liquidity.
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the positive association between stock variance and trading volume. In particular, this

empirical regularity is highlighted by Gallant et al. (1992) using a seminonparametric

approach for modeling price changes and volatility. It is further motivated by differences

of opinions and expectations among traders by Harris and Raviv (1993) and Shalen (1993).

Our model is built on two branches of the literature: first, the source of the volatility-

volume relationship, and second, recent advances regarding two-factor volatility models.

The studies of Clark (1973); Epps and Epps (1976); Tauchen and Pitts (1983); Andersen

(1996) theoretically justify the daily association between volatility and volume using a

Mixture of Distribution Hypothesis2 (MDH). The latter implies that the conditional vari-

ance as well as trading volume are functions of the latent rate of information that flows

into the market. Moreover, empirical studies such as Lamoureux and Lastrapes (1990a)

and Fleming, Kirby, and Ostdiek (2006), further suggest that volume captures a large

non-persistent component of return volatility (an effect absent in ARCH models3). The re-

sulting specifications of the Mixture of Distribution Hypothesis differ from the widespread

ARCH-type models and imply rather a stochastic volatility representation driven by the

information flow. Note that if the latter is positively autocorrelated across days, this spec-

ification should naturally generates autocorrelation in the magnitude of price changes, and

capture volatility persistence as GARCH specifications4. However, many papers such as

Lamoureux and Lastrapes (1994); Liesenfeld (1998); Watanabe (2000) find that the MDH

framework fails to capture the persistence exhibited by price change variance, suggesting

that the latter can be unrelated to the autocorrelation of information arrival5. Richardson

and Smith (1994) also support alternative theories that do not rely solely on information

arrival. In addition, standard MDH models cannot account for jumps in volatility. In

particular, the flexible framework of our paper combines advantages of both MDH and

GARCH models in order to disentangle the factors driving volatility variations. We pro-

pose a model where the return variance is governed by the arrival of new information,

i.e., the stochastic mixing variable, as well as a smoother mean-reverting component un-

related to information flow6, in order to capture volatility persistence. The existence of

this second component is also motivated empirically by Andersen et al. (2007), as well as

Fleming et al. (2006) suggesting a model allowing persistence in return volatility unre-

lated to persistence in trading volume. Furthermore, the results of Engle and Lee (1999);

Engle and Rangel (2008); Colacito, Engle, and Ghysels (2011); Engle and Sokalska (2012);

Engle et al. (2013), studying component-GARCH models, underline the significant role of

a slow-moving component in volatility.

Our so-called Volume Filtered-GARCH (VF-GARCH) model decomposes stock return

2Foster and Viswanathan (1995) also develop a speculative trading model they apply with 30-minute volume
and price data.

3See Engle (1982); Bollerslev (1986); Engle (1990); Nelson (1991); Glosten, Jagannathan, and Runkle (1993)
on ARCH models and principal variations.

4Nelson (1990) shows that the discrete version of the continuous time ARCH model can be expressed as an
MDH model.

5Darolles, Le Fol, and Mero (2015) also develop an extended version of the MDH that can explicitly account
for liquidity frictions in volume.

6Former studies proposing two-factor volatility models include Ding and Granger (1996); Gallant, Hsu, and
Tauchen (1999); Alizadeh, Brandt, and Diebold (2002); Chernov, Gallant, Ghysels, and Tauchen (2003); Maheu
and McCurdy (2004); Andersen et al. (2007); Adrian and Rosenberg (2008).
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variance as the product of two terms: 1) a stochastic mixing variable, referred as volume

component, and 2) a predictable filtered component modeled as a GARCH-type model7.

This specification implies: the empirically motivated association between volatility and

volume, the persistent mean-reverting behavior for conditional variance, and an asymmet-

ric and leptokurtic normal log-normal conditional distribution for returns. Specifically, we

do not model the latent news process directly, but rather decompose the mixing variable

as a combination of expected and unexpected change in volume, i.e., the predictable part

and the innovation of the volume process. This splitting allows to account for the volume

generating process to avoid simultaneity bias. Statistical tests reject simpler versions of

the model. Fleming et al. (2006) also show that the unpredictable component of volatility

is closely linked to the innovation in contemporaneous trading volume, i.e., a portion of

the information flow is unanticipated news. In this way, our approach allows an informa-

tive interpretation of the role of both expected and unexpected news in the conditional

variance.

Applying a two-step Maximum Likelihood method to estimate our specification, a

main finding is that the two components of the mixing variable, that are expected and

unexpected volume, have different impacts on return variance. More precisely, unlike

Bessembinder and Seguin (1993), we find that expected volume of trading brings down

volatility, while unexpected shocks in volume increases it. In other words, if a large

change in information flow, i.e., trading activity, is anticipated the volatility is reduced.

On the other hand, if a large unanticipated change occurs, the volatility is increased.

Furthermore, an important feature of the model is that the correlation between contem-

poraneous innovations in volume and return is a key determinant of the distribution of

stock returns, implying excess kurtosis and non-zero skewness, and characterizes the joint

return/volume distribution. This parameter also controls for the risk-return tradeoff in

equities. Indeed, if one assumes that shocks in volume are a good proxy for news shocks

then this correlation is an informative indication on how stock price changes are affected

by new information.

Through the GARCH component, our parametric approach also captures the persis-

tence and leverage effect in volatility, and allows to investigate the impact of volume on

these usual stylized features of stock variance. After estimating the model, we do not find

evidence that the volume component annihilates ARCH effect: the estimated parameters

of persistence in our model remain consistent with standard GARCH estimates. Thus,

as suggested by Fleming et al. (2006), we find that the persistence of variance is mainly

unrelated to trading volume. Moreover, the well documented leverage effect also remains

significant, meaning that return innovations have an asymmetric impact on volatility in-

dependently of trading volume.

Furthermore, for most stocks, the model reveals that the volume component con-

tributes to a large part of variations in stock variance. More specifically, the component

affected by contemporaneous unexpected shocks in volume appears to clearly drive volatil-

ity. This finding also implies that a large portion of daily variance is a priori unpredictable

7We use the asymmetric GARCH model of Glosten et al. (1993).
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as it is due to the innovation in volume, independent of previous information available.

On the other hand, most of the (substantial) remaining fraction of variations in stock

variance is associated with the persistent GARCH component and is therefore unrelated

to trading volume, highlighting the limits of standard MDH models to capture the full

dynamics of equity volatility.

Finally, our specification also provides an informative interpretation of volume and

volatility variations during important news events such as earning surprises. Using the

example of IBM, we find that large price changes occurring during these special announce-

ments are associated with large unexpected volume. This implies large but short-lived

increases in volatility estimates of our model, attributed to the volume component. Our

results corroborate the findings of Bajgrowicz, Scaillet, and Treccani (2015) that the ar-

rival of news induces bursts of volatilities.

The rest of the paper is organized as follows. Section 2.2 introduces the approach to

model stock returns and interactions with trading volume. Section 2.3 examines the prop-

erties of the distribution of returns implied by the model. Section 3.7 presents our main

empirical analysis, while section 2.5 focuses on empirical regularities over sub-samples.

Finally section 2.6 discusses the impact on volatility of trading volumes occurring during

important news events.

2.2 A two-component volatility model

This section describes the proposed framework to explore the specific issue of the rela-

tionship between stock price changes and trading volume of individual stock returns. The

model is parametric and is based on a variant of the Mixture of Distribution Hypothesis

(MDH) implying two components for the stock variance dynamics. The equation of the

daily return rt is given by:

rt = µ+ εt, (2.1)

where µ is a constant. To motivate the specification of this paper, let δit denotes the

ith intraday price increment on day t, and gt the stochastic rate of information arrival.

Following previous studies using MDH models8, the return innovation is decomposed as

follows:

εt =

gt∑
i=1

δit. (2.2)

In a liquid market, the quantity gt is therefore large and time-varying. Furthermore, for

a given day t the intraday price increments δit are assumed to be i.i.d. across i:

δit
i.i.d∼ (0, σ2

t ). (2.3)

Unlike typical MDH models, σt the variance of these small price increments is not assumed

constant over time. Therefore the volatility of the intraday price increments on day t is

allowed to differ from one day to another, adding potentially a source of persistence in

8See Clark (1973), Tauchen and Pitts (1983), Lamoureux and Lastrapes (1990a), Andersen (1996).
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the conditional variance unrelated to gt.

Let Ft−1 denote the information set available at time t − 1 and assume σt is Ft−1-

measurable. The original Central Limit Theorem does not directly apply in (2.2) because

gt is stochastic. However if gt is sufficiently large, using Clark (1973)’s Theorem 3, under

weak regularity conditions we have9:

εt | gt,Ft−1 ∼ N (0, σ2
t gt). (2.4)

It follows directly that Var(εt | gt,Ft−1) = E[ε2t | gt,Ft−1] = σ2
t gt. Therefore, this obser-

vation suggests a parametric representation of the following form for εt:

εt =
√
σ2
t gtzt, (2.5)

where zt is a Gaussian random variable, with zero mean and unit variance. zt is hereafter

assumed to be standard Gaussian white noise zt ∼ N (0, 1), i.i.d across t.

We can make an analogy between this specification and the models studied in the

component-GARCH literature: see Engle and Lee (1999); Engle and Rangel (2008); Engle

et al. (2013). These papers are focused on the decomposition of stock variance between

a short-term and a long-term component, and they also implies a representation in the

form of a product for the conditional volatility.

Introducing σ, the benchmark unconditional volatility of intraday price variations, we

redefine σt as:

σ2
t = σ2τt, (2.6)

where τt denotes the intensity of variations relative to the benchmark value, and has unit

mean. Intuitively, τt should be mean-reverting and persistent. Finally the equation for

the daily return is the following:

rt = µ+ σ
√
τt × gtzt. (2.7)

A main consequence is that our model implies two time-varying components for the daily

variance of return: 1) τt related to the range of variations of price increments, and 2)

gt related to the information arrival rate. The motivation being to investigate the dif-

ferent features of the conditional volatility of returns, the specification described in the

next sections will allow persistence in both τt and gt. Indeed, if τt and/or gt is serially

correlated, this naturally generates autocorrelation in return variance. The process τt will

be specified in order to capture the persistent component of volatility that is unrelated

to the information arrival rate, whereas gt will account for the impact of news arrival via

trading volume on return’s variance.

The two-factor decomposition of equation (2.7) differs from the Volume Augmented-

GARCH (VA-GARCH) of Lamoureux and Lastrapes (1990a), directly adding a volume

term in the GARCH variance equation: ht = ω+α1(rt−1−µ)2 +β1ht−1 +γVt, where ht is

the conditional stock variance and the volume Vt is considered as weakly exogenous. As

9cf., Clark (1973) and Andersen (1996) for a discussion.
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noted by Fleming et al. (2006) and Fleming, Kirby, and Ostdiek (2005), this specification

constraints the volume effect to decay at the same rate as ARCH effect, i.e., the coefficients

on Vt−s and r2
t−s−1 are both proportional to (β1)s for s > 0. In particular, the specification

described in the next sections will allow to overcome this issue.

2.2.1 The mixing variable as stochastic volume component

In equation (2.7), gt represents the component of stock variance directly related to the

information arrival rate. This component is usually called the mixing variable. Several

research studies highlight the economic and empirical link between trading volume and

volatility. The usual evidence is that high volume tends to increase volatility10 as a result

of information arrival. In the variance specification of equation (2.7), the day-to-day

volume impact is integrated through the mixing variable gt if a stock is heavily traded

(in that case volume relates directly to the information arrival process). Therefore, the

volume information is incorporated into a specific component of the model, and given this

separation the dynamics of τt presented in section 2.2.2 is expected to be adjusted from

volume effect and to only capture remaining volatility persistence unrelated to trading

activity. For this reason, our model is referred as Volume Filtered-GARCH (VF-GARCH).

As suggested by Clark (1973), Tauchen and Pitts (1983) and Andersen (1996), the

positivity assumption of gt makes the Poisson and the log-normal distributions natural

candidates for the marginal distribution of the mixing variable. This paper focuses on

the log-normal distribution as this choice results in a mixture of distributions for the

return, able to replicate stylized features of realized stock returns in a tractable way.

Indeed, as described below the return rt, conditional to the information set available at

time t − 1, Ft−1, will have a normal log-normal probability distribution, i.e., potentially

asymmetric and leptokurtic. This specific mixture has been used and is well documented

in the literature focused on the price-volume variations11. In particular, Clark (1973)

models price changes and finds that the likelihood of a normal log-normal distribution is

significantly higher than the likelihood for any stable distributions. Furthermore Tauchen

and Pitts (1983) report that the likelihood of their model, for price fluctuations and

volumes, is much higher when they use a log-normal distribution for the mixing variable.

Richardson and Smith (1994) find that this distribution appears to be consistent with

Dow Jones firms data. The normal log-normal mixture is also used to model innovations

in returns in stochastic volatility models, (see for instance Ghysels, Harvey, and Renault,

1996).

The modeling of the mixing process, unobservable in practice, is a key issue. Our

paper does not propose a latent variable approach, but rather introduces a specification

for gt related to the impact of different types of news, approximated by expected and

unexpected volume of trading. Certain papers (such as Clark, 1973; Lamoureux and

Lastrapes, 1990a) propose to use trading volume as a direct proxy for the mixing variable,

10For instance, Harris and Raviv (1993) and Shalen (1993) find that large volume of trading tends to announce
large subsequent price variations in magnitude, that is, high volatility.

11Hsieh (1989) also uses the normal log-normal mixture to estimate ARCH and GARCH models for foreign
currencies and finds that it fits the data quite well.
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i.e., they assume that variations in trading volume capture exactly the amount of daily

information flowing into the market. In that case, the model can be directly estimated by

maximum likelihood. However, if volume and returns are jointly determined, introducing

volume as an exogenous variable induces a simultaneity bias. In addition, raw volume

may not perfectly reflect the amount of information, and studies such as Bessembinder

and Seguin (1993) suggest that using directly volume may lead to a lack of flexibility in

the model. Our approach consists in using a flexible function of volume as a proxy for

the mixing variable, so that the model can be estimated directly by maximum likelihood,

and also accounts for the volume generating process to avoid simultaneity bias.

We propose the following log-normal specification, implying that the mixing variable

is a non-linear function of trading volume:

log gt = γ1v
e
t + γ2v

u
t . (2.8)

where γ1, γ2 are constant parameters. vet and vut denote respectively expected and unex-

pected change in the volume of trading, i.e., the predictable component of variations in

volume and the innovation12. As explained below, the latter is assumed to be Gaussian

leading to a log-normal conditional distribution for gt.

The decomposition of expected and unexpected volume is first motivated by Bessem-

binder and Seguin (1993) finding respectively that the magnitudes of the impact of antic-

ipated and unanticipated volume shocks are different and asymmetric depending on their

signs. Furthermore, Fleming et al. (2006) shows that a large non-persistent component

of return volatility is related to the non-persistent component of volume. Therefore, the

distinction of anticipated and unanticipated news (volume innovation) appears essential

for exploring the different aspects of the return-volume relationship. Equation (2.8) allows

a distinct impact of expected and unexpected information arrival through volume, and

also an asymmetric effect depending on the sign of the shocks (due to the log). Note that

we do not impose any restriction on the parameters involved in equation (2.8). If volume

is positively correlated across days (due to the persistent number of information arrivals),

this will be captured by the autoregressive structure of vet (described below). Then, if this

persistent part of volume is directly related to the daily variance of return, the parameter

γ1 should be statistically significant. Finally, as suggested by Fleming et al. (2006), γ2

related to the innovation in volume, should be significant. Note that we can recover the

initial MDH specification using trading volume as a direct proxy for the mixing variable

from the one proposed in equation (2.8).

Using daily trading volume of individual component stocks of the S&P 100 Index13,

we define expected and unexpected volume processes using autoregressive-moving average

(ARMA) models. Note that we do not decompose volume time series between a common

(market) and a specific component, as discussed in Lo and Wang (2000) and Bia lkowski,

Darolles, and Le Fol (2008) for instance. Given that we consider large capitalization stocks,

12An alternative decomposition of volume can be found in Andersen (1996), who proposes to split trading
volume between an informed and a noise component, following both a Poisson distribution.

13Data used in the empirical section are further described in section 3.7.
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i.e., heavily traded stocks, we do not consider an information-based and a liquidity-based

component in volume as in Darolles et al. (2015). Indeed, our approach does not focus on

disentangling market and stock-specific information, or liquidity-based versus informed

activity, but rather expected and unexpected news through shocks in volume. Therefore

we assume implicitly that expected and unexpected volumes relate directly to news arrival.

As volume time series Vt exhibit a high positive skewness, we model the logarithm of

volume14 in order to adjust for this asymmetry. As suggested by KPSS statistical test and

empirical serial correlation, we postulate that the difference in log Vt time series (adjusted

with dummy variables in order to control for the day of the week) follows an ARMA(p, q)

process15. Hence log-volumes are modeled as follows:

{1− φ1L− ...− φpLp} (1− L) log Vt = θ0 + {1 + θ1L+ ...+ θqL
q}ut, (2.9)

or more compactly:

{1− φ(L)} (1− L) log Vt = θ0 + {1 + θ(L)}ut,

where L denotes the lag operator, and ut are i.i.d across t with ut ∼ N (0, σ2
u). φ(L) denotes

the autoregressive structure, while θ(L) is the moving-average part. For each volume time

series, the best model is selected according to Akaike Information criterion16. Selected

models are presented in the right part of Table 2.3 and are further discussed in section

3.7. Note that the ARMA models’ R2 are about 26%, highlighting the relative adequacy

of the models.

For each asset series, the unexpected (vut ) and expected (vet ) volume are formally defined

as:

vut = ut,

vet = log
Vt
Vt−1

− ut,

implying that log Vt
Vt−1

= vet + vut . Therefore we have E[vut |Ft−1] = 0, and E[vet |Ft−1] = vet ,

where Ft−1 denotes the information set available at time t − 1. In the spirit of Fleming

et al. (2006), the component involving vut in gt will capture the impact of the non-persistent

component of volume on volatility. Given the levels of R2 mentioned above, a model using

volume, without any distinction between expected and unexpected components, would be

presumably over influenced by the latter given the larger variability of innovations and

despite the non-negligible part of variance explained by the predictable part of ARMA

models. This further motivates the flexibility of equation (2.8) with two distinct param-

eters γ1 and γ2.

14The use of log-volume is common in the financial literature, see for instance Gallant et al. (1992); Campbell
et al. (1993); Hiemstra and Jones (1994).

15Similarly, Bessembinder and Seguin (1993) propose to use an AR(10) model to decompose trading volume on
future contracts.

16Given that most autocorrelations beyond lag 5 are insignificant, the orders of ARMA models are tested with
p, q ≤ 5.
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Finally, to account for the potential joint dependence of returns and volumes, the

shock in volume is allowed to be correlated with the contemporaneous shock in return

(the innovation zt), i.e., Corr(zt, ut) = Corr(zt, v
u
t ) = ρ, for all t. Indeed, empirical

evidence can be found that there is a clear association in the timing of outliers in returns

and volume (see Ying, 1966; Schwert, 1989; Gallant et al., 1992). The key parameter

ρ, referred to as the correlation between unexpected return and unexpected volume, has a

crucial importance in the return distribution (especially for conditional moments), as well

as in the joint distribution return/volume, as shown in the section 2.3. Note that this

parameter can be seen as an approximation of the correlation between news shocks and

return shocks. The random vector [zt v
u
t ]′ is assumed to be distributed, i.i.d. across t, as

follows: [
zt

vut

]
∼ N

([
0

0

]
,

[
1 ρσu
ρσu σ2

u

])
. (2.10)

Using equations (2.7) and (2.8), the daily return can be expressed as:

rt = µ+ σ
√
τt exp

{
γ1v

e
t

2

}
× exp

{
γ2v

u
t

2

}
zt. (2.11)

The daily random shock is therefore normal log-normal. A consequence of this distri-

bution is that the potential departure from normality is due to the time-varying arrival

rate, i.e., the volume innovation vut in gt. On the other hand, if the latter is constant over

time (vut = 0), then the stock return is conditionally Gaussian. This feature of the model

is in line with the studies of Clark (1973) and Ané and Geman (2000), linking deviations

from normality to the existence of variations in volume.

As discussed in details in section 2.3, the expectation of the normal log-normal shock

in equation (2.11) is non zero. The daily return can be rewritten as:

rt = µt + σ
√
τt exp

{
γ1v

e
t

2

}
× εrt , (2.12)

where

µt = µ+ σ
√
τt exp

{
γ1v

e
t

2

}
E
[
exp

{
γ2v

u
t

2

}
zt

]
, (2.13)

εrt = exp

{
γ2v

u
t

2

}
zt − E

[
exp

{
γ2v

u
t

2

}
zt

]
, (2.14)

so that the expectation of the shock εrt is zero.

2.2.2 An additional persistent factor in volatility

The existence of a second factor driving volatility is motivated by the failing of MDH

specifications to capture volatility persistence. The component τt is introduced in order

to describe variations of price changes unrelated to the information arrival rate. Following

conclusions of Fleming et al. (2006), the model allows for a persistent component of
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volatility that is linearly unrelated to the persistent component of volume, i.e., τt captures

return variance’s persistence that is independent of the short-term trading activity. Given

the desired persistent mean-reverting behavior of the variable τt and the predictability

assumption (cf., equation 2.4), this component is modeled using an asymmetric GJR-

GARCH(1,1) variance process17 with unit expectation:

τt =
(

1− α1 − β1 −
α2

2

)
+ (α1 + α21rt−1<µt−1)

(rt−1 − µt−1)2

σ2gt−1

+ β1τt−1, (2.15)

where 1rt−1<µt−1 is an indicator function equal to 1 if (rt−1 − µt−1) < 0 and 0 otherwise.

The conditions on the parameters α1, α2, β1 ≥ 0 and α1 + β1 + α2

2
< 1 ensure the strict

positivity of the component τt.

This specification relaxes the assumption of constant variance for intraday price in-

crements, and captures a number of stylized facts regarding the volatility of stock prices:

persistence, mean-reversion, and asymmetric impact of past return shocks. We allow ex-

plicitly the existence of persistence in volatility unrelated to the autocorrelation in gt.

Indeed, given the scaling by σ2gt−1 in the second term of the right hand side of equa-

tion (2.15), this specification has the advantage to only capture the persistence in τt.

Hence, it does not interact directly with the other component of variance, i.e., gt, and

therefore does not constrain the coefficient on the lagged squared returns to decay at the

same rate as the lagged mixing variable, i.e., gt−1 (unlike the model studied in Lamoureux

and Lastrapes, 1990a). As suggested by Fleming et al. (2006) and Fleming et al. (2005),

the specification with two components described in equations (2.7) and (2.15) allows vol-

ume effect (described in the next section) to decay at a different rate than the ARCH

effect captured by τt. Hence if the variance of price increments is persistent indepen-

dently of the information flow and trading activity, the coefficients in the dynamic of τt
will be presumably significant, even if volume does not provide much information about

stock variance.

2.3 Properties of the return distribution

In this section, we analyze the distribution of stock returns implied by the model previously

introduced. In particular, we focus on the moments of the distribution and the role of the

different parameters.

Given equation (2.11) and the fact that τt and vet are determined given Ft−1, the condi-

tional returns follow a normal log-normal (NLN) distribution. Because of the potentially

non-zero correlation between unexpected return zt and unexpected volume vut , i.e., ρ in

equation (2.10), the properties of the NLN conditional distribution generate a variety

of patterns for conditional moments of returns as well as moments of the joint (return,

volume) distribution. The correlation ρ will be the key driver of many aspects of the

distribution.

As noted in Yang (2008), the first four centered moments of the NLN product, i.e.,

17See Glosten et al. (1993).
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exp{γ2vut
2
}zt are known, implying that the first four moments of rt, conditional to Ft−1,

can be calculated in closed form. The propositions introduced hereafter illustrate the

resulting expressions. For simplicity of notation, the operators presenting a t−1 subscript

correspond hereafter to conditional operators on Ft−1, e.g., for a random variable X,

Et−1[X] = E[X|Ft−1].

2.3.1 Conditional expectation of return

First, we focus on the conditional expected value of return implied by our model.

Proposition 2 The conditional expectation of return rt is equal to

µt = Et−1 [rt] = µ+ σ
√
τt exp

{γ1

2
vet

}
× 1

2
ργ2σu exp

{
1

8
γ2

2σ
2
u

}
, (2.16)

where 1
2
ργ2σu exp

{
1
8
γ2

2σ
2
u

}
= E

[
exp

{
γ2vut

2

}
zt

]
is the expectation of the NLN mixture.

Proposition 2 implies important features regarding the conditional mean of returns.

First, the proposition highlights a natural risk-return relation, whose sign will depend on

the parameters ρ and γ2 (other components of the second term in the right hand side of

equation 2.16 are all positive by definition). The relation between the conditional mean

and the conditional volatility will be stronger (either positive or negative) as 1) the mag-

nitude of the correlation between unexpected return and unexpected volume |ρ| increases,

2) the impact of unexpected volume |γ2| increases, and 3) the standard deviation of vol-

ume innovations σu increases. Secondly, the conditional expectation of returns fluctuates

over time according to the level of the expected volume of trading, and to τt the intensity

of the variance of price increments. If vet is constant over time, then τt drives the evolution

of the conditional mean. A positive (resp. negative) risk-return relation implies that the

higher τt the higher (resp. the lower) the expected return. On the other hand, if vet also

fluctuates over time, then the evolution of the conditional mean integrates the impact of

the interaction with the expected volume of trading.

2.3.2 Higher moments

The following proposition derives the general expressions for higher moments of the return

distribution.

Proposition 3 For n = 2, 3, 4, the nth-conditional centered moment of return rt is equal

to

Et−1 [(rt − Et−1[rt])
n] = σnτ

n
2
t exp

{n
2
γ1v

e
t

}
×mn

NLN

where mn
NLN = E

[(
exp

{
γ2vut

2

}
zt − E

[
exp

{
γ2vut

2

}
zt

])n]
is the nth centered moment of

the NLN mixture.
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Proof

Et−1 [(rt − Et−1[rt])
n] = Et−1

[
σnτ

n
2
t exp
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2
γ1v

e
t

}(
exp
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γ2v

u
t

2

}
zt − E
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exp
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γ2v

u
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}
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])n]
= σnτ

n
2
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e
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}
E
[(

exp

{
γ2v

u
t

2

}
zt − E

[
exp

{
γ2v

u
t

2

}
zt

])n]
.

Given the analytic expressions of mn
NLN for n = 2, 3, 4, the following corollary follows

directly from Proposition 3, and allows to calculate conditional variance, skewness and

kurtosis of returns.

Corollary 1 The conditional moment coefficients of returns are given by the following

expressions.

• The conditional variance of return Vart−1 (rt) is equal to:

Vart−1 (rt) = σ2τt exp {γ1v
e
t } ×m2

NLN ,

where m2
NLN = e

1
2
γ2

2σ
2
u
[
1 + ρ2γ2

2σ
2
u

(
1− 1

4
exp

{
−1

4
γ2

2σ
2
u

})]
.

• The conditional skewness of return Skewt−1 (rt) is equal to:

Skewt−1 (rt) =

(
σ2τt exp {γ1v

e
t }

Vart−1 (rt)

) 3
2

×m3
NLN =

(
m2
NLN

)− 3
2 ×m3

NLN

where
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NLN = ργ2σue

9
8
γ2

2σ
2
u
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]
,
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ue
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• The conditional kurtosis of return Kurtt−1 (rt) is equal to:

Kurtt−1 (rt) =

(
σ2τt exp {γ1v

e
t }

Vart−1 (rt)

)2
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First, note that the conditional variance implied by the model is time-varying whereas

conditional skewness and conditional kurtosis are constant over time and therefore equal

by definition to the unconditional skewness and kurtosis. In other words, while the ex-

pected return and the expected volatility are time-varying, the model preserves constant

higher moments. Regarding the second moment, the two components of the variance affect

the prediction. On the one hand, τt, which is completely determined given lagged infor-

mation, impacts directly the variance forecast according to past information concerning

price increments unrelated to volume. On the other hand, the volume component, split

into a predictable part and an innovation part, makes conditional variance fluctuating

according to future expected volume of trading and average squared normal log-normal

innovation (i.e., second moment of the NLN mixture).

Interestingly, the parameters related to the unexpected part of gt, i.e., γ2, ρ, σu, clearly

impact the third and fourth moments. Assuming σu is non-zero, we can see that the

skewness and (excess) kurtosis are non-zero if γ2 and ρ are non-zero. Furthermore, if

γ2 > 0 (as highlighted later in section 3.7), the sign of ρ determines the sign of the

return’s skewness. Its magnitude also depends on γ2 and σu: the greater γ2 and σu, the

greater the absolute value of the skewness. We illustrate this result in Figure 2.1. The

latter presents the analytic values of skewness and kurtosis of returns as functions of γ2, ρ

and σu. For each panel, except the varying parameter, all other parameters are kept

constant and set to an arbitrary plausible value according to our empirical results over all

stocks in our sample from 1994-01-03 to 2014-12-3118, discussed latter in section 3.7. We

can clearly observe that the magnitude of the skewness increases as the magnitude of γ2,

ρ and σu increases. The sign is determined according to the sign of ρ. As shown in panels

B and F, the (excess) kurtosis is an increasing function in γ2 and σu. However, depending

on the value of γ2, the kurtosis is not monotonic in ρ (cf., panel D).

Finally, as mentioned before and highlighted by the expressions of the conditional

moments of return19, if γ2 = 0 and/or σu = 0, i.e., no impact of unexpected volume

and/or no shocks in volume, the asset return is conditionally Gaussian, with neither

asymmetry nor fat tails.

2.3.3 Covariance between return and volume

The initial motivation of MDH models is to develop a framework able to create correlation

between volume and return’s variance, or in other words correlation between volume and

squared return. Using our parametric modeling we derive below the conditional covariance

between return and volume as well as the covariance between squared return and volume.

Proposition 4 The conditional covariance between return and volume is equal to

Covt−1(rt, Vt) = σ
√
τte

1
2

(γ1+2)vetVt−1 × Covt−1(e
1
2
γ2vut zt, e

vut )

18Except in panels E and F, σu is set to its median values over all stocks: 0.35.
19The unconditional moments of returns can also be derived. The terms E [

√
τt] and E

[
τ

n
2
t

]
can be approximated

numerically using for instance the expectation of a Taylor expansion of τ
n
2
t around (E[τt])

n
2 .
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where Covt−1(e
1
2
γ2vut zt, e

vut ) = 1
2
ρσue

1
8

(γ2+2)2σ2
u

[
2 + γ2

(
1− e− 1

2
γ2σ2

u

)]
.

This expression can be derived using the expression of the moments derived in section

2.3.2 and the fact that Vt = Vt−1e
vet+vut .

Two important features of the model are put forward by Proposition 4. First, given

the positive sign of most terms, we can observe that the sign of the covariance between

return and volume only depends on the sign of ρ and γ2. As section 3.7 will show, γ2 being

positive for all stocks, the sign of the covariance will therefore depend on the correlation

ρ. This result is quite intuitive as the latter parameter captures the correlation between

shocks in return and shocks in volume. Secondly, the magnitude of the covariance is

related to the different terms of the volatility of returns as well as past volume Vt−1.

Hence, during periods characterized by a persistent high level of volatility, i.e., large τt,

the relation between return and volume will be larger in magnitude. In addition, during

periods of large volume (large Vt−1) the relation will also be more important.

The next proposition derives the expression of the conditional covariance between

squared return and volume, i.e., the covariance between return’s variance and volume.

Proposition 5 The conditional covariance between squared return and volume is equal

to

Covt−1(r2
t , Vt) = σ2τte

(γ1+1)vetVt−1 × Covt−1(eγ2vut z2
t , e

vut ) + 2µCovt−1(rt, Vt).

The first covariance term in Proposition 5 can also be derived using the expression of the

moments in section 2.3.2 and the fact that Vt = Vt−1e
vet+vut .

Note that the first term in the right hand side of Proposition 5 cannot be negative,

capturing the idea that positive shocks in squared return are associated with positive

shocks in volume. The second term will depend on the sign of ρ (as the expression given in

Proposition 4) and µ, and thus can amplify of reduce the covariance. As mentioned above

for Proposition 4, the magnitude of the relation between squared returns and volumes is

also related to the different components of the return’s variance and volume.

2.4 Empirical analysis

This section presents the empirical analysis of the model, using U.S. large capitalization

stocks. First, the empirical properties of data are discussed. Then, the Maximum Like-

lihood Estimation methodology of the model is presented, followed by a model selection

procedure conducted among nested models of the specification previously introduced and

the VA-GARCH of Lamoureux and Lastrapes (1990a). Finally, we derive conclusions re-

garding stock variance dynamics and its relation with trading volume according to fitted

parameters.
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2.4.1 Data

Data used in this section correspond to daily total (log) returns and trading volume (in

millions of traded shares) of individual component stocks of the S&P 100 Index as of 2014-

12-31, corrected for dividends and stock splits. Our sample begins on 1994-01-03 and ends

on 2014-12-31 (twenty years). Stocks with historical data sample starting after 1994-01-03

are removed. The list of the remaining 80 stocks studied in this section is provided in

Table 2.1. For space consideration in our Tables, we provide detailed statistics related to

the twenty stocks with highest mean daily volume over the period 1994-2014, as well as

summary statistics over all stocks considered20.

Table 2.2 reports sample statistics of return time series. The sample standard deviation

averages to 2.15% over all series. Most stocks display a negative skewness (50 out of 80).

This coefficient ranges from -4.86 for RTN to 3.93 for MO. The (excess) kurtosis is positive

for all assets. Finally, except TWX, the return time series are all stationary according to

KPSS statistical test21.

In the left part of Table 2.3 we present sample statistics of difference in log-trading

volume. The skewness of the series is mainly positive (76 stocks out of 80) and is close

to zero (between -0.14 for BRK and 0.60 for AIG), while the (excess) kurtosis is slightly

positive for all assets (unreported for space consideration). All changes in log-volume are

stationary according to KPSS test.

2.4.2 Maximum Likelihood Estimation

We present hereafter the Maximum Likelihood Estimation (MLE) approach used to es-

timate the model. In order to avoid parameter identification issues due to the products

in equation (2.11), and given that elements of the volume’s ARMA structure are em-

bedded in the return dynamics, we use a two-step estimation procedure (cf., Heckman,

1979, for instance). First, we estimate the ARMA models described by equation (2.9), by

maximizing the log likelihood:

logL1(φ, θ, σu) =
T∑
t=2

log pdflog Vt|Ft−1
(log Vt|φ, θ, σu), (2.17)

where T stands for the sample size, and φ, θ respectively for the AR and MA parameters.

Note that pdflog Vt|Ft−1
corresponds to a Gaussian density function.

In a second step, using the fact that the distribution of rt|Ft−1, v
u
t is Gaussian, we

estimate the remaining parameters Θ = [µ, σ, α1, α2, β1, γ1, γ2, ρ]′ maximizing the log like-

lihood:

logL2(Θ, φ̂, θ̂, σ̂u) =
T∑
t=2

log pdfrt|Ft−1,vut
(rt|Θ, φ̂, θ̂, σ̂u), (2.18)

20Detailed numerical results concerning all stocks are available upon request.
21See Kwiatkowski, Phillips, Schmidt, and Shin (1992) on the KPSS test.
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where

pdfrt|Ft−1,vut
(x|Θ, φ, θ, σu) =

1√
2π (1− ρ2)σ2τtgt

exp

{
−1

2

(x− µt − ρ
σu
σ
√
τtgt × vut )2

(1− ρ2)σ2τtgt

}
.

As the standard regularity conditions are met for both log-likelihood functions L1 and

L2, then the second-step maximum likelihood estimator is consistent and asymptotically

normally distributed (see Murphy and Topel, 2002).

The selected ARMA models, according to L1 and AIC criterion, are presented in the

right part of Table 2.3. Most stock volumes imply an autoregressive structure with two

lags, and a moving-average with three lags. We note that the AR(1) coefficient is positive

for the vast majority of series (more than 90%), with an average value of 0.56, exhibiting a

moderate but non-negligible level of persistence in the variations of log-volume. The AR(2)

coefficient (when selected) are also mainly positive. Interestingly, the MA(1) coefficient

is large and negative for all assets (except BAC), with an average value of -1.12, meaning

that a large positive (resp. negative) innovation will tend to decrease (resp. increase)

the predicted volume for the next period. In other words, if the unexpected shock in the

volume was large (positive) yesterday, we expect a lower volume today, and vice versa.

The coefficients corresponding to further moving average lags are much lower in magnitude

and positive on average.

We note that the fitted values of σu are all significant and quite concentrated between

0.3 and 0.4 (average value of 0.36 over all stocks), illustrating the fact that the range of

unexpected volume of trading is quite similar across this sample of highly liquid stocks.

Finally, the R2 of the ARMA model, defined as:

R2 = 1− Var(ut)

Var(log Vt/Vt−1)
,

are also reported in the last column of Table 2.3. The fraction of variations in volume

captured by the ARMA structure is about one fourth (0.26). Therefore, according to our

specification, a large part of log volume is due to innovations. However given the level

of R2 the decomposition of volume between a predictable and an unexpected component

appears to be worthy. Indeed, ignoring the splitting would imply presumably to capture

the impact of volume through the innovation and not the expected component, which is

a priori also important. Our estimations (presented later) support clearly the fact that

expected and unexpected volume do not have a similar impact on volatility.

2.4.3 Model selection procedure

Looking at equations (2.8) and (2.15), the model has numerous variants depending upon

the restrictions imposed on the different parameters, especially on the impact of expected

and unexpected volume. In order to investigate the different alternatives to implement

the model and avoid overfitting, we proceed below to a model selection procedure among

nested models. In addition, as a benchmark model combining volume and GARCH speci-
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fication, we also estimate the VA-GARCH model22 of Lamoureux and Lastrapes (1990a).

For each stock, using the MLE procedure previously described, the following compet-

ing models are fitted23 1) unrestricted VF-GARCH, 2) VF-GARCH with γ2 = 0 (only

expected volume impact), 3) VF-GARCH with γ1 = 0 (only unexpected volume im-

pact), 4) VF-GARCH with γ1 = γ2 (same impact of expected and unexpected volume),

5) GJR-GARCH, i.e., γ1 = γ2 = ρ = 0, 6) VF-GARCH without GARCH component

(α1 = α2 = β1 = 0) and 7) the VA-GARCH of Lamoureux and Lastrapes (1990a). Using

the likelihood estimates24, the different specifications are compared using Akaike Informa-

tion Criterion (AIC) and Bayesian Information Criterion (BIC). For a given model, these

statistics are calculated as follows:

AIC = 2K − 2 logL2(Θ̂, φ̂, θ̂, σ̂u),

BIC = K log(T )− 2 logL2(Θ̂, φ̂, θ̂, σ̂u),

where K represents the number of parameters of the specification, and Θ̂ the fitted pa-

rameters set for returns. In addition, Likelihood Ratio Tests (LRT) (at 5% level) are

performed. For two competing nested models, twice the difference in log-likelihoods is

compared to the critical value of a χ2 distribution with degree of freedom equal to the

difference in the number of parameters between the two models. Table 2.4 summarizes

the results. Each panel corresponds to a given selection criterion. In a given panel, each

number corresponds to the percentage of stocks for which the model specified as row name

is selected with respect to the model specified as column name25.

The unrestricted VF-GARCH model appears to be the most satisfactory specification.

Indeed, the three selection criteria favor this specification for all assets with respect to the

VF-GARCH with γ2 = 0, the VF-GARCH with γ1 = γ2 = ρ = 0, the VF-GARCH with

α1 = α2 = β1 = 0, and the VA-GARCH. Furthermore, for most stocks, the unrestricted

specification is also selected with respect to the other variants. Note that the specifica-

tion γ1 = 0, implying only an impact of unexpected volume, is largely selected relative to

other models (except the unrestricted one). These observations already suggest that both

expected and unexpected volume of trading are important factors in order to determine

stock variance, but contemporaneous innovation in volume seems to have a greater impor-

tance than the predictable part of this variable. In addition, as suggested by the results

of the VA-GARCH with respect to the VF-GARCH specifications, the decomposition of

the variance between a persistent GARCH and a volume component (instead of adding a

volume component in the GARCH variance equation) is clearly motivated by the data.

According to the results presented above, the next section discusses fitted parameters

and variance estimates of the unrestricted VF-GARCH model, as well as its implications

22We use trading volumes in billions of traded shares.
23Given our two-step procedure, we do not have identification problems under the different null hypothesis on

the parameters, cf., Hansen (1996) on this issue.
24The likelihood estimates of the different VF-GARCH models are adjusted for the term related to vut for

comparison with the VA-GARCH.
25The LRT panel is less complete than others as Likelihood ratio tests can only be performed with nested

models.
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on the relationship between volatility and volume.

2.4.4 Fitted parameters and conditional estimates

This section presents our empirical findings using the VF-GARCH model. We estimate

the parameters of the unrestricted model using numerical techniques to maximize the like-

lihood functions for each stock over the full period 1994-2014. Sub-samples are considered

in section 2.5 in order to derive empirical regularities across the different cycles in our

sample.

In Table 2.5 we present the VF-GARCH fitted parameters over the period 1994-2014.

t-tests statistical significance at 1%, 5% and 10% are respectively indicated by ∗∗∗,∗∗, and
∗. We discuss the results in the next paragraphs.

Volume component parameters

First, the fitted parameters regarding gt the volume component of the variance are an-

alyzed. Clearly, impacts of both expected and unexpected volume of trading appear to

be substantial for all stocks of the S&P 100, as suggested by the percentage of stocks for

which γ1 and γ2 are significant (100%). Interestingly, the signs of these two parameters

are completely different. While γ1 is negative for all stocks, γ2 is always positive. This

observation is confirmed and highlighted by Figure 2.2. The latter presents a scatter plot

of fitted values of γ1 and γ2 for all stocks in the sample over the period 1994-2014. We

can even discern a relationship between the magnitude of the two parameters: the lower

the impact of expected volume, the lower the impact of unexpected shocks.

Given the expression of gt (equation 2.8), the first conclusion is that expected and

unexpected volume have completely different impacts on variance: 1) a high expected

volume tends to decrease volatility, while 2) a high unexpected volume increases volatil-

ity. In other words, if a large number of trades is anticipated, the asset volatility is

reduced. On the other hand, if a large number of unanticipated trades occurs, this has

the effect of increasing volatility. These two opposite effects are not contradictory with

the widespread conclusion of previous studies (see for instance Gallant et al., 1992; Harris

and Raviv, 1993; Shalen, 1993) that high volume tends to increase volatility. Indeed, as

shown by the ARMA structures presented in Table 2.3, for all stocks the expected volume

is greatly impacted by the lagged innovation, i.e., the lagged unexpected volume, through

the negative MA(1) coefficient. Hence, if we observed yesterday a large unexpected shock

in volume, we anticipate a large decrease in expected volume and therefore an increase in

expected volatility26. This observation underlines the importance of the decomposition of

volume and puts forward the fact that volatility will be presumably higher during periods

of large (positive) innovations in volume. This reveals the usual conclusion that large price

movements are accompanied by large shocks in volumes. Note that a non-zero value of γ2

is also associated with a positive conditional excess kurtosis as highlighted in Corollary

26On the other hand, if the last past shock in volume was unusually low, i.e., large negative unexpected volume,
the expected volume for the next day will be presumably high due to the negative MA(1) coefficient, implying a
decrease in the expected volatility.
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1. Hence the model indicates that the conditional distributions of all assets in the sample

are leptokurtic.

It is also important to focus on the fitted values of ρ, which are significant for most as-

sets (52%). Indeed, as γ2 is obviously positive across stocks, a direct conclusion according

to section 2.3 is that the correlation between unexpected return and unexpected volume

is the key driver of the sign of the risk-return relation (cf., Proposition 2), and also deter-

mines the sign of the conditional skewness of returns (cf., Corollary 1). Table 2.5 suggests

that ρ is predominantly slightly positive in our full sample, with an average value of 0.023

over all stocks. Except for GE and MO, all significant fitted values of ρ are positive. The

conclusion is that the correlation between unexpected volume and unexpected return is

predominantly positive implying a positive risk-return trade-off at the daily horizon, for

most assets on this sample. Note that, if one assumes that shocks in volume are a good

proxy for news shocks then this positive correlation indicates that on average stock price

changes are positively affected by new information. This observation can be related to

the model of Campbell et al. (1993), implying that “a stock price decline on a high-volume

day is more likely than a stock price decline on a low-volume day to be associated with an

increase in the expected stock return” (Campbell et al., 1993, p. 905). We use Proposition

2 and we assume that a negative shock in the lagged return implies a greater increase in

τt the GARCH component than a positive shock, i.e., leverage effect (see later). First,

it is clear that if ρ > 0, a greater value of τt due to a last large negative return implies

a greater expected stock return. In addition, if the last shock in volume was large and

positive, the expected volume will decrease (cf., above), implying a greater value of the

term exp{γ1

2
vet }. As ρ > 0, this will therefore generate an even greater increase in the

expected return. Hence similarly to Campbell et al. (1993), we find that a stock price

decline on a high-unexpected volume day is more likely than a stock price decline on a

low-unexpected volume day to be associated with an increase in the expected stock return

(implying potentially return reversals).

GARCH component parameters

The fitted parameters of the GARCH component, i.e., α1, α2, β1, are now examined. As a

benchmark model without volume, fitted parameters of the GJR-GARCH, i.e., restricted

VF-GARCH model with γ1 = γ2 = ρ = 0, are presented in Table 2.6 using the same

sample. This model exhibits strong ARCH effect, i.e., positive autocorrelation in squared

returns. Indeed, the average values of α1 and β1 are respectively 0.035 and 0.923, with

significance rates of 96% and 100% over all stocks. This result confirms that the per-

sistence of variance is a stylized feature of stock returns. Moreover, the parameter α2,

capturing the asymmetric effect in volatility (a.k.a., leverage effect), is statistically sig-

nificant for 99% of stocks, with an average value of 0.0623. This indicates that, under a

GARCH-type specification, lagged negative innovations in return tend to have a greater

impact on assets’ variance than positive lagged innovations.

Focusing now on Table 2.5 corresponding to the VF-GARCH model, the same pa-

rameters are inspected. Interestingly, the percentages of stocks for which α1 and β1 are
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significant are quite similar to those discussed above: 95% for α1 and 100% for β1. In

addition, the average values of these parameters are not dramatically reduced compared

to the GJR-GARCH. The mean of α1 is even higher: 0.0815, while the mean of β1 is 0.87.

These results suggest that ARCH effect is not reduced when accounting for the impact of

trading volume, and that variance persistence is captured through the GARCH compo-

nent of our model27. Therefore, a large fraction of the persistence of volatility is unrelated

to trading volume and this behavior remains, whether or not volumes are included in the

specification. This important result is in line with recent studies such as Fleming et al.

(2006), but is in contradiction with authors arguing that volume subsumes ARCH effect

(see Lamoureux and Lastrapes, 1990a).

Figure 2.3 displays the persistent part of the expected volatility of the VF-GARCH,

i.e., σ
√
τt (dark line) for APPL and F stocks. This component behaves relatively sim-

ilarly to the GJR-GARCH estimate (grey line), but interestingly, it appears to be even

smoother. Several large spikes exhibited by the GJR-GARCH model seem to be reduced

or cleared by the filtered component of the VF-GARCH model, especially in September

2000 for APPL28. According to the latter model, this implies that these extreme increases

in predicted volatility are not associated with the persistent component of volatility un-

related to trading volume. Note that the mean level of σ
√
τt is slightly lower than the

average value of the GJR-GARCH volatility. Indeed, in the “total” variance prediction of

the VF-GARCH, the filtered component will be amplified by both the expected volume

and the second moment of the normal log-normal mixture.

Finally, when looking at parameter α2 in Table 2.5, conclusions regarding the impact

of trading volume on the usual asymmetric effect in volatility can be discussed. Indeed,

the fitted values of α2 are relatively close between the GJR-GARCH and the VF-GARCH,

with an average value of 0.073 for the latter, and a significance rate of 86%. One cannot

conclude that the integration of volume in the variance dynamic substantially attenuates

the asymmetric effect in volatility as documented in Gallant et al. (1992). The usual

leverage effect appears to be a feature of stock variance unrelated to trading volume.

Contribution of trading volume

We focus now on the contribution of the different components, i.e., τt and gt, to the total

variance. In other words, how much of stock variance can be explained by expected and

unexpected volume, and how much is due to variations unrelated to trading activity and

information arrival. To investigate this question, following Engle et al. (2013), we calculate

empirically for each asset the following variance ratios using the fitted parameters and

27We do not find that the fitted values of β1 in the VA-GARCH model of Lamoureux and Lastrapes (1990a)
are dramatically lower. The average value of α1 and β1 are respectively 0.17 and 0.71.

28APPL market share value fell by 51.9% on September 29, 2000.
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volatility:

Var(log(τt))/Var(log(τtgt)), (2.19)

Var(log(gt))/Var(log(τtgt)), (2.20)

Var(γ1v
e
t )/Var(log(τtgt)), (2.21)

Var(γ2v
u
t )/Var(log(τtgt)), (2.22)

as respective contributions of the persistent GARCH component, volume component (both

expected and unexpected), expected volume, and unexpected volume component. Note

that the variations explained by τt can be considered as unrelated to trading volume. The

values of these ratios are summarized in Table 2.7.

The estimates tell us that both the GARCH factor and the volume component are key

contributors to the total variance for the stocks in the sample. On average gt contributes

to 36% of variations in asset variance. However, the volume contribution is greater than

50% for only eight stocks. Therefore, the trading activity is an important determinant of

the stock variance (about one third), but the latter is also clearly driven by the persistent

component τt unrelated to volume. Note that the contribution of τt seems to be very high

for the stocks of banks in our sample (75% for BAC, 85% for WFC, 70% for JPM, for

instance), highlighting that the variability of these assets are highly affected by factors

unrelated to volume.

Furthermore, focusing on the contribution of the different parts of volume, one can

see that the variations of the unexpected volume component are substantial in order to

understand the variance dynamics. Indeed, the unexpected volume component has an

average contribution of 32% across stocks, this component appears to clearly drive the

volume component. This result is consistent with Fleming et al. (2006)’s finding that

“the unpredictable component of volatility is closely tied to the unpredictable component

of contemporaneous trading volume” (Fleming et al., 2006, p. 1589). Interestingly, the

contribution of the expected volume component is much lower.

Hence two main conclusions arise out of this analysis, for most stocks: 1) both compo-

nents (persistent GARCH and volume) are important drivers of volatility dynamics, and

2) the majority of variations in the volume component can be attributed to unexpected

volume of trading. The first conclusion implies that studying only volume is insufficient in

order to understand stock market volatility dynamics and highlights the limits of standard

MDH models, while the second conclusion implies that a large portion of daily variance

is a priori unpredictable as it is due to innovations in volume, independent of the lagged

available information.

In order to illustrate these results, Figure 2.4 displays the different components of

volatility for BAC and CAT time series. As expected, the VF-GARCH total volatility

is much less smooth than the filtered component σ
√
τt. In fact, many transient spikes

exhibited by the total volatility, are not present in the dynamic of τt. The intuitive

interpretation is that these large variations in conditional stock variance can be attributed

to trading volume and not to shocks in the persistent mean-reverting volatility of price
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increments. Basically, assuming a large negative return is observed at time t − 1, if

this large negative return was accompanied by a large (positive) unexpected volume of

trading, the component τt will not be considerably impacted by the return’s shock, given

the scaling in the dynamic of τt (cf., equation 2.15). Hence, the grey spikes observed in

Figure 2.4 are due to the volume component but do not persist given the small weight

of innovations beyond lag 1 in the ARMA structure of (log) volumes (cf., Table 2.3).

Therefore, according to the VF-GARCH model, the large spikes observed in the expected

volatility time series are much more transient than suggested by a GARCH-type model,

agnostic on the relationship between trading volume and stock variance.

Clearly, the variations of the dark line (due to τt) exhibit much smaller amplitudes

for CAT than for BAC stock, as expected given the small contribution of volume for the

latter. Figure 2.4 also gives an idea of the level of the different variance components across

time. In fact, one can see that during the financial crisis period 2007-2008, the level of τt
was much more above its mean for BAC than for CAT stock.

2.5 Structural breaks and sub-samples

Note that, our initial sample (1994-2014) contains recent data but also presents several

business cycles of economic expansions and recessions, raising concerns about potential

breaks. Structural breaks in volatility have been highlighted by several studies: Lam-

oureux and Lastrapes (1990b) and Andreou and Ghysels (2002) for instance. In particu-

lar, the former paper shows that structural breaks in the unconditional level of GARCH

variance can lead to over-estimation of the persistence in GARCH(1,1) model over long

periods. Therefore, we consider several sub-samples in order to study breaks and empirical

regularities.

2.5.1 Structural breaks in volatility

We split our 20-years sample between five periods: three periods of economic expansions

(January 1994 to February 2001, December 2001 to November 2007 and July 2009 to

December 2014) and two periods of economic recessions29 (Mars 2001 to November 2001

and December 2007 to June 2009). Then, for all stocks in our initial sample, we maximize

the log-likelihood functions previously introduced using the different sub-samples. In

order to test for structural breaks, we compute the following likelihood ratio statistic,

comparing the log-likelihood of the full sample with those of the sub-samples:

2

[
`(Θ̂full)−

5∑
i=1

`(Θ̂i)

]
∼ χ2

K×4, (2.23)

where `(Θ̂full) is the log-likelihood of the full-sample, `(Θ̂i) the log-likelihood on the sub-

sample i, and K the number of parameters in the model.

29The dates of the business cycles are borrowed from NBER.
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The results of the analysis show that a vast majority of stocks (79%) rejects the absence

of structural breaks. This result is not completely unexpected as the specification of τt
is similar to a GARCH model, implying the same potential sources of breaks. Indeed we

find that the GJR-GARCH exhibits breaks for 78% of assets. Due to this result, we also

focus our empirical analysis on the fitted parameters using the sub-samples in order to

verify our previous findings. Note that when performing the model selection procedure

described in section 2.4.3 over each sub-period, we find that the unrestricted VF-GARCH

model is always the best choice except during the recession period of 200130.

2.5.2 Fitted parameters

We focus first on the parameters interacting with trading volumes in gt. Figure 2.5

presents the scatter-plots of fitted values of γ1 and γ2 for the different sub-periods of

interest. Clearly our previous conclusions regarding the signs and the interpretation of

the parameters remain valid. Indeed, for all sub-periods the significant fitted values of

γ1 are negative (except for respectively two, two, and one stock(s) in panels B, D and

E), meaning that expected volume of trading are associated with a reduction of expected

volatility. Note that most parameters appear to lie between 0 and -2. Regarding the

second parameter γ2, it is always positive and mainly above one. This confirms our

previous finding that unexpected shocks in trading volume increase volatility.

We present a summary of the fitted parameters for the VF-GARCH model over the

different sub-samples in Table 2.8. Again, as a benchmark model, we also present the

fitted parameters of the restricted model with γ1 = γ2 = ρ = 0 (GJR-GARCH) over

the same sub-samples in Table 2.9. Interestingly, we observe that the sign of (average)

ρ is not always positive, depending on the sub-period. In particular, ρ is predominantly

negative for the periods 2001-03 to 2001-11, 2007-12 to 2009-06, and 2009-07 to 2014-12.

Assuming that shocks in volume are a good proxy for news shocks then this indicates

that on average stock price changes are negatively impacted by new information. In

other words, bad news are predominant during these periods. While this result appears

intuitive for the two periods 2001-03 to 2001-11 and 2007-12 to 2009-06 as they correspond

to recessions, it is more surprising for the sample 2009-07 to 2014-12.

Our previous conclusions on the component τt remain valid. First, the parameter

β1 is large and significant: above 0.8 and significant for at least 95% of stocks in all

sub-samples, highlighting an important level of persistence in the GARCH component

of the VF-GARCH model. This feature is also present in the model without volume,

exhibiting similar values for β1 in Table 2.9. Note that the lowest value of β1 is obtained

for the shortest period for both the GJR-GARCH and the VF-GARCH, as suggested by

Lamoureux and Lastrapes (1990b). Regarding α1, while its mean level is very similar

across sub-samples (between 0.07 and 0.09), its significance rate across stocks oscillates

between 34% during the recession of 2001 and 92% during the first sub-period 1994-2001.

Similar observations can be drawn from the restricted model without volume. This further

demonstrates the ability of the VF-GARCH model to account for persistence in volatility,

30The best model over this period is the VF-GARCH with γ1 = 0.
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captured by standard ARCH specifications.Finally, the mean value of α2 also remains

quite concentrated between 0.06 and 0.11 over the different periods, with significance

rates between 51% and 75%. Note that the sum of the average fitted values α1 +β1 + 1
2
α2

is very close to one and is respectively equal to 0.95, 0.93, 0.98, 0.96 and 0.96 over the five

sub-samples. Therefore, we conclude that the persistence is a feature of volatility present

in the different considered sub-periods, confirming that integrating trading volume in our

model does not annihilate ARCH effect.

2.5.3 Volatility drivers

As described in section 2.4.4, Table 2.10 summarizes the contribution of the different

components over the different sub-periods according to the variance ratios previously

introduced. First, as previously discussed, a substantial fraction of variations in volatility

appears to be unrelated to trading volume, underlying the importance of the variations

in the component τt. However, we observe that unexpected shock in volume is also an

important contributor to variance dynamics. Indeed, as before, the contribution of the

unexpected volume component is much larger than the contribution of expected volume of

trading. Interestingly, the average contribution of the volume component estimated over

the different sub-samples is greater than the mean contribution over the full sample (36%,

as presented in Table 2.7). This result is not surprising given the larger average fitted

values of γ2 for four sub-samples out of five (respectively 1.62, 1.83, 1.81 and 2.04 for the

last four sub-samples), with respect to the mean value of γ2 over the full sample (1.56).

In fact, we can even see that for most stocks the volume component is the main driver of

volatility dynamics (contribution greater than 50%) for all sub-periods except during the

recession 2007-2009. The latter period is therefore characterized by important variations

in the volatility component τt, underlying a high level of uncertainty, independent of

the trading activity. Therefore, our previous conclusions remain: 1) a large fraction of

volatility is a priori unpredictable as it is associated with contemporaneous innovations

in trading volume, and 2) the variations in both the persistent component τt and the

unexpected volume component remain substantial in order to explain volatility dynamics.

2.6 The effect of unexpected volume on volatility

This section discusses the impact on VF-GARCH volatility estimates of unexpected vol-

ume of trading occurring during important news events. Indeed, Andersen and Bollerslev

(1998) and Maheu and McCurdy (2004) show that special announcements such as earning

surprises can be associated with large but short-lived variations of volatility for exchange

rates and equity respectively. In our model, if earning surprises are associated with large

unexpected shocks in volume, our estimates of volatility will increase due to the volume

component, but quickly reduce the following days.

To illustrate how special news events are captured by our model, we focus on three

dates of earning surprises for IBM. We borrow from Maheu and McCurdy (2004) the
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following dates of earning surprises31: 2000-07-20, 2000-10-18 and 2001-01-18. Table 2.11

presents the price and volatility variations as well as unexpected volumes during these

periods. The exact dates of earning surprise are represented in bold. They are associated

with large daily (absolute) returns: respectively 12.26%, -16.89% and 11.35%. Interest-

ingly, we observe that the total variance of our model σ2τtgt also increases strongly on

these specific dates. However, these variations can be largely attributed to the changes in

gt. The latter exhibits an increase of more than 250% for each specific date. In fact, we

record large unexpected volume of trading on each specific announcement date. On the

other hand, the day after the earning surprise, the component τt does not dramatically rise

despite the large lagged shock, with respect to gt. Indeed, as exhibited by equation (2.15)

and Table 2.11, as the earning surprises are associated with large unexpected volume of

trading (implying a large value of gt−1), the impact of the return rt−1 in the dynamics of

τt is limited.

We further illustrate this fact in Figure 2.6. The evolution of daily returns, unexpected

volumes and volatility components are presented during the second earning surprise in

October 2000 (grayed area). Clearly, the large negative return of 2000-10-18 (Panel A)

is accompanied by a large unexpected volume (Panel B). The impact of the latter on

the volatility is clear: the total volatility increases (due to gt), while τt remains quite

stable. Therefore, the total volatility quickly reduces the days after the surprise, and does

not persist at a high level unlike estimates of the GJR-GARCH model presented in the

Panel D. The Figure highlights the ability of the VF-GARCH model to disentangle the

shocks in prices which are likely to be short-lived given the behavior of volumes.

Given equation (2.15), the impact of a return shock occurring at time t in the value

of τt+k is given by βk−1
1 (α1 +α21rt<µt)

(rt−µt)2

σ2gt
for k ≥ 1. Table 2.12 reports the numerical

value of this term for k = 10, 20, 30 for the three studied earning surprises. While the

impacts of the corresponding returns (in bold) appear to be quite large relative to other

price variations after 10 days, most of the effect has vanished after 20 and 30 days.

The distinction of the model between long-lasting and short-lived shocks can also be

observed on Figure 2.7. For the three largest negative returns occurring during the period

1994-01 to 2001-02, the Figure plots the rate of decay of the shock in τt component, i.e.,

the value of βk−1
1 (α1 +α21rt<µt)

(rt−µt)2

σ2gt
for 1 ≤ k ≤ 50. Note that the two largest absolute

returns (-16.89% and -16.2%) exhibit very different rate of decay. Moreover, the curves

corresponding to the shocks -16.2% and -9.29% are very similar despite the difference in

the magnitude of returns. When looking at unexpected volumes on these specific dates,

we find that these three large shocks are associated with large innovations in volume:

1.36, 1.98 and 1.66 respectively for 2000-10-18, 1999-10-21 and 1996-04-17. In fact, the

second and third realized unexpected volumes (1.98 and 1.66) are among the three largest

unexpected volumes recorded over the period. Hence, the larger shock in volume for the

second date justifies the much lower impact of the corresponding return with respect to

the shock -16.82%.

31Maheu and McCurdy (2004) obtain earning surprises based on the average of analysts’ forecasts reported by
IBES.
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Conclusion

The joint study of equity volatility and trading volume has been motivated by several

episodes of large price variations accompanied by unusually high volume. This empirical

association can be justified within a Mixture of Distribution Hypothesis (MDH) frame-

work. Basically, these models predict that both volume and volatility are related to the

unobservable news arrival rate. However, important stylized facts regarding stocks vari-

ance, notably persistence, are not captured by these specifications.

This paper introduces a parametric model, referred as Volume Filtered-GARCH (VF-

GARCH), for studying the heteroskedasticity of individual stock returns, combining both

MDH and GARCH models. Based on a variant of the Mixture of Distribution Hypothesis,

the specification implies two components for the stock variance. The first one, modeled

as an asymmetric GARCH, captures the persistence of the volatility of price variations

unrelated to news arrival. On the other hand, the second component, the stochastic mixing

variable, is modeled as a combination of both expected volume of trading and unexpected

shocks in volume. These two quantities correspond respectively to the predictable part

and the innovation of volume variations obtained after fitting an ARMA model to log-

volume difference series.

The VF-GARCH specification implies an explicit association between volatility and

volume, as well as the empirically motivated persistent mean-reverting behavior of stock

variance. In addition, allowing shocks in the return and shocks in the volume to be

correlated, the model leads to a normal log-normal mixture for the conditional distribution

of returns, implying in particular a time-varying conditional mean and a non-zero skewness

and (excess) kurtosis. According to the model, this reveals a natural risk-return relation

capturing a result similar to Campbell et al. (1993)’s that a stock price decline on a

high-unexpected volume day is more likely than a stock price decline on a low-unexpected

volume day to be associated with an increase of expected return.

The main results of this paper concern the impact of trading volume on stock variance.

We find that a large expected volume of trading decreases volatility, while large unexpected

shocks in volume increase volatility. Given the structure of expected volume, this confirms

that large unexpected shocks in volumes are accompanied by increase in stock variance.

Furthermore, we find that stylized features of volatility, that are ARCH effect and

leverage effect persist even when volumes are incorporated into the model. In other

words, the usual persistence of volatility and asymmetric impact of lagged return shocks

are mainly associated with the component of variance unrelated to trading volume.

Empirical results show that the volume component is a key driver of stock variance.

More specifically, the component of the model impacted by unexpected volume of trading

appears to be the main contributor to variations in asset volatility in four business cycles

out of five from 1994 to 2014. The latter result implies that a large portion of daily

variance is a priori unpredictable as it is due to innovations in volume independent of

lagged available information. On the other hand, the non-negligible remaining fraction

of variations in stock variance is clearly associated with the persistent mean-reverting
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component unrelated to trading volume, underlying the important role of the GARCH

component in our model.

Finally, the model allows to analyze the variations of volatility during important news

events. Indeed, using the example of IBM, we find that large price movements occurring

during earning surprises are accompanied by high unexpected shocks in volume, implying

large but short-lived increases in volatility, captured by the volume component of our

model. The persistent GARCH component of the model remains stable during these

periods.

Future works could exploit recent research on the relation between stock market volatil-

ity and macroeconomic variables in order to further disentangle the long-run movements

of equity variance driven by macroeconomic fundamentals and the short-run movements

driven by news arrival.
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Tables and Figures

Nb. Ticker Name
1 ORCL ORACLE CORP
2 MSFT MICROSOFT CORP
3 HON HONEYWELL INTERNATIONAL INC
4 EMC E M C CORP MA
5 KO COCA COLA CO
6 DD DU PONT E I DE NEMOURS & CO
7 XOM EXXON MOBIL CORP
8 GD GENERAL DYNAMICS CORP
9 GE GENERAL ELECTRIC CO
10 IBM INTERNATIONAL BUSINESS MACHS COR
11 PEP PEPSICO INC
12 MO ALTRIA GROUP INC
13 COP CONOCOPHILLIPS
14 AMGN AMGEN INC
15 SLB SCHLUMBERGER LTD
16 CVX CHEVRON CORP NEW
17 AAPL APPLE INC
18 TXN TEXAS INSTRUMENTS INC
19 CVS C V S HEALTH CORP
20 BRK BERKSHIRE HATHAWAY INC DEL
21 UTX UNITED TECHNOLOGIES CORP
22 PG PROCTER & GAMBLE CO
23 SO SOUTHERN CO
24 CAT CATERPILLAR INC
25 CL COLGATE PALMOLIVE CO
26 BMY BRISTOL MYERS SQUIBB CO
27 WBA WALGREEN BOOTS ALLIANCE INC
28 BA BOEING CO
29 ABT ABBOTT LABORATORIES
30 DOW DOW CHEMICAL CO
31 LMT LOCKHEED MARTIN CORP
32 EXC EXELON CORP
33 PFE PFIZER INC
34 EMR EMERSON ELECTRIC CO
35 JNJ JOHNSON & JOHNSON
36 MMM 3M CO
37 MRK MERCK & CO INC NEW
38 HAL HALLIBURTON COMPANY
39 RTN RAYTHEON CO
40 F FORD MOTOR CO DEL

Nb. Ticker Name
41 DIS DISNEY WALT CO
42 BH BIGLARI HOLDINGS INC
43 HPQ HEWLETT PACKARD CO
44 BAX BAXTER INTERNATIONAL INC
45 OXY OCCIDENTAL PETROLEUM CORP
46 WFC WELLS FARGO & CO NEW
47 APA APACHE CORP
48 MCD MCDONALDS CORP
49 JPM JPMORGAN CHASE & CO
50 UNP UNION PACIFIC CORP
51 TGT TARGET CORP
52 BK BANK OF NEW YORK MELLON CORP
53 LLY LILLY ELI & CO
54 WMT WAL MART STORES INC
55 NKE NIKE INC
56 AXP AMERICAN EXPRESS CO
57 INTC INTEL CORP
58 BAC BANK OF AMERICA CORP
59 MDT MEDTRONIC INC
60 FDX FEDEX CORP
61 LOW LOWES COMPANIES INC
62 NSC NORFOLK SOUTHERN CORP
63 VZ VERIZON COMMUNICATIONS INC
64 T A T & T INC
65 USB U S BANCORP DEL
66 HD HOME DEPOT INC
67 AIG AMERICAN INTERNATIONAL GROUP INC
68 MS MORGAN STANLEY DEAN WITTER & CO
69 APC ANADARKO PETROLEUM CORP
70 C CITIGROUP INC
71 CSCO CISCO SYSTEMS INC
72 BIIB BIOGEN IDEC INC
73 QCOM QUALCOMM INC
74 GILD GILEAD SCIENCES INC
75 TWX TIME WARNER INC NEW
76 SBUX STARBUCKS CORP
77 ALL ALLSTATE CORP
78 SPG SIMON PROPERTY GROUP INC NEW
79 COST COSTCO WHOLESALE CORP NEW
80 UNH UNITEDHEALTH GROUP INC

Table 2.1: The list of the stocks studied in the empirical section.
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rt Mean Std. dev. Skew. Kurt. KPSS

Top 20

AAPL 0.000893 0.0305 -2.38 67.1 0.161*

MSFT 0.000615 0.0205 -0.0450 6.58 0.432*

BAC 0.000189 0.0287 -0.344 26.3 0.166*

INTC 0.000485 0.0249 -0.382 6.67 0.222*

CSCO 0.000537 0.0272 -0.111 6.75 0.361*

ORCL 0.000665 0.0290 -0.171 10.7 0.139*

GE 0.000311 0.0188 0.00840 7.89 0.284*

F 0.000251 0.0267 0.366 17.5 0.0810*

PFE 0.000434 0.0174 -0.187 3.87 0.462*

QCOM 0.000766 0.0320 0.471 6.63 0.151*

EMC 0.000527 0.0303 -0.307 7.77 0.213*

WFC 0.000524 0.0239 0.788 25. 0.0846*

JPM 0.000408 0.0251 0.244 11.8 0.0815*

GILD 0.00105 0.0325 0.0262 5.51 0.0281*

XOM 0.000436 0.0154 0.0407 9.12 0.125*

T 0.000259 0.0173 0.0668 5.17 0.0783*

C 5.28e-05 0.0310 -0.442 37.5 0.436*

TXN 0.000539 0.0278 0.147 3.50 0.168*

KO 0.000336 0.0145 0.0136 6.36 0.130*

HPQ 0.000394 0.0250 -0.0381 8.34 0.139*

Summary

Top 20 - Avg. 0.000484 0.0249 -0.112 14.0 -

Top 20 - Freq. - - - - 100

All - Avg. 0.000485 0.0215 -0.184 19.3 -

All - Freq. - - - - 99

Table 2.2: Sample statistics of return time series. “Top 20” corresponds to the twenty stocks of the S&P 100 Index
(as of 2014-12-31) with highest mean daily volume (number of traded shares) from 1994-01-03 to 2014-12-31. “All”
corresponds to all S&P 100 stocks as of 2014-12-31 (provided that the price history goes back to 1994-01-03).
“Avg.” denotes mean statistic over a given sample of stocks. “Freq.” is the percentage of stocks for wich the KPSS
statistical test does not reject stationarity hypothesis at 5% level (* in last column).
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1994-01 to 2014-12 Unrestricted γ2 = 0 γ1 = 0 γ1 = γ2 γ1 = γ2 = ρ = 0 α1 = α2 = β1 = 0 VA-GARCH

AIC

Unrestricted - 100 62 99 100 100 100

γ2 = 0 0 - 0 0 69 70 79

γ1 = 0 38 100 - 99 100 100 100

γ1 = γ2 1 100 1 - 100 100 100

γ1 = γ2 = ρ = 0 0 31 0 0 - 62 76

α1 = α2 = β1 = 0 0 30 0 0 38 - 38

VA-GARCH 0 21 0 0 24 62 -

BIC

Unrestricted - 100 59 99 100 100 100

γ2 = 0 0 - 0 0 59 66 79

γ1 = 0 41 100 - 99 100 100 100

γ1 = γ2 1 100 1 - 100 100 100

γ1 = γ2 = ρ = 0 0 41 0 0 - 62 76

α1 = α2 = β1 = 0 0 34 0 0 38 - 38

VA-GARCH 0 21 0 0 24 62 -

LRT

Unrestricted - 100 62 99 100 100 -

γ2 = 0 0 - - - 65 - -

γ1 = 0 38 - - - 100 - -

γ1 = γ2 1 - - - - - -

γ1 = γ2 = ρ = 0 0 35 0 - - - -

α1 = α2 = β1 = 0 0 - - - - - -

VA-GARCH - - - - - - -

Table 2.4: Summary of the model selection procedure according to AIC, BIC and Likelihood Ratio Tests (LRT).
In a given panel corresponding to a specific selection criterion, each number represents the percentage of stocks
for which the model specified as row name is selected with respect to the model specified as column name.
VA-GARCH is the model of Lamoureux and Lastrapes (1990a).
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1994-01 to 2014-12 µ σ α1 β1 α2 γ1 γ2 ρ
Top 20

AAPL 3.35e-05 0.0313*** 0.0406*** 0.919*** 0.0729*** -1.42*** 1.83*** 0.0735***
(0.000229) (0.00692) (0.00846) (0.00552) (0.00668) (0.103) (0.0467) (0.0145)

MSFT 0.000444*** 0.0507*** 0.159*** 0.839*** 2.73e-07 -1.41*** 1.91*** 0.0424***
(0.000157) (0.00351) (0.00164) (0.00164) (0.000119) (0.112) (0.0517) (0.0144)

BAC 0.000607*** 0.0206*** 0.121*** 0.807*** 0.117*** -0.716*** 1.93*** -0.00396
(0.000159) (0.00321) (0.0172) (0.0200) (0.0213) (0.116) (0.0518) (0.0144)

INTC 0.000647*** 0.0633*** 0.0845*** 0.891*** 0.0478*** -1.28*** 2.07*** 0.00360
(0.000187) (0.00719) (0.00811) (0.00868) (0.000279) (0.118) (0.0543) (0.0145)

CSCO 0.000552*** 0.0707*** 0.0133*** 0.940*** 0.0926*** -1.54*** 1.87*** -0.0198
(0.000161) (0.00621) (0.00272) (0.00272) (2.00e-08) (0.119) (0.0532) (0.0140)

ORCL 0.000331* 0.121*** 0.124*** 0.862*** 0.0277*** -1.83*** 1.63*** 0.00488
(0.000200) (0.00880) (0.00737) (0.00737) (2.00e-08) (0.113) (0.0482) (0.0143)

GE 4.38e-05 0.0336*** 0.122*** 0.875*** 1.44e-07*** -0.431*** 0.610*** -0.0793***
(0.000164) (0.00610) (0.0208) (0.0207) (2.00e-08) (0.142) (0.0514) (0.0137)

F 0.000449* 0.0292 0.0621** 0.919*** 0.0243 -1.03*** 0.968*** -0.0141
(0.000258) (0.0180) (0.0248) (0.0192) (0.0151) (0.109) (0.0260) (0.0143)

PFE 0.000314* 0.0183*** 0.134*** 0.834*** 0.0325 -0.942*** 1.80*** 0.0105
(0.000161) (0.00210) (0.0283) (0.0269) (0.0213) (0.121) (0.0558) (0.0143)

QCOM 0.000453** 0.0546*** 0.00439 0.947*** 0.0962*** -2.14*** 1.25*** -0.00369
(0.000214) (0.00653) (0.00306) (0.00306) (2.00e-08) (0.0930) (0.0414) (0.0138)

EMC 0.000343 0.148*** 0.146*** 0.854*** 3.38e-07*** -0.523*** 1.86*** 0.0213
(0.000212) (0.0110) (0.00798) (0.00798) (2.00e-08) (0.0998) (0.0486) (0.0145)

WFC 0.000520*** 0.0308*** 0.134*** 0.824*** 0.0771*** -0.784*** 1.28*** 0.00429
(0.000142) (0.00256) (0.0172) (0.0181) (0.0129) (0.104) (0.0435) (0.0139)

JPM -6.30e-05 0.0211*** 0.0708*** 0.773*** 0.259*** -0.232* 1.88*** 0.0226
(0.000187) (0.00191) (0.0181) (0.0464) (0.0504) (0.121) (0.0542) (0.0140)

GILD 0.000155 0.0336*** 0.00419 0.956*** 0.0746*** -0.353*** 1.09*** 0.0707***
(0.000237) (0.00244) (0.00320) (0.00266) (0.00378) (0.0523) (0.0298) (0.0144)

XOM 0.000324** 0.0135*** 0.0294*** 0.928*** 0.0658*** -1.07*** 1.98*** -0.00371
(0.000144) (0.00119) (0.00717) (0.00712) (0.0129) (0.122) (0.0648) (0.0142)

T 0.000370*** 0.0600*** 0.0955*** 0.875*** 0.0578*** -0.965*** 1.85*** -0.00963
(0.000134) (0.00616) (0.00498) (0.00551) (0.000171) (0.111) (0.0559) (0.0144)

C -2.20e-06 0.0259*** 0.0883*** 0.781*** 0.234*** -0.889*** 1.75*** 0.0156
(0.000179) (0.00367) (0.0147) (0.0313) (0.0369) (0.114) (0.0487) (0.0140)

TXN 0.000783*** 0.0442*** 0.118*** 0.880*** 2.56e-07*** -1.10*** 1.78*** 0.0257*
(0.000208) (0.00734) (0.0193) (0.0193) (2.00e-08) (0.115) (0.0521) (0.0144)

KO 0.000277** 0.0264*** 0.0431*** 0.935*** 0.0417*** -0.998*** 1.97*** 0.0189
(0.000110) (0.00289) (0.00551) (0.00600) (0.000157) (0.113) (0.0547) (0.0144)

HPQ 0.000102 0.0749*** 0.159*** 0.821*** 0.0363*** -1.06*** 1.62*** 0.0239
(0.000201) (0.0151) (0.0286) (0.0286) (0.000804) (0.110) (0.0304) (0.0147)

Summary
Top 20 - Avg. 0.000334 0.0486 0.0877 0.873 0.0679 -1.04 1.65 0.0102
Top 20 - Freq. 65 95 90 100 85 100 100 25
All - Avg. 0.000263 0.0377 0.0815 0.870 0.0734 -0.852 1.56 0.0234
All - Freq. 56 96 95 100 86 100 100 52

Table 2.5: VF-GARCH model fitted parameters from 1994-01-03 to 2014-12-31. The numbers in parentheses are
standard errors. “Top 20” corresponds to the twenty stocks of the S&P 100 Index (as of 2014-12-31) with highest
mean daily volume (number of traded shares) from 1994-01-03 to 2014-12-31. “All” corresponds to all S&P 100
stocks as of 2014-12-31 (provided that the price history goes back to 1994-01-03). “Avg.” denotes mean parameter
over a given sample of stocks. “Freq.” is the percentage of stocks for wich a given parameter is significant.
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1994-01 to 2014-12 µ σ α1 β1 α2

Top 20
AAPL 0.00167*** 0.0530*** 0.0541*** 0.906*** 0.0719***

(0.000310) (0.00538) (0.00684) (0.00650) (0.00777)
MSFT 0.000607*** 0.0204*** 0.0308*** 0.937*** 0.0434***

(0.000221) (0.00134) (0.00542) (0.00773) (0.00967)
BAC 0.000416** 0.0180*** 0.0202*** 0.933*** 0.0744***

(0.000204) (0.00121) (0.00531) (0.00937) (0.0106)
INTC 0.000669** 0.0239*** 0.0247*** 0.897*** 0.110***

(0.000265) (0.00126) (0.00580) (0.0163) (0.0229)
CSCO 0.000683** 0.0251*** 0.00597* 0.958*** 0.0564***

(0.000285) (0.00150) (0.00361) (0.00439) (0.00818)
ORCL 0.000686*** 0.0364*** 0.0314*** 0.938*** 0.0551***

(0.000266) (0.00427) (0.00565) (0.00481) (0.00896)
GE 0.000486*** 0.0167*** 0.0229*** 0.943*** 0.0559***

(0.000179) (0.00156) (0.00534) (0.00739) (0.00954)
F 4.59e-05 0.0259*** 0.0494*** 0.939*** 0.00152***

(0.000282) (0.00164) (0.00832) (0.0100) (2.00e-08)
PFE 0.000345* 0.0217*** 0.0425*** 0.938*** 0.0299***

(0.000195) (0.00328) (0.00740) (0.00670) (0.0112)
QCOM 0.000778*** 0.0433*** 0.0430*** 0.934*** 0.0412***

(0.000288) (0.00319) (0.00603) (0.00578) (0.00401)
EMC 0.000778*** 0.0334*** 0.0116*** 0.963*** 0.0475***

(0.000272) (0.00332) (0.00322) (0.00322) (2.00e-08)
WFC 0.000440*** 0.0238*** 0.0170*** 0.933*** 0.0959***

(0.000160) (0.00270) (0.00451) (0.00407) (0.00674)
JPM 0.000542** 0.0235*** 0.0190*** 0.943*** 0.0692***

(0.000210) (0.00375) (0.00483) (0.00547) (0.0109)
GILD 0.000965*** 0.0341*** 0.0170*** 0.975*** 0.0118***

(0.000331) (0.00403) (0.00257) (0.00257) (0.00100)
XOM 0.000429** 0.0141*** 0.0352*** 0.917*** 0.0616***

(0.000168) (0.000729) (0.00673) (0.00855) (0.0113)
T 0.000328* 0.0195*** 0.0447*** 0.934*** 0.0350***

(0.000175) (0.00335) (0.00727) (0.00733) (0.0108)
C 0.000430** 0.0304*** 0.0393*** 0.932*** 0.0524***

(0.000212) (0.00312) (0.00592) (0.00561) (0.00482)
TXN 0.000706*** 0.0307** 0.0174*** 0.955*** 0.0516**

(0.000200) (0.0140) (0.00294) (0.00642) (0.0241)
KO 0.000488*** 0.0156*** 0.0272*** 0.934*** 0.0652***

(0.000149) (0.00188) (0.00605) (0.00673) (0.00973)
HPQ 0.000761*** 0.0256*** 0.00796 0.936*** 0.0808**

(0.000287) (0.00168) (0.00542) (0.0322) (0.0370)
Summary

Top 20 - Avg. 0.000613 0.0268 0.0281 0.937 0.0555
Top 20 - Freq. 95 100 95 100 100
All - Avg. 0.000569 0.0247 0.0350 0.923 0.0623
All - Freq. 90 100 96 100 99

Table 2.6: GJR-GARCH model fitted parameters from 1994-01-03 to 2014-12-31. The numbers in parentheses are
standard errors. “Top 20” corresponds to the twenty stocks of the S&P 100 Index (as of 2014-12-31) with highest
mean daily volume (number of traded shares) from 1994-01-03 to 2014-12-31. “All” corresponds to all S&P 100
stocks as of 2014-12-31 (provided that the price history goes back to 1994-01-03). “Avg.” denotes mean parameter
over a given sample of stocks. “Freq.” is the percentage of stocks for wich a given parameter is significant.
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1994-01 to 2014-12 GARCH contrib. Volume contrib. Exp. volume contrib. Unexp. volume contrib.

Top 20

AAPL 0.49 0.51 0.066 0.45

MSFT 0.59 0.41 0.058 0.35

BAC 0.75 0.25 0.0094 0.24

INTC 0.60 0.40 0.041 0.36

CSCO 0.67 0.33 0.049 0.28

ORCL 0.68 0.32 0.087 0.23

GE 0.95 0.047 0.0061 0.041

F 0.74 0.26 0.064 0.19

PFE 0.59 0.41 0.031 0.38

QCOM 0.70 0.30 0.14 0.16

EMC 0.65 0.35 0.0081 0.34

WFC 0.85 0.15 0.017 0.13

JPM 0.70 0.30 0.0013 0.30

GILD 0.70 0.30 0.013 0.29

XOM 0.56 0.44 0.042 0.39

T 0.69 0.31 0.027 0.28

C 0.75 0.25 0.016 0.23

TXN 0.67 0.33 0.034 0.30

KO 0.62 0.38 0.029 0.35

HPQ 0.61 0.39 0.044 0.34

Summary

Top 20 - Avg. 0.68 0.32 0.039 0.28

Top 20 - Freq. > 50% 95 5 0 0

All - Avg. 0.64 0.36 0.035 0.32

All - Freq. > 50% 92 8 0 4

Table 2.7: Components’ contribution to variations in stock return variance. In the first panel, for each
row, the numbers correspond respectively to the ratios Var (log τt) /Var (log τtgt), Var (log gt) /Var (log τtgt),
Var (γ1v

e
t ) /Var (log τtgt), and Var (γ2v

u
t ) /Var (log τtgt) . “Top 20” corresponds to the twenty stocks of the S&P

100 Index (as of 2014-12-31) with highest mean daily volume (number of traded shares) from 1994-01-03 to 2014-
12-31. “All” corresponds to all S&P 100 stocks as of 2014-12-31 (provided that the price history goes back to
1994-01-03). “Avg.” denotes mean ratio over a given sample of stocks. “Freq. > 50%” is the percentage of stocks
for which a given component represent more than half of the variability of the variance estimates.
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1994-01 to 2001-02 µ σ α1 β1 α2 γ1 γ2 ρ

Top 20 - Avg. -0.000191 0.0283 0.0809 0.829 0.0895 -0.750 1.46 0.0688

Top 20 - Freq. 35 100 100 100 85 90 100 75

All - Avg. -0.000181 0.0236 0.0876 0.835 0.0631 -0.592 1.32 0.0811

All - Freq. 22 99 92 100 68 91 100 88

2001-03 to 2001-11 µ σ α1 β1 α2 γ1 γ2 ρ

Top 20 - Avg. -0.000860 0.0421 0.0665 0.838 0.124 -0.618 1.71 -0.0659

Top 20 - Freq. 10 100 25 100 55 25 100 40

All - Avg. -0.000199 0.0285 0.0785 0.810 0.0922 -0.619 1.62 -0.0568

All - Freq. 9 100 34 95 51 29 100 34

2001-12 to 2007-11 µ σ α1 β1 α2 γ1 γ2 ρ

Top 20 - Avg. 1.82e-05 0.0273 0.0724 0.879 0.0724 -0.989 1.92 0.0177

Top 20 - Freq. 25 100 50 100 70 95 100 55

All - Avg. 0.000169 0.0222 0.0654 0.874 0.0785 -0.865 1.83 0.0150

All - Freq. 35 98 70 100 75 95 100 36

2007-12 to 2009-06 µ σ α1 β1 α2 γ1 γ2 ρ

Top 20 - Avg. -0.000844 0.0362 0.105 0.817 0.103 -1.88 1.99 -0.0323

Top 20 - Freq. 15 100 50 100 85 90 100 25

All - Avg. -0.000470 0.0284 0.0797 0.828 0.107 -1.32 1.81 -0.0444

All - Freq. 10 99 45 99 68 80 100 31

2009-07 to 2014-12 µ σ α1 β1 α2 γ1 γ2 ρ

Top 20 - Avg. 0.000708 0.0195 0.0646 0.834 0.125 -1.25 2.29 -0.0325

Top 20 - Freq. 75 100 65 100 85 100 100 30

All - Avg. 0.000693 0.0218 0.0743 0.839 0.102 -1.10 2.04 -0.0248

All - Freq. 74 98 58 100 72 99 100 35

Table 2.8: Summary of VF-GARCH model fitted parameters over five sub-samples. The five panels correspond
respectively to the sub-periods: 1) January 1994 to February 2001, 2) Mars 2001 to November 2001, 3) December
2001 to November 2007, 4) December 2007 to June 2009, and 5) July 2009 to December 2014. “Top 20”corresponds
to the twenty stocks of the S&P 100 Index (as of 2014-12-31) with highest mean daily volume (number of traded
shares) from 1994-01-03 to 2014-12-31. “All” corresponds to all S&P 100 stocks as of 2014-12-31 (provided that
the price history goes back to 1994-01-03). “Avg.” denotes mean parameter over a given sample of stocks. “Freq.”
is the percentage of stocks for wich a given parameter is significant.
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1994-01 to 2001-02 µ σ α1 β1 α2

Top 20 - Avg. 0.00111 0.0284 0.0402 0.881 0.0687

Top 20 - Freq. 75 100 80 100 85

All - Avg. 0.000914 0.0239 0.0413 0.892 0.0551

All - Freq. 66 100 81 100 75

2001-03 to 2001-11 µ σ α1 β1 α2

Top 20 - Avg. -0.00140 0.0448 0.0477 0.827 0.137

Top 20 - Freq. 5 95 40 100 70

All - Avg. -0.000664 0.0354 0.0469 0.787 0.156

All - Freq. 1 96 44 95 58

2001-12 to 2007-11 µ σ α1 β1 α2

Top 20 - Avg. 0.000333 0.0246 0.0278 0.934 0.0466

Top 20 - Freq. 25 100 85 100 85

All - Avg. 0.000394 0.0220 0.0370 0.895 0.0669

All - Freq. 38 99 74 99 80

2007-12 to 2009-06 µ σ α1 β1 α2

Top 20 - Avg. -0.000942 0.0325 0.0321 0.872 0.137

Top 20 - Freq. 10 100 65 100 90

All - Avg. -0.000692 0.0291 0.0329 0.867 0.120

All - Freq. 5 100 42 99 88

2009-07 to 2014-12 µ σ α1 β1 α2

Top 20 - Avg. 0.000556 0.0217 0.0356 0.873 0.0808

Top 20 - Freq. 40 100 75 100 85

All - Avg. 0.000589 0.0241 0.0560 0.850 0.0958

All - Freq. 59 98 65 99 84

Table 2.9: Summary of GJR-GARCH model (γ1 = γ2 = ρ = 0) fitted parameters over five sub-samples. The five
panels correspond respectively to the sub-periods: 1) January 1994 to February 2001, 2) Mars 2001 to November
2001, 3) December 2001 to November 2007, 4) December 2007 to June 2009, and 5) July 2009 to December 2014.
“Top 20” corresponds to the twenty stocks of the S&P 100 Index (as of 2014-12-31) with highest mean daily
volume (number of traded shares) from 1994-01-03 to 2014-12-31. “All” corresponds to all S&P 100 stocks as
of 2014-12-31 (provided that the price history goes back to 1994-01-03). “Avg.” denotes mean parameter over a
given sample of stocks. “Freq.” is the percentage of stocks for wich a given parameter is significant.
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1994-01 to 2001-02 GARCH contrib. Volume contrib. Exp. volume contrib. Unexp. volume contrib.

Top 20 - Avg. 0.42 0.58 0.053 0.52

Top 20 - Freq. > 50% 25 75 0 65

All - Avg. 0.44 0.56 0.043 0.51

All - Freq. > 50% 35 65 0 58

2001-03 to 2001-11 GARCH contrib. Volume contrib. Exp. volume contrib. Unexp. volume contrib.

Top 20 - Avg. 0.42 0.58 0.036 0.54

Top 20 - Freq. > 50% 35 65 5 65

All - Avg. 0.31 0.69 0.062 0.63

All - Freq. > 50% 19 81 0 72

2001-12 to 2007-11 GARCH contrib. Volume contrib. Exp. volume contrib. Unexp. volume contrib.

Top 20 - Avg. 0.57 0.43 0.037 0.39

Top 20 - Freq. > 50% 70 30 0 30

All - Avg. 0.49 0.51 0.038 0.47

All - Freq. > 50% 49 51 0 44

2007-12 to 2009-06 GARCH contrib. Volume contrib. Exp. volume contrib. Unexp. volume contrib.

Top 20 - Avg. 0.54 0.46 0.078 0.39

Top 20 - Freq. > 50% 45 55 0 25

All - Avg. 0.58 0.42 0.060 0.36

All - Freq. > 50% 59 41 0 18

2009-07 to 2014-12 GARCH contrib. Volume contrib. Exp. volume contrib. Unexp. volume contrib.

Top 20 - Avg. 0.33 0.67 0.059 0.61

Top 20 - Freq. > 50% 5 95 0 85

All - Avg. 0.37 0.63 0.057 0.57

All - Freq. > 50% 25 75 0 66

Table 2.10: Summary of volume contribution to variations in stock return variance, over five sub-samples. The five
panels correspond respectively to the sub-periods: 1) January 1994 to February 2001, 2) Mars 2001 to November
2001, 3) December 2001 to November 2007, 4) December 2007 to June 2009, and 5) July 2009 to December 2014.
“Top 20” corresponds to the twenty stocks of the S&P 100 Index (as of 2014-12-31) with highest mean daily
volume (number of traded shares) from 1994-01-03 to 2014-12-31. “All” corresponds to all S&P 100 stocks as of
2014-12-31 (provided that the price history goes back to 1994-01-03). “Avg.” denotes mean ratio over a given
sample of stocks. “Freq. > 50%” is the percentage of stocks for which a given component represent more than half
of the variability of the variance estimate.

IBM Price change (%) Change in variance (%) Change in τt (%) Change in gt (%) Unexpected volume

2000-07-18 -2.4 -8.42 -10.54 2.38 0.05

2000-07-19 0.54 11.5 10.8 0.63 0.17

2000-07-20 12.26 256.54 -12.79 308.85 1.25

2000-07-21 -2.21 -48.83 43.28 -64.29 -0.2

2000-07-24 -1.71 -48.44 -4.05 -46.26 -0.07

Price change (%) Change in variance (%) Change in τt (%) Change in gt (%) Unexpected volume

2000-10-16 1.87 -17.9 -5.08 -13.5 0.13

2000-10-17 1.67 -12.07 -14.7 3.08 0.2

2000-10-18 -16.89 272.69 -14.52 335.97 1.36

2000-10-19 1.04 16.02 87.29 -38.05 0.32

2000-10-20 -1.77 -73.25 -16.53 -67.96 -0.2

Price change (%) Change in variance (%) Change in τt (%) Change in gt (%) Unexpected volume

2001-01-16 -1.14 -40.16 -13.8 -30.57 -0.37

2001-01-17 4.16 94.16 -0.74 95.6 0.26

2001-01-18 11.35 337.6 16.25 276.42 1.02

2001-01-19 2.68 -23.94 36.85 -44.42 0.05

2001-01-22 -2.45 -57.09 -11.39 -51.57 -0.16

Table 2.11: The impact of earning surprises on volatility. The table reports the variation of price and variance as
well as unexpected volumes during three periods of earning surprises for IBM. The dates of earning surprises are
recorded in bold.
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IBM Price change (%) Effect on τt+10 (×100) Effect on τt+20 (×100) Effect on τt+30 (×100)

2000-07-18 -2.4 0.011 0.0015 0.00020

2000-07-19 0.54 0.00016 2.2e-05 3.1e-06

2000-07-20 12.26 0.024 0.0033 0.00046

2000-07-21 -2.21 0.0063 0.00086 0.00012

2000-07-24 -1.71 0.0069 0.00095 0.00013

Price change (%) Effect on τt+10 (×100) Effect on τt+20 (×100) Effect on τt+30 (×100)

2000-10-16 1.87 0.0019 0.00026 3.6e-05

2000-10-17 1.67 0.0015 0.00020 2.8e-05

2000-10-18 -16.89 0.099 0.014 0.0019

2000-10-19 1.04 0.00018 2.5e-05 3.4e-06

2000-10-20 -1.77 0.0060 0.00082 0.00011

Price change (%) Effect on τt+10 (×100) Effect on τt+20 (×100) Effect on τt+30 (×100)

2001-01-16 -1.14 0.0062 0.00086 0.00012

2001-01-17 4.16 0.015 0.0020 0.00028

2001-01-18 11.35 0.029 0.0040 0.00056

2001-01-19 2.68 0.0028 0.00039 5.3e-05

2001-01-22 -2.45 0.014 0.0019 0.00027

Table 2.12: The impact of returns on τt component. The table reports the variation of price and impact on τt the
following days, during three specific periods of earning surprises for IBM. The exact dates of earning surprises are
recorded in bold.
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Figure 2.1: Skewness and (excess) kurtosis of returns as functions of γ2, ρ and σu. The Figure presents the analytic
values of skewness and kurtosis of returns calculated using the closed form expressions of the normal log-normal
moments. Each panel corresponds to a given moment as a function of a specific parameter. All other parameters
are constant and set to an arbitrary plausible value according to our empirical results. Except in panels E and F,
σu is set to 0.35, which corresponds to the median of fitted values over all stocks in our sample from 1994-01-03
to 2014-12-31.
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Figure 2.2: Scatter plot of VF-GARCH fitted parameters: γ1 vs. γ2, i.e., expected volume impact vs. unexpected
volume impact. The Figure provides the scatter-plot of parameter pairs (γ1, γ2) for the period 1994-2014. The
vertical and horizontal grey lines correspond respectively to the average value over all stocks of γ1 and γ2.
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√
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volatility forecast. The sample begins on 1994-01-03 and ends on 2014-12-31. Both panels show the predicted
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volatility (grey) and filtered persistent component unrelated to volume (black). The sample begins on 1994-01-03
and ends on 2014-12-31. Both panels show the volatility components from the VF-GARCH model.
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Figure 2.5: Scatter plot of VF-GARCH fitted parameters: γ1 vs. γ2, i.e., expected volume impact vs. unexpected
volume impact. Each panel corresponds to a given sample. The Figure provides the scatter-plot of parameter
pairs (γ1, γ2). The vertical and horizontal grey lines correspond respectively to the average value over all stocks
of γ1 and γ2.
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Figure 2.6: The evolution of returns, unexpected volumes, VF-GARCH volatility components and GJR-GARCH
estimates during an earning surprise for IBM. Panel A plots the daily returns, Panels B displays the unexpected
volumes, Panel C presents the evolution of the total VF-GARCH volatility (dotted line) and filtered GARCH
component (bold line), and Panel D plots the GJR-GARCH (γ1 = γ2 = ρ = 0). The grayed area corresponds to
the earning surprise date.
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1 ≤ k ≤ 50.



Chapter 3

Portfolio Management with

Drawdown Constraint: An Analysis

of Optimal Investment

We analyze optimal investment strategies under the drawdown constraint that the wealth

process never falls below a fixed fraction of its running maximum. We derive optimal

allocation programs by solving numerically the Hamilton-Jacobi-Bellman equation that

characterizes the finite horizon expected utility maximization problem, for investors with

power utility as well as S-shape utility. Using stochastic simulations, we find that im-

plementing the drawdown constraint can be gainful in optimal portfolios for the power

utility, for some market configurations and investment horizons. However, our study re-

veals different results in a prospect theory context. According to utility maximization, the

optimal strategy with drawdown constraint is not the preferred investment for the S-shape

utility investor, who rather prefers the equivalent optimal strategy without constraint. In-

deed, the latter investment being similar to a partial portfolio insurance, the additional

drawdown constraint does not appear valuable for this investor in optimal portfolios.

Keywords: portfolio optimization, drawdown constraint, prospect theory, behavioral fi-

nance.
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3.1 Introduction

Portfolio insurance strategies can appear attractive because they are designed to protect

assets under management while allowing some upside potential. The risk limitation ob-

jective of such strategies can take different forms in terms of capital protection. The most

popular allocation programs are the Option Based Portfolio Insurance (OBPI) of Leland

and Rubinstein (1976), insuring a given amount at maturity, and the Constant Propor-

tion Portfolio Insurance (CPPI) of Black and Rouhani (1989); Black and Perold (1992).

A second well known constraint considered in portfolio insurance strategies is the maxi-

mum cumulated loss limitation, namely the Time Invariant Portfolio Protection (TIPP)

or maximum drawdown control, studied by Estep and Kritzman (1988); Grossman and

Zhou (1993); Cvitanic and Karatzas (1995); Klass and Nowicki (2005). Such capital pro-

tection can usually be achieved through a dynamic allocation between a risk-free (reserve)

asset and a risky (performance-seeking) asset.

Given the extensive use of portfolio insurance strategies in the asset management

industry, numerous papers focus on their effect on financial markets (see Brennan and

Schwartz, 1989; Basak, 1995; Grossman and Zhou, 1996, for instance). On the other

hand, several authors examine the theoretical reasons of such popularity among market

participants. In particular, Leland (1980) studies the nature of investors who will benefit

from purchasing a capital protection at maturity, while Brennan, Solanki, et al. (1981)

characterize optimal investment portfolio insurance contracts. Given the difficulty to

justify the use of portfolio insurance for investors with standard concave utility functions,

several authors consider their attractiveness for loss averse investors in a prospect theory

context. Indeed, loss aversion can have several effects in the economy and thus explains

puzzling behaviors (see in particular Benartzi and Thaler, 1995; Barberis, Huang, and

Santos, 2001; Gomes, 2005; Haigh and List, 2005; Grinblatt and Han, 2005; Grüne and

Semmler, 2008). The main reason is that, unlike standard utility, the utility function of

prospect theory investors is assumed asymmetric: convex for wealth below the reference

point (leading to a risk-seeking behavior) and concave for wealth above, i.e., S-shape.

In a behavioral finance context, portfolio insurance strategies have been studied by

Vrecko and Branger (2009); Dierkes, Erner, and Zeisberger (2010); Dichtl and Drobetz

(2011); Ebert, Koos, and Schneider (2012); Khuman, Constantinou, and Phelps (2012).

These studies indicate that prospect theory investors with S-shape utility could prefer

portfolio insurance strategies rather than other standard investment solutions, and could

profit more than other investors from this allocation method. However, the latter papers

do not examine portfolio insurance strategies with optimal investment regarding utility

maximization. More specifically, the historical and Monte Carlo simulations of interest

for portfolio insurance strategies are run with constant multipliers, i.e., the key parameter

driving the exposure to the risky asset, over the investment period. Hence, the resulting

allocation can be far from optimal in terms of utility maximization1.

1In addition, in the asset management industry, the exposure to the risky asset is permanently controlled
through a time-varying multiplier (based on extreme gap risk estimation for instance, see Cont and Tankov, 2009;
Hamidi, Maillet, and Prigent, 2014).
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Optimal portfolio choices under loss aversion have been studied by Benartzi and Thaler

(1995), Barberis et al. (2001), Berkelaar, Kouwenberg, and Post (2004), Jin and Yu Zhou

(2008), Bernard and Ghossoub (2010), and He and Zhou (2011). Carassus, Rásonyi,

and Rodrigues (2015) also consider non-concave utility maximization in discrete time. In

particular, Berkelaar et al. (2004) show analytically that, without imposing any constraint,

the loss-averse investor follows a partial portfolio insurance strategy: in good states the

investor tries to insure the reference point of the utility, while in bad states the allocation

to stocks is increased due to the risk-seeking behavior. Therefore, implementing a portfolio

insurance strategy for a loss averse investor with the optimal allocation program could

potentially lead to results different from those obtained in the studies using constant

multipliers mentioned in the previous paragraph. In particular, this raises the question

of the usefulness of portfolio insurance for loss-averse investors implementing an optimal

strategy.

Several authors have examined optimal portfolios with capital protection. In particu-

lar, Cox and Leland (1982) and Grossman and Vila (1989) study the portfolio optimization

problem when a constraint is imposed on the terminal date, while El Karoui, Jeanblanc,

and Lacoste (2005) and El Karoui and Meziou (2006) also consider a constraint imposed

on every intermediary date. Basak and Shapiro (2001) derive the optimal portfolio for an

investor with a constraint expressed in terms of the probability of the wealth to fall below

some floor, while Boyle and Tian (2007) consider an investor desiring to outperform some

benchmark with a certain confidence level at maturity. Bouchard, Elie, and Touzi (2009)

and Bouchard, Elie, and Imbert (2010) also study the problem associated which guaran-

tees to reach a controlled target with a given probability. In this paper, we study the

characteristics and attractiveness of optimal investment strategies with capital protection

expressed in terms of the running maximum of wealth. Namely, we consider the widely

used drawdown constraint that the wealth process never falls below a fixed fraction of

its running maximum. The optimal investment problem of this type of strategy for an

agent maximizing the long term growth rate of the expected utility of final wealth has

been studied by Grossman and Zhou (1993), while Cvitanic and Karatzas (1995) consider

a more general class of price generating processes. Cherny and Ob lój (2013) also study

a semimartingale financial market model. Furthermore, Elie and Touzi (2008) derive the

optimal investment strategy corresponding to the infinite horizon optimal consumption

problem under the drawdown constraint, and Elie (2008) considers the finite time horizon

case. The results of the aforementioned studies show that the optimal investment in the

risky asset is a function of the difference between the current wealth and its running max-

imum, the risk aversion of the investor, and the parameters of the risky asset generating

process.

Based on a large panel of numerical experiments produced from the resolution of the

stochastic control problem corresponding to the optimal investment problem under draw-

down constraint, we compute numerically and analyze optimal allocation programs (i.e.,

optimal multipliers). Our numerical approach allows to study a general class of utility

functions. We consider a S-shape utility (proposed in the prospect theory of Kahneman
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and Tversky, 1979; Tversky and Kahneman, 1992) differing between the domains of gains

and losses with respect to the reference point, and a standard concave utility (Constant

Relative Risk Aversion or power utility). The finite horizon expectation maximization

problem is studied and we highlight the divergences in investment performance and opti-

mal behavior of investors according to their utility function, the parameters of the risky

asset price process, and the presence or absence of the drawdown constraint. We compute

the optimal investments strategies, by solving the Hamilton–Jacobi–Bellman equation,

that characterizes the dynamic programming principle related to the stochastic control

problem, making vary the market model parameters and utility profiles. The resulting

Partial Differential Equation (PDE) problem is then (numerically) solved on a subset of

R2 with a boundary condition that characterize the drawdown constraint.

Using a stochastic sampling of the market, we find that, from an optimal standpoint,

a general pattern justifying the potential attractiveness and usefulness of strategies with

drawdown control cannot be drawn in terms of Certainty Equivalent and terminal utility

maximization, in a prospect theory context. First, for a CRRA investor with power

utility, the preference for the optimal strategy with drawdown constraint rather than the

optimal strategy without protection, strongly depends on the values of the parameters

of the stock market dynamics. On the other hand, in our simulations, we find that the

prospect theory investor with S-shape utility function rather prefers the optimal strategy

without drawdown constraint. This result can be partially explained by the presence

of the reference point in the S-shape utility function. Indeed, as discussed by Berkelaar

et al. (2004), optimal portfolios without any constraint for the latter utility reveal that this

reference point acts as an “implicit protection”, implying that the drawdown limitation is

not necessarily useful for this type of investor if the optimal strategy is implemented. In

other words, the optimal strategy with drawdown constraint does not lead to larger final

utility values with respect to the optimal strategy without constraint. These results hold

even when we consider a short investment horizon of one year. Nevertheless, the only

setups where the drawdown constraint could be gainful for this investor correspond to the

cases where the model’s parameters are mis-estimated. Indeed, overestimation of the risk

premium when the volatility is at a substantial level, and severe underestimation of the

volatility when the risk premium is low, can lead to larger terminal utility in the presence

of the drawdown constraint. In these specific cases, the drawdown limitation can act as

an insurance against model’s mis-estimation risk.

The paper is organized as follows. Section 3.2 introduces the model for the stock

market. Section 3.3 is devoted to the examination of the drawdown constraint and the

optimization problem. Section 3.4 and 3.5 present the methodology we employ in order

to derive the optimal control. Our numerical resolution procedure is described in section

3.6. Finally our simulations and main results are discussed in section 3.7.
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3.2 The model

We consider a complete filtered probability space (Ω,F , {Ft}t≥0,P), where the filtration

{Ft}t≥0 is generated by the standard Brownian motion Z. In the financial market, in-

vestors can trade two assets, St and S0
t , respectively a risky asset and a risk-less money

account with general dynamics:

dSt = µ(t)Stdt+ σ(t)StdZt, (3.1)

and

dS0
t = r(t)S0

t dt, (3.2)

where the drift µ, volatility σ and interest rate r, are bounded adapted processes. We

also denote by

βt := exp

(
−
∫ t

0

r(s)ds

)
, t ≥ 0

the discount process of the model.

Recent papers studying the popularity of portfolio insurance2 suggest that the demand

for such strategies could be justified in a behavioral finance context and not using standard

utility theory. Therefore, we consider two different types of investors through their utility

function, namely 1) a S-shape utility (prospect theory), and 2) a concave power utility,

i.e., Constant Relative Risk Aversion (CRRA). The latter utility is usually considered as

a benchmark as it is the most frequently assumed specification. Following the results of

Kahneman and Tversky (1979), we consider a loss-averse prospect theory investor with

the following asymmetric utility function over gains and losses relative to its reference

point Θ:

U(x,Θ) =

−A(Θ− x)γ1 for x ≤ Θ,

+B(x−Θ)γ2 for x > Θ,
(3.3)

where A,B, γ1 and γ2 are constant parameters. Through our study, we consider a dis-

counted reference level Θ constant over time. Subjective probability distortion is also an

important aspect of prospect theory (see for instance Lattimore, Baker, and Witte, 1992).

In this paper, we do not use subjective probability weights as our objective is to study

the impact of the choice of utility on the attractiveness of the drawdown constraint.

The standard CRRA utility we consider is given by:

U(x,Θ) = U(x) =
x1−γ

1− γ
for x > 0, (3.4)

where γ is constant. Note that the theoretical reference level Θ in equation (3.4) is only

presented for the sake of uniformity of the function’s parametrization between the S-shape

and the CRRA utility. The CRRA investor has no interest in an hypothetical reference

level. Figure 3.1 exhibits the two utility functions with the parameter set we use in our

2cf., Vrecko and Branger (2009); Dierkes et al. (2010); Dichtl and Drobetz (2011); Ebert et al. (2012); Khuman
et al. (2012).
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empirical procedure of section 3.7.

3.3 Portfolio management with drawdown constraint

We consider the following optimal investment problem, with capital protection expressed

in terms of running maximum, described by an investor discounted wealth process W x,π

satisfying

dW x,π
t = πt (W x,π

t − αMx,π
t ) {(µ(t)− r(t))dt+ σ(t)dZt} ,

W x,π
0 = x,

(3.5)

with a given protection level α ∈ (0, 1) and the discounted wealth running maximum

denoted

Mx,π
t = sup

0≤s≤t
W x,π
s .

π is the multiplier of the portfolio insurance strategy, also denoted hereafter as the control.

At any time, the investor makes her investment decision proportional to the amount

(W x,π
t − αMx,π

t ). As a consequence the discounted wealth satisfies the strict drawdown

constraint

W x,π
t > αMx,π

t , for all 0 ≤ t ≤ T, a.s., (3.6)

where T stands for the finite investment horizon of interest.

The optimization problem we consider is the following:

for 0 < T <∞, find π∗ = arg max
π∈A

E [U(W x,π
T ,Θ)] , (3.7)

for a set A of admissible investment strategies π adapted to the filtration (Ft, t ≥ 0)

generated by the Brownian motion Z, and valued in [πmin, πmax] with πmin, πmax finite3.

The range [πmin, πmax] can be determined according to eventual allocation constraints (e.g.,

no short-selling and maximal leverage).

We recall that Mx,π is non-decreasing and varies only when it equals W x,π, that is∫ T

0

(Mx,π
t −W x,π

t )dMx,π
t = 0. (3.8)

We also recall some mathematical consequences of our model formulation. The expression

of the discounted value of wealth W x,π with 0 < α < 1 can be derived as a “corrected”

version of the solution without constraint. Indeed, when α = 0, for a given admissible

strategy π ∈ A, equation (3.5) has a well known solution form

wx,πt = x exp

(∫ t

0

{
πs (µ(s)− r(s))− 1

2
σ(s)2π2

s

}
ds+

∫ t

0

πsσ(s)dZs

)
(3.9)

3Cvitanic and Karatzas (1995) and Elie and Touzi (2008) provide a formal definition of the set of admissible
strategies when the control is unbounded.
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and we denote

mx,π
t = sup

0≤s≤t
wx,πs .

The following proposition gives the expression of the general solution.

Proposition 6 For all admissible strategies π ∈ A, the discounted wealth equation (3.5)

has a unique explicit solution

W x,π
t =

[
wx,πt +

α

1− α
mx,π
t

](
mx,π
t

1− α

)−α
(3.10)

Mx,π
t =

(
mx,π
t

1− α

)(1−α)

(3.11)

and the strict drawdown constraint (3.6) is always satisfied.

We refer to Cvitanic and Karatzas (1995) for the first derivation of this expression and to

Elie (2006) and Elie and Touzi (2008) for a formal proof.

3.4 The Hamilton-Jacobi-Bellman equation

We shall use the dynamic programming approach in order to derive the Partial Differential

Equation (PDE) formulation of the optimization problem (3.7). We then need to introduce

a dynamic version of this problem within the value function:

v(t, x, y) = sup
π∈At

Ex,y [U(W π
T ,Θ)] , (3.12)

defined for the pair (x, y), with the restriction 0 < αy < x ≤ y, as the initial condition of

the state processes (W x,π,Mx,π) starting at time 0 ≤ t < T with dynamics
W x,π
τ = x+

∫ τ

t

πs (W x,π
s − αMx,π

s ) {(µ(s)− r(s))ds+ σ(s)dZs} ,

Mx,π
τ = y ∨ sup

t≤s≤τ
W x,π
s .

At is the set of admissible strategies on the sub-period [t, T ] defined as the subset of A of

strategy π independent of Ft.

The value function v(t, x, y) can be easily shown to be non decreasing with respect to

x and concave when the utility function U is. Moreover for any y ≥ 0, for any 0 ≤ t ≤ T ,

v(t, αy, y) = U(αy,Θ), i.e., for all 0 ≤ t ≤ T,Wαy,π
t = αy. In other words, if the initial

wealth is equal to αy the wealth does not change over time. In particular, following

Elie and Touzi (2008), applying at least formally the Itô formula (assuming the required
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regularity on v), we get

sup
π∈At

Ex,y[v(t+ h,Wt+h,Mt+h)]

= v(t, x, y) + sup
π∈At

Ex,y
∫ t+h

t

∂v

∂x
(s,Ws,Ms)dWs (3.13)

+ sup
π∈At

Ex,y
∫ t+h

t

{
∂v

∂s
(s,Ws,Ms) + Lπs(s)v(s,Ws,Ms)

}
ds (3.14)

+ sup
π∈At

Ex,y
∫ t+h

t

∂v

∂y
(s,Ws,Ms)dMs (3.15)

with the second-order operator

Lp(t)φ = p(x− αy)(µ(t)− r(t))∂φ
∂x

+ p2(x− αy)2σ
2(t)

2

∂2φ

∂x2
, (3.16)

where φ ∈ C2(R).

Using the dynamic programming principle we can derive the associated Hamilton–

Jacobi-Bellman equation. First, we use the fact that the expectation of the stochastic

integral in (3.13) vanishes under the formal a priori regularity hypothesis on the value

function. Then, dividing by h and taking the limit as h −→ 0, the guessed associated

Hamilton–Jacobi–Bellman equation for v(t, x, y) is:

∂v

∂t
+ max

p∈[πmin,πmax]

[
p(x− αy)(µ(t)− r(t))∂v

∂x
+ p2(x− αy)2σ

2(t)

2

∂2v

∂x2

]
= 0, for x < y,

(3.17)

where we impose the natural condition
∂v

∂y
(t, x, y) = 0, on {x = y}, in order to equal to

zero the expectation term in (3.15), using the fact that the maximum only varies when

x = y, cf., equation (3.8).

Therefore, the boundary conditions considered are the following:
v(T, x, y) = U(x,Θ), for αy < x ≤ y,

v(t, αy, y) = U(αy,Θ) for 0 ≤ t ≤ T

∂v

∂y
(t, x, y) = 0, on {x = y}.

Note that when α = 0 we end up with Merton (1969)’s problem (see for instance Duffie,

2010, on the theory of portfolio choice and asset pricing, including discussion of Merton’s

work and next contributions).

On an infinite time horizon, Elie (2006) and Elie and Touzi (2008) present a rigorous

mathematical proof that for a concave utility function U , the required regularity conditions

on the value function are satisfied in order to derive a unicity and verification theorem4.

Elie (2008) considers the finite time horizon case. For the S-shape utility, the derivation

4Boyle and Tian (2007) also derive a rigorous mathematical analysis of this kind of problem for an investor
who desires to outperform some benchmark index with a certain confidence level.
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of a similar result constitutes an entire problem beyond the scope of this paper. Our

main analysis is focused on the study of strategies implementing the optimal control in

stochastic simulations.

3.5 Heuristic for the optimal control study

3.5.1 Pontryagin maximum principle

Based on verification conjecture, in the following calculation we derive the feedback con-

trol candidate p∗(t, x, y) using the Pontryagin maximum principle. The Hamiltonian cor-

responding to the optimization problem is defined as:

H
(
p; t, x, y, v,

∂v

∂x
,
∂2v

∂x2

)
= p(x− αy)(µ(t)− r(t))∂v

∂x
+ p2(x− αy)2σ

2(t)

2

∂2v

∂x2
. (3.18)

The feedback control candidate p∗(t, x, y) is identified as

p∗(t, x, y) = arg max
p∈[πmin,πmax]

H
(
p; t, x, y, v,

∂v

∂x
,
∂2v

∂x2

)
. (3.19)

For any (t, x, y), we denote

p0(t, x, y) :=
1

σ(t)2(x− αy)
×
−(µ(t)− r(t))∂v

∂x
∂2v

∂x2

,

the control value resulting from the first order condition applied to the Hamiltonian. The

second order derivative of the Hamiltonian H with respect to p is equal to

∂2H
∂p2

= σ2(x− αy)2 ∂
2v

∂x2
.

Hence, the value p∗(t, x, y) of the optimal control at the state (t, x, y) depends on the sign

of ∂2v
∂x2 in the following way

p∗(t, x, y) :=

 p0(t, x, y) if ∂2v
∂x2 < 0 and p0(t, x, y) ∈ [πmin, πmax],

arg max
π∈{πmin,πmax}

H
(
π; t, x, y, v, ∂v

∂x
, ∂

2v
∂x2

)
otherwise.

(3.20)

Hence p∗ is the unique solution of the quadratic problem given by equation (3.19).

3.5.2 Intuition on the allocation profiles

Before considering the numerical resolution of the problem in the next section, we derive

below a first intuition on the behavior of the different types of investor.

We consider first the prospect theory investor with utility function given by (3.3). If
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x ≤ Θ, we have:
∂2U

∂x2
(x,Θ) = −Aγ1(γ1 − 1)(Θ− x)γ1−2.

If A > 0 and 0 < γ1 < 1 as in our main analysis, the second derivative of the utility with

respect to x is thus positive. Therefore, assuming v(t, x, y) ≈ U(x,Θ) for any 0 ≤ t ≤ T ,

for illustration purpose only, the value of p∗ will not be equal to p0. Given the positive

sign of the second derivative above and the expression of the Hamiltonian, the value of

p∗ will be πmax. Hence according to this approximation for the prospect theory investor,

if the wealth is below the reference point, the optimal control is likely to be the maximal

value πmax, emphasizing the risk-seeking behavior.

On the other hand, if x > Θ, we get:

∂2U

∂x2
(x,Θ) = Bγ2(γ2 − 1)(x−Θ)γ2−2.

If B > 0 and 0 < γ2 < 1 as in our main analysis, the second derivative of the utility with

respect to x is thus negative. Therefore, assuming similarly v(t, x, y) ≈ U(x,Θ) for any

0 ≤ t ≤ T , for illustration purpose only, the value of p∗ can be equal to p0 given that

p0 ∈ [πmin, πmax]. In that case, the value of p∗ is given by

p0(t, x, y) = − µ− r
σ2(x− αy)

× (x−Θ)

γ2 − 1
.

This expression clearly highlights that as x ↓ Θ, the control tends to zero, i.e., as the

wealth of the prospect theory investor declines and gets closer to the reference point, the

investor is likely to reduce the allocation to the risky asset in order to ensure the amount

Θ. Note that this approximation is valid whether or not the drawdown constraint is

considered, i.e., even if α = 0.

Finally these approximations are in line with Berkelaar et al. (2004)’s results (related

to the case without drawdown constraint). Indeed, for the latter configuration, Berkelaar

et al. (2004) show that the optimal strategy is a partial portfolio insurance: in good states

the investor tries to insure the reference point, while in bad states the investor increases

the allocation to stocks due to the risk-seeking behavior.

For the investor with power utility function given by (3.4), the result is different. We

get:
∂2U

∂x2
(x,Θ) = −γx−γ−1.

Hence the second derivative of the utility with respect to x is negative. Therefore, assum-

ing again for illustration purpose that v(t, x, y) ≈ U(x,Θ) for any 0 ≤ t ≤ T , the value of

p∗ can be equal to p0. Given that [πmin, πmax], we obtain that p∗ is equal to:

p0(t, x, y) =
µ− r

σ2(x− αy)
× x

γ
.

As expected, this expression should imply a very different behavior for the CRRA

investor given the absence of reference point.
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3.6 Numerical resolution

In this section, we present our approach for the resolution of the Hamilton-Jacobi-Bellman

equation. We aim to consider a general class of utility functions, even those for which

a closed form solution to the problem (3.7) does not exist. Thus, in order to perform

an extensive analysis of optimal investments under the drawdown constraint, we solve

numerically the optimization problem5. For that purpose, we have to limit the space

considered, i.e., we define a discrete space for the values of the wealth and the running

maximum where the optimization problem will be solved.

First we define a discretization of the time period of interest [0, T ]: {tk = k∆t, k =

0, ..., K}, where ∆t is the discretization time step and tK = K∆t = T . Secondly, for

each time step, we define a 2D grid G = {(xi, yj), i = 0, ..., Nx; j = 0, ..., Ny} on the space

(W x,π,Mx,π), with steps ∆x and ∆y, i.e., xi = x0 + i∆x and yj = y0 + j∆y. x0 and xNx
are respectively the minimal and maximal value of wealth considered. Similarly y0 ≥ x0

and yNy are respectively the minimal and maximal value of running maximum considered.

Given that we normalize the initial value of wealth to one in our empirical procedure, we

set x0 = α and y0 = 1. The maximal values xNx and yNy are defined according to the

parameters of the risky asset dynamics in our simulations, discussed in section 3.7, such

that the occurrence of values of wealth and running maximum above xNx and yNy is very

unlikely. Moreover, given the high values of xNx and yNy used in our analysis, we add

the additional artificial boundary condition ∂v
∂x

= 0, on x = xNx and y = yNy . Therefore,

for x = xNx and y = yNy (and values beyond the boundaries) the optimal control will

be equal to zero given equation (3.20), which is intuitive given the flatness of the utility

functions for these levels of wealth.

In order to derive an approximation of the optimal control p∗ for each point on the

grid, we use the finite difference method, applied to the non linear operator Lp. For a

given time step tk, let vki,j be a discrete approximation of v(tk, xi, yj) and let Lkp be the

discretized version of the differential operator Lp defined by (3.16), on the grid G. This

operator can be discretized using spacial forward, centered or backward differencing in

the x and y directions to give:

(Lkpvk)i,j = αki,j(p)v
k
i−1,j + βki,j(p)v

k
i+1,j + γki,j(p)v

k
i,j−1 + δki,j(p)v

k
i,j+1

− (αki,j(p) + βki,j(p) + γki,j(p) + δki,j(p))v
k
i,j, (3.21)

where p stands for a given value of the control and αki,j, β
k
i,j, γ

k
i,j and δki,j are coefficient

functions depending on the value of the control and the model parameters. Note that

γki,j(p) = δki,j(p) = 0 for all i, j and p, given the absence of derivatives with respect to y in

(3.16). Therefore equation (3.21) reduces to:

(Lkpvk)i,j = αki,j(p)v
k
i−1,j + βki,j(p)v

k
i+1,j − (αki,j(p) + βki,j(p))v

k
i,j. (3.22)

Following Forsyth and Labahn (2008), the discretization method must maintain the mono-

5Elie (2008) also considers a numerical resolution of the HJB equation associated with the drawdown constraint.
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tonicity of Lkp applied to vk in order to insure the consistency of our approach. In Appendix

3.A, we derive the conditions on the differencing procedure of the value function in line

with this requirement.

At each time step, we have to solve the HJB equation given by equation (3.17) in order

to derive the value of p∗. We use the following discretization based on an implicit scheme

in order to ensure the stability of the algorithm6 for any given value of ∆t:

vk+1
i,j − vki,j

∆t
+ max

πk+1∈A
(Lk+1

πk+1
vk+1)i,j = 0, (3.23)

where i, j indicate the point (xi, yj) on the grid G. The iteration policy is the following.

For a given time step tk+1, first we use the value of the optimal control calculated for the

previous time step as a first guessed candidate
{
p∗k+1

}
0
. Using this value of the control,

we derive the corresponding initial approximation of the value function
{
v̂k+1
i,j

}
0

for the

time step tk+1 using the discrete approximation of the derivatives of the value function

appearing in the operator Lp. Then we build the iteration matrix
{(
Lk+1
p∗ v̂k+1

)
i,j

}
0

for

the grid G. We solve again the HJB equation (3.23) and obtain a new value function{
v̂k+1
i,j

}
1

and the corresponding approximation of the optimal control
{
p∗k+1

}
1
. We repeat

the process until we reach an iteration n+ 1 where we observe that∣∣∣{v̂k+1
i,j

}
n+1
−
{
v̂k+1
i,j

}
n

∣∣∣∣∣∣{v̂k+1
i,j

}
n+1

∣∣∣ < Λ,

where Λ is the tolerance value (equal to 10−6 in our numerical procedure), i.e., we con-

sider that the value function has converged. In that case, the corresponding current

optimal control value
{
p∗k+1

}
n+1

is extracted and used as an approximation of p∗ for the

corresponding time step tk+1.

3.7 Empirical analysis based on simulated markets

3.7.1 Stochastic sampling of the markets and portfolios

The objective of our study is to analyze the numerical simulations and resolutions of

the model. For that purpose, we perform simulations of the risky asset according to the

dynamics given in equation (3.1). In our simulations, parameters µ, r, σ are assumed to

be constant on the period [0, T ]. Therefore, the solution of equation (3.1) is given by:

St = S0 exp

((
µ− 1

2
σ2

)
t+ σWt

)
. (3.24)

Given ∆t the discretization time step and discrete times tk = k∆t, 0 ≤ k ≤ K, the

6In particular the implicit scheme allows us to choose the time step ∆t independently of the space step.
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risky asset sample paths are generated as follows:

Stk+1
= Stk exp

((
µ− 1

2
σ2

)
∆t+ σ

√
∆tZtk+1

)
, (3.25)

where S0 = 1, and {Ztk+1
, 0 ≤ k ≤ N − 1} are independent realizations of a standard

Gaussian random variable.

For each sample path, we simulate exactly the wealth corresponding to the drawdown

control strategy and its running maximum (both with initial value equal to 1) using

the approximated control p∗ derived using the methodology described in the previous

section and collected on the grid G. Namely, at each time step, the level of wealth and

running maximum are simulated exactly (cf., below), and according to these current levels

(of wealth and running maximum) we find the closest point (xi, yj) on the grid G, and

implement the corresponding value of the optimal control p∗ in the strategy. Note that

the derivatives of the value function appearing in equation (3.20) are evaluated using

the procedure described in Appendix 3.A. Portfolio dynamics presented in the paper

correspond to discounted values. Hence all amounts are simulated and evaluated in terms

of their discounted values.

From Proposition 6, the simulation of (W 1,p∗

t ,M1,p∗

t , t ∈ [0, T ]) reduces to the sim-

ulation of (w1,p∗

t ,m1,p∗

t , t ∈ [0, T ]) solution of (3.5). We emphasize that, based on the

assumption that the control is constant between each time step, the simulation method

we use for (wπ,mπ,W π,Mπ) is exact. Let {πk, k = 0, ..., K} be the values of an admissible

control at each time step. Assuming the portfolio rebalancing strategy π is constant on

[tk, tk+1[, k = 0, ..., K − 1, one has to simulate exactly the random variable:

wπtk+1
= wπtk exp

([
πk(µ− r)−

1

2
σ2π2

k

]
∆t+ πkσ

√
∆tZtk+1

)
, (3.26)

and its running maximum mπ
tk+1

, in order to construct the trajectory of W π
tk

and Mπ
tk

,

the discrete versions of the discounted wealth process W 1,π
tk

and running maximum M1,π
tk

respectively, as:

W π
tk

=

[
wπtk +

α

1− α
mπ
tk

](
mπ
tk

1− α

)−α
, (3.27)

Mπ
tk

=

(
mπ
tk

1− α

)(1−α)

. (3.28)

We provide further details on the exact simulation of the joint dynamics of wπt and mπ
t in

Appendix 3.B.

The results of the numerical simulations and resolutions of the model are presented

for different parameter sets and utility functions. In our initial set of simulations, we

consider an investment horizon of five years with a daily time step, i.e., ∆t = 1/252, and

K = 5 × 252. The initial value of wealth is arbitrary set to 1 in all our simulations.

The space steps (∆x,∆y) for the resolution of the control problem are set to 1.0%, the

minimal values of wealth and running maximum on the grid are set to α and 1, while the
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maximal values we consider on the grid are both equal to 7.5. The allocation programs

correspond to a procedure with continuous rebalancing, i.e., daily allocation adjustment

based on available information. In a second stage, we also consider a shorter horizon of

one year, i.e., K = 252, with daily time step.

The protection level α is set to 0.8, which is in line with the drawdown level quoted

by Grossman and Zhou (1993)7. In addition, we also consider strategies without capital

protection, that is α = 0. As mentioned above, we use constant parameters for the

dynamics of assets. Without loss of generality r is arbitrarily set to 0.03, and we consider

several parameters for the risky asset dynamics: µ ∈ {0.10, 0.05}, i.e., high and low risk

premium, and σ ∈ {0.10, 0.20, 0.30}, i.e., low, medium and high volatility, which leads to

6 market configurations, summarized in Table 3.1. Note that the maximal values of 7.5

for wealth and running maximum on our grid are coherent with these market dynamics.

For each market configuration, we simulate 50,000 sample paths for the risky asset and

run the different portfolio strategies for the different investors described below.

As mentioned in section 3.2, we consider two types of investors. The first one has a

prospect theory S-shape utility function described by equation (3.3). The parameter set

of the latter is borrowed from Kahneman and Tversky (1979), and is defined as follows:

A = 2.25, B = 1, and γ1 = γ2 = 0.88. The discounted reference level is constant and set to

the initial wealth for this investor, i.e., Θ = 1. We also consider additional resolutions and

simulations with Θ = 1.05, i.e., a reference point higher than the initial level of wealth.

The second type of investors has a CRRA utility function described by equation (3.4).

The risk aversion coefficient γ is set to 2, as it represents the usual benchmark utility

function.

For each investor, capital protection, and asset parameters, the discrete optimal con-

trol is derived using the method described in sections 3.5 and 3.6. The admissible interval

[πmin, πmax] is defined according to allocation constraints. Indeed, we allow the optimal

strategies to invest between 0% and 200% in the risky asset. Therefore, for each config-

uration, we set πmin = 0, and πmax = 2/(1 − α). This choice leads to πmax = 2 without

capital protection (α = 0), and πmax = 10 when α = 0.8. The results are discussed below.

We also consider constant control as benchmark investment strategies.

We present tables containing several performance metrics. We focus especially on

Certainty Equivalent (CE)8, and average final utility across simulations: the main portfolio

selection criteria. Statistics related to annualized rate of return, volatility, skewness and

kurtosis, maximum cumulative loss (drawdown), Sharpe and Calmar9 ratios are examined

as well, in terms of average value across scenarios. The average allocation to stocks and

the average control over each trajectory and over all sample paths are also presented.

7In our numerical procedure, we also considered a protection level α equal to 0.5. The overall qualitative
results do not change. Corresponding tables are presented in Appendix 3.C.

8Certainty Equivalent is defined as the deterministic level of terminal wealth that gives the investor the same
expected utility as the terminal wealth resulting from the strategy.

9The Calmar ratio is calculated as the annualized return divided by the maximum drawdown of the portfolio
trajectory.
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3.7.2 Empirical results

In this section, we discuss the numerical results of our simulations for different asset gen-

erating processes, investors and protection levels. Except for section 3.7.3, the reference

point Θ of the S-shape utility is set to the initial level of wealth, i.e., one.

Strategies implementing a constant control

First, as benchmark strategies without any optimization procedure, we simulate portfolios

with constant control over five years. We consider strategies without capital protection,

i.e., α = 0, and with capital protection α = 0.8. For the case α = 0, we implement

first a constant control equal to 0.5, this configuration corresponds to a pure constant

mix strategy, i.e., a combination of 50% of the risky asset and 50% of the riskless asset.

We also consider a constant control equal to 1, corresponding to a pure investment in

the risky asset. For the case, α = 0.8, we implement two different sets of strategies with

two constant controls equal to 5 and 10. The ex-post statistics in terms of risks and

returns are presented in Tables 3.2 and 3.3 respectively for the simulations without and

with drawdown constraint. Note that these metrics are common to both investors, as

the wealth trajectories are identical. Indeed due to the fact that the constant control is

independent of the utility function, the simulations lead to identical results. Overall, a

clear observation is the better performance in terms of average (annualized) return and

Sharpe ratio of the strategy with loss control when the risk premium is low (right part

of the tables) for all values of volatility (note however that the strategy fully invested in

risky asset seems to be the best one when the volatility is low). The usefulness of the

protection can be also highlighted with the minimal annualized returns over all scenarios,

which are much lower in the absence of the constraint. On the other hand, when the

risk premium is high (left part of the tables), the protected strategy leads to larger mean

return only in the most favorable configuration (lowest volatility), with respect to the

constant control 0.5. In the two remaining setups the opportunity cost of the drawdown

constraint appears to penalize the strategy with respect to the unprotected portfolio.

Regarding the preference for one type of strategy rather than the other, we present

the results concerning the utility measurements for the CRRA investor in Tables 3.4

and 3.5. We can observe that, in terms of Constant Equivalent, the CRRA 2 investor

does not systematically prefer one type of strategy with or without drawdown constraint.

As suggested by the return figures, on the one hand, when the risk premium is low

(µ − r = 0.02), the investor always prefers the capital protection. Indeed, the Certainty

Equivalent and average terminal utility are greater for the strategies with α = 0.8 (with

control equal to 5 and 10) than for the strategies without protection. This preference can

be justified by better (risk-adjusted) performance (discussed above) and lower risk (lower

mean annualized volatility and maximum drawdown except when σ = 0.1). However,

these observations do not hold when the risk premium is higher. While both strategies

with capital protection lead to a higher CE for the configuration µ− r = 0.1, σ = 0.1 with

respect to the case α = 0, π = 0.5, they are dominated by both strategies with α = 0
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when σ = 0.2, and by the portfolios π = 0.5 for the remaining configuration (σ = 0.3).

Indeed, we can see in Tables 3.2 and 3.3 that the capital protection implies a smaller

allocation to the risky asset, leading to lower annualized returns. Therefore, according to

our simulations with constant control, the preference for capital protection or not remains

dependent on market conditions for the CRRA investor with power utility.

We examine now the corresponding results obtained for the investor with S-shape

utility, presented in Tables 3.6 and 3.7. In fact, the conclusions remain quite similar in

terms of ex-post utility and Constant Equivalent as well. Again, when the risk premium

is low, the CE obtained for the prospect theory investor with protection are greater than

those with α = 0 (except when σ = 0.1: better performance of the portfolios with π = 1).

When the risk premium is high, we obtain the same preference for the strategy with α = 0

when σ = 0.2 and σ = 0.3. Finally, the results also strongly depend on the parameters of

the risky asset dynamics. Note that as expected, for both investors, average final utility

and Constant Equivalent (CE) decrease as µ− r decreases and as σ increases.

Strategies implementing the optimal control

The results obtained with the strategies using the optimal control p∗ derived in section

3.5 over five years are now discussed.

As illustrated in Table 3.8, for the CRRA 2 investor, the strategies without capital

protection implementing the optimal control lead to better results than similar strate-

gies with constant control equal to 0.5 and 1 discussed above. Indeed, in all market

configurations, the strategies using p∗ imply greater values in terms of Constant Equiva-

lent/terminal utility (and Sharpe ratio). We note that the average“optimal”allocations to

the risky asset differ clearly from 50% in each configuration, and range from 200% (when

µ− r = 0.07 and σ = 0.1) to only 11% (when µ− r = 0.02 and σ = 0.3). In addition, we

observe that the magnitude of the “outperformance” of the optimal control with respect

to the constant mix strategy and the portfolio fully invested in risky asset depends on

the value of µ− r and σ as well. The benefits of the optimal control with respect to the

constant versions can also be observed on Figure 3.2. The latter presents the empirical

distributions of terminal wealth10 for the strategies implementing the optimal control p∗

and the constant control 0.5 when α = 0. Interestingly, for the two setups with high risk

premium and medium/low volatility as well as the configuration low risk premium low

volatility, the optimal control implies a much fatter right tail. The combination of param-

eters leads to optimal control values more aggressive than the constant value of 0.5. This

is no longer the case in the three remaining configurations. The distributions are much

more concentrated around the initial wealth for the optimal control (lower allocation to

the risky asset), leading to an important reduction of the downside risk.

The results of the strategies for the CRRA investor using p∗ with α = 0.8 are presented

in Table 3.9. As expected, the values of terminal utility and Certainty Equivalent obtained

with the optimal control are greater than those obtained with constant control equal to

5 and 10. Overall, the average optimal allocations to the risky asset are lower when the

10All the distributions are produced using a standard kernel density estimation.
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capital protection is used, ranging from 97% to 11%, with respect to optimal allocations

when α = 0. Note that the ranges of optimal control (presented at the bottom of Table

3.9) are quite different depending on the parameters of the risky asset dynamics (above 9

for the most favorable setup versus less than 1 for the least one). The impact in terms of

return can be observed on Figure 3.3, showing empirical distributions of terminal wealth

for the strategies implementing the optimal control p∗ and the constant control π = 5

when α = 0.8. For optimal controls, the densities are more spiky than their equivalents

without protection. Indeed, the drawdown constraint “cuts” the distribution below 0.8

and attenuates the weight of extreme gains. The outperformance of the optimal control

with respect to the constant value is translated into a shift of the distribution toward

wealth greater than one.

Interestingly, when we compare the results of the strategies using the optimal control

with and without capital protection (Table 3.8 versus Table 3.9), a general conclusion on

the preference of the CRRA investor cannot be drawn, even with optimal controls. In four

out of six market configurations, the CE obtained with the capital protection in Table 3.9 is

higher than or equal to the CE obtained with α = 0 in Table 3.8. However for the two most

favorable market parameter sets (µ−r = 0.07, σ = 0.1 and µ−r = 0.07, σ = 0.2), the gains

in terms of average utility and Certainty Equivalent are larger without capital protection.

Note that the only cases where the optimal strategy with capital protection leads to larger

annualized returns and Sharpe ratios correspond to the least favorable market conditions

with low risk premium. As expected the strategies with α = 0.8 exhibit lower maximum

drawdown in all setups (except the least favorable: average maximum drawdown of 8.23%

versus 8.18%), and higher minimal values of annualized return. Again, in that sense,

the contrast between Figures 3.2 and 3.3 is clear. The main differences between the two

sets of distributions with optimal control concern clearly the tails of the distributions.

Indeed, the left tail is flat below 0.8 in each configuration when the capital protection

is implemented (Figure 3.3), which is not the case without drawdown constraint. As

expected given the results discussed above, the right tail of the distributions with α = 0 is

fatter than the the case α = 0.8 for the two most favorable market configurations (top left

and middle left panels). Indeed, we can observe that larger values of wealth are obtained

with µ − r = 0.07, σ = 0.1 and µ − r = 0.07, σ = 0.2, when the drawdown constraint is

not present.

The following paragraphs are dedicated to the discussion of the results of the strategies

implementing optimal control p∗ for the prospect theory investor. In Table 3.10, we present

the results with α = 0 in terms of terminal utility. All Certainty Equivalent values are

strictly greater than those obtained by the corresponding strategy with constant control

equal to 0.5 and 1. The superiority of the optimal allocation program is also visible

in terms of risk-adjusted performance: superior Sharpe ratio in all configurations with

respect to π = 0.5. We can observe that the average optimal allocations to the risky

asset are larger overall for this investor than for the CRRA in Table 3.8. Indeed, the

average weight of stocks represents more than 100% in the four most favorable market

configurations, whereas it is clearly reduced for the two remaining setups. This last result
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is in line with Gomes (2005): loss-averse investors will not hold a large fraction of stocks

unless the equity premium is quite high and the volatility quite low. When we compare

the annualized returns obtained by the S-shape utility and the CRRA investors with their

respective optimal control, we do not observe a superiority of one type of investor in all

market configurations. In the two opposite extreme setups (high premium, low volatility

and low premium, high volatility), the CRRA investor manages to obtain better absolute

performance (even if the figures are rather close with the S-shape in the first case), whereas

the results are more mitigated with the other risky asset parameter sets. It should be

noted that the volatility of returns is much larger for the prospect theory investor, leading

to more extreme observations in some scenarios. The empirical kurtosis measures confirm

this observation.

Figure 3.4, presenting the terminal wealth distribution for the S-shape utility investor

without drawdown constraint, allows to further analyze the profile of the resulting perfor-

mance. First, the shape of densities corresponding to optimal control (continuous lines)

are clearly different from those of the constant mix strategy (π = 0.5). In particular, for

three configurations, the optimal control leads to a fatter right tail (high risk premium

with low/medium volatility, and low risk premium with low volatility). For the remaining

panels, the distribution exhibits a clear spike around one, i.e., the initial wealth and ref-

erence point Θ. The spikes are even more pronounced than for the corresponding CRRA

densities (cf., Figure 3.2), showing the importance of Θ in the optimization integrating

the S-shape utility.

Table 3.11 exhibits the results of optimal allocation programs with capital protection.

Again, the benefits of using the optimal control instead of the constant values 5 or 10

are obvious in terms of mean terminal utility and Certainty Equivalent. Note that the

(average) optimal allocation to the risky asset is never above 100% and are quite similar

to the weights obtained for the CRRA investor (Table 3.9), except for the low risk pre-

mium configurations. In addition, we remark that the performance in terms of annualized

returns are better for the investor with power utility. In fact, for all setups the latter

investor obtains a greater (mean) annualized return (except the case high risk premium,

low volatility: 7.57% versus 7.58%).

Furthermore, an important result can be drawn for the prospect theory investor when

comparing Table 3.10 and 3.11. For all market configurations, using optimal controls, the

strategies without protection lead to better results than strategies controlling drawdown.

We can clearly observe that the Constant Equivalent and average terminal utility are

always larger when α = 0. This preference can be justified when we look at the differ-

ence of mean annualized returns: the strategy without protection dominates the portfolio

insurance strategy.

As proposed earlier for the CRRA, we can also compare the resulting wealth densities

for the prospect theory investor with and without protection. The distributions corre-

sponding to α = 0.8 are presented in Figure 3.5 and have to be compared with Figure 3.4,

discussed above. We can clearly distinguish the presence of a mode at 1, i.e., the value of

the reference point Θ, in the distributions of both types of strategies. Hence, as suggested
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by Berkelaar et al. (2004), the reference level of the S-shape utility acts as an implicit

protection, leading to a concentration of final wealth around the initial value of 1 even in

the absence of any constraint. Therefore, the prospect theory investor invests wealth in

order to insure the reference point Θ, with or without constraint, like a “partial portfolio

insurance” as discussed by Berkelaar et al. (2004). The important difference is for levels

of wealth below the reference point: in the absence of constraint, this investor is more

aggressive (due to the convexity of the utility), implying potential large losses. This latter

tail risk is limited when the drawdown constraint is implemented. As a consequence, in

Figure 3.5 corresponding to the case α = 0.8, we can even observe bi-modal densities with

maximum at 0.8 and 1. Therefore the capital protection, in the prospect theory case,

can be perceived as an additional constraint, which is not useful according to our results,

given the presence of the reference point Θ. Note that the distributions obtained for the

S-shape utility investor are clearly more spiky than their equivalents for the power utility

investor, highlighting the loss-averse behavior of the first investor.

3.7.3 Prospect theory investor: impact of a higher reference point

In this section, we discuss the results obtained for a prospect theory investor with a higher

reference point. Specifically, we set Θ = 1.05 in the utility function given by equation

(3.3). The remaining parameters have the same numerical values as in the previous section.

This additional analysis allows us to investigate two aspects of the optimal behavior of

the prospect theory investor. First, we can verify that the results obtained previously

with Θ = 1 in terms of shape of terminal wealth and strategy preference are still valid

when the reference point is no longer equal to the initial level of wealth. Secondly, we can

analyze the impact of setting a higher reference level in terms of performance. Note that

the value 1.05 is reasonably attainable given the market parameters we use, nevertheless

the investor has to take risk in order to ensure the discounted level of wealth Θ, as it

cannot be reached with a full investment in the risk free asset.

In Table 3.12, we present the statistics related to the case α = 0. A first observation

concerns the average annualized rates of return with respect to the case Θ = 1 (Table 3.10).

Indeed, the figures are quite similar between the two investors, except for the case low risk

premium high volatility. The investor with Θ = 1.05 displays a lower average annualized

return (-0.27% versus 0.03%) together with a larger (average) standard deviation (5.85

versus 1.97). Note also that the average maximum drawdown of the optimal strategy with

Θ = 1.05 are larger in the two least favorable market configurations: low risk premium

high volatility (14.14% versus 4.36%) and low risk premium medium volatility (17.63%

versus 13.87%).

The implications in terms of terminal wealth can be observed on Figure 3.6. The

latter displays the distributions of final wealth values for the prospect theory investors

with Θ = 1 and Θ = 1.05, implementing their respective optimal control. Due to the

proximity between the two values of the reference level, the differences between the two

types of curves are only slight. Interestingly, we can clearly note a similar pattern between

the two optimal strategies. In fact, the shape of the distributions are similar, but the
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curves corresponding to the case Θ = 1.05 seem to be shifted toward more positive values.

Indeed, the reference point acts, as described in the previous section, as an hypothetical

level of protection whether Θ = 1 or Θ = 1.05. Hence the spikes in the distributions imply

a larger mode around 1.05 for the latter case rather than 1. The optimal behavior of the

prospect theory investor, consisting in trying to ensure the value of wealth Θ, is confirmed.

In addition, we observe that the fat left tails induced by the risk-seeking behavior below

Θ are present for both investors.

The results for the investor with Θ = 1.05 implementing the optimal control in the

presence of the drawdown constraint are presented in Table 3.13. The comparison in terms

of annualized return with the investor Θ = 1 (Table 3.11) leads to the same conclusions,

whether or not the protection is implemented. Indeed, the rate of returns are again similar

between the two investors implementing the optimal control when α = 0.8, except for the

two cases low premium high volatility and low premium medium volatility, where the

investor with Θ = 1.05 obtains lower performance. Again, for these two setups, the latter

investor also displays a notably larger volatility of annualized return as well as a larger

magnitude of maximum drawdown. The reason for that is the higher level of Θ: given that

the reference point is greater the investor will take more risk (i.e., larger “zone” where the

risk-seeking behavior prevails) in order to reach this level of wealth. The implications can

be seen in terms of average allocation to the risky asset in the two market configurations

mentioned above: respectively 14% and 9% when Θ = 1.05 versus 7% and 1% when

Θ = 1.

As for the case α = 0, we present in Figure 3.7, the terminal wealth for the investors

with Θ = 1 and Θ = 1.05 implementing the optimal control when the drawdown constraint

is implemented (α = 0.8). The conclusions on the distributions for the case α = 0 remain

valid. Indeed, the curves are very similar between the two investors, while the distributions

are shifted toward the right when Θ = 1.05. We observe clearly bimodal densities in most

setups, with modes around 0.8 and at the value of the reference point. Interestingly,

for the cases low premium medium volatility (middle right panel) and low premium high

volatility (bottom right panel), the densities corresponding to the investor with Θ = 1.05

exhibit a larger fraction of wealth just above the boundary 0.8 (implied by the drawdown

constraint). Indeed, for these two configurations, the investor with Θ = 1.05 is more

aggressive in order to reach the reference point even if market conditions are not favorable.

This additional risk-taking naturally leads to more “crash scenarios” when the drawdown

constraint limits the losses.

We focus now on the comparison between the optimal strategies with α = 0 and

α = 0.8 when the reference point Θ is set to 1.05 in both cases. Clearly comparing Tables

3.12 and 3.13, we can observe that the strategy without drawdown constraint leads to

larger values of Constant Equivalent. Indeed, in all market configurations, the average

terminal utility is strictly greater when the drawdown constraint is absent. Of course,

these results are achieved with larger allocations to the risky assets.

Finally, whether or not the reference point of the prospect theory investor is higher

than the initial level of wealth, the conclusion remains the same. The optimal allocation
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program of this type of investor is: trying to reach the amount Θ by taking risk (risk-

seeking behavior) and then, if this objective is achieved, trying to maintain the level of

wealth above Θ through a defensive allocation when the level of wealth gets closer to the

reference point. Due to the fact that this behavior persists whether or not the drawdown

limitation is implemented, the latter constraint does not appear to lead to gains in terms

of utility when the optimal strategy is implemented.

3.7.4 Mis-estimation risk: impact on preference

The parameters of the risky asset generating process are key inputs in our optimization

procedure as illustrated by the expression of the control p∗ in equation (3.20). In the

previous section, these parameters are assumed to be known throughout our analysis in

order to derive optimal control values. However in practice, the estimation of the “true”

volatility and expected returns of stocks can be a difficult task11. In order to evaluate

the impact of mis-estimates of these parameters, we discuss below the results of strategies

with and without capital protection, implementing “optimal” controls p∗ derived using

a mis-estimate of the risk premium or volatility. The results show that the drawdown

constraint can be perceived as an insurance against model’s mis-estimation risk.

We focus first on the results for the CRRA investor with power utility. In Tables 3.14

and 3.15, we present the results of strategies respectively with α = 0 and α = 0.8, using

an optimal control derived with underestimation or overestimation of the risk premium

µ̂ − r. The true value of the volatility is assumed to be known. Hence, the portfolio

sample paths are generated using the control p∗ derived with an estimate of the risk

premium µ̂ − r = 0.07 (resp. 0.02) while the risky asset trajectories are generated with

the parameter µ−r = 0.02 (resp. 0.07). Interestingly, in five configurations out of six, the

strategies with capital protection lead to larger values of terminal utility. The only case

where the investment without protection is preferred corresponds to an underestimation

of the risk premium (0.02 instead of 0.07 for the true value) together with a volatility

equal to 0.1. The usefulness of the capital protection is clearly highlighted in setups with

overestimation of the risk premium (right part of Tables 3.14 and 3.15). The average

maximum drawdown of the strategies without protection lays between 26% and 39% for

these scenarios (versus a range between 16% and 17% with protection). The benefits can

also be observed in terms of standard deviation of annualized returns. Remark that, in the

case without constraint, the strategies with optimal control with mis-estimate of the risk

premium do not outperform the constant control in all setups. In fact, except in the two

opposite extreme scenarios, the constant control 0.5 leads to larger CE than the optimal

one when the true value of µ − r is unknown. On the other hand, when the drawdown

constraint is considered, even if the risk premium is mis-estimated, the “optimal” portfolio

achieves a larger utility in most setups with respect to constant control values of 5 and

10.

Figures 3.8 and 3.9 illustrate the impact of mis-estimation of the risk premium in terms

of terminal wealth distribution, respectively without and with drawdown constraint. Each

11See for instance Merton (1980) on the estimation of expected returns.
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panel shows the distribution of the optimal strategy using the true values of parameters

(continuous line) as well as the strategy optimized with an overestimate or underestimate

of µ− r. Clearly in case of overestimation of the risk premium (right panels), the “crash

risk” is important when the protection is not considered, as illustrated by the fat left tails

of strategies using mis-estimates in Figure 3.8 (whereas the left tails remain cut under 0.8

with the constraint in Figure 3.9). On the other hand, the opportunity cost implied by

the underestimation of µ− r is present both with and without protection (cf., right tails

of distributions).

We run the same type of exercise with over and underestimation of the volatility.

More specifically, the controls p∗ are derived with an estimate σ̂, different from the true

volatility parameter σ, while the value of µ− r is assumed to be known. The results are

presented in Tables 3.16 and 3.17, respectively for the protections α = 0 and α = 0.8. For

each risk premium, we consider two “true” values of σ equal to 0.1 and 0.3, respectively

with overestimation (σ̂ = 0.2 and σ̂ = 0.3), and underestimation (σ̂ = 0.2 and σ̂ = 0.3),

leading to height different setups. As in the case of mis-estimation of the risk premium,

in most configurations (six out of eight), the strategy with α = 0.8 leads to a greater

average terminal utility than the strategy without protection. We remark that the setups

implying a larger utility for the strategy with α = 0 correspond to an overestimation of

the risky asset volatility when µ− r = 0.07. In addition, it can be noted that the strategy

without protection leads to a remarkably low Constant Equivalent of 0.33 when the risk

premium is high and the volatility is largely underestimated (σ̂ = 0.3 versus σ = 0.1).

Therefore, even if this exercise with parameters mis-estimate does not dramatically

change the resuls obtained previously for the CRRA investor, it should be noted that the

capital protection α = 0.8 can be useful in specific market conditions with overestima-

tion of the risk premium or underestimation of volatility. Again, in the most favorable

configurations, the investor with power utility appears to prefer the strategy with α = 0,

emphasizing the opportunity cost implied by the drawdown constraint.

Similarly, we discuss now the results obtained for the investor with S-shape utility

using under or overestimates of the risky asset parameters in the optimization procedure.

The results corresponding to mis-estimation of the risk premium are presented in Tables

3.18 and 3.19, respectively without and with capital protection. Unlike for the CRRA, the

prospect theory investor prefer the strategy with α = 0 in most configurations. Indeed,

except when the risk premium is overestimated with volatility equal to 0.20 or 0.30,

the Constant Equivalent values are larger in Table 3.18 corresponding to the absence of

drawdown constraint. Note that for the two latter configurations, the strategy with α = 0

exhibits very severe maximum drawdown: respectively 65% and 70% on average when the

volatility is equal to 0.20 and 0.30. However, unlike for the CRRA, in terms of terminal

utility, the prospect theory investor strongly prefers the strategy without protection in

case of underestimation of the risk premium for all values of volatility.

We further illustrate the impact of mis-estimation of the risk premium in terms of

terminal wealth distribution in Figures 3.10 and 3.11, respectively without and with

drawdown constraint. As for the CRRA above, each panel shows the distribution of
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the optimal strategy using the true values of parameters (continuous line) as well as the

optimized strategy using an overestimate or underestimate of µ − r (dashed line). In

case of overestimation of the risk premium (right panels), it appears that the “crash risk”

seems to be still important for the prospect theory investor when the protection is not

used (cf., left tails in Figure 3.10). Nevertheless, the opportunity cost appearing when

µ − r is underestimated, is much less visible than for the CRRA investor, as shown by

the top left panel of Figure 3.10. Note that the optimal portfolios of the prospect theory

investor still exhibit the importance of the reference point Θ and the implicit objective of

insuring this amount of wealth.

When we run the same exercise with over and underestimation of the volatility, the

results are even more in favor of the strategy without capital protection. Tables 3.20 and

3.21 clearly illustrate this observation. In Table 3.20 corresponding to α = 0, the Constant

Equivalent measures are always larger than the corresponding values in Table 3.21 with

α = 0.8, except in one setup (corresponding to a large underestimation of volatility:

σ̂ = 0.3 versus σ = 0.1). This result contrasts with the preference of the CRRA investor

described above. As expected the average allocation to the risky asset are always lower in

the presence of the capital protection. Therefore the tendency to prefer optimal strategies

without drawdown constraint remains valid overall for the prospect theory investor even

in the presence of mis-estimation risk. This further puts forward the difficulty to bring

forward a potential usefulness of capital protection in a prospect theory context where

optimal portfolios are implemented, even in the presence of mis-estimation of risk. The

only configurations where the drawdown constraint could be gainful for this investor are:

overestimation of the risk premium when the volatility is at a substantial level, and severe

underestimation of the volatility when the risk premium is low. In these specific cases,

the drawdown constraint can act as an insurance against model’s mis-estimation risk.

3.7.5 Shorter investment horizon: impact on preference

Changing the investment horizon can affect the way an investor evaluates an investment

strategy12. In particular, long horizons can change the optimal portfolio allocation as

discussed by Barberis (2000) and Pástor and Stambaugh (2012), especially for loss averse

investors (cf., Berkelaar et al., 2004). In order to figure out if our previous results are

substantially modified with a shorter investment horizon, we present below a similar anal-

ysis with an investment horizon T of one year13. As with the 5-year horizon discussed

above, for each investor, portfolios implementing optimal controls lead to greater aver-

age terminal utility and Constant Equivalent than their equivalent with constant control

(unreported for space consideration). In this section, we focus our analysis on the compar-

ison between 1-year optimal portfolios (with and without constraint) and 5-year optimal

strategies.

Tables 3.22 and 3.23 present the results of optimal portfolios for the CRRA investor,

12Under specific assumptions, the portfolio selection problem does not depend on the investment horizon, cf.,
Samuelson (1963), Ross (1999) and De Brouwer and Van den Spiegel (2001) on that issue.

13Using constant control, Dierkes et al. (2010) find that portfolio insurance is attractive for prospect theory
investors for almost every investment horizon between one month and seven years.
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respectively with α = 0 and α = 0.8, with an investment horizon of one year. Focusing on

Constant Equivalent values, we can see that in most configurations, the optimal portfolio

with drawdown constraint leads to a larger CE than the portfolio with α = 0. In fact, the

only setup where the last statement is not verified is the most favorable with high risk

premium and low volatility. These observations are also observed in terms of annualized

return. Note that the average Calmar ratios of the protected strategies are all greater

than their equivalent when α = 0.

Without drawdown constraint, whereas the horizon does not have an important impact

in terms of allocation to the risky asset due to the myopic behavior of the CRRA investor

(cf., average stock allocation in Table 3.8 when T = 5), we remark that the Constant

Equivalents are larger when the horizon is equal to five years (as expected given the

positive drift of the risky asset dynamics) while annualized returns are higher for the

shortest horizon. Note also that the average values of maximum drawdown are clearly

higher in magnitude for the longest horizon. This is highlighted in Figure 3.12, comparing

the terminal wealth distributions of optimal portfolios with horizon of five and one year

(with α = 0). As expected the tails of the 5-year distributions are fatter than for the one-

year portfolios. However, the density just below the initial level of wealth (equal to one),

seems to display a heavier weight for the shortest horizon. In particular, this is striking

in the upper left panel. Note that the range of annualized returns (and their standard

deviation) is always larger for the short horizon (even if it is not necessarily clearly visible

on Figure 3.12 presenting terminal wealth). This highlights the important risk of extreme

“bullish or bearish crash” when T = 1.

The previous comment regarding allocation to the risky asset is no longer valid when

the drawdown constraint is implemented. Indeed, we observe that the optimal portfolios

with short horizon have a greater average allocation to stocks in all setups with respect to

strategies with 5-year horizon in Table 3.9. Interestingly, these larger risky allocations do

not imply worse maximum drawdown (thereby the Calmar ratios are better when T = 1).

In that sense, the distributions presented in Figure 3.13 are very informative. As discussed

above, they correspond to terminal wealth under drawdown constraint with horizon of five

and one year. The divergence between the two types of distributions are much less visible

with respect to the case α = 0 in Figure 3.12. Of course, despite this proximity more

pronounced, the shape of distribution remains more spiky for the 1-year portfolios.

We discuss now the equivalent results for the investor with S-shape utility. First,

we compare Table 3.24 and 3.25, presenting metrics related to 1-year optimal portfolios

respectively without and with drawdown constraint. As for the 5-year horizon discussed

in section 3.7.2, we observe that the Constant Equivalents values are all larger for the

portfolio without constraint with respect to α = 0.8 (note though that four setups lead to

the same level of average terminal utility). Even in configurations with low risk premium,

the protection penalizes the portfolio in terms of annualized returns, even if it leads to

lower volatility.

Unlike for the CRRA, reducing the investment horizon from five years to one year

implies a clear reduction in the optimal allocation to the risky asset when α = 0 for
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the prospect theory investor, as suggested by Berkelaar et al. (2004). Indeed, when we

compare Tables 3.10 (5-year) and 3.24 (1-year), we remark that the average allocation

to stocks is always lower in the latter. Remark that this lower allocation implies a lower

average returns only when the risk premium is low. An additional implication of this

lower allocation is that in four configurations (out of six), the portfolios with short horizon

display a lower standard deviation of annualized returns.

The impact of the horizon on the terminal wealth distributions are even more impres-

sive in Figure 3.14, comparing optimal portfolios with α = 0 with horizon equal to 5 and

1 year, for the prospect theory investor. The importance of the reference point Θ (equal

to one) implies very spiky densities for the short horizon. In particular, this effect is very

obvious when the risk premium is low.

Finally, we discuss the divergences between 5-year and 1-year optimal portfolios when

the drawdown constraint is implemented with the S-shape utility (Table 3.11: 5-year, and

Table 3.25: 1-year). Similarly to the case α = 0, reducing the investment horizon implies

a reduction in the optimal allocation in most market configurations (except when the risk

premium is high with low/medium volatility). Hence, except in the two latter cases, the

5-year horizon portfolios lead to greater (average) annualized rate of return. Remark that

the magnitude of maximum drawdown are always larger in Table 3.11 when the horizon

is the longest.

The conclusions regarding the distributions of terminal wealth for optimal portfolios

with protection are similar to the case without constraint. In Figure 3.15, we compare

optimal portfolios with α = 0.8 with horizon equal to 5 and 1 year, for the prospect theory

investor. As expected, the densities corresponding to the shortest horizon are very spiky,

and exhibit a clear mode around one, emphasizing again the role of Θ. This confirms

that, even when the horizon is quite short, the optimal portfolio for the S-shape utility,

is managed in order to ensure the reference point. Hence, the presence of the non-zero

α appears to be more a constraint for the upside, rather than a benefit for the downside

risk protection.

Conclusion

In this paper we analyze optimal investment strategies under the drawdown constraint

that the wealth process never falls below a fixed fraction of its running maximum. In par-

ticular, from an expected utility standpoint, we address the question of the preference for

optimal strategies implementing the drawdown constraint or not. We study the finite hori-

zon expectation maximization problem for investors with power utility (CRRA) as well as

S-shape utility function, asymmetric over gains and losses relative to the reference point

(prospect theory). The optimal portfolio allocations are calculated by solving numeri-

cally the Hamilton-Jacobi-Bellman equation associated with the dynamic programming

principle related to the stochastic control problem.

Our main results are based on stochastic simulations of optimal portfolios with and

without drawdown constraints. More specifically, making vary the market model param-
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eters, we simulate risky asset scenarios as well as optimal portfolios, and we compare

ex-post results in terms of average utility, returns and risks. Our simulations are per-

formed with investment horizon of five years. We also consider a shorter horizon of one

year, and a case where parameters of the risky asset generating process are mis-estimated.

For the CRRA investor, we find that implementing the optimal portfolio with draw-

down constraint can be gainful in terms of utility in certain specific market conditions

such as low risk premium and/or high volatility for both the 5-year and 1-year horizons.

In addition, when the risk premium is overestimated or the volatility underestimated, the

“optimized” portfolio with mis-estimates implementing the drawdown constraint can lead

to a larger utility for this investor.

The last statement is also true for the S-shape utility. However, for this type of

investor, when the parameters of the risky asset data generating process are assumed to

be known, the optimal strategy without constraint systematically leads to better results

in terms of utility than the equivalent optimal strategy with drawdown control. This

result holds with both the 5-year and 1-year investment horizon. A main reason is that in

an optimal context, with or without drawdown constraint, the prospect theory investor

manages the portfolio in order to insure the reference point Θ. The latter parameter

then acts as an “implicit” protection level. Therefore, a main conclusion of this paper, is

that, using optimal allocation, the potential usefulness of strategies controlling drawdown

appears to be clearly reduced in a prospect theory context.

Given that in practice, management fees for implementing strategies with drawdown

constraint are nonzero, a natural extension of this paper would be to study utility indif-

ference prices (see Barrieu and El Karoui, 2009) for different kind of investors. Indeed,

the derivation of the amount the investor is willing to accept in order to buy/sell the

strategy, and its comparison with actual fees, could lead to a better understanding of the

“true cost” of implementing the drawdown constraint in portfolios for different investors.
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Tables and Figures

Risk premium
Volatility Low High

Low µ− r = 0.02 µ− r = 0.07
σ = 0.1 σ = 0.1

Medium µ− r = 0.02 µ− r = 0.07
σ = 0.2 σ = 0.2

High µ− r = 0.02 µ− r = 0.07
σ = 0.3 σ = 0.3

Table 3.1: Summary of the 6 stock market configurations

Stat., α = 0, π = 0.5 µ− r = 0.07 µ− r = 0.02
σ = 0.1 σ = 0.2 σ = 0.3 σ = 0.1 σ = 0.2 σ = 0.3

Mean Ann. return (%) 3.46 3.16 2.65 0.91 0.61 0.11
Min Ann. return (%) -5.5 -13.98 -21.9 -7.83 -16.1 -23.82
Max Ann. return (%) 13.97 25.1 36.99 11.15 22.02 33.6
Std. dev. Ann. return 2.32 4.63 6.91 2.26 4.52 6.74

Mean Ann. volatility (%) 5 10 15 5 10 15
Min Ann. volatility (%) 4.57 9.14 13.71 4.57 9.14 13.71
Max Ann. volatility (%) 5.41 10.82 16.23 5.41 10.82 16.22

Skewness 0.01 0.02 0.03 0.01 0.02 0.03
Kurtosis 0 0 0 0 0 0
Max. drawdown (%) 8.31 19.44 29.78 11.2 22.69 32.86
Sharpe ratio 0.09 0.02 -0.02 -0.42 -0.24 -0.19
Calmar ratio 0.53 0.25 0.16 0.16 0.09 0.07

Average stock allocation (%) 50 50 50 50 50 50

Stat., α = 0, π = 1 µ− r = 0.07 µ− r = 0.02
σ = 0.1 σ = 0.2 σ = 0.3 σ = 0.1 σ = 0.2 σ = 0.3

Mean Ann. return (%) 6.83 5.57 3.49 1.62 0.42 -1.56
Min Ann. return (%) -10.92 -26.74 -40.35 -15.26 -30.31 -43.26
Max Ann. return (%) 29.56 54.95 83.48 23.24 47.4 74.53
Std. dev. Ann. return 4.8 9.49 13.98 4.56 9.03 13.3

Mean Ann. volatility (%) 10 20 30.01 10 20 30
Min Ann. volatility (%) 9.14 18.28 27.42 9.14 18.28 27.42
Max Ann. volatility (%) 10.82 21.63 32.44 10.82 21.63 32.44

Skewness 0.02 0.04 0.06 0.02 0.04 0.06
Kurtosis 0 0 0 0 0 0
Max. drawdown (%) 16.03 35.54 51.5 21.29 40.68 55.69
Sharpe ratio 0.68 0.28 0.12 0.16 0.02 -0.05
Calmar ratio 0.54 0.24 0.14 0.15 0.07 0.03

Average stock allocation (%) 100 100 100 100 100 100

Table 3.2: Statistics over 50,000 draws of portfolios with constant control. The protection level α is set to 0. The
control is set to 0.5 in the upper panel, implying that the strategy is a pure constant mix, i.e., a combination
of 50% of risky asset and 50% of riskless security, while it is set to 1 the bottom panel, corresponding to a pure
investment in the risky asset. All amounts are simulated over 5 years and evaluated in terms of their discounted
values.
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Stat., α = 0.8, π = 5 µ− r = 0.07 µ− r = 0.02
σ = 0.1 σ = 0.2 σ = 0.3 σ = 0.1 σ = 0.2 σ = 0.3

Mean Ann. return (%) 5.37 3.01 1.69 1.31 0.79 0.53
Min Ann. return (%) -3.89 -4.36 -4.36 -4.23 -4.36 -4.36
Max Ann. return (%) 27.27 44.1 55.53 21.09 37.1 47.99
Std. dev. Ann. return 4.22 5.55 5.43 3.25 4.23 4.44

Mean Ann. volatility (%) 7.27 9.13 9.17 6.25 7.98 8.36
Min Ann. volatility (%) 2.76 2.16 2.38 2.04 2.11 2.36
Max Ann. volatility (%) 9.16 16.19 21.52 8.95 15.78 20.9

Skewness 0.16 0.35 0.66 0.13 0.32 0.62
Kurtosis 0.78 6.38 19.74 1.61 9.08 23.43
Max. drawdown (%) 11.06 16.18 16.98 13.15 16.73 17.09
Sharpe ratio 0.68 0.2 0.03 0.13 -0.03 -0.08
Calmar ratio 0.57 0.21 0.11 0.14 0.06 0.04

Average stock allocation (%) 70.19 38.42 20.32 59.09 31.62 17.29

Stat., α = 0.8, π = 10 µ− r = 0.07 µ− r = 0.02
σ = 0.1 σ = 0.2 σ = 0.3 σ = 0.1 σ = 0.2 σ = 0.3

Mean Ann. return (%) 7.58 2.27 1 1.57 0.64 0.41
Min Ann. return (%) -4.35 -4.36 -4.36 -4.36 -4.36 -4.36
Max Ann. return (%) 54.45 71.56 58.39 39.86 55.32 48.26
Std. dev. Ann. return 7.46 6.23 5.13 4.74 4.68 4.51

Mean Ann. volatility (%) 10.85 9.8 9.03 8.42 8.61 8.53
Min Ann. volatility (%) 2.6 2.44 2.56 2.14 2.43 2.69
Max Ann. volatility (%) 16.64 26.1 28.97 15.94 24.71 27.28

Skewness 0.37 1.07 1.83 0.34 0.99 1.71
Kurtosis 3.68 34.36 88.59 7.93 42.21 95.49
Max. drawdown (%) 15.29 16.78 16.3 16.53 16.85 16.34
Sharpe ratio 0.58 0.06 -0.05 0.05 -0.07 -0.1
Calmar ratio 0.54 0.14 0.07 0.11 0.04 0.03

Average stock allocation (%) 96.49 27.13 10.16 68.54 21.18 9

Table 3.3: Statistics over 50,000 draws of portfolios with constant control. The protection level α is set to 0.8.
The control is set to 5 in the upper panel and to 10 in the lower panel. All amounts are simulated over 5 years
and evaluated in terms of their discounted values.
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CRRA, α = 0, π = 0.5 µ− r = 0.07 µ− r = 0.02
σ = 0.1 σ = 0.2 σ = 0.3 σ = 0.1 σ = 0.2 σ = 0.3

Constant Equivalent 1.18 1.13 1.06 1.04 1 0.94
Mean terminal utility -0.85 -0.88 -0.94 -0.96 -1 -1.06
Std. dev. terminal utility 0.1 0.2 0.33 0.11 0.23 0.37
Qt. 1% terminal utility -1.1 -1.45 -1.95 -1.24 -1.65 -2.21
Qt. 50% terminal utility -0.84 -0.86 -0.89 -0.96 -0.97 -1
Qt. 99% terminal utility -0.65 -0.51 -0.41 -0.74 -0.58 -0.46

CRRA, α = 0, π = 1 µ− r = 0.07 µ− r = 0.02
σ = 0.1 σ = 0.2 σ = 0.3 σ = 0.1 σ = 0.2 σ = 0.3

Constant Equivalent 1.35 1.16 0.9 1.05 0.9 0.7
Mean terminal utility -0.74 -0.86 -1.11 -0.95 -1.11 -1.42
Std. dev. terminal utility 0.17 0.41 0.84 0.22 0.52 1.08
Qt. 1% terminal utility -1.22 -2.22 -4.25 -1.57 -2.85 -5.46
Qt. 50% terminal utility -0.72 -0.78 -0.88 -0.93 -1 -1.13
Qt. 99% terminal utility -0.43 -0.28 -0.19 -0.55 -0.35 -0.24

Table 3.4: Performance measurements for CRRA (2) investor over 50,000 draws of portfolios. The protection
level α is set to 0. The control is set to 0.5 in the upper panel, implying that the strategy is a pure constant
mix, i.e., a combination of 50% of risky asset and 50% of riskless security, while it is set to 1 the bottom panel,
corresponding to a pure investment in the risky asset. All amounts are simulated over 5 years and evaluated in
terms of their discounted values.

CRRA, α = 0.8, π = 5 µ− r = 0.07 µ− r = 0.02
σ = 0.1 σ = 0.2 σ = 0.3 σ = 0.1 σ = 0.2 σ = 0.3

Constant Equivalent 1.27 1.12 1.05 1.05 1.02 1
Mean terminal utility -0.79 -0.9 -0.95 -0.95 -0.98 -1
Std. dev. terminal utility 0.15 0.21 0.21 0.14 0.18 0.18
Qt. 1% terminal utility -1.13 -1.22 -1.25 -1.19 -1.24 -1.25
Qt. 50% terminal utility -0.78 -0.92 -1 -0.96 -1.02 -1.04
Qt. 99% terminal utility -0.47 -0.39 -0.39 -0.6 -0.49 -0.46

CRRA, α = 0.8, π = 10 µ− r = 0.07 µ− r = 0.02
σ = 0.1 σ = 0.2 σ = 0.3 σ = 0.1 σ = 0.2 σ = 0.3

Constant Equivalent 1.35 1.07 1.02 1.05 1.01 1
Mean terminal utility -0.74 -0.93 -0.98 -0.95 -1 -1
Std. dev. terminal utility 0.23 0.22 0.2 0.19 0.19 0.18
Qt. 1% terminal utility -1.19 -1.25 -1.25 -1.23 -1.25 -1.25
Qt. 50% terminal utility -0.73 -0.98 -1.02 -0.99 -1.04 -1.04
Qt. 99% terminal utility -0.28 -0.33 -0.4 -0.45 -0.44 -0.45

Table 3.5: Performance measurements for CRRA (2) investor over 50,000 draws of portfolios. The protection level
α is set to 0.8. The control is constant and set to 5 in the upper panel and 10 in the lower panel. All amounts
are simulated over 5 years and evaluated in terms of their discounted values.
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S-shape, α = 0, π = 0.5 µ− r = 0.07 µ− r = 0.02
σ = 0.1 σ = 0.2 σ = 0.3 σ = 0.1 σ = 0.2 σ = 0.3

Constant Equivalent 1.18 1.13 1.07 1.01 0.99 0.97
Mean terminal utility 0.22 0.16 0.1 0.02 -0.05 -0.11
Std. dev. terminal utility 0.16 0.37 0.57 0.21 0.4 0.57
Qt. 1% terminal utility -0.27 -0.81 -1.19 -0.54 -0.99 -1.32
Qt. 50% terminal utility 0.23 0.2 0.16 0.07 0.04 -0.02
Qt. 99% terminal utility 0.58 0.96 1.39 0.4 0.75 1.14

S-shape, α = 0, π = 1 µ− r = 0.07 µ− r = 0.02
σ = 0.1 σ = 0.2 σ = 0.3 σ = 0.1 σ = 0.2 σ = 0.3

Constant Equivalent 1.39 1.27 1.14 1.03 0.97 0.92
Mean terminal utility 0.44 0.32 0.17 0.04 -0.1 -0.23
Std. dev. terminal utility 0.34 0.77 1.17 0.39 0.74 1.06
Qt. 1% terminal utility -0.5 -1.33 -1.78 -0.92 -1.54 -1.88
Qt. 50% terminal utility 0.43 0.33 0.17 0.11 0 -0.33
Qt. 99% terminal utility 1.28 2.34 3.66 0.83 1.7 2.77

Table 3.6: Performance measurements for S-shape utility investor over 50,000 draws of portfolios. The protection
level α is set to 0. The control is set to 0.5 in the upper panel, implying that the strategy is a pure constant
mix, i.e., a combination of 50% of risky asset and 50% of riskless security, while it is set to 1 the bottom panel,
corresponding to a pure investment in the risky asset. All amounts are simulated over 5 years and evaluated in
terms of their discounted values.

S-shape, α = 0.8, π = 5 µ− r = 0.07 µ− r = 0.02
σ = 0.1 σ = 0.2 σ = 0.3 σ = 0.1 σ = 0.2 σ = 0.3

Constant Equivalent 1.29 1.11 1.02 1.02 0.99 0.98
Mean terminal utility 0.34 0.15 0.04 0.03 -0.03 -0.06
Std. dev. terminal utility 0.3 0.43 0.44 0.27 0.35 0.37
Qt. 1% terminal utility -0.34 -0.5 -0.54 -0.46 -0.53 -0.55
Qt. 50% terminal utility 0.33 0.11 0.01 0.05 -0.08 -0.13
Qt. 99% terminal utility 1.1 1.46 1.5 0.69 1.02 1.13

S-shape, α = 0.8, π = 10 µ− r = 0.07 µ− r = 0.02
σ = 0.1 σ = 0.2 σ = 0.3 σ = 0.1 σ = 0.2 σ = 0.3

Constant Equivalent 1.45 1.06 1 1.02 0.99 0.98
Mean terminal utility 0.5 0.09 -0.02 0.03 -0.05 -0.07
Std. dev. terminal utility 0.57 0.51 0.43 0.38 0.39 0.38
Qt. 1% terminal utility -0.45 -0.55 -0.55 -0.52 -0.55 -0.55
Qt. 50% terminal utility 0.41 0.03 -0.08 0.02 -0.12 -0.14
Qt. 99% terminal utility 2.28 1.88 1.41 1.19 1.22 1.17

Table 3.7: Performance measurements for S-shape utility investor over 50,000 draws of portfolios. The protection
level α is set to 0.8. The control is constant and set to 5 in the upper panel and 10 in the lower panel. All amounts
are simulated over 5 years and evaluated in terms of their discounted values.
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CRRA, α = 0, π = p∗ µ− r = 0.07 µ− r = 0.02
σ = 0.1 σ = 0.2 σ = 0.3 σ = 0.1 σ = 0.2 σ = 0.3

Constant Equivalent 1.65 1.17 1.07 1.05 1.01 1.01
Mean terminal utility -0.61 -0.86 -0.93 -0.95 -0.99 -0.99
Std. dev. terminal utility 0.29 0.34 0.24 0.21 0.11 0.07
Qt. 1% terminal utility -1.57 -1.95 -1.64 -1.55 -1.27 -1.18
Qt. 50% terminal utility -0.55 -0.8 -0.9 -0.93 -0.98 -0.99
Qt. 99% terminal utility -0.19 -0.33 -0.5 -0.56 -0.76 -0.84

Mean Ann. return (%) 13.22 4.96 2.18 1.6 0.4 0.18
Min Ann. return (%) -21.43 -22.72 -16.79 -14.81 -8.11 -5.56
Max Ann. return (%) 51.14 47.63 27.61 22.93 10.42 6.73
Std. dev. Ann. return 10.17 8.09 5.25 4.47 2.21 1.47

Mean Ann. volatility (%) 20.01 17.13 11.43 9.8 4.9 3.27
Min Ann. volatility (%) 16.29 15.76 10.5 8.99 4.49 2.99
Max Ann. volatility (%) 21.64 18.54 12.36 10.59 5.29 3.53

Skewness 0.04 0.03 0.02 0.02 0.01 0.01
Kurtosis 0 0 0 0 0 0
Max. drawdown (%) 29.88 31.24 23.5 20.91 11.76 8.18
Sharpe ratio 0.66 0.29 0.19 0.16 0.08 0.05
Calmar ratio 0.55 0.24 0.17 0.15 0.1 0.09

Average stock allocation (%) 199.98 85.64 38.09 97.96 24.5 10.89

Qt. 1% average control 2 0.84 0.38 0.97 0.24 0.11
Qt. 50% average control 2 0.86 0.38 0.98 0.25 0.11
Qt. 99% average control 2 0.86 0.38 0.98 0.25 0.11

Table 3.8: Performance measurements for CRRA (2) investor over 50,000 draws of portfolios. The protection level
α is set to 0. The optimal control is calculated numerically. All amounts are simulated over 5 years and evaluated
in terms of their discounted values. The corresponding terminal wealth distributions are presented in Figure 3.2.
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CRRA, α = 0.8, π = p∗ µ− r = 0.07 µ− r = 0.02
σ = 0.1 σ = 0.2 σ = 0.3 σ = 0.1 σ = 0.2 σ = 0.3

Constant Equivalent 1.36 1.13 1.07 1.06 1.02 1.01
Mean terminal utility -0.74 -0.88 -0.93 -0.95 -0.98 -0.99
Std. dev. terminal utility 0.22 0.2 0.18 0.16 0.11 0.08
Qt. 1% terminal utility -1.19 -1.22 -1.23 -1.22 -1.22 -1.18
Qt. 50% terminal utility -0.73 -0.9 -0.94 -0.96 -0.98 -0.99
Qt. 99% terminal utility -0.3 -0.43 -0.53 -0.58 -0.75 -0.83

Mean Ann. return (%) 7.57 3.22 1.87 1.48 0.52 0.25
Min Ann. return (%) -4.25 -4.26 -4.26 -4.25 -4.26 -4.25
Max Ann. return (%) 36.51 35.72 26.21 22.43 11.23 7.19
Std. dev. Ann. return 7.08 5.27 4.13 3.66 2.23 1.52

Mean Ann. volatility (%) 10.58 9.12 7.83 7.1 4.75 3.3
Min Ann. volatility (%) 2.46 2.05 2 1.95 2.11 2.18
Max Ann. volatility (%) 15.23 13.49 10.46 9.28 5.28 3.62

Skewness 0.3 0.22 0.16 0.13 0.08 0.06
Kurtosis 2.28 1.97 1.17 0.94 0.13 0.05
Max. drawdown (%) 15.11 16.4 15.8 14.81 11.31 8.23
Sharpe ratio 0.61 0.25 0.15 0.13 0.09 0.07
Calmar ratio 0.55 0.23 0.16 0.15 0.11 0.1

Average stock allocation (%) 96.75 41.99 24.73 68.03 23.53 10.96

Qt. 1% average control 9 3.57 2 5.27 1.4 0.61
Qt. 50% average control 9.41 4.94 2.68 6.45 1.66 0.68
Qt. 99% average control 9.81 7.83 6.38 8.79 4.59 1.47

Table 3.9: Performance measurements for CRRA (2) investor over 50,000 draws of portfolios. The protection
level α is set to 0.8. The optimal control is calculated numerically. All amounts are simulated over 5 years and
evaluated in terms of their discounted values. The corresponding terminal wealth distributions are presented in
Figure 3.3.
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S-shape, α = 0, π = p∗ µ− r = 0.07 µ− r = 0.02
σ = 0.1 σ = 0.2 σ = 0.3 σ = 0.1 σ = 0.2 σ = 0.3

Constant Equivalent 1.94 1.6 1.24 1.07 1 1
Mean terminal utility 0.94 0.64 0.29 0.09 0.01 0
Std. dev. terminal utility 0.86 1.69 1.75 0.65 0.29 0.14
Qt. 1% terminal utility -0.92 -1.92 -2.16 -1.45 -1.51 -0.04
Qt. 50% terminal utility 0.85 0.17 0.03 0.03 0.02 0.01
Qt. 99% terminal utility 3.5 5.37 5.38 1.89 0.62 0.11

Mean Ann. return (%) 13.21 7.72 1.97 2.13 0.21 0.03
Min Ann. return (%) -21.43 -48.43 -60.79 -28.91 -42.46 -49.61
Max Ann. return (%) 51.35 52.17 52.36 50.27 50.4 12.95
Std. dev. Ann. return 10.18 18.81 20.76 8.09 3.78 1.97

Mean Ann. volatility (%) 19.99 38.97 44.81 17.24 6.22 1.92
Min Ann. volatility (%) 16.1 20.42 21.38 11.79 2.35 0.75
Max Ann. volatility (%) 21.62 43.26 62.77 21.58 37.76 51.65

Skewness 0.04 0.08 0.12 0.04 0.12 0.33
Kurtosis 0 0.14 0.68 0.71 4.58 9.16
Max. drawdown (%) 29.86 58.51 65.67 34.22 13.87 4.36
Sharpe ratio 0.66 0.2 0.07 0.11 0.09 0.15
Calmar ratio 0.55 0.21 0.1 0.12 0.05 0.09

Average stock allocation (%) 199.74 192.53 143.33 165.02 25.69 4.86

Qt. 1% average control 1.94 1.38 0.99 1.12 0.11 0.02
Qt. 50% average control 2 2 1.43 1.71 0.17 0.03
Qt. 99% average control 2 2 1.95 2 1.39 0.48

Table 3.10: Performance measurements for S-shape utility investor over 50,000 draws of portfolios. The protection
level α is set to 0. The optimal control is calculated numerically. All amounts are simulated over 5 years and
evaluated in terms of their discounted values. The corresponding terminal wealth distributions are presented in
Figure 3.4.
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S-shape, α = 0.8, π = p∗ µ− r = 0.07 µ− r = 0.02
σ = 0.1 σ = 0.2 σ = 0.3 σ = 0.1 σ = 0.2 σ = 0.3

Constant Equivalent 1.45 1.13 1.06 1.04 1 1
Mean terminal utility 0.5 0.17 0.08 0.05 0 0
Std. dev. terminal utility 0.57 0.48 0.39 0.3 0.1 0.04
Qt. 1% terminal utility -0.45 -0.51 -0.51 -0.49 -0.51 -0.02
Qt. 50% terminal utility 0.41 0.08 0.01 0.01 0.01 0
Qt. 99% terminal utility 2.27 1.82 1.47 1.04 0.26 0.04

Mean Ann. return (%) 7.58 3.14 1.82 1.34 0.15 0.02
Min Ann. return (%) -4.26 -4.27 -4.27 -4.26 -4.25 -4.27
Max Ann. return (%) 36.76 36.78 37.28 35.8 34.51 6
Std. dev. Ann. return 7.4 6.13 4.94 3.86 1.11 0.31

Mean Ann. volatility (%) 10.8 9.73 8.27 6.78 1.71 0.42
Min Ann. volatility (%) 2.55 2.14 2.03 1.98 0.71 0.23
Max Ann. volatility (%) 16.14 19.84 20.64 14.91 16.26 9.71

Skewness 0.35 0.37 0.3 0.19 0.16 0.39
Kurtosis 3.3 5.2 4.56 3.23 5.57 11.82
Max. drawdown (%) 15.28 17.01 16.29 14.37 4.25 1.06
Sharpe ratio 0.59 0.18 0.08 0.08 0.08 0.11
Calmar ratio 0.54 0.2 0.11 0.1 0.05 0.07

Average stock allocation (%) 96.51 39.89 22.92 59.16 7.06 1.13

Qt. 1% average control 9.45 2.97 1.5 2.99 0.18 0.04
Qt. 50% average control 9.94 6.96 3.7 6.19 0.26 0.04
Qt. 99% average control 9.99 8.74 7.47 9.64 3.99 0.45

Table 3.11: Performance measurements for S-shape utility investor over 50,000 draws of portfolios. The protection
level α is set to 0.8. The optimal control is calculated numerically. All amounts are simulated over 5 years and
evaluated in terms of their discounted values. The corresponding terminal wealth distributions are presented in
Figure 3.5.
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S-shape Θ = 1.05, α = 0, π = p∗ µ− r = 0.07 µ− r = 0.02
σ = 0.1 σ = 0.2 σ = 0.3 σ = 0.1 σ = 0.2 σ = 0.3

Constant Equivalent 1.93 1.57 1.22 1.06 1.03 1.02
Mean terminal utility 0.89 0.57 0.21 0.01 -0.08 -0.1
Std. dev. terminal utility 0.88 1.72 1.76 0.67 0.4 0.39
Qt. 1% terminal utility -1.03 -2.02 -2.26 -1.56 -1.87 -2.06
Qt. 50% terminal utility 0.8 0.1 0.03 0.02 0.01 -0.01
Qt. 99% terminal utility 3.46 5.34 5.35 1.83 0.37 0.05

Mean Ann. return (%) 13.2 7.71 1.98 2.12 0.14 -0.27
Min Ann. return (%) -21.43 -48.43 -65.96 -28.91 -46.13 -59.71
Max Ann. return (%) 51.41 52.21 52.3 50.25 50.85 9.2
Std. dev. Ann. return 10.18 18.79 20.73 8.02 5.12 5.85

Mean Ann. volatility (%) 19.99 38.96 44.72 17.23 8.49 7.28
Min Ann. volatility (%) 16.05 19.84 20.1 11.82 2.52 0.97
Max Ann. volatility (%) 21.62 43.26 62.82 21.58 39.18 57.37

Skewness 0.04 0.08 0.12 0.05 0.27 0.64
Kurtosis 0 0.14 0.68 0.71 5.56 12.72
Max. drawdown (%) 29.86 58.5 65.44 34.17 17.63 14.14
Sharpe ratio 0.66 0.2 0.07 0.12 0.21 0.32
Calmar ratio 0.55 0.21 0.1 0.12 0.12 0.21

Average stock allocation (%) 199.71 192.47 143.09 164.77 34.53 17.98

Qt. 1% average control 1.94 1.39 0.99 1.13 0.11 0.03
Qt. 50% average control 2 2 1.42 1.7 0.2 0.07
Qt. 99% average control 2 2 1.96 2 1.67 1.48

Table 3.12: Performance measurements for S-shape utility investor with reference point Θ = 1.05 over 50,000
draws of portfolios. The protection level α is set to 0. The optimal control is calculated numerically. All amounts
are simulated over 5 years and evaluated in terms of their discounted values. The corresponding terminal wealth
distributions are presented in Figure 3.6.
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S-shape Θ = 1.05, α = 0.8, π = p∗ µ− r = 0.07 µ− r = 0.02
σ = 0.1 σ = 0.2 σ = 0.3 σ = 0.1 σ = 0.2 σ = 0.3

Constant Equivalent 1.44 1.11 1.05 1.04 1.02 1.02
Mean terminal utility 0.43 0.08 -0.01 -0.04 -0.1 -0.11
Std. dev. terminal utility 0.59 0.5 0.41 0.32 0.21 0.22
Qt. 1% terminal utility -0.57 -0.63 -0.63 -0.62 -0.63 -0.64
Qt. 50% terminal utility 0.36 0.02 0 0 -0.01 -0.01
Qt. 99% terminal utility 2.22 1.77 1.35 0.92 0.05 0.02

Mean Ann. return (%) 7.58 3.14 1.79 1.29 0.28 0.17
Min Ann. return (%) -4.26 -4.28 -4.28 -4.26 -4.26 -4.27
Max Ann. return (%) 36.77 36.59 38.09 35.54 19.22 3
Std. dev. Ann. return 7.4 6.05 4.71 3.59 1.66 1.71

Mean Ann. volatility (%) 10.8 9.65 8.06 6.55 3.37 3.34
Min Ann. volatility (%) 2.54 2.13 2.01 1.95 0.93 0.59
Max Ann. volatility (%) 16.15 19.58 21.05 14.73 12.42 11.63

Skewness 0.35 0.35 0.29 0.18 0.36 0.48
Kurtosis 3.25 4.85 4.06 2.56 5.64 8.2
Max. drawdown (%) 15.27 16.94 16.04 13.99 7.88 7.89
Sharpe ratio 0.59 0.18 0.1 0.11 0.26 0.26
Calmar ratio 0.54 0.2 0.12 0.11 0.2 0.21

Average stock allocation (%) 96.51 40.08 22.86 58.31 13.97 8.92

Qt. 1% average control 9.5 3.25 1.48 2.95 0.23 0.08
Qt. 50% average control 9.92 6.79 3.39 5.82 0.65 0.41
Qt. 99% average control 9.98 8.67 7.14 9.38 6.25 5.54

Table 3.13: Performance measurements for S-shape utility investor with reference point Θ = 1.05 over 50,000 draws
of portfolios. The protection level α is set to 0.8. The optimal control is calculated numerically. All amounts
are simulated over 5 years and evaluated in terms of their discounted values. The corresponding terminal wealth
distributions are presented in Figure 3.7.
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CRRA, α = 0, π = p∗ µ− r = 0.07, µ̂− r = 0.02 µ− r = 0.02, µ̂− r = 0.07
σ = 0.1 σ = 0.2 σ = 0.3 σ = 0.1 σ = 0.2 σ = 0.3

Constant Equivalent 1.34 1.08 1.03 1 0.94 0.97
Mean terminal utility -0.74 -0.93 -0.97 -1 -1.06 -1.03
Std. dev. terminal utility 0.17 0.1 0.07 0.47 0.42 0.27
Qt. 1% terminal utility -1.22 -1.19 -1.15 -2.58 -2.4 -1.8
Qt. 50% terminal utility -0.73 -0.92 -0.96 -0.9 -0.99 -0.99
Qt. 99% terminal utility -0.44 -0.72 -0.81 -0.32 -0.4 -0.55

Mean Ann. return (%) 6.71 1.64 0.73 2.45 0.56 0.25
Min Ann. return (%) -10.64 -6.96 -5.05 -28.91 -25.75 -18.3
Max Ann. return (%) 29.29 11.79 7.32 50.24 40.97 25.17
Std. dev. Ann. return 4.72 2.24 1.48 9.21 7.72 5.14

Mean Ann. volatility (%) 9.82 4.9 3.27 20 17.09 11.41
Min Ann. volatility (%) 9.01 4.49 2.99 18.28 15.71 10.49
Max Ann. volatility (%) 10.62 5.3 3.53 21.63 18.5 12.35

Skewness 0.02 0.01 0.01 0.04 0.03 0.02
Kurtosis 0 0 0 0 0 0
Max. drawdown (%) 15.76 9.98 7.29 38.51 35.89 26.04
Sharpe ratio 0.68 0.33 0.22 0.12 0.03 0.02
Calmar ratio 0.54 0.25 0.18 0.13 0.08 0.07

Average stock allocation (%) 98.18 24.51 10.89 200 85.44 38.05

Qt. 1% average control 0.98 0.24 0.11 2 0.84 0.38
Qt. 50% average control 0.98 0.25 0.11 2 0.85 0.38
Qt. 99% average control 0.99 0.25 0.11 2 0.86 0.38

Table 3.14: Performance measurements for CRRA (2) investor over 50,000 draws of portfolios. The protection
level α is set to 0. The optimal control is calculated numerically with mis-estimate of the risk premium µ̂ − r.
All amounts are simulated over 5 years and evaluated in terms of their discounted values. The corresponding
terminal wealth distributions are presented in Figure 3.8.
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CRRA, α = 0.8, π = p∗ µ− r = 0.07, µ̂− r = 0.02 µ− r = 0.02, µ̂− r = 0.07
σ = 0.1 σ = 0.2 σ = 0.3 σ = 0.1 σ = 0.2 σ = 0.3

Constant Equivalent 1.3 1.08 1.04 1.05 1.02 1.01
Mean terminal utility -0.77 -0.92 -0.96 -0.95 -0.98 -0.99
Std. dev. terminal utility 0.16 0.11 0.07 0.19 0.18 0.16
Qt. 1% terminal utility -1.16 -1.18 -1.15 -1.23 -1.23 -1.23
Qt. 50% terminal utility -0.75 -0.92 -0.96 -0.98 -1.02 -1.02
Qt. 99% terminal utility -0.45 -0.7 -0.8 -0.46 -0.51 -0.59

Mean Ann. return (%) 5.97 1.78 0.82 1.61 0.83 0.52
Min Ann. return (%) -4.25 -4.26 -4.15 -4.26 -4.27 -4.28
Max Ann. return (%) 28.42 12.67 7.81 35.77 35.59 24.04
Std. dev. Ann. return 4.48 2.33 1.54 4.66 4.2 3.64

Mean Ann. volatility (%) 8.03 4.83 3.31 8.33 8.06 7.33
Min Ann. volatility (%) 2.58 2.54 2.36 2.1 2.01 1.93
Max Ann. volatility (%) 9.39 5.3 3.62 15.01 13.26 10.39

Skewness 0.16 0.08 0.06 0.25 0.19 0.15
Kurtosis 0.45 0.09 0.05 4.55 2.72 1.53
Max. drawdown (%) 12.47 9.75 7.34 16.49 17.07 16.47
Sharpe ratio 0.7 0.36 0.25 0.07 -0.02 -0.03
Calmar ratio 0.57 0.27 0.2 0.12 0.07 0.06

Average stock allocation (%) 78.32 23.97 10.98 71.28 35.99 22.79

Qt. 1% average control 5.16 1.38 0.6 6.67 3.18 2.01
Qt. 50% average control 5.72 1.55 0.66 9.52 5.42 3.01
Qt. 99% average control 8.18 3.64 1.17 9.85 8.18 6.78

Table 3.15: Performance measurements for CRRA (2) investor over 50,000 draws of portfolios. The protection
level α is set to 0.8. The optimal control is calculated numerically with mis-estimate of the risk premium µ̂− r.
All amounts are simulated over 5 years and evaluated in terms of their discounted values. The corresponding
terminal wealth distributions are presented in Figure 3.9.
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CRRA, α = 0, π = p∗ µ− r = 0.07

σ = 0.1, σ̂ = 0.2 σ = 0.1, σ̂ = 0.3 σ = 0.3, σ̂ = 0.2 σ = 0.3, σ̂ = 0.1

Constant Equivalent 1.3 1.13 0.97 0.33
Mean terminal utility -0.77 -0.88 -1.03 -3.01
Std. dev. terminal utility 0.15 0.08 0.64 6.26
Qt. 1% terminal utility -1.18 -1.07 -3.28 -27.75
Qt. 50% terminal utility -0.75 -0.88 -0.87 -1.21
Qt. 99% terminal utility -0.48 -0.72 -0.23 -0.12

Mean Ann. return (%) 5.88 2.65 3.44 -0.21
Min Ann. return (%) -9.33 -4.2 -33.92 -60.62
Max Ann. return (%) 25.12 10.54 51.44 56.43
Std. dev. Ann. return 4.08 1.76 11.95 26.4

Mean Ann. volatility (%) 8.57 3.81 25.65 58.78
Min Ann. volatility (%) 7.87 3.49 20.17 23.47
Max Ann. volatility (%) 9.27 4.12 27.81 64.9

Skewness 0.02 0.01 0.05 0.13
Kurtosis 0 0 0 0.23
Max. drawdown (%) 13.89 6.38 45.94 76.6
Sharpe ratio 0.69 0.69 0.13 0.02
Calmar ratio 0.54 0.53 0.14 0.07

Average stock allocation (%) 85.73 38.11 85.46 193.36

Qt. 1% average control 0.85 0.38 0.83 0.81
Qt. 50% average control 0.86 0.38 0.86 2
Qt. 99% average control 0.86 0.38 0.87 2

CRRA, α = 0, π = p∗ µ− r = 0.02
σ = 0.1, σ̂ = 0.2 σ = 0.1, σ̂ = 0.3 σ = 0.3, σ̂ = 0.2 σ = 0.3, σ̂ = 0.1

Constant Equivalent 1.02 1.01 1 0.72
Mean terminal utility -0.98 -0.99 -1 -1.39
Std. dev. terminal utility 0.05 0.02 0.17 0.99
Qt. 1% terminal utility -1.11 -1.05 -1.45 -5
Qt. 50% terminal utility -0.98 -0.99 -0.99 -1.13
Qt. 99% terminal utility -0.86 -0.94 -0.67 -0.24

Mean Ann. return (%) 0.47 0.21 0.28 -1.44
Min Ann. return (%) -3.87 -1.73 -12.12 -39.98
Max Ann. return (%) 5.36 2.35 15.66 52.59
Std. dev. Ann. return 1.1 0.49 3.31 12.97

Mean Ann. volatility (%) 2.45 1.09 7.35 29.26
Min Ann. volatility (%) 2.24 1 6.74 23.11
Max Ann. volatility (%) 2.65 1.18 7.94 31.77

Skewness 0 0 0.01 0.05
Kurtosis 0 0 0 0
Max. drawdown (%) 5.63 2.54 17.56 54.83
Sharpe ratio 0.19 0.2 0.04 -0.05
Calmar ratio 0.16 0.16 0.08 0.03

Average stock allocation (%) 24.5 10.89 24.49 97.52

Qt. 1% average control 0.24 0.11 0.24 0.94
Qt. 50% average control 0.25 0.11 0.24 0.98
Qt. 99% average control 0.25 0.11 0.25 0.99

Table 3.16: Performance measurements for CRRA (2) investor over 50,000 draws of portfolios. The protection
level α is set to 0. The optimal control is calculated numerically with mis-estimate of the volatility σ̂. All amounts
are simulated over 5 years and evaluated in terms of their discounted values.
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CRRA, α = 0.8, π = p∗ µ− r = 0.07

σ = 0.1, σ̂ = 0.2 σ = 0.1, σ̂ = 0.3 σ = 0.3, σ̂ = 0.2 σ = 0.3, σ̂ = 0.1

Constant Equivalent 1.23 1.12 1.06 1.02
Mean terminal utility -0.81 -0.89 -0.94 -0.98
Std. dev. terminal utility 0.12 0.07 0.21 0.2
Qt. 1% terminal utility -1.12 -1.06 -1.24 -1.24
Qt. 50% terminal utility -0.8 -0.89 -0.99 -1.02
Qt. 99% terminal utility -0.56 -0.74 -0.38 -0.4

Mean Ann. return (%) 4.54 2.44 1.94 1.11
Min Ann. return (%) -3.95 -3.41 -4.28 -4.3
Max Ann. return (%) 20.26 9.97 36.62 40.04
Std. dev. Ann. return 3.22 1.61 5.59 5.2

Mean Ann. volatility (%) 6.16 3.32 9.36 8.96
Min Ann. volatility (%) 2.89 2.61 2.12 2.53
Max Ann. volatility (%) 7.04 3.64 18.64 25.62

Skewness 0.13 0.07 0.34 1.35
Kurtosis 0.51 0.19 6.75 55.99
Max. drawdown (%) 9.88 5.53 17.45 16.59
Sharpe ratio 0.71 0.73 0.05 -0.04
Calmar ratio 0.57 0.56 0.12 0.07

Average stock allocation (%) 60.09 32.87 24.28 11.6

Qt. 1% average control 3.68 1.82 1.58 0.53
Qt. 50% average control 3.88 1.88 6.37 9.86
Qt. 99% average control 5.08 2.23 8.97 9.97

CRRA, α = 0.8, π = p∗ µ− r = 0.02
σ = 0.1, σ̂ = 0.2 σ = 0.1, σ̂ = 0.3 σ = 0.3, σ̂ = 0.2 σ = 0.3, σ̂ = 0.1

Constant Equivalent 1.02 1.01 1.01 1
Mean terminal utility -0.98 -0.99 -0.99 -1
Std. dev. terminal utility 0.06 0.02 0.15 0.18
Qt. 1% terminal utility -1.11 -1.05 -1.23 -1.24
Qt. 50% terminal utility -0.97 -0.99 -1 -1.05
Qt. 99% terminal utility -0.85 -0.93 -0.66 -0.45

Mean Ann. return (%) 0.53 0.24 0.46 0.48
Min Ann. return (%) -3.6 -1.74 -4.27 -4.29
Max Ann. return (%) 5.64 2.47 17.06 37.28
Std. dev. Ann. return 1.14 0.5 3.13 4.53

Mean Ann. volatility (%) 2.45 1.1 6.49 8.43
Min Ann. volatility (%) 2.16 1 1.89 2.29
Max Ann. volatility (%) 2.66 1.21 7.91 23.2

Skewness 0.04 0.03 0.11 0.59
Kurtosis 0.04 0.03 0.78 22.36
Max. drawdown (%) 5.62 2.56 15.07 17.25
Sharpe ratio 0.21 0.21 0.01 -0.09
Calmar ratio 0.17 0.17 0.08 0.03

Average stock allocation (%) 24.42 11 20.74 14.87

Qt. 1% average control 1.32 0.57 1.47 0.8
Qt. 50% average control 1.4 0.59 2.14 9.15
Qt. 99% average control 1.92 0.66 6.93 9.83

Table 3.17: Performance measurements for CRRA (2) investor over 50,000 draws of portfolios. The protection
level α is set to 0.8. The optimal control is calculated numerically with mis-estimate of the volatility σ̂. All
amounts are simulated over 5 years and evaluated in terms of their discounted values.
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S-shape, α = 0, π = p∗ µ− r = 0.07, µ̂− r = 0.02 µ− r = 0.02, µ̂− r = 0.07
σ = 0.1 σ = 0.2 σ = 0.3 σ = 0.1 σ = 0.2 σ = 0.3

Constant Equivalent 1.85 1.08 1.01 1.05 0.94 0.92
Mean terminal utility 0.86 0.11 0.02 0.07 -0.18 -0.26
Std. dev. terminal utility 0.86 0.34 0.09 0.75 1.38 1.5
Qt. 1% terminal utility -0.79 -0.11 -0.03 -1.46 -2.05 -2.19
Qt. 50% terminal utility 0.73 0.04 0.02 0.11 -0.01 0.01
Qt. 99% terminal utility 3.47 1.58 0.17 1.94 5.24 5.33

Mean Ann. return (%) 11.93 1.65 0.26 2.44 -2.17 -5.29
Min Ann. return (%) -21.43 -34.71 -43.02 -28.91 -53.34 -60.67
Max Ann. return (%) 51.34 51.01 22.29 50.27 51.89 52.25
Std. dev. Ann. return 10.42 4.34 1.22 9.19 17.31 20.27

Mean Ann. volatility (%) 18.29 6.43 1.58 19.96 39.14 45.94
Min Ann. volatility (%) 11.81 2.42 0.76 18.27 21.44 22
Max Ann. volatility (%) 21.42 37.24 49.55 21.63 43.24 62.93

Skewness 0.03 0.06 0.23 0.04 0.08 0.12
Kurtosis 0.39 4.03 6.9 0.01 0.11 0.63
Max. drawdown (%) 27.93 13.1 3.51 38.45 64.91 70.09
Sharpe ratio 0.61 0.19 0.23 0.12 -0.05 -0.08
Calmar ratio 0.52 0.12 0.14 0.13 0.02 -0.02

Average stock allocation (%) 178.99 27.17 4.24 199.43 193.88 147.59

Qt. 1% average control 1.15 0.11 0.02 1.94 1.71 1.01
Qt. 50% average control 1.93 0.19 0.03 2 2 1.49
Qt. 99% average control 2 1.2 0.22 2 2 1.96

Table 3.18: Performance measurements for S-shape utility investor over 50,000 draws of portfolios. The protection
level α is set to 0. The optimal control is calculated numerically with mis-estimate of the risk premium µ̂ − r.
All amounts are simulated over 5 years and evaluated in terms of their discounted values. The corresponding
terminal wealth distributions are presented in Figure 3.10.



144

S-shape, α = 0.8, π = p∗ µ− r = 0.07, µ̂− r = 0.02 µ− r = 0.02, µ̂− r = 0.07
σ = 0.1 σ = 0.2 σ = 0.3 σ = 0.1 σ = 0.2 σ = 0.3

Constant Equivalent 1.39 1.03 1 1.02 0.99 0.99
Mean terminal utility 0.43 0.04 0.01 0.04 -0.02 -0.03
Std. dev. terminal utility 0.49 0.13 0.03 0.38 0.38 0.33
Qt. 1% terminal utility -0.37 -0.02 -0.02 -0.51 -0.53 -0.52
Qt. 50% terminal utility 0.32 0.02 0.01 0.01 -0.01 0
Qt. 99% terminal utility 2.04 0.62 0.06 1.18 1.19 1.06

Mean Ann. return (%) 6.46 0.65 0.08 1.58 0.81 0.53
Min Ann. return (%) -4.26 -4.25 -4.25 -4.26 -4.27 -4.28
Max Ann. return (%) 36.57 35.73 10.61 35.83 36.64 36.72
Std. dev. Ann. return 6.72 1.84 0.25 4.73 4.53 3.96

Mean Ann. volatility (%) 9.15 2.07 0.38 8.4 8.33 7.43
Min Ann. volatility (%) 2.81 0.71 0.23 2.11 2.05 2
Max Ann. volatility (%) 15.71 16.51 8.71 15.81 19.48 20.62

Skewness 0.27 0.1 0.23 0.31 0.3 0.26
Kurtosis 2.66 4.58 7.35 6.92 6.51 4.76
Max. drawdown (%) 13.73 4.44 0.9 16.53 17.28 16.51
Sharpe ratio 0.56 0.19 0.2 0.06 -0.04 -0.06
Calmar ratio 0.49 0.11 0.13 0.11 0.05 0.04

Average stock allocation (%) 82.46 8.52 1.1 68.88 32.71 20.43

Qt. 1% average control 3.04 0.18 0.04 6.29 2.59 1.5
Qt. 50% average control 8.15 0.29 0.04 9.95 6.99 3.61
Qt. 99% average control 9.68 4.35 0.26 9.99 8.88 7.57

Table 3.19: Performance measurements for S-shape utility investor over 50,000 draws of portfolios. The protection
level α is set to 0.8. The optimal control is calculated numerically with mis-estimate of the risk premium µ̂− r.
All amounts are simulated over 5 years and evaluated in terms of their discounted values. The corresponding
terminal wealth distributions are presented in Figure 3.11.
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S-shape, α = 0, π = p∗ µ− r = 0.07

σ = 0.1, σ̂ = 0.2 σ = 0.1, σ̂ = 0.3 σ = 0.3, σ̂ = 0.2 σ = 0.3, σ̂ = 0.1

Constant Equivalent 1.92 1.61 1.2 1.17
Mean terminal utility 0.93 0.65 0.24 0.21
Std. dev. terminal utility 0.86 0.64 2.2 2.26
Qt. 1% terminal utility -0.91 -0.57 -2.18 -2.18
Qt. 50% terminal utility 0.84 0.51 0 -0.38
Qt. 99% terminal utility 3.5 2.61 5.51 5.78

Mean Ann. return (%) 12.99 9.39 -0.04 -0.21
Min Ann. return (%) -21.43 -18.16 -60.62 -60.62
Max Ann. return (%) 50.55 49.92 53.5 57.2
Std. dev. Ann. return 10.29 8.24 25.95 26.38

Mean Ann. volatility (%) 19.71 14.21 57.67 58.76
Min Ann. volatility (%) 16.34 10.23 22.06 22.81
Max Ann. volatility (%) 21.62 18.79 64.86 64.9

Skewness 0.04 0.02 0.13 0.13
Kurtosis 0.06 0.47 0.31 0.23
Max. drawdown (%) 29.58 22.56 75.82 76.59
Sharpe ratio 0.65 0.61 0.03 0.02
Calmar ratio 0.55 0.49 0.07 0.07

Average stock allocation (%) 196.12 138.88 188.43 193.22

Qt. 1% average control 1.71 0.99 0.85 0.82
Qt. 50% average control 2 1.43 1.99 2
Qt. 99% average control 2 1.69 2 2

S-shape, α = 0, π = p∗ µ− r = 0.02
σ = 0.1, σ̂ = 0.2 σ = 0.1, σ̂ = 0.3 σ = 0.3, σ̂ = 0.2 σ = 0.3, σ̂ = 0.1

Constant Equivalent 1.01 1 1 0.87
Mean terminal utility 0.02 0 -0.02 -0.37
Std. dev. terminal utility 0.1 0.02 0.52 1.78
Qt. 1% terminal utility -0.51 -0.04 -2.03 -2.21
Qt. 50% terminal utility 0.02 0.01 0.01 -0.03
Qt. 99% terminal utility 0.2 0.03 1.33 5.61

Mean Ann. return (%) 0.32 0.05 -0.41 -8.11
Min Ann. return (%) -17.53 -6.29 -60.58 -61.03
Max Ann. return (%) 17.31 0.91 52.47 56.39
Std. dev. Ann. return 1.07 0.16 7.43 23.44

Mean Ann. volatility (%) 2.04 0.31 11.97 55.18
Min Ann. volatility (%) 1.14 0.26 3.65 24.56
Max Ann. volatility (%) 16.16 8.74 59.34 64.71

Skewness 0.08 0.05 0.19 0.13
Kurtosis 3.42 3.25 6.75 0.53
Max. drawdown (%) 4.8 0.74 23.94 77.73
Sharpe ratio 0.21 0.19 0.03 -0.12
Calmar ratio 0.13 0.15 0.02 -0.05

Average stock allocation (%) 17.41 2.73 31.95 177

Qt. 1% average control 0.11 0.03 0.11 0.98
Qt. 50% average control 0.13 0.03 0.19 1.9
Qt. 99% average control 0.77 0.05 1.66 2

Table 3.20: Performance measurements for S-shape utility investor over 50,000 draws of portfolios. The protection
level α is set to 0. The optimal control is calculated numerically with mis-estimate of the volatility σ̂. All amounts
are simulated over 5 years and evaluated in terms of their discounted values.
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S-shape, α = 0.8, π = p∗ µ− r = 0.07

σ = 0.1, σ̂ = 0.2 σ = 0.1, σ̂ = 0.3 σ = 0.3, σ̂ = 0.2 σ = 0.3, σ̂ = 0.1

Constant Equivalent 1.36 1.18 1.02 1
Mean terminal utility 0.4 0.22 0.04 -0.02
Std. dev. terminal utility 0.39 0.23 0.45 0.43
Qt. 1% terminal utility -0.33 -0.18 -0.53 -0.54
Qt. 50% terminal utility 0.35 0.16 0.01 -0.09
Qt. 99% terminal utility 1.52 0.95 1.58 1.42

Mean Ann. return (%) 6.18 3.41 1.64 1.02
Min Ann. return (%) -4.06 -3.54 -4.29 -4.3
Max Ann. return (%) 34.79 24.18 37.77 40.59
Std. dev. Ann. return 5.49 3.49 5.5 5.13

Mean Ann. volatility (%) 8.51 4.88 9.26 8.95
Min Ann. volatility (%) 2.8 2.01 2.26 2.63
Max Ann. volatility (%) 12.06 8.93 25.2 25.49

Skewness 0.22 0.15 0.59 1.69
Kurtosis 1.6 2.45 14.87 79.07
Max. drawdown (%) 13.02 8.33 17.19 16.35
Sharpe ratio 0.63 0.56 0.02 -0.05
Calmar ratio 0.52 0.41 0.1 0.07

Average stock allocation (%) 79.88 44.72 19.56 10.28

Qt. 1% average control 3.96 1.43 1.19 0.45
Qt. 50% average control 6.54 2.71 7.81 9.98
Qt. 99% average control 7.28 4.55 9.42 10

S-shape, α = 0.8, π = p∗ µ− r = 0.02
σ = 0.1, σ̂ = 0.2 σ = 0.1, σ̂ = 0.3 σ = 0.3, σ̂ = 0.2 σ = 0.3, σ̂ = 0.1

Constant Equivalent 1 1 1 0.98
Mean terminal utility 0.01 0 0 -0.06
Std. dev. terminal utility 0.03 0.01 0.16 0.38
Qt. 1% terminal utility -0.02 -0.02 -0.52 -0.53
Qt. 50% terminal utility 0.01 0 0.01 -0.12
Qt. 99% terminal utility 0.07 0.01 0.53 1.17

Mean Ann. return (%) 0.1 0.02 0.19 0.48
Min Ann. return (%) -4 -1.13 -4.28 -4.29
Max Ann. return (%) 7.93 0.44 35.91 38.45
Std. dev. Ann. return 0.32 0.04 1.86 4.5

Mean Ann. volatility (%) 0.58 0.09 2.96 8.42
Min Ann. volatility (%) 0.35 0.08 1.09 2.31
Max Ann. volatility (%) 5.26 2.38 21.04 25.46

Skewness 0.1 0.03 0.22 1.03
Kurtosis 3.76 1.29 8.26 36.72
Max. drawdown (%) 1.39 0.2 7.17 16.67
Sharpe ratio 0.2 0.2 0.02 -0.09
Calmar ratio 0.12 0.16 0.03 0.04

Average stock allocation (%) 4.98 0.81 7.57 12.54

Qt. 1% average control 0.18 0.04 0.19 0.67
Qt. 50% average control 0.22 0.04 0.32 9.34
Qt. 99% average control 1.14 0.05 6.38 9.94

Table 3.21: Performance measurements for S-shape utility investor over 50,000 draws of portfolios. The protection
level α is set to 0.8. The optimal control is calculated numerically with mis-estimate of the volatility σ̂. All amounts
are simulated over 5 years and evaluated in terms of their discounted values.
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CRRA (1Y), α = 0, π = p∗ µ− r = 0.07 µ− r = 0.02
σ = 0.1 σ = 0.2 σ = 0.3 σ = 0.1 σ = 0.2 σ = 0.3

Constant Equivalent 1.11 1.03 1.01 1.01 1 1
Mean terminal utility -0.9 -0.97 -0.99 -0.99 -1 -1
Std. dev. terminal utility 0.18 0.17 0.11 0.1 0.05 0.03
Qt. 1% terminal utility -1.42 -1.43 -1.28 -1.24 -1.12 -1.08
Qt. 50% terminal utility -0.89 -0.95 -0.98 -0.98 -1 -1
Qt. 99% terminal utility -0.56 -0.64 -0.75 -0.78 -0.89 -0.93

Mean Ann. return (%) 15.13 6.27 2.76 2.03 0.51 0.23
Min Ann. return (%) -50.71 -48.27 -36.24 -32.21 -18.02 -12.48
Max Ann. return (%) 155.64 111.97 63.24 51.81 22.71 14.51
Std. dev. Ann. return 23.23 18.36 11.79 10.03 4.93 3.28

Mean Ann. volatility (%) 19.99 17.14 11.42 9.79 4.9 3.26
Min Ann. volatility (%) 16.27 13.91 9.28 7.95 3.99 2.65
Max Ann. volatility (%) 23.61 20.19 13.45 11.55 5.79 3.86

Skewness 0.04 0.03 0.02 0.02 0.01 0.01
Kurtosis -0.02 -0.02 -0.02 -0.02 -0.02 -0.02
Max. drawdown (%) 17.28 16.63 11.81 10.31 5.46 3.71
Sharpe ratio 0.76 0.36 0.24 0.21 0.1 0.07
Calmar ratio 1.41 0.8 0.63 0.58 0.45 0.41

Average stock allocation (%) 200 85.73 38.11 97.99 24.5 10.89

Qt. 1% average control 2 0.85 0.38 0.98 0.24 0.11
Qt. 50% average control 2 0.86 0.38 0.98 0.25 0.11
Qt. 99% average control 2 0.86 0.38 0.98 0.25 0.11

Table 3.22: Performance measurements for CRRA (2) investor over 50,000 draws of portfolios. The protection
level α is set to 0. The optimal control is calculated numerically. All amounts are simulated over 1 year and
evaluated in terms of their discounted values. The corresponding terminal wealth distributions are presented in
Figure 3.12.
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CRRA (1Y), α = 0.8, π = p∗ µ− r = 0.07 µ− r = 0.02
σ = 0.1 σ = 0.2 σ = 0.3 σ = 0.1 σ = 0.2 σ = 0.3

Constant Equivalent 1.09 1.04 1.02 1.02 1.01 1
Mean terminal utility -0.92 -0.96 -0.98 -0.98 -0.99 -1
Std. dev. terminal utility 0.14 0.14 0.11 0.1 0.05 0.03
Qt. 1% terminal utility -1.18 -1.21 -1.21 -1.18 -1.12 -1.08
Qt. 50% terminal utility -0.92 -0.96 -0.97 -0.98 -0.99 -1
Qt. 99% terminal utility -0.6 -0.64 -0.73 -0.77 -0.88 -0.92

Mean Ann. return (%) 11.73 6.76 3.65 2.75 0.82 0.41
Min Ann. return (%) -19.46 -19.58 -19.53 -19.18 -17.92 -12.87
Max Ann. return (%) 137.48 116.71 69.79 57.11 24.66 15.52
Std. dev. Ann. return 18.28 17.13 12.15 10.28 5.17 3.41

Mean Ann. volatility (%) 13.48 14.04 10.98 9.43 4.99 3.32
Min Ann. volatility (%) 4.7 4.67 5.11 4.75 4.01 2.68
Max Ann. volatility (%) 19.58 19.04 13.57 11.72 5.93 3.91

Skewness 0.27 0.24 0.19 0.15 0.09 0.07
Kurtosis 1.24 0.72 0.24 0.21 0.06 0.05
Max. drawdown (%) 11.23 13.21 11.16 9.74 5.51 3.75
Sharpe ratio 0.7 0.33 0.27 0.23 0.16 0.12
Calmar ratio 1.42 0.85 0.72 0.66 0.53 0.48

Average stock allocation (%) 127.37 67.35 35.9 92.7 24.73 11

Qt. 1% average control 10 4.88 2.22 5.63 1.35 0.59
Qt. 50% average control 10 6.01 2.66 6.49 1.45 0.62
Qt. 99% average control 10 8.59 6.02 8.96 2.08 0.75

Table 3.23: Performance measurements for CRRA (2) investor over 50,000 draws of portfolios. The protection
level α is set to 0.8. The optimal control is calculated numerically. All amounts are simulated over 1 year and
evaluated in terms of their discounted values. The corresponding terminal wealth distributions are presented in
Figure 3.13.
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S-shape (1Y), α = 0, π = p∗ µ− r = 0.07 µ− r = 0.02
σ = 0.1 σ = 0.2 σ = 0.3 σ = 0.1 σ = 0.2 σ = 0.3

Constant Equivalent 1.09 1.02 1 1 1 1
Mean terminal utility 0.13 0.04 0.01 0 0 0
Std. dev. terminal utility 0.33 0.44 0.26 0.08 0.03 0.01
Qt. 1% terminal utility -0.77 -1.29 -1.3 -0.42 -0.03 -0.03
Qt. 50% terminal utility 0.14 0.02 0.02 0.01 0 0
Qt. 99% terminal utility 0.82 1.3 0.69 0.13 0.02 0.01

Mean Ann. return (%) 14.69 8.66 2.4 0.42 0.04 0.02
Min Ann. return (%) -50.71 -78.01 -85.89 -45.25 -48.18 -31.98
Max Ann. return (%) 155.64 393.25 400.23 68.4 6.5 7.61
Std. dev. Ann. return 23.09 31.95 16.66 3.59 0.95 0.35

Mean Ann. volatility (%) 19.57 25.18 12.52 2.7 0.56 0.31
Min Ann. volatility (%) 14.37 12.48 4.49 1.1 0.38 0.24
Max Ann. volatility (%) 23.55 45.45 61.34 20.21 32.57 32.16

Skewness 0.04 0.09 0.22 0.34 0.16 0.01
Kurtosis 0.08 1.63 4.31 6.99 3.22 0.52
Max. drawdown (%) 16.97 23.39 12.31 2.9 0.62 0.36
Sharpe ratio 0.74 0.29 0.22 0.2 0.13 0.07
Calmar ratio 1.38 0.59 0.33 0.31 0.42 0.41

Average stock allocation (%) 193.96 115.96 34.85 22.09 2.48 1

Qt. 1% average control 1.68 0.64 0.15 0.13 0.02 0.01
Qt. 50% average control 2 1.04 0.23 0.15 0.02 0.01
Qt. 99% average control 2 1.95 1.55 1.34 0.04 0.01

Table 3.24: Performance measurements for S-shape utility investor investor over 50,000 draws of portfolios. The
protection level α is set to 0. The optimal control is calculated numerically. All amounts are simulated over 1 year
and evaluated in terms of their discounted values. The corresponding terminal wealth distributions are presented
in Figure 3.14.
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S-shape (1Y), α = 0.8, π = p∗ µ− r = 0.07 µ− r = 0.02
σ = 0.1 σ = 0.2 σ = 0.3 σ = 0.1 σ = 0.2 σ = 0.3

Constant Equivalent 1.07 1.02 1 1 1 1
Mean terminal utility 0.1 0.03 0.01 0 0 0
Std. dev. terminal utility 0.25 0.23 0.11 0.05 0.01 0.01
Qt. 1% terminal utility -0.42 -0.48 -0.49 -0.3 -0.02 -0.01
Qt. 50% terminal utility 0.1 0.01 0.01 0 0 0
Qt. 99% terminal utility 0.7 0.81 0.35 0.1 0.01 0.01

Mean Ann. return (%) 11.48 5.12 1.2 0.35 0.04 0.01
Min Ann. return (%) -19.46 -19.53 -19.51 -18.38 -18.75 -15.85
Max Ann. return (%) 137.44 245.23 212.3 54.68 7.9 3.41
Std. dev. Ann. return 18.23 17.18 7.09 2.41 0.4 0.16

Mean Ann. volatility (%) 13.27 11.12 4.32 1.65 0.27 0.14
Min Ann. volatility (%) 4.8 4.78 1.54 0.64 0.18 0.11
Max Ann. volatility (%) 19.56 30.81 33.5 14.96 13.88 8.27

Skewness 0.27 0.27 0.26 0.38 0.17 0.03
Kurtosis 1.36 3.3 4.98 6.79 2.75 0.26
Max. drawdown (%) 11.12 10.71 4.51 1.78 0.29 0.16
Sharpe ratio 0.68 0.19 0.19 0.21 0.15 0.09
Calmar ratio 1.39 0.49 0.3 0.32 0.45 0.43

Average stock allocation (%) 124.34 47.58 11.72 13.35 1.2 0.46

Qt. 1% average control 8.14 1.68 0.3 0.38 0.06 0.02
Qt. 50% average control 10 3.14 0.45 0.47 0.06 0.02
Qt. 99% average control 10 9.35 5.59 5.64 0.1 0.02

Table 3.25: Performance measurements for S-shape utility investor over 50,000 draws of portfolios. The protection
level α is set to 0.8. The optimal control is calculated numerically. All amounts are simulated over 1 year and
evaluated in terms of their discounted values. The corresponding terminal wealth distributions are presented in
Figure 3.15.
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Figure 3.1: S-shape and CRRA utility functions. The dotted grey lines correspond to the reference point Θ of
the S-shape utility (set to the initial wealth equal to 1). In the upper panel, the parameters are set as follows:
A = 2.25, B = 1, γ1 = γ2 = 0.88. In the bottom panel γ is equal to 2.
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Figure 3.2: Terminal wealth distributions for the CRRA (2) investor with optimal control and constant control
(equal to 0.5), without capital protection α = 0. The different panels correspond to different parameter sets. All
amounts are simulated over 5 years and evaluated in terms of their discounted values. Distributions are based on
50,000 draws for each configuration.
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Figure 3.3: Terminal wealth distributions for the CRRA (2) investor with optimal control and constant control
(equal to 5), with capital protection α = 0.8. The different panels correspond to different parameter sets. All
amounts are simulated over 5 years and evaluated in terms of their discounted values. Distributions are based on
50,000 draws for each configuration.
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Figure 3.4: Terminal wealth distributions for the investor with S-shape utility with optimal control and constant
control (equal to 0.5), without capital protection α = 0. The different panels correspond to different parameter
sets. All amounts are simulated over 5 years and evaluated in terms of their discounted values. Distributions are
based on 50,000 draws for each configuration.



155

0 1 2 3 4 5

0.
0

0.
5

1.
0

1.
5

S−shape, α=0.8, µ − r=0.07, σ=0.1

Terminal wealth

D
en

si
ty

Opt. control
Const. control (5)

0 1 2 3 4 5

0
2

4
6

8
10

12

S−shape, α=0.8, µ − r=0.02, σ=0.1

Terminal wealth

D
en

si
ty

Opt. control
Const. control (5)

0 1 2 3 4 5

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

S−shape, α=0.8, µ − r=0.07, σ=0.2

Terminal wealth

D
en

si
ty

Opt. control
Const. control (5)

0 1 2 3 4 5

0
50

10
0

15
0

S−shape, α=0.8, µ − r=0.02, σ=0.2

Terminal wealth

D
en

si
ty

Opt. control
Const. control (5)

0 1 2 3 4 5

0
2

4
6

8

S−shape, α=0.8, µ − r=0.07, σ=0.3

Terminal wealth

D
en

si
ty

Opt. control
Const. control (5)

0 1 2 3 4 5

0
10

0
20

0
30

0
40

0
50

0

S−shape, α=0.8, µ − r=0.02, σ=0.3

Terminal wealth

D
en

si
ty

Opt. control
Const. control (5)

Figure 3.5: Terminal wealth distributions for the investor with S-shape utility with optimal control and constant
control (equal to 5), with capital protection α = 0.8. The different panels correspond to different parameter sets.
All amounts are simulated over 5 years and evaluated in terms of their discounted values. Distributions are based
on 50,000 draws for each configuration.
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Figure 3.6: Terminal wealth distributions for the investor with S-shape utility with optimal control when Θ = 1
and Θ = 1.05, without capital protection α = 0. The different panels correspond to different parameter sets. All
amounts are simulated over 5 years and evaluated in terms of their discounted values. Distributions are based on
50,000 draws for each configuration.
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Figure 3.7: Terminal wealth distributions for the investor with S-shape utility with optimal control when Θ = 1
and Θ = 1.05, with capital protection α = 0.8. The different panels correspond to different parameter sets. All
amounts are simulated over 5 years and evaluated in terms of their discounted values. Distributions are based on
50,000 draws for each configuration.
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Figure 3.8: Terminal wealth distributions for the CRRA (2) investor with optimal control and optimal control cal-
culated with mis-estimate of the risk premium, without capital protection α = 0. The different panels correspond
to different parameter sets. All amounts are simulated over 5 years and evaluated in terms of their discounted
values. Distributions are based on 50,000 draws for each configuration.
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Figure 3.9: Terminal wealth distributions for the CRRA (2) investor with optimal control and optimal control
calculated with mis-estimate of the risk premium, with capital protection α = 0.8. The different panels correspond
to different parameter sets. All amounts are simulated over 5 years and evaluated in terms of their discounted
values. Distributions are based on 50,000 draws for each configuration.
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Figure 3.10: Terminal wealth distributions for the investor with S-shape utility with optimal control and optimal
control calculated with mis-estimate of the risk premium, without capital protection α = 0. The different panels
correspond to different parameter sets. All amounts are simulated over 5 years and evaluated in terms of their
discounted values. Distributions are based on 50,000 draws for each configuration.
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Figure 3.11: Terminal wealth distributions for the investor with S-shape utility with optimal control and optimal
control calculated with mis-estimate of the risk premium, with capital protection α = 0.8. The different panels
correspond to different parameter sets. All amounts are simulated over 5 years and evaluated in terms of their
discounted values. Distributions are based on 50,000 draws for each configuration.
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Figure 3.12: Terminal wealth distributions for the CRRA (2) investor with optimal control and without capital
protection α = 0, when the investment horizon is equal to 5 years and 1 year. The different panels correspond
to different parameter sets. All amounts are simulated over the two horizons and evaluated in terms of their
discounted values. Distributions are based on 50,000 draws for each configuration.
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Figure 3.13: Terminal wealth distributions for the CRRA (2) investor with optimal control and with capital
protection α = 0.8, when the investment horizon is equal to 5 years and 1 year. The different panels correspond
to different parameter sets. All amounts are simulated over the two horizons and evaluated in terms of their
discounted values. Distributions are based on 50,000 draws for each configuration.
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Figure 3.14: Terminal wealth distributions for the S-shape utility investor with optimal control and without capital
protection α = 0, when the investment horizon is equal to 5 years and 1 year. The different panels correspond
to different parameter sets. All amounts are simulated over the two horizons and evaluated in terms of their
discounted values. Distributions are based on 50,000 draws for each configuration.
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Figure 3.15: Terminal wealth distributions for the S-shape utility investor with optimal control and with capital
protection α = 0.8, when the investment horizon is equal to 5 years and 1 year. The different panels correspond
to different parameter sets. All amounts are simulated over the two horizons and evaluated in terms of their
discounted values. Distributions are based on 50,000 draws for each configuration.
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Appendix

3.A Discretization method

In order to derive an approximation of the optimal control p∗ for each point on the

grid, we use the finite difference method, applied to the non linear operator Lp. Let vki,j
be a discrete approximation of v(tk, xi, yj) and let Lkp be the discretized version of the

differential operator Lp defined by (3.16), on the grid G. This operator can be discretized

using spacial forward, centered or backward differencing in the x and y directions to give:

(Lkpvk)i,j = αki,j(p)v
k
i−1,j + βki,j(p)v

k
i+1,j + γki,j(p)v

k
i,j−1 + δki,j(p)v

k
i,j+1

− (αki,j(p) + βki,j(p) + γki,j(p) + δki,j(p))v
k
i,j, (3.29)

where p stands for a given value of the control and αki,j, β
k
i,j, γ

k
i,j and δki,j are coefficient

functions depending on the value of the control and the model parameters. Note that

γki,j(p) = δki,j(p) = 0 for all i, j and p, given the absence of derivatives with respect to y in

(3.16). Therefore equation (3.29) reduces to:

(Lkpvk)i,j = αki,j(p)v
k
i−1,j + βki,j(p)v

k
i+1,j − (αki,j(p) + βki,j(p))v

k
i,j. (3.30)

Following Forsyth and Labahn (2008), the discretization method must maintain the mono-

tonicity of Lkp applied to vki,j in order to insure the consistency of our approach. This

requirement is equivalent to

αki,j(p) ≥ 0, βki,j(p) ≥ 0, for all i, j, and p. (3.31)

Using backward differencing for the first derivative
(vki,j−vki−1,j)

∆x
and centered differencing

for the second derivative
(vki+1,j−2vki,j+v

k
i−1,j)

∆x2 , we obtain the following coefficients:

αki,j(p) = − 1

∆x
(µ(t)− r(t))p(xi − αyj), βki,j(p) =

1

2∆x2
σ(t)2p2(xi − αyj)2. (3.32)

On the other hand, using forward differencing for the first derivative
(vki+1,j−vki,j)

∆x
and

centered differencing for the second derivative
(vki+1,j−2vki,j+v

k
i−1,j)

∆x2 , we obtain the following

coefficients:

αki,j(p) =
1

2∆x2
σ(t)2p2(xi − αyj)2, βki,j(p) =

1

∆x
(µ(t)− r(t))p(xi − αyj) + αki,j(p).

(3.33)

Therefore in our numerical procedure we use backward differencing for the first deriva-

tive if (µ(t)− r(t))p(xi − αyj) < 0 and forward differencing otherwise.
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3.B Wealth process simulation

From Proposition 6, the simulation of (W x,π
t ,Mx,π

t , t ∈ [0, T ]) reduces to the simulation

of (wx,πt ,mx,π
t , t ∈ [0, T ]) solution of (3.5).

Assuming µ, r, σ constant on the period [0, T ], and assuming a portfolio rebalancing

strategy π constant on [tk, tk+1[, with the discrete times tk = k∆t, k ∈ N, one has to

simulate the random variable

wx,πt =x exp

(µ− r)

∆t

η(t)∑
k=0

πk + (t− η(t))πη(t)

− 1

2
σ2

∆t

η(t)∑
k=0

π2
k + (t− η(t))π2

η(t)


× exp

σ
 η(t)∑

k=0

(Ztk+1
− Ztk)πk + (Zt − Zη(t))πη(t)


where η(t) = b t

∆t
c∆t, and

mx,π
t = sup

0≤s≤t
wx,πs .

An alternative iterative formulation is

wx,πtk+1
= wx,πtk exp

[
∆t

(
(µ− r)πk −

1

2
σ2π2

k

)
+ σ(Ztk+1

− Ztk)πk
]

mx,π
tk+1

= max

(
mx,π
tk
, wx,πtk exp

[
sup

0≤s≤∆t

(
s

(
(µ− r)πk −

1

2
σ2π2

k

)
+ σ(Ztk+s − Ztk)πk

)])
for k ∈ N. Now we use the following fact : for any reals a and c, the couple (Zt, sup0≤s≤t(aZs+

cs)) has the same law as (U, Y ) where U is Gaussian distributed, centered with variance

t, and

Y (t, a, c) =
1

2

[
aU + ct+ a2V + a(U + ct)2

] 1
2

with an exponential variable V with parameter 1
2t

independent of U (see Lépingle, 1995).

Simulating a sequence (wtk , Yk = Y (∆t, σπk, (µ−r)πk− 1
2
σ2π2

k), k ∈ N), one can obtain

the sequence (mx,π
tk
, k ∈ N) with

mx,π
tk+1

= max
(
mx,π
tk
, wx,πtk exp(Yk)

)
.

3.C Results with α = 0.5

For the sake of completeness, in this appendix we present the results obtained for strategies

implementing the optimal control when the protection level α is set to 0.5, respectively

for the CRRA investor (Table 3.26), and for the prospect theory investor (Table 3.27).

The overall qualitative results in terms of preference and attractiveness of the drawdown

constraint do not change.
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CRRA, α = 0.5, π = p∗ µ− r = 0.07 µ− r = 0.02
σ = 0.1 σ = 0.2 σ = 0.3 σ = 0.1 σ = 0.2 σ = 0.3

Constant Equivalent 1.57 1.18 1.08 1.06 1.02 1.01
Mean terminal utility -0.64 -0.85 -0.93 -0.94 -0.98 -0.99
Std. dev. terminal utility 0.26 0.32 0.25 0.21 0.11 0.07
Qt. 1% terminal utility -1.38 -1.73 -1.65 -1.54 -1.27 -1.18
Qt. 50% terminal utility -0.59 -0.79 -0.9 -0.92 -0.98 -0.99
Qt. 99% terminal utility -0.23 -0.31 -0.48 -0.54 -0.75 -0.83

Mean Ann. return (%) 11.69 5.18 2.4 1.77 0.46 0.21
Min Ann. return (%) -10.55 -12.77 -12.39 -11.33 -8.2 -5.56
Max Ann. return (%) 35.29 34.59 29.36 24.51 10.86 6.97
Std. dev. Ann. return 9.26 8.16 5.42 4.61 2.27 1.5

Mean Ann. volatility (%) 16.62 16.34 11.51 9.86 4.96 3.31
Min Ann. volatility (%) 7.93 7.15 7.16 6.56 4.55 3.03
Max Ann. volatility (%) 19.18 18.3 12.42 10.68 5.38 3.58

Skewness 0.1 0.09 0.06 0.05 0.03 0.02
Kurtosis 0.28 0.14 0.03 0.03 0.02 0.02
Max. drawdown (%) 24.6 29.8 23.59 20.97 11.88 8.26
Sharpe ratio 0.67 0.29 0.2 0.17 0.09 0.06
Calmar ratio 0.57 0.25 0.18 0.16 0.11 0.09

Average stock allocation (%) 163.66 81.04 38.23 98.29 24.75 11

Qt. 1% average control 3.48 1.88 0.83 2.12 0.52 0.23
Qt. 50% average control 4 2.09 0.9 2.27 0.54 0.23
Qt. 99% average control 4 3.22 1.66 3.21 0.63 0.26

Table 3.26: Performance measurements for CRRA (2) investor over 50,000 draws of portfolios. The protection
level α is set to 0.5. The optimal control is calculated numerically. All amounts are simulated over 5 years and
evaluated in terms of their discounted values.
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S-shape, α = 0.5, π = p∗ µ− r = 0.07 µ− r = 0.02
σ = 0.1 σ = 0.2 σ = 0.3 σ = 0.1 σ = 0.2 σ = 0.3

Constant Equivalent 1.79 1.36 1.15 1.06 1 1
Mean terminal utility 0.81 0.4 0.19 0.08 0 0
Std. dev. terminal utility 0.75 1.05 0.88 0.51 0.12 0.02
Qt. 1% terminal utility -0.72 -1.1 -1.14 -0.98 -0.74 -0.02
Qt. 50% terminal utility 0.72 0.17 0.02 0.02 0 0
Qt. 99% terminal utility 2.89 2.92 2.91 1.61 0.23 0.02

Mean Ann. return (%) 11.65 6.32 3.25 2 0.11 0.01
Min Ann. return (%) -10.86 -12.72 -12.84 -11.88 -12.51 -12.68
Max Ann. return (%) 35.48 35.53 36.11 34.7 33.97 3.27
Std. dev. Ann. return 9.26 12.36 10.46 6.32 1.37 0.16

Mean Ann. volatility (%) 16.59 22.62 19.84 12.47 1.72 0.12
Min Ann. volatility (%) 7.95 6.24 0.18 0.15 0.07 0.05
Max Ann. volatility (%) 19.17 32.11 34.61 18.82 21.07 19.86

Skewness 0.1 0.16 0.16 0.09 0.24 0.09
Kurtosis 0.3 1.55 1.84 1.59 9.14 4
Max. drawdown (%) 24.58 38.25 37.2 25.89 4.13 0.31
Sharpe ratio 0.67 0.2 0.08 0.1 0.01 -0.01
Calmar ratio 0.57 0.22 0.12 0.11 0.03 0.04

Average stock allocation (%) 163.1 105.48 60.39 115.86 6.47 0.32

Qt. 1% average control 3.48 2.05 1.13 1.09 0.01 0
Qt. 50% average control 3.99 3.68 2.01 3.13 0.09 0
Qt. 99% average control 4 3.93 3.25 3.96 1.48 0.03

Table 3.27: Performance measurements for the S-shape utility investor over 50,000 draws of portfolios. The
protection level α is set to 0.5. The optimal control is calculated numerically. All amounts are simulated over 5
years and evaluated in terms of their discounted values.
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Résumé

Cette thèse présente trois contributions indépendantes. La première partie se concentre sur la modélisa-

tion de la moyenne conditionnelle des rendements du marché actions : le rendement espéré du marché.

Ce dernier est souvent modélisé à l’aide d’un processus AR(1). Cependant, des études montrent que

lors de mauvaises périodes économiques la prédictibilité des rendements est plus élevée. Etant donné

que le modèle AR(1) exclut par construction cette propriété, nous proposons d’utiliser un modèle CIR.

Les implications sont étudiées dans le cadre d’un modèle espace-état bayésien. La deuxième partie est

dédiée à la modélisation de la volatilité des actions et des volumes de transaction. La relation entre

ces deux quantités a été justifiée par l’hypothèse de mélange de distribution (MDH). Cependant, cette

dernière ne capture pas la persistance de la variance, à la différence des spécifications GARCH. Nous

proposons un modèle à deux facteurs combinant les deux approches, afin de dissocier les variations de

volatilité court terme et long terme. Le modèle révèle plusieurs régularités importantes sur la relation

volume-volatilité. La troisième partie s’intéresse à l’analyse des stratégies d’investissement optimales

sous contrainte “drawdown”. Le problème étudié est celui de la maximisation d’utilité à horizon fini

pour différentes fonctions d’utilité. Nous calculons les stratégies optimales en résolvant numériquement

l’équation de Hamilton-Jacobi-Bellman, qui caractérise le principe de programmation dynamique corres-

pondant. En se basant sur un large panel d’expérimentations numériques, nous analysons les divergences

des allocations optimales.

Mots clés : marché financier, modèle espace-état, filtre de Kalman, analyse bayésienne, volatilité stochas-

tique, modèle GARCH, optimisation de portefeuille, contrôle stochastique, finance comportementale.

Abstract

This PhD thesis presents three independent contributions. The first part is concentrated on the mod-

eling of the conditional mean of stock market returns: the expected market return. The latter is often

modeled as an AR(1) process. However, empirical studies have found that during bad times return pre-

dictability is higher. Given that the AR(1) model excludes by construction this property, we propose to

use instead a CIR model. The implications of this specification are studied within a flexible Bayesian

state-space model. The second part is dedicated to the modeling of stocks volatility and trading volume.

The empirical relationship between these two quantities has been justified by the Mixture of Distribution

Hypothesis (MDH). However, this framework notably fails to capture the obvious persistence in stock

variance, unlike GARCH specifications. We propose a two-factor model of volatility combining both ap-

proaches, in order to disentangle short-run from long-run volatility variations. The model reveals several

important regularities on the volume-volatility relationship. The third part of the thesis is concerned with

the analysis of optimal investment strategies under the drawdown constraint. The finite horizon expec-

tation maximization problem is studied for different types of utility functions. We compute the optimal

investments strategies, by solving numerically the Hamilton–Jacobi–Bellman equation, that characterizes

the dynamic programming principle related to the stochastic control problem. Based on a large panel of

numerical experiments, we analyze the divergences of optimal allocation programs.

Keywords : stock market, state-space model, Kalman filter, Bayesian analysis, stochastic volatility,

GARCH model, portfolio optimization, stochastic control, behavioral finance.
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