
HAL Id: tel-01438684
https://theses.hal.science/tel-01438684v1
Submitted on 17 Jan 2017 (v1), last revised 15 Dec 2017 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Statistical Learning on Circular Domains For Advanced
Process Control in Microelectronics

Espéran Padonou

To cite this version:
Espéran Padonou. Statistical Learning on Circular Domains For Advanced Process Control in Mi-
croelectronics. Statistics [math.ST]. Ecole nationale supérieure des mines de Saint-Etienne, 2016.
English. �NNT : 2016LYSEM009�. �tel-01438684v1�

https://theses.hal.science/tel-01438684v1
https://hal.archives-ouvertes.fr


 

 

 
 

 

 

 

 

 

 

 

 

 

NNT : 2016LYSEM009 

 

 

 

THESE de DOCTORAT DE L’UNIVERSITE DE LYON 
opérée au sein de 

L’Ecole des Mines de Saint-Etienne 
 

 

Ecole Doctorale N° 488  

Sciences, Ingénierie, Santé 

 
Spécialité de doctorat : Mathématiques appliquées 

  
 

 
 

Soutenue publiquement le 13/05/2016 par : 

Espéran Padonou 

 
 

Apprentissage Statistique en Domaine Circulaire  

Pour la Planification de Contrôles en Microélectronique 

 

 
 
     Devant le jury composé de : 
 

      Gamboa Fabrice, Professeur,  Institut de Mathématiques de Toulouse, Président  

 

      Iooss Bertrand, Chercheur Sénior HDR, Electricité de France, Rapporteur 

      Vicario Grazia, Professeur, Ecole polytechnique de Turin, Rapporteur 

      Reis Marco, Maitre de Conférences, Université de Coimbra Examinateur 

  

      Roustant Olivier, Professeur, Mines Saint – Étienne, Directeur de thèse 

      Blue Jakey, Maitre de Conférences,  Mines Saint – Étienne, Co-encadrant  

      Duverneuil Hugues, Ingénieur – Manager, STMicroelectronics, Co-encadrant 



ABSI Nabil CR Génie industriel CMP

AUGUSTO Vincent CR Image, Vision, Signal CIS

AVRIL Stéphane PR2 Mécanique et ingénierie CIS

BADEL Pierre MA(MDC) Mécanique et ingénierie CIS

BALBO Flavien PR2 Informatique FAYOL

BASSEREAU Jean-François PR Sciences et génie des matériaux SMS

BATTON-HUBERT Mireille PR2 Sciences et génie de l'environnement FAYOL

BEIGBEDER Michel MA(MDC) Informatique FAYOL

BLAYAC Sylvain MA(MDC) Microélectronique CMP

BOISSIER Olivier PR1 Informatique FAYOL

BONNEFOY Olivier MA(MDC) Génie des Procédés SPIN

BORBELY Andras MR(DR2) Sciences et génie des matériaux SMS

BOUCHER Xavier PR2 Génie Industriel FAYOL

BRODHAG Christian DR Sciences et génie de l'environnement FAYOL

BRUCHON Julien MA(MDC) Mécanique et ingénierie SMS

BURLAT Patrick PR1 Génie Industriel FAYOL

CHRISTIEN Frédéric PR Science et génie des matériaux SMS

DAUZERE-PERES Stéphane PR1 Génie Industriel CMP

DEBAYLE Johan CR Image Vision Signal CIS

DELAFOSSE David PR0 Sciences et génie des matériaux SMS

DELORME Xavier MA(MDC) Génie industriel FAYOL

DESRAYAUD Christophe PR1 Mécanique et ingénierie SMS

DJENIZIAN Thierry PR Science et génie des matériaux CMP

DOUCE Sandrine PR2 Sciences de gestion FAYOL

DRAPIER Sylvain PR1 Mécanique et ingénierie SMS

FAVERGEON Loïc CR Génie des Procédés SPIN

FEILLET Dominique PR1 Génie Industriel CMP

FOREST Valérie MA(MDC) CIS

FOURNIER Jacques Ingénieur chercheur CEA CMP

FRACZKIEWICZ Anna DR Sciences et génie des matériaux SMS

GARCIA Daniel MR(DR2) Génie des Procédés SPIN

GAVET Yann MA(MDC) Image Vision Signal CIS

GERINGER Jean MA(MDC) Sciences et génie des matériaux CIS

GOEURIOT Dominique DR Sciences et génie des matériaux SMS

GONDRAN Natacha MA(MDC) Sciences et génie de l'environnement FAYOL

GRAILLOT Didier DR Sciences et génie de l'environnement SPIN

GROSSEAU Philippe DR Génie des Procédés SPIN

GRUY Frédéric PR1 Génie des Procédés SPIN

GUY Bernard DR Sciences de la Terre SPIN

HAN Woo-Suck MR Mécanique et ingénierie SMS

HERRI Jean Michel PR1 Génie des Procédés SPIN

KERMOUCHE Guillaume PR2 Mécanique et Ingénierie SMS

KLOCKER Helmut DR Sciences et génie des matériaux SMS

LAFOREST Valérie MR(DR2) Sciences et génie de l'environnement FAYOL

LERICHE Rodolphe CR Mécanique et ingénierie FAYOL

MALLIARAS Georges PR1 Microélectronique CMP

MOLIMARD Jérôme PR2 Mécanique et ingénierie CIS

MOUTTE Jacques CR Génie des Procédés SPIN

NIKOLOVSKI Jean-Pierre Ingénieur de recherche Mécanique et ingénierie CMP

NORTIER Patrice PR1 SPIN

OWENS Rosin MA(MDC) Microélectronique CMP

PERES Véronique MR Génie des Procédés SPIN

PICARD Gauthier MA(MDC) Informatique FAYOL

PIJOLAT Christophe PR0 Génie des Procédés SPIN

PIJOLAT Michèle PR1 Génie des Procédés SPIN

PINOLI Jean Charles PR0 Image Vision Signal CIS

POURCHEZ Jérémy MR Génie des Procédés CIS

ROBISSON Bruno Ingénieur de recherche Microélectronique CMP

ROUSSY Agnès MA(MDC) Génie industriel CMP

ROUSTANT Olivier MA(MDC) Mathématiques appliquées FAYOL

STOLARZ Jacques CR Sciences et génie des matériaux SMS

TRIA Assia Ingénieur de recherche Microélectronique CMP

VALDIVIESO François PR2 Sciences et génie des matériaux SMS

VIRICELLE Jean Paul DR Génie des Procédés SPIN

WOLSKI Krzystof DR Sciences et génie des matériaux SMS

XIE Xiaolan PR1 Génie industriel CIS

YUGMA Gallian CR Génie industriel CMP

EMSE : Enseignants-chercheurs et chercheurs autorisés à diriger des thèses de doctorat (titulaires d’un doctorat d’État ou d’une HDR)

Spécialités doctorales   Responsables : 

 

SCIENCES ET GENIE DES MATERIAUX  K. Wolski Directeur de recherche 

MECANIQUE ET INGENIERIE  S. Drapier, professeur 

GENIE DES PROCEDES   F. Gruy,  Maître de recherche 

SCIENCES DE LA TERRE   B. Guy,  Directeur de recherche 

SCIENCES ET GENIE DE L’ENVIRONNEMENT   D. Graillot, Directeur de recherche 

Spécialités doctorales   Responsables 

 

MATHEMATIQUES APPLIQUEES O. Roustant, Maître-assistant  

INFORMATIQUE   O. Boissier, Professeur  

IMAGE, VISION, SIGNAL   JC. Pinoli, Professeur  

GENIE INDUSTRIEL   X. Delorme, Maître assistant 

MICROELECTRONIQUE   Ph. Lalevée, Professeur  

M
is

e 
à 

jo
u

r 
:  

0
1

/0
2

/2
0

1
6

 







Remerciements
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rareté sur le continent africain.

Merci à tous !



À mon père et à ma mère qui,
loin des turpitudes de ce monde,
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Chapter 1

From industrial needs to contributions in
applied mathematics

In the era of the Internet of Things (IoT), electronic devices revolutionise our daily lives
and play a prominent role in all economic sectors such as telecommunications, healthcare,
automotive and military applications. The driven factors of this boosting change are techno-
logical advances in microelectronics, governed by an exponential speed known as Moore’s law
since 1965. Microelectronics is related to the study and production of very small electronic
components, called integrated circuits (IC), and embedded in modern appliances. Behind the
technological achievements in this sector, important economic issues are arisen. For instance,
as transistors can shrunk to a size around few units of nanometers thanks to FinFETs and
FD-SOI technologies 1, their production involves expensive investments and costly controls.

This thesis is part of the overall framework of cost reduction in quality control. Driven
by the needs of our industrial partner, STMicroelectronics, our research project consists in
developing original probabilistic models for spatial and temporal datasets. In the following
sections, we introduce these contributions through the industrial framework.

1.1 Industrial needs in spatial and temporal modelling

(a) A lot (25 wafers). (b) A silicon wafer. (c) 17 sites on a wafer.

Figure 1.1 – The three levels of quality control in semiconductor industry.

The IC production consists in building functional modules, layer-by-layer, on a circular slice
of a semiconductor material called wafer (Figure 1.1b). The quality of a wafer is controlled

1FinFETs (FIN Field Effect Transistor) and FD-SOI (Fully Depleted Silicon On Insulator) are the two
latest transistor architectures, expected to shrunk transistors size around few nanometers.
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through measurements at a limited set of locations, which are commonly called sites in mi-
croelectronics and design points in statistics (Figure 1.1c). Due to logistical constraints,
wafers are processed by batches called lots (Figure 1.1a). Production and control strategies
are then designed and executed with respect to lots, and several quality indicators are ag-
gregated to the lot level. However, as illustrated in Figure 1.2, there are several factors of
non-homogeneity within one lot. Therefore, modern quality control systems are based on

Figure 1.2 – A source of variability within one lot.

wafers since they represent the central elements in manufacturing. The issue is then to assess
and regulate a production system over time, based on the measurements on wafers. For this
purpose, Statistical Process Control (SPC) methods are intensively used. A common prac-
tice is to monitor the time-series of the successive mean values, estimated wafer by wafer.
In practice, such procedures are often applied under the assumption that the measurements
are independent and identically distributed.

In practical operating conditions, the assumption of independent and identically distributed
measurements is proved to be unrealistic (Figure 1.3). Indeed, there exists a spatial de-

Figure 1.3 – Different examples of measurements over wafers in semiconductor industry.

pendence among measurements. Not only should quality be controlled over time, but also
it must be assessed spatially due to this dependence. Given this, we address the issue of
quality control as a profile monitoring problem [111, 80]. The procedure allows to deal with
spatial and temporal aspects separately. The spatial problem, consisting in modelling the
relationship between design points and measurements is then tackled with response surface
methods, including statistical models and designs of experiments. The temporal component
is treated with SPC tools, including control charts and time-series models. In each part,
visualization and interpretation tools, which are essential for practitioners, are provided.
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1.2 From physical processes to spatial patterns

In semiconductor industry, production involves various manufacturing processes. Taking a
common heating process as an example, when a heating source is placed in the center of a
wafer (Figure 1.4a), thermal conduction is governed by heat equation, resulting in a radial
variation of temperature. As a consequence, the physical characteristics of the material are
different from the center to the boundary of the wafer. A radial pattern is also observed in the
vapor deposition process shown in Figure 1.4c. The result is consistent with the underlying
physical principle, namely Fick’s law of diffusion. Conversely, the laser processing shown in
Figure 1.4d generates the pattern which varies from top to bottom and from left to right.
This is due to horizontal and vertical movements of the scanner, while its lens gets warm
over time. Through these examples, we understand why quality characteristics vary spatially
over wafers. From there comes the need to model wafers spatial patterns for the purpose of
quality control and regulation.

(a) Heating (b) Polishing (c) Vapor deposition

(d) Laser processing (e) Doping (f) Drying

Figure 1.4 – Examples of manufacturing processes in microelectronics, and resulting patterns.
Source: STMicroelectronics (b, d and e); YouTube (a and f); SlideShare (c).

To model wafers spatial patterns, an ideal solution should be to use the physical principle
underlying the manufacturing process. However, in complex systems like semiconductor
fabs, there are hundreds of production steps. Therefore, statistical approaches are employed
to recover the wafer pattern from a limited set of points, sampled for quality check. In other
words, the idea is to fit a response surface model over a circular domain.

In the general context of response surface models, a wide variety of tools is available: poly-
nomials, splines, radial basis functions, neural networks, Kriging, etc. In the particular case
of circular domains, Zernike polynomials [118, 89] and harmonic basis functions [102] are the
most famous and widely applied. Furthermore, seen as a subset of the complex plane, the
disk is also endowed with algebra inherited from complex analysis. As an example, Fourier
expansions using the Poisson kernel2 are useful to model datasets over circular domains (see
e.g. [66], Chapter 7). Among the available methods, Zernike polynomials are attractive due
to their interpretability, and Kriging models arouse our interest for their capacity to quantify

2Kernel in the sense of Fourier series. The Poisson kernel extends functions defined on the circle to
harmonic functions on the disk.
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uncertainty. This research is then motivated to develop novel methods in the same fashion.

When considered individually, the physics of each manufacturing process may be modelled
in Kriging. For instance, using harmonic covariance functions is proven to be optimal for
heating problems [40]. Rather than specificities, our work is focused on more general meth-
ods. Therefore, in parallel to investigations on statistical models, a review of manufacturing
processes in microelectronics revealed two main families of technologies. The first group G1
leads to variations aligned with Euclidean directions (Figures 1.4d, 1.4e and 1.4f), and the
second group G2 results in radial and angular patterns (Figures 1.4a, 1.4b and 1.4c). Dif-
ferent datasets, that seemed to correspond to these two groups were studied in [89], based
on Kriging. Traditional Kriging models are formulated with the Euclidean distance and
correspond to G1. They may lead to poor results for datasets from G2. Furthermore, Kriging
models are usually formulated with respect to a Cartesian basis. A priori, the choice of
such coordinate system is arbitrary when the input domain is circular. Potentially better
solutions would consist in selecting a basis according to the dataset.

Contributions to spatial models

Regarding the spatial pattern modelling, our contributions are four-fold. In Chapter 2, the
main results on Zernike polynomials are reviewed. Their orthogonality property, formulated
with the uniform measure over the disk, is extended to the uniform measure in the space
of polar coordinates. The resulting functions are more suitable for patterns of type G2. We
also propose a data-driven solution to select a Cartesian basis over the disk. Based on the
geostatistical concept of geometric anisotropy [4, 48], it allows to detect the main direction
of variations. In Chapter 3, we introduce polar Gaussian processes. Defined in the space of
polar coordinates to include radial and angular correlations in Kriging predictions, they lead
to a significant improvement when the manufacturing process is of type G2. Polar Gaussian
processes are also generalized to hyperballs, corresponding in computer experiments to a
directional input in higher dimension. Finally in Chapter 4, we investigate the Sobol de-
composition of Kriging models, with a focus on polar Gaussian processes. Derived from the
properties of centred kernels, the Sobol decomposition provides a framework to interpret and
visualize Kriging based response surfaces. In particular, it allows to quantify the importance
of radial and angular effects. Furthermore, they outperform standard Kriging models.

Contributions in designs of experiments

In the area of designs of experiments, our research was focused on optimal strategies for
Kriging models over the disk. In Chapter 5, we introduce maximin Latin cylinders in order
to reproduce the properties of Latin hypercubes in the space of polar coordinates. This family
of designs is suitable to learn polar Gaussian processes and can be adapted to fill the disk for
general situations. In Chapter 6, IMSE-optimal designs are investigated in a static setting
and the key properties are numerically studied. Then, we develop in Chapter 7 a sequential
procedure to relocate design points. The resulting dynamical design of experiments is proved
to be convergent.
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1.3 Statistical Process Control for spatial and tempo-

ral data

Two main kinds of temporal datasets are under focus in this thesis. The first group originates
from the successive spatial models that are developed for process control. The stability of
the resulting multivariate time-series is checked over time, based on SPC tools. The second
group involves hundreds of indicators, quantifying industrial performance. These indicators
consist of daily, weekly or monthly variables, collected in production and IT databases.
Because they describe the manufacturing and IT activities, the resulting time-series depend
on external factors such as sales growth, outstanding, seasonality, etc. The challenge is to
find a general procedure to monitor such diversified time-series.

SPC for spatial data

This part of our thesis falls within the general framework of profile monitoring. In the
special case of semiconductor industry, the issue was addressed by [37] who used thin-plate
splines to detect abnormal profiles whereas [10] monitored the spatial variance over wafers
via the so-called spatial variance spectrum. Since spatial patterns are modelled with Zernike
polynomials and Kriging in our thesis, we focus on profile monitoring based on these models.
Although several studies were dedicated to profile monitoring based on regression models,
Zernike polynomials received few attention. To deepen the descriptive analysis conducted by
[89], Chapter 8 presents a control chart for spatial patterns represented in terms of Zernike
polynomials. We also address profile monitoring based on Gaussian process parameters. This
issue seems not to be addressed in the literature. The difficulty comes from non-Gaussianity
of Kriging parameters, which are also harder to interpret than regression coefficients. The
approaches found in the literature are focused on the monitoring of deviations from a target
profile [19], or machine learning methods such as decision trees and variable selection [16].
We first consider Kriging parameters themselves. Control charts are then proposed for the
different Gaussian process models implemented in the thesis. A monitoring procedure is
also developed for spatial variance, based on Sobol indices. For the sake of interpretation
in industry, spatial patterns are predicted and diagnosed in Chapter 9, based on continuous
and categorical predictors, representing manufacturing parameters.

SPC for temporal data

The main requirement of the monitoring of performance indicators is to be applicable to
a wide variety of observed time-series. To distinguish normal operations from exceptional
events, a standard procedure is to model time series, and then monitor the model resid-
uals [76]. A Holt-Winters smoothing was previously implemented since this algorithm is
easy to manage by non-statisticians [70, 69]. Despite a good detection rate, the procedure
generates too many false alarms, due to outliers and structural changes. In order to ad-
dress both kinds of problems, we develop a robust and adaptive control chart in Chapter 10.
The method embeds a detection of structural breaks in the robust smoothing introduced
by [39, 21].
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Figure 1.5 – An example of structural change (adapted from [70]).

Résumé en Français

Motivés par des besoins en industrie microélectronique, nos travaux apportent des contribu-
tions en modélisation probabiliste de données spatiales, et en mâıtrise statistique de procédés.

Le problème spatial a pour spécificité d’être posé sur un domaine circulaire. Il se représente
par un modèle de krigeage dont la partie déterministe est constituée de polynômes orthog-
onaux et la partie stochastique d’un processus gaussien. Traditionnellement définis avec la
norme euclidienne et la mesure uniforme sur le disque, ces choix n’exploitent pas les informa-
tions a priori sur les procédés d’usinage. Pour tenir compte des mécanismes de rotation ou
de diffusion à partir du centre, nous formalisons les processus gaussiens polaires sur le disque.
Ces processus intègrent les corrélations radiales et angulaires dans le modèle de krigeage, et
en améliorent les performances dans les situations considérées. Ils sont ensuite interprétés
par décomposition de Sobol et généralisés en dimension supérieure. Des plans d’expériences
sont proposés dans le cadre de leur utilisation. Au premier rang figurent les cylindres latins
qui reproduisent en coordonnées polaires les caractéristiques des hypercubes latins.

Pour intégrer à la fois les aspects spatiaux et temporels du problème industriel, la mâıtrise
statistique de procédé est abordée en termes d’application de cartes de contrôle aux paramètres
des modèles spatiaux. De cartes adaptées au suivi temporel des paramètres de Krigeage sont
proposées. Pour finir, les séries temporelles contrôlées comportent parfois des données atyp-
iques et des changements structurels, sources de biais en prévision, et de fausses alarmes en
maitrise de risques. Ce problème est traité par lissage robuste et adaptatif.
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Chapter 2

Zernike polynomials and Kriging

In this chapter, we consider a physical or a computer experiment on the unit disk D,
represented with Cartesian or polar coordinates: D = {(x, y) ∈ R2, x2 + y2 ≤ 1} =
{(ρ cos θ, ρ sin θ) , ρ ∈ [0, 1], θ ∈ S}, where S = R/2πZ is the unit circle. We call X =(
x(1), . . . ,x(n)

)
the design points, and Y = (Y1, . . . , Yn) the response values. Two regression

methods are considered to model Y given X. The first one uses Zernike polynomials and
the second one, known as Kriging, is based on Gaussian processes.

2.1 Zernike polynomials

2.1.1 Historical context and key properties

In 1934, the physics community was limited by several computational issues. Particularly
in optics, people had to model complex images such as superimposed fringes, displayed on a
circular support area, representing a lens or an eye’s pupil. This involved the computation
of dozens of polynomial’s coefficients whereas modern computers did not exist. Moreover,
among the estimated coefficients, only few were needed. In this context, the challenge was
to find a set of orthogonal functions over the disk to allow a computation of coefficients,
independently from one another. Within the framework of regression models, an interesting
question is then to find (Pk)k, a basis of orthogonal polynomials in x and y over D.

Denote L2 (D) the space of square-integrable complex-valued functions over D, with the
scalar product:

〈f, g〉 =

∫
D
f (x, y) g (x, y)dxdy =

∫
D
f
(
ρ cos(θ), ρ sin(θ)

)
g
(
ρ cos(θ), ρ sin(θ)

)
ρdρdθ (2.1)

When the (Pk)k’s are unit vectors, the orthogonality condition is written:∫
D
Pk (x, y)Pk′ (x, y)dxdy = δk,k′ (2.2)

where δ denotes the kronecker symbol (1 if k = k′ and 0 otherwise). There exist infinite
sets of polynomial basis which satisfy condition 2.2. Indeed, applying the Gram–Schmidt
orthogonalization process to (1, x, y, xy, x2, y2, . . . ) will lead to different orthogonal sets, de-
pending on the initialization of the algorithm. However, in practice, a natural choice is
ascending and lexicographic degrees: 1, x, y, x2, xy, y2, x3, x2y, xy2, y3, . . . When modelling
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over the disk, another interesting property is independence with respect to the coordinates
system. Relevant polynomials over the disk should have the same form after rotating the
Cartesian basis, i.e.

Pk (x, y) = G (θ)Pk (x′, y′) (2.3)

where G is a 2π-periodic function in θ satisfying G (0) = 1 and (x′, y′) denotes the transform
of (x, y) by rotation with angle θ:{

x′ = x cos(θ)− y sin(θ)

y′ = x sin(θ) + y cos(θ)

Proposition 2.1.1. If the complex-valued polynomial basis (Pk(x, y))k satisfies 2.2 and 2.3,
then

Pk(x, y) = rk(ρ)gk(θ)

where gk(θ) = eimθ with m ∈ Z, and rk(ρ) is of the form:

rn,m (ρ) = amρ
m + am+2ρ

m+2 + · · ·+ anρ
n (2.4)

where n has the same parity as m. In addition, the rk’s are orthogonal polynomials over
[0, 1] with respect to the inner product 〈f, g〉 =

∫ 1

0
f (ρ) g (ρ) ρdρ.

Proof. (Adapted from [106])
A necessary condition on G is obtained from Equation 2.3, by considering a rotation with
angle θ1 +θ2, which a equivalent to two successive rotations with angles θ1 and θ2. By noting
(x′, y′) the image of (x, y) by the rotation with angle θ1, we have:

G (θ1 + θ2)Pk (x, y) = G (θ2)Pk (x′, y′)

= G (θ2)G (θ1)Pk (x, y)

Therefore, G (θ1 + θ2) = G (θ1)G (θ2). After a differentiation with respect to θ1, setting
θ1 = 0 shows that θ2 7→ G (θ2) is a solution of the differential equation:

f ′(u) = αf(u)

Since G is 2π-periodic and satisfies G (0) = 1, it is of the form

G (θ) = eimθ, m ∈ Z

From there, setting y′ = 0 in Equations 2.3 leads to Pk (x, y) = eimθPk (ρ, 0). It follows
that Pk (x, y) = rk (ρ) eimθ with m ∈ Z and rk (ρ) = Pk (ρ, 0). Let n be the degree of rk (ρ).
Therefore, there exist a0, . . . , an ∈ C such that rk (ρ) =

∑n
l=0 alρ

l. Then

Pk (x, y) =

(
n∑
l=0

alρ
l

)
eimθ =

(
n∑
l=0

alρ
l

)(x+ iy

ρ

)m
=

n∑
l=0

alρ
l−m (x+ iy)m

=
n∑
l=0

al
(
x2 + y2

) l−m
2 (x+ iy)m
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Thus Pk (x, y) is a polynomial if and only if l−m ∈ 2N for l = 0, 1 . . . n. As a consequence,
n−m ∈ 2N and rk (ρ) is of the form rn,m (ρ) = amρ

m + am+2ρ
m+2 + · · ·+ anρ

n.

The orthogonality of the rn,m’s is derived by separability of integrals over [0, 1]× [0, 2π].
Based on this property, the rn,m’s are uniquely defined (up to a constant) by applying the
Gram–Schmidt process to the stair-step polynomials ρm, ρm+2, ρm+4, . . .

Back to the framework of real valued functions, we use the conventional notation gm(θ) =
cos(mθ) for real parts, and g−m(θ) = sin(mθ) for imaginary parts, with m ∈ N. The
resulting polynomials are then of the form Pm

n (x, y) = rn,m (ρ) cos(mθ) or P−mn (x, y) =
rn,m (ρ) sin(mθ).

2.1.2 Definition

Zernike polynomials are a sequence of orthogonal functions of L2 (D). Indexed by two
integers n and m such that n−m ∈ 2N, each Zernike polynomial is either odd or even, and
conventionally noted Zm

n or Z−mn according to this parity. The orthogonality condition is:∫
D
Zm
n (ρ, θ)Zm′

n′ (ρ, θ) ρdρdθ =
εm

2n+ 2
δn,n′δm,m′ (2.5)

where εm is the Neumann factor (ε0 = 2 and εm = 1 if m ≥ 1), and δ denotes the kronecker
symbol (δk,k′ = 1 if k = k′ and 0 otherwise). In polar coordinates, Zernike polynomials are
the product of a radial polynomial rmn (ρ) by an angular function gm(θ):

Pm
n

(
ρ cos(θ), ρ sin(θ)

)
= rn,m (ρ) gm(θ) (2.6)

with:

rn,m (ρ) =

n−|m|
2∑

k=0

(−1)k
(
n− k
k

)(
n− 2k

n−|m|
2
− k

)
ρn−2k (2.7)

gm(θ) =

{
cos(mθ) if m ≥ 0,

sin(mθ) if m < 0
(2.8)

m = 0 m = 1 m = 2

r00 = 1

r02 = 2ρ2 − 1

r04 = 6ρ4 − 6ρ2 + 1

r11 = ρ

r13 = 3ρ3 − 2ρ

r15 = 10ρ5 − 12ρ3 + 3ρ

r22 = ρ2

r24 = 4ρ4 − 3ρ2

r26 = 15ρ6 − 20ρ4 + 6ρ2

Table 2.1 – Analytical expressions of Zernike radial polynomials.

The orthogonality of Zernike polynomials is due to the orthogonality of the rn,m’s over
[0, 1] and the orthogonality of the gm’s over [0, 2π].
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Z0
0

Z−11 Z+1
1

Z−22 Z0
2 Z+2

2

Z−33 Z−13 Z+1
3 Z+3

3

Z0
0

Z−11 Z+1
1

Z−22 Z0
2 Z+2

2

Z−33 Z−13 Z+1
3 Z+3

3

Figure 2.1 – Color representation of ten Zernike polynomials: y vs x (left), and θ vs ρ (right).

Initially used for image analysis in the conception of the phase contrast microscope,
Zernike polynomials meet a wide variety of applications. They serve as shape descriptors
for strain maps in mechanics, and for atmospheric turbulence in fluid dynamics. They also
allow to classify breast cancers, and are used in microelectronics to model spatial patterns
of wafers [89]. In Figure 2.1 are provided color representations for the first ten Zernike
polynomials. They exhibit the following symmetry and rotation invariance properties:

Zm
n (ρ,−θ) = sign(m)Zm

n (ρ, θ) (2.9)

Zm
n (ρ, θ + π) = (−1)mZm

n (ρ, θ) (2.10)

Zm
n

(
ρ, θ +

2kπ

m

)
= Zm

n (ρ, θ) , k ∈ Z (2.11)

From now on, we will use the normalized version of Zernike polynomials to benefit from
orthonormality properties: Zmn

‖Zmn ‖
, with ‖ Zm

n ‖
2 = εm

2n+2
.

2.1.3 Measure modification

Throughout this thesis, we will deal with some responses whose interpretation are related
to polar coordinates. Keeping this in mind, we aim at finding a set of orthogonal functions
with respect to the uniform measure over the space [0, 1]× [0, 2π] of polar coordinates:∫
D
Pk (ρ cos(θ), ρ sin(θ))Pk′ (ρ cos(θ), ρ sin(θ))dρdθ =

∫
D
Pk (x, y)Pk′ (x, y)

dxdy√
x2 + y2

= δk,k′

(2.12)
There exist an infinite sets of basis which satisfy Condition 2.12. As in the case of Zernike
polynomials, we focus on functions which meet simultaneously Conditions 2.12 and 2.3 to
take into account the geometry of the disk.
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Proposition 2.1.2. If the polynomial basis (Pk(x, y))k satisfies 2.12 and 2.3, then

Pk(x, y) = r̃k(ρ)gk(θ)

where (r̃k(x, y))k is a polynomial basis over [0, 1] and gk(θ) = eimθ with m ∈ Z. Fur-
thermore, the rk’s are of the form 2.4 and orthogonal with respect to the inner product
〈f, g〉 =

∫ 1

0
f (ρ) g (ρ) dρ.

Proof. By noting that the difference between Propositions 2.1.1 and 2.1.2 comes from the
integration measure, the proof is straightforward. It remains to find a basis (r̃k(x, y))k of the
form r̃n,m (ρ) = amρ

m + am+2ρ
m+2 + · · · + anρ

n with n −m ∈ 2N, and that are orthogonal

with respect to 〈f, g〉 =
∫ 1

0
f (ρ) g (ρ) dρ.

Construction with Legendre polynomials

Legendre polynomials are orthogonal functions over [−1, 1] with respect to the inner product

〈f, g〉 =
∫ 1

−1 f (x) g (x) dx. They are defined as:

Ln (x) =
1

2n

n∑
k=0

(
n

k

)2

(x− 1)n−k (x+ 1)k (2.13)

So, the shifted Legendre polynomials L̃n(x) = Ln(2x− 1) represent an orthogonal basis over

[0, 1] with respect to 〈f, g〉 =
∫ 1

0
f (x) g (x) dx. Then, the family

(
L̃n(ρ)gm(θ)

)
n−m∈2N

meets

Conditions 2.12 and 2.3. However, these functions are not polynomials in x and y because
Legendre polynomials are neither odd, nor even, such that L̃n(ρ) is not of the form 2.4.
Among drawbacks, L̃n(ρ)gm(θ) is not always differentiable at the center of the disk.

Construction by orthogonalization

To obtain orthogonal polynomials in the sense of Conditions 2.12 and 2.3, the radial terms
corresponding to a given m ∈ N must be of form 2.4: r̃n,m (ρ) = amρ

m+am+2ρ
m+2+· · ·+anρn,

with n−m ∈ 2N. Then, r̃n,m is recursively defined by Gram-Schmidt orthogonalization:

r̃mm(ρ) = ρm

r̃mm+2(ρ) = ρm+2 − 〈ρ
m+2, r̃mm〉
〈r̃mm, r̃mm〉

r̃mm(ρ)

r̃mm+4(ρ) = ρm+4 − 〈ρ
m+4, r̃m+2

m 〉
〈r̃m+2
m , r̃m+2

m 〉
r̃m+2
m (ρ)− 〈ρ

m+4, r̃mm〉
〈r̃mm, r̃mm〉

r̃mm(ρ)

. . .

Based on this recurrence relation, we obtain the family Pm
n of orthogonal polynomials

r̃mn (ρ)gm(θ), represented in Figure 2.2. Remark that given n ∈ N, we have P n
n = Zn

n and
P−nn = Z−nn by construction: the initialization of the Gram-Schmidt process is the same as
for Zernike.

Proposition 2.1.3. Up to a constant, there exists a unique polynomial basis, with increasing
degrees in x and y, that satisfies 2.2 and 2.3. The same goes for Conditions 2.12 and 2.3.
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m = 0 m = 1 m = 2

r̃00 = 1

r̃02 = ρ2 − 1

3

r̃04 = ρ4 − 6

7
ρ2 +

3

35

r̃11 = ρ

r̃13 = ρ3 − 3

5
ρ

r̃15 = ρ5 − 70

63
ρ3 +

5

21
ρ

r̃22 = ρ2

r̃24 = ρ4 − 5

7
ρ2

r̃26 = ρ6 − 882

693
ρ4 +

35

99
ρ2

Table 2.2 – Analytical expressions of the modified radial polynomials r̃mn ’s.

P 0
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P−11 P+1
1

P−22 P 0
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3

Figure 2.2 – Orthogonal polynomials over the disk with respect to the uniform measure over
the space of polar coordinates: y vs x (left), and θ vs ρ (right).

Proof. Due to the necessary condition resulting from 2.3, such polynomials are of the form
Qm
n (ρ) cos(mθ) orQm

n (ρ) sin(mθ). Different solutions would come from the radial polynomials
Qn(ρ). The additional condition of increasing degrees in x and y, and therefore in ρ, ensures
uniqueness (up to a constant).

Notice that other kinds of measure modifications could be investigated. In 1D, the
question is widely addressed, especially when the new measure is the product (or quotient)
of the old one by a polynomial (see e.g.[58], Section 2.7).
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2.1.4 Estimation

Estimation with Fourier coefficients

In the framework of large datasets, interpolation using Zernike polynomials is done in a
deterministic way, based on truncated Fourier series (see e.g. [26]):

Y (x) =
d∑

n=0

n∑
m=−n

n−|m|∈2N

βmn Z
m
n (x) (2.14)

where (βmn )m,n = β> is the vector of coefficients to estimate. Equation 2.14 defines the

coordinates of Y onto vec(Z0
0 , Z

−1
1 , ..., Zd

d), which is an orthonormal system. The βmn ’s are
then uniquely defined by orthogonal projections via the scalar product:

βmn = 〈Y, Zm
n 〉 =

∫
D
Y (ρ, θ)Zm

n (ρ, θ) ρdρdθ (2.15)

Given a finite number of observations
(
x(i), Yi

)
with 1 ≤ i ≤ N , the βmn ’s are estimated as

Fourier coefficients:

β̂mn =
N∑
i=1

YiZ
m
n

(
x(i)
)

(2.16)

By exploiting the orthogonality property, the procedure has the advantage of computing
separately the βmn ’s. In particular, only a subset of coefficients can be estimated. However, its
validity is subject to constraints on the design X. First, the sample size must be large enough
to ensure convergence when approximating integral terms. Second, the sample density must
be uniform on D to be consistent with the integration measure in Equation 2.1. Such
conditions, especially uniformity with respect to polar angles, are hard to meet in practice.

Estimation based on Ordinary Least Squares

The second method to estimate β is based on Ordinary Least Squares (OLS), corresponding
to the maximum likelihood estimator when ε is a Gaussian noise (see e.g. [49], Chapter 3).
The d-order linear regression model is:

Yi =
d∑

n=0

n∑
m=−n

n−|m|∈2N

βmn Z
m
n

(
x(i)
)

+ εi, 1 ≤ i ≤ N (2.17)

where the εi’s are independent error terms, modelled as:

εi ∼ N
(
0, σ2

)
(2.18)

Under this assumption, the vector β̂ follows a multivariate normal distribution:

β̂ =
(
F>F

)−1
F>y ∼ N

(
β, σ2

(
F>F

)−1)
(2.19)

where F is the experimental matrix defined as
(
Zm

n

(
x(i)
) )

, with i = 1 . . . N , n = 0 . . . d, and

n−|m| ∈ 2N. The estimation procedure thus defined is the Best Linear Unbiased Estimator
(BLUE) for the regression model 2.17 and will be used in this thesis.
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2.2 Kriging

Given the responses Y1, . . . , Yn at x(1), . . . ,x(n) and a new point x(0) ∈ D, an interesting
question is to predict Y0 = Y

(
x(0)

)
as an affine combination of Y1, . . . , Yn:

Y0 = µ+
n∑
i=1

λi (Yi − µ),

where µ represents the response mean, and λ1, . . . , λn are the weights of the x(i)’s in the
prediction at x(0). Kriging consists in choosing the λi’s to minimize the quadratic risk

E
[(
Y0 − µ−

∑n
i=1 λi (Yi − µ)

)2]
, based on the assumption that (Y0, Y1, . . . , Yn) originate

from a random realization of a Gaussian random field (Zx)x∈D. Under this assumption that
will be detailed hereafter, the estimation is the Best Linear Unbiased Predictor (BLUP).
The resulting model is called Kriging in honour of Daniel Krige for his pionneering works in
geostatistics [73].

2.2.1 Definition

From a probabilistic point of view, the observations Y1, . . . , Yn can be modelled as the sum of
a deterministic trend function µ, and a realization of the Gaussian random field (Zx)x∈D. In
this sense, Kriging is also called Gaussian Process Regression [90], since it infers the expected
value of Z, conditionally on observations. The model is:

Yi = µ(x(i)) + Z(x(i)) + ηi (2.20)

where, η1, . . . , ηn are Gaussian random variables with law N (0, τ 2). τ 2 is an homogeneous
variance term called “nugget” or “jitter” such that the model is an interpolator if τ = 0, and
becomes a smoother when τ > 0. The trend function µ describes deterministic variations,

(a) Interpolation (τ = 0) (b) Smoothing (τ = 0.01) (c) Smoothing (τ = 0.05)

Figure 2.3 – Kriging predictions with different values of τ . The red line represents estimated
values, black points are observations, and the green area is the prediction interval (95%)

and is usually specified in terms of basis functions such as polynomials. Z is a centred
Gaussian process (GP), completely defined by its covariance function or kernel k. In the
examples in Figure 2.3, the trend µ is constant. At each point, Kriging provides a prediction
interval, based on a Gaussian conditional distribution (see Paragraph 2.2.3 for more details).
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2.2.2 Covariance functions or kernels

The kernel k is defined as k (x,x′) = cov
(
Z(x), Z(x′)

)
. Unlike the mean function µ, k is

more difficult to parametrize, due to requirements of positive definiteness:
m∑

i,j=1

aiajk (xi,xj) ≥ 0, ∀m ∈ N, ∀ x1, . . . ,xm ∈ D, ∀ a1, . . . , am ∈ R (2.21)

Condition 2.21 ensures that the covariance matrix of (Zx(1) , . . . , Zx(n)) is positive semidefinite.
Parametric families of kernels are proposed in the literature, based on particular assump-
tions. Stationarity and isotropy are especially two important concepts in Kriging. When Z
is stationary, cov

(
Z(x), Z(x′)

)
depends only on the difference x − x′, and all observations

have the same variance. In addition, if cov
(
Z(x), Z(x′)

)
depends only on the Euclidean

distance ‖ x− x′ ‖, then Z is said to be isotropic.

In Table 2.3 are presented some commonly used kernels in dimension 1 and information
about their differentiability. Since the GP sample paths smoothness is linked to its kernel
smoothness[90], the sample paths generated by the Gaussian kernel will be infinitely smooth
whereas those originating from kBrown will be very harsh. The range parameter ` indicates
the characteristic distance between two points that leads to significant changes in the process.
Finally σ2 allows to control the overall variance of the GP.

Kernel Formula Parameter Smoothness

(quadratic sense)

Brownian motion kBrown(u, v) = min (u, v) − C0

Gaussian kG (x, v) = σ2 exp
(
−
(
u−v
`

)2)
` > 0 C∞

Power-exponential kexp (u, v) = σ2 exp
(
−|u−v` |

α)
0 < α < 2, l > 0 C0

Matérn 3
2

km
3
2 (u, v) = σ2

(
1 +

√
3|u−v|
`

)
exp

(
−
√

3|u−v|
`

)
` > 0 C1

Matérn 5
2

km
5
2 (u, v) = σ2

(
1 +

√
5|u−v|
` + 5(|u−v|)2

3`2

)
exp

(
−
√

5|u−v|
`

)
` > 0 C2

Matérnν kν (u, v) = σ2 21−ν

Γ(ν)

(√
2ν |u−v|`

)ν
Kν

(√
2ν |u−v|`

)
` > 0, ν ∈ 1

2N \ {0} C(ν−1)

Table 2.3 – Some common kernels in 1D, with Kν the modified Bessel function.

Higher dimension kernels can be designed by combining 1D kernels, as we will see in
Chapter 3. In dimension 2 for instance, the tensor-product Gaussian kernel of Equation 2.22
is a common choice.

cov
(
Z(x), Z(x′)

)
= kG (x,x′) = σ2 exp

(
−
(
x1 − x′1
θ1

)2

−
(
x2 − x′2
θ2

)2
)

(2.22)

This kernel belongs to C∞ (D ×D). Then, it produces infinitely differentiable response
surfaces. However, to get a well-conditioned covariance matrix, less smooth kernels are
recommended. The Matérn family in Table 2.3 allows to parametrize smoothness via the
parameter ν. As a centred Gaussian vector is fully defined by its covariance matrix, Krig-
ing predictions will be accurate if a correct kernel is set. The choice is governed by prior
knowledge on Y , such as smoothness and symmetries.
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2.2.3 Prediction

When all the parameters of a Kriging model are known, prediction with Equation 2.20 at a
new point x ∈ D is given by a Gaussian conditional distribution, knowing the observations
y = (Y1, . . . , Yn). The moments of this distribution, called Simple Kriging mean and Simple
Kriging variance, are provided in Equations 2.23 and 2.24.

mSK (x) = µ (x) + k (x)>K−1
(
y − µ (x)

)
(2.23)

s2SK (x) = k (x,x)− k (x)>K−1k (x) (2.24)

where K =
(
k
(
x(i),x(j)

) )
1≤i,j≤n

is the covariance matrix at the design points, k (x) =(
k
(
x,x(i)

) )
1≤i≤n

is called covariance vector at x.

In practice, the trend function µ is often unknown and estimated by maximum likelihood
(ML). The model is called Universal Kriging. Universal Kriging mean and variance are given
in Equations 2.25 and 2.26.

mUK (x) = µ̂ (x) + k (x)>K−1
(
y − µ̂ (x)

)
(2.25)

s2UK (x) = s2SK (x) +
(
f (x)− F>K−1k (x)

)>
Cov

(
β̂
) (

f (x)− F>K−1k (x)
)

(2.26)

where F is the experimental matrix used to estimate the trend as defined in Section 2.1 and

µ̂ (x) = f (x)> β̂. The ML estimation of β is β̂ =
(
F>K−1F

)−1
F>K−1z, with covariance

matrix Cov
(
β̂
)

=
(
F>K−1F

)−1
. The paramaters of the kernel are usually estimated by

maximum likelihood. The model is then called “Plug-in-Kriging”, which means Kriging
based on an estimated kernel. Cross-validation strategies such as leave-one-out can also be
used for noise-free responses [90, 97].

2.3 Geometric anisotropy in Kriging

2.3.1 An introducing example

We consider the tensor-product Gaussian kernel in Equation 2.22. Given two points x =
(x1, x2) and x′ = (x′1, x

′
2) on the disk, the covariance between Z(x) and Z(x′) is written:

cov
(
Z(x), Z(x′)

)
= σ2 exp

(
−
(
x1 − x′1
θ1

)2
)

exp

(
−
(
x2 − x′2
θ2

)2
)

Therefore, cov
(
Z(x), Z(x′)

)
decreases in function of two terms. The first one depends on the

horizontal distance
∣∣x1− x′1∣∣, and the second one depends on the vertical distance

∣∣x2− x′2∣∣.
For the sake of clarity, we call these two terms horizontal and vertical correlations. The ratio
θ1
θ2

quantifies the relative importance of horizontal and vertical correlations. In particular,
θ1 = θ2 leads to an isotropic kernel, whereas high differences between θ1 and θ2 correspond to
more important variations according to x1 or x2. This is an example of anisotropy, a property
of being dependent on directions. When the input domain is a disk, there is no natural choice
for x1 and x2 axes. Instead of arbitrary settings, we study a data-driven solution. Let us
consider the dataset in Figure 2.4 where the response depends only on x1 +x2. Based on the
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(a) Response values and DoE. (b)
(
θ̂2
θ̂1

= 1.2,RMSE = 0.45
)

(c)
(
θ̂2
θ̂1

= 13,RMSE = 0.15
)

Figure 2.4 – Kriging models over D, based on f (x1, x2) = (x1 + x2)
3

10-points design in Figure 2.4a, two simple Kriging models are estimated. The first one uses
the Cartesian basis shown in Figure 2.4b, and the second uses the basis in Figure 2.4c. We
observe that the result can significantly change according to the basis. In this example, the
basis represented in Figure 2.4c allows to better describe spatial correlations. The estimated

range parameters
(
θ̂1 = 0.7, θ̂2 = 10

)
are consistent with the orientation. Notice that similar

results are obtained with exponential and Matérn kernels, with and without nugget. The
property of varying mainly in one direction is known in geostatistics as geometric anisotropy,
and the degenerated case where Z is constant in one direction is called zonal anisotropy [4].

2.3.2 Definition and key properties

Definition and GP simulations on the unit disk

A simple way to include geometric anisotropy is Kriging models consists in applying a linear
transformation to the coordinate system (see e.g. [4, 48]). We consider kernels of the form:

kφ (x,x′) = k

(
Rφ (x) , Rφ (x′)

)
, φ ∈

[
0,
π

2

]
(2.27)

where k is a 2D kernel, Matérn5
2

for instance, and Rφ the rotation with angle φ. To describe
the effects of geometric anisotropy in Kriging models, we draw simulated surfaces and Kriging
standard deviations, based on 17 observations and varying (θ1, θ2, φ). The simulated surfaces
vary more in the direction with the lower range (Figures 2.5). Kriging standard deviations
in Figures 2.6 allow to describe spatial uncertainty over D. The neighborhoods of design
points look like ellipses, oriented in the directions φ and φ+ π

2
, one of which corresponds to

largest correlations. Following the terminology of horizontal and vertical correlations, the
kernel in Equation 2.27 allows to model oblique correlations.
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(
θ1 = 1

2 , θ2 = 1
2 , φ = 0

) (
θ1 = 1

2 , θ2 = 1, φ = 0
) (

θ1 = 1
2 , θ2 = 3, φ = 0

) (
θ1 = 1

2 , θ2 = 3, φ = π
3

)
Figure 2.5 – Simulations of Gaussian processes over D with different scenarios of anisotropy.

(
θ1 = 1

2 , θ2 = 1
2 , φ = 0

) (
θ1 = 1

2 , θ2 = 1, φ = 0
) (

θ1 = 1
2 , θ2 = 3, φ = 0

) (
θ1 = 1

2 , θ2 = 3, φ = π
3

)
Figure 2.6 – Kriging standard deviations under different scenarios of anisotropy.

Model estimation: key points for Matérn kernels

Haskard [48] carried out an intensive study, including simulations, on Kriging models with
geometric anisotropy. Focused on Matérn kernels, it resulted in the following properties:

1. Geometric anisotropy has no negative influence on parameter estimation.

2. Omitting an existing anisotropy can substantially worsen Kriging predictions.

3. Over-fitting by including a non-existing anisotropy is less damaging.

Link with single index models

Geometric anisotropy in 2D means that the response mainly depends on a linear combination
of x1 and x2. More generally in machine learning, a common issue is related to the large
numbers of predictors (x1, . . . , xp) = Xp. An alternative to selecting a subset of variables is
to use a dimension reduction method, such as projection pursuit regression (PPR). In PPR,
the response is assumed to depend on M (M ≤ p) linear combinations of x1, . . . , xp [49]:

f (Xp) =
M∑
m=1

Lm
(
wTmXp

)
(2.28)

where wm ∈ Rp such as ‖wm‖ = 1, and Lm is a link function. M = 1 means that the
response depends on a single linear combination of the input variables. This case is refer-
eed to as Single-Index Model, and Gaussian process Single-Index Model (GP-SIM) if the
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link function Lm is a GP [46]. Therefore, Kriging with geometric anisotropy is similar
to a projection pursuit regression. In particular, a GP-SIM in dimension 2 is a Kriging
model with zonal anisotropy. To understand the difference between Single-Index Models
and Kriging with geometric anisotropy, we consider 3 analytical functions to be recovered
over D, based on the design points of Figure 2.7a. The predicted values with a GP-SIM
(Figures 2.7c, 2.8c and 2.9c) are compared to those produced by Kriging with geometric
anisotropy (Figures 2.7b, 2.8b and 2.9b).

(a) Real values (b) Kriging (c) GP-SIM

Figure 2.7 – Kriging and GP-SIM predictions for the analytical response sh
(

5(x1 + x2)
)

(a) Real values (b) Kriging (c) GP-SIM

Figure 2.8 – Kriging and GP-SIM predictions for the response sh
(

5(x1 +x2)
)

sh
(

5(x1−x2)
)

(a) Real values (b) Kriging (c) GP-SIM

Figure 2.9 – Kriging and GP-SIM predictions for the analytical response sin(x)ey

Through these examples, we see that whether modelling geometric anisotropy or using
a GP-SIM allows to select the main direction of variation 2.7c. However, the GP-SIM is
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virtually in dimension 1. It will always privilege one direction, even not relevant (Figures 2.8c
and 2.9c). Remark that GP-SIMs meet more applications in higher dimension [46].

2.3.3 Assessment with analytical functions

The purpose of this paragraph is to assess the benefits from modelling geometric anisotropy,
based on toy functions, representing different scenarios in Figure 2.10, with S the sigmoid

S(t) = 1
1+e−t

and B the Branin function B(s, t) =
(

15t− 5(15s−5)2
4π2 + 5

π
(15s− 5)− 6

)2
+

10
(
1− 1

8π

)
cos(15s − 5) + 10. For each test function, 20 points filling the disk are used as

f1 :
∣∣∣12x1 +

√
3
2 x2

∣∣∣1.7 f2 : S (x1 + x2) f3 : sin
(
2π
3 (x1 + 2x2)

)

f4 : Z+2
2 (x1, x2) f5 : B

(
x1+1
2 , x2+1

2

)
f6 : sh

(
5(x1 + x2)

)
Figure 2.10 – Representation of the test functions.

DoE. Two GP models are estimated. The first one is the usual anisotropic tensor-product
Gaussian kernel. The second one embeds geometric anisotropy (Equation 2.27). The RMSE
of each model is computed, based on a regular grid with 1000 points over D. The gain due
to modelling geometric anisotropy is defined as:

Gain = 100

(
RMSEGauss −RMSEkφ

σ(Y )

)
In Table 2.4 are shown the gains for the different test functions. The estimated anisotropy
angle is also provided and compared with the angle resulting from a PLS regression (Partial
Least Squares [49]). In this table, KLM refers to Kriging with a two-order Zernike polynomial
as a trend, and KM correspond to a constant trend. Based on these scenarios, we can extend
the conclusions provided in [48] for the Gaussian kernel. In particular, modelling geometric
anisotropy leads to significant improvements if the response is strongly non-linear according
to one direction (functions f1, f2 and especially f3). In addition, setting the PLS angle as
initial value for likelihood maximization would be a relevant choice.
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Gain (%) Estimation φ̂ (degrees)
Functions KM KLM KM KLM Real PLS

f1 2.5 0 60 65 60 71
f2 1.5 0 44 53 45 44
f3 86 81 64 62 60 61
f4 0 0 90 28 - 49
f5 0 0 9 89 - 71
f6 3 0 40 48 45 49

Table 2.4 – Gains due to modelling geometric anisotropy in different Kriging models.

2.4 Application in microelectronics

To show the importance of geometric anisotropy in microelectronics, we consider an electri-
cal variable Y , measured at 27824 points of a wafer. The data are rescaled to [0, 1] such that
higher values correspond to good electrical performances, and lower values represent bad
integrated circuits. As shown in Figure 2.11a, the dataset contains some outliers, resulting
from unsuccessful tests. Therefore, the largest 10% of observations are discarded from the
color representation in Figure 2.11b to provide a relevant visualization. There are obviously

(a) Response values Y . (b) Variations of Y over D.

Figure 2.11 – Outputs of an electrical test over a wafer.

two subareas of the wafer, corresponding to good and bad products respectively. In addition,
the response varies mainly in an oblique direction, orthogonal to the border line between the
two groups.

2.4.1 Zernike regression

As a first option to describe this pattern, a Zernike regression of order 2 is performed. The
regression coefficients, related to normalized polynomials, are shown in Figure 2.12. They

allow to describe the shape of Y . In particular, the ratio
β̂−1
1

β̂+1
1

= 2.8 suggests an angle φ

around 20 degrees to model geometric anisotropy.
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Figure 2.12 – Absolute values of 6 regression coefficients, representing the influence of dif-
ferent Zernike polynomials when modelling Y with Equation (2.17) and d = 2.

2.4.2 Estimation of the anisotropy angle

In order to confirm this intuition, a robust estimation is performed, based on PLS regressions.
PLS provides a direct estimation of φ because it models Y as a linear combination of x1 and
x2. 100 estimations of φ are then obtained, based on 100 designs of 50 random observations.
They are displayed in Figure 2.13a. The population of simulated angles can be modelled
with the von-Mises distribution, the circular analogue of the normal distribution. This leads
to φ ∈ [18◦, 25◦] as 95% confidence interval, which is consistent with Zernike coefficients.

(a) Estimated angles. (b) Confidence interval for φ.

Figure 2.13 – Estimation of φ with PLS regressions and von Mises distribution.

2.4.3 Wafer notch orientation

Geometric anisotropy often occurs in microelectronics, and markers of directions are needed
to describe spatial patterns. In practice, there is a flat cut on wafers, oriented according
to the horizontal axis or the first bisector. This cut, called notch, allows also to indicate
the crystallographic direction 2.14a. On the most recent wafers, the notch is shrunken for
economic reasons (Figure 2.14b).
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(a) Notch on a wafer. (b) A modern notch.

Figure 2.14 – Examples of wafer notch orientation.

Résumé en Français

Deux modèles de surface de réponse en domaine circulaire sont considérés. Le premier est une
régression utilisant les polynômes de Zernike et le second est une technique d’interpolation
ou de lissage à base de processus gaussiens.

Les polynômes de Zernike sont une base de fonctions orthogonales par rapport à la mesure
uniforme sur le disque unité. Ils se distinguent des autres polynômes par certaines pro-
priétés d’invariance par rotation qui sont particulièrement utiles en optique. Leurs car-
actéristiques sont aussi exploitées en microélectronique pour la modélisation spatiale de
variables physiques et électriques. Une analyse des propriétés des polynômes de Zernike
nous a permis de déduire une deuxième famille de polynômes dotés des mêmes propriétés de
symétrie et de rotation, mais orthogonaux par rapport à la mesure uniforme dans l’espace
des coordonnées polaires.

En ce qui concerne les modèles de krigeage, on remarque que leur fonction de covariance
(noyau) se définit usuellement avec les coordonnées cartésiennes. Or, tout choix de repère
cartésien sur le disque est arbitraire a priori et nous remarquons que certains repères sont
plus adaptées que d’autres selon les données. Dans la perspective d’une sélection judi-
cieuse et automatique du système de coordonnées sur le disque, nous modélisons l’anisotropie
géométrique dans les noyaux de covariance. Cette notion, initialement introduite en géostatistique,
répond à notre problème spatial en retrouvant les axes correspondant aux principales direc-
tions de variation.



Chapter 3

Polar Gaussian processes

The results of this chapter are based on the contribution “Polar Gaussian Processes for
Predicting on Circular Domains” [81], by Padonou and Roustant, in revision for SIAM/ASA
Journal on Uncertainty Quantification.

3.1 Introduction

This research aims at analyzing costly computer or physical experiments on a disk. The
question was motivated by two industrial problems. The first one comes from semiconductor
industry where integrated circuits are produced on disks called wafers. Several technological
processes such as lithography, heating or polishing, exploit the geometry of the disk through
rotations or diffusions from the center. A common issue is to reconstruct a quantity of interest
over the whole disk, from few measurements at specific locations. The second problem is
related to air pollution modelling for environmental impact assessment. Greenhouse gas
concentrations are simulated by a computer code. Among the input variables, the pair
(speed, direction) of wind characteristics can be represented on a disk, the radius of which
corresponds to the maximal speed. Here also, the goal is to predict the gas concentration
from some simulated experiments.

Approximation problems on the disk have been considered since the works of Zernike [118]
in optics. Zernike polynomials are orthogonal with respect to the usual scalar product on
the unit disk, a useful property for linear models. For such models, it is shown that optimal
design of experiments are included in concentric circles [26]. More recently, a stochastic
model consisting of a Gaussian process (GP), also called Kriging, has been proposed for
microelectronics applications [89]. Among the existing interpolation and approximation
methods, Kriging models are famous for their ability to provide both accurate prediction
and uncertainty quantification, as pointed out in [45]. However their performance relies on
the choice of a covariance kernel, often simply called kernel hereafter. Traditional kernels
do not take into account the geometry of the disk. This may be a drawback, at least for
technological or physical processes involving a diffusion from the center of the disk, or a
rotation.

The main aim of the paper is to propose GP models that incorporate the geometry of
the disk in their covariance kernel. For that purpose, we consider the parametrization of the
unit disk in polar coordinates: D = {(ρ cos θ, ρ sin θ), ρ ∈ [0, 1], θ ∈ S} where S represents
the unit circle R/2πZ. The idea is to define a GP on the parametrization space C = (0, 1]×S
defined by (ρ, θ). This implies constructing a kernel on a product of the Euclidean space
(0, 1] and of the circle S, which can be done by algebraically combining kernels on these
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two spaces with sum, product or ANOVA operations for instance. The corresponding GPs
will be called here polar GPs, and the usual ones based on Cartesian coordinates, Cartesian
GPs.

The construction of kernels on S can be achieved in several ways, and is connected to
the literature of directional data (see e.g. [72, 35]) and periodic functions (see e.g. [90]). A
first option in [107], based on Bochner’s theorem, consists in using the spectral representa-
tion of 2π-periodic functions with positive Fourrier transforms. In other words, it uses the
Schoenberg’s representation of correlation functions on spheres (see e.g.[42], Equation 13).
Another possibility is to use so-called wrapped GP, obtained by transforming a multinormal
density to a periodic one by applying an operator written as an infinite sum [60]. Both
require to truncate infinite series for practical implementation. Here we focus on simpler
approaches that provide explicit kernel expressions, either by considering restriction to S of
a 2-dimensional GP [90], involving the chordal distance on S, or by using the recent results
of Gneiting [42], involving the geodesic distance on S. The geodesic distance on a general
manifold was recently used in the context of free-form monitoring, with so-called geodesic
GPs [23]. However, the goal and the approach are quite different here, where the form is
fixed (the unit disk) and the geodesic distance known analytically. Furthermore, here the
geodesic is relative to the manifold S which is only an algebraic portion of the mapped space
C.

Second, we address the issue of defining an initial design of experiments (DoE) for circular
domains. Considering the space C of polar coordinates is natural, but standard designs
cannot be used directly due to its non-Euclidean structure. By considering a valid distance,
we obtain maximin Latin hypercube designs (LHD, [74]) on C. That class of designs is
recommended when the process has a physical interpretation in polar coordinates. In order
to deal with more general situations, we also propose a modified version, which still has the
LHD structure with respect to ρ and θ, and is well filling the disk D.

The paper is organized as follows. Section §3.2 presents the background and defines
notations. Section §3.3 introduces so-called polar GPs. Section §3.4 shows the strength of
the approach on two real applications, in microelectronics and environments. Section §3.5
investigates an extension to higher dimensions, where the disk is replaced by a hyperball.
Section §3.6 discusses the range of applicability of polar GPs and gives perspectives for future
research.

3.2 Background and notations

Let D denote the unit disk represented either in Cartesian or polar coordinates:

D = {(x, y) ∈ R2, x2 + y2 ≤ 1} = {(ρ cos θ, ρ sin θ) , ρ ∈ [0, 1], θ ∈ S}

where S = R/2πZ is the unit circle. In various situations, one has to predict a variable
of interest which is measured at a limited number of locations in D. For that purpose,
we will consider the framework of Gaussian Process Regression [90] also called Kriging in
reference to its origins in geostatistics (see e.g. [73]). The measurement locations, also called
design points, will be denoted by X =

(
x(1), . . . ,x(n)

)
. In Gaussian Process Regression, the

observed values at X are modelled by:

Yi = µ(x(i)) + Z(x(i)) + ηi (3.1)
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where µ is a trend function, Z ∼ GP (0, k) is a centered Gaussian process (GP) with co-
variance function – or kernel – k, and η1, . . . , ηn are Gaussian random variables representing
noise. We now briefly detail the three parts of the model.

The trend function µ is deterministic and often modeled as a linear combination of basis
functions. Here, Zernike polynomials [118] are good candidates since they constitute an
orthogonal basis for the usual scalar product on D. Their shape including regular patterns
are suited to describe symmetries or rotations. They were recently used for predicting on a
disk [89]. The first Zernike polynomials, up to order 2, are shown in Fig. 3.1. The reader is

1 y x xy x2 + y2 x2 − y2

Figure 3.1 – The six first Zernike polynomials.

referred to [118] for more details.
The stochastic part of model 3.1 comprises a GP and a noise. The GP Z takes into

account the spatial dependence, which thus entirely depends on its kernel k. The choice
of k is crucial for applications, and may be done in order to include knowledge such as
smoothness, periodicity, symmetries, etc. There are many ways to construct a kernel, and a
comprehensive presentation is found in [90], Section 4. A key idea is that multidimensional
kernels can be obtained by algebraic operations, such as sum or products, of 1-dimensional
kernels.

Finally the noise part represented by the ηi’s may have different purposes: Modelling
a measurement noise or potential discrepancies between the dataset and the kernel, and
addressing numerical issues such as ill-conditioning ([6, 44]). The ηi’s are modeled as inde-
pendent N(0, τ 2), where τ 2 is an unknown homogeneous variance term often called “nugget”
or “jitter”. When conditioning on the observed values, the model is an interpolator if τ = 0.
It is a smoother when τ > 0, which gives more flexibility.

When all parameters are known, prediction with Equation (3.1) is given in a closed form
by a Gaussian conditional distribution knowing the observations Yi, i = 1, . . . , n. Its two
moments are known as Kriging mean and Kriging variance. Analytical expressions are also
available when the parameters are estimated, known as universal Kriging formulas that we
use here (see e.g. [90]). An important fact is that the Kriging mean at a new site x is obtained
as an affine combination of the observed values Yi that are correlated to Z(x). Though all
the locations may be involved in the prediction, the neighboring locations, corresponding to
high correlations, typically play a key role.

3.3 Polar Gaussian processes

One way to define a GP on the unit disk D is to use the restriction of a GP on the square
[0, 1]2, defined in Cartesian coordinates. In this paper, we will call them Cartesian GPs.
In our work, we propose to further exploit the geometry of the disk by using the polar
coordinates. The associated GPs will be called polar GPs.

When using the polar coordinates, the unit disk D is connected to the cylinder C =
(0, 1]× S, where S denotes the unit circle:

Ψ : (ρ, θ) ∈ C 7→ (ρ cos θ, ρ sin θ) ∈ D \ {0} (3.2)
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It is a one-to-one correspondence from C to the unit disk without its center. The fact that
the center is lost in the mapping may be a problem in theory. In practice a design point
located at the center of the disk can be replaced by a set of design points placed on a closed
concentric circle. A GP on D can then be obtained by using Ψ−1, resulting in kernels on
D ×D of the form:

k(x,x′) = kC
(
Ψ−1(x),Ψ−1(x′)

)
(3.3)

where kC is a kernel on C × C. Such transformations are referred to as “warping” in the
context of GP modeling (see e.g. [90], Section 4.2.3.).

Kernels on the cylinder can be defined by exploiting its product structure. This can be
done by combining a kernel kr on (0, 1] × (0, 1] and a kernel ka on S × S. A first way is by
using the tensor product:

kprod (u,u′) = kr
(
ρ, ρ′

)
ka (θ, θ′) (3.4)

where u = (ρ, θ) and u′ = (ρ′, θ′) are in C. This formulation implicitly assumes that the GP
Z is the product of two independent components: a radial process Rρ and an angular process
Aθ (Zu = RρAθ). It corresponds to a simple form of interaction. For processes that do not
have interactions between these components (Zu = Rρ + Aθ), an additive kernel should be
more appropriate:

kadd (u,u′) = kr
(
ρ, ρ′

)
+ ka (θ, θ′) (3.5)

A trade-off between these two extreme approaches is the ANOVA kernel defined as:

kANOVA (u,u′) =
(

1 + kr
(
ρ, ρ′

))(
1 + ka (θ, θ′)

)
(3.6)

The expanded form of Equation (3.6) shows that a process Zu with ANOVA kernel can be
viewed as a sum of four independent GPs: a constant process Z0, a radial process Rρ with
kernel kr, an angular process Aθ with kernel ka, and a process Z inter on C with kernel krka.
From the ANOVA point of view, these processes are similar to constant term, main effects,
and second-order interaction [31], but without respecting the unicity constraints such as
centering. For more details on how to make new kernels from old, we refer the reader to [90].

Let us now define the kernels kr on (0, 1] × (0, 1] and ka on S × S. We recall that
valid kernels must be positive definite. The domain (0, 1] is a segment of a 1-dimensional
Euclidean space. As a consequence, traditional kernels are suitable for kr. In particular,
Matérn kernels are attractive for their ability to control the smoothness of the process and
to ensure numerical stability. In dimension 1, the Matérn 5

2
kernel is given by:

km (x, x′) =

(
1 +

√
5 | x− x′ |

`
+

5(x− x′)2

3`2

)
exp

(
−
√

5 | x− x′ |
`

)
(3.7)

A simple way of defining kernels on S×S is mentioned in [42]. They are based on the chordal
distance d1 (θ, θ′) = 2 sin

(
θ−θ′
2

)
and the geodesic distance d2 (θ, θ′) = acos

(
cos (θ − θ′)

)
illustrated in Figure 3.2.

To define a kernel on S×S, one could be tempted to compose usual kernels with d1 or d2.
Unfortunately, positive definiteness is not guaranteed for the resulting functions when d2 is
used. As a counter-example, if the Gaussian kernel is chosen for ka, then ka◦d2 is not positive
definite ([42], Th. 8). Alternatively, two sufficient conditions of positive definiteness over S×S
are provided by Gneiting [42]. Define Fd the class of continuous functions ϕ : [0,∞) → R,
with ϕ(0) = 1 and such that the function (x,x′) ∈ Rd × Rd 7→ ϕ (‖x− x′‖) is positive
definite. Then:
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Figure 3.2 – Chordal (d1) and geodesic (d2) distances on S.

(i). If ϕ ∈ F2, then ϕ ◦ d1 is a kernel on S× S.

(ii). If ϕ ∈ F1 is such that ϕ(t) = 0 for t ≥ π, then ϕ ◦ d2 is a kernel on S× S.

Kernels satisfying (i) were initially proposed by Yadrenko in 1983 and are often used to
describe periodic functions (see e.g. [90]). They correspond to restrictions of 2-dimensional
isotropic GPs on R2 to S. The second result is due to Lévy in 1961. Kernels satisfying
(ii) can be constructed from compactly supported functions on R such as the C2-Wendland
function defined for 0 ≤ t ≤ π:

Wc (t) =

(
1 + τ

t

c

)(
1− t

c

)τ
+

, c ∈ (0, π]; τ ≥ 4 (3.8)

For the geodesic distance, we use c = π, which is the largest possible value due to condition
(ii) above. With this choice, the covariance between two angles θ, θ′ is zero when d2(θ, θ

′) = π,
and strictly positive for d2(θ, θ

′) < π. The same interpretation is possible for the chordal
distance with c = 2, though it is not necessary to use a compactly supported function in
that case. From now on, we will use the Wendland function in both cases, resulting in the
two following kernels on S× S:

kchord(θ, θ′) = W2(d1(θ, θ
′)), (3.9)

kgeo(θ, θ
′) = Wπ(d2(θ, θ

′)), (3.10)

and the corresponding GPs will be denoted polar GP (chordal) and polar GP (geodesic).

GP simulations on the unit disk

In order to better understand the specificities of polar GPs, it is useful to draw simulated
surfaces. For the sake of simplicity, we propose to focus on the ANOVA combinations. We
consider a Cartesian GP and the two polar GPs (chordal, geodesic) defined in Equations
(3.9), (3.10). Their expressions are written below, including variance factors s2, α2

1, α
2
2:

(a) k (x,x′) = s2
(

1 + α2
1 km

(
x, x′

))(
1 + α2

2 km (y, y′)
)

(b) k (x,x′) = s2
(

1 + α2
1 km

(
ρ, ρ′

))(
1 + α2

2 kchord (θ, θ′)
)
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(c) k (x,x′) = s2
(

1 + α2
1 km

(
ρ, ρ′

))(
1 + α2

2 kgeo (θ, θ′)
)

Simulation results are displayed in Figure 3.3. We can see that with polar GPs, the simu-
lated surface exhibits radial and angular patterns around the center of the disk. Such kernels
may thus be suitable to describe physical phenomena involving such effects. Figure 3.4 shows

Cartesian GP Polar GP (chordal) Polar GP (geodesic)

Figure 3.3 – Simulations of Cartesian and polar GPs with kernels (a)-(c).

via Kriging standard deviation how model uncertainty varies over D, given a design of 17
points. Two striking differences are visible, especially between the Cartesian GP and the
polar GP (geodesic), about uncertainty at the center of the disk, and uncertainty regions at
the vicinity of design points. On one hand, the neighborhoods produced by the Cartesian
GP look like elliptical regions at any location of the circular domain. On the other hand,
those produced by the polar GP (geodesic) look like pie chart sectors, oriented towards the
center of the disk, which plays a particular role. This is also true for the polar GP (chordal),
though less pronounced.

Cartesian GP Polar GP (chordal) Polar GP (geodesic)

Figure 3.4 – Kriging standard deviations for Cartesian and polar GPs (kernels (a)-(c))
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3.4 Applications

3.4.1 Quality control in microelectronics

In microelectronics, integrated circuits are produced on circular slices of semiconductor ma-
terials called wafers. For quality monitoring, physical and electrical variables are collected on
a set of locations of these wafers. In this example, the characteristic of interest is thickness,
a key parameter affecting performance of integrated circuits. In our industrial background,
only 17 predefined points are measured for economic reasons. The statistical challenge con-
sists in predicting non-measured locations in order to assess the spatial risk of default from
this dataset. For the purpose of this study, thickness is further measured at 64 new loca-
tions to serve as a test grid. For the sake of confidentiality, the technological process is not
detailed and the thickness values are rescaled. It produces here data with a pronounced
radial pattern. However, we will not assume that the model is purely radial, which is a too
strong assumption in practice, due to the numerous successive operations on a wafer, and
the possible slacks in processing. The aim of this section is to compare the Cartesian and po-

Design points Design and test points Test points

Figure 3.5 – Rescaled thickness values. The 81 measurement locations are shown in the
middle, including 17 design points (triangles, left) and 64 test points (bullets, right).

lar GPs (chordal, geodesic), obtained with 3 types of algebraic combination (product, sum,
ANOVA). The Cartesian GPs considered here are obtained by tensor product, tensor sum or
ANOVA product of the 1-dimensional Matérn kernel of Equation (3.7). For the polar GPs,
we use the same combinations for a kernel kr on (0, 1] and a kernel ka on S× S, accordingly
to Equations (3.4), (3.5), (3.6). For kr, we use again the Matérn kernel, whereas for ka we
choose kchord or kgeo (see Equations (3.9), (3.10)). The range parameters τ and θ, as well as
the variance factors s2, α2

1, α
2
2 are estimated by Maximum Likelihood (ML) with R package

kergp [27]. The optimizer used is the method L-BFGS-B proposed in the optim function in
R: an adaptation of the quasi-Newton method BFGS for boundary constraints. To improve
its performances, we added a multistart step: 10 initial points were sampled at random, and
for each of them a separate optimization was performed. The best result among the ten
was finally chosen. The model accuracy is computed on the 64 test points, with the root
mean squared error (RMSE) criterion. The results are summarized in Table 3.1 when µ is
constant in Equation 3.1. They show that the smallest prediction errors are obtained with
the polar GPs, corresponding to gains around 20% compared to the Cartesian GP. Adding
Zernike polynomials as a trend slightly improves the result for the Cartesian GP, but the
untrended polar GPs still outperform with a gain of 15%. Actually the trend captures the
main part of the phenomenon and the GP part has then a minor effect: results are the same
as for a pure linear model based on Zernike polynomials of order 2.
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GP type Cartesian Polar (chordal) Polar (geodesic)
Kernel type kprod kadd kANOVA kprod kadd kANOVA kprod kadd kANOVA

RMSE 0.75 * 0.77 0.76 0.69 0.60 * 0.62 0.68 0.61 * 0.65

Table 3.1 – RMSE computed on 64 test points for several GPs with a constant trend. For each
GP type, the combination resulting in the smallest RMSE is marked by an asterisk. When
a Zernike trend is added, the best RMSE is equal to 0.71 for all GP types, corresponding to
the score of the trend only.

In order to further analyze the results, we select for each GP type the kernels correspond-
ing to the best combination, indicated by an asterisk in Table 3.1. The prediction surfaces
obtained with these 3 kernels are shown on Figure 3.6. All the GPs succeed in recovering
the radial pattern of the dataset, visible on Figure 3.5, middle. However, it is less faithfully
identified by the Cartesian GP. The differences on the predicted values can be explained
by thinking at the space in which the kernel is defined. For polar GPs, prediction at one
location will particularly involve the locations corresponding to a high correlation according
to ρ or θ. Typically, the resulting neighborhoods in D may look like pie chart sectors (high
radial correlation) or ring portions (high angular correlation). Here, a closer look at esti-
mated parameters reveals that there is a high angular correlation. Therefore, prediction at
the bottom of the disk involves the other points that are close to the boundary. On the other
hand, for the Cartesian GP, the predicted thickness has a low value, since the measurement
points around, in the (x, y) space, have a low value. Finally notice that the predicted value
at the extreme boundary of the disk should be considered with care, since no test points are
defined on this region due to technical constraints.

Zernike regression Cartesian GP Polar GP (chordal) Polar GP (geodesic)

Figure 3.6 – Prediction surface for the best untrended GP models of Table 3.1. When
adding a Zernike trend, the prediction surface is approximately the same as for a pure
Zernike regression represented on the left. Black bullets correspond to test points, triangles
to design points.

3.4.2 Air pollution modelling with a directional input

The problem tackled here is an environmental question. A greenhouse gas emitted by a
known source, usually an industrial plant, is measured at a given location for air quality
monitoring. In the absence of sensors, gas concentration must be predicted. For simple
landscapes, analytical expressions are available based on transport and diffusion equations.
However, for complex landscapes, gas concentration is simulated by numerical codes [7]. The
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input variables include the emitted flow, landscape characteristics and meteorological vari-
ables. Here we focus on wind speed and wind direction. In this short study, 242 simulations
were carried out, 30 of which serve as design points and the other ones are used for tests,
as illustrated in Figure 3.7. The wind speed, initially given on the range [0; 12] (m.s−1), is
rescaled to [0, 1]. With this transformation, the domain of the variables (speed, direction) is
the unit disk. The aim of this study is simply to compare the prediction accuracy of Carte-

Design points. Design and test points. Test points.

Figure 3.7 – Rescaled gas concentrations. The 242 simulation locations are shown in the
middle, including 30 design points (triangles, left) and 212 test points (bullets, right).

sian and polar GPs, without using a priori information. In particular, we do not specify the
constraints of positivity or nullity of the gas concentration on a known subregion. We use the
same kernels as in the first application, corresponding to 3 algebraic combinations (product,
sum, ANOVA). Here, the best model is obtained for the tensor-product combination for all
kinds of GPs. This claims in favor of an interaction speed-direction for the wind on gas
concentration. Notice that adding a Zernike polynomial trend does not improve the results
here, since the angular shape is restricted to a region of the disk, which is hard to capture
with Zernike polynomials. The results are displayed in Figure 3.8. In terms of prediction
accuracy (measured by the RMSE criterion) the polar GPs are clearly outperforming, cor-
responding to gains around 40% compared to the standard tensor-product Matérn kernel.
Furthermore, for the polar GPs the influence of wind direction on gas concentration has an
angular shape, which is intuitive, and corresponds to the true shape visible in Figure 3.7
(middle). On the other hand, this shape is rectangular for the Cartesian GP.

Cartesian GP
RMSE = 0.61

Polar GP (chordal)
RMSE = 0.38

Polar GP (geodesic)
RMSE = 0.37

Figure 3.8 – Estimated gas concentrations according to wind speed (ρ) and direction (θ), for
untrended Cartesian and polar GPs. Adding a Zernike polynomial trend does not improve
the results. Triangles correspond to design points.
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3.5 Generalization to hyperballs

In computer experiments, the problem dimension is often higher than in spatial statistics,
and the aim of this section is to investigate an extension of polar Gaussian processes in
higher dimensions. More precisely, we investigate situations where the angular part of the
inputs is in higher dimension. As an example, a force vector may be represented as a pair
(magnitude, direction), where direction is a point on a sphere.

3.5.1 Polar Gaussian processes on hyperballs

Let us consider that the input domain is the unit d-dimensional ball Bd (d > 1), represented
either in Cartesian coordinates by Bd = {x ∈ Rd, ‖x‖ ≤ 1}, where ‖.‖ is the Euclidian norm,
or in spherical coordinates (ρ, θ1, . . . , θd−1). As in Section 3.3, we call Cartesian GP any
restriction to Bd of usual GPs on Rd. Polar GPs are generalized to Bd by using the product
structure Bd = [0, 1] × Sd−1, where Sd−1 = {x ∈ Rd, ‖x‖ = 1} denotes the (d − 1)-sphere.
Their kernels are obtained by combining the kernel kr on [0, 1] × [0, 1] and a kernel ka on
Sd−1 × Sd−1.

A simple way to construct kernels on Sd−1×Sd−1 is to restrict a kernel on Rd×Rd, remark-
ing that positive definitiveness is preserved by restriction. This gives for instance the kernels
defined with the chordal distance, d1(u,v) = ‖u − v‖, i.e. ka(u,v) = φ(d1(u,v)) where
(x,x′) 7→ φ(d1(x,x

′)) is a kernel on Rd × Rd. This also includes restriction of anisotropic

kernels. For example, (u,v) 7→ σ2 exp

(
−
∑d

j=1

(
uj−vj
`j

)2)
defines a kernel on Sd−1 × Sd−1.

The drawback of this construction is that it does not involve the geometry of the sphere:
When distances define correlations, they lie on the Euclidian space Rd and not on the sphere.

A second way is to define a kernel on Sd−1 × Sd−1 from a distance on the sphere. The
theory is well developed for isotropic kernels, meaning that the covariance function depends
only on the geodesic distance d2(u,v) = acos(cos〈u,v〉). In this context, positive-definiteness
is harder to meet. Thus, the approach used in Section 3.3 for d = 2 consisting in plugging
d2 in a compactly supported correlation function, is only valid for d ≤ 3 [42]. For d ≥ 4,
conditions for positive-definiteness are provided in [42]. A first option is to plug the geodesic
distance d2 in a completely monotonic function, i.e. a function f admitting derivatives at
any order and with alternate derivative signs: (−1)mf (m) ≥ 0 for all integer m. As an

example, (u,v) → exp
(
−d2(u,v)

τ

)
, τ > 0 is a kernel on Sd−1 × Sd−1. Another option is to

use a correlation function which admits a representation as an infinite sum of cosine powers,
called Gegenbauer expansion, with strictly positive coefficients (see [42] for more details).
As an example, ϕsin ◦ d2 is a kernel over Sd−1 × Sd−1 for d ≥ 2, with ϕsin defined as:

ϕsin (t) = 1−
(

sin

(
t

2

))α
, α ∈ (0, 2) (3.11)

3.5.2 Space-filling designs on hyperballs

We now aim at extending the space-filling designs considered in Section 5.2 to hyperballs.
Let us first remark that there are two difficulties in extending the space-filling Latin cylinder
designs. Indeed, when d ≥ 3 the geometry of the hypersphere Sd−1 is more complex and
the mapping to an hypercube with boundary constraints (of the kind 2π = 0) is not clear.
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Furthermore, although the Φp maximin criterion can be generalized, its optimization in di-
mension nd, where n is the design size, seems much harder when d increases. For instance,
when d = 10 and with the rule of thumb n = 10d, the optimization problem is in dimension
1000.
On the other hand, it is easy to simulate uniform designs on hyperspheres. A simple proce-
dure described in [98] consists in remarking that if X ∼ N (0, Id) then T = X

‖X‖ is uniform

on Sd−1. Furthermore if R is a random variable drawn independently and uniformly on [0, 1]
then R1/d T is uniform on Bd−1 (see e.g. [29], Theorem 2.2.1.) This extends the case of the
disk (Section 5.2). Notice however that uniform designs on hyperballs may not be the best
designs when radial or angular patterns are present: In the 2-dimensional case, we obtained
better results when the radius R was sampled uniformly (Section ??). This suggests two
strategies:

• Common part: Simulate independently R ∼ U [0, 1], T ∼ U(Sd−1)

• Strategy 1 “UB” (Uniform sampling on hyperballs): Compute R1/d T.

• Strategy 2 “Ur × US” (Uniform sampling of radial and angular parts): Compute RT.

3.5.3 Case study on toy functions

In order to investigate the behavior of polar GPs in a dimension higher than 2, we consider
the following test functions:

• f1 : (x1, . . . , xd) 7→ ‖x‖2

• f2 : (ρ, θ1, . . . , θd−1) 7→
∑d−1

i=1 cos(3θi)

• f3 : (x1, . . . , xd) 7→
(∑d

i=1 xi

)2
The function f1 is purely radial, and f2 purely angular. On the other hand, f3 does not
exhibit any radial or angular pattern.
We perform numerical tests with d = 10. For each test function, three GP models with a
constant trend are tested. Recall that km denotes the Matérn 5

2
kernel (see Eq. 3.7). Then

we consider:

• A Cartesian GP with a tensor-product kernel with a common characteristic length l:∏d
j=1 km(xj, x

′
j; `).

• A polar GP based on chordal distance, with kernel k = kr + ka where kr = km for the
radius, and ka = km ◦ d1 (restricted to Sd−1 × Sd−1) for the angular part.

• A polar GP based on the geodesic distance, with kernel k = kr + ka, where kr = km for
the radius, and isotropic sine power kernel (Eq. 3.11) for ka.

Their kernels are denoted by kCart, kchord and kgeo. Notice that the other algebraic combina-
tions among sum, product and ANOVA have been tried for all kernels, without modifying the
conclusions. Moreover, the proposed kernels take into account the symmetry of the problem
in their definition (isotropy, common parameter value per dimension) and thus depend on
a very small number of parameters. The numerical likelihood maximization is then highly
reliable, and was carefully done using ten different initial values.
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Finally, the two design strategies presented in the previous section are applied. The design
size is fixed to n = 10d. In order to assess model accuracy, the RMSE criterion is computed
over a test set of size 1000, sampled uniformly in Bd. For the sake of interpretability, the
RMSE is shown as a percentage of the standard deviation of the output values on the test
set.
Finally, the whole study is repeated N = 100 times, and the boxplot characteristics of the
RMSE values over the N repetitions are shown in Table 3.2: median and interquartile values.

Function f1(x) = ‖x‖2 f2(x) =
∑d−1

i=1 cos(3θi) f3(x) =
(∑d

i=1 xi

)2
Kernel kCart kchord kgeo kCart kchord kgeo kCart kchord kgeo

“UB” 28.9 (6.2) 0.0 (0.0) 0.0 (0.0) 15.1 (10.0) 8.1 (0.6) 8.1 (0.6) 23.6 (5.3) 91.6 (8.2) 97.9 (8.6)
“Ur × US” 14.2 (3.1) 0.1 (0.2) 0.2 (0.5) 11.1 (1.1) 8.2 (0.8) 8.1 (0.7) 17.4 (6.6) 34.4 (9.9) 65.4 (14)

Table 3.2 – Model accuracy of three GP models and two design strategies on toy functions.
Each experiment is repeated 100 times, and the median of the normalized RMSE (i.e. divided
by the output standard deviation) is reported as well as the interquartile interval (into
brackets).

We observe that polar GPs give better results for the two functions that exhibit a ra-
dial and angular pattern, and a worse result for the other one. In particular, predicting a
radial function is done much more accurately with a polar GP. This may be explained by
the reconstruction process and geometry considerations in high dimension. Indeed, as in
the 2-dimensional case, polar GPs reconstruct a radial function by using the points located
on closed concentric hypersphere (high angular correlation) whereas Cartesian GPs use the
neighbors (in the sense of Euclidian norm) which are very few in high dimension (see e.g.
[49], 2.5.). Notice that even if we double the number of experiments (n = 20d) to learn this
radial function, the performance of the Cartesian GP with the best design strategy has a
median RMSE equal to 5% (not shown in Table 3.2), which is still worse than polar GPs.
The results about design strategy on these toy functions are in favor of sampling uniformly
the radial part, rather than sampling uniformly on the hyperball. Finally polar GP construc-
tion with chordal distance d1 perform better than for geodesic distance d2. In addition to

the sine power kernel, we also tested the exponential kernel exp
(
−d2(u,v)

τ

)
, but it gave worst

results. However, other kernels could have been tried with a possible different conclusion,
and a deeper investigation should be done in the future.

3.6 Discussion

We addressed the issue of analyzing costly computer or physical experiments on a disk.
Such problems are encountered in various industrial applications, where the geometry of the
disk is exploited for several technological processes involving rotations or diffusions from
the center. For prediction purpose, we introduced so-called polar GP models that take into
account the geometry of the disk both in their mean and covariance kernel. The new kernels
are defined in polar coordinates. They are obtained as a combination of a kernel for the
radius using an Euclidean distance, and a kernel for the angle, based on either chordal or
geodesic distances on the unit circle. It was shown in two industrial examples where radial
and angular patterns are visible that the approach significantly improves prediction. The
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best algebraic combination was found to be either a tensor product or a tensor sum, which
claims in favor of using a kernel mimicking the more general ANOVA decomposition [41].
Furthemore, in these applications there were only few differences in the results obtained with
the polar GPs based on chordal or geodesic distances. This can be explained by the strong
monotonic relationship between the chordal and geodesic distance. However, in theory the
geodesic distance does not distort distances on the circle, and should be preferred. Finally,
though not reported here, similar results were obtained with other kernel choices such as
Matérn 3

2
or exponential kernels for the Cartesian GP.

It is important to precise when polar GPs, based on distances on the unit circle, are
relevant. One main difference between polar GPs and the usual ones, called here Cartesian
GPs, is about the neighborhoods used for prediction. Since kernels of polar GPs are mapped
to the polar space (ρ, θ), the prediction at one location will particularly involve the locations
corresponding to a high radial or angular correlation with respect to ρ or θ. Typically, the
resulting neighborhoods in the disk may look like pie chart sectors (high radial correlation)
or ring portions (high angular correlation). This explains why polar GPs give more accurate
predictions when there are radial or angular patterns, as may happen for technological
processes that involve a rotation or a diffusion from the center. In other situations, involving
for instance translations, Cartesian GPs may give better results. These two cases might
correspond to the “two clusters of profiles over a circular grid” mentioned in [89] without
any additional information about their origin. A knowledge of the process or historical data
may help to choose which kernel is appropriate. In any case, there remains a lot of degrees
of freedom about a GP model definition, concerning at least the trend shape or the different
kernels corresponding to a given distance. To address this problem, aggregation techniques
may be a solution.

Finally, we investigated an extension of the whole methodology to higher dimensions,
replacing the disk by a hyperball. We performed empirical tests on several toy functions
in 10-dimensions. Similar general conclusions hold, i.e. that polar GPs give better results
for the functions that exhibit radial or angular patterns. In particular radial functions are
much better reconstructed with polar GPs. This may be explained by the fact that in high
dimensions points are located on the boundaries. Now, reconstruction with a polar GP
involves points located on closed concentric hyperspheres (high angular correlation) while
reconstruction with a Cartesian GP involves the neighbors, which are very few. Among
other conclusions, kernels based on geodesic distance are here more difficult to handle, and
on our first trials they performed worse than kernels based on chordal distance.

Résumé en Français

Traditionnellement définis avec la norme euclidienne, les noyaux de covariance n’exploitent
pas les informations sur les procédés de fabrication. En particulier, les mécanismes de rota-
tion et de diffusion à partir du centre génèrent d’importants effets radiaux et angulaires dans
les données spatiales. Les processus gaussiens polaires que nous formalisons sur le disque
intègrent les corrélations radiales et angulaires dans les modèles de krigeage et en améliorent
les performances dans de telles situations. Ils permettent aussi de modéliser des simulateurs
à entrées directionnelles à l’instar des modèles de dispersion atmosphérique.

En dimensions quelconque, le noyau d’un processus gaussien polaire se construit par com-
binaison algébrique d’un noyau sur l’espace du rayon polaire et d’un noyau sur l’espace des
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angles, représenté par une sphère et donc muni de la distance cordale ou de la distance
géodésique. Les avantages provenant de cette construction sont illustrés à travers des fonc-
tions tests en dimensions 2 et 10.



Chapter 4

Linear models based on Gaussian processes

The Gaussian process models presented in the previous chapter rely on kernels formulated by
algebraically combining one dimensional functions. Three kinds of combinations were tested
for each GP type: product, addition and ANOVA. It turned out that the best choice was
either the product or the addition in a case by case basis. The ANOVA kernel is a trade-off
between the product and the addition. However, it cannot recover purely product or additive
kernels. The purpose here is to formulate a more general GP model to automatically recover
additive or product structures. For the purpose of sensitivity analysis, its kernel is designed
to be a zero-mean function: a useful property for a simple computation of sensitivity indices.
In addition, it allows to visualize the radial and angular effects.

4.1 Sobol-Hoeffding decomposition

Let x1, . . . , xd be d independent random variables and D =
∏d

i=1Di with Di = [ai, bi], a
hypercube of Rd. Given f ∈ L2 (D), f is uniquely decomposed as (see e.g. [32, 105, 57]):

f(x) = f0 +
d∑
i=1

fi(xi) +
d∑
i<j

fij(xi, xj) + · · ·+ f1...d (x1, . . . , xd) , (4.1)

with x = (x1, . . . , xd), f0 a constant, and ∀I ⊆ {1 . . . d}, fI fulfills the centring condition

E
(
fI (xI)

)
= 0, (4.2)

and the non-simplification conditions

E
(
fi1i2 (xi1 , xi2) |xi1

)
= E

(
fi1i2i3 (xi1 , xi2 , xi3) |xi1 , xi2

)
= · · · = 0. (4.3)

This unicity condition can be rewritten:∫
Di

fI(xI)dνi(xi) = 0 ∀i ∈ I (4.4)

Equation 4.1 is also refereed to as Functional ANOVA decomposition. The fI ’s are recursively
obtained:

f0 = E
(
f (x)

)
fi (xi) = E

(
f (x) |xi

)
− f0, i = 1 . . . d

fij(xi, xj) = E
(
f (x) |xixj

)
− fi (xi)− fj (xj)− f0, i, j = 1 . . . d

. . .
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More generally, fI (xI) = E
(
f (x) |xI

)
−
∑

J(I fJ (xJ). The non-simplification conditions
imply orthogonality, which allows a variance decomposition:

var (x) =
d∑
i=1

var
(
fi(xi)

)
+

d∑
i<j

var
(
fij(xi, xj)

)
+ · · ·+ var

(
f1...d (x1, . . . , xd)

)
. (4.5)

The so-called partial variances VI = var
(
fI (xI)

)
quantify the importance of fI in f in terms

of variance. By denoting the total variance by V , the ratios VI
V

are called Sobol indices.

4.2 The model

Denote D =
∏d

i=1Di with Di = [ai, bi], a hypercube of Rd, endowed with the probability
measure ν = ⊗di νi. Given I ⊆ {1 . . . d} and x = (x1, . . . , xd) an element of Rd, we call xI the
sub-vector of x corresponding to I. Following the Sobol decomposition of Gaussian random
field paths introduced in [41], we consider the linear model with interactions:

Z(x) = µ+
∑

I⊆{1...d}
|I|≤2

ZI(xI)

= µ+ Z1(x1) + · · ·+ Zd(xd) +
∑
i<j

Zij(xi, xj)

(4.6)

where µ is constant, Zi(xi) ∼ GP (0, ki) and Zij(xi, xj) ∼ GP (0, ki
⊗

kj) are d(d + 1)/2
Gaussian processes with continuous sample paths such that:

(i). The ZI ’s are independent

(ii).
∫
Di
ki(u, v)dνi(u) = 0 ∀v ∈ Di

Remark 1. In model (4), only second order interactions are considered to have a tractable
number of terms. However, the model can easily be extended to the case |I| ≥ 2.

2. Condition (ii) means that the ki’s are centred. It allows to interpret each term of the
model independently of the others as we see now.

3. Contrarily to [41], the aim is to build a structured GP and not to decompose an existing
one.

Proposition 4.2.1. Equation (4.6) defines the Sobol decomposition of Z:(
Z(x)

)
I

= ZI(xI), ∀I ⊆ {1 . . . d} (4.7)

Proof. In [41], it is proven that centred ki’s are equivalent to centred sample paths:∫
Di

Zi(xi)dνi(xi) = 0



56 CHAPTER 4. LINEAR MODELS BASED ON GAUSSIAN PROCESSES

Given I ⊆ {1 . . . d} such that |I| ≥ 2, and i ∈ I we have:

var

(∫
Di

ZI (xI)dνi(xi)

)
= cov

(∫
Di

ZI (xI)dνi(xi),

∫
Di

ZI (yI)dνi(yi)

)
=

∫∫
D2
i

cov
(
ZI (xI), ZI (yI)

)
dνi(xi)dνi(yi)

=

∫∫
D2
i

kI (xI , yI) dνi(xi)dνi(yi)

=

( ∏
j∈I\i

kj(xj, yj)

)∫∫
D2
i

ki (xi, yi)dνi(xi)dνi(yi) = 0

In addition, ZI is centred and thus E
[( ∫

Di
ZI (xI)dνi(xi)

)2]
= 0. As a consequence,( ∫

Di
ZI (xI)dνi(xi)

)2
= 0 since the sample paths of ZI are continuous. Sobol’s unique-

ness condition is then fulfilled and (4.6) defines the functional ANOVA decomposition of
Z.

Proposition 4.2.2. Sobol decomposition of the Kriging mean
Let m(x) be the Kriging mean at x, based on the DoE

(
x(1), . . . ,x(n)

)
and the response

vector y. Denote K =
(
k
(
x(i),x(j)

))
1≤i,j≤n the covariance matrix of the Kriging model,

and kI(xI) =
(
kI
(
xI,xI

(i)
))
i=1,...,n

the covariance vectors of the sub-models corresponding to

ZI ’s: kI(xI) =
∏

i∈I ki(xi). Then, the Sobol decomposition of m(x) is:

m(x) = µ+
∑

I⊆{1...d}
|I|≤2

mI(xI) (4.8)

and
var (mI (x)) = α>ΓI α (4.9)

where α = K−1 (y − µ), mI(xI) = α>kI(xI) and ΓI =
⊙

i∈I Γi, with Γi =
∫
Di

ki(xi)ki(xi)
>dνi(xi).

The variances defined by Equation (4.9) represent the relative contributions of the sub-
models ZI ’s to the total variance of the output. They correspond to unscaled Sobol indices.

Proof. (Adapted from [31])
By independence of the ZI ’s, k =

∑
|I|≤2 kI(xI). Thus, the Kriging mean at x is:

m(x) = µ+ α>k(x) = µ+ α>

 ∑
I⊆{1...d},|I|≤2

kI(xI)


= µ+

∑
I⊆{1...d}
|I|≤2

mI(xI
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with mI(xI) = α>kI(xI) = kI(xI)
>α. For the first point of the proposition, we conclude by

uniqueness of Sobol decomposition since:

∀i ∈ I,
∫
Di

mI (xI) dνi(xi) = α>
∫
Di

kI(xI)dνi(xi)

= α>

( ∏
j∈I\i

kj(xj)

)∫
Di

ki (xi)dνi(xi) = 0

For the second point, as mI (x) is centred, var (mI (x)) = E
(
mI (x)2

)
. So,

var (mI (x)) = α>

(
E
(
kI(xI)kI(xI)

>
))

α

= α>

(∫
DI

⊙
i∈I

ki(xi)ki(xi)
>dνI(xI)

)
α

= α>
⊙
i∈I

(∫
Di

ki(xi)ki(xi)
>dνi(xi)

)
α

Practical aspects
In practice, we use GPs of the form ZI = βIYI , with βI ≥ 0 and∫

DI
var (YI(xI)) dνI(xI) = 1. In this way, the YI ’s represent a set of elementary patterns with

the same order of magnitude, and the βI ’s represent their influence in the total variability. For
stationary processes, the condition

∫
DI

var (YI(xI)) dνI(xI) = 1 is equivalent to ki(xi, xi) = 1

for i ∈ {1 . . . d}.
Moreover, since the additive structure of the process is not always satisfied by the data,

one should add an independent Gaussian noise with variance ε to the model via the “nugget”
(see chapter 3). The model (4.6) becomes:

Y (x) = µ+
∑

I⊆{1...d}
|I|≤2

βIYI(xI) + η, η ∼ N(0, ε2), βI ≥ 0 (4.10)

4.3 Making zero mean kernels from old

4.3.1 Centred kernels on segments

In this paragraph, we focus on the case of dimension 1. Denote Z ∼ GP (0, k) on [a, b] and
ν a probability measure on [a, b]. The purpose is to find a centred kernel k0 on [a, b]2.

Proposition 4.3.1. If k is a kernel on [a, b]2, then

k∗(u, v) = k(u, v)−
∫
[a,b]

k(u, v)dν(u)−
∫
[a,b]

k(u, v)dν(v) +

∫∫
[a,b]2

k(u, v)dν(u)dν(v)

and

k†(u, v) = k(u, v)−

∫
[a,b]

k(u, v)dν(u)
∫
[a,b]

k(u, v)dν(v)∫∫
[a,b]2

k(u, v)dν(u)dν(v)

are centred kernels on [a, b]2.
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Proof. The proof is straightforward by direct calculations. Notice that these two functions

are respectively the kernels of Z(x) −
∫ b
a
Z(x)dν(x) and Z(x) − E

(
Z(x) |

∫ b
a
Z(x)dν(x)

)
.

The second one was introduced by [31].

Examples of centred kernels based on the uniform measure over [a, b]

Given a kernel k over [a, b]2, Proposition 4.3.1 provides two procedures to center k. With
respect to the uniform measure over [a, b], their use is only subject to computing

I1(v) =
1

b− a

∫
[a,b]

k(u, v)du and I2 =
1

(b− a)2

∫∫
[a,b]2

k(u, v)dudv.

These integrals are provided for some usual kernels by [41].

• Exponential kernel: k(u, v) = exp
(
− |u−v|

`

)
• I1(v) = ω

(
2− k(a, v)− k(v, b)

)
• I2 = 2ω

(
1− ω + ω exp

(
− 1
ω

))
with ω = `

b−a .

• Matérn 3
2
: k (u, v) =

(
1 +

√
3|u−v|
`

)
exp

(
−
√
3|u−v|
`

)
.

• I1(v) = ω3

[
4− A

(
1
ω3

y−a
b−a

)
− A

(
1
ω3

b−y
b−a

) ]
• I2 = 2ω3

[
2− 3ω3 + (1 + 3ω3) exp

(
− 1
ω3

) ]
with A(x) = (2 + x)e−x and ω3 = `√

3(b−a) .

• Matérn 5
2
: k (u, v) =

(
1 +

√
5|u−v|
`

+ 5(|u−v|)2
3`2

)
exp

(
−
√
5|u−v|
`

)
• I1(v) = ω5

3

[
4−B

(
1
ω5

y−a
b−a

)
−B

(
1
ω5

b−y
b−a

) ]
• I2 = 1

3
ω5 (16− 30ω5) + 2

3

(
1 + 7ω5 + 15ω2

5

)
exp

(
− 1

ω5

)
with B(x) = (8 + 5x+ x2) e−x and ω5 = `√

5(b−a) .

Examples of centred kernels based on the density function f(u) = 2u over [0, 1]

Recall that if R, T are independent random variables with uniform distribution on [0, 1]
and [0, 2π] respectively, then (

√
R, T ) is uniform on D. Keeping in mind the need to use

the uniform measure over the disk, we consider a second probability measure with density
f(u) = 2u, which is the probability density function of

√
R over [0, 1]. The following two

integrals are then needed to center kernels over [0, 1]2 with respect to this measure:

J1(v) = 2

∫
[0,1]

k(u, v)udu and J2 = 4

∫∫
[0,1]2

k(u, v)uvdudv.

Now, we provide J1 and J2 for some usual kernels. The integrals have been computed with
the help of the formal calculus software “Xcas”, and numerically checked.
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• Exponential:

• J1(v) = 2`
(

2y + `k(0, y)
)
− 2
(
`+ `2

)
k(1, y)

• J2 = 8`4
(

1− k(0, 1)
)
− 8`3k(1, 0)− 4`2 + 8

3
`

• Matérn 3
2
:

• J1(v) = 8y`+ 2 (y + 3`) `e−
y
` + 2

(
(`+ 1) (y − 3`)− 1

)
e−

1−y
`

• J2 = 4
(
4
3
− 3`+ 10`3

)
`− 8`2 (1 + 5`+ 5`2) e−

1
`

• Matérn 5
2
:

• J1(v) = 32
3
`y + 2

3

(
15`2 + 7`y + y2

)
e−

y
`

− 2
3`

(
15`3 + (1 + `)y2 − y(7`2 + 7`+ 2) + 6`+ 1

)
e−

1−y
`

• J2 = 4`
(

16
9
− 5`+ 70

3
`3 − 2

3

(
1 + 10`+ 35`2 (1 + `)

)
e−

1
`

)
4.3.2 Centred kernels on the circle

Proposition 4.3.2. Case of isotropic periodic kernels
Let T > 0, λ the uniform measure over [0, T ], and ϕ : [0,∞)→ R a T -periodic function

such that k : (u, v) 7→ ϕ (| u− v |) is a kernel on [0, T ]2. Then,
∫ T
0
k(u, v)dλ(u) is constant.

As a consequence, k(u, v)−s is a centred kernel on [0, T ]2, and we have k∗(u, v) = k†(u, v) =

k(u, v)− s with s =
∫ T
0
ϕ(t)dλ(t).

Proof. By T -periodicity,∫ T

0

ϕ (| u− v |) dλ(u) =

∫ T+v

v

ϕ(u− v)dλ(u)

=

∫ T

0

ϕ(t)dλ(t) = s, by uniformity of λ

Remark that s corresponds to the three integral terms of k∗ and k† of proposition 4.3.1,
leading to the second part of the proposition.

Examples
From proposition 4.3.2, centred kernels based on the geodesic distance on the circle can

be obtained by centring compactly supported correlation functions.

4.4 Simulations and applications

In addition to the multiplicative, additive and ANOVA combinations used in chapter 3, we
consider a fourth construction, mimicking model (4.6). The resulting kernel, denoted by
FAD in reference to Functional ANOVA Decomposition, is given by:

kFAD (u,u′) = σ2
1k

0
1

(
u1, u

′
1

)
+ σ2

2k
0
2 (u2, u

′
2) + σ2

12k
0
1

(
u1, u

′
1

)
k02 (u2, u

′
2) (4.11)
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Correlation functions Analytic expressions Parameters s = ϕ̄

Sine power ϕ (t) = 1−
(
sin( t2 )

)α
α ∈ (0, 2) 1−

√
π
π

Γ(α+1
2 )

Γ(α
2 +1)

Askey ϕ (t) =
(
1− t

c

)τ
+

τ ≥ 2 c
π(τ+1)

C2-Wendland ϕ (t) =
(
1 + τ tc

) (
1− t

c

)τ
+

c ∈ (0, π]; τ ≥ 4 2c
π(τ+2)

C4-Wendland ϕ (t) =
(

1 + τ tc + τ2−1
3

t2

c2

)
(1− t

c )
τ
+ c ∈ (0, π]; τ ≥ 6 8c

3π(τ+3)

Table 4.1 – Some compactly supported correlation functions ϕ and their mean s such that
(θ, θ′) 7→ ϕ

(
acos (cos (θ − θ′))

)
− s is a centred kernel on S× S.

where u = (ρ, θ) for polar GPs and u = (x, y) for Cartesian GPs. The notations k01 and k02
mean that the kernels are centred. Polar GPs are centred in two ways. The first one uses
the uniform measure over [0, 1] for polar radius, and the uniform measure over S for angles.
The resulting kernel, corresponding to uniform weights in the space of polar coordinates, is
denoted by kFAD:[0,1]×S. The second one is obtained with the density function f(u) = 2u over
[0, 1] for polar radius, and the uniform measure over S for angles. It corresponds to uniform
weights over the disk and the corresponding kernels are denoted by kFAD:D. Regarding Carte-
sian GPs, the disk does not have a product structure with respect to xy-axes. Therefore,
we consider the restriction to the disk of centred Cartesian GPs over [−1, 1]× [−1, 1]. Their
kernels are denoted by kFAD:[−1,1]2 .

We also assess a fifth kind of kernel, involving an additive and a multiplicative parts, but
without centring conditions:

kprod+add (u,u′) = σ2
1k1
(
u1, u

′
1

)
+ σ2

2k2 (u2, u
′
2) + σ2

12k1
(
u1, u

′
1

)
k2 (u2, u

′
2) (4.12)

Actually, Equation (4.11) corresponds to model (4.10) with σ2
I = βI and Equation (4.12)

represents its non-centred version. Both have the advantage of becoming additive if σ2
12 = 0

or multiplicative if σ2
1 = σ2

2 = 0.

4.4.1 Simulations

In this section, different GP models are compared, based on 6 analytical toy functions.
Among these models, the centred GPs are interpreted based on Sobol decomposition (Equa-
tions (4.9) and 4.8). The computation settings and results are detailed in Appendix 10.5.

4.4.2 Applications

This section is dedicated to the industrial datasets in chapter 3, Sections 3.4.1 and 3.4.2.
The matérn5

2
kernel is used over [−1, 1]2 and [0, 1]2, and the C2-Wendland kernel over S.

Through these two datasets, we will see that Model (4) meets our expectations by improving
Kriging models and allowing to visualize radial and angular effects. For instance, in the
microelectronics example, kfad:D leads to the best predictions whereas Cartesian GPs are the
worst.

Application in microelectronics



4.4. SIMULATIONS AND APPLICATIONS 61

Dataset DoE

GP type kernel RMSE Log-likelihood
Cartesian kprod+add 0.82 −20
Cartesian kfad:[−1,1]2 0.84 −19

Polar kprod+add 0.66 −16
Polar kfad:[0,1]×S 0.71 −16
Polar kfad:D 0.66 −15

Assessment of different GP models

µ(x, y)
−

+

m1(x)
S = 46

+

m2(y)
S = 52

+

m12(x, y)
S = 2

=

m(x, y)
Kriging mean

Sobol decomposition of the Kriging mean (Cartesian GP, uniform measure over [−1, 1]2)

µ(x, y)
−

+

m1(ρ)
S = 85

+

m2(θ)
S = 8

+

m12(ρ, θ)
S = 7

=

m(ρ, θ)
Kriging mean

Sobol decomposition of the Kriging mean (Polar GP, uniform measure over [0, 1]× S)

µ(x, y)
−

+

m1(ρ)
S = 74

+

m2(θ)
S = 4

+

m12(ρ, θ)
S = 22

=

m(ρ, θ)
Kriging mean

Sobol decomposition of the Kriging mean (Polar GP, uniform measure over D)

By giving the same importance to m(x, θ) and m(y, θ), the Cartesian GP predictions are
consistent with the pronounced radial effect which is observed in the data. However, m(y, θ)
is not fully recovered because the y-axis is not fully filled by design points. Polar GPs
overcome this problem by giving a high importance to the radial sub-model.
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Dataset DoE

GP type kernel RMSE Log-likelihood
Cartesian kprod+add 0.58 −26
Cartesian kfad:[−1,1]2 0.63 −29

Polar kprod+add 0.36 −11
Polar kfad:[0,1]×S 0.38 −16
Polar kfad:D 0.32 −5

Assessment of different GP models

Application to air quality monitoring

µ(x, y)
−

+

m1(x)
S = 26

+

m2(y)
S = 29

+

m12(x, y)
S = 45

=

m(x, y)
Kriging mean

Sobol decomposition of the Kriging mean (Cartesian GP, uniform measure over [−1, 1]2)

µ(x, y)
−

+

m1(ρ)
S = 8

+

m2(θ)
S = 81

+

m12(ρ, θ)
S = 11

=

m(ρ, θ)
Kriging mean

Sobol decomposition of the Kriging mean (Polar GP, uniform measure over [0, 1]× S)

µ(x, y)
−

+

m1(ρ)
S = 6

+

m2(θ)
S = 80

+

m12(ρ, θ)
S = 14

=

m(ρ, θ)
Kriging mean

Sobol decomposition of the Kriging mean (Polar GP, uniform measure over D)

Here too, polar GPs and kfad:D in particular give the best results.
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Résumé en Français

L’objectif de ce chapitre est double: réaliser une analyse de sensibilité pour interpréter les
modèles de krigeage et formaliser une famille générique de processus gaussiens qui englobe
les noyaux de type additif, multiplicatif et ANOVA. Les modèles résultants sont définis sur
un domaine hypercubique muni d’une mesure produit. Ils comprennent des composantes
additives indépendantes et des termes d’interaction, tous centrés au sens de Sobol.

Les modèles de krigeage ainsi définis s’interprètent en termes de décomposition de Sobol.
Les indices de sensibilité qui en sont déduites quantifient l’importance des effets radiaux et
angulaires dans les processus gaussiens polaires. En plus de combler les attentes espérées,
ces modèles donnent de meilleurs résultats que les processus gaussiens usuels, notamment
lorsque la mesure d’intégration utilisée pour leur centrage est adaptée.







PART II

Design of experiments





Chapter 5

Maximin Latin Cylinders

In the first part of this thesis, different response surface models were proposed over the disk.
Despite their relevancy, their performance can be worsen if a suitable design of experiments
is not chosen. The question of designs of experiments is now addressed, and this first chapter
focuses on static designs.

The results of this chapter are based on the contribution “Polar Gaussian Processes for
Predicting on Circular Domains” [81], by Padonou and Roustant, in revision for SIAM/ASA
Journal on Uncertainty Quantification.

5.1 Some usual designs on the disk

Among the DoEs that are specific to the disk, there are optimal designs for Zernike polyno-
mials and spirals.

5.1.1 D-Optimal designs for Zernike polynomials

The D-optimal designs were investigated in [26] and were found to be contained in few
concentric circles, as illustrated in Figure 5.1. D-optimal DoEs for regression models are not

N = 1 N = 2 N = 3 N = 4

Figure 5.1 – 20-point D-optimal DoEs for Zernike polynomials of degree N .

robust to departures from the assumed shapes [53], and do not fill the space, a property
usually required in the framework of GP modelling for capturing potential non-linearities.
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5.1.2 Spirals

Spirals, hereafter denoted spiral DoEs, are used in various industrial settings: microelectron-
ics, optics, microbiology, etc. They allow to control the density of the design (see e.g. [79]).
Some of them are represented in Figure 5.2, corresponding to the equation ρ = aθp + b.

Fermat: s = 1
2 Archimede: s = 1 Galilee: s = 2

Figure 5.2 – 20-point DoEs defined from spirals of the form ρ = aθs+ b with θ ∈ [0, 6π]. The
parameter s controls the speed with which the curve moves away from the center, and a, b
are chosen such that the spirals start at the center and end at the boundary.

Poor space-filling properties are also visible for spirals in the space (ρ, θ) of polar coordinates,
as shown in Figure 5.3, though they may correctly fill the disk.

Figure 5.3 – Cartesian (left) and polar (right) representations of the Archimedean spiral
DoE. This DoE is filling well the disk but not the cylinder of polar coordinates.

5.2 Maximin Latin hypercubes for polar coordinates

For metamodelling a potentially complex phenomenon, two main properties are expected
from a good DoE: Space-filling, in order to capture non-linearities, and uniformity of the
marginal distributions, to avoid redundancies in projection. Among the indicators used to
assess space-fillingness, the maximin criterion [77] is a common choice. In addition, Latin
hypercube designs (LHD, [74]) provide good projection properties onto marginal dimensions.
Thus, maximin LHDs are often proposed as initial DoEs. However such designs cannot be
directly used in polar coordinates, due to the non-Euclidean structure of C. The aim of this
section is to adapt their construction.

Let us first recall the construction of a maximin LHD over the hypercubic domain [0, 1]2.
Given a design X =

(
x(1), . . . ,x(n)

)
of elements of [0, 1]2, we denote ΦMn (X) so-called
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maximin criterion, giving the minimal distance among design points:

ΦMn (X) = min
i 6=j

(
‖ x(i) − x(j) ‖

)
(5.1)

A maximin DoE is a design that maximizes ΦMn. However, ΦMn is hard to optimize and a
regularized version Φp, more suitable for optimization, was proposed in [78]:

Φp (X) =

( ∑
1≤i<j≤n

‖ x(i) − x(j) ‖−p
) 1

p

(5.2)

For p → ∞, maximizing ΦMn is equivalent to minimizing Φp. Following [78, 22], we will
use p = 50. In software, the algorithms used for optimization are often based on simulated
annealing or evolutionary strategies (see e.g. [36]). When the input variables are not provided
in the same unit of measure, a maximin LHD is first designed over [0, 1]2, corresponding to
dimensionless variables.

Now let us consider the cylinder C of polar coordinates. The construction of a Latin
hypercube on C is identical for an hypercubic domain, by considering discretizations of [0, 1]
and S. For the sake of clarity, we propose to call polar Latin cylinder design (polar LCD) or
simply LCD, a LHD defined in polar coordinates, referring to the geometry of the polar space.
As for the maximin criterion, two modifications are needed for polar coordinates. First, a
valid distance on C must fill the condition ‖ u − u′ ‖ = 0 for u = (ρ, θ) and u′ = (ρ, θ′),
with θ = θ′ (mod 2π). In particular the Euclidean distance is no further valid since it does
not see that the points (ρ, 0) and (ρ, 2π) are the same in C. Second, the range of the polar
angle θ is π, which is the maximum value of the geodesic distance over S. Therefore, any
distance over the dimensionless cylinder [0, 1] ×

(
1
π
S
)

applies to the polar space (ρ, θ). A
natural choice is the geodesic distance given by:

‖ x− x′ ‖Polar=

√
(ρ− ρ′)2 +

(
d2 (θ, θ′)

π

)2

(5.3)

Notice that the factor 1
π

rescales d2 to [0, 1] and weighs equivalently the radius and the angle.
From now on we will denote ΦPolar (resp. ΦCartesian) the Φp criteria computed with

‖ . ‖Polar (resp. ‖ . ‖2). Minimizing ΦPolar leads to a maximin LCD. A 20-point maximin
LCD is displayed in Figure 5.4, where the cylinder is represented as a 2-dimensional map.
As expected it is well filling the space of polar coordinates. Though it looks similar to a
maximin LHD obtained in an hypercubic domain with the usual Euclidean distance, the
difference is visible on the left and right boundaries which correspond to the same points in
C: the design points near the left and right boundaries are also spread out from each other.
LCDs are recommended when the studied phenomenon has a physical interpretation with
respect to polar coordinates. First, if the phenomenon is purely radial (resp. angular), the
Latin structure ensures that all the design radius (resp. angles) values are different, so that
no information is lost by projection. Furthermore, the maximin property helps in capturing
non-linearities with respect to ρ and θ. However, when no a priori information about the
phenomenon is known, the maximin LCD may be inappropriate, due to non-uniform filling
that they produce on D, as visible in Figure 5.4. Though it is not possible to optimize
simultaneously maximin criteria based on distances in Cartesian and polar coordinates, a
multi-criteria approach could be investigated. In this paper, as a first study, we focus on
a simple transformation of a maximin LCD which helps improving space-fillingness on D
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Figure 5.4 – Cartesian (left) and polar (right) representations of a 20-point maximin Latin
cylinder design (LCD). The design is well-filling the cylinder C of polar coordinates, displayed
as a 2-dimensional map: In particular, the design points near the left and right boundaries
are also spread out from each other.

Figure 5.5 – Cartesian (left) and polar (right) representations of the LCD obtained by trans-
forming the maximin LCD of Figure 5.4 with ρ 7→ √ρ.

while preserving the Latin structure on C. This is done by applying the transform ρ 7→ √ρ,
based on the well-known fact that if R, T are independent random variables with uniform
distribution on [0, 1] and [0, 2π] respectively, then (

√
R, T ) is uniform on D. This transfor-

mation was applied to the design of Figure 5.4, resulting in the design displayed in Figure 5.5.

5.3 Comparison

The aim of this section is to compare the DoEs presented above with respect to quality
criteria, and to evaluate their performance on a set of toy functions. We will denote Dopt1,
..., Dopt4 the D-optimal DoEs for Zernike regression of order N (1 ≤ N ≤ 4) shown in
Figure 5.1, and Spiral-F, Spiral-A, Spiral-G the spiral DoEs (Fermat, Archimede, Galilee)
of Figure 5.2. We also denote maxLCD the maximin LCD of Figure 5.4 and maxLCD*
its transformed version with ρ 7→ √ρ (Figure 5.5). All these 20-point DoEs are compared
according to the following scheme:

(i). An assessment is made according to space-filling and D-optimality criteria. For space-
filling, two indicators are used: the minimum Euclidean distance, and the minimum
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geodesic distance (Equation 5.3) between design points. The D-optimality criterion
for the N -order Zernike regression (see [26]) is given in log-scale.

(ii). A comparison in term of prediction accuracy. The RMSE over a test grid of 1.000
points is computed for the 6 analytical functions shown in Figure 5.6, illustrating
various non-linear patterns. For each DoE, the best model is chosen among Zernike
polynomials up to order 4, Cartesian GPs and polar GPs with kernels obtained by
combination (sum, product, ANOVA) of 1-dimensional kernels as in Section §3.4.

x
(
x2 − y2

) (
ρ− 1

4

)2 sin (2πρ+ θ)

1+sin(θ)
1+ρ2

1+x
1+y2 cos (3θ)

Figure 5.6 – Color representation of test functions.

D-optimality min
i 6=j

(
‖ x(i) − x(j) ‖

)
DN=2 DN=3 DN=4 ‖ . ‖Polar ‖ . ‖2

D-opt1 −159.9 −308.3 −448.3 0.01 0.31
D-opt2 36.6 −135.6 −353.1 0.01 0.33
D-opt3 35.4 49.1 −18.9 0.02 0.45
D-opt4 34.4 47.5 63.5 0.03 0.32
Spiral-F 29.7 37.2 44.1 0.04 0.20
Spiral-A 27.2 31.6 32.1 0.03 0.22
Spiral-G 23.3 19.3 −1.4 0.01 0.13
maxLCD 22.2 20.3 2.4 0.06 0.06
maxLCD* 27.5 32.8 33.0 0.04 0.28

Table 5.1 – Comparison of DoEs according to D-optimality and space-filling criteria.

The results of Table 5.1 are consistent with the theory of D-optimality and exhibit the lack
of robustness of D-optimal designs in case of departure from their assumptions, especially
when N is underestimated. The comparison also shows that spiral DoEs have rather good
scores for all criteria. The best spirals for Zernike polynomials are the one that have the
smaller p (Spiral-F), but the intermediate one (Spiral-A) has the best space-filling scores; It
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seems to be the best trade-off among spirals. As expected, the maximin LCD is interesting
for the polar GPs because it optimally fills the polar space, but has the worst space-filling
score in Cartesian coordinates. This weakness is overcome by its modified version maxLCD*,
which seems to accomplish the best trade-off for the different criteria among all the DoEs
considered.
In Table 5.2, we see that D-optimal designs of low order (1, 2) have in general poor scores

Prediction RMSE (as percentage of the standard deviation)

x
(
x2 − y2

) (
ρ− 1

4

)2
sin (2πρ+ θ) 1+sin(θ)

1+ρ2
1+x
1+y2 cos (3θ)

D-opt1 14.0 153.1 84.7 2.6 2.9 2.8
D-opt2 14.4 46.6 84.0 3.0 1.7 0.2
D-opt3 0.0 9.1 62.1 1.1 0.4 0.2
D-opt4 0.0 9.1 50.0 1.9 0.8 1.4
Spiral-F 0.0 0.4 35.2 4.0 0.7 4.5
Spiral-A 0.0 0.1 46.0 2.0 0.7 2.8
Spiral-G 0.0 0.0 49.1 2.9 1.3 0.8
maxLCD 0.0 0.0 31 1.0 1.0 0.8
maxLCD* 0.0 0.3 23.3 1.0 0.4 2.6

Table 5.2 – Comparison of DoEs in terms of predictive performance on toy functions.

in term of RMSE for the functions considered here, that present non-linearities. Spirals
and maxLCD perform rather well. maxLCD met our expectations when radial and angular
patterns are dominant (functions 1, 2, 3 and 6), and the modified maxLCD* seems to adapt
well to the range of functions and models considered here, confirming its robustness among
other DoEs. Finally, notice that the function z = sin(2πρ + θ) was poorly reconstructed
by all models, whatever the DoE. An acceptable fit would require a model with geometric
anisotropy in the space of polar coordinates, or more than 20 points.

Résumé en Français

Parmi les plans d’expériences spécifiques au disque, les plans D-optimaux pour les polynômes
de Zernike sont adaptés aux modèles de régression. La planification d’expériences le long de
spirales est aussi une option. En effet, en plus d’être des formes fréquentes en microbiologie,
les spirales peuvent être facilement paramétrées de façon à remplir les domaines circulaires.

Etant donné le manque de robustesse des plans D-optimaux et les redondances produites par
les spirales, nous avons introduit les cylindres latins. Ils permettent d’éviter les redondances
dans l’espace polaire qu’ils remplissent par ailleurs uniformément. Nous montrons également
qu’une simple transformation analytique permet de transformer les cylindres latins en plans
remplissant le disque tout en limitant les redondances dans l’espace des coordonnées po-
laires. Les performances des cylindres latins sont ensuite évaluées via différents critères:
D-optimalité, remplissage de l’espace et performance en prévision.



Chapter 6

IMSE-optimal designs

We have seen in Chapter 5 that maximin Latin cylinders represent good tradeoffs when no
information is available on the response surface. However in a dynamic setting, knowledge is
gradually acquired through successive experiments. The purpose of this chapter is to include
the available knowledge on the process, represented by its kernel, in the choice of design
points. For this, the Integrate Mean Square (IMSE) criterion is used and the parameters of
the kernel are supposed known.

6.1 Problematic and formulation

6.1.1 Motivation

The traditional approach to represent a spatial risk is to sample the input domain by square
areas ([92], Chapter 6). In particular, Latin hypercubes belong to this class of designs.
However, there exist many other discretization methods such as polygons, tessellations, tri-
angulations, etc. A relevant choice should primarily be suited to the data [92]. As an example,

(a) (b) (c) (d) (e)

Figure 6.1 – Different discretization schemes for the disk

behind the discretization of Figure 6.1a, there is an implicit assumption of isotropy. Con-
versely, those of Figures 6.1b and 6.1c correspond to Latin Cylinders (section 5.2). They
should better capture radial and angular variations. Recall that these DoEs were constructed
without any knowledge on the response surface. In particular, the maximin criterion used for
their optimization gives the same importance to radial and angular correlations. As a con-
sequence, when the radial or the angular part is predominant, quantifying such information
remains an open question. In the case of Cartesian GPs too, the discretization should be
adapted for anisotropic processes, as illustrated in Figure 6.1d. However, the corresponding
design is not a Latin hypercube, due to the non linear bound of the disk. In addition, using
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the Euclidean distance raises actually the issue of geometric anisotropy. Since the choice of
the x and y axes will influence the distribution of design points (Figure 6.1e), it deserves a
careful assessment.

In this chapter, we aim at taking into account the available knowledge on the process
in the DoE. We are also interested in a flexible formulation which, unlike grids, does not
depend on the coordinates system. Our third aim is to find a procedure which is sequentially
applicable, contrarily to Latin hypercubes. In Kriging, a key role of the kernel is to quantify
spatial correlations such as those mentioned in the paragraph above. This knowledge can
be exploited via the Integrated Mean Square Error (IMSE) criterion proposed in [100]. The
IMSE criterion was successfully used in the framework of circular domains by [11] to reduce
the size of a Design of Experiments (DoE)

6.1.2 Formulation

Given a design of experiments X =
(
x(1), . . . ,x(n)

)
, and a Kriging model with stochastic

part Z ∼ GP (0, k), the IMSE criterion related to X is [100]:

IMSE (X) =

∫
D
E
(

(Zx − Ẑx)2
)
dν(x) (6.1)

Where Ẑx denotes the Kriging mean at x. ν is an integration measure over D. As the Kriging
mean Ẑx is the orthogonal projection of Zx onto the space spanned by (Zx(1) , . . . , Zx(n)),

we have by Pythagoras E
(
Zx

2
)

= E
(
Ẑx

2
)

+ E
(

(Zx − Ẑx)2
)

. By noting K the covariance

matrix and k(x) the covariance vector as introduced in chapter 2.2, we get E
(

(Zx − Ẑx)2
)

=

var(Zx)− k(x)>K−1k(x). Therefore,

IMSE (X) =

∫
D

(
k (x,x)− k(x)>K−1k(x)

)
dν(x) (6.2)

Remark The IMSE criterion depends only on the kernel and design points. Given a ker-
nel, the IMSE-optimal design is not unique in general. In the isotropic case for instance,
the IMSE criterion is invariant under symmetries and rotations. Notice that each numer-
ical computation of the IMSE is time consuming and fast approaches are proposed in the
literature [38].

6.1.3 The choice of an integration measure

The usual choice for ν (say ν∗) is the uniform measure over the disk:

IMSE∗ (X) =

∫ 1

0

∫ 2π

0

(
k (x,x)− k(x)>K−1k(x)

)
ρdρ

dθ

2π

As remarked for Latin cylinders, the resulting designs will not be uniform on the cylinder
of polar coordinates. Indeed, the large values of ρ are actually overrepresented. To fill
uniformly the space of polar coordinates, the uniform measure over the cylinder (say ν†)
should be preferred:

IMSE† (X) =

∫ 1

0

∫ 2π

0

(
k (x,x)− k(x)>K−1k(x)

)
dρ
dθ

2π
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Either of these two measures can be used according to the interpretation of the response.
When the the disk is physically a surface, IMSE∗ would be appropriate. When the interpre-
tation of the process is rather related to ρ and θ (wind speed and direction for instance),
IMSE† should be preferred.

6.2 Implementation and assessment

In this section, we compute IMSE-optimal designs with different settings in order to rep-
resent a wide variety of industrial scenarios. The considered kernels correspond to linear
models with interactions presented in Chapter 4. For each simulation, the number of design
points is 20, and the genetic algorithm using derivatives of [75] is used for optimization.
This algorithm has the advantage to combine a global strategy, a randomized evolutionary
search, with a local quasi-Newton optimization (L-BFGS-B). The integrals are numerically
approximated over two uniform grids represented in Figure 6.4. The first one G† is a uni-
form sample of N = 1000 points over [0, 1] × [0, 2π]. The second one G∗ is obtained by
transforming G† with ρ 7→ √ρ. To avoid the potential confusions between the integration

measures ν∗ and ν†, corresponding to G∗ and G†, we note: X∗ = argmin
(

IMSE∗ (X)
)

and

X† = argmin
(

IMSE† (X)
)

. In the following result tables, the designs are represented in the

Euclidean space (y vs x) and in the polar space (ρ vs θ).
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6.2.1 IMSE-optimal designs for polar GPs

In this section, the kernel is given by: k (x,x′) = k1

(
ρ, ρ′

)
+ k2 (θ, θ′) + k1

(
ρ, ρ′

)
k2 (θ, θ′). k1

is the matérn 5
2

with range parameter `r and k2 the C2-Wendland with shape parameter τ
and support c = π. The resulting designs are presented in Tables 6.1 and 6.2.

X∗1 : (`r = 1, τ = 12) X∗2 : (`r = 0.5, τ = 6 X∗3 : (`r = 0.1, τ = 4)

Table 6.1 – ν∗-IMSE-optimal designs for polar GPs with varying (`r, τ)

X†1 : (`r = 1, τ = 12) X†2 : (`r = 0.5, τ = 6 X†3 : (`r = 0.1, τ = 4)

Table 6.2 – ν†-IMSE-optimal designs for polar GPs with varying (`r, τ)

6.2.2 IMSE-optimal designs for Cartesian GPs

The kernel is defines as k (x,x′) = k1

(
x, x′

)
+ k2 (y, y′) + k1

(
x, x′

)
k2 (y, y′), with k1 the

matérn 5
2

with range parameter `1 and k2 the k2 the matérn 5
2

with range parameter `2. The
results are presented in Tables 6.3 and 6.4.
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X∗4 : (`1 = 1.0, `2 = 0.05) X∗5 : (`1 = 0.75, `2 = 0.75) X∗6 : (`1 = 0.1, `2 = 2.0)

Table 6.3 – ν∗-IMSE-optimal designs for Cartesian GPs with varying (`1, `2)

X†4 : (`1 = 1.0, `2 = 0.05) X†5 : (`1 = 0.75, `2 = 0.75) X†6 : (`1 = 0.1, `2 = 2.0)

Table 6.4 – ν†-IMSE-optimal designs for Cartesian GPs with varying (`1, `2)
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6.3 Assessment through simulations

In the computed IMSE-optimal designs, various effects are visible, the first of which are
symmetries: a central symmetry for polar GPs and axial reflections for Cartesian GPs. The
integration measure too is influential. ν∗ tends to fill the Euclidean disk uniformly, whereas
ν† generates more points near the center to fill the polar space. Speaking of space-filling,
the impact of correlations is drastic. A manifold with weak correlations is uniformly filled.
Conversely, a manifold with strong correlations may present a poor coverage. Consequently,
there are pronounced alignments in design points, corresponding to specific phenomena.

Remarks

1. In this study, symmetry properties were automatically recovered by the minimization
of the IMSE. This is quite time consuming, due to combinatorial aspects and integral
approximations. Setting symmetries a priori would allow to divide the dimension of
the problem by 2 or 4.

2. Geometric anisotropy can also be included in IMSE-optimal designs for Cartesian GPs.
Though not detailed here, it simply translates into a rotation of the DoE.

Validation through simulations
For the sake of conciseness, we only consider the 6 IMSE-optimal designs corresponding to

the measure ν∗ in this paragraph. They correspond to X1
∗, . . . ,X6

∗ in Tables 6.1 and 6.3.
We call k1, . . . , k6 the kernels under which these 6 DoEs are optimal. Recall that k1, . . . , k6

are represented by their parameters (`r, τ), or (`1, `2) in Tables 6.1 and 6.3. We also consider
the maximin Latin Cylinders maxLCD and maxLCD* to provide a reference level. The
following simulation protocol is used:

1. Generate 260 points over the disk, including a regular grid of 100 points, and the
(6 + 2) × 20 points corresponding to the 6 IMSE optimal designs and the 2 Latin
Cylinders.

2. (a) Simulate one realization of Z ∼ GP (0, k1) at the 260 points.

(b) Fit 8 different Kriging models corresponding to the 8 DoEs, with this (known)
kernel k1.

(c) Compute the Mean Square Error (MSE), based on the regular grid for each Krig-
ing model.

(d) Repeate 100 times the steps a, b and c, and average the MSEs by design.

(e) Rank the 11 designs by increasing MSEs.

3. Repeat step 2 with Z ∼ GP (0, k2), . . . , Z ∼ GP (0, k6)

4. Compute the median and worst ranks by design.

The results are summarized in Table 6.5. They are fully consistent with the theory of IMSE-
optimality. For each kernel ki, the best design is repaired by the rank 1 in red. Each IMSE-
optimal design achieves the best result for the kernel under which it is computed. However,
when the “wrong” kernel is specified, the IMSE-optimal designs become less competitive.
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k1 k2 k3 k4 k5 k6 Median Worst
X1
∗ 1 3 5 6 3 6 4 6

X2
∗ 2 1 3 2 2 2 2 3

X3
∗ 8 4 1 5 5 5 5 8

X4
∗ 6 8 8 1 8 8 8 8

X5
∗ 4 5 6 4 1 3 4 6

X6
∗ 5 7 7 8 7 1 7 8

LCD* 3 2 2 3 4 4 3 4
LCD 7 6 4 7 6 7 6 7

Table 6.5 – Ranks of the 8 DoEs when estimating 6 different GPs with kernels k1, . . . , k6,
where each Xi

∗ is IMSE-optimal under ki.

Among them, X2
∗ is the most robust. The point is that X2

∗ is a space-filling design without
obvious alignment, so adapted to capture a wide variety of non-linearities. The uniform
maximin Latin cylinder (LCD*) is confirmed to accomplish the best trade-off with regard
to the studied scenarios.

6.4 The discrete case

In many industrial settings, only a finite set of points can be measured. The DoE can only be
a subset of these measurable points and IMSE-optimality becomes a discrete optimization
problem. Denote G = {g(1), . . . ,g(N)} this set of all measurable points of D, and n the
desired size of the DoE. The problem is to find X = {x(1), . . . ,x(n)} ⊆ G such that IMSE (X)
is minimal.

Study of an industrial case We consider the dataset of Paragraph 3.4.1, including 81
measurable points on a wafer, 17 of which served as DoE. Given the different Kriging models
that were previously tested for this dataset, we retain the kernel estimated with Equation
4.12 in Section 4.4.2. This information is now used to select a new subset of 17 points,
based on IMSE-optimality. From a combinatorial point of view, reaching the exact solution
is difficult. Nevertheless, global strategies such as simulated annealing were showed suit this
class of problem [11]. In the same perspective, we use the genetic research presented in [75].
The grid G and the estimated IMSE-optimal subset X∗ are displayed in Figure 6.2. The
estimated optimal subset is now compared to the usual industrial design presented in Figure
3.5. Though their Kriging means are similar, the IMSE-optimal subset lead to a smaller
uncertainty: Figure 6.3. Notice that the points of G are shifted to the top right of the disk.
This is due to technical constraints resulting from layout design rules 1.

Résumé en Français

Le critère IMSE est un indicateur d’incertitude globale sur la surface du disque. Puisqu’il se
calcule directement lorsque les paramètres de krigeage sont connus, le minimiser aboutit aux

1Integrated circuit layout, also known as mask design, is the representation of an integrated circuit in
terms of geometric shapes, corresponding to elementary components. The performance of integrated circuits
depends on the positions and connections among these geometric shapes. Hundreds of rules govern the
layout of modern circuits.
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Grid G of measurable points Polar representation of G

IMSE-optimal subset X∗ Polar representation of X∗

Figure 6.2 – Grid of the available points, and the selected subset of 17 points.

Mean integrated variance: 0.25 Mean integrated variance: 0.10

Figure 6.3 – Kriging standard deviation, using the 17 designs points of Figure 3.5 (left) and
the IMSE-optimal DoE presented in Figure 6.2 (right)

plans d’expériences optimaux en termes de risque quadratique. Dans ce chapitre, nous avons
étudié les plans IMSE-optimaux pour les modèles de krigeage sur le disque avec différents
scénarios, simulés par variation des paramètres des processus gaussiens. Les motifs obtenus,
notamment leurs propriétés de symétrie et de rotation dépendent du type de processus
gaussien. Les sous - espaces marginaux (x et y ou ρ et θ) ne sont par ailleurs pas remplis de
la même façon selon l’importance relative des corrélations horizontales et verticales, ou des
corrélations radiales ou angulaires, déterminées par les paramètres de krigeage. La pertinence
des plans IMSE-optimaux est enfin montrée via simulations.
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G∗ (y vs x) G† (ρ vs θ)

Figure 6.4 – Integration grids associated to ν∗ and ν†



Chapter 7

IMSE-optimal relocations

IMSE-optimal designs are recommended for Kriging models when the kernel is known. How-
ever, their implementation in industry should not cause abrupt changes in operating systems.
In this chapter, a sequential procedure is investigated to gradually improve a design in terms
of IMSE-optimality. The parameters of the kernel are supposed known.

7.1 Motivations and working hypothesis

7.1.1 Motivations

A key point in Statistical Process Control is repeatability, as we will see in Chapter III. A
sudden change of design points may wrongly lead to suspect a drift in the process mean, as
illustrated in Figure 7.1. To avoid such instabilities, a progressive strategy is investigated to
optimize the DoE. This translates into two industrial constraints: do not increase the cost
of an experiment, and change the original design as little as possible. From there comes the
issue of optimal relocation of a design point, which is addressed via the IMSE.

ȳ ' 0 ȳ ' 0 ȳ ' 0 ȳ > 0

Figure 7.1 – Instability when monitoring air quality (see Section 3.4.2 and [7] for more
details). ȳ is an estimation of the response mean, based on observations at blue points.

7.1.2 Assumptions

Given the DoE X =
(
x(1), . . . ,x(n)

)
over D, the question of relocation is formulated as

removing a design point x(j) and adding a new one x? ∈ D. There is a duality between
these two operations (adding and removing). Given two choices of point to remove, the best
point to add may be different, and vice-versa. Consequently, for N potential points to add,
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there are N × n possible relocations. Though n is usually of the order of a few dozens, N
may reach very high levels and increase the solution time. This issue remains present in the
continuous case, due to the increasing number of local optima. In our industrial context,
the relocation procedure will be repeated in continuous, for thousand times. To reduce the
computation time, we do not test the N × n possible relocations. Instead, the point to add
is first proposed, regarding the initial DoE. Only then, is the removal suggested. Finally, the
relocation is confirmed if it leads to a lower IMSE. Doing the addition first is motivated by
a purpose of sequential computation. Its also allows to explore the areas of the disk which
are not filled by the initial DoE.

7.2 Sequential relocation of a design point

7.2.1 Sequential addition

Given an initial design X =
(
x(1), . . . ,x(n)

)
, and an integration measure ν over D, the

question is to find x(n+1) which minimizes the criterion:

In+1 =

∫
D
σ2
n+1(u)dν =

∫
D

(
k (u,u)− kn+1(u)>(Kn+1)−1kn+1(u)

)
dν

where Kn+1 =
(
k(x(i),x(j))

)
1≤i,j≤n+1

and kn+1(u) =
(
k(u,x(i))

)
1≤i≤n+1

are the covari-

ance matrix and the covariance vector at u for the Kriging model based on the design(
x(1), . . . ,x(n+1)

)
. In+1 is the IMSE of the Simple Kriging model after adding x(n+1) to the

DoE. When the integral is approximated through a grid with j = l2 points, N evaluations
of In+1 will require N × l2 different evaluations of the quantity kn+1(u)>(Kn+1)−1kn+1(u),
which is computationally demanding. Therefore, we use a sequential formula to compute
In+1 when In is already known. The Kriging variance σ2

n+1(u) after adding x(n+1), is obtained
from the Kriging variance σ2

n(u) by:

σ2
n+1(u) = σ2

n(u)−
(
e−w>d

)2
c−w>b

(7.1)

with e = k(x(n+1),u), c = k
(
x(n+1),x(n+1)

)
, b = kn

(
x(n+1)

)
, d = kn(u), and w =

K−1n kn

(
x(n+1)

)
. With this formula adapted from ([101], Section 5.2), solving a n + 1 by

n+ 1 equation system is transformed into 2n+ 2 multiplications and 3 additions.

7.2.2 Sequential deletion

The traditional leave-one-out and its limits

Given the design X =
(
x(1), . . . ,x(n)

)
, the purpose is to remove x(j), j ∈ {1, . . . , n} while

keeping the maximum amount of information. This can be addressed with a leave-one-out
cross-validation. Leave-one-out consists in estimating the response at each design point
when the corresponding observation is removed from the learning set. In the framework
of Kriging models, there exist quick versions of leave-one-out, based on Dubrule’s formula.
Implementations are provided in two R packages, kergp [27] and DiceKriging [97]. Denote
ε1, . . . , εn the leave-one-out absolute errors corresponding to x(1), . . . ,x(n), and εj their min-
imum. Then x(j) is the point to remove. Indeed, x(j) is the design point whose deletion
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has the smallest consequence. However, leave-one-out remains questionable in the case of
noisy observations. When the noise magnitude gets large, the procedure loses in reliability.
Furthermore, leave-one-out cannot be applied when some response values are missing. This
is the case when x(n+1) is added to design points.

Leave-one-out based on Kriging variance

We consider a leave-one-out procedure, based on Kriging variance. Then, all the response
values are no longer required, especially when the kernel is known. Given Z ∼ GP (0, k) and
design points x(1), . . . ,x(n+1) ∈ D, we call leave-one-out Kriging variance the variance of Z
at a design point, conditionally on observations at the others.

σ2
−i,i = E

(
Z2

x(i)

∣∣Zx(1) , . . . , Zx(i−1) , Zx(i+1) , . . . , Zx(n+1)

)
, i ∈ 1 . . . n+ 1

If σ2
j is the minimum leave-one-out variance, then x(j) is the point to remove.

Leave-one-out based on IMSE-optimality

The leave-one-out procedure using Kriging variance is based on a local criterion since the
expected variance is optimized at a single point. Following our initial purpose of a global
reduction of uncertainty, we propose to use the IMSE criterion to select the best point to
remove. Given u ∈ D, we define leave-one-out Kriging variances at u as:

σ2
−i(u) = E

(
Z2

u

∣∣Zx(1) , . . . , Zx(i−1) , Zx(i+1) , . . . , Zx(n+1)

)
, i ∈ 1 . . . n+ 1

The leave-one-out IMSEs are given by: I−i =
∫
D σ

2
−i(u)dν. If I−j is the minimum of these

leave-one-out IMSEs, then the point to remove is x(j).

7.3 Illustration and iteration of relocation

The relocation procedure is first illustrated with analytical functions to represent different
scenarios. Secondly, it is iterated to simulate successive applications in a dynamic system.

7.3.1 Illustration of relocation on toy functions

As initial DoE, we use the maximin Latin Cylinder LCD* (see section 5.2). For each toy
function, two GP models are estimated. The first one is a linear model based on a Cartesian
GP and the second one is a linear model based on a polar GP (Chapter 4). The model
with the higher likelihood is used to propose the relocation. For each function, 4 graphs are
displayed. On the first one, the point to remove is proposed by the traditional leave-one-out.
On the second one, it is proposed by leave-one-out based on Kriging variance. On the third
one, it is proposed by IMSE-optimality. The fourth graph displays the criterion In+1, where
the point to add is marked with a triangle point-down. Further analytical functions are
tested in Appendix 10.5. The suggested relocations, including those presented in Appendix
10.5, tend to fill the unexplored regions of the disk. In particular, the spatial indicator In+1

exhibits different kinds of poor space-filling for the different patterns. The three deletion
strategies may lead to different results. However, their are equivalent in Figure 7.2 (same
abscissa) and in Figure 7.3 (same polar radius).
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Leave-one-out 1 Leave-one-out 2 Leave-one-out 3 In+1(u)

Figure 7.2 – 3 relocation strategies for the function x3 − xy2, based on a Cartesian GP.
The triangles point-up are proposals for relocation, and the triangle point-down is the new
location.

Leave-one-out 1 Leave-one-out 2 Leave-one-out 3 In+1(u)

Figure 7.3 – 3 relocation strategies for the function (ρ− 1
4
)2, based on a polar GP. The trian-

gles point-up are proposals for relocation, and the triangle point-down is the new location.

7.3.2 Iteration of the relocation procedure

In this section, we denote the initial design by X0 =
(
x(1), . . . ,x(n)

)
and we call I0 the

corresponding IMSE. Let R be the procedure of relocation of one design point. Plainly,
R
(
x(1), . . . ,x(n)

)
=
(
x(1), . . . ,x(j−1),x?,x(j+1),x(n)

)
, where x? and j are chosen by IMSE-

optimality (Sections 7.2.1 and 7.2.2). We consider the sequence
(
Xk
)
k∈N, with first element

X0, and defined as Xk+1 = R
(
Xk
)
. Then, the sequence Ik = IMSE

(
Xk
)

is convergent.
Indeed, this sequence is decreasing and bounded. As a consequence, iterating the procedure
R will result in a solution to the problem of IMSE-optimality. Given the sequential nature
of the algorithm, this solution is a local optimum.

An analytical example

In the example below, the maximin Latin cylinder LCD (see section 5.2) is used as initial

design. We consider the Ridge function fc : (x, y)→ |x cos
(
π
3

)
+y sin

(
π
3

)
|β, with β = 1+

√
2
2

.
Recall that LCD is designed for polar GPs. Therefore, it does not fill the disk uniformly. In
particular, the sample density is very high at the center and a poor space filling is observed
near the boundary. In contrast, because fc corresponds to a Cartesian GP, a space-filling
design should be chosen. The purpose is to explain the impact of successive relocations
on this case of mismatch between the response and the design. The relocation procedure
is iterated 10 times (Figure 7.5). After 7 iterations displayed in Figure 7.4, the sequence
reaches a stationary state. Global strategies, involving simultaneous relocations of several
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points, would ensure that a global optimum is obtained. But this is outside scope.

X0 X1 X2

X3 X4 X5

X6 X7 X8

Figure 7.4 – Successive relocations with a GP estimated from a Ridge function.

Figure 7.5 – Evolution of the IMSE for 10 iterations
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Application: sequential design for air quality monitoring

The industrial DoE used is Section 3.4.2 is considered. The dataset is presented in Figure
3.7. It corresponds to the concentration of a greenhouse gas for different values of wind
speed (polar radius) and direction (polar angles). The design, including 30 points filling the
disk, was chosen without any knowledge on the process. It was shown in Section 3.4.2 that
the response corresponds to a polar GP. The parameters of the kernel were also estimated.
Now, they are used to optimize the design through successive relocations. In Figure 7.7 is
displayed the evolution of the IMSE during 10 relocations displayed in Figure 7.6. The

X0 X1 X2

X3 X4 X5

Figure 7.6 – Successive relocations with a polar GP.

Figure 7.7 – Evolution of the IMSE for 10 iterations.

initial design X0 does not fill the space of polar coordinates. For a polar GP, this is an
inadequacy which was partially offset by successive relocations.
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Résumé en Français

La procédure présentée dans ce chapitre permet de déplacer un point d’un plan d’expériences
de façon IMSE-optimale. Pour faire face à la forte complexité du problème d’optimisation
sous-jacent, la question est découplée en deux parties: le retrait d’un point et l’ajout d’un
autre sous contrainte d’IMSE-optimalité. Cette formulation permet de calculer le critère
IMSE de façon séquentielle. La pertinence et la convergence de la procédure est enfin illustrée
à travers des fonctions tests et des cas industriels.







PART III

Monitoring of spatial and temporal data





Chapter 8

Profile monitoring on the disk

In this Chapter, we focus on statistical quality control. After a brief review of conventional
Statistical Process Control tools, we tackle the case where the quality indicator is the pattern
defined over the disk, regarded as a profile. Control charts based on Zernike polynomials
and Gaussian process models are investigated.

Some results of this Chapter are published in the proceedings [82], “Spatial risk assessment
on circular domains: Application to wafer profile monitoring”, by Padonou, Roustant, Blue
and Duverneuil.

8.1 Statistical Process Control (SPC)

SPC refers to the use of statistical methods in order to monitor and improve a production
process, or more generally, a business environment. The topic was introduced by Shewhart
[103]. Ever since, it has received an increasing attention in industry. The key idea is
that in any production process, there are two distinct origins of variation: common-causes
and special-causes (see e.g. [76]). Common causes include permanent and quantifiable
background noises. They are unavoidable and represent an inherent part of the process.
As examples, machine vibrations, measurement errors and computers’ response time are
common-cause variations. Conversely, special causes are unusual and generally large when
compared to the background noise. Computer crash, machinery failures, faulty controllers
and human errors are examples of special-cause variations. They are usually arisen from
dysfunctions. In SPC, control charts represent simple and powerful tools which allow to
detect special-cause variations. Among them, Shewhart control charts are the most intuitive.

8.1.1 Shewhart control charts

Following the theory of variations aforementioned, quality can be statistically controlled by
monitoring some key indicators over time. In the example of Figure 8.1, 100 successive ob-
servations of a quality characteristic x are displayed versus time. The center line corresponds
to the average value of x. The other lines, called upper control limit UCL and lower control
limit LCL, are chosen to wrap the majority of observations when the process is in-control. In
this sense, the two last observations correspond to special causes and are called out-of-control
signals. Such a graphical display is a Shewhart control chart, or simply control chart. It can
be roughly interpreted as successive hypothesis testing. However, control limits are usually
chosen to match quality requirements, and may not satisfy all the statistical assumptions
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Figure 8.1 – An example of Shewhart control chart

[76]. Designing a control chart is commonly done in two steps. First, an historical dataset,
collected under normal operating conditions, is used to estimate the control limits. This
phase is qualified as retrospective. Second, a prospective phase consists in detecting out-
of-controls, based on the estimated limits. When there is no historical record, a confidence
interval is estimated from the recent dataset and used. In this case, robust methods are
recommended to avoid bias.

8.1.2 CUSUM charts

Figure 8.2 – Control chart with a small shift from the date 80.

In another example, n = 100 observations x1, . . . , xn at regular time periods t1, . . . , tn are
plotted in the control chart of Figure 8.2. From date 80 to date 100, all observations are
in-control, but above the center line. This is apparently caused by a non-random factor,
indicating a small but persistent change in the process (Western Electric rules, Chapter 5
of [76]). To detect the small shifts, cumulative sum of observations (CUSUM) are more
efficient. The first CUSUM charts were introduced in 1954 by E. S. Page [84]. Nowadays,
the Tabular CUSUM chart is the mostly used. It consists in monitoring two statistics C+

i

and C−i , respectively dedicated to detect increases or decreases in the xis’, and defined as:{
C+
i = max

(
0, xi − k+ + C+

i−1
)

and

C−i = max
(
0, k− − xi + C−i−1

)
,

(8.1)

where C+
0 = C−0 = 0. The parameters k+ = x̄ + δ and k− = x̄ − δ represent tolerable

magnitudes for increases and decreases of the mean. In practice, δ is a small percentage of
the estimated standard deviation σ̂ and the control limits are set around 5σ̂. The Tabular
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CUSUM applied to the dataset of Figure 8.2 is illustrated in Figure 8.3a. Although the
procedure is designed to be efficient, it usually fails to detect early and late shifts. This
drawback is due to the initialization and the time delay needed to accumulate deviations
from the target. Therefore, [115] proposed alternative bounds for CUSUM charts, based
on asymptotic properties. The observation periods are rescaled between 0 and 1 (t1 =
0, . . . , tn = 1) and the CUSUM quantity at time t ∈ [0, 1] is given by:

W 0
n(t) =

1

σ̂
√
n

bntc∑
i=1

(xi − x̄) (8.2)

where σ̂ =
√

1
n

∑n
i=1 (xi − x̄)2. If the xis’ are independent and identically distributed, then

W 0
n(t)→ B0(t) when n→∞. B0(t) is Brownian bridge, with variance t(1− t). As a conse-

quence, time dependant control limits of form UCL = λ
√
t(1− t) and LCL = −λ

√
t(1− t)

allow to detect early and late shifts. The resulting chart is displayed in Figure 8.3b. The
peak, close to date 0.8, corresponds to the change date [115]. In addition to detecting the
change, the chart is adapted to the data in terms of distribution. As illustrated in Fig-
ure 8.3b, 1000 random samples of W 0

n(t) are simulated, and fall within UCL and UCL.

(a) Tabular CUSUM chart. (b) CUSUM chart using W 0
n(t).

Figure 8.3 – Different CUSUM charts to detect a small drift.

8.1.3 Multivariate charts

With the advances of sensor technologies, there are many quality indicators nowadays. Mon-
itoring them separately from one another may be misleading. In particular, when they are
correlated, univariate control charts are no longer suitable. In the example in Figure 8.4a, x1
and x2 are correlated. In this case, univariate charts will surely fail to detect inter-variables
deviations. Furthermore, when the number of dependent variables gets large, univariate
control charts will generate too many false alarms (see e.g. [76], Chapter 11). Though Bon-
ferroni corrections can help to overcome false alarms problems in low dimension, multivariate
approaches are employed to consolidate the large number of dependent variables into some
simple indicators. A common practice is to project multi-dimensional data onto orthogo-
nal directions and monitor the resulting latent variables (see e.g. [65]). Among existing
projection methods, Principal Components Analysis is mostly used. In the case of linear
correlations, it significantly improves the detection of univariate control charts as shown in
Figure 8.4b. Such procedures are very helpful, especially for very high dimensional problems
wherein several variables are redundant and noisy. Only a significant subset of the latent
variables will be selected by means of dimension reduction. Given the poor knowledge and
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(a) Univariate charts (b) PCA chart (c) Hotelling’s T 2 chart

Figure 8.4 – Different control charts for a 2-dimensional Gaussian vector.

assumptions on the distribution of the dataset, the Hotelling’s T 2 chart is a standard choice.
Its control bound appears to be an elliptical confidence region, in accordance with the data
distribution. As illustrated in Figure 8.4c, the Hotelling’s T 2 chart is suitable for monitoring
Gaussian distributed variables. Comprehensive studies on control charts can be found in [76]
and [18].

8.2 Profile monitoring

raditionally, quality is defined as the fitness of a product or service to meet the requirements,
such as specifications and satisfaction, of the user. Montgomery[76] introduced a new defini-
tion of quality, which is inversely proportional to variability. Profile monitoring is absolutely
a part of this modern vision. It tackles the issue of process control when the quality to
monitor is described by a functional relationship between a response variable and one or
more explanatory variables [80]. Considered as the most promising area of research in SPC
[113], profile monitoring meets several needs in industry, such as quality control, and pattern
recognition and classification. The problem is this: at each time-stamp, the object to control
is a curve, a spatial profile, or characteristics in higher dimensions, represented by n obser-
vations of the input variables X, and the n corresponding responses y = y1(t), . . . , yn(t).
Profile monitoring is addressed through a standard approach including two steps [80, 113]:

1. At each time stamp, the profile model y = f (X) is estimated;

2. Some parameters of f are monitored over time with a control chart.

Based on the concept above, several profile monitoring schemes have been developed. As
an example in a healthcare application, [63] proposed T 2 control charts to monitor the
parameters of linear models. In automotive industry, [5] used control charts to monitor the
parameters of a linear mixed model, including a second-order polynomial and autocorrelated
residuals. [59] developed a different approach for stamping processes. They decomposed 1D
profiles into segments, where the levels are monitored, because the faults to detect affect
only few portions of the profile. To deal with multiscale structures, [91] used wavelets to
monitor paper surface through two separate Shewhart control charts. A comprehensive
study of profile monitoring, with further applications is provided by [80]. In the specific case
of wafers, that is a circular input domain, [37] used thin-plate splines to detect abnormal
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products. Rather than the profile itself, [10] investigated spatial variations of the variance.
The resulting indicator, called spatial variance spectrum, is then monitored with control
limits calculated based on a χ2 distribution. Though [89] obtained promising results by
modelling profiles with GP models and Zernike polynomials, we remark that there are no
control charts based on GP parameters or Zernike coefficients in the literature. In the
profile monitoring scheme of [19] using Gaussian processes, the monitored indicator is rather
formulated through deviations from a target profile.

8.2.1 Profile monitoring based on Zernike polynomials

In this section, we implement the two-steps profile monitoring procedure, based on Zernike
polynomials and Hotelling’s T 2 control chart. The methodology is illustrated with an indus-
trial dataset, involving q = 506 wafers processed one after the other. The response y is a
physical characteristic measured at 17 locations on each wafer.

Step 1: profile model

Due to the properties presented in 2.1, Zernike polynomials represent the natural polynomial
model for wafers profile monitoring in circular domains. This first step consists in fitting
y = f (X) for each wafer, where f is given by Equation (2.19). Now, the details of the
model are provided for a single wafer in Figure 8.5. Given the 17 measurements, a two-order
Zernike regression is used to avoid over-fitting. The estimated shape shows a strong radial

Observed data Fitted profile

Figure 8.5 – Profile estimation with Zernike polynomials.

Table 8.1 – Zernike regression. Coefficients βmn and p-values

Polynomials Z0
0 Z−11 Z1

1 Z−22 Z0
2 Z2

2

Coefficient β̂mn − −0.010 0.002 0.006 −0.028 −0.005
p-values (%) < 0.1 < 0.1 41 0.5 < 0.1 8.8

effect, confirmed by the regression coefficients in Table 8.1. Indeed, β̂0
2 , corresponding to

the radial polynomial Z0
2 is the largest in absolute value. In addition, the model exhibits

two main directions of deformation, obtained by rotating the x and y axes by 80 degrees
approximately. The resulting model corresponds to an adjusted coefficient of determination
R2

adj = 94%. It confirms the existence of a link between measurements and locations, and
the second step of profile monitoring can be performed.
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Step 2: control chart

The regression model presented above summarizes a wafer profile in p = 6 coefficients: β̂0
0 ,

β̂−11 , β̂1
1 , β̂−22 , β̂0

2 , β̂2
2 . Actually, the q wafers profiles are represented by a q × p matrix M

where the columns and rows correspond to the regression coefficients and wafers indices
respectively. This second step consists in monitoring M over time, based on a multivariate
control chart (Section 8.1.3). Notice that the approach differs from traditional SPC which
would only involves the monitoring of the constant term β0

0 . By assuming that M has
Gaussian entries and that spatial patterns are independent over time, the monitoring can be
done with the Hotelling’s T 2 chart. The vector of Hotelling’s T 2 statistics is given by:

T 2 = (M− µ̂)> Σ̂−1 (M− µ̂) (8.3)

where Σ̂ and µ̂ are the estimated mean and covariance matrix of M. By denoting Fα(k, n−k)
the α-percentile of the F-distribution with parameters k and n− k, the upper control limit
of T 2 is:

T 2
UCL =

k(n− 1)(n+ 1)

n(n− k)
Fα(k, n− k) (8.4)

As mentionned in Section 8.1.1, T 2 statistics is ideally estimated with an historical dataset,
collected under normal operating conditions [76]. In this experimental study, such data are
not available. We use robust estimations for Σ and µ in order to avoid different kinds of bias
due to process instability or outliers [95, 83]. The resulting chart is displayed in Fig. 8.6.

Figure 8.6 – Hotelling’s T 2 control chart for the 506 wafers

Among the 7 abnormal signals, we focus on the most significant one, corresponding to
wafer 169. For this wafer, we display in Figure 8.7 (see [76], Section 11.3 for more details)
a decomposition of the T 2 statistic, indicating the relative contribution of each Zernike
polynomial. These contributions reveal that coefficients β−22 and β2

2 are the main causes of
the problem. The underlying Zernike polynomials Z−22 and Z2

2 suggest an angular drift.
To visually confirm the result, we display the four profiles, corresponding to wafers 55,

169, 260 and 440 which are marked with triangles in the control chart. The corresponding
profiles in Figure 8.8 exhibit a pronounced dissimilarity of the 169th wafer compared to the
others. Actually, it is obvious that monitoring the mean value β0

0 would not allow to detect
the problem. By detecting the dissimilarity in spatial patterns, the implemented profile
monitoring scheme is then an improvement, compared to standard SPC. Notice that the
time-series of the T 2 statistics in Figure 8.6 reveal a slight autocorrelation. This temporal
effect is minor in the example and the analysis of time series will be addressed in Chapter 10.



100 CHAPTER 8. PROFILE MONITORING ON THE DISK

Figure 8.7 – Partial contributions to the T 2 statistics for wafer 169.

Wafer 55 Wafer 169 Wafer 260 Wafer 440

Figure 8.8 – Profiles of the 4 wafers marked with triangles in Fig. 8.6.

8.2.2 Profile monitoring based on Gaussian processes

As shown in the first part of this thesis, Kriging allows to improve wafers spatial models.
Therefore, we are wondering whether Kriging parameters, like Zernike coefficients, can be
used in profile monitoring. For validation, we use the same dataset of 506 wafers and focus on
wafers 169, 37 and 160 which represent the main out-of-control signals according to Zernike
polynomials. The wafers 55, 260 and 440 are marked with blue triangles.

Profile monitoring based on a Cartesian GP

Profile monitoring is now applied to the sequence of 506 wafers. The polynomial regression
is replaced by a GP model with constant trend and a tensor-product Matérn 3

2
kernel:

cov
(
Z(x), Z(x′)

)
= σ2km 3

2
(x1, x

′
1|`1) km 3

2
(x2, x

′
2|`2)

M is now a 506 by 4 matrix whose columns correspond to estimated values of (`1, `2, µ, σ). For
the sake of readability, we omit the usual hat indicating that the parameters are estimated.
We observe in Figure 8.9 that (σ2, `1) is not drawn from a Gaussian distribution and the
Hotelling’s chart does not apply to M. However, an important fact in Figure 8.9 is the
existence of a relationship between the different pairs of estimated parameters. Given the
scatter-plots, these relationships should be readily described by parametric models. A linear
regression confirms that `2 ' 0.8`1 + 0.07 with coefficient of determination R2 = 92%. The
heteroscedasticity observed in Figure 8.9c led us to investigate the link between `1 and σ2

in a logarithmic scale. This resulted in log(σ2) ' 1.8 log(`) − 6 with R2 = 81%. Though
less significant, the affine relation between µ and `1 is modelled as µ ' −0.08`1 − 0.6,
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(a) µ vs `1 (b) `2 vs `1 (c) σ2 vs `1

Figure 8.9 – Estimated Kriging parameters for 506 wafers.

corresponding to a coefficient of determination of R2 = 53%. In Figure 8.10 are represented
the fitted models.

(a) µ = −0.08`1 − 0.6 (b) `2 = 0.8`1 + 0.07 (c) 2 log(σ) = 1.8 log(`1)− 6

Figure 8.10 – Monitoring of the residuals of 3 regressions models that link Kriging parameters.

Figure 8.11 – Hotelling’s T 2 control chart for (ε1, ε2, ε3).

From now on, we denote the residuals of the regression models by ε1, ε2, ε3, displayed in
Figures 8.10a, 8.10b and 8.10c. Based on the assumption that ε1, ε2, ε3 follow a Gaussian
distribution, 95% control limits are set for each pair of Kriging parameters. This would result
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in the 3 independent control charts displayed in Figures 8.10. In order to control the false
alarm rate in higher dimension, we use the Hotelling’s T 2 chart to monitor (ε1, ε2, ε3). In
Figure 8.11, we see that this multivariate control chart succeeds in detecting the 169th wafer
in addition to the two other reference signals, namely wafers 37 and 160. As an example,
the profile of wafer 169 is drawn in Figure 8.13. We observe that it has a different pattern.

Wafer 55 Wafer 169 Wafer 260 Wafer 440

Figure 8.12 – Profiles of the 4 wafers marked with triangles in Fig. 8.11.

Profile monitoring based on a centred polar Gaussian process

The considered model involves 4 independent terms, corresponding to the functional ANOVA
decomposition presented in Section 4. The kernel of the underlying centred GP is:

cov
(
Z(x), Z(x′)

)
= σ2

1k
0
1

(
ρ, ρ′|`

)
+ σ2

2k
0
2 (θ, θ′|τ) + σ2

12k
0
1

(
ρ, ρ′|`

)
k02 (θ, θ′τ)

where k01 and k02 are centred Matérn 5
2

and C2-Wendland kernels over [0, 1]2 and S2. In Fig-
ure 8.13, we observe via the estimated parameters that wafers 169 and 160 are far from the
other observations. The same goes for wafer 37 which is beyond the limits of the graph-
ics to provide a clear visualization of the different scatter-plots. Based on the procedure
presented for Cartesian GPs, we display in Figure 8.14 a Hotelling’s T 2 control chart for
(`, τ, σ2

1, σ
2
2, σ

2
12). As observed, the abnormal wafers 169, 160 and 37 are detected. In par-

ticular, wafer 37 was removed before fitting the different regression models to avoid biasing
the T 2 control limits.

(a) σ21 vs ` (b) σ22 vs τ (c) σ212 vs ` (d) σ212 vs τ

Figure 8.13 – Estimated parameters of a centred polar GP for 506 wafers.
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Figure 8.14 – Hotelling’s T 2 control chart based on a polar GP, after transformation and
whitening.

8.2.3 Profile monitoring based on Sobol decomposition

Compared to polynomial regression, Kriging is harder to interpret due to the non-parametric
nature of GPs. However, as explained in Chapter 4, Sobol indices allow to interpret GPs
in terms of variances. The resulting variances are furthermore related to independent pro-
cesses. In Figure 8.15 are displayed the 506 wafers Sobol indices. One finding is immediate:
monitoring the Sobol indices would allow to detect the abnormal profiles. In particular,
wafer 37 differs too much from the population by its very large “angular variance”. Wafers
160 and 169 too have large “interaction variances”, when compared to the others.

(a) Radial. (b) Angular. (c) Interaction.

Figure 8.15 – Sobol indices for 506 wafers, based on a centred polar GP.

8.3 General methodology and practical issues

There are two important facts in this chapter. First, the control chart based on Zernike
polynomials is easily implemented and interpreted. Conversely, it is harder to monitor GP
parameters. Secondly, the GP parameters are mutually linked. As a consequence, when
monitoring Kriging parameters, being far from the other observations in the sense of the
Euclidean distance is not always a sign of dissimilarity (see an illustration in Figure 8.9a,
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or [119] for asymptotic properties). To monitor such “structured” datasets, Hawkins [50]
introduced control charts based on Regression Adjusted Variables. The procedure consists
in monitoring the residuals from the regression of each variable on all others. Given the
empirical results here-above, we propose a 3 steps monitoring scheme to adapt regression
adjustment in the framework of Kriging:

1. At each time stamp, estimate the Kriging model y = f (X);

2. Perform a linear (or log-linear) regression for each pair of estimated parameters;

3. Monitor the regression residuals with standard control charts.

In Section 8.2.2, the regressions corresponding to step 2 were motivated by empirical consid-
erations. However, the resulting models are coherent with the dependencies among Kriging
parameters (see e.g. [20], Section 5.3.3). For a practical implementation, we provide some
relevant quantities that can be monitored.

• The ratio `1
`2

of characteristic lengths for tensor-product Cartesian GPs which was
used by [89] to describe the differences between clusters of profiles. It is furthermore
consistent with the empirical finding `2 = 0.8`1 in Section 8.2.2.

• The angle φ of geometric anisotropy which is identifiable modulo π
2

unless the process
is isotropic [48]. It should be monitored based on a suitable periodic distribution.

• The coefficients a and b in the linear model log(σ) = a log (`) + b for Matérn kernels.
For a large number of observations in a bounded domain, monitoring these coefficients
would indicate if the successive profiles are equal [119].

• The Sobol indices based on centred GPs since they represent the variance ratios of
independent processes as explained in Section 4. Monitoring them would allow to
detect changes in the process variance as shown in this chapter.

Résumé en Français

La Maitrise Statistique de Procédés (MSP ou SPC en anglais) fait référence à l’emploi
d’outils statistiques pour le suivi et l’amélioration de performances en entreprise. Les cartes
de contrôle représentent l’outil le plus intuitif et le plus utilisé dans cette discipline. Dans
ce premier chapitre, nous avons fait une revue des principes de base de la SPC, notamment
les différents types de cartes de contrôle: univariées ou multivariées, adaptées à la détection
de changements brusques ou de dérives lentes. Les cartes sont ensuite utilisées dans le but
suivre dans le temps des données spatiales définies sur le disque. Ce problème, connu en
anglais sous le nom de “Profile Monitoring”, se résoud en deux étapes de façon standard. La
première étape consiste à modéliser (surface de réponse) les données spatiales à chaque pas
de temps. La deuxième utilise les outils de la SPC pour le suivi temporel des paramètres
des modèles spatiaux. Notre contribution a été de proposer des cartes de contrôles pour
les profils spatiaux, en utilisant les coefficients de Zernike d’une part et les paramètres
de processus Gaussiens d’autre part. A l’issue de l’étude, nous avons remarqué que les
polynômes de Zernike offrent un cadre simple et interprétable pour suivre dans le temps des
données définies sur le disque. les paramètres de krigeage, qui ne sont pas gaussiens, sont
plus difficiles à modéliser avec les cartes de contrôle standard. Pour faire face à ce problème,
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nous avons proposé une démarche empirique consistant à modéliser les résidus de régressions
entre différents paramètres de krigeage. Les aspects pratique de la méthodologie sont enfin
évoqués.



Chapter 9

Spatial Pattern Prediction and Diagnosis

Up to now, wafers patterns are reconstructed from spatial observations, and control charts
are developed in order to detect abnormal patterns and potential changes in the process.
The aim in this chapter is to link these statistical models to manufacturing parameters.
For this purpose, the focus is on Zernike polynomials which provide a simple and intuitive
decomposition of spatial patterns.

9.1 Problem and motivation

β00 β−11 β+1
1

β−22 β02 β+2
2

Figure 9.1 – Regression coefficients for the 506 wafers, grouped by three process machines.
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To introduce the problem, we consider the dataset of the 506 wafers monitored in Sec-
tion 8.2.1. The manufacturing process, which is not detailed here, was done by 3 different
machines (EQ1, EQ2, EQ3). In Section 8.2.1, each spatial pattern was modelled with 6
Zernike polynomials, resulting in a 506 by 6 matrix M where rows correspond to wafers and
columns indicate the Zernike coefficients: β0

0 , β+1
1 , β−11 , β−22 , β0

2 and β+2
2 . These coefficients

are grouped by machines and displayed in Figure 9.1. Significant differences among the three
machines for the same product can be observed intuitively. Similar studies were exploited
by [37] who modelled spatial patterns with splines in order to detect and classify equipment
faults.

Other than the impact from machines, wafers spatial patterns can be linked with the pro-
cess physics too. For instance, heating from the center (Figure 1.4a) is a process that surely
generates a radial pattern, which corresponds intuitively to high values of β0

2 . Given the
knowledge on the production executive records, spatial patterns can firstly be decomposed
into significant Zernike polynomials and then explained further. In general, there are hun-
dreds of manufacturing parameters that potentially influence the wafers profiles. Rather than
reconstructing the spatial patterns from measurements at sampled locations, the purpose of
the study in this chapter is to infer and explain them, based on the available processing
characteristics.

Apart from the causal relationships among processing characteristics and spatial patterns,
there is no clear understanding on the effects of each parameter. The predictors are further-
more dependant on one-another. Given that, causal models such as bayesian networks [87]
would be a relevant choice to predict and interpret spatial patterns. However, these prob-
abilistic models rely on a representation of conditional dependencies as a directed acyclic
graph. This hypothesis is not fulfilled in the presence of feedback regulation, which is a very
common control mechanism in semiconductor fabs. Therefore, we focus on linear regression
models, with the essential purpose of providing interpretation and diagnosis tools in industry.

9.1.1 Characteristics of Process Variables

The influence of successive processing steps

Given that semiconductor manufacturing involves hundreds of processing steps, a relevant
study of a single production step cannot be conducted regardless of the previous ones. For
instance, it is well-known that wafers surfaces resulting from etching processes will depend
on the previous operation (lithography). As can be seen in Figure 9.2, an imperfect lithog-
raphy process may impact the product quality after etching.

Initial surface. After lithography. After etching.

Figure 9.2 – An example of dependency between two production steps in microelectronics.
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Variables related to one process step

Figure 9.3 – Schematization of a regulated process control framework.

To introduce the different variables involved in the prediction of spatial patterns, we con-
sider the framework of a production step in Figure 9.3. The successive wafers, processed by
a machine EQ are numbered by their running orders, and k is the wafer currently processed
by EQ. wk denotes the measurements recorded over k after the previous production step.
The operating parameters of EQ are expressed as Θk, which is provided by the regulation
system, referred to Run-to-Run control (R2R) in semiconductor manufacturing [24]. R2R
allows dynamic modifications of operating parameters between successive product runs in
order to minimize the gap to the target and the variability of the process. Θk is then the
model-based information used to compensate the deviation observed in the measurements
of the precedent wafer.

When the wafer is processed in the machine, embedded sensors are turned-on to monitor the
key physical parameters, such as temperature, gas flow, pressure. These data are usually
collected continuously during the process and expressed as multivariate time series (Vk(t)).
They are conventionally referred to Fault Detection and Classification (FDC) data in semi-
conductor industries, practically summarized into scalar values (intercept, slope, max, min
. . . ), and stored in the vector Vk. In parallel, automation parameters such as the machine
name, the lot name and counters related to maintenance are recorded and represented by
the vector Uk. Evidentally, Uk is made of discrete and categorical variables.

At the end of the product run, the processed wafer is assigned to quality control. Physical
and electric tests are assessed at n different locations on the wafer. It results in a n by
3 matrix Zk = (xi, yi, zi)i=1...n where (xi, yi)i are the coordinates of the measured points
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and zi’s are the associated responses. At this stage, there are two ways to represent the
spatial values, depending on whether the measurement locations are fixed or not. When
the measurement locations are the same from wafer to wafer, Zk is represented by the
vector zk = (z1, . . . zn). Otherwise, Zk is represented by the coefficients of a d-order Zernike
regression yk =

(
β0
0(k), . . . , β+d

d (k)
)
.

9.1.2 Link the Product Quality to Process Characteristics

With all the process parameters settled down, Zk can be modelled, based on successive
observations of

(
Θk,Uk,Vk,Wk

)
, k = 1 . . . N . We recall that each spatial response Zk

is represented by the vector yk, corresponding to the spatial measurements, or Zernike
coefficients. Switching from one to another is simply done by regression or computation
of polynomials. For the sake of readability, we suppose that yk corresponds to Zernike
coefficients with d = 2, i.e.

yk =
(
β0
0(k), β+1

1 (k), β−11 (k), β−22 (k), β0
2(k), β+2

2 (k)
)>
,

where yk ∈ M1,q (R), with q = (d + 1)(d + 2)/2 being the number of Zernike coefficients.

Let xk =
(
Θk,Uk,Vk,Wk

)>
be the inputs of successive observations where categorical

predictors are transformed into binary variables by dummy coding. An essential point to keep
in mind is the common identity of spatial measurements. Obviously, the nmeasured locations
over one wafer share the same records through manufacturing operations, except the xy-
coordinates. This implies that point-to-point predictors, except the xy-coordinates, are the
same. Taking into account the xy-coordinates of the measurements, the q Zernike coefficients
can be modelled with the same predictors. The regression model is then formulated as:

yk = b + A>xk, (9.1)

where b = (b1, . . . , bq)
> ∈ Rq and A =

(
aij
)

is a p by q matrix, p being the number of
predictors in xk, including dummy variables. Expanding Equation (9.1) leads to:β

0
0(k)
...

βdd(k)

 =

b1...
bq

+

a11 · · · a1p
...

. . .
...

aq1 · · · aqp

xk (9.2)

Given 9.2, the rows of the matrix A> are computed separately. The underlying assump-
tion is that the outputs are mutually independent because of the orthogonality of Zernike
polynomials. Therefore, q linear regression models are evaluated, corresponding to the q
Zernike coefficients (based on the same predictor xk). While considering more than one pro-
cess steps, there are many input variables (40 and 76 in the datasets below) and variables
selection becomes a critical issue to obtain significant models.

9.1.3 Selection of Significant Process Variables

Given the large number of manufacturing parameters and the multivariate output, the in-
fluential variables are selected in two stages, in order to limit the negative effects of missing
data. Firstly, each input-output pair is tested separately, based on the standard Pearson cor-
relation for continuous inputs, the Kruskal-Wallis test for categorical ones, and the ANOVA
(Analysis of variance) test for integers. Secondly, the q different models in 9.2 are estimated
based on the subset of the selected pairs. The importance of each pair is now quantified by
the p-value, resulting from these q regressions.
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9.2 Case study

9.2.1 Process variables selection based on Zernike coefficients

In the first dataset for methodology validation, there are 40 predictors, involving 3 regulation
parameters and a dozen of categorical variables, integers included. The modelled spatial
patterns are represented by 6 Zernike coefficients: β0

0 , β−11 , β+1
1 , β−22 , β0

2 and β+2
2 . In order to

provide a relevant visualization, the variables selection results are summarized as a matrix
G =

(
Gij

)
, i = 1, . . . 40, j = 1, . . . 6. Gij being the importance of the ith input when

modelling the jth output, G is displayed in Figure 9.4 where:

• black cells identify the non-selected input-output pairs,

• green cells indicate the selected pairs which are not significant,

• orange cells correspond to selected and significant pairs,

• red cells indicate selected and very significant pairs.

Regarding the ten outputs, the most influential process variables correspond to the subset
{1, 4, 24, 36}. They include one regulation signal and three Zernike coefficients related to
the previous manufacturing step. These influential variables stable enough from output to
output. Remark that higher order polynomials seem to depend on fewer variables than the
others. However, the variations observed in wafers profiles are due to non-constant terms,
and therefore mainly explained by variables 24 and 36.

Figure 9.4 – Variable selection based on 40 inputs and 6 Zernike coefficients as output.
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9.2.2 Process variables selection based on spatial measurements

As explained in Section 9.1.1, spatial data can also be represented by the n spatial values
when the n measurement locations are fixed, which is the case for our second dataset. In
Equation 9.1, the 6 Zernike coefficients are now replaced by n = 17 spatial measurements.
The variables selection procedure is then conducted based on these 17 outputs. For this
second dataset, the number of inputs is higher too (76), due to more variables from the
previous process step. The matrix G, summarizing the variables selection, has now 17 rows
and 76 columns. G is displayed in Figure 9.5.
In this second model, the three regulation signals are the most influential variables, followed
by some measurements at the previous step. As an explanation, only the mean value is
regulated over wafers. That makes the 17 spatial measurements vary together. Therefore,
all the outputs depend on the same inputs. Remark that the variable 4 (machine name) is
always selected but never significant in the final model. It becomes very important when
regulation signals are removed from X. Indeed, the machine name is already an input
variable for the R2R feedback. Although the R2R signals are able to provide accurate
predictions, they behave as black box systems and are more difficult to interpret than the
concrete elements such as machines and measurements.

Figure 9.5 – Variable selection based on 76 inputs and 17 spatial samples as outputs.

9.2.3 Predictions

The model corresponding to the second dataset is now validated, and only the 5 most
significant inputs are used. The predicted spatial measurements and the corresponding
wafers profiles are displayed in Figure 9.6 and 9.7. As observed, wafers spatial patterns can
be mainly explained by 5 key processing characteristics. The next challenge would be to
embed such dependencies in response surface models after having consolidated the variable
selection method.
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Figure 9.6 – Site-to-site predicted values.

(a) Prediction 1 (b) Prediction 2 (c) Prediction 3 (d) Prediction 4

(e) Observation 1 (f) Observation 2 (g) Observation 3 (h) Observation 4

Figure 9.7 – Fitted profiles, based on spatial measurements (observations), and predicted
profiles based on processing characteristics (predictions).

Résumé en Français

Dans les chapitres précédents, les données spatiales sont modélisées à partir d’observations
en un nombre fini de points sur le disque. L’objectif de cette étude est de prédire les
données spatiales à partir de variables continues et catégorielles, représentant les paramètres
de fabrication en microélectronique. La méthodologie que nous avons proposée consiste à
représenter les courbes définies sur le disque par un nombre fini de coefficients de Zernike ou
par les observations lorsque les points de mesure sont fixes. Ces représentants des courbes
sont alors modélisés par régression en fonction des paramètres de production, puis reconver-
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ties en données spatiales. La procédure ainsi définie permet décomposer les profils des wafers
et de les lier aux paramètres de production, donc aux connaissances métier de l’industrie
microélectronique. Dans le cas des données utilisées, on remarque notamment une forte
influence des mécanismes de régulation et des équipements de production sur la qualité des
produits. Par ailleurs, il est confirmé que les défauts spatiaux se transmettent d’une étape
d’usinage à une autre.



Chapter 10

Robust monitoring of time series with struc-
tural changes

This paper presents original research initiated by the monitoring needs of a semiconductor
production plant. The industrial operations rely on an Information Technology (IT) system,
and several time series data are controlled statistically. Unfortunately, these variables often
contain outliers, as well as structural changes due to external decisions in the IT activity.
As a consequence, it has been observed that the monitoring results obtained with standard
techniques could be severely biased.

This paper attempts to overcome such difficulties. A new monitoring method is proposed,
based on robust Holt-Winters smoothing algorithm, and coupled with a relearning procedure
for structural break detection. Such a method is flexible enough for a large-scale industrial
application. We evaluate performance through simulation, and show its usefulness in real
industrial applications for univariate and multivariate time series. The scope of application
deals with IT activity monitoring, but the introduced statistical methods are generic enough
for being used in other industrial fields.

The results of this chapter are based on the publication “Robust Monitoring of an Industrial
IT System in the Presence of Structural Change” [83], by Padonou, Roustant and Lutz. The
industrial outcome [70] was honored with the Greenfield Challenge prize in celebration of
the International Year of Statistics.

10.1 Introduction

10.1.1 Industrial background and literature review

Manufacturing efficiency relies increasingly on Information Technologies (IT). This is clearly
true for wafer fabrication plants, where this research is ongoing through a partnership with
the company STMicroelectronics. Several activities are useful for proper IT management
(see eg. Rudd et al. [99]). This paper is focused on monitoring. Careful monitoring is based
on a cautious observation of the IT system. The objective is to have a close look at all data
recorded and stored to track the activity of a plant IT system. As the size and complexity of
IT systems strongly increase, the viability of monitoring can only be ensured by employing
automated procedures as mentioned by Dugmore et al. [30]. In our background, methods
intuitive enough to be reported on graphic charts were needed. Thus, threshold exceeding
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detection mentioned by Rudd [99] is welcome. In addition, facing the enormous diversity
and expanse of the components of modern IT systems, experts do not have always enough
knowledge or time to determine a priori the critical thresholds.

There has also been a great interest in statistical methods of monitoring. Several publi-
cations have concerned the theoretical principles and the implementation of these methods
(see e.g. Lowry et al. [68] , Montgomery [76] , Doganaksoy et al. [28]). Simultaneously
several authors classified these monitoring tools according to the state of the monitored
processes: independent vs dependent data, model-specific vs model generic methods, nor-
mal vs non normal distributions. In this way, they provided recommendations for the choice
of the monitoring procedures (see e.g. Ben - Gal et al. [8] , Alfaro et al. [3] , Abbasi et al. [1])

Seeing the quantity and diversity of the data under study, automated procedures that do
not require any preliminary hypothesis about the monitored variables, are required. In this
case, monitoring requires the ability to distinguish normal system operations from excep-
tional events. To quantitatively detect such abnormal behavior in the fluctuation of a time
series, one standard procedure is the following: 1) Model the time series to be monitored;
2) Monitor model residuals, through an appropriate control chart (Montgomery [76]). This
statistical solution should be able to solve the problem of automatic monitoring of an IT
information system.

A literature review presented in 2006 by De Gooijer and Hyndman [43] showed that
many researches have been devoted to the first step of the procedure here-above. Among
them, ARIMA models are famous for their ability to describe a large variety of industrial
processes (Box and Jenkins [12, 13]). These models are expected to produce independent and
normally distributed residuals, which allow the automatic setting of the critical thresholds
in the second step.

Concurrently to ARIMA models, Holt-Winters smoothing is a flexible algorithm for time
series that do not need any preliminary analysis. It is also a fairly good approximation for
many kinds industrial variables (see Makridakis [71]), especially for those encountered in our
research field. Since ARIMA models are equivalent to Holt-Winters smoothing under certain
conditions (see e.g. Gardner Jr. [62] , Hyndman [56]), we decided to implement this latter,
which is furthermore easier to manage by non-statisticians. By way of example, Hellerstein
[51] developed an approach based on ARIMA modeling, whereas Brutlag [14] and Leikis [67]
employed Holt-Winters smoothing to monitor IT systems.

However at STMicroelectronics, monitoring based on the usual Holt-Winters algorithm
revealed 2 classes of limitations:

1. Sensitivity to outliers: outlying observations are used to causing severe bias in the
two phases of the monitoring procedure. Many solutions were suggested to overcome
these difficulties. First of all, robust estimators (see e.g. Rousseeuw et al. [93, 96, 94,
95] , Huber et al. [55, 53] , Hubert [54] ) can be used to make control limits resistant
to outliers. Along the same lines, different methods are offered to limit the influence
of these outliers during the time series modelling phase. In case of deterministic trend,
Gardner [61] presented a pre-cleaning method where outliers are detected via a 2-sigma
detection rule and replaced by averages. Cipra et al.[17] developed robust Kalman
filters that can also serve to perform Holt-Winters smoothing. More recently Gelper
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et al. [39] and Croux et al. [21] introduced a robust version of the Holt-Winters
smoothing with enough recommendation on its implementation.

2. Structural changes due to external decisions: They can lead to poor behavior
of the robust Holt-Winters algorithm proposed by References [39, 21] . For instance,
after a shift in the time series, this robust Holt-Winters algorithm may furnish worse
results than its original version. Many authors have already focused on this question
of change point analysis also known as structural change monitoring. The problem
consists in testing at each stage if there is a change or not and when it really occurred
(Woodall and Montgomery [112]). Zeileis[117] drew up the inventory of statistical tests
to monitor changes in linear regressions models. But more generally, and beyond linear
regressions models, the existing methods for change point detection can be grouped in
two major families: frequentists and Bayesians.

(a) The very first frequentist solutions have been proposed since the fifties by Page
[84, 85, 86] and deepened over years up to more recent formulations using support
vector machine (see e.g. Desobry[25])

(b) Bayesian formulations are also endowed with a significant history that began with
Chernoff and Zacks[15]. They keep growing and represent a dynamic and current
field of statistics and probabilities (see Zacks and Kenett[114] , Colosimo[18] ,
Erdman and Emerson[33] for more details).

10.1.2 Contributions and contents of this paper

The originality of this paper consists of tackling simultaneously the two kinds of problems
mentioned earlier that weaken the Holt-Winters algorithm. For that, the robust approach
proposed by References [39, 21] is tested and we show in an industrial background how it
allows solving the first class of issues. Afterwards, we develop a new methodology to adapt
this robust smoothing so that its responds to the two classes of problems aforementioned.
This methodology is dynamic detecting structural breaks in a time series and reinitializing
the robust scheme of References [39, 21] accordingly. We prove that the new scheme im-
proves the flexibility of References [39, 21] ’s algorithm by solving the coupled problem of
outliers and structural changes.

Finally, it should be stated that an industrial monitoring implies a simultaneous con-
trol of several dozens of variables. There are numerous approaches in multivariate process
control (see e.g. Bersimis et al. [9] for a review), and a specific investigation of robust
techniques in this context is beyond the scope of the paper. Alternatively, we show how the
robust controlling procedure can be adapted to the framework of multivariate process control.

This paper is organized as follows. In Section 2, we introduce the main statistical meth-
ods that have been deployed to control the STMicroelectronics IT system: The robust Holt-
Winters monitoring proposed by Gelper et al. [39] and Croux et al. [21] ; The dynamical
contribution developed through our research, improving its flexibility in changing environ-
ments. In Section 3, some performance tests are introduced. They are grounded on quanti-
tative simulations to: 1) Compare the usual and robust Holt-Winters monitoring procedures;
2) Evaluate the structural break detection capacity of our new adaptive procedure. Lastly,
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Section 4 introduces some examples from real industrial cases. In addition, univariate and
multivariate applications are considered.

10.2 Investigation of robust monitoring for trended time

series with structural changes

The main principles of Holt-Winters based monitoring (HW), and its robust version (RHW)
introduced by References [39, 21] will be presented. Then, a new methodology (RHW-SC)
in presence of structural changes is furnished.

10.2.1 Monitoring based on Holt-Winters smoothing

The Holt-Winters (HW) algorithm is a popular technique used to provide short-term fore-
casts of a given time-series (see e.g. Makridakis et al. [71]). The predictions are built
iteratively as a linear combination of the observed values and the prediction obtained at last
step.

For illustration, let us consider a time series y, observed at dates 1, 2, . . . , n − 1. For
the sake of simplicity, we assume that y is non-seasonal, though the methodology is similar.
The HW algorithm[52, 110] is based on the assumption that y is a sum of two time-series α
and β corresponding respectively to a local level (order of magnitude) and a trend. These
auxiliary time series are estimated iteratively as averages of the last observation and the last
predictions, weighted by two parameters λ1 and λ2:

α̂t = λ1yt + (1− λ1)ŷt|t−1, t = 1, . . . , n− 1 (10.1)

β̂t = λ2(α̂t − α̂t−1) + (1− λ2)β̂t−1, t = 1, . . . , n− 1 (10.2)

Logically, the one-step-ahead forecast done at date t− 1 for date t is then given by:

ŷt|t−1 = α̂t−1 + β̂t−1, t = 1, . . . , n (10.3)

which gives in particular the prediction at date n. In practice, λ1 and λ2 are estimated by
minimizing a criterion (often the least-square criterion) based on the forecast errors:

Et = yt − ŷt|t−1, t = 1, . . . , n− 1 (10.4)

and the algorithm is initialized by a linear regression on the first m values.

As a second step, monitoring can be performed (Montgomery[76]). While applying a
control chart to y is not recommended, due to the violations of the usual assumption identi-
cally and independently distributed data especially if y is trended, the forecast errors Et may
be close to satisfy it (Box and Jenkins [12, 13]). Then, assuming furthermore that Et are
normally distributed N(0, S2) the upper and lower control limits for Et are then given by:

UCL = +qα/2 ∗ Ŝ (10.5)

LCL = −qα/2 ∗ Ŝ (10.6)
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where qα/2 is the quantile of a Student distribution at level α/2, and Ŝ2 is the usual variance
estimator:

Ŝ2 =
1

n−m− 1

n−1∑
t=m+1

E2
t (10.7)

These limits intend to detect the dates that correspond to an anomaly: A value of Et
outside the interval [UCL, LCL] should be a strong indication of an abnormal behavior (for
a given confidence level α). However, the limits themselves are sensitive to outliers, since
the variance estimator overestimates the true variance in presence of outliers. Furthermore,
the predicted value ŷt|t−1 depends linearly on past values that may contain outliers. These
problems are solved by the robust version of the Holt-Winters monitoring.

10.2.2 Robust monitoring based on Holt-Winters smoothing

The Robust Holt-Winters algorithm (RHW) introduced by Gelper et al. [39] and Croux et
al. [21] considers two additional auxiliary time series: y∗, representing a cleaned proxy of y
after outliers treatment, and σ the expected prediction error, representing a robust estimate
of the forecast error Et. To obtain a robust algorithm, large values are truncated when larger
than a given threshold. More precisely, the expected errors σt are computed recursively by:

σ̂2
t = λσ

[
ψk

(
Et
σ̂t−1

)]2
σ̂2
t−1 + (1− λσ)σ̂2

t−1 (10.8)

where λσ is a given weight, and ψk is the Huber function with boundary value k:

ψk(x) =

{
x if |x| ≤ k,

sign(x)× k if |x| > k
(10.9)

The error Et is still given by Et = yt − ŷt|t−1, with ŷt|t−1 = α̂t−1 + β̂t−1, but the local level
and trend are now estimated by using the cleaned time series y∗:

α̂t = λ1y
∗
t + (1− λ1)ŷt|t−1 (10.10)

β̂t = λ2(α̂t − α̂t−1) + (1− λ2)β̂t−1 (10.11)

where y∗t is given by:

y∗t = ψk

(
Et
σ̂t

)
× σ̂t + ŷt|t−1 (10.12)

Notice that the role of the Huber function ψ is to truncate the forecast errors Et when larger
than k times the expected prediction error σ̂t:

ψk

(
Et
σ̂t

)
× σ̂t =

{
Et if |Et| < kσ̂t,

sign(Et)× kσ̂t if |Et| > kσ̂t
(10.13)

For instance, Equation (10.12) can be rewritten in a simpler way:

y∗t =

{
yt if |Et| < kσ̂t,

sign(Et)× kσ̂t + ŷt|t−1 if |Et| > kσ̂t
(10.14)

Finally the parameters λ1 and λ2, and the standard deviation S of the forecast errors are
computed with robust procedures (References [39, 21]):
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(λopt1 , λopt2 ) = argmin
λ1,λ2

{
S2
0

n−1∑
t=m+1

[
ψk

(
Et
S0

)]2}
(10.15)

Ŝ2 = Ck
S2
0

n−m− 1

n−1∑
t=m+1

[
ψk

(
Et
S0

)]2
(10.16)

Here, S0 = medm+1≤t≤n|Et| and Ck is a consistency factor. For the common choice k = 2
and λσ = 0.3, we have Ck ≈ 1.404 (see References [39, 21] for more details).

The algorithm initialization is also done robustly by repeated median regression. For
that, we employed a period of length 7: This is short enough to assume a local linear trend
and long enough to be resistant to 2 outliers.

Since the RHW smoothing is fully robust, the control charts based on the errors Et (see
Section 10.2.1) should now be resistant to outliers, which is a clear improvement to the (non-
robust) HW-based monitoring. However, adaptation is necessary in presence of a structural
change.

In this section, the focus is on time series that possibly contain outliers and structural
changes. We consider frequentist approaches to detect the latter. To detect structural
changes in parametric models, three main classes of methods exist (Zeileis [116]): F statistics,
fluctuation tests and maximum likelihood scores. We choose to use a common and simple
F statistics, the Chow test, since it can be easily adapted to a robust framework by using
a robust regression and robust F statistics. The Chow test splits the sample into 2 groups:
The first before the break date and the second after. The model parameters are estimated
for both of them so that an F test be performed to judge whether they are equal or not. The
Chow test is easy to use but restricted by 2 limitations. The first, mentioned by Hansen [47]
, is that the break date must be known a priori. Moreover, the exact number of changes is
unknown. The second problem is a question of robustness: A break may be missed or falsely
detected because of outliers. In this section, we show how RHW smoothing can deal with
these problems and deduce a strategy for structural change monitoring.

An introducing example Consider the time series in Figure 1 with an outlier at date
10 and a break at date 26. As expected, the robust algorithm is not sensitive to the outlier
at date 10 contrarily to classic smoothing: This is its main advantage. But after that, the
level changes suddenly at date 26. The robust algorithm does not admit this modification
quickly and many false alarms are generated. Nevertheless, this specificity can be used to
detect break dates. Indeed, when a structural change happens, there is a quite long period
(here 26—34) of successive false alarms corresponding to successive large errors in the RHW
smoothing. During this period, the predicted values ŷt|t−1 seem to exhibit a deterministic
pattern (Figure 1, d): Actually, we show below (Figure 2 and Proposition 1) that they
match exactly with an analytical function increasing exponentially. These two facts strongly
suggest that the periods of successive large errors given by robust Holt-Winters smoothing
are useful for the detection of break dates.

When a structural break occurs in practice, there is a sequence of consecutive false alarms
due to a succession of large errors. RHW smoothing enables to quantify the importance of
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(a) Alarms given by the classical HW forecasting (b) Predicted values by the classical HW.

(c) Alarms given by the robust HW forecasting (d) Predicted values by the robust HW.

Figure 10.1 – A real time series with outlier and structural change

these errors by comparing them to their predicted values. Let us call relative error the ratio
Et
σ̂t

. A succession of large values of this ratio is a forewarning sign of structural change. More
formally, we call t1 a suspicious date for structural change if there exists an integer p ≥ 3
such that:

ψk

(
Et1
σ̂t1

)
= ψk

(
Et1+1

σ̂t1+1

)
= · · · = ψk

(
Et1+p−1
σ̂t1+p−1

)
= k (10.17)

or

ψk

(
Et1
σ̂t1

)
= ψk

(
Et1+1

σ̂t1+1

)
= · · · = ψk

(
Et1+p−1
σ̂t1+p−1

)
= −k (10.18)

The period [t1, . . . , t1 + p − 1] is a suspicious period : a period when forecasting errors
remain k times higher than their expected values.

Proposition 1 During a suspicious period [t1, . . . , t1 + p− 1], the predictions ŷt|t−1 of the
robust HW smoothing are given by a deterministic and monotonic function f which does not
depend on any observation posterior to date t1. Its form is:

f(t) =
r(t+1)

(r − 1)2
+ a.t+ b (10.19)

with
r =

√
λσ(k2 − 1) + 1 = 1.378405 (10.20)

and where a and b are given by ŷt1 and ŷt1−1
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Figure 10.2 – Zoom on Figure 1 (d): The predicted values (solid line) coincide with a function
f of the form f(t) = art + bt+ c (dotted lines) during the period [26-34].

Proof See Appendix 1.

A new methodology for structural change monitoring

The previous observations and results about RHW smoothing in case of a structural change
suggest the following methodology called RHW-SC:

1. Find the suspicious dates by looking at consecutive relative errors given by the robust
HW smoothing (Equations 10.17 and 10.18)

2. Apply a robust version of the Chow test to the suspicious dates detected in 1. One ro-
bust version of the test consists in replacing the usual linear regression by the repeated
median regression (Siegel [104] , Rousseeuw et al. [96] ) and using a robust estimator
of the residuals’ variance (Croux et al. [21]) to compute the F statistic.

This strategy tackles the two main issues mentioned at the beginning of this section: All
the possible break dates (number and locations) are automatically detected by the algorithm
itself, and for a given date the statistical test for structural change is done in a robust way. In
practice the methodology is applied dynamically, and when the robust Chow test is positive,
the robust HW smoothing is reinitialized.

Performance of the RHW-SC methodology on the introducing example To solve
the problem raised by the introducing example, the RHW-SC methodology is performed
dynamically with p = 3. The methodology detected one suspicious date, namely day 26,
which indeed corresponds to the structural change. Notice that only one Chow test has been
used contrarily to exhaustive methods such as Quandt-Anderson that systematically test all
dates. We reinitialized the robust HW smoothing at date 26, by using the repeated median
regression coefficients. As a result, RHW-SC methodology remains resistant to the outlier
at date 10 without generating a long sequence of false alarms after the break.
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(a) Alarms given by RHW-SC. (b) Predicted values by RHW-SC.

Figure 10.3 – Alarms and predicted values by the robust version with structural change
detection

10.3 Global performance tests

Some ARIMA models correspond to exponential smoothing methods (see e.g. Hyndman et
al. [56] ). In particular, a Holt-Winters forecasting with smoothing parameters (λ1 , λ2) is
equivalent to an ARIMA (0, 2, 2) model of parameters (θ1 , θ2) if: −1 ≤ θ2 ≤ 1 , θ2− θ1 ≤ 1
and θ2 + θ1 ≤ 1, with :

λ1 = 1 + θ1 (10.21)

λ2 =
1− θ1 − θ2

1 + θ2
(10.22)

Thus, we first use ARIMA (0, 1, 1) time series with parameter θ = 0.5. Indeed, they
correspond to the special case where θ2 = 0. Next, we perform our simulations on ARIMA
(0, 2, 2) models with (θ1 , θ2) = (1 , -0.25). These parameters have been estimated from
an industrial time series by assuming that it comes from an ARIMA(0, 2, 2) model. In this
section, we compare first the performances of the RHW and the HW smoothing statically
and dynamically. Afterwards, we evaluate the ability of the RHW-SC method to detect a
structural change.

10.3.1 Comparison tests in a static setting

We are interested in comparing 2 characteristics of the HW and the RHW methods:

1. The power : The probability that an outlying observation is detected

2. The false detection rate: The probability that a normal observation is detected. This
risk is called size of the control chart when there is no outlier. Below, we use 0.95 as
a confidence level, so the false detection rate is expected to be 0.05.

Simulation results for ARIMA (0, 1, 1) time series

We use the following strategy:
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1. Generation of a time series: simulate an ARIMA (0, 1, 1) time series of length 160 with
parameters θ = 0.5. The first 60 values serve as a training sample (including m = 7
values for HW and RHW initializing).

2. Generation of outliers: For a fixed contamination rate R, choose randomly 160R dates
among the 160 dates. Contaminate these observations by adding or subtracting to
them a value e. Whether it is an addition or a subtraction is chosen at random. Two
cases are considered for e:

(a) e is a fixed value among 10, 20 or 30

(b) “Mix”: e is chosen at random uniformly among 10, 20, 30

3. Perform the HW and the RHW methods and estimate:

(a) Their power : as the percentage of the contaminated observations that are really
detected

(b) Their false detection rate: as the percentage of non contaminated observations
that are detected.

4. Repeat 100 times the steps 1 to 3.

The RHW and HW monitoring are equivalent when there is no outlier: same power and
same false alarm rate (Reference [21]). Their differences become significant when the data
gets contaminated (see below).

On the one hand, Table 10.1 and Table 10.2 below show that the HW control chart is
subject to two effects. The first one is the widening of its control limits by outliers, which
tends to reduce abnormally its false alarms rate. The second one concerns the dates following
these outliers: the corresponding predictions are biased and this fact tends to raise the false
alarms rate. Here, the first effect is predominant. This explains the too low false alarms risk
and the poor detection rate of the HW method.

On the other hand, Table 10.3 and Table 10.4 show that the RHW methodology out-
performs the HW smoothing especially when the number of outliers raises and when the
magnitude of these outliers is not fixed: which is a realistic case. In fact, the RHW control
chart does not lose either its power, or the stability of its false alarms rate that remains
stable around the theoretical value 5%.

Table 10.1 – HW detection rate

R = 2% R = 5% R = 10%
e = 10 93.5 70.0 31.0
e = 20 94 74 35
e = 30 91 72 36
Mix 72 55 33

Table 10.2 – HW false alarms rate

R = 2% R = 5% R = 10%
e = 10 3.3 3.6 2.1
e = 20 1.7 3.0 7.5
e = 30 1.9 6.0 10
Mix 3 5.3 4
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Table 10.3 – RHW detection rate

R = 2% R = 5% R = 10%
e = 10 100 100 99.2
e = 20 100 100 99.9
e = 30 100 100 100
Mix 100 100 99.8

Table 10.4 – RHW false alarms rate

R = 2% R = 5% R = 10%
e = 10 5.2 4.8 6.1
e = 20 5.2 5.2 6.4
e = 30 5.2 4.8 7.1
Mix 5.1 4.9 6.1

Simulation results for ARIMA (0, 2, 2) time series

The same strategy as in the previous section is used. Only the first step is modified to
generate ARIMA (0, 2, 2) models with (θ1 , θ2) = (1 , -0.25). The results are summarized
below (Tables 10.5, 10.6, 10.7 and 10.8). They show that the RHW control chart remains
better in term of detection. Nevertheless, its false risk becomes higher than expected even
if it remains stable enough for a fixed contamination rate contrarily to HW smoothing.

Table 10.5 – HW detection rate

R = 2% R = 5% R = 10%
e = 10 97.6 91.3 67.0
e = 20 100 92.2 74.4
e = 30 97.1 91.0 73.3
Mix 92.7 77.3 57.5

Table 10.6 – HW false alarms rate

R = 2% R = 5% R = 10%
e = 10 3.3 2.7 3.7
e = 20 2.1 4.1 8.0
e = 30 5.2 1.5 4.0
Mix 2.2 3.9 6.4

Table 10.7 – RHW detection rate

R = 2% R = 5% R = 10%
e = 10 99.8 99.0 83.0
e = 20 100 99.9 93.5
e = 30 100 99.9 95.0
Mix 99.7 99.3 91.5

Table 10.8 – RHW false alarms rate

R = 2% R = 5% R = 10%
e = 10 6.4 7.2 9.0
e = 20 7.1 7.1 8.5
e = 30 6.2 7.2 9.7
Mix 7.0 7.4 9.0

10.3.2 Comparison tests in a dynamical setting for ARIMA (0, 2,
2) time series

In practice, industrial variables are tracked daily; the smoothing parameters and control
limits are re-estimated every day. So, dynamic simulations were performed. They use the
same procedure as for the static setting but with updating the smoothing parameters and
controls limits at each iteration.

Tables 10.11 and 10.12 show how suitable HW monitoring is to update its smoothing
parameters and control limits contrarily to the RHW method. Indeed, the HW detection
rate is improved even if the power of the RHW smoothing remains better. Let us remark
that the HW false alarm risk has raised and approaches better the theoretical value 5%. As
for the RHW false alarms risk, it has decreased to approach this same theoretical value; but
this later improvement is less obvious. However, the RHW false alarms risk has become very
stable and non dependent on the magnitude of outliers, which is not the case for the HW
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Table 10.9 – HW detection rate

R = 2% R = 5% R = 10%
e = 10 99.6 95.4 80
e = 20 100 93.6 80
e = 30 100 97 78.6
Mix 95 70 52

Table 10.10 – HW false alarms rate

R = 2% R = 5% R = 10%
e = 10 4.6 4.3 4.2
e = 20 3.3 2.2 2
e = 30 2.5 2.2 2.4
Mix 3.0 3.2 2.0

Table 10.11 – RHW detection rate

R = 2% R = 5% R = 10%
e = 10 100 100 99.7
e = 20 100 100 100
e = 30 100 100 100
Mix 100 100 100

Table 10.12 – RHW false alarms rate

R = 2% R = 5% R = 10%
e = 10 6.3 6.8 8.6
e = 20 6.0 7.1 9.1
e = 30 6.2 6.9 9.3
Mix 6.1 7.0 7.2

control chart. Finally, the RHW control chart outperforms when the scale of the outliers is
more realistically (randomly) chosen.

Comparison using ROC analysis According to the analysis here-above, the RHW
smoothing presents higher detection rates, but also higher false alarm rates. To have a
clear view of the benefit of the robust procedure, we use a receiver operating characteristics
(ROC) graph. Indeed, the final goal is to classify observations in two groups: normal or
abnormal. So, for an ARIMA (0, 2, 2) time series randomly contaminated as previously
(e = “Mix” and R = 5%), we perform the RHW and the HW smoothing. Instead of fixing
the confidence level, it is varied with the aim of plotting the corresponding false alarm rates
versus the detection rates for the two procedures (Fawcett[34]).

Figure 10.4 – ROC curves for one contaminated ARIMA(0, 2, 2) time series:
Detection rate (y-axis) vs. False alarm rate (x-axis)

These curves show clearly that the RHW smoothing is the best choice. For instance, a
user who tolerates 5% of false alarms can still reach more than 99% of detection rate with
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the RWH smoothing instead of only 80% for the classic version. Furthermore, the results
remain similar when the simulation is repeated, but this is not the focus here. Let us remark
that these results are consistent to the values in Tables 10.9, 10.10, 10.11 and 10.12.

10.3.3 Structural change detection performance tests

To evaluate the RHW-SC methodology, the following strategy was used:

1. Generation of a time series: simulate an ARIMA (0, 2, 2) time series of length 160
with parameters (θ1 , θ2) = (1,−0.25). The first 60 values serve as a training sample
(including m = 7 values for RHW initializing).

2. Generation of outliers: For a fixed contamination rate R = 0.05, choose randomly 160R
dates among the 160 dates. Contaminate these observations by adding or subtracting
to them a fixed value e = 5. Whether it is an addition or a subtraction is chosen is
random.

3. Generation of structural changes: Choose randomly 1 date among the 100 last values.
From this date to the last one, add a linear function: A∗DATE+B to the time series.

4. Perform the RHW-SC methods with 0.95 as confidence level for the robust Chow test
and compute:

(a) The detection rate for structural changes,

(b) The false detection rate for structural changes, corresponding here to the proba-
bility of detecting a change at a wrong date.

5. Repeat 1000 times the steps 1 to 4.

Table 10.13 – Detection rates of changes

B = 0 B = ±50
A = 0 - 95
A = ±50 86 95

Table 10.14 – False detection rates of changes

B = 0 B = ±50
A = 0 - 0.6
A = ±50 0.4 0.5

The results show that the RHW-SC methodology leads to a very low risk of false alarms.
Indeed, the probability of occurrence of a suspicious period with length p ≥ 3 at another date
than the break is extremely small. Since these suspicious periods represent a necessary condi-
tion for change detection, therefore Chow-tests are performed very rarely: ergo fewer alarms.

In addition, the RHW-SC methodology is efficient for structural change detection, es-
pecially when a shift happens. When there is no shift (only a slope change), the detection
becomes less efficient. Nevertheless, in that case, RHW period of successive false alarms is
short and there is no need to reinitialize.

We are now interested in another performance characteristic: the Conditional Expected
Delay (CED), see Kenett et al. [64] . The CED is the time between the first opportunity
to detect a change and the first true alarm related to this change. Here, the RHW-SC
detections usually occur at the third post-change observation. According to the simulations
above, the Conditional Expected Delay is estimated to be p = 3.
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10.4 Applications

The RHW and the RHW-SC methods are performed daily on many indicators of the infor-
mation system of a company. In general, the results are satisfactory. Here, we present some
of these examples and a multivariate case.

10.4.1 Examples of univariate time series

This first example is illustrative of structural changes detection by the RHW-SC methodol-
ogy.

(a) RHW (b) RHW-SC

Figure 10.5 – An industrial time series with a structural change

The variable of Figure 10.5 is an indicator of CPU consumption. It is subject to one slope
change at date 47. This leads to four false alarms when the RHW methodology is performed
(10.5a). The change is detected 3 days later by the RHW-SC monitoring, resulting in a
reinitialization and reduction of the number of false alarms.
The second example shows an extension of the RHW smoothing to seasonal time series
(Reference [39]). This differentiates the normal operating conditions (5 weekdays activity
and drop of activity on weekends) from exceptional events.

(a) Seasonal HW (b) Seasonal RHW

Figure 10.6 – An industrial and seasonal time series
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Figure 10.6 points out the sensitivity of the HW method to outliers. The abnormal
observation of the third week has deformed the seasonal component. Because of the over-
estimation of this seasonality, the 26th observation that is really aberrant is not detected.
Moreover, this leads to four false alarms the two following weeks. These problems no longer
exist with the seasonal RHW smoothing.

10.4.2 The multivariate case

In our company STMicroelectronics, several indicators are tracked daily. So, monitoring
them separately leads to false alarms every day. This is foreseeable given that the theoretical
false alarms risk tends to 100% when the number of independent variables approaches 100:
Hence, the necessity to perform a multivariate monitoring. Notice that there are several
approaches in the multivariate framework (see e.g. Bersimis et al. [9]), and our aim is
neither to do a comparative study nor to propose a best one. Rather, we show how the
new robust methodology can be adapted to the multivariate case. Thus, as an example, we
constitute groups of variables. For each group of p variables, the following strategy is used:

1. Perform the RHW smoothing for each variable of the group.

2. Use a robust Hotelling T2 control chart to analyze simultaneously the p vectors of
residuals given by step 1.

Among existing robust Hotelling T2 control charts (see e.g. Rousseeuw [93], Alfaro et
al. [2]) we consider here the computation of the confidence ellipsoid with the Minimum
Covariance Determinant criterion introduced by Rousseuw et al. [93, 95] . There are two
identified difficulties: A poor orientation of the confidence ellipsoid and an underestimation
of its size. To face these problems, recent solutions found in the literature were employed.
Firstly, the orientation is improved by choosing a subset of the 75 % best points for the
MCD criterion instead of 50% (Huber et al. [55]). Secondly, the size estimation is improved
by using two correcting factors: One asymptotic factor of consistency to the chi square
distribution (Rousseeuw et al. [96]) and one empirical result for small samples (Pison et al.
[88]).

Now, we present an example with a group of p = 4 variables. BIN1 is related to the user
activity (software transactions activities) whereas BIN2, BIN3 and BIN4 concern the volume
and activity of a data base (Oracle statistics as DBtime, Redo Size, Session logical Read:
see the Oracle data base documentation for more details). Usually, the data base activity
follows the user’s behavior. This explains the positive correlation among the variables.

Each day, the Hotelling T2 statistic is computed for this group. The result is plotted in
Figure 10.7. This control chart has successfully detected the 6 most important outliers but
does not say where the problems come from. This is the well known problem of multidimen-
sional out of controls interpretation. As an example, let us focus on the alarm on date 56.
Its cause can be known by looking at each variable separately. Then, Figure 10.8b shows
that the variable BIN2 is mainly responsible.

Nevertheless, this solution is not realistic for an industrial use because it produces too
many graphs that need to be examined. Among the numerous existing criteria to interpret
multivariate signals, the partial relative contributions mentioned by Montgomery [76] are
very popular for their efficiency. In Figure 10.9, these relative contributions at date 56
confirm the influence of BIN2.
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Figure 10.7 – Hotelling daily statistics for a group of four variables

(a) Variable BIN1 (b) Variable BIN2

(c) Variable BIN3 (d) Variable BIN4

Figure 10.8 – RHW smoothing for the four variables of the group

Figure 10.9 – Partial contributions to variability at date 56

10.5 Discussion

In this paper, a monitoring based on robust Holt-Winters smoothing, as proposed by Gelper
et al. [39] and Croux et al. [21] was studied. Based on an industrial application of this
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method at STMicroelectronics and simulation studies, its high robustness was confirmed.
However, as poor results were noticed in case of structural changes, we have also proposed
and evaluated an improved dynamical approach, for a better integration of changing envi-
ronments. The efficiency of this robust and dynamical method has been demonstrated on
real univariate and multivariate STMicroelectronics case studies. This contribution has been
developed as an improvement for the STMicroelectronics IT system monitoring, but it could
be applied to many other industrial applications, where time dependent variables has to be
statistically controlled.

For further research, there are several interesting outstanding questions. Firstly, fine
tuning could be investigated. Hence, the truncation parameter was set to k = 2 and the
smoothing parameter λσ to 0.3 (still proposed by References [39, 21]). We also recommended
to use m = 7 for initialization to be resistant to 2 outliers. These values could be further
evaluated: Do they always provide optimal results or should they be contextually adapted?
Secondly, when structural changes occur, we decided to reinitialize the Holt-Winters param-
eters. One alternative could be to use dynamical smoothing parameters that may change
over time, as proposed by Williams [109] or Taylor [108] . Finally, in our methodology, we
chose a Chow test to detect structural breakpoints, since it is easily adapted to the robust
framework. Nonetheless, as mentioned earlier, other approaches do exist (Bayesian formu-
lations, other F statistics, fluctuation tests, maximum likelihood scores). Their potential of
application in our monitoring procedure and a comparative study or their performance may
lead to interesting further insights.

Résumé en Français

L’évaluation de la performance industrielle passe par le suivi statistique d’indicateurs de
qualité. Le travail présenté dans ce chapitre s’inscrit dans la continuité de ceux de Lutz [69],
Gelper [39] et Croux [21]. Pour assurer la maitrise statistique des ressources en système
d’information, Lutz avait couplé un lissage exponentiel de Holt-Winters aux cartes de contrôle
usuelles. En contexte industriel, l’algorithme engendre de fausses alarmes, dues à des obser-
vations atypiques. Le problème est alors traité par Gelper et Croux qui ont développé
une version robuste du lissage de Holt-Winters et de sa carte de contrôle. Le modèle
robuste répond alors au problème des données atypiques mais détériore les performances
initiales en cas de changements structurels. Pour traiter simultanément le problème de
données atypiques et celui des changements structurels, nous avons proposé une version à
la fois robuste et adaptative du lissage exponentiel de Holt-Winters. L’algorithme embar-
que une détection de changements brusques dans le lissage robuste qu’il réinitialise dans le
cas échéant. Théoriquement justifiée par l’équivalence entre modèles ARIMA et lissage de
Holt-Winters, cette méthodologie bénéficie des avantages des deux versions précédentes.







Conclusion and outlook

Driven by industrial needs in microelectronics, this thesis resulted in novel contributions in
spatial statistics, designs of experiments, statistical process control and time-series model-
ling. The major outcomes in applied mathematics are generic and meet other applications in
computer experiments, environmental engineering, IT system monitoring. We now suggest
possible avenues of research related to our contributions.

Spatial statistics. The problem of spatial data had the specificity of being defined on cir-
cular domains. It was addressed through Universal Kriging, a model involving a deterministic
trend and a stochastic term represented by a Gaussian process. In traditional Kriging, the
geometry of the disk is included neither in the trend, nor in the Gaussian process part. In
continuity with the work of [89] who used Zernike polynomials to model circular features
in the trend, we introduced polar Gaussian processes to embed the geometry of the disk
in the stochastic part. Defined in the space of polar coordinates by mapping the disk to
a cylinder, polar Gaussian processes improve Kriging estimation when radial and angular
components are predominant since the reconstruction is made on radial and angular correla-
tions. Then, we extended polar Gaussian processes to hyperballs, corresponding to a higher
dimension directional input in computer experiments. We also investigated the deterministic
part, namely Zernike polynomials. Since these functions are orthogonal with respect to the
uniform measure over the disk, their properties are not fully exploited when the model is
defined in polar coordinates. Given this, we conducted a study on measure modification.
As a result, we defined a new set of functions that are orthogonal with respect to the uni-
form measure over the space of polar coordinates, and that have the same symmetry and
rotation properties than Zernike polynomials. As a visualization and interpretation tool,
a sensitivity analysis based on centred polar Gaussian processes is conducted. The Sobol
decomposition of Gaussian processes, proposed by [41] and [31] in hypercubic domains, was
then extended to periodic functions. In addition to recovering additive and tensor-product
kernels, the resulting Gaussian processes allow a direct comparison of Cartesian and polar
Gaussian processes, based on their likelihoods.

The future works on polar Gaussian processes should put the focus on higher dimensions.
In particular, anisotropic kernels over hyperspheres represent a relevant question. An idea
would consist in using the hyperspherical coordinates system and estimating different covari-
ance parameters for each angular coordinate. The challenge would then be to find meaningful
distances and positive-definite functions under the geometric constraints resulting from hy-
perspherical coordinates. Regarding sensitivity analysis, the Sobol decomposition proposed
for polar Gaussian processes relies on the separability of probability measures over the space
of polar coordinates. This does clearly not apply to standard Kriging models on the disk,
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due to the dependence between x and y coordinates at the boundary the disk. A formal
study should include this dependence in integrals terms rather than extending the input
domain to a hypercube as done at now.

Designs of Experiments. The contributions of this thesis to designs of experiments are
twofold. First, we introduced Latin cylinders in order to reproduce the main properties of
Latin hypercubes in the space of polar coordinates. In particular, space-filling is optimized
based on the geodesic distance over the cylinder. The resulting class of designs is recom-
mended when the process is inherent in polar coordinates. Moreover, we showed through a
simple measure modification, how Latin cylinders can be adapted to fill the disk and suit
more general situations. Secondly, when there is some information on the response, we
carried out a simulation study of IMSE-optimal designs for standard and polar Gaussian
processes. Their key properties such as symmetries and optimality in prediction are inves-
tigated in a static setting. For dynamic systems, we tackled the question of IMSE-optimal
relocation of a design point. When iterated, the implemented relocation procedure is shown
to gradually improve the initial design of experiments until convergence.

D-optimality was already investigated for Zernike polynomials by Dette [26]. For further
research, the same criterion should be studied for orthogonal polynomials with respect to the
uniform measure over the polar space. One could adapt the demonstration provided in [26]
after remarking that the two families of polynomials have the same rotation properties and
differ only with respect to their radial terms. Another issue is the computational time of
IMSE-optimal designs in the discrete case. An approximation of the IMSE, based on spectral
methods for instance [38], and combined with a suitable optimization algorithm may allow
to overcome the difficulty. The symmetry properties should also be exploited in order to
reduce the dimension of the problem.

Statistical Process Control. In SPC, our contributions lie in the framework of profile
monitoring. The specificity of the problem was to monitor curves over time, instead of scalar
values. Following the standard procedure presented in [111] and [80], we developed a control
chart to monitor the coefficients of Zernike regression. Based on this reference model, we
proposed two options for profile monitoring with Gaussian processes. The first one applies
the Regression-Adjustment procedure of Hawkins [50] to transformed Kriging parameters.
The second one consists in monitoring the process variance via Sobol indices.

Among the perspectives in process monitoring, control charts based on Gaussian processes
represent a promising avenue of research. The empirical study that we presented needs to
be strengthened through simulations or more theoretical derivations on the distribution of
Kriging parameters. Seen as a classification problem, the topic may also be interesting for
the machine learning community. In this context, a relevant metric should be investigated
in the “non Euclidean space of Kriging parameters”, as observed in this thesis.

Our last contribution in SPC consists in using control charts to monitor autocorrelated
datasets in the presence of outliers and structural changes at the same time. The robust
Holt-Winters smoothing proposed by Croux and Gelper [21] hardly adapts to structural
changes by becoming temporarily deterministic. Based on the equivalence between Holt-
Winters smoothing and ARIMA models, we provided a characterization of this deterministic
behavior with the aim of detecting structural changes. An adaptive monitoring scheme was



CONCLUSION AND OUTLOOK 135

then implemented to simultaneously tackle the problems of outliers and structural changes.
Further research should extend the method to multivariate datasets in order to align with
the latest trends in industry.

Applications in microelectronics. This thesis highlighted two main families of profile
patterning: first, radial and angular wafers profiles, and second, variations according to Eu-
clidean directions. To model variations according to Euclidean directions, we realized that
an arbitrary choice of the Cartesian basis over the disk is not optimal. As a solution, we
proposed a data-driven approach based on the concept of geometric anisotropy. By decom-
posing and predicting spatial patterns with processing parameters, we also provided a simple
tool to interpret and classify wafers profiles as suggested by [89]. The proposed methods
are implemented in the R package DiskLearn, in preparation and used to display most of
the graphical outputs in this thesis. The collection of these implementations are successfully
tested in industry with two applications. The first one is dedicated to a daily time-series
monitoring, and the second one is used for profile monitoring and spatial uncertainty quan-
tification in real-time. Automatic parametrizations and visualizations are also implemented.
As future work, given the high complexity in semiconductor manufacturing, it will be worth
investigating multivariate models.
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[30] J. Dugmore and S. Lacy. Capacity management. British Standards Institution, 2005.

[31] N. Durrande, D. Ginsbourger, O. Roustant, and L. Carraro. ANOVA kernels and
RKHS of zero mean functions for model-based sensitivity analysis. Journal of Multi-
variate Analysis, 115:57–67, 2013.

[32] B. Efron and C. Stein. The jackknife estimate of variance. The Annals of Statistics,
9(3):586–596, 1981.

[33] C. Erdman and J.W. Emerson. bcp: An R Package for Performing a Bayesian Analysis
of Change Point Problems. Journal of Statistical Software, 23(3):1–13, 2007.

[34] T. Fawcett. An introduction to ROC analysis. Pattern Recognition Letters, 27(8):861–
874, 2006.

[35] N.I. Fisher. Statistical Analysis of Circular Data. Cambridge University Press, 1995.

[36] J. Franco, D. Dupuy, O. Roustant, G. Damblin, and B. Iooss. DiceDesign: Designs of
Computer Experiments, 2014. R package version 1.6.

[37] M. M. Gardner, J. C. Lu, R. S. Gyurcsik, J. J. Wortman, B. E. Hornung, H. H.
Heinisch, E. A. Rying, S. Rao, J. C. Davis, and P. K. Mozumder. Equipment fault
detection using spatial signatures. IEEE Transactions on Components, Packaging, and
Manufacturing Technology: Part C, 20:295–304, 1997.

[38] B. Gauthier and L. Pronzato. Spectral approximation of the imse criterion for optimal
designs in kernel-based interpolation models. SIAM/ASA Journal on Uncertainty
Quantification, 2(1):805–825, 2014.

[39] S. Gelper, R. Fried, and C. Croux. Robust forecasting with exponential and Holt-
Winters smoothing. Journal of Forecasting, 29(3):285–300, 2010.

[40] D. Ginsbourger, O. Roustant, and N. Durrande. On degeneracy and invariances of ran-
dom fields paths with applications in gaussian process modelling. Journal of Statistical
Planning and Inference, 170:117 – 128, 2016.

[41] D. Ginsbourger, O. Roustant, D. Schuhmacher, N. Durrande, and N. Lenz. On ANOVA
decompositions of kernels and Gaussian random field paths. ArXiv e-prints, September
2014.

[42] T. Gneiting. Strictly and non-strictly positive definite functions on spheres. Bernoulli,
19(4):1327–1349, 09 2013.

[43] J.G. De Gooijer and R.J. Hyndman. 25 years of time series forecasting. International
Journal of Forecasting, 2006.

[44] R. B. Gramacy and H. K. H. Lee. Cases for the nugget in modeling computer experi-
ments. Statistics and Computing, 22(3):713–722, 2012.



146 BIBLIOGRAPHY

[45] R. B. Gramacy, J. Niemi, and R. M. Weiss. Massively parallel approximate gaussian
process regression. SIAM/ASA Journal on Uncertainty Quantification, 2(1):564–584,
2014.

[46] R.B. Gramacy and H. Lian. Gaussian process single-index models as emulators for
computer experiments. Technometrics, 54(1):30–41, 2012.

[47] B. Hansen. The new econometrics of structural change: Dating breaks in U.S. Labor
Productivity. Journal of Economic Perspectives, 15:117–128, 2001.

[48] K. A. Haskard. An anisotropic Matern spatial covariance model: REML estimation
and properties. PhD thesis, University of Adelaide, School of Agriculture, Food and
Wine, 2007.

[49] T. J. Hastie, R. J. Tibshirani, and J. H. Friedman. The elements of statistical learning
: data mining, inference, and prediction. Springer series in statistics. Springer, New
York, 2009.

[50] D. M. Hawkins. Multivariate quality control based on regression-adjusted variables.
Technometrics, 33(1):61–75, 1991.

[51] J.M. Hellerstein. Quantitative Data Cleaning for Large Databases. United Nations
Economic Commission for Europe (UNECE), 2008.

[52] C.C. Holt. Forecasting seasonals and trends by exponentially weighted moving aver-
ages. International Journal of Forecasting, 20(1):5–10, 2004.

[53] P.J. Huber. Robust Statistics. Wiley Series in Probability and Statistics. Wiley-
Interscience, 1981.

[54] M. Hubert. Theory and Applications of Recent Robust Methods. Statistics for industry
and technology. Birkhäuser, 2004.
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Appendix 1

We prove the Proposition presented in Section 10.2.2: If t1, t1+1, . . . , t1+p−1 is a suspicious
period, then the sequence ŷt1 , ŷt1+1, . . . ŷt1+p−1 is given by a deterministic and monotonic
function f which does not depend on any observation posterior to date t1.

Proof

The period t1, t1 + 1, . . . , t1 + p − 1 is defined by either Equation 10.17 or Equation 10.18.
Without lost of generality, consider Equation 10.17. By combining it and Equation 10.8, we
obtain:

σ̂2
t = (1 + λσ(k2 − 1))σ̂2

t−1 t1 + 1 ≤ t ≤ t1 + p (10.23)

which shows that the predicted errors σ̂t follow a geometric progression with common ratio,

r =
√

1 + λσ(k2 − 1) (10.24)

Consequently, by denoting t0 := t1− 1, the date before t1, the predicted errors are given by:

σ̂t = rt−t0σ̂t0 t1 + 1 ≤ t ≤ t1 + p (10.25)

With the common choice k = 2, λσ = 0.3, we have r ≈ 1.378 > 1. Thus, the expected error
goes increasing exponentially. Furthermore, the cleaned time series y∗t becomes:

y∗t = k.rt−t0σ̂t0 + ŷt (10.26)

Now, relying on the equivalence with ARIMA(0,2,2) model (see e.g. Hyndman [56]), the
forecast values of the Holt-Winters smoothing with parameters (λ1, λ2) follow the recursive
scheme:

ŷt+1 = (2− θ1) y∗t + θ1ŷt − (1 + θ2) y
∗
t−1 + θ2ŷt−1 (10.27)

where θ1 and θ2 are the parameters of the corresponding ARIMA(0, 2, 2) model (See Equa-
tions 10.21 and 10.22). Given Equation 10.26, this scheme becomes:

ŷt+1 − 2ŷt + ŷt−1 = P (t) (10.28)

with:
P (t) = k[(2− θ1) r − (1 + θ2)]r

(t−1−t0)σ̂t0 (10.29)

This is a linear equation, whose solutions are given by the sum of the solutions of the
homogeneous linear equation and a particular solution:

ŷt = f(t) =
rt+1

(r − 1)2
+ a.t+ b (10.30)

The values of the constants a and b are imposed by ŷt1 and ŷt1+1. This shows indeed that the
predicted values are purely deterministic and increasing exponentially during the suspicious
period.



Sensitivity analysis

6 analytical fonctions are used to further understand the meaning of the sensitivity indices
presented in Chapter 4. For each function, the 5 following GP models are estimated:

1. A Cartesian GP with kernel kprod+add

2. A centred Cartesian GP with kernel kfad:[−1,1]2

3. A polar GP with kernel kprod+add

4. A centred polar GP with kernel k†fad:[0,1]×S

5. A centred polar GP with kernel k∗fad:D

These functions are recovered over D based on the two maximin Latin cylinders LCD and
LCD* presented in Section 5.2. We recall that LCD fills uniformly the space (ρ, θ) whereas
LCD* fills the space (x, y). In the same logic, the µ† is uniform over (ρ, θ) whereas µ∗ is
uniform over the disk. For each toy function and each design, the 5 models are assessed,
based on the following indicators:

1. RMSE based on predictions at 1000 points filling the disk

2. Likelihood in a logarithmic scale

3. Sobol decomposition for kfad:[−1,1]2 , k
†
fad:[0,1]×S and k∗fad:D

As we are going to see, the centred GP models presented in Chapter 4 ouperform the standard
additive and tensor products kernels in addition to providing relevant Sobol indices. A key
point is that the probability measures µ† and µ∗ may lead to different results in the presence
of radial shapes. Indeed, the two measures correspond to the same marginal distribution of
polar angles. In the study, the GP models are fitted with the matérn5

2
kernel over [0, 1]2 and

[−1, 1]2 the C2-Wendland function fover S2.



BIBLIOGRAPHY 153

Test function 1

Dataset DoE

GP type kernel RMSE Log-likelihood
Cartesian kprod+add 34.7 5.4
Cartesian kfad:[−1,1]2 10.2 21.7

Polar kprod+add 32.9 0.4

Polar k†fad:[0,1]×S 27.9 3.3

Polar k∗fad:D 31.6 7.4

Assessment of different GP models

µ(x, y)
−

+

m1(x)
S = 74.7

+

m2(y)
S = 0.4

+

m12(x, y)
S = 24.8

=

m(x, y)
Kriging mean

Sobol decomposition of the Kriging mean (Cartesian GP, uniform measure over [−1, 1]2)

µ(x, y)
−

+

m1(ρ)
S = 0.3

+

m2(θ)
S = 41.6

+

m12(ρ, θ)
S = 58.1

=

m(ρ, θ)
Kriging mean

Sobol decomposition of the Kriging mean (Polar GP, uniform measure over [0, 1]× S)

µ(x, y)
−

+

m1(ρ)
S = 0

+

m2(θ)
S = 60.4

+

m12(ρ, θ)
S = 39.6

=

m(ρ, θ)
Kriging mean

Sobol decomposition of the Kriging mean (Polar GP, uniform measure over D)
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Test function 1

Dataset DoE

GP type kernel RMSE Log-likelihood
Cartesian kprod+add 61 17.7
Cartesian kfad:[−1,1]2 33 35.1

Polar kprod+add 94 13

Polar k†fad:[0,1]×S 81.3 14.8

Polar k∗fad:D 83.6 14.7

Assessment of different GP models

µ(x, y)
−

+

m1(x)
S = 76.5

+

m2(y)
S = 2

+

m12(x, y)
S = 21.4

=

m(x, y)
Kriging mean

Sobol decomposition of the Kriging mean (Cartesian GP, uniform measure over [−1, 1]2)

µ(x, y)
−

+

m1(ρ)
S = 2.1

+

m2(θ)
S = 97.1

+

m12(ρ, θ)
S = 0.8

=

m(ρ, θ)
Kriging mean

Sobol decomposition of the Kriging mean (Polar GP, uniform measure over [0, 1]× S)

µ(x, y)
−

+

m1(ρ)
S = 0

+

m2(θ)
S = 100

+

m12(ρ, θ)
S = 0

=

m(ρ, θ)
Kriging mean

Sobol decomposition of the Kriging mean (Polar GP, uniform measure over D)
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Test function 2

Dataset DoE

GP type kernel RMSE Log-likelihood
Cartesian kprod+add 21.4 13.6
Cartesian kfad:[−1,1]2 16.8 21.5

Polar kprod+add 0.3 67.4

Polar k†fad:[0,1]×S 13.8 21.8

Polar k∗fad:D 0 140.4

Assessment of different GP models

µ(x, y)
−

+

m1(x)
S = 53.3

+

m2(y)
S = 45.7

+

m12(x, y)
S = 1

=

m(x, y)
Kriging mean

Sobol decomposition of the Kriging mean (Cartesian GP, uniform measure over [−1, 1]2)

µ(x, y)
−

+

m1(ρ)
S = 98.9

+

m2(θ)
S = 0.6

+

m12(ρ, θ)
S = 0.6

=

m(ρ, θ)
Kriging mean

Sobol decomposition of the Kriging mean (Polar GP, uniform measure over [0, 1]× S)

µ(x, y)
−

+

m1(ρ)
S = 100

+

m2(θ)
S = 0

+

m12(ρ, θ)
S = 0

=

m(ρ, θ)
Kriging mean

Sobol decomposition of the Kriging mean (Polar GP, uniform measure over D)
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Test function 2

Dataset DoE

GP type kernel RMSE Log-likelihood
Cartesian kprod+add 34 16.3
Cartesian kfad:[−1,1]2 21.7 20.7

Polar kprod+add 0.3 78.2

Polar k†fad:[0,1]×S 12.1 21.3

Polar k∗fad:D 0 131.8

Assessment of different GP models

µ(x, y)
−

+

m1(x)
S = 51.9

+

m2(y)
S = 48.1

+

m12(x, y)
S = 0.1

=

m(x, y)
Kriging mean

Sobol decomposition of the Kriging mean (Cartesian GP, uniform measure over [−1, 1]2)

µ(x, y)
−

+

m1(ρ)
S = 99.4

+

m2(θ)
S = 0.6

+

m12(ρ, θ)
S = 0.1

=

m(ρ, θ)
Kriging mean

Sobol decomposition of the Kriging mean (Polar GP, uniform measure over [0, 1]× S)

µ(x, y)
−

+

m1(ρ)
S = 100

+

m2(θ)
S = 0

+

m12(ρ, θ)
S = 0

=

m(ρ, θ)
Kriging mean

Sobol decomposition of the Kriging mean (Polar GP, uniform measure over D)
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Test function 3

Dataset DoE

GP type kernel RMSE Log-likelihood
Cartesian kprod+add 102.5 −22.4
Cartesian kfad:[−1,1]2 90.2 −22.5

Polar kprod+add 39.6 −19.9

Polar k†fad:[0,1]×S 41 −19.2

Polar k∗fad:D 18.5 −6.3

Assessment of different GP models

µ(x, y)
−

+

m1(x)
S = 88.6

+

m2(y)
S = 9.4

+

m12(x, y)
S = 2

=

m(x, y)
Kriging mean

Sobol decomposition of the Kriging mean (Cartesian GP, uniform measure over [−1, 1]2)

µ(x, y)
−

+

m1(ρ)
S = 3.8

+

m2(θ)
S = 9.7

+

m12(ρ, θ)
S = 86.4

=

m(ρ, θ)
Kriging mean

Sobol decomposition of the Kriging mean (Polar GP, uniform measure over [0, 1]× S)

µ(x, y)
−

+

m1(ρ)
S = 0

+

m2(θ)
S = 10.4

+

m12(ρ, θ)
S = 89.6

=

m(ρ, θ)
Kriging mean

Sobol decomposition of the Kriging mean (Polar GP, uniform measure over D)
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Test function 3

Dataset DoE

GP type kernel RMSE Log-likelihood
Cartesian kprod+add 100.5 −21.3
Cartesian kfad:[−1,1]2 99.3 −21.2

Polar kprod+add 100.5 −21.3

Polar k†fad:[0,1]×S 29.8 −20.4

Polar k∗fad:D 9.9 −11.6

Assessment of different GP models

µ(x, y)
−

+

m1(x)
S = 100

+

m2(y)
S = 0

+

m12(x, y)
S = 0

=

m(x, y)
Kriging mean

Sobol decomposition of the Kriging mean (Cartesian GP, uniform measure over [−1, 1]2)

µ(x, y)
−

+

m1(ρ)
S = 0.3

+

m2(θ)
S = 1.8

+

m12(ρ, θ)
S = 97.8

=

m(ρ, θ)
Kriging mean

Sobol decomposition of the Kriging mean (Polar GP, uniform measure over [0, 1]× S)

µ(x, y)
−

+

m1(ρ)
S = 0

+

m2(θ)
S = 10.7

+

m12(ρ, θ)
S = 89.3

=

m(ρ, θ)
Kriging mean

Sobol decomposition of the Kriging mean (Polar GP, uniform measure over D)
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Test function 4

Dataset DoE

GP type kernel RMSE Log-likelihood
Cartesian kprod+add 97.2 −21.4
Cartesian kfad:[−1,1]2 60.6 −21.1

Polar kprod+add 1.3 −8.2

Polar k†fad:[0,1]×S 0.9 −3.8

Polar k∗fad:D 0.9 −2.3

Assessment of different GP models

µ(x, y)
−

+

m1(x)
S = 20.3

+

m2(y)
S = 1.3

+

m12(x, y)
S = 78.5

=

m(x, y)
Kriging mean

Sobol decomposition of the Kriging mean (Cartesian GP, uniform measure over [−1, 1]2)

µ(x, y)
−

+

m1(ρ)
S = 0

+

m2(θ)
S = 100

+

m12(ρ, θ)
S = 0

=

m(ρ, θ)
Kriging mean

Sobol decomposition of the Kriging mean (Polar GP, uniform measure over [0, 1]× S)

µ(x, y)
−

+

m1(ρ)
S = 0

+

m2(θ)
S = 100

+

m12(ρ, θ)
S = 0

=

m(ρ, θ)
Kriging mean

Sobol decomposition of the Kriging mean (Polar GP, uniform measure over D)
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Test function 4

Dataset DoE

GP type kernel RMSE Log-likelihood
Cartesian kprod+add 99.4 −22.8
Cartesian kfad:[−1,1]2 100 −22.8

Polar kprod+add 2.8 −3.4

Polar k†fad:[0,1]×S 1.4 −0.8

Polar k∗fad:D 1.4 2.1

Assessment of different GP models

µ(x, y)
−

+

m1(x)
S = 100

+

m2(y)
S = 0

+

m12(x, y)
S = 0

=

m(x, y)
Kriging mean

Sobol decomposition of the Kriging mean (Cartesian GP, uniform measure over [−1, 1]2)

µ(x, y)
−

+

m1(ρ)
S = 0

+

m2(θ)
S = 100

+

m12(ρ, θ)
S = 0

=

m(ρ, θ)
Kriging mean

Sobol decomposition of the Kriging mean (Polar GP, uniform measure over [0, 1]× S)

µ(x, y)
−

+

m1(ρ)
S = 0

+

m2(θ)
S = 100

+

m12(ρ, θ)
S = 0

=

m(ρ, θ)
Kriging mean

Sobol decomposition of the Kriging mean (Polar GP, uniform measure over D)
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Test function 5

Dataset DoE

GP type kernel RMSE Log-likelihood
Cartesian kprod+add 23.3 −2.7
Cartesian kfad:[−1,1]2 27.2 −2.3

Polar kprod+add 5.7 5.9

Polar k†fad:[0,1]×S 3.8 4.4

Polar k∗fad:D 2.7 16.4

Assessment of different GP models

µ(x, y)
−

+

m1(x)
S = 2.8

+

m2(y)
S = 85.1

+

m12(x, y)
S = 12.2

=

m(x, y)
Kriging mean

Sobol decomposition of the Kriging mean (Cartesian GP, uniform measure over [−1, 1]2)

µ(x, y)
−

+

m1(ρ)
S = 8.1

+

m2(θ)
S = 88.6

+

m12(ρ, θ)
S = 3.3

=

m(ρ, θ)
Kriging mean

Sobol decomposition of the Kriging mean (Polar GP, uniform measure over [0, 1]× S)

µ(x, y)
−

+

m1(ρ)
S = 7.8

+

m2(θ)
S = 88.5

+

m12(ρ, θ)
S = 3.7

=

m(ρ, θ)
Kriging mean

Sobol decomposition of the Kriging mean (Polar GP, uniform measure over D)
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Test function 5

Dataset DoE

GP type kernel RMSE Log-likelihood
Cartesian kprod+add 49.5 −11.2
Cartesian kfad:[−1,1]2 50 −9.2

Polar kprod+add 2.9 4.7

Polar k†fad:[0,1]×S 3.9 8.2

Polar k∗fad:D 4.2 13.1

Assessment of different GP models

µ(x, y)
−

+

m1(x)
S = 0.3

+

m2(y)
S = 99.7

+

m12(x, y)
S = 0

=

m(x, y)
Kriging mean

Sobol decomposition of the Kriging mean (Cartesian GP, uniform measure over [−1, 1]2)

µ(x, y)
−

+

m1(ρ)
S = 7.5

+

m2(θ)
S = 89.1

+

m12(ρ, θ)
S = 3.3

=

m(ρ, θ)
Kriging mean

Sobol decomposition of the Kriging mean (Polar GP, uniform measure over [0, 1]× S)

µ(x, y)
−

+

m1(ρ)
S = 6.8

+

m2(θ)
S = 89.7

+

m12(ρ, θ)
S = 3.5

=

m(ρ, θ)
Kriging mean

Sobol decomposition of the Kriging mean (Polar GP, uniform measure over D)



BIBLIOGRAPHY 163

Test function 6

Dataset DoE

GP type kernel RMSE Log-likelihood
Cartesian kprod+add 1.3 21.2
Cartesian kfad:[−1,1]2 0.3 39.1

Polar kprod+add 12.9 2.1

Polar k†fad:[0,1]×S 4.5 11.1

Polar k∗fad:D 5.1 11.6

Assessment of different GP models

µ(x, y)
−

+

m1(x)
S = 85.6

+

m2(y)
S = 10.8

+

m12(x, y)
S = 3.7

=

m(x, y)
Kriging mean

Sobol decomposition of the Kriging mean (Cartesian GP, uniform measure over [−1, 1]2)

µ(x, y)
−

+

m1(ρ)
S = 5.9

+

m2(θ)
S = 74

+

m12(ρ, θ)
S = 20.1

=

m(ρ, θ)
Kriging mean

Sobol decomposition of the Kriging mean (Polar GP, uniform measure over [0, 1]× S)

µ(x, y)
−

+

m1(ρ)
S = 3

+

m2(θ)
S = 88.1

+

m12(ρ, θ)
S = 9

=

m(ρ, θ)
Kriging mean

Sobol decomposition of the Kriging mean (Polar GP, uniform measure over D)
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Test function 6

Dataset DoE

GP type kernel RMSE Log-likelihood
Cartesian kprod+add 6 30.1
Cartesian kfad:[−1,1]2 2.3 42.3

Polar kprod+add 9.2 4.9

Polar k†fad:[0,1]×S 8.5 8.5

Polar k∗fad:D 8.3 10

Assessment of different GP models

µ(x, y)
−

+

m1(x)
S = 86.7

+

m2(y)
S = 10.6

+

m12(x, y)
S = 2.7

=

m(x, y)
Kriging mean

Sobol decomposition of the Kriging mean (Cartesian GP, uniform measure over [−1, 1]2)

µ(x, y)
−

+

m1(ρ)
S = 5.2

+

m2(θ)
S = 75.7

+

m12(ρ, θ)
S = 19.1

=

m(ρ, θ)
Kriging mean

Sobol decomposition of the Kriging mean (Polar GP, uniform measure over [0, 1]× S)

µ(x, y)
−

+

m1(ρ)
S = 2.6

+

m2(θ)
S = 87.9

+

m12(ρ, θ)
S = 9.5

=

m(ρ, θ)
Kriging mean

Sobol decomposition of the Kriging mean (Polar GP, uniform measure over D)



Appendix: relocations

Leave-one-out 1 Leave-one-out 2 Leave-one-out 3 In+1(u)

3 relocation strategies for the function x3 − xy2. The point-up triangles are proposals for
relocation, and the point-down triangle indicates the new location.

Leave-one-out 1 Leave-one-out 2 Leave-one-out 3 In+1(u)

3 relocation strategies for the function (ρ − 1
4
)2. The point-up triangles are proposals for

relocation, and the point-down triangle indicates the new location.

Leave-one-out 1 Leave-one-out 2 Leave-one-out 3 In+1(u)

3 relocation strategies for the function cos (3θ). The point-up triangles are proposals for
relocation, and the point-down triangle indicates the new location.



166 BIBLIOGRAPHY

Leave-one-out 1 Leave-one-out 2 Leave-one-out 3 In+1(u)

3 relocation strategies for the function sin (2πρ+ θ). The point-up triangles are proposals
for relocation, and the point-down triangle indicates the new location.

Leave-one-out 1 Leave-one-out 2 Leave-one-out 3 In+1(u)

3 relocation strategies for the function 1+sin(θ)
1+ρ2

. The point-up triangles are proposals for
relocation, and the point-down triangle indicates the new location.

Leave-one-out 1 Leave-one-out 2 Leave-one-out 3 In+1(u)

3 relocation strategies for the function 1+x
1+y2

. The point-up triangles are proposals for relo-
cation, and the point-down triangle indicates the new location.

Leave-one-out 1 Leave-one-out 2 Leave-one-out 3 In+1(u)

3 relocation strategies for the function S (x+ y) , S being the sigmoid. The point-up tri-
angles are proposals for relocation, and the point-down triangle indicates the new location.
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Leave-one-out 1 Leave-one-out 2 Leave-one-out 3 In+1(u)

3 relocation strategies for the function sh
(

5(x1 +x2)
)

. The point-up triangles are proposals

for relocation, and the point-down triangle indicates the new location.

Leave-one-out 1 Leave-one-out 2 Leave-one-out 3 In+1(u)

3 relocation strategies for the function B
(
x+1
2
, y+1

2

)
, B being the Branin function. The

point-up triangles are proposals for relocation, and the point-down triangle indicates the
new location.

Leave-one-out 1 Leave-one-out 2 Leave-one-out 3 In+1(u)

3 relocation strategies for the function Z+2
2 (x, y). The point-up triangles are proposals for

relocation, and the point-down triangle indicates the new location.

Leave-one-out 1 Leave-one-out 2 Leave-one-out 3 In+1(u)

3 relocation strategies for the function fc (x, y) =
(
xcos

(
π
3

)
+ ysin

(
π
3

) )β
. The point-up

triangles are proposals for relocation, and the point-down triangle indicates the new location.
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Driven by industrial needs in microelectronics, this thesis is focused on probabilistic models 

for spatial data and Statistical Process Control.  

 

The spatial problem has the specificity of being defined on circular domains. It is addressed 

through a Kriging model where the deterministic part is made of orthogonal polynomials and 

the stochastic term represented by a Gaussian process. Defined with the Euclidean distance 

and the uniform measure over the disk, traditional Kriging models do not exploit knowledge 

on manufacturing processes.  

 

To take rotations or diffusions from the center into account, we introduce polar Gaussian 

processes over the disk. They embed radial and angular correlations in Kriging predictions, 

leading to significant improvements in the considered situations. Polar Gaussian processes 

are then interpreted via Sobol decomposition and generalized in higher dimensions. Different 

designs of experiments are developed for the proposed models. Among them, Latin cylinders 

reproduce in the space of polar coordinates the properties of Latin hypercubes.  

 

To model spatial and temporal data, Statistical Process Control is addressed by monitoring 

Kriging parameters, based on standard control charts. Furthermore, the monitored time – 

series contain outliers and structural changes, which cause bias in prediction and false alarms 

in risk management. These issues are simultaneously tackled with a robust and adaptive 

smoothing.  
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Résumé : 

Motivés par des besoins en industrie microélectronique, ces travaux apportent des 

contributions en modélisation probabiliste de données spatiales, et en maîtrise statistique de 

procédés. 

Le problème spatial a pour spécificité d’être posé sur un domaine circulaire. Il se représente 

par un modèle de krigeage dont la partie déterministe est constituée de polynômes 

orthogonaux et la partie stochastique de processus gaussiens. Traditionnellement définis avec 

la norme euclidienne et la mesure uniforme sur le disque, ces choix n’exploitent pas les 

informations a priori sur les procédés d’usinage. 

Pour tenir compte des mécanismes de rotation ou de diffusion à partir du centre, nous 

formalisons les processus gaussiens polaires sur le disque. Ces processus intègrent les 

corrélations radiales et angulaires dans le modèle de krigeage, et en améliorent les 

performances dans les situations considérées. Ils sont ensuite interprétés par décomposition 

de Sobol et généralisés en dimension supérieure. Des plans d’expériences sont proposés dans 

le cadre de leur utilisation. Au premier rang figurent les cylindres latins qui reproduisent en 

coordonnées polaires les caractéristiques des hypercubes latins. 

Pour intégrer à la fois les aspects spatiaux et temporels du problème industriel, la maîtrise 

statistique de procédé est abordée en termes d’application de cartes de contrôle aux 

paramètres des modèles spatiaux. Les séries temporelles suivies ont aussi la particularité de 

comporter des données atypiques et des changements structurels, sources de biais en 

prévision, et de fausses alarmes en suivi de risque. Ce problème est traité par lissage robuste 

et adaptatif.  
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