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General Introduction

This thesis is prepared within the research group -Methodes et Outils pour la Conception Integree de Systemes (MOCIS)" at Centre de Recherche en Informatique, Signal et Automatique de Lille (CRISTAL).

MOCIS exhibits an extensive amount of experience as well as expertise in the field of integrated design of multi-energetic systems, using the unifying modeling language of BG.

In this context, the past decade has seen excessive efforts being made for the development of supervision techniques for industrial systems in BG framework. There are extensive amount of literature published related to Fault Detection and Isolation (FDI) of complex systems, uncertain multi physic systems, etc. However, development of supervision procedures has been mainly limited to FDI and related issues, where the primary objectives have been efficient diagnosis of the fault in the system. Specifically in the context of robust FDI of uncertain systems, BG in Linear Fractional Transformation (BG-LFT) has proven to be a very effective tool. It has been widely exploited for the uncertain systems belonging to various energy domains. Although, there has been a wide and successful implementation of the BG-LFT method for FDI in various domains of engineering, little efforts have been put

for development of efficient methodology for threshold generation. As one of the objectives, this work intends to integrate interval arithmetic based techniques with BG-LFT technique for efficient robust diagnosis.

The concept of condition-based maintenance or predictive maintenance has emerged only recently, where maintenance activities are only performed when a fault or failure condition is expected. It also promises to ensure safety, reliability, and optimization of the overall costs. In last one decade, there has been a huge surge in the research and development of pro-active maintenance strategies which mainly involve monitoring of system data to provide an accurate assessment of the health, or state, of a component/system. It involves using real-time system monitoring and data processing. The term prognostics and health management (PHM) has emerged very recently, which describes systems that are developed to implement a CBM philosophy. Prognostics involves predicting the time progression of a specific failure mode from its incipience to the time of component failure. Although prognostics is related to diagnostics, it is not same as the latter. Moreover, it requires the knowledge of existing failure modes and deterioration rates, relationship between failures and their progression rates, and is significantly influenced by the nature of the underlying degradations of system parameter/component.

Although prognostics of failure has been approached through various techniques, it still remains immature in the framework of BG modeling. There have been very few efficient efforts towards development of efficient prognostic procedures. Most of the previous attempts in BG framework consider damage progression deterministic in nature, incapable of adapting to the current damage progression and hence, reliability of predictions remains minimal. Moreover, uncertainties associated with measurements, operating conditions, process noise etc. have not been taken into account effectively. This results in prediction of RUL without any associated confidence bounds, rendering it useless for industrial certification and critical applications. Moreover, an efficient approach towards system level (and not merely component level) prognostics in BG modeling paradigm can be envisaged.

Objectives

At the commencement of this work, following objectives were envisaged:

 Amelioration of the robust diagnostics of uncertain systems through treatment of uncertain parameters as interval models. A suitable integration of interval arithmetic or set-based approaches, with the benefits of BG-LFT based approach was sought.

 Development of an efficient methodology for model based prognostics in the BG modeling framework was envisaged.

 An integrated and holistic solution towards the diagnostic and prognostic issues in BG framework.

The aforementioned objectives are achieved in this thesis.

Thesis Layout and Summary of Thesis

Chapter 1 introduces the concept of condition based maintenance, diagnostics and prognostics. Emphasis is laid upon the suitability and relation of prognostics with diagnostics techniques. Diagnostic approaches are reviewed and special emphasis is laid upon BG based diagnostic techniques, for which extensive literature review is provided. BG-LFT enabled robust diagnosis is discussed in a detailed manner and the associated limitations are also highlighted. Additionally, the bounding approaches and interval based approaches are reviewed. This way, the motivations for integration of the benefits of BG LFT method and interval based approaches is highlighted. Thereafter, the concept of prognostics is disused and an extensive review is provided for prognostics related works. In particular, model based prognostic approaches and hybrid prognostics are reviewed in detail. Prognostics based upon Bayesian techniques is discussed. Moreover, the existing approaches of prognostics in BG framework is provided and significant limitations are discussed. As such, the motivations for development of efficient prognostics in BG framework are highlighted and justified.

In Chapter 2, the issues related to diagnostic procedure are addressed. The properties of Interval arithmetic are used for modeling uncertain system parameters and uncertain measurements, as interval models. The various properties of BG-LFT are borrowed and integrated with interval models for a systematic graphical representation of system with interval valued uncertainties. The latter also leads to a systematic derivation of Interval valued Analytical Redundancy Relationships (I-ARRs) from the uncertain BG. A novel methodology for robust fault detection is developed by utilizing the rules of interval arithmetic for the generation of robust adaptive interval valued thresholds over the nominal residuals. This way, the benefits of bounding approach and BG are integrated for better diagnosis of uncertain systems. The developed methodology is implemented on an uncertain steam generator system in real time. Moreover, a comparative study is done between BG LFT enabled thresholds and I-ARR enabled thresholds via experimental results.

The prognostic issues are addressed in Chapter 3, wherein a novel hybrid prognostic approach is developed using BG enabled Analytical Redundancy Relationships (ARRs) and Particle Filtering (PF) algorithms. The latter addresses the prognostic issues of a system parameter known a priori, which forms the prognostic candidate. The novel methodology of hybrid prognostics is developed by casting the problem as a joint state-parameter estimation problem, a hybrid prognostic approach, wherein the fault model is constructed by considering the statistical degradation model of the system parameter. The system parameter is known a priori to be undergoing degradation. Measurements are obtained from BG-derived nominal residual given by Interval valued ARRs (I-ARRs) developed in Chapter 2. Using Particle Filters algorithms, estimation of state of the system parameter under degradation (prognostic candidate) along with the associated unknown and possibly time varying degradation progression parameters(s) (DPPs) is achieved and tracked, to obtain the state of damage in probabilistic terms, which is used for prediction of RUL of the system with respect to that parameter. Estimations of the current state of health of the prognostic candidate and the parameters that influence the degradation progression are achieved in probabilistic terms.

Prediction of the Remaining Useful Life (RUL) is also achieved in probabilistic terms.

Moreover, a novel methodology is developed for obtaining the observations from the nominal part of the I-ARR for the estimation and prediction processes. The associated uncertainties arising out of noisy measurements, parametric degradation process, environmental conditions etc. are effectively managed to produce a reliable prediction of RUL with suitable confidence bounds. The methodology is studied via simulations as well as real time experiments.

In Chapter 4, the developed methodology of hybrid prognostics is suitably exploited for an efficient health monitoring of a component/subsystem. For this purpose, a BG model suited for diagnostics and prognostics of Proton Exchange Membrane Fuel Cell (PEMFC) is utilized. Here, the electrical and electrochemical (EE) part of PEMFC is considered uncertain. A BG-LFT model of the latter is developed. The developed hybrid prognostic methodology is applied on the EE part of an industrial PEMFC involving the degradation data sets that are obtained in real time. Moreover, a novel methodology is developed for obtaining the observations from the nominal part of the uncertain ARR (derived from BG-LFT model) for the estimation and prediction processes. The obtained results are a clear indicative of the high efficiency, accuracy and reliability of the proposed approach and assure the reliability of developed methodology for prognostics of the uncertain dynamic systems.

The work developed in this thesis proposes not only a logical continuation of the work that has been done before, but also develops a novel thematic within the MOCIS group. It is the first PhD Thesis devoted to the development of prognostic approaches in the BG framework.

Contributions of the Thesis

The results obtained during the development of this work have been the subject of 

1.Background, Tools and Techniques

This chapter introduces the concept of condition based maintenance, diagnostics and prognostics. Emphasis is laid upon the suitability and relation of prognostics with diagnostics techniques. Diagnostic approaches are reviewed and special emphasis is laid upon BG based diagnostic techniques, for which extensive literature review is provided. BG-LFT enabled robust diagnosis is discussed in a detailed manner and the associated limitations are also highlighted. Additionally, the bounding approaches and interval based approaches are reviewed. This way, the motivations for integration of the benefits of BG LFT method and interval based approaches is highlighted. Thereafter, the concept of prognostics is disused and an extensive review is provided for prognostics related works. In particular, model based prognostic approaches and hybrid prognostics are reviewed in detail. Prognostics based upon Bayesian techniques is discussed. Moreover, the existing approaches of prognostics in BG framework are provided and significant limitations are discussed. As such, the motivations for development of efficient prognostics in BG framework are highlighted and justified.

Condition Based Maintenance

Traditionally, two kinds of maintenance philosophies have been employed over critical equipment or component of a system; preventive or corrective. Preventive measures refer to approaches that use time based intervals to schedule the maintenance activities. On the contrary, corrective measures translate to such actions that are applied to restore the health of the critical component after it has failed, or functions outside the prescribed functionality limits. As such, the use of preventive approaches often lead to conservative estimates regarding the likelihood of equipment failure and result in their replacement long before they may fail in reality. The common characteristic of both the approaches remains in non-consideration of the -actual‖ condition of the component, for planning the maintenance actions. Due to the associated limitations, both the approaches are costly for the industries as the systems become more and more complex and expensive, as shown in Fig. 1.1. As such, the need to reduce maintenance costs, minimize the risk of catastrophic failures, and maximize system availability has led to a new maintenance philosophy.

Condition-based maintenance (CBM), or predictive maintenance, represents a new maintenance philosophy, where maintenance activities are only performed when there is objective evidence of an impending fault or failure condition, whilst also ensuring safety, reliability, and reducing overall total life costs [START_REF] Bengtsson | Condition based maintenance system technology-Where is development heading[END_REF].

The goal of a CBM approach remains in optimization of the overall maintenance and logistic costs by performing the maintenance actions only in case of abnormal behavior of the component or system. As such, there is a huge shift in the maintenance approach towards CBM which provides reduced number of scheduled preventative actions, minimized requirement and cost of inventory maintenance of spare parts, whilst also avoiding, potentially catastrophic, in-service equipment failures (Vachtsevanos, George et al., 2007).

Fig. 1.1 Cost associated with different maintenance approaches [START_REF] Lebold | Open Systems Architecture For Condition-Based Maintenance: Overview And Training Manual[END_REF] CBM is a maintenance strategy whereby equipment is maintained according to its condition, rather than on an elapsed time or running hour's basis and thus, involves monitoring of system data to provide an accurate assessment of the health, or state, of a component/system. It is followed by maintenance activities based on its observed health. It involves using real-time system monitoring and data processing. A CBM program consists of three key steps [START_REF] Jardine | A review on machinery diagnostics and prognostics implementing condition-based maintenance[END_REF], as shown in :

1. Data acquisition step (collection of information), to obtain data relevant to the system health.

2. Data processing step to handle and analyze the data or signals collected in Step 1 for better understanding of the data.

3. Maintenance decision-making step to recommend efficient maintenance policies.

Fig. 1.2. Three basic steps of BBM program [START_REF] Jardine | A review on machinery diagnostics and prognostics implementing condition-based maintenance[END_REF].

The two main pillars of condition based maintenance strategy are diagnostics and prognostics. Diagnostics involves identifying the root cause of a problem whereby the problem has already occurred and Prognostics involves predicting the future health of the equipment either before or after a problem occurred [START_REF] Jardine | A review on machinery diagnostics and prognostics implementing condition-based maintenance[END_REF]. Moreover, as stated in Sikorska et al. [START_REF] Sikorska | Prognostic modelling options for remaining useful life estimation by industry[END_REF], diagnostics involves identifying and quantifying the damage that has occurred (and is thus retrospective in nature), while prognostics is concerned with prediction of the damage that is yet to occur.

Irrespective of the objectives of any CBM program, the three key steps of CBM given in Fig. 1.2 are always followed to accomplish the goals of Diagnostics and Prognostics. The three basic steps are discussed in very brief here. They can be found detailed in Jardine et al. [START_REF] Jardine | A review on machinery diagnostics and prognostics implementing condition-based maintenance[END_REF] and the references therein.

 Data acquisition is a process of collecting and storing useful data (information) and forms an essential step in implementation. et al., 2006), which include but not limited to vibration data, acoustic data, oil analysis data, temperature, pressure, moisture, humidity, weather or environment data, etc.

 Data processing comprises of cleaning, processing and potentially outlier data reduction in the data collected in raw format, before any informed decision can be made based on this data. Cleaning includes removing wrongly assigned failure modes to certain events data, removing NaNs (Not a Number Values), outliers etc.

Sophisticated statistical and signal processing techniques can also be utilized to extract useful information from the data that are otherwise hidden within.

 Decision Making step is about issuing a recommendation over the over-all health of the component/system. It generally involves an intrusive or nonintrusive actions (Vachtsevanos, George et al., 2007). For instance, a data set reflecting that the system is operating outside the recommended limits of functionalities would call for change of its operating routines, whereas at the later stage of fault development it would result in its replacement.

Diagnostics 1.1.1

The foundation of a CBM approach is based upon robust and reliable fault diagnostic capabilities. Fault diagnostic algorithms are designed to detect system performance, monitor degradation levels, and identify faults (failures) based on physical property changes, through detectable phenomena (Vachtsevanos, George et al., 2007).

The term fault diagnostics is typically used to describe a broad range of capabilities that include, generally, the following three kinds of basic tasks (Vachtsevanos, George et al., 2007): In the context of CBM, following questions should be answered by the diagnostic process involved [START_REF] Sikorska | Prognostic modelling options for remaining useful life estimation by industry[END_REF] 1. Whether the component/system is in degraded state? 2. Which failure mode has initiated the degradation? 3. How severe is the degradation? Compared to prognostic methods, there is a vast amount of available literature that throws light upon various kinds of diagnostic methods, including theory and practical applications.


The different approaches of diagnostics are described in Section 1.4, laying major main emphasis on model based approaches, which form the center of this work's contribution.

Prognostics 1.1.2

Prognostics is derived from the Greek word Prognostikos and means foreknowing or foreseeing. ISO13381-1 defines prognostics as: -the estimation of time to failure and risk for one or more existing and future failure modes‖.

As detailed in Vachtsevanos et al. (Vachtsevanos, George et al., 2007), prognostics promises to produce major improvements over the traditional maintenance approaches, including both reduced operational and support (O&S) costs and complete life-cycle total ownership costs (TOC). -With the provision of a sufficient lead-time between the detection of an incipient fault condition and the occurrence of equipment failure, maintenance actions can become proactive instead of reactive, allowing necessary remedial maintenance work to be planned in advance‖ (Vachtsevanos, George et al., 2007). This is on contrary to more traditional maintenance approaches, in which equipment failure typically occurs without prior notice, leading to delays in organizing the necessary personnel, spares, and tools, necessary to return the equipment to good health.

In last one decade, with on-growing rapid research in the area of prognostics, a lot of definitions have been proposed as tabulated in Table 1-I. They essentially imply that [START_REF] Sikorska | Prognostic modelling options for remaining useful life estimation by industry[END_REF] 1. Prognostics involves predicting the time progression of a specific failure mode from its incipience to the time of component failure [START_REF] Sikorska | Prognostic modelling options for remaining useful life estimation by industry[END_REF].

2. Prognostics is related to, but not same as, diagnostics.

Prognostics requires the consideration of :

i.

existing failure modes and deterioration rates.

ii. initiation criteria for future failure modes.

iii.

Inter-relationship between failure modes and their deterioration rates.

iv. the effect of maintenance on failure degradations v. the conditions and assumptions underlying the prognostic approach

To realize the benefits of prognostic capabilities, a reliable estimate of how long a system can continue to be operated safely, i.e. the remaining useful life (RUL) of the system, until a detected fault condition progresses to a failure condition, is sought. Since prognostics is associated with predicting the future, it inherently involves a large degree of uncertainty (Vachtsevanos, George et al., 2007). Indeed, the task of prognostics is considered to be significantly more difficult task than diagnostics, since the evolution of equipment fault conditions is subject to stochastic processes which have not yet happened [START_REF] Engel | Prognostics, the real issues involved with predicting life remaining[END_REF].

In essence, the degradation process undergone by the component from a healthy state to the failure state must be studied to predict at any time the RUL. Consider Fig. 1.3 that shows degradation curves for three different failure modes that may correspond to different component degradation in system (e.g. bearing wear, frictional wear, electrical resistance drift etc.) or same component degradation but of dissimilar kind (e.g. inner race spall, outer race spall, cage crack in a rolling element bearing). Each degradation pattern may vary depending upon the factors that trigger the damage process and may follow a variable degradation pattern (even under the same environmental conditions and operational routines).

Anomalous events may modify the deterioration rate and thus, can accelerate or slow down the degradation process.

In face of all such conditions, the prognostic procedures must be able to answer the one important question: How much time remains before the component achieves the state of failure. In other words, determining accurate and reliable RUL estimate forms the core objective of any prognostic procedure.

In essence, prognostic approaches should answer the followings [START_REF] Sikorska | Prognostic modelling options for remaining useful life estimation by industry[END_REF]:

1. How quickly is degradation expected to progress from its current state to functional failure?

2. What novel events will change (e.g. accelerate, retard) this expected degradation behavior?

3. How should the other factors (e.g. the type of model, measurement noise) affect the given estimate of RUL? 

The Remaining Useful Life Probability Density Function and Confidence

Limits

Due to presence of various kinds of uncertainties brought by the process noise, variable environmental conditions, measurement noise, anomalous events etc. the prediction of RUL is generally done in probabilistic terms as probability density function (PDF) as depicted in Fig. 1.4. The component under prognostication should be removed from service before a high probability of failure is attained for which, just-in-time-point is defined that corresponds to 95% probability that component has not yet failed (Vachtsevanos, George et al., 2007).

In real sense, the RUL PDF is a conditional PDF that changes with increasing time. Thus, the RUL PDF must be recomputed at each time t based on new information that the component has not yet failed at that time. As the time passes, with more information obtained about the damage, more reliability upon the RUL estimation is gained. This leads to reduction in the variance of the RUL PDF as time advances and the PDF becomes narrower. The desirable time evolution profile of RUL PDF is shown in Fig. 1.5. [START_REF] Sikorska | Prognostic modelling options for remaining useful life estimation by industry[END_REF].

First Author & Reference

Prognostics is… (direct quote) Engel [START_REF] Engel | Prognostics, the real issues involved with predicting life remaining[END_REF] The capability to provide early detecting of the precursor and/or incipient fault condition of a component, and to have the technology and means to manage and predict the progression of this fault condition to component failure.

Hess [START_REF] Hess | Challenges, issues, and lessons learned chasing the -Big P‖: real predictive prognostics Part 2[END_REF] Predictive diagnostics, which includes determining the remaining life or time span of proper operation of a component.

Wu [START_REF] Wu | Prognostics of machine health condition using an improved arima-based prediction method[END_REF] The prediction of future health states and failure modes based on current health assessment, historical trends and projected usage loads on the equipment and/or process.

Katipamul [START_REF] Katipamula | Review article: methods for fault detection, diagnostics, and prognostics for building systems-a review, Part I[END_REF] Address(ing) the use of automated methods to detect and diagnose degradation of physical system performance, anticipate future failures, and project the remaining life of physical systems in acceptable operating state before faults or unacceptable degradations of performance occur.

Smith [START_REF] Smith | A neural network approach to condition based maintenance: case study of airport ground transportation vehicles[END_REF] The capability to provide early detection and isolation of precursor and/or incipient fault condition to a component or subelement failure condition, and to have the technology and means to manage and predict the progression of this fault condition to component failure.

Baruah [START_REF] Baruah | HMMs for diagnostics and prognostics in machining processes[END_REF] Prognostics builds upon the diagnostic assessment and are defined as the capability to predict the progression of this fault condition to component failure and estimate the remaining useful life (RUL).

Heng et al. [START_REF] Heng | Intelligent condition-based prediction of machinery reliability[END_REF] The forecast of an asset's remaining operational life, future condition, or risk to completion.

Fig. 1.4 RUL PDF and just -in-time removal-from-service -point (Vachtsevanos, George et al., 2007) Fig. 1.5 Time evolution of RUL PDF (Vachtsevanos, George et al., 2007) Because of the inherent uncertainty associated with the degradation process, future operational conditions/routines and various sorts of errors associated with the prognostic methodology employed, confidence limits on the RUL prediction is essential and plays a vital role in assessment of the reliability of the prediction. As stated in Sikorska et al. [START_REF] Sikorska | Prognostic modelling options for remaining useful life estimation by industry[END_REF]: -Confidence limits are even more important in prognostic modeling than for diagnostic prediction. While the latter can (in theory) be deterministic and externally verifiable at the time of prediction (e.g. actual crack size), prognostic model outputs can only be verified retrospectively. Business decisions based on prognostic information should therefore be based on the bounds of the RUL confidence interval rather than a specific value of expected life‖.

As corroborated by other significant works too, prediction of RUL without any associated confidence bounds renders the whole prognostic process virtually useless for industrial certification and critical applications [START_REF] Saxena | Metrics for offline evaluation of prognostic performance[END_REF][START_REF] Uckun | Standardizing research methods for prognostics[END_REF].

Prognostics and Health Management

The term prognostics and health management (PHM) has emerged very recently, which describes systems that are developed to implement a CBM philosophy. The term PHM originated from the military applications and was the name given to the capability being developed for the new F-35 Joint-Strike Fighter (JSF) to enable the vision of autonomic logistics and to meet the overall affordability and supportability goals of the latest military fighter aircraft [START_REF] Hess | Challenges, issues, and lessons learned chasing the -Big P‖: real predictive prognostics Part 2[END_REF]. In the development of a PHM system, the term prognostics has a much wider definition than fault prediction and is used to describe a wide variety of activities including fault/failure detection, fault/failure isolation, enhanced diagnostics, material condition assessment, performance monitoring, and prognostics [START_REF] Hess | Challenges, issues, and lessons learned chasing the -Big P‖: real predictive prognostics Part 2[END_REF]. [START_REF] Hess | Challenges, issues, and lessons learned chasing the -Big P‖: real predictive prognostics Part 2[END_REF] Apart from the maintenance benefits brought by implementation of a comprehensive PHM, a lot of additional benefits are produced such as (Vachtsevanos, George et al., 2007), [START_REF] Hess | Challenges, issues, and lessons learned chasing the -Big P‖: real predictive prognostics Part 2[END_REF]:

1. The provision of a lead-time between detection of an incipient fault condition and actual system failure, presents an opportunity for improvements in management of associated logistic systems.

2. Integration of PHM into logistics systems can lead to automatic ordering of spare parts for those in which incipient failures are detected, thus, resulting in maintenance of only a small inventory of replacement parts. This can lead to a successful implementation of just-in-time (JIT) manufacturing philosophy for mission critical equipment with optimized on-site inventory costs.

3. PHM systems with prognostics capabilities have the potential to dramatically reduce the costs of providing maintenance contracts to equipment operators, whilst also improving the original equipment manufacturer (OEMs) profit margins. The sale of developed prognostic technologies could also provide a new and growing source of after-sales revenue.

The Diagnostics-Prognostics Process

As seen above, diagnostic and prognostic process form the basic and most important building blocks of CBM enabled PHM architecture. In this section, the relationship between diagnostic and prognostics is highlighted.

As seen previously, diagnostic processes are mainly involved in assessing the identification and quantification of damage that has been triggered (or commencement of degradation process). Thus, diagnostic processes are retrospective in nature [START_REF] Sikorska | Prognostic modelling options for remaining useful life estimation by industry[END_REF]. However, prognostic processes are involved with prediction of the damage that is yet to occur. Thus, prognostic approaches rely heavily upon the diagnostic outputs (type of component under degradation, a result rendered by fault detection and fault isolation unit).

Therefore, prognostic procedures should not be done in isolation. Fig. 1.7 summarizes the various stages of diagnostics and prognostic processes and their mutual dependence.

Diagnostics Approaches

Diagnostics mainly consist of procedures that detect any kind of malfunction in the system/subsystem/component which may lead to an unacceptable anomaly in the overall system [START_REF] Frank | Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy: A survey and some new results[END_REF]. Such a kind of malfunction may manifest form of :

 Abrupt faults: the fault occurs in a stepwise fashion and then stays present (e.g.

sudden connection cut-off of a wire in an electrical rival circuit).

 Incipient faults: The fault increases gradually in a drift like fashion (e.g. gradual increase of resistivity in electrical circuit).  Intermittent faults: The kind of faults that occur and disappear quickly (e.g. faulty relays in an electrical circuit).

For a plant, the manifested faults can be divided into three classes as (Chen, Jie et al., 2012a):

 Actuator faults: malfunction in the actuation of the system (e.g. blockage in source of flow, voltage etc.)

 Sensor faults: consists of considerable measurement variations, sensor-drift, bias in sensor off-set etc.

 Parametric (Process) faults: faults that change/alter the basic process of the systems.

They usually manifest in constituting parameters of the system (e.g. leakage of tank, discharging of the capacitor etc.)

Diagnostic approaches can be broadly divided into three categories, described in Jardine et al. [START_REF] Jardine | A review on machinery diagnostics and prognostics implementing condition-based maintenance[END_REF] as : Data-driven approaches and Model-based approaches. Datadriven techniques are in turn classified into two major techniques: Statistical approaches, Artificial Intelligence approaches. These approaches are discussed very briefly here.

However, special emphasis is laid upon model based techniques as they form the center of the diagnostic methodology developed in this work.

Data-Driven Approaches 1.4.1

The general principle of data-driven approaches to fault diagnostics is to utilize pattern recognition techniques to map data in the measurement, or feature, space, to equipment faults within the fault space [START_REF] Jardine | A review on machinery diagnostics and prognostics implementing condition-based maintenance[END_REF]. These approaches are broadly divided into two main categories as discussed below in very brief. For a detailed discussion and description of various techniques, references Qin et al. [START_REF] Qin | Survey on data-driven industrial process monitoring and diagnosis[END_REF] and Jardine et al. [START_REF] Jardine | A review on machinery diagnostics and prognostics implementing condition-based maintenance[END_REF] are suggested.

Statistical approaches:

Statistical process control (SPC) is a widely implemented technique, wherein deviations are measured in signal behavior about a predefined range or distribution. If a signal deviates outside the defined control limits this may be indicative of a fault condition. An example of using SPC for damage detection is discussed in Fugate et al. [START_REF] Fugate | Vibration-based damage detection using statistical process control[END_REF]. Hypothesis testing is another widely used method where fault detection is cast as a hypothesis test problem with null hypothesis H 0 : Fault A is present, against another hypothesis H 1 : fault A is not present. Null hypothesis is rejected or accepted based upon test statistics which are constructed to summarize the condition monitoring information. See [START_REF] Sohn | Statistical damage classification under changing environmental and operational conditions[END_REF] for an example implementing hypothesis testing for fault detection. Another mostly used employed statistical approach is principal component analysis (PCA) and partial least squares (PLS). PCA is generally applied to highdimensional datasets to transform a number of related variables to a smaller set of uncorrelated variables, i.e. dimensionality reduction. The basic principle of PCA for fault diagnostics is to derive a PCA model using a dataset of normal fault-free behavior. Future observations are compared with this model using statistical measures such as the T 2 and Q statistics [START_REF] Venkatasubramanian | A review of process fault detection and diagnosis: Part III: Process history based methods[END_REF]. If the measured statistics exceed a defined limit, a potential fault condition is flagged. PLS is a multivariate regression algorithm based upon PCA. A comprehensive overview of PCA/ PLS applied to fault diagnostic problems can be found in [START_REF] Yoon | Fault diagnosis with multivariate statistical models part I: using steady state fault signatures[END_REF] and a more recent reference is Qin et al. [START_REF] Qin | Survey on data-driven industrial process monitoring and diagnosis[END_REF]. Cluster analysis, a multivariate statistical analysis method, is a statistical classification approach that groups signals into different fault categories on the basis of the similarity of the characteristics or features they possess. It seeks to minimize within-group variance and maximize between-group variance [START_REF] Jardine | A review on machinery diagnostics and prognostics implementing condition-based maintenance[END_REF]. Application of cluster analysis in machinery fault diagnosis is discussed in Artes et al. [START_REF] Artes | Failure prevention and diagnosis in machine elements using cluster[END_REF].

AI approaches:

These approaches require efficient procedures to obtain training data (experimental data) and specific knowledge required for training the models. The application of relies upon the availability of a fault pattern library, or database, of historical failure examples, which relate extracted features from monitored systems to specific fault conditions [START_REF] Jardine | A review on machinery diagnostics and prognostics implementing condition-based maintenance[END_REF]. The objective in applying classification based techniques is to model the relationships between fault features, or fault indicator measurements, and fault classes. In the literature, two popular AI techniques for diagnosis are artificial neural networks (ANNs) [START_REF] Sorsa | Application of artificial neural networks in process fault diagnosis[END_REF] and Expert Systems [START_REF] Liao | Expert system methodologies and applications-a decade review from 1995 to 2004[END_REF]. Other AI techniques used include fuzzy logic systems; fuzzy-neural networks (FNNs), neural-fuzzy systems and evolutionary algorithms (EAs), Bayesian networks, discriminant analysis, support vector classification etc. A review of recent developments in applications of AI techniques for fault diagnostics is given by [START_REF] Korbicz | Fault diagnosis: models, artificial intelligence, applications[END_REF].

Although, in general, such data-driven methods are useful where model of the system/plant is not known or, the physics of the failure cannot be understood/modelled correctly, such methods require availability of large experimental data sets under different faulty scenario. Moreover, physical explanations of trained models are generally not available, rendering no capability for the model to be adapted for unseen (un-trained) faulty situations. community [START_REF] De Kleer | Readings in model-based diagnosis. Readings in model-based diagnosis[END_REF], [START_REF] De Kleer | Diagnosing multiple faults[END_REF]. While the former community has researchers with background of control engineering, the latter involves members with background in computer science and intelligent systems. There have been attempts to exploit the benefits of the two by forming the Bridge task group [START_REF] De Kleer | Fundamentals of model-based diagnosis[END_REF], [START_REF] Cordier | A comparative analysis of AI and control theory approaches to model-based diagnosis[END_REF]. In this work, the methodology developed involves techniques mainly from FDI community, due to which they are discussed in detail.

Model

The main works of FDI community in MBD can be referred in the literature such as [START_REF] Blanke | Diagnosis and faulttolerant control[END_REF], (Chen, Jie & Patton, 2012a), [START_REF] Isermann | Model-based fault-detection and diagnosis-status and applications[END_REF] etc. As discussed in Section 1.1.1, the MBD approaches mainly consist of three basic tasks: fault detection, fault isolation and fault identification. Most of MBD approaches operate by comparing the observed behavior of the process against a reference behavior provided by a nominal model of the system. In situations when the observed behavior is different from the nominal behavior, the diagnosis method uses this difference, to express a non-zero residual vector. This residual vector forms the basis of detection and isolation. The residual generation phase differs from method to method employed for FDI and forms the most important step.

Theoretically, the value of residual is zero in absence of any fault or anomaly in the system. However, presence of measurement noises, variable environmental conditions, variation in operational routines/conditions, model uncertainties etc. lead to a possible non-null residual vector, false alarms, missed alarms, incorrect diagnosis etc. In fact, FDI community generally regards MBD approaches as two stage process [START_REF] Chow | Analytical redundancy and the design of robust failure detection systems[END_REF], :

Residual generation: As described in Chen et al. (Chen, Jie & Patton, 2012a), the purpose of this phase is to generate a fault indicating signal (residual), using available input and output information from the monitored system. The resulting difference generated from the comparison of available system measurements with a priori information represented by the system's mathematical model is called the residual or symptom signal. The residual should be normally zero or close to zero when no fault is present, whilst distinguishably different from zero when a fault occurs. The algorithm used to generate residuals is called a residual generator.

Decision Maker: This block examines residuals for the likelihood of faults and a decision rule is then applied to determine if any faults have occurred. The decision procedure may perform a simple threshold test on the instantaneous values or moving averages of the residuals. Moreover, it may consist of statistical methods, e.g., generalized likelihood ratio testing or sequential probability ratio testing (Chen, Jie & Patton, 2012a). The generic MBD approach is shown in Fig. 1.8. [START_REF] Bouamama | Graphical methods for diagnosis of dynamic systems: Review[END_REF] The model-based a priori knowledge can be broadly classified as qualitative or quantitative as shown in Fig. 1.9 (Venkatasubramanian et al., 2003a), (Samantaray, Arun Kumar et al., 2008):

 Quantitative models: The process is expressed in terms of mathematical functional relationships between the inputs and outputs of the system.  Qualitative models: System variable relationships are expressed in terms of qualitative functions centered around different units in a process.

Quantitative approaches usually employ different strategies to compare the behavior of the system with that of a nominal model of the system. The mathematical models are used in conjunction with the respective methods to generate residual. Quantitative methods are discussed in detail in [START_REF] Venkatasubramanian | A review of process fault detection and diagnosis: Part III: Process history based methods[END_REF] .Some of the usually employed methods are discussed here with special emphasis on Bond Graph (BG) based methods, since in this work, dynamic system are modelled in BG modelling paradigm. [START_REF] Pouliezos | Real time fault monitoring of industrial processes[END_REF]. Basically, the state of the system is estimated fully or partially, from the system measurements (or subset of measurements) by using either various observers (Luenberger, Unknown Input Observers etc.) in a deterministic setting or Kalman filters (or Extended Kalman Filters (EKF) and its variants) in stochastic setting. The weighted output estimation error (or innovations in stochastic setting), is used as residual to compare the measured and estimated states and hence, generate the fault indicator. Observer/filter based approaches can be found reviewed in great detail in [START_REF] Isermann | Model-based fault-detection and diagnosis-status and applications[END_REF], (Chen, Jie & Patton, 2012a), [START_REF] Blanke | Diagnosis and faulttolerant control[END_REF] etc.

 Parity Space approaches: This approach systematically exploits the mathematical redundancy provided by the mathematical model of the system [START_REF] Chow | Analytical redundancy and the design of robust failure detection systems[END_REF]. Systems equations are manipulated to eliminate unknown variables and generate a set of analytical redundancy relations from which, relations between fault hypothesis and measurement residuals is established [START_REF] Frank | Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy: A survey and some new results[END_REF], (Chen, Jie & Patton, 2012a). Detailed discussions on ARR methods and their construction can be found in Blanke et al (Blanke et al., 2001), Staroswiecki et al. etc. Qualitative approaches exploit the underlying system model structure, causal relationships, rule based relationships etc. to draw diagnostic inferences and propagate the fault related information to diagnostic candidate. These approaches consist of various techniques most of which can be accomplished through graphical approaches for modelling.

For example, Digraphs establishes cause -effect relationships with arcs between nodes that model the cause to effect flow. Signed Di-graphs have directed arcs with positive or negative sign attached to them [START_REF] Nam | Automatic construction of extended symptom-fault associations from the signed digraph[END_REF]. A comprehensive review of various qualitative approaches can be found in (Venkatasubramanian et al., 2003a). A more contemporary review that throws light upon the Bipartite graphs, fault trees, casual graphs, signed directed graphs, possible conflicts, temporal causal graphs, probabilistic causal graphs such as Bayesian networks and Dynamic Bayesian networks can be found in the recent extensive survey by Ould-Bouamama et al. [START_REF] Bouamama | Graphical methods for diagnosis of dynamic systems: Review[END_REF] and the references therein.

Qualitative diagnosis has also been achieved successfully from BG modelling perspective and are detailed in Samantaray et al. (Samantaray, Arun Kumar & Ould-Bouamama, 2008) .

Major disadvantage of such approaches lie in their qualitative reasoning that may lead to inability of fault discrimination and implicit analysis for robustness. These methods are not detailed any further here as they have not been exploited in this work.

Bond Graph Based Quantitative Diagnosis 1.4.3

Bond graph modelling technique was invented by Paynter in 1959[START_REF] Paynter | Analysis and Design of Engineering Systems[END_REF]. It is a topological modelling language based on the power exchange between the components of a dynamic system, captured in a graphical form. The key aspect of BG modelling is the representation of power transfer as causality between the different dynamic components, making it a universal, multi-disciplinary modelling language. BG owing to its well defined structural properties and causal properties is capable of dealing with multiple domains of engineering in a holistic way. The power exchange link is called a bond, and associated with every bond are two generic power variables named effort e and flow f, such that e f power  . The set of components, bonds, and junction structure define the global structure of the dynamic system. Cause and effect relationship between various variables of BG are modelled by the notion of causality. Causality in BG models is depicted by a perpendicular stroke on a bond. It determines whether the flow for a bond is computed from the effort, or vice versa. If all of the energy storage elements in a model are in integral form, the system is in integral causality. BGs are normally used in integral causality for simulation studies and analysis and control related purposes. Due to vastness of the available literature, detailed discussions on BG methodology has been skipped here. However, the basic concepts have been provided in Appendix A, along with the definition of BG related variables, notion of causality, etc. For a detailed introduction from ab initio and various related aspects, the readers are referred to following works [START_REF] Karnopp | System Dynamics: Modeling, Simulation, and Control of Mechatronic Systems[END_REF], (Borutzky, Wolfgang, 2009a), [START_REF] Mukherjee | Bond graph in modeling, simulation and fault identification[END_REF] and [START_REF] Thoma | Modelling and simulation in thermal and chemical engineering: A bond graph approach[END_REF].

Owing to the behavioral, structural and causal properties that provide a very systematic method for modeling the multi-energetic systems in a unified framework, BGs in integral causality have traditionally been thoroughly exploited for simulation and analysis for various systems/coupled multi-energetic systems.

Since the introduction of a technique of ARR generation from a BG model by covering causal paths in Tagina et al. [START_REF] Tagina | Monitoring Of Systems Modelled By Bond Graph[END_REF], BG has been extensively exploited in last one decade which includes supervision of highly non-linear and complex thermo-chemical systems [START_REF] Medjaher | Supervision of an industrial steam generator. Part II: Online implementation[END_REF], non-linear mechatronic systems [START_REF] Merzouki | Backlash fault detection in mechatronic system[END_REF], intelligent and autonomous systems, industrial chemical reactors [START_REF] El Harabi | Pseudo bond graph for fault detection and isolation of an industrial chemical reactor part I: bond graph modeling[END_REF], hybrid systems [START_REF] Arogeti | Energy-Based Mode Tracking of Hybrid Systems for FDI[END_REF][START_REF] Borutzky | Bond graph model-based system mode identification and mode-dependent fault thresholds for hybrid systems[END_REF][START_REF] Celaya | A model-based prognostics methodology for electrolytic capacitors based on electrical overstress accelerated aging[END_REF][START_REF] Ming | Prognosis of Hybrid Systems With Multiple Incipient Faults: Augmented Global Analytical Redundancy Relations Approach[END_REF][START_REF] Triki | Modeling Switched Behavior with Hybrid Bond Graph: Application to a Tank System[END_REF] etc. Quantitative BG based approaches utilize BG models to derive ARRs which in turn generate system residuals, thus assessing the system fault status.

Its ability to represent complex systems mathematically and graphically makes various aspects of FDI feasible such as monitorability, isolability (ability to monitor fault candidates and their isolation) (Samantaray, Arun K et al., 2006b), and design of supervision system (Medjaher, Kamal, 2011;[START_REF] Ould-Bouamama | Bond graphs for the diagnosis of chemical processes[END_REF] gives an excellent updated comprehensive review of various works on supervision based on BG with application to the non-linear and complex continuous stirred-tank reactor (CSTR) system and (Ould- [START_REF] Bouamama | Graphical methods for diagnosis of dynamic systems: Review[END_REF] reviews the usage of various graphical methods including BG for FDI.

To illustrate the ARR generation procedure, which forms a basic building block for diagnosis, a pedagogical example is presented in the next section.

Direct -Current Motor: A Pedagogical Example

To illustrate various features of BG modelling based diagnosis, a pedagogical example of Direct-Current (DC) motor is chosen, schematic of is shown in Fig. 1 

Fault Detection: Generation of deterministic ARR from BG model

The fault detection comprises of ARR generation as its main step. The ARR is obtained from the constraint relations at the junctions of the BG model subsystems. The subsystem must be observable and over-constrained (Samantaray, Arun K et al., 2006a). The constraint relation is expressed in terms of known variables of the system. The evaluated value of the ARR gives a residual. 
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Detector Dualization: BG models in integral causality have measurement sensors being represented by effort detector or flow detectors. The detectors are modeled by De or Df elements representing the effort detector and flow detector respectively. The effort detector is always connected to 0-junction and measures the common effort between all the bonds connected to it whereas, flow detector is always connected to 1-junction measuring the common flow between all the bonds connected. For diagnosis, the detectors are dualized which means that the effort detector De becomes a signal source of effort SSe, and imposes the effort at the 0-junction connected to the detector. Similarly, flow detector Df , becomes SSf and imposes flow at the 1-junction connected to the detector. This transformation of detectors as signal sources is defined as detector dualization. The procedure is illustrated in Fig. 1.12. Causality Inversion approach for deterministic ARRs generation: The ARR is derived systematically through inversion of causality as described in Ould Bouamama et al. [START_REF] Bouamama | Derivation of constraint relations from bond graph models for fault detection and isolation[END_REF].

In the context of BG modelling, an : ( , , , , , , ) ARR f SSe SSf Se Sf MSe MSf θ where θ is vector of system parameters. Causality inversion approach is summarized as:

Step 1: Diagnostic BG is obtained by assigning preferred derivative causality to the BG model and causality of detectors is inverted wherever possible.

Step 2: Structural constraints at junctions associated to dualized detectors are written.

Step 3: For each of the 0 (or 1) junctions with at least an associated detector:

 Causal path is covered to eliminate unknown variables such that in the constraint relationship is sensitive to only known and measured variables.

Causal paths are covered from unknown to known (measured) variables.

 In case of redundant sensors : If there are direct causal paths from one or more detectors in inverted causality SSf (SSe) to the non-inverted one Df (De), without passing through any passive or two-port element, the ARRs are equal to the difference between the measures of the redundant sensors.

For illustration purpose, the procedure described is applied on the pedagogical DC motor model presented in Section 1.4.3.1, as follows:

Step 1: As shown in Fig. 1.13, Diagnostic BG is obtained by inverting the causality of BG model in Fig. 1.11 to a preferred derivative causality. Detectors are dualized to form respective signal sources. Step 2: From (1.3), Structural equations at junction 1 1 and 1 2 respectively are:
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Step 3: The causal paths covered independently at both the junctions along with derived ARRs are tabulated in Table 1-IV. 
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Residual r, is the evaluated value of ARR, () r Eval ARR 

. For fault detection, theoretically, if r=0, fault is not detected. Otherwise, with 0 r  , fault is detected.

Fault Isolation

A Boolean fault signature is formed by the residual structures and represents the structural sensitivity of faults on the residuals. Fault Signature Matrix (FSM),

( 2)

FSM mn   is a
Boolean table, containing fault signature vectors, fault monitorability vector and fault isolability vector [START_REF] Medjaher | Supervision of an industrial steam generator. Part II: Online implementation[END_REF][START_REF] Touati | Robust diagnosis to measurement uncertainties using bond graph approach: Application to intelligent autonomous vehicle[END_REF] 
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Robustness in Model Based Diagnosis 1.4.4

Minimization of effects of uncertainty lies as the main focus in several domains of engineering. As defined in Chen et al. [START_REF] Chen | Robust Model-based Fault Diagnosis for Dynamic Systems[END_REF], the robustness problem is defined as the maximization of the detectability and isolability of faults together with the minimization of the effect of the uncertainty and disturbance on the FDI procedure.

The uncertainties are brought in by many sources such as uncertain system parameters, variable environmental conditions, variable operational routines, measurement noise, etc. These factors can be seen arising mainly due to the difference between the intrinsic properties of the systems/components and their explicit available knowledge and associated noises.

Some examples are:

 Complete information for an accurate mathematical model is rarely available. This percolates in form of non-precise information on system structure, system parameters etc.

 System parameters usually vary with time in an unpredictable manner and with varying environmental/operational conditions.

 Noises in the measurement acquisition process, bias, drift, non-linearity, inaccuracy due to calibration process etc.

Such factors and many more, constitute the discrepancies that cause mismatch between the actual process and the system model even under no fault conditions. The latter gives rise to missed alarms and false alarms [START_REF] Chen | Robust Model-based Fault Diagnosis for Dynamic Systems[END_REF].

From MBD context, many approaches have been developed to make the diagnostic process sensitive to faults only. Mainly two kinds of approaches can be distinguished as:

 Active approaches refer to methods that tend to make residuals insensitive to uncertainty but sensitive to faults. This is usually achieved by decoupling the residuals from uncertainties. Some of the methods developed are representation of model uncertainties as unknown inputs (Chen, Jie et al., 2012b;[START_REF] Hamelin | Robust fault detection in uncertain dynamic systems[END_REF], structured uncertainties [START_REF] Kam | Bond graph models of structured parameter uncertainties[END_REF], higher order terms (of linearized model around a set-point) as unstructured uncertainties [START_REF] Kinnaert | Robust fault detection based on observers for bilinear systems[END_REF], using set of models representing different parameter settings and using frequency domain models (transfer functions) with parameters in intervals (Hamelin & Sauter, 2000) etc.

Most of these approaches are applicable to select class of non-linear models. For general class of non-linearity and unclassified disturbances, specific methods need to be developed. A brief discussion in this context can be found in Samantaray et al. .

 Passive approaches refer to methods where the effect of uncertainty is not perfectly decoupled, instead is propagated in the residual. They correspond to decision making strategy by propagating the model uncertainties to the residuals, where the uncertainty is bound by an interval. In other words, thresholds are used to check its containment. As long as the residual remains under the prescribed limits set by thresholds, the change in residual does not imply a faulty condition, as the latter may be caused due to a genuine fault or uncertainties. Thereafter, decision rules may be formulated based upon simple threshold tests on instantaneous residual values or their moving average using adaptive thresholds [START_REF] Emami-Naeini | Effect of model uncertainty on failure detection: the threshold selector[END_REF], [START_REF] Rambeaux | Optimal thresholding for robust fault detection of uncertain systems[END_REF][START_REF] Shi | The development of an adaptive threshold for model-based fault detection of a nonlinear electro-hydraulic system[END_REF], interval models (discussed in Section 1.4.4.2 and 2.2), cumulative sums [START_REF] Basseville | Detection of abrupt changes: theory and application[END_REF] or statistical methods such as generalized likelihood ratio test or sequential probability ratio test [START_REF] Niu | Fault diagnosis of locomotive electropneumatic brake through uncertain bond graph modeling and robust online monitoring[END_REF][START_REF] Tartakovsky | Sequential analysis: Hypothesis testing and changepoint detection[END_REF].

The obvious advantages are that non-linearity of the system does not pose any constraint on threshold generation. Moreover, system representation does not need to be altered. However, the associated disadvantage is that weak faults may lead to nondetection. Additionally, the threshold width determines the chances of missed detection. As such, it becomes imperative to develop the adaptive bounding thresholds in the most efficient way.

In BG framework, Bond graphs in Linear fractional Transformations (BG-LFT) [START_REF] Dauphin-Tanguy | How to model parameter uncertainties in a bond graph framework[END_REF] have been widely utilized for robust fault detection. In this work, bounding approaches employing interval models, in particular, interval arithmetic [START_REF] Moore | Methods and applications of interval analysis[END_REF], are used to develop efficient thresholds in conjunction with BG-LFTs. Thus, these two approaches are briefly reviewed. However, the discussion on threshold generation methodology using BG-LFT is provided in Appendix B.

Modelling of the parametric uncertainty and robustness in FDI has also been achieved through Incremental BG (Borutzky, Wolfgang et al., 2001, 2002), which are constructed systematically from the original BG by replacing the BG elements by their respective incremental models. The theory of incremental BG modelling is well developed (Borutzky, Wolfgang et al., 2004) and recently, robustness in FDI has also been approached for uncertain systems (Borutzky, Wolfgang, 2009b, 2011). As shown in (Borutzky, Wolfgang & Dauphin-Tanguy, 2004), the incremental bond graph approach is equivalent to the BG-LFT approach and a comparative study of both of the approaches can also be found therein.

Robust Fault detection using Bond Graphs in Linear Fractional

Transformation (BG-LFT)

LFT was introduced by Redheffer as a mathematical model [START_REF] Redheffer | On a certain linear fractional transformation[END_REF]. On BG models, it was introduced by G. [START_REF] Dauphin-Tanguy | How to model parameter uncertainties in a bond graph framework[END_REF][START_REF] Dauphin-Tanguy | How to model parameter uncertainties in a bond graph framework[END_REF] to model the structured parametric uncertainties. As detailed in [START_REF] Kam | Bond graph models of structured parameter uncertainties[END_REF], BG-LFT is the methodology of describing parametric uncertainties on BG elements.

The latter also details the characterization of parametric uncertainties in LFT form. Various details about BG-LFT modelling and its representation, is provided in Appendix B. Also, the fault detection method along with threshold generation strategy is described therein. Readers unfamiliar to BG-LFT technique are strongly suggested to go through it before proceeding ahead.

In this methodology, the additive and multiplicative parametric uncertainties are propagated into the ARR such that, the residual consists of two perfectly separable parts: a nominal part r, that describes the system operation/behavior and an uncertain part a, which is used to generate an adaptive envelope around the residual. As such, the residual is sensitive Past one decade has seen an extensive use of BG-LFT based methodology for FDI of uncertain systems which was introduced in Djeziri et al. (Djeziri, Mohand Arab et al., 2007) for detection of backlash phenomenon in mechatronic systems. The BG-LFT model of uncertain system is considered in derivative causality to facilitate the derivation of ARRs, not containing any unknown variables (system initial conditions). The effects of parametric uncertainties are compensated for, by the use of adaptive thresholds. The envelope thus generated, serves the purpose of efficient passive diagnosis. BG-LFT methodology has been widely exploited for robust FDI and employed on various kinds of uncertain systems. For example, in (Djeziri, Mohand Arab et al., 2009b), BG-LFT model of uncertain steam generator is used for robust FDI, (Djeziri, M. A. et al., 2009a) describes the robust monitoring of an electric vehicle, [START_REF] Niu | Fault diagnosis of locomotive electropneumatic brake through uncertain bond graph modeling and robust online monitoring[END_REF] employs BG-LFT based modelling and fault detection and auto-regressive kernel regression based threshold monitoring, (Loureiro et al., 2014) uses BG-LFT generated thresholds for robust FDI of autonomous vehicles.

Recently, Touati et al. [START_REF] Touati | Robust diagnosis to measurement uncertainties using bond graph approach: Application to intelligent autonomous vehicle[END_REF] extended the methodology by including measurement uncertainties on BG-LFT model so that both parametric and measurement uncertainties may be propagated to thresholds for robust FDI. A case of under-constrained system with causality conflict can be referred in (Djeziri, M. A. et al., 2009a).

Advantages of BG-LFT for robust fault detection are many, such as:

 Structured graphical representation of parametric uncertainties on the nominal BG.

 Systematic procedure of decoupling ARR into nominal residual and uncertain part.

 The method is not bound by any limitation arising due to non-linearity of the system.

 Can be applied to real systems without any numerical complexity.

 Can be applied to complex multi-energetic systems.

Even though there has been a wide and successful implementation of the BG-LFT method for FDI in various domains of engineering, little efforts have been put in studying and developing the method of threshold generation itself. Width of thresholds determines their sensitivity to fault. An over-estimation in threshold calculation (complete but not sound) may result in missed alarms (non-detection of fault) whereas; false alarms are caused when width is too sharp (sound but not complete) [START_REF] Armengol | Application of modal intervals to the generation of error-bounded envelopes[END_REF].

Limitations of this method arise mainly due to the fashion by which thresholds over the nominal residual are generated. Existing methodology generates threshold by the summation of the absolute values of uncertain effort/flow as ii w r w     . Such an approach is pretty naïve in accounting the cumulative effect of uncertain effort /flow brought in at the junction as:

 The parametric uncertainty bounds considered for threshold generations are necessarily symmetrical owing to their modelling discussed above. With threshold limits being simply the summation of their absolute values, this leads to over/ under estimation of threshold limits and them being necessarily symmetrical in nature. Such an over-estimation can be high and non-negligible when parameters that deviate only uni-directionally (like friction) are involved.

 The methodology of bounding the nominal residual is pretty naïve in accounting the cumulative effect of uncertain effort /flow brought in at the junction as, the residual may be sensitive, positively or negatively, with respect to the parametric fault. It is referred to as sensitivity ij s [START_REF] Calderón-Espinoza | Dynamic diagnosis based on interval analytical redundancy relations and signs of the symptoms[END_REF][START_REF] Chang | Model-based approach for fault diagnosis. 1. Principles of deep model algorithm[END_REF], of the model associated with j th ARR, r j , with respect to i th fault, f i , mathematically expressed as in (1.9), is function of process measurements and system parameters.

j ij i r s f   
(1.9)

Bounding approaches

Bounding approaches typically use interval models to model the uncertain system variables, parameters etc. Interval models allow variation of the interval variable within predefined numeric intervals [START_REF] Moore | Methods and applications of interval analysis[END_REF]. These approaches have been extended and developed in various forms, each having their own merits and de-merits and broadly, fall under bounding approaches which present an alternative to the statistical ones that assume probabilistic description of uncertainty. From robust fault detection's perspective, interval techniques have been developed in various ways each having their own distinguishing philosophy as discussed below:

 Classical interval analysis : This approach uses interval arithmetic [START_REF] Moore | Introduction to interval analysis: Siam[END_REF], to infer the results involving interval models. Consisting of well-developed techniques, it has been used widely for various purposes such as reliable computing [START_REF] Lin | Validated solutions of initial value problems for parametric ODEs[END_REF], global optimization [START_REF] Hansen | Global optimization using interval analysis: revised and expanded[END_REF] etc. For FDI purposes, some works are [START_REF] Karim | Model-based fault detection method using interval analysis: Application to an aeronautic test bench[END_REF][START_REF] Rinner | Online monitoring by dynamically refining imprecise models[END_REF]. Interval analysis has not been exploited widely for FDI, mainly owing to the fact that in presence of multi-incident interval variables it provides over-bounded results(not complete and sound) [START_REF] Llobet | Application of Modal Interval Analysis to the simulation of the behaviour of dynamic systems with uncertain parameters[END_REF]. However, in absence of multiincident interval instances, exact results can be achieved.

 Modal intervals: is completion of interval analysis in arithmetic sense and lattice sense. It involves the notion of -dual‖ intervals that reduce and nullify the overboundedness of the results obtained in presence of multi-incident intervals [START_REF] Armengol | Application of modal intervals to the generation of error-bounded envelopes[END_REF][START_REF] Llobet | Application of Modal Interval Analysis to the simulation of the behaviour of dynamic systems with uncertain parameters[END_REF][START_REF] Herrero | Robust fault detection system for insulin pump therapy using continuous glucose monitoring[END_REF], [START_REF] Sainz | Modal Interval Analysis[END_REF].

 Set membership approaches: These methods explicitly calculate the outer bounds of the set of parameters of the interval model that are consistent with the real system measurement [START_REF] Jaulin | Set inversion via interval analysis for nonlinear bounded-error estimation[END_REF][START_REF] Milanese | Bounding approaches to system identification[END_REF]. The feasible set of parameters is parameterized in form of: ellipsoids [START_REF] Milanese | Optimal estimation theory for dynamic systems with set membership uncertainty: an overview Bounding Approaches to System Identification[END_REF], parallelotopes [START_REF] Chisci | Recursive state bounding by parallelotopes[END_REF], polytopes [START_REF] Janati-Idrissi | Fault detection of uncertain models using polytope projection[END_REF], zonotopes .

Approaches of Prognostics

RUL prediction forms the core of any prognostic procedure. In this section, various approaches used for RUL prediction and associated issues are discussed with special emphasis on model based approaches and Bayesian techniques. In particular, non-linear Bayesian estimation using Particle filtering method is discussed, as the work presented in this thesis depends mainly on the same.

Due to versatility of the techniques used in recent one decade, the prognostic approaches have been classified in various ways (ISO13381-1, 2004;[START_REF] Jardine | A review on machinery diagnostics and prognostics implementing condition-based maintenance[END_REF][START_REF] Lee | Intelligent prognostics tools and emaintenance[END_REF][START_REF] Liao | Expert system methodologies and applications-a decade review from 1995 to 2004[END_REF]Vachtsevanos, George et al., 2007) etc. Also, there is little consensus among the reviewers upon the uniformity of the diverse classifications. The recent literature review in Sikorska et al. [START_REF] Sikorska | Prognostic modelling options for remaining useful life estimation by industry[END_REF] describes this aspect in detail by listing the various classification groups along with the references that propose the same.

Therein, a classification approach is proposed specifically designed for RUL prediction. For informational purposes, the latter is shown in Fig. 1.15. Experience based Approaches 1.5.1

These approaches depend upon the statistical information collected that assess the historical failure rate of the components. Such data is used to develop life-usage models in terms of distributions of failure rates over time. Mean time between failures (MTBF) is indicated primarily by such models and plays the crucial role of scheduling the preventive/maintenance actions. In essence, the life expectancy of the component is derived from the observed actual condition and the database of previous failure events. Some of methods in this category include:

Expert Systems: Generally based on heuristic facts obtained by experts over a period of time and accumulated experience, these systems consist of a huge knowledge data that apply a particular rule (mostly if-then type statements) to particular problems encountered. Of course, here the precision and accuracy in building the knowledge base is the key aspect [START_REF] Biagetti | Automatic diagnostics and prognostics of energy conversion processes via knowledge-based systems[END_REF]. Major disadvantages include the problem of combinatorial explosion encountered in presence of numerous inputs and desired outputs [START_REF] Garga | Hybrid reasoning for prognostic learning in CBM systems[END_REF]. Also, the efficiency is limited to efficiency of the experts form the data base.

Life expectancy models: These models usually employ probability based models to assess the RUL. This approach is motivated by the fact that often the historical failure data take statistical form. As such, obtaining the information needed for prognosis becomes a fairly an easy task mainly because most of the required information reside in probability density functions (e.g. confidence limits). There is a plethora of literature on application of statistical distributions to model failure data [START_REF] Blischke | Reliability: modeling, prediction, and optimization[END_REF][START_REF] Helton | Uncertainty and sensitivity analysis techniques for use in performance assessment for radioactive waste disposal[END_REF][START_REF] Rausand | System reliability theory: models, statistical methods, and applications[END_REF]. Such models assume that the times to failure of identical components can be considered statistically identical and independent random variables and thus be described by a PDF [START_REF] Sikorska | Prognostic modelling options for remaining useful life estimation by industry[END_REF]Vachtsevanos, George et al., 2007). Typically, the applied distributions to model failure data are Exponential, Normal, Lognormal, Gaussian and Weibull functions. Most commonly applied distribution in reliability engineering is the Weibull function mainly due to its ability to describe many different failure types. The classical bathtub curve [START_REF] Klutke | A critical look at the bathtub curve[END_REF] 

Data-Driven Techniques 1.5.2

Data-driven prognostic approaches usually apply one of two strategies: The first strategy consists of a two-stage process. Firstly, appropriate dimensionality reduction (e.g. Principle component Analysis etc.), feature extraction, or pattern matching techniques are used to map system signals or features onto a single dimension damage, degradation, or health index.

Upon identification of the actual/current state of damage, the signals are extrapolated in future until a pre-fixed threshold is exceeded or reached. Various approaches fall under such a strategy such as trend extrapolation, time-series prediction etc. The second strategy comprises of using directly modelling the relationship between monitored signals or features, and the remaining life of the system. This in turn calls for machine learning techniques where degradation pattern, damage progression is learnt to train mathematical models. With the help of accurately trained models, the RUL is predicted. Employment of artificial neural networks (ANNs) and their numerous variants fall under this category. A comprehensive review about data-driven techniques can be found in .

Trend evaluation: Forming the simplest form of data-driven techniques, the RUL is predicted based upon the trend analysis of single monotonic parameter. The chosen parameter is plotted as function of time and is extrapolated or interpolated using standard regression techniques, till a pre-defined threshold is reached. As such, they are not efficient with damage progressions that are noisy, non-monotonic, highly non-linear, with variable deterioration rates or multiple failure modes [START_REF] Engel | Prognostics, the real issues involved with predicting life remaining[END_REF].

Time series forecasting:

The issue of RUL prediction posed as time-series forecasting problem is addressed by variety of autoregressive models [START_REF] Wu | Prognostics of machine health condition using an improved arima-based prediction method[END_REF] and exponential smoothing techniques [START_REF] Byington | Prognostic enhancements to diagnostic systems for improved condition-based maintenance [military aircraft[END_REF]. Autoregressive moving average (ARMA), Autoregressive integrated moving average (ARIMA) and ARMAX models have been widely [START_REF] Sikorska | Prognostic modelling options for remaining useful life estimation by industry[END_REF] exploited for prognostic problems as the latter shares the common objective of prediction or forecasting [START_REF] Box | Time series analysis: forecasting and control[END_REF]. In all cases, the future value is assumed a linear function of past observations and random errors. Each of these three types of autoregressive models vary slightly in the linear equation used to relate inputs, outputs and noise. ARMA and ARMAX models can remove temporal trends, and hence, they are used only for stationary data. On the other hand, ARIMA models enforce integration and thus are able to handle systems with low frequency disturbances or trends [START_REF] Sikorska | Prognostic modelling options for remaining useful life estimation by industry[END_REF]. The ARMA models and associated variants are generally useful for short-term predictions. They prove less reliable for long-term predictions owing to the dynamic noise, poor uncertainty management for prediction, issues arising out of initial conditions and accumulation of errors in the predictor [START_REF] Wu | Prognostics of machine health condition using an improved arima-based prediction method[END_REF].

Artificial Neural Networks (ANNs):

ANNs are perhaps the most used and exploited data-driven models for prognostics. ANNs model the relationships between input and output variables with a model structure inspired by the neural network structure present in the brain.

The network weights and biases, which define the inter-connections between the neurons, are adapted during a training process to maximize the fit between the input and output data on which the models are trained. ANNs are widely employed in conjunction with time series modelling to predict the future state of component health based upon current state given by the ANNs. Then, RUL is predicted based upon the pre-fixed threshold. Usually employed feed-forward ANNs, estimate the current degradation index (state) by using system features (extracted signals, feature pattern etc.) as inputs. They generate the one step ahead prediction by using the previous values of state of degradation (degradation index). The next iteration then uses this prediction to produce long term predictions. Examples of such applications on ANNs for prognostics can be found in [START_REF] Herzog | Machine and component residual life estimation through the application of neural networks[END_REF][START_REF] Vachtsevanos | Fault prognosis using dynamic wavelet neural networks[END_REF].

The application of dynamic wavelet neural network (DWNN) for prediction of RUL can be referred in [START_REF] Wang | Fault prognostics using dynamic wavelet neural networks[END_REF]. The DWNN is an example of recurrent neural network (RNN) that incorporate feedback within network structure to predict the time series evolution. The applications of the latter for prognostics can be found in literature [START_REF] Heimes | Recurrent neural networks for remaining useful life estimation[END_REF][START_REF] Tian | An artificial neural network method for remaining useful life prediction of equipment subject to condition monitoring[END_REF]. Also, attempts in modelling and establishing a direct relationship between system features and RUL have been successfully made .

Although this approach promises reliable results given the ANN models are accurately trained, it has major drawbacks as: A pelathora of other techniques can be found such as Gaussian process regression [START_REF] Goebel | A comparison of three data-driven techniques for prognostics[END_REF], Gaussian-hidden Markov models [START_REF] Tobon-Mejia | A data-driven failure prognostics method based on mixture of gaussians hidden markov models[END_REF], ensemble techniques [START_REF] Hu | Ensemble of data-driven prognostic algorithms for robust prediction of remaining useful life[END_REF], techniques depending upon scope of information available (Baraldi et al., 2013a), relevance vector machine techniques [START_REF] Caesarendra | Application of relevance vector machine and logistic regression for machine degradation assessment[END_REF][START_REF] Widodo | Application of relevance vector machine and survival probability to machine degradation assessment[END_REF][START_REF] Zio | Fatigue crack growth estimation by relevance vector machine[END_REF], logistic regression techniques [START_REF] Caesarendra | Application of relevance vector machine and logistic regression for machine degradation assessment[END_REF], neuro-fuzzy logic based methods etc.

A comprehensive and latest review of various data-driven techniques are found in [START_REF] Borutzky | Failure Prognosis for Hybrid Systems Based on ARR Residuals Bond Graph Model-based Fault Diagnosis of Hybrid Systems[END_REF][START_REF] Tsui | Prognostics and Health Management: A Review on Data Driven Approaches[END_REF].

Model Based Prognostic Approaches 1.5.3

The model based approaches constitute the highest hierarchal level in the pyramidal structure of prognostic approaches (see Fig. 1.14) signifying their capability of attaining maximum accuracy and versatility (scope of adaptation to problem variables) as well as incurred cost.

Typically, physics-of-failure models of the prognostic candidate component derived from first principles of physics, have been used extensively under this category. There exists an extensive literature employing fatigue models for modelling the initiation and propagation of cracks in structural components [START_REF] Cadini | Monte Carlo-based filtering for fatigue crack growth estimation[END_REF][START_REF] Swanson | Prognostic modelling of crack growth in a tensioned steel band[END_REF][START_REF] Zio | Particle filtering prognostic estimation of the remaining useful life of nonlinear components[END_REF], model for electrolytic overstress related ageing [START_REF] Celaya | A model-based prognostics methodology for electrolytic capacitors based on electrical overstress accelerated aging[END_REF] , usage of Arrhenius equation for prediction of resistance drift in thin film resistors [START_REF] Kuehl | Using the Arrhenius equation to predict drift in thin film resistors[END_REF],usage of physics inspired power model [START_REF] Maricau | A methodology for measuring transistor ageing effects towards accurate reliability simulation[END_REF] or log-linear model [START_REF] Lu | Statistical inference of a time-to-failure distribution derived from linear degradation data[END_REF] for degradation of current drain in CMOS (complementary metal-oxide semi-conductor) and usage of physics-inspired exponential degradation model for aluminum electrolytic capacitors in [START_REF] Kulkarni | Physics based electrolytic capacitor degradation models for prognostic studies under thermal overstress[END_REF]. Vachtsevanos et al. (Vachtsevanos, George et al., 2007) have included time-series models such as ARMA, ARIMA, ARMAX etc as model based approaches. However, as such models do not enhance the understanding of the physics of underlying degradation and instead are data-based; they have been discussed in Section 1.4.1.

With the model of degradation available, this approach popularly employs various recursive Bayesian estimation techniques to estimate the current state of health (parameter estimation method) and to predictions of RUL. Such a framework involving recursive Bayesian techniques, efficiently addresses the issues related to state of component health under variable degradation progression, uncertainty management for RUL prediction with respect to noisy environment, variable operational loads etc. by efficiently fusing the information from model, obtained observations, uncertain future loading conditions etc. In Bayesian framework, the state of health is modelled as random variable such that the posterior estimate obtained in probabilistic terms, leads to efficient estimation of hidden damage progression, uncertainty quantification, confidence limits on RUL prediction etc. [START_REF] Daigle | Model-based prognostics under limited sensing[END_REF]Daigle, M. J. et al., 2011a[START_REF] Daigle | Model-based prognostics with concurrent damage progression processes[END_REF][START_REF] Roychoudhury | An integrated model-based diagnostic and prognostic framework[END_REF].

Various Bayesian estimators have been applied with successful outcomes. Fig. 1.17 comprehensively details the various estimators that have been employed depending upon the system at hand. Below, only a select few are reviewed concisely from prognostics purpose.

Details about the same and others can be found in , and the numerous references therein.

Filter for estimation and prediction process is chosen depending upon the assumptions that may be made about the system and the desired performance [START_REF] Daigle | A comparison of filter-based approaches for modelbased prognostics[END_REF]. Wellknown Kalman filter, an optimal estimator for linear systems has been used for prognostics in [START_REF] Celaya | A model-based prognostics methodology for electrolytic capacitors based on electrical overstress accelerated aging[END_REF]. Extended Kalman filter (EKF) or unscented Kalman filter may also be used for joint state-parameter estimation as presented in [START_REF] Plett | Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 3. State and parameter estimation[END_REF] and [START_REF] Daigle | Distributed prognostics based on structural model decomposition[END_REF] respectively. However, they remain restricted to additive Gaussian noise. Also, EKF being sub-optimal diverges quickly if the initial estimate of state is different from the reality by big measure or the model considered for estimation is not correct [START_REF] Saha | Comparison of prognostic algorithms for estimating remaining useful life of batteries[END_REF]. Fig. 1.17 Various estimation techniques to obtain the posterior distribution [START_REF] Sikorska | Prognostic modelling options for remaining useful life estimation by industry[END_REF] Set in Monte-Carlo framework, particle-filters (PF) or Sequential Monte Carlo methods [START_REF] Arulampalam | A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[END_REF][START_REF] Doucet | An introduction to sequential Monte Carlo methods[END_REF], form a suitable filter choice in this context, as it can be applied to non-linear systems corrupted with non-Gaussian noises for which, optimal solutions may be unavailable or intractable. Comprehensive comparison of filters for prognostic purposes are found in [START_REF] An | Practical options for selecting data-driven or physicsbased prognostics algorithms with reviews[END_REF], [START_REF] Daigle | A comparison of filter-based approaches for modelbased prognostics[END_REF][START_REF] Saha | Comparison of prognostic algorithms for estimating remaining useful life of batteries[END_REF].

Recently, particle filters have been exploited voraciously for prognostic methods [START_REF] Orchard | A particle filtering-based framework for on-line fault diagnosis and failure prognosis[END_REF]. Significant works include prediction of end of discharge and end of life (EOL) in lithium-ion batteries (Saha et al., 2009a), battery health monitoring [START_REF] Saha | Prognostics methods for battery health monitoring using a Bayesian framework[END_REF], prediction of battery grid corrosion [START_REF] Abbas | An intelligent diagnostic/prognostic framework for automotive electrical systems[END_REF], estimation and prediction of crack growth [START_REF] Bechhoefer | A method for generalized prognostics of a component using Paris law[END_REF][START_REF] Cadini | Monte Carlo-based filtering for fatigue crack growth estimation[END_REF][START_REF] Zio | Prognostics and health management of industrial equipment[END_REF][START_REF] Zio | Particle filtering prognostic estimation of the remaining useful life of nonlinear components[END_REF], fuel cell prognostics [START_REF] Jouin | Prognostics of PEM fuel cell in a particle filtering framework[END_REF], application to damage prognostics in pneumatic valve from the Space Shuttle cryogenic refueling system [START_REF] Daigle | Model-based prognostics under limited sensing[END_REF][START_REF] Daigle | A model-based prognostics approach applied to pneumatic valves[END_REF], estimation-prediction of wear as concurrent damage problem in centrifugal pumps with a variance control algorithm (Daigle, M. J. [START_REF] Daigle | Model-based prognostics with concurrent damage progression processes[END_REF], employment in distributed prognosis [START_REF] Roychoudhury | An integrated model-based diagnostic and prognostic framework[END_REF], exploring uncertainty management options for prognostics [START_REF] Baraldi | Investigation of uncertainty treatment capability of model-based and data-driven prognostic methods using simulated data[END_REF]. Particle filters attract considerable attention [START_REF] An | Prognostics 101: A tutorial for particle filter-based prognostics algorithm using Matlab[END_REF], owing to the ever growing efforts being made for betterment in performances and computational efficiency, such as the use of correction loops [START_REF] Orchard | Advances in uncertainty representation and management for particle filtering applied to prognostics[END_REF], fixed-lag filters [START_REF] Daigle | Model-based prognostics with fixed-lag particle filters[END_REF] and the recently proposed adaption of the degradation model with a kernel smoothing method [START_REF] Hu | A particle filtering and kernel smoothingbased approach for new design component prognostics[END_REF].

The major advantage of model based approaches is that there is a clear understanding of the underlying degradation process. They have the ability to incorporate physical understanding of the process and the ability to make predictions under different loading and operational conditions. The major issue which must however be addressed is the accurate and reliable modelling of the degradation progression. Often, such accurate degradation models are not available.

Hybrid Prognostics 1.5.4

To overcome the problem of non-availability of highly accurate degradation models, there has been an attempt recently, to fuse the model based techniques and data-driven techniques in order to ameliorate the overall prognostic approach. Hybrid prognostic approaches have been introduced only recently, and benefit from the fusion of the advantages of the former two [START_REF] Dragomir | Framework for a distributed and hybrid prognostic system[END_REF][START_REF] Jouin | Prognostics of PEM fuel cell in a particle filtering framework[END_REF][START_REF] Kulkarni | Physics based electrolytic capacitor degradation models for prognostic studies under thermal overstress[END_REF][START_REF] Liao | Review of hybrid prognostics approaches for remaining useful life prediction of engineered systems, and an application to battery life prediction[END_REF][START_REF] Neerukatti | Fatigue life prediction using hybrid prognosis for structural health monitoring[END_REF][START_REF] Zhang | A hybrid prognostics and health management approach for condition-based maintenance[END_REF].

Here, the first step usually involves identification of the failure mode, critical component or the subsystem that is undergoing degradation or is supposed to be monitored. Such system components/sub-systems can be identified as the potential degradation candidates through Failure Modes, Mechanisms and Effect Analysis (FMMEA) or otherwise [START_REF] Kapur | Reliability engineering[END_REF]. Then, the degradation models (DM) that capture the underlying damage progression can then be obtained in various ways. Physics -of -failure models provide a certain kind of degradation models which are used in model based prognostics.

When the physics of failure is not well known and hence, the DMs at hand are not accurate or reliable, data-driven approaches and statistical based approaches can be employed to obtain the DMs. The DM can be obtained statistically by finding a mathematical model that best fits a given set of degradation data. In this context, commonly employed DM to fit the data are :

 Linear model: () D t at b   Logarithmic model: ( ) ln( ) D t a t b   Power model: () a D t bt   Exponential model: () at D t b e 
where () Dt can be any index representing the degradation (change, percentage change etc. )

and a and b are the model parameters. For example, in [START_REF] Celaya | A model-based prognostics methodology for electrolytic capacitors based on electrical overstress accelerated aging[END_REF] percentage capacitance loss data from an observed accelerated test is used as the DM with the associated model parameters being determined through non-linear least square regression and noise variance given by associated regression residuals. In [START_REF] Saha | Comparison of prognostic algorithms for estimating remaining useful life of batteries[END_REF], relevance vector machine regression is performed over parametric data collected during ageing tests of batteries to find the representative ageing curves and exponential growth models are fit over them to find suitable decay parameters which in turn, are estimated online for prognostication. In [START_REF] Jouin | Prognostics of PEM fuel cell in a particle filtering framework[END_REF] voltage drop is used as indicator of the ageing Proton exchange membrane fuel cell and degradation model is approximated by a linear part and logarithmic/exponential part.

Once the DM has been obtained with acceptable accuracy, recursive Bayesian techniques as discussed in Section 1.5.3 can be employed to estimate the current state of health. This way, benefits of Bayesian estimation are fused with data-driven or statistical approaches to let the obtained DMs adapt as the current information arrives sequentially.

Prognostics in BG Framework 1.5.5

Almost all of the previous attempts in BG framwork to develop prognostics have been resdidual based [START_REF] Djeziri | Data driven and model based fault prognosis applied to a mechatronic system[END_REF][START_REF] Djeziri | Fault prognosis based on fault reconstruction: Application to a mechatronic system[END_REF]Medjaher, Kamal et al., 2009, 2013;[START_REF] Yu | Prognosis of hybrid systems with multiple incipient faults: augmented global analytical redundancy relations approach[END_REF]. These are very few in number and consider the progression of damage deterministic in nature.

In fact, all the previous attempts have been unsuccessful in adapting to the current progression of damage. Moreover, the RUL is obtained without confidence limits which makes such predictions highly unreliable for industrial certification and critical applications [START_REF] Saxena | Metrics for offline evaluation of prognostic performance[END_REF][START_REF] Uckun | Standardizing research methods for prognostics[END_REF]. Additionally, the uncertainties associated with measurements, operating conditions, process noise etc. have not been taken into account. In summary, the previous attempts in BG framework have not been successful in providing efficient RUL predictions.

Conclusions

A comprehensive summary of previous works related to diagnostics and prognostics is provided in this chapter. Special emphasis is laid upon BG-LFT based diagnostics which has been widely used for robust diagnosis of uncertain systems. Limitatons of BG-LFT based diagnosis have been highlighted. Interval based methods have also been discussed concisely to provide a suitable background for the next chapter in which the benefits of BG-LFT method are integrated with properties of Interval arithmetics to develop a novel method for diagnostics of uncertain systems. Also, a comprehensive summary of various prognostics approaches has been provided. Special stress has been laid upon model based prognostics and hybrid prognostics and the related works are extensively reviewed. Existing approaches in BG framework have been highlighted and their significant limitations have been discussed. This is done primarily to justify the second major objective of this thesis, which is the development of efficient prognostics in BG framework.

2.Robust Fault Detection with Interval

Valued Uncertainties

A mathematical model of any real system is in reality, just an approximation of the true, physical reality of the system dynamics. There is always the scope of discrepancy between the model of the system and the actual dynamics of the system in reality. The discrepancy between the physical system and the mathematical model is due to two main reasons: the lack of information on the behavior of the physical system; and the need for a simplistic model so that available analytical tools may be applicable. Typical sources of the discrepancy include unmodelled (usually high-frequency) dynamics, neglected non-linearities in the modeling, effects of deliberate reduced-order models, system-parameter variations due to environmental changes etc. Dynamic perturbations/disturbances in many industrial control systems may also be caused by inaccurate description/modeling of component characteristics, torn-and-worn effects on plant components, or shifting of operating points, etc. Such perturbations may be represented by variations of certain system parameters over some possible value ranges (complex or real). They affect the low-frequency range performance and are called -parametric uncertainties‖. Similarly, the variation in the sensor measurement errors over time is a known phenomenon, often modeled as sensor drift; error in sensor outputs, zerooffset errors etc. are commonly considered as measurement uncertainty. These modelling errors may adversely affect the stability and performance of a control system. Such systems which are vulnerable to modeling defects, sensitive to unmodelled parametric variations, measurement uncertainties etc. are usually considered under the category of uncertain systems. In the BG framework, modeling of uncertain systems and their robust FDI has been approached via BG-LFT technique (described in Appendix B).

In this chapter, system parameters and measurements are considered as interval models in Bond Graph framework. The properties of Interval arithmetic are exploited for modeling uncertain system parameters and uncertain measurements, as interval models. The various structural and causal properties of BG-LFT technique are borrowed and integrated with interval models for a systematic graphical representation of system with interval valued uncertainties. Such a representation leads to a systematic derivation of Analytical Redundancy Relationships (ARR) relations sensitive to interval valued system parameters and system measurements. Such ARR relations are termed as Interval valued Analytical Redundancy Relationships (I-ARRs). Then, Interval Arithmetic properties are exploited to obtain a nominal part and an interval valued part from the I-ARR expression. A novel methodology for robust fault detection is developed by utilizing the rules of interval arithmetic for the generation of robust adaptive interval valued thresholds over the nominal residuals. This way, the benefits of bounding approach and BG are integrated for better diagnosis of uncertain systems. The developed methodology is implemented on an uncertain steam generator system in real time. The uncertain BG of the system is described and I-ARRs are derived. Moreover, a comparative study is done between BG LFT enabled thresholds and I-ARR enabled thresholds via experimental results.

Assumptions

In this chapter, following assumptions are made:

 System parameters/components are uncertain.

 Sensor measurments (outputs) are uncertain  Actuator/control inputs are not uncertain Moreover, it is assumed that the BG-LFT model of the uncertain system under consideration can be constructed. This in turn, implies that the mathematical model is proper and observable (Sié Kam & Dauphin-Tanguy, 2005). The BG methodology allows by causal manipulations, the verification of these properties directly on the BG model [START_REF] Sueur | Structural controllability/observability of linear systems represented by bond graphs[END_REF].

Interval Arithmetic: A Brief Discussion

Interval Arithmetic (IA) deals with computations involving intervals defined as set of real

numbers{ | X X} xx  denoted here as X,X X    in which X is the supremum and X is the infimum. The set of closed intervals is     , | , , I a b a b a b       . Being extension
to real numbers; a real number x can be treated as the degenerate interval X,X   where, Definition 2.1 For the interval X, midpoint of X is given by

  1 mid ( )= X X 2 X 
Definition 2.2 For any interval X, the width of the interval is defined and denoted by width ( )= X X X  Property 2.1 Any interval X can be expressed as, 

  11 mid ( )+ width( ), width( ) 22 1 mid ( ) width ( ) 1,1 2 X X X X XX        Property 2.2 Interval Arithmetic Operations: For two intervals X and Y such that, { | X X} xx  and { | Y } y y Y   X Y, X X Y Y        () = , Y , X Y X Y X Y X Y X Y                      . min , max X Y S S  where { , , , } S XY X Y X Y XY   / .(1/ ) X Y X Y  where1/ { :1/ }= 1/ ,1/ ;0 Y y y Y Y Y Y      .

Property 2.3 Inclusion Isotonicity of Interval

.. ) n F F X X X  inclusion isotonic if 1, 2.. ii Y X i n     1 2 1 2 ( , .. ) ( , ... ) nn F Y Y Y F X X X  As such, for inclusion isotonic interval extension () FX such that 12 X X X , 12 ( ) ( ) ( ) ( ) f R X F X F X F X   
stands true. Thus, an IEF which is inclusion isotonic guarantees the exact range containment.

Definition 2.6: A rational interval function (RIF) is an interval-valued function whose values are defined by a specific finite sequence of interval arithmetic operations.

For example, for

1 1 2 2 3 3 ,, x X x X x X    , a function p defined as 32 1 2 3 3 1 2 3 1 2 ( , , ) X X X p X X X X e X  
can be computed through the finite sequences of interval arithmetic (in order) as

1 2 3 ( , , ) p X X X : 3 32 1 2 2 1 1 3 2 3 4 5 1 4 , , , , . T T X T X T T T X T e T X T        , 51
TT  . Hence, p is a rational interval function.

Lemma 2.1: All rational interval functions are inclusion isotonic. Involving only interval arithmetic operators, which are inclusion isotonic, from the transitivity of partially ordered relation  , it follows that they are always inclusion isotonic.

Theorem 2.1 (Fundamental Theorem of Interval Analysis): If F is an inclusion isotonic interval extension of f , then

1 2 1 2 ( , ... ) ( , ... ) nn f X X X F X X X  .
The corresponding rational interval function (RIF) can be found from NIE by expressing it as finite sequence of interval arithmetic operations as code list. As such, a RIF is inclusion isotonic and following result is obtained.

Corollary 2.1: If F is a rational interval function (RIF) and an interval extension function

(IEF) of f , then 1 2 1 2 ( , ... ) ( , ... ) nn f X X X F X X X  .

Modelling Uncertainties as Intervals

In this section, the novel modeling of parametric and measurement uncertainties in the interval form is described. Nominal model of any deterministic physical system may be modelled in BG form, in preferred integral causality, with nominal system parameters composed of basic elements with

N   θ
such that C, I, R, TY and GY are respectively the capacitance element vector, inertial element vector, dissipation element vector, transformer element vector and gyrator element vector. Sub-script n denotes the nominal value of the parameters. The sensor vector is formed by ( ) System Parameter Uncertainty 2.3.1

An uncertain system parameter θ , can be represented in interval form as,

  n l n u θ,θ = θ -Δθ ,θ +Δθ   (2.1) θ=sup{ { , }| θ θ,θ , θ} aa           (2.2) θ=inf{ { , }| θ θ,θ ,θ } bb          (2.3)
The lower bound θ is defined as in (2.2) and the upper bound θ is defined as in (2.3), with inf and sup as the infimum and supremum operators respectively. Δθ l and Δθ u are the additive uncertainty/deviation on the left and right sides respectively, over its nominal value θ n such that Δθ 0 l  and Δθ 0 u  . Any parameter θ n may be treated as a degenerate interval   θ ,θ nn , with equal upper and lower bounds. This way, an uncertain parameter may be modelled as combination of its nominal interval value and uncertain additive interval as,

    n n l u θ,θ = θ ,θ + -Δθ ,Δθ   (2.4)
The multiplicative form of representation of uncertainty is particularly useful for accounting relative uncertainty/errors. The multiplicative interval uncertainty denoted ,     , may be obtained as in (2.5), where θ 0, θ 0

lu     . n u n θθ l ,-Δθ /θ ,Δθ /θ        (2.5)
Then, (2.4) may equivalently be written as,

  θθ θ,θ θ . 1+ , n            (2.6)
In case the constitutive law is written in terms of 1 θ , it may be expressed as, 

    1 θ 1 θ 1 1 1 1 , = = . 1+ δ ,δ θ θ θ -Δθ ,
  1 θ 1 θ 1 θ 1 θ n 1 θ 1 θ θ δ ,δ = -1 θ -Δθ ,θ +Δθ θθ δ ,δ = , -1 θ +Δθ θ -Δθ -Δθ Δθ δ ,δ = , θ +Δθ θ -Δθ n n l n u nn n u l ul n u n l            
(2.8)

Representation on Bond Graph

For any BG element 

    R, I,C,TF,GY , the nominal degenerate interval   n θ  n n n n n R , I ,C ,TF ,GY is decoupled from its uncertain interval part               n   R n I n C n TF n GY n δ R , δ I , δ C , δ
  , , . 1+ , . R R R n R R R e e R R f R f                     , , . , . . R n R unc R R n n R R R n R e e e e R R f R f                 , , . R R unc n R R n n R R e e e e R R f w     (2.10) (2.11) where   , .z , . . R R R R R R n R w R f                 . Interval valued uncertain effort unc R
e is brought at the 1-junction by   R w . as, 11 ,, ul

RR n u n l RR R R R R               .The characteristic law R R e f R 
can be expressed using uncertain interval form as,

      11 11 1 1 1 , , . . 1+ , . , , . 1 . R unc R n R R R R R R n R R R R R n R n f f f f e e R R R e f f R e R                    1 , R unc R R R R n f e f f w R       (2.12) (2.13)
where the interval valued fictive input 

  1 1 1 1 1 1 , .z , . 1 .e R R R R R R n R wR                   .

Measurement Uncertainty 2.3.2

Measurement uncertainties can be explicitly represented on BG model in preferred derivative causality used for diagnosis. In BG model, the detectors are modeled by De or Df elements representing the effort detector and flow detector respectively. The effort detector is always connected to 0-junction and measures the common effort between all the bonds connected to it whereas flow detector is always connected to 1-junction measuring the common flow between all the bonds connected.

For diagnosis based on ARR generation , the detectors are dualized (Samantaray, Arun K et al., 2006b) which means that the effort detector De becomes a source of effort signal SSe and imposes the effort signal at the 0-junction connected to the detector. Flow detector Df becomes a source of flow signal SSf and imposes flow at the 1-junction connected to the detector. 

                                                        * :, u l Se MSe SSe SSe        (2.16)
Similarly, uncertain flow detector is modelled as,

 

, , ,

t t l u measure true SSf SSf SSf SSf SSf SSf             (2.17)
The uncertainty interval is modelled by virtual source of flow 

                        * 1 1 4 4 * 2 2 5 5 * 3 3 6 6 , , , : , , , , : , , , , : 
, 

l u l u measure true l u l u measure true l u l u mea d d d sure true f f f f SSf SSf SSf MSf SSf SSf f f f f SSf SSf SSf MSf SSf SSf f f f f SSf SSf SSf MSf SSf SSf                                 (2.
     4 4 3 7 1 1 1 1 1 , 11 δ , δ e R RR nn f f f f w e RR                                 3 3 1 1 3 3 11 1 1 1 1 1 11 , δ , δ , 11 δ , δ ; 1 1 1 1 δ , δ . . δ , δ 1 . , 1 ,1 SSe RR nn SSe SSe R R nn R R SSe R R n n n n R l u n e e e e RR SSe SSe RR SSe SSe R R R R SSe w SSe SSe R R R                                                (2.20) (2.21)
From (2.21), the flow brought in by parametric uncertainty on R and measurement uncertainty may be identified. Following the similar approach for C, flow f 5 , can be found as,

      55 , ( ) ( ) ,. δ , δ . . , . CC SSe n C C n ww d d SSe d SSe f f C C C C dt dt dt                   (2.22)
where, , 

        1 ,, 1 ,, , , . i i l u l u t t SSe ii SSe SSe SSe SSe d C C C C dt t t                     (2.23) with,   11 1 , , , , , , , , , 
i i i i i i l u l u l t u t u t l t t t SSe SSe SSe SSe SSe SSe SSe SSe                   (2.24)
Note that (2.24) is a direct result from IA and is a better approximation compared to the one made in [START_REF] Touati | Robust diagnosis to measurement uncertainties using bond graph approach: Application to intelligent autonomous vehicle[END_REF] where, the worst case max operator is employed for the same. 

Interval Valued Analytical Redundancy Relations

For achieving robust FDI, the methodology of ARR generation as presented in Section 1.4. Step 1: Preferred derivative causality is assigned to the nominal model and detectors De (Df) are dualized to SSe (SSf), wherever possible.

Step 2: Parametric uncertainties and measurement uncertainties are modelled in interval form and represented on the nominal BG, as explained in Section 2.3.1.1 and Section 2.3.2.1 respectively, to obtain the uncertain BG.

Step 3: The candidate ARRs are generated from -1‖ or -0‖ junction, where power conservation equation dictates that sum of efforts or flows, respectively, is equal to zero, as:

 for 0-junction:   0 . , . : 0 m iN ii i s f f Sf s MSf w           (2.25)
 for 1-junction:

  0 . , . : 0 m iN ii i s e e Se s MSe w           (2.26)
with s being the sign rendered to the bond due to energy convention.

Step 4: The unknown effort or flow variables are then eliminated using covering causal paths from unknown variables to known (measured) variables (dualized detectors), to obtain the I- 

        1 2 ( ), ( ) : ( ) ( ), ( ) ( ) , ( ), ( ), , ( ), ( ) , , , , ( ), ( ) 
n n R t R t r t B t B t r t t t Se Sf B t B t t t                         n θ θ SSe SSf θ SSe SSf Ψ θ,
                1 , . 1 , 1 ,1 ( ), ( ) ( ) ( ) . δ , δ . . , . SSe CC n R l u SSe n C C n ww SSe R w SSe SSe R R R t R t Sf d d SSe d SSe C C C C dt dt dt                                     (2.31)
The nominal part and interval valued part can be de-coupled as,

              1 ( ), ( ) : ( ) ( ), ( ) () ( ) . 1 . () ( ), ( ) 1 ,1 δ , δ . . , . n n n n SSe R SSe C C n R t R t r t B t B t d SSe r t Sf SSe R C dt d d SSe B t B t w R R C C C dt dt                                           (2.32)
Example 2.2 Consider Fig. 2.6 and Fig. 2.7. However, the characteristic equation of R element is considered as a non-linear relation given in (2.33). It models a situation of turbulent flow across a hydraulic valve; a situation that frequently arises in hydraulic systems. 

            4 4 3 7 1 1 1 1 1 3 3 1 1 3 3 3 3 1 1 3 3 , 1 δ , δ . 1 , . 1 δ , δ . 1 . , ,1 δ , δ . 1 . , R n R R n n R R n n R R n f f f f w R e R e e e R R e e e e R R e e                                     (2.
            4 4 3 3 3 3 1 1 3 3 1 , mid , 1 width , 1 1,1 2 δ , δ . 1 . , nn R R n f f e e R e e R R e e                        (2.35)
Moreover, the associated I-ARR (see(2.31) ) is derived as,

                  33 33 1 1 3 3 () ( ), ( ) : mid , 1 . 1 width , 1 1,1 2 δ , δ . 1 . , () δ , δ . . , . nn n R R n SSe C C n d SSe R t R t Sf e e R C dt e e R R e e d d SSe C C C dt dt                          
(2.36)

Then, nominal part and interval valued part can be de-coupled as, 

                  33 33 1 1 3 3 ( ), ( ) : ( ) ( ), ( ) () ( ) mid , 1 . 1 ( ), ( ) width , 1 1,1 2 δ , δ . 1 . , () δ , δ . . , . n n n n n R R n SSe C C n R t R t
                                      
(2.37) 

Interval Valued Robust Thresholds

    ( ) ( ), ( ) ( 1) ( ) 1, 1 ( ), ( ) ( ) ( ), ( ) n n 

Application: Robust Fault Detection of Steam Generator System

The methodology is validated on an uncertain model of a steam generator system installed in CRIStAL laboratory [START_REF] Ould Bouamama | Supervision of an industrial steam generator. Part I: Bond graph modelling[END_REF], [START_REF] Medjaher | Supervision of an industrial steam generator. Part II: Online implementation[END_REF]. The detailed BG-LFT modeling of the uncertain steam generator system with parametric uncertainties and its subsequent robust passive diagnosis is described in (Djeziri, Mohand Arab et al., 2009b). TQ for conduction. The deterministic (nominal) diagnostic BG in preferred derivative causality is given in Fig. 2.11. The four sub-systems tank, pump and pipe, boiler and thermal resistor carry uncertainties on their respective parameters and the measurements of pressure in tank and boiler.

Tank

As shown in Fig. 2.11, the two port C:C T element consisting of hydraulic port: C h , and thermal port: C t , respectively, models the coupling between the hydraulic and thermal capacity of the tank. De:P T and De:T 2 represent the pressure sensor and temperature sensor present in the tank. Initially, the tank is filled in at ambient temperature. As such, the initial input mass flow in m is assumed zero.

Due to cylindrical shape of the tank, hydraulic capacity C

h is given as, 1

.( .g)

h T T CA    (2.44)
where, A T is the area of the tank, T  is the water density and g is the gravity constant.

The uncertainty on C h is considered in interval form as, ,,

,

hh TT h h h n h n C C T n T n h h A A TT C C C C AA CC gg                  (2.45) (2.46)
where,

T A
 is given by measurement of corrosion layer or scale deposit on the tank wall and .

p H m c T  (2.52)
where 15

H is the enthalpy flow at C T element, c p is the specific heat at constant pressure and T 2 is the fluid temperature measurement inside the tank. The uncertainty is due to variation of c p , which is evaluated by polynomial interpolation algorithm. As shown in Fig. 2.12, uncertainty on 

C T element
  1 1 2 2 1 1 2, 22 1/ 1/ 2, 1/ 1/ 1, 1 1, 1 :[w ] . , . , 1 , n Rp k k n k k k k nn k m MSe k k b k                           (2.
      1 1 1 1 1, , 1 , 1/ 1/ 1 , . 8.( / ). .(1/ ). 1 , . 1 , z z p p p p R R z n l p n p n L L r r R L r                          (2.58) As 1, , 1 , 8.( / ). .(1 / ) z n l p n p n R L r   , 1 1 1 1 1 1 1/ 1/ 11 1/ 1/ 1/ 1/ , , , , , , , . 
,

z z p p p p p p p p L L r r p p p p R R L L r r L L r r G                                                           (2.59)
Value on the left of (2.59) is the range of an interval function   

11 1/ 1/ , , , 
p p p p L L r r G                 . Function G can be considered as Natural Interval Extension of 1 1 1 1/ 1/ 1/ ( , ) . p p p p p p L r L r L r g          .
        1 1 1 1 11 1/ 1/ 1 1/ 2 1/ , , , ,
, 0 , , 0 0, , 0, 
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where F 1 is the flow measurement of 26 m . As represented in Fig. 2.12, the uncertain pressure effort brought by uncertain 1 z R is modeled as

1 :[ ] Rz MSe w
where,
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The enthalpy flow through the pipe is expressed by measured variables F 1 and T 2 as, 18 28 2 1

.

.

p H H T c F  (2.64)
The associated hydraulic-thermal coupling is modelled by resistor element R:R T1 . The uncertain thermal energy issued due to variation of specific heat c p is modeled as
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In this work, the experimentally identified value of Ra  used in (Djeziri, Mohand Arab et al., 2009b) is employed to obtain the uncertainty on R a in the interval form. From (2.66), the associated uncertain flow is obtained as,
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1, 1, , δ δ δ δ δ δ δ δ B B l l l l v v v v C C V V V V               2, 2, 1, , δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ B B B l l l l l l l l v v v v v v v v C C C h V h h V h h V h h V h                  (2.
    , , , , 1, 1, 1, , , , , , , 2, 2, 2, ( ). ( ) 
. :[ ] , . 
( ). . ( ) ( ). . ( ) :[ ] , B B B B B B l n B l n v n B v n C C C l n B l n l n B v n B v n v n B C C C d P V P V MSf w dt d P V h P P V h P MSf w dt                 (2.73) (2.74)
Valve V B present at the bottom of the tank is manually controlled and introduces water leakage (parametric fault) in the tank, representing a fault modeled at junction 0 h2 in Fig. 2 During normal functioning of the system, stem position of the valve V B , present at the bottom of the water tank is at V B,1 (with discharge coefficient 

MSe

    , as shown in Fig. 2.12.

Thermal Resistor

The RS element models the electrical resistance (considered as an active resistor that generates thermal power) of the heating element. The nominal value of the resistor RS n is calculated using the electrical power given by sensor Df: 4 Q as, .,

in n MSf Q U b RS           
(2.80) From Fig. 8, the enthalpy outflow from the boiler to the expansion system can be expressed as follows, The approach presented in Section 2.4 and Section 2.5 is followed to generate interval valued ARRs from the uncertain BG of the system in Fig. 2.12.

For detection of leakage fault in the tank, energetic assessment at junction 0 h1 gives, 
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The second ARR is generated from the junction 1 p connected to SSf: F 
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Third ARR is generated from the junction 0 h2 connected to the dualized detector SSe: P B sensitive to the leakage fault in the boiler. 
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In Fig. 2.12, the fourth ARR is generated from the thermal 0 t2 junction connected to the dualized SSe:T 5 as, 
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Experimental Results

2.6.3

The nominal and uncertainty values of the various system parameters and measurement errors are tabulated in Table 2-III. The interval computations are achieved using INTLAB [START_REF] Rump | INTLAB-interval laboratory[END_REF] library, which is a toolbox for MATLAB supporting real and complex interval computations. The real time computation are done using dSPACE® real time interface implemented via SIMULINK.

Nominal Conditions: Fig. 2.13 shows the four residuals found in the previous section under no fault conditions, with all the parameters remaining inside their pre-defined interval bounds. The latter translate to the following facts:

 Stem position of the valve V T , present at the bottom of the water tank is between V T,1 (discharge coefficient ,,

A A B B          .
There are four types of faults introduced in the system.

Fault in Tank: Fig. 2.14 (a) shows the variation in outflow of valve V T , present at the bottom of the water tank. At t=6s, the valve stem position is manually changed from its nominal state (between V T,1 and V T,2 ) to V T,3 (see Table 2- ,,

A A B B          .
Fault in Pipe: As shown in ,,

A A B B          .
Fault in Boiler: Fig. 2.16 (a) shows the variation in outflow of valve V B , present at the bottom of the boiler. The valve stem position is manually changed between t=30s and t=110s;

the nominal state (between V B,1 and V B,2 ) is modulated to V B,3 (see Table 2-II). This leads to increase in the flow output as shown in Fig. 2.16 (a). The latter translates to the fact that associated discharge coefficient

B

Cd is outside of the allowed interval limits i.e. ,,

A A B B          .
Fault in the Thermal Resistor: In Fig. 2.17 (a), between t=13s and t=22s, value of the thermal resistor (electrical resistance) is modulated linearly. It crosses the corresponding upper limit of +0.5ohm at around t=16s. As shown in Fig. 2.17 (b), r 3,n deviates outside the upper threshold limit and thus, fault is detected. The residual is corrupted with unavoidable sensor noise (visible as sharp peaks). ,,

A A B B          .
Comparison with BG-LFT Robust FDI 2.6.4

Uncertain parameters existing in industrial multi-energetic systems may be broadly classified into two categories:

 Uncertain physical components: Comprising of manufactured industrial equipments or components like electrical resistances, capacitors, area-radius of a hydraulic tank etc.

 Uncertain physical phenomenon: Comprising of physical processes that deviate or exhibit natural variation based upon different operational conditions, operational environment etc. For example, physical phenomena such as friction, loading, inertia, rigidity, progressively varying electrical resistances etc.

Parameters of the former type carry uncertainty in terms of manufacturing errors or tolerance of manufacturing (percentage error) on the either side of its fabricated value. Usually, the uncertainties on such components are quantified statistically and lead to an equal magnitude of uncertainty on either side of the nominal value. For example, an electrical resistor of 4 Ohm with 1% uncertainty i.e.  0.04Ohms. On the other hand, a physical phenomenon may vary on either side of the nominal value, or uni-directionally (friction, corrosion layer etc.) under different operational or environmental conditions. Hence, the upper and lower bounds on the allowed deviation may not be necessarily equal.

In BG-LFT method (see Appendix B), the parametric uncertainties are quantified in a statistical manner so that the magnitude of the uncertainty on either sides of the nominal value is equal, or uncertain limits over the nominal value remains the same. In other words, in BG -LFT method the uncertainty over all of the considered parameters are quantified in a similar manner, irrespective of whether the considered system parameter is a varying physical component or physical process. As BG is unified language of modelling multi-energetic systems, such an approach promises to limit the scope of uncertainty quantification in presence of various types of physical phenomena that vary uni-directionally or unequally, on either sides of their nominal value.

To illustrate the aforementioned aspect, consider a parameter vector θ , two uncertain parameters 12 {θ ,θ }and a parameter set consisting of only certain parameters, 12 = -{θ ,θ }  θθ .

Without the loss of generality, in the discussion that follows, it is assumed that the energetic assessment is done at a 1-junction, to obtain the constraint relations: BG-LFT derived ARR: R and I-ARR: R,R   . Moreover, it is assumed that there are only two uncertain system parameters sensitive to R and R,R   .

BG-LFT Method:

In BG-LFT context, an uncertain parameter θ i , (i=1,2) is modelled as:

,n θ = θ ±Δθ ; θ 0

i i i i  (2.92) or, ,n θθ , Δθ θ = θ ( 1 ± δ ); δ = θ ii i ii in (2.93)
where θ i  is the additive uncertainty, quantified statistically and θ δ i is the corresponding multiplicative uncertainty. Thus, the lower and upper limits on the parametric deviation remain equal. Let the ARR R be sensitive to θ and system measurements, system inputs and their Clearly, as the thresholds are sensitive to absolute values of the uncertain efforts, the sign of the latter is not accounted in the development of thresholds.

I-ARR Context:

On the other hand, as described in Section 2.3-2.5, uncertain parameters as interval models require the knowledge of parametric variation within an interval bound. As such, knowledge of statistical properties (distribution) of uncertainty is not mandatory. The uncertainty bounds can be chosen based upon the nature of the parametric variation. As such, the interval bounds of uncertainty are not necessarily symmetric or non-zero, with respect to the nominal parametric value. This leads to an efficient modelling of uncertainty for physical components and physical phenomenon. While for the former, the uncertainty interval bounds are usually given by the statistical distribution around the nominal value, intervals bounds for the latter are usually non-symmetric and depend upon the underlying nature of parametric deviation during system operation. Thus, the uncertain parameter θ i , (i=1,2) can be modelled as (see Section 2.3-2.5):

,n , , , , , , θ ,θ θ -Δθ ,Δθ ; Δθ Δθ , Δθ 0, Δθ 0

i i i i l i u i l i u i l i u         
(2.97)

In the I-ARR context, the energetic assessment at 1-junction leads to interval valued URIF (2.98)

Clearly, the signs of efforts θ i e , (i=1,2) are taken into account for determination of threshold limits. Moreover, interval arithmetic is involved in the determination of the range of URIF (interval limits). The upper and lower thresholds generated from the interval bounds of the range of URIFs, for different sign configurations of uncertain efforts, are shown in Table 2

-IV.
Therein, it is observed that when the bounds of the interval uncertainty are symmetric (lower limit equals upper limit), the upper and lower thresholds obtained from URIF range bounds are equal to the BG-LFT derived ones. In other words, if the interval limits of the uncertainty are symmetric with respect to zero (i.e. magnitude of additive uncertainty on either sides of the nominal value is equal), BG-LFT enabled thresholds can be obtained from the interval limits of URIFs. 

     

The same analysis can be exercised at 0-junction with two or more uncertain parameters.

Thus, following significant observations can be made:

 BG-LFT method models uncertainty with symmetric bounds. As such, various physical phenomena cannot be modelled accurately.

 BG-LFT thresholds are necessarily symmetric with respect to zero.

 BG-LFT method of modelling uncertainty is a special case of interval valued uncertainty approach in BG, where the uncertainty interval has symmetric bounds.

 BG-LFT enabled thresholds can be obtained from URIF range bounds when the uncertainty intervals have symmetric bounds.

BG-LFT Enabled Threshold Generation for Steam Generator System 2.6.5

The BG-LFT enabled thresholds are assessed for the four residuals, derived from steam generator system in Section 2.6.2. Each of the uncertain parameters is considered with symmetric uncertainty limits as shown in (2.93). Physical processes that deviate uni-directionally are considered in such a way that uncertainty limits are symmetric with respect to their respective nominal values.  Consider 1,n r , 2,n r and 3,n r , like I-ARR enabled URIFs, the BG-LFT thresholds are successful in fault detection. This can be attributed to the fact that, with respect to 1,n r , 2,n r and 3,n r , the parametric uncertainties involved in their corresponding URIFs are not mutually compensating in nature (see (2.85), (2.87), (2.89)) . In other words, the uncertainties affect their URIF threshold development, in a similar fashion. As such, in URIF, the upper uncertainty interval limit of an uncertain candidate does not interact (add or subtract) with lower uncertainty interval limit of other uncertain candidate.
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 However, the aforementioned aspect is always true for BG-LFT thresholds irrespective of weather uncertain candidates are mutually compensating or noncompensating. For example, 4,n r is sensitive to uncertain candidates that are mutually compensating in nature (positively and negatively sensitive to nominal residual, see (2.91)). The I-ARR enabled URIFs lead to efficient threshold bounds as shown in Fig.

(c)

. The latter is due to system dynamic dependent, interaction of upper interval limits of a set of uncertain candidates with lower interval limits of another set of uncertain candidates. However, on the other hand, the naïve summation of the absolute values of each uncertain flow/effort results in over-estimated thresholds. It leads to non-detection of the fault as shown in Fig. 2.19 (d).

Conclusions and Contribution

The methodology of modeling parametric and measurement uncertainties in interval form on Bond Graph (BG) models is a novel contribution of this work, and forms the initial step towards 

3.A Methodology of Hybrid Prognostics

Benefits of system level prognostics are many and cannot be over-emphasized [START_REF] Sun | Benefits and challenges of system prognostics[END_REF]. For almost all practical purposes, any plant (the dynamic system of interest) is a feedback closed loop system such that the system outputs follow a desired reference. As such, the system level prognostics present unique challenges in that incipient parametric degradation may progress unnoticed in presence of controller compensated system outputs, resulting in nonestimation of the same till the saturation limit of controller is reached. BG derived ARRs being sensitive to system parameters and control inputs can be exploited for the same at local component level while being in closed loop regime. Such a kind of BG enabled health monitoring, can be achieved in a unified framework at global system level. The main objective of work presented in this chapter is to address the problem of prognostics in BG modelling paradigm, by exploiting its structural and causal properties while the system is considered uncertain globally and functions in feedback closed control loop. The parametric uncertainty is modeled in interval form. Prognostic issues are approached by posing the problem as a joint state-parameter estimation problem, a hybrid prognostic approach, wherein the fault model is constructed by considering the statistical degradation model of the system parameter. The system parameter is known a priori to be undergoing degradation. Measurements are obtained from BGderived nominal residual given by Interval valued ARRs (I-ARRs) developed in Chapter 2.

Using Particle Filters algorithms, estimation of the system parameter state under degradation (prognostic candidate) along with the associated unknown and possibly time varying degradation progression parameters(s) (DPPs) is achieved and tracked to obtain the state of damage in probabilistic terms. These terms are used for prediction of RUL of the system with respect to that parameter. The novel method of hybrid prognostics is applied over a torsion bar mechatronic system. A detailed study is presented via simulations and experiments in real time.

Assumptions and Objectives

Nominal model of any deterministic physical system may be modelled in BG form, in preferred integral causality, with nominal system parameters composed of basic elements with N  θ  such that C, I, R, TY and GY are respectively the capacitance element vector, inertial element vector, dissipation element vector , transformer element vector and gyrator element vector. Sub-script n denotes the nominal value of the parameters. The sensor vector is formed by being respectively the source of effort and source of flow vectors.

In this chapter, following assumptions are made:

 Only system parameters are considered uncertain. Sensors are considered non-faulty;

 Single system parameter (prognostics candidate) is assumed to be under progressive degradation. In fact, single mode of degradation is assumed to affect only the system parameter which is the prognostics candidate.

 The system parameter (prognostics candidate) that undergoes degradation is assumed to be known a priori. The issue of isolation or isolability of the prognostic (faulty) candidate is assumed resolved. Let θ ( ) d t  θ be such prognostic candidate.

 Degradation model (DM) of θ ( ) d t  θ is assumed to be known a priori.

 For an I-ARR derived, only one system parameter sensitive to it (known a priori) varies with time.

 Noise associated with measurements (residuals) is assumed normally distributed Gaussian in nature.

Objectives are:

 Reliable estimation of health of prognostic candidate and hidden degradation parameters that accelerate or vary the degradation progression.

 Reliable prediction of the RUL of the prognostic candidate, accounting various associated uncertainties.

Degradation Model

As discussed in Section 1.5.4, a hybrid prognostic procedure requires availability of degradation model of the prognostics candidate. This degradation model can be based upon the physics of failure/degradation as sought in model based prognostics approaches or obtained through various data-driven methods [START_REF] Guo | Practical Approaches for Reliability Evaluation Using Degradation Data[END_REF].

In this work, it is assumed that DM of the prognostic candidate θ d is known and available a priori. Moreover, the DM is assumed to be statistically obtained as, θ θ ( ) ( ( ), ( )) ; θ ( 0) θ

d d d d d d n t g t t t    γ v (3.1)
where (.) 

Obtaining Degradation model in BG Framework

3.2.1

In BG framework, the DM of a system parameter under degradation θ d θ , θ N  θ can be obtained from the time evolution profile of the respective ARR to which it is sensitive, assuming that the rest of the system parameters sensitive to the same do not undergo any kind of progressive fault or degradation (Medjaher, Kamal & Zerhouni, 2013), (Borutzky, Wolfgang, 2015). Here, consider the point valued part of the d th I-ARR, ()  .The latter as a function of system measurements inputs (known variables) and their derivatives etc., is always corrupted with noise.

d rt such that with \ θ ( ) d t   θθ , 0, ( ) 0 d n t r t  ,   1 () θ ( ), , ( 
Note that residual based DM should be obtained prior to prognostics. This routine can be performed offline i.e. prior to the phase when system's health monitoring is of interest.

Methodology for Hybrid Prognostics in BG Framework

In this section, the methodology for prognostics is described. The method consists of robust detection of beginning of the parametric degradation, construction of a fault model (with respect to the candidate of prognostics), construction of observation equation from I-ARR which is sensitive to the prognostics candidate, estimation of the state of health of the parameter, estimation of hidden parameters that influence the degradation rate and RUL predictions.

Robust Detection of Degradation Beginning 3.3.1

The problem of detecting the degradation beginning is treated as robust fault detection problem. As the primary interests lie in the latter, and not in fault detection per se, the uncertainty on sensors is not considered. Moreover, the proposed estimation procedure takes into account measurement noise for an optimal estimation and RUL prediction. The robust fault detection methodology using interval valued thresholds developed in Chapter 2 is applied to detect the commencement of considered prognostic candidate's degradation. However, only parametric uncertainties are considered. The procedure is given in brief.

Step 1: Preferred derivative causality is assigned to the nominal model. Step 2: Parametric uncertainties are modelled in interval form and represented on the nominal BG, as explained in Chapter 3, Section 2.3, to obtain uncertain BG.

Step 3: I-ARRs are derived as explained in Chapter 2, Section 2.4, to obtain I-ARRs accounting for only parametric uncertainties in interval form. The nominal residual () n rt can be perfectly decoupled from URIF ( ) (3.9)

n i R R w Se Sf t t          Ψ θ θ,θ SSe SSf (3.4)     1 2 ( ), ( ) : ( ) ( ), ( ) ( ) , ( ), ( ), , ( ), ( ) , , ( ), ( ) n n R t R t r t B t B t r t t t Se Sf B t B t t t                         n θθ θ Ψ θ,
Pseudo algorithm is given in Table 3-I. 

i i kk kk                    n θθ θ Ψ θ,θ , δ ,δ Se Sf, SSe SSf SSe SSf Output: fault detection   1 ( ) ( ) ( ) ii n r k k k  n θ Se, Sf, , SSe , SSf 2 ( ), ( ) FC_ i k B k B k k                   θθ θ,θ , δ ,δ ,SSe( ), Ψ SSf( ) if ( ) ( )

State Equation

The parameter under degradation θ ( ) where, () θ ( ), ( )

d t is included as a tuple   θ , ,
T d d d t t t    γ x
is the augmented state vector and d f is state transition function following the Markovian assumption.

Residual Based Observation Equation

Previously for fault estimation purposes, the residual based information about the fault value has been obtained by exploiting bicausality notion [START_REF] Touati | Bond graph model based for fault estimation and isolation[END_REF] [START_REF] Benmoussa | Bond Graph Approach for Plant Fault Detection and Isolation: Application to Intelligent Autonomous Vehicle[END_REF]. It forms a systematic way of obtaining the sensibility function that relates fault value to residuals. However, several necessary modifications are incurred (bicausality related) on the BG model already in-use. In order to avoid the associated complexities, the authors have refrained from employing the former approach. Moreover, the objective is to exploit the nominal residual for the estimation of state variables. This way, the nominal residual used for detection of degradation beginning can further be used for estimation of state of health of the prognostic candidate and associated DPPs. This is possible if the ARR expression is altered to obtain the observation equation in an appropriate way, such that the nominal residual provides the measurements of state variables. To this end, a simple algebraic approach is proposed. 

    1 () θ ( ) d n d rt a t    (3.15)
The same result can be obtained through bi-causality notion (not analyzed in this work) where, 1 a is understood as the sensibility function which links the respective nominal residual to fault value as,

    () θ ( ) () θ ( ) d d n d n d rt t rt t     (3.16)
The observation equation argument in (3.14) includes known variables (sensor measurements, system parameters, inputs etc.) and their derivatives. It is heavily corrupted with noise, especially due to presence of terms such as derivative(s) of measured variables. In this work, the noise is considered additive, independent and identically distributed (i.i.d.) drawn from a zero mean Gaussian distribution and is assumed uncorrelated to () In the following section, the method applied for degradation estimation and consequent prognostics is explained assuming that degradation begins at the start. In reality information about k d will be given by fault detection module as described in Section 3.3.1.

d d d d k k k k   x x f x v   d d d d k k k y h w  x (3.18) (3.19)   ( ) ( ) ( )
        2 2 1 | θ , exp 2 2 d k d k d d d d d d k k k k k w w p y y h x      γ (3.
The state distribution is approximated by set of discrete weighted samples or particles,

 

,, 1 (θ , ), w

N d i d i i k k k i γ
, where N is the total number of particles and for i th particle at time k, , θ di k is the estimate of the state (system faulty parameter here) and , di k γ is the estimate of fault progression parameters. The weight associated with each particle is denoted by w i k . The posterior density at any time step k is approximated as:

0: (θ , ) 1 (θ , | ) w . ( θ ) dd kk N d d d i d d k k k k k k i p y d d    γ γγ  (3.21)
where (θ , ) ( θ) (θ ,| )

d d d k k k py γ , assuming particles   ,, 1 1 1 1 (θ , ), N d i d i i k k k i w     γ
are available as realizations of posterior probability

1 1 0 : 1 (θ , | ) d d d k k k py    γ
at time 1 k  , with the following main steps: (θ , )

 Realizations of prediction 0 : 1 (θ , | ) d d d k k k py  γ , is obtained in form of new set of particles   ,, 1 (θ , ), w N d i d i i k k k i γ ,
d i d i kk γ
is then updated. The weight w i k is associated to each of the particles based on the likelihood of observation d k y made at time k as, , ,

( | θ , ) / ( | θ , ) N i d d i d i d d j d j k k k k k k k j p y p y    γγ (3.22) , , 1 w 
Note that with the choice of importance density as the prior, the weights were obtained as, . The objective behind resampling is the elimination of particles with small weights and focus on particles with large weights for estimation. In this work, systematic resampling scheme is preferred as it is easy to implement and takes O(N) time and the algorithm can be referred in [START_REF] Arulampalam | A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[END_REF].

 The prediction, update and resample procedures form a single iteration step and are applied at each time step k. The algorithm for SIR filter is given in Table 3-II. Details about other variants of sequential importance sampling PFs can be referred in [START_REF] Arulampalam | A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[END_REF]. ), w RESAMPLE (θ , ), w
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N N d i d i i d i d i i k k k k k k i i    γ γ

Random Walk Noise Variance Control

Consider the DPP vector 

Median ( Median (X ) ) () Median (X ) i i j j jj X RMAD X   (3.24)
where, i X is an element for a data set X.



The variance is adapted in a proportional control law way where the normalized error between the current RMAD 

N d i d i i k k k i γ , k ξ v ,   d* d* lu γ , γ , 0 k  ξ v , ξ* v , d P Outputs: k ξ for all {1,.. } d jN  γ do if kL  , ˆdj k   , 0 1 mean( ) 1 lL dj kl l L       else , ˆdj k   , mean ( 
) Like previous attempts [START_REF] Daigle | Model-based prognostics under limited sensing[END_REF]Daigle, M. J. & Goebel, 2011a, 2013;[START_REF] Jouin | Prognostics of PEM fuel cell in a particle filtering framework[END_REF], the corresponding RUL prediction at time k, ( θ )

dj k  end if if , , * , * ˆ, dj d j d j k lu       then   , ,, 1 v RMAD dj N d j i kk i     ,, ,, , * , 
d d d i d i d d d i d i k l k l N d d d i d d kk k l k l k l k l i p y w d d         γ γ γ  (3.26)
where, for the i th particle, the corresponding weight during the , di l -step propagation is kept equal to weight w i k at time of prediction k. Then, for i th particle, , θ , ,

di d i d i k RUL k l k l     and the corresponding θ d k RUL is obtained as: θ, θθ 0: () 1 ( | ) w ( ) dd d i k N di k k k k RUL i p RUL y dRUL     (3.27)
The prediction of 
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Health monitoring of Prognostic Candidate

The beginning of degradation is detected by the fault detection module described in Section 3.3.1. Subsequently, estimation and prediction of RUL is triggered. can not be assured. Such an approximation does not affect the estimation process as it guarantees to include the true initial state of θ ( ) d t . The complete algorithm is shown in Table 3-V. Fig. 3.2 shows the schematic description of the methodology presented in this chapter. 

Evaluation Metrics

In this section, various metrics employed to evaluate the performance of estimation, prediction etc. are briefly discussed. Readers are advised to refer Saxena et al. [START_REF] Saxena | Metrics for offline evaluation of prognostic performance[END_REF] for details and works of [START_REF] Daigle | Model-based prognostics with concurrent damage progression processes[END_REF], for the case study involving the same.

Estimation performance 3.5.1

The estimation performance is evaluated using two metrics that quantify the accuracy and spread.

Root mean square error (RMSE): This metric expresses the relative estimation accuracy as: for the prediction at k p , to be acceptable.

Case Study on Mechatronic System through Simulations

The method presented in this paper is applied on a mechatronic Torsion Bar 1.0 system shown in Fig. 3.3 [START_REF] Kleijn | Torsion Bar 2.0 Reference Manual[END_REF][START_REF] Tarasov | Flat control of a torsion bar with unknown input estimation[END_REF] which is integrated with 20 SIM, a BG dedicated software [START_REF] Broenink | Modelling, simulation and analysis with 20-sim[END_REF]. Real time implementation is achieved through 20 SIM 4C 2.1, a prototyping environment that enables C-code implementation in real time on ARM-9 processor based torsion bar system [START_REF] Kleijn | 20-SIM 4C 2.1 Reference Manual[END_REF]. The interval computations, estimation, variance control and prediction algorithms are written in Matlab Function Block in Simulink. The embedded code is generated through Simulink Coder in Matlab2013a ® . INTLAB is used to implement interval calculations during simulation. For real time C-code generation, relevant/required functionalities are borrowed from INTLAB.

Nominal System 3.6.1

The functional schematic model of the mechatronic system, detailed in [START_REF] Kleijn | Torsion Bar 2.0 Reference Manual[END_REF], is shown in Fig. 3.4. It consists of the Maxon® servo motor that provides the controlled actuation (rotation) to the disks and is equipped with voltage amplifier A m , inductance La, resistance Ra, rotor inertia J m , associated motor friction coefficient m f and torque constant k m . The high stiffness transmission belt provides the torque transmission with the transmission ratio belt k to the motor disk with rotational inertia Md J . The motor disk is connected to load disk with rotational inertia Ld J , through a flexible shaft that constitutes the drive train. The shaft is modelled as spring-damper element having damping coefficient s b and spring constant as s k .

The friction in the bearings of the motor disk and load disk is modelled as viscous friction with respective damping parameters as Md b and Ld b . Friction arising due to belt is lumped with viscous friction coefficient at motor disk in Md b . The setup is equipped with motor encoder and load encoder that measure, respectively, the angular position of motor shaft and load disk (2000 pulses per revolution). Angular position motor disk is obtained by dividing the motor encoder counts by belt ratio. The BG model of the nominal system in integral causality is given in Fig. Df  respectively. Belt is considered of high stiffness and the rigidity is not considered in the model. Also, the frictional loss due to the action of belt is lumped with frictional loss at motor bearing and it is modelled as resistor element :

Md Rb . GY element models the conversion of electrical current to electrical torque in the DC motor with corresponding coefficient being GY m mk  . TF element models the transmission of velocity through the belt from motor shaft to the motor disk. is the ratio between number of teeth on motor disk to motor shaft [START_REF] Kleijn | Torsion Bar 2.0 Reference Manual[END_REF]. The electrical part of the DC motor is not monitorable as there is no sensor installed in it.

Only the monitorable part (marked in Fig. 3.6) is used for analysis. It must be noted that the system is considered operating in feedback closed loop (Proportional-Integral (PI) control)

regime. Analysis or development of the control strategy is not described, as the main interest of the work does not lie in the same.

Inter valued ARRs and Robust Thresholds 3.6.2

The uncertain BG of the monitorable part in preferred derivative causality is shown in Fig. 3.6, with parametric uncertainty modelled and represented in interval form. The global system is considered uncertain with uncertain parameter vector ,

  θθ : , , , , , , , , , , , , , , , , T m 
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The latter has input in form of controlled electrical torque input generated by the DC motor.

Both the sensors are dualized and impose corresponding flows as ( / )

m belt Ld f f f k    



Following the steps described in Section 3.3.1, I-ARR can be generated from the detectable junction 1 1 of Fig. 3.6:
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Electrical torque :

PI MSe  is the PI controlled input to the monitorable part of the system and is given as:

    ( / ) . : . . 1 PI m m Ra La t PI m m m Uk MSe k i k e Ra        (3.35)
where, PI U is the PI controlled voltage input and m i is the motor stator current. The nominal part 1, () n rt is formed by collecting point valued nominal parameters as coefficients of known (measured) variables. The interval valued ARR is expressed as:
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Only one I-ARR has been derived here at 1 1 , which serves the purpose of approach demonstration. Following similar steps, another independent I-ARR can be derived from 1 2 junction.

Nominal Conditions 3.6.3

The nominal parameter values and respective multiplicative interval uncertainty is tabulated in Table 3 

. t  , is formulated as:
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where, However, after t = 52 s, the RUL distributions are well within accuracy cone such that, more than 50% of RUL probability mass lies within accuracy cone. Ignoring the initial period of convergence, the overall prediction performance is very good with 9.8 RUL RMAD  and 97.15% RA  .

A Qualitative Analysis 3.6.8

As seen in the previous section, accuracy and spread of RUL prediction is directly influenced by the estimation quality of DPP, which in turn depends on intial setting and tuning of the several parameters involved. They are discussed here qualitatively. Note that estimation obtained in Fig. 3.10 (a) forms the most desirable performance. In subsequent discussion, only the specified PF parameters are played with, keeping rest of them same as for Fig. 3.10 (a). 128 Fig. 3.11 RUL Prediction performance with respect to estimation in Fig. 3.9 and Fig. 3.10 (a).  is seen, the estimation continues further with a very wide spread for a in quick reduction of estimation spread; however, it is accompanied with continuous shrink and expansion as shown in Fig. 3.12 (c) with P 1 =0.005. Although, a very high gain value may bring down variance spread quickly; however, it may be followed by poor convergence results as shown in Fig. 3.13 (c) and (d), with P 1 =0.01. On the contrary, a very low P 1 renders a noneffective variance adaptation as shown in Fig. 3.12 (d) with P 1 = 0.0001, adding no significant benefits in RUL prediction.

Initial artificial random walk noise

Desired RMAD (

* v  ): The pre-fixed 1 * v  for 1  , determines how much freedom is given to 1 
after the estimation spread is brought under control. An appropriate choice of 1 * v  gives enough freedom for convergence even after actual variance is well under 1 * v  , as shown in Fig. 3.10 (a)

between t=50s and t=80s with 1 * v  =10%. In extreme cases, where P 1 is chosen of high value (rate of RMAD reduction depends on P 1 ) and 1 * v  is set very low, the estimation may remain stagnant near, but not equal to * 1  . This is shown in Fig. 3.13 (c) with P 1 =0.01 (read high) and desired RMAD 1 * v  =6% (read very low). Here, the variance adaption is not effective enough. On the contrary, if the interval width is appropriately set (assuming that initial estimate is outside of it), 1, ˆk  is captured quickly and variance control is triggered early, as shown in Fig. 3 Residual noise variance (measurement noise) assumed by PF: Noise corrupting the residual measurements that can be non-Gaussian due to presence of derivative terms and integral terms, can be dealt by PF, without any restrictions. In this work, the explicit distribution of the residual noise present is not found. Instead, it is approximated as normally distributed Gaussian in nature. The related standard deviation and variance is found out from residual measurements.

True DPP interval

Moreover, generally, the variance of measurement noise (residual noise here) assumed by PF, is greater than approximated actual measurement noise. This is done to counter the sample impoverishment problem which happens when very few particles have significant weight while most other particles with non-significant weight are abandoned during the resampling process [START_REF] Li | Fight sample degeneracy and impoverishment in particle filters: A review of intelligent approaches[END_REF]. Higher residual noise variance assumed by PF allows higher particles being sampled for estimation, thus reducing the problem of sample degeneracy and consequent impoverishment. As followed in other works , in this work too, the residual noise assumed by PF is greater than actual residual noise and is tuned to improve performance. Computational Complexity 3.6.9

The time taken per step for estimation and RUL prediction depends on the number of particles used. With N=500, on an average, 0.03s was consumed per step. Fig. 3.14 shows the RUL prediction computation time per step for the RUL prediction performance of Fig. 3.11. In addition to the number of particles N, computational time for RUL prediction varies:  Inversely with the time at which prediction is made: The farther is the time from EOL at which RUL prediction is made, the longer it takes to simulate to EOL. This makes the computational time large.

 Inversely with estimated DPP  : At a certain time of prediction, higher is the rate of damage progression, smaller is time taken to simulate to EOL. As seen in Fig. 3.10 (a), before t=50s, the estimation value of 1  is lower than true value accompanied with large variance. Therefore, for a specific N, the computation time per step before t=50s is higher and with large variations. After t=50s, with a nearly uniform 1  estimation and lesser spread (see Fig. 3.10(a)), the computation time follows an almost uniform monotonic decreasing trend (see Fig. 3.14).

Simulations were run on a 2.49-GHz dual core processor with 8GB RAM. With N=500, and sample time of 0.1s (which translates to 10 computational steps per second); it took on an average 32 minutes to simulate system dynamics, estimation and RUL prediction till 100s. With N=50, the same took 110 seconds. This indicates that through employment of lesser number of particles, the RUL predictions could be achieved in real time, for experimental purposes.

Moreover, for real experiments run on complied C, the run time reduces drastically by an order of magnitude.

Application: Health Monitoring of Mechanical Torsion Bar System

The methodology developed here is applied in real time over the mechatronic system (torsion bar system) presented in Section 3.6, to assess the health monitoring capability of the method proposed therein. . 
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(3.46) Fig. 3.16 shows the residual profile under nominal conditions. Fig. 3.17 shows the effect of adding load (or frictional toque) in a discrete way on the system.

Md

 is controlled at 30 rad/s. Each time load is added, there is PI controller enabled compensation and it settles to the reference velocity. However, 2, ()

n rt 
being sensitive to increase in current (and thus, voltage) decreases and settles to a new value. Saturation limit of input voltage is reached around t=65s when the total load suspended is 1.6Kg. Thereafter, controller is unable to compensate the change in Md  .With addition of more load thereafter (t>65s), motor disk speed decreases rapidly and stops at around t=70s. For safety of the real system, disk is kept at stop condition only for few seconds after which the suspended load is removed, bringing back the controller action into play. It is clearly visible that residual captures the degradation of friction (variation of mass) while controller remains effective or otherwise.

The experiments involve only non-destructive procedures so that there is no degradation (wear) of the surfaces. In other words,  is assumed constant. Experiments involve variation of suspended load mass M in a uniform way till the limit fail M , is reached.

() Mtis treated as system parameter under degradation. The experiments were conducted in two distinct phases:  Offline: In this phase, multiple tests were done with the load being added uniformly.

As explained in Section 3.2.1, variations of ()

Mtwere obtained from the evolution of 2, () n rt found in (3.45). This provided the time dependent DM of the system parameter () Mt.

 Online health monitoring: The maximum limit of additive load mass fail M was predecided keeping in mind the safety of the system. Load was varied until fail M ; this was performed in the similar environment as of the offline phase. In real time, estimation of () Mtand associated DPPs, and subsequent RUL predictions were obtained. Linear degradation models are frequently employed where incipient degradation does not accelerate subsequent degradation. Here, such a scenario is created through experiments and tested in real time.

Degradation Model

Load is varied in a continuous linear way. Ten experiments are carried out wherein; sand is poured with same environmental conditions to maintain the uniformity. With 2 (.) g as the DM, 

M M M t g t v t t v t       (3.47) ( , ) ( ) () 
1 2, 1 2 2, 2, 2, k k k k M k k k M M t v             (3.

Estimation of Degradation State

The estimation and prediction module is triggered at t=20s and is performed with N=50 particles,

t  =0.1s, initial 2 2 ,0 k    =1x10 -6 , 3 2 1x10 M   
Kg, 2 w  =5x10 -3 V. For estimation, particle filter assumes measurement noise variance 9 times that of measurement variance 

) 

k t k k M k k k k n Md Md k k n k k k n k belt M M e v gr y r w t M M w k                      (3.

Health Estimation and RUL Prediction

The estimation and prediction module is triggered at t=20 s .It is performed with N=50,  does not remain perfectly constant in real cases. Also, lesser number of particles are used so that RUL predictions may be achieved in real time without data loss. This leads to worse estimation performance. However, overall prediction and estimation performances are very good and satisfactory. 

t  =0.1s, initial 3 2 ,0 k    =4x10 -6 , 3 w  =5x10 -3 V.

Conclusions and Contributions

It has been successfully demonstrated through simulation and experimental studies tha, the nominal part of Interval Valued Analytical Redundancy Relations (I-ARRs) derived from the Bond Graph (BG) model of the uncertain system can be used for detection of system parameter's degradation. Subsequent estimation of the state of health and associated degradation progression parameter(s), and prediction of the remaining useful life of the prognostic candidate can be obtained using particle filtering algorithms. This leads to an efficient integration of the benefits of BG modeling framework and Monte Carlo framework. The uncertain part of the I-ARRs is used for robust threshold generation over the nominal part. This enables efficient detection of the degradation commencement, robust to parametric uncertainty. Further, the same nominal residual can be used for obtaining the measurements of state variables in the fault model while the observation equation is developed from the nominal part of the I-ARR. For the latter, a novel algebraic approach is proposed so that the robust detection of degradation and further estimation of state variables of the fault model can be achieved using the same nominal residual in a unified framework. Being sensitive to the control inputs, nominal residual is able to capture the parametric degradation profile even while the system outputs remain in feedback closed loop regime. This makes the approach effective for system level health management. Approximation of the distribution of noise present in residuals can be difficult or impossible, due to presence of derivative or integral terms in the arguments. As such, employed Particle filter algorithms form the best choice in this regard, supporting non-Gaussian noises. The novel variance adaptation scheme leads to very good estimation results and involves less complexity in terms of tuning of the involved factors. In future, the latter will be developed further and exploited for similar purposes. Through simulations, this approach has the capability of generating long term and very long term predictions.

Through experiments, capability of obtaining RUL predictions in real time has been shown, although, in very short time window. The associated computational complexity prevents the long and very long-term RUL predictions in real time.

Various novel contributions of this work are as follows:

a method employing statistical log-linear Degradation Model (DM) and PF for SOH estimation and RUL prediction. However, operation conditions are not considered and the DM lacks the insight into the physics of the phenomenon. [START_REF] Chen | Lifetime prediction and the economic lifetime of Proton Exchange Membrane fuel cells[END_REF] proposed a rapid lifetime prediction formula to estimate the voltage drop rate. However, with only a linear DM employed, it required further investigation.

 The issue of PEMFC prognostics in BG framework has not even been touched. For instance, although [START_REF] Saisset | Bond Graph model of a PEM fuel cell[END_REF] and [START_REF] Peraza | Modeling and simulation of PEM fuel cell with bond graph and 20sim[END_REF] develop a detailed PEMFC BG model, they are not suited for diagnostics or prognostics. [START_REF] Ouldbouamama | Signed Bond Graph for health monitoring of PEM fuel cell[END_REF] develops Signed BG model of PEMFC, but for diagnostics purposes only. The proton exchange membrane is designed to transport the H  ions to the cathode. The transfer of the other species is limited. The oxygen necessary for the exothermic reaction shown in (4.2), is brought to the reaction interface by the cathode compartment through the GDL. This is the maximum theoretical potential that a PEMFC can reach. However, the kinetics of reaction generates an over-voltage named activation loss which is subtracted from the theoretical potential (c.f.(4.4)). Furthermore, the resistivity of the membrane electrode assembly (MEA)

Description of a PEMFC

decreases the operational potential due to the Ohmic effect. The resistance value depends on the degree of humidification of the membrane and on the temperature. Finally, species are consumed and imply a loss of partial pressure on the reaction surfaces, thereby reducing the Nernst potential significantly, especially at high currents. This phenomenon is called diffusion / concentration losses.

These losses and the chemical reactions generate heat that must be evacuated by means of a cooling system. Moreover, during transients, one can observe an electron accumulation along the membrane electrode interface. It is the double layer capacitance effect. It is important to note that most of the phenomenon described above depends on one another (e.g. the over-potentials depend on the temperature, and the temperature depends on the heat created by the losses and also on the behavior of the cooling circuit).

Bond Graph Model of PEMFC

Bond Graph models of fuel cells have been developed in the past. Few of the significant works can be referred here: PEMFC related [START_REF] Saisset | Bond Graph model of a PEM fuel cell[END_REF], [START_REF] Peraza | Modeling and simulation of PEM fuel cell with bond graph and 20sim[END_REF]; solid oxide fuel cell related : [START_REF] Vijay | Bond graph model of a solid oxide fuel cell with a C-field for mixture of two gas species[END_REF][START_REF] Vijay | A bond graph model-based evaluation of a control scheme to improve the dynamic performance of a solid oxide fuel cell[END_REF]. The extensively developed basic chemistry of PEMFC is omitted here and can be found in [START_REF] Larminie | Fuel cell systems explained[END_REF]. Instead, on the physical level, the BG model developed in derivative causality is presented in Fig. 4.2. The global system is decomposed into various subsystems where the input and output for each are the exchanged powers represented by two conjugated power variables: effort and flow (graphically shown by a half-arrow). As the initial conditions are not fully known in a real process, the derivative causality (suited for diagnostic and prognostic) is preferred.

Hydrogen Inlet 4.2.1

Source of hydrogen is represented by 

Chemical Part 4.2.3

The reduction-oxidation reaction (driven by the chemical affinity) is modeled using the Gibbs free energy G  in the 1 b junction as, where R is the perfect gas constant,

1 2 3 G=A A A    (4.6) 1 2 2 2 3 2 1 ,, 2 
H O H O A A A       (4.7)     2 2 0 2
x  is the chemical potential of species x and the water is in liquid phase. The three transformer elements therein, :

( 1, 2,3)   for oxygen) and the product water with 3 1   . The EE subsystem accounts for electrical part and activation-diffusion losses. The kinetics of reaction shown in (4.6) generates an over-voltage named activation loss. Furthermore, the resistivity of the membrane electrode assembly decreases the operational potential due to the Ohmic effect. The resistance value depends on the degree of humidification of the membrane and on the temperature. Finally, consumption of species results in loss of partial pressure on the reaction surfaces, thereby reducing the Nernst potential significantly especially at high currents [START_REF] Larminie | Fuel cell systems explained[END_REF]. This phenomenon is called diffusion / concentration losses. Moreover, during transients, electron accumulation along the membrane electrode interface is observable. It is the double layer capacitance effect. Here, the EE subsystem and the chemical part are connected using the transformer :1/ e nF TF . This results in obtaining the thermodynamic potential 0 E as,

1 2 3 0 ee A A A G E n F n F       (4.11)
where e n is the number of electron involved in the reaction and F is the number of Faraday. RS is an active two port dissipative (resistive) element that generates thermal energy. The two port thermal dissipative element RS ohm models the Ohmic losses (membrane, electrodes and connectors). Similarly, the activation and the diffusion phenomenon are modeled by RS ac and RS df respectively. The associated power variables are related as, where, ohm R is the global resistance (membrane and connectors).

Thermal Part 4.2.5

The active elements and the chemical reaction being exothermic, generate heat that needs to be evacuated by means of a cooling system. The thermal resistance of the PEMFC and cooling circuit is modeled by the passive resistive element R: cc R (representing the thermal resistance). The thermal dynamics is fixed by the thermal capacitance C: fc C which depends on the fuel cell temperature (measured by the temperature sensor SSe: T fc ) and the ambient temperature is represented by an effort source Se: T cc . The various power variables are related as, 

152 22 22 H O O H O O ca Q S n S n     2 2 H H an Q S n   ohm fc ohm Q R U  cc fc dT QC dt  (4.15) (4.16) (4.17) (4.18)   cc fc cc cc Q R T T    2 df fc df Q R I    2 ac fc ac Q R I  (4.19)

Generation of Deterministic ARRs and Robust Thresholds

The deterministic ARRs are derived through energetic assessment at the junctions of BG ARR is sensitive to drying, flooding and to aging of the fuel cell and attracts the main focus of the work developed here. The third ARR is derived from junction 0 d in the thermal field: 3 0 : This ARR can be used to monitor a fault in the cooling system, which is out of the scope of this work.

ac df an ca ohm cc fc ARR Q Q Q Q Q Q Q        (4.

Generation of Robust Adaptive Thresholds 4.3.2

As the interest of this work does not lie in diagnosis of PEMFC per se, BG-LFT model of PEMFC is not developed here. Instead, for robust detection of degradation, BG-LFT model of EE subsystem is formed. The latter is investigated for prognostic purposes where the robust thresholds are exploited for detection of degradation beginning (see Section 4.5.2). Consider BG-LFT model of EE subsystem wherein, the resistance element R: 

                            (4.31)
The uncertain part is used to form the thresholds as, Spring: 7 cycles of 24 hours between nom I and nom /2 I , followed by nom /2 I until 500 hours.

Summer: nom /2 I for 100 hours, followed by 9 cycles of 24 hours between nom /2 I and null power demand until t=800 hours.

Autumn: nom /2 I until the end of the test.

The operating conditions of these two PEMFC are summarized in Table 4-II. For each characterization time, a Levenberg-Marquardt method is used to extract the parameters of (4.34). The algorithm is initiated with a set of parameters whose values are chosen from the literature [START_REF] Laffly | Polymer electrolyte membrane fuel cell modelling and parameters estimation for ageing consideration[END_REF][START_REF] Larminie | Fuel cell systems explained[END_REF]. The algorithm extracts: the Open Circuit Voltage (OCV) 0 E at nominal pressure and temperature, the global resistance ohm R (membranes, connectors, end plates, etc.), the exchange current 0 I and the limiting current 

Variable Load (FC2)

The current load profile and corresponding recorded voltage for FC2 is shown in Fig. 4.8. and the corresponding polarization curve is shown in Fig. 4.9. The evolution of extracted parameters is shown in Fig. 4.10. Significant deviations are visible in the overall resistance ohm R that increases by more than 70% and the limit current L I that decreases by 60%.

As observed for FC1 and FC2, only two parameters ohm R and L I show significant degradations (deviation). Change in ohm R is mainly due to degradation/dehydration of the polymer membrane and the corrosion of the carbon support for the resistance [START_REF] Fowler | Incorporation of voltage degradation into a generalised steady state electrochemical model for a PEM fuel cell[END_REF]. The limit current decreases due to the ripening of the catalyst particles, an insufficient evacuation of the water (due to changes in the surface) and the compression of the GDL . There is no significant evolution in the value of the OCV and the exchange current 0 I , compared to the other parameters. Thus, the former parameters are considered constant in this paper.

For a given operating condition, since only the stack voltage is measured, it is impossible to separate the mutual coupling of global resistance and limiting current i.e. the loss due to both are not observable simultaneously. Moreover, although not perfectly, both ohm R and L I seem to evolve in an approximate linear manner. Therefore, the variations in the latter are parametrized with a single parameter , a State of Health (SOH) indicator. The variation is expressed with as linear equation (since the parameters value seems to follow a linear relation). Thus, the model of degradation is expressed as, where  explains the approximately constant rate-change of  and sub-script n denotes the nominal value. Very recently, the similar approach is followed for construction of state equation in [START_REF] Bressel | Extended Kalman Filter for Prognostic of Proton Exchange Membrane Fuel Cell[END_REF], and has led to satisfactory results.
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1 ohm ohm n L L n R t

Prognostics of the Electrical-Electrochemical Part

Here, the particle filter based hybrid prognostics methodology developed in Chapter 0 is adapted for the prognostics of the EE part of the PEMFC.

As shown in Fig. 4.11, the basic architecture of the methodology in this work, remains similar to the one in Chapter 0 (see Fig. Considering the fault model construction introduced in Chapter 0, (see Section 3.3.2), the same approach is followed to estimate the SOH indicated by () t  , which is chosen to assess the parameter evolution, and make RUL predictions. 
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State of Health Estimation and RUL Prediction 4.5.2

The prognostic approach described in Chapter 0 (see Section 3.3.3) is followed to estimate the SOH. Parameters in PF are set so as to obtain the best possible estimation of .
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Approximately constant  is estimated accurately with 9.3% RMSE   . Fig. 4.13 shows the box plot of RUL prediction obtained at time interval of 25 hours (for the sake of clarity). For all the time points, prediction performance is assessed by α- metric (see Section 3.5 ) with α=0.4 and β=0.4 (not to be confused with SOH indicator () t  ). The latter implies the requirement of 40% of RUL probability mass containment within 40% of true RUL value.

Percentage of probability mass falling within the accuracy cone is indicated against each box plot. Starting from t=200 hours, almost all the predictions are true (acceptable), except the ones at the last four prediction-points. The latter arise mainly because of characterizations performed at t=800 hours; as such, an insufficient recovery-effect occurs on the stack voltage while the latter is being recorded. Over all, starting from t= 350 hours, the prediction performance is very good with RA 96.07%  . [START_REF] Bressel | Extended Kalman Filter for Prognostic of Proton Exchange Membrane Fuel Cell[END_REF], the estimation approach is followed on the similar degradation test data and the polarization curve, employing the Extended Kalman Filter (EKF) [START_REF] Celaya | A model-based prognostics methodology for electrolytic capacitors based on electrical overstress accelerated aging[END_REF][START_REF] Haykin | Kalman filtering and neural networks[END_REF]. For the purpose of comparison, the methodology developed here is replaced with EKF as the estimator and outputs are shown in Fig. 4.14. Note that therein, the bounds on RUL are obtained using the Inverse First Order Reliability Method (IFORM) (not detailed here) [START_REF] Hohenbichler | New light on first-and second-order reliability methods[END_REF], which is used to estimate unknown parameters (for instance, the RUL) for a specified failure probability level.

As seen in Table 4-VI, although the sub-optimal EKF gives a manageable RMSE , the associated ̅̅̅̅ (considering the mean of RUL's pdf) is comparatively very low. However, there is a huge difference in the computation time and EKF may be employed where computation time is the major concern. As prognostic issues are majorly dealt in an offline manner, PF outperforms EKF and promises better prognostic outputs. Moreover, being a sub-optimal estimator, EKF may not be the best choice of the estimator when degradation models are highly non-linear (like crack propagation etc.). The latter, however, can be well taken care by PF. However, the non-uniformity brought in by the latter is followed by recovery effect that enables a good SOH estimation.

Estimation results are shown in Fig. 4.15 which is realized with N=2000. The initial measurements 2,n r , being sensitive to stack voltage and current load, are highly corrupted with noise. As such, the detection of degradation using BG-LFT thresholds is not viable. For this . This enables a smooth and desirable estimation performance. predictions is reflected by the fact that it converges to 0 Hours at its true EOL of 900 Hours.

Moreover, RUL seems to converge to zero at t=800 Hours. The latter is in accordance with the corresponding estimation of () t  which seems to reach fail  at t=800 Hours. This is mainly due to the corresponding evolution of measurement 2,n r , which undergoes recovery of SOH near t=800 Hours before characterization is performed (see Fig. 

Conclusions and Contributions

Through real degradation data sets, the SOH and predict the RUL predictions are obtained with a very high accuracy and precise confidence bounds. Thus, the proposed methodology exploits the benefits of BG and PF for an efficient functional decomposition of PEMFC and accurate SOH estimation and RUL prediction. Using the same approach, the BG model that has been utilized here for prognostics of EE part, can be used for prognostics of other sub-systems (hydraulic, thermal etc.) with the availability of degradation data. The results obtained for FC1 is very satisfactory where PF outperforms EKF. For FC2, the accuracy of obtained estimations and RUL predictions is also satisfactory. The accuracy of results obtained here, demonstrates the viability and reliablity of the method for prognostics. As such, this work forms a reliable reference for related future works and a significant contribution towards efficient prognostics in BG framework. The various novel contributions of this chapter are listed as follows.

 BG model of PEMFC with efficient functional decomposition is utilized for the purpose of prognostics. BG-LFT model of electrical-electrochemical part ensures efficient robust detection of parametric degradation.  Application of the developed methodology to EE part of PEMFC under both constant current load profile and variable load profile, using real degradation data sets. The performance of PF is discussed and analyzed. It is also compared with Extended Kalman Filter (EKF) for constant load case.

5.General Conclusions and Perspectives

In Chapter 2, the methodology of modelling parametric uncertainties and measurements in interval form, on Bond Graph (BG) models is presented. It is a novel contribution and forms the initial step towards integrating interval analysis based capabilities in BG framework for fault detection and health monitoring of uncertain systems. Methodology to generate Interval valued Analytical Redundancy Relations (I-ARRs) and corresponding robust thresholds over the nominal residual is presented which are derived directly from the BG junctions utilizing the structural and causal properties of the uncertain BG. The interval valued uncertain residual interval function (URIF) can be directly obtained from the uncertain BG. The method of modeling uncertainties in interval form alleviates the limitation of quantifying the uncertainties with symmetric bounds (equal limits on the left and right side of nominal value) associated with BG-LFT method. In fact, this leads to the generation of adaptive thresholds which are not necessarily symmetric with respect to the nominal residual. Moreover, it is shown that BG-LFT enabled robust FDI is only a special case when interval valued uncertainties have symmetric interval bounds/limits. The proposed methodology is applied and validated over uncertain steam generator system and its usefulness over the previously used BG-LFT generated thresholds in fault detection is shown via real experimental results. However, in this work, the overestimation incurred due to multi-incidence of interval variables in the I-ARR expression, has not been studied. This forms an interesting perspective.

Modal Intervals can be used for such a purpose. There are well developed techniques in the realm of Modal Intervals that could be exploited in this context. Given the obvious betterment in diagnosis, the novel methodology carries the potential of being utilized as diagnostic module for all diagnostic related analysis in BG framework and health monitoring of uncertain systems. Also, the thesis work motivates the integration of set based bounding approaches in BG framework for health monitoring purposes in future, utilizing the formalism proposed in this work.

In Chapter 3, it has been successfully demonstrated that under single degradation hypothesis, the nominal part of Interval Analytical Redundancy Relation derived from Bond Graph model of globally uncertain system, can be used for detection of system parameter's degradation, estimation of the state of health, associated degradation progression parameter and a subsequent prediction of the remaining useful life of the parameter using particle filtering algorithms. Thus, the benefits of Bond graph modelling technique and Monte Carlo techniques are integrated.

However, this work revolves around the single fault hypothesis and considers only one system parameter exhibiting progressive degradation. The technique developed here can be extended in a straight forward manner, while there is single fault mode affecting several system parameters.

Moreover, the method can be extended in case of multiple parametric degradations. The latter forms a potential future work.

The employed Particle filter algorithms form the best choice in this regard, supporting non-Gaussian noises and allowing their prior/online tuning. The methodology presented, uses local fault models and as such, does not suffer from scalability problems of large systems. This aspect can be analyzed in a detailed manner. The method presented here can be extended and developed for large scaled systems. Moreover, a detailed comparative study involving various Bayesian estimators can be exercised.

Through experiments, capability of obtaining RUL predictions in real time has been shown, although, in very short time windows. The associated computational complexity prevents the long and very long-term RUL predictions in real time. In future, additional ways to obtain the same in sliding time windows will be explored. The method will be extended to achieve very long term predictions in multiple stages, comprising of small time windows, in real time.

Although, robustness of the methodology has not been analyzed quantitatively, a qualitative analysis has been presented which helps in an efficient tuning of the PF parameters.

In Chapter 4, through real degradation data sets, the proposed methodology is able to successfully assess the SOH and predict the RUL of the Electrical and Electro Chemical Part of an industrial Proton Exchange Membrane Fuel Cell (PEMFC), with a very high accuracy and precise confidence bounds. The proposed methodology thus, exploits the benefits of BG and PF for an efficient functional decomposition of PEMFC and accurate SOH estimation and RUL prediction. Using the same approach, the developed model can be used for prognostics of other sub-systems (hydraulic, thermal etc.) with the availability of degradation data. The latter forms a potential future work. The results obtained for FC1 is very satisfactory where PF outperforms EKF. For FC2, the accuracy of obtained estimations and RUL predictions is very satisfactory.

The initial RUL predictions can be ameliorated through online standard deviation calculation of residual, adapting the random walk noise variance, and PF measurement variance etc. which may be taken up as future work.

However, the results obtained in this work strongly depend upon the assumption associated with the choice of the health indicator. The assumption that the health indicator evolves linearly is based upon the available data sets. However, it is highly probable that such an assumption may not hold true in general. Thus, the work can be extended and adapted suitably with the availability of more data sets.

The methodology applied here on PEMFC, has the potential to be applied over any multienergetic system. The accuracy of results obtained here demonstrates the viability of the method for prognostics. As such, this work forms a reliable reference for related future works and a significant contribution towards efficient prognostics in BG framework.

In fact, as this work can be extended to several subsystems within the global system of interest, post-prognostics maintenance strategies may be developed using the RULs obtained for various subsystems. For a R-element in conductance (imposed effort) causality, the procedure is the same. Derivative causality is the preferred choice for diagnostic purposes (ARR generation). Thus, it is chosen for illustration of BG-LFT representation. A detailed summary of BG-LFT representation of various BG elements in either causalities can be found in the work of Borutzky (Borutzky, Wolfgang, 2009a). The exact Bayesian solution can be obtained from recurrence relations (C.5) and (C.6), that form the basis of optimal Bayesian solution. This procedure produces best results but for few cases such as linear Gaussian state space models and in general, optimal solutions for non-linear systems with non-Gaussian noises, cannot be analytically determined using the same. For Gaussian state space models, the above procedure leads to the classical Kalman filter. For non-linear state space models but with additive Gaussian noises, sub-optimal Extended Kalman filter (EKF) has been developed.

C.1. Particle Filters

Particle filtering, also known as Sequential Monte Carlo (SMC) methods [START_REF] Doucet | An introduction to sequential Monte Carlo methods[END_REF], is a technique for implementing a recursive Bayesian filter via Monte Carlo simulations.

The basic principle of particle filtering is to represent the posterior state PDF by a set of random samples or -particles‖, each with an associated weight, and to compute estimates based on these samples and weights [START_REF] Doucet | A tutorial on particle filtering and smoothing: Fifteen years later[END_REF]. One of the most commonly used particle filter algorithms is the sequential importance sampling (SIS) particle filter. The SIS particle filter approximates the posterior state PDF 

C.2. Importance Sampling

It is impossible to sample from the posterior state 0: 1:

( | ) kk p xy without a closed form describing its distribution. To resolve this issue, principle of importance sampling is used [START_REF] Arulampalam | A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[END_REF], where a PDF is chosen such that it is easy to sample from and . Set of samples are generated form the proposal distribution , known as importance density so that a weighted approximation to the density given as, 1 ( ) w . ( )

N i i i p x x x      (C.11)
where the normalized weight is given as, () w (x )

i i i px q  (C.12)
For a set of samples 0:

{ , 1,... } x . Thus, update step can be modified as,

1 1 0: 1 1: ( | ) ( | ) ww ( | , ) i i i ii k k k k kk ii k k k pp q     y x x x x
x y (C.17)

Then, the posterior filtered PDF 

C.3. Particle Degeneracy and Resampling

While generating the estimate, the Monte Carlo procedure discussed above, ignores the state value of particles in state space [START_REF] Ghahramani | the Advances in neural information processing systems[END_REF]. During propagation step, the approximation density is adjusted through re-weighting of the particles. As a consequence, the approximation density is adjusted through re-weighting of the particles. After a few iterations, the weight concentrates on few particles only. This results in most of the particles having negligible weight leading to the problem of namely, sample degeneracy [START_REF] Doucet | An introduction to sequential Monte Carlo methods[END_REF]. It is an inherent default in SIS particle filters. to resolve this issue, the standard SIS is accompanied by a resampling step (referred to as Sampling-Importance resampling SIR) [START_REF] Arulampalam | A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[END_REF]. Here, the particles are forced in the region of high likelihood by multiplying high weighted particles and abandoning low weighted particles. In other words, resampling step involves elimination of those particles that have small weights so that focus shifts on the particles with large weight. This step results in generation of new set of particles   % likel=normpdf(u,x,w1); here normpdf can't be used as it is not %not supported for the real time excution in Matlab2013. % thus, the pdf function is created using supported functionalities. % such a use of normpdf is supported in Matlab2015 Diagnostic et Pronostic de Systèmes Dynamiques Incertains dans un contexte Bond Graph Résumé Cette thèse développe des approches pour le diagnostic et le pronostic de systèmes dynamiques incertains en utilisant la technique de modélisation Bond Graph (BG). Tout d'abord, une représentation par intervalles des incertitudes paramétriques et de mesures est intégrée à un modèle BG-LFT (Linear Fractional Transformation). Une méthode de détection robuste de défaut est développée en utilisant les règles de l'arithmétique d'intervalle pour la génération de seuils robustes et adaptatifs sur les résidus nominaux. La méthode est validée en temps réel sur un système de générateur de vapeur. Deuxièmement, une nouvelle méthodologie de pronostic hybride est développée en utilisant les Relations de Redondance Analytique déduites d'un modèle BG et les Filtres Particulaires. Une estimation de l'état courant du paramètre candidat pour le pronostic est obtenue en termes probabilistes. La prédiction de la durée de vie résiduelle est atteinte en termes probabilistes. Les incertitudes associées aux mesures bruitées, les conditions environnementales, etc. sont gérées efficacement. La méthode est validée en temps réel sur un système mécatronique incertain. Enfin, la méthodologie de pronostic développée est mise en oeuvre et validée pour le suivi efficace de la santé d'un sous-système électrochimique d'une pile à combustible à membrane échangeuse de protons (PEMFC) industrielle à l'aide de données de dégradation réelles. Mots-clefs : Diagnostic, Pronostic, Systèmes Incertain, Durée de vie résiduelle, Bond Graph, Relations de Redondance Analytique, Filtres Particulaires, Pile à combustible à membrane échangeuse de protons.

Diagnostics and Prognostics of Uncertain Dynamical Systems in a Bond Graph Framework

Abstract: This thesis develops the approaches for diagnostics and prognostics of uncertain dynamic systems in Bond Graph (BG) modeling framework. Firstly, properties of Interval Arithmetic (IA) and BG in Linear Fractional Transformation, are integrated for representation of parametric and measurement uncertainties on an uncertain BG model. Robust fault detection methodology is developed by utilizing the rules of IA for the generation of adaptive interval valued thresholds over the nominal residuals. The method is validated in real time on an uncertain and highly complex steam generator system. Secondly, a novel hybrid prognostic methodology is developed using BG derived Analytical Redundancy Relationships and Particle Filtering algorithms. Estimations of the current state of health of a system parameter and the associated hidden parameters are achieved in probabilistic terms. Prediction of the Remaining Useful Life (RUL) of the system parameter is also achieved in probabilistic terms. The associated uncertainties arising out of noisy measurements, environmental conditions etc. are effectively managed to produce a reliable prediction of RUL with suitable confidence bounds. The method is validated in real time on an uncertain mechatronic system. Thirdly, the prognostic methodology is validated and implemented on the electrical electro-chemical subsystem of an industrial Proton Exchange Membrane Fuel Cell. A BG of the latter is utilized which is suited for diagnostics and prognostics. The hybrid prognostic methodology is validated, involving real degradation data sets. Keywords: Diagnostics, Prognostics, Remaining useful life, Bond graphs, Analytical Redundancy Relations, Particle Filters, Proton Exchange Membrane Fuel Cell, Interval Arithmetic

  été préparée au sein de l'équipe de recherche « Méthodes et Outils pour la Conception Intégrée de Systèmes (MOCIS) » au Centre de Recherche en Informatique, Signal et Automatique de Lille (CRISTAL). La thèse se concentre sur le développement d'approches pour le diagnostic et le pronostic des systèmes dynamiques incertains en utilisant la technique de modélisation Bond Graph (BG). La technique de modélisation BG implique une approche systématique vers une représentation graphique efficace, l'utilisation de la causalité et l'étude des propriétés structurelles et analytiques du modèle. Le travail réalisé ici étend et développe les avantages de l'approche BG pour le diagnostic et le pronostic de systèmes incertains multiénergétiques. L'équipe MOCIS a une grande expérience et une bonne expertise dans le domaine de la conception intégrée des systèmes multi-énergétiques, en utilisant la technique de modélisation BG. Dans ce contexte, la dernière décennie a vu des efforts importants déployés pour le développement des techniques de contrôle pour les systèmes industriels en utilisant l'approche BG. Il y a dans la littérature de nombreux travaux liés à la détection et l'isolation des défauts de systèmes complexes et incertains. En particulier, dans le contexte du diagnostic robuste de systèmes incertains, la construction d'un modèle BG-LFT (Linear Fractional Transformation) a été largement exploitée pour les systèmes incertains. Cependant peu de travaux portent sur l'étude et le développement de la méthode de génération de seuils de détection. L'un des objectifs de ce travail vise à intégrer les techniques basées sur les règles de l'arithmétique d'intervalle avec le modèle BG-LFT pour un diagnostic robuste aux incertitudes de modèle et efficace. Tout d'abord, dans le Chapitre 2, une représentation par intervalles des incertitudes paramétriques et de mesures est intégrée à un modèle BG-LFT. Cela conduit à une dérivation systématique des Relations de Redondance Analytique exprimées en termes d'intervalles (I-ARRS) à partir du modèle BG incertain. Une méthode de détection robuste de défaut est développée en utilisant les règles de l'arithmétique d'intervalle pour la génération de seuils robustes et adaptatifs sur les résidus nominaux. Ainsi, les avantages de l'arithmétique d'intervalle et du BG sont intégrés pour un meilleur diagnostic des systèmes incertains. La méthode est validée et mise en oeuvre en temps réel sur un système de générateur de vapeur. iv D'autre part, le concept de maintenance en fonction de l'état (Condition Based Maintenance) ou maintenance prédictive n'a émergé que récemment, où les activités de maintenance ne sont effectuées que lorsqu'une condition de panne ou de défaillance est prévue. Il permet également d'assurer la sécurité, la fiabilité et l'optimisation des coûts globaux. Durant la dernière décade, de nombreux travaux de recherche ont porté sur les stratégies de maintenance pro-actives. Celles-ci concernent essentiellement la surveillance des données pour fournir une évaluation précise de l'état de santé d'un composant / système. Cela implique l'utilisation d'un système de surveillance en temps réel et le traitement des données. Afin de prédire la progression d'un mode de défaillance particulier depuis son commencement jusqu'au moment de la défaillance d'un composant. Bien que le pronostic soit en relation avec le diagnostic, il ne repose pas sur les mêmes approches. En outre, il nécessite la connaissance des modes de défaillance existants et les taux de détérioration, la relation entre les défaillances et leur taux de progression. Ainsi, le pronostic est fortement influencé par la nature des dégradations des paramètres du système et de ses composants.

  probabilistes. De plus une nouvelle méthodologie a été développée pour obtenir les observations de la variable d'état de la partie nominale des I-ARRs pour les processus d'estimation et de prédiction. Les incertitudes associées aux mesures bruitées, les conditions environnementales, etc. sont gérées efficacement. Cette méthodologie est appliquée sur un système mécatronique (un système à barre de torsion) et évaluée par simulation de la dégradation paramétrique. Les performances d'estimation et les performances de prédiction RUL sont calibrées par des métriques pronostiques appropriées. La méthodologie est également validée en temps réel. Pour ce dernier exemple, un montage de type levier mécanique a été fabriqué et ajouté au système mécatronique. Grâce à une charge variable, le couple exercé par le dispositif de levier est variable. Celui-ci est traité comme la variation d'un paramètre (coefficient de friction) du système. Les estimations de la dégradation et la prévision de la RUL sont obtenues en temps réel. Dans le chapitre 4, la méthodologie de pronostic développée est convenablement exploitée pour la surveillance efficace de l'état de santé d'un composant / sous-système d'un grand système incertain. A cet effet, un modèle BG adapté pour le diagnostic et le pronostic d'une pile à combustible à membrane échangeuse de protons (PEMFC) industrielle est utilisé. Les parties électrique et électrochimique (EE) de PEMFC sont considérées incertaines. Un modèle BG-LFT de celles-ci est développé. La méthodologie pronostic hybride développée est mise en oeuvre sur ces parties.

  Jha, G. Dauphin-Tanguy, B. Ould Bouamama, Robust Fault Detection of Uncertain Systems with Interval Valued Uncertainties in Bond Graph Framework, in review process, Journal of Process Control, Elsevier.



  A CBM program for machinery fault (or failure, which is usually caused by one or more machinery faults) diagnostics and prognostics. Data collected can be categorized into two main types: the event data and condition monitoring data. The former includes the information on what happened (e.g., installation, breakdown, overhaul, etc., and what the causes were) and/or what was done (e.g., minor repair, preventive maintenance, oil change, etc.) to the component/system. Such data is useful in assessing the performance of current health indicators and can even be used either as feedback to the system designer for consideration of system redesign or improvement of condition indicators. Condition monitoring data are the measurements related to the health condition/state of the component/system (Jardine

  Fault detection: This step involves identifying the occurrence of a fault, or failure, in a monitored system, or the identification of abnormal behavior which may indicate a fault condition.  Fault isolation: This step involves identifying which component/subsystem/system has a fault condition, or has attained the failure state.  Fault identification: It involves determining the nature and extent of the fault.
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 13 Fig. 1.3 Component health degradation curve[START_REF] Sikorska | Prognostic modelling options for remaining useful life estimation by industry[END_REF] 

Fig. 1 .

 1 Fig. 1.6 illustrates the typical stages within a CBM/PHM system, from signal pre-processing and feature extraction, fault detection and classification, to the prediction (prognostics) of RUL and finally, appropriate maintenance scheduling.
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 1 Fig. 1.6. Stages within a typical PHM system[START_REF] Hess | Challenges, issues, and lessons learned chasing the -Big P‖: real predictive prognostics Part 2[END_REF] 
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 1 Fig. 1.7 Steps of Diagnostics and Prognostics and their relation[START_REF] Sikorska | Prognostic modelling options for remaining useful life estimation by industry[END_REF] 

  Model based diagnosis (MBD) methods utilize the physics based mathematical models of the monitored system. There has been an extensive amount of work in past three decades in this field. Mainly, two kinds of communities are involved on model based techniques: the FDI (Fault Detection and Isolation) community and the DX (Principles of Diagnosis)
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 1 Fig. 1.8. Architecture of generic fault diagnosis scheme[START_REF] Bouamama | Graphical methods for diagnosis of dynamic systems: Review[END_REF] 
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 1 Fig. 1.9. Model based Diagnostic Methods
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 1 Fig. 1.10 Schematic of the pedagogical DC Motor

  Fig. 1.11. BG model of the pedagogical DC motor in preferred integral causality

Fig. 1 .

 1 Fig. 1.12 (a). Effort detector De Effort detector De (b). Source of effort SSe (c). Flow Detector Df (d). Source of flow SSf

Fig. 1 .

 1 Fig. 1.13 Diagnostic BG model in preferred derivative causality

  Considering the DC motor example, FSM is created as shown in

  to faults and remains robust to considered parametric uncertainty. Summation of the absolute values of uncertain effort/flow i w  , brought in by parametric uncertainties at the respective BG junction and sensitive to the respective ARR, determines the values of the lower and upper limits/thresholds of the envelope as

Fig. 1 .

 1 Fig. 1.14 Prognostic approaches classified in Vachtsevanos et al.(Vachtsevanos, George et al., 2007) 

  as shown in Fig.1.16, is most commonly described as a piecewise function composed of three regions (hazard functions,):1   signifies hazard rate increasing (wear-in or infant mortality failures), of hazard rates (wear-out failures). Failure data are fitted to the Weibull distribution(s) using various techniques such as parameter estimation methods, least squares, moments and maximum likelihood etc. Major limitations of this approach are: Accurate curve fitting demands a considerably large sample set of failures incurred during extensive testing or operations. In situations when the component degradation process is variable or failure distribution is exponential, reliability analysis on its own proves insufficient for accurate RUL prediction. As the failure trend is generalized over large sets of population, obtaining an accurate RUL prediction on individual component unit to unit basis is generally unreliable.

Fig. 1 .

 1 Fig. 1.16 Classical bathtub curve[START_REF] Sikorska | Prognostic modelling options for remaining useful life estimation by industry[END_REF] 



  ANN models must be trained and they learn by examples. As such, enough and sufficient number of failure instance examples are required for an accurate training.  A poorly trained ANN generally gives bad prediction performance. Moreover, well trained models too remain vulnerable to bad/non-acceptable performances when faced with damage progression behavior or failure instances, for which they were not trained.  Additionally, ANNs generalize the system behavior (degradation progression trend) to the whole component population. Varying failure modes, varying failure rate etc. lead to large individual unit to unit variations. In such cases, ANNs performance remains unsatisfactory.

  Arithmetic: Let stand for addition, subtraction, multiplication, or division. Then, if ,, A B C and D are intervals such that, AC  and BD  , then Natural interval extension (NIE) F, of f is obtained, by replacing the real arguments with interval arguments and real operators (arithmetic etc. ) by their equivalent interval operators, in the syntactic expression of the real function f. Definition 2.5: We say that is 12 ( , ,..

Fig. 2

 2 Fig. 2.1 Nominal R element (resistance causality)

Fig. 2 .

 2 Fig. 2.3 shows the uncertain R element representation on BG.

Fig. 2

 2 Fig. 2.3 Uncertain R element (conductance causality) in Interval form

  18) This way, on an uncertain BG, [] SSe  (or[] SSf  ) can be connected to the junction which is connected to the dualized detector SSe (or SSf) when the bond is connected to: passive linear or non-linear elements (R,C or I), active elements (Se, Sf), junction elements (0,1 GY, TF).

Fig. 2

 2 Fig. 2.4. Effort measurement uncertainty in interval form.

  due to measurement uncertainty . The derivative of the interval error can be evaluated as,

Fig. 2

 2 Fig. 2.6 Nominal BG of R-C elements

  3.2 and Appendix B, is adapted to obtain interval valued ARRs (I-ARRs) in presence of parametric uncertainties and measurement uncertainties as intervals on a BG model. The I-ARRs are produced by energetic assessment at the junctions (0 and 1) of BG which are detectable i.e. connected to at least one detector (effort or flow). As shown in Section 1.4.3.2, dualization of sensors means conversion of De and Df respectively, to SSe (source of effort signal) and Df (source of flow).With the considered uncertain parameter vector as , steps are taken to generate I-ARRs:
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 2 Fig. 2.8 Steam Generator Setup and Supervision Interface 1:Supervision Interface 2: DSPACE data Acquisition 3: Main power switch 4: Screen for monitoring 5: Water Tank 6: Pump Circuit 7: Boiler 8: Safety Switch 9: Vapour output 10: Condenser and Heat Exchanger

  tolerance value provided by the manufacturer. It should be noted that , present at the bottom of the tank is controlled manually to introduce water leakage in the tank. It represents a parametric fault. The mass flow rate, vT m , through the valve is given by the non-linear Bernoulli relation, pressure difference across the valve with atmospheric pressure P atm being the reference. x is the valve stem position between 0 and 1, where 0 means fully closed state and 1 implies fully open state. T Cd is a function representing the coefficient of discharge depending on the valve characteristics and sign is used to adjust the direction of flow. The installed characteristics vary such that the relationship between volumetric flow rate through the valve and valve stem position is not perfectly linear. It is experimentally determined for four positions of the valve as shown in Table 2-I. Value of the Coefficient of discharge T Cd is obtained for each of the valve positions.

Fig. 2 .

 2 Fig. 2.11 Deterministic Bond Graph Model of Steam Generator

  56)Pipe is modelled by a resistor element R:R z1 which depends upon tube characteristics and supply valve. Assumption of Poiseuille flow in the tube leads to,  , L p is the pipe length and r p is the pipe radius.Considering L p and r p as uncertain parameters, the interval valued uncertainty on 1 z R is a function of interval uncertainty of several parameters. It can be determined as,

  As shown in Fig.2.11, the hydraulic and thermal energies inside the boiler are modelled by a two port C element : B CCand the heat transfer from the boiler to the environment is characterized by R:R a element. It is instrumented with two redundant sensors of temperature De: T 5 and De: T 6 , two redundant water level sensors De: L 8 and De: L 9 , an uncertain pressure sensor De: P B , a volumetric flow sensor at the output of the boiler Df: F 2 , and a power sensor Df: Q.

  68)As shown in Fig.2.11, volumetric flow is a function of variation of steam-liquid mass; it is given as,

  Cd ). The limit on the modulation of valve stem is fixed to V B,2 outflow is brought by uncertain position of the valve stem (between V B,1 and V B,2

  input voltage modulated by Boolean parameter b 2 sensitive to the pressure in the boiler. There is a gradual positive shift in the nominal behavior of resistor at higher operating temperature range of 110 C-150 C  . The upper interval limit 1/RS  , is set by observing the deviation on nominal value without any faults introduced. The corresponding lower limit 1/RS  , signifies the error in the identification of nominal value (lower limit of tolerance) provided by the manufacturer. Represented in Fig.2.12, the interval valued uncertain heat flow denoted

:

  v is the uncertain steam heat capacity at constant volume . T 50 and 38 m are given respectively, by SSe:T 5 and volumetric mass flow sensor Df:F 2 . The corresponding uncertain 84 heat flow is due to error in estimation of the value of v c . The latter is represented as 2

  Stem position of the valve V B , present at the bottom of the boiler is between V B,1 None of the system parameters are modulated manually.
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 2 Fig. 2.13 Nominal Conditions (a) Nominal Residual 1,n r and Thresholds as range of 1 1

  I). This leads to increase in the flow output as shown in Fig.2.14 (a). The latter translates to the fact that associated discharge coefficient . The fault is detected when the corresponding nominal residual r 1,n deviates outside the bounds of associated URIF, as shown in Fig.2.14 (b).

Fig. 2 .

 2 Fig. 2.14 Fault in Water Tank (a) Leakage of water (b) Fault Detection with Nominal Residual 1,n r and Thresholds

  Fig. 2.15 (a), the resistance of the pipe is increased by modulating the stopper at the output of the pump. The volumetric flow is measured by Df:F 1 (kg/s). It is modulated abruptly to the closed state; the supply of output flow is cut. As shown in Fig. 2.15 (b), the parametric deviation (fault) results in deviation of r 2,n outside the associated URIF bounds.

Fig. 2 .

 2 Fig. 2.15 Fault in Pipe (a) Variation of resistance R z (b) Fault Detection with Nominal Residual 2,n r and Thresholds

  . The fault is detected when the corresponding nominal residual r 3,n deviates outside the bounds of associated URIF, as shown in Fig.2.16 (a).

Fig. 2 .

 2 Fig. 2.16 Fault in Boiler Valve V B (a) Water leakage (b) Fault Detection with Nominal Residual 3,n r and Thresholds

Fig. 2 .

 2 Fig. 2.17 Fault in electrical resistor (a) Increase in the Resistance RS (b) Fault Detection with Nominal Residual 4,n r

  derivatives etc. Then, R can be considered consisting of nominal part r and uncertain part b (see Appendix B) as BG LFT BG LFT ,n R r b   . The nominal part is sensitive to certain parameters, nominal value of uncertain parameters, system inputs and output measurements, whereas the uncertain part b is sensitive to parametric uncertainties and uncertain effort (R is assumed to be derived at 1-junction) brought by the respective parametric uncertainties. Here,

Fig. 2 .

 2 Fig. 2.18 and Fig. 2.19 , the four residuals are shown with URIFs and BG-LFT enabled thresholds for a comparative study.

Fig. 2 .

 2 Fig. 2.18 (a) Fault Detection with Nominal Residual 1,n r and Thresholds as range of 1 1

  integrating interval analysis based capabilities in BG framework for fault detection and health monitoring of uncertain systems. The methodology to generate Interval valued Analytical Redundancy Relations (I-ARRs) and corresponding robust thresholds over the nominal residual is presented. I-ARRs are derived directly from the BG junctions with the help of structural and causal properties of the uncertain BG. The interval valued uncertain residual interval function (URIF) can be directly obtained from the uncertain BG. The method of modeling uncertainties in interval form alleviates the limitation of quantifying the uncertainties with symmetric bounds (equal limits on the left and right side of nominal value) associated with BG-LFT method. In fact, this leads to the generation of adaptive thresholds which are not necessarily symmetric with respect to the nominal residual. Moreover, it is shown that BG-LFT enabled robust FDI is only a special case when interval valued uncertainties have symmetric interval bounds/limits. The proposed methodology is applied and validated over uncertain steam generator system. The usefulness of the proposed methodology over the previously used BG-LFT generated thresholds in fault detection is shown via real experimental results. As the methodology presented here is a novel contribution of the thesis, it has led to following works:  M. Jha, G. Dauphin-Tanguy, B. Ould Bouamama, Robust FDI Based On LFT BG And Relative Activity At Junction, in: Control Conference (ECC), 2014 European, IEEE, 2014, pp. 938-943.  M. Jha, G. Dauphin-Tanguy, B. Ould Bouamama, Integrated Diagnosis and Prognosis of Uncertain Systems: A Bond Graph Approach in: Second European Conference of the PHM Society 2014 European Conference of the PHM Society 2014 Proceedings, -Nantes France, 2014, pp. 391-400.  M. Jha, G. Dauphin-Tanguy, B. Ould Bouamama, Robust Fault Detection of Uncertain Systems with Interval Valued Uncertainties in Bond Graph Framework, in review process, Journal of Process Control, Elsevier.

  /non-linear degradation progression function (DPF) obtained from the corresponding DM. It models the way the degradation progresses in θ ( ) noise vector and θ d n denotes the nominal value of θ d .

A

  fault model is constructed in state space to achieve the estimation of θ ( ) d t based upon information (measurement) provided by the values of nominal residual sensitive toθ ( ) 

  progression in state space form. The fault model for   state -space form by considering the parameter θ ( ) d t as the state variable augmented with the DPP vector as,

  20) After detection of degradation by the FDI module as a fault at time step d k , the prediction of EOL/RUL at prediction time k , requires the estimate of θ d k , d k γ . This problem is cast as joint state-parameter estimation problem in particle filter (PF) framework, where the estimation at time k is obtained as probability density function (pdf) history of measurements from the time of beginning of degradation k d up to k,

  with weights being chosen using the principle of importance sampling. The proposal importance density is chosen as the transitional prior



  To avoid the degeneracy problem, a new set of particles is resampled (with replacement)

  to its true value during the estimation process. Selection of the variance of the random walk noise is essentially a tradeoff between values that are big enough to allow the convergence in reasonable amount of time, yet small enough to let the parameter values be tracked smoothly once convergence is reached. One of the efficient ways of ensuring good estimation of θ ( ) convergence is reached. In this regard, performance enhancement has been achieved by the usage of proportional control law type variance adaptation method; it is proposed, demonstrated and implemented in[START_REF] Daigle | Model-based prognostics with concurrent damage progression processes[END_REF]. Therein,  Variance (spread) is quantified by the statistically robust metric Relative Median Absolute Deviation (RMAD) obtained as,

  a procedure can be a tedious task especially in presence of multiple DPP. Although the objective that rests in achieving proper convergence and subsequent smooth tracking is clearly achievable, availability of no guidelines for a proper selection of number of stages and , ξ* v dj , makes the task complicated. In this paper, random walk variance is controlled in similar fashion as in (Daigle, M. J. & Goebel, 2013), however, with the distinguishing feature that variance adaptation is triggered by , at time k , being the average of the estimation mean , ˆdj  in a running window of previous L estimates. Fig. 3.1 shows the schematic of the proposed algorithm.

Fig

  Fig. 3.1 Schematic of variance control scheme

  Prognostics involves assessment of the time which the system has before the latter fails (or requires maintenance procedures), due to the degradation of considered system parameters.In this work, it is achieved by prediction of the RUL of the parameter under degradation. The critical/failure value θ d fail of θ ( ) d t is specified beforehand.

y

   , as they are not available. Pseudo-algorithm for RUL prediction is given in Table3-IV.

  Fig. 3.2 Schematic description of the Health Monitoring Methodology



  mean over all values of k. Relative median absolute deviation (RMAD): As detailed in Section 3.3.3.1, RMAD expresses the spread of estimation relative to median as a percentage. It is averaged over multiple values of k to obtain average RMAD for d For a particular prediction time point k p , the prediction accuracy for θ d is evaluated by Relative Accuracy (RA) metric as: RUL at time k p for θ d . The overall accuracy is determined the prediction points. The latter being denoted as θ RA d is determined in (3.32). The associated spread at k p and overall spread is determined by finding the corresponding RMADs. They are denoted respectively  metric (Saxena et al., 2010) is employed to summarize the prognostic performance where [0,1]   defines the bounds of true RUL as between the initial prediction time point and the true end of life (EOL). The third parameter [0,1]  signifies the desired (pre-fixed) fraction of the RUL prediction probability mass percentage, that must fall between the cones of accuracy determined by , for the respective RUL prediction to be acceptable. In this work, for all λ (all k), β =0.5 which translates to the requirement of 50% of probability mass distribution of θ,

3. 5 .

 5 The control input from PI controller (controlled variable: motor speed m  ) modulates the input voltage MSe: U PI . The measured angular velocities (obtained from angular positional measurements) of motor shaft and load disk are represented as :

Fig. 3

 3 Fig. 3.3 Mechatronic Torsion Bar 1.0 system

  remains in integral causality with the initial condition given by the flow at respective 0-junction, provided by encoder readings as 10 9 13

  Fig. 3.7 Nominal Conditions (a) Motor disk speed (b) Input voltage (c) nominal residual and interval valued thresholds

  additive random walk noise. The estimation of state of parameter achieved very quickly but with large initial estimation spread. This is due to the high artificial noise variance set for the desirable quick convergence. The estimation spread shown in Fig.3.10 (b), is reduced (effective from t = 20 s) until 1 . 3.10 (c) shows performance with no variance control where the estimation continues with large spread even after the convergence is achieved prediction is shown in Fig.3.11. The RUL distributions obtained until t = 52s, are not good predictions and suffer with large variance spread due to the large corresponding spread in 1  (see Fig.3.10 (a)) making them virtually useless.

  Fig. 3.12 (a) shows estimation with

Fig. 3

 3 Fig. 3.9 State estimation of the prognostic candidate system parameter Md b

  The main objective of the latter remains in triggering the variance adaptation. As such, if width of *band. This may lead to a very insignificant effect of variance adaptation on the estimation performance. Fig.3.13a shows the estimation with Nm/rad, which can considered -too tight‖ around * 1  =0.05 Nm/rad.

=

  early reduction in variance. However, a bad choice of P 1 (read high) and early variance adaptation, may lead to a rapid reduction in spread, followed by stagnation of estimation around ,* dj  , before converging slowly to the same, as shown in Fig.3.13 (d) with P 1

Fig

  Fig. 3.12 Estimation of DPP 1  for qualitative analysis (a) Large initial random walk variance 1 22 ,0 0.04

Fig. 3 .

 3 Fig. 3.15Fabricated Mechanical Lever type arrangement for Load (Mass) Suspension

Fig

  Fig. 3.16 Nominal residual 2, () n rt  under nominal conditions Fig. 3.17 (a) Addition of mass discretely to introduce degradation (b). Motor disk speed (c) Nominal residual 2, () n rt 

Fig. 3 .

 3 Fig.3.18 shows the experimental data and the data mean found at each instant. A linear fit over data mean is obtained using linear regression and an approximate * 2  =0.005 Kg/s is obtained. Sum of squared errors provides an approximate standard deviation for process noise

Fig

  Fig. 3.18 Degradation Test Data (linear variation)

  1



  impoverishment problem during the experimentation. Estimation of M is shown in Fig. 3.20 (a). Note that true M * is the residual based measurement of M(t), as described in Section 3.2.1, (cf. (3.3)) and is used for comparison purpose. The mass variation is estimated very accurately with M RMSE =3.98% . Estimation of DPP 2  is shown in Fig. 3.20 (b). Here, reference RMAD is set as 2 * 5% v  = [3x10 -3 , 7x10 -3 ] Kg/s around the approximately true * 2 =0.005 Kg/s. It should be noted that in the practice, * 2 is not guaranteed to remain constant. From the DM, only an idea of the magnitude order is obtained. Fig. 3.20 (b)shows the estimation with large initial variance, due to a large value of initial random walk variance, set for quick convergence. The estimation spread is reduced effectively starting from t=40s after which, the estimation mean remains around * 2  with RMAD around 6%.

Fig

  Fig. 3.20 (a). Estimation of M (b) Estimation of 2 

Fig. 3 .

 3 Fig. 3.21 RUL prediction in experimental case: Linear variation of mass

Fig. 3 .Fig

 3 Fig. 3.22 Exponential variation of mass. (a) experimental data (b). Exponential fit over experimental data mean

  degradation tests. The structure of the observation equation remains same as in (3.50). For the experiment, load mass is varied until ( ) 3.23 shows the profile of nominal residual under exponential degradation.

2 w

 2 For estimation, particle filter assumes measurement noise variance 9 times that of measurement variance 3 to counter sample impoverishment problem during the experimentation. As shown in Fig.3.24 (a), state of parameter is gain P=0.003, true DPP interval

Fig. 3 .

 3 Fig. 3.24 (a) State estimation for Trail 1 (b) Estimation of DPP 3  (c) RUL prediction for case II

Fig. 4 . 1

 41 Fig. 4.1 Principle of operation of a PEMFC A PEMFC (see Fig. 4.1) is an electrochemical converter which converts the chemical energy of hydrogen and oxygen into DC electricity that flows in an external electrical load. It is based on the reverse principle of electrolysis. At the anode, the hydrogen provided through the channels of the bipolar plates is diffused through the Gas Diffusion Layer (GDL) to the electrolyte, where the reaction occurs as,

C

  a known quantity. The valve represented by a resistive BG element R: n Rh (where sub-script n denotes the nominal value) regulates the flow of hydrogen (for anode. To transform the mass flow (kg/s) into a molar flow (mole/s), a transformer element :1/M TF is used where M is the modulus representing the molar mass (kg/mole). Flow sensor 2 : mass flow(kg/s) into a molar flow (mole/s).

Fig. 4 . 2

 42 Fig. 4.2 Bond graph model of the PEMFC in preferred derivative causality

  limiting current i.e. maximal current the fuel cell is able to provide. The double layer capacitance phenomenon is modeled by a capacitor element C: dl C and imposes the dynamics of the activation phenomena.el U is expressed at the junction 0 C , as the solution of the equation:

  of entropy of the specie x.

  -LFT robust fault detection technique is employed to detect the beginning of degradation of the isolated faulty component. Once the degradation is detected, the estimators are triggered which produce the current state of health and RUL prediction. The associated pseudo algorithm is given in Table 4-I.

Fig. 4

 4 Fig. 4.3. BG-LFT model of Electrical-Electrochemical subsystem 4.4 Experimental Setup Degradation tests are carried out on a 10kW test bench as shown in Fig. 4.4, that regulates the temperature (by means of a cooling system (c)), the moisture content (through boilers (b)), the anode and cathode pressures (through the air and hydrogen supplies (a)), the electrical load (d) and the test bench adjusts the gas flow rates accordingly. The stack voltages are recorded continuously (through the acquisition unit (e)) during the test with a one-hour sampling period.

Fig. 4

 4 Fig. 4.4. 10kW in-lab test bench, (a) air and hydrogen supplies, (b) humidifiers, (c) cooling system (the PEMFC is located behind), (d) electrical load, (e) control and acquisition unit.

  With nominal current of 70 A, the recorded stack voltage fc U (at sampling period of one Hour) is shown in Fig. 4.5.

Fig. 4

 4 Fig. 4.5 Recorded voltage for FC1

Fig. 4 . 8

 48 Fig. 4.8 Recorded profile for FC2 (a) Current (Load) Profile (b) Recorded Voltage

Fig. 4 .

 4 Fig. 4.10 Derivation of the parameters values (%) during aging (FC2)

  3.2). However, unlike Chapter 3 where an uncertain BG with interval valued uncertainties and interval thresholds is employed for robust detection of degradation; here, a BG-LFT model of the EE part is used for generation of robust adaptive thresholds. Also, the observation equation needed for construction of the fault model is extracted from the nominal part of the BG-LFT derived ARR.

Fig

  Fig. 4.11 Schematic of the Prognostic Methodology for PEMFC

  approximated from residual measurements during degradation tests.Applying the Proposition 4.1 in the context of uncertain EE part, the measurement of the state health can be obtained implicitly from 2 ARR , which is derived from the energetic interaction found in electro-chemical subsystem (see(4.24),(4.25)

Fig. 4 .

 4 Fig. 4.12 Estimation performance in PF for FC1 (a). Estimation of  (b) Estimation of  (c) Measurement via. residual and its estimation

Fig. 4 .

 4 Fig. 4.14 Estimation and RUL prediction by EKF for FC1 (a). Estimation of  (b) Estimation of  (c) Measurement via. residual and its estimation (d) RUL Prediction

  4.8) mimics the usage in different seasons and affects the speed of degradation significantly. As such, true  seems to evolve in a piece wise linear way (see Fig. 4.10 (b) and (d)). Thus, true  and true  are un-observable in reality. Moreover, the actual measurement in form of residual 2,n r is severely affected by the characterizations (see Fig. 4.8 (b) and Fig. 4.15. (c)). This phenomenon is mainly due to the restandardization of the conditions of temperature and evacuation of liquid water in the PEMFC.

  Fig. 4.16. Note that unlike Fig.4.13, where the prediction accuracy is gauged by RUL * , α- metric and RA metric, the same metrics cannot be used here due to the non-uniform speed of degradation. In Fig.4.16, the predictions obtained until t=475 Hours are virtually useless owing to their huge median value and large spread. This can be attributed to the very large corresponding 2,n r RMSE . However, after t=475 Hours, useful predictions are obtained with very small spread. This is mainly due to the less and lesser

  4.15. (c)), followed by the recovery of SOH until EOL is reached at 900 Hours. Overall the global method is able to assess the RUL distribution with high accuracy and precise confidence bounds. Being run on the computer of same configuration as FC1, the RUL prediction took around 4 Hours 28 minutes of computation time in total.

Fig. 4 .

 4 Fig. 4.15 Estimation performance in PF for FC2 (a). Estimation of  (b) Estimation of  (c) Measurement and its estimation

Fig. 4 .

 4 Fig. 4.16 RUL prediction in PF for FC2

Fig

  Fig. A-1: Various elements in Bond graph modelling

Fig. A- 4

 4 Fig. A-4 Representation of TF element Gyrator Element (GY) : This element is used for connection of two subsystems where the output effort (input flow) is proportional to the input flow (output effort) of the other subsystem (see Fig. A-5). The associated constitutive equations are: 12 e kf  and 21 e kf  with k being the coefficient gyration. Some examples include gyroscopes, electric motors etc.

Fig

  Fig. A-5 Representation of GY element

Fig

  Fig. A-6 BG representation of 0 Junction

For

  R element, either of the representations may be followed according to the constitutive relation dominating the dynamics of component of interest. In other words, both the representations is acceptable for either of the causalities. Table A-4 shows the representation of , the absolute and relative deviations around the nominal value θ n . When the element characteristic law is written in terms of 1 element in resistance (imposed flow) causality. The characteristic law corresponding to R-element in the linear case (Fig. B-2-(a)) is given as follows can be represented by the LFT BG of uncertain R-element in Fig. B-2 (b) by introducing a modulated source MSe associated with auxiliary input w R and a virtual effort sensor associated with auxiliary output z R.

Fig

  Fig. B-2(a): R-element in resistance causality. (b): uncertain R-element in resistance causality in LFT form.

  written as shown in (B.8). The BG representation is shown in Fig. B-3.

  Fig. B-3 (a): R-element in conductance causality. (b): uncertain R-element in conductance causality in LFT form It must be note d that the (-) sign that appears in the BG representation in Fig. B-2 and Fig. B-3 is due to the power conservative convention followed. Moreover, the symbols De* andDf* represent virtual detectors. The virtual detectors are used to represent the information exchange/transfer. Also, the modulated sources :

Fig

  Fig. B-4 BG-LFT representation of parametric uncertainty on I and C elements in derivative causality: (a) BG-LFT representation of I element (b) BG-LFT representation of C element

Fig

  Fig. B-5 BG-LFT representation of parametric uncertainty on TF element.

Fig

  Fig. B-6 BG-LFT representation of parametric uncertainty on GY element.

  S of N number of weighted particles[START_REF] Arulampalam | A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[END_REF], As the number of samples/particles becomes very large, the Monte Carlo characterization becomes an equivalent representation to the usual functional description of the posterior state PDF, and the filter approaches the optimal Bayesian solution

  To achieve it, constraint on importance density is placed to factorize it as, (C.13), (C.14) and (C.15), particles are updated recursively as, that this is desirable and suitable for online implementation. Thus,

  can be used for recursive estimation as the observations arrive sequentially. The likelihood functions of the new observations result in evaluation of weights of newly generated particles.

.

  The new set of particles represents i.i.d from (C.20) and thus, the particle weights are reset again as w 1/ i k N  . Fig. C-1 illustrates the principle of SIR particle filters.

Fig. C- 1

 1 Fig. C-1 Principle of SIR particle filters[START_REF] Jouin | Prognostics of PEM fuel cell in a particle filtering framework[END_REF] 

Fig. D- 2

 2 Fig. D-2 Simulink Model Interface used in Chapter 4

  

  

  

  

  

  

  

  

  

Table 1 -

 1 I Various definitions of Prognostics

  .10. The variables describing the dynamics are listed in Table 1-II. The BG model in preferred integral causality is given in Fig. 1.11. The various constraints in form of behavioral equations B that are related to BG model are given in Table 1-III.

C , measurement equations M C and structural equations S C

Table 1 -

 1 II Variables of the pedagogical DC motor

	Symb	Designation	Symbo	Designation
	ol	l			
	Ra	Stator resistance(Ω)	fm	viscous friction (N)
	La	Stator Inductance(H)	Jm	Inertia (rotor, load)(kg-m 2 )
	ke	Motor torque constant (N-		L	Mechanical Torque (Load)
		m/Amp)				(Nm)
	i m	Measured current (A)		() t	Angular velocity(rad/sec)
	Ua (t)	Input voltage(Volts)		() m t	Measured angular velocity
	i	Motor Current (A)	U	R	Voltage in Resistance (V)

Table 1 -

 1 III. Equations governing the BG model of Fig. 1.11

	Behavioral Equations	Measurement Equations	Structural Constraints
				: ( ) R C U t Ra i t . ( ) Ra 
	C	B	:	: ( ) : fm C i t La fm C	1 La . ( ); ( ) L U t dt fm t
				C	Jm	: ( ) t	1 Jm	J	( ) t dt

Table 1 -

 1 IV Causal paths covered and obtained ARR expressions

		Causal path covered	ARR obtained:
		:
		:
	1	:
	1	:

Table 1

 1 

			-V Fault Signature Matrix (FSM)
	\ ji	1 r	2 r	. . .

Table 1

 1 

	-VI by taking into

  Representation of the uncertain flow (f i ) and effort (e i ) brought in at the junction by interval uncertainty, is done by fictive effort or flow input

							  ii   and : MSe w : MSf w respectively,
	modulated by	 *. , i n i e  i   		and	 *. , i n i f  i   		respectively.
	For pedagogical illustration, an example of resistor element R, in resistance (imposed
	flow) causality is considered.				
	 Nominal case (see Fig. 2.1) : The characteristic equation with parameter in nominal
	state (without any uncertainty) is expressed as,
	. RR e R f 						(2.9)
	 Uncertain case (see Fig. 2.2):With multiplicative interval uncertainty	, RR    the
	characteristic law is expressed as,		

TF , δ GY where, for notational simplicity,   ,          . The latter closely resembles to LFT representation on BG, where the parametric uncertainty is bounded such that upper and lower bounds remain equal.

  The observed uncertain measurement m Sn can be treated in interval form ,

																		mm Sn Sn   such
	that,																
					 ,, m t l Sn Sn m Sn Sn Sn t     	 	u Sn		(2.14)
					, Sn Sn m m   		, Sn Sn t t	   	, Sn Sn l u 	
	where	Sn is the true measurement which is un-observed and	Sn  ,		Sn	are respectively,
		t																l	u
	the lower and upper bounds that model the permissible limits on sensor drifts, measurement
	bias, tolerance errors etc.												
	2.3.2.1 Representation on Bond Graph		
	Uncertain effort detector can be considered as,
			 	, SSe	SSe	 	measure		 	t SSe	,	t SSe	 	true	   SSe l	,	u SSe 		(2.15)
	The uncertainty interval is modelled by virtual source of effort		
		MSe		lu SSe SSe  	is denoted as	SSe   MSe 	as illustrated in Fig. 2.4. From
	the latter, following equations can be deduced.
	1 1 , e e 	4 4 , e e	measure d		l SSe	,		u SSe	SSe	* MSe	:		l SSe	,	u SSe	
		true															
	22 , e e	55 , e e	measure d			l SSe	,	u SSe	SSe	* MSe	:		l SSe	,	u SSe	
		true															
	3 3 , e e	6 6 , e e						l SSe	,	u SSe	S
					measure d										
		true															

* :, lu MSe SSe SSe   , representing the exchange of effort information which is propagated from the detectors to rest of the model through causal paths (bonds) to eliminate the unknown variables. For notational simplicity,   * :, * :

  This directly follows from Property 2.3 such that,

									( ) ( ) 0 r t b t n 	(2.42)
										( ) b t	 	( ) r t n
	Proof: Consider the function From (2.42) and (2.41),
	Ψ	2		   θ,δ ,θ ,SSe( ),SSf( ), ΔSSe, ΔSSe n tt θ ( ) ( ), ( ) n r t B t B t 	(2.38) (2.43)
	such that the URIF Hence, the evaluated interval range of 2      2 , , , , n        θ θ SSe SSf Ψ θ,θ δ ,δ θ ζ ζ Ψ guarantees the containment of  , ( ), ( ) tt SSe SSf is obtained by replacing () n rt  , given that  additive deviation of uncertain candidates remain within their prescribed interval bounds.
	the point valued arguments and arithmetic operators by the corresponding interval arguments and
	interval arithmetic operators respectively, in the syntactic expression of 2 Ψ . From Definition
	2.4, the URIF 2 Ψ can be considered as Natural Interval Extension Function of 2 Ψ . Lemma 2.2: Alternatively, ( ) ( ), ( ) n r t B t B t    .
	Now, from Definition 2.6, if 2
				Ψ	22 , , nn , , , ( ), ( ) tt tt     , ,             θ θ θ SSe SSf θ,δ ,θ ΔSSe, ΔSSe θ,θ δ ,δ θ ζ SSe SSf SSe( ),SSf( ) Ψ ζ	(2.39)
	At any time t, let () bt be the resultant of additive deviations , θ δ ΔSSe, ΔSSe on nominal
	residual, such that,	 ΔSSe -ΔSSe , ΔSSe ,   lu	 ΔSSf -ΔSSf , ΔSSf ,   lu	,      θ θ θ,θ δ	 	  δ ,δ . θ θ
	Then,				
						Ψ	2		n θ,δ ,θ ,SSe( ),SSf( ), ΔSSe, ΔSSe t t θ			( ) b t	(2.40)
	Proposition 2.1: For point valued variable vectors From (2.40) and (2.30), following can be guaranteed, θ,δ ,θ ,SSe( ),SSf( ), ΔSSe, ΔSSe n tt θ	,bounded
	by interval limit	 ΔSSe -ΔSSe , ΔSSe  lu ( ) ( ), ( )  , ΔSSf -ΔSSf , ΔSSf   lu b t B t B t   		,	,      θ θ θ,θ δ	 	  (2.41) θ θ δ ,δ	,

given that the Uncertain Residual Interval Function (URIF) is expressed as finite sequence of interval arithmetic operations, the range of URIF guarantees the containment of negative value of point valued nominal residual. Ψ is expressed as finite sequence of interval arithmetic operations (evaluated as class code during implementation

[START_REF] Moore | Introduction to interval analysis: Siam[END_REF]

)) then, it can be considered as Rational Interval Function (RIF) of 2  .

From Property 2.3, and Lemma 2.1, 2 Ψ is an inclusion-isotonic function.

Then, from Theorem 2.1, following can be guaranteed,

   

Now, at all times, due to energy conservation at the BG junction where the I-ARR is derived, Proof:

.1.2 Pump and Pipe System As

  is modeled by MSf:[w ] shown in Fig.2.11, the pump and the pipe are modeled separately by two resistance The parameters k 1 and k 2 are known with uncertainty of 5%

																				; they are modelled as	11 , kk   
	and	22 , kk   	. The corresponding uncertain pressure e 23 is modelled by	:[ ]
																			. It is determined as,
																			C
																			T
	MSf	:[w ] T C	,  p p c c      	21 m	, .c . p n T 2	(2.53)
	2.6elements R:R P and R:R z1 respectively.
	R: R p is modulated by characteristic equation of the pump considered as,
	22 m		f	1 (P , ) P b		1 b		1 k		24 P		21 P			k	2		(2.54)
	or,	22 11 1 m Pk p kb  2   						(2.55)
	where, P 21 and P 24 are respectively, the input and output pressures of the pump , k 1 and k 2 are
	uncertain pump characteristic parameters. b 1 is a Boolean parameter that switches its state
	depending upon the level of water in the boiler as,
	1 b	0 if 1if    	8 8 L L 8, 8, ref ref L L  	8 8 L L			

Rp

MSe w . It is expressed as,

  By definition, 0,

	pp LL      	and	11 1/ 0, 1/ pp rr      	. Thus, a
	direct interval arithmetic computation on (2.59) gives an over bounded result due to presence of
	multi-incident intervals. It can be avoided by splitting the domain-parameter space as shown in

(2.60), where G 1 and G 2 are monotonic over their respective interval domains. A sharp range value is calculated by taking the join (union) over ranges of G 1 and G 2 .

  dynamics of the flow through pipe 26 m , is determined by Bernoulli's law in turbulent regime as,

	26 m		 1/	 zz  1 26 . 1/ R P R 	1		.	24 P		29 P	(2.61)
					2	2			2		
				26	1	26			1		

As shown in Fig.

2

.11, it is modelled by non-linear resistor element R:R z1, in resistance causality; the pressure effort is determined as,

  66)where  is the thermal conductivity, B e is the wall thickness and  

											50 TT  62	is the temperature
	difference between the sides of the section B A of the boiler wall. The thermal resistance for heat
	transfer carries interval uncertainty	1/ aR a 1/ , R   	as function of 1/   1/ , BB AA 	and	, BB ee   	. It can
	1/   1/ , a R a R	1/	B A	,	1/	B A	 	B e	,	B e
	1/	B A	,	1/	B A	.	B e	,	B e

be determined as shown in (2.67), where sharp range values are obtained by splitting the interval parameter space as done in (2.60).

  are, respectively, the density and specific enthalpy of the water and steam inside the boiler; each of them being a function of the boiler pressure P B . They are calculated using a polynomial interpolation algorithm. is the volume of water, measured by level sensor Due to the presence of the multi-incident intervals, the hydraulic uncertainty ( 1,

	where , l 	l h	and , vv h			
	De:L	8 .	V is the volume of steam determined as	V	V  , where V	V is the volume of the
				v						v	B	l	B
	boiler. P B is the measured pressure inside the boiler (SSe: P B. ).
	The uncertainties	,   l	l h	and	, vv h  	on , l 	l h	and , vv h 	respectively, arise due to error in their
	identification using polynomial interpolation algorithm. As such, an approximate error interval
	of 5% 	is assumed on their calculated nominal value.
										 ) and thermal
										C
										B
	uncertainty ( 2,				
										69)
										(2.70)

l V B C  ) can be determined, respectively, as shown in (2.71) and (2.72) where for notational simplicity ,

  .11. Cd is the coefficient of discharge proportional to the flow rate. The installed valve characteristics are determined experimentally for four valve positions as shown in Table2-II.

	f	35		vB m		( ). C x sign P ( ). | B d 	P 	|	(2.75)
	P 	35 e						(2.76)
	where B								
	The valve is modeled by non-linear resistor element	R : R as,
								VB	
						82			

Table 2 -

 2 II Stem Position of Valve present in boiler and Discharge Coefficient

	Valve Stem Position V B,1		V B,2		V B,3		V B,4	
	Discharge	Cd	B	,1	Cd	B	,2	Cd	B	,3	Cd	B	,4
	Coefficient												
		3 5.4678 10  	3 5.78 10  	3 6.278 10  	3 6.478 10  

  ). The latter is accounted by limiting the variation of the discharge coefficient B pressure measurement readings. Measurment error tolerance interval is provided in the meanufacturer's data-sheet based upon which uncertain interval bounds are fixed. Measurement Interval uncertainty is represented as modulated effort sources

							Cd , as
	,1 BB , d C  ,2 CC d B d   or	 BB ,1 0, CC d B d C d  		, where	21 B Cdd C B B Cd  	. Thus, while
	,1 BB , d C  ,2 CC d B d   , system is nominal with -no fault‖ in leakage. The corresponding uncertain
	flow	:[ ]				
			:[ ] VB MSf w	    0, C sig  B d n	35 (e ). | e | 35	(2.77)
	Measurement from pressure sensor SSe: P B suffers the sensor bias (offset) and thus, is considered
	uncertain as,				
			, B m P P B, ,, B, B, m r l P P   B, u P      	(2.78)
	where, B,m P is the measured reading and B,r P is the actual reading.	B, PP B, , lu     models the
	uncertainty in the				

VB

MSf w represented in Fig.

2

.12 by f 32 is determined as, * : B P

  1. It is sensitive to fault due to valve blockage (or pipe plugging) at the pump output. Energetic assessment at 1 p

	junction gives,																				
		 	2 R	,	2 R	    	24 e	,	24 e	    	25 25 , e e	 	26 e  	 	29 e	,	29 e	    	27 e	,	27 e	 
	with	26 e		z R	22 1 1 . , F	 	29 29 , e e	 	B P  	[ ], B P 	 	27 e	,	27 e	 		[	Rz w	1	]	,
			24 24			21 21		22 22			23 23
						1,				22										
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 2 III Nominal Values and Uncertainty Values

				Physical	Nomin	Interval				Uncertaint		Physical	Nomin	Interval	Uncertainty
				Name	al	Uncertaint	y value		Name	al	Uncertain	value
					Value	y										Value	ty
	T A	Tank Section	0.436 m 2	, TT AA   			[ 0.004, 0.009] 	e	B	Thickness of the Boiler Metal	0.008 m	, BB ee   	0.085] [ 0.085, 
	T Cd Discharge coefficient in Tank	0 00632 .		0,		Cd	T				3 0.358 10 ] [0,  	B A Boiler Section	1.887 m 2	 	1/  1/ , B A	B A	 	0.0067] [ 0.0067, 
				Valve												
	T,m P	Pressure in Tank	Measu red	T, PP T, , mm  		Measured	R	a	Heat transfer Parameter	2858 W/K	1/  1/ , aa RR  	0.0027] [ 0.0027, 
	T P 	Pressure Sensor Bias in	Measu red		TT , PP 			.3 [4 4.9] 	V	B	Volume Boiler	m 3 0.175	0	0
				Tank											Pa	
	c	p		Fluid specific Heat at	Variab le	, pp cc    			[ 0.015, 0.015] 		v	Steam Density	Variab le	, vv    	[-0.02, 0.02]
				constant												
				Pressure												
	1 k		Pump Characteris tic	7 8.33 10   ms   11 , kk 				[ 0.05, 0.05] 	v h	Specific enthalpy of steam	Variab le	, vv hh   	[-0.023, 0.023]
	k	2		Pump Characteris tic	0.97 kg/s	22 , kk   			[ 0.05, 0.05] 	l h	Fluid specific enthalpy	Variab le	, ll hh   	[-0.023, 0.023]
	z R	1	Pipe Hydraulic Resistance	2550P a s/kg	11 , zz RR   		[ 0.01, 0.01] 	B Cd Discharge coefficient in Boiler	0.0054 6		0,		Cd	B		[0, 0.284 10 ] 3  
																	Valve
	 Thermal Conductivi	0.174 W/m	,    				0	T,m P	Pressure in Boiler	Measu red	T, PP T, , mm  	[-1.2%, 1.2%]
				ty of the	K											
				boiler Wall												
	RS Thermal Electrical	2.406 	 	RS, RS 	 	[0,0.5]	T P 	Pressure Sensor Bias	Measu red		PP  TT ,		[-1.9, 1.9] Pa
				Resistance													in Tank
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 2 IV URIF Bounds and BG-LFT Thresholds with Symmetric and Non-Symmetric Interval Uncertainty

																URIF
															Range Interval
											URIF			Limits	BG-LFT Thresholds
		Range Interval Limits		with Symmetric	(Symmetric Uncertainty
														Interval Uncertainty	Limits )
															1 Δθ =Δθ =Δθ 1 1 ,l ,u	12 Δθ Δθ , 
															2 Δθ Δθ =Δθ 2 ,l 	2	,u
	12 θθ 00 e , e 														
																lower a	1 θθ θ 1 | e |   	θ | e |
																upper a	1 θθ θ 1 | e |   	θ | e |
	12 θθ 00 e , e 	B	 	1 Δθ	,u	.	12 θ 2 θ Δθ ,l e e 	B	 	1 Δθ	.	12 θ 2 θ Δθ e e 	lower a	12 θ 1 θ θθ 1 | e | | e   	|
		B		1 Δθ	,l	.	12 θ 2 θ +Δθ ,u e e	B		1 Δθ	.	12 θ 2 θ +Δθ e e	upper a	12 θ 1 θ θθ 1 | e | | e   	|
	12 θθ 00 e , e 	B	 	1 Δθ	,u	.	12 θ 2 θ Δθ ,u e e 	B	 	1 Δθ	.	12 θ 2 θ Δθ e e 	lower a	12 θ 1 θ θθ 1 | e | | e	|
		B		1 Δθ	,l	.	12 θ 2 θ +Δθ ,l e e	B		1 Δθ	.	12 θ 2 θ +Δθ e e	upper a	12 θ 1 θ θθ 1 | e | | e	|
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 2 V Uncertainty Values for BG-LFT Type Threshold Generation Parametric values that have been modified for BG-LFT threshold generation are listed in Table 2-V. Rests of the parametric uncertainties remain same as listed previously in Table 2-III. In

		Physical Name	Nominal	Interval Uncertainty		BG-LFT Uncertainty
			Value											
		Tank Section	0.436m 2	, TT AA    	[ 0.004, 0.009]  	T A  	0.009
	T Cd Discharge coefficient in Tank	0.623		0,	Cd 	T			3 [0, 0.358 10 ]  	Cd 	T	0.358 10   	3 
		Valve												
	RS	Thermal Electrical Resistance	2.406 	RS, RS    			0, 0.5			RS= 0.5 
	B Cd Discharge coefficient in	0.61		0,	Cd 	B			3 [0, 0.284 10 ]  	Cd 	B	 	0.284 10 	3 
		Boiler Valve												

T A
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 2 VI, for each of the four residuals, the corresponding BG-LFT thresholds are listed. In
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 2 VI Threshold generation using BG-LFT method

	Residual	Uncertain part						BG-LFT Thresholds
	1,n r	1 a C sign P ,2 ( T T	T P	). |	T P	T P	|
		T A	.	, Tn	.	T	(	,, T T n A T n	)(1/	T	).2.	T P
				T							
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 3 I Fault detection with d th I-ARR

Algorithm 1: Fault detection with d th I- ARR Input:

  

	1		,	,	( ),	( )	
	FC_	2		,	( ),	( )	

  Proposition 3.1: Under the single degradation hypothesis, assuming the nominal part

											() rt d n
	of an I-ARR can be expressed as a linear combination of non-linear functions of θ ( ) d t , the
	measurement of the state θ ( ) d t can be obtained from the negative value of () d n rt.
	Proof: Let θ ( ) d t be the prognostic candidate and	  θθ	\ θ ( ) d t	. Assuming	() rtcan be d n
	expressed as:								
			( ) r t d n	 		 ( ), ( ), ( ) A (θ) T d n t t t  θφ SSf ,SSe( ), n t  Se Sf	(3.11)
	where | 1, 2... i i m 	,	A	1 mT 12 [ ... ] m a a a  	is a vector of known (measured system variables) with
	i a	( ,SSe( ), n t   θ i 	SSf	( ), ( ), ( )) t t t Se Sf	and	φ	1  m	12 (θ ( )) [ (θ ( )), (θ ( )),.... (θ ( ))] d d d d T m t t t t    	is the
	vector of non-linear functions of θ ( ) d t . Then,	0  power conservation at the BG junction t
	where the corresponding I-ARR is derived, gives,
		( ) r t d	 		   ( ), ( ), ( ) A θ ( ) 0 T d t t t t   Se Sf θφ ,SSe( ), n t  SSf	(3.12)
	or:									
		 ( ) A , n  θ SSe SSf ( ), t  (θ ( )) ( ), t d   T d nn Se ,   (θ ) 0 Sf d r t r t ( ) d r t ( ) d t     φφ	 , A (θ ) A (θ ( )) A (θ ) 0  T d T d T d n n t     φ φ φ 	(3.13)
		 A( θ ( )) T d t φφ 	 nn (θ ) d d r t ( )  
	Thus, degradation state θ ( ) d t can be linked implicitly to the measurements of		() rt d n	.
	Observation equation can be formed as,
										( ) y t d	 	 nn ( ) A (θ ( )) (θ ) d T d d r t t   φφ		(3.14)
	Corollary: When (θ ) d n φ	(θ ) θ d n  	d n	, the vector	1 Aa  , 11 ( , n a   θ SSe SSf ( ), t 	( ), t	, Se 	Sf	)	,
	can be understood as the coefficient function linking the fault value to the residual. It can be
	found as,								
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 3 II Estimation using SIR filter

	Algorithm 2: Estimation using SIR filter
	Inputs:  (θ , ,, 1 1	), w	1		1
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 3 III Variance Adaptation Scheme

	Algorithm 3: Adaptation 
	Inputs:  (θ , ,,	), w		1
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 3 

IV Prediction of RUL Algorithm 4: RUL Prediction

Table 3 -

 3 V Health monitoring of 0

  -VI. Fig.3.8 shows the nominal outputs with measured motor velocity m

										 being PI
	controlled with reference		, m ref		112.5 rad s /	such that motor disk velocity Md  is regulated to
	,, Md ref m ref  / belt k 	30	/ rad s	. Noise is added to sensor outputs. It corrupts the residual and is
	approximated as	2 ( ) ~(0, ) d w wt d  ;		d w 	0.01 V	. Negative value of residual		1, () d n rt	is
	contained within the interval threshold bounds, determined in (3.38).

Table 3 -

 3 VI Nominal and uncertainty values of System Parameters

	Parameter	Nominal	Multiplicative	Parameter	Nominal Value	Multiplicative
	θ	Value	Uncertainty	θ	θ n	Uncertainty
		θ n	θθ ,   			θθ ,   

  Involving only non-destructive experiments,  is assumed undergoing no wear. The nominal value of  ,

	 is found out by suspension of known load value and calculation of the nominal
	n			
	friction value. The corresponding I-ARR	1  found in (3.34) changes to , RR 	, RR  	2

  It should be noted that RMSE  in real time experiments is higher than that obtained in simulations. It is because *

	9x10 -2 ] Kg/s. Estimation is achieved with	3 RMSE  =7.6%. It must be noted that in real
	experiments * 3  cannot be claimed to be the accurate true value of 3  . Fig. 3.24 (c) shows the
	RUL prediction with	 	0.2	,			0.5	. Ignoring the initial predictions until t=32s (due to large
	spread),	RUL RMAD 	9.4%	and	RA 	97.02%	. In fact, the EOL at M=1.8 Kg is achieved slightly
	before than that predicted by DM.
									** 3, 3, , lu    =[1x10 -2 ,

  F is the Faraday number and n is the number of electron moles exchanged. This potential is corrected in temperature and pressure by the Nernst equation:

	22 22 1 2 H O e H    	O		heat	(4.2)
	Both of the reactions (c.f.(4.1),(4.2)) create a potential difference between the two electrodes
	(usually covered with platinum catalyst). This thermodynamic potential is a resultant of the
	Gibbs free energy G  , and is calculated based on the chemical affinity of the species as,
	E		G 			(4.3)
			nF		
	where, 22 2 0.5 0 . 2 HO HO PP RT E E ln FP     	(4.4)

  model in preferred derivative causality of Fig. 4.2, as demonstrated for DC motor model in Section 1.4.3.2. The BG-LFT model of the system or the concerned EE subsystem can be used to derive ARRs in presence of additive or multiplicative uncertainties, which are decoupled into nominal and uncertain parts as discussed in Appendix B.In Fig.4.2, from the junction 1 a (associated with flow sensor SSf : F H2 ), the ARR candidate is deduced from the conservative law equation , sum of efforts is equal to zero :

	where s n is number of cells in a stack . Obviously here,	s n =1. From (4.8)-(4.13) and(4.14), the
	unknown variables can be eliminated using causal paths and known electro-chemical relations
	such that,	2 ARR is expressed as,			
			2 ARR	  2 H fc P ATln 1 2    2 2 2 0 2 0 2 2 0 0 ln ln 1 H O H O H O O fc fc ohm l RT RT P II R I BTln II                                s n	SSe	:	U	fc	(4.25)
	Note that due to fast electrical dynamics (4.14) has been approximated as (De Bruijn et al.,
	2008),								
							el U		R	. I	(4.26)
											ohm	fc
		2								
	4.3.1	Derivation of Deterministic ARRs of PMFC
							1 : ARR	H P	2		an P		Rh P		0	(4.22)
	HH Based on covering causal paths, using (4.5) and known variables, 22 : P Se P 	,	an P		an SSe P :
	and	2 HH : m SSf F 	2	, (4.22) is expressed as,
							  H 12 :: 2 H an hn ARR SSe P SSe P R F   	2	(4.23)
	This ARR can be used to monitor the flooding (such as valve blockage) in the channels of the
	PEMFC which does not form the interest here. The second ARR is deduced from junction 1 c :
							 20 :0  s ac df el fc ARR n E U U U U     	(4.24)
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 4 I Detection of Degradation

								(4.32)
								(4.33)
	Algorithm 1: Detection of Degradation
	Input: () d n rk ,		() wt i
	Output: degradation detection
	if ( ) i r k	 	i w	( ) t	and ( ) i r k	 	( ) w t i
	degradation detection  false
	else						
	degradation detection  true
	end if						
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 4 II Operating conditionsPeriodically throughout the life of the fuel cell, the static response is measured with a polarization curve (voltage as a function of the current) as shown in (4.34) . Note that

							Parameter	FC1	FC2
		Number of cells, s n	5	8
		Surface				100 cm²	220 cm²
		Temperature, T	60°C	80°C
		Anode and cathode stoichiometry ratios	1.5-2	1.5-2
		H Absolute pressure anode/cathode, 2 P &	1.5 bar	1.5 bar
		O P	2			
		Relative humidity anode/cathode	50 %	50%
		Nominal current, nom I	70 A	100 A
		Maximal current max I	140 A	170 A
	4.4.2	Degradation Model
							2 ARR
	derived in (4.25) is nothing but the polarization curve of (4.34), such that voltage sensor	U
							fc
	therein, is dualized as	SSe	:	fc U to derive the	2 ARR of (4.25) . Thus,	2 ARR expression is used to
	obtain the polarization curve as,
			U	fc		s n	0 E   0 ln ln 1 fc fc ohm fc L II R I AT I BT I            	(4.34)

  State equation is formed such that () t  becomes the chosen state parameter θ ( ) The objective rests in exploitation of same ARR for estimation of   θ, dd γ , apart from its usage for robust detection of degradation beginning. To achieve the same, following is proposed.

		: ( ) d ARR r t	 		   ( ), ( ), ( ) A θ ( ) 0 T d t t t t   θφ SSf ,SSe( ), n t  Se Sf	(4.41)
		or,								d	t undergoing degradation, and () t  is the associated
	degradation progression parameter γ d modelled as a random walk process. As discussed in
	Chapter 0 (see section 3.3.2), state equation is formed as, 1 1 1 11 k k k k k k k tv               A( θ ( )) (θ ) ( ) T d d d nn t r t    φφ      ( ) , ( ), ( ), , , A (θ ) A (θ ( )) A (θ ) 0   d T d T d T d n n n r t t t Se Sf t         θ SSe SSf φ φ φ   nn  ( ) ( ) A (θ ( )) (θ ) 0 d d T d d r t r t t     φφ	(4.39) (4.38) (4.42)
	where, Thus, degradation state θ ( ) 2 ~(0, ) kv v  is the associated process noise d t can be linked implicitly to the measurements of () 2 ~(0, ) k   is a random walk noise and d rt.
										n
	t  is the sample time. Observation equation can be formed as,
	4.5.1.1 Observation Equation The observation equation is obtained from the nominal part () d rt of the ARR derived from  nn  ( ) ( ) A (θ ( )) (θ ) d d T d d y t r t t     φφ (4.43)
										n
	the BG-LFT model that is sensitive to the prognostic candidate θ ( ) In this work, the noise is considered additive, independent and identically distributed (i.i.d.)
	drawn from a zero mean normal distribution and is assumed uncorrelated to () d t x	.Thus from
	(3.14), observation equation is formed as,
	Proposition 4.1: Under the single degradation hypothesis, assuming that the nominal part	d rt ()
	where (.)								n
	of an ARR derived from the BG-LFT model, can be expressed as a linear combination of non-
	linear functions of prognostic candidate parameter θ ( ) d t , the measurement of the θ ( ) d t can be
	d obtained from () rt.				
		n							
	Proof: Let θ ( ) d t be the prognostic candidate and	  θθ	\ θ ( ) d t	d . Assuming the nominal part () rt
										n
	can be expressed as,						
			n d r	( ) t	 		n θφ SSe  , ( ), ( ), ( ), ( ) A (θ) n T d t t t t   SSf Se Sf	(4.40)
	where | 1, 2... i i m 	,	A	1 mT m 12 [ ... ] a a a  	is a vector of known (measured system variables) with
	i a	( ,SSe( ), n t   i  θ	SSf	( ), ( ), ( )) t t t Se Sf	and	φ	1  m	m (θ ( )) [ (θ ( )), (θ ( )),.... (θ ( ))] 12 d d d d T t t t t    	is the
	vector of non-linear functions of θ ( ) d t . Then,	0  power conservation at the BG junction t
	where the corresponding ARR is derived leads to,

d t .
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 4 III Estimation using SIR filter

Algorithm 2: Estimation using SIR filter Inputs
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 4 IV RUL Prediction using PF Algorithm 3: RUL Prediction using PF

	Inputs:  ( , ,,	), w		1

end for 4.5.2.1 Constant Load (FC1)

  

	random walk noise variance is set as, 2  		10	10 	for a quick convergence. A good value for
	process noise variance is found through successive tuning as 26 10 v   	.
	As shown in Fig. 4.12. (c), degradation is detected at t=58 hours by thresholds triggering the
	prognostic module. The thresholds a and -a, are sensitive to 2% uncertainty over nominal	Rh
							ohm
	i.e. δ	Rh	2% 	ohm Rh	and the constant	fc I (see (4.33)). The measurement signal 2, () n rt is
		ohm				
	estimated with	n RMSE  r 2,	4.2%	such that local non-linearity therein, is estimated very
	accurately. Fig. 4.12 (a) shows the estimation of approximately linear with	RMSE  	23.56%
	Motivated from Fig. 4.7,	 	0.12	signifies end of life of FC1 at 12% deviation on initial
							fail
	value. Moreover, the true value of ,	 is considered to evolve in a perfect linear way with
							true
	true value of slope  ,		1.3 10 	4 	so that,	 is reached at 900 hours. Also, the value of the
							true	fail
	measurement noise variance 2  is obtained from square of the standard deviation of the nominal d
							w
	residual 2,n r recorded during degradation tests, as 26 10 d   	.
							w
	Estimation performance by PF as shown in Fig. 4.12, is realized with N=2000 particles. The
	measurement noise variance in PF is set as 100 times that of residual measurement variance 2  . d
							w
	This is done to ensure a good estimation of the noisy measurement throughout. The initial
							166
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 4 V Estimation-Prediction Performance Under With Different Number of Particles

	N	RMSE	2,n r	RMSE  RMSE  RA	Computation Time	Total Computational
						Taken for First	Time for Prediction
						Prediction Step
	100 9.03%		31.43% 22.3%	68.54% 14.56 Seconds	6.45 Minutes
	500 7.56%		28.67% 17.78% 76.56% 1Minute 34 Seconds	1 Hour 34 Minutes
	1000 6.84%		25.43% 11.44% 89.43% 2 Minutes 28 Seconds 3 Hours 31 Minutes
	2000 4.2%		23.56% 9.3%	96.07% 4 Minutes 5 Seconds	6 Hours 48 Minutes
	As detailed in			
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 4 V, given that other PF related factors are kept same, an increase in the number of PF particles N, results in efficient measurement estimation and prediction accuracy. In reality, true  is only approximately linear and true  is never perfectly constant. As such, RMSE  and RMSE  cannot be regarded as reliable metrics for evaluation of estimation

	Being run on over 900 Hours of data on an Intel Core i7 Processor, 16 GB RAM and 2.30GHz
	clock frequency, total time taken for prediction was 6 Hours 48 Minutes.
	performance. However,	2,n r RMSE indicates the accuracy of measurement estimation. Moreover,
	prediction performance is accurately judged by RA metric as the speed of degradation is uniform
	(constant loading regime). Recently in Bressel et al.

This justifies the choice of N=2000. During RUL prediction, each of the particles is propagated into future. As seen in Chapter 0, computational complexity is directly related to number of particles used and inversely related to the time instant (from start) at which RUL prediction is made. It also depends upon estimation values of hidden DPPs (see Section 3.6.9). The latter is reflected in Table 4-V. Computational time per sample step usually decreases as the time of prediction nears the EOL. In fact, higher the number of particles employed, higher is the estimation efficiency, RUL prediction efficiency and the total computational time consumed.

Discussion:

Table 4 -

 4 VI Performance comparison with Extended Kalman Filter

	Estimator	RMSE	2,n r	RA		Total Computational Time for Prediction
	PF (N=2000) 4.20%		96.07%	6 Hours 48 Minutes
	EKF	9.86%		38.16%	Around 5 seconds
	4.5.2.2 Variable Load (FC2)	
	Motivated from Fig. 4.8,	 	0.6	signifies EOL of FC2 at 60% deviation on initial value. In
				fail	
	the variable load regime, the varying current profile (see Fig.

  reason, the estimations are made to be triggered from initial time t=0 Hour. Value of the measurement noise variance 2In absence of reliable ground truths for evaluation of RMSE  and RMSE  , quantitative comparative study of estimation performance for ()

					t	and () t  cannot be found. However,
	results are very satisfactory qualitatively, as the estimated reaches the true		at EOL. The
						fail
	initial random walk noise variance is set as 2  		10	10 	, for a quick convergence. A good value
	for process noise variance is found through successive tuning to be 25 10
	 is obtained from square of the standard deviation of the nominal d w r for different time regimes, as listed in Table 4-VII. The measurement noise variance residual 2,n in PF is set as 100 times that of residual measurement variance 2  .This is done to ensure a good d w estimation throughout. The 2,n r RMSE for different time regimes are listed in Table 4-VII. It should be noted that a different setting in PF may lead to a lesser 2,n r RMSE , non-smooth estimations of () t  and () t  with very large spread and consequently, non-viable RUL predictions.

v   

Table 4

 4 

		-VII Estimation Performance		
	Time	Standard Deviation of Measurement	RMSE	2,n r
		(Residual 2,n r )		
	100<t<300 h	0.156 V	42.56%
	300<t<570 h	0.0532 V	19.56%
	570<t<820 h	0.0145 V	6.85%
	820<t< t EOL h	0.0136 V	1.54%
	Box plots of RUL predictions are shown in		

Table A -

 A 2 BG representation of I element

	Causality	Constitutive relation	Representation	Block Diagram
	Integral Causality	1 I   : ( ) I I f t	( ) e t dt I
	Derivative Causality	: ( ) I e t I  I	d dt	( ) f t I

Table A -

 A 3 BG representation of C element

	Causality	Constitutive relation	Representation
	Integral Causality	1 C   : ( ) C e t	( ) f t dt
	Derivative Causality	: ( ) f t C e t ( ) d dt  C

  ........................ ......................... likel=c2.*d2; %......................... ............................................................

	%state variables are updated %rul variables are updated
	x=x_para; mean_RUL=mean(RUL); max_RUL=max(RUL);
	alpha=alpha_para; toc min_RUL=min(RUL); cdf=cdf./max(cdf); mean_RUL=mean(RUL);
	mean_alpha=mean(alpha); for i=1:np;
	else		u=rand;
	x_test=x_para; x_para=zeros(1,np); loca=find(cdf >= u);
	alpha_test=alpha_para; % x_para=0.16.*ones(1,np); alpha_para(:,i)=alpha(:,loca(1)); % comptational time is stored
	alpha_para=zeros(1,np); beta_para(:,i)=beta(:,loca(1)); elapsed_time= toc;
	perc_x=0; end; %%
	mean_x=mean(x_para); perc_alpha=0; else
	likel=zeros(1,np); min_x=min(x_para);
	max_x=max(x_para); mean_alpha=mean(alpha);
	u1=u.*(ones(1,np)); min_alpha=min(alpha); alpha_para=zeros(1,np); %variables are updated with the estimated value max_alpha=max(alpha); alpha=alpha_para; beta_para=zeros(1,np);
	w11=w1.*(ones(1,np)); beta=beta_para;
	mean_alpha=mean(alpha);
	min_alpha=min(alpha); mean_alpha=mean(alpha); RUL=zeros(1,np);
	a=2*((w11).^2); max_alpha=max(alpha); RUL=zeros(1,np); max_alpha=max(alpha); max_RUL=max(RUL);
	b=(u1-x).^2; mean_RUL=0; %% min_alpha=min(alpha); min_RUL=min(RUL);
	%PRMSE metric mean_RUL=mean(RUL);
	c=(a.*pi); prmse_alpha=((mean(alpha_para)-alpha_true)./(alpha_true))^2; mean_x=mean(x_para);
	c1=c.^(1/2); min_x=min(x_para); %% mean_alpha=0; mean_beta=mean(beta); c2=1./(c1); max_x=max(x_para); max_beta=max(beta); max_alpha=max(alpha);
	min_beta=min(beta); min_alpha=min(alpha);
	perc_x=prctile(x_para,50); mad_a=0;rmad_a=0;sigma_a=0;mean_alpha=0;
	d=(-1./a); perc_alpha=prctile(alpha_para,50); alpha_test=alpha_para; mean_beta=0;
	d1=(d.*b); prmse_alpha=0; beta_test=beta_para; max_beta=max(beta);
	d2=exp(d1); end min_beta=min(beta);
	sort_alpha=sort(alpha_para); end est_res=mean(gg);
	sorted=sort_alpha(:,50); min_est=min(gg);
	max_est=max(gg); elapsed_time=0;
	end	
	% RUL prediction step %RUL prediction step % resampling step thres=0.12; %theshold is decided beforehand
	tic % computational time is recorded
	for i=1:np; % the fault model is simulated and particles are projected in future tic %to record the computational time cdf(i)=sum(likel(1:i)); end; cdf=cdf./max(cdf); thres=; % threshold value is pre-decided for i=1:np; for i=1:np; q=0; q=0; while alpha_test(:,i)<=thres && alpha_test(:,i)>0; while x_test(:,i)<=thres ; % x_test=x_test.*(exp(step_size.*alpha_test)); alpha_test(:,i)=alpha_test(:,i)+(step_size.*beta_test(:,i));
		x_test(:,i)=x_test(:,i)+(step_size.*alpha_test(:,i));
	end	q=q+1; for i=1:np; u=rand; q=q+1;
			loca=find(cdf >= u);
		end	x_para(:,i)=x(:,loca(1));
	alpha_para(:,i)=alpha(:,loca(1)); RUL(:,i)=q*step_size; RUL(:,i)=q*step_size;
	end	end;
	end	
			210

%%.

The piping and instrument diagram of the steam generator system is given in Fig.2.9, comprising of a feed water supply system, a tank, a pump, a pipe and a boiler of 55kW and total volume of 0.170 m 3 . The considered faults are: water leak in tank, valve blockage at pump outlet flow, water leak in boiler and fault on thermal resistor system. Word bond graph of the system is shown in Fig.2.10.

Fig. 2.12 Uncertain Bond Graph Model of Steam Generator

Fig. D-1 Simulink Model Interface used in Chapter 4
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 Integration of BG modelling framework and Monte Carlo framework for estimation of state of health and prediction of RUL.

 Exploitation of nominal part of I-ARRs derived in (BG framework) for detection of degradation beginning and prognosis of incipient parametric degradation in Monte Carlo framework using PF.

 Obtaining the observation equation from the concerned nominal residual and construction of local fault model such that state of prognostic candidate and RUL prediction is achieved while system outputs are feedback controlled or otherwise.

 Proportional control type variance control algorithm with novel feedback condition that ensures a sustained convergence with low estimation variance (spread).

The work developed in this chapter has led to the development of following: Jha, M.S., Dauphin-Tanguy,G., Ould-Bouamama,B., Particle Filter Based Hybrid Prognostics for Health Monitoring of Uncertain Systems in Bond Graph Framework, in review process, Mechanical systems and Signal Processing, Elsevier.

4.Hybrid Prognostics of Proton Exchange

Membrane Fuel Cell

This chapter develops a holistic solution towards the prognostics of industrial Proton Exchange Membrane Fuel Cell (PEMFC). It involves the utilization of an efficient multienergetic BG model suited for diagnostics and prognostics. The methodology of hybrid prognostics developed in Chapter 3 is applied over the PEMFC system. However, unlike Chapter 3 where an uncertain BG with interval valued uncertainties and interval thresholds is employed for robust detection of degradation; here, a BG-LFT model of the EE part is used for generation of robust adaptive thresholds. The issue of prognostics is addressed for the electrical- 

Various motivations propelling the development of this work are:

 There are very few existing model-based works that propose efficient prognostic solutions for PEMFC. [START_REF] Wang | A review of polymer electrolyte membrane fuel cells: technology, applications, and needs on fundamental research[END_REF] proposes physics based Degradation Model (DM) of the Electro-Chemical Active Surface Area (ECSA), used for damage tracking and prediction using Unscented Kalman Filter. ECSA being one of the several factors that influences the damage progression, efficient approaches are needed for a comprehensive study invoving other factors. Only recently, [START_REF] Jouin | Prognostics of PEM fuel cell in a particle filtering framework[END_REF] 
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Appendix A Bond Graph Generalities

The BG is a unified modeling language for multiple physical domains, such that power variables associated with the bonds differ in accordance with energetic type of the system. The type of energy exchanged is defined by the power variables. A description of these variables 

A.1. Causality

Causality enables the definition of cause and effect relationship among the different components of the system. The causality assigned to I and C elements determine whether integration or a differentiation with respect to time is required. For the storage element I, the 

A systematic procedure for causality assginemnt is given as [START_REF] Mukherjee | Bond graph in modeling, simulation and fault identification[END_REF]):

1. The sources and the nonlinear R elements are assigned with the required causality.

Implication are extended through the graph as far as possible, using the constraint elements (0, 1, TF, GY) 2. A preferred integral causality is assigned to the I and C -elements and the implications are extended through the graph.

3. Linear R-elements are then assigned the causality. 

B.1. BG-LFT based Robust Fault Detection

Fault diagnosis in BG-LFT framework is mainly dependent upon ARR generation (Djeziri, Mohand Arab et al., 2007). The description in this section has been adapted from Djeziri et al. (Djeziri, Mohand Arab et al., 2007) and Borutzky et al. (Borutzky, Wolfgang, 2011).

Generation of Uncertain ARRs

The generation of robust analytical redundancy relations from an observable bond graph model is explained by the following steps:

1 st Step: Preferred derivative causality is assigned to the nominal model and detectors De (Df) are dualized to SSe (SSf) ; wherever possible.

nd

Step: The LFT BG model is built.

rd

Step: The candidate ARRs are generated from -1‖ or -0‖ junction, where power conservation equation dictates that sum of efforts or flows, respectively, is equal to zero, as:

 for 1-junction: ,,,,,, ,

where subscript n represents the nominal value of the corresponding BG element.

Generation of Adaptive Thresholds

The ARR derived in (B.11) consists of two perfectly separable parts due to the properties of the BG-LFT model: a nominal part noted r shown in (B.12) and an uncertain part noted

shown in (B.13).

 

, , , , , , , , ,

The uncertain part generates the adaptive threshold over the nominal part. From (B.11), (B.12) and (B.13), following may be obtained:

The thresholds are formed in form of envelop as:

where

The use of absolute values to generate the thresholds of normal operation ensures the robustness of this algorithm to false alarms.

Appendix C Non-Linear Bayesian Filtering using Particle Filters

Consider a dynamic system whose state at time step k t is represented by the vector k

x . The evolution of the system state is described by a state-space model,

Appendix D Matlab and Simulink Code

Here, the SIMULINK interface and programation done in Matlab for execution of the various algorithms detailed in Chapter 3 and 4, are given.

D.1. Programation Code in Chapter 3

The