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Abstract

In the present thesis, the stability of a boundary layer on a vertical wall and a channel
flow between two vertical walls is studied in the presence of density stratification.

For the boundary layer, a temporal stability analysis is performed for a tanh velocity
profile. The characteristics are analysed as functions of the Reynolds number Re = UL/ν

and the Froude number F = U/(LN), while neglecting the diffusion of density. The
non-dimensionalisation is based on the main stream velocity U , the boundary thickness
L and kinetic viscosity ν. Besides, N is the buoyancy frequency. The boundary layer is
found to be unstable to viscous instability and radiative instability. The classical viscous
instability can lead to Tollmien–Schlichting (TS) waves, and the radiative instability may
generate gravity waves spontaneously. We demonstrate that the most unstable TS wave
remains two-dimensional (2D) in the presence of stratification and therefore independent
of F . However, the radiative instability is three-dimensional (3D), inviscid in nature and
strongly affected by the stratification. The radiative instability appears first for Re >

Re(r)
c ≈ 1995 for a Froude number close to 1.5 whereas the critical Reynolds number

for viscous instability is Re > Re(v)
c ≈ 3980. Comparing the growth rate of these two

instabilities, we demonstrate that, for large Reynolds numbers, the radiative instability
dominates the viscous instability. Consequently, the radiative instability may develop in
experiments and various geophysical situations in the ocean and atmosphere.

For the channel flow, we choose plane Poiseuille flow as a prototype. Both the expo-
nential instability and transient growth are analysed as functions Re and F . The Schmidt
number Sc = ν/D is set as 1, where D is the mass diffusivity. The length scale for nor-
malisation is half the channel width. According to the modal analysis, there are also two
kinds of exponential instabilities : a viscous instability and a 3D instability associated
with a resonance mechanism. The results of modal analysis are similar to those for the
boundary layers. In addition to that, the 3D instability plays an important role in the non-
modal analysis for the transient growth. The fundamental mechanisms in transient growth
are commonly identified as the inclination of upstream tilting waves and the growth of
streamwise vortices, which are referred to as Orr mechanism and lift-up mechanism. In
the presence of stratification, the Orr mechanism is not affected while the lift-up mecha-
nism is weakened. The combination of these two mechanisms, which give rise to titled roll
vortices, is amplified by the influence of the 3D instabilities.
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Chapitre 1

Introduction

The understanding of fluid on earth leads us to the study of geophysical fluids. In
general, these fluids are stratified fluids such as the atmosphere and the ocean. Various
layers are formed in nature due to the stratification. These layers have important effects
on the geophysical movements such as climate changes and ocean currents. The ecosystem
is also highly influenced through temperature, salinity and transport of micro-organisms,
etc.

In stratified fluids like ocean interior and atmosphere, turbulence mixing is a pheno-
menon that frequently appears. Moreover, mixing and stratification effects are essential
to the global distribution of energy and nutrients. This property makes them quite si-
gnificant to climate and biogeochemical cycles in nature circulation system (Wunsch &
Ferrari 2004; Kuhlbrodt et al. 2007). Therefore, their influences and related mechanisms
are worth thorough examinations.

1.1 Basic concepts about stratified fluid

The stratified fluid is a fluid with density variations in the vertical direction. Two
typical examples of stratified geophysical fluid are the Earth’s atmosphere and its ocean.
Besides, although not commonly mentioned, the Earth’s liquid core and the fluids in the
core of other celestial bodies in astrophysics are all stratified.

Stratification is the result of multiple factors. For the Earth, the atmosphere is a
gaseous envelope surrounding our planet, and the density stratification mainly results
from its compressibility and the Earth’s gravity. Figure 1.1 shows the spatial variations
of density on the altitude and density decreases as the altitude increases. The density
stratification in the atmosphere is also affected by temperature differences, which is the
result of solar radiation, greenhouse effects and the presence of clouds. According to the
temperature, the atmosphere is usually divided into four layers along elevation : tropos-
phere, stratosphere, mesosphere, and thermosphere. The troposphere contains nearly 80%
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Figure 1.1 – Density and temperature profiles of the atmosphere (US Standard Atmos-
phere, 1976). The solid line is the temperature ratio TN = T/T0, and the dashed line is
the density ratio ρN = ρ/ρ0, where T0 = 288.15 K and ρ0 = 1.226 kg/m3.

of the total mass and almost all water vapour. Meteorologists mainly focus on this region
as it is the place where most weather occurs.

The density stratification in the ocean is shown in figure 1.2(a) and this stratification
results from the temperature and salinity variations, which are demonstrated in figure
1.2(b). The density gradient is the largest in the layer called pycnocline. This region
is stably stratified and separates the mixed layer of the surface and deeper ocean. The
separation may hinder vertical transport, but Fernando (1991) indicated that vertical
mixing still appears due to the turbulence triggered by the shear effects. Such kind of
mixing has significant effects on the marine ecosystem and transports nutrients in the
ocean.

1.1.1 Buoyancy frequency

Stratification is usually stable in nature, as shown in figure 1.1 and figure 1.2. Un-
der gravity, a stratified fluid tends to arrange itself so that heavier fluid (the fluid with
higher density) are below the lighter fluid. If we consider a fluid in static equilibrium,
this situation will be an intuitively stable status. However, if a fluid parcel is disturbed
vertically and deviates from its equilibrium position, a recalling force will be produced
by the buoyancy force and gravity. This process is illustrated in figure 1.3. Hence, the
displaced parcel will oscillate around the equilibrium level under the recalling force. The
frequency of the oscillation is termed as the buoyancy frequency, which is also named as
Brunt–Väisälä frequency or stratification frequency. The buoyancy frequency is defined

2



(a) (b)

Figure 1.2 – Variations of different quantities for the depth in the ocean :
(a) density, (b) salinity and temperature. Pycnocline, haloocline, thermocline are
marked for the density, salinity and temperature respectively. Source : URL
http : //ocean.stanford.edu/courses/bomc/chem/lecture_03.pdf
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Figure 1.3 – Sketch of the oscillation in stably stratified fluid, which supports internal
gravity waves. The buoyancy frequency is determined in this process.
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Figure 1.4 – Distribution of buoyancy frequency N (Hz) for the US standard atmosphere.
Source : Gossard & Hooke (1975).

as N =
√
−g∂zρ/ρ0, where z is the vertical direction, g the gravity and ρ0 the reference

density. If ∂zρ > 0 in the definition of buoyancy frequency, which corresponds to a state
where a heavier fluid is on top of the lighter fluid, overturning will appear in this case.
Furthermore, if a persistent external destabilisation is forced onto the fluid, such as hea-
ting on the bottom or cooling on the top, convection will dominate the fluid motion. In
the following content of the thesis, our attention mainly focuses on the stably stratified
fluid so that the buoyancy frequency is real in our studies.

The oscillation described in this section obviously exists in the atmosphere and ocean,
as both of them are stably stratified fluids in terms of density. However, for compressible
fluid like the atmosphere, the definition of buoyancy frequency is based on the potential
temperature (figure 1.4). The buoyancy frequency in nature are depicted in figure 1.4 and
figure 1.5 as examples. The profile in the atmosphere, as shown in figure 1.4, has more
variations and a larger average frequency than that of the ocean. The maximum buoyancy
frequency shown in figure 1.5 is approximately N ≈ 0.02 rad · s−1.

The oscillations of a fluid parcel can propagate in the medium and then, waves are
formed through propagation. To differentiate the external gravity wave (surface wave),
which is generated by a similar but different mechanism, we can particularly call them
the internal gravity waves. However, unlike the normal surface waves, internal waves can
stretch tens of kilometres in length and propagate throughout the ocean for several hours.
As an example, the buoyancy frequency in the Sulu Sea illustrated in figure 1.5 was
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Figure 1.5 – Observed buoyancy frequency in the Sulu Sea. SS2 and SS3 are two mooring
sites near the centre of the Sulu Sea and the mean profiles around these two locations are
illustrated here. Source : Apel et al. (1985)

Figure 1.6 – Internal waves observed in the Sulu Sea by satellite. Source : Acquired on
April 8, 2003. Image courtesy Jacques Descloitres, MODIS Land Rapid Response Team
at NASA GSFC
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(a) (b)

Figure 1.7 – Characteristics of internal waves. (a) Schlieren image of internal waves,
generated by oscillating a horizontal cylinder in a stratified fluid. Source : Mowbray &
Rarity (1967). (b) Small-scale mixing processes in ocean interior. Source : Garrett (2003)

measured by Apel et al. (1985). The internal gravity waves appear can also be observed
by satellite, as shown in figure 1.6 in the Sulu Sea.

1.1.2 Internal gravity wave

The internal gravity waves are transverse waves as the movement of the fluid parcels
is perpendicular to the direction of wave propagation. For a freely-propagating internal
gravity wave, there is a special characteristic : the group velocity is perpendicular to
the phase velocity. As shown in figure 1.7(a), internal gravity waves can be generated
experimentally in a uniformly stratified fluid (constant N), and the energy is propagating
away along surfaces of constant phase (Mowbray & Rarity 1967). More features and
behaviours of internal gravity waves can be described with the help of linear theories,
as reviewed by Fritts & Alexander (2003). The influences and effects of these waves are
evaluated in these theories.

In nature, internal gravity waves also become visible in the satellite era, for example,
figure 1.6 and 1.8. Internal waves exist both in the atmosphere and in the ocean, where
the density stratification is stable and continuous. They are significant in vertical transfer
and mixing.

In the circulation system of the ocean, the internal gravity waves transport micro-
organisms, plankton, and nutrients. However, the physics of mixing in ocean interior is not
well understood, and the internal mixing problem should be considered (Ivey et al. 2008).
Although existing in the interior, internal gravity waves can alter the sea surface currents
and make a difference. Where these currents converge, the surface is more turbulent and

6



Figure 1.8 – Marks of gravity waves in the atmosphere and ocean. Source : Acquired
on February 10, 2016. NASA image by Jeff Schmaltz, LANCE/EOSDIS Rapid Response.
Caption by Mike Carlowicz and Holli Riebeek.

brighter. Where they diverge, the surface is smoother and darker, and thus, creating a
zone called “slicks”. The slicks in the Sulu sea appear as dark bands in the centre of
figure 1.6. Faint but visible ripples of internal gravity waves appear in figure 1.8 with the
help of sunlight. In the ocean, the corresponding waves are tens to hundreds of meters
beneath the sea surface and propagate slowly there. The comparisons of the scales in the
mixing processes are shown in figure 1.7(b). Phenomena that mix the ocean are hard to
be resolved in general ocean circulation models because the scales of relevant turbulent
eddies are typically smaller than the grid spacing. In both ocean and atmosphere, this
kind of small eddies should be examined so that their effects can be parametrized (Garrett
2003).

In the atmosphere, internal waves mainly appear in the troposphere where the den-
sity is relatively high. Due to a decrease in density, the amplitude of these waves has a
quasi-exponential growth when propagating in the vertical direction. Hence, at a certain
altitude, the energy and momentum of these waves are transported and spread as turbu-
lence mixing. Although the gravity waves themselves are not visible in the atmosphere,
the marks of their propagation are left behind and represented by the cloud. The special
structures appear on satellite photos, for example, figure 1.8, where the uncommon clouds
are marked as atmospheric waves.

The gravity waves in the atmosphere are usually caused by the mountain waves (Lee
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waves), which have been studied for a long time through multiple observations and analysis
Fritts & Alexander (2003). We often see the waves patterns of the clouds when the dry
air moves towards the much moister air. The dry air pushes the moist air higher in the
atmosphere, causing water vapour to amass into clouds. When the moister air rises, the
gravity pulls it down since it is heavier in density. This procedure repeats and forms the
wave patterns in the clouds. However, the source of the atmospheric waves shown in figure
1.8 is not clear. Because the wave patterns are far from the inland, and Western Australia
is relatively flat, it is unlikely that these patterns are formed by mountain waves. The
studies of internal gravity waves require further attentions because of their importance in
global energy circulation and energy budget.

Numerous studies have also examined the effects of stable stratification in the context
of atmospheric flows (Mahrt 2014). The internal gravity waves are fully three-dimensional
in space, and they are relatively small compared to the normal scales in climate models.
With the influence of some instabilities, the exchange of energy and momentum by internal
gravity wave can lead to turbulence, mixture and dissipation (Staquet & Sommeria 2002).

To have a better understanding of mechanisms and mixing effects, we need to take
the localized dissipation of energy and small-scale processes into account. The onset of
turbulent mixing is related to the instability of fluid. To uncover the basic physical mecha-
nisms of instabilities, we need to simplify the realistic complex context while keeping the
essential characteristics of the flow. Researches on the instability start with homogeneous
fluids, both experimentally and theoretically.

1.2 Modal instability in stratified shear flow

The instability of shear flows has been a classic subject in fluid dynamics since the
theoretical studies of Rayleigh (1880) and the experiments by Reynolds (1883) at the
end of 19th century, and it is covered by several textbooks (e.g. Drazin & Reid 1981;
Schmid & Henningson 2001). For the instability problem, small amplitude perturbations
and linearised Navier-Stokes equations are useful approximations and methods in the
research field. With the exactly parallel base flow profiles, the linearized instability can
be determined by the eigenvalue problem of Orr-Sommerfeld equation and the critical
Reynolds number can be defined by the solutions. Some of the well-known instabilities
are reviewed in this section.

1.2.1 Kelvin-Helmholtz instability

The instability associated with the inflexion point of the velocity profile (Kelvin-
Helmholtz instability) is the one of the first instabilities discovered in fluid mechanics. The
Kelvin-Helmholtz instability may appear in the atmosphere, as outlined by the clouds in
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Figure 1.9 – Special cloud structures formed by Kelvin-Helmholtz instability. Source :
Terry Robinson, URL : http : //www.telegraph.co.uk/

figure 1.9. The question of in what circumstances, this instability occurs in shear flows
has occupied many generations of scientists. First works have concerned homogeneous
fluids. Rayleigh (1880) demonstrated that a necessary condition for a parallel inviscid
shear flow to become unstable is the existence of inflexion point in the velocity profile.
Wavelike disturbances appear in this kind of unstable flow and grow exponentially with
time. Fjørtoft (1950) later complemented that the inflexion point has to correspond to
a maximum (rather than a minimum) of the velocity shear. Another general stability
condition is called Howard’s semicircle theorem (Howard 1961). This condition bounds
the complex phase velocity of the disturbance in a semicircle, whose diameter is the
difference between the largest and smallest velocity in the parallel shear flow.

The stable stratification is intuitively believed to have a stabilising effect. In a stably
stratified fluid, Miles (1961) and Howard (1961) showed that the criterion of Kelvin-
Helmholtz instability for two-dimensional inviscid parallel shear flow can be determined
by the local Richardson number (Ri), which is the square of the ratio between buoyancy
frequency and the vertical velocity shear rate. The Miles-Howard theorem states that the
flow is stable when the local Richardson number is everywhere greater than or equal to
0.25. The stable stratification is thus believed to have a stabilisation effects on Kelvin-
Helmholtz instability and can even eliminate the turbulence when the stratification is
strong enough. However, the numerical simulations (e.g. Riley & De Bruyn Kops 2003;
Lindborg 2006), laboratory experiments (e.g. Spedding et al. 1996; Augier et al. 2014)

9



Figure 1.10 – Kelvin-Helmholtz instability when when shear and stratification are not
aligned. Source : CSIRO Marine Research, Hobart (2002).

and ocean observations (e.g. Mack & Schoeberlein 2004; Polzin & Ferrari 2004) showed
unexpected turbulence in strongly stratified fluid (Ri > 0.25). These facts suggest that
other mechanisms might be substantial in stratified fluids, and further research is required
in the regions beyond the applicability of Miles-Howard theorem.

Little work has been done when shear and stratification are not aligned in the same
direction, but such kind of cases occur in nature (e.g. Figure 1.10). The Kelvin-Helmholtz
instability is modified in such cases as studied by Deloncle et al. (2007), Candelier et al.
(2011) and Arratia (2011).

1.2.2 Viscous instability (Tollmien-Schlichting wave)

In the subject of instability in fluids, the viscosity is well-known to have dual roles.
Most studies about viscous instability depend on the exact parallel shear flows. The plane
Poiseuille flow is one of the simplest shear flows, but its instability and transition to
turbulence have proved to be subtle. As a result, this flow is widely used to illustrate the
fundamentals of the stability theory (Drazin & Reid 1981).

In the context of an unstratified fluid, Heisenberg (1924) first demonstrated the vis-
cous instability mechanism for plane Poiseuille flow. As the velocity profile of base flow
has no inflexion point, the instability must be related to viscosity. The Reynolds number
of the base flow can estimate the effects of viscosity, and instability appears when the Rey-
nolds number exceeds a specific critical value (the critical Reynolds number). The viscous

10



instability is commonly referred to as Tollmien-Schlichting (TS) wave (Tollmien 1935;
Schlichting 1933) in honour of the researchers who first predicted that Orr-Sommerfeld
equation has unstable modes for flows without inflexion points. The Squire’s theorem
(Squire 1933) gives the assertion that it is sufficient to consider two-dimensional modes to
determine the critical Reynolds number. In other words, the most unstable mode is always
two-dimensional. Experimental observations of TS wave were obtained by Klebanoff et al.
(1962).

For unstratified plane Poiseuille flow, Orszag (1971) obtained the critical Reynolds
number Rec = 5772.22 from the accurate solution of the Orr-Sommerfeld stability equa-
tion. The definition of the Reynolds number is based on the half width of the channel,
the centre-plane velocity, and the kinematic viscosity.

Experimental results of Nishioka et al. (1975) show good agreement that the small
perturbations behave as predicted by the linear stability theory, in a condition of a very low
background turbulence level. However, the transition in plane Poiseuille flow is sensitive
to ambient disturbances. Carlson et al. (1982) observed that both natural and artificially
triggered transition can occur for Reynolds numbers slightly greater than 1000, and the
most amplified wave is three dimensional. More experimental results (e.g. Nishioka & Asai
1985; Alavyoon et al. 1986) and the considerable variations of different critical Reynold
numbers indicate that the three-dimensional effects are important in the transition of
plane Poiseuille flow, which is opposed to the Squire’s theorem. This reduction of critical
Reynolds number is related to the so-called subcritical instability. The subcritical insta-
bility exists in a fluid with a Reynolds number below the critical one. Experiments in
boundary layer flows (e.g. Klebanof 1971; Kendall 1985; Matsubara & Alfredsson 2001)
also demonstrate that transition is usually preceded by streamwise motion in the form of
streaks rather than the TS waves predicted by modal stability analysis. This phenomenon
is especially distinct in the presence of natural background disturbance.

The limitation of Squire’s theorem was further revealed by Wu & Luo (2006), who
examined the influence of small imperfections on the stability of plane Poiseuille flow.
The classical Squire’s transformation was also extended by Jerome & Chomaz (2014).

In a stratified fluid, the Squire’s theorem is not applicable, but Ohya & Uchida (2003)
experimentally proved the existence of TS waves in stratified boundary layers. However,
the effect of stratification on TS waves is less understood, and it could be destabilising
as indicated by Wu & Zhang (2008a). Although the Squire’s theorem applies strictly to
linear normal-mode analysis for a homogeneous viscous fluid, both the 3D and 2D TS
waves should be examined in a stably stratified fluid.

11



(a) (b)

Figure 1.11 – Vertical density gradient pattern of the radiative instability in the Taylor-
Couette flow. The grey vertical rectangle corresponds to the cylinder (of radius 15mm).
(a) Experimental results obtained with synthetic Schlieren. (b) Numerical results. Source :
Riedinger et al. (2011)

1.2.3 Radiative instability

Although it may be true to a degree that stratification can stabilise the fluid (Miles
1961; Howard 1961), instability still exist even without inflexion points in the velocity
profiles of the flow. For instance, Churilov (2005, 2008) analysed the stability of the flows
with inflection-free velocity profiles in a stratified fluid. Stratified fluids can support inter-
nal gravity waves. Together with shear effects, small scale unstable waves are generated
and thus can promote turbulent mixing in stratified fluids.

When shear and stratification are not aligned, an inflection-free boundary layer can
become unstable. The coupling between shear effects and internal gravity waves becomes
the strongest when the inclination angle between shear and stratification is π/2, as de-
monstrated by Candelier et al. (2012). The responsible instability for this phenomenon
is called radiative instability. The word ‘radiative’ describing this instability is borrowed
from the quantum mechanics because the demonstrated phenomenon is analogous to the
radioactive decay of nuclei (Le Dizès & Billant 2009).

The radiative instability is a hydrodynamic instability that is much less known than
the shear instability. However, it has been a subject of many works for decades, and it has
also shown its significant influences with some specific conditions. Broadbent & Moore
(1979) first found the radiative instability in the context of vortices in a compressible fluid.
This instability appears in various contexts, in the shallow waters associated with surface
gravity waves, in compressible fluids with acoustic waves and in linearly stratified flows
with internal gravity waves. The genesis of radiative instability is reviewed in Riedinger
(2009).

With the help of a WKBJ analysis for large axial wave number, Le Dizès & Billant
(2009) and Billant & Le Dizès (2009) showed that the radiative instability could be vie-
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wed as a result of an over-reflection process at a critical level. The relationship between
instability and over-reflection mechanism has been studied for a long time (e.g. Lindzen
& Tung 1978; Lindzen & Barker 1985). Further details about this mechanism will be
explained later in section 1.3.1.

In recent researches, Riedinger et al. (2010a) obtained radiative instability for the
Lamb–Oseen vortex and analysed the Froude and Reynolds number effects. Experimental
results were first provided in Riedinger et al. (2010b). In figure 1.11, Riedinger et al. (2011)
also demonstrated, both experimentally and numerically, the occurrence of the radiative
instability generated by a rotating cylinder in the stratified flow. In Taylor–Couette and
Keplerian flows, Le Dizès & Riedinger (2010) analysed the transition of the instability
for a finite-gap, which is associated with a mechanism of resonance, into the radiative
instability for an infinite gap. Park & Billant (2013b) studied the stability of stratified
Taylor-Couette flow and its relationship to radiative instability. Park & Billant (2012,
2013a) also investigated the radiative instability of a columnar Rankine vortex in a stra-
tified rotating fluid.

In addition to the stratified rotating flows, the radiative instability can also be found
in supersonic flows (Mack 1990; Parras & Le Dizès 2010), atmospheric jets, boundary
layers (Candelier 2010; Candelier et al. 2012) and stratified shallow waters (Satomura
1981; Riedinger & Gilbert 2014).

1.3 Mechanisms of modal instability in stratified fluids

Because of the abundant literature about the radiative instability and its universal
characters, the mechanism was rediscovered several times in history by different communi-
ties, and was explained in terms of over-reflection phenomenon (Grimshaw 1979; Lindzen
& Barker 1985; Takehiro & Hayashi 1992), negative energy waves (Kópev & Leontev 1983;
Schecter & Montgomery 2004) or spontaneous wave emission (Plougonven & Zeitlin 2002;
Le Dizès & Billant 2009).

The details of the over-reflection process is explained in this part.

1.3.1 Over-reflection phenomenon

Over-reflection is a phenomenon that the incident waves in a fluid can be reflected
with a consequent increase in amplitude. In other words, the reflection coefficient in some
circumstances can be greater than 1. This mechanism is found in numerous situations
and physical models. The over-reflection phenomenon was first encountered in the field
of sound waves by Miles (1957) and Ribner (1957). Acheson (1976) later summarised the
conditions for the occurrences of over-reflection. He also attempted to clarify the way in
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Figure 1.12 – A wave packet and its envelope. Solid line : The wave packet. Dashed line :
The envelope of the wave packet. The peaks and troughs move at the phase velocity and
the envelope moves at the group velocity. Source : Wikipedia

Transmitted wave

Turning level

Turning level

Turning level

Turning level

Critical level

Incident wave Reflected wave

Phase velocity Group velocity

(a) (b)

Figure 1.13 – Comparison based on the directions of group velocity and phase velocity.
(a) Classical reflection ; (b) Over-reflection. Source : Riedinger (2009).
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which the excess reflected waves extracted energy from the mean flow motion, and the
sense that the transmitted wave can be viewed as a carrier of ‘negative energy’. The over-
reflection process was thus explained through the conservation of wave action (Acheson
1976).

The summary by Acheson (1976), however, is not sufficient. The connections between
over-reflection and unstable modes are discovered in different context (Lindzen & Tung
1978; Lindzen & Rambaldi 1986). Lindzen (1988) summarised and gave the statement
that the mode which satisfies ‘quantization’ conditions can become unstable through the
over-reflection process. Then the unstable mode determines the wave geometry.

A quantization zone is an oscillating area confined either by two turning levels or
by one turning level together with a perfectly reflecting wall. Perturbations in this area
will propagate, be reflected by over-reflection and thus increase. The reflection is always
accompanied by a transmitted wave in the external transmission region. This reflection
satisfies the conservation law of momentum for three waves : incident, transmitted and
reflected waves. However, the conservation law of energy is different in this case, as part
of the energy is drawn from the mean flow motion.

A perturbation in the quantization zone can be modelled as a wave propagating in
this domain to illustrate the mechanism. A simple example of a wave packet is shown in
figure 1.12. The phase velocity and group velocity may be different and can move towards
separate directions.

The comparison between a conventional reflection case and an over-reflection case is
illustrated in figure 1.13. In the conventional reflection case (figure 1.13 (a)), for example,
the radioactive emission through a potential barrier, there is no critical level inside the
evanescent region between two turning levels. The phase velocity and group velocity of the
incident wave in the conventional case are in the same direction. The intermediate evanes-
cent region partially reflects the incident wave with an amplitude Ai. The amplitudes of
the reflected and transmitted waves are Ar and At, respectively. The classical relationship
(Ai = Ar + At) for the amplitudes of these three waves applies to this conventional case.

However, the circumstances are different in the over-reflection case, as illustrated in
figure 1.13 (b). In the intermediate evanescent region, there exists a critical level, which
has the effect of changing the group velocity’s direction. Hence, the directions of the
group velocity and phase velocity are opposite in the propagation area of the incident
and reflected wave, but not in the field of the transmitted wave. As the group velocity
represents the energy of the wave packet, the roles of the incident and reflected waves are
‘inverted’ from the point of energy conservation. Therefore, the amplitude of the reflected
wave is greater than that of the incident wave (i.e. Ar > Ai). The transmitted wave has an
opposite amplitude (At < 0) or phase compared to the incident wave, as shown in figure

15



Figure 1.14 – Schematic picture of over-reflection. Source : Takehiro & Hayashi (1992).

1.14. According to the amplitudes, the energy associated with the wave packet grows after
reflection, and this phenomenon is called ‘over-reflection’.

Although the over-reflection process is not a sufficient condition for the appearance
of instability in a fluid, many kinds of instabilities are revealed to be associated with
this mechanism, for example, barotropic instability (Lindzen & Tung 1978) and baro-
clinic instability (Lindzen et al. 1980). The generation process of radiative instability is
illustrated in figure 1.15 based on Takehiro & Hayashi (1992). The wave packet is over-
reflected by the critical level and perfectly reflected by the rigid wall. The amplitude of
the wave is increased by repeating this process. The disturbance propagates far away and
does not diminish like in the common cases. The oscillation frequency and the wavelength
are determined by the reflection processes, while the growth rate is associated with the
over-reflection.

1.3.2 Resonance phenomenon

In the stratified rotating flows with Taylor–Couette and Keplerian velocity profiles,
Le Dizès & Riedinger (2010) showed that the linear inviscid instability change into radia-
tive instability as the size of the gap d becomes infinite, and is associated with a mechanism
of resonance when d is finite. This instability is called strato-rotational instability in the
Taylor–Couette system and is considered to be directly related to the emission of internal
gravity flows (Le Dizès & Billant 2009; Billant & Le Dizès 2009).

The resonance mechanism for small gaps is interpreted by Yavneh et al. (2001).
For large gaps, results of numerical methods and WKBJ analysis show that when the
frequency curves of trapped modes cross, one of the two modes becomes unstable around
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Figure 1.15 – Multiple over-reflection of a shallow-water wave. Source : Takehiro &
Hayashi (1992).
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Initial time:  t=0 t>0

Figure 1.16 – Sketch illustrating transient growth. The vector f is defined by the diffe-
rence between two shrinking vectors f = Φ1 −Φ2, where the vector Φ1 shrinks by 20%
and vector Φ2 shrinks by 50% starting from the initial time on the left. Source : Schmid
(2007).

the corresponding points (Le Dizès & Riedinger 2010). This mechanism of resonance is
also described in the context of shallow waters (Satomura 1981). The same phenomenon
is to be expected for the stratified plane Poiseuille flow, and we will discuss the resonance
mechanism in chapter 4

1.4 Transient growth and optimal perturbation

Modal analysis has dominated the field of stability theory for many decades. Based
on the eigenvalue analysis, plenty of significant accomplishments were achieved (e.g. Orr
1907; Tollmien 1929). However, the subcritical instability has shown its importance in
numerous studies, as mentioned in section 1.2. The limitation of modal approach is re-
cognised, and then a novel method (transient growth theory) has emerged in the 1990s
(e.g. Farrell & Moore 1992; Trefethen et al. 1993). Transient growth theory, which can
give a quantitative description of the short-time effects of the subcritical instabilities, has
drawn considerable attention since then. Even though all eigenvalues are stable according
to the modal analysis, a general initial disturbance may undergo large growth in finite
time (Butler & Farrell 1992; Reddy & Henningson 1993).

1.4.1 Non-normality and finite time intervals

The transient growth theory has achieved several developments and now provided
a better understanding of the transition in various flows (Schmid & Henningson 2001;
Schmid 2007).
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The finite-time increase of the total perturbation can appear without nonlinear ef-
fects. Mathematically, it is because the governing linear operator is not self-adjoint (Butler
& Farrell 1992) and the associated eigenfunctions are non-orthogonal (Reddy & Henning-
son 1993). The linear nature of the transient growth is demonstrated in figure 1.16, and
is also revealed in Trefethen et al. (1993) and Henningson & Reddy (1994). The basic
mechanism can be explained by this simple geometric example (Schmid 2007). Over a
finite time interval, the lengths of two component vectors Φ1 and Φ2 decrease by 20%
and 50%. However, the difference between these two vectors f may grow in length and
changes its direction transiently. The vector f can be viewed as an initial condition for a
flow at time t = 0, and it may be amplified over a finite time interval, even though f → 0
when t→∞ in this specific case. As illustrated by the process in figure 1.16, even if each
eigenfunction decays exponentially according to its associated eigenvalue, a linear combi-
nation of non-orthogonal eigenfunctions may still lead to large transient growth before the
time it eventually decreases at the rate of the least stable eigenfunctions. Although the
transient growth in many studies is related to degenerate eigenvalues, it is not necessarily
limited to them (Reddy & Henningson 1993).

1.4.2 Optimal perturbation and adjoint equations

Different types of perturbations may experience transient growth, but only the most
amplified one can dominate the behaviour and structure of the fluid. The optimal pertur-
bation provides the initial conditions that lead to a maximum energy growth over a finite
time interval T , thus is also referred to as optimal initial conditions. The most amplified
perturbation at the time t = T can be named as the optimal response. As T → ∞, the
optimal response tend towards the eigenfunction associated with most unstable modal
instability. Correspondingly, in this case, the optimal initial conditions are determined by
the dominant adjoint eigenmode. Even in the flows expected to be stable by the modal
analysis, Kerswell et al. (2014) demonstrated that when the amplified transient pertur-
bations reach finite amplitude, they may be essential to the ‘subcritical’ transition.

1.5 Mechanism of transient growth

In the transient growth analysis, two fundamental mechanisms are commonly iden-
tified, the Orr mechanism (Orr 1907) and the lift-up mechanism (Ellingsen & Palm 1975;
Landahl 1980). The background of these two mechanisms is introduced in this section.
First works are also performed on homogeneous fluid.
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Figure 1.17 – Velocity field of optimal perturbations for plane Poiseuille flow. (a,b)
Two-dimensional optimal initial conditions at t = 0 and response at t = T due to Orr
mechanism (spanwise uniform). (c,d) Three-dimensional optimal initial conditions at t = 0
and response at t = T due to lift-up mechanism (streamwise uniform). Source : Schmid
& Henningson (2001)
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1.5.1 Orr mechanism

The Orr mechanism, also called Reynolds stress mechanism (Butler & Farrell 1992),
is associated with a disturbance that can extract energy from mean shear through the
Reynolds stress term. As shown in figure 1.17(a), with the effect of Orr mechanism, the
optimal initial condition is titled against the mean shear at t = 0. As time evolves, the
vortices are sheared by the mean flow and maximise the energy grow when it aligns in
the cross-stream direction, as shown in figure 1.17(b) (Schmid & Henningson 2001).

1.5.2 Lift-up mechanism

Ellingsen & Palm (1975) demonstrated that a finite streamwise-uniform perturbation
might lead to instability in a linear flow which has no inflexion point in the velocity profile.
Even in an exponentially stable flow predicted by the modal stability analysis, the initial
disturbance may undergo an important total perturbation energy growth. According to
the linear theory, Landahl (1980) showed that such kind of transient growth appears in
all inviscid parallel shear flows, and the kinetic energy of perturbation can grow at least
linearly with time.

Gustavsson (1991) proved that the initial perturbations could determine the onset
of transition to turbulence in plane Poiseuille flow, even if the flow is expected to be
exponentially stable. Butler & Farrell (1992) and Reddy & Henningson (1993) later esta-
blished that transient growth is important for the amplification of perturbations in a finite
time interval. In some stable shear flows, the primary initial perturbations that maximise
the energy growth is shown to be streamwise-uniform with non-zero wall normal velocity
(Luchini 2000; Schmid 2007). For unstratified plane Poiseuille flow, as illustrated in figure
1.17(c,d), the streamwise vortices change little as time evolves. However, the streamwise
velocity greatly grows in the process which will, in the end, lead to streaks in the fluid
(Schmid & Henningson 2001).

This phenomenon is the physical representation of the lift-up mechanism (Ellingsen &
Palm 1975; Landahl 1975), which is also called vortex tilting or vortex stretching process
(Butler & Farrell 1992) because of the three-dimensional deformation.

1.5.3 Combination of Orr and lift-up mechanisms

The two mechanisms described above determines the optimal initial conditions as
streamwise vortices (lift-up) or upstream tilting spanwise vortices (Orr). However, for
short time intervals, the structures of the most amplified perturbations are titled roll
vortices. Farrell & Ioannou (1993a) interpreted this phenomenon as combinations of the
two fundamental mechanisms. Farrell & Ioannou (1993b) also showed that this three-
dimensional structure is a universal character in shear flows and is consistent with the
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result in Butler & Farrell (1992) and Butler & Farrell (1993). In the stratified fluid, Arratia
(2011) also studied this synergy effect in the context of horizontal shear layers.

1.6 Motivation and purpose

As discussed in section 1.1.2, internal waves are ubiquitous and essential in nature.
Thus, their generation mechanisms have drawn lots of research interest. The problem
about the sources remains a debate in an extensive literature. Wu & Zhang (2008b) indi-
cated that instability waves could generate internal waves if they approach a boundary.
Le Dizès & Billant (2009) also demonstrated that the radiative instability can be associa-
ted with the emission of internal waves in stratified shear flows. Candelier et al. (2012)
showed that the radiative instability is present in inviscid boundary layers when the shear
direction is inclined relative to the stratification. It is reasonable to quantify the viscous
effect on the radiative instability, and it is one of the major purposes of the present thesis.
We also aim to evaluate the stratification effect on the transient growth, especially the
effects on the related fundamental mechanisms.

In fluid mechanics, idealised models are widely used in theoretical and experimental
researches to focus on the important aspects and elements. We use tanh velocity profile
as a boundary layer and plane Poiseuille flow as a prototype of channel flow in our studies
because of their simple configurations. Modal and non-modal analysis are both conducted
in our studies. As one of the first prototypes for transient growth, unstratified plane
Poiseuille flow is demonstrated to exhibit large transient growth in finite time intervals
(Butler & Farrell 1992; Reddy & Henningson 1993). The basic mechanisms are revealed
and classified in previous works (Farrell & Ioannou 1993a; Arratia 2011). It becomes
natural to ask, what is the effects of vertical stratification on the transient growth ? Which
mechanism is dominant in stratified flows ?

1.7 Summary of this thesis

The present thesis is composed of 5 chapters.

In chapter 1, basic concepts in stratified fluid have been introduced in a general way.
The motivations and objectives of our study have been presented. We have also brie-
fly introduced some well-known instabilities in parallel shear flows and stratified fluid :
viscous instability, Kelvin-Helmholtz instability and the radiative instability. We have
mostly focused on the viscous instability and the radiative instability in boundary layers.
The concepts of both modal and non-modal stability analysis have been introduced and
described. For the modal instability, we have discussed the over-reflection and resonance
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phenomena, and for transient growth, we have reviewed the Orr mechanism, lift-up me-
chanism and the combination of both.

In chapter 2, the governing equations are derived, and the numerical method we used
is introduced. We have solved the linearised Navier-Stokes equations under the Boussinesq
approximation for the stratified flow. The pseudo-spectral method is used for the spatial
discretization. We have also applied a complex path method. The transient growth is
evaluated by the ‘Direct-Adjoint-Loop’ method, and the specific procedure is described
in this chapter.

Chapter 3 contains the modal stability results of a boundary layer flow on a vertical
wall in the presence of stratification. The viscous instability and radiative instability
are compared for various Reynolds numbers and Froude numbers. The viscous effect on
radiative instability is also exhibited in this part.

Chapter 4 reveals both the exponential and transient growth in stratified plane Poi-
seuille flow. The three-dimensional instability due to the resonance mechanism is inves-
tigated. The transient growth is computed for both long and short time intervals. The
stratification effects on the fundamental mechanisms are examined to determine the do-
minate one.

Finally, some conclusions and perspectives are provided in chapter 5.
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Chapitre 2

Method

In this chapter, the mathematical formulation of two models are derived : a plane
Poiseuille flow between two vertical walls and a hyperbolic tangent boundary layer flow
on one vertical wall. The fluid in both cases is uniformly stratified.

With the Boussinesq approximation, the governing equations for an incompressible
viscous fluid are

∂u

∂t
= −(u · ∇)u− 1

ρ0
∇p+ ν∆u + ρ

ρ0
g, (2.1a)

∇ · u = 0 (2.1b)

where ν is the kinetic viscosity and g is the gravity. For a stratified flow, the density
diffusion equation is

∂ρ

∂t
+ (u · ∇)ρ = D∆ρ (2.2)

where D is the mass diffusivity.

2.1 Base flow and perturbation equations

In this part we consider a horizontally directed flow of a viscous and stably stratified
incompressible fluid in a vertical channel and on a wall, as sketched in figure 2.1. The
stratification is assumed to be uniform with a constant buoyancy frequency

N =
√
− g

ρ0

∂ρ

∂z
(2.3)

where g is gravity, ρ0 is a characteristic value of the mean density ρ.

In the channel, the base flow is assumed to be a parallel flow, i.e., a flow in x-direction
that only depends on the wall-normal direction y (see figure 2.1 defining the coordinate
system and base flow). Using the maximum velocity at the centre of the channel U and
half the channel width L for non-dimensionalization, we define the base flow velocity field
as

U = U0(y)ex = (1− y2)ex. − 1 6 y 6 1 (2.4)
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Figure 2.1 – Sketch of the base flow geometry and coordinate system

where ex is the unit vector in the streamwise direction x. This base flow is the so-called
plane Poiseuille flow.

For the boundary flow on a wall, we apply a local parallel-flow assumption and assume
that the base flow velocity field is given by the tanh profile

u = U0(y)ex = tanh (y) ex. (2.5)

where ex is the unit vector in the streamwise direction x, and where we have used the
main stream velocity U and the boundary layer thickness L to non-dimensionalize all the
variables.

The characteristics of the base flow are defined by three parameters :

Re = UL

ν
The Reynolds number, (2.6a)

Sc = ν

D
The Schmidt number, (2.6b)

F = U

NL
The Froude number, (2.6c)

where ν and D are the kinematic viscosity and the mass diffusivity of the fluid. In the
present study, for the plane Poiseuille flow, the Schmidt number is set to Sc = 1. For the
boundary layer flow, we assume Sc =∞.

To study the stability of this flow, we consider a basic state (Ui, P , ρ) and a perturbed
state (Ui + u′, P + p′, ρ + ρ′), both satisfying the Navier-Stokes equations (2.1) and the
density diffusion equation (2.2). The expressions are

u(x, t) = U + u′(x, t), (2.7a)

P (x, t) = P + p′(x, t), (2.7b)

ρ(x, t) = ρ+ ρ′(x, t) (2.7c)

Under the Boussinesq approximation, the governing equations of this flow can be
derived by introducing (2.4) (2.7) into the Navier-Stokes equations (2.1) and the density
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Figure 2.2 – Sketch of iterative procedure

diffusion equation (2.2)

∂u′

∂t
= −U0

∂u′

∂x
− dU0

dy
v′ − ∂p′

∂x
+ 1

Re∆u′, (2.8a)

∂v′

∂t
= −U0

∂v′

∂x
− ∂p′

∂y
+ 1

Re∆v′, (2.8b)

∂w′

∂t
= −U0

∂w′

∂x
− ∂p′

∂z
+ 1

Re∆w′ + b′

F 2 , (2.8c)

∂b′

∂t
= −U0

∂b′

∂x
+ 1

ReSc∆b′ − w′, (2.8d)

0 = ∂u′

∂x
+ ∂v′

∂y
+ ∂w′

∂z
(2.8e)

where b′ = ρ′/∂zρ and the nonlinear terms are neglected.

2.2 Optimal perturbations

The method of non-modal analysis is first introduced in this section. Optimal per-
turbation provides the initial conditions that excite the most energetic perturbation in
a given base flow. Recently, Kaminski et al. (2014) analysed the transient growth in a
strongly stratified shear layers depending on the now-conventional ‘direct-adjoint loo-
ping’ (DAL) method, which is summarised by Schmid (2007). We used a similar method
for the non-modal analysis.

The application of adjoint equations has been developed significantly in the field of
hydrodynamic stability theory (Luchini & Bottaro 2014). In the DAL method, it helps to
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identify the optimal perturbations (Schmid 2007). Variational and optimisation techniques
are incorporated in this method. The objective of the optimisation process is the total
energy growth over a given time interval (0 6 t 6 T ), and the constraints are the governing
equations, for example, the linearised Navier-Stokes equations, and boundary conditions
and initial conditions.

The iterative procedure of ‘direct-adjoint-loop’ method is shown in figure 2.2. At the
start of the loop in DAL method, a general initial perturbation for the ‘direct’ variables
(mostly physical variables) is involved, and the ‘direct’ equations for the evolution are in-
tegrated forward from t = 0 to t = T . At time t = T , the total energy growth is evaluated,
and the direct variables are converted to the adjoint variables as the terminal conditions
for the ‘adjoint’ equations. Then the adjoint equations are subsequently integrated ba-
ckward from t = T to t = 0. At time t = 0, the adjoint variables are recovered to the
direct ones and thus the new initial conditions for the direct problem are generated. This
process is repeated until the initial perturbation converges to the optimal one and the
total energy growth is maximised. It has become an essential purpose of transient growth
analysis to evaluate the evolution and amplification quantitatively.

In this part, we introduce the DAL variational method in the context of stratified
flows. The total perturbation energy E(T ) is defined as a sum of the kinetic energy and
potential energy of the perturbation (2.9),

E = 〈u
′,u′〉
2 + 1

2
〈b′, b′〉
F 2 (2.9)

where angled bracket denote an appropriate inner product, e.g. 〈u,v〉 ≡ 1
V

∫
V u · vdV ,

and V is the domain volume. The weighted 2-norm in equation (2.9) is natural because
in this way, the body force terms in equation (2.8c,d) can be cancelled in the expression

dE

dt
= − 1

V

∫
V

(
dU0

dy
v′u′ + 1

Re
|∇u′|2

2 + 1
ReScF 2

|∇b′|2

2

)
dV (2.10)

The boundary conditions in our model are applied to get this expression. In equation
(2.10), the first term in the bracket is related to the Reynolds stress, and the other
two positive definite terms are respectively associated with the dissipation of kinetic and
potential energy.

The objective function of our optimisation procedure is the perturbation energy gain
(2.11)

G(T ) = E(T )
E0

(2.11)

where
E0 = 〈u

′
0,u

′
0〉

2 + 1
2
〈b′0, b′0〉
F 2 .

Specifically, we search for the initial conditions (u′0(x), b′0(x), p′0(x)) that can maximize
the perturbation energy gain G(T ) over a finite time T .
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The evolution of the initial perturbations is governed by (2.8). The objective func-
tional is defined as

L =E(T )
E(0)

−
[
∂u′i
∂t

+ u′j
∂Ui
∂xj

+ Uj
∂u′i
∂xj

+ ∂p′

∂xi
− 1

Re∆u′i −
b

F 2 δi3, u
A
i

]

−
[
∂b′

∂t
+ Uj

∂b′i
∂xj

+ u′iδi3 −
1

ReSc∆b′, bA
]
−
[
∂u′i
∂xi

, pA
]

− 〈u′i(0)− u′0i, uA0i〉 − 〈b′(0)− b′0, bA0 〉 − 〈p′(0)− p′0, pA0 〉

(2.12)

where [u, v] ≡
∫ T

0 〈u,v〉dt. The first term is the perturbation energy gain, and the pe-
nalty terms contain the constraints of governing equations (2.8) and the initial conditions
of the flow at t = 0. The Lagrange multipliers (uA(x, t), bA(x, t), pA(x, t)) represent the
adjoint variables. The direct evolution equations, i.e. the linearised Navier-Stokes equa-
tions, continuity equation, and density distribution equation, can be recovered by taking
variations of L with respect to the adjoint variables. Variations of L with respect to
(uA

0 (x), bA0 (x), pA0 (x)) set the initial conditions (u′0(x), b′0(x), p′0(x)) for the flow. The sub-
script ‘0’ in these variables indicates that these quantities are the initial conditions at time
t = 0.

The adjoint equations, which describe the evolution of the adjoint variables, can be
obtained by taking variations of (2.12) with respect to the direct (physical perturbation)
variables (u′, b′, p′), and setting the results equal to zero. These equations read

∂uA

∂t
= −U0

∂uA

∂x
− ∂pA

∂x
− 1

Re∆uA, (2.13a)

∂vA

∂t
= dU0

dy
uA − U0

∂vA

∂x
− ∂pA

∂y
− 1

Re∆vA, (2.13b)

∂wA

∂t
= −U0

∂wA

∂x
− ∂pA

∂z
− 1

Re∆wA + bA, (2.13c)

∂bA

∂t
= −U0

∂bA

∂x
− wA

F 2 −
1

ReSc∆bA, (2.13d)

0 = ∂uA

∂x
+ ∂vA

∂y
+ ∂wA

∂z
(2.13e)

The adjoint equations (2.13) must be satisfied for all times over the interval [0, T ],
and should be well-posed when integrated backwards in time (Schmid 2007; Luchini &
Bottaro 2014). Variations of (2.12) with respect to (u′, b′, p′) can also give compatibility
conditions, which represent the relationships between the direct variables (u′, b′, p′) and
the adjoint variables (uA, bA, pA) at the target time T :(

u′i
E0
− uAi

)∣∣∣∣∣
t=T

= 0, (2.14a)(
b

F 2E0
− bA

)∣∣∣∣∣
t=T

= 0 (2.14b)
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The variations of L with respect to the initial perturbations (u′0, b′0, p′0) should also
be set as zero to maximize the objective functional (2.12). This functional can give the
compatibility conditions that should be satisfied at the initial time t = 0 :(

uA0iE
2
0

E(T ) − u
′
0i

)∣∣∣∣∣
t=0

= 0, (2.15a)(
F 2E2

0b
A
0

E(T ) − b
′
0

)∣∣∣∣∣
t=0

= 0 (2.15b)

The perturbations can be further assumed to be in the form of

u′(x, t) = u(y, t)eikxx+ikzz, (2.16a)

b′(x, t) = b(y, t)eikxx+ikzz, (2.16b)

p′(x, t) = p(y, t)eikxx+ikzz (2.16c)

This form (2.16) is introduced into (2.8), the resulting equations can be written as :

∂u

∂t
= −iU0kxu−

dU0

dy
v − ikxp+ 1

Re∆yu, (2.17a)

∂v

∂t
= −iU0kxv −

dp

dy
+ 1

Re∆yv, (2.17b)

∂w

∂t
= −iU0kxw − ikzp+ b

F 2 + 1
Re∆yw, (2.17c)

∂b

∂t
= −iU0kxb− w + 1

ReSc∆yb, (2.17d)

0 = ikxu+ dv

dy
+ ikzw (2.17e)

where
∆y = d2

dy2 − k
2
x − k2

z .

The corresponding adjoint equations are :

∂uA

∂t
= −iU0kxu

A − ikxpA −
1

Re∆yu
A, (2.18a)

∂vA

∂t
= dU0

dy
uA − iU0kxv

A − dpA

dy
− 1

Re∆yv
A, (2.18b)

∂wA

∂t
= −iU0kxw

A − ikzpA + bA − 1
Re∆yw

A, (2.18c)

∂bA

∂t
= −iU0kxb

A − wA

F 2 −
1

ReSc∆yb
A, (2.18d)

0 = ikxu
A + dvA

dy
+ ikzw

A (2.18e)
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In the context of method described above, optimal perturbation is an initial configu-
ration (u0, v0, w0, b0, p0) that can maximize the energy gain G(T ) at a prescribed terminal
time t = T , for a given set of parameters (kx, kz,Re, F, Sc).

The optimal perturbations can be obtained by applying the iterative optimisation
algorithm, which essentially relies on the power iteration method (Corbett & Bottaro
2000; Schmid 2007). The randomly initialized flow marches forward in time from t = 0
to t = T , satisfying the direct governing equations (2.17a-e). At time t = T , the initial
adjoint variables are generated with the help of the direct physical variables and the
compatibility conditions (2.14). Then the adjoint variables evolve backward in time with
the adjoint equations (2.18a-e) until t = 0. The initial conditions can then be updated by
adopting the direct variables and the compatibility conditions (2.15). Successive iterations
can be scaled to ensure that their magnitudes remain reasonable. This procedure, which
is the so-called ’direct-adjoint-loop’, is repeated until the initial conditions converge to
the optimal ones, and the energy gain G(T ) reaches its maxima. The typical convergence
criterion is that the relative error of G(T ) is smaller than 10−3.

In the iterative procedure, the evolutions in time are implemented with backward dif-
ferentiation formula (BDF), which is a family of implicit multi-step method for numerical
integration of ordinary differential equations, e.g.

∂f

∂t
= Af , f = (u, v, w, p, b)T (2.19)

Depending on the direct equations (2.17), we can get the matrix A

A =



−ikxU0 + 1
Re∆y −dU0

dy
0 −ikx 0

0 −ikxU0 + 1
Re∆y 0 − d

dy
0

0 0 −ikxU0 + 1
Re∆y −ikz 1

F 2

ikx
d
dy

ikz 0 0
0 0 −1 0 −ikxU0 + 1

ReSc∆y



Correspondingly, the matrix AA for the adjoint equations (2.18) is

AA =



−ikxU0 − 1
Re∆y 0 0 −ikx 0

dU0
dy

−ikxU0 − 1
Re∆y 0 − d

dy
0

0 0 −ikxU0 − 1
Re∆y −ikz 1

ikx
d
dy

ikz 0 0
0 0 − 1

F 2 0 −ikxU0 − 1
ReSc∆y


and the adjoint equation for (2.19) is

∂fA

∂t
= AAfA, fA = (uA, vA, wA, pA, bA)T . (2.20)
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The specific formulas of s-step BDFs for the time integration are (Süli & Mayers
2003) :

BDF1 : fn+1 − fn

∆t = Afn+1

BDF2 : 3fn+2 − 4fn+1 + fn

2∆t = Afn+2,

BDF3 : 11fn+3 − 18fn+2 + 9fn+1 − 2fn

6∆t = Afn+3

BDF4 : 25fn+4 − 48fn+3 + 36fn+2 − 16fn+1 + 3fn

12∆t = Afn+4

BDF5 : 137fn+5 − 300fn+4 + 300fn+3 − 200fn+2 + 75fn+1 − 12fn

60∆t = Afn+5

BDF6 : 147fn+6 − 360fn+5 + 450fn+4 − 400fn+3 + 225fn+2 − 72fn+1 + 10fn

60∆t = Afn+6

where ∆t is the step size and the s-step formula can achieve s-th order during computation.
Typically, the formula BDF6 is used and the time step size in the present study is set
as ∆t = 0.05. However, for larger wavenumbers, a smaller step size should be used to
avoid the numerical stability problem in time integration. In the present study, only the
transient growth in plane Poiseuille flow is provided (see Chapter 4).

Spatial derivatives are computed with the pseudo-spectral method. We have applied
Gauss-Lobatto points and Chebyshev polynomials for the plane Poiseuille flow (see section
2.3.1), and the collocation points of Laguerre polynomials for the boundary layer flow (see
section 2.3.2).

2.3 Numerical method for eigenvalues

In this part, we provide the framework of linear temporal stability analysis of the
base flow (2.4). The perturbations are searched in the form of normal modes

(u′, v′, w′, p′, b′) = (u(y), v(y), w(y), p(y), F 2b(y))eikxx+ikzz−iωt (2.21)

where kx and kz are real wavenumbers and ω the complex frequency (ω = ωr + iωi). The
equations for (u, v, w, p, b) can be obtained by substituting (2.21) into (2.8)

−iωu = −iU0kxu−
dU0

dy
v − ikxp+ 1

Re∆yu, (2.22a)

−iωv = −iU0kxv −
dp

dy
+ 1

Re∆yv, (2.22b)

−iωw = −iU0kxw − ikzp+ b+ 1
Re∆yw, (2.22c)

−iωb = −iU0kxb−
w

F 2 + 1
ReSc∆yb, (2.22d)

0 = ikxu+ dv

dy
+ ikzw (2.22e)
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where
∆y = d2

dy2 − k
2
x − k2

z .

The equation system (2.22) is solved numerically using a pseudo-spectral method. A
generalised problem

Af = ωBf , f = (u, v, w, p, b)T (2.23)

can be derived from (2.22) and then be solved with the help of several subroutines in
Matlab c©.

2.3.1 Eigenvalues for plane Poiseuille flow

For the plane Poiseuille flow, the boundary conditions for (2.22) are set as non-slip
boundary conditions

u(±1) = v(±1) = w(±1) = 0.

The equation (2.23) is solved using Gauss-Lobatto points and Chebyshev polynomials.
The advantage of Chebyshev polynomials in solving hydrodynamic stability problems is
verified by Orszag (1971). Typically, the number of the points used in the present study
is 100.

Illustration of the spectrum associated with (2.22) is shown in figure 2.3. This figure
can be compared to the result of figure 3.1 (page 64) in Schmid & Henningson (2001).
The three main branches of Orr-Sommerfeld modes (the eigenvalues of Orr-Sommerfeld
equations), which have been label A (ωr → 0), S (ωr ≈ 0.67), P (ωr → 1) by Mack (1976),
are all included in figure 2.3. In addition to those Orr-Sommerfeld modes, an extra branch
of Squire modes (the eigenvalues of Squire equation) also exists, which is located between
the smaller branches of A modes. There is one slightly unstable eigenvalue (ωi > 0) on
the A branch in figure 2.3, ω = 0.2375 + 0.00374i, and this value exactly agrees with the
‘accurate’ solution of Orszag (1971). This unstable mode roots in the destabilising effects
of viscosity, and is the so-called TS wave. The eigenfunctions associated with this mode
are displayed in figure 2.4. The largest variations of velocities are close to the boundaries,
and the pressure is the smallest (p(0) = 0) at the centre.

2.3.2 Eigenvalues for boundary layer flow

In our study of boundary layer flow, the choice of a tanh profile (instead of a Blasius
profile) has been made for numerical convenience. Both the viscous and the radiative
instabilities that we discuss here are expected to be weakly sensitive to the details of the
profile (as long as it remains non-inflectional). In the very large Reynolds number limit, it
is indeed known that the characteristics of these instabilities only depend on the velocity
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Figure 2.3 – Eigenvalues of unstratified (F =∞) plane Poiseuille flow for Re = 104, kx =
1, kz = 0. The eigenvalue with a positive imaginary part is ω = 0.2375 + 0.00374i.
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Figure 2.4 – Eigenfunctions for plane Poiseuille flow with Re = 104, F = ∞, kx =
1, kz = 0, ω = 0.2375 + 0.00374i. (a) streamwise velocity ; (b) normal velocity ; (c) pres-
sure. The thick solid lines represent the magnitude (absolute values), the thin solid lines
and dashed lines are the real part and imaginary part, respectively. All the eigenfunctions
are normalized by v(0).

derivatives at the boundary (see Drazin & Reid (1981) for the viscous instability and
Candelier et al. (2012) for the radiative instability).

In the present study, the Froude and Reynolds numbers are varied in the intervals

100 < Re < 107 , 0.01 < F < 20. (2.24)

We neglect the diffusion of mass and set Sc =∞. This hypothesis is valid for salty water,
for which Sc is around 700.

The goal of the present study is to perform a linear temporal stability analysis of the
base flow (2.5). Perturbations are then searched in the form of normal modes. The velo-
city, pressure and buoyancy amplitudes (u, v, w, p, b) satisfy the equation system (2.22a-e)
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obtained by linearising the Navier-Stokes and density equations under the Boussinesq
approximation.

The no-slip boundary condition gives u(0) = v(0) = w(0) = 0. Far away from the
boundary, we apply a condition of radiation which prescribes that the energy should
propagate outward.

The system (2.22a-e) is discretized using a pseudo-spectral method on the colloca-
tion points of Laguerre polynomials. These polynomials are well-adapted to semi-infinite
domain [0,+∞[. This method has already been used in Riedinger et al. (2010b) and
Candelier et al. (2012). The system of equations is then transformed into a generalized
eigenvalue problem (2.23), which is solved using subroutines of Matlab c©.

The eigenfunctions obtained by this method automatically vanish at infinity. As
already explained by Riedinger et al. (2010b), this is not an adequate behaviour for all
the physical perturbations.

By considering (2.22) for large y, it is easy to show that all solutions to (2.22) are,
for large y, a sum of exponentials eiβz with Λ = k2

x + k2
z + β2 satisfying

(Λ− i(ω − kx)Re)
[
i(Λ− k2

z)Re − ΛF 2(ω − kx) (Λ− i(ω − kx)Re)
]

= 0. (2.25)

The condition of radiation prescribes that the solution should expend at infinity on 3 expo-
nentials among the 6 possible (only the exponentials corresponding to waves propagating
energy outward are kept). When Im(ω) > 0, this condition of radiation is equivalent to
discarding the growing exponentials and keeping the decreasing exponentials. It is there-
fore equivalent to the vanishing of the solution at infinity. This implies that all unstable
modes can a priori be captured by the spectral code. When Im(ω) = 0 or Im(ω) < 0, the
conditions of radiation and of vanishing do not necessarily match. There are large regions
of the complex ω plane where these two conditions are not equivalent. In these regions, the
modes obtained by the spectral code are therefore “unphysical”. The boundaries of these
regions correspond to curves in the ω plane where one of the wavenumber β satisfying
(2.25) becomes real. These curves are the so-called continuous spectrum. An illustration
showing the numerical spectrum and the continuous spectrum is displayed in figure 2.5(a)
for a typical example.

In figure 2.5, we have indicated, by a dashed rectangle, the region of the ω plane
where the interesting eigenvalues corresponding to the radiative instability are expected.
This region is very close to the continuous spectrum, which means that the eigenfunctions
decay slowly at infinity.

As explained in Riedinger et al. (2010b), the exponentially decreasing behaviour of
the solution can be improved by introducing a complex mapping z = z′eiα where α is a
fixed positive angle. The mapping of the complex path is shown in figure 2.6(a). Such a
mapping modifies an oscillating behaviour on the z variable, say eiβz with β > 0 into an
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Figure 2.5 – Continuous spectrum (solid lines) and numerical eigenvalues (stars) for
N = 100 and the parameters Re = 104, F = 1, kx = 1, kz = 10. The ‘unphysical’ domain
is indicated by the letter ‘U’. (a) Integration on the real axis (α = 0) ; (b) Integration on
a complex path z′ = ze−iα with α = π/20. The eigenvalue domain of interest is indicated
by the dashed rectangle.
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Figure 2.6 – Application of complex path. (a) Oscillating behaviour of eiβy and complex
path y′ = ye−iα. (b) Exponential decreasing behaviour eiβy′ cosαe−βy

′ sinα (modified eiβy)
on the y′ variable. The parameters used for these two figures are β = 1 and α = π/20.
The thin solid lines and dashed lines are the real part and imaginary part of the solutions.

exponential decreasing behaviour eiβ cosαz′
e−β sinαz′ on the z′ variable. The modification

effects on eiβz with β > 0 is illustrated in figure 2.6(b) as an example. The mapping thus
modifies the spectrum and the continuous spectrum as shown in figure 2.5(b). Meanwhile,
the physically relevant eigenvalue is not modified by the use of the complex path. The
unstable mode in the dashed rectangle is now further away from the continuous spectrum
curve. Being localized nearer to the origin, this mode is more easily resolved by the
pseudo-spectral code. Neutral eigenvalues as well as weakly damped eigenvalues can also
be captured by this method.
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Figure 2.8 – Pressure eigenfunction of distinguished radiative modes for Re = 107,
F = 0.5, kx = 1.8, kz = 15.76 (corresponding to the three modes in figure 2.7 but with
α = 0). (a) Mode 1 (most unstable), ω = 0.928+0.0209i ; (b) Mode 2, ω = 1.33+0.00957i ;
(c) Mode 3, ω = 1.567 + 0.00488i. Thick solid lines, solid lines and dashed lines represent
absolute value, real part and imaginary part, respectively.
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For a given set of parameters (kx, kz,Re, F ), there may exist several radiative modes,
for example, the eigenvalues shown in figure 2.7. The pressures eigenfunctions for the
corresponding radiative modes (Mode 1, 2, 3) are displayed in figure 2.8. All modes exhibit
a well-defined localised structure close to the wall and an oscillating structure faraway.
The higher the mode, the more complex the localised structure close to the wall and the
larger the wavelength in the radiative zone. In the following, we mainly focus on the first
mode, which has both the simplest wall structure and the largest growth rate.

As soon as an eigenvalue is obtained, its robustness is tested by varying the angle α
and the number N of polynomials. We have typically used α = π/20 and N = 100.
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Chapitre 3

Instability of a boundary layer flow
on a vertical wall in a stably
stratified fluid

(This chapter is based on the article Chen, J., Bai, Y., & Le Dizès, S. 2016
Instability of a boundary layer flow on a vertical wall in a stably stratified fluid. J. Fluid
Mech. 795, 262–277.)

3.1 Introduction

Boundary layers are ubiquitous in any flow close to boundaries. They are known to be
unstable with respect to viscous instabilities for Reynolds numbers above a few thousands.
In the presence of a stable stratification, such a flow on a vertical wall is shown to be
unstable with respect to a stronger instability associated with the emission of internal
gravity waves. The goal of the present chapter is to analyse the competition between
both instabilities for a simple model of boundary layer flow as a function of viscosity and
stratification strength.

The stability of boundary layer flows is a subject almost as old as fluid mechanics,
which is covered by several textbooks (e.g. Betchov & Criminale 1967). In particular, it is
well-established that an inflection-free boundary layer profile is unstable with respect to
a 2D viscous instability that gives rise to the so-called Tollmien-Schlichting (TS) waves.

The effect of a stable stratification has been mainly studied in the context of atmos-
pheric flows on flat horizontal surfaces (see Mahrt 2014, for a review). However, in this
context, the velocity profile usually exhibits an inflectional point which makes it unstable
with respect to the Kelvin-Helmholtz instability. This instability is modified by stratifi-
cation as shown in Howard (1961); Miles (1961); Churilov (2005, 2008); Candelier et al.
(2011). The effect of stratification on Tollmien-Schlichting waves is less known. It was stu-
died experimentally in Ohya & Uchida (2003). Wu & Zhang (2008a) also demonstrated
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that it could be destabilizing. On a vertical wall, the 2D Tollmien-Schlichting waves are
not expected to be affected by stratification. But as Squire theorem is not applicable in
the presence of stratification, more unstable 3D TS waves could a priori exist.

The inclination of shear with respect to the direction of stratification is also known to
be a source of instability. Candelier et al. (2012) showed that an inflection-free boundary
layer profile becomes unstable with respect to an inviscid “radiative instability" as soon
as there is an angle between the directions of shear and stratification, the instability
being the strongest for an angle of π/2, that is for a vertical wall. This instability which
results from the coupling between shear and internal waves has been obtained in other
contexts : shallow water flows (Satomura 1981; Balmforth 1999; Riedinger & Gilbert 2014),
compressible flows (Mack 1990; Parras & Le Dizès 2010), rotating flows (Riedinger et al.
2010b, 2011). It has often been associated with a phenomenon of resonant over-reflection
(McIntyre & Weissman 1978; Grimshaw 1979; Lindzen & Barker 1985), negative energy
waves (Kópev & Leontev 1983), or spontaneous wave emission (Plougonven & Zeitlin 2002;
Le Dizès & Billant 2009). In the present work, we shall analyse the effect of viscosity on
the radiative instability of a boundary layer.

This chapter is organized as follows. In section 3.2.1, we first analyse the effect of
stratification on the viscous instability, and then, in section 3.2.2, we study the radiative
instability in the presence of viscosity. In section 3.2.3, we provide a summary of the
stability results. The last section (section 3.3) is a brief discussion in the context of
applications.

3.2 Temporal stability results

3.2.1 Boundary layer instability (Tollmien-Schlichting waves)

Considering a boundary layer flow, the viscous instability associated with Tollmien-
Schlichting waves is expected to be active. Without stratification (F = ∞), the viscous
instability of a boundary layer profile has been known for a long time (see for instance
Betchov & Criminale 1967). In that case, Squire’s theorem is applicable : the most unstable
mode among all the possible wavenumbers kx and kz is obtained for kz = 0. Being 2D
without variation in the stratification direction y, this mode is also expected to exist in the
presence of stratification, as the equations for the transverse velocity v and the buoyancy
b are decoupled from the other velocity components and the pressure. However, there is
no Squire theorem which guarantees that this 2D mode remains the most unstable in the
presence of stratification.

The effect of the Froude number on the growth rate curve in the (kx, kz) plane is
illustrated in figure 3.1. In these plots, we do see that for a given Reynolds number,
the instability domain associated with the viscous instability grows as the stratification
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Figure 3.1 – Growth rate contours of the viscous instability in the (kx, kz) plane for
Re = 104 and different Froude numbers. (a) F = ∞ (unstratified case) ; (b) F = 1 ; (c)
F = 0.1. Contours are every 0.00025 from 0 to 0.0028.
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Figure 3.2 – Characteristics of the most unstable TS wave as a function of Re. (a)
Growth rate Im(ω) ; (b) Oscillation frequency Re(ω) ; (c) Wavenumber kx.

increases while the largest growth rate in this (kx, kz) domain is still reached for kz = 0.
We have tried other values of the Reynolds number, and always obtained that the most
unstable Tollmien-Schlichting wave among all the possible wavenumbers kx and kz remains
2D whatever the Froude number. Since this mode does not depend on F , it means that
its characteristics are not affected by the stratification. The characteristics of the most
unstable Tollmien-Schliching wave are therefore independent of the stratification. They
are shown in figure 3.2 as a function of the Reynolds number. The critical Reynolds
number is found to be Re(v)

c ≈ 3981 for which the critical Tollmien-Schlichting wave has
the characteristics : kx = 0.35, ω = 0.1. The growth rate decreases for large Reynolds
numbers. It reaches its maximum at the most dangerous Reynolds number Re(v)

m ≈ 22390
for the most dangerous mode of characteristics kx = 0.13, ω = 0.016 + 0.0033i.

The eigenfunctions of the critical and most dangerous Tollmien-Schlichting waves are
presented in figure 3.3. Note that the eigenfunctions of both modes are very similar. The
only noticeable difference is the stronger localization of the critical mode close to the
boundary. This can be related to the streamwise wavenumber difference and the behavior
in e−kxy of the eigenfunctions far from the boundary.

The evidence that Squire’s theorem is not applicable in the presence of stratification
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Re = Re(v)

c ≈ 3981 (left) and the most dangerous Reynolds number Re = Re(v)
m ≈ 22390

(right). Thick solid lines, solid lines and dashed lines represent absolute value, real part
and imaginary part, respectively.
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Figure 3.4 – Growth rate contours in the (kx, kz) plane for Re = 104 and F = 1 [enlarged
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Figure 3.5 – Growth rate contours of the radiative mode in the (kx, kz) plane for several
sets of Froude and Reynolds numbers. (a) Re = 107, F = 0.5 ; (b) Re = 104, F = 0.5 ;
(c) Re = 107, F = 3 ; (d) Re = 104, F = 3. White crosses indicate local maxima of the
growth rate, the largest maximum being shown with an asterisk. Contours are every 0.001
from 0.001 to 0.02.

is given in figure 3.4 which is an extension in a larger (kx, kz) domain of the growth rate
contours. We clearly see the presence of 3D modes which are more unstable than all the
2D modes. These 3D unstable modes are associated with another instability, the so-called
radiative instability, analysed in the next section.

3.2.2 Radiative instability

The radiative instability is inviscid in nature and results from the coupling between
shear and internal gravity waves associated with the fluid stratification. The inviscid
characteristics of this instability have been obtained for the tanh boundary layer profile
in Candelier et al. (2012).

In figure 3.5, we have plotted the growth rate of the (most unstable) radiative mode
in the (kx, kz) plane for various Froude and Reynolds numbers (Several unstable radiative
modes may exist for a given set of parameters (kx, kz,Re, F ). We always keep the mode
with the largest growth rate even if we do not systematically mention that it is the
most unstable radiative mode). We clearly see that viscous effects reduce the domain of
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F = 0.5 (a) and F = 3 (b). Solid line : Re = 107, Dashed line : Re = 106, Dash-dot line :
Re = 105, Dotted line : Re = 104.

instability. In the inviscid limit, the maximum growth rate is obtained for infinite kx and
kz (Candelier et al. 2012). As soon as viscous effects are present, the maximum growth
rate is reached for finite kx and finite kz. In figure 3.6, we have plotted the maximal
value of the growth rate over all kz as a function of kx for various Reynolds numbers and
F = 0.5 and 3. The viscous damping of higher wave numbers is also clearly seen on these
plots. It should be noticed that there are the two local peaks of the growth rate curve for
Re = 106 and 107. These peaks have also been indicated by symbols in figure 3.5(a,c).
While the first peak remains almost fixed, the location of the second peak strongly varies
with Reynolds number. This strong variation can be associated with the extremely broad
character of this peak and the fact that it goes to infinity as Re →∞.

In figure 3.7, we have plotted the characteristics of the most unstable radiative mode
(growth rate maximized over all the possible wavenumbers (kx, kz)) as a function of the
Froude number for different Reynolds numbers. As expected, viscous results tend to in-
viscid results as Re increases. Note however that the convergence is slow, especially for
small Froude numbers. This can be explained by the fact that even for Re = 107, the most
unstable wavenumbers are still of order 1 (Remember, they should go to infinity in the
inviscid limit). For this Reynolds number, the most unstable wavenumbers correspond to
the first peak of the growth rate curve in the (kx, kz) plane for all Froude number F < 1
[see figure 3.5(a)]. It jumps to the second local peak of larger wavenumbers for higher
Reynolds numbers, or for larger Froude numbers [see figure 3.5(c)]. This change of modes
as Froude or Reynolds number increases generates the jump observed in figure 3.7(c-f).

The results for the radiative instability are summarized in figure 3.8. In this figure,
we have displayed the characteristics of the most unstable radiative mode as a function of
both parameters Re and F . Only the growth rate contours are expected to be smoothed.
Frequency, wavenumbers and phase velocities exhibit discontinuities which are associated
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Figure 3.7 – Characteristics of the most unstable radiative mode (obtained by maximi-
zing the growth rate over all kx and kz) as a function of the Froude number F for different
Reynolds numbers. Re = 104 (dotted line), 105 (dash-dot line), 106 (dashed line), 107 (so-
lid line),∞ (thick grey line). (a) Growth rate Im(ω) ; (b) Oscillation frequency Re(ω) ; (c)
Streamwise wavenumber kx ; (d) Wavenumber ratio kz/kx ; (e) Phase velocity Re(ω)/kx
along x ; (f) Phase velocity Re(ω)/kz along z.
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Figure 3.8 – Characteristics of the most unstable radiative mode (obtained by maxi-
mizing the growth rate over all kx and kz) in the (Re, F ) plane. (a) Growth rate
(Im(ω))contours ; (b) Oscillation frequency (Re(ω)) contours (in the unstable region) ;
(c) Streamwise wavenumber (kx) contours ; (d) : Transverse wavenumber (kz) contours.
The black dashed line indicates a discontinuity. The white dotted line in (a) gives the
value of F which maximizes the growth rate for a fixed Re.

with the local growth rate peak jumps discussed above. We have observed a single jump
which is indicated by the dashed line in figure 3.8(b-d).

The critical Reynolds number for the radiative instability is found to be Re(r)
c ≈ 1995

and is reached for F (r)
c ≈ 1.51. The characteristics of the critical radiative mode are

kx ≈ 0.615, kz ≈ 4.236, ω ≈ 0.535. As expected, the Froude number instability range
increases with the Reynolds number, but the most unstable growth rates are obtained
for strongly stratified configurations for which F is smaller than 1. In figure 3.8(a), the
white dotted line gives the Froude number which maximizes the radiative instability for
a prescribed Reynolds number.

The behaviour of constant growth rate curves for small Froude and large Reynolds
numbers can be obtained by adding the viscous corrections to the non-viscous estimate. In
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Figure 3.9 – Pressure eigenfunction of distinguished radiative modes for F = 3 and two
Reynolds numbers (corresponding to the symbols of figure 3.5(c,d)). (a) Most unstable
mode for Re = 104 : kx = 0.33, kz = 3.13, ω = 0.2971 + 0.0043i ; (b) Most unstable
mode for Re = 107 : kx = 0.64, kz = 8.75, ω = 0.2817 + 0.0086i ; (c) Less unstable mode
corresponding to the first local peak of the growth rate curves for Re = 107 : kx = 0.34,
kz = 2.75, ω = 0.3023 + 0.0084i. Thick solid lines, solid lines and dashed lines represent
absolute value, real part and imaginary part, respectively.

this limit, Candelier et al. (2012) have indeed shown that the most unstable inviscid mode
was obtained for kz/kx ∼ 4.9/F . This means that for small F , kz is much larger than kx
as well as the wavenumber based on the characteristic scale in the normal direction (y)
which varies as kx. The viscous damping of the mode is then expected to be just −k2

z/Re.
If we assume that kx is approximatively constant, this gives a viscous growth rate which
is constant on the line ReF 2 =Cst, as approximatively observed in figure 3.8(a).

The eigenfunctions of the distinguished radiative modes marked by symbols in figure
3.5 are shown in figures 3.9 and 3.10. Figures 3.9(a,b) show the pressure eigenfunction of
the most unstable mode for a weakly stratified configuration (F = 3) at Re = 104 and
107. The pressure eigenfunction for Re = 107 strongly resembles the inviscid eigenfunction
obtained by Candelier et al. (2012) for large Froude numbers and large wavenumbers. For
smaller Reynolds numbers, the eigenfunction is by contrast different. These differences are
not due to a change of instability mode. The modes are on the same instability branch
but they are associated with two different local peaks of the growth rate contours in the
(kx, kz) plane. For Re = 104, the most unstable mode corresponds to the first peak, while
it is the second peak for Re = 107 (see figure 3.5(c)). It should be noted that the mode
associated with the first peak is still unstable for Re = 107, and its pressure eigenfunction
is the same as for Re = 104, as seen in figure 3.9(c).

In figure 3.10, we have considered a strongly stratified case (F = 0.5). Figures 3.10(a)
and 3.10(b) show the pressure eigenfunction of the most unstable radiative mode for two
different Reynolds numbers. By comparing these two figures, we observe that the impact of
the Reynolds number is much weaker than for the weakly stratified case, as the pressure
eigenfunction is almost not modified. Besides, this eigenfunction is very similar to the
eigenfunction of the most unstable mode obtained for Re = 104 and F = 3. However,
it is very different from the most unstable inviscid eigenfunction obtained by Candelier
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Figure 3.10 – Pressure eigenfunction of distinguished radiative modes for F = 0.5 and
two Reynolds numbers (corresponding to the symbols of figure 3.5(a,b)). (a) Most unstable
mode for Re = 104 : kx = 1.18, kz = 9.34, ω = 0.964+0.011i ; (b) Most unstable mode for
Re = 107 : kx = 1.17, kz = 9.58, ω = 0.9499 + 0.0209i ; (c) Slightly less unstable mode for
Re = 107 corresponding to the second local peak of the growth rate curves : kx = 1.80,
kz = 17.56, ω = 0.928 + 0.0209i. Thick solid lines, solid lines and dashed lines represent
absolute value, real part and imaginary part, respectively.

et al. (2012) for small Froude numbers. The inviscid mode exhibits an oscillating structure
which is not present in the viscous mode for Re = 104 and Re = 107 [see figure 3.10(a,b)].
This difference is mainly due to a property already mentioned above : the viscous mode
is associated with the first peak and has a small streamwise wavenumber (as for the
modes shown in figure 3.9(a,c)). We suspect that this peak could be of viscous nature. It
indeed gives a mode with a non-oscillating structure which resembles that of 2D Tollmien-
Schlichting waves (see figure 3.3). If we consider the mode associated with the second peak,
we obtain an eigenfunction with an oscillatory tail [figure 3.10(c)] which resembles the
inviscid eigenfunction obtained for small Froude numbers (see Candelier et al. 2012, figure
4). It is important to stress that this mode has almost the same growth rate as the most
unstable mode.

Although the pressure eigenfunctions in figure 3.10(b) and (c) are quite different,
these eigenfunctions are essentially associated with the same mode but for different wave
numbers. Several internal cases between figure 3.10(b) and (c) are tested and their corres-
ponding pressure eigenfunctions are illustrated in figure 3.11(a)-(d). The radiative pheno-
menon (oscillations far away from the wall) are increasing progressively. This is a gradual
transition, rather than a “jump” from one mode to another.
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Figure 3.11 – Transition of the pressure eigenfunction of radiative modes for Re = 107,
F = 0.5 (the internal cases between figure 3.10(b) and (c)). (a) kx = 1.191, kz = 9.8466,
ω = 0.9488 + 0.0206i ; (b) kx = 1.211, kz = 10.08, ω = 0.9493 + 0.0204i ; (c) kx = 1.232,
kz = 10.31, ω = 0.9499 + 0.0203i ; (d) kx = 1.342, kz = 11.60, ω = 0.9500 +0.0205i. Thick
solid lines, solid lines and dashed lines represent absolute value, real part and imaginary
part, respectively.
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3.2.3 Competition between radiative instability and viscous in-
stability

As shown above, the viscous instability is present as soon as Re > 3981 for any Froude
number, while the radiative instability is active in a domain of the (Re, F ) plane which has
been displayed in figure 3.8(a). Both instabilities are then expected to be in competition
in a large domain of the parameter space. In figure 3.12, we have provided a summary
of this competition by indicating 5 different domains corresponding to a domain of no
instability, 2 domains where there is a single instability active, 2 other domains where
one instability dominates the other. This figure clearly demonstrates that the radiative
instability is the dominant instability in a large domain of the parameter space. It is the
first instability to appear as the Reynolds number increases in the range 0.5 < F < 5.3.
For Re = 106, it dominates the viscous instability in the large range 0.03 < F < 30.

3.3 Discussion

In this article, we have demonstrated that a stably stratified boundary layer flow on a
vertical wall is affected by two instabilities : a classical 2D viscous instability and a three-
dimensional non-viscous radiative instability. We have shown that the radiative instability
is the first instability to appear as the Reynolds number increases for 0.5 < F < 5.3, and
is the dominant instability in a large Froude number interval around F = 1 for large
Reynolds numbers. In the domain of parameters where the instability growth rate is the
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largest (large Reynolds numbers, small Froude numbers), the instability is characterized by
a streamwise wavelength scaling with the boundary layer thickness and a small transverse
wavelength proportional to F . The radiative instability is oscillatory with a frequency
close to 1 (that is U/L in dimensional form). The most unstable mode extends up to a
few boundary layer thickness.

The work has focused on the temporal stability property of a local boundary layer
profile. We have found that the streamwise wavenumbers of the most unstable radiative
mode increases with the Reynolds number and remains always larger than 0.1 for F < 16.
For TS waves, we have obtained that the streamwise wavenumber weakly decreases with
the Reynolds number but is still larger than 0.05 for Re = 107. For both types of modes,
there is then a clear separation of scales between the instability wavelength and the O(Re)
spatial evolution length of the boundary layer flow. This justifies a posteriori the local
parallel-flow assumption that we have made in neglecting the spatial development of the
flow. Nevertheless, it would be interesting to perform a spatial stability analysis (in which
the frequency is fixed, and one of the wavenumbers unknown) to get some information
on the spatial development of the instability from a localized excitation, as done in Wu
& Zhang (2008b).

It may be useful to apply the present results to experimental facilities such as the
large stratified water flume of CNRM at Toulouse (Paci et al. 2011) to determine whether
the radiative instability could develop on the side wall. Toulouse facility is 30 m long and
1.6 m deep. In normal conditions of use, it typically generates on the side walls a boundary
layer flow of characteristics U = 0.1 m s−1, L = 10 cm and N = 1 rad s−1 which gives
Re = 10000 and F = 1. The most unstable mode of such a flow has the characteristics
kx = 0.83, kz = 5.47, ω = 0.7 + 0.012i. It gives a period T = 2πL/(URe(ω)) ≈ 9 s, a
growth time τ = L/(UIm(ω)) ≈ 80 s, a streamwise wavelength 75 cm, and a transverse
wavelength 12 cm. Such a perturbation clearly fits within the channel. It is much stronger
than the viscous instability of the boundary layer which has a growth time ten times
larger for this Reynolds number. We believe that this instability could be present on the
side wall of the channel. We suspect that it could affect the quality of the flow within the
channel.

The radiative instability could also be present in real geophysical flows. Consider
a stably stratified nocturnal atmospheric boundary layer, as reported in Frehlich et al.
(2008). The velocity and thickness of this boundary layer flow is U = 10 m s−1, and
L = 100 m, respectively. The buoyancy frequency associated with the stratification is
approximatively N = 0.031 rad s−1 while the kinematic viscosity is ν = 10−5 m2 s−1. This
gives F = 3.2, and Re = 108. If such a flow was present on a vertical cliff, it would be
unstable with respect to a radiative instability by a mode of characteristics kx = 0.95,
kz = 13.84, ω = 0.27 + 0.0083i. This would give a perturbation period T ≈ 3.5 mn and
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a characteristic growth time τ ≈ 20 mn. The streamwise and transverse wavelengths of
this perturbation would be 660 m and 45 m, respectively.

The deep ocean is stably stratified. If we assume a buoyancy frequency approximati-
vely equal to 0.01 rad s−1 (Alford & Gregg 2006) and a kinematic viscosity ν = 10−6 m2 s−1,
a boundary layer flow of velocity U = 0.15 m s−1 and thickness L = 10 m would corres-
pond to the parameters Re = 1.5× 106 and F = 0.15. On a vertical ridge or a very steep
slope, such a flow would be unstable with respect to the radiative instability by a mode
of characteristics kx = 1.23, kz = 33, ω = 1 + 0.02i. This would give a period T ≈ 7 mn,
a growth time τ ≈ 1 h, and a spatial structure of wavelength 51 m in the streamwise
direction and 1.9 m in the transverse direction.

We have analysed the stability of a boundary layer flow on a vertical wall. For oceanic
applications, it would be more relevant to consider inclined slopes. In that case, the
radiative instability is still present but with a weaker growth rate (Candelier et al. 2012).
However, the radiative instability disappears on a horizontal surface. For the flow on
a surface of moderate slope, a stronger competition could exist between viscous and
radiative instability, but for large Reynolds numbers, the radiative instability is always
expected to dominate as its growth rate does not decrease with the Reynolds number.

Note finally that we have not considered the effect of density diffusion. For both
the atmosphere and the ocean, one should consider the temperature diffusion, for which
the equivalent Schmidt number (Prandtl number) is of order 1. This stronger diffusion is
expected to enhance the damping of the mode but this effect should remain small for the
Reynolds numbers relevant to the geophysical applications (typically Re > 106).

The impact of the radiative instability on the dynamics of the atmosphere or the
ocean remains unknown. When it is present, does it only contribute to the local mixing
in the boundary layer, or does it induce a mixing further away from the boundary due to
the radiative extension of the instability mode are among the interesting questions that
have to be addressed. Answering these questions would require an understanding of the
nonlinear evolution of the instability. This could constitute a nice objective for the future
numerical or experimental works on the subject.
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Chapitre 4

Instability of plane Poiseuille flow in
a stably stratified fluid

4.1 Introduction

The famous pipe flow experiment conducted by Reynolds (1883) showed that a la-
minar flow could break down and turn into complicated spatial and temporal behaviours.
To illustrate underlying mechanisms in the fluid motions, researchers have used different
prototypes in both theoretical and experimental studies. Plane Poiseuille flow is one of the
simplest parallel shear flows that satisfy the Navier-Stokes equations and its stability and
transition to turbulence is subtle. This flow is proved to be unstable when the Reynolds
number exceeds a critical value. However, as stratification is ubiquitous in nature, it is of
fundamental interest to investigate the stability and related properties of stratified plane
Poiseuille flow.

In this chapter, we examine the modal and non-modal stability of a plane Poiseuille
flow in the presence of stable density stratification, under the Boussinesq approximation.
The various mechanisms of exponential and transient growth are identified and characte-
rised. Mathematically, the exponentially growing instability can be investigated through
modal stability analysis, and the transient growth can be evaluated with the non-modal
analysis (Schmid 2007).

As we have shown in chapter 3, stable stratification can induce radiative instability
in the boundary layer, it is natural to study the stratification effects on the stability of
plane Poiseuille flow. Both the exponential and transient growth should be examined. It
is the main objective of this chapter to illustrate the influence of stratification on the
instabilities and fundamental mechanisms.
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4.1.1 Modal stability of stratified Poiseuille flow

Modal stability analysis has been developed for a long time and has been used to
predict the critical Reynolds number for instability.

The method of normal modes has been adopted to identify the exponential growth
in the fluid. The earliest known stability analysis of a homogeneous plane Poiseuille flow
is due to Heisenberg (1924), who first demonstrated that the instability responsible for
transition is a viscous instability, which is also referred to as Tollmien-Schlichting (TS)
waves. Orszag (1971) solved the Orr-Sommerfeld stability equation and showed that the
unstratified plane Poiseuille flow become unstable to the viscous mode if the Reynolds
number, non-dimensionalised by the half-width of the channel, exceeds the critical value
Re(v)

c (≈ 5772.2). The argument of the critical value is also based on the Squire’s theorem
(Squire 1933), which predicts that the most unstable mode is two-dimensional. However, in
the presence of stratification, the Squire’s theorem is not applicable. Miles (1961); Howard
(1961) showed the Kelvin-Helmholtz instability is diminished by stable stratification, but
the effect of vertical stratification on a viscous instability is less known.

The results in Chapter 3 have shown that on a vertical wall, the stratification can
induce the radiative instability in the boundary layer. The radiative instability is also
obtained by Le Dizès & Riedinger (2010) in the Taylor-Couette system in the limit of
an infinite gap. When the size of the gap is finite, Le Dizès & Riedinger (2010) showed
that the radiative instability changes into a so-called strato-rotational instability, which is
associated with a mechanism of resonance. A similar resonance phenomenon will be shown
to be active in the present study. The modes involved in the resonance are associated with
the stratification, we shall refer to this instability as a “gravity mode”.

4.1.2 Non-modal stability of stratified Poiseuille flow

In many experiments on channel flows, the transition to turbulence can occur at a
Reynolds numbers which is much smaller than the critical value for instability. In addition
to that, experiments about boundary layers (Klebanof 1971; Kendall 1985; Matsubara
& Alfredsson 2001) show that the transition is usually preceded by the appearance of
streamwise motion in the form of streaks rather than the TS waves. The reason for this
phenomenon is that any initial disturbance has the potential to grow transiently whether
or not the base flow is exponentially unstable.

As explained above, the transient growth derives from the non-normality of the
Navier-Stokes operator and can occur without non-linear effects (Butler & Farrell 1992;
Reddy & Henningson 1993). The combination of non-orthogonal eigenfunctions may lead
to large transient growth even if every component decays exponentially at its own growth
rate. Although the combination eventually decreases at a rate associated with its least
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stable component, it could produce large enough transient growth that can excite the
transition process. Three basic mechanisms are identified for the transient growth : Orr
mechanism (Orr 1907), lift-up mechanism (Ellingsen & Palm 1975; Landahl 1980), and
the combination of them (Farrell & Ioannou 1993a; Arratia et al. 2013). Physically, the
increase of the total perturbation energy is related to vortex tilting and stretching in the
finite time intervals.

Non-modal stability has proved to be an important complementary part for the modal
stability, because the modal stability analysis fails to explain many experimental results
(Klebanof 1971; Kendall 1985; Matsubara & Alfredsson 2001). The transition shown in
these experiments is preceded by the streamwise streaks instead of the viscous instabilities.
However, in the non-modal analysis, it is illustrated that the streamwise-uniform optimal
initial perturbations can lead to large transient growth in streamwise motions through
the lift-up mechanism (Ellingsen & Palm 1975; Landahl 1980).

In the unstratified plane Poiseuille flow, Butler & Farrell (1992) showed that the
three-dimensional initial disturbance gains the most energy over a finite time interval.
Reddy & Henningson (1993) also demonstrated that the maximal energy gain can achieve
O(Re2) at a time that is proportional to Re. The amplified perturbations can facilitate the
transition from laminar to turbulent flow (Butler & Farrell 1992; Reddy & Henningson
1993).

As the plane Poiseuille flow is one of the representative prototypes which is sensitive
to the initial conditions and the background disturbance, it is of fundamental interest to
study its linear stability in the presence of vertical stratification.

4.1.3 Effect of horizontal shear and vertical stratification

As discussed by Basak & Sarkar (2006), many observations and various situations
in the geophysical background, such as complex topography interacting with ocean cur-
rents, motivate the interest to study the stably stratified, horizontal shear flow. Dynamic
evolutions including the selection of vertical structures are described in the DNS study of
Basak & Sarkar (2006). Deloncle et al. (2007) showed that the Kelvin-Helmholtz insta-
bility is modified by the stratification. Subsequent works about the transient growth are
conducted by Arratia (2011).

According to the studies of Bakas & Farrell (2009a,b), horizontal shear flow can
excite internal gravity waves in the presence of a vertical stratification. They discussed
the spontaneous gravity wave generation and gave the analytic expressions for unbounded
constant shear in their works. Gravity waves are also found to be generated by large
transient growth in inviscid horizontal shear layers (Arratia et al. 2016).
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The previous works mainly focus on the unbounded shear flows, in the present study,
we examine the instability of plane Poiseuille flow bounded by two vertical walls in a
stably stratified fluid. The remainder of this chapter is organised as follows. In section
4.2, modal stability analysis is conducted on the stratified plane Poiseuille flow. We com-
pare the viscous mode and the gravity mode, and also analyse the resonance mechanism
for the gravity mode. In section 4.3, the non-modal stability analysis is performed, and
the transient growth is evaluated. In section 4.4, we discuss the stratification effects on
exponential and transient growth and draw some conclusion.

4.2 Modal stability analysis

We consider a horizontal channel flow in a vertically stratified fluid (see figure 2.1).
As derived in chapter 2, the governing equations of the disturbance fields for the base
flow are obtained by linearising the Navier-Stokes and the density equations under the
Boussinesq approximation. By solving the general eigenvalue problem (2.23), the complex
frequency ω can be obtained as a function of kx, kz, Re and F , namely ω(kx, kz,Re, F ).

Two kinds of exponential growing instabilities are found in the vertically stratified
plane Poiseuille flow. First, the viscous mode (TS wave) should be active. Second, a three-
dimensional mode associated with stratification is found to be unstable, even in the region
where Re < Re(v)

c . This mode is the “gravity mode”, as named in section 4.1.1.

4.2.1 Tollmien-Schlichting waves

The viscous instability associated with TS waves is active in a plane Poiseuille flow.
It corresponds to the unstable mode shown in figure 2.3. The instability in plane Poiseuille
flow has been known for a long time (e.g. Reid 1965). Those early studies are performed
in unstratified fluid (F = ∞), wherein the Squire’s theorem can draw the conclusion
that the two-dimensional (2D) disturbance is the most unstable mode. The 2D mode is
obtained for kz = 0 and thus has no variation in the direction of stratification (z-axis).
Although the 2D mode still exists in the fluid in the presence of stratification, it cannot
be guaranteed to be the most unstable one, because the Squire’s theorem is not applicable
in a stratified fluid.

In figure 4.1 and 4.2, the growth rate contours of TS waves are plotted for Re = 104

and different Froude numbers. The effect of stratification on the growth rate contours in
(kx, kz) plane is illustrated. The unstable domains associated with viscous instability are
also determined. Moreover, from figure 4.1(a-c), we can tell that the instability domain
shrinks as the stratification increases for a given Reynolds number in the limit of weak
stratification. As shown in figure 4.2(a-c), this trend continues in the strongly stratified
limit. However, there is a sudden expansion of the unstable domain between F = 2 and
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Figure 4.1 – Growth rate contours in (kx, kz) plane for Re = 104 and large and moderate
Froude numbers. (a) F = ∞ (unstratified) ; (b) F = 20 ; (c)F = 2. Contours are every
0.0004 from 0 to 0.0042. It should be noted that the kz intervals here are [0, 1].
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Figure 4.2 – Growth rate contours in (kx, kz) plane for Re = 104 and small Froude
numbers. (a) F = 0.2 ; (b) F = 0.1 ; (c)F = 0.01 ; Contours are every 0.0004 from 0 to
0.0042. It should be noted that the kz intervals here are [0, 10].
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Figure 4.3 – Viscous instability (TS waves). Characteristics of the most unstable TS
wave as a function of Re. (a) Growth rate Im(ω) ; (b) Oscillation frequency Re(ω) ; (c)
Wavenumber kx.
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F = 0.2. Indeed, it should be noted that the kz interval is [0, 1] for figure 4.1, but the kz
interval for figure 4.2 is [0, 10]. This indicates that the modes might be different with weak
and strong stratifications, except the 2D modes (kz = 0). The expansion of the unstable
domain from figure figure 4.1(c) to figure 4.2(a) will be explained below.

In figure 4.1 and 4.2, the most unstable viscous mode is independent of the Froude
number and stays at the same position (kx = 0.955, kz = 0) in the (kx, kz) plane. For other
Reynolds numbers and Froude numbers, the most unstable TS wave among all possible
wavenumbers remains two-dimensional (kz = 0) and independent of the stratification.
The characteristics of the most unstable TS waves are shown in figure 4.3 as functions of
the Reynolds number since they are free from the influence of Froude number.

In figure 4.3, the critical Reynolds number of TS waves in a plane Poiseuille flow is
found to be Re(v)

c ≈ 5772, and the characteristics of the critical TS wave are kx = 1.02,
ω = 0.269. These values are defined by the left-most tip of the lines in figure 4.3 and agree
with the ones found by Orszag (1971), who calculated the eigenvalues of Orr-Sommerfeld
stability equations. The maximal exponential growth rate of TS wave in plane Poiseuille
flow is achieved for a Reynolds number of Revm ≈ 4.75×104 and a streamwise wavenumber
kx = 0.7798 , the corresponding complex frequency is ω ≈ 0.1244+0.007689i. These values
may be compared to the ones found by Schmid & Henningson (2001), whose results
(on page 71) are not exactly the same but are very close : Re ≈ 46950, kx ≈ 0.782,
Im(ω) ≈ 0.007688.

The eigenfunctions of TS waves for the critical Reynolds number and the most dan-
gerous Reynolds number are presented in figure 4.4. The eigenfunctions of both modes are
very similar and the difference between them is the maximum absolute value of stream-
wise velocity. Normalised by the normal velocity at the centre v(0), the maximum absolute
value of streamwise velocity for the most dangerous Reynolds number are larger than the
one for the critical Reynolds number.

4.2.2 The gravity mode in the presence of stratification

In the unstratified plane Poiseuille flow (F = ∞), the critical Reynolds number is
Re(v)

c ≈ 5772. However, in the presence of stratification, the critical Reynolds number
is smaller. Examples of eigenvalue spectrum for Re = 5000 are shown in figure 4.5. Wi-
thout stratification, all the modes shown in figure 4.5(a) are stable (ωi < 0), because the
Reynolds number is below the critical one Re(v)

c . The spectrum in figure 4.5(a) can be com-
pared to the eigenvalues found previously by Butler & Farrell (1992), the Orr-Sommerfeld
modes are the same and the extra branch is the Squire mode. But with the effect of
stratification, there exists an unstable mode in figure 4.5(c) for F = 2, the corresponding
eigenvalue is ω = 0.6987 + 0.03906i. The eigenfunctions associated with this mode is pre-
sented in figure 4.6. The eigenvalues for the same wavenumbers (kx = 0.986, kz = 3.615)
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Figure 4.4 – Eigenfunctions of TS waves (left : streamwise velocity u ; middle : normal
velocity v ; right : pressure p) for the critical Reynolds number Re = Revc ≈ 5772 (top)
and the most dangerous Reynolds number Re = Revm ≈ 4.75× 104 (bottom). Thick solid
lines, thin solid lines and dashed lines represent absolute value, real part and imaginary
part, respectively. All eigenfunctions are normalized by v(0).
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Figure 4.5 – Eigenvalues of plane Poiseuille flow for Re = 5000. (a) F = ∞, kx =
1.48, kz = 0 ; (c) F = ∞, kx = 0.986, kz = 3.615 ; (c) F = 2, kx = 0.986, kz = 3.615. The
horizontal dashed line is Im(ω) = 0.
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in the unstratified case are displayed in figure 4.5(b), which is similar to what is shown
in figure 4.5(a). Therefore, the form of three groups are the result of stratification. The
appearance of three Y-shaped branches agrees with the analytic modes obtained by Bakas
& Farrell (2009b).

The eigenfunctions shown in figure 4.6 are different to those of the viscous mode
shown in figure 4.4. More variations of normal velocity are observed in figure 4.6(b).
The values close to the boundaries are raised compared to the structure in 4.4(b). The
eigenfunctions in figure 4.6 are inviscid in nature because similar structures are observed in
the inviscid case (Re =∞). The eigenfunctions in the inviscid case are illustrated in figure
4.7 for the same Froude number (F = 2) and wavenumbers (kx = 0.986, kz = 3.615). The
structures of normal velocity and pressure in figure 4.6(b,d) and figure 4.7(b,d) are very
similar. Critical layers where the intrinsic frequency approaches the buoyancy frequency
(at y = yc1, ωr−kxU0(yc1) = 1/F ) can be observed in figure 4.7(c,e). In the inviscid limit,
the eigenfunctions of transverse velocity and buoyancy are peaked at the critical layer
level. Although these critical layers are believed to be stabilising (Riedinger et al. 2010a),
their influence is not strong enough to stabilize the flow.

Another group of critical levels at y = yc2 where ωr−kxU0(yc2) = 0 are shown in figure
4.7(a,c). As discussed in the introduction, these critical levels forms the ‘quantization’
conditions. Similar to their roles in the over-reflection process, the critical levels and the
‘quantization’ zone make the mode become unstable.

This kind of instability results from a mechanism of resonance, as it will be explained
in details in Section 4.2.3.
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Figure 4.6 – Eigenfunctions associated with the unstable mode for the parameters Re =
5000, F = 2, kx = 0.986, kz = 3.615, ω = 0.6987 + 0.03906i. (a) streamwise velocity u ; (b)
normal velocity v ; (c) transverse velocity w ; (d) pressure p ; (e) buoyancy b ; Thick solid
lines, thin solid lines and dashed lines represent absolute value, real part and imaginary
part, respectively. All eigenfunctions are normalized by v(0).
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Figure 4.7 – Eigenfunctions associated with the unstable mode for the parameters Re =
∞, F = 2, kx = 0.986, kz = 3.615, ω = 0.6930 + 0.0391i. (a) streamwise velocity u ; (b)
normal velocity v ; (c) transverse velocity w ; (d) pressure p ; (e) buoyancy b ; Thick solid
lines, thin solid lines and dashed lines represent absolute value, real part and imaginary
part, respectively. All eigenfunctions are normalized by v(0). The dash-dotted lines in
(c,e) describe the critical levels, where ωr− kxU0(yc1) = 1/F . The vertical dashed lines in
(a,c) represent the critical levels ωr − kxU0(yc2) = 0.
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4.2.3 Resonance mechanism
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Figure 4.8 – Frequency ωr (a) and growth rate ωi (b) versus transverse wavenumber kz.
The streamwise wavenumber is kx = 1, and the other associated parameters are Re = 104,
F = 1.1. The thick solid lines are inviscid modes. The dashed lines and the dash-dotted
line are viscous modes.

Mode Transverse wavenumber kz Eigenvalue ω
1 0 ω1 = 0.2375 + 0.0037i
1′′ 8.873 ω1′′ = 0.7756 + 0.0471i
2 3.133 ω2 = 0.2204 + 0.0017i
2′ 8.873 ω2′ = 0.5273− 0.0088i
2′′ 14.56 ω2′′ = 0.6575 + 0.0085i
3 4.940 ω3 = 0.2035− 0.0036i
3′ 8.873 ω3′ = 0.3710− 0.0115i
3′′ 18.77 ω3′′ = 0.5967− 0.0172i

Table 4.1 – Corresponding parameters of the marked modes in figure 4.8. The common
parameters are Re = 104, F = 1.1, kx = 1.

In the stratified plane Poiseuille flow, two families of modes exist at the same time. In
figure 4.8, eigenvalues (ω) of the modes are traced by varying the transverse wavenumber
kz. Two series of frequency curves are shown in figure 4.8(a). The three branches, which
have an increasing behaviour with respect to kz, correspond to the inviscid modes men-
tioned in section 4.2.2, except Mode 1. The pressure eigenfunctions associated with these
modes are displayed in figure 4.9. The other series of curves represent the viscous modes.
Different branches correspond to the number of oscillations in the wall-normal direction.
For example, for Mode 1′′, 2′′ and 3′′, complexity of their spatial structures increases with
the label number, as shown in figure 4.9(b,e,h). Similar behaviour appears for Mode 1, 2,
3 in figure 4.9(a,c,f), half a wavelength for Mode 1, one wavelength for Mode 2, one and
a half wavelength for Mode 3. Resonance occurs at the crossing points of the frequency
curves. As correspondingly displayed in figure 4.8(b), the growth rate curves are peaked
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Figure 4.9 – Pressure eigenfunctions associated with the eigenvalues marked in figure
4.8. The common parameters are Re = 104, F = 1.1, kx = 1. (top) Branch 1 : Mode 1
and 1′′ ; (middle) Branch 2 : Mode 2, 2′ and 2′′ ; (bottom) Branch 3 : Mode 3, 3′ and 3′′.
Each eigenfunction is normalized by its maximum pm, which satisfies |pm| = max

−16z61
|p(z)|.

Thick solid lines, thin solid lines and dashed lines represent absolute value, real part and
imaginary part, respectively.
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eigenvalues marked as 1′′, 2′, 3′ are the inviscid modes marked in figure 4.8.

around each crossing point (Mode 1′′, 2, 2′′, 3, 3′′). This mechanism of resonance has been
discovered in several other context (e.g. Satomura 1981; Le Dizès & Riedinger 2010).

With the same transverse wavenumber kz = 8.873, two other modes (Mode 2′ and 3′)
are also marked to demonstrate the effect of resonance. As shown in figure 4.10, sharing
the same set of parameters (Re, F, kx, kz), the eigenvalues of mode (1′′, 2′, 3′) are quite
different, especially the imaginary parts (i.e. the growth rates). Increased by the resonance
phenomenon with the viscous modes, the growth rate of Mode 1′′ is greatly larger than
those of the other modes.

Table 4.1 classifies the corresponding parameters of these modes, including the specific
transverse wavenumbers kz and eigenvalues ω.

In figure 4.9, the shape of the eigenfunctions clearly explains the essential resonance
mechanism. The increasing complexity of the structures for Branch 1-3 comes form the
inviscid modes. The pressure structure of Mode 1 in figure 4.9(a) shows that it is a viscous
mode and the maximum absolute values is located at the boundaries. The maxima in
figure 4.9(c-e) are located at the centre part of the channel and this characteristic also
comes from the inviscid modes. In figure 4.9(c,e) the feature of the viscous mode is still
kept through the resonance process, especially in the regions close to the walls. Similar
behaviours of the pressure eigenfunctions can also be found in figure 4.9(f,h) as these
modes are also the results of resonance between viscous and inviscid modes.

The modes (Mode 2′ and 3′) without resonance phenomenon are away from the cros-
sing points of the frequency curves in figure 4.8(a). The shapes of pressure eigenfunctions
in figure 4.9(d,g) are similar to those of the modes on the same frequency branch (see
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figure 4.8(a)). The notable difference is the values at the boundaries. Without resonance
phenomenon, the absolute values at the boundaries in figure 4.9(d,g) are less than 0.5
when normalised by the maxima of the eigenfunction. However, in figure 4.9(c,e,f,h), the
corresponding values are more than 0.6 with the same normalisation. These facts also
indicate that the enhancement of the absolute values at boundaries in figure 4.9(c,e,f,h)
derives from the the viscous mode, because this feature is the same as the structures
shown in figure 4.9(a). Located on the same frequency branch, the structure of Mode 2′

is similar to Mode 2 and 2′′ (figure 4.9(middle)), and Mode 3′ is similar to Mode 3 and 3′′

(figure 4.9(bottom)).

In figure 4.10, the eigenvalues of Mode (1′′, 2′, 3′) are displayed in the same spectrum
with the help of their common parameters (Re, F, kx, kz). The resonance with the viscous
mode enhances the growth rate of Mode 1′′. In the spectrum, these three modes are located
on the same branch in figure 4.10, representing the same inviscid nature.

4.2.4 Instability contours in wavenumber plane
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Figure 4.11 – Growth rate contours in (kx, kz) plane for Re = 104 and different Froude
numbers. (a) F =∞ (unstratified) ; (b) F = 100 ; (c) F = 20. Contours are every 5×10−4

from 0 to 5× 10−3.

As for the boundary layer flow, Squire’s theorem does not apply for the plane Poi-
seuille flow in the presence of stratification. This is shown in figure 4.11. In that figure, the
unstable region inside the intervals 0.6 6 kx < 1.2 and 0 6 kz < 1 relates to the TS waves.
The most unstable viscous mode for this Reynolds number Re = 104 is : kx = 0.955, kz =
0, ω = 0.2221 + 0.0042i, which is independent of the Froude number. For a moderate
stratification (F = 20), the most unstable mode is the “gravity mode” in figure 4.11(c),
and the corresponding parameters are : kx = 0.1345, kz = 2.928, ω = 0.0948 + 0.0050i.
This 3D unstable mode is generated by the resonance mechanism discussed in section
4.2.3. The effects of stronger stratifications on the gravity modes are shown in figure 4.12.

In figure 4.12(a), four separate continuous regions represent unstable modes, including
the TS waves. Hence, there exist four different local peaks, and each of them stands for
the most unstable mode in each region. As the Froude number decreases, the first region
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Figure 4.12 – Growth rate contours in (kx, kz) plane for Re = 104 and different Froude
numbers. (a)F = 2 ; (b)F = 1.1 ; (c) F = 0.2, the same domain as figure 4.2(a). Contours
are every 0.005 from 0.001 to 0.053. The dashed line kx = 1 in (b) represents the cross-
section made by figure 4.8.
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Figure 4.13 – Contours of the growth rates in (Re, F ) plane. Contours are every 0.005
from 0.001 to 0.045.

(the left-most region with small streamwise wavenumbers 0.1 < kx < 0.7) merges with the
area of the TS waves (the region with the smallest transverse wavenumber 0 6 kz < 0.5).
The eigenfunctions related to the modes in these two areas are similar. In figure 4.12(b),
these two regions become connected for F = 1.1. Eventually, in a strongly stratified fluid
(F = 0.2), they merge into one continuous region with only one local peak, as shown in
figure 4.12(c). This phenomenon explains the sudden extension of the unstable domain
from figure 4.1(c) to figure 4.2(a) as the associated Froude numbers change from F = 2
to F = 0.2.

With stronger stratification effects, the growth rate of the most unstable mode in
figure 4.12(b) is larger than the one shown in figure 4.12(a). Mathematically, the imaginary
part of the corresponding eigenvalues grows as the Froude number decreases. However, in
a strongly stratified fluid (e.g. F = 0.2), the gravity modes become stable, but the viscous
modes can remain unstable in this case, and the most unstable one becomes 2D again.
For example, in figure 4.12(c) where Re = 104 and F = 0.2, only the region associated
with viscous instability remains unstable in the wavenumber plane.
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Depending on the change of Reynolds number and Froude number, the growth rates
of the most unstable mode in different cases are summarised in figure 4.13. The growth
rate contours are shown for the intervals 400 6 Re 6 5000 and 0.1 6 F 6 300 in (Re, F )
plane. The critical Froude number for Re = 5000 is F ≈ 0.259 and F ≈ 256, which
represent the extent from the strong stratification to the weak stratification. For a fixed
Reynolds number, an extremum is achieved around F ≈ 1, as shown in figure 4.13.

4.3 Non-modal stability analysis

To have a better understanding of the stability in a stratified Poiseuille flow, we
investigate the transient growth in this section. Depending on the equation (2.9), the
total energy of the perturbation is measured in the form of

E(t) =
∫ 1

−1

1
2

(
|u|2 + |v|2 + |w|2 + |b|

2

F 2

)
dy (4.1)

The total energy is defined as a sum of kinetic and potential energy.

By solving equation (2.19), the evolution and transient growth characteristics can be
obtained for an initial condition f(0), which can give rise to the total energy E(t) in the
process. The growth of the total energy is evaluated by the energy gain G(T ). For a finite
time interval (t ∈ [0, T ]), the optimal energy gain G(T ) is defined as equation (4.2)

G(T ) = max
∀f(0)6=0

[
E(T )
E(0)

]
. (4.2)

The optimal initial conditions (also called optimal perturbations) are the fastest growing
perturbations that achieves the maximal energy gain over a prescribed time T . Usually,
they are a linear combination of different eigenfunctions, whether the corresponding ei-
genmodes are stable or not.

4.3.1 Verification for unstratified fluid

Over finite time intervals, the behaviour of the plane Poiseuille flow is not primarily
influenced by the unstable modes we mentioned in section 4.2. The optimal response
approaches the dominant eigenfunctions when T →∞, hence the eigenvalue of the most
unstable mode can only determine the long-time optimal response. In a homogeneous
fluid, the short-time response is usually governed by the Orr mechanism (Orr 1907), lift-
up mechanism (Ellingsen & Palm 1975; Landahl 1980) and the combination of these two
mechanisms (Farrell & Ioannou 1993a; Arratia 2011). These three mechanisms can be
differentiated by the wavenumbers, kz = 0 for the Orr mechanism, kx = 0 for the lift-up
mechanism and kxkz 6= 0 for the combination. However, in the presence of stratification,
since we have demonstrated that 3D gravity modes are active in the plane Poiseuille flow,

68



it is necessary to quantify the effect of stratification and examine whether there are other
mechanisms in the transient growth process.

Lift-up mechanism (kx = 0)
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Figure 4.14 – Energy gain contours in (kx, kz) plane for Re = 5000, F =∞ and T = 379.
Contours are every 257 from 10 to 4895.

According to equation (4.2), the energy gain eventually becomes a function of va-
rious parameters through our derivation G(Re, F, kx, kz, T ). As illustrated in figure 4.14,
the energy gain are demonstrated in the wavenumber plane for fixed basic parameters
(Re, F, T ). The maximal energy gain Gm is defined as

Gm = max
∀kx,kz

G(kx, kz) (4.3)

In figure 4.14, the maximal energy gain Gm|T=379 = 4895 at (kx, kz) = (0, 2.04).
The lift-up mechanism dominates in this case as the maximum is located on the kz-axis.
The transient growth of perturbation energy is substantial even though the Reynolds
number (Re = 5000) is below the critical value. This result agrees with the result in the
previous works about 3D unstratified plane Poiseuille flow (Butler & Farrell 1992; Reddy
& Henningson 1993). Determined by the lift-up mechanism, the initial perturbations are
streamwise-uniform vortices (kx = 0) and the streamwise velocity u greatly grows as
time evolves. In the evolution process, the variation of v in the wall-normal direction (y-
axis) is believed to “lift-up” low-speed fluid parcels from the wall so that the streamwise
momentum is conserved (in the direction of x-axis).

Combination of Orr and lift-up mechanisms (kx, kz 6= 0)

Further results for a short time interval (T = 20) are illustrated in figure 4.15(a),
the maximal energy gain is Gm|T=20 = 510 at (kx, kz) = (0.90, 3.15). The position of the
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Figure 4.15 – Energy gain G for unstratified plane Poiseuille flow (Re = 5000, F =∞).
(a) Contours in (kx, kz) plane for T = 20. The contours are every 56 from 10 to 510. (b)
G(T ) at different wavenumbers. The associated wavenumbers are : (kx, kz) = (1.48, 0) for
the dashed line, (kx, kz) = (0, 7.3) for the dash-dotted line, and (kx, kz) = (1.48, 7.3) for
the solid line.

maximum in the wavenumber plane is away from both axes (kxkz 6= 0). The reason for
this energy gain is identified as the combination of Orr and lift-up mechanisms (Farrell
& Ioannou 1993a; Arratia 2011). Farrell & Ioannou (1993b) showed that it is universal in
shear flows, the wall-normal velocity v, raised by the Orr mechanism, can give rise to the
streamwise velocity u through the lift-up mechanism. The energy gain is maximised by
the combination process, especially for short time intervals.

The comparison between Orr and lift-up mechanisms is shown in figure 4.15(b). In
unstratified plane Poiseuille flow, the growth of spanwise-uniform perturbations is much
smaller than that of oblique and streamwise-uniform perturbations nearly for all times.
Three-dimensional perturbations grow faster over shorter time intervals than the two-
dimensional ones, meaning that the Orr mechanism is less efficient than the lift-up me-
chanism for transient grow in the three-dimensional shear flow. However, the growth of
oblique wave, which results from the combination of the two fundamental mechanisms,
dominates in the short time interval T ∈ [1, 18.5] in figure 4.15(b). Reddy & Henningson
(1993) also noted that this combination process is important because the transition to
turbulence usually occurs earlier than the time when Gm(T ) achieves its maximum (Hen-
ningson et al. 1993), and there are more nonlinear interactions for this kind of oblique
waves.

It should be noted that the kx interval in figure 4.14 is [0, 0.2], while kx ∈ [0, 5] in
figure 4.15. This may explain the long branch in the right part of figure 4.14, and this
branch is connected to the region associated with the TS wave. This region is revealed in
figure 4.15 due to the extension of kx interval. Approximately, the wavenumber intervals
for the region associated with viscous modes are kx ∈ [0, 2] and kz ∈ [0, 0.5], which is the
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Figure 4.16 – Structures of the optimal initial conditions for the parameters Re =
5000, F = ∞, kx = 0, kz = 2.044, t = 0, (terminal time T = 379). (a) streamwise
velocity u ; (b) normal velocity v ; (c) transverse velocity w ; (d) pressure p ; Thick solid
lines, thin solid lines and dashed lines represent absolute value, real part and imaginary
part, respectively. All variables are normalized by the total energy E0 at the initial time.

same region as the least stable eigenmodes.

The maximal energy gain results shown in figure 4.14 and 4.15 are consistent with the
values obtained by Butler & Farrell (1992). The spatial structures of the optimal initial
conditions are shown in figure 4.16, which is associated with the maximal energy gain
Gm in figure 4.14. Moreover, the corresponding optimal response at the terminal time
T = 379 are illustrated in figure 4.17.

As illustrated in figure 4.16, the optimal initial conditions contain very small stream-
wise velocity u when normalized by the initial total perturbation energy E0, while the
maximum absolute values of normal velocity v and transverse velocity w are of the same
order. The velocity field of the initial disturbances represents streamwise-uniform vortices.
However, at terminal time T = 379, the maximum absolute value of u is nearly 200 times
larger than v and w (see figure 4.17). The formation of the initial disturbances and large
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Figure 4.17 – Structures of the physical variables at terminal time for the parameters
Re = 5000, F =∞, kx = 0, kz = 2.044, T = 379. (a) streamwise velocity u ; (b) normal
velocity v ; (c) transverse velocity w ; (d) pressure p ; Thick solid lines, thin solid lines
and dashed lines represent absolute value, real part and imaginary part, respectively. All
variables are normalized by the total energy E0 at the initial time.

growth in the streamwise velocity agree with the characteristics expected for the lift-up
mechanism (Ellingsen & Palm 1975; Landahl 1980).

4.3.2 Eigenfunctions and optimal perturbations

The correlation between eigenvalues and the structure of physical perturbations are
verified in this part. Farrell (1988) showed that the unstable mode does not gain the
most perturbation energy and the initial conditions that grow fastest in the short-time
transient phase is a linear combination of different eigenfunctions. However, for long-
time evolutions in the fluid, the optimal spatial structures of the physical perturbations
should be determined by the dominant eigenmode and the adjoint of it. The ‘direct’ and
‘adjoint’ eigenfunctions set the optimal response at terminal time (t = T ) and the initial
disturbances at the start (t = 0), respectively.
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Figure 4.18 – Spectrum of the eigenvalues for the parameters Re = 5000, F = 20, kx =
0.1507, kz = 2.888. (a) ‘Direct’ spectrum, the eigenvalue marked in the small rectangle is
ω = 0.1079+0.0036i ; (b) ‘Adjoint’ spectrum, the eigenvalue marked in the small rectangle
is ωA = 0.1079−0.0036i. The most unstable ‘direct’ mode and the ‘adjoint’ mode marked
in rectangles are the modes that determine the structures of the perturbations at terminal
time and initial time.

The ‘direct’ spectrum of the eigenvalues for an exponentially unstable stratified fluid
(Re = 5000, F = 20) is illustrated in figure 4.18(a). The ‘adjoint’ eigenvalues are the
complex conjugate of the ‘direct’ ones, as seen in figure 4.18.

The most unstable mode in the direct spectrum determines the behaviour of the
fluid when T → ∞. When the time interval for the transient phase is long enough (e.g.
T=379 for this case), this phenomenon can also be verified by the physical structures of
the optimal response at the terminal time. The spatial structure of the most unstable
mode and of the optimal perturbation at final time T = 379 are shown in figure 4.19
and figure 4.20, respectively. As we have expected, there is little difference between the
spatial structures in these two figures. Similarly, the spatial structures of the most unstable
adjoint mode and of the initial optimal perturbations are shown in figure 4.21 and 4.22.
Again, we obtain a good agreement of these two structures.
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Figure 4.19 – Eigenfunctions associated with the unstable mode for the parameters
Re = 5000, F = 20, kx = 0.1507, kz = 2.888, ω = 0.1079 + 0.0036i. (a) streamwise
velocity u ; (b) normal velocity v ; (c) transverse velocity w ; (d) pressure p ; (e) buoyancy
b ; Thick solid lines, thin solid lines and dashed lines represent absolute value, real part
and imaginary part, respectively. All eigenfunctions are normalized by v(0).
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Figure 4.20 – Structures of the physical variables at terminal time, the associated pa-
rameters are Re = 5000, F = 20, kx = 0.1507, kz = 2.888, T = 379. (a) streamwise
velocity u ; (b) normal velocity v ; (c) transverse velocity w ; (d) pressure p ; (e) buoyancy
b/F 2 (the definitions of b for eigenvalues and optimal perturbations are slightly different,
see Chapter 2 for details). Thick solid lines, thin solid lines and dashed lines represent
absolute value, real part and imaginary part, respectively. All variables are normalized by
v(0).
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Figure 4.21 – Eigenfunctions associated with the adjoint mode for the parameters Re =
5000, F = 20, kx = 0.1507, kz = 2.888, ωA = 0.1079 − 0.0036i. (a) adjoint streamwise
velocity uA ; (b) adjoint normal velocity vA ; (c) adjoint transverse velocity wA ; (d) adjoint
pressure pA ; (e) adjoint buoyancy bA ; Thick solid lines, thin solid lines and dashed lines
represent absolute value, real part and imaginary part, respectively. All eigenfunctions
are normalized by vA(0).
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Figure 4.22 – Structures of the optimal perturbations at initial time, the associated para-
meters are Re = 5000, F = 20, kx = 0.1507, kz = 2.888, t = 0, (terminal time T = 379).
(a) streamwise velocity u ; (b) normal velocity v ; (c) transverse velocity w ; (d) pressure
p ; (e) buoyancy b/F 2 (the definitions of b for eigenvalues and optimal perturbations are
slightly different, see Chapter 2 for details). Thick solid lines, thin solid lines and dashed
lines represent absolute value, real part and imaginary part, respectively. All variables are
normalized by v(0).
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4.3.3 Velocity field of transient growth
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Figure 4.23 – Velocities of the optimal perturbations at initial time, the associated
parameters are Re = 5000, F = 20, kx = 0.1507, kz = 2.888, t = 0, (terminal time
T = 379). (a) Projections on the x − z plane (streamwise velocity u and transverse
velocity w on the plane y = 0.5) ; (b) Projections on the y − z plane (normal velocity
v and transverse velocity w on the plane x = 0) ; (c) Projections on the x − y plane
(streamwise velocity u and normal velocity v on the plane z = 0) ; (d) streamwise velocity
u contours on plane x = 0, |u|max = 0.1572. All velocities are normalized by v(0) at initial
time t = 0.

The velocity field of the optimal initial conditions is shown in figure 4.23 for the
perturbations of figure 4.22. We observe that the streamwise velocity u is quite small
compared to the velocities oriented in the other directions. Normalized by v(0)|t=0, the
contours of u in the (y − z) plane is shown in figure 4.23(d) and the maximum abso-
lute value is |u|max = 0.1572. Thus, the optimal perturbations correspond to the nearly
streamwise-uniform vortices, as shown in figure 4.23(b).

The structures of the corresponding optimal responses are illustrated in figure 4.24.
The streamwise velocity u becomes dominant in figure 4.24(a,c) and the vortices are
stretched in figure 4.24(b,d). The maximum absolute value in figure 4.24(d) is up to
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Figure 4.24 – Velocities of the optimal responses at terminal time (t = T ), the associated
parameters are Re = 5000, F = 20, kx = 0.1507, kz = 2.888, T = 379. (a) Projections on
the x−z plane (streamwise velocity u and transverse velocity w on the plane y = 0.5) ; (b)
Projections on the y − z plane (normal velocity v and transverse velocity w on the plane
x = 0) ; (c) Projections on the x− y plane (streamwise velocity u and normal velocity v
on the plane z = 0) ; (d) streamwise velocity u contours on plane x = 0, |u|max = 138.7,
G = 5524. All velocities are normalized by v(0) at initial time t = 0.

|u|max = 138.7, which is approximately 882 times larger than the value at t = 0. The
large growth in u could therefore correspond to the formulation of streamwise streaks.

As demonstrated by figure 4.19-4.22, the physical structures of the optimal initial
conditions and responses for the long time interval (T = 379) are determined by the
adjoint and direct eigenmode. However, the characteristics of the evolution in time present
a behaviour that resembles the lift-up mechanism. Although Ellingsen & Palm (1975)
and Landahl (1980) described the optimal initial conditions for the lift-up mechanism as
streamwise-uniform vortices, in the presence of stratification, the streamwise wavenumber
for the perturbations in figure 4.23 and 4.24 is non-zero (kx = 0.1507). The features of
the most unstable mode is similar to that of the lift-up mechanism : nearly streamwise
vortices and the greatly amplified velocity u. In the following parts, we have shown that,
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in the presence of stratification, the eigenmodes play an important role in the transient
growth process, even if the time interval is finite.

4.3.4 Stratification effects on transient growth
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Figure 4.25 – Contours in (kx, kz) plane for Re = 5000 and F = 20. (a) Energy gain
G(T ) at T = 379. Contours are every 615 from 1 to 5524. (b) Growth rate ωi. Contours
are every 5× 10−4 from 0 to 3.6× 10−3.

In this section, we focus on a region where viscous modes are stable (Re 6 5000) in
order to highlight the effect of the stratification which causes unstable gravity modes. We
know that as T → ∞, the transient growth analysis is equivalent to a modal analysis.
For a finite time interval T = 379, there are differences between the results of modal and
non-modal analysis, which are qualified in figure 4.25. The transient growth is thought to
approach the exponentially unstable mode as T →∞, but in the presence of stratification,
the unstable modes are shown to be important at finite times much earlier than those
expected in the unstratified fluid.

The effect of the stratification on the energy gain can also be analysed by comparing
figure 4.25(a) and 4.14. The comparison shows that the energy gain in stratified flow is
slightly larger than that in the unstratified case for the same Reynolds number and time
interval (Re = 5000, T = 379). The maximum in figure 4.25(a) is located at (kx, kz) =
(0.1507, 2.9565) and Gm = 5524. On the other side, in figure 4.25(b), the eigenvalue with
the largest growth rate is ω = 0.1091 + 0.0036i and the corresponding wavenumbers are
(kx, kz) = (0.1526, 2.848). This set of wavenumbers is very close to that of the maximum
energy gain Gm in the (kx, kz) plane, meaning that Gm is mainly determined by the
most unstable mode. The other local peaks in figure 4.25(a) with non-zero streamwise
wavenumbers are also believed to result from an unstable eigenmode visible in figure
4.25(b).
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Figure 4.26 – Contours in (kx, kz) plane for Re = 5000 and F = 4. (a) Energy gain G(T )
at T = 25. Contours are every 10 from 10 to 180. (b) Growth rate ωi. Contours are every
2.5× 10−3 from 0 to 2.5× 10−2.
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Figure 4.27 – Contours in (kx, kz) plane for Re = 5000 and F = 2. (a) Energy gain G(T )
at T = 25. Contours are every 10 from 10 to 167.5. (b) Growth rate ωi. Contours are
every 4× 10−3 from 0 to 4× 10−2.
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Figure 4.28 – Energy gain G(T ) for Re = 5000, kx = 0, kz = 2.04 and various Froude
numbers (from up to down F =∞, 100, 20, 10).

If the time interval is short, the influence of unstable modes is less visible so that the
energy gain at kx = 0 can become the maximum, as in the unstratified case. This case is
illustrated in figure 4.26(a) for F = 4. The maximal energy gain is Gm = 179.7, and the
wavenumbers that maximize the energy gain are (kx, kz) = (0, 7.304). This energy gain is
due to the lift-up mechanism. The second highest peak of energy gain in figure 4.26(a) gives
G = 167.3 at (kx, kz) = (0.8133, 2.921). It results from the influence of unstable gravity
modes. This influence can be proved by the comparison to growth rate contours for the
same basic parameters, which are illustrated in figure 4.26(b). The maximum growth rate
is ωi = 0.0256 at (kx, kz) = (0.5924, 3.007). The comparison displayed in figure 4.26(a,b)
suggests that, for short time intervals (e.g. T = 25), the lift-up mechanism can dominate
the influence of unstable modes, but the transient growth of unstable modes have already
become essential.

The influence of unstable modes becomes more obvious with stronger stratification
(e.g. F = 2). As illustrated in figure 4.27(a), the maximal energy gain, Gm = 167.5 at
(kx, kz) = (1.084, 3.351), corresponds to the largest growth rate ωi = 0.0391i at (kx, kz) =
(0.974, 3.74) in figure 4.27(b). The second highest peak of the energy gain in figure 4.27(a)
is Gm = 82.6 at (kx, kz) = (0, 7.648). It is located on the kx-axis, as for the lift-up
mechanism, and in the same region of spanwise/transverse wavenumbers (kz) as figure
4.26(a). However, the gain is weaker than the one in the previous two cases (F =∞ and
F = 4), meaning that the stratification has a stabilising effect on the lift-up mechanism.

This stabilising effect is clearly seen in figure 4.28. The maximum of the energy gain
is achieved earlier as the stratification becomes stronger, while the value of the maximal
energy gain becomes smaller. Stratification hinders vertical displacement. It is thus quite
intuitive that it will not favour the formulation of the streamwise vortices involved in the
lift-up mechanism.

Compared to the unstratified case (figure 4.15), the combination of Orr and weakened
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Figure 4.29 – Energy gain G for strongly stratified plane Poiseuille flow, the associated
parameters are Re = 5000, F = 0.259. (a) Contours in (kx, kz) plane with T = 50.
Contours are every 1.55 from 5 to 19. (b) Comparison of G(T ) for two different sets of
wavenumbers. (kx, kz) = (1.075, 0) for the solid line, and (kx, kz) = (2.586, 15.75) for the
dashed line.

lift-up mechanism is not strong enough to be dominant (see figure 4.26 and 4.27). However,
in the region of non-zero wavenumbers (kxkz 6= 0), the combination is amplified by the 3D
gravity mode (relative to the other regions). Therefore, in figure 4.26 and 4.27, another
peak appears in the contours of G in the (kx, kz) plane. This peak becomes more important
as the stratification becomes stronger.

The transient growth for a strongly stratified Poiseuille flow without unstable eigen-
values are also examined. The energy gain contours for Re = 5000 and F = 0.259 are
shown in figure 4.29(a).

There are three separate regions and each contains a local peak. These regions can
mainly be associated with eigenvalues. The eigenvalues of TS waves mainly contribute
to the left-most part. The other two parts are the results of 3D gravity modes in the
presence of stratification. We also compared the energy growth of 2D (kz = 0) and 3D
(kxkz 6= 0) perturbations as functions of T in figure 4.29(b). The 2D transient growth
reaches its maximum earlier, but the growth of the 3D perturbations becomes larger for a
short period (T ∈ [23, 50]). The steep peak demonstrated by the curve of 2D perturbations
can be explained by the deformation process of the Orr mechanism. When the spanwise-
uniform vortices are sheared into the downstream direction, the energy gain G reaches
its maximum at the time when the vortices are in the cross-stream direction, and soon
decreases after that moment.

The energy gains G for various Froude numbers are represented as functions of trans-
verse wavenumber kz in figure 4.30(a). The unchanged values G(kz = 0) = 45.7 shows that
the transient growth of the two-dimensional disturbances (kz = 0) are independent of the
vertical stratification. The Orr mechanism is also proved to be unaffected. However, the
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Figure 4.30 – Energy gain G as a function of spanwise wavenumber kz and the self-
similarity in strongly stratified flow. (a) Energy gain for various Froude numbers (from
up to down F = ∞, 20, 2, 0.2). The markers ‘�’ represent F = 0.1. (b)The corrected
mean growth rate σc. The solid, dash-dotted, dashed lines represent F = 0.05, 0.1, 0.2
respectively. The associated parameters are Re = 5000, kx = 1.48, T = 14.1

energy gains associated with non-zero transverse wavenumbers (kxkz 6= 0) are reduced as
the Froude number decreases. As this transient growth is associated with a combination
of Orr and lift-up mechanisms, the reduction in G can thus be explained by the weakening
of the lift-up mechanism.

In the limit of strong stratification (F → 0), Billant & Chomaz (2001) demonstrated
the self-similarity of strongly stratified inviscid flows. Accounting for the viscosity, Arratia
(2011) showed that the self-similar form is

σm (kx, kz, T,Re, F ) ≈ σc (kx, Fkz, T )− k2
z

Re (4.4)

where σm is the mean growth rate defined by

σm = lnG
2T . (4.5)

The equation (4.4) is the corrected form of the self-similarity found by Deloncle et al.
(2007) and Arratia (2011) for the inviscid flows in the presence of strong stratification
(F � 1). The corrected mean growth rate σc is shown as a function of Fkz in figure
4.30(b). We can see that the curves of F = 0.05, 0.1, 0.2 are close to each other.

To illustrate the effect of viscosity, we examined some highly viscous cases. As we have
shown above, the associated eigenvalues highly influence the contours of the energy gain,
and there is a ‘valley’ shown by the growth rate contours in figure 4.13. The parameters
Re = 686.6 and F = 5.969 form an interesting case as it corresponds to a point in
this ‘valley’. The energy gain contours for this case are illustrated in figure 4.31(a). Only
one peak appears at the line kx = 0 and the maximal energy gain is Gm = 40.94, the
associated wavenumbers are (kx, kz) = (0, 3.05). The energy gain contours in figure 4.31(a)
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Figure 4.31 – Energy gain G for different Reynolds numbers with F = 5.969. (a)Energy
gain contours in (kx, kz) plane for Re = 686.6 at time T = 25. Contours are every 4
from 5 to 41. (b)Energy gain for different Reynolds numbers (from up to down Re =
5000, 3000, 1000, 686.6, 500) at constant F . The associated wavenumbers are (kx, kz) =
(0, 3.05).

shows that the total perturbation energy grows via the lift-up mechanism. The effect of
viscosity is shown in figure 4.31(b). As Re grows, the maximal energy gain increases and
so does the terminal time for the maximum growth. Although Biau & Bottaro (2004) and
Jerome et al. (2012) showed that the maximum energy gain in the plane Poiseuille flow
is proportional to Re2 and the corresponding time increases as Re under both stable and
unstable temperature gradient, the scaling law presented by Gustavsson (1991), Butler
& Farrell (1992) and Reddy & Henningson (1993) is for the global maximum Gglobal =
max
∀kx,kz ,T

G in unstratified fluid. The growth displayed in figure 4.31(b) is not optimised over
all wavenumbers, and only the tendency of the scaling law is kept by the curves of G(T ).

4.4 Discussion

In this chapter, we have performed a modal and non-modal analysis of a plane Poi-
seuille flow with stable stratification in the vertical direction. In the modal analysis, we
have shown that in the presence of stratification, the plane Poiseuille flow is unstable to
two-dimensional viscous instability and three-dimensional instability. The generation of
the three-dimensional instability derives from the resonance of inviscid modes and vis-
cous modes. The resonance mechanism is similar to that involved in the strato-rotational
instability (Le Dizès & Riedinger 2010). The three-dimensional instability is shown to
exist in the region 480 6 Re 6 5000, which is a subcritical interval for the viscous in-
stability. The largest growth rate (ωi ≈ 0.05) appears around F = 1 for large Reynolds
numbers (Re = 5000). The unstable interval of the Froude number is 0.27 6 F 6 258 for
Re = 5000.
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Figure 4.32 – Description of the optimal perturbations in the (Re, F ) plane for a short
time interval T = 25 (a) and a long time interval T = 379 (b). Three regions are identified
according to the wavenumbers kx = 0, kz = 0, kxkz 6= 0. The regions are delimited by
dashed lines. The solid line delimits the region with sufficiently large growth (typically
G(T ) > 100). The region in grey is the unstable region predicted by the modal analysis.
Markers : ‘N’ represents ‘No significant energy growth’. The symbols ‘◦’, ‘4’, ‘�’ and ‘∗’
correspond to the verified cases in different regions.

The non-modal analysis has been performed using the conventional ‘Direct-Adjoint-
Loop’ method (Schmid 2007). We have described the effects of stratification on the tran-
sient growth and on the selection of optimal initial perturbations. The unstable eigen-
modes we found in the modal analysis have been shown to have a significant influence on
the transient growth. The optimal perturbations for the unstratified flows presented in this
chapter agree with results obtained by Butler & Farrell (1992) and Reddy & Henningson
(1993). The three fundamental mechanisms discussed in these papers have been examined
in the presence of stratification. For short time intervals, the Orr mechanism (Orr 1907),
which leads to the growth of spanwise-uniform vortices through the action of the Reynolds
stress, is not affected by the stable stratification in the vertical direction. The expression
of equation (2.10) also explains this fact. The lift-up mechanism (Ellingsen & Palm 1975;
Landahl 1980) that leads to substantial growth of streamwise velocity perturbations and
the formulation of streamwise-uniform vortices is weakened by the stable stratification.
The combination of these two mechanisms (Farrell & Ioannou 1993a; Arratia et al. 2013),
which leads to the growth of tilted roll vortices, is amplified by the 3D unstable modes
(the ‘gravity mode’) in the presence of stratification. For long time intervals, the transient
growth is mainly dominated by the most unstable eigenmodes.

The results of transient growth are consistent with what we have demonstrated in
equation (2.10). Viscosity and stratification dissipate the perturbation energy. The contri-
butor to the growth of the total energy is related to the Reynolds stress, and the energy is
extracted from the mean shear, which is also universal in inviscid and unstratified fluids
(Butler & Farrell 1992).
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Figure 4.32(a) T = 25
Marker Re F G(kx, kz) Region
© 5000 4 G(0, 7.2) = 179.6 kx = 0

�
7000 0.2 G(1.0, 6.3) = 43.0

kxkz 6= 05000 300 G(0.7, 2.9) = 699.5

4

5000 0.1 G(1.1, 0) = 26.1

No significant energy growth5000 0.26 G(1.0, 6.8) = 30.9
1000 10 G(0.4, 2.9) = 96.7
686.6 6 G(0, 3.0) = 40.9

Figure 4.32(b) T = 379
Marker Re F G(kx, kz) Region

© 5000 300 G(0,2.1)=4568
kx = 07000 300 G(0, 2.3) = 8412

∗ 7000 0.2 G(1.0, 0) = 86.6 kz = 0
� 5000 20 G(0.2, 3.0) = 5523 kxkz 6= 0

4 5000 0.2 Gm < 1 No significant energy growth686.6 6.65 Gm < 10

Table 4.2 – Positions of the markers in figure 4.32

The different regimes for the optimal perturbation are summarised in figure 4.32. The
corresponding parameters and values are presented in table 4.2. Note that for short time
intervals (e.g. T = 25), the transient growth is O(10− 100) in strongly stratified flows or
highly viscous flows, even if they are expected to be exponentially stable. The reasons for
the growth are the three-dimensional eigenmode (kxkz 6= 0) or lift-up mechanism (kx = 0).
Since the result is not optimised over all the terminal time, the global maximum growth
could be larger than the values we have shown.

As demonstrated in figure 4.32, the optimal initial disturbances in most regions are
tilted roll vortices (kxkz 6= 0). The nonlinear effects on these perturbations are expected
to be richer (Reddy & Henningson 1993) than those on the streamwise-uniform perturba-
tions. Moreover, nonlinear effects can be destabilizing and provides even larger energy gain
(Schmid 2007; Luchini & Bottaro 2014). It is therefore possible that a faster transition to
a strongly nonlinear regime is reached in the the presence of stratification.
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Chapitre 5

Conclusion and perspective

Stratification effects have been analysed in the context of boundary layer and channel
flows.

In chapter 3, we have examined the stability of a stratified, viscous boundary layer
using modal analysis. Various aspects of the instability have been analysed as functions
of the Reynolds number and the Froude number. We have shown that there are two
kinds of instabilities. The first one is the classical viscous instability and the second is the
radiative instability, which is inviscid in nature and closely related to the stratification.
For the Froude number interval 0.5 < F < 5.3, the radiative instability is the first to
appear as the Reynolds number increases. It starts to appear at Re > Re(r)

c ≈ 1995
for F ≈ 1.5. For large Reynolds numbers, the radiative instability dominates in a large
Froude number interval. For example, it is more unstable than the viscous instability
in the interval 0.03 < F < 30 for Re = 106. On the other side, the most unstable
viscous instability remains two-dimensional in the presence of stratification. The critical
Reynolds number for the viscous mode is Re > Re(v)

c ≈ 3980. Non-dimensionalised by the
main mean velocity U and boundary layer thickness L, the oscillation frequency of the
radiative modes is close to 1. The region covered by the most unstable mode can be as
large as several times the boundary thickness. We have also shown that the growth rate
of the radiative instability scales as ReF 2 in the parameter domain (large Re and small
F ) where the growth rate is the largest.

Applied to some practical examples, we believe that this instability could be present
in experimental facilities and geophysical flows like ocean and atmosphere. However,as
long as this instability has not been evidenced in the atmosphere and ocean, the impact
of radiative instability remains unclear. Whether it contributes to the local mixing or the
mixing far away from the boundary layer are interesting topics for further studies. The
knowledge of nonlinear evolution of the radiative instability is also required to answer
these questions and thus can become the subject of future works.

In chapter 4, we have performed modal and non-modal stability analysis of a stratified
plane Poiseuille flow. A new exponential growing instability is obtained through modal
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analysis, which behaves similarly to the radiative instability found in stratified boundary
layers. The three-dimensional instability, which is referred to as the gravity mode in the
present study, can be viewed as a version of the radiative instability in the finite domain or
another version of strato-rotational instability in a parallel shear system. In the Reynolds
number range that we have considered (Re 6 104), this gravity mode turns out to be
the result of a resonance between an inviscid mode and a viscous mode. The critical
Reynolds number can be as small as Re(p)

c ≈ 494 for F ≈ 2.5. The classical viscous
instability preserves its property by remaining two-dimensional and thus independent of
F . For Re = 5000, the viscous mode is stable whereas the gravity mode is unstable in a
large Froude number interval 0.27 6 F 6 258. The plane Poiseuille flow which is stable
to viscous instability can then become exponentially unstable in the presence of a very
weak stratification.

In Chapter 3 and 4, we have demonstrated that in the presence of stratification,
stratified flows are more likely to become unstable because of the 3D radiative instability
and the gravity modes. A resonance mechanism between the inviscid modes and viscous
modes is demonstrated to be a source of modal instability. However, in terms of transient
growth, the stably stratified flows are less sensitive. On the other side, the link between the
eigenvalues and transient growth is strengthened by the stratification. The fundamental
mechanisms of transient growth can also help to describe the growth of unstable mode in
finite time intervals.

In the presence of stratification, the largest energy gain is associated with non-zero
wavenumbers (kxkz 6= 0) for most cases in the (Re, F ) plane. In exponentially stable flows
with small Reynolds number or small Froude number, the transient growth can still reach
O(10 − 100) for short time intervals (e.g. T = 25). The global maximum can be larger
thus possibly exciting the nonlinear effects and transition to turbulence.

The nonlinear evolutions of the optimal perturbations can be interesting because the
related nonlinear effects of these tilted roll vortices (kxkz 6= 0) are rich (Reddy & Henning-
son 1993). Experimental research are needed about the transient growth in stratified fluid
in order to verify these effects. The influence of the transient growth with stratification is
also an interesting topic for geophysical flows like oceans and the atmosphere.

As only the result of the modal analysis is provided in Chapter 3, one potential
extension is the non-modal analysis of stratified boundary layer flows. The mathematical
framework to search for the optimal perturbations is the same. However, as we discussed in
Chapter 2, the standard pseudo-spectral method cannot precisely capture the eigenmodes,
further treatment on the spatial discretization operator is required. One possible solution
is to extend the method of the complex path, which is the method we have used for
the modal analysis. A potential difficulty in this solution is the influence of meaningless
numerical eigenmodes, which is a common problem encountered when using the spectral
method. Another possible solution is to apply a numerical non-reflection boundary layer
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conditions. This solution may provide a clean spectrum of the eigenmodes and avoid the
weakness of pseudo-spectral method.

Another interesting topic is the Direct Numerical Simulation (DNS). The effects
of non-linear terms can indeed be considered by DNS. Based on our primary result of
oscillation frequencies and wavenumbers in Chapter 3 and 4, small time steps and fine
meshes are required for the simulation. These simulations would contribute to a better
understanding of the stability in a stratified fluid.

Although the transient growth is optimised mathematically, background or white
noise may select different structures. The perturbations which grow robustly rather than
optimally may become dominant in the experiment, as suggested by Butler & Farrell
(1992) for the unstratified cases. Experiments about stratified flows can experience same
problems, but the transient growth result can give fundamental evaluations and sugges-
tions for these studies.

In the field of geophysical flows, our results can help to explain the generation of
instabilities and turbulence mixing in stably stratified fluids, especially in the context
of complicated geometry. Internal gravity waves can be produced due to the radiative
instability, which can exhibit far away from the boundary layers on the cliffs. The transient
growth analysis can also be regarded as a preliminary study about the stabilities of realistic
stratified flows in nature.
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