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Titre : Sur le 16-rang des groupes des classes de corps de nombres quadra-
tiques
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Résumé : Nous démontrons deux nouveaux résultats de densité à propos du
16-rang des groupes des classes de corps de nombres quadratiques: le groupe
des classes de Q(

√
−p) a un élément d'ordre 16 pour un quart des nombres pre-

miers p de la forme a2 +16c4; et deuxième, le groupe des classes de Q(
√
−2p) a

un élément d'ordre 16 pour un huitiÃ¨me des nombres premiers p ≡ −1 mod 4.
Ces résultats sont les premiers résultats de densité non triviaux sur le 16-rang
des groupes des classes dans une famille de corps de nombres quadratiques,
et ils prouvent une instance des conjectures de Cohen et Lenstra. En plus,
leurs preuves impliquent de nouvelles applications des cribles développés par
Friedlander et Iwaniec. Nous démontrons un très bon terme d'erreur pour une
fonction de comptage des nombres premiers qui est liée au 16-rang du groupe
des classes de Q(

√
−2p), donnant ainsi des indications fortes contre une con-

jecture de Cohn et Lagarias que le 16-rang est contrôlé par un critère de type
Chebotarev.
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Abstract : We prove two new density results about 16-ranks of class groups
of quadratic number �elds: the class group of Q(

√
−p) has an element of or-

der 16 for one-fourth of prime numbers p of the form a2 + 16c4; and, the
class group of Q(

√
−2p) has an element of order 16 for one-eighth of prime

numbers p ≡ −1 mod 4. These are the �rst non-trivial density results about
the 16-rank of class groups in a family of quadratic number �elds, and they
prove an instance of the Cohen-Lenstra conjectures. Moreover, both of their
proofs involve new applications of powerful sieving techniques developed by
Friedlander and Iwaniec. Finally, we prove a power-saving error term for a
prime-counting function related to the 16-rank of the class group of Q(

√
−2p),

thereby giving strong evidence against a conjecture of Cohn and Lagarias that
the 16-rank is governed by a �ebotarev-type criterion.
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Chapter 1

Introduction

The main object of study in number theory is the ring of rational integers Z.

The ring Z can be studied from several di�erent perspectives. One of them is
to study the distribution of prime numbers, the building blocks of its multi-
plicative structure, and functions theoreof. More precisely, given a su�ciently
well-behaved sequence of complex numbers {an}n indexed by natural numbers
n ∈ N, one might ask for an estimate of the sum∑

p prime

ap. (1.1)

For instance, if the sequence {an}n is de�ned by

an =

{
1 if n ≤ X
0 otherwise,

then the statement that∣∣∣∣∣∣
∑

p prime

ap −
∫ X

2

dt

log t

∣∣∣∣∣∣ ≤ X
1
2 logX

8π

for all su�ciently large real numbers X is equivalent to the famous Riemann
Hypothesis [37, Corollary 1, p. 339].

Another way to study arithmetic of the ring Z is to study solutions of poly-
nomial equations over the integers. One such equation is the negative Pell
equation: given a positive integer d, one might ask when the equation

x2 − dy2 = −1 (P−)

has solutions x, y ∈ Z. For example, if d = 2016, then (P−) has no solutions,
while if d = 2017, then (P−) has in�nitely many solutions, the smallest of
which is

(x, y) = (106515299132603184503844444, 2371696115380807559791481).

An area of number theory that naturally combines the above two perspectives
of studying the integers is the study of arithmetic statistics of 2-parts of class
groups of quadratic number �elds.
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1.1 Quadratic rings and arithmetic statistics

When solving polynomial equations over Z, it is often useful to view these
equations inside rings that are slightly larger than Z. One natural generaliza-
tion of Z that is particularly conducive to studying the negative Pell equation
is a quadratic ring, i.e., a commutative ring with unity that is a free Z-module
of rank 2. An example of a quadratic ring is Z[

√
−6] = Z⊕ Z ·

√
−6.

(1 +
√
−6) · (−3−

√
−6) = 3− 4

√
−6

There are many quadratic rings. In fact, their isomorphism classes are in
one-to-one correspondence with the set of integers congruent to 0 or 1 modulo
4, where a quadratic ring corresponds to its discriminant (see for instance
[2, Theorem 8, p. 231]). In light of this, instead of studying a particular
quadratic ring, one might study the average behavior of certain arithmetic in-
variants attached to quadratic rings in families parametrized by special types
of discriminants. The subject dealing with these types of problems is called
arithmetic statistics.

A quadratic ring whose discriminant is not a square is an integral domain
and in fact an order in the quadratic number �eld that is its �eld of fractions.
We will call such a ring a quadratic domain. If R is a quadratic domain of
discriminant D, then there exists an isomorphism of rings

R ∼= Z[(D +
√
D)/2].

Among quadratic domains, a special role is played by those that are maximal
orders in quadratic number �elds. The discriminant of a quadratic number �eld
is de�ned to be the discriminant of the maximal order in the quadratic number
�eld. Such a discriminant is called a fundamental discriminant. Fundamental
discriminants are exactly the integers of the form{

d, where d 6= 1 is squarefree and d ≡ 1 mod 4, and
4d, where d is squarefree and d ≡ 2 or 3 mod 4.
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We now introduce two arithmetic invariants of quadratic domains that are
relevant to the negative Pell equation.

1.2 Class groups

The arithmetic of quadratic domains can be more complicated than that of
the ring Z. The fundamental theorem of arithmetic states that Z is a unique
factorization domain, that is, a domain in which every non-zero element has
a factorization into irreducible elements that is unique up to reordering and
multiplication by units. In a quadratic domain, this need not be the case. For
example, in Z[

√
−6],

2 · 5 and (2 +
√
−6) · (2−

√
−6)

are two distinct factorizations of the element 10 into irreducible elements. An
integral domain which is not a unique factorization domain cannot be a princi-
pal ideal domain. Hence one obstruction to unique factorization in a quadratic
domain is the failure of ideals to be principal. One way to measure this ob-
struction is via an algebraic invariant called the class group.

Let R be a quadratic domain, and let D and K denote its discriminant and
its �eld of fractions, respectively. Then the (ordinary) class group Cl of R is
de�ned as the quotient

Cl = I/P,

where I is the group of invertible fractional ideals of R and P is the subgroup
of I consisting of principal invertible fractional ideals. Since a discriminant
determines a quadratic ring up to isomorphism, we will sometimes denote the
class group of R by Cl(D). A closely related group is the narrow class group
Cl+, de�ned as the quotient

Cl+ = I/P+,

where now P+ is the subgroup of I consisting of principal invertible fractional
ideals that can be generated by a totally positive element (i.e., an element
α ∈ K such that σ(α) > 0 for all real embeddings σ : K ↪→ R). The study of
the narrow class group precedes that of the ordinary class group � the narrow
class group was introduced by Gauss [21], albeit in the language of binary
quadratic forms.

We recall that Cl is a �nite abelian group. We also note that if a quadratic
domain is the maximal order in a quadratic number �eld, then it is a unique
factorization domain if and only if it is a principal ideal domain, and so the
class group is in fact the only obstruction to unique factorization. For exam-
ple, the ring Z[

√
−6] from above is the maximal order in the quadratic number

�eld Q(
√
−6), its class group Cl(−24) is isomorphic to Z/2Z, and the ideal
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generated by 2 and
√
−6 is not principal. A standard reference for these de�-

nitions and facts is [25].

As a fairly simple algebraic object that nonetheless carries very important
information about the arithmetic of the corresponding quadratic domain, the
class group is one of the most important and widely studied invariants in
number theory.

1.3 What do class groups look like?

We already mentioned above that class groups are �nite abelian groups. Given
a �nite abelian group G, a prime number `, and a positive integer k, we de�ne
the `k-rank of G to be

rk`kG = dimF`
(
`k−1G/`kG

)
.

In other words, rk`G is the number of cyclic `-groups appearing in the decom-
position of G as a direct sum of cyclic subgroups of prime-power order, and
rk`kG is the number of these cyclic `-groups that have an element of order `k.
Hence the `-rank measures the �width� of the `-part, while the `k-rank as k
increases measures the �depth� of the `-part.

Knowing the `k-rank of G for every prime power `k is equivalent to know-
ing the isomorphism class of G. Therefore, as Cl(D) is a �nite abelian group,
we can study the average behavior of Cl(D) as D ranges over some family
of discriminants by studying the distribution of rk`kCl(D) for various prime
powers `k.

Let D be a fundamental discriminant. The �width� of the 2-part of Cl(D)
is given by Gauss's genus theory [21]. More precisely, we have

rk2Cl(D)+ = ω(D)− 1, (1.2)

where ω(D) denotes the number of distinct primes dividing D.

Cohen and Lenstra [4] developed a heuristic model to predict the behavior
of the odd parts of class groups of maximal orders in quadratic number �elds.
Roughly, Cohen-Lenstra heuristics stipulate that an odd abelian group G oc-
curs as the odd part of a class group with probability proportional to the
inverse of the size of the automorphism group of G. These heuristics can be
used to make many precise conjectures about the distribution of `k-ranks for
` 6= 2. Gerth [22] noticed that after accounting for Gauss's genus theory, the
Cohen-Lenstra heuristics can be extended to the 2-parts of class groups, lead-
ing to precise conjectures about the distribution of 2k-ranks for k ≥ 2. Proving
these conjectures is a principal goal of arithmetic statistics.
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After more than 30 years, very few such conjectures have been proved. In
fact, the only result for ` 6= 2 giving a precise asymptotic formula is that of
Davenport and Heilbronn [11], for the average value of 3rk3Cl(D) as D ranges
over all positive (or negative) fundamental discriminants (their result actually
predates the Cohen-Lenstra heuristics by more than 10 years; see also [3] and
[43] for subsequent re�nements). Their methods and results are still insu�-
cient to produce a positive proportion of D with rk3Cl(D) = 1.

Much more is known in the case that ` = 2. Rédei [34] gave formulas for
the 4-rank in terms of the individual primes dividing the discriminant (see
also [28, Theorem 1.2.3, p. 20]), and his work was su�cient to deduce dis-
tribution results over discriminants with a �xed 2-rank (see [22]). Extending
these distribution results to all discriminants was a much harder problem, re-
solved by Fouvry and Klüners [14]. They succeeded in proving that, for each
integer k ≥ 0, the set of fundamental discriminants D such that rk4Cl(D) = k
has the positive density predicted by Cohen and Lenstra (see [14] and also [13]).

Fouvry and Klüners [16] proved certain distribution results about the 8-rank
in a special family of positive discriminants, but under the constraint that the
4-rank is equal to 1. Perhaps the most general result concerning the 8-rank is
due to Stevenhagen [40]. He proved that if d 6= 0 and k ≥ 0 are integers, then
the set of primes p such that rk8Cl(dp) = k and such that dp is a fundamental
discriminant has a density which is a rational number.

Density results appear to be far more di�cult to obtain for the 16-rank than
for the lower 2-power ranks (see [41, p. 16-18]). Our main goal is to prove
density results about the 16-rank, albeit in certain particularly simple families
of quadratic number �elds. Before we state our results, we �rst give further
motivation coming from the study of the negative Pell equation.

1.4 Fundamental units and the negative Pell equa-
tion

Let R, D, K, I, P, and P+ be de�ned as in Section 1.2. We say that R is
imaginary if there are no real embeddings K ↪→ R, or, equivalently, if its dis-
criminant D is negative. In this case, the narrow class group clearly coincides
with the ordinary class group. Otherwise, if D > 0, we say that R is real. In
this case, the relationship between the ordinary and the narrow class groups
is more interesting.

Let R be a real quadratic domain. The group P+ is an index-1 or -2 sub-
group of P, depending on whether or not R has a unit of norm −1. Indeed,
the norm of a totally positive element is clearly positive, while the norm of
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√
D ∈ R is negative, and so the principal ideal generated by

√
D can be gen-

erated by a totally positive element if and only if R has a unit of norm −1.

The unit group of R is of the form

R× ∼= 〈−1〉 × 〈ε〉 ,

where ε is a unit of in�nite order (see for instance [25, Theorem 11.19, p. 61]).
We say that ε is a fundamental unit. The norm Norm(ε) does not depend on
the choice of ε, and is thus an invariant of a real quadratic domain.

As the norm function is multiplicative, the real quadratic domain R has a
unit of norm −1 if and only if Norm(ε) = −1. Hence the invariant Norm(ε)
simply detects if the ordinary and the narrow class groups di�er.

We now link the invariant Norm(ε) to a negative Pell equation. Let

d =

{
D if D ≡ 1 mod 4

D/4 if D ≡ 0 mod 4.

One can check that the unit group Z[
√
d]× is a subgroup of index 1 or 3 of the

unit group R×. Hence Norm(ε) = −1 if and only if Z[
√
d] has a unit of norm

−1, and this happens if and only if (P−) is solvable. Hence

x2 − dy2 = −1 is solvable over Z⇐⇒ Cl(D) = Cl(D)+. (1.3)

The odd parts of Cl and Cl+ coincide, so the study of the 2-parts of the
ordinary and the narrow class groups is closely related to the study of solutions
of the negative Pell equation. In fact, the equation x2 − dy2 = −1 is solvable
over Z if and only if

rk2kCl(D) = rk2kCl(D)+ (1.4)

for all integers k ≥ 1.

It follows from (1.3) that comparing the ordinary and the narrow class groups
of quadratic number �elds corresponds exactly to solving (P−) for squarefree
integers d. If d is divisible by a prime number p ≡ 3 mod 4, then (P−) clearly
has no solutions. Let D be the set of positive squarefree integers not divisible
by a prime p ≡ 3 mod 4. Stevenhagen [42] made the remarkable conjecture
that the set of squarefree d for which (P−) is solvable has a positive density
inside the set D, given in terms of an explicit in�nite product (see [42, Con-
jecture 1.2, p. 122]). Using the criterion (1.4), Fouvry and Klüners made
signi�cant progress on Stevenhagen's conjecture; they proved strong upper
and lower bounds for the proportion of squarefree d in D for which (P−) is
solvable (see [15] and [16]).
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1.5 The equation x2 − 2py2 = −1
To demonstrate the di�culty of improving the upper and lower bounds of
Fouvry and Klüners, we now restrict our attention to a certain subset of D,
namely the set of integers of the form 2p, where p is a prime number congruent
to 1 mod 4. The associated quadratic number �elds are the �elds Q(

√
2p) of

discriminant 8p. The reason this family is relatively simple is given by Gauss's
genus theory.

From (1.2), we see that the 2-part of Cl(D)+ (and so also Cl(D)) is rela-
tively simpler to study when D has fewer prime divisors. If D has only one
prime divisor, however, then the 2-part of the narrow class group is trivial and
there is nothing to be done. Therefore, if we wish to study how the 2-part of
the class group varies in some family of quadratic number �elds, the simplest
non-trivial types of families to consider are those parametrized by fundamental
discriminants of the form qp, where ±q is an odd prime, 4, or 8, and where p
varies over the set of prime numbers in some �xed congruence classes modulo
4. For instance, if we take q = 8 and allow p to vary over the set of prime
numbers congruent to 1 modulo 4, we recover the family {Q(

√
2p)}p≡1 mod 4

that we mentioned above.

For details of the following discussion, see [42]. Given a real number X > 5, let
ρ(X) denote the proportion of primes p ≡ 1 mod 4 less than X for which the
negative Pell equation x2 − 2py2 = −1 is solvable. Stevenhagen's conjectural
framework predicts that ρ(X) → 2

3 as X → ∞. However, the best known
bounds are

5

8
≤ lim inf

X→∞
ρ(X) ≤ lim sup

X→∞
ρ(X) ≤ 3

4
. (1.5)

These bounds are obtained in the following way. Gauss's genus theory implies
that the 2-part of Cl(8p)+ is cyclic, so that the 2-part of Cl(8p)+ is completely
determined by the largest integer k such that rk2kCl(8p)+ = 1. As Cl(8p) is a
quotient of Cl(8p)+ by a subgroup of order 1 or 2, we deduce that

rk2kCl(8p)+ − 1 ≤ rk2kCl(8p) ≤ rk2kCl(8p)+ (1.6)

for all integers k ≥ 1. The condition p ≡ 1 mod 4 ensures that

rk2Cl(8p) = rk2Cl(8p)+ = 1.

By (1.6) and (1.3), we have the implications

rk4Cl(8p)+ = 0 =⇒ Cl(8p) = Cl(8p)+ =⇒ x2 − 2py2 = −1 is solvable.

It turns out that for a prime p ≡ 1 mod 4,

rk4Cl(8p)+ = 1⇐⇒ p ≡ 1 mod 8,

11



which gives a lower bound of

1

2
≤ lim inf

X→∞
ρ(X). (1.7)

Now, again by (1.6) and (1.3), we have the implication

rk4Cl(8p)+ = 1 and rk4Cl(8p) = 0 =⇒ x2 − 2py2 = −1 is not solvable.

The 4-rank of the ordinary class group and the 8-rank of the narrow class group
are determined by variants of fourth-power residue symbols. More precisely,
for a prime p ≡ 1 mod 8, let [2, p]4 = 1 if 2 is a fourth power modulo p and
let [2, p]4 = −1 otherwise. Similarly, for a prime p ≡ 1 mod 8, let [p, 2]4 = 1 if
p ≡ 1 mod 16 and let [p, 2]4 = −1 otherwise. Then, for a prime p ≡ 1 mod 8,

rk4Cl(8p) = 1⇐⇒ [2, p]4 = [p, 2]4. (1.8)

Passing to Gaussian integers and using the �ebotarev Density Theorem, it is
not too hard to see that the condition above is satis�ed for one-half of primes
p ≡ 1 mod 8. This gives the upper bound in (1.5). Next, to improve the lower
bound in (1.7), we use the implication

rk4Cl(8p)+ = rk4Cl(8p) = 1 and rk8Cl(8p)+ = 0 =⇒ x2−2py2 = −1 is solvable

and the criterion, valid for primes p ≡ 1 mod 8,

rk8Cl(8p)+ = 1⇐⇒ [2, p]4 = [p, 2]4 = 1. (1.9)

Again, one can show that this holds for one-fourth of primes p ≡ 1 mod 8,
which gives the lower bound in (1.5).

At this point, we emphasize the the best known bounds (1.5), although �rst
explicitly stated in [42, p. 127], can be readily deduced from algebraic criteria
(1.8) and (1.9) that were already known to Rédei [35] and Scholz [38] in the
1930's. In other words, there has been no tangible progress on the bounds
(1.5) in over 80 years.

If we wish to improve the bounds in (1.5) using the same general strategy
that we employed above, we would have to be able to compute the density of
primes p ≡ 1 mod 4 satisfying either (for an improvement of the upper bound)

rk8Cl(8p)+ = 1 and rk8Cl(8p) = 0

or (for an improvement of the lower bound)

rk8Cl(8p)+ = rk8Cl(8p) = 1 and rk16Cl(8p) = 0.

As we will soon see, these two problems are of a similar di�culty. We focus
on the second problem, namely the 16-rank of Cl(8p)+.
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The �elds Q(
√

2p) are real quadratic �elds, so at �rst sight there seems to
be no relation to studying imaginary quadratic �elds. Generally, studying
class groups of real quadratic �elds is much more di�cult than studying class
groups of imaginary quadratic �elds, primarily because real quadratic domains
have units of in�nite order. However, in this particular case, Stevenhagen es-
tablished a connection between the 16-rank of Cl(8p) and the 16-ranks of
Cl(−4p) and Cl(−8p) for primes p ≡ 1 mod 4 (see [41, Theorem 3, p. 3]). One
consequence of Stevenhagen's result (already known to Oriat [33]) that can be
stated simply is

rk16Cl(8p)+ = 1 =⇒ rk16Cl(−8p) = 1.

Hence we could improve the lower bound in (1.5) by showing that

rk8Cl(8p)+ = rk8Cl(−8p) = 1 and rk16Cl(−8p) = 0

occurs for a positive density of primes p ≡ 1 mod 4. Similar improvements on
the lower bound in (1.5) could be achieved by proving density results about
the 16-rank of Cl(−4p) for primes p ≡ 1 mod 4.

Limitations in certain analytic tools prevented us from proving density re-
sults about the 16-rank for either of the families {Q(

√
−p)}p≡1 mod 4 and

{Q(
√
−2p)}p≡1 mod 4. Instead, we proved results about the 16-rank for a sub-

family of {Q(
√
−p)}p≡1 mod 4 and for the family {Q(

√
−2p)}p≡−1 mod 4.

1.6 Statements of main results

The two main results of this thesis come from the articles [32] and [31],
which will comprise Chapter 2 and Chapter 3, respectively. In the follow-
ing, p always denotes a prime number. The �rst result concerns a subfamily
of {Q(

√
−p)}p≡1 mod 4.

Theorem A. We have

lim
X→∞

#{p ≤ X : p = a2 + c4 with c even and rk16Cl(−4p) = 1}
#{p ≤ X : p = a2 + c4 with c even}

=
1

4
.

The second result concerns the family {Q(
√
−2p)}p≡−1 mod 4.

Theorem B. We have

lim
X→∞

#{p ≤ X : p ≡ −1 mod 4 and rk16Cl(−8p) = 1}
#{p ≤ X : p ≡ −1 mod 4}

=
1

8
.

Theorem A and Theorem B are the �rst non-trivial density results about
the 16-rank in families of quadratic number �elds. Both of these theorems
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follow from new criteria for the 16-rank and estimates of sums of type (1.1),
namely the sums ∑

p≤X

ap (1.10)

where {an}n is a reasonably nice sequence of complex numbers indexed by
natural numbers n and X is a positive real number tending to in�nity. For
Theorem A, the relevant sequence is given by

an =

{
1 if n = a2 + c2 with a ≡ α mod 16 and c ≡ γ mod 4

0 otherwise,

where α and γ are speci�ed congruence classes modulo 16 and modulo 4, re-
spectively. Proving an asymptotic formula for the sum (1.10) with an de�ned
as above is a very di�cult problem, and its solution by Friedlander and Iwaniec
[19] in the 1990's is still considered a major achievement in analytic number
theory.

For Theorem B, the relevant sequence {an}n is much more di�cult to de�ne
for general n. At prime indices p, the sequence is given by

ap =


1 if p ≡ −1 mod 4 and rk16Cl(−8p) = 1

−1 if p ≡ −1 mod 4 and rk16Cl(−8p) = rk8Cl(−8p)− 1 = 0

0 otherwise.

As such, proving Theorem B consists of proving a density result for the 8-rank,
which is classical, and proving that ap oscillates as p varies. In fact, with ap
de�ned as above, we prove that there exists δ > 0 such that∑

p≤X

ap � X1−δ

as X tends to in�nity. The power-saving in X in the estimate above has
additional implications about the 16-rank which we discuss in the introduction
to Chapter 3. The method we use to prove that ap oscillates can be traced
back to the work of Vinogradov [44] from the 1930's, but our application of
this method is reminiscent of its use by Friedlander and Iwaniec, coincidentally
again in [19].

1.7 Strategies for the 16-rank

We now describe one reason that density results about the 16-rank are di�cult
to prove, and we present our strategies to circumvent these di�culties in case
of the families from Theorem A and Theorem B. Before we can do so, we have
to introduce some algebraic objects that allow us to interpret class groups as
Galois groups.
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1.7.1 Class groups as Galois groups

The following de�nitions and facts can be found in [25]. Let E/F be a �nite
abelian extension of number �elds. Let IF denote the free abelian group
generated by prime ideals of F that are unrami�ed in E. The Artin map is
the group homomorphism(

·
E/F

)
: IF → Gal(E/F )

de�ned as follows. Let p be a prime ideal of F which is unrami�ed in E and
let P be any prime ideal of E lying above p. Let Norm(p) be the cardinality
of the residue �eld at p. Then the Artin symbol(

p

E/F

)
is the unique element of Gal(E/F ) such that(

p

E/F

)
(α) ≡ αNorm(p) mod P

for all α in the maximal order of E. We then extend
(
·

E/F

)
multiplicatively

to IF .

The Hilbert class �eld H of F is the maximal unrami�ed abelian extension
of F . The Artin symbol induces a canonical isomorphism of groups(

·
H/F

)
: Cl −̃→ Gal(H/F ), (1.11)

where Cl is the ordinary class group of F . Similarly, the Artin symbol induces
a canonical isomorphism between the narrow class group Cl+ and the Galois
group Gal(H+/F ), where H+ denotes the narrow Hilbert class �eld of F , i.e.,
the maximal unrami�ed at all �nite primes abelian extension of F .

The isomorphism (1.11) shows that information about the class group of F
is encoded in the Galois theory of unrami�ed abelian extensions of F . When-
ever we can construct such an extension E/F , it must hold true that E ⊂ H,
and so Gal(E/F ) is canonically isomorphic to a quotient of Cl.

1.7.2 2n-Hilbert class �elds

Let qp be a fundamental discriminant divisible by exactly two primes, as in
the beginning of Section 1.5. Then Gauss's genus theory (see (1.2)) implies
that the 2-part of the narrow class group Cl(qp)+ is cyclic. Let K denote
the quadratic �eld Q(

√
qp), and let Cl+ = Cl(qp)+. Suppose for the moment
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that rk2nCl+ = 1. Then (Cl+)2n is a subgroup of Cl+ of index 2n. We de�ne
the 2n-Hilbert class �eld H2n to be the sub�eld of H �xed by the the image
of (Cl+)2n under the isomorphism (1.11). Since the 2-primary part of Cl is
cyclic, it follows immediately that H2n is the unique unrami�ed at all �nite
primes, cyclic, degree-2n extension of K. Moreover, (1.11) induces a canonical
isomorphism of cyclic groups of order 2n(

·
H2n/K

)
: Cl+/(Cl+)2n −→ Gal(H2n/K). (1.12)

1.7.3 General strategy

The general strategy to prove density statements about 2n-ranks of class
groups Cl(qp) with q �xed and p varying is to �nd a criterion, in terms of
p, for the existence of the 2n-Hilbert class �eld of K = Q(

√
qp). We then use

the criterion to encode some information about the 2n-rank of Cl(dp) via a
complex number ap and study the sum∑

p≤X

ap.

To prove something interesting about the sum above, our criterion must be
su�ciently conducive to the available analytic techniques. In practice, we
often have to extend the de�nition of an to all natural numbers n in some
structured way. If the function n 7→ an is multiplicative, we can usually apply
the classical theory of L-functions to deduce interesting results about the sum
over primes. Otherwise, if the function n 7→ an is not multiplicative, in special
cases we may be able to apply more advanced sieving techniques.

If we have an ideal of K, explicitly de�ned in terms of p, that generates the
class of order 2 in Cl(qp)+, then we might be able to deduce a criterion for
rk2nCl(qp)+ once we have found the 2n−1-Hilbert class �eld of K, again ex-
plicitly in terms of p. Indeed, we see from (1.12) and the de�nition of the
Artin symbol that rk2nCl(qp)+ = 1 if and only if the ideal generating the class
of order 2 splits in the 2n−1-Hilbert class �eld.

The main di�culty in proving density results about 16-ranks of the narrow
class groups Cl(qp)+ with q �xed and p varying is that there is no known way
to generate the 8-Hilbert class �eld H8 explicitly enough in terms of p so that
one could apply analytic techniques. This is also the reason that density results
about 8-ranks of the ordinary class groups Cl(8p) and 16-ranks of the narrow
class groups Cl(8p)+ are both di�cult � if rk8Cl(8p)+ = 1, then rk8Cl(8p) = 1
if and only if H8 is totally real.

In the two cases q = −4 and q = −8, we manage to overcome the di�culty of
explicitly generating the 8-Hilbert class �eld as follows. In the case q = −4,
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instead of �nding H8 for all prime numbers p ≡ 1 mod 4, we are able to write
down H8 explicitly when p is a prime of the form a2 + c4 with c even. Thus,
we trade the generality of working with the full family {Q(

√
−p)}p≡1 mod 4 in

exchange for an explicit understanding of the 8-Hilbert class �eld of Q(
√
−p).

If p ≡ −1 mod 4, then rk4Cl(−8p) = 1 if and only if p ≡ −1 mod 8. In
the case q = −8, the idea is to write down, for p ≡ −1 mod 8, both

• the 4-Hilbert class �eld H4 of Q(
√
−2p), and

• an ideal u generating a class of order 4 in Cl(−8p)

in terms of integers u and v satisfying p = u2 − 2v2, and then to characterize
those p such that (

u

H4/Q(
√
−2p)

)
= 1. (1.13)

The isomorphism (1.12) for n = 2 and the equality (1.13) then imply that
the class of order 4 in Cl in fact belongs to Cl4, which proves that Cl has an
element of order 16.

Without further ado, we now move to the main body of this thesis, which
consists of two chapters. Chapter 2 is based on [32] and deals with Theo-
rem A and related results. Since we deal with a family of quadratic number
�elds whose class groups have cyclic 2-parts, the 16-rank is 1 or 0 according to
whether or not 16 divides the class number, i.e., the order of the class group.
We adopt this terminology in Chapter 2.

Chapter 3, dedicated to Theorem B and related results, is based on [31].
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Chapter 2

In�nitude of Q(
√
−4p) with class number

divisible by 16

Let p be a prime number, and let Cl and h be the class group and the class
number of Q(

√
−4p), respectively. Since the discriminant of this �eld is either

−p or −4p, Gauss's genus theory implies that the 2-part of Cl is cyclic, and
so the structure of the 2-part of the class group is entirely determined by the
highest power of 2 dividing h. More precisely, Gauss's genus theory implies
that

2|h⇐⇒ p ≡ 1 mod 4.

The criterion
4|h⇐⇒ p ≡ 1 mod 8

can be deduced easily from Rédei's work on the 4-rank of quadratic number
�elds [34]. In [1], Barrucand and Cohn gave an explicit criterion for divisibility
by 8 by successively extracting square roots of the class of order two. It states
that

8|h⇐⇒ p = x2 + 32y2 for some integers x and y.

This can be restated as

8|h⇐⇒ p ≡ 1 mod 8 and 1 + i is a square modulo p (2.1)

where i is a square root of −1 modulo p (see [1, (10), p.68]). In [40], Steven-
hagen also obtained the criterion (2.1), albeit by a more abstract argument
using class �eld theory over the �eld Q(i).

Given a subset S of the prime numbers, and a real number X ≥ 2, de�ne

R(S,X) :=
#{p ≤ X prime : p ∈ S}

#{p ≤ X prime }
.

If the limit limX→∞R(S,X) exists, we denote it by ρ(S) and call it the natural
density of S. Let

S(n) = {p prime : n|h(−4p)} ;

here we write h(−4p) for the class number of Q(
√
−4p) to emphasize its de-

pendence on p. From the above, classical results about primes in arithmetic
progressions imply that ρ(S(2)) = 1/2 and ρ(S(4)) = 1/4. From (2.1), we
see that 8 divides h if and only if p splits completely in Q(ζ8,

√
1 + i), where

ζ8 is a primitive 8th root of unity. Since this is a degree 8 extension of Q,
�ebotarev's density theorem implies that ρ(S(8)) = 1/8. For a discussion of
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these and similar density results, see [41, p.16-19].

The Cohen-Lenstra heuristics [4] can be adapted to this situation to predict
the density of primes p such that 2k divides h for k ≥ 1. Cohen and Lenstra
stipulate that an abelian group G occurs as the class group of an imaginary
quadratic �eld with probability proportional to the inverse of the size of the
automorphism group of G. Under this assumption, the cyclic group of order
2k−1 would occur as the 2-part of the class group of an imaginary quadratic
number �eld twice as often as the cyclic group of order 2k. As we just saw
above, ρ(S(2k)) = 1

2ρ(S(2k−1)) for k ≤ 3, so we are led to conjecture

Conjecture 2.1. For all k ≥ 1, the limit limX→∞R(S(2k), X) exists and is
equal to 2−k.

While Conjecture 2.1 is true for k ≤ 3, it has not been proven for any
k ≥ 4. In fact, proving the conjecture for k ≥ 4 would likely require signi�cant
new ideas because a proof along the lines of the arguments for k ≤ 3 seems far
out of reach (see [41, p. 16]). Although several criteria for divisibility by 16
have been found already (see [26], [45], and [30]), none of them appear to be
su�cient to produce even in�nitely many primes p for which the class number
of Q(

√
−4p) is divisible by 16. This is precisely our aim in this chapter � we

will show that there is an in�nite number of primes p for which 16|h and also
an in�nite number of primes p for which 8|h but 16 - h. We also derive some
consequences for the fundamental unit εp of the real quadratic number �eld
Q(
√
p).

We tackle the question of in�nitude not by developing a new criterion for
divisibility by 16 which handles all primes, but by focusing on a very special
subset of primes. These are the primes of the form

p = a2 + c4, c even. (2.2)

The main theorem that we prove gives a new and very explicit criterion for
divisibility by 16 of class numbers of Q(

√
−4p) for p of the form (2.2).

Theorem 2.1. Suppose p is a prime of the form a2 + c4, where a and c are
integers. Let h(−4p) denote the class number of Q(

√
−4p).

(i) If a ≡ ±1 mod 16 and c ≡ 0 mod 4, then h(−4p) ≡ 0 mod 16.

(ii) If a ≡ ±3 mod 16 and c ≡ 2 mod 4, then h(−4p) ≡ 0 mod 16.

(iii) If a ≡ ±7 mod 16 and c ≡ 0 mod 4, then h(−4p) ≡ 8 mod 16.

(iv) If a ≡ ±5 mod 16 and c ≡ 2 mod 4, then h(−4p) ≡ 8 mod 16.

Once we prove Theorem 2.1, Theorem A follows from the following gener-
alization of a powerful theorem of Friedlander and Iwaniec (see [19, Theorem
1]):
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Proposition 2.1. Let a0 ∈ {1, 3, 5, 7, 9, 11, 13, 15} and c0 ∈ {0, 2}. Then,
uniformly for X ≥ 3, we have the equality

∑∑
a2+c4≤X

a≡a0 mod 16
c≡c0 mod 4
a2+c4 prime

1 =
κ

2π

X3/4

logX

(
1 +O

(
log logX

logX

))
, (2.3)

where a and c run over Z and

κ =

∫ 1

0

(1− t4)
1
2 dt ≈ 0.874 . . . .

In particular, there exist in�nitely many primes of the form a2 + c4 with a ≡
a0 mod 16 and c ≡ c0 mod 4.

Proposition 2.1 also implies the in�nitude of primes p of the form as in the
statements (i)− (iv) Theorem 2.1. We have the following quantitative result:

Corollary 2.1. For a prime p, let h(−4p) denote the class number of Q(
√
−4p).

Then, for su�ciently large X, we have

#{p ≤ X : h(−4p) ≡ 0 mod 16} ≥ X3/4

8 logX

and

#{p ≤ X : h(−4p) ≡ 8 mod 16} ≥ X3/4

8 logX
.

The proof of Proposition 2.1 will take a signi�cant portion of this chap-
ter. Although the ideas required to generalize [19, Theorem 1] in this way are
not particularly deep, implementing them turns out to be quite complicated
simply because the proof of [19, Theorem 1] itself is very di�cult. One can
thus view Sections 2.4-2.6 as a summary of the proof of [19, Theorem 1] in a
slightly more general context.

Since primes of the form a2 + c4 with c even have density 0 in the set of
all primes, our methods cannot be used to tackle Conjecture 2.1. Nonethe-
less, each of the cases (i)− (iv) in Theorem 2.1 occurs with the same density
among all primes this form, so the analogous conjecture for k = 4 deduced
from the Cohen-Lenstra heuristics above holds within the thin family of imag-
inary quadratic number �elds Q(

√
−4p) where p is a prime of the form a2 + c4

with c even. This is yet another piece of evidence suggesting that Conjecture
2.1 is true for k = 4. However, we also note that Conjecture 2.1 for k = 4 does
not imply Corollary 2.1, as knowledge of the behavior of the class numbers
of Q(

√
−4p) over the set of all primes p does not necessarily give information

about their behavior over a thin subset of all primes.
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We now give a consequence of our results and a criterion for divisibility by
16 due to Williams [45]. Let p ≡ 1 mod 8, and let εp be a fundamental unit
of the real quadratic �eld Q(

√
p), written in the form εp = T +U

√
p, where T

and U are integers. The criterion states that if 8|h, then

h ≡ T + p− 1 mod 16, (2.4)

so that 16|h if and only if T ≡ 1 − p mod 16. An immediate byproduct of
Theorem 2.1 and criterion (2.4) is the following corollary.

Corollary 2.2. Suppose p is a prime of the form a2 + c4, where a is odd and
c is even. Let εp = T + U

√
p denote a fundamental unit of Q(

√
p).

(i) If a ≡ ±1 mod 16 and c ≡ 0 mod 4, then T ≡ 0 mod 16 and U ≡ ±1 mod 8.

(ii) If a ≡ ±3 mod 16 and c ≡ 2 mod 4, then T ≡ 8 mod 16 and U ≡
±5 mod 8.

(iii) If a ≡ ±7 mod 16 and c ≡ 0 mod 4, then T ≡ 8 mod 16 and U ≡
±1 mod 8.

(iv) If a ≡ ±5 mod 16 and c ≡ 2 mod 4, then T ≡ 0 mod 16 and U ≡
±5 mod 8.

This can be viewed as an extension of [27, Corollary 1.2(i), p.115-116] to
primes of the form p = a2 + c4. Now Proposition 2.1 gives

Corollary 2.3. For a prime p ≡ 1 mod 8, let εp = T + U
√
p denote the

fundamental unit of Q(
√
p). Then, for su�ciently large X, we have

#{p ≤ X : p ≡ 1 mod 8, T ≡ 0 mod 16} ≥ X3/4

8 logX

and

#{p ≤ X : p ≡ 1 mod 8, T ≡ 8 mod 16} ≥ X3/4

8 logX
.

The existence of in�nitely many p ≡ 1 mod 8 such that T ≡ T0 mod 16
for a �xed T0 ∈ {0, 8} is not at all trivial. Hence Corollary 2.2 sheds some
new light on the fundamental unit εp of Q(

√
p), one of the most mysterious

quantities in number theory.

2.1 Hilbert class �elds

Suppose p ≡ 1 (mod 4). Then there are two �nite primes of Q which ramify
in Q(

√
−4p), namely 2 and p. The prime p = (

√
−p) of Q(

√
−4p) lying above

22



p is principal, and so its ideal class in Cl is the identity. Genus theory then
implies that the class of the prime ideal t = (2, 1 +

√
−p) of Q(

√
−4p) lying

above 2 is the unique element of order two in Cl. Assuming that h is divisible
by 2n for some non-negative integer n, to check that it is divisible by 2n+1, it
would su�ce to check that the class of t belongs to Cl2

n

.

2.1.1 2n-Hilbert class �elds

Suppose that 2n|h for some non-negative integer n. Then recall that (1.11)
induces a canonical isomorphism of cyclic groups of order 2n(

·
H2n/K

)
: Cl/Cl2

n

−→ Gal(H2n/K). (2.5)

Hence the class [t] belongs to Cl2
n

if and only if t has trivial Artin symbol in
Gal(H2n/K). By class �eld theory, this is equivalent to t splitting completely
in H2n . Therefore

2n+1|h⇐⇒ [t] splits completely in H2n . (2.6)

The main idea of the proof of Theorem 2.1 is to write down explicitly the 8-
Hilbert class �eld H8 of Q(

√
−4p), and then to characterize those p such that

t splits completely in H8. We remark here that although Cohn and Cooke
[7] have already written down H8 in terms of the fundamental unit εp of the
real quadratic number �eld Q(

√
p) and certain integer solutions u and v to

p = 2u2 − v2, not enough is known about either εp or u and v to deduce
anything about the distribution of primes p such that t splits completely in
H8.

2.1.2 Generating 2n-Hilbert class �elds

We �rst state and prove some lemmas which will prove to be useful in our
quest to explicitly generate H8.

The 2-Hilbert class �eld, also called the genus �eld of Q(
√
−4p), is known

to be H2 = Q(i,
√
p). Hence every 2n-Hilbert class �eld of Q(

√
−4p) contains

Q(i), and so we can study the splitting behavior of t in H2n by working over
the quadratic sub�eld Q(i) of H2. With this in mind, we now state some well-
known generalities about the completion of Q(i) with respect to the prime
ideal (1 + i) lying over 2.

This completion is Q2(i), and its ring of integers Z2[i] is a discrete valu-
ation ring with uniformizer m = 1 + i and maximal ideal m = (m). Let
U = (Z2[i])× denote the group of units of Z2[i] and for each positive integer
k, de�ne U (k) = 1 + mk. Then there is a �ltration

U = U (1) ⊃ U (2) ⊃ · · · ⊃ U (k) ⊃ · · · .
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For any k ≥ 3, squaring gives an isomorphism U (k) ∼−→ U (k+2). Indeed, let
1 +mk+2y ∈ U (k+2). Hensel's lemma implies that there exists x ∈ mk−2 such
that x2 + x = −mk−2y. Then (1 + 2x)2 = 1 +mk+2y and 1 + 2x ∈ U (k). It is
not hard to see that

U = 〈i〉 × U (3) = 〈i〉 × 〈2 + i〉 × U (4),

so that U2 = 〈−1〉 × U (5). In other words, u ∈ U is a square in Q2(i) if and
only if u ≡ ±1 (mod m5). Moreover, if ω ≡ ±1 (mod m4), then Q2(i,

√
ω) is

generated over Q2(i) by a root of the polynomial X2 −X + (1∓ ω)/4, which
reduces to X2 + X or X2 + X + 1 modulo m. We collect these observations
into the following lemma.

Lemma 2.1. Let ω be a unit in Z2[i]. Then Q2(i,
√
ω) is unrami�ed over

Q2(i) if and only if ω ≡ ±1 (mod m4). Moreover, Q2(i,
√
ω) = Q2(i), i.e., ω

is a square in Q2(i) if and only if ω ≡ ±1 (mod m5).

Next, we state two lemmas which we will use to check that the extensions of
Q(
√
−4p) which we construct are normal and cyclic. First, in both Chapter 2

and Chapter 3, we will make extensive use of the following lemma from Galois
theory (see [29, Chapter VI, Exercise 4, p.321]).

Lemma 2.2. Let F be a �eld of characteristic di�erent from 2, let E = F (
√
d),

where d ∈ F× \ (F×)2, and let L = E(
√
x), where x ∈ E× \ (E×)2. Let

N = NormE/F (x). Then we have three cases:

1. If N /∈ (E×)2 ∩ F× = (F×)2 ∪ d · (F×)2, then L/F has normal closure
L(
√
N) and Gal(L(

√
N)/F ) is a dihedral group of order 8.

2. If N ∈ (F×)2, then L/F is normal and Gal(L/F ) is a Klein four-group.

3. If N ∈ d · (F×)2, then L/F is normal and Gal(L/F ) is a cyclic group of
order 4.

Lemma 2.3. Let K be a �eld. Suppose M/K is a cyclic extension of degree
2m and let σ be a generator of Gal(M/K). Let L be the sub�eld of M �xed
by σm. Suppose N/K is a Galois extension containing M such that N/L is
cyclic of degree 4. Then N/K is cyclic of degree 4m.

Proof. Let σ1 denote a lift of σ to Gal(N/K). The order of σ1 is at least 2m
since the order of σ is 2m. As σm �xes L, σm1 is an element of Gal(N/L)which
is non-trivial on M and hence has order 4. Thus the order of σ1 is 4m.

Finally, we arrive at the main lemma we will use to construct 2n-Hilbert
class �elds from 2n−1-Hilbert class �elds. This result is inspired by a theorem
of Reichardt [36, 3. Satz, p.82]. His theorem proves the existence of generators√
$ for H2n over H2n−1 with $ ∈ H2n−1 of a certain form. We prove su�cient

conditions for an element $ of a similar form to give rise to a generator, so
that we can actually construct H2n .
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Lemma 2.4. Let h be the class number of Q(
√
−4p), let n ≥ 2, and suppose

that 2n divides h. Suppose that we have a sequence of �eld extensions

Q = A1 ⊂ Q(i) = A2 ⊂ A4 ⊂ · · · ⊂ A2n−1

such that:

• A2k is a degree 2k extension of Q for 1 ≤ k ≤ n− 1,

• A2k ⊂ H2k for 1 ≤ k ≤ n− 1,

• A2k ∩H2k−1 = A2k−1 for 2 ≤ k ≤ n− 1,

• (1 + i) is unrami�ed in A2n−1/Q(i), and

• there is a prime element $ in the ring of integers of A2n−1 such that:

� $ lies above p and its rami�cation and inertia indices over p are
equal to 1,

� denoting the conjugate of $ over A2n−2 by $′, we have H2n−1 =
H2n−2(

√
$$′) = A2n−1(

√
$$′),

� (U2): (1 + i) remains unrami�ed in A2n = A2n−1(
√
$), and

� (N): H2n−1(
√
$) is normal over Q.

Then H2n = H2n−1(
√
$).

Proof. The rami�cation index of $ over p is 1, so $ and $′ are coprime in
A2n−1 .

First we check that $ is not a square in H2n−1 . Since [A2n : A2n−1 ] = [H2n−1 :
A2n−1 ] = 2 and A2n = A2n−1(

√
$), we deduce that $ is a square in H2n−1 if

and only if A2n = H2n−1 . But this cannot happen because the rami�cation
index of p in H2n−1 is 2, while $′ has rami�cation index 1 over p and, as $
and $′ are coprime, $′ remains unrami�ed in A2n .

By assumption, H2n−1(
√
$) is normal over Q, and hence also over Q(

√
−4p)

and H2n−2 . Since $ and $′ are conjugates over A2n−2 , they are also conju-
gates over H2n−2 . As H2n−1 = H2n−2(

√
$$′) and $$′ = $$′ · 12, Lemma

2.2 implies that H2n−1(
√
$) is degree 4 cyclic extension of H2n−2 . Moreover,

H2n−1 is a degree 2n−1 cyclic extension of Q(
√
−4p), so Lemma 2.3 implies

that H2n−1(
√
$) is a degree 2n cyclic extension of Q(

√
−4p).

It remains to show that H2n−1(
√
$)/Q(

√
−4p) is unrami�ed. We will es-

tablish this by showing that each of the rami�cation indices of the primes 2
and p in H2n−1(

√
$) is at most 2.

The prime 2 rami�es in Q(i), but by assumption (1 + i) is unrami�ed in
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A2n . As H2n−1(
√
$) = A2n(

√
$$′) and p ≡ 1 mod 4, Lemma 2.1 ensures

that (1 + i) is unrami�ed in H2n−1(
√
$). Hence the rami�cation index of 2 in

H2n−1(
√
$) is 2.

Now note that [H2n−1(
√
$) : A2n ] = 2, the rami�cation index of the prime

$′ over p is 1, and $′ does not ramify in A2n/A2n−1 . Hence the rami�cation
index of p in H2n−1(

√
$) is at most 2, and this completes the proof.

2.1.3 Explicit constructions of H4 and H8

Recall from (2.6) that 4 divides h if and only if the prime t of Q(
√
−4p) lying

over 2 splits in H2, which happens if and only if (1 + i) splits in H2/Q(i). As
H2 is obtained from Q(i) by adjoining a square root of p, Lemma 2.1 implies
that this happens if and only if p ≡ ±1 (mod m5), which, for p ≡ 1 (mod 4),
is true if and only if p ≡ 1 (mod 8). Thus we have recovered the criterion for
divisibility by 4.

From now on, assume that 4 divides h, i.e. that p ≡ 1 (mod 8). We will
now use Lemma 2.4 to construct the 4-Hilbert class �eld of Q(

√
−4p).

A prime p ≡ 1 (mod 4) splits in Q(i), so that there exists π in Z[i] such
that p = ππ; here π denotes the conjugate of π over A1 := Q. If we write π as
a+ bi with a and b integers, then we see that p = a2 + b2. We choose π so that
b is even. As p ≡ 1 (mod 8), we see that b is in fact divisible by 4. Hence

π = a+ bi, b ≡ 0 mod 4. (2.7)

Now �x a square root of π and denote it by
√
π. Recall that H2 = Q(i,

√
p) is

the 2-Hilbert class �eld of Q(
√
−4p). We claim that the hypotheses of Lemma

2.4 for n = 2 are satis�ed with A2 := Q(i) and $ = π.

All of the hypotheses other than (U2) and (N) are easy to check. Note that our
choice of π ensures that π ≡ ±1 (mod 4), so that (U2) follows from Lemma
2.1. To see that (N) is satis�ed, note that H2(

√
π) is the splitting �eld (over

Q) of the polynomial f4(X) := (X2−π)(X2−π). Indeed, ππ is a square in H2,
so both square roots of π are also contained in H2(

√
π). Hence we conclude

by Lemma 2.4 that the 4-Hilbert class �eld is given by

H4 = H2(
√
π) = Q(i,

√
p,
√
π) (2.8)

with π as in (2.7).

26



H4 = Q(i,
√
p,
√
π)

H2 = Q(i,
√
p)A4 = Q(i,

√
π)

Q(
√
−4p)A2 = Q(i)

Q

Next, we �nd a criterion for divisibility by 8. Recall that h is divisible by 8 if
and only if t splits completely in H4, i.e. if and only if π is a square in Q2(i).
By Lemma 2.1, this happens if and only if π ≡ ±1 (mod m5). In terms of a
and b from (2.7), this means that

8|h⇐⇒ a+ b ≡ ±1 mod 8.

We remark that Fouvry and Klüners developed similar methods in [16], where
they constructed an analogue of the 4-Hilbert class �eld to deduce a criterion
for the 8-rank of class groups in a family of real quadratic number �elds. From
now on, suppose that 8|h. Replacing π by −π if necessary, we assume that

π ≡ 1 (mod m5). (2.9)

This means that a + b ≡ 1 (mod 8). Our choice of
√
π above is only unique

up to sign. By Hensel's lemma, we can now �x this sign by imposing that
√
π ≡ 1 (mod m3). (2.10)

In order to explicitly generate H8 from H4 using Lemma 2.4, we are led to
the problem of �nding a prime element in A4 = Q(i,

√
π) whose norm down

to Q(i) is π, up to units. This is the problem that we cannot solve explicitly
enough in general to answer questions about in�nitude or density.

However, for a very thin subset of primes, we can write down an element
of A4 of norm −π. These are primes p of the form

p = a2 + c4, c even, (2.11)

that is, primes p of the form a2 + b2 with b a perfect square divisible by 4.

Suppose that p is a prime of the form (2.11). Set

$0 = c(1 + i) +
√
π. (2.12)
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For 1 ≤ m ≤ 3, set$m = σm($), where σ is a generator for Gal(H4/Q(
√
−4p)).

The restriction of σ to H2 generates Gal(H2/Q(
√
−4p)), so σ(i) = −i. Also,

looking at the polynomial f4(X) above, we see that σ(
√
π) = −

√
π. Hence

$0 ·$2 = (c(1 + i) +
√
π)(c(1 + i)−

√
π) = −π. (2.13)

and

$1 ·$3 = (c(1− i) + σ(
√
π))(c(1− i)− σ(

√
π)) = −π. (2.14)

We can now prove the main result of this section.

Proposition 2.2. Let p be a prime of the form (2.11), let π be as in (2.9),
let
√
π be as in (2.10), and let $0 be as in (2.12). Let

√
$0 denote a square

root of $0. Then H4(
√
$0) is the 8-Hilbert class �eld of Q(

√
−4p).

Proof. We again use Lemma 2.4, but this time with n = 3, A4 = Q(i,
√
π) and

$ = $0. All of the hypotheses except for (U2) and (N) immediately follow
from the identity (2.13).

H8 = Q(i,
√
p,
√
π,
√
$0)

A8 = Q(i,
√
π,
√
$0)A8 = Q(i,

√
π,
√
$2) H4 = Q(i,

√
p,
√
π)

H2 = Q(i,
√
p)A4 = Q(i,

√
π)

Q(
√
−4p)A2 = Q(i)

Q

We now prove hypothesis (N). We claim that H4(
√
$0) is the splitting

�eld of the polynomial

f8(X) = (X2 −$0)(X2 −$1)(X2 −$2)(X2 −$3).

It is easy to see that $0$2 = −π and $1$3 = −π are squares in H4. To
prove (N), it now su�ces to show that $0$1 is a square in H4. Let

d =

√
π + σ(

√
π)

2
and e =

√
π − σ(

√
π)

2i
∈ H4.
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Then

$0 ·$1 = (c(1 + i) +
√
π)(c(1− i) + σ(

√
π))

= 2c2 +
√
πσ(
√
π) + c ((1 + i)σ(

√
π) + (1− i)

√
π)

= (c2 + 2de) + (d2 + e2) + c(2d+ 2e) = (c+ d+ e)2,

which completes the proof of hypothesis (N).

It remains to prove hypothesis (U2). The assumption that π ≡ 1 (mod m5)
actually means that π is a square in Q2(i), i.e. that (1 + i) splits in A4. Hence
it remains to show that Q2(i,

√
$0) is unrami�ed over Q2(i), and Lemma 2.1

implies that it is enough to prove that $0 ≡ ±1 (mod m4).

Recall from (2.10) that
√
π ≡ 1 (mod m3), so that

√
π ≡ 1 or 1+m3 (mod m4).

Squaring, we �nd that π ≡ 1 or 1 + m5 (mod m6), respectively. Also recall
that a + b ≡ 1 mod 8, i.e., a + c2 ≡ 1 (mod m6). We now split our argument
into two cases, the �rst when c ≡ 0 mod 4 and the second when c ≡ 2 mod 4.

If c ≡ 0 (mod m4), then c2 ∈ m6, so a− 1 ∈ m6 as well. Then π = a+ c2i ≡ 1
(mod m6), which means that

√
π ≡ 1 (mod m4). Then

$0 = c(1 + i) +
√
π ≡ 1 (mod m4).

If c ≡ 2 (mod m4), then c2 ≡ −m4 (mod m6). In this case, we have a − 1 +
m4 ∈ m6, so that π = a + c2i ≡ 1 −m4 −m4i ≡ 1 + m4(−1 − i) ≡ 1 + m5

(mod m6). This means that
√
π ≡ 1 +m3 (mod m4), and hence

$0 =
√
π + c(1 + i) ≡ 1 +m3 +m3 ≡ ±1 (mod m4).

This �nishes the proof that Q2(i,
√
$0) is unrami�ed over Q2(i).

2.2 Proof of Theorem 2.1

The proof of Theorem 2.1 will proceed in much the same way as the last part
of the proof of Proposition 2.2. Now, instead of showing that Q2(i,

√
$0) is

unrami�ed over Q2(i), we must decide when this extension is trivial (i.e. when
t splits completely in H8) and when it is unrami�ed of degree 2 (i.e. when t
does not split completely in H8). This is equivalent to determining when $0

is a square in Q2(i).

We will distinguish between two cases as above. The �rst case is when c ≡ 0
(mod 4), i.e., c ∈ m4. Recall from above that then a ≡ 1 (mod 8) and

√
π ≡ 1

(mod m4).

To check whether or not $0 is a square in Q2(i), we must compute $0 modulo
m5. Since c ≡ 0 (mod 4), we deduce that $0 ≡

√
π modulo m5. Thus, we
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must determine conditions on a such that
√
π ≡ ±1 (mod m5), and for this, by

Hensel's lemma, it is necessary to determine π modulo m7. Hence, assuming
c ≡ 0 (mod 4),

16|h ⇐⇒
√
π ≡ ±1 (mod m5)

⇐⇒ π ≡ 1 (mod m7)
⇐⇒ a ≡ 1 (mod 16).

This proves parts (i) and (iii) of Theorem 2.1.

We handle the second case similarly. Now c ≡ 2 (mod 4), a ≡ 5 (mod 8)
and

√
π ≡ 1 + m3 (mod m4). Then $0 ≡ 2m +

√
π modulo m5 and so we

must determine conditions on a such that
√
π ≡ ±1 − 2m (mod m5). Under

the current assumptions,

16|h ⇐⇒
√
π ≡ ±1− 2m (mod m5)

⇐⇒ π ≡ 1 +m5 +m6 (mod m7)
⇐⇒ a ≡ −3 (mod 16).

Note that because of the choice (2.9) we have actually shown the theorem for
a ≡ 1 (mod 4). If p = a2 + c4 with a ≡ 3 (mod 4), then p = (−a)2 + c4 with
−a ≡ 1 (mod 4), so that the other cases can be deduced immediately. This
�nishes the proof of Theorem 2.1.

2.3 Overview of the proof of Proposition 2.1

In [19], Friedlander and Iwaniec prove an asymptotic formula for the number
of primes of the form a2 + c4, that is, primes of the form a2 + b2 where b itself
is a square. For a summary of their proof, see the exposition in [20, Chapter
21]. They use a new sieve that they developed to detect primes in relatively
thin sequences [18]. This sieve has its roots in the work of Fouvry and Iwaniec
[12], where they used similar sieve hypotheses to give an asymptotic formula
for the number of primes of the form a2 + b2 where b is a prime.

The purpose of the following three sections is to demonstrate that the method
of Friedlander and Iwaniec is robust enough to incorporate congruence condi-
tions on a and c. While we are convinced that the appropriate analogue of
Proposition 2.1 is true when a and c satisfy reasonable congruence conditions
modulo any positive integers q1 and q2, respectively, the technical obstacles
necessary to insert the congruence condition for c are cumbersome. Hence we
will restrict ourselves to the case q2 = 4.

The proof of Proposition 2.1 involves certain alterations in the way that the
sieve [18] is used. For this reason, we �rst brie�y recall the inputs and the
output of the sieve.
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2.3.1 Asymptotic sieve for primes

Suppose (an) (n ∈ N) is a sequence of non-negative real numbers. Then the
asymptotic sieve for primes developed in [18] yields an asymptotic formula for

S(x) =
∑
p≤x

p prime

ap log p,

provided that the sequence (an) satis�es several hypotheses, all but two of
which are not di�cult to verify. To state them, we �rst need to �x some
terminology. For d ≥ 1, let

Ad(x) =
∑
n≤x

n≡0 mod d

an,

and let A(x) = A1(x). Moreover, let g be a multiplicative function, and de�ne
the error term rd(x) by the equality

Ad(x) = g(d)A(x) + rd(x). (2.15)

The hypotheses which are not di�cult to verify are listed in equations (2.1)-
(2.8) in [19]. We brie�y recall them here. We assume the bounds

A(x)� A(
√
x)(log x)2 (H1)

and

A(x)� x
1
3

∑
n≤x

a2
n

 1
2

. (H2)

We assume that the multiplicative function g satis�es

0 ≤ g(p2) ≤ g(p) ≤ 1, (H3)

g(p)� p−1, (H4)

and
g(p2)� p−2. (H5)

We also assume that for all y ≥ 2,∑
p≤y

g(p) = log log y + c+O((log y)−10), (H6)

where c is a constant depending only on g; this is the linear sieve assumption.
Finally, we assume the bound

Ad(x)� d−1τ(d)8A(x) (H7)
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uniformly in d ≤ x 1
3 ; here τ is the divisor function.

Now we state the two hypotheses which are more di�cult to verify. The
�rst is a classical sieve hypothesis; it is a condition on the average value of the
error terms rd(x). Let L = (log x)224

.

Hypothesis (R). There exists xr > 0 and D = D(x) in the range

x
2
3 < D < x (2.16)

such that for all x ≥ xr, we have∑
d cubefree

d≤DL2

|rd(t)| ≤ A(x)L−2 (R)

uniformly in t ≤ x.

In our applications, D will be x3/4−ε for a su�ciently small ε. This condi-
tion about remainders will be called condition (R).

The second is a complicated condition on bilinear forms in the elements of
the sequence (an) weighed by truncated sums of the Möbius function

β(n,C) = µ(n)
∑

c|n, c≤C

µ(c). (2.17)

It is designed to make sure that the sequence (an) is orthogonal to the Möbius
function; this is crucial in overcoming the parity problem. We now state this
hypothesis, named (B) for bilinear.

Hypothesis (B). Suppose (R) is satis�ed for xr and D = D(x). Then there
exists xb > xr such that for every x > xb, there exist δ, ∆, and P satisfying

2 ≤ δ ≤ ∆,

2 ≤ P ≤ ∆1/235 log log x,

and such that for every C with

1 ≤ C ≤ xD−1,

and for every N with
∆−1
√
D < N < δ−1

√
x,

we have

∑
m

∣∣∣∣∣∣∣∣∣∣
∑

N≤n≤2N
mn≤x

(n,mΠ)=1

β(n,C)amn

∣∣∣∣∣∣∣∣∣∣
≤ A(x)(log x)−226

, (B)
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where

Π =
∏
p≤P

p. (2.18)

Note that establishing condition (R) for a larger D decreases the range of
C and N for which we have to verify condition (B).

The main result of [18] is

Theorem 2.2. Assuming hypotheses (H1)-(H7), (R), and (B), we have

S(x) = HA(x)

(
1 +O

(
log δ

log ∆

))
,

where H is the positive constant given by the convergent product

H =
∏
p

(1− g(p))

(
1− 1

p

)−1

and the constant implied in the O-symbol depends on the function g and the
constants implicit in (H1), (H2), and (H7).

2.3.2 Preparing the sieve for Proposition 2.1

For our application, we will denote by v′ the analogue of a quantity v from
the proof of Friedlander and Iwaniec in [19]. We take (a′n) to be the following
sequence. Suppose q1 and q2 are positive integers and let q denote the least
common multiple of q1 and q2. We say that a pair of congruence classes

a0 mod q1 c0 mod q2

is admissible if for every pair of congruence classes

a1 mod q c1 mod q

such that a1 ≡ a0 mod q1 and c1 ≡ c0 mod q2, the congruence class a2
1 +

c41 mod q is a unit modulo q.

Example. Suppose that a0 ∈ {1, 3, 5, 7, 9, 11, 13, 15} and c0 ∈ {0, 2}. Then the
pair of congruence classes a0 mod 16 and c0 mod 4 is admissible.

Example. Suppose that a0 = c0 = 1. Then the pair of congruence classes
a0 mod 3 and c0 mod 2 is not admissible. Indeed, 1 ≡ a0 ≡ c0 mod 6 but
2 ≡ 12 + 14 mod 6 is not invertible modulo 6. This does not mean, however,
that there are no primes of the form a2+c4 with a ≡ 1 mod 3 and c ≡ 1 mod 2;
one such prime is 42 + 14.
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Henceforth, suppose q1 and q2 are positive integers, let q be the least com-
mon multiple of q1 and q2, and suppose a0 mod q1 and c0 mod q2 is an admis-
sible pair of congruence classes. We de�ne

a′n :=
∑∑
a, b ∈ Z
a2+b2=n

a≡a0 mod q1

Z′(b), (2.19)

where
Z′(b) :=

∑
c∈Z
c2=b

c≡c0 mod q2

1. (2.20)

Let g be the multiplicative function supported on cubefree integers de�ned in
[19, Equation 3.16, p.961] as follows: let χ4 denote the character of conductor
4; for p ≥ 3 set

g(p)p = 1 + χ4(p)

(
1− 1

p

)
and

g(p2)p2 = 1 + (1 + χ4(p))

(
1− 1

p

)
;

�nally, set g(2) = 1
2 and g(4) = 1

4 . For our extension, we de�ne a multiplicative
function g′ by setting

g′(n) =

{
g(n) if (n, q) = 1

0 otherwise.

Then, provided that (H1)-(H7), (R), and (B) are satis�ed with δ a large power
of log x and ∆ a small power of x, the asymptotic formula given by the sieve
(see Theorem 2.2) is

S′(x) :=
∑
p≤x

p prime

a′p log p = c(q1, q2)
16κ

π
x3/4

(
1 +O

(
log log x

log x

))
(2.21)

where

c(q1, q2) =
1

q1q2

∏
p|q

(1− g(p))−1

and κ is the integral given in the statement of Proposition 2.1. Note that the
sieve applied to the original sequence (an) from [19], with

an =
∑∑
a, b ∈ Z
a2+b2=n

Z(b), (2.22)
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where
Z(b) =

∑
c∈Z
c2=b

1, (2.23)

yields the asymptotic formula

S(x) =
16κ

π
x3/4

(
1 +O

(
log log x

log x

))
(see [19, Theorem 1, p.946]). Thus c(q1, q2) can be interpreted as the density
of primes of the form a2 + c4 such that a ≡ a0 mod q1 and c ≡ c0 mod q2

within the set of all primes of the form a2 + c4.

Remark. Throughout the following two sections, we regard q1 and q2 as �xed
constants, and so the implied constants in every bound we give may depend
on q1 and q2, even if this dependence is not explicitly stated. Thus, whenever
we state �the implied constant is absolute,� the implied constant may actually
depend on q1 and q2. In our application q1 = 16 and q2 = 4, so we are not
concerned with uniformity of the above asymptotic formula with respect to q1

and q2.

It is obvious that our modi�ed sequence (a′n) satis�es (H1)-(H7) for the
same reasons as the original sequence (an). We will prove that (a′n) above
satis�es condition (R) for general q1 and q2. The congruence condition on c is
more di�cult to insert into the proof of condition (B), so we prove condition
(B) only for the special case where q2 = 4 and c0 ∈ {0, 2}.

2.4 Proof of condition (R)

Here we closely follow and refer to the arguments laid out in [19, Section 3,
p.955-962]. De�ne

A′d(x) :=
∑
n≤x

n≡0 mod d

a′n

and
A′(x) := A′1(x).

The goal is to check that the error terms r′d(x) de�ned by

r′d(x) := A′d(x)− g′(d)A′(x) (2.24)

are small on average. To do this, we will prove an analogue of [19, Lemma 3.1,
p.956], with Md(x) (representing the main term and de�ned in [19, p.955])
replaced by

M ′d(x) =
1

dq1

∑∑
0<a2+b2≤x

Z′(b)ρ(b; d) if (d, q) = 1
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and M ′d(x) = 0 otherwise; here ρ(b; d) is de�ned as in [19, p.955], i.e. it is the
number of solutions α mod d to

α2 + b2 ≡ 0 mod d.

We separate the case when d is not coprime to q because in this case A′d(x) =
0. This follows because the pair of congruences a0 mod q1 and c0 mod q2 is
admissible and hence a′n is supported on n coprime to q. The lemma we wish
to prove is now identical to [19, Lemma 3.1, p.956].

Lemma 2.5. For any D ≥ 1, any ε > 0, and any x ≥ 2, we have∑
d≤D

|A′d(x)−M ′d(x)| � D
1
4x

9
16 +ε,

where the implied constant depends only on ε.

This result is useful because it is easy to obtain an asymptotic formula
for M ′d(x) where the coe�cient of the leading term is, up to a constant, a
nice multiplicative function of d. In fact, let h be the multiplicative function
supported on cubefree integers de�ned in [19, (3.16), p.961] by{

h(p)p = 1 + 2(1 + χ4(p))

h(p2)p2 = p+ 2(1 + χ4(p)),
(2.25)

and de�ne a multiplicative function h′ by setting

h′(n) =

{
h(n) if (n, q) = 1

0 otherwise.
(2.26)

Then following the same argument as in the proof of [19, Lemma 3.4, p.961],
we get

Lemma 2.6. For d cubefree we have

M ′d(x) = g′(d)
4κx

3
4

q1q2
+O

(
h′(d)x

1
2

)
,

where κ is the integral given in the statement of Proposition 2.1 and the implied
constant is absolute. �

Combining Lemmas 2.5 and 2.6, we get, as in [19, Proposition 3.5, p.362],

Proposition 2.3. Let

a0 mod q1 c0 mod q2

be an admissible pair of congruence classes, let a′n be de�ned as in (2.19), and
let r′d(x) be de�ned as in (2.24). Then for every ε > 0 and every D ≥ 1, there
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exists an x0 = x0(ε) > 0 and C = C(ε) > 0 such that for every x ≥ x0, we
have ∑

d cubefree
d≤D

|r′d(t)| ≤ CD
1
4x

9
16 +ε

uniformly for t ≤ x.

Choosing D = x
3
4−8ε, we obtain hypothesis (R).

It remains to prove Lemma 2.5. We may assume that the sum is over d ≤ D
with (d, q) = 1. For such d, we �rst approximate the sum A′d(x) by a smoothed
sum

A′d(f) =
∑

n≡0 mod d

a′nf(n),

where f is a smooth function satisfying:

• f is supported on [0, x],

• f(u) = 1 for 0 < u ≤ x− y,

• f (j)(u)� y−j for x− y < u < x,

where y = D
1
4x

13
16 and the implied constants depend only on j (see [19, p.958]).

Since a′n is supported on integers of the form a2 + c4, we trivially have∑
d≤D

(d,q)=1

|A′d(x)−A′d(f)| � yx−
1
4 +ε,

where the implied constant depends only on ε. With the above choice of y, it
remains to prove Lemma 2.5 with A′d(x) replaced by A′d(f). Similarly as on
[19, p.958], we write

A′d(f) =
∑
b

Z′(b)
∑

α mod d
α2+b2≡0 mod d

∑
a≡α mod d
a≡a0 mod q1

f(a2 + b2). (2.27)

Since (d, q) = 1, so also (d, q1) = 1, and the two conditions a ≡ α mod d and
a ≡ a0 mod q1 can be combined into one condition a ≡ α′ mod dq1. In fact,
�xing an integer d that is an inverse of d modulo q1 and an integer q̄1 that is
an inverse of q1 modulo d, we can de�ne α′ as

α′ = αq1q̄1 + a0dd̄.

We apply Poisson's summation formula to the sum over a to obtain∑
a≡α′ mod dq1

f(a2 + b2) =
1

dq1

∑
k

e

(
α′k

dq1

)∫ ∞
−∞

f(t2 + b2)e

(
−tk
dq1

)
dt.
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Here and henceforth, we use the standard notation

e(t) := e2πit.

Substituting this into (2.27) we get

A′d(f) =
2

dq1

∑
b

Z′(b)
∑
k

ρ′(k, b; d)I(k, b; dq1)dt,

where

ρ′(k, b; d) =
∑

α mod d
α2+b2≡0 mod d

e

(
α′k

dq1

)
,

and where

I(k, b; dq1) =

∫ ∞
0

f(t2 + b2) cos(2πtk/dq1)dt

is de�ned exactly the same as on [19, p.959]. We de�ne M ′d(f) to be the main
term in this expansion, i.e. the term corresponding to k = 0,

M ′d(f) =
2

dq1

∑
b

Z′(b)ρ(b; d)I(0, b; dq1).

Since I(0, b; dq1) = I(0, b; q1), the argument on page 959 shows that∑
d≤D

(d,q)=1

|M ′d(f)−M ′d(x)| � yx−
1
4 (log x)2 � D

1
4x

9
16 +ε,

where the implied constants depend only on ε. It remains to prove Lemma 2.5
with A′d(f) in place of A′d(x) and M ′d(f) in place of M ′d(x), i.e. to show that
M ′d(f) is indeed (on average) the main term in the above Fourier expansion of
A′d(f).

Following the argument on [19, p.959-960], we see that it su�ces to show
an analogue of [19, Lemma 3.3, p.957] for ρ′(k, l; d).

Lemma 2.7. For any D, K, and L ≥ 1, for any complex numbers ξ(k, l), and
for any ε > 0, we have the inequality

∑
d≤D

∣∣∣∣∣∣∣∣
∑∑
0<k≤K
0<l≤L

ξ(k, l)ρ′(k, l; d)

∣∣∣∣∣∣∣∣� (D +
√
DKL)(DKL)ε‖ξ‖

where
‖ξ‖2 =

∑∑
0<k≤K
0<l≤L

|ξ(k, l)|2,

and the implied constant depends only on ε.
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Recall the following inequality from [19, (3.6), p.957]: for any complex
numbers αn and any D,N ≥ 1, we have

∑
d≤D

∑
ν mod d

ν2+1≡0 mod d

∣∣∣∣∣∣
∑
n≤N

αne
(νn
d

)∣∣∣∣∣∣� D
1
2 (D +N)

1
2 ‖α‖, (2.28)

where

‖α‖ :=

(∑
n

|αn|2
) 1

2

,

and the implied constant is absolute. Lemma 2.7 can be proved in the same
way as [19, Lemma 3.3, p.957] given the following analogue of inequality (2.28).

Lemma 2.8. Let D,N ≥ 1 and let αn be any complex numbers. For integers
d such that (d, q1) = 1, let ν′ be an integer in the unique residue class modulo
dq1 that reduces to ν modulo d and a0 modulo q1. Then there exists an absolute
constant C = C(q1) such that for all D and N su�ciently large, we have

∑
d≤D

(d,q1)=1

∑
ν mod d

ν2+1≡0 mod d

∣∣∣∣∣∣
∑
n≤N

αne

(
ν′n

dq1

)∣∣∣∣∣∣ ≤ CD 1
2 (D +N)

1
2 ‖α‖. (2.29)

Inequality (2.28) is a consequence of a large sieve inequality applied to the
rationals ν/d mod 1 with ν ranging over the roots of ν2 + 1 ≡ 0 mod d for d
in a range around D. The large sieve inequality can be applied because these
rationals ν/d are well-spaced modulo 1 for d in a certain range around D (i.e.
pairwise di�erences are uniformly bounded from below by about 1/D instead
of 1/D2). This is a key ingredient in the work of [12]. In our analogue, how-
ever, it is not clear that ν′/dq1 are also well-spaced modulo 1 for d in a similar
range around D. Nonetheless, we can reduce Lemma 2.8 to inequality (2.28)
as follows.

We �rst split the sum over n into congruence classes modulo q1 to get∑
n0 mod q1

∑
n≤N

n≡n0 mod q1

αne

(
ν′n

dq1

)
=

∑
n0 mod q1

∑
m≤(N−n0)/q1

αm,n0
e

(
ν′m

d

)
e

(
ν′n0

dq1

)
,

where
αm,n0

= αmq1+n0
.

Since e (ν′n0/dq1) does not depends on m, the sum on the left-hand-side of
(2.29) is

≤
∑

n0 mod q1

∑
d≤D

(d,q1)=1

∑
ν mod d

ν2+1≡0 mod d

∣∣∣∣∣∣
∑

m≤(N−n0)/q1

αm,n0e

(
ν′m

d

)∣∣∣∣∣∣ .
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Now e
(
ν′m
d

)
= e

(
νm
d

)
and∑

m

|αm,n0
|2 ≤

∑
n

|αn|2,

so that by (2.28) we get

∑
d≤D

(d,q1)=1

∑
ν mod d

ν2+1≡0 mod d

∣∣∣∣∣∣
∑
n≤N

αne

(
ν′n

dq1

)∣∣∣∣∣∣� q1D
1/2(D +N/q1)1/2‖α‖.

This �nishes the proof of (2.8) and thus also the proof of condition (R).

2.5 Proof of condition (B)

Many of the upper bound estimates carried out in sections 4 and 5 of [19]
require no changes since 0 ≤ a′n ≤ an (compare (2.19) and (2.22)). In most
cases, we now sum over fewer non-negative terms.

Recall that we established condition (R) with D = x
3
4−8ε. All of the re�ne-

ments from [19, Section 4, p.962-966] remain valid for our modi�ed sequence
(a′n). We brie�y recall these re�nements. First note that it is enough to prove
the analogue of [19, Proposition 4.1, p.963]:

Proposition 2.4. Let c0 ∈ {0, 2}, let q2 = 4, and let

a0 mod q1 c0 mod q2

be an admissible pair of congruence classes. De�ne β(n,C) as in (2.17), Π as
in (2.18), and a′n as in (2.19). Let x ≥ 3, η > 0, and A > 0. Let P be in the
range

(log log x)2 ≤ logP ≤ (log x)(log log x)−2. (2.30)

Let
B = 4A+ 220. (2.31)

Then there exists x0 = x0(η,A) such that for all x ≥ x0, for all N with

x
1
4 +η < N < x

1
2 (log x)−B , (2.32)

and for all C with
1 ≤ C ≤ N1−η, (2.33)

we have

∑
m

∣∣∣∣∣∣∣∣∣∣
∑

N≤n≤2N
mn≤x

(n,mΠ)=1

β(n,C)amn

∣∣∣∣∣∣∣∣∣∣
≤ A′(x)(log x)5−A. (2.34)
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2.5.1 From Propositions 2.3 and 2.4 to Proposition 2.1

Before proving Proposition 2.4, we deduce Proposition 2.1 from Propositions
2.3 and 2.4. Let a0 ∈ {1, 3, 5, 7, 9, 11, 13, 15}, q1 = 16, c0 ∈ {0, 2}, and q2 = 4.
Then

a0 mod q1 c0 mod q2

is an admissible pair of congruences. We apply the asymptotic sieve for primes
described in Section 2.3.1 to the sequence (a′n) de�ned in (2.19). Hypotheses
(H1)-(H7) for (a′n) are veri�ed in the same way as hypotheses (H1)-(H7) for
the sequence (an) de�ned in (2.22) (see comment at the end of Section 2.3.2).

Proposition 2.3 implies that (a′n) satis�es hypothesis (R) for ε = 1/8000,

D = x
3
4−

1
1000 , (2.35)

which is indeed in the range (2.16), and xr = xr(ε) large enough.

Applying Proposition 2.4 with the same D as in (2.35), with P any number in
the range (2.30), with A = 5+226, and with η = 1

100 establishes hypothesis (B)
for the sequence (a′n) with δ = (log x)B , ∆ = xη, and xb = max{xr, x0(η,A)}.

We then obtain the asymptotic formula (2.21) with

c(q1, q2) =
1

32
,

which proves (2.3).

2.5.2 Proof of Proposition 2.4

Suppose that we are in the setting of Proposition 2.4. Now take A′ = 2A+220

(see [19, p.1018]) and de�ne

ϑ := (log x)−A

and
θ := (log x)−A

′
(2.36)

as on [19, p.965]. We split the sum (2.34) by using a smooth partition of unity.
Let p be a smooth function supported on an interval

N ′ < n ≤ (1 + θ)N ′

with N < N ′ < 2N , and suppose that p is twice di�erentiable with

p(j) � (θN)−j
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for j = 0, 1, 2 (see [19, (4.14), p.965]). It then su�ces to show Proposition 2.4
with β(n,C) replaced by a smoothed version

β(n) = β(n,C) = p(n)µ(n)
∑

c|n, c≤C

µ(c) (2.37)

and the bound ≤ A′(x)(log x)5−A replaced by ≤ CϑθA′(x)(log x)5 (see [19,
(4.17), p.965]). Moreover, one can split the sum over m in (2.34) into dyadic
segments M ≤ m ≤ 2M with M satisfying

ϑx ≤MN ≤ x. (2.38)

We remark that (2.32) now implies that N ≤ ϑθ(MN)
1
2 . Sums over the

remaining dyadic segments are bounded trivially at an acceptable cost. Again,
for an acceptable cost, one can suppose that β(n,C) is supported on n with

τ(n) ≤ τ := (log x)A+220

. (2.39)

(see [19, p.963-966, 1018]). For convenience of notation, we also restrict the
support of β(n,C) to n satisfying

(n,Π) = 1, (2.40)

where Π is de�ned in (2.18). Finally, let α(m) be any complex numbers sup-
ported on M < m ≤ 2M with |α(m)| ≤ 1, and de�ne

B′∗(M,N) :=
∑∑
(m,n)=1

α(m)β(n)a′mn, (2.41)

where β(n) = β(n,C) is de�ned as in (2.37) (see [19, (4.20), p.966]). To
establish condition (B) it then su�ces to prove

Lemma 2.9. Let η > 0 and A > 0 and take B as in (2.31). Then there exists
x0 = x0(η,A) > 0 such that for all x ≥ x0, for all M and N satisfying (2.32)
and (2.38), and for all C satisfying (2.33) we have

|B′∗(M,N)| ≤ ϑθ(MN)
3
4 (logMN)5. (B')

2.5.3 Proof of Lemma 2.9

In [19, Section 5], one begins to exploit the arithmetic in Z[i] and the inequality
(B') is reduced to another inequality involving sums over Gaussian integers.
In our context, where a′n are de�ned in (2.19), equation [19, (5.2), p.967] now
becomes (for (m,n) = 1)

a′mn =
∑
|w|2=m

∑
|z|2=n

Imwz≡a0 mod q1

Z′(Rewz),
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where the sum over z is restricted to primary Gaussian integers, i.e. z satisfying

z ≡ 1 mod 2(1 + i).

Recall from (2.20) that the congruence condition c ≡ c0 mod q2 is incorporated
into the de�nition of Z′. We now de�ne αw := α(|w|2) and βz := β(|z|2) as on
[19, p.967], so that (2.41) becomes

B′∗(M,N) =
∑∑

(ww,zz)=1
Imwz≡a0 mod q1

αwβzZ
′(Rewz). (2.42)

Similarly as in [19, (5.7), p.967], we split the sum B′∗(M,N) into O(q4
1) sums

by restricting the support of αw to w in a �xed residue class modulo q1 and
βz to z in a �xed residue class z0 modulo 64q1, such that z0 ≡ 1 mod 2(1 + i).
Now the residue class of Imwz modulo q1 is �xed, and so we can eliminate the
condition Imwz ≡ a0 mod q1.

We further modify the support of βz as in equation [19, (5.13), p.969]. Let
r(α) be a smooth periodic function of period 2π supported on ϕ < α ≤ ϕ+2πθ
(where θ is as de�ned in (2.36)) for some −π < ϕ < π such that r(j) � θ−j

for j = 0, 1, 2, and let

βz = r(α)p(n)µ(n)
∑

c|n, c≤C

µ(c), (2.43)

where α = arg z and n = |z|2. Recall that by (2.39) and (2.40), βz = 0 if
either τ(|z|2) > τ or if |z|2 is not coprime with Π. We remove the condition
(ww, zz) = 1 from (2.42) at an acceptable cost as in [19, (5.10), p.968] to get

B′(M,N) = B′∗(M,N) +O
((
M

1
4N

5
4 + P−1M

3
4N

3
4

)
(logN)3

)
where

B′(M,N) :=
∑∑

Imwz≡a0 mod q1

αwβzZ
′(Rewz). (2.44)

We then apply Cauchy-Schwarz as in [19, (5.17), p.970] and introduce a smooth
radial majorant f supported on the annulus 1

2

√
M ≤ |w| ≤ 2

√
M (see [19,

p.970]) to get
B′(M,N)�M

1
2D′(M,N)

1
2 ,

where

D′(M,N) :=
∑
w

f(w)

∣∣∣∣∣∑
z

βzZ
′(Rewz)

∣∣∣∣∣
2

.

This eliminates the dependence on αw, so that the sum over w above is free.
After inserting a coprimality condition, we arrive at the sum

D′∗(M,N) :=
∑∑
(z1,z2)=1

βz1βz2C
′(z1, z2) (2.45)
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where
C′(z1, z2) :=

∑
w

f(w)Z′(Rewz1)Z′(Rewz2)

(see [19, (5.26), p.972] and [19, (5.27), p.972]). The coprimality condition was
inserted at the cost

D′∗(M,N) = D′(M,N) +O
(
τ2(M

3
4N

3
4 + P−1M

1
2N

3
2 )(logMN)516

)
(see [19, (5.22), p.972]). Recall that the congruence condition c ≡ c0 mod q2 is
hidden in the de�nition of Z′, while the congruence condition a ≡ a0 mod q1

has been removed by restricting the support of βz. To prove Lemma 2.9, we
now have left to prove

Lemma 2.10. Let η > 0 and A > 0, and take B as in (2.31). Then there
exists x0 = x0(η,A) such that for all x ≥ x0, for all M and N satisfying (2.32)
and (2.38), and for all C satisfying (2.33), we have

|D′∗(M,N)| ≤ Cϑ2θ4M
1
2N

3
2 (logMN)10. (B�)

Note the extra factor of θ coming from the restriction of support of β to a
sector of angle θ.

2.5.4 Proof of Lemma 2.10

In order to obtain this upper bound, Friedlander and Iwaniec introduce a
quantity they call the �modulus�

∆ = ∆(z1, z2) = Im(z1z2),

which is non-zero whenever (z1, z2) = 1 and z1 and z2 are odd and primitive.
The sum de�ning D′∗(M,N) is split into several di�erent sums depending on
the size of the modulus ∆. Di�erent techniques are used to treat each of these
sums, but we will manage to avoid going into the details by reducing our sums
to those already studied in [19].

The Fourier analysis carried out on [19, p.974] depends on the greatest com-
mon divisor of ∆ and q2. Using the Poisson summation formula similarly as
on [19, p.974], equation (2.45) can now be written as

D′∗(M,N) =
∑
δ|q2

∑∑
(z1,z2)=1
(q2,|∆|)=δ

βz1βz2C
′(z1, z2),

where

C′(z1, z2) = (q2/δ)
−2|z1z2|−1/2

·
∑
h1

∑
h2
F
(

h1

|∆z2|1/2q2/δ
, h2

|∆z1|1/2q2/δ

)
G′(h1, h2),

(2.46)
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the Fourier integral

F (u1, u2) =

∫ ∫
f

(
z2

|z2|
t21 −

z1

|z1|
t22

)
e(u1t1 + u2t2)dt1dt2

is the same as the one de�ned in [19, (6.8), p.974] and

G′(h1, h2) =
1

|∆|
∑∑

γ1,γ2 mod |∆|
γ2
1z2≡γ

2
2z1 mod |∆|

γ1≡γ2≡c0 mod δ

e

(
γ′1h1 + γ′2h2

|∆|q2/δ

)

is an arithmetic sum similar to G(h1, h2) de�ned in [19, (6.10), p.974], but now
incorporating the congruence condition c ≡ c0 mod q2; here γ′i is the solution
(modulo |∆|q2δ ) to the system of congruences{

γ′i ≡ γi mod |∆|
γ′i ≡ c0 mod q2.

Such a solution is guaranteed to exist because γ1 ≡ γ2 ≡ c0 mod δ. Note that
similarly as in [19], we omit in the notation the dependence of F and G′ on z1

and z2.

The main term in the above expansion for C′(z1, z2) comes, as usual, from
the terms with h1 = h2 = 0 in equation (2.46). Similarly as in the proof of
condition (R) above, we don't need to make any changes in the treatment of
the Fourier integral; [19, Lemma 7.1, p.976] and [19, Lemma 7.2, p.977] are
still valid, with the implied constants now depending on q2 as well. We recall
that [19, Lemma 7.2, p.977] states that for z1 and z2 in the support of βz we
have

F0(z1, z2) := F (0, 0) = 2f̂(0) log 2|z1z2/∆|+O(∆2M
1
2N−2 logN). (2.47)

We now have to give an upper bound for G′(h1, h2) similar to the bound given
in [19, Lemma 8.1, p.978], as well as give an exact formula for

G′0(z1, z2) := G′(0, 0)

similar to the one in [19, Lemma 8.4, p.980]. This is where we now specialize
to the case

q2 = 4 and c0 ∈ {0, 2}.

Recall that we restricted the support of βz to z in a �xed congruence class
modulo 64q1. Hence z1 ≡ z2 mod 64, so that ∆ = Im(z1z2) ≡ 0 mod 64. This
signi�cantly simpli�es our arguments since now δ = (4, |∆|) = 4.
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The arithmetic sum G′(h1, h2) now simpli�es to

G′(h1, h2) =
1

|∆|
∑∑

γ1,γ2 mod |∆|
γ2
1z2≡γ

2
2z1 mod |∆|

γ1≡γ2≡c0 mod 4

e

(
γ1h1 + γ2h2

|∆|

)
.

We �rst prove a lemma analogous to [19, Lemma 8.1, p.978].

Lemma 2.11. Fix θ ∈ {2, 4} and let

G′′(h1, h2; θ) =
1

|∆|
∑∑

γ1,γ2 mod |∆|
γ2
1z2≡γ

2
2z1 mod |∆|

γ1≡γ2≡0 mod θ

e

(
γ1h1 + γ2h2

|∆|

)
.

Then
|G′′(h1, h2; θ)| ≤ 16τ3(∆)|∆|−1(z1h

2
1 − z2h

2
2,∆). (2.48)

Introducing a change of variables γ1 = θω1 and γ2 = θω2, we get

G′′(h1, h2; θ) =
1

|∆|
∑∑

ω1,ω2 mod |∆|/θ
ω2

1z2≡ω
2
2z1 mod |∆|/θ2

e

(
ω1h1 + ω2h2

|∆|/θ

)
.

Proceeding in a similar fashion as on [19, p.977-978], we write

∆/θ = θ∆1(∆2)2,

with ∆1 squarefree. The condition ω2
1z2 ≡ ω2

2z1 mod |∆|/θ2 implies that
(ω2

1 ,∆/θ
2) = (ω2

2 ,∆/θ
2), so we can write

(ω2
1 ,∆/θ

2) = (ω2
2 ,∆/θ

2) = d1d
2
2

with d1 squarefree. Then d1|∆1, d2|∆2, (d1,∆2/d2) = 1, and we can make a
change of variables ωi = d1d2ηi, there ηi runs over the residue classes modulo
|∆|/θd1d2 and coprime with |∆|/θ2d1d

2
2. Setting b1 = ∆1/d1 and b2 = ∆2/d2,

the analogue of the equation on top of [19, p.978] becomes

G′′(h1, h2; θ) =
1

|∆|
∑∑
b1d1=|∆1|
b2d2=∆2

(d1,b2)=1

∑∑
η1,η2 mod θb1b

2
2d2

(η1η2,b1b2)=1

η21z2≡η
2
2z1 mod b1b

2
2

e((η1h1 + η2h2)/θb1b
2
2d2)

The innermost sum vanishes unless h1 ≡ h2 ≡ 0 mod θd2, so G′′(h1, h2) is
equal to

1

|∆|
∑

b1d1=|∆1|
(d1,b2)=1

∑
b2d2=∆2

θd2|(h1,h2)

θ2d2
2

∑∑
η1,η2 mod b1b

2
2

(η1η2,b1b2)=1

η21z2≡η
2
2z1 mod b1b

2
2

e((η1h1 + η2h2)/θb1b
2
2d2).
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Performing the change of variables η2 = ωη1, the analogue of equation [19,
(8.3), p.978] becomes

1

|∆|
∑

b1d1=|∆1|
(d1,b2)=1

∑
b2d2=∆2

θd2|(h1,h2)

θ2d2
2

∑
ω≡z2/z1 mod b1b22

R((h1 + ωh2)(θd2)−1; b1b
2
2),

where R(h; b) is the classical Ramanujan sum de�ned on [19, p.978]. Now the
same argument as on [19, p.978] yields the desired upper bound (2.48).�

We now turn our attention back to G′(h1, h2). In case c0 = 0, we're in the
case of Lemma 2.11 and

|G′(h1, h2)| = |G′′(h1, h2; 4)| ≤ 16τ3(∆)|∆|−1(z1h
2
1 − z2h

2
2,∆).

If, on the other hand, c0 = 2, we note that G′(h1, h2) = G′′(h1, h2; 2) −
G′′(h1, h2; 4) since ∆ ≡ 0 mod 16. Hence

|G′(h1, h2)| ≤ 32τ3(∆)|∆|−1(z1h
2
1 − z2h

2
2,∆).

The same arguments as those in Section 9 of [19] now su�ce to show that
the main term in the Fourier expansion indeed comes from h1 = h2 = 0.
Speci�cally, if we de�ne

D′0(M,N) :=
∑∑
(z1,z2)=1

βz1βz2C
′
0(z1, z2),

where
C′0(z1, z2) = |z1z2|−1/2F0(z1, z2)G′0(z1, z2), (2.49)

then the reader may easily check that the above estimates yield the following
analogue of [19, (9.10), p.983].

Lemma 2.12. Let η > 0 and A > 0, and take B as in (2.31). Then there
exists x0 = x0(η,A) such that for all x ≥ x0, for all M and N satisfying (2.32)
and (2.38), and for all C satisfying (2.33), we have

|D′∗(M,N)−D′0(M,N)| ≤ ϑ−1τ2N2(logN)η
−1/η

,

where τ is de�ned in (2.39).

It now remains to estimate D′0(M,N). We turn to obtaining an exact
formula for G′0(z1, z2). Recall, from top of [19, p.979], that

G0(z1, z2) :=
1

|∆|
∑∑

γ1,γ2 mod |∆|
γ2
1z2≡γ

2
2z1 mod |∆|

1 = N(z2/z1; |∆|)/|∆|,
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where N(a; r) denotes the number of solutions (γ1, γ2) modulo r to

aγ2
1 ≡ γ2

2 mod r.

Similarly,
G′0(z1, z2) = N ′(z2/z1; |∆|)/|∆|,

where N ′(a; r) is the number of solutions (γ1, γ2) modulo r to the congruences{
aγ2

1 ≡ γ2
2 mod r

γ1 ≡ γ2 ≡ c0 mod 4.

Since z2/z1 ≡ 1 mod 64 and ∆ ≡ 0 mod 64, we are only concerned with the
case a ≡ 1 mod 64 and r ≡ 0 mod 64.

2.5.5 Computation of N ′(a; r)/r

Case c0 = 0

First let us compute N ′(a; r)/r when c0 = 0. Since γ1 ≡ γ2 ≡ 0 mod 4, we
can make a change of variables γ1 = 4ω1 and γ2 = 4ω2, where now ωi are
congruence classes modulo r/4, to �nd that N ′(a; r) = 16N(a; r/16), i.e.

N ′(a; r)/r = N(a; r/16)/(r/16).

This leads to a formula of type [19, (8.16), p.980]. If 16 · 2ν with ν ≥ 1 is the
exact power of 2 dividing ∆, we get

G′0(z1, z2) = ν
∑

16d|∆
d odd

ϕ(d)

d

(
z2/z1

d

)
.

Since ∆ ≡ 0 mod 64, we are only interested in the case ν ≥ 2, where this
becomes

G′0(z1, z2) = 2
∑

64d|∆

ϕ(d)

d

(
z2/z1

d

)
, (2.50)

by the same reasoning as in [19, Lemma 8.4, p.980].

Case c0 = 2

When c0 = 2 and 4|r, we can make a change of variables γ1 = 2ω1 and γ2 = 2ω2

so that N ′(a; r) is 4 times the number of solutions (ω1, ω2) modulo r/4 to the
system of congruences {

ω1 ≡ ω2 ≡ 1 mod 2

aω2
1 ≡ ω2

2 mod r/4.
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When 16|r, we must subtract from 4N(a; r/4) those solutions with ω1 ≡ ω2 ≡
0 mod 2. This gives N ′(a; r) = 4N(a; r/4)− 16N(a; r/16), i.e.

N ′(a; r)

r
=
N(a; r/4)

r/4
− N(a; r/16)

r/16
.

Hence if 16 · 2ν with ν ≥ 2 is the exact power of 2 dividing ∆, we get

G′0(z1, z2) = 2
∑

16d|∆

ϕ(d)

d

(
z2/z1

d

)
− 2

∑
64d|∆

ϕ(d)

d

(
z2/z1

d

)
, (2.51)

which is the analogue of (2.50).

2.5.6 End of proof of of Lemma 2.10

We now turn back to estimating D′0(M,N). As in [19, (10.4), p.985], we can
use (2.47) to write

D′0(M,N) = 2f̂(0)N
1
2T ′(β) +O

(
(τ−1 + θ)Y ′(β)M

1
2N−

1
2 logN

)
where

T ′(β) :=
∑∑
(z1,z2)=1

βz1βz2G
′
0(z1, z2) log 2|z1z2/∆|

and
Y ′(β) :=

∑∑
(z1,z2)=1

|βz1βz2 |τ(|z1|2)τ(|z2|2)τ3(∆).

Similarly as in [19, Lemma 10.1, p.985], we can bound Y ′(β) by

Y ′(β)� θ4N2(logN)219

,

so that we are left with estimating the sum T ′(β). In each of the cases c0 = 0
and c0 = 2, we can use the formula for G′0(z1, z2) and F0(z1, z2) to write T ′(β)
as a sum similar to [19, (10.13), p.986]. If we de�ne

T ′(β, ξ) := 2
∑
d

ϕ(d)

d

∑∑
(z1,z2)=1

∆(z1,z2)≡0 mod ξd

βz1βz2

(
z2/z1

d

)
log 2|z1z2/∆|,

then

T ′(β) =

{
T ′(β, 64) if c0 = 0

T ′(β, 16)− T ′(β, 64) if c0 = 2

Lemma 2.10 now follows from this analogue of [19, Proposition 10.2, p.986]:
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Lemma 2.13. Fix ξ ∈ {16, 64}. Let η > 0, A > 0, and σ > 0, and take B as
in (2.31). Then there exists x0 = x0(η,A) and C0 = C0(η,A, σ) > 0 such that
for all x ≥ x0, for all N satisfying (2.32), and for all C satisfying (2.33), we
have

T ′(β, ξ) ≤ C0N
2(logN)−σ + P−1N2 logN,

where P is any number in the range (2.30).

We recall that N and P appear as parameters restricting the support of
βz; see (2.43).

2.5.7 Proof of Lemma 2.13: oscillations of characters and
symbols

Although complicated, the proof of [19, Proposition 10.2] generalizes directly
to the proof of Lemma 2.13. One can check in [19, Sections 15-17] that the
same arguments are valid when ξ = 16 or 64 instead of ξ = 4. For instance, on
[19, p. 1005] and [19, p. 1015], one now sums over multiplicative characters of
the groups (Z[i]/ξdZ[i])× and (Z[i]/ξbdZ[i])×, respectively. Here b is a variable
appearing from the Möbius inversion formula ϕ(∆) =

∑
b|∆ µ(b)b−1 (see [19,

p. 1013]).

Moreover, the restriction on the support of βz to z in a �xed primary con-
gruence class modulo 64q1 (where q1 is as in (2.19)) as opposed to modulo 8 is
handled in the same way as in [19, Sections 15-17]. For sums over medium-size
moduli, the estimation of βz is trivial and so the restriction on the support is
irrelevant (see bottom of [19, p. 1003]). For sums over small moduli, i.e., d of
size at most a large power of logN , the key sum to bound from above is the
character sum

Skχ(β) =
∑
z

βzχ(z)

(
z

|z|

)k
, (2.52)

where χ is a multiplicative character of the group (Z[i]/ξdZ[i])× (see [19,
(16.14), p. 1005]). The restriction on the support of βz can be detected by
multiplicative characters modulo 64q1, so that we can simply transform χ into
a character for the group (Z[i]/64q1dZ[i])×. The sum (2.52) is bounded by
studying the Hecke L-functions

L(s, ψ) =
∑
a

ψ(a)(Na)−s,

where the sum ranges over the non-zero odd ideals a of Z[i] and

ψ(a) := χ(z)

(
z

|z|

)k
where z is the unique primary Gaussian integer which generates a. The de-
pendence on χ of the bound given for Skχ(β) is only through the modulus of
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χ (see [19, Lemma 16.2, p. 1012]) and this modulus is di�erent from 4d by
a �xed constant. Similarly, for the sums over large moduli, the key sum to
bound from above is the character sum

Skχ(β′) =
∑
z

β′zχ(z)

(
z

|z|

)k
, (2.53)

where χ is a multiplicative character of the group (Z[i]/ξbdZ[i])× (where b is
an integer and d is again bounded by a large power of logN) but β′z is now

β′z = i
r−1
2

(
s

|r|

)
βz

if z = r + is (see [19, (17.8), p. 1014] and [19, (17.12), p. 1015]). Again,
the restriction on the support of βz (and hence also β′z) can be detected by
multiplicative characters modulo 64q1, so that we can transform χ into a char-
acter for the group (Z[i]/64q1bdZ[i])×. Cancellation in the sum (2.53) is now
achieved due to the oscillation of the symbol

i
r−1
2

(
s

|r|

)
as z varies over primary Gaussian integers, but again the dependence on χ of
the bound given for (2.53) is only through the modulus of χ (see [19, Propo-
sition 17.2, p. 1016]) and this modulus is again di�erent from 4bd by a �xed
constant. This shows that Lemma 2.13 follows from [19, Proposition 10.2] and
hence Proposition 2.4 is proved.
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Chapter 3

On the 16-rank of class groups of Q(
√
−8p)

for p ≡ −1 mod 4

Let D be a fundamental discriminant, i.e., a discriminant of a quadratic num-
ber �eld, and let Cl(D) denote the (narrow) class group of the quadratic
number �eld Q(

√
D). Although there are algorithms to compute Cl(D) for

any particular discriminant D, very little has been proved about the average
behavior of Cl(D) as D ranges over families of fundamental discriminants.

Rédei [34], Gerth [22], Fouvry and Klüners [16, 14, 13], and Stevenhagen [40],
among others, obtained many density results about 4- and 8-ranks of class
groups in various families of quadratic number �elds.

Density results appear to be far more di�cult to obtain for the 16-rank than
for the lower 2-power ranks (see [41, p. 16-18]). Our main goal in this chapter
is to prove a density result about the 16-rank, albeit in a particularly simple
family of quadratic number �elds. This family is indexed by fundamental dis-
criminants of the form −8p. Although −8p is a fundamental discriminant for
all odd prime numbers p, the 8-rank of Q(

√
−8p) behaves di�erently in the

cases that p ≡ 1 mod 4 and p ≡ −1 mod 4. Hence it is natural to study the
families {Q(

√
−8p)}p≡−1(4) and {Q(

√
−8p)}p≡1(4) separately.

Equation (1.2) implies that the 2-part of the class group Cl(−8p) is non-
trivial and cyclic, so the structure of the 2-part is completely determined by
its �depth,� i.e., the largest integer k such that rk2kCl(−8p) = 1. This moti-
vates the following de�nition. Given an integer k ≥ 0, a real number X ≥ 2,
and ω ∈ {±1}, de�ne ρ(2k;ω) to be the limit

ρ(2k;ω) = lim
X→∞

#{p ≤ X prime : p ≡ ω mod 4, rk2kCl(−8p) = 1}
#{p ≤ X prime}

,

if it exists.

We now suppose that p ≡ −1 mod 4. It follows from the work of Rédei [34]
that

rk4Cl(−8p) = 1⇐⇒ p ≡ −1 mod 8.

Furthermore, Hasse [24] proved that

rk8Cl(−8p) = 1⇐⇒ p ≡ −1 mod 16.

Both congruence conditions on p in the criteria above can be interpreted as
splitting conditions on p in the degree-8 cyclotomic extension Q(ζ16)/Q. Now

53



the �hebotarev's Density Theorem implies that ρ(2k;−1) = 2−k for 1 ≤ k ≤ 3.

A simple splitting condition that determines the value of rk16Cl(D) has not
been found, and in factmight not even exist. Nonetheless, numerics and heuris-
tics both suggest that ρ(2k;−1) exists and is equal to 2−k for all k ≥ 1. In-
deed, Cohen-Lenstra heuristics [4] suggest that the cyclic group of order 2k−1

would occur as the 2-part of the class group of an imaginary quadratic num-
ber �eld twice as often as the cyclic group of order 2k. As we just saw above,
ρ(2k;−1) = 1

2ρ(2k−1;−1) for k = 2, 3, so we are led to conjecture

Conjecture 3.1. For all k ≥ 1, the limit ρ(2k,−1) exists and is equal to 2−k.

No progress had been made on Conjecture 3.1 since the case k = 3 was
settled by Hasse in 1969. Our main result of this chapter, Theorem A, now
proves that ρ(16;−1) = 1

16 .

Theorem B. The density of the set of prime numbers p ≡ −1 mod 4 for
which rk16Cl(−8p) = 1 is equal to

lim
X→∞

#{p ≤ X, p prime, p ≡ −1 mod 4, rk16Cl(−8p) = 1}
#{p ≤ X, p prime}

=
1

16
.

To the best of the author's knowledge, this is the �rst density result about
the 16-rank of class groups of quadratic number �elds.

Prior to this work, the only method for obtaining a density result was to
construct certain normal extensions of Q that govern the 2k-rank and then to
apply the �ebotarev Density Theorem. To be more precise, given a non-zero
integer d and an integer k ≥ 1, we say that a normal extension M/Q is a gov-
erning �eld for the 2k-rank in the family of quadratic number �elds {Q(

√
dp)}p

(parametrized by primes p for which dp is a fundamental discriminant) if the
value of rk2kCl(dp) is determined by the Frobenius class of p in Gal(M/Q).
Knowing explicitly a governing �eld for the 2k-rank makes it easy to study
the density of primes p for which rk2kCl(dp) = k. Indeed, by the �ebotarev
Density Theorem, the mere existence of a governing �eld already guarantees
that this density exists and is equal to a rational number.

Although Cohn and Lagarias [6, 5] conjectured that, for a family {Q(
√
dp)}p

as above, a governing �eld for the 2k-rank exists for every integer k ≥ 1, and
although Stevenhagen [40] proved their conjecture for k ≤ 3, a governing �eld
has not been found for the 16- or higher 2-power ranks in any family. This
is the main reason that Conjecture 3 has remained open for k ≥ 4 for such a
long time.

Theorem B gives a positive answer to Conjecture 3.1 for k = 4 without appeal-
ing to a governing �eld. Instead, we use a criterion for the 16-rank of Cl(−8p)
that is conducive to analytic techniques. In [30, Theorem 3, p.205], Leonard
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and Williams stated the following criterion. A prime p ≡ −1 mod 16 can be
written as

p = u2 − 2v2 (3.1)

where u and v are integers, u > 0, and

u ≡ 1 mod 16. (3.2)

Given such a representation, we have

rk16Cl(−8p) = 1⇐⇒
( v
u

)
= 1. (3.3)

Here
( ·
·
)
is the Jacobi symbol. The �rst few primes satisfying the above

criterion are 127, 223, 479, 719, . . . . Note that integers u > 0 and v satisfying
(3.1) and (3.2) are not unique. Nonetheless, the criterion (3.3) is valid for any
choice of integers u > 0 and v satisfying (3.1) and (3.2). If u and v are such
integers, then criterion (3.3) states that

1

2

(
1 +

( v
u

))
=

{
1 if rk16Cl(−8p) = 1,

0 if rk16Cl(−8p) = 0.

Hence Theorem B is a corollary of the following theorem:

Theorem 3.1. For every ε > 0, there is a constant Cε > 0 depending only on
ε such that for every X ≥ 2, we have∣∣∣∣∣∣∣∣

∑
p≤X

p≡−1 mod 16

( v
u

)∣∣∣∣∣∣∣∣ ≤ CεX
149
150 +ε,

where, for each p in the sum above, u and v are taken to be integers satisfying
(3.1) and (3.2).

Theorem 3.1 is an equidistribution result reminiscent of [19, Theorem 2,
p.948]. In [19], Friedlander and Iwaniec associate a binary symbol (i.e., a quan-
tity taking values in {±1}) to each non-zero ideal in Z[i] and show that its
value is equidistributed over prime ideals in Z[i] ordered by the norm. Theorem
3.1 is a very similar type of result for the ring Z[

√
2], although we encounter

substantial new di�culties coming from the more complicated unit group in
Z[
√

2]. In essence, an odd ideal in Z[
√

2] does not have a canonical generator,
and we resort to averaging over four carefully chosen generators to de�ne an
analogous binary symbol. Proving that the resulting symbol is well-de�ned
already requires signi�cant new ideas.

Section 3.1 contains the class �eld theoretic construction of the governing
symbol [p] =

(
v
u

)
χ(u) for the 16-rank in the family {Q(

√
−8p)}p≡−1(4) (see
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Proposition 3.1). Another aim of Section 3.1 is to prove an invariance result
for the Jacobi symbol

(
v
u

)
(see Proposition 3.2). In Section 3.2, we construct

binary symbols that both encode behavior of the 16-rank in our family and are
conducive to analytic techniques (see Equations (3.29) and (3.30)). We also
reduce Theorem 3.1 to a purely analytic statement (see Theorem 3.2) that
can be attacked by the machinery of Friedlander, Iwaniec, Mazur, and Rubin
(see Proposition 3.4). The goal of Section 3.3 is to construct convenient fun-
damental domains for the multiplicative action of a fundamental unit 1 +

√
2

on Z[
√

2]. In Section 3.4, we use a Polya-Vinogradov-type estimate to give
bounds for linear sums of the binary symbol. In Section 3.5, we give bounds
for general bilinear sums of the binary symbol, thus completing the proof of
Theorem 3.1. In the �nal section, we show that if a governing �eld for the 16-
rank in the family {Q(

√
−8p)}p≡−1(4) were to exist, Theorem 3.1 would give

error terms for certain prime-counting functions that are far better than any
which could be obtained via the best known zero-free regions of L-functions.

Finally, we say a few words about the family {Q(
√
−8p)}p≡1(4). Given a prime

p ≡ 1 mod 4, the 4-rank of Cl(−8p) is equal to 1 if and only if p ≡ 1 mod 8.
Then, given a prime p ≡ 1 mod 8 and a representation of p as p = u2− 2v2 for
integers u ≡ 1 mod 4 and v, rk8Cl(−8p) = 1 if and only if

(
u
p

)
= 1 (see [30,

2.2, P.204]). Finally, rk16Cl(−8p) = 1 if and only if the binary symbol(
u

p

)
4

is 1; see [30, Theorem 2, p.204]. Here the quantity
(
u
p

)
4
is equal to 1 or −1

according to whether u is a fourth power modulo p or u is a square but not
a fourth power modulo p, respectively. Heuristically, we once again expect
that the value of this binary symbol is equidistributed as p ranges over the
prime numbers congruent to 1 modulo 8 such that u is a square modulo p.
However, although we could generalize most of the ingredients in the proof of
Theorem 3.1 to this new setting, we are unable to obtain power-saving can-
cellation in the linear sums as in Section 3.4 without a Burgess-type estimate
for short character (modulo q) sums of length q

1
8−ε. As such a result on short

character sums is currently well out of reach, we do not deal with the family
{Q(
√
−8p)}p≡1(4).

3.1 Governing symbols

The purpose of this section is to generalize [30, Theorem 3, p.205] and to de-
velop a framework conducive to the analytic techniques of Friedlander, Iwaniec,
Mazur, and Rubin [17].

Let χ be a character (Z/16Z)× → Cl× with kernel {±1}. In other words,
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we have χ(±1 mod 16) = 1 and χ(±7 mod 16) = −1. Then our generalization
of [30, Theorem 3, p.205] is as follows:

Proposition 3.1. Let p ≡ −1 mod 16 be a prime number. Let u and v be
integers such that p = u2 − 2v2 and such that u > 0 and v ≡ 1 mod 4. Then

rk16Cl(−8p) = 1⇐⇒
( v
u

)
χ(u) = 1. (3.4)

The choice of u and v in the proposition above is not unique. Let

ε = 1 +
√

2

be a fundamental unit in Z[
√

2], so that the group of units Z[
√

2]× is generated
by ε and −1. As the norm of ε is −1, the norm of ε2 = 3 + 2

√
2 is 1. Let

p ≡ −1 mod 16 be a prime number as in Proposition 3.1. Given one integer
solution (u, v) = (u0, v0) to the system{

p = u2 − 2v2

u > 0, v ≡ 1 mod 4
, (3.5)

then the complete set of integer solutions (u, v) to the system (3.5) is of the
form

u+ v
√

2 = ε2k(u0 + v0

√
2)

for some integer k. An interesting consequence of Proposition 3.1 is that the
quantity ( v

u

)
χ(u)

is independent of the choice of u and v satisfying (3.5). This allows us to make
the following de�nition.

For a prime p ≡ −1 mod 16, we de�ne the governing symbol for the 16-rank
to be

[p] :=
( v
u

)
χ(u), (3.6)

where u and v are integers satisfying (3.5). The quantity [p] determines the
16-rank of the class group Cl(−8p). It is interesting to note that the 16-rank
of Cl(−8p) depends on a �quantitative� aspect of the splitting behavior of p in
Z[
√

2] that appears to allow no description purely in terms of the �qualitative�
splitting behavior of p in some normal extension of Q.

Leonard and Williams claim that [30, Theorem 3, p.205] can be proved by
numerous manipulations of Jacobi symbols and applications of quadratic reci-
procity. We instead prove Proposition 3.1 by interpreting the Jacobi symbol(
v
u

)
as an Artin symbol of an ideal that depends on the decomposition of a

prime p as p = u2−2v2 in an extension of Q(
√
−8p) that depends on the same

decomposition p = u2 − 2v2. Moreover, a by-product of our proof is the fol-
lowing proposition, which turns out to be essential for a successful application
of the analytic tools we wish to use.
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Proposition 3.2. Let u1 and v1 be integers such that u1 is odd and positive
and such that u2

1 − 2v2
1 > 0. De�ne integers u2 and v2 by the equality

u2 + v2

√
2 = ε8(u1 + v1

√
2).

Then (
v1

u1

)
=

(
v2

u2

)
.

In other words, we have the equality of Jacobi symbols(
v1

u1

)
=

(
408u1 + 577v1

577u1 + 816v1

)
.

The rest of this section is devoted to proving Proposition 3.1 and Proposi-
tion 3.2.

3.1.1 Preliminaries

We will use the following lemma several times.

Lemma 3.1. Let E/F be an abelian extension of number �elds, let L/F be a
�nite extension, and let

ι : Gal(EL/L) ↪→ Gal(E/F )

be the restriction-to-E map. Then for every prime ideal p of L that is coprime
to Disc(E/F ), we have

ι

(
p

EL/L

)
=

(
NormL/F (p)

E/F

)
.

Proof. See [25, Proposition 3.1, p. 103].

Ring class �elds

To prove Proposition 3.2, we will have to work with a generalization of the
Hilbert class �eld. Let D < 0 be any integer ≡ 0, 1 mod 4 that is not a square,
and let OD be the quadratic order of discriminant D, i.e.,

OD = Z[(D +
√
D)/2].

Let K = Q(
√
D) be the �eld of fractions of OD. Then K is an imaginary

quadratic number �eld of discriminant Disc(K) satisfying the equality

D = f2Disc(K)

for some positive integer f , called the conductor of OD. Let Cl(D) denote the
class group of OD. Then there is a unique abelian extension RD/K called the
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ring class �eld ofOD such that the Artin map induces a canonical isomorphism
of groups (

·
RD/K

)
: Cl(D) −→ Gal(RD/K). (3.7)

In the case f = 1, so that D = Disc(K), the ring class �eld RD coincides with
the Hilbert class �eld of K.

The main property of ring class �elds of imaginary quadratic orders that we
will use is stated in the following lemma.

Lemma 3.2. Let K be an imaginary quadratic number �eld of even discrim-
inant, and let L/K be a cyclic extension such that:

• L/Q is a dihedral extension, and

• the conductor of L/K divides (4).

Then L is contained in the ring class �eld RD of the imaginary quadratic order
OD of discriminant D = 16 ·Disc(K).

Proof. See [8, Theorem 9.18, p. 191] and [8, Exercise 9.20, p. 195-196].

3.1.2 A special family of quadratic �elds

Let u and v be coprime integers such that u is odd and positive and such that

n = u2 − 2v2 (3.8)

is positive as well. Let K be the imaginary quadratic number �eld de�ned by

K = Q(
√
−2n).

Note that n ≡ ±1 mod 8, and moreover n ≡ 1 mod 8 if and only if v is even.
Let m and d be the unique positive integers such that m is squarefree and

n = d2m.

Then K = Q(
√
−2m) and the discriminant of K/Q is

Disc(K/Q) = −8m.

We emphasize that both m and d are odd. As gcd(u, v) = 1, every prime
dividing n splits in Q(

√
2). Hence there exist δ and µ in Q(

√
2) of norm d and

m, respectively, such that
u+ v

√
2 = δ2µ.

We de�ne a quadratic extension G/K by

G = K(
√

2).
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We call this �eld G because it coincides with the genus �eld of K in the case
that n is a prime number congruent to −1 modulo 4.

Finally, we de�ne a quadratic extension of G as follows. De�ne ν ∈ Z[
√

2] ⊂ G
by setting

ν = u+ v
√

2. (3.9)

Then let
L = Lu,v = G(

√
εν),

where ε = 1 +
√

2 as before. If n is a prime number congruent to −1 modulo
8 and u and v are chosen as in the statement of Proposition 3.1, we will see
that L coincides with the 4-Hilbert class �eld H4 of K.

Remark. The �elds K and G are determined simply by n. In other words, had
we started with another choice of integers u and v giving rise to the same n,
the de�nitions ofK and G would not change. However, the �eld L may depend
on the speci�c choice of u and v. Since we �xed u and v in the beginning of
the section, this should not cause any confusion.

We now introduce some notation and prove some properties of the exten-
sions K ⊂ G ⊂ L. Let ν = u − v

√
2 be the conjugate of ν in Q(

√
2). We

now state a few consequences of the assumption that gcd(u, v) = 1. It will be
useful to consider the following �eld diagram.

L = G(
√
εν)

G = K(
√

2)A = Q(
√

2,
√
εν)

K = Q(
√
−2m)Q(

√
2)

Q

Lemma 3.3. The extension L/K is cyclic of degree 4, and the extension L/Q
is dihedral of order 8.

Proof. We have

NormG/K(εν) = NormQ(
√

2)/Q(εν) = −νν = −n.
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As

−n = 2 ·
(

1

2

√
−2n

)2

∈ 2 · (K×)2,

the �rst claim follows from Lemma 2.2, part (3). Now let A = Q(
√

2,
√
εν).

As
−n /∈ (Q×)2 ∪ 2 · (Q×)2,

part (1) of Lemma 2.2 implies that L = A(
√
−n) is the normal closure of A/Q

and Gal(L/Q) ∼= D8.

Let t denote the prime of K lying above 2.

Lemma 3.4. L/K is unrami�ed at every prime other than possibly at t.

Proof. Recall that ν = δ2µ, so L = Q(
√
−2m,

√
2,
√
εµ). As the norm of µ is

m, every prime that rami�es in L/Q must divide 2m. Let p be a rational prime
dividing m. Suppose p factors as ππ in Z[

√
2], and, without loss of generality,

suppose π divides ν. As u and v are coprime, ν and ν are coprime in Z[
√

2]
and hence π does not ramify in A = Q(

√
2,
√
εν). Thus, as p splits in Q(

√
2),

its rami�cation index in L/Q is at most 2. But p already rami�es in K/Q,
and hence every prime p of K lying above p must be unrami�ed in L/K.

By Lemma 3.4, the only prime that can divide the conductor f of L/K is
the prime t. The following lemma gives the precise power of t dividing f.

Lemma 3.5. Let f denote the conductor of L/K. Then:

1. If v ≡ 1 mod 4, then L/K is unrami�ed and f = 1.

2. If v ≡ −1 mod 4, then f = t2 = (2).

3. If v ≡ 0 mod 2, then f = t4 = (4).

Proof. Since t is the only prime that can divide f, we only need to study the
extensions locally at the primes above 2. Let T be a prime of G lying above t
and T a prime of L lying above T. Let Kt, GT, and LT denote the completions
of K, G, and L with respect to the primes t, T, and T , respectively.

If v is odd, then n ≡ −1 mod 8, and so Kt = Q2(
√
−2n) = Q2(

√
2) and GT =

Kt(
√

2) = Kt. Thus the extension GT/Kt is trivial and LT = Q2(
√

2,
√
εν).

The extension Q2(
√

2,
√
εν)/Q2(

√
2) is unrami�ed if and only if εν is a square

modulo t4; here t = (
√

2) is the maximal ideal in Z2[
√

2]. If v ≡ 1 mod 4, then

εν = (u+ 2v) + (u+ v)
√

2 ≡

{
1 mod t4 if u ≡ −1 mod 4,

ε2 mod t4 if u ≡ 1 mod 4,

and hence LT /Kt is unrami�ed. This proves part (1) of the lemma. Similarly,
if v ≡ 1 mod 4, then

εν ≡ 3 or 1 + 2
√

2 mod t4.
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In this case εν is not a square modulo t4, and so LT /Kt is rami�ed. The
rami�cation is wild, and thus f must be divisible by t2. As εν ≡ 1 mod t2, the
extension LT /Kt can be generated by a root of the polynomial

X2 +
√

2X +
1− εν

2
=

1

2

((√
2X + 1

)2

− εν
)
,

whose discriminant is 2 mod t4. Hence f = t2 and part (2) of the lemma is
proved.

Finally, suppose v ≡ 0 mod 2, so that n ≡ 1 mod 8. Then Kt = Q2(
√
−2n) =

Q2(
√
−2) and GT = Kt(

√
2) = Q2(ζ8). The quadratic extension GT/Kt is

rami�ed of conductor t2, where t = (
√
−2) is the maximal ideal in Z2[

√
−2].

Let s = 1 + ζ8 be a generator of the maximal ideal s in Z2[ζ8]. Note that
s2 =

√
2 · ζ8ε, so εν ≡ 1 mod s2. Hence the extension LT /Kt can be generated

by a root of the polynomial

X2 + s3ζ6
8ε
−2X +

1− εν
s2

=
1

s2

(
(sX + 1)

2 − εν
)
,

whose discriminant is s6 mod s7. Hence the discriminant of LT /GT is s6.

To �nish, we use the conductor-discriminant formula, i.e.,

Disc(LT /Kt) = Disc(GT/Kt)f(LT /Kt)
2.

The discriminant formula for the tower of �elds Kt ⊂ GT ⊂ LT gives

Disc(LT /Kt) = Disc(GT/Kt)
2NormGT/Kt

(Disc(LT /GT)),

so that

f(LT /Kt)
2 = Disc(GT/Kt)NormGT/Kt

(Disc(LT /GT)).

Substituting Disc(GT/Kt) = t2 and Disc(LT /GT) = s6 into the formula above
implies that f(LT /Kt) = t4, which completes the proof of part (3) of the
lemma.

Lemma 3.6. L is contained in the ring class �eld RD of the imaginary
quadratic order OD of discriminant D = 16 · −8m.

Proof. Combine Lemmas 3.2, 3.3, and 3.5.

3.1.3 A computation of Artin symbols

This section contains the heart of the proof of both Proposition 3.1 and Propo-
sition 3.2.
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The integers u and v appearing in (3.8) are not unique. Given a represen-
tation n = u2 − 2v2, another representation can be obtained by multiplying
u+ v

√
2 by 3 + 2

√
2. This transforms (u, v) into (3u+ 4v, 2u+ 3v).

We will show how the quantity ( v
u

)
χ(u),

where χ is a Dirichlet character from Proposition 3.2, naturally arises in the
computation of a certain Artin symbol. This computation is somewhat delicate
because the Artin symbol will take a value in a cyclic group of order 4, and
such a group has a non-trivial automorphism.

Remark. In [23], Halter-Koch, Kaplan, andWilliams compute Artin symbols in
similar cyclic �eld extensions L/K of degree 4. Their results, however, involve
computations of Artin symbols of ideals of K of order 2 in the class group
of K, and hence only give information about the 8-rank in certain quadratic
�elds.

Let f ∈ {1, 4}. The case f = 1 will be used to prove Proposition 3.1, while
the case f = 4 will be used to prove Proposition 3.2. Let τ = f

√
−2n, so that

Z[τ ] is the order of K of discriminant −8nf2. We de�ne a homomorphism

ψu,v : Z[τ ]→ Z/uZ

by sending τ 7→ 2vf mod u. This homomorphism is well-de�ned since

τ2 = −2nf2 = −2(u2 − 2v2)f2 ≡ (2vf)2 mod u.

Let
u = kerψu,v. (3.10)

It is the ideal of Z[τ ] generated by u and 2vf − τ , i.e.,

u = (u, 2vf − τ).

In case n = p ≡ −1 mod 8 and f = 1, the ideal class of u turns out to have
order 4, as we will see later. We remark that

2vf ≡ τ mod u. (3.11)

We also note that
Norm(u) = u. (3.12)

Let
√
εν be a square root of εν. Then, by Lemma 2.2, the extension G(

√
εν)/K

is cyclic of degree 4. We are interested in computing the Artin symbol(
u

G(
√
εν)/K

)
.
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The key idea is to relate this Artin symbol to the Artin symbol associated to
a di�erent but related cyclic degree-4 extension of K. Let

γ = (2 +
√

2)v ∈ Z[
√

2]. (3.13)

Then again by Lemma 2.2, the extension G(
√
γ)/K is cyclic of degree 4. The

element γ was chosen so that

εν ≡ γ mod u, (3.14)

and at the same time so that the extension Q(
√
γ)/Q mimics the cyclic degree-

4 subextension of the cyclotomic extension Q(ζ16)/Q. Finally, let F be the
compositum of G(

√
εν) and G(

√
γ). We have the following �eld diagram.

K = Q(
√
−2n)

G = K(
√

2)K(
√
β′)K(

√
β)

G(
√
ενγ) G(

√
γ)

F = G(
√
εν,
√
γ)

G(
√
εν)

Here β and β′ are elements of K that are conjugate over Q. Let ενγ ∈ Q(
√

2)
be the conjugate of ενγ over Q. Since(√

2ενγ ±
√

2ενγ
)2

= 4v((4u+ 6v)±
√
−2n) =

4v

f
((4u+ 6v)f ± τ) ,

we can take
β = v((4u+ 6v)f − τ)

and
β′ = v((4u+ 6v)f + τ).

The inclusion Gal(F/K(
√
β)) ⊂ Gal(F/K) and projections Gal(F/K) �

Gal(G(
√
εν)/K) and Gal(F/K) � Gal(G(

√
γ)/K) induce canonical isomor-

phisms
ψ1 : Gal(F/K(

√
β))

∼−→ Gal(G(
√
εν)/K)

and
ψ2 : Gal(F/K(

√
β))

∼−→ Gal(G(
√
γ)/K).
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Using (3.11), we �nd that if p is a prime ideal dividing u, then(
β

p

)
=

(
v((4u+ 6v)f − τ)

p

)
=

(
4v2f

p

)
= 1,

and so p splits in K(
√
β). By Lemma 3.1, for any prime P of K(

√
β) lying

above a prime ideal p dividing u, we have

ψ1

((
P

F/K(β)

))
=

(
p

G(
√
εν)/K

)
and

ψ2

((
P

F/K(β)

))
=

(
p

G(
√
γ)/K

)
.

Multiplying over all prime ideals p dividing u, we have proved the following
key lemma.

Lemma 3.7. Let u be de�ned as in (3.10). Then

ψ2 ◦ ψ−1
1

((
u

G(
√
εν)/K

))
=

(
u

G(
√
γ)/K

)
.

Now we apply Lemma 3.1 with E = Q(
√
−2n), F = Q, and L = Q(

√
γ).

We have

ι

((
u

G(
√
γ)/K

))
=

(
u

Q(
√
γ)/Q

)
,

so that, by Lemma 3.7, we have

ι ◦ ψ2 ◦ ψ−1
1

((
u

G(
√
γ)/K

))
=

(
u

Q(
√
γ)/Q

)
.

Now observe that Q(
√
γ) is a sub�eld of Q(ζ16

√
v). Indeed, ζ16

√
v+ ζ−1

16

√
v =

γ. There is a canonical isomorphism

Gal(Q(ζ16

√
v)/Q) ∼= (Z/16Z)× ∼= 〈−1 mod 16〉 × 〈3 mod 16〉

given by sending (
ζ16

√
v 7→ ζk16

√
v
)
7→ (k mod 16).

Then Q(
√
γ) is the sub�eld of Q(ζ16

√
v) �xed by −1. For each prime p coprime

to 2v, we have (
p

Q(ζ16
√
v)/Q

)
= p

(
v

p

)
mod 16,

so that if we identify

ψ3 : 〈3 mod 16〉 ∼−→ µ4 = 〈i〉 ⊂ C×

65



by sending 3 7→ i =
√
−1, we get

ψ3

((
p

Q(
√
γ)/Q

))
=

(
v

p

)
χ(p).

Multiplying over all primes p dividing u and using Lemma 3.7, we �nally obtain
the following result.

Lemma 3.8. Let ψ : Gal(G(
√
εν)/K)

∼−→ µ4 be the isomorphism of cyclic
groups of order 4 de�ned by ψ = ψ3 ◦ ι ◦ ψ2 ◦ ψ−1

1 . Then

ψ

((
u

G(
√
εν)/K

))
=
( v
u

)
χ(u).

3.1.4 An ideal identity

We keep the same notation as in Sections 3.1.2 and 3.1.3. Recall that τ =
f
√
−2n, where f ∈ {1, 4}. Let tf be the ideal of Z[τ ] de�ned as the kernel of

the homomorphism
τf : Z[τ ]→ Z/2f2Z

given by sending τ 7→ 2vf . The homomorphism τf is well-de�ned because

τ2 = −2nf2 = 4v2f2 − 2u2f2 ≡ (2vf)2 mod 2f2.

Then tf = (2vf − τ, 2f2). The following identity of between ideals in Z[τ ] will
be useful in proofs of both Proposition 3.1 and Proposition 3.2.

Lemma 3.9. Let u be de�ned as in (3.10). Then

(2vf − τ) = tfu
2.

Proof. The principal ideal 2vf − τ is invertible of norm 2u2f2. Since u is odd
and gcd(u, v) = 1, we deduce that u is coprime to the discriminant −8nf2 of
Z[τ ] and is thus invertible. No rational primes can divide 2vf−τ and u divides
(2vf − τ) by de�nition, so it must be that u2 divides (2vf − τ).

The ideal tf of norm 2f2 contains (2vf − τ) and has the same norm as the
invertible ideal (2vf − τ)u−2. Hence we must have (2vf − τ)u−2 = tf .

3.1.5 Proof of Proposition 3.1

We apply the results of Sections 3.1.3 and 3.1.4 in the case n = p ≡ −1 mod 8
is a prime number and f = 1. Suppose p ≡ −1 mod 8 is a prime number.
Then p splits in Q(

√
2), so there exist integers u and v such that

p = u2 − 2v2.
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Note that the congruence p ≡ −1 mod 8 immediately implies that both u and
v are odd. Without loss of generality, we may assume that u is positive and

v ≡ 1 mod 4. (3.15)

Since the 2-part of Cl(−8p) is cyclic, rk16Cl(−8p) = 1 if and only if Cl(−8p)
has an element of order 16. To get started, we �rst produce an element of
order 4 in Cl(−8p) that we can write explicitly in terms of u and v.

A class of order 4

We now produce an ideal generating a class of order 4 in the class group
Cl(−8p) when p is a prime ≡ −1 mod 8. This is the main ingredient in [30].

When n = p and f = 1, the ideal t = tf de�ned in Section 3.1.4 is the
prime ideal lying above 2. If t = (x+ y

√
−2p) for some x, y ∈ Z, then

x2 + 2py2 = Norm(t) = 2,

which is impossible. Hence the class of t in Cl(−8p) has order 2.

Now let u be de�ned as in (3.10) with u and v as above and f = 1. Lemma
3.9 shows that u2 and t are in the same ideal class in Cl(−8p). Hence we have
proved the following result.

Lemma 3.10. Let u be the ideal of Z[
√
−2p] de�ned as above. Then the ideal

class of u has order 4 in Cl(−8p).

Remark. Perhaps an easier, although more old-fashioned, way to prove Lemma
3.10 is via the theory of binary quadratic forms, as was done in [30]. Let [a, b, c]
denote the SL2(Z)-equivalence class of the form ax2 + bxy + cy2. The key
observation is that [u,−4v, 2u] has discriminant 16v2−8u2 = −8p. To compose
this class with itself, one can use the special case of the composition law for
concordant forms, which yields the class [u,−4v, 2u]2 = [u2,−4v, 2] = [2, 0, p].
The classes [u,−4v, 2u] and [2, 0, p] correspond to the ideal classes of u and t,
respectively.

Generating the 4-Hilbert class �eld

Let p be a prime congruent to −1 mod 8 and let K = Q(
√
−8p). The 2-Hilbert

class �eld, also called the genus �eld of K, is known to be H2 = K(
√

2).
Lemma 3.10 implies that rk4Cl(−8p) = 1, and our aim is to generate the
4-Hilbert class �eld H4 over H2 by adjoining an element that we can write
explicitly in terms of u and v.

De�ne π ∈ Z[
√

2] by setting π = ν with ν as in (3.9), i.e.,

π = u+ v
√

2.

The following proposition achieves our aim.
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Proposition 3.3. Let K = Q(
√
−8p), and let π be as above. Then the 4-

Hilbert class �eld of K is
H4 = H2(

√
επ).

Proof. Since the 2-part of the class group Cl(−8p) is cyclic, it su�ces to show
that H2(

√
επ) is an unrami�ed, cyclic, degree-4 extension of K.

We apply the lemmas of Sections 3.1.2 and 3.1.3 with n = m = p, e = 1, and u
and v as above. By Lemma 3.3, the extension H2(

√
επ)/K is cyclic of degree 4.

By Lemma 3.4, H2(
√
επ)/K is unrami�ed over the prime ideal p = (p,

√
−2p)

ofK lying over p. Finally, by part (1) of Lemma 3.5, H2(
√
επ)/K is unrami�ed

over the prime ideal t = (2,
√
−2p) of K lying over 2.

Conclusion of the proof of Proposition 3.1

By Lemma 3.10, rk16Cl(−8p) = 1 if and only if the ideal class of u belongs to
Cl(−8p)4. By Proposition 3.3, this is true if and only if the Artin symbol of
u in H4 = H2(

√
επ) is trivial. In the notation of Section 3.1.3, we have that

H2 = G, so that rk16Cl(−8p) = 1 if and only if(
u

G(
√
επ)/K

)
= Id.

By Lemma 3.8, this occurs if and only if( v
u

)
χ(u) = 1,

which proves Proposition 3.1.

3.1.6 Proof of Proposition 3.2

As in the statement of Proposition 3.2, let u1 and v1 be integers such that u1

is odd and positive and such that u2
1 − 2v2

1 > 0. We de�ne u2 and v2 by the
equality

u2 + v2

√
2 = ε8(u1 + v1

√
2) = (577u1 + 816v1) + (408u1 + 577v1)

√
2, (3.16)

where, as before, ε = 1 +
√

2. Our goal is to prove the following equality of
Jacobi symbols (

v1

u1

)
=

(
v2

u2

)
. (3.17)

By the Euclidean algorithm, we have the equality

gcd(u1, v1) = gcd(u2, v2).

First, if gcd(u1, v1) = gcd(u2, v2) > 1, then both sides of (3.17) are equal to
0, and hence (3.17) holds true.
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Now suppose gcd(u1, v1) = gcd(u2, v2) = 1. Let

n = u2
1 − 2v2

1 = u2
2 − 2v2

2 ,

and let K = Q(
√
−2n) as in Section 3.1.2. Set τ = 4

√
−2n. Let u1 (resp. u2)

be the ideal of the imaginary quadratic order Z[τ ] (of discriminant 16 · −8n)
de�ned by (3.10) with (u, v) = (u1, v1) (resp. (u, v) = (u2, v2)) and f = 4.
The ideals u1 and u2 satisfy the following key property.

Lemma 3.11. The ideals u1 and u2 belong to the same ideal class in the class
group Cl(16 · −8n) of the imaginary quadratic order Z[τ ].

Proof. Let k ∈ {1, 2}. By Lemma 3.9, we have

(8vk − τ) = t4,ku
2
k

where t4,k = (8vk − τ, 32) is as in Section 3.1.4. By (3.16), we have

8v2 = 8(408u1 + 577v1) = 8v1 + 32(102u1 + 144v1),

so that
t4,2 = (8v2 − τ, 32) = (8v1 − τ, 32) = t4,1.

Therefore
u2

2 =
8v2 − τ
8v1 − τ

u2
1. (3.18)

Let
α = (17u1 + 24v1) + 3τ.

We claim that (
α

u1

)2

=
8v2 − τ
8v1 − τ

. (3.19)

We �rst note that

8v2 − τ
8v1 − τ

=
8v2 − τ
8v1 − τ

· 8v1 + τ

8v1 + τ

=
64v1v2 + 32n+ 8(v2 − v1)τ

64v2
1 + 32n

=
64v1(408u1 + 577v1) + 32n+ 8(408u1 + 576v1)τ

32u2
1

=
n+ 2v1(408u1 + 577v1) + (102u1 + 144v1)τ

u2
1

.

(3.20)

Expanding α2, we get

α2 = 289u2
1 + 576v2

1 + 816u1v1 − 288n+ (102u1 + 144v1)τ
= u2

1 + 1152v2
1 + 816u1v1 + (102u1 + 144v1)τ

= n+ 1154v2
1 + 816u1v1 + (102u1 + 144v1)τ

= n+ 2v1(408u1 + 577v1) + (102u1 + 144v1)τ.

(3.21)
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Comparing the last line of (3.21) with the numerator in the last line of (3.20),
we obtain (3.19).

Now (3.18) and (3.19) imply that

u2
1u

2
2 = α2u2

1. (3.22)

By (3.12), Norm(u2) = u2. Hence Norm(u2) is odd, and since u1 is also odd,
we �nd that u2

1u
2
2 is coprime to the conductor f = 4 of Z[τ ], and hence factors

uniquely into prime ideals. Therefore (3.22) implies that

u1u2 = αu1,

which proves the lemma.

Remark. There is a shorter proof of Lemma 3.11 via the theory of binary
quadratic forms. The SL2(Z)-equivalence classes of binary quadratic forms
of discriminant 16 · −8n corresponding to the ideals u1 and u2 of Z[τ ] are
[u1, 16v1, 32u1] and [u2, 16v2, 32u2], respectively. The matrix(

17 96
3 17

)
∈ SL2(Z)

transforms the quadratic form [u1, 16v1, 32u1] into [u2, 16v2, 32u2], which proves
the lemma.

Now, for k ∈ {1, 2}, de�ne νk = uk + vk
√

2 similarly as in Section 3.1.2.
Then

ν2 = ε8ν1. (3.23)

Since
√

2 is contained in G = K(
√

2), ε8 is a square in G. Hence the �elds
G(
√
εν1) and G(

√
εν2) are equal, and so we de�ne

L = G(
√
εν1) = G(

√
εν2).

By Lemma 3.6, L is contained in the ring class �eld of Z[τ ]. Hence, by Lemma
3.11, the images of both u1 and u2 under the map (3.7) coincide, i.e.,(

u1

L/K

)
=

(
u2

L/K

)
.

Applying Lemma 3.8, we get(
v1

u1

)
χ(u1) =

(
v2

u2

)
χ(u2).

Equation (3.16) implies that

u2 = 577u1 + 816v1 ≡ u1 mod 16. (3.24)

Hence, as χ is a character modulo 16, we have χ(u1) = χ(u2), and so Propo-
sition 3.2 is �nally proved.
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3.2 Sums over primes

Above, we de�ned the governing symbol [p] for a prime p ≡ −1 mod 16 in terms
of particular integer solutions u and v to the equation p = u2−2v2. The main
lemma that we will use to prove Theorem 3.1, i.e., that these governing symbols
oscillate, is a proposition due to Friedlander, Iwaniec, Mazur and Rubin [17].
We now state this proposition in our context.

3.2.1 A result of Friedlander, Iwaniec, Mazur, and Rubin

Recall that an element w = u + v
√

2 ∈ Z[
√

2] is totally positive if and only if
Norm(w) = u2 − 2v2 > 0 and u > 0. We sometimes write w � 0 to say that
w is totally positive.

Since Z[
√

2] is a principal ideal domain and since the norm of the fundamental
unit ε over Q is −1, an ideal n in Z[

√
2] can always be generated by a totally

positive element. For an ideal n of Z[
√

2], recall that the norm of n is given by

Norm(n) := u2 − 2v2,

where u+ v
√

2 is a totally positive generator of n.

We now de�ne an analogue of the von Mangoldt function Λ for the ring Z[
√

2].
For a non-zero ideal n of Z[

√
2], we set

Λ(n) =

{
log(Norm(p)) if n = pk for some prime ideal p and integer k ≥ 1

0 otherwise.

Hence Λ is supported on powers of prime ideals.

Given a sequence of complex numbers {an}n indexed by non-zero ideals in
Z[
√

2], a good estimate for the sum of an over prime ideals p of norm Norm(p) ≤
X can usually be derived from a good estimate of the �smoother� weighted sum

S(X) :=
∑

Norm(n)≤X

anΛ(n).

The idea in [17] (and even earlier in [19]), is to bound S(X) by combinations
of linear and bilinear sums in an. Given a non-zero ideal d of Z[

√
2], we de�ne

the linear sum
Ad(X) :=

∑
Norm(n)≤X
n≡0 mod d

an. (3.25)

Moreover, given two sequences of complex numbers {αm} and {βn}, each in-
dexed by non-zero ideals in Z[

√
2], we de�ne the bilinear sum

B(M,N) :=
∑

Norm(m)≤M

∑
Norm(n)≤N

αmβnamn. (3.26)
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We consider bilinear sums where the complex numbers αm and βn satisfy

|αm| ≤ Λ(m) and |βn| ≤ τ(n), (3.27)

where τ(n) denotes the number of ideals in Z[
√

2] dividing n. We now state
[17, Proposition 5.2, p.722] that we use to prove Theorem 3.1.

Proposition 3.4. Let an be a sequence of complex numbers bounded by 1 in
absolute value and indexed by non-zero ideals of Z[

√
2]. Suppose that there

exist two real numbers 0 < θ1, θ2 < 1 such that: for every ε > 0, we have

Ad(X)�ε X
1−θ1+ε (A)

uniformly for all non-zero ideals d of Z[
√

2] and all X ≥ 2, and

B(M,N)�ε (M +N)θ2(MN)1−θ2+ε (B)

uniformly for all M,N ≥ 2 and sequences of complex numbers {αm} and {βn}
satisfying (3.27).
Then for all X ≥ 2 and all ε > 0, we have the bound

S(X)�ε X
1− θ1θ2

2+θ2
+ε.

In other words, power-saving estimates for linear and bilinear sums imply
power-saving estimates for sums supported on primes. Note that this result is
now classical in the context of rational integers, thanks to the pioneering work
of Vinogradov [44].

3.2.2 Extending governing symbols

In light of Proposition 3.4, our current goal is to de�ne a sequence an over all
non-zero ideals n of Z[

√
2] so that if p ≡ −1 mod 16 is a prime and p is a prime

ideal of Z[
√

2] lying above p, then ap coincides with the governing symbol [p]
de�ned in (3.6). We �rst de�ne [·] for all totally positive elements of Z[

√
2].

We put

[u+ v
√

2] :=

{(
v
u

)
if u is odd

0 otherwise

We remark that [·] is supported on primitive odd elements w ∈ Z[
√

2], i.e.
w = u+ v

√
2 such that gcd(u, v) = 1 and Norm(w) = u2 − 2v2 is odd.

If u + v
√

2 � 0 generates a prime ideal p in Z[
√

2] lying above a prime
p ≡ −1 mod 16 and if u ≡ 1 mod 16, then [u + v

√
2] = [p]. The condition

u ≡ 1 mod 16 is useful for two reasons. First, it ensures that χ(u) = 1. Sec-
ond, for each prime p ≡ −1 mod 16, there are two prime ideals in Z[

√
2] lying

above p. If we write their totally positive generators in the form u + v
√

2,
then one of them satis�es v ≡ 1 mod 4 while the other satis�es v ≡ 3 mod 4.
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A priori, the de�nition (3.6) requires us to choose u and v coming from the
prime ideal satisfying v ≡ 1 mod 4. However, if u ≡ 1 mod 16, then(

−v
u

)
=
( v
u

)
,

so that [u+ v
√

2] = [p] for both of the prime ideals (u+ v
√

2) lying above p.

Proposition 3.2 states that [w] = [ε8w] for any w ∈ Z[
√

2], so we might naively
de�ne

an := [w] + [ε2w] + [ε4w] + [ε6w], (3.28)

where w � 0 is any totally positive generator of n.

A convenient fact is that if p ≡ −1 mod 16 is a prime, then exactly one of the
four elements ε2kw = uk + vk

√
2 (0 ≤ k ≤ 3) satis�es uk ≡ 1 mod 16. Indeed,

multiplying u+ v
√

2 by ε2 (resp. ε4) transforms (u, v) into (3u+ 4v, 2u+ 3v)
(resp. (17u + 24v, 12u + 17v)). If p ≡ −1 mod 16, then u ≡ ±1 mod 8 and
v is odd. Hence u4 ≡ u + 8 mod 16, and one can now easily check that mul-
tiplying u+v

√
2 successively by ε2 cycles u mod 16 through the set {1, 7, 9, 15}.

The de�nition (3.28) does not quite su�ce for our purposes because we want
to isolate those p that are congruent to −1 mod 16 and representations p =
u2 − 2v2 with u ≡ 1 mod 16. Hence we weight the formula (3.28) by Dirichlet
characters modulo 16. More precisely, for each pair of Dirichlet characters φ
and ψ modulo 16 and totally positive u+ v

√
2, we set

[u+ v
√

2]φ,ψ :=
( v
u

)
φ(−u2 + 2v2)ψ(u). (3.29)

For a non-zero ideal n in Z[
√

2] generated by a totally positive element w, we
set

aφ,ψ,n := [w]φ,ψ + [ε2w]φ,ψ + [ε4w]φ,ψ + [ε6w]φ,ψ. (3.30)

This is still well-de�ned, i.e. independent of the choice of w � 0, by Proposition
3.2 and by (3.24). We will apply Proposition 3.4 to 82 sequences {aφ,ψ,n}n,
one for each pair of Dirichlet characters φ, ψ, and then add together the
corresponding 82 sums Sφ,ψ(X) to obtain Theorem 3.1. The key lemma is
then

Lemma 3.12. If p is a prime and p is a prime ideal lying above p, then we
have

1

82

∑
φ

∑
ψ

aφ,ψ,p =

{
[p] if p ≡ −1 mod 16

0 otherwise.

Hence, to prove Theorem 3.1, it now su�ces to prove
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Theorem 3.2. Let aφ,ψ,n be de�ned as in (3.30). For every ε > 0, there is a
constant Cε > 0 depending only on ε such that for every X ≥ 2, we have∣∣∣∣∣∣

∑
Norm(n)≤X

aφ,ψ,nΛ(n)

∣∣∣∣∣∣ ≤ CεX 149
150 +ε.

3.3 Fundamental domains

In order to obtain power-saving cancellation for linear and bilinear sums as in
Proposition 3.4, we will have to choose generators of n in (3.30) carefully. The
problem reduces to �nding a convenient fundamental domain for the action of
ε2 = 3 + 2

√
2 on totally positive elements of Z[

√
2].

In [17], the authors describe how to construct such a fundamental domain
in a more general setting. We give simpler arguments tailored to our speci�c
needs and describe a fundamental domain very explicitly. This explicit de-
scription along with the ancillary pictures is possible in large part because the
degree of the extension Q(

√
2)/Q is 2.

Let
Ω :=

{
(u, v) ∈ R2 : u > 0,−u <

√
2v < u

}
.

Then the lattice points (u, v) ∈ Ω∩Z2 precisely enumerate the totally positive
elements w = u + v

√
2. The ring Z[

√
2] acts on itself by multiplication, and

this induces an action
Z[
√

2]× Ω→ Ω

given by
(a, b) · (u, v) := (au+ 2bv, bu+ av).

Since Norm(ε2) = 1 and since the norm is multiplicative, it follows immedi-
ately that ε2 · Ω ⊂ Ω.

Let D be the subset of Ω de�ned by

D :=
{

(u, v) ∈ R2 : u > 0,−u < 2v ≤ u
}

(3.31)

We claim that the region D in Figure 3.1 shown above is a fundamental domain
for the action of ε2 on Ω in the following sense.

Lemma 3.13. For each element (u, v) ∈ Ω ∩ Z2, there exists exactly one
integer k such that ε2k · (u, v) ∈ D.
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Figure 3.1: The region Ω and the fundamental domain D

Proof. For an element w = (u, v) ∈ R2 with u 6= 0, de�ne the slope of w to be

m(w) =
v

u
.

By de�nition, Ω is the subset of R2 consisting of w such that u > 0 and
|m(w)| < 1/

√
2, and D is the subset of Ω consisting of w such that −1/2 <

m(w) ≤ 1/2.

For each integer k, de�ne integers pk and qk by the equation

(3 + 2
√

2)2k = pk + qk
√

2.

Since p2
k − 2q2

k = 1, it follows that qk/pk → 1/
√

2 as k → +∞. Moreover,
p−k = pk and q−k = −qk, so that qk/pk → −1/

√
2 as k → −∞. We will also

use the fact that |qk/pk| < 1/
√

2.

Now let w = (u, v) ∈ Ω ∩ Z2. We have

m(ε2k · w) =
qku+ pkv

pku+ 2qkv
=
qk
pk

+
v

pk(pku+ 2qkv)
.

Since u and v are integers, so is pku+ 2qkv. If pku+ 2qkv = 0, then∣∣∣ v
u

∣∣∣ =

∣∣∣∣ pk2qk

∣∣∣∣ > 1√
2
,
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which contradicts the assumption that (u, v) ∈ Ω. Hence pku+ 2qkv is a non-
zero integer, so that |pku + 2qkv| ≥ 1, and since pk → +∞ as k → +∞, we
deduce that

m(ε2k · w)→ ± 1√
2

as k → ±∞.

Moreover, we have

m(ε2 · w)−m(w) =
2u+ 3v

3u+ 4v
− v

u
=

2(u2 − 2v2)

(3u+ 4v)u
.

As 3
√

2 > 4, we deduce that

3u+ 4v > 3
√

2|v|+ 4v ≥ 0,

and so m(ε2 · w)−m(w) > 0. Also, as (u+ 2v)2 ≥ 0, we deduce that

2u2 − 4v2 ≤ 3u2 + 4uv,

so that m(ε2 ·w)−m(w) ≤ 1. Hence multiplying w ∈ Ω by ε2 strictly increases
its slope by at most 1 and multiplying w ∈ Ω by ε−2 strictly decreases its slope
by at most 1. As |m(w1)−m(w2)| < 1 for any two elements w1, w2 ∈ D, this
proves that for each w ∈ Ω∩Z2, there exists an integer k such that ε2kw ∈ D.

To show that this integer k is unique, it remains to prove that if w = (u, v) ∈ D,
then ε2 · w = (3u + 4v, 2u + 3v) /∈ D. Suppose for sake of contradiction that
ε2 · w ∈ D. Then

2(2u+ 3v) ≤ 3u+ 4v,

so that −u ≥ 2v, which contradicts the assumption that (u, v) ∈ D.

An immediate consequence of Lemma 3.13 is the following proposition.

Proposition 3.5. Suppose that n is a non-zero ideal of Z[
√

2]. Then n has a
unique generator in D.

3.3.1 Geometry of numbers in the fundamental domain:
the Lipschitz principle

We now brie�y turn to the problem of counting lattice points and boxes inside
certain compact subsets of the fundamental domain D. We state a lemma of
Davenport (see [9] and [10]).

Let R be a compact, Lebesgue measurable subset of Rn. Suppose that R
satis�es the following two conditions:
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1. Any line parallel to one of the n coordinate axes intersects R in a set of
points which, if not empty, consists of at most h intervals, and

2. The same is true (with m in place of n) for any of the m-dimensional
regions obtained by projecting R on one of the coordinate spaces de�ned
by equating a selection of n − m of the coordinates to zero; and this
condition is satis�ed for all m from 1 to n− 1.

Lemma 3.14 (Davenport). If R satis�es conditions (1) and (2) above, then

|R ∩ Zn −Vol(R)| ≤
n−1∑
m=0

hn−mVm

where Vm is the sum of the m-dimensional volumes of the projections of R on
the various coordinate spaces obtained by equating any n − m coordinates to
zero, and V0 = 1 by convention.

We will apply Lemma 3.14 to the fundamental domain D ⊂ R2 as well as
certain variations thereof.

Let k be a positive integer, and de�ne

Dk = D ∪ ε2 · D · · · ∪ ε2k · D.

Let X > 0. Then the region

Dk(X) := {(u, v) ∈ Dk : u2 − 2v2 ≤ X}

is a compact subset of R2 and satis�es conditions (1) and (2) above with h = 2.
Moreover, one can check that there exist positive real numbers ak and `k such
that

Vol(Dk(X)) = akX (3.32)

and
Vol(∂(Dk(X))) = `kX

1
2 .

Now let L : R2 → R2 be an invertible linear transformation of the form

L

(
x
y

)
:=

(
a b
c d

)(
x
y

)
+

(
x0

y0

)
,

of determinant
D := ad− bc 6= 0.

Then L(Dk(X)) is a compact subset of R2 that also satis�es conditions (1)
and (2) above, also with h = 2.

We de�ne the diameter of L to be

diam(L) = |a|+ |b|+ |c|+ |d|.
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Then
Vol(L(Dk(X))) = |D|Vol(Dk(X))

and
Vol(∂(L(Dk(X)))) = O(diam(L) ·X 1

2 ),

where the implied constant is absolute.

3.4 Linear sums

In this section we prove that the estimate (A) from Proposition 3.4 holds for
the sequence {aφ,ψ,n}n de�ned in (3.30) with θ1 = 1/6.

Proposition 3.6. Let an = aφ,ψ,n, where aφ,ψ,n is de�ned as in (3.30), and
let Ad(X) be de�ned as in (3.25). Then for all ε > 0 and all X ≥ 2, we have

Ad(X)�ε X
5
6 +ε.

Proof. Recall that
Ad(X) =

∑
Norm(n)≤X
n≡0 mod d

an.

Since the sequence an is supported on odd ideals n, we see that Ad(X) = 0
unless d is odd. Hence we may assume without loss of generality that d is an
odd ideal. Let

R(X) := D4(X) =
{

(u, v) ∈ D ∪ ε2D ∪ ε4D ∪ ε6D : u2 − 2v2 ≤ X
}
. (3.33)

By Proposition 3.5 and de�nition (3.30), we have

Ad(X) =
∑

(u,v)∈R(X)

u+v
√

2≡0 mod d

[u+ v
√

2]φ,ψ,

where [u+ v
√

2]φ,ψ is de�ned as in (3.29).

We now reformulate the congruence condition u + v
√

2 ≡ 0 mod d. Propo-
sition 3.5 implies that there is an element d1 + d2

√
2 ∈ D which generates d.

Then the congruence above is equivalent to saying that there exist integers e1

and e2 such that u+ v
√

2 = (d1 + d2

√
2)(e1 + e2

√
2), i.e. such that

u = d1e1 + 2d2e2

and
v = d2e1 + d1e2.

In other words, (u, v) is in the image of the linear transformation

Ld :=

(
d1 2d2

d2 d1

)
: Z2 → Z2
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Figure 3.2: The region R(X) and the lattice points R(d, X)

of determinant
D := Norm(d) = d2

1 − 2d2
2.

Hence we de�ne

R(d, X) := {(u, v) ∈ R(X) : (u, v) ∈ Image(Ld)}

(depicted in Figure 3.2), and we rewrite the sum Ad(X) as

Ad(X) =
∑

(u,v)∈R(d,X)

[u+ v
√

2]φ,ψ.

Using the fact that |[u+ v
√

2]φ,ψ| ≤ 1, we obtain the trivial bound

|Ad(X)| ≤
∑

(u,v)∈R(d,X)

1 =
∑

L−1
d R(X)∩Z2

1. (3.34)

Since d1 + d2

√
2 ∈ D, we have the inequalities

d2
1

2
≤ D ≤ d2

1,
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which implies that diam(L−1
d )� D−1/2. Hence Lemma 3.14 gives

|Ad(X)| ≤ a4XD
−1 +O(D−

1
2X

1
2 + 1)� XD−1 +X

1
2D−

1
2 + 1, (3.35)

where the implied constant is absolute. This estimate will be useful when D
is large compared to X.

Next we split the sum Ad(X) into 8 · 16 sums where the congruence classes of
u and v modulo 16 are �xed, say u ≡ u0 mod 16 and v ≡ v0 mod 16 for some
congruence classes u0 and v0 modulo 16 with u0 invertible modulo 16. For u
and v satisfying these congruences, we have

[u+ v
√

2]φ,ψ = δ(u0, v0)
( v
u

)
,

where δ(u0, v0) ∈ {±1} depends only on the congruence classes u0 and v0

modulo 16. Hence it remains to give estimates for sums of the type

Ad(u0, v0, X) :=
∑

(u,v)∈R(u0,v0,d,X)

( v
u

)
,

where

R(u0, v0, d, X) := {(u, v) ∈ R(d, X) : (u, v) ≡ (u0, v0) mod 16} .

Splitting the sum according to the value of u, we obtain

Ad(u0, v0, X) =
∑

0≤u≤R1(X)
u≡u0 mod 16

Au,d(v0, X), (3.36)

where
Au,d(v0, X) :=

∑
v∈Iu

(u,v)∈Ld(Z2)
v≡v0 mod 16

( v
u

)
.

Here
R1(X) = sup{u ∈ R : (u, v) ∈ R(X)} � X

1
2

and Iu is an interval (or a union of 2 disjoint intervals) of size ≤ 2R2(X),
where

R2(X) = sup{|v| ∈ R : (u, v) ∈ R(X)} � X
1
2 .

We now unwind the condition (u, v) ∈ Ld(Z2), i.e. that (u, v) is in the image
of Ld. Consider the system of equations in x and y:{

u = d1x+ 2d2y

v = d2x+ d1y.
(3.37)
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Let d := gcd(d1, d2) and write d1 = dd′1, d2 = dd′2. Recall that d and so also
d1 is odd, so that d = gcd(d1, 2d2). If the system (3.37) has a solution over Z,
then d must divide u. This means that

Ad(u0, v0, X) =
∑

0≤u≤R1(X)
u≡u0 mod 16
u≡0 mod d

Au,d(v0, X).

Now suppose u ≡ 0 mod d, and let xu, yu ∈ Z be such that

u = d1xu + 2d2yu.

Then all solutions (x, y) ∈ Z2 to the �rst equation in (3.37) are given by

(x, y) = (xu − 2d′2k, yu + d′1k), k ∈ Z.

Hence

v = d2 (xu − 2d′2k) + d1 (yu + d′1k) = d2xu + d1yu +Dk/d,

which means that (3.37) has a solution over Z if and only if

v ≡ d2xu + d1yu mod D/d.

Note that D is odd, so that D/d and 16 are coprime. Let vu be the congruence
class modulo 16D/d such that{

vu ≡ d2xu + d1yu mod D/d

vu ≡ v0 mod 16.

Thus we have proved that if u ≡ 0 mod d, then

Au,d(v0, X) =
∑
v∈Iu

v≡vu mod 16D/d

( v
u

)
.

Let eu = gcd(vu, 16D/d), write 16D/d = eudu, vu = euv
′
u, and perform a

change of variables v = euv
′, so that

Au,d(v0, X) =
(eu
u

) ∑
v′∈I′u

v′≡v′u mod du

(
v′

u

)
,

where I ′u = Iu/eu. Since gcd(v′u, du) = 1, we can now detect the congruence
condition v′ ≡ v′u mod du via Dirichlet characters modulo du. In other words,

Au,d(v0, X) =
1

ϕ(du)

(eu
u

)
χ(v′u)

∑
χ mod du

∑
v′∈I′u

χ(v′)

(
v′

u

)
, (3.38)
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where v′u denotes the multiplicative inverse of v′u modulo du. Let χ be a
Dirichlet character modulo du. If the character

v′ 7→ χ(v′)

(
v′

u

)
is trivial, then u = fg2 for some f dividing du (and therefore dividing 16D/d)
and some integer g. The number of such u ≤ R1(X) is

≤ τ(16D/d)R1(X)
1
2 �ε D

εX
1
4 .

In this case we use the trivial bound∑
v′∈I′u

χ(v′)

(
v′

u

)
� #I ′u ≤ #Iu � X

1
2 ,

where the implied constant in � is absolute. Hence the contribution of such
u to Ad(u0, v0, X) is

�ε D
εX

3
4 . (3.39)

On the other hand, if the character

v′ 7→ χ(v′)

(
v′

u

)
is not trivial, its conductor is at most

16Du/d� DX
1
2 ,

and so the Polya-Vinogradov inequality gives the estimate∑
v′∈I′u

χ(v′)

(
v′

u

)
�ε D

1
2X

1
4 +ε.

Combining this with (3.36), (3.38), and (3.39), we have proved the bound

Ad(X)�ε D
1
2X

3
4 +ε. (3.40)

We use (3.40) for D < X1/6 and (3.35) for D ≥ X1/6 to obtain

Ad(X)�ε X
5
6 +ε.

3.5 Bilinear sums

We are left with proving the estimate (B) from Proposition 3.4, which we do
with θ2 = 1/12 in much the same way as in [19, Sections 19-21, p. 1018-1028].
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Proposition 3.7. Let an = aφ,ψ,n, where aφ,ψ,n is de�ned as in (3.30), and
let B(M,N) be de�ned as in (3.26). Then for all ε > 0 and all M,N ≥ 2, we
have

B(M,N)�ε (M +N)
1
12 (MN)

11
12 +ε

.

Before we begin the proof of Proposition 3.7, we �rst de�ne a quantity
γ(w, z) that oscillates in both arguments w, z ∈ Z[

√
2].

3.5.1 The symbol γ(w, z)

Let σ denote the non-trivial automorphism of Q(
√

2). De�ne the rational part
of an element w ∈ Z[

√
2] to be

r(w) :=
1

2
(w + σ(w)) .

In other words, if w = a+ b
√

2 with a, b ∈ Z, then r(w) = a.

We say that an element w = a + b
√

2 ∈ Z[
√

2] is primitive if and only if
gcd(a, b) = 1.

Suppose w and z are primitive. Then wz need not be primitive. Nonethe-
less, we have the following lemma.

Lemma 3.15. Suppose w and z are primitive. Let d = Norm(gcd(w, σ(z)).
Then wz/d is primitive. In particular, wz is primitive whenever gcd(w, σ(z)) =
1.

Proof. If p is inert in Z[
√

2] and p|wz, then by unique prime factorization
in Z[

√
2], p divides either w or z, which contradicts the assumption that w

and z are primitive. Now suppose that p splits in Z[
√

2] (resp. p = 2), so
that p = ξσ(ξ) (resp. p = −ξσ(ξ)) for some prime ξ ∈ Z[

√
2]. If pk is the

exact power of p dividing wz, then the assumption that w and z are primitive
implies that ξk|w and σ(ξk)|z, which is true if and only if ξk| gcd(w1, σ(w2)).
The lemma now follows by unique factorization in Z[

√
2].

Given an odd, totally positive, primitive w ∈ Z[
√

2] a totally positive
z ∈ Z[

√
2], we de�ne the generalized Dirichlet symbol γ(w, z) to be

γ(w, z) :=

(
r(wz)

Norm(w)

)
, (3.41)

where
( ·
·
)
is the Jacobi symbol. More concretely, if we write w = a+ b

√
2 and

z = c+ d
√

2, then

γ(w, z) =

(
ac+ 2bd

a2 − 2b2

)
.
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Our choice of terminology is inspired by the Dirichlet symbol de�ned in a
slightly di�erent setting in [19, Section 19, p. 1018-1021].

The symbol γ(w, z) is almost multiplicative in the second argument. More
precisely, for an odd, totally positive w = a+ b

√
2 ∈ Z[

√
2], de�ne

m(w) :=

(
r(w)

Norm(w)

)
=

(
a

a2 − 2b2

)
. (3.42)

Note that w is primitive if and only if m(w) 6= 0. In this case, the law of
quadratic reciprocity implies that(

a

a2 − 2b2

)
= (−1)

a−1
2 ·

a2−2b2−1
2

(
−2

a

)
,

and so m(w) ∈ {±1} depends only on the residue class of w modulo 8. We
have

Lemma 3.16. Let w ∈ Z[
√

2] be odd, totally positive, and primitive, and let
z1, z2 ∈ Z[

√
2] be totally positive. Then

γ(w, z1z2) = γ(w, z1)γ(w, z2)m(w). (3.43)

Proof. Write w = a+ b
√

2, z1 = c1 + d1

√
2, and z2 = c2 + d2

√
2. Then

γ(w, z1)γ(w, z2) =

(
a2c1c2 + 2ab(c1d2 + c2d1) + 4b2d1d2

a2 − 2b2

)
.

Using the facts that 4b2 ≡ 2a2 mod a2 − 2b2 and that z1z2 = (c1c2 + 2d1d2) +
(c1d2 + c2d1)

√
2, we deduce that

γ(w, z1)γ(w, z2) =

(
a2(c1c2 + 2d1d2) + 2ab(c1d2 + c2d1)

a2 − 2b2

)
=

(
a

a2 − 2b2

)(
a(c1c2 + 2d1d2) + 2b(c1d2 + c2d1)

a2 − 2b2

)
= m(w)γ(w, z1z2).

The symbol γ(w, z) also satis�es a reciprocity law.

Lemma 3.17. Let w and z be odd, totally positive, and primitive elements of
Z[
√

2]. Then
γ(w, z)γ(z, w) = m(wz). (3.44)

In particular, if γ(w, z) = 0 whenever gcd(w, σ(z)) 6= 1.

Proof. We have

γ(w, z)γ(z, w) =

(
r(wz)

Norm(w)

)(
r(wz)

Norm(z)

)
=

(
r(wz)

Norm(wz)

)
= m(wz).

Finally, we remark that γ(w, z1) = γ(w, z2) whenever z1 ≡ z2 mod Norm(w).

84



3.5.2 Twisted multiplicativity of governing symbols

Recall that if u+ v
√

2 is a totally positive odd element of Z[
√

2], we de�ne the
governing symbol [u+ v

√
2] to be

[u+ v
√

2] =
( v
u

)
.

Thus [u+ v
√

2] = 0 whenever u+ v
√

2 is not primitive.

A key feature of the governing symbol [·] which leads to signi�cant cancel-
lation in (3.26) is that [·] is not multiplicative, i.e. the relation

[wz] = [w][z],

does not hold for all totally positive w and z. Instead, the equation above
becomes essentially valid when twisted by γ(w, z). We now state our result
more precisely.

We now introduce notation that will simplify the subsequent arguments. Sup-
pose that f1 and f2 are functions Zr → C. For x ∈ Zr, we write f1 ∼ f2

(or more conveniently f1(x) ∼ f2(x)) if there exists a function δ : Zr → {±1}
such that δ factors though (Z/16Z)r, i.e. the value of δ(x) depends only on
the congruence classes of the coordinates of x modulo 16, and such that

f1(x) = δ(x)f2(x)

for all x ∈ Zr. For instance, [u+v
√

2]φ,ψ ∼ [u+v
√

2]φ′,ψ′ for any four Dirichlet
characters φ, ψ, φ′, ψ′.

The following proposition is analogous to [19, Lemma 20.1, p. 1021].

Proposition 3.8. Let w = a+ b
√

2 and z = c+ d
√

2 be two primitive, totally
positive, odd elements of Z[

√
2]. Then

[wz] ∼ [w][z]γ(w, z).

Proof. When wz is not primitive, then [wz] = 0 and γ(w, z) = 0, and so the
result follows. Hence we may assume that wz is primitive.

First note that
wz = (ac+ 2bd) + (ad+ bc)

√
2.

We set ρ = (a, d) and de�ne a1 and d1 by the equalities a = ρa1 and d = ρd1,
respectively. Then

[wz] =

(
ad+ bc

ac+ 2bd

)
=

(
ad+ bc

ρ

)(
ad+ bc

a1c+ 2bd1

)
,
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and since ρ divides ad, the above simpli�es to

[wz] =

(
bc

ρ

)(
ad+ bc

a1c+ 2bd1

)
.

Now, since w is primitive, a1 is relatively prime to b and hence also to a1c+2bd1.
Hence we may write

c ≡ −2bd1/a1 (mod a1c+ 2bd1),

so that the second factor in the expression above becomes(
ad+ bc

a1c+ 2bd1

)
=

(
ad− 2b2d1/a1

a1c+ 2bd1

)
=

(
a1d1

a1c+ 2bd1

)(
ρ2 − 2b2/a2

1

a1c+ 2bd1

)
.

As a2 − 2b2 = a2
1(ρ2 − 2b2/a2

1), we deduce that

[wz] ∼
(
bc

ρ

)(
a1d1

a1c+ 2bd1

)(
a2 − 2b2

a1c+ 2bd1

)
.

We write the last factor in the expression above as(
a2 − 2b2

a1c+ 2bd1

)
=

(
a2 − 2b2

ρ

)(
a2 − 2b2

ac+ 2bd

)
,

and use the fact that (
a2 − 2b2

ρ

)
=

(
−2b2

ρ

)
=

(
−2

ρ

)
to conclude that

[wz] ∼
(
−2bc

ρ

)(
a1d1

a1c+ 2bd1

)(
a2 − 2b2

ac+ 2bd

)
.

The law of quadratic reciprocity implies that(
a2 − 2b2

ac+ 2bd

)
∼
(
ac+ 2bd

a2 − 2b2

)
,

so that

[wz] ∼
(
−2bc

ρ

)(
a1d1

a1c+ 2bd1

)
γ(w, z).

We again use the law of quadratic reciprocity to treat the middle term above.
We get (

a1

a1c+ 2bd1

)
= (−1)ν1(a,b,c,d,ρ)

(
2

a1

)(
bd1

a1

)
,

where
ν1(a, b, c, d, ρ) ≡ a1 − 1

2
· r1 − 1

2
mod 2
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and
r1 = a1c+ 2bd1.

Similarly, we write d1 as
d1 = 2ed2,

where d2 is odd, and compute that(
d1

a1c+ 2bd1

)
= (−1)ν2(a,b,c,d,ρ)

(
d1

a1c

)
,

where now

ν2(a, b, c, d, ρ) ≡ er
2
1 − 1

8
+
d2 − 1

2
· r1 − 1

2
+
d2 − 1

2
· a1c− 1

2
+e

a2
1c

2 − 1

8
mod 2.

We thus have

[wz] ∼ (−1)ν1+ν2

(
2

a1

)(
−2bc

ρ

)(
b

a1

)(
d1

c

)
γ(w, z),

which simpli�es to

[wz] ∼ (−1)ν1+ν2+ν3

(
−1

ρ

)(
b

a

)(
d

c

)
γ(w, z),

where
ν3 = ν3(c, ρ) ≡ ρ− 1

2
· c− 1

2
mod 2.

It remains to show that

(−1)ν1+ν2+ν3

(
−1

ρ

)
depends only on the residue classes of a, b, c, d modulo 16. First note that
whether e = 0, e = 1, or e ≥ 2 depends only on the residue class of d modulo
4 (and hence also modulo 16). Hence we can split into cases e = 0, e = 1, and
e ≥ 2.

Note that if e ≥ 2 or e = 1 and b ≡ 0 mod 2, then r1 ≡ a1c mod 8. Us-
ing this observation and the de�nitions of ν1, ν2, and ν3, we �nd that

ν2 ≡


d1−1

2 mod 2 if e = 0 and b ≡ 1 mod 2

1 mod 2 if e = 1 and b ≡ 1 mod 2

0 mod 2 otherwise.

First suppose e ≥ 2. Then r1 ≡ a1c mod 8 and ν2 ≡ 0 mod 2. Suppose �rst
that c ≡ 1 mod 4. Then ν3 ≡ 0 mod 2 as well. Moreover, a1 ≡ r1 mod 4, so
that

ν1 ≡
a1 − 1

2
· a1 − 1

2
≡ a1 − 1

2
mod 2.
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Finally, as a = a1ρ, (
−1

a

)
=

(
−1

a1

)(
−1

ρ

)
and so ν1 + (ρ − 1)/2 ≡ (a − 1)/2 mod 2. Now suppose c ≡ 3 mod 4. Then
ρ and cρ are odd and di�erent modulo 2, and so ν3 + (ρ − 1)/2 ≡ 1 mod 2.
Moreover, r1 ≡ 3a1 mod 4, so that r1 and a1 are odd and di�erent modulo
4. Hence at least one of (r1 − 1)/2 and (a1 − 1)/2 is 0 mod 2 and so ν1 = 0.
Collecting these results, we get

ν1 + ν2 + ν3 +
ρ− 1

2
≡

{
a−1

2 mod 2 if c ≡ 1 mod 4

1 mod 2 if c ≡ 3 mod 4.

Now suppose e = 1. Then splitting into cases similarly as above, we get

ν1 + ν2 + ν3 +
ρ− 1

2
≡


a−1

2 mod 2 if b ≡ 0 mod 2 and c ≡ 1 mod 4

0 mod 2 if b ≡ 0 mod 2 and c ≡ 3 mod 4
a−1

2 + 1 mod 2 if b ≡ 1 mod 2 and c ≡ 1 mod 4

1 mod 2 if b ≡ 1 mod 2 and c ≡ 3 mod 4.

Finally, suppose e = 0. Then

ν1 + ν2 + ν3 +
ρ− 1

2
≡


a−1

2 mod 2 if b ≡ 0 mod 2 and c ≡ 1 mod 4

0 mod 2 if b ≡ 0 mod 2 and c ≡ 3 mod 4
d−1

2 mod 2 if b ≡ 1 mod 2 and c ≡ 1 mod 4
a−1

2 + d−1
2 mod 2 if b ≡ 1 mod 2 and c ≡ 3 mod 4.

This proves the lemma.

3.5.3 Proof of Proposition 3.7

We are now ready to prove Proposition 3.7. Let

D(X) :=
{

(u, v) ∈ D : u2 − 2v2 ≤ X
}
,

where again D is de�ned as in (3.31). We will say that u + v
√

2 ∈ D(X) to
mean that (u, v) ∈ D(X). Then the bilinear sum (3.26) can be written as

B(M,N) =

3∑
k=0

Bk(M,N),

where
Bk(M,N) =

∑
w∈D(M)

∑
z∈D(N)

αwβz[ε
2kwz]φ,ψ. (3.45)

Here αw = α(w) and βz = β(z), i.e. αw (resp. βz) depends only on the ideal
generated by w (resp. z).
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It is enough to estimate (3.45) for each 0 ≤ k ≤ 3. First, suppose u+ v
√

2 � 0
is primitive and odd. Then by Proposition 3.8, we have

[ε2k(u+ v
√

2)] ∼ [u+ v
√

2][ε2k]γ(ε2k, u+ v
√

2) ∼ [u+ v
√

2].

We write w = a+ b
√

2 and z = c+ d
√

2 and split (3.45) into 82 · 162 sums by
�xing congruence classes of a, b, c, and d modulo 16 (where the congruence
classes of a and c are invertible). Then it su�ces to estimate each sum

±
∑

w∈D(M)
w≡w0 mod 16

∑
z∈D(N)

z≡z0 mod 16

αwβz[wz].

Unless both w and z are primitive, wz is not primitive, and hence [wz] = 0 .
Using Proposition 3.8 again and replacing αw by αw[w] and βz by βz[z], we
are left to estimate sums of the type

Q∗(M,N) :=
∑

∗

w∈D(M)
w≡w0 mod 16

∑
∗

z∈D(N)
z≡z0 mod 16

αwβzγ(w, z), (3.46)

where ∗ restricts the summation to primitive elements of Z[
√

2]. The cancel-
lation in the bilinear sum (3.46) comes from the double oscillation of the term
γ(w, z) in the formula above.

We also de�ne the closely related sum

Q(M,N) :=
∑

∗

w∈D(M)
w≡w0 mod 16

∑
z∈D(N)

z≡z0 mod 16

αwβzγ(w, z), (3.47)

and note that Q∗(M,N) is a special case of Q(M,N) where the complex num-
bers βz are supported on primitive elements z.

The Cauchy-Schwarz inequality implies that

|Q(M,N)|2 ≤
∑

z∈D(N)
z≡z0(16)

|βz|2
∑

w1∈D(M)
w1≡w0(16)

∑
w2∈D(M)
w2≡w0(16)

αw1
αw2

∑
z∈D(N)
z≡z0(16)

γ(w1, z)γ(w2, z).

Since βz is bounded in modulus by N ε, Lemma 3.14 applied to L = Id gives∑
z∈D(N)
z≡z0(16)

|βz|2 �ε N
εVol(D(N)) +N εO(Vol(∂(D(N))) + 1)�ε N

1+ε. (3.48)

Recall that γ(w, z1) = γ(w, z2) whenever z1 ≡ z2 mod Norm(w). Set

q := Norm(w1w2).
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Hence we can split the inner sum over z into residue classes modulo 16q. More
precisely, we write z0 = z01+z02

√
2 and de�ne L to be the linear transformation

L = 16q · Id + (z01, z02) : R2 → R2. Then Lemma 3.14 gives∑
z∈D(N)
z≡z0(16)

γ(w1, z)γ(w2, z) =
∑

ζ mod 16q
ζ≡z0 mod 16

γ(w1, z)γ(w2, z)
∑

z∈D(N)
z≡ζ mod 16q

1

=
∑

ζ mod 16q
ζ≡z0 mod 16

γ(w1, z)γ(w2, z)

(
a0N

(16q)2
+O

(
N

1
2

q
+ 1

))

=
a0N

(16q)2

∑
ζ mod 16q
ζ≡z0 mod 16

γ(w1, z)γ(w2, z) +O

(
q2

(
N

1
2

q
+ 1

))
,

where a0 is de�ned as in (3.32). The following proposition, analogous to [19,
Lemma 21.1, p. 1025], helps us estimate the sum above. It gives a lot of
cancellation for most w1 and w2.

Proposition 3.9. Let w0 and z0 be odd congruence classes modulo 16 in
Z[
√

2]. Let w1, w2 ∈ Z[
√

2] be primitive, totally positive, and odd. Suppose
w1 ≡ w2 ≡ w0 mod 16. Let σ be the non-trivial automorphism of Q(

√
2).

Let gcd(w1, σ(w2)) denote a totally positive generator for the greatest common
divisor of the ideals (w1) and (σ(w2)) in Z[

√
2]. Let q := Norm(w1w2) and

d := Norm(gcd(w1, σ(w2))) (so that d2|q). Then we have∣∣∣∣∣∣∣∣
∑

z mod 16q
z≡z0 mod 16

γ(w1, z)γ(w2, z)

∣∣∣∣∣∣∣∣ =

{
qϕ(d)ϕ(q/d) if q and d are squares

0 otherwise.

Proof. We write z = a+ b
√

2 with a, b ∈ Z. Our �rst goal is to show that

γ(w1, z)γ(w2, z) = δ

(
a2 − 2b2

d

)
γ(w1w2/d, z), (3.49)

where δ ∈ {±1} possibly depends on w1, w2 and the �xed congruence class
z0 mod 16 but not on z.

It is possible that z is not primitive, so that we cannot directly apply the
reciprocity law from Lemma 3.17 to γ(w1, z) and γ(w2, z). However, we can
factor out the greatest common factor of a and b to obtain

z = gz′,

where g = gcd(a, b), a = ga′, b = gb′, and z′ = a′ + b′
√

2. Now z′ is primitive.

First assume that
gcd(w1w2, σ(z)) = 1. (3.50)
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Under this assumption, we claim that

gcd(d, a2 − 2b2) = gcd(q, g) = gcd(d, g) = 1. (3.51)

These equalities will be useful in subsequent manipulations of Jacobi symbols.
We now prove the claim.

First, suppose that there is a prime p dividing d and a2 − 2b2. Let ξ =
gcd(w1, σ(w2)), so that d = ξσ(ξ). Suppose p divides ξ or σ(ξ). In the former
case, this would mean that p divides w1, while in the latter case it would mean
that p divides w2. Both of these cases contradict the assumption that w1 and
w2 are primitive. Hence p cannot divide either ξ or σ(ξ). Since z ≡ z0 mod 16
and z0 is an odd congruence class modulo 16, we see that a2− 2b2 is odd, and
so also that p is odd. If p is inert in Z[

√
2], then since p divides d, p must

divide either ξ or σ(ξ), and this is a contradiction. Hence we may assume that
p splits in Z[

√
2], i.e. p = πσ(π) for some prime π in Z[

√
2]. Again, as p divides

neither ξ nor σ(ξ), we can assume without loss of generality that π divides ξ
and σ(π) divides σ(ξ). This means that π divides w1 and σ(π) divides w2.
Now, since p (and hence π) divides a2 − 2b2 = zσ(z), we �nd that π divides z
or σ(z). In the former case, σ(π) divides σ(z), which means that σ(π) divides
gcd(w2, σ(z)), and this contradicts assumption (3.50). In the latter case, π
divides gcd(w1, σ(z)), which again contradicts (3.50). Hence we have shown
that (d, a2 − 2b2) = 1.

Now suppose that there is a prime p dividing q and g. As g is a rational
integer, σ(g) = g, and so, as z = gz′, we see that p divides σ(z). Since
w1 and w2 are odd, p must be odd. If p divides w1 or w2, then p divides
gcd(w1w2, σ(z)), which contradicts assumption (3.50). Hence p cannot divide
either w1 or w2. If p is inert in Z[

√
2], then, as q = w1w2σ(w1)σ(w2), p divides

at least one of w1, w2, σ(w1), and σ(w2). In fact, as p = σ(p), we see that p
must divide either w1 or w2, which is a contradiction. Hence we may assume
that p splits in Z[

√
2], i.e. p = πσ(π) for some prime π in Z[

√
2]. Again, as

p divides neither w1 nor w2, we can assume without loss of generality that π
divides w1. But then π divides gcd(w1, σ(z)), which contradicts assumption
(3.50). Hence we have shown that gcd(q, g) = 1.

Finally, as d divides q, we immediately deduce that gcd(d, g) = 1. This �nishes
the proof of (3.51).

By de�nition of γ(·, ·), as g is a rational integer, we have

γ(wi, z) =

(
g

Norm(wi)

)
γ(wi, z

′)

for i = 1, 2. Hence

γ(w1, z)γ(w2, z) =

(
g

q

)
γ(w1, z

′)γ(w2, z
′).
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Now we can apply the reciprocity law from Lemma 3.17 twice to obtain

γ(w1, z)γ(w2, z) =

(
g

q

)
(γ(z′, w1)m(w1z

′)) (γ(z′, w2)m(w2z
′)) .

Recall that m(α) depends only on the residue class of α modulo 8. Using
the fact that w1 ≡ w2 mod 16, we deduce that w1z

′ ≡ w2z
′ mod 16, and so

m(w1z
′) = m(w2z

′). The assumption gcd(w1w2, σ(z)) = 1 ensures that wiz′

is primitive (see Lemma 3.15), and so that m(wiz
′) ∈ {±1} for i = 1, 2. Hence

m(w1z
′)m(w2z

′) = m(w1z
′)2 = 1 and the expression above simpli�es to

γ(w1, z)γ(w2, z) =

(
g

q

)
γ(z′, w1)γ(z′, w2).

Lemma 3.15 ensures that w1w2/d is primitive. Hence we can now use the
multiplicativity formula from Lemma 3.16 twice to obtain

γ(w1, z)γ(w2, z) =

(
g

q

)
γ(z′, w1w2)m(z′)

=

(
g

q

)
(γ(z′, d)γ(z′, w1w2/d)m(z′)) m(z′).

Again, z′ is primitive, so m(z′) ∈ {±1}. The above simpli�es to

γ(w1, z)γ(w2, z) =

(
g

q

)
γ(z′, d)γ(z′, w1w2/d).

We again use the reciprocity law from Lemma 3.17 on γ(z′, w1w2/d) to obtain

γ(w1, z)γ(w2, z) =

(
g

q

)
γ(z′, d)γ(w1w2/d, z

′)m(z′w1w2/d).

As before, since g is a rational integer,

γ(w1w2/d, z) =

(
g

q/d2

)
γ(w1w2/d, z

′).

By equation (3.51), the Jacobi symbols
(
g
q

)
and

(
g

q/d2

)
are non-zero. Hence(

g

q

)(
g

q/d2

)
=

(
g

q2/d2

)
= 1,

and the above simpli�es to

γ(w1, z)γ(w2, z) = γ(z′, d)γ(w1w2/d, z)m(z′w1w2/d). (3.52)

By de�nition of γ(·, ·),

γ(z′, d) =

(
a′d

a′2 − 2b′2

)
= m(z′)

(
d

a′2 − 2b′2

)
. (3.53)
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By equation (3.51), we use the law of quadratic reciprocity to write(
d

a′2 − 2b′2

)
= ε(d, a′2 − 2b′2)

(
a′2 − 2b′2

d

)
= ε(d, a′2 − 2b′2)

(
a2 − 2b2

d

)
,

(3.54)
where for odd integers r and s,

ε(r, s) = (−1)
r−1
2

s−1
2 =

(
−1

s

) r−1
2

.

Note that ε(r, s) depends only on the congruence classes of r and s modulo
4. Since g is odd, g2 ≡ 1 mod 4, and so ε(d, a′2 − 2b′2) = ε(d, a2 − 2b2). In
particular, as z ≡ z0 mod 16, ε(d, a′2 − 2b′2) depends only on the congruence
classes of d and z0 modulo 4, and not on z.

Putting together (3.52), (3.53), and (3.54), we see that to accomplish our
goal (3.49), it remains to show that the value of the factor

m(z′)m(z′w1w2/d)

is independent of z. By de�nition of m(·), the law of quadratic reciprocity,
and the fact that g2 ≡ 1 mod 4, we have

m(z′) = ε(a′, a2 − 2b2)

(
−2

a′

)
. (3.55)

As a = ga′, we have (
−1

a′

)
=

(
−1

a

)(
−1

g

)
,

that is, (a′ − 1)/2 ≡ (a− 1)/2 + (g − 1)/2 mod 2. Hence

ε(a′, a2 − 2b2) = ε(a, a2 − 2b2)

(
−1

a2 − 2b2

) g−1
2

. (3.56)

Again, as a = ga′, we also have(
−2

a′

)
=

(
−2

a

)(
−2

g

)
. (3.57)

Combining (3.55), (3.56), and (3.57), and using the de�nition of m(·), we get

m(z′) = m(z)

(
−1

a2 − 2b2

) g−1
2
(
−2

g

)
, (3.58)

where we note that m(z) depends only on the �xed congruence class z0 modulo
16 and not on z.
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We now de�ne integers e and f by the equation

w1w2/d = e+ f
√

2,

and de�ne integers x, y, x′, and y′ by the equations

zw1w2/d = x+ y
√

2 = g(x′ + y′
√

2).

Proceeding in the same way as for (3.55), we get

m(z′w1w2/d) = ε(x′, x2 − 2y2)

(
−2

x′

)
. (3.59)

As x = gx′, we have (
−1

x′

)
=

(
−1

x

)(
−1

g

)
,

that is, (x′ − 1)/2 ≡ (x− 1)/2 + (g − 1)/2 mod 2. Hence

ε(x′, x2 − 2y2) = ε(x, x2 − 2y2)

(
−1

x2 − 2y2

) g−1
2

. (3.60)

Again, as x = gx′, we also have(
−2

x′

)
=

(
−2

x

)(
−2

g

)
. (3.61)

Combining (3.59), (3.60), and (3.61) as before, and using the de�nition of m(·),
we get

m(z′w1w2/d) = m(zw1w2/d)

(
−1

x2 − 2y2

) g−1
2
(
−2

g

)
, (3.62)

where again the factor m(zw1w2/d) depends on w1, w2 and the �xed congru-
ence class z0 modulo 16 but not on z. Combining (3.58) and (3.62), and using
the fact that x2 − 2y2 = (a2 − 2b2)(e2 − 2f2), we �nd that

m(z′)m(z′w1w2/d) = δ(w1, w2, z0)

(
−1

(a2 − 2b2)2(e2 − 2f2)

) g−1
2

,

where δ(w1, w2, z0) ∈ {±1} depends only on w1, w2 and the residue class of z0

modulo 16. Finally, note that

e2 − 2f2 = Norm(w1w2/d) =
Norm(w1w2)

d2

and that Norm(w1) ≡ Norm(w2) mod 4 (since again w1 ≡ w2 ≡ w0 mod 16).
Hence e2 − 2f2 ≡ Norm(w1)2 ≡ 1 mod 4, and so

m(z′)m(z′w1w2/d) = δ(w1, w2, z0).
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Thus, in the case that gcd(w1w2, σ(z)) = 1 (see (3.50)), we have proved (3.49).

Suppose now that (3.50) is not satis�ed, i.e., (w1w2, σ(z)) 6= 1. Then, by
Lemma 3.17, either γ(w1, z) = 0 or γ(w1, z) = 0. Moreover, either (w1w2/d, σ(z)) =
1 or (w1w2/d, σ(z)) 6= 1. In the former case, (w1w2/d, σ(z)) divides both
d and zσ(z) = a2 − 2b2, so that (a2 − 2b2, d) 6= 1. In the latter case,
(w1w2/d, σ(z)) 6= 1, so γ(w1w2/d, z) = 0 again by Lemma 3.17. As 0 = 0, we
have once again proved

γ(w1, z)γ(w2, z) = δ

(
a2 − 2b2

d

)
γ(w1w2/d, z),

so that the goal (3.49) has been established in all cases.

Writing z0 = a0 + b0
√

2, we then get∑
z mod 16q
z≡z0 mod 16

γ(w1, z)γ(w2, z) = ε1ε2
∑

a mod 16q
a≡a0 mod 16

∑
b mod 16q
a≡b0 mod 16

(
a2 − 2b2

d

)(
ae+ 2bf

q/d2

)
.

Note that there exists an integer t such that t2 ≡ 2 mod q because q is a norm
of an element in Z[

√
2]. Let t be such that t ≡ 2f/e mod q/d2; this is possible

since, by de�nition, q/d2 = e2 − 2f2 and w1w2/d is primitive. Then, as d
divides q, we may rewrite the above sum as∑
z mod 16q
z≡z0 mod 16

γ(w1, z)γ(w2, z) = ε1ε2

(
e

q2/d

) ∑
a mod 16q
a≡a0 mod 16

∑
b mod 16q
a≡b0 mod 16

(
a− bt
d

)(
a+ bt

q/d

)
.

Write a = a0 + 16a1 and b = b0 + 16b1 and set x0 = a0 + b0t, y0 = a0 − b0t,
x = a1 + b1t, y = a1 − b1t. Then a + bt = x0 + 16x and a − bt = y0 + 16y.
Note that the map (a1, b1) 7→ (x, y) is bijective on Z/qZ× Z/qZ, and hence∑
z mod 16q
z≡z0 mod 16

γ(w1, z)γ(w2, z) = ±
∑

y mod q

(y
d

) ∑
x mod q

(
x

q/d

)
= q

∑
y mod d

(y
d

) ∑
x mod q/d

(
x

q/d

)
,

and this implies the desired result.

Since ϕ(d)ϕ(q/d) ≤ q and q ≤ M2, we deduce that whenever q and d are
both squares,

∑
z∈D(N)
z≡z0(16)

γ(w1, z)γ(w2, z)� q2

(
N

q2
+O

(
N

1
2

q

))
+O

(
qN

1
2 + q2

)
� N+M2N

1
2 +M4.

By unique factorization in Z[
√

2], the number of elements w ∈ D such that
Norm(w) = n is at most τ(n), the number of divisors of n. Hence, setting
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m1 = Norm(w1) and m2 = Norm(w2), and using (3.27) and (3.48), we get the
upper bound

|Q(M,N)|2 � N

 ∑∑
m1,m2≤M
m1m2 square

τ(m1m2)
(
N +M2N

1
2 +M4

)
+M4N

1
2 +M6

 (MN)ε.

Using the estimate τ(n)�ε n
ε, we obtain

Lemma 3.18. Let Q(M,N) be de�ned as in (3.47). Then

Q(M,N)�ε

(
M

1
2N +M2N

3
4 +M3N

1
2

)
(MN)

ε
.

We now apply Hölder's inequality with k even to (3.47) to get

|Q(M,N)|k ≤

(∑
w

|αw|
k
k−1

)k−1∑
w

∣∣∣∣∣∑
z

βzγ(w, z)

∣∣∣∣∣
k

. (3.63)

Since γ(w, z) is multiplicative in the second argument up to a unit factor
depending only on w (see (3.16)), we can write

Q′(M,Nk) :=
∑
w

∣∣∣∣∣∑
z

βzγ(w, z)

∣∣∣∣∣
k

=:
∑

w∈D(M)
w≡w0 mod 16

∑
z∈D(Nk)

z≡z′0 mod 16

α′wβ
′
zγ(w, z),

for some α′w with |α′w| �M ε and

β′z =
∑

z1···zk=ε2jz
z∈D(Nk)

βz1βz2 · · ·βzk−1
βzk .

By Lemma 3.18, we have

Q′(M,Nk)�ε

(
M

1
2Nk +M2N

3k
4 +M3N

k
2

)
(MN)

ε
.

Using this estimate with k = 6 along with the upper bound (proved similarly
as (3.48)) ∑

w∈D(N)
w≡w0(16)

|αw|2 �M1+ε, (3.64)

inside the inequality (3.63), we get

Q(M,N)�ε

(
M

11
12N +M

7
6N

3
4 +M

4
3N

1
2

)
(MN)

ε
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We now use the reciprocity law (3.44) to interchange the roles of w and z in
(3.46). As the value of m(wz) depends only on the residue classes of w and z
modulo 16, we can apply the above estimate to get that Q(M,N)

�ε min
{
M

11
12N +M

7
6N

3
4 +M

4
3N

1
2 , N

11
12M +N

7
6M

3
4 +N

4
3M

1
2

}
(MN)

ε
.

For M < N , we have M11/12N > M7/6N3/4 and M11/12N > M4/3N1/2, so
that

Q(M,N)�ε

(
M

11
12N +N

11
12M

)
(MN)

ε �ε (M +N)
1
12 (MN)

11
12 +ε

.

This completes the proof of Theorem 3.2 and hence also Theorem 3.1.

3.6 Counting primes

In this section we give evidence that a governing �eld for the 16-rank of the
family {Q(

√
−8p)}p≡3(4) does not exist. To explain why, we �rst de�ne a

prime counting function. Suppose M/Q is a normal extension. Let S be a
subset of Gal(M/Q) which is a union of conjugacy classes. We de�ne

π(M,S,X) := #{p ≤ X : the Artin class of p in Gal(M/Q) is a subset of S}

Given any normal extensionM/Q of degree d and a subset S of Gal(M/Q) sta-
ble under conjugation, the �ebotarev Density Theorem using the best known
zero-free regions of L-functions gives [39, Théorème 2, p. 132], for some con-
stant c > 0,

π(M,S,X) =
#S

#Gal(M/Q)
Li(X) +O(#SX exp(−cd−1/2 log1/2X)).

Hence given any two subsets S1 and S2 of Gal(M/Q) which are stable under
conjugation and of the same size,

π(M,S1, X)− π(M,S2, X)� #SX exp(−cd−1/2 log1/2X)

is the best known bound. Note that this bound is weaker than X1−δ for any
δ > 0. For instance, it is not known if

# {p ≤ X prime : p ≡ 1 mod 4}−# {p ≤ X prime : p ≡ −1 mod 4} � X0.9999.

However, we have the following result.

Theorem 3.3. Suppose that there exists a governing �eld M for the 16-rank
of the family {Q(

√
−8p)}p≡3(4). Then there exist disjoint subsets S1 and S2

of Gal(M/Q) which are stable under conjugation and of equal size such that

π(M,S1, X)− π(M,S2, X)�ε X
149
150 +ε
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Proof. We simply let S1 be the union of Artin classes cp for primes p satisfying
rk16Cl(−8p) = 1 and S2 be the union of Artin classes cp for primes p satisfying
rk8Cl(−8p) = 1 but rk16Cl(−8p) = 0. The result now immediately follows
from Theorem 3.1.

However, with our current methods of complex analysis applied to L-
functions, we are not able to produce an error term of the form O(x1−δM )
for any δM > 0. This leads us to believe that a governing �eld M for the
16-rank of the family {Q(

√
−8p)}p≡3(4) is unlikely to exist.
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