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Abstract: 
	  
Multimode squeezing plays an essential role in quantum information 
processing and quantum metrology. Using optical frequency combs, 
we generate multi-temporal-mode state from a synchronously 
pumped optical parametric oscillator (SPOPO). An on-demand 
quantum network simulator is developed using the SPOPO and 
ultrafast pulse shaping; up-to-twelve-node cluster states and a 
six-partite quantum secret sharing protocol are experimentally 
emulated with this simulator. Furthermore, frequency resolved 
multipixel detectors are employed, and used to realize a 
line-shape-eight-node cluster state. We also developed a multimode 
quantum spectrometer, which is able to exceed the standard 
quantum limit for measuring manifold parameters of ultrafast pulses. 
 
Key words: Quantum optics, Quantum information, Optical frequency 
comb, Multimode squeezed light, Quantum secret sharing, Cluster 
states. 
 
 
 
Résumé: 
 
Les états quantiques multimodes sont au cœur des protocoles de 
traitement quantique de l’information et de métrologie quantique. À 
partir d’un peigne de fréquence optique injectant un oscillateur 
paramétrique optique pompé en mode synchrone (SPOPO) nous 
avons généré des états multimodes en temps/fréquence. Un 
simulateur quantique est alors mis en place à partir de ce SPOPO et de 
mise en forme d’impulsion, et permet de mettre en évidence de états 
clusters pouvant compter jusque 12 nœuds et un protocole de 
partage de secret quantique à six partenaires. De plus, une détection 
multipixel résolue en fréquence est développée et utilisée pour 
réaliser un état cluster linéaire à 8 nœuds. Nous avons également 
utilisé cette source pour développer un spectromètre ayant une 
sensibilité allant au delà de celle imposée par les fluctuations du vide 
quantique.   
 
Mots clés: Optique quantique, information quantique, peigne de 
fréquence optique, états quantiques multimodes, partage de secret 
quantique, états clusters.	  
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Introduction

Since the beginning of the 20th century, quantum mechanics [24] has rev-
olutionized the theory of physics, and has succeeded in solving difficulties
emerged in classical physics, such as Max Planck’s solution of blackbody ra-
diation, Albert Einstein’s photoelectric effect, discrete spectra of atoms, etc.
Based on quantum mechanics, the semi-classical models of matter-light inter-
action, where matter is treated as a quantum system while light is a classical
field [37], can handle many physical processes. Many important applications
came out from this theory. In particular, in optics, laser that emits light
coherently was created on the basis of the stimulated emission theory.

In 1935, Albert Einstein and his colleagues Boris Podolsky and Nathan
Rosen claimed the famous EPR paradox [26], which indicates that two quantum-
entangled particles can have nonlocal correlation in position and momentum
quantum observables. This property of entanglement initiated a series of
new physics, such as quantum cryptography [27], quantum teleportation of
quantum states [94] [6] [12], etc.

To perform such entanglement-principle operations with light, the semi-
classical model is not sufficient. After 1970s, quantum optics theory [35],
where quantized light is described by bosonnic annihilation and creation
operators, was initiated and developed. This has formed the basis of many
new domains based on quantum states of light, such as quantum information
processing [59] [60] and quantum metrology [14] [34].

In quantum optics in the continuous variable regime, the light field is
represented with continuous quadrature observables, which are associated to
the amplitude and phase of light. Compared to the discrete regime, where
single photons are measured, the non-classical properties in the continuous
variable regime are demonstrated by the quantum fluctuations. This is the
reason why we study the noise characteristics of light. The quantum fluc-
tuations of a perfect coherent source, for instance an ideal laser, are at the
standard quantum noise limit, or shot noise limit, which originates from
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vacuum fluctuations. Quantum states whose quadratures’ fluctuations are
exactly at the standard quantum noise limit are coherent states [35].

A quantum light resource in this regime, squeezed light, was demon-
strated in many nonlinear optical experiments [7], such as parametric down
conversion and optical parametric oscillator (OPO) with χ(2) nonlinear crys-
tals [79] [97] [81] [45], χ(3) four wave mixing with Rubidium atomic gas [49],
etc. Importantly, the quantum fluctuations of squeezed light are beyond the
standard quantum noise limit, which is different from all the classical and
coherent light sources. Furthermore, in the case of a two-mode squeezing
source, one can generate strong quantum correlation between the quadra-
tures of the two modes. This type of quantum correlations refers to EPR
entanglement in continuous variable regime. Recently, e.g., deterministic
quantum teleportation was realized using the continuous variable EPR state
generated by OPOs [88].

In quantum optics in the continuous variable regime, quantum correla-
tions are generated via basis change from squeezed modes [10] [61]. The con-
cept of modes, in both classical and quantum description of light, originates
from the solutions of Maxwell’s equations. It is well known that continuous
laser has polarization modes, frequency modes (plane waves modes), spatial
modes, etc.; while ultrafast pulses have temporally shaped modes in the time
domain, and spectral modes in the frequency domain. When a state needs at
least two non-vacuum modes to be described, whatever the basis, it is called
a multimode state. In this thesis, we will study quantum multimode prop-
erty of the quantum frequency comb, which is generated by a synchronuously
pumped optical parametric oscillator (SPOPO) [64] .

Optical frequency combs, as a kind of intrinsic multimode resource, are an
essential tool in many fields, such as frequency metrology and time measure-
ment [8] [42], where optical frequency measurement, performed by beating
the light field with a frequency comb, can reach an ultrahigh precision ∼ 1018

[18]. They have appealed more and more attentions since the Nobel Prize in
Physics of 2005 was awarded to Roy J. Glauber, John L. Hall and Theodor
W. Hänsch. Nowadays the applications of optical frequency combs are quite
various, ranging from the field of frequency measurements and its applica-
tions to fundamental physics [15] [50], to domains such as biology, chemistry,
telecommunication, distance measurement, broadband spectroscopy, etc.

Multimode quantum states are important in constructing complex quan-
tum networks [44] which can be used for quantum information processing and
quantum metrology [14] [100]. They have been experimentally generated with
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many optical parametric oscillators, in the form of multi-spatial-mode state
[90], multifrequency-mode state [57], multimode EPR steering [3], multimode
cluster [87] [86]. More recently, a large-scale multi-timing-mode cluster state
has been generated: it has ∼ 10 000 entangled modes in time domain [98].

Quantum networks play an essential role in recent developments of quan-
tum information processing. In this work, we are interested in one-way quan-
tum computing, in particular, one-way measurement based quantum com-
puting (MBQC) in the continuous variable regime [54] [48]. Cluster states
[85] [38], which are multimode correlated quantum states, are the quantum
resources of MBQC, where quantum operations can be implemented via one-
way measurement processes. Many experiments of cluster states generation
and related gaussian quantum computation have been done with many OPOs
and complex linear optical networks [93], which lack flexibility and scalability
[2].

In this thesis, we introduce a quantum simulator to emulate on-demand
clusters with the multimode quantum resource, the SPOPO: a single physical
system which is intrinsically multimode. We employ a spatial light modulator
(SLM) to arbitrarily shape the mode of the local oscillator in a homodyne
detection apparatus [55]. This means that we are able to implement different
protocols by simply adapting the measurement basis on the desired quantum
operations rather than changing the optical architecture.

Plan of the thesis:

Using optical frequency combs, we generate multi-temporal-mode state
from the SPOPO. We use optical frequency combs to pump a χ(2) nonlinear
crystal in a synchronized optical cavity, where complex parametric down
conversion processes involving all the frequencies of the comb occur at the
same time. From this nonlinear mechanism, a full multipartite entangled
multimode state is generated and characterized [32] [70]. An on-demand
quantum network simulator is developed using the SPOPO and ultrafast
pulse shaping; up-to-twelve-node clusters and a six-partite secret sharing
protocol are experimentally emulated with this simulator. Furthermore, to
implement measurement based quantum computing and quantum frequency
metrology, we need to simultaneously measure all the modes of the multimode
quantum state. To that aim, frequency resolved multipixel detectors are
employed [2], and used to realize a line-shape-eight-node cluster state. We
also developed a multimode quantum spectrometer, which is able to exceed
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the standard quantum limit for measuring manifold parameters of ultrafast
pulses.

This thesis consists of three parts, in Part I (chapters 1-4), the theory and
experiment of the SPOPO are demonstrated; in Part II, quantum-network
simulator is introduced using the quantum resource, SPOPO; in Part III,
clusters for measurement based quantum computing and a multimode quan-
tum spectrometer are implemented by using the frequency resolved multipixel
apparatus.

Part I: In Chapter 1, we introduce the optical frequency combs, and
synchronized optical cavities, which can resonate with all the frequencies
of the frequency comb. In Chapter 2, multimode quantum description of
light in continuous variable regime is demonstrated. In the chapters 3 and
4, the synchronized pumped optical parametric oscillator (SPOPO) are pre-
sented theoretically and experimentally. We present the simulation of the
SPOPO; and the multimode quantum state of the SPOPO is characterized
via mode-dependent homodyne detection; the sixteen-mode covariance ma-
trix is obtained.

Part II: In Chapter 5, we theoretically introduce cluster states, the re-
source of measurement based quantum computing, including the stabilizers,
nullifiers, and unitary transforms. In Chapter 6, We developed a quantum-
network simulator with ultrafast pulse shaping. By employing the multimode
squeezing of the SPOPO, many up-to-twelve-node clusters and a six-partite
secret sharing protocol are simulated, where we obtained all the quantum-
fluctuation properties of the simulated quantum networks.

Part III: To realize quantum computing and quantum metrology with
the SPOPO, a frequency resolved multipixel apparatus, which is able to mea-
sure all the modes of the SPOPO simultaneously, is used in our experiment.
We present the method for implementing measurement based quantum com-
puting via multipixel homodyne detection in Chapter 7. In Chapter 8, we
directly present the article made in collabration with East China Normal
University, Shanghai, which is a theoretical proposal to implement versatile
clusters with cascading four wave mixing. In the end, Chapter 9, a multi-
mode quantum spectrometer is demonstrated. We achieve the signal-to-noise
ratio (SNR) of central frequency shift in an optical frequency comb beyond
the standard quantum noise limit; furthermore, multiple parameters of the
frequency comb, corresponding to different spectral modes, are measured si-
multaneously via post-processing, and the SNR of the measurements also
exceeds the standard quantum limit.
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Chapter 1

Optical frequency combs

Contents
1.1 Classical electric fields . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Optical frequency combs . . . . . . . . . . . . . . . . . . . . 8

1.2.1 Definitions of frequency combs and ultrafast pulses . 10

1.2.2 Frequency dependent phase . . . . . . . . . . . . . . 11

1.3 Dispersion of linear media . . . . . . . . . . . . . . . . . . . . 12

1.4 Synchronized optical cavity . . . . . . . . . . . . . . . . . . . 13

In this thesis, we are interested in realizing quantum information process-
ing via using and controlling optical frequency combs. In the first chapter
of the thesis, we start introducing the basic notions of the optical frequency
combs, which are usually generated by ultrafast mode-locked lasers [82]; then
the spectral phase of the ultrafast lasers and dispersion in a linear medium
are presented.

1.1 Classical electric fields

Firstly we introduce some notions of the classical light fields. Classically,
light is composed of electromagnetic waves with optical frequencies, which
obey Maxwell’s Equations. Using the description of classical electromagnetic
fields, we can describe many nonlinear phenomena of light interacting with
nonlinear medium.

Let us consider a real classical electric field E(~r, t), expressed with its
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frequency components,

E(~r, t) =

∫ ∞
−∞

E(~r, ω)e−iωt
dω√
2π
, (1.1)

where E(~r, ω) = E∗(~r,−ω).

Then we introduce a complex field E(+) which is the integral of all the
positive frequencies,

E(+)(~r, t) =

∫ ∞
0

E(~r, ω)e−iωt
dω√
2π
, (1.2)

Thus we have,

E(~r, t) = E(+)(~r, t) + E(−)(~r, t), (1.3)

where E(−)(~r, t) =
[
E(+)(~r, t)

]∗
giving the relation between positive and neg-

ative frequency components.

With a Fourier transform of the complex electric field in time domain, we
have the corresponding description of the electric field in spectral domain,

E(+)(~r, ω) ≡
∫ ∞

0

E(~r, t)eiωt
dω√
2π

E(~r, ω) = E(+)(~r, ω) + E(−)(~r,−ω), (1.4)

where similarly E(−)(~r, ω) =
[
E(+)(~r, ω)

]∗
.

1.2 Optical frequency combs

An optical frequency comb is, in frequency or wavelength domain, an optical
spectrum which consists of equidistant lines [21], as seen in Fig. 1.1, with
about 105 ∼ 106 frequency modes, and in time domain, is a train of ultrafast
pulses, as seen in Fig. 1.2, in our case with a duration of ∼ 100fs.

Optical frequency combs are often generated by a kerr-lens mode-locked
Ti-sappire laser [43] [82]. With a ultrahigh stability, optical frequency combs
have the best precision amongst all of measurements of physical parameters
and metrology meters [8] [92]. Furthermore, optical frequency combs, with a
lot of properties, such as ultrafast, high energy, intrinsic multimodes of fre-
quency, stable, low noise, etc., are acting as an important tool and technology
for both industry and scientific aims [92] [36].
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Figure 1.1: The spectrum of an optical frequency comb. Here the opti-
cal frequency comb is presented in the frequency domain, which consists of
many equidistant frequencies (red lines). The distance between two neigh-
boring frequencies correspond to the repetition rate of the comb. The dashed
gaussian-shape profile is the envelop of the spectrum.

time 

Figure 1.2: Temporal pulses of the optical frequency combs. In the time
domain, frequency combs can be represented as a train of ultrafast pulses.
The dashed gaussian-shape envelops are the corresponding temporal shapes
of pulses, and the time distance between pulses is a round-trip time of light
in the laser cavity.
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1.2.1 Definitions of frequency combs and ultrafast pulses

In this part, basic conceptions of optical frequency combs will be presented.
A standard way of generating a frequency comb is using mode-locked lasers
[17]. As seen in Fig. 1.2, a train of ultrafast pulses with equidistance in
time is generated by this kind of lasers, e.g. kerr-lens Ti-sappire lasers. Via
Fourier transform, these pulses are equivalent, as seen in Fig. 1.1, as many
frequency components in frequency domain. Therefore optical combs1 can
be equivalently represented in time or frequency domain. A typical duration
of ultrafast pulses is in the femtosecond range.

The equidistance T0 between pulses, in time domain seen in Fig. 1.2,
is determined by a laser cavity length Lc, which is also called Repetition
Frequency (RF) or Free Spectral Range ωr = 2π/T0 in frequency domain in
Fig. 1.1.

Carrier-Envelope-Offset (CEO) is the frequency or phase offset be-
tween carrier waves and pulse envelopes, as seen Fig. 1.2, which is usually
caused by the effect of intra-cavity dispersion and nonlinearities. It is ex-
pressed as ∆φCE and ωCE respectively in time and frequency domain with a
relationship as below,

ωCE = ωr
∆φCE

2π
. (1.5)

Physically, the CEO itself is induced by the effect of intra-cavity dispersion.
One round trip propagation in the cavity induces a phase shift as below,

∆φCE =

(
1

υg

− 1

υφ

)
ω0L0 (1.6)

Where υg and υφ are the group velocity and phase velocity of light respec-
tively, and ω0 is the cavity resonant frequency, and L0 is the cavity round
trip optical path.

Carrier-Envelope-Phase (CEP) is difference of phases between carrier
waves and pulse envelopes induced by CEO of light, as seen in Fig. 1.2,
written as below,

φCE = m∆φCE. (1.7)

Where m is the number of pulses counting from the reference pulse.
Therefore, as seen in Fig. 1.1, in frequency domain, the representation of

a perfect frequency comb is a series of delta functions distributed as,

ωn = ωCE + nωr (1.8)

1In this thesis we think ultrafast pulses and optical frequency combs correspond to time
domain and frequency domain respectively, which is equivalent via Fourier Transform.
Sometimes optical frequency combs are, in particular, needed to lock the CEO.
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Where ωn is the nth frequency of a comb, and ωCE is Carrier-Envelop-Offset
frequency, and ωr is the repetition frequency of an optical cavity. We can see
that the absolute frequency ωn depends on both the repetition rate ωr and
the CEO frequency ωCE. Therefore, when the cavity length and CEO are
both locked perfectly the absolute frequency of the nth tooth of frequency
combs ωn will be fixed; we can take the optical frequency comb as a frequency
ruler for measuring unknown frequencies.

When CEO is zero, in time domain, ∆φCE = 0, a single pulse can be
written in the function of pulse envelope g(t),

Epulse(t) = g(t)e−iω0t (1.9)

Then with the effect of CEO, the field of a train of pulses can be written as,

Etrain (t) =
∑
n

g (t− nT0) e−iω0(t−nT0)e−in∆φCE (1.10)

Fourier transform of the light field is a frequency comb, as seen in Fig. 1.1,
which can expressed as below,

Etrain (ω) = Epulse (ω)
∑
n

δ (ω − ωn) (1.11)

Where here ωn = ω0 + nωr, and ω0 is the central frequency of the comb.
Besides, as seen in Fig. 1.1, the bandwidth ∆ω of the full comb is another

important parameter, in gaussian case, it satisfies [58]2,

∆ω ×∆t ≥ 4ln2. (1.12)

where ∆t is the duration of a pulse.
Typically, when ∆ω � ω0, we have,

∆λ ' λ2

2πc
∆ω. (1.13)

Therefore, for example, the gaussian duration of pulses ∆t = 100fs centered
at 800nm corresponds to about ∆ω = 10THz bandwidth of the spectrum.

1.2.2 Frequency dependent phase

When the light pulses propagate in a disperse medium, the components with
different colors will different phases. We call this spectral phase φ(ω) of light,
which is a function of frequency ω.

2∆t and ∆ω are full width half maximum (FWHM).
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To express the spectral phase of light, we consider a train of ultrafast
pulses, whose central frequency is ω0. We write the Taylor expansion of the
spectral phase function,

φ(ω) = φ(ω0) + φ′(ω0)(ω − ω0) +
1

2
φ′′(ω0)(ω − ω0)2 + ..., (1.14)

where φ(ω0) is the carrier envelope phase (CEP), which corresponds to the
phase between the envelope of the electric field and the carrier, as seen in
Fig. 1.2; φ′(ω0) is simply a delay between the pulse and an arbitrary origin
time. This leads to a constant group delay without changing the shape of the
pulses; the quadratic phase φ′′(ω0) is the most important term called Group
Delay Dispersion (GDD), and we usually use fs2 for the unit of GDD. In
other words, each color component experience a delay that increase linearly
versus the frequency, which is so called chirp. Therefore, the shape of the
pulses is deformed because the GDD: with a Fourier-limited condition, the
duration of the pulses always increases when there is a GDD.

1.3 Dispersion of linear media

If the pulses propagate in a linear, homogeneous and isotope material, the
spectral phase is only dependent on the property of the material and the
traversing thickness, keeping the relative phases between different colors,
and is independent of the characters of the pulses, such as the duration of
the pulses. In practice, all the optical components, including mirrors, glasses,
etc., are possible to induce color dependent phases, also called dispersion.

The module k(ω) of the wave vector is the derivative of the spectral phase
function versus the propagating direction z,

k(ω) =
∂φ

∂z
(ω), (1.15)

this gives,

k(ω) = k(ω0) + k′(ω0)(ω − ω0) +
1

2
k′′(ω0)(ω − ω0)2 + . . . , (1.16)

where the term k′(ω0) is the group velocity, and the second term k′′(ω0) is the
group velocity dispersion (GVD), which is just the GDD over the propagating
distance z.

Importantly, the quadratic phase GDD broaden the duration of the pulses
[58],

∆tbroaden = ∆t

√
1 +

(
4ln2φ′′(ω0)

∆t2

)2

, (1.17)
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Figure 1.3: The durations of the pulses with different chirp (GDD). The
green, blue, red, and yellow curves are the durations of the pulse with initial
durations of 25fs2, 50fs2, 100fs2, 200fs2, respectively.

where z is the propagating distance, and φ′ is the GDD, and ∆t is the initial
duration without chirp. It is similar to the gaussian beam propagation,

∆w(z) = w0

√
1 +

(
zλ/π

w2
0

)2

, (1.18)

where w and w0 are the spatial waists of the beam.
According to the Equ. 1.17, we have the broadened pulse duration versus

GDD, as seen in Fig. 1.3. We can see that when the initial duration is slower,
the broadening effect of GDD is less. Therefore, for instance, the duration
of ∼ 100fs pulses is not sensitive to the GDD effect, but the duration of
∼ 25fs pulses is much more sensitive compared to ∼ 100fs pulses.

1.4 Synchronized optical cavity

A synchronized optical cavity, differently usual monochromatic cavities, can
resonate with a train of ultrafast pulses (or optical frequency combs); in other
words, all the frequencies of the pulses are resonant in the synchronized cav-
ity. Compared to monochromatic cavities, this type of cavities need to be
resonant for the whole spectral components of frequency combs. Ideally, all
the frequencies of light experience the same cavity properties. In practice,
mirrors with a flat broadband reflectivity are used, usually called ultrafast or
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femtosecond mirrors. Now, the optics companies, such as Layertech. GmbH,
CVI, Femto Lasers, Laser Components, have good broadband ultrafast op-
tics, with ∼ 100 nm wide reflectivity.

In this thesis, as we are interested with optical parametric oscillators
(OPO) using optical frequency combs, we use a synchronized cavity to study
the related nonlinear and quantum effect of the OPOs. Here we give some
important notions for synchronized cavities.

Based on a linear Fabry-Perot interferometer, with two mirrors (r1, r2,
t1, t2 are the corresponding coefficients of reflectivity and transmissivity,
r2
i + t2i = 1),

FSR, ωr, called free spectral range, is the the spectral distance between
two resonant peaks.

ωr =
2πc

L
, (1.19)

where L is the cavity length.

And the repetition rate of pluses is defined similarly as above. All the
frequencies {ωn} of the pulses, such as the ωn in Equ. 1.11, are resonant
(synchronized) in the cavity when the length L satisfies the repetition rate
of the pulses, L = 2πc

ωr
.

Finesse: is the ratio between the FSR and the FWHM of the resonant
peaks ∆ω0, ωr/∆ω0.

F =
π

2arcsin
(

1−√ρ
2 4
√
ρ

) , (1.20)

where ρ = (r1r2)2, so 1− ρ is the loss of a round trip. For small loss ≤ 10%,

F ' π

1− ρ. (1.21)

Therefore the transmission of the cavity is,

T (ω) = Tmax
1

1 +
sin2

(
φcavity(ω)

2

)
sin2( π

2F )

, (1.22)

where Tmax =
(

t1t2
1−r1r2

)2

, and φcavity(ω) is the phase changed after a round

trip.

For optical frequency combs, each frequency ωn need be resonant in the
cavity. To aims that, the phase φcavity(ωn) need satisfy integral times of 2π
for all frequencies {ωn}, φcavity(ωn) = 0 [2π].
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To show how to synchronize the cavity to pulses, let us write the phase
ϕ(ω) in details with the spectral phase φ(ω) induced by the cavity media
(air, glass, crystal) on pulses, after a round trip of a L long cavity, which is,

φcavity(ω) = φGouy +
ωL

c
+ φ(ω), (1.23)

where φGouy is called Gouy phase, which is associated to the property of
cavity spatial modes, and the spectral phase φ(ω) can be written in its Taylor
expansion, as in Equ. 1.14,

φcavity(ω) = φGouy +
ωL

c
+ φ(ω0) + φ′(ω0)(ω − ω0) +

1

2
φ′′(ω0)(ω − ω0)2 + ...,

(1.24)
By defining the constant part α = φGouy + φ(ω0) − ω0φ

′(ω0), and Leff =
L+ cφ′(ω0), we have,

φcavity(ω) = α +
ω

c
Leff +

1

2
φ′′(ω0)(ω − ω0)2 + . . . . (1.25)

From Equ. 1.8, for any frequency ωn = ωCE + nωrep, when the dispersion
part is all compensated (φ′′(ω0) = 0), we have,

φcavity(ωn) = (α +
ωCE

c
Leff) + n

ωrep

c
Leff, (1.26)

where ωCE is the CEO frequency of the pulses.
In the above equation, we make the two parts (α+ ωCE

c
Leff) and nωrep

c
Leff

be both integral times of 2π. Strictly, to aim so, we can adjust the cavity
length to make second part be integral times of 2π, then we can control the
CEO of the pulse laser to make the first part satisfied.

When making α+ ω
c
Left be 0, according to Equ. 1.22, the dispersion (the

second order of the spectra phase φ′′) effect is not very constrained for low
finesse, e.g. in our case of OPO (F ' 20), it need be less than ∼ 700 fs2;
But for high finesse, e.g. F ≥ 500, the dispersion, such as the GDD of air
and mirrors, has to be well controlled to be less than ∼ 40 fs2 [69].

In practice, when the duration of the pulse is not very big (our case, ∼100
fs) and the finesse is low, we can only adjust the cavity length to make the
phase φcavity(ω0) for the central frequency ω0 = ωCE + n0ωrep, in Equ. 1.26,
be integral times of 2π. For the other frequencies ωn = ∆nωrep + ω0, as
∆n ∝ ∆ω

ωrep
and ∆ω � ω0, we have φcavity(ωn) ' φcavity(ω0). Thus, in this

case, the cavity can synchronize with all the frequencies of pulses only via
adjusting the cavity length.
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Chapter 2

Quantum optics in continuous
variable regime
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In this chapter, we will introduce multimode quantum optics in continu-
ous variable regime and the related notions.
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2.1 Quantization of free radiation

Semi-classical models of atom-radiation interaction can handle many physi-
cal processes, including absorption and stimulated emission in lasers, where
matter is treated as quantum while light is a classical field [37]. However,
some other phenomena can not be described in this semi-classical model. For
instance, spontaneous emission can only be treated correctly using a fully
quantum framework, where both the radiation and the matter are quan-
tized [37]. Furthermore, it is found that a free electromagnetic field, far from
sources, shows a series of new properties [35] such as interference of photons
[39] [40] , squeezed light [97], quantum fluctuations of vacuum, etc., which
can not be described by only the classical fields. This chapter will introduce
the quantization of free electromagnetic fields and its associated quantum
properties of light.

2.1.1 Annihilation and creation operators

It is well known how to quantize a system of material particles in quantum
mechanics. The classical problem firstly is written in Hamilton’s canoni-
cal form, which expresses the system energy as a function of the particle
position ~x and the conjugate canonical momentum ~p. Then the classical
Hamiltonian H (x1, ..., xi; p1, ..., pi) is replaced by the quantum operators as
Ĥ (x̂1, ..., x̂i; p̂1, ..., p̂i), which obeys the canonical commutation relation [37]:

[x̂i, p̂j] = ih̄δij, (2.1)

where, δij = 1 if i = j, and δij = 0 if i 6= j. We can see that the operators of
position x̂i and momentum p̂i commute with different labels of i, j, and don’t
commute with the same label i = j; the labels are associated to different par-
ticles. Importantly, being different from classical physics, the commutation
relation introduces Heisenberg inequality in quantum mechanics.

To describe quantum properties of light we need introduce the quantiza-
tion of light field, where the light field is expressed by quantum operators
instead of classical electric field. Similarly, the procedures to quantize free
radiation (the free electromagnetic field) are [37]:

I. Get the solutions of Maxwell’s equation in the basis of plane waves,
which are a set of electric fields with different frequencies and polarizations;

II. Write the solutions with the electric field normal variables, normalized
to photon numbers;

III. Express the energy (Hamiltonian) in a form of harmonic models;
IV. Introduce the annihilation and creation operators of quantum har-

monic oscillators and get quantized Hamiltonian of free radiation, so the
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commutation relation is introduced in the conjugate canonical variables of
radiation fields.

Using the solutions of Maxwell’s equations, the analytic signal of electrical
field, in a quantization volume with a size L, can be expressed of a sum of
orthogonal plane waves with discrete frequencies1,

E(+) (~r, t) = i
∑
l

Elαlei(~kl·~r−ωlt). (2.2)

In the expression above, El =
√
h̄ωl/2ε0L3 is the normalization factor related

to the energy of classical fields in the mode l; αl is the complex normal
variable of mode l associated to photon numbers.

The corresponding Hamiltonian with a set of modes of {l} corresponding
to the normal variables αl is,

HR = 2ε0L
3
∑
l

[El]2|αl|2 =
∑
l

h̄ωl|αl|2. (2.3)

Thus, the radiation energy is given in a sum of the energies related to each
normal mode l.

Let us introduce harmonic quantum operators of light also called anni-
hilation and creation operators, which are associated to the normal variable
αl. The time-independent operators âl satisfy the relation of commutation:

[âl, â
†
l′ ] = δl,l′ and [âl, âl′ ] = 0. (2.4)

âl, â
†
l are annihilation and creation operators of photons in the mode l,

also called boson operators in quantum mechanics.
Replacing the amplitude αl by the annihilation operator in Equ. 2.2, the

quantization of the light field,

Ê
(+) (

~r, t
)

= i
∑
l

~εlElei(~kl·~r−ωlt)âl (2.5)

Hence, the Hamiltonian of quantized filed can be written as below,

Ĥ0 =
∑
l

h̄ωl

(
N̂l +

1

2

)
, (2.6)

where N̂l = â†l âl is the photon number operator in mode l. And its eigenstates
are called Fock states or photon number states, which form a basis of the
radiation states in the Hilbert space,

N̂l|nl〉 = nl|nl〉, with nl = 0, 1, 2, ... (2.7)

1Here we assume there is only one polarization.
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The eigenstates of the annihilation operators are coherent states or quasi-
classical states, which in a mode l can be expressed as below [35],

âl|αl〉 = αl|αl〉, (2.8)

where, αl is the eigenvalue, which is the complex amplitude of the field.
Coherent states are the quantum states of classical light sources, for instance,
the output of lasers. It is important to note that the annihilation operator â
is non-Hermitian, and it is easy to prove that when time t = 0 any coherent
state |αl〉 with a complex amplitude αl is a superposition of Fock states,

|αl〉 = e−|αl|
2/2

∞∑
nl=0

αnll√
nl!
|nl〉. (2.9)

Up to now we have quantized free radiation. Compared to classical fields,
we introduced annihilation and creation quantum operators, and the corre-
sponding commutation relations, which therefore can further describe quan-
tum properties of non-classical states of light.

For the quantization of fields we have narrow band approximation. When
ω−ω0 � ω0, E0 =

√
h̄ω0/2ε0L3 which is not photon frequency ω dependent.

We can factorize E0 in the quantization of the field,

Ê
(+)

(~r, t) = iE0

∑
l

ei(
~kl·~r−ωlt)âl. (2.10)

In the above equation, the plane wave ei(
~kl·~r−ωlt) is the classical mode, and âl

is the annihilation operator related to this mode.

2.1.2 The phasor representation and Heisenberg in-
equality

The annihilation and creation operators â, â† are non-Hermitian, therefore
non-observable. Thus in practical measurement, we define observable Her-
mitian operators using time-independent â, â†. The quadrature operators are
formed as below,

x̂l = â†l + âl and p̂l = i
(
â†l − âl

)
, (2.11)

where x̂l and p̂l are called amplitude and phase quadrature operators re-
spectively, which are either time-independent.2 Classically, the quadrature

2The definition of quadrature operators sometimes has a 1/2 coefficient, in consequence
the shot noise is normalized differently. In our definition, shot noise is normalized to 1 in
Equ. 2.15.
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components correspond to real and imaginary parts of analytic signal in Equ.
2.2. A more general way, the quadrature operator can be defined with the
angle θ as below,

x̂θl = eiθâ†l + e−iθâl. (2.12)

A light field can be thus expressed in a quadrature representation with any
θ.

As seen in Fig. 2.1, a complex light field, which corresponds to a coherent
state, is represented with a vector arrow in phasor representation, where
amplitude and phase quadrature components correspond to two axis of the
coordinate3. The quadrature operators are Hermitian, and their eigenvalues
indicate the classical quadratures of the fields. We can detect quadratures of
a light field directly via homodyne measurements, which will be introduced
in chapter 4.

According to the commutation relation between annihilation and creation
operators, as in Equ. 2.4, we find the commutation relation between conju-
gate quadrature operators,

[x̂l, p̂l′ ] = 2iδl,l′ and [x̂l, x̂l′ ] = [p̂l, p̂l′ ] = 0. (2.13)

Thus, we can get Heisenbery inequality,

∆x2
l ·∆p2

l ≥ 1, (2.14)

where ∆x2 = 〈(δx̂)2〉 and δx̂ = x̂ − 〈x̂〉 represent the fluctuations of the
operator x̂. The coherent states saturate the Heisenberg inequality in Equ.
2.14, and satisfy,

∆x2
l = ∆p2

l = 1, (2.15)

where the unit is an energy related term [El]2, defined in Equ. 2.2.
In intensity or phase measurements of light, the sensitivity always has a

standard quantum limit, also called shot noise limit, which originates from
the Heisenberg inequality of coherent states. Because the coherent states, and
the coherent vacuum which has a zero mean field, have the same Heisenberg
inequality 1, we call quantum fluctuation of coherent light vacuum fluctua-
tion.

Here, for both amplitude and phase quadrature operators, the Heisenberg
inequality is because of vacuum fluctuations of free radiation, which can not
be described by a classical way. We can think the quantum description of
free radiation corresponds to a classical field plus vacuum fluctuations, as
seen in Fig. 2.1, where the red circle represent vacuum fluctuations.

3Sometimes it is also called phase representation
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Figure 2.1: Phasor representation of a coherent state, where the vector ar-
row corresponds the field vector, and the red circle represents the quantum
fluctuations, which obeys Heisenberg relation. ∆xl and ∆pl are standard
deviations of amplitude quadrature and phase quadrature respectively.

Usually in lasers, the process of photon generation is random, and this
random process gives rise to shot noise limit in intensity and phase measure-
ments of laser light. For such coherent states, the photon number follows
a Poisson distribution with a standard deviation of

√
N , which is a statis-

tic property of classical radiation; sub-Poisson distribution corresponds to
non-classical source, which is anti-bunch in the photon generation process.

2.1.3 Squeezed states

We have seen that the coherent states have the same vacuum fluctuations in
both amplitude and phase quadratures, as seen in Equ. 2.15. The sensitivity
of intensity and phase measurements with lasers will be limited by the shot
noises, which origin from random generation processes of photons.

Here we will present a type of quantum resources, called squeezed light
[37]. Interestingly, this type of light can exceed the standard quantum limit.
As seen in Fig. 2.2, it is shown that the phase representation of squeezed
states, where the fluctuation of one quadrature exceeds the quantum limit
1, and the fluctuation of the corresponding orthogonal quadrature is bigger
than 1, conserving Heisenbery inequality. This means that potentially, we
can increase measurement sensitivity by using squeezed light because of less
quantum fluctuations [90].

The squeezing operator Âr, where r is the real squeezing coefficient, is
defined as below,

Âr = âcoshr + â†sinhr, and,
[
Âr, Â

†
r

]
= 1. (2.16)
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Figure 2.2: Phasor representation of a squeezed state. The vector arrow
corresponds to the field vector, and the red circle represents the quantum
fluctuations, which obeys Heisenberg relation. Different from coherent states
in Fig. 2.1, the variance of the amplitude quadrature is less than 1; the phase
part is bigger than 1.

In the corresponding quadrature representation, with a perfect squeezing
operation K we have,(

x̂r
p̂r

)
= K

(
x̂
p̂

)
=

(
e−r 0
0 er

)(
x̂
p̂

)
, . (2.17)

where the squeezing operator K =

(
e−r 0
0 er

)
. Thus we have the variances

δx2 = 〈x− 〈x〉〉2 for squeezed vacuum,(
δx2

r

δp2
r

)
=

(
e−2r 0

0 e2r

)(
δx2

δp2

)
. (2.18)

If (x̂, p̂)T are quadratures of coherent states, with δx2 = δp2 = 1, we have,(
δx2

r

δp2
r

)
= K2 =

(
e−2r 0

0 e2r

)
, and ∆xr ·∆pr = 1. (2.19)

From above equations, we see that with a squeezing operation K acting
on coherent states, we can get a new state with squeezed variance e−2r in a
quadrature and anti-squeezed variance e2r in the orthogonal quadrature.

Squeezed quadratures have less quantum fluctuations, so the sensitivity
of measurements on the corresponding squeezed quadrature can be improved
beyond shot noise limit. In metrology, the sensitivity of measurements can
exceed the standard quantum limit via using squeezing on the corresponding
quadrature [91] [100].
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Figure 2.3: A spectral mode basis. The spectrum (envelope) of a frequency
comb is divided into six bands, corresponding to a train ∼ 100 fs pulses
centered at 795nm with a bandwidth of ∼ 10 nm in the time domain.

2.2 Modes of light fields

The quantization of free radiation in the previous chapter described elec-
tric field as a sum of harmonic oscillators, and the Hamiltonian is expressed
as in Equ. 2.6. In this case, the harmonic oscillators correspond to the
plane waves with the frequency ωl = c ‖ ~kl ‖. These plane wave modes
construct a basis carrying the energies and information, which are photon
numbers in quantum description, and are the amplitude classically. The
modes are classical conceptions originally from Maxwell’s equations. How-
ever, in practice, many other kind of modes of light are also often used, such
as Hermit-Gaussian spatial modes, temporal modes of ultrafast pulses, fre-
quency modes, polarizations of light, and output modes of light resources4.
In our work, we divide a ∼ 10 nm bandwidth spectrum of optical frequency
combs into many frequency pixels (spectral bands), and these spectral bands
construct a measurement basis, as seen in Fig. 2.3.

A set of orthogonal modes {ui (~r, t)} of light, where z is the axis of prop-
agation direction, ~r = (~ρ, z) and ~ρ is the transverse coordinate, constructs a
mode basis, if it satisfies the condition as below,∫ t0+T

t0

∫
S

u∗i (~r, t)uj (~r, t) d~rdt = δij, (2.20)

where S is the surface of detection and T is the measurement time.

In this mode basis, the electric field operator can be expressed

Ê(+) (~r, t) = A
∑
j

âiuj (~r, t) , (2.21)

4For example, in the optical network, each of off-line OPOs has a output mode, and all
the OPOs construct a basis.
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where A is the normalization factor, which we will often omit in the rest
of the manuscript. Here we express the field operator with sum of a set of
orthogonal modes, which we will introduce in detail in next section.

2.2.1 Basis change

In Equ. 2.21, different modes can construct a different basis, and the same
field can be expressed in different basis. Let us consider there is another
basis consist of a set of modes {wi(~r, t)}, which equals a linear transform U
acting on the basis ~u,

Uij =

∫ t0+T

t0

∫
S

u∗i (~r, t)wj (~r, t) d~ρdt, (2.22)

where T and S are detecting time and aera. Thus,

wj (~r, t) =
∑
i

Uijui (~r, t) . (2.23)

Based on the Equ. 2.21, the modes {wi(~r, t)} are associated to new annihi-

lation and creation operators â′i and â′
†
i , and the field can be written as,

Ê(+) (~r, t) = A
∑
j

â′jwj (~r, t) . (2.24)

We have the same filed operator expressed in different basis,∑
j

â′jwj (~r, t) =
∑
ij

â′jUijui (~r, t) =
∑
i

âiui (~r, t) (2.25)

The relation between operators is,

âi =
∑
j

Uij â′j (2.26)

Here U is unitary, with the properties, U † = U−1, U−1U = UU−1 = I.

And similarly, as Ê(+)† (~r, t) = A∗∑j â
′†
jw
∗
j (~r, t) and Uij = U∗ji, we have,

â†i =
∑
j

U∗ij â′
†
j =

∑
j

Ujiâ′
†
j (2.27)

In general, with a basis change, a state of light can be represented in
different basis; also a basis change can be any unitary transform, usually
realized by linear optical networks [85]. In our experiment, S is big enough
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compared to the beam transverse size, and the spatial mode is only TEM00,
so the integral of S can be neglected, and only frequency and temporal modes
are considered.

Here Uij is also a projection operation, where we project the modes {ui}
onto another mode basis {wj}. As the unitary transform corresponds to
a square matrix, only when the two mode basis have the same number of
dimensions, U is a unitary transform, or basis change; if not, it is only pro-
jection with the form of Equ. 2.22, but then it is not unitary.

The physical interpretation of a basis change is corresponding a unitary
transform of the field, where the energy and commutation relations before
and after transform are conserved. In practice, this can be implemented with
linear optics without loss, such as optical beam splitter, phasors.

2.2.2 Monomode and multimode

In our work, the important property is that our quantum resource is multimode[65],
not monomode, therefore we give the definition as following.

Definition: a pure state |ψ〉 is monomode if it exists a basis of modes
{vi}, in which we have,

|ψ〉 = |φ〉 ⊗ |0, ..., 0, ...〉, (2.28)

where |φ〉 which is not vacuum is the state in the first mode of the basis {vi},
and the states of all the other modes are vacuum |0〉. A quantum state is
multimode if it is not monomode.

Here we give an example of multimode squeezing, for example, it can be
generated by 4 independent OPOs[99],

|ψ〉 = |0sqz1〉 ⊗ |0sqz2〉 ⊗ |0sqz3〉 ⊗ |0sqz4〉 ⊗ |0, ..., 0, ...〉, (2.29)

where the leading four modes are independently squeezed by four individual
OPOs, and the other modes are vacuum, which can not be reduced into the
form of Equ. 2.28.

Importantly, quantum correlation, for example, two-partite entanglement
[61] can be generated via mixing monomode squeezing and vacuum by optical
beam splitter as seen in Fig. 2.4, but this kind of entangled state can be
reduced to the form of monomode as in Equ. 2.28. For instance, in the input
basis, the state is expressed with only one squeezed mode and vacuum,

|ψ〉 = |squeezing〉 ⊗ |0, ..., 0, ...〉, (2.30)

thus it is still monomode.
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|Squeezing> 
 

|Vacuum> 
 

Entanglement 

BS 

Figure 2.4: Entanglement generation with monomode. A squeezed state
and vacuum are mixed with an optical beam splitter (BS), and the two
transmitted beams are entangled. But the in the input basis, this entangled
state has the form of monomode.

2.2.3 Basis change in the quadrature representation

More generally, we consider basis change in a multimode case, and we have
~a = (â1, â2, â3, . . . )

T , ~a′ = (â′1, â′2, â′3, . . . )
T . According to Equ. 2.26, we

define a basis change,
~a′ = U~a (2.31)

The corresponding unitary matrix of basis change can be written with real
and imaginary parts,

U = X + iY (2.32)

where X and Y are the real and imaginary part of the unitary transform,

respectively. And it is easy to get ~a′
†

= U∗~a† from Equ. 2.27.

According to Equ. 2.11, we can write ~a and quadrature operators (~x, ~p) =
((x̂1, ..., x̂N) , (p̂1, ..., p̂N)). Thus Equ. 2.32 can be rewritten in the form,(

~x′

~p′

)
=

(
X −Y
Y X

)(
~x
~p

)
= S ·

(
~x
~p

)
, (2.33)

where for a defined unitary transform U = X + iY , and S is,

S =

(
X −Y
Y X

)
, (2.34)
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where S is the basis change in the quadrature representation, which is a
type of sympletic transform which we will explain in details in the chapter
of Sympletic transform.

2.3 Representation in the continuous variable

regime

Previously, we defined quadrature operators in Equ. 2.11, which are contin-
uous variables. In this chapter we will introduce how to represent a gaussian
state in continuous variable regime. First we simply give the representa-
tion with density matrices, and also in continuous variable case with Wigner
function. Then, in particular for gaussian case, the covariance matrix will be
presented.

2.3.1 Density matrix and Wigner function

In quantum physics, usually a system can be described as a mixture of many
pure states in Hilbert space, |ψ1〉, |ψ2〉, etc. This mixture of pure states is
called mixed states. We can describe it with density matrices, defined by,

ρ̂ =
∑
i

pi|ψ〉〈ψ|, (2.35)

where the pi represents the statistical weight of the different pure states in
the mixed state, and we have

∑
i pi = 1. The purity is defined,

P = Tr
[
ρ2
]
. (2.36)

When 0 < P < 1, it is a mixed state; when P = 1, it is a pure state.
The density matrix is a general tool to describe a quantum state in quantum
optics, but it is difficult to be applied in the continuous variable case, because
it is hard to manipulate and contain an infinite number of elements in Fock
states basis. Instead, the Wigner function is often used to represent quantum
states in continuous variable regime. Here let us consider a N -mode quantum
state with corresponding 2N quadrature variables {x1, p1, ..., xN , pN}. The
Wigner function of the state is,

W (x1, p1, ..., xN , pN) =
1

(2π)N

∫
Tr
[
ρ̂ei

∑
i(xix′i+pip′i)

]
e−i

∑
i(xix′i+pip′i)dx′1dp′1...dx

′
Ndx′N .

(2.37)
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The Wigner function is normalized to identity for the integral in all
the quadratures {x1, p1, ..., xN , pN}. It is important that the integral of the
Wigner function is the probability distribution of some specific quadrature,
so we also call Wigner function distribution of quasi-probability. For instance,
when we integrate the Wigner function over the quadrature x̂θ, we obtain the
probability distribution for the measurement of the orthogonal quadrature
x̂θ+π/2. In this thesis, we use covariance matrix to describe gaussian states,
instead of using the Wigner function.

2.3.2 Gaussian states and covariance matrices

Quantum states are gaussian states, if their corresponding Wigner function
has a gaussian shape, otherwise it is called non-gaussian states. In the gaus-
sian case, the Wigner function is only determined by the first two moments of
the quadratures. The first is the mean values of the quadratures in different
corresponding modes; the second is the covariances of the quadratures in dif-
ferent modes, which originate from the fluctuations of the quadratures, such
as 〈(δx̂)2〉, 〈(δp̂)2〉, 〈δp̂δx̂〉 and 〈δx̂δp̂〉. Hence, all the fluctuation property
of gaussian states can be expressed with the covariance matrix. A quantum
state, in the basis with N modes, can be written in a covariance matrix V ,
and the element of V is,

Vij =
〈δq̂iδq̂j〉+ 〈δq̂jδq̂i〉

2
, (2.38)

where q̂ is a quadrature of the field (amplitude x̂ or phase p̂ quadrature), and
δq̂i = q̂i − 〈q̂i〉.

When i 6= j, q̂i and q̂j commute, so

Vij = 〈δq̂iδq̂j〉 = 〈δq̂jδq̂i〉. (2.39)

When i = j, for the 〈x̂p̂〉 correlation in off-diagonal blocks, we define,

〈δx̂iδp̂i〉s = 〈δp̂iδx̂i〉s =
〈δx̂iδp̂i〉+ 〈δp̂iδx̂i〉

2
(2.40)

Thus,

V =



〈(δx̂)2
1〉 〈δx̂1δx̂2〉 . . . 〈δx̂1δp̂1〉s 〈δx̂1δp̂2〉 . . .

〈δx̂2δx̂1〉 〈(δx̂)2
2〉 . . . 〈δx̂2δp̂1〉 〈δx̂2δp̂2〉s . . .

...
...

. . .
...

...
. . .

〈δp̂1δx̂1〉s 〈δp̂1δx̂2〉 . . . 〈(δp̂)2
1〉 〈δx̂1δp̂2〉 . . .

〈δp̂2δx̂1〉 〈δp̂2δx̂2〉s . . . 〈δp̂2δp̂1〉 〈(δp̂)2
2〉 . . .

...
...

. . .
...

...
. . .


(2.41)
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According to the Heisenberg relation of quadratures, as in Equ. 2.14, the
covariance matrices have a constrain [77] [96],

V + iΩ ≥ 0, (2.42)

where5

Ω =

(
0 I
−I 0

)
, (2.43)

where, I is a diagonal identity matrix. The above Equ. 2.42 indicates that
all the eigenvalues of V + iΩ are non-negative, and this equation, in general,
can be applied to all physical states. For all quantum states, including non-
gaussian states, this above inequality is always satisfied. But covariance
matrix is not enough to describe all the quantum properties of the non-
gaussian states, then the Wigner function is employed [56].

The full covariance matrix is composed of four parts of correlations. The
diagonal is amplitude quadrature correlation 〈(δx̂)2

ij〉, and phase quadrature
correlation 〈(δp̂)2

ij〉; the off-diagonal is amplitude-phase correlation 〈δx̂iδp̂j〉,
and phase-amplitude correlation 〈δp̂iδx̂j〉. Each of the four parts is a real
and symmetry matrix, and most of quantum resources have only amplitude
and phase quadrature parts, without off-diagonal parts, such as, SPOPO
[70], cascading four wave mixing [13], ect. Therefore linear optical networks
are applied to obtain amplitude-phase or phase-amplitude correlations, for
instance, the implementation of controller-z gates with off-line OPOs [85]
[99].

The covariance matrix is often measured via balanced homodyne detec-
tion, which will be presented later. Notice that, the covariance originates
from both classical and quantum fluctuations [73], and when there is no clas-
sical noise (shot noise limited), the covariance matrix represents the quantum
fluctuations and correlations.

In addition, the purity P of gaussian states [1] can be obtained for their
corresponding covariance matrix as below,

P =
1√

detV
≤ 1. (2.44)

P = 1 means it is a pure state; P < 1 suggests mixed states.
Here we give two examples of gaussian states:
Coherent states: As we already mentioned, the coherent states are the

eigenstates of the annulation operators. The variances of corresponding

5The form of Ω depends on the form of a covariance matrix. Here we give the form of
covariances as in Equ. 2.41.
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quadratures are both 1, and the quadratures of different modes are not cor-
related. Thus the covariance matrix of a pure coherent state is an identity
matrix.

Squeezed states: As defined in Equ. 2.19, for a given mode l, the Heisen-
berg relation is ∆x2

l · ∆p2
l ≥ 1. If in the quadrature x̂l we have ∆x̂2

l < 1
and the covariances are zero, we call the it is squeezed on this quadrature.
Because of the Heisenberg relation, the other quadrature is antisqueezed. In
particular, if the mean field is zero and it is also squeezed, we call it squeezed
vacuum. Importantly, mean photon number of squeezed vacuum are not zero.
For instance, the squeezing operator K in Equ. 2.17, acts on a coherent state,
then the covariance matrix of the squeezed states has the form as below,

Vsqz =

(
∆x2 0

0 ∆p2

)
= K2 =

(
e−2r 0

0 e2r

)
. (2.45)

2.3.3 Basis change of covariance matrix

In the provisos we introduced the basis change in the quadrature representa-
tion, defined in Equ. 2.33. Generally, from a covariance matrix V , we have
a new covariance matrix VS with a basis change S defined in Equ. 2.34,

VS = SV ST . (2.46)

And the variance ∆2( ~M) in a desired mode ~M , which is in the quadrature
representation, can be obtained via projecting the covariance matrix onto
~M ,

∆2( ~M) = ~MV ~MT . (2.47)

This equation above allows to study the noise property of a specific mode in
a state.

As the covariance matrix is in the quadrature representation, the mode
and the basis change should be also expressed in this representation. Gener-
ally, covariance matrix describe all the quantum property, quantum fluctu-
ations, of gaussian states. And hence, we can study the quantum property
of the state in some specific mode or basis via projecting the covariance ma-
trix (the state) onto the desired mode or the corresponding basis change,
respectively.

2.4 Symplectic transform

Quantum optics experiments, usually, are composed of a series of linear and
non-linear optical elements after light resource, and a detection system. In
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BS 

~ain1

~ain2

~aout2

~aout1

Figure 2.5: Two input beams âin1 and âin2 are mixed with an optical beam
splitter, then two transmitted beams output âout1 and âout2 are synthesized.

this chapter we will talk about related symplectic transformation between
input and output field. Here the field of light is expressed as in the Equ.
2.10,

Ê
(+)
out =

∑
i

Ê
(+)
i,out = f

(
{Ê(+)

i,in }, {Ê(−)
i,in }

)
, (2.48)

where the output field Ê
(+)
i,out is output which is a function of input fields and

their conjugates in corresponding modes, such as {Ê(+)
i,in } and {Ê(−)

i,in }. This
input-output relation can have many different forms according to experi-
mental facts, but the output should be physical and obey the commutation
relation.

Similarly, the same principle works on the annihilation and creation op-
erators,

âout =
∑
i

âi,out = f
(
{âi,in}, {â†i,in}

)
. (2.49)

In this chapter, we will present two examples of sympletic transform,
which are beam splitter and the OPO squeezing operator.

Example 1: Optical beam splitter

Considering the optical beam splitter (BS), as seen in Fig. 2.5, mixes two
input multimode beams ~ain1 = (â1

1, â
2
1, ...â

N
1 )T and ~ain2 = (â1

2, â
2
2, ...â

N
2 )T, we

can get transmitted beam ~aout1 = (â′
1

1, â
′2
1, ...â

′N
1 )T and reflected beam ~aout2 =

(â′
1

2, â
′2
2, ...â

′N
2 )T. Here we assume the two input beams are expressed in the

same mode basis, so the ith mode of the two input fields interferes perfectly.
When the BS has a reflectivity r and transmission t, where r2 + t2 = 1,
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generally we have,

~aout1 = t~ain1 + r~ain2

~aout2 = −r~ain1 + t~ain2. (2.50)

In particular, for a semi-reflecting BS, where r = t = 1/
√

2 in the above
equation, we have,

~aout1 =
1√
2

(~ain1 + ~ain2)

~aout2 =
1√
2

(−~ain1 + ~ain2) . (2.51)

Hence we have the corresponding matrix form for the beam splitter,
~aout1

~aout2

~a†out1

~a†out2

 =


t r 0 0
−r t 0 0
0 0 t r
0 0 −r t




~ain1

~ain2

~a†in1

~a†in2

 . (2.52)

Example2: Squeezing operator
Beam splitter relation as in Equ. 2.50 is a linear unitary transform. Here

we give another example of quadratic Hamiltonian, which is a χ(2) non-linear
parametric down conversion process,

âout1 = â1coshγ + â†2sinhγ

âout2 = â†1sinhγ + â2coshγ, (2.53)

where γ is a parameter proportional to χ(2). Thus the corresponding matrix
form is,

~aout1

~aout2

~a†out1

~a†out2

 =


coshγ 0 0 sinhγ

0 coshγ sinhγ 0
0 sinhγ coshγ 0

sinhγ 0 0 coshγ




~a1

~a2

~a†1
~a†2

 . (2.54)

Definition: Symplectic transform
The relations, as in Equ. 2.50 and Equ. 2.53, are the coupling between

the annihilation and creation operators. They are both linear transforma-
tions also conserve commutations. All of these linear transforms are in the
group symplectic [25], also called symplectic transforms in this thesis. Free
propagation, linear optics, and quadratic Hamiltonian are symplectic trans-
forms [74], and are linear processes in quantum mechanics.
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Considering a multimode case, ~ain = (â1, â2, ...âN)T and ~aout = (â′
1
, â′

2
, ...â′

N
)T.

Here we can write input-output relation with a symplectic transform R,(
~aout

~a†out

)
= R

(
~ain

~a†in

)
, and, R =

(
C S
S∗ C∗

)
, (2.55)

where C and S are complex matrices. And,

R−1 = σR†σ, and, σ =

(
I 0
0 −I

)
, (2.56)

where the I is a identity matrix with a 2N dimension. The symplectic trans-
form R is the most general linear transform that preserves commutation

relations,
[
â′
i
, â′

i†]
=
[
âi, âi†

]
= 1.

2.5 Williamson decomposition and Bloch Mes-

siah reduction

In this section we will introduce Williamson decomposition [74] and Bloch-
Messiah Decomposition [10] to provide a general description of multimode
gaussian states. With this method, we can show that any gaussian states
can be decomposed as a multimode squeezing operator acting onto a set of
noisy modes with corresponding basis changes.

First let us recall the covariance matrix defined as Equ. 2.41, we give a
simple form as below,

~V =

(
VAmplitude VAmp-Phase

VPhase-Amp VPhase

)
=

(
VXX VXP
VPX VPP

)
. (2.57)

We assume this is the covariance matrix of a set of quadrature operators
(x̂1, x̂2, ..., x̂n, p̂1, p̂2, ..., p̂n)T . For example, the covariance matrix in this the-
sis, generated via SPOPO [20], has no off-diagonal part, with only amplitude
and phase correlations, written as below,

VSPOPO =

(
VXX 0

0 VPP

)
. (2.58)

Definition: Williamson decomposition, in general, for a covariance ma-
trix ~V , is the decomposition,

ST ~V S = D2, (2.59)
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where S is a basis change in the quadrature representation, defined in Equ.
2.33, and D is a diagonal matrix with the form diag(D1, D2, . . . , D1, D2, . . . ),
whose elements are real and bigger than 1.

And the symplectic matrix S satisfies:

STβS = β, with β =

(
0 I
I 0

)
, (2.60)

where I is the identity matrix.
Definition: Multimode squeezing, we extend the squeezing operator K

in the Equ. 2.17 to the multimode case. In the simplest case of a uniform

squeezing distribution K =

(
e−rI 0

0 erI

)
with a real and positive number

r and the identity matrix I.
Generally, we have K acting on a set of orthogonal modes, with quadra-

ture operators
(
x̂(0)1 , x̂(0)2 , . . . , p̂(0)1 , p̂(0)2 , . . .

)T
, and the corresponding mul-

timode squeezing is,

(x̂r1 , x̂r2 , . . . , p̂r1 , p̂r2 , . . .)
T = K

(
x̂(0)1 , x̂(0)2 , . . . , p̂(0)1 , p̂(0)2 , . . .

)T
. (2.61)

Each mode has the variance δx2
ri

= 〈(xri)〉2 − 〈xri〉2, so we have,

δx2
r1

δx2
r2

...
δp2

r1

δp2
r2
...


= K2·



δx2
(0)1

δx2
(0)2

...
δp2

(0)1

δp2
(0)2

...


=



e−2r1 0 . . . 0 0 . . .
0 e−2r2 . . . 0 0 . . .
...

...
. . .

...
...

. . .

0 0 . . . e2r1 0 . . .
0 0 . . . 0 e2r2 . . .
...

...
. . .

...
...

. . .





δx2
(0)1

δx2
(0)2

...
δp2

(0)1

δp2
(0)2

...


,

(2.62)

where

(
δx2

(0)1
, δx2

(0)2
, . . . , δp2

(0)1
, δp2

(0)2
,
...

)T

is the variance of the amplitude

and phase quadratures of coherent states.
For coherent states, as the normalized variance, δx2

(0)i
= δp2

(0)i
= 1, we

simply have,

δx2
r1

δx2
r2

...
δp2

r1

δp2
r2
...


=



e−2r1 0 . . . 0 0 . . .
0 e−2r2 . . . 0 0 . . .
...

...
. . .

...
...

. . .

0 0 . . . e2r1 0 . . .
0 0 . . . 0 e2r2 . . .
...

...
. . .

...
...

. . .


= K2. (2.63)
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Definition: Bloch-Messiah Decomposition, for any symplectic transfor-
mation, S̃, we can always decompose it into a multimode squeezer K and
two basis changes, thus we have [10],

S̃ = O1KOT2 , (2.64)

where O1,2 are any two basis change defined in Equ. 2.33.
Any basis change of vacuum is always vacuum (coherent states). There-

fore, if a quantum network is started from vacuum, we can cancel O2,

O1KOT2 |0〉 = O1K|0〉, (2.65)

where 0 represent multimode vacuum.
Decomposition of covariance matrix
Above, we see that any gaussian state, covariance matrix, can be diago-

nalized via Williamson decomposition in Equ. 2.59. If we define S̃ = S−1T

and apply Bloch Messiah decomposition, then the measured covariance ma-
trix is expressed as,

~V = O1KOT2
(
D2
)
O2KOT1 (2.66)

with the diagonal matrix K and the orthogonal transform O1,2. This allows
to interpret (D2) as the classical noisy input modes (noise modes) of the
multimode squeezing.

Physically, O1 is the squeezing modes andO2 is noise modes, O1,2 are basis
change in the quadrature representation; the diagonal K is the multimode
squeezing operator.

2.5.1 Recipe of Williamson decomposition

In the Williamson decomposition of a given covariance matrix V, a 2n-
dimension and real symmetric matrix, there exits a real matrix S ∈ Sp(2n,R)
such that [76],

STV S = D2 > 0, (2.67)

with,

D2 =

(
Ω−1 0

0 Ω−1

)
, (2.68)

where Ω−1 is a diagonal real matrix,

Ω−1 =

 d1 · · · 0
...

. . .
...

0 0 dn

 . (2.69)
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The above equation, associated to Heisenberg uncertainties as Equ. 2.42,
physically means the classical modes have symmetric Heisenberg fluctuations
in the x̂, p̂ quadratures [74].

We consider here the explicit recipe to derive the diagonal matrix D and
the corresponding Williamson decomposition Equ. 2.67.

Consider the matrix M = V −1/2βV −1/2. It is a real, nonsingular, anti-
symmetric matrix and hence its eigenvalues iωi and eigenvectors ~ηi have the
following properties:

−iM~ηα = ωα~ηα, α = 1, ..., 2n,

ωk > 0, k = 1, ..., n; ωk+n = −ωk,
~ηk+n = ~η∗k. (2.70)

This already allows to find Ω = diag(ω1, ω2, ..., ωn) 6 and hence the de-
composition of Equ. 2.67. Arrange the vectors ~η as the columns of a matrix
U ,

U = (~η1, ~η2, · · · , ~η2n) . (2.71)

From Equ. 2.70 it follows that

U †MU =

(
iΩ 0
0 iΩ

)
≡ Λ (2.72)

This symplectic matrix realizing the Williamson decomposition Euq. 2.67 is
determined as,

S = V −
1
2U∆D with ∆ =

1√
2

(
I −iI
I iI

)
(2.73)

Using ST = S†, the Williamson decomposition Equ. 2.67 can be obtained.
After getting the transform S from the Williamson decomposition, we

can achieve the Bloch-Messiah decomposition matrix K and O1, via directly
diagonalizing S̃S̃T , and the corresponding eigenvalues and eigenvectors are
referring to the diagonal elements of K and O1, respectively.

Above all, we presented a standard way of multimode analysis, the Williamson
decomposition, which transforms a given covariance matrix to the uncorre-
lated squeezing basis via the transform S, including Bloch-Messiah decom-
position. The squeezed modes form the Bloch-Messiah decomposition, and
together with the noise modes construct the Williamson decomposition.

6 diag(ω1, ω2, ..., ωn) referers to a diagonal matrix with the diagonal elements
ω1, ω2, ..., ωn.
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When the noise modes have the noises close to the shot noise limit, thus
without correlation [73], we can also directly diagonalize covariance matrix to
get squeezing values and squeezed modes [65] which correspond to O1. As the
purity, as defined in Equ. 2.36 is not 1, we get slightly different eigenmodes
from the amplitude covariance matrix VXX compared to the phase covariance
matrix VPP [13]. In a result, in the basis composed of the eigenmodes of the
phase covariance matrix VPP , a bit of correlation still exits in amplitude
quadrature [70]. Also different from the Williamson decomposition, here the
squeezing values are similar to the one that directly measured.

Up to now, we have two ways of multimode analysis: Williamson decom-
position and directly diagonalizing covariance matrix, both of which give the
squeezing values and squeezed modes. Next in the thesis, we will introduce a
multimode quantum resource, synchronously pumped optical parametric os-
cillator (SPOPO), and analyze it using the methods.
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Chapter 3

SPOPO model and simulation
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In the previous chapter, we have presented the quantum description of
light. We have seen that for coherent states of light [35], the quantum fluc-
tuations are normalized to 1 in both amplitude and phase quadratures. We
therefore have the shot noise limit in the intensity and phase measurements.
However, with squeezed states of light, the quantum fluctuation can be less
than 1 for one quadrature, beyond the shot noise. This is because, differently
from a random process happening in a classical (coherent) source, during the
generation of squeezed states, always even photons are generated via para-
metric down conversion processed [97], and consequently squeezing occurs.
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Furthermore, EPR correlation [68] [22] in the continuous variable regime
was generated based on this nonlinear optical process [61], and a deterministic
quantum teleportation was described [12] and implemented [29] [88].

Nonlinear optics, such as parametric down conversion [7], four wave mix-
ing [66], optical parametric oscillator [81] and etc., is an important tool in
generating quantum resources of light.

We focus in using χ(2) processes and ultrafast pulses to generate a broad-
band quantum resource [70] in this PhD project.

In this chapter, first, we will give the theoretical model of synchronously
pumped an optical parametric oscillator (SPOPO) [63] [41]; then the simula-
tion result, based on the model of SPOPO [20], will be presented.

3.1 Basic tools of nonlinear optics

3.1.1 Propagation equation of nonlinear optics

We define the electric field E(+)(~r, ω) as a function of the envelop u(~r, ω),

E(+)(~r, ω) = u(~r, ω)ei
~k(ω)·~r, (3.1)

and assume the propagation direction is along z, we have

ei
~k(ω)·~r → eik(ω)z, (3.2)

thus the propagation equation in a nonlinear medium is [69],

∂u

∂z
(z, ω) =

iω

2ε0nc
P

(+)
NL (z, ω)e−ik(ω)z, (3.3)

where the polarization is composed of linear and nonlinear parts,

P
(+)
NL (z, ω) = P (+)(z, ω)− P (+)

L (z, ω). (3.4)

For the linear part, we have1,

P
(+)
L (z, ω) = ε0

∑
j

χ(1)(ω)Ej

k2(ω) = n2(ω)
ω2

c2

n2(ω) = 1 + χ(1)(ω) (3.5)

1Here we assume χ(1) is symmetric and diagonalizable, so Pi depends on only Ei.
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and with the term E(+)(z, ω) we have the propagation equation,

∂E(+)

∂z
(z, ω) = ik(ω)E(+)(z, ω) +

iω

2ε0nc
P

(+)
NL (z, ω). (3.6)

Notice that, in the propagation equation, the first term and the second rep-
resent linear and nonlinear propagations, respectively.

We simply presented the nonlinear propagation equation, which will be
used to describe nonlinear effects, such as, frequency doubling, parametric
down conversion, etc. in the thesis. The propagation equation of free ra-
diation with nonlinear properties depend on the polarization of the medium
P (+)(z, ω) = P

(+)
L (z, ω)+P

(+)
NL (z, ω), including the electric susceptibility

{
χ(n)

}
.

In particular, with our interest, the χ(2) effect originates from the correspond-
ing polarization P

(+2)
i = ε0

∑
jk χ

(2)
ijkEjEk, so the efficiency of χ(2) processes

is proportional to nonlinear coefficient χ(2) of the medium and the associated
fields.

For ultrafast pulses with high peak intensities, it is, usually, a good can-
didate for nonlinear optics. And next we will present the interaction between
ultrafast pulses and a χ(2) nonlinear crystal to generate multimode quantum
resources of light.

3.2 Nonlinear effect with ultrafast pulses

In the following, we will study the χ(2) nonlinear processes with ultrafast
pulses. The light is therefore non-monochromatic, and we will develop a
method, adapting the broadband property of ultrafast pulses, to describe
the second order nonlinear effects.

3.2.1 Second order polarization

Generally, the laser-induced second order polarization in a nonlinear medium
is,

P
(2)
i (t) = ε0

∫
χ

(2)
ijk (ω1, ω2)Ej (ω1)Ek (ω2) e−i(ω1+ω2)t dω1√

2π

dω2√
2π
, (3.7)

where we assume j and k are the only two corresponding components of
electric fields. On the frequency domain, we have,

P
(2)
i (ω) ≡ ε0

∫
χ

(2)
ijk (ω1, ω2)Ej (ω1)Ek (ω2) e−i(ω1+ω2−ω)t dω1√

2π

dω2√
2π

dt

= ε0

∫
χ

(2)
ijk (ω1, ω2)Ej (ω1)Ek (ω2) 2πδ (ω1 + ω2 − ω)

dω1√
2π

dω2√
2π

(3.8)
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Because the input fields are close to the transparent zone of the medium
and the frequency bandwidth is not lagre, the frequency dependence of χ(2)

coefficient is negligible. We therefore have χ
(2)
ijk(ω1, ω2) ≈ χ(2), and we can

take the factor χ(2) out of the integral in the equations 3.7 and 3.8.
We take a hypotheses, response of medium is instant. In consequence

the polarization only depends on the analytic electric fields. With a given
position in the time t, for j = k, we have,

P (2)(t) = ε0χ
(2)E(t)2 (3.9)

To apply the propagation equation of Equ. 3.3, we write the polarization as

P
(±,2)
i (ω) = 2πε0χ

(2)

∫
E

(±)
j (ω1)E

(±)
k (ω2) δ (±ω1 ± ω2 − ω)

dω1√
2π

dω2√
2π
(3.10)

The choice of signs ± corresponds to the ± frequencies in the analytic fields,
in practice, indicating different phenomena of nonlinear effects.

3.2.2 The wave number of ultrafast pulses

The wave number k(ω) is important in the propagation equation. Its fre-
quency dependence in not negligible in the case of ultrafast pulses. Our
source has a wide spectrum of ' 10nm.

Here to consider the dispersion property in the propagation, we write the
wave number k(ω),

k(ω) = k(ω0) +
1

vg(ω0)
(ω − ω0) +

1

2
GVD(ω0)(ω − ω0)2 + . . . , (3.11)

where,

vg =

(
∂k (ω)

∂ω

)−1

=
c

n(ω) + ω ∂n(ω)
∂ω

(3.12)

GVD(ω) =
∂2k(ω)

∂ω2
=

∂

∂ω

(
1

vg

)
(3.13)

represent the group velocity and the dispersion of group velocity, respectively.

3.3 The SPOPO model

The interest of this thesis is to generate a multimode squeezing resource with
a χ(2) nonlinear effect. To aim that, we will synchronously pump an optical
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parametric oscillator, SPOPO with an optical frequency combs. The χ(2)

processes, parametric down converting (PDC) a photon of the pump into
two photons, occur in an optical cavity, and generate squeezed states. Yet,
with optical frequency combs, the case is more complex, as all the frequencies
of the frequency comb are possible to participate to the PDC process. Here
we will give the theoretical description of the SPOPO.

Firstly we will present frequency doubling of ultrafast pulses with χ(2)

nonlinear crystals. A train of femtosecond pulses, centered at ∼ 800 nm,
directly pass a χ(2) crystal, and frequency doubled ∼ 400 nm pulses are
generated, so call pump of the SPOPO. Then pumped with the 400 nm
pulses, parametric down conversation occur in the SPOPO cavity, which
generates a multimode quantum beam.

3.3.1 Preparation of pump, frequency doubling

In monochromatic case, the process of frequency doubling is that via passing
a nonlinear medium, an input light wave, signal2 , with a frequency ω0 can
be transformed into a output wave with a frequency doubled 2ω0. However,
when the monochromatic input is replaced by a frequency comb, as many
frequencies exist in the input, therefore many individual sum frequency and
frequency doubling processes happen in the same time, as seen in Fig. 3.1.

Let us consider an input of frequency combs, whose frequencies ωs
n =

ω0 + nωr, with ω0 = ωCE + Nωr. If similar to the monochromatic case, the
frequency doubling will generate a frequency comb with a doubled repartition
rate, 2ωs

n = 2ω0 + n(2ωr). However, this is not true for frequency doubling
with frequency combs.

In the case with optical frequency combs, the generated comb, pump, via
frequency doubling, has the same repetition rate as the input one, signal. As
in the process of frequency doubling with frequency combs, it contains all the
possibilities of sum frequencies, with two same frequencies or two different
frequencies in the signal, as seen in Fig. 3.1. After frequency doubling, we
have the frequencies of the pump,

ωp
m+n = ωs

m + ωs
n = 2ω0 + (m+ n)ωr. (3.14)

Therefore, the repetition rate of the pump is still ωr.

Notice that, after the frequency doubling process with optical frequency
combs, the central frequency of input comb has a doubled frequency, so we

2To be consistent with the SPOPO process, we call the pulses with the central frequency
ω0 signal, and pump refers to the 2ω0 pulses.
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Signal frequency comb 

Pump frequency comb 

�

�

2!0

Figure 3.1: Multi-frequecy doubling with optical frequency combs. A new
photon with a frequency ωp

m+n is generated by two photons with frequencies
ωs
m and ωs

n in the input source. All the processes with energy conservation,
ωp
m+n = ωs

m + ωs
n can happen in the same instant. After the frequency

doubling with an optical frequency comb, a new frequency comb with a
doubled center frequency is generated.

still call it frequency doubling in the case. Then, differently, the carrier-
envelope-offset is doubled: 2ω0 = 2ωCE + 2Nωr.

In the following we will present and solve the propagation equation for
the frequency doubling. Based on the second order polarization expression
of Equ. 3.10, we choose the positive signs and corresponding electric field E
for the process of frequency doubling. Thus, we have,

P (+,2)
p (z, ω) = ε0χ

(2)

∫
E(+)

s (z, ω′)E(+)
s (z, ω − ω′)dω′

2π
, (3.15)

where E
(+)
s = us(z, ω)eiks(ω)z.

The corresponding propagation equation, with the envelope up of the
frequency comb, is

∂up

∂z
(z, ω) =

iωχ(2)

2nc

∫
us(z, ω

′)us(z, ω − ω′)ei∆k(ω.ω′)z dω′

2π
, (3.16)

where ∆k(ω, ω′) = ks(ω
′) + ks(ω − ω′)− kp(ω), which is the phase matching

of the frequency doubling. In the propagation equation Equ. 3.16, we can
integrate over the length of the medium along the propagation direction z.
For a χ(2) crystal with a length lc, we integrate from the beginning of crystal
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zA = − lc
2

to the end zB = lc
2
. Here we assume the efficiency of frequency

doubling is small enough, so the intensity of input light has almost no change
after traversing the medium, us(z, ω) ' us(ω). We have the analytic solution
of the Equ. 3.16,

up(zB, ω) =
iωχ(2)lc

2nc

∫
us(ω

′)us(ω − ω′)Φ(ω, ω′)
dω′

2π
, (3.17)

where Φ(ω, ω′) is a function associated with the phase matching defined by,

Φ(ω, ω′) = sinc

(
∆k(ω, ω′)lc

2

)
. (3.18)

Because of the property of the sinc function, generally, for the phase
matching, the function Φ(ω, ω′) has a wider spectral response with a shorter
nonlinear crystals. In our case with optical frequency combs, to get a wide
bandwidth of spectral in the output of frequency doubling, therefore, we need
choose short crystals.

In the ideal case of the phase matching, when the function Φ(ω, ω′) equals
1, the envelope of the frequency doubled frequency comb up is the an auto-
convolution of the input field envelopes.

An optical frequency comb with a central frequency ω0 and a bandwidth
∆ω can also generate a gaussian spectrum but centered at 2ω0 and with a
bandwidth

√
2∆ω. Thus the generated pulses have a shorter duration by a

factor of
√

2.
As to the corresponding spectra of the pump (frequency doubled) ∆λp

and the signal (input of frequency doubling) ∆λs, we have ∆λp ' 0.3∆λs

when ω0 >> ∆ω holds. Notice that, in the spectral domain, the signal,
generally, has a wider spectrum compared to the pump.

In the real case, the phase matching is not always perfect while the func-
tion Φ(ω, ω′) is close to a gaussian function, other than the constant 1. For
the phase matching ∆k(ω, ω′) of ultrafast nonlinear optics, we usually need
consider the description effect induced by the propagation in the nonlinear
medium.

To describe the phase matching ∆k(ω, ω′), in Equ. 3.11, we need consider
the dispersion property of medium (ω0 for ks and 2ω0 for kp),

∆k(ω, ω′) = ks(ω
′) + ks(ω − ω′)− kp(ω)

= ∆k(2ω0, ω0) +

(
1

vg,s

− 1

vg,p

)
(ω − 2ω0) +

1

2
(GVDs −GVDp)(ω − 2ω0)2

−GVDs(ω
′ − ω0)(ω − ω′ − ω0), (3.19)
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where the ”s” and ”p” correspond to the frequency combs with the central
frequencies ω0 and 2ω0 respectively.

In the phase matching function ∆k(ω, ω′), the term ∆k(2ω0, ω0) is con-
stant 0 when the refractive index n(ω0) = n(2ω0). This can give a per-
fect phase matching in the case monochromatic waves and satisfy the bire-
fringence of medium. In practice of birefringence medium, we can realize
∆k(2ω0, ω0) = 0 by choosing the cutting angle or controlling the tempera-
ture of nonlinear crystals.

When the case is large bandwidth spectra, the phase matching ∆k(ω, ω′)
will depend not only on the first term ∆k(2ω0, ω0) but also the group velocity
and dispersion of the light, which are the other terms in the Equ. 3.19. Next
we will consider the dispersive property of BiBO crystals.

Our source is an optical frequency comb centered at ' 800nm with
76MHz repetition rate. The frequency doubling is the type I e + e → o,
where the polarization of signal Es is aligned to the extraordinary axis and
the frequency doubled pump Ep corresponds to the ordinary axis.

The dispersion effect in the frequency doubling with BiBO crystals [33].
Here we give the group velocity and dispersion values of BiBO crystals [62]
[69], 3

Vg,s/c = 0.5319, GVDs = 164fs2/mm (3.20)

Vg,p/c = 0.5010, GVDp = 472fs2/mm (3.21)

The calculation shows that the corresponding terms of Equ. 3.19 has | 1
vg,s
−

1
vg,p
|∆ω ≥ |GVDs − GVDp|(∆ω)2. Therefore, compared to the group veloc-

ity, the GVD contribute very little in the phase matching. With ∼ 10nm
bandwidth spectra, the GVD contribution in the phase matching is negligi-
ble. Only when the spectrum is very large we need count the effect of GVD.
Thus we have simply,

∆k(ω, ω′) ' ∆k(ω) =

(
1

vg,s

− 1

vg,p

)
(ω − 2ω0) (3.22)

Then we can directly factorize ∆k(ω, ω′) which is only a function of ω in this
case, so we have an auto-convolution of signal envelope,

up =
iωχ(2)lc

2nc
sinc

(
∆k(ω)lc

2

)∫
us(ω

′)us(ω − ω′)
dω′

2π
, (3.23)

and the corresponding intensity spectrum is,

Ip(zB, ω) ∝ l2csinc2

(
∆k(ω)lc

2

)
(us ? us)

2(ω). (3.24)

3Usually we can use the free software SNLO to get nonlinear and dispersion parameters
of many nonlinear crystals.
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Figure 3.2: The spectral profiles of pump generated via frequency doubling.
The red, orange, green, black lines correspond to 0.2 mm, 0.5 mm, 1 mm
and 2 mm long crystals, respectively, and the dashed line is a gaussian fit of
the profit on red color (0.2 mm BiBO crystal), whose bandwidth is ∼ 3.1nm.
The horizontal dashed purple line on the half hight of the profiles (FWHM).

We can see that, generally, we can get stronger frequency doubling with a
longer crystal, but on the other hand, long crystals are not good for the phase
matching of the wings of the spectrum. Also, in Equ. 3.23, if us is real, up
is pure imaginary.

In the experiment, we use 0.2 mm long BiBO crystal for frequency dou-
bling, which generates pulses centered at 400nm with ∼ 3.1nm bandwidth,
which is used to pump the parametric down conversion process. As seen in
Fig. 3.2, the red, orange, green, black lines correspond to 0.2 mm, 0.5 mm, 1
mm and 2 mm long crystals respectively, and the dashed is a gaussian fit of
the red profile, whose bandwidth is ∼ 3.1 nm; the horizontal dashed purple
line is on the half hight of the profiles.

Above all, we presented the theory and calculation of the frequency dou-
bling with optical frequency combs. This process generates the pump for the
SPOPO, which generates a multimode squeezing. We can see that, in Fig.
3.2, shorter crystals have wider spectral profiles.

Importantly, this model can predict the field of pump after the frequency
doubling, and we can calculate the length of the BiBO crystal for a demand
pump. We checked that the calculations match well with the experiments. To
be more general, this model can be extended to other nonlinear crystals, such
as KTP, PPKPT, etc., using the corresponding phase matching functions.
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3.3.2 Parametric down conversion with optical frequency
combs

The parametric down conversion (PDC), which is a χ(2) nonlinear process,
is usually used to generate entangled photons. In the process of PDC, a
pump photon generates two new photons (signal and idler) simultaneously.
When the two new photons have the same frequency, it is degenerate PDC in
frequency. And when the two new photons are the same in spatial, frequency
and polarization modes we call it degenerate.

In this chapter, we study the PDC process with optical frequency combs.
As the frequency comb has many frequencies, a photon with a specific fre-
quency of the pump generates a new pair of photons with any frequencies if
satisfying phase matching and energy conservation conditions.

Thus, in the same time there are many possibilities of PDC for optical
frequency combs, as seen in Fig. 3.3. Photons of each frequency in the pump
can generate two photons with same or different frequencies. In a result, the
complex case of PDC processes can generate a new frequency comb of signal.
As we can the frequencies of the signal, here we call it non-degenerate. This
is similar to an inverse process of frequency doubling with optical frequency
combs, where many frequencies are associated.

Traditionally, in continuous variable regime, people generate squeezing
using the PDC in an optical cavity, which is also called optical parametric
oscillator (OPO) [81]. Here we also employ OPO to generate squeezing.
Differently, instead of OPO with continuous laser, we use optical frequency
combs.

As seen in Fig .3.3, we have complex PDC processes occurring in an op-
tical cavity resonanting with all the frequencies of the signal. which is the
interest of this thesis, and called synchronously pumping an optical para-
metric oscillator, SPOPO. Following the analysis of the PDC with optical
frequency combs, the SPOPO is also a degenerate case of OPO.

Besides, similar to OPOs in the monochromatic case, according to the
level of the pump power, we can distinguish the SPOPO with two regimes:
below threshold and beyond threshold. We mainly perform the SPOPO below
threshold to generate squeezing.

To describle the PDC process with optical frequency combs, we have he
second order polarization,

P (+2)
s (z, ω) = εχ(2)

∫
E(+)

p (z, ω + ω′)E(−)
s (z, ω′)

dω′√
2π
, (3.25)

where E
(+)
p and E

(−)
s correspond to the analytic field of the pump and signal,

respectively. In the PDC process, the generated signal has the frequency
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Figure 3.3: Parametric down conversion within an optical frequency comb.
All the frequencies of the comb are involved in this process at the same
time. A new frequency comb centered at ω0 is generated, when the pump is
centered at 2ω0 in this process.

ω which is the difference between the frequency of pump, ω + ω′, and the
frequency of signal, ω′.

From Equ. 3.3, we have the propagation equation of the PDC process,

∂us

∂z
(z, ω) =

iωχ(2)

2nc

∫
up(z, ω + ω′)u∗s (z, ω′)ei∆k(ω,ω′)z dω′√

2π
(3.26)

with
∆k(ω, ω′) = kp(ω + ω′)− ks(ω

′)− ks(ω). (3.27)

We can see that, compared to frequency doubling, the propagation equa-
tion of PDC contains the envelope of the signal itself. To solve the equation,
here we assume that the envelope of signal is real, so we have u∗(z, ω) =
u(z, ω). Physically, this needs that the spectral phase of the envelope us is
flat, 0 or π. This hypothesis make the case simpler in the calculation and
more close to experimental conditions. More details in a general case are
given in [41], which also considers the parameter the carrier envelope offset
in optical frequency combs.

If the envelope of signal us is real, the propagation equation Equ. 3.26
can be written in the form as below,

∂us

∂z
(z, ω) = K(z)us(z, ω), (3.28)

where K(z) is an integral form of the pump envelope propagating in the
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nonlinear medium,

K(z)u(z, ω) =

∫
K(z, ω, ω′)u(z, ω′)

dω′√
2π

(3.29)

and the core of the integral is,

K(z, ω, ω′) =
iωχ(2)

2nc
up(z, ω + ω′)ei∆k(ω,ω′)z. (3.30)

The solution of Equ. 3.28 is exactly,

us(zB, ω) = eS0us(zA, ω), (3.31)

where zA = −lc/2 and zB = lc/2 are the two sides of the χ(2) crystal and S0

is the integral [41],

S0 =

∫ zB

zA

K(z)dz. (3.32)

Here we also assume the efficiency of the process is low enough so that
the pump doesn’t change during the propagation between zA and zB in the
medium. We have the core S0(ω, ω′),

S0(ω, ω′) = up(ω + ω′)

∫ zB

zA

dz

∫
iωχ(2)

2nc
ei∆k(ω,ω′)z dω′√

2π
(3.33)

Thus we have S0(ω, ω′) after the integral on z,

S0(ω, ω′) =
iωχ(2)

2nc
up(ω + ω′)Φ(ω, ω′), (3.34)

where phase matching associated function Φ(ω, ω′) is the same defined in
Equ. 3.18.

Here we define the joint spectral distribution function,

L(ω, ω′) = up(ω + ω′)Φ(ω, ω′). (3.35)

Using the same narrow bandwidth approximation4, ω/n ' ω0/n, we have
S0(ω, ω′),

S0(ω, ω′) =
iω0χ

(2)

2nc
L(ω, ω′). (3.36)

Above all, L is a pure imaginary square matrix, and S0 is real, when up is
imaginary. In frequency doubling, as seen in Equ. 3.23, if we use a real signal

4the bandwidth is far smaller than the central frequency ∆ω << ω0.
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to generate the pump, which therefore is pure imaginary. Thus, the assump-
tion u∗(z, ω) = u(z, ω) is compatible with both the frequency doubling and
the PDC process. This also indicates the absence of the 〈x̂p̂〉 correlation in
the process, which is proved by the experiment [70].

According to Equ. 3.31, therefore, S0 = 0 and π/2 corresponds to am-
plification and deamplification in an OPO [81], depending on the relative
phase between the signal and the pump, which we can control during the
experiment to get the amplification and deamplification for the SPOPO.

To calculate the solution of the propagation equation in the PDC process,
we have the phase matching ∆k(ω, ω′):

∆k(ω, ω′) = ∆k(ω0, ω0) +

(
1

vg,p

− 1

vg,s

)
(ω + ω′ − 2ω0) +

1

2
GVDp(ω + ω′ − 2ω0)2

−1

2
GVDs

[
(ω − ω0)2 + (ω′ − ω0)2

]
, (3.37)

where the same as the case of frequency doubling, the term k(ω0, ω0) = 0.
But different from frequency doubling, the second order of phase matching,
also called dispersion, is not negligible in the PDC process5.

3.3.3 Schmidt modes

Next we will calculate the joint spectral distribution function L(ω, ω′) with
BiBO crystals, and analyze the eigenmodes of the function L(ω, ω′).

Using the solution S0 of the propagate equation, we have the correspond-
ing evolution in the envelope u, u(zB) = eS0u(zA). Because the S0(ω, ω′)
is proportional to the distribution function of joint spectra L(ω, ω′), we can
get the eigenmodes via diagonalizing L(ω, ω′), which depends on the phase
matching function ∆k(ω, ω′) and the property of pump spectrum. In the
PDC process, we can derive the spectra of signal envelope us in the corre-
sponding eigenmodes, or called Schmidt modes, v

(j)
s , of the the distribution

function of joint spectra L(ω, ω′). In the decomposition of Schmidt modes,

L(ω, ω′) =
∑
j

Λjv
(j)
s (ω)v(j)

s (ω′), (3.38)

where the {Λj} are the Schmidt coefficients and the {v(j)
s } are the Schmidt

modes, or called Supermodes [65].

5With larger spectra, the GVD need be considered in the phase matching function
∆k(ω, ω′) for PDC.
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If we consider the discrete frequencies ωn of a frequency comb, the func-
tion L(ω, ω′) is a matrix of frequency elements,

Ln,n′ =
∑
j

Λjv
(j)
s,nv

(j)
s.n′ , (3.39)

with Ln,n′ = L(ωn, ωn′) and v
(j)
s,n = v

(j)
s (ωn). We have,

L =
∑
j

Λj~v
(j)
s ~v(j)T

s , (3.40)

where we define the real modes6, which is classical,

~v(j)
s = (. . . , v

(j)
s,n-1, v

(j)
s,n , v

(j)
s,n+1, . . . )

T (3.41)

The Schmidt modes are the eigenmodes of L,

L~v(j)
s =

(∑
j

Λj~v
(j)
s ~v(j)T

s

)
~v(j)

s = Λj~v
(j)
s . (3.42)

We can diagonalize the matrice L to get the Schmidt modes of the PDC
process. The real eigenmode ~v

(j)
s gives the spectrum of the jth eignemode

and Λ(j) is the corresponding eigenvalue.
If the input envelope is proportional to an eigenmode, us(zA) ∝ ~v(j)

s , after
the beam propagating in the crystal from the initial position zA to the end
zB, we have the input-output relation,

us(zB) = eiglcLus(zA) = eiglcΛjus(zA), (3.43)

where g = ω0χ
(2)/2n0c. We can see that the signal is amplified (or deampli-

fied) when the imaginary part of Λj is positive (or negative). The phase of
Λj is determined by the phase of pump. Afterwards, we only consider the
imaginary part of the eigenvalues.

Generally for χ(2) crystals, if the pump and the phase matching function
have gaussian profiles, the Schmidt modes of the PDC process are a set
of Hermite-Gauss spectral modes, which are the eigenmodes of the matrix
L, and the corresponding pure imaginary eigenvalues. These eigenmodes
are often called supermodes, because they are the superposition of many
monochromatic frequency modes of a frequency comb.

In the PDC process, we choose a train of ∼10 nm bandwidth pulses
centered at ∼800 nm with the repetition rate 76 MHz as signal, and a train

6In our case, the envelope us is real.
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of ∼3.1 nm bandwidth pulses centered at ∼400 nm with the same repetition
rate as pump, thus we obtain the joint spectral distribution function as seen
in Fig. 3.4.

In practice, because the reflectivity of mirrors has a range of bandwidth,
which can not be infinite, we calculate with 50nm, 100nm, 400nm bandwidths
of mirror reflectivity. In the figures. 3.5 and 3.6, we present the eigenvalues
and the leading three eigenmodes with 50nm bandwidths of mirror reflectiv-
ity. We see that more than 20 supermodes7 have a series of spectral shapes
as Hermite-Gaussian functions. Besides odd orders (j = 1, 3, 5, ...) and even
orders (j = 2, 4, 6, ...) of supermodes have positive and negative eigenvalues
respectively, which are amplified and deamplified in the OPO respectively.
Similarly, in the figures. 3.7 and 3.8, we also present the eigenvalues and
the leading three eigenmodes with 100nm bandwidths of mirror reflectiv-
ity. In the figures. 3.7 and 3.8, we can see more supermodes, more than 40
modes, in the 100nm bandwidth case; but the leading eigenmodes has the
same property as the 50nm case. In Fig. 3.9, the eigenvalues with the 400nm
bandwidth of mirror reflectivity are presented, and we can see more than 100
supermodes in that case.

From the calculation, we can see that, the parametric down conversion
with optical frequency combs is a good candidate generating multimode
squeezing. With a lager bandwidth of mirror reflectivity, which is associ-
ated with a bigger matrix of the joint spectral distribution as seen in Fig.3.4,
we can obtain more supermodes, and the leading supermodes have similar
eigenvalues and eigenmodes. In the thesis, according to the real mirror reflec-
tivity8, we will use the simulation result with a 100nm bandwidth of mirror
reflectivity. As seen in Fig.3.7, we have more than 40 supermodes, and the
first supermode has a gaussian shape spectrum with a 7.5 nm bandwidth
seen in Fig.3.8, correspondingly with a 7.5/

√
2 nm intensity spectrum. To

analyze the multimode property of the SPOPO resource we will simulate the
squeezing and multimode entanglement based on OPO model and homodyne
detection in the following section.

3.3.4 Squeezing of SPOPO

As seen in Fig.3.10, an optical frequency comb pumps a parametric down con-
version in an optical cavity, which is called SPOPO (synchronously pumped

7We count the supermodes if the eigenvalues are significantly different from 0, in prac-
tice which are squeezed.

8In the experiment we use femtosecond optics, generally with a wide bandwidth of high
reflectivity and zero GVD, from the companies such as Layertech GmbH, Femtolasers,
Laser Components.
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Figure 3.4: Joint spectral distribution function. A train of ∼10 nm band-
width pulses centered at ∼800 nm with the repetition rate 76 MHz (signal),
and a train of ∼3.1 nm bandwidth pulses centered at ∼400 nm with the same
repetition rate (pump) are used in the calculation.
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Figure 3.5: Eigenvalues of the joint spectral matrix with a 50nm bandwidth
of mirror reflectivity .
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Figure 3.6: Eigenmodes of the joint spectral matrix with a 50nm bandwidth
of mirror reflectivity. The dashed line is the gaussian fit of the first supermode
with a 7.5nm bandwidth
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Figure 3.7: Eigenvalues of the joint spectral matrix with a 100nm bandwidth
of mirrors’ reflectivity.
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Figure 3.8: Eigenmodes of the joint spectral matrix with a 100nm bandwidth
of mirror reflectivity. The dashed line is the gaussian fit of the first supermode
with a 7.5nm bandwidth, which is same as in Fig.3.6.
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Figure 3.9: Eigenvalues of the joint spectral matrix with a 400nm bandwidth
of mirror reflectivity .
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Figure 3.10: Configuration of the SPOPO. While a train of blue pulses pumps
an nonlinear crystal in an OPO, the output is a new train of red pulses via
the nonlinear process of parametric down conversion.
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Figure 3.11: Squeezing Vsqz in the linear scale vs Pump power (mW).

optical parametric oscillator) [63]. As we discussed previously, paramet-
ric down conversion with optical frequency combs have huge possibilities to
generate two photons satisfying the phase matching joint spectrum seen in
Fig.3.4, and the cavity of the optical parametric oscillator select the cor-
responding modes. Therefore we obtain a comb via the SPOPO, whose
frequencies are determined by the cavity modes. In practice, the cavity is
the same as the source comb laser, so we obtain a comb with the exactly
same frequency modes as the comb laser, however, in the generated comb all
frequency modes are quantum correlated [70].

In the experiment, we use a train of pulses centered at 400nm with 3.1nm
spectral bandwidth to pump a χ(2) crystal in an optical cavity resonant with
800nm. The same as usual optical parametric oscilators, SPOPO can gen-
erate squeezing below threshold[81] [5]; also the PDC process with optical
frequency combs has a multimode process as seen in the previous chapter[63].
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Figure 3.12: The model of squeezing with a loss T .

The squeezing Vsqz of an ideal OPO below threshold is [63],

Vsqz =

(
1− Pexp

Pthr

1 + Pexp

Pthr

)2

, (3.44)

where Pexp and Pthr are experimental and threshold powers of pump re-
spectively.

For the SPOPO, the threshold of the jth order supermode is [63],

P
(j)
thr =

Λ0

Λj

P
(0)
thr , (3.45)

where P
(0)
thr is the threshold of the first supermode.

Thus, for SPOPO, the squeezing of jth order supermode is,

V (j)
sqz =

1− Pexp

P
(j)
thr

1 + Pexp

P
(j)
thr

2

. (3.46)

In Fig.3.11, we give the squeezing of the first supermode versus the pump
power of SPOPO baed on Fig. 3.46. We see that the squeezing, without
loss, goes to infinity when the pump power is close to the threshold. Higher
orders of supermodes have corresponding squeezing with a ratio factor

Λj
Λ0

.
When the squeezing VSqz with a real loss T (0 < T < 1), as seen in Fig.

3.12, the squeezing after loss Vloss [9], is,

Vloss = VSqz(1− T ) + T. (3.47)

Based on the equations 3.46 and 3.47, and setting T = 10%, Pexp = 50mW
and Pthr = 150 mW 9, we obtain the squeezing values of the supermodes via

9These settings are not exactly the same as the experimental ones, whose aim is to
make the simulation have approximately the same squeezing for the first supermode as
the experimental case.
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Figure 3.13: The variances of the supermodes in the amplitude quadrature
expressed in dB scale, VdB = 10 log10 Vsqz. When it is negative (positive),
the corresponding supermode is squeezed (anti-squeezed) in the amplitude
quadrature.

a theoretical simulation as seen in Fig. 3.13, and the supermodes are similar
as Hermite-Gaussian functions seen in Fig. 3.8. We can see more than 40
supermodes exist in the case, and the leading modes have close squeezing
values.

Usually the loss is the biggest enemy in quantum information and quan-
tum optics, whatever for photon in discrete regime, or here for squeezing in
continuous variable regime. We see that loss reduces the squeezing level and
the purity for the SPOPO.

In practice, to get better squeezing, all the possible loss after the gener-
ation should be mostly avoided, also in the OPO cavity, we should decrease
all the loss except the output coupler and increase the transmission of the
output coupler, which is also called escape efficiency. Besides, the classical
noise of the signal also reduces squeezing and purity of the squeezed states,
thus we often need a filtering cavity to filter the laser noise. In chapter 4,
we will give the details about how to overcome practical loss in the SPOPO
experiment.

Above all, we presented the model of the SPOPO with a practical loss
considered. In this model, we obtain the joint spectral distribution function
L(ω, ω′) of Equ. 3.35; then we get the Schemitz modes and the eigenvalues
from the matrix L; using the quantum OPO model, we get the squeezing
values of all the supermodes with a loss correction. Next we will analyze
the property of the multimode correlation in a basis composed of frequency
bands.
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Figure 3.14: The spectrum is divided into 8 spectral bands, which construct
a basis for characterizing multimode squeezing of the supermodes from the
SPOPO.

3.4 Simulating multimode correlation of the

SPOPO

3.4.1 Simulating covariance matrix

As we cannot access into individual frequencies of the output of the SPOPO,
in order to study multimode correlation, we divide the reference spectrum
into 8 spectral bands to construct a basis, as seen in Fig. 3.14. We will
introduce a mode-dependent projective measurement in chapter 4, called
balance homodyne detection, where the reference corresponds to the local
oscillator.

As seen in Equ. 2.41, in order to construct the covariance matrix, we need
get all the covariance terms (〈δq̂iδq̂j〉 + 〈δq̂jδq̂i〉)/2. For the SPOPO, as the
joint spectral distribution function is pure imaginary, the cross correlation of
〈x̂ip̂j〉 is absent, thus the covariance matrix is cast with only diagonal blocks,
and this is confirmed with our experiment [70].

In the 8-band basis, as seen in Fig. 3.14, we define that Si(ω), i = 1, 2, ...
is the corresponding spectum of the frequency band i, and ~wi, i = 1, 2, ... is
the normalized mode of the frequency band i. In the simulation, we have,

Pi =

∫
|Si|2dω and |~wi · ~wj| = δij, (3.48)

where δij = 1 if i = j, δij = 0 if i 6= j. We calculate the covariance matrix
using the the squeezing of supermodes in SPOPO as seen in Fig. 3.13.

To construct the covariance matrix experimentally, we first get the quan-
tum noises with the shot noise normalized to 1 for each individual band
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and combinations of two bands. To aim so, in theory, we have normalized
the squeezing for all the supermodes already; in practice, it is the measured
squeezing variance divided by the corresponding shot noise, which is the noise
of the coherent source, e.g. the laser. In the following we simulate the covari-
ance with the eight-spectral-band basis in Fig. 3.14, and give the way how to
normalize the combined-spectral-band modes and correlation elements using
corresponding optical powers.

Projecting the supermodes of the SPOPO onto the frequency band basis,
{~wi}, as all the modes we consider here for the SPOPO are real, we obtain
the projection quadrature,

x̂i =
∑
j

~wT
i · ~v(j)

s x̂(j)
s (3.49)

and also because the supermodes are not correlated, the corresponding vari-
ance is,

〈x̂2
i 〉 =

∑
j

|~wT
i · ~v(j)

s |2∆2x̂(j)
s (3.50)

We write 〈x̂2
i 〉 and 〈(x̂i + x̂j)

2〉 for the quantum noises (variances) 10of
the modes ~wi of individual bands Si, and the modes ~wi+j of combinations of
two spectral bands Si+j, respectively. Considering the relation between two
individual modes and a combination mode, we have,

~wi+j =

√
Pi ~wi +

√
Pj ~wj√

Pi + Pj
(3.51)

Thus, the relation between the corresponding quadratures is,

x̂i+j =
x̂i
√
Pi + x̂j

√
Pj√

Pi + Pj
, (3.52)

Individual covariance elements are then constructed according to the follow-
ing relation:

〈x̂ix̂j〉 =

[
〈(x̂i+j)2〉 − Pi

Pi + Pj
〈x̂2

i 〉 −
Pj

Pi + Pj
〈x̂2

j〉
]
× Pi + Pj

2
√
PiPj

, (3.53)

where x is the amplitude quadrature, with a similar definition for the phase
quadrature p; Pi and Pj are the optical powers of frequency bands i and
j in the experiment, respectively, which are measured with the homodyne
photodiodes.

10Both of 〈x̂2i 〉, and δx̂2 in Equ. 2.41 equivalently represent variances in the thesis.
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Sometimes, instead of the covariance matrix, we draw the noise correla-
tion matrix, which is defined as

Cij = 〈x̂ix̂j〉/
√
〈x̂i〉〈x̂j〉 − δij〈x̂2

vacuum〉/〈x̂2
i 〉, (3.54)

and the p quadrature has a similar definition for the correlation matrix.

3.4.2 The eigenmodes

Wo obtain the simulated correlation matrix of the SPOPO for the 8-band
basis, including amplitude and phase quadratures. Here we directly diag-
onalizing the covariance matrix to get the corresponding eigenmodes {~vi},
similar to the supermodes, and eigenvalues (squeezing) as seen in the fig-
ures. 3.15 and 3.16, which show similar properties as Hermite-Gaussian
functions. Thus, all the individual eigenmodes are independently squeezed,
and co-propagate in the single beam of the SPOPO output. But notice that
the eigenmodes are slightly different for amplitude and phase quadratures,
which depends on the purity of the covariance matrix. And ideally, in the
eigenmode basis, there should be no quantum correlations, 〈x̂p̂〉 = 0 and
〈p̂x̂〉 = 0 in the covariance matrix.

Furthermore, we present the eight spectra {Ai} corresponding to the
eigenmodes of the amplitude quadrature as in Fig. 3.17, which are defined
by,

Ai = (
S1√
P1

,
S2√
P2

, . . . ,
S8√
P8

) · ~vT
i . (3.55)

We can also think the corresponding spectral shapes, or pulse shapes
in time domain, are squeezed independently. Hence, the eigenmodes of the
SPOPO are equivalent to a set of spectral modes in the spectral domain,
whose the spectral profiles are seen in Fig. 3.17.

Above all, we did multimode analysis for the simulated covariance ma-
trix of the SPOPO. From that, we obtained eight independently squeezed
eigenmodes. Importantly, as the multimode resource, SPOPO has more 40
squeezed supermodes, the number of retrieved squeezed eigenmodes increases
when the number of bands in the basis increases.
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Figure 3.15: The eight eigenmodes and eigenvalues derived from the covari-
ance matrix of the amplitude quadrature.

Figure 3.16: The eight eigenmodes and eigenvalues derived from the covari-
ance matrix of the phase quadrature.

63



64

Figure 3.17: The eight spectra corresponding to the eigenmodes in the am-
plitude quadrature. The different color bands refer to the frequency bands
in the basis of Fig. 3.14, and the dashed profile is the spectral shape of the
first supermode.
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Principle of the SPOPO
experiment and preparation of
light source
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Highly multimode squeezing plays an essential role to generate complex
quantum networks for quantum information and quantum metrology. How-
ever, traditionally, in order to generate the multimode squeezing, the method,
generating many single OPOs, lacks of flexibility and scalability [85] . In this
thesis, instead of doing many OPOs, we present a single-step and scalable
way of generating a multimode quantum resource via the SPOPO process
[65]. Then based on the homodyne measurements, the multimode property
are measured and characterized with arbitrary pulse shaping in the local
oscillator [70].

In the previous chapter, with the SPOPO model, we theoretically ob-
tained the covariance matrix, of which the eigenmodes (supermodes) are in-
dependently squeezed. Therefore, similar to many OPOs, we have many
squeezers co-propagating in the output of the SPOPO.

Here we will present the experimental details of generating and character-
izing multimode squeezing. Firstly we will give the principle and the general
idea of the SPOPO experiment. The experimental objective and the pro-
cedure diagram are presented. Secondly the experimental procedures and
related optics are explained in details.

4.1 Principle of the experiment

4.1.1 The objective

The objective of the SPOPO experiment is: (1) generating a multimode
quantum frequency comb [65]; (2) realizing quantum controls, especially,
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quantum networks, with the multimode quantum resource .

The multimode squeezing is generated in a single-step fashion in the
SPOPO experiment. As all the longitudinal frequency modes of the fre-
quency comb participate to the parametric down conversion processes, sat-
isfying the phase matching condition of Equ. 3.35, the quantum state of the
SPOPO is intrinsically multimode. In addition, ultrafast pulses1 have a high
peak intensity, which results in a high efficiency for nonlinear processes, such
as frequency doubling, PDC, etc.

In practice, we use an optical comb to pump an OPO below threshold
as seen in Fig. 3.10. With the OPO cavity, the transverse spatial mode is
chosen, which is the TEM00 mode. The case is different from usual OPOs for
the longitudinal modes. As the optical comb has many the frequency modes,
all the modes with the resonant frequencies of the cavity (∼ 105 modes) are
selected and involved in the PDC processes. Consequently, complex PDC
processes occur in the SPOPO process. However, the complexity supplies a
rich source of multimode quantum correlations, which is quintessential for
quantum optics and quantum information. Here, also because of the com-
plexity of the generation process, instead of considering all the frequency
pairs in each possible PDC process, we use the supermodes, each of which
consists of hundred thousands of longitudinal frequency modes, to describe
the SPOPO picture. Equivalently, the supermodes are also a series of tem-
poral pulse shapes in time domain. In practice, for generating the quantum
resource, without input signal we obtain a squeezed vacuum (vacuum sig-
nal2), and with input signal we get bright squeezing.

From the theoretical analysis we have presented in the previous chapter,
the main quantum property is that, in the output beam of the SPOPO, co-
propagating supermodes are the eigenmodes of the joint spectra matrix, as
seen in Fig. 3.4, whose spectral shapes depend on the phase matching and
the pump property. Importantly, these independently squeezed supermodes,
behaves as the outputs of many single OPOs, which co-propagate in the
single laser beam with fixed relative phases, 0 or π

2
. The squeezing levels of

each supermode are associated to the total squeezing of the SPOPO and the
corresponding eigenvalues.

In order to measure and characterize the multimode squeezing, projec-
tive measurement, balanced homodye detection, is employed. To that aim, a
pulse shaping is built in the local oscillator of the homodyne detection. The
state of the SPOPO can be projected onto a desired mode of local oscillator.
Therefore, we can access any quantum correlation or squeezing via shaping

1Here ultrafast pulses are equivalent to an optical frequency comb in time domain.
2The squeezed vacuum is a squeezed state with zero mean value of amplitude.
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Figure 4.1: The scheme of the SPOPO experiment.

the local oscillator onto a specific mode.

4.1.2 Experimental configuration

The experimental scheme of the SPOPO is presented in the form of block
diagram as seen in Fig. 4.1. The ultrafast laser source, the Mira laser,
generates a train of femtosecond pulses. One part of the laser is used as pump,
which is generated via frequency doubling, and then with the signal together
participates to the parametric down conversion process in the SPOPO cavity.
The output of the SPOPO cavity is the multi-supermode squeezing. Via
shaping the local oscillator in the homodyne measurement, the multimode
squeezing and quantum correlation is measured and characterized .

We will present in details the SPOPO experiment as following: (1) the
laser source; (2) preparing the signal and the pump; (3)the SPOPO cavity (in
practice, it is a ring cavity); (4) the homodyne detection with pulse shaping.
The detailed experimental configuration is depicted as seen in Fig. 4.2.

It is important to note that we don’t change the quantum resource of the
SPOPO after generation, and quantum operations, e.g. to access different
quantum correlations, are achieved via measurement processes.

4.2 Laser Source

In the experiment, we have two lasers on the optical table. The first is a con-
tinuous laser with the wavelength of 532 nm; the second is a Mira femtosec-
ond laser pumped by the 532 nm continuous laser, which emits femtosecond
pulses in the near-infrared.
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Figure 4.2: The Experimental configuration
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Figure 4.3: The configuration of the femtosecond laser cavity [17].

4.2.1 Pump laser

We use the model VERDI V-18 from the company Coherent as the pump
of the femtosecond laser [16], which emits, optimally, up to 18 W of green
monochromatic at 532nm. The output spatial profile is a TEM00 mode, and
the waist ω0 of the laser beam is ∼ millimeter. We operate the laser power
at 13 W to pump the femtosecond laser.

This laser is driven with a current supply between 40-50 A for the pump-
ing diodes inside, and a circulation of water cools down the plate on the laser
head used for dissipating the heat, with a cost of electricity power about
60-80 W). The laser model, produced on 2005, consumes totally around 1,
300 W of the electric power.

The laser was broken on 2014 because the diodes inside were over the
service life (almost 10 years). We have the laser repaired by changing the
two diodes inside and the laser head.

4.2.2 Femtosecond laser

In the experiment, the femtosecond laser source is a Ti-sapphire mode-locked
oscillator (The Coherent Mira Model 900-B Laser) delivering ∆t =∼100 fs
pulses (∆ω =∼10 nm FWHM) centered at 795 nm (D1 transition of Rubid-
ium atoms) with a repetition rate of 76.6 MHz (the cavity length is ∼3.92m)
[17]. The temporal-frequency relation of the pulses is gaussian Fourier-
limited satisfying ∆t×∆ω = 0.441. In the normal condition, pumped by 13
W of 532 nm continuous green laser from the Verdi V-18, the femtosecond
laser emits around 1.8∼2.0 W power in the mode-locked femtosecond regime,
and ∼2.5 W in the continuous regime.

The cavity configuration of the femtosecond laser, as seen in Fig. 4.3,
is a linear cavity with a crystal of Ti-sapphire, which has a phase match-
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ing for a large spectrum. The adjustable birefringent filter in the cavity is
used to select the central wavelength of the laser spectrum between about
710 nm and 910 nm. A pair of prisms for the dispersion compensation is
necessary for large spectra. The laser is able to achieve up to a 10 nm wide
spectrum (FWHM), which is ∼ 80 fs centered at 795 nm. We can make the
laser work in the femtosecond regime and slightly change the central wave-
length of the output via adjusting the slit next to the output coupler, and
control the bandwidth and central wavelength of the Mira via adjusting the
corresponding buttons on the laser.

The stability of mode locking depends on the position of M5, and the
efficiency (output power) depends on the focus in the crystal. The prism
right after M5 can be moved to make the laser work in the continuous regime,
which we need when aligning the laser cavity. However, these operations are
not necessary to be often performed, and we only do when the laser power is
very low or doesn’t work at all. We only align the input mirrors every day
to align the pump laser matching the Mira laser cavity.

In practice, we need to monitor the quality of the mode locking. In the
MIRA laser, a fast photodiode is disposed to detect a small fraction of the
laser output. We divide the signal detected by the intra fast photodiode in
two parts. One part is sent to an oscilloscope to observe the temporal profile
of the signal as seen Fig 4.4, which is taken from R. M. de Arajo’s PhD
thesis3, and the other part is sent to a spectrum analyzer to see the noise
spectrum of the signal, whose repetition rate can be observed as seen in Fig.
4.5.

When the Mira laser works in the femtosecond regime we can see the
pulse train by the oscilloscope, and when in the continuous regime, we only
see a flat line of signal. With the spectrum analyzer, we possibly see a forest
of radio frequencies centered at the repetition rate of the laser or only the
repetition rate frequency and its harmonics. As seen in Fig 4.5 (a), we can
see the 76MHz peak when the laser is working in the femtosecond regime;
when the slit in the Fig. 4.3 is closed too much, we can see the forest of
the peaks as seen in the Fig 4.5 (b), which indicate the Q-switched mode-
locking regime. In the experiment, the quality of the femtosecond laser is
very associated with the mode-locked laser power. When the laser power
decreases, the laser is usually more noisy and has bad spatial and temporal
characters, and we can improve by realigning the laser system.

3As this thesis is extended from the experiment of R. M. de Arajo’s PhD, in this chapter
we take some figures from the PhD thesis [69] for the the similar experimental setups or
phenomena, such as the figures 4.4, 4.5, 4.8, 4.9, 4.11 4.14, and 4.16.

71



72

.

Figure 4.4: Signal of the pulses measured by a fast diode.

.

Figure 4.5: Signal of the pulses measured by a fast diode.
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4.2.3 Pump pointing locking

In the experiment, in order to improve the laser system stability, we employ
a commercial laser pointing locking on the pump laser (Thorlabs T-Cube
Position Sensing Detector (PSD) Controller).

As seen in Fig. 4.2, the residual of the green laser, from the Verdi,
shines on the Quadrant Position Detector, and the amplified signal controls
the PZT before the Mira with a feedback loop. The locking is usually very
robust during the experiment, yet an obvious shift of the pointing center can
be found by the software when tuning off the locking after 2 to 3 hours. We
checked that this deviation of pump alignment can make the Mira output
lower by about 0.05 W. As we mentioned, the quality of the femtosecond laser
is very linked with output power performance, and importantly, is sensitive
for the squeezing generation. Therefore the pointing locking is important
for the long-term stability of the Mira laser, which influences the squeezing
indirectly.

4.2.4 Spectral locking

Generally, four parameters are enough to define an optical frequency comb
with a gaussian profile spectrum: bandwidth of the spectrum, central wave-
length, repetition rate, and frequency offset (CEO). The details about how
to stabilize these four parameters are presented in the PhD thesis [72].

In our case, we shape the spectrum in many spectral bands to charac-
terize the quantum correlation of the SPOPO [70]. Here the stability of the
spectrum is quite important.

We lock the spectrum with a grating and a two-pixel photodiode, as
seen in Fig. 4.2. The femtosecond pulses centered at 795 nm are dispersed
spatially with the grating (D=1200 /mm). The dispersed spectrum is then
focused (f=30 cm) and mapped on the two-pixel photodiode (model PDP90A,
Thorlabs). The error signal for the locking is the power difference (DC)
between the left and the right parts of the spectrum. As seen in Fig. 4.6,
when the spectrum is in the center of the two-pixel photodiode, the difference
signal Idifference is zero, and we have,

Idifference ∝ ∆λ, (4.1)

where ∆λ is the deviation of the spectrum.
The amplified Idifference is used to control an actuator piezoelectric (PZT)

installed on the back mirror M7, seen in Fig .4.3, which is in the end of the
prism line. We designed a metal mount, which can slightly rotate the mirror
M7 when applying a tension on the PZT. This kind of rotation is ignored for
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Figure 4.6: The error signal is the power difference between the left and the
right parts of the spectrum, measured by a two-pixel photodiode.

the alignment of the laser cavity, but the spectral shift caused by this rotation
is sensitive with the birefringent filter for selecting the spectral wavelength.

In practice, this locking servo system is very robust, and can last typi-
cally for several hours until the PZT reach the end of the controllable range.
Importantly, the spectral locking contributes a lot for the long-term (several
hours) quality of the experiment, such as the stability of the transmission
peaks of the SPOPO cavity, the long-term squeezing level of the SPOPO,
and the spectrum of the laser after pulse shaping.

4.3 Preparation of laser

4.3.1 Correction of the astigmatism

The output from the Ti-sapphire mode-locked femtosecond laser is very astig-
matic spatially. The spatial profile is an ellipse, not a TEM00 mode. The
horizontal axis is twice as big as the vertical one at the output coupler of the
laser (M1, Fig. 4.3). In the experiment, after the periscope (the first element
after the laser), for the astigmatism, the horizontal axis is then shorter than
the vertical axis.

To correct the astigmatism, first we collimate the laser beam by a lens,
then we use a pair of compact anamorphoses prisms (Thorlabs). Because
the factor between the vertical and the horizontal axis is very close to 2,
we directly use the prime pair with a fixed factor 2, which is easier to align
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and avoiding inducing unexpected dispersion. After the correction of the
astigmatism, we have a good TEM00 mode.

4.3.2 Dispersion compensation

Dispersion (Chirp) is an important factor for ultrafast pulses. As seen in
Fig. 1.3, we see that the dispersion (GDD) broaden the duration of ultrafast
pulses. The laser accumulates chirp when propagating through the optics
and the air. In a result of dispersion, the peak intensity of the pulse field
decreases, which degrades the nonlinear effect as demonstrated in Equ. 3.10.
In principle, we need compensate the dispersion when the pulse arrives in the
center the nonlinear crystal in the SPOPO cavity. In practice, rather than
compensate directly for the SPOPO, we compensate the dispersion path from
the output of the Mira laser and the frequency doubling crystal.

The reasons of doing so are: (1) the beam quality of the pump light is
quite sensitive to the SPOPO, in particular in the case of generating vacuum
squeezing (without signal) (2) there is very little dispersive components in
between the two positions where the frequency doubling and the SPOPO
occur.

Disperse elements
According to Equ. 1.17, the GDD φ′′ broadening a factor

√
2 of the initial

duration ∆t,

φ′′(ω0) =
∆t2

4ln2
' 0.4∆t2. (4.2)

For instance, in the case of the initial duration which is 120∼130 fs, the total
corresponding GDD is about 6000 fs2.

In the experiment, the most disperse optical component is the optical
isolator (model IO-5-795 HP, from OFR, Thorlabs). We measure the duration
of the pulses after the isolator with a commercial auto-correlator, which gives
about 2700 fs2 chirp. Then the thick glass components induce a big amount
of chirp4. The polarization cubes (PBS), made of BK7 (51 fs2 /mm at 795
nm) and silicon (36 fs2 at 795 nm), have two types of size: 1/4 inch and 1/2
inch. Each PBS introduces ∼ 230 and ∼ 650 fs2 by the 1/4 inch and 1/2
inch ones respectively. The beam splitters of 45 degree, made of BK7 with
1/4 inch thickness, induce 460 fs2 chirp. The lenses, with 2-4 mm thickness
of silicon glassed, have the GDD approximately 150 fs2. Besides, the air
contributes the GDD about 20 fs2/m.

Dispersion compensation prims

4In the experiment, all the mirrors are specially coated with zero GDD.
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Figure 4.7: Dispersion compensation setup. (a) The experimental design.
(b) The principle of dispersion compensation. The negative dispersion is
proportional to L.

In the experiment, for compensating the dispersion of the dispersive op-
tical components, we constructed a negative dispersion compensation setup
using a pair of Brewster angle prisms made of SF10 [28], and the design is
as seen in Fig. 4.7 (a).

As we see in Fig. 4.7 (b), in the optical path, higher frequencies have
longer optical paths than the lower frequencies, which correspond a effect of
a negative dispersion of GDD proportional to the length L. And the pair of
prisms is designed in the Brewster angle θB = 59.7◦, with a corresponding
summit angle α = 60.6◦.

Here we give, for the pair of prisms cut with Brewster angle, the linear re-
lation between the GDD and the length L (the distance between the summits
of the two prisms) [28],

φ′′dispersion ' −
2Lλ3

0

πc2

(
∂n

∂λ
|λ0

)2

, (4.3)

where λ0 is the central wavelength of the pulses, and n is the refractive index
of the material. The amount of negative dispersion can compensate positive
dispersion induced by the disperse optical components. After the dispersion
compensation we can obtain the Fourier-limited duration of the pulses in the
position of the frequency doubling.

As nonlinear optical processes are sensitive to the spectral phase of the
involved pulses, it is not important where to perform the dispersion compen-
sation before the frequency doubling and the SPOPO. In the experiment we
put the dispersion compensation setup after the correction of astigmatism,
as seen in Fig. 4.2.

One tip for aligning the pair of prisms, we have to make the light beam
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pass the summit of the prisms as much as possible, which induces a smallest
amount of dispersion from the prism material.

Besides the duration of the pump pulses, the quality of the temporal and
spatial mode is also essential for the SPOPO. Therefore we need carefully
align the two lenses in the telescope setup, as seen in Fig. 4.8.

4.3.3 Frequency doubling

In the experiment, as seen in Fig. 4.2, after the dispersion compensation, the
laser beam is divided into two parts with a half-wave plate and a polarizing
beam splitter (PBS) cube. The laser is frequency doubled via passing directly
a BiBO (BiB3O6) crystal, which is already introduced in the chapter 3. BiBO
is a kind of biaxis crystals with similar disperse properties as uniaxial BBO
crystals (β-BaB2O4). The advantages of the BiBO are with a higher χ(2)

nonlinear coefficient, a better resistance of the mechanical constraint, and
less sensitive with the humidity.

Our BiBO crystals are ordered from the chinese company Fujian Castech
Crystals. The cutting angles are: θ = 152◦ and φ = 90◦, which correspond to
a nonlinearity of 3.72 pm/V, for the type I interaction of two fields (e+e→ o).
The crystals are treated with anti-reflection coating on the two sides for the
wavelengths of 397 nm and 795 nm. The dimension of the crystal for the
frequency doubling is 3 x 3 x 0.2 mm (the thickness is 0.2 mm). The frequency
doubling can generate enough power of pump with a 0.2 mm thick crystal.
In the experiment the efficiency is about 25% (∼ 400 mW), which is enough
to pump the SPOPO above threshold.

As seen in Fig. 4.8, we focus the laser in the center of the crystal by
the first lens, and collimate the generated blue, after the frequency doubling
crystal, with the second lens. In practice, we found that if the beam quality
of the blue is not good enough, we need to use more power of the blue to
pump the SPOPO. Thus more laser noise will be injected into the squeezing
generated via the SPOPO. Therefore, in order to have the mode matching
of the pump as good as possible, we need carefully align the two lenses to
avoid unexpected spatial astigmatism or chirp.

4.3.4 Mode matching and relative delay

After frequency doubling, for the SPOPO experiment, we have both 397 nm
and three parts of 795 nm pulses as the pump, the locking beam, the signal
and the local oscillator of homodyne respectively.

Right before injecting the laser beams into the cavity of the SPOPO, we
need prepare the spatial mode matching and relative delay control between
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Figure 4.8: The single-pass frequency doubling in the experiment.

the signal and the pump. For the spatial mode matching, we have the SPOPO
cavity as the reference, thus we match the signal and locking beam to the
cavity; then we match the pump to signal mode. After the spatial mode
matching, we control the relative delay between the pump and the signal to
obtain a temporal overlap.

Compared to continuous lasers, ultrafast light is more difficult to have the
same good modes matching. In the experiment, we use the XYZ adjustable
lens mounts to perform precise alignments for the modes matching.

4.4 SPOPO cavity

In this chapter, we introduce the SPOPO cavity, which is a 4 m long ring
cavity synchronized to the femtosecond pulses. The cavity is the third gen-
eration of the SPOPO cavity. The first generation is a linear cavity [64],
and the second generation has the same design as now, with a ring cavity
[70]. The cavity now we changed all the optics and the breadboard. For the
optics, such as mirrors and curved mirrors, we choose specially femtosecond
mirrors with a broad bandwidth of reflectivity instead of the old TLM1 mir-
rors (Company, CVI), which is associated with higher order supermodes as
we discussed previously in chapter 3.
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SPOPO	  cavity 

Figure 4.9: The configuration of the SPOPO cavity. In the new version of
the cavity, we changed all the optics and the breadboard. The cavity design
is the same as before.

4.4.1 Cavity configuration

Compared to the linear cavity, the ring cavity can have two independent
laser beams circulating with two different directions in the same time. Using
the property, we have one laser beam to lock the cavity, and the other for
the signal of the SPOPO. Therefore, we can always have the SPOPO cavity
locked even when the signal is vacuum; also we don’t need a fraction of signal
to lock the cavity compared to the linear cavity, which will introduce a loss
in the squeezing generated by the SPOPO.

Besides benefiting the ring cavity, we can also change the power of the
signal without influencing the lock of the SPOPO cavity. Similarly, we can
optimize the locking beam independently without influencing the signal; fur-
ther the dispersion in the locking beam induced from the EOM won’t affect
the signal for the SPOPO.

In the SPOPO cavity, as seen in Fig. 4.9, in practice, the ring cavity
has totally 13 mirrors including 4 curved ones, which is multi-folded to be
compact. The crystal is in the position of the waist ω0 = 39 µm. The cavity
configuration, as seen in Fig. 4.9, has 15 reflections in a round trip, with two
mirrors double reflected. In the cavity, among the 13 mirrors, only five are in
the adjustable mounts and the others are in fixed metal mounts5. Therefore,
it is more robust with a good stability for the cavity.

The cavity is resonant for the signal λsignal = 795 nm but not resonant
for the pump λpump = 397 nm. The reflectivity of the input coupler M1 is:
R = 99.7% at 795 nm; for the output coupler M10, the reflectivity R = 70%
at 795 nm. All the other mirrors are high reflective (HR) at 795 nm. The

5In practice, they have very small adjustable space via controlling the screws on them.
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mirrors M2 and M13 are with a curvature Rc = 25 cm. M4 and M11 are also
curved with R′c = 6 m. The cavity finesse is about 15, and the corresponding
bandwidth is about 2-3 MHz.

In the low finesse case, as demonstrated in chapter 1, the dispersion in-
duced by the air can be ignored. But in the case of large finesse, for ultrafast
pulses, vacuum or dispersion compensation mirror are needed to compensate
the dispersion. Besides, considering the effect of escape efficiency in OPO
experiments, we make the transmission of the output coupler far bigger than
all the loss in the cavity. In the experiment, we use a high reflection inout
coupler (R=99.7%) and a high transmission output coupler (T=30%). Yet
for this aim, as the threshold gets higher when the finesse is low, we need
more pump power to get squeezing,

4.4.2 Alignment of the cavity

Because many mirrors are fixed in the cavity, it is slightly difficult to align
the cavity in practice. We scan the length of the cavity via scanning the
piezo (PZT) installed on the back of the mirror M7. If the cavity is aligned
well, we can see good transmission peaks while scanning the PZT on M7.

Yet in practice, in the begging we align the cavity without the nonlinear
crystal or scanning . Firstly we fix the input signal as the reference for the
cavity, which passes the centers of the M1 and M2. Then we adjust M1 to
make the beam go the center of M3. And we do mirror by mirror to make the
beam pass until M10. In the end we use M11 and M12 to manage a round
trip. Up to now, one can see the transmission power changing while blocking
the beam between M10 and M11. This indicates the beam has round trips.
Then we can scan the cavity, and optimize with the transmission peaks. After
optimizing with M11 and M12 in the cavity, we continue with the two mirror
right before the input coupler.

In addition, M4 and M7 can be used for alignning of the the double
reflection to make the beam spots on the middle of the M6 and M7. Here
although many mirrors are in the fixed mounts, they can still be modified a
bit via change the pressure of the screws. After obtaining the transmission
peaks, we can align the locking beam to the signal beam.

When having good transmission peaks, we stop aligning in the cavity.
We then take the cavity as the reference without changing, and improve the
mode matching of the signal and locking beam by the optics outside the
cavity.

Then we can put the BiBO crystal in the cavity, but we need compensate
the optical length using the stage where the M8 and M9 are, and get back
most of the alinement with only M4. In the end we optimize the transmission
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Figure 4.10: The PDH locking scheme of the SPOPO cavity.

peaks by the mirrors out of the SPOPO cavity.

In the alignment, importantly, we always set a reference and optimize
the alignment one parameter once. If several parameters, such as modes
matching, polarizations and components inside cavity, are adjusted together,
it will be very difficult to get good transmission peaks.

4.4.3 PDH locking

Based on a standard approach of the Pound-Drever-Hall (PDH), the SPOPO
cavity is locked with the locking beam propagating the opposite direction
of the signal. We also call the signal seed beam in our degenerate case
of SPOPO. In the locking regime, as seen in Fig. 4.10, the locking beam is
phase modulated by ∼ 1.4 MHz by a EOM, and the locking beam is measured
by a photodiode. The measured transmission signal is amplified, and then
mixed with the modulation signal of the same frequency, ∼ 1.4 MHz. The
demodulated signal (error signal) is sent to the servo controller PI, and the
output controls the PZT installed on the back of cavity mirror to lock the
cavity via modifying the cavity length, which is kept to be resonant with
the pulses. Thus, as the signal beam is the same as the locking beam, which
propagates in an opposite direction in the cavity, therefore, all the frequencies
of the pulses can resonate in the cavity.

As the finesse of the cavity is low, the cavity locking is quite robust,
and can last for several hours. Importantly, benefitting from the ring cav-
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ity, the cavity locking is independent from the signal beam, which is not
involved to the SPOPO process. This allows that we can control the signal
beam independently from the cavity locking, such as for the amplification
and deamplification locking, homodyne detection, and data collection, which
is very helpful for the SPOPO experiment. However, as some unexpected
weak reflection of the locking beam from mirrors or the nonlinear crystal
can happen, this is still not perfect for photon detection, e.g., single photon
extraction experiments [56].

4.4.4 Alignment of the nonlinear crystal and the pump

The principle here is to put the crystal exactly in the waist of the cavity
between M1 and M2, and to optimize the temporal and spatial overlap be-
tween the signal and the pump. This alignment is very important to get
good squeezing.

In practice, we have three steps:

I. When the SPOPO is aligned and locked, firstly we put the crystal in
the cavity and get back the transmission peaks by decreasing the length of
the cavity, because the refractive index of the crystal is bigger than in the
air.

II. We roughly align the pump and the nonlinear crystal angle to get
interference patterns from the pump and the frequency doubling of the signal
beam (the signal is frequency doubled in the SPOPO crystal). We observe
the interference after M2 in Fig. 4.9.

III. In the end, we do fine adjustment to optimize the contrast of deam-
plification and amplification, as seen in Fig. 4.11.

4.4.5 Amplification and deamplification

When we finish aligning the pump and crystal, scanning the relative phase
between the pump and the signal (scan PZT 1 in Fig. 4.2), we can observe the
amplification and deamplificaition oscillations of the SPOPO, as seen in Fig.
4.11. Then we need optimize the gain or the contrast of the amplification and
deamplification oscillations via adjusting the mode matching of the pump.

As it is difficult to align, and in practice, it is hard to know whether
this is optimized. We use the strategy: fixing the powers of the signal and
the pump, and then we optimize once and note the contrast. For everyday
preparation, we can check the contrast with the same power setting, thus,
when we can know alignment is good enough when the contrast is close to
the optimized one.
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Figure 4.11: The oscillations of the amplification and deamplification ob-
served by the oscilloscope. In the experiment now, we still optimize pump
alignment with this oscillation curve of deamplification and amplification,
but as this is very sensitive and hard to know if it is optimized or not, we
fix the power setting and calculate the contrast in real time with a labview
code, then we know it is optimized when the contrast is the same as last
time. And in practice, usually when get the good contrast, the threshold
and the squeezing from the SPOPO are both good.
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Figure 4.12: The time sequences in the locking of amplification and deampli-
fication. The SPOPO cavity is always locked. Shutter and the PI are trigged
by the 100 Hz TTL signals with a delay ∆Trise, which is the rising time of the
shutter mechanics. For the PI, the high voltage trigs the function of locking,
when the low one refers holding the locking signal. For the shutter, the high
voltage makes the shutter open, and during the low voltage the seed light is
blocked.

In the experiment, the contrast of the amplification and deamplificaiton
is very sensitive to the mode matching of the pump, including spatial and
temporal modes matching. Therefore as we mentioned, in order to generate
the pump with a proper TEM00 mode and without chirp, the alignment of
the frequency doubling is important.

4.4.6 The threshold of the SPOPO

After optimizing the contrast of the amplification and deamplificaiton, we
can obtain the threshold via increasing the pump power. Typically, in the
experiment, when the input coupler has the reflectivity Rin > 99%, we have
the threshold Pthreshold:

Pthreshold ' 90mW, with Rout = 90%,

' 120mW, with Rout = 80%,

' 160mW, with Rout = 70%, (4.4)

where Rout is the reflectivity of the output coupler.
Importantly, the level of the threshold is a good indication for the quality

of the experimental performance. Normally, we can measure ∼ 4 dB squeez-
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ing directly with a spectrum analyzer, when the threshold reached the values
listed above6. We will discuss the measurement process in next chapter.

4.4.7 Relative phase locking between signal and pump

In the experiment, sometimes we need to lock on the amplification or deam-
plificaition, which is equivalent to lock the relative phase between the pump
and signal. In the deamplification, the amplitude quadrature of the signal
is squeezed and the phase quadrature is anti-squeezed; in the position of the
amplification, the amplitude quadrature of the signal is anti-squeezed and
the phase quadrature is squeezed. In this section, we will introduce the rela-
tive phase locking between signal and pump with seed (signal) and without
seed (use a light shutter).

As seen in the experimental configuration in Fig. 4.2, in order to lock
the deamplification (or amplification), when the cavity keeps locked, the
pump beam is given a phase modulation (∼ 1.7 MHz) performed with PZT
2 , and the error signal of the locking is obtained from demodulating the
signal measured with the PD blue7, and further controls PZT 1 to realize the
locking.

Here, differently from the cavity locking, as the phase modulation is given
by PZT (not EOM), we can only choose a resonant frequency of the PZT,
which is not continuous and different for different PZTs. In practice, to find
the resonant frequencies, we give a phase modulation on the PZT and scan
the modulation frequency slowly; we mix the laser beam reflected by the
mirror attaching the PZT and a reference beam; we can observe the resonant
frequency peaks by spectrum analyzer. The way of phase modulating on the
laser beam does not introduce dispersion compared to using a EOM, which
is very useful for ultrafast pulses. For instance, if the pump has a chirp, the
efficiency of the SPOPO will get reduced. But the modulation frequencies
are not continuous or too high, a few MHZ, thus we have to choose carefully
to avoid the frequency itself and its harmonics overlapped with the frequency
where we observe squeezing.

To lock the relative phase between signal and pump, usually, we need
always seed the cavity, as it is impossible to directly lock the pump to vacuum.
Yet, sometimes, we prefer vacuum squeezing, which has less laser noise, and
is easier to get higher squeezing.

To realize locking squeezed vacuum, we build a locking system with a
mechanical shutter (Stanford SR574). In Fig. 4.12, here we present the time

6The detector has a 95% quantum efficiency and the shot noise is ∼ 10 dB higher than
the electric dark noise

7It is named so in Fig. 4.2.
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sequence control of the relative phase locking for a vacuum squeezing, where
for each cycle there are two procedures: in the first half of the period, it is a
normal process of deamplification (amplification) locking when the shutter is
open (signal passes); during the second half of the cycle, the shutter blocks
the signal, the voltage level on the PZT 1 is hold by the servo controller PI
in Fig. 4.2.

In the experiment, the shutter and the PI are synchronously controlled
by two channel TTL signals generated by a delay generator, as seen in Fig,
4.12. The frequency of the TTL signals is 100 Hz, which is limited by the
rising time of the shutter mechanics, and the corresponding holding time is
5 ms. Because the holding period is very short, the phase change very little
during the holding time in the laboratory environment.

4.4.8 The SPOPO above threshold

Above the threshold, the SPOPO, similar to usual OPOs, can emit the in-
frared laser without injecting the signal. In that case, the output is the first
supermode when the SPOPO cavity is locked, which has the largest gain.
We can measure the spectrum of the first supermode when the SPOPO is
above the threshold.

For instance, as seen in Fig. 4.13 [69], when the spectral bandwidth of
the seed is 6 nm, measured by the spectrometer (Ocean Optics), the spectral
bandwidths of the SPOPO above threshold are 11 nm and 7.5 nm corre-
sponding to the 0.5 mm and 2 mm long BiBO crystal respectively. With the
10 nm wide spectrum of the seed, we also measured the spectrum of the first
supermode, which matched quite well with the theoretical results of Fig. 3.8.
This indicates the SPOPO theoretical model can give quite a good prediction
and guide for the experiment.

4.5 Homodyne detection with pulse shaping

4.5.1 Homodyne detection

In the laboratory, we usually use homodyne detection [37] to detect squeezing,
which is quite a useful tool in quantum optics. As seen in Fig. 4.14, the two
light fields, the signal and local oscillator, are mixed with the balanced optical
beam splitter, then the difference signal between two intensity measurements
Î1 and Î2 of outputs can directly give the quadrature measurement of the
signal.

And importantly, when the the power of the local oscillator is much bigger
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.

Figure 4.13: The spectra of the seed and the SPOPO above the threshold [].
The blue curves are the spectra of the SPOPO above threshold, and the red
curves are the spectra of the seed. (a) and (b) corresponds to he 0.5 mm and
2 mm long BiBO crystal respectively.

than the signal beam, PLO � Psignal, homodyne detection is mode-dependent

measurement, where the signal field, Ês =
∑

j â
j
su
j
s , with the modes {ujs}, is

projected onto the mode of local oscillator uLO [37].
Here, when PLO � Psignal, so 〈âLO〉 '

√
PLOe

iθ we have,

Î− = Î1 − Î2 ' â′
†〈âLO〉+ â′〈â†LO〉 =

√
PLOx̂′θ =

√
PLO

∑
j

|
∫
u∗LOu

j
sdΩ|x̂jθj ,

(4.5)
where â′ =

∑
j

∫
u∗LOu

j
sdΩâj is the quasi basis change (projection) and

the quadratures are x̂jθj = e−iθj âjs + eiθj(âjs)
†, x̂′θ = e−iθâ′

†
+ eiθâ′; θ is the

global relative phase between â′ and the local oscillator (LO) in the homodyne
detection, θj is the relative phase between the mode âj and the LO.

And the variance of the measurements, ∆I2
−, gives the property of quan-

tum fluctuation ∆x2
θ, e.g. squeezing of the signal, and when the input signal

modes are not correlated, we have,

∆I2
− = PLO

∑
j

|
∫
u∗LOu

j
sdΩ|2∆xj2θj . (4.6)

For the SPOPO, the signal, which is a set of supermodes, which co-
propagate in one single beam, and the local oscillator from the Mira laser
both have flat spectral phases when the dispersion is properly compensated.
As demonstrated in chapter 3, the odd order supermodes have the same phase
0, and the odd order supermodes have the same phase π/2, so we have,

θ = θjodd = θjeven +
π

2
. (4.7)
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Figure 4.14: Homodyne detection configuration. The signal is projected onto
the specific mode of the local oscillator. The squeezing of the signal in some
specific mode can be measured by homodyne detection, where the squeezing
ellipse angle θ is associated to the relative phase between the signal beam
and the local oscillator.

Thus, as seen in Fig. 4.14, many supermodes co-propagate in the signal
beam, which is projected onto the mode of the local oscillator; and we can
access the corresponding squeezing with a relative phase θ via the measure-
ment of Î−. Therefore, we can access into any modes via shaping the local
oscillator correspondingly.

Previously in chapert 3, we already theoretically studied the multimode
property of the SPOPO in a 8-band band basis, and we sa that many su-
permodes co-propagate in the output of the SPOPO, which are a series of
spectral modes in spectral domain or pulse shapes in time domain, as seen
in Fig. 3.17 . Thus, in orde to explore multimode correlation, we project the
output of the SPOPO onto some specific spectral modes of the local oscilla-
tor in the homodyne detection [65]. In practice we realize shaping specific
modes in local oscillator via a SLM (spatial light modulator) [70] [55].

For data collection, from homodyne measurements, we can obtain quan-
dature values using oscilloscopes, and noises (variance) of quadratures using
spectrum analyzer.

In the experiment, we developped the homodyne measurement system,
including commercial silicon photodiodes (Hamamastu, quantum efficiency
95%∼99%), and homemade electronics. For the electronics, the signal of
individual detectors is firstly amplified and then a difference of high frequency
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signals from two detectors is made to get the homodyne signal8.

The measured squeezing is defined as the ratio,
VMsqz

VMshot
, with VMsqz =

Vsqz + Vdark and VMshot = Vshot + Vdark, where VMsqz, VMshot, Vdakr are directly
obtained from the measurement data, which are, in linear scale, variances of
squeezing, vacuum noise (shot noise), and electric dark noise (without light
signal), respectively. Vsqz, Vshot are the actual squeezing variance and shot
noise, respectively. The difference of the measured squeezing and the actual
squeezing is,

VMsqz

VMshot

− Vsqz

Vshot

=
Vshot − Vsqz

( Vshot

Vdark
+ 1)Vshot

. (4.8)

When the dark noise Vdark is bigger, we lose more squeezing in the measure-
ment. Thus this clearance Vshot

Vdark
is essential for homodyne detection, otherwise

the dark electronic noise will reduce the squeezing. In our case, 10 ∼ 15 dB9

clearance from the electric dark noise is obtained, which is good to observe
squeezing.

4.5.2 Pulse shaping in the local oscillator

In the homodyne measurement, in order to access the noise property of spe-
cific modes, we shape the local oscillator via a spatial light modulator (SLM).
With a 4-f configuration [55], the SLM can be employed to access arbitrary
pulses shapes.

As seen in Fig. 4.15, the 4-f configuration is composed of two diffraction
gratings and two lenses arranged in a 4-f set-up, where the SLM is put on the
Fourier plane. All the spectral components of the input pulses are dispersed
by the first grating horizontally, and after the first lens, the beam is focused
to a small spot in the Fourier plane. Thus, in this Fourier plane, all the
spectral components are spatially separated and focused. Then, the SLM
can implement phase modulations on all the individual colors of light with
the pixels of the SLM sensor. After that, the symmetry set-up recombines all
the frequencies into a single beam, which has a new pulse shape associated
with the phase modulation given on the SLM.

As seen in Fig. 4.16, it is the experimental configuration of the 4-f con-
figuration. The SLM is composed of a reflective 2-D sensor with 512 x 512
pixels (XY Series of Boulder Nonlinear Systems). With ultrashort pulses,
the lenses are replaced by cylindrical mirrors to avoid unwanted dispersion

8Another way, amplifying the difference, can get better clearance, usually. Here our
configuration of electronics is easier for the alignment and enough to see squeezing.

915 dB=10Log10
Vshot

Vdark
.
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Figure 4.15: 4-f configuration of SLM. All the spectral components of the
input pulses are dispersed by the first grating horizontally, and after the first
lens, the beam is focused to a small spot in the Fourier plane. Then after
shaping, the shaped pulses are recombined.

Figure 4.16: Experimental configuration of the pulse shaping. In practice, we
use a reflective SLM, a grating and a cylindrical mirror to build the shaping
setup. In the new version, we changed the cylindrical mirror and the grating
to optimize the frequency resolution of the 4-f configuration.
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Figure 4.17: The ”grating” on the phase mask of the SLM. (a) The light is
dispersed and mapping on the phase mask (sensor) horizontally. The SLM
has a ”grating” like phase. (b) The ”grating” shaped by the SLM directs the
injected beam.

and chromatic aberrations, and the SLM is a reflective type. We can mod-
ify the phase of the light reflected from the SLM via controlling the electric
tension of each pixel [78]. In the experiment, the beam is dispersed firstly by
the grating (1800 /mm) and is focused horizontally by the cylindrical mirror
(f=50 cm). Then the light is reflected from the SLM, and the reflection repass
the cylindrical mirror and the grating with the same path to recombine in a
single beam. This beam with shaped pulses behaves as the local oscillator
for the homodyne detection.

With the 2-D SLM, we can do arbitrary amplitude and phase modulation
on each frequency. In the 4-f configuration, each color of light is mapped on
the SLM horizontally, as seen in Fig. 4.17. Thus to do the phase control
on some color, we directly give a phase modulation with the vertical slice
of pixels where the corresponding color is mapped, for instance, the dashed
block part of the SLM refers to the color of ”yellow-green” mapped on it,
seen in Fig. 4.17.

Then as to the amplitude control, we apply a grating-like phase on the
mask. As seen in Fig. 4.17, we write the phase to have a form of the
horizontal grating, and the amplitude of the first (+1) order of diffraction
can be controlled via changing the property of the ”grating”. The depth
δ of the ”grating” is 0 to 1 corresponding to the phase 2π to 0. Thus,
when δ = 0 (or 1), the the first (+1) order diffraction is 0 (or 1). The
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amplitude of the first (+1) order diffraction is the function of δ, which we
can control with the phase on the corresponding pixels. But the relation
between the amplitude of the first (+1) order of diffraction and the δthis is
slightly nonlinear. In practice, we don’t need calibrate phase modulation; we
need calibrate the amplitude modulation by measuring the relation curve of
the diffracted amplitude vs the depth of the grating;

In a summary of pulse shaping in our experiment, for phase, we write
the demand phase directly on the region of the dashed block; for amplitude,
we apply the periodic ”grating” phase with the corresponding depth δ. In
a result, we implement a demand phase and amplitude modulation on the
selected color.

The direction of the first order diffraction is determined by the d param-
eter of the ”grating”. In the experiment, d=10, and we use a pinhole (50
µm) to choose the diffracted beam in a configuration of spatial filter (as seen
the spatial filter 2 in Fig. 4.2).

Above all, with the pulse shaping setup, an arbitrary pulse shape can
be implemented , only limited by the resolution of the sensor of the SLM.
However, in the experiment, we face the first limit which is not the resolution
of the SLM at all, but the power of the laser, for instance, when we shape the
local oscillator into ∼ 20 frequency bands, the power of each band is already
very small for the homodyne measurement.

4.5.3 Measurements and data collecting

In the experiment, in order to interrogate the quantum correlations, we keep
the output of the SPOPO and project it to the desired mode, as seen in Fig.
4.18 (a). Then as seen in Fig. 4.18 (b) and (c), we have two ways of collecting
data: (1) we can observe the noise property of the SPOPO in specific modes
by a spectrum analyzer; (2) we collect the quadrature with a data acquisition
card (DAQ NI PCIe-6361 connected to a BNC connector block BNC-2110).
The first way is easier and direct to see the noise, for example, the squeezing.
The second way is much faster than with the spectrum analyzer, so this way
is better when collecting many data, for instance, collecting data to build
a covariance matrix. For the second method, the difference signal from the
homodyne measurements are amplified (Amplifier), then are demodulate at
1 MHz by a Mixer (Mini Circuits), as seen in Fig. 4.18 (c).

With both methods, we obtained the vacuum squeezing of the SPOPO
(The seed is vacuum). As seen in Fig. 4.19, when the local oscillator is a
gaussian spectrum centered at 795 nm with 10 nm bandwidth (the output
of the Mira laser), we got ∼ 5.5 dB squeezing without any correction when
scanning the phase of local oscillator (PZT 5 in Fig. 4.2).
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Figure 4.18: Projective measurements and data collection. (a) The state of
the SPOPO is projected onto the specific mode of the local oscillator via
the homodyne measurement. Two methods of data collecting: (b) Directly
observing the quantum noises by a spectrum analyzer; (c) Collecting the
quadrature values with the DAQ card.
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Figure 4.19: The vacuum squeezing of the SPOPO directly measured (∼ 5.5
dB). The horizontal axis is the phase of the local oscillator.

In the squeezing measurement, the visibility of the homodyne contrast is
about 94%, and the quantum efficiency of the silicon photodiode is ∼ 99%
(Hamamatsu Photonics) 10. We approximately have about 15% loss after
the SPOPO cavity; the electric dark noise is ∼ 10 dB lower than the signal.
According to Equ. 3.47, the squeezing, corrected by the dark noise and the
measurement loss, is ∼ 8 dB.

Although vacuum has no regular phase, here we just make the scan phase
of the local oscillator much faster than the random phase fluctuation of the
vacuum. And the valley and peak correspond to the squeezing in different
phase of quadratures, amplitude and phase, respectively.

4.6 State reconstruction with 16-pixel covari-

ance matrix

4.6.1 Measuring multimode quantum noises of SPOPO
and covariance matrix

In order to characterize the intra-comb entanglement across the entire spec-
trum, the LO is divided into 16 frequency bands of equal energy by the pulse

10This photodiode is specially selected with high quantum efficiency. Using usually
photodiodes with more than 90% quantum efficiency, more than 4.5 dB is still available.
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shaping, as seen in Fig. 4.21, and the amplitude and phase quadrature noises
for each spectral region and all possible pairs of regions are determined. The
spectrum of the local oscillator has a bandwidth of ∼ 10 nm (FWHM), and
each band is ∼ 1.3 nm wide. The central gap in the spectrum is given on
purpose to avoid saturating the detector for central bands. We can’t go to
more bands limited by the energy of the single frequency bands on the wings,
which is so low that the signal-to-noise ratio is bad for the homodyne mea-
surements. Up to now, each frequency band has an optical power of ∼ 70
mW, which is just close to saturate the homodyne detectors.

With the method as seen in Fig. 4.18 (c), the 136 requisite homodyne
measurements are acquired in a period of approximately 5 minutes, and allow
assembly of the states full covariance matrix [70]. To get all the elements
of the covariance matrix, we collected 136 noise curves, such as seen in Fig.
4.20. The fit for the peak (anti-squeezing) and the valley (squeezing) gives
the variance of individual bands 〈x̂2

i 〉 and the combinations 〈(x̂i + x̂j)
2〉,

respectively. According to the Equ. 3.53, the elements of the covariance
matrix are normalized with corresponding optical powers of each band.

We have observed that cross-correlations of the form 〈x̂p̂〉 are absent,
which permits the covariance matrix to be cast in a block diagonal form.
Fluctuations and correlations departing from the vacuum level are shown
in Fig. 4.22 for the amplitude and phase quadrature. And here we only
corrected dark noise for the covariance matrix.

4.6.2 Multimode analysis

With the covariance matrix, shown in Fig. 4.22, as we discussed in chap-
ter 2 we have two methods to do the multimode analysis: (1) we directly
diagonalize it to get the eigenmodes and eigenvalues; (2) we can also do
the Williamson decomposition. We directly diagonalize the covariance ma-
trix to get the eigenmodes (squeezed modes) and eigenvalues (squeezing).
As we mentioned, because of the purity issue, we can’t get the same eigen-
modes for the amplitude and phase quadrature covariance matrix. Thus,
from Williamson decomposition, we also can get a set of eigemmodes, and
the corresponding squeezing which is pure and corrected from the classical
noise.

The main difference of the two methods is, the squeezing values from the
first method, in principle, should be close to the detected measured squeezing
if we shape the local oscillator onto the corresponding eigenmodes, yet the
squeezing from the Williamson decomposition is pure and corrected, which is
similar as the squeezing obtained from the first method with a loss correction.
In the following, we present the results based on the first method.

95



96

Figure 4.20: Examples of measurements data. We get the the amplitude
and phase quadrature fluctuation from the valley and peak of the curves,
respectively.

Figure 4.21: The spectrum of the local oscillator is divided into 16 frequency
bands as the measurement basis. The middle hollow envelope in the spectrum
is made by pulse shaping to avoid saturating the homodyne detectors.
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Figure 4.22: 16-partite covariance matrix in frequency-band basis. Off-
diagonal shot noises are normalized to 1 and diagonal ones are normalized
to 0 . In the correlation measurement, the spectrum of resource, which is a
train of 150 fs pulses centered at 795nm with 10nm bandwidth, is divided
into 16 equal frequency bands. All the correlations of the resource in the
amplitude quadrature (left) and phase quadrature (right) are contained in
the matrix.

After diagonalizing the covariance matrix from both amplitude and phase
quadrature, we get the eigenvalues (squeezing) and eigenmodes. In Fig.
4.23, form the phase quadrature covariance matrix, we present the leading
nine eigenmodes and the eigenvalues, and the squeezing of the ending seven
eigenmodes are -0.95, -0.60, -0.57, -0.50, -0.30, 0.12, 0.15 dB. As the mea-
surements, for the side frequency bands, have quite low signal-to-noise ratio,
and this causes the covariance matrix to be slightly unphysical. Especially
for the squeezing of the leading modes, e.g., the -10 dB squeezing of the first
eigenmode.

Also because the purity of covariance matrix is low, ∼ 35%, the eigen-
modes of Fig. 4.23 are different from the ones of the amplitude quadrature
matrix. We also did Williamson decomposition on the measured covariance
matrix following the recipe of the chapter 2.5. We verify the Williamson
eigenmodes are similar to the ones of Fig. 4.23, and the shape of the eigen-
modes are consistent during a long-term experiment. Thus, importantly,
from the covariance matrix the shape of the eigenmodes we reconstruct is re-
liable. And such eigenmodes are not quantum correlated, and co-propagate
in the single beam from the quantum source, SPOPO.

Furthermore, according to the eigenmodes we obtained, we then directly
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Figure 4.23: The leading nine of the sixteen eigenmodes and corresponding
squeezing values from directly diagonalizing the measured covariance matrix
with loss correction of 15%. The squeezing of the ending seven eigenmodes
are -0.95, -0.60, -0.57, -0.50, -0.30, 0.12, 0.15 dB.
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Figure 4.24: 12 squeezing ellipses(blue) are given in the boxes, which cor-
responds the leading 12 eigenmodes of the covariance matrix, and the cir-
cles(red) represent vacuum. The leading six squeezing values are directly
measured via shaping the local oscillator onto the eigenmodes. All the 12
modes are squeezed and the squeezing values below ellipses are corrected by
dark noise and 15% measurement total loss.
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Figure 4.25: The measured spectra of the eignmodes [20].
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measure the squeezing of the leading six modes via shaping the local oscillator
onto these eigenmodes. In Fig. 4.24, 12 squeezing ellipses (blue) are given,
which corresponds to the leading 12 eigenmodes of the covariance matrix, and
the circles (red) represent vacuum. Yet the squeezing of the leading six modes
are obtained directly from homodyne measurements with pulse shaping, and
the others are from the diagonalization of the covariance matrix. We can see
that all the 12 modes are squeezed and the squeezing values below ellipses
are corrected by dark noise and 15% measurement total loss. The ellipse
direction refers to the phase of the squeezed eigenmodes, which are 0 and
π/2 alternately amongst the eigenmodes, referred to Equ. 4.7.

Each eigenmode refers to a specific spectrum of the field, which can be
formed via pulse shaping. According to Equ. 3.55, the spectra of the leading
eight eigenmodes are presented in Fig. 4.25 [20]. In particular, for the
leading modes, the experimental results of the eigenmodes coincide well with
the simulated ones as in Fig. 3.15. And in Fig. 4.26 [20], the squeezing
curves of the first four eigenmodes via shaping the local oscillator exactly
with the shape of the eigenmodes are presented, which are all squeezed.

Above all, we did multimode characterization of the measured covariance
matrix. We experimentally show that the output of the SPOPO is multimode
squeezing, and the shape of the squeezed modes and corresponding squeezing.
And it is important to note that the number of the squeezed eigenmodes is
associated with the number of modes in the measurement basis [20]. In next
chapter, appealed to quantum information, in particular, cluster states for
measurement based quantum computing, we will present how to do from
multimode squeezing to a quantum network.

4.6.3 Full multipartite entanglement

Here, we want to evaluate multipartite entanglement within the gaussian
state obtained from the SPOPO. This work has been done in collaboration
with the group of W. Vogel in Rostock, and has been published in Physics
review letter (114, 050501, 2015) [32].

In the multimode case, we obtained a 10-mode covariance matrix from
the SPOPO. The 10 mode basis can be decomposed into many different par-
titions, each one distributing the 10 modes in K different and complementary
partitions, with K being any integer between 1 and 10.

The multipartite entanglement of a quantum state ρ̂ may be probed with
the use of a general Hermitian operator L̂ [84]. In particular, the state under
question is entangled with respect to a given K partition if and only if it may
be shown that

tr(L̂ρ̂) < gmin
I1,...,IK (4.9)
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Figure 4.26: The squeezing of the leading four eigenmodes are directly mea-
sured via shaping the local oscillator exactly with the shape of the eigen-
modes.
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Figure 4.27: With a 10-mode basis, the verified entanglement for all 115 974
possible partitions is sorted by the significance Σ.

where gmin
I1,...,IK is the minimum expectation value of L̂ among all separable

states of the K partition.

The partitions entanglement is characterized in terms of its statistical
significance Σ, which compares the difference between the expectation value
〈L̂〉 and its separable bound gmin

I1,...,IK to the experimental standard deviation
σ(L) is:

Σ =
〈L̂〉 − gmin

I1,...,IK

σ(L)
, (4.10)

which is the considered entanglement metric. The experimental error σ(L)
is determined through error propagation of 〈L̂〉, and we have,

σ(L) =

√√√√ N∑
i,j=1

(
[
M ij

xx

]2 [
σ(Cji

xx

]2
+
[
M ij

pp

]2 [
σ(Cji

pp

]2
), (4.11)

where σ(Cij
xx) and σ(Cji

pp) are the experimental errors of the elements Cij
xx

and Cji
pp in the corresponding covariance matrix; and the coefficient matrix

M , associated to L̂ in the gaussian case, is freely tuned to maximize the
significance Σ in Equ. 4.10. The optimization is achieved with a genetic
algorithm seen in the supplementary of [32].
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We get σ(Cij
xx) and σ(Cji

pp) based on the Monte Carlo method. Firstly,
we obtain the standard deviations from the experimental squeezing curves,
as seen in Fig. 4.20. Then random numbers are generated corresponding to
a gaussian distribution with the standard deviations. Using these random
numbers, we get 1000 covariance matrix and finally get σ(Cij

xx) and σ(Cji
pp).

With the 10-mode covariance matrix of the SPOPO, the verified entan-
glement for all 115 974 possible partitions is sorted by the significance Σ
[32], which is shown in Fig. 4.27. We can see, for all the partitions except
one, which is no partition, all the 10 bands, the significance are all below the
classical limit, and the distance is the defined by Equ. 4.10.

Consequently, the SPOPO exhibits full multipartite entanglement for all
the partitions [32]. Importantly, the currently employed criterion was able
to identify entanglement not recognizable with traditional separability met-
rics. The present approach allows for the identification of partially and fully
entangled states for applications in quantum communication or cluster state
computation.
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Chapter 5

Continuous-variable cluster
states
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Cluster states are the quantum resources for measurement based quan-
tum computing [38], where quantum operations can be implemented via one-
way measurement processes. Measurement based quantum computing, us-
ing clusters states and feed-forward strategy, has both continuous variable
and discrete regimes implementations. In discrete regime, it is directly non-
gaussian which can not be simulated by classical computers, however it is
probabilistic and difficult to scale [6] [40] [95]; in continuous variable regime,
it is deterministic to scale based on squeezed states and homodyne detec-
tion [29]. However, such as squeezer, controller-z gate, and homodyne are
all gaussian operations on the coherent gaussian states, therefore to manipu-
late non-gaussian quantum computing, non-gaussian operations still need be
developed to give non-trivial feed-forward in measurement processes [56] .

In this chapter, we will present the definition and generation of cluster
states in continuous variable regime via using multimode squeezing.

5.1 Cluster states in CV

Conventionally, cluster states are expressed in the Schrödinger picture, evolv-
ing a set of infinitely squeezed states |0〉⊗Np , where p indicates it is squeezed
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on the phase quadrature. And in this section, we use q̂ and p̂ to represent
the amplitude and phase quadrature operators, respectively.

Definition of a cluster state: any state that is obtained from a set
of N infinitely squeezed states, applying Cz interactions, i.e. the two-mode
controlled-Z gate e

i
2
q̂×q̂,

|ψV〉 = ĈZ [V ] |0〉⊗Np =
N∏
j,k

e
i
2
Vjk q̂j q̂k |0〉⊗Np = e

i
2
q̂TV q̂|0〉⊗Np , (5.1)

where the N ×N adjacency matrix V is real, and symmetric, in our case
composed of 0 and 1. When the element Vjk is 1, the nodes j and k are
correlated, corresponding to neighboring nodes in the graphic representation
of the cluster states; when the element Vjk is 0, it refers to nodes which are
not connected in the cluster. An example is shown in Fig. 5.1.

To describe nullifiers of cluster states, here we introduce an operator
called a ”stabilizer”, which is defined: If an operator K̂ satisfies for a state
|φ〉,

K̂|φ〉 = |φ〉, (5.2)

we call it a stabilizer for a state |φ〉.
The stabilizer of infinite squeezing is the displacement operator X̂(S),

X̂(S)|0〉p = e−isp̂|0〉p = |0〉p ∀s. (5.3)

And applying a Cz operation on the above equation, we obtain,

CzX̂(S)C†z
(
Cz|0〉⊗Np

)
= Cz|0〉⊗Np , (5.4)

thus we can obtain that the cluster state is stabilized by the set {Ki},

K̂i(s) = ĈZ [V ]Xi(s)ĈZ [V ]†

= e
i
2
q̂TV q̂Xi(s)e

− i
2
q̂TV q̂

=

(∏
j,k

e
i
2
Vjk q̂j q̂k

)
e−isp̂i

(∏
l,m

e−
i
2
Vl,mq̂lq̂m

)
(5.5)

Using such as
eiq̂1q̂2 p̂1e

−iq̂1q̂2 = p̂1 − q̂2, (5.6)

we calculate the stabilizer for a cluster state, and finally get,

K̂i(s) = e−isp̂i
∏

k∈neig(i)

Vi,ke
isq̂k = Xi(s)

∏
k∈neig(i)

Vi,kZk(s), (5.7)
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where we simplify the calculation by using the symmetric property of the
adjacency matrix, and k is related to the neighboring nodes of node i.

In the above equations, the set of stabilizers {K̂i} is formally equivalent
to its analog in the discrete case. One can demonstrate that {K̂i} form a Lie
group, whose generator Ĥi is defined by the derivative of stabilizers versus
the parameter s. By the definition of the generator, we have K̂i = e−isĤi ,

and Ĥi = i
(

dK̂i
ds

)
s=0

.

As when the parameter s is a small real displacement, we can express
the stabilizer as the Taylor expansion only with the zero and first orders,
Ki(s) = Ii + sdKi

ds
, therefore, we have,(
Ii + s

dK̂i

ds

)
|ψV 〉 = |ψV 〉+ s

dK̂i

ds
|ψV 〉 (5.8)

thus, according to the definition of the stabilizer, we have,

dK̂i

ds
|ψV 〉 = 0 (5.9)

and we obtain,
Ĥi|ψV 〉 = 0 ∀i. (5.10)

Here Ĥi is called the nullifiers for the cluster state |ψV〉,

Hi = i

(
dK̂i

ds

)
(s=0)

= i
d

ds

[
e−isp̂i

∏
k

Vi,ke
isq̂k

]
s=0

= i

[
−ip̂ie−isp̂i

∏
k

Vi,ke
isq̂k + e−isp̂i

d

ds

∏
k

Vi,ke
isq̂k

]
s=0

= p̂i + i

[
e−isp̂i

∑
k

Vi,kiq̂k
∏
l

eisq̂l

]
s=0

= p̂i −
∑
k

Vi,kq̂k. (5.11)

And this obeys, (
p̂i −

∑
k

Vi,kq̂k

)
|ψV 〉 = 0. (5.12)

Then it gives that the corresponding variances are zero directly,

∆2

(
p̂i −

∑
k

Vi,kq̂k

)
= 〈ψV |

(
p̂i −

∑
k

Vi,kq̂k

)2

|ψV 〉 = 0. (5.13)
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Here each nullifier is a linear combination of quadrature operators of the
corresponding cluster nodes. In practice, the variance of nullifiers can be
used as the criteria of clusters states: the corresponding state |ψV 〉 is
a cluster state, with a graph of adjacency matrix V , if all the nullifiers are
squeezed, and when the squeezing used to construct the cluster state goes to
infinite squeezing, the variances of nullifiers should be 0.

5.2 Cluster states with squeezed states and

linear optics

We can construct a cluster state using a symplectic transform acting on
a set of squeezed states. The symplectic matrix of the cluster sate with
a adjacent matrix V , which is a transform from infinitely squeezing ba-

sis ~asqz =
(
~asqz,~a

†
sqz

)T
=
(
âsqz1, âsqz, ..., â

†
sqz1, â

†
sqz2, ...

)T

to the target clus-

ter state ~acluV =
(
~acluV,~a

†
cluV

)T

=
(
âcluV1, âcluV2, ..., â

†
cluV1, â

†
cluV2, ...

)T

, in

Heisenberg picture, is given as below [53],

~acluV = S · ~asqz and, S =

(
I 0
V I

)
. (5.14)

It is easy to see, from the above equation, that ~acluV satifies the nullifier
criteria in Equ. 5.12. This associated transformations in the quadrature
representation, including on-line non-linear operations, are not easy to be
implemented experimentally.

Alternatively, according to Bloch Messiah reduction theorem [10], the
same cluster state ~acluV can be generated, experimentally, by applying to
infinite off-line squeezers the symplectic matrix composed of a unitary trans-
form,

~acluV = SU · ~asqz and, SU =

(
U 0
0 U∗

)
, (5.15)

where U is the corresponding unitary transform acting on a set of squeezers
squeezed in the phase quadrature p̂, ~asqz = (âsqz1, âsqz2, ...)

T
, and we have,

~acluster = U~asqz, (5.16)

With a given graph corresponding to an adjacency matrix V , the unitary
matrix of a cluster state can be written,

Ucluster = UV = X + iY and ~acluster = Ucluster~a
sqz, (5.17)
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where X and Y are the real and imaginary part of the unitary transform,
respectively. In the following, we will introduce the properties of UV and the
method we developed how to calculate from the adjacency matrix V .

According to Equ. 2.34, let us consider a set of orthogonal modes of

coherent states, with quadrature operators ~x(0) =
(
x̂

(0)
1 , ..., x̂

(0)
N

)
and ~p(0) =(

p̂
(0)
1 , ..., p̂

(0)
N

)
, thus Equ. 5.17 can be rewritten in the symplectic matrices:(
~x′

~p′

)
=

(
XV −YV
YV XV

)(
Kx 0
0 Kp

)(
~x(0)

~p(0)

)
=

(
XVKx~x

(0) − YVKp~p
(0)

YVKx~x
(0) +XVKp~p

(0)

)
, (5.18)

where

(
~xsqu

~psqu

)
= K =

(
Kx 0
0 Kp

)(
~x(0)

~p(0)

)
, and K is the diagonal matrix

representing the squeezing operation on each mode, defined in Equ. 2.62. It
is important to note that here we assume all the modes are squeezed in the
phase quadrature p̂, so Kp → 0.

According to the definition of cluster states in Equ. 5.17 and the criteria
of nullifiers in Equ. 5.13, we have:

~p′ − V ~x′ =
(
YVKx~x

(0) +XVKp~p
(0)
)

−V
(
XVKx~x

(0) − YVKp~p
(0)
)
→ 0, (5.19)

which leads,
(YV − V XV )Kx → 0⇒ (YV − V XV ) = 0, (5.20)

and
(YV + V XV )Kp → 0. (5.21)

Form above two relations, we see the physical interpretation of cluster
unitary transform Ucluster, which satisfies Equ.5.20 and gives an excess noise
because of finite squeezing. This excess noise is equal to the variances of
corresponding nullifiers:

∆2

(
p̂i −

∑
k

Vi,kq̂k

)
=
[
(XV + V YV )Kp(XV + V YV )T

]
i
. (5.22)

Next, we seek an explicit and analytical expression for the unitary trans-

form satisfying Equ. 5.20. The
(
~xC, ~pC

)T
is a set of quadrature operators of

corresponding cluster states,(
~xC

~pC

)
=

(
XV −YV
YV XV

)(
~xsqu

~psqu

)
. (5.23)
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As it is symplectic, it must satisfy,

XXT + Y Y T = I, (5.24)

XY T = Y XT . (5.25)

With the equations 5.20 and 5.24, we obtain,

XXT = (V 2 + I). (5.26)

Thus, we can get the symmetric solution Xs = XT
s ,

Xs = (V 2 + I)−1/2. (5.27)

With Equ. 5.20 again, we get,

Ys = V (V 2 + I)−1/2. (5.28)

Then we get the corresponding unitary transform from the above symmetric
solutions UV s = UT

V s,

UV s = (I + iV )(V 2 + I)−1/2. (5.29)

To be general, notice that if Xs and Ys satisfy Equ. 5.20, with arbitrary
real orthogonal matrix O, X = XsO and Y = YsO are also a solution of
Equ. 5.20. Therefore, we give the general solution for the unitary matrix
generating a cluster state with graph V (also called adjacent matrix), as
below,

UV (~θ) = (I + iV )(V 2 + I)−1/2O(~θ), (5.30)

where we use ~θ, which is the angle of orthogonal matrix O, to replace the
subscript ”s”. Importantly, the N × N matrix O is a linear operation of
rotating basis, containing N(N−1)/2 degrees of freedom, and can be chosen,
e.g., as Euler or Taint-Bryan angles.

From Equ. 5.30, as the orthogonal matrix O is not fixed, for a specific
graph corresponding a adjacent matrix V , many solutions of unitary trans-
forms exist. When the squeezers have identical squeezing, the nullifiers are
not dependent on O, but only upon the adjacent matrix V . However, when
the squeezers have different squeezing, e.g. the supermodes of the SPOPO,
there is an optimized orthogonal matrix O with a a adjacent matrix V . Thus
it is possible to run a searching algorithm [71] to find an O matrix that, e.g.,
allows us to minimize the nullifiers [31].
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Figure 5.1: The graph of the four-node-line-shape cluster. The circles repre-
sent the nodes of the cluster; the lines between two nodes correspond to the
quantum correlations, and this is referred to Vij = 1 in the adjacency matrix.

Here we give an example how to parametrize O. For a line four mode
cluster state, from Equ. 5.30, the symmetry solution is the product of six
rotation transforms,

U4linS =


5
6
−1

6
i
2
−1

6

−1
6

5
6

i
2
−1

6
i
2

i
2

1
2

i
2

−1
6
−1

6
i
2

5
6

 and, V4lin =


0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0

 , (5.31)

where the adjacency matrix V4lin corresponds to the graph in Fig. 5.1.
Then, the 4-mode orthogonal matrix O4mode(θ1, θ2, θ3, θ4, θ5, θ6) is,

cos(θ1) − sin(θ1) 0 0
sin(θ1) cos(θ1) 0 0

0 0 1 0
0 0 0 1

 ·


cos(θ2) 0 − sin(θ2) 0
0 1 0 0

sin(θ2) 0 cos(θ2) 0
0 0 0 1



·


cos(θ3) 0 0 − sin(θ3)

0 1 0 0
0 0 1 0

sin(θ3) 0 0 cos(θ3)

 ·


1 0 0 0
0 cos(θ4) − sin(θ4) 0
0 sin(θ4) cos(θ4) 0
0 0 0 1



·


1 0 0 0
0 cos(θ5) 0 − sin(θ5)
0 0 1 0
0 sin(θ5) 0 cos(θ5)

 ·


1 0 0 0
0 1 0 0
0 0 cos(θ6) − sin(θ6)
0 0 sin(θ6) cos(θ6)

 (5.32)

Thus, the general expression for a four mode line cluster state is U4lin =
U4linS.O4mode, which is function with 6 variables, θ1, θ2, θ3, θ4, θ5, θ6.

Here we can extend to higher dimension of cluster states based the above
example, which gives the avenue to do further optimization using a searching
algorithm [31].

5.3 Generating cluster states with OPOs

Previously, we theoretically proved continuous-variable cluster networks can
be generated using linear optics and many squeezers, which is also imple-
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Figure 5.2: The generation of cluster states using linear optics and squeezers.
(a) A four-mode line cluster states [99]; (b) A eight-mode line cluster state
[86].

mented experimentally, [85], [99]. As seen in Fig. 5.2, a four-mode and a
eight-mode cluster states generated.

In the generation of cluster states, in Fig. 5.2, in order the realizer the
unitary transform UV of Equ. 5.30, both employ linear optical network (uni-
tary), composed of optical beam splitters and phasers, acting on the inde-
pendent squeezers (OPOs).

Therefore, we conclude that any clusters state can generated via a spe-
cific unitary transform, a linear optical networks, and an array of squeezers.
However, with this method, we have to build different optical architectures
for different networks, which lacks scalability and flexibility.

In next chapter, we will present a scalable way of generating clusters,
with multimode squeezing from the SPOPO.
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Simulating quantum networks
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Multimode squeezing is an important resource for the design and fabrica-
tion of quantum networks, which play a central role in quantum information
processing and quantum metrology. For complex and practical tasks, how-
ever, multimode entanglement is required, where many quantum modes are
entangled and form a so-called quantum network [44]. Modes are then called
nodes, which are the fundamental information carriers, and these nodes are
interconnected with a series of channels through which the information flows.

Traditionally, multimode entanglement is thought as a many-body prop-
erties, where each node is physically separated from the other and can be
measured independently. However, now, many squeezed supermodes coprop-
agate together, and the network is being constructed via the measurement
process, in a spirit closely related to measurement based quantum computing
(MBQC) [54].

In this chapter, we will present a scalable way of generating quantum net-
works via measurement processes, with a multimode resource, the SPOPO.
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6.1 EPR network via pulse shaping

Before going to complex quantum networks, we show a new way, with the
SPOPO, how to realize EPR correlation via pulse shaping. EPR state is a
typical, and simplest quantum network, which usually contains two modes.
Traditionally, in continuous variable regime, we can generate EPR network
via the process, as seen in Fig. 6.1: two squeezers are mixed with a balanced
beam splitter, and the two outputs are the sum and difference of the input
squeezed modes [61].

Here, as seen in Fig. 6.1, we realize EPR entanglement via a different
way, shaping the local oscillator in the homodyne detection, instead of using
a beam splitter. To implement the function of the beam splitter, making a
difference and sum of the input squeezed modes, we shape the pulse shapes
of the local oscillator onto the difference and sum modes, and with a mul-
timode resource, homodyne detection accesses the noises of corresponding
EPR modes.

We shape the local oscillator using the SLM, and the principle is explained
in Chapter 4. For instance, the shape in top left in Fig. 6.1, the blue and the
red parts are refering to a amplitude modulation of 1 and a phase modulation
of 0 and π, respectively, as seen in Fig. 4.17.

For the multimode quantum resource, the SPOPO, as seen in Fig. 6.1,
the left two modes with the specific spectral shapes, similar to the first and
the second supermodes, are independently squeezed; on the right side, the
two modes with the blue and red shapes are the sum and difference modes,
respectively.

Using the mode-dependent homodyne detection, in Equ. 4.5, therefore,
in practice we checked the EPR witness by shaping the local oscillator onto
the corresponding shapes. The quantum noises are, via homodyne detection,
presented in Fig. 6.2, where the individual EPR modes have only the ex-
cess noises, and strong correlations (squeezing) are observed in the sum and
difference shapes.

In addition, we checked the measurements with EPR-like criteria[22] [68],

∆2xR|B ·∆2pR|B ' 0.59 < 1,

〈(x̂R+B)2〉+ 〈(p̂R−B)2〉 ' 0.48 < 1, (6.1)

where ∆2xR|B and ∆2pR|B are conditional variances. Thus the two modes of
blue and red spectral bands are EPR entangled. More possibilities of EPR
and Duan entanglement are included in the SPOPO [70].

Above, we presented a new method, with the SPOPO, how to generate
EPR correlation network via ultrafast pulse shaping. Here, we can access
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Figure 6.1: EPR generation via mixing squeezing with an optical beam split-
ter. Two squeezers are mixed with a half beam splitter, and the two outputs
are the sum and difference of the input squeezed modes.

EPR entanglement without the beam splitter, as seen in Fig. 6.1, yet we
realize the same physics, making difference and sum of the two squeezed
modes. Both ways, the beam splitter and pulse shaping of the local oscillator,
are equivalent to a basis change on the quantum resource, which we discussed
in Chapter 2. Differently, the way of pulse shaping onto the local oscillator
can not spatially separate the EPR modes with homodyne detection, however
it supplies a new avenue to interrogate the noise property of multimode
quantum resource in an arbitrarily shaped mode.

The advantage of the new way via pulse shaping, is that we can realize any
basis change within the same photonics construction, but the conventional
way to do so, using beam splitters and linear optics, as we mentioned in
Chapter 5.3, has to change the optical networks for a different basis change,
which lacks scalability.

Above all, we can access complex quantum networks, via projective mea-
surements using multimode resource, and in next section, we will introduce,
with multimode quantum resource, how to simulate arbitrary gaussian quan-
tum networks via measurement processes.

6.2 Simulating quantum networks with SPOPO

Quantum network, conventionally, with multimode entanglement, may be
fashioned by applying a unitary transformation Unet on many independent
squeezers[85]. A quantum network can be described as below,

~a net = Unet · ~a psqz (6.2)

where, ~a psqz and ~a net represent many squeezers and nodes of the quantum
network, respectively. For instance, for cluster networks, Unet is the one of
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Figure 6.2: EPR witness via pulse shaping.

cluster unitary transform of Equ. 5.30.
In our case, let us call ~a sqz = (âsqz

1 , ..., âsqz
16 ) the annihilation operators

associated to the eigenmodes of the light source. They can be constructed
from the frequency band annihilation operators ~a pix = (âpix

1 , ..., âpix
16 ) through

the matrix containing the covariance matrix eigenvectors Usqz, such that
~a sqz = Usqz~a

pix, which is fully equivalent a basis change form frequency-band
basis to squeezing basis. Among these 16 eigenmodes, the first 12 are the
squeezed ones as represented in figure 4.23 , and are the ones we will consider
to construct a quantum network. The squeezed quadratures of these modes
alternate, from amplitude to phase. In order to simplify the description of
the network we introduce the diagonal matrix ∆FT = diag{0, i, ..., 0, i} so
that ~a sqz = ∆FT~a

psqz where ~a psqz are the annihilation operators correspond-
ing to the same modes but now phase shifted in order to all be squeezed on
the p quadrature. Then the quantum network construction, starting from
the frequency band basis, can be written as below,

~a net = Unet ∆FT Usqz~a
pix (6.3)

Where, the product of Unet ∆FT Usqz , experimentally, is the total unitary
transform, which can be realized by ultrafast pulse shaping to generate on-
demand quantum networks.

As seen in Fig. 6.3, a desired basis change on the multimode state ρ̂
can be achieved by customizing the local oscillator (LO). The desired basis
change is realized by measurement processes, where homodyne detection ac-
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Figure 6.3: Actualizing quantum networks via measurement processes, where
multimode state ρ̂ of light is projected onto the desired mode ~πi. As the
pules shape can be complex, which is represented with the corresponding
spectrogram. The set of modes {~πi} is constructed with the total unitary
transform, corresponding to Unet in Equ. 6.2.

tualizes the basis rotation by projecting the multimode state onto a LO that
is adapted to be an arbitrary linear combination of the individual squeezed
modes. Pulse shapes corresponding to such superpositions are readily gen-
erated with femtosecond pulse shaping methodologies, referring to Chapter
4. In this manner, the detection process emulates a linear optical network,
and arbitrary Gaussian quantum networks may be synthesized simply be
modifying the spectral detection basis.

Based on the principle in Equ. 6.3, we give an example of emulating a
six mode cluster state, as seen in Fig. 6.4. Experimentally, in the basis of
pixel modes ~apix, we apply the product of corresponding unitary transforms
UV ∆FT Usqz on the SLM. Therefore, we can access the nodes of the cluster
state via projecting the quantum resource onto the shaped local oscillator in
homodyne detection, and the corresponding pulse shapes are represented in
the form of spectrums, as seen in Fig. 6.4.

6.3 Witness of quantum networks

Appealed by measurement based quantum computing, here we simulate a
series of different networks of cluster states defined in Equ. 5.17, and nullifiers
of cluster states satisfy Equ. 5.13.

As each cluster node is represented as a superposition of the uncorrelated
comb squeezers, it possesses a unique pulse shape. The cluster nullifiers,
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Figure 6.4: Generating a six mode cluster state via pulse shaping. The pulse
shapes, for this six mode cluster state, are the product of the cluster trans-
form U6cluster, representing the cluster with the graph, and the p-squeezed
eigenmodes ∆FTUsqz. We represent the corresponding complex pulse shapes
in the form of spectrograms. The shape of node i corresponds to Uneti , the
ith colonum of Unet.

Figure 6.5: Witness of cluster states. For the simulated six mode clus-
ter state, one of the nullifier modes is constructed by combining amplitude
quadrature of node1 and phase quadrature of adjacent nodes 2 and 3. The
noise of the nullifier mode is measured via homodyne detection. The noise
of the nullifier is squeezed, which is below the shot noise limit (blue dashed
line).

120



121

in Equ. 5.13, are superpositions of the individual cluster nodes, which also
allow them to be directly constructed with the pulse shaper.

Thus, nullifiers can also be expressed into a series of modes, which can
be shaped with the local oscillator. To characterize the clusters we simulate,
from Equ. 6.3, we define nullifier modes in the quadrature representation,

~δ =

(
~xnul

~pnul

)
= (−V, I)

(
~xnet

~pnet

)
(6.4)

where V is the adjacent matrix of the cluster state; ~xnet = {x̂net
i } and ~pnet =

{x̂net
i } are the amplitude and phase quadrature operators of the cluster, ~anet =

~xnet + i~pnet. In practice, we use the corresponding normalized nullifier modes
{δ̂i} in the representation of the annihilation operators, then the nullifier
mode related to the unitary transform can be obtained and applied to the
SLM to shape the local oscillator.

For instance, in Fig. 6.5, for a six node cluster, the shape of node i
corresponds to Uneti , the ith colonum of Unet. To measure the variance of the
nullifier, we have the corresponding normalized nullifier mode 1, e.g. related
to the combination (Unet1+iUnet2+ iUnet3), written on the shaper. Then via
homodyne detection, the variances of the nullifiers are measured with the
local oscillator shaped into specific pulse shapes.

According to Equ. 5.13, if all the nullifiers of the cluster state are
squeezed,

∆2(δ̂)→ 0, (6.5)

it means we achieved simulating the corresponding cluster state. In practice,
we did an optimization to get the unitary transform Unet which minimizes
the variances of the nullifiers, which is presented in detail in Appendix 1.
For the six-node cluster, we measured the variances of all the six nullifiers
modes, which are all squeezed. Thus we can claim the cluster is achieved
experimental. Each nullifier exhibits field fluctuations below the shot noise
limit, which indicates that each node is entangled with its neighboring nodes.

Furthermore, a collection of other quantum networks from four up to
twelve-node cluster states were also successfully fabricated utilizing this method-
ology. In Fig. 6.6 (a), versatile 4- and 6-node cluster networks are investi-
gated, where the corresponding nullifier variances, which are constructed with
suitable programming of the pulse shaper, are shown below each structure.
Further the scalability is shown in the Fig. 6.6 (b), where from 4 to 12 node
line and stair chain shape cluster states are exhibited. All of the nullifiers
exhibit noise values below that of the 0 dB shot noise limit, which indicates
successful creation of the various networks.
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Interestingly, we found that, among different graphs of cluster states,
the nullifier values are squeezing-source-dependent and cluster-dependent.
Firstly as to the light source, the group of nullifiers for a given structure
do not all possess the same variance, which is due to the non-uniform dis-
tribution of squeezing in the input qumodes, and the variances of nullifiers
increases as the nodes number goes up because squeezing in high order of
eigenmodes of the light source decreases, as seen in Fig. 6.6 (b). Secondly,
the mean is approximately equal across the examine series, which indicates
that the simulation of networks is decided by allocating the finite resources
optimally. Besides and importantly, as to cluster graph property, when the
same-number-of node graphs are with more neighboring connections, the
nullifiers have lower mean variances. In Fig. 6.6 (a), the mean variance of
nullifiers of the four-node square graph state is lower than line and T-shape
graph, and also star graph six-node cluster state has lower variance than
line-shape one, as well in Fig. 6.6 (b), all the stair-chain cluster states have
bit lower variance than line shape ones.

It is important to note that the creation of these cluster structures does
not necessitate any change of the optical architecture. Rather, the connec-
tivity of the network structure is modified simply by varying the basis in
which the state is detected. Given that an arbitrary, multimode Gaussian
transformation of the squeezer set can be represented with a unitary matrix,
a set of identifiable pulse shapes may be associated with the transformation
output. In this manner, it is possible to directly probe any Gaussian entan-
glement criteria. The fact that each of these structures may be revealed by
only modifying the measurement basis indicates that these networks are all
implicitly embedded within the entanglement of the quantum comb.

6.4 Simulating a multipartite quantum secret

sharing

Quantum secret sharing is a way sharing secret using a quantum correlation,
which is secure and with better fidelity compared to classical method. Here
we simulate a multipartite quantum secret sharing based on a six-mode linear
optical network, which is the same as a unitary transform of the six-mode
cluster, as seen the top right inset of Fig. 6.7. Node 1 to 5 are five receivers,
at least three receivers together are able to recover the secret information
encoded in the network, and the node 6 acts as a dealer, which need to be
measured every time and send information to the three receivers who are
sharing and reconstructing the secret [47] [52].
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Figure 6.6: Witness of simulated clusters. The red lines represent the shot
noise limit and the points in the boxwickers are mean squeezings of nullifiers.
They are all below shot noise limit meaning achievements of all the simulated
clusters states.
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Figure 6.7: Fidelity of secret sharing. Up right inset is the graph of a simu-
lated cluster state used for quantum secret sharing. Node 1 to 5 are receivers
and node 6 is a dealer. The horizontal axis is consist of all 10 three-receiver
sharing groups. Red and blue jointed points are respectively fidelities of re-
constructed secret with a -4 dB and -3 dB squeezing resource respectively.
The black curves are inferred from the individual squeezing of the eigen-
modes. The green curve corresponds to fidelity using a coherent resource.
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In our case, the states of the secret sharing network, ~asecsh, are constructed
by the leading six eigenmodes of the SPOPO, ~asecsh = U6se·~asqz

i , as seen in Fig.
4.24, and the sixth eigenmode is used to carry classical secret information,
âsqz

6 = âs, thus, we have,
âcluster

1

âcluster
2

âcluster
3

âcluster
4

âcluster
5

âcluster
6, dealer

 = U6se ·


âsqz

1

âsqz
2

âsqz
3

âsqz
4

âsqz
5

âsqz
s

 , (6.6)

where the cluster matrix couples the five squeezers and the secret into a
quantum network, and U6se is the same as the cluster unitary transform in
Equ. 5.30. Differently from cluster states, the secret can be any gaussian
state, and does not have to be squeezed. And this secret sharing network is
constructed with same unitary transform as a six-node cluster, yet it doesn’t
have to be a cluster state. In particular, in the simulation of secret sharing,
the secret is a squeezed vacuum.

As in practice the secret and the reconstructed secret are respectively two
different modes, corresponding two different pulse shapes for our simulator,
therefore, experimentally, we are able to tomography the gaussian sates of
secret mode and reconstructed secret mode via homodyne detection with
specific shaping local oscillator.

The relationship of reconstructed secret quadratures and secret quadra-
tures are as below, which is an example of secret sharing revealed by the
receivers 1, 2 and 3,

x̂123 =
3∑
i=1

mix̂
i +

3∑
j=1

nix̂
j + p̂dealer = x̂s +

5∑
i=1

aip̂
sqz
i (6.7)

p̂123 =
3∑
i=1

pix̂
i +

3∑
j=1

qip̂
j + P̂ dealer = p̂s +

5∑
i=1

bip̂
sqz
i (6.8)

where x̂123 and p̂123 are the amplitude and phase quadratures of the recon-
structed secret revealed via measuring the nodes 1, 2, and 3 of the corre-
sponding cluster state, âreS

123 = x̂123 + ip̂123; x̂i, p̂i and p̂dealer are the ampli-
tude and the phase quadratures of corresponding receiver nodes and phase
quadrature of the dealer node respectively, âsecsh

i = x̂i + ip̂i; {p̂sqz
i } represent

independently squeezed phase quadrature of eigenmodes which contribute
excess noises, and x̂s, p̂s are the secret amplitude and phase quadrature re-
spectively. In the above equations 6.7 and 6.8, the reconstructed secret is
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expressed in different basis, which are the basis of simulated cluster network
and the squeezing basis of the quantum resource, the SPOPO. The detailed
expressions for partitions of secret sharing are presented in Appendix 2.

In the simulation of secret sharing, we directly measure the reconstructed
secret mode, which is referring to a pulse shape expressed in frequency-band
basis, {~apix} in Equ. 6.3, instead of measuring the nodes of cluster states
individually [47]. Then we can obtain the state information of reconstructed
secret and experimental fidelities. In the equations 6.7 and 6.8, it also sug-
gests the quality of the secret reconstruction will depend on the level of the
squeezing of the source, and will be perfectly rebuilt while increasing squeez-
ing to infinite,

âreS
123 → âs, if ∆2(p̂sqz

i )→ 0. (6.9)

Here, we give the fidelity [51] for two gaussian states,

F =
2√

A+B −
√
B

exp
[
−αT (V1 + V2)−1α

]
, (6.10)

where V1 and V2 are the covariance matrix of two gaussain states. A =
det(V1 +V2), B = (detV1− 1)(detV2− 1), and α is the difference of the mean
amplitudes of two gaussian states. When the secret is vacuum, α = 0,

F =
2√

A+B −
√
B
. (6.11)

For secret sharing, the covariance matrix of the reconstructed secret and
the secret are,

V1 = VreS =

(
∆2(x̂reS) 0

0 ∆2(p̂reS)

)
and, V2 = Vs =

(
∆2(x̂s) 0

0 ∆2(p̂s)

)
(6.12)

Experimentally, to calculate the fidelity, we measured the noises, in Equ.
6.12, via shaping the local oscillator onto the modes of reconstructed se-
cret and the secret, which are expressed in the equations of 6.7 and 6.8.
According to Equ. 6.11, we obtained the corresponding fidelities for all 10
partitions of secret sharing. In Fig. 6.7, the fidelities using the -4 dB (red
curve), -3 dB (blue curve) quantum resource and coherent resource (green
curve), are presented; for the quantum resource, according to the equations
of 6.7 and 6.8, we also give the fidelities (black curves) inferred from the
individual squeezing of the p-squeezed eigenmodes, p̂sqz

i . For a good simu-
lator, the fidelities from the reconstructed secret mode should be similar to
the inferred ones from the individual squeezing, which can be the reference
to evaluate the simulator. As the eigenmodes are slightly different for phase
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and amplitude quadratures, consequently, we have a deviation between the
fidelity curves from directly reconstructed modes and individual squeezing of
the eigenmodes (red and black, green and black). In principle, the deviation
is from the purity of the multimode quantum state from the SPOPO, and
we can improve it via reducing the loss in the generation and measurement
process of the SPOPO.

In this quantum secret sharing simulation, it is shown both fidelities for
measuring reconstructed secret modes and individual squeezings match well,
which suggest the success of our quantum network simulating a quantum se-
cret sharing process. Importantly, as the measurement mode of our simulator
is on-demand, it gives a tremendous potential to simulate versatile MBQC
protocols with the quantum network simulator.

6.5 Conclusion

In summary, versatility and scalability of an on-demand network simulation is
presented, and also a multipartite quantum secret sharing in simulated based
on a six-node cluster network. Instead of doing a lot of real optical network
constructions, all of different simulated networks are achieved in the fixed
setup, the simulator. Importantly, the simulation results can give a gaussian
state information, such as nullifiers of cluster states, noise measurement of a
gaussian state in an arbitrary pulse shape, experimental fidelity of a linear
quantum gate and so on like what we did in this paper, exactly the same as
measured in a real quantum network, but which is static.

All of simulations we did is because the discrete squeezers possess unique
temporal or spectral mode patterns. This provides a unique opportunity for
independently addressing them in a multimode beam. Then with spectral-
selectivity in the detection process, which may be accomplished with pulse
shaping, or more generally any variety of mode-dependent homodyne detec-
tion, allows the synthesis of any linear combination of the individual squeezed
modes. In this manner, the detection process actualizes a basis change that
emulates a linear optical network in a manner analogous to what has previ-
ously been implemented in the spatial domain [2]. Importantly, this does not
necessitate a modification of the quantum resource, but only of the manner
in which it is measured.

The limitation of this method is that all the quantum states co-propagate
within the single beam. Yet for quantum computing, we need to control the
nodes of quantum networks simultaneously, e.g. measurement-based quan-
tum protocols [30]. To aim that, we will introduce multi-pixel homodyne de-
tection to realize simultaneously detecting all the nodes of a network. In this
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manner, any quantum control is implemented via measurement processes,
and has no need to change the optical architecture. This fact suggests a
tremendous flexibility when using femtosecond pulse trains as a basis for
quantum networks.

6.6 Appendix 1: Optimization of cluster ma-

trix

Based on Equ. 2.34, Snet is the sympletic form of the unitary matrix,
UV ∆FT Usqz , in Equ. 6.2. For cluster states, the covariance matrix of the
corresponding cluster state is,

Vnet = ST
netVSPOPOSnet, (6.13)

and from Equ. 2.34, the corresponding variances of the nullifiers are,

∆2(δi) = ~δi
T
Vnet~δi, (6.14)

where ~δi is the nullifier mode in Equ. 5.13.
Via parametrizing the O in UV , we use a searching algorithm to optimize

the sum of nullifier variances [31],

f(θ1, θ2, . . . , ) =
∑
i

∆2(δi). (6.15)

With the solution of O(θ1, θ2, . . . , ), we obtain the optimized unitary matrix
UV of cluster states.

6.7 Appendix 2: Reconstructed secret modes

For secret sharing, we present the six mode cluster matrix UV in Euq.6.2,
and the real part is,


0.623367 0.00783019 −0.137478 −0.137478 0.00783019 −0.0590805

0.00783019 0.623367 0.00783019 −0.137478 −0.137478 −0.0590805
−0.137478 0.00783019 0.623367 0.00783019 −0.137478 −0.0590805
−0.137478 −0.137478 0.00783019 0.623367 0.00783019 −0.0590805
0.00783019 −0.137478 −0.137478 0.00783019 0.623367 −0.0590805
−0.0590805 −0.0590805 −0.0590805 −0.0590805 −0.0590805 0.482232

,


(6.16)
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and the corresponding imaginary part is,
−0.0434201 0.426808 −0.188729 −0.188729 0.426808 0.364071

0.426808 −0.0434201 0.426808 −0.188729 −0.188729 0.364071
−0.188729 0.426808 −0.0434201 0.426808 −0.188729 0.364071
−0.188729 −0.188729 0.426808 −0.0434201 0.426808 0.364071
0.426808 −0.188729 −0.188729 0.426808 −0.0434201 0.364071
0.364071 0.364071 0.364071 0.364071 0.364071 −0.295403

 .

(6.17)
The reconstructed secret modes are,

x̂123 = 0.696399p̂1 + 0.556742p̂2 + 0.696399p̂3 − 0.312492p̂4 − 0.312492p̂5 + x̂s

x̂124 = 1.56563p̂1 + 1.56563p̂2 − 0.312492p̂3 − 1.18173p̂4 − 0.312492p̂5 + x̂s

x̂125 = 0.556742p̂1 + 0.696399p̂2 − 0.312492p̂3 − 0.312492p̂4 + 0.696399p̂5 + x̂s

x̂134 = −1.18173p̂1 − 0.312492p̂2 + 1.56563p̂3 + 1.56563p̂4 − 0.312492p̂5 + x̂s

x̂135 = 1.56563p̂1 − 0.312492p̂2 − 1.18173p̂3 − 0.312492p̂4 + 1.56563p̂5 + x̂s

x̂134 = 0.696399p̂1 − 0.312492p̂2 − 0.312492p̂3 + 0.696399p̂4 + 0.556742p̂5 + x̂s

x̂234 = −0.312492p̂1 + 0.696399p̂2 + 0.556742p̂3 + 0.696399p̂4 − 0.312492p̂5 + x̂s

x̂235 = −0.312492p̂1 + 1.56563p̂2 + 1.56563p̂3 − 0.312492p̂4 − 1.18173p̂5 + x̂s

x̂245 = −0.312492p̂1 − 1.18173p̂2 − 0.312492p̂3 + 1.56563p̂4 + 1.56563p̂5 + x̂s

x̂345 = −0.312492p̂1 − 0.312492p̂2 + 0.696399p̂3 + 0.556742p̂4 + 0.696399p̂5 + x̂s

p̂123 = −0.717699p̂1 + 1.64001p̂2 − 0.717699p̂3 + 0.303388p̂4 + 0.303388p̂5 + p̂s

p̂124 = 0.618922p̂1 + 0.618922p̂2 + 0.303388p̂3 − 1.03323p̂4 + 0.303388p̂5 + p̂s

p̂125 = 1.64001p̂1 − 0.717699p̂2 + 0.303388p̂3 + 0.303388p̂4 − 0.717699p̂5 + p̂s

p̂134 = −1.03323p̂1 + 0.303388p̂2 + 0.618922p̂3 + 0.618922p̂4 + 0.303388p̂5 + p̂s

p̂135 = 0.618922p̂1 + 0.303388p̂2 − 1.03323p̂3 + 0.303388p̂4 + 0.618922p̂5 + p̂s

p̂145 = −0.717699p̂1 + 0.303388p̂2 + 0.303388p̂3 − 0.717699p̂4 + 1.64001p̂5 + p̂s

p̂234 = 0.303388p̂1 − 0.717699p̂2 + 1.64001p̂3 − 0.717699p̂4 + 0.303388p̂5 + p̂s

p̂235 = 0.303388p̂1 + 0.618922p̂2 + 0.618922p̂3 + 0.303388p̂4 − 1.03323p̂5 + p̂s

p̂245 = 0.303388p̂1 − 1.03323p̂2 + 0.303388p̂3 + 0.618922p̂4 + 0.618922p̂5 + p̂s

p̂345 = 0.303388p̂1 + 0.303388p̂2 − 0.717699p̂3 + 1.64001p̂4 − 0.717699p̂5 + p̂s

(6.18)

where p̂i is the phase quadrature of node i in the secret sharing cluster, and
x̂s, p̂s are the amplitude and phase quadratures of the secret itself.
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In previous chapters, we introduced an innovative method of realizing
quantum networks, and it can simulate on-demand quantum networks via
ultrafast pulse shaping. However, with the simulator, only one correlation
with some specific mode can be accessed at one time. For quantum comput-
ing, such as measurement based quantum computing [67], it is required that
entanglement of all the modes can be measured simultaneously, thus, all the
correlations can be collected in real time among the measurement modes,
which also can be controlled in real time to realize quantum computing. In
this chapter we will introduce a new way of measuring multimode property of
the quantum resource, multi-pixel homodyne detection, and its applications
in quantum information processing and quantum metrology.
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Figure 7.1: Multi-pixel homodyne detection. The signal and the local oscil-
lator are mixed by a balance beam splitter; after the beam splitter, the two
beams are dispersed by two prisms (or gratings) and focused on the Fourier
plane, where two photodiode arrays are set to measure different colors of the
beams, then we make differences between each color pairs; a multi-channel
data acquisition system is employed. Besides, microlens arrays, in front of
the photodiode arrays, are used to focus different spectral components in the
corresponding pixel to avoid the loss induced by the gap between pixels on
the photodiode arrays.

7.1 Multipixel homodyne detection

To realize the simultaneous detection of all the modes, multi-pixel homodyne
detection is employed, whose scheme applied for the SPOPO is as seen in
Fig. 7.1. Compared to the scheme of quantum network simulator in Fig.
6.3, we can see, here, in Fig. 7.1, the measurement part is replaced by the
multi-pixel homodyne detection, while the quantum resource, the SPOPO,
is still kept.

In the multi-pixel homodyne detection, as seen in Fig. 7.1, after the
balance beam splitter, the two beams are dispersed by two prisms (or grat-
ings) and focused on the Fourier plane, where two photodiode arrays are
located to measure different color components of the beams, then we obtain
the difference signals between each pixel pairs. Therefore, the multi-pixel
homodyne detection is similar to many individual homodyne detections in
the same time. The experimental set-up is as seen in Fig. 7.2. In practice,
we used two gratings to disperse the input light horizontally, and the -1 order
diffraction of the grating is focused by the microlens arrays and measured by
the multipixel detector 1.

Here, in the multipixel homodyne detection, we assume the measurement
basis is composed of the normalized pixel modes of the local oscillator {ui},

1As among the pixels of the photodiode array are gaps, which introduce a loss for
measuring the light. The microlens array can focus each color component in the center of
each pixel without loss because of the gaps in the photodiode array
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Figure 7.2: (a). The experimental setup of multi-pixel homodyne detection,
where the red lines represent the laser beams, which are detected by a pair
of home-made photodiode array detection system. (b) The detection process
with a photodiode array, e.g. 6-pixel, where each spectral band is measured
with a corresponding pixel of the photodiode array.

as seen in Fig.7.2 (b), which correspond to the spectral components mapped
on each pixel of the photodiode array. Therefore, the difference of each
individual pixel pairs is similar to a single homodyne detection associated to
the pixel spectral bands, and gives the projection of the signal Ês =

∑
j â

(j)
s us

j

onto the corresponding pixels modes {ui} of the local oscillator [30]. When
assuming the projection

∫
u∗iu

S
jdΩ is real and the power of the local oscillator

is much bigger than the signal one, PLO � Ps, we have,

Î−i =
√

2P i
LO

∑
j

∫
u∗iu

S
jdΩx̂

Sj
θ , (7.1)

where θ is the global relative phase between the local oscillator and the
signal beams, the corresponding quadrature is x̂

Sj
θ = e−θâ

(j)
s + eθ(â

(j)
s )† and

P i
LO is the optical power of the ith pixel local oscillator. Similar as the single

homodyne detection in Equ. 4.5, generally, we can adjust the phase of each
signal mode â

(j)
s to make the projection

∫
u∗iu

S
jdΩ real, but here, to aim so

for every pixel, we need additionally that the local oscillator has a flat phase
for each pixel mode. As we discussed in Chapter 4 for single homodyne
detection, in the SPOPO experiment, the signal, the supermodes, and the
local oscillator from the Mira laser satisfy the conditions, and the projection
for each pixel can be all real via adjusting the global phase of the signal
consisting of many supermodes.
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For the multi-pixel homodyne detection, we normalize the difference sig-
nals with the individual powers of the local oscillator (or corresponding

shot noises)2. The normalized signals are defined as ~S = (Ŝ1, Ŝ2, . . . )
T =

(Î−1 /
√

2I1
LO, Î

−
2 /
√

2I2
LO, . . . )

T, thus, we can get,

Ŝi =
∑
j

∫
u∗iu

S
jdΩx̂

Sj
θ =

∑
j

Uijx̂
Sj
θ , (7.2)

where Uij is the projection, which is a quasi-basis change from the signal
modes {uS

j} to the pixel modes {ui}.
Then we can obtain all the signals ~S simultaneously. As among the

signal modes are no correlations, e.g. the supermodes of the SPOPO have no
correlations, therefore, we can get the variances ∆2(Si) of all the individual
pixels and correlations 〈SiSk〉− 〈Si〉〈Sk〉 between any two pixels in the same
time, when it i

∆2(Si) =
∑
j

(Uij)
2∆2x̂

Sj
θ and 〈SiSk〉−〈Si〉〈Sk〉 =

∑
j

UijUkj∆
2x̂

Sj
θ . (7.3)

For the SPOPO, the signal modes are the supermodes as seen in Fig.
3.8m, which are projected onto each pixel modes {ui} simultaneously via
multipixel homodyne detection. Here each pair of pixels is the same as a
single homodyne detection with shaping the local oscillator onto a frequency
band, however, as all the pixels process simultaneously, all the correlation
information between different frequency bands is recorded. Hence this pro-
vides possibilities for one-way quantum computing [67], which need measure
and destroy entanglement of all the modes in the same time. We will present
how to measure all the correlations simultaneously and construct covariance
matrix with the multi-pixel homodyne detection system in section 3 of the
this chapter.

7.2 Setup and alignment

In practice, we develop a multi-pixel homodyne detection system, includ-
ing commercial photodiode arrays, homomade electronics, and data acqui-
sition system. The photodiode array is a 1-D silicon photodiode with 16
pixels(Hamamatsu, model S4111-16Q, ∼ 90% quantum efficiency, sensor size
one pixel 1.45×0.9mm). In the experiment, we use the central eight pixels

2The shot noises are proportional to the corresponding optical powers of the local
oscillator in homodyne detection.
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of the photodiode array for the multi-pixel homodyne detection. We design
and fabricate the eight-channel amplifier in the electronics shop in the lab-
oratory, as seen in Fig. 7.3 (a), whose electric circuit is in the appendix.
The electronics for each pixel is the same as the single homodyne detection,
where we amplify the signal from individual pixel sensors, and then make a
difference of each pair.

And a multichannel data acquisition card (NI) is developed to collect
the eight-channel data simultaneously from the eight difference signals of the
multipixel homodyne measurement, as seen in Fig. 7.3 (b). To each channel
we apply the configuration of Fig. 4.18 c, For the channels corresponding to
the middle frequency bands, we achieve 7 dB clearance compared to electric
dark noise. This is lower than single homodyne detection system (10 dB).

Besides, to overcome the gap between pixels in the photodiode arrays,
we use microlens arrays (f=17mm) in front of the photodiode arrays to focus
different spectral components in the corresponding pixel without loss, as seen
in Fig. 7.1.

To align the photodiode arrays, first, we align horizontally the positions
of the two photodiode arrays and the mircrolens to make the beam shine in
the center of the photodiode arrays, according to the DC output; second, we
give a fixed amplitude modulation (AOM) at 1.5 MHz, which is the same
frequency we observer squeezing, on a single spectral band of the beam (by
pulse shaping or an optical filter δλ ' 1 nm), and make each pixel of the
two photodiode arrays have the same electric gain by adjusting a resistance
in the electric circuit of the detectors.

In the experiment, the data acquisition system often has difficulties from
the complexity of the setup, as seen in Fig. 7.3, such as leak radio noises3 ,
saturations of the amplifiers, and grounding, etc. In the experiment, when we
activate eight pixels of the photodiode array, firstly the multipixel homodyne
detection generate sixteen photocurrents, which need many cables to connect
with the electronics, such as amplifiers, mixers, data acquisition, etc.. Most
of the problems originate from the connections, which induce radio noise
leaked in the air. Therefore, as the system can extend to be more and more
complex via just increasing the amount of the measurement pixels, we have
to consider to develop a more compact, robust and high-efficiency detection
system in future.

3As the electronics shielding is not good, the leak radio noises sometimes can be received
by the detection system.
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Figure 7.3: The experimental electronics. (a) The rear side the frequency-
resolved detectors. (b) The data acquisition system.

7.3 Simultaneously measuring multimode co-

variance matrix

To construct the covariance matrix of the SPOPO with multi-pixel homodyne
detection, when θ = 0 and in the pixel basis {ui}, the elements of amplitude
quadrature are, assuming all the mean values are 0,

∆2x̂i = ∆2(Si) and, 〈x̂ix̂k〉 = 〈SiSk〉, (7.4)

where ∆2x̂i and 〈x̂ix̂j〉 are the diagonal elements and off-diagonal elements
of the amplitude quadrature covariance matrix, respectively, obtained by the
corresponding variance ∆2(Si) and the mean of products 〈SjSk〉. It is similar
for the phase quadrature, when θ = π/2.

Here, as all the pixels of detection occur simultaneously, for the ampli-
tude or phase quadrature, we don’t need to measure many times or the
combination modes of Equ. 3.52 compared to single homodyne detection.
All the variances and correlations terms for constructing covariance matrix
are obtained simultaneously, thus we can access the quantum correlation of
all the modes in the same time, supplying the possibilities to do quantum
computing.

Besides, for constructing the covariance matrix, we can also first con-
struct the variance curves, as seen in Fig. 4.20, then obtain the elements of
covariance matrix from Equ. 3.53. This way is useful when scanning the ho-
modyne phase θ, which is not locked, and we can easily define the amplitude
and phase quadratures with the peaks and valleys in the variance curves.
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For a eight-pixel case, the covariance matrix, measured with eight-pixel
homodyne detection, is presented in Fig. 7.4. For the SPOPO, the correala-
tios, 〈x̂ip̂j〉 and 〈p̂ix̂j〉 are absent. And the covariance matrix consists of the
amplitude and phase quadratures, which is normalized by the shot noises.

Furthermore, via diagonalizing the covariance matrix, the eigemodes and
corresponding squeezing are presented in Fig. 7.5. Importantly, the spectral
shapes of the eigenmodes are similar to the ones obtained via the way of
single homodyne detection and pulse shaping, as seen in Fig. 4.23, and all the
eigemodes are squeezed, whose squeezing values are corrected with electric
dark noise. The leading eigenmode is squeezed by -2.9 dB, and we see, for the
similar mode, this is less squeezed compared to the squeezing when measured
via single homodyne detection (∼6 dB). The reason is that, in the squeezing
measurement, we have more loss introduced by the quantum efficiency of the
photodiode arrays and the gratings. But corrected by all the loss, ∼ 25%,
we can get similar squeezing as in the single homodyne detection.

Above, we presented a eight-mode covariance matrix measured via mul-
tipixel homodyne detection, and similar multimode states, the eigenmodes
and squeezing are obtained as via the single homodyne measurement with
pulse shaping. After we access the multimode correlation simultaneously, we
can post-process the data using a real digital gain by computer, which allows
to implement a real unitary transform on the pixel modes.

However, arbitrary pulse shaping in the single homodyne detection can
realize any unitary transform, and as only real transforms can be imple-
mented in multi-pixel homodyne detection, and hence less operations can be
implemented. Next we will give the criteria of feasible controls for quantum
computing with multipixel homodyne detection.

7.4 Characterization of Feasible operations

Previously, we obtained a covariance matrix via simultaneously measuring
the correlations of all the pixel modes, multi-pixel homodyne measurements.
For measurement based quantum computing, we need access entanglement
of all the entangled states at the same time. For instance, in the quantum
computer composed of a cluster states, measuring on each node implement
a specific computing program [67]. Here, we want to construct continuous-
variable clusters [53] and quantum computing [93] with the multi-pixel ho-
modyne detection. In the following we will characterize the experimental
freedoms to implement quantum networks and quantum computing.

As seen in Fig. 7.6, the SPOPO experiment with multi-pixel homodyne
detection is presented. Here, instead of shaping the local oscillator on any
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Figure 7.4: The covariance matrix from multipixel homodyne detection. For
the SPOPO, the correalatios, 〈x̂ip̂j〉 and 〈p̂ix̂j〉 are absent. And the co-
variance matrix consists of the amplitude and phase quadratures, which are
〈x̂ix̂j〉 and 〈p̂ip̂j〉, respectively.

Figure 7.5: The eight eigenmods are obtained from the multi-pixel homodyne
detection via diagonalizing the covariance matrix of the phase quadrature
part. The squeezing values are corrected with electric dark noise.
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Figure 7.6: The experimental shemes of the SPOPO with multi-pixel homo-
dyne detection.

mode via arbitrary pulse shaping, we do a simultaneous measurement with
multi-pixel homodyne detection and post-processing to implement quantum
computing.

Reacall the eigenmodes measured with multipixel homodyne dectection,
in Fig. 7.5, M = (meig1,meig2, . . . ,meign)T. Les us consider corresponding an-
nihilation operators of the p-squeezed modes, ~apsqz = (âsqz1, âsqz2, . . . , âsqzn)T,
then the pixel modes are,

~apix = MT∆OPO~apsqz, (7.5)

where the diagonal phase matrix ∆OPO = diag(1,−i, 1,−i, ...), which is to
rotate all the eigenmode to be p-squeezed.

In the scheme in Fig. 7.6, to implement quantum imformation processing,
we can still use the shaper to control quadrature phases of the individual
pixels, ∆LO = diag(eiφ1 , eiφ2 , eiφ3 , . . . ), and perform a real unitary transform,
Opost, in the data post-processing.

Thus, totally, the output modes ~aout of the multipixel homodyne system
are,

~aout = Opost∆LO~apix = Opost∆LOM
T∆OPO~apsqz, (7.6)

thus we have,

~aout = UMPHD~apsqz and, UMPHD = Opost∆LOM
T∆OPO. (7.7)

For the experimental system, in Fig. 7.6, all of possible operations are
included in the unitary transform UMPHD.

Let us assume a target transform to be performed by the system, Utarget,
and it can be proved that a necessary and sufficient condition for finding
feasible operations to achieve UMPHD = Utarget is,

(U ′target)
TU ′target = D, (7.8)
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where U ′target = UtargetG
† = Utarget(M

T∆OPO)†, and D is a diagonal matrix
with unit modulus complex elements.

For the necessity, we can get,

(U ′target)
TU ′target = G∗GT∆T

LOO
T
postOpost∆LOGG

† = ∆2
LO. (7.9)

As the matrix ∆LO is diagonal phase matrix, ∆2
LO is a diagonal matrix with

unit modulus complex elements.
For the sufficiency, if Equ. 7.8 holds, we can always get,

∆LO = D
1
2 =

[
(U ′target)

TU ′target

] 1
2 , (7.10)

then,

Opost = U ′target∆
−1
LO, (7.11)

where OpostO
T
post = OT

postOpost = U ′target

[
(U ′target)

TU ′target

]−1
(U ′target)

T = I, so
Opost is orthogonal.

Above we proved the necessary and sufficient condition for Equ. 7.8. If
any transform satisfies the condition in Equ. 7.8, we can obtain the feasible
experimental parameters in the post-processing matrix Opost and the relative
phases of the local oscillator ∆LO. These allows us to obtain the unitary
transform UMPHD, usually corresponding to a complex optical network, onto
the input p-squeezed modes, and the same quadratures can be measured
simultaneously.

Importantly, the change of the unitary transform UMPHD, the quantum
network, can be achieved via using different post-processing matrix Opost

and the relative phases of the local oscillator ∆LO. This way of doing quan-
tum networks, using multi-pixel homodyne measurement, is then flexible and
versatile.

7.5 Feasible quantum networks

Using the eigenmodes in Fig. 7.5, we implement two eight-mode line and
cross cluster states, as seen in Fig. 7.7, satisfying the criteria of Equ. 7.8.
For the cluster states,

UMPHD = UclusterSO8mode, (7.12)

where UclusterS is the symmetry solution of the cluster states corresponding
to the graphs in Fig. 7.7, and the O8mode is an orthogonal matrix, defined in
Equ. 5.30.
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Figure 7.7: Squeezing curves of the eight-mode line cluster via multi-pixel
homodyne measurements. The variances of the eight nullifiers are measured,
and on top of each curve is the graph of the cluster states, where the corre-
sponding nullifiers consist of the nodes in the dashed-line block. The red and
the blue lines are the fit of the squeezing and antisqueezing, respectively.
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We parametrize O8mode(θ1, θ2, . . . , θ28) with 28 parameters, and use a
searching algorithm to find a O8mode to satisfy the criteria of Equ. 7.8 [31].
And with the multi-pixel homodyne measurement, we obtain the correspond-
ing ∆LO and Opost to realize the cluster states in Fig. 7.7, whose nullifiers
are all squeezed experimentally, ∼ 3 dB corrected with only dark noise.

The nullifiers in Fig. 7.7 are obtained via measuring further the corre-
sponding nullifier modes Mnul, defined in Equ. 6.4. For instance, to measure
the first nullifier in Fig. 7.7, we have,

Unul1 = Mnul1UMPHD =
1√
2

(1, i, 0, 0, 0, 0, 0, 0)Opost∆LO = O′post∆
′
LO (7.13)

where Unull is a complex vector corresponding the nullifier mode, including
the new post-processing transform O′post, and the new local phase ∆′LO which
is written onto the SLM.

Importantly, this system can realize different clusters without changing
the optical architecture. We have found solutions for various clusters theo-
retically.

Fourier transform

Generally, in measurement based quantum computing, the procedures consist
of two steps: building a cluster as the quantum computer, and measuring
corresponding quadratures to implement computing program. Here, we did
try a simple quantum computation, the Fourier transform of one gausssian
state, where an input gaussian state ρ(x̂, p̂), after the quantum gate of Fourier
transform, the output is ρ(−p̂, x̂).

To aim the Fourier transform of an eigenmode of the SPOPO, the target
transform is [30],

UFT = DmeasUBSUlin3, (7.14)

where Dmeas = diag(i, i, 1, 1) is the measurement phase of the network nodes,
UBS corresponds to a balanced beam splitter, and Ulin3 is three-mode line
cluster matrix.

However, for the Fourier transform UFT, using real eigenmodes of the
SPOPO, we didn’t find good solutions to satisfy the criteria of Equ. 7.8.

Does this mean we can’t implement Fourier transform UFT in the system
of the SPOPO?

To answer this question, we need to go back to the criteria of Equ. 7.8,
where the eigenmodes M call for the same dimension as the target transform
UMPHD to satisfy GG† = I. This means if we have a set of eight-pixel
eigenmodes M , we can’t use four of the eight squeezed eigenmodes to perform
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Figure 7.8: The time sequence of the vacuum squeezing locking. Two TTL
signal sequences control the locking: TTL1 controls the same shutter as in
the amplification and deamplification locking, TTL2 controls both PIs of
amplification (deamplification) and homodyne measments locking. In each
cycle, when the shutter is open, we can lock for both amplification and ho-
modyne measurements; When the shutter blocks the signal, the two PIs hold
the locking phase, and we collect the vacuum squeezing data.

a four-mode Fourier transform UFT, as GG† will never be a identity matrix
I. At some point, it is not physical that we can’t improve the precision of a
unitary transform when increasing the control freedoms of the system. For
instance, here, it is impossible to use a eight-pixel system and eigenmodes
to implememt a four-mode transform, e.g. the Fourier transform in Equ.
7.14. Thus this implies that the criteria of Equ. 7.8 only covers part of
the freedoms in the system, and it might still be possible to implement the
Fourier transform gate adapting the criteria to this situation.

7.6 Locking squeezed vacuum

To implement quantum computing, we need lock the phase of the quadra-
tures ∆LO in Equ. 7.6. In practice, we can lock the squeezing phase via
locking the relative phase between the local oscillator and the signal in the
homodyne detection, as seen in Fig. 4.14. When the SPOPO cavity and the
deamplification are locked, we give a phase modulation, ∼600 KHz, on the
local oscillator (PZT 4 in Fig. 4.2), and the error signal is obtained via de-
modulating the signal from one of the homodyne detectors, which is controls
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Figure 7.9: Locked squeezing and scan squeezing measured by a spectrum
analyzer. The blue oscillation is the squeezing curve when scaning the homo
phase. The pink curve is the vacuum squeezing when the deamplicaiton and
the amplitude quadrature are both locked with the shutter control. Similar
for the green curve, when the amplication and the same homodyne quadra-
ture phase are locked, we can see the locked anti-squezing of the squeezed
vacuum.
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the PZT 5 in Fig. 4.2.

Furthermore, similar to the principle of amplification (or deamplification)
locking without signal, we employ the same shutter, used for deamplification
locking, to realize the locking of squeezed vacuum. As seen in Fig. 7.9, the
time sequences of the vacuum squeezing locking is presented. We use a delay
generator to give two TTL signal sequences with a delay ∆Trise to control the
system: TTL1 controls the same shutter as in the amplification and deampli-
fication locking; TTL2 controls both PIs of amplification (deamplification)
and homodyne locking. In the first half of each cycle, the shutter is open,
thus we can lock both deamplification and homodyne phase with signal nor-
mally; in the second half period, the shutter blocks the signal, the locking
phase is hold via holding the voltage tension on PZT1 and PZT5 in Fig. 4.2.
And the frequency of the two TTL sequences is 100 Hz.

The vacuum squeezing curves, measured by a spectrum analyzer, are pre-
sented in Fig. 7.9. The blue oscillation is the squeezing curve when scanning
the relative phase between the local oscillator and the ”signal” which is vac-
uum, which is similar to the squeezing curve in Fig. 4.18. And the valley and
peak correspond to the squeezing in different phase of quadratures, ampli-
tude and phase, respectively. The pink curve is the vacuum squeezing when
the deamplificaiton and the amplitude quadrature in the homodyne detection
are both locked with the shutter controlled with the TLL sequence. When
the shutter is open, the deamplicaition and the homodyne phase are both
locked, but the bright squeezing (with signal) saturates the detection system;
then when shutter is closed, both lockings hold, thus we can see the locked
vacuum squeezing. Similar for the green curve, when the deamplication and
the phase quadrature in the homodyne detection are locked, we can see the
locked anti-squeezing of the squeezed vacuum.

But here, compared to the squeezing when only scanning the phase of
the local oscillator without phase modulation on the local oscillator, we lose
∼ 1dB squeezing. We verified the reason why lose squeezing is that the
harmonics of phase modulation on the local oscillator introduce extra noise
into the squeezing. Therefore, we move this phase modulation on the signal
beam, which is presented in detail in Part III, thus when the signal is blocked
by the shutter, the noise from the phase modulation can not affect the vacuum
squeezing.

7.7 Conclusion

In this chapter we demonstrated the possibility of implementing quantum
network in a versatile method. The method is based on the simultaneous
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measurement of all the squeezed eigenmodes produced with SPOPO via mul-
tipixel homodyne detection, and uses the classical post-processing of the ac-
quired signals, which are multiplied by computer. And we are able to lock the
quadrature phase of the squeezing in the system, therefore, which is possible
to implement continuous-variable measurement based quantum computing
[53].

This procedure requires the determination of the suitable phase shape of
the local oscillator to be employed in the multipixel homodyne detection, as
well as the post-processing transform to apply to the traces recorded in each
mode.

In particular, we find the solutions with a searching algorithm, satisfying
the system criteria, to realize the eight-mode line and cross cluster states.
But the attempt of Fourier transform is not achieved yet, as the criteria does
not include all the possible operations in the system.

Thus, this system of multipixel homodyne detection with SPOPO is flexi-
ble and versatile way to do quantum computing, e.g. cluster states. However,
because the criteria still doesn’t cover all possibilities of feasible operations,
we need explore the strategy how to fully use the multipixel homodyne de-
tection both experimentally and theoretically. Besides, the criteria can be
used for all the other multimode systems to do quantum computing [13]. In
next chapter, we will present how to generate quantum networks based on
cascading four wave mixing.
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Chapter 8

Multimode entanglement with
cascading FWM

We developed a theoretical proposal to implement versatile cluster states
by cascading four wave mixing in rubidium atomic gas. We propose to use
phase-controlled homodyne detection and post-processing. This work has
been done in collaboration with the group of Prof. JING Jietai in the State
Key Laboratory of Precision Spectroscopy, ECNU, Shanghai. And it has
been published in Physics Review A 91, 013843 (2015). In this chapter, we
present directly the article of this work.
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We present a scheme to realize versatile quantum networks by cascading several four-wave mixing (FWM)
processes in warm rubidium vapors. FWM is an efficient χ (3) nonlinear process, already used as a resource for
multimode quantum state generation and which has been proved to be a promising candidate for applications
to quantum information processing. We analyze theoretically the multimode output of cascaded FWM systems,
derive its independent squeezed modes, and show how, with phase controlled homodyne detection and digital
postprocessing, they can be turned into a versatile source of continuous variable cluster states.
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I. INTRODUCTION

Generation of versatile quantum networks is one of the key
features towards efficient and scalable quantum information
processing. Recently, their continuous variable implementa-
tion has raised a lot of interests [1], in particular in optics where
practical preparation and measurement protocols do exist, both
at the theoretical and experimental level. The most promising
achievements have been demonstrated using independent
squeezed resources and a linear optical network [2,3]. More
recently, proposals have emerged where different degrees
of freedom of a single beam are used as the nodes of the
network, such as spatial modes [4,5], frequency modes [6,7],
or even temporal modes [8]. In all these realizations, a
given experimental setup corresponds to one quantum optical
network. However, the specific structure of a quantum network
depends on the mode basis on which it is interrogated; thus
changing the detection system allows for on-demand network
architecture. This has been applied in particular to ultrafast
optics [9] where a pulse shaped homodyne detection is used to
reveal any quantum network. In order to combine the flexibility
of this mode dependent property with the simultaneous
detection of all the modes, multipixel homodyne detection
was introduced [4], and it was shown that combined with
phase control and signal postprocessing it could be turned into
a versatile source for quantum information processing [10].

Here we propose a scheme based on four-wave mixing
(FWM) in warm rubidium vapors to generate efficiently flex-
ible quantum networks. A single FWM process can generate
strong intensity-correlated twin beams [11–13], which has
been proved to be a promising candidate in quantum informa-
tion processing and has many applications such as quantum
entangled imaging [14], realization of stopped light [15], and
high purity narrow-bandwidth single-photons generation [16].
Recently, it has been reported that by cascading two FWM
processes, tunable delay of EPR entangled states [17], low-
noise amplification of an entangled state [18], realization
of phase sensitive nonlinear interferometer [19,20], quantum
mutual information [21], and three quantum correlated beams
with stronger quantum correlations [22] can be realized

*jtjing@phy.ecnu.edu.cn
†nicolas.treps@upmc.fr

experimentally. Cascaded FWM presents several advantages
toward standard multimode technics. Indeed, it is phase
insensitive and single pass (i.e., no cavity); hence it does not
require any locking either in an individual step, nor between
successive steps, making it easily scalable. Inspired by these
previous works we propose in the present work to cascade
several FWM processes in which way we can turn this system
into a controllable quantum network. We elaborate the theory
of the optical quantum networks generated via cascading two
and three FWM processes, calculating the covariance matrix
and the eigenmodes of the processes from Bloch-Messiah
decomposition [23]. We then study how cluster states can
be measured using phase controlled homodyne detection and
digital postprocessing.

II. SINGLE FWM PROCESS

A single FWM process in Rb vapor is shown in Fig. 1,
where an intense pump beam and a much weaker signal beam
are crossed in the center of the Rb vapor cell with a slight angle.
During the process, the signal beam is amplified and a beam
called idler beam is generated simultaneously. It propagates
at the same pump-signal angle on the other side of the pump
beam due to the phase-matching condition, having a frequency
slightly shifted as compared to the signal beam. The input-
output relation of the single FWM process is given by

âs1 = Gâs0 + gâ
†
v0, âi1 = gâ

†
s0 + Gâv0, (1)

where G is the amplitude gain in the FWM process and
G2 − g2 = 1, âs0 is the coherent input, and âv0 is the vacuum
input. âs1 is the generated signal beam and âi1 is the generated
idler beam; see [24] for details. Defining the amplitude and
phase quadrature operators X̂ = â + â† and P̂ = i(â† − â),
the input-output relation can be re-written as(

X̂s1

X̂i1

)
=

(
G g

g G

)(
X̂s0

X̂v0

)
, (2)

(
P̂s1

P̂i1

)
=

(
G −g

−g G

)(
P̂s0

P̂v0

)
. (3)

We immediately see from this set of equations that the system
does not couple X and P quadratures of the fields, which can
thus be treated independently. Furthermore, input beams are
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FIG. 1. (Color online) (a) Energy-level diagram for the FWM
process. For experimental implementation the pump beam is tuned
about 0.8 GHz to the blue of the D1 line of rubidium (5S1/2,F =
2 → 5P1/2, 795 nm) and the signal beam is red tuned about 3 GHz
to the pump beam. The two-photon detuning is about 4 MHz. (b) A
single FWM process. âs0 is the coherent input and âv0 is the vacuum
input. âs1 is the amplified signal beam and âi1 is the generated idler
beam.

vacuum or coherent states, and as the global transformation
is symplectic the system retains Gaussian statistic and can
thus be fully characterized by its covariance matrix [1]. In our
specific case, the covariance matrix is block diagonal:

C =
(

CXX 0

0 CPP

)
, (4)

where, by definition, CXX = 〈(X̂s1

X̂i1
)(X̂s1

X̂i1
)T 〉, and the equivalent

definition holds for CPP . For coherent and vacuum input,
the variances of input modes are normalized to one, and one
obtains

CXX =
(−1 + 2G2 2Gg

2Gg −1 + 2G2

)
(5)

and

CPP =
(−1 + 2G2 −2Gg

−2Gg −1 + 2G2

)
. (6)

CXX and CPP are respectively the amplitude and phase
quadrature parts of the covariance matrix of a single FWM
process. The covariance matrix contains all the correlations
between any two parties in the outputs. As the quantum
state is pure, it is possible to diagonalize the covariance
matrix to find the eigenmodes of the system, which are
two uncorrelated squeezed modes, each one being a given
linear combination of the output modes of the FWM process.
In this pure case CPP is simply the inverse of CXX, so
they share the same eigenmodes with inverse eigenvalues.
We find that the eigenvalues of the CXX matrix are ηa1 =
(G − g)2, ηb1 = (G + g)2 and the corresponding eigenmodes
are X̂a1 = 1√

2
(X̂s1 − X̂i1) and X̂b1 = 1√

2
(X̂s1 + X̂i1). The first

eigenmode is amplitude squeezed, while the second one is
phase squeezed, which is the well-known signature that, in a
single stage FWM process, signal and idler beams are EPR
correlated [17].

It is important to stress here that each eigenmode of the co-
variance matrix is squeezed independently and diagonalization
of the covariance matrix corresponds to a basis change from
the output basis of FWM to squeezing basis. Even if this basis
change can be difficult to be implemented experimentally, as
output beams have different optical frequencies, it nevertheless

remains a linear operation that reveals the underlying structure
of the output state of the FWM process.

III. CASCADED FWM PROCESSES

The above procedure can be readily applied to the more
interesting multimode case, when one considers the multiple
FWM processes, generating more than two output beams.
We study here three-mode asymmetrical and four-mode
symmetrical structures, whose input-output relation is derived
by successively applying the matrix corresponding to the
single FWM process of Eqs. (2) and (3).

A. Asymmetrical structure: Double FWM case

We first consider the case where two FWM processes are
cascaded. Without loss of generality, we take the idler beam
from the first FWM process as the seed for the second FWM
process, as described in Fig. 2. The corresponding unitary
transformation can be directly derived and written:⎛

⎝X̂s1

X̂i2

X̂s2

⎞
⎠ = UX3mode

⎛
⎝X̂s0

X̂v0

X̂v1

⎞
⎠ ,

⎛
⎝P̂s1

P̂i2

P̂s2

⎞
⎠ = UP3mode

⎛
⎝P̂s0

P̂v0

P̂v1

⎞
⎠ ,

(7)

where

UX3mode =
⎛
⎝ G1 g1 0

g1G2 G1G2 g2

g1g2 g2G1 G2

⎞
⎠ ,

UP3mode =
⎛
⎝ G1 −g1 0

−g1G2 G1G2 −g2

g1g2 −g2G1 G2

⎞
⎠ .

(8)

Using the same procedure as for Eqs. (5) and (6) we can get the
covariance matrix of the double stage FWM. It is still block
diagonal, and for coherent or vacuum input states each block
is given by

CX3mode = UX3modeU
T
X3mode

, (9)

CP3mode = UP3modeU
T
P3mode

. (10)

FIG. 2. (Color online) Double stage structure of FWM Rb sys-
tem. âs0 is the coherent input and âv0 is the vacuum input for the
first FWM process. âs1 is the amplified signal beam and âi1 is the
generated idler beam from the first FWM process. âv1 is the vacuum
input for the second FWM process. âs2 is the generated signal beam
and âi2 is the amplified idler beam from the second FWM process.
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FIG. 3. (Color online) Eigenmodes of the asymmetrical FWM
cascade, decomposed in the FWM output mode basis, for three
different gain values. For each graph, the bars represent the relative
weight of modes âs1, âi2, âs2, respectively. Below are given
the noise variances ηa3, ηb3, and ηc3 of the corresponding X̂

quadrature. The state being pure, we see that eigenmode 3 shares
the same squeezing as eigenmode 2 but on the phase quadrature.

We can now evaluate the eigenvalues and eigenmodes of these
matrices. For the X quadrature, the eigenvalues of UX3mode are

ηa3 = 1,

ηb3 = −1 + 2G2
1G

2
2 − 2

√
G2

1G
2
2

(−1 + G2
1G

2
2

)
,

ηc3 = −1 + 2G2
1G

2
2 + 2

√
G2

1G
2
2

(−1 + G2
1G

2
2

)
.

(11)

Remarkably, one sees that one of the eigenvalues is equal
to one, meaning that the system is composed of only two
squeezed modes and one vacuum mode. This property can
be extended if one generalizes this system to the n-cell case
in the similar asymmetrical way; there is always one vacuum
mode. More expected, we also note that squeezing increases
with gain, that eigenmode 2 and eigenmode 3 have the same
squeezing but on different quadratures, and that both gains
play an equivalent role and can be interchanged. The results
for three different values of the gain, in the specific case where
both processes share the same gain (G1 = G2) are shown in
Fig. 3. We also show the shapes of the eigenmodes, i.e., their
decomposition on the FWM output mode basis. The vacuum
eigenmode appears to be composed only of modes 1 and 3 (i.e.,
âs1 and âs2), and tends to mode 1 when gain goes to infinity.
This can be surprising, but it only reflects the fact that the noise
of this mode becomes negligible compared to the two others
when gain increases.

B. Symmetrical structure: Triple FWM case

We consider now the case of three cascaded FWM pro-
cesses, where signal and idler of the first cell are used to seed
each of the two other FWM processes, as shown in Fig. 4. For
simplicity, we assume that all three FWM processes have the
same gain value G. The evolution equations can be directly

FIG. 4. (Color online) Symmetrical structure of FWM Rb sys-
tem. âs0 is the coherent input and âv0 is the vacuum input for the first
FWM process. âs1 is the amplified signal beam and âi1 is the gene-
rated idler beam from the first FWM process. âv1 and âv2 are the
vacuum inputs for the second and third FWM processes. âs2 is the
generated signal beam and âi2 is the amplified idler beam from
the second FWM process. âs3 is the amplified signal beam and âi3 is
the generated idler beam from the third FWM process.

derived and lead to⎛
⎜⎜⎜⎝

X̂s3

X̂i2

X̂s2

X̂i3

⎞
⎟⎟⎟⎠ = UX4mode

⎛
⎜⎜⎜⎝

X̂s0

X̂v0

X̂v1

X̂v2

⎞
⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎝

P̂s3

P̂i2

P̂s2

P̂i3

⎞
⎟⎟⎟⎠ = UP4mode

⎛
⎜⎜⎜⎝

P̂s0

P̂v0

P̂v1

P̂v2

⎞
⎟⎟⎟⎠ ,

(12)

where

UX4mode =

⎛
⎜⎜⎜⎝

G2 gG 0 g

gG G2 g 0

g2 gG G 0

gG g2 0 G

⎞
⎟⎟⎟⎠ ,

UP4mode =

⎛
⎜⎜⎜⎝

G2 −gG 0 −g

−gG G2 −g 0

g2 −gG G 0

−gG g2 0 G

⎞
⎟⎟⎟⎠ .

(13)

FIG. 5. (Color online) Eigenmodes of the symmetrical four-
mode FWM cascade, decomposed in the FWM output modes basis,
for three different gain values. For each graph, the bars represent the
relative weight of modes âs3, âi2, âs2, âi3, respectively. Below are
given the noise variances of the corresponding X̂ quadrature.

013843-3



CAI, FENG, WANG, FERRINI, XU, JING, AND TREPS PHYSICAL REVIEW A 91, 013843 (2015)

No analytic expression of the eigenvalues can be sim-
ply given here, but for instance when G = 1.2, we find
for the X quadrature the following levels of squeezing:
{−9 dB,−3.6 dB,3.6 dB,9 dB} (and opposite signs in the
P quadrature). This system is indeed composed of four
independent squeezed modes, with two different squeezing
values. Figure 5 represents, similar as in the previous case,
the mode shapes for three different values of the gain. As
gain goes to infinity, we see that they tend to a perfectly
symmetric decomposition, meaning that the output basis of
FWM becomes mostly entangled then.

IV. CLUSTER STATES

We have shown in the previous section that the output states
of different FWM processes were entangled states, whose
underlying mode structure could be exactly calculated. We
study here whether these outputs can be manipulated in order to
generate cluster states, which are states of interest for quantum
information processing.

A cluster state is a specific multimode entangled state,
defined through an adjacency matrix V [25]. Let us call X̂C

i and
P̂ C

i the quadrature operators for the mode i of a given cluster
state. The nullifier operators of the N -mode cluster states are
defined by

δ̂i =
⎛
⎝P̂ C

i −
∑

j

Vij · X̂C
j

⎞
⎠ . (14)

Theoretically, a state is considered a cluster state of the
adjacency matrix V if and only if the variance of each
nullifier approaches zero as the squeezing of the input modes
approaches infinity, assuming that the cluster is built from
a set of independently squeezed modes. Experimentally, one
compares the variance of each nullifier to the corresponding
standard quantum limit.

It turns out that the output states of the FWM processes,
as we have calculated in the previous sections, do not directly
satisfy the cluster state criteria. However, it is still possible
to derive cluster states when one can control the quadratures
detected on each output mode (i.e., setting the phase of the
homodyne detection local oscillator) and digitally postprocess
the data, as explained in [10]. To apply this theory to the present
case, we model the entangled states that one can produce with
FWM, homodyne detection, and postprocessing, following the
scheme of Fig. 6. We first introduce the annihilation operators
â

sqz
i corresponding to the eigenmodes of the modeled FWM

process (i.e., as displayed in Figs. 3 and 5, for instance). For
consistency with the usual cluster states definition, we choose
them to be squeezed on the P quadrature and thus introduce
the diagonal matrix Psqz to rotate the squeezing quadrature.

We now define the unitary matrix UFWM so that UFWM �̂asqz

corresponds to the annihilation operators of the output modes,
with the convention �̂asqz = (âsqz

1 ,â
sqz
2 , . . .)T . For a given FWM

process it can be written as

UFWM = U0Psqz, (15)

where U0 is the basis change matrix corresponding to the
eigendecomposition performed in previous sections. Indeed,

FIG. 6. (Color online) Quantum networks can be constructed by
applying phase controlled homodyne detections and postprocessing
the signals of the FWM outputs.

if for a given FWM process we call D = diag(η1,η2, . . .)
the diagonal matrix composed of the eigenvalues of the
unitary evolution, then by definition the covariance matrix
can be decomposed as CXnmodes = U0DUT

0 . Finally, the total
transformation can be written as

Utotal = OpostPhomoUFWM, (16)

where Phomo is a diagonal matrix that sets the quadrature
measured by each homodyne detection, and Opost is an
orthogonal matrix describing postprocessing by computer on
the photocurrents measured by the homodyne detections.

We now compare this transformation to a given cluster
state matrix UV . Traditionally, UV is a matrix that moves
from p squeezed modes to cluster state modes, with V the
cluster adjacency matrix [26]. Thus the system is equivalent
to a cluster state if one can find experimental parameters such
that

UV = OpostPhomoU0Psqz. (17)

In practice, it is possible to act on the gains of the different
FWM processes, the local oscillators phases Phomo, and the
postprocessing operations Opost to make the system achieve
the transformation UV of the clusters state. According to [10],
defining U ′

V = UV R† with R = U0Psqz, this problem has
a solution if and only if U

′T
V U

′
V is a diagonal matrix.

Equivalently, if and only if one can write

P 2
homo = U

′T
V U

′
V . (18)

In that case, one finds that Opost is given by

Opost = U ′
V P −1

homo. (19)

Using this formalism, it is thus possible to exploit the
entanglement naturally generated by the cascaded FWM
processes in order to generate cluster states. We will see
in the following how it is possible to optimize the different
experimental parameters to achieve some specific clusters.

This concept of postprocessed states is relevant within the
framework of measurement based quantum computing [27],
where a quantum operation can be performed via the measure-
ment of the nodes of a cluster state. Indeed, while in the current
paper we only demonstrate cluster state generation to assess
the flexibility of the source, it is possible to target a different
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objective matrix UV that also contains the measurement
quadratures of a given quantum operation. More details can be
found in [10] and [28]. In the following, we demonstrate how
the quantum state generated via cascaded FWM can be easily
reconfigured to target a given multimode entangled state UV

without any hardware change, via optimized postprocessing.

V. OPTIMIZATIONS AND SOLUTIONS

For a given cluster state specified by its adjacency ma-
trix V , one can directly check whether using proper phases
for homodyne detection (Phomo) and postprocessing with a
computer (Opost) it is possible to realize the cluster state UV .
Furthermore, one can demonstrate that if UV is a unitary
matrix that leads to a cluster defined by V , then for any
arbitrary orthogonal matrix O, UV O leads to the same cluster
state [28]. Thus it is possible to run a searching algorithm
to find an O matrix that allows us to satisfy our criteria of
a on-demand cluster generation. In practice, and as this is
numerical calculation, we never find the exact equality in
Eq. (18); thus we run a searching algorithm [29] leading to
the matrix which is the closest to a diagonal one, then keep
only the diagonal terms (renormalized to one) to define the
Phomo matrix, and finally calculate the values of the nullifiers.
This is the optimization procedure which is applied to find the
results below.

A. Three-mode cascaded FWM

We first start with the three-mode cascaded FWM process,
which we have demonstrated is composed of only two
squeezed modes and one vacuum mode. There are only two
possible cluster graphs in that case, and as an example we
study here only the possibility to generate a linear cluster
state. The corresponding UV matrix can be found in [3]. We
choose gains values G1 = G2 = 1.2 as they give realistic
experimental squeezing values. Performing the optimization
with an evolutionary algorithm, we find solutions for the
three-mode linear cluster state (matrix values given in the
Appendix). The normalized nullifiers are {0.22,0.16,0.94}, all
below the shot-noise limit, meaning that the three-mode linear
cluster state can be generated by the structure of the FWM. But
there is no feasible solution when G1 = G2 = 2, or for higher
values of the gain. This can be surprising, but is directly linked
to the mode structure at the output of the asymmetrical FWM,
where one eigenmode is vacuum, and is getting closer to the
first mode while gain increases, making it impossible to be
transferred into a cluster state by postprocessing. The nullifier
values are summarized in Table I.

TABLE I. (Color online) Normalized variances of the three-mode
linear cluster state nullifiers, for different values of the gain.

FWM gain Nullifier 1 Nullifier 2 Nullifier 3

G = 1.2 0.16 0.22 0.94
G = 1.5 0.06 0.11 0.93
G = 2 0.18 0.22 1.09

TABLE II. Normalized variances of the four-mode linear cluster
state nullifiers, for different values of the gain.

FWM gain Nullifier 1 Nullifier 2 Nullifier 3 Nullifier 4

G = 1.2 0.13 0.44 0.13 0.44
G = 1.5 0.04 0.25 0.04 0.25
G = 2 0.02 0.13 0.02 0.13

B. Four-mode cascaded FWM

In the case of four-mode symmetric cascaded FWM, there
are several possible graphs of cluster states. We first focus
here on the linear one, whose UV matrix can also be found
in [3]. Using our optimization strategy, we calculate the best
possible nullifiers for different values of the gain, as shown
in Table II. We see a completely different situation from the
three-mode case. As the state impinging on the detectors is
already an entangled state, it can be turned into a cluster state
with phase controlled homodyne detection and postprocessing
more efficiently. In particular, we see that the values of the
nullifiers follow roughly those of the squeezing values.

The same procedure can be applied to other cluster shapes,
for instance, we tested square and T shape clusters, which
showed a very different behavior: in these cases, nullifier value
evolution is not monotonous with G values, and there is an
optimal gain for each shape. Other shapes could be tested, or
other types of clusters such as weighted graph [30]. Hence
this system is readily applicable for quantum information
processing. One should stress, however, that in order to exhibit
cluster statistics it is necessary to precisely control the phase
of the local oscillator in each homodyne detection, which can
be accomplished for instance with digital locking electronics.
Otherwise, it is also possible to build in the optimization
routine within a certain range of possible homodyne detection
phase, and obtain solutions under these constraints.

VI. SUMMARY

In summary, we demonstrated that cascaded FWM is a
scalable system for multimode state generation thanks in
particular to its intrinsic phase insensitive character and high
nonlinearity. As an example, we theoretically proposed to
cascade two and three FWM processes to generate three-mode
and four-mode cluster states, respectively, and demonstrated
the versatility and reconfigurability. The three-mode cluster
state generation is sensitive to the gain values of the FWM
processes. We considered the specific situation where the two
FWM processes share the same gain value and found that when
the gain value is below a certain value, we can construct the
three-mode cluster state, but the intrinsic two mode structure
of the system prevents one from generating good clusters.
Contrarily, in the four-mode case, we found that for a wide
range of gain values when the three FWM processes share
the same gain value, different graphs of four-mode cluster
states can be constructed. Thus we expect that by cascading
more FWM processes, multimode cluster states with different
graphs can be constructed and this scheme for realizing
versatile quantum networks promises potential applications
in quantum information processing.
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APPENDIX: CLUSTER MATRICES

Here is the solution for the three-mode linear cluster, with G = 1.2:

Phomo3-lin =
⎛
⎝0.52 − 0.86i 0 0

0 0.61 − 0.79i 0
0 0 0.93 + 0.36i

⎞
⎠ , (A1)

Opost3-lin =
⎛
⎝0.97 −0.12 0.23

0 −0.88 −0.48
0.26 0.46 −0.85

⎞
⎠ . (A2)

The feasible cluster matrix is ⎛
⎝ 0.21 0.67 + 0.30i 0.41 − 0.49i

−0.58i 0.30 + 0.49i −0.49 + 0.30i

−0.79 −0.18 + 0.30i −0.11 − 0.49i

⎞
⎠ . (A3)

For the four-mode linear cluster, we find the line shape. The Phomo4-lin is⎛
⎜⎝

0.34 − 0.94i 0 0 0
0 0.99 + 0.14i 0 0
0 0 0.19 − 0.98i 0
0 0 0 0.78 − 0.62i

⎞
⎟⎠ . (A4)

The Opost4-lin is ⎛
⎜⎝

0.46 0.15 −0.86 0.17
0.20 −0.73 0.11 0.65
0.11 −0.65 −0.20 −0.73
0.86 0.17 0.46 −0.15

⎞
⎟⎠ (A5)

and the cluster matrix is ⎛
⎜⎝

−0.15 − 0.12i −0.72 − 0.12i −0.19 + 0.61i −0.16 − 0.04i

−0.12 + 0.05i −0.12 − 0.64i 0.61 − 0.09i −0.04 + 0.43i

0.20 + 0.60i 0.08 − 0.17i 0.10 + 0.39i 0.59 − 0.25i

0.71 + 0.20i −0.05 + 0.08i −0.22 + 0.10i −0.20 + 0.59i

⎞
⎟⎠ . (A6)
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Quantum frequency metrology
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Optical frequency combs play a fundamental role in many types of pre-
cision measurements, including spectroscopy, absolute frequency determina-
tion, optical clocks, and time-distance synchronization. Measurement preci-
sion in these applications is generally limited by photon number fluctuations,
which scale as

√
N . However, squeezed states of light may be utilized to

achieve sensitivity beyond this standard shot-noise limit [14].

In this chapter, we will introduce quantum-enhanced multimode frequency
metrology with the SPOPO. We demonstrate a shot-noise limited measure-
ment of the central frequency of an optical pulse. This measurement employs
a multi-pixel-spectrally-resolved detector. Furthermore, the signal-to-noise-
ratio (SNR) of the central frequency measurement is enhanced by 20% with
the appropriate use of an ultrafast squeezed light pulse. In the end, a multi-
mode analysis is presented with the quantum spectrometer.
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Figure 9.1: The spectrum of the ultrafast laser source. ω0 and ∆ω are the
central frequency and the bandwidth of the spectrum, respectively.

9.1 Mode-dependent characters of ultrafast

pulses

In chapter 1, ultrafast pulses (optical frequency combs), in frequency domain,
are defined in Equ. 1.11. In practice, when we observe an optical frequency
comb with a spectrometer, we can’t see the individual frequencies, but only
the gaussian envelope of Equ. 1.11, as seen in Fig. 9.1, where is presented
the spectrum of our laser source, a train of pulses centered at 795 nm with a
bandwidth of ∼ 10 nm.

In particular, we express the spectral envelop as a gaussian function of
frequency ω,

E(ω) = E0u(ω)

with E0 ∝
√
N, and u(ω) = Ae−

(ω−ω0)2

2(∆ω)2 (9.1)

where E0 is the amplitude of the field, and u(ω) is the mode corresponding
a gaussian spectral envelope; N is the photon number within the pulses,
ω0 and ∆ω are the central frequency and the bandwidth of the spectrum,
respectively, as seen in Fig. 9.1; A is the normalization factors of the mode
u(ω).

Thus, according to Equ. 9.1, in order to characterize the spectrum of
gaussian ultrafast pulses, we need determine the three parameters of pulses:
(1) energy (photon number), (2) central frequency (wavelength), (3) band-
width.

As we did discuss in chapter 4, in practice we can directly adjust the
Mira laser to define these three parameters of the spectrum envelope. In the
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Figure 9.2: From the spectrum of the pulses, we can get the spectral modes
and derivative modes in both spectral and time domain.

following, we describe the envelope when there is a small deviation of the
these parameters [89].

In the spectral domain, for a small change of the energy δE0, we have the
envelope,

Eenergy(ω) ' E0u(ω) + δE0u(ω). (9.2)

Therefore, the mean energy E0 and the small change of the energy δE0

are carried in the same mode u(ω), which is the spectral mode of the pulses,
in Fig. 9.1.

For a small shift of the central frequency δω, we have the envelope,

Ecenfre(ω) ' E0u(ω − δω)

' E0(u(ω)− δω du

dω
), (9.3)

where we see the small shift of the central frequency δω corresponds to the
derivative mode du

dω
as seen in Fig.9.2, which is the derivative of the spectral

mode u(ω) in Fig. 9.1.
In addition, we simply give a counterpart in time domain. For a small

phase shift, ω0tφ in the carrier e−iω0t, the electric field of pulses is,

E(t) ' E0u(t)e−iω0(t−tφ)

' E0(u(t) + iω0tφu(t))e−iω0(t−tφ) (9.4)

where i indicates a π/2 phase difference, the phase quadrature; tφ is in the
temporal mode u(t), as seen in Fig. 9.2.
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And for a small time delay tg in the temporal envelope u(t), the electric
field of pulses is,

E(t) ' E0u(t− tg)e−iω0t

' E0(u(t) + tg
du(t)

dt
)e−iω0t (9.5)

where the displacement tg is in the derivative mode du(t)
dt

, which has π/2
phase difference with the mode u(t) in the gaussian case, as seen in Fig. 9.2.

9.2 Setup and frequency-resolved measurement

To implement a spectral-mode-dependent detection system, as seen in Fig.
9.3, we develop a frequency-resolved detector. In practice, we use one arm of
the multipixel homodyne detection, which is one multipixel detector. As seen
in Fig. 9.3 (a), the laser is diffracted with a prism or a grating, and is then
focused on the Fourier plane, where we employ a photodiode array, and each
pixel of the photodiodes is connected to an amplifier and a data acquisition
channel. Therefore, frequency-resolved detection is able to be implemented,
similar as the multi-pixel homodyne detection, in Fig. 7.2 (b), where each
pixel of the photodiodes corresponds to a specific spectral band. After the
data recording, different real gains can be applied to each spectral band. In a
result, we can access different real spectral modes via the multipixel detector
and the post-processing.

Compared to the multipixel homodyne detection, we can only measure
the intensity of the input field via one multipixel detector, and we can always
find a basis {vj}, and then the electric field is,

Ê =
∑
j

b̂jvj, (9.6)

where 〈b̂j〉 6= 0, when j = 1, and 〈b̂j〉 = 0, when j ≥ 1. This is called
mean field basis, where only the first mode has a mean field, then its shape
correspond to the spectrum of pulses.

Hence, for the ith pixel, the pixel mode ui is defined by the spectral
component of the mode v1, which has a mean field. We have,

Îi = â†i âi =
∑
j

∫
uiv
∗
jdΩb̂†j

∑
k

∫
u∗i vkdΩb̂k, (9.7)

where âi =
∑

j

∫
u∗i vjdΩb̂j. The corresponding mean is,

〈Îi〉 = 〈b̂†1b̂1〉|
∫
u∗i v1dΩ|2. (9.8)
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Figure 9.3: Multi-pixel-spectrally-resolved (MPSR) detector. (a) The laser
is diffracted with a prism or a grating, and is the focused on the Fourier
plane, where we employ a photodiode array, and each pixel of the photodi-
odes is connected to am amplifier and a data acquisition channel. (b) The
experiment setup consists of the photodiode array and the dispersive optical
component, the prism (grating).

And,
δÎi ' δâ†i〈âi〉+ 〈â†i 〉δâi (9.9)

where δâi =
∑

j

∫
u∗i vjdΩδb̂j and 〈âi〉 =

∫
u∗i v1dΩ〈b̂1〉.

The corresponding variance is,

∆2Ii = |〈âi〉|2∆2xi, (9.10)

where |〈âi〉|2 is the optical power on the pixel i, and the ∆2xi is the variance
of âi in the amplitude quadrature.

Above, in the frequency-resolved detector, the pixel mode is defined by
the corresponding pixel of the mean field mode, and the intensity of {âi} in
the pixel mode basis are detected simultaneously.

9.3 A quantum spectrometer

9.3.1 Principle

Here we present a quantum spectrometer with the frequency-resolved multi-
pixel detector as seen in Fig. 9.4 [91]. A synthetic beam is created by mixing
nonclassical vacuum state with the optical beam to be measured. The mea-
surement is achieved with the frequency-resolved apparatus, which is able to
select a desired mode by post-processing.

The vacuum squeezing from the SPOPO consists of a set of eigenmodes
{us

j}, as seen in Fig. 7.5, ~as = (âs
1, â

s
2, . . . )

T, and the intense beam is ~aLO =
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(âLO
1 , âLO

2 , . . . )T with the modes {uLO
i }, which correspond to the spectral

profile detected by the multipixel detector.
The squeezed vacuum and the intense beam are mixed by the beam split-

ter, as seen in Fig. 9.4. After the beam splitter, the mixed light field to be
detected by the multipixel detector is,

âBS = r~aLO + t~as, (9.11)

where real t, r are the transmitivity and reflectivity, respectively, t2 + r2 = 1.
As discussed in Equ. 9.7, the pixel modes are determined by the mean

field modes of the intense beam, and hence, here the pixel modes are the
{uLO

i }. And then for the pixel i of the photodiode array, the photocurrent
is,

Îi =
(
r(âLO

i )† + t(âsprime
i )†

)(
râLO

i + tâsprime
i

)
, (9.12)

where âsprime
i =

∑
j

∫
(uLO

i )∗us
jdΩâs

j.

Thus when âsprime
i is vacuum the corresponding mean is,

〈Îi〉 = r2(âLO
i )†âLO

i = r2P i
LO, (9.13)

where P i
LO is the intensity of âLO

i .
When t � r, δâsprime

i = âsprime (vacuum), and δâLO
i = âLO

i − 〈âLO
i 〉 (in-

tense). And the corresponding fluctuation operator is,

δÎi ' tr
(
〈(âLO

i )†〉δâsprime
i + (δâsprime

i )†〈âLO
i 〉
)

= tr
√
P i

LOx̂
sprime
i , (9.14)

where x̂sprime
i is the amplitude quadrature of âsprime

i . And thus the variance
of Îi is from the amplitude quadrature of âBS,

∆2Îi = (δÎi)
2 = t2r2P i

LO∆2x̂sprime
i (9.15)

where r2P i
LO is the optical power detected on the pixel i.

When post-processing a real gain ~g = C(m1/
√
P 1

LO,m2/
√
P 2

LO, . . . )
T on

each pixel δÎi, which allows to access the mode m = {miu
LO
i }, where

√
P i

LO

is the normalization factor and
∑

im
2
i = 1, the corresponding fluctuation

operator is,

δÎm = C
∑
i

mi√
P i

LO

δÎi = Ctr
∑
i

mix̂
sprime
i = Ctrx̂Sprime

m (9.16)

where x̂Sprime
m =

∑
imix̂

sprime
i , corresponding a new mode uLO

m = (m1u
LO
1 ,m2u

LO
2 , . . . )T.
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Therefore, the mean of Îm is proportional to the sum of the amplitude of
the pixel mode âLO

m ,

〈Îm〉 = C〈
∑
i

mi√
P i

LO

Îi〉 = Cr2
∑
i

mi

√
P i

LO (9.17)

And the variance is,

∆2Îm = C2t2r2∆2x̂sprime
m (9.18)

therefore the signal-to-noise ratio is,

〈Îm〉√
∆2Îm

=
r
∑

imi

√
P i

LO

t
√

∆2x̂sprime
m

=
r
∑

imi

√
P i

LO

t
∑

j

∫
(uLO

m )∗us
j

√
∆2x̂s

j

. (9.19)

We see when the signal is fixed, the SNR is proportional to the inverse
of the fluctuations,

∑
j

∫
(uLO

m )∗us
j

√
∆2x̂s

j, which is from the fluctuations of
the transmitted beam. Thus, the SNR can be enhanced via squeezing the
corresponding mode of the transmitted vacuum.

In the SPOPO, the spectral mode and the derivative mode are similar to
the first and the second eigenmodes as seen in Fig. 7.5, which are squeezed
in the amplitude and phase quadrature, respectively. It is possible to use the
SPOPO resource to enhance the measurement sensitivity of the parameters
associated to the corresponding modes.

9.3.2 Experimental configuration

Based on the frequency-resolved multipixel detector, we measure a displace-
ment of the central frequency δω, as seen in Fig. 9.4. First, a quantum
limited measurement is implemented when the squeezing is blocked; second,
we employ the vacuum squeezing of the SPOPO to do quantum-enhanced
measurement.

The experimental configuration of the quantum spectrometer is presented
in Fig. 9.5. The BS mixes the output of the SPOPO and the local oscillator,
which are the squeezed vacuum and the laser output beam, respectively.
In the experiment, to implement the quantum spectrometer, we locked the
amplification and the relative phase between the local beam and the output
of the SPOPO. We also use the shutter to control the locking system to
achieve the locked vacuum squeezing.

In Fig. 9.5, SG 1 and SG 2 modulate the signal beam with 625 kHZ on
PZT A , and the pump beam with 829.5 kHz on PZT B, respectively. The
amplification and the relative phase between the local beam and the output
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Figure 9.4: The scheme of the quantum spectrometer. The frequency dis-
placed beam is detected by a frequency resolved multi-pixel apparatus after
being mixed with pulses from a quantum frequency comb using a 93% trans-
mission beam splitter (BS).

Figure 9.5: The scheme of the quantum spectrometer.
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Figure 9.6: The time sequence of the vacuum squeezing locking. Two TTL
signal sequences control the locking: TTL1 controls the same shutter as in
the amplification and deamplification locking, TTL2 controls the both PIs of
amplification (deamplification) and homodyne locking. In each cycle, when
the shutter is open, we can lock both amplification and homodyne; When the
shutter blocks the signal, the two PIs hold the locking phase, and we collect
the vacuum squeezing data.
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of the SPOPO are locked by the servo controllers PI1 and PI2, acting on
PZT A and PZT C, respectively. PZT A , PTZ B and PZT C correspond
to PZT 1, PZT2 and PZT 5 in Fig. 4.2. And a delay generator controls the
locking system by two TTL sequences, as seen in Fig. 7.8. We collect 2000
points in each cycle, 5 ms for each pixel when locked.

As the quantum spectrometer, as seen in Fig. 9.4, can only measure the
amplitude of the synthetic beam after the beam splitter, we make squeezing
and anti squeezing via locking the SPOPO on deamplification and amplifi-
cation, respectively.

Here we construct a covariance matrix directly from the measurements
without normalizing to the corresponding shot noise, which is defined1,

Vij =
1

n

n∑
k

(~si(k)− µi)(~sj(k)− µj), (9.20)

where ~si(k) is the kth data in the measurement data list of the pixel i, µi
is the mean of ~si. In the experiment, we obtained the vacuum covariance
matrix with transmitted squeezing Vsqz, anti squeezing Vasqz, vacuum (the
squeezing is blocked) Vshot, and without light (dark noise) Vdark, respectively,
as seen in Fig. 9.7.

9.3.3 Central frequency measurement

Experimentaly, we modulate the Mira laser directly to give a displacement
δω. We modulate on the same PZT used for the spectral locking inside the
Mira laser.

The displacement of central frequency δω corresponds to the derivative
mode, as seen in Fig. 9.8. We obtain δω by post-processing the data via
projecting onto the corresponding derivative mode.

In practice, the normalized spectral modes is composed of the diagonal
elements of the shot noise covariance matrix Vshot, which is quantum limited,

mspec = diag(Vshot) (9.21)

And the derivative mode mde is the derivative of the gaussian function which
is the fit of the mspec, as seen in Fig. 9.8.

The spectral mode and the derivative mode are similar to the first and the
second eigenmodes of the SPOPO, as seen in Fig. 7.5. The spectral mode is

1Here the covariance corresponds to what is directly measured, and it is convenient for
data collection and analysis, which is different from the covariance matrix representing a
gaussian state, introduced in Chapter 2.
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squeezed when the deamplificiation is locked; the derivative mode is squeezed
when the amplification is locked. According to the principle of the quantum
spectrometer, to increase the SNR of the central frequency measurement, we
can apply the corresponding derivative mode.

In practice, as in Equ. 9.16, we apply a gain ~gde = { mide√
P iLO

} on each pixel2,

where
√
P i

LO is the normalization factor. Then the corresponding signal is

Sspec =
∑
i

〈~gide
~Ii〉. (9.22)

As the derivative mode is squeezed when deamplificaition is locked, the cor-
responding variance is

∆2x̂spec = ~gT
deVasqz~gde. (9.23)

Thus the signal-to-noise ratio is Sspec√
∆2x̂spec

. And we verify the noise doesn’t

depend on the shift of the center frequency we modulate, which is almost the
same as the one when without modulation.

After applying a gain corresponding to the derivative of the optical spec-
tral mode on the mean of each pixel and the covariance matrix shown in the
previous section, a 15% quantum enhancement of the signal-to-noise ratio is
observed as seen in Fig. 9.8, where the red and the blue curves correspond
to the SNR with coherent vacuum (the squeezing is blocked) and squeezed
vacuum, respectively.

The sensitive of the shot-noise limited measurement (quantum Cramer-
Rao band) is defined as [89],

δωSQL =
∆ω√
N

=
∆ωFWHM

2
√

2ln2 ·
√
N
, (9.24)

where in the experiment, ∆λ '10 nm and N ' 4× 1016 photons/second (∼
10 mW power). Therefore, the sensitive of shot noise limit is ∼ 60 kHz/

√
Hz,

which is much smaller the repartition rate of the pulses 76 MHz. The quan-
tum spectrometer increases the signal-to-nosie ratio by ∼15%, thus the sen-
sitivity is quantum-enhanced to ∼ 50 kHz/

√
Hz.

9.3.4 Multimode analysis of frequent metrology

As in the quantum resource of the SPOPO many modes are squeezed, here we
present a multimode analysis of the quantum spectrometer. Using the same

2Here we can replace P i
LO by corresponding shot noise, which is to normalize the data

for each pixel.
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Figure 9.7: The covariance matrix measured via the multi-pixel detector. (a)
(b) (c) (d) are the covariance matrix of squeezing Vsqz, antisqueezing Vasqz,
shot noise Vshot and electric dark noise Vdark, respectively.
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Figure 9.8: Quantum enhanced signal-to-noise ratio (SNR). (a) and (b) are
the specral mode and the derivative mode, corresponding the displacement
of the mean power and the central frequency, respectively. (c). The red and
the blue curves correspond to the SNR with coherent vacuum (the squeezing
is blocked) and squeezed vacuum, respectively.

experimental setup for measuring the central frequency shift, we apply the
spectral mode and the derivative mode, corresponding to the mean energy
shift and central frequency shift, respectively.

In the experiment, we modulate the Mira similarly as in the previous
experiment, the transmitted beam is vacuum, the output of the SPOPO
with amplification locking and deamplification locking. As seen in Fig. 9.9,
the signal-to-noise ratio of the energy shift (blue curve) and the central fre-
quency shift (red curve), corresponding to the spectral mode and the deriva-
tive mode, respectively, is presented. As the spectral mode is squeezed and
the derivative mode is anti-squeezed, when the amplification of the SPOPO
is locked, the SNR of the energy shift is best in Fig. 9.9 (d), and similarly,
the SNR of the central frequency shift is best in Fig. 9.9 (c), the same as the
in Fig. 9.8.

Benefitting from the multimode squeezing of the SPOPO, multimode
quantum enhanced frequency metrology can be achieved. The quantum spec-
trometer can extend to measure more parameters of the electric field of pulses,
such as the bandwidth ∆Ω, the group velocity, etc., via post-processing dif-
ferent modes. We can potentially improve the sensitivity of many parameters
of ultrafast pulses beyond shot noise limit.
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Figure 9.9: The signal-to-noise ration (SNR) of the energy shift and the cen-
tral frequency shift. The SNR of the energy shift (blue curve) and the cen-
tral frequency shift (red curve), corresponding to the spectral mode and the
derivative mode, respectively, are measured with the quantum spectrometer.
(a) The spectral mode (up) and the derivative mode (down); (b) corresponds
to the SNR of shot noise limit, (c) and (d) are the SNR when the quantum
comb is operated in amplification and deamplification, respectively.
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Conclusion and Perspective

Conclusion

In this thesis, we have demonstrated a multimode quantum resource, syn-
chronized pumped optical parametric oscillators (SPOPO), and its applica-
tions, such as constructing cluster states, quantum computing, and quantum
frequency metrology.

From the SPOPO theory, we have built a model to simulate the quantum
state of the SPOPO. Using this model, we simulated the processes of the
SPOPO with experimental parameters, and calculated the corresponding
supermodes and squeezing values; furthermore, we projected the supermodes
onto a chosen spectral-band basis, similar as the homodyne measurements,
and then obtained an eight-mode covariance matrix.

Experimentaly, we directly obtained ∼ 5.5 dB squeezing for the SPOPO,
which is ∼ 8 dB with correction of the measurement loss and the electric
dark noises. In order to characterize multimode property of the SPOPO, we
constructed a sixteen-spectral-band basis with the ultrafast pulse shaping
technique. The sixteen-mode covariance matrix, describing the state of the
SPOPO, is obtained via homodyne measurements. More than 12 eigenmodes
are significantly squeezed.

With the multimode resource, the SPOPO, we developed a quantum-
network simulator via ultrafast pulse shaping. This simulator is able to
access the quantum fluctuation of any specific mode via shaping the local
oscillator in the homodyne detection. Hence, for the simulator, arbitrary
gaussian quantum networks are achieved via measurement processes. We
emulated many up-to-twelve-node clusters, and verified that all the nulli-
fiers were squeezed experimentally. And we implemented a six-partite secret
sharing protocol. The simulator gave the experimental fidelities of the secret
sharing in all the ten partitions, which match well with the predictions.

To implement quantum computing and quantum metrology, we devel-
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oped a frequency resolved multipixel apparatus, which is able to measure
all the frequency-band modes simultaneously. We demonstrated the feasibil-
ity criteria of multipixel homodyne detection to realize measurement based
quantum computing. Using the criteria, a line-shape-eight-node cluster is im-
plemented by multipixel homodyne detection; more clusters are potentially
to be realized with this flexible system.

With the frequency resolved multipixel apparatus, we developed a mul-
timode quantum spectrometer. We obtained the signal-to-noise ratio (SNR)
of the central frequency shift in optical pulses beyond the standard quan-
tum noise limit. ∼ 15% enhancement of sensitivity, compared to using a
coherent resource, was obtained. Also we extended the quantum spectrom-
eter to multimode via post-processing different modes. With the setup, the
measurement of the mean energy shift also exhibited the SNR beyond the
standard quantum noise limit.

In the collaboration with East China Normal University, Shanghai, based
on the system, cascading four wave mixing of Rubidium atomic gas, we de-
veloped a proposal to implement versatile cluster states via phase-controlled
homodyne measurements and post-processing.

Perspective

Scalability and coherence

Generally, for quantum computers, complex task demands large-scale and
highly correlated quantum networks. Scalability and coherence are two big
challenges for quantum resources, which are referring to highly multimode
and highly squeezed in continuous variable regime. The SPOPO is an intrin-
sic multimode resource. We can access more modes and different correlations
via measurement processes.

However in practice, we still have some unexpected losses in the gener-
ation and measurement processes, and as a result, we didn’t get very good
squeezing compared to the OPO using continuous lasers or as many super-
modes as the SPOPO theory predicted, as seen in Fig .9.10 [20]. We see
that, in Fig. 9.10, experimental squeezing values in 4-, 6-, 8-band cases and
simulation results in 8-band case have the same trend, but in the simulation,
high order eigenmodes are better than that from experiments.

In the generation, from the calculation in Chapter 3, we see that the num-
ber of supermodes depends on the bandwidth of corresponding reflectivity
spectra. Thus the optics, especially in the SPOPO cavity, need have a wide
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Figure 9.10: Squeezing of eigenmodes. Experimental squeezing values in 4-,
6-, 8-band cases and simulation results in 8-band case are presented.

flat reflectivity spectrum. In the work we were using the mirrors with ∼ 100
nm wide reflectivity spectrum, which has the same high reflectivity in the
range of 750-800 nm. But the crystal coating has narrower reflectivity spec-
trum, so improving the crystal coating is possible to get more supermodes.
Besides, we didn’t compensate the dispersion in the SPOPO cavity or lock
the CEO of the source laser, which are both possible to introduce some loss
in especially high order supermodes.

In the measurement, as the spectral bandwidth of Hermit-Gaussian-function-
like supermodes are wider and wider in high orders, therefore, the local os-
cillator can not match with the high order supermodes. Furthermore, in the
multipixel homodyne detection, we can only obtain less than 4 dB squeez-
ing compared to 5 dB in the single homodyne detection. The is because,
in the multipixel homodyne detection, we have extra loss from the grating,
bad quantum efficiency and electric dark noise properties. Therefore, in the
near future, we can improve the multipixel homodyne detection from these
mentioned aspects.

Besides, the feasibility criteria we had for measurement based quantum
computing doesn’t fully use all the experimental degrees of freedoms, such as
the pixels in the shaper or in the multipxiel homodyne detection. Although
the multipxiel homodyne dectection and post-procesing can only do a sub-
universal quantum operations, if fully use the experimental setup, it is still
very promising to do quantum computing in a flexible fashion.

Going to non-gaussian

For measurement based quantum computing, the universal computation
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Figure 9.11: Nonlinear pulse gate.

set [54] in the continuous variable regime is {eisx̂, eisx̂2
, eix̂

3
, eis(x̂

2+p̂2)}, which
are the phase gate, controlled-z Cz gate, cubic gate, Fourier transform, re-
spectively. Except the non-gaussian cubic gate, the others are gaussian op-
erations, which can be implemented with gaussian states (squeezing) and
homodyne measurements.

Yet till now, we haven’t found efficient experiments to implement the cu-
bic gate in the continuous variable regime. Without non-gaussian operations
we cannot fully use the advantage of quantum computing [11]. And the first
step to do non-gaussian is single photon extraction from squeezed states [56].

In the multimode case of the SPOPO, our colleagues V.Averchenko et al
developed a theory of nonlinear pulse gate, as seen in Fig. 9.11. Based on
the principle of χ(2) sum frequency process, we can extract single photons
in a specific mode (pulse shape).

Pump shaping

We already knew that the shape of supermode depends on the pume
shape and the phase matching, demonstrated in Equ. 3.35 in Chapter 3.
Thus if use different pump shapes, we can get a set of different supermodes.
In practice, we can arbitrarily shape the pump with ultrafast pulse shaping.
As seen in Fig. 9.12, for the SPOPO, we can control both the pump and
the measurement process to get a desired quantum state. Furthermore, the
computer can do a real-time feedback loop to automatically search a target
quantum state based on the principle of the evolution algorithm.
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Figure 9.12: Squeezing of eigenmodes.

Implement new physics

As the SPOPO is intrinsically a multimode quantum resource, it is a good
candidate to explore multimode quantum physics. For instance, topological
entanglement entropy (TEE), a kind of highly multimode entanglement [19],
which potentially has an advantage in quantum computing, demands less
squeezing and has less errors. Therefore, we can implement TEE when we can
access more modes in the SPOPO. Besides, many quantum protocols, such
as boson sampling in the continuous variable regime [80] [23], and multimode
EPR steering, etc. are possible to be implemented with the SPOPO.
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Appendix

We present the design of the electric circuits for the multipixel detector, which
is applied for a 1-D silicon photodiode array with 16 pixels(Hamamatsu,
model S4111-16Q,∼ 90% quantum efficiency, sensor size one pixel 1.45×0.9mm).
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