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Université Nice-Sophia Antipolis
Parc Valrose
06108 Nice CEDEX 2



”What I cannot create,
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General Introduction and Executive Sum-

mary

Wave transport is all around us. When you switch on your portable phone and it
starts communicating with the basis antennas, when you are walking around in your
flat to find the best place to establish a stable Wi-Fi-connection or when you are in
the middle of a concert and sound speakers amplify the singer’s voice.

All these wave based communication systems face more or less the same issues.
How can one make these systems more efficient in terms of energy consumption and
more secure in the case of Wi-Fi or mobile networks? Can we find a way to filter
the transmitted signal so that we get only those components in which we are really
interested?

Normally these communication systems such as the ones described above consist
of three parts. An emitter (speakers, antennas, lasers, etc.) from where the wave
signal is sent, a transporting medium (air, dielectrics, optical fibres, etc.) in which
the wave can propagate so that it reaches the final part which is the receiver (ear,
mobile phone, photo diode, etc.). A standard procedure to improve such systems is
to try to improve one of these three components. One could develop, for example,
new lasers needing less power to generate a cleaner and more powerful output or
new optical materials featuring less loss. This is not what I am going to do in this
work. I will not try to improve single components.

My aim is to find solutions for the mentioned issues using already available
state of the art microwave technology. In principle all the mentioned wave based
communication systems are in many ways similar, meaning that this restriction to
microwaves is not a real one. The underlying physical principles of these different
wave systems are very strongly related. One main difference is that they work on dif-
ferent scales. Optics is typically working on a nm-scale, whereas microwaves operate
on a cm-scale. Thus, studying transport phenomena (or wave based communication)
with microwaves is yet a clever approach. As already mentioned microwave systems
feature cm-scaling. This scale is easily accessible by humans as we are capable of
modifying objects within a precision of mm or µm, which takes us much less effort
than manipulating things on nm-scale or a m-scale. This means that we can easily
achieve a sub-wavelength precision giving us a very good control over the systems
we are looking at.

The question remains: how do we address the raised issues of security and ef-
ficiency? The idea we have to answer this question is by shaping the emission of
the signal on the emitter side in such a way that the transport of the wave through
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General Introduction and Executive Summary

the system follows an atypical behaviour. This is to say a behaviour like following
the path of a classical particle, avoiding pre-selected regions or focussing on chosen
spots. To do that one needs to deduce certain properties from the transporting
medium first before being able to shape the emission in the right way. In this case
we like to restrict ourselves exclusively to the investigation of the information we
can obtain directly at the points where the signal is emitted and received. It is
evident that if one wants to shape the emitted signal one needs certain controllable
degrees of freedom, i.e., parameters which allow us to tune the emitted signal. These
parameters can be represented on the one hand by multiple frequencies which are
mixed together and sent from a single antenna (spectral wave shaping). On the
other hand one can use multiple input antennas at a fixed frequency (spatial wave
shaping), where one tunes each antenna signal individually. Having the possibility
to introduce multiple sources is one thing. The other more important thing is to
have the necessary control about each source and with control I refer here to the
control of the amplitude, the phase and the frequency of the emitted signal. Such
devices which offer such control are nowadays commercially available. For example,
you can find them in optics as spatial light modulators (SLM, narrowband) or as
IQ-modulator for microwaves (broadband).

We demonstrate that measuring the transport between a single/multiple input
antenna/s and the output as a function of a parameter (frequency, position change of
one obstacle/receiver) contains the necessary information to address the mentioned
issues. More information about the scattering medium is not necessary. We do
not need to know where obstacles are positioned, for example. We show that once
we have done this basis measurement we are able to avoid certain regions, i.e., we
can avoid possible intruders into our system which makes the communication more
secure. We can even focus a signal onto a certain spot/receiver so we do not have to
waste energy by sending a transmission signal in every possible direction in order to
look out for possible receivers. With this we addressed two of the three mentioned
points above; security and efficiency. The chapters in which we work on this idea
are chapters 4, 5, 6 and 8.

The approach to build an effective filter follows a slightly different idea. To realise
this we make use of the phenomena which arises when one approaches a so called
exceptional point during the transport through the system. The shaping of the wave
in this case is done by spatial modification of the scattering system itself, i.e., we have
to shape the wave by manipulating the boundaries and the inside of the scattering
system. This special shaped waveguide still consists of standard material (aluminium
plus absorbing microwave material) but it will feature an effective filtering property.
It is effective in the sense that it does not simply suppress the unwanted component.
Instead it transforms the unwanted component into the favoured one (we are working
with two components in the system). This other form of wave shaping is discussed
in chapter 7.

4



Chapter 3: Introduction to Transport with Microwaves

In this chapter I lay down basic fundamentals to understand our microwave ex-
periments. I introduce the two types of experiments which are studied throughout
this thesis: Rectangular waveguides and open cavities. Once we have understood
how the electromagnetic field behaves in such a system and how it can be described
with the help of the Helmholtz equation, I relate this propagation of waves to a
scattering problem described by a scattering matrix S. I lay down the connection
between S and the Green function of the system which incorporates the solution of
the Helmholtz equation. I present the fact that performing a measurement can be
seen as an opening of the system so that the observed solution is modified from the
solution one would obtain if the system was fully closed.

Chapter 4: Quantum Search

I apply the method of spectral wave shaping in order to focus a signal onto a specific
target. Focusing energy onto a certain point with an unknown position can be
understood as a search. The word ’quantum’ comes into play as such searches are
performed in systems like the tight-binding one [Wal47,Sla54] which is known from
solid state physics. As this is the original name for this kind of search [Gro97,
Amb04,Por13] it is used throughout this work although the underlying mechanism
is a pure wave phenomenon [Gro02].

First I discuss in detail how the used open microwave cavity containing dielectric
resonators is able to mimic a tight-binding system [Bar13, Bel13a, Bel13b, Bel14,
Pol15, Vig16]. Then I give a brief introduction to quantum search with the focus
on two dimensional continuous quantum search [Chi04, Hei09, Fou14]. I derive the
necessity to perform the quantum search on graphene-like lattices (as it features
a Dirac point [Cas09]). Performing the search on this kind of lattices makes the
search significantly faster (search time ∝ O(

√
N lnN) [Fou14]) than the classical

search (search time ∝ N).

We start our experimental observation with a linear chain of resonators and an
additional search resonator studying the search time as a function of the number
of used resonators. We demonstrate how a search for different sites can be realised
using the chain arrangement of discs and two different search sites. Then we deepen
the insights on graphene-lattices and implement a quantum search on this kind of
lattices where we perform the search to identify two different items [Böh15].

Chapter 5: The Q-Operator

To understand how the delay time of scattering states is encoded in the systems
scattering matrix one has to look at the Wigner-Smith time delay matrix/operator

5
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[Eis48, Boh51, Wig55, Smi60]. We modify this operator by replacing the scattering
matrix S by the transmission matrix T and replacing energy by an arbitrary variable
α. This modified operator is called q-operator [Amb12,Bra16,Gir16].

We see in an alternative derivation why the q-operator has its specific form.
Furthermore we look at the way to calculate its eigenvalues and we discuss their
physical interpretation. The eigenvectors of the q-operator allow us then to define
our input so that we can create scattering states which avoid or focus on regions or
which form highly collimated beams on classical trajectories, so called particle-like
scattering states.

Chapter 6: Wave Front Shaping

The basic idea behind wave front shaping is to manipulate the input in such a way
that the desired output features are significantly improved. This output tuning can
be done by iteratively changing the input and observing the output as it is, for ex-
ample, done in optics [Vel07, Mos12, His13, Nix13, Cha14, Ami16] ,in the microwave
field [Kai14,Dup15] or in biomedicine [Hor15]. Using this kind of output optimiza-
tion people could achieve very interesting results, such as focusing light through
opaque media [Vel07,Vel08], transmitting images through opaque media [Pop10] or
focusing/defocusing microwaves in cavities [Kai14,Dup15].

Our set-up is a rectangular microwave waveguide excited by an array of 10 anten-
nas where each antenna can be addressed with an individual amplitude and phase
using IQ-modulators. We characterise the used IQ-modulators performing test mea-
surements. We start performing wave front shaping experiments by tuning specific
sinusoidal modes at the output of the empty waveguide. In a second step we intro-
duce scatterers and redo the mode tuning at the output verifying the functionality
of our set-up [Böh16].

Since all these tests are successful, we move on and set up the q-operator where
the parameter α is the position of a metallic scatterer introduced in the cavity.
Three different transmission matrix measurements for three different positions of
the metallic scatterer (slight movements in the transversal direction) are enough
to create scattering states (eigenstates of the q-operator) which focus on or avoid
the region occupied by the metallic scatterer. These states stay almost unchanged
whether the metallic scatterer is present or not. By looking on the eigenvalue of
the corresponding focussing eigenstates we can impress a certain direction on the
scattering state which refers to the main focussing direction. Since we have a very
good control on our input we can even think of developing a so called coherent
perfect absorber [Cho10b,Gma10,Wan11].

6



Chapter 7: Dynamical Encircling of an Exceptional Point

In this chapter we build an asymmetric mode filter/switch based on non-adiabatic
transition effects which occur while dynamically encircling an exceptional point
(EP). We look into the description of exceptional points and their occurrence in
a 2×2 non-Hermitian Hamiltonian [Rot09, Moi11, Hei12]. Exceptional points are
of current interest as they show atypical phenomena such as state flips, for exam-
ple [Uzd11,Mil15,Gao15,Xu16,Din16]. We analyse this phenomenon in the context
of parametric encircling theoretically [Kec03,Dem04,Mai05] and experimentally by
looking at already existing experimental realisations [Dem01, Dem04, Ste04, Lee09,
Cho10a].

To introduce non-adiabatic transitions we study the dynamical encircling of an
EP. We translate the dynamical encircling into the realm of wave guide experiments
where we realise a wavy waveguide (based on [Dop16b]) which is shaped in space
in such a way that the incorporated Bloch modes undergo a dynamically encircling
of an exceptional point. Due to the non-adiabatic transitions we observe a different
scattering behaviour of the modes for the two injection directions leading to the
creation of an asymmetric mode filter/switch.

To prove the encircling we relate our results to the ones one would obtain in
the case of parametric encircling [Dem01, Dem04, Ste04, Lee09, Cho10a]. Therefore,
we build five different wave guides each of them representing a point in parameter
space defining the encircling trajectory. We obtain that the state flip behaviour is in
good agreement with the results predicted by the 2×2 Hamiltonian and numerical
calculations. Thus, our experiment links in a nice way the parametric and the
dynamical encircling of an EP [Dop16a].

Chapter 8: Particle-like Scattering States

We revisit the Wigner-Smith time delay operator (WSTDO) and we describe in
more detail its relation to the time delay, the group delay and the dwell time of
a scattering state [Hau89, Win03a, Win03b, Ili09, Amb12]. Thereafter, we discuss
special eigenstates of the WSTDO so called particle-like scattering states (PLSSs)
as they are defined in [Rot11]. These states are of great interest as they show
either very high transmission values (close to the maximum) or very low ones (close
to the minimum). Therefore, they are also referred to as noiseless states [Two03,
Sil03]. Another important property of these PLSSs is that their intensity is highly
accumulated on trajectories corresponding to paths of classical particles. They are
very robust against frequency changes and also against local perturbations, so they
can be of great use for wave based communication systems.

We realise these states in a two dimensional chaotic scattering cavity where we
attach an incoming lead with an antenna array of 16 antennas and an outgoing lead.
Only using the transmission matrix information between these leads we can clearly

7
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create the particle-like scattering state corresponding to the shortest classical path
between incoming and outgoing lead. We can also observe other particle-like scat-
tering states corresponding to longer classical paths. However, these states are de-
generate in our geometry as their similar path lengths make them undistinguishable
for the q-operator. We can also show that these states are robust against frequency
changes by studying their spatial autocorrelation. Also the stability against local
perturbation is investigated. To do that, we examine the transmitted intensity as a
function of the position of additional scatterers. Only when the scatterers cross the
classical path which is related to a specific state, the transmitted intensity of this
state drops down.

8



Introduction générale

Le transport des ondes nous entoure constamment. Lorsque vous allumez votre
téléphone et qu’il commence à communiquer avec une antenne éloignée, lorsque vous
marchez chez vous pour trouver une connection Wi-Fi stable, ou encore lorsque vous
assistez à un concert et que les haut-parleurs amplifient la voix du chanteur.

Tous ces systèmes de communication basés sur le transport des ondes font face
aux mêmes enjeux et posent les mêmes questions. Comment rendre ces systèmes
moins gourmands en énergie, et plus sécurisés dans le cas des réseaux Wi-Fi ou de
téléphonie mobile ? Pouvons-nous trouver une solution pour filtrer le signal transmis
dans le but de ne détecter que les composantes désirées ?

Généralement, les systèmes de communication décrits ci-dessus se composent de
trois parties. Un émetteur (haut-parleurs, antennes, lasers, etc.) duquel le signal
est envoyé, un milieu de transport (air, diélectrique, fibre optique, etc.) dans lequel
l’onde se propage jusqu’à la dernière composante, le récepteur (oreille, téléphone
mobile, photodiode, etc.). Une procédure standard pour améliorer ces systèmes
est de se concentrer sur l’amélioration de l’une des trois parties. On pourrait par
exemple développer de nouveaux lasers nécessitant moins d’énergie pour générer un
faisceau plus propre et plus puissant, ou encore de nouveaux composants optiques
impliquant moins de pertes. Ce n’est pas ce que je prétends réaliser ici, dans le sens
où je ne vais pas me concentrer sur l’amélioration de composants uniques.

Mon but est de trouver des solutions utilisant des technologies déjà acquises et
disponibles dans le domaine des micro-ondes. Dans le principe, tous les systèmes de
communication basés sur une approche ondulatoire sont très semblables, ce qui sig-
nifie que cette étude ne se limite pas aux micro-ondes mais sera applicable à d’autres
dispositifs. En effet, les principes sous-jacents sont très similaires. Une différence
importante cependant est la différence entre échelles caractéristiques. Par exemple,
les distances typiques en optique sont de l’ordre de quelques nanomètres alors que
l’on parle de quelques centimètres pour les micro-ondes. Il parâıt ainsi pertinent
d’étudier les phénomènes de transport (ou les communications basées sur la propa-
gation d’ondes) avec des micro-ondes : l’échelle centimétrique est en effet aisément
accessible, dans la mesure où modifier des objets à l’échelle du centimètre, avec une
précision de l’ordre du mm ou du µm demande moins d’efforts que de modifier des
objets à l’échelle du mètre ou du nanomètre. Cela implique que nous pouvons rela-
tivement facilement assurer une précision sub-longueur d’onde, permettant ainsi un
bon contrôle sur les systèmes que nous étudions.

Mais la question persiste : comment répondre aux attentes en termes de sécurité
et d’efficacité ? La piste que nous avons suivie pour répondre à cette question
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Introduction générale

est de mettre en forme le signal initial du côté de l’émetteur de manière à ce que
son transport à travers le système suive une évolution atypique mais contrôlée,
en adoptant le comportement d’une particule classique, soit en évitant des zones
prédéfinies, ou encore en se focalisant en un point choisi au préalable. Pour ce
faire, il est nécessaire de déterminer certaines propriétés du milieu de propagation
avant de mettre en forme l’excitation, et nous posons dès lors une restriction :
nous nous concentrons exclusivement l’information qui peut être extraite des points
d’émission et de réception du signal. Il est évident que cela nécessite d’avoir un
certain degré de liberté dans le contrôle des paramètres afin d’adapter finement
le signal émis. Cela se traduit soit par l’utilisation de fréquences multiples qui
seront mélangées et envoyées par une antenne unique (on parle alors de mise en
forme spectrale de l’onde, “spectral wave shaping”), soit par l’utilisation d’antennes
émettrices multiples à fréquence fixe (mise en forme spatiale de l’onde, “spatial wave
shaping”), pour lesquelles le signal de chaque antenne est fixé individuellement. Cela
implique bien sûr d’être capable d’introduire des sources multiples, mais surtout, il
faut être capable de contrôler simultanément l’amplitude, la phase et la fréquence
de chaque source. Des systèmes offrant ce contrôle sont commercialisés au jour
d’aujourd’hui. Par exemple, il existe les modulateurs spatiaux de lumière (“Spatial
Light Modulator”, SLM, à spectre étroit) pour l’optique, ou les “IQ-modulators”
(modulateurs en phase et en quadrature, à spectre large) pour les micro-ondes.

Nous démontrons ici que la mesure du transport entre une ou plusieurs antennes
émettrices et le récepteur en fonction d’un paramètre donné (fréquence, position d’un
obstacle ou du récepteur) contient toute l’information nécessaire pour répondre aux
questions mentionnés plus haut. Détenir plus d’informations sur le milieu diffusant
n’est alors pas indispensable. Nous n’avons par exemple pas besoin de connâıtre
les positions d’éventuels obstacles. Nous montrons ainsi qu’une fois cette première
calibration réalisée, nous serons capable d’éviter certaines régions, c’est-à-dire de
neutraliser des tentatives d’intrusion dans notre système, ce qui rendra la commu-
nication plus sûre. Nous pourrons également focaliser à souhait le signal sur un
point précis, ou sur un récepteur donné de manière à ne pas perdre d’énergie en
envoyant l’information de manière isotrope en espérant en récupérer une petite par-
tie. Nous répondons ainsi à deux des trois points relevés : la sécurité et l’efficacité.
Les chapitres dans lesquels nous développons cette idée en détail ce travail sont les
chapitres 4, 5, 6 et 8.

L’approche adoptée pour la mise en œuvre d’un filtre efficace suit un raison-
nement un peu différent. Nous utilisons les conséquences de l’approche d’un ≪ point
exceptionnel ≫ au cours du transport à travers le système. La mise en forme de
l’onde dans ce cas est réalisée par une modification du système diffusant lui-même,
c’est-à-dire en modifiant les bords et la structure même du milieu. Ce nouveau
guide d’ondes spécifique est toujours constitué d’un matériau standard (aluminium
et matériau absorbant dans la gamme des micro-ondes) mais il possède aussi les pro-
priétés d’un filtre efficace. La notion d’efficacité vient du fait qu’il ne se contente pas
de supprimer la composante indésirable mais la transforme plutôt en composante
favorable (sachant que nous travaillons essentiellement avec deux composants). Cet
autre type de mise en forme est discuté au chapitre 7.
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Chapitre 3: Introduction au transport dans les micro-ondes

Dans ce chapitre, je rappelle les principes fondamentaux nécessaires à la compré-
hension de nos expériences. J’introduis deux types d’expériences qui seront étudiées
dans cette thèse : les systèmes à base de guides d’ondes rectangulaires et les cavités
ouvertes. Une fois que nous aurons compris comment le champ électromagnétique
se comporte dans de tels systèmes, et la description que nous en faisons à l’aide
de l’équation de Helmholtz, nous pourrons aller vers l’étude de la propagation de
ce champ dans un milieu diffusant à l’aide de la matrice de diffusion, notée S. Je
décrirai aussi la connexion entre S et la fonction de Green du système qui prend
en compte la solution à l’équation de Helmholtz. Je présente également dans ce
chapitre le fait que le processus de mesure puisse être vu comme une ouverture du
système, de sorte que la solution observée soit modifiée par rapport à la solution
attendue pour un système fermé.

Chapitre 4: “Quantum search” – algorithme de recherche quantique

Dans ce chapitre, j’applique la méthode de mise en forme spectrale dans le but de
focaliser un signal sur une cible spécifique. Vouloir focaliser toute l’énergie sur un
point dont on ne connâıt pas la position peut être interprété comme une recherche.
Le mot “quantum” dans la dénomination anglo-saxonne “quantum search” entre
en jeu car tous les systèmes étudiés peuvent être traités par le modèle des liaisons
fortes [Wal47,Sla54] couramment utilisé en physique du solide. Nous utilisons cette
dénomination de “quantum search”, qui constitue la terminologie originelle pour ce
type d’approche [Gro97,Amb04,Por13] mais il faut garder à l’esprit que notre étude
est purement ondulatoire [Gro02].

Tout d’abord, je discute en détails le fait qu’une cavité micro-onde ouverte
contenant des résonateurs diélectriques puisse reproduire un modèle de liaisons
fortes [Bar13,Bel13a,Bel13b,Bel14,Pol15,Vig16]. Ensuite, j’introduis brièvement la
notion de recherche quantique avec une attention particulière sur le cas à 2 dimen-
sions continu [Chi04,Hei09,Fou14]. Puis, je discute de la nécessité d’appliquer cette
méthode sur des réseaux de type graphène (dans la mesure où ces systèmes possèdent
un point de Dirac [Cas09]). En effet, la méthode de recherche quantique sur ce type
de réseau est beaucoup plus rapide (temps de recherche ∝ O(

√
N lnN) [Fou14])

qu’une recherche classique (temps de recherche ∝ N).

Nous commençons notre étude expérimentale par une chaine linéaire de résona-
teurs agrémentée d’un résonateur additionnel à rechercher, et nous étudions le temps
de recherche en fonction du nombre de résonateurs. Nous démontrons qu’il est pos-
sible de réaliser une recherche associée à plusieurs sites de types différents. Pour ce
faire, nous utilisons notre chaine linéaire et deux types de sites à chercher. Puis, nous
allons plus loin en étudiant un réseau de type graphène et appliquons la méthode de
recherche quantique pour à nouveau identifier deux différents types de sites [Böh15].
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Introduction générale

Chapitre 5: Le “Q-operator”

Dans le but de comprendre comment le retard accumulé par des états de diffu-
sion est encodé dans la matrice de diffusion du système, nous devons étudier la
matrice/l’opérateur de retard de Wigner-Smith [Eis48,Boh51,Wig55,Smi60]. Nous
modifions cet opérateur en remplaçant la matrice de diffusion S par la matrice de
transmission T et l’énergie par une variable arbitraire α. Cet opérateur modifié est
appelé “q-operator ” [Amb12,Bra16,Gir16].

Nous verrons dans un développement alternatif pourquoi le q-operator possède
une forme caractéristique. Par ailleurs, nous étudierons un moyen de calculer ses
valeurs propres et discuterons de leur interprétation physique. Les vecteurs propres
du q-operator nous permettront alors de définir une condition initiale pour créer des
états de diffusion qui évitent ou au contraire visent certaines régions ou encore qui
forment des faisceaux hautement collimatés le long de trajectoires classiques (états
appelés “particle-like scattering states”).

Chapitre 6: Mise en forme de front d’onde

L’idée de base à propos de la mise en forme de front d’onde est de manipuler la
condition initiale de manière à ce que l’accord entre le signal souhaité et le signal
effectivement reçu soit significativement amélioré. Ce réglage fin sur le signal sortant
peut être effectué en changeant la condition initiale de manière itérative jusqu’à
obtenir le résultat souhaité. C’est une méthode couramment utilisée par exemple
en optique [Vel07,Mos12,His13,Nix13,Cha14,Ami16], pour les micro-ondes [Kai14,
Dup15] ou encore pour la bio-médecine [Hor15]. A titre d’exemple, des résultats
marquants comme la focalisation d’un signal optique [Vel07,Vel08], la transmission
d’images [Pop10] à travers un milieu opaque ou encore la focalisation/défocalisation
de micro-ondes en cavités [Kai14,Dup15] ont été obtenus.

Notre montage expérimental consiste en un guide de micro-ondes rectangulaire
excité par un système de 10 antennes, chaque antenne ayant une phase et une ampli-
tude imposée individuellement en utilisant un modulateur en phase et en quadrature
(IQ-modulator). Les IQ-modulators que nous utilisons sont au préalable caractérisés
par des mesures de test : dans un premier temps, nous commençons nos expériences
de mise en forme de front d’onde en ajustant les modes sinusöıdaux spécifiques à
la sortie du guide d’ondes à vide. Dans un second temps, nous introduisons les dif-
fuseurs et recommençons l’adaptation de modes pour vérifier la validité du système
expérimental [Böh16].

A partir du moment où tous ces tests sont validés, nous construisons le q-operator
mentionné au chapitre précédent, où le paramètre α correspond à la position d’un dif-
fuseur métallique introduit dans la cavité. Trois matrices de transmission différentes
sont enregistrées pour trois positions différentes du diffuseur (se différenciant par de
petites translations dans le plan transverse), ce qui suffit pour créer des états de

12



diffusion (vecteurs propres du q-operator) qui se focalisent ou au contraire évitent
la position occupée par le diffuseur métallique. A noter que ces états sont quasi-
ment inchangés, que le diffuseur métallique soit présent ou non. En jouant sur la
valeur propre correspondant à un état focalisé, nous pouvons imposer une certaine
direction à l’état de diffusion qui correspond à la direction principale de focalisation.
Comme nous avons un très bon contrôle sur notre injection nous pouvons également
espérer développer un absorbant cohérent parfait [Cho10b,Gma10,Wan11].

Chapitre 7: Encerclement dynamique d’un point exceptionnel

Dans ce chapitre, nous mettons en place un filtre/interrupteur asymétrique de
modes basé sur des effets de transition non-adiabatique qui apparaissent lorsque
nous encerclons dynamiquement un point exceptionnel (PE). Nous nous intéressons
en particulier à la description des points exceptionnels et à leur apparition dans
un hamiltonien non-hermitien 2×2 [Rot09, Moi11, Hei12]. Les points exceptionnels
sont des objets intéressants dans le sens où ils exhibent des phénomènes atypiques
comme par exemple des changements brutaux d’états [Uzd11, Mil15, Gao15, Xu16,
Din16]. Nous analysons ce phénomène des points de vue théorique [Kec03, Dem04,
Mai05] et expérimental [Dem01, Dem04, Ste04, Lee09, Cho10a] dans le contexte de
l’encerclement paramétrique.

Pour induire des transitions non-adiabatiques, nous étudions ensuite l’encercle-
ment dynamique d’un PE. L’étude est adaptée pour traduire au mieux nos expérien-
ces de guides d’ondes qui consistent en la réalisation d’un guide ondulant (basé sur
l’étude [Dop16b]) qui est mis en forme spatialement de manière à ce que les modes de
Bloch du système subissent l’encerclement dynamique d’un point exceptionnel. Les
effets de transition non-adiabatique résultent en un comportement différent pour des
modes se propageant dans des directions opposées. Nous sommes ainsi en présence
d’un filtre/interrupteur asymétrique permettant de filtrer les modes différemment
en fonction de leur direction de propagation.

Pour prouver que ce résultat est bien relié à l’encerclement d’un point ex-
ceptionnel, nous comparons nos résultats à ceux obtenus dans le cas d’un encer-
clement paramétrique [Dem01, Dem04, Ste04, Lee09, Cho10a]. Pour ce faire, nous
avons fabriqué cinq guides différents, chacun représentant un point dans l’espace
des paramètres définissant la trajectoire d’encerclement. Nous obtenons alors que le
comportement de saut d’un état à l’autre est en bon accord avec les résultats prédits
par l’étude de l’hamiltonien 2×2 et avec les simulations numériques. Ainsi, notre
expérience relie de manière élégante les encerclements paramétrique et dynamique
d’un point exceptionnel [Dop16a].

Chapitre 8: “Particle-like scattering states”

Dans ce dernier chapitre, nous exploitons à nouveau la matrice de retard de Wigner-
Smith (“Wigner-Smith time-delay matrix”, WSTDM) et nous décrivons plus en
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Introduction générale

détails son lien avec le retard, le retard de groupe, et le temps de transit d’un
état de diffusion [Hau89,Win03a,Win03b,Ili09,Amb12]. Ensuite, nous discutons de
l’existence d’états propres particuliers de la WSTDM appelés “Particle-like scatter-
ing states” (PLSSs) tels que définis dans [Rot11]. Ces états sont particulièrement
intéressants dans la mesure où ils présentent à la fois des coefficients de transmission
très importants (proches de la valeur maximale) et très faibles (proches de la valeur
minimale). Ainsi, ils sont aussi parfois appelés ≪ états sans bruit ≫ [Two03, Sil03].
Une autre propriété importante de ces PLSSs est la forte localisation de leur intensité
le long de trajectoires associées à des particules classiques. Ils sont très robustes aux
changements de fréquence, ainsi qu’aux perturbations locales et peuvent ainsi être
d’une grande utilité dans des systèmes de communications basés sur la propagation
d’ondes.

Nous réalisons de tels états dans une cavité chaotique diffusante à deux dimen-
sions à laquelle nous connectons un guide d’injection doté de 16 antennes ainsi
qu’un guide de sortie. En utilisant exclusivement la matrice de transmission entre
les guides d’entrée et de sortie, nous pouvons créer un état de type “particle-like”
correspondant au chemin classique le plus court existant entre l’entrée et la sortie.
Nous pouvons également observer d’autres états correspondant à des chemins plus
longs. Cependant, ces états sont dégénérés pour notre géométrie dans la mesure où
leurs longueurs de chemin similaires les rendent indiscernables pour le q-operator.
Nous pouvons montrer que ces états sont robustes aux changements de fréquence
en étudiant leur auto-corrélation spatiale. Nous étudions aussi leur stabilité face
à des perturbations locales. Pour ce faire, nous examinons l’intensité transmise en
fonction de la position de diffuseurs additionnels. Ce n’est que lorsqu’un diffuseur
se positionne sur la trajectoire classique qui est reliée à un état spécifique que ce
dernier voit son intensité de transmission chuter.
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1 Introduction to Transport with Mi-

crowaves

Propagation of electromagnetic waves are not only related to problems concern-
ing transport through any kind of diffusive medium but also to studies which try
to gain deeper insights on quantum mechanical questions such as quantum chaotic-
ity [Stö90,Ste95], fidelity [Köb11,Sch05] and dynamical localisation [Sir00]. Working
with electromagnetic systems, especially working with microwave systems has some
distinct advantages. The system size is in the order of cm to m since the typical
wavelength λ ranges from mm to a few cm. This means that such systems are handy
and relatively easy to fabricate. The materials we use are metals like aluminium,
copper, gold, dielectric material such as Teflon, absorbing foams and ceramics, which
are standard materials for industries which makes them easily available. To under-
stand the microwave experiments presented in this thesis, one must be familiar with
certain terminologies, which will be introduced in this chapter.
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Chapter 1. Introduction to Transport with Microwaves

1.1 electromagnetic systems

At the start of the description of any electromagnetic system one always finds
Maxwell’s equations. If we assume that there are no source currents ~j and no
free charges the Maxwell equations are defined in the following way:

~∇ · ~D = 0 (1.1)

~∇ · ~B = 0

~∇× ~E = −∂
~B

∂t
(1.2)

~∇× ~H =
∂ ~D

∂t
.

~D denotes the electric displacement field and ~B the magnetic field which are related
to the electric field ~E and to the magnetising field ~H via

~D = ǫ ~E, ǫ = ǫrǫ0
~B = µ ~H, µ = µrµ0,

where ǫ is the dielectric constant and µ is the permeability. ǫ0 and µ0 are the vacuum
permittivity and the permeability of free space, which are connected to ǫ and µ by
material dependant parameters ǫr and µr. Please note whenever we speak about
dielectric media in this chapter, we will assume a non-dissipative and homogeneous
dielectric medium which can be described via its real and positive dielectric constant
ǫ.

Using ∇×(1.2),∇×∇ = ∇(∇)−∆ and (1.1) we derive the time dependant wave
equation for the electric field

∆ ~E = µǫ
︸︷︷︸

1/c2

∂2 ~E

∂2t
, (1.3)

where c is the speed of light for a medium with an index of refraction n =
√
µrǫr =

c0/c. c0 indicates the vacuum speed of light given by c20 = 1/(µ0ǫ0). In the same

manner we can derive for the magnetic field ~B

∆ ~B = µǫ
∂2 ~B

∂2t
. (1.4)

We assume that the fields oscillate harmonically, i.e.,

~E(~r, t) = E(~r)e−iωt and ~B(~r, t) = B(~r)e−iωt. (1.5)
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1.1. Electromagnetic Systems

Rectangular waveguide Open cylindrical cavity

x
y 

z 
h 

h x
y 

z 

TE: Bz = 0 Ez = 0

Ez = Ψ(x, y)cos
(
lπ
h
z
)
, l = 0, 1, 2... Bz = Ψ(x, y)sin

(
mπ
h
z
)
, m = 1, 2...

TM: Ez = 0 Bz = 0

Bz = Ψ(x, y)sin
(
mπ
h
z
)
, m = 1, 2... Ez = Ψ(x, y)cos

(
lπ
h
z
)
, l = 0, 1, 2...

Table 1.1 – Sketches of the two types of systems investigated. The blue and grey sur-
faces symbolise metallic surfaces. TE denotes ”Transversal Electric” and TM indicates
”Transversal Magnetic”. These definitions are done according to [Jac98].

Thus the time dependant equation reduces to

(∆ + k2)~Ω = 0, with k2 =
(ω

c

)2

=

(
2πf

c

)2

, ~Ω = ~E, ~B, (1.6)

where k is often referred to as wavenumber and f denotes the frequency.

In this thesis I investigate two types of systems. One type is a open cavity with no
boundary in the xy-plane and the other type is a waveguide where electromagnetic
waves propagate in the x-direction. These two systems are shown in table 1.1.
Table 1.1 shows that our systems are invariant with regard to the z-direction. The
z-component of the electric field as well as the z-component of the magnetic field
are described by a scalar field Ωz with

Ωz(x, y, z) = Ψ(x, y)f(z). (1.7)

Ω can be replaced by E or B as it was defined in equation (1.6).

Electromagnetic waves have to fulfil certain boundary conditions. Especially at
metallic surfaces they have to follow:

~n · ~B = 0, ~n× ~E = 0, (1.8)

where ~n is a unit normal vector pointing away from the metallic surface.

Throughout this work, we only investigate the z-component of the electromag-
netic field, i.e., we work with two different field types called ”Transversal Magnetic”
(TM) and ”Transversal Electric” (TE) in our experiments. Unfortunately two dif-
ferent conventions exist for these field types when one compares waveguide systems
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Chapter 1. Introduction to Transport with Microwaves

with cavity systems. The two mentioned field types are explicitly defined for the
two studied systems in table 1.1. The integers m, l in table 1.1 give raise to speak
of a quantisation of this fields related to the confinement in the z-direction which
imposes the mentioned boundary conditions above. Taking into account this quan-
tisation one speaks of TMi or TEi modes, such as the TE0-mode for example (which
means l = 0 in a waveguide system).

The function f(z) is well defined for the introduced field types (see equation
(1.7) and compare with table 1.1) and we can simplify equation (1.6) by defining a
wavenumber kz such that

d2

d2z
f(z) = −k2zf(z) with kz =

nπ

h
, n ∈ N. (1.9)

n is an integer value referring to the different boundary conditions (see table 1.1)
and λ denotes the wavelength of the wave. This yields a quasi two-dimensional
problem of the form:

(∆t + k2 − k2z)Ψ(x, y) = 0 (1.10)

⇐⇒ (∆t + k2t )Ψ(x, y) = 0, with k2t = k2 − k2z , (1.11)

where t denotes the transverse plane (xy-plane). This equation holds only for a
fixed kt. As one is also interested in the kt-dependency of Ψ(x, y), Ψ can become a
function of kt such that Ψ = Ψ(x, y, kt). The word ’quasi’ is used here to remind
oneself that one has to be aware that the full problem is three-dimensional and
that one should not totally forget about the f(z)-dependency (see equation (1.7)).
Equation (1.11) is also referred to as two-dimensional Helmholtz equation. It got
famous in the quantum chaotic community, because it represents an analogue to the
two-dimensional Schrödinger equation with

(∆t + k2s)ψ = 0, with k2s =
2m

~
ω − 2m

~2
V (x, y), (1.12)

where V (x, y) denotes a two-dimensional potential and ψ is the quantum mechanical
wavefunction.

Equation (1.11) is the basis of our theoretical considerations in chapters 2, 4 and
5. To solve equation (1.11) can be a hard task as we will see for example in our
open cavity system (see chapter 2), where we will introduce dielectric scatterers so
that the dielectric constant ǫ(~r) gets position dependant.

1.2 scattering matrix

Another important concept besides the concept of modes which we heard of in the
previous section is the concept of the scattering matrix, that is briefly explained
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1.2. Scattering Matrix

Figure 1.1 – Sketch of a scattering system with two attached channels, in which incoming
and outgoing waves enter or leave the scattering region/billiard.

here. Let us look at a system of the waveguide-type in the way it is described in
figure 1.1, where we connected two waveguides to a central scattering part, which
we call billiard.

These waveguides (or ports/antennas) attached to the billiard allow us to send
(receive) waves in (from) the central scattering part. If the widths of the coupled
waveguides are on the scale of a few wavelengths, the electromagnetic field Υ within
the n-th waveguide can be assumed to be a superposition of incoming and outgoing
waves following

Υ(r, k) = ai(r)eiki|r−ri| − bi(r)e−iki|r−ri|, (1.13)

where ri denotes the point where the waveguide i touches the billiard. ki are complex
wavenumbers. ai and bi are complex numbers. ai describes how waves are entering
the billiard and bi how they leave it. This entering and leaving is indicated with
orange and blue arrows in figure 1.1. r is a two-dimensional vector. Bold symbols
and vectors are synonymously used throughout this work. Each waveguide can
be assumed to correspond to exactly one so-called scattering channel (width of the
waveguide much smaller than the billiard size). We can connect ingoing and outgoing
channels via a matrix, which we call scattering matrix S. If we have N waveguides
(ports) we can define two vectors a = (a1, ..., aN)T and b = (b1, ..., bN)T containing
the amplitudes of the incoming and outgoing waves which are connected via the
N ×N scattering matrix such as

b = Sa. (1.14)

The diagonal elements Sii of S can be understood as reflection amplitudes as they
describe the scattering back inside the port. The off-diagonal elements Sij are the
transmission amplitudes describing the transport between different ports. One can
add additional (fictitious) channels to the system to account for loss. This is a well
known assumption in theory [Fyo05,Sav06,Kuh13].

Especially in the field of microwave measurements, measured spectra obtained
by antenna measurements are often linked to entries of the scattering matrix. Let
us imagine that the two leads shown in figure 1.1 correspond to two antennas.
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Chapter 1. Introduction to Transport with Microwaves

Then S would look like

S =

(
S11 S12

S21 S22

)

= S =

(
R1 T ′

T R2

)

. (1.15)

S11 and S22 describe the reflection of the signal back into the antenna 1 and antenna
2. In this thesis they are also called Ri or just R. S12(S21) describe the transmission
from antenna 2(1) to antenna 1(2). They can be alternatively denoted as T ′ and
T in this thesis. In this case with just two attached channels R, R′, T and T ′ are
simple numbers.

The scattering matrix in general gets more complicated once one works with
multiple leads containing multiple modes, like multiple TE-modes for example. Such
a scattering matrix can also be described in terms of R,R′, T and T ′. But these
quantities become then matrix quantities themselves as we will see in section 6.1.2.

1.3 green function and the scattering matrix

We will stick a little bit longer to the scattering system introduced in the previous
section. Let Ψ be the electromagnetic field within this central scattering part which
we refer to as ’billiard’. Ψ shall fulfil the Helmholtz equation. A possible way to
solve this equation is to apply the Green function technique, i.e., one tries to find the
billiards Green function G(r, r′, k). This Green function describes the field within
the billiard with no ports attached. To find the Green function for the full problem
one has to modify G(r, r′, k) to account for the two attached leads (ports). The
modified Green function Ḡ(r, r′, k) is defined as

Ḡ(r, r′, k) =
∑

n

Ψ̄(r)Ψ̄(r′)

k2 − k̄2n
, (1.16)

where k̄2n are the modified eigenvalues of the modified eigenfunctions Ψ̄(r). The
functions Ψ̄(r) are modified in the sense that they respect other boundary conditions
than the original eigenfunctions Ψn, i.e., Ψ̄ at the boundaries fulfils

Ψ̄(r)
∣
∣
b

= 0, lim
r→r−

w

∇⊥Ψ̄(r) = lim
r→r+

w

∇⊥Ψ̄(r), (1.17)

where b in this equation stands for the boundary of the billiard. rw denotes the
positions where the waveguide openings touches the billiard. ∇⊥ is the normal
derivative pointing into the waveguide. Instead of speaking of the eigenvalue kn one
can also speak of the nth-resonance. The left (right) hand side of equation (1.17) is
referred to as Dirichlet (Neumann) boundary conditions. Ḡ is related to S [Stö99]
via

S =
1 − iγḠ

1 + iγḠ
(1.18)
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1.3. Green Function and the Scattering Matrix

in which γ describes the coupling of the waveguides to the billiard. If the resonances
are isolated, one can transform Equation (1.18) into

Sij = δij − iγ
∑

n

Ψ̄(ri)Ψ̄(rj)

k2 − k̄2n + iΓn

= δij − iγĜ(ri, rj, k) (1.19)

with Ĝ(ri, rj, k) =
∑

n

Ψ̄(ri)Ψ̄(rj)

k2 − k̄2n + iΓn

(1.20)

which has been shown in [Stö99]. Note that equations (1.19, 1.20) are also known
as Breit-Wigner-formula in the context of nuclear physics [Bla52]. δij denotes the
Kronecker delta. The constants γ and Γ have been modified here to fit to the
definition given in [Bel13a] (see details in section 2.2.4). Γn takes into account
losses like ohmic losses induced by the metallic surfaces of the cavity for example
but also losses due to the opening of the system, which is a consequence of the
added waveguides/antennas. This result holds also when the attached waveguides
are replaced by circular antennas [Ste95].

Looking at equations (1.19, 1.20) it becomes clear that one needs the transmis-
sion measurement between two antennas to recover the complete modified Green
function, i.e., the sign of the modified eigenstates Ψ̄n [Ste95]. The reflection mea-
surements give us only the information about the spectrum of the eigenstates and
their modulus. [Stö90, Ste95] The transmission measurements corresponding to Sij

on the other hand help us to obtain the off diagonal elements containing especially
the sign (phase) information of Ψ̄n.

Equations (1.19, 1.20) state that one never obtains the original or unperturbed
resonances kn. The obtained resonances (eigenvalues) are shifted k̄n 6= kn

and broadened by the factor Γn (more details in [Ste95]).
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The first system we want to look at, is the system of an open cavity, where we
study our first transport phenomenon, the quantum search. Before I describe what
a quantum search is, one has to describe the system with which one can study this
phenomenon. The system to which we restrict ourselves is a tight binding analogue. I
start describing our tight binding analogue where we use an arrangement of dielectric
cylinders. Then I am more precise on the quantum search itself.
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Chapter 2. Quantum Search

2.1 a tight binding analogue

The tight binding model is a well-known theoretical description which was developed
in the late 40s and 50s [Wal47, Sla54] in solid state physics to describe electronic
properties of solids. Tight binding means that the electrons are tightly bound to
the atoms forming the structure of the solid. The transport of electrons can be
described as hopping from one atom to another. The wave function of the electron
being bound to a specific atom does not differ from the orbital of an electron of a
free atom described by the atomic Hamiltonian. Therefore it is assumed that the
bound wave function is declining faster than 1/r2 outside the potential boundary
of its atom, so that it is not influencing the potential of neighbouring atoms. The
coupling between electrons can be assumed to be weak as long as the overlap of their
exponentially decreasing wave-functions is small. This assumptions gave rise to the
tight binding model. It has been shown that this assumptions together with the
idea of periodicity in atomic structures form a powerful tool to describe properties
like band structure or conductance [Sin01,Kit53]. If one is interested in a system of
electrons which all belong to the same orbital like it is the case for electrons in the
pz-orbital in graphene for example, the description of the system is analogue to the
classical description of coupled oscillators [Tay05].

2.1.1 Microwave Set-up

Our experiment is an open microwave cavity (see figure 2.1). It consists of two par-
allel aluminium plates. Onto the ground plate we place ceramic cylinders (TEMEX-
ceramics, E2000 Series, ZrSnTiO) with a high index of refraction (n ≈ 6). They
have a dielectric constant ǫr of ≈ 36 and their permeability µr is 1. Their height
is 5 mm and they have a diameter of 8 mm (= 2rd). The placing of these cylin-
ders is done by a computer controlled arm, which is movable and achieves a placing
precision of 0.1 mm (see figure 2.2). To excite the TE1-mode inside the cavity (see
details in table 1.1), we use two kinds of antennas. A kinked antenna and a loop
antenna, which are shown in figure 2.1. The upper plate is movable in the xy-plane,
so that the magnetic field component in the z-direction Bz can be measured with the
loop antenna at any given position inside the cavity. The microwave measurements
are performed by a two port vector network analyser (VNA, ZVA-24 by Rohde &
Schwartz) which is able to generate and to measure phase and amplitude of the
microwave signal.
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n=6 5 mm
8 mm

16 mm

x
y

z

Figure 2.1 – Set-up with two dielectric discs inside using a kinked and a loop antenna
to measure microwave signals which are send and received by a vector network analyser,
which is able to measure phase and amplitude of the microwave signal. The whole top
plate is movable in the xy-direction.

Figure 2.2 – Computer controlled arm to position the dielectric discs. The disc is dropped
in the hole and falls through a cylinder to the given position as indicated by the arrow.
The arm is freely moveable in the xy-direction.

2.1.2 Dielectric Resonators

We have seen in chapter 1 that the TE-mode in the open cavity shows a magnetic
field aligned in the z-direction. We have already seen that Bz obeys the Helmholtz
equation. For the reason of convenience I would like to repeat equation (1.11) with
the explicit parameters we have in the system:

(∆ + k2t )Ψ(x, y) = 0, with k2t =

(
ω

c0

)2

µrǫr −
(mπ

h

)2

= k20ǫrµr − k2z , (2.1)

where h denotes similarly to chapter 1 the height of the cavity. k0 is the wavenumber
in free space k0 = (ω/c0)

2. One observes that the lowest TE1-mode which exists
in the system is captured within the dielectric disc. The transversal wavenumber
k2t for the frequency ωTE1 of this lowest TE1-mode is greater than zero inside the
disc, since ǫr = 36 and µr = 1. Whereas, outside the disc, in air, k2t is smaller
than zero (ǫr = 1, µr = 1) leading to evanescent decay of the field outside the disc.
The kt-value describing the situation outside the disc will be denoted with k′t in the
following. Note that outside the discs also all the other TEj-modes with j ≥ 1 are
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scattering regime fully evanescent regimebound regime

Figure 2.3 – Different regimes defined by the relation between k0 (describing the situation
outside the disc with ǫr = 1, µr = 1), k0ǫr (describing the situation inside the disc with
ǫr = 36, µr = 1) and the quantisation number kz (which accounts for the boundary
conditions at the metallic plates). The bound states are discussed in detail in the main
text. The two shown bound states are just sketches to convey the idea. In principle more
bound states are possible, which is indicated by the arrow.

strongly suppressed due to the boundary conditions implied by the metallic walls
(see section 1.1). This means that outside the discs the behaviour is really purely
evanescent.

In fact this is exactly the electromagnetic analogue to what is known in quantum
mechanics as a potential well. Let us forget for a moment about the y-direction and
look at different configurations of k0, k0ǫr and kz (see equation (2.1)) which are
presented in figure 2.3.
In figure 2.3 we identified three different regimes. In the scattering regime, the
disc acts primarily as a scatterer. In the bound regime the wave is located within
the disc as it is the case in our experiment. In the fully evanescent regime the
initially excited field declines exponentially from the point of the excitation so that
a field only exists in the vicinity of the excitation position. From figure 2.3 one can
understand the great flexibility of this experiment. Just by changing the frequency
f = ω/2π at which we are working we can switch between different regimes. We
could either decide to use the dielectric discs as scatterers for the wave or we could
change their behaviour totally to a system of localised bound states which are weakly
coupled. The coupling in fact is small enough so that the localised bound states of
the isolated discs are only slightly distorted, which has been shown experimentally
in [Bar13,Bel13a]. In this case one can speak of a tight binding analogue.

Let us be more detailed on the last point and look at the explicit and fully two
dimensional solution of equation (2.1). If we assume that the disc touches the upper
plate, one can find a detailed solution in [Jac98], where the solution is derived using
cylindrical coordinates (r,Φ, z) and a separation of variables. The solution, which
can be obtained, consists of two parts. One part states that Bz inside the disc-
radius follows Bessel functions of the first kind Jm. The other part illustrates the
exponential decline of Bz outside the disc. If one puts these parts together one gets
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2.1. A Tight Binding Analogue

the bell-shaped curve shown in figure 2.4. Explicitly, the full solution for Bz looks
like:

Bz =

{

∝ Jm(kt,mr) e
imΦ sin(lπ z

h
) if r < rd

∝ Km′(k′t,m′r) eim
′Φ sin(lπ z

h
) if r > rd

. (2.2)

m,m′ and l are integers denoting the angular quantisation and the quantisation in
the z-direction. r, Φ and z denote cylindrical coordinates. In the real set-up this
ideal case described in equation (2.2) is not fulfilled since the disc does not touch
the upper plate. Thus some modifications of equation (2.2) appear, which need to
be discussed:

Bz =







∝ f(z) Jm(kt,mr) e
imΦ if r < rd

∝
∑

l

α′
l sin(lπ z

h
) Km′(k′t,l,m′r) eim

′Φ if r > rd
. (2.3)

The function f(z) takes the unknown z-dependence of Bz inside the disc-radius into
account. The air gap between the top of the disc and the top plate of the cavity
allows the excitation of a variety of evanescent K-modes. Therefore a summation
over multiple K-modes with different k′t,l,m′ appears.

We can simplify the expression (2.3) by putting m = m′ = 0, since only J0 and
K0 type of modes are present in the frequency regime in which our experiment is
working. This means the angular dependence drops out and we can finally write:

Bz ≈







∝ J0(ktr) if r < rd

∝∑
l

αl K0(k
′
t,lr) if r > rd

. (2.4)

The height where the magnetic field is measured, depends of the z-position zloop
of the loop antenna. Since this height is fixed in our experiment we can do a
normalisation so that αl = α′

l sin(lπ
zloop
h

)/f(zloop) and J0(0) = 1.

In the following we clarify these theoretical considerations with actual experi-
mental findings. The loop antenna scanned Bz above and around one disc. This
disc is excited at its lowest resonance frequency ν0 at 6.65 GHz [Bel13a]. Figure 2.4
shows the measured intensity profile |Bz|2. One observes that the intensity is well
confined within the discs and it declines exponentially outside the disc in the way
we describe it theoretically. As shown in figure 2.4 by the fit we have to consider
up to three evanescent K0-modes to describe the evanescent behaviour outside the
disc properly.

We want to establish a tight binding analogue with these kind of discs. Therefore
it is necessary for us that the eigenfunctions J0, K0 of a disc remain mainly unper-
turbed, when one brings other discs close to it. This has been confirmed in [Bel13a],
where the Bz-field of two coupled discs was investigated. These two discs were cou-
pled by bringing them spatially close together. The field of the coupled resonators
still followed the description of a simple sum of two independent fields which corre-
sponded to the Bz-field of an isolated disc [Bel13a]. This clarifies that we are really
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5 mm

Figure 2.4 – Intensity of the lowest disc resonance obtained with the loop antenna at
6.65 GHz which corresponds to J0 and

∑

l αlK (see main text). Left: Intensity |Bz|2
profile outside the disc (see normalisation in the text). Right: Intensity profile |Bz|2
according to the dashed white line on the left. The gray zone indicates the dielectric disc.
The circles indicate the measured data points. The red line corresponds to a fit with
kt = 0.3341 mm−1, k′t,1 = 0.1215 mm−1, k′t,2 = 0.3423 mm−1 and k′t,3 = 0.5366 mm−1

and α1 = −0.1370, α2 = 5.3816 and α3 = −6.6585 according to equation (2.4). Figure and
fit from [Bel13a].

dealing with a tight binding analogue (see also [Bar13]). This system of coupled
dielectric discs has already been proven to be a powerful tool. It is convenient to
study the effects of disordered lattices like disorder in graphene lattices [Bar13] or to
look at lattices with special boundary conditions [Bel14]. I realised a Penrose-tiled
lattice a so called quasicrystals with this system [Vig16]. Also highly theoretical
concepts like topological transitions of Dirac points in graphene [Bel13b] or topo-
logically induced interface states [Pol15] can be addressed. In the following we
perform a quantum search experiment using an arrangement of dielectric discs and
we develop an idea of a possible application.

2.2 quantum search and its experimental imple-

mentation

2.2.1 Theoretical Basis

A very interesting point in the realm of quantum information and quantum comput-
ing is the field of quantum search algorithms. Such quantum computing algorithms
are very powerful as they enable the user to carry out a large number of parallel
computing processes. Such algorithms use the fact that a quantum mechanical sys-
tem can exist simultaneously as superposition of multiple states. If one now carries
out an operation on this superposition of states, this operation acts simultaneously
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on all included states, i.e., this operation corresponds to a huge parallel operation.
Grover was the first to describe such a quantum type of search algorithm for an un-
structured database [Gro97]. The underlying mechanism to describe such a search is
done using the formalism of quantum walks in the way described in [Amb04,Por13].

One distinguishes in general between the discrete quantum walk and the contin-
uous one. The difference can be seen on how the motion of the walker is described
(see [Chi10] for more information):

Discrete Quantum walk: pt = W tp0

Continuous Quantum walk: d
dt
p(t) = Mp(t).

W describes the hoping probability matrix and M is the hoping probability matrix
per unit time. Discrete quantum walks have also been implemented experimentally
using laser pulses as stepping mechanisms [Sch10, Sch12]. The two mentioned de-
scriptions of the quantum walk lead to two types of quantum search algorithms. The
search problem described by such algorithms reads like the following: Assuming we
have N unique distinguishable items in an arbitrary grid and we are looking for the
position of a specific one. Classically we would need about N/2 steps on average to
find it when we apply a classical search algorithm. The idea of the quantum search
is to ’excite’ the grid itself in such a way that after a certain time the excitation
energy localises on the item we searched for and therefore we can identify its position
in the structure.

The search time classically scales with O(N). But with the quantum search
algorithm using the power of de-localisation, the search time is typically proportional
to ≈

√
N . This is due to the fact that the coupling between the search item and the

grid takes into account the normalisation of the grid state which is used to perform
the search. Typically one uses a uniform distributed grid-state and therefore the
factor

√
N appears [Gro02]. The

√
N -behaviour describes well the search time for

a small number of search sites. For larger systems one has to take into account
corrections. The reason for that is discussed below. It turns out, however, that
the factor

√
N is exact for the case of d-dimensional lattices with d > 2 even in

the large N limit. For two dimensional lattices the minimal search time is of the
order of

√

N ln(N) for the continuous walk/search [Fou14]. Note that the lattice
in [Fou14] had to be manipulated in such a way that it contains a Dirac point, i.e.
a linear growth of the density of states (such as in graphene [Cas09], see a detailed
discussion in section 2.2.4), otherwise this minimal limit is not achieved. This is
the result for the continuous quantum search. For the discrete one the number of
necessary steps is

√
N log(N) [Amb04]. In the following we restrict ourselves to the

case of continuous quantum search.

The ’quantum’ search is in fact a pure wave phenomenon relying only on inter-
ference of an distributed grid state with the localised state of the searched item as
it has been described in detail by Grover himself in [Gro02] using coupled pendula
to perform his quantum search algorithm.
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Figure 2.5 – Avoided crossing between a distributed grid state Φ0 which is dependant on
a tuning parameter λ and the state of the search item s. The coupling of the two states is
proportional to the minimal distance ∆ at the avoided crossing.

At the beginning of the quantum search, like for any other kind of search, stands
the information about the item which should be searched for. Let us say that we
look for an object which carries the eigenstate |s〉 of energy Es. In the following
we will describe the search for this localised eigenstate, which is equivalent to the
search for the object itself. Let us assume that |s〉 is weakly coupled to a system
whose dynamics is described by an Hamiltonian H. One can think of H as the
Hamiltonian describing a tight binding model of N coupled resonators for example.
Let us furthermore assume that the Hamiltonian is tunable with a parameter λ
(H ≡ H(λ)) so that there exists a tunable eigenstate |Φ0(λ)〉 of H. This state must
not necessarily be distributed over all items but it must be assured that |Φ0(λ)〉 has
a finite overlap with |s〉 such as 〈s|Φ0(λ)〉 6= 0 for a given interval of λ values. The
easiest way to fulfil this condition is to use the totally symmetric state of the system,
i.e, the state which is uniformly distributed over all search items. Since |Φ0(λ)〉 is
tunable we can shift its energy towards the energy of |s〉 and since the overlap is
non-zero, the two states will undergo an avoided crossing just as is shown in figure
2.5. Sufficiently close to each other the two states can exchange energy.

Let us assume that |Φ0(λ)〉 denotes the uniform distributed state and that the
minimal energetic distance between the two states is reached at λ = λav. If we
prepare the system to evolve starting from |Φ0(λav)〉, i.e, we excite the |Φ0(λav)〉, we
can follow the time-development of the system using exp(iHt) |Φ0(λav)〉. If |Φ0(λav)〉
and |s〉 are sufficiently isolated from any other state of the system, the result of the
time development is a beating pattern between the distributed state |Φ0(λav)〉 and
|s〉. This beating time (or revival time of |Φ0(λav)〉) can be interpreted as twice the
search time ts, where ts marks the time at which the intensity is ’fully’ localised in |s〉.
The minimal energetic splitting of the two states ∆ (see figure 2.5) is proportional to
the coupling of the two states (see [Hei09] for a mathematical rigorous description).
As shown in [Hei09] one can deduce that ts ∝ 1/∆ ∝ 1/ 〈s|Φ0(λ)〉 (see also figure
2.5 to understand the definition of ∆). If we assume that |Φ0(λav)〉 is the uniformly
distributed state, one can calculate the coupling to state |s〉 to be of the order
1/
√
N (see [Gro02] for the case of coupled pendula). This square-root is, as already

mentioned earlier, basically related to the normalisation of |Φ0(λav)〉 following the
calculation in [Gro02]. This means that the search time ts is of the order of

√
N if

|Φ0(λav)〉 is distributed over N items.
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The critical reader might have already spotted the crucial point which is essential
for the success of the algorithm. I said above that the two states |Φ0(λav)〉 and
|s〉 have to be sufficiently isolated. This, in general, can be very hard to achieve
especially for d < 4 as we see in the following. Let us do an estimation for the
number of states with an energy less than Ec depending on the dimension d:

N(E)
∣
∣
E<Ec

=

∫ N(Ec)

0

dN ∝
∫ Ec

0

dN

dE
dE ∝ Ng

∫ Ec

0

E
d−2
2 dE ∝ NgE

d
2
c , (2.5)

where Ng represents the total number of states. Finally we derived that N(E) ∝
NgE

d/2
c . This means the first state above the ground state E1 is supposed to appear

at 2 ∝ NgE
d/2
1 ↔ E1 ∝ N

−2/d
g . If we assume that we need an energy separation

of the order N
−1/2
g between the ground state, which shall correspond to |Φ0〉 in our

example, and E1, we have to perform the search in the space with d ≥ 4 (in the
large Ng limit). If the search is carried out in a space of lower dimension, i.e., d < 4,
one has to readjust the coupling to ensure the ’property of isolation’ of the two
states. Readjusting means that one has to lower the coupling to minimise ∆ and
this has to be paid by a larger search time ts. This is the reason why for d = 2
correction factors are needed which lead to no substantial speed up of the algorithms
(see details in [Chi04]).

It turned out however that a good idea to substantially improve the performance
of the algorithm is to perform the search in systems containing Dirac points (such as
graphene, see more details below), where the energy scaling in the vicinity of these

points is lowered to E1 ∝ N
−1/2
g due to the linear dispersion relation (see [Cas09]).

A rigorous mathematical derivation for a graphene-like lattice showed that there are
still some corrections which have to be included so that one obtains the search time
to scale with O(

√
N lnN) [Fou14] (see especially the supplementary material for the

derivation of the logarithmic corrections). The idea in this chapter will be to present
the first proof of principle experiment for a continuous two dimensional quan-
tum search using a graphene-like lattice arrangement (also called artificial graphene
according to [Bar13, Bel13a, Bel14]) of coupled dielectric disc resonators forming a
system obeying the tight binding description.

2.2.2 Quantum Search on a Linear Chain

To understand the underlying process of bringing a distributed grid state in res-
onance with a localised search state, we will use a linear chain of disc resonators
(grid) to which additional discs are coupled to. These additional discs are called
search discs (SDs) and their eigenfrequencies differ from the ones of the chain. The
localised eigenstate of each of the SDs is the one shown in figure 2.4. It corresponds
to what was introduced as |s〉 above. The search will be performed by exciting the
grid in the way described above. At some point in time the excitation energy will
be focused exclusively within the SD, i.e., in the localised eigenstate |s〉 of the SD
which is characterised by its individual eigenenergy Es which translates in our case
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Figure 2.6 – Left: Picture of the measurement of the chain containing 11 discs. Super-
imposed is the measured field |Bz| for the state which corresponds to the central frequency
of the chain (called Ψc in the text). Right: Reflection spectra 1 − |R|2 measured at an-
tenna 1 (kink antenna) for the search disc, the chain containing 11 discs and for the chain
containing 11 discs, where the search disc is coupled at. How this search disc is coupled
to the chain is indicated by the inset in the upper right corner.

to the eigenfrequency. Once this has happened the search successfully reveals the
SD with the eigenfrequency we have been looking for.

We start with a linear chain with a length of 11 disc resonators. The used chain
discs have an eigenfrequency of ν = 6.655 ± 0.003 GHz. If no SD is attached, the
measured reflection spectra using the kink antenna (denoted antenna 1 in figure 2.6)
looks like the one presented in figure 2.6 (black line). The spectrum is showing 11
resonances which correspond to the 11 non degenerated eigenvalues of the chain just
like it is the case for 11 coupled mechanical pendula.

In the following we investigate the central eigenfrequency of the chain. This is the
resonance (black line) between the two dashed lines in figure 2.6. The corresponding
central eigenstate Ψc can be written as

Ψc =
1

√
(N+1)

2

cos

(
m+ 1

2
π

)

with m = 1, 2, ..., N with N ∈ 2N + 1. (2.6)

The eigenfrequency of this state coincides with the eigenfrequency of a single disc
ν (see appendix A for a detailed derivation of Ψc and its eigenfequency). With
the loop antenna we can measure the intensity profile of Ψc, which corresponds
to Bz (see figure 2.6, left). We recognise that the measured pattern follows the
theoretical cosine function illuminating every second disc, which is also reflected by
its normalisation of 1/

√

(N + 1)/2 (see appendix A). The resonance of the SD can
also be measured (using the loop or the kink antenna). We can see from figure 2.6
that the resonance of the SD lies close to the central frequency of the chain. If we
bring now the search disc (eigenfrequency ν1 = 6.654 GHz) close to the chain in
the manner shown by the inset in figure 2.6, we force the two states to undergo
an avoided crossing. In our system we control the coupling of the SD to the chain
by lowering or altering the distance between the SD and the chain. The distance
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Figure 2.7 – Left: The result of the Fourier transform of the transmission signal T .
The black line denotes the result of the chain discs integrated over each 2nd disc. This
corresponds to |Ψc(t)|2. tB denotes the beating time which is the re-occurrence time of the
signal at the SD. The result of the Fourier transform at the SD is shown in red. The signals
are normalised such as |Ψc(0)|2 = 1. Right: The intensities of the Fourier transformed
signal which is obtained above each disc for given times ti.

between the disc and the chain is fixed to 14.7 mm, whereas the distance between
the chain discs is 11.4 mm assuring the strong coupling of the discs within the chain
and the weak coupling of the SD to the chain (see [Bar10] for details on the coupling
in such a system).

If we want to get from the frequency space to the time domain we have to apply
a Fourier transform to the measured transmission signals. We position the loop
antenna above each disc and measure the transmission from the kink antenna to the
loop antenna and afterwards we take this data and we perform a Fourier transform
in the frequency range indicated with the dotted lines in figure 2.6. The Fourier
transform reveals how the intensities of the two states develops. The result of this
Fourier transform for the chain with 11 discs, where an additional search site is
coupled to, is shown in figure 2.7. In this figure we see how the system evolves in
time. First, we excite the chain state Ψc, which is coupled to the SD. Then we
obtain a beating pattern between Ψc and the localised state of the SD. As we look
at intensities, figure 2.7 reflects only the envelope of the time development of the
beating. At t2 = 24 ns the energy focuses in the localised eigenstate of the SD. At
this point we have clearly found the SD within our system. The beating time tB is
defined as the time of the re-occurrence of the signal at the SD. This time can be
understood as twice the search time ts.

The question is how ts is scaling with the number N which is the number of used
discs in the chain. To account for the fact that just (N + 1)/2 discs are enlightened
we define an effective number of discs N ′ = (N + 1)/2. The discs which are not
enlightened would be ’blind spots’ anyway, i.e., to these discs we can not couple the
search disc. If we would try to couple the SD to such a blind spot the search would
fail.

We perform this kind of experiments for chain lengths ranging form N = 5 to
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Figure 2.8 – A log-log plot of the beating time tB as a function of N ′ = (N + 1)/2. The
errorbars are obtained taking multiple re-occurrences of the signal at the SD into account
(up to 3). Solid red line: square root dependence. Dashed line: linear increase.

N = 25 discs. The positions of the kink antenna and of the SD stayed untouched
throughout this process. Each time we performed a double Lorentzian fit for the
two resonances obtained in the N + 1 transmission measurements for the frequency
range which is indicated with dotted lines in figure 2.6. That the resonances follow
the description of Lorentzian functions can be seen from the Greens function defined
in equation (1.20), which holds for isolated resonances as it is the case in the current
set-up. This Lorentzian fit permits us to subtract the complex background coming
from the TM0 mode which is always present in the system (see section 1.1 and
especially table 1.1). Then the fitted Lorentzians are Fourier transformed to obtain
ts.

The error, which is indicated with errorbars in figure 2.8, is the standard devi-
ation of the re-occurrence times tB of up to 3 re-occurrences of the signal at the
SD for different chain lengths. The obtained N ′ dependency is shown in figure 2.8.
We see, that our obtained beating time tB (twice the search time) follows a

√
N ′

behaviour. This
√
N ′ factor refers to the normalisation of the chain state Ψc as it

was already discussed above. As long as we are not working in the large N limit,
this normalisation factor is dominant. The enlargement of the chain by adding more
and more discs will finally lead to the fact, that at some point another grid state
will enter our fixed frequency window. In order to overcome this problem, one has
to readjust the coupling, which in the end destroys the simple

√
N ′ behaviour for

larger N. We notice this effect already in the presented experiment. The growing
errorbar for growing N ′ is already an effect of other resonances coming close to
the frequency interval where the avoiding crossing takes place and consequently the
search becomes slower.

It turned out that working with the central frequency of the chain is a good idea
since it is distributed over the whole chain and it corresponds to the eigenfrequency
of the discs, i.e., we do not have to manipulate discs to change their eigenfrequency
towards the frequency of the chain state. However, as we have seen in appendix A,
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this state is only dependent on the eigenfrequency of the discs. This means especially
that it is not sensitive to a change of the coupling which would have been a nice
tuning parameter. The tuning parameter λ, which remains for the modification of
|Ψc〉, is the eigenfrequency of the discs forming the linear chain. One can think
of changing them by modifying the boundary conditions of the discs by placing
metallic objects on top as it was done in [Bar10]. One can even think about a
mechanical device of an array of metallic pins for example which can be positioned
simultaneously on top of the discs.

For a simple proof of principle experiment which should demonstrate how we
could search for more than one SD we placed another disc (SD 2) with a different
eigenfrequency of ν2 = 6.70 GHz next to the chain (11 chain discs), where we set the
distance of the SDs to the chain to be the same (14.7 mm), i.e, the coupling between
the SDs and the chain is the same. Note that this added SD can not interact with
the central state of the chain as its eigenfrequency is far away from eigenfrequency
of central state νc1 = 6.655 GHz. We follow the procedure above and measure
the transmission between the kink antenna and the loop antenna which is placed
above each disc and perform a Fourier transform around the central frequency of the
chain νc1 . Just like in the case before all the energy is concentrated in the localised
eigenstate of the upper SD demonstrating the actual identifying or finding of the
SD. Then we exchange all chain discs, which corresponds to changing our tuning
parameter λ, with 11 discs of an eigenfrequency around 6.695 GHz and we follow the
same steps as before. This exchange of chain discs tunes the central eigenfrequency
of the chain νc2 ≈ 6.695 GHz to the resonance frequency of SD 2, i.e., νc2 is close to
ν2.

As we can observe in figure 2.9 we do always find one of the search discs with
almost the same beating frequency as we fixed the coupling to be the same (the
error is in the 1σ-limit).

This experiment shows the principle of searching for multiple discs by bringing
a distributed grid state in resonance with a localised search state. This is always
possible as long as one has precise information about the eigenfrequency of the search
state and the control of a tuning parameter λ which one can tune to bring the grid
state in resonance with the search disc.

The results presented so far depend strongly on the fact, that we are not working
in the large N limit. Once one works with large system sizes, one has to use a grid
structure which prohibits the appearance of a state close to the frequency region
where the avoided crossing of the two relevant states takes place. This ensures that
the correction factor due to the adjustment of the coupling stays sufficiently low so
that the search time stays significantly below the one of a classical search. In the
following we will investigate a two dimensional lattice structure, a two-dimensional
honeycomb lattice, where we will show that this type of lattice is a good choice to
perform such quantum search experiments for larger systems. The system in the
following will contain about 10 times more discs than the system of the linear chain.
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ca. 38 ns ca. 40 ns

Figure 2.9 – Intensity for the search of two different discs using a chain of 11 discs,
where the eigenfrequency of the chain discs is tuned so that the central resonance of the
chain undergoes an avoided crossing either with the upper disc (Left) or with the lower
disc (Right). Starting point in time is when the signal arrives at the search disc for the
first time, i.e, we neglect the initial transport coming from the TM0-mode (as it can be seen
in the intensity pictures in figure 2.8 for t1 = 0). We showed for each case two pictures.
One is the picture where the total intensity is maximal for the localised eigenstate |s〉 of
the SDs characterized by their frequencies ν1 or ν2. The other one shows the case for
maximal intensity of |Ψc(t)|2.

2.2.3 The Honeycomb Lattice

Since we have a formal correspondence between quantum mechanics and the electro
magnetic system defined by disc resonators (see discussion above), we can make
use of a well known concept in quantum mechanics, Bloch’s theorem (A detailed
introduction on this subject can be found in [Kit53]). Bloch’s theorem comes into
play, when one looks at a system of periodically arranged disc resonators which
mimics a system of periodically arranged potentials (as already indicated in section
2.1.2 above).

The Hamiltonian H of such a system can be defined as

H =
N∑

l=1

Hl, with Hl = H0 + ∆V, (2.7)

where ∆V takes into account the contributions from neighbouring discs and H0

describes the Hamiltonian for a single isolated disc with its Bessel-like eigenfunctions
(called Φj in this section) described above. N is the total number of discs (N ≫ 1).
Such an Hamiltonian is referred to as tight-binding Hamiltonian as it assumes that
the total Hamiltonian can described as a sum of the ’local’ unperturbed Hamiltonian
H0 and additional potential contributions ∆V of neighbouring sites.

To solve the complete Schrödinger equation of the system HΨk = ǫkΨk we have
to introduce Bloch functions Ψk(r) (k stands for the vector of the quasi-momentum
in the Bloch formalism). For a system with two sites per unit cell we can write
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A
B

Figure 2.10 – Sketch of the honeycomb lattice consisting of two sublattices A (red) and B
(blue). a1 and a2 define the basis vectors of the unit cell of the Bravais lattice, which are
connected to the lattice constant a via a1 = a/2(

√
3, 3) and a2 = a/2(−

√
3, 3). The circles

mark the first, second and third nearest neighbours together with their coupling parameters
t1, t2 and t3 [Bel13a]

Ψk(r) as a superposition of two Bloch functions ΨA and ΨB such as

Ψk(r) = akΨA
k + bkΨB

k , with Ψj
k(r) =

∑

Rl

eikRlφj(r + δj −Rl), (2.8)

H0φ
j = ǫjφj, and

∫

dr2φ(j)⋆φ(j) = 1, (2.9)

where j = A,B labels the atom of the sublattices A and B. δj is the vector which
connects the Bravais lattice with the site of the j atom within the unit cell. The
definition of δj will help us to simplify the equations later on as it allows us to
connect the different sublattices. Rl is composed of the Bravais lattice vectors
Rl = mla1 + nla2, where ml and nl are integers (see figure 2.10). We multiply the
Schrödinger equation with Ψ⋆

k to obtain the hermitian Hamilton matrix HT B in the
Bloch basis (T B indicates the tight binding approximation).

Ψ⋆
kHΨk = ǫkΨ⋆

kΨk ⇐⇒ (a⋆k, b
⋆
k)HT B

(
ak
bk

)

= ǫk(a⋆k, b
⋆
k)ST B

(
ak
bk

)

, (2.10)

where the new Hamiltonian HT B and ST B are defined as

HT B =

(

Ψ
(A)⋆
k HΨ

(A)
k Ψ

(A)⋆
k HΨ

(B)
k

Ψ
(B)⋆
k HΨ

(A)
k Ψ

(B)⋆
k HΨ

(B)
k

)

=

(
HAA HAB

HBA HBB

)

= HT B
† (2.11)
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ST B =

(

Ψ
(A)⋆
k Ψ

(A)
k Ψ

(A)⋆
k Ψ

(B)
k

Ψ
(B)⋆
k Ψ

(A)
k Ψ

(B)⋆
k Ψ

(B)
k

)

= ST B
†. (2.12)

Explicitly for the entries of HT B we find:

Hij
T B =

∑

RlRm

eik(Rl−Rm)

∫

dr2φ(i)⋆(r + δi −Rm)Hlmφ
(j)(r + δj −Rl)(2.13)

= N
∑

Rl

eikRl

∫

dr2φ(i)⋆(r)[H0 + ∆V ]φ(j)(r + δij −Rl) (2.14)

= N(ǫ(j)sijk + tijk ), (2.15)

where δij = δj − δi is connecting site i with site j in the unit cell (see for example
δAB in figure 2.10). sijk and tijk are defined as

sijk =
∑

Rl

eikRl

∫

dr2φ(i)⋆(r)φ(j)(r + δij −Rl) = S i,j
T B/N, (2.16)

tijk =
∑

Rl

eikRl

∫

dr2φ(i)⋆(r)∆V φ(j)(r + δij −Rl). (2.17)

We introduce names to determine the couplings. f1, f2 and f3 name the first, second
and third nearest neighbour coupling contribution, respectively. Couplings of higher
order are not included in the following. Therefore the summation terms for Hij

T B

reduce to

HT B =

(
ǫA + f2(k) f1(k) + f3(k)

f1(k) + f3(k) ǫB + f2(k)

)

. (2.18)

The two sublattices A and B are identical such that ǫA = ǫB = ǫ0. Note that we
assumed

sAB
k = 0 assuming

∫

dr2φ(A)⋆(r)φ(B)(r + δAB) ≈ 0, (2.19)

which would lead to small corrections for the tijk , which are neglected in our case.
If we assume an infinite honeycomb lattice, it is a good idea to take the symmetry
of the lattice into account and to define coupling parameters t1, t2 and t3 (indices
refer to the indices of fi, see also figure 2.10) as

− t1 =

∫

dr2φ(A)⋆(r)∆V φ(B)(r + δAB),

− t2 =

∫

dr2φ(A)⋆(r)∆V φ(B)(r + a1),

−t3 =

∫

dr2φ(A)⋆(r)∆V φ(B)(r + δAB + (a1 − a2)). (2.20)

Refer to figure 2.10 for the definition of δAB.
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This simplifies the definition of the fi to

f1(k) = −t1(1 + eika1 + eika2),

f2(k) = −2t2

(

cos (ka1) + cos (ka2) + cos (k(a1 − a2))
)

,

f3(k) = −t3(eik(a1+a2) + eik(a1−a2) + eik(a2−a1)). (2.21)

The energy spectrum of ǫ(k) of HT B can immediately be determined by calculating
the eigenvalue spectrum of HT B, i.e,

ǫ(k) − ǫ0 = f2(k) ± |f1(k) + f3(k)|. (2.22)

We end up with two energy bands which touch for f1 = f3 = 0. This point is called
Dirac point k = KD and it is defined by KD ·a1 = ±2π/3, KD ·a2 = ∓2π/3. One
can calculate that ǫD = ǫ(KD) = ǫ0 + 3t2 (compare with [Ben11, Kun11, Bel13a]).
Once one has found a relation to describe the energy dispersion relation ǫ(k) it is
worth looking at the density of states (DOS), which denotes the number of states per
energy unit as can be seen from its definition for the case of a continuous dispersion
relation in two dimensions:

DOS(ǫ) = ρ(ǫ) ∝
∫

d2k δ(ǫ− ǫ(k)), (2.23)

where δ denotes here the Dirac delta function. Figure 2.11 shows how the DOS for
a honeycomb lattice looks like. Especially one can visualise the effect, when second
and third nearest neighbour coupling (t2 and t3) kicks in. If second and third nearest
neighbour coupling are considered, ǫD is shifted and the former symmetrical shape
of the bands is destroyed. This can also be observed experimentally for honeycomb
lattices of our dielectric resonators [Bel13a].

Figure 2.11 – Density of states DOS for an infinite honeycomb lattice for two sets of
coupling parameters ti. Gray area: DOS for t1 = −1 and t2 = t3 = 0; Red curve: DOS
for t1 = −1, t2 = −0.1 and t3 = −0.05. ǫD denotes the Dirac point where the two energy
bands touch [Bel13a]

.
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2.2.4 Graphene

A famous material showing the honeycomb lattice structure described above is grap-
hene. Graphene became famous for the possibility it offers to modify its charge
carrier density by applying a simple gate voltage [Nov04]. From then on the idea
was born to create electronic devices based on graphene structures. It was shown
that the fabrication of graphene-based transistors is indeed feasible [Lin10].

Graphene is made from carbon atoms which form a two dimensional honeycomb
lattice, exactly like the one shown above (see figure 2.10). The atomic ground state
for carbon is 1s22s22p2, i.e., each orbital 1s, 2s and 2p (there are three p-orbitals
px, py and pz) is occupied with 2 electrons. The inner shell consists of 1s and the
outer shell of 2s and 2p. One possible excited state of carbon is 〈2s, 2px, 2py, 2pz〉.
The excitation energy of this state is rather low ≈ 4 eV [Roh94]. This energy can
be easily paid by forming covalent bonds with an hydrogen or an oxygen atom for
example. This is why carbon forms the basis of organic chemistry.

Atomic orbitals can also hybridise to form other structures. The interesting hy-
bridisation in the case of graphene is the sp2 hybridisation of the carbon atoms. This
means the 2s orbital and two 2p orbitals form new hybridised orbitals (|sp21〉 , |sp22〉
and |sp23〉) which are oriented in the xy-plane and which have a mutual angle of 120◦.
This angle enables the carbon to form honeycomb structures. An arrangement of six
carbon atoms which are sp2 hybridised can form a perfect hexagon. If the remaining
sp2 orbital is bond with an hydrogen atom, one speaks of benzene, which consists
of 6 carbon atoms forming a hexagon and 6 added hydrogen atoms. The remaining
p-orbital is oriented in the z direction and it is able to form an additional bonding
(π-bond) with neighbouring carbon atoms. There are three of these π-bonds in
benzene and they are delocalised.

The hydrogen atoms can be replaced by other carbon atoms which form them-
selves honeycomb structures and in the end one observes a two dimensional crystal of
carbon-hexagons with totally delocalised p-electrons (forming the π-bonds). Such
a crystal structure is called graphene. This was just a very brief introduction to
graphene and its application. More information can be found in [Cas09,Ali16].

We already calculated the DOS of graphene (see section 2.2.3) when we inves-
tigated the honeycomb lattice. It remains the question: how can we measure this
density of states in our experiment? In chapter 1 we showed that the scattering
matrix entries can be obtained using antenna measurements. The local density of
states ρ(r, ǫ) for a discrete number of isolated states follows [Stö99]:

ρl(r, f) = − 1

π
Im(Ĝ(r, r, f)) =

∑

n

|Ψn(r)|2δ(f − fn). (2.24)

We used here Ĝ(r, r, f) and not Ĝ(r, r, k) as it was defined in chapter 1. But this
changes only constants and is not of greater importance. We replaced also ǫ by f
which also leads to changes in constants only. The local density of states contains
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only the information of such states with |Ψn(r)|2 6= 0. Assume for example you
excite a two dimensional crystal at a point r̃, where a certain state is 0 meaning
that |Ψl(r̃)|2 = 0. This state will not be accounted for in the local density of states.
Thus, the full information of the DOS is only obtained measuring the local density
of states throughout the whole crystal. The total density of states ρ(ǫ) is then
recovered using

∫
dr ρl(r, f).

The connection between the observables in our experiment and the local density of
states is the g-function [Bel13a]:

g(r, f) =
|Sii(f)|2

〈|Sii(f)|2〉f
ϕ′
ii(f) (2.25)

with ϕ′
ii =

Im(S ′
ii)Re(Sii) − Im(S11)Re(S ′

ii)

|Sii|2
. (2.26)

The index i denotes the antenna such that 1 indicates the kink antenna and 2
denotes the loop antenna. Sij follows the definition given in chapter 1 for attached
antennas. Thus S22 corresponds in our set-up to the reflection measurement at the
loop antenna. Variables which are derivatives with respect to the frequency are
marked with a (′). The brackets 〈...〉f indicate an average over the whole frequency
range. It was shown that g and ρl(r, f) are linked following [Bel13a]:

g(r, f) = − γ

Γ 〈|Sii|2〉
ρl(r, f) = − γ

Γ 〈|Sii|2〉
∑

n

|Ψn(r)|2δ(f − fn). (2.27)

The modulus of the eigenstate Ψn can be obtained by taking the maximum value
of g at the frequency fn. The factor −γ/(Γ 〈|Sii|2〉) renormalises ρl (see equation
(1.19) for the definition of Sii, γ and Γ). Thus the effects coming from neighbouring
resonances and the opening of the system due to the antennas are taken into account.
These effects are important as they modify the baseline.

Finally we got an idea on how to measure the DOS for our dielectric disc system.
The graphene-lattice we are going to investigate is shown in figure 2.12. We will
position the moveable loop antenna (orange circle in figure 2.12) above each disc
and measure the reflection, which corresponds in the chosen notation to S22, in the
frequency range shown in figure 2.12. This allows us to calculate the g-function
according to equations (2.25, 2.26), which refers to the local density of states in the
way shown above. Since we measure at all disc positions we have the full information
about the DOS, which is calculated by integrating the local density of states over all
obtained positions. We end up with the DOS shown in figure 2.12 for a graphene-like
lattice of 216 dielectric discs.
We chose a lattice with special edges, so called armchair edges. These edges are
chosen, because honeycomb lattices with these edges do not have ’edge-states’ whose
energies lie typically at or close to the Dirac point and which are mainly localised at
the boundaries of the lattice (see [Bel14] for a detailed discussion). As we want to
perform the quantum search close to the Dirac point using a distributed grid state,
the appearance of these localised edge states should be avoided.
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Port 2

Figure 2.12 – Left: Sketch of the graphene-lattice of 216 discs. The distance between the
discs within the flake is 10 mm. The orange circle indicates the moveable loop antenna,
which is connected to port 2 of the vector network analyser. Right: Measured DOS for
the shown lattice. The DOS is normalised so that the frequency integral is equal to one
(
∫
ρl(r, f) dr/

∫
ρl(r, f) drdf). The Dirac point energy ǫD is indicated according to the

previous section. Later on, we will add two dimer discs (lower resonance of this dimer is
indicated with fdim) and a single disc (resonance is indicated with fsing) (see section 2.2.5
and figure 2.13).

2.2.5 Quantum Search on the Graphene-lattice

As we are now able to identify the Dirac point, the point where the two bands merge
(see figure 2.12). We can look for isolated resonances in its vicinity to find distributed
grid states to perform the quantum search. Indeed looking at the measured DOS
(figure 2.12) we can identify two isolated resonances. One above and one below
the Dirac point. We will use two different localised search states to couple to these
isolated grid states. One localised state will be the lowest state of a two disc system.
Two coupled discs form what is called a dimer. Such a dimer shows, just like
two coupled pendula, two eigenstates, a totally symmetric state and a totally anti-
symmetric one. One has a good experimental control of these two appearing dimer
resonances. Their eigenenergies (resonance positions) can be easily modified just by
changing the intra dimer distance between the two discs [Bar13]. The eigenfrequency
of the lower dimer state is indicated with a dashed line denoted with fdim in figure
2.12. The other localised state we are going to use is the one of a single disc, whose
eigenfrequency is close to a resonance above the Dirac point. The eigenfrequency of
the single disc is marked with a dashed line (denoted with fsing) in figure 2.12.

Experimentally we established the same situation as before for the quantum
search on the linear chain (see section 2.2.1). Again we will measure the transmission
between the kink antenna and the loop antenna which is positioned above each disc
(see figures 2.12 and 2.13). Once we have the full transmission information we can
perform a Fourier transform to get the time development of the beating between the
grid state and the search state. We will perform two separate Fourier transforms
for small frequency windows ([6.611 GHz, 6.622 GHz] and [6.630 GHz, 6.639 GHz])
around the dimer resonance and around the single disc resonance. The result of this
procedure is shown in figure 2.14.
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Figure 2.13 – Picture of the set-up of the used graphene-lattice (compare with figure
2.12), where we added two discs forming a dimer (top) and a single disc (bottom) carrying
the localised search states. The intra dimer distance is 9.5 mm.

Single disc

Flake/5

Dimer discs

Single disc search Dimer search

Figure 2.14 – Result of the Fourier transform for the two frequency windows around the
two search states (see details in the main text). The single disc search is shown on the left.
The dimer search is shown on the right. The black line is the integrated intensity of the
Fourier transform of the transmission matrix T

∫
|FT (T )|2dxdy over the disc positions

(x, y) of the graphene lattice divided by a factor of 5 to make it easier to compare it with the
other signals. The red(blue) line(s) is(are) the intensity(intensities) at the single disc(the
dimer discs). The normalisation is done such that

∫
|FT (T )|2dxdy = 1 for all times

(integration is done over all disc positions).

The signal is at first localised in the grid (≈ 98%) for both search cases. In the case
of the single disc search the signal arrives after 142 ns at the single disc, where it
shows up as a localised state (see left hand side in figure 2.15). About 35% of the
intensity localises at the disc. Which is far more than the intensity at any other
given disc in the system (≈ 65/216%). This means we have undoubtedly found the
single disc within our system. The fact that we reach about 35% and not 100%
shows already that our frequency window we chose to create the time information
already contained small contributions from other grid states, which nevertheless did
not lead to a fail of the quantum search!

The same localisation takes place for the case where we search for the two dimer
discs, where the intensity localises to 25% at the dimer discs, which is still enough to
do a clear distinction between them and the rest of the grid as we can see in figure
2.15.
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Figure 2.15 – Intensity |FT (T )|2 plot showing the intensity distribution over the grid
for the time when the search state is found. Left: The case where we search for the single
disc (bottom of the lattice). Right: The case where we search for the dimer discs (top of
the lattice).

One might ask why the search states are found at to different times, whereas the
distance of the search items (dimer and single disc) is the same (12 mm see figure
2.14). To understand the difference in the search time one has to consider that the
grid state we are using (states close to the Dirac point) are not necessary states
which are uniformly distributed over the grid. It can be even worse in some cases.
The grid states might include sites (discs) of 0 intensity. A search state coupled to
these ’blind spots’ can not be searched for as we already explained for the linear
chain case. This is not the case for our graphene-lattice states as we see a clear
localisation. The coupling of the search state and the grid state, however, which is
proportional to 〈s|Φ(λ)〉, does not have to be same for the two search cases neither.
Therefore we end up with two different search times for the two cases. Note that
the point of the excitation of the grid state must not be a blind spot of the grid
state either, if one wants to perform a quantum search with this kind of set-up.

Thus, one has to take carefully into account where one places the
search items and where one excites the grid state, if one is working with
a non-uniform-distributed grid state. Our experiment can even be seen as
a kind of switch. Depending on the energy with which one excites the grid, one
can either direct a signal to one side of the flake or to another if one uses another
excitation frequency. Therefore one could interpret the graphene-lattice itself as a
switch directing a signal to a certain location.

In principle the defects can also be placed inside the grid [Fou14]. It was demon-
strated that the search is still possible if one can achieve a small coupling between
the search site, which is placed directly inside the lattice, and its neighbouring
sites [Fou14]. In our experiment this is not a simple task, because if we introduce
a search site into the grid, the coupling to the neighbouring discs are automatically
defined by the distances between the search disc and its neighbours. Therefore we
have no parameter to adjust the coupling with the current set-up. But one can think
of course of modifying the set-up. One can introduce for example an antenna where
the coupling is adjustable (by changing the length of the antenna for example) at
the position where the search disc should be positioned in the lattice. This antenna
could be connected with another antenna and this second antenna can be placed
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in the vicinity of the search disc. By using two antennas with adjustable couplings
we have again the possibility to establish an adjustable coupling between the search
disc and the grid which can be tuned to be small enough so that the search can
work.

2.3 conclusion

In this chapter we showed that the quantum search is an interesting transport phe-
nomena, which can be carried out in our tight binding analogue of coupled dielectric
discs. I tried to convey the idea that one can understand our system of coupled di-
electric resonators as a system of potential wells. We looked closely at the concept
of quantum search which is a wave phenomenon using interference of an distributed
lattice state |Φ0〉 with a localised state |s〉. We could search for this localised state
by exciting the lattice state to which the localised state couples and then look at
the resulting beating pattern. At some point during this beating process the wave
localised at the search state. We observed that the search time ts can be understood
as half of the beating time, which is defined by the re-occurrence time of the signal
at the search state.

At first we investigated a linear chain of dielectric discs. To this chain we cou-
pled an additional disc which represented the search state we wanted to look for.
We demonstrated explicitly for a chain of 11 discs that we are able to make the
distributed state of the lattice interact with the localised state of an additional disc,
which resulted in the described beating phenomenon.

In a second step we enlarged these linear chains and investigated how the search
time ts depended on the total number N of chain discs. We found the theoretically
predicted dependency of ts ≈

√
N , where we varied N between 3 and 13. Using the

chain arrangement of discs and two different search sites we demonstrated how a
search for different sites can be performed.

In the following, we changed the lattice from a simple linear chain to a honeycomb
lattice, which could be seen as an analogue of a graphene lattice. One speaks in this
context of artificial graphene.

The graphene lattice with its Dirac point and its linear energy dispersion around
this point is a two dimensional structure where en effective quantum search can be
performed [Fou14]. We presented in a proof of principle experiment using 216 discs
forming a graphene-lattice, that indeed a quantum search in the vicinity of this
point can be performed. We even paved the way for a possible application of the
quantum search by connecting it to the idea of a graphene based switch. Adjusting
the frequency of the grid excitation we can direct a microwave signal to different
additional sites located at the borders of our graphene-lattice. Our findings in this
chapter can also be found in [Böh15]. During my PhD thesis I was also implicated in
the implementations of what is called a two dimensional Penrose-tiled quasicrystal.
More information on this topic can be found in [Vig16].
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Contents
3.1 Wigner-Smith Time Delay Operator . . . . . . . . . . . 48
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3.4 Construction of the Q-Operator - A Practical Ap-
proach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

We will now leave the context of transport in open cavities and look at transport
phenomena in waveguide systems (see section 1.1). In this chapter I will lay down
some theoretical concepts which have been developed to extract certain informations
from a scattering system by looking at its scattering matrix S (see section 1.2).
This information will help us then to use wave front shaping techniques described
in chapter 4 to form a special input, which leads to an interesting behaviour of this
wave front travelling through the system.
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3.1 wigner-smith time delay operator

Eisenbud, in his PhD thesis [Eis48] from 1948, investigated the scattering of wave-
packets during a collision process. He demonstrated that their time-delay ∆t was
related to the energy derivative of the scattering phase δ. He found:

∆t = ~
dδ

dE
.

The same result was further discussed in [Boh51] by Bohm and later on also obtained
by Wigner 1955 [Wig55] (with a difference of a factor 2).

Finally, in 1959 Smith proved an alternative approach of the hermitian lifetime
matrix Q which describes the residence (life) time of a scattered wavefunction Ψ in
a quantum mechanical system [Smi60]. He used directly the energy derivative of the
scattering matrix S (as it was defined in section 1.2) and showed that Q is related
to S as a function of the energy E by

Q = −i~S† dS

dE
.

In general, Q is called the Wigner-Smith time delay operator or alternatively Eisen-
bud-Wigner-Smith operator. It can be represented as a matrix, the so called Wigner-
Smith time delay matrix (WSTDM), if one assumes that S denotes the scattering
matrix given in a certain basis (plane wave basis for example, as in section 1.2).
If one assumes that the scattering matrix S is unitary meaning S†S = 1 (1 is the
identity matrix) one can deduce that:

dS†S

dE
=

d1

dE
= 0

⇒ dS†S

dE
=

dS†

dE
S + S† dS

dE
= 0

⇒ dS†

dE
S = −S† dS

dE
⇒ Q† = Q. (3.1)

This means that the WSTDM for unitary scattering matrices S is hermitian and
posses only real eigenvalues. Because of its hermiticity one finds sometimes alterna-
tive expression for Q like in [Rot11]:

Q = i~
dS†

dE
S.

The scattering matrix normally contains all informations about the scattering sys-
tem, i.e., it contains the reflection parts Sii and the transmission parts Sij (see
section 1.2). Regarding experiments, one has often access to the transmission quan-
tities Sij (T , T ′) only (see definition in section 1.2). This inspired Ambichl and
Brandstötter to define an operator similarly to the WSTDM, but taking into ac-
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count only the transmission matrix T . They called their operator the q-operator
(see [Amb12,Bra16,Gir16]):

qα = −iT−1(α)
dT (α)

dα
. (3.2)

They introduced their operator depending on a parameter α. If this parameter α
is the energy/frequency, we recover information about the time a scattering state
stays within the scattering area as we will see in section 3.3 and chapter 6. The new
idea is that α can be a coordinate in space. The eigenvalues of such a q-operator
can be associated with a kind of momentum transfer (see section 3.3). T−1 denotes
the inverse matrix of T (see details in section 3.4).

3.2 the derivation of the q-operator

In the following I explain how Ambichl and Brandstötter came up with the idea of
the q-operator. The transmission matrix T maps incoming channels j onto outgoing
channels o (see section 1.2). These channels can correspond to open modes or to
single antenna sources when one thinks in terms of local excitation.

The transmission matrix T and the output o shall depend on a parameter α so
that

o(α) = T (α)j. (3.3)

The input j is assumed to be constant with regard to α (j(α) ≡ j). The input is
freely adjustable as we will demonstrate in section 4.2.3 where we perform simple
input shaping/wave shaping experiments.

The Taylor expansion of o(α) around an value α0 yields:

o(α) ≈ o(α0) +
do

dα

∣
∣
∣
∣
α0

∆α (3.4)

j(α)≡j

≈ T (α0)j +
dT (α)

dα

∣
∣
∣
∣
α0

j ∆α. (3.5)

∆α is a small change of the parameter α. We demand in the following that the zero
order and the first order term differ not in orientation but only by a complex factor
c adding a phase and an amplitude to the vector components. Our demand can be
formulated as

T (α0)j = c
dT (α)

dα

∣
∣
∣
∣
α0

j ∆α. (3.6)

We can transform this in an eigenvalue problem by multiplying both sides with
T−1(ic∆α)−1:

− iT−1(α)
dT (α)

dα
j = λj, (3.7)

where λ is defined as λ = (ic∆α)−1.
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Chapter 3. The Q-Operator

The left side of equation (3.7) can be identified as the q-operator defined in equa-
tion (3.2). The eigenvectors of the q-operator iq are also called q-states following:

qαjq = λqjq, oq = Tjq. (3.8)

Note that qα in general is not Hermitian any longer, i.e., its eigenvalues
are complex. The assumption used to get to equation (3.6) is widely used in op-
tics for example, where the q-state correspond to so called principal modes [Fan05],
where α is replaced by the frequency. These modes remain by construction in first
order approximation unaffected by small frequency changes and so they are of great
interest for multimode-fiber-communication where they help to avoid dispersive ef-
fects.

3.3 eigenvalues of the q-operator

To understand the meaning of the eigenvalues λ of the q-operator, one can rewrite
equation (3.7) into:

−i
dT (α)

dα
j = λT (α)j

−i
do

dα
= λo. (3.9)

We can decompose the output o into its amplitude |o| and phase φ so that o =
|o(α)|eiφ(α). The derivative of o leads to:

do

dα
=

d|o|
dα

eiφ(α) + io
dφ

dα
(3.10)

(3.9)
= iλo. (3.11)

Therefore we can derive for the eigenvalues λ by dividing equation (3.10) and equa-
tion (3.11) by io to obtain:

λ =
dφ

dα
− i

dln(|o|)
dα

. (3.12)

Equation (3.12) is showing that the real part of the eigenvalue is determined by
the change of the phase of the output which is also referred to as scattering phase,
whereas the imaginary part is determined by the change of the amplitude of the
output.

If α corresponds to the angular frequency ω = 2πf (energy), the derivative of
the scattering phase dφ/dω is related to the travelling time (delay time, see equation
(3.1) and section 6.1.1 for more details) of the state passing through the scattering
part of the system and the imaginary part of the eigenvalue explains how strong the
scattered amplitude |o| is influenced by small frequency changes. I want to give a
first and simple example illustrating the connection between the derivative of the
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3.3. Eigenvalues of the Q-Operator

scattering phase and the travelling time (time delay). Let us assume that we have
a plan wave with a wavenumber k travelling freely in x-direction. This wave can be
described via:

P (x) = Ae−i(kxx−wt) = AeiΦ with kx =
√

k2 − k2y =

√

ω2

c2
− k2y, ω = 2πf.

(3.13)
We assumed here an additional quantisation in y-direction which can also be set to
0. But with this example we follow the description of sinusoidal waves in a quasi
one dimensional waveguide, which we will come across again in chapter 4. For the
moment ky is nothing else than just a quantisation number.

If there is no scattering and no absorption, the wave propagates freely and ac-
cording to equation (3.13) we get for the phase Φ of the wave at the position L,
where L is the position where the output is defined:

Φ = kxL =

(√

ω2

c2
− k2y

)

L.

We set t = 0, because we are just interested in the phase change accumulated while
travelling a certain distance L. This phase is indeed the scattering phase as we can
write:

P (x = L) = TP (x = 0) → T = 1e−iΦ, (3.14)

where T is the transmission matrix describing free propagation with no absorption.
The derivative of the transmission/scattering phase yields

dΦ

dω
=

ωL

c2
√

ω2

c2
− k2y

=
L

c

ω
c

√
k2 − k2y

=
L

c

k
√
k2 − k2y

. (3.15)

Classically we can assume that the travelling time t equals L/vx, where vx is the
speed in x-direction. We know that

kx
k

=
vx
c
, (3.16)

so we derive for the travelling time t, which is the time the wave needs to get to
position L.

t =
L

vx
=
L

c

k

kx
=

L

c

k
√
k2 − k2y

. (3.17)

Comparing equation (3.15) and equation (3.17) for our rather simple example one
can understand the accordance of the travelling time t of the plane wave and the
frequency derivative of the phase. A general derivation of the connection of the
travelling time (time delay) and the derivative of the phase in the presence of a
scattering potential can be found in section 6.1.1.

No matter the parameter α, looking at equation (3.12) makes clear that a q-state
with |λ| ≪ 1 is not sensitive to the variation of the parameter α.
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If we assume for example that α represents the position x of an obstacle/scatterer
within the scattering region, one can understand that q-states with small eigenvalues
λ are less sensitive to the movement of this obstacle. We assume here of course that
the size of the shift ∆x is small compared to the used wavelength. Such types of q-
states try to avoid the region of the obstacle (as we will see experimentally in section
4.3). Whereas for q-states with high values of λ the q-states focus on the central
scatterer so that they are strongly affected by changing the scatterer position.

For the case α = x one can look at the example of a travelling plane wave, as well.
Here the scattering phase derivative dΦ/dx can be understood as a measure of the
momentum change (momentum flux change, see [Bra16] for a detailed derivation). If
momentum is conserved, one can also speak of a momentum transfer onto a certain
target which is positioned at x.

3.4 construction of the q-operator - a practi-

cal approach

To calculate the q-operator qα, one needs to evaluate T−1. If T is singular or not
quadratic, the inverse of T cannot be computed. This could be the case if a transport
channel (for example a mode) is not transmitted or if one has more outgoing channels
than incoming or vice versa.

The first step of computing T−1 is to compute its singular value decomposition
so that T can be described as:

T = UΣV † with Σ : diagonal matrix. (3.18)

U, V denote complex unitary matrices. Σ is real and diagonal. If T is of the form
(nout × nin), U has dimensions (nout × nout) and V has dimensions (nin × nin). Σ is
a (nout × nin)-matrix and contains the singular values σi.

These singular values σ introduce a kind of hierarchy as high singular values can
be related to transmitting states showing high transmission.

We can look at the following example. Let us assume that nout < nin and Nb

transport channels are blocked or are very low transmitting. If Nt = min(nin, nout),
we have Nt −Nb = N sigma values which are non zero. We can order the N sigma
values such that σ1 > σ2 > · · · > σN and Σ looks like the following:

Σ =








σ1 0 0

0
. . . 0
0 σN

0
. . . . . . 0







.
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Transmission channels States
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Figure 3.1 – Scheme of reducing T to a subspace consisting of high transmitting states.

If T is diagonalisable, i.e., Nb = 0 and nout = nin, σi correspond to the i-th
eigenvalue of the transmission matrix T . In this case σ1 corresponds to the scattering
state (eigenvector of T ) showing the highest transmission.

If Nb 6= 0 or nout 6= nin we restrict ourselves to a reduced Σ which we call Σ̃ and
which contains only the N singular values which differ from 0. The dimension of Σ̃
is (N ×N). We define new transformation matrices Ũ and Ṽ which correspond to
the non zero σ-values. If we consider, for example, only the highest two σ-values to
differ from 0, Ũ and Ṽ are constructed from the original U and V by

U =

(()()

︸ ︷︷ ︸

Ũ

· · ·
)

, V =

(()()

︸ ︷︷ ︸

Ṽ

· · ·
)

(3.19)

and we define the following transformation of T to get an invertible matrix by

T̃ = Ũ †T Ṽ , T ′ = Ũ T̃ Ṽ †. (3.20)

By construction we defined with this transformation a quadratic and diagonal matrix
T̃ which is therefore invertible. We are now working on a subspace of the original
transmission channels. This is schematically illustrated in figure 3.1. To define this
subspace in the original basis of T, which was of the form (nout × nin), we have to
re-transform T̃ :

Tq = Ũ
(

Ũ †T Ṽ
)

Ṽ †. (3.21)

Tq is a reduced transmission matrix differing from the original transmis-
sion matrix T . Tq respects only high transmitting channels. Note also that
T−1
q remains invertible since it is defined by

T−1
q = Ṽ

(

Ũ †T Ṽ
)−1

Ũ †. (3.22)
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Note that Ũ †T Ṽ is per construction invertible and that especially for Ũ and Ṽ it is

Ũ †Ũ = 1
nr×nr , Ũ Ũ † 6= 1,

Ṽ †Ṽ = 1
nr×nr , Ṽ Ṽ † 6= 1.

Finally, equations (3.21, 3.22) allow us to clearly define the q-operator using only
the reduced transmission matrix Tq as

qα = −iT−1
q

dTq
dα

. (3.23)

We are dealing now with a subspace of the transmission matrix meaning
that the eigenvector of the q-operator does not necessarily have to be an
eigenvector of the original transmission matrix! The construction might not
be unique, but it allows us to deal with systems showing a singular or non-quadratic
transmission matrix. The construction depends on how many singular-values σ are
taken into account.

We will see that this restriction is not a real restriction as we can still iden-
tify scattering states with special characteristics (see sections 4.3 and chapter 6).
The scattering states in which we are interested are so called noiseless states of the
transmitting type. These states, such as the particle-like scattering states for ex-
ample (see chapter 6), are mainly living in the high transmitting subspace of the
transmission matrix (as it is also discussed in [Two03,Sil03]).

It might happen that the distribution of the σ-values does not allow to define
a clear cutting value for the small sigma values belonging to the low transmitting
channels. In this case it is recommended to take into account all possible σ-value
decompositions and to look at all the resulting eigenvalues of the q-operator. Since
the real part and the imaginary part of these eigenvalues can be related to physical
quantities, i.e., the time delay (see above), one can distinguish the resulting q-states
in a second step according to these physical properties.
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In the last chapter we have seen that we need experimental control about the
input to generate specific scattering states, q-states, with a specific output. De-
signing the input to obtain a certain output is exactly in the spirit of wave front
shaping. I will start to describe the basic idea behind wave front shaping and the
microwave experiment (a quasi-one-dimensional waveguide) with which we are go-
ing to perform the shaping of the initial wave front. In section 4.2.6 the goal is to
generate pure sinusoidal modes at the output, whereas in section 4.3.2 our aim is to
focus or defocus microwaves on a target within the scattering region using only the
information provided by the transmission matrix of the system. The results of this
chapter will finally give us the possibility to create so called particle-like scattering
states in a two-dimensional cavity (see chapter 6). But first of all we have to look
closer in the basics of wave front shaping.
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Chapter 4. Wave Front Shaping

4.1 the basic idea

Wave front shaping (alternative names: wave field shaping, optical phase conju-
gation) is a vast field and applied in many domains such as laser optics [Vel07,
Mos12,His13,Nix13,Cha14,Ami16], the microwave domain [Hen04,Kai14,Dup15] or
biomedicine [Hor15]. The typical set-up with which one performs wave front shaping
is shown in figure 4.1.

Input

System

Output

Feedback

Figure 4.1 – Sketch of a typical wave front shaping set-up.

One needs to have an adjustable input, i.e., access to parameters pi with which one
is able to tune the input. These adjustable parameters for the input can be either
phases or amplitudes or both. Phases and Amplitudes are nowadays controlled by
spatial light modulators (SLMs) in optics or by IQ-modulators (see section 4.2.4)
and spatial microwave modulators (SMMs) [Dup15] in the microwave domain. Once
the input parameters are fixed one can emit a wave front which travels through a
scattering system (like a strongly scattering opaque medium [Vel07]). After pass-
ing this scattering area an output is created depending on the properties of the
scattering system.

The task is to optimise this very output. This optimisation can have different
meanings. One might be interested in focussing the signal onto a specific point
[Vel10] or in avoiding a certain point or region in the scattering system (see section
4.3 and [Kai14]) or in having no output at all (see coherent perfect absorber in
section 4.3.4). To reach these goals one needs to adjust the input parameters pi.
This can be done by linear optimisation algorithms, that is to say one changes a
single parameter, p1 for example, and one studies the changed outcome. If the
outcome improves, in the sense that the output comes closer to what one wanted
to achieve, one keeps the change of the parameter p1. If one worsens our output
one change p1 back to its initial value. In the next steps one goes through the other
parameters in the same manner. After iterating this process for some time one
might come to a point where no further improvement is achieved. This is normally
the point when one stops the optimisation process. It is evident that one needs to
establish a permanent feedback loop to do this kind of optimisation. (see [Kai14]
for a deeper understanding of this optimisation process)

In this work we will present results which go beyond the tuning on the output
by means of this kind of linear optimisation. The optimisation applied in our exper-
iment is not based on an iterative optimisation routine, but on a single transmission

56



4.2. Quasi-One-Dimensional Waveguide

measurement, which is our basis measurement containing all the needed information
to achieve various goals like avoiding a region (see section 4.3) or creating particle
like scattering states (see chapter 6). But still we apply the basic concept of wave
front shaping which is to tune the input based on the information of the output.

The role of what we called system before is played in this chapter by a multi-
mode rectangular microwave waveguide with a tunable array of antennas as input
(we make use of IQ-modulators) and variable scanning antennas to measure the
output. Another concept I like to mention in this context is the concept of time-
reversal [Fin92,Ler04], where the signal at the output is put in a memory, reversed
in time and then send back into the system to create a specific behaviour at the
input itself (see figure 4.2).

Input
System

Output

InputOutput
Memory

Time reversed 

signal

Figure 4.2 – Sketch of a of time reversal set-up.

This concept is quite similar to the one we are going to use. Similarly to our system
the time reversal process is based on a ’basis’ measurement which is basically the
transmitted/reflected signal in the time domain, which contains all the necessary
information.

4.2 quasi-one-dimensional waveguide

4.2.1 Experimental Realisation

The experiment we are investigating in the following is designed to measure the
transport of microwaves in a metallic multi-mode cavity. Our waveguide with a
height of H = 8 mm, a total length L = 2.38 m, a width W = 10 cm and an inter-
antenna distance of La = 1.50 m meets the waveguide condition which is defined
as

H ≪ W ≪ L. (4.1)

We have seen in section 1.1, that one distinguishes between two types of propagating
modes in a rectangular waveguide system (polarisation of the electromagnetic wave).
In our experiment we work with TE0 modes (see table 1.1). This means that the
z-component of the electric field Ez is constant and does not depend of z (see figure
4.3).

To ensure that only the TE0 one has to work below a certain frequency limit,
which is called the cut-off frequency νc for the TE0 mode. Above the this limit one
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would excite also the TE1 mode which we do not want in our experiment. kz for
the TE1 mode is defined according to equation (1.9) and table 1.1 (l = 1):

kz =
π

H
=

2πνc
c0

⇒ νc =
c0

2H
= 18.75 GHz. (4.2)

Below this frequency only TE0 propagates and the other TE-modes as well as the
TM-modes can only couple evanescently to the waveguide. Our set-up is shown in
figures 4.3 and 4.4. We have an input antenna array of monopole antennas which
is fed by a vector network analyser (VNA, Agilent E5071C). The VNA is connected
with a power splitter (Microot MPD16-060180) to support up to 16 IQ-modulators
(GTM 1 M2L-68A-5 of GT Microwave Inc.) and up to 16 array antennas. The
IQ-modulators allow us to change the phase and the amplitude of our microwave
signal for each of the antennas (more details in section 4.2.5). We will see that
in section 4.2.2 the confinement in the y-direction leads to a second quantisation
of the modes, so that one can have multiple sinusoidal TE0 modes propagating in
the system. With maximal 16 input antennas we can control up to 16 propagating
sinusoidal TE0 modes.

The output monopole antenna is mounted on a movable metallic slide which can
be shifted stepwise by a motor. It is used to scan the microwave signal along the
y-axis in order to measure the superposition of the sinusoidal modes and to extract
the strength of each component. Another monopole antenna, which is fixed to a
moveable arm, can probe the electric field component Ez in the central part of the
waveguide (see figure 4.3 and figure 4.4 for more details). The central part of the
waveguide shows a grid of holes (5×5 mm) through which the movable antenna
can enter the waveguide. The ends of the waveguide are filled with absorbing foam
material (types: LS-14 and LS-16 from EMERSON&CUMING) to reduce reflections
coming from the open ends. The distance between the absorbers and the antennas
is large enough (≈2.5×W), so that coupling between evanescent modes, emitted by
the antennas, and the absorbers is prohibited. Otherwise one would have to deal
with below cut-off transport coming from the other TE/TM-modes.

We can either choose to perform experiments in an empty waveguide or we can
exchange the metallic boundaries to study a wobbly waveguide for example (see
chapter 5), or we can introduce scatterers into the central part. In the experiment
presented in this chapter, we use two kinds of scatterers; Teflon-scatterers with a
radius of 2.5 mm and a metallic scatterers with a radius of 17.75 mm (see figure
4.19).

This type of set-up has already been used before in order to study the transport of
propagating modes through systems with correlated disorder [Die11,Die12a,Die12b]
and to investigate Anderson localisation via Loschmidt echoes [Bod09].
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Figure 4.3 – A sketch of the quasi-one-dimensional rectangular waveguide shown from the
side. The arrangement of cylinders on the left side indicates the antenna-array of monopole
antennas, whereas the single cylinder on the other side represents the single scanning
monopole antenna which is movable in y-direction. The first propagating sinusoidal TE0

mode is shown in orange (see section 4.2.2). The field distribution of the electric field for
TE0 and TE1 in the y-direction is drawn at the right end of the waveguide.

PC

Vectorinetworki

analyzer

M
o

to
r

Li=i238icm

Hi=i10icm

A
b

so
rb

e
r

Centralipart

Divider

IQ
-M

o
d

IQ
-M

o
d

IQ
-M

o
d

IQ
-M

o
d

IQ
-M

o
d

IQ
-M

o
d

IQ
-M

o
d

IQ
-M

o
d

IQ
-M

o
d

IQ
-M

o
d

Movableiarmiwithiantenna

Scanningiantenna

Antennaiarray

Figure 4.4 – A sketch of the quasi-one-dimensional rectangular waveguide shown from
the top view. Presented are IQ-modulators, vector network analyser (VNA), PC, cables,
power divider and absorbing foam material at both ends of the guide.

4.2.2 Theoretical Description

As we work with TE0 modes, i.e., kz = l = 0 (see chapter 1), equation (1.10) reduces
to

(∆ + k2)Ψ(x, y) = 0. (4.3)

If one excites this modes with an antenna for example, equation (4.3) gets inhomo-
geneous. For this type of equations it can be convenient to use the Green function
formalism, which has already been formally introduced in chapter 1. Here we will
try to find an explicit form for the Green function.

Let us assume that we have a point-like antenna which we treat as a point
source at (x̃, ỹ) and we are interested in the signal strength at a position (x, y) (see
coordinate system in figure 4.3).
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Chapter 4. Wave Front Shaping

To solve this problem we have to find the system’s Green function g which we
define according to equation (4.3) as

(
∆ + k2

)
g(x, y|x̃, ỹ) = −δ(x− x̃)δ(y − ỹ) (4.4)

with 0 < y, ỹ < W −∞ < x, x̃ <∞.

As g represents Ez we must fulfil the following boundary conditions assuming perfect
conducting walls:

g(x, 0|x̃, ỹ) = g(x,W |x̃, ỹ)
.
= 0, (4.5)

lim
|x|→∞

g(x, y|x̃, ỹ)
.
= 0. (4.6)

To simplify equation (4.4) we perform a Fourier transform according to

G(kx, y|x̃, ỹ) =

∫ ∞

−∞

g(x, y|x̃, ỹ)e−ikxxdx, (4.7)

g(x, y|x̃, ỹ) =
1

2π

∫ ∞

−∞

G(kx, y|x̃, ỹ)eikxxdkx. (4.8)

Applying the Fourier transform (4.7) to equation (4.4) leads to:

d2G

dy2
+
(
k2 − k2x

)
G = −δ(y − ỹ)e−ikxx, (4.9)

with G(kx, 0|x̃, ỹ) = G(kx,W |x̃, ỹ) = 0.

The conditions for G can be matched by assuming sinusoidal shaped modes which
respect the boundary condition in the y-direction (similar to the case in section 1.1
for the TE-modes)

G(kx, y|x̃, ỹ) =
∞∑

n=1

Gnsin
(nπy

W

)

. (4.10)

For δ(y − ỹ) we use the ansatz

δ(y − ỹ) =
2

W

∞∑

n=1

sin
(nπy

W

)

sin

(
nπỹ

W

)

. (4.11)

We plug equations (4.11), (4.10) into equation (4.9) and match the harmonics with
regard to sin

(
nπy
W

)
and derive:

(

k2 − k2x −
(nπ

W

)2
)

Gn = − 2

W
sin

(
nπỹ

W

)

e−ikxx (4.12)

⇒ Gn =
2

W
sin

(
nπỹ

W

)

e−ikxx
1

k2x +

((nπ

W

)2

− k2
)

︸ ︷︷ ︸

κ2

.(4.13)
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4.2. Quasi-One-Dimensional Waveguide

We found G. To obtain g we have to do a Fourier transform according to equation
(4.8) leading us to

g(x, y|x̃, ỹ) =
1

πW

∞∑

n=1

sin
(nπy

W

)

sin

(
nπỹ

W

)∫ ∞

−∞

eikx(x−x̃)

k2x + κ2
dkx. (4.14)

The task is now to find the solution for the integral in equation (4.14). The integral
is of the form

I =

∫
eizt

z2 + z21
dz =

∫
eizt

(z + iz1)(z − iz1)
dz, (4.15)

where z = kx, t = x− x̃ and z1 = κ.

We perform the integration in the complex plane along the integration path
C1 +C2 as shown in figure 4.5. We assume the case where t is positive. In the case
of a negative t one has to choose the correspondent integration path in the lower
half plane.

In the following we perform the residue theorem stating

I =

∮

C1+C2

eizt

z2 + z1
dz = 2πi

∑

k

ReskI. (4.16)

According to equation (4.15) we get for the residue enclosed by the path:

Resiz1I = lim
z→iz1

(z + iz1)I(z) =
1

2iz1
e−z1t. (4.17)

This is why the integration results in

I =
π

z1
e−z1t. (4.18)

For the chosen integral path C2 does not contribute to I as can be seen by the
following argument:

C2

C1
a

iz1

Im

Re-a

Figure 4.5 – Sketch of the integration path.
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∣
∣
∣
∣

∫

C2

eizt

z2 + z21
dz

∣
∣
∣
∣

≤
∫

C2

∣
∣
∣
∣

eizt

z2 + z21

∣
∣
∣
∣
dz

see (4.20)

≤
∫

C2

1

|z2 + z21 |
dz

≤
∫

C2

1

a2 − |z1|2
dz =

πa

a2 − |z1|2
(a→∞)−→ 0. (4.19)

To justify the second step in equation (4.19) we need to verify the following:

|eizt| polar coord.
= |eit|z|(cos(φ)+isin(φ))| = |e−t|z|sin(φ)|

|e−it|z|sin(φ)| ≤ 1 for 0 ≤ φ ≤ π. (4.20)

Note that equation (4.20) shows why we chose our integration path this way. Finally
we found the result for g as it was defined in equation (4.4)

g(x, y|x̃, ỹ) =
1

W

∞∑

n=1

sin
(nπy

W

)

sin

(
nπỹ

W

)
1

κ
eκ|x−x̃|, (4.21)

where κ is given by

κ =

√
(nπ

W

)2

− k2 = i

√

k2 −
(nπ

W

)2

. (4.22)

We can identify nπ/W with a wavenumber ky which takes the quantisation of the
electric field in the y-direction into account.

Since our problem is two dimensional we can introduce a wavenumber kx as

kx =
√

k2 − k2y, k2y =
(nπ

W

)2

(4.23)

and thus write g as

g(x, y|x̃, ỹ) =
1

W

∞∑

n=1

Ansin
(nπy

W

)

sin

(
nπỹ

W

)
1

ikx
eikx|x−x̃|. (4.24)

To properly describe the experimental situation we have to add effective coupling
constants An which describe the coupling between the antennas and the sinusoidal
modes. This is discussed in more detail in section 2 of [Tud08].

Note that g(x, y|x′, y′) can be considered as a transmission matrix T (x, y|x′, y′)
in the spatial domain as it describes the transmission of the modes between two
points of the waveguide (compare with section 1.2):

T (x, y|x′, y′) = g(x, y|x′, y′). (4.25)
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4.2. Quasi-One-Dimensional Waveguide

We revisit equation (4.23). The total wavenumber k of the electromagnetic wave
of frequency f is given by k2 = (w/c0)

2 = (2πf/c0)
2 (see equation (1.6)). We can

write

kx =

√
(

2πf

c0

)2

−
(πn

W

)2

=
2π

c0

√

f 2 −
( c0n

2W

)2

︸ ︷︷ ︸
(

f
(n)
c

)2

, (4.26)

where n is the quantisation number defining the sinusoidal form of the wave in
the y-direction. In other words, n is what is called mode number. If one works at a
given frequency f , only NW modes are propagating. This is due to the fact that for
certain modes, certain values of n, kx gets imaginary and as a result these mode are
exponentially damped. This be can seen by the factor e−|kx||x−x̃| which would occur
in equation (4.24) for these exponentially damped/evanescent modes. We denote

f
(n)
c as lower cut-off frequency. It depends only on the quantisation number n and

the waveguide width W . This frequency must be reached, so that the n-th mode
becomes propagating.

The total number of propagating modes NW for given frequency f in this kind
of rectangular waveguide can be calculated as

NW = ⌊f/f (n)
c ⌋, (4.27)

where ⌊...⌋ is indicating the floor function [Ive62].

In the context of scattering, one likes to think of how the sinusoidal modes are
scattered. This is why one normally translates the transmission matrix T in its
mode picture. This can be done in the following way:

Tnm =

∫ W

0

∫ W

0

dydy′sin
(nπy

W

)

sin

(
mπy′

W

)

g(x, y|x′, y′). (4.28)

4.2.3 The Empty Waveguide

In this part we will concentrate on the information obtained by the transmission
measurement between the antenna-array (10 antennas) and the scanning antenna
(see figure 4.6) and how we can reconstruct the transmission matrix in the mode
basis in the case of an empty waveguide (see section 4.2.2).

The positions of the antennas of the array are fixed. The distance between the
array-antennas and the distance between the outermost antenna and the wall is
10/11 cm, i.e., we defined the y position of the i-th antenna of the array (relative to
the inner wall of the waveguide) as yi = i×10/11 cm. The y positions of the scanning
antenna, which we denote y′, are defined in an analogue way y′i = i× 10/11 cm (see
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Absorber

Step motor

Bottom plate

Top plate

Power Divider
IQ-Modulator

Absorber
Antenna array

Movable Antenna

Figure 4.6 – Photograph of the set-up using 10 antennas in the antenna array (left hand
side) and one moveable antenna (right hand side). Compare with figure 4.4.

,

Fourier Filter

1.5 GHz

Figure 4.7 – Two graphs which illustrate the absolute value of a single transmission
measurement between an array-antenna at position y2 and the scanning antenna at a fixed
position y′5 (see text for the definition of the positions). Left: Raw measurement. Right:

Fourier filtered data. The dashed vertical lines indicate the opening of the modes.

figure 4.3 for the definition of the coordinate system). The precision we have to
position the scanning antenna is about 0.25 mm.

A transmission measurement T (y2, y
′
5) between a single active antenna of the

antenna array and the scanning antenna is shown in figure 4.7. We have seen in
chapter 3 that we need the frequency derivative of the transmission matrix T to
calculate the q-operator. Therefore we would like to deal with signals showing low
signal noise. To guarantee that we apply a Fourier filter to the measured spectrum
(see figure 4.7). Note that our measured microwave signal is complex, meaning that
we measure amplitude and phase of our microwave signal.

The Fourier filtering is done in the following manner. We apply a Fourier trans-
form to the measured frequency spectrum. This reveals how the corresponding pulse
travels inside the waveguide. At some point in this time picture the pulse reaches
the scanning antenna and is detected resulting in a peak in the time signal. When
the measured peak intensity at the scanning antenna after the arrival of the pulse
drops below ≈ 5% we set the time signal to zero. Afterwards we re-transform this
modified time signal back into the frequency domain neglecting time components
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4.2. Quasi-One-Dimensional Waveguide
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Figure 4.8 – Absolute value of the reflection measured at the scanning antenna positioned
at y′2.

which are not related to the first arrival of the pulse. In other words, we are applying
a high-pass filter.

The dotted vertical lines in figure 4.7 indicate the mode opening at the lower
cut-off frequencies f

(n)
c (see 4.26). The opening frequencies differ by c0/(2W ) = f 1

c

which is equal to 1.5 GHz for W = 10 cm and c0 = 3.0 · 108 m/s.

The different openings of the modes are clearly visible as peaks appear at these
frequencies (see figures 4.7). The fast decrease of the transmission slightly after the
mode opening corresponds to the factor 1/(ikx). The transmission below 6 GHz is
small. This is due to the fact that the IQ-modulators work within the frequency
range of 6 GHz < f < 18 GHz, so the presented spectra are cut according to these
values. A reflection signal from the scanning antenna is presented in figure 4.8.

The reflection signal, like the transmission signal, is strongly position dependent.
For instance, if the scanning antenna is positioned in a nodal line of a certain
sinusoidal mode, one cannot couple to this mode and therefore it will not be visible.
This means that some of the peaks/dips are not visible in the spectra neither in the
reflection nor in the transmission signal. Also the antenna itself, its particular length
and shape, changes the received signal. This is normally referred to as the coupling
of the antenna to the waveguide. We can estimate this quantity by averaging the
reflection spectrum R of the scanning antenna over all its positions y′ and averaging
over a small frequency window of ∆f = 0.076 GHz as it is shown in figure 4.9. The
value for ∆f is chosen manually, i.e., by choosing several values for ∆f and verifying
if the oscillations vanish (see fast oscillations in figure 4.9. Why this averaging is
necessary becomes clear in the next step.

To eliminate the antenna coupling in a transmission signal one divides the mea-
sured spectra by

(√

(1 − 〈|R1|〉2
√

(1 − 〈|R2|〉2
)

, (4.29)
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Figure 4.9 – Absolute value of the reflection measured at the scanning antenna positioned
at y′2 (blue). Position and frequency averaged reflection signal (sliding average with a
window of ∆f = 0.076 GHz) (red).

where 〈...〉 stands for the mentioned averaging process. R1 and R2 are the reflection
spectra measured at antenna 1 and antenna 2 which are used for the transmission
measurement. This division allows us to compare the measured data in different
frequency regimes eliminating the changed coupling of the antenna (see section 5.5).
The averaging over the reflection spectra is necessary to not introduce oscillations
to the transmission spectra artificially. For the moment we do not apply this kind
of coupling elimination since we have only access to the reflections of the scanning
antenna. We do not have direct access to the reflection of a single array-antenna due
to the power divider (see position of the power divider in figure 4.4). But we will
use this coupling elimination in chapter 5, where we use a second scanning antenna
instead of the antenna array.

If we perform the sine transform as described in equation (4.28), we transform the
transmission matrix in its mode picture. However, it turned out that this technique
is not successful because of the array-antennas. The vicinity of the neighbouring
antennas does not allow the simple point source description and therefore the double
sinus transform described in equation (4.28) fails. This means that if one sends in for
example a signal sig8 at the antenna array which corresponds to the 8th sinusoidal
mode with sin

(
8π
d
yi
)
, where yi denotes the positions of the array antennas (see

above), one measures at the output a share of 68% for the 8th mode. This points
out that the antennas themselves lead to a scattering of the wave. As the intra-
antenna distance for the array is smaller than the wavelength, the antennas are
coupled evanescently. This means that we have to consider all the evanescent modes
for the transport and we cannot just cut the sum at n = Nw in equation (4.24). By
the means of mutual impedance calculation one can take into account this effect of
mutual antenna coupling [Bal05]. Applying this type of calculation is not necessary
though in our case as the antenna coupling leads only to a redefinition of the basis
we are working in. Consequently, our basis is not orthogonal anymore but still
complete as we will see below.
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4.2. Quasi-One-Dimensional Waveguide

We will prove the fact that the 10 antennas are independent enough to fully
control the 10 propagating modes. What we are going to do, mathematically speak-
ing, is to apply a simple basis transformation to get back to the orthogonal basis.
Experimentally this is done in the following way. In order to create a specific single
mode output we solve a linear equation system of the following form (for each n-th
mode individually):

on = T (y, y′, f)in. (4.30)

By measuring the transmission of each of the ten array-antennas to ten correspond-
ing positions of the scanning antenna on the other side of the channel we have the
information about the full 10×10 transmission matrix T (y, y′, f)10×10. This measure-
ment of the transmission matrix is done in the following way. The IQ-modulator,
which is connected with antenna 1 of the antenna array, is switched to (0 dB at-
tenuation, 0◦ phase). This antenna is the emitting antenna. All other modulators
are switched to (40 dB attenuation, 0◦ phase) and the corresponding antennas are
considered as switched off. The scanning antenna is set to a fixed position on the
y-axis and we measure the transmission signal from the emitting antenna 1 to the
scanning antenna (see figure 4.4). Then all IQ-modulators are changed: Antenna
2 of the array is set to 0 dB and the others are switched to 40 dB attenuation.
Again the transmission to the scanning antenna is measured, which is still at the
very same position. After all 10 antennas have been switched in this manner, the
scanning antenna moves to the next position. Finally, one gets in total 10×10 mea-
surements which form the transmission matrix T for a specific configuration of the
scattering system. Once we have measured T we can use equation (4.30) which will
help us to define in. in will be the input we have to generate with the help of our
IQ-modulators to generate the wanted n-th mode on as an output.

This ansatz will work out if T is of full rank or in other words, if, firstly, the signal
emission by each single array-antenna is independent enough and if, secondly, the
transporting medium is not blocking any energy transporting channel, i.e., mode.
To test if this ansatz is valid we calculate in according to (4.30), plug the settings
which correspond to in into our IQ-modulators and sine transform the output and
compare it with the initial condition of a sinusoidal output on. In the following
we decided to work at a frequency of 15.5 GHz, where ten modes are propagating
and where we are sufficiently far away from the mode opening of the 10-th mode
at 15 GHz and of the 11-th mode at 16.5 GHz. The result of the sine transformed
transmission after solving (4.30) and sending in for each mode separately is shown
in figure 4.10. The presented data is normalised so that the sum over all mode
intensities is equal to one at any given frequency.

We obtained that our measured output follows the numerically expected one
within the error of the noise. As we can see from figure 4.10 the transmission of a
single mode works fine. We get transmissions amplitudes above 98%, except for the
first mode where the transmission amplitude is about 93%. The reason for that is
discussed below. To understand the scattering behaviour of a system one tends to
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Figure 4.10 – Fourier filtered intensity of the modes after measuring T 10×10(y, y′, f),
solving (4.30) and sending the resulting in into the channel [for each mode individually].
The black vertical line indicates the frequency for which our system is tuned. The dashed
vertical lines indicate the mode opening of the 10-th and 11-th mode. Each mode is indi-
cated with its own color (see colour label in each cell).

think in the mode picture. In this context one tries to image how each single mode
is scattered into the others. Therefore we can look at the transmission matrix T in
its mode picture (see figure 4.11) defined according to equation (4.28).

As mentioned before we cannot perform the sine transform along the y-axis for
the array-antennas, but since we have proven that the output follows the sinusoidal
form of any mode we want (see figure 4.10 and results described above), we can
assume that after a certain distance away from the antenna-array we established a
stable sinusoidal mode.
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4.2. Quasi-One-Dimensional Waveguide

We have to emphasise that although our system is only tuned to work at 15.5 GHz,
the mode tuning in our system works broadband! This is because we used the same
kind of antennas and cables to build up the input antenna array and because of the
IQ-modulators which operate broadband.

The components Tn,m at 15.5 GHz are shown in figure 4.11. The index n of Tn,m,
which corresponds to the sine transform along y positions of the array-antennas,
is in a sense artificial. It can be seen as numeration of the modes sent into the
channel. The analysis of these sent states is done by doing the sine transform along
the positions y′ of the scanning antenna. One recognises that we couple stronger
to modes with high n, such as the 9-th or the 10-th mode. This is because of
the factor 1/ikx which appears for the transmission (see equations (4.24), (4.26) and

(4.28)). If we work at a frequency far from the mode specific cut-off frequency f
(n)
c

(see equation (4.26)), like for the first mode for example, the factor 1/ikx gets small
corresponding to a reduced coupling for the first mode at this frequency. Whereas
for the 10th mode with a greater 1/ikx-value the coupling is higher leading also to
a higher transmission. A nice feature which is clearly visible is the mode opening
of the 10th mode close to its lower cut-off frequency of 15 GHz. We can conclude
with this results that our transmission basis is of full rank and that therefore the
emission from the array-antennas is sufficiently independent. We also notice that
the scattering system does not block any of the 10 used modes.

Another, more hand-waving, explanation for the coupling behaviour of the modes
in the waveguide is to look at their velocity in x-direction which is represented by
kx (see equation (3.16)). At the opening frequency of f

(10)
c the 10th mode has

the smallest value of kx (see equation (4.26)) when compared to the other modes.
Therefore the dwell time of the 10th mode around the point of the excitation is
larger than the ones of the other modes. Hence, the 10th mode can be feed for a
longer time than the others leading to the observed fact that the 10th mode is the
mode with the strongest transmission.

What we have done in this experiment can already be understood as wave front
shaping. We used the transmission measurement in the spatial domain as basis to
create our output. In this specific case we wanted to generate the pure sinusoidal
modes. But in general any kind of output signal can be generated this way. By
changing on in equation (4.30) to a given output we can calculate the input in.

It is worth mentioning at this point that the uniform loss introduced by the
metallic walls of our cavity is present throughout the whole system. The travelling
time of each mode is different which is a consequence of the different kx values of
the modes. The first mode spends less time in the cavity than the 10-th mode and
undergoes therefore less absorption (for the frequency at which we are working at).
Normally this effect is taken into account by adding a complex value to kx. The
absorption however is not dominant in our system as we will understand looking at
figure 4.11. If the absorption was dominant, we would get an reversed picture for
the left hand side of figure 4.11 in the sense that the first mode would be highest
transmitting and the 10th mode would be the lowest.
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Figure 4.11 – Result for the transmission matrix in the mode picture |Tn,m|2. Left: |T |2
is normalised to |T |2/|Tmax|2. Right: |T |2 is normalised to

∑

m |Tn,m|2 = 1. The output
axis describes the sinus transform along the positions y′i of the scanning antenna. The
input axis indicates which mode is actually send into channel.

4.2.4 IQ-Modulators

We have seen previously that the necessary condition to perform wave front shap-
ing is the control of the amplitude and the phase of our microwave signal emitted
by each antenna. Experimentally this is achieved using IQ-modulators (see figure
4.12). These two parameters I and Q are encoded with a 12-bit precision and they
are connected with the phase Φ and the amplitude A in dB by

A = −10log10(I
2 +Q2), Φ = arctan

(
Q

I

)

. (4.31)

If our IQ-modulators worked perfectly we would have an maximal error of ≈ 0.06 dB
for the amplitude and ≈ 0.04➦ for the phase due to the 12-bit precision.

Each IQ-modulator has two ports. Therefore one gets two transmission quantities
called |t12| and |t21|, which describe the transmission amplitude from port 1 (left)
to port 2 (right) or the other way round. Similarly, we get two reflection quantities.
The quantities |r11| and |r22| describe the reflection amplitude at port 2 and port
1. The complete result of this two port measurement in the frequency range of the
IQ-modulator is shown in figure 4.12.

We recognise that about 10% of the signal is reflected and the overall transmission
attenuation for a setting of 0 dB is about 5 dB. It is worth noticing that the device
has no preferred direction regarding the transmission as t12 ≈ t21.

In the following we will have a closer look on the transmission properties of the
IQ-modulator. We measured the transmission through one of the IQ-modulators as
a function of a given amplitude Ag and phase Φg over the whole operating frequency
range [6 GHz,18 GHz].
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4.2. Quasi-One-Dimensional Waveguide

Figure 4.12 – Left: Photo of an IQ-modulator. Entrance and exit for the microwaves are
on the left and the right. Right: Amplitude of the transmission t12 between port 2 to port
1 (red). Amplitude of the transmission t21 between port 1 to port 2 (orange). Amplitude
of the reflection at port 1 r11 (blue) and at port 2 r22 (green). The IQ-modulator is set to
0 dB and 0◦ Φ.
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Figure 4.13 – Left: Maximal ∆Arel = (Ar − Ag)/Ag for different given amplitudes Ag

as a function of the frequency f . The maximum is obtained with regard to all possible
Φg values Φg ∈ [0➦, 360➦]. Right: Maximal ∆Arel = (Ar − Ag)/Ag for different given
amplitudes Ag as a function of given phase Φg. The maximum is obtained with regard to
frequency values f ∈ [5.5 GHz, 18.5 GHz].

It turned out that the received transmission amplitude Ar depends on the fre-
quency f , Ag and Φg. The received phase Φr is also a function of the three parameters
Φr(f, Ag,Φg).

In figure 4.13 we show the relative deviation of the Amplitude ∆Arel = (Ar −
Ag)/Ag for different Ag (Ag ∈[0 dB,9 dB]) and different Φg (Φg ∈[0◦,360◦]). Figure
4.14 describes the maximal phase error ∆Φ = Φr−Φg for the investigated amplitudes
Ag. The shown results justify that we have a well controlled phase and amplitude
definition, which is the very basis of doing wave front shaping. Additionally the
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Figure 4.14 – Maximal ∆Φ = Φr −Φg.The maximum is obtained with regard to all pos-
sible frequency values f ∈ [5.5 GHz, 18.5 GHz] and to given amplitudes Ag ∈ [0 dB, 9 dB].

results show also that we can use the IQ-modulators also in a slightly broader
frequency range ≈ [5.5 GHz,18.5 GHz] which goes beyond the original frequency
of [6 GHz,18 GHz] specified by the manufacturer.

It turned out that the IQ-modulators are quite sensitive to temperature changes.
This is why it is strongly recommended to use temperature stabilisation. In our case
we set up the IQ-modulators on a large copper plate, which keeps the temperature
stable with respect to the temperature of the air-conditioned environment.

4.2.5 Waveguide Filled with Scatterers

So far we worked with an empty channel. Now we introduce 18 Teflon-scatterers
(radius of 2.5 mm, index of refraction n ≈ 1.44) and one brass scatterer (radius of
8.85 mm) by placing them in the central part of the waveguide (see figures 4.15 and
4.4). For sure, these scatterers will effect the transport of the sinusoidal modes. One
no longer expects a diagonal shape of the transmission matrix as it was the case for
the empty channel in figure 4.11.

The modes scatter into each other leading to a rather complicated scattering
behaviour which strongly depends on the frequency we are working at and the

Figure 4.15 – Scheme of the Teflon scatterers (white circles) and the brass scatterer
(orange circle) in the central part of the cavity (see figure 4.4 for the whole set-up).
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Figure 4.16 – Result for the transmission matrix in the mode picture |Tn,m|2 for the
waveguide filled with scatterers. The output axis describes the sinus transform along the
positions y′i of the scanning antenna. The input axis indicates which mode is actually send
into the channel.

scattering system itself, i.e., mean distance between scatterers, size of the scatterers,
additional absorption induced by the scatterers and their index of refraction.

From the empty channel measurement (see section 4.2.3) we learned how to
tune the IQ-modulators so that the antenna array produces a specific mode output.
Based on this information we send the single modes into the scattering region and
we measure the resulting mode output received at the moveable antenna. Since we
inflict scattering, we do not expect the modes to reappear in their initial sinusoidal
shape after the scattering region. At the tuned frequency of 15.5 GHz we can look
again at the transmission matrix elements like we have done for the empty case
(compare figure 4.11 and figure 4.16). Due to the scattering between the modes
the transmission matrix Tn,m is not diagonal any more and we obtain a complex
inter-mode scattering behaviour instead.

4.2.6 Mode Tuning

Nevertheless, we can follow the same procedure as the one for the empty channel and
readjust our antenna array signal to change the output to a single outgoing mode
after the scattering area. In order to do so, we measure the transmission of each
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single antenna through the scattering region. This allows us to recalculate what we
have to send from the antenna array to retune the single sinusoidal modes, just as
we have done it for the empty waveguide. The result of these retuning towards the
sinusoidal modes is shown in figures 4.17 and 4.18.

As it can be seen from figure 4.18 the retuning works for some modes in a
broader frequency range. Modes 1, 9 and 10 are rather narrowband, whereas, modes
6, 7 and 8 show broadband transmission. The investigation of the bandwidth of
the transmitted mode as a function of the properties of the scattering system like
correlation length for example might offer the possibility to compare theoretical
work (like [Hsu15]) with experimental data.

At the working frequency of 15.5 GHz, we managed to retune the sinusoidal
modes even in the case of scattering. From the point of view of an observer who
is located at the movable antenna position the received signal looks like the one
of an empty waveguide with a reduced overall transmission. The reduced overall
transmission is the result of the backscattering caused by the scatterers.

This kind of output tuning by shaping the initial wave front is working as long
as all modes are transmitted. If a mode is not transmitted we do not have access
to a full basis meaning that we can not tune our output due to this now reduced
subspace spread by the remaining modes.

1

10

1

10

Mode Intensity Mode Intensity

Input

Output

Input

Output
1

10
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Figure 4.17 – Result for the retuned transmission matrix in the mode picture |Tn,m|2
for the case of the a scattering region filled with scatterers. Left: |T |2 is normalised to
|T |2/|Tmax|2. Right: |T |2 is normalised to

∑

m |Tn,m|2 = 1. The output axis describes the
sinus transform along the positions y′i of the scanning antenna. The input axis indicates
which mode is actually send into channel.
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Figure 4.18 – Fourier filtered intensity of the modes after measuring T 10×10(y, y′, f)
through the waveguide filled with scatterers, solving (4.30) for a pure sinusoidal output
and sending the resulting in into the channel (for each mode individually). The dashed
vertical lines indicate the mode opening of the 10-th and 11-th mode and the vertical solid
line shows the frequency for which the IQ-modulators were tuned. Each mode is shown in
a different color (see colour label in each cell and compare with figure 4.10).
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Figure 4.19 – Sketch of the central part, where white circles denote the 18 Teflon-
scatterers (radius of 2.5 mm) and the orange solid circle denotes the brass scatterer (radius
of 8.85 mm) at its central position. The dashed grey lines around the brass scatterer indi-
cate the movement of the scatterer to the top (bottom). The grid of holes (5mm×5mm) for
the antenna attached to the moveable arm (see figure 4.4) is indicated in the lower right
corner of the red square. This grid reaches all over the area marked with the red square.

4.3 realising q-states

We will keep the very same set-up with its Teflon and brass scatterers inside and
we will try to create scattering states which are eigenstates of the q-operator. In
order to do so, we need to have an adjustable parameter. In this case we will use
the position of the brass scatterer (orange circle in figure 4.15). We will measure
the transmission matrix T for three slightly different positions of the brass scatterer.
This allows us to calculate the q-operator and its eigenstates (q-states) according
to section 3.4. Once we have calculated these, we have the necessary parameters
for the IQ-modulators in order to emit those states from the antenna array. The
intensity of these states will be measured around the brass scatterer with the use of
the full set-up shown in figure 4.4. We will see specific outcomes depending on the
corresponding eigenvalue and the measured overall transmission.

4.3.1 Transmission Matrix in a Scattering Environment

We considered three positions for the central metallic scatterer (down, center, up:
indicated in orange in figure 4.19). The size of the brass scatterer (r = 8.85 mm)
and the size of the position variation (δy = 8.85 mm) are smaller than the used
wavelength λ = 1.93 cm ↔ f = 15.5 GHz. In that way we ensure that the po-
sition changes of the brass scatterer do not influence the transmission matrix too
strongly, as we need to compute the derivative of T , dT (ybrass)/dybrass (see equation
(3.23)). This derivation with regard to the position of the brass scatterer ybrass is
approximated by:

dT (ybrass)

dybrass
≈ T (ybrass + δy) − T (ybrass − δy)

2δy
. (4.32)

For each of the positions of the brass scatterer we measure the transmission matrix
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4.3. Realising Q-States

Figure 4.20 – Fourier filtered real part and imaginary part of one entry of the transmis-
sion matrix for 3 positions of the central metallic scatterer [blue: Lower position of the
scatterer, orange: Central position of the scatterer, green: Upper position of the scatterer].
The solid vertical line indicates the frequency of 15.5 GHz at which we are working at.

T in the spatial domain. Figure 4.20 shows the same entry of the measured trans-
mission matrix for the three positions of the brass scatterer. We obtain that the
chosen position change of the brass scatterer does not fully destroy the correlation
between the spectra. In fact the difference in the spectra is on the one hand large
enough and on the other hand it is not too great, so that one can guarantee that
the derivative dT (ybrass)/dybrass is still a well defined quantity. We measured the
transmission matrix T and its derivative. In the next step we are going to compute
the q-operator with this information.

4.3.2 Generating Q-States

The q-operator for our case where the parameter α is replaced by the y-coordinate
of the brass scatterer (see definition and discussion of the q-operator in chapter 3)
can be written as

q = −iT−1 dT

dybrass
, (4.33)

where ybrass stands for the position of the brass scatterer. We follow the calcula-
tion procedure described in chapter 3. T is a 10×10 matrix which describes the
transmission through the system at 15.5 GHz. T is not transformed in the mode
picture here, since the computation of the eigenvalues and eigenvectors works for
every chosen basis. We calculate all the possible eigenvalues λ and eigenstates iq of
the q-operator, where we consider 1 to 10 singular-values in our calculation. This
means in the first calculation we consider only the greatest singular-value and the
highest transmitting eigenstate σ1 (for details see section 3.4). Then we consider
two singular-values σ1 and σ2 leading to 2 eigenvalues and 2 eigenstates of the cor-
responding q-operator and so on. In total there are

∑10
i=1 i = 55 eigenvalues and

eigenstates possible taking into account up to 10 singular values. These eigenvalues
of the q-operator are ordered with

ordq =
|λq|
|oq|2

with oq = T~q. (4.34)
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λq denotes the eigenvalue of the q-state and |oq|2 is the measure for the total trans-
mitted energy (compare with equation (3.8)). We chose this criterion as we are
looking for two types of q-states (eigenstates of the q-operator). The first type of
q-states shows high transmission and is weakly influenced by the movement of the
scatterer. In section 3.3 we have seen that this sensitivity of a q-state is encoded in
the modulus of his eigenvalue |λq|. This means that q-states of the first type will
show large values for |oq|2 and small values for |λq|, so we can associate these types
of states with small values of ordq. One can assume that q-states of the first type,
as they show high transmission and low sensitivity to the change of the position of
the scatterer, try to avoid the region of the brass scatterer. In this context we like
to speak of avoiding states.

For the other type of states it is exactly the other way around. They are strongly
influenced by the change of the position of the brass scatterer and they show low
transmission resulting in a high value for ordq. Q-states of the second type are
strongly affected by the position change. This together with the low transmission
lets us assume that these states are focused onto the brass scatterer, where they are
experiencing back-reflection. We refer to these states as focussing states.

The result of the calculation of ordq is shown in figure 4.21. We arrange the values
of ordq in an ascending order. As explained before, we are especially interested in
the smallest and the greatest values of ordq. To verify our assumptions we will have
to look at the intensity profiles around the brass scatterer of these two types of
states. Note that the avoiding and focusing states are still q-states but they differ
in their ordq-value.

Avoiding Focussing

Figure 4.21 – Result of the calculation of ordq = |λq|/|oq|2 of all the 55 possible eigen-
states (see main text). The black diamonds represent the ordq-values and the red

triangles are the corresponding real parts of the eigenvalues of the q-states (important at
the end of section 4.3.3). The left and right parts separated by solid black lines contain
the avoiding and focussing states, respectively.
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state 1

state 5

state 6

state 10

Figure 4.22 – Transmission intensity measured between the antenna array and the an-
tenna attached to the moveable arm (see figure 4.4) for the first 10 q-states ordered ac-
cording to equation (4.34). These states are referred to as avoiding states. Each state is
measured two times using the same input. On the left without the brass scatterer present
and on the right with the brass scatterer. The solid orange circle represents the brass scat-
terer. The dashed circular line represents only indicates the former position of the brass
scatter. The generating process of the images and the colour bar is shown in figure 4.23.

4.3.3 Experimental Realisation of Q-States

Once we have calculated the eigenvectors in the basis of our antenna array, we
can create the calculated states and send them into the waveguide. The additional
scanning antenna attached to the movable arm in the center (see figure 4.4) of the
waveguide allows us to measure the intensity profile of these q-states around the
brass scatterer in the red square indicated in figure 4.19.

The resulting intensity profile for the avoiding states (the 10 first states ac-
cording to the order introduced in section 4.3.2) is presented in figure 4.22. Each of
these states are measured with the brass scatterer present (positioned in the central
position; see figure 4.19) in the waveguide and later on without the brass scatterer.
The sent signal from the array antennas stays the same for the two cases.

Further details on the image processing can be found below. The intensity profiles
presented in figure 4.22 show clearly that no matter if the scatterer is present or
not, the area around the scatterer is poorly occupied by the state (dark blue colour
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in the dashed circles in figure 4.22). One can call this an avoiding of the area since
the intensity which is stored within the region of the scatterer (in the case where
the scatterer is not present, dashed line in figure 4.22) is for all measured avoiding
states less than 1% of all the intensity stored in the whole measurement field (red
square in figure 4.19). The avoiding states show a hole around the brass scatterer.

At this point I would like to discuss shortly how the intensity pictures are created.
We start measuring the transmission between the array antennas and the scanning
antenna positioned in the waveguide. This transmission signal is then Fourier fil-
tered (see section 4.2.3) and the resulting intensity is treated with a discrete two
dimensional convolution of the form

cs(x, y) = s ∗ k(x, y) =
∑

x′

∑

y′

k(x′, y′)s(x− x′, y − y′) (4.35)

with k =





0.0625 0.125 0.0625
0.125 0.25 0.125
0.0625 0.125 0.0625



 .

s denotes the intensity of measured transmission signal and k is called the con-
volution kernel, which in our case takes only the nearest neighbour measurements
(pixels) into account. Note that x, y, x′ and y′ are discrete quantities (more details
can be found in [Pre92,Jay09]).

Afterwards we add a bilinear interpolation to smooth the images. The steps are
shown in figure 4.23.

Note that all the calculations presented in this chapter deal with the Fourier
filtered data. The convolution and the bilinear interpolation is only used for gen-
erating the images. The bilinear interpolation can be useful though. Especially for
the case where one works with a measurement grid well below the wavelength. Our
grid however with its distance of ∆x = ∆y = 5 mm is of the same order as the

Figure 4.23 – Work flow of the image processing for the state 2 (compare with figure
4.22).
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wavelength λ(15.5 GHz) = 1.93 cm. This is why we do not use the bilinear inter-
polation for the further quantitative investigation. We use it only as a measure to
improve the visualisation qualitatively.

To be more precise on the fact that the avoiding states seem unaffected by the
presence of the metallic scatterer we study the spatial correlations of the q-states,
where we combine the case where the brass scatterer is present with the one where
it is not present. In this sense we define the spatial correlation of the q-state as:

Corr(f) =
|
∫

Ψ∗
a(f)Ψp(f)dA|

√
∫
|Ψp(f)|2dA

∫
|Ψp(f)|2dA

. (4.36)

Ψa(f) [Ψp(f)] is the frequency dependant complex transmission signal obtained for
each q-state in the case of the absent [present] brass scatterer.

The result of the correlation calculation for all the 20 interesting q-states is
shown in figure 4.24. For the frequency of 15.5 GHz at which we are working the
correlation function shows values from 90% to 95% for the avoiding states.
Moreover, the correlation stays on a high level even for the whole measured frequency
window, which indicates that the sent q-states keep their particular shape for a
rather large frequency window. Of course the width of the correlation peak depends
strongly on the scattering system. If one introduces more and more scatterers to
the system the width of the peak is supposed to become smaller and smaller.
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Figure 4.24 – The frequency dependent correlation function for the 20 selected q-states
(see also figure 4.21 and equation (4.36)).
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state 46

state 50

state 51

state 55

Figure 4.25 – Transmission intensity measured between the antenna array and the an-
tenna attached to the moveable arm (see figure 4.4) for the last 10 q-state ordered according
to equation (4.34). These states are referred to as focussing states. Each state is measured
two times. On the left without the brass scatterer and on the right with the brass scatterer.
In state 54 and 55 two arrows are shown indicating two different directions in perfect cor-
relation with the sign of the real part of the associated eigenvalue (see figure 4.21). The
generating process of the images and the colour bar is shown in figure 4.23

Figure 4.24 also reveals that the focussing states (states 46-55) are still
quite correlated with values well above 50%. One can understand this fact if
one looks at the intensity profiles shown in figure 4.25.
The focussing states show high intensities in the vicinity of the brass scatterer. If the
brass scatterer is not present the state shows a strong intensity line going through
the area where the brass scatterer was placed before. If the brass scatterer is present,
it acts as an obstacle where the focussing states are directly reflected. Especially the
states 51 to 55 show strong reflection characteristics when the scatterer is present
in the waveguide. These q-states hardly pass the brass scatterer, so the right half of
the image shows very low intensity (dark blue colours right form central scatterer
in figure 4.25). The correspondence of the wave functions of the focussing states,
especially on the left half of the measured field, leads to a fairly high correlation for
these states when one compares the scatterer-present and scatterer-absent case.

Another aspect is the directivity of the focussing. It has been shown in
[Bra16] that the sign of the real part of the eigenvalue λq of the q-state can be asso-
ciated to a direction, if the shift of the obstacle is done in the transversal direction
to the propagation direction of the mode (as it is the case here). A rigorous theo-
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retical explanation is not yet available, but I mentioned in section 3.3, that the real
part of qy can be related to the momentum transfer onto the obstacle with regard
to the y-direction (since the derivation of T is done with ∂/∂y which leads to a ky
dependency of the q-operator, [Bra16]). Therefore the sign of the real part of the
eigenvalue can be connected to the direction from which the state is focussing onto
the obstacle. This argument is in full agreement with the experimental observations.

We can fix a certain direction to the state 55 (red arrow in figure 4.25) which
we connect to the positive value of the real part Re(λq). The direction indicated
in the intensity plot of state 54 (blue arrow in figure 4.25) is associated with the
negative value of Re(λq). As we look at the direction of the intensity lines of the
focussing states in figure 4.25 (indicated with two coloured arrows defined after the
state 54 and 55), we recognise that they are in perfect agreement with the sign
changes of Re(λq) shown in figure 4.21. An exact theory for obstacle movements in
the longitudinal direction (x-direction) can be found in [Bra16].

4.3.4 A Coherent Perfect Absorber

In this context, I would like to introduce the concept of coherent perfect absorption
as it was presented in [Cho10b]. A perfect coherent absorber is appearing when
a wave injected into a lossy and finite system is fully absorbed in the sense that
the back reflected parts of the wave are undergoing destructive interference. Such
a system would therefore, viewed from outside, mimic a perfect absorber. As we
have seen before, we can describe a scattering system with its scattering matrix
S. Of special interest in physics are the poles and zeros of the scattering matrix,
which can be calculated as points lying in the complex k-plane (see [Fon72, Sit71]
for an introduction on zeros/poles of the scattering matrix). One can show that
coherent perfect absorption occurs whenever a zero located in the upper half plane
of the k-plane is moved downwards close to the real k-axis [Cho10b]. This is done
by adding loss to the system. In fact this is the exact contrary to what people do
when they try to construct lasers. Laser engineers try to move poles of the lower
half plane upwards by adding gain to the system. This is why this phenomenon
of coherent perfect absorption can be associated with a time reversed version of a
laser, a so called ”anti-laser” [Gma10]. Assuming we have a system where a zero is
lying on the real k-axis. If we injected a wave which corresponds to the eigenvector
of this zero-eigenvalue, the outgoing wave would vanish and the injected wave would
be perfectly absorbed within the system itself.

We think such a system can be realised with our quasi-one-dimensional channel.
A proposal for an implementation of such a coherent perfect absorber (CPA) using
the already known components of our set up is shown in figure 4.26. The idea is
that we have a well controlled injection of waves coming from two opposite leads
attached to the scattering region. The reflected parts of the waves will interfere
with the transmitted parts in such a way that the intensity is trapped within the
scattering region, where it is absorbed by a lossy material. In our case this is an
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Figure 4.26 – Sketch illustrating the idea of measuring coherent perfect absorption with
the accessible equipment. Compare with figure 4.4. The number of propagating modes is
4.

antenna with a 50 Ω resistance attached. This means that the reflected part of
the wave injected from the right lead interferes destructively with parts of the wave
transmitted from the left and vice versa. It is clear that one needs precise control of
the phases and amplitudes of the injected waves so that the coherent parts interfere
exactly in the manner described before. An ’anti-laser’-system with two attached
channels has been constructed using uniform distributed lossy material (a uniform
silicon waver) in [Wan11].

Our idea differs strongly in this point, as we want to use scattering together with
a highly non-uniform absorption given by a point-like absorption introduced by an
additional antenna.

In the lasing community it is known that using disordered potentials together
with gain helps to increase the path length of the light within the system and leads
to an enhancement of the amplification [Cao06,Wie08]. This type of laser is referred
to as random laser. In this sense we propose here an experiment as model for an anti-
random laser, where the scattering enhances the absorption. Such an anti-random
laser has not yet been achieved experimentally (to the best of my knowledge).

Discussion of the experimental realisation

If one compares the microwave waveguide we want to use for the measurement of
the CPA and the waveguide we used before (compare figure 4.26 with figure 4.4),
one recognises that the set-up supports now signal injection from both leads, where
we positioned 4 antennas on each side. These antennas give us full control about
the four propagating modes which we are going to inject from both sides. We will
use Teflon cylinders as scattering objects and an additional antenna connected to a
50 Ohm resistance to introduce strong point-like absorption. A possibility to prove
the existence of a CPA is to verify that all injected energy is fully focussed into

84



4.3. Realising Q-States

the absorbing material. With our experiment we have the great possibility to prove
exactly that. In fact, we can quantify the amount of absorption by connecting the
absorbing antenna to the vector network analyser and by measuring the transmission
from the leads into the antenna.

But before one can do that, one has to overcome the difficulty to meet the CPA
condition. One has to prove that the scattering matrix S(f) has an eigenvalue λCPA

of value zero. Then, in a second step, one can inject the corresponding eigenvector
iCPA and show maximal absorption by the absorbing antenna. From the previous
experiments we know how to extract the transmission matrix T of the system.
If we want also to gain access to the reflection matrix R we have to introduce
additional measurement points, shown as 8 additional measurement point on each
side in figure 4.26 (marked with ”positions for the reflection measurement”). The
movable antenna can address these eight points and we can measure the transmission
from the outermost antennas to the point where the moveable antenna is located.
The measurement protocol would be to measure the complex propagation constants
βn of the four propagating modes Ψn = for n = 1, 2, 3, 4 (see equation (4.37)) in the
empty waveguide (no scatterer and no absorption antenna):

Ψn ∝ sin (ky,ny) eiβnx. (4.37)

ky,n is the k-value for the y-direction defined in equation (4.23) (the coordinate
system was defined in figure 4.3). βn in general is complex even in the case of an
empty waveguide. The imaginary part of βn accounts for the losses which are mainly
related to the metallic surfaces of the cavity. The empty-measurement allows us to
specify the propagation constants and the size of possible reflections of the absorbers,
whose presence cause small back reflections (but no inter-mode scattering).

As a second step, we can plug in the scattering system and the absorbing an-
tenna and measure all entries of the scattering matrix where we use the additional
measurement points and the information about the βn to specify the reflections
coming from the scattering system. It was shown in [Bra16] theoretically that these
additional 8 measurement points on each side together with the information of an
empty waveguide measurement are enough to construct the full scattering matrix.

Once we have measured the frequency dependant scattering matrix, we can calcu-
late its eigenvalues. If we find an eigenvalue which is 0 for a certain frequency fCPA,
we can calculate the corresponding eigenvector iCPA. Since we can measure the
transmission from the outer antennas (antennas connected to the IQ-modulators)
into the absorbing antenna, we can calculate the maximal possible transmission into
the absorbing antenna by solving a simple linear equation system of the size 8 × 1,
where we used the transmission from each single outer antenna to the absorbing cen-
tral antenna. This resulting optimal transmission state has to coincide with iCPA.
If it is the case one can be sure that the back reflections interfere destructively with
the transmitted parts of the injected wave and that all the intensity is stored within
the scattering region (absorbing antenna), which is the proof of an coherent per-
fect absorber realised with non uniform absorption and additional scattering. This
would correspond to the creation of an anti-random laser.

85



Chapter 4. Wave Front Shaping

4.4 conclusion

The presented set-up shows how wave front shaping can be performed in a quasi-
one-dimensional rectangular waveguide. We used IQ-modulators to modulate the
wave front emitted by an array of ten monopole antennas. I showed that we are
able to excite individual sinusoidal modes in the waveguide, no matter if this wave-
guide was empty or filled with dielectric/metallic scatterers. All this was possible
using the information of the systems transmission matrix T and shaping the ini-
tial wave front accordingly. In a second step we went beyond simple mode tuning.
We measured the transmission matrix for various positions of a metallic scatterer
(slight position movements of the scatterer perpendicular to the direction of the
mode propagation) and used the scatter position yscat as parameter α (see chapter
3) to construct the q-operator. The eigenvectors, called q-states, of this operator
have unique properties. We could identify two types of q-states which are clearly
distinguishable by our used criteria ordq (see equation (4.34)). Eigenvectors with
a low value of ordq are of avoiding character. This means that they significantly
avoid the space occupied by the moved scatterer and they are very robust. These
q-states with a low value of ordq stayed basically the same, no matter if the scatterer
was present or not (see figures 4.22 and 4.24). The second type of q-states was of
focussing character and the corresponding states showed a strong dependency on
the position of the scatterer. We could even associate a direction to these focussing
states. The direction was found to be a function of the sign of the real part of the
eigenvalue of the corresponding q-state.

This new concept of using a generalised q-operator together with a spatial pa-
rameter α seems very promising. Especially if one thinks of possible applications.
As our system can be seen as fully analogue to other wave based systems, such as
acoustic systems [Ede05] and optical ones [Xio16], one can translate our findings
into these domains.

One can think of the problem for wireless communication systems [Ral98], where
one is always interested in finding solutions to focus a signal on a certain spot
like a phone for example. With our approach it is possible either to focus on a
spot/area or to avoid a certain region using the same kind of information. This can
be useful under the aspect of security as well, where one wants to leave out possible
intruders. Our results might also be interesting for applications in medicine, where
one tries on the one hand side to kill tumours by intense focussed radiation (such as
ultrasound [Coc09]) and on the other hand side to leave vulnerable areas untouched.
The idea of measuring the transmission as a function of the position of a scatterer
might also be interesting in the closely related context of time reversal [Fin92,Ler04],
where one is also interested in achieving a focussing or avoiding effect. Further
information on our set-up and a detailed discussion of the obtained results for the
mode tuning are also available in [Böh16].
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A very peculiar transport phenomena arises when one encircles a so called excep-
tional point (EP). We will show in this chapter that we can address this transport
phenomena with our one dimensional waveguide set-up, where we introduced wavy
boundaries and additional loss. The propagating modes will perform the mentioned
encircling and this causes them to show the typical flipping behaviour. The great ad-
vantage of our set-up is that a full dynamical encircling around an exceptional point
can be achieved, which leads to an asymmetric mode switching when comparing
different injection directions.

87



Chapter 5. Dynamical Encircling of an Exceptional Point

5.1 exceptional points and their experimental

realisation

Exceptional points raised the interest of the physics community since they are the
origin of quite peculiar phenomena such as state flips [Uzd11, Mil15, Gao15, Xu16,
Din16]. Exceptional points (also called branch points) are observed in physical
systems which can be modelled by a non-Hermitian Hamiltonian, which takes into
account that these system experience gain or loss leading to a non-conservation of
energy.

EPs arise in open systems following the Schrödinger equation (i∂tΨ = HΨ)
once two resonant states coincide [Rot09, Moi11, Hei12]. An example can be given
by investigating a 2×2 Hamiltonian, e.g., the Hamiltonian of two coupled damped
oscillators. This Hamiltonian can be written as (I follow the notation of [Dop16a]):

H =

(
δ − iγ1/2 g

g −iγ2/2

)

, δ, g, γ1, γ2 ∈ R, (5.1)

where g is the coupling and δ is the detuning between the two states. γ1 and γ2 are
the loss rates destroying the Hermitian property of H so that H 6= H†.

The eigenvalues E1,2 of H can be calculated as

E1,2 =
δ

2
− i

γ1 + γ2
4

± 1

2

√
∆ with ∆ =

(

δ − i
γ1 − γ2

2

)2

+ 4g2. (5.2)

The behaviour of the eigenvalues as a function of the coupling g and the detuning δ
is presented in figure 5.1.

For the eigenvectors Φ1,2 one finds [Dop16b]

Φ1 =

(
cos
(
Ω
2

)

sin
(
Ω
2

)

)

, Φ2 =

( −sin
(
Ω
2

)

cos
(
Ω
2

)

)

(5.3)

with tan

(
Ω

2

)

=
g

E1 + iγ2/2
. (5.4)

An exceptional point occurs if ∆ = 0. This happens for g = gEP and δ = δEP with

gEP =







g+EP = |γ1−γ2|
4

g−EP = − |γ1−γ2|
4

, δEP = 0. (5.5)

Note that the chosen Hamiltonian (equation (5.1)) contains two exceptional points.

For unequal loss rates γ1 6= γ2 one finds one complex eigenvalue EEP = −i(γ1 +
γ2)/4 and one complex eigenvector ΦEP for each of the two exceptional points,
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5.1. Exceptional Points and their Experimental Realisation

which are defined according to [Dop16b] as (see also [Kat13] for more mathematical
details):

ΦEP =







Φ+
EP =

(

1

−i

)

if g = g+EP

Φ−
EP =

(

1

+i

)

if g = g−EP .

(5.6)

This means that the two eigenvectors (eigenstates) and the two eigenvalues coalesce
at the EP. This is especially different from a degeneracy, where only the eigenvalues
coalesce. A remarkable effect is also that the norm of ΦEP is zero, which is formally
known as self-orthogonality [Moi11]. A more rigorous approach including different
coupling configurations for g to calculate exceptional points can be found in [Hei12].

In figure 5.1 one can examine the resulting eigenvalue spectrum of H depending
on the detuning δ and the coupling g. Physically interesting is the fact that for
δ = δEP the two energy levels of the two eigenstates, corresponding to ReE in figure
5.1, undergo an avoided crossing for g > gEP and a real crossing for g < gEP .
The widths of the eigenstates, corresponding to ImE, show exactly the opposite
behaviour. These two properties are typical while passing an exceptional point.

An interesting feature which occurs when following a state encircling the excep-
tional point is the state flip feature. In order to observe this one has to parametrise
a path around the exceptional point. Therefore we introduce the time parameter t
so that g, δ and Ψ are now time dependent variables and their dynamics is described
via the time-dependant Schrödinger equation i∂tΨ(t) = H(t)Ψ(t).

A possible circular path parametrisation around an exceptional point with a
distance r and an angle φ is

g(t) = gEP + rcos(φ(t)), δ(t) = −2rsin(φ(t)). (5.7)

Figure 5.1 – Eigenvalue spectrum of H around an exceptional point (white arrow) de-
pending on the coupling g and the detuning δ. Left: Real part of the eigenvalues E1,2 (see
equation (5.2)). Right: The imaginary part of the eigenvalues E1,2. The red (blue) colour
corresponds to an eigenvalue with relative gain (loss). [Dop16b]
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Chapter 5. Dynamical Encircling of an Exceptional Point

For r small, r2 → 0, the dependency of the eigenvalues E1,2 as a function of r
and φ at gEP = g+EP is described by

E1,2 ≈ rsin(φ) − i
γ1 + γ2

4
±
√

2rg+EP e
iφ/2. (5.8)

FfThe phase term exp(iφ/2) is the reason for the interchanging of the eigenvalues
as shown in figure 5.1 for an encircling of the EP φ → φ ± 2π. Doppler concluded
in [Dop16b] with the help of [Kec03] (chapter 3.2) for the angle Ω (see equation (5.3)

Re

(
Ω

2

)

≈ π

4
− φ(t)

4
. (5.9)

This means that a full encircling of the exceptional point leads only to a π/2 shift
of the eigenvector phase Ω:

Ω

2
→ Ω

2
− π

2
for (2π)+, (5.10)

Ω

2
→ Ω

2
+
π

2
for (2π)−. (5.11)

where (2π)+ indicate an encircling in the positive mathematical sense and (2π)− in
the negative sense. The eigenvectors Φi defined by equation (5.3) undergo a flip
while traversing the loop. This is the widely observed state flip phenomenon:

(
Φ1

Φ2

)
(2π)+−→

(
Φ2

−Φ1

)

,

(
Φ1

Φ2

)
(2π)−−→

(
−Φ2

Φ1

)

. (5.12)

Only after 4 round trips (8π) the state (eigenvector) comes back to the original state
(eigenvector) [Dem04,Mai05,Kec03]:

(
Φ1

Φ2

)
(2π)+−→

(
Φ2

−Φ1

)
(2π)+−→

(
−Φ1

−Φ2

)
(2π)+−→

(
−Φ2

Φ1

)
(2π)+−→

(
Φ1

Φ2

)

. (5.13)

In this context, I would like to mention two microwave experiments which used
two real experimental parameters for the discrete encircling of an exceptional point
[Dem01, Dem04]. The first parameter was the coupling between two halves of a
metallic cavity (corresponds to g in our case), i.e., they modified the width of a slit
connection between the halves. The second parameter was the variation of energy
levels (which corresponds to δ in our case) by moving a metallic scatterer in one of
the two halves of the metallic cavity. In this experiment they were able to confirm
the state flip and that a fourfold encircling of the exceptional point recreates the
initial state according to equation (5.13). Other experiments used coupled electronic
circuits [Ste04], optical micro-cavities [Lee09] or cold atoms [Cho10a] to perform
what is called a parametric encircling of the exceptional point.

This picture of state flips stays valid as long as the system dynamics can be
described fully adiabatically. However, it turned out that also non-adiabatic effects
have to be considered when encircling an exceptional point dynamically.
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It has been shown in [Uzd11], that an encircling of a state can either follow an
adiabatic transition towards its flipped equivalent or a non-adiabatic. The preferred
transition for a fixed encircling direction depends on the initial state. Due to non-
adiabatic coupling an eigenstate can undergo a non-adiabatic transition. We can
look for example on the clockwise encircling of the state which is initially placed
on the lossy part of the upper eigenvalue plane (also called upper Riemann sheet).
This is shown in figure 5.2. This state follows a non adiabatic behaviour encircling
the EP (solid line in figure 5.2) which leads to the fact, that the state comes back to
its initial position (see figure 5.2). The adiabatic transition following the lossy plane
all the time is heavily suppressed and therefore only the non-adiabatic transition
enters predominantly. In figure 5.3 all prominent transitions for all possible initial
conditions and all encircling directions are presented. Thus the final state of an
eigenstate encircling an exceptional point depends only on the direction
of the encircling, not on the initial state.

Figure 5.2 – Dynamics of an eigenstate starting from the lossy part of the upper eigen-
value plane and encircling an exceptional point in the counter-clockwise direction. The
coloured sheets indicate the two different eigenvalues of H (see equation (5.1) and figure
5.1). Path taken due to non-adiabatic coupling (solid line). Path which would corre-
spond to an adiabatic behaviour (dashed line). The red (blue) colour corresponds to the
eigenvalue-sheet with relative gain (loss).

Figure 5.3 – Dynamics of eigenstates encircling an exceptional point of the non-
Hermitian Hamiltonian H (see equation (5.1)). The coloured sheets indicate the two dif-
ferent eigenvalues of H (see figure 5.1). Depending on the encircling direction only, the
eigenstate reaches always the same final state. The red (blue) colour corresponds to the
eigenvalue-sheet with relative gain (loss). [Dop16a]
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Assume a system where one has two eigenstates (or modes) which perform a
loop around the exceptional point in the manner described above. If this system
followed the dynamics described above, one would create an asymmetric switch.
The system would react in such a way that state (mode) 1 scatterers into state
(mode) 2, whereas state (mode) 2 scatterers into itself. One has to note here that
this asymmetric switching effect arises due to non-adiabatic transitions. Therefore
it can only be observed in an experiment performing a dynamical encircling rather
than a parametric one done by the Darmstadt group [Dem01, Dem04]. This idea
of an asymmetric switch marks the aim of our system we want to design in the
following. Thus we have to think of how to perform a dynamical encircling of an
exceptional point.

5.2 dynamical encircling with a waveguide

In this chapter we will translate the ideas presented above into a waveguide system
similar to the one presented in chapter 4. The waveguide of chapter 4 will be modified
to fit its new purpose. We will exchange the straight borders and we insert instead
smoothly and periodically deformed walls and we place absorbing material inside
to introduce the loss which correspond to the γi of equation (5.1). The boundary
parameters (amplitude and frequency of the boundary) will define our parameter
space through which the states (in our case Bloch-modes) are performing the round-
trip around the EP. The width and the working frequency are adjusted in such a
way that only the first two Bloch modes can propagate along the x-axis (following
the coordinate system introduced in section 4.2).

5.2.1 Bloch Modes

These newly introduced periodic boundaries (see figure 5.4) will lead to the appear-
ance of so called Bloch modes Λ with their wavenumber K. We will see that these
Bloch modes will represent the states which coalesce at the exceptional point and
that their wavenumbers correspond to the eigenenergies which will coincide as de-
scribed above.

Figure 5.4 – Scheme of an infinite waveguide with a periodically changing border.
[Dop16b]
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5.2. Dynamical Encircling with a Waveguide

The harmonically oscillating electric field Φ(x, y, t) within this periodic waveguide
can be described as

Φ(x, y, t) = Λ(x, y)e−i(ωt−Kx) = φ(x, y)e−iωt. (5.14)

Note that K is defined up to an integer multiple of kb, such as K mod kb, where kb
denotes the boundary wave number defined in figure 5.4 (see details below).

As we have shown in section 1.1 this field has to obey the two dimensional
Helmholtz equation (see equation (1.6) for µ = 1):

∆φ(x, y) + ǫ(x, y)
ω2

c20
φ(x, y) = 0. (5.15)

where ǫ is here a complex dielectric function, c0 is the speed of light. If ǫ is just
a real constant, i.e., it is not position dependant, one finds the sinusoidal modes,
which have been discussed in detail in chapter 4. In this notation the sinusoidal
modes are written with

Φn = sin
(nπy

W

)

eiknx, with kn =

√

ω2

c2
−
(nπ

W

)2

, (5.16)

where n is a simple integer (compare with section 4.2.2) and W is the constant
waveguide width (see figure 5.4).

But in order to reproduce a Hamiltonian similar to the one in equation (5.1)
one has to introduces position dependant losses to the system this means ǫ(x, y) =
1 + iη(x, y)/k is now complex and depends on the dissipation coefficient η(x, y). η
takes into account the losses from the waveguide walls as well as from the absorbing
material introduced in the waveguide itself.

At the border the field φ(x, y) follows Dirichlet boundary conditions so that
φ(x, y = ξ↑) = 0 = φ(x, y = ξ↓) with (see also figure 5.4 where ξ is indicated)

ξ↓(x) = σsinkbx, ξ↑(x) = W + σsinkbx, (5.17)

where the boundary wavenumber kb, given by

kb = k1 − k2 + δ = kr + δ, (5.18)

introduces near resonant scattering. δ is the detuning parameter (δ ≪ kb). We will
see that this wobbly waveguide will be attached to a simple rectangular one, where
the basic excitation of the sinusoidal modes is done. The frequency ωw where we
are working at is chosen, so that the corresponding wavenumber kw fulfils 2π/W <
kw = ω2/c2 < 3π/W (see equation (5.16)), leaving us with two propagating modes.
φ is defined to be Bloch-periodic. Therefore it fulfils the following periodicity:

Λ(x+ l, y) = Λ(x, y) with l =
2π

kb
. (5.19)
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5.2.2 Using Perturbation Theory

The initial state is prepared in a rectangular waveguide so we set σ = ν = δ = 0
leading to:

φ0 = Λ0(x, y)eik1x, (5.20)

Λ0(x, y) = a1sin
( π

W
y
)

+ a2sin

(
2π

W
y

)

e−ikrx. (5.21)

where Λ0 is periodic with regard to l0 = 2π/kr. One refers to this as a degenerate
Bloch mode of multiplicity two with the wavenumber k1.

Now we switch on the boundary amplitude σ, the detuning parameter δ and the
dissipation coefficient η and therefore we have to consider corrections appearing in
equation (5.19) like

Λ(x, y) = Λ0(x, y) + Λ1(x, y), K = k1 + s, (5.22)

l =
2π

kb
= l0 + l1δ +

✟
✟
✟✟O(δ2) , with l0 =

2π

kr
, l1 =

−2π

k2r
. (5.23)

s is a small correction for the wavenumber and of the same order as σ, δ and
η. Using the definition of φ (equation (5.14)) and developing φ for small s and
neglecting higher order terms of σ, δ and η and also neglecting products of those
one derives

φ(x, y) = [Λ0(x, y) + Λ1(x, y) + ixΛ0(x, y)s]eik1x (5.24)

Taking this result and using the Helmholtz equation (5.15), the boundary conditions
such as φ(x, y = ξ↑) = φ(x, y = ξ↓) = 0 and the periodicity condition for Λ in
equation (5.19) one derives two equations (see details in [Dop16b])

(

i
η

2

k

k1
− s

)

a1 + i 2
σ

k1

π2

W 3
a2 = 0 (5.25)

−i 2
σ

k2

π2

W 3
a1 +

(

δ + i
η

2

k

k2
− s

)

a2 = 0 (5.26)

One can recognise here that if one writes equations (5.25, 5.26) in their matrix form,
one ends up almost with a matrix similar to the Hamiltonian defined in equation
(5.1). The equation system (5.25, 5.26) is solvable if its determinant is 0, i.e.,

(

s− i
η

2

k

k1

)(

s− δ − i
η

2

k

k2

)

− 4π4

W 6

σ2

k1k2
= 0. (5.27)

The three equations (5.25, 5.26, 5.27) are sufficient to define s, a1 and a2 so that we
can approximate φ by [Dop16b]:

φ(x, y) ≈
(

a1sin
( π

W
y
)

+ a2sin

(
2π

W
y

)

e−ikrx

)

ei(k1+s)x, (5.28)
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with
c1(x) = a1

√

k1e
iπ/4e−i(δ−s)x, c2(x) = a2

√

k2e
−iπ/4e−i(δ−s)x. (5.29)

c1(x) and c2(x) are coefficients solving a Schrödinger equation (see equation (5.30)
and the explanation given below). The solution (5.28) shows that the components
of the Bloch modes are expressed as slightly modified sinusoidal modes. In the
following we will refer to the first component of the Bloch mode as Bloch mode 1
and the second one will be named Bloch mode 2.

The presented approximation for φ(x, y) holds for small σ, δ, η and s. With
the use of equations (5.25, 5.26, 5.27) and a similarity transformation which gives
symmetric diagonal elements one can define a Hamiltonian which is similar to the one
in equation (5.1) and one can show that φ (5.28) fulfils the Schroedinger equation
where the time dependency t was replaced by the spatial coordinate x

[Dop16b]

i
∂

∂x

(
c1
c2

)

= H

(
c1
c2

)

, H =

(
δ − iη

2
k
k1

Bσ

Bσ −iη
2

k
k2

)

, B = 2
π2

W 3

1√
k1k2

. (5.30)

This 2×2 Hamiltonian shows a very nice correspondence with equation (5.1). The
amplitude modulation σ of the wavy boundary turns out to be related to the coupling
g. The frequency modulation δ manipulates the detuning of the two resonances and
η plays the role of γ (compare equation (5.1) with equation (5.30)). We see in the
Hamiltonian of equation (5.30) that the loss γj = iη

2
k
kj

differs for the two modes

due to the factor of k/kj for the case of non-position-dependant loss η. But in our
experiment it is possible to introduce absorbing foam material (see section 5.4) and
therefore we can make the loss η position dependant η = η(x, y). We need to design
η in such a way that the absorption gets mode dependent. This can be done by
placing absorbing material in the nodal spots of one mode, for example.

In order not to loose the Bloch-formalism η(x, y) has to fulfil the following con-
dition:

η = η0η̃(x, y), η̃(x+ l, y) = η̃(x, y), with l = 2π/kb. (5.31)

In fact this leads to the modified Hamiltonian [Dop16b]:

H =

H0
︷ ︸︸ ︷(
δ Bσ
Bσ 0

)

−i
η0
2

(
Γ11 Γ12

Γ∗
12 Γ22

)

, (5.32)

Γnm =
eiπ(m−n)/2

πW

kkb
knkm

W∫

0

l∫

0

η̃(x, y)sin
(nπ

W

)

sin
(mπ

W

)

e−i(kn−km)xdxdy (5.33)

A clever way to introduce asymmetric mode scattering is to place the absorbing
material in the maximum of an eigenstate v1 of H0, meaning that:

H0v1 = E1v1. (5.34)

95



Chapter 5. Dynamical Encircling of an Exceptional Point

We can construct now an anti-Hermitian Hamiltonian H so that v1 is heavily sup-
pressed along its propagation. One way to do it is to define H as

H = H0 − i
η

2
v1v

†
1. (5.35)

Since v†1v2 = 0, by construction, only v1 is heavily absorbed, when one looks at the
propagation of the eigenvectors by the means of exp(−iHx)vi. We obtain that v1
undergoes a heavy damping (factor of exp(−ηx/2)) during the propagation.

Numerically, one can show that the absorption description by Γnm works well for
the description of Bloch mode propagation [Dop16b]. Experimentally we will follow
our considerations above and we will place the absorber at the nodal line of one of
the modes (line of the maximum of the other mode). This it exactly what can be
seen in the experimental realisation (see figure 5.9). By adjusting the length of this
absorbing line we can regulate the absorber strength to ensure that we are still in
the regime of small η, so that the perturbation description presented in this chapter
is still valid.

5.3 experimental realisation in a waveguide

At this point we have all necessary ingredients to design a waveguide where an encir-
cling of an exceptional point is possible. We will choose the x-dependent parameters
σ(x), δ(x), η(x) (see coordinate system in figure 5.4) such that an encircling can be
achieved within in the limits of our experiment. Concretely, this means

σ(x) =
σ0
2

(

1 − cos
2π

L
x

)

, δ(x) = δ0

(

2
x

L
− 1
)

+ ρ, (5.36)

η(x) =
η0
4

(

1 − cos
2π

L
x

)2

=
η0
4

(

1 + cos

(

π
δ − ρ

δ0

))2

. (5.37)

Note that 0 ≤ x ≤ L, where L is the finite waveguide length. Normally the Bloch
formalism deals with infinite system length, but is justified to move to systems with
a finite length if the length l connected to the periodicity of the Bloch modes (see
equation (5.19)) follows l ≪ L. σ0 is the maximal roughness and δ0 the maximal
detuning strength of the boundary modified by a constant detuning of ρ. η0 is the
dissipation constant. The system part corresponding to x = 0 and x = L are iden-
tical as they describe a uniform rectangular waveguide without absorption.
In the following we will use the wobbly waveguide Hamiltonian equation (5.30) to-
gether with the result of section 5.1 and the parametrisation of η in equation (5.37).
Note that g = Bσ and γ1 = η(x)k/ki (compare equation (5.1) and equation (5.30)).
One can calculate the exceptional point coordinates in the (δ,σ)-plane as :

δEP = 0, σEP =
|γ1 − γ2|

4B
=

η0
16B

(

1 + cos

(

π
ρ

δ0

))2 ∣
∣
∣
∣

k

k1
− k

k2

∣
∣
∣
∣
. (5.38)
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5.3. Experimental Realisation in a Waveguide

Figure 5.5 – Scheme of the encircling of the exceptional point (EP) in the (δ,σ)-plane.
The path defined by the parameter equation (5.36) follows the solid black line. The chosen
paramters are L/W = 100, kW/π = 2.05, σ0/W = 0.1, δ0W = 0.85, ρW = 0.3, η0W =
0.6. The dashed line indicates where Re(E1) = Re(E2) and the dotted line shows the line
for Im(E1) = Im(E2) (compare with section 5.1). [Dop16b]

Since we know the Hamiltonian H (equation (5.30)) we can calculate the eigen-
values for H in the whole (δ,σ)-plane. Together with the path determined with
equation (5.36) one gets a similar picture than those presented in section 5.1. The
exceptional point for the wobbly waveguide encircled by the parametric path de-
fined by equation (5.36) is presented in figure 5.5. Note that if the amplitude of
the boundary σ vanishes, δ can have an arbirtray value and still all this waveguide
configurations with σ = 0 correspond to the simple rectangular waveguide. Since
the losses follow η(x) = η(L−x) (see equation (5.37)), the two black dots indicated
in figure 5.5 really describe the same physical system. One can define the following
parameter transformation for which the encircling path is closed in a mathematical
sense [Dop16a]:

(
p1
p2

)

=

(
r sin(2α)
r cos(2α)

)

with

r =

√
(σ

σ 0

)2

+

(
δ − ρ

δ0

)2

, α = arctan

(
δ − ρ

δ0
/
σ

σ0

)

. (5.39)

Following an eigenstate (eigenvector) around an EP, theoreticians look at what they
call eigenvector populations [Uzd11,Dop16a]. It turns out that one can understand
these eigenvector populations in the waveguide context as entries of the transmission
matrix T describing how the Bloch modes (eigenvectors) are scattered into each
other while going around the exceptional point (see definition of the transmission
matrix in section 1.2). The development of these entries, while encircling the EP,
is schematically shown in figure 5.6. The encircling direction can be understood
as direction of the injection. Injection from the left side of the waveguide can
be associated with a counter clockwise encircling, whereas injection from the right
describes the clockwise encircling. The initial state on the lower (upper) half plane
corresponds to the injection of Bloch mode 2 (1).
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Chapter 5. Dynamical Encircling of an Exceptional Point

Figure 5.6 – Encircling the exceptional point for different initial Bloch modes. Domi-
nant transitions are shown with a solid line. Damped transitions are shown with dashed
lines. Left: Counter clockwise encircling of the two eigenmodes (Bloch modes). On the
outer (inner) left Bloch mode two (one) is injected. Right: Clockwise encircling of two
eigenmodes. On the outer (inner) right Bloch mode one (two) is injected. The red (blue)
colour corresponds to the eigenvalue-sheet with relative gain (loss).

Let us concentrate first on the outer left picture of figure 5.6 describing the
injection of Bloch mode 2 into the system. The adiabatic transition (solid line)
follows the eigenvalue sheet corresponding to the one of relative gain (red sheet in
figure 5.6). While encircling the exceptional point this mode (as it is representing
an eigenvector of H) will undergo a state flip at the end of his round trip. Following
the amplitude (intensity) of the initially sent mode means in this context that we
are looking at transmission matrix elements Tij. Therefore the transition described
by the solid line represents T21 since the adiabatic transition of Bloch mode 2 ends
up in Bloch mode 1.

In section 5.1 we saw that also non-adiabatic process come into play here. The
non-adiabatic transition is represented by the dashed line in figure 5.6 and it cor-
responds to T22. This state flip back into the initial state is a direct result of the
non-adiabatic coupling. Since this transition follows the lossy eigenvalue sheet (see
blue sheet in figure 5.6) it is heavily suppressed so that T21 > T22.

Similarly, following the amplitude of the initial first Bloch mode (inner left pic-
ture in figure 5.6) one observes an immediate adiabatic transition which is followed
by a rather long trajectory on the sheet associated with gain. Following the ampli-
tude of this state gives the size of T11. The adiabatic transition corresponding to
T12 is following the lossy sheet during all its encircling. Meaning that T12 is heavily
suppressed and T12 < T11.

One can also make a comparison between the two pictures. T21 is following
the gain sheet most of the time (especially when compared to the other possible
transitions), whereas T12 does the same on the lossy sheet.

Therefore T21 has to be the greatest obtained quantity and T12 the smallest, i.e.,
T21 ≫ T12 (compare with the actual obtained experimental results in section 5.5).

In figure 5.6, I also show the scheme for the clockwise encircling of the exceptional
point (the two pictures on the right). This corresponds in our case to an injection
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5.3. Experimental Realisation in a Waveguide

Figure 5.7 – Scheme of a waveguide with damping and smoothly deformed boundaries
(see equations (5.17, 5.36, 5.37)) supporting two sinusoidal modes undergoing scattering
as an illustration of the asymmetric switch effect. Upper panel: Injection of two modes
from the left with mode 1 surviving. Lower panel: Injection of two modes from the right
with mode 2 surviving. [Dop16a]

from the right side of the waveguide (as described above). These pictures for the
clockwise encircling can be understood in the same way as discussed for the counter
clockwise encircling. Following the discussion above we can derive relations between
the quantities Tij in an analogue way, i.e., T21 < T22 (from the inner right figure
of figure 5.6), T11 < T12 (from the outer right figure of figure 5.6) and T21 ≪ T12
(comparison of the two).

It might be written in a cryptic way so far, but at this point we have realised
an asymmetric switch, which shows different preferred transitions depending on the
injection direction. The observations from above are sum up in figure 5.7.
Finally we realised an asymmetric switch, which generates depending on the injec-

tion (encircling) direction a different output at its end. If we inject a combination of
the two modes from the left of the waveguide, (almost) only the first mode (Bloch
mode 1) will reach the output (see upper panel in figure 5.7). Whereas, if we inject
a combination of the two modes from the right, only the second mode (Bloch mode
2) will survive the transition.

This kind of waveguides can be of great interest when one thinks of possible
applications. The great advantages with this kind of technique is that it can serve
as a very efficient filter, which does not simply suppress certain components, but
instead it transforms these unwanted components into the desired ones. In practice
such a wobbly waveguide system can be realised in any kind of wave system such as
an optical or an acoustical system for example.

The important thing here is that we use non uniformly distributed loss to per-
form this asymmetric switching behaviour. It has been shown in [Dop16b] that an
asymmetric switching effect can be performed with uniform distributed loss only
as well. But this method shows two major draw backs. First the overall output
intensity is very poor I ∝ 10−20 and the waveguide itself is very long (L/W ≫ 100).

The uniform absorption can be replaced by a highly localised one however. Using
strong localised absorption reduces the system size L to a level realisable in an
experiment L/W ≈ 25. Absorbing material is placed at the nodes of the second
eigenvector (Blochmode) of H0 as it is defined in equation (5.32) (see also figure
5.9). Note that H0 describes the case where no absorption is present, i.e, η0 = 0.
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Chapter 5. Dynamical Encircling of an Exceptional Point

Numerically the damping of the output of the Bloch mode, which corresponds
to the damped transition, is of the order of 5 magnitudes [Dop16b] (non-scattering
Gaussian shaped absorbing dots exactly placed in the nodal points of Bloch mode
2).

Note that changing the absorber position means also to change the position of
the exceptional point within the (δ,σ)-plane. Numerically it was shown that this new
loop-trajectory taking into account the changed condition η corresponding to our
used absorber configuration still encircles an exceptional point which itself remains
within the encircled area [Dop16b]. However, the Gaussian shaped absorbing dots
used for the numerics are not a good idea for the microwave experiment. Distributing
many absorbing dots throughout the nodal points would cause high back reflections
and therefore we decided to use a continuous stripe-absorber. The stripe-shape is a
good compromise. For sure it will lead to parasitic absorption of both Bloch modes,
but it will create the necessary loss to establish an encircling and it minimises the
back-scattering-effect.

5.4 microwave set-up

For the experimental realisation we fixed the parameters according to equations
(5.36, 5.17):

W = 5 cm, L = 25W, σ0 = 0.16W, δ0 = 1.25/W, ρ = −1.8/W

kb = kr + δ(x) with kr =
π

W
(
√
N2 − 1 −

√
N2 − 4), N = 2.6. (5.40)

I developed a CAD-model of the cavity using these fixed parameters so it can be
fabricated by CNC-machines (computerised numerical control machines). A sketch
of the fabricated cavity can be seen in figure 5.8. Due to the limited size of the
accessible CNC-machine we had to divide the waveguide in multiple parts. The

W= 5 cm

Rectangular part Rectangular part

Ant. 1 Ant. 2

L= 125 cm

Figure 5.8 – Sketch of the waveguide. The central part following the boundary param-
eter equation (5.40) is placed in between two rectangular waveguide parts containing the
antennas. The blue and the green vertical lines on the left and on the right present the
possible positions for the two scanning antennas (compare with figure 5.9 for the position
of the absorber-stripe).
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Figure 5.9 – Photo of the experimental set-up showing the two step motor driven scanning
antennas which were connected to a vector network analyser. Black absorbing foam is
placed at the end of the waveguide to minimise reflections from the open ends. The stripe
of absorbing foam material introduces the necessary mode dependent loss for the encircling
(see figure 5.8 and table 5.1 for more details).

overall precision of the fabricating machine of δ ≈ 0.01 mm for aluminium material
is way below the wavelength λ = 3.84 cm at the frequency f = 7.8 GHz, where
our experiment is supposed to work. The different sections of the cavity are hold
in place by precisely placed pins. This leaves no gap and the positioning error
with less than 1 mm is well below the wavelength. We will see that the eventual
inter-mode scattering and backscattering by the junctions plays only a minor role in
the experiment as the general transmission behaviour follows exactly the theoretical
predictions. For sure if one thinks of building a commercial device with high output
efficiency, the control of the boundary is crucial.

Once the 3d-modeling was done using OpenSCAD, the real waveguide could be
fabricated using aluminium as basis material. A photo of the fabricated aluminium
waveguide is presented in figure 5.9.

All the important parameters of the final aluminium waveguide are listed in ta-
ble 5.1. As already explained in section 4.2.3 we use foam absorber to suppress
reflections from the ends of the channels, i.e, to mimic a quasi infinite waveguide.
They show a saw-tooth form in order to minimise back reflections coming from the
absorber itself. The absorber stripe in the center introduces the necessary loss for
the exceptional point encircling. The absorber-stripe is sloped so that reflections
happening at the edges of the absorber are minimised. The two measurement an-
tennas are mounted onto movable slides which are moved by step motors with a
total precision of ≈ 0.25 mm.

The height of the waveguide of 8 mm ensures that we work only with the TE0

mode (see sections 1.1 and 4.2.2). At 7.8 GHz and a width W = 5 cm we deal with
two open sinusoidal modes (see section 4.2.2). The lower frequency cut-off f 1

c is at
≈ 3GHz. This means that the frequency distance between two modes (see equation
(4.26)) is also at ≈ 3GHz. Fore more details concerning the microwave waveguide
revisit sections 1.1 and 4.2.2.
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Total length [cm] 238
Antenna Distance [cm] 150
Width [cm] 5
Height [mm] 8
Central Absorber LS-10211 [ARC Technologies ]
Central Absorber Width [mm] 2.5
Central Absorber Height [mm] 5 (ascending/descending at the end)
End-Absorber LS-14, LS-16 [EMERSON&CUMING ]
End-Absorber Length [cm] 17.5
End-Absorber Width [cm] 5
End-Absorber Height [mm] 6-6.5

Table 5.1 – Details on the experimental parameters.

5.5 the dynamical encircling - experimental re-

sults

We have seen in section 5.3 that the relevant experimental quantities are the trans-
mission matrix elements Tij. The measurement of these elements is done in the
following way. We measure the transmission at 2×2 positions of the scanning an-
tennas. These points are defined as (y0, y1 = (5 cm +W/3, 5 cm + 2W/3) (see figure
5.8). First antenna 1 (left antenna) is moved to position y0. After that antenna 2
moves to y0 and y1 and we measure each time the transmission. Once these two
measurements are done, antenna 1 moves to y1 and antenna 2 repeats its movement
like before. In total we have four transmission measurements and eight reflection
measurements, i.e., four reflection measurements for each antenna. Such a reflec-
tion/transmission measurement for a given position of the two antennas is shown in
figure 5.10.

Since we want the transmission data to be comparable in a large frequency
window, we have to remove the frequency dependant coupling of the used antennas.
This calibration technique of the transmission matrix has been established in [Die10].
Therefore we calibrate the transmission data following:

T ′(yi, yj) =
T (yi, yj)

√

(1 − 〈| 〈R1〉sl |〉
2
pos)(1 − 〈| 〈R2〉sl |〉

2
pos)

, (5.41)

where T (yi, yj) stands for the transmission measured between antenna 1 (at position
yi) and antenna 2 (at position yj).〈Rk〉sl describes the sliding average over frequency
window of ∆f = 0.0735 GHz for the reflection signal at antenna k. The value for ∆f
was chosen manually, i.e., by choosing several values for ∆f and verifying if the the
oscillations in the reflection spectra vanish (see alsosection 4.2.3). 〈.〉pos denotes an
additional averaging over all measured four reflection measurements, which should
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Figure 5.10 – Left: A measured reflection for antenna 2 at position y1. The blue line
represents the raw data and the red line represents the raw data after the sliding average
treatment (average window is ∆f = 0.0735 GHz; see also section 4.2.3).The dashed line
indicates the mode opening for the second (third) mode. The solid vertical line represents
the frequency where our set up should perform an encircling of an exceptional point. Right:
A measured transmission signal between antenna 1 at y1 and antenna 2 at y1. The raw
data is shown in blue and the Fourier filtered data in red. The solid vertical line represents
the working frequency.

be the same due to the symmetry of the chosen positions. This calibration can
also be seen as removing the impedance mismatch between the antenna and the
waveguide. We did not apply any further renormalisation of T (yi, yj). For instance,
one could think of measuring a rectangular waveguide with the same total boundary
length (no absorbing foam material) to get a measure for the intrinsic losses in the
waveguide, which can be seen as additional parasitic losses. We disregard here the
effect of the overall intrinsic losses on the absolute transmission efficiency as it is
not important for the observation of the characteristic mode scattering behaviour
described in section 5.3

Once the data is calibrated we can transform the transmission matrix T into the
mode picture Tnm by using a two dimensional sinus transform (compare with section
4.2.2) defined here as

Tnm =
1

2

∑

yi,yj

T ′(yi, yj)sin
(nπ

W
yi

)

sin
(mπ

W
yj

)

. (5.42)

The result of this transformation (see figure 5.11) reveals a very nice agreement
with the theoretical considerations of section 5.3. The expected behaviour for the
injection of the left which corresponds to the counter clockwise encircling of the EP
(see figure 5.6). The condition T11 > T12 is fulfilled (factor of 20 in between them).
T21 > T22 is fulfilled also (factor of 20). We observe for the relation T21 ≫ T12
a difference of 4 orders of magnitude! We also measured the transmission matrix
for the case that the signal is injected from the right. This transmission matrix is
denoted with T̃ in figure 5.11.
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Figure 5.11 – Intensity of the transmission matrix elements Tnm (mode picture) as a
function of frequency. Dashed lines indicate the mode openings of the second and third
mode. The solid line shows the frequency for which the set-up was designed to work at.
T̃nm is the transmission matrix measured for the signal that is injected from the right.

We note that we have a slight break of reciprocity (dashed and solid lines are
not falling onto each other in figure 5.11). We observed that this breaking is an
effect of the line absorber, who seems to be slightly magnetised. This causes a di-
rectional dependence of the absorption and therefore the transmission gets direction
dependent as well. In case of no line absorber, we do not observe any difference
between the two injection directions. The transmissions signal from both directions
are still strongly correlated, so this directional dependence of the transmission can
be assumed as a constant factor, which is not related to the theory of the encircling
of the exceptional point.

Nevertheless, looking at the injection from the right side of the waveguide we
also get the expected behaviour for the Tij: T̃21 < T̃22, T̃11 < T̃12, T̃21 ≪ T̃12. This
is in fact the proof of the asymmetric switching behaviour due to the
presence of an EP.

To justify that our system behaves fully adiabatically in the case of the absence
of the EP, one would need to follow the same parameter loop in parameter space
without the presence of the EP. However, as our fixed system parameters δ(x), σ(x)
and η(x) fully determine the position of the EP, we do not have the possibility to
carry out such a measurement. But the results allow us to claim that the system
dynamics is not fully non-adiabatic, since T1,2, T2,1 (T̃12, T̃21) are related to adiabatic
transitions along the parametric loop.
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5.6 parametric encircling

As we have clearly confirmed the dynamical encircling of the exceptional point. Thus
one can ask oneself if it also possible to relate this kind of waveguide experiments
back to a parametric encircling of an exceptional point (see section 5.1).

This is indeed possible. To do that, we have to construct a periodic waveguide
for each of the parameter points of our encircling trajectory in the (δ,σ)-plane. This
is possible because each point on the trajectory around the EP represents a well
defined waveguide with a well defined boundary.

We chose 5 equidistant points on the trajectory and constructed 5 waveguides
corresponding to the specific boundary parameters at these points (see figures 5.12
and 5.13).

One could also say that we are going to translate 5 points of the waveguide
with periodically changing boundary ξ = σsin(kb(x)x) (see equation (5.17)) into
five waveguides with boundary ξ̃ = a sin(Ωx) of a constant frequency Ω 6= Ω(x). To
find the appropriate estimation for the constant boundary frequency Ω, we will have
a look at the Taylor expansion of ξ and ξ̃ around an arbitrary point x0.
This expansion can be written as

ξ(x0) ≈ σ
[

sin
(

kb(x0)x0

)

+ cos
(

kb(x0)x0

) (∂kb
∂x

x+ kb

)∣
∣
∣
∣
x0

(x− x0) + ...
]

ξ̃(x0) ≈ a
[

sin
(

Ωx0

)

+ cos
(

Ωx0

)

Ω (x− x0) + ...
]

. (5.43)

Figure 5.12 – Top: Scheme of the set-up for the dynamical encircling (compare with
figure 5.8). The absorber is highlighted with a blue color. Bottom: The encircling path
in the (δ,σ)-plane related to the waveguide. The dotted lines with the Roman numbers I
to V connect positions in real space with points on the parameter-trajectory in the (δ,σ)-
space. [Dop16a]
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Figure 5.13 – Picture of the 5 realised waveguides according to the parameter sets defined
in figure 5.12 and table 5.2. lA, lB describe the length of the rectangular parts of the
waveguide (lA = lB for the experiment; see also figure 5.8)). ln, where n stands for
a Roman numeral, is the period length of the nth-configuration, i.e., ln = 2π/Ωn. The
number in front of ln indicates the number m of realised periods for each configuration.
The line absorber is indicated in blue color. [Dop16a]

.

By comparing the two lines of equation (5.43) we have to demand that a and Ω of
the new boundary ξ̃ follow:

a = σ = σn, Ω =
∂kb
∂x

x
∣
∣
xn

+ kb(xn), (5.44)

where the index n represents the 5 different positions according to which we are
going to construct the 5 new waveguides where we do the translation (see figure
5.12). Ω becomes using equations (5.18, 5.36):

Ω = kr + 2δ0

(
2xn
L

− 1

)

+ ρ+ δ0 = kr + δn. (5.45)

This matching of a constantly changing boundary ξ to a boundary ξ̃ with constant
boundary frequency is illustrated in figure 5.14 for the case III (compare with figure
5.12).

We constructed 5 different waveguides of constant boundary frequency represent-
ing 5 points on the encircling path around the exceptional point. The parameters
of these five chosen waveguides are shown in table 5.2 and their spatial form is
presented in figure 5.13.

Once the waveguides were realised, we measured again the transmission matrix T
in the spatial domain for 2×2 points. This time we worked exclusively at 7.8 GHz, so
we just calibrate the data according to equation (5.41), where we left out averaging
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Figure 5.14 – Schematic transformation from a waveguide with x-dependant boundary
frequency towards a waveguide with a constant boundary frequency at position III (see
figure 5.12 and approximations in the main text). [Dop16a]

configuration n I II III IV V
xn/W 7 9.75 12.5 15.25 18
δn/W -1.65 -1.1 -0.55 0.0 0.55
σn/W 0.094 0.1416 0.16 0.1416 0.094
lA = lB [cm] 51.57 49.26 39.51 47.93 53.11

Width of the line absorber [mm] (±0.5) 1 2.5 2.5 2.5 1
Height of the line absorber [mm] (±0.1) 5 5 5 5 5

Table 5.2 – Experimental parameters xn, δn, σn as a function of the waveguide width
W = 5 cm. The length lA = lB specify the length of the rectangular parts of the waveguide
(see figure 5.8). Parameters of the used line absorber.

since we do not want to compare the signal in a large frequency window. This
calibrated transmission data is again transformed into its mode picture by applying
the discrete sine transformation following equation (5.42).

In this experiment we are not performing a continuous encircling. Therefore we
can not just look at the transition elements corresponding to the entries of Tij of the
transmission matrix. Instead we have to study the eigenvectors of the transmission
matrix Tij in which the components of the Bloch modes are encoded.

The propagation of the Bloch mode through the regular oscillating waveguide can
be described via the translation operator Uln that translates a Bloch mode Φn(x, y)
by a full period ln = 2π/Ωn so that

UlnΦn(x, y) = Φn(x+ ln, y) = eiKlnΦn(x, y). (5.46)

Once the Bloch mode has propagated through m periods of length ln, Um
ln

contains
the full transmission information such that

T = Um
ln , (5.47)

where T is the transmission matrix in the mode representation. This becomes clear
when one realises that the (distorted) sinusoidal modes with their amplitudes c1 and
c2 are the basis of the Bloch modes (see equations (5.28, 5.29)). This means also
that the vector (c1, c2)

T has to be an eigenvector of T :
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(
T11 T21
T12 T22

)(

c
(n)
1

c
(n)
2

)

= τn

(

c
(n)
1

c
(n)
2

)

. (5.48)

The index n is again the index representing the 5 realised waveguides. For the para-
metric encircling we have to study the eigenvectors and eigenvalues of the measured
transmission matrix T in order to obtain the characteristic state-flip.

To eliminate the effect that the modes travel through rectangular parts before
entering (after leaving) the periodic part of the waveguide (see figure 5.13), we apply
phase factors to the transmission matrix T :

Tphcal =

(
T11e

2ik1lB T21e
ik1lBeik2lB

T12e
ik1lBeik2lB T22e

2ik2lB

)

. (5.49)

The definition of lB can be found in figure 5.13.

The question is now what behaviour of the eigenvectors one would expect for
the case of a parametric encircling of an EP. In each investigated configuration it
is always the first sinusoidal mode component which undergoes the heavy loss. So
the low transmission eigenvalue tl is mainly related to the first sinusoidal mode
(corresponding to c1). Note that this is only true when there is no state
flip. If there is no state flip at all in the system, the small eigenvalue before the
flipping point τbl and the small eigenvalue after the flipping point τal will show
both a high fraction of |c1|. If there is an EP present the relation between the
eigenvalues and eigenvectors will be of course different. In the following the indices
b and a indicate ’before’ and ’after’ the flipping point and the indices l and h denote
a ’low’ and a ’high’ value. If one has a closer look on τbl and τal for the case
where an EP is encircled, one will notice that τbl is composed mainly of the first
sinusoidal mode (high value of |c1|), whereas τal is suddenly mainly composed of |c2|
which is associated with the second sinusoidal mode. This is the state flip effect.
Similarly, the high eigenvalue τbh before the flipping point is related to |c2|, whereas
τbh corresponds to |c1|. The described behaviour is visualised in table 5.3.

In the experiment we were looking at the ratio of |c(n)1 /c
(n)
2 | for the two eigenvalues

τi as a function of the fabricated waveguide configurations. If our configurations
are equivalent to a parametric encircling of an EP, state flip behaviour will be
encountered. This state flip behaviour proves the presence of an exceptional point in
the same way as it was done in [Dem04,Lee09,Gao15]. Following the ratio |c(n)1 /c

(n)
2 |

we should see a crossing of the two lines as it is schematically explained in table
5.3. This is exactly what we observe experimentally (see figure 5.15). The crossing
behaviour is clearly visible in our experimental data and therefore the parametric
encircling around an exceptional point is indeed proven. Also the comparison with
the numerical results and the results of the effective 2×2 Hamiltonian (according to
table 5.2 and equations (5.32, 5.33) obtained by Doppler et al. are in good agreement
with our experimental results.
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excep. point τbl τbh τal τah
1st sine mode comp. |c(n)1 | ↑ ↓ ↓ ↑
2nd sine mode comp. |c(n)2 | ↓ ↑ ↑ ↓

ratio |c(n)1 /c
(n)
2 | ↑ ↓ ↓ ↑

no excep. point τbl τbh τal τah
1st sine mode comp. |c(n)1 | ↑ ↓ ↑ ↓
2nd sine mode comp. |c(n)2 | ↓ ↑ ↓ ↑

ratio |c(n)1 /c
(n)
2 | ↑ ↓ ↑ ↓

Table 5.3 – Visualisation of the behaviour of c
(n)
1 and c

(n)
2 under the presence/absence of

an exceptional point (see definition of c
(n)
i in equations (5.28, 5.29)). τn are the eigenval-

ues defined in equation (5.48). The indices b and a stand for a waveguide configuration
”before” and ”after” experiencing the exceptional point/state flip. The indices l and h
indicate a ’low’ or a ’high’ value of the eigenvalue. ↑(↓) stands for a high(low) value of
the eigenvector component |ci| belonging to τ according to equation (5.48).

Figure 5.15 – Ratio of the eigenvector components c
(n)
i (see equation (5.48)) as a function

of the measured waveguide configurations belonging to the high/low transmission eigenvalue
τh (red curve)/τl (blue curve) (compare with table 5.3). Experimental data: Red filled
triangles, blue filled circles. 2×2 Hamiltonian according to table 5.2 and equations
(5.32, 5.33): Dashed lines. The end points denote analytical solutions (empty waveguide).
Numerics: Blue empty upwards pointing triangles, red empty squares. [Dop16a]
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Chapter 5. Dynamical Encircling of an Exceptional Point

5.7 conclusion

The minimal model, where an exceptional point (EP) arises, is a physical system
which is described by a 2×2 non-Hermitian Hamiltonian of the form of equation
(5.1). One can think of a system of coupled damped oscillators for example. The
EP is a point in the parameter space of the Hamiltonian where the two eigenvectors
and the two eigenvalues coalesce.

If one follows an eigenvector on its path encircling an exceptional point the
state flip phenomenon arises and the eigenvector is flipped into his counterpart
(mind the sign; see equation (5.12)). This flipping behaviour can be even more
complicated as non-adiabatic transitions might occur when the EP is encircled
dynamically [Uzd11]. As a consequence of these non-adiabatic transitions, one
observes that the final state of an eigenstate encircling an exceptional point depends
only on the direction of the encircling and not on the initial state. This effect can
be assigned to as an asymmetric switching effect.

We showed that this dynamical encircling of an exceptional point is experi-
mentally feasible using a waveguide with a wavy boundary (see figure 5.9). The
propagation of Bloch modes in such a wavy waveguide can be explained by a 2×2
non-Hermitian Hamiltonian which is a complete analogue to the Hamiltonian stud-
ied before theoretically (compare equations 5.1 and 5.30). We could relate the
encircling direction of the EP with the injection direction of our microwave signal.
Therefore we could make direct use of the asymmetric switching effect to construct a
mode filter which changes its filtering behaviour upon injection direction (see figure
5.7). By investigating the scattering behaviour of the two modes propagating in our
system, we clearly proved that we have realised an asymmetric mode switch based
on the encircling of an EP (see figure 5.11). Not only did we prove that such an
asymmetric switch can be realised, but we also showed that a dynamical encircling
of an EP, where non-adiabatic transitions occur, is experimentally feasible [Dop16a].
This is a great progress with respect to previous experiments which have realised
only a parametric encircling.

To study the connection between the parametric and the dynamical encircling,
we built five different waveguides corresponding to five sets of parameters of the en-
circling trajectory in the parameter space of the Hamiltonian. With these five waveg-
uides we could reproduce the same state flip behaviour as it was observed by other ex-
periments describing a parametric encircling [Dem01,Dem04,Ste04,Lee09,Cho10a].
Therefore our experiment links in a nice way the results of dynamical and para-
metric encircling. Additionally, our experiments paves the way for various possible
applications as our system can be realised in other wave systems as well. An optical
waveguide with a wavy boundary and additional loss introduced in the same manner
as described in this chapter would feature the same asymmetric switching/filtering
behaviour.
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In this chapter we will revise the q-operator in its original form of the Wigner-
Smith time delay operator (see section 3.1). We will show that the eigenvalues and
eigenvectors of the corresponding Wigner-Smith time delay matrix (WSTDM) have
special properties which can be very useful for the transmission of a wave signal
through a two dimensional scattering system.
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Chapter 6. Particle-like Scattering States

6.1 theoretical background and motivation

6.1.1 Group Delay and Dwell Time

Energy

Potential

xw(0) -xc 0 L

x

Figure 6.1 – An initial wave packet Ψ(x, t) travelling through a one-dimensional system
and undergoing scattering at a stationary potential V (x), which is spatially limited between
[0,L]. xw(t) indicates the position of the maximum of the wave packet at time t. xc is the
critical distance up to which a free propagation of the wave packet can be assumed (see
text).

In section 3.1, I have already introduced the WSTDM and I have given an
interpretation of its eigenvalues. In this chapter I would like to present a more
general view on the time information encoded in a scattering problem of waves. We
will investigate in the following the connection between the time delay of a wave
packet undergoing scattering and its connection to the WSTDM in more detail.

Let us assume an arbitrary wave packet Ψ(x, t) in one dimension which is prop-
agating in the positive x-direction. An arbitrary stationary potential V (x), which
the wave packet has to pass, introduces scattering (see figure 6.1). The wave packet
Ψ can be decomposed in its plane wave components Γ(k) outside the potential by
applying

Ψ(x, t) =
1√
2π

∫

dkΓ(k)ei(kx−ω(k)t). (6.1)

ω is k dependent and the relation between ω and k is called dispersion-relation ω(k).
Initially Ψ is localised outside of the potential (see figure 6.1). As the wave packet is
propagating it will undergo scattering, so that some components of the wave packet
will be reflected and others transmitted.

We call the transmitted part of the wave packet Ψtr(x, t) and its corresponding
plane wave components Γtr(k) such as

Ψtr(x, t) =
1√
2π

∫

dkΓtr(k)ei(k(x−L)−ω(k)t), x > L. (6.2)

where L denotes the limit of the spatial distribution of the potential (see figure 6.1).
The scattering of the wave due to the potential can be described by the relation of
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6.1. Theoretical Background and Motivation

the plane wave components before and after the scattering (if the distance to the
potential is sufficiently large)

Γtr(k) = Atre
iφtr(k) · Γ(k), Atr, φtr ∈ R. (6.3)

Atre
iφtr(k) is a complex transmission coefficient which refers to the scattering process.

These coefficients can be condensed into a complex scattering matrix T as we have
seen in chapter 4.

For the reflected part of Ψ one can introduce complex reflection coefficients with
Γre = Aree

iφre(k), respectively, and derive similar relations than the ones for the
transmission equations (6.2, 6.3).

Now we are restricting the problem to its asymptotic limit, i.e., t→ ∞. In gen-
eral it can be assumed that the phase factor is rapidly fluctuating as a function of k.
Therefore in the limit of large t one can apply the stationary phase approximation
as it was used in [Hau89] (see chapter 6.1 of [Ble75] for a rigorous mathematical de-
scription). In this case mainly those plane wave components contribute to Ψtr(x, t)
whose k-values are located close to the stationary point of the phase. All the com-
ponents far from the stationary point of the phase add incoherently leading only to
minor contributions. The stationary phase approximations for our equation (6.2)
can be written as

∂

∂k

(
k(x− L) − ω(k)t+ φtr(k)

)
= 0

⇒ x− ∂ω

∂k
t+

∂φtr

∂k
= 0

⇒ xw(t) =
∂ω

∂k
t+

∂φtr

∂k
, (6.4)

where xw describes the position of the maximum of the wave packet after the scat-
tering (one can use also any other significant point of the wave packet). ∂ω/∂k
is called the group velocity of the wave packet. This velocity can be seen as the
velocity with which the maximum is travelling along the x-axis.

Equation (6.4) states that a wave packet undergoing scattering accumulates an
additional spatial delay ∆x of ∂φtr/∂k which is caused by the phase of the complex
transmission coefficient. This spatial delay leads to a time delay.

tdel = ∆x
m

p
=
m

~k

∂φtr

∂k
=
m

~k

∂E

∂k

∂φtr

∂E
= ~

∂φtr

∂E
for E =

~
2k2

2m
. (6.5)

This time delay can also be understood as a kind of dwell time, since it marks the
difference between the travelling time of a not-scattered state and a scattered one
both travelling at the speed of the group velocity, i.e., the time the wave spends
inside the scattering region. This is a more general derivation of the dependency
of the delay time on the derivative of the phase than the hand-waving example
given in section 3.3. In the same manner one can derive a reflection phase time
tre = ~∂φre/∂E.
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Chapter 6. Particle-like Scattering States

Such a definition of the dwell time has certain drawbacks. First, the used sta-
tionary phase approximations is only valid in the limit of large t(or x). Second,
to keep a clear definition of the dwell time one needs to assume a free propagation
of the followed significant point xw before entering the scattering region. This is
formally done by enlarging the scattering region from −xc to L (see figure 6.1). For
sufficiently large xc one can be sure that no parts of the wave packet have interfered
with the already back scattered parts. Third, what happens if the significant point
is lost during the scattering process? It can happen for example that one can not
define a clear maximum value after the scattering of the wave packet. Fourth, what
happens if parts of the wave packet remain trapped inside the potential?

Nevertheless the concept of time delay and the related concept of group dela,
are well studied subjects in literature (e.g. see [Win03a,Ili09]). The group delay is a
more generalised version of the simple time delay. It contains the information about
the phases of the reflection and transmission coefficients and puts them together as
a weighted sum:

tg = ~

(

|r|2dφre

dE
+ |t|2dφtr

dE

)

. (6.6)

The weighting factors |r|2 = |Are|2 and |t|2 = |Atr|2 represent the reflectivity and the
transmittance. The group delay describes the time of any significant point of the
wave packet to appear after the potential (obstacle) and to reappear after reflection
weighted by the corresponding scattering intensities. The group delay can easily
be further generalised as it was done in [Amb12, Bra16] to describe multichannel
scattering:

tg = ~

nin+nout∑

l=1

|(Si)l|2
dφl

dE
. (6.7)

where nin + nout is the total number of flux carrying channels (injection from both
sides), S is the full scattering matrix and i is a vector containing the coefficients of
the incident waves (see section 1.2). The index l denotes the l-th component of Si.
φl is the phase of the l-th component of (Si)l such as (Si)l = |Si|leiφl .

Ambichl showed in [Amb12] that the expectation value of the Wigner-
Smith time delay operator is identical with the multi-channel group
delay (in case of a unitary scattering matrix). In the following I will re-
strict myself to the investigation of the group delay (time delay). But since I
raised certain drawbacks I want to shortly introduce the theoretical concept of
dwell time, which answers the raised questions. The dwell time td as it is used
in [Hau89,Win03a,Win03b, Ili09,Amb12] is defined as

td =
W

jin
, (6.8)

where jin labels the stationary flux injected into the scattering region and W is the
intensity of a wave packet injected with a k-vector k. W reflects only the intensity
stored within the scattering region, i.e., W =

∫ L

0
dx|Ψ(x,k)|2. Since this description

is based on Feynman’s path integral formalism of quantum mechanics also fictitious
paths describing non unitary processes (loss) can be taken into account.
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6.1. Theoretical Background and Motivation

It was shown in [Hau89,Win03a,Win03b] that the connection between the group
delay tg and the dwell time td follows:

tg = td + ti, (6.9)

where ti describes the self-interference effects of the wave packet entering the scat-
tering region (as discussed before). This means the group delay can be understood
as the sum of the time the wave packet stays inside the scattering region plus a
correction term for the self-interference at the entrance (see [Hau89] or [Amb12] for
further details).

6.1.2 Particle-like Scattering States

The important point to remember is the fact that the group delay is the expectation
value of the Wigner-Smith time delay matrix. Therefore all the eigenstates of this
matrix have a well defined group delay which refers to the corresponding eigenvalue.
The central points discussed in this chapter are based on the work of Rotter et al.
in [Rot11].

The system we are studying is shown in figure 6.2. We have two rectangular
leads attached to a two dimensional billiard of arbitrary shape. Each lead shall
contain N sinusoidal TE0 modes (compare with chapters 1 and 4). Rotter uses flux
normalised modes (flux normalised transport channels) this can be translated to our
sinusoidal modes φn(x, y) so that

φn(x, y) =
1√
kx

sin(kyy)eikxx. (6.10)

kx and ky are the wave vectors in x and y direction as they were defined in equation
(4.3). The factor 1/

√
kx is called flux normalisation.

x

y

Figure 6.2 – Wave scattering in a cavity, where a wave front is injected from the left
and transmitted to the right. The dotted wave front shall indicate the reflected part of the
initially injected one. The blue lead on the left denotes the incoming lead. The orange one
on the right is the outgoing lead.
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Chapter 6. Particle-like Scattering States

According to section 1.2 we connect the modes entering and leaving the billiard
using a scattering matrix S

S =

(
R T ′

T R′

)

. (6.11)

Note that S contains four N × N blocks representing the transmission matrices T
and T ′ and the reflection matrices R and R′ for the N propagating modes (compare
with section 1.2). R and T describe the signal injection from the left lead and the
primed quantities R′ and T ′ are related to the injection from right lead. Note that
we deal with as many incoming than outgoing modes (In the experiment N = 16 in
both leads). According to section 3.1 we can define the WSTDM Q as

Q = i~
∂S†

∂E
S = i~

(
Ṙ†R + Ṫ †T Ṙ†T ′ + Ṫ †R′

Ṫ ′†R + Ṙ′†T Ṙ′†R′ + Ṫ ′†T ′

)

=

(
Q11 Q12

Q21 Q22

)

, (6.12)

where the dots denote the energy derivative ∂/∂E. Particle-like scattering states
(PLSSs) are the eigenvectors of this matrix. We have seen above that their eigen-
values correspond to the group delay tg. These state have two additional properties
which are quite interesting.

First, particle-like scattering states belong to the class of noiseless states [Two03,
Sil03], meaning that their transmission values are either close to 0 (reflecting type)
or to 1 (transmitting type). It turns out, that the PLSSs are living in the subspace
of eigenstates of the transmission matrix T with corresponding eigenvalues τ close
to 0 or 1 [Rot11]. The total transmission is defined as

Tr(T †T ) =
N∑

n=1

τn with τn ∈ [0, 1]. (6.13)

Second, particle-like scattering states show a beam-like propagation, i.e., highly
collimated wave fronts occupying classical paths. Thus their propagation is limited
to certain regions and they are not distributed over the whole scattering region.

We will restrict ourselves in the following to the injection of states from the left
(see figure 6.2) and we are looking for PLSSs which link the incoming lead to the
outgoing one. A state w injected from the left can be described as w = (pT , 0)T .
Such a state shows N zero components. Q-states are eigenstates of the q-operator.
The eigenvalue problem gets for the injection from the left:

Qw =

(
Q11p

Q21p

)

= q

(
p

0

)

= qw. (6.14)

This leaves us to solve the same two equations as they were found in [Rot11]:

Q11p = qp, Q21p = 0. (6.15)

This means a particle-like scattering state has to be an eigenstate of Q11 and it
has to lie in the kernel of Q21. For unitary scattering systems Rotter et al. in
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[Rot11] could show that a state p solving the two conditions in equation (6.15)
is either fully reflected or fully transmitted. In [Rot11] these states are referred
to as ’NOTEs’ (Noiseless Time Delay Eigenstates). These states are known in
the field of quantum chaotic transport as states whose shot-noise vanishes (see for
example [Jac06,Sil03] for more details). In [Amb12] the particle-like scattering states
are explicitly calculated for unitary systems and systems with uniform loss.

However, the direct calculation of the eigenstates of Q11 is not possible in our
case, since in our experiment only the transmission matrix T is accessible (see section
6.2). We have seen in section 3.2, where we used the information of the transmission
matrix only, that this information is sufficient. In section 3.2 we defined a gener-
alised q-operator qα (see equation (3.23)) as an analogue of the Wigner-Smith time
delay matrix containing only T . We showed that the real part of the eigenvalue λ
of this now reduced operator contains the derivative of the scattering phases (see
equation (3.12) α = ω) and, as we have seen in this chapter (see equation (6.5)), the
scattering phases are the essential information in which the delay time (travelling
time of a wave packet) is encoded. This theoretical result was checked numerically
by Brandstötter in [Bra16], where he compared directly the shortest PLSS calculated
with the help of the full scattering matrix S (reflection and transmission informa-
tion) with the states calculated with qα=ω (see Figure 3.2 of [Bra16]). For both cases
he was able to construct a highly collimated beam-like scattering state following the
shortest classical path.

The result that one needs only the information stored in the transmission matrix
is a blessing for experimentalists, since the transmission matrix is easier accessible
from the experimental side.
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Figure 6.3 – Two dimensional microwave cavity excited by 16 antennas (left upper cor-
ner), which are placed in the incoming lead (red coloured area). The injected signal passes
the scattering area/billiard (blue area) and reaches the outgoing lead (green area). The
incoming and the outgoing lead are closed with absorbing foam material (LS-14, LS-16;
see section 4.2). The scattering region is closed (except for the connection to the incoming
and outgoing lead). The 27 positions for the moving antenna for the measurement of the
transmission matrix T are marked with a red rectangle. Vector network analyser, power
divider and IQ-modulator have been already discussed in chapter 4. Compare with figure
6.5.

6.2 microwave Set-up

The scattering system in which we are going to observe the particle-like scattering
states is shown in figure 6.3. The chaotic scattering region (blue area in figure
6.3) is attached to an incoming lead (red area in figure 6.3) and an outgoing lead
(green area in figure 6.3). The large peculiar shape of the scattering area/billiard
ensures that we have enough billiard states to generate a particle-like accumulation
of intensity along a classical path. This is why the shape of the scattering region
is not only limited to a rectangular form but extended with an arm to fully exploit
the space available in the experimental set-up.

The width of the lead W is 14 cm and its lower cut-off frequency f 1
c equals

1.07 GHz (see equation (4.26)), i.e., the first sinusoidal mode opens at 1.07 GHz.
We want to work in the frequency range, where 16 modes are available, this is to say,
17.12 GHz < f < 18.20 GHz. Our working frequency will be at 17.5 GHz → λ =
1.71 cm (λ is wavelength), leaving us enough space between the working frequency
and the limit of the IQ-modulator which is at ≈ 18.0 GHz. The excitable 16 modes
provides us with the basis to generate the wave front whose outcome will form the
PLSSs in the cavity.
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6.2. Microwave Set-up

Figure 6.4 – Pictures of the set-up showing the central components. The cavity as shown
in figures 6.3 and 6.5 is put underneath the top plate. Optionally one can put additional
cylindrical obstacle in the holes of the top plate to introduce additional scattering.

Figure 6.5 – Picture of the fabricated cavity with the absorbers in the injecting and
outgoing lead. For more details about the dimensions and the used experimental devices
(see the sketch presented in figure 6.3).

Figures 6.3 and 6.5 show only the bottom plate of the cavity. The cavity is
closed with another aluminium plate containing a grid of holes (5 mm×5 mm) with
a hole radius of 2 mm (see figure 6.4). The height of the cavity, which is sandwiched
under the measurement table (see arrow in figure 6.4) is 8 mm. This fixes the upper
cut-off frequency for the TE0 mode to fcut = 18.75 GHz, which is ≈ 1 GHz above
the working frequency (see sections 1.1 and 4.2 for details on the TE0 modes). The
holes in the top plate allow us to introduce a moveable antenna and to measure the
z-component of the electric field Ez at any given hole position in the cavity.

The excitation of the TE0 mode forming the wave front is done using simple
monopole-antennas as they have already been introduced in section 4.2. We use
16 of these monopole antennas which are each connected to an IQ-modulator to
modify their amplitude and phase (compare with section 4.2). We use absorbing
foam material (LS-14, LS-16 from EMERSON&CUMING) to avoid backscattering
from the open ends of the incoming and the outgoing lead.
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Chapter 6. Particle-like Scattering States

In contrast to the quasi one dimensional waveguide experiments (section 4.2) we
use the moving antenna to measure the transmission matrix at 27 positions in the
outgoing waveguide and not an additional sliding antenna (see red rectangle marked
with 27 positions in figure 6.3, compare with figure 4.4). To avoid opening and
closing the cavity for introducing additional scattering by placing obstacles, we had
the idea to use the measurement holes (grid holes in the top) to insert cylindrical
obstacles leading to additional scattering within the cavity. Such a cylindrical ob-
stacle is presented in figure 6.4. This gives us the flexibility to test the robustness of
the particle-like scattering states with regard to a local perturbation in the billiard.

6.3 experimental findings

6.3.1 Determining the Q-operator

To calculate the q-operator we need the transmission matrix for a frequency window
around the frequency of 17.5 GHz, where we want to work at (see definition of the
q-operator in section 3.1). The positions where we inject the microwave signal (16
antennas connected to the IQ-modulators ) and the positions to where we measure
the transmission with the moving antenna (27 positions) are marked in figure 6.4.

To get rid of the white noise we perform a Fourier filter as it was already discussed
in section 4.2.3. The transmission matrix T is of the form 27 × 16. We can follow
the practical approach described in chapter 3 to calculate the eigenvalues λq and
eigenvectors iq for which we get the output oq as T iq = oq (The q-eigenstate is not
necessarily an eigenstate of the transmission matrix (see section 3.2) according to
how many singular values σi are considered for the calculation. Since we have seen in
chapter 3 that the travelling time is encoded within the real part of the eigenvalue
Re(λq), we ordered the eigenvalues after their real parts. We considered up to 5
eigenvalues (rising order) depending on how many singular values σi are considered
(see chapter 3 for more details). We will call all the eigenvalues belonging to the
same number of considered σ values a σ-block of eigenvalues or simply σ-block.
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Figure 6.6 – Definition of the Particle-like scattering states named PS 1, PS 2 and PS
3. The numbers correspond to the path-lengths of the states.
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Note that the number of σ values goes together with the number of eigenvalues.
Especially for just one σ value you can create only one eigenvalue which is related
to one eigenstate.

The result of the calculations of the different λq values together with the total
transmitted energy, which is given by |oq|2, is shown in figure 6.7.
The oscillations we see in figure 6.7 are due to the ordering of the states according
to Re(λ). Taking into account only five states per σ value we end up with in total
70 states, which are numbered from 0 to 69.

In the following, I would like to restrict our considerations only on finding the
q-state which describes the direct path between the incoming lead on the top and
the outgoing lead on the bottom. This state shall be named particle-like scattering
state 1 (PS 1) (see figure 6.6). PS 1 has the shortest time delay between entering
and exiting the cavity, so its real part should be the smallest for each considered
σ-block. The states with this property are located on the dashed lines in figure 6.7.

In addition to the property delay time we look at the stability of the q-eigenstate.
This means that we look on the effect of small frequency changes δf on the output. In
section 3.3, I showed that this property is associated to the modulus of the imaginary
part of the eigenvalue |Im(λ)|. A small imaginary part is linked to output-stability

Figure 6.7 – Result of the eigenvalues of the q-operator calculated using the measured
transmission matrix T . Top: Real part of the eigenvalues Re(λ) corresponding to a time
in ns. Centre: Imaginary part of the eigenvalues Im(λ). Bottom: Total transmission
calculated from |oq|2 using the relation T iq = oq. The nσ on top shall indicate, that n
σ-values were taken into account for the calculation. The dashed lines indicate the borders
of a σ-block. The arrows show the positions of the expected particle-like scattering state 1
(see text for further details).
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against frequency change δf (see section 3.3). So our second condition for the PS
1 is a small value of the imaginary part. If we order the states according to these
two criteria we get the five states marked by arrows in figure 6.7. The exact order
of the found states according to the two criteria is 35, 30, 25, 15 and 20 (35 has the
lowest value |Im(λ)| and 20 the greatest one).

In figure 6.7 one observes an overall decline of the total transmission |oq|2 for as-
cending σ-blocks. This is due to the fact that one enlarges the subspace in which one
looks for the PLSSs. This larger basis must not necessary increase the precision on
the definition of the PLSSs. In fact this enlargement of the frequency dependant ba-
sis elements perturbs the definition of the PLSSs as more non path-like components
enter the calculation.

This can also be seen in the imaginary values |Im(λ)| after the 10-th σ-block,
where one observes larger oscillations and much greater values for the PS 1 states
(values on the dashed lines in figure 6.7). However, our chosen states show inter-
mediate transmission values and very high frequency stability values (low |Im(λ)|
values).

Despite the three mentioned a priori properties (Re(λ), Im(λ) and |oq|2), one has
another a priori information which one can use to specify PLSSs. This information is
stored in the following auto-correlation function which describes the output change
of the eigenvector oq(f) with changing frequency:

corr(f) =
|o †

q (f)oq(f0)|
|oq(f)||oq(f0)|

with T iq = oq, (6.16)

where y denotes the spatial axis along the 27 antenna holes (see figure 6.3). f0
denotes the working frequency of 17.5 GHz. corr(f) can be seen as a frequency
broadband criteria for the stability of the q-eigenstates, whereas Im(λ) is more like
a narrowband stability criteria as it contains only the information in the vicinity of
f0 (∂T/∂f at f0 in the definition of the q-operator equation (3.2) with α=f). The
result of this correlation for the different q-eigenstates is shown in figure 6.8.

One can conclude that all the q-eigenstates show a quite large frequency stabil-
ity. To quantify the differences between them we performed a parabolic fit within
the frequency range of [17.497GHz, 17.503 GHz] and looked at the opening width
corropenfit of the parabola which is shown in figure 6.9 as a function of the q-
eigenstates.

Small |corropenfit|-values correspond to a large opening of the parabola and this
represents broadband frequency stability. The chosen states (35, 30, 25, 15 and 20)
show |corropenfit|-values close to the mean value (state 15) or well above (20, 25,
30 and 35). Therefore we consider them to be frequency stable which is another
indicator that we are looking at the right q-eigenstate, i.e., we are looking at PS 1.
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6.3. Experimental Findings

Figure 6.8 – Result of the calculation of corr(f) (see equation (6.16)) for all 70 eigen-
states of the q-operator.

Figure 6.9 – Top: Imaginary part of the eigenvalue Im(λ) (same as shown in figure
6.7). Bottom: Result of the calculation of corr(f) for all 70 q-eigenstates. The solid
horizontal line marks the mean value of corropenfit and the dashed horizontal lines mark
the standard deviation around the mean value (see also figure 6.7).
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state 15

state 20

state 25

state 30

state 35

Figure 6.10 – Intensity profile of the q-eigenstate 15, 20, 25, 30, 35 within the cavity
(compare with figure 6.7). Red stands for high intensity and blue stands for low intensity.

6.3.2 Generating Particle-like Scattering State 1

We fixed our consideration onto these 5 states. To prove that they show a particle-
like accumulation of intensity along classical paths we have to investigate their spa-
tial intensity distribution/profile. We will start our investigation by sending the
respective eigenvectors to the antenna array (see figure 6.3). This is done using the
IQ-modulators. The states are injected and the moving antenna scans the interior
of the cavity. The picture processing follows the exact same steps as already imple-
mented in section 4.3.3. The intensity profiles for the q-eigenstates 15, 20, 25, 30
and 35 are shown in figure 6.10.

The intensity of the chosen states is clearly accumulated on a classical path
which connects directly the incoming with the outgoing path. State 35 is already
showing that its basis already contains non-path like contributions and it has the
largest basis of all the shown states. This is why it is the most stable state, but it
is at the limit of being a PS 1. This could have been already observed in figure 6.9,
where state 40 (only one σ-block further) is very unstable (high |Im(λ)|-value). This
means state 35 is at the limit of being a stable PS 1. Nevertheless, we showed that
we are able to create states of type PS 1 only by using the information from the
transmission matrix showing high accumulated intensity along the shortest classical
path.

A quantitative measure for the localisation of the particle-like scattering state
can be introduced by looking at the ratio of the intensity of the scattering state
which is actually located on the classical path. The idea is to define a mask which
corresponds to the classical trajectory between the leads (width of the trajectory is
about the width of the waveguide) and to compare the integrated intensity within
the mask with the total intensity stored within the billiard. The mask which define
the PS 1 path and the billiard itself are shown in figure 6.11.
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6.3. Experimental Findings

Figure 6.11 – Pictures of the two mask used to calculate sloc. Left: Mask for the path
of the particle-like scattering state 1. Right: Mask describing the scattering part of the
cavity.

Using these masks we define the following quantity (see equation (6.17)), which
we call localisation strength sloc or normalised localisation strength slocn :

siloc =

∫

A=pathi
IdA

∫

A=cav
IdA

, silocn = siloc ·
∫

A=cav
dA

∫

A=pathi
dA

. (6.17)

The index i describes the type of the PLSS. Later on we will discuss also PS 2 and
PS 3 with this criteria. pathi describes the mask of PS i, i.e., the area occupied by
the classical path corresponding to PS i and cav denotes the whole measured cavity
area (see right hand side of figure 6.11). I denotes the measured intensity and A is
the area in the (x,y)-plane. The normalised localisation strength silocn is the factor
of which the measured intensity distribution differs from an uniform distributed
intensity profile. silocn allows us to easily discriminate the quality of different types
of PLSSs as they are area-normalised.

The values for siloc and silocn , which we calculated for the states 15, 20, 25, 30
and 35 are presented in table 6.1. The values in table 6.1 state that we are able
to locate about 40% of the intensity onto the classical path of PS 1. State 35
which was supposed to be the most stable shows the lowest quality regarding our
new quantitative measure. This is what we have already observed (see figure 6.11).
Therefore our introduced measure seems reasonable. The reasons for the low quality
of state 35 has already been discussed above. Our observation of the intensity is not
only limited to the frequency domain. Since we measured the states for a frequency
window of 17.3 GHz < f < 18 GHz, we have the possibility to look into the time
evolution of the scattering states. In figure 6.12 we compared the time evolution of
state 20, which corresponds to a PS 1, with a random state, which is created using
random settings for the IQ-modulator.

state 15 20 25 30 35
s1loc 0.41 0.38 0.38 0.40 0.36
s1locn 2.3 2.1 2.1 2.3 2.0

Table 6.1 – Values of s1loc and silocn (see definition in equation (6.17)) for the states
representing particle-like scattering state 1.
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Figure 6.12 – Time evolution of the intensity profile of the state 20 and a random state.
Red for high intensity and blue for low intensity.

We observe in figure 6.12 how the random state is filling up almost the whole
rectangular part of the scattering area (see pictures in the third row of figure 6.12),
whereas state 20 is more focused onto the direct path pointing towards the outgoing
lead. After 4.5 ns state 20 is strongly localised in the outgoing lead. The random
state is more distributed among the entire scattering part of the cavity especially in
the additional arm (see pictures in the last row of figure 6.12).

We showed in this section that we were able to identify a scattering state which
accumulates its intensity onto the shortest classical path connecting the leads and
we found a quantitative criteria to describe the quality of such a state by looking at
the integrated intensity of the area occupied by classical path of width ≈ W (lead
width see figure 6.3).

6.3.3 Other Particle-like Scattering States

As it has been already indicated in figure 6.6 there are two other short PLSSs present
in our system. We name them PS 2 and PS 3. Before we used a priori information
only. Now we use directly the mask-criteria (according to equation (6.17)) which we
introduced above to identify these two type of states. Therefore we need two new
masks which describe the classical paths of PS 2 and PS 3. These masks are shown
in figure 6.13. Why we can not use a similar a priori argument than it was the case
for the particle-like scattering state 1 is discussed below.
What we did was that we injected 70 eigenstates of the q-operator (described in
figures 6.7 and 6.9) and measured the intensity profile with the scanning antenna.
In a second step we calculated for each measured state the normalised localisation
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Figure 6.13 – Pictures of the two masks used to calculate sloc and slocn corresponding to
PS 2 and PS 3 (compare with figure 6.6). Left: Mask for the path of the PS 2. Right:
Mask for the path of the PS 3.

Figure 6.14 – Normalised localisation strength silocn for i = 1, 2, 3 for 70 measured states
(same order as in figures 6.7 and 6.9). Black arrows indicate the states associated with
a particle-like scattering state 1. The Red arrow and the green arrow refer to PS 2 and
PS 3.

strength silocn for i = 1, 2, 3 for the three types of PLSSs. The result is shown in
figure 6.14. This means that we have associated three numbers with each measured
state. Each of these numbers describe to which extend the measured state is really a
PLSS of type PS i (i = 1, 2, 3). For example state 21 and state 24 (see red and green
arrow in figure 6.14) show a strong particle like behaviour. State 21 corresponds to
a PS 2 and state 24 refers to a PS 3.

We can also look directly at their intensity profiles which are shown in figure
6.15. It is evident that state 21 and state 24 show an accumulated intensity onto
the path of PS 2 and PS 3. The question I would like to answer in the following is
why we can not apply the same method for finding the PS 1.

We restrict the problem on the states in the 7σ-block (see figures 6.7 and 6.9).
States 21 and 24 are particle like as we have seen before, i.e., they reflect trajec-
tories of a classical particle staying in the billiard for a certain time (delay time).
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state 21 state 24

Figure 6.15 – Intensity profile of the states 21 and 24 (compare with figure 6.7). Red

for high intensity and blue for low intensity.

state 22 state 23

Figure 6.16 – Intensity profile of state 22 and state 23 belonging to the 7σ-block (compare
with figure 6.7). Red stands for high intensity and blue stands for low intensity.

Consequently the states 22 and 23 should reflect paths which have a delay time t
which follows t21 < t < t24, where t21 and t24 are the delay times of the states 21
and 24. However, if one looks at the intensity profiles of state 22 and 23 (see figure
6.16), one recognises that these states are more less superposition of state 21 and
24.

The reason for that can be found when one looks at the path lengths of the PLSSs
associated with the states 21 and 23 (see figure 6.6). One finds that PS 2 and PS
3 have quite similar path lengths especially when one takes into account a certain
width of the trajectories (see red dashed lines in figure 6.6). Similar path lengths
mean of course similar delay times since the wave front is always travelling with
the full k-vector depending only on the speed of light c within the central cavity.
The problem is that the q-operator can only discriminate eigenstates with different
delay times. Since this is not the case here one observes always a superposition of
PS 2 and PS 3. If one looks close enough, even state 21 and state 24 show features
of both PS 2 and PS 3.

Experimentally, one could overcome this delay time degeneracy by putting obsta-
cles (scatterers) into the path of either PS 2 or 3. Brandstötter showed numerically
in [Bra16] that the insertion of obstacles (size is of the order of the wavelength) does
not effect those PLSSs whose trajectory is not passing through the obstacle, i.e., one
can switch in between several PLSSs so that one can always ensure an unaffected
communication between the incoming and the outgoing lead.

6.3.4 Perturbation of Particle-like Scattering States

In the following we like to verify this numerical observation of Brandstötter, so we
are going to introduce obstacles in the scattering part of the cavity. If the obstacle
is placed within the path of an PLSS, the transmitted signal will be blocked and
the overall transmission for this state will drop down. In this section we will restrict
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4 cm

4 cm

Pos 1

Pos 5

Figure 6.17 – Cylindrical pins (a bundle of 13) are placed in the holes of the top plate
at 5 given positions. Note that only one position is filled at a time. The distance between
the positions is the same.

the investigations to the states 20, 21 and 24 which represent the PS 1, 2 and 3,
respectively (see figures 6.10 and 6.15).

We will study how these states react to perturbations introduced by additional
obstacles within the cavity. Cylindrical pins will play the role of the obstacles (see
figure 6.5). We put 13 of them together to a rectangular shape and place them
inside the holes of the top plate (see figure 6.17). We chose 5 equidistant positions
for this rectangle of pins (see figure 6.17). This rectangular ensemble of pins can be
seen as a local perturbation (site length of the rectangle ≈ 1.5 cm) of the order of
the wavelength λ = 1.7 cm, i.e., the perturbation is greater than the size of possible
nodal spots of the scattering state.

Before placing the obstacles we measure the transmission matrix T at 5 rows
around the central line where we measured the transmission matrix in section 6.3.1
(two rows to the left and two to the right of the one indicated with a red square in
figure 6.3). These are in total 135 measurement points to measure the transmission
from the injection lead to the exit lead. After having measured the empty waveguide
we have created a reference to which we will compare the transmission in the case
where we placed the pins. The measurement procedure is the following. We place
the 13 pins at position i (denoted with Pos i in figure 6.17, i = 1, 2, 3, 4, 5) and we
measure each time the transmission at the 135 given measurement points. Then we
quantify the difference between the measurement with and without the obstacles.
To do that we use the following intensity relation:

∆I totrel =

∫
(Iob − Iem)dA
∫
IemdA

. (6.18)

Iob and Iem denote the measured intensity at the 135 measurement points in case of
the presence or absence of the pins. We calculated ∆I totrel for each obstacle position
using the obtained measurement data. The calculated ∆I totrel for the states 20, 21
and 24 is shown in figure 6.18.

Once the pins are placed such that they are sitting in the path of PS 1, 2 or 3, the
transmission drops down. This observation is explained in figure 6.19, which shows
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Figure 6.18 – Obtained ∆Itotrel (definition in equation (6.18)) for 5 positions of the rect-
angular pin obstacle (see figure 6.17) for the states 20, 21 and 24 which correspond to PS
1, 2 and 3 (see figures 6.10 and 6.15).

State 20 State 21 State 24

Figure 6.19 – Overlay of the obtained intensity of the scattering state for the empty

scattering region with positions of the cylindrical obstacles. The red dots symbolise the
possible positions of the obstacles (compare with figure 6.17). Left: State 20. Center:
State 21. Right: State 24.

an overlay of the intensity of the scattering states of the unperturbed system
together with the positions of the obstacles. Once we position the obstacle onto
the path of a PLSS (PS 1, 2 or 3) the state is highly perturbed and therefore the
transmission of this state drops down significantly (≥ 28%). The important thing
we observe is that the other PLSSs, which are not directly affected by the obstacle
do not drop down at all or drop down only slightly.

The reason for that behaviour is that each PLSS is living on a certain subspace of
the transmission matrix T . This subspace is spanned by path-like high transmitting
scattering states (see section 3.4). Perturbations lying outside of the corresponding
path are automatically not included in the subspace. Therefore this perturbation
does not influence the PLSS. This is not obvious in first place, since we changed the
scattering system significantly by introducing this kind of pin-obstacles. Neverthe-
less, we showed that the PLSSs are rather stable against perturbations which are
not directly associated with their classical path. Just like for classical particles the
PLSS is only influenced by obstacles which are placed onto his trajectory.
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6.4. Conclusion

This opens up the possibility to circumvent local obstacles or pertur-
bations by switching between different PLSSs. This way also intruders or
unwanted listeners in a wave based communication system can be avoided!

6.4 conclusion

In this chapter I tried to deepen the insight on the relation of the q-operator defined
in chapter 3 and the realm of particle-like scattering states which are related to the
Wigner-Smith time delay operator. These particle-like states, which are eigenstates
of the q-operator, show highly collimated intensities occupying classical paths. Their
corresponding eigenvalue contains the information about the delay time (travelling
time of the wave). Therefore we are able to distinguish between different particle-
like scattering states (PLSSs) occupying different classical trajectories. We showed
that we are able to construct these states using the information stored in the fre-
quency dependant transmission matrix T only, where we used the formalism of the
q-operator (see chapter 3), which can be seen as a generalised version of the Wigner-
Smith time delay operator (using only T ).

Our aim was to use this knowledge and to perform an in situ generation of
these states by the means of incident wave front shaping (see also chapter 4). We
constructed a two dimensional cavity (see figure 6.3) with two attached leads which
defined our input and our output.

At first, we measured the transmission matrix and constructed the q-operator
and calculated its eigenstates. We ordered the obtained eigenstates according to
their eigenvalues λ and their total transmission and we were able to identify the
PLSS which corresponds to the shortest classical path connecting incoming and
outgoing lead (called PS 1, see figure 6.6). To verify the classical nature of the state
we injected this state with our antenna array, where we can shape the incident wave
front using IQ-modulators.

This is in situ shaping is the prominent difference compared to recent work
[Gér16] dealing with PLSSs. Géradin et al. showed that they are able to measure
the full scattering matrix S of a scattering system, which was realised with an elastic
plate and excited with laser pulses. They could create the initial conditions for the
realisation of PLSSs in a similar way than we did. However, their experimental
set-up did not allow an in situ injection of the states. Instead, they measured the
basis of the scattering states by exciting the plate at multiple positions at the input
side. With this basis measurement they could virtually create the intensity patterns
of the particle-like scattering states.

Our experiment shows the first in situ realisation of PLSSs by means of incident
wave front shaping using multiple well defined antenna sources as input. We have
also access to higher order PLSSs (PS 2 and 3, see figure 6.6), i.e., we can address
PLSSs which correspond to the second and third shortest classical paths possible
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in our cavity. We observed that these states are nearly degenerated eigenstates of
the q-operator as their path length (delay time) is nearly equal. Especially if one
assigns a certain width to the classical trajectory.

By introducing cylindrical obstacles into the billiard, we were able to confirm
the stability of PS 1, 2 and 3 with regard to local perturbations. Our set-up enables
us to easily switch between different paths. These paths can also be interpreted as
communication paths offering the possibility to avoid obstacles or intruders which
occupy a certain region of the system. This might be useful with regard to possible
applications like in wireless communications using multiple inputs and multiple out-
puts (MIMO) [Sal85,Sam02] for example. Our results can be related in fact to any
kind of wave based system, where one is able to measure the transmission matrix
of the scattering system as a function of the frequency (energy) and where one has
full control about the incident channels (amplitude and phase control in our case).
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General Summary

In this thesis I presented different atypical transport phenomena. The first one
was the Quantum Search, where we realised a focussing of energy onto a distinct
search site. This focussing could be understood as spectral wave shaping to search
out for specific sites in a tight binding system. We showed with our experiment
that we were able to perform such a search in an open cavity system in which we
placed dielectric resonators. We measured a linear chain of variable length (N)
for which the search time followed O(

√
N). For large systems one has to move to

two dimensional graphene-like lattices (Dirac point with linear energy dispersion)
so that an effective search is possible O(

√

N ln(N)) [Fou14]. For a proof of principle
experiment we arranged 216 dielectric resonators to a graphene-like lattice (arm-
chair edges only) where we successfully looked for two different search sites which
were coupled to eigenstates of the graphene-lattice in the vicinity of the Dirac point.
Since the grid was excited within a spectrally selected frequency window, we could
speak of incident spectral wave shaping which was used to localise a certain object
within an arrangement of other objects. We paved the way for a possible application
of the quantum search by connecting this concept to the idea of a graphene based
switch, i.e., one can localise energy on two different sites of the lattice by exciting
two different lattice states (see chapter 2).

We moved to experiments studying wave front shaping in quasi one dimensional
waveguides. Our set-up was able to produce any of the present sinusoidal modes
of the guide at the output. We demonstrated this by producing the diagonalised
transmission matrix in the mode picture. This diagonalisation was possible even
for the case in which we have introduced dielectric/metallic scatterers inside the
waveguide. The control of the incident wave front, which is the basis for any kind of
tuning, was established by an array of antennas. Each antenna was tunable (phase
and amplitude) by an IQ-modulator, which was experimentally characterised (see
section 4.2.4). To use the full potential of our set-up, we looked at the q-operator
(chapter 3), which is a modified version of the Wigner-Smith time delay operator
(WSTDO) where energy and S (scattering matrix) are replaced by a parameter α
and T (transmission matrix). If α corresponds to the transversal coordinate of a
scatterer and if we are able to measure the transmission matrix for three slightly
different positions, we are capable to construct the q-operator. The eigenstates
of the q-operator incorporate the information about the position of the scatterer
naturally. This enables us to shape the initial wave in the way that the wave either
avoids the region of the moved scatterer or focuses on it. We could also confirm
that the eigenvalue of the corresponding focussing state contains information from
which direction the state focusses (see chapter 4).

133



General Summary

In the next step I presented a two dimensional chaotic cavity with two attached
leads. The input lead contained an array of 16 antennas which were tunable due to
the IQ-modulators. By measuring the transmission matrix T between the incoming
lead and the outgoing lead in a certain frequency window we could construct the
q-operator (α is the frequency). The eigenstates of this operator represented particle-
like scattering states, which are originally defined as eigenstates of the WSTDO. It
had been numerically shown [Bra16] that the eigenstates of the q-operator and the
eigenstates of the WSTDO lead to almost the same particle-like behaviour. We
could proof experimentally that the a priori information provided by the frequency
dependant transmission matrix is enough to create a scattering state whose intensity
is strongly accumulated on the shortest classical trajectory connecting incoming and
outgoing lead. In addition, we discovered higher order particle-like scattering states
corresponding to second and third shortest paths present in the system. We checked
the stability of these states by placing an arrangement of cylindrical obstacles which
formed a local perturbation. We observed that those states were mainly affected by
the perturbation whose corresponding classical paths were intersected by the obsta-
cles (see chapter 6). These results can be related in fact to any kind of wave based
system leading to possible applications like applications in wireless communication,
for example, where one already uses multiple input and multiple output (MIMO)
techniques [Sal85,Sam02].

The last atypical transport phenomenon we studied was the phenomenon which
arises when a system features an exceptional point (EP). We described how the
simple model of a 2×2 non-Hermitian Hamiltonian, which incorporates these spe-
cial points, can be translated into a quasi one dimensional wavy waveguide system
with additional position dependant loss supporting two propagating modes. In this
waveguide the two appearing Bloch modes encircle such an EP during their propa-
gation through the guide. Our waveguide system represented a dynamical encircling
leading to the observation of non-adiabatic transitions. This non-adiabatic transi-
tions were experimentally observed by looking at the transmission matrix T in the
sinusoidal mode picture. Theoretically an asymmetric mode scattering behaviour
depending on the injection direction had been predicted. This was exactly what we
obtained in our experiment. Furthermore, we performed a parametric encircling of
the EP by building five different periodical waveguides corresponding to five points
on the continuous trajectory around the EP which had been studied before in the
dynamical case. We detected a flipping behaviour for the two propagating Bloch
modes. This flipping behaviour was in total agreement with the results observed by
the other experimental groups who had already realised such a parametric encircling
of an EP [Dem01,Dem04,Ste04,Lee09,Cho10a] (see chapter 5).
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Dans cette thèse, nous avons étudié différents phénomènes de transport atypiques.
Le premier concerne la ≪ recherche quantique ≫, dans le cadre de laquelle nous
avons réalisé une focalisation d’énergie sur un site bien déterminé. Ce résultat
peut être interprété comme une mise en forme spectrale spécifique de l’onde dans
le but de rechercher des sites distincts dans un système traité par le modèle des
liaisons fortes. Nous avons démontré expérimentalement notre capacité à réaliser
ces ≪ recherches ≫ dans un système en cavité ouverte dans laquelle nous avons
préalablement placé des résonateurs diélectriques. Nous avons entre autres mesuré
une chaine linéaire de longueur variable (N) pour laquelle le temps de recherche
est de l’ordre de O(

√
N). Pour des systèmes de grande taille, nous devons utiliser

des réseaux bi-dimensionnels de type graphène (possédant un point de Dirac et
une relation de dispersion linéaire) de manière à ce qu’une recherche efficace soit
réalisable dans un temps de l’ordre de O(

√

N ln(N)) [Fou14]. Comme preuve de
principe, nous avons réalisé un arrangement de 216 résonateurs diélectriques sous
forme de graphène (avec uniquement des bords de type “arm-chair”) dans lequel
nous avons cherché avec succès deux sites différents qui étaient couplés à des états
propres du réseau de graphène se situant proches du point de Dirac. Dans la mesure
où le réseau n’était excité que sur une gamme de fréquences bien déterminée, nous
pouvons parler de mise en forme spectrale de l’onde incidente pour localiser un objet
pré-sélectionné parmi un arrangement d’autres objets. Nous avons ainsi ouvert la
voie à une possible application de l’algorithme de ≪ recherche quantique ≫ en reliant
ce concept à l’idée d’un router à base de graphène : il est possible de localiser
de l’énergie sur deux sites différents en excitant deux états distincts du réseau (cf.
chapter 2).

Nous avons ensuite étudié expérimentalement la mise en forme de front d’ondes
dans des guides d’ondes quasi-unidimensionnels. Notre dispositif permet d’obtenir
en sortie n’importe lequel des modes sinusöıdaux du guide. Nous en avons fait la
démonstration en calculant la matrice de transmission diagonalisée dans la base
des modes propres du système. Cette diagonalisation a également été réalisée pour
un guide d’onde dans lequel étaient inclus des diffuseurs diélectriques/métalliques.
Le contrôle du front d’onde incident, qui est à la base du processus d’ajustement,
a été effectué par un ensemble d’antennes. Chaque antenne est programmable en
phase et en amplitude par un modulateur IQ préalablement caractérisé (cf. section
4.2.4). Pour utiliser tout le potentiel de notre dispositif, nous avons étudié le q-
operator (cf chapitre 3), qui constitue une version modifiée de l’opérateur de retard
de Wigner-Smith (WSTDO) dans lequel l’énergie et la matrice de diffusion S sont
respectivement remplacées par un paramètre α et la matrice de transmission T . Si
α correspond aux coordonnées transverses d’un diffuseur et si nous sommes capables
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de mesurer la matrice de transmission pour trois positions légèrement différentes du
diffuseur, nous sommes alors capables de construire le q-operator. Ses états propres
contiennent naturellement l’information sur la position du diffuseur. Cela nous
permet de mettre en forme la condition initiale de manière à ce que l’onde soit en
capacité soit d’éviter la région contenant le diffuseur, soit au contraire de se focaliser
sur ce dernier. Nous avons aussi confirmé que la valeur propre correspondant à l’état
focalisé contient l’information sur la direction suivant laquelle l’état se focalise (cf.
chapitre 4).

Ensuite, j’ai présenté une cavité chaotique à deux dimensions à laquelle nous
avons ajouté une entrée et une sortie. L’entrée contient un ensemble de 16 antennes
ajustables grâce aux modulateurs IQ. En mesurant la matrice de transmission T en-
tre l’entrée et la sortie dans une certaine gamme de fréquences nous avons pu constru-
ire le q-operator (α étant ici la fréquence). Les états propres de cet opérateur sont des
états de type “particle-like scattering states” qui sont originellement définis comme
des états propres du WSTDO. Il a été démontré numériquement [Bra16] que les
états propres du q-operator et du WSTDO mènent à des comportements identiques
de type “particle-like”. Nous avons pu prouver expérimentalement que l’information
fournie a priori par la matrice de transmission (dépendant de la fréquence) est suff-
isante pour créer des états de diffusion dont l’intensité est fortement accumulée sur
la trajectoire classique la plus courte connectant l’entrée à la sortie du système.
De plus, nous avons découvert des ordres plus élevés de ces “particle-like scatter-
ing states” qui correspondent à la deuxième et troisième trajectoire la plus courte
existant dans le système. Nous avons par ailleurs vérifié la stabilité de ces états
en plaçant un arrangement d’obstacles cylindriques, créant ainsi une perturbation
locale. Nous avons alors observé que ces états étaient surtout affectés lorsque les per-
turbations croisent les trajectoires classiques qui leurs sont associées (cf. chapitre 6).
Ces résultats peuvent être associés à n’importe quel système ondulatoire, ce qui mène
à de potentielles applications par exemple dans le domaine des télécommunications
sans fil, où les techniques d’entrées et sorties multiples (MIMO, Multiple Input Mul-
tiple Output) sont déjà largement utilisées [Sal85,Sam02].

Le dernier phénomène de transport atypique que nous avons étudié apparâıt
lorsque le système possède un ≪ point exceptionnel ≫ (PE). Nous avons considéré
un guide d’ondes quasi-unidimensionnel oscillant et possédant des pertes dépendant
de la position et exploité un modèle simple basé sur un Hamiltonien non-Hermitien
2×2 incluant ces points spéciaux. Dans ce système, deux modes de Bloch en-
tourent un PE le long de leur propagation dans le guide. Notre dispositif exhibe
un encerclement dynamique, ce qui mène à des transitions non-adiabatiques qui
ont été observées expérimentalement en considérant la matrice de transmission T
décrite dans la base des modes sinusöıdaux. Théoriquement, la diffusion de modes
asymétriques, dépendant de la direction d’injection, est prédite et c’est exactement
ce que nous obtenons expérimentalement. De plus, nous avons réalisé un encer-
clement paramétri-que d’un PE en construisant 5 guides différents correspondant à
5 points sur la trajectoire continue qui encercle le PE étudié dynamiquement au-
paravant. Nous avons observé un saut d’un mode de Bloch à l’autre durant leur
propagation.
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Ce comportement est en accord parfait avec les résultats obtenus par différents
groupes qui ont déjà réalisé un tel encerclement paramétrique d’un PE [Dem01,
Dem04,Ste04,Lee09,Cho10a] (cf. chapitre 5).
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A The Central Eigenstate for a Res-

onator Chain

In this chapter we will proof that the state Ψk is an eigenstate of the Hamiltonian Hi,j

describing a linear chain of N tight bound resonators, where N is an odd number.
Ψc is defined as (see also equation (2.6)):

Ψc = cos

(
l + 1

2
π

)

with l = 1, 2, ..., N with N ∈ 2N + 1, (A.1)

Hi,j = νδi,j + κ(δi,j−1 + δi,j+1) with i, j = 1, 2, ..., N. (A.2)

ν corresponds to the central frequency of a single resonator (dielectric disc) and κ
describes the nearest neighbour coupling.
It is to show that HΨc = νΨc for a chain with an odd number of elements. In
general it is:

zl =
N∑

i=1

Hl,iΨi =

(
∑

i

νδl,i + κ(δl,i−1 + δl,i+1)

)

cos

(
l + 1

2
π

)

. (A.3)

Case 1 : 1 < l < N

zl = νcos

(
l + 1

2
π

)

+ κ

(

cos

(
l + 2

2
π

)

+ cos

(
l

2
π

))

= νcos

(
l + 1

2
π

)

+ κ

(

−cos

(
l

2
π

)

+ cos

(
l

2
π

))

= νΨc.

Case 2 : l = 1

z1 = νcos (π) + κ

(

cos

(
3

2
π

))

= νcos (π) = νΨc,l=1.

Case 3 : l = N

zN = νcos

(
N + 1

2
π

)

+ κ

(

cos

(
N

2
π

))

N odd
= νcos

(
N + 1

2
π

)

= νΨc,l=N .
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Appendix A. The Central Eigenstate for a Resonator Chain

We proofed at this point that Ψc is an eigenstate of H with the eigenvalue of the
central frequency ν!
In a next step we want to show that |Ψc|2 = (N + 1)/2. This proof is done by
induction.
For N = 5 Ψc is:

5∑

i=1

∣
∣
∣
∣
cos

(
i+ 1

2
π

)∣
∣
∣
∣

2

= 1 + 0 + 1 + 0 + 1 = 3 =
5 + 1

2
.

We assume that:

N∑

i=1

∣
∣
∣
∣
cos

(
i+ 1

2
π

)∣
∣
∣
∣

2

=
N + 1

2
.

For N+2 (We investigate odd numbers):

N+2∑

i=1

∣
∣
∣
∣
cos

(
i+ 1

2
π

)∣
∣
∣
∣

2

=
N∑

i=1

∣
∣
∣
∣
cos

(
i+ 1

2
π

)∣
∣
∣
∣

2

+

∣
∣
∣
∣
cos

(
N + 2

2
π

)∣
∣
∣
∣

2

→ 0

+

∣
∣
∣
∣
cos

(
N + 3

2
π

)∣
∣
∣
∣

2

→ 1

=
N + 1

2
+

2

2
=

(N + 2) + 1

2
.

This means:

Ψc =
1

√
(N+1)

2

cos

(
l + 1

2
π

)

. (A.4)

The amplitude of Ψc follows the pattern (1,0,-1,0,1,0,...). It populates the edges of
the chain and each second disc. Its eigenvalue corresponds to the central frequency
of a single resonator.
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Probing Localization in Absorbing Systems via Loschmidt Echos. Physical
Review Letters 102, 253901 (2009).

1 citation on page 58

[Boh51] D. Bohm: Quantum Theory. Dover books in science and mathematics.
Prentice-Hall 1951.

3 citations: page 6, 12, and 48
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[Dem01] C. Dembowski, H.-D. Gräf, H. L. Harney, A. Heine, W. D. Heiss, H. Re-
hfeld, and A. Richter: Experimental Observation of the Topological Struc-
ture of Exceptional Points. Physical Review Letters 86, 787–790 (2001).

7 citations: page 7, 13, 90, 92, 110, 134, and 137

[Dem04] C. Dembowski, B. Dietz, H.-D. Gräf, H. L. Harney, A. Heine, W. D. Heiss,
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Abstract

Transport of waves plays an important role in modern communication systems like
Wi-Fi or optical fibres. Typical problems in such systems concern security against
possible intruders, energy consumption, time efficiency and the possibility of mode
filtering. Microwave experiments are suited to study this kind of problems, because
they offer a good control of the experimental parameters like sub-wavelength preci-
sion or phase and amplitude adjustment of the signals. Thus we can implement the
method of wave shaping to investigate atypical transport phenomena, which address
the mentioned problems.
Wave front shaping solely based on the transmission together with the Wigner-Smith
time delay formalism allows me to establish special scattering states in situ. These
scattering states avoid a pre-selected region, focus on a specific spot or follow trajec-
tories of classical particles, so called particle-like scattering states. Energy efficient
transport and avoiding possible intruders are the most interesting features of these
states.
Mode filtering is induced inside a waveguide with wavy boundaries and position
dependent loss. The boundary profiles are chosen in such a way that the two prop-
agating modes describe an encircling of an exceptional point in the Bloch picture.
The asymmetric mode filtering is found due to the non-adiabatic transitions occur-
ring during this encircling. This is the first experimental realisation of a dynamical
encircling of an exceptional point.
Another part of my work deals with Grover’s quantum search. I put such a search
into practice in a two-dimensional graphene-lattice using coupled resonators, which
form a tight-binding analogue. In this proof of principle experiment we search for
different resonators attached to the graphene-lattice. Changing the transmission di-
rection of the signal according to the initially shaped wave can be seen as a graphene
based switch. Furthermore, the scaling behaviour of the quantum search is quanti-
fied for a linear chain of resonators.



Résumé

Le transport des ondes joue un rôle majeur dans les systèmes modernes de commu-
nication comme le Wifi ou les fibres optiques. Les principaux problèmes rencontrés
dans ces systèmes concernent la protection contre les intrusions, la consommation
d’énergie, la rapidité de traitement et le filtrage modal. Les expériences menées dans
le domaine des micro-ondes sont particulièrement bien adaptées pour aborder ces sit-
uations. Elles offrent, en effet, un excellent contrôle des paramètres expérimentaux,
notamment une précision inférieure à la longueur d’onde sur la géométrie du système
et un ajustement précis de l’amplitude et de la phase du signal. Nous proposons
ainsi dans cette thèse différentes expériences micro-ondes mettant toutes en œuvre
une mise en forme des ondes, pour traiter les problèmes identifiés plus haut.
Dans une cavité micro-ondes, des états de diffusion particuliers sont générés en
s’appuyant uniquement sur des mesures de transmission et sur le formalisme du
temps de retard de Wigner-Smith. Ces états sont capables d’éviter une région
déterminée de la cavité, de se concentrer sur un point particulier, ou de suivre une
trajectoire typique d’une particule classique. Tous ces états présentent un avantage
certain en matière de sécurité et de transport efficace de l’énergie.
Le filtrage de mode est mis en œuvre dans un guide d’ondes aux frontières ondulées
et en présence de pertes dépendant de la position. Le profil du guide est choisi de
façon à ce que les deux modes qui se propagent encerclent un point exceptionnel
dans l’espace des états de Bloch. Cette trajectoire s’accompagne d’une transition
non-adiabatique entre les deux modes et d’un filtrage asymétrique de ces modes. Ce
travail constitue la première réalisation expérimentale de l’encerclement dynamique
d’un point critique.
La thèse présente également des travaux liés à la problématique des algorithmes
de ≪ recherche quantique ≫, notamment l’algorithme de Grover. Cette recherche
est mise en œuvre dans un réseau en nid d’abeilles de résonateurs micro-ondes
couplés, bien décrits par un modèle de liaisons fortes (le système constitue un ana-
logue micro-ondes du graphène). Une expérience de preuve de principe propose la
recherche de deux résonateurs distincts reliés au réseau. Selon son façonnage initial,
le signal envoyé dans le réseau peut s’orienter vers l’un ou l’autre des résonateurs
cibles ; les propriétés particulières de transport du graphène sont exploitées pour
créer un commutateur. La loi d’échelle attendue pour un algorithme de Grover est
expérimentalement obtenue dans une châıne linéaire.
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